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son attention se focalise sur un petit blondinet que j'ai eu la chance de tenir dans mes bras. Merci de passer si régulièrement encore nous voir à l'IMT et merci pour tes encouragements de fin de thèse. Que la vie t'apporte le meilleur avec Arthur.

A Fabien pour tous tes conseils pour la thèse et pour ses années d'étude passées ensemble en L3 et M1. A toi qui as réussi en même temps à mener ta thèse et à présider une compagnie de théâtre et qui m'as fait découvrir deux supers pièces de Ciné-théâtre, Galilée et Con que suenas Diego ? (et quelle joie de te voir apparaître à l'écran dans la première !).

A Mathieu, pour la force et le courage dont il t'a fallu faire preuve pour arriver au bout de ta thèse, pour ton calme et ta philosophie. Je te souhaite le meilleur dans cette nouvelle vie que tu as débutée.

A Brendan super coloc à Lille, j'espère que tu accepteras de repartir un jour en conférence avec nous même sans wifi, sans beaucoup de place et avec des robinets qui restent dans la main ! A Anne-Claire, pour ta gentillesse et toutes les réunions que l'on a faites ensemble. C'est toujours avec grand plaisir que je te croise et discute avec toi dans les couloirs.

A Adil que je connais depuis la L3 et qui a bien changé depuis. Je crois que j'en aurai vu passé des styles différents ! A Vuthy pour toutes ces discussions que l'on a eues et pour m'avoir ramené un superbe foulard du Camboge.

A Clément pour cette rando où tu es arrivé tout en haut le premier ! Sans oublier Cyrille qui vient d'arriver et les anciens Julie et Thibault. A Anne, Guillaume, Guillem, Ibrahim, Ioana pour m'avoir suivie en rando et pour les moments très sympas passés avec eux et tous les autres déja cités qui sont venus avec nous.

A Laura avec qui j'ai partagé quelques repas dehors quand il faisait beau. Merci à Hélène et Anne-Charline pour l'impressionnant travail que vous avez fait pour les L2PCP et qui m'a bien aidée quand j'ai pris votre suite. Et pour tous vos conseils si avisés.

Merci aussi à Laure,

Voici venu le moment de clôturer ces trois années de thèse. Et c'est non sans beaucoup d'émotions que je souhaite remercier tous ceux qui, d'une façon ou d'une autre, y ont contribué. Une thèse, c'est un doctorant (dans mon cas, une doctorante !), un sujet de thèse mais aussi des directeurs. Je tiens ici à saluer les miens, Jean-Michel Loubes et Fabrice Gamboa. Merci à eux de m'avoir proposé ce sujet qui m'a de suite intéressée, de m'avoir encadrée avec beaucoup de complémentarité et de m'avoir donné un grand espace de liberté dans mes recherches. Vous avez toujours cru en moi, sans doute bien plus que moi-même. J'espère que j'ai su, et que je saurai, me montrer à la hauteur de cette confiance que vous m'avez accordée. Merci Jean-Michel pour ton écoute et ta disponibilité, pour tes conseils, pour ton éternel optimisme et pour toutes ces conférences auxquelles tu m'as incitée à aller. Merci à toi, Fabrice, pour ta grande curiosité scientifique, pour ton dynamisme à toute épreuve, pour toutes ces connections impressionnantes que tu es capable de faire entre des domaines aussi divers que variés, et pour m'avoir toujours accordé du temps pour discuter de mes recherches malgré ton emploi du temps très chargé. Enfin, merci à tous les deux de m'avoir accompagnée pendant ces trois belles années de thèse. Je vous remercie très chaleureusement pour tout ce que vous m'avez apporté. Ce fut un plaisir que de passer ces trois années à vos côtés.

Je voudrais maintenant dire un très grand merci à Gilles Blanchard et Gabor Lugosi qui ont de suite accepté de rapporter ma thèse et qui ont mis ainsi leur savoir et leur expérience au service de celle-ci. Thank you Gabor for having accepted to review my thesis and for your very nice thesis report. Les chercheurs reconnus que vous êtes doivent recevoir de constantes sollicitations et avoir un planning très chargé. Cela représente donc beaucoup pour moi que vous ayez accepté de consacrer de votre précieux temps à ma thèse. Je tiens aussi à adresser un remerciement spécial à Gilles pour m'avoir accueillie pendant une semaine dans son unité de recherche à Potsdam et pour tout ce que j'y ai appris. Ce fut pour moi une semaine extrêmement riche d'un point de vue scientifique. Merci de m'avoir aussi ouvert les portes du WIAS le temps d'un exposé et d'avoir fait ce long voyage jusqu'à Toulouse pour ma thèse.

Je remercie aussi très chaleureusement Fabienne Comte et Pascal Massart d'avoir accepté de faire partie de mon jury de thèse. Cela représente beaucoup pour moi que vous ayez accepté de consacrer de votre temps à l'évaluation de celle-ci et de faire le voyage jusqu'ici. Je suis très honorée de vous avoir dans mon jury.

Qui dit thèse, dit, bien sûr, les trois années que j'ai passées au sein de l'IMT et notamment au sein de l'équipe ESP. Je tiens donc à saluer ici tous ceux que j'ai eu la chance de rencontrer là-bas. Tout d'abord je tiens à remercier mes "co-bureaux".

Que serait le bureau 206 sans Malika et sa présence lumineuse. Malika tu es si agréable à vivre que ça a été un immense plaisir pour moi que de t'avoir en face de mon bureau tous les jours. S'il est une personne vers qui se tourner lorsque l'on rencontre des problèmes techniques et logistiques, c'est bien toi, qui as toujours une solution à tout. Merci pour toutes ces propositions de concerts, d'opéras, de visites culturelles, pour ce rayonnement de couleurs, de gentillesse, de joie et de chaleur qui remplit l'espace par ta seule présence. Tu sais tellement bien profiter des bonheurs de la vie et surtout les partager avec les autres. Merci à Benoît pour tous les débats que l'on a pu avoir. J'ai toujours pris grand plaisir à discuter avec toi, même sur les sujets où nous n'avions pas les mêmes points de vue, mais c'est ça aussi qui rendait la discussion intéressante. Tu m'as appris l'importance de savoir étayer ses arguments par des références solides. L'attention que tu portes à l'écologie et à la préservation de notre planète est aussi remarquable. Tu es une des rares personnes que je connaisse qui soit prête à donner autant de soi pour défendre l'idéal de vie et les valeurs qu'elle porte en elle. Je ne peux bien sûr pas parler du bureau 206, sans évoquer ma formidable grande soeur de thèse Gaëlle. C'est toi qui nous as montré la voie à nous qui débutions cette aventure inconnue iii de la thèse. Si le bureau 206 est devenu le bureau central, c'est parce que tu as su fédérer les doctorants par les activités que tu as organisées. Ton départ a fait un vide. Merci pour tous tes conseils, pour ces stylos colorés que tu m'as donnés quand tu es partie et qui m'ont bien servi !, pour ton sourire et ton incroyable énergie qui ont su nous porter tout au long de cette première année. Qui dit Gaëlle dit bien sûr aussi Loïc, à qui l'on aurait pu décerner le titre de membre associé de l'IMT pour tous les moments qu'il a passés ici à Toulouse. Nous n'avons pas dû trop le traumatiser car il y revient encore pour venir fêter des anniversaires surprises ! Je vous souhaite à tous les deux le plus grand des bonheurs avec Lou. Ce sera pour moi un immense plaisir que de venir travailler à vos côtés à la rentrée. Il y avait quand même beaucoup de filles dans ce bureau (il parait d'ailleurs que cela se voyait quand on y rentrait). Le départ de Gaëlle a rétabli la parité avec l'arrivée de Daniel, notre co-bureau vénézuélien. Daniel, j'ai pris grand plaisir à discuter avec toi en espagnol à tes débuts en France. Et puis tu as très vite appris le français alors je suis revenue à ma langue maternelle. Merci à toi de m'avoir fait découvrir ton pays et ta culture. Je tiens à saluer ici ta grande force et ton courage, à toi qui t'es retrouvé loin de tes racines et de ta famille, qui a dû courir à droite et à gauche pour faire tout un tas de documents administratifs (bienvenue en France !), qui as dû composer avec la situation difficile de ton pays. C'est toujours avec un grand sourire que tu arrives le matin et avec beaucoup de gentillesse que tu te préoccupes de savoir comment l'on va. De cela, nous pouvons prendre exemple sur toi. Te deseo un tercer año de tesis lleno de alegria y exito ! Nos décorations du bureau pour Noël, la collection assez impressionnante de thé de toutes sortes, notre collection de cartes postales et puis nos petites habitudes me manqueront, c'est sûr, l'année prochaine.

Et ce n'est pas fini, car il y a aussi tous les autres doctorants ! Tout d'abord ceux du bureau d'en face. Tatiana, que j'ai l'immense privilège d'avoir comme petite soeur de thèse. Tu es bien sûr une cuisinière hors pair comme tout le monde le sait, et je te remercie d'ailleurs pour toutes ces pâtisseries dont tu nous as régalés. Mais tu es aussi bien plus que cela pour moi. Merci pour ta générosité et ta prévenance. Que de super moments nous avons partagés ensemble, tous ces mots croisés et surtout ces motus que l'on a faits ensemble. Je te souhaite une dernière année de thèse pleine de bonheur et que tu puisses réaliser tes rêves après. Et je n'oublie pas ce défi que l'on s'est lancé à la fin de ta thèse. Il me tarde déjà d'y être ! Et il y a aussi Stéphane dont les départs à 15h se finissent après 17h ! Stéphane qui a une capacité incroyable à détendre et à amuser les gens, grâce à qui on a maintenant des tartes et non plus juste des croissants au pot du séminaire étudiant et qui n'a pas son pareil pour faire ouvrir les boîtes de nuit à Luchon ! Merci pour tes coucous et petits signes au travers du couloir, pour tes chansons dont toi seul as le secret, pour être venu chaque jour voir comment on allait et pour m'avoir changé les idées pendant la phase de rédaction. Je te souhaite de savoir toujours mettre au service de ton bonheur ton formidable potentiel.

Et puis il y a bien sûr les garçons du bureau 203, Raphaël, Sofiane et Yuriy auxquels viennent se rajouter Kevin et Stéphane pour les légendaires et très animées parties de coinche. Si le rire fait gagner des années de vie alors je vous en dois beaucoup car vous m'avez tant fait rire ! Un merci tout particulier à Raphaël, el niño de Talencia, mon partenaire de course mais qui adore aussi suivre le foot. Tu t'es mis à la course l'année dernière, me permettant ainsi de ne plus aller courir toute seule. Ta progression a été impressionnante. Et je crois que je ne pourrai bientôt plus te suivre ! Mais promis, j'essayerai quand même de tenir au maximum ton rythme lors du 10km, même s'il nous faudra nous faire une raison : nous ne finirons jamais 12ème comme Sofiane ! Sofiane, qui est un coureur hors-pair et dont je tiens à souligner aussi les impressionnants talents d'imitateur. Cela m'a si souvent fait rire, de même que les perles vidéos qu'il pouvait dénicher sur youtube dont une en particulier (je te laisse deviner laquelle...). Merci à toi pour tous ces supers moments. Merci à Yuriy pour ses histoires toujours rocambolesques dignes parfois des meilleurs films d'action mais qui se finissent toujours bien et sa capacité à retrouver un chemin quand on ne sait plus où est le bon en montagne. Je n'ai pas oublié la fameuse " connection "! ni que je t'ai promis un jour de faire un gâteau rien que pour toi. Merci à Kevin, escaladeur émérite, d'avoir accepté d'être mon chauffeur pour Saint-Flour. Je suis sûre que nous y passerons deux super semaines, même perdus au milieu de nulle part ! C'est sûr vous allez me manquer l'année prochaine. Et puis qui finira mes plats ?

A l'IMT il y a aussi des filles ! Et notamment une toujours prête à nous défendre. Il s'agit bien sûr de Claire. A Claire et sa fameuse tarte chèvre-banane, à ses conseils toujours avisés sur les vêtements à porter pour faire une rando (j'ai retenu pour la doudoune en plume d'oie !). A ses deux supers randonnées que l'on a faites ensemble avec et sans raquettes, à ton enthousiasme et ton dynamisme.

Il y a aussi Fanny qui apporte une présence féminine au bureau 203 et qui a su se faire une place parmi tous ces garçons. Et il fallait avoir sa force de caractère pour cela ! Ta capacité de réflexion et ton savoir sont très impressionnants. Nul doute pour moi que tu feras une brillante thèse. Merci de nous avoir souvent attendues avec Malika pour aller manger au CNRS ! A Sébastien, maître de conférences parmi les doctorants. Te souviens-tu la première fois que nous nous sommes parlé ? C'était à un match d'impro où nous avions bien rigolé. Depuis nous n'avons jamais cessé de t'inviter aux sorties et soirées que nous avons organisées. Auxquelles tu as d'ailleurs toujours répondu présent pour notre plus grand bonheur, nous faisant ainsi profiter de ta joie et de ta bonne humeur mais aussi de ton fameux cake aux olives lors des pique-niques ! A Antoine, toujours partant pour les randos et pour répondre présent quand j'envoie un message pour demander de l'aide. C'est avec beaucoup de plaisir que je me suis occupée des L2PCP avec toi l'année dernière. Merci d'être passé régulièrement au bureau nous faire un petit coucou, presque toujours avec un grand verre de thé à la main ! Merci aussi d'avoir représenté quasiment à toi tout seul l'équipe MIP au séminaire doctorant et de nous avoir trouvé tous ces orateurs extérieurs.

A Anton et son coté artiste et littéraire qui ressort dans les mails d'annonce du séminaire doctorant ! Aucun autre labo, ne pourra se targuer d'avoir quelqu'un avec une si belle plume. Continue toujours à laisser libre cours à cette poésie qu'il y a en toi. Ce n'est pas parce que l'on fait des maths que l'on ne peut pas laisser cette part de fantaisie qui est en nous s'exprimer.

Et j'en profite pour dire à Anton, Tatiana et Sébastien de ne pas oublier le rallye des chefs de Toulouse à Table . Préparez-vous, l'objectif cette année c'est de gagner plus que les deux prix de l'année dernière ! A Sylvain, que j'ai rencontré pour la première fois à la BA qui était devenu mon bureau pendant mon stage de Master Recherche. Tu allais passer l'agrégation l'année d'après et je t'ai passé à cette occasion ma fameuse fiche des développements. Et puis tu as continué comme moi en thèse mais pas en stat (mince je n'ai pas réussi à te convaincre que c'était mieux que les proba !). Que de discussions nous avons eues, et de débats aussi ! Je te souhaite le meilleur pour la suite. Qui sait, peut-être continueras-tu à suivre le même parcours que moi.

A Claire D. qui a un rire si communicatif et toujours le sourire ! A ceux avec qui j'ai eu grand plaisir à faire le Master Recherche : Claire B., Laurent, Nil et Pierre. Comme tu me l'as écrit sur une carte Pierre, on a bien grandi depuis le M2R... Tu as déja brillamment obtenu le titre de Docteur, Claire B. et Laurent je n'ai aucun doute sur le fait que vous l'aurez aussi lorsque vous lirez ces lignes. Que de Docteurs viendront alors applaudir celle de Nil.

A Magali, partie vivre la grande aventure aux Etats-Unis. Merci pour ta bonne humeur constante et pour les invitations que tu ne manquais pas de nous envoyer pour ton spectacle de patin de fin d'année. J'espère pouvoir un jour te voir dans ton élément. Merci pour les nouvelles régulières concernant la chaleur et le beau temps que tu as là-bas ! 6 Fraction of nodes correctly classified using l 1 spectral clustering, as the level of noise varies in random generated graphs of the type described above. Size of the groups between 20 and 30. Number of groups between 10 and 20. . . . 7.7 Fraction of nodes correctly classified using l 1 spectral clustering, as the level of noise varies in random generated graphs of the type described above. Size of the groups between 50 and 100. Number of groups between 20 and 30. . . 
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Norm

Let p ∈ N * and β = (β 1 , ..., β p ) ∈ R p a vector of dimension p.

. 0 β 0 =| {1 ≤ j ≤ p :

β j = 0} | . 1 β 1 = p j=1 | β j | . 2 β 2 = p j=1 β 2 j . ∞ β ∞ = max 1≤j≤p {| β j |} . q , q ∈ N * β q = p j=1 | β j | q xxi
In addition, if β has a group structure

β = (β 1 1 , ..., β 1 d 1 β 1 , β 2 1 , ..., β 2 d 2 β 2 , ..., β G 1 , ..., β G d G β G
) we also define

. R β R := G g=1 d g β g 2 . 2,1 β 2,1 := G g=1 β g 2

Indices subsets

Let A, B be two subset of {1, ..., p}, δ ∈ R p and and M ∈ M p (R). We define the sign function of a vector δ ∈ R p as sign(δ) = (sign(δ 1 ), ..., sign(δ p ))

sign(δ j ) =                  1 if δ j > 0 0 if δ j = 0 -1 if δ j < 0
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Linear model Y = Xβ * + ε Y Response vector Y = (Y 1 , ..., Y n ) T ∈ R n X Design matrix X = (X ij ) ∈ M n,p (R) ε Noise ε = (ε 1 , ..., ε n ) T ∈ R n β * Unknown parameter β * = (β * 1 , ..., β * p ) T ∈ R p

SVD

We denote by r the rank of the matrix X. The SVD of X is given by The normalized Laplacian matrix

X = U DV T xxii U U = [u 1 , ..., u n ] ∈ M n (R) V V = [v 1 , ..., v p ] ∈ M p (
L sym = D -1/2 AD -1/2
L rw The random walk Laplacian matrix

L rw = D -1 L = I -D -1 A General Introduction GENERAL INTRODUCTION
Therefore, taking advantage of the high dimensionality of the data is not as simple as it seems at first sight. It seems hard and even hopeless to extract relevant information from such data in general. Hopefully, high-dimensional data often belong or concentrate on much more low-dimensional subspaces than that it seems at first sight.

Blessing of dimensionality

The higher the dimension, the more complicated the mathematics. Hopefully the curse of dimensionality can be countervailed by the blessing of dimensionality that refers mainly to two phenomena.

Concentration of measure

The main phenomenon behind these words of blessing of high-dimensionality is the concentration of measure phenomenon, a notion developed in the 1970's by V.Milman while investigating the asymptotic geometry of Banach spaces in high dimension. This notion has been proved very useful in a huge variety of contexts, mainly due to the work of Talagrand and Ledoux [START_REF] Ledoux | The concentration of measure phenomenon[END_REF]. This phenomenon is for instance very useful in machine learning and in statistics in general to bound error probabilities. But also in other fields such as numerical analysis, data mining, geometry, combinatorics, etc.

From a probabilistic view, we say that a random variable X defined on some probability space satisfies a concentration inequality if for some constant m that will typically be EX or the median of X, we have for every u ≥ 0

P {| X -m |≥ u} ≤ C 1 exp -C 2 u 2 (1) 
or equivalently

P {| X -m |≤ u} ≥ 1 -C 1 exp -C 2 u 2
where the constant C 2 is usually related to the inverse of the variance of X and where C 1 > 0 should be a small numerical constant. Concentration inequalities allow to well control certain random fluctuations even in high dimension.

For instance, a centered Gaussian real random variable with variance σ 2 and mean E(X) concentrates around its mean, in the sense that, for every u ≥ 0

P {| X -E(X) |≥ u} ≤ c exp - u 2 2σ 2 ,
where c > 0 is a constant. In particular, Equation (1) tells that a random variable that satisfies a concentration inequalities behaves no worse than a normal distribution in the tails. More generally, let X be taken from the normal multivariate standard distribution and f be a Lipschitz function with Lipschitz constant equal to one, then

P {| f (X) -Ef (X) |≥ u} ≤ C 1 exp -C 2 u 2
where C 1 and C 2 are constants independent of f and of the dimension. This result still remains valid if X has a uniform distribution on the p-dimensional sphere (again the constants are independent of f and of the dimension p). For more details on concentration inequalities and tools, we refer the reader to Section A.1 in Appendix A.

If a random phenomenon satisfies a concentration inequalities, we will be able to reduce the study of this phenomenon in the all space to a local part around its expectation. In addition, we can notice that in this case the speed of convergence is exponential. In such a way, that the fear of high dimension generally disappears in the Gaussian setting, where the GENERAL INTRODUCTION dimension does not matter because Gaussian variables concentrate well. Let us illustrate this statement giving two examples.

First, consider the maximum Z p of p i.i.d. Gaussian random variables X 1 , ..., X p i.e. Z p = max(X 1 , ..., X p ). As the maximum is a Lipschitz function, we can apply the concentration principle for Lipschitz functions and deduce that the distribution of the maximum behaves no worse than a normal distribution in the tails. In addition, the expected value of max(X 1 ..., X p ) is less than √ 2 log p. So that the probability that the maximum exceeds 2 log p + u decays very rapidly in u and more precisely this decay is exponential in u

P max(X 1 ..., X p ) ≥ 2 log p + u ≤ C 1 exp -C 2 u 2
where C 1 and C 2 are constants. Now consider a second example with Z p equals to the Euclidean norm of (X 1 , ..., X p ) i.e. Z p = (X 1 , ..., X p ) 2 . Because the norm is also a Lipschitz function and because the expectation of Z p 2 2 is p, the probability that N p exceeds √ p + u decays exponentially in u

P { (X 1 , ..., X p ) 2 ≥ √ p + u} ≤ C 1 exp -C 2 u 2
where C 1 and C 2 are constants.

Dimension asymptotics

This is a refinement of the concentration phenomenon, when the number of dimension goes to infinity. In fact, there is often a limit distribution (generally a normal distribution) for the underlying process. Therefore, we can provide asymptotics for the concentration probabilities. For instance considering again the maximum or the Euclidean norm of p i.i.d Gaussian random variables, we have P max(X 1 ..., X p ) -2 log p > u -→ p→+∞ e -e -u and P { (X 1 , ..., X p ) -√ p > u} -→ p→+∞ Φ(u)

where Φ is the standard Normal cumulative distribution function.

Exploiting the blessings in high-dimension is a central issue.

Statistical data analysis in high dimension

Main issues

We now consider the framework of high-dimensional data. Assume that we have at hand a matrix D of size (n, p) where p n. The matrix D contains the data to analyse where n represents the number of observed individuals or objects and p the number of measured features. As in a low-dimensional setting, in high-dimension we may want to analyse data for several reasons. 1. Estimation and prediction. One of the variables is a dependent variable (also called the response) denoted by Y ∈ R n and the other variables are the explanatory variables (also called covariates or predictors) denoted by X ∈ M n,p (R). By far, the interest is to explore and understand how the response varies with changes in the covariates, for
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instance to predict a future response from the knowledge of X. We aim at relating the covariates to the response, that is to estimate the link function between X and Y .

Regression is also commonly used for prediction purpose. We may want to predict a response in future data from the knowledge of relevant variables.

2. Classification. One of the variables in D is an indicator of class membership and we would like to use this knowledge to predict the label of a future individual.

3.

Clustering. The aim is to divide a collection of n objects into groups that are similar (clustering of proteins in genetic networks, of individuals in social networks). The similarity is evaluated based on the p features measured for each of the individuals.

Limit of classical statistical tools in high-dimension

While the 20th century is synonymous of the development of powerful statistical tools and theories when the number of observations n is much larger than p, the 21th century is equivalent to high-dimensional data (number of covariates p much more larger than the number of observations n) and experiences a boom in the statistics in high-dimension. The tools previously developed when n ≤ p fail in this case to reach good performances because of the curse of dimensionality.

Let us illustrate the necessity of developing new tools to circumvent the curse of dimensionality. To do this, we consider a classical problem in statistics, that is linear regression modelling [START_REF] George | Linear regression analysis[END_REF]. In regression modelling, we have at hand a response Y ∈ R n and explanatory variables also called covariates or predictors X ∈ M n,p (R). We assume that the response Y depends on the predictors through an unknown function f . Because many real data are contaminated by noise, the data are modelled as follows Y = f (X) + ε where ε = (ε 1 , ..., ε n ) ∈ R n denotes the error term that represents the noise. The regression model the most commonly used and the most widely encounter is the standard linear model that assumes that the conditional mean of the response Y is a linear function of the covariates with an error assumed to be centered and Gaussian Y = Xβ * + ε where ε = (ε 1 , ..., ε n ) and (ε i ) 1≤i≤n i.i.d ∼ N (0, σ 2 ). Without loss of generality, we assume that the intercept is zero and that all variables are centered.

Then, the question is how to find the best estimate β of β * ? A natural idea consists in approximating β * by least squares minimization

β ∈ argmin β∈R p Y -Xβ 2 .
(2)

β is called the Ordinary Least Squares (OLS) estimator of β * . When the data matrix X is full rank and such that the covariance matrix X T X is invertible (so that p ≤ n) the OLS estimator of β * exists, is unique and equals to

β = (X T X) -1 X T Y.
This estimator is an unbiased estimator of β * i.e. E β = β * and V ar( β) = σ 2 (X T X) -1 . Usually, the variance σ 2 is not known an is estimated using the following unbiased estimator

GENERAL INTRODUCTION σ2 = RSS( β) n -p
, where RSS( β) = Y -X β 2 . Developing β onto the eigen elements of the covariance matrix X T X, we get

β = p i=1 Y T u i √ λ i v i
where (λ i , u i , v i ) 1≤i≤p are the eigenvalues and associated left and right eigenvectors of X.

Then, the mean squares error is equal to

M SE( β) = E β -β * 2 2 = σ 2 p i=1 1 λ i .
When there are high collinearity in the data, some λ i are close to zero and the MSE becomes very high. This implies a large variance of the OLS estimator leading to inaccurate prediction. What about when p > n ? The situation is even worst in this case due to the fact that X T X is ill conditioned (X can no longer be full rank). Therefore β is not exactly defined. In fact, the minimization problem (2) has many solutions and so β * cannot be estimated uniquely. Hence, without any additional information on the structure of β * , it is hopeless to find a good approximation of β * . Therefore, when the predictors are few and with small collinearity coefficients, the standard linear model and the OLS estimator are well tailored to estimate the relationship between the input and output variables. Otherwise, if one of these conditions is not satisfied then this method is not recommended because its performances are dramatically reduced on this kind of models.

An alternative to ordinary least squares is therefore required and depends on two main issues.

1. Our knowledge of the features of β * .

(a) We can look for a solution β of the least squares such that β 2 2 is small. (b) We can look for a solution β of the least squares such that β 0 is small if we aim at finding a sparse solution (i.e a solution with many zeros).

2. The reason of the analysis.

(a) Prediction accuracy. The least squares estimates often have a low bias but a large variance. To get better predictions we can increase the bias to reduce the estimation variance. One can think of methods using latent variables (such as principal components analysis) or coefficients shrinkage with no variable selection (such as Ridge).

(b) Interpretation and variable selection. In this case, we are interested in finding a small subset of predictors that have an important predictive power (subset selection, penalized methods with variable selection such as the Lasso,...).

Despite its simplicity and unbiasedness, the OLS estimator often behaves poorly in both prediction and interpretation due to its high variability. It is especially true when the sample size n is not large compared to the number of variables p. As seen before, because of the development of data acquisition tools and the growing amount of detailed information about complex systems, the situation where p n is a situation we have to faced more and more. Statistics in high-dimension evolve everyday, new challenges arise from theoretical problem but also from practical ones. Therefore, new sophisticated statistical tools are necessary to meet these needs, to turn the overwhelming amounts of information into useful knowledge.
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Overall view of my thesis Main theoretical issues motivated by a practical case

This thesis falls into this context of high-dimensional data. And the key issues highlighted in this thesis draw in part their inspiration in practical problems in genomics. Of course highdimensional data appears in many other fields, but genomics is somehow a typical example of high-dimensional data. That is why I would like to develop this example to illustrate, on a practical case, the challenge of high dimension in every day life.

With the development of DNA microarrays thousands and even millions of level of gene expressions can be measured simultaneously and it is not more costly or much more timeconsuming to measure one hundred genes than one millions. So the world of biological sciences has undergone an information revolution. Genomics aims at studying the functions of the genes and their role in different biological processes. Keeping all the level of genes is important because all this information can allow to detect and discover new biological mechanisms, to better understand and predict the emergence of diseases and to develop new cures. For instance, the goal may be to learn which genes are associated with a disease or can explain it development. However, in genomics, we have to face situations where we have many covariates (thousands or even millions of genes) and relatively few observations (at most around hundreds individuals/samples) with a given genetic diseases. Hence, genomics is a typical example where we have to deal with high-dimensional data. We refer for instance to [START_REF] Peter | An overview of recent developments in genomics and associated statistical methods[END_REF] and to [START_REF] Bühlmann | Statistics for High-Dimensional Data : Methods, Theory and Applications[END_REF] for an overview of some statistical challenges and tools in genomics.

Hopefully, it is believed that many genes among this huge amount are not relevant for explaining a specific response (for instance, genes coding for the eyes or hair color have no influence on heart diseases, diabetes...). Therefore, in genomics, we mainly have to face sparse models where variables selection (selection of genes that play an important role in disease mechanisms) and estimation should be carried out at the same time. Some penalized methods already works very well as the so-called Lasso. However, even if our aim is simply to estimate a link between a disease and expression level of genes or to predict the development of a disease from the knowledge of the genetic activity of a patient, in many situations a Gaussian linear regression model is not well adapted. For instance, when processing data in biology others commonly used probability distributions are the binomial distribution, the Poisson one, etc. In addition, it is now a well known fact that genes do not work alone but in groups. So it is important to be able to select not only genes but groups of genes associated to a specific diseases.

The first chapter of the thesis is devoted to general regression models where the number of covariates p is much larger than the number of observations but with only few of those having an impact on the response (sparse models). Of course we do not know which ones, but we aim at efficiently selecting the relevant ones. Therefore, we were particularly concerned with regression models with link functions other than linear and with a group structure of the predictors . In a way, we can sum up the main issue of the first part of the thesis by How can we select, estimate and predict the influence of groups of variables on a response in high-dimension under sparsity assumptions, even when the underlying model is not linear and the noise not Gaussian ? And what are the theoretical guarantees associated ?

Then, the question is what if we have no sparsity assumptions anymore ? Without any additional assumptions, estimation and prediction are hopeless. However, in this case, the hope is that a few underlying latent variables are responsible for essentially the structure we see in the array X. And if we just want to predict a response without the need of reducing the number of explanatory variables, we can just search for these latent variables that contain most of the information. Such techniques are referred under the name of dimension reduction methods. They are not necessarily adapted to highlight the relationships between the variables
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or to achieve variables selections but may turn out to be very useful for prediction. The second part of the thesis is devoted to such dimension reduction techniques and more particularly to one that takes into account both the response and the explanatory variables to build the latent variables. The main issue in this part is How can we achieve prediction in high-dimension without any sparsity assumptions and what are the theoretical guarantees associated ?

The third part of the thesis is devoted to graphical modelling and community detection in graphs and networks. This part comprises two major issues. The first one is how to model and visualize by a graph the connections between covariates in high-dimension (thousands or more nodes in the graph). The second and main one is how to detect community in a huge graph ? A complex network is said to have a community structure if its nodes can be easily grouped into sets of nodes densely connected internally. For instance, it is now a well known fact that metabolic or proteomic network have communities based on functional groupings. The detection of such groups of genes or proteins is twofold. First, clustering these genes is important to find patterns of similarity that enable related groups of genes and functions to be identified. The second reason is for selection. Once we know groups of genes, even if there are more than thousands, we can apply classical tools to select those involved in a specific diseases. The question is not only to understand the relationships between genes and diseases but also to detect and discover groups of genes that drive a specific biological process. Therefore, the goal is to identify pattern to find and understand complex relationships that are often hidden. Here, the main question is How to model by a graph the relevant interactions between high-dimensional data and how to cluster its nodes into group of similarity involved in some specific processes ?

My research work

Here, I present an overview of the work I have carried out from September 2012 to February 2014. This thesis falls into the context of high dimensional data analysis and addresses three different issues when dealing with high-dimensional data. Two concerns regression problem and the other one graph models. One of the main statistical challenge with highdimensional data analysis is with regression (prediction, estimation, variables selection...). In this situation a regularization is needed and relies on the assumption of an intrinsic low complexity of the model. By low complexity, we refer to two possibilities : sparsity of the target parameter or a real low intrinsic subspaces embedded the data. Two typical regularization methods that can be employed in this case are penalized methods or dimension reduction ones. The choice of the regularization mainly depends on the assumptions on the model (sparsity on the target parameter, a low dimensional space embedded the data,...) and the reason of the data analysis (estimation of the relationship, identification and selection of variables, understanding patterns, prediction...). The first two parts of the thesis are dedicated to regularization methods through penalization (Part I) and to dimension reduction methods (Part II). The last part concerns graphical modelling with community detection (Part III). The aim of the two first parts is to provide statistical guarantees for two types of regression procedures and the aim of the last one is essentially to develop a new method for community detection on graphs. We now go into the details of these three parts.

The thesis is divided into three main parts and is organized as follows.

Part 1 : Sparse generalized linear models

One of the main statistical challenge in high-dimensional data analysis is with regression where the number of predictors outnumbers the observations. In this situation, we all know that classical methods cannot apply. Without other assumptions, it is hopeless to recover a good estimate of the target parameter. But, if there is a kind of low-dimensional structure
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underlying the model, then we can hope for consistent estimation. What do we mean by a low-dimensional structure ? Here, this refers to sparsity. It means that only a few entries of the target parameter are non-zero. Of course, this low-dimensional structure is not known (otherwise we are reduced to a classical problem). In this part, we consider the general problem of regression with high-dimensional data under sparsity assumptions.

In Chapter I, we focus on sparse Gaussian linear regression models in high dimension. The model we consider is the following one

Y = Xβ * + ε where 1. Y = (Y 1 , ..., Y n ) T ∈ R n
is the response 2. X ∈ M n,p (R) the design matrix that contains the vectors of the observations on the rows 3. ε = (ε 1 , ..., ε n ) T ∈ R n and we assume that the error ε i are independent and identically distributed with ε i ∼ N (0, σ 2 ) 4. β * = (β * 1 , ..., β * p ) T ∈ R p is the target parameter that characterizes the linear function. We consider 1. High-dimensional data : p n.

2. Sparse model : # {j ∈ {1, ..., p} : β j = 0} := s p.

Based on these specificities of the model, tools have been developed to take advantage of this knowledge and succeed in circumventing the curse of dimensionality under some conditions on the design matrix. In Chapter I, we provide an overview of the general ideas and properties behind these tools. We first review some of the standard methods for regression in highdimension under sparsity assumptions. In particular, we focus on one of the most commonly used method when dealing with sparse models, that is the so-called Lasso. The Lasso has been introduced by Tibshirani in 1996 [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] and is defined as

β ∈ argmin β∈R p    Y -Xβ 2 2 +λ p j=1 | β j |    .
There exists an intensive literature on the Lasso and related methods [START_REF] Bunea | Honest variable selection in linear and logistic regression models via 1 and 1 + 2 penalization[END_REF], [START_REF] Van De Geer | High-dimensional generalized linear models and the lasso[END_REF], [START_REF] Bickel | Simultaneous analysis of lasso and dantzig selector[END_REF], [START_REF] Koltchinskii | Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery Problems : Ecole d'Eté de Probabilités de Saint-Flour XXXVIII-2008[END_REF], [START_REF] Bühlmann | Statistics for High-Dimensional Data : Methods, Theory and Applications[END_REF] and [START_REF] Sahand N Negahban | A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers[END_REF] just to name a few. In Chapter I, we provide an overview of the main statistical properties and guarantees of this estimator and we highlight the key ideas that ensure good performances of the Lasso. Although the Gaussian linear framework is very useful, there are some situations where Gaussian linear models are not appropriate. For instance, this is the case when the range of the response Y is restricted (e.g. binary, count...) or when the variance of Y depends on the mean. These are situations we may encounter in practice. That is why, Chapter 2 is devoted to generalized linear models [START_REF] Mccullagh | statistics and applied probability 37[END_REF]. These models extend the classical Gaussian linear framework to address both of these issues. A generalized linear model is made up of a linear predictor η = Xβ * and of two functions.

1. A link function g that describes how the mean E(Y | X) = µ depends on the linear predictor i.e. g(µ) = η.

2. A variance function V that describes how the variance Var(Y ) depends on the mean Var(Y ) = φV (µ), where the dispersion parameter φ is a constant.
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This situation corresponds to a more general regression model of the form E(Y | X) = f (Xβ * ). The Gaussian setting is a special case where f is equal to the identity function.

Most of the commonly used statistical distribution belong to the exponential family whose densities are of the form f (y, θ) = exp(yθ -ψ(θ))

where θ is the canonical parameter. It can be shown that

E(Y ) = ψ (θ) = µ Var(Y ) = ψ (θ) = V (µ).
The exponential family is very convenient because in statistics a large number of calculations can be done at one stroke within the framework of the exponential family. In Chapter 2, we consider generalized linear models whose link and variance function derive from the exponential family of distributions. We also consider, in this chapter, a generalization of the Lasso to group of predictors. This is the Group Lasso [START_REF] Yuan | Model selection and estimation in the gaussian graphical model[END_REF] defined by

β ∈ argmin β∈R p    Y -Xβ 2 2 +λ G g=1 d g β g 2    .
where λ > 0 is the tuning parameter and β = (β 1 1 , ..., β 1

d 1 Group 1:β 1 , β 2 1 , ..., β 2 d 2 Group 2:β 2 , ..., β G 1 , ..., β G d G Group G:β G
) has a group structure with G groups and respective sizes (d g ) 1≤g≤G . This estimator enables to select groups of variables. For instance, in genomics there are often strong correlations among groups of genes that are implied together in a specific metabolic function. In this case, it is important to be able to jointly select correlated variables or predefined groups that are assumed to act together. In Chapter 2, we suppose that X is structured into G groups (the number of groups depending of n), each of size d g where g ∈ {1, ..., G}. We also assume that few of these groups are non-zero and we denote by H * this number. We search for a parameter vector of this form, with zeros for indices corresponding to non relevant groups of predictors and non zeros coefficients for the significant ones, by applying the Group Lasso. The theoretical properties of the Group Lasso have been studied in the Gaussian case [START_REF] Wei | Consistent group selection in high-dimensional linear regression[END_REF], [START_REF] Nardi | On the asymptotic properties of the group lasso estimator for linear models[END_REF], [START_REF] Lounici | Oracle inequalities and optimal inference under group sparsity[END_REF], [START_REF] Meier | The group lasso for logistic regression[END_REF], [START_REF] Zhang | The sparsity and bias of the lasso selection in high-dimensional linear regression[END_REF], but little is known for other distributions. In this thesis, we were more specifically interested in the performances of a Group Lasso procedure applied to generalized linear models. Hence, we consider the generalization of the Lasso objective function by replacing the least squares by the empirical negative log-likelihood P n l(β) for a distribution from the exponential family

β ∈ argmin β∈R p    P n l(β) + G g=1 d g β g 2    .
The main contribution of the thesis to this part is the oracle inequalities we have stated for this Group Lasso procedure applied to generalized linear models and the convergence rates we got for prediction and estimation error. Under general conditions on the covariates and on the joint distribution of the pair covariates and for some specific value of the tuning parameter, we prove in particular that β -β * 2 2 = O P γ * log G n n and
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where γ * := g∈H * d g and we recall that H * represents the number of relevant groups. For groups of size one, we recover the convergence rates of the Lasso. Then, we generalize these results to the Elastic net penalty and we consider more specifically the Poisson model case.

We illustrate the theoretical results on this case through simulations. The content of Chapter 2 is published in IEEE Transaction on Information Theory [START_REF] Blazere | Oracle inequalities for a group lasso procedure applied to generalized linear models in high dimension[END_REF].

Part 2 : A new approach to Partial Least Squares

In Part II, we go back to a classical linear model. We do not consider sparse models anymore, but somehow we assume that the data are embedded in a subspace of lower dimension. In this case, a way to extract information from high-dimensional data is to use dimension reduction techniques. One of the most commonly used method is Principal Component Analysis (PCA) or its equivalent in regression, that is Principal Components Regression (PCR) [START_REF] Jolliffe | Principal component analysis[END_REF]. The idea behind dimension reduction methods is always the same. These methods aim at building a subspace of lower dimension onto which the data are projected in such a way that most of the information is still preserved. The projection of the original variables are called latent variables. They have no meaning anymore because they are combinations of the original ones. These methods are not adapted for estimation or variables selection but may be useful to better understand the relationships between the data or for prediction in regression. However, in a regression context, PCR can fail in some situations because the new latent variables are chosen to explain X but may not explain the response Y well [START_REF] Jolliffe | A note on the use of principal components in regression[END_REF]. In fact, PCR does not take into account the response Y to build the latent variables and just tries to maximize the variance among the covariates, but not the correlations with the response. A solution may be given by the Partial Least Squares (PLS) method [START_REF] Wold | The collinearity problem in linear regression. the partial least squares (pls) approach to generalized inverses[END_REF].

Chapter 3 is devoted to this dimension reduction method. Partial Least Square is nowadays a widely used dimension reduction technique in multivariate regression, especially when the explanatory variables are highly collinears or when they outnumber the observations [START_REF] Boulesteix | Partial least squares : a versatile tool for the analysis of high-dimensional genomic data[END_REF], [START_REF] Cao | A sparse PLS for variable selection when integrating omics data[END_REF]. Originally designed to remove the problem of multicollinearity in the set of explanatory variables, PLS acts as a dimension reduction method by creating orthogonal latent components that maximize the variance and are also optimal for predicting the output variable [START_REF] Inge | On the structure of partial least squares regression[END_REF]. This method is of course not tailored to estimation or variables selection but is reasonable and now commonly used for prediction purposes when we have to face high collinearities or high-dimensional data. The main idea behind PLS is to sequentially build a subspace of lower dimension k onto which we project the data in such a way that most of the information on X but also on the link between X and Y are preserved. Then, the PLS estimator βk is obtained by computing the linear regression of Y onto the k new latent variables. In Chapter 3, we highlight that PLS is nothing less than least squares over some specific subspace called Krylov subspaces. For 1 ≤ k ≤ r, where r denotes the rank of X, we have βk = argmin

β∈K k (X T X,X T Y ) Y -Xβ 2 (3) where K k (X T X, X T Y ) = X T Y, (X T X)X T Y, ..., (X T X) k-1 X T Y .
This result was proved by Helland in 1990 [START_REF] Inge | Partial least squares regression and statistical models[END_REF] and is the starting point of the thesis work on PLS.

If the PLS method is very helpful in a large variety of situations (especially in chemical engineering [START_REF] Wold | Pls-regression : a basic tool of chemometrics[END_REF] and genetics [START_REF] Boulesteix | Partial least squares : a versatile tool for the analysis of high-dimensional genomic data[END_REF]) and if its statistical have been intensively investigated [START_REF] Inge | On the structure of partial least squares regression[END_REF][START_REF] Inge | Partial least squares regression and statistical models[END_REF][START_REF] Inge | Some theoretical aspects of partial least squares regression[END_REF], [START_REF] Höskuldsson | Pls regression methods[END_REF], [START_REF] Naes | Relevant components in regression[END_REF], [START_REF] De | Pls fits closer than pcr[END_REF][START_REF] De | Pls shrinks[END_REF], [START_REF] Goutis | Partial least squares algorithm yields shrinkage estimators[END_REF], [START_REF] Ole | Shrinkage structure of partial least squares[END_REF], [START_REF] Neil | The peculiar shrinkage properties of partial least squares regression[END_REF], [START_REF] Phatak | Exploiting the connection between pls, lanczos methods and conjugate gradients : alternative proofs of some properties of pls[END_REF], [START_REF] Krämer | An overview on the shrinkage properties of partial least squares regression[END_REF], the properties of the estimator βk still remain quite obscure, mainly due to the fact that the estimator depends in a non linear way on the response, through a complex and unknown function. Actually, Equation (3) characterizes the PLS estimator as the solution of a convex optimization problem but does not provide an explicit expression of the
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estimator. Even if we write the PLS solution as the projection of Y onto the Krylov subspace, its expression still depends on the matrix that contains a basis of the Krylov subspace. In addition, this subspace is random, so that classical methods for least squares restricted to deterministic subspaces cannot apply. That is why, in this thesis we suggest a new way of thinking PLS, more tailored to the study and the analysis of the statistical aspects of this method. This approach is based on orthogonal polynomials. In Chapter 4, we prove that most of the PLS quantities of interest can be written in terms of some specific orthogonal polynomials denoted by Qk and called the residual polynomials. For instance,

βk = r i=1 1 -Qk (λ i ) pi √ λ i v i ,
where (λ i , v i , u i ) 1≤i≤r denotes the eigenelements of the singular value decomposition of X and pi = Y T u i . The main contribution of Chapter 4 relies on the explicit and analytical expression we have stated for the residual polynomials and, in so doing, for the PLS estimator as well.

Let k ≤ r and

I + k = {(j 1 , ..., j k ) : r ≥ j 1 > ... > j k ≥ 1} . We prove that Qk (x) = (j 1 ,..,j k )∈I + k ŵj 1 ,..,j k k l=1 (1 - x λ j l )
where

ŵj 1 ,..,j k := p2 j 1 ...p 2 j k λ 2 j 1 ...λ 2 j k V (λ j 1 , ..., λ j k ) 2 (j 1 ,..,j k )∈I + k p2 j 1 ...p 2 j k λ 2 j 1 ...λ 2 j k V (λ j 1 , ..., λ j k ) 2 ,
and V (λ j 1 , ..., λ j k ) denotes the Vandermonde determinant of λ j 1 , ..., λ j k . This expression of the residual polynomials is called the representation formula. One of the main advantage of this formula is that it explicitly contains all the information on the data and it clearly shows how the PLS estimator depends on the signal and noise. Therefore, this formula is well tailored to the study of the statistical properties of the PLS methods. Once this formula is stated, we show how it can help to get new statistical results and insight in terms of empirical risk and mean squares prediction error. The shrinkage properties of the PLS estimator have also been investigated. The results presented in Chapter 4 are taken from a paper submitted to a peer-review journal. It is an adaptation of the paper [START_REF] Blazere | Pls : a new statistical insight through the prism of orthogonal polynomials[END_REF] posted on Arxiv . Finally, in Chapter 5, we show how this new approach through orthogonal polynomials provides a unified framework to most of the already known PLS properties (previously stated through different approaches) by showing that we can easily recover these results (once the representation formula is stated) and also new other ones. The results presented in Chapter 5 are extracted from a paper in press and is soon-to-be-published.

Part 3 : Community detection in graphs

Part III is devoted to graphs and more specifically to community detection. Because the Group Lasso estimator requires an a priori knowledge of the groups of variables, we were interested in working on this topic with a view to detect groups of variables whose interactions are represented by a graph.

Graphs and complex networks are everywhere. They can model a real physical structure (rail way networks, street plans,..) or real-world interactions. A graph is a collection of interconnected nodes that may represent a person, a biological cell, an object, a building, an organization... The connections between two nodes model the interactions. It can represent, for instance, two persons that share the same tastes or two genes that act together. Graphs
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play a central role in complex systems. The fields of applications are many and various, ranging from mathematics to physics [START_REF] John | Neural networks and physical systems with emergent collective computational abilities[END_REF], sociology [START_REF] Mark S Handcock | Model-based clustering for social networks[END_REF], marketing, informatics [START_REF] Pastor | Evolution and structure of the Internet : A statistical physics approach[END_REF]) or biology [JTA + 00]. These graphs can be very large (millions of neurons in neural networks, millions of people in social networks...), so that they are impossible to visualize in one shot. It is also unrealistic to believe that we can understand or predict their behaviour and dynamic by looking to each node and edge [W + 01].

In Chapter 6, we review some of the main notions, concepts and tools on graph theory. We especially go into more detail on the notion of graph partitioning and community detection. We provide basic understanding of graphs. We present some basic formal concepts and mathematical notations from graph theory. From a mathematical point of view, a graph G is a pair G = (V, E) where V is the set of vertices and E refers to the set of edges that pairwise connect the vertices [START_REF] Diestel | Graph theory[END_REF]. The edges can be either directed or not. For a directed graphs (resp. undirected), the edge vertices e = (i, j) are ordered (resp. unordered). In this part, we consider only undirected graph with fixed nodes and no loops. An important object associated to a graph is the adjacency matrix A = (A ij ) (i,j)∈V 2 . For unweighted graphs, the adjacency matrix is defined by

A ij =
1 if there is an edge between i and j 0 otherwise .

In this thesis, we were more specifically interested in random graphs. A graph can be random because it is the realization of a probability distribution on graphs (probabilistic random graphs) or because the graph is empirically estimated from the observations of some features on individuals (statistical random graphs). Two main examples of purely probabilistic random graph are the Erdos-Renyi graph [START_REF] Erdos | On the evolution of random graphs[END_REF] and the Stochastic Blocks Model (SBM) [START_REF] Paul W Holland | Stochastic blockmodels : First steps[END_REF], [START_REF] Tom | Estimation and prediction for stochastic blockmodels for graphs with latent block structure[END_REF]. The Erdos-Renyi graph refers to a graph where an edge is set between each pair of nodes with equal probability p, independently of the other edges. The stochastic block model is an adaptation of mixture modelling to relational data. In that model, each object belongs to a cluster and the relationships between objects are governed by the corresponding pair of clusters. Random graphs also arise when complex systems are empirically represented as graphs (that model its functioning) by estimating the dependency between its components. This includes Gaussian random graphs. This type of graph represents the relations between Gaussian random variables. Since there is a one to one correspondence between the zero entries in the covariance matrix (resp. inverse of the covariance matrix, called the precision matrix) and independence relationships (resp. conditional independence), the idea is to build the graph based on the sparsity pattern of the covariance of the precision matrix. More precisely, let (X 1 , ..., X p ) be a Gaussian random vector and denote by Σ its covariance matrix and by Θ its precision matrix. We have

Σ ij = 0 ⇔ X i ⊥ ⊥ X j and Θ ij = 0 ⇔ X i ⊥ ⊥ X j | X V \{i,j} .
Then, based on a set of observations, we aim at recovering the conditional independence structure. In recent applications, we have to deal with a very large number of variables and few observations. Hopefully the graph is often believed to be sparse, so that we can regularize the solution by using a l 1 penalty. There exists two main methods. The first one is based on a sparse estimation Σ of the covariance matrix [START_REF] Bien | Sparse estimation of a covariance matrix[END_REF] Σ = argmin

S∈S + p log det S + Tr( Σ-1 S) + λ S 2 F GENERAL INTRODUCTION
where S 2 F = Tr S T S is the Frobenius norm, Σ is the empirical covariance matrix and λ > 0 the penalty parameter. The second method replaces the covariance matrix by its inverse [START_REF] Friedman | Applications of the lasso and grouped lasso to the estimation of sparse graphical models[END_REF] and corresponds to the famous graphical Lasso

Θ = argmin Θ∈Sp log det Θ -Tr( ΣΘ) -λ Θ 2 F .
When studying a graph, a part from the importance of understanding how its structure arises, another commonly encountered issue is the partitioning of the graph. In Chapter 6, we provide an overview of the most commonly used techniques to partition a graph. There are mainly two approaches, one based on a similarity function and the other on minimal cut. We especially focus on the Min-cut method, that aims at finding a partition into a given number of groups so that the nodes within groups are densely connected with sparser connections in between. We also highlight its connections with another commonly used method, called the spectral clustering method. Then, we focus on the problem of community detection in large networks with an underlying community structure. Typical examples are neural networks where the nodes are the neurons and the edges the synapses (groups of neurons activate at the same time), genetic networks where the nodes are genes and the edges represent transcription factors (groups of genes involved in a same function) or social networks (groups of people sharing the same preferences). Then, we go into more detail of an important notion called modularity and introduced by Newman [START_REF] Mark Ej Newman | Modularity and community structure in networks[END_REF]. This notion is based on a benefit function that quantifies the likelihood in having an underlying structure behind the graph. The idea is to compare the number of edges within community (based on a partitioning of a graph) to the expected number if the edges are placed at random. The modularity Q of a partition (C 1 , ..., C k ) of the nodes is defined by

Q = k r=1 d int Cr 2m - d Cr 2m 2
where m is the number of edges in the graph,

d int

Cr

2m is the internal proportion of edges in community C r and d Cr 2m 2 is the expected internal proportion of edges in community C r . If there exists a true underlying community structure behind the graph, the modularity should be very low for the partition that best reproduces this structure. After having reviewed the main challenge and tools when handling graphs, we will move to the heart of this part that is devoted to graphs.

Chapter 7 represents the thesis contribution to community detection in graphs. In this chapter, we suggest an alternative procedure to the traditional spectral clustering method. We first recall what is the spectral clustering method. The idea behind spectral clustering is to use eigenvectors of matrices, based on the adjacency matrix, to cluster the graph. Three matrices are used in slightly different ways but the idea remains the same. These matrices are 1. The Laplacian matrix L = D -A.

2. The normalized Laplacian matrix L sym = D -1/2 AD -1/2 , also called the symmetric Laplacian matrix because this matrix is symmetric.

3. The random walk Laplacian matrix L rw = D -1 L, so called because it may represents the transition matrix of a random walk on the graph.

We explain how the knowledge of the eigenproperties of these matrices can help to detect communities. After having detailed the existing algorithms and presenting the only theoretical guarantee that exists on spectral clustering in the case of a stochastic block model, we
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underline some limits of this method. Then, we introduce the random graph model we suggest to work on. This random graph model is closely related to a stochastic block model. We actually assume that the observed graph Ĝ results from a deterministic graph with an exact community structure, whose edges have been perturbed by Bernoulli variables. Let  be the adjacency matrix associated to Ĝ. We assume that

 = A 2 ⊕ B
where A is a k-block diagonal matrix of size n (where n is the number of nodes in the graph), with blocks of different size equal to

      0 1 . . . 1 1 0 . . . 1 . . . . . . . . . . . . 1 1 . . . 0      
and -B is a symmetric matrix of size n, whose upper entries are realization of independent Bernoulli variables i.e.

B ij ∼ B(p) i.i.d. (i < j) with B ii = 0 and B ij = B ji .
-

A ij = A 2 ⊕ B ij = A ij + B ij (mod 2).
The heart of Part III corresponds to the new method suggested to recover the community indicators. This method also makes use of the eigenvectors of the adjacency matrix to partition the graph. The idea is to build a wise sparse eigenvectors basis of the adjacency (or normalized adjacency matrix) starting from an initial basis that is not necessarily sparse but can be computed very quickly by any eigensolvers. We have first suggested a method that only requires the knowledge of the number of groups as for spectral clustering and then a modified version based on the knowledge of one representative for each of the groups. This procedure turns out to solve an optimization problem of the form

argmin v∈S v 1 ,
where S is a subset in ∈ R n-1 based on some transformations of the initial eigenvectors of the (normalized) adjacency matrix. These eigenvectors depend on the perturbation of the adjacency matrix and more specifically on the Frobenius norm of the noise matrix. After having investigated its expected behaviour, we apply this method on simulated data. Experimental results indicate that this algorithm works well on simulated datasets and is effective at finding the good communities.

Even if Part II offers a solution to the problem of prediction in high-dimension when sparsity assumptions (as in Part I) are not satisfied and Part III was an attempt to answer the problem of finding groups of predictors (when there are not known) before applying the Group Lasso procedure (presented in Part I), each part can be read independently of one another.

In the conclusion, we review and discuss on the results presented in the three parts. We also present possible perspectives and topics for future researches .

Résumé francais de la thèse

Résumé de la Partie 1

Le défi de la régression en grande dimension Un des principaux défis lorsque l'on travaille avec des données en grande dimension concerne les problèmes de régression où le nombre de prédicteurs dépasse de beaucoup le nombre d'observations [START_REF] George | Linear regression analysis[END_REF]. Les problèmes de régression appartiennent au domaine de l'apprentissage statistique. Il s'agit de retrouver un signal β * à partir de n observations issues d'une distribution de probabilité P (X, β * ). En régression, étant donné les observations (Y i , X i ) 1≤i≤n , on suppose que les Y i dépendent des X i au travers d'une fonction inconnue f β * , appelée la fonction de régression. Le modèle peut alors s'écrire sous la forme

Y i = f β * (X i ) + ε i , i = 1, ..., n où 1. Y i ∈ R est la réponse associée à l'observation i.
2. X i ∈ R p le vecteur contenant les variables explicatives associées à l'observation i.

(ε

i ) 1≤i≤n ∈ R sont les termes d'erreurs i.i.d supposés centrés i.e. E(ε i ) = 0 avec Var(ε i ) = σ 2 .
Ce modèle peut être utilisé pour comprendre et modéliser les relations entre une réponse et des variables explicatives, pour identifier les variables significatives par rapport à la réponse considérée ou pour prédire une valeur future de la réponse étant donné de nouvelles observations. Le fonction f β * peut prendre n'importe quelle forme. En régression linéaire (un des modèles de régression parmi les plus simples et les plus communément utilisés), la fonction de régression f β * est supposée dépendre linéairement du paramètre β * , de sorte que 

Y = Xβ * + ε où 1. Y = (Y 1 , ..., Y n ) T ∈ R n . 2. X ∈ M n,p (R) est la matrice d'expérience qui contient X i sur la ième ligne. 3. ε = (ε 1 , ..., ε n ) T ∈ R n . 4. β * = (β * 1 , ..., β * p ) T ∈

Hypothèses de parcimonie et méthode de pénalisation

Sans hypothèses supplémentaires, il y a peu d'espoir en grande dimension de pouvoir trouver un bon estimateur d'un paramètre d'intérêt général β * . Mais, s'il existe une structure de petite dimension sous-jacente au modèle, alors on peut espérer obtenir une estimation consistante de ce paramètre. Qu'entend t-on par "structure de petite dimension"? Dans cette partie, cela fait référence à la parcimonie du paramètre cible β * i.e. seul un petit nombre de ses coefficients sont nuls. Autrement dit, seul quelques variables explicatives en petit nombre ont un effet significatif sur la réponse. Ainsi, l'hypothèse principale que nous faisons dans cette partie est que parmi les p variables explicatives il y en a seulement un nombre s qui sont significatives avec s beaucoup plus petit que p. Bien sûr nous ne savons pas lesquelles. C'est la différence principale entre le cadre classique et celui de la grande dimension. Si nous laissons beaucoup de variables non pertinentes dans le modèle, cela nous donnera un estimateur ayant une grande variance. Par conséquent, dans cette partie nous nous intéressons à chercher des modèles de plus petite dimension en sélectionnant les variables significatives. En d'autres termes, nous nous intéressons à des estimateurs qui induisent de la parcimonie.

Dans le Chapitre I, nous proposons un aperçu des méthodes les plus couramment utilisées permettant de traiter le problème de la grande dimension dans un cadre gaussien de régression linéaire. Plus précisément, nous donnons un aperçu des idées générales et des propriétés qui se cachent derrière les principaux outils d'estimation utilisés en régression en grande dimension. Nous commencons tout d'abord par la régression Ridge, introduite par Hoerl et Kennard en 1970 [START_REF] Arthur | Ridge regression : Biased estimation for nonorthogonal problems[END_REF] afin d'obtenir de meilleurs résultats en termes de prédiction. Cet estimateur régularise celui des moindres carrés en ajoutant une pénalité en norme l 2 βR = argmin Dans le Chapitre I, nous détaillons cette méthode. Nous verrons que le Lasso réalise simultanément l'estimation et la sélection des variables en mettant de façon automatique les petits coefficients à zéro. Par ailleurs, le Lasso est un estimateur continue en les données (évitant ainsi d'avoir de l'instabilité dans le modèle prédictif) et est aussi un estimateur consistant [START_REF] Zhao | On model selection consistency of lasso[END_REF], [START_REF] Bickel | Simultaneous analysis of lasso and dantzig selector[END_REF], [START_REF] Van De Geer | High-dimensional generalized linear models and the lasso[END_REF] sous certaines conditions sur le modèle. Qu'entend t-on par consistance en grande dimension ? Dans un cadre statistique classique, cela signifie que lorsque la taille du modèle p reste fixe alors que la taille de l'échantillon tend vers l'infini, le paramètre estimé β converge vers le vrai paramètre β * . Mais cela n'a plus de sens lorsque l'on a des échantillons finis avec p n. Dans ce cas, nous faisons tendre à la fois p et n vers l'infini. Les trois grandes questions qui se posent alors sont les suivantes :

β∈R p Y -βX 2 2 s.t. p j=1 | β j | 2 ≤ c où c ≥ 0
1. Est-ce que β -β * tend vers zéro lorsque à la fois p et n tendent vers l'infini ? 2. Est-ce que la perte de risque est petite ? 3. Est ce que le support de β est le même que celui de β * ? Ces trois questions ont été largement étudiées dans la littérature et ont conduit à des résultats théoriques sur le Lasso de la forme suivante 1.

E 1 n X( β -β * ) 2 ≤ cs log p n .
2.

E β -β * 1 ≤ cs log p n .
3. [START_REF] Zhao | On model selection consistency of lasso[END_REF]. Pour une étude plus approfondie de ces questions, nous invitons le lecteur à consulter les ouvrages de [START_REF] Bühlmann | Statistics for High-Dimensional Data : Methods, Theory and Applications[END_REF] et de [START_REF] Koltchinskii | Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery Problems : Ecole d'Eté de Probabilités de Saint-Flour XXXVIII-2008[END_REF]. Nous n'entrons pas dans les détails de ces résultats dans ce mémoire de thèse. Nous présentons juste dans le Chapitre I les principales propriétés statistiques du Lasso et les idées fondamentales qui garantissent de bonnes performances de cet estimateur. Les résultats mis en avant dans ce chapitre permettront de mieux comprendre ceux du Chapitre 2. Nous portons en particulier notre attention sur les conditions qui assurent la consistance de l'estimateur Lasso en terme d'estimation et de prédiction (voir Section 1.3). Nous détaillons dans cette section la preuve de la consistance du Lasso car cette preuve repose sur des idées et des arguments génériques qui sont essentiels pour comprendre les bonnes propriétés de ce type d'estimateurs appliqués à des modèles parcimonieux en grande dimension. Nous verrons que, sous certaines conditions sur la matrice d'expérience et pour un bruit gaussien, la pénalité optimale prend la forme 2σ 2 log(p) où σ 2 est la variance du bruit. Cette pénalité implique des vitesses de convergence pour l'erreur d'estimation et de prédiction de la forme 1.

P ∀j ∈ {1, ..., p}, sign( βj ) = sign(β * j ) ≤ 1 -ε n R ÉSUM É FRANCAIS
E 1 n X( β -β * ) 2 2 = O P s k log p n 2. 1 n β -β * 2 = O P   √ s k log p n   3. 1 n β -β * 1 = O P   s k log p n  
où k > 0 est ce qui, en quelque sorte, caractérise la distance de la matrice de covariance au sous-espace engendré par les matrices orthogonales. La forme logarithmique de la pénalité est ce qui nous sauve du fléau de la grande dimension car le logarithme n'augmente pas très vite lorsque p augmente. Une augmentation plus brutale signifie généralement que la sélection de variables est impossible. La forme logarithmique de la pénalité est du à la vitesse exponentielle à laquelle se concentre les variables gaussiennes autour de leur espérance. La concentration du processus empiriques combinée avec l'hypothèse de parcimonie du paramètre d'intérêt est en quelque sorte la clé qui permet de contourner le fléau de la grande dimension.

Limite du Lasso et extension aux modèles linéaires généralisés avec une structure de groupes des covariables

Dans la pratique, les relations entre les données sont complexes, de sorte qu'un modèle linéaire standard ou l'utilisation classique du Lasso ne sont plus adaptés lorsque l'on souhaite traiter de certains problèmes réels. Il s'agit en effet de pouvoir prendre en compte la nonlinéarité des données et de pouvoir travailler avec des fonctions de liens plus complexes. C'est pourquoi, le Lasso et le modèle linéaire gaussien ont été étendus et modifiés afin de pouvoir prendre en considération des situations plus complexes ainsi que de possibles caractéristiques particulières des données (réponse binaire, données de comptage, données avec une structure de groupes...). Dans le Chapitre 2, nous nous intéressons à une généralisation naturelle des modèles linéaires gaussiens, appelés les modèles linéaires généralisés [START_REF] Mccullagh | statistics and applied probability 37[END_REF]. En d'autres termes, nous considérons une paire de variables aléatoires (X, Y ) où Y ∈ R et X ∈ R p pour lesquelles la loi conditionnelle de Y |X = x est donnée par

P (Y |β * , x) = exp(yβ * T x -ψ(β * T x)) où β * T x ∈ Θ, Θ := {θ ∈ R : exp(θx)F (dx) < ∞} et F désigne la probabilité de distribution.
Ces modèles incluent la plupart des lois classiques telles que la loi normale, gamma, Poisson, binomiale, etc. De ce fait, l'étude de ces modèles permet d'avoir accès à une compréhension plus large et plus globale des modèles statistiques que l'on peut être amené à rencontrer. La fonction d'objectif associée à ces modèles n'est plus celle des moindres carrés mais est remplacée de façon naturelle par la vraisemblance positive du modèle considéré.

Par ailleurs, dans le Chapitre 2, nous supposons une structure de groupe des covariables i.e. X est structuré en G n groupes (le nombre de groupes pouvant dépendre du nombre d'observations n) chacun de taille d g pour g ∈ {1, ..., G n }. Pour i = 1, ..., n, on pose

X i = (X 1 i , ..., X g i , ..., X Gn i ) T où X g i = (X g i,1 , ..., X g i,dg ) et Gn g=1 d g = p.
Nous considérons bien sûr de ce fait un terme de pénalité qui tient compte de cette structure. Ce terme de pénalité est donné par la somme des normes l 2 des sousensembles de coefficients correspondant aux groupes de variables. C'est la pénalité Group Lasso, introduite par Yuan et Lin [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF]. Nous renvoyons le lecteur à [START_REF] Huang | Variable selection in nonparametric additive models[END_REF] pour une meilleure compréhension des avantages du Group Lasso par rapport au Lasso. Pour résumer, dans le Chapitre 2 nous considérons un problème d'optimisation pénalisé plus général de la forme β = argmin β∈R p

{P n l(β) + λP en(β)}, où 1. P n l(β) désigne la vraisemblance positive empirique.

P en

(β) = Gn g=1 d g β g 2 où β = (β 1 1 , ..., β 1 d 1 β 1 , β 2 1 , ..., β 2 d 2 β 2 , ..., β G 1 , ..., β G d G β G
).

La vraisemblance positive empirique prend la forme suivante pour des modèles linéaires généralisés

P n l(β) := 1 n n i=1 -Y i β T X i + ψ(β T X i ) .
L'objectif principal du Chapitre 2 est alors d'étudier les propriétés statistiques de cet estimateur, appliqué au modèle considéré, en termes d'estimation mais aussi de prédiction. La principale difficulté par rapport au modèle linéaire gaussien est l'existence d'une partie non linéaire qui dépend de la fonction de lien ψ du modèle. Parce que nous sommes en grande dimension, le seul espoir d'avoir une estimation fiable est que le processus empirique associé se concentre bien autour de son espérance. Nous ne souhaitons pas ici faire d'hypothèses restrictives sur la fonction de normalisation ψ, mais en contre partie nous supposons que la variable X est presque sûrement bornée en norme infinie par une une constante L. Une inégalité de concentration pour la partie linéaire est obtenue en appliquant une inégalité de Bernstein (voir Proposition 2.4.1 ), une fois établi des bornes supérieures pour les moments de Y (voir Lemme 2.4.2). L'établissement d'une inégalité de concentration pour la partie non R ÉSUM É FRANCAIS DE LA TH ÈSE linéaire repose essentiellement sur le fait que, avec grande probabilité, on peut restreindre l'étude à un compact autour du vrai paramètre (voir Lemme 2.4.4). Ensuite, en appliquant une inégalité de concentration pour des fonctions Lipschitziennes (ψ est Lipschitz sur le compact défini précédemment) combiné avec un argument de chaînage, on est en mesure d'établir la Proposition 2.4.5. Une fois que l'on a réussi à concentrer la fonction de perte autour de sa moyenne, nous devons nous assurer que la fonction de perte n'est pas trop "plate", de sorte que si la différence de perte l( βn ) -l(β * ) converge vers zéro alors βn converge vers β * . Nous verrons qu'une telle propriété est satisfaite lorsque la matrice de covariance vérifie une propriété particulière, appelée la condition Group Stabil (voir Section 2.4). Le Théorème 2.4.6 contient la contribution principale de la thèse à cette partie et montre que sous la condition Group Stabil et pour une valeur du paramètre de pénalité de l'ordre de 

log(2G n ) n , nous avons β -β * 2 2 = O P γ * log G n n et E βT X -β * T X 2 = O P γ * log G n n où γ * := g∈H * d g et

Résumé de la Partie 2

Le challenge de la réduction de dimension en grande dimension

Dans cette partie, nous considérons à nouveau un cadre de régression, mais nous revenons au modèle de régression linéaire classique

Y = Xβ * + ε où 1. Y = (Y 1 , ..., Y n ) T ∈ R n . 2. X = (X ij ) ∈ M n,p (R) est la matrice d'expérience. On notera r le rang de cette matrice 3. ε = (ε 1 , ..., ε n ) T ∈ R n . 4. β * = (β * 1 , ..., β * p ) T ∈ R p .
Sans perte de généralité, les données sont supposées centrées, de sorte qu'il n'y a pas de constante dans le modèle. Nous considérons toujours le cas de données en grande dimension i.e. p n. Comme mentionné dans la partie précédente, les méthodes statistiques traditionnelles atteignent leurs limites en grande dimension. Le problème revient alors toujours à réduire cette grande dimension d'une façon ou d'une autre. Sous une hypothèse de parcimonie du paramètre cible, nous pouvons appliquer des méthodes de pénalisation de type Lasso (voir Partie I), méthodes qui ont fait leur preuve dans la pratique. Mais que se passe t-il lorsque nous n'avons plus d'hypothèses de parcimonie ? Sans autres hypothèses, il est sans espoir de pouvoir trouver un bon estimateur du paramètre inconnu. Le seul espoir pour réduire la dimension repose alors sur l'existence d'un sous-espace de plus petite dimension enveloppant les données. Cela signifie essentiellement qu'il existe un petit nombre de combinaisons des variables explicatives originelles, appelées "variables latentes", qui capturent la plupart de l'information contenue dans celles d'origine [START_REF] Miguel | A review of dimension reduction techniques[END_REF]. L'idée derrière les méthodes de réduction est toujours là-même. Il s'agit de construire un sous-espace de plus petite dimension sur lequel projeter les données, de sorte que la plupart de l'information d'intérêt soit préservée. D'un point de vue mathématiques, le problème peut se résumer comme suit. Etant donné p variables aléatoires x 1 , ..., x p , on cherche à construire k variables latentes t 1 , ..., t k avec k p de sorte qu'elles capturent la plupart de l'information contenue dans les variables initiales. L'information capturée par les variables latentes est quantifiée par un critère qui dépend de l'objectif que l'on s'est fixé au travers de l'analyse de ces données. Dans cette thèse, nous nous intéressons uniquement à des méthodes de réduction de dimension linéaire. Cela signifie que nous recherchons des variables latentes qui sont des combinaisons linéaires des variables d'origine. Etant donné n observations, cela revient à chercher Parce que les variables latentes sont combinaisons des variables initiales, elles ne correspondent pas nécessairement à des quantités qui ont un sens physique et généralement elles ne peuvent pas être interprétée. De ce fait, les méthodes de réduction de dimension ne sont pas adaptées à la sélection de variables mais elles ont fait leur preuve lorsque le but de l'analyse est la prédiction.

S = XW où R ÉSUM É FRANCAIS DE LA TH ÈSE 1. X ∈ M n,
Dans cette thèse, nous ne rentrons pas dans les détails de la littérature existant sur ce sujet, d'une part parce qu'il existe un très large panel de méthodes et d'autre part parce que cela n'est pas nécessaire à la compréhension de cette partie. Nous évoquerons juste brièvement ci-dessous une de ces méthodes, appelées la régression en composantes principales. La compréhension de cette méthode sera utile pour comprendre la suite et notamment la raison du développement de la méthode PLS. Nous renvoyons le lecteur à [START_REF] Miguel | A review of dimension reduction techniques[END_REF] pour un aperçu des principales méthodes de réduction de dimension.

