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Abstract

As with many materials, the processes of strain localisation are key to the deformation be-
haviour of rocks and soils, because, for example, localised deformation is often pre-cursor
to material failure. Therefore the understanding of the processes leading to localised defor-
mation, and thus to failure, in geomaterials is critical to the success of many geotechnical
engineering projects.

This work is focused on the analysis of localised deformation in hard soils, soft rocks and,
more generally, cemented granular materials. For such materials localized deformation,
in the form of localized strain, i.e., shear and compaction bands, is often associated with
damage, i.e., inter and intra-granular fractures and cracks, de-bonding and breakage of
particles (grain crushing). Furthermore, macrofractures are commonly surrounded by
meso and micro cracks and a process zone of microfracturing precedes their propaga-
tion. To study localised phenomena such as strain and damage localisation, some kind
of non-destructive, full-field measurement has to be used. Well-known techniques in ge-
omechanics include X-ray tomography, to study material structure, and Digital Image
Correlation (DIC) of 2D or 3D (volume) images, to study material kinematics and strain
fields. DIC has proven to be a very powerful tool in the study of heterogeneous phe-
nomena, but provides only data on kinematics and strain and not on associated property
changes (e.g., elastic properties). In this thesis another tool, ultrasonic tomography, is
suggested as a full-field measurement of the elastic property variations in test specimens
through mapping of ultrasonic wave propagation velocities. Ultrasonic tomography, as
complementary technique to DIC and other full-filed measures, can thus provide new
insight into the deformation processes.

In rock and soil mechanics, acoustic and ultrasonic methods have long been used to mea-
sure the elastic properties of test materials, including during mechanical testing. However,
such measures have generally been limited to only a few measurement paths (usually just
one) for a whole sample, thus restricting the study of heterogeneity. Ultrasonic tomogra-
phy can overcome this limitation to provide a full-field measure. The main contributions
of this work are the development of ultrasonic tomography analysis for laboratory ge-
omechanics (both in terms of the experimental method and subsequent data analysis)
and its application to analyse material deformation and, in particular, material evolution
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during loading (time-lapse ultrasonic tomography). A key contribution is the implemen-
tation of the Double Beam Forming technique, for the particular case of laboratory test
on geomaterials, to provide improved quality data and thus extraction of more precise
information. The developed ultrasonic tomography approach has been applied to investi-
gate geomaterial behaviour in laboratory tests. In this context, experimental campaigns
have been carried out on different materials, where the ultrasonic tomography has been
complemented by comparisons with displacement and strain fields from 2D and 3D DIC
plus structural analysis by X-ray tomography. A comparison between DIC and ultrasonic
tomography results reveals that the latter shows important changes inside the sample
in a stage of loading where the DIC may not. As ultrasonic tomography is sensitive to
damage, it can be concluded that the degree of deformation needed to cause detectable
damage is below the resolution of the DIC. Moreover, the ultrasonic tomography seems to
be able to detect the damaged zone surrounding fracture tips and thus can indicate where
the fractures will propagate. However, when deformation becomes too high or fractures
propagate, ultrasonic signals cannot be acquired, so ultrasonic tomography is not possi-
ble; in such situations DIC can still provide important information on the deformation
mechanisms. The different full-field techniques employed in this work have thus been
found to provide different and complementary information. Furthermore, it is shown that
better understanding of the mechanical behaviour of geomaterials can be gained through
the combination of more than one technique.
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Introduction

The study of strain localisation is important for the better understanding of the mechani-
cal behaviour of geomaterials. In fact, many examples of localised deformation phenomena
can be found in nature; Figure 1 shows some of the more spectacular ones. Deformations
can take place over a large time, for instance in tectonic processes (Figure 1 (a)), or very
quickly, as can occur in seismic events (Figures 1 (b) and (c) which refer to the same
earthquake). In the first two images the localisation of deformation is characterised by
continuous displacements whereas in the third picture the displacements show a strong
discontinuity i.e., a fracture. Moreover, several experimental results for geomaterials (e.g.,
Desrues and Viggiani, 2004) have shown that strain localisation occurs more as a rule than
as the exception. In particular at the laboratory scale it has been demonstrated that the
confining pressure influences the strain localisation in many of its aspects, e.g., inclina-
tion, thickness and number of localisation bands formed (Figure 2 (a)). Furthermore, the
micro-mechanisms involved in the deformation (e.g., grain rearrangement, grain crushing,
cement breakage) depend on the confining pressure. For example, strain localisation in
porous sandstones can involve dilatant shear bands, at low confining pressures, and a
transition to compactant shear bands and compaction bands with increasing mean stress
(Figure 2 (b)).

In this work the analysis is focused on hard soils, soft rocks and, more generally, cemented
granular materials. Examples of natural geotechnical materials included in this group are
pyroclastic weak rocks, carbonate sands, calcarenites and compacted decomposed granite.
In this case localised deformation is often associated with fracturing at different scales.
Macrofractures are commonly surrounded by meso and micro cracks and their propagation

)

Figure 1: Fold in California’s Borrego desert (a); images of Izmit earthquake consequences (b)
and (c)
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Figure 2: Bésuelle et al. (2000)

is preceded by a process zone (see Figure 3). The microfracturing that characterises such
process zones can be interpreted as damage, since it alters the mechanical properties of
the material. Strain localisation in rocks, in the form of shear or compaction bands,
are also associated with small-scale fracturing such that they are also localised damage
zones. In this context damage can include de-bonding and breakage of particles (grain
crushing). The classical method to analyse microfracturing is the use of thin sections.
This technique, however, implies the destruction of the sample and it can not be used to
follow the evolution of the deformation. Therefore some kind of full field non destructive
measurement has to be introduced (see Viggiani and Hall, 2008; Viggiani et al., 2012).

width of process| branching crack
zone| macrocrack/
fracture
T mesocrack
microcrack
traction free pIOCESS
1utial fracture newly created fracture zone

Figure 3: Fracture with surrounding fracture process zone (FPZ). The process zone consists of
micro- and mesocracks (Backers, 2005).

A first tentative to use full-field measurements in experimental geomechanics was carried
out in the early 1960s in Cambridge, when x-ray radiography was employed to analyse
plane-strain compression sandbox tests. The original idea was to follow the positions of
lead markers, and to use the measured displacements to compute strain fields. However
the radiography also revealed the presence of localised features characterized by a lower
density (Roscoe, 1970; Roscoe et al., 1963). This provided new evidence that strain
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localisation in soils is associated with dilation.

Another example of the early use of full-field measurements in geomechanics was False
Relief Stereophotogrammetry (FRS) introduced by Butterfield et al. (1970) and then
extensively employed and developed in the 1980s in Grenoble (Desrues, 1984; Desrues and
Duthilleul, 1984; Desrues and Viggiani, 2004). The method involves comparing a couple of
photos of the surface of a sample taken at different loading steps. The stereoscopic effect
allows the deformation that occurred in the timelapse between the acquisition of the two
photos to be directly perceived as a fictitious relief when viewed in a stereocomparator.
With FRS the planar deformation of a sample during a plane strain compression test can
thus be followed to provide essential information for localisation studies.

With the constant progress of technology the two techniques briefly described above
evolved to provide greater and richer information. X-ray radiographies are now processed
to image the complete 3D volume of a sample through a tomographic reconstruction
(Baruchel et al., 2000; Desrues et al., 2006; Ketcham and Carlson, 2001; Mees et al.,
2003; Otani and Obara, 2004; Slaney and Kak, 1988). Furthermore, samples can be pho-
tographed by digital cameras and FRS has been replaced by Digital Image Correlation
(DIC). DIC provides the displacement field, and thus strain field, between two digital
images that can be 2D, with photos, or 3D, with X-ray tomography (e.g., Hall, 2012;
Hall et al., 2010b).

In this thesis another tool, ultrasonic tomography, is suggested for full-field measurement
of the ultrasonic velocities, and thus elastic properties of test specimens. Ultrasonic
tomography is based on elastic wave propagation theory. In the context of geomaterials
the term “elastic” is used in the sense that waves propagate without causing permanent
deformation because of their small amplitude. Elastic wave propagation is governed by
velocity and attenuation in the medium and also by the frequency of the propagating
wave. Furthermore the velocity is linked to the elastic properties of the material through
which the wave propagates. In rock and soil mechanics, acoustic and ultrasonic methods
have long been used to measure the elastic properties of test materials, including during
mechanical testing. However, such measures have generally been limited to only a few
(usually one) measurement for a whole sample, thus restricting the understanding of
any heterogeneities. Ultrasonic tomography is based on multiple measurements across
a test sample, which are mathematically reconstructed to provide the potential to map
heterogeneous elastic properties inside the sample. Furthermore, whilst DIC has proven to
be a very powerful tool in the study of heterogeneous phenomena, it can only provide data
on kinematics and strain and not on associated property changes (e.g., elastic properties),
which are to be expected in the materials of interest here, e.g., due to compaction and
related porosity reduction or grain crushing. Therefore, the use of ultrasonic tomography
as complementary technique can provide new insight into the deformation processes.

The first aim of this work is to develop experimental techniques that are adapted to the
study of the localised deformation mechanisms of cemented granular materials. The sec-
ond objective is to investigate experimentally, using such tools, the deformation behaviour
of these materials through the study of an artificial rock that may be considered as an
analogue to real materials of this class. To obtain a rock-like material grains of Light
Expanded Clay Aggregates (LECA), which are crushable particles, have been cemented
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Introduction

in the laboratory. The use of an artificial material allows the control of the cementation
level as well as the porosity of the samples. Moreover and most importantly, the obtained
cemented soil is much less resistant than the natural rocks and can, therefore, be tested in
standard geotechnical apparatus normally used for soils. Such apparatus are, in general,
more flexible than those specifically designed to test rocks and they allow the integration
of the special equipment used in this work. The purpose of the study was to develop
experimental methods that, together with others techniques, could help to identify and
investigate the different deformation processes described above.

A significant part of this work has been to develop the ultrasonic tomography technique
as a full field measurement approach in experimental geomaterials and to provide results
from its application to an extensive experimental campaign. Therefore the thesis has been
divided into two main parts. The first part describes the work on the development of
the method and to implement the various aspects in the best and most complete manner.
Moreover, a numerical study on synthetic data, useful to asses the best procedure for the
different situations, is presented. In the second part the applications of the ultrasonic
tomography to real experiments are shown and compared to the results obtained using
other full field measurement techniques. Results are presented for tests performed on
different materials and under different conditions, including during loading, to analyse the
ultrasonic tomography response in different contexts and to characterise the deformation
behaviour of the materials.



Part 1

Development of Ultrasonic
Tomography Technique for
Geomechanical Studies






Chapter 1

General context

1.1 Introduction

The aim of ultrasonic velocity tomography is to determine the wave propagation velocity
field inside an object. Since the local wave speed is linked to the elastic properties of the
material its variations can reveal heterogeneities and discontinuities in the elastic property
field of the studied object, which could be due to, for example, depositional variations
or damage. If the ultrasonic measurements are made in a time lapse sense with respect
to some process, e.g., deformation, then changes in the elastic property field can also be
determined.

Under the hypothesis of a linear elastic continuum the wave propagation equation can be
written as

826VO1 A + 2# 2
- \/ vols 1.1
ot? P “vol (1L.1)

which represents a pure pressure wave that propagates with a velocity v, = /M /p, where
p is the density, A and p are the Lamé’s constants and M = X\ + 2u is the oedometric
modulus. The same kind of equation can be written for shear waves as

PV u .,
-2, 1.2
ot? P (1.2)

where €2; is the rotation around the axis i, due to the distortion €;;, and the associated
velocity propagation is vy = \/g, with G = p being the shear modulus. Therefore, in
elastic material, the wave propagation velocity is directly proportional to the square root
of material stiffness and inversely proportional to the square root of density.

In a granular material the hypothesis of a continuum can be considered satisfied if the
length of the propagating wave is significantly larger than the mean grain size. Ultra-
sound waves are characterized by frequencies higher then 20 kHz (the maximum audible
frequency), and the range of frequencies used in this work are 400-1000 kHz. Considering
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CHAPTER 1. GENERAL CONTEXT

that the propagation velocities in the materials studied in this work are around 2000 m/s,
the wavelength, calculated as the ratio between the velocity and the frequency, is in the
range of 2-5 mm, which is considerably larger then the 300 pm mean diameter of grains of
the materials. The hypothesis of linear elasticity is guaranteed when the wave amplitude
is small enough to avoid permanent deformation or viscous effects; this is assumed to be
the case for tests presented herein.

In this work only pressure waves (P-waves) are considered. This is more common in
rock mechanics than in soil mechanics, where shear waves have been largely used, for
instance using bender elements to determine the shear modulus (Lee and Santamarina,
2005; Viggiani and Atkinson, 1995a;b).

The acquisition set-up for ultrasonic tomography used in this work (described in the
following chapter) involves an array of “source” transducers that send ultrasonic waves
into the sample and the transmitted signals are received at several points by “receiver”
transducers. This geometry is very similar to that used in seismic cross-well transmission
tomography, which is a commonly used geophysical technique in resource exploration and
production (e.g., the oil and gas industry). The originalities of this study is the use of
multi-element transducer arrays (the “barrettes”) that provide a huge quantity of data
permitting a great spatial resolution, the application at the laboratory scale to study
localised deformation and the use of timelapse monitoring with a good time resolution of
evolving deformation process. The full description of the ultrasonic technique is presented
in the next chapter and some examples of related application in geophysics, laboratory
geomechanics and oceanography are described below.

