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1 Introduction 

1.1 Context and Motivation 

Along with the emergence of services based computing and Web 2.0, the Web has be-
come a development platform for building “software as a service“. The notion of service 
abstracts an application that can be accessible on the network and which can be used as a 
building block for constructing more complex applications. The principle is based on the 
idea that software can be developed by coordinating calls to operations exposed by ser-
vices without worrying about distribution problems (e.g., services location, message com-
munication, execution environment).  

Current standards implement services’ coordinations by combining different languages 
and protocols. For instance, WSDL, SOAP and BPEL are example of languages used for 
describing (i) the operations exported by a service, (ii) the message exchange patterns 
(i.e., protocols) supported by a service in order to call one of its operations and (iii) the 
order among the services’ operations calls (respectively). However, sometimes calling a 
service’ operation requires to address complex non-functional properties (NFP) before 
accessing its functionality (e.g., authentication, access control, and data encryption proto-
cols). In consequence, these properties must be weaved within a services’ coordination 
logic for achieving an operation call.  

The selection of the adequate strategies for adding a specific NFP to a services’ coordi-
nation (e.g., security, transactional behavior and adaptability) is responsibility of a pro-
grammer. In consequence, the development of a services’ coordination can be a complex 
and a time-consuming task, which is opposed to the philosophy of services that aims at 
facilitating the integration of distributed applications. 

1.2 Problem Statement and Objectives 

We believe that it is possible to provide solutions that can keep the simplification princi-
ple of services oriented programming by separating services calls from the strategies that 
can be used for interacting with services.  

The problem is that the whole business logic underlying a services’ coordination is ex-
pressed as a monolithic block, namely the process specification. Consider for instance that 
a programmer wants to develop a coordination called Status Updater that (i) estimates the 
mood of people based on the music they are listening and (ii) updates a user social net-
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works status with the song information and the user estimated mood (e.g., if we consider 
that people listening to pop-music are happy and most songs listened by a person are 
pop-music, then the coordination estimates that the person is happy and updates the per-
son status with the name of the song and the string “happy”). Let us suppose that, for de-
veloping this application, the programmer has to coordinate calls to the following services’ 
operations:  

• Music Services like LastFM that export methods for obtaining information about the 

music a given user is listening to. For instance, the operation:  

get-Last-Song (userID) : String 

gets the string representation of the last song that the user identified by userID has 

listen to. 

• Facebook and Twitter services that export methods for getting and updating the status 

of a given user. For instance, the operations: 

get-Status (userID) : String 

update-Status (userID, new-status) : String 

get and update the string representation of the status of a user identified by userID 

in a social network. 

• Mood Service that export methods for estimating the mood of a user. For instance, 

the operation: 

get-Mood (userID) : String 

abstracts a complex process that uses a log of the music listened by the user in 

LastFM during some period of time, and then according to the classification of 

each song, it will determine the string representing the user mood.  

The corresponding services’ coordination is depicted in figure 1.1 using the Business 
Process Management Notation (BPMN). As shown in the figure, the process Status Updater 
is represented as a workflow composed of a set of activities, each activity in charge of call-
ing a service’ operation. The workflow works as follows: first it contacts the music service 
LastFM for retrieving the last song a user has listen to. Then this information is sent to the 
Mood service in order to calculate the mood of the user. Finally, the Twitter and Facebook ser-
vices are contacted in parallel for updating the status of the user with the song and the 
user’s mood.  

Now consider that the developer wishes to ensure the following NFPs: 

• Authentication management: only registered users can access the information provided 

by the services.  

• Exception management: since the 3 services are accessible via an unreliable network, if 

the network is not available, the coordination must try to contact the service several 

times after a certain delay before stopping and notifying the failure.  

Each NFP that must be enforced throughout the process has to be expressed in terms of 
activities that must be integrated to the process specification. Thus, the resulting modified 
process is complex and hard to maintain because of the lack of modularity (i.e., since all the 
business logic is defined in one unit, it is difficult to reuse parts of it). Another problem is 
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the lack of flexibility due to the fact that process-oriented languages assume that services’ 
coordinations are predefined and do not evolve. Thus, the only way to accommodate 
changes is by modifying processes definitions (i.e., there is no support for dynamic chang-
es for adding NFPs to a process).  

We believe that the lack of flexibility is tightly related to the lack of modularity. In conse-
quence, if we can break down the business logic underlying the composition into several 
parts or modules, the composition becomes more flexible since each of these parts can 
evolve independently of the rest. 

  

Figure 1.1 Status Updater process expressed as a workflow (BPMN diagram) 

1.2.1 Problem Statement 

The problem we address is providing NFPs to services' coordinations implemented as 
workflows. NFPs describe how to execute services' coordinations with respect to observa-
ble properties (e.g., reliability, security, adaptability). Adding NFPs to services' coordina-
tions implies: 

• Determining the elements concerned with these properties (e.g., activities, work-

flow’ control flow, interaction of an activity with a service, data exchanged among 

workflow’ activities and between an activity and a service). 

• Modeling and expressing the strategies that implement the NFPs (e.g., security, 

exception handling, transactions, persistency, etc.).  

• Associating such strategies to the service’ coordination elements. 

• Defining execution strategies that can specify how to synchronize the execution of 

a service’ coordination with NFPs maintaining their separation. 
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1.2.2 Objectives 

The objective of our work is to propose a model and associated execution strategies for 
adding NFPs to services’ coordinations ensuring: 

• The independence of the specification of NFPs and services’ coordination in order 

to facilitate its maintenance and reuse. 

• The dynamic reinforcement of NFP at execution time. 

Besides, our work aims at providing a system (proof of concept) to show the feasibility of 
the model: 

• Showing how to enact the services’ coordination with NFPs. 

• Specifying a general architecture of an engine able of executing a service’ coordi-

nation with non-functional properties. 

1.3 Approach and Main Contributions 

Our work is inspired in the philosophy of separation of concerns adopted in the con-
struction of middleware, where the NFPs and the business logic of an application are de-
fined independently of each other. Thus, this thesis presents an approach for observing 
and reacting on the execution of data services' coordinations in order to ensure NFPs spec-
ified by the coordination designer. Instead of weaving different NFPs within the services’ 
coordination logic, we propose to define active policies that contain the strategies imple-
menting NFPs and then allow their use when executing a services’ coordination. Such an 
approach (i) encourages a modular and flexible construction of applications and eases 
their maintenance if such strategies change and (ii) makes possible to associate a personal-
ized behaviors to coordinations (e.g., using policies it is possible to associate an atomic 
behavior to the way data is retrieved and update from different social network services). 

Our approach is based on the notion of active policy-based workflows. A policy-based 
workflow is a workflow composed of an ordered set of activities that implement a services’ 
coordination and which has active policies associated to it. Activities represent programs 
implementing a call to a service’ operation. The order among the activities specifies in 
which order services’ operation has to be called. Active policies represent the conditions in 
which an activity or a set of activities must be executed and what to do if such conditions 
are not satisfied.  

The following list summarizes the main contribution of this work: 

• Data Oriented Services Taxonomy that classifies services according to the operations they 

export regarding the access to the data they “hide”. The taxonomy allows to under-

stand the differences between so called “business services” that are in fact applica-

tions exporting their functions as services, and data services that are centered in 

manipulation and retrieval of data collections. 

• Active Policy Model (AP Model) and its associated Active Policy Language (AP Language) 

for developing active policy-based workflows with associated NFPs. The model 

provides a general pattern for defining different policy types that address security, 

persistence, exception handling, and atomic behavior. Using these specialized pol-

icy types, a programmer can specify concrete policies according to the coordina-

tion requirements and associate them to a target workflow.  
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• AP Execution Model and the execution strategies that we propose for executing active 

policy-based workflows. Based on the AP Model, the AP Language and the AP exe-

cution strategies we designed an active policy-based workflow engine for execut-

ing ensuring NFPs in the context of data services’ coordination. 

1.4 Document Organization 

The reminder of the document is organized as follows: 

• Chapter 2 presents the background and state of the art related to our work. It first 

introduces the taxonomy of data oriented services that we propose. Then it details 

the models used for characterizing services coordinations an their execution. Final-

ly the chapter classifies and analyzes the main approaches used for adding NFPs to 

services’ coordinations.  

• Chapter 3 describes our AP Model and its associated language for expressing ac-

tive policies and associating them to workflows implementing services’ coordina-

tions. The chapter introduces the main concepts of the model and the target work-

flow model to which policies can be associated. 

• Chapter 4 describes the execution of an active policy-based workflows that provides 

the dynamic aspect of our contribution. It introduces the execution strategies that 

we propose for synchronizing the execution of active policies with coordination 

workflows (i.e., workflows implementing services’ coordinations).  

• Chapter 5 presents the definition of reliable service coordination using the concepts 

proposed in our AP Model. A reliable service coordination includes exception 

management and state management policies for making a services’ coordination 

fault tolerant with atomicity and persistency properties. The chapter shows how to 

use the AP Model for defining such policies and then how to associate them to a 

target workflow. 

• Chapter 6 describes the general architecture of our policy engine that can execute 

active policy-based workflows according to the proposed strategies. The chapter 

also describes the experiment we conducted in order to validate our approach in 

the context of data services coordination. The use cases focus on the use of service 

coordinations for implementing queries that can have associated NFPs. Queries 

are executed without the need of an underlying full-fledged DBMS.  

• Chapter 7 concludes this document and discusses perspectives of our work, under-

lining some challenges that remain open. 
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2 NFPs in Service’s Coordinations 

This chapter proposes a state of the art of approaches modeling and providing non-
functional properties (NFP) for service’s coordinations. Adding NFP to service’s coordina-
tions implies  (i) characterizing the type of services building a coordination; (ii) modeling 
the coordination and the NFP; (iii) determining the type of NFP that can be associated to 
coordinations and how they can be reinforced.  

Accordingly, the remainder of the chapter is organized as follows. Section 2.1 introduces a 
taxonomy proposed in this work for classifying services. The taxonomy characterizes ser-
vices in terms of the type of operations they export: those devoted for processing and 
managing data, and those providing functions ready to use. Services are building units that 
can be used for implementing application. This is done be coordinating calls to their oper-
ations. Thus, Section 2.2 describes existing coordination models. Applications can have as-
sociated NFP for addressing aspects complementary to their application logic. Section 2.3 
synthetizes approaches for classifying and modeling NFP. And Section 2.4 analyses strate-
gies for adding NFP to service’s coordinations. Section 2.5 concludes the chapter. 

2.1 Service Taxonomy 

Services are software or hardware units that export operations over a network (e.g., In-
ternet), and that play a growing part in business-to-business interactions. An Application 

Programming Interface (API) expressed in an Interface Description Language (IDL) de-
scribes the operations exported by a service. Current proposals assume that a service pro-
vider implements the service. Using a service implies calling a provider operation, via a 
protocol, and (eventually) waiting for execution results under a client-server interaction. 
Services are registered in a name service that provides look up functions so that applica-
tions can find services. For example in the Web, a typical IDL example is WSDL (Web Ser-
vices Description Language) [Wc00a] an XML based standard [Oasi04a] for defining web 
services as a set of methods that can be bound using the SOAP protocol [Wc00b]. The ser-
vices approach enables the construction of new applications out of existing services by 
merely ordering calls to their operations. These new application can be wrapped them-
selves as services. 

Figure 2.1 shows the overview of the service taxonomy that we propose. The taxonomy 
identifies three families of services according to the role of the functions they export within 
an application: business oriented, application oriented and data oriented. The data oriented family 
is further classified into data processing, data administration, data provision and data querying ser-
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vices. Finally, data provision services according to the mode in which they deliver data they 
can be on-demand and stream services. 

 

Figure 2.1 Service classification (UML class diagram) 

The following sections describe these service families and give concrete examples. 

2.1.1 Business Oriented 

Business oriented services provide «ready to use» functions for final users. There is no 
standard API to be exported and, operations are related to the objective of the service. 
Specific purpose applications are wrapped as business services and provide ad-hoc opera-
tions, for instance, hotel reservation services, online stores like e-Bay or Amazon. They can 
correspond to the notion of Software as a Service (SaaS) introduced by service oriented 
cloud architectures. 

 

Figure 2.2 Business Oriented Services 

Examples of business services oriented to data management are file synchronization 
services like Dropbox, SkyDrive, GoogleDrive as shown in figure 2.2. These services export 
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methods specialized for managing files within a storage space and eventually for manag-
ing the storage space size.  

2.1.2 Application Support Oriented  

Application support oriented services provide operations for managing platform sys-
tems. They are used by other applications or services as building blocks. There is no stand-
ard API to be exported and the exported API is related to the objective of the service. Ex-
amples of these services are Virtual Machines, message services like Message Queues, or 
full fledged DBMS exported as services (Data as Service), as shown in figure 2.3.  

 

Figure 2.3 Application Support Oriented Services 

This type of service can correspond to the “Platform as a Service” (PaaS) family identified 
in cloud architectures. Examples of providers of this type of services are Amazon Web ser-
vices and Windows Azure. 

2.1.3 Data Oriented Services  

Data oriented services are used for exchanging (receiving and sending) data collections 
(see figure 2.4). This family of services is specialized into data processing, data administra-
tion and data provision services described in the following lines. 

 

Figure 2.4 Data Oriented Services 
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Data Processing Service 

This type of service exports a set of operations for processing data of a given collection 
(filtering, grouping by, counting elements of collections of elements see figure 2.5). The 
LINQ service of the .NET platform is an example of such type of service. It provides a lan-
guage for expressing declarative/imperative programs for manipulating data. Coupled 
with a parallel execution service like Dryad, this data processing service is able to execute 
data processing tasks in parallel. 

 

Figure 2.5 Data processing interface service example 

Data Querying Service  

As shown in figure 2.6, this type of service exports operations for expressing and pro-
cessing queries on collections of data. A service of this type evaluates query expressions 
and returns the corresponding results expressed according to a specific data model (e.g., 
relational, semi-structured). For example, the service YQL in figure 2.6, accesses a data col-
lection stored in a given address,  (e.g. a collection of photos in Flickr). It receives YQL ex-
pressions, for example for selecting the photos in Flickr where the caption contains the 
string “San Francisco”. The result is a collection of JSON elements. 

 

Figure 2.6 Data querying service interface example 
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Data Administration Service 

This type of service exports operations for manipulating collections and their elements. 
As shown in figure 2.7, the interface provides methods for updating, inserting and deleting 
elements of a collection. For example, updating information about the contacts list of a 
user account in Facebook or inserting songs to the LastFM profile of a user. 

 

Figure 2.7 Data administration services interface example 

Data Provision Service  

A service of this type exports operations for giving read access to a data collection (for 
example a play list). As shown in figure 2.8, according to the rate in which data is provided, 
this type of service is specialized into on demand and continuous services.  

 

Figure 2.8 Data provision service interface example 

• On demand services produce data in response to a given request that returns results 

of a given type, for example a tuple or a collection of tuples. An on demand service 

works under a Request - Response Communication Protocol. Thus, the client call-

ing an operation for getting a collection will block until the complete collection is 

retrieved (see figure 2.9).  
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Figure 2.9 On demand data oriented services example 

• Continuous service produces data streams1 once a consumer has subscribed to it. 

The subscription is performed via a subscription operation exported by the service. 

The operation call includes parameters such as the destination address for the data 

stream and the time interval during which the subscription will be valid or until an 

event happens (an unsubscription explicit demand). A continuous data service 

produces tuples at a certain rate (e.g. 10 tuples/sec), which may vary in time. The 

client specifies a callback for receiving the data. 

 

Figure 2.10 Continuous data oriented services example 

Facebook and Twitter are examples of on-demand data services, while RSS notification 
services and music providers as Deezer are continuous data provision services. 

                                                             

1 A stream is a continuous (and possibly “infinite”) sequence of tuples. Each of these tuples has a 
temporal timestamp attribute denoting the time at which it was produced. 
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2.2 Service Composition 

Service composition is a concept used to design and develop applications on the basis 
of existing services [DuSc05]. Thus, a service composition consists of a set of services, each 
of which realizes a process activity. In order to do this, composite applications invoke en-
terprise applications exported as services directly using standardized protocols (REST and 
WSDL). The order of these activities can be specified using a process model. Service com-
position is a recursive concept: each service composition can be specified as a service. 
Therefore, each service composition can participate as a building block in other, higher-
level service compositions. Web services composition is a realization of these concepts 
[Wesk07].  

 

Figure 2.11 Workflow example 

The diversity of systems [BDSN02, CIJK00, LASS00, MGKS96], and languages [LCRS01] that 
have been recently proposed shows the potential and the relevance of service composition 
for building applications. Generally speaking, two complementary techniques are used for 
building and composing services: wrapping [CIJK00] and coordination [BDSN02]. Using the 
wrapping technique, pre-existing applications are wrapped to provide an entry point for 
activating the service. Wrapped services are then orchestrated by a workflow that is exe-
cuted by an engine. For example, BMPL [Bpmi04] is a workflow based language that is used 
for specifying the orchestration of web services. Approaches proposed in [GeHS95, Wmc96] 
can be used for specifying and automating services orchestration2. Coordination [ADHW02] 
describes the automated arrangement (i.e., coordination) and management of complex 
computer systems, consisting of services. Service coordination can be modeled using 

                                                             

2 We define an orchestrator as the entity that manages complex cross-domain (system, enterprise, 
firewall) processes and handle exceptions. 
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business process models, coordination models and workflow models. Figure 2.11 already 
shown in the Introduction illustrates how a workflow is used for coordinating services. Ac-
tivities are used to control services calls, data flow specifies data exchange, and control 
flow describes dependencies among them. The control flow is expressed using ordering 
operators such as sequence, and-split, and and-join [AHKB03]. 

Certain parts of a business process can be enacted by workflow technology. A workflow 
management system (see Appendix A) can make sure that the activities of a business process 
are performed in the order specified, and that the information systems are invoked to real-
ize the business functionality. A workflow realizes a part of a business process, with regard 
to the types of activity; system activities are associated with workflows.  

Models can be classified, from our point of view, into those adopting the notion of com-
position based on the notion of activity; and those focusing on the control flow, that is, the 
way in which services operations are called for defining an application logic. The following 
describes both approaches. 

2.2.1 Activity Oriented Workflow Model 

A business process model consists of a set of activity models and execution constraints 
among them. A business process model defines the ways in which operations are carried 
out to accomplish the intended objectives of an organization. Such a model remains an 
abstraction and depends on the intended use of the model. It can describe the workflow or 
the integration between business processes. It can be constructed in multiple levels. Fig-

ure 2.12 introduces a model of the concepts of business process expressed in the Unified 
Modeling Language (UML). 

According to the UML business process model, a business process consists of activities 
whose coordinated execution realizes some business goal. These activities can be system 
activities, user interaction activities, or manual activities. Manual activities are not supported 
by information systems. User interaction activities go a step further: these are activities that 
knowledge workers perform, using information systems. There is no physical activity in-
volved. Since humans use information systems to perform these activities, applications with 
appropriate user interfaces need to be in place to allow effective work. These applications 
need to be connected to back-end application systems that store the entered data and 
make it available for future use. Some activities that are conducted during the enactment of 
a business process are of manual nature, but state changes are entered in a business. 

System activities are executed by information systems assuming that the actual parame-
ters required for the invocation are available. If a human user provides this information, 
then it is a user interaction activity. Both types of activities require access to the respective 
software systems. 

Business process modeling tools are used for expressing implementing and executing 
business processes. Some business process modeling tools are: Business Process Model 
and Notation (BPMN); Cognition enhanced Natural language Information Analysis Method 
(CogNIAM); Extended Business Modeling Language (xBML); Event-driven process chain 
(EPC); ICAM DEFinition (IDEF0); Unified Modeling Language (UML), extensions for busi-
ness process such as Eriksson-Penker’s.  
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Figure 2.12 Business process conceptual model [Wesk07] 

2.2.2 Orchestration  

Orchestration is the process that controls the interactions among services. Provided a 
set of services their interactions are ordered with respect to a given application specifica-
tion, defining a control flow. The following lines describe a general overview of patterns 
that can be used for defining a control flow from two points of view: a centralized approach 
through orchestration and a “distributed” approach through choreography. 

Control Flow Patterns 

Control flow patterns express process orchestrations (workflows). Basic control flow pat-
terns include sequence, and-split, and and-join, as well as exclusive or-split, and exclusive 
or-join [AHKB03].  

• Sequence: An activity in a workflow process is enabled after the completion of a pre-

ceding activity in the same process. 

• And-split (parallel split): The divergence of a branch into two or more parallel 

branches each of which execute concurrently. This pattern allows a single thread of 

execution to be split into two or more branches that can execute activities concur-

rently. These branches may or may not be re-synchronized at some future time. 

• And-join: The convergence of two or more branches into a single subsequent 

branch such that the thread of control is passed to the subsequent branch when all 

input branches have been enabled. And-join provides a means of re-converging 

the execution threads of two or more parallel branches. In general, these branches 

are created from an And-split construct earlier in the process model. The thread of 

control is passed to the activity immediately following the synchronizer once all of 

the incoming branches have completed. 

• Xor-split (exclusive choice): The divergence of a branch into two or more branches. 

When the incoming branch is enabled, the thread of control is immediately passed 

to precisely one of the outgoing branches based on the outcome of a logical ex-
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pression associated with the branch. This pattern allows the thread of control to be 

directed to a specific activity depending on the outcome of a preceding activity, 

the values of elements of specific data elements in the workflow or the results of a 

user decision. The routing decision is made dynamically allowing it to be deferred 

to the latest possible moment at runtime. 

• Xor-join (simple merge): The convergence of two or more branches into a single 

subsequent branch. Each enablement of an incoming branch results in the thread 

of control being passed to the subsequent branch.  

Any process meta-model supports these control flow patterns that are referred to as 
simple control flow patterns in [RHAM06].  In this work in fact authors refer to twenty basic 
control flow patterns expressed using Coloured Petri Nets. More recently, authors have 
identified a number of additional scenarios. As a consequence twenty three new patterns, 
some of them new and some based on specializations of existing patterns have been pro-
posed: advanced branching and synchronization, structural, multiple instance, state based, 
cancellation, loop and recursive variations with blocking and non-blocking activities. In this 
thesis we assumed workflow models addressing the simple patterns, so we will not further 
describe these advanced patterns.  

Choreography 

The interactions of a set of business processes can be also specified in a choreography. 
The term choreography indicates the absence of a central agent that controls the activities 
in the business processes involved. Sending and receiving messages achieves interaction. 
Service choreography is a form of service composition in which the interaction protocol 
between several partner services is defined from a global perspective. At run-time each 
participant in a service choreography executes its part of it (i.e. its role) according to the 
behavior of the other participants [Pelt03]. A role specifies the expected messaging behav-
ior of the participants that will play it in terms of the sequencing and timing of the messag-
es that they can consume and produce [SBFZ08]. A set of service choreography formalisms 
have been proposed: Interaction Petri Nets [DeWe07] and Open Workflow Nets [Schm05], 
Finite State Machines [BGGL06], Guarded Automata [BuSF06], Timed Automata [MCHP08], Pi 
calculus [BaWR09], Process calculi [KaPi06, QZCY07]. 

2.2.3 Service Composition Languages 

Business Process Administration languages: 

• BPML (Business Process Modeling Language) is a meta-language for describing 
business processes. A business process is described as a set of simple activities 
representing the invocation of a service operation, the sending and reception of 
the parameters of the invocation and optional, sequential and parallel activities. 

• BPEL4WS (Business Process Execution Language for Web Services) specifies the 
control-flow and the logic of a services’ coordination. BPEL4WS specifies a service 
as an interface described in WSDL. 

• YAWL (Yet Another Workflow Language) is a workflow language based on work-
flow patterns. The formal semantics of YAWL is defined as a system of labeled 
transactions. YAWL considers the patterns or-join, cancellation sets and multi-
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instance activities. YAWL adds syntactic elements to reflect patterns such as xor-
split, xor-join and or-split. 

Web Services Flow Language can be considered an XML serialization of Flow Defini-
tion Language. This script language was used in IBM’s workflow product, enhanced with 
concepts to access Web services. It is based on a graph-based process language, where 
activities are ordered in an acyclic form by control flow links. Data dependencies are speci-
fied by a data flow among activities. Process behavior is specified by transition conditions 
attached to control flow links. This means that there is no explicit split and join behavior 
defined. However, by attaching conditions, any splitting behavior can be realized.  

 [That01] is a block structured language that was used in BizTalk, Microsoft’s enterprise 
application integration software focusing the integration of heterogeneous back-end sys-
tems using processes. In block-structured languages, a strict nesting of control flow blocks 
is used to structure business processes. As a result, for instance, the paths following an 
“and-split” can never be combined by a join other than an “and-join”.  

The standard in Web services composition is the Business Process Language for Web 
Services, WS-BPEL, or BPEL [AAAB07]. It is the outcome of a combination of the Web Ser-
vices Flow Language by IBM and XLANG [That01] by Microsoft.  BPEL uses a block structur-
ing to organize service compositions, and links can be defined to express graph-like struc-
tures [Wesk07].  Using WS-BPEL it is possible to specify an execution context (scopes) for 
encapsulating the application logic with logical variables, exception managers, compensa-
tion mechanisms and event detection. An execution context can be serialized for managing 
the concurrent access to its variables. 

W3C has proposed specifications for expressing choreography. WS-CDL (WS Choreog-
raphy Definition Language) is a language based on XML describing the collaboration and 
the behavior of peer-to-peer services inspired by Pi calculus. The collaboration is ex-
pressed as a set of messages exchanged for achieving a common goal. Web Service Cho-
reography Interface (WSCI) is an XML-based specification proposed by Intalio, Sun Mi-
crosystems, BEA Systems and SAP AG. It serves as input to the Web Service Choreography 
Description Language (WS-CDL). Academic proposals for service choreography languages 
include Let's Dance [ZBDH06], BPEL4Chor [DKLW07]. 

Coordination models and languages are used for expressing and implementing applica-
tion logics that user services. Yet, software systems, aside from implementing all the de-
sired functionality, must also cope with non-functional properties (NFP) such as: reliability, 
security, accuracy, safety, and performance. The following section defines these properties 
and presents strategies for specifying them, when they are intended to be associated to 
services’ coordinations. 

2.3 Non-Functional Properties 

A non-functional property (NFP) specifies criteria about the behavior of a system. These 
criteria are related to the conditions in which they are executed and to its performance. 
Non-functional properties are also referred as “constraints”, “quality attributes”, “quality 
goals”, “quality of service requirements” and “non-behavioral requirements” [StGr05]. In the 
case of service-based applications, non-functional requirements concern the application 
itself as well as its component services.  
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The majority of the work on NFPs uses a product-oriented approach, which is con-
cerned with measuring how much a software system is in accordance with the set of NFPs 
that it should satisfy [BBKL78, FePf96, KiDa96, Lyu96, MuIO90]. We are interested also in ap-
proaches that provide means for implementing NFP and reinforcing them at execution 
time. 

2.3.1 Classifying NFPs 

[Souz12] proposes a classification of NFP as a result of a study concerning software 
methodologies for the construction of service-oriented systems. The classification is shown 
in Figure 2.13 and it is organized in three layers representing: application modeling, services 

composition and services. The service composition layer serves as an integration layer be-
tween the services layer that exports methods and has associated constraints and charac-
teristics; and the application layer that expresses requirements (NFP in the Figure).  

 

Figure 2.13 Classification of NFP 

At the application layer NFP can refer to business rules (e.g., only the user can publish 
data on her/his wall) and values for example, the email address is a string containing an “@” 
and a “.”. A value NFR expresses constraints about the way data and functions can be ac-
cessed and executed. For example accessing methods under security protocols. 

Business NFP at the service layer concerns properties that are associated to services and 
defines how to call their exported operations (business properties). For example, response 
time, storage capacity (e.g., Dropbox service provides 5Giga free storage). Value con-
straints concern more on the conditions in which services can be used. For example, ac-
cessing to a function within an authentication protocol. 

Finally, at the service composition layer gives an abstract view of the kind of properties 
exported by services that can be combined for providing NFP for a composition.  For ex-
ample, confidentiality, authentication, privacy and access control can provide security at 
the service composition layer.  

[ScCM10] proposes concepts and requirements for characterizing and analyzing exist-
ing approaches addressing NFP for service coordinations. Therefore they propose: 

• A meta-model that introduces for characterizing NFP according to the entity to 
which they are associated: attribute, concern, action, and activity.  
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• Six requirements for studying NFP definition approaches for service coordinations: 
NFP specifications, NFP actions specification, Web service subjects specification, 
non functional attributes execution order specification, composite Web service 
subjects specification, stateful non functional constraint specification. 

• Seven requirements for studying NFP enforcement approaches: separation of con-
cerns, transparent integration of functional and NFP, quantification, superimposi-
tion, integration of NFP with distributed Web service, programming language in-
dependence, Web service composition support. 

NFP concepts are close to those defined by [Souz12] but they are not organized into lay-
ers.  They correspond essentially to the service and service composition layers. The en-
forcement requirements describe the way NFP are weaved to service coordinations. Exiting 
works respect all or a subset of these requirements. The chosen requirements have an im-
pact in the way NFP are enforced at execution time. 

2.3.2 Specifying NFPs 

Extensions to UML are proposed to express NFPs. NFPs can be integrated into the 
Class, Sequence, and Collaboration Diagrams [CyPr04]. The performance engineering 
[DiSD02] annotates quantitative performance constraints to UML diagrams such as actor-
use case communication, message in the sequence diagram, and state in the state machine 
diagram. The UML Profile for Modeling Quality of Service and Fault Tolerance Characteris-
tics and Mechanisms [Omg04] describes a set of QoS characteristics such as throughput, 
latency, integrity, dependability, among others. The characteristics can also be parameter-
ized with for example the type of keys or types of encryption algorithms in case of the secu-
rity characteristics. For all UML profiles based approaches it is generally possible to apply 
the stereotypes and its tagged values to arbitrary UML meta-classes, e.g. Class or Opera-
tion. The ordering of stereotypes cannot be expressed but composition- related require-
ments can theoretically be realized through behavioral diagrams like activity diagrams or 
state diagrams. [OrHe07] incorporate extra-functional properties into UML models by the 
use of UML stereotypes. For instance, there are stereotypes for encryption, decryption and 
logging which can be added to classes or operations that are representing services. 