Dans cette partie, nous ferons souvent appel à un outil important qui est la décomposition en valeurs singulières (SVD). Cet outil nous sera d'une grande aide tout au long de cette partie pour étudier les propriétés de l'estimateur PLS. La SVD de X est donnée par X = U DV T où -U est une matrice de taille n qui vérifie U T U = U U T = I. Cela signifie que les colonnes u 1 , ..., u n de U forment une base orthonormale de R n .

-V est une matrice de taille p qui vérifie V T V = V V T I. En d'autres termes, les colonnes v 1 , ..., v p de V forment une base orthonormale de R p .

-D ∈ M n,p est la matrice qui contient ( √ λ 1 , ..., √ λ r ) sur la diagonale et des zéros partout ailleurs (i.e.

d ii = √ λ i pour i = 1, ..., r et d ij = 0 sinon).
λ 1 , ..., λ r représentent les valeurs propres strictement positives de la matrice de covariance empirique X T X. Sans perte de généralité, on suppose que λ 1 ≥ λ 2 ≥ .... ≥ λ r > 0. Bien entendu, lorsque la matrice d'expérience est aléatoire, les éléments propres de X i.e. (λ i , u i , v i ) le sont aussi.

Réduction de dimension par l'Analyse en Composantes Principales et limites de cette méthode

Une des méthodes de réduction de dimension la plus utilisée est l'Analyse en Composantes Principales (ACP). Nous renvoyons le lecteur à la lecture des ouvrages de [START_REF] Jolliffe | Principal component analysis[END_REF] et de [Jac05] pour une analyse détaillée de cette méthode. L'idée principale sous-jacente à l'ACP est la suivante. Dans une base de données contenant de nombreuses variables explicatives, il y a de fortes chances que des sous-ensemble de variables soient fortement corrélés. Une forte corrélation entre deux ou plusieurs variables signifie généralement que ces variables sont redondantes, dans le sens où elles ont le même impact sur la sortie à laquelle on s'intéresse. Par conséquent, dans un but de prédiction, il n'y a pas d'intérêt à garder toutes ces variables. L'ACP a été initialement introduite pour supprimer ce problème de multicollinéarité dans les données et, par là-même, a aussi fait ses preuves en grande dimension. Cette méthode En traçant la proportion cumulée de la variance expliquée, cela fournit un moyen simple et efficace de choisir le nombre de variables latentes. Jusqu'à présent, nous n'avons à aucun moment considéré la variable réponse Y . D'où, la question naturelle qui se pose alors est de savoir comment utiliser l'ACP pour résoudre des problèmes de régression ? La réponse est en remplaçant, dans le modèle de régression, les variables initiales par un petit nombre de composantes principales. Cela permet ainsi de réduire la complexité du modèle tout en conservant la plupart de l'information. C'est la méthode de régression en composantes principales (PCR). L'estimateur PCR obtenu en régressant Y par rapport aux k première composantes principales contenues dans la matrice S est défini comme suit

βk P CR = k i=1 pi √ λ i v i ,
où k ≤ r est appelé le paramètre de régularisation. Afin de mieux comprendre les avantages et les inconvénients de cette méthode, revenons quelques instants à l'estimateur des moindres carrés ordinaires (MCO). Comme nous l'avons mentionné dans l'introduction, lorsque la matrice

X T X est inversible (p ≤ n) l'estimateur MCO de β * est défini par βMCO = (X T X) -1 X T Y.
Dans de nombreux domaines (génétiques, chimie, astrophysique, ...), p > n ou X T X est mal conditionnée à cause de fortes collinéarités et par conséquent βMCO n'est pas ou mal défini. Dans ce cas, nous pouvons toujours considérer un estimateur similaire qui est celui qui minimise la distance des moindres carrés et qui est donné par

βMLLS := (X T X) -X T Y, R ÉSUM É FRANCAIS DE LA TH ÈSE
où (X T X) -est l'inverse de Moore Penrose de X T X (voir [START_REF] Engl | of Mathematics and its Applications[END_REF]). L'inverse de Moore Penrose de X T X est donné par 

(X T X) -= r i=1 λ -1 i v i v T i . Bien sûr quand X T X est inversible, r = p et (X T X) -= p i=1 λ -1 i v i v T i = (X T X) -1 . D'
= r i=1 pi √ λ i v i , (4) 
où l'on rappelle que pi = Y T u i . Lorsque certaines valeurs des λ i sont petites, l'estimateur des moindres carrés a une grande variance. Dans ce cas, il est alors facile de voir qu'une solution pour diminuer la variance peut être donnée par la régression en composantes principales et par l'estimateur associé

βk P CR = k i=1 pi √ λ i v i ,
où k ≤ r est le paramètre de régularisation. En effet, l'expression de l'estimateur ci-dessus montre que l'estimateur de la régression en composantes principales seuile celui des moindres carrés dans les directions associées à une grande variance de l'estimateur des moindres carrés. Cependant, en termes de prédiction, l'estimateur PCR peut se révéler être défaillant dans certains cas. Ainsi, [START_REF] Jolliffe | A note on the use of principal components in regression[END_REF] a mis en avant des situations de la vie réelle pour lesquelles les composantes principales correspondant à de petites valeurs propres avaient une forte corrélation avec la réponse Y . Dans ce cas, comme l'estimateur PCR ne prend pas en compte ces directions, il n'arrive pas non plus à capturer l'information pertinente contenue dans les variables initiales et qui explique majoritairement les fluctuations de la réponse. Afin d'éviter cette situation et afin d'améliorer la prédiction, la réponse devrait être prise en compte dans la construction des variables latentes. La méthode PLS [START_REF] Wold | The collinearity problem in linear regression. the partial least squares (pls) approach to generalized inverses[END_REF] a été développée afin de combler ce manque.

Partial Least Squares (PLS) ou comment prendre en compte la réponse

La méthode PLS a été précisément développée afin de décrire au mieux les relations entre Y et X dans un but de prédiction. Cette procédure prend en compte la réponse dans la construction d'un sous-espace de petite dimension sur lequel projeter les données, en cherchant à maximiser à la fois la variance des prédicteurs et la covariance avec la variable réponse. Les données sont ensuite projetées sur chacun des axes de ce sous-espace de petite dimension afin de construire séquentiellement les variables latentes. Le Chapitre 3 est consacré à la présentation de la méthode PLS. Dans la Section 3.1, nous introduisons la méthode. La Section 3.2 est quant à elle dédiée à la présentation des multiples facettes de la PLS. En particulier, nous mettons en lumière le fait que l'estimateur PLS βk à l'étape k n'est rien d'autre que la solution des moindres carrés restreints à un sous-espace particulier, appelé le sous-espace de Krylov. Pour 1 ≤ k ≤ r, nous avons en effet le résultat suivant La PLS au travers des polynômes orthogonaux C'est pourquoi, dans le Chapitre 4, nous proposons une nouvelle façon de considérer la PLS qui s'avère être beaucoup plus adaptée à l'étude et à l'analyse des propriétés statistiques de la méthode PLS.

βk ∈ argmin β∈K k (X T X,X T Y ) Y -Xβ 2 (5) R ÉSUM É FRANCAIS DE LA TH ÈSE où K k (X T X, X T Y ) = X T Y, (X T X)X T Y, ..., (X T X) k-1 X T Y .
A noter que les deux quantités suivantes sont importantes car elles apparaissent régulièrement dans le Chapitre 4

•

p i = (Xβ * ) T u i , i = 1, ..., n. • pi = Y T u i , i = 1, ..., n.
La nouvelle approche proposée dans cette thèse est basée sur les polynômes orthogonaux. Dans la Section 4.5, nous verrons que si cette approche semble être prometteuse c'est parce qu'elle permet d'obtenir une expression explicite exacte de la fonction de dépendance qui relie l'estimateur PLS à la réponse Y . Dans la Sous-section 4.4.2 du Chapitre 4, nous montrons que la plupart des quantités d'intérêt de la PLS peuvent s'écrire en fonction de polynômes orthogonaux particuliers, notés Qk et appelés les polynômes résiduels. C'est par exemple le cas de l'estimateur PLS à l'étape k noté βk

βk = r i=1 1 -Qk (λ i ) pi √ λ i v i , où (λ i , v i , u i ) 1≤i≤r
désignent les éléments propres de la décomposition en valeurs singulières de X et pi = Y T u i . La contribution principale du Chapitre 4 repose sur l'expression analytique explicite que nous avons établie pour ces polynômes résiduels et, ce faisant, pour l'estimateur PLS. Le théorème central de cette partie correspond au Théorème 4.5.1 qui dit la chose suivante

Qk (x) = (j 1 ,..,j k )∈I + k ŵj 1 ,..,j k k l=1 (1 - x λ j l ) où ŵj 1 ,..,j k := p2 j 1 ...p 2 j k λ 2 j 1 ...λ 2 j k V (λ j 1 , ..., λ j k ) 2 (j 1 ,..,j k )∈I + k p2 j 1 ...p 2 j k λ 2 j 1 ...λ 2 j k V (λ j 1 , ..., λ j k ) 2 ,
où V (λ j 1 , ..., λ j k ) désigne le déterminant de Vandermonde associé à λ j 1 , ..., λ j k et

I + k = {(j 1 , ..., j k ) : r ≥ j 1 > ... > j k ≥ 1} .
Nous désignerons cette expression des polynômes résiduels sous le nom de "formule de représentation". Un graphe G fait référence à un ensemble de sommets (aussi appelés noeuds) et à un ensemble d'arêtes (aussi appelées liens). Les noeuds représentent les individus ou les objets et les arêtes les interactions ou les relations entre ces derniers. D'un point de vue mathématiques, un graphe G est constitué d'une paire (V, E) où V est l'ensemble des sommets et E représente l'ensemble des arêtes qui connectent deux sommets ensemble [START_REF] Diestel | Graph theory[END_REF]. Une arête e ∈ E qui connecte un noeud i et un noeud j est notée e = (i, j). Les arêtes peuvent être dirigées ou non. Pour un graphe dirigé (resp. non dirigé), les arêtes e = (i, j) sont ordonnées (resp. non ordonnées). En théorie des graphes, un graphe dirigé est appelé un réseau mais le terme réseau est en fait souvent utilisé dans un sens plus large afin de désigner un graphe qui représente des interactions. Les arêtes peuvent aussi être pondérées ou non. Si le graphe est pondéré par une matrice W contenant les poids, on le notera G = (V, E, W ). Sinon, les poids sont supposés être égaux à un lorsqu'il existe une arête entre deux sommets et égaux à zéro sinon. L'ensemble des sommets peut être fixe ou aléatoire (échantillon de sommets), de même que l'ensemble des arêtes (suivant que la structure du graphe puisse changer d'une observation à une autre). Dans cette thèse, nous considérons seulement des graphes non dirigés avec des sommets qui sont fixes. Un graphe peut représenter une vraie structure existant dans R 2 ou R 3 (la distance entre deux noeuds reflétant la distance réelle entre deux objets physiques par exemple). Mais, en général, les graphes n'ont pas de signification physique ou d'interprétations géométriques. Ils sont juste un moyen de modéliser des relations entre objets. Dans cette thèse, nous nous intéressons à des graphes pour lesquels la distance entre deux sommets n'a pas de signification particulière. Un objet important associé à un graphe est sa matrice d'adjacence A = (A ij ) (i,j)∈V 2 . L'élément A ij représente le poids mis sur l'arête reliant le sommet i au sommet j. Pour des graphes non pondérés, la matrice d'adjacence est définie comme suit 

A ij = 1 s'il
d i = n j=1 A ij .
On note D la matrice des degrés qui contient (d 1 , ..., d n ) sur la diagonale et des zéros partout ailleurs.

Quelques questions et problématiques

L'analyse d'un graphe est une problématique importante que l'on rencontre dans de nombreux domaines incluant la biologie, la sociologie, l'économie, l'informatique...Les défis sont nombreux et variés et impliquent différentes tâches. Un de ces défis concerne l'estimation des interactions dans un graphe (connections entre les sommets) lorsque la structure du graphe n'est pas connue ou fixée à l'avance. Une autre problématique importante est la compréhension des structures d'un graphe (locales ou globales). Cela peut se faire par exemple au travers du regroupement de noeuds fortement connectés entre eux. Beaucoup d'autres questions peuvent se poser lorsque l'on analyse un graphe. Dans cette thèse, nous nous intéresserons plus particulièrement aux deux aspects énoncés ci-dessus (estimation des interactions et classification des sommets).

Les graphes représentent en fait un moyen pratique de modéliser et d'analyser les interactions entre individus (ou objets). Ces interactions dépendent généralement de certains attributs et caractéristiques des individus (ou objets) qui sont représentés par les sommets du graphe. Les arêtes représentent la façon dont les individus interagissent entre eux. Des individus partageant des caractéristiques semblables auront tendance à former des communautés. Trouver ces communautés qui partagent les mêmes attributs peut alors aider à mieux comprendre les mécanismes sous-jacents au graphe. Les méthodes de classification peuvent aider à trouver ces structures latentes, partagées par des sous-ensembles particuliers de sommets. Par exemple, en génétiques, des groupes de gènes ayant de fortes interactions ont de fortes chances d'être impliqués dans une même fonction biologique à l'origine d'un processus biologique spécifique. Trouver ces groupes de gènes permet alors de mieux comprendre cette fonction biologique. En particulier, certains de ces groupes de gènes peuvent être impliqués dans une maladie particulière. Par conséquent, comprendre ces groupes de gènes peut aider à mieux comprendre l'apparition et le développement de cette maladie. Une fois que l'on a mis en évidence ces groupes, mettre en avant les groupes ayant une influence significative par rapport à une réponse donnée peut se faire en utilisant l'estimateur Group Lasso. C'est pourquoi, il est important d'être capable de regrouper de façon fiable des groupes de variables ayant de fortes interactions et cela peut se faire au moins de graphes en modélisant les variables par les sommets du graphe et l'intensité des interactions par la présence ou l'absence d'arêtes.

Cependant, trouver ces sous-ensembles optimaux de sommets dans un graphe n'est pas si facile. De Un graphe peut aussi être aléatoire parce qu'il a été estimé à partir d'observations. Nous appellerons ces graphes des graphes aléatoires statistiques. Dans la Sous-section 6.2.2, nous expliquons comment des systèmes peuvent être représentés empiriquement par des graphes pour modéliser leur fonctionnement. Le problème de la modélisation d'informations relationnelles entre objets est un problème que l'on est amené à rencontrer dans divers contextes. En science, l'on souhaite par exemple relier des articles d'après les citations qui y sont faites à l'intérieur, en biologie l'objectif peut être de modéliser les interactions entre protéines...Nous détaillons plus particulièrement le cas de très grands graphes gaussiens et notamment les deux techniques principales qui peuvent être appliquées pour estimer les interactions dans ces graphes. Toutes deux sont basées sur une minimisation avec pénalité de type l 1 . Nous renvoyons le lecteur à [START_REF] Goldenberg | A survey of statistical network models[END_REF] pour un aperçu complet des principaux modèles graphiques statistiques.

Nous passons ensuite à l'une des questions centrales, qui concerne l'analyse des relations entre les données modélisées par le graphe. Un des principaux défis que l'on peut être amené à relever concerne la détection de structures sous-jacentes au graphe. La Section 6.3 fournit un aperçu des techniques les plus utilisées pour partitionner un graphe en différents groupes. La plupart de ces techniques sont heuristiques. Nous renvoyons à [START_REF] Fortunato | Community detection in graphs[END_REF] pour un passage en revue exhaustif des principales techniques de partitionnement des sommets d'un graphe. Il existe essentiellement deux approches, une basée sur une fonction de similarité et l'autre sur la notion de coupe minimale. Dans la Sous-section6.3.2, nous présentons la méthode Min-cut ou "Coupe minimale", qui vise à partitionner les sommets d'un graphe en un nombre donné de groupes de sorte que le nombre d'arêtes coupées soit minimal. Nous mettons en lumière les connections qui existent entre cette méthode et une autre méthode couramment utilisée, appelée la méthode "Spectral clustering". Cette méthode utilise les vecteurs propres de la matrice d'adjacence du graphe (ou de matrices dérivées) pour partitionner le graphe. Nous reviendrons beaucoup plus en détails sur cette méthode dans le Chapitre 7. La Section 6.4, quant à elle, est consacrée au problème de la détection de communautés. Il n'existe pas de définition formelle de ce que devrait être une communauté. Mais, il existe un consensus sur le fait que cela doit faire référence à un groupe de sommets qui sont fortement connectés, avec très peu de connections entre eux. Le problème de la détection de communautés dans un graphe est un problème qui a vu son importance s'accroître au fil du temps et de nombreuses approches ont été proposées pour apporter une réponse à cette problématique. Des méthodes récentes utilisent des probabilités de distribution pour modéliser les interactions entre sommets et essayent d'adapter et de développer des modèles de graphes aléatoires probabilistes présentant des structures de communautés [START_REF] Edoardo M Airoldi | Mixed membership stochastic blockmodels[END_REF], [START_REF] Mark S Handcock | Model-based clustering for social networks[END_REF], [START_REF] Tom | Estimation and prediction for stochastic blockmodels for graphs with latent block structure[END_REF], [START_REF] Nowicki | Estimation and prediction for stochastic blockstructures[END_REF]. Des résultats de consistance pour la détection de communautés ont déjà été démontrés pour le modèle à blocs stochastiques. Des phénomènes nouveaux de phases de transition ont récemment été découverts dans le cas de graphes ayant deux communautés qui ne se recouvrent pas [START_REF] Mossel | Stochastic block models and reconstruction[END_REF], [START_REF] Mossel | A proof of the block model threshold conjecture[END_REF], [START_REF] Abbe | Exact recovery in the stochastic block model[END_REF], [START_REF] Mossel | Consistency thresholds for binary symmetric block models[END_REF], [START_REF] Abbe | Community detection in general stochastic block models : fundamental limits and efficient recovery algorithms[END_REF]. Nous renvoyons aussi aux articles de [START_REF] Arias-Castro | Community detection in random networks[END_REF] et de [ACV + 14] pour d'autres avancées importantes dans le cadre de la détection de communautés. Dans ces articles, les auteurs s'intéressent à la détection d'une petite communauté dans des graphes parcimonieux ou denses. Ils établissent en particulier des conditions, sur R ÉSUM É FRANCAIS DE LA TH ÈSE la densité de connections dans cette petite communauté par rapport à celle des autres communautés, qui garantissent une bonne détection de cette communauté plus petite. Dans la Section 6.4, nous abordons une notion importante, appelée la modularité et qui a été introduite par Newman [START_REF] Mark | Finding and evaluating community structure in networks[END_REF], [START_REF] Mark Ej Newman | Modularity and community structure in networks[END_REF]. La fonction de modularité est une fonction qui quantifie la vraisemblance d'avoir une structure de groupes derrière le graphe que l'on observe. L'idée est de comparer le nombre d'arêtes au sein des communautés (associées à un partitionnement donné du graphe) à l'espérance attendue de ce nombre dans le cas où les arêtes auraient été placées au hasard dans le graphe. S'il existe une vraie structure de communautés derrière le graphe, la modularité devrait être très faible pour la partition du graphe qui reproduit au mieux cette structure. [START_REF] Peter | A nonparametric view of network models and newman-girvan and other modularities[END_REF] a montré que, sous certaines conditions, la méthode basée sur la modularité pour partitionner un graphe fournit une estimation consistante des communautés. Ici, la consistance signifie que, lorsque le nombre de noeuds n tend vers l'infini, on assigne correctement les sommets aux bons groupes, si ce n'est pour une quantité négligeable de sommets.

Dans le Chapitre 7, nous proposons une alternative à la méthode traditionnelle du spectral clustering. Dans la Section 7.2, nous rappelons tout d'abord certaines des notations, concepts et idées basiques de la théorie des graphes. La Section 7.3 est, quant-à-elle, consacrée à la méthode du spectral clustering. Nous détaillons les aspects et caractéristiques principales de cette méthode et nous expliquons comment la connaissance des propriétés des éléments propres de matrices basées sur la matrice d'adjacence peut aider à détecter des communautés dans un graphe. Les algorithmes associés y sont aussi présentés. [START_REF] Rohe | Spectral clustering and the highdimensional stochastic blockmodel[END_REF] et [START_REF] Daniel L Sussman | A consistent adjacency spectral embedding for stochastic blockmodel graphs[END_REF] ont prouvé la consistance de la méthode spectral clustering appliquée au modèle stochastique par blocs, pour respectivement la matrice du Laplacien normalisée et la matrice d'adjacence. Cependant, dans le cas général, il n'existe pas de garanties théoriques pour la méthode spectral clustering. Dans cette section, nous mettons aussi en avant certaines des limites de cette méthode.

Dans la Section 7.4, nous présentons le modèle de graphe aléatoire que nous avons proposé et sur lequel s'est basé le travail de recherche de cette thèse. Ce modèle de graphe aléatoire est très proche d'un modèle à blocs stochastiques. En effet, nous supposons que le graphe observé est issu d'un graphe déterministe ayant une structure de communautés parfaite mais dont les arêtes auraient été ensuite perturbées par des variables de Bernoulli. La Section 7.5 est le coeur de la Partie III. Dans cette section, nous proposons une nouvelle méthode d'estimation des indicatrices des communautés sous-jacentes au graphe observé. Cette méthode est une alternative à la méthode du spectral clustering, dans le sens où elle se base essentiellement sur le calcul de la décomposition en valeur singulière de la matrice d'adjacence et sur l'emploi des vecteurs propres de cette matrice pour partitionner le graphe en communautés. La nouvelle approche proposée dans cette thèse cherche en fait à construire une base parcimonieuse des vecteurs propres de la matrice d'adjacence. Ces vecteurs propres particuliers dépendent fortement de la perturbation associée à la matrice d'adjacence et plus particulièrement de la norme de Frobenius de la matrice représentant le bruit. Des résultats portant sur l'espérance de la norme de Frobenius de la matrice de bruit (associée au modèle aléatoire que l'on considère) sont donnés dans la Section 7.6. Enfin, nous étudions les performances de la nouvelle méthode proposée sur des données simulées. Les résultats sont présentés dans la Section 7.7. Les résultats expérimentaux montrent que l'algorithme proposée marche bien sur des données simulées et attestent de sa capacité à retrouver les bonnes communautés de manière efficace et performante.

Première partie

Sparse generalized linear models

Introduction The challenge of regression in high-dimension

One of the main statistical challenge with high-dimensional data is with regression where the number of predictors exceeds by far the number of observations [START_REF] George | Linear regression analysis[END_REF]. Regression problems belong to the field of statistical learning. Statistical learning problem consists of recovering a signal β * given n observations from a probability distribution P (X, β * ). In regression, given observations (Y i , X i ) 1≤i≤n , we assume that the Y i depends on the X i through an unknown function f β * , called the regression function. The model can be written as

Y i = f β * (X i ) + ε i , i = 1, ..., n
where 1. Y i ∈ R is the response value for the observation i.

2. X i ∈ R p the corresponding covariates vector for the observation i.

(ε

i ) 1≤i≤n ∈ R are the i.i.d. error term assumed to be centered i.e. E(ε i ) = 0 with Var(ε i ) = σ 2 .
This model can be used to understand the relationships between the response and the explanatory variables, to identify the covariates relevant with respect to a response or to predict the future value of a response given new observations. The function f β * can take any shape.

In linear regression (one of the most commonly used model in regression), the regression function f β * is assumed to linearly depend on the parameter β * , so that

Y = Xβ * + ε where 1. Y = (Y 1 , ..., Y n ) T ∈ R n .
2. X ∈ M n,p (R) is the design matrix that contains the vector X i on the ith row.

3. ε = (ε 1 , ..., ε n ) T ∈ R n . 4. β * = (β * 1 , ..., β * p ) T ∈ R p
is the target parameter that characterizes the linear function. When ε i ∼ N (0, σ 2 ), the linear regression model is said to be Gaussian.

All along this thesis, we are concerned with high-dimensional models. Therefore we assume that p is very large compared to n p n.

In the classical literature, to hope for reliable estimation, the number of observations n should scale exponentially with the dimension of the data p. So the question that naturally arises is what if the dimension of the data p is much more larger than n and even exponentially larger than the number of observations n ? This is a situation we have to face more and more everyday, because with the development of data acquisition tool we access data that are very sophisticated and ever larger. For instance, this is now a situation commonly encountered
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in data imaging, genomics, astrophysics... In regression, the problem turns on estimating β * from Y and X, where the number of columns of X is larger than the number of rows. In this situation, as mentioned in the introduction, classical statistical tools such as the ordinary least squares cannot be applied or are inefficient for both prediction and interpretation because of to high variability. Another concern is the problem of overfitting. Because of the highdimensionality it is actually possible to extract models that fit the data perfectly but are in return useless for prediction.

The blessing of a sparsity assumption for penalized methods

Without additional information it is quite hopeless to find a good estimate of a general parameter of interest β * in high-dimension. But, if there is some low-dimensional structure underlying the model, then we can hope for consistent estimation. What do we mean by "lowdimensional structure"? In this part, it refers to sparsity of the target parameter β * i.e. only a few entries of the target parameter are non-zero. It means that only a few of the explanatory variables actually explain the response. So, the main assumption we made in this part is that among all the p variables there are only s relevant variables with s smaller than p. Of course, we do not know which ones. This is the main difference between the classical setting and the high-dimensional one, where we have a very large number of predictors. In addition, we do not know which one may be relevant. This is a problem because, if we leave many irrelevant variables in the model, we will have poor performances of the estimator. Therefore, we aim at searching for models of smaller dimension by selecting the relevant explanatory variables. In other words, we look for estimators that promote sparsity.

In Chapter I, we provide an overview of the some of the most commonly used method to circumvent this problem of high-dimensionality in a Gaussian linear setting. More specifically, we provide an overview of the general ideas and properties behind one of these method called the Lasso. We first review some of the standard tools for regression in high-dimension under sparsity assumptions. First, we begin with Ridge Regression introduced by Hoerl and Kennard in 1970 [START_REF] Arthur | Ridge regression : Biased estimation for nonorthogonal problems[END_REF] to achieve better prediction. This estimator stabilizes the least squares estimate using a restriction in l 2 norm on the solution

βR = argmin β∈R p Y -βX 2 2 s.t. p j=1 | β j | 2 ≤ c
where c ≥ 0 is the tuning parameter. Franck and Friedman [START_REF] Friedman | A statistical view of some chemometrics regression tools[END_REF] generalize this idea of adding a penalty norm under the name of Bridge regression. Bridge regression consists in minimizing

Y -βX 2 2 s.t. p j=1 | β j | γ ≤ c
with γ > 0. For γ = 2 we recover the Ridge regression. Notice that for γ > 1, the coefficients of the solutions are usually non-zero for all the variables. So Ridge may be adapted for prediction but not for variables selection. Because we are in high-dimension, it is important to perform both estimation and variables selection. For γ ≤ 1, the singularity of the norm in zero promotes sparse solution but if γ < 1 the minimization problem is non convex leading to infeasible computations in high-dimension. Hence, a value of γ = 1 seems a good compromise. This is equivalent to penalize the least squares by a l 1 norm. Actually, this idea of penalizing the residual sum of squares by the model complexity, represented by the number of variables included in the model, was developped in the early 1970's. Because this problem is NP-hard and cannot be solved numerically, the idea was to consider instead its convex relaxation that involves the l 1 norm. This is the so-called Lasso,
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introduced by Tibshirani in 1996 [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF]. The Lasso estimator is detailed in Chapter I, Section 1.2 and is defined by

β = argmin β∈R p Y -βX 2 2 s.t. p j=1 | β j |≤ c
where c ≥ 0, or equivalently by

β = argmin β∈R p 1 n Y -βX 2 2 + λ β 1
where λ > 0 is the tuning parameter that balances between goodness of fit and model complexity and is in connection with some value of c. The Lasso has the advantage of being a convex optimization problem that produces sparse solutions.

In Chapter I, we detail this method. We see that the Lasso simultaneously performs estimation and variable selection by automatically setting small coefficients to zero. In addition, the Lasso estimator is continuous in data (avoiding instability in model prediction) and is also consistent [START_REF] Zhao | On model selection consistency of lasso[END_REF], [START_REF] Bickel | Simultaneous analysis of lasso and dantzig selector[END_REF], [START_REF] Van De Geer | High-dimensional generalized linear models and the lasso[END_REF] under some conditions. What consistency means in high-dimension ? In classical statistics, this means that when the model size p is kept fixed as the number of sample goes to infinity the estimated parameter β converges to the true one β * . But this is meaningless in finite sample cases where p n. In this situation, we make both p and n goes to infinity. Then the three mains issues are 1. Does β -β * go to zero when both p and n goes to infinity ? 2. Is the risk loss bounds small (difference in expected loss) ? 3. Is the sparsity pattern of β the same as the one of β * ? These three questions have been widely investigated in the literature and leads to result on the Lasso of the form 1.

E 1 n X( β -β * ) 2 ≤ cs log p n .
2.

E β -β * 1 ≤ cs log p n .
3.

P ∀j ∈ {1, ..., p}, sign( βj ) = sign(β * j ) ≤ 1 -ε n
where s is the cardinality of the support of β * , c is a positive constant and (ε n ) n≥1 is a decreasing sequence of positive terms. There exists a wide and important literature that aim at providing answers to these three questions. Penalized methods for sparse models have experienced an intensive development for several years now and sparse Gaussian linear models have been widely investigated in the literature [START_REF] Bickel | Simultaneous analysis of lasso and dantzig selector[END_REF], [START_REF] Bunea | Honest variable selection in linear and logistic regression models via 1 and 1 + 2 penalization[END_REF], [START_REF] Shaobing | Atomic decomposition by basis pursuit[END_REF], [EHJ + 04],

[KF00] and [START_REF] Zhao | On model selection consistency of lasso[END_REF]. To delve deeper into this issue, we refer to the books of [START_REF] Bühlmann | Statistics for High-Dimensional Data : Methods, Theory and Applications[END_REF] and [START_REF] Koltchinskii | Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery Problems : Ecole d'Eté de Probabilités de Saint-Flour XXXVIII-2008[END_REF]. We do not go into the details of all these results. We just present in Chapter I the main statistical properties of the Lasso and the fundamental ideas that guarantees good performances of this estimator. The results highlighted in this chapter will help to get a better understanding of Chapter 2. In particular, we focus on the conditions that ensure consistency of the Lasso in terms of estimation and prediction (see Section 1.3). We detail the proof of the Lasso consistency because it relies on ideas and arguments that are the keystone of good performances for general sparse high-dimensional models. We see that, under some conditions on the design matrix and for a Gaussian noise, the optimal penalty is of the form 2σ 2 log(p) where σ 2 is the variance of the noise. This penalty implies convergence rates for the estimation and prediction error of the form
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where k > 0 is what, in some sense, characterizes the distance of the covariance matrix to the subspace spanned by orthogonal matrices. The logarithmic form of the penalty is what is saving us because the logarithm increases not very fast when p increases. A faster increase generally implies that a variable selection is impossible. The form of the logarithm penalty is due to the exponential decay of concentration of for Gaussian variables. Concentration of the empirical process combines with sparsity is somehow the key to circumvent the curse of high-dimensionality.

Limits of the classical Lasso and extension to generalized linear models with a group structure However, in many practical applications when processing data, the relationships between the data are more complex, so that a standard linear model or the use of the classical Lasso are not adapted to deal with some real life problems. It is no longer simply a question of linear models but of taking into account non linearity and more complex link functions. That's why the standard Lasso and the linear Gaussian model have been extended and modified to answer more complex situations and to take into account the peculiar features of the data (binary response, count data, data with a group structures...).

In Chapter 2, we consider a natural generalization of the Gaussian linear model that are the generalized linear models [START_REF] Mccullagh | statistics and applied probability 37[END_REF]. We consider a pair of random variables (X, Y ) where Y ∈ R and X ∈ R p such that the conditional distribution Y |X = x is given by

P (Y |β * , x) = exp(yβ * T x -ψ(β * T x))
with β * T x ∈ Θ and Θ := {θ ∈ R : exp(θx)F (dx) < ∞}, where F is the probability distribution. These models includes most of the commonly used distributions such as normal, gamma, Poisson or binomial distributions. Hence, working on these models contributes to larger scale understanding of statistical models. The objective function is no more the least squares but is naturally replaced by the negative log-likelihood.

In addition, we assume a group structure of the covariates i.e. X is structured into G n groups (depending on the number of observations n) each of size d g for g ∈ {1, ..., G n }. For i = 1, ..., n, we set

X i = (X 1 i , ..., X g i , ..., X Gn i ) T where X g i = (X g i,1 , ..., X g i,dg )
and Gn g=1 d g = p. We consider a penalty term that takes into account this structure. The penalty term is actually given by the sum of the l 2 norm of the subset coefficients corresponding to these groups. This is the Group Lasso penalty, introduced by Yuan and Lin [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF]. We INTRODUCTION refer to [START_REF] Huang | Variable selection in nonparametric additive models[END_REF] for a better understanding of the advantages of the Group Lasso over the Lasso. To sum up, in Chapter 2 we consider a more general penalized optimization problem of the form βn = argmin β∈R p

{P n l(β) + λP en(β)}, where 1. P n l(β) denotes the empirical non-negative log-likelihood function .

P en

(β) = Gn g=1 d g β g 2 where β = (β 1 1 , ..., β 1 d 1 β 1 , β 2 1 , ..., β 2 d 2 β 2 , ..., β G 1 , ..., β G d G β G
).

For generalized linear models, the empirical non-negative log-likelihood has the following general expression

P n l(β) := 1 n n i=1 -Y i β T X i + ψ(β T X i ) .
The main difficulty compared to Gaussian linear model is the existence of a non linear part depending on ψ. Because we are in high-dimension, the only hope for reliable estimation is that the empirical process concentrates well around its expectation. We do not want to make restrictive assumptions on the normalized function ψ, but in counter part we assume that the variable Une régularisation du problème est alors nécessaire. Les méthodes de régularisation actuellement les plus utilisées, et qui ont fait leur preuve à la fois en théorie et dans la pratique, sont les méthodes de pénalisation par la complexité du modèle. Il s'agit essentiellement de seuiller les coefficients de régression des moindres carrés autour de zéro, de façon à un introduire un biais qui on l'espère permettra de réduire drastiquement la variance. La figure ci-dessous illustre cet équilibre biais-variance qu'il est important de trouver. Il peut aussi être obtenu de façon équivalente en résolvant le problème suivant

X
βR = argmin β∈R p { Y -βX 2 2 + λ β 2 2 }, (1.1) 
où λ > 0 est le paramètre de régularisation et peut être mis en correspondance avec une certaine valeur de c. Il s'agit donc de résoudre un problème d'optimisation sous contraintes dont on peut expliciter la solution. Le Problème (1.1) a en effet une unique solution donnée par βR = (X T X + λI p ) -1 X T Y.

En effet, la fonction β → Y -βX2 2 +λ β 2 2 est partout différentiable et sa différentielle vaut (X T X + λI p )β -X T Y . La matrice (X T X + λI p ) étant maintenant inversible de par l'ajout du paramètre λ, la différentielle s'annule en un unique point β qui doit vérifier (X T X + λI p )β -X T Y = 0. D'où le résultat. Donnons une interprétation de l'estimateur Ridge et du paramètre λ. Considérons la décomposition en valeurs singulières de X X = U DV T où U ∈ M n×n et V ∈ M p×p sont des matrices orthogonales et D ∈ M n×p est la matrice qui contient sur la diagonale les racines des valeurs propres de X T X, notées d 1 d 2 ..d n 0. Un simple calcul matriciel montre que

X βR = X(X T X + λI p ) -1 X T Y = n i=1 d 2 i d 2 i + λ u i u T i Y
où u i est la ième colonne de U . Comme λ > 0, on en déduit que

d 2 i d 2
i +λ < 1. La régression Ridge atténue donc les coordonnées de Y par rapport à la base orthonormée définie par U d'un facteur

d 2 i d 2 i +λ .
Lorsque λ tend vers 0, cela revient simplement à minimiser les moindres carrés et inversement lorsque λ tend vers l'infini, les coefficients des moindres carrés sont progressivement atténués jusqu'à devenir nul.

Par rapport à l'estimateur des moindres carrés l'estimateur Ridge estime le paramètre β * avec un léger biais, permettant ainsi un meilleur contrôle de la variance et donc dans certains cas d'obtenir une erreur de prédiction plus faible que celle des moindres carrés. Le choix du paramètre λ est primordial car c'est lui qui contrôle l'équilibre entre le biais et la variance. Le meilleur choix possible de de ce paramètre peut être estimé par validation croisée.

Cet estimateur présente cependant des limites. En effet, il faut d'une part inverser une matrice qui est généralement de très grande dimension. Par ailleurs la régression Rigde ne permet pas de faire de la sélection de variables car elle seuille juste les coefficients autour de zéro mais ne les met que très rarement à zéro. Or, en grande dimension, il est important de sélectionner les variables pertinentes afin de réduire la dimension du modèle. Et cele d'une part dans un souci d'interprétabilité du modèle mais aussi afin d'éviter le surapprentissage. Des procédures de sélection de variables classiques sont envisageables pour répondre à ce problème. On peut par exemple considérer des critères de sélection tels que les critères Cp, AIC ou encore BIC [START_REF] Kenneth | Multimodel inference understanding aic and bic in model selection[END_REF]. Toutefois, ces critères sont peu utilisables en pratique. En effet, la complexité algorithmique de ces méthodes est telle qu'elles sont difficiles à implémenter en pratique (lorsque p est grand il y a 2 p -1 modèles possibles à passer en revu).

Régression linéaire parcimonieuse

On pourra consulter à ce sujet les articles fondateurs de Tibshirani [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] et de Candes et Tao [START_REF] Candes | The dantzig selector : statistical estimation when p is much larger than n[END_REF].

Parcimonie du paramètre d'intérêt

Des modèles plus simples (avec peu de paramètres) sont préférables à des modèles complexes car ils sont plus facilement ajustables et interprétables mais aussi parce qu'ils permettent d'éviter le surapprentissage au détriment de bonnes performances du modèle. En grande dimension, il y a une raison principale qui peut motiver la sélection d'un modèle en particulier. C'est la notion de parcimonie. Cette notion de parcimonie n'est pas seulement un moyen de réduire la dimension mais est souvent justifiée dans la pratique. Ces modèles parcimonieux sont importants en génétique ou en imagerie où l'on sait par exemple que seul un petit nombre de gènes peuvent expliquer une maladie [START_REF] Peter | An overview of recent developments in genomics and associated statistical methods[END_REF] [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF]. Nous détaillons cet estimateur dans la section suivante. Nous verrons qu'il permet aussi de privilégier les solutions parcimonieuses et que l'utilisation d'une pénalité en norme . 1 conduit à un estimateur qui se comporte souvent de la même façon que celui qu'on aurait obtenu en considérant une pénalité en norme . 0 .

L'estimateur Lasso

L'estimateur Lasso a été introduit par Tibshirani en 1996 [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] et s'inspire des travaux de Breiman [START_REF] Breiman | Better subset regression using the nonnegative garrote[END_REF], [B + 96] dont le but était d'améliorer certains aspects négatifs de l'estimateur des moindres carrés. En voici une définition. Définition 1.2.2. L'estimateur Lasso L'estimateur Lasso prend la forme suivante βl = argmin

β∈R p 1 n Y -βX 2 2 + 2λ β 1 (1.2)
où λ > 0 est le paramètre de régularisation et la constante 2 est présente ici pour des facilités techniques.

Cet estimateur n'a pas été conçu au départ pour répondre spécifiquement aux problèmes liés à la grande dimension, l'idée première étant surtout de combiner les aspects positifs de l'estimateur des moindres carrés ordinaires et de la régression Ridge, qui permet de diminuer la variance des moindres carrés du à son effet de seuillage mais dont l'inconvénient est qu'il ne réduit pas la complexité du modèle. Tibshirani [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] a alors réfléchi à un estimateur intermédiaire qui combine les meilleures caractéristiques de la régression Ridge et de la sélection de variables afin d'obtenir des modèles plus robustes mais aussi plus facilement interprétables.

L'attention portée au Lasso a accru d'autant plus vite que les besoins liés à la grande dimension se sont fait sentir. S'il est aujourd'hui aussi populaire c'est essentiellement pour sa capacité à répondre au fléau de la grande dimension, ses performances sur des problèmes en grande dimension dépassant largement celles des autres méthodes. Et c'est très précisément cette hypothèse de parcimonie du modèle recherché qui en a fait tout le succès, la pénalité en norme l 1 favorisant justement les modèles parcimonieux.

Au fur et à mesure que λ augmente des coefficients sont mis à zéro permettant ainsi, au travers du paramètre de pénalisation, de réaliser à la fois un seuillage continue et une sélection automatique des variables. La figure ci-dessus montre un exemple typique de l'évolution des coefficients estimés par le Lasso en fonction du réglage du paramètre de pénalisation. Une version équivalente du Problème (1.2), et qui permet de mieux comprendre l'effet de seuillage du Lasso, est la suivante argmin

β∈R p 1 n Y -βX 2 2 s.t β 1 ≤ c, (1.3)
où c ≥ 0 et peut être mis en correspondance vec le paramètre de pénalité λ du problème (1.2). De façon évidente, le paramètre c contrôle le niveau de seuillage que l'on impose à l'estimateur des moindres carrés. On voit en effet qu'une diminution de ce paramètre c vers zéro entraîne non seulement une décroissance des coefficients vers zéro mais aussi la mise à zéro de certains coefficients. Ce qui correspond à la suppression brutale de variables dans le modèle. Dans le cas extrême où c tend vers l'infini, il s'agit simplement de la régression des moindres carrés ordinaires. Dans l'autre cas extrême où c égale zéro, tous les coefficients sont mis à zéro.

Remarque

-On notera que l'avantage de cette méthode est qu'elle permet à la fois sélectionner les variables et d'estimer les coefficients.

-Contrairement à la régression Ridge, il n'existe pas de formule explicite de l'estimateur Lasso. -Le problème d'optimisation convexe associé au Lasso peut facilement se résoudre par des programmes informatiques. -Le choix du paramètre λ est important afin d'éviter de surajuster les données. Nous reviendrons sur ce choix du paramètre dans la Sous-section 1.5.1.

On notera qu'une condition nécessaire et suffisante d'existence d'un minimum pour le Problème (1.2) est que 0 appartienne à l'ensemble des points pour lesquels la fonction convexe β → n -1 Y -Xβ 2 2 + 2λ β 1 est différentiable, ce qui implique en particulier la contrainte suivante (appelée contrainte Lasso)

1 n X T (Y -X βl ) ∞ λ.
(1.4)

Cette condition est importante comme on le verra par la suite lorsque l'on étudiera plus en détails certaines propriétés de consistance du Lasso. Plus précisément, on a le lemme suivant.
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Lemme 1.2.3. La contrainte Lasso β est solution de (1.2) si et seulement si

∀ j ∈ {1, ..., p}, |X T j (Y -Xβ)| λ si β j = 0 X T j (Y -Xβ) = λsign(β j ) λ si β j = 0 (1.5)
où X j désigne la jème colonne de X.

Proof. Soit β ∈ R p . On pose 

f λ (β) = 1 2 Y -Xβ 2 2 + λ β 1 = g λ (β) + h λ (β). f λ est
∀u ∈ R p , -u T X T (Y -Xβ) + λ p j=1 |u j | si β j = 0 u j sign(β j ) si β j = 0 0. (1.6)
Cette écriture est vérifiée si et seulement si D e j f λ (β) et D -e j f λ (β) sont positifs pour tout j = 1, ..., p. En réinjectant les e j dans (1.6), on obtient la condition d'optimalité (1.5).

Comparaison des estimateurs OLS, Rige et Lasso

Nous avons vu que l'estimateur Rigde et Lasso correspondait en fait à des estimateurs des moindres carrés sous contraintes, la pénalité correspondant respectivement à β 2 2 ≤ c et β 1 ≤ c où c ≥ 0. Nous voyons bien que les deux pénalités impliquent un seuillage des moindres carrés mais que la contrainte du Lasso seuille beaucoup plus brutalement les coefficients, certains étant mis directement à zéro. Comme nous l'avons déja évoqué, cela est du essentiellement au fait que la norme l 1 n'est pas différentiable en zéro. En dimension deux, ce phénomène se comprend facilement au vu de la forme de l'espace des contraintes comme le montre la figure ci-dessous. En effet, la solution donnée par le Lasso ou l'estimateur Ridge correspond au premier point de la région de contrainte (associé respectivement à la norme l 1 et l 2 ) touché par le domaine elliptique. La boule l 1 ayant de nombreux angles, le point de contact a beaucoup CHAPITRE 1. GRANDE DIMENSION ET PARCIMONIE plus de chance d'être réalisé au niveau de l'un de ces angles, ce qui correspond à un vecteur parcimonieux. Dans le cas de la boule l 2 , la surface ne présentant pas de points anguleux, il y a moins de chance pour que le domaine elliptique rencontre un des coins correspondant à un vecteur parcimonieux et il sera donc rare que l'estimateur Ridge conduise à une telle solution. Cette compréhension géométrique des effets de l'ajout d'une pénalité l 1 sera importante pour comprendre les propriétés théoriques du Lasso. Nous retrouverons ces idées dans le Chapitre 2.

Pour mieux comprendre les différences, limites et avantages des estimateurs que nous avons évoqués jusqu'à présent, considérons un dernier cas très simple où n p avec X T X = I p .

-L'estimateur des moindres carrés est alors donné par

β = (X T X) -1 X T Y = X T Y.
-L'estimateur Ridge βR prend les valeurs suivantes

βR,i = 1 1 + λ βi , i = 1, ..., p.
-L'estimateur Lasso βl est quand à lui égal à

βl,i =        βi -λ si βi > λ βi + λ si βi < -λ 0 sinon , i = 1, ..., p.
Nous retrouvons ici le fait que l'estimateur Ridge conduit à un seuillage doux alors que l'estimateur Lasso correspond à un seuillage dur. On voit bien sur cet exemple que le Lasso est plus adapté à une régression parcimonieuse, puisque en plus de lisser les coefficients des moindres carrés (ce qui permet une meilleure stabilité car les coefficients sont moins variants) il met aussi des coefficients à zéro (les variables sont sélectionnées amenant ainsi à une meilleure interprétabilité du modèle).

Propriétés fondamentales du Lasso

Nous allons dans cette section présenter les résultats les plus importants sur le Lasso, résultats qui justifient l'emploi de cette méthode en grande dimension et explique pourquoi cet estimateur est tant apprécié. Il existe une littérature extrêmement riche sur le Lasso et ses propriétés, littérature que nous ne pouvons passer en revue ici de façon exhaustive. Nous invitons donc le lecteur à consulter l'ouvrage de Bühlmann et van de Geer [START_REF] Bühlmann | Statistics for High-Dimensional Data : Methods, Theory and Applications[END_REF] qui contient à lui seul l'essentiel de ce qu'il faut savoir sur le sujet ainsi que les références des articles à consulter pour une étude plus poussée du sujet. Nous présenterons ici principalement les idées et résultats sur le Lasso nécessaires à la compréhension du Chapitre 2 et desquels nous sommes partis pour établir les résultats présentés dans ce chapitre.

Un aperçu général

On rappelle que l'on se place dans le cadre du modèle linéaire gaussien en grande dimension (p n). On suppose que le vecteur d'intérêt β * est parcimonieux. On note S = j : β * j = 0 l'ensemble de ses indices actifs et s =| S | l'indice de parcimonie de β * , c'est à dire le nombre de ses coefficients non nuls.
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Sans aucunes hypothèses sur la matrice d'expérience ou sur le nombre de coefficients non nuls et sous des hypothèses très faibles sur le bruit, on peut montrer que

1 n X( β -β * ) 2 2 = O P   β * 1 log p n   .
Le Lasso est donc consistent en terme de prédiction si le vecteur cible satisfait la condition de parcimonie suivante β * 1 n log p . Des vitesses de convergences optimales pour la prédiction et l'estimation peuvent être obtenues sous certaines conditions sur la matrice d'expériences [START_REF] Knight | Asymptotics for lasso-type estimators[END_REF], [START_REF] Martin | Sharp thresholds for high-dimensional and noisy sparsity recovery using-constrained quadratic programming (lasso). Information Theory[END_REF], [START_REF] Zhao | On model selection consistency of lasso[END_REF], [START_REF] Zou | The adaptive lasso and its oracle properties[END_REF], [START_REF] Bickel | Simultaneous analysis of lasso and dantzig selector[END_REF]. La distribution de l'estimateur Lasso a été étudié par [START_REF] Knight | Asymptotics for lasso-type estimators[END_REF]. Les propriétés de prédiction et de sélection de variables ont quant à elles étaient étudiées essentiellement par [START_REF] Bunea | Aggregation for gaussian regression[END_REF], [START_REF] Bunea | Honest variable selection in linear and logistic regression models via 1 and 1 + 2 penalization[END_REF] and [START_REF] Van De Geer | High-dimensional generalized linear models and the lasso[END_REF].

Nous détaillerons ces conditions dans la Sous-section 1.3.2. Sous ces hypothèses sur la matrice d'expériences, il est possible de montrer que

1. 1 n X( β -β * ) 2 2 = O P s k log p n 2. 1 n β -β * 2 = O P   √ s k log p n   3. 1 n β -β * 1 = O P   s k log p n  
Ceci prouve la capacité en théorie de l'estimateur Lasso à reconstruire des bonnes approximations parcimonieuses du vrai modèle lorsque le nombre de paramètres est plus grand voir beaucoup plus grand que la taille de l'échantillon.

Conditions sur la matrice d'expériences visant à obtenir des inégalités oracles pour le Lasso

Des inégalités oracles en terme d'estimation et de prédiction ainsi que des résultats théoriques concernant la sélection de variables ont été établis dans la littérature sous des hypothèses aussi diverses que variées. Nous donnons ici un aperçu de ces conditions ainsi que des liens qui existent entre elles. Nous verrons que certaines de ces conditions sont plus ou moins contraignantes et certaines plus facilement vérifiables en pratique que d'autres. Pour plus de détails sur le sujet et un aperçu complet de ces différentes conditions et des liens existants entre chaque, nous invitons le lecteur à consulter l'article de van de Geer et Bülhmann [VDGB + 09] sur le sujet. Les auteurs de cet article se place dans un cas très général, qui peut être non paramétrique. Ils considèrent des fonctions linéaires qui s'écrivent en fonction d'un nombre fini mais grand de fonctions d'un dictionnaire. Nous présenterons ici les résultats dans le cadre plus simple du modèle décrit dans la Section 1.1.

Notation

Pour tout vecteur δ ∈ R p et pour tout sous-ensemble J ⊂ {1, ..., p}, on désignera par δ J le vecteur qui a les mêmes coordonnées que δ sur l'ensemble des indices J et des zéros partout ailleurs. On notera X J la sous matrice de X de taille n × |J| obtenue en conservant uniquement les colonnes de X correspondant aux indices dans l'ensemble J. On rappelle que Nous allons voir que les conditions nécessaires pour établir des inégalités oracles portent essentiellement sur la matrice de Gram Σ n = 1 n X T X et n'autorisent que de faibles corrélations entre les variables significatives et les autres. La première condition que nous allons présenter porte plus précisément sur la forme quadratique βΣ n β restreinte à un sous-espace particulier que nous appellerons le cône de restriction et que nous définissons ci-dessous.

Définition 1.3.1. Cône de restriction [BRT09] C(s, c 0 ) = δ ∈ R p | ∃J 0 ⊂ {1, ..., p} , |J 0 | s, δ J c 0 1 c 0 δ J 0 1 où c 0 > 0.
Qu'un vecteur δ appartienne à C(s, c 0 ) signifie en particulier que 1/(1 + c 0 ) de son poids en norme est concentré sur un ensemble de taille au plus s. On notera aussi que si δ appartient au cône de restriction et si on note T 0 la localisation de ses s plus grands éléments alors

δ T c 0 1 c 0 δ T 0 1 . En effet, δ T c 0 1 = δ 1 -δ T 0 1 δ 1 -δ S 1 = δ S c 1 c 0 δ S 1 c 0 δ T 0 1 .
Cette remarque nous sera utile lorsque nous en viendrons aux points importants permettant d'établir des inégalités oracles pour le Lasso.

Un aperçu des conditions sur la matrice d'expériences

Nous allons maintenant détailler les trois principales conditions existant dans la littérature. Ces conditions assurent en quelque sorte que, bien que la matrice d'expérience X ne soit pas orthogonale, elle présente un comportement proche d'une forme quadratique associée à une matrice orthogonale au moins sur un sous-espace restreint. Commençons par une des conditions les moins restrictives. Il s'agit de la condition des valeurs propres restreintes .

Définition 1.3.2. Condition des valeurs propres restreintes RE(s, c 0 ) [START_REF] Bickel | Simultaneous analysis of lasso and dantzig selector[END_REF] On définit

κ(s, c 0 ) := min δ∈C(s,c 0 )\{0} Xδ 2 √ n δ J 0 2 = min δ∈C(s,c 0 )\{0} δ T Σ n δ δ J 0 2 . On dit que la propriété RE(s, c 0 ) est vérifiée si κ(s, c 0 ) > 0. Remarque -Si s > s alors κ(s, c 0 ) κ(s , c 0 ) et donc RE(s , c 0 ) ⇒ RE(s, c 0 )
-Ceci nous indique la façon dont l'information concentrée sur un sous ensemble de petite taille est bien conservée par X. Ceci nous dit aussi que les sous matrices carrées de X de taille inférieures ou égales à 2s sont définies positives.

-On notera que la propriété RE(s, c 0 ) est plus faible que celle d'isométrie restreinte proposée par Candes et Tao [START_REF] Candes | The dantzig selector : statistical estimation when p is much larger than n[END_REF]. Pour un entier s fixé, on définit la constante d'isométrie restreinte θ s de X comme le plus petit nombre tel que

(1 -θ s ) δ 2 2 Xδ 2 2 (1 + θ s ) δ 2 2
pour tout vecteur δ s-parcimonieux. On dit alors que X vérifie la propriété d'isométrie restreinte d'ordre s, notée RIP (s), si 0 < s < 1. Cette propriété revient à dire que CHAPITRE 1. GRANDE DIMENSION ET PARCIMONIE chaque ensemble de colonnes de X de cardinal inférieur à s se comporte à peu près comme un système orthonormal (ceci nous dit que les prédicteurs ne doivent pas être trop fortement corrélés). On notera que la propriété RE(s, c 0 ) est plus faible que celle RIP (s).

La condition RE est importante car c'est la condition la plus faible, parmi l'ensemble des conditions que l'on trouve dans la littérature, qui garantisse de bonnes propriétés des estimateurs Lasso et Dantzig. Par exemple nous verrons dans la section suivante que si la matrice d'expérience X satisfait RE d'ordre s avec c 0 = 3 alors, pour un choix approprié du paramètre de régularisation, βl satisfait βl -β 1 = O(s log p n ). Cependant l'inconvénient majeur de la condition des valeurs propres restreintes est que cette condition est souvent difficile à vérifier en pratique. L'article de Bickel et al. [START_REF] Bickel | Simultaneous analysis of lasso and dantzig selector[END_REF] donne un certain nombre de conditions suffisantes qui assurent que la propriété des valeurs propres restreintes RE(s, c 0 ) est vérifiée. Nous allons en donner ici quelques exemples.

Notation

-On définit les deux quantités suivantes appelées valeurs propres restreintes

φ min (u) = min x∈R p :M(x) u x T Σ n x x 2 2 . φ max (u) = max x∈R p :M(x) u x T Σ n x x 2 2 ,
où M(x) désigne le cardinal du support de x. -On rappelle que X J désigne la sous matrice de X de taille n × |J| obtenue en enlevant à X les colonnes qui ne correspondent pas aux indices dans J. Pour 1 m 1 m 2 M , on définit la quantité suivante appelée corrélation restreinte

θ m 1 ,m 2 = max c T 1 X T I 1 X I 2 c 2 n c 1 2 c 2 2 : I 1 ∩ I 2 = ∅, |I i | m i , c i ∈ R I i \ {0} , i = 1, 2 .
On a les résultats suivants :

1. Si φ min (2s) > c 0 θ s,2s pour un entier 1 s p/2 et une constante c 0 > 0 alors RE(s, c 0 ) est vérifiée avec κ(s, c 0 ) = φ min (2s) 1 - c 0 θ s,2s φ min (2s)
. Nous verrons que ceci couvre le cas de l'estimateur Lasso et permet de prouver des inégalités oracles pour l'erreur de prédiction dans le cadre non paramétrique. 2. Si, pour un entier 1 s p, on a

φ min (s) > 2c 0 θ s,1 √ s où c 0 > 0 alors RE(s, c 0 ) est vérifiée. 3. Si, pour un entier 1 s p, on a φ min (s) > 2c 0 θ 1,1 s où c 0 > 0 alors RE(s, c 0 ) est vérifiée.
4. Si tous les éléments diagonaux de la matrice de Gram Ψ n sont égaux à 1 et si pour tout entier 1 s p on a

θ 1,1 < 1 (1 + 2c 0 )s où c 0 > 0 alors RE(s, c 0 ) est vérifiée.
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Ces conditions restent tout de même compliquées à vérifier. Il existe d'autres conditions suffisantes plus faciles à montrer. Nous en évoquerons deux ici.

Définition 1.3.3. Condition d' irreprésentabilité [START_REF] Zhao | On model selection consistency of lasso[END_REF] La matrice X satisfait la condition d'irreprésentabilité pour β * s'il existe une constante η ∈ ]0, 1] telle que

X S c X S X T S X S -1 sign(β * S ) ∞ ≤ 1 -η.
Cette condition reste encore difficile à vérifier parce qu'elle demande à être vérifiée pour l'ensemble S inconnu, ce qui nécessite en fait en pratique de la vérifier pour tout sous-ensemble d'indices de taille au plus s.

Zhao et Yu [START_REF] Zhao | On model selection consistency of lasso[END_REF] donnent différentes conditions suffisantes pour que la condition d'irreprésentabilité soit vérifiée. En particulier, ils montrent que si | Cor (X i , X j ) |≤ c 2s -1 pour une constante 0 ≤ c < 1 alors la condition est satisfaite. Cela est à mettre en lien avec une autre condition plus faible que celle des valeurs propres restreintes, condition connue sous le nom de cohérence mutuelle.

Définition 1.3.4. Condition de cohérence mutuelle [BTW + 07b] Notons pour simplifier ψ = 1 n X T X.
On dit que X vérifie la condition de cohérence mutuelle si la matrice ψ satisfait

ψ i,j = 1, ∀1 ≤ j ≤ p, et max i =j | ψ i,j |≤ 1 α(1 + 2c 0 )s où c 0 = 3 pour le Lasso et α > 1 est une constante > 0.

Une version plus faible est proposée dans [BTW07a], [BTW

+ 07b].
Ces conditions peuvent être généralisées en fonction des pénalités que l'on considère. Il existe par exemple une version de la condition des valeurs propres restreintes adaptée à l'Adaptive Lasso [START_REF] Zou | The adaptive lasso and its oracle properties[END_REF]. Nous verrons dans le Chapitre 2 comment adapter cette condition au Group Lasso.

De nombreux résultats sur le Lasso ont été prouvé sous la condition des valeurs propres restreintes, notamment des résultats en termes d'estimation et de prédictions. Nous pouvons ainsi citer les travaux de [START_REF] Bickel | Simultaneous analysis of lasso and dantzig selector[END_REF] et de [BTW + 07b], [START_REF] Bunea | Aggregation for gaussian regression[END_REF]. La condition d'irreprésentabilité a quant à elle plutôt était utilisée pour montrer des résultats de consistance en sélection. Ainsi, dans [START_REF] Zhao | On model selection consistency of lasso[END_REF], les auteurs ont établit la consistance en signe de l'estimateur Lasso lorsque p ≤ n.

Inégalité oracle pour le Lasso dans un cadre paramétrique

Nous nous intéressons ici aux inégalités oracles pour l'estimation et la prédiction. Il existe comme nous l'avons déja dit une vaste littérature sur ce sujet. Nous pouvons citer entre autres les travaux de [START_REF] Bunea | Aggregation for gaussian regression[END_REF], [START_REF] Zhang | The sparsity and bias of the lasso selection in high-dimensional linear regression[END_REF], [START_REF] Van De Geer | High-dimensional generalized linear models and the lasso[END_REF] et [START_REF] Bickel | Simultaneous analysis of lasso and dantzig selector[END_REF].

Il existe aussi des résultats en terme de sélection de variables et de reconstruction du support. Les travaux présentés dans cette thèse portant sur l'estimation et la prédiction mais pas sur la reconstruction du signal, nous ne détaillerons pas ces résultats ici mais nous renvoyons le lecteur aux articles suivants [START_REF] Zhao | On model selection consistency of lasso[END_REF], [START_REF] Bunea | Honest variable selection in linear and logistic regression models via 1 and 1 + 2 penalization[END_REF] and [Z + 09] pour plus de détails sur le sujet.

Inégalité oracle pour l'estimation et la prédiction

Nous nous pencherons ici plus précisément sur les travaux de Bickel et al. [START_REF] Bickel | Simultaneous analysis of lasso and dantzig selector[END_REF]. Nous allons détailler la preuve de l'obtention des inégalités oracles sous conditions RE afin d'en souligner les points clés qui nous aiderons à la compréhension du Chapitre 2.

On suppose dans cette partie que les (ε i ) 1≤i≤n sont indépendants de loi N (0, σ 2 ) (σ > 0) et que les coefficients diagonaux de 1 n X T X sont égaux à 1 (i.e les X i / √ n sont de norme euclidienne égale à 1). On suppose aussi que M(β * ) s où M(β * ) désigne le cardinal du support de β * noté J(β * ). On utilisera des notations similaires pour l'estimateur Lasso.

Performances théoriques du Lasso

Voici les deux théorèmes principaux qui donnent un contrôle de l'erreur d'estimation et de prédiction pour le Lasso. Il est à noter que ces deux théorèmes reposent sur le fait que la matrice d'expériences satisfait l'hypothèse des valeurs propres restreintes.

Théorème 1.3.1. Erreur d'estimation Soit λ = Aσ log p n avec A > 2 √ 2. Supposons RE(s, 3) alors avec probabilité au moins 1 -p 1-A 2 /8 , on a βl -β * 1 16 κ(s, 3) 2 sλ l = 16A κ(s, 3) 2 σs log p n . (1.7) Théorème 1.3.2. Erreur de prédiction Soit λ = A log p n avec A > 2 √ 2.
Supposons RE(s, 3) alors avec probabilité au moins

1 -p 1-A 2 /8 , on a X( βl -β * ) 2 2 16 κ(s, 3) 2 snλ 2 l = 16A 2 κ(s, 3) 2 σ 2 s log p.
(1.8)

De plus

M( βl ) 64φ max κ(s, 3) 2 s, (1.9)
où M( βl ) représente le cardinal du support de βl .

Ces deux théorèmes montrent bien la capacité de l'estimateur Lasso à retrouver une estimation parcimonieuse fiable du vrai modèle.

Remarque

-Ces théorèmes nous donnent des bornes supérieures d'erreur avec grande probabilité et sous certaines conditions mais ces bornes ne sont pas asymptotiques. La probabilité dépend en effet de p et les conditions sur la matrice d'expérience dépendent de n et p. Pour avoir des résultats asymptotiques, il faudrait donc que RE(s, c 0 ) soit vérifiée pour une infinité de n et de p.

-La quantité 1 -p 1-A 2 /8 peut être améliorée (tout dépend des bornes supérieures sur les queues de distribution des lois normales que l'on choisit). On peut ainsi être plus précis et prendre comme borne 1 -2pΦ(A √ log p) où Φ(.) désigne le quantile d'une loi normale.

CHAPITRE 1. GRANDE DIMENSION ET PARCIMONIE

Preuve

La clé de la preuve repose essentiellement sur la propriété des valeurs propres restreintes et la propriété de parcimonie. La preuve repose plus particulièrement sur trois points.

-La concentration du processus empirique autour de son espérance du aux bonnes propriétés de concentration du bruit gaussien.

-La contrainte du cône qui découle essentiellement de la concentration et du caractère parcimonieux du paramètre d'intérêt. Cette contrainte nous dit essentiellement que la recherche des solutions doit se faire dans un cône autour du paramètre cible.

-La contrainte du tube qui repose aussi sur le phénomène de concentration et la parcimonie du modèle et qui contraint en plus la zone de recherche à un tube autour du paramètre cible.

-La condition des valeurs propres restreintes qui, ajoutée aux deux autres contraintes, force la solution à être proche du paramètre d'intérêt.

Voici maintenant le détails de ces différentes étapes. Première étape : On se place sur l'évènement

A = p j=1 {2|V j | λ}, où V j = n -1 X T j ε avec X j la jème colonne de X. Cet évènement est de probabilité au moins 1 -p 1-A 2 /8 . En effet ε ∼ N (0, σ 2 I n ), d'où V j ∼ N 0, 1 n 2 X T j X j σ 2 ∼ N 0, 1 n σ 2
car par hypothèse X i √ n est de norme égale à 1 et donc

P (A c ) ≤ p j=1 P (V j ≥ λ l /2) ≤ pP (|η| ≥ λ/2σ) ≤ p exp(- nλ 2 8σ 2 ) = p 1-A 2 /8 , où |η| ∼ N (0, 1).
On se place dorénavant sur cet évènement. On pose δ = βl -β * . On va montrer que δ satisfait deux contraintes. Par définition de l'estimateur on a

1 n Y -X βl 2 2 + 2λ l βl 1 Y -Xβ * 2 2 + 2λ β * 1 . Or, Y -X βl 2 2 = Xβ * + ε -βl X 2 2 = Xβ * -X βl 2 2 + ε 2 2 + 2(X(β * -βl )) T ε et Y -Xβ * 2 2 = ε 2 2 . D'où, après simplification, 1 n Xβ * -X βl 2 2 + 2λ βl 1 2 n (X( βl -β * )) T ε + 2λ β * Or, on s'est placé sur l'évènement A et donc 1 n Xβ * -X βl 2 2 + 2λ βl 1 λ βl -β * 1 + 2λ β * 1 ou encore 1 n Xβ * -X βl 2 2 + λ βl -β * 1 2λ βl -β * 1 + 2λ β * 1 -2λ βl 1 .
Ce qui se réécrit

1 n Xδ 2 2 + λ δ 1 2λ βl -β * 1 + β * 1 -βl 1 2λ n j=1 βl,j -β * j 1 + β * j 1 -βl,j 1 Or si j / ∈ J(β * ), alors en utilisant la parcimonie de β * on a β * j = 0 et donc βl,j -β * j 1 + β * j 1 -βj,l 1 = 0 et par l'inégalité triangulaire β * j 1 -βj,l 1 ≤ βl,j -β * j 1 . On en conclut donc que 1 n Xδ 2 2 + λ δ 1 4λ δ J 0 1 . (1.10)
où pour simplifier on pose J 0 = J(β * ). Deuxième étape : contrainte du tube D'après l'inégalité (1.10) et en utilisant Cauchy-Schwarz, il vient

1 n Xδ 2 2 4λ δ J 0 1 C.S 4 √ sλ δ J 0 2 . (1.11)
Troisième étape : contrainte du cône

δ J c 0 1 3 δ J 0 1 .
En effet, d'après l'inégalité (1.10)

λ δ 1 4λ δ J 0 1 et δ 1 = δ J 0 1 + δ J c 0 1 . Quatrième étape : utilisation de la condition RE. On rappelle que 1 n Xδ 2 2 4λ √ s δ J 0 2 .
Par la condition RE(s,3) (puisque la contrainte du cône est vérifiée), il vient

1 n Xδ 2 2 κ 2 δ J 0 2 2 . D'où 1 n Xδ 2 2 ≤ 16λ 2 s κ 2 (1.12) δ J 0 2 4λ √ s/κ 2 . (1.13) CHAPITRE 1. GRANDE DIMENSION ET PARCIMONIE
De l' inégalité (1.12), on en déduit directement par définition de δ et λ que

X( βl -β * ) 2 2 16A 2 κ 2 (s, 1) σ 2 s log p.
Et l'inégalité (1.13) combinée avec les inégalités suivantes

δ 1 δ J 0 1 + δ J c 0 1 4 δ J 0 1 4 √ s δ J 0 2 permet de montrer que βl -β * 1 16A 2 κ 2 (s, 1) σs log p n .
Reste à prouver que M( βl ) 64φ max κ(s, 3) 2 s. Notons X j la jème colonne de X, on a alors

1 n 2 Xβ * -X βl T XX T Xβ * -X βl = 1 n 2 p j=1 X T j (Xβ * -X βl ) 2 1 n 2 j: βl =0 X T j (Xβ * -X βl ) 2 . (1.14)
Or, la condition nécessaire et suffisante d'extremum implique que 0 appartienne à l'ensemble des points pour lesquels la fonction convexe

β → n -1 Y -Xβ 2 2 + 2λ β 1 est différentiable. Cela nécessite que 1 n X T j (Y -X βl ) = λ.sign( βj,l ) si βj,l = 0. et | 1 n X T j (Y -X βl )| λ. si βj,l = 0. Par ailleurs sur l'ensemble A, on a | 1 n X T j ε| λ l /2. D'où | 1 n X T j (Xβ * -X βl )| λ/2 si βj,l = 0. (1.15) Par conséquent, (1.14) et (1.15) impliquent 1 n 2 Xβ * -X βl T XX T Xβ * -X βl 1 n 2 p j=1 X T j (Xβ * -X βl ) 2 1 n 2 j: βj,l =0 X T j (Xβ * -X βl ) 2 M( βl )λ 2 l /4.
Enfin,

1 n 2 Xβ * -X βl T XX T Xβ * -X βl φ max n Xβ * -X βl 2 2 et donc M( βl ) 4φ max Xβ * -X βl 2 2 nr 2 . Or Xβ * -X βl 2 2 16 κ(s, 3) 2 nr 2 d'où la conclusion. CHAPITRE 1. GRANDE DIMENSION ET PARCIMONIE

Inégalité oracles

Supposons que l'on connaisse le support S = {j ∈ {1, ..., p}|β * j = 0} de taille s de β * avec n s . Notons X S la matrice X dont on a gardé que les colonnes qui correspondent aux entrées de S. On est alors ramené au modèle de régression linéaire suivant Y = X S β * + ε avec maintenant n s. On peut donc appliquer la méthode des moindres carrés et obtenir un estimateur oracle β or qui ont le sait a pour distribution N (β * , σ 2 (X T S X S ) -1 ) et donc

E X S (β or -β * ) 2 2 = σ 2 Tr(X S (X T S X S ) -1 X T S ) = σ 2 .
On en conclut donc que l'estimateur Lasso est optimal pour la prédiction à un facteur près ( 16A 2 κ(s,1) 2 s log p), qui correspond à une "petite constante multiplicative". C'est le prix à payer dû au fait que l'on ne connait pas l'emplacement des coefficients nuls de β * .

Erreur de prédiction du Lasso dans un cadre non paramétrique

Nous présentons ici une généralisation du Lasso à un cadre non paramétrique ainsi qu'une inégalité oracle pour la prédiction. Si nous évoquons ce cadre non paramétrique, c'est surtout pour montrer que les résultats et outils employés dans le cadre paramétrique restent essentiellement les mêmes. Dans le Chapitre 2, nous nous plaçons dans un cadre paramétrique mais les résultats que nous montrons pourraient se généraliser à des bases de fonctions en remplaçant l'hypothèse que les variables sont bornées par le fait que les fonctions du dictionnaire sont bornées en norme infinie.

On pourra à ce sujet lire l'article de Bickel et al. [START_REF] Bickel | Simultaneous analysis of lasso and dantzig selector[END_REF].

Le modèle

Soit (Z 1 , Y 1 ), .., (Z n , Y n ) un échantillon tel que Y i = f (Z i ) + W i , i = 1, .., n.
(1.16) où -f : B → R est la fonction de régression à estimer, B est un sous ensemble des boréliens de R.

-Z i sont des éléments fixés dans B.

-Les W i représentent les erreurs et sont supposées indépendantes gaussiennes de loi N (0, σ 2 ).