1.2 Seismic tomography

Acoustic waves are extensively used to image the Earth’s sub-surface, in this case the
source signals are often natural seismic waves (i.e., from earthquakes); for an overview
of this techniques see Iyer and Hirahara (1993). Other examples at engineering scale,
which is a large scale, compared to the current application, although smaller than the
geological one, are borehole and cross-hole seismic tomographies. The two techniques
differ for the used geometry, and in particular for the source positions. In borehole
tomography a mechanical wave is produced at the surface while receiver transducers are
placed throughout one or more boreholes. In cross-hole tomography the signal source
is also placed inside a borehole. Many approaches to solve the inversion problem have
been proposed for these geometries in the past years, including with curved ray tracing
(e.g., Berryman, 1991), anisotropy (e.g., Chapman and Pratt, 1992; Pratt and Chapman,
1992), wavepaths (e.g., Van Schaack, 1994; Vasco and Majer, 1993) and, more recently,
full-wave inversion (e.g., Brossier et al., 2009; Virieuz and Operto, 2009).

8



1.3. WAVE VELOCITY TOMOGRAPHY AT LABORATORY SCALE

1.3 Wave velocity tomography at laboratory scale

The principles underlying seismic tomography can be applied to a smaller scale, in lab-
oratory tests using ultrasonic frequency waves, to characterise the property distributions
inside samples and their changes plus, eventually, the mechanisms by which they change
(Hall, 2009). However little literature has been published on laboratory scale ultrasonic
tomography; some examples are provided in the following. Lee et al. (2005) developed a
system to transmit and acquire shear waves using a set of bender elements placed on a
rigid frame, with about ten transducers per side. The system is installed within a true
triaxial box before, which is filled with soil, and allows the detection of velocity anoma-
lies inside the soil. The dimensions of the sample are 365 x 270mm, which are above
the sample sizes used in classical geomechanic characterization. They also compared the
inversion obtained using a “cross-hole” configuration and a 3-side illumination, in which
transducers are place also on the bottom side of the frame. The acquisition of data with
the 3-sided geometry appeared to provide improved imaging with reduced artefacts, com-
pared to the cross-well type geometry; this is a possible extension of the current work but
has not been possible in the current experimental set-up. Scott and Abousleiman (2004)
registered acoustic signals propagating across a vertical plane of a sample during triaxial
compression using two arrasy of ten transducers; the size of the sample being about 15
cm. They observed an increase of propagation velocity dur- ing the isotropic compression
while, during the axial loading, a diffuse low velocity zone developed and localised to form
an inclined band as the peak-stress was achieved. Mitra and Westman (2009) conducted
an experimental study combining numerical modelling and 3D ultrasonic tomography on
samples, slightly bigger than standard triaxial specimens, tested under triaxial compres-
sion. They used 15 source transducers and 18 receiver transducers placed all around the
sample to obtain a 3D image of the velocity field. The attempt to image the failure plane
was not achieved during their work.

1.4 Oceanography

Ocean acoustic tomography is a remote-sensing technique for large-scale monitoring of
the ocean interior using low-frequency sound. This method uses the arrival time changes
to estimate the variability of the propagation velocity in the water, which is related to
water temperature variations. Such measurements are typically performed between a few
widely separated sources and receiver arrays (see Iturbe et al., 2009b; Piperakis et al., 2006;
Skarsoulis and Cornuelle, 2007). Based on wavelength scaling, smaller scale laboratory
tests can be performed using higher frequency waves. Laboratory tests, carried out using
ultrasonic transducer arrays (“barrettes”), allow the development and the calibration of
the method in idealised conditions and provided a huge amount of data that can not be
obtained at the large scale. One of the major challenges of this method is the separation
and the identification of the multiple arrival signals (Roux et al., 2008). Some of the
advances of ultrasonic tomography for laboratory geomechanics presented in this current
work are based on such previous developments in ocean acoustics.






Chapter 2

Data acquisition and analysis

2.1 Introduction

This chapter presents the process developed to perform laboratory time-lapse ultrasonic
Tomography; when possible the steps of the procedure are described in the same order
as they are carried out. The acquisition setup is described first followed bythe process to
extract travel-time data, including a presentation of the Double Beam Forming procedure
used to enhance data quality. In the last section, the inversion theory is introduced;
two propagation models, namely ray theory and Sensitivity Kernels, and two methods to
perform matrix inversion are presented.

Although the theory behind the tomographic inversion has not been developed during
this work, all the implementations of the theory in Matlab © have been, in addition to
some improvements to the method, which are highlighted in the following.

2.2 Experimental set up and data acquisition system

An important issue of this work is the acquisition of ultrasonic data during mechanical
tests. Thanks to the use of arrays of ultrasonic transducers (or “Barrettes”) an associated
acquisition system, in use at the ISTerre (Grenoble), a large and unprecedented quantity
of measurements can be made in every short time.

Two kinds of barrettes were used in the work. These consist of either 32 or 64 piezo-
ceramic transducers, about 15 or 20 mm wide and 1.5 or 0.75 mm high, respectively.
Figure 2.1 shows the 64 transducer barrettes and their dimension. The main frequency
of the transducers is 0.5 and 1 MHz, respectively. The signals are generated and received
using a 64 channel emitter-receiver system developed by Lecoeur Electronics. The source
transducer, excited by an electric signal, vibrates in contact with the test specimen; this
vibration propagates through the sample until it reaches the receiver transducers which,
in turn, vibrate producing electric signals. In the first stage of the work the transducers
were excited by a squared wave of adaptable amplitude and period. Subsequently the
apparatus was modified to allow the formation of wavelets of adjustable main frequency,
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CHAPTER 2. DATA ACQUISITION AND ANALYSIS

bandwidth, and amplitude. The data acquisition is carried out using 64 independent
converters A/D.

64

piezoelectri
elements

Figure 2.1: Photograph of 64 transducer barrettes with main dimensions next to a sample of
sandstone analysed in chapter 5

The control of both signal emission and reception is made using a Matlab® interface.
During the experiments one array of transducers works as the source and the other as the
receiver; more specifically, a pressure wave is sent by the first transducer of the source
array and the signal is registered by all the transducers of the receiver array, then a
second wave is sent by the next source and so on. The barrettes generate a huge amount
of recordings corresponding to all the possible source-receiver pairs, but not all the signals
will be necessarily good enough quality to be used. Typically the signals corresponding
to two transducers that are far from one another will have the low amplitude and thus
it is difficult to extract the travel-time data. Despite this, the usable data still provide
a very good spatial coverage. To improve the spatial coverage, it is possible to perform
multiple acquisitions, shifting the barrettes vertically as in chapter 5. Two examples of
the generated raypath grids for a double and single acquisition are given in Figure 2.2.

Data acquisition may be carried out pre/post-mortem, i.e., before/after the sample has
been tested, or during loading (e.g., in the biaxial equipment, see section 6.1.1); in ex-
perimental mechanics the latter might be referred to as “in-situ”. In the first case the
barrettes can be held in place by hand while, in the second case they are held by a special
support built for this purpose to ensure constant acquisition throughout a test. This
support will be described in more detail in section 6.1.1. To assure the coupling between
the barrettes and the test sample a molasses is used.
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Figure 2.2: Ezxample of ray coverage generated by two acquisitions made using the 64 transducer
barrettes (a) and (b), and the 32 transducer barrette (c)

2.3 Fitting geometrical parameters

The barrettes are held in place during “in-situ” measurement by support (see section 2.2),
however their position is not perfectly controlled. Moreover, between the external surface
of the barrettes and the piezoelectric transducers there is a layer of unknown thickness and
between the surface of the sample and the surface of barrette there is a layer of molasses
providing acoustic coupling, which is also of unknown thickness. Nevertheless, knowing
the geometry of the system is essential in the inversion process. Therefore an effort
has been made to recover the set up geometry from the acquired data the key geometric
parameters are described in Figure 2.3. Making the hypothesis of an homogeneous velocity
field of value v, the travel time between the " source and the j* receiver can be evaluated
in term of these different geometrical factors by the relation

o V(length, + i yq sin(ag) + §Auq sin(a, )2 + (A4 cos(as) — A cos(a,) — A,)?

’ ° (2.1)

where length, is the horizontal distance between the barrettes including the two unknown
thicknesses, Ay, is the vertical distance between the transducers in the array, a, and a;
are the inclinations of the receiver and source barrettes and A, the vertical shift between
them (see Figure 2.3).

All the available arrival time data can be fitted to obtain the unknown geometrical param-
eters plus the velocity value (which will be an intermediate value of real inhomogeneous
field’s values). This procedure has been implemented in a Matlab® code with the following
steps:

1. extracting of the measured arrival times from the raw data (through the procedure
described in section 2.5);
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it source position
j: receiver position

Zj’— I ———

Figure 2.3: Geometrical parameters needed in the inversion process

2. fitting of the arrival time data to recover the geometrical parameters using equation
(2.1); the user can fix parameters for which the value is known and evaluate the
others;

3. recording of the full details of the user supplied data, such as size of the sample
and of the barrettes and their relative positions plus the fitted geometry parameters
and calculated transducers positions, to a file which will be used as input for the
following analysis.

2.4 Double Beam Forming

Beam Forming is a well known technique for the detection and separation of signals and
improvement of signal to noise ratio; it has been applied extensively from the second half
of last century in many fields such as oceanography, geophysics, and wireless communi-
cation, (Lo and Lee, 1993; Louie et al., 2009). In this work, beam forming has been used
to separate signals following different paths with the positive consequences of obtaining
clearer signals and improving signal to noise ratio. The following sections illustrate briefly
the theoretical background of beam forming and the application of this technique in the
current work. For more details on the theoretical background the reader is referred to
Boue et al. (2011); De Cacqueray et al. (2011); Iturbe (2010); Iturbe et al. (2009a;b);
Le Touzé et al. (2012); Marandet et al. (2011); Nicolas et al. (2008); Roux et al. (2008);
Sarkar et al. (2012).

Consider, first, one source and a receiver array comprising an odd number of elements
(three in the example in Figure 2.4) positioned along a vertical line with constant offset
and transmitting in an homogeneous medium (see Figure 2.4). A wave sent from the
source will reach the receivers at different times due to the different travel distances. If
the wave is assumed to be planar, the time delay between the " receiver and the central
receiver will have the form
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2.4. DOUBLE BEAM FORMING

(yr - ym’) sin er
Tr(emyro - ym’) = 4 v 5 (2'2)

where 6, is the arrival angle, y,q is the position of the central element of the receiver array,
yri is the position of the i** receiver element and v is the wave velocity.

b I
Tl
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# receivers
L]
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time

Figure 2.4: Ezample of a wave sent from a single source, travelling in a homogeneous medium
and recetved at three transducers.

Equation (2.2) will be valid also if the velocity field is not homogeneous, in which case
v will be the local velocity in the vicinity of the receiver array where it is assumed to
be locally homogeneous. If required, the assumption of local homogeneity of the velocity
field can be removed, in which case equation (2.2) has to be changed in:

\/ ety (23)

v3(y) Vo

Yri
Tr(erayTO - ym> = /

Yro
where v(y) is the velocity as a function of the vertical position and vy is the velocity at
the central transducer.

Beam forming consists of applying a time delay to the signals received at different trans-
ducers and summing them;

N
. a;p t_Tr eryyr — Yri), Yri

pro(t,0,) = > (=T . ):9ri), (24)
i=1 r

where p(t,y,) are the received data, .e., the acoustic pressure p at time ¢ and position
Yry, N, is the number of transducers in the array and p,o(t,6,) is the pressure at time ¢
arriving at the position of the central transducer, y,o, with an angle 8,. «; is the weighing
coefficient for the " transducer that allows, for instance, to reduce the influence of the
transducers according to their distance from the central one; in this work this weighing is
not used, so «; is always equal to 1.

The beam forming procedure involves applying different time delays and summing the re-
sultant time-offset signals. If a wave arrives at the receivers with a angle 6, corresponding
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CHAPTER 2. DATA ACQUISITION AND ANALYSIS

to the applied time delay and the given velocity, the signals will sum in phase (construc-
tively) and the energy intensity of p.o(t, 8,) will show a maximum. Conversely, for other
angles, signals will sum destructively and the energy density will be minimal (see Figure
2.5). Therefore, the arrival angles can be determined, for a given velocity, by scanning
over time—delays and selecting the one giving the maximum energy.

i 1
0! A | 0.5
e 8
o AL O_WW\,_
g l T
¥ 4 1N -0.5
l 0 100 200
w ! 4‘ ‘ 0 100 200 time
§ '] l time
T2 L, (b) (d)
#* 3 -‘l
1
; qI IR
100 200 w1 el
time é = §0'5
(a) 22— M- + W= o A u
, 0 i —_—
# AN -0.5
[ 0 100 200
0 100 200 tlme
time

(c) (e)

Figure 2.5: Signals registered at three transducers in the receiver array (a). Two time delays,
corresponding to angles 0,1 and 0,9, are applied to the signals (b)(c). Only the application of
the correct angle 0,1 leads to the shifted signals summing constructively (d)(e) (Iturbe, 2010)

Now consider a set up with two arrays of transducers (Figure 2.6) and an experiment
where, for each wave sent by a transducer of the source array, the transmitted signal is
registered at every transducer of the receiver array. In this situation, it is possible to
extend the beam forming to both the source and the receiver arrays; this technique is
called Double Beam Forming (referred to DBF in the following).