Design patterns help in documenting and communicating proven design solutions to 
recurring problems. Design patterns not only describe how to solve design problems but 
also document the designers’ intentions - why the solution is chosen over others and what 
tradeoffs are made. [GrYu01] observe that non-functional properties  (NFPs) are pervasive 
in the descriptions of design patterns and propose their systematic treatment in descrip-
tions of patterns and when applying patterns during design.  

Business rules provide means for expressing, managing and updating pieces of busi-
ness domain knowledge independent of the rest of the application. According to the Busi-
ness Rules Group [Hay00], a business rule is a statement that defines or constrains some 
aspect of the business. It is intended to assert business structure or to control the behavior 
of the business [Hay00]. Business rules are usually expressed either as constraints or in the 
form if conditions then action. The conditions are also called rule premises. The business 
rule approach encompasses a collection of terms (definitions), facts (connection between 
terms) and rules (computation, constraints and conditional logic) [Hall01]. Terms and Facts 
are statements that contain sensible business relevant observations, whereas rules are 
statements used to discover new information or guide decision-making. A business rule 
system is a system in which the rules are separated logically and perhaps physically from 
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the other parts [ChMe04]. [ChMe04] investigate a hybrid approach, which combines busi-
ness processes as known e.g., from BPEL with business rules [Hay00]. 

[ChLa09] proposed a generative framework to address NFPs for web service composi-
tions. As part of the framework they separate the orchestration meta-model from other 
non-functional meta-models. They propose a non-functional meta-model for security 
where concepts exist for requirements and how these requirements are ensured. The NFPs 
are then added to the composition model by adding annotations. 

KAOS [DaLF93, Lams01] is a goal-oriented framework for addressing functional re-
quirements with a formal temporal logic that requirements engineer can use to precisely 
specify NFPs, such as performance, as part of attribute specification of functional require-
ments.  

The AO4BPEL [CSHM06] deployment descriptor (DD) is used for specifying non-
functional requirements for BPEL processes. First the service (one of logging, security, 
transactions and reliable messaging) is selected. Then the class (e.g. authentication or con-
fidentiality for security) can be specified. The type (e.g. encryption or decryption for confi-
dentiality) is then the concrete action that must be executed in order to enforce the re-
quirement. Then a selector can be defined such as for a certain BPEL activity. Each selector 
can be mapped to a requirement.  

The W3C proposes a set of languages and protocols for specifying the NFP of a ser-
vices’ coordination. Figure 2.14 shows a classification of NFP protocols, provided by the WS-* 
family protocols proposed by the World Wide Web Consortium (W3C). These protocols 
suppose an underlying communication protocol. The following sections describe repre-
sentative examples of the WS-* protocol-based approaches. 

 

Figure 2.14 Classifications of NFP protocols 

Communication Protocols 

Communication gives basic support for communicating a given number of services. The 
principle is based in messages exchange, where a message contains the information nec-
essary for invoking a method exported by a service. Therefore, a set of protocols for speci-
fying and sending messages must be specified. For example, a communication protocol 
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defines a naming model for locating a service and eventually, as shown later the protocol 
can be extended with security elements for ensuring data integrity exchanged among ser-
vices. In the context of W3C the communication protocols SOAP, WS-Addressing and WS-
Reliability have been proposed. 

• SOAP (Simple Object Access Protocol) is a communication protocol based on XML 

for invoking a method of a remote service. The important concepts in SOAP are (i) 

the envelope containing the message information and (ii) a data model defining 

the format of the message to be transmitted. 

• WS-Addressing defines a mechanism for adding information about the services loca-

tion into a SOAP message. WS-Addressing defines two constructors for integrating 

the information of transport protocols and, an application based on messages. The 

constructor also homogenizes the information by using a common format that can 

be processed independently of the transport protocol or the application. 

• WS-Reliability combines the HTTP protocol with some security protocols for adding 

reliability when exchanging messages in a services’ coordination. WS- Reliability also 

guarantees the reception of messages using acknowledgments. 

Transaction Management 

The Web services transaction protocol (WS-Tx) [Oasi09a] provides strict and semantic 
atomicity to services coordination.  It adds a transactional behavior to a services’ coordina-
tion using WS-AtomicTransaction and WS-BussinessActivity. WS-Tx is layered over the Web ser-
vices coordination specification (WS-C3) [LiWe03, Oasi09b]. WS-Transaction describes the 
types of services’ coordination that can be used with WS-Coordination e.g., coordinations 
having an atomic behavior are described using the concept of AtomicTransaction and coordi-
nations having a long duration are described using the concept of BussinessActivity. 

Ws-Tx extends WS-C to create a transactional coordination context offering two types of 
atomicity: 

• Atomic transaction (AT). It is used to coordinate activities with strict atomicity-like 

behavior. WS-AtomicTransaction defines 3 types of protocols: completion, volatile two-

phase commit and durable two-phase commit. These protocols are used for assur-

ing the property “all or nothing” when executing the activities of a services’ coordi-

nation. 

• Business activity (BA). It is used to coordinate activities with a semantic atomicity-

like behavior. In this protocol business activities can be subdivided into small ones 

called scopes. A scope is a collection of operations that can be nested to arbitrary 

degrees. 

                                                             

3 WS-C describes an extensible framework that provides protocols for coordinating actions in dis-
tributed applications that require to ensure certain policies. The WS-Coordination framework enables 
a service to create a context to propagate an activity to other services and, to register a service as 
participant in a services’ coordination. 
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WS-Tx has defined five protocols for committing based on classic 2PC: Completion, Com-

pletionWithAck, Phase zero, 2PC, and Outcomenotification.  

The business transaction protocol (BTP) [Oasi02] is a protocol for coordinating processes 
with strict and semi-atomicity behavior. A BTP coordination protocol is a set of well-defined 
messages that are exchanged between participants to address a transactional behavior. 
BTP defines two coordination protocols to provide transactional behavior: 

• Atom protocol implements a strict atomicity behavior. 

• Cohesion protocol enables the definition of semi atomicity, where some partici-

pants commit and others cancel based on some pre-defined business rules. A co-

hesion protocol commits using the rules that users define. 

Atom and cohesion protocols use a modified two phase commit protocol (2PC) that 
cannot be adapted or extended to new requirements. During the second phase of 2PC 
protocol, the coordinator uses the set of rules for deciding whether to commit or abort. 

[BoCR05] extends BTP by means of an ontology expressed in OWL-S. The ontology cat-
egorizes services according to three aspects: 

• The functionality of the service. 

• How it is accessible the service. 

• How the service works. 

Regarding atomicity a service is classified as unprotected, semi-protected, protected, 
negotiable, and real. This classification is used for implementing the atom, cohesion, and 
atomic transactions of BTP on top of the transactional properties that a service can provide. 
In such a way, it is possible to provide strict and semi-atomicity behavior to a given services 
coordination. 

[TMWD04] proposes a policy based transactional model implemented on top of WS-

Coordination, WS-Transaction, and WS-ReliableMessaging protocols. A policy is used to advertise 
and to match three types of atomicity: 

• Direct transaction processing provides atomicity based on the 2PC protocol. 

• Queued transaction processing provides atomicity using a non-blocking 2PC pro-

tocol. 

• Compensation-based transaction processing provides atomicity using the notion of 

compensation that relaxes the notion of atomicity. 

Using such transaction models it is possible to provide strict and semi-atomicity behav-
ior.  

[DFDB05] introduces a protocol for dynamic composition of services based on the ten-
tative hold protocol that enables the definition of an atomic behavior for activities. The 
tentative hold protocol adds a phase to 2PC protocol where participants can request tenta-
tive reservations on the resources that they want to use in following phases. This new phase 
can be seen as an exchanging of messages prior to the transaction for minimizing compen-
sation actions. 



Section 2.3   Non-Functional Properties 

33 

In this kind of approaches, atomicity is implemented within the coordination by using 
pre-defined protocols (e.g., extensions of the two phase commit protocol4 and advanced 
transactional models5, see [Port06a]). When using a protocol at least two assumptions are 
considered:  

• The service operations participating in a transaction have a homogeneous behav-
ior with respect to transactional requirements (e.g., all operations accept reserva-
tion for committing). Therefore the protocol can define the way in which a transac-
tion will be committed or undone.  

• Services and the execution infrastructure export operations for supporting the exe-
cution of atomicity protocols (e.g., the compensation capability). 

Security 

WS-Security [Oasi04b] (Web Services Security, short WSS) is an OASIS extension to SOAP 
to apply security to web services. The protocol specifies how integrity and confidentiality 
can be enforced on messages and allows the communication of various security token for-
mats, such as SAML, Kerberos, and X.509. Its main focus is the use of XML Signature and 
XML Encryption to provide end-to-end security. WS-Security describes three mechanisms 
for: 

• Signing SOAP messages to assure integrity. Signed messages also provide non-

repudiation. 

• Encrypting SOAP messages to assure confidentiality. 

• Attaching security tokens to ascertain the sender's identity. 

In general, WSS by itself does not provide any guarantee of security. It is up to the pro-
grammer to ensure that the result is not vulnerable. Key management, trust bootstrapping, 
federation and agreement on the technical details (ciphers, formats, algorithms) are out-
side the scope of WS-Security. The following specifications are associated with WS-Security: 

WS-Policy, WS-SecureConversation, WS-Trust and ID-WSF.  

WS-Trust is a language based on WS-Security for defining rules for sending, exchanging 
and diffusing security tokens [Oasi12]. WS-Trust also defines the rules for granting and dis-
seminating credentials within domains of trust. For example, for assuring the communica-
tions between two services, both services have to send their security credentials to deter-
minate if they can trust each other. 

WS-Federation is based on WS-Trust and defines mechanisms for federating (sharing) attrib-
utes and information about services within domains of trust. WS- Federation characterizes 
services as passive and active services that can interact with service providers. 

                                                             

4 The two phase commit protocol (2PC) consist of two phases: i) during the first phase (prepara-
tion) every participant in transaction extern its response to commit or abort, and ii) in the second 
phase (commitment), a coordinator makes a global decision which is communicated and executed by 
all participants of the transaction. 

5 Most representative examples of advanced transactional models are: saga [GaSa87, GaUW00, 

GGKK91], flexible transactions [ELLR90, ZNBB94], and contracts [ReWä92]. 
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Adaptability 

Web Services Policy
6 (WS-Policy) is a machine-readable language for representing these Web 

service capabilities and requirements as policies in a machine-readable form. Service pro-
viders use WS-Policy to represent combinations of behaviors (capabilities and requirements). 
Web service developers use policy-aware clients that understand policy expressions and 
engage the behaviors represented by providers automatically. These behaviors may in-
clude security, reliability, transaction, message optimization, etc. WS-Policy allows web ser-
vices to use XML to advertise their policies (on security, quality of service, etc.) and for web 
service consumers to specify their policy requirements.  

It provides a set of specifications that describe the capabilities and constraints of securi-
ty (and other business) policies on intermediaries and end points (for example, required 
security tokens, supported encryption algorithms, and privacy rules) and how to associate 
policies with services and end points. 

The general principle for adding NFPs to a services’ coordination is to define protocols 
for controlling its execution. Associating non-functional properties to services composition 
can help to ensure that the resulting application is compliant to the user requirements and 
also with the characteristics of the services it uses. As services are independent compo-
nents, ensuring non-functional properties is a challenge. Programming non-functional 
properties is not an easy task and different studies [AgLS09, BaKS10, ChLa09, GuRF09, 
JeCL09, MaZN10, TsNA12, XCZB08] associate non-functional requirements and services using 
different approaches. In the following section we describe methods that can be used for 
weaving NFP and services’ coordinations. 

2.4 Weaving NFPs to a Services’ Coordination 

A strategy for weaving NFP to service coordinations is to define them explicitly within 
the application logic. Adding sequences of activities that implement well-known protocols, 
for example advanced transactional models. This technique has been used particularly in 
works adding transactional properties (atomicity) to service coordinations. The challenge is 
to determine the composition pattern that will include NFP. Another strategy for defining 
NFP is to separate their specification and the services coordination. This captures the inter-
actions that are necessary to provide a given behavior by enforcing NFP.  The following 
sections describe works adopting these approaches. 

2.4.1 Modularizing NFP 

Aspect-oriented programming (AOP) is an approach for modularizing the implementa-
tion of business rules and thereby allowing the separation of crosscutting concerns. The 
principle is breaking down program logic into distinct parts (so-called concerns, cohesive 
areas of functionality). The implementation of the business rules tends to cut across several 
activities of a process definition; AOP provides means to modularize crosscutting concerns 
and has already been found valuable for modularizing business rules of object-oriented 
software [Dhon04]. The integration of aspect behavior into the functional behavior can be 
done without changing the functional code by means of pointcuts. Pointcuts can be under-

                                                             

6 http://msdn.microsoft.com/en-us/library/ms996497.aspx 
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stood as a facility to query over join points. Join points on the other hand are well-defined 
points during the execution of a program (e.g. an execution of an operation). In a single 
query, multiple join points can be selected and multiple aspects can point to the same join 
point. 

[HeBW06] use AOP technology, namely AspectJ [Ladd03] to implement QoS monitoring 
without changing the existing service implementation. They have written a performance 
aspect that measures the execution time by defining two join points, one at the beginning 
and one at the end of a method call. The advice captures the time when the request arrives 
at the service and when the response is returned by the service. Further, they implemented 
a cost aspect that counts the types of service invocations and cumulates them to calculate 
the monetary total cost of usage. The reliability aspect logs every invocation that ends with 
an exception. 

[MSMR08] introduce the Web Service Aspect Language (WSAL) providing aspects that 
can be freely specified, implemented, deployed and executed as loosely coupled web 
services. Weaving is realized at network level by Web intermediary technology. Supported 
join point types are message part, service name, service operation, service location, client 
location and combinations of them. Advice elements are implemented by Web service 
operations and the following types are allowed: before request, upon request, after re-
sponse, upon response, after exception, upon exception, and around. Additional context 
information like the intercepted message or the service location can be passed to the ad-
vice implementation operation. The context information can be used to restrict the infor-
mation that is transmitted to the advice Web service. Some advice types, e.g., before and 
after can be executed in parallel with the join point. Aspects are specified by a XML syntax 
and contain a set of join point and advice elements. The aspect weaver is implemented by 
using IBM WBI [Ibm00a] intermediary technology.  

[VeVJ06] propose the Web Services Management Layer (WSML) for the dynamic inte-
gration, selection, composition, and client-side management of web services in Service-
Oriented Architectures (SOA). There are different aspect types. Service Redirection As-
pects specify the communication logic to swap from a web service to an alternative one or 
to a web service composition implementing the same logic by calling multiple services. 
Service Selection Aspects enforce a certain selection policy which can be of one of the 
types Client-initiated selection, Non-functional service property based selection, Service 
behavior-based selection and Service-initiated selection. Service Management Aspects 
modularize concerns like encryption, billing, reliable messaging, transactions, etc. which 
can be enforced per service type, per composition or per web service. The aspects are 
implemented by JAsCo [VSVC05]. JAsCo is an adaptive programming approach that sup-
ports Superimposition by Combination Strategies. Combination Strategies is an imperative 
approach that allows for employing the full expressiveness of Java. 

AO4BPEL [ChMe07] is an aspect-oriented extension to WS-BPEL for defining aspects 
that enforce NFPs such as security, reliable messaging and transactions. An aspect in 
AO4BPEL is a container for multiple point-cuts and advice constructs and can be activated 
at runtime. The point-cut language is XPath [Wc00c] for selecting arbitrary BPEL activities. 
When a point-cut matches a certain join-point, its corresponding advice is executed. An 
advice is defined in BPEL and can be used to call dedicated middleware services in order 
to enforce NFPs. A security, reliable messaging and transaction middleware services are 
provided. Besides, predefined aspects for integrating NFP into BPEL processes exist and 
they are generated from a deployment descriptor. 
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The second alternative for modularizing the implementation of business rules express-
ing NFP is to combine the process-based specification of service composition with dedi-
cated approaches to declarative specification of business rules, such as Java Expert System 
Shell Jess [Frie12] and JRules [Ibm00b]. 

2.4.2 Contract Driven Programming 

Contracts are behavioral descriptions of Web services Code Contracts provide a lan-
guage-agnostic way to express coding assumptions in .NET programs [FaLo10]. The con-
tracts take the form of preconditions, post-conditions, and object invariants. Contracts act 
as checked documentation of your external and internal APIs. The contracts are used to 
improve testing via runtime checking, enable static contract verification, and documenta-
tion generation. Code Contracts bring the advantages of design-by-contract programming 
to all .NET programming languages. Contracts are expressed using static method calls at 
method entries. Tools take care to interpret these declarative contracts in the right places. 
A precondition must be true on entry to the method. It is the caller’s responsibility to make 
sure the pre-condition is met. A post-condition must be true at all normal exit points of the 
method. It is the implementation’s responsibility that the post-condition is met.  

[CaGP09] proposes a theory of contracts that formalizes the compatibility of a client with 
a service, and the safe replacement of a service with another service. Contracts are used to 
ensure that interactions between clients and services will always succeed. Intuitively, this 
happens if whenever a service offers some set of actions, the client either synchronizes with 
one of them (i.e., it performs the corresponding coaction) or it terminates. The service con-
tract allows to determine the set of clients that comply with it, that is to say that will success-
fully terminate any session of interaction with the service [CaGP09]. 

The use of contracts statically ensures the successful completion of every possible in-
teraction between compatible clients and services. The technical device that underlies the 
theory is the filter, which is an explicit coercion preventing some possible behaviors of ser-
vices and, in doing so, make services compatible with different usage scenarios.   

2.4.3 Policy Driven Programming  

The main objective of a policy driven system is to enable a flexible and adaptable man-
agement by defining strategies that can be defined and modified without having to 
recompile the system. Policies are used for defining constraints on the behavior of the sys-
tems for ensuring that the system complies with its objectives [Slom94].  

Policy driven programming is a computer-programming paradigm based on an idiom 
for C++ known as policies. The main idea is to use commonality-variability analysis to di-
vide the type into the fixed implementation and interface, the policy-based class, and the 
different policies. The central idiom in policy-based design is a class template (called the 
host class), taking several type parameters as input, which are instantiated with types se-
lected by the user (called policy classes), each implementing a particular implicit interface 
(called a policy), and encapsulating some orthogonal (or mostly orthogonal) aspect of the 
behavior of the instantiated host class. 

KaOS [UBJS03] is a collection of agent services based on components for executing 
mobile agents. One of the components of the KaOS platform is based on policies for the 
specification, management, conflicts resolution, and policies execution. Policies are ex-
pressed using DAML [Darp00]. Policies are of two types authorization and obligation and 
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they can be specialized for addressing application requirements. KaOS has been used for 
managing Web services deployed on Grid architectures. 

Security Policy Language (SPL) [RiGu99] is a security language for expressing policies 
that can help to decide on the validity of events according to their properties (e.g., author, 
destination, action, etc.), the conditions in which they were produced and also the proper-
ties of previous events. A policy consists of targets and rules. Targets are the entities using 
policies and rules (simple and compound), implement decision making about the ac-
ceptance of events. Compound rules implement the behavior of the policy it is associated 
to. Policies can be compound using an algebra. 

2.5 Conclusions 

This chapter proposed a classification of services that organizes them into families ac-
cording to their exported operations. It mainly identifies services that provide operations 
that do not imply the management of data collections (i.e., business services) and those 
that provide different types of data management and processing operations. Since services 
are used for implementing applications by coordinating calls to their operations, the chap-
ter described coordination models.  

A service’s coordination defines the business logic of an application. Yet, NFPs must be 
also defined and associated to the application logic in order to address some application 
requirements. The chapter analyzed the principles adopted by different approaches for 
expressing NFPs intended to be associated to services’ coordinations. It showed that since 
NFPs are associated to the coordination, it is important to consider the way they are mod-
eled to determine to which entities of the services’ coordination they can be added.  

Finally, the chapter described techniques that can be used for adding NFPs to services’ 
coordinations. We showed that the strategies for adding NFPs can imply expressing them 
as protocols and weaving them within the coordination by adding activities. The second 
strategy is defining NFPs separately together with reinforcement actions and synchroniza-
tion points for associating them to service coordinations. This approach enables loosely 
coupled approaches for adding NFP, which can modularize NFP and ease the maintenance 
of the coordination. Our work adheres to this strategy because it does not «pollute» the 
coordination specification, it considers different types of services and it can be handled 
separately thereby facilitating service coordination maintenance and evolution.  

Chapter 3 introduces our AP model devoted for adding NFP to service coordinations 
based on an activity oriented model. It also provides concepts for specifying different NFP 
protocols in a reactive way. 
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3 Active Policy Model 

This chapter describes the Active Policy Model (AP Model), for representing services’ coor-

dinations with non-functional properties as a collection of types. In our model, a services’ 
coordination is represented as a workflow composed of an ordered set of activities, each 
activity in charge of implementing a call to a service’ operation. We use the type Activity for 
representing a workflow and its components (i.e., the workflow’ activities and the order 
among them). A non-functional property is represented as one or several Active Policy types, 
each policy composed of a set of event-condition-action rules in charge of implementing 
an aspect of the property. Instances of active policy and activity types are considered in the 
model as entities that can be executed. We use the Execution Unit type for representing them 
as entities that go through a series of states at runtime. When an active policy is associated 
to one or several execution units, its rules verify whether each unit respects the implement-
ed non-functional property by evaluating their conditions over their execution unit state, 
and when the property is not verified, the rules execute their actions for enforcing the 
property at runtime. 

The chapter is organized as follows. Section 3.1 introduces the types composing the AP 
Model and a scenario used for describing the types. Section 3.2 defines the types in which 
the model is built on: data type and service type. Sections 3.3, 3.4, 3.5 describe respectively 
the Activity type, the Execution Unit type and, the Active Policy type. Section 3.6 introduces the AP 
language and illustrates how to use it for defining AP types and thereby specifying non-
functional properties. Section 3.7 concludes the chapter. 

3.1 Introduction 

The AP Model is based on the notions of type and instance. A type represents a collec-
tion of objects that have the same properties, behavior and semantics. An instance repre-
sents a specific object that can get concrete values at runtime. We use the UML class dia-
grams for representing types. For instance, the diagram of figure 3.1 shows the types com-
posing the AP Model as classes. They are grouped according to the concept they describe: 

• The classes used for representing a services’ coordination (i.e., Activity, Atomic Ac-

tivity, Workflow Activity and Control Flow Activity). The main class in this group is 

the Activity class. It represents the Activity type. 
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• The classes representing a non-functional property (i.e., Active Policy, Rule and 

Event). The main class in this group is the Active Policy class. It represents the Ac-

tive Policy type. 

• The classes used for associating non-functional properties to services’ coordina-

tions (i.e., Execution Unit and Execution State). The main class in this group is the 

Execution Unit class. It represents the Execution Unit type. 

All possible objects considered in the model can be represented as an instance of one 
of these types. For example, figure 3.2 illustrates some examples of active policy instances. 
Instances ap1 and ap2 are examples of objects belonging to the Basic policy type (i.e., they 
conform to the properties, behavior and semantics described by the type). Instance ap3 is 
an example of an object belonging to the type OAuth policy. Instance ap4 is an example of 
an object of type Exception Management policy. 

Figure 3.2 also shows that the AP Model types can be specialized in subtypes. The type 
Active Policy type represents all policy instances that can exist in the universe, no matter 
what non-functional property they deal with. In contrast, the type Authentication policy 
type represents policy instances that deal with authentication aspects (i.e. a specific non-
functional property). When a type T1 is a subtype of T2 all the instances of T1 are also in-
stances of T2 (i.e., a instance can belong to more than one type). For instance, since the 
Basic and OAuth policy types are subtypes of the Authentication type (see figure 3.2), in-
stances ap1, ap2 and ap3 are also instances of the authentication policy type. In the same way, 
even if ap3 and ap4 belong to different types, they are examples of instances of the Active 
Policy type. 

 

Figure 3.1 AP Model types UML class diagram 
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Figure 3.2 AP Model levels of abstraction 

In order to describe the types composing the AP Model consider the following scenario. 
A developer wants to implement a services’ coordination called Status Updater that (see 
figure 3.3): 

• Reads information about the song a user is currently listening to (e.g., song title and 

artist name) using the LastFM1 service. 

• Computes the mood of the user using the history of played songs and a custom algo-

rithm. 

• Posts song information and user mood into the user’s Facebook and Twitter ac-

counts (e.g., the string “Sting – Fields of Gold ☺“) using the Facebook2 and Twitter3 

services. 

Figure 3.4 illustrates a workflow implementing the Status Updater coordination by order-
ing calls to the operations exported by the LastFM, Facebook and Twitter services. In the 
diagram, services are represented as rectangles containing the name of the operation used 
by the workflow. Activities are represented as rounded rectangles connected to a service’ 
operation. Order among activities (i.e., execution flow) is represented as solid arrows con-
necting activities. 

The Status Updater workflow is composed of 4 activities:  

• Get Song calling the operation getLastSong from the LastFM service. This activity re-

ceives a user id as input and outputs the song information. 

                                                             

1  http://www.lastfm.fr/api 

2  http://developers.facebook.com 

3  https://dev.twitter.com 
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• Compute Mood represents the algorithm that computes the user mood based on the 

music listened by a user during some period of time. This information is saved in a 

log. 

• Update Twitter and Update Facebook calling the operations updateStatus of the Face-

book and Twitter services. Both activities receive as input a user id and some text 

(in this case the song information) and produce no result as output. 

 

Figure 3.3 Status Updater services’ coordination 

 

 

Figure 3.4 Status Updater workflow BPMN diagram   
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These activities are ordered according to the following criteria: 

• Since the output of Get Song is needed by activities Compute Mood, Update Twitter and 

Update Facebook the activity Get Song has to be executed before the others (i.e., in 

sequence).  

• Since the output of Compute Mood is needed by activities Update Twitter and Update Fa-

cebook, the activity Compute Mood has to be executed before the other two activi-

ties. 

• Since there is non-dependency among Update Twitter and Update Facebook the activi-

ties can be executed in parallel.  

• Since the workflow has to run while the user listens music, the activities have to be 

executed iteratively. 

Now let us assume that the developer wants to extend the Status Updater workflow for 
addressing the following non-functional requirements (see figure 3.5): 

• Authentication. Due to privacy protection Twitter and Facebook implement authenti-

cation protocols that control access to user’ information (e.g., only authorized ap-

plications can read and/or update users information). For instance, Twitter uses a 

basic authentication protocol based on username and password for preventing 

applications of updating the user status. In contrast, Facebook uses the OAuth4 

protocol, a protocol based on third-party authentication for the same purpose.  

• Network unavailability. Due to network unreliability services can be unavailable at cer-

tain periods of time. This can cause exceptions that must be handled by the work-

flow (e.g., by retrying the calls to the services or by compensating the activities).  

In the AP approach these non-functional requirements are addressed by defining A-
Policy types and by associating these types to a target workflow. For example, a developer 
can define an Authentication A-Policy type for addressing the authentication requirements 
of workflows. Then, as shown in figure 3.6 the developer can specialize this type for defining 
policy types defining Basic and OAuth protocols. These new types can be associated to the 
Update Twitter and Update Facebook activities of the Status Updater workflow. These poli-
cy types will be used for adding the basic and OAuth protocols (respectively) required by 
each service associated to the workflow activities (see figure 3.6).  

At execution time, the policies can execute some code before and after the execution of 
an activity in order to implement an authentication protocol. As shown in figure 3.7, this can 
be equivalent of adding activities to the Status Updater workflow before and after the activ-
ities Update Twitter and Update Facebook of the workflow. Yet, thanks to policies the au-
thentication issues are maintained separated to the workflow. Thus, in the AP approach A-
Policy types are defined independently of concrete workflows (i.e., in orthogonal way). 
Indeed, it is possible to keep separated the logic implementing a services’ coordination 
from the implementation of its non-functional requirements, simplifying the maintenance 
process. For example, if one of the services changes its authentication protocol, the 

                                                             

4 http://oauth.net  



Chapter 3    Active Policy Model 

 

44 

change remains transparent to the coordination because the A-Policy can be modified 
without touching the coordination implementation. 

 

Figure 3.5 Non-functional properties of the Status Updater 

 

Figure 3.6 Status Updater workflow with associated authentication a-policies 
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Figure 3.7 Status Updater after the execution of authentication a-policies  

3.2 Data and Service Types  

3.2.1 Data Types 

AP Model types are built on top of the data types shown in figure 3.8. As shown in the fig-
ure, any type in the model can be classified as an Atomic or Composite type.  

 

Figure 3.8 AP Model data types UML class diagram  
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String represents any chain of characters (e.g., “www”, “James Bond”, “pwd123”). The type 
Number represents any real or natural numbers (e.g., -1, 0, 1, 3.1416). The type Boolean 
represents values true and false (i.e., truth values). 

Composite types represent instances that are composed of other values (i.e. instances of 
other types). The composite types considered in the model are the types Set, N-Tuple and 
Attribute. These types conform to the following rules: 

• If A1 ... An are different attribute names (i.e., Ai  Aj, i, j [1…n]), and T1 ... Tn are type 

names, the expression <A1: T1, …, An : Tn> represents a type N-Tuple. For example, the 

expression:  

< name: String, value: Type > 

represents the type Variable as a binary tuple composed of (i) a name attribute of type 

String representing the variable’ name and (ii) a value attribute (of any type) repre-

senting the variable value. 