Soit F p un dictionnaire fini de fonctions {f i : B → R, i = 1, ..., p} , p 2. Par exemple F p peut être une collection d'éléments d'une base de fonctions utilisée pour approcher f (splines, ondelettes..). Le choix du dictionnaire est important pour rendre possible l'estimation de f . On supposera que f peut être bien approximée par une combinaison linéaire d'éléments de F p . On se place ici toujours dans la situation où p n et on va voir que f pourra être estimée de façon raisonnable sous la condition que l'approximation linéaire utilisée soit sparse.

Considérons la matrice

X = (f j (Z i )) i,j ∈ M n,p ainsi que les vecteurs Y = (Y 1 , .., Y n ) T , f = (f (Z 1 ), .., f (Z n )) T et W = (W 1 , .., W n ) T .
On peut réécrire le modèle de la façon suivante

Y = f + W. CHAPITRE 1. GRANDE DIMENSION ET PARCIMONIE Notons β = (β 1 , .., β p ) ∈ R p et f β = p j=1 β j f j le développement de f sur le sous espace de dimension p. On posera f β = Xβ. Le modèle (1.16) est équivalent à Y = Xβ + W.
(1.17)

Notation La norme . n est définie par g n = 1 n n i=1 g 2 (Z i ) pour tout g : B → R.
On supposera que f j n = 0, j = 1..p et on posera

f max = max 1≤j≤p f j n , f min = min 1≤j≤p f j n .
Ici l' estimateur considéré est un peu différent :

βl = argmin β∈R p { 1 n Y -Xβ 2 2 + 2r p j=1 f j n |β j |}
et l'estimateur Lasso correspondant pour f est défini par :

fl = p j=1 βj,l f j . On notera J(β) le support de β et M(β) son cardinal. De même pour βl . Lemme 1.4.1. Soit r = Aσ log p n . Soit A > 2 √ 2.
Alors, avec probabilité au moins 1 -

p 1-A 2 /8 , on a pour tout β ∈ R p , fl -f 2 n + r p j=1 f j n | βj,l -β j | fl -f 2 n + 4r j∈J(β) f j n | βj,l -β j | fl -f 2 n + 4r M(β) j∈J(β) f j 2 n | βj,l -β j | 2 et 1 n X T (f -X βl ) ∞ 3rf max /2. Par ailleurs M( βl ) 4φ max f -2 min fl -f 2 n /r 2
où φ max est la plus grande valeur propre de X T X/n. Si de plus f j n = 1, j = 1..p, alors avec probabilité au moins 1 -p 1-A 2 /8 , on a

δ J(β) c 1 3 δ J(β) 1 où δ = βl -β.
Proof. La preuve ne sera pas présentée ici (cf. [START_REF] Bickel | Simultaneous analysis of lasso and dantzig selector[END_REF]), les arguments étant similaires à ceux utilisés dans les trois premiers points des preuves de convergence des estimateurs Lasso dans le cadre paramétrique, à la différence que l'on travaille sur les ensembles

A = p j=1 {2|V j | r n,j } où r n,j = r f j n et V j = n -1 n i=1 f j (Z i )ε i pour 1 j p.

Inégalité oracle pour l'erreur de prédiction

Nous allons maintenant présenter l'inégalité oracle pour la prédiction qui peut être établie pour le Lasso. Il s'agit pour cela de comparer l'erreur de prédiction du Lasso à celle de la meilleure fonction de régression parcimonieuse donnée par un oracle.

Théorème 1.4.1. Soit ε > 0 et 1 s p. Supposons que RE(s, (3 + 4/ε)f max /f min ) soit satisfait. Soit r = Aσ log p n où A > 2 √ 2. Alors, avec probabilité au moins 1 -p 1-A 2 /8 fl -f 2 n (1 + ε) inf β:M(β) s f β -f V ert 2 n + C(ε)f 2 max A 2 σ 2 κ 2 M(β) log p n où κ = κ(s, (3 + 4/ε)f max /f min ).
Proof. Voir [BRT09] pour les détails.

On notera que l'on a une borne qui est un produit de deux facteurs modulo une constante.

• sσ 2 /n qui correspond à l'erreur dans la prédiction avec s paramètres.

• f 2 max κ 2 (s, 1) log p qui peut être vu comme le prix à payer lorsque l'on a un grand nombre de régresseurs. On remarquera que lorsque 1 n X T X est égale à la matrice identité il ne reste plus que log p.

On retrouve bien sûr le cas de la régression linéaire paramétrique en considérant [START_REF] Ravikumar | Sparse additive models[END_REF] ont mené des travaux portant sur l'utilisation de la pénalité Group Lasso en combinaison avec des splines et tout cela appliqué à des modèles additifs en grande dimension. Les covariables sont représentées par leur développement en bases de splines et ces bases de fonctions sont ensuite assimilées à des groupes dans la pénalité Group Lasso. Cette généralisation permet notamment d'étendre le modèle linéaire à des effets non linéaires plus complexes entre les covariables. Huang et al. ont ainsi montré que sous certaines conditions l'on pouvait prouver la consistance d'un tel estimateur en terme à la fois d'estimation et de prédiction.

f β 2 n = Xβ 2 2 /n, f β -fl 2 n = X( βl -β) 2 2 /n.

Mise en pratique du Lasso 1.5.1 Choix du paramètre de régularisation

Le Lasso, comme toutes les méthode de régularisation, dépend d'un paramètre de réglage qui contrôle la complexité du modèle. Il est fondamental dans la pratique de bien calibrer le choix de ce paramètre qui contrôle le nombre de variables à inclure dans le modèle tout autant qu'il quantifie le biais sur les coefficients estimés. Il s'agit donc de trouver le bon équilibre entre le terme de pénalité et les résidus des moindres carrés. Un β grand peut donner un meilleur résidus mais peut aussi induire un terme de pénalité très grand. C'est pourquoi il est souvent préférable d'avoir des coefficients petits quitte à avoir un résidu un peu plus important. Il existe plusieurs façons de choisir le paramètre qui dépendent essentiellement du but que l'on s'est fixé au travers de l'analyse de ces données.

Si par exemple l'objectif premier est la sélection de variables alors des approches similaires à celles basées sur les critères AIC (Akaike information criterion) et BIC (Baysesian information criterion) peuvent être utilisées [START_REF] Bühlmann | Statistics for High-Dimensional Data : Methods, Theory and Applications[END_REF]. Il s'avère aussi parfois que l'on a un a priori sur le nombre de variables actives à sélectionner [WCH + 09]. Dans ce cas, le choix du CHAPITRE 1. GRANDE DIMENSION ET PARCIMONIE paramètre est simple et correspond au modèle qui inclus ce nombre là de variables. Une autre méthode consiste à perturber les données par sous échantillonnages successifs des données. Les variables sélectionnées sont celles qui se retrouvent dans une grande portion des variables sélectionnées pour chaque sous échantillons [START_REF] Meinshausen | Stability selection[END_REF].

Mais si par exemple le but est la prédiction, le paramètre de régularisation devra être choisi de façon à trouver le meilleur équilibre entre biais et variance et ce afin de minimiser l'erreur de prédiction. L'outil le plus utilisé dans ce cas est la validation croisée. Pour ce faire, généralement les données sont découpées en K sous ensembles. Pour chaque valeur fixée du paramètre de pénalité λ, le procédé est le suivant. A chaque fois un des sous-ensembles est laissé de côté et les autres sont utilisés pour estimer le paramètre d'intérêt β * du modèle. L'erreur de prédiction est ensuite calculée sur l'ensemble des données restantes qui n'ont pas servi à l'estimation. L'erreur de prédiction pour une valeur fixé de la pénalité est alors calculée en effectuant la moyenne sur l'ensemble des échantillons

CV (λ) = 1 n K k=1 i∈G k Y i -Ŷ -k i (λ)

Implémentation

Contrairement à la régression Ridge, les solutions du Lasso ne sont pas explicites. Le problème d'optimisation se réduit alors à un problème d'optimisation convexe sous contraintes qui est généralement résolu par l'emploi d'algorithmes quadratiques [FHH + 07]. La grande dimension nécessite quand même l'emploi de calculs efficaces. L'algorithme LARS [EHJ + 04], qui est l'un des plus utilisé en pratique, exploite le caractère linéaire par morceaux des trajectoires des coefficients du Lasso et fournit ainsi un algorithme simple et efficace d'estimation. Une autre méthode qui rentre en compétition avec LARS est celle basée sur un algorithme de descente de coordonnées [FHH + 07], [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF]. Cet algorithme très simple prouve sa rapidité et son efficacité sur de grands jeux de données comparé à l'algorithme LARS. Voici un résumé des différentes méthodes de régression pénalisés qui ont été implémentées sous le logiciel R.

1. Régression linéaire avec Ridge : lm.ridge (package MASS) 2. Régression linéaire avec le Lasso : lars et cv.lars (package LARS) 3. Régression linéaire avec l'Elastic Net : glmnet (package GLMNET) 4. Régression linéaire avec le Group Lasso : grplasso (package GRPLASSO). Attention ce package est expérimental et nécessite d'être prudent quand à son utilisation, notamment dans le cas où on l'utiliserait dans un cadre autre que celui gaussien.

5. Régression pénalisée (Ridge et Lasso) avec une procédure de type validation croisée : package PENALIZED.

1.6 Généralisation du Lasso

Comparaison avec le sélecteur Dantzig

Le sélecteur Dantzig introduit par Candes et Tao en [START_REF] Candes | The dantzig selector : statistical estimation when p is much larger than n[END_REF] est défini par

CHAPITRE 1. GRANDE DIMENSION ET PARCIMONIE βd ∈ argmin β∈R p β 1 : 1 n X T (Y -Xβ) ∞ c
où c > 0, que l'on peut exprimer de façon équivalente sous la forme

β = argmin β∈R p X T (Y -Xβ) ∞ +λ β 1 .
Remarque -Le problème ci-dessus est aussi un problème d'optimisation convexe qui peut être résolu par à l'aide de programmes informatiques efficaces.

-Par définition du sélecteur Dantzig et de la contrainte satisfaite par le Lasso (voir Lemme 1.2.3), on a βd 1 βl 1 pour une même valeur du paramètre λ.

-On choisira λ de sorte que la cible

β * soit admissible (c'est à dire vérifie 1 n X T (Y - Xβ * ) ∞ λ). Regardons sur un exemple simple à quoi cela peut correspondre. Sup- posons que ε ∼ N (0, σ 2 I n ). Au point β * , Y -Xβ * = ε d'où X T (Y -Xβ * ) ∼ N (0, σ 2 X T X).
Si l'on suppose en plus que les X i ont une norme euclidienne égale à un alors en prenant λ = σ 2 log p n , on en déduit que β * est admissible avec grande probabilité en utilisant les propriétés de concentration des lois gaussiennes [START_REF] Candes | The dantzig selector : statistical estimation when p is much larger than n[END_REF].

Limites du Lasso et pénalités dérivées

Lorsque p > n, le Lasso sélectionne au plus n variables avant de saturer. Par ailleurs, s'il existe un groupe de variables parmi lequel les corrélations sont très fortes, le Lasso a tendance à sélectionner seulement une variable de ce groupe. D'autres estimateurs de la forme

β = argmin β∈R p 1 n Y -βX 2 2 + J λ (β)
ont été proposés pour essayer de contourner certains effets indésirables de l'estimateur Lasso. Nous pouvons ainsi citer l'Adaptative Lasso [Zou06]

J λ (β) = λ p j=1 | β j | | βj | γ
où βl j est un estimateur initial de β * j et γ > 0. C'est une procédure en deux étapes où la pénalité du Lasso est remplacée par une pénalité qui est pondérée par la taille d'un estimateur initial des coefficients. Zou [START_REF] Zou | The adaptive lasso and its oracle properties[END_REF] suggère d'initialiser l'estimateur par celui des moindres carrés ordinaires et a montré que lorsque l'estimateur initial est consistent, l'Adaptative Lasso est capable d'identifier le vrai modèle de façon consistante et l'estimateur obtenu se comporte presque aussi bien que l'oracle. En grande dimension, Bühlmann et van de Geer [START_REF] Bühlmann | Statistics for High-Dimensional Data : Methods, Theory and Applications[END_REF] suggère d'initialiser l'estimateur avec celui Lasso. L'idée principale est de seuiller un peu moins les grands coefficients et un peu plus les plus petits de la solution Lasso afin d'obtenir un estimateur moins biaisé et une meilleure sélection de variables.

Comme nous l'avions aussi évoqué dans l'introduction, en génomiques nous avons souvent à faire à des groupes de variables associées à des gènes qui coopèrent ensemble dans un processus métabolique. Ces variables associées à un même groupe sont généralement fortement corrélées entre elles. Il s'agit alors de considérer non plus des variables séparément mais des groupes de variables et d'être capable de sélectionner ces groupes pertinents qui affectent ensemble et de la même manière la réponse. Une première réponse a été apportée par l'Elastic CHAPITRE 1. GRANDE DIMENSION ET PARCIMONIE net ; Il s'agit d'une alternative au Lasso proposée par Zou en 2005 [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF]. La pénalité prend la forme suivante

J λ (β) = λ p j=1 α | β j | +(1 -α) | β j | 2 = λ α β 1 +(1 -α) β 2 2 .
C'est un mélange entre la pénalité Lasso et celle Ridge. Cet estimateur permet, tout en seuillant, de favoriser les effets de groupe des variables et de contrecarrer ainsi un défaut du Lasso qui a tendance à sélectionner une variable au hasard dans un groupe de variables fortement corrélées et à oublier les autres. Une autre méthode proposée par Tishirani et al. en 2005 [TSR + 05] est le Fused Lasso qui prend en compte l'ordre des variables et encourage la parcimonie, à la fois dans les coefficients et dans leurs différences, incitant ainsi à donner un même poids aux variables correspondant à un même groupe significatif et à mettre les autres à zéros. La pénalité est dans ce cas construite de la façon suivante

J λ (β) = λ p j=1   α p j=1 | β j | +(1 -α) p j=2 | β j -β j-1 |   .
Enfin en 2006, Yuan et Lin [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF] ont suggéré l'estimateur Group Lasso. Cet estimateur est bien adapté lorsque l'on a une connaissance a priori des groupes car il permet de prendre en compte ces groupes de variables. La pénalité prend la forme indiquée ci-dessous

J λ (β) = G g=1 d g β g 2 . où β = (β 1 1 , ..., β 1 d 1 β 1 , β 2 1 , ..., β 2 d 2 β 2 , ..., β G 1 , ..., β G d G β G
) est divisé en G groupes de taille respective

(d g ) 1≤g≤G .
Il s'agit d'une généralisation du Lasso à des groupes de variables, dans le sens où les coefficients correspondant à un même groupe seront soit tous mis à zéro soit tous non nuls. On retrouve d'ailleurs l'estimateur Lasso lorsque l'on considère des groupes de taille égale à un.

Chapitre 2

Oracle inequalities for a Group Lasso procedure applied to generalized linear models 

Overview of the thesis contribution to Part I

This Chapter is based on the paper entitled "Oracle inequalities for a Group Lasso procedure applied to generalized linear models" [START_REF] Blazere | Oracle inequalities for a group lasso procedure applied to generalized linear models in high dimension[END_REF] published in IEEE Transaction on Information Theory.

The regression model the most commonly used and the most widely encounter is the standard linear model which assumes that the conditional mean of the response Y is a linear function of the covariates, with a gaussian error. However, when processing data in biology others commonly used probability distributions are for instance the binomial distribution (when the response variable is binary) or the Poisson distribution (to describe the count of the number of random events). These two distributions, as well as the normal distribution, belong to a wider family of distributions. This is the exponential family of distributions (see Appendix A.2) whose densities are of the form

f (y, θ) = exp(yθ -ψ(θ))
where 1. F denotes the probability distribution.

θ ∈

Θ := {θ ∈ R : exp(θx)F (dx) < ∞} is the canonical parameter. 3. ψ(θ) := log(M (θ)), where M (θ) := exp(θx)F (dx) (θ ∈ Θ ).
This family includes most of the commonly used distributions like the normal, gamma, Poisson or binomial distribution and many other ones. In this chapter, we focus on generalized linear models [START_REF] Mccullagh | statistics and applied probability 37[END_REF] that are a generalization of Gaussian linear models in that sense that the conditional distribution of the response variable is any distribution of the exponential family. In other words, we assume that the conditional distribution

Y |X = x satisfies dP dF (Y |β * , x) = exp(yβ * T x -ψ(β * T x)),
with β * T x ∈ Θ. The function ψ is called the link or normalized function This function specifies how the conditional expectation is connected to the linear function that depends on the unknown parameter of interest β * . This link function belongs to a restricted set of bijective and differentiable functions.

As in the classical case, we have observations that are i.i.d. copies of (X, Y ) and we aim at finding the best estimate of the target parameter β * . The objective function of the classical Lasso can be naturally extended by replacing the least squares by the empirical negative log-likelihood

P n l(β) := 1 n n i=1 -Y i β T X i + ψ(β T X i ) .
In addition, we consider a model where the predictors have a group structure i.e. X is structured into G n groups (depending on the number of observations n) each of size d g for g ∈ {1, ..., G n }. For i = 1, ..., n, we set

X i = (X 1 i , ..., X g i , ..., X Gn i ) T where X g i = (X g i,1 , ..., X g i,dg ) T
and Gn g=1 d g = p. For instance, in genetics the variables are genes expression and it is natural to have a group structure of the genes because genes do not work alone but in groups. So it is important to be able to select not only genes but groups of genes.
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In this part, we still consider a high-dimensional setting. But, because we have a group structure of the covariates, it is the number of groups G n that is assumed to be much larger than n. To avoid the curse of dimensionality, we made a group sparsity assumption on β * . This is a kind of reduction of dimension because we assume that the number of non-zero groups H * is small compared to n (a few groups are active, the rest are zero). Of course we do not know where are these relevant groups. Since the target parameter has a group structure, the estimator we consider takes into account this particular feature of the data. This is the Group Lasso estimator defined, in the case of generalized linear models, by

βn = argmin β∈Λ {P n l(β) + r n β R } where the norm . R refers to . R := Gn g=1 s(d g ) β g
2 and r n is the tuning parameter.

This type of penalty was first introduced by Yuan and Lin [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF]. It consists in penalizing the log-likelihood by the sum of the l 2 norm of the groups of variables. The weights depend on the size of the groups to penalized more heavily groups of large size. The parameter r n controls the complexity of the model. An increase of the penalty parameter means that some blocks become zero and thus groups of predictors drop out of the model at the same time. Notice that if all the groups are of size one then we recover the Lasso estimator. In fact the Group Lasso estimator acts like the Lasso but at a group level.

We can notice that the objective function above is the sum of a particular loss function P n l(β), that is convex and based on the exponential family, with a weighted regularizer represented by . R . This type of convex optimization problem is referred as a regularized Mestimator in a paper of Negahban et al. [START_REF] Sahand N Negahban | A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers[END_REF]. It should be noticed that the framework in [START_REF] Sahand N Negahban | A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers[END_REF] generalize the one presented in this chapter. Under decomposability of the regularizer and under the Restricted Strong Convexity assumption, Negahban et al. proved convergence rates for general models. When we began to work on the Group Lasso applied to generalized model, this work was not yet published and our approach has been independently conducted. But, then we have compared the two approaches that rely on similar notions and ideas. The results stated in this chapter are more precise than those of [START_REF] Sahand N Negahban | A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers[END_REF] because we consider a more precise and restricted framework that enables to go in more detail into the quantities of interest. The conditions to prove Corollary 3 on the Lasso in [START_REF] Sahand N Negahban | A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers[END_REF] are more restrictive than ours. In our work, these conditions are quite relaxed. Negahban et al. assume that the distribution of the response Y based on a predictor x is given by

dP dF (Y |X; β * ) = exp(yβ * T X -ψ(β * T X))
with X ∞ ≤ A and |Y | ≤ B, while in our work we do not make this last assumption on the boundedness of the response. They also assume that ψ is lower bounded on a suitable set. The generalized linear model is discussed under a sub-Gaussian tails assumption for the covariates (warranting Restricted Strong Convexity) but under a stronger assumption than our condition St(3, ε n ). Furthermore the choice of the tuning parameter is not clearly stated because in Theorem 1 of [START_REF] Sahand N Negahban | A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers[END_REF] good statistical properties of the estimator, is given. In addition we extend the study to the Group Lasso and we also provide oracle inequalities for the prediction error.

The Group Lasso has been studied by Lounici et al. [START_REF] Lounici | Oracle inequalities and optimal inference under group sparsity[END_REF] in a Gaussian setting and by Buhlman et al. [MVdGB + 09] for logistic regression. But, contrary to the Lasso there is not a wide literature on the subject. The aim of this chapter is to generalize these known results to any distribution from the exponential family, by studying the estimation and prediction properties of the Group Lasso applied to generalized linear models. To ensure good statistical properties of the estimator, we need in addition to the sparsity assumption, a condition on the design and more particularly on the correlations between predictors. This is referred as the Group Stabil condition, so called because it is an extension to groups of the Stabil condition. This condition was first introduced by Bunea [Bun08] for the Lasso applied to logistic regression. The Group Stabil condition assume that there exists

0 < k < 1 such that δ T Σδ k g∈H * δ g 2 2 -ε for any δ ∈ S(c 0 , ε) where S(c 0 , ε) is a specific restricted subset of R p . S(c 0 , ε) =    δ : g∈H * c d g δ g 2 c 0 g∈H * d g δ g 2 + ε    ,
where c 0 is some constant and ε > 0. This condition is similar to the restricted eigenvalue condition introduced by Bickel et al. [START_REF] Bickel | Simultaneous analysis of lasso and dantzig selector[END_REF]. Notice that we could also have considered generalization of other less restrictive conditions such as the mutual coherence presented in Subsection1.3.2 in Chapter I. . Two other assumptions are made on the model. The most restrictive one is the boundedness assumption on the covariates i.e. there exists a constant L > 0 such that X ∞ L a.s. We explain in Section 2.4 why and where we need such an assumption. It is mainly due to the fact that we do not want to make restrictive assumptions on the normalized function ψ. But, in counter part, we assume that the variable X are almost surely bounded in infinite norm by a constant L. As mentioned in Section 2.4, we could replace this assumption by a low tail assumption on the covariates (for instance that the covariates have a subgaussian tail).

Theorem 2.4.6 contains our main contribution and shows that under the Group Stabil condition and for a value of the tuning parameter of the order of log(2G n ) n , we have 

β -β * R = O P γ * log G n n and E X β -Xβ * 2 = O P γ * log G n n
c n := min {|x| L(9B+ 1 n )}∩Θ ψ (x) 2 ≤ min {|x| L(9B+1)}∩Θ ψ (x) 2
where ψ is the function that relates the variance of Y to the linear predictor. Therefore, the constant in the upper bound depends somehow on the conditional variance of Y , for a value
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of the parameter in a neighbourhood of the true one. Theorem 2.4.6 shows the ability of the Group Lasso estimator to recover good sparse approximations of the true generalized linear model for a well chosen value of the penalty parameter. We can also notice the importance of the Group Stabil condition. Since we divide by k, we have to ensure that k is not too close to zero. The number of relevant groups can still be much larger than log G n and the estimator remains consistent. The term √ log Gn is the price to pay for having a large number of factors and not knowing where are the nonzero ones.

Then, under a stronger assumption that consists in assuming the Group Stabil condition for a support equals to twice the number of significant groups, Theorem 2.4.7 provides a better bound for the estimation error in l2-norm. In Subsection 2.4.2, we discuss and analyse these results compared to the ones of the Lasso (see Theorem 2.4.8). We also generalized in Theorem 2.5.2 the results obtained for the Group Lasso penalty to the Elastic net penalty. Finally, we illustrate the result on the Poisson model. Section 2.8 of Chapter 2 is devoted to the proof.

The first step of the proof of the Theorem 2.4.6 consists in proving that, with high probability, the empirical process of the loss function between βn and the true one β * is upper bounded by the penalty parameter r n times their difference according to the penalty norm Gn g=1

d g βg n -β * g
2 . This is Proposition 2.4.5. This proposition relies on concentration inequalities for the empirical process. We first break down the empirical process into a linear part and a part that depends on the normalized parameter ψ

(P n -P) (l(β)) = (P n -P) (l l (β)) + (P n -P) (l ψ (β))
where l l (β) := l l (β, x, y) = -yβ T x and l ψ (β) := l ψ (β, x) = ψ(β T x). Concentration for the linear part relies on Lemma 2.4.2 and allows to apply Bernstein inequalities. For the nonlinear part, more work is required. We first show in Lemma 2.4.4 that we can restrict the study locally to a compact set in the neighbourhood of the target parameter. Notice that, here again, the boundedness assumption on the covariates is required. On this compact set the function we consider is Lipschitzian, so that the Symmetrization and Contraction principle of Ledoux et Talagrand can be appied. These two theorems are important tools when controlling the supremum of random variables and have strong consequences in probability theory and in statistical learning.

Let X 1 , ..., X n be independent random variables with values in some space X and F a class of real-valued functions on X . Theorem : Symmetrization theorem [VdVW96]. Let 1 , ..., n be Rademacher sequence independent of X 1 , ..., X n and f ∈ F. Then

E sup f ∈F n i=1 {f (X i ) -E(f (X i ))} 2E sup f ∈F | n i=1 i f (X i )| .
Theorem : Contraction principle [START_REF] Ledoux | Probability in Banach Spaces : isoperimetry and processes[END_REF]. Let x 1 , ..., x n elements of X and ε 1 , ..., ε n be Rademacher sequence. Consider Lipschitz functions g i . Then for any function f and h in F, we have

E sup f ∈F n i=1 i {g i (f (x i )) -g i (h(x i ))} 2E sup f ∈F n i=1 i (f (x i ) -h(x i )) .
We refer the reader to [VdVW96] and [START_REF] Ledoux | Probability in Banach Spaces : isoperimetry and processes[END_REF] for more details.
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The last step consists in lower bounding the loss function. Once concentration of the loss function around it mean is stated, we have to ensure that the loss function is not too flat, so that if the loss difference between β * and its estimate converge to zero then it ensures that βn converge to β * . Here again, we need the boundedness assumption of the covariates to lower bound the mean deviation of the loss function between the optimal and estimated parameter by a quadratic function. Actually, Proposition 2.8.1 shows that, with high probability, we have

P l( βn ) -l(β * ) c n E X βn -Xβ * 2 with c n := min |x| L(9B+ 1 n ) ψ (x) 2
.

Then, the Group Stabil condition ensures that the loss function satisfies a local strong convexity property. This has been characterized as as common step to ensure good statistical properties of M-regularized estimator [START_REF] Sahand N Negahban | A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers[END_REF].

To highlight that the results stated in Chapter 2 are not weaker than general results in the literature, we summarize the rates of convergence in Table 2.2 and 2.1, where s * denotes the support of the β * . We recover bounds of the same order as the one stated by Lounici [START_REF] Lounici | Oracle inequalities and optimal inference under group sparsity[END_REF] for the Group Lasso in a Gaussian setting. In the case of groups of size one we also recover error bounds of the same order as the ones stated for the Lasso in the literature. 

Article

Introduction

Handling high dimensional data is nowadays required for many practical applications ranging from astronomy, economics, industrial problems to biomedicine. Being able to extract information from these large data sets has been at the heart of statistical studies over the last decades and many papers have extensively studied this setting in a lot of fields ranging from statistical inference to machine learning. We refer for instance to references therein.

For high-dimensional data, classical methods based on a direct minimization of the empirical risk can lead to over fitting. Actually adding a complexity penalty enables to avoid it by selecting fewer coefficients. Using an 0 penalty leads to sparse solutions but the usually non-convex minimization problem turns out to be extremely difficult to handle when the number of parameters becomes large. Hence the 1 type penalty has been introduced to overcome this issue. On the one hand this penalty achieves sparsity of an estimated parameter vector and on the other hand it requires only convex optimization type calculations which are computationally feasible even for high dimensional data. The use of a 1 type penalty, first proposed in [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] by Tibshirani, is now a well established procedure which has been studied in a large variety of models. We refer for example to [START_REF] Bickel | Simultaneous analysis of lasso and dantzig selector[END_REF], [START_REF] Bunea | Honest variable selection in linear and logistic regression models via 1 and 1 + 2 penalization[END_REF], [START_REF] Van De Geer | High-dimensional generalized linear models and the lasso[END_REF], [START_REF] Friedman | Applications of the lasso and grouped lasso to the estimation of sparse graphical models[END_REF], [START_REF] Tarigan | Classifiers of support vector machine type with\ ell1 complexity regularization[END_REF], [START_REF] Zhang | The sparsity and bias of the lasso selection in high-dimensional linear regression[END_REF] and [START_REF] Bühlmann | Statistics for High-Dimensional Data : Methods, Theory and Applications[END_REF].

Group sparsity can be promoted by imposing a 2 penalty to individual groups of variables and then a 1 penalty to the resulting block norms. Yuan and Lin [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF] proposed an extension of the Lasso in the case of linear regression and presented an algorithm when the model matrices in each group are orthonormal. This extension, called the Group Lasso, encourages blocks sparsity. Wei and Huang [START_REF] Wei | Consistent group selection in high-dimensional linear regression[END_REF] studied the properties of the Group Lasso for linear regression, Nardi and Rinaldo [START_REF] Nardi | On the asymptotic properties of the group lasso estimator for linear models[END_REF] established asymptotic properties and Lounici, Pontil, van de Geer and Tsybakov [START_REF] Lounici | Oracle inequalities and optimal inference under group sparsity[END_REF] stated oracle inequalities in linear Gaussian noise under group sparsity. Meir, van de Geer and Bühlmann [START_REF] Meier | The group lasso for logistic regression[END_REF] considered the Group Lasso in the case of logistic regression and Zhang and Huang [START_REF] Zhang | The sparsity and bias of the lasso selection in high-dimensional linear regression[END_REF] studied the benefit of group sparsity. Another important reference is the work of Negahban, Ravikumar, Wainwright and Yu [START_REF] Sahand N Negahban | A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers[END_REF]. In this last paper a unified framework for the study of rates of convergence in high dimensional setting is provided under two key assumptions (restricted strong convexity and decomposability). This work and these two assumptions will be discussed in more details in Section 2. 4.

In this paper we focus on the Group Lasso penalty to select and estimate parameters in the generalized linear model. One of the application is the Poisson regression model. More precisely, we consider the generalized linear model introduced by McCullagh and Nelder [START_REF] Mccullagh | statistics and applied probability 37[END_REF]. Let F be a distribution on R and let (X, Y ) be a pair of random variables with X ∈ R p and Y ∈ R. The conditional law of Y |X = x is modelled by a distribution from the exponential family and the canonical parameter is the linear predictor. Thus the conditional distribution of the observations given

X = x is P (Y |β * , x) = exp(yβ * T x -ψ(β * T x)), where β * T x satisfies exp(yβ * T x)F (dy) < ∞ and ψ is the normalized function. Notice that E(Y |X) a.s = ψ (β * T X) in other words β * T X a.s = h(E(Y |X)) where h = ψ
-1 is the so-called link function. Some common examples of generalized linear models are the Poisson regression for count data, logistic and probit regression for binary data or multinomial regression for categorical data.

The quantities of interest that we would like to estimate are the component (β * j ) 1 j p of β * and for a given x we may also wish to predict the response Y |X = x. A natural field of applications for such models is given by genomics and Poisson regression type models. In particular thousands of variables such as expressions of genes and bacteria can be measured for each animal (mice) in a (pre-)clinical study thanks to the developpement of micro arrays (see, for example, [BB + 99] and [DBC + 99] ). A typical goal is to classify their health status, e.g. healthy or diseased, based on their bio-molecular profile, i.e. the thousands of bio-molecular variables measured for each individual (see for instance [HSC + 97], [Qua06] and [START_REF] Park | Linking gene expression data with patient survival times using partial least squares[END_REF]).

The paper falls into the following parts. In Section 2.3 we describe the model and the Group Lasso estimator for generalized linear models. In Section 2.4 we present the main results on coefficients estimation and prediction error and in Section 2.5 we consider the model in the particular case of a Poisson regression. We also study here the general model in the case of a mixture of an 1 and 2 penalty. The Group Lasso estimator is then used on simulated data sets in Section 2.6 and its performances are compared to those of the Lasso estimator. The Appendix is devoted to the proof of the main theorems.
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Sparse variables selection for generalized linear models 2.3.1 The model

The Exponential family on the real line is a unified family of distributions parametrized by a one dimensional parameter and is widely used for practical modelling. Let F be a probability distribution on R not concentrated on a point and

Θ := θ ∈ R : exp(θx)F (dx) < ∞ . Define M (θ) := exp(θx)F (dx) (θ ∈ Θ) and ψ(θ) := log(M (θ)) (θ ∈ Θ).
Let P (y; θ) = exp(θy -ψ(θ)) with θ ∈ Θ. The densities of probability (related to a measure adapted to the continuous or discrete case) {P (.; θ) : θ ∈ Θ} is called the exponential family.

Θ is the natural parameter space and θ is called the canonical parameter. The exponential family includes most of the commonly used distributions like normal, gamma, Poisson or binomial distributions [START_REF] Mccullagh | statistics and applied probability 37[END_REF].

We consider a pair of random variables (X, Y ) where Y ∈ R and

X ∈ R p such that the conditional distribution Y |X = x is P (Y |β * , x) = exp(yβ * T x -ψ(β * T x)), with β * T x ∈ Θ.
Our aim is to estimate the components (β * j ) 1 j p of β * in order to predict the response Y |X = x conditionally on a given value of x. We assume that • (H.1) : the variable X is almost surely bounded by a constant L i.e. there exists a constant L > 0 such that X ∞ L a.s.

• (H.2) : for all x ∈ [-L, L] p , β * T x ∈ Int(Θ)
and we consider

Λ = β ∈ R p : ∀x ∈ [-L, L] p , β T x ∈ Θ . Let (X 1 , Y 1 ), ..., (X n , Y n ) be i.i.d copies of (X, Y ) where X i = (X i,1 , ..., X i,p ) T for i = 1, ..., n.
We consider the case of high-dimensional regression i.e p n. The log-likelihood for a generalized linear model is given by

L(β) = n i=1 Y i β T X i -ψ(β T X i ) .
We denote the generalized linear model loss function by

l(β) =: l(β; x, y) =: -yf β (x) + ψ(f β (x)), (2.1)
where f β (x) := β T x. Notice that this function is convex in β (as ψ is convex). The associated risk is defined by Pl(β) =: El(β; Y, X) and the empirical risk by P n l(β) where

P n l(β) := 1 n n i=1 -Y i β T X i + ψ(β T X i ) . Obviously β * = argmin β∈Λ Pl(β).

Group Lasso for generalized linear model

Assume that X is structured into G n groups each of size d g for g ∈ {1, ..., G n }. For i = 1, ..., n we set

X i = (X 1 i , ..., X g i , ..., X Gn i ) T where X g i = (X g i,1 , ..., X g i,dg ) T
and Gn g=1 d g = p. This decomposition is often natural in biology and micro arrays data when the covariates are genes expression (see for instance [START_REF] Segal | Regression approaches for microarray data analysis[END_REF] and [W + 01]). We allow the number of groups to increase with the sample size n, so we can consider the case where the sub-vector of β whose indexes correspond to the index set of the g th group of X.

Let us consider the Group Lasso estimator which achieves group sparsity and is obtained as the solution of the convex optimization problem

βn = argmin β∈Λ    P n l(β) + r n Gn g=1 s(d g ) β g 2   
where r n is the tuning parameter.

Here . 2 refers to the Euclidean norm and s is a given function. An increase in r n leads to a diminution of the β g to zero, this means that some blocks become simultaneously zero and groups of predictors drop out of the model. Typically we choose s(d g ) := d g to penalize more heavily groups of large size. Notice that if all the groups are of size one then we recover the Lasso estimator. The Group Lasso achieves variables selection and estimation simultaneously as the Lasso does. The penalty function is the sum of the 2 norm of the groups of variables. Thus the Group Lasso estimator acts like the Lasso at the group level [START_REF] Nardi | On the asymptotic properties of the group lasso estimator for linear models[END_REF], [START_REF] Lounici | Oracle inequalities and optimal inference under group sparsity[END_REF], [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF]. Actually the objective function above is the sum of a particular loss function (which is convex and based on the exponential family) with a weighted regularizer. This type of convex optimization problem is referred as a regularized M-estimator in the paper of Negahban et al. [START_REF] Sahand N Negahban | A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers[END_REF]. We can also notice that the penalty norm satisfies the decomposability condition defined in this last paper.

We study estimation and prediction properties of the Group Lasso in high dimensional settings when the number of groups exceeds the sample size i.e. G n n. Define H * = {g : β * g = 0} the index set of the groups for which the corresponding sub vectors of β * are non-zero and m * := |H * |. Such a set characterizes the sparsity of the model. In the following H * c denotes the index set of the groups which are not in H * . We can notice that H * and m * depend on n but for simplicity we do not specify this dependency. In general, it will be hopeless to estimate all unknown parameters from data except if we make the assumption that the true parameter is group sparse. In this paper we consider that β * is partitioned into a number of groups, in correspondence with the partition of X, only few of which are relevant. The index of group sparsity m * will be discussed more deeply after Theorem 2.4.7. We also assume (H.3) : there exists a constant B > 0 such that Gn g=1

d g β * g 2 B.

Main Results

Bounds for estimation and prediction error

Under some assumptions on the value of the parameter r n and on the covariance matrix of X we are going to show the ability of this estimator to recover good sparse approximation of the true model. To prove oracle inequalities for the Group Lasso applied to generalized linear model we need to state concentration inequalities for the empirical process P n (l(β)) for β ∈ Λ. This step is essential to compute an appropriate lower bound for the regularization parameter that ensures good statistical properties of the estimator with high probability. Notice that this step requires a boundedness assumption on the (X i,j ) (cf. proof of Proposition 2.4.1).

To state concentration inequalities we first break down the empirical process into a linear part and a part which depends on the normalized parameter ψ

(P n -P) (l(β)) = (P n -P) (l l (β)) + (P n -P) (l ψ (β)) where l l (β) := l l (β, x, y) = -yβ T x and l ψ (β) := l ψ (β, x) = ψ(β T x). Define A = Gn g=1 {L g r n /2}
where

L g := 1 d g n n i=1 (Y i X g i -E(Y X g )) 2
for all g ∈ {1, ..., G n } and

B =      sup β: Gn g=1 √ dg β g -β * g 2 M |ν n (β, β * )| r n 2     
where

ν n (β, β * ) := (P n -P) (l ψ (β * ) -l ψ (β)) G n g=1 d g β g -β * g 2 + ε n with M = 8B + ε n and ε n = 1 n .
We assume that G n and n are such that log(2Gn) n 1. The next proposition shows that the event A ∩ B occurs with high probability for some suitable values of the tuning parameter.

Proposition 2.4.1. Let r n AKL C L,B ∨ max {|x| Lκn}∩Θ |ψ (x)|) 2 log(2G n ) n where K is a universal constant, A > √ 2, κ n := 17B + 2 n and C L,B is defined in Lemma 2.4.2. We have P (A ∩ B) 1 -(C + 2d max )(2G n ) -A 2 /2 .
where C is a universal constant.

The proof rests on concentration inequalities and is detailed in the appendix. Indeed inferring a bound for the probability of the events A and B is equivalent to prove concentration inequalities for the linear and non linear part of the empirical process. A concentration inequality for the linear part is derived from Bernstein inequality once the following lemma has been proved. This lemma provides moment bounds for Y .

Lemma 2.4.2. Let (X, Y ) a pair of random variables whose conditional distribution is P (Y ; β * |X = x) = exp(yβ * T x -ψ(β * T x)) and assume assumptions (H.1-3) are fulfilled. For all k ∈ N * there exists a constant C L,B (which depends only on L and B) such that

E(|Y | k ) k!(C L,B ) k .
The boundedness assumption on the components of X is required to prove this lemma. Then, for the non linear part of the empirical process, we use again this assumption to show that we can restrict the study of ψ to a suitable compact set. Since ψ is lipschitzian on this compact set, concentration results for lipschitzian loss functions (see [START_REF] Ledoux | Probability in Banach Spaces : isoperimetry and processes[END_REF]) allow to bound the probability of the event B.

Thus, on the event A which occurs with high probability (see Proposition 2.4.1), we have an upper bound for the linear part of the empirical process (P n -P) l l (β * ) -l l ( βn ) .

Proposition 2.4.3. On the event A

(P n -P) l l (β * ) -l l ( βn ) r n 2 Gn g=1 d g βg n -β * g 2 .
Proof. We have

(P n -P) l l (β * ) -l l ( βn ) = Gn g=1 ( βg n -β * g ) T 1 n n i=1 Y i X g i -E(Y X g ) Gn g=1 d g βg n -β * g 2 1 d g n n i=1 (Y i X g i -E(Y X g )) 2 .
The last bound is obtained by using Cauchy-Schwartz inequality. Then on the event A the proposition follows. Therefore the difference between the linear part of the empirical process and its expectation is bounded from above by the tuning parameter multiplied by the norm (associated to the Group Lasso penalty) of the difference between the estimated parameter and the true parameter β * . We can state a similar result for the non linear part of the empirical process, the key of the proof is based on the fact that the estimator βn is in a neighbourhood of the target parameter β * on the event A B.

Lemma 2.4.4. On the event A B we have Gn g=1

d g βg n -β * g 2 M,
where we recall that M = 8B + ε n and ε n = 1 n .

Then the next proposition provides an upper bound for (P n -P) l ψ (β * ) -l ψ ( βn ) and is directly involved by the definition of B and Lemma 2.4.4.

Proposition 2.4.5. On the event A ∩ B

(P n -P) l ψ (β * ) -l ψ ( βn ) r n 2   Gn g=1 d g βg n -β * g 2 + ε n   .
Once concentration of the loss function around its mean is stated, we have to ensure that the loss function is not too flat in such a way that if the loss difference l( βn ) -l(β * ) converges to zero then βn converges to β * . In this paper such a property holds assuming that the covariance matrix satisfies a Group Stabil condition (see condition below). This condition is closely related to the one of Negahban et al. [START_REF] Sahand N Negahban | A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers[END_REF] called Restricted Strong Convexity property. Notice that in our analysis the boundedness of the covariates is required to prove such a property. In fact, thanks to the boundedness of the covariates, we first bound from below the mean deviation of the loss function by a quadratic function (see Proposition 2.8.1 APPLIED TO GENERALIZED LINEAR MODELS in Appendix A). This first step enables to relate the deviation in the loss to the deviation of the estimated parameter from the true one. Then the Group Stabil condition implies that the loss function satisfies a local strong convexity property. This has been characterized as a common step for convergence of M -estimator (see [START_REF] Sahand N Negahban | A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers[END_REF]). Notice that the boundedness assumption on the components of X is not required to obtain a kind of strong convexity. For example, as stated by Negahban et al., if the covariates have sub-Gaussian tails and if the covariance matrix is positive definite then the loss function satisfies a form of restricted strong convexity property with high probability. However, as noticed above the boundedness assumption is necessary to establish Proposition 2.4.1.

Therefore the key condition to derive oracle inequalities rests on the correlation between the covariates i.e. on the behaviour of the Gram matrix

1 n n i=1 X i X T
i which is necessarily singular when p > n. Meier, van de Geer and Bühlmann [START_REF] Meier | The group lasso for logistic regression[END_REF] proved that the group Lasso is consistent in the particular case of logistic regression and gave bounds for the prediction error under the assumption that E(XX T ) is non singular. In this paper we give sharp bounds for estimation and prediction errors for generalized linear models using a weaker condition similar to the restricted eigenvalue condition (RE) of Bickel, Ritov and Tsybakov [START_REF] Bickel | Simultaneous analysis of lasso and dantzig selector[END_REF]. This condition is quite weaker than the one of Bunea, Tsybakov and Wegkamp [START_REF] Bunea | Aggregation for gaussian regression[END_REF]. In their article Bickel, Ritov and Tsybakov also give several sufficient conditions for RE (which are easier to check). Here we use a condition which is a group version of the Stabil Condition first introduced by Bunea [START_REF] Bunea | Honest variable selection in linear and logistic regression models via 1 and 1 + 2 penalization[END_REF] for logistic regression in the case of an 1 penalty. This condition is similar (within a constant ε) to the condition used by Lounici, Pontil, van de Geer and Tsybakov [START_REF] Lounici | Oracle inequalities and optimal inference under group sparsity[END_REF] to state oracle inequalities for linear regression. For c 0 , ε > 0, we define the restricted set as

S(c 0 , ε) =    δ : g∈H * c d g δ g 2 c 0 g∈H * d g δ g 2 + ε    .
On this set we assume that the covariance matrix satisfies the Group Stabil condition defined below. This condition ensures local strong convexity in a neighbourhood of β * .

Let Σ := E(XX T ) be the p × p covariance matrix.

Definition : Group Stabil condition Let c 0 , ε > 0 be given. Σ satisfies the Group Stabil condition GS(c 0 , ε, k) if there exists 0 < k < 1 such that δ T Σδ k g∈H * δ g 2 2 -ε for any δ ∈ S(c 0 , ε).
Before going any further we have to define two norms that are used to control the estimation error. For all z ∈ R p , let

z R := Gn g=1 d g z g 2 and z 2,1 := Gn g=1 z g 2 .
The norm . R is called the regularizer norm.

We are now able to state the main result of this paper which provides meaningful bounds for the estimation and prediction error when the true model is sparse and log(G n ) is small as compared to n.

Let γ * := g∈H * d g . We recall that

κ n := 17B + 2 n . CHAPITRE 2. ORACLE INEQUALITIES FOR A GROUP LASSO PROCEDURE APPLIED TO GENERALIZED LINEAR MODELS Theorem 2.4.6. Assume condition GS(3, 1 2n , k) is fulfilled. Let r n AKL C L,B ∨ max {|x| Lκn}∩Θ |ψ (x)|) log(2G n ) n
where A > √ 2, K is a universal constant and C L,B is defined in Lemma 2.4.2. Then, with probability at least 1 -(C + 2d max )(2G n ) -A 2 /2 (where C is given in Proposition 2.4.1), we have

βn -β * R 4 c n k r n γ * + 1 + 1 r n 1 2n , βn -β * 2,1 4 c n k √ d min r n γ * + 1 + 1 r n 1 2n √ d min and E βT n X -β * T X 2 16 c 2 n k r 2 n γ * + 2r n + 1 2c n n .
where

c n := min {|x| L(9B+ 1 n )}∩Θ ψ (x) 2 .
Notice that c n > 0 since the measure associated to the distribution F is not concentrated on a point.

These results are similar to those of Nardi and Rinaldino [START_REF] Nardi | On the asymptotic properties of the group lasso estimator for linear models[END_REF] who proved asymptotic properties of the Group Lasso estimator for linear models. We can notice that if γ * = O(1) then the bound on the estimation error is of the order O log Gn n and the Group Lasso estimator still remains consistent for the 2,1 -estimation error and for the 2 -prediction error under the Group Stabil condition if the number of groups increases almost as fast as O(exp(n)). The term √ log G n is the price to pay for having a large number of factors and not knowing where are the non zero ones.

Since βn -β * 2 ≤ βn -β * 2,1 , we also have

βn -β * 2 4 c n k √ d min r n γ * + 1 + 1 r n 1 2n √ d min .
However, a sharper bound for the l 2 -norm of the estimation error holds but under a stronger assumption than GS(3, 1 2n , k).

Theorem 2.4.7. Assume GS(2m * , 3, 1 2n , k ) i.e there exists 0 < k < 1 such that

δ T Σδ k g∈J δ g 2 2 - 1 2n
for any δ such that g∈J c d g δ g 2 3 g∈J d g δ g 2 + 1 2n and J such that |J| ≤ 2m * . Then we have with probability at least 1 - 

(C + 2d max )(2G n ) -A 2 /2 βn -β * 2 2 10 d max d min 16 k 2 c 2 n r 2 n γ * + 2r n + 1 2k c n n + 1 2k n . CHAPITRE 2.
d g βg n -β * g 2 3 g∈J * d g βg n -β * g 2 + 1 2n .
Therefore on one hand, using assumption GS(2m * , 3, 1 2n , k ), we deduce

k g∈J * βg n -β * g 2 2 ≤ E βT n X -β * T X 2 + 1 2n (2.3)
and on the other hand, by the same arguments as those used in the proof of Theorem 2.4.6 to state Equation (2.14), we have

E βT n X -β * T X 2 16 c 2 n k r 2 n γ * + 2r n + 1 2nc n . (2.4)
From equation (2.3) and equation (2.4) we conclude

g∈J * βg n -β * g 2 2 16 k 2 c 2 n r 2 n γ * + 2r n + 1 2k c n n + 1 2k n . (2.5)
Finally inequalities (2.2) and (2.5) conclude the proof. The convergences rates obtained in Theorem 2.4.6 and Theorem 2.4.7 are exactly of the same order as the ones stated by Lounici and al. [START_REF] Lounici | Oracle inequalities and optimal inference under group sparsity[END_REF] for the Group Lasso in a Gaussian setting. The oracle inequality stated in Theorem 2.4.7 shows that the l 2estimation error is bounded by O γ * log Gn n under GS(2m * , 3, 1 2n , k ). Therefore, in the case of finite size groups, m * still could be much larger than log G n and the estimator remains consistent. We can also notice that the number of samples required in order that the prediction and estimation error (with respect to the l 2 norm) goes to zero is almost of the order of

O (γ * log G n ).
As mentioned above the group structured norm satisfies the decomposability property (see [START_REF] Sahand N Negahban | A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers[END_REF]). Furthermore, under the assumptions made, the loss function satisfies a local restricted strong convexity property. According to Negahban et al., these properties are two important conditions that ensure good statistical properties of M-estimators. This is especially true for the Group Lasso applied to generalized linear model as shown in Theorem 2.4.6 and Theorem 2.4.7. Indeed, these two theorems demonstrate the ability of the Group Lasso to recover good approximation of the true model for sparse generalized linear models under the Group Stabil condition.

Lasso for generalized linear models

When each group is of size one we recover the Lasso estimator

βn = argmin β∈Λ {P n l(β) + 2r n β 1 }
where β 1 = n j=1 |β j |. Thus following step by step the proof of Theorem 2.4.6 we can easily deduce bounds for estimation and prediction error for the Lasso estimator in the case of generalized linear models. Notice that the l 2 -estimation error of the Lasso applied to GLMs was first studied by Negahban and al. (see [NRWY] and [START_REF] Sahand N Negahban | A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers[END_REF]). The Lasso is a special case of the Group Lasso where γ * = s * with s * := |I * | = j : β * j = 0 and G n = p. We still consider high-dimensional data i.e. n p and sparsity assumption on the target β * i.e. s * p and we assume (H.1-3) except that for (H.3) we consider the 1 norm i.e. β * 1 B. The condition GS in this case requires the existence of [START_REF] Bunea | Honest variable selection in linear and logistic regression models via 1 and 1 + 2 penalization[END_REF]. We also define condition St(2s * , c 0 , ε, k ) i.e there exists 0 < k < 1 such that δ T Σδ k j∈J δ 2 j -ε for any δ which satisfies

0 < k < 1 such that δ T Σδ k j∈I * δ 2 j -ε for any δ ∈ S(c 0 , ε) = δ ∈ R p : j∈I * c |δ j | c 0 j∈I * |δ j | + ε . We recover the Stabil condition St(c 0 , ε, k) of
j∈J c |δ j | c 0 j∈J |δ j | + ε and J such that |J| ≤ 2s * . Theorem 2.4.8. Assume condition St(3, 1 2n , k) is fulfilled. Let r n AKL C L,B ∨ max {|x| Lκn}∩Θ |ψ (x)| log(2p) n
where A > √ 2 and C L,B depends only on L and B. We have, with probability at least 1 -

C(2p) -A 2 /2 (where C is a universal constant), βn -β * 1 4 c n k r n s * + 1 + 1 r n 1 2n and E βT n X -β * T X 2 16 c 2 n k r 2 n s * + 2r n + 1 2nc n . Furthermore if St(2s * , 3, 1 2n , k ) holds then we have βn -β * 2 2 10 d max d min 16 k 2 c 2 n r 2 n s * + 2r n + 1 2k c n n + 1 2k n , with c n := min {|x| L(9B+ 1 n )}∩Θ ψ (x) 2 .
Proof. The proof of Theorem 2.4.8 follows the same guidelines as the one for the Group Lasso. The main difference comes from concentration inequalities for the linear and log Laplace transform part of the loss function, leading to simpler bounds.

This result extends the one of Bunea [START_REF] Bunea | Honest variable selection in linear and logistic regression models via 1 and 1 + 2 penalization[END_REF] for logistic regression to generalized linear model and states convergence rates for the estimation and prediction error. The error bounds presented in Theorem 2.4.8 are of the same order as the ones stated by Bickel, Ritov and Tsybakov [START_REF] Bickel | Simultaneous analysis of lasso and dantzig selector[END_REF] in their analysis of the properties of the Lasso for standard linear models. We can also notice that in [NRWY] Negahban and al. obtained bounds for the l 2 -estimation error of the Lasso applied to GLMs of the same order as the one we get but under stronger conditions. In fact they assume that the distribution of the response Y based on a predictor X is given by

P (Y |X; β * ) = exp(Y β * T X -ψ(β * T X))
with |X| ≤ A and |Y | ≤ B and that ψ is bounded from below on a suitable set. In our work we do not make these two last assumptions. The restricted eigenvalue property they use is also slightly stronger than St(3, ε n , k). In addition we establish oracle inequalities for the prediction error. The bounds in Theorem 2.4.8 are meaningful if r n is small (in particular if n log(p))

and s * is small. Indeed, the bound on the l 1 -estimation error is of the order of O s * log p n .

CHAPITRE 2. ORACLE INEQUALITIES FOR A GROUP LASSO PROCEDURE APPLIED TO GENERALIZED LINEAR MODELS

We can also notice that the minimum number of samples required to make the l 2 -estimation and prediction error decrease to zero is of the order of O (s * log p).

Then a relevant issue is the benefit of the Group Lasso over the Lasso. To understand better the power of a group structured estimator when the covariates have a group structure we refer to Huang and Zhang [START_REF] Huang | Variable selection in nonparametric additive models[END_REF]. In this paper the authors investigate the benefit of sparsity with group structure compared to the usual Lasso. They develop a concept called strong group sparsity which means that the signal β * is efficiently covered by grouping. They showed that the Group Lasso is better than the usual Lasso for strongly group sparse data in the case of a standard linear model (see also [START_REF] Lounici | Taking advantage of sparsity in multi-task learning[END_REF]). Comparing Theorem 2.4.6 and Theorem 2.4.8 we see that an important improvement over the Lasso is given when the number of non-zero groups is much smaller than the total number of non-zero coefficients. Actually when the number of covariates increases this estimator removes completely the effect of the number of predictors. Indeed if we assume that the maximum size of the groups is finite then the estimation error for the Group Lasso depends only on the total number of groups G n and on the number of significant groups m * . Besides the prediction error for the Lasso is of the order of O(s * log p n ) whereas it is of the order of O(m * log Gn n ) for the Group Lasso. Therefore if β * has a group structure this is a meaningful improvement when p is large and the number of groups G n is much more smaller. Notice this comparison must be tempered by the fact that the two estimators require different conditions on the covariance matrix. In fact for a same data set there is not a condition which is weaker and implies the other. We also refer to the simulations in Section 2.6 that show some of the benefit of the Group Lasso over the Lasso when the covariates have a group structure in term of estimation and prediction error.

Applications and extensions 2.5.1 Group Lasso for Poisson regression

Sparse logistic regression has been widely studied in the literature (see, for example, [START_REF] Bunea | Honest variable selection in linear and logistic regression models via 1 and 1 + 2 penalization[END_REF] and [START_REF] Meier | The group lasso for logistic regression[END_REF]) but not the Poisson one for a sparse model. This last model is also very useful for many practical applications. For instance it is used to model count data and contingency tables. Poisson models are a special case of generalized linear models where the conditional law of Y given X = x has a Poisson distribution with parameter λ * (x) := exp(β * T x). Therefore the conditional mean for Poisson regression is modelled by E(Y |X = x) = exp(β * T x). Thus the normalized function ψ is the exponential function and is defined on R. For this special link function we are going to specify the constants which appear in Theorem 2.4.6. The log-likelihood based on the observations is given by

L(β) = n i=1 Y i β T X i -exp(β T X i ) -log(Y i !)
and thus the Poisson loss function is defined by

l(β) =: l(β; x, y) =: -yβ T x + exp(β T x).
It is formula (2.1) with ψ = exp. In the particular case of Poisson regression the conditional law is defined by Y |X ∼ P (λ * (X)) and the higher moments for a Poisson distribution are given by [START_REF] Katriel | On a generalized recurrence for bell numbers[END_REF]). So we can easily prove by induction that B k k! for all k 1. Then we have on the event {0 λ * (X) < 1}

E Y k |X = k l=1 (λ * (X)) l S l:k CHAPITRE 2. ORACLE INEQUALITIES FOR A GROUP LASSO PROCEDURE APPLIED TO GENERALIZED LINEAR MODELS where S l:k = 1 l! l i=0 (-1) l-i l i i k 0 is
E Y k = E k i=1 (λ * (X)) i S i:k k i=1 S i:k k!
and on the event {1 λ * (X)} using (H.1) combined with (H.3) we find

E Y k = k i=1 S i:k E (λ * (X)) i k!(e LB ) k
Because e LB 1 we deduce that for all k 1

E|Y | k k!(e LB ) k .
Thus for Poisson regression we have C L,B = e LB . Besides max

|x| Lκn |ψ (x)| = e Lκn and min |x| L(9B+ 1 n ) ψ (x) 2 = 1 2 e -L(9B+ 1 n )
where we recall that κ n := 17B + 2 n . Therefore, in the case of Poisson regression, Theorem 2.4.6 becomes

Corollary 2.5.1. Let c n := 1 2 e -L(9B+ 1 n ) . Assume that condition GS(3, 1 2n , k) holds. If r n AKLe L(17B+ 2 n ) log(2G n ) n with A > √ 2 then, with probability at least 1 -(C + 2d max )(2G n ) -A 2 /2 , we have βn -β * R 4 c n k r n γ * + 1 + 1 r n 1 2n , βn -β * 2,1 4 c n k √ d min r n γ * + 1 + 1 r n 1 2n √ d min and E βT n X -β * T X 2 16 c 2 n k r 2 n γ * + 2r n + 1 2nc n . Furthermore if condition GS(2m * , 3, 1 2n , k ) holds, then βn -β * 2 2 d max d min 160 1 k 2 c 2 n r 2 n γ * + 5 2r n + 1 k c n n + 10 1 2k n .

Elastic net for generalized linear models

The most difficult part of the proof of Theorem 2.4.6 is to prove Proposition 2.4.1. Once this proposition has been proved it becomes easy to generalize the results presented above to any standard penalization using a modified version of the condition GS (depending on the norm we use). For example we can replace the 1 norm by a combination of 1 and 2 norms. It is the so-called Elastic net introduced by Zou, Trevor and Hastie [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF] in the frame of linear regression. They showed that this estimator outperforms the Lasso in many situations for real world data and simulations. It is an alternative to the Group Lasso (the Elastic net has CHAPITRE 2. ORACLE INEQUALITIES FOR A GROUP LASSO PROCEDURE APPLIED TO GENERALIZED LINEAR MODELS a behaviour similar to the one of the Group Lasso estimator). As the Lasso does, the Elastic net encourages sparsity and group selection but contrary to the Lasso when the sample size n is smaller than p the Elastic net can select more than n significant variables. This estimator is the solution of a convex optimization problem. Zou, Trevor and Hastie in [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF] proposed an algorithm to solve this problem. The Elastic net estimator for the generalized linear model is defined by βn = argmin β∈Λ

P n l(β) + 2r n β 1 + t n β 2 2 (2.6)
where r n and t n are the penalty parameters. Theorem 2.5.2 is an extension of the results first proved by Bunea [Bun08] in the special case of logistic regression. Let 2t n B = r n . We have the following theorem Theorem 2.5.2. Assume condition St(4, 1 2n , k) holds. Let

r n AKL C L,B ∨ max {|x| L(17B+ 2 n )}∩Θ |ψ (x)| log(2p) n
where A > √ 2 and C L,B depends only on L and B. Then, with probability at least 1 -C(2p) -A 2 /2 (where C is a universal constant), we have

βn -β * 1 (2.5) 2 t n + c n k r n s * + 1 + 1 r n 1 2n and E βT n X -β * T X 2 2(2.5) 2 c n k(t n + c n k) r 2 n s * + 2r n + 3 2c n n .
where

c n := min {|x| L(9B+ 1 n )}∩Θ ψ (x) 2
.

We can notice that thanks to the 2 penalty the bound for the 1 and 2 errors are less sensitive to small value of k and small value of c n (which can appears when L or B are large).

Simulations

We are going to compare the performances of the Lasso and Group Lasso for Poisson Regression on simulated data sets. Computations have been performed using R. We use the package grplasso developed by Meir, van de Geer and Buhlmann [START_REF] Meier | The group lasso for logistic regression[END_REF] for the Group Lasso and the package glmnet developed by Friedman, Hastie and Tibshirani [START_REF] Friedman | Applications of the lasso and grouped lasso to the estimation of sparse graphical models[END_REF] for the Lasso. The function glmnet fits the entire lasso regularization path for some generalized linear model via penalized maximum likelihood. We use this function in the particular case of Poisson regression. The function grplasso fits the solution of a Group Lasso problem for a model of type grpl.model which generates models to be used for Group Lasso algorithm and identify the exponential family of the response and the link function which is used. Here we consider the function PoissReg() which generates a Poisson model.

We simulate 100 data sets for each simulation and we ran the Lasso and Group Lasso on these data sets. Each data set X is cut into three separate subsets : a training data set, a validation data set and a test data set. We simulate responses via the model Y ∼ P(exp(Xβ * )) where β * = (β * 1 , ..., β * G ) with g groups with non zero coefficients among the G groups. The training data set (X train of size n train ) is used to fit the model (we estimate the target β * for a sequence of the tuning parameter λ and denote by β λ the estimate of β * obtained for such a parameter for the Lasso and the Group Lasso estimator). Then, we use the validation data CHAPITRE 2. ORACLE INEQUALITIES FOR A GROUP LASSO PROCEDURE APPLIED TO GENERALIZED LINEAR MODELS (X valid of size n valid ) to evaluate the performance of the fitted model according to a specific loss function. We define the optimal tuning parameter as the one for which the deviation from the fitted mean to the response is minimal i.e. λ opt ∈ argmin

λ 1 n valid Y -exp(X valid β λ ) 2 2 .
From that we determine the model with the parameter vector β λopt . Then we compute the hits i.e the number of correctly identified relevant variables, the false positives i.e the number of non significant variables chosen as relevant and the degree of freedom i.e the total number of variables selected in the model. Finally, we estimate the performance of the selected model by computing the coefficients estimation error β * -β λopt 1 and the prediction error X test β * -X test β λopt 2 on the test data (X test of size n test ). We ran the Lasso and Group Lasso on these data sets.

Eight models are considered in the simulations. For each simulation n train = 50, n valid = 50, n test = 100. To compare the Lasso and Group Lasso we use a random design matrix where the predictors are simulated as followed according to a uniform distribution to have bounded predictors.

1.

-

X i = U 1 + ε i for 1 i 10 with U 1 ∼ U ([0, 1]) -X i = U 2 + ε i for 11 i 20 with U 2 ∼ U ([0, 1]) -X i = U i for the last 100 variables U i ∼ U ([-0.1, 0.1]) with ε i i.i.d ∼ U ([0, 0.01]).
The covariates within the first two blocks are highly correlated (∼ 0.8) and there are small correlations between the blocks. The target is

β * = (0.3, ..., 0.3 10 , 0.2, ..., 0.2 10 , 0, ..., 0 10 , ..., 0, ..., 0 10 10 ).
2. The simulation is the same as the first one except that ε i i.i.d ∼ U ([0, 1]). Thus there are small correlations within and between groups (∼ 0.5).

3. The simulation is the same as the first one except that ε i i.i.d ∼ U ([0, 1.2]). Thus there are very small correlations within and between groups (∼ 0.2).

For all the following simulations the non zero groups are generated in the same way as in the second example. For j = 1, ..., m * and i = 1, ..., d j , X i = U j +ε i where U j ∼ U ([0, 1]) and

ε i i.i.d ∼ U ([0, 1]).
The non influential groups are simulated according to

X i = U i with U i ∼ U ([-0.1, 0.1]).
In the two following simulations we increase the size of the non zero groups ).

In the last three simulations it is the number of the non zero groups which is increased. ).

The results of the eight simulations are reported in Table 2.3 hereafter where p is the number of covariates, s * the number of significant covariates, G the number of groups, m * the number of non zero groups and v is the size of the non zero groups. The Group Lasso seems to perform better than the Lasso to include the relevant predictors into the model particularly when there are high within group correlations. The Lasso tends to select fewer variables among the influential ones (the Lasso selects only some variables from the groups of highly correlated predictors) than the Group Lasso does in the case of highly correlated covariates and when the size or the number of the non zero groups is large. The Group Lasso succeeds in including the true significant groups in most of the cases. On the contrary the Group Lasso estimator tends to add more irrelevant covariates than the Lasso does in particular when the number or the size of the non influential groups is large. We can expect such a result because the Group Lasso estimator includes not single variable one after another but groups of variables (when one of the covariates is included in the model all the others which belongs to the same group are also included in the model). Thus the Group Lasso selects models that are larger than the true model. However when the Group Lasso selects a number of covariates which is the same than the number of significant covariates it is, with high probability, the correct groups which are included. We have also measured the performances of the Lasso and Group Lasso in terms of estimation error and prediction error. The Group Lasso seems to perform better than the Lasso in term of estimation error and of prediction error in most of the cases and the improvement is particularly meaningful for prediction error. We can also notice that the performances of the two estimators decreases with the increase of G and m * . To conclude, the Group Lasso estimator seems to perform better than the Lasso to include the hits in the model and in terms of prediction and estimation error when the covariates are structured into groups and in particular in the case of high correlations within groups.

To better understand the difference of behaviour between the Lasso and the Group Lasso in terms of variables selection we also provide some kind of ROC curves. These curves are created by plotting the fraction of true positives (of the estimated parameter) out of the positive coefficients of β * for discretized values of the penalty parameter going from zero (completely dense solution) up to the value where the first group of covariates enters the model (completely sparse solution). To ensure that we well detect each new inclusion of covariates, the discretization involves 10000 values of the penalty parameter. We plot the curves for each model considered. Three models are described below and the respective ROC curves are shown in Figures 2.1, 2.2 and 2.3.

For each model we have -for j = 1, ..., m * and i = 1, ..., d j , X i = U j + ε i where

ε i i.i.d ∼ U ([-1, 1]) and U j ∼ U ([0, 1])
for simulation 1 and U j ∼ U ([-1, 1]) for simulation 2 and 3 .

-for the non significant groups 

X i = U i with U i ∼ U ([-0.1, 0.1])

ROC curves parametrized by the regularizing parameter

Group lasso Lasso The simulations clearly illustrate that contrary to the Lasso the Group Lasso includes not single covariates one after another but all the covariates which belong to the same group at the same time. The Group Lasso tends to include in priority the significant groups and then the non significant groups in such a way that for some values of the penalty parameter the rate of perfect selection can be very close to one and even equal to one in some particular cases (see for instance Figure 2.1). We can notice that the ROC curves for the Lasso follow at the beginning those of the Group Lasso and then fall below. The break in the curves of the Lasso illustrate a special feature of this estimator. Actually the number of covariates included in the model for the Lasso is restricted by the sample size whereas for the Group Lasso the restriction is given by the number of groups. That is why for the Lasso the number of true positives but also the number of false positives are smaller than those of the Group Lasso (once approximately 100 covariates are added in the model the Lasso stop including other ones). We can also notice that the Group Lasso is less stable than the Lasso in terms of variables selection. In fact a little change in the penalty parameter can substantially increase the number of false positives. This particular feature of the Group Lasso due to a group structure penalty is reflected in Table I with a rate of false positives larger for the Group Lasso in most of the cases. Thus Figures 2.1, 2.2 and 2.3 confirm what has been previously deduced from the results presented in Table I. To conclude the Group Lasso seems to be more reliable than the Lasso to include the variables of interest but in return it tends to incorporate more false positives.

Conclusion

We consider the generalized linear model in high dimensional settings and use the Group Lasso estimator to estimate the regression parameter β * when the covariates are naturally structured into groups of variables and the true parameter is group sparse (just a few variables are relevant to explain the response). Under some assumptions on the sparsity of β * , on the correlations between the groups of covariates and on the tuning parameter of the estimator we state general oracle inequalities for estimation and error prediction for the Group Lasso estimator applied to generalized linear models. In the particular case of groups of size one, we provide original inequalities for the Lasso in the case of generalized linear models extending the results of Bunea [START_REF] Bunea | Honest variable selection in linear and logistic regression models via 1 and 1 + 2 penalization[END_REF] for logistic regression. Furthermore, we extend these results to other penalties such as the Elastic net. Then we compare the performances of the Lasso to the ones of the Group Lasso on simulated data. We show the improvement in terms of variables selection and prediction error of the Group Lasso compared to the Lasso when the covariates are structured into groups. Moreover we illustrate on these simulated data the impact of the total number of groups, of the number of non zero groups and of the size of the groups on the performances of the Group Lasso. The conclusion is that the Group Lasso estimator behave well in a high dimensional setting under sparsity and group correlations assumptions. However the main drawback of the Group Lasso is that we need an a priori knowledge on the groups and it is not always possible.

2.8 Proof of Theorem 2.4.6

The main steps of the proof

The proof follows the guidelines in [START_REF] Bühlmann | Statistics for High-Dimensional Data : Methods, Theory and Applications[END_REF] or [START_REF] Loubes | Adaptive estimation with soft thresholding penalties[END_REF]. Using the mere definition of βn , we have (2.8)

P n l( βn ) +
We decompose the empirical process into a linear part and a part which depends on the normalized parameter ψ.

(P n -P) l(β * ) -l( βn ) = (P n -P) l l (β * ) -l l ( βn ) + (P n -P) l ψ (β * ) -l ψ ( βn )
where

l l (β) := l l (β, x, y) = -yβ T x and l ψ (β) := l ψ (β, x) = ψ(β T x).
From Proposition 2.4.3 and Proposition 2.4.5 and by adding r n Gn g=1

d g βg n -β * g
2 to both sides of the inequality (2.8) we find, on A ∩ B, that

r n Gn g=1 d g βg n -β * g 2 + P l( βn ) -l(β * ) 2r n Gn g=1 d g βg n -β * g 2 + β * g 2 -βg n 2 + r n 2 ε n . If g / ∈ H * then βg n -β * g 2 + β * g 2 -βg n = 0 and otherwise β * g 2 -βg n 2
βg n -β * g 2 . So the last inequality can be bounded by

4r n g∈H * d g βg n -β * g 2 + r n 2 ε n .
(2.9)

By the definition of β * we have P l( βn ) -l(β * ) > 0 and therefore

g / ∈H * d g βg n -β * g 2 3 g∈H * d g βg n -β * g 2 + ε n 2 i.e βn -β * ∈ S(3, ε n 2 ).
The next proposition provides a lower bound for P l( βn ) -l(β * ) .

Proposition 2.8.1. On the event A ∩ B we have

P l( βn ) -l(β * ) c n E f βn (X) -f β * (X) 2 with c n := min |x| L(9B+ 1 n ) ψ (x) 2 .
Proof.

P l( βn ) -l(β * ) = -E E(Y |X) f βn (X) -f β * (X) +E ψ (f β * (X)) f βn (X) -f β * (X) APPLIED TO GENERALIZED LINEAR MODELS +E ψ (f β (X)) 2 f βn (X) -f β * (X) 2
where βT X is an intermediate point between βT n X and βT X given by a second order Taylor expansion of ψ. Since ψ (f β * (X)) = E(Y |X) we find

P l( βn ) -l(β * ) = E ψ (f β (X)) 2 f βn (X) -f β * (X) 2 . Besides we have | βT X| | βT X -β * T X| + |β * T X| Gn g=1 β * g -β g 2 X g 2 + Gn g=1 β * g 2 X g 2 .
Applying (H.1), we find

X g 2 L d g .
Then using Lemma 2.4.4 and (H.3) we find

| βT X| LM + LB a.s.
(2.10) Furthermore, β * and βn belongs to Λ which is a convex set. Therefore β ∈ Λ and βT X ∈ Θ a.s. Thus we conclude .