The received data p(t,y,,ys) (i.e. the received signal at height y, corresponding to a
signal sent at height y,) are processed in two steps to perform the DBF:

1. beam forming is performed for each source transducer j to obtain a set of data in
the form p,o(t, 6, ys;);

2. beam forming is performed again on the source side exploiting the reciprocity the-
orem. The reciprocity theorem states that a pressure field registered at point B
produced by a signal emitted at point A is the same as if the signal were emitted
at point B and registered at point A (Rayleigh, 1944). Under the assumption of
reciprocity every signal p,o(t, 0%, ys;), for a given 6,4, can be seen as a field produced
at the source transducer s; by a signal emitted at the central receiver transducer rg
with an angle of #,,. Beam forming can then be applied for each 6, as explained
before. The resultant pressure field will have the form p,q s0(t, 8,, 05). Rayleigh also
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() (b)

Figure 2.6: Sketch representing a wave that propagates in a quasi-homogeneous medium (a)
and in the presence of a strong heterogeneity, that causes the separation of the wave into two
signals (b). Ray paths are used for illustrative purposes only.

specifies that “the principle of reciprocity is limited to systems which vibrate about
a configuration of static equilibrium”; this is the case for all our experiments as the
samples are either not loaded or loaded with a very low velocity (quasi-static con-
dition) such that the sample can be considered in equilibrium during the ultrasonic
data acquisition.

The above two conceptual steps can be unified in one mathematical expression,

N, N,
~x— P+ T (0, Yros Yri) + Ts(Bs, Yso — Ysj)s Yris Ysj
Pt 0,6 = 33 T TrOribro ) + Tulboryo — yui) ¥rin¥) (5 5

N,N, ’

i=1 j=1

where N,/N, are the number of transducers in the receiver/source array, y,;/ys; are the
vertical coordinates of the i'" receiver/j" source, T,/T, are the time delays (between
receiver-i/source-j and the reference receiver/source) of a planar wave having an arrival
angle of #, and a take-off angle of 4,.

If all the possible angles 8, and 6, are tested a three-dimensional matrix of amplitude
versus 6, 0,,1t can be formed. To facilitate the identification of the arrivals in this rep-
resentation, the amplitude of the signal is replaced by its envelope, calculated through
the Hilbert function. Figure 2.7 shows an example of a slice through the resultant 3D
matrix for a fixed time. In this matrix one (or more) high intensity amplitude spots might
be identified that corresponds to one (or more) arrival signal(s). If the medium is fairly
homogeneous, only one spot is generally present and the corresponding take-off angle 6,
and arrival angle 6, are close to the angle formed by the straight path 6, (see Figures
2.6(a) and 2.7)

In the case of strong heterogeneities in the velocity field or in the vicinities of the bound-
aries (where reflections are strong), the emitted waves can be described by more than one
raypath and often it may be difficult to interpret the received signals because they inter-
act in a destructive way. The use of DBF in these cases is fundamental because, besides
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Figure 2.7: Slice through the 8D matriz, resulting from DBF, for a fixed time, with the source
and the receiver in horizontally opposite positions. The colours represent the envelope of the
amplitude; only one amplitude peak is visible, which suggests that only one signal is received by
the transducer, at least for this time.

giving extra information on take-off and arrival angles, it allows separation of different
arrivals: two paths will have distinct take-off angles and/or distinct arrival angles so the
amplitude peaks will be separated in A = f(0s,0,.,t) space. The signal corresponding to
the [ path can then be expressed by pyo.0(t, 0L, 6.) (see Figure 2.6 and 2.8).

In the experiments described later, the arrays of transducers are much bigger than the
three—transducer—array used in the above example (N, = Ny = 32/64); in this case DBF
can be performed using all available transducers (-1 to have an odd number of transducers)
or using a sub-array (Figure 2.9). The problem is to define the correct size and structure
of the sub-array; this issue has been addressed in Iturbe (2010) with the follow results:

— the sub-array should be the biggest possible; since the angular resolution is inversely
proportional to the array height;
— the sub-array should be centred on the reference transducer.

When there are strong heterogeneities close to the transducer arrays, as is often the case
for geomaterials (e.g., where localised deformations cross the entire sample including the
boundaries), it is not easy to determine which is the biggest possible size; in fact, when
the sub-array is positioned across an heterogeneity, the DBF result can be affected by
it. Moreover, the benefits due to an increasing array size are to be weighted against an
increasing computational time and a loss of resolution in terms of arrival time and take-
off /arrival angle maps (see chapter 2.5). Despite attempts to find an objective criterion
to define the best array size, it remains a case dependent problem and a parametric study
is required as shown by Turkaya (2012) .

Once the two sub-array sizes (NT and {VS) are chosen, the DBF can be performed for the

~

Ng — (Ns — 1) sources and the N, — (N, — 1) receivers;

1. MSC thesis work supervised by the author.
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Figure 2.8: Slices through the 3D matriz, resulting from DBF, for two different times, in which
two amplitude peaks can be identified (a)(b). The signal received by the central transducer of the
sub-array is plotted in magenta, while for each time, the mazximum of all envelopes corresponding
to each angle pair (the “envelope of the envelopes”) is represented in red. The blue dot and the
green dot correspond to the envelope peaks of the two signals identified by DBF (c¢). The two
signals obtained from DBF, relative to two pairs of angles are plotted in blue and green (d).
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The big advantages of using DBF are the gain of information about the take-off and arrival
angles, which are unknown otherwise, and the possibility to separate signals arriving at
receivers more or less at the same time, but following different paths. Another favourable
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Sk

Figure 2.9: Fxample of two sub-arrays composed of three transducers and centred at the source
sk and the receiver r,.

consequence of DBF is the improvement of signal to noise ratio, which is of the order
10log, (N, N,) dB (Iturbe, 2010).

The identification of arrival times in a timelapse test (e.g.,during loading) is performed as
follows. DBF is applied to the first acquisition data set, for all possible angles [-90° 90°],
and the maximum amplitude closest to the couple of angles corresponding to the direct
path (6y-6y) is selected. The DBF for any subsequent data set, acquired at a later step
of loading, is only assessed in the vicinity of the couple of angles selected at the previous
step.

The procedure outlined above allows selection of only one signal per source/receiver cou-
ple, but it can be extended to consider more than one arrival corresponding to the different
amplitude peaks visible in the DBF data. For instance, when a heterogeneity causes the
formation of multiple wave fronts it is possible to separate them using DBF (Figure 2.10).
Although this information is potentially very useful, using it in the inversion process
would require multiple propagation paths to be defined for each source/receiver couple
and the propagation models used in this work (sections 2.6.1 - 2.6.2) are not currently
well adapted to achieve this and other approaches need be explored.

A big effort has been made during this work to render the DBF process as automatic and
user independent as possible. For this purpose a Matlab® code has been written, which
is described in detail in Tudisco (2013c)

Once the DBF has been applied signals are cleaner. Therefore the procedure to evaluate
the geometrical parameters can be performed again using the arrival times measured on
DBF signals to obtain more reliable results.

2.5 Time picking

This section presents the procedure adopted to select arrival times, including the deter-
mination of the time shift between two signals. The method used for the latter and the
theory on which it is based, the Fourier shift theorem, are also presented.

In a timelapse data acquisition the travel time is defined for the first acquisition dataset

20



2.5. TIME PICKING

60 _Jl'r-"”_d"lr 50 1 60

# receivers
# receivers
# receivers

20 4 1 20 g 20
0 E 0 g 10
T

18 2 2z 24 26 18 2 2z 24 26 18 2 2z 24 26

(a) time (s) win (b) time (s) x10° (C) time (s) %10°

Figure 2.10: FExample of real data obtained from propagation through a localised sample from
chapter 5; corresponding to a source located at position 32 (the centre of the sample) and all
receivers. Two wave fronts are clearly visible but they cannot be distinguished when they interfere
(a). DBF data obtained using sub-arrays of & transducers; the two sets of data correspond to
two different spots in the 3D DBF matriz at different 0,, 05 positions. The two wave fronts can
be isolated completely (b)(c).

travel time

amplitude

Figure 2.11: Skeich showing the individuation of travel time which is the difference between
transmitted peak time and source peak time

starting from the time at which the amplitude of the received signal shows the maximum
(called peak time in the following). If the source signal is a know wavelet, the travel time is
calculated by subtracting the source peak time from the transmitted peak time (see Figure
2.11). Otherwise the delay between the peak and the first arrival time must be evaluated
from the registered signals. The evaluation of source peak time has to be performed once
only so that, if the evaluation is not precise, the error will be consistent for all data.
The source peak time relative to ¢ = 0 can be estimated by manually measuring the
delay between the peak time and the arrival time at two (or more) receivers (¢; and ¢, in
Figure2.12(a)) and applying a linear regression back to t4rrivar = 0 (see Figure2.12(b)(c)).
If the medium is not dispersive then the ¢,,rivai—tpear Separation will be constant, otherwise
it will increase with travel distance.

For each source, the peak time is selected for one transmitted reference signal (in general
the one corresponding to the horizontal path, but this is not necessary). The peak times
of signals recorded by the transducers neighbouring the reference one are found by adding
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Figure 2.12: Representation of the source and transmitlted signals at different travel distances
where t; is the delay between the peak time and the arrival time at the distance x; (a). The source
peak time tg can be estimated by applying a linear regression to these delays t;; the more signals
considered, the higher the accuracy of the estimation (b). When the medium is not dispersive
all t; will have the same value (c).

the time shift between the current signals and the reference signal to the reference peak
time. The current signal then becomes the reference one and the peak time of next signal
can be found. The signals are correlated to the reference signal by exploiting the Fourier
shift theorem. The shift theorem for the Fourier transforms states that delaying a signal
x(t) by At multiplies its spectrum by e~IwAt g linear phase term (so called because its
phase is a linear function of frequency with slope equal to At (® = —wAt) (e.g., Smith,
2012). Therefore, in terms of the Fourier transform the shift theorem can be written as

F, (2(t — At)) = e 798 X (wy), (2.7)
where X (wy,) is the k' coefficient of the Fourier transform of z(t) and F,, (x) is X (wy) .

Based on equation 2.7 the time shift between two signals registered at two different points
in space can be determined as

v (i) &

where wy, is the dominant frequency and X is the Fourier transform of the reference signal
o(t).

Performing the process described above for all source-receiver pairs provides the full travel-
time matrix for the acquisition.

The shift theorem can also be applied for efficient, consistent time picking in a timelapse
sequence. Each signal of a source-receiver couple can be compared to the signal of the
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same couple at the previous time step to get the incremental travel-time during a loading
test.

Automatic peak-time selection, and thus travel-time identification, has been implemented
in a Matlab® code with an user interface to provide user control (see Tudisco, 2013c).

The travel-times and time delays from a matrix where rows represent sources and columns
receivers that can be displayed as, time and delay maps respectively. In this representation
the diagonal elements correspond to horizontal paths while top-left and bottom-right
corners correspond to the maximum inclined paths. Figure 2.13 presents examples time
and delay maps for different velocity field scenarios. This representation is useful because
it contains all the extracted information, that is subsequently used as input data for
inversion and can thus be used to check inversion result and recognize potential artefacts.
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Figure 2.13: Time map of an homogeneous velocity field. Delay map between the travel times
in the homogeneous medium (a) and in heterogeneous media where the heterogeneities are (b)
an horizontal high velocity layer; (¢) an inclined high velocity layer; (d) a low velocity inclusion.
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2.6 Inversion

Once the travel-time data for all the source-receiver pairs with travel paths crossing the
test object have been acquired, an inverse procedure must be performed to derive the
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velocity field in the object. This is referred to as tomographic inversion. Such an inversion
requires a model of wave propagation that allows the forward problem to be written as a
functional 2:

tar = F1(v), (2.9)

where t,; is the arrival time between a source-receiver pair and v is the scalar field associ-
ating the norm of the p-wave velocity |v,| = v to every point in the object. A perturbation
in the velocity field can be related to arrival time changes by

At = Fy(Av). (2.10)

The inversion of equation 2.10 will be referred to as differential tomography.

Differential tomography can be “data-based”, when the At,; are evaluated between two
sets of waves acquired at two different times (for instance after a step of loading), or
“model-based”, when the At,; are related to an initial-guess velocity field (often homo-
geneous), this last approach can be used to get the field of absolute velocity values e.g.,
in a single tomography acquisition. Note that the latter is the “standard” tomographic
approach.

In general, for travel-time inversion, the velocity is taken to be a continuous field. However,
to solve the inverse problem, the observed object is spatially discretized into cells, in each
of which the velocity is considered to be constant. In this manner equation (2.10) can be
rewritten in matrix form as

At = M- Av, (2.11)

where At is the data vector, with dimension [1 x m] with m the number of data, Av
is a vector of dimension [1 x n|, with n the number of cells in which the model has
been discretized, and M is a matrix of dimension [m x n] that represents the physical
model linking data (travel time variations At) to the model (velocity perturbation field
Av). The functional F, and thus the M matrix, can be derived from different theories;
the simplest model being the description of the propagation by ray-paths connecting the
sources and receivers (see section 2.6.1), but other propagation models can be used (see
section 2.6.2).

Starting from equation (2.11) three problems can be defined:

1. The forward problem, in which the velocity field v and its perturbation Av are
given and the objective is to determine M and At. The solution of the forward
problem involves first the spatial discretization of the model, the computation of
the ray paths between the sources and receivers and, finally, the computation of the
difference in traveltime along each ray path;

2. The inversion problem, or linear tomography, the velocity field v, and or its pertur-
bation Av, is unknown while M and At are given, 7.e., M is known or assumed.

2. A functional is a function that maps a function space or a vector space to a set of real numbers
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The implicit assumption that is made in linear tomography is that the matrix M
is independent of the velocity field, and thus, the relation is Av and At becomes
linear. The term linear refers to the relation between Av and At and not to the
shape of the raypaths, which can in fact be straight or curvilinear;

3. In nonlinear tomography, or nonlinear inversion, only the traveltime change vector
At is given; the goal is to infer Av and, incidentally, M. In this problem the
dependence of the wave propagation (e.g., the ray paths) on the velocity distribution
strongly influences the design of the inversion algorithm. Nonlinear inversion is
required for problems with significant velocity variations across the region of interest;
the raypaths in such media will show large curvature, which can not be known before
the inversion process begins.