• If T is a type name then the expression Set <T> represents a typed collection where 

all the elements in the collections are of type T. For example, Set <String> repre-

sents a collection containing only elements of type String.  

3.2.2 Service Type 

The AP Model is also based on the notion of service. As shown in figure 3.9, we use the 
type Service for representing a service as an autonomous entity that exports a collection of 
operations via a network.  

 

Figure 3.9 Service type UML class diagram 
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• name represents the name of the operation.  

• input represents the set of variables that an operation receives.  

• output represents the type of the value produced by the execution of the opera-

tion. 

Consider for instance the LastFM service of the Status Updater scenario. This service ex-
ports a single operation: the GetLastSong operation. Figure 3.10 shows how we represent 
this service using the type LastFM, a subtype of the type Service.  

 

Figure 3.10 UML class diagram illustrating the representation of a specific service as a  

Service subtype 
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3.3 Activity Type 

We use the Activity
5 type for representing the concepts abstracting a services’ coordina-

tion (i.e., workflow, workflow’ activities and the order relationship among the workflow’ 
activities). As shown in the figure 3.11, the Activity type has the following structure:  

 < name: String, input: Set<Variable>, local: Set<Variable>, output: Type> 

Its attributes are interpreted as follows: 

• name uniquely identifies an activity type participating in a workflow. 

• input contains the variables received as input of the activity. 

• output represents the value produced by the execution of the activity. 

• local contains the set of local variables used for computing the activity output. 

Figure 3.11 also shows the activity types used for representing a services’ coordination: 

• Workflow activity type that represents a workflow. 

• Atomic activity type that represents a workflow’ activity. 

• Control Flow activity type that represents the order relationship among the workflow’ 

activities. 

Since these types are subtypes of the Activity type, they all share the same structure i.e., 
every possible activity considered in the model (i) receives a set of variables as input (pos-
sible empty), (ii) produces a single variable as output and (iii) have a set of local variables 
used internally for computing its output. 

 

Figure 3.11 Activity type UML class diagram 

                                                             

5 The use of activity types for representing a services’ coordination is not proper to our model. It 
was first used in the Business Process Execution Language (BPEL) as a building block for expressing 
executable workflows [AAAB07].  
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3.3.1 Atomic Activity  

The Atomic Activity type represents the logic handling a call to a service’ operation. As 
shown in figure 3.12, the Atomic Activity type has the following structure6: 

 < calls: Operation, operationResult: Type > 

Its attributes are interpreted as follows: 

• calls represents a reference to a service’ operation. As shown in figure 3.12, an atom-

ic activity can be associated (i.e., calls) to maximum one service’ operation. 

• operationResult contains the result of a service’ operation call. Note that attribute 

can contain a value of any type. 

When executed, an instance of type Atomic Activity uses the service’ address, the opera-

tion’ name and the activity input variables for calling the service’ operation. Then, once the 
operation completes, the activity stores the operation result in the operationResult attrib-
ute. Finally, the activity uses the operationResult value for computing the activity output. 

As an example, consider the Get Song activity of the Status Updater scenario. Recall that 
this activity calls the Get Last Song operation of the LastFM service. Figure 3.13 shows the 
representation of this activity as a subtype of the Atomic Activity type. Note that this represen-
tation uses the types defined in section 3.2.2. 

 

Figure 3.12 Atomic Activity type UML class diagram 

As shown in the figure, the Get Song Atomic Activity type: 

1. Is identified in the Status Updater workflow by the name “Get Song”.  

2. Is associated to the Get Last Song operation of the LastFM service type.  

                                                             

6 Recall that, as any other activity subtype, the Atomic Activity type has input, output and local varia-
bles inherited from the Activity type. 
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3. Receives as input a single variable called UserID that is mapped to the UserID vari-

able of the Get Last Song operation at runtime. 

4. Maps the string produced by the execution of the operation to its operationResult 

attribute  

5. Outputs the string containing the information about the song the user is currently 

listening to.  

 

Figure 3.13 UML class diagram illustrating a specific Atomic Activity subtype. 

3.3.2 Control Flow Activity 

The Control Flow Activity type represents the logic implementing an order relationship 
among a set of activities called operands (see figure 3.11). The AP Model considers 3 types 
of control flow activities (see figure 3.14): Sequence, IF and While.  

 

Figure 3.14 Control Flow activity type UML class diagram 
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Sequence Activity  

The Sequence Activity type represents the logic implementing a sequential execution. For 
instance, let us assume that sequence (A, B) represents a sequence activity that relates activity 
types A and B. Now assume that seq (a1, b1) represents an instance of sequence (A, B) where a1 

and b1 are instances of A and B (respectively). This relationship implies that, when executed, 
instance seq will execute a1 until completion before executing b1. More formally, if a1.ends is 
an integer representing the time when a1 ends its execution, and b1.starts is an integer rep-
resenting the time when b1 starts its execution, instance seq will respect the relationship 
a1<b1 at runtime. 

 

Figure 3.15 UML class diagram illustrating the use of the Sequence Activity type 

As shown in figure 3.14, the Sequence Activity type has the following structure: 

< leftside: Activity, rigthside: Activity > 

Its attributes are described as follows: 

• leftside represents the activity operand that is first executed. 

• rightside represents the activity operand that is executed next. 

As an example consider the Get Song and Compute Mood activities of the Status Up-

dater scenario. According to the scenario these activities have to be executed in sequence. 
Figure 3.15 illustrates the use of the Sequence Activity type for implementing this order relation-
ship. In the figure, Get Song and Compute Mood activities are represented as Atomic Activity 

types. When executed, an instance of the sequence type will execute first an instance of the 
Get Song type (i.e., the lefside operand) and then an instance of the Compute Mood type (i.e., 
the rightside operand). 

IF Activity  

The If Activity type represents the logic implementing a conditional execution. For in-
stance, let us assume that IF (Θ, A, B) represents an if activity that relates condition expres-
sion Θ and activity types A and B. Now assume that if (Θ1, a1, b1) represents an instance of IF 

(Θ, A, B) where Θ1, a1 and b1 are instances of String, A and B (respectively). This relationship 
implies that, when executed, instance if will execute a1 if and only if Θ1 is evaluated to true. 
Otherwise instance if will execute b1. 

As shown in figure 3.14, the If Activity type has the following structure: 

< condition: String, evaluationResult: Boolean, true: Activity, false: Activity > 

 Its attributes are described as follows: 
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• condition contains a string representing a boolean expression. 

• evaluationResult contains the result of the evaluation of the activity condition. 

• true represents the activity operand that is executed when the activity condition is 

evaluated to true. 

• false represents the activity operand that is executed when the activity condition is 

evaluated to false. 

As an example consider an extended version of the Status Updater scenario where the 
songs listened by a user can be retrieved from two different services: the LastFM and the 
Deezer7 services. Also consider that the Status Updater coordination decides which service 
to call by evaluation the condition “useLastFM == true”. Figure 3.16 illustrates the use of the 
If Activity type for implementing this decision by relating the activity types Get Song From LastFM 

and Get Song From Deezer. When executed, an instance of the if type will evaluate whether the 
value associated to useLastFM variable is true. In that case it will execute an instance of the 
Get Song From LastFM activity (i.e., the true operand). Otherwise it will execute an instance of 
the Get Song From Deezer activity (i.e., the false operand). 

 

Figure 3.16 UML class diagram illustrating the use of the IF Activity type 

While Activity  

The While Activity type represents the logic implementing an iterative execution. For in-
stance, let us assume that While (Θ, A) represents a while activity that relates condition ex-
pression Θ and activity type A. Now assume that while (Θ1, a1) represents an instance of While 

(Θ, A) where Θ1 and a1 are instances of String and A (respectively). The relationship while (Θ1, 

a1) implies that, when executed, instance while will execute a1 if and only if Θ1 is evaluated to 
true. Otherwise it will execute nothing. In case if Θ1 is evaluated to true, instance while will 
re-instantiate activity type A for preparing a new iteration e.g., obtaining the instance repre-
sented by the expression while (Θ1, a2), and then it will re-evaluate Θ1 for deciding whether a2 
has to be executed or not. Note that an instance of the While Activity type may interact with 
multiple instances of other activity type at runtime. For instance, in the While (Θ, A) example, 
instance while can interact with a1, a2 … an where ai represents the ith iteration.  

                                                             

7  http://www.deezer.com  
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As shown in figure 3.14, the While Activity type has the following structure: 

< condition: String, evaluationResult: Boolean, do: Activity > 

 Its attributes are described as follows: 

• condition contains a string representing a boolean expression. 

• evaluationResult contains the result of the evaluation of the activity condition (i.e. 

either true or false). 

• do represents the activity operand that is executed when the activity condition is 

evaluated to true. 

As an example consider the Get Song activity of the Status Updater scenario. As you 
may recall this activity has to be executed several times in order to obtain the last song 
played by a user. Also recall that we represent this activity using the Get Song Atomic Activity 

type (cf. section 3.3.1). Figure 3.17 illustrates the use of the While Activity type for implementing 
the required iterative behavior over the Get Song activity. As shown in the figure, the expres-
sion “isUserListeningMusic()==true” is used for deciding whether a new iteration has to be 
executed (i.e., the condition). If the user is listening music, an instance of the while activity 
will evaluate this expression to true and then it will execute an instance of the activity type 

Get Song (i.e. the do operand). Otherwise the while activity will complete its execution. 

 

Figure 3.17 UML class diagram illustrating the use of a While Activity type 

3.3.3 Workflow Activity 

The Workflow Activity type represents the logic implementing a services’ coordination as 
an ordered set of activities. As shown in figure 3.11, a Workflow Activity type has the following 
structure: 

< controlFlow: ControlFlowActivity > 

Besides having a name, an input, an output and local variables (inherited from the Activity 

type), a Workflow Activity type has a controlFlow that represents the order in which the activi-
ties composing a workflow have to be executed. For instance, figure 3.18 shows the Workflow 

Activity type representing the Status Updater services’ coordination.  
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Figure 3.18 UML class diagram illustrating a specific workflow as a Workflow Activity type 

As shown in the figure, the Status Updater Activity Workflow type receives a userID as input, 
produces no output and defines a local variable called songInfo. The figure also shows the 
Control Flow Activity type representing the workflow’ control flow. Note that we represent it as 
an activity tree where: 

• The leaf nodes represent the Atomic Activity types composing the workflow (i.e., activ-

ities Get Song, Compute Mood, Update Facebook and Update Twitter). 

• The internal nodes represent the Control Flow Activity types representing the order 

among activities (e.g., the fact that the Get Song activity must be executed before 

the Compute Mood activity).  

• The root node represents the Control Flow Activity type containing a workflow imple-

mentation (e.g., the While activity containing the logic that specifies what to do for 

each song listen by a user). 

Since the AP Model is based on the same concepts as the Object Oriented Model (i.e., 
type, instance of a type, inheritance), we can use an object-oriented language for defining 
instances of Workflow Activity types (e.g., C++, Java, C#). For instance, listing 3.1 shows the C# 
expression used for creating an instance of the Status Updater Workflow Activity type8. The ex-
pression is interpreted as follows: 

                                                             

8 The example assumes that all the AP Model types were previously defined as C# classes. 
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• Line 1 creates an instance of the Status Updater Workflow Activity type called myWork-

flow. 

• Line 2 assigns the name of the workflow. Recall that this name uniquely identifies an 

activity type participating in a workflow. 

• Lines 3 and 6 create instances of the type Variable and assign them to the input and 

local attributes of the workflow (respectively).  

• Line 9 creates the instance of the While Activity type that implements the workflow’ 

control flow. Recall that this instance represents the root of the workflow’ control 

flow (see figure 3.18). 

• Lines 10, 15 and 20 create the activity instances composing the control flow. Recall 

that these instances represent the internal nodes of the control flow (see figure 3.18).  

• Lines 11, 16, 21 and 22 create the instances of the Atomic Activity types participating in 

the workflow. Recall that these instances represent the leaf nodes of the control 

flow  (see figure 3.18).  

 

Listing 3.1 Example of the definition of a Workflow Activity instance 

Listing 3.1 also shows how data flow among activity instances: if a and b are activities of 
the same workflow, a can access the attributes of b and b can access the attributes of a (i.e., 
activities share the same memory space). For instance, the expression of line 13: 

input = this.input[0] 

copies the value of the workflow UserID input variable (i.e., referenced by this.input[0]) to 
the Get Song input variable. In the same way the expression line 18:  

1� var myWorkflow = new StatusUpdater( ) {

2� name = “Status Updater”,�

3� input = new Set<Variable>( ) {  �

4� new Variable<UserID, String>( )  

5� },

6� local = new Set<Variable>( ) {  �

7� new Variable<SongInfo, String>( ) 

8� },

9� controlFlow = new WhileActivity( ) {�

10� do = new Sequence() {

11� lefside = new GetSong() { 

12� name = “Get Song”,

13� input = this.input[0]  // User ID�

14� },

15� rigthside = new Sequence( ) {

16� lefside = new ComputeMood( ) {

17� name = “Compute Mood”,

18� input = this.local[0]  // Song Info�

19� },

20� rigthside = new Parallel( ) {

21� lefside = new UpdateFacebook( ) { … },

22� rigthside = new UpdateTwitter( ) { … }

23� }

24� }

25� }

26� }

27� }
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input = this.local[0] 

copies the value of the workflow songInfo local variable (i.e., referenced by this.local[0]) 
to the Get Song input variable.  

3.4 Execution Unit Type 

We use the Execution Unit type for representing an entity that goes through a series of 
states at runtime and notifies its progression to the execution environment by producing 
events. As shown in figure 3.19, the Execution Unit type has the following structure: 

 < states: Set<State>, notifies: Event > 

Its attributes are described as follows: 

• states represents the set of ordered states through which goes an execution unit 

when executed (e.g., an activity instance goes first to the initial state and sometime 

later it arrives to the final state). We use the type State for representing execution 

unit’ states. 

• notifies represents the type of events produced by an execution unit (e.g., the exe-

cution of an activity produces instances of type ActivityEvent). We use the type Event 

for representing events.  

As shown in figure 3.1, the AP Model classifies execution units into activities, active poli-

cies and policy’ rules. This implies that the behavior of instances of Activity, Active Policy and 
Rule types can be described as a series of states and transitions among the states. This will 
be further described in chapter 4. 

 

Figure 3.19 Execution Unity type UML class diagram 

The type State represents a momentum during the execution of an execution unit (see 
figure 3.19). This type has the following form:  
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Its attributes are described as follows: 

• timestamp represents the time associated to a state.9 

• values represents the set of values that contained in the variables of an execution 

unit at time timestamp.  

Consider for example the instance a1 of type Get Song Atomic Activity (cf. section 3.3.1). Fig-

ure 3.20 shows the representation of a1 as an execution unit that passes through two states: 
(i) the initial state containing the values of a1 before the service’ operation call and (ii) the 
final state containing the values of a1 after the operation call. Before the call the operation-

Result and output attributes have no value (i.e., they are null). Then, after the call, these 
attributes have specific values (i.e., the string “Sting – Fields of Gold”).  

 

Figure 3.20 UML object diagram illustrating the states of an execution unit 

The type Event represents an interest happening during the execution of an execution 
unit (see figure 3.19). For instance, an activity has started or ended its execution. As shown in 
figure 3.21, the event type has the following structure: 

 < timeStamp: Number, producerID: Number, delta: Set<Variable> > 

Its attributes are described as follows: 

• timestamp represents the time at which an event was produced.  

• producerID represents a string uniquely identifying the execution unit producing 

an event. We assume that this identifier is assigned by the system at the moment of 

instantiating a type.  

                                                             

9 The representation of time can be of different granularities (e.g., hour, day, minute, etc.). We 
consider that this granularity is determined by the system executing the workflows. We also consider 
that, independently of its representation, time can be transformed into a positive integer (i.e., a num-
ber i ε [0, ]). 
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• delta contains information about the conditions in which an event is produced (i.e., 

the state of the execution unit producing the event). We represent the delta as a set 

of pairs of the form variable = value.  

 

Figure 3.21 Event Type UML class diagram  

As an example consider the instance a1 of the Get Song activity type (see figure 3.20). When 
this activity is executed, it produces instances of the ActivityEvent type (a subtype of the Event 

type) each time a1 reaches a new state. For instance, figure 3.22 illustrates the event e1 pro-
duced by a1 when it reaches the initial state. As you can see, e1 was produced at time 5 by 
the execution entity identified as “a1” (see timestamp and producerID respectively) and 
contains in its delta the state of a1 at the time of production of the event (cf. figure 3.20). 

 

Figure 3.22 UML object diagram illustrating an Activity Event instance 
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every activity instance. For instance, the activity has been initialized, completed or 

failed. 

Variable
�

* delta 

Event
�

producerID : String�
timestamp: Number�

1 

delta 

e1 : ActivityEvent
�

producerID = "a1"�
timestamp = 5�

initial : State�

    variables = {  �
          name  =  "Get Song",�

          operationResult  =  null, �

          output  =  null,�

          input  =  {  < UserID = "johndoe">  }, �
          local  =  null,�

    } �

: Variable
�

name = "state"�

1 

value 

1 

Event�



Section 3.5   Active Policy Type 

59 

• Atomic Activity Event types. They represent the events produced by an atomic activity 

instance during a service’ operation call. For instance, the activity is prepared for 

invoking the operation or the operation has been invoked. 

• Control Flow Activity Event types. They represent the events produced during the exe-

cution of control flow activity instances. For instance, an if activity has evaluated its 

associated condition or a sequence activity has executed one of its operands. 

• Active Policy Event types. They represent the events describing the lifecycle of an ac-

tive policy instance. For instance, a policy has been (de) activated or completed. 

• Rule Event types. They represent the events describing the lifecycle of a rule in-

stance. For instance, a rule has been triggered or its action has been executed. 

 

Figure 3.23 Event types UML class diagram 

3.5 Active Policy Type 

We use the Active Policy type for representing the business logic implementing a non-

functional property. As shown in figure 3.24, the Active Policy type has the following structure: 

 < rules: Set<Rule>, scope: Set<ExecutionUnit >, variables: Set<Variable> > 

Its attributes are described as follows: 

• rules represents a non-empty set of event-condition-action (ECA) rules that verifies 

and enforces a non-functional property at runtime. We use the type Rule for repre-

senting ECA rules.  

• scope represents the association of an active policy with one or several workflow’ 

execution units. When an execution unit eu is associated to a policy ap it is said that 

“eu belongs to the scope of ap” or that “ap applies to eu”.  

Event�

ActivityEvent
�

ActivityLifeCycle�

ActivityInitialized�

ActivityRunning�

ActivityPaused�

ActivityCompleted�

ActivityFailed�

AtomicActivity� ControlFlowActivity�

ConditionEvaluated�

result : Boolean �

ActivityInstantiated�

activityInstanceID : String �

ActivityExecuted�

ExecutedActivityID : String �
Operand : String �

ActivityPrepared�

ActivityProcessed�

OperationInvoked�

operationResult : Type �

APolicyDeactivated�

APolicyActivated�

APolicyPrepared�

APolicyCompleted�

RuleDeactivated�

RuleTriggered�

RuleEvaluated�

RuleActionExecuted�

ActivePolicyEvent
�

RuleEvent
�



Chapter 3    Active Policy Model 

 

60 

• variables represents the set of local variables composing an active policy and 

which are accessible to the policy’ rules (i.e., rules can read and modify variables’ 

values). 

The Rule type represents an ECA rule with the classical semantics: « on the notification of 
an event of type E, if a condition C is verified, execute an action A ». As shown in figure 3.24, 
the Rule type has the following structure: 

 < event: Event, condition: Condition, action: Activity > 

Its attributes are described as follows: 

• event represents a significant happening occurring during the execution of an exe-

cution unit at time t. 

• condition represents a boolean predicate that is evaluated over the state of a poli-

cy (i.e., the values of the policy variables and the state of the scope execution units). 

• action represents an activity that can (i) act on the execution of a workflow (e.g., 

stop, resume, update), (ii) signal an event and (iii) activate (deactivate) the rules of a 

policy.  

 

Figure 3.24 Active policy type UML class diagram 

Consider for instance the Log Active Policy type shown in figure 3.25, which represents policy 
instances that track the execution of other policies and that save into a log the event pro-
duced by these policies. As shown in the figure, the Log policy type (i) can be associated to 
any number of execution units of type Active Policy (see scope relationship), (ii) has a single 
variable called log that contains the string representation of the events produced by the 
execution of units (i.e., the policies belonging to the policy’ scope) and (iii) is composed of 
a single ECA rule named Save Into Log that has the following semantics: on the notification of 
any event (e.g., instances of ActivityEvent or ActivePolicyEvent), if the event was produced by 
any of the policies belonging to the policy’ scope, execute an instance of the activity 
EventToString, which transforms the event into a string and save it into the log.  

Event
�

Rule
�

condition : Condition�
action : Activity�

on 

1 

vity

rulePriority 

1 

1 

Active Policy
�

activePolicyPriority 

1 1 

1 .. * rules 

Execution Unit
�

1 .. * 

scope 

Variable
�

variables 

* 



Section 3.5   Active Policy Type 

61 

 

Figure 3.25 Log Active Policy type UML class diagram 

Figure 3.25 also shows that active policies can be applied to any number of execution 

units as long as they belong to the same type (e.g., if ap is a policy instance that can be ap-
plied to activities and a, seq and wf are instances of atomic activity, control flow and work-

flow activity types, then applying ap to the set {a, seq, wf} is a valid association). However, we 
have identified two special kinds of associations (see figure 3.26): 

• Applying a policy to a single activity. We call this kind of policies activity policies. 

They are represented using the A-Policy type. 

• Applying a policy to a set of policies of exactly the same type T. We call this kind of 

policies policy of policies. They are represented using the P-Policy type. 

 

Figure 3.26 UML class diagram illustrating the identified Active Policy subtypes 
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applied to activities Update Facebook and Update Twitter. In the same way, p3 is an exam-
ple of a P-Policy instance since it applies to policies p1 and p2 (i.e., p3 is a policy of policies). 
Finally remark that the association of p3, p1 and p2 can be represented as a tree (see fig-

ure 3.27), where leaf nodes represent activities and internal nodes represent active policies. 
We call this tree an active policy tree. 

 

Figure 3.27 Example of A-Policy and P-Policy instances  

Active policy rules are related to each other using the notion of priority. At execution 
time, priorities are used for scheduling the execution of rules that are triggered at the same 

time (i.e., triggered by the same event instance). We consider two kinds of priorities (see 
figure 3.24): 

• Priorities among rules. They specify the execution order among the rules of a same 

policy. For instance, if r1 and r2 are rules belonging to policy ap, and r1 has lower 

priority than r2, when both rules are triggered r1 has to be executed before r2.  

• Priorities among policies. They specify the execution order among the rules be-

longing to different policies. For instance, if rx and rx+1 are rules belonging to policy 

apx, ry is a rule belonging to policy apy and apx has lower priority than apy, then rules rx 

and rx+1 have to be executed before ry when triggered at the same time. 

3.6 AP Language  

We propose the AP Language, for defining active policy types. Figure 3.28 illustrates the 
informal grammar of the language focusing on the expression used for defining an active 
policy type.  The AP Language, is an extension to the C# language with constructors for (i) 
defining Active Policy types and (ii) associating these types to a Workflow.  

Since the AP Language is based on the C# language, defining a type implies defining a 
class (i.e., use of the class keyword and definition of the variables and methods composing 
the class) and: (i) use the policy keyword for declaring a policy type (a class), (ii) specify the 
rules composing the policy and (iii) specify the scope of the policy.  
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Figure 3.28 Structure of the AP Language expression defining an Active Policy type 

An active policy type defined using the AP Language specializes the types of the AP 
Model. A new active policy type can represent concrete non-functional properties (e.g., 
security, exception handling, atomicity, persistence, etc.). The following sections illustrate 
how to define new Authentication Active Policy types using the AP language for dealing with the 
authentication requirements of the Status Updater coordination (i.e., the implementation of 
the OAuth and Basic authentication protocols). 

3.6.1 Defining Active Policies 

Listing 3.2 illustrates the definition of the Log P-Policy type (cf. figure 3.27). The expression is 
interpreted as follows: 

• Line 1 defines Log as an Active Policy subtype that applies to Authentication policies. For 

example instances of types OAuth and Basic (see figure 3.27).  

• Lines 2 and 3 define the variables composing a log policy: (i) a string called log used 

for recording the events produced during the execution of an authentication poli-

cy, and a workflow used for transforming an event instance into a string. 

• Line 4 defines the method producedBy that verifies whether an event e was produced 

by an execution unit belonging to the scope of a log policy. For instance, if (i) log 

and auth are instances of types Log and Authentication, (ii) log applies to auth and (iii) e 

was produced by auth, then log.producedBy(e) will return true. 

• Lines 7 to 10 define the single rule composing a log policy. The rule is interpreted as 

follows: if rule SaveIntoLog receives the notification of an active policy event and 

this event was produced by the policy scope, the rule transforms the event into a 

string and stores it into the log. 

The AP Language supports the concept of inheritance. Thus, when an active policy type 
AP1 is defined as a subtype of the policy type AP2 we consider that “AP1 inherits all the prop-
erties of AP2” (i.e., its variables, methods and rules). For instance, the expression in listing 3.3 
defines the type Authentication Log as a special type of Log policy (see listing 3.2) that can be 
associated to authentication policies only. Since Authentication Log is a subtype of the Log 
type, it inherits all the properties defined in Log (i.e., the log variable and the rule SaveIn-

toLog) and thus it can use them. For instance, the authentication log policy can initialize the 
log with a default value.   
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Listing 3.2 Example of an active policy type definition 

 

Listing 3.3 Example of the use of inheritance in the AP Language 

3.6.2 BasicAuth Active Policy  

Listing 3.4 shows the definition of the BasicAuth policy type. This type represents a policy 
that implements a basic authentication protocol based on a user’ username and password 
(e.g., the one used by HTTP protocol10). As shown in the figure, the policy type (i) is com-
posed of one rule and two variables, and (ii) can be associated to an activity of any type. 
The variables denote the values for username and password. The rule implements the authen-
tication protocol by using the variables. Assuming that the policy is associated to an activity 
type, the policy works as follows: 

• When the policy is instantiated the values for username and username are passed to 

the policy instance. Then the policy waits for the notification of triggering events 

(i.e., events of type ActivityPrepared). 

• During its execution the activity will get prepared before calling its associated ser-

vice operation. This causes the notification of an event of type ActivityPrepared that 

triggers rule r1. 

• When r1 is triggered, the rule uses the values in variables username and password for 

configuring the activity request variable. Since rule r1 is marked as sync, the rule is ex-

ecuted synchronously with respect to the activity i.e., r1 first pauses the execution of 

the activity, then r1 configures the activity request variable and finally r1 resumes the 

activity execution. 

                                                             

10 http://en.wikipedia.org/wiki/Basic_access_authentication 

1� policy  class  Log  |[   Active Policy *  ]|  :  Active Policy �

2�              String    log ;

3�              Activity    EventToString ;

4�              Boolean  producedBy (  Event e  )  {"

5�                       // Code comparing scope and event producer

6�              }�

7�              rule Save Into Log �

8�                      ON    Event  event�

9�                      IF     producedBy ( event )�

10�                      DO    this.log += EventToString ( event )�

policy  class  AuthenticationLog  |[  Authentication *  ]|  :  Log {! �

             AuthenticationLog ( )  {!

                      this.log   =   new String ( );

             }�

}�
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• During execution the activity uses (internally) this request variable for calling the ser-

vice operation. Since the variable now contains the user’ username and password, 

the operation call can be identified by the service as an authorized call. 

 

Listing 3.4 Definition of the BasicAuth Policy type 

3.6.3 OAuth Active Policy  

Open authentication (OAuth) is a protocol that allows a user to grant a third-party appli-
cation access to her information, without necessarily revealing her credentials (i.e., her 
username and password). Figure 3.29 illustrates the steps involved in the OAuth protocol: 

• The developer registers his/her application at the Service Provider (e.g., Facebook 

or Twitter) for obtaining a request token (step 1).  

• When the application is used for the first time, the application redirects the user to 

the Service Provider for granting the application to access his information (step 2). 

During this step the application identifies it self by using the request token ob-

tained. When the user grants the application, the application obtains an access to-

ken that represents the user authorization (step 3).  

• When the application calls a service operation the application includes the access 

token as a parameter, which is used by the service provider for determining 

whether the application is authorized to access/update data (step 4). 

• Once the access token no longer valid the application contacts the service provider 

for renewing the access token. 

Listing 3.5 shows an implementation of the policy type OAuth using the AP Language. As 
you can see, the type OAuth policy is a kind of Authentication policy type that defines: 

• An activity getToken that implements the logic for (i) retrieving the access token (i.e., 

steps 2, 3 and 4 of the OAuth protocol) and (ii) setting this value into the execution 

unit (i.e., the activity).  

• Activity renewToken that implements the logic for renewing the access token (i.e., 

step 5). 

• Variable token used for containing the access token.  

• Rule tokenretrieval stating that, if the activity in the policy scope is prepared for execu-

tion, and the token variable does not contain a value (i.e. the variable is null), the 

variable token will take the value retrieved by the activity getToken. 

policy  class  BasicAuth  |[  Activity activity  ]|  :  Authentication  {�

String  username, password;

rule  R1�

on  ActivityPrepared�

if    event.producedBy ( activity )�

do  { �

activity.Request.Username = username;

activity.Request.Password = password; 

}

} �
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• Rule tokenrenewal stating that, if the activity in the policy scope is prepared for execu-

tion, and the token variable has expired, the variable token will take the value re-

trieved by the activity renewtoken. 