P l( βn ) -l(β * ) c n E f βn (X) -f β * (X)
From Propositon 2.8.1 and (2.9) we deduce that

r n Gn g=1 d g βg n -β * g 2 + c n E βT n X -β * T X 2 4r n g∈H * d g βg n -β * g 2 + r n 2 ε n . (2.11)
Then the end of the proof is similar to the end of the proof of Theorem 2.4 in [START_REF] Bunea | Honest variable selection in linear and logistic regression models via 1 and 1 + 2 penalization[END_REF]. Let Σ be the p × p covariance matrix whose entries are E(X k X j ). We have

E βT n X -β * T X 2 = ( βn -β * ) T Σ( βn -β * ). Because condition GS(3, εn 2 , k) is satisfied we have c n ( βn -β * ) T Σ( βn -β * ) c n k g∈H * βg n -β * g 2 2 - ε n 2 .
Then by using Cauchy-Schwarz inequality in (2.11) we find

r n Gn g=1 d g βg n -β * g 2 + c n k g∈H * βg n -β * g 2 2 4r n g∈H * d g g∈H * βg n -β * g 2 2 + (r n + 1) ε n 2 .
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Now the fact that 2xy tx 2 + y 2 /t for all t > 0 leads to the following inequality

r n Gn g=1 d g βg n -β * g 2 + c n k g∈H * βg n -β * g 2 2 4tr 2 n γ * + 1 t g∈H * βg n -β * g 2 2 + (r n + 1) ε n 2 .
(2.12)

Replacing t by 1 c n k in (2.12) we obtain Gn g=1

d g βg n -β * g 2 4 c n k r n γ * + (1 + 1 r n ) ε n 2 . i.e βn -β * R 4 c n k r n γ * + (1 + 1 r n ) ε n 2 .
What is more

d min βn -β * 2,1 Gn g=1 d g βg n -β * g 2 .
This yields

βn -β * 2,1 4 c n k √ d min r n γ * + 1 + 1 r n 1 2n √ d min .
(2.13)

A similar argument could be made to prove

E βT n X -β * T X 2 16 c 2 n k r 2 n γ * + 2r n + 1 c n ε n 2 .
(2.14)

Finally we conclude the proof using Proposition 2.4.1.

Proof of Proposition 2.4.1

Proof. Let A > √ 2. We recall that we have made the assumption log(2Gn) n 1. We deduce Proposition 2.4.1 from the two following lemmas.

Lemma 2.8.2. Let

r n   8 √ 2ALC L,B log(2G n ) n   ∨ 16A 2 LC L,B log(2G n ) n with A > 1. Then P {A} 1 -2d max (2G n ) 1-A 2 . Lemma 2.8.3. Let r n 20AL max {|x| Lκn}∩Θ |ψ (x)| 2 log 2G n n where A 1. Then P(B) 1 -C(2G n ) -A 2 /2
where we recall κ n := 17B + 2 n . We can notice that P(B) -→ n→∞ 1.
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Thus if

r n AKL C L,B ∨ max {|x| Lκn}∩Θ |ψ (x)|) 2 log(2G n ) n with K chosen such that r n max (C 1 , C 2 , C 3 )
where

C 1 := 8 √ 2ALC L,B log(2G n ) n C 2 := 16A 2 LC L,B log(2G n ) n and C 3 := 20AL max {|x| Lκn}∩Θ |ψ (x)| 2 log 2G n n then P(A ∩ B) 1 -(2d max + C)(2G n ) -A 2 /2 .

Proofs of the technical lemmata

Proof of Lemma 2.4.2 Proof. Let θ ∈ Int(Θ) and Y θ be a real random variable with density exp(θy -ψ(θ))F (dy). First we prove that for all k ∈ N, there exists a constant C θ > 0 which depends on θ such that

E|Y θ | k k!C k θ . The k th absolute moment of Y θ is the k th derivative of H θ := E(e s|Y θ | ) at 0. Let s ∈ C be given. We have H θ (s) = M + (s + θ) + M -(θ -s) M (θ)
where we define M + and M -as

M + : C -→ C z -→ y 0 e yz F (dy)
and

M -: C -→ C z -→ y<0 e yz F (dy).
M is analytic on Ω Θ := {z ∈ C : Re(z) ∈ Int(Θ)} and so does M + and M -. Therefore

H θ : s -→ E(e s|Y θ | ) is analytic on U θ := {s ∈ C : Re(s + θ) ∈ Int(Θ) and Re(θ -s) ∈ Int(Θ)} .
Since θ ∈ Int(Θ), H θ is analytic at the point 0 and hence the function is also holomorphic in a neighbourhood of 0. We recall the following result for analytic functions (see [START_REF]Fonctions holomorphes, équations différentielles : exercices corrigés[END_REF]). Theorem : If f is holomorphic on a domain Ω of C then f ∈ C ∞ (Ω) and if in addition Ω is simply connected then for all contour γ around z ∈ Ω we have

f (n) (z) = n! 2iπ γ f (v) (v -z) n+1 dv.

CHAPITRE 2. ORACLE INEQUALITIES FOR A GROUP LASSO PROCEDURE APPLIED TO GENERALIZED LINEAR MODELS

Using the previous theorem on H θ at 0 and taking γ as a circle with radius R centered in 0 (such that H θ is holomorphic on D(0, R), of course R depends on θ) we obtain that for all

k ∈ N |H (k) θ (0)| k! 2π γ H θ (v) v k+1 dv k! R k sup |z| R |H θ (z)|.
(2.15)

and the result follows with

C θ := max 1, 1 R sup |z| R
|H θ (z)| . Thanks to assumption (H.2) we can apply (2.15) with θ = β * T X and find that for all k ∈ N,

E |Y | k |X k! C β * T X k .
Finally (H.1) combined with (H.3) leads to

E |Y | k k! sup |θ| LB C θ k
and the result follows with C L,B :=

sup |θ| LB C θ .
Proof of Lemma 2.4.4 Proof. The proof is based on the convexity of the loss function and of the penalty, the main idea of the proof is similar to the one used by Bühlmann and van de Geer [START_REF] Bühlmann | Statistics for High-Dimensional Data : Methods, Theory and Applications[END_REF] for the Lasso to show consistency of the excess of risk. Define

t := M M + Gn g=1 d g βg n -β * g 2 and β := t βn +(1-t)β * . Notice Gn g=1 d g βg -β * g 2 M .
By convexity of β → l ψ (β) and β → β 2 combined with the fact that βn satisfies (2.7) we find

P l( β) -l(β * ) + 2r n Gn g=1 d g βg 2 (P n -P) l(β * ) -l( β) + 2r n Gn g=1 d g β * g 2 .
On the event A B we have 

P l( β) -l(β * ) + 2r n Gn g=1 d g βg 2 r n Gn g=1 d g βg -β * g 2 + r n ε n 2 + 2r n Gn g=1 d g β * g 2 . Because P l( β) -l(β * ) 0,
d g βg n -β * g 2 M.
Proof of Lemma 2.8.2 Proof. We have

P(A c ) Gn g=1 P    1 n n i=1 (Y i X g i -E(Y X g )) 2 2 > r 2 n 4 d g    Gn g=1 dg j=1 P 1 n n i=1 Y i X g i,j -E Y X g j > r n 2 .
(2.16)

For j = 1, ..., d g and i = 1, ..., n, let

W g ij := Y i X g i,j -E Y i X g j .
The random variables {W ij } i=1,...,n are independant, identically distributed and centered and for all m 2

E|W g ij | m m k=0 k m E|Y i X i,j | k (E|Y i X i,j |) m-k
By using Jensen inequality we obtain

E|W g ij | m 2 m max k=1,...,m E|Y i X i,j | k E|Y i X i,j | m-k .
For all k ∈ N, by (H.1) and Lemma 2.4.2 we have

E|Y i X i,j | k L k k! (C L,B ) k . Therefore E|W g ij | m m!(2LC L,B ) m .
Hence the conditions are satisfied to apply Bernstein concentration inequality [START_REF] Bennett | Probability inequalities for the sum of independent random variables[END_REF] with K = 2LC L,B and σ 2 = 8(LC L,B ) 2 . Thus we obtain

P 1 n n i=1 W g ij > r n /2 2 exp -nr n 16LC L,B + exp -nr 2 n 32(2LC L,B ) 2 .
(2.17) Finally, from (2.16) and (2.17), we deduce that P(A c ) is bounded by

2d max G n exp -nr n 16LC L,B + exp -nr 2 n 32(LC L,B ) 2 .
Therefore if 

r n A 2 16LC L,B log(2G n ) n ∨ A8 √ 2LC L,B log(2G n ) n with A > 1 then P A C 2d max (2G n ) 1-A 2 . CHAPITRE 2.
√ dg β g -β * g 2 R {|(P n -P) (l ψ (β * ) -l ψ (β))|} .
If A 1 then

P   Z R A5DLR 2 log 2G n n   (2G n ) -A 2 (2.18)
where

D := max {|x| L(R+B)}∩Θ |ψ (x)| . Proof. Let β satisfy Gn g=1 d g β g -β * g 2 R.
Notice that if we change X i by X i while keeping the others fixed then Z R is modified of at most 2 n LR exp (L(R + B)). To see this let

P n = 1 n n j=1
1 X j ,Y j and

P n = 1 n n j=1,j =i 1 X j ,Y j + 1 X i ,Y i then we have (P n -P)(l ψ (β * ) -l ψ (β)) -(P n -P)(l ψ (β * ) -l ψ (β)) = 1 n l ψ (β * , X i ) -l ψ (β, X i ) -l ψ (β * , X i ) + l ψ (β, X i ) 1 n |ψ ( βT X i )||β * T X i -β T X i | + 1 n |ψ ( βT X i )||β * T X i -β T X i |
with βT X i which is an intermediate point between β T X i and β * T X i (using a first order Taylor expansion of the exponential function). Then, using the same argument as for (2.10), we have

| βT X i | LR + LB. Therefore (P n -P)(l ψ (β * ) -l ψ (β)) -(P n -P)(l ψ (β * ) -l ψ (β)) 2 n LR max {|x| L(R+B)}∩Θ |ψ (x)| = 2 n LRD.
We can apply McDiarmid's inequality also called the bounded difference inequality.

Theorem. Let A a set. Assume g : A N → R is a function that satisfies the bounded difference inequality sup

x 1 ,...,xn,x i ∈A |g(x 1 , ..., x n ) -g(x 1 , ..., x i-1 , x i , x i+1 , ..., x n )| c i .
Let X 1 , .., X n be independent random variables all taking values in the set A. Then for all t > 0,

P {g(X 1 , ..., X n ) -Eg(X1, ..., X n ) t} e -2t 2 / n i=1 c 2 i .
We can apply McDiarmid's inequality to Z R and obtain

P(Z R -EZ R u) exp - nu 2 2R 2 L 2 (D) 2 . CHAPITRE 2. ORACLE INEQUALITIES FOR A GROUP LASSO PROCEDURE APPLIED TO GENERALIZED LINEAR MODELS Therefore if r n ADLR 2 log 2G n n with A > 0 then P(Z R -EZ R r n ) (2G n ) -A 2 . (2.19)
Now we have to bound the mean EZ R .

Lemma 2.8.5.

EZ R 4RLD 2 log(2G n ) n .
Proof. First let us introduce two theorems. Let X 1 , ..., X n independent random variables with values in some space X and F a class of real-valued functions on X . Theorem : Symmetrization theorem [VdVW96]. Let 1 , ..., n be Rademacher sequence independent of X 1 , ..., X n and f ∈ F. Then

E sup f ∈F n i=1 {f (X i ) -E(f (X i ))} 2E sup f ∈F | n i=1 i f (X i )| .
Theorem : Contraction principle [START_REF] Ledoux | Probability in Banach Spaces : isoperimetry and processes[END_REF]. Let x 1 , ..., x n elements of X and ε 1 , ..., ε n be Rademacher sequence. Consider Lipschitz functions g i . Then for any function f and h in F, we have

E sup f ∈F n i=1 i {g i (f (x i )) -g i (h(x i ))} 2E sup f ∈F n i=1 i (f (x i ) -h(x i ))
Let 1 , ..., n a Rademacher sequence independant of X 1 , ..., X n and let

S R :=    β ∈ R p : Gn g=1 d g β g -β * g 2 R    .
Then by the Symmetrization theorem and the Contraction theorem (ψ is D-lipschitz on the compact set S R ) we have

EZ R 4DE sup β∈S R 1 n n i=1 i (β * T X i -β T X i ) 4DRE max g∈{1,...,Gn} 1 n n i=1 i X g i 2 d g ,
by Holder inequality for the last bound. Now we are going to use the following theorem which is a consequence of Hoeffding inequality.

Theorem. Let X 1 , ..., X n be independent random variables on X and f 1 , ..., f n real-valued functions on X which satisfies for all j = 1, ..., p and all i = 1, ..., n

Ef j (X i ) = 0, |f j (X i )| a ij . Then E max 1 j p n i=1 f j (X i ) 2 log(2p) max 1 j p n i=1 a 2 ij .
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By applying this theorem we obtain

E max g∈{1,...,Gn} 1 n n i=1 i X g i 2 d g L 2 log(2G n ) n . Thus EZ R 4RLD 2 log(2G n ) n .
(2.20)

So we can conclude from (2.19) and (2.20) that if A 1 then

P   Z R A5DLR 2 log 2G n n   (2G n ) -A 2 (2.21) for all R > 0. Split up    β ∈ R p : Gn g=1 d g β g -β * g 2 M    ,
where M = 8B + ε n , into two sets which are

E 1 =    β : Gn g=1 d g β g -β * g 2 ε n    , E 2 =    β : ε n Gn g=1 d g β g -β * g 2 M    ⊆ jn j=1    β : 2 j-1 ε n < Gn g=1 d g β g -β * g 2 2 j ε n   
where j n := log 2 (nM ) + 1 is the smaller integer such that 2 jn ε n M . We recall that

ν n (β, β * ) := (P n -P) (l ψ (β * ) -l ψ (β)) Gn g=1 d g β g -β * g 2 + ε n
and to simplify notation let

α n (β, β * ) := (P n -P) (l ψ (β * ) -l ψ (β))
and

Φ(t) := max {|x| t}∩Θ |ψ (x)|.
Let A 1. We recall that κ n := 17B + 2 n = 2M + B. On the event E 1 ,

P   sup β∈E 1 |ν n (β, β * )| A10LΦ(Lκ n ) 2 log(2G n ) n   P   sup β∈E 1 |α n (β, β * )| A10LΦ(Lκ n )ε n 2 log(2G n ) n   CHAPITRE 2. ORACLE INEQUALITIES FOR A GROUP LASSO PROCEDURE APPLIED TO GENERALIZED LINEAR MODELS P   sup β∈E 1 |α n (β, β * )| A5LΦ(L(ε n + B))ε n 2 log(2G n ) n  
given that 2M ε n . From Lemma 2.8.4 with R = ε n we deduce

P   sup β∈E 1 |ν n (β, β * )| A10LΦ(Lκ n ) 2 log(2G n ) n   (2G n ) -A 2 . (2.22)
On the event E 2 , using the same type of argument as for (2.22) with R = 2 j ε n (given that 2M 2 j ε n ) for all j = 1, ..., j n , we find

P   sup β∈E 2 |ν n (β, β * )| A10LΦ(Lκ n ) 2 log(2G n ) n   j n (2G n ) -A 2 .
Finally we have

C (2G n ) -A 2 2 (2.23)
where C is a constant (because j n = log 2 (nM ) + 1 and n G n ) and the result of Lemma 2.8.3 follows from (2.22) and (2.23) with C = 1 + C .

Proof of Theorem 2.5.2

The main step of the proof are the same as for the Lasso. Proof. By the same arguments as the ones used to prove (2.8) we have

P l(β * ) -l( βn ) + 2r n βn 1 + t n βn 2 2 (P n -P) l(β * ) -l( βn ) + 2r n β 1 + t n β * 2 2 .
(2.24)

The upper bound of (P n -P) l l (β * ) -l l ( βn ) , of (P n -P) l ψ (β * ) -l ψ ( βn ) and the lower bound of P l(β * ) -l( βn ) remains the same as those presented in the proof of Theorem 2. 4.8 (see Proposition 2.4.3, Proposition 2.4.5 and Proposition 2.8.1). Once these three propositions are proved, the rest of the proof is similar to the one for logistic regression presented in [START_REF] Bunea | Honest variable selection in linear and logistic regression models via 1 and 1 + 2 penalization[END_REF]. On the event A ∩ B (which occurs with probability at least 1 -2(2p)

1-A 2 - C (2p) -A 2 /2 1 -C(2p) -A 2 /2
) by adding r n βn -β * 1 and t n j∈I * (β * j -βj ) 2 to both sides of the inequality (2.24), we have

r n βn -β * 1 + P l(β * ) -l( βn ) + t n j∈I * (β * j -βj ) 2 2r n βn -β * 1 + 2r n β * 1 -2r n βn 1 + t n j∈I * (β * j -βj ) 2 -t n βn 2 2 + t n β * 2 2 + r n 2 ε n (2.25)
with ε n = 1 n . On one hand, by the same argument as for (2.9) we get

2r n βn -β * 1 + 2r n β * 1 -2r n βn 1 4r n j∈I * |β * j -βj | CHAPITRE 2. ORACLE INEQUALITIES FOR A GROUP LASSO PROCEDURE APPLIED TO GENERALIZED LINEAR MODELS
and on the other hand

t n j∈I * (β * j -βj ) 2 -t n βn 2 2 + t n β * 2 2 2t n j∈I * β * j 2 -2t n j∈I * β * j βj r n j∈I * |β * j -βj |.
Therefore inequality (2.25) can be bounded by

r n βn -β * 1 + P l( βn ) -l(β * ) + t n j∈I * (β * j -βj ) 2 4r n j∈I * |β * j -βj | + r n j∈I * |β * j -βj | + r n 2 ε n .
Since P l(β * ) -l( βn ) 0 we have

r n βn -β * 1 5r n j∈I * |β * j -βj | + r n 2 ε n
and then

j∈I * C |β * j -βj | 4 j∈I * |β * j -βj | + ε n 2 . Thus ( βn -β * ) ∈ S(4, ε n 2
). Using Proposition 2.8.1 in the case of groups of size one we find

r n βn -β * 1 + t n j∈I * (β * j -βj ) 2 + c n E βT n X -β * T X 2 5r n j∈I * |β * j -βj | + r n 2 ε n , with c n := min {|x| L(9B+ 1 n )}∩Θ ψ (x) 2
. The rest of the proof follows the guidelines of the proof of (2.13) and (2.14) and leads to

βn -β * 1 (2.5) 2 r n s * t n + c n k + (1 + 1 r n ) ε n 2 . and E βT n X -β * T X 2 2(2.5) 2 c n k(t n + c n k) r 2 n s * + 2r n + 3 2nc n .

Conclusion Summary of the research work

High-dimensional data appear naturally in a number of areas. In mathematics, physics, computer science or biology, we now have to deal with an infinitely growing number of variables. The processing and extraction of information from this huge amount of data is a challenge that needs new modelling, new computational tools adaptable to large data sets and new statistical methods to circumvent the curse of dimensionality. In this part, we have seen that the development of such tools is made possible by essentially exploiting the blessing of high-dimension, that relies on concentration inequalities combined to the convexity properties of the objects we handle. This is in particular the aim of the Lasso procedure. The Lasso is now a very popular method that performs both estimation, prediction and variables selection with high-dimensional data. This method has been proved to be very efficient to produce sparse models and is easy to implement and use. The Lasso has also been widely investigated in the literature. Estimation and prediction error bounds have been established by [START_REF] Bickel | Simultaneous analysis of lasso and dantzig selector[END_REF], [START_REF] Bunea | Aggregation for gaussian regression[END_REF], [START_REF] Van De Geer | High-dimensional generalized linear models and the lasso[END_REF], [Z + 09], [START_REF] Meinshausen | Lasso-type recovery of sparse representations for high-dimensional data[END_REF]. The variable selection consistency has been studied by [START_REF] Meinshausen | High-dimensional graphs and variable selection with the lasso[END_REF] and [START_REF] Zhao | On model selection consistency of lasso[END_REF]. A recent development of the Lasso is the Group Lasso estimator [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF], designed for selecting groups of covariates. This estimator has been well studied in a Gaussian setting. The theoretical properties of the Group Lasso have been investigated by [START_REF] Meier | The group lasso for logistic regression[END_REF], [START_REF] Nardi | On the asymptotic properties of the group lasso estimator for linear models[END_REF] and [START_REF] Huang | Variable selection in nonparametric additive models[END_REF] essentially in linear or logistic regression. In this part, we have extended the Group Lasso procedure to generalized linear models [START_REF] Mccullagh | statistics and applied probability 37[END_REF]. We have studied this method for general models, without making assumptions on the normalized function of the generalized linear model. We have explored the asymptotic properties of this estimator applied to sparse generalized linear models in high dimension. We have established oracle inequalities for the prediction and estimation error under assumptions on the joint distribution of the pair observable covariates, under a condition on the design matrix and a sparsity hypothesis. Sparsity and concentration inequalities are the key to state such theoretical properties. These results show the ability of this procedure to recover good sparse approximations of the true model under some conditions. We have applied these results to the so-called Poisson regression case that has not been studied in this context, contrary to logistic regression. We have illustrated this case on simulated data. We have also generalized the results to the Elastic Net penalty. We have not considered a dictionary approach but the results presented in Chapter 2 can easily be extended to this case.

Perspectives and future research

A future research axis could be to carefully look over this function, to see under which conditions we could get rid of the bounded assumptions on the variables. We could also try to understand how we could improve the bounds for some specific subsets of link functions. Actually, if we look in more detail at the estimation and prediction bounds, we see that they depend on the first and second derivatives of the normalized function. Therefore, the CONCLUSION derivative properties of the exponential family seem to play a leading role. The Group Lasso penalty could be, for instance, modified to take into account some features of the exponential family to achieve better performances or help to calibrate the penalty parameter.

Introduction The challenge of dimension reduction in high-dimension

We consider again a regression setting, but now we come back to the classical linear model

Y = Xβ * + ε where 1. Y = (Y 1 , ..., Y n ) T ∈ R n . 2. X = (X ij ) ∈ M n,p (R)
is the design matrix. We denote by r the rank of this matrix.

3. ε = (ε 1 , ..., ε n ) T ∈ R n . 4. β * = (β * 1 , ..., β * p ) T ∈ R p .
Without loss of generality, the data are assumed to be centered, so that there is no intercept. We still consider data in high-dimension i.e. p n. As mentioned in the previous part, traditional statistical methods break down in highdimension. In a way, we always come down to the question of how to reduce the dimension. Under a sparsity assumption on the target parameter, we can applied penalized Lasso-type method (see Part I) that have been proved to be helpful in a large variety of applications. But, what if we have no sparsity assumptions anymore ? Without any other assumptions, it is hopeless to find a good estimate of the unknown parameter. The only hope to reduce dimension relies on the existence of a subspace of lower dimension embedded the data. It essentially means that there exists a small number of linear combinations of the original explanatory variables, called latent variables, that contain most of the information from the original ones [START_REF] Miguel | A review of dimension reduction techniques[END_REF]. To sum up, the idea behind dimension reduction method is always the same. It is to build a subspace of lower dimension onto which we project the data in such a way that most of the information is preserved. From a mathematical point of view, the problem can be summarized as follows. Given p random variables x 1 , ..., x p , we build k latent variables t 1 , ..., t k with k p that capture most of the information in the initial variables. The information captured by the latent variables is quantified by a criterion that depends on the purpose of the analysis. In this thesis, we focus on linear dimension reduction technique. It means that we search for latent variables that are linear combinations of the original ones. Given n observations, this is equivalent to write S = XW where 1. X ∈ M n,p is the matrix of the original variables.

2. S ∈ M n,k is the matrix containing the new latent variables, with k p.

3. W ∈ M p,k is the transformation weight matrix that links the original variables to the new latent ones.
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The columns w 1 , ..., w k of W represent a basis of the space onto which the data are projected.

Xw k is a combination of the original variables and represent the k th latent variable. Because these latent variables are combinations of the original ones, they do not necessarily correspond to meaningful quantities and often have no meaning anymore. So these kind of methods based on dimension reduction are not suitable for variable selections but they are well adapted and have proved their efficiency for prediction.

We are not going to detail the literature on the subject, on the one hand because of the large variety of the methods and on the other hand because it will be useless for the purpose of this part. In the next section, we will just focus on one of this method, called principal component regression. This method will be very informative to understand what follows and in particular the reason of the PLS method. We refer to [START_REF] Miguel | A review of dimension reduction techniques[END_REF] for an overview of the main dimension reduction methods.

Before going further, just a few words on the singular value decomposition (SVD). This tool turns out to be very useful in regression and will be helpful all along this part to study the properties of the PLS estimator. The SVD of X is given by

X = U DV T
where -U is a matrix of size n that satisfies U T U = U U T = I. This means that the columns u 1 , ..., u n of U form an orthonormal basis of R n .

-V is a matrix pf size p that satisfies V T V = V V T I. In other words, the columns v 1 , ..., v p of V form an orthonormal basis of R p .

-D ∈ M n,p is the matrix that contains ( √ λ 1 , ..., √ λ r ) on the diagonal and zero anywhere else (i.e. d ii = √ λ i for i = 1, ..., r and d ij = 0 otherwise).

λ 1 , ..., λ r represent the non-zero positive eigenvalues of the predictor sample covariance matrix X T X. Without loss of generality we assume that λ 1 ≥ λ 2 ≥ .... ≥ λ r > 0. Of course when the design matrix is random the eigenelements of X i.e. (λ i , u i , v i ) are random too.

Reduction by Principal Components Analysis and the limits of this method

One of the commonly used method to reduce dimension is Principal Component Analysis (PCA). We refer to the book of [START_REF] Jolliffe | Principal component analysis[END_REF] and of [Jac05] for a detailed analysis of this method. The idea underlying PCA is the following. In a dataset comprising numerous variables, it is likely that subsets of variables are highly correlated with each other. A high correlation between two or more variables often implies that these variables are quite redundant, in the sense that they have the same impact on the outcome of interest. Therefore, for a predictive purpose, there is no interest in keeping all these variables. PCA was initially designed to remove the problem of multicollinearity in the data and, in so doing, proved to be helpful in a high-dimension. This method is also known under the name of Karhunen-Loève transform when applied to functional data. The PCA method does not rely on a specific statistical model but only on the design matrix. The aim is to reduce the number of variables while retaining most of the variability in the data. In mathematical terms, the problem amounts to find orthonormal directions (w l ) 1≤l≤k that maximize Var {Xw l }

w l = argmax w T l w j =δ lj j=1,...,l
Var {Xw} .
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The latent variables (Xw l ) 1≤l≤k are called the principal components. This method has proved to be helpful on practical experiments. Actually for many real datasets, only the very first components explain most of the variance. Since the variance depends on the scale of the data, in practice the initial variables are standardized. Here after, we assume that the empirical covariance matrix Σ = 1 n X T X is standardized. Then using the SVD of X, it can be proved [START_REF] Jolliffe | Principal component analysis[END_REF] that the k first principal components are given by the projection of X respectively onto each of the first k eigenvectors contained in the matrix V . In other words,

S = XV k
where V k denotes the restriction of V to its k first columns and represents the weights matrix W . This is an important property of PCA that says that among all the subspaces of dimension k, the one associated to the first k eigenvectors of X is the one that minimizes the deviation to X [START_REF] Varichand Mardia | Multivariate analysis[END_REF]. In addition, the total variance of the data explained by the first k principal components is equal to the sum of the first k eigenvalues. By plotting the cumulative proportion of variance explained, this provides a simple and practical way for choosing the number of latent variables.

Up to now, we have not considered the response variable Y . Hence, the question that naturally arises is how can we use PCA to address problems in regression ? The answer is by replacing, in the regression model, the initial variables by a small number of principal components, thereby reducing the complexity of the model while keeping most of the information. This is the Principal Components Regression (PCR) method. The PCR estimator obtained by regressing Y onto the first k principal components in S is given by

βk P CR = k i=1 pi √ λ i v i ,
where k ≤ r is called the regularizing parameter.

To better understand the advantages and drawbacks of this method, we go back again to the OLS estimator. As mentioned in the introduction, when the covariance matrix X T X is invertible (p ≤ n) the OLS estimator of β * is given by βOLS = (X T X) -1 X T Y.

In many situations (genetics, chemometrics...), p > n or X T X is ill conditioned because of multicollinearity and therefore βOLS is not defined. In this case we can still consider a similar estimator which is the minimum length least squares estimator defined by

βMLLS := (X T X) -X T Y,
where (X T X) -is the Moore Penrose inverse of X T X (see [START_REF] Engl | of Mathematics and its Applications[END_REF]). The Moore Penrose inverse of X T X is given by

(X T X) -= r i=1 λ -1 i v i v T i .
Of course when X T X is invertible, r = p and (X T X)

-= p i=1 λ -1 i v i v T i = (X T X) -1
. Hence, we recover the OLS estimator. Expanding βMLLS in the right eigenvectors directions gives βMLLS := r i=1 pi √ λ i v i . For simplicity we just keep one notation and thus defined the Least Squares estimator as

βLS = r i=1 pi √ λ i v i , (2.26)
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where we recall that pi = Y T u i .

When some λ i are small the LS estimator has a high variance. In this case, it is easy to see that a solution can be given by Principal Components Regression where we recall that the estimator is given by

βk P CR = k i=1 pi √ λ i v i ,
where k ≤ r is the regularizing parameter. Actually, PCR shrinks the OLS in the directions associated to a high variance of the OLS estimator. However, in a regression context, PCR can fails in some situations. Indeed, [START_REF] Jolliffe | A note on the use of principal components in regression[END_REF] highlighted some real-life examples where the principal components corresponding to small eigenvalues have high correlations with Y . In this situation, since PCR does not take into account these directions, PCR breaks down in capturing the relevant information on the initial variables that drives the behaviour of the interest outcome. To avoid this situation and to improve prediction, the response should be taken into account in the construction of the latent variables. The PLS method [START_REF] Wold | The collinearity problem in linear regression. the partial least squares (pls) approach to generalized inverses[END_REF] has been developed to address this lack.

Partial Least Squares or how to take into account the response

This method has been specifically developed to describe the relationships between Y and X for a predictive purpose. This procedure takes into account the value of the response to build a low dimensional space by maximizing both the variance of the predictors and the covariance with the response variable. Then, the data are projected into this lower space to sequentially build latent components. Chapter 3 is devoted to the presentation of the PLS methods. In Section 3.1 we introduce the method. Section 3.2 is devoted to the presentation of the multiple facets of PLS. In particular, we highlight that the PLS estimator βk at step k is nothing less than least squares over some specific subspace called Krylov subspaces. For

1 ≤ k ≤ r, we have βk ∈ argmin β∈K k (X T X,X T Y ) Y -Xβ 2 (2.27) where K k (X T X, X T Y ) = X T Y, (X T X)X T Y, ..., (X T X) k-1 X T Y .
This result was proved by Helland in 1990 [START_REF] Inge | Partial least squares regression and statistical models[END_REF] and is the starting point of the thesis work on PLS. Even if it turns out to be simply constrained least squares, classical results cannot apply because the restriction subspace is random. If the PLS proved helpful in many situations where highdimensional data or multicollinearity, the properties of the PLS estimator still remains quite obscure, mainly due to the fact that this estimator depends in a non linear way on the response through a complex and unknown function. Actually, Equation (2.27) characterizes the PLS estimator as the solution of a convex optimization problem but does not provide an explicit expression of the estimator.

PLS through orthogonal polynomials

That is why, in Chapter 4 we suggest a new way of thinking PLS, more tailored to the study and the analysis of the statistical aspects of this method.

Notice that the two following quantities are important and appear frequently in Chapter 4

• p i = (Xβ * ) T u i , i = 1, ..., n. • pi = Y T u i , i = 1, ..., n.
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This approach is based on orthogonal polynomials. In Section 4.5, we will see that if this approach is promising it is because it enables to get an exact and explicit expression for the dependence function that links the PLS estimator to the response Y . In Subsection 4.4.2 of Chapter 4, we prove that most of the PLS quantities of interest can be written in terms of some specific orthogonal polynomials denoted by Qk and called the residual polynomials. This is for instance the case of the PLS estimate βk

βk = r i=1 1 -Qk (λ i ) pi √ λ i v i ,
where (λ i , v i , u i ) 1≤i≤r denotes the eigenelements of the singular value decomposition of X and pi = Y T u i . The main contribution of Chapter 4 relies on the explicit and analytical expression we have stated for the residual polynomials and, in so doing, for the PLS estimator. This is Theorem 4.5.1 that states that

Qk (x) = (j 1 ,..,j k )∈I + k ŵj 1 ,..,j k k l=1 (1 - x λ j l )
where

ŵj 1 ,..,j k := p2 j 1 ...p 2 j k λ 2 j 1 ...λ 2 j k V (λ j 1 , ..., λ j k ) 2 (j 1 ,..,j k )∈I + k p2 j 1 ...p 2 j k λ 2 j 1 ...λ 2 j k V (λ j 1 , ..., λ j k ) 2 ,
where V (λ j 1 , ..., λ j k ) denotes the Vandermonde determinant of λ j 1 , ..., λ j k and

I + k = {(j 1 , ..., j k ) : r ≥ j 1 > ... > j k ≥ 1} .
This expression of the residual polynomials is called the representation formula. One of the main advantage of this formula is that it explicitly contains all the information on the data and it clearly shows how the PLS estimator depends on the signal and noise. Therefore, this formula is well tailored to the study of the statistical properties of the PLS methods. Once this formula is stated, we show how it can help to get new statistical results and insight in terms of empirical risk (Proposition 4.6.2) and mean squares prediction error (Proposition 4.6.6). The shrinkage properties of the PLS estimator are also investigated in Chapter 5. The results presented in Chapter 4 are taken from a paper submitted to a peer-review journal. It is an adaptation of the paper [BGL14] posted on Arxiv. Finally, in Chapter 5, we show how this new approach through orthogonal polynomials provides a unified framework to most of the already known PLS properties (previously stated through different approaches) by showing that we can easily recover these results (once the representation formula is stated) and also new other ones. The results presented in Chapter 5 are extracted from a paper that has been accepted and is soon-to-be-published.
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Chapitre 3

Une méthode de réduction de dimension aux multiples facettes Ce chapitre est consacré à la méthode PLS. Après avoir avoir présenté cette méthode telle qu'elle a été initialement introduite, nous évoquerons les diverses approches qui ont été proposées quant à l'étude de cette méthode. Nous dresserons par là-même un état de l'art des résultats théoriques existants à ce sujet dans la littérature.

Principe de la PLS

Cette section est consacrée à la présentation de la méthode PLS. Notre objectif ici est de mettre en lumière ce qui a conduit à l'émergence de cette méthode et de montrer en quoi la méthode PLS peut être intéressante lorsque se pose la question de la prédiction en régression.

Introduction

La méthode PLS, introduite et développée par Wold et al. en 1984 [WRWD84] pour la régression multivariée, est une alternative aux moindres carrés ordinaires, lorsque le but de l'analyse est la prédiction. Cette méthode s'avère particulièrement utile lorsque l'on est en grande dimension (nombre de variables plus grand que le nombre d'observations) ou lorsque les prédicteurs sont corrélés entre eux, voir très corrélés (on parle alors de multicolinéarité). La PLS permet en effet de construire des modèles de prédiction adaptés lorsque les variables explicatives sont fortement colinéaires ou en très grands nombres. L'idée de base de la PLS est alors de réduire les données à un sous-espace de dimension plus petite, construit de façon à tenir compte à la fois des variables explicatives et de la réponse. La méthode PLS, telle qu'employée en régression, a été développée par S.Wold et H.Martens sous la forme de l'algorithme NIPALS [START_REF] Wold | The multivariate calibration problem in chemistry solved by the pls method[END_REF]. Cet algorithme a été initialement introduit par H.Wold [W + 66] pour l'analyse en composantes principales puis mis en pratique pour l'estimation de modèles d'équations structurelles sur variables latentes [START_REF] Wold | Soft modeling by latent variables : the nonlinear iterative partial least squares approach[END_REF], avant d'être adaptée à des modèles de régression. A l'origine, il s'agit d'une procédure itérative construisant des variables latentes qui maximisent à la fois la variance des prédicteurs mais aussi la corrélation avec la réponse. L'estimateur PLS découle alors de l'application des moindres carrés non plus aux variables initiales mais à ces nouvelles variables latentes. Les premiers articles de référence sur le sujet ont été écrit par [START_REF] Wold | The collinearity problem in linear regression. the partial least squares (pls) approach to generalized inverses[END_REF], [START_REF] Naes | Comparison of prediction methods for multicollinear data[END_REF], [START_REF] Inge | On the structure of partial least squares regression[END_REF], [START_REF] Inge | Partial least squares regression and statistical models[END_REF], [START_REF] Martens | Multivariate calibration[END_REF] and [START_REF] Friedman | A statistical view of some chemometrics regression tools[END_REF]. Pour une lecture plus détaillée de ce qui existe sur la PLS, nous renvoyons le lecteur aux articles de [START_REF] Inge | Some theoretical aspects of partial least squares regression[END_REF] et [START_REF] Rosipal | Overview and recent advances in partial least squares[END_REF] qui fournissent une synthèse détaillée de la méthode PLS et des résultats existants à ce sujet. Cette méthode a été appliquée avec succès dans des domaines aussi divers que variés et s'est vu notamment porter une attention croissante en génie chimique [START_REF] Cao | A sparse PLS for variable selection when integrating omics data[END_REF] et en génétique [START_REF] Boulesteix | Partial least squares : a versatile tool for the analysis of high-dimensional genomic data[END_REF], du en grande partie à sa facilité d'implémentation.

Construction des variables latentes

La méthode PLS s'inscrit dans un cadre de régression linéaire. Nous rappelons ci-dessous le modèle de régression qui sera utilisé tout au long de ce chapitre 

Y = Xβ * + ε, où 1. Y = (Y 1 , ..., Y n ) T ∈ R n désigne la réponse . 2. X = (X ij ) ∈ M n,p (R)
:= X T Y et Σ := X T X.
Comme nous l'avons vu dans l'introduction, lorsque la matrice X est de rang p, l'estimateur des moindres carrées est un estimateur sans biais de β * de variance minimale. Lorsque les variables sont fortement correlées, la matrice de covariance X T X est mal conditionnée et même non inversible lorsque p > n. L'estimateur des moindres carrés n'est alors pas adapté à l'estimation de β * car sa variance est trop importante. Une solution envisageable est de passer par la régression en composantes principales. Cependant, cette méthode ne tient pas toujours compte comme il faudrait de la réponse, ce qui peut poser des problèmes en régression, bien qu'elle reste très pratique et souvent efficace pour réduire la dimension. Il s'avère en effet dans certains cas que les variables les plus corrélées avec la réponse ne soient pas ou très peu prises en compte dans la construction des variables latentes qui seront incluses dans le modèle. Cela est essentiellement du au fait que la régression en composantes principales construit des variables latentes (combinaisons linéaires des variables initiales) qui cherchent à extraire le maximum de la variance des prédicteurs sans tenir de la réponse. Dans ce cas, une autre solution consiste à utiliser la méthode PLS dont l'idée est aussi de construire des variables latentes de façon à réduire la dimension. Mais celles-ci sont choisies de façon à prendre aussi en compte la corrélation avec la réponse. Nous décrivons le principe de cette méthode ci-dessous.

La méthode PLS est une méthode itérative dont le but est de trouver des sous-espaces qui soient de bonnes approximations de l'espace des observations et dont les projections de ces observations soient de bons prédicteurs de la réponse Y . La PLS est une méthode qui prend en compte à la fois la matrice des observations X et la réponse Y dans la construction du sousespace et des variables latentes et qui de ce fait est souvent plus adapté à la prédiction que la régression en composantes principales. Mathématiquement parlant, il s'agit de construire des vecteurs (w k ) 1≤k≤K et (t k ) 1≤k≤K (K pouvant aller de 1 jusqu'au rang r de X) qui maximisent

[Cov(Y, Xw k )] 2 sous les contraintes 1. w k 2 = 1 2. t k = Xw k orthogonal à t 1 , ..., t k-1 .
La méthode PLS construit donc itérativement un sous-espace de dimension K (engendré par (w k ) 1≤k≤K qui sont des vecteurs de R p ) de telle sorte que les variables latentes (t k ) 1≤k≤K (qui correspondent à la projection des variables initiales sur ce sous-espace et vivent dans R n ) maximisent à la fois la corrélation avec la réponse Y et la variance des variables explicatives.

Il est à noter que

[Cov(Y, Xw k )] 2 = [Cor(Y, Xw k )] 2 Var(Y )Var(Xw k ).
De sorte que pour k = 1, il s'agit de trouver w 1 de norme égale à un qui réalise le meilleur compromis entre [Cor(Y, Xw 1 )] 2 maximal (ce qui correspond à la régression linéaire multivariée classique) et Var(Xw 1 ) maximal (ce qui correspond à la première composantes principales de la régression en composantes principales). Il s'agit d'un problème d'optimisation sous contraintes, que l'on résout en utilisant la méthode des multiplicateurs de Lagrange. Une fois trouvée w 1 , la première variable latente t 1 de la PLS est alors donnée par la projection des prédicteurs sur la droite dirigée par w 1 . Autrement dit, w 1 = Xt 1 . Puis, on cherche à construire une nouvelle combinaison linéaire des variables initiales, notée t 2 = Xw 2 et non corrélée à t 1 (pour extraire une information nouvelle), qui explique au mieux le résidu de Y . Et ainsi de suite jusqu'à construction des K variables latentes. De cette construction, il vient 

. X 0 ← X 2. For k = 1, ..., K (a) w k ← X T k-1 Y X T k-1 Y (b) t k ← X k-1 w k (c) X k ← X k-1 -t k t T k X k-1 .
Il existe d'autres versions de cet algorithme. Nous les avons listées dans la Section 3.4.

A noter qu'il existe une extension de cette méthode au cas de réponse multiple Y ∈ M n,q où q ≥ 1. Lorsque q = 1, on retrouve la méthode PLS classique présentée ci-dessus. Quand q > 1, on parle de méthode PLS2. Nous n'aborderons pas ce cas dans cette thèse et nous nous restreindrons ici à une réponse Y univariée, c'est à dire à une valeur de q égale à 1.

L'estimateur PLS

Comme nous l'avons déja souligné ci-dessus, l'idée de base de la PLS est de rechercher successivement un nombre restreint de combinaisons linéaires des variables de départ (afin d'enlever le problème de multicollinéarité dans les variables initiales) qui soient liées avec la réponse (pour une bonne prédiction) et ensuite de les utiliser pour modéliser Y linéairement.

Par construction, à chaque étape k ≤ K, l'algorithme décompose simultanément Y et X de la façon suivante

X = t 1 p 1 T + .... + t k p k T + X k et Y = t 1 q 1 + .... + t k q k + Y k , où q k := Y T k-1 t k t T k t k ∈ R et p k := X T k-1 t k t T k t k ∈ R p .
Les coefficients (q 1 , ..., q k ) représentent les coordonnées de la projection de Y sur le nouveau sous-espace latent engendré par t 1 , ..., t k et (p 1j , ...., p kj ) celles des variables X j sur ce même sous-espace. On notera que Y k représente en fait le résidu de la régression linéaire de Y par t 1 , ..., t k . En d'autres termes, on peut écrire De façon plus concise, on écrit souvent

X k = X -T k T T k X = (I -T k T T k )X = X -T k P T k et Y k = Y -T k T T k Y = (I -T k T T k )Y = Y -T k Q T k , où T k ∈ M n,
X = T P T + E et Y = T Q T + F.
Les matrices E et F sont appelées les matrices d'erreur associées à X et Y respectivement.

Il est à noter que la matrice des charges de la régression en composantes principales est construite de façon à extraire la structure de covariances entre les variables prédictives tandis que celle de la PLS s'attache à extraire la structure de covariance entre les prédicteurs mais aussi la structure de covariance avec la réponse. La méthode PLS réalise en fait une décomposition astucieuse et simultanée de X et Y , récupérant ainsi un maximum d'information sur Y dans les premiers vecteurs construits et donnant un poids plus important aux variables latentes qui expliquent le mieux la réponse. Ceci permet de conférer au modèle un plus grand pouvoir prédictif. Se pose maintenant la question naturelle de savoir comment l'estimateur PLS est construit. Dans la suite, on désignera par W K la matrice dont les colonnes sont les (w k ) 1≤k≤K (c'est la matrice qui contient l'information sur les corrélations entre X et Y ). On notera que T K = XW K . Une fois les K variables latentes t 1 , ..., t K construites, on est ramené à un problème de régression linéaire classique. On estime alors β * par régression linéaire de Y par rapport à un petit nombre K de nouveaux prédicteurs. Ces nouveaux prédicteurs ont l'avantage d'être non corrélés puisque les w 1 , ..., w K ont été construits de façon à être orthogonaux.

A l'étape K, β * et Y sont estimés de la façon suivante.

Proposition 3.1.1.

βP LS K = W K (W K T ΣW K ) -1 W K T X T Y = W K (T T k T K ) -1 T K T Y Γ (3.1) et Ŷ P LS K = t 1 q 1 T -... -t K q K T = T K T T K Y. (3.2) On pourra noter que βP LS K = W K θ où θ = (W K T ΣW K ) -1 W K T Γ ∈ argmin θ∈R k Y -XW K θ 2 et que Ŷ P LS K
correspond tout simplement à la projection de Y sur le sous-espace engendré par les colonnes de T k .

La PLS permet ainsi de construire un nouveau modèle prédictif faisant intervenir un petit nombre K de prédicteurs, construits de telle sorte qu'il n'y aient pas de corrélations entre les variables utilisées. Le nombre K de prédicteurs, inclus dans le modèle, est appelé le paramètre de régularisation et vérifie toujours K r, où l'on rappelle que r désigne le rang de la matrice X. Le choix de K est crucial et fait l'objet de la Section 3.4. Il est à noter que cette méthode est particulièrement intéressante car elle permet d'analyser des jeux de données bruitées, ayant de fortes corrélations et un grand nombre de variables. De plus, la réduction de dimension et l'estimation sont menées simultanément.

Si X T X est inversible et K = r alors βP LS K = βOLS K . Autrement dit, la régression PLS correspond à la régression des moindres carrés ordinaires dans ce cas particulier. En effet, lorsque K = r, t 1 , ..., t K forment une base orthogonale de Im(X). De façon plus générale, les Equations (3.2) et (3.1) peuvent se réécrire de la façon suivante
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D'où le nom de PLS, puisque l'on retrouve le modèle classique des moindres carrées si on laisse aller la méthode jusqu'au bout.

Les multiples facettes de la PLS

Maintenant qu'il est bien établit que la PLS est une méthode qui cherche à construire un modèle prédictif, basé sur des variables latentes judicieusement construites de façon à prendre en compte à la fois les prédicteurs et la réponse, nous allons nous intéresser à certains aspects particuliers de la méthode. Trois de ces aspects seront ici évoqués. D'une part parce qu'ils représentent à eux seuls les principales approches de la PLS qui ont été proposées dans la littérature et d'autre part parce que la compréhension de ces trois visions de la PLS permettra de mieux comprendre certaines parties des Chapitre 4 et 5.

PLS et sous-espace Krylov

Ce qui sera exposé dans cette sous-section se base sur la lecture des articles de Helland [Hel90, Hel88, Hel01] qui a mené de nombreux travaux sur la PLS. Nous commençons ici par exposer l'approche la plus ancienne mais aussi la plus fondamentale de la PLS. Cette approche a consisté à étudier plus en détails les propriétés du sous-espaces engendré par w 1 , ..., w K . Nous rappelons que W K = [w 1 ...w K ] ∈ M p,k désigne la matrice qui contient les nouvelles directions de l'espace sur lequel les données initiales sont projetées.

Comme cela est mentionné dans [START_REF] Inge | On the structure of partial least squares regression[END_REF], on peut montrer en reprenant pas à pas la construction itérative que la relation suivante est vérifiée

w k+1 = Γ -ΣW k (W k T ΣW K ) -1 W k T Γ.
On pourra noter que les w k résultent de l'application du procédé d'orthonormalisation de Gram-Schmidt à la suite de Krylov. Ce qui correspond ici à l'algorithme de Arnoldi.

Posons S K = Span {w 1 , ..., w K }.

Proposition 3.2.1. S K est engendré par Γ, ΣΓ, Σ 2 Γ, ..., Σ K-1 Γ.

Proof.

w k+1 = Γ -ΣW k (W k T ΣW K ) -1 W k T Γ et ΣW k (W k T ΣW K ) -1 W k T Γ correspond à Σ multiplié
par un vecteur qui est combinaison linéaire de w 1 , ..., w k . Le résultat s'en suit donc par une récurrence simple.

La suite Γ, ΣΓ, ..., Σ K-1 Γ est appelée suite de Krylov. Elle s'avère être fondamentale dans la caractérisation et l'étude de la PLS. Le sous-espace engendré par les éléments de cette suite est noté K K (Σ, Γ) (ou simplement K K lorsqu'il n'y a pas de confusion possible) et est appelé le Kième espace de Krylov par rapport à Σ et Γ. Il est à noter que la dimension maximale du sous espace de Krylov est égale au nombre de valeurs propres λ i non nulles associées à une valeur de Y T u i qui est non nulle (où on rappelle que u i est le vecteur propre à gauche de X associé à λ i ). On retrouve ainsi que la dimension maximale est toujours plus petite que le rang r de X. Dans la suite, nous supposerons que la dimension maximale est exactement égale à r. Nous renvoyons à l'Annexe B pour quelques détails supplémentaires sur ces sous-espaces ainsi qu'à [START_REF] Saad | Numerical methods for large eigenvalue problems[END_REF] pour une étude plus approfondie de ces espaces. La dimension maximale du sous espace de Krylov est égale au nombre de valeurs propres non
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nulles associées à une valeur de Y T u i qui est non nulle. On retrouve ainsi que la dimension maximale est toujours plus petite que le rang r de X. Dans la suite, nous supposerons que la dimension maximale est exactement égale à r.

Voici la proposition centrale de cette sous-section qui montre que la PLS n'est rien d'autre que la minimisation des moindres carrés restreints au kième espace de Krylov associé à Σ et Γ.

Proposition 3.2.2. [Hel90] βP LS K = argmin β∈K K (Σ,Γ) Y -Xβ 2 (3.3) où K K (Σ, Γ) = Γ, ΣΓ, ..., Σ K-1 Γ .
Dans les Chapitres 4 and 5, nous ne considérerons pas la construction séquentielle de la PLS mais plutôt ce point de vue. La Proposition 4.3.1 ci-dessus se révèlera être ainsi essentielle dans la suite, puisqu'elle correspond au point de départ de ce travail de thèse sur la PLS.

Il est important de noter dès à présent que, contrairement aux méthodes classiques de projection, le sous-espace de Krylov considéré est aléatoire car il dépend de Y . C'est ce point en particulier qui rend difficile l'étude la PLS, contrairement à celle de la régression sur composantes principales qui fait intervenir un sous-espace déterministe. Lorsque k = r, on retrouve bien sûr que βP LS k = βLS . Nous verrons que ces espaces de Krylov réapparaîtront dans les différentes approches abordées par la suite et sont en quelques sortes la clé de voûte de la méthode PLS.

PLS et gradient conjugué

Nous allons maintenant nous intéresser à la PLS vu sous l'angle du gradient conjugué. Nous rappelons que le gradient conjugué est une méthode itérative qui cherche à approximer le minimum d'une fonction objectif [START_REF] Hanke | Conjugate gradient type methods for ill-posed problems[END_REF]. Nous allons voir ci-dessous que l'algorithme PLS peut être vu comme un algorithme de gradient conjugué, dans le sens où la kième étape de l'algorithme PLS est la même que la kème étape du gradient conjugué appliqué à Σ et Γ. Le sous-espace engendré par {w 1 , ..., w K } (qui on l'a vu est aussi égal à K K (Σ, Γ)) est en effet le même que celui engendré par les directions de descente du gradient conjugué.

Afin de mieux comprendre cet aspect particulier de la méthode PLS, rappelons d'abord les grandes lignes et propriétés du gradient conjugué. Soit A ∈ M n une matrice symétrique définie positive et b ∈ R un vecteur. La méthode du gradient conjugué cherche à construire une approximation x * solution de Ax = b. Ici, une approximation s'entend dans le sens où l'on cherche un vecteur x * qui satisfait le problème suivant

x * ∈ argmin x∈R n F (x) où F (x) = 1 2 x T Ax -x T b.
Le gradient conjugué, comme la PLS, est une méthode itérative qui construit à chaque étape une approximation x k de x * . Le terme d'erreur à l'étape k est défini par e k = x * -x k et les résidus sont définis par r k = b -Ax k = Ae k . Le gradient conjugué à l'ordre K consiste à construire séquentiellement K directions de plus forte descente (p k ) 1≤k≤K qui soient A-conjugués (i.e p k Ap i = 0 pour tout i = 1, ..., k -1). L'algorithme en lui même est défini comme suit.

1. x 0 2. r 0 ← b -Ax 0 3. p 0 ← r 0 CHAPITRE 3. UNE M ÉTHODE DE R ÉDUCTION DE DIMENSION AUX MULTIPLES FACETTES 4. k ← 0 5. Tant que r k = 0 Faire (a) α k ← r T k p k p T k Ap k (b) x k+1 ← x k + α k p k (c) r k+1 ← b -Ax k+1 = r k -α k Ap k (d) β k ← - r T k+1 Ap k p T k Ap k (e) p k+1 ← r k+1 + β k p k = I -p k (p T k Ap k ) -1 p T k r k+1 (f) k ← k + 1
La Proposition 3.2.3 ci-dessous rappelle certaines des propriétés fondamentales du gradient conjugué.

Proposition 3.2.3.

1. r T k r l = 0 pour tout k = l. 2. Span(r 0 , r 1 , ..., r k ) = Span(r 0 , Ar 0 , ..., A k-1 r 0 ) = Span(p 0 , ..., p k ). 3. x k minimise F (x) sur l'espace x 0 + Span(r 0 , ..., r k ). En d'autres termes,

x k ∈ argmin x∈x 0 +K k (b,A) x -x * A , où u 2 A = u T Au pour tout u ∈ R n . Maintenant, si l'on considère l'équation normale X T Xβ = X T Y i.e. Σβ = Γ (3.4) équivalente à β ∈ argmin α∈R n 1 2 Xα -Y 2 2 , ( 3.5) 
alors les estimations successives β k du gradient conjuqué, appliqué avec

A = Σ et b = Γ en partant de x 0 = 0, conduisent à β k = min β∈K k (Γ,Σ) Y -Xβ 2 .
Et l'on en déduit alors que β k = βP LS k . Cette approche par le gradient conjugué est l'approche choisie par Phatak et de Hoog [START_REF] Phatak | Exploiting the connection between pls, lanczos methods and conjugate gradients : alternative proofs of some properties of pls[END_REF] pour étudier la PLS. Cette approche leur a notamment permis de redémontrer deux propriétés importantes de l'estimateur PLS portant sur ses propriétés de seuillage par rapport à l'estimateur des moindres carrés. Nous y reviendrons dans la Section 3.3.

PLS et nombre de Ritz

Nous allons maintenant présenter une troisième approche, proposée par Lingjaerde et Christophersen en 2000 [START_REF] Ole | Shrinkage structure of partial least squares[END_REF], qui consiste à caractériser la PLS en terme de seuillage le long des vecteurs propres de la matrice de corrélation des prédicteurs. Pour cela, ils ont proposé un tout nouveau point de vue qui se base sur les valeurs propres de la matrice W T K ΣW K , appelées valeurs propres de Ritz. Ils établissent en particulier que βP LS K peut s'écrire sous la forme 

w (K) j = 1 - (θ (K) 1 -λ j )...(θ (K) K -λ j ) θ (K) 1 ...θ (K) K , j = 1, ..., r où θ (K) i 1≤i≤K
représente les valeurs propres de Ritz associés à W T K ΣW K . Les auteurs [LC00] ne fournissent pas la preuve de ce résultat et nous allons donc ici la détailler. On notera que

Y -X βP LS K = r j=1 1 -w (K) j pj v j .
Il s'agit donc de monter que le coefficient devant pj v j dans la décomposition de Y -X βP LS K suivant les vecteurs propres à droite de la matrice X est égal à

(θ (K) 1 -t)...(θ (K) K -t) θ (K) 1 ...θ (K) K .
Auparavant, nous allons chercher à donner une interprétation de ces valeurs propres particulières. Nous rappelons que 

βP LS K = W K (W K T ΣW K ) -1 W K T X T Y. Posons C K = W K T ΣW K . C k est
= W K K i=1 (θ (K) i ) -1 a (K) i a (K) i T W K T X T Y = K i=1 (θ (K) i ) -1 W K a (K) i W K a (K) i T X T Y = K i=1 (θ (K) i ) -1 z (K) i (z (K) i ) T X T Y où z (K) i = W K a (K) i . Posons Σ K = W K (W K T ΣW K )W K T .
Σ K est la restriction à K K de l'endomorphisme qui correspond à la projection sur XK K . On en déduit alors que les (θ K i , z K i ) correspondent aux valeurs propres et aux vecteurs propres de Σ K .

Par comparaison avec

βLS = r i=1 (λ i ) -1 v i v T i X T Y, on voit que les quantités (θ K i , z (K) i
) 1 i K peuvent être interprétées comme les restrictions des valeurs et vecteurs propres de X T X au sous-espace de Krylov. On peut montrer que ceux sont les meilleures approximations des valeurs propres de la matrice de corrélation dans le sous-espace K K (Σ, Γ).

Appliquons maintenant le théorème suivant avec A = Σ et W = W K .

Theorem 3.2.5. Soit A ∈ S n et W ∈ M n,m une matrice dont les colonnes sont des vecteurs orthogonaux de norme égale à un, avec m ≤ n. Soit H = W T AW . Il existe m valeurs propres de A (µ i ) 1 i m qui peuvent être mises en correspondance avec les valeurs propres θ j de H, de telle sorte que

|θ j -µ j | AW -W W T AW 2 .
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On en déduit que, pour tout 1 j K,

|λ j -θ (K) j | ΣW K -W K W T K ΣW K 2 . Lorsque K est égal à p avec X T X inversible, on a W K W T K = I et donc ΣW K -W K W T K ΣW K 2 = 0. Autrement dit, λ j = θ (p)
j , j = 1, ..., p. Les valeurs propres de Ritz, qui représentent de façon plus générale des approximations des valeurs propres d'une matrice dans un espace de Krylov, jouent un rôle important dans les méthodes numériques d'approximation de grandes valeurs propres. Nous renvoyons à [START_REF] Beresford | The symmetric eigenvalue problem[END_REF] et à [START_REF] Saad | Numerical methods for large eigenvalue problems[END_REF] à ce sujet.

Revenons maintenant à l'expression des w (K) j en fonction des valeurs propres de Ritz. Par définition de

β P LS k , il existe un polynôme Q K tel que Y -X βP LS k = Q K (X T X)Y = r j=1 Q K (λ j ) pj λ j v j . Le polynôme Q K est de degré K et de terme constant égal à un et vérifie Q K (X T X)Γ ⊥ K K (Σ, Γ). (3.6)
Or,

Q K W K W T K X T XW K W T K Γ = Q K K i=1 θ (K) i z (K) i z (K) i T Γ = K i=1 Q K (θ (K) i )z (K) i z (K) i T Γ.
(3.7) D'où

Q K (W K W T K X T XW K W T K )Γ = K i=1 Q K (θ (K) i )r K i z (K) i , où r K i = z (K) i T Γ.
Et d'autre part, en utilisant le fait que Γ ∈ K K , que ΣΓ ∈ K K ainsi que (3.6), on en déduit que

Q K W K W T K X T XW K W T K Γ = W K W T K Q K (Σ)Γ = 0. (3.8) En combinant (3.7) et (3.8), il vient finalement que K i=1 Q K (θ (K) i )r K i z (K) i = 0. (3.9) Comme, pour tout k K et i K, on a z (K) i , Σ k Γ = Σz (K) i , Σ k-1 Γ = θ (K) i z (K) i , Σ k-1 Γ = .... = θ (K) i K z (K) i , Γ = θ (K) i K r K i ,
on en conclut que r K i = 0. Autrement, on aurait z

(K) i ⊥ K K et donc en particulier z (K) i
, Γ = 0, ce qui est impossible. On déduit alors de l'Equation (3.9) que, pour tout i =, ..., K, Q K (θ

(K) i ) = 0. Comme Q K (0) = 1, on en conclut finalement que Q K (x) = (θ (K) 1 -x)...(θ (K) K -x) θ (K) 1 ...θ (K) K .
D'où le résultat par identification.
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Propriétés de seuillage

Un estimateur de seuillage

Les propriétés les plus connues de l'estimateur PLS portent essentiellement sur la façon dont il seuille l'estimateur des moindres carrés. L'estimateur PLS est en effet un estimateur de seuillage dans le sens où il peut s'écrire sous la forme

r i=1 f (λ i ) pi √ λ i v i .
où f est une fonction réelle. Si l'on parle d'estimateur de seuillage, c'est parce que l'estimateur des moindres carrés s'écrit sous la forme

βLS = r i=1 pi √ λ i v i .
Les coefficients {f (λ i )} 1≤i≤r sont appelés les facteurs de filtrage et représentent ainsi le poids par lequel on pondère les coefficients des moindres carrés dans la direction des vecteurs propres. Deux autres estimateurs de seuillage classiques sont -L'estimateur PCR de paramètre k, où

f (λ i ) = 1 if i ≤ k f (λ i ) = 0 if i > k .
-L'estimateur Ridge de paramètre λ, où

f (λ i ) = λ i λ i + λ .
La méthode Ridge est d'ailleurs une grande rivale de la PLS en terme de facilité d'implémentation et de robustesse du modèle prédictif. Il a été montré par [LC00] que l'estimateur PLS de paramètre k était un estimateur de seuillage pour lequel

f (λ i ) = 1 - k j=1   1 - λ i θ (k) j   , i = 1, ..., r où θ (k) 1 , ..., θ (k)
k représentent les valeurs propres de Ritz introduites dans la Sous-section 3.2.3 et représentent les valeurs propres de W k X T XW k . A noter que, dans le Chapitre 7, nous établissons une nouvelle expression pour ces facteurs de filtrage.

Nous allons maintenant donner un aperçu des propriétés connues les plus importantes concernant ces facteurs de filtrage. Nous invitons le lecteur à consulter l'article suivant [START_REF] Krämer | An overview on the shrinkage properties of partial least squares regression[END_REF] pour un passage en revue exhaustif et détaillé de ces propriétés.

Un comportement très particulier des facteurs de filtrage

Il est important de noter que les facteurs de filtrage de la PLS sont aléatoires et que de ce fait les résultats classiques sur les méthodes de seuillage ne peuvent pas s'appliquer ici. Par ailleurs, les facteurs filtrants de la PLS présentent un comportement très singulier. Contrairement à des facteurs déterministes (PCR, Ridge,...), ceux de la PLS n'appartiennent pas toujours à l'intervalle [0, 1] (excepté le dernier) et ne seuillent donc pas forcément (dans le sens premier du terme) l'estimateur des moindres carrés. En 

f i ≤ 1 si λ i ∈ I l , l impair f i ≥ 1 si λ i ∈ I l , l pair .

Un estimateur de seuillage global mais non local

L'estimateur PLS est cependant un estimateur de seuillage global, dans le sens où sa norme euclidienne reste toujours plus petite que celle de l'estimateur des moindres carrés.

Proposition 3.3.2. Pour tout k ≤ r, on a βP LS k 2 ≤ βOLS 2 .
Cette propriété de l'estimateur PLS a été montrée de façon algébrique par de Jong [DJ95] et, un an plus tard, Goutis [START_REF] Goutis | Partial least squares algorithm yields shrinkage estimators[END_REF] en a proposé une preuve indépendante basée sur la géométrie de l'espace latent itérativement construit par l'algorithme PLS. De Jong [DJ95] a même montré un résultat plus fort.

Lemme 3.3.3. βP LS k-1 2 ≤ βP LS k 2 pour tout k ≤ r.
Deux autres preuves de ce résultat ont ensuite été proposées par Phatak et al. [START_REF] Phatak | Exploiting the connection between pls, lanczos methods and conjugate gradients : alternative proofs of some properties of pls[END_REF]. La première se base sur le lien existant entre PLS et gradient conjugué, tandis que la seconde repose sur l'étude et les propriétés de formes quadratiques. Comme nous le verrons dans le Chapitre 7, si la PLS ne seuille pas dans toutes les directions données par la SVD mais n'en reste pas moins un estimateur qui seuille globalement l'estimateur des moindres carrés, c'est parce qu'il existe des directions pour lesquelles les coefficients de la PLS sont toujours diminués par rapport à ceux des moindres carrés. Ceux sont ces directions qui sont en réalité importantes pour la PLS contrairement à celle associés aux vecteurs propres de la matrice de covariance qui elles sont adaptées à la PCR.

Implémentation

Les algorithmes

La méthode PLS est basée sur l'algorithme NIPALS (Nonlinear Iterative Partial Least Square). Elle a été introduite par H.Wold en 1966 [W + 66] pour l'analyse en composantes principales. Puis, elle a été utilisée par le même auteur pour l'estimation de modèles d'équations structurelles avec variables latentes [START_REF] Wold | Soft modeling by latent variables : the nonlinear iterative partial least squares approach[END_REF], avant d'être adaptée par S. Wold et H. Martens [START_REF] Wold | The multivariate calibration problem in chemistry solved by the pls method[END_REF] pour devenir cette méthode actuellement connue sous le nom de PLS .
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La méthode PLS2 est quant à elle basée sur l'algorithme SIMPLS (Straightforward Implementation of statistically inspire Modification of the PLS algorithm). L'algorithme SIMPLS est équivalent à la régression PLS lorsque Y est réduit à une seule variable et donne des résultats similaires à l'algorithme NIPALS dans ce cas. Il ne faut pas confondre cet algorithme avec SIMCA-P (Soft Independent Modelling by Cross Analogy) qui est le nom du logiciel écrit par l'équipe de S.Wold et dans lequel est implémenté NIPALS.

Choix de la dimension

Comme pour toutes les méthodes de régularisation, le choix du paramètre de régularisation qui contrôle la complexité du modèle (au travers ici du nombre de variables latentes k incluses dans le modèle) est crucial. La borne supérieure en sera bien sûr le rang r de la matrice X. Ce nombre k doit permettre de satisfaire un équilibre entre un bon ajustement au modèle et une bonne capacité de prédiction de l'estimateur. Il s'agit de trouver le paramètre de régularisation qui permette le meilleur équilibre entre le biais et la variance afin de minimiser l'erreur de prédiction. Il existe plusieurs façon de choisir la dimension du modèle et c'est un point crucial.

-A chaque étape successive dans la reconstruction de X et Y , on peut suivre l'évolution de la variance de X et Y . On peut alors se fixer comme critère d'arrêt de s'arrêter lorsque le pourcentage de la variance de X est suffisamment grand pour un pourcentage faible de celle de Y . Un autre critère peut être de se baser sur la stabilité des coefficients estimés. Il arrive en effet que les coefficients de βk restent stables jusqu'à une certaine valeur K pour ensuite exploser. On choisit alors d'inclure dans le modèle ce nombre K de variables latentes. -En étudiant la somme des carrés résiduels

RSS k = n i=1 y i -ŷk i 2 ,
où ŷk i est la prédiction de l'observation i avec un modèle à k composantes. Bien sûr RSS k diminue lorsque k augmente et on cherche donc un compromis entre la complexité du modèle et un RSS k petit.

-Par validation croisée, en étudiant l'erreur de prédiction

P RESS k = 1 n n i=1 y i -ŷk (-i) 2
où ŷk (-i) est la valeur prédite pour l'observation i, en construisant un modèle à k composantes sans utiliser cette observation. P RESS k diminuant tant qu'on améliore le modèle et augmentant lorsqu'on commence à surajuster le modèle, il représente un bon choix du nombre optimal de composantes. Dans un but de prédiction, la validation croisée est généralement performante et c'est donc la méthode la plus classiquement utilisée pour calibrer le paramètre de régularisation. Tenenhaus [START_REF] Tenenhaus | La régression PLS : théorie et pratique[END_REF] 3.5 Les extensions de la méthode PLS

Extensions de la PLS à des modèles linéaires autre que la régression linéaire classique

La méthode PLS a été étendue pour répondre à des problématiques autres que la simple régression ou pour prendre en compte et s'adapter à des caractéristiques particulières des données. Elles a aussi était utilisée en combinaison avec d'autres méthodes. Nous pouvons citer entre autres 1. Analyse discriminante par la méthode PLS. Cette méthode introduite par [START_REF] Sjostrom | Pls discrimination plots[END_REF] a pour but de séparer des groupes d'individus caractérisés par un certain nombre de variables en fonction d'une décision à prendre. Afin de pallier à des problèmes liés à une application directe de cette méthode, [START_REF] Sabatier | Two approaches for discriminant partial least squares[END_REF] proposent deux extensions qui pour l'une se base sur les travaux de [START_REF] Cazes | Adaptation de la régression pls au cas de la régression aprés analyse des correspondances multiples[END_REF] et l'autre sur ceux de l'Analyse de Redondance PLS proposé par Tenenhaus [START_REF] Tenenhaus | La régression PLS : théorie et pratique[END_REF].

2. PLS pour le modèle de régression à hasard proportionnel. [DW] suggère d'utiliser les variables latentes extraites du modèle à hasard proportionnel par la méthode PLS pour construire les prédictions des probabilités de survie.

3. Nous pouvons aussi citer les travaux de [START_REF] Bastien | Régression linéaire généralisée PLS[END_REF] qui cherchent à généraliser la PLS à des modèles linéaires généralisés.

D'autres travaux importants ont été menés sur la PLS en grande dimension [LCRRGB08],

[CK10] et proposent d'ajouter une pénalité dans la construction des variables latentes de façon à promouvoir des prédicteurs creux.

Ces méthodes utilisent et combinent les bonnes propriétés de la PLS (qui sont le fait qu'elle permet de réduire la dimension tout en conservant de bonnes performances en terme de prédiction) avec celle du modèle initial considéré.

Extension de la PLS à des modèles non linéaires plus complexes

La méthode PLS a ensuite été étendue à des modèles non linéaires et a été adaptée à des modèles plus généraux que celui de la régression linéaire classique. Il y a essentiellement deux façons d'introduire de la non-linéarité dans la PLS : soit en considérant des transformations non linéaires des données d'observations pour ensuite effectuer une régression PLS classique sur ces variables latentes, soit en supposant que les variables latentes correspondant à X et Y ne sont pas liées par une relation linéaire.

Nous listons ci-dessous quelques unes des principales méthodes introduites dans la littérature et renvoyons aux articles de [START_REF] Vivien | Approches PLS linéaires et non linéaires pour la modélisation de multi-tableaux[END_REF] et de [START_REF] Rosipal | Nonlinear partial least squares : An overview[END_REF] pour plus de détails à ce sujet. 4. Kernel PLS Regression (KPLS) : cette approche introduite par [RT02] consiste à appliquer la méthode PLS à des espaces à noyaux reproduisants (RKHS). Nous renvoyons aussi à [START_REF] Bennett | An optimization perspective on kernel partial least squares regression[END_REF]. Il a été prouvé par [START_REF] Blanchard | Kernel partial least squares is universally consistent[END_REF] que la régression PLS à noyaux appliquée à un problème de régression dans un RKHS était consistante.

Bien que la PLS ait été étudiée par de nombreux chercheurs qui s'y sont intéressés au travers d'approches très différentes, il n'en reste pas moins que ses propriétés restent assez obscures. Par ailleurs, aucun critère satisfaisant ne permet de garantir la qualité d'un modèle basé sur la PLS dans le cas de la dimension finie, même si cette méthode a largement fait ses preuves dans la pratique lorsque l'on se retrouve face à des données en grande dimension ou simplement fortement corrélées. Le but du chapitre suivant, sera d'apporter un regard nouveau sur la PLS, permettant de pallier en un certain sens au manque existant sur ses propriétés statistiques.