Solving problem 1 implies the very simple, direct application of equation (2.11). Problems
2 and 3 can be solved approximately using inversion techniques. In most situations the
system is overdetermined (the number of travel time data is larger then the number
of unknowns i.e., the number of cells). It follows that matrix M is not square so its
inverse M ™! does not exist. Equation (2.11) cannot be solved directly and method to
find a pseudoinverse must be used. There are many methods to solve this problem, for
example in the standard least squares method the normal solution for Av can be expressed
analytically as

AV = (MTM)TMTAL. (2.12)

Two of methods are used in this work to solve the inverse problem: singular value de-
composition and the maximum a posteriori method, which will be presented in following
paragraphs (2.6.3 and 2.6.4). In the case of nonlinear inversion, the solution is achieved
using an iterative algorithm in which each loop is actually the linear form 2 of the problem
(linearized inversion) and involves an updating of the M matrix according to the new
velocity map at each iteration. In the following two sections, the two propagation models
used in this work to construct matrix M are presented.

2.6.1 Ray theory

The model described herein is based on ray theory, for further details see for example
Berryman (1991).

The time taken by a wave to travel along a given ray path P will be

tp= / %, (2.13)

where v(l) is the velocity along the ray path and [ is the curvilinear abscissa.

According to Fermat’s principle, among the infinite possible curvilinear continuous paths
connecting two points (this set will be called Patfs) the wave follows the path that mini-
mizes its traveltime. This minimum travel time raypath is not necessarily the straight line
connecting the two points because heterogeneities in the velocity field can mean a longer
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path can be followed in a shorter time than the straight one. Therefore, the minimum
traveltime between a given couple of points will be

tta = mznfp c Paths tfp(v) (214)

To obtain the relation between velocity perturbations and changes in arrival times, equa-
tion (2.13) must be differentiated, which gives:

At:/_{P—AU—@)dZ, (2.15)

v3(r)
where r is the position vector.

The components of the problem are the observed travel-times, always in a form of changes,
Aty ... At,, for the m source-receiver pairs, and the perturbation of velocity field Av(r).
Since ?, is the Fermat raypath connecting the i*" source-receiver pair, the following equa-
tion holds,

o _AU(I‘) P, i — m
AtZ/T U2(r))dl : 1, ...,m. (2.16)

Introducing the discretized model for the velocity field and defining [;; as the length of
the i® path through the j** cell gives

L = / dit. (2.17)

fpﬂcellj
Equation (2.15) can thus be rewritten as
=l : :
Ati:Z—v—%Avj, i=1,....m j=1,..,n. (2.18)

j=1 J

Note that for any given ¢, the raypath lengths /;; are zero for most cells j, as a given ray
path will, in general, intersect only a few of the cells in the model. Defining two column
vectors, v and t, and a matrix, M,

- - - . [l h2 ln 7
A’Ul Atl v v v2
A At o1 a2 lon
/U2 2 U% U% oo ’U%
Av = C At— M= (2.19)
Av, At,, by lmo L
- - - - L v1 v3 v

the general matrix equation (2.11) is recovered.

At = M- Av (2.20)
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Equation (2.20) can be seen as a numerical approximation of equation (2.15) in discretized
form. If the ray paths used to form the matrix M satisfy Fermat’s principle then M is
implicitly a function of v.

Three different approaches to trace the rays are used in this work: straight rays, cubic
rays and curved rays based on eikonal equation.

The case of straight rays is the simplest and the inversion problem can be solved in its
linear form since M does not depend on the velocity field.

The concept of cubic rays is not a usual one (it is in fact perhaps quite novel) and has been
identified as a means to enrich the inversion by using the additional information gained
from the use of the DBF in the data processing. Cubic rays can be traced using take-off
and arrival angles from the DBF procedure: knowing the positions of the two transducers
and the two angles, a polynomial of third degree can be defined. This approach depends
on the velocity field only indirectly and remains a linear inversion problem, but, unlike
straight, rays takes into account the inhomogeneity of the velocity field, even though
raypaths found with this method don’t follow the true physics. It must be underlined
that the output of DBF is the time delay across the local array and only through a
hypothesis on the local velocity can this time delay be transformed to angles. An approach
to updating the model could involve the local velocity from the inverted velocity field to
recalculate the angles; this procedure has been applied with success in this work.

Curved rays are traced using a Matlab® code, based on a module in the Crewes seismic
processing toolbox (University of CAlgary)? written by Chad Hogan that uses a fast-
marching eikonal equation solver (following Sethian and Popovici, 1999). Starting from
a velocity field and a given source position, the code returns a map of first arrival time,
i.e., a map of the time taken by a wave to propagate from the source to each point in the
model space. With this procedure two traveltime maps can be generated: one considering
the source as starting point and the other taking the receiver as starting point (see Figure
2.14). The traveltime maps can be summed to obtain a combined traveltime map (Figure
2.15), in which the “valley” is representative of the Fresnel wavepath between the source
and receiver (Van Schaack, 1994; Vasco and Majer, 1993) as shown in Figure 2.15(a).
The path following the valley in connecting the source to the receiver is the Fresnel ray-
path. Here the central path is approximated by a polynomial of degree 7 and a tracer
code associates the respective ray length to each cell of the model space. To force the
polynomial to go through the source and receiver positions, these are given a weight of
thousand times more then the other points in the fitting process. Figure 2.15(b) shows
a selection of eikonal rays traced through the velocity field and Figure 2.15(c) shows the
final ray density map for all traced rays, which is constructed by summing, for each cell,
the partial lengths [;;, defined in equation 2.17:

ray density; = Z Lij. (2.21)

3. see http://www.crewes.org/ResearchLinks/FreeSoftware/ for references
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Figure 2.14: Velocity field through which the rays are traced (a). Travel time maps with source
as starting point (b) and receiver as starting point (c).

2.6.2 Sensitivity Kernels

In the previous section ray theory has been introduced, this theory is a high frequency
approximation that does not take into account diffraction, so the arrival time is indepen-
dent of the signal frequency and velocity perturbations not crossed by the raypath. Here
an alternative propagation model, Sensitivity Kernels, is presented, which does not have
these restrictions.

To take into account the dependence of the wave propagation on frequency, the Born
approximation was introduced in seismic tomography (Woodward, 1992) to calculate
“wavepaths”; this approach led to the concept of Travel-time Sensitivity Kernels (TSK)
that links arrival time variations, At, to velocity perturbations, Av, with a linear relation,

At:/VK(r)Av(r)dV(rL (2.22)

where r is the position vector and V' is the entire domain of propagation (here a 2D
region).

In the following we present a brief explanation of equation (2.22) and its derivation; for
more details see Iturbe (2010); Piperakis et al. (2006); Skarsoulis and Cornuelle (2004).

Green’s functions, named after the British mathematician George Green (1830-1876), are
well know funections used to solve inhomogeneous differential equations subject to specific
initial conditions or boundary conditions. In the field of wave propagation the Green’s
function is the solution of the wave equation for an impulsive point source é(r — rg) located
at rs, which it satisfies the inhomogeneous Helmholtz equation,
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Figure 2.15: Combined traveltime map, obtained summing the two travel time map in Figure
2.14, (a). A selection of traced rays (b) The ray density map (c).

w2

7+ | Crlrs,w) = =3(r — ry), (2.23)
(r)

where rg is source position, w its circular frequency and ¢ the Dirac function.

The pressure in the time domain, created by a punctual source situated at rg and received
at ry, can be expressed in terms of source spectrum P.(w) as

1 [~ .
p(re,t) = Z/ G (re|rs, W) Po(w)e? dw. (2.24)

e e}

Since the Green’s function depends on the velocity, a perturbation of the velocity field Av
will cause a perturbation in the Green’s function and the following relation must hold,

2

T+ Au(r)]

72 + e 2] [G(r|rs) + AG(r|rg)] = —6(r — rg). (2.25)

Subtracting equation (2.25) from equation (2.23), rearranging the result and retaining
only the first order terms, a relation for the Green’s function perturbation is found,

Av(r')
v3(r’)

The pressure field variation due to the perturbation Av can thus be expressed as

AG(r|rg) = —QwQ/VG(r’|rS)G(r|r') X v (r'). (2.26)

Ap(re t) = % / AG (re|re, w) P (w) e duo. (2.27)
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Time variations can be calculated starting from the pressure variation as

_AD
5

At = (2.28)

Replacing equations (2.26) and (2.27) in (2.28) we obtain the expression for At as a
function of velocity perturbations, Awv,

At(re, 1) = /V K (£)Av(r)dV (r), (2.29)
where
K(r) = %/_(: ‘%Q(r,rr,rs,w)ejmdw, (2.30)
and
QUr. 11 1u) = S P ()G )G el ), (2.31)

Thus the TSK is given by the equation

1
Tpu3(r)

K(r) = /ij(r|rs,w)G(rr|r,w)wQPs(w)ejwtdw. (2.32)

Introducing the spatial discretization, equation (2.29) becomes

J

where At; is the time variation of the i'" source/receiver couple, K;; is the value of TSK
evaluated at the j cell for the i source/receiver couple and Awv; is the perturbation to
the velocity at the cell j.

Defining vectors dt, Av and matrix M as

A’Ul Atl Kll K12 e Kln
A'UQ Atg K21 KQQ c. K2n
Av = , At = , M= dz dy, (2.34)
_A'Un_ _Atm_ _Kml sz . Kmn_

the general inversion equation (2.11) is retrieved,

At = M- Av. (2.35)
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The Sensitivity Kernels representation shows that the travel times are sensitive to velocity
perturbations in areas surrounding the raypaths but not to the changes taking place on
the raypaths themselves; moreover some zones of positive sensitivity are present, i.e.,
zones where an increase in velocity produces a slowing down of the wave propagation
(Marquering et al., 1998; 1999).

When signals are treated by DBF, the related TSKs are influenced and, in particular, as
the source and receiver are no longer points, the shape of the TSK changes to become a
narrower beam and the positive sensitivity zones reduce (see Figure 2.16).

Starting from equation (2.6) the expression of the pressure variation with DBF can be
written as

Appe(t) = S5 Aplt — Ty (6, 500) — TalB, )], (236)

i=1 j=1

where Ap;; is the signal variation between the i" receiver and the j™* source of the
sub-arrays and y,;/ys; the distance between the i receiver/j" source and the central
transducer.

Substitutions of equations (2.26) and (2.27) into (2.28) leads to a new definition of
Q(r7 rr’ rs7 (JJ)’

N, N,
Qopr(r,teTs,w) = > Y Qij(r, 1y, 1, w) e T Orard ¥ ees)] (2.37)

i=1 j=1

The TSK for DBF data is then given by

1 (> .
K(r) / i pBr(r, Ty, T, w)e’ dw. (2.38)
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Figure 2.16: Ezamples of Sensitivity Kernels calculated using different size for sub-arrays.
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Now that TSK equations have been established all that remain is to define the underlying
Green’s function, which is needed to calculate the Q;;(r, ry, rs).

In an homogeneous infinite 3D medium the Green’s function is given by the equation
1 -, d(rlrg)

G(r|rg,w) = meWT. (2.39)

In the 2D case, which is the situation studied here, the Green’s function is

1 2 (M_z)
G =/ ———7F— v 4/, 2.40
(xlro, ) 4\ md(r|ro)wv ‘ (2.40)

In an inhomogeneous medium the Green’s function must be calculated numerically. In
this work a code developed at the ISTerre by Romain Brossier (Brossier, 2011) to simulate
wave propagation by a finite difference approach is used. The Green’s functions can be
derived from the numerically determined source and receiver spectra. An example of a
TSK determined by this method for an inhomogeneous field is shown in Figure 2.17.
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Figure 2.17: (a) Ezample of Sensitivity Kernel, for a couple of transducers places at the centre
of the sample height computed for the inhomogeneous velocity field in (b). The Green’s functions
are calculated numerically.

When the Green’s function is calculated analytically the source and the receiver are singu-
lar points, because the distances from the source and receiver appear in the denominator
(equations 2.39 and 2.40), the values of the SK around them are thus unrealistic; a method
to avoid this problem is to weight the SK by decreasing linearly their values when ap-
proaching the lateral edges of the sample; the user can control the width of the region in
which this weighting is applied.

As in the case of ray theory a “ray density” map can be defined (for simplicity is called
“ray density” even though no rays are involved) from
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ray density; = Z K. (2.41)

2.6.3 Maximum a posteriori

In the two previous paragraphs approaches to construct the M matrix were presented.
In this section one of the methods chosen to invert equation (2.13) will be described; the
following section presents an alternative. The following description is based on Iturbe
(2010) and the references therein.

Maximum a posteriori method is based on Bayes’ theorem that allows the introduction of
a priort informations in the inversion; it can also take into account the presence of noise
in data by adding a term to equation (2.13),

At =M Av+d, (2.42)

where: d is the noise, which is assumed to be a centred Gaussian random vector (E[d] = 0)
whose covariance matrix is C; = E[dd”]; Av is the vector of the model to be estimated,
gaussian of mean pay = E[Av] and covariance matrix of C,, = E[AvAvT].