Note that the policy type imports the types defined in the namespace OAuth. The type 
Token belongs to this namespace. 

 

Figure 3.29 Steps of the OAuth Protocol  

 

Listing 3.5 Definition of the OAuth Active Policy type 



policy  class  OAuth  |[  Activity activity  ]|  :  Authentication  {


Token    token ;
�

rule  TokenRetrieval
on  ActivityPrepared
if    event.producedBy ( activity )  &&  token  ==  null   �
do  token =  GetToken ( )


rule  TokenRenewal
on  ActivityPrepared
if    event.producedBy ( activity )  &&  token  !=  null   &&  token.isExpired�
do  token =  RenewToken ( )

�

} 
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3.6.4 Applying Active Policies to Activities 

Figure 3.30 illustrates the use of the AP Language for associating the HttpAuth policy type 
to the Status Updater workflow. In the example the scope of the policy type is associated to 
activity N5, which represents the Update Twitter activity. Remark that the values “jane.doe” and 
“abc.123” are passed to the username and password policy variables, respectively.  

 

Figure 3.30 Association of a BasicAuth policy type to the Status Updater workflow 

In order to illustrate the use of the authentication policy types in the Status Updater sce-
nario, figure 3.31 shows once again the expression tree of the Status Updater workflow. 
However, this time the nodes of the tree are annotated with unique identifiers. 

 

Figure 3.31 Annotated version of the status updater activity tree  

3.7 Conclusions 

This chapter introduced the AP Model, providing types for defining active policy based 

workflows that ensure non-functional properties at runtime. Our approach adheres to the 
hypothesis that modular programming has the usual benefits associated with structured 

programming, information hiding and reusability. Through the notion of active policy (AP) 
we provide means for modeling AP oriented services’ coordination as workflows in a mod-
ular way. Using our model the workflow and the AP can be defined independently. Accord-
ing to the AP model an AP can be associated with an entity of a workflow (simple and com-
posite activity). 



Chapter 3    Active Policy Model 

 

68 

In order to couple a workflow and its policies at runtime, it is necessary to synchronize 
them. This synchronization is modeled using event types and ECA rules. Event types are 
used for representing some of the execution states of the activities of a workflow. ECA rules 
represent NFPs enforcement actions modeled by AP types. Finally, this chapter showed 
through a simple example how the AP model and the AP Language can be used for defin-
ing AP types and associating them to a workflow. The specification of specific AP types and 
their association to a workflow is addressed in chapter 5. These definitions can be then exe-
cuted according to strategies that are presented in the following chapter. 
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4 Executing Active Policy 

Based Workflows  

This chapter describes how active policy-based workflows behave at runtime (i.e., how 
instances of the Active Policy, Rule and Action types interact among them for adding non-
functional properties to a services’ coordination implemented as a Workflow). In particular 
this chapter describes (i) how events produced by execution units (i.e., active policies and 
activities) trigger active policy’ rules and (ii) how action workflows (i.e., the action part of 
policy rules) interact with coordination workflows for enforcing non-functional property at 
runtime.  

The chapter is organized as follows. Section 4.1 describes the behavior of Activity instances 
(i.e., atomic activity, control flow and workflow instances). Section 4.2 describes the behavior 
of Active Policy and Rule instances. In particular this section describes the execution relation-
ship among an active policy, the policy rules and the execution entities belonging to the 
policy scope. Section 4.3 enumerates the interaction patterns among action workflows and 
coordination workflows that we identify for enforcing non-functional properties at runtime. 
Finally section 4.4 concludes the chapter. 

4.1 Executing an Activity  

Recall from chapter 2 that the AP Model considers 3 types of activities: Atomic, Control Flow 

and Workflow activities. Thus this section first describes the general behavior of an activity 
instance independently of its type. Then it details the behavior of instances of each activity 
type. 

4.1.1 Activity General Behavior 

The diagram of figure 4.1 describes the general behavior of an Activity instance. As shown 
in the diagram, when an activity instance is created, it enters the initialized state. At this point 
the activity has already received its input variables and prepared its local variables. Then, 
when the activity receives the run signal, it moves to the running state and executes its asso-
ciated logic. For example, an Atomic activity executes the logic implementing a service op-
eration call during its running state, whereas a Control Flow activity coordinates the execution 
of the activities composing the control flow activity during this state. If an activity terminates 



Chapter 4    Executing Active Policy Based Workflows 

70 

the execution of its logic without error, the activity moves to the completed state and sets the 
values for its output variables. Otherwise it moves to the failed state and stops its execution.  

 

Figure 4.1 General behavior of an Activity instance  

(UML state machine diagram) 

 The diagram of figure 4.1 also shows that activities can be paused and resumed while 
running. When an activity is an Atomic activity, entering the paused state causes the activity to 
immediately suspend its execution. In contrast, when the activity is a composite activity (i.e., 
a Control Flow or Workflow activity), entering the paused state causes the activity to send a 
pause signal to all its sub-activities, and once all the sub-activities are paused, the activity 
finally suspends its execution. For instance, figure 4.2 illustrates the behavior of the Status 

Updater workflow when paused. As shown in the figure, when the Status Updater workflow 
receives the pause signal, this causes a cascade of pause signals through the workflow’ 
activity tree. And once all the workflow activities are paused, the Status Updater workflow 
can move from the running state to the paused state.  

 

Figure 4.2 Behavior of a composite activity when “paused“ 

An analogous behavior is obtained when resuming a paused activity. If the activity is an 
atomic activity, the reception of the resume signal causes the activity to re-enter the running 
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state (exactly to the point it was before receiving the pause signal). In contrast, when the 
activity is a composite activity, the reception of the resume signal causes a cascade of re-
sume signals through the activity tree (similar to the one shown in figure 4.2). And once all 
the activities participating in the activity tree are running again, the composite activity finally 
moves to the running state and continues its execution. 

As shown in section 3.4, an activity instance is also an Execution Unit instance and thus it 
produces a series of events during its execution. An activity produces an event every time it 
enters a state. The event contains information (i.e., the execution environment) about the 
progression of its life cycle (cf. ActivityLifeCycle event type in figure 3.23).  

For example, figure 4.3 illustrates the events produced by the execution of 3 activity in-
stances named a1, a2 and a3. As shown in the figure, the events produced by instance a1 
describe a normal execution (i.e., a1 entered the initialized state, then it moved to the running 
state and finally it moved to the completed state). In contrast, the events produced by a2 de-
scribe an abnormal execution (i.e., when a2 was running an error was produced and thus it 
moved to the failed state). Finally note that the events produced by instance a3 also describe 
a normal execution but in this case the instance was paused and resumed before completing 
its execution. 

 

Figure 4.3 Example of events produced by the execution of an activity 

Events are messages with information about the conditions in which it was produced. 
Event produced by activities, notify data bout the conditions in which the activity is execut-
ed (the variables’ values of the activity execution state). As an example consider (i) the activ-
ity Update Facebook and (ii) the instance a1 of the Update Facebook activity in figure 4.4. 
Table 4.1 illustrates the information notified by the events produced by a1 during its life cycle. 
The table is interpreted as follows:  

• When a1 was initialized, it set the variable status to “Fragile - Sting” (i.e., the input) 

and initialized its local variables user and successfulCall to their default values (i.e., 

null and false respectively). Then a1 produces the event e1 (of type ActivityInitialized) at 

time tx containing as delta all the variables of a1 (i.e., variables status, user and suc-

cessfulCall and their values). 

• When a1 started running, it produces the event e2 (of type ActivityRunning) at time tx+1. 

Note that at this point the variable user was already set and thus a1 had all the nec-

essary values for updating a user Facebook status. 

a2 ActivityInitialized ActivityRunning ActivityFailed 

a3 ActivityInitialized ActivityRunning ActivityPaused ActivityRunning ActivityCompleted 

a1 ActivityInitialized ActivityRunning ActivityCompleted 
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• When a1 was completed, it produced the event e3 (of type ActivityCompleted) at time 

tx+2. Note that at this point a1 had already set the value for its variable successfulCall 

to true, representing the fact that there was no error during the service’ operation 

call. 

 

Figure 4.4 Update Facebook activity variables 

 

Table 4.1 Example of the information contained in the events produced by an activity 

4.1.2 Behavior of an Atomic Activity  

As shown in the diagram of figure 4.5, an instance of an Atomic activity type passes through 
3 sub-states when running: 

• Preparing. During this state the activity prepares the values for the service’ operation 

input parameters. Once the parameters are prepared, the activity moves to the in-

voking state. 

• Invoking. During this state the activity calls the service’ operation and waits for the 

result. If an error occurs during the operation call (e.g., the network is unavailable 

or the service responds with an exception), the activity moves to the failed state (see 

figure 4.1). Otherwise it moves to the r-processing state. 

• R-Processing. During this state the activity processes the service’ operation result 

(e.g., if a service sends its result using the XML format, the activity transforms the 

XML data types into AP Model data types during this state). Once the activity ends 

processing the result it moves to the completed state (see figure 4.1). 

As an example consider the atomic activity Get Song. Recall that this activity is associat-
ed to a Sequence activity in the Status Updater workflow (see figure 4.2). Let us suppose 
that act and seq are instances of the Get Song and Sequence activities, respectively. Also 
suppose that act is one of the operands of seq. The diagram of figure 4.6 illustrates the be-
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havior of act when executed by seq. As shown in the diagram, when act receives the run sig-
nal, it starts running and thus it moves to the preparing state. This causes the preparation of 
the getLastSong input parameters (i.e., the username used for retrieving the song infor-
mation). When act ends preparing the parameters, it moves to the invoking state, calls the 
operation in the LastFM service and waits for the result. Then, once act receives the opera-
tion result (i.e., the song information), it moves to the r-processing state and processes the 
returned data (e.g., by transforming the song information into an AP Model string). Finally, 
when act ends processing the result, it moves to the completed state and notifies the envi-
ronment about its completion (e.g., act notifies seq about its completion and seq can contin-
ue its execution).  

 

Figure 4.5 Behavior of an Atomic activity instance when running  

(UML state machine diagram) 

 

Figure 4.6 Example illustrating the execution of an Atomic activity instance when running 

(UML sequence diagram) 

Figure 4.7 completes the previous example by showing the event trace produced by the 
execution of act. As shown in the figure, an atomic activity produces 3 events when running: 
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• An event of type ActivityPrepared representing the fact that the activity ended prepar-

ing the service’ operation parameters (see event e5). The event delta1 contains the 

list of parameters and their values. 

• An event of type ActivityInvoked representing the fact that the activity received the 

service’ operation result (see event e6). This event delta contains the operation’ 

output in its delta. 

• An event of type ActivityProcessed representing the fact that the activity finished pro-

cessing the operation’ result (see event e7). The event delta contains the value re-

sulted from the processing in its delta. 

Finally note that the events shown in figure 4.7 illustrate the order relationship among seq 
and act. For example, since e1 and e2 are located at the same point in the timeline, this im-
plies that both activities were initialized at the same time. Also note that e3 was produced 
before e4. This implies that seq was running before act. Besides, since we know that act and seq 
belong to the same activity tree, this also implies that act is a descendent of seq.   

 

Figure 4.7 Events produced by an Atomic activity normal execution 

4.1.3 Behavior of Control Flow Activities  

Sequence (A, B)  

As shown in the diagram of figure 4.8, an instance of a Sequence activity type passes 
through 2 sub-states at run-time: 

• Executing Left Side. During this state the activity sends a run signal to its LEFT-SIDE 

operand for starting its execution and waits for its completion. If the LEFT-SIDE op-

erand fails, the activity moves to the failed state (cf. figure 4.1). Otherwise it moves to 

the executing right side state.  

• Executing Right Side. During this state the activity sends a run signal to its RIGHT-SIDE 

operand for starting its execution and waits for its completion. If the RIGHT-SIDE 

                                                             

1 See the event type definition in Chapter 2. 
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operand fails, the activity moves to the failed state. Otherwise it moves to the com-

pleted state.  

 

Figure 4.8 Behavior of a Sequence activity instance when running  

(UML state machine diagram) 

As an example let us assume that seq (a1, a2) is an instance of the Sequence (GetSong, Parallel) 
activity type (i.e., seq has as left-side and right-side operators instances a1 and a2 of types 
Get Song and Parallel, respectively). The sequence diagram of figure 4.9 illustrates the behavior 
of seq when executed. As shown in the diagram, when seq receives the run signal, it starts 
running and thus it moves to the execute left side state. Then seq sends a run signal to a1 and 
waits a1 to complete. Since a1 completes without error, seq moves to the execute right side and 
starts the execution of a2. Finally, since a2 also completes without error, seq moves to the 
completed state and notifies the environment about its completion. 

 

Figure 4.9 Example illustrating the execution of a Sequence activity instance  

(UML sequence diagram) 
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Figure 4.10 completes the previous example by showing the event trace produced by the 
execution of seq. As shown in the figure, a sequence activity produces 2 events when run-

ning: 

• An event of type ActivityExecuted representing the fact that the LEFT-SIDE operand 

was executed (see event e5). This event contains the identifier of the executed activ-

ity in its delta. 

• An event of type ActivityExecuted representing the fact that the RIGHT-SIDE operand 

was executed (see event e9).  

 

Figure 4.10 Event trace of Sequence activity normal execution 

If Θ do A else B 

As shown in the diagram of figure 4.11, an instance of an IF activity type passes through 3 
sub-states at execution time: 

• Evaluating. During this state the activity evaluates whether its associated condition Θ 

is true or false. If Θ is true, the activity moves to the executing A state. Otherwise it 

moves to the executing B state.  

• Executing A. During this state the activity executes its TRUE operand (i.e., it executes 

an instance of type A). If the TRUE part completes without error, the activity moves 

to the completed state. Otherwise it moves to the failed state (cf. figure 4.1).  

• Executing B. During this state the activity executes its FALSE operand (i.e., it executes 

an instance of type B). If the FALSE part completes without error, the activity moves 

to the completed state. Otherwise it moves to the failed state. 

As an example let us assume that f is an instance of the activity type IF (Θ, A, B). The dia-
gram of figure 4.12 illustrates the behavior of f assuming that Θ evaluates to true. As shown 
in the diagram, when f receives the run signal, it starts running and thus it moves to the evalu-

ating state. Since we assume that Θ evaluates to true, f moves to the executing A state and 
sends a run signal to a (i.e., the instance associated to its TRUE part). Finally, when a com-
pletes its execution, f moves to the completed state and notifies an event with its delta con-
taining the execution environment specifying the completion of the execution of a.  
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Figure 4.13 completes the previous example by showing the event trace produced by the 
execution of f. As shown in the figure, an if activity produces 2 events at execution-time: 

• An event of type ConditionEvaluated representing the fact that the activity terminated 

the condition evaluation (see event e2). This event delta contains the result of the 

condition evaluation (i.e., whether Θ evaluated to true or false). 

• An event of type ActivityExecuted representing the fact that the TRUE / FALSE oper-

and of the activity was executed (see event e6). This event delta contains the identi-

fier of the executed activity. 

 

Figure 4.11 Behavior of an IF activity instance when running  

(UML state machine diagram) 

 

Figure 4.12 Example illustrating the execution of an IF activity instance  

(UML sequence diagram) 
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Figure 4.13 Event trace produced by the normal execution of an IF activity instance 

While Θ Do A 

As shown in the diagram of figure 4.14, an instance of a While activity type passes through 
3 sub-states at execution time: 

• Evaluating. During this state the activity evaluates whether its associated condition Θ 

is true or false. If Θ is true, the activity begins a new iteration by moving to the in-

stantiating state. Otherwise it moves to the completed state (cf. figure 4.1).  

• Instantiating. During this state the activity creates an instance ai of its DO operand 

(i.e., ai is an instance of A where i represents the number of the iteration). Once the 

activity ends the instantiation process it moves to the execute instance state. 

• Execute Instance. During this state the activity executes ai (i.e., it sends a run signal to 

the activity created in the previous state). If ai terminates without failure, the activity 

moves to the evaluating state for determining whether a new iteration is necessary. 

Otherwise it moves to the failed state (cf. figure 4.1).  

 

Figure 4.14 Behavior of a While activity instance when running  

(UML state machine diagram)  

As an example let us assume that w is an instance of the activity type While (Θ, A). The dia-
gram of figure 4.15 illustrates the behavior of w assuming that w iterates once before com-
pleting its execution. As shown in the diagram, when w receives the run signal, it starts run-

ning and thus it moves to the evaluating state. Since Θ evaluates to true, w moves to the instan-

tiating state and creates a new instance of the activity type A called a1. Once a1 is created, w 
moves to the execute instance state, sends a run signal to a1 and waits a1 to complete. Since a1 
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completes without error, w moves to the evaluating state for determining whether a new 
iteration is necessary. Since we assume that w iterates only once, Θ evaluates to false and 
then w moves to the completed state. 

 

Figure 4.15 Example of an iteration of a While activity instance 

(UML sequence diagram) 

Figure 4.16 completes the previous example by showing the event trace produced by the 
execution of w. As shown in the figure, a while activity produces 3 events at execution-time: 

• An event of type ConditionEvaluated representing the fact that the activity ended the 

condition evaluation (see event e1). This event delta contains the result of the condi-

tion evaluation (i.e., whether Θ evaluated to true or false). 

• An event of type ActivityInstantiated representing the fact that the activity created an 

instance of its DO part (see event e2). This event delta contains the identifier of the 

new activity instance (i.e., the name of instance ai). 

• An event of type ActivityExecuted representing the fact that the activity created during 

the instantiation state was executed (see event e6). This event delta contains the iden-

tifier of the executed activity. 

Note that each time a While activity begins an iteration, a new instance of its DO part is 
created. In consequence a while activity may have multiple instances associated to it at 
runtime. For example, let us assume that w iterates 3 times. Figure 4.17 shows the activity tree 
representing w during the 3rd iteration. As shown in the figure, an iteration is represented 
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as a child (or branch) of a while activity in an activity tree. For example, since a1, a2 and a3 are 
children of w, they represent the 1st, 2nd and 3rd iteration of w. The figure also shows that no 
matter how many instances w creates, only one of them is in the running state at a time (e.g., 
since w executes the 3rd iteration, a3 is the only child activity that is in the running state).  

 

Figure 4.16 Event trace produced by a normal execution of a While activity instance 

 

Figure 4.17 Activity tree representing a While activity instance iterating for the 3
rd

 time 

Parallel (A, B) 

As shown in the diagram of figure 4.18, an instance of a Parallel activity type passes 
through 2 sub-states when running: 

• Executing A. During this state the activity executes its LEFT-SIDE operand (i.e., it exe-

cutes an instance of type A). 

• Executing B. During this state the activity executes its RIGHT-SIDE operand (i.e., it ex-

ecutes an instance of type B).  

Note that a parallel activity enters the states Executing A and Executing B simultaneously 
once it starts running. In this work we assume that a parallel activity ends running either 
when (i) both of its operands complete or (ii) one of its operands fails. As shown in fig-

ure 4.18, in the first case the activity moves to the completed state. In the second case the ac-
tivity moves to the failed state.  

As an example let us assume that par (a, b) is an instance of the activity type Parallel (A, B). 
The diagram of figure 4.19 illustrates the behavior of par assuming that both of its operands 
(i.e., activities a and b) completes without error. As shown in the diagram, when par receives 
the run signal, par moves to the running state and begins the execution of a and b at the 
same time. Then par waits for the completion of a and b. Since b completes before a, par 
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ignores the completion of b and remains in the running state. When a completes, since b 
already completes, par moves to the completed state and notifies an event notifying the con-
ditions in which its execution was completed. Figure 4.16 completes the example by show-
ing the event trace produced by the execution of par. As shown in the figure, a parallel ac-
tivity produces 2 events of type ActivityExecuted when running. Each event represents the fact 
that an activity’ operand has completed its execution.  

 

Figure 4.18 Behavior of a Parallel activity instance when running  

(UML state machine diagram) 

 

Figure 4.19 Example illustrating the execution of a Parallel activity instance  

(UML sequence diagram) 
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Figure 4.20 Event trace produced by a normal execution of a Parallel activity instance 

 

4.1.4 Behavior of a Workflow  

As shown in the diagram of figure 4.21, an instance of a Workflow activity type has a simple 
behavior at execution-time: once a workflow activity receives the run signal, it moves to the 
executing control flow sub-state and starts the execution of its associated control flow. Then, if 
the control-flow activity completes its execution without error, the workflow moves to the 
completed state and produces an event of type ActivityExecuted representing the completion of 
the control-flow. Otherwise the workflow moves to the failed state.  

 

Figure 4.21 Behavior of a Workflow activity instance when running  

(UML state machine diagram) 
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4.2.1 Active Policy Behavior 

As shown in the diagram of figure 4.22, an instance of the Active Policy type passes through 
4 states during its life cycle: 

• Deactivated. During this state the policy rules are “dormant” and they cannot be trig-

gered. A policy enters this state twice during its life cycle: (i) after the creation of 

the policy and (ii) once all the execution units composing the policy’ scope are in 

one of these states: completed, failed or paused. When a policy enters this state, it 

sends a deactivate signal to each of its rules for deactivating them.   

• Activated. During this state the policy rules are “waked up” and thus they can be 

triggered. A policy enters this state when any of the execution units composing its 

scope are running and/or activated. When a policy enters this state, it sends a activate 

signal to each of its rules for activating them.   

• Waiting. A policy enters this state once all the execution units in its scope are in a fi-

nal state (i.e., in the completed or failed state). Even if no more rules can be triggered 

at this point, some of the rules may still be running at this point. Thus the policy 

waits for their completion during this state. 

• Completed. This state is entered once all the policy rules completed their execution. At 

this point we consider that the policy finishes its execution. 

 

 

Figure 4.22 Behavior of an Active Policy instance when executed 

(UML state machine diagram)  

The main responsibility of an active policy is to activate (deactivate) its associated rules 
based on the life cycle of the execution units in its scope. This is illustrated in the diagram 
of figure 4.23, where ap is an Active Policy instance that applies to activity act. As shown in the 
diagram, when act starts running it produces an event of type ActivityRunning that causes ap to 
move to the activated state. This causes ap to send an activate signal to each of its associated 
rules for activating them. In a similar way, when act completes its execution it produces an 
ActivityCompleted event that causes ap to move to the deactivated state and thus it causes ap to 
send a deactivate signal to all its rules. 
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Figure 4.23 Activation and deactivation of an Active Policy instance  

(UML sequence diagram) 

Figure 4.24 completes the previous example by showing the event trace produced by the 
execution of ap. As shown in the figure, an active policy produces an event instance every 
time it enters a state: when the policy enters the activated state it produces an event of type 
APolicyActivated (see event e4).  

• When the policy enters the deactivated state it produces an event of type APolicyDeac-

tivated (see event e4 and e6).  

• When the policy enters the waiting state it produces an event of type APolicyWaiting 

(see event e7).  

• When a policy enters the completed state it produces an event of type APolicyComplet-

ed (see event e8). 

Figure 4.24 shows the trigger-ability interval of the rules of ap that represents the interval 
during which the rules can be executed. This interval corresponds exactly to the activation 

interval of ap. In consequence, the trigger-ability interval of the rules of a policy depends on 
the events produced by the policy’ scope (i.e., the events produced by the execution units 
belonging to the policy scope). For example, in the case of ap, the trigger-ability interval of 
rulei is defined by 2 of the events produced by act (i.e., the scope of ap): e3 representing the 
beginning of the interval and e5 representing the end of the interval.  

In general a trigger-ability interval associated to a policy is defined as follows:  
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delimited by the pairs of events [ActivityRunning, ActivityFailed] or [ActivityRunning, Activi-

tyCompleted] produced by act. 

• If a policy’ scope is composed of a single active policy ap, the trigger-ability interval 

is delimited by the pair of events [APolicyActivated, APolicyCompleted] produced by ap. 

• If a policy’ scope is composed of several execution units, the trigger-ability interval 
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APolicyActivated event produced by the policy’ scope, and ey represents the last Activi-

tyFailed / ActivityCompleted / APolicyCompleted event produced by the scope. 

 

Figure 4.24 Event trace produced by an Active Policy instance 

4.2.2 Rule Behavior 

As shown in the diagram of figure 4.25, an instance of the Rule type passes through 4 
states during its life cycle: 

• Deactivated. During this state a rule does not consume triggering events (e.g., if a 

triggering event is notified during this state the rule simple “ignores” the event). A 

rule enters this state twice during its life cycle: (i) after the creation of the rule and 

(ii) once the policy where the rule belongs to become deactivated (cf. figure 4.22).  

• Trigger-able. A rule enters this state when the policy where the rule belongs is activat-

ed (cf. figure 4.22). During this state a rule waits for the notification of a triggering 

event. 

• C-Evaluation. This state is entered when a rule receives the notification of a triggering 

event. During this state a rule evaluates its condition Θ. If the condition is false the 

rule moves back to the trigger-able state. Otherwise the rule moves to the a-execution 

state once it receives the execute signal.  

• A-Execution. During this state the rule executes its associated action (i.e., the work-

flow implementing the action). Once the action completes its execution, the rule re-

turns to its trigger-able state.  

There are criteria to be taken into consideration for executing a rule that are not de-
scribed by the state machine. For instance:  

• How does the execution of a rule is related to the notification of a triggering event?  

• How is the execution of its action synchronized with the execution of an activity? 

 We adopt the classical behavior of rule considered in rule execution models as the one 
proposed in [Coup96] (see table 4.2). Some criteria can be parameterized like those concern-
ing the execution of the action. Criteria concerning events are constant, meaning that trig-
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gering events are handled as stated by these criteria. The following lines define criteria and 
values. 

 

Figure 4.25 Behavior of a Rule instance when executed  

(UML state machine diagram) 

 

Table 4.2 Parameters describing the behavior of a Rule 

Event Processing Mode 

The event-processing mode specifies the relationship between the notification of a t-event 
and the execution of a rule: instance-oriented. When a rule consumes events under the in-

stance-oriented strategy, the rule is triggered every time a t-event is notified. Figure 4.26 
shows an example of a rule with instance-oriented event consumption. In the example the 
execution of the activity Sequence (A, B, C) produces the events e1, e2 and e3, which triggered 
the rule. When the rule receives e1, the rule becomes triggered for the first time. Since the 
rule is still processing e1 at the reception of e2 and e3, the rule puts e2 and e3 into a queue 
called Q. Once the rule ends processing e1, the rule gets triggered a second time when 
getting e2 from Q. Finally, when the rule ends processing e2, the rule gets triggered a third 
time when getting e3 from Q. 

 

Figure 4.26 Example of a rule with instance-oriented semantics 
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Event Consumption Mode 

The event-consumption mode specifies when a rule can be evaluated and A-executed with 
respect to the triggering policy. If a rule is immediate, it is evaluated immediately after it 
has been triggered. When a rule consumes the event, it is considered only for one execu-
tion of the rule and then it is not preserved for triggering other rules.  

Transitions from states triggered and evaluated to states evaluable and A-executable re-
spectively, depend precisely on the following parameters: execution mode, execution in-
stant, and coupling mode. 

Action Execution Mode 

The action-execution mode specifies the relationship between the execution of the action of 
a rule and the entity triggering its policy. A synchronous rule pauses the execution of the 
activity associated before executing the action. Once the action terminates, the rule re-
sumes the execution of the activity. When a rule is asynchronous, the execution of the ac-
tion and the activity are done in parallel. 

Figure 4.27 illustrates the execution of a synchronous rule. In the example the activity In-

voke Activity produces the event e1, which triggers the rule. Since the rule is synchronous the 
activity is paused during the processing of e1. Once the rule ends the execution of its ac-
tion, the activity resumes its execution.  

 

Figure 4.27 Synchronous rule execution example 

Figure 4.28 illustrates the execution of an asynchronous rule. In the example the rule re-
ceives the notification of e1 and the rule starts its execution. Note that in this example the 
activity continuous its execution in parallel. For example, assume that the activity UpdateSta-

tus signals a message containing publicity about a concert of the group that is currently 
playing, when the activity is initialized. The action can be done in parallel without any impli-
cations on the atomic management of the status of a user in her different social networks. 
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Figure 4.28 Asynchronous rule execution example 

Execution Instant 

A trigger-able rule becomes triggered as soon as a triggering event is notified. Howev-
er, a triggered rule is not necessarily evaluated immediately. Similarly, an evaluated rule is 
not necessarily A-executed immediately. 

• Immediate: The condition (or action) is evaluated instantly interrupting the execution 

of the current activity. 

• Deferred: The condition (action) is evaluated (executed) within the same process but 

not at the earliest opportunity. 

Coupling Mode 

The evaluation of the rule can be done within the execution of the same workflow where it 
is triggered or in a new workflow instance. The new process can be causally independent, i.e. 
the rule is processed completely asynchronously with the triggering workflow, or causally 
dependent, where the processing of the rule is undertaken equally in a separate process 
but not before the completion of the triggering workflow. 

4.2.3 Executing Several Rules  

During the execution of an active policy based workflow it is possible that multiple rules 
become triggered at the same time. Therefore, rules have to be scheduled based on a 
local execution plan. The diagram of figure 4.29 illustrates the general process used for 
scheduling the execution of several rules. The diagram is interpreted as follows: at certain 
point in time no rules are triggered (see state S0). Then, once an event is notified, the 
scheduling process determines (i) whether the event activate/deactivate a policy and thus 
the rules of the policy (see AP* Management state) and (ii) whether the event is a triggering 

event of one or more of the activated rules (see R* Triggering state). If the event triggered 
more than one rule, the rules are ordered based on some criteria (see R* Ordering state). 
After that the process executes each of the rule actions one following the established order 
(A* Dispatching).  

In this work we consider that triggered rules can be ordered based on the criteria shown 
in table 4.3: 

• Priorities. Rules are ordered based on the priorities specified when defining the pol-

icies (i.e., using the priorities among rules and the priorities among policies). 