Overview of the first thesis contribution to Part II

This Chapter is based on a submitted paper entitled "PLS : a new statistical insight through orthogonal polynomials" adapted from [START_REF] Blazere | Pls : a new statistical insight through the prism of orthogonal polynomials[END_REF].

As mentioned in the introduction and in Chapter 3, PLS is a dimension reduction technique that wisely combined the best features of both least squares regression and principal component analysis. This is a predictive method that simultaneously decomposes Y and X and extract from the set of original variables a few number of latent variables that have the highest predictive power. The number of latent variables is of course smaller than the rank r of the design matrix X. This method was first introduced just as an algorithm to find the latent components that maximize both the variance in X and the correlation with Y . But, it was rapidly interpreted in a statistical framework. The first main theoretical result was given by Helland [START_REF] Inge | Partial least squares regression and statistical models[END_REF] and prove that the PLS estimate is given by the the vector in R p that minimizes the least squares over Krylov subspace

βk = argmin β∈K k (X T X,X T Y ) Y -Xβ 2 where K k (X T X, X T Y ) = X T Y, (X T X)X T Y, ..., (X T X) k-1 X T Y .
Traditional results on restricted least squares cannot apply because K k (X T X, X T Y ) is a random subspace that depends on Y . The projection subspace is not deterministic but random. Because this subspace depends in a non linear way on the response, the PLS estimator depends as well, in a non linear way, on Y through a function not explicitly known. The main challenge in Part II was to find an analytical expression for this dependency function in order to characterize more precisely how the PLS estimator depends on the signal and noise contained in the data. The idea of considering a polynomial approach comes from the peculiar structure of the Krylov subspaces. This subspace is spanned by the power of the covariance matrix X T X (up to some constant) times what quantifies the correlation between X and Y , that is X T Y . Based on the definition of this subspace, we see that every element β in K k (X T X, X T Y ) takes the following shape

β = P (X T X)X T Y
where P ∈ P k is the set of the polynomials of degree less than k. Because, the k th PLS estimator is the one that minimizes the least squares over K k (X T X, X T Y ), we get Proposition 4.4.1. This proposition states, among other things, that βk = Pk (X T X)X T Y where Pk ∈ P k-1 satisfies Pk ∈ argmin

P ∈P k-1 Y -XP (X T X)X T Y 2 .
Compared to the expression of the OLS estimator (see Equation (2.26)), this gives a new insight into PLS. Indeed, the only difference with the least squares estimate is that the inverse of the covariance matrix is replaced by a polynomial in the covariance matrix. Hence, PLS is nothing less than a regularization method over polynomials. The key to understand the meaning of a regularization by polynomials is given by the Cayley-Hamilton theorem. This theorem says that an invertible matrix can be approximate by its powers. Based on the polynomial expression of the PLS estimator, we then deduce that where P k,1 is the set of the polynomial in P k whose constant term equals one and Qk (t) = 1 -t Pk (t) ∈ P k,1 satisfies Qk ∈ argmin

Y -X βk 2 = Qk (XX T )Y 2
Q∈P k,1 Q(XX T )Y 2 .
The polynomials Qk are called the residual polynomials. Why these polynomials are so important ? The answer is because most of the PLS quantities of interest ( βk , X βk , Y -X βk , ...) can be written in terms of these polynomials, as shown in Subsection 4.4.2. So, the understanding of PLS mainly relies on the understanding of these polynomials. If we achieve to get an explicit expression for these polynomials and if we have a control on how they behave, then we would better understand PLS. But before, we need to know more about these polynomials. Proposition 4.4.2 shows that the residual polynomials are orthogonal polynomials with respect to a measure μ where

dμ = r i=1 λ i p2 i δ λ i ,
It should be noticed that the weights are positive and the magnitude of the point masses correspond to the covariance between the principal components and the response Y . Then, the theory of orthogonal polynomials helps to state an explicit analytical expression for the residual polynomials. Theorem 4.5.1 is the heart of Chapter 3 and states the following formula, called the representation formula

Qk (x) = (j 1 ,..,j k )∈I + k ŵ(j 1 ,..,j k ) k l=1 (1 - x λ j l )
where

ŵj 1 ,..,j k := p2 j 1 ...p 2 j k λ 2 j 1 ...λ 2 j k V (λ j 1 , ..., λ j k ) 2 (j 1 ,..,j k )∈I + k p2 j 1 ...p 2 j k λ 2 j 1 ...λ 2 j k V (λ j 1 , ..., λ j k ) 2 ,
V (λ j 1 , ..., λ j k ) denotes the Vandermonde determinant of λ j 1 , ..., λ j k and

I + k = {(j 1 , ..., j k ) : r ≥ j 1 > ... > j k ≥ 1} .
What is the meaning of these polynomials ? Based on the SVD of X and on the properties of the residual polynomials, it can be shown that these polynomials are the ones that minimize r i=1 Q(λ i ) pi 2 among all the polynomials Q in P k,1 . In the ideal case, we aim at finding a polynomial that cancels all the r non-zero eigenvalues. But, we are restricted by a degree equal to k, so that it is not possible to cancel all the eigenvalues. The idea behind PLS is to consider all the interpolation polynomials of constant term equals to one whose roots are ones of the k non-zeros eigenvalues of the covariance matrix (picked among the r non-zero ones). Once we get this family of interpolation polynomials

k l=1 (1 -x λ j l ) I + k , a positive
weight ŵj 1 ,..,j k is wisely computed for each of them. The residual polynomials result in a convex linear combination of these weighted interpolation polynomials. We provide a more detailed interpretation of these weights in Subsection 4.5.2. In Section 4.6, we further explore the statistical properties of PLS. Among others, we investigate the accuracy of PLS through the study of the empirical risk and of the Mean Squares Prediction Error (MSPE). First, based on the representation formula, we provide a clear and simple upper bound for the PLS empirical risk (see Proposition 4.6.2).

Y -X βk 2 ≤ r i=k+1 k l=1 1 - λ i λ l 2 p2 i + n i=r+1 p2 i .

CHAPITRE 4. PLS, A NEW STATISTICAL INSIGHT THROUGH THE PRISM OF ORTHOGONAL POLYNOMIALS

A closer look at the right-hand side shows that the empirical risk's decay rate is mainly driven by 1 -λn λ 1

2k

. When n is fixed, the empirical risk decreases with an exponential rate in k. The fact that PLS reduces the residuals faster than PCR is another straightforward consequence of Proposition 4.6.2. Finally, we investigate the predictive properties of the PLS estimator through the study of the mean squares prediction error. Proposition 4.6.6 provides a decomposition of Xβ * -X βk 2 in terms of the residuals

Xβ * -X βk 2 = r i=1 Qk (λ i )p 2 i + r i=1 1 -Qk (λ i ) ε2 i .
One of the advantage of such a decomposition is its similarity with the bias-variance MSPE decomposition of a shrinkage estimator with deterministic filter factors. Actually, the PLS estimator is a shrinkage estimator, in the sense that there exists a function f such that

βk = r i=1 f (λ i ) pi √ λ i v i .
For PLS, the filter factors are equal to 1 -Qk (λ i ). They are random contrary to those of classical shrinkage estimators and not always in [0, 1]. Proposition 4.6.6 provides a theoretical explanation to the fact that PLS filter factors larger than one not necessarily imply a larger MSPE than the one of the Least Squares estimator. Subsection 4.6.2 is devoted to the study of the MSPE under a low variance of the noise and an upper bound for this error term is given in Theorem 4.6.8.

Introduction

The Partial Least Square (PLS) regression method, introduced by Svante Wold in the early eighties ([WRWD84]), is nowadays a widely used dimension reduction technique in multivariate analysis (especially when we have to handle high dimensional or highly correlated data in a regression context). Originally designed to remove the problem of multicollinearity in the set of explanatory variables, PLS acts as a dimension reduction method by creating a new subset of variables that are also optimal for predicting the output variable. Partial Least Square was first developed for chemometrics applications ([WSE01]) but gained attention in biosciences, in particular in the analysis of high dimensional genomic data. We refer for instance to [START_REF] Boulesteix | Partial least squares : a versatile tool for the analysis of high-dimensional genomic data[END_REF] or to [START_REF] Cao | A sparse PLS for variable selection when integrating omics data[END_REF] for various applications in this field.

During the last decades, this method has been developed and studied for a large part by [Hel88, Hel90, Hel01], [START_REF] Höskuldsson | Pls regression methods[END_REF], [START_REF] Naes | Relevant components in regression[END_REF], [DJ93, DJ95], [START_REF] Goutis | Partial least squares algorithm yields shrinkage estimators[END_REF], [START_REF] Ole | Shrinkage structure of partial least squares[END_REF], [START_REF] Neil | The peculiar shrinkage properties of partial least squares regression[END_REF], [START_REF] Phatak | Exploiting the connection between pls, lanczos methods and conjugate gradients : alternative proofs of some properties of pls[END_REF] and by [START_REF] Krämer | An overview on the shrinkage properties of partial least squares regression[END_REF]. We also refer to [START_REF] Rosipal | Overview and recent advances in partial least squares[END_REF] for a complete overview of the recent advances on PLS. If the PLS method proved helpful in a large variety of situations, this iterative procedure is complex and still little is known about its theoretical properties. However, PLS has been well investigated by practical experiments. To name just a few, [START_REF] Naes | Comparison of prediction methods for multicollinear data[END_REF] discussed theoretical and computational considerations of PLS and PCR (Principal Component Regression) on simulated and real data. [START_REF] Friedman | A statistical view of some chemometrics regression tools[END_REF] provided a heuristic comparison of the performances of OLS, PCR, Ridge regression and PLS in different situations. [START_REF] Paul | An interpretation of partial least squares[END_REF] compared PLS with four other methods (ordinary least squares, forward variables selection, principal components regression and a Stein shrinkage method) through simulations. Only recently, [START_REF] Blanchard | Kernel partial least squares is universally consistent[END_REF] proved the universal prediction consistency of kernel PLS in the infinite dimensional case. And very recently, some theoretical insights have been given by [START_REF] Delaigle | Methodology and theory for partial least squares applied to functional data[END_REF] for functional data.

If the PLS properties are not completely understood, it is partly because the solution depends in a non linear way of the response through a complex function that is not fully understood. In this work, we provide a new direction well tailored to analyse the statistical aspects of the PLS method. Our approach is based on the connections between PLS and orthogonal polynomials. The paper is organized as follows. In Section 4.3, we present the framework within which we study PLS. The point of departure of our work is the link between PLS and constrained least squares over Krylov subspaces [START_REF] Inge | On the structure of partial least squares regression[END_REF]). In Section 4.4, we show that the PLS residuals can be characterized by orthogonal polynomials. Theorem 4.5.1 in Section 4.5 contains our main theoretical contribution to the PLS literature. It provides a new formulation for the PLS residuals which explicitly shows the dependence in terms of both the noise on the observations and of the eigenelements of the covariance matrix. This expression will be central for a further study of the PLS performances. Section 4.6 investigates the PLS statistical approximation and denoising properties. We derive in the PLS frame, for the first time up to our knowledge, an exact analytical expression for the empirical risk in terms of signal and noise. Based on this expression, we give a more in depth analysis of the empirical risk. Then, we study the Mean Squares Prediction Error (MSPE) of PLS. Based on the new decomposition of the MSPE stated in Proposition 4.6.6, we highlight the similarities but also the differences between PLS and estimators with deterministic filter factors. Finally, we provide an upper bound for the MSPE under the assumption of a low variance of the noise. The Appendix is dedicated to the proofs of the main propositions and theorems.

Presentation of the framework 4.3.1 Notation

We first introduce some of the notations we use in this paper. By x, y = x T y we refer to the Euclidean scalar product between the vectors x, y ∈ R n . The induced vector norm is the 2 -norm i.e. x =

x, x . The transpose of a matrix A is denoted by A T and it depends on the underlying inner product, i.e. Ax, y = x, A T y . We simply denote by I the identity matrix (we forget the index when there is no possible confusion concerning the size of the matrix).

The regression model

We consider the following regression model

Y = Xβ * + ε (4.1)
where

Y = (Y 1 , ..., Y n ) T ∈ R n is the vector of the observed outcome, X = (X ij ) 1 i n 1 j p ∈ M n×p
is the design matrix, β * = (β * 1 , ..., β * p ) T ∈ R p is the unknown parameter vector and ε = (ε 1 , ..., ε n ) T ∈ R n captures the noise.

To simplify, we assume that X and Y are centered in such a way that there is no intercept. To begin, we only assume that the real variables ε 1 , ..., ε n are unobservable i.i.d random variables. We denote by r the rank of X T X. Of course r min(n, p). In most practical case where n ≥ p, X is full rank and therefore β * is estimable. When p > n this is not the case anymore because β * is not uniquely determined. However, because PLS is a predictive tool and not an estimation one, we are not really concerned by β * in itself but by Xβ * which remains estimable and the PLS method still provides an estimate of the response.

A useful tool : the singular value decomposition

An important and useful tool to study the properties of the PLS estimator will be the Singular Value Decomposition (SVD). The SVD of X given by X = U DV T where -U is a (n, n)-matrix whose columns u 1 , ..., u p form an orthonormal basis of R n .

-V is a (p, p)-matrix whose columns v 1 , ..., v p form an orthonormal basis of R p .

-D ∈ M n,p is a matrix which contains ( √ λ 1 , ..., √ λ r ) on the diagonal and zero anywhere else. λ 1 , ..., λ r represent the non-zero positive eigenvalues of the predictor sample covariance matrix X T X. Without loss of generality, we assume that λ 1 ≥ λ 2 ≥ .... ≥ λ r > 0.

Notation We denote by εi := ε T u i , i = 1, ..., n and β * i := β * T v i , i = 1, ..., p the projections of ε and β * respectively onto the right and left eigenvectors of X. We also define two important quantities that will appear frequently in the study of the PLS properties :

•

p i = (Xβ * ) T u i , i = 1, ..., n.
• pi = Y T u i , i = 1, ..., n.

The PLS method

We aim at estimating the unknown parameter β * of the above linear problem from the observation of the pairs (Y i , X i ) 1≤i≤n . When the covariance matrix X T X is invertible, the Ordinary Least Squares (OLS) estimator of β * is given by βOLS = (X T X) -1 X T Y. In many situations (genetics, chemometrics...) p > n or X T X is ill-conditioned because of multicollinearity. In this case, a more general estimator (called the Least Squares (LS) estimator) is defined by

βLS = r i=1 pi √ λ i v i ,
where we recall that pi = Y T u i . When some covariates are nearly collinear, some λ i are small leading to inaccurate predictions. An alternative estimator, based on dimension reduction, is the one given by Principal Components Regression (PCR) ( [START_REF] Jolliffe | Principal component analysis[END_REF]). The data are projected only onto the eigenvectors associated with high eigenvalues

βm P CR = m i=1 pi √ λ i v i ,
where m ≤ r is the regularizing parameter. However, in a regression context, PCR can fail in some situations because the new latent variables are chosen to explain X but may not explain Y well. Indeed, [START_REF] Jolliffe | A note on the use of principal components in regression[END_REF] highlighted some real-life examples where the principal components corresponding to small eigenvalues have high correlations with Y . To avoid this situation one can think of the PLS regression method ([WRWD84]) whose challenge is to find principal components that explain X as well as possible and are also good predictors for Y . The PLS method is a predictive tool that sequentially builds a low dimensional space in such a way that the new latent variables maximize both the correlation with the response and the variance of the explanatory variables. For the algorithmic construction, we refer for instance to [START_REF] Wold | Partial least squares[END_REF].

We recall that the maximal iterations number of the PLS procedure is linked to the number of different non zero eigenvalues λ i for which the associated pi are non zero (see [START_REF] Inge | Partial least squares regression and statistical models[END_REF]). These particular eigenvalues are called the relevant eigenvalues. Of course, the number of relevant eigenvalues r * is always lower than the rank r of the covariance matrix. This number r * is assumed to be exactly equal to r thereafter. Results below still remain valid if r * < r except that the PLS estimate at the k th step equals the LS one for r * ≤ k ≤ r.

In this paper, we do not consider the sequential construction of the PLS components. As [START_REF] Ole | Shrinkage structure of partial least squares[END_REF], we rather use that PLS is the minimization of least squares over some Krylov subspaces. We denote by βk the k-th PLS estimate.

Proposition 4.3.1. [Hel90] For 1 ≤ k ≤ r, βk = argmin β∈K k (X T X,X T Y ) Y -Xβ 2 where K k (X T X, X T Y ) = X T Y, (X T X)X T Y, ..., (X T X) k-1 X T Y .
Proposition 4.3.1 above is the starting point of our work. This proposition shows that the PLS estimator at step k is defined as the argument which minimizes the least square over a particular subspace of dimension k. The space spanned by

X T Y, (X T X)X T Y, ..., (X T X) k-1 X T Y
is called the k th Krylov subspace with respect to X T X and X T Y (see [START_REF] Saad | Numerical methods for large eigenvalue problems[END_REF]) and is denoted by K k when there is no possible confusion. In other words, for all k ≤ r, we have X βk = Πk Y where Πk is the orthogonal projector onto the random space K k . Of course, when k = r, we recover βk = βLS .

Motivations of this work

PLS is a constrained least square estimator where the constraints are not on the norm of the parameter (as for Ridge regression or for the Lasso) but are linear constraints which ensure that the estimated parameter belongs to the Krylov subspace associated to X T X and to X T Y . However, contrary to PCR, the PLS linear constraints are random (the subspaces onto which the data are projected depend on the response variable Y ). So classical results for projection methods onto deterministic subspaces cannot apply in this case. Furthermore, the PLS estimator depends in a non linear and complex way of the response variable, which makes this estimator difficult to study. Again results for linear estimator cannot extend to this case. One of the major steps in the theoretical study of PLS was the work of [START_REF] Inge | On the structure of partial least squares regression[END_REF] who wrote PLS as the solution of the least squares over Krylov subspaces. Then, most of the studies focused on the peculiar shrinkage properties of PLS estimator. It has been proved that this estimator shrinks in some directions and expands in others but is globally a shrinkage estimator. For more details, we refer to [START_REF] De | Pls shrinks[END_REF], [START_REF] Goutis | Partial least squares algorithm yields shrinkage estimators[END_REF], [START_REF] Neil | The peculiar shrinkage properties of partial least squares regression[END_REF], [START_REF] Phatak | Exploiting the connection between pls, lanczos methods and conjugate gradients : alternative proofs of some properties of pls[END_REF], [START_REF] Krämer | An overview on the shrinkage properties of partial least squares regression[END_REF] and to the important contribution of [START_REF] Ole | Shrinkage structure of partial least squares[END_REF]. Another important advance, in the understanding of the PLS statistical properties, concerns the consistency of this estimator. [START_REF] Naik | Partial least squares estimator for singleindex models[END_REF] and [START_REF] Chun | Sparse partial least squares regression for simultaneous dimension reduction and variable selection[END_REF] proved the consistency (p fixed and n tends to infinity) of the PLS estimator at step k under the assumptions that the target parameter depends in a finite number of k orthogonal latent components. [START_REF] Chun | Sparse partial least squares regression for simultaneous dimension reduction and variable selection[END_REF] obtained inconsistency, for the same model with a random design matrix, when the number of covariates is allowed to grow with the number of observations. Despite these major achievements, the PLS method remains quite obscure. For instance, still little is known on the exact effect of the noise and distribution of the eigenelements on its aproximation and predictive properties. In this paper, our aim is to propose a clear and explicit way of looking at PLS, more suited to the analysis of this method and to the study of its statistical properties.

Connections between PLS and orthogonal polynomials

In this section, we show that the PLS estimate βk can be written (without using iterations) as the polynomial solution of a minimization problem. Then, we prove that the PLS residuals can be expressed through a sequence of discrete orthogonal polynomials. We will see that the associated measure depends explicitly on the eigenvalues of the design matrix and on the projection of the response onto the associated eigenvectors.

CHAPITRE 4. PLS, A NEW STATISTICAL INSIGHT THROUGH THE PRISM OF ORTHOGONAL POLYNOMIALS

For every k ∈ N, we denote by P k the set of the polynomials of degree less than k and by P k,1 the set of the polynomials in P k whose constant term equals 1.

A minimization problem over polynomials : link with the regularization of inverse problems

Let k ≤ r and consider the PLS estimator at step k defined by

βk = argmin β∈K k Y -Xβ 2 . (4.
2)

The idea of considering Krylov subspaces is at the heart of the issue for PLS. These subspaces naturally arise from the sequential construction of the PLS components. But the meaning of such subspaces is not obvious and not very intuitive at first sight. However, by combining Formula (4.2) with the definition of K k , we can easily see that the PLS estimator has a polynomial expression in X T X. And a good reason to search for polynomial approximations is given by the theorem of Cayley-Hamilton. In fact, this theorem states that we can represent the inverse of a non singular matrix in terms of its powers. It is no longer the case for a singular matrix because the inverse does not exist. But, the idea behind PLS remains quite the same. It consists of using Krylov subspaces to approximate the pseudo inverse of the covariance matrix by a polynomial in its powers. Proposition 4.4.1 above shows that the PLS estimator βk is of the form Pk (X T X)X T Y , where Pk is a polynomial of degree less than k -1 and thereby represents a regularization of the inverse of X T X.

Proposition 4.4.1. For k ≤ r we have βk = Pk (X T X)X T Y (4.3)
where Pk ∈ P k-1 satisfies Pk ∈ argmin

P ∈P k-1 Y -XP (X T X)X T Y 2 and Y -X βk 2 = Qk (XX T )Y 2 (4.4)
where

Qk (t) = 1 -t Pk (t) ∈ P k,1 satisfies Qk ∈ argmin Q∈P k,1 Q(XX T )Y 2 .
The polynomials Qk are called the residual polynomials.

Remark 1. Proposition 4.4.1 shows that the PLS method returns to find an optimal polynomial Qk ∈ P k,1 minimizing Q(XX T )Y 2 . Notice that if there exists a polynomial Q ∈ P k,1 small on the spectrum of XX T then Y -X βk 2 will be small too. In particular if the eigenvalues are clustered into k groups (i.e can be divided into k intervals whose diameter are very small) then Y -X βk 2 has a good chance to be small as well. The polynomial Qk quantifies the quality of the approximation of the response Y at the k th step.

2. Proposition 4.4.1 states that the PLS method is another regularization method for illposed inverse problems (see [START_REF] Engl | of Mathematics and its Applications[END_REF]). In fact, when the explanatory variables are highly correlated or when they outnumber the observations the regression model is ill-posed.

The idea behind PLS is to approximate the ill-posed problems by a family of nearby wellposed problem. To do so, PLS seeks for a regularization operator R α under a polynomial form such that R α (X T X)X T Y is close to β * . The polynomials Pk play the role of R α and the number of components k the role of the regularization parameter α. This number of components is usually chosen by cross validation. Polynomial approximations also appear when considering the conjugate gradient method that is closely related to PLS. It is worth noting that [START_REF] Engl | of Mathematics and its Applications[END_REF] use some orthogonal polynomial techniques to study the properties of the conjugate gradient in a deterministic case.

The residual polynomials

Using Proposition 4.4.1 and expanding X T X and XX T onto the right and left eigenvectors of X, we can write most PLS objects just in terms of the eigenelements of X and of the residual polynomials

• βk = Pk (X T X)X T Y = r i=1 1 -Qk (λ i ) pi √ λ i v i . • X βk = (I -Qk (XX T ))Y = r i=1 1 -Qk (λ i ) pi u i . • Y -X βk = Qk (XX T )Y = r i=1 Qk (λ i )p i u i + n i=r+1 pi v i if r < n r i=1 Qk (λ i )p i u i . if r = n
because Qk (0) = 1. Therefore, understanding the residual polynomials ( Qk ) 1≤k≤r means understanding the PLS method. Now, we prove that the sequence of residual polynomials Qk 0 k≤r is orthogonal with respect to a discrete measure.

Proposition 4.4.2. Q0 := 1, Q1 , ..., Qr is a sequence of orthonormal polynomials with respect to the measure

dμ = r i=1 λ i p2 i δ λ i ,
where we recall that pi := u T i Y .

The support of the measure μ is the non-zero spectrum of the covariance matrix X T X.

The associated weights are equal to

λ j (u T j Y ) 2 = √ λ i pi 2 = (Xv i ) T Y 2
. The weights are positive and the magnitude of the point masses correspond to the covariance between the principal components and the response Y . Thus, the measure μ captures both the variation in X and the correlation between X and Y along each of the eigenvector directions.

Main result, a new explicit expression for the residual polynomials

In this section, we provide an explicit and exact formulation for the residual polynomials. This new expression clearly shows how the disturbance on the observations and the distribution of the eigenelements impact on the residuals.

Representation formula : a new expression for the residual polynomials

The aim of the next subsection is to provide an alternative representation for the residual polynomials easier to interpret and well tailored to the study of the PLS properties. Using the fact that Qk 0≤k≤r are orthogonal polynomials with respect to the measure dμ = r i=1 λ i p2 i δ λ i , we derive an explicit formula for the polynomial Qk . 

I + k = {(j 1 , ..., j k ) : r ≥ j 1 > ... > j k ≥ 1} .
We have

Qk (x) = (j 1 ,..,j k )∈I + k ŵ(j 1 ,..,j k ) k l=1 (1 - x λ j l ) , ( 4.5) 
where

ŵj 1 ,..,j k := p2 j 1 ...p 2 j k λ 2 j 1 ...λ 2 j k V (λ j 1 , ..., λ j k ) 2 (j 1 ,..,j k )∈I + k p2 j 1 ...p 2 j k λ 2 j 1 ...λ 2 j k V (λ j 1 , ..., λ j k ) 2 .
V (λ j 1 , ..., λ j k ) denotes the Vandermonde determinant of λ j 1 , ..., λ j k . We recall that pi := Y T u i = p i + εi . Equation (4.5) is called the representation formula of the residual polynomials.

The right hand side of Equation (4.5) is of course a polynomial of degree k with value one at zero. Notice that when k = r, Equation (4.5) can be simplified in Qr (x) = r l=1 (1-x λ l ). Notice that the expression of Qk , given in Theorem 4.5.1, depends explicitly on the observations noise and on the eigenelements of X contrary to the expression provided in the paper of [START_REF] Ole | Shrinkage structure of partial least squares[END_REF]. The formula above contains all the information necessary to study the PLS properties.

The expression of the residuals provided by Theorem 4.5.1 will be very useful and central, elsewhere in the paper, to further explore the statistical properties of the PLS method.

A new insight on PLS

A look at the expression of the residual polynomials in Theorem 4.5.1 provides a better understanding of the PLS complexity and shows how the residual polynomials depend in a non-linear and complex way on (λ i ) 1≤i≤r and (p i ) 1≤i≤r . In fact, contrary to PCR, all the eigenvector directions are taken into account at each step. Besides, the residuals depend in a complicated way on the response through the normalization of the weights and the product of some of the (p i ) 1≤i≤r . However, we can give an interpretation of this formula easier to understand.

First, notice that for all (j 1 , ..., j k )

∈ I + k , k l=1 (1 -x λ j l
) is a polynomial of P k,1 whose roots λ j 1 , ..., λ j k are members of the spectrum of XX T . Because

0 < ŵj 1 ,..,j k ≤ 1 and (j 1 ,..,j k )∈I + k ŵj 1 ,..,j k = 1,
we can interpret the weights ( ŵj 1 ,..,j k ) I + k as probabilities on P k,1 (but be careful that ŵj 1 ,..,j k is random) supported by polynomials having their roots in the spectrum of the design matrix. Qk is the sum over all elements in

I + k of k l=1 (1 -x λ j l
) weighted by ŵj 1 ,..,j k . In other words, the k th residual polynomial is the convex combination of all the polynomials in P k,1 whose roots are subsets of {λ 1 , ..., λ n }. The presence of the Vandermonde determinant in the weights means that the probability of a polynomial with multiple roots is zero. The weights themselves are not easy to interpret. However, they are even greater when the magnitude and the distance between the involved eigenvalues are large and the contribution of the response along the associated eigenvectors is important. In particular, polynomials of degree k whose roots λ j 1 , ..., λ j k are associated to large λ 2

j i p2 j i 1≤i≤k
and are distant have more heavy weight. In fact, the intuitive idea behind PLS is to find a polynomial of degree k and constant term equal to one that is as near to zero as possible at the (λ i ) 1≤i≤n (in particular for eigenvalues λ i associated to large λ 2 i p2 i ). If there are only k distinct eigenvalues there exists a polynomial which cancels all the eigenvalues. Otherwise, any polynomial of degree k can only cancel at most k eigenvalues among the r non-zero ones. PLS does not choose a particular polynomial among these r k possible ones but wisely computes a convex combination of all these polynomials.

Of course more weight is given to polynomials associated to distant eigenvalues, because if some eigenvalues are close and the value of the considered polynomial near zero for one of them then it will also be the case for the other ones. Indeed, Proposition 4.5.2 below shows that for close eigenvalues the associated residuals are almost the same.

Proposition 4.5.2. Let k be fixed and i ∈ [1, n]. If λ j = λ i + δ then | Qk (λ i ) -Qk (λ j ) |≤ δ.max I + k   k l=1 1 λ j l m =l 1 - λ i λ jm   + O(δ 2 ).
Proof. Let k be fixed and i ∈ [1, n]. Assume that λ j = λ i + δ. We have

Qk (λ j ) = (j 1 ,..,j k )∈I + k ŵj 1 ,..,j k k l=1 1 - λ j λ j l = (j 1 ,..,j k )∈I + k ŵj 1 ,..,j k k l=1 1 - λ i + δ λ j l .
By expanding

k l=1 1 - λ i + δ λ j l , we get Qk (λ i ) = Qk (λ j ) -δ (j 1 ,..,j k )∈I + k ŵj 1 ,..,j k   k l=1 1 λ j l m =l 1 - λ i λ jm   + O(δ 2 ).
Then, using the fact that (j 1 ,..,j k )∈I + k ŵj 1 ,..,j k = 1, we deduce Proposition 4.5.2. Thus, the value of the residual polynomial for nearby eigenvalues is almost the same. If Qk (λ i ) is small then Qk (λ j ) will be small too for λ j close enough to λ i . Therefore, if the eigenvalues are clustered into groups and if the residual polynomial is close to zero at the center of the clusters, then it will also be near zero for all the eigenvalues. In addition, by having a look at the representation formula in Theorem 4.5.1, we better understand why PLS achieves a maximal reduction (compared to PCR) with a minimal number of components included in the model. For instance, in the very special case where there are just k different eigenvalues among the r nonzero ones, we get that Y -X βk

2 = n i=r+1 p2 i for PLS and Y -X βP CR k 2 = n i=k+1 p2 i for PCR. Hence, if r i=k+1 p2
i is large, the PCR residual will substantially exceed the PLS one (for the same number of latent components included in the model).

Applications of the representation formula to the study of the PLS statistical properties

In this section, we further explore the statistical properties of PLS. For this, we investigate the accuracy of PLS through the study of the empirical risk and the mean squares prediction error. If we focus on these two quantities, it is because the PLS regression method is a predictive tool that build latent components to predict a response. The two last quantities help to respectively quantify the adjustment of the predicted response to the observed response and the predictive power of the PLS method.

From now on, we assume that the (ε i ) 1≤i≤n are i.i.d centered random variables with common variance σ 2 .

Approximation properties

As far as we know, the PLS empirical risk has not been much studied. In this subsection, we show how well tailored to the analysis of the empirical risk is the expression of the residuals previously stated. We provide below a new expression for the empirical risk in terms of the eigenelements of X and of the noise on the observations.

An analytical expression for the empirical risk

The empirical risk of the model is defined by

1 n Y -X βk
2 . This quantity (also called the Residual Sum Squares (RSS) in this case) quantifies the fit of the model to the data set used. For PLS, we have

Y -X βk 2 = r i=1 Qk (λ i )p 2 i + n i=r+1 p2 i ,
where by convention n i=r+1 p2 i = 0 if r = n. However, this expression is not very enlighting. In this section, we provide an analytical expression for the empirical risk that will be more useful to derive important properties of the empirical risk. In particular, we will see that, based on this new expression, it is easy to show that PLS fits closer than PCR.

Theorem 4.6.1. For k < r Y -X βk 2 = r>j 1 >...>j k ≥1   ŵj 1 ,..,j k r i=j 1 +1   k l=1 1 - λ i λ j l 2 p2 i     + n i=r+1 p2 i . (4.6) For k = r, Y -X βk 2 = n i=r+1 p2 i . Notice that j 1 ≥ k, so that 0 ≤ 1 -λ i λ j l
< 1 for all l = 1, . . . , k and i = j 1 + 1, . . . , r.

Study of the empirical risk

Now, we have at hand an exact expression for the empirical risk. Based on this formula, we can easily provide a simpler and clearer upper bound for the PLS empirical risk. This is the objective of the next proposition.

Proposition 4.6.2. Let k < r. Y -X βk 2 ≤ r i=k+1 k l=1 1 - λ i λ l 2 p2 i + n i=r+1 p2 i . CHAPITRE 4. PLS, A NEW STATISTICAL INSIGHT THROUGH THE PRISM OF ORTHOGONAL POLYNOMIALS Notice that if λr λ k > 1 -δ then r i=k+1 k l=1 1 -λ i λ l 2 p2 i ≤ δ r i=k+1 p2 i .
Proof. This is a straightforward consequence of Theorem 4.6.1 above. Indeed, because

r>j 1 >...>j k ≥1 ŵj 1 ,..,j k ≤ 1, we have r>j 1 >...>j k ≥1   ŵj 1 ,..,j k r i=j 1 +1 1 - λ i λ j l 2 p2 i   ≤ max I + k   r i=j 1 +1 k l=1 1 - λ i λ j l 2 p2 i   = r i=k+1 k l=1 1 - λ i λ l 2 p2 i .
Then, we can provide an upper bound for the expectation of the risk.

Corollary 4.6.3. Let k < r. We have

E 1 n Y -X βk 2 ≤ 1 n 1 - λ n λ 1 2k   r i=k+1 λ i (β * i ) 2 + (r -k)σ 2   + n -r n σ 2 .
When n is fixed, the empirical risk decreases with an exponential rate in k. If r = n, the second term in the right-hand side of the inequality disappears.

In addition, from Proposition 4.6.2, it is obvious to show that PLS reduces the residuals faster than PCR. Hence, for the same number of variables included in the model, PLS has a better R 2 than PCR and therefore a better goodness of fit.

Corollary 4.6.4. For k ≤ r Y -X βk 2 < n i=k+1 p2 i := Y -X βk P CR 2 .
Having a look at Corollary 4.6.4, we better understand why PCR often requires more components than PLS to achieve a similar value of the empirical risk.

Proof. For all i = k + 1, ...r

0 < k l=1 1 - λ i λ l < 1. Therefore, r i=k+1 k l=1 1 - λ i λ l 2 p2 i < r i=k+1 p2 i .
Then, we deduce from Proposition 4.6.2 that

Y -X βk 2 < n i=k+1 p2 i := Y -X βk P CR 2 .
In addition, because

Y -X βk 2 = Y -X βLS 2 + X βLS -X βk 2 = n i=r+1 p2 i + X βLS -X βk CHAPITRE 4. PLS, A NEW STATISTICAL INSIGHT THROUGH THE PRISM OF ORTHOGONAL POLYNOMIALS and Y -X βk 2 ≤ n i=k+1 p2 i , we also conclude that X βLS -X βk 2 ≤ r i=k+1 p2 i = X βLS -X βk P CR
2 . The result stated in Corollary 4.6.4 was proved earlier by [START_REF] De | Pls fits closer than pcr[END_REF]. A decade later [START_REF] Phatak | Exploiting the connection between pls, lanczos methods and conjugate gradients : alternative proofs of some properties of pls[END_REF] established a new proof of fact that PLS fits closer than PCR, using the connections between PLS and conjugate gradient. Here, we have an example of how powerful our representation formula is. With a very short proof, we recover an important property of PLS.

Denoising properties

Now, we are going to investigate the predictive properties of the PLS estimator through the study of the mean squares prediction error.

A technical Lemma

Lemma 4.6.5 below is central to state some of the main results of this subsection. Lemma 4.6.5. For all

1 ≤ j ≤ k ≤ r, r i=1 Qj (λ i ) Qk (λ i )p 2 i = r i=1 Qk (λ i )p 2 i In particular, for all 1 ≤ k ≤ r, r i=1 Qk (λ i ) 2 p2 i = r i=1 Qk (λ i )p 2 i .
Proof. We have Qk (XX T )Y = Y -Πk Y where Πk is the orthogonal projector onto the space spanned by K k (XX T , XX T Y ). Therefore

r i=1 Qj (λ i ) Qk (λ i )p 2 i = Qj (XX T )Y, Qk (XX T )Y = Y -Πj Y, Y -Πk Y .
But, for all j ≤ k, we have Πk Πj = Πj because

K j (XX T , XX T Y ) ⊂ K k (XX T , XX T Y ).
Thus, we get that

r i=1 Qj (λ i ) Qk (λ i )p 2 i = Y, Y -Πk Y = Y T Qk (XX T )Y = r i=1 Qk (λ i )p 2 i .

A new decomposition for the PLS Mean Squares Prediction Error

In this subsection, we investigate the PLS Mean Squares Prediction Error (MSPE). To evaluate the distance between the true and estimated parameter, a natural way consists in measuring the MSPE of the estimator. The MSPE measures the expected squared distance between what the PLS predictor predicts for a specific value and what the true value is

M SP E( βk ) := E Xβ * -X βk 2 .
It is thus a measurement of the quality of the estimator. The MSPE is closely related to the prediction error.

The following proposition provides a decomposition of Xβ * -X βk 2 in terms of the residuals. 

Xβ * -X βk 2 = r i=1 Qk (λ i )p 2 i + r i=1 1 -Qk (λ i ) ε2 i . (4.7)
The reals Qk (λ i )

1≤i≤r
are random, so that we cannot establish a classical bias-variance decomposition for the PLS estimator. In fact, based on the representation formula of the residual polynomials (see Theorem 4.5.1), it seems quite difficult and even infeasible to compute neither the variance of βk nor the one of X βk . Indeed, the variances along the eigenvector directions are not computable and even not mutually independent. But, we can compare Formula (4.7) to the bias-variance decomposition obtained in the case of a shrinkage estimator with deterministic filter factors. Actually, it is well known that for an estimator βS of the form βS =

r i=1 f (λ i ) pi √ λ i v i
where f (λ i ) is a deterministic filter factor, we have

M SP E( βS ) = r i=1 (1 -f (λ i )) 2 p 2 i + σ 2 r i=1 (f (λ i )) 2 . (4.8) Because βk = r i=1 1 -Qk (λ i ) pi √ λ i v i (see Subsection 4.4.
2), the PLS estimator can be viewed as a shrinkage estimator with filter factors equal to f

(k) i := 1 -Qk (λ i ).
However, contrary to the PCR or Ridge filter factors, those of PLS are stochastics and not always in [0, 1]. Therefore, usual results for linear spectral method as the one given in Equation (4.8) cannot apply. However, based on Proposition 4.6.6, we can state a similar expression for PLS

Xβ * -X βk 2 = r i=1 1 -f (k) i p 2 i + r i=1 f (k) i ε2 i (4.9)
and the following decomposition for the MSPE of the PLS method.

Proposition 4.6.7.

M SP E( βk ) = r i=1 E 1 -f (k) i p 2 i + r i=1 E f (k) i ε2 i .
where f

(k) i := 1 -Qk (λ i ).
Of course in the deterministic case, a filter factor larger than one always increases the MSPE compared to the one of the OLS, because it implies an increase of both the bias and the variance (see Equation (4.8)). Because the PLS filter factors can be larger than one, [START_REF] Friedman | A statistical view of some chemometrics regression tools[END_REF] proposed to bound by one the absolute value of the PLS shrinkage factors that are larger than one. In other words, they suggest to define

f (k) i =        +1 if f (k) i > +1 -1 if f (k) i < -1 f (k) i otherwise and to consider βk = r i=1 f (k) i pi √ λ i v i ,
as a new estimator of β * derived from the PLS one.

However, a decade later, [START_REF] Krämer | An overview on the shrinkage properties of partial least squares regression[END_REF]) pointed out that a PLS filter factor larger than one does not necessarily imply a larger MSPE. Thereby, bounding the absolute value of the PLS shrinkage factors by one does not always lead to a better MSPE (contrary to what was suggested by [START_REF] Friedman | A statistical view of some chemometrics regression tools[END_REF]). She specifies that it is not clear why there is such a peculiar behaviour. But, she illustrates this point through simulations. Proposition 4.6.6 provides a theoretical explanation to Krämer's assertion. Having a look at Equation (4.9), we better understand why a peculiar behaviour of the filter factors in a specific direction does not necessarily lead to a bad overall behaviour. Actually, we see that the PLS filter factors or their difference to one are not squared, contrary to what happens in the case of deterministic filter factors (see Equation (4.8)). So, a filter factor f (k) i larger than one does not necessarily increase the MSPE because it can be balanced by 1 -f

(k) i p 2
i which in this case will be negative. However, as proved by [START_REF] Goutis | Partial least squares algorithm yields shrinkage estimators[END_REF], PLS is a global shrinkage estimator like PCR (in the sense that it Euclidean norm is lower than that of the LS estimator) even if it does not shrink in all the principal directions (given by the eigenvectors). But, as stated by [START_REF] Druilhet | Pls regression : a directional signal-to-noise ratio approach[END_REF], there are directions (called the SNR directions) in which βk shrinks all the time (filter factors associated to these directions are always in [0, 1]) but not PCR. These directions are given by (ŝ l ) 1≤l≤r where ŝ1 = X T Y and ŝl = X T Y -X T X βl-1 , l = 2, . . . , r. Actually, the principal directions minimize the variance of the LS whereas these last directions iteratively maximise the signal to noise ratio (and so are more suited to PLS whose construction depends on both X and Y ). Therefore, the main difference between PLS and PCR is the fact that PLS tries to minimize the least squares under the constraint of being zero on subspaces of low signal to noise ratio whereas PCR do the same but on subspaces where the variance of the LS estimator is high. Notice that we can write the SNR directions in terms of the residual polynomials. For all

1 ≤ l ≤ r, ŝl = r i=1 λ i Ql (λ i )p i v i . so that βLS = r l= r i=1 Ql (λ i )p 2 i ŝl ŝl 2 and βk = k-1 l=1 r i=1 ( Ql (λ i ) -Qk (λ i ))p 2 i ŝl ŝl 2 .
Then, using again Lemma 4.6.5, we easily see that

0 ≤ r i=1 ( Ql (λ i ) -Qk (λ i ))p 2 i ≤ r i=1
Ql (λ i )p 2 i and therefore we recover that the PLS estimator shrinks the LS one in all the SNR directions. In addition, using Theorem 4.5.1, we can provide a new expression for the SNR directions.

An upper bound for the empirical MSPE under a low variance of the noise

We recall that

M SP E( βk ) = r i=1 E Qk (λ i ) p 2 i + r i=1 E (1 -Qk (λ i ))ε 2 i .
The expression of the MSPE stated above is not as simple as the one of PCR and thus an upper bound is not as obvious. Indeed, the direction of the new subspace onto which we project the observations depends in a complicated way on the singular value spectrum of the design matrix and also on the response in such a way that it is not feasible to compute E Qk (λ i )

or E (1 -Qk (λ i ))ε 2 i . However, in this subsection we investigate some of the properties of the MSPE under a low variance of the noise. The aim of this part is to provide a control of

1 n Xβ * -X βk 2 .
Assumptions The real variables ε 1 , ..., ε n are assumed to be unobservable i.i.d centered Gaussian random variables with common variance σ 2 n . We define -(H.1) :

σ 2 n = O( 1 n ).
The level of noise is related to the number of observations. In other words, we assume that

Y i = x T i β * + δ n ε i where ε i ∼ N (0, 1) and δ n = O( 1 √ n ). -(H.2) : min 1≤i≤r {p 2 i } ≥ L n := log n n where we recall that p i = (Xβ * ) T u i .
These two assumptions warrant that the signal to noise ratio p i εi 1≤i≤n

is not too small, where we recall that εi := ε T u i and p i := Xβ * T u i , i = 1, ..., n. This last quantity will appear again many time thereafter.

To bound the empirical MSPE from above, we have to control the randomness of the Krylov subspace onto which the data are projected. To do so, we introduce an oracle β k which is the regularization of β * onto the noise free Krylov subspace of dimension k. This regularized approximation of β * is defined as

β k ∈ argmin β∈K k Xβ * -Xβ 2 where K k := K k (X T X, X T Xβ * )
is the noise free Krylov subspace. Therefore, we have

β k = P * k (X T X)X T Xβ *
where P * k ∈ argmin

P ∈P k-1 Xβ * -XP (X T X)X T Xβ * 2 and Xβ * -Xβ k = Q * k (XX T )Xβ * where Q * k (t) = 1 -tP * k (t) ∈ P k,1 satisfies Q * k ∈ argmin Q∈P k,1 Q(XX T )Xβ * 2 .
Then, by the same arguments as the ones used to prove Proposition 4.4.2 and Theorem 4.5.1, we deduce 1. The sequence of polynomials (Q * k ) 1≤k≤r are orthogonals with respect to the measure

dµ = r i=1 λ i p 2 i δ λ i ,
where

p i := (Xβ * ) T u i . 2. Q * k (λ i ) := (j 1 ,..,j k )∈I + k w j 1 ,...,j k k l=1 (1 - λ i λ j l )
where

w (j 1 ,...,j k ) := p 2 j 1 ...p 2 j k λ 2 j 1 ...λ 2 j k V (λ j 1 , ..., λ j k ) 2 (j 1 ,..,j k )∈I + k p 2 j 1 ...p 2 j k λ 2 j 1 ...λ 2 j k V (λ j 1 , ..., λ j k ) 2
. Now, we let us introduce the main result of this subsection. Theorem 4.6.8. Let k ≤ r. Assume (H.1) and (H.2). We have, with probability larger than 1 -n 1-C where C > 1,

1 n Xβ * -X βk 2 ≤ 1 n 1 - λ n λ 1 2k r i=k+1 p 2 i + log(n) n 2 n i=1 |1 -Q * k (λ i )| +A. k n log n nL n n i=1   max I + k k l=1 λ i λ j l -1 2 p 2 i   ,
where A > 0 is a constant.

To prove Theorem 4.6.8 above, we first write

1 n Xβ * -X βk 2 = 1 n r i=1 Qk (λ i )p 2 i + 1 n r i=1 (1 -Qk (λ i ))ε 2 i = 1 n r i=1 Q * k (λ i )p 2 i + 1 n r i=1 (1 -Q * k (λ i ))ε 2 i + 1 n r i=1 Qk (λ i ) -Q * k (λ i ) p 2 i -ε2 i
The first term represents the squared distance between the noise free approximation Xβ k and Xβ * . In other words,

1 n r i=1 Qk (λ i )p 2 i = 1 n Xβ * -Xβ k 2 .
Based on the same arguments as the ones used to prove Proposition 4.6.2 (but this time without noise), we have

1 n r i=1 Qk (λ i )p 2 i ≤ 1 n r i=k+1 k l=1 1 - λ i λ l 2 p 2 i ≤ 1 n 1 - λ n λ 1 2k r i=k+1 p 2 i . (4.10)
The expectation of the second term is equal to

E 1 n r i=1 (1 -Q * k (λ i ))ε 2 i = σ 2 n n r i=1 (1 -Q * k (λ i )).
The random variables (ε i ) 1≤i≤n are assumed to be i.i.d ∼ N (0, σ 2 n ) and so are the (ε i ) 1≤i≤n . Therefore, we are going to use Proposition 4.6.9 below to state concentration inequalities. 

P(A c ) ≤ n i=1 P(| εi |> δ) ≤ n i=1 e -δ 2 2σ 2 n ≤ ne -Cδ 2 n .
In addition, with probability at least 1 -n 1-C we have for all i = 1, ..., n

| εi | ≤ log(n) n CHAPITRE 4
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Thus, we deduce that with probability at least 1 -n 1-C where C > 1 we have

1 n r i=1 (1 -Q * k (λ i ))ε 2 i ≤ log(n) n 2 n i=1 |1 -Q * k (λ i )| . (4.11)
Then, all that remains is to bound by above

1 n r i=1 Qk (λ i ) -Q * k (λ i ) p 2 i -ε2 i . This implies a control of Qk (λ i ) -Q * k (λ i )
which represents in some sense the approximation error between the projection onto the noise free Krylov subspace and onto the random Krylov subspace built from the observations. Proposition 4.6.10. Let k ≤ r. With probability larger than 1 -n 1-C where C > 1, we have

1 n r i=1 Qk (λ i ) -Q * k (λ i ) p 2 i -ε2 i ≤ A. k n log n nL n n i=1   max I + k k l=1 λ i λ j l -1 2 p 2 i   ,
where A > 0 is a constant.

Finally, Theorem 4.6.8 below is a straightforward consequence of Equation (4.10), (4.11) and Proposition 4.6.10.

The bound in Theorem 4.6.8 highly depends on the signal to noise ratio which must not be too small with respect to the eigenvector directions of X T X to ensure good statistical properties of the PLS estimator. This is the major difference with PCR that takes into account the variance of the observations to build the latent variables but not the level of the signal. On the contrary, PLS takes into account the signal through Y to construct the latent variables. That is why for PLS the signal to noise ratio plays an important role in the accuracy of the model.

Conclusion

We have shown that the PLS residuals are entirely characterized by discrete orthogonal polynomials (called the residual polynomials). Based on the definition of the associated discrete measure, we have deduced an explicit formula for these polynomials (the representation formula). This formula clearly shows the influence of both the noise and the eigenvalue distribution on the PLS residuals. In addition, this new expression is well suited to the study of the PLS statistical properties. On the one hand, it allows a better understanding of the empirical risk. And on the other hand, it provides a way to derive new results on the mean squares prediction error. These are some examples that reflect the power of the representation formula. But that's not all. By taking a look at this formula, it is easy to see that we can fastly recover proofs of results on PLS, proved earlier by several authors through various approaches (see [START_REF] Goutis | Partial least squares algorithm yields shrinkage estimators[END_REF], [START_REF] Neil | The peculiar shrinkage properties of partial least squares regression[END_REF], [START_REF] Ole | Shrinkage structure of partial least squares[END_REF]). To conclude, this paper throws new lights in the PLS method and its properties. But this is not the end of the road and the representation formula should be explored further to achieve a complete understanding of this method. 

Proof

XX T Qk (XX T )Y ∈ K k+1 (XX T , XX T Y ).
Furthermore, from (4.4), we get

Ql (XX T )Y ⊥ K l (XX T , XX T Y ).
Besides,

K l (XX T , XX T Y ) ⊃ K k+1 (XX T , XX T Y ).
Therefore, we deduce that for all k = l, we have XX T Qk (XX T )Y ⊥ Ql (XX T )Y . Then, using the SVD decomposition of X i.e XX T = 1 i r λ i u i u T i , we get

0 = XX T Qk (XX T )Y, Ql (XX T )Y =   1 i r λ i Qk (λ i )(u T i Y )u i   T   1 i n Ql (λ i )(u T i Y )u i   = 1 i r λ i Qk (λ i ) Ql (λ i )p 2 i .
Finally, we deduce 0 =

1 i r λ i Qk (λ i ) Ql (λ i )p 2 i .
Therefore, Q0 := 1, Q1 , Q2 , ..., Qr is a sequence of orthonormal polynomials with respect to the measure

dμ := r i=1 λ i p2 i δ λ i .
4.8.2 Proof of Theorem 4.5.1

We recall that ( Qk ) 1≤k≤r is a sequence of orthonormal polynomials with respect to the measure dμ := r i=1 λ i p2 i δ λ i . Returning to the definition of orthogonal polynomials we first express the polynomials ( Qk ) 1 k≤r as the quotient of two determinants. Proposition 4.8.1. For all i = 1, . . . , r, let mi = x i μ .

Then, for 1 ≤ k ≤ r, we have

Qk (x) = (-1) k det Ĝ2k-1 (x) det Ĥ2k-1 (4.12) where Ĝ2k-1 (x) :=       m0 m1 ... mk . . . mk-1 mk ... m2k-1 1 x ... x k       and 
Ĥ2k-1 :=       m1 m2 ... mk . . . mk-1 mk m2k-2 mk mk+1 ... m2k-1       .
Proof. The polynomials ( Qk ) 1 k≤r are the ones that satisfy

1. Qk (x) = α k k x k + α k-1 k x k-1 + ... + α k 1 x + α k 0 . 2. ∀j ∈ [0, k -1], x j (α k k x k + α k-1 k x k-1 + ... + α k 1 x + α k 0 ) dμ = 0. 3. Qk (0) = 1.
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This is equivalent to solve the following system of k equations with k unknowns

∀j ∈ [0, k -1] , α k k mj+k + α k-1 k mj+k-1 + ... + α k 1 mj+1 = -mj . The solution (α k 1 , ..., α k k ) of this system satisfies       m1 m2 ... mk . . . mk-1 mk m2k-2 mk mk+1 ... m2k-1            α k 1 α k 2 α k k      = -      m0 m1 mk-1     
.

We conclude the proof using the Cramer's rule which provides an explicit formula for the solution of a system of linear equations with as many equations as unknowns.

Then, using the definition of the discrete measure μ, we explicitly express Qk (λ i ) in terms of (λ i ) 1≤i≤r and (p i ) 1≤i≤r for all 1 ≤ k ≤ r and all 1 ≤ i ≤ r.

Proposition 4.8.2. Let 1 ≤ k ≤ r and 1 ≤ i ≤ r.
We recall that pi := Y T u i and we define

I k = (j 1 , ..., j k ) ∈ [1, r] k : j 1 = ... = j k and I k,i = (j 1 , ..., j k ) ∈ [1, r] k : j 1 = ... = j k = i .
We have

Qk (λ i ) = (-1) k (j 1 ,..,j k )∈I k,i p2 j 1 ...p 2 j k V (λ j 1 , ..., λ j k , λ i )λ j 1 ...λ k j k (j 1 ,..,j k )∈I k p2 j 1 ...p 2 j k V (λ j 1 , ..., λ j k )λ 2 j 1 ...λ k+1 j k (4.13)
where V (x 1 , ..., x l ) is the Vandermonde determinant of (x 1 , ..., x l ).

Proof. Let 1 ≤ i ≤ r. Using the fact that dμ = r j=1 λ j p2 j δ λ j , we get det

      m0 m1 ... mk . . . mk-1 mk m2k-1 1 λ i ... λ k i       = det       r j=1 λ j p2 j r j=1 λ 2 j p2 j ... r j=1 λ k+1 j p2 j . . . r j=1 λ k j p2 j r j=1 λ k j p2 j r j=1 λ 2k j p2 j 1 λ i ... λ k i       = r j 1 =1 ... r j k =1 p2 j 1 p2 j 2 ...p 2 j k λ j 1 λ 2 j 2 ...λ k j k det       1 λ j 1 ... λ k j 1 . . . 1 λ j k λ k j k 1 λ i ... λ k i       where det       1 λ j 1 λ k j 1 . . . 1 λ j k λ k j k 1 λ i ... λ k i       = V (λ j 1 , ..., λ j k , λ i )
is the Vandermonde determinant of λ j 1 , ..., λ j k , λ i . This determinant is non zero only if all the λ j 1 , ..., λ j k , λ i are distinct. Therefore, if k ≤ r we get

det       m0 m1 ... mk . . . mk-1 mk m2k-1 1 λ i ... λ k i       = (j 1 ,..,j k )∈I k,i p2 j 1 p2 j 2 ...p 2 j k λ j 1 λ 2 j 2 ...λ k j k V (λ j 1 , ..., λ j k , λ i ).
(4.14) Using the same arguments, we also get

det       m1 m2 ... mk . . . mk-1 mk m2k-2 mk mk+1 ... m2k-1       = (j 1 ,..,j k )∈I k p2 j 1 p2 j 2 ...p 2 j k λ 2 j 1 λ 3 j 2 ...λ k+1 j k V (λ j 1 , ..., λ j k ).
(4.15) From (4.12), (4.14) and (4.15), we deduce (4.13). Now, using the properties of the Vandermonde determinant, we provide a more useful characterization of the residual Qk (λ i ). Formula (4.13) of Proposition 4.8.2 tells us that for all k ≤ r

Qk (λ i ) = (-1) k (j 1 ,..,j k )∈I k,i p2 j 1 ...p 2 j k V (λ j 1 , ..., λ j k , λ i )λ j 1 ...λ k j k (j 1 ,..,j k )∈I k p2 j 1 ...p 2 j k V (λ j 1 , ..., λ j k )λ 2 j 1 ...λ k+1 j k . ( 4 

.16)

On the one hand, we have

(j 1 ,..,j k )∈I k p2 j 1 ...p 2 j k V (λ j 1 , ..., λ j k )λ 2 j 1 ...λ k+1 j k = (j 1 ,..,j k )∈I + k τ ∈S(1,...,k) p2 j τ (1) ...p 2 j τ (k) V (λ j τ (1) , ..., λ j τ (k) )λ 2 j τ (1) ...λ k+1 j τ (k)
where S(1, ..., k) is the set formed of all the permutations of (1, ..., k) and we recall that

I + k = (j 1 , ..., j k ) ∈ [1, ..., r] k : r ≥ j 1 > ... > j k ≥ 1 .
Then, using that V (λ j τ (1) , ..., λ j τ (k) ) = ε(τ )V (λ j 1 , ..., λ j k ) where ε(τ ) the signature of the permutation τ , we get

(j 1 ,..,j k )∈I k p2 j 1 ...p 2 j k V (λ j 1 , ..., λ j k )λ 2 j 1 ...λ k+1 j k = (j 1 ,..,j k )∈I + k τ ∈S(1,...,k) p2 j 1 ...p 2 j k ε(τ )V (λ j 1 , ..., λ j k )λ 2 j 1 ...λ 2 j k λ j τ (2) ...λ k-1 j τ (k) = (j 1 ,..,j k )∈I + k p2 j 1 ...p 2 j k V (λ j 1 , ..., λ j k )λ 2 j 1 ...λ 2 j k   τ ∈S(1,...,k) ε(τ )λ j τ (2) ...λ k-1 j τ (k)   . (4.17)
On the other hand, 

V (λ j 1 , ..., λ j k ) = τ ∈S(1,...,k) ε(τ )λ τ (1)-1 j 1 ...λ τ (k)-1 j k = τ ∈S(1,...,k) ε(τ )λ j τ (2) ...λ k-1 j τ (k) . ( 4 
)∈I k p2 j 1 ...p 2 j k V (λ j 1 , ..., λ j k )λ 2 j 1 ...λ k+1 j k = (j 1 ,..,j k )∈I + k p2 j 1 ...p 2 j k λ 2 j 1 ...λ 2 j k V (λ j 1 , ..., λ j k ) 2 .
(4.19) A similar reasoning can be applied to the numerator. Indeed, using the fact that

V (λ j 1 , ..., λ j k , λ i ) = k l=1 (λ i -λ j l ) 1≤q<m≤k (λ jm -λ jq ) = k l=1 (λ i -λ j l )V (λ j 1 , ..., λ j k ) we get (j 1 ,..,j k )∈I k,i p2 j 1 ...p 2 j k V (λ j 1 , ..., λ j k , λ i )λ j 1 ...λ k j k = (j 1 ,..,j k )∈I + k τ ∈S(1,...,k) p2 j τ (1) ...p 2 j τ (k) k l=1 (λ i -λ j τ (l) )V (λ j τ (1) , ..., λ j τ (k) )λ j τ (1) ...λ k j τ (k) = (j 1 ,..,j k )∈I + k p2 j 1 ...p 2 j k k l=1 (λ i -λ j l )V (λ j 1 , ..., λ j k )λ j 1 ...λ j k   τ ∈S(1,...,k) ε(τ )λ j τ (2) ...λ k-1 j τ (k)   = (j 1 ,..,j k )∈I + k p2 j 1 ...p 2 j k λ j 1 ...λ j k V (λ j 1 , ..., λ j k ) 2 k l=1 (λ i -λ j l ) = (-1) k (j 1 ,..,j k )∈I + k p2 j k λ 2 j 1 ...λ 2 j k V (λ j 1 , ..., λ j k ) 2 k l=1 (1 - λ i λ j l ). (4.20) 
From (4.16), (4.19) and (4.20), we conclude that

Qk (λ i ) = (j 1 ,..,j k )∈I + k   p2 j 1 ...p 2 j k λ 2 j 1 ...λ 2 j k V (λ j 1 , ..., λ j k ) 2 (j 1 ,..,j k )∈I + k p2 j 1 ...p 2 j k λ 2 j 1 ...λ 2 j k V (λ j 1 , ..., λ j k ) 2   k l=1 (1 - λ i λ j l ).
4.8.3 Proof of Theorem 4.6.1

Proof. On the one hand (see Subsection 4.4.2), we have

Y -X βk 2 = r i=1 Qk (λ i )p 2 i + n i=r+1 p2 i .
And on the other hand (using Formula (4.5)), 

r i=1 Qk (λ i )p 2 i = r i=1    (j 1 ,..,j k )∈I + k   p2 j 1 ...p 2 j k λ 2 j 1 ...λ 2 j k V (λ j 1 , ..., λ j k ) 2 (j 1 ,..,j k )∈I + k p2 j 1 ...p 2 j k λ 2 j 1 ...λ 2 j k V (λ j 1 , ..., λ j k ) 2   k l=1 (1 - λ i λ j l )    p2 i = r i=1 (j 1 ,..,j k )∈I + k p2 j 1 ...p 2 j k λ 2 j 1 ...λ 2 j k V (λ j 1 , ..., λ j k ) 2 k l=1 (1 -λ i λ j l )p 2 i (j 1 ,..,j k )∈I + k p2 j 1 ...p 2 j k λ 2 j 1 ...λ 2 j k V (λ j 1 , ..., λ j k ) 2
)∈I + k p2 j 1 ...p 2 j k λ 2 j 1 ...λ 2 j k V (λ j 1 , ..., λ j k ) 2 k l=1 (1 - λ i λ j l )p 2 i = r i=1 (j 1 ,..,j k )∈I + k   p2 j 1 ...p 2 j k λ 2 j 1 ...λ 2 j k V (λ j 1 , ..., λ j k )   σ∈S(1,...,k) (σ)λ j σ(2) . . . λ k-1 j σ(k)   k l=1 (1 - λ i λ j l )p 2 i   because V (λ j 1 , ..., λ j k ) = σ∈S(1,...,k) (σ)λ j σ(2) . . . λ k-1 j σ(k) = r i=1 r j 1 =1 .... r j k =1 p2 j 1 ...p 2 j k λ 2 j 1 ...λ 2 j k V (λ j 1 , ..., λ j k )λ j 2 . . . λ k-1 j k k l=1 (1 - λ i λ j l )p 2 i = r i=1 r j 1 =1 .... r j k =1 p2 j 1 ...p 2 j k λ j 1 ...λ k j k V (λ j 1 , ..., λ j k ) k l=1 (λ j l -λ i )p 2 i .
Then, replacing the indices (i, 1, ..., k) by (1, 2, .., k + 1), we get

r i=1 r j 1 =1 .... r j k =1 p2 j 1 ...p 2 j k λ j 1 ...λ k j k V (λ j 1 , ..., λ j k ) k l=1 (λ j l -λ i )p 2 i = r j 1 =1 r j 2 =1 .... r j k+1 =1 p2 j 1 ...p 2 j k+1 λ j 2 ...λ k j k+1 V (λ j 1 , ..., λ j k+1 ) = (j 1 ,..,j k+1 )∈I + k+1   p2 j 1 ...p 2 j k+1 V (λ j 1 , ..., λ j k+1 )   σ∈S(1,...,k+1) (σ)λ j σ(2) . . . λ k j σ(k+1)     = (j 1 ,..,j k+1 )∈I + k+1 p2 j 1 ...p 2 j k+1 V (λ j 1 , ..., λ j k+1 ) 2 . Therefore Y -X βk 2 = (j 1 ,..,j k+1 )∈I + k+1 p2 j 1 ...p 2 j k+1 V (λ j 1 , ..., λ j k+1 ) 2 (j 1 ,..,j k )∈I + k p2 j 1 ...p 2 j k λ 2 j 1 ...λ 2 j k V (λ j 1 , ..., λ j k ) 2 . (4.21) But, (j 1 ,..,j k+1 )∈I + k+1 p2 j 1 ...p 2 j k+1 V (λ j 1 , ..., λ j k+1 ) 2 = r i=k+1 i>j 1 >...>j k ≥1 p2 i p2 j 1 ...p 2 j k λ 2 j 1 , ..., λ 2 j k k l=1 1 - λ i λ j l 2 V (λ j 1 , ..., λ j k ) 2 = r>j 1 >...>j k ≥1   p2 j 1 ...p 2 j k+1 λ 2 j 1 , ..., λ 2 j k V (λ j 1 , ..., λ j k ) 2 r i=j 1 +1   k l=1 1 - λ i λ j l 2 p2 i     . (4.22)
Therefore, using (4.21) and (4.22), we conclude

Y -X βk 2 = r>j 1 >...>j k ≥1   ŵj 1 ,..,j k r i=j 1 +1   k l=1 1 - λ i λ j l 2 p2 i     + n i=r+1 p2 i .
4.8.4 Proof of Proposition 4.6.6

Proof. We have X βk = r i=1 1 -Qk (λ i ) pi u i (see Subsection 4.4.2). Therefore

Xβ * -X βk 2 = r i=1 p i u i - r i=1 1 -Qk (λ i ) pi u i 2 = r i=1 p i -1 -Qk (λ i ) pi 2 (4.23) = r i=1 p 2 i -2 r i=1 1 -Qk (λ i ) p i pi + r i=1 1 -Qk (λ i ) p2 i (using that r i=1 1 -Qk (λ i ) 2 p2 i = r i=1 1 -Qk (λ i ) p2 i (cf. Lemma 4.6.5)) = r i=1 p 2 i - r i=1 1 -Qk (λ i ) pi p i + r i=1 1 -Qk (λ i ) pi εi ( using that p2 i = pi (p i + εi )) = r i=1 p 2 i - r i=1 1 -Qk (λ i ) p 2 i - r i=1 1 -Qk (λ i ) p i εi + r i=1 1 -Qk (λ i ) p i εi + r i=1 1 -Qk (λ i ) ε2 i = r i=1 Qk (λ i )p 2 i + r i=1 1 -Qk (λ i ) ε2 i .
4.8.5 Proof of Theorem 4.6.8

Proof. We recall that ŵj 1 ,..,j k := p2

j 1 ...p 2 j k λ 2 j 1 ...λ 2 j k V (λ j 1 , ..., λ j k ) 2 > 0, w j 1 ,..,j k := p 2 j 1 ...p 2 j k λ 2 j 1 ...λ 2 j k V (λ j 1 , ..., λ j k ) 2 > 0.
We define Ŵk := (j 1 ,..,j k )∈I + k ŵj 1 ,..,j k and W k := (j 1 ,..,j k )∈I + k w j 1 ,..,j k . We have

Qk (λ i ) = (j 1 ,..,j k )∈I + k ŵj 1 ,..,j k k l=1 ( λ i λ j l -1) Ŵk and Q k (λ i ) = (j 1 ,..,j k )∈I + k w j 1 ,..,j k k l=1 ( λ i λ j l -1) W k .
Then, we get

Qk (λ i ) -Q * k (λ i ) = (j 1 ,..,j k )∈I + k ŵj 1 ,..,j k k l=1 (1 -λ i λ j l ) Ŵk - (j 1 ,..,j k )∈I + k w j 1 ,..,j k k l=1 (1 -λ i λ j l ) W k ≤ (j 1 ,..,j k )∈I + k w j 1 ,..,j k k l=1 (1 -λ i λ j l ) W k - (j 1 ,..,j k )∈I + k ŵj 1 ,..,j k k l=1 (1 -λ i λ j l ) W k CHAPITRE 4. PLS, A NEW STATISTICAL INSIGHT THROUGH THE PRISM OF ORTHOGONAL POLYNOMIALS + (j 1 ,..,j k )∈I + k ŵj 1 ,..,j k k l=1 (1 -λ i λ j l ) W k - (j 1 ,..,j k )∈I + k ŵj 1 ,..,j k k l=1 (1 -λ i λ j l ) Ŵk ≤ 1 W k (j 1 ,..,j k )∈I + k [w j 1 ,..,j k -ŵj 1 ,..,j k ] k l=1 (1 - λ i λ j l ) + 1 W k Ŵk (j 1 ,..,j k )∈I + k ŵj 1 ,..,j k k l=1 (1 - λ i λ j l ) (j 1 ,..,j k )∈I + k [w j 1 ,..,j k -ŵj 1 ,..,j k ] .
Besides, we have -

(j 1 ,..,j k )∈I + k [w j 1 ,..,j k -ŵj 1 ,..,j k ] = (j 1 ,..,j k )∈I + k w j 1 ,..,j k 1 - p2 j 1 ...p 2 j k p 2 j 1 ...p 2 j k ≤ W k max I + k 1 - p2 j 1 ...p 2 j k p 2 j 1 ...p 2 j k - (j 1 ,..,j k )∈I + k ŵj 1 ,..,j k k l=1 (1 - λ i λ j l ) ≤ Ŵk max I + k k l=1 λ i λ j l -1 - (j 1 ,..,j k )∈I + k [w j 1 ,..,j k -ŵj 1 ,..,j k ] k l=1 (1 - λ i λ j l ) = (j 1 ,..,j k )∈I + k w j 1 ,..,j k 1 - p2 j 1 ...p 2 j k p 2 j 1 ...p 2 j k k l=1 (1 - λ i λ j l ) ≤ W k max I + k 1 - p2 j 1 ...p 2 j k p 2 j 1 ...p 2 j k max I + k k l=1 λ i λ j l -1 .
Therefore, we get

Qk (λ i ) -Q * k (λ i ) ≤ 2 max I + k 1 - p2 j 1 ...p 2 j k p 2 j 1 ...p 2 j k max I + k k l=1 λ i λ j l -1 (4.24) where p2 j 1 ...p 2 j k p 2 j 1 ...p 2 j k = 1 + ε j 1 p j 1 2 ... 1 + ε j k p j k 2 .
Using (H.1), (H.2) and Proposition 4.6.9, we deduce that there exists a constant C > 1 such that with probablity at least 1 -n 1-C we have Then, from (4.24) and (4.25) we deduce that there exists a constant A such that with probability at least 1 -n 1-C where C > 1,

1 - log n nL n 2k ≤ p2 j 1 ...p 2 j k p 2 j 1 ...p 2 j k ≤ 1 + log n nL n 2k (4.25) 
Qk (λ i ) -Q * k (λ i ) ≤ 2Ak log n nL n max I + k k l=1 λ i λ j l -1 . (4.26)
Finally, we get

1 n r i=1 Qk (λ i ) -Q * k (λ i ) p 2 i -ε2 i ≤ 2Ak log n nL n n i=1   max I + k k l=1 λ i λ j l -1 2 p 2 i   .
CHAPITRE 5. PLS, A UNIFIED FRAMEWORK TO THE STUDY OF THE PLS PROPERTIES

Overview of the second thesis contribution to Part II

This Chapter is based on a paper entitled "A unified framework to the study of the PLS properties" that is in press.

As mentioned in Chapter 4, the PLS estimator is a shrinkage estimator. We recall that the Least Squares estimator can be expanded using the SVD of X (see Equation (2.26)) as

βLS = r i=1 pi √ λ i v i .
We say that an estimator β is a shrinkage estimator if it can be written as

β = r i=1 f (λ i ) pi √ λ i v i .
The weights {f (λ i )} 1≤i≤r are referred as filter factors and control the amount of shrinkage applied to the LS estimator. For instance, the PCR estimator βk P CR is a shrinkage estimator with filter factors equal to

f (λ i ) = 1 if i ≤ k f (λ i ) = 0 if i > k
as well as the Ridge estimator βR whose filter factors are given by

f (λ i ) = λ i λ i + λ ,
where λ is the tuning parameter. As mentioned in Subsection 4.5.2,

βk = r i=1 1 -Qk (λ i ) pi √ λ i v i .
The PLS filter factors are therefore equal to f

(λ i ) = 1 -Qk (λ i ) := f (k) i .
It is important to observe that the PLS filter factors f (k) i are fully characterized by the residual polynomials Qk and depend non-linearly on Y . They are also random, so that classical results for shrinkage estimator with deterministic filter factors cannot apply.