Maximum a posteriori estimation consists in finding the vector Avy;4p that maximizes
the probability density of Av knowing At, p(Av|At) also called probability density a
posteriori. According to Bayes this probability density can be written as

p(At|Av)p(Av)
p(At) '

Because p(At) does not depend on Av to maximize the probability density a posteriori
it is sufficient to maximize the numerator of equation (2.43),

p(Av|At) = (2.43)

p(Av, At) = p(At|AV)p(AV). (2.44)

Since the noise is Gaussian, p(At|Av), the conditional probability of At given Av, can
be written as

1 _1 — . VT -1 — AV
PAHIAY) = e AT AT Ay, (2.49

while, under the assumption of Av being Gaussian, p(Av), a priori probability density
can expressed by

1 1 Tp—1
—_ 77(AV7IJ’AV) Cm (AV*MAV)
p(AV) (2%)”/2]Cm\1/26 2 : (2.46)

Substituting equations (2.45) and (2.46) into equation (2.44), provides
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p(At, Av) = p(At|Av)p(Av) =

_ 65 [(Ath-AV)TC(;l(Ath-AvH»(Avf,uAV)TCnZl (Avf,uAv)] . (247)

To maximise the a posteriori probability density requires the minimization of the quadratic
expression in brackets in equation (2.47), i.e.,

S = (At — M- AV)TC;H At — M - Av) + (AV — jiay)TCH AV — piay). (2.48)

The model Avjy;4p that minimizes S is found by setting to zero the first derivative of S
with respect to Av. The result can be written in two different forms depending on the
number of model parameters, n, with respect to the number of data, m:

if n <m,
AVirap = fiay + (MTCTM +CH) T MICT (AL — M - piay); (2.49)

if n > m,

AViap = piay + CoMT(MCMT + Co) (At — M - piny). (2.50)

The choice between the two relations is performed automatically by the inversion code
implemented in Matlab ©.

An important step in the inversion process is the choice of the three parameters Cq, C,,
and pay; in the following a short description of their physical interpretations and of the
criteria, used herein, to select them is presented.

- C4 often called data covariance matrix, represents the noise covariance of the data. The
noise includes also modelling errors and data acquisition errors. Diagonal elements
of this matrix represent the variance of each element of noise vector d, i.e., the
variance of each measurement; while non diagonal elements represent the link be-
tween different measurements. In the hypothesis of random Gaussian noise and
independent measurements C; = agIn (Z,, is the identity matrix of dimension n);

- uay represents the a priori mean values of model parameters, Av, i.e., the most prob-
able velocity field perturbation; this field might be derived from other techniques
if available*. However, usually, as in this work, the most probable velocity field is
assumed to be the starting one, so that pay = 0;

- C,, often called model covariance matrix, represents the uncertainty on the a priori
model, i.e, on puay. Diagonal elements represent the uncertainty in the velocity value
perturbation at a specific point in the space while non-diagonal elements represent
the statistic link between velocity perturbation at different points of the space. This
matrix can be expressed as C,, = 02,C} where 0, is linked to the uncertainty of pa,
value, as discussed below, while C! define the allowed variations between neighbour
cells in the model.

4. A candidate for this is perhaps strain field data from Digital Image Correlation but currently the
use of such data has not been successful.

34



2.6. INVERSION

As a consequence of the above described choices, the inversion results on the following
depend only on two parameters: the ratio ¢ = 0,,,/04 and the shape of C} .

The parameter £ controls the relative influence of the two portions of equation (2.48),
by giving more or less weight to the data or to the a priori information. The higher e
the more the resultant velocity field is influenced by priori information. It can be seen
as a damping parameter, as it controls how fast the model can be updated to reach the
solution.

The choice of the e parameter is left to the user, as it depends on several factors and
user’s experience can be more relevant than a numerical criterion. However, in general,
the choice is facilitated by the use of the “trade-off curve”; this curve is constructed
by executing the inversions with several values of ¢ and plotting for each of them the
corresponding misfit versus roughness, calculated as

At — At
misfit = g (2.51)
At
2(Av))2
roughness = \/M (2.52)
n

The resultant trade-off curve generally has the shape shown in Fig. 2.18. The best model
should be the one corresponding to the “knee”, but the final € is often chosen within a
range around it.

e

BEST MODEL

roughness

Increasing ¢

misfit -

Figure 2.18: general trend of the trade-off curve

Matrix C} allows the introduction of the a priori shape of velocity perturbations. Since
the model should represent a continuous medium, the value of every cell of constant
velocity will be linked to the neighbouring ones while it will be independent from distant
cells. To implement such a relation an exponential function is used,

(%;%L(yr%)
Clij=e ‘ : (2.53)

mij
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Figure 2.19: Example of covariance matrix C,, for a space divided in 10 x 10 cells with a
correlation lengths Ay = Ay = 3 cells (a) and the rearrangement of one of its row (b) (Iturbe,

2010).

where C}, ;; is the assumed covariance between the i'" and j cells, (z;, y;) and (z;,y;) are
the coordinates of the same cells and A, and A, are the imposed characteristic correlation
lengths in the two directions. These two parameters act as spatial smoothing function and
their values vary from zero to twice the wavelength depending on several factors including
the physical model used (ray theory or Sensitivity Kernels). In this work the choice of
Az and A, is based on a study made with synthetic data (see chapter 3). A graphical
example of the C,, matrix construction is given in Figure 2.19.

Equation (2.53) can be modified to take into account a weighting based on the ray density
of each model cell, i.e., the cells crossed by a larger number of rays are given greater
influence in the inversion,

Az
C;AL ij — Pj € N (254)

where p; is the sum of the intersections between all rays and the cell j (3°,1;), if ray
theory is chosen as the propagation model, or the sum of TSK values at cell j for each
source/receiver couple (>, K;;), if the Sensitivity Kernel approach is adopted.

2.6.4 SVD

In this section we present another method to invert equation (2.11): Singular Value
Decomposition (SVD), which allows a pseudoinverse M~! to be defined. The following
description is inspired by Marandet (2011) and the Wikipedia website description ®.

An m x n matrix M can be decomposed into three matrices,

5. http://en.wikipedia.org/wiki/Singular_value_decomposition
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M =USV*, (2.55)

where U is an m X m unitary matrix, & is an m X n rectangular diagonal matrix with
non negative real numbers on the diagonal and V* is the transposed conjugate of V that
is an n X n unitary matrix. The diagonal entries, S,,, of & are known as the singular
values of M and the m columns of & and the n columns of V are called the left-singular
vectors and right-singular vectors of M, respectively. The singular values are organised in
descending order and can be seen as representative coefficients of the system; the number,
r, of nonzero singular values is the rank of the matrix M, i.e., the number of independent
values.

To demonstrate the meaning of singular values, the SVD is applied to an image (L’usage
de la parole by Magritte, 1928-29) which is represented by a 290 x 415 matrix,

I =USV". (2.56)

An approximate matrix 7 can be reconstructed preserving different numbers of singular
values using the relation

I=USV, (2.57)

where & is the matrix S truncated after a certain number of singular values (1, 2, 5, 10.
20, 50, 100 and 200 in this example). Figure 2.20 shows how the image is progressively
reconstructed. It can be noticed that it is not necessary to use all singular values to
reconstruct the matrix; in this case, for instance, 50 singular values are sufficient to
obtain a good approximation of the original image.

Figure 2.20: approximation of an image by the singular values decomposition, using respectively
1, 2, 5, 10. 20, 50, 100 and 200 singular values; the original image is on the left

Equation (2.55) can also be used to obtain a pseudoinverse of matrix M with the expres-
sion

Mt =vsur (2.58)

where the approximate inverse of the diagonal matrix S is calculated as Sy = 1/Syx with
E=1,---,r.

As shown with the example of the image decomposition above, not all singular values are
needed to obtain a good representation of the system. In the case of inversion, a subset
of singular values can also be sufficient to construct the pseudoinverse of matrix S,
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~ 1/Skk k=1,---.,5,<r,
Si = 2.59
i {0 k=S,+1,---,r. (2.59)
An approximate pseudoinverse of matrix M can then be defined,
M1t =vS u. (2.60)
Finally the resultant velocity perturbation field can be calculated as
Avgyp = M1 At. (2.61)

Contrary to the MAP method only the S,, parameter has to be defined in this case. Having
only one parameter can be an advantage as the result could be more objective, especially
because the choice of parameters often involves the user’s experience. On the other hand,
the number S,, of singular values to be used in the inversion is not a parameter with a
clear physical meaning and therefore, it is not easy to find a suitable criterion to chose it.
A method can be to plot singular values against their positions, in logarithmic scale, and
chose the number of singular values corresponding to the change of slope.

synt, 0001

cubic
SVD

singular values

3
10 10 10 10

Figure 2.21: Plot of singular values against their positions, in logarithmic scale; the optimal
number of singular values to be used in the inversion is the one corresponding to the change of
slope

2.7 Summary

In this chapter the entire acquisition process and data analysis was presented. A brief de-
scription of the acquisition system and transducer arrays was followed by the presentation
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of an original method of obtaining information about unknown geometrical parameter by
data fitting.

Double Beam Forming, a technique to enhance data quality and to extract more infor-
mation, i.e., take off and arrival angles, was then introduced; this technique has been
already used in other fields, where reflections play an important role, to solve problems
such as arrivals separation and identification. In the case of ultrasonic tomography for
laboratory geomechanics, DBF shows that pre-existing heterogeneities or localised defor-
mations, due to the loading, can deviate wavepaths from the direct trajectory and cause
multiple arrivals. A Matlab® code has been written to implement DBF procedure for this
specific case, the software is provided with an interactive GUI.

An automatic travel-time picking procedure has also been implemented with special at-
tention to user’s’ control by a graphical interface.

In the last section the inversion procedure to derive the velocity field in the test object has
been presented. Two propagation model have been proposed: ray theory and sensitivity
kernels. In the framework of ray theory to take into account the heterogeneities of the
velocity field two approaches have been used: cubic rays, that exploit angle information
coming from DBF, and curved rays, whose tracing is based on eikonal equation. In the
case of SK the velocity heterogeneities have an influence on Green’s functions from where
SK are calculated, these functions can not be calculated analytically any more and a
propagation code is needed. The chapter concludes with the description of two methods
to find the pseudoinverse of a matrix. The inversion process has been implemented in a
Matlab® code that allows the user to control several parameters as well as the propagation
model and the inversion method.

In the following chapter some inversion results based on synthetic data test are presented;
these results will allow to compare the different techniques proposed herein.
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Chapter 3

Synthetic data tests

3.1 Introduction

This chapter is dedicated to the analysis of synthetic data tests to explore the different
tomography techniques presented in chapter 2. Synthetic data are obtained by a full prop-
agation analysis through a synthetic velocity field; this analysis is carried out using the
finite difference code FWT2D_ACOUST _TIME developed by Romain Brossier (ISTerre,
Grenoble) as a part of the project SEISCOPE. The simulated data are treated following
the same procedures used for the data acquired during the real experiments, when neither
the propagation velocity field nor the exact set-up geometry are known.

The aim of the study in this chapter is to test the data analysis procedures, in ideal
conditions, to explore the capacities of the inversion and to verify the criteria adopted
in the choice of parameters. Another objective is to determine the propagation model
that gives the best results and the different artefacts that can occour. It is important
to note that these synthetic tests, plus others not presented, have been essential to the
development of the method used in the applications of Part II of this thesis.

In the first section the influence of velocity heterogeneities in the geometrical parameter
fitting procedure is discussed. The subsequent section considers the inversion process
applied to two synthetic case studies. In the first case, an homogeneous model evolves
with the formation of an inclined heterogeneity of decreasing velocity. In the second case,
the starting model presents an inclined heterogeneity of high velocity and the perturbation
consists of a decreasing of velocity both outside and within the original band (see Figure
3.12). Note that, in the first case, the velocity contrast at the edges of the heterogeneity is
sharp whereas in the second case the contrast in both the original field and the evolution
are smooth.
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3.2 Influence of heterogeneities in the fitting of geo-
metrical parameters

In a laboratory test it is not always possible to perfectly control the position of the different
parts of the set-up. However knowing the geometry of the system is indispensable in the
inversion process. A solution to this problem has been presented in section 2.3 where
a procedure to extract geometrical parameters from acquired data is described. In this
section this fitting procedure is applied to synthetic data, for which the exact geometry
is known, to explore the sensitivity and the limitations of the method.

Two examples of data from propagation thorough an homogeneous medium are analysed.
In the first case the barrettes are perfectly vertical while in the second case the receiver
array is inclined of -1.2° (where negative angles correspond to a clockwise rotation). In
both cases velocity is 2200 m/s throughout the material and the barrettes are vertically
aligned and 3.5 cm apart.

o
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om
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(a) (b)

0 001 002 003

Figure 3.1: Original transducer positions (white stars) and estimated transducer positions
(green circles found for an homogeneous velocity field in the case of vertical barrettes (a) and
the case of an inclined receiver barrette (b).

The general model of the function to be fitted in Matlab® is

cfun(x,y) = sqrt((length x+x*0.0015*sind(alfaS)-y*0.0015*sind (alfaR))2+
(x*0.0015*cosd(alfaS)-y*0.0015*cosd (alfaR)-delta_ z)2)/vel .

Figure 3.1 shows the original position of the transducers (plotted as stars) and their
position calculated from the fitted parameters (plotted as circles) for the two examples.
The fitting results for the two cases are given below. Where length x is the horizontal
distance between the barrettes, including the two unknown thicknesses (i.e. the molasses
layer and the layer between the surface of the barrette and the transducers), alphaR and
alphaS are the receiver and source barrettes’ inclinations and delta_z the vertical shift
between them (see Figure 2.3).
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PARAMETERS

Homogeneous field and vertical transducer array
Coefficients (with 95% confidence bounds):

alfaR = -0.0005541 (-172.5, 172.5) °

alfaS = -0.001066 (-172.5, 172.5) °

delta_z = 2.136e-06 (-0.1053, 0.1053) m

length_ x = 0.03497 (0.03496, 0.03497) m

vel = 2185 (2185, 2185) m/s

Homogeneous field and inclined transducer array
Coefficients (with 95% confidence bounds):

alfaR = -1.353 (-3.521e404, 3.52e+04) °

alfaS = 1.359 (-3.52e+04, 3.521e+04) °

delta_z = -4.916e-06 (-21.52, 21.52) m

length x = 0.03502 (0.032, 0.03804) m

vel = 2181 (2178, 2185) m/s.