• FIFO. Rules are ordered according to the order in which they were triggered. 

• Parallel. Rules can be executed simultaneously (i.e., there is no order dependency 

among the execution of the rules).  



Section 4.2   Executing an Active Policy 

89 

• Mixed. Rules are ordered using Priorities/FIFO/Parallel criteria (e.g., rules can be or-

dered first by priorities and then all the rules having the same priority can be exe-

cuted in parallel). 

 

Figure 4.29 Scheduling the execution of several rules (UML state machine)  

 

Table 4.3 Order criteria for scheduling several rules 

Note that it is also possible that the execution of a rule triggers a second rule, which in 
turns triggers a third rule and so on (i.e., the execution of the action workflow associated to 
a rule may produce a cascade of triggering events). In this scenario the scheduling process 
determines the order among the rules based on the following strategies [Coup96]: 

• Depth-first execution. Prioritizes the execution of newly triggered rules.  

• Execution cycles. Prioritizes the execution of rules based on the cycle where they were 

triggered. 

As an example consider the triggering event tree shown in figure 4.30. The figure is inter-
preted as follows: e1 represents an event that triggers rules R1 and R2; e2 represents an event 
produced by R1 that triggers rules R1a, and R2b; e4 represents an event produced by R2 that 
triggers rule and R2a. When the scheduler process follows the depth-first strategy, the sched-
uler dispatches the rules as follows:  
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Figure 4.30 Example illustrating the scheduling of rules triggered by cascade triggering events 

4.3 Reinforcing Non-Functional Properties at Runtime  

From a general point of view a workflow can be seen as a process that executes 
read/write operations (i.e., activities) into a memory space. For example, figure 4.31 illus-
trates a workflow that operates on its own memory space (i.e., activities A, B and C 
read/write workflow’ variables v1, v2 and v3). In this work we consider that workflows can 
operate over two kinds of memory spaces: (i) the space composed of the set of variables 
belonging to a workflow and (ii) the space composed of the data structures representing 
the activities of a workflow and their order relationship (i.e., the workflow activity tree). 
Thus, in order to ensure a non-functional property using active policies, we have to deter-
mine what kind of relationship exist between (i) the memory space of a workflow imple-
menting a services’ coordination and (ii) the operations executed by the action workflows 
implementing a non-functional property (i.e., whether they read and/or write the workflow 
memory space). We identify 3 kinds of relationships among workflows and action work-

flows: non-intrusive, intrusive and control-flow and memory intrusive.  

 

Figure 4.31 Workflow operating over its own memory space 
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4.3.1 Non-Intrusive 

As shown in figure 4.32, in the non-intrusive relationship between a workflow and an action 
workflow, and action workflow only reads the variables of a workflow for implementing a 
non-functional property. For instance, let us consider that a developer wants to add log-

ging capabilities to the Status Updater workflow (i.e., the developer wants to store into a 
log the values of the variables of the workflow at different moments of the workflow execu-
tion). 

As shown in figure 4.33, in the Status Updater FR workflow, assume that the activity Update Fa-

cebook has an associated state management NFP for logging its state in a log. The activity 
starts its execution: it receives the value ‘xyz’ associated to the variable new_Status, and as-
signs the value ‘abc’ to the variable old_status. The Logging NFP workflow starts its execution 
reading these values from the execution state of the activity Update Facebook and stores them 
in the log. Meanwhile, the activity Update Facebook continues its execution. 

 

Figure 4.32 Non-intrusive FR and NFR workflows synchronization 

 

Figure 4.33 Logging: example of non-intrusive FR and NFR workflows synchronization 
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the FR workflow (see figure 4.34). The synchronization of both workflows is done giving ac-
cess the their respective execution state.  

 

Figure 4.34 Memory intrusive NF and NFR workflows synchronization 

In the Status Updater example, the activity Update Facebook has an associated authentication 
NFP, where the activity first sends a new request. Then, it prepares an URI with the variable 
new_Status as output parameter. Before executing the request, the Authentication workflow 
that implements the Open Authentication Protocol, reads the user login and the password 
from the execution state of the activity Update Facebook shared with the workflow Authentica-
tion (see figure 4.35). Then, it produces a token stored in the variable new_Status of the state 
of the activity Update Facebook. The activity Update Facebook can call the service Facebook re-
questing a status update (see req.sendUpdate() in figure 4.35). 

 

Figure 4.35 Authentication: example of memory intrusive FR and NFR workflow synchronization 
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Figure 4.36 Control flow and memory intrusive FR and NFR workflows synchronization 

For example, assume now that the service Facebook updates its authentication protocol 
and implements now an HTTP protocol, where a login and password are required. The 
Updater Status FR and NFR workflows are now synchronized as follows. The activity Update 
Facebook of the FR workflow starts creating a new request, then, provides an URI with the 
variable status. Doing this the control flow is now deviated for executing the authentication 
protocol by the workflow Authentication. It executes the activity user that requests the user 
login (see figure 4.37 variable username with value “john doe”), written on the execution state, 
and then the activity pwd for requesting the password that is also written on the execution 
state (see figure 4.37 variable password with value “secret”). Once executed, the control of the 
activity Update Facebook is resumed, and it executes the last activity send. 

 

Figure 4.37 Authentication: example of control flow and memory intrusive FR and NFR workflows 

synchronization 

Adding exception handling to the Status Updater workflow is also an example of memory 
and control flow intrusive NFP, where the execution of the FR workflow must be observed. 
Then, the NFP must modify the control flow for catching the exception produced and up-

F
R

 W
o

rk
flo

w
 

C 

B 

A 

Path Name Value 

A v1 ‘xyz’ 

B v2 false 

C v3 007 

Path Name Value 

 v  … 

 v  … 

read/write 

update 
N

F
A

 P
ro

c
e

s
s
 

read/write 

Credential c new Credential 

username “john doe” 

password “secret” 

req credential c 

Response resp req.sendUpdate() 

uri 

new 

send 

Update Facebook 

pwd 

user 

Timex 

Timey 

Type Name Value 

Request req new Request() 

uri 

www.facebook.com/

me/{status} 

Authentication 



Chapter 4    Executing Active Policy Based Workflows 

94 

dating the control flow for recovering from the exception: signaling the exception, re-
executing the activity that produced the exception, rolling back the execution to a state 
previous to the production of the exception. 

 

Figure 4.38 Exception handling: example of control flow and memory intrusive FR and NFR work-

flows 

4.4 Conclusions 

This chapter introduced the execution of the entities of the AP Model: Activity, A-Policy and 
Rule. It described the execution simple and complex activities specifying their execution 
states and the conditions in which they pass from one state to another.   

Rules are executed within the execution of active policies and policies are executed 
within the execution of a workflow. Thus the chapter showed how to synchronize the execu-
tion of these entities among each other. It defined all the aspects that should be consid-
ered for deciding when to trigger an AP with respect to the notification of an event, and 
when to activate its associated rules. It also described when rules are triggered with re-
spect to the notification of their triggering event, when to evaluate the condition and when 
to execute the action. The action can modify the workflow execution state or its control 
flow. Therefore the chapter proposed patterns showing how NFP can be reinforced. 

A WF Engine and an AP Engine execute workflows and active policies, respectively. The 
WF Engine manages the execution lifecycle of a workflow instance (i.e., the lifecycle of a 
composite activity).  The AP engine manages the lifecycle of a policy and it also plans the 
execution of several policies and policy’ rules. Both engines interact synchronously and 
asynchronously. Chapter 6 presents the system that we proposed for executing workflow 
and policies.  
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5 Reliable Services’ Coordinations 

We define a reliable services’ coordination as a coordination that tolerates failures at 
runtime. This chapter introduces our approach for adding reliability to services’ coordina-
tions using active policies. It describes how we specialize the Active Policy type for tolerating 
semantic and system failures. We tolerate semantic failures by adding atomicity (i.e., the 
principle of “all or nothing”) to the execution of a coordination using the Activity Exception 

Management and Atomicity policy types. We tolerate system failures by persisting and recover-

ing the execution state of a coordination using the Activity State Management and Persistency 
policy type. When these policies are associated to a workflow implementing a services’ 
coordination, they form a policy tree that ensures the reliability of the workflow execution. 

The chapter is organized as follows. Section 5.1 explains the basis of our approach for 
adding reliability to a services’ coordination. Section 5.2 presents our approach for adding 
an atomic behavior to a coordination. In particular, this section describes the structure and 
use of the Activity Exception Management and Atomicity policy types. Section 5.3 presents our ap-
proach for adding persistency to a coordination. In particular, this section describes the 
structure and use of the Activity State Management and Persistency policy types. Finally, section 5.4 

concludes the chapter. 

5.1 Reliability  

In this work we consider a reliable services’ coordination as a coordination that tolerates 
failures at runtime. Failures can be of two kinds: semantic and system failures. For instance, 
dividing a number by zero or passing a value of a type X when a value of type Y is expected 
are examples of semantic failures. An application crash produced by a stack overflow is an 
example of a system failure.  

We address semantic failures by adding atomicity to the execution of a services’ coordi-
nation (i.e. by providing an atomic behavior to the workflow implementing the coordina-
tion). This strategy was first used in the database domain where the atomic behavior asso-
ciates the principle of “all or nothing” to database operations (i.e., either all operations 
commit or fail, and if committed, they can be rolled back). In the context of workflows, ac-
tivities represent the operations that must be executed atomically and thus, we implement 
atomicity by specifying:  

• How to treat failures on a single activity. For instance, in the Status Updater work-

flow the information retrieved by the Get Song activity is vital for the execution of 
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the Update Facebook and Update Twitter activities (cf. section 3.1). Thus, we specify 

that the Get Song activity must be retried several times in case of failures before 

stopping the workflow execution. 

• How to provide an atomic behavior to a set of activities. For instance, we specify 

that the execution of the activities Update Facebook and Update Twitter depend 

on each other: either both activities update a user social networks or none of them. 

This ensures that both social networks contain the same information (i.e., this en-

sures data consistency). 

We address system failures by providing persistency to the execution of a services’ co-
ordination. This ensures that the coordination survives despite system failures. For this we 
keep track the execution history of the workflow implementing the coordination (i.e., we 
track the states of the activities composing the workflow and the workflow itself at different 
moments of the workflow execution). Key elements to consider when keeping an execution 
history are (i) where to store the execution history (e.g., cache or disk) and (ii) how to do the 
recovery process using it. Thus we implement persistency by specifying: 

• How to treat persistency and recovery of single activity. For instance, if an activity 

can be retried, then the recovery process can re-execute the activity for bringing 

back the workflow to the state previous to the failure. 

• How to handle the execution state of several activities. For instance, if a set of activi-

ties must be executed in an atomic way, we consider this dependency during the 

recovery process. 

Our approach for providing atomicity and persistency to a services’ coordination is 
based on the work of [Port06b] that implements the atomic and persistent behaviors (i) 
assuming a specific activity execution model, (ii) classifying workflow activities based on 
their exception and state management properties and (ii) associating execution strategies 
to the workflow activities based on their types.  

The activity execution model assumed by the author is shown in figure 5.1. The diagram is 
interpreted as follows: after being created, an activity (i) prepares its input and local varia-
bles, (ii) starts the call to its associated service’ operation, (iii) terminates the call either (with 
error or success) after receiving the operation result and finally (iv) commits. Note that this 
behavior is similar to the one found in database transactions: either the execution of an 
activity commits or fails.  

 

Figure 5.1 Activity execution model assumed in [Port06b] 

(UML state machine diagram) 

The exception and state management properties are properties inherent to all activities 
that can be used for guiding the implementation of the atomic and persistent behaviors. 
The following list enumerates the exception management properties identified by the au-
thor: 

Prepared Started CommitedTerminated
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• Compensate-able — specifies whether an activity can be undone by compensating it 

with the execution of another activity. For instance, let us assume that it is impossi-

ble to delete the status of a Facebook user once it has been updated. In order to 

compensate the execution of the activity Update Facebook, we have to execute 

another activity that updates the user status to a previews value (i.e., the activity is 

compensated semantically).  

• Side-effects — specifies whether undoing an activity generates side-effects or not. For 

instance, let us assume that calling a Facebook operation has a cost. Compensat-

ing the execution of the Update Facebook activity can lead to an extra cost due to 

the fact that the compensation requires calling the service a second time with a 

new status. 

• Retry-able — specifies whether an activity can be executed several times. For in-

stance, it is possible to execute several times the Get Song activity in order to ob-

tain the information about the last played song. 

Based on these properties activities are classified as follows (see table 5.1):  

• Critical — represents an activity that cannot be compensated or retried (i.e., repre-

sents an activity that is vital for a workflow execution). 

• Non-Vital — represents an activity that can be retried and/or compensated without 

producing side effects.  

• Undoable — represents an activity that can be compensated without producing side 

effects. An undoable activity may be retried.   

• Compensate-able — represents an activity that can be compensated causing side ef-

fects. A compensate-able activity may be retried. 

For instance, the Get Song activity is an example of non-vital activity since it can be re-
tried several times in order to obtain the information about the last played song and it has 
no need to be compensated. The Update Twitter and Update Facebook activities are ex-
amples of compensate-able activities since they can be semantically undone by executing 
activity that update the user status with a previews value. 

 

Table 5.1 Classification of activities based on their Exception Management Properties 

The following list enumerates the activity state management properties identified 
in [Port06b]: 

• isStateAccesible — specifies whether the memory space manipulated by an activity can 

be accessed by other activities or not (e.g., the Update Facebook activity is state acces-

Critical� Non Vital� Undoable� Compensate-able�

compensate-able� No No / Yes Yes Yes

side-effects� - No No Yes

retry-able� No No / Yes No / Yes No / Yes



Chapter 5    Reliable Services’ Coordinations 

98 

sible because it is possible to retrieve and modify the status of a Facebook user us-

ing other activities). 

• isIdempotent — determines whether executing the same activity more than once pro-

duces the same result (e.g., the GetMood activity is idempotent because the same 

song title will compute the same mood). 

• presumedFinalState — specifies the activity final state that has to be assumed in the 

presence of a system failure (e.g., committed, failed or unknown).  

Based on these properties activities are classified as follows (see table 5.2):  

• Non-Reliable — represents an activity (i) whose memory space is inaccessible to other 

activities, (ii) when executed does not produces the same result and (iii) its final 

state is unknown in advance.  

• Predictable — represents an activity that has a predicable behavior (i.e., its final state 

is known in advance).  

• Idempotent — represents an activity (i) whose memory space is inaccessible to other 

activities and (ii) which can be re-executed several times producing the same result. 

• Verifiable — represents an activity whose memory space can be accessed by other 

activities. A verifiable activity may be idempotent and its final state may be known 

in advance. 

For instance, the Update Facebook activity is an example of a verifiable activity since (i) the 
memory space modified by the activity (i.e., the user status) can be accessed by other activ-
ities, (ii) when executed more that once the activity updates a user status with the same 
information (i.e., the activity is idempotent) and (iii) nothing can be assumed about its final 

state (i.e., it is unknown whether the activity fails or commit constantly).  

 

Table 5.2 Classification of activities based on their State Management Properties 

Based on the exception and state management properties and their associated activity 
types, we have defined a set of active policy types that implement the execution strategies 
identified in [Port06b] for providing atomicity and persistency to the execution of work-
flows. These policy types are described in the following sections.  

5.2 Active Policies for Atomic Behavior 

We use the Activity Exception Management and Atomicity policy types for providing atomicity 
to the execution of a workflow. The former defines rules for dealing with activity failures.  
The latter defines rules for compensating a set of committed activities (i.e., for undoing the 

Non Reliable� Predictable� Idempotent� Verifiable�

isStateAccessible� No No No Yes

isIdempotent� No No Yes No / Yes

presumedFinalState� No Yes No / Yes No / Yes
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work done by the activities). Figure 5.2 shows the relationship between the Activity Exception 

Management and Atomicity policy types.  

 

Figure 5.2 Activity Exception Management and Atomicity policy types relationship 

(UML class diagram)  

As shown in the figure, the Activity Exception Management policy type is a policy that can be 
associated only to atomic activities (i.e., the policy is an activity policy). In contrast, the Ato-

micity policy type is a policy type that can be associated to any number of exception man-

agement policies (i.e., the policy is a policy of policies). When an atomicity policy is associ-
ated to a set of exception management policies they form a policy tree where the root (i.e., 
the atomicity policy) ensures the atomic behavior of the tree leafs (i.e., the atomic activi-
ties). This is illustrated in figure 5.3 where the atomicity policy ap3 ensures the atomic behav-
ior of the Update Facebook and Update Twitter activities through the exception manage-

ment policies ap1 and ap2 respectively. 

 

Figure 5.3 Example of an Atomicity policy tree 

When Activity Exception Management and Atomicity policies are associated to each other in a 
policy tree, they interact among them by producing events. Figure 5.4 illustrates the general 
interaction among instances of these policy types. The diagram is interpreted as follows: 
when an activity act belonging to the scope of an exception management policy apex fails, act 
produces an event ActivityFailed that triggers one of the rules of apex (see step 1). At this point 
apex tries to handle the failure locally (e.g., by retrying the activity). If apex does not arrive to 

Atomic Activity
�

Atomicity�

Activity Exception 

Management
�

scope 1 ! * 

scope 1 

Active Policy
�

Activity Exception Management 
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Atomic Activities 
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Twitter

Update 
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handle the failure, apex produces an event CustomScopeFailure that represents the policy scope 
failure (see step 2).  

If apex belongs to the scope of an atomicity policy apatom, the notification of the event Cus-

tomScopeFailure triggers the rule of apatom in charge of ensuring the atomic behavior. For this, 
the rule produces an event CompensationRequest that triggers the compensation of the activi-
ties associated to all the exception management policies belonging to the scope of apatom. 
Let us assume that only apex belongs to the scope of apatom. Thus, the notification of the event 
CompensationRequest triggers a rule in apex that compensates act (see step 3). If act is compen-
sated then the atomic behavior is respected. If for any reason the activity cannot be com-
pensated (e.g., the activity is not compensate-able), apex produces an event CustomActivityPol-

icyFailure that represents the fact that the activity compensation failed (see step 4). In turn this 
event triggers a rule in apatom that notifies the environment about the failure of the compen-
sation procedure (see step 5).   

In what follows we describe the structure of the Activity Exception Management and Atomicity 

policy types. 

 

Figure 5.4 Activity Exception Management and Atomicity policies general interaction 

(UML interaction diagram) 

5.2.1 Activity Exception Management Active Policy 

We use the Activity Exception Management policy type for handling (i) activity failures and 
(ii) compensation of committed activities. As shown in figure 5.5, we have specialized the 
Activity Exception Management type in the Critical, Non-Vital, Undoable and Compensate-able subtypes 
in order to encapsulate the logic responsible of handling failures and compensation of 
critical, non-vital, undoable and compensate-able activities (respectively). First, we will de-
scribe the structure of the Activity Exception Management policy type. Then, we will describe the 
structure of each of its subtypes. 

act : Activity
�

1. ActivityFailed 

apex : Exception Management
�

apatom : Atomicity 
�

3. CompensationRequest 
4. CustomActivePolicyFailure 

 

2. CustomScopeFailure 

5. CustomActivePolicyFailure 

Scope Policy 

Policy Scope 

Key 



Section 5.2   Active Policies for Atomic Behavior 

101 

 

Figure 5.5 Exception Management Active Policy type  

(UML class diagram) 

Activity Exception Management Policy 

The definition of the Activity Exception Management policy is shown in listing 5.1: 

• Line 1 defines the scope of the policy. Note that the scope is composed of a single 

execution unit called activity. Also note that the type of activity is Atomic Activity 

(i.e., an instance of an Activity Exception Management can be applied to any atomic ac-

tivity). 

• Line 2 defines the variable activityProperties of type ExceptionManagementProperty. This 

variable contains the exception management properties of activity (i.e., the variable 

contains the properties of the activity in the policy scope). 

• Lines 3—8 define the policy constructor. Note that the constructor receives as input 

the exception management properties of the activity that has to be associated to 

the new policy instance. If these properties describe a valid scope, the constructor 

creates a new policy instance applying to activity. Otherwise, the constructor 

throws an exception.  

• Line 9 defines the method isAValidScope. This method determines whether a policy 

instance (based on its properties) can be applied to a specific activity. For instance, 

if the policy is expecting a critical activity, and a developer applies the policy to a 

non-vital activity, the method return false. Note that this method is used inside the 

policy constructor. 

• Lines 10—13 define the rule RetryOnFailure. When activity fails (see step 1 in figure 5.4), 

this rule tries to re-execute the activity for handling the failure. The rule works as 

Activity Exception Management
�

activityProperties : 
ExceptionManagementProperties�

Active Policy
�

Non Vital
�

Critical
�

Undoable
�

Compensate-able
�

Rules�

RetryOnFailure�

CompensateAndRetryWhenRequested�

Rules�

NotifyScopeFailure�

NotifyPolicyFailure�

Rules�

ContinueOnFailure�

ContinueOnCompensationRequest�

Rules�

enable RetryOnFailure�

enable CompensateAndRetryWhenRequested�

�

Rules�

enable RetryOnFailure�

enable CompensateAndRetryWhenRequested�

CompensateWithoutRetryingWhenRequested�

isAValidScope (  ) : Boolean �
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follows: on the notification of an event ActivityFailed, if activity is retry-able and the 

event was produced by activity, the rule will execute (synchronously) an instance of 

the Retry workflow. Intuitively, a Retry instance proceeds as follows: first it pauses the 

execution of the main workflow (i.e., the workflow executing activity). Then it re-

executes the failed activity (i.e., activity). Finally, it returns the control to the main 

workflow (who does not notice the failure) for continuing its execution. If for any 

reason the Retry instance does not arrive to re-execute the activity, it produces an 

event CustomScopeFailure representing the activity failure (see step 2 in figure 5.4). Note 

that Retry receives as input (i) the id of the failed activity (i.e., the id of the event 

producer) and (ii) the maximum number of times that the activity can be retried.  

• Lines 14—17 define the rule CompensateAndRetryWhenRequested. When an atomic 

policy begins the compensation process (see step 3 in figure 5.4), this rule compen-

sates and re-executes activity (i.e., the activity in the scope of the policy). The rule 

works as follows: on the notification of an event CompensationRequest, if activity is re-

try-able and compensate-able, and the event was produced by an atomicity policy 

applying to the Activity Exception Management policy (i.e., produced by the ancestor of 

the policy in a policy tree), the rule will execute (synchronously) an instance of the 

CompensateAndRetry workflow. Intuitively, a CompensateAndRetry instance proceeds as 

follows: first it pauses the execution of the main workflow. Then, it compensates 

and re-executes activity, which causes activity to re-enter the committed state. Fi-

nally, it resumes the main workflow execution. If for any reason the workflow does 

not arrive to retry or compensate activity, it produces an event CustomActivePolicyFail-

ure that represents the failure of the compensation process (see step 4 in figure 5.4). 

Note that CompensateAndRetry also receives as input (i) the id of the event producer 

and (ii) the maximum number of times that the activity can be retried.  

Note that the Activity Exception Management policy type is an abstract type (see line 1 in list-

ing 5.1). This implies that the policy type cannot be instantiated and thus we only use it as a 
base type (i.e., the Activity Exception Management policy type defines the scope, variables, 
methods and rules inherited by the Critical, Non-Vital, Undoable and Compensate-able subtypes). 
Finally note that the Activity Exception Management policy type is based on the types shown in 
listing 5.2. The ExceptionManagementProperties type represents the exception management 

properties of an activity. The CompensationRequest, CustomActivePolicyFailure and CustomScopeFail-

ure represent the events produced during the implementation of the atomic behavior. 
Since these event types are not part of the AP Model event types (cf. figure 3.23), we define 
them as specializations of the type Event. 
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Listing 5.1 Definition of the Activity Exception Management policy type 

 

Listing 5.2 Definition of the Exception Management Properties and custom Event types 

Critical Active Policy  

Since critical activities cannot be retried nor compensated (see table 5.1), we use the Criti-

cal policy type for notifying failures of this kind of activities. The definition of the Critical poli-
cy type is shown in listing 5.3: 

• Line 1 defines the Critical type as a specialization of the Activity Exception Management 

type. 

• Lines 2—8 redefine the method isAValidScope for ensuring that only critical activities 

are associated to a Critical policy instance. Recall that this method is inherited from 

the Activity Exception Management policy type. 

• Lines 9—12 define the rule NotifyScopeFailure. When activity fails (see step 1 in fig-

ure 5.4), the rule notifies the failure to the execution environment. The rule works as 

follows: on the notification of an event ActivityFailed, if the event was produced by 

activity, the rule executes an instance of the NotifyScopeFailure workflow that produc-

es the event CustomScopeFailure that represents the activity failure (see step 2 in fig-

1� abstract  policy  class  ActivityExceptionManagement  |[  AtomicActivity   activity  ]|  :  ActivePolicy  {�

2� ExceptionManagementProperties  activityProperties ; 

3� ActivityExceptionManagement  ( ExceptionManagementProperties  activityProperties  )  { �

4� if (  isAValidScope ( activityProperties )  )  {�

5� this.activityProperties  =  activityProperties ;

6� }  else

7� throw Exception ;

8� }

9� Boolean  isAValidScope  ( ExceptionManagementProperties  activityProperties  )  {  return false;  }

10� sync rule  RetryOnFailure�

11� on  ActivityFailed  �

12� if    event.producedBy( scope )   &&   this.activityProperties.retry-able�

13� do  Retry ( event.producer,  maxNumberOfRetries )�

14� sync rule  CompensateAndRetryWhenRequested�

15� on  CompensationRequest  �

16� if    event.producedByAncestorAction( scope )   &&   this.activityProperties.compensate-able   &&   this.activityProperties.retry-able�

17� do  CompensateAndRetry ( event.producer , activityProperties.maxNumberOfRetries )�

18� } �



class  ExceptionManagementProperties  {


Boolean   compensate-able ;
Boolean   side-effects ;
Boolean   retry-able ;
Integer     maxNumberOfRetries ;



}�
�

class  CompensationRequest  :  Event  { … }�
�

class  CustomActivePolicyFailure  :  Event  { … }


class  CustomScopeFailure  :  Event  { … }
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ure 5.4). Note that NotifyScopeFailure receives as input the id of the event producer 

(i.e., the id of the failed activity). 

• Lines 13—16 define the rule NotifyPolicyFailure. When an atomic policy begins the 

compensation process (see step 3 in figure 5.4), this rule notifies that the policy can-

not compensate or retry the policy scope. The rule works as follows: on the notifica-

tion of an event CompensationRequest, if the event was produced by an atomicity poli-

cy applying to the Critical policy, the rule executes an instance of the NotifyActivePoli-

cyFailure workflow that produces an event CustomActivePolicyFailure that represents the 

activity compensation failure (see step 4 in figure 5.4). Note that the NotifyActivePolicy-

Failure receives as input the id of the event producer and a reference to the policy. 

 

Listing 5.3 Definition of the Critical policy type 

As an example consider the activity Update Facebook of the Status Updater workflow. 
Let us assume that this activity cannot be retried nor compensated. Therefore, the Update 

Facebook activity is an example of a critical activity. Listing 5.4 illustrates the use the Critical 
policy type for handling failures of the Update Facebook activity. The expression is inter-
preted as follows: 

• Line 1 defines the variable wf that holds a reference to the Status Updater workflow. 

Lines 2—7 create and assign an instance of type ExceptionManagementProperties to the 

variable activityProperites. This variable represents the exception management 

properties of the Update Facebook activity.  

• Line 8 creates and assigns an instance of the policy type Critical to the variable ap. 

Note that ap is applied to the activity Update Facebook. Also note that the policy 

constructor receives as input the variable activityProperites. Since this variable rep-

resents a critical activity, the constructor of Critical considers Update Facebook a val-

id scope and creates the new policy instance. 

1� policy  class  Critical  :  ActivityExceptionManagement  {�

2� Boolean  isAValidScope ( ExceptionManagementProperties  activityProperties  )  { 

3� if ( activityProperties.compensate-able == false  &&�

4�      activityProperties.retry-able == false  )

5� return true;

6� else�

7� return false;

8� }

9� sync rule  NotifyScopeFailure�

10� on  ActivityFailed �

11� if    event.producedBy( scope )�

12� do  NotifyScopeFailure ( event.producer )�

13� sync rule  NotifyPolicyFailure�

14� on  CompensationRequest  �

15� if    event.producedByAncestorAction( scope )�

16� do  NotifyActivePolicyFailure ( event.producer,  this )�

17� } �
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Listing 5.4 Example of a Critical policy instance  

Non-Vital Active Policy 

We use the Non-Vital policy type for handling failures and compensating non-vital activi-

ties. The definition of this type is shown in listing 5.5: 

• Line 1 defines the Non-Vital type as a specialization of the Activity Exception Management 

type. 

• Lines 2—7 redefine the method isAValidScope for ensuring that only non-vital activi-

ties are associated to a Non-Vital policy instance (cf. table 5.1).  

• Lines 8—11 define the rule ContinueOnFailure. When activity fails (see step 1 in fig-

ure 5.4), this rule forces the main workflow to continue its execution despite the fail-

ure. The rule works as follows: on the notification of an event ActivityFailed, if the 

event was produced by activity, the rule executes an instance of the workflow Con-

tinue. Intuitively, a Continue instance proceeds as follows: first it pauses the execution 

of the main workflow. Then, it forces the main workflow to ignore the failed activity 

and move to the next activity in the workflow’ control flow. Finally, it resumes the 

main workflow for continuing its execution. Note that Continue receives as input the 

id of the failed activity.  

• Lines 12—15 define the rule ContinueOnCompensationRequest. When an atomic pol-

icy requests the compensation of activity (see step 3 in figure 5.4), this rule simple 

forces the main workflow to ignore the activity and move to the next activity. The 

rule works as follows: on the notification of an event CompensationRequest, if the event 

was produced by a policy applying to the Non-Vital policy, the rule executes an in-

stance of the workflow Continue.  