As mentioned in the previous section, little is known on the PLS properties. Actually most of the literature on the behaviour of the PLS estimator focus on its shrinkage properties [START_REF] Phatak | Exploiting the connection between pls, lanczos methods and conjugate gradients : alternative proofs of some properties of pls[END_REF]. Based on the representation formula stated in Theorem 4.5.1 and on the expression of the filter factors in terms of the residuals, we get a new expression for the PLS filter factors

[DJ93], [DJ95], [Gou96], [LC00], [BD00],
f (k) i := (j 1 ,..,j k )∈I + k ŵj 1 ,..,j k 1 - k l=1 (1 - λ i λ j l ) ,
where we recall that ŵj 1 ,..,

j k := p2 j 1 ...p 2 j k λ 2 j 1 ...λ 2 j k V (λ j 1 , ..., λ j k ) 2 (j 1 ,..,j k )∈I + k p2 j 1 ...p 2 j k λ 2 j 1 ...λ 2 j k V (λ j 1 , ..., λ j k ) 2 .
In Chapter 5 we show that, based on this new formula for the filter factors, we recover most of the well known properties of the PLS filter factors. In Section 5.3, we provide a new proof of the fact that the PLS filter factors oscillate below and above one. This result was previously proved by [START_REF] Neil | The peculiar shrinkage properties of partial least squares regression[END_REF] and independently the same year by [LC00] using the Ritz eigenvalues. We also explain how we recover most of the properties stated in [START_REF] Neil | The peculiar shrinkage properties of partial least squares regression[END_REF] and [START_REF] Ole | Shrinkage structure of partial least squares[END_REF]. In Subsection 5.3.2, we investigate the distance of the filter factors to one in the eigenvector directions.

CHAPITRE 5. PLS, A UNIFIED FRAMEWORK TO THE STUDY OF THE PLS PROPERTIES

Even if the filter factors are not always in [0, 1], the PLS estimator globally shrinks the LS one

βk 2 ≤ βOLS 2 .
This important feature of PLS has been proved by several authors through different approaches. A geometrical point of view is taken in [START_REF] De | Pls shrinks[END_REF], [START_REF] Goutis | Partial least squares algorithm yields shrinkage estimators[END_REF] focus on the iterative PLS algorithm and [START_REF] Phatak | Exploiting the connection between pls, lanczos methods and conjugate gradients : alternative proofs of some properties of pls[END_REF] take advantages of the link between PLS and conjugate gradient to deduce this result. Here, we provide another proof of this result. We use again the same approach through orthogonal polynomials, thereby providing a unified framework to all these results. However, as previously seen, if the PLS estimator does not shrink in all the eigenvector directions but remains a global shrinkage estimator, it is because there exists directions where βk always shrinks the LS. As mentioned in Subsection 4.6.2, these directions denoted by (s l ) 1≤l≤r are given by

ŝl = r i=1 λ i Ql (λ i )p i v i .

Introduction

We have developed a new approach for the study of the PLS properties (cf. [START_REF] Blazere | Pls : a new statistical insight through the prism of orthogonal polynomials[END_REF]) based on the connections between PLS and orthogonal polynomials. In this paper we consider again these connections to provide a general and unified framework for the study of the PLS properties. Using this approach, we show that we can easily recover proofs of results on PLS proved earlier by several authors through various approaches. In this paper, we will also explain how our approach sheds new lights on the method and is powerful to gain more insight into the PLS properties.

In Section 5.3, we derive a new formula for the PLS filter factors that only depends on the residual polynomials. Using this new expression, we show how it is obvious to recover most of the main properties of these PLS filter factors ([LC00], [START_REF] Neil | The peculiar shrinkage properties of partial least squares regression[END_REF]). Section 5.4 provides a new expression for the PLS estimator in terms again of the residuals polynomials. We also state in this section a slightly modified proof of the fact that PLS is a global shrinkage estimator ([DJ95], [START_REF] Goutis | Partial least squares algorithm yields shrinkage estimators[END_REF]).

Hereafter we keep the same notation as in Chapter 4.

Filter factors

In this section we investigate the shrinkage properties of the PLS estimator.

New expression for the filter factors

We recall that βk =

r i=1 (1 -Qk (λ i )) pi √ λ i v i . ( 5.1) 
From this decomposition of βk , we deduce that the filter factors f

(k) i
of the PLS estimator relative to OLS are equals to f (k) i := 1 -Qk (λ i ). We recall that the filter factors are the CHAPITRE 5. PLS, A UNIFIED FRAMEWORK TO THE STUDY OF THE PLS PROPERTIES weights associated to the expansion of βLS with respect to the eigenvector directions of the covariance matrix (see [START_REF] Ole | Shrinkage structure of partial least squares[END_REF] for further details on the filter factors). Therefore, we have an alternative representation of the filter factors in terms of the residual polynomials. Indeed, using Theorem 4.5.1, we can expand the filter factors and provide a new expression as follow :

f (k) i := (j 1 ,..,j k )∈I + k ŵj 1 ,..,j k 1 - k l=1 (1 - λ i λ j l ) , (5.2) 
where we recall that ŵj 1 ,..,

j k := p2 j 1 ...p 2 j k λ 2 j 1 ...λ 2 j k V (λ j 1 , ..., λ j k ) 2 (j 1 ,..,j k )∈I + k p2 j 1 ...p 2 j k λ 2 j 1 ...λ 2 j k V (λ j 1 , ..., λ j k ) 2
. This is an alternative representation to the one of [START_REF] Ole | Shrinkage structure of partial least squares[END_REF] who consider the following implicit expression for the filter factors (see Theorem 1 in [START_REF] Ole | Shrinkage structure of partial least squares[END_REF]) to study the shrinkage properties of PLS :

f (k) i = (θ (k) 1 -λ i )...(θ (k) k -λ i ) θ (k) 1 ...θ (k) k (5.3)
where (θ

(k) i ) 1≤i≤k are the eigenvalues of W k (W k T ΣW k )W k T called the Ritz eigenvalues.
The interest of Formula (5.2) compared to (5.3) is that it clearly and explicitly shows how the filter factors depend on the error terms and on the eigenelements of X. We can notice that they are completely determined by these last quantities.

From Equation (5.2), we easily see that the PLS filter factors are polynomials of degree k that strongly depend on the response in a non linear and complicated way (product of the projections of the response onto the right eigenvectors and normalization factor). Furthermore, because the PLS filter factors are stochastics, usual results for linear spectral methods such as PCA or Ridge cannot be applied in this case. Contrary to those of PCA or Ridge regression, the PLS filter factors are not easy to interpret. This is closely linked to the intrinsic idea of the method that takes into account at the same time the variance of the explanatory variables and their covariance with the response. However, we have a control of the distance of the filter factors to one. Proposition 5.3.1. For all k ≤ r, we have

1 -f (k) i (λ i ) ≤ λ 1 -λ r λ r n   1 + p2 i λ 2 i I + k-1,i p2 j 1 ...p 2 j k-1 λ 2 j 1 ...λ 2 j k-1 V (λ j 1 , ..., λ j k-1 ) 2 I + k,i p2 j 1 ...p 2 j k λ 2 j 1 ...λ 2 j k V (λ j 1 , ..., λ j k ) 2   -1
,

where I + k,i := (j 1 , ..., j k ) ∈ I + k | j l = i, l = 1, ..., k .
So the highest are the λ i and pi the closest to one is f

(k) i
and the largest is the amount of expansion in this eigenvector direction. Actually, the PLS filter factors are not only related to the singular values but also to the magnitude of the covariance between the principal components and the response. What seems to be important it is not the order of decrease of λ i but the order of decrease of λ i p2 i .

Shrinkage properties of PLS : other proofs of known results

In this subsection, we explain how we can easily recover (once Theorem 4.5.1 is stated) most of the main known results on the PLS filter factors.

1. From Formula (5.2), we easily see that there is no order on the filter factors and no link between them at each step. Furthermore, they are not always in [0, 1], contrary to those of PCR or Ridge regression. These two last methods always shrink in all the eigenvector CHAPITRE 5. PLS, A UNIFIED FRAMEWORK TO THE STUDY OF THE PLS PROPERTIES directions. On the contrary, the PLS filter factors can be greater than one and even negative. This is one of their very particular feature. PLS shrinks in some direction but can also expand in others in such a way that f

(k) i
represents the magnitude of shrinkage or expansion of the PLS estimator in the i th eigenvectors direction. [START_REF] Friedman | A statistical view of some chemometrics regression tools[END_REF] were the first to notice this peculiar property of PLS but they did not provide any proof. This result was first proved by [START_REF] Neil | The peculiar shrinkage properties of partial least squares regression[END_REF] and independently the same year by [LC00] using Ritz eigenvalues. We also refer to [START_REF] Krämer | An overview on the shrinkage properties of partial least squares regression[END_REF] for an overview of the shrinkage properties of the PLS estimator. The shrinkage properties of the PLS estimator were mainly investigated by [START_REF] Ole | Shrinkage structure of partial least squares[END_REF]. From Formula (5.2), we easily recover their main properties for the filter factors (but without using the Ritz eigenvalues). It is for instance the case for the behaviour of the filter factors associated to the largest and smallest eigenvalue. Indeed, on one hand, if k ≤ r and i = r then 0

< k l=1 (1-λr λ j l ) < 1. Therefore, because (j 1 ,..,j k )∈I + k ŵj 1 ,..,j k = 1, we can conclude directly that 0 < f (k) r < 1. On the other hand, if k ≤ r and i = 1 then    k l=1 (1 -λ 1 λ j l ) < 0 if k is odd k l=1 (1 -λ 1 λ j l ) > 0 if k is even , so that f (k) 1 > 1 if k is odd f (k) 1 < 1 if k is even . This is exactly Theorem 3 of [LC00].
Hence, the filter factor associated to the largest eigenvalues oscillates around one depending on the parity of the index of the factors. For the other filter factors we can have either f

(k) i ≤ 1 (PLS shrinks) or f (k) i
≥ 1 (PLS expands) depending on the distribution of the spectrum. Notice that if PLS does not shrink along an eigenvector direction (i.e | f k i |> 1) but √ λ i is high or pi is small in this direction, then it has not a lot of effect (see Equation (5.1)). In addition, as noticed by [START_REF] Krämer | An overview on the shrinkage properties of partial least squares regression[END_REF], even if | f k i |> 1 this does not always imply that the MSE is worse compared to the one of OLS because the PLS filter factors are stochatics.

2. Notice that for orthogonal polynomials of a finite supported measure, there exists a point of the support of the discrete measure between any two of its zeros ([BKMM07]). Moreover, the roots of these polynomials belong to the interval whose bounds are the extreme values of the support of the discrete measure. Hence, from Proposition 4.4.2 we deduce that all the k zeros of Qk lie in [λ r , λ 1 ] and no more than one zeros lies in [λ i , λ i-1 ], where i = 1, ..., r + 1 and by convention λ r+1 := 0 and λ 0 := +∞. We immediately deduce that the eigenvalues [λ r , λ 1 ] can be partitioned into k+1 consecutive disjoint non empty intervals denoted by (I l ) 1≤l≤k+1 that first shrink and then alternately expand or shrink the OLS. In other words,

f (k) i ≤ 1 if λ i ∈ I l , l odd f k i ≥ 1 if λ i ∈ I l , l even .
This is Theorem 1 of [START_REF] Neil | The peculiar shrinkage properties of partial least squares regression[END_REF]. Notice that this result has been also independently proved by [START_REF] Ole | Shrinkage structure of partial least squares[END_REF] using the Ritz eigenvalues theory (see Theorem 4).

3. Besides, if we have λ i < λ n (1 + ) then a straightforward calculation (based on Formula (4.5)) leads to f k i < 1 + k . This statement is Theorem 7 of [LC00]. 4. Furthermore, we also recover Theorem 2 of [START_REF] Neil | The peculiar shrinkage properties of partial least squares regression[END_REF].

CHAPITRE 5. PLS, A UNIFIED FRAMEWORK TO THE STUDY OF THE PLS PROPERTIES

Theorem 5.3.2. For i = 1, ..., r f (r-1) i = 1 -C   pi λ i i =j (λ j -λ i )   -1
, where C does not depend on i.

In addition we have the exact expression for the constant C which is equal to

r j=1 p2 j λ j V (λ 1 , ..., λ r ) 2 r i=1 r j=1 p2 j λ 2 j V (λ 1 , ..., λ r ) 2 .
Proof. Based on Formula (5.2), we have

f (r-1) i = 1 - r j=1,j =i p2 j λ 2 j V (λ 1 , ..., λ i-1 , ..., λ i+1 , ..., λ r ) 2 r j=1,j =i (1 -λ i λ j ) r l=1 r j=1,j =l p2 j λ 2 j V (λ 1 , ..., λ l-1 , ..., λ l+1 , ..., λ r ) 2 = 1 - r j=1,j =i p2 j λ j (λ j -λ i ) -1 V (λ 1 , ..., λ r ) 2 r i=1 r j=1 p2 j λ 2 j V (λ 1 , ..., λ r ) 2 = 1 -   p2 i λ i r j=1,j =i (λ j -λ i )   -1 r j=1 p2 j λ j V (λ 1 , ..., λ r ) 2 r i=1 r j=1 p2 j λ 2 j V (λ 1 , ..., λ r ) 2 . So the highest is p2 i λ i r j=1,j =i (λ j -λ i ) the closest to one is f (r-1) i .
In conclusion, we have showed that, based on our new expression of the PLS filter factors, we easily recover some of their main properties. Thanks to our approach we provide a unified background to all these results.

[LC00] mentioned that, using their approach based on the Ritz eigenvalues, it appears difficult to establish the fact that PLS shrinks in a global sense. [BD00] also considered the shrinkage properties of the PLS estimator along the eigenvector directions but as [LC00] they did not prove that the PLS estimator is a global shrinkage estimator. With our approach we are able to prove this fact too. This is the aim of the next section.

Global shrinkage estimator

As seen in the previous section, PLS can expand the LS in some eigendirections leading to an increase of the LS estimator's projected length in these directions. But, globally, it is considered as a shrinkage estimator (as Ridge or PCA estimators) in the sense that its Euclidean norm is lower than the one of the OLS estimator : Proposition 5.4.1. For all k ≤ r, we have

βk 2 ≤ βOLS 2 .
This global shrinkage feature of PLS was first proved algebraically by [START_REF] De | Pls shrinks[END_REF] and a year later [START_REF] Goutis | Partial least squares algorithm yields shrinkage estimators[END_REF] proposed a new independent proof based on the PLS iterative construction algorithm by taking a geometric point of view. In addition [START_REF] De | Pls shrinks[END_REF] proved the more stronger following result : CHAPITRE 5. PLS, A UNIFIED FRAMEWORK TO THE STUDY OF THE PLS PROPERTIES Lemma 5.4.2. βk-1 2 ≤ βk 2 for all k ≤ r.

Two other proofs of this fact were provided later by [START_REF] Phatak | Exploiting the connection between pls, lanczos methods and conjugate gradients : alternative proofs of some properties of pls[END_REF]. The first one uses the link between PLS and Conjugate Gradient while the other uses the theory of quadratic forms. We provide below an alternative proof of Lemma (5.4.2) using the residual polynomials. This proof is very closed to the one of [START_REF] Phatak | Exploiting the connection between pls, lanczos methods and conjugate gradients : alternative proofs of some properties of pls[END_REF] and we do not have to make use of the expression of the residuals to prove it.

Proof. The vectors X T Q0 (XX T )Y ,...,X T Qk-1 (XX T )Y belongs to K k (X T X, X T Y ) and are orthogonals (because ( Qk ) 0≤k≤r is a sequence of orthogonal polynomials with respect to the discrete measure μ). Therefore, they formed an orthogonal basis for K k (X T X, X T Y ). As βk ∈ K k (X T X, X T Y ), we have

βk 2 := k-1 j=0 βT k X T Qj (XX T )Y 2 X T Qj (XX T )Y 2 .
Further, because X βk = r i=1 (1 -Qk (λ i ))p i u i , we may write

βT k X T Qj (XX T )Y = r i=1 (1 -Qk (λ i )) Qj (λ i )p 2 i = r i=1 Qj (λ i )p 2 i - r i=1 Qk (λ i )p 2 i = Y -X βj 2 -Y -X βk 2 = X βk 2 -X βj 2 .
For the justification of the equalities above, we refer to Subsection 4.4.2 and to the second point of Lemma 4.6.5. To conclude

βk 2 := k-1 j=0 X βk 2 -X βj 2 2 X T Qj (XX T )Y 2
Furthermore, for 1 ≤ l < k ≤ r, we have X βl 2 < X βk 2 (because X βl and X βk are the orthogonal projection of Y onto two Krylov subspaces, the first one included in the other). So that, we may deduce that

βk 2 ≤ k-1 j=0 X βk+1 2 -X βj 2 2 X T Qj (XX T )Y 2 := βk+1 2 .
Finally, because βr 2 = βLS 2 , we conclude that for all k ≤ r we have

βk-1 2 ≤ βk 2 ≤ βLS 2 .

Conclusion

In this paper, we propose a new approach to study the properties of the Partial Least Squares (PLS) estimator. This approach relies on the link between PLS and discrete orthogonal polynomials. Indeed many important PLS objects can be expressed in terms of some specific discrete orthogonal polynomials, called the residual polynomials. Based on the explicit analytical expression we have stated in a previous paper for these polynomials in terms of signal and noise, we provide a new framework for the study of PLS. Furthermore, we show that this new approach allows to simplify and retrieve independent proofs of many classical results (proved earlier by different authors using various approaches and tools). This general and unifying approach also sheds new light on PLS and helps to gain insight on its properties.

Conclusion et perspectives

Summary of the research work

Partial Least Square (PLS) [START_REF] Wold | The collinearity problem in linear regression. the partial least squares (pls) approach to generalized inverses[END_REF] is nowadays a widely used dimension reduction technique in multivariate regression, especially when the explanatory variables are highly collinear or when they outnumber the observations. Originally designed to remove the problem of multicollinearity in the set of explanatory variables, PLS acts as a dimension reduction method by creating orthogonal latent components that maximize the variance and are also optimal for predicting the output variable. This method has been mainly investigated by [START_REF] Inge | On the structure of partial least squares regression[END_REF][START_REF] Inge | Partial least squares regression and statistical models[END_REF][START_REF] Inge | Some theoretical aspects of partial least squares regression[END_REF] [START_REF] Phatak | Exploiting the connection between pls, lanczos methods and conjugate gradients : alternative proofs of some properties of pls[END_REF] and by [START_REF] Krämer | An overview on the shrinkage properties of partial least squares regression[END_REF]. If the PLS method is very helpful in a large variety of situations (especially in chemical engineering and genetics), this iterative procedure is complex and so little is known about its theoretical properties. In this part, we have suggested a new approach (based on the connections between PLS and orthogonal polynomials) to analyse some statistical aspects of this method. Most of the PLS objects of interest can actually be written in terms of some specific discrete orthogonal polynomials, called the residual polynomials. Thanks to the theory of orthogonal polynomials, we have derived an explicit analytical expression for the residual polynomials (called the representation formula) that clearly shows how the PLS estimator depends on the signal and noise. Based on this approach, we have established new results in terms of empirical risk and mean square prediction error. The shrinkage properties of the PLS estimator have also be investigated. Finally, we have shown how this new approach through polynomials provides a unified framework to easily recover most of the already known PLS properties.

, [Hös88], [NH93], [DJ93, DJ95], [Gou96], [LC00], [BD00],

Perspectives and future research

Some questions still remains open. The representation formula should be further explored to better understand under which conditions on the model the method achieves good performances. For instance, specific distribution of the eigenvalues with respect to the contribution of the response on the associated eigendirections should be investigated. Another future research axis could be to see if we can extend the representation formula to data in infinite dimension and to multiple response. For the moment, there is no performing tools that assess the quality of the PLS method. Ones can also think to use the representation formula (and the derived results stated in this part) to develop tests to assess the validity of a model, when applying PLS. The upper bounds on the empirical risk could also be used to set criteria for a choice of a model better than PRESS. At last, the representation formula may help to modify the PLS algorithm to take into account some of the specificities in the link between the input and output response, thereby allowing better performances and interpretability of the algorithm.

Introduction Definition and meaning of a graph

Graphs play a central role in complex system [START_REF] Mark | Modeling social networks from sampled data[END_REF], [START_REF] Steven | Exploring complex networks[END_REF], [START_REF] Mark Ej Newman | The structure and function of complex networks[END_REF], [START_REF] Albert | Statistical mechanics of complex networks[END_REF]. Fields of application are many and various, ranging from mathematics (graph theory, combinatoric problems) to physics (systems of particles [START_REF] John | Neural networks and physical systems with emergent collective computational abilities[END_REF]), sociology (social networks [START_REF] Mark | Modeling social networks from sampled data[END_REF]), marketing (consumers preferences graphs), informatics (decision trees, combinatorial optimization, World Wild Web [START_REF] Pastor | Evolution and structure of the Internet : A statistical physics approach[END_REF]) or biology (neural, proteins networks, genes [JTA + 00]). In biology, there exists a lot of applications [MLF + 09], [START_REF] Andy | Gene network interconnectedness and the generalized topological overlap measure[END_REF], [START_REF] Guimera | Functional cartography of complex metabolic networks[END_REF],[ZH + 05a],[DHJ + 04], [START_REF] Michael Z Man | Evaluating methods for classifying expression data[END_REF] just to name a few.

A graph G refers to a set of vertices (nodes) and a set of edges (links). The nodes represent the individuals or objects and the edges the interactions and relationships between them. From a mathematical point of view, a graph G is a pair (V, E) where V is the set of vertices and E refers to the set of edges that pairwise connect the vertices [START_REF] Diestel | Graph theory[END_REF]. An edge e ∈ E that connects a node i and a node j is denoted by e = (i, j). The edges can be either directed or not. For a directed graph (resp. undirected), the edges e = (i, j) are ordered (resp. unordered). In graph theory, a directed graph is called a network but the term network is often used in a broader sense to denote a graph that represents interactions. The edges can also be weighted or not. If the graph is weighted by a matrix W containing the weights, we specify G = (V, E, W ). Otherwise, the weights are assumed to be equal to one when there exists an edge between two vertices and to zero otherwise. The set of vertices can be fixed or random (sample of nodes), as well as the edges (depending if the structure can change from one observation to another). In our setting, we consider only undirected graph with fixed vertices. A graph may represent a real existing structure in R 2 or in R 3 (the distance between two nodes reflecting the real distance between two physical objects). But, in general graphs have no physical or geometrical interpretations. They are just a way to model relationships. In this thesis, the distance between two nodes have no particular meaning. An important object associated to the graph is the adjacency matrix A = (A ij ) (i,j)∈V 2 . The element A ij represents the weight on the edge between node i and node j. For unweighted graphs, the adjacency matrix is defined by

A ij =
1 if there is an edge between i and j 0 otherwise .

If the graph contains

n nodes i.e. | V |= n, then A ∈ M n (R).
When the graph is undirected, A is a symmetric matrix. Its diagonal elements are equal to zero when there is no loop. The adjacency matrix is actually the matrix representation of the graph. It encodes the edges attributes in its cells. For large graphs, the adjacency matrix can be easier to read than the graph visualization itself. The ordering of the rows and columns in the adjacency matrix are important because it can visually reveal clusters or pattern in the graph [START_REF] Mueller | A comparison of vertex ordering algorithms for large graph visualization[END_REF]. The degree INTRODUCTION d i of a node i is equal to the number of edges incident to i (whose root is node i), so that

d i = n j=1 A ij .
We denote by D the degree matrix that contains (d 1 , ..., d n ) on the diagonal and zero anywhere else.

Some challenging issues

The analysis of a graph is an important issue in many fields including biology, sociology, economy, informatics... The challenges are various and imply different tasks. One of these challenges is the estimation of the graph interactions (connections between nodes) when the structure of the graph is not known or not fixed. Another important task is the understanding of the graph structures (local or global). This can be done for instance by clustering highly connected subsets of nodes. Various other tasks may appear when analysing graphs. In this thesis, we will especially focus on the two last main aspects (estimation and clustering).

Graphs are actually a convenient way to model and study interactions between individuals. These interactions generally rely on attributes of the individuals (or objects) represented by the nodes. They explain the way individuals interact. Individuals with similar attributes often form communities. Hence, finding these groups that share common features can help to better understand the mechanisms underlying the graph. Clustering aims at finding these latent structures, shared by some specific subsets of nodes. For instance, in genetics, groups of genes with high interactions are likely to be involved in a same function that drives a specific biological process. Finding these groups of genes enables to better understand this biological functionality. In particular, some of these groups of genes may be involved in a specific disease. Thus, the knowledge of these groups can help to better understand its emergence and development. Extracting the relevant groups with respect to a given response can be done using the Group Lasso procedure. However, this method requires the a priori knowledge of the groups. That is why, being able to cluster groups of variables (in a reliable manner) is of the highest importance.

But, finding optimal subsets of nodes is not so easy because it depends on the specificities of the graph. Nowadays, we have to face ever larger graphs. These very large graphs play an important role in various areas [VLKS + 11]. In this situation, it needs to implement computationally feasible tools adapted to this high dimension. One of the problem with large graphs is the visualization. However, this issue will not be the concern of this thesis. The other problem is the cost to estimate interactions or to search for patterns in large graphs. Traditional methods cannot apply anymore in this case. Indeed, the high-dimensionality of the data make algorithms break down due to too long computational times. Exhaustive research is not possible anymore. Hopefully, most of these graphs are sparse (genes interact only with few other genes, friendships developed in social network are limited to a small number of individuals.. ;). Sparse graphs have around

O(| V |) <| E | O(| V |)
edges, whereas dense graphs have a density close to one.

INTRODUCTION

First, in Section 6.1, we introduce the main notions and the associated notations that encode features in a graph.

A graph can be deterministic or random. In this thesis, we were more specifically interested by this latter category. A graph can be random because it is the realization of a probability distribution on graphs (probabilistic random graphs) or because the graph is empirically estimated from the observations of some features on individuals (statistical random graphs). In Section 6.2, we detail these two main classes of random graph models. Two probabilistic random graph models will be of interest in this part. They are detailed in Subsection 6.2.1. The first and simplest one is the Erdos-Renyi graph [START_REF] Erdos | On the evolution of random graphs[END_REF] that links independently each pairs of vertices with a probability p. The associated adjacency matrix A has independent entries equals to one with probability p and zero with probability 1 -p. An important characteristic of the Erdos-Renyi graph is given by its degree distribution (P (l)) 1≤l≤n . The coefficient P (l) represents the probability for a node to be directly connected to l nodes among the n possible ones. The expected degree of a node is equal to np and when n tends to infinity the Erdos-Renyi graph has a Poisson degree distribution of parameter np

P (l) = e -λ λ l l!
where λ = np. The main advantage of Erdos-Renyi graphs is that it is a simple model. In addition, its statistical and topological properties are well known. However, this random graph breaks down in modelling real networks. Actually, many real networks (genes networks, social networks) have not a Poisson degree distribution, but rather a degree distribution decreasing far more slowly at large l value of the form

P (l) ∼ l -α
where α > 1. The other commonly used random model is the stochastic block model [START_REF] Paul W Holland | Stochastic blockmodels : First steps[END_REF].

In the stochastic block model, we consider k labels (1, 2, ..., k) corresponding to the membership to k communities and n nodes that represent the set of vertices V . The graph is parametrized by a probability distribution p = (p 1 , ..., p k ) ∈ ]0, 1[ k , where k i=1 p i = 1, and by a matrix P ∈ M k (R), whose entries are in [0, 1] . p represent the probability of belonging to one of the k communities. In other words, the probability that a node belongs to community i is given by p i . We denote by τ the random block membership function τ : V → {1, 2, ..., k}, where τ (i ∈ V ) = j means that the vertex i is assigned to community j. Hence, we have P [τ (i) = j] = p j . The entries of P represent the probability of an edge between two nodes with respect to their community memberships. Since the graph is undirected, P is symmetric. In some sense, a stochastic block model is a kind of Erdos-Renyi graph depending on the communities.

A graph can also be random because it has been estimated from observations. We referred to these kind of graphs as statistical random graph models. In Subsection 6.2.2, we explain how systems can be empirically represented as graphs to model their functioning. The problem of modelling relational information among objects arises in a number of settings. In scientific literature we may want to connect papers by citations, in biology we aim at modelling the protein interactions... We especially focus on the case of very large Gaussian sparse graphs. We detail the two main techniques that can be applied to estimate interactions in such graphs. Both of these techniques are based on l 1 minimization. We refer to [START_REF] Goldenberg | A survey of statistical network models[END_REF] for a comprehensive overview of the main statistical network models.

Then, we move to one of the main issue i.e. the analysis of the relational data modelled by a graph. One of the challenges is often to group vertices to uncover the underlying structure of the graph. Section 6.3 provides an overview of the most commonly used techniques to partition a graph. Most of these techniques remain heuristic. We refer to [START_REF] Fortunato | Community detection in graphs[END_REF] for an exhaustive INTRODUCTION review of the main clustering techniques applied to graphs. There are mainly two approaches, one based on a similarity function and the other on minimal cut. In Subsection 6.3.2, we introduce the Min-cut method, that aim at finding a partition into a given number of groups so that the number of edges cut is the smallest. We highlight its connections with another commonly used method, called the spectral clustering method. This method use eigenvectors (of matrices derived from the adjacency matrix) to cluster the graph. We will go back into more detail to this method in Chapter 7. Then, Section 6.4 is devoted to the problem of community detection. There is no formal definition of what should be a community. But, there exists a consensus on the fact that it should refer to groups of vertices highly connected with sparse connections in between. The problem of community detection has attracted more and more attention and many approaches have been proposed. Some recent methods attempt to use random distributions to model the interactions between nodes and even attempt to fit probabilistic or statistical random graph models with community structures [START_REF] Edoardo M Airoldi | Mixed membership stochastic blockmodels[END_REF], [START_REF] Mark S Handcock | Model-based clustering for social networks[END_REF], [START_REF] Tom | Estimation and prediction for stochastic blockmodels for graphs with latent block structure[END_REF], [START_REF] Nowicki | Estimation and prediction for stochastic blockstructures[END_REF]. Consistency results for community detection have already been proved for the stochastic block model. New phase transition phenomena have recently been discovered for two non-overlapping communities [START_REF] Mossel | Stochastic block models and reconstruction[END_REF], [START_REF] Mossel | A proof of the block model threshold conjecture[END_REF], [START_REF] Abbe | Exact recovery in the stochastic block model[END_REF], [START_REF] Mossel | Consistency thresholds for binary symmetric block models[END_REF], [START_REF] Abbe | Community detection in general stochastic block models : fundamental limits and efficient recovery algorithms[END_REF]. We also refer to [START_REF] Arias-Castro | Community detection in random networks[END_REF] and [ACV + 14] for some other important results on community detection. In these papers, the authors consider the problem of detecting a tight community in a sparse or in a dense random graph. They state conditions on the connection density in this tight community compared to the one of the other communities that ensure a good detection of this tight community. In Section 6.4, we present an important notion, called modularity and introduced by Newman [NG04], [START_REF] Mark Ej Newman | Modularity and community structure in networks[END_REF]. The modularity function is based on a benefit function that quantifies the likelihood in having an underlying structure behind the graph. The idea is to compare the number of edges within communities (based on a partitioning of a graph) to the expected number, if the edges are placed at random. If there exists a true underlying community structure behind the graph, the modularity should be very low for the partition that best reproduces this structure. [START_REF] Peter | A nonparametric view of network models and newman-girvan and other modularities[END_REF] proved that, under some conditions, the modularity method to cluster graph provides a consistent estimation. Here, consistency means that, when the number of nodes n goes to infinity, we accurately assign nodes to blocks for all but a negligible number of nodes.

In Chapter 7, we suggests an alternative to the traditional spectral clustering method. First, in Section 7.2, we recall some important notations, concepts and basic ideas in graph theory . Section 7.3 is devoted to the spectral clustering method. We go into detail of the spectral aspects and features of this method and we explain how the knowledge of the eigenproperties of some specific matrices, based on the adjacency matrix, can help to detect communities. We detail the associated algorithms. [START_REF] Rohe | Spectral clustering and the highdimensional stochastic blockmodel[END_REF] and [START_REF] Daniel L Sussman | A consistent adjacency spectral embedding for stochastic blockmodel graphs[END_REF] proved the consistency of spectral clustering applied to stochastic blockmodels for respectively the normalized Laplacian matrix and the adjacency matrix. However, in the general case, there are no theoretical guarantees on spectral clustering. In this section, we also highlight some of the limits of this method. Section 7.4 introduces the random graph model we suggest to work on. This random graph model is closely related to a stochastic block model. We actually assume that the observed graph results from a deterministic graph with an exact community structure, whose edges have been perturbed according to Bernoulli variables. Section 7.5 is the heart of Part III. In this section, we suggest a new method to recover the indicators of the communities. This method is an alternative to spectral clustering, in the sense that it is essentially based on the computation of the singular value decomposition of the adjacency matrix and on the use of the eigenvectors to partition the graph. This method actually aims at finding a sparse basis of the eigenvectors of this matrix. These specific eigenvectors are strongly dependent on the perturbation of the adjacency matrix and more specifically on the Frobenius norm of INTRODUCTION the noise matrix. Some results on the expectation of the Frobenius norm of the noisy matrix (associated to the random model we consider) are given in Section 7.6. Finally, we study the performances of the suggested method on simulated data. Results are presented in Section 7.7. Experimental results indicate that this algorithm works well on simulated datasets and is effective at finding the good communities.
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Chapitre 6

Notations, concepts et outils fondamentaux Sommaire CHAPITRE 6. NOTATIONS, CONCEPTS ET OUTILS FONDAMENTAUX 6.1 Une petite introduction à la théorie des graphes

Quelques notations

Les graphes que l'on manipule en théorie des graphes sont des abstractions. Nous rappelons ici ce que nous entendons exactement par un graphe. Nous présentons les notions, les notations et les concepts de bases associés à un graphe [W + 01]. Comme nous l'avons souligné dans l'introduction, un graphe sous sa forme la plus simple correspond tout simplement à une collection de sommets connectés entre eux par des arêtes. De façon formelle, un graphe est défini comme suit. Définition 6.1.1. Un graphe G est constitué d'un ensemble de sommets V et d'un ensemble d'arêtes E. On le note plus simplement sous la forme G = (V, E). Un élément e de E est appelé arête et relie deux sommets de V . Ces sommets sont appelés les extrémités de l'arête. Si e relie i, j ∈ V , on écrit e = (i, j). Les sommets i et j sont alors dit adjacents et l'arête e est dite incidente à i et à j.

Les sommets sont souvent communément appelés des noeuds. Nous considérons ici uniquement des graphes non dirigés de sorte que nous ne faisons pas de distinction entre les arêtes (i, j) et (j, i). De même, nous nous intéresserons ici uniquement à des graphes qui ont des arêtes simples (deux sommets ne peuvent pas être reliés par plusieurs arêtes) et qui ne présentent pas de boucles (un sommet n'est pas relié à lui même). Deux graphes particuliers sont celui qui ne contient aucune arête (et qui est dit vide) et celui pour lequel tous les sommets sont adjacents à tous les autres. Ce graphe est appelé graphe complet. Dans ce cas là, si

| V |= n alors | E |= n(n -1) 2 .
Une des meilleures façons de représenter des interactions entre des objets est de le faire au travers d'un graphe. Lorsque l'on représente un graphe, il est souvent pratique de donner un nom aux sommets, de façon à mieux les repérer. Lorsque le graphe possède n sommets, il est usuel de les numéroter de 1 à n.

Une façon équivalente de représenter un graphe est de considérer sa matrice d'adjacence définie comme suit. Définition 6.1.2. La matrice d'adjacence associée à un graphe G = (V, E) est notée A = (A ij ) (i,j)∈V 2 . Lorsque le graphe est non dirigé et non pondéré, la matrice d'adjacence est définie par

A ij =
1 if there is an edge between node i and node j 0 otherwise .

La matrice d'adjacence est ainsi symétrique et contient toute l'information sur le graphe. Elle permet de connaître rapidement le nombre de sommets (nombre de lignes) ainsi que les arêtes reliant ces sommets.

Une caractérisation importante du graphe correspond au nombre d'arêtes incidentes à un sommet donné i. Ce nombre est appelé le degré du sommet i et est défini comme suit. Définition 6.1.3. Le degré d i du sommet i d'un graphe G comportant n sommets est égal à

d i = n j=1 A ij .
On notera D la matrice diagonale des degrés qui contient (d 1 , ..., d n ) sur la diagonale et zéro partout ailleurs.

A noter que la somme des degrés est égale à deux fois le nombre d'arêtes

n i=1 d i = 2 | E | .
La notion de degré est une notion simple mais qui se révèle être très informative quant à la structure d'un graphe. Elle permet ainsi de mettre en évidence les sommets les plus connectés dans un graphe et qui sont souvent ceux qui influent le plus sur la dynamique de ce graphe (le leader dans un réseau social, le gène qui a la plus grande influence sur les autres dans un processus biologique, le produit qui a reçu le plus d'attention de la part de consommateurs...). La distribution des degrés est aussi un élément important dans un graphe. En ordonnant tout simplement les degrés des sommets, nous pouvons en apprendre un peu plus sur la façon dont le graphe est organisé. Cependant, cette information reste très partielle. Deux graphes ayant la même séquence de degrés ne sont pas nécessairement les mêmes et peuvent même se révéler être très différents dans leur structure.

Représentation d'un graphe

La façon dont on représente le graphe au travers du placement des sommets et des arêtes ne suit pas de règles précises. De ce fait, un même graphe peut avoir des représentations différentes. On évitera cependant au maximum d'avoir des arêtes qui se recoupent. La façon dont on représente un graphe est importante. Certaines représentations se révèlent être en effet plus adaptées que d'autres. Tout dépend de l'objectif que l'on s'est fixé. Certaines particularités du graphe sont en effet plus facilement visibles que d'autres en fonction de la représentation que l'on a choisie. Notamment, lorsque le graphe possède des communautés (groupes de sommets fortement connectés entre eux), il est plus judicieux de représenter les sommets appartenant au même groupe côte à côte. Bien sûr, si l'on n'a pas la connaissance à priori de ces groupes, il n'est pas possible de savoir à l'avance comment les placer de façon optimale. Autrement, en permutant les sommets on peut accéder à une représentation visuellement plus parlante des interactions mettant en avant ces groupes. La façon dont on représente et modélise un graphe est notamment très importante lorsque l'on travaille avec de très grands graphes. Il est alors en effet important d'en avoir une représentation qui soit adaptée à l'application de procédures de traitement de données automatiques et efficaces. L'une des façons les plus simples et pertinentes consiste à passer par la représentation matricielle.

Dans le cas de graphes de très grande taille, la matrice d'adjacence s'avère souvent plus facile à lire que le graphe lui-même. L'ordre dans l'agencement des lignes et des colonnes de cette matrice est primordial car il peut alors faire apparaître visuellement des motifs et ainsi révéler des groupes ou des structures particulières du graphe [START_REF] Mueller | A comparison of vertex ordering algorithms for large graph visualization[END_REF]. Trouver cet ordre revient en fait à trouver les communautés. La Figure 6.1 ci dessous montre qu'une permutation bien choisie des sommets peut faire apparaître des blocs de sommets fortement connectés, structure qui n'était pas mise en évidence lorsque ceux-ci étaient rangés de façon aléatoire.

Connectivité et sous-graphe

Nous allons maintenant nous intéresser à la notion de connectivité dans un graphe. Définition 6.1.4. Soit G = (V, E) un graphe. Un chemin de G est une séquence faite de sommets et des arêtes qui les relient. Un chemin élémentaire est un chemin qui ne passe pas deux fois par le même sommet. Un circuit est un chemin dont les deux sommets aux extrémités sont identiques. On dit qu'un graphe est connexe lorsque toutes les paires de sommets de G sont reliées par un chemin élémentaire. Définition 6.1.5. Deux sommets i et j dans un graphe G sont connexes s'il existe un chemin élémentaire dans G les reliant. G est dit connexe si toutes les paires de sommets sont connectées.

Tous les graphes ne sont bien sûr pas connexes mais peuvent par exemple consister en une collection de sous-graphes connexes. Un sous-graphe H de G est constitué d'un sousensemble de noeuds et d'arêtes de G, de sorte que les arêtes considérées soient incidentes en les sommets de H. Définition 6.1.6. Un graphe H = ( Ṽ , Ẽ) est un sous-graphe de G si Ṽ ⊂ V et Ẽ ⊂ E avec e = (i, j) ∈ Ẽ de sorte que i, j ∈ Ṽ . Définition 6.1.7. Un sous-graphe H de G est appelé composante connexe de G si H est connexe et n'est pas contenu dans un sous-graphe connexe de G plus grand.

La notion de composantes connexes est importante car elle détermine la robustesse du graphe et caractérise la façon dont le graphe initial reste connecté lorsque l'on enlève des arêtes. De nombreux graphes sont connexes et peuvent souvent se décomposer en plusieurs composantes connexes une fois enlevé un petit nombre d'arêtes. C'est le cas par exemple du réseau Internet, construit ainsi de façon à prévenir d'attaques extérieures. Dans ce cas là, un petit nombre de connections sont alors momentanément arrêtées de façon à éviter la propagation du virus. Dans cet exemple, on peut voir ces composantes connexes comme des communautés ayant beaucoup d'échanges en leur sein et peu avec l'extérieur. Trouver ces composantes connexes est important.

Une notion importante est la notion de coupe minimale ou min-cut en anglais. Cela représente le nombre minimal d'arêtes à enlever pour décomposer un graphe G en un nombre donné de sous-composantes connexes. La recherche de ces coupes permettant de décomposer un graphe en un nombre donné de sous-composantes fortement connectés est un véritable challenge et fait l'objet de la Section 6.3 et de la Section 6.4.

Exemples de graphes aléatoires

Les graphes que l'on est amené à rencontrer en pratique peuvent être fixes (comme par exemple les graphes représentant les connections des réseaux de transport) ou aléatoires.
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Nous nous intéressons bien sûr ici à ces derniers. Ce terme de graphes aléatoires peut faire référence à deux grandes catégories de graphes. La première concerne les graphes aléatoires probabilistes qui font référence à des graphes qui sont générés par un processus aléatoire ayant une distribution de probabilité donnée. La deuxième catégorie correspond aux graphes issus d'un modèle statistique, dans le sens où les arêtes de ces graphes ont été estimées au travers d'observations bruitées.

Graphes aléatoires probabilistes

Nous détaillons ici plus particulièrement deux grands types de graphes aléatoires et notamment les probabilités de distribution associées à ces graphes. Il s'agit des graphes de Erdos-Renyi et du modèle à blocs stochastiques ou stochastic blocks model (SBM) en anglais. Nous aurons l'occasion de revenir sur ces modèles dans le Chapitre 7.

Graphes de Erdos-Renyi

Le modèle le plus simple de graphe aléatoire à n sommets est le graphe de Erdos-Renyi [START_REF] Erdos | On the evolution of random graphs[END_REF] qui relie de façon indépendante chaque paire de sommets par une arête avec une probabilité p. La matrice d'adjacence A associée à ce graphe a dans ce cas ses entrées qui sont indépendantes les unes des autres et égales à un avec probabilité p et à zéro avec probabilité 1 -p. Une des caractéristiques importantes de ce graphe est donné par la distribution de ses degrès (P (l)) 1≤l≤n où P (l) représente la probabilité pour un noeud d'avoir un degré égal à l. Dans le cas du graphe de Erdos-Renyi, l'espérance du degré d'un noeud est égal à np et lorsque n tend vers l'infini, la distribution des degrés d'un graphe de Erdos-Renyi suit une loi de Poisson de paramètre np. Autrement dit, P (l) = e -λ λ l l! où λ = np. L'avantage d'un graphe de Erdos-Renyi est que c'est un modèle simple et que de ce fait les propriétés statistiques et topologiques de ce type de graphes ont pu être largement étudiées et sont maintenant bien connues. Cependant, ces graphes aléatoires ne sont pas adaptés à la modélisation de graphes issus de la vraie vie. En effet, de nombreux graphes (réseaux de gènes , réseaux sociaux...) ne présentent pas, même pour un nombre très grand de sommets, une distribution des degrés qui suit une loi de Poisson. La distribution de leur degrés P (l) présente plutôt, pour de grandes valeurs de l, une décroissance beaucoup plus faible qu'une décroissance exponentielle et qui serait de l'ordre de

P (l) ∼ l -α où α > 1.
Ces graphes ayant une distribution des degrés de type loi de puissance ont été introduit par Barabàsi et Albert [START_REF] Barabási | Emergence of scaling in random networks[END_REF]. Le graphe est alors dit invariant d'échelle (ou scale-free en anglais). C'est pourquoi dans [START_REF] Mark Ej Newman | Random graphs with arbitrary degree distributions and their applications[END_REF], les auteurs ont proposé un modèle de graphe aléatoire à distribution des degrés fixée . Les degrés suivent ainsi une loi de probabilité fixée. Il est alors possible d'obtenir des modèles de graphes probabilistes qui suivent une loi de puissance.

Le modèle à blocs stochastiques

Le modèle à blocs stochastiques [START_REF] Paul W Holland | Stochastic blockmodels : First steps[END_REF] étend la notion de graphes de Erdos-Renyi. Dans ce modèle, on considère un ensemble V de n sommets et k étiquettes (1, 2, ..., k) qui correspondent à k communautés. Le graphe est alors paramétré par deux quantités. La distribution p représente la probabilité d'appartenir à chacune des communautés. Autrement dit, la probabilité qu'un sommet appartienne à la communauté i est donné par p i . On notera τ : V → {1, 2, ..., k} la fonction qui précise l'appartenance d'un sommet à un bloc aléatoire. En d'autres termes, τ (i ∈ V ) = j signifie que le sommet i est assigné à la communauté j. De telle sorte que l'on a P [τ (i) = j] = p j .

L'entrée P ij de la matrice P représente, quant à elle, la probabilité d'une arête entre deux sommets appartenant aux communautés i et j. Le graphe étant non dirigé, la matrice P est bien sûr symétrique.

Modèles statistiques de graphes aléatoires

La problématique

Dans la pratique, les graphes que l'on peut être amené à étudier ne sont pas forcément connus à l'avance et sont souvent estimés. Contrairement aux graphes issus de modèles probabilistes, le graphe n'est alors pas vu comme une réalisation d'une distribution de probabilité sur des graphes mais repose sur une analyse empirique des observations que l'on a à disposition. Ce type de graphes apparaît essentiellement lorsque l'on cherche à expliquer des interactions pouvant exister entre des variables, à partir de l'observation de ces variables mesurées sur un échantillon. C'est le cas par exemple des réseaux de gènes où les sommets sont représentés par les gènes et où les arêtes sont estimées à partir du niveau d'expression de ces gènes que l'on a relevé sur n individus. Un des enjeux principaux est alors de trouver des outils performants pour estimer et modéliser ces interactions qui représentent les dépendances entre les variables. Nous renvoyons à la Sous-section C.2.5 de l'Annexe C pour un aperçu des références sur le sujet.

Dans la suite, nous allons donc considérer n individus et p variables mesurées sur chaque individu i, dont on conservera les valeurs mesurées dans un vecteur X i = (X i 1 , ..., X i p ) ∈ R p . On souhaite alors décrire les interactions entre ces variables à l'aide d'un graphe G = (V, E) où les sommets sont identifiés aux p variables et les dépendances entre les variables sont représentées par les arêtes. Une absence d'arêtes signifie que le lien de dépendance estimés entre ces variables est nul ou très faible. Pour simplifier, on associera le numéro des variables au numéro des sommets de sorte que V = {1, ..., p}. Une des méthodes les plus intuitives pour estimer les dépendances serait de se baser sur la matrice de corrélation empirique. Le coefficient de corrélation empirique entre les variables est l'indicateur le plus couramment utilisé pour modéliser les dépendances entre variables. Deux variables seront alors liées dans le graphe si la corrélation entre ces deux variables est suffisante. C'est aussi la méthode la plus simple, basée uniquement sur l'estimation de la matrice de covariance Σ définie par peuvent avoir un fort coefficient de corrélation sans que cela soit du à un lien direct linéaire fort entre elles. Cela peut être simplement du au fait qu'elles sont toutes deux fortement corrélées à une même troisième. Dans la pratique, seuls les liens directs sont généralement intéressants. Le recours au coefficient de corrélation partiel empirique permet en partie de pallier aux limites de l'estimation directe du coefficient de corrélation. Nous rappelons que les corrélations partielles sont obtenues après avoir éliminé les effets linéaires du reste des variables. Le coefficient de corrélation partiel est associé à l'inverse de la matrice de covariance normalisée (appelée matrice de précision). Un faible coefficient de corrélation partiel se traduira alors par une absence d'arête, ce qui caractérisera l'indépendance des variables considérées conditionnellement aux autres variables.

Σ = 1 n X T X

Estimation de graphes parcimonieux en grande dimension

Cependant, avec le développement des outils d'acquisition de données, nous avons accès à un nombre toujours plus grand de variables et donc à des graphes de taille de plus en plus important. Dans le cas où p n (grande dimension), la matrice de covariance empirique ou son inverse ne sont plus de bons estimateurs de Σ et Θ. Les méthodes proposées ci-dessus ne sont alors plus applicables. Comme pour tous les problèmes de grande dimension, il s'agit alors de régulariser la solution (cf. Chapter I). Il s'avère heureusement que, dans la pratique, la plupart des très grands graphes que l'on cherche à estimer sont parcimonieux (nombre attendu d'arêtes beaucoup plus petit que le nombre maximal possible d'arêtes dans le graphe). De ce fait, estimer ce graphe sparse revient essentiellement à estimer une matrice de corrélation ou de précision qui est elle même sparse. Les travaux existants sur ce sujet supposent toujours que les variables considérées sont gaussiennes, ce qui heureusement est assez souvent le cas en pratique.

Plaçons nous donc maintenant dans le cas gaussien où X = (X 1 , ..., X p ) ∈ R p est un vecteur aléatoire distribué selon N (µ, Σ). Et notons Θ = (θ i,j ) 1≤i,j≤p la matrice de précision qui est égale à l'inverse de la matrice de covariance

Θ = Σ -1 .
On notera toujours Σ la version empirique de Σ. Plusieurs approches sont possibles.

La première consiste à estimer la matrice de covariance en maximisant la log vraisemblance avec une pénalité de type Lasso Le problème ci dessus est non convexe. Dans [START_REF] Bien | Sparse estimation of a covariance matrix[END_REF], les auteurs suggèrent d'utiliser une approche par majoration-minoration qui permet de résoudre itérativement des approximations convexes du problème initial. Un coefficient égal à zéro dans la matrice de corrélation Σ signifie dans le cas gaussien que les variables associées sont indépendantes. Cependant, comme nous l'avons déja évoqué, dans la pratique on est plus souvent intéressé par les dépendances conditionnelles entre les variables. Un autre méthode, qui est souvent privilégiée, consiste CHAPITRE 6. NOTATIONS, CONCEPTS ET OUTILS FONDAMENTAUX alors plutôt à estimer l'inverse de la matrice de corrélation. C'est à dire à estimer la matrice de précision. En effet, dans le cas gaussien, on a

Σ = argmin

X i ⊥ ⊥ X j | X V \{i,j} ⇔ ρ i,j = 0 où ρ i,j = - θ i,j √ θ i,i θ j,j
pour i = j. Autrement dit, un coefficient θ ij de la matrice de précision Θ égal à zéro signifie que les variables i et j sont indépendantes conditionnellement aux autres variables. Cela a alors du sens de vouloir estimer la matrice de précision Θ en imposant une pénalité de type l 1 , de façon à estimer les dépendances conditionnelles entre les variables. Cette approche a été développée par Friedman et al. [START_REF] Friedman | Applications of the lasso and grouped lasso to the estimation of sparse graphical models[END_REF]. Les auteurs proposent d'estimer des graphes creux en appliquant une pénalité de type Lasso à l'inverse de la matrice de covariance. Lorsque l'inverse de la matrice de corrélation est creuse (peu de dépendances conditionnelles entre les variables), la matrice de précision est alors estimée de la façon suivante

Θ = argmin Θ∈Sp log det Θ -Tr( ΣΘ) -λ Θ 2
F où l'on rappelle que Θ 2 F = Tr Θ T Θ représente la norme de Frobenius, Σ est la matrice de covariance empirique et λ > 0 est le paramètre de régularisation. Dans [START_REF] Friedman | Applications of the lasso and grouped lasso to the estimation of sparse graphical models[END_REF], les auteurs proposent un algorithme simple qui permet de résoudre ce problème, appelé le graphical Lasso. Auparavant, d'autres chercheurs s'étaient penchés sur la question et ont proposé des algorithmes de maximisation de la log-vraisemblance avec pénalité l 1 [START_REF] Banerjee | Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data[END_REF], [START_REF] Yuan | Model selection and estimation in the gaussian graphical model[END_REF] ou ont adapté des méthodes d'optimisation de points intérieurs pour résoudre ce problème [START_REF] Dahl | Covariance selection for nonchordal graphs via chordal embedding[END_REF]. Mais ces algorithmes s'avèrent beaucoup moins rapides et performants que le graphical Lasso. Le choix du paramètre λ est bien sûr crucial et est généralement choisi par validation croisée. Cependant, ce choix de la pénalité reste toujours un point sensible en pratique. Pour les résultats théoriques sur les qualités d'estimation de cette méthode, nous renvoyons le lecteur à [START_REF] Ravikumar | High-dimensional covariance estimation by minimizing l1-penalized logdeterminant divergence[END_REF].

Une approche par sélection de voisinages avait auparavant été proposée par Meinshausen et Buhlman. Dans [START_REF] Meinshausen | High-dimensional graphs and variable selection with the lasso[END_REF], les auteurs proposent d'estimer un modèle graphique gaussien sparse en appliquant une procédure Lasso à chacune des variables en utilisant les autres comme prédicteurs. Le coefficient Θ ij est alors non nul si le coefficient estimé dans la régression de la variable i par celle j ou l'inverse est non nul. Ils ont montré que cette méthode estimait de façon consistante les éléments non nul de Θ. Nous détaillons ci-dessous les grandes idées de cette méthode. Le voisinage de la variable i noté N i est défini comme suit. C'est le plus petit ensemble de V \ {i} tel que

X i ⊥ ⊥ X V \{j∈N i ∪{i}} | X N i .
Ceux sont ces ensembles que les auteurs cherchent à estimer. Nous allons ci-dessous en présenter une justification.

Posons

θ i = argmin θ∈R p-1      E   X i - k∈V \{i} θ k X k   2      ,
Le vecteur θ i contient les coefficients de la régression de la variable i par rapport aux autres. On a alors que pour tout j ∈ V \ {i},

θ i j = - Σ -1 i,j
Σ i,i .
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Or Σ -1 i,j = 0 signifie que la variable i est indépendante de j conditionnellement aux autres. D'où, par définition de N i , on en déduit que

j ∈ V \ {i} : θ i j = 0 = j ∈ V \ {i} : Σ -1 i,j = 0 = N i .
Le meilleur prédicteur de X i est donc une combinaison linéaire des voisins de i. On rappelle qu'ici on se trouve en grande dimension (p n). On va donc chercher à estimer les meilleurs prédicteurs de X i en appliquant la méthode Lasso. Autrement dit, on résout le problème suivant θi,λ = argmin

θ∈R p :θ i =0 1 n X i -Xθ 2 2 +λ θ 1 ,
où λ est le paramètre de régularisation. Les voisinages sont alors estimés par

N λ i = j ∈ V \ {i} : θi,λ = 0 .
Reste toujours le choix épineux du paramètre λ. La valeur du paramètre dans le cas idéal est donné par

λ oracle = argmin θ∈R p-1 E   X i - k∈V \{i} θi,λ k X k   2 .
L'idée naturelle est d'estimer ce paramètre par validation croisée. Comme expliqué dans [MEI], ceci ne donne pas un estimateur consistent pour la sélection des voisinages. Les auteurs de cet article ont cependant établit que l'on pouvait avoir un estimateur consistent pour des graphes parcimonieux en grande dimension mais pour une valeur du paramètre plus grand que la valeur optimale. Ceci nécessite cependant que certaines conditions soient remplies. Nous rappelons ci-dessous ces conditions.

-La matrice de covariance est non singulière.

-La croissance de la taille des voisinages est de l'ordre de O(n k ) lorsque n tend vers l'infini (condition qui assure la parcimonie).

-Le cardinal du recouvrement maximal entre deux voisinages est bornée par une constante qui peut être arbitrairement grande mais indépendante de n.

-Les corrélations partielles qui sont non nulles doivent être minorées par une certaine constante.

-Les voisinages doivent être stables, dans le sens où si l'on note

θ i (η) = argmin θ∈R p-1 E   X i - k∈V \{i} θ k X k   2 + η θ 1
alors il existe une perturbation infinitésimale η telle que N i (η) = N i (0).

Il s'avère que, comme établit par [START_REF] Banerjee | Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data[END_REF] et [START_REF] Yuan | Model selection and estimation in the gaussian graphical model[END_REF], cette approche est en fait une approximation du problème exact qui consiste à minimiser la log-vraisemblance négative avec ajout d'une pénalité de type Lasso [START_REF] Friedman | Applications of the lasso and grouped lasso to the estimation of sparse graphical models[END_REF]. La méthode par pénalisation de la log-vraisemblance et celle par estimation des voisinages sont deux méthodes couramment employées dans la pratique pour estimer les dépendances entre variables dans des graphes creux en grande dimension. Cependant, une des limites est non des moindres de ces deux méthodes d'estimation est qu'elles ne sont valables que pour des distributions gaussiennes.

Partitionnement d'un graphe

Nous allons maintenant nous intéresser au problème du partitionnement d'un graphe (connu ou estimé) en un nombre donné de sous-graphes. Partitionner un graphe en k composantes signifie en réalité découper l'ensemble des sommets en k sous-ensembles disjoints. Il existe des méthodes diverses et variées pour partitionner un graphe. Ces approches dépendent de la topologie du graphe que l'on considère mais surtout du but que l'on souhaite atteindre en partitionnant le graphe. Il existe essentiellement deux approches. La première qui consiste à partitionner les sommets de façon à regrouper des sommets qui présentent de fortes similarités (la similarité étant caractérisée par une distance d sur l'ensemble des sommets) et celle plus intuitive qui consiste en un découpage du graphe qui privilégie des sommets fortement connectés au sein des groupes et beaucoup moins de connections entre les classes. Nous allons aborder plus en détails ces deux approches dans la suite. Dans tous les cas, l'évaluation de toutes les partitions possibles afin de choisir la meilleure est impossible, même lorsque n est petit. En effet, le nombre de partitions en k sous-graphes pour un graphe ayant n sommets est donné par le nombre de Bell d'ordre n (noté B n ). Si l'on regarde le développement asymptotique de ce nombre lorsque n tend vers l'infini, on peut montrer que B n augmente exponentiellement avec la taille du graphe. Comme nous allons le voir par la suite, la majorité des solutions théoriques proposées pour partitionner un graphe en grande dimension sont NP-complets. Cependant, des algorithmes efficaces cherchant à approcher la solution ont été développés, même si les solutions auxquelles ils aboutissent ne sont pas forcement optimales. Nous allons ici présenter quelques unes de ces méthodes et surtout en donner les grandes idées. Pour un aperçu des références à ce sujet qui existent dans la littérature, nous invitons le lecteur à consulter l'Annexe C.2.6.

Partitionnement basé sur une notion de similarité

Similarité entre sommets

La plupart des méthodes de partitionnement d'un graphe sont basées sur une notion de similarité entre les différentes paires de sommets. Cette notion de similarité repose principalement sur le calcul d'une distance d basée sur des propriétés locales ou globales du graphe. Elle dépend essentiellement du graphe que l'on considère et de l'objectif que l'on s'est fixé dans l'analyse des propriétés du graphe. Pour simplifier, nous noterons la distance entre i et j tout simplement d ij .

Nous présentons ci-dessous quelques unes des distances classiques les plus utilisées. Tout d'abord, supposons que l'on ait un graphe plongé dans un espace de dimension n. Soit a i = (a i 1 , ..., a i n ) et a j = (a j 1 , ..., a j n ) deux sommets. Plusieurs distances possibles entre les sommets sont les suivantes

-d i,j = arccos (a i ] T a j √ a i 2 a i 2 . -d i,j = (a i ) T a j √ a i 2 a i 2 . -d i,j = |Γ(i) Γ(j)|
|Γ(i) Γ(j)| où Γ(i) représente l'ensemble des voisins de a i , c'est à dire les sommets liés au sommet a i . Comme nous l'avons précisé plus haut, les graphes qui nous intéressent ici sont des graphes qui n'ont pas de signification physique particulière et qui sont uniquement caractérisés par leur matrice d'adjacence A. Dans ce cas, plusieurs mesures de similarité basées sur la matrice d'adjacence peuvent être définies. En voici quelques exemples. CHAPITRE 6. NOTATIONS, CONCEPTS ET OUTILS FONDAMENTAUX

- d i,j = k =i,j (A i,k -A j,k ) 2 .
L'idée sous-jacente est que deux sommets seront considérés comme structurellement équivalents s'ils ont les mêmes voisins même si ceux-ci ne sont pas adjacents. Dans ce cas, des sommets ayant un fort degré mais des voisins différents pourront être considérés comme très éloignés les uns des autres.

-Il en existe une version normalisée

d i,j = k (A ik -µ i ) (A ik -µ j ) nσ i σ j où µ i = j A ij n σ i = j (A ij -µ i ) 2 n .
-La distance peut aussi être définie par le nombre de chemins indépendants (chemins qui n'ont pas de sommets en commun) qui relient le sommet i à celui j.

-Une autre distance, assez couramment utilisée, correspond au nombre moyen de pas nécessaires à un marcheur aléatoire partant du sommet i pour atteindre le sommet j pour la première fois et revenir à son point de départ. L'idée sous-jacente est que plus ce temps est grand moins les sommets sont considérés comme similaires. Cette distance est appelée la commute distance [START_REF] Pons | Computing communities in large networks using random walks[END_REF]. Nous reviendrons plus en détails sur cette distance à la fin de cette sous-section.

k-means

Une des procédures les plus couramment employée pour partitionner un graphe est l'algorithm k-means [START_REF] Vassilvitskii | K-Means : algorithms, analyses, experiments[END_REF], [START_REF] Wu | Advances in K-means clustering : a data mining thinking[END_REF]. Une fois que l'on a défini une distance d sur le graphe, on peut utiliser la méthode k-means afin de partitionner les sommets du graphe en k classes, de façon à maximiser la similarité à l'intérieur des classes et de minimiser celle entre classes. Nous présentons ci-dessous l'idée générale de l'algorithme k-means. Notons x 1 , ..., x n l'ensemble des sommets que l'on souhaite partitionner. L'algorithme k-means a pour but de partitionner les n sommets en k classes, notées C = {C 1 , ..., C k } de centre x 1 , ..., x k , de façon à minimiser la variance intra-classe définie par argmin On supposera le graphe connexe. La chaîne de markov est alors réversible et irréductible et admet donc une distribution stationnaire Π. On peut montrer que cette distribution stationnaire prend la forme suivante Cette méthode a cependant des limites [START_REF] Von Luxburg | Getting lost in space : Large sample analysis of the commute distance[END_REF]. D'une part, lorsque n → ∞ et sous des conditions assez faibles, on a H i,j → 1/d j . Ce qui fait que sur de grands graphes, la valeur de la commute distance ne dépend que de ce qui se passe dans un voisinage du point d'arrivé et donc le temps pour aller d'un sommet fixé aux autres sera sensiblement le même pour tous les sommets. On a en effet dans ce cas d c i,j → 1/d i + 1/d j et finalement la commute distance ne dépend que des degrés des sommets. Ce qui fait que l'on ne tient plus compte de la structure globale du graphe. De ce fait, pour de grands graphes cette distance est très coûteuse et n'apporte pas grand chose. Nous renvoyons à [VLRH10] pour plus de détails sur les limites de la commute distance concernant les graphes densément connectés.

C k l=1 i∈C l d 2 (x i , C l ), où d(x i , C l ) = d(i, x l ).
Π i = d i 2 | E | = c E [T i ] , i = 1, ..., n où T i := inf {n ≥ 1 : X n = i | X 0 =
Il existe cependant des solutions à ce problème. Une solution possible consiste à restreindre le nombre de sauts que peut faire le marcheur aléatoire. Il s'agit alors de se fixer un nombre de sauts k et de regarder la probabilité partant de i d'atteindre j en k étapes. On notera P k i. le vecteur dont le jème coefficient égale la probabilité qu'un marcheur aléatoire partant de i aille visiter j à la kème étape. 

(P k il -P k jl ) 2 d l = D -1/2 P k i. -D -1/2 P k j.
. L'idée sous-jacente est que deux sommets d'une même communauté vont avoir tendance à voir les autres sommets de la même façon et que donc P k il ≈ P k jl . Ce qui implique une distance proche de zéro. On notera que cette distance peut se réécrire en fonction des éléments propres de P . Ce qui permet de relier la distance aux propriétés spectrales de la matrice d'adjacence. On peut de la même façon définir une distance entre deux classes de sommets

C 1 et C 2 . d(C 1 , C 2 ) := n l=1 (P k C 1 l -P k C 2 l ) 2 d l = D -1/2 P k C 1 . -D -1/2 P k C 2 . où P k C. = 1 | C | i∈C P k i.
Plusieurs algorithme de partitionnement basés sur cette distance ont été développés. Nous en détaillons un ici. Il s'agit de celui présenté dans [START_REF] Pons | Computing communities in large networks using random walks[END_REF]. L'objectif des auteurs de cet article est de trouver une partition C = (C 1 , ..., C k ) qui minimise 

σ k = 1 n C∈P i∈C d 2 iC où d 2 iC = j∈C d 2 i,
∆σ(C 1 , C 2 ) = i∈C 3 d 2 iC 3 - i∈C 1 d 2 iC 1 - i∈C 2 d 2 iC 2 .
Etape 2 : Créer une nouvelle partition A la fin on obtient donc un dendogramme. La question qui se pose est alors de savoir à quelle hauteur faut-il couper le dendogramme. Une réponse peut-être donnée par la notion de modularité que nous détaillerons dans la Section 6.4. D'autres solutions ont été proposées par [START_REF] Von Luxburg | Getting lost in space : Large sample analysis of the commute distance[END_REF] et [vD00].

P k+1 = (P k \ {C 1 , C 2 }) ∪ {C 3 }.

Partitionnement d'un graphe par coupe minimale

Nous avons vu dans la section précédente plusieurs façons de partitionner un graphe à partir d'une mesure de similarité sur les sommets. Un autre problème, qui revient souvent dans la pratique, consiste à trouver une partition du graphe de façon à minimiser le nombre d'arêtes coupées lorsque l'on partitionne le graphe en sous-graphes non connectés entre eux. Ce nombre d'arêtes minimal est appelé coupe minimale (ou min-cut en anglais). En informatique, ce problème est important. En effet, les serveurs de données peuvent être représentés par les sommets d'un graphe et les points d'entrée et de sortie entre ces serveurs par des arêtes. Les coupes minimales représentent alors le nombre de pannes minimum pouvant déconnecter le réseau. Et cette connaissance peut être importante lorsque l'on souhaite prévenir de la propagation d'un virus par exemple. Nous allons présenter ici deux algorithmes qui visent à partitionner un graphe en se basant sur la notion de coupes minimales.

Algorithm de bissection de Kernighan Lin

On pourra lire à ce sujet [START_REF] Bw Kernighan | An eflicient heuristic procedure for partitioning graphs[END_REF]. Cette méthode consiste à partitionner, de façon itérative, le graphe en groupes de même taille (modulo un sommet si le nombre de sommets est impair). L'algorithme de Kernighan-Lin est une procédure basée sur l'optimisation d'une fonction de coût. Le but est de chercher une partition de l'ensemble des sommets V en deux ensembles disjoints V 1 et V 2 de même taille, de sorte que la somme des arêtes entre V 1 et V 2 soit minimale.

Soit i ∈ V 1 , on définit les trois quantités suivantes

• F i = i ∈V 1 i =i
A ii qui représente le nombre d'arêtes internes entre i et les autres sommets

de V 1 . • E i = j∈V 2
A ij qui représente le nombre d'arêtes externes reliant le sommet i aux sommets de V 2 .

• S i = E i -F i qui représente la différence entre les arêtes internes partant de i et celles externes.

On définit des quantités similaires pour j ∈ V 2 en intervertissant les rôles joués par V 1 et V 2 .

On définit le coût T de la partition de

V en V 1 et V 2 par T = i∈V 2 j∈V 1 A ij .
T représente la somme des poids des arêtes entre V 1 et V 2 . On souhaite trouver des ensembles V 1 et V 2 de taille semblable pour lesquels T soit minimal. Si on échange les sommets i ∈ V 1 et j ∈ V 2 , le coût du nouveau découpage obtenu est alors égal à

T := T i↔j = T -(S i + S j -2A ij ) = T -g(i, j)
où g(i, j) = S i + S j -2A ij est le gain qui mesure l'amélioration du coût de partitionnement (diminution du nombre d'arêtes entre les deux ensembles) que l'on a obtenu lorsqu'on échange i et j. On cherche donc des opérations basées uniquement sur l'échange de deux sommets entre les deux sous-graphes qui maximisent T -T . Autrement dit on cherche deux sous ensembles

W 1 et W 2 de V 1 et V 2 de même cardinal tels que V 1 = (V 1 \W 1 )∪{W 2 } et V 1 = (V 1 \W 2 )∪{W 1 }
a un coût T W 1 ↔W 2 plus faible. On notera, qu'une fois les sommets i et j intervertis, on a alors

pour tout i ∈ V 1 , i = i et pour tout j ∈ V 2 , j = j • S new i = S i + 2A i i -2A i j .
• S new j = S j + 2A j j -2A j i .

Algorithm 3 Kernighan-Lin algorithm ENTREE : Une partition initiale de

V notée (V 1 , V 2 ) où V 1 et V 2 sont de taille semblable.
Etape 1 : Calculer S l pour tous les sommets l de V . Etape 2 : Tous les sommets sont mis comme non marqués.

Tant que il y a des sommets non marqués Faire -Trouver (i, j) qui maximise g(i, j).

-Marquer (i, j) et stocker la valeur g(i, j) associée.

-Mettre à jour S pour les éléments de V 1 \ {i} et de V 2 \ {j} en supposant que i et j ont été échangés (pour le moment ils ne le sont pas encore).

Fin faire. Fin tant que. Etape 3 : Chercher parmi l'ensemble des paires de sommets (i, j) celles dont la somme des g(i, j) associée est maximale. On notera ce gain g max . Si g max > 0, échanger alors les sommets de ces pairs. Puis mettre à jour S l pour tous les sommets l. Etape 4 : Recommencer les étapes 2 et 3, jusqu'à ce que le gain maximal g max soit proche de 0.

OUTPUT : Partition du graphe en deux ensembles.

L'Algorithme 3 présentent les étapes de l'algorithme de Kernighan-Lin. En pratique cet algorithme converge rapidement vers un minimum local si on a une bonne partition initiale. Autrement, l'algorithme peut nécessiter un temps long de calculs notamment si le graphe est très grand. Cette méthode permet de partitionner un graphe en deux et peut être appliquée de façon récursive afin de le partitionner en un nombre de classes plus grand que deux. Soit ce nombre de classes est donné, soit se pose la question du choix d'un critère d'arrêt de l'algorithme. Puisque l'algorithme découpe récursivement le graphe en des sous-graphes de même taille, cela revient à se donner une taille prédéfinie des classes. Partitionner de façon binaire le graphe rend la méthode peu flexible. On peut donc se demander s'il ne serait pas judicieux d'y inclure une méthode d'agrégation (idée inverse de la bissection) afin d'éviter toute convergence vers un minimum local, minimum local qui pourrait être éloigné d'une solution plus optimale. Il pourrait ainsi être plus judicieux de découper le graphe tout en permettant des recombinaisons entre les classes.