In the first example both the velocity and the horizontal distance (length x) are slightly
underestimated while the other parameters can be considered to be zero. A similar result
is found for the second case where velocity, horizontal distance and vertical shift (delta z)
are well estimated. However, while the fitted inclination of the receiver barrette is close to
the real one, a symmetric inclination is guessed for the source barrette, which is vertical

in reality.

Consider now an inhomogeneous velocity field with a square, low velocity (2000 m/s)
zone positioned between the transducer arrays (see Figure 3.2). The same two cases
of the barrettes’ positions presented above are analysed, and the general model of the
function to be fitted stays the same. The results of the fitting process are presented in

Figure 3.2 and summarised below.

Inhomogeneous field and vertical transducer array
Coeflicients (with 95% confidence bounds):

alfaR = -0.1767 (-6.808e+-04, 6.808e+04) °

alfaS = 0.2814 (-6.808e+-04, 6.808e+04) °

delta_z = 0.0001024 (-40.8, 40.8) m

length_x = 0.03434 (-0.08739, 0.1561) m

vel = 2124 (2115, 2133) m/s

Inhomogeneous field and inclined transducer array
Coefficients (with 95% confidence bounds):

alfaR = -1.576 (-1.05e+4-05, 1.05e+05) °

alfaS = 1.516 (-1.05e+05, 1.05e+05) °

delta_z = 0.0001879 (-63.19, 63.19) m

length_ x = 0.03447 (-0.3099, 0.3789) m

vel = 2120 (2112, 2129) m/s.
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Figure 3.2: Original transducer positions (white stars) and estimated transducer positions
(green circle) found for an inhomogeneous velocity field in the case of vertical barrettes (a) and
the case of inclined receiver barrette when the inclinations are evaluated (b) and when they are
imposed by the user (c)

In this case the resultant velocity value is, as under-estimation of the expected, an inter-
mediate one between the background and the heterogeneity values. The under—estimation
of the horizontal distance is increased compared to the homogeneous field case and the
error in the barrette inclinations is also increased.

The above examples show that the barrettes inclinations and the delta_z are, in general,
poorly defined, as indicated from the very wide range of the 95% confidence bounds.
Therefore it would be very helpful to measure these parameters independently. In fact,
during the experiments in the biaxial apparatus it is possible to take pictures of the tested
specimen and experiment set-up thanks to the glass wall (see section 6.1.1). Therefore,
some geometrical parameters, such as the barrettes’ inclination and vertical shift, can be
recovered from these photos. Assuming that the inclinations of the barrettes are known,
the general model of the function to be fitted becomes

cfun(x,y) = sqrt((length x+x*0.0015*sind(1)-y*0.0015%sind(-1.2))2+
(x*0.0015%cosd(1)-y*0.0015%cosd(-1.2)-delta_ z)2)/vel.

The resultant parameters for the inhomogeneous field and fixed a priori known
inclination of transducer arrays are

Coefficients (with 95% confidence bounds):
delta_z = 0.0002295 (0.0001371, 0.000322) m
length x = 0.03484 (0.03466, 0.03503) m

vel = 2120 (2111, 2128) m/s.

In this last example the velocity is still an average between the background and the
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Figure 3.3: Original velocity fields of 15, 15" and 21 step of velocity evolution

heterogeneity values, but the horizontal distance is better estimated. Figure 3.2(c) shows
the original and recovered positions of the transducers in a heterogeneous velocity field
for two examples of vertical and inclined barrettes; the last image shows the result of the
fitting when the inclination is imposed.

3.3 Tomographic inversion with an Homogeneous start-
ing model

The aim of the study presented in this section is to explore the capability of the inversion
process to reproduce velocity perturbations occurring in a homogeneous sample in which
an inclined low velocity band develops. This is analogous to the development of a localised
damage zone during a compression loading.

Wave propagation between two 32-transducer arrays, in an evolving velocity, field is
simulated. The velocity field evolution is performed in 21 steps (3 of which are presented
in Figure 3.3) and 21 acquisition files are simulated.

3.3.1 Model-based tomography

The model-based tomography consists of inverting equation 2.11, where the At are calcu-
lated between the measured arrival times, for a given acquisition data set, and the arrival
times computed for a homogeneous velocity field. The velocity field is obtained by sum-
ming the result of the inversion to the value v of the assumed homogeneous velocity field.
The value v normally comes from the geometrical-parameters fitting procedure, but the
user can change it if necessary. In this case, to be consistent with the procedure adopted
in real experiments, the value of 2185 m/s from the fitting process is kept, despite the
correct background velocity value being known (2200 m/s).

Only the MAP inversion is used in this example, but a comparison between MAP and
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Figure 3.4: Model-based tomographies carried out using straight rays and correlation lengths
of 0 mm, 1.5 mm, 8 mm and 6 mm respectively

SVD inversions is presented in the next section. Figure 3.4 shows a comparison of four
tomographies carried out using a straight ray propagation model and different character-
istic correlation lengths A, and \,. Increasing the correlation lengths results in the images
being smoother and the geometry is less well reproduced in terms of layer thickness. How-
ever, setting the correlation lengths to zero produces an inhomogeneity inside the layer,
which is not real. This confirms that, in the case of rays, which have infinitesimal thick-
ness, it is preferable to introduce a spatial smoothing through the correlation length, but
this should not be too large. The best result, in this case, is given by A\, = A, = 1.5 mm.

The presence of the damping parameter £ controls the variation of the resultant velocity
field from the starting one and results in a residual At. To minimize this residual without
inducing physically unreasonable roughness in the velocity field, the inversion can be
iterated using the residual At as input. If the used propagation model allows it (i.e.,
eikonal rays or SK numerical), the M matrix can be updated using the resultant velocity
field. In this work the propagation model is updated when, at least in one point, the
velocity value changes more than 1 % with respect to the value used in the last calculation
of the M matrix.

It is important to adopt a good criterion to chose the optimum number of iterations in the
process described above so as to maximize the benefit of the process without unnecessary
increase of the computational time or degradation of the image. Figure 3.5, in which the
iteration number is plotted against the mean residual error, suggests that the point of
maximum curvature can be chosen as the one after which the improvement in terms of
error is not significant. A systematic visual analysis of the resultant images confirmed
this criterion to be a suitable one.

Once the proper number of iterations has been chosen for each ¢, the trade-off curve can
be constructed as described in section 2.6.3. Figure 3.6 presents the trade-off curve for
the case of straight rays in this synthetic example. The criterion of maximum curvature
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Figure 3.5: Error evolution with iterations for tomographies carried out using straight rays and
different € parameters.

could be used to choose the optimum ¢ value, however the process has not been automated
because user experience is often more relevant in the choice. In the example shown in
Figure 3.6, the best model seems to be the one corresponding to € = 50, since it shows a
good compromise between the more realistic estimation of the velocity values inside the
band and the reduction of the artefacts (this is in fact close to the maximum curvature
point). The trade-off curves obtained for the other propagation models analysed are
similar to the one presented in Figure 3.6. It must be noted that the optimum value for
the ¢ parameter depends on many factors, including the propagation model, therefore, it
must be evaluated for every single case.

Figure 3.7 presents a comparison between the different propagation models used in the
inversion to recover the final step of the velocity evolution. The use of cubic rays does not
seem to produce a big improvement, in fact the structure is similar to that obtained with
straight rays. The use of eikonal rays reduces the cross artefact (which gives to the layer
a slight hourglass shape) a little. However the straight rays give a better result in terms
of absolute velocity values. The Sensitivity Kernels generate an artefact whose structure
follows the oscillation of the Fresnel zones, in addition to the cross artefact. Furthermore
this propagation model gives the worse results concerning the absolute values.

3.3.2 Data-based tomography

The data-based tomography is obtained by inverting equation 2.11 where At is the differ-
ence between the measured arrival times of two acquisition files; one file will be referred
to as “reference” and the other as “current”. To recover the absolute values of the velocity
field it is necessary to know the velocity field corresponding to the reference file; for in-
stance by running a model-based tomography for the first step. In this synthetic example
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Figure 3.6: Trade-off curve, with relative images, for the case of straight rays.

it is not necessary to obtain the original velocity field because it is known.

To obtain the velocity evolution using the above procedure, the difference of arrival times
At can be calculated referring always to the same acquisition file, for instance the first
one, or by steps (in the step approach, the current file will become the reference one
at the subsequent step). In the case of straight rays or analytical sensitivity kernels, in
which the propagation model does not depend on the velocity field, there is no benefit
in the step procedure, as the artefacts due to the incorrect ray paths will be summed.
Figure 3.8 shows the final image obtained using the two procedures while Figure 3.9
presents a set of data-based tomographies carried out using straight rays (first line) and
SK (second line). The images in the first column were obtained using the first file as the
reference and the last as the current file. The second and third columns show the step
data-based tomographies at the beginning of the process and at the end of it, respectively.
As expected, in the first two cases, when the starting velocity field is homogeneous, the
artefacts are less important since the hypothesis of homogeneity used in the propagation
model is respected. However, in the last case, the artefacts are amplified. Therefore the
data-base tomography with a fixed reference file is preferred for these propagation models.

In the cases of cubic rays, eikonal rays and numerical sensitivity kernels, i.e., when the
propagation model depends on the velocity field, the step procedure can have a positive
influence on the results. However, performing a data-based tomography using the first file
as reference is ineffective, because the propagation model is always calculated using the
velocity field corresponding to the reference file that, in this case, would be homogeneous.
Then there is no benefit to using a field-dependent model for the initial step.

Figure 3.10 presents a comparison of data-based tomographies carried out using the differ-
ent propagation models (using the first file as the reference for, straight rays and analytical
SK, and the step procedure for cubic rays, eikonal rays and numerical SK). The results
show that the use of cubic rays improves the final image: while the artefacts are nearly
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Figure 3.7: Model-based tomographies of the last step of the velocity evolution carried out using
straight rays (a), cubic rays (b), eikonal rays (c) and SK (d), plus the original velocity field (e)

the same, the band of low velocity is much better defined and more homogeneous than
with straight rays. The eikonal ray tracing, on the contrary, seems to deteriorate the re-
sultant image as the thickness of the band increases unrealistically and also the artefacts
are more significant. Regarding the SK, the results suggest that updating the model has
a negative effect on the image in terms of artefacts, however this procedure gives a better
result in terms of absolute values.

The numerical SK is a promising approach, as it provides a more realistic propagation
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Figure 3.8: Velocity field of the last stage of velocity evolution obtained carrying out a single
data-based tomography using the first file as reference (a), (¢) and through the step procedure
with steps of 2 files (b), (d).

mis

theory to the dependence on the velocity field; however the results presented do not
seem to support it, probably because of the sharp contrast on the heterogeneity edges.
Although a deeper study of this propagation model is suitable, for lack of time it has not
been possible to carry out more analysis than the results shown in this section. Therefore
no further results using this method will be presented.

It is interesting to investigate how the rays traced taking into account the velocity field
deviate from the straight paths; for example to assert the benefit if using a more compli-
cated model. A way to represent globally the ray paths it is to construct a map of ray
density (defined by equation 2.21). Figure 3.11 shows the ray density of straight paths
followed by two example of normalised ray density computed at the final step for cubic
rays and eikonal rays respectively; the maps are normalised with respect to the straight
paths ray-density map. While in the case of eikonal rays it is easy to see that rays tend
to avoid the low velocity layer, the map corresponding to the cubic rays shows a high
density band crossing the layer that is not physically explainable.

3.4 Tomographic inversion with an Inhomogeneous
starting model

The objective of this section is to reproduce the experiment presented in chapter 6, in
which the samples are initially inhomogeneous. The sample is built with an inclined
layer of stiffer material and the loading produces an observed drop in the propagation
velocity in the material external to this layer. The original velocity field and the applied
velocity perturbation are shown in Figure 3.12. Note that in this example the edges of
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Figure 3.9: Ezample of data-based tomographies of the last step of velocity evolution using the
first file as reference (a)(d), of the first step of two files (b)(e) and the last step of two files
(c)(f). In the first line tomographies carried out using straight rays are presented and in the
second line tomographies carried out using SK.
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Figure 3.10: Original velocity field for the last step of velocity evolution (a) and relative data-

based tomographies carried out using straight rays (b), analytical SK (c), cubic rays (d), eikonal
rays (e) and numerical SK (f).
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Figure 3.11: Straight ray density, i.e., corresponding to an homogeneous velocity field, (a) and
the ratio between the cubic ray density (b) and the eikonal ray density (c) calculated for the last
step of the velocity evolution (Figure 3.10).

the heterogeneity are smooth (i.e., there is a velocity gradient and not a contrast).

3.4.1 Model-based tomography

When the sample is originally inhomogeneous it is essential to carry out a model-based
tomography for the initial stage, even when performing a data-based analysis.

Figure 3.13 presents two examples of model-based tomographies carried out using straight
rays as the propagation model. The two tomographies differ only in the initial velocity
value. In the first case the value coming from the fitting procedure has been used, while in
the second case the exact value of 2000 m /s has been employed to assure an homogeneous
background. It is shown that, as is intuitive, when a good initial value is chosen the result
presents less artefacts and the image is clearer; therefore, in the following, the exact
initial value has been used. When the correct background velocity value is unknown a
parametric study is necessary to find the best value (see section 6.3.1).