As an example consider the activity Compute Mood of the Status Updater workflow. 
Since we assume that the mood of a user is not necessary for generating the message to 
be posted in a user social network, Compute Mood is an example of a non-vital activity. 
Listing 5.6 illustrates the use of the Non-Vital policy type for managing failures of the Compute 

Mood activity. As shown in the expression, we first create an instance describing the state 
management properties of the Compute Mood activity. Then, we use this instance for cre-
ating a Non-Vital policy instance applied to Compute Mood. 

1� var  wf  =  new  StatusUpdater  { … } �

2� var  activityProperties  =  new  ExceptionManagementProperties  { �

3� compensate-able =  false,

4� side-effects = null,

5� retry-able = false,

6� maxNumberOfRetries = null

7� }�

8� var  ap =  new  Critical  |[  wf.activities[ "UpdateFacebook" ]  ]|  (  activityProperties ) ;�
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Listing 5.5 Definition of the Non-Vital policy type 

 

Listing 5.6 Example of a Non-Vital policy instance 

Undoable Active Policy 

We use the Undoable policy type for handling failures and compensating undoable activi-

ties. The definition of this type is shown in listing 5.7: 

• Line 1 defines the Undoable type as a specialization of the Activity Exception Management 

type. 

• Lines 2—10 redefine the method isAValidScope for ensuring that only undoable activ-

ities are associated to an Undoable policy instance (cf. table 5.1).  

• Lines 11 and 12 enable the rules RetryOnFailure and CompensateAndRetryWhen-

Requested. Recall that these rules are inherited from the Activity Exception Management 

type (see figure 5.5). 

• Lines 13—16 define the rule CompensateWithoutRetryingWhenRequested. In con-

trast to the rule CompensateAndRetryWhenRequested, this rule compensates the 

work done by activity without retrying it. The rule works as follows: on the notifica-

tion of an event CompensationRequest, if activity is not retry-able and the event was 

produced by a policy applied to the Undoable policy (see step 3 in figure 5.4), the rule 

executes an instance of the workflow Compensate which undoes (i.e., rollback) the 

committed activity.  

1� policy  class  NonVital  :  ActivityExceptionManagement  {�

2� Boolean  isAValidScope ( ExceptionManagementProperties  activityProperties  )  { 

3� if ( activityProperties.side-effects == false  )�

4� return true;

5� else�

6� return false;

7� }

8� rule  ContinueOnFailure�

9� on  ActivityFailed  �

10� if    event.producedBy( scope )�

11� do  Continue ( event.producer )�

12� rule  ContinueOnCompensationRequest�

13� on  CompensationRequest�

14� if    event.producedByAncestorAction( scope )�

15� do  Continue ( event.producer )�

16� } �

 
 

var  ap =  new  NonVital  |[  wf.activities[ "Compute Mood" ]  ]|  ( 

new  ExceptionManagementProperties  {  

side-effects = false, 

} 

) ; 
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As an example consider the activity Update Twitter of the Status Updater workflow. Let 
us assume that this activity cannot be retried once it commits. Since the activity can be 
compensated but not retried, Update Twitter is an example of an undoable activity. List-

ing 5.8 illustrates the use of the Undoable policy type for managing failures of the Update 

Twitter activity. As shown in the expression, (i) we create an instance describing the state 
management properties of the Update Twitter activity and (ii) we use the instance for creat-
ing an Undoable policy instance associated to the activity Update Twitter. 

 

Listing 5.7 Definition of the Undoable policy type 

 

Listing 5.8 Example of an Undoable policy instance  

Compensate-able Active Policy 

We use the Compensate-able policy type for handling failures and compensating compen-

sate-able activities. The definition of this type is shown in listing 5.9: 

• Line 1 defines the Compensate-able type as a specialization of the Activity Exception Man-

agement type. 

• Lines 2—10 redefine the method isAValidScope for ensuring that only compensate-

able activities are associated to a Compensate-able policy instance (cf. table 5.1).  

1� policy  class  Undoable  :  ActivityExceptionManagement  {�

2� Boolean  isAValidScope ( ExceptionManagementProperties  activityProperties  )  { 

3� if ( activityProperties.side-effects == false  &&�

4�      activityProperties.compensate-able == true  &&

5�      activityProperties.retry-able != null  &&

6�      activityProperties.maxNumberOfRetries > 0  )

7� return true;

8� else�

9� return false;

10� }

11� enable  rule  RetryOnFailure�

12� enable  rule  CompensateAndRetryWhenRequested�

13� rule  CompensateWithoutRetryingWhenRequested�

14� on  CompensationRequest  �

15� if    event.producedByAncestorAction( scope )   &&   this.activityProperties.compensate-able   &&  ! this.activityProperties.retry-able�

16� do  Compensate ( event.producer )�

17� } �

 

var  ap =  new  Undoable  |[  wf.activities[ "Update Twitter" ]  ]|  ( 

new  ExceptionManagementProperties  {  

side-effects = false, 

compensate-able = true, 

retry-able = false, 

} 

) ; 
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• Lines 11 and 12 enable the rules RetryOnFailure and CompensateAndRetryWhen-

Requested (see figure 5.5).1  

As an example consider the activity Update Facebook of the Status Updater workflow. 
Since this activity can be retried and compensated (with side effects), the activity is com-

pensate-able. Listing 5.10 illustrates the use of the Compensate-able policy type for managing 
failures of the Update Facebook activity using the previous pattern: first we create an in-
stance describing the state management properties of the Update Facebook activity. Then, 
we use this instance for creating a Compensate-able policy applying to the activity Update 

Facebook. 

 

Listing 5.9 Definition of the Compensate-able policy type 

 

Listing 5.10 Example of a Compensate-able policy instance  

5.2.2 Atomicity Active Policy 

We use the Atomicity policy type for providing an atomic behavior to the execution of the 
activities participating in an atomicity policy tree (cf. figure 5.3). In particular, the Atomicity 

policy type can provide three types of atomic behaviors:  

• Strict atomicity. This behavior conforms to the classical “all or nothing” principle. 

                                                             

1 Note that the Compensate-able policy type does not define any new rules (i.e., the functionality of 
this policy type resides in the rules inherited from the Activity State Management policy type). 

1� policy  class  Compensate-able  :  ActivityExceptionManagement  {�

2� Boolean  isAValidScope ( ExceptionManagementProperties  activityProperties  )  { 

3� if ( activityProperties.side-effects == true  &&�

4�      activityProperties.compensate-able == true  &&

5�      activityProperties.retry-able != null  &&

6�      activityProperties.maxNumberOfRetries > 0  )

7� return true;

8� else�

9� return false;

10� }

11� enable  rule  RetryOnFailure�

12� enable  rule  CompensateAndRetryWhenRequested�

13� }�

var  ap =  new  Compensate-able  |[  wf.activities[ "Update Facebook" ]  ]|  ( 
new  ExceptionManagementProperties  {  

side-effects = true, 

compensate-able = true, 

retry-able = false, 

maxNumberOfRetries = 3, 
} 

) ; 
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• Alternative atomicity. This behavior captures the possibility of using alternative exe-

cution paths for committing. 

• Exception atomicity. This behavior indicates that if something goes wrong an excep-

tion must be launched. 

Listing 5.11 shows the definition of the Atomicity policy type. The expression is interpreted 
as follows: 

• Line 4 defines the scope of the policy. In this case, the scope can be composed of a 

set of execution units of type Activity Exception Management. 

• Line 6 defines the variable atomicityType of type AtomicityType. This variable specifies 

the type of atomic behavior provided by an instance of the Atomicity policy type 

(e.g., strict or alternative atomicity). Line 1 shows the definition of the type Atomici-

tyType.  

• Lines 8—10 define the policy constructor. Note that the constructor receives as input 

the type of atomic behavior that has to provide the new policy instance. 

• Lines 12—15 define the rule StrictBackwardRecovery. This rule implements the strict 

atomic behavior. The rule works as follows: on the notification of an event Custom-

ScopeFailure (see step 2 of figure 5.4), if atomicityType is strict and the producer of the 

event is an exception management policy belonging to the policy scope (i.e., the 

producer is a descendent of the policy in a policy tree), the rule will execute an in-

stance of workflow BackwardRecovery. Intuitively, a BackwardRecovery instance produces 

an event CompensationRequest that triggers the compensation of the activities partici-

pating in the policy tree (see step 4 of figure 5.4).  

• Lines 17—21 define the rule FordwardRecovery. This rule implements the alternative 

atomic behavior. The rule works as follows: on the notification of an event Custom-

ScopeFailure (see step 2 of figure 5.4), if (i) atomicityType is alternative, (ii) there exist an 

alternative path for committing and (iii) the producer of the event belongs to the 

policy scope, the rule will execute an instance of the FordwardRecovery workflow. Intu-

itively, a FordwardRecovery instance proceeds as follows: first it pauses the execution 

of the main workflow (i.e., the workflow executing the activities). Then it analyses 

the main workflow’ control flow for determining the alternative path to take. Finally 

it executes all the activities that are in the new path until committing the workflow. 

Figure 5.6 illustrates the forward recovery principle using the status updater work-

flow. In the example, the Update Twitter activity fails, which triggers the rule Ford-

wardRecovery of apatom. Since there is another path to commit, the rule “forces” the 

main workflow to follow this path. 

• Lines 23—27 define the rule BackwardRecovery. In contrast to the FordwardRecovery 

rule, this rule undoes all the committed activities when no alternative path exist.2 

Figure 5.7 illustrates the backward recovery principle using the Status Updater work-

flow. In the example, the Update Twitter and Update Facebook activities both fail 

                                                             

2 Note that alternative atomicity is similar to strict atomicity when no other path exists to commit. 
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so there is no other path to commit. In consequence, the BackwardRecovery rule of 

apatom undoes the committed activities Get Song and Compute Mood. 

• Lines 29—32 define the rule NotifyException. This rule implements the exception at-

omicity behavior. The rule works as follows: on the notification of an event Custom-

ScopeFailure, if atomicityType is exception, and the producer of the event belongs to 

the policy scope, the rule will execute an instance of the workflow. Intuitively, a Noti-

fyException instance notifies the environment about the workflow failure and waits for 

instructions for treating the failure.  

• Lines 34—38 define the rule NotifyPolicyFailure. This rule notifies the environment 

about the failure of the compensation procedure. The rule works as follows: on the 

notification of an event CustomActivePolicyFailure, if the event producer is the action of 

one of the policy rules belonging to the scope of the policy, the rule will execute an 

instance of the workflow NotifyActivePolicyException that notifies the compensation 

failure (see step 5 of figure 5.4). Recall that a compensation procedure may fail be-

cause (i) an activity cannot be compensated or (ii) its maximum number of retries is 

exceeded. 

 

Listing 5.11 Atomicity policy type expression 

1� enum  AtomicityType  {  Strict, Alternative, Exception  }�
2�
3� [ AfterPolicy  ActivityExceptionManagement  ]�
4� policy  class  Atomicity  |[  ActivityExceptionManagement *  ]|  :  ActivePolicy  {�
5�
6� AtomicityType atomicityType

7�
8� Atomicity (  AtomicityType atomicityType  )  { �

9� this.atomicityType  =  atomicityType ; 

10� }

11�
12� rule  StrictBackwardRecovery�

13� on  CustomScopeFailure �

14� if    event.producedByDescendent( scope )   &&  atomicityType.Strict�
15� do  BackwardRecovery ( event.producer )�

16�
17� rule  FordwardRecovery�

18� on  CustomScopeFailure�

19� if    event.producedByDescendent( scope )   &&  atomicityType.Alternative  && �

20�       this.existAlternativePath( )

21� do  FordwardRecovery ( event.producer )�

22�
23� rule  BackwardRecovery�

24� on  CustomScopeFailure�

25� if    event.producedByDescendent( scope )   &&  atomicityType.Alternative  && �

26�       ! this.existAlternativePath( )�

27� do  BackwardRecovery ( event.producer )�

28�
29� rule  NotifyException�

30� on  CustomScopeFailure�

31� if    event.producedBy( scope )   &&   atomicityType.Exception�
32� do  NotifyException ( event.producer )�

33�
34� rule  NotifyPolicyFailure�

35� on  CustomActivePolicyFailure �

36� if    event.producedByDescendent( scope )  &&�
37�       compare( event.delta [ “Policy” ].type,  ActivityExceptionManagement )�
38� do  NotifyActivePolicyFailure ( event.producer, this )�

39� } �
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Finally note that the Atomicity policy type has lower priority than the Activity Exception Man-

agement policy type (see line 3 in listing 5.11). This ensures that, even if a developer adds rules 
to the exception policy type, the rules in an exception policy instance will be executed be-
fore the rules of an atomicity policy instance. This maintains the principle of our approach: 
atomicity is build on top of activity exception management.  

As an example consider the Update Facebook and Update Twitter activities of the Status 
Updater workflow. Let us assume that these activities can be executed using alternative 

atomicity. Listing 5.12 illustrates the use of the Atomicity policy for adding an atomic behavior 
to these activities. In the example, (i) ap1 is an instance of a Critical policy applying to the 
Update Facebook activity; (ii) ap2 is an instance of an Undoable policy applying to the Up-

date Twitter activity and (iii) apn is a policy instance of type Atomicity that applies to {ap1, ap2} 
and which associates an alternative atomic behavior to Update Facebook and Update Twit-

ter (see figure 5.6).  

 

Figure 5.6 FordwardRecovery principle 

 

Figure 5.7 BackwardRecovery principle 
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Listing 5.12 Atomicity policy instance example 

5.3 Active Policies for Persistence 

We use the Activity State Management and Persistency policy types for providing persistency 
to the execution of a workflow. The former defines rules for keeping track of the execution 

history of an activity.  The latter defines rules for (i) persisting the execution history of a set 
of activities into a stable storage and (ii) recovering the state of the activities in the pres-
ence of system failures. Figure 5.8 shows the relationship among the Activity State Management 
and Persistency policy types. 

 

Figure 5.8 Persistency and State Management types relationships 

(UML class diagram) 

As shown in the figure, the Activity State Management policy type is a policy that can be as-
sociated only to atomic activities (i.e., the policy is an activity policy). In contrast, the Persis-

tency policy type is a policy type that can be associated to any number of state management 

policies (i.e., the policy is a policy of policies). When a persistency policy is associated to a 
set of state management policies they form a policy tree where the root (i.e., the persisten-
cy policy) ensures the persistency and recovering the tree leafs (i.e., the atomic activities). 
This is illustrated in figure 5.9 where the atomicity policy ap3 ensures the persistency of the 

 
var  ap1 =  new  Critical  |[  wf.activities[ "UpdateFacebook" ]  ]|  ( 

new  ExceptionManagementProperties  {  

compensate-able =  false, 

retry-able = false, 

} 
) ; 

 

var  ap2 =  new  Undoable  |[  wf.activities[ "Update Twitter" ]  ]|  ( 

new  ExceptionManagementProperties  {  

side-effects = false, 

compensate-able = true, 

retry-able = false, 

} 

) ; 

 

var  apn =  new  Atomicity  |[  ap1, ap2  ]|  (  AtomicityType.Alternative  ) ; 

Active Policy
�

Atomic Activity
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�
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Update Facebook and Update Twitter activities through the state management policies ap1 
and ap2 (respectively). 

 

Figure 5.9 Example of a Persistency policy tree 

When Activity State Management and Persistency policies are associated to each other in a 
policy tree, they interact among them by producing events. Figure 5.10 illustrates the gen-
eral interaction among instances of these policy types. The diagram is interpreted as fol-
lows: when an activity belonging to the scope of a state management policy starts (com-

pletes) its execution, the state management policy saves the initial (final) state of the activity 
into an internal structure (see step 1). Then, if the state management policy is already asso-
ciated to the scope of a persistency policy, the persistency policy saves these states into a 
stable storage (e.g., disk or cache). This is done every time the rule in charge of saving the 
activity’ state ends its execution (see step 2). When the workflow associated to the persisten-
cy policy fails, the execution environment detects the failure and produces a WorkflowFailed 
event that triggers the recovery process (see step 3). Then, this process recovers each of the 
states of the activities participating in the persistency’ policy tree to the state previous to 
the failure (see step 4).   

 

Figure 5.10 Persistency and State Management policies general interaction 

(UML interaction diagram) 
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In what follows we describe the structure of the Activity State Management and Persistency pol-
icy types. 

5.3.1 Activity State Management Active Policy 

We use the Activity State Management policy type for (i) constructing the execution history of 
an activity and (ii) recovering the state of the activity using this history. As shown in fig-

ure 5.11, we have specialized the Activity State Management type in the Non-Reliable, Predictable, 
Idempotent and Verifiable subtypes in order to encapsulate the logic responsible of saving 
and recovering the state of non-reliable, predictable, idempotent and verifiable activities 
(respectively). First, we will describe the structure of the Activity State Management policy type. 
Then, we will describe the structure of each of its subtypes.  

 

Figure 5.11 Activity State Management policy type  

(UML class diagram) 

Activity State Management Policy 

Listing 5.13 shows the definition of the Activity State Management policy type using the 
AP Language.  

• Line 1 defines the Activity State Management type as a subtype of the Active Policy type. 

This line also defines the scope of the policy as a scope composed of a single exe-

cution unit called activity. Note that the type of activity is AtomicActivity (i.e., the state 

management policy type applies to any atomic activity). 
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• Line 3 defines the boolean variables activityWasStarted and activityWasEnded. The-

se variables are used for determining whether an activity was started or ended (re-

spectively). 

• Line 4 defines the variable activityProperties of type StateManagementProperties. This 

variable contains the state management properties of activity (i.e., the variable con-

tains the properties of the activity in the policy scope). The definition of the 

StateManagementProperties type is shown in listing 5.14. 

• Line 5 defines the variable activityStates. This variable is used for containing the set 

of states through which an activity goes through (i.e., the execution history of activi-

ty). Note that we use the ActivityState type for representing an activity state. The defi-

nition of this type is shown in listing 5.14. 

• Lines 7—13 define the policy constructor. Note that the constructor receives as input 

the state management properties of the activity that has to be associated to the 

new policy instance. If the properties correspond to the activity’ properties ex-

pected by the constructor (i.e., if the activity is a valid scope), the constructor cre-

ates a new policy instance. Otherwise, it throws an exception. 

• Line 15 defines the method isAValidScope, which determines whether a policy in-

stance (based on its properties) can be applied to a specific activity or not. For in-

stance, if the policy is expecting a predictable activity, and a developer applies the 

policy to a non-reliable activity, this method will return false and the constructor will 

not create the policy instance. 

• Lines 17—25 define the rules SaveInitialState and SaveFinalState, which are responsi-

ble of saving the initial and final states of activity (respectively). The rules work as 

follows: on the notification of an event ActivityInitialized / ActivityCompleted, if the event 

was produced by activity (i.e., the activity in the policy scope), the rules will execute 

an instance of the SaveState workflow. Intuitively, this workflow will save the activity’ 

current state (i.e., the values of the activity’ variables when initialized) into the varia-

ble activityState. Then, the rule will set the variable activityWasStarted / activity-

WasEnded to true. 

Note that the Activity State Management policy type is an abstract type (see listing 5.13). Re-
call that this implies that the policy type cannot be instantiated. Thus we only use it as base 

type for the subtypes Non-Reliable, Predictable, Idempotent and Verifiable. 
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Listing 5.13 Definition of the Activity State Management policy type 

 

Listing 5.14 Definition of the StateManagementProperties and ActivityState types 

Non Reliable Policy 

We use the Non-Reliable policy type for constructing the execution history and recovering 
the execution state of non-reliable activities. Listing 5.15 shows the definition of the Non-

Reliable type: 

• Line 1 defines the Non-Reliable type as a specialization of the Activity State Management 

type (i.e., an instance of the Non-Reliable policy type inherits the scope, methods, 

variables and rules defined in the Activity State Management policy type). 

• Lines 3—10 redefine the method isAValidScope for ensuring that only non-reliable 

activities are associated to a Non-Reliable policy instance (see table 5.2).  

• Lines 12—13 enable the rules SaveInitialState and SaveFinalState. Recall that these 

rules are inherited from the Activity State Management policy type (see figure 5.11). 

1� abstract  policy  class  ActivityStateManagement  |[  AtomicAtivity  activity  ]|   :   ActivePolicy   {�

2�

3� Boolean  activityWasStarted, activityWasEnded ; 

4� StateManagementProperties  activityProperties ; 

5� Set  <ActivityState>  activityStates ;�

6�

7� ActivityStateManagement  ( StateManagementProperties  activityProperties  )  { �

8� if (  isAValidScope ( activityProperties )  )  {�

9� this.activityProperties  =  activityProperties ;

10� this.activityStates  =  new  Set  <ActivityState> ( );

11� }  else

12� throw Exception ;

13� }

14�

15� Boolean  isAValidScope  (  StateManagementProperties  activityProperties  )  {  return false;  }

16�

17� rule  SaveInitialState�

18� on  ActivityInitialized�

19� if    event.producedBy( activity ) �

20� do  activityWasStarted  =  SaveState ( activity, activityStates ) ; �

21�

22� rule  SaveFinalState�

23� on  ActivityCompleted �

24� if    event.producedBy( scope ) �

25� do  activityWasEnded  =  SaveState ( activity, activityStates ) ; �

26� }�



class  StateManagementProperties  {
Boolean  isStateAccessible;
Boolean  isIdempotent; 
ActivityState  presumedFinalState ; 

}�


enum  ActivityState  {�
Prepared, Failed, Commited, Unknown  �

}
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• Lines 15—18 define the rule RestoreCommittedActivity. On the notification of an 

event RecoverActivity, if the activity associated to the policy was started and ended, 

and the event was produced by a policy applying to the Non-Reliable policy  (i.e. 

produced by an ancestor of the policy in a policy tree), the rule executes an in-

stance of the workflow Restore. Intuitively, this workflow restores an activity to a spe-

cific state. In this case, the workflow restores the activity associated to the policy to 

the committed state.  

• Lines 20—23 define the rule ThrowException. On the notification of an event RecoverAc-

tivity, if activity is still running (i.e., activity was started but not ended), and the event 

producer is a policy applying to the Non-Reliable policy, the rule executes an in-

stance of the workflow ThrowException. This workflow notifies the environment that 

the activity cannot be restored because the activity does not commit before the 

system failure.  

As an example consider the activity Update Twitter of the Status Updater workflow. Let 
us assume that a user status on Twitter can be written but not read. Since the memory 
space modified by the activity Update Twitter is not accessible to other activities, the activi-
ty is not idempotent and nothing can be assumed about its final state, Update Twitter is an 
example of a non-reliable activity. Listing 5.16 illustrates the use of the Non-Reliable policy type 
for recovering the execution of the Update Twitter activity. As shown in the expression, we 
first create an instance describing the state management properties of the Update Twitter 
activity. Then, we use the instance for creating a Non-Reliable policy instance associated to 
the activity Update Twitter. 

 

Listing 5.15 Definition of the Non Reliable policy type 

1� policy  class  NonReliable  : ActivityStateManagement  {�

2�

3� Boolean  isAValidScope  (  StateManagementProperties  activityProperties  )  {  

4� if ( activityProperties.stateIsAccesible == false  &&�

5�      activityProperties.isIdempotent ==  false  &&

6�      activityProperties.presumedFinalState == ActivityState.Unknown )

7� return true;

8� else�

9� return false;

10� }

11�

12� enable  rule  SaveInitialState�

13� enable  rule  SaveFinalState�

14�

15� rule  RestoreCommitedActivity�

16� on  RecoverActivity  �

17� if    event.producedByAncestorAction( scope )  &&  activityWasStarted  &&  activityWasEnded�

18� do  Restore ( activity,  ActivityState.Commited )�

19�

20� rule  ThrowException�

21� on  RecoverActivity �

22� if    event.producedByAncestorAction( scope )  &&  activityWasStarted  &&  !activityWasEnded�

23� do  ThrowException�

24� }�
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Listing 5.16 Example of a NonReliable policy instance 

Predictable Policy 

We use the Predictable policy type for constructing the execution history and recovering 
the execution state of predictable activities. Listing 5.17 shows the definition of the Predictable 
type:  

• Line 1 defines the Predictable type as a specialization of the Activity State Management 

type. 

• Lines 3—9 redefine the method isAValidScope for ensuring that only predictable ac-

tivities are associated to a Predictable policy instance (see table 5.2). 

• Line 11 enables the rule SaveFinalState. Recall that this rule is inherited from the Ac-

tivity State Management type (see figure 5.11). 

• Lines 13—17 define the rule RestoreActivity. On the notification of an event RecoverAc-

tivity, if the activity associated to the policy was started, and the event was pro-

duced by a policy applying to the Predictable policy, the rule executes an instance of 

the workflow Restore for restoring the activity to its presumed state. In contrast, if the 

activity was not started, the rule restores the activity to the prepared state.  

As an example consider the activity Update Facebook of the Status Updater workflow. 
Since we assume that this activity always commits, the activity is an example of a predicta-

ble activity. Listing 5.18 illustrates the use of the Predictable policy type for recovering the exe-
cution of the Update Facebook activity. As shown in the expression, we first create an in-
stance describing the state management properties of the Update Facebook activity. Then, 
we use the instance for creating a Predictable policy instance associated to the activity Up-

date Facebook. 

 
var  wf  =  new  StatusUpdater  { ! }  
 
var  ap =  new  NonReliable |[  wf.activities[ "Update Twitter" ]  ]|  (   

new  StateManagementProperties  {  
stateIsAccessible = false, 
isIdempotent = false, 
presumedFinalState = ActivityState.Unknown 

} 
) ; 
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Listing 5.17 Definition of the Predictable policy type 

 

Listing 5.18 Example of a Predictable policy instance 

Idempotent Policy 

We use the Idempotent policy type for constructing the execution history and recovering 
the execution state of idempotent activities. Listing 5.19 shows the definition of the Idempo-

tent type:  

• Line 1 defines the Idempotent type as a specialization of the Activity State Management 

type. 

• Lines 2—7 redefine the method isAValidScope for ensuring that only idempotent ac-

tivities are associated to an Idempotent policy instance. 

• Line 8 enables the rule SaveFinalState. Recall that this rule is inherited from the Activi-

ty State Management type (see figure 5.11). 

• Lines 9—12 define the rule RestoreActivity. On the notification of an event RecoverActivi-

ty, if the activity associated to the policy does not complete, and the event was 

produced by a policy applying to the Idempotent policy, the rule executes an in-

stance of the workflow Restore for restoring the activity to the prepared state.  

As an example consider the activity Compute Mood of the Status Updater workflow. 
Since we assume that this activity always produces the same mood based on the music the 
user is currently listen to, Compute Mood is an example of an idempotent activity. List-

1� policy  class Predictable  :  ActivityStateManagement  {�

2�

3� Boolean  isAValidScope  (  StateManagementProperties  activityProperties  )  {  

4� if ( activityProperties.presumedFinalState == ActivityState.Commited   ||�

5�      activityProperties.presumedFinalState == ActivityState.Failed )

6� return true;

7� else�

8� return false;

9� }

10�

11� enable  rule  SaveFinalState�

12�

13� rule  RestoreActivity�

14� on  RecoverActivity  �

15� if    event.producedByAncestorAction( scope )  &&  activityWasStarted�

16� do  Restore ( activity, activityProperties.presumedFinalState )�

17� else do Restore ( activity, ActivityState.Prepared )�

18� }�

 
 

var  ap =  new  Predictable |[  wf.activities[ "Update Facebook" ]  ]|  (   

new  StateManagementProperties  {  

stateIsAccessible = false, 

isIdempotent = false, 

presumedFinalState = ActivityState.Committed 

} 

) ; 
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ing 5.18 illustrates the use of the Idempotent policy type for recovering the execution of the 
Compute Mood activity using the typical pattern: first we create an instance describing the 
state management properties of the Compute Mood activity. Then, we use the instance for 
creating an Idempotent policy instance associated to the activity Compute Mood. 

 

Listing 5.19 Definition of the Idempotent policy type 

 

Listing 5.20 Example of an Idempotent policy instance 

Verifiable Policy 

We use the Verifiable policy type for constructing the execution history and recovering 
the execution state of verifiable activities. Listing 5.21 shows the definition of the Verifiable 
type:  

• Line 1 defines the Verifiable type as a specialization of the Activity State Management 

type. 

• Line 2 defines the variable activityState of type ActivityState. This variable will contain 

the activity state previous to the failure. 

• Lines 3—8 redefine the method isAValidScope for ensuring that only verifiable activi-

ties are associated to a Verifiable policy instance. 

• Line 9 enables the rule SaveInitialState. Recall that this rule is inherited from the Activ-

ity State Management type (see figure 5.11). 

• Lines 10—17 define the rule RestoreActivity. On the notification of an event RecoverAc-

tivity, if activity was started and the event was produced by a policy applying to the 

Verifiable policy, the rule executes a workflow that retrieves the activity’ last state 

1� policy  class  Idempotent  :  ActivityStateManagement  {�

2� Boolean  isAValidScope  (  StateManagementProperties  activityProperties  )  {  

3� if ( activityProperties.isIdempotent == true )�

4� return true;

5� else�

6� return false;

7� }

8� enable  rule  SaveFinalState�

9� rule  RestoreActivity�

10� on  RecoverActivity  �

11� if    event.producedByAncestorAction( scope )  &&  !activityWasEnded�

12� do  Restore ( activity, ActivityState.Prepared )�

13� {�

 
 

var  ap =  new  Idempotent |[  wf.activities[ "Compute Mood" ]  ]|  (   

new  StateManagementProperties  {  

isIdempotent = true, 

} 

) ; 

 
 



Section 5.3   Active Policies for Persistence 

121 

from the stable storage and saves this state into the variable activityState. Then, the 

workflow uses the value in activityState for restoring the activity to that state (e.g., if 

the last state was the committed state, the workflow will retrieve the committed 

state from the stable storage and it will restore the activity to the committed state). 