Min-Cut and Spectral clustering

L'idée de la méthode Min-cut est de nouveau de partitionner les sommets d'un graphe en minimisant la coupe. Mais contrairement à l'algorithme de Kernighan-Lin, le découpage est plus flexible puisqu'il autorise plus de deux groupes. L'idée est de partitionner les sommets en k groupes (k ≥ 2) de sorte que le nombre d'arêtes entre les groupes soit minimal [START_REF] Shi | Normalized cuts and image segmentation[END_REF]. Avec l'algorithme de bissection de Kernighan-Lin, c'est l'algorithme actuellement le plus utilisé pour réaliser le partitionnement d'un graphe. Cet algorithme permet de partitionner les sommets d'un graphe en k classes, étant donné la matrice d'adjacence A du graphe.

Avant d'entrer dans les détails de la méthode, nous donnons ici quelques notations qui seront utiles pour la suite. Soient V 1 et V 2 deux sous-ensembles de V .

• W (V 1 , V 2 ) := i∈V 1 ,j∈V 2 A ij représente le nombre d'arêtes entre V 1 et V 2 . • D(V 1 ) := W (V 1 , V
) représente la somme des poids des arêtes partant de V 1 (arêtes internes additionnées à celles externes).

•

E(V 1 , V 2 ) := W (V 1 , V 2 ) D(V 1 ) la proportion d'arêtes qui lient V 1 à V 2 parmi toutes les arêtes partant de V 1 .
Soit C = (C 1 , ..., C k ) une partition de V en k classes. Nous définissons maintenant deux quantités importantes qui sont le normalized cut noté Nc. 

N c(C, k) := 1 k k i=1 E(C i , V \ C i ) et le normalized association noté Na N a(C, k) := 1 k k i=1 E(C i , C i ).
N c(C) = 1 k k i=1 E(C i , V \ C i ).
Nous allons maintenant essayer de donner l'intuition de l'algorithme qui se cache derrière cette méthode. Soit X = (x i,j ) ∈ M n,k la matrice de partition qui vérifie que x i,j = 1 si i ∈ C j et x i,l = 0 sinon. On notera Π l'ensemble des matrices de partition des sommets en k classes. On notera X 1 , ..., X k les colonnes de X qui sont les indicatrices des éléments appartenant à chacune des k classes. On pourra noter que D(A i ) = X T i DX i , où on rappelle que D est la matrice des degrés, et que

W (C i , C i ) = X T i AX i .
De ce fait, on en déduit que une solution particulière de (P 2 ). On notera que H * multiplié par n'importe quelle isométrie est encore une solution. Soit X * solution de H * = X(X T DX) -1/2 (l'application étant inversible, la solution existe bien). La matrice X * est solution de la relaxation continue du problème (P 1 ) mais n'est pas solution du problème lui-même car elle n'appartient pas à Π. Il s'agit donc de trouver une matrice de partition X * ∈ Π proche de X * . Qu'entend t-on par proche ? La notion de proximité se base sur la distance euclidienne entre les vecteurs lignes de ces deux matrices. Cette étape se fait à l'aide d'un algorithme k-means par exemple. On recherche pour chaque ligne de X * l'élément de la base canonique de R k qui sera le plus proche de ce vecteur. Cet algorithme, qui consiste à calculer les k premiers vecteurs propres du Laplacien puis à appliquer l'algorithme k-means sur les lignes de la matrice obtenue par concaténation des vecteurs propres, est appelé l'algorithme de spectral clustering [START_REF] Von | A tutorial on spectral clustering[END_REF], [START_REF] Stella | Multiclass spectral clustering[END_REF]. L'algorithme spectral clustering a été développé afin de répondre non pas seulement au problème de coupe minimale mais aussi pour répondre à celui de découpage en communautés comme nous le reverrons dans le Chapitre 7. Dans [START_REF] Inderjit S Dhillon | Kernel k-means : spectral clustering and normalized cuts[END_REF], les auteurs proposent un cadre général qui unifie l'approche Min-cut et le spectral clustering. L'idée derrière le spectral clustering est de transformer le graphe initial en un ensemble de points dont les coordonnées sont des coefficients de vecteurs propres particuliers. Ce nouvel ensemble est ensuite partitionné au moyen de techniques standards comme le k-mean. On pourrait ici légitimement se demander pourquoi il est nécessaire de passer par le partitionnement de points obtenus à partir de vecteurs propres alors que l'on pourrait directement partitionner l'ensemble des sommets initiaux à partir de la matrice de similarité. La raison CHAPITRE 6. NOTATIONS, CONCEPTS ET OUTILS FONDAMENTAUX essentielle est que le passage par les vecteurs propres permet souvent de mettre en évidence de façon plus prononcée des propriétés particulières du graphe dans un espace de dimension plus réduit. Par exemple, le spectral clustering permet de séparer des ensembles de points qui n'auraient pas pu l'être directement, notamment parce que le k-means tend à produire des ensembles de points convexes.

N c(C) = 1 k k i=1 X T i DX i -X T i AX i X T i DX i . D'
L'avantage de cette méthode est qu'elle ne nécessite pas d'hypothèses sur la taille des classes. Cependant, il est nécessaire de spécifier le nombre de classes que l'on souhaite avoir dans la partition. Par ailleurs, une des faiblesses et non des moindres est qu'il n'existe pas de garanties de convergence vers un optimum. Il existe ainsi des cas particuliers de graphes pour lesquels cet algorithme ne fournit pas de bons partitionnements. Mais l'avantage de cette méthode est qu'elle est facilement implémentable même sur des graphes très grands. C'est pourquoi elle est souvent privilégiée au détriment des garanties théoriques.

Existence d'une structure de communauté et modularité

Une question importante lorsque l'on étudie un graphe concerne la détection de communautés. Il peut s'agir par exemple de détecter des groupes de personnes partageant les mêmes goûts ou les mêmes centres d'intérêts au sein d'un réseau social [START_REF] William Flake | Selforganization and identification of web communities[END_REF] ou de mettre en lumière des gènes coopérant ensemble et correspondant à une fonctionnalité particulière de l'organisme et qui peuvent expliquer l'apparition de maladies particulières ou le fonctionnement biologique des cellules [RSM + 02]. S'il est important de pouvoir détecter ces communautés c'est parce qu'elles sont supposées jouer un rôle essentiel dans le fonctionnement du système complexe modélisé par le graphe. Il est important de noter que la question de partitionner un graphe et celle de détecter des communautés ne sont pas les mêmes, bien qu'elles se rejoignent sur un certain nombre de points. La notion de communautés est une notion difficile à définir formellement. Cependant, la plupart des approches récentes conduisent à un concensus qui correspond assez bien à l'idée intuitive que l'on se fait d'une communauté. L'idée est qu'il existe des groupes de sommets très fortement connectés entre eux avec un nombre beaucoup plus faible d'inter-connections [START_REF] Fortunato | Community detection in graphs[END_REF]. La détection de communauté est de ce fait une notion qui est fortement connectée à celle du partitionnement d'un graphe et notamment à celle de coupe minimale. Cependant, lorsque l'on cherche à partitionner un graphe de façon à minimiser le nombre d'arêtes coupées, l'on ne se préoccupe pas vraiment de la structure des sous-graphes obtenus qui ne sont pas forcément densément connectés. Par ailleurs, la notion de partitionnement d'un graphe est une notion figée, qui s'applique à un graphe considéré généralement comme déterministe. Celle de la détection et du découpage en communautés est une notion qui apparait plutôt lorsque l'on est amené à analyser des graphes aléatoires. La question qui se pose est de savoir si la distribution qui a engendré le graphe dépend elle-même de l'appartenance des sommets à des classes ou si le graphe que l'on observe est en fait une version bruitée d'un graphe qui présentait une réelle structure de communautés. L'enjeu est alors de savoir s'il existe une structure de communautés sousjacente au graphe et si oui de trouver des méthodes qui permettent de la retrouver de façon fiable.

Le critère de qualité le plus utilisé pour justifier de l'existence d'une structure de communautés est la modularité. Cette notion mesure la qualité de partitionnement d'un graphe et a été introduite par Newman [START_REF] Mark Ej Newman | Modularity and community structure in networks[END_REF]. Elle repose sur l'idée qu'un graphe avec une structure de communautés est différent d'un graphe aléatoire. Qu'entend-on ici par graphe aléatoire ? Deux types de graphes aléatoires sont généralement sous-entendus. L'hypothèse classique faite sur ces graphes aléatoires est qu'ils préservent en moyenne le nombre d'arêtes du graphe initial (i.e l'espérance du nombre d'arêtes que l'on notera m). Un premier modèle de graphes aléatoires qui vient à l'esprit est le graphe aléatoire de 

Q max = - 1 m min P - k r=1 [l Cr -E(l Cr )] = - 1 m min P m - k r=1 l Cr -m - k r=1 E(l Cr ) = - 1 m min P {| Cut P (G) | -E (Cut P (G))} où Cut P (G) := {(i, j) | i ∈ C r , j ∈ C l ,
G = (V, E, W ) où W (i, j) = 1 -P ij si (i, j) ∈ E -P ij si (i, j) / ∈ E . Posons wt Cut P (G ) = k<l (i,j)∈C k ×C l A(i, j).
Un simple calcul montre alors que

| Cut P (G) | -E (Cut P (G)) = wt Cut P (G ) .

En conclusion

Q max = - 1 m min P wt Cut P (G ) .
On notera que l'on a toujours Q ≤ 1 et donc aussi Q max ≤ 1. Une grande valeur de la modularité ne signifie pas nécessairement que le graphe a une structure en communautés. Il existe en effet des réalisations de graphes aléatoires qui ont aussi une grande modularité. D'où, la modularité maximale d'un graphe met en évidence une structure en communautés significative si et seulement si la modularité maximale est beaucoup plus grande que celle de graphes aléatoires ayant la même taille et les mêmes degrés. Plus le nombre d'arêtes internes à chaque classe dépasse l'espérance de ce nombre, meilleure est le découpage en communautés. De ce fait, de grandes valeurs de la modularité ont quand même tendance à indiquer de bonnes partitions. S'il n'existe pas de partitions ayant une modularité positive, c'est que le graphe ne possède pas de structure en communautés. Attention tout de même aussi au fait que la modularité grandit avec la taille du graphe ou lorsque le nombre de classes bien séparées augmente et ne peut donc pas trop être utilisée pour comparer des graphes différents en taille. Par ailleurs, cette mesure n'est pas robuste. Des simulations ont montré que de nombreuses partitions d'un graphe pouvait avoir la même modularité. La méthode n'est donc pas robuste puisque un petit changement dans les données peut induire un changement dans la partition obtenue.

Cependant, la modularité peut servir à comparer des méthodes de détection de communautés et à choisir celle qui a la plus petite modularité. Lorsque l'on fait du clustering hiérarchique par exemple, elle peut être un moyen de choisir la hauteur de la coupe dans CHAPITRE 6. NOTATIONS, CONCEPTS ET OUTILS FONDAMENTAUX le dendogramme en comparant la valeur de la modularité pour différentes partitions. Elle peut aussi en elle-même servir à partitionner le graphe en cherchant la partition qui donne la modularité maximale. Trouver la partition qui maximise la modularité est un problème NP-complet [BDG + 08] Cependant, des algorithmes généralement performants ont été développés. On peut citer notamment celui développé par [START_REF] Mark | Finding and evaluating community structure in networks[END_REF] qui a été appliqué avec succès sur un large éventail de graphes de très grande taille. Cependant, il nécessite des ressources informatiques assez importantes. Une alternative a ensuite était proposée par [START_REF] Mark Ej Newman | Fast algorithm for detecting community structure in networks[END_REF]. En pratique et notamment en biologie, c'est une méthode qui est pas mal utilisée et qui a fait ses preuves [START_REF] Guimera | Functional cartography of complex metabolic networks[END_REF].

Pour une synthèse relativement exhaustive de ce qui existe sur la modularité dans la littérature, nous renvoyons le lecteur à l'Annexe C.2.7.

Chapitre 7

An alternative to spectral clustering for community detection Sommaire

Overview of contribution to Part III

As mentioned in the introduction of Part III, many systems of various kinds can be represented as networks or graphs. This is the case of physical systems [START_REF] John | Neural networks and physical systems with emergent collective computational abilities[END_REF], social networks, the World Wild Web [START_REF] Pastor | Evolution and structure of the Internet : A statistical physics approach[END_REF] or of neural and proteins networks [JTA + 00]. In this chapter, we consider only connected graphs (otherwise, it would be equivalent to work on each of the connected components of the graph). We also consider that the space where the nodes lie has no meaning. The topology is only determined by the edges pattern.

An important issue, that has attracted more and more attention, is the detection of communities. This notion has been first introduced in social sciences. There exists different ways of defining community structures. The heuristic one corresponds to groups of nodes that are densely connected with sparse connections in between [START_REF] Girvan | Community structure in social and biological networks[END_REF], [START_REF] Mark | Finding and evaluating community structure in networks[END_REF]. Community structures are believed to play an important role in the functioning of the complex systems modelled by graphs, so that detecting theses structures is of the highest importance.

As mentioned in Chapter 6, the problem of community detection is closely related to the one of graph partitioning [PSL90], [START_REF] Scott | Social network analysis[END_REF]. Most of the graph partitioning techniques are based on bisections (partitioning of the graphs into exactly two parts) that are recursively applied to find k clusters. However, these methods often break down in finding good partitions of graphs into more than two groups. Rather than using sequential partitioning, a commonly used method is the spectral clustering method. This method uses the eigenvectors of adjacencytype matrices to cluster the nodes of a graph into a given number of communities. The nodes are not directly clustered but k-means is applied to the eigenvectors to detect the communities. If this method is so popular, it is mainly because spectral clustering is very easy to implement and easy to use. The computations are very fast and efficient, even for very large graphs. However, there is no guarantee to reach the best or most natural partitioning in general cases, except for the stochastic block model. This is mainly due to the fact that spectral clustering is the continuous convex relaxation of a discrete optimization problem (see Subsection 6.3.2 of Chapter 6. Furthermore, even if the consistency of the spectral clustering method has been proved for stochastic block models, consistency means that the number of nodes tends to infinity and this is not realistic in practice.

There are mainly three matrices whose spectral properties can be studied to discover structures in the graph. These matrices are 1. The adjacency matrix A.

2. The Laplacian matrix L unnormalized or normalized.

The transition matrix

R = D -1 A.
As detailed in Section 7.4, the primary purpose of Chapter 7 is to present an alternative method to the usual spectral clustering one for a specific random graph model. In Section 7.2, we introduce the notations and in Section 7.3 we recall the main ideas and properties behind the spectral clustering method. We then discuss on the stochastic block model. [START_REF] Rohe | Spectral clustering and the highdimensional stochastic blockmodel[END_REF] and [START_REF] Daniel L Sussman | A consistent adjacency spectral embedding for stochastic blockmodel graphs[END_REF] proved the consistency of the spectral clustering method applied to stochastic block models, for respectively the normalized Laplacian matrix and the adjacency matrix. Section 7.4 is devoted to the presentation of the model that is being worked on. We suggest to focus on a random graph model that is closely related to a stochastic block model. We actually assume that the observed graph results from a deterministic graph with an exact community structure whose edges have been disturbed by Bernoulli variables. In Section 7.5, we suggest a new method to estimate block membership of nodes from the observation of the noisy graph. This method is an alternative to spectral clustering, in the sense that it is essentially based on the computation of the singular value decomposition of the adjacency matrix. The associated algorithm actually aims at finding a sparse basis of the eigenvectors of the adjacency matrix, using an initial basis provided by any eigensolver. Finally, we study the performances of this method on simulated data. Results are presented in Section 7.7. Experimental results indicate that this algorithm works well on simulated data and is effective at finding the truecommunities.

Graph notations

In Chapter 7, we only consider graphs G = (V, E) with n fixed nodes. The nodes are labelled from 1 to n, so that V = {1, ..., n}. The graph is assumed to be undirected, unweighted with no loops. The adjacency matrix of the graph is therefore defined by

A ij =
1 if there is an edge between i and j 0 otherwise .

Since the graph is undirected, A ∈ M n (R) is a symmetric matrix i.e A ij = A ji . Because there are no loops, we also have A ii = 0. We recall that the degree d i of a node i is equal to the number of edges incident to i

d i = n j=1 A ij .
The matrix D is the degree matrix that contains the degree of the nodes d 1 , ..., d n on the diagonal and zero anywhere else

D =    d 1 0 . . . 0 d n    .
Given a subset of vertices C ⊂ V , we denote by C its complement, that is V \ C. We define the indicator vector 1 C ∈ R n as the vector whose entries are defined by

(1 C ) i = 1 if vertex i belongs to C 0 otherwise .
A subset C ⊂ V of a graph is said to be connected if any two vertices in C are connected by a path in C (sequence of vertices in C connected by edges that joined the two initial vertices). In addition, C is called a connected component if there are no connections between vertices in C and C. Non empty sets C 1 , .., C k form a partition of the graph if C i ∩ C j = ∅ and C 1 ∪ ... ∪ C k = V . A subset of nodes is often equivalently regarded as the subgraph formed by the edges that connect these nodes.

The spectral clustering method

One of the most commonly used method to cluster a graph into communities is the spectral clustering method [START_REF] Von | A tutorial on spectral clustering[END_REF]. The algorithm behind spectral clustering has been rediscovered and reapplied in various and different fields, since the initial work of Fiedler [FIE]. For a detailed history of spectral clustering we refer to [START_REF] Daniel | Spectral partitioning works : Planar graphs and finite element meshes[END_REF] and to [START_REF] Von Luxburg | Consistency of spectral clustering[END_REF].

In the spectral clustering procedure, ones use the first k eigenvectors of a normalized or unormalized version of the Laplacian matrix (derived from the adjacency one) to cluster the nodes of the graph. By the "first k eigenvectors", we refer to the eigenvectors associated to the k smallest eigenvalues. The eigenvalues are always ordered increasingly, respecting multiplicities. In this section, we essentially recall the main ideas behind spectral clustering methods. The concepts highlighted in this section will be essential further to understand the contribution of the thesis to this part.

Tools for spectral analysis of a graph and main ideas behind spectral clustering

There are mainly three matrices whose spectral properties can be studied to discover structures in a graph [START_REF] Andrew | Partitioning networks by eigenvectors[END_REF], [START_REF] Von | A tutorial on spectral clustering[END_REF]. These matrices are listed below and essentially depend on the adjacency matrix A.

1. The Laplacian matrix L = D -A.

2. The symmetric Laplacian matrix

L sym = D -1/2 AD -1/2 ,
denoted by L sym because it is a symmetric version of the Laplacian matrix.

3. The random walk Laplacian matrix

L rw = D -1 L = I -D -1 A,
denoted by L rw because D -1 A may represent the transition matrix of a random walk (see Subsection 6.3.1 ).

The L matrix is often referred as the unormalized Laplacian and L sym , L rw as the normalized Laplacian matrices. The eigenvalues and eigenvectors of these three matrices are closely related through simple transformations. If these matrices are so important in graph clustering, it is because, as explained in Proposition 7.3.1 below, the distribution of its eigenvalues indicates the number of connected components in the graphs. In addition, its eigenvectors fully describe the vertices that lie in each of these connected components.

Proposition 7.3.1. [VL07]

The multiplicity k of the 0 eigenvalue of L and L rw and the multiplicity k of the generalized 0 eigenvalue of L sym are equal to the number of connected components C 1 , ..., C k in the graph.

For L and L rw , the eigenspace associated to 0 is spanned by the indicator vectors {1 C i } 1≤i≤n .

For L sym , the eigenspace associated 0 is spanned by D 1/2 1 C i 1≤i≤n .

Let G be a graph with k connected components C 1 , ..., C k . We sum up the results of Proposition 7.3.1 in Table 7.1. If the Laplacian (or one of its equivalent) is so appealing, it is because the multiplicity of the null eigenvalue (that corresponds to the smallest eigenvalue) is equal to the number of connected components. In addition, a particular basis of the associated eigenspace is spanned by the community indicators. Therefore, if the graph is made of exactly k connected components, the computation of the eigenvectors of L,L sym and L rw enables to recover these components. When these components are sufficiently connected, they represent communities. In practice, the graph is not made of connected components, but of densely connected subgraphs that are sparsely connected to each other. These densely connected subgraphs represent somehow a perturbed version of the initial connected components that form the communities. If the perturbation is not too high, we can still hope that the eigenvectors of the perturbed Laplacian matrix (associated to this perturbed graph) still contain enough information on the graph structure to detect these communities. In particular, for one specific eigenvectors basis, the vectors coefficients are likely to be very close for indices corresponding to nodes in the same community. Therefore, it is natural to then apply k-means to the rows of the matrix containing these eigenvectors in columns. The question is why not just applying k-means to the data ? The answer is because, once the points are map to R k , they often form tighter clusters in this space than in the initial one. In addition, applying k-means in the space of smaller dimension k is more efficient than in the space of dimension n (especially when n is large).

L L sym L rw Multiplicity of 0 k k k Associated eigenspace Vect{1 C i } 1≤i≤k Vect D 1/2 1 C i 1≤i≤k Vect{1 C i } 1≤i≤k

Spectral clustering algorithms

In this subsection, we detail the spectral clustering algorithms associated to L, L rw and L sym . The spectral clustering method consists in applying one of these procedure.

Algorithm 5 details the procedure for L.

Algorithm 4 L spectral clustering INPUT : Adjacency matrix A, number k of clusters to construct.

Step 1 : Compute the k eigenvectors u 1 , ..., u n of L.

Step 2 : Let U ∈ M n,k be the matrix containing the vectors u 1 , .., u k as columns.

Step 3 : For i = 1, ..., n, let y i ∈ R k be the vector corresponding to the i-th row of U .

Step 4 : Cluster the points

(y i ) 1≤i≤n in R k with the k-means algorithm into clusters V 1 , ..., V k . OUPUT : Clusters C 1 ,...,C k with C i = {j | y j ∈ V i }.
For L rw , the only difference is in step 1 (see Algorithm 5).

Algorithm 5 L rw spectral clustering [SM00]

INPUT : Adjacency matrix A, number k of clusters to construct.

Step 1 : Compute the k generalized eigenvectors u 1 , ..., u n of the generalized eigenproblem Lu = λDu where L is the Laplacian matrix.

Step 2 : Let U ∈ M n,k be the matrix containing the vectors u 1 , .., u k as columns.

Step 3 : For i = 1, ..., n, let y i ∈ R k be the vector corresponding to the i-th row of U .

Step 4 : Cluster the points

(y i ) 1≤i≤n in R k with the k-means algorithm into clusters V 1 , ..., V k . OUPUT : Clusters C 1 ,...,C k with C i = {j | y j ∈ V i }.
For L sym , the algorithm introduces an additional row normalization step (see Algorithm 6). Step 1 : Compute the k eigenvectors u 1 , ..., u n of L sym .

Step 2 : Let U ∈ M n,k be the matrix containing the vectors u 1 , .., u k as columns.

Step 2 bis : Normalized the rows of U ∈ M n,k to norm 1.

Step 3 : For i = 1, ..., n, let y i ∈ R k be the vector corresponding to the i-th row of U .

Step 4 : Cluster the points

(y i ) 1≤i≤n in R k with the k-means algorithm into clusters V 1 , ..., V k . OUPUT : Clusters C 1 ,...,C k with C i = {j | y j ∈ V i }.
The algorithms look very similar. Each of them presents advantages and drawbacks that mainly depend on the distribution of the degree [START_REF] Von | A tutorial on spectral clustering[END_REF].

As shown in Subsection 6.3.2 of Chapter 6, spectral clustering is the continuous convex relaxation of Min-cut and there is no theoretical guarantee for general models. k-means can fail to reach the true underlying partition and there is also no guarantee in practice to reach the best or most natural partition

A practical example where spectral clustering works well

In practice, the spectral clustering method generally works quite well. In this subsection, we illustrate the method on real-life data. These data corresponds to transcript levels of genes of the yeast Saccharomyces cerevisiae [SSZ + 98]. These data are available on the internet. In [SSZ + 98], the authors aim at finding a classification of the genes with respect to their involvement within the cell cycle. They have identified different cycles in the cell development. Then, they classify the cell cycle-regulated genes by pattern of expression, using a kind of hierarchical clustering method. Combining the obtained partition with biological knowledge, they have identified nine groups of genes involved in a similar biological process. They have certified the reliability of such groups through experiments. Then, for each of these groups, they identify some specific relevant genes.

We have applied the spectral clustering method to the same data (that contains around 800 genes expressions). The adjacency matrix we use is based on the correlation coefficients of these genes estimated from individual measurements. Figure 7.1 illustrates the partition of the nodes we obtained, after applying spectral clustering with a number of communities equal to nine. The spectral clustering method has been implemented using R. Each color represents a cluster. Comparing the genes associated to each of these clusters and those that have been evidenced by the biologists, we see that the spectral clustering method achieved to detect groups of genes that are involved in a same biological process of the cell-cycle. Clustering with spectral clustering does not give the same partitioning as the one got by the biologists. But the hubs, that have been experimentally confirmed, are the 

Spectral clustering applied to stochastic block models

As mentioned before, there is no statistical guarantee for general graph models, except for the stochastic block model [START_REF] Paul W Holland | Stochastic blockmodels : First steps[END_REF], [START_REF] Karrer | Stochastic blockmodels and community structure in networks[END_REF]. Spectral clustering has been proved to be consistent for assigning nodes to blocks in the case of a stochastic block model. What consistency means here ? It means that the number of misclassified vertices goes to zero as the number of nodes goes to infinity. In this subsection, we briefly recall what is a stochastic block model. Then, we detail the adaptation of the spectral clustering algorithm to stochastic block models and we present the main result on consistency.

A stochastic block model is made of k labels {1, 2, ..., k} (corresponding to the membership to k communities) and n nodes that represent the set of vertices V . The graph is parametrized by a probability distribution p = (p 1 , ..., p k ) ∈ ]0, 1[ k , where k i=1 p i = 1 and by a matrix P ∈ M k (R) whose entries are in [0, 1]. The distribution p represents the probability of belonging to one of the k communities. In other words, the probability that a node belongs to community i is given by p i . We denote by τ the random block membership function τ : V → {1, 2, ..., k}, where τ (i ∈ V ) = j means that the vertex i is assigned to community j. So that, P [τ (v) = i] = p i . The entries of P represent the probability of an edge between two nodes belonging to community i and j. Since the graph is undirected, P is of course symmetric.

The usual spectral clustering algorithm has been adapted for directed stochastic block models [START_REF] Daniel L Sussman | A consistent adjacency spectral embedding for stochastic blockmodel graphs[END_REF]. The key idea remains the same as for general graphs. In [START_REF] Daniel L Sussman | A consistent adjacency spectral embedding for stochastic blockmodel graphs[END_REF], the algorithm is presented for directed graphs. We provide below a version adapted to undirected graph where A is symmetric (see Algorithm 7).

Algorithm 7 Adjacency spectral clustering for stochastic block models INPUT : Adjacency matrix A, number k of clusters to construct.

Step 1 : Compute the k eigenvectors u 1 , ..., u n of L.

Step 2 : Let U ∈ M n,k be the matrix containing the vectors u 1 , .., u k as columns.

Step 3 : Compute

( ψ, τ ) = argmin ψ,τ n i=1 U i. -ψ τ (i) 2 2 ,
where U i. represents the i-th rows of U . The vector ψ gives the centroids and τ the blocks assignment function. OUTPUT : τ .

Compared to the classical spectral clustering algorithm, only step 3 varies for stochastic block models (since we want to estimate both the block memberships). Step 3 actually means that we cluster the rows of U via a minimization of a square error criterion. In practice, k-means is used to empirically approximate the argmin of the objective function and is well efficient. This algorithm is less expensive but quite effective than other algorithms. However, other algorithms to cluster the rows of U may be used in practice.

For stochastic block models, [START_REF] Rohe | Spectral clustering and the highdimensional stochastic blockmodel[END_REF] proved the consistency of the nodes assignment for spectral clustering applied with the normalized Laplacian. [START_REF] Daniel L Sussman | A consistent adjacency spectral embedding for stochastic blockmodel graphs[END_REF] extended this result by replacing the normalized Laplacian by the adjacency matrix. Here, consistency means that the proportion of misclassified nodes goes to zero in probability as the number of vertices tends to infinity. Both of these results required that the number of blocks as well as the rank of the communication probability matrix P are known. In [FST + 13], the authors prove that the spectral clustering partitioning procedure based on the adjacency matrix is consistent. It requires only an upper bound on the rank of the communication probability matrix (of course this upper bound can be taken to be the rank of P or k if these quantities are known). Under this condition, the authors prove that, for any fixed ε > 3/4, the number of missassignments is almost always less than n ε ("almost" always means that almost surely the event occurs for all but a finite number of n). In any case, the different blocks are always assumed to have distinct probabilities, so that the blocks are distinguishable. As said before, for general graphs there is no statistical guarantees but spectral clustering remains a popular methods because it works quite well in practice and this procedure is computationally feasible.

Presentation of the model

As already mentioned in Chapter 6, observed real networks differ from random graphs from their degree distribution and from the structure they display. Erdos-Renyi graphs fails to model real observed graphs and stochastic block model are not always relevant to infer their structures.

In this section, we assume that the observed graph, denoted by Ĝ, is actually a perturbed version of a graph G that has k fully connected components. Hereafter, observed quantities will be denoted by a hat. This representation may be suited to model graphs that are not given or fixed but inferred (see Subsection 6.2.2).

The ideal graph

The ideal graph G is assumed to be the union of k complete graphs that are disconnected from each other. The number of vertices is n. The vertices are labelled from 1 to n. We allow the number of vertices in each subgraph to be different. We denote by s 1 , ..., s k (≥ 2) their respective size (of course k i=1 s i = n). To simplify, we assume that the nodes {1, ..., n} are ordered with respect to their block membership and in increasing order with respect to the size of the blocks. In other words, the nodes in the smallest cluster are denoted by 1, ..., s1 and so on.

From a matricial point of view, the associated adjacency matrix A is block diagonal and has the following form

A =       A 11 A 12 . . . A 1k A 12 A 22 . . . A 2k . . . . . . . . . . . . A 1k A 2k . . . A kk       n ∈ S n (R)
where

A ij := 0 s i ,s j 1 ≤ i = j ≤ k and A ii := N s i -I s i =       0 1 . . . 1 1 0 . . . 1 . . . . . . . . . . . . 1 1 . . . 0       s i ∈ S s i (R), 1 ≤ i ≤ k.
I s i denote the identity matrix of size s i and N s i the square matrix of same size s i , whose entries are all equal to one. In other words,

CHAPITRE 7. AN ALTERNATIVE TO SPECTRAL CLUSTERING FOR COMMUNITY DETECTION A =                               0 1 . . . 1 1 0 . . . 1 . . . . . . . . . . . . 1 1 . . . 0       s 1 0 . . . 0       0 1 . . . 1 1 0 . . . 1 . . . . . . . . . . . . 1 1 . . . 0       s k                         n (7.1)

Perturbed version Ĝ of the graph G

We assume that we do not have access to this graph G. This is the case, for instance, if the graph has been inferred by estimating the dependencies between the vertices. We just observe a perturbed version of G denoted by Ĝ (some edges have been added between the communities and others have been removed within the communities independently with respect to a given probability). For instance, this perturbation may arise because of a partial knowledge of the graphs. This can be due to errors of measurement or to estimation noise (if the graph is estimated).

Let us detail what we exactly mean here by perturbations. Let  be the adjacency matrix associated to Ĝ. We assume that

 = A 2 ⊕ B (7.2)
where

• A ij = A 2 ⊕ B ij = A ij + B ij (mod 2).
• B is a symmetric matrix of size n, whose upper entries are realizations of independent Bernoulli variables

     B ij ∼ B(p) i.i.d., i < j B ii = 0 B ij = B ji .
B is therefore the adjacency matrix of an Erdos-Renyi graph G(n, p). We recall that an Erdos-Renyi graph G(n, p) has n vertices. The entries of its adjacency matrix are independent (up to the constraint that the adjacency matrix is symmetric) and equal 1 with probability p and 0 with probability 1 -p (except on the diagonal where the entries are deterministic and always equal to 0). The presence of an entry B ij equal to one means that edge between i and j is removed if the edge exists or conversely that an edge is added if there was no edge before.

To sum up -if B ij = 1 and A ij = 1, we remove an edge between vertex i and j in G -if B ij = 1 and A ij = 0, we add an edge between vertex i and j in G -if B ij = 0 we do not change any thing on the initial graph.

The noise is independent from one edge to the other, so that a change in an edge appears with the same probability for all the edges. An edge is removed in a community with probability CHAPITRE 7. AN ALTERNATIVE TO SPECTRAL CLUSTERING FOR COMMUNITY DETECTION p and added between two communities with the same probability. So that, two nodes are connected with probability 1 -p if they belong to the same community and with probability p when they do not belong to the same community. We can easily generalize this model by considering a different perturbation probability within and between each of the blocks. To simplify, in what follows, we keep the same value of p for all of the entries. The difference between purely random graphs and our model is that we do not assume that a group structure emerges by chance but because there exists an underlying structure. This structure can be based on a real physical or biological mechanism that have been significantly changed. Hence, the model is random but the underlying group structure is considered as fixed and is well defined. This is a kind of probabilistic-statistical model that is well suited to model graphs that have been inferred from observations.

The model we consider is similar to the stochastic block-model, in the sense that the probability of an edge between two nodes depends only on the communities membership. But here, the membership of a node to a community is assumed to be fixed and not randomly assigned as in the stochastic block model. In the stochastic block-model, we have

P [A | τ ] = (i,j)∈V 2 i =j P [A ij | τ (i), τ (j)] = (i,j)∈V 2 i =j 1 -P τ (i),τ (j) 1-A ij ,
where we recall that τ is the random block membership function. Hence, conditionally to τ , the entries A ij of the adjacency matrix are independent Bernoulli random variables with parameter given by P τ (i),τ (j) . The p i in a stochastic block model somehow represent the nodes density of the communities. In our setting, there is no conditioning. The sizes of the communities are assumed to be fixed and equal to (s i ) 1≤i≤k . In addition, the number of nodes is kept fixed. But, it is the probability of an edge between two nodes that is supposed to vary. We implicitly assume that this probability p depends on a parameter and tends to zero when this parameter tends to infinity. For instance, we can imagine that the nodes of the graph represent features whose interactions have been estimated based on m observations, so that p -→ m→+∞ 0. Therefore, for this model, consistency of a clustering method does not mean anymore that the number of misassigned nodes goes to zero when n tends to infinity, but that it goes to zero when p tends to zero. This is one of the main differences with what exists in the literature. Recovery of stochastic block models has been widely studied in the case of two non-overlapping communities. By recovery we mean either weak recovery i.e. recovery of a partition of the graph that is positively correlated with the true partition with high probability or exact recovery i.e recovery of the exact partition with high probability. Let q be the between-class edge probability and m the within-class edge probability. [START_REF] Decelle | Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications[END_REF] conjectured that, if m = a n and q = b n , then it is possible to achieve weal recovery if (a -b) 2 > 2(a -b) and impossible if (ab) 2 < 2(a -b). New phase transition phenomena have recently been discovered for two non-overlapping communities. [START_REF] Mossel | Stochastic block models and reconstruction[END_REF] proved that it is impossible to cluster if (a -b) 2 < 2(a -b). The complete weak recovery threshold for two symmetric communities was achieved efficiently a year later in [START_REF] Mossel | A proof of the block model threshold conjecture[END_REF], proving the conjecture of [START_REF] Decelle | Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications[END_REF]. The exact recovery threshold for two symmetric communities was established by [START_REF] Abbe | Exact recovery in the stochastic block model[END_REF] for the case of two symmetric communities, but only in the sparse case where m, q = O(log n/n). [START_REF] Mossel | Consistency thresholds for binary symmetric block models[END_REF] generalize this result. [START_REF] Abbe | Community detection in general stochastic block models : fundamental limits and efficient recovery algorithms[END_REF] investigate the case of stochastic block models with multiple overlapping communities, without imposing symmetry. In all these works, the assymptotic is when n tends to infinity and the results are only stated for two communities. In this part, the assymptotic refers to a value of the perturbation p tending to zero and we work with a number of communities that can be larger than two.

Because the graph and the adjacency matrix are equivalent, in what follows, we forget the graph and we only focus on the adjacency matrix.

Notations

Let us now detail some of the notations we will need later. For l ∈ {1, ..., k}, let

M l = i ∈ [1, n] : l-1 r=0 s r + 1 ≤ i ≤ l r=0 s r .
M l represents the indices of the nodes in community l. {M 1 , ..., M k } is a partition of [1, n], so that [1, n] = 1≤l≤k M l . We also define

M c l = [1, n] \ M l = 1≤m≤k m =l M m .
For l ∈ {1, ..., k} and m ∈ {1, ..., k}, we define

J lm = M l ⊗ M m = (i, j) ∈ [1, n] 2 : i ∈ M l , j ∈ M m . {J lm } 1≤l≤m≤k is a partition of [1, n] 2 , so that [1, n] 2 = 1≤l,m≤k J lm .
We also define

J ll -= {(i, j) ∈ J ll , i = j} .
For any adjacency matrix F , we denote by D F the degree matrix associated to F . Its diagonal entries are denoted by d F i , where we recall that d F i = n j=1 F ij . The ideal adjacency matrix A given by Equation ( 7.1) has its degrees equal to

d A i := n j=1 A ij = s l -1, if i ∈ M l .
For l = 1, ..., k, let d l := s l -1. We have

D A = diag(d 1 , . . . , d 1 s 1 , ... d k , ..., d k s k
).

l 1 -spectral clustering, a new graph community detection method

In this section, we present the heart of the contribution's thesis to spectral clustering methods. We recall that we aim at finding the k underlying communities of a graph G from the observation of the noisy graph Ĝ. In this section, we suggest an alternative to spectral clustering. This new algorithm is based on the research of a sparse eigenvectors basis through l 1 minimization. We denote by C 1 , ..., C k the k connected components of G, that match the k communities. We recall that these connected components are sorted in increasing order of size, with size equal to s 1 , ..., s k .

Limits of traditional spectral clustering

To better understand where the idea of this new method comes from, we go back to the ideal case where the different blocks are not connected. In this case, the indicators of the communities {1 C i } 1≤i≤k are the eigenvectors of the normalized and unormalized adjacency or Laplacian matrix. Let U be the concatenation of these vectors. In this situation, we easily see that rows corresponding to indices of nodes in the same class are equal. Hence, clustering the rows of U provides, by the same way, the knowledge of the blocks. O course, if the adjacency matrix or the Laplacian matrix are perturbed by an additive noise, then the eigenvectors will also be modified. But, if the perturbation is small, we can still hope that the rows (of the modified version of U ) will remain close enough, so that k-means on these rows find the good clusters. However, since 0 is a repeated eigenvalue, the eigenspace associated to 0 is spanned by {1 C i } 1≤i≤k . Hence, there is no guarantee that the implementation of the eigensolvers provides the community indicators as eigenvectors. They can be replaced by a linear combination of the community indicators. For instance, the eigensolvers can find the sum of the indicators as an eigenvector. In this case all the coefficients of the vector are equal to one. Therefore, they are of no use for clustering the nodes of the graph. Once we add a perturbation on the adjacency matrix, the eigenvalues are not multiple anymore and the eigenspace becomes of dimension one. But, the eigenvalues can remain very close and if the eigengap is small the first top eigenvectors given by an eigensolvers may no be very useful to well cluster the groups. The first eigenvectors are not equally informative. This may explain why the original spectral clustering method can fail to recover the good communities in some case. The choice of the k eigenvectors is in fact of the highest importance. The key is to select relevant eigenvectors that provide useful information about the natural grouping of the data. In what follows, we do not use directly the subspace spanned by the first eigenvectors to find the communities but we first compute another eigenbasis that promotes sparse solutions for the eigenvectors.

A new approach

The alternative method we suggest is based on the same principle as spectral clustering. We still focus on the space spanned by the k first eigenvectors. But, instead of computing and directly using one basis among others, we wisely compute from this initial basis (that has been fastly computed by any eigensolver) a basis better suited for clustering.

We do not work on the Laplacian or normalized Laplacian but directly on the adjacency matrix or on its normalized version. However, the idea remains the same if we replace the adjacency matrix by the Laplacian or its normalized version by the normalized Laplacian matrix. The only difference is that the eigenvalues associated to the eigenvectors {1 C i } 1≤i≤k have a different value. They are equal to 0 with multiplicity k when replacing A by D -A (Laplacian matrix) or if D -1 A is replaced by I -D -1 A (normalized Laplacian matrix).

1. The eigenvalues of A associated to {1 C i } 1≤i≤k are equal to d 1 , ..., d k . The other eigenvalues are equal to -1.

The generalized eigenvalue of D

-1 A associated to {1 C i } 1≤i≤k is 1 with multiplicity k.
The other ones are equal to -1 d 1 , ..., -1 d k with multiplicity respectively equal to d 1 , ..., d k . In what follows, we work only with the adjacency matrix A, but the work would be the same with D -1 A. Because the community indicator are the eigenvectors associated this time to the largest eigenvalues, we assume that the eigenvalues of A denoted by λ 1 , ..., λ n are sorted in decreasing order. Let u 1 , .., u n be the associated normalized eigenvectors given by any eigensolvers, so that the k first eigenvectors of A (associated to the k largest eigenvalues) are denoted by u 1 , ..., u k . We denote by U k the matrix that contains u 1 , ...u k in columns and by V k the one that contains u k+1 , ..., u n . We define We recall that v 0 =| {j : v j = 0} |. In other words, 1 C 1 is the sparsest non-zero eigenvector in the space spanned by the first k eigenvectors.

U k = Span {u 1 , ..., u k } .

General minimization problem

Proof. Since {1 C i } 1≤i≤k is a basis of U k , a vector v in U k can be written as v = k j=1 α j 1 C j where (α 1 , ..., α k ) ∈ R k \ {0} . Therefore, we deduce that v 0 is equal to 1 α 1 =0 s 1 + ... + 1 α 1 =0 s k . Because at least one of the α i is non zero and s 1 ≤ s 2 ≤ ... ≤ s k , the vector in U k with the smallest l 0 norm is the one for which α 1 = 0 and α i = 0 for all i = 1.

We can generalized Proposition 7.5.1 to find the other indicators of the communities. For

i = 2, ..., k, let U i k = {v ∈ U k : v ⊥ 1 C l , l = 1, ..., i -1}. Proposition 7.5.2. For i = 2, ..., k, the minimization problem argmin v∈U i k \{0}
v 0 has a unique solution (up to a constant) given by 1 C i .

Notice that the constraints are linear. However, because of the l 0 -norm this minimization problem is NP-hard. We rather consider its convex relaxation given by the l 1 -norm. Actually, we can show that the solution of the l 0 optimization problem is still the same when replacing the l 0 norm by the l 1 norm, if we add a constraint on the maximum of the coefficients. 

C 1 . Proof. Since {1 C i } 1≤i≤k is also a basis of U k , a vector v in U k can be written as v = k j=1 α j 1 C i where (α 1 , ..., α k ) ∈ R k . We deduce that v 1 is equal to α 1 s 1 + ... + α k s k .
Because at least one of the α i is not zero and s 1 ≤ s 2 ≤ ... ≤ s k , the vector in U k that satisfies v ∞ = 1 and has the smallest l 1 norm is the one for which α 1 = 0 and α i = 0 for all i = 1 and α 1 = 1.

The other indicator vectors are also solution of a l 1 minimization problem.

Proposition 7.5.4. For i = 2, ..., k, the minimization problem (P i )

argmin v∈U i k v ∞=1 v 1
has a unique solution given by 1 C i .

There exists efficient algorithms in R or Matlab that efficiently solve optimization problem of the form argmin

v:F v=b v 1
where F is a matrix and b is a vector. But, here we have a constraint in infinite norm that not allows to apply directly such algorithms. In addition, searching for a solution in the space {v ∈ R n : v ∞ = 1} is not computationally feasible. Proposition 7.5.5 below show that we can replace this condition by the quadratic constraint. 

argmin v∈U k v 2 =1 v 1
has a unique solution given by 1

√ s 1 1 C 1 . Proof. Since v ∈ U k and v 2 = 1, v is of the form k j=1 α j k j=1 α 2 j s j 1 C j where (α 1 , ..., α k ) ∈ R k \ {0} . Hence, v 1 is equal to k j=1 | α j | s j k j=1 α 2 j s j while the l 1 -norm of 1 √ s 1 1 C 1 equals √ s 1 . Therefore v 1 ≤ 1 √ s 1 1 C 1 1 is equivalent to k i=1 | α i | s i 2 ≤ k i=1 α 2 i s 1 s i .
Because all the terms are positive and s 1 ≤ ... ≤ s k , this is possible only if all the α i are zero for i = 1. Solving Problem ( P) with v 2 ≤ 1 instead of v 2 = 1 is easy using Matlab or R. However, it should be notice that here we cannot use this constraint, otherwise the solution of the problem is trivial and equal to the null vector. Problem ( P) is an optimization problem in R n with k constraints, where n is often much more larger than k. That is why, we rather consider its dual to reduce the dimension of the target parameter to a dimension k. Since

v ∈ U k , there exists λ ∈ R k such that v = U k λ. Because U T k U k = I k , v 2 = 1 is equivalent to λ 2 = 1.
Therefore, Problem ( P ) is equivalent to solve argmin

λ∈R k | λ 2 =1 U k λ 1 .
Since the target parameter is not anymore in R n but in R k , this is a problem in smaller dimension (n represents the number of nodes and may be very large whereas k denotes the number of communities that is believed to be small).

To solve this problem, we first parametrize the sphere by the l 2 -ball, using that

   λ = (λ 1 , ..., λ k ) ∈ R k : k j=1 λ 2 j = 1    =      λ = (λ 1 , ..., λ k ) ∈ R k : λ k = 1 - k-1 j=1 λ 2 j and k-1 j=1 λ 2 j ≤ 1      . Let B k-1 be the l 2 -ball in R k-1 .
Solving problem ( P ) turns out to solve

argmin λ∈B k-1 U k g( λ) 1 , where g : λ → λ1 , ..., λk-1 , 1 -k-1 j=1 λ2 j .
Most of the convex optimization solvers are efficient when bounded constraints in infinite norm. That is why, we then parametrize B k-1 by its canonical coordinates as introduced in [START_REF] Barthe | Generalized dirichlet distributions on the ball and moments[END_REF].

We recall that

B k-1 = x = (x 1 , ..., x k-1 ) ∈ R k-1 : x 2 := k-1 i=1 | x i | 2 ≤ 1 . The canonical coordinates c = (c 1 , ..., c k-1 ) ∈ (-1, 1) k-1 of x ∈ B k-1 are given by      c 1 = x 1 c l = x l 1 -l-1 i=1 | x i | 2 , l = 2, ..., k -1 Knowing (x 1 , ..., x k-2 ), the admissible range for x k-1 in order that x belongs to B k-1 is -1 -k-2 i=1 | x i | 2 , 1 -k-2 i=1 | x i | 2
. Hence, we parametrize the l 2 -ball using the following mapping C C :

       B k-1 → (-1, 1) n (x 1 , ..., x k-1 ) →   x 1 , ..., x k-2 1 -k-2 i=1 | x i | 2  
The inverse is given by

   x 1 = c 1 x i = c i (1-| c 1 | 2 )(1-| c 2 | 2 )...(1-| c i-1 | 2 ) , i = 2, ..., k -1 .
This turns out to solve argmin

v∈R k-1 : v ∞≤1 U k v 1 where v = c 1 , c 2 1 -c 2 1 , ..., c k (1 -c 2 1 )...(1 -c 2 k ), 1 -k-1 i=1 c i i-1 j=1 (1 -c 2 j ) 2 .
This is a non-linear optimization problem with linear constraints in small dimension. We can apply optimization methods such as the interior point method. We can use for instance the Matlab's Optimization toolbox and more specifically the fminsearchbnd() function, developed by John D'Errico and adapted to non smooth objective function with bounded constraints. fminsearchbnd() is based on fminsearch(), except that bounds are applied to the variables. The bounds are applied internally, using a transformation of the variables. fminsearch() uses the simplex search method of Lagarias et al. [START_REF] Jeffrey C Lagarias | Convergence properties of the nelder-mead simplex method in low dimensions[END_REF]. The advantage is that it is a direct search method that does not use numerical or analytic gradient. In other words, it is a derivative-free method that can be used with non smooth function. This algorithm succeeds in most of the case to recover the communities on simulated data. However, because of the transformation of the bounds and of the non differentiable objective function (that is approximate), there are situations in which the algorithm does not provide exactly the community indicators, even in the non perturbed case.

Minimization under knowledge of community representatives

Now, in addition to the number of communities, we assume that we know one representative of each community. By a representative, we mean a node belonging to this community.

This assumption is not so restrictive compared to traditional spectral clustering where the number of communities is assumed to be known. In practice, the number of communities can be inferred from the structure of the graph or from the knowledge of the biological or physical process that drives the graphs. For instance, in genes networks, the groups of genes we search for often represent metabolism functions. These functions are a priori known and some genes implied in these metabolic functions have already been evidences by experiments. The aim is to cluster genes around these initial well-known ones to detect new genes and gain thereby new understanding of the complex system. If we do not exactly know a representative for each group, we can estimate them by first applying a rough partitioning algorithm or just an algorithm that aims at finding the hub of very densely connected parts of the graph.

We denote by i 1 , ..., i k the indices of these initial elements. Let

Ũk = {v ∈ U k : v i 1 = 1} .
This is straightforward to see that the community indicator of the smallest community is solution of the following optimization problem.

Proposition 7.5.6. The minimization problem (P 1 )

argmin v∈ Ũk v 1
has a unique solution given by 1 C 1 .

To simplify and without loss of generality, we assume that i 1 corresponds to the first index (up to a permutation). Because the columns of the matrix U form an orthonormal basis, v ∈ U k is equivalent to V T k v = 0, where we recall thatV k is the restriction of U to the last n -k columns.

Let w be the first column of V T k . We define W as the matrix V T k whose first column w has been deleted. This solution v * is equal to 1 C 1 . There exists very efficient algorithms that solve this type of l 1 -minimization problem with linear constraints. They have been proved to converge to the right solution and can be easily solved using R or Matlab. For instance, we can use the R Optimization Infrastructure (ROI) package or the l 1 -eq function of the Matlab optimization package l 1 -Magic.

The other community indicators are computed in the same way, adding the constraints that the target vector is orthogonal to the previous computed vectors. In practice, we deflate the matrix A. We get a matrix Ã, so that the indicator of the second smallest community corresponds now to the sparsest eigenvector associated to the space spanned by the k largest eigenvalues of Ã. Hence, the problem is traced back to the first one and so on.

CHAPITRE 7. AN ALTERNATIVE TO SPECTRAL CLUSTERING FOR COMMUNITY DETECTION

Minimization problem under perturbations

Then, the most interesting question is what if the adjacency is perturbed as in Equation (7.2) ? We denote by Ûk the perturbed version of U k . This matrix contains the first k eigenvectors of the adjacency matrix  associated to the observed graph Ĝ. Vk denotes the matrix containing the others n -k eigenvectors. To simplify, we just present the solution to find the first community indicators (for the others, the idea remains the same except that we deflate the matrix). The solution consists in releasing the equality constraints of Problem ( P1 ) given in Proposition 7.5.8. This is equivalent to solve the minimization problem ( P1 )

argmin ṽ∈R n-1 Ŵ ṽ + ŵ 2 2 +λ ṽ 1 , ( P1 )
where λ > 0 is the penalty parameter, Ŵ ∈ M n-k,n-1 is the matrix V T k whose first column ŵ has been deleted. The term Ŵ ṽ + ŵ 2 2 means that we search for a vector close to the space spanned by the first k eigenvectors of  and whose first coefficient is equal to one. ṽ 1 is what controls the sparsity of the solution. As for all regularizing methods depending on a parameter, the main issue is the choice of λ. Figure 7.2 below shows that the behaviour of the estimated coefficients is of two kinds. The simulations have been performed on a model with nine communities with size between 10 and 30 and a perturbation equal to 0.1. There is a clear splitting in the behaviour of the coefficients, depending if they belong to the first community or not. By looking in more details to the data, we see that the upper batch of curves are associated to nodes in the first community and the lower batch of curves to ones in the other communities. This is true whatever is the value of the penalty parameter. Figure 7.2 below does not represent a particular situation but a typical behaviour of the Lasso when applied to our model (we have implemented models with various parameters). coefficients equal to zero or one and does not take continuous values. In addition, the fact that one of the coefficients in the true community is already equal to one forces the other coefficients in the same community to be close to one too, under small perturbations. So that we can hope to discriminate the membership of the nodes by keeping an equality constraint and then hardly thresholding the coefficients with respect to one-half.

Finally, the first community indicators 1 C 1 is estimated as follows.

1. Compute ṽ ∈ argmin

u∈R n-1 Ŵ v=-ŵ v 1 .
2. Compute v1 = (1, ṽ).

For the other vectors ((v i ) 2≤i≤k ), we deflate the matrix  and we do the same to estimate the other community indicators. Then, for all i = 1, ..., k, 1 C i is estimated by 1C i where 1C i j := 1 if (v i ) j > 1 2 and (v l ) j = 1, l = 1, ..., i -1 0 if (v i ) j ≤ 1 2 .

Algorithm

We detail below the algorithm we suggest to use to cluster nodes of a graph into k communities. This algorithm can be easily implemented using R or Matlab and is called the l 1 -spectral clustering algorithm. The l 1 -spectral clustering method sequentially build k vectors representing the k community indicators. Algorithm 8 details the main steps of the procedure. 

., k

Step 1 : Consider c i the edge representative associated to the i-th community.

Step 2 : Compute the eigendecomposition [U, D] of A i.e. A = U D t U .

Step 3 : Sort the eigenvalues of A in increasing order and do the same for the associated eigenvectors.

Step 4 : Compute R the matrix that contains the eigenvectors associated to the n -k + i + 1 smallest eigenvalues

Step 5 : Compute V = t R.

Step 6 : Compute W = V -c i and w = V c i (where w = V c i is the c th i column of V and V -c i is the V matrix where we have removed the c th i ). (using for instance the l1eq Matlab function).

Step 8 : Form the solution f i = s i 1 s i 2 ...s i c i -1 1 s i c i ...s i n .

Step 9 : Compute F = [F f i ] and deflate A with f i . End For.

Step 10 : Do

F ij = 1 if Fij ≥ 1/2 and F il = 1, l = 1, ..., i -1 Fij = 0 if F ij < 1/2
OUTPUT k vectors v 1 , ..., v k that are the columns of F (v i j = 1 means that the edge j belongs to community i).

In algorithm 8, we can replace A by D -1 A and the singular value decomposition of A by the computation of the generalized eigenelements of D -1 A.

Remarks :

1. One of the advantage of this algorithm is that it is computationally feasible, even for large graphs, thanks to efficient algorithms that solve l 1 minimization problems.

2. In practice, we may just hope to have at hand a representative for each of the k communities. However, we don not know which one belongs to the smallest community. If the number of community is not too large, we can still proceed as described above by

where, for all l = 1, ..., k and i ∈ M l ,

d A i = n j=1 A ij = j∈M l j =i (1 -B ij ) + j∈M c l B ij = d l - j∈M l j =i B ij + j∈M c l B ij .
Proposition 7.6.2. Â = A + E where E ∈ M n (R) is given by

E ij = A ij + B ij (mod 2) =    -B ij if (i, j) ∈ 1≤l≤k J ll - B ij otherwise
when i = j and E ii = 0.

Proposition below provides an expression of the difference between D A -1

A and (D A ) -1 A in terms of the elements of A and B. 

             E ij =          - 1 d Aε i + d l d Aε i d l + B ij if (i, j) ∈ J ll -, 1 ≤ l ≤ k, i = j B ij d Aε i + d l if (i, j) ∈ J lm , 1 ≤ l = m ≤ k E ii = 0
where

• d l := d A i = n j=1 A ij , i ∈ M l . • d Aε i := d Â-A i = - j∈M l j =i B ij + j∈M c l B ij = d B i -2 j∈M l j =i B ij . • d B i = n j=1 j =i B ij .
Proof. See Sub-section 7.6.3.

Frobenius norm of the error

Proposition 7.6.6 and Proposition 7.6.4 below gives the expression of the Frobenius norm of the unormalized and normalized adjacency matrix. Proposition 7.6.4. The Frobenius norm of E, that satisfies  = A + E, is equal to

E 2 F = n j=1 j =i B ij = 2 n i=1 j>i B ij .
This proposition is a straightforward consequence of the definition of B and of the fact that B 2 ij = B ij and B ij = B ji . Corollary 7.6.5.

E E 2

F = n(n -1)p and

E d U k , Ûk ≤ n(n -1)p s 1 ,
where we recall that s 1 is the size of the smallest community. COMMUNITY DETECTION

In particular, if all the communities are of equal size, we get

E d U k , Ûk ≤ (n -1)kp.
If the number of nodes is assumed to be fixed, we easily see that the distance between U k and Ûk will tend to zero as p goes to zero.

Proposition 7.6.6. The Frobenius norm of E, that satisfies D A -1 A = (D A ) -1 A + E, is equal to

E 2 F = k l=1 i∈M l   d B i d Aε i + d l d l   = k l=1 1 d l   i∈M l d B i d l 1 + d Aε i d l -1   ,
where we recall that

• d l := d A i = n j=1 A ij , i ∈ M l . • d Aε i := d Â-A i = - j∈M l j =i B ij + j∈M c l B ij = d B i -2 j∈M l j =i B ij . • d B i = n j=1 j =i B ij .
Another expression of the Frobenius norm only in terms of (B ij ) 1≤i =j≤n is given by where we recall that s k is the size of the largest community. COMMUNITY DETECTION

E 2 F = k l=1 1 d l i∈M l n j=1 j =i   B ij
In particular, if all the communities are of equal size, we get

E d U k , Ûk
pk 2 (n -1) (n -k)(1 -2p) + (n -1)kp (f irst order).

These results provide a first understanding of what theoretical results could be expected for the l 1 -spectral clustering method and how the level of noise p impacts on the eigenspace associated to the community indicators. This work is still in progress. We now aim at finding convergence rates for d U k , Ûk and upper bound for the misassignment error of the l 1clustering method. In a future work, we are going to investigate in more detail the behaviour of the l 1 -spectral clustering procedure in the case where k = 2 and then see if it will be possible to generalize these results when k > 2.

Proof

Proof of Proposition 7.6.3

Proof. We have

D Â -1 Â = (D A + D Aε ) -1 (A + A ε ) ,
where A ε = Â -A and

• A ε := Â -A.
The entries of this matrix are equal to 1 when an edge is added and to -1 when an edge is removed. The other entries are 0. In other words, represent the difference of degree between the observed and the ideal graph, for each of the n vertices. We have, for all l ∈ {1, ..., k} and i ∈ M l ,

(A ε ) ij = A ij -A ij =    -B ij if (i, j) ∈
d Aε i = - j∈M l j =i B ij + j∈M c l B ij .
To simplify the notations, let F := (D A + D Aε ) -1 and C = D -1 A -(D A + D Aε ) -1 . We have

D -1 Â Â = D -1 A A + E, where E := F A ε -CA.
F is a diagonal matrix and its entries are equal to

f i := F ii = 1 d Aε i + d l ,
for all l = 1, ..., k and i ∈ M l . Then, computing the inverse of the diagonal matrices D A + D Aε and D A , we deduce that C is also a diagonal matrix whose entries (c i ) 1≤i≤n are equal to

c i := d Aε i d l 1 d Aε i + d l ,
for all l = 1, ..., k and i ∈ M l . Thus, on the one hand,

(F A ε ) ij =    - B ij d Aε i +d l if (i, j) ∈ J - ll , 1 ≤ l ≤ k B ij d Aε i +d l if (i, j) ∈ J lm , 1 ≤ l = m ≤ k and (F A ε ) ii = 0.
On the other hand, CA is a block diagonal matrix and its entries are defined by

(CA) ij =    d Aε i d l 1 d Aε i +d l if (i, j) ∈ J - ll , 1 ≤ l ≤ k 0 if (i, j) ∈ J lm , 1 ≤ l = m ≤ k and (CA) ii = 0.
To conclude, for i = j

E ij =          - 1 d Aε i + d l d Aε i d l + B ij if (i, j) ∈ I l , 1 ≤ l ≤ k B ij d Aε i + d l if (i, j) ∈ J lm , 1 ≤ l = m ≤ k
and it is straightforward to see that E ii = 0.

Proof of Proposition 7.6.6

Proof. 

Test of the new algorithm on simulated data

In Section 7.5, we have introduced a new algorithm (called l 1 -spectral clustering) that aims at detecting community structures in complex graphs. This algorithm use spectral vector partitioning techniques to classify nodes. To illustrate the performances of the l 1 -spectral clustering, we simulate random undirected graphs generated from the model presented in Section 7.4 to then apply the algorithm of Subsection 7.5.3.

Using Matlab, we first generate random graphs with an exact group structure. We choose different number of blocks and different sizes for the blocks. Then, we add a noise on the associated adjacency matrices. Once the matrix is disturbed, we have no block structure anymore. To recover this underlying block structure, we apply the l 1 -spectral clustering algorithm. We refer to Figure 7.4 for a summary of these different steps. .5 below gives an example of the distribution of the different eigenvectors that are involved in spectral clustering methods for a graph with nine communities, whose sizes have been randomly chosen between 20 and 50 and for a value of the perturbation equal to p = 0.2. Subfigure a) represents the histogram of the community indicators, b) the histogram of the eigenvectors as given by the Matlab eigensolver (these eigenvectors are the ones used to cluster the data in the traditional spectral clustering method), c) the histogram of the estimated community indicators using l 1 -spectral clustering, d) same thing but applying the traditional spectral clustering method with k-means. In this specific case, the l 1 estimated eigenvectors exactly fit the true ones, whereas k-means makes a few mistakes.

Then, we test the robustness to perturbations and the performance of the algorithm. To do so, we consider different values of p. p represents the level of noise that has been discretized between 0 and 0.5. For each fixed value of p, we simulate 100 Monte-Carlo replicates of the random model. We apply the l 1 -spectral clustering algorithm to cluster the nodes. Then, we The results are surprisingly good and the algorithm seems to work well on simulated data for small perturbations. The rate of exact assignment is equal or very close to one for small perturbations. In addition, thank to the l 1 norm this algorithm is very fast, even for a large number of nodes, when the number of communities is small. These results should be investigated further to better understand the advantages but also the drawbacks induced by this method. It would be of interest to see if it could be possible to set phase transition phenomena for this model, in the same vein as the ones stated by [START_REF] Decelle | Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications[END_REF], [MNS12, MNS13, MNS14], [START_REF] Abbe | Exact recovery in the stochastic block model[END_REF], [START_REF] Abbe | Community detection in general stochastic block models : fundamental limits and efficient recovery algorithms[END_REF] for the stochastic block model when the number of nodes tends to infinity. 

Conclusion Summary of the research work

In recent years, more and more attention has been paid to the problem of graph partitioning and community detection. Many various approaches have been developed, depending on the field of application (biology, social networks,...). Graph community detection is essential is biology. For instance, it can help discovering relational structures between genes attached to identified biological functions. With the development of data acquisition tools, we now have to work on large graphs. Clustering the nodes of such graphs is a challenge that needs new efficient computational tools. There is no clear definition of what a graph clustering means but it essentially implies a partition of the nodes into parts (called communities or clusters) with few inter-connections but many connections inside. With the notion of modularity, the spectral clustering method is the other commonly used technique to cluster a graph and detect communities. If this method is so popular, it is mainly because it is easy to implement, even in large graphs. However, except for the stochastic block model, there is no theoretical guarantee that we recover the true communities. The spectral clustering method consists in clustering nodes using k-means on some specific eigenvectors. We have seen that the way the eigenvectors basis of the adjacency (or Laplacian matrix) is built is of the highest importance to ensure a good recovery of the communities.

In this part, we have introduced a random graph model that is closely related to a stochastic block model. The observed graph is assumed to result from a deterministic graph with an exact community structure, whose edges have been perturbed by Bernoulli variables. We have characterized the indicators of the communities in the ideal graph as the ones that have the minimal l 1 -norm with respect to a specific restricted space. We have suggested a new method to estimate the block membership of nodes from the observation of the noisy graph. This method, called l 1 -spectral clustering, is an alternative to spectral clustering, in the sense that it is essentially based on the computation of the singular value decomposition of the adjacency matrix. The main advantages of this method is that the objective function is clear, simple and easy to implement even for very large graphs. We have investigated some of the properties of the noise matrix and we have studied the performances of this method on simulated data.

Perspectives and future research

This work is still in progress and new research lines are multiple. In a future work, we first aim at establishing theoretical results on the performance of the l 1 -spectral clustering method. One of the main issues concerns the conditions that should be satisfied by p compared to n, by the number of groups and the size of the groups to ensure a good recovery of the different communities. Another research line is the consistency of the l 1 -spectral clustering method. By consistency, we mean either n fixed and p goes to zero or p depends on n and n goes to infinity. Obtaining a rate of convergence is also essential to access the reliability of the algorithm. Other questions are the following ones. Can we generalize the method to weighted adjacency matrix ? Can we extend the method when not having the number of groups has an input ? Because the objective function is clear and simple, we may derive a criteria to estimate the number of groups at the same time. We aim also at comparing the performances of the l 1 -spectral clustering method to the ones of spectral clustering based on k-means, in a general setting and more specifically in the stochastic block models. From this discussion, we see that many researches and improvements can be conducted both for theoretical and practical perspectives. This thesis falls within the general framework of high dimensional data analysis. In this thesis, we have investigated statistical models in high dimension that present some specific structures. These structures range from a group structure of the covariates (Part I), to patterns between the dependent variables and the covariates (Part II) up to community structures in graphs (Part III). Since an exhaustive research of the best structure that fit well the model is impossible, inferring these structures in high-dimension is a challenge. When handling high-dimensional data, many combinatorial problems are NP-hard problem, so that new tools need to be developed. In this situation, it is important to fully make a good use of the model features, hoping that it can help to reduce dimension. Sparsity of the target parameter is the key of Part I. In Part II the data are assumed to be embedded in a space of lower dimension. Many very large real world graphs present a structure similar to group sparsity, in the sense that there are groups of nodes densely connected but with very sparse connections in between. So that again in Part III, we go back to methods that promote sparsity.

In Part I, we have introduced sparse models in a linear high-dimensional setting. In Chapter I, we have reviewed the main ideas, concepts and tools that have lead to the development of very efficient tools that guarantee a very good estimation of the true model. Chapter 2 extends classical results on the Lasso applied to Gaussian linear models to a Group Lasso procedure on generalized linear models. The idea was to replace the ordinary least squares by the negative log-likelihood and the l 1 constraint by the l 1 norm of the l 2 norm of groups of variables. The choice of this norm can yield zero groups of variables in the constrained best-fit coefficients vector. Once the model and the estimator have been detailed, we have explored its statistical properties and guarantees. We have established oracle inequalities for this Group Lasso procedure applied to generalized linear models. We have detailed and commented the convergence rates we got for prediction and estimation error. These results show the ability of the Group Lasso to recover good sparse approximations of the true model, under general conditions on the covariates and on the joint distribution of the pair covariates for some specific values of the tuning parameter. The condition on the design matrix, called the Group Stabil condition, is an extension to groups of the restricted eigenvalue property and avoid too strong correlations between groups of variables. For groups of size one, we found again the convergence rates of the Lasso. Then, we have generalized these results to the Elastic net penalty. More attention was drawn to the Poisson model case. We have illustrated the theoretical results on simulated data. The experimental results show the good performances of the Group Lasso estimator when the target parameter is structured into groups. It would be interesting to see how we could improve the bounds for some specific subsets of link functions, other than the Poisson and logistic ones. Actually, if we look in more details at the estimation and prediction bounds, we see that they depends on the first and second derivative of the normalized function. Therefore, the derivative properties of the exponential family seem to play an important role. The Group Lasso penalty could be, for instance, modified to take into account some features of the exponential family to achieve better performances or help to calibrate the penalty parameter.

In Part II, we focused on a dimension reduction method in multivariate analysis, called Partial Least Squares (PLS). Contrary to Part I, we do not make sparsity assumptions on the model. Chapter 3 was devoted to the study of the PLS method and to the description of the framework. We have seen that this method is not tailored to estimation or variables selection but is reasonable and now commonly used for prediction, especially when the explanatory variables are highly collinears or when they outnumber the observations. We have highlighted that PLS is nothing less than least squares over some specific subspace, called Krylov subspaces. If the PLS method is very helpful in a large variety of situations, the properties of the estimator have not been widely investigated, mainly due to the fact that the estimator depends in a non linear way on the response through a complex and unknown function. The-refore, the main challenge was to learn about the function that links the response and the covariates in the latent variables. Once again, we aimed at establishing statistical guarantees for a model that is not sparse anymore, but is believed to have an embedded structure of lower dimension. That is why, in Chapter 4, we have suggested a new way of thinking PLS, more tailored to the study and the analysis of the statistical aspects of this method. This approach is based on orthogonal polynomials. In Chapter 4, we proved that most of the PLS quantities of interest can be written in terms of some specific orthogonal polynomials called the residual polynomials. Using the theory of orthogonal polynomials we have derived an explicit analytical expression for these polynomials, referred as the representation formula. One of the main advantage of this formula was that it explicitly contains all the information on the data and it clearly shows how the PLS estimator depends on the signal and noise. Therefore, this formula was well tailored to the study of the statistical properties of the PLS methods. The representation formula links the PLS estimator to the response and to the initial predictors. Once this formula has been stated, we have shown how it was helpful to get new statistical results and insight in terms of empirical risk and mean squares prediction error. The shrinkage properties of the PLS estimator have also been investigated and new insights have been given. Finally, in Chapter 5, we have explained how this approach through orthogonal polynomials provides a unified framework to most of the already known PLS properties (previously stated through different approaches) and also to new other ones. Some questions still remain open. The study of the representation formula could be improved, in order to get more precise theoretical results. The representation formula should be further explored to better understand under which conditions on the model the method could achieve good performances. For instance, some specific distributions of the eigenvalues with respect to the contribution of the response on the associated eigendirections should be investigated. It would also be of interest to see if we could extend the representation formula to data in infinite dimension and to multiple response. For the moment, there is no performing tools that assess the quality of the PLS method. For a theoretical point of view, it would be interesting to use the representation formula (and the derived results stated in this part) to develop tests to assess the validity of a model, when applying PLS. The upper bounds on the empirical risk could also be used to set criteria for a choice of a model better than PRESS. At last, the representation formula may help to modify the PLS algorithm to take into account specificities in the link between the input and output response, thereby allowing better performances and interpretability of the algorithm.

Part III of the thesis deals with high-dimensional graphs. The choice of spectral methods have several advantages. The main is that they are computationally feasible and easy to implement. In Chapter 6, we review some of the main notions, concepts and tools on graph theory. We have gone more into detail on the notion of graph partitioning and community detection. Chapter 7 is more specifically devoted to the spectral clustering method that consists in clustering nodes using k-means on some specific eigenvectors sets. In this part, we have seen that the way the eigenvector basis of the adjacency (or Laplacian matrix) is built is of the highest importance. Then, we have introduced the random graph model we work on in this part. This random graph model is closely related to a stochastic block model. It assumes that the observed graph results from a deterministic graph with an exact community structure whose edges have been perturbed by Bernoulli variables. This framework is particularly relevant as it is quite well suited to fit real-world networks. We have characterized the indicators of the communities in the non perturbed graph as the ones that have the minimal l 0 norm with respect to a specific restricted space. Hopefully, they are also the ones with minimal l 1 -norm. We have suggested a new method to estimate block membership of nodes belonging to this perturbed random graph, under the knowledge of one representative for each block. This method, called l 1 -spectral clustering, is an alternative to spectral clustering, in We provide in this section some useful results on concentration of measure. This is not an exhaustive review and we refer to the books of [START_REF] Massart | Concentration inequalities and model selection[END_REF] and [START_REF] Boucheron | Concentration inequalities : A nonasymptotic theory of independence[END_REF] for a complete overview of results on concentration of measure.

A variable with good concentration properties is one that is close to its mean with high probability. As mentioned in the introduction, this notion has been proved very useful in a huge variety of contexts, mainly due to the work of Talagrand and Ledoux [START_REF] Ledoux | The concentration of measure phenomenon[END_REF]. This phenomenon is for instance very useful in machine learning and in statistics in general to bound error probabilities, but also in other fields such as numerical analysis, data mining, geometry, combinatorics, etc.