Although the inversion carried out using straight rays gives a good result, as shown in
Figure 3.13(c), the adoption of propagation models that take into account the physics
improves the tomography both in resolution and in absolute values (see Figure 3.14). In
particular, despite the eikonal rays providing in a better geometry, the use of cubic rays,
as in the previous example, seems to be the best approach.

Similarly to the previous example, the SK seem to give worse results than the rays even
though in this case the artefacts are less pronounced and more comparable to the artefacts
appearing in the ray cases. Figure 3.15 presents two example of tomographies carried out
using SK; the only difference between the two images is that to obtain the second one a
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Figure 3.12: original velocity field (a) and imposed velocity perturbations (b).
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Figure 3.13: Model-based tomographies of the starting velocity filed carried out using straight
rays as propagation model and the initial velocity value of 2162 m/s, which is the value found
by the fitting procedure (a) and of 2000, which is the background value (b).

54



3.4. TOMOGRAPHIC INVERSION WITH AN INHOMOGENEOUS STARTING MODEL

synt, 0001 synt, 0001
cubic eikonal
}\X =0.0015 Ay = 0.0015 € = 50 }\X = 0.0015 }\y = 0.0015 e =50
iteration 4 iteration 5
original velocily fisld mean error = 8.2081e-08 mean error = 5.9652e-08
; 2600
: 2500
; 2400
£ 2300 004
S 2
b= 5
< o 2200 2
X 2100
- 2000
1900 1900
9 I e 0 001 002 003 - 0 001 002 003 -
width (m) width (m) width (m)

(a) (b) (c)

Figure 3.14: Starting velocity field (a) and relative model-based tomographies carried out using
cubic rays (b) and eikonal rays (c).

weighting on the edges of the SK has been applied (see section 2.6.2). When the weighting
is applied the values inside the band are higher and closer to the original values, but the
cross artefact seems to be stronger.
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Figure 3.15: Starting velocity field (a) and relative model-based tomographies carried out using
SK without weighting on the edges (b) and with (c).
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SVD/MAP comparison

Figure 3.16 shows a comparison between tomographies carried out using the SVD (first
line) and the MAP (second line) inversion methods. The three images in each line differ
only in the grid size used to discretize the model: respectively, 3 mm, 1.5 mm and 0.75 mm.
The SVD method does not consider any link between neighboring cells so decreasing the
cell size causes the appearance of multiple structures, which minimize the residual error
although they are unreal. The smoothing parameters A, used in the MAP method, make
the model mesh independent, therefore decreasing the grid size increases the resolution of
the image without introducing any extra artefact. The size of 1.5 mm is preferred because
it gives the best compromise between a good resolution and a short computation time.

3.4.2 Data-based tomography

Once the starting velocity field has been recovered from a model-based tomography (see
previous section), the velocity perturbation presented in Figure 3.12(b) can be obtained
using data-based tomography. When the velocity field is strongly inhomogeneous, as
in this case, the use of a propagation model that takes it into account the background
velocity field can improve the result considerably. As shown in Figure 3.17, with straight
rays the values and the structure of the velocity changes is well reconstructed, but the
size of the band is overestimated. The use of cubic or eikonal rays results in a narrowed
and more realistic band, preserving a good estimation of the perturbation values. In
particular, with the eikonal rays the band is straight, homogeneous and very well defined.
The SK gives similar results to the straight rays in terms of thickness of the band, but
the values are not as well recovered and an extra structure is visible inside the band. As
for the model-based tomographies, when the weighting is applied (Figure 3.17 (e)) the
values are more realistic, but the edges can not be reconstructed.

Figure 3.18 presents the normalised ray density computed for cubic and eikonal rays.
In both cases the rays are concentrated inside the band for the reason that the higher
velocity makes the paths travelling in the band quicker.

3.5 Checkerboard analysis

To study the spatial sensitivity of the different propagation models used in the inversion
a checkerboard analysis has been performed. This analysis consists of using the equation

Av = MMAv (3.1)

to recover a velocity perturbation field Av, which is constructed as a checkerboard of high
and low velocity values, testing several grid sizes to explore the maximum resolution the
methods can achieve. The matrix M contains the dependence on the propagation model
and its inverse M1 is calculated using the MAP method.
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Figure 3.16: Comparison between SVD and MAP inversions carried out using a size grid for
the spatial discretization of 3 mm (a)(d), 1.5 mm (b)(e) and 0.75 mm (c)(f).
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Figure 3.17: Data-based tomographies carried out using straight rays (a), cubic rays (b),
eikonal rays (c) and SK without (d) and with (e) weighting on the edges and the original velocity

perturbation field (e).
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Figure 3.18: Straight ray density, i.e., corresponding to an homogeneous velocity field, (a) and
the ratio between the cubic ray density (b) and the eikonal ray density (c) calculated for the
starting velocity field.

The sensitivity of the inversion, beyond the dependence on the propagation model, de-
pends on the background velocity field. When the background velocity is homogeneous
there will not be any difference between straight, cubic and eikonal rays, in this case the
best resolution achieved is 6 mm; the corresponding result of the checkerboard analysis
is presented if Figure 3.19(a). It can be seen that the sensitivity is not homogeneous
and follows approximately the ray density (Figure 3.11(a)); the values of the velocity
perturbation are always underestimated, but acceptable.

For the case of SK, two checkerboard analyses are presented in Figure 3.19(b), without and
with the weighting on the edge. In the first case, the changes of velocity are concentrated
on the borders of the sample while in the second case they are more homogeneous. In the
two cases the best resolution is 4 mm and the structure of the resultant tomography is
similar (except at the edges).

When the starting velocity field is inhomogeneous, equation (3.1) can not be used to carry
out the checkerboard analysis of straight rays and analytical SK since the approximation
of the time delay At given by MAv is not realistic. Figure 3.20 shows the checkerboard
analysis performed using cubic and eikonal rays for an inhomogeneous velocity field. This
figure presents, in the first column, the initial velocity field, in the second column, the
checkerboard velocity perturbation field, which has a grid size of 6 mm in both cases,
and, in the last column, the resultant tomographies. The structure of the final images is
similar to the one obtained using straight rays (in a homogeneous field), but the images
are degraded, this implies that, when the background velocity is inhomogeneous, the
sensitivity is reduced.
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Figure 3.19: Checkerboard velocity perturbation map and inversion reconstruction obtained
using straight rays (a) and SK without and with weighting on the edges (b). Colourbars are not
presented since the absolute values of velocity perturbations are irrelevant.

3.6 Discussion and Conclusions

This chapter has presented a study of the processing of synthetic data using the methods
described in chapter 2. In the first part the capability of the data fitting procedure to
recover the geometric parameters has been explored, in particular the position of the
transducers, and the mean velocity value. When the velocity field is homogeneous, the
velocity value is always underestimated, but acceptable and the geometric parameters
are well evaluated. The presence of heterogeneities affects not only the derived velocity
value, but also the geometric parameters, especially the inclinations of the barrettes and
the sample width. Although the results obtained fitting all parameters are satisfactory,
fixing some geometric parameters improves considerably the estimation result. Therefore
it is strongly suggested to provide the inclinations of the barrettes and their relative
position, when it is possible to measure them.
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Figure 3.20: Starting velocity field, checkerboard velocity perturbation map and inversion recon-
struction obtained using cubic rays (a) and eikonal rays (b). Colourbars of velocity perturbations
are not presented since the absolute values are irrelevant.
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The second part of the chapter presented the analysis of an initially homogeneous sample
for what the sample was assumed tobe naturally homogeneous perturbed by an inclined
band of decreasing propagation velocity. The aim of this study was to reproduce the
behavior of a rock sample tested in triaxial conditions (chapter 5) or in plain strain com-
pression (chapter 7). for which the sample was assumed to be initially homogeneous.
Model-based and data-based tomographies have been carried out to reproduce the evo-
lution of the velocity field for these synthetic tests. The results suggest that data-based
tomographies produce images of higher quality, both in terms of absolute values and arte-
facts, except for the SK which generate stronger artefacts. The propagation models that
consider the physics of the wave propagation are expected to give in general better results;
this is the case for the cubic rays and the numerical SK, but not for the eikonal rays. A
possible explanation for this unexpected result is the structure of the heterogeneity, which
is characterized by a strong discontinuity and the ray tracing can only account for smooth
variations.
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When the starting velocity model is inhomogeneous (as in the case discussed in chapter
6) it is necessary to first perform a model-based tomography to estimate the background
velocity field before the subsequent velocity perturbations can be evaluated through data-
based tomographies. The case study presented in this chapter considers an homogeneous
model crossed by an inclined layer of higher velocity. The fields have been smoothed
to avoid the problem in the inversion due to strong discontinuities, which can not be
reproduced. In the inversion the model-based tomographies carried out using rays all give
good results, and an improvement is visible when cubic and eikonal rays are employed.
Conversely the SK fail in the estimation of the internal value of the layer. Another aspect,
highlighted in the presentation of the model-based tomography, is the importance of the
starting velocity value in the determination of a good result. This must be evaluated to be
as close as possible to the real one, otherwise the artefacts will be more significant. Data-
based tomographies show that, in the presence of strong heterogeneities, the propagation
models that do not take into account the velocity field, i.e., straight rays and analytical
SK, are not able to reconstruct properly the geometry of the perturbation, in particular
the thickness of the band. Cubic and eikonal rays provide a very accurate representation
of the velocity perturbation field. Moreover, it is shown that using a weighting on the
edges of SK improves the result, at least in terms of the absolute velocity value, although
the border of the model can not be reconstructed.

The two inversion methods, MAP and SVD, presented in chapter 2 have been compared.
Despite the first method requiring the choice of three parameters, as opposed to the SVD
that needs only one parameter, the MAP approach is preferred because it makes the
process mesh independent and provides a larger control to the user

The synthetic tests have also allowed the best inversion parameters (number of itera-
tions, damping and correlation lengths) to be determinated. The criterion of maximum
curvature has been applied to choose the best number of iterations in the model-based
tomography process. The tests on the synthetic data show this to be a good approach,
as it identifies the best trade-off between computation tima and model resolution. The
same criterion can be employed to determine the suitable ¢ damping parameter, but a
better value can be usally defined by visual check by the user. A parametric study has
been carried out to define the correlation lengths () and the grid size for the model. The
best parameters from these tests are used in most of the subsequent analyses, both in this
chapter and in the applications of Part II of this thesis, but they can vary depending on
the specific problem.

In conclusion, it can be stated that the inversion procedure presented in chapter 2 is
able to reproduce the propagation velocity field starting from the measured arrival times
and to estimate velocity perturbations, even though the recovered values are generally
underestimated. The resolution achieved depends on the propagation model used and on
the initial velocity field, as shown by the checkerboard analysis. Although the synthetic
tests seem to infer that ray theory has to be preferred, and therefore is used in the majority
of the applications of Part II of the thesis, in some cases SK can lead to preferable results.
This is the case for the example presented in chapter 7, which has been analysed using
all available propagation models and the best tomographies have been obtained using
SK. This result is probably due to the weighting on the edges, that seems to work better
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for that particular structure of the velocity perturbation, which is subvertical. It will be
interesting to test such a weighting on the edges for the rays; this has not yet been carried
out due to time constrains.
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Chapter 4

Complementary full field
measurements for experimental
geomechanics

4.1 Introduction

This chapter presents the complementary full field measurement techniques that have
been used in the the experimental analysis presented in the following chapters. This
thesis has focused on the implementation and development of ultrasonic tomography as
a technique to study the evolution of heterogeneous deformation and damage and the
approach has been fully described in part I. DIC and X-ray tomography have been used
as additional complementary tools in the experiments and so, for completeness, a brief
presentation of these techniques is provided in the following.

4.2 X-Ray Tomography

X-ray computed tomography (CT) is a non-destructive technique that allows visualiza-
tion and characterization of a scanned object in three dimensional space. The basis of
this technique is that an X-ray of a given intensity, passing through an object, will be
attenuated by the materials composing the object. This attenuation can be used to map
the internal structure of objects.

Transmission tomography is the most common and simplest X-ray tomography technique
and consists in measuring the X-ray attenuation by recording transmission through the
sample of interest (radiography) over a range of concentric rotation of the the object.
Mathematical "reconstruction” of the radiographies provides the spatial distribution of
the linear attenuation coefficient p in the object. The attenuation is due to a number of
physical interactions:

— compton diffraction;
— photoelectric absorption;
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— Rayleigh diffraction;

— pair production;

— photodisintegration.

Only the first three processes occur in the energy interval used in CT and mainly the

photoelectric absorption (for Energy < 100keV) and Compton diffraction (for Energy >
100keV). Thus the attenuation coefficient can be given as

A (4.1)
p=p |a I :
E"A Al 7
N~
Photoelectric Compton
absorption scatttering

where F is the X-ray energy, p is the mass density, Z is the atomic number, A is the
atomic weight and m,n,a and b are constants.

It is important to notice that p is function of the mass density p as well as of the atomic
number Z so it is possible to compare in density two different zones in the object only if
the atomic number is constant and moreover a change of the atomic number can cancel
the difference in density between two zones. However, if the energy is more that 100 keV
Compton scattering is predominant and p will depend mostly on the mass density, but
the contrast within the image will be lower.

In the following, the data acquisition and analysis are described broadly. Most of the
treatment presented is taken from Lenoir’s notes (Lenoir, 2008); for more details see
Baruchel et al. (2000); Desrues et al. (2006); Ketcham and Carlson (2001); Mees et al.
(2003); Otani and Obara (2004); Slaney and Kak (1988).