In contrast, if the activity was not started, the workflow restores the activity to the 

prepared state. 

As an example consider the activity Get Song of the Status Updater workflow. Since we 
assume that the information about the played songs is accessible to other activities, this 
activity is an example of a verifiable activity. Listing 5.22 illustrates the use of the Verifiable 
policy type for recovering the execution of the Get Song activity.  

 

Listing 5.21 Definition of the Verifiable policy type 

 

Listing 5.22 Example of a Verifiable policy instance 

5.3.2 Persistency Active Policy 

We use the Persistency policy type for providing persistency to the execution of the activi-
ties participating in a persistency policy tree (cf. figure 5.9). In particular, the Persistency policy 
type can provide two types of persistent behaviors: 

• Best-Effort persistency. This behavior saves the activities’ execution history into fast 

and volatile storage unit (e.g., a cache). Since the storage unit is volatile, the execu-

1� policy  class  Verifiable  :  ActivityStateManagement   {�

2� ActivityState  activityState ;

3� Boolean  isAValidScope  (  StateManagementProperties  activityProperties  )  {  

4� if ( activityProperties.stateIsAccesible == true )�

5� return true;

6� else�

7� return false;

8� }

9� enable  rule  SaveInitialState�

10� rule  RestoreActivity�

11� on  RecoverActivity  �

12� if    event.producedByAncestorAction( scope )  &&  activityWasStarted�

13� do  Sequence ( �

14� GetSate ( activity, activityState ), 

15� Restore ( activity, activityState )

16� )

17� else do  Restore ( activity, ActivityState.Prepared )�

18� }�

 
var  ap =  new  Verifiable |[  wf.activities[ "Get Song" ]  ]|  (   

new  StateManagementProperties  {  

stateIsAccessible = true, 

} 

) ; 
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tion history may not be available for the recovery process in the presence of a total 

system failure (e.g., power outage). 

• Guaranteed persistency. This behavior saves the activities’ execution history into a 

slow and durable storage unit (e.g., a disk). Thus, in case of a total system failure, 

the execution history may survive and it will be available for the recovery process-

es. 

Listing 5.23 shows the definition of the Persistency policy type. The expression is interpreted 
as follows: 

• Line 3 defines the scope of the policy. In this case, the scope can be composed of a 

set of execution units of type Activity State Management. 

• Line 4 defines the variable persistencyType, which determines the type of persisten-

cy that an instance of the Persistency policy implements (e.g., guaranteed persisten-

cy). The type of this variable is PersistencyType. The definition of this type is shown in 

line 1.  

• Lines 5—7 define the policy constructor. The constructor receives as input the type of 

persistent behavior that must implement a new Persistency instance (i.e., best-effort 

or guaranteed). 

• Lines 8—11 define the rule RecoverWorkflow. On the notification of an event Work-

flowFailed (see step 3 of figure 5.10), if the producer of the event was produced by the 

workflow associated to the policy, the rule will execute an instance of the Recovery-

Process workflow for recovering the state of each of the activities participating in the 

policy tree (see step 4 of figure 5.10). 

• Lines 12—17 define the rule BestEffortStrategy. On the notification of an event Action-

Executed (see step 2 of figure 5.4), if (i) the event producer belongs to the policy scope 

(i.e., the producer is a descendent of the policy in a policy tree), (ii) the event repre-

sents the execution of the rule SaveInitialState (or SaveFinalState) and (iii) the policy 

implements a best effort behavior, the rule will execute an instance of the SaveInto-

Cache workflow. Intuitively, this workflow will save into cache the activity states asso-

ciated to the policy producing the event. Note that the rule will execute its action 

asynchronously. This is due to the fact that the best effort behavior does not guar-

antees the durability of the execution history, thus the main workflow can continue 

its execution independently of the rule’ action. 

• Lines 22—27 define the rule GuaranteedStrategy. This rule works similar to the BestEf-

fortStrategy rule except that, when the rule implements the guaranteed persistent 

behavior, it executes an instance of the workflow SaveIntoDisk for saving the activity 

states into disk. Note that this rule executes its action synchronously. This ensures 

that the main workflow cannot continue its execution until the activities states are 

truly saved on disk. 

Finally note that the Persistency policy type has lower priority than the Activity State Manage-

ment policy type (see line 2 in listing 5.23). This ensures that, even if a developer adds rules to 
the state management policy type (or one of its subtypes), the rules of the persistency poli-
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cy will be executed before the rules of the state management policies thus maintaining the 
coherence of the approach (i.e., persistency is build on top of state management).  

 

Listing 5.23 Definition of the Persistency policy type 

As an example consider the Status Updater workflow. Let us assume that we want to add 
a best effort persistent behavior to the Get Song and Compute Mood activities, and a 
guaranteed persistent behavior to the Update Twitter and Update Facebook activities. List-

ing 5.24 illustrates the use of the Persistency policy type for adding these behaviors to the 
Status Updater activities. In the example, (i) ap1 is an instance of a Verifiable policy applying 
to the Get Song activity; (ii) ap2 is an instance of an Idempotent policy applying to the Com-

pute Mood activity; (iii) ap3 is an instance of a Predictable policy applying to the Update Fa-

cebook activity; (iv) ap4 is an instance of a NonReliable policy applying to the Update Twitter 

activity, and (v) apbestEffort and apguaranteed are Persistency policy instances applying to {ap1, ap2} 
and {ap3, ap4} respectively (see figure 5.12).  

1� enum  PersistencyType  {  BestEffort, Guaranteed  }�

2�

3� [ AfterPolicy  ActivityStateManagement  ]�

4� policy  class  Persistency |[  ActivityStateManagement *  ]|  :  ActivePolicy  {�

5�

6� PersistencyType  persistencyType ;

7�

8� Persistency (  PersistencyType  persistencyType  )  { �

9� this.persistencyType  =  persistencyType ; 

10� }

11�

12� rule  RecoverWorkflow�

13� on  WorkflowFailed�

14� if    event.producedByAssociatedWorkflow( scope )�

15� do  RecoveryProcess�

16�

17� async rule  BestEffortStrategy�

18� on  ActionExecuted �

19� if    event.producedByDescendent( scope )  &&  persistencyType.BestEffort�

20�       (  compare( event.delta [ “Rule” ].name,  “SaveInitialState” )  ||  

21�       compare( event.delta [ “Rule” ].name,  “SaveFinalState” )   )

22� do  SaveIntoCache (    ( (ActivityStateManagement) event.producer ).activityStates   )�

23�

24� sync rule  GuaranteedStrategy�

25� on  ActionExecuted �

26� if    event.producedByDescendent( scope )  &&  persistencyType.Guaranteed  &&�

27�       (  compare( event.delta [ “Rule” ].name,  “SaveInitialState” )  ||  

28�       compare( event.delta [ “Rule” ].name,  “SaveFinalState” )   )

29� do  SaveIntoDisk (    ( (ActivityStateManagement) event.producer ).activityStates   )�

30� }�
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Listing 5.24 Persistency policy instance example 

Now let us assume an execution of the Status Updater workflow: after the execution of 
the Get Song activity, the song information is sent to cache according to the apbestEffort poli-
cy. Then, when the Compute Mood ends computing the user mood, the mood is also sent 
to the cache according to the apbestEffort policy. Since there were no problems during the 
execution of these two activities, the workflow continues with the execution of the Update 

Twitter and Update Facebook activities. According to their associated policies (i.e., guaran-
teed policies), their initial state is sent immediately to disk.  

Now assume that the Update Facebook activity commits but immediately after the work-
flow crash. This failure triggers the execution of the apbestEffort and apguaranteed policy and thus 
a crash recovery process is started. The execution state of previously executed activities is 
recovered according to their associated policies (e.g., the state of the activity Compute 

Mood is assumed to be committed. The states of the activities Update Twitter and Update 

Facebook are retrieved from disk). After recovering the activities, the workflow continues 
its execution, the Update Twitter commits and the workflow terminates.  

 

 
var  ap1 =  new  Verifiable  |[  wf.activities[ "Get Song" ]  ]|  ( 

new  StateManagementProperties  {  
stateIsAccessible = true, 

} 

) ; 
 

 
var  ap2 =  new  Idempotent  |[  wf.activities[ "Compute Mood" ]  ]|  ( 

new  StateManagementProperties  {  
isIdempotent = true, 

} 

) ; 
 

 

var  ap3 =  new  Predictable  |[  wf.activities[ "Update Facebook" ]  ]|  ( 
new  StateManagementProperties  {  

presumedFinalState = ActivityState.Committed 
} 

) ; 

 
var  ap4 =  new  NonReliable  |[  wf.activities[ "Update Twitter" ]  ]|  ( 

new  StateManagementProperties  {  
stateIsAccessible = false, 

isIdempotent = false, 

presumedFinalState = ActivityState.Unknown 
} 

) ; 
 

var  apBestEffort   =  new  Persistency  |[  ap1, ap2  ]|  (  PersistencyType.BestEffort  ) ; 

 
var  apGuaranteed =  new  Persistency  |[  ap3, ap4  ]|  (  PersistencyType.Guaranteed  ) ; 
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Figure 5.12 Example illustrating the Status Updater workflow with Persistency policies  

5.4 Conclusions 

This chapter described how to use the AP Model and language for defining exception 
handling, atomicity, state management and persistency NFP and how to associate them to 
a concrete service’s coordination. Associating these types of AP to a service’s coordination 
makes it reliable. According to our work a reliable service’s coordination is able to maintain 
its functionality in unexpected situations (i.e., failures). Failures are of two kinds: semantic 
and system failures. Reliability is relevant due to current business oriented nature of ser-
vices based applications. It provides QoS to applications by means of ensuring access to 
resources in a continuous way.  

Several works have been devoted to provide reliability to applications using several 
approaches (e.g., see [ AFHL99, BhGP05, BoCR05, Bhir05, Boni00,PiBM03, SABS02, TMWD04, 

ViVo04, ZHMS06, DFDB05, HrWi05, LASS00, LiWe03, Lome04, NFGJ05, Oasi02b, Oasi09a, 
Oasi09b, ViVo04, SABS02, Wc00a]). The way in which reliability is addressed, impacts the 
definition itself of the aspects (i.e., the level of abstraction used for its definition) and the 
type of developed application (i.e., the level of adaptability, maintenance and evolution of 
the application). In our approach we showed that it is possible to define NFP by defining 
AP types and then composing them with other AP types. For example we used exception 
handling AP types for defining atomicity AP types. An application developer can choose to 
associate only exception handling to an application or atomicity, just by specifying the ap-
propriate associations. 
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6 Implementation and Validation 

This chapter describes the general architecture of our system Violet for executing active 
based workflows. It describes the experimental validation we conducted for adding relia-
bility and freshness to data services’ coordinations at runtime using the policies we intro-
duced in Chapter 5.  

The chapter is organized as follows. Section 6.1 describe the general architecture of Violet 

our system for executing active policy based workflows. Section 6.2 introduces the notion of 
query workflow and illustrates its use through the Visual Music Player application. Finally 
section 6.3 concludes the chapter. 

6.1 Violet: an Active Policy Based Workflow Engine 

In order to execute active policy based workflows (i.e., workflow with associated active 
policies) we designed and implemented Violet, an active policy based workflow engine. The 
diagram of figure 6.1 shows Violet general architecture. As shown in the diagram, Violet is 
composed of 3 components: 

• Workflow Engine. Responsible of executing workflow instances and controlling their 

execution. 

• Active Policy Engine. Responsible of managing and executing active policy and rule in-

stances. 

• Event Service. Responsible of monitoring and notifying the events produced by work-

flow and active policy instances. 

Note that Violet has an external component called Definition Tool. This component is re-
sponsible of (i) receiving workflows and active policy definitions and (ii) parsing them for 
generating the corresponding intermediate representations used by the Workflow Engine 
and Active Policy Engine. Also note that the Workflow Engine and Active Policy Engine components 
are the main components of Violet since they are responsible of executing the AP Model 
execution units. In what follows we describe the architecture of these components. 
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Figure 6.1 Violet general architecture (UML component diagram) 

6.1.1 Workflow Engine  

As shown in the diagram of figure 6.2, the Workflow Engine is composed of three main 
components:  

• Manager. Responsible of controlling the lifecycle of workflow instances (e.g., it can 

pause and resume a workflow and/or its associated activities). The Manager is also 

responsible of controlling the execution of the Scheduler and Tracker components 

(e.g., it can interrupt their execution). 

• Scheduler. Responsible of executing workflows’ activity instances in the appropriate 

order. In particular, the Manager decides when to prepare workflow’ atomic activities 

and when to call their associated services’ operations. 

• Tracker. Responsible of monitoring the execution of workflow and activity instances 

(e.g., when a workflow produces an event the Tracker detects the event and then it 

forwards the event to the Event Service. 

The diagram of figure 6.2 also shows that the Workflow Engine exposes several interfaces. 
The operations offered by each interface are shown in figure 6.3. The following list describes 
the Workflow Engine interfaces: 

• Management Interface offers operations for (i) controlling the execution of a Work-

flow Engine and (ii) creating workflow instances. For instance, the operation StartEn-

gine starts the execution of the Workflow Engine and specifies the type of the instanc-

es that the Workflow Engine will execute (e.g., instances of the Status Updater workflow). 

The operation CreateWorkflow creates a workflow instance of a specific Work-

flowType that is uniquely identified by a WorkflowInstanceID.  

• WorkflowExecutionManagement Interface offers operations for controlling the execution 

of a specific workflow instance. For instance, the operation StartWorkflow begins 
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the execution of the workflow instance identified by a WorkflowInstanceID. The 

operation PauseWorkflow stops the execution of a workflow instance identified by 

an ID while the operation ResumeWorkflow continues its execution from the point 

the workflow left before been paused. 

• WorkflowStateAccess Interface offers operations for retrieving and updating the execu-

tion state of workflow instances. For instance, the operation UpdateWorkflow 

changes the state of a workflow identified by a WorkflowInstanceID with custom 

WorkflowChanges. The GetWorkflow operation retrieves reference to a Work-

flowInstance based on its ID. 

• Monitoring Interface offers operations for monitoring the execution of workflow in-

stances. For instance, the operation Subscribe allows an external entity (e.g., the 

Event Service) to express its will for receiving the events produced during the execu-

tion of a workflow. Then, when the Tracker detects an event, it notifies the entity by 

using a Callback. 

Finally note that the diagram of figure 6.2 shows an interface called WorkflowEndpoint. 
This interface is not part of the Workflow Engine itself but an interface representing the capa-
bility of a workflow for sending and receiving messages (representing operation calls) to 
third party entities. For instance, using this interface a workflow can call the operations ex-
ported by a Workflow Engine for controlling the execution of another workflow in synchro-

nous or asynchronous way. 

 

Figure 6.2 Workflow Engine Architecture (UML component diagram) 
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Figure 6.3 Workflow Engine exported interfaces (UML class diagram) 

In this work we consider that any existing Workflow Engine respecting the architecture de-
scribed above (the components and the interfaces) can interact with the Active Policy Engine 
of Violet as long as it complies with the following characteristics: 

• Preemption right. This enables the interruption of the execution a workflow instance 

at different points in time. Thus it is possible to synchronize the execution of an ac-

tive policy (and its rules) with the execution of the workflow’ activity instances. 

• Activity atomic execution. The execution of workflow activities is atomic (i.e., the activity 

either commits or fails). 

• Mutable state. The execution state of the workflow can be modified arbitrarily. This is 

necessary because after the execution of some rule actions the workflow execution 

state may change (e.g., when an activity is successfully retried with different input 

values).  

6.1.2 Active Policy Engine  

As shown in the diagram of figure 6.4, the Active Policy Engine is composed of three main 
components:  

• Manager. Responsible of creating active policy instances and managing their lifecy-

cle (e.g., it activate and deactivate the policies).  

• Scheduler. Responsible of processing event notifications for determining (i) whether 

a policy rule has to be triggered and (ii) the order of execution among the trig-

gered rules. This component is also responsible of synchronizing the execution of a 

rule with the execution of the entity producing the event (e.g., if a workflow pro-

duced an event that triggered a rule, the Scheduler uses the WorkflowExecutionManage-

ment interface for pausing the workflow execution and resuming it after the rule 

completes). 

• Action Engine. Workflow engine responsible of executing the action of a policy rule 

(i.e., it executes the workflow implementing a rule’ action).  

Monitoring Interface�

void Subscribe ( Callback ) �
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Figure 6.4 Active Policy Engine architecture (UML component diagram) 

Note that the Active Policy Engine offers several interfaces. The following list enumerates 
the most important interfaces:  

• Manager Interface. Offers operations for controlling the Active Policy Engine. In particular 

this interface is used for controlling the Manager component (e.g., using this inter-

face it is possible to deactivate all the policies associated to a workflow). 

• E-Notification Interface. Offers operations for notifying the events produced by active 

policies, policy’ rules and workflow’ action instances to the Event Service component 

(cf. figure 6.1).  

• Monitoring Interface. Offers operations for receiving the events coming from the Event 

Service (cf. figure 6.1). These events are then sent to the Scheduler component for pro-

cessing.  

In order to execute active policies the Active Policy Engine considers the following aspects:  

• When to evaluate the rule conditions with respect to the notification of an event. 

• How policies triggered at the same time are ordered.  

• How to interact with the execution of a workflow for executing its associated policy 

rules (preemption).  

Based on these aspects the Active Policy Engine works as follows: given a workflow imple-
menting a services’ coordination and a set of active policies representing a non-functional 
property (cf. figure 6.1), the Active Policy Engine generates the code for evaluating every policy 
as well as the synchronization interface that interacts with the Workflow Engine. The code 
generation process is done by a policy compiler, which validates whether type declarations 
and policy expressions are well formed. The compiler also implements the transformation 
rules of AP Language expressions into AP Model types. The Active Policy Engine imports these 
types and implements evaluation strategies for executing the policies. Then it uses the Event 
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types defined in the policy types for constructing the Monitoring and E-Notification interfaces 
since event detection and event notification are specified on these interfaces.  

Active policies express non-functional properties that must be evaluated at execution 
time and within the execution of a workflow. We represent the execution of a workflow by a 
plan consisting of a set of execution units (i.e. activities and policies) and an order function. 
This plan is generated and used by the Scheduler when policies are triggered. The evalua-
tion of a policy is done within two processes: events detection and execution strategies. 

Events detection is used to observe the execution of an active policy based workflow 
and produce, detect and store the events produced by this execution in a log. The log 
stores ordered instances of events produced during the execution of a workflow. The log 
also represents the execution state of a workflow and is used to decide how to evaluate 
policies. 

While a workflow is being executed, the Scheduler consumes the events that can trigger 
the policies associated to the workflow. Using the properties specified in these policies, the 
Scheduler uses the execution strategies for filtering the events and deciding which policies 
are triggered. Recovery actions are seen as activities that must be inserted into the execu-
tion of a workflow.  

The evaluation of policies within the execution of a workflow introduces a best effort ex-
ecution strategy. Indeed, the active policy evaluation is a process executed before the exe-
cution of the activities of a workflow and can lead to the cancellation, re-execution or com-

pensation of an activity. If for any reason an event representing an exception is detected, 
the set of recovery actions will be triggered to treat the exception.  

6.2 Visual Music Player Application 

In order to validate our approach we developed the Visual Music Player application, a mu-
sic player web application that offers controls for searching and playing songs and which is 
implemented as a set of active policy based workflows.  

 

Figure 6.5 Visual Music Player example 
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The Visual Music Player works as follows: once a user has selected the music he/she wants 
to play, the player starts receiving the music and its associated metadata (e.g., song title, 
album and artist names). Then, based on the played song metadata, the application (i) con-
structs and displays a slide show with images related to the artist and (ii) updates the user’ 
social network status for informing his/her friends about his/her musical activity. For in-
stance, if the user is listening the live version of Fill Her Up of Sting, the application will con-
struct a slide show with images of Sting. Then, it will update the user Facebook and Twitter 
status with the string “Fill Her Up – Sting”. This is illustrated in figure 6.5.  

6.2.1 Architecture 

Figure 6.6 shows the architecture of the Visual Music Player application. As shown in the fig-
ure, our application is a client-server application. The client (web browser) is responsible of 
handling the presentation logic used for displaying images and the player controls. The 
server is responsible of handling the application business logic (i.e., the logic that is not 
related with presentation aspects and that is shared among multiple clients). In particular, 
the client is responsible of retrieving the images used for constructing the slide-show, and 
the server is responsible of filtering and ordering the images as well as updating a user’ 
social networks status. 

 

Figure 6.6 Architecture of the Visual Music Player application 

Figure 6.6 also shows the services in which the Visual Music Player application is based on. 
The following list enumerates and describes each of these services.  

• Deezer service. Exports operations for listening music continuously. The service also 

provides operations for accessing metadata about the played songs (e.g., song’ 

duration, artist and album). 

• LastFM service. Exports operations for accessing and updating the history of songs 

played by a user on a music service (e.g., Deezer, Rdio, Spotify). 

• Google and Bing services. Export operations for searching images, videos and docu-

ments based on keywords. 

• Facebook and Twitter services. Export operations for accessing and updating a user 

profile (e.g., the status of a Facebook user). 
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• Data Processing service. Exports operations for filtering and ordering collections. For 

instance, for filtering a collection of images based on their resolution.  

Based on the operations used by the Visual Music Player application, these services can be 
classified in the data service types shown in table 6.1 (cf. section 2.1 service taxonomy). For 
instance, the services Google, Bing, Deezer and LastFM are examples of data provision services 
since the application retrieves information from them. In particular the Google, Bing and 
LastFM services are examples of on-demand services since access to images and to the 
played songs history is done explicitly every time they are required. In a similar way, the 
Deezer service is an example of a streaming service because it subscribes to the service be-
fore starts receiving the music.  

Also note that even if the Facebook and Twitter services offer operations for accessing and 
updating user profiles, they are classified as data administration services and not as data 

services.1 This is due to the fact that the application only uses the operations intended for 
updating the user profiles and not for retrieving them. In contrast, the LastFM service is an 
example of a data service since the application retrieves and updates the user history of 
played songs (i.e., the application reads and writes the history). Finally note that Data Pro-

cessing is the only data processing service used in the application. 

 

Table 6.1 Data services used by the Visual Music Player 

6.2.2 Application Logic 

As stated at the beginning of the chapter, we implemented the Visual Music Player applica-
tion using active policy based workflows. Figure 6.7 shows the workflows implementing the 
application:  

• The Visualization Workflow is responsible of constructing and displaying the slide 

show on a client.   

• The Query Workflow is responsible of filtering and ordering the images used for con-

structing the slide show. This workflow resides on the server side.  

                                                             

1 Recall that a data service is a service classified as a data provision and data administration service 
(i.e., a service that offers operations for reading and modifying a collection of data). 
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• The Status Updater Workflow is responsible of updating the social networks status of a 

user with information about the song he/she is currently listening to. This workflow 

also resides in the server side.   

Figure 6.8 illustrates the general interaction among these workflows. The figure is inter-
preted as follows: once the application starts receiving the music from the Deezer service, 
the Visualization Workflow retrieves the metadata of the current played song using the 
Get Song activity. Then, using this meta-data, the workflow constructs the slide show and 
update the user social networks in parallel.  

 

Figure 6.7 Workflows implementing the Visual Music Player 

For updating the user social networks, the Visualization Workflow sends the song title and 
artist name to the Status Updater Workflow using the Update Social Network activity.2 Then, the 
Status Updater Workflow uses the Facebook, Twitter and LastFM services for updating the user Fa-
cebook and Twitter profiles as well as the history of user’ played song in LastFM. Once the 
Status Updater Workflow completes its execution, the Visualization Workflow receives a notification 
and continues its execution.  

For constructing the slide show the Visualization Workflow retrieves the artist related imag-
es from the Google service using the Get Images activity. Then it uses the Process Images 

activity for sending the images to the Query Workflow. At this point the Query Workflow filters 
and orders the images based on their size and resolution using the Data Processing service. 
Then the Query Workflow sends back the processed images to the Visualization Workflow. At this 
point the Visualization Workflow uses the Construct Slide Show activity for constructing the 
slide show using the filtered and ordered images. Finally the workflow uses the Play activity 
for playing the slide show until the next song starts.  

 

                                                             

2 Recall that the Status Updater workflow was introduced and described in chapter 1. 
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Figure 6.8 Visual Music Player workflows interaction 

As shown in figure 6.8, all the logic used for filtering and ordering the images used by the 
application resides in Query Workflow, a special kind of workflow used for processing collec-
tions of data [Cuev11]. A query workflow has the following characteristics:  

• Receives (produces) as input (output) a collection of data. 

• Only coordinates calls to data processing services. 

• It is composed of atomic activities called data operator activities that only call op-

erations of data processing services (e.g., join activity, filter activity, order-by activi-

ty). 

For instance, figure 6.9 illustrates the internals of Query Workflow. As shown in the figure, 
Query Workflow is composed of two activities: the Filter and OrderBy activities, both calling op-
erations of the Data Processing service. The Filter activity calls the filter operation and passes as 
input (i) the collection of images to be filtered and (ii) a string representing the filtering 

condition (e.g., “image.size > screen.resolution”). The OrderBy activity calls the orderBy op-
eration and also passes as input (i) a collection of images and a (ii) string representing the 
criteria used for ordering the images (e.g., “order by size asc”). Note that both operations 
(i.e., the filter and orderBy operations) produce as result a collection of elements of type T. 
In this case T represents the filtered and ordered images received by the Filter and OrderBy 
activities (respectively).  

Figure 6.10 further details the Query Workflow by showing how data flows among the work-
flow activities. The figure is interpreted as follows: 

1. Query Workflow receives from Visualization Workflow the images to be filtered and the 

client’ screen resolution. They are saved in the workflow images and screenResolu-

tion input variables (respectively). 
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2. Query Workflow computes the value for the local variable conditionExp. This variable 

is used for containing the images filtering condition (e.g., for filtering the images 

having a resolution similar to the client screen-resolution, the workflow uses the 

value in screenResolution for constructing the expression ‘im-

age.size==1024x768’). Then, the workflow passes the values of images and the 

conditionExp variables as input of the Filter activity. 

3. When the Filter activity completes its execution (i.e., once it receives the filtered im-

ages from the filter operation), Query Workflow uses the activity output as input for 

the OrderBy activity. At the same time, the workflow assigns the ordering criteria to 

the variable orderByExp (e.g. in order to sort the images ascending order, the 

workflow assigns orderByExp the value “order by image.size asc”). Then it passes 

the value of orderByExp to the OrderBy activity. 

4. Finally, when the OrderBy activity completes its execution, Query Workflow takes the set 

of images produced by the activity (i.e. OrderBy output) and sends them back or-

dered to the Visualization Workflow. 

 

Figure 6.9 Visual Music Player Query Workflow 

 

Figure 6.10 Visual Music Player Query Workflow Dataflow 
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As an example, let us assume that Query Workflow receives as input a collections of images 
having the structure shown in listing 6.1 (i.e., a collection of images is represented as a set of 
values of type Image, where each value has a name, a size and a resolution). Also assume 
that the expressions used for filtering and ordering the images are the string values “im-

age.resolution == 1024x768” and “order by image.size asc” respectively (i.e., Query Workflow 
filters images not having a resolution equal 1024x768 and it orders the resulting images 
based on their size: first the smaller images, then the largest). Finally assume that Query 

Workflow receives as input the set of values shown in listing 6.2. Listing 6.3 shows the collection 
of images received by Visualization Workflow once Query Workflow completes its execution 

 

Listing 6.1 Query Workflow input structure 

 

Listing 6.2 Query Workflow input example 

 

Listing 6.3 Query Workflow output Example 

In our approach, we assume that operations exported by data services are also imple-
mented as workflows coordinating calls to services’ operations. For instance, figure 6.11 
shows the implementation of the filter operation exported by the Data Processing service as a 
workflow called Filter. As shown in the figure, Filter (i) receives as input a collection of N-Tuples 
and a string representing the filtering expression, and (ii) produces as output another col-
lection of N-Tuples. The workflow works as follows: when Filter is called, the workflow uses 
the condition expression for determining whether a tuple in the input collection has to be 
filtered or not. If a tuple has to be filtered, it is just discarded and then the workflow contin-
ues with the next tuple in the input collection. Otherwise it inserts the tuple into the output 
collection and continues this process until all the tuples in the input collection are analyzed. 

 

Images  {   

     Image < name : String,  uri : String,  size : Number,  resolution : String >  

 } 

 

Images  {   

 Image < name = "P1",  uri  = "/Photos/P1",  size = 1000,  resolution = "1024x768"> , 

 Image < name = "P2",  uri  = "/Photos/P3",  size = 1200,  resolution = "640x960"> , 

 Image < name = "P3",  uri  = "/Photos/P2",  size = 300,  resolution = "1024x768">  

} 

 

Images  {   

 Image < name = "P3",  uri  = "/Photos/P2",  size = 300,  resolution = "1024x768"> , 

 Image < name = "P1",  uri  = "/Photos/P1",  size = 1000,  resolution = "1024x768"> 

} 
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Figure 6.11 Workflow Implementing a Filtering Operation  

6.2.3 Active Policies for Data Services  

As shown in figure 6.7, it is possible to define active policies types for associating the fol-
lowing non-functional properties to the Visual Music Player. 