Let X be a random variable. We aim at estimating how X concentrates around its expectation EX. We would like to have tight upper bounds for P {| X -EX |≥ u} and P {| X -EX |≤ -u} , for u > 0. For sum of independent random variables (X i ) 1≤i≤n i.i.d. whose mean equals m and variance is given by σ 2 , the central limit theorem states that

√ n 1 n n i=1 X i -m L -→ N (0, σ 2 ),
but this result is asymptotic and only says nothing about the rate of convergence (behaviour for finite n). We wish to have inequalities that are valid whatever is n. From a probabilistic view, we say that a random variable X defined on some probability space satisfies a concentration inequality if for some constant m which will typically be EX or the median of X, we have for every u ≥ 0

P {| X -m |≥ u} ≤ C 1 exp -C 2 u 2 (A.1)
or equivalently

P {| X -m |≤ u} ≥ 1 -C 1 exp -C 2 u 2
where the constant C 2 is usually related to the inverse of the variance of X and where C 1 > 0 should be a small numerical constant. Concentration inequalities enable to well control some random fluctuations even in high dimension.

A.1.1 Concentration of Gaussian Measures

A centered Gaussian real random variable with variance σ 2 and mean EX concentrates around its mean. I ANNEXE A. APPENDIX OF PART I Proposition A.1.1. If X is a Gaussian centered random variable with mean EX and variance σ 2 , then X concentrates around its mean, in the sense that, for every u ≥ 0,

P {| X -EX |≥ u} ≤ exp - u 2 2σ 2
It is a straightforward consequence of the definition of Gaussian random variable and elementary calculus. Compared to Equation A.1 Proposition above tells that a random variable that satisfies a concentration inequality behaves no worse than a normal distribution in the tails.

A.1.2 Markov and Chebyshev bounds

In this subsection, we provide tail bounds for more general distribution. Markov and Chebyshev inequalities bound the total amount of probability of some random variable X that is in the tail. Markov inequality is the simplest concentration inequality.

Proposition A.1.2. Markov inequality Let X be any non negative integrable random variable and u > 0. Then

P {X ≥ u} ≤ EX u .
More generally, if f is a monotonically increasing function from R + to R + , then

P {| X |≥ u} ≤ Ef (| X |) f (u)
Markov bounds do not depend on any knowledge of the distribution of X. Chebyshev bounds use knowledge of the standard deviation to give a tighter bound.

Proposition A.1.3. Chebyshev Let X be a random variable with mean EX and variance σ 2 . Then, the Chebyshev inequality states that

E {| X -EX |≥ u} ≤ σ 2 u 2 .
These bounds are rough bounds. Actually, some random variables fall off exponentially with the distance from the mean. For this kind of random variables, Markov and Chebyshev provide poor bounds.

For sum of independent random variables better bounds can be reached.

A.1.3 Concentration inequalities for sum of random variables

Concentration inequalities for bounded variables

The most standard concentration results are for averages of bounded random variables. This is the Chernoff and Hoeffding bounds, that provide exponential fall-off of probability with distance from the mean. These inequalities bound the tails of distribution for sums of independent random variables, under a few mild assumptions. In addition, for any t ∈ [0, 1] ,

P [S n ≤ (1 -t)µ] ≤ exp - µt 2 3 .
Chernoff actually only considered the case in which the X i random variables are identically distributed. The more general form stated below is due to Hoeffding. 

. Bernstein inequality

Let X 1 , ..., X n be independent random variables that satisfy

EX i = 0, EX 2 i = σ 2 i , i = 11, ..., n and E | X i | k ≤ σ 2 i 2 L k-2 k!
where k > 2 and L is a constant independent of i. Define S n = X 1 + ... + X n . Then, we have where c > 0 is a constant.

P [| S n |> t] ≤ 2
Let X 1 , ..., X n be independent random variables with values in some space X and F a class of real-valued functions on X . 

A.2 Exponential family and generalized linear models

A.2.1 Exponential family

The exponential family of distributions is commonly used in statistical estimation and decision theory. This family of distributions is a unified family of distributions on finite dimensional Euclidean spaces, parametrized by a finite dimensional parameter vector. It includes many familiar distributions such as the Normal, Binomial, Poisson, Gamma, Exponential, Laplace, Weishart, Weibull and Dirichlet distributions. We refer to [START_REF] Casella | Statistical inference[END_REF] for more details on the exponential family.

Definition

The density of an exponential family with parameter vector θ = (θ 1 , ..., θ n ) ∈ R n is defined by

f (x; θ) = exp n i=1 η i (θ)T i (x) -ψ(θ) c(x)
with respect to the Lebesgue measure or the counting measure for respectively continuous and discrete distributions. We rather drop θ altogether and parametrize the distribution in terms of η = (η 1 , ..., η n ) itself with η i := η(θ). By a slight abuse of notation, we will use again the notation f, T and ψ. The canonical form is given by f (x; η) = exp n i=1 η i T i (x) -ψ(η) c(x).

We also just write f (x; η) = exp η T T -ψ(η) c(x), where η = (η 1 , ..., η n ) and T = (T 1 , ..., T n ).

• The parameter η is called the natural parameter and specifies all the parameters of the distribution.

• T is the sufficient statistic. If T (x) = x, the distribution is said to be canonical and η is referred as the canonical parameter.

• c is the underlying measure.

• ψ is called the link or normalized function and ensures that the distribution integrates to one. Hence,

ψ(η) = log ∞ -∞ exp η T T c(x)
• The canonical parameter is the set

Θ := η = (η 1 , ..., η n ) ∈ R n : ∞ -∞ exp η T T -ψ(η) c(x) < +∞ .
This set is convex. If the measure is discrete the integral is replaced by a summation.

V ANNEXE A. APPENDIX OF PART I

Examples

We give three illustrative examples. We first detail the Gaussian case to bring out some of the most important properties of distributions in the exponential family.

Normal.

Let X be the normal distribution N (µ, σ 2 ) where

P (x; µ, σ 2 ) = 1 √ 2πσ exp - (x -µ) 2 2σ 2 .
Let η = (η 1 , η 2 ). We can also parametrize this distribution as follows

P (x; η 1 , η 2 ) = 1 √ 2π exp η 1 x 2 + η 2 x + η 2 2 4η 1 + 1 2 log(-2η 1 ) ,
where η 1 = -1/(2σ 2 ) and η 1 = µ/σ 2 . Therefore, a normal distribution belongs to the exponential family with the following parameters η = (-1/(2σ 2 ), µ/σ 2 ), T (x) = (x 2 , x), c(x) = 1/ √ 2π

ψ(η) = µ 2 /(2σ 2 ) + log σ = - η 2 2 4η 1 - 1 2 log(-2η 1 ).
The natural parameter space is given by 

Θ = η = (η 1 , η 2 ) ∈ R 2 : η 1 < 0 .

Properties

The distributions in the exponential family have many important properties . One of them is the link between the partial derivatives of ψ and the moments distribution. Proposition A.2.1 below characterized the moments of a distribution from the exponential family. In particular, if T = X then EX = ψ (η).

3. For any i, j = 1, ..., n, Cov(T i , T j ) = ∂ 2 ψ ∂η i ∂η j (η).

In particular, if i = j we have

Var(T i ) = ∂ 2 ψ ∂η 2 i (η).
4. The moment generating function of T , denoted by G T , always exists in some neighbourhood of zero and is given by G T (x) = e ψ(η+x)-ψ(η) . The cumulative generating function is log M T (x) = ψ(η + x) -ψ(η).

A.2.2 Generalized linear models

The generalized linear model [START_REF] Mccullagh | statistics and applied probability 37[END_REF] is a generalization of linear regression to response types other than Gaussian, as long as the distribution of the response belongs to the exponential family. In traditional regression, we want to predict a response Y from a set of covariates X and we assume that A generalized linear model relies on three components

E [Y | X] = Xβ * .
• The response Y that belongs to the canonical exponential family distribution with canonical parameter η

• The linear predictor Xβ * .

• The monotone and differentiable function ψ (called the link function) that connects the response to the linear predictor. In other words,

η = Xβ * and E [Y | X]) = ψ -1 (Xβ * )
The standard to estimate the parameter of a generalized linear model is to maximise the log-likelihood .

Proposition A.2.2. Let D n = (X i , Y i ) 1≤i≤n be a dataset sample. The log-likelihood of a canonical generalized linear model is given by

l(β, D n ) := n i=1 log c(Y i ) + β T n i=1 X i Y i - n i=1 ψ(β T X i ).
Convexity of ψ guarantees global maximum. Because n i=1 log c(Y i ) does not depend on β, maximizing l(β, S) is equivalent to find the maximum of β T n i=1 X i Y i -n i=1 ψ(β T X i ).

Inférence statistique en grande dimension pour des modèles structurels. Modèles linéaires généralisés parcimonieux, méthode PLS et polynômes orthogonaux et détection de communautés dans des graphes.

Auteur : Mélanie Blazère Directeurs de thèse : Jean-Michel Loubes et Fabrice Gamboa Date et Lieu de soutenance : le 01/07/15 à l'Institut de Mathématiques de Toulouse Discipline : Mathématiques appliquées

R ÉSUM É

Cette thèse s'inscrit dans le cadre de l'analyse statistique de données en grande dimension. Nous avons en effet aujourd'hui accès à un nombre toujours plus important d'information. L'enjeu majeur repose alors sur notre capacité à explorer de vastes quantités de données et à en inférer notamment les structures de dépendance. L'objet de cette thèse est d'étudier et d'apporter des garanties théoriques à certaines méthodes d'estimation de structures de dépendance de données en grande dimension. La première partie de la thèse est consacrée à l'étude de modèles parcimonieux et aux méthodes de type Lasso. Après avoir présenté les résultats importants sur ce sujet dans le chapitre 1, nous généralisons le cas gaussien à des modèles exponentiels généraux. La contribution majeure à cette partie est présentée dans le chapitre 2 et consiste en l'établissement d'inégalités oracles pour une procédure Group Lasso appliquée aux modèles linéaires généralisés. Ces résultats montrent les bonnes performances de cet estimateur sous certaines conditions sur le modèle et sont illustrés dans le cas du modèle Poissonien.

Dans la deuxième partie de la thèse, nous revenons au modèle de régression linéaire, toujours en grande dimension mais l'hypothèse de parcimonie est cette fois remplacée par l'existence d'une structure de faible dimension sous-jacente aux données. Nous nous penchons dans cette partie plus particulièrement sur la méthode PLS qui cherche à trouver une décomposition optimale des prédicteurs étant donné un vecteur réponse. Nous rappelons les fondements de la méthode dans le chapitre 3. La contribution majeure à cette partie consiste en l'établissement pour la PLS d'une expression analytique explicite de la structure de dépendance liant les prédicteurs à la réponse. Les deux chapitres suivants illustrent la puissance de cette formule aux travers de nouveaux résultats théoriques sur la PLS .

Dans une troisième et dernière partie, nous nous intéressons à la modélisation de structures au travers de graphes et plus particulièrement à la détection de communautés. Après avoir dressé un état de l'art du sujet, nous portons notre attention sur une méthode en particulier connue sous le nom de spectral clustering et qui permet de partitionner les noeuds d'un graphe en se basant sur une matrice de similarité. Nous proposons dans cette thèse une adaptation de cette méthode basée sur l'utilisation d'une pénalité de type l1. Nous illustrons notre méthode sur des simulations. Mots clés : Grande dimension, modèles linéaires généralisés parcimonieux, méthode de régularisation, méthode de réduction de dimension, partial least squares, détection de communautés dans des graphes.

ABSTRACT

This thesis falls within the context of high-dimensional data analysis. Nowadays we have access to an increasing amount of information. The major challenge relies on our ability to explore a huge amount of data and to infer their dependency structures. The purpose of this thesis is to study and provide theoretical guarantees to some specific methods that aim at estimating dependency structures for high-dimensional data.

The first part of the thesis is devoted to the study of sparse models through Lasso-type methods. In Chapter 1, we present the main results on this topic and then we generalize the Gaussian case to any distribution from the exponential family. The major contribution to this field is presented in Chapter 2 and consists in oracle inequalities for a Group Lasso procedure applied to generalized linear models. These results show that this estimator achieves good performances under some specific conditions on the model. We illustrate this part by considering the case of the Poisson model.

The second part concerns linear regression in high dimension but the sparsity assumptions is replaced by a low dimensional structure underlying the data. We focus in particular on the PLS method that attempts to find an optimal decomposition of the predictors given a response. We recall the main idea in Chapter 3. The major contribution to this part consists in a new explicit analytical expression of the dependency structure that links the predictors to the response. The next two chapters illustrate the power of this formula by emphasising new theoretical results for PLS.

The third and last part is dedicated to graphs modelling and especially to community detection. After presenting the main trends on this topic, we draw our attention to Spectral Clustering that allows to cluster nodes of a graph with respect to a similarity matrix. In this thesis, we suggest an alternative to this method by considering a l1 penalty. We illustrate this method through simulations. Keywords : High dimension, sparse generalized linear models, regularization methods, dimension reduction methods, partial least squares, community detection in graphs.
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CHAPITRE 1 .

 1 GRANDE DIMENSION ET PARCIMONIE S = j : β * j = 0 représente l'ensemble des indices actifs et s =| S | l'indice de parcimonie de β * .

  Error order GLMO γ * log Gn n O γ * log Gn n O γ * 2 log Gn n O γ * log Gn n O γ * log Gn n 0) GS(2m * , 3, 0) GS(3, 0) Error order LM O γ * log Gn n O γ * log Gn n O γ * log Gn n

  G n n. Define d max := max g∈{1,...,Gn} d g and d min := min g∈{1,...,Gn} d g . For β ∈ R p we denote by β g
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 5 Mean Hit lasso (%), M H G L = Mean Hit group lasso (%) , M F P L = Mean False positive lasso (%), M F P G L = Mean False positive lasso (%), M N Z L = Mean Nonzero lasso, M N Z g L = Mean Nonzero lasso, M P E L = Mean Prediction error gp lasso, M P E G L = Mean Prediction error group lasso, M EE L = Mean Estimation error lasso, M EE G L = Mean Estimation error lasso 1. For the first simulation the target is β * = (0.2, ..., 0.2 ... 0.2, ...,
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 25252 Figure 2.1 -Group Lasso and Poisson model : ROC curve 1
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  where c n := min {|x| L(M +B)}∩Θ ψ (x) 2

CHAPITRE 3 .

 3 UNE M ÉTHODE DE R ÉDUCTION DE DIMENSION AUX MULTIPLES FACETTES que la régression PLS est une technique récente qui généralise et combine les caractéristiques de l'analyse en composantes principales et de la régression linéaire multiple. En pratique, lorsque l'on a un échantillon à disposition, on résout algorithmiquement max w T ΓΓ T w sous la contrainte w T w = 1 et w T Σw = 0 où l'on rappelle que Γ = X T Y et Σ = X T X. Originellement, l'algorithme PLS a été introduit par [WMW83] sous le nom d'algorithme NIPALS dont en voici la trame 1

  j pj λ j v j , où (λ j , u i , v j ) 1≤j≤r et pj = Y T u j sont les éléments propres associées à la décomposition en valeurs singulières de X. Ils ont ensuite montré la proposition suivante CHAPITRE 3. UNE M ÉTHODE DE R ÉDUCTION DE DIMENSION AUX MULTIPLES FACETTES Proposition 3.2.4.
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 4 6.9. Let A = {∩ n i=1 | εi | ≤ δ}. If assumptions (H.1) holds then there exists a constant C > 1 such that

  4.8.1 Proof of Proposition 4.4.2 Proof. Let k ∈ N * and r ≥ l > k. Because Qk ∈ P k,1 , we have
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Figure 6

 6 Figure 6.1 -Matrice d'adjacence d'un graphe : a) avant permutation, b) après une permutation judicieusement choisie faisant apparaître la structure par blocs.

  1. Une probabilité de distributionp = (p 1 , ..., p k ) ∈ ]0, 1[ k , où k i=1 p i = 1.CHAPITRE 6. NOTATIONS, CONCEPTS ET OUTILS FONDAMENTAUX 2. Une matrice P ∈ M k (R) dont les entrées sont dans [0, 1].

p

  log det S + Tr( Σ-1 S) + λ S 2 F où S 2 F = Tr S T Sreprésente la norme de Frobenius, Σ est la matrice de covariance empirique et λ > 0 est le paramètre de régularisation. Ensuite, la matrice d'adjacence A est estimée de la façon suivante

  Cette variance dépend de l'assignation des sommets à une classe et du choix des centres. Il est difficile de trouver directement le minimum global de ce problème d'optimisation. Afin d'atteindre ce minimum, l'algorithme k-means se base sur une procédure itérative en deux étapes [Vas07], [Wu12]. L'algorithme s'initialise par le choix de k centres notés x (0) 1 , ..., x (0) k qui correspondent ici à des sommets du graphe. Chaque sommet est alors associé au centre le plus proche pour la distance d considérée, la distance d'un sommet à une classe étant définie par d(i, C l ) = d(i, x (0) l ) . Une fois que l'ensemble des sommets du graphe ont été associés à un centre et forment ainsi de nouvelles classes, de nouveaux centres sont calculés de façon à minimiser la variance au sein de chaque classe. Et ainsi de et vérifie P ij ≥ 0 et p j=1 P ij = 1. P ij représente la probabilité de passer d'un sommet i à un sommet j sachant que le marcheur aléatoire est en i. De façon équivalente, on a P = D -1 A où on rappelle que D représente la matrice des degrés.

  j et P désigne l'ensemble des partitions. Ce problème d'optimisation étant NP-complet, ils suggèrent plutôt d'utiliser un algorithme qui tire son inspiration des méthodes de clustering hiérarchique et consiste à progressivement fusionner des groupes de sommets. C'est l'Algorithme 2. Algorithm 2 Algorithme basé sur la commute distance ENTREE : Les sommets représentent chacun une communauté. Tant que les sommets ne sont pas totalement fusionnés Faire Etape 1 : Fusionner en une seule communauté C 3 les deux communautés C 1 et C 2 qui minimise la variation

Etape 3 : 4 :

 34 Remettre à jour les distances entre communautés. Etape Réitérer les étapes 1-3 jusqu'à fusion complète. Fin faire. Fin tant que. SORTIE : Dendogramme des sommets du graphe.
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  'on cherche alors à partitionner les sommets du graphe en k groupes de sorte à conserver le maximum d'arêtes à l'intérieur des groupes et à enlever peu d'arêtes entre ces groupes. Il s'agit donc à la fois de minimiser N c(C, k) et de maximiser N a(C, k) sur l'ensemble des partitions C. Or, N c(C, k)+N a(C, k) = 1. D'où minimiser N c(C, k) revient aussi à maximiser N a(C, k). Voici donc tout l'intérêt de minimiser ce critère. Nous allons dans la suite nous consacrer à N c(C, k) plutôt qu'à N a(C, k). Pour plus de simplicité, nous abrègerons N c(C, k) en N c(C) L'objectif de la méthode Min-cut est de trouver la partition C 1 , ..., C k qui minimise

Algorithm 6 L

 6 sym spectral clustering [NJW + 02] INPUT : Adjacency matrix A, number k of clusters to construct.

Figure 7 .

 7 Figure 7.1 -Spectral clustering applied to yeast genes
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Proposition 7 .

 7 5.1 and Proposition 7.5.3 below show that the community indicator are solution of some specific minimization problem.
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 7 AN ALTERNATIVE TO SPECTRAL CLUSTERING FOR COMMUNITY DETECTION Proposition 7.5.1. The minimization problem argmin v∈U k \{0} v 0 has a unique solution (up to a constant) given by 1 C 1 .
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 753 The minimization problem (P) solution given by 1
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 7755 AN ALTERNATIVE TO SPECTRAL CLUSTERING FOR COMMUNITY DETECTION The minimization problem ( P)
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 757 Problem (P 1 ) is equivalent to min ṽ∈R n-1 (1,ṽ)∈U k ṽ 1 .

Proposition 7 . 5 . 8 .

 758 The solution v * of problem ( P1 ) is given by v * = (1, ṽ * ) where ṽ * ∈ argmin ṽ∈R n-1 W ṽ=-w ṽ 1 .
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 72 Figure 7.2 -Lasso path for the first community indicators estimates
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 73 Figure 7.3 -Illustration of the Lasso path for five community indicators estimates

Algorithm 8 l 1

 1 -spectral clustering algorithm INPUT Adjacency matrix A of the observed graph G = (E, V ), number of communities k and the community representatives c 1 , ..., c k . F = []. For i = 1, ..

Step 7 :

 7 Compute the solution s i of the following problem min u∈R n-1 W u=-w u 1 .

Proposition 7 .

 7 6.3. D Â -1 Â = (D A ) -1 A + E where the entries of E ∈ M n (R) are given by

Corollary 7 . 6 . 7 .

 767 is not possible to exactly compute the expectation of the ratio d B i d Aε i + d l , we just provide an approximation of the expectation. Let R and S be two discrete random variables where S has no mass at 0. Using a Taylor expansion of f : (x, y) → x y , we have E We apply this result with R = d B i and S = d Aε i + d l . In a first order approximation, we have d l (1 -2p) + (n -1)p (f irst order) and E d U k , Ûk s k -1 s k k l=1 s l d l (n -1)p d l (1 -2p) + (n -1)p (f irst order)

•

  D Aε := D Â-D A . This matrix is diagonal and its non zero entries denoted by d Aε i 1≤i≤n

  B ij ∈ {0, 1} so B 2 ij = B ij and thus n Aε i + d l d l   .
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 74 Figure 7.4 -Recovery of the block structure
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 75 Figure 7.5 -Histogram of a) the true community indicators, b) the eigenvectors given by SVD b) the estimated ones by l 1 spectral clustering, c) the estimated ones by k-means
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 76 Figure 7.6 -Fraction of nodes correctly classified using l 1 spectral clustering, as the level of noise varies in random generated graphs of the type described above. Size of the groups between 20 and 30. Number of groups between 10 and 20.
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 77 Figure7.7 -Fraction of nodes correctly classified using l 1 spectral clustering, as the level of noise varies in random generated graphs of the type described above. Size of the groups between 50 and 100. Number of groups between 20 and 30.

  The concentration of measure phenomenon

.

  Lemma A.1.5. Hoeffding lemma Let X be a random variable such that EX = 0 and a ≤ X ≤ b p.s. Then ∀t > 0, E e tX ≤ e t 2 (b-a) 2 8Proposition A.1.6. Hoeffding inequality Let X 1 , ..., X n be independent and bounded random variables, such that∀i ∈ [1, n] , a i ≤ X i ≤ b i p.s.. Define S n = n i=1 X i .Then for all t > 0,P [S n -E(S n ) ≥ t] ≤ exp -2t 2 n i=1 (b i -a i ) 2 , P [S n -E(S n ) ≤ -t] ≤ exp -2t 2 n i=1 (b i -a i ) 2 and P [| S n -E(S n ) |≥ t] ≤ 2 exp -2t 2 n i=1 (b i -a i ) 2 ,Concentration inequalities for unbounded variablesProposition A.1.7

  Proposition A.1.12. Contraction principle Let x 1 , ..., x n elements of X and ε 1 , ..., ε n be Rademacher sequence. Consider Lipschitz functions g i . Then for any function f and h in F, we haveE sup f ∈F n i=1 i {g i (f (x i )) -g i (h(x i ))} IV ANNEXE A. APPENDIX OF PART I 2E sup f ∈F n i=1 i (f (x i ) -h(x i )) .

2

  . Bernoulli. Le X be a Bernoulli random variable of parameter p. ThenP (x; p) = p x (1 -p 1-x ) = exp x log p 1 -p + log(1 -p) .Hence,η = log p 1 -p , T (x) = x, ψ(η) = -log(1 -p) = log(1 + e η ), c(x) = 1.3. Poisson.Let X be a Poisson discrete distribution of parameter λ. ThenP (x; λ) = λ x e -λ x! = 1 x! exp {x log λ -λ} .Hence, η = λ, T (x) = x, ψ(η) = λ = e η , c(x) = 1 x! .

  Proposition A.2.1. 1. The function ψ is monotone and infinitely differentiable. VI ANNEXE A. APPENDIX OF PART I 2. For any i = 1, ..., n, we have ET i = ∂ψ ∂η i (η).

  The generalization is obtained by assuming that E [Y | X] is linked to the linear predictor through a function f that depends on the nature of YE [Y | X] = f (Xβ * ).
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	Notations	
	General notations	
	R n	Vector of length n with coefficients in R
	M n,p (R), M n,p	Matrix with n rows and p columns with coefficients in
		R. For simplicity, we sometimes just write M n,p
	M n (R), M n	Square matrix of size n
	S n	Set of symmetric matrices of size n
	S + n	Set of symmetric positive matrices
	S ++	
		xvii

n Set of definite positive symmetric matrices I n , I Identity matrix of size n, denoted by I when there is no possible confusion. EX Expectation of a random variable X Var(X) Variance of a random variable X Part I notations Data Y Response vector Y = (Y 1 , ..., Y n

  R p est le paramètre d'intérêt qui caractérise la fonction de lien linéaire.Lorsque ε i ∼ N (0, σ 2 ), on parle de modèle de régression linéaire gaussien.Tout au long de cette thèse nous nous intéressons à des problèmes statistiques en grande dimension. Par conséquent, nous supposons que p est très grand par rapport à n alors est de savoir ce qu'il advient lorsque la dimension des données p est beaucoup plus grande que n et même exponentiellement plus grande que le nombre d'observations n ? C'est une situation à laquelle nous avons à faire face de plus en plus souvent. En effet, avec le développement des outils d'acquisition de données, nous avons accès à des données de plus en plus sophistiquées et chaque fois plus nombreuses. C'est le cas par exemple en imagerie, en génomique, en astrophysique... En régression, le problème revient alors à estimer β * à partir de l'observation de Y et X, le nombre de colonnes de X étant beaucoup plus grand que le nombre de lignes. Dans ce cas, les outils statistiques classiques tels que les moindres carrés ordinaires atteignent leur limite et ne peuvent plus être appliqués ou sont inefficaces, que ce soit en terme de prédiction ou d'interprétation à cause d'une trop grande variabilité. Un autre problème que l'on rencontre dans ce cas là est celui du surapprentissage. A cause de la grande dimension des données, il est en effet possible d'extraire des modèles qui collent parfaitement aux données mais qui en retour sont inutilisables en terme de prédiction.

	p	n.

Classiquement, il est nécessaire que le nombre d'observations n soit beaucoup plus grand que le nombre de covariables p pour espérer avoir des estimations pertinentes. La question naturelle qui se pose

  est le paramètre de régularisation. Franck et Friedman[START_REF] Friedman | A statistical view of some chemometrics regression tools[END_REF] ont par la suite généralisé cette idée, consistant à ajouter une norme de pénalisation, sous le nom de la régression Bridge. La régression Bridge consiste à minimiser faire de la sélection de variables. Or, dans un contexte de régression en grande dimension, il est important de pouvoir procéder en même temps à l'estimation et à la sélection des variables que l'on a à disposition. Pour γ ≤ 1, la singularité de la norme en zéro favorise des solutions parcimonieuses mais si γ < 1 le problème de minimisation est non convexe conduisant à des calculs non implémentables en pratique en grande dimension. De ce fait, une valeur de γ égale à 1 semble être un bon compromis. Ceci revient à pénaliser les moindres carrés par la norme l 1 . En réalité, l'idée de pénaliser les résidus des moindres carrés par la complexité du modèle, représentée par le nombre de variables incluses dans le modèle, a été développée au début des années 1970. Parce que ce problème est NP-complet et ne peut être résolu numériquement, l'idée a été de considérer à la place sa relaxation convexe représentée par la norme l 1 . C'est le fameux estimateur Lasso, introduit par Tibshirani en 1996[START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF]. L'estimateur Lasso est détaillé dans le Chapitre I, Section 1.2 et est défini comme suit

	β = argmin β∈R p	Y -βX 2 2 s.t.
	β∈R p	1 n	Y -βX 2 2 + λ β 1

Y -βX 2 2 s.t. p j=1 | β j | γ ≤ c où γ > 0. Pour γ = 2, on retrouve l'estimateur Ridge. A noter que pour γ > 1, les coefficients de la solution du problème d'optimisation ci-dessus sont généralement non nuls pour toutes les variables. De ce fait, la régression Ridge est utile lorsque l'on veut faire de la prédiction R ÉSUM É FRANCAIS DE LA TH ÈSE mais pas pour p j=1 | β j |≤ c où c ≥ 0, ou de façon équivalente par β = argmin où λ > 0 est le paramètre de régularisation qui contrôle le compromis entre un modèle qui s'adapte bien aux données et la complexité du modèle choisi. Ce paramètre peut être mis en correspondance avec une valeur particulière de c. Un des principaux avantages du Lasso est que c'est la solution d'un problème d'optimisation convexe qui génère des solutions parcimonieuses.

  DE LA TH ÈSE où s est le cardinal du support de β * , c est une constante positive et (ε n ) n≥1 est une suite décroissante de termes positifs. Il existe une large et importante littérature qui vise à fournir des réponses aux trois questions énoncées ci-dessus. Les méthodes de pénalisation pour des modèles parcimonieux connaissent un intense développement depuis plusieurs années maintenant et les modèles linéaires gaussiens parcimonieux ont été largement étudiés dans la littérature [BRT09], [Bun08],[CDS98], [EHJ + 04], [KF00] et

  p est la matrice d'expérience associée aux variables initiales.2. S ∈ M n,k est la matrice contenant les nouvelles variables, avec k p.3. W ∈ M p,k est la matrice des poids associés à la transformation qui relie les variables initiales aux nouvelles variables latentes.Les colonnes w 1 , ..., w k de W représentent une base de l'espace sur lequel les données sont projetées. Xw k est combinaison des variables initiales et représente la k ème variable latente.

  R ÉSUM É FRANCAIS DE LA TH ÈSEest aussi connue sous le nom de transformation de Karhunen-Loève lorsqu'on l'applique à des données fonctionnelles. L'ACP ne repose pas sur un modèle statistique particulier mais seulement sur la matrice d'expérience. Le but est de réduire le nombre de variables tout en conservant la plupart de la variabilité des données. En termes mathématiques, le problème revient à trouver des directions orthogonales (w l ) 1≤l≤k qui maximisent Var {Xw l } Les variables latentes (Xw l ) 1≤l≤k sont appelées les composantes principales. Cette méthode a largement fait ses preuves en pratique, du notamment au fait que pour de nombreux jeux de données réelles, les toutes premières composantes suffisent à expliquer la plus grande part de la variance.Comme la variance dépend de la normalisation des données, en pratique les variables initiales sont normalisées. Par la suite, nous supposons que la matrice de covariance empirique

			w l = argmax	Var {Xw} .
			w T l	w j =δ lj
			j=1,...,l
	Σ =	1 n	X

T X est normalisée. En utilisant la SVD de X, il est alors possible de montrer

[START_REF] Jolliffe | Principal component analysis[END_REF] 

que les k premières composantes principales sont données par la projection de X respectivement sur chacun des k premiers vecteurs propres contenus dans la matrice V . En d'autres termes, S = XV k où V k désigne la restriction de V à ses k premières colonnes et se confond avec la matrice des poids W . C'est une propriété importante de l'ACP qui dit que parmi tous les sous-espaces de dimension k, celui associé aux k premiers vecteurs propres de X est celui qui minimise la déviation par rapport à X

[START_REF] Varichand Mardia | Multivariate analysis[END_REF]

. De plus, la variance totale des données expliquées par les k premières composantes principales est égale à la somme des k premières valeurs propres.

  Ce résultat a été démontré par Helland en 1990[START_REF] Inge | Partial least squares regression and statistical models[END_REF] et est le point de départ de ce travail de thèse sur la PLS. Bien qu'il s'agisse tout simplement d'un problème de moindres carrés contraints, les résultats classiques dans la littérature sur ce sujet ne peuvent pas s'appliquer, car la restriction concerne un sous-espace qui n'est pas déterministe mais aléatoire. Si la méthode PLS a fait ses preuves en pratique notamment dans des cas de données en grande dimension ou présentant de fortes collinéarités, les propriétés de l'estimateur PLS restent encore assez obscures, principalement du au fait que cet estimateur dépend de façon non linéaire de la réponse au travers d'une fonction de lien complexe et inconnue. En effet, l' Équation (2.27) décrit l'estimateur PLS comme étant la solution d'un problème d'optimisation convexe mais ne fournit pas d'expression explicite de cet estimateur.

un noeud soit directement connecté à l noeuds parmi les n possibles (où n représente le nombre total de noeuds dans le graphe). Le degré moyen d'un noeud est égal à np et lorsque le nombre total de noeuds n tend vers l'infini, la distribution des degrés du graphe de Erdos-Renyi suit une loi de Poisson de paramètre np

  nos jours, nous avons à faire face à des graphes toujours plus grands. Ces très grands graphes jouent des rôles importants dans des domaines variés [VLKS + 11]. Dans ces conditions, il est nécessaire de savoir implémenter des algorithmes puissants et efficaces, capables de mener à bien les calculs même en très grande dimension. Un des problèmes en grande dimension est la visualisation de ces grands graphes. Cependant, ce n'est pas l'objet de cette R ÉSUM É FRANCAIS DE LA TH ÈSE thèse. L'autre problématique récurrente est le coût d'estimation de ces interactions mais aussi le coût que représente la recherche de motifs et figures dans le graphe. Les méthodes classiques ne peuvent plus s'appliquer dans ce cas. En effet, la grande dimension des données fait planter les algorithmes à cause de temps de calculs trop longs. Et une recherche exhaustive n'est bien

	R ÉSUM É FRANCAIS DE LA TH ÈSE
	entrées sont dans [0, 1]. p représente la probabilité d'appartenir à une des k communautés.
	En d'autres termes, la probabilité qu'un noeud appartienne à la communauté i est donnée
	par p i . On notera τ la fonction d'appartenance aux blocs aléatoires τ : V → {1, 2, ..., k}, où
	τ (i ∈ V ) = j signifie que le sommet i est assigné à la communauté j. En d'autres termes, nous
	sûr plus envisageable. Heureusement, la plupart de ces grands graphes sont parcimonieux avons P [τ (i) = j] = p j . Les entrées de la matrice P représentent la probabilité d'avoir une
	(un gène interagit seulement avec quelques autres gènes, les amitiés développées au travers arête entre deux noeuds en fonction des communautés auxquelles ils appartiennent. Comme le
	de réseaux sociaux se limitent à un petit nombre d'individus...). Un graphe parcimonieux se graphe est non dirigé, P est symétrique. En quelques sortes, un modèle à blocs stochastiques
	caractérise généralement par un nombre d'arêtes qui vérifie O(| V |) <| E | O(| V |), alors est une sorte de graphe d'Erdos-Renyi ayant une structure de communautés.
	que la densité d'arêtes pour un graphe dense est proche de un.
	Organisation de la Partie III
	La Partie III est organisée comme suit.
	Dans le Chapitre 6, nous passons en revue les notions et outils principaux de la théorie des
	graphes. La littérature existant à ce sujet étant très vaste et très variée, nous ne détaillerons
	pas tout. Mais nous donnerons dans cette partie un aperçu des points qui seront nécessaires
	à la compréhension du chapitre qui suivra.
	Tout d'abord, dans la Section 6.1, nous introduisons les principaux objets (et les notations
	associées) qui sont caractéristiques d'un graphe. Un graphe peut être déterministe ou aléa-
	toire. Dans cette thèse, nous nous intéresserons principalement à cette dernière catégorie. Un
	graphe peut être aléatoire parce qu'il est la réalisation d'une probabilité de distribution sur un
	graphe (graphe aléatoire probabiliste) ou parce que ce graphe a été estimé de façon empirique
	à partir d'observations (graphe aléatoire statistique). Dans la Section 6.2, nous détaillons ces
	deux classes de graphes aléatoires. Deux modèles de graphes aléatoires probabilistes nous
	intéresserons plus particulièrement dans cette partie. Nous les avons détaillés dans la Sous-
	section 6.2.1. Le premier modèle (et aussi le plus simple) est le graphe d'Erdos-Renyi [ER61]
	qui relie de façon indépendante chaque paire de sommets avec une probabilité p. Les entrées
	de la matrice d'adjacence associée A sont alors indépendantes. Elles sont égales à un avec
	probabilité p et à zéro avec probabilité 1 -p. Une caractéristique importante du graphe de
	Erdos-Renyi graph est la distribution de ses degrés (P (l)) 1≤l≤n . Le coefficient P (l) représente
	la probabilité qu'P (l) = e -λ λ l l!
	où λ = np. L'avantage principal d'un graphe de Erdos-Renyi est la simplicité du modèle. Par
	ailleurs, ses propriétés statistiques et topologiques sont bien connues. Cependant, ce modèle
	de graphe aléatoire n'est pas adapté à la modélisation de réseaux que l'on peut rencontrer
	dans la vie réelle. En effet, de nombreux réseaux (réseaux de gènes, de protéines, réseaux
	sociaux, etc) n'ont pas une distribution des degrés Poissonienne, mais plutôt une distribution
	des degrés qui décroit beaucoup plus lentement pour de grandes valeurs de l de la forme
	P (l) ∼ l -α
	où α > 1. L'autre modèle de graphes aléatoires, très souvent rencontré dans la littérature,
	est celui à blocs stochastiques [HLL83]. Dans un modèle à blocs stochastiques, on considère
	k étiquettes (1, 2, ..., k) correspondant à l'appartenance à k communautés et n noeuds qui
	représentent l'ensemble des sommets V . Le graphe est paramétré par une probabilité de
	distribution p = (p 1 , ..., p k ) ∈ ]0, 1[ k , où k i=1 p i = 1, et par une matrice P ∈ M k (R), dont les

  ou que tous les pixels d'une image ne sont pas nécessaires pour les classifier. Soit β un vecteur, on note β 0 := # {j ∈ {1, ..., p} : β j = 0} le cardinal du support de β. Le besoin s'est donc fait sentir de trouver une méthode implémentable en pratique et ayant de bonnes propriétés de sélection de variables.L'idée toute simple a alors été de considérer la relaxation convexe du précédent. Il s'agit de remplacer la norme . 0 par la norme .1 où β 1 = m j=1 | β j |.Le problème est alors rendu convexe et des outils efficaces issus de la théorie de l'optimisation convexe permettent de facilement le résoudre [EHJ + 04],[FHH + 07],

	3. La question naturelle qui vient ensuite à l'esprit est quel estimateur favorisant des modèles
	parcimonieux considérer ? Une première idée pour avoir un estimateur parcimonieux serait
	de considérer la solution du problème
		min β∈R p β 0 sous la contrainte Y -Xβ 2 c
	où c ≥ 0 et où l'on rappelle que β 0 = # {j ∈ {1, ..., p} | β j = 0}. C'est à dire de pénali-
	ser la vraisemblance (qui est un bon indicateur de l'ajustement au modèle) par le nombre
	de coefficients non nuls. Cependant, c'est un problème d'optimisation non convexe dont la
	complexité fait qu'il n'est pas utilisable en pratique. C'est en effet un problème NP-complet
	[Dav94], [Nat95].	
	Définition 1.2.1.	1. Un vecteur x est dit parcimonieux s'il contient peu d'éléments non
	nuls.	

  la somme de deux fonctions strictement convexes donc est strictement convexe et admet donc un unique minimum. Comme f λ est convexe, β est solution si et seulement si la dérivée directionnelle D u f λ (β) est positive dans toutes les directions u ∈ R p . Cette condition nécessaire et suffisante s'écrit

  De nombres travaux ont été menés depuis pour essayer d'étendre le Lasso à un cadre de régression non paramétrique en grande dimension. Par exemple Huang et al. [HHW10], Meir et al. [MVdGB + 09] et Ravikumar et al.
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  where γ * := g∈H * d g and H * represents the number of relevant groups and B is a constant. The estimation and prediction errors are upper bounded by the penalty parameter times what controls the sparsity of the model. More precisely, we can notice that the bounds in Theorem 2.4.6 depends on the inverse of
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 2 1 -Convergence rate of the Group Lasso procedure applied to GLM compared to classical rates in the literature For the Lasso, we have

	Prediction

n Table

2

.2 -Convergence rate of the Lasso applied to GLM compared to classical rates in the literature From here, we include the results as published in IEEE Transaction on Information Theory

[START_REF] Blazere | Oracle inequalities for a group lasso procedure applied to generalized linear models in high dimension[END_REF]

.

  ORACLE INEQUALITIES FOR A GROUP LASSO PROCEDURE APPLIED TO GENERALIZED LINEAR MODELS Proof. Let J * = H * ∪ I and I is the set of indices corresponding to the m * largest values of d g βg n -β * g 2 in H * c . We can prove (see proof of Theorem 3.1 in [LPVDGT11] with λ g = r n d g ) that

	g∈J * c	βg n -β * g 2 2 ≤ 9	d max d min g∈J *	βg n -β * g 2 2	(2.2)
	and				
	g∈J * c				

  the number of partitions of a set with l members into k subsets. The number k l=1 S l:k := B k is called the k th Bell number and this number satisfies the relation B n+1 = n

	k=0	k n B k (see for example

Table 2 .

 2 3 -Results of the simulations for the eight models where M H L

  by adding to both sides of the inequality 2r n

	CHAPITRE 2. ORACLE INEQUALITIES FOR A GROUP LASSO PROCEDURE
					APPLIED TO GENERALIZED LINEAR MODELS
	i.e.	t	Gn g=1	d g	βg n -β * g	2	M 2
	and then the definition of t leads to						
			Gn					
		g=1					
										Gn g=1	d g β * g	2
	and by using the triangular inequality we have	
	Gn g=1	d g	βg -β * g	2	ε n 2	+ 4	Gn g=1	d g β * g	2 .
	Therefore, using (H.3), we have						
		Gn g=1	d g	βg -β * g	2	ε n 2	+ 4B =	M 2	.

  ORACLE INEQUALITIES FOR A GROUP LASSO PROCEDURE APPLIED TO GENERALIZED LINEAR MODELS Proof of Lemma 2.8.3 Proof. The proof rests on the following Lemma Lemma 2.8.4. Let R > 0 be given. Define

	Z R :=	sup
	Gn	
	g=1	
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  CHAPITRE 3. UNE M ÉTHODE DE R ÉDUCTION DE DIMENSION AUX MULTIPLES FACETTESSans perte de généralité, les données sont supposées centrées et réduites. Dans la suite, nous emploierons souvent les notations suivantes Γ

est la matrice d'expérience contenant n observations et p variables. Son rang est noté r.

3. ε = (ε 1 , ..., ε n ) T ∈ R n est

le vecteur des erreurs. 4. β * = (β * 1 , ..., β * p ) T ∈ R p est le paramètre inconnu.

  k est la matrice dont les colonnes sont constituées par les variables latentes (t k ) 1≤k≤K normalisées. Cette matrice est appelée la matrice des facteurs (ou scores en anglais) et contient les variables latentes. Q k est le vecteur ligne constitué par les (q k ) 1≤k≤K et P k ∈ CHAPITRE 3. UNE M ÉTHODE DE R ÉDUCTION DE DIMENSION AUX MULTIPLES FACETTES M p,k est la matrice qui contient les vecteurs p 1 , ..., p k en colonne. Les matrices Q k et P k sont appelées respectivement vecteur des charges (ou loading en anglais) associée à Y et matrice des charges associées à X.

  particulier, la PLS peut avoir des facteurs plus grands que un et même négatifs, augmentant ainsi les coefficients des 123 CHAPITRE 3. UNE M ÉTHODE DE R ÉDUCTION DE DIMENSION AUX MULTIPLES FACETTES moindres carrés dans certaines directions données par les vecteurs propres et les diminuant dans d'autres. Franck et al. [FF93] ont été les premiers à noter ce comportement très particulier de la PLS sur des données réelles et des simulations. Ce résultat a ensuite été prouvé par [BD00] et indépendamment la même année par [LC00] en passant les valeurs propres de Ritz, comme expliqué ci-dessus. Nous venons de voir que les facteurs filtrants n'étaient pas toujours compris entre 0 et 1. Même mieux, ils oscillent toujours autour de 1. En effet, il a été montré indépendamment par [LC00], [BD00] mais aussi par [Krä07] que [λ r , λ 1 ] pouvait être partitionné en k + 1 intervalles consécutifs non vides notés (I l ) 1≤l≤k+1 , de telle sorte que le premier facteur filtrant seuille toujours les moindres carrés et qu'ensuite les autres alternativement augmentent puis diminuent les coefficients de l'estimateur des moindres carrés. En d'autres termes, nous avons la proposition suivante. Proposition 3.3.1. Il existe une partition (I l ) 1≤l≤k+1 de [λ r , λ 1 ] telle que

  suggère d'utiliser la validation croisée pour estimer le paramètre. En pratique, c'est cette méthode qui est la plus utilisée. Il propose aussi un critère basé sur le ratio entre RSS k et P RESS k . En effet, P RESS k ≤ RSS k-1 signifierait que la qualité de prédiction et d'estimation du modèle est améliorée en considérant k variables plutôt que k -1. En d'autres termes, cela indiquerait que l'estimation de la valeur d'un individu Y i sans connaître cet individu au préalable serait meilleure que celle estimée à partir de toutes les observations à l'étape précédente. Ce critère est noté Q 2
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			FACETTES
	Tenenhaus [Ten98] considère alors qu'une nouvelle composante est significative (et donc
	conservée) si		
	Q 2 k ≥ 0.097	
	ce qui revient à demander que		
	P RESS k ≤ 0.95 RSS k-1 .
	k et vaut	
	Q 2 k = 1 -	P RESS k RSS k-1	.

  où c est le paramètre de régularisation. Cette méthode atteint rapidement ses limites lorsque l'on cherche à estimer des liens de dépendance directe entre variables. En effet, deux variables CHAPITRE 6. NOTATIONS, CONCEPTS ET OUTILS FONDAMENTAUX

	où X est la matrice des données centrées réduites, qui contient les vecteurs d'observation
	X i en ligne. Un seuillage peut ensuite être appliqué à la matrice de corrélation pour ne lier
	des sommets que si la corrélation est suffisamment importante. La matrice d'adjacence A est
	alors estimée de la façon suivante			
	Â =	1 0 sinon si	Σij ≥ c	,

  i} et représente le premier temps de retour en i. Cette distribution vérifie que, quelque soit la distribution u, uP k → La vitesse de convergence est déterminée par la seconde plus grande valeur propre de P en module. Plus celle-ci est petite, plus la convergence sera rapide.On peut ensuite définir une distance sur le graphe, appelée la commute distance [FPS05] et notée d c , de la façon suivante d c i,j = H i,j + H j,i où H i,j représente le temps moyen pour aller de i à j. Il est facile de vérifier qu'elle satisfait bien les conditions pour être une distance. L'avantage de cette distance est qu'elle tient compte de la structure globale du graphe. La commute distance diminue en effet d'autant plus que le nombre de chemins reliant deux sommets augmente et que la longueur de ces chemins diminue.

k→∞

Π.

  Ce coefficient sera noté P k ij . Se pose toujours la question du choix de k. Il faut que k soit suffisamment grand pour récupérer assez d'information sur la topologie du graphe. Mais pas trop grand non plus sinon on perd complètement cette structure. En effet, si la chaine est irréductible apériodique alors P k i. -→
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	Une autre distance, introduite par [PL05], est la suivante		
	n		
	d i,j :=		
	l=1		
	k→∞	Π. Une fois ce paramètre k bien
	calibré, on peut définir une nouvelle distance sur les sommets en comparant P k i. et P k j. , de
	façon à ce que la similarité entre les sommets i et j soit d'autant plus grande que la différence
	entre P k i. et P k j. est petite. Une distance possible est la suivante	
	d i,j := f k (P k i. , P k j. )		
	avec par exemple f x,y √ x,x √	y,y	.

k (x, y) = exp(2kx -y 1 ) -1 ou encore f k (x, y) =

  désigne la trace. Le problème ( P1 ) est un problème NP-complet. On notera que H T DH = I k . L'idée qui vient alors est de considérer la relaxation continue de ce problème d'optimisation discret. NotonsH = H ∈ M n,k : H T DH = I k . M n,k .Ce problème est un problème d'optimisation de Rayleigh. Il est facile de voir que parmi tous les optimums globaux (ils ne sont pas uniques) se trouvent les k premiers vecteurs propres de D -1/2 LD -1/2 associés aux plus petites valeurs propres. Comme H = D -1/2 H, on en déduit qu'une solution au problème (P 2 ) est donnée par les k premiers vecteurs propres de D -1 L associés aux plus petites valeurs propres. Notons u 1 , ..., u k ces vecteurs propres. Posons H
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	Notons			
		H = H : H = X(X T DX) -1/2 , X ∈ Π .
	Alors (P 1 ) est encore équivalent		
		min H∈H	T r(H T (D -A)H) , ( P1 )
	où T r On est ramené à résoudre le problème (P 2 ) suivant
		min H∈ H	T r(H T (D -A)H)	(P 2 ),
	où D -A := L désigne le Laplacien du graphe. Il s'agit donc de minimiser
			T r( HT D -1/2 LD -1/2 H)
	sous la contrainte		
				HT H = I
	avec H ∈			
	où, le problème de minimisation suivant
				min C∈Π	{N c(C)} (P 0 )
	équivaut	à		
		min X∈Π	k i=1	X T i DX i -X T i AX i X T i DX i	(P 1 ).

* = [u 1 , ..., u k ]

   (probabilité identique CHAPITRE 6. NOTATIONS, CONCEPTS ET OUTILS FONDAMENTAUX de mettre une arête entre deux sommets pour toutes les paires de sommets) que nous avions évoqué dans la Sous-section 6.2.1. La probabilité p ij d'avoir une arête entre le sommet i et celui j vaut dans ce cas Mais on peut aussi penser que le modèle nul d'un graphe est un graphe aléatoire qui partage certaines caractéristiques avec le graphe initial. Ainsi, l'autre choix de graphes aléatoires le plus utilisé est celui de Chung et Lu[START_REF] Chung | Connected components in random graphs with given expected degree sequences[END_REF] pour lequel l'espérance du degré d'un sommet correspond au degré du sommet dans le graphe initial considéré. Le modèle nul est alors un graphe complet pour lequel on a enlevé des arêtes aléatoirement avec la contrainte que le degré de chaque sommet égale celui du graphe originel. Dans ce cas la probabilité d'avoir une arête entre le sommet i et celui j vaut 'idée clé derrière la notion de modularité est la suivante. Un sous-graphe est une communauté si le nombre d'arêtes internes du sous-graphe dépasse l'espérance du nombre d'arêtes internes du modèle nul (moyenne sur toutes les réalisations possibles du modèle nul).Supposons maintenant que le graphe G = (V, E), de matrice d'adjacenceA avec | E |= m, ait été divisé en k clusters notés C 1 , ..., C K . On définit alors la modularité de G de la façon suivante A ij -P ij ] δ C i ,C j où P ij est l'espérance du nombre d'arêtes entre les sommets i et j dans le modèle nul. Lorsqu'on considère comme modèle nul celui qui respecte le degré des arêtes, on a P ij = 2mp i p j où p i := d i 2m . et donc Cr est le nombre total d'arêtes joignant les sommets de C r et d Cr est le nombre d'arêtes partant des sommets de C r . En conclusion Nous allons voir que la modularité maximale est liée à la minimisation du nombre d'arêtes que l'on est amené à couper pour créer les communautés [DO13]. En effet
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											P i,j :=	2m p 2 .
											P ij=	d i d j 2m	.
						Q :=	1 m	p i,j=1
					Q =	1 m	p i,j=1	A i,j -	d i d j 2m	δ(C i , C j )
	ou encore								
							Q =	k r=1	l Cr m	-	d Cr 2m
							Q =	k r=1	d int Cr 2m	-	2m d Cr	2
	où										
	•	d int Cr 2m est la proportion d'arêtes à l'intérieur du module,
	•	d Cr 2m	2	est la proportion attendue d'arêtes dans la classe C r .
		On notera par la suite E(l Cr ) :=		d Cr 2m	2	. Le but est de maximiser cette modularité sur
	l'ensemble des partitions possibles. On définit la modularité maximale sur l'ensemble des
	partitions possibles P par							
				Q max = max P	k r=1	l Cr m	-		d Cr 2m	2	=	1 m	max P	k r=1	[l Cr -E(l Cr )]

L[2 où l

  r < l} est le nombre d'arêtes inter-classes de la partition P.Ceci montre que le problème d'optimisation de la modularité revient à trouver une partition qui minimise le nombre d'arêtes enlevées entre les clusters modulo une repondération des poids. En effet, définissons un nouveau graphe ayant les mêmes arêtes que G mais des poids que l'on a repondéré en fonction de la probabilité d'avoir une arête dans le cas d'un graphe aléatoire. En d'autres termes, considérons le graphe

Table 7
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	.1 -Eigenelements of Laplacian-type matrices

  Define S n := n i=1 X i and µ := ES n . Then for all t > 0,P [S n ≥ (1 + t)µ] ≤ exp {-µ ((1 + t) ln(1 + t) -t)} .

	For any t ∈ [0, 1] ,		
	P [S n ≥ (1 + t)µ] ≤ exp -	µt 2 3	.
	For any t ≥ 1,		
	P [S n ≥ (1 + t)µ] ≤ exp -	µt 3	.

Proposition A.1.4. Chernoff bound Let X 1 , ..., X n be independent and bounded variables, such that ∀i ∈ [1, n] , ≤ X i ≤ 1 p.s. II ANNEXE A. APPENDIX OF PART I

  exp -.1.4 McDiarmid InequalityLemma A.1.8. Let V and Z be two random variables such that E [V | Z] = 0 p.s. If there exists a measurable function and a constant c > 0 such that p.s h(Z) ≤ V ≤ h(Z) + c, then∀s > 0, E e sV | Z ≤ exp s 2 c 2 8 p.s. Proposition A.1.9. McDiarmid inequality Let A a set. Assume g : A N → R is a function that satisfies the bounded difference inequality ∀i ∈ [1, n] , ∃ c i > 0, sup x i ,x i ∈A |g(x 1 , ..., x n ) -g(x 1 , ..., x i-1 , x i , x i+1 , ..., x n )| c i .Let X 1 , .., X n be independent random variables all taking values in the set A. Then for all t > 0,P {g(X 1 , ..., X n ) -Eg(X1, ..., X n ) t} exp -2t 2 /Proposition A.1.11. Let X be a multivariate Gaussian variable in R n with zero mean and variance equals to one. Let f : R n → R be a Lipschitz function of constant 1. Then, for any t > 0 we haveP {| f (X) -Ef (X) |≥ t} ≤ 2e -ct 2

		n
		c 2 i .
		i=1
	Then we have	
	E max	
	t 2 n + Lt) 2(σ 2	,
	where σ 2 n = n i=1 σ 2 i .	

A

A.1.5 A bound for maximal deviation

Proposition A.1.10. Let σ > 0, n ≥ 2 and X 1 , ..., X n be real random variables that satisfies

∀s > 0, ∀i ∈ [1, n] , E e sX i ≤ exp s 2 σ 2 2 . 1≤i≤n X i ≤ σ 2 log n.

If, in addition,

∀s > 0, ∀i ∈ [1, n] , E e -sX i ≤ exp s 2 σ 2 2 , then E max 1≤i≤n | X i | ≤ σ 2 log 2n.

A.1.6 Concentration for Lipschitz function

Un vecteur est dit s-parcimonieux s'il contient au plus s éléments non nuls.

où G k représente les indices du groupe k, Ŷ -k i (λ) = X β-k (λ) i et β-k (λ)représente le paramètre estimé sans tenir compte du groupe k pour la valeur λ considérée. Le paramètre final sélectionné est alors celui qui minimise cette erreur de prédiction. Des mesures de perte autres que l'erreur de prédiction peuvent aussi être utilisées.
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Deuxième partie

A new approach to Partial Least Squares PROPERTIES

The results presented in this chapter are extracted from a paper that has been accepted and is soon-to-be-published in a volume entitled The multiple facets of the Partial Least Squares methods by Springer-Verlag. This is not the exact transcription of this paper. Some parts have been removed to avoid redundancies, in particular the ones that were recalls of the framework and the results previously stated in Chapter 4. The framework is the same as the one presented in Chapter 4.

Abstract

In the previous paper we have proposed a new approach to study the properties of the Partial Least Squares (PLS) estimator. This approach relies on the link between PLS and discrete orthogonal polynomials. We have seen that many important PLS objects can be expressed in terms of some specific discrete orthogonal polynomials, called the residual polynomials. Based on the explicit analytical expression we have stated for these polynomials in terms of signal and noise, we now show that this new approach allows to simplify and retrieve independent proofs of many classical results (proved earlier by different authors using various approaches and tools) and thus provides a unified framework for the study of the main PLS properties.

Troisième partie

Community detection in graphs Overall framework

Part III is organized as follows. In Chapter 6, we review some of the main notions and tools that appear in graph theory. Because the literature on graphs is various and wide, we cannot detail everything. But, we give in this part a brief overview of the main methods useful to understand the next chapter. suite. L'Algorithme 1 ci-dessous détaille la procédure k-means. Dans [YVW + 05], les auteurs appliquent l'algorithme k-means avec la commute distance pour partitionner le graphe.

Le critère d'arrêt consiste souvent à stopper l'algorithme une fois que les étiquettes correspondant à l'appartenance des sommets à chaque classe ne changent plus ou très peu. La variance intra-cluster diminue à chaque étape, ce qui assure la convergence de l'algorithme. Cependant il a souvent tendance à se terminer au niveau d'un minimum local. Même si cet algorithme s'avère efficace en pratique, il se pose toujours le problème du choix des centres qui initialisent le partitionnement. Ce choix s'avère crucial quant au fait de ne pas tomber sur un minimum local mais aussi quant à la rapidité de convergence de l'algorithme, surtout lorsque l'on a beaucoup de données.

Clustering hiérarchique

L'idée du clustering hiérarchique est de construire un arbre inversé en regroupant progressivement les points les plus proches au sens de la distance de similarité d considérée. Cette méthode hiérarchique donne alors lieu à une famille de partitions contenant de moins en moins de classes au fur et à mesure que l'on descend dans l'arbre. Ces partitions vont de la plus élémentaire, qui est celle où chaque groupe est réduit à un singleton, jusqu'à la plus grossière, qui est celle où tous les points sont mis dans la même classe. Les étapes de partitionnement sont alors représentées à l'aide d'un dendogramme. En bas du dendogramme tous les sommets sont associés à la même classe puis les classes sont successivement agrégés. L'avantage de cette méthode est qu'elle ne nécessite pas une connaissance a priori du nombre de classe et de leur taille. Ce choix se fait par la profondeur de l'arbre à laquelle on décide de s'arrêter. Cependant, ces méthodes ne fournissent pas non plus de moyen de discriminer les graphes et sont heuristiques. Pour plus de détails à ce sujet, nous invitons le lecteur à consulter l'article suivant [START_REF] Scott | Social network analysis[END_REF].

Partitionnement à partir de la commute distance

A partir de la matrice d'adjacence A d'un graphe G = (V, E), on peut définir une marche aléatoire sur V notée (X n ) n≥0 dont les sauts correspondent aux arêtes E et dont la matrice de transition P = (P i,j ) (i,j)∈V 2 est donnée par

reviewing the k possible choices and choosing the one for which the objective function is minimal. This requires k! more step but if k is small this is not very time-consuming.

Frobenius norm of the perturbation

To sum up, finding communities in the ideal case turns out to be equivalent to solve

After perturbation, the community indicators are estimated by solving

The objective function still remains the same. Only the constraints space has been perturbed. Let E = A-Â be the perturbation applied to the initial adjacency matrix. A natural question is under which conditions on E (and thus on the parameter p of the Bernoulli matrix that represents the noise) can we expect that the solution of Problem ( P) remains closed to the one of Problem (P) and what is the rate of convergence ?. A noise perturbation on A implies a perturbation on U and thereby on W and w (since all these objects depend on the eigenvalues of U ). If a small level of noise on A leads to a small perturbation of the eigenvectors of the associated normalized adjacency matrix then there is a hope to recover the community structure. So the main issue is what is the stability of the eigenvectors to matrix perturbations ? Matrix perturbation theory [START_REF] Stewart | Matrix perturbation theory[END_REF] indicates that it essentially depends on the Frobenius norm of E and on the eigengap. This is the Davis-Kahan theorem stated below.

Theorem 7.6.1. [SSJ90] Let A, E ∈ M n (R) be symmetric matrices and let . F be the Frobenius norm. Consider à := A + E as a perturbed version of A. Let S 1 ⊂ R. be an interval. Denote by σ S 1 (A) the set of eigenvalues of A which are contained in S 1 , and by V 1 the eigenspace corresponding to all those eigenvalues. Denote by σ S 1 ( Ã) and by Ṽ1 the analogous quantities for Ã. Define the distance between S 1 and the spectrum of A outside of

Here after, we assume without loss of generality that each node in the observed graph has a degree larger than one.

Expression of the error term

We recall that A ii = 0 and A ij , i = j is defined by

Therefore, the degree matrix of A is given by

Conclusion and perspectives

CONCLUSION AND PERSPECTIVES

the sense that it is essentially based on the computation of the singular value decomposition of the adjacency matrix. The main advantages of this method is that the objective function is clear and simple. Another advantage is that the associated algorithm is fast and easy to implement, even for very large graphs. We have investigated some of the properties of the noise matrix. Numerical simulations have been carried out that testify of the good performances of the method on random graph under a low level of noise. Researches on this topic and improvements still have to be conducted both for theoretical and practical perspectives. For theoretical ones, statistical guarantees should be established to assess of the reliability of the method we have suggested. For practical ones, it would be interesting to see if we could make use of the behaviour of the objective function on the data to develop a method datadriven in the choice of the number of communities or in the representatives of the groups.

Graph community detection gains more and more attention every day. It is a very interesting field of research, with still many open questions, that involves at the same time probabilistic, statistical, combinatorial and computational issues.

Annexe B

Appendix of Part II B.1 Krylov subspaces

In this section we recall important results on Krylov subspace. These results are taken from [START_REF] Saad | Numerical methods for large eigenvalue problems[END_REF].

When there is no possible confusion we just write K k .

Proposition B.1.1. The Krylov subspace K k (A, b) is the subspace of all vectors in R n that can be written as x = P (A)b, where P is a polynomial fo degree not exceeding k -1.

Let us now details some of the properties of the Krylov subspaces. We first give some insight into the dimension of Krylov subspaces.

Definition Let µ be the degree of the nonzero monic polynomial P of lowest degree that satisfies P (A)b = 0. The degree of the minimal polynomial of b with respect to A is often referred to as the grade of b with respect to A.

We can notice that the grade does not exceed the rank of A.

Proposition B.1.2. Dimension of the Krylov subspace Let µ be the grade of b associated to A. We have 1. K µ is invariant under A and

Propositions below provide a few other properties satisfied by Krylov subspaces, whatever is its dimension.

and for any polynomial of degree less than k

Clustering data

When clustering data, we aim at finding natural grouping among objects. Clustering essentially means to organize data into classes such that there is high intra-class similarity and low inter-class similarity. The notion of similarity depends on a distance that must be determined. The distance reflects the degree of closeness or separation of the target objects ans should correspond to the characteristics that are believed to distinguish the clusters embedded in the data. The choice of this distance mainly depends on the data and on the task of the clustering. k-means is one of the most commonly used clustering algorithms to cluster a set of data points. There is no exact definition for a cluster. But a cluster often refer to a subset of the set of data points that are close together with respected to a given distance measure that quantifies similarity between points. In practice, we aim at clustering points to organize data into groups that share similar behaviour. Clustering algorithms are used in biology (to classify genes, cells, plants), in marketing (to find groups of customers that shares the same preferences, eat the same food,..).

C.1.2 The k-means algorithm

Let X be the data set of n points in a space of dimension p. The observations are denoted by x 1 , ..., x n . Let d be a distance on these points in the space of dimension p. Define k (k ≤ n) as the number of clusters. The k-means method aims to partition the n observations into k clusters denoted by C = {C 1 , ..., C k }, so as to minimize the within-cluster distance squares all over the possible partitions

To achieve the minimum of the quantity above, the most common algorithm uses an iterative refinement technique based on two steps. This is the k-means algorithm [START_REF] Vassilvitskii | K-Means : algorithms, analyses, experiments[END_REF], [START_REF] Wu | Advances in K-means clustering : a data mining thinking[END_REF]. Algorithm 9 describes the steps of the k-means algorithm.

The stopping criteria often consists in stopping the algorithm when the assignments no longer change. This algorithm is relatively efficient but it often terminates at a local optimum. The global optimum may be found using techniques such as deterministic annealing and genetic algorithms. Another drawback is that the number of clusters need to be specify in advance and that the algorithm does not allow to handle too noisy data and outliers. In addition the choice of the initial centroids is a real issue.

Algorithm 9 k-means

Repeat until convergence criteria is met

Step 1 : Assignment step. At step t, assign each data point to the cluster which has the closest centroid. In other words, assign each observation x i to cluster

Step 2. Update centroids. Calculate for all cluster C 

OUTPUT : Partitions of the nodes in k classes.

C.2 An overview of the literature on graphs

Because the literature on graph is reach and various, we classify in this appendix some of the main papers on this topic.

C.2.1 Generality on graphs

We first detail below some references for a full overview on the literature on graphs. [START_REF] Fortunato | Community detection in graphs[END_REF] Fortunato, 2010 A very complete overview of community detection and graph clustering (elements of community detection, hierarchical clustering, spectral clustering, modularity based methods, statistical inference....). [START_REF] Satu | Graph clustering[END_REF] Schaeffer, 2007 In this survey, the author overviews the definitions and methods for graph clustering. This paper reviews the different measures that exist to quantify the quality of a partition and presents global algorithms for graph clustering. [START_REF] Mark Ej Newman | The structure and function of complex networks[END_REF] Newman, 2003 Review of developments in networks such as degree distributions, clustering, network correlations, random graphs models... [START_REF] Steffen L Lauritzen | Graphical models[END_REF] Lauritzen, 1996 This book attempts to give an introduction to graphical modelling using R and explains the main features of some R packages.

C.2.2 Probabilistic random graphs

Here are some references about classical probabilistic random graphs encountered in the literature. 
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C.2.3 Stochastic block models

We recall that in a random graph generated from a stochastic block model, the probability of a relationship between two nodes depends only on the block memberships of the two nodes. If the probability of an edge between nodes in the same block is larger than the one between nodes in different blocks, then the model produces communities in the generated random networks.

[ Snijders, [START_REF] Tom | Estimation and prediction for stochastic blockmodels for graphs with latent block structure[END_REF] The authors proved consistency results in clustering based on the degree distribution for the stochastic block model. The asymptotic is in the number of nodes but the number of blocks is fixed.

C.2.4 Covariance and precision matrix estimation

In a Gaussian setting, model selection and graphical models involve finding the pattern of zeros in the inverse covariance matrix since these zeros correspond to conditional independencies among the variables.

[LW12] Loh, Wainwright, 2012 This work extends results that have previously been established only for Gaussian graphical models and answer some questions about the significance of the inverse covariance matrix in a non Gaussian setting. [RWRY11b] Ravikumar et al., 2011 This work shows that l 1 -regularized MLE method to estimate the covariance matrix and its inverse is equivalent to minimize an l 1 -penalized log-determinant Bregman divergence. The authors use this link to analyse the performances of this estimator in high dimension. They prove some consistency results.

[WFS11] Witten et al., 2011

The authors present a simple necessary and sufficient condition that can be used to identify the connected components in the graphical Lasso solution. This condition can also be used to determine whether the estimated inverse covariance matrix will be block diagonal and, if so, to identify the blocks. The authors study in details the neighbourhood approach. This approach consists in estimating the graphical model by finding the set of neighbours of each node in the graph. This goal is achieved by regressing each of the variables against the remaining ones. They show that the proposed neighbourhood selection scheme is consistent for sparse high-dimensional graphs, under some assumptions.
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C.2.6 Partitioning of graphs

There are mainly two approaches to cluster a graph. One is based on hierarchical clustering (divisive when the data is recursively partitioned into two parts or agglomerative when the data are successively joined in an agglomerative manner) and the other is based on a direct partitioning into k clusters by optimizing some quality function/energy (the parameter k is either an input parameter of the algo or is given by the clustering procedure). 

Graph bi-partitioning

C.2.7 Modularity

The modularity for a partition of a network is defined as the sum over all communities of the difference between the fraction of edges inside and the expected fraction of edges, if they are placed at random keeping the same degree distribution. High values of modularity correspond to a clear partition of a network.

Introduction to modularity and known results

[For10]

Fortunato, 2010

The author highlight examples of practical successes of modularity to detect communities in networks.

[BC09]

Bickel, Chen, 2009 The authors consider a non parametric statistical framework to analyse modularity and parametric statistical models. They define a statistically motivated alternative to modularity called Likelihood modularity. This estimator is an asymptotically consistent estimator of block partitions (asymptotic in the number of nodes but number of blocks fixed) under some conditions on the parameters of the block model and the average degree of the graph. [START_REF] Noack | Modularity clustering is force-directed layout[END_REF] Noack, 2009 Link between modularity and visualization of graph by force models. [BDG + 08] Brandes,

Knowledge, 2008

Maximization of the modularity is NP-hard.

[FB07]

Fortunato, [START_REF] Fortunato | Resolution limit in community detection[END_REF] The authors highlight some limits of modularity that fails to identify modules smaller than a scale, depending on the total size of the network and on the interconnectedness of the modules. [RB07] [START_REF] Reichardt | Partitioning and modularity of graphs with arbitrary degree distribution[END_REF] To escape the deception of randomness (random graph with high modularity), a solution consists in comparing the modularity obtained by clustering the empirical data to an expectation value of the modularity for an appropriate random null model.
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[RB07] Reichardt, Bornholdt, 2006 The authors show that the problem of maximizing the modularity is equivalent to find the ground state of a spin glass. They propose a simple divisive and agglomerative approach to modularity maximization. [START_REF] Noack | Energy models for graph clustering[END_REF] Noack, 2007 Review of methods based on the optimization of an energy. [START_REF] Guimera | Functional cartography of complex metabolic networks[END_REF] Guimera, Amaral, 2005 Application of the modularity to metabolic networks. The authors propose a method that enables to extract and display information contained in complex metabolic networks. They demonstrate that functional modules can be found in complex networks and they classify nodes into universal roles according to their pattern of intra and inter-module connections. [START_REF] Mark | Finding and evaluating community structure in networks[END_REF] Newman, [START_REF] Mark | Finding and evaluating community structure in networks[END_REF] The authors develop an algorithm that maximizes the Newman-Girvan modularity. This is a divisive algorithm based on betweeness of edges. The modularity is then used to choose the number of communities into which the network shoud be divided. This algorithm has been successfully applied to a large variety of networks but it makes heavy demands on computational resources

Exact algorithms

The exact algo are rare. They can only solve the partition problem in a reasonable time only if there is at most less than a hundred vertices. 

Heuristic algorithms

The maximization of the modularity is NP-hard. Hopefully, there exists many algorithms based on heuristics that can solve the problem with thousand vertices but they do not have a guarantee of optimality. The author use hierarchical modularity to discover the modula organization of complex networks. Once a maximally modular partition of the network has been identified they assigned topological roles to each node based on its density of intra-inter modular connections. To compare the different modularity partitions obtained at different hierarchical levels, they use the normalized mutual information. [START_REF] Langfelder | Wgcna : an r package for weighted correlation network analysis[END_REF] Langfelder, Horvath, 2008 WGCNA : an R package for weighted correlation network analysis. [START_REF] Li | Network neighborhood analysis with the multi-node topological overlap measure[END_REF] Li, Horvath, 2007 Network neighborhood analysis in biology with the multi-node topological overlap measure. [START_REF] Andy | Gene network interconnectedness and the generalized topological overlap measure[END_REF] Yip, Horvath, 2007 Gene network interconnectedness and the generalized topological overlap measure in biology. [START_REF] Guimera | Functional cartography of complex metabolic networks[END_REF] Guimera, Amaral, 2005 Application of the modularity to metabolic networks. The authors propose a method that enables to extract and display information contained in complex metabolic networks. They demonstrate that functional modules can be found in complex networks and they classify nodes into universal roles according to their pattern of intra and inter-module connections.