Authentication 

In order to protect users’ privacy the Facebook and Twitter services restrict access to their 
data to authorized users by using authentication protocols. Since these services may 
change their protocols over time for reinforcing users’ privacy, the Visual Music Player has to 
be able to adapt it self at runtime for coping with different authentication protocols. For 
instance, let us consider that Twitter has decided to change its basic authentication proto-
col (i.e., the protocol based on username and password) for the OAuth protocol. In order 
to handle the new authentication requirements, the Status Updater Workflow has to implement 
the OAuth protocol on the fly in order to continue working. Thus we use the OAuth policy 
type defined in section 3.6.3 for implementing this authentication protocol. This is illustrated 
in figure 6.12. 

Fault Tolerance  

In order to provide fault tolerance (i.e., reliability) to the Visual Music Player we address the 
following aspects: 

• Adaptability. If for any reason the Google service is not available (e.g., due to network 

unavailability), the Visualization Workflow should be able to replace the service with 

the Bing service. For this we defined the Adaptability policy type shown in listing 6.4. 

The policy works as follows: once an Adaptability policy instance is associated to the 

Get Images activity, the rule ReplaceGoogleService replaces the Google service with 

the Bing service in the presence of a failure of the Get Images activity. Figure 6.12 il-

lustrates the association of the Adaptability policy to the Visualization Workflow.  
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• Retry. In a similar way, if the services Twitter and Facebook are not available, the Status 

Updater Workflow has to postpone the update of the user’ status for some time and 

then retry the update as many times as possible as long as the song has not ended 

(e.g., if the song has a duration of 5 minutes and the server retries the update every 

minute, the server may retry the update up to 4 times). We shown in section 5.2.1 the 

use of the Activity Exception Management for retrying activities in the case of failures. 

Figure 6.12 shows the association of the Activity Exception Management to the Status Updat-

er Workflow for implementing the required behavior. 

• Rollback. Since the Query Workflow in charge of filtering and ordering the images may 

fail, the server should be able to restart the workflow from the last stable point 

(i.e., last checkpoint). For instance, if the Query Workflow ends filtering the images but 

fails before ordering them, the workflow has to be able to restart the query work-

flow at the ordering stage and using the already filtered images. We shown in sec-

tion 5.3.2 the use of the Persistency and Activity State Management policy types for provid-

ing persistency and recovery to the execution of a workflow. Figure 6.14 illustrate the 

use of these policies for implementing the persistent behavior required by the Que-

ry Workflow. 

Atomicity  

In order to have a consistent view about the user musical activity, the server has to en-
sure that the user Twitter and Facebook status contain both the same song’ information. As 
an example assume that both status display the string “Exogenesis (Part I) - Muse” and that 
the server tries to update them with the string “Exogenesis (Part II) - Muse”. Let us assume 
that due to a Twitter error only the Facebook status is updated. In this scenario the server 
has to undo the update in order to display the previous string in both status and assure the 
atomic behavior (i.e. either all of the status are updated or none of them).  We already 
showed in section 5.2.2 how the use of the Atomicity policy type for providing different kinds 
of atomic behavior. Figure 6.12 illustrates the use of the Atomicity policy for providing atomici-
ty to the Status Updater Workflow. 

 

Listing 6.4 Definition of the Adaptability policy type 

 

 



policy  class  Adaptability  |[  Activity  activity  ]|  :  ActivePolicy  {



String  bingService =  "http://www.bing.com/api";

�

rule  ReplaceGoogleService
on  ActivityFailed  
if    event.producedBy ( scope )�
do  ChangeService ( event.producer, bingService )

�

} 
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Figure 6.12 Status Updater Workflow with associated active policies 

 

Figure 6.13 Visualization Workflow with associated active policies 

 

Figure 6.14 Query Workflow with associated active policies 
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6.3 Conclusions 

This chapter first presented the system Violet for executing AP based workflows that 
consists of a WF Engine and an AP Engine. The AP Engine manages the execution of a set of AP 
instances and controls the execution of a WF Engine. Violet’s architecture respects the sepa-
ration between the executions of a-policies and the workflow. The system can work with 
any workflow engine as long as it provides an interface for controlling the execution of a 
workflow. Thus, the WF engine can be coupled with an AP engine for ensuring NFPs. 

The chapter then presented the experiment we conducted for validating our approach. 
It focused on a web application where the operations were executed ensuring fault toler-
ance (exception handling and recovery properties that lead to atomicity models) and secu-
rity properties.  We developed a second scenario focusing on data processing ensured by 
coordinating services described in Appendix B. The objective was to focus on QoS properties 
to be ensured to data collections produced by services, and processed through workflows. 
For example ensuring their freshness and their validity. We showed how to use policies for 
ensuring these properties. 
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7 Conclusions and Perspectives 

A services’ coordination has associated functional (i.e. what services actually do) and 
non-functional properties (i.e. the expected behavior of a service at execution-time). NFPs 
are properties that are not directly related to the functionality offered by a service (e.g., 
cost, security, reliability, efficiency, complexity and adaptability). Often NFPs are associated 
to the communication infrastructure, the service provider or the way a service behaves at 
execution time. For example, message encryption for protecting the information ex-
changed; verification of service authenticity for identified trusted services; exception man-
agement for warrantee a minimum level of Quality of Service (QoS). 

When defining an application based on services’ coordination, it is fundamental to 
model, manage and perform the discovery, composition, negotiation and the agreement 
based on the NFPs. This is achieved through the specification, reinforcement and manag-
ing of agreements known as Service Level Agreements (SLAs). Respecting a set of SLAs 
assures that a set of services will work in an acceptable way. Besides, given the increase of 
services being offered by different service providers and the popularity of the Internet, it 
becomes necessary to have models of NFPs to construct application based on services’ 
coordination taking into account the different SLA of each application. 

The layered classification of current standards shows that functional, non-functional and 
communication aspects in services’ coordination are implemented by combining different 
languages and protocols.  The objectives of this work were to propose a model that could 
enable adding and modifying NFP without having to modify the application logic imple-
mented by the service coordination. 

7.1 Results and Contribution 

In this thesis we presented the AP Model for associating non-functional properties 
(NFP) to a services’ coordination by means of active policies. We also presented strategies 
for synchronizing the executions of a service coordination implemented by a workflow and 
its associated active policies. In particular we focused on providing reliability and proper-
ties to services coordinations. Finally we proposed a system for showing the AP policies 
definition and evaluation strategies at run time. As an experimental validation we imple-
mented a reliable services coordination execution engine called Violet that adds NFPs to a 
given services coordination. Our results were experimentally validated in use cases where 
services coordinations are used for querying, processing and mashing up data. In both use 
cases we validated the use of Active Policy types related to fault tolerance, authentication, 
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adaptability and QoS properties associated to the data they process (freshness, validity, 
durability). In our experience, using the AP Model and its associated language for specify-
ing AP types that implement an NFP can be easy as long as the programmer knows the 
protocol to express: (i) the events that must be observed for triggering an AP, (ii) the condi-
tions to be verified in the execution state of the coordination and (iii) the recovery actions 
to enforce the NFP.  Policies provide independence of application logic and NFP and this 
eases the maintenance of the service coordination. This is important because services can 
change their interfaces and their requirements (e.g., they can change the authentication 
protocol used for executing operations). Having AP modularizes this aspects and help to 
maintain a service’ coordination only by associating new policies to it. 

The main contribution of our work is provide an AP Model and associated language for 
expressing policies that can be associated to activity oriented workflow models used for 
processing data and for implementing business processes. The AP model and language 
are also associated to strategies for executing APs and synchronizing their execution with 
the execution of a workflow. NFP are thereby added to service coordination without modi-
fying their definition. NFP can be modified according to requirements associated to work-
flows and to the characteristics of their execution context (service modification or evolu-
tion).  

7.2 Perspectives 

Future work includes adding NFP to service coordinations used for implementing data 
management functions (e.g., querying, storage, cache, duplication).  

7.2.1 Reliable Hybrid Query Evaluation 

In the experimental validation of this work we started studying the way NFP can be add-
ed to query workflows that implement hybrid queries. Hybrid queries can be recurrent and 
continuous. They are implemented by query workflows that coordinate calls to data pro-

viders and data processing services. Query workflows execution for the time being are 
executed by an ad hoc engine called Hypatia. For the time being the hypothesis for execut-
ing query workflows is that services are available and that they do not have associated con-
straints regarding NFP (e.g., authentication protocols for calling data providers, exception 
handling, fault tolerance).  

Besides, query workflows do not reason about data freshness, service unavailability, at-
omicity, and adaptability. Given that hybrid queries are executed under the hypothesis that 
no full-fledge DBMS is available for doing that. We believe that AP can be used for provid-
ing NFP to their execution. We will explore the extension of the query language HSQL 
[Cuev11] with our AP Language, and also the extension of the query engine Hypatia with an 
adapted AP execution engine. The work will require revisiting the architecture of the hybrid 
query and AP engines for avoiding overhead on the execution time due to the execution of 
APs. 

7.2.2 Service Lookup and Recommendation 

The proliferation of services available in Internet and in cloud platforms makes is difficult 
to have a clear idea of their purpose, exported function and quality. Building applications 
on top of these services is risky since the quality of the resulting system hardly depends on 
the quality of its components. Besides, given the autonomy of services, they can evolve or 
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be unavailable during certain periods of time and applications using them must resist to 
these kinds of exceptions by replacing them. Having efficient recommendation systems 
that can provide abstract views of annotated services and that can help to find services is 
still an open issue. Developing a research on this problem can be important particularly if 
the "user" requirements are coupled with technical requirements for guiding the recom-
mendation process.  

Today, with the emergence of cloud platforms that use services as construction units, 
recommendation systems can be useful to explore available services deployed through the 
different levels of these platforms.  Particularly, approaches that rely on service coordina-
tion for evaluating queries can benefit from this kind of systems for integrating service dis-
covery phases in the evaluation process for example if services are not available. The chal-
lenge is to provide service recommendation strategies based on QoS measures and SLA 
contracts in an efficient way for avoiding overhead to the query evaluation process. 

The application of such a recommendation system can go beyond business applica-
tions, it can also be integrated in the construction of value added services willing to imple-
ment data management issues. 

7.2.3 Policy Based Cloud Services Coordination 

With the popularity of cloud computing it is now necessary to understand service co-
ordination in such a context. Today DBMS architecture has evolved to the notion of service-
based infrastructure where services are adapted and coordinated for implementing ad hoc 
data management functions (e.g., storage, fragmentation, replication, analysis, decision 
making, data mining). Services can be distributed and be made redundant by using several 
computers connected through a network. Having several services deployed in the cloud 
implies making decisions on how to coordinate them dynamically for fulfilling applications 
requirements considering the consumption of resources provided by the cloud. Having 
policies associated to services coordination can provide means to support automatic con-
trol of the execution of the service coordination. This control can ease the execution of 
applications on the cloud, that implies taking into consideration several variables for avoid-
ing extra economic costs imposed by the cloud business model. 
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Appendix A Workflow Execution 

Environment 

Business process management includes concepts, methods, and techniques to support 
the design, administration, configuration, enactment, and analysis of business processes 
can be enacted. The process enactment phase encompasses the actual run time of the 
business process. Business process instances are initiated to fulfill the business goals of a 
company. Initiation of a process instance typically follows a defined event.  The business 
process management system actively controls the execution of business process instances 
as defined in the business process model.  

Workflow management systems architectures organize the subsystems that are involved 
in the design and enactment of both system workflows and human interaction workflows. A 
generic workflow management systems architecture is shown in figure a.1. The generic 
workflow management systems architecture proposed by the Workflow Management Coa-
lition.  This architecture provides a high-level systems architecture blueprint for workflow 
management systems. 

Process enactment guarantees that the process activities are performed according to 
the execution constraints specified in the process model. A monitoring component of a 
business process management system visualizes the status of business process instances. 
Process monitoring is an important mechanism for providing accurate information on the 
status of business process instances. 

Interface 1: gives access to tools used for modeling workflows. The goal of this inter-
face is to enable tools developed by different workflow system vendors to work in a stand-
ardized representation of a business process. Interface 1 is specified in the XML language 
XML Process Definition Language, or XPDL. This language is based on a meta-model ap-
proach, in which the concepts of interacting business processes of multiple participants are 
defined. The XPDL package meta-model can be used to represent business process dia-
grams expressed in the BPMN. The meta-model includes classes for pools, lanes, process-
es, participants, and message flow. The internal structure of processes is represented by a 
process meta-model. In addition to processes and activities, different types of activities and 
transitions are modeled to represent control flow in process models. The specification 
document also defines a serialization of process models to XML that includes conceptual 
information as well as graphics information used for rendering business process diagrams. 
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Interface 2: During the enactment of human interaction workflows, the persons in-
volved receive work items that inform them about activities due for execution. This func-
tionality is realized by workflow client applications, attached to the enactment service by 
Interface 2. The goal of standardizing Interface 2 is to allow workflow client applications of 
different vendors to talk to a given workflow enactment service. 

Interface 3 provides the technical information to invoke applications that realize specif-
ic workflow activities. This interface should facilitate invocation of applications across het-
erogeneous software platforms. The reference architecture also provides an interface to 
other workflow enactment services. 

Interface 4 is used for interoperability between different workflow enactment services. 
The administration and the monitoring of workflows are handled by a dedicated compo-
nent, accessed by Interface 5. These interfaces are not specified in detail, and their imple-
mentations remain in the prototypical stage. 

 

Figure A.1 WFMC general architecture 

Recent achievements in service-oriented architectures contribute to the standardization 
efforts. The Workflow Management Coalition and the development of the XML Process 
Definition Language are important steps towards solving the workflow management sys-
tem interoperability issue. 

ActiveVOS is built on the BPEL, BPEL4People and WS-Human Task open standards to 
allow developers the ability to orchestrate various systems and services. Apache ODE (Or-
chestration Director Engine) is a WS-BPEL 1.1 and 2.0 compliant business process man-
agement (BPM) engine that supports two communication layers: one based on Apache 
Axis2 (Web Services HTTP transport) and another one based on the Java Business Integra-
tion standard (using Apache ServiceMix). It is capable of Hot-deployment, and features a 
management interface for processes, instances, and messages. Oracle BPEL Process Man-
ager provides a framework for easily designing, deploying, monitoring, and administering 
processes based on BPEL standards. BPEL Process Manager is the service orchestration 
solution on Oracle’s SOA Suite.  
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Intervoice Media Exchange contains an orchestration engine that has been designed to 
initiate and manage media interactions. It is the industry’s first commercially available 
product that has implemented State Chart eXtensible Markup Language (SCXML) as the 
framework for building complex multi-modal interactions. TIBCO BusinessWorks is an or-
chestration, integration and transformation tool that supports BPEL, Web Services, com-
mon integration activities and visual modeling of orchestration processes. Microsoft Sys-
tem Center Orchestrator contains an orchestration engine which can be used for IT Process 
Automation as well as Business process management (BPM), allowing developers to quick-
ly orchestrate complex IT and business processes involving multiple disparate systems. The 
Orc language is an academic language for describing and implementing orchestrations. 
IBM WebSphere Process Server contains an orchestration engine, able to execute BPEL. 
Juju is a service orchestration framework for Ubuntu Linux.  

Trigsflow [KaRR98, KPRR95] is a WFMS based on an active extension of the ODBMS 
Gemstone. In Trigsflow, activities are assigned to agents with respect to their role and/or 
load. Activities can be delegated to other agents. In the Brokers/Services approach, agents 
are brokers that execute services. Agents are specified and implemented as reactive com-
ponents based on the event engine EVE [GeKT96]. Agents interact asynchronously (using 
events) to ensure workflow execution. CoopWARE [GaMy00, MGKS96] focuses on interac-
tion aspects between workflow servers and agents. Different to Brokers/Services they 
adopt a centralized architecture where the WFMS coordinates agents. 

A.1 Executing Services Coordinations 

Activities can be found in the leaves of the functional decomposition.  An activity model 
describes a set of similar activity instances, analogously to a process model describing a set 
of process instances with the same structure. While process models are typically expressed 
in graph-like notations activity models can be expressed in different forms, for instance, by 
plain text or by some formal specification or references to software components that im-
plement them. Activity instances represent the actual work conducted during business 
processes, the actual units of work. 

A.1.1 Activity Life Cycle 

Each activity instance during its lifetime is in different states. These states and their re-
spective state transitions can be represented using a state transition diagram. A simple 
state transition diagram is shown in figure a.2. The states that an activity instance adopts 
during its lifetime are described as follows: when it is created it enters the init state. By the 
enabled state transition the activity instance can enter the ready state. 

If a particular activity instance is not required, then the activity instance can be skipped, 
represented by a skip state transition from the not started state to the skipped state. From 
the ready state, the activity instance can use the begin state transition to enter the running 
state. When the activity instance has completed its work, the terminate state transition 
transfers it to the terminated state. When an activity instance is in the terminated or the 
skipped state, then it is closed. 
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Figure A.2 Transition diagram of simple activity instances [Wesk07] 

Activity instances are likely to expose a more complex behavior including disabling 
and enabling activities, suspending running activities, and skipping or undoing activities. 
The respective state transition diagram is shown in figure a.3.  The activity instance is initiat-
ed, and it enters the ready state before entering the running state. Finally, the activity in-
stance terminates. However, the sub-states of the termination state are not represented. 
The simple diagram does not provide different states for successful and unsuccessful ter-
mination. 

 

Figure A.3 Complex activity instances state diagram [Wesk07] 

When an activity instance can be started, it enters the ready state. If during the execu-
tion of a process instance certain activity instances are currently not available for execution, 
they can be disabled. Activity instances that are initialized, disabled, or enabled are in the 
not started state. Once an activity instance is ready, it can be started, entering the running 
state. Running activities can be temporarily suspended, to be resumed later. An activity 
instance can terminate either successfully or in failure. Terminated activity instances can be 
undone, using compensation or transactional recovery techniques. 

Events and event orderings are introduced to properly represent the essence of activity 
instances.  Events are points in time, i.e., events do not take time. The time interval in which 
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an activity instance is in one state is delimited by two events, the event representing the 
state transition to enter the state and the event representing the state transition to leave the 
state. For example, the time interval in which the activity instance is in the running state is 
delimited by the begin and terminate events. 

The basic idea of using events for representing activity instances is that each state tran-
sition of an activity instance is represented by an event.  An event diagram for a particular 
activity instance is shown in figure a.4 that forms a directed acyclic graphs, where the nodes 
are events and the edges reflect causal ordering between events. 

  

Figure A.4 Event diagram for the execution of an activity instance [Wesk07] 

The activity instance starts with a state transition to the init state. This state transition is 
represented by an initialize event in the event diagram. An enable state transition brings 
the activity instance in the state ready; this state transition is represented by an event ena-
ble. An activity instance in the ready state can be started, represented by the state begin 
transition. Finally, the state terminate transition completes the activity instance. 

A.1.2 Data Patterns 

Workflow data patterns formulate characteristics on how to handle data in business 
processes. They are organized according to the dimensions data visibility, data interaction, 
data transfer, and data based routing. 

Data visibility is very similar to the concept of scope in programming languages be-
cause it characterizes the area in which a certain data object is available for access. The 
most important workflow data patterns regarding data visibility are as follows [Wesk07]. 

• Task data: The data object is local to a particular activity; it is not visible to other ac-

tivities of the same process or other processes. 

• Block data: The data object is visible to all activities of a given sub process. 

• Workflow data: The data object is visible to all activities of a given business pro-

cess, but access is restricted by the business process management system, as de-

fined in the business process model. 

• Environment data: The data object is part of the business process execution envi-

ronment; it can be accessed by process activities during process enactment. 

Data interaction patterns describe how data objects can be passed between activities 
and processes. Data objects can be communicated between activities of the same business 
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process, between activities and sub processes of the same business process, and also be-
tween activities of different business processes. 

Data can also be communicated between the business process and the business pro-
cess management system. Data transfer is the next dimension to consider. Data transfer 
can be performed by passing values of data objects and by passing references to data 
objects. These data transfer patterns are very similar to call-by-value and call by -reference, 
concepts used in programming languages to invoke procedures and functions [Wesk07]. 

In data based routing, data can have different implications on process enactment. In 
the simplest case, the presence of a data object can enable a process activity. Data objects 
can also be used to evaluate conditions in business process models, for instance, to decide 
on the particular branch to take in a split node. Workflow data patterns are an appropriate 
means to organize aspects of business processes related to the handling of data [Wesk07]. 



 

163 

Appendix B Volcano Observer 

Application  

In order to validate our approach in the context of data integration and presentation, we 
developed the application Volcano Observer, an application for integrating environmental 
information about the behavior of the active volcano Popocatepetl1 in Puebla, Mexico. The 
objective of the application is to integrate information produced by (i) the National Centre 

for Preventing Disasters2, (ii) the Meteorology Service3, (iii) the Index of the Air Quality4 and 
(iv) the social observation generated in Twitter and Facebook by civilians and other gov-
ernmental institutions in charge of informing about the alter state evolution (e.g., the vol-
cano is in phase 3/3).  

We implemented the Volcano Observer application using the concept of Mashup [Merr06], 
a special kind of applications that combines data produced by different web sources and 
which presents it in a 2-dimensional space. A mashup is modeled using 2 concepts:  

• Mashlet — minimum content unit providing a homogeneous view of data and their 

providers (i.e., the building block). 

• Mashup — represents the spatial organization in which building blocks will be pre-

sented in a 2D space. 

In our experiment we extended the notion of mashup for considering (i) data coming 
from data services and (ii) data presentations in a 3-dimensional space (i.e., X, Y and time). 
We also allow the association of active policies to mashlets and mashups. 

                                                             

1 This work was done in the context of the projects e-CLOUDSS (program LACCIR-MICROSOFT), Red-

Shine (program BQR of Grenoble INP) and CLEVER (program STICAMSUD).  

2 http://www.cenapred.unam.mx/ 

3 http://smn.cna.gob.mx 

4 http://www.calidadaire.df.gob.mx/calidadaire/ 
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B.1 Spatio-Temporal Mashup Language (M-QLiST) 

In order to define mashups we defined M-QLiST, a Spatio-Temporal Mashup Language 
[VZEC13]. Listing B.1 shows our general expression for defining a mashup. As shown in the 
expression, a mashup definition is composed of (i) a mashup name, (ii) a data flow expres-
sion, (iii) a spatio-temporal expression and (iv) a set of active policies expressions. 

  

Listing B.1 M-QLIST mashup general definition expression 

Dataflow specifies the dependencies between the produced and consumed data of a set 
of mashlets that are mashed up. The dataflow of M-QLiST is defined on top of a simple data 
model that includes the atomic and complex data of the AP Model (section 3.2). The data 
model subsumes the JSON5 model that is widely used for retrieving data on the web (e.g., 
in REST architectures). 

 Inspired in systems like Yahoo Pipes6 and Montage7, we expressed the dataflow of a 
mashup using data and control flow operators. Data operators are used for processing 
data. The following list enumerates the data operators considered in M-QLiST: 

• Filter. Filters the data collection produced by a service operation call. 

• Count. Counts the number of elements in a collection. 

• Rename. Renames one (or several) attribute of a complex data type. 

• Reverse. Reverse the order of the elements composing a data collection. 

• Union. Includes all the elements of a collection A in a collection B (e.g., implements 

the union set operation). 

• Tail. Retrieves the last element in a data collection. 

• Truncate. Obtains a subset of the elements contained in a collection.  

Control flow data operators define how data flow among mashlets. The following list 
enumerates the control flow data operators considered in M-QLiST: 

• Sequence. The output of the data retrieved in a mashlet is used as input of another 

mashlet.  

• Split. The output of a mashlet feeds two or more independent mashlets. 

• Join. The output of one or several mashlets feeds a mashlet. 

• Loop. Executes a set of mashlets several times considering the results of their previ-

ous execution. 

                                                             

5 http://www.json.com 

6 http://pipes.yahoo.com/pipes/ 

7 http://fuse.microsoft.com/projects/montage 
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Spatio-Temporal-Expression defines spatio-temporal properties of a mashup (see listing b.1). 
The spatio-temporal operators used in M-QliST are the following: 

• Locate At. Specifies the location and size of a mashup in a 2D space (e.g., the expres-

sion Locate At 50, 50 with 300px, 300px locates the origin of the mashup at x=50, 

y=50 with a size of 300 pixel width/height).  

• After. Specifies the instant of presentation of a mashup of the screen and the dura-

tion of the presentation (e.g., the expression After 5 sec during 10 min specifies 

that the mashup has to be presented (i) 5 seconds after the mashup starts running 

and (ii) during 10 minutes. After that the mashup is hidden). 

Active-Policies define the active policy instances associated to a mashup. Policy instances 
are expressed using the AP Language (see chapter 2). 

B.2 Application Logic as Mashup 

Figure B.1 shows the order in which data is retrieved from the data services composing 
the Volcano Observer mashup. As shown in the figure, the application retrieves data in two 
parallel steps: the first one intended to retrieve in parallel the volcano tweets and posts 
from the Twitter and Facebook services (see activities GetVolcanoTweets and GetVolcanoAl-

erts); the second one retrieves data about the semaphore (activity GetSemaphore), the air 
quality (activity GetAirQuality) and the meteorology of the regions around the volcano (ac-
tivity GetMeteorology). 

.  

Figure B.1 Workflow implementing the Volcano Observer data retrieval 

Figure B.2 shows the 5 mashlets composing the VolcanoObserver mashup. For instance, the 
mashlet M1 presents the Twitter posts of the observations of the civilians that live in the 
region of Puebla and that observe whether the volcano produces exhalations of fumes. 
These posts are presented in a rectangle of 200x300 pixels in the center of an html page 
during the whole execution of the mashlet. Listing B.2 shows the definition of mashlet M1. In a 
similar way the mashlet M2 presents the posts coming from Facebook with information 
about the exhalation color and magnitude. 
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Listing B.2 Example of a mashlet definition 

In a similar way M3 defines a mashlet that presents the description of the level of alert 
(semaphore) and the volcano evolution during the last 24 hours. Note that this information 
is presented in a rectangle located at the bottom-left hand side of a page. We define two 
equivalent mashlets presenting the information of the quality of the air, and the meteorol-
ogy service (M4 and M5). 

 

Figure B.2 Volcano Observer Mashup 

The overall mashup logic works as follows: first each mashlet interacts with a data ser-
vice for retrieving data and presenting them with specific spatio-temporal properties as 
described before. Then, the mashup expression defined the spatio-temporal organization 
of each mashlet defines the mashlet positions. In our model, spatial relations among mash-
lets are specified using the approach proposed by [Hern94, TPSS98] and  the associated 
semantics (e.g., centered, middle, to the right/left, on   top, bottom). For example, in the 
Volcano Observer mashup we define that mashlet (i) M2 is presented to the right of M1, (ii) M4 is 
presented to the right of M3 and M5 is presented to the right of M4 and (iii) M3, M4 and M5 are 
presented to the south of M1 and M2. 

B.3 Active Policies for Mashups 

Besides the challenge of coordinating the data retrieval within a mashup, it is also im-
portant to consider that the quality of the data retrieved (e.g., reliability, freshness, perti-
nence). We handle data quality by associating management active policies to the mashlets 
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retrieving the data and by considering the characteristics of the services it accesses. In the 
case of the Visual Observer mashup the data comes from different services and Web sites that 
update their information with different frequency. In order to maintain a consistent view of 
the official information, information updates are synchronized. In contrast, social networks 
information is updated continuously. 

Figure B.3 shows the general approach that we proposed for specifying mashup man-
agement policies to the Volcano Observer mashup. For instance, the atomicity policy applying 
to mashlets M3, M4 and M5 ensure that these mashlets are executed following a strict atomic 
behavior (cf. section 5.2.2). In a similar way, the authentication policies applying to mashlets 
M1 and M2 ensure the implementation of the authentication protocols required to access 
the Twitter and Facebook accounts (cf. sections 3.6.2). Listing B.3 and Listing B.4 illustrates the 
definition of these policy types using the AP Language adapted to the context of mashups.  

The StrictAtomicityPolicy policy type defines a policy that implements the strict atomicity 
behavior. In general the policy works as follows: on the failure of a service call executed by 
a mashlet (represented by the event type ServiceCallFailure), if the number of times this call 
has been retried is less than a threshold, then the service is invoked again. Otherwise the 
mashlets that were executed without failures are compensated. We have proposed atomic-
ity policies in other works that are applied to define the semantics of the compensation 
operation [PoVC06, PVGC08]. In the case of mashlets, the compensation can mean to pre-
sent the data they retrieved the last time that all of them were executed correctly.  

The HTTPAuthPolicy policy type defines a policy that uses the HTTP authentication protocol 
for calling the service operation associated to a mashlet. Note that the scope of the policy 
is the type Mashup. In general the policy works as follows: when the mashlet is prepared for 
calling the service’ operation (represented by the event type ServiceCallPrepared), the policy 
ask the user its credentials (i.e., username and password) and injects this credentials in the 
code handling the operation call. 

 

Figure B.3 Policies for dealing with mashups data management 
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Listing B.3 Strict Atomicity Policy type for a mashlets 

 

Listing B.4 Http Authentication Policy type for mashlets 



policy  class  StrinctAtomicityPolicy  |[  Mashlet *  ]|  :  ActivePolicy  {



int  numberOfTimes, NoT_threshold;

�

rule  R1

on  ServiceCallFailure  

if    event.producedByDescendent ( scope )  &&  numberOfTimes < NoT_threshold�
do  Sequence ( 

Continue (event.producer ), 
Increment ( NoT_threshold, 1)

)

�

rule  R2

on  ServiceCallFailure  
if    event.producedByDescendent ( scope )  &&  numberOfTimes >=  NoT_threshold�

do  Compensate ( scope )

�

�

} 




policy  class  HttpAuthPolicy  |[  Mashlet mashlet  ]|  :  ActivePolicy  {



String  username, password;

�

rule  R1

on  ServiceCallPrepared 
if    event.producedBy ( scope )  &&  numberOfTimes < NoT_threshold�

do  Assign ( mashlet.httpRequest.credentials, new NetworkCredential ( username, password ) )�

�

} 