4.2.1 Data Acquisition - Scanner

An X-Ray scanner is composed of a source, a detector and a system for the multi-angle
measurements; the quality of the acquired data depends on many factors, briefly described
below.

There are three different types of scanner for X-ray CT: medical scanners, industrial /labo-
ratory scanners and synchrotron. The difference between the first two and the synchrotron
is the physical way of X-rays production and the different characteristics of the resultant
X-ray beam.

The characteristics of an X-ray beam are the energy, which determines the capacity of
the X-rays to go through matter, the intensity (photon flux), the convergence and the
size. The last three concur to the determination of “brilliance”. A high brilliance permits
focusing on very small samples, to have a monochromatic beam and a very short scanning
time. Generally only the synchrotron provides a high brilliance and a monochromatic
beam. Table 4.1 shows some characteristics for the different types of scanners. For
the purpose of this study, the most suitable scanner is the industrial/laboratory one as,
despite requires longer scanning times, it provides a higher resolution with respect to
medical scanners and it allows to scan samples of a few centimetres in size.
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Figure 4.1: X-ray CT scanner at Laboratoire 35-R

The X-ray acquisition in this work has been performed in the X-ray CT scanner at Lab-
oratoire 3S-R (see Table 4.2, Figure 4.1 and Figure 4.2). This is a multi-scale scanner
where the multi-scale function is achieved by a conic beam and adjustment of the distance
between the generator and the specimen and changing the spot size (from 5um to 50um).
The minimum spot size, which must be smaller then the smallest desired resolved area,
depends on the power supplied to the source. For this scanner the spatial resolution varies
from 5 pm? for a sample diameter of 4 mm to 220 um?® for a sample diameter of 210 mm.
This scanner is also multi-energy with an excitation voltage from 40kV to 150kV i.e.,
about 15 to 60 keV. In Table 4.2 the X-ray generator characteristics are summarised. The

acquisition and control is carried out by the software RX-act developed by RX-solutions®.

4.2.2 Data analysis - Reconstruction

The set of images (radiographies) acquired by the scanner at different angles has to be
processed to reconstruct slices that are 2D images of the attenuation at each height in
the sample. The software used for this work is DigiCT, developed by Digisens®.

The basic concept of the reconstruction analysis is schematised in Figure 4.3. Performing
the same procedure for a great number of images, corresponding to small rotation, it is
possible to reconstruct the slices in detail. The reconstructed slices are, subsequently,
analysed by image processing software (e.g., Image J), for example, putting all the 2D
slices together provides a 3D representation of the object.
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Medical Industrial Synchroton
X-ray tube Particle accelarator
Fan or cone beam Parallel beam
100-500 pm 10-100 pm 0.1-10 pum
dm cm mm
Seconds to min Min to hours Seconds to min

Table 4.1: Characteristics of different types of X-ray scanners (taken from Lenoir’s’ notes
Lenoir, 2008)

Microfocus enclosed tube

40kV to 150kV

0 A to 500 A

HOW

7m (10W) or 5m (4W)
20 m (30W)

50 m (7T5W)

43°

17mm behind the output window

Beryllium (200 m thick)

Table 4.2: Characteristics of X-ray scanner at Laboratoire 3S-R (Grenoble)
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Figure 4.3: basic concept of the X-ray reconstruction analysis (taken from Lenoir’s’ notes
Lenoir, 2008)

4.3 Digital Image Correlation (DIC)

The purpose of Digital Image Correlation (DIC) is to measure the displacement fields,
and eventually distortion and deformation fields, between pairs of images. This objective
is achieved through a software that tracks automatically regions through a series of digital
images. A number of papers have been published on the subject, see Hall (2012) for an
overview and references. During this work both 2D-DIC and 3D-volume DIC have been
carried out. The latter have been applied to X-ray tomographies performed pre and post
mortem, i.e., before and after the mechanical tests.

In this work 2D-DIC is applied to digital photographs of a side of a test sample taken
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during loading; it is obvious, therefore, that the sample must be visible. Furthermore,
in the simplest case of pictures taken by only one camera, only planar displacements
can be evaluated, whilst out of plane deformation can cause unrealistic features in the
correlation results. To avoid this problem J. Desrues developed (in Grenoble) a “biaxial”
apparatus, in which the sample is loaded in plane strain conditions, which are guaranteed
by two very thick glass platens; these platens also allow to take pictures of the surface
of the sample during the test. Moreover, particular attention must paid to place the
camera perpendicular to the sample’s surface. It is important to stress that DIC provides
displacements between two images, therefore the resultant map will be an incremental
field of the variable of interest (displacement or strain). The DIC presented in this work
are obtained using the code PhotoWarp, developed by S.A. Hall.

The general procedure for strain analysis adopted by most of DIC codes, and in particular
by PhotoWarp can be summarised in the following steps:

1. definition of nodes distributed over the first image;
2. definition of a region centred on each node (the correlation window);

3. calculation of a correlation coefficient for all 2D displacements of the correlation
window within an area (the search window) around the target node in the second
image;

4. definition of the discrete displacement (integer number of pixels), given by the dis-
placement with the best correlation;

5. sub-pixel refinement (because the displacements are rarely integer numbers of pix-
els);

6. calculation of the strains based on the derived displacements and a continuum as-
sumption.

The parameters involved in process such as the node distribution, correlation window size
and search window size are case dependent and must be optimized each time by testing
several values and analysing the results. For further details see Hall et al. (2010b) and
Hall (2012).

The DIC procedure does not require placement of specific markers on the photographed
surface although a clear fabric or texture must be visible across the sample. The specimens
tested during this work have been prepared to obtain a smooth white planar surface on
top of which fine black speckles have been painted. In a first stage, speckles were obtained
using a common spray of matt paint; afterwards an airbrush, which provided finer and
more regular speckles, has been used.

The photographs during the tests are acquired using a camera placed in front of the
sample, which is illuminated by two halogen lights (Figure 4.4). The camera employed
is a Nikon © D3 that, thanks to an integrated timer, can be set to take pictures at fixed
time intervals

DIC is commonly applied to photographs, but can be applied, in principle, to any 2D
and 3D repeated images of an object. In particular, if samples are scanned in a X-ray
tomograph (see previous section) before and after the test, the 3D volumes obtained
by X-ray tomography can be correlated to provide a 3D displacement field and, thus,
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Figure 4.4: Experimental set up used to take pictures of the sample during the loading including
the lighting and camera required to take the photographs used to carry out 2D-DIC.

the full strain tensor field. The procedure does not change with the dimensions of the
image, the main challenge being the increase of the computations due to the tremendous
increase of the number of correlations and search operations to be performed. Here all
the test samples have been scanned in the X-ray scanner before and after the mechanical
tests. These images have been analysed by 3D—volume DIC (with the code TomoWarp,
developed by S.A. Hall) to provide the full 3D vector displacements and 3D tensor strain
fields.
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Chapter 5

Natural Rock

This chapter presents the application of ultrasonic tomography and X-ray tomography
to image samples of natural rock tested under triaxial compression. The rock used in
this study is a sandstone coming from the Vosges mountain in France. The objective
of this study is to explore the capability of the ultrasonic tomography to reproduce the
localisation of deformation. Since it is not possible to install the ultrasonic transducer
array inside the triaxial cell, the wave acquisitions have been carried out before and after
the mechanical test. The acoustic analysis is a part of a larger study, to characterise the
rock behaviour, carried out by Charalampidou (2011). The ultrasonic analyses, ran as
part of a study by E.M. Charalapidou, have been revisited using the procedure described
in chapter 2 to check the improvements provided by the new processing algorithms. In
the next secton the experimental methods are presented, followed by a brief description
of the tested material. In the last part of the chapter the full field results are presented
and discussed.

5.1 Experimental Methods

5.1.1 Triaxial test

The triaxial device at Laboratoire 3SR is a Bishop & Wesley-type stress path triaxial cell,
which can be used for automated stress or strain control tests. The maximum confining
pressure applicable is 60 MPa and the deviatoric stress can go up to 270 MPa. A schema of
the triaxial apparatus is shown in Figure 5.1. Local axial and radial strain can be measured
using strain gauges glued directly onto the membrane that jackets the specimen. Four
identical independent pressure-volume controllers supply four different pressures (i.e., the
deviatoric stress, the confining pressure, and the top and bottom pore pressures). During
these experiments, only the deviatoric stress and the confining pressure were recorded
since the samples were tested dry. All triaxial compression tests were performed under
strain control, at a constant rate of axial displacement. Further information on this
triaxial apparatus can be found in Bésuelle et al. (2000).
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deviatoric
pressure

i bottom internal top internal j

pressure pressure

Figure 5.1: Schematic of the triazial cell: (1) lower cell, (2) specimen, (3) upper cell, (4) self-
compensated load piston, (5) deviatoric pressure chamber, (6) bolts, (7) neoprene membrane, (8)

load caps, (9) enlarged platen, (10) internal tight connectors, (11) steel sheath. (Bésuelle et al.,
2000)

5.1.2 Ultrasonic Tomography

Ultrasonic waves were emitted and acquired using two barrettes of 64 transducers, each
transducer being 0.75 mm high and about 20 mm wide, the characteristic frequency of the
transducers is 1 MHz. Two scans have been performed, shifting the barrettes vertically, to
cover the entire height of the samples. The transducer arrays were held by hand during
the acquisitions, which take only few seconds. Samples were scanned before and after
the triaxial tests; the objective being to compare the two acquisitions to obtain velocity
changes. However, the comparison is not feasible since it was not possible to assure that
the positions of the barrettes were exactly the same in the two scans. Therefore, the
uncertainties on the transducers positions make it impossible to separate the travel time
changes due to velocity perturbations from those due to the change in placement of the
barrettes. In this work only data acquired after the mechanical test are presented.

5.1.3 X-Ray Tomography

The studied sample was scanned in the Laboratoire 3SR X-ray tomograph before and
after the mechanical test. To obtain an image of the complete sample it could not be
placed close to the X-ray source due to the geometry of the system (see section 4.2.1).
The closest distance that allows the full sample to be imaged provides a voxel size in the
reconstructed tomographies of 50 x 50 x 50um?3. The sample was also scanned, after the
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Figure 5.2: Deviatoric stress and volumetric strain versus axial strain in compression tests
(Bésuelle et al., 2000).

mechanical test, at a higher resolution, about 30 pum voxel width, zooming on the central
part.

5.2 Material - Vosges sandstone

The Vosges sandstone is a poorly cemented rock with a porosity of 22% and main grain
dimension of 300 pum. Figure 5.2 presents the stress-strain response of triaxial compres-
sion tests, conducted under a variety of confining pressures (from 0 to 60 MPa), on dry
cylindrical specimens. These results have been obtained by Bésuelle et al. (2000) who
commented that the onset of localised deformation was detected before the peak stress.
The orientation and the complexity of the bands depended on the applied confining pres-
sure. They also indicated that from 0 to 10 MPa confining pressures, axial splitting took
place, for 10 and 30 MPa one or two parallel shear bands developed in specimens, and
from 40 to 60 MPa conjugate shear bands were formed. The authors suggested that the
confining pressure increase resulted in an increase in the inclination angle of the band
towards the major imposed principal stress direction, an increase in the number of shear
bands, and a decrease in the distance between them (Figure 5.3).
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Figure 5.3: Observed shear band patterns versus confining pressure for compression test with
H/D = 2 and 1. The angle of the bands with respect to the major principal stress increases with
the confining pressure, and bands become more and more numerous and close (Bésuelle et al.,
2000).

5.3 Results

In this section the results obtained using full field techniques on the triaxial test specimen
are presented. Since neither the acoustic nor the X-ray data can be acquired during
the mechanical test the full field measurements are only available before and after the
loading. To allow the barrettes to be placed in contact with the scanned specimen, a
standard triaxial sample (diameter of 38 mm and height of 78 mm) has been cut to
obtain two parallel flat vertical surfaces 2 cm wide. Moreover, to force the deformation
to localise in the middle of the sample, two notches have been formed on the flat surfaces
(see Figure 5.4). The angle formed between the notches has been chosen to respect
the natural inclination of deformation band at a specific confining pressure. All data,
used to carry out the analysis presented herein, have been acquired by Charalampidou
(2011) during her PhD. Samples were tested at several confining pressures; however,
only samples tested under a confining pressure of 50MPa are considered here. These
samples have been sheared to reach different strain levels, to simulate the steps of the
strain evolution. Table 5.1 summarise the available data and the final strain for each
tested sample. Figure 5.5 shows the stress-strain response of the samples under triaxial
compression (Charalampidou, 2011). In the following the analysis carried out on sample
VEC4 is detailed.

5.3.1 VEC4

Ultrasonic Tomography
A first tentative of ultrasonic tomography analysis, on Vosges sandstone, has been carried

out by S.A. HAIl, E-M. Charalmpidou and L. Restaino at Laboratoire 3SR which mo-
tivated the present work (see Charalampidou, 2011; Hall and Tudisco, 2012; Hall et al.,
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Figure 5.4: Sketch of triazial sample geometry. Two vertical parallel flat surfaces are realised
to assure the contact between the acoustic transducer arrays and the sample. Two notches force

the localisation of deformation to occur in the middle of the sample. (Charalampidou, 2011).

VLRO X X 1.24%
VEC1 X 1.15%
VEC4 X X X 1.55%
VECS X X X 1.28%

Table 5.1: Summary of tested samples with information on available data and final global strain

level.
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Figure 5.5: Stress-strain response from specimens loaded under 50 MPa confining pressures.
Stress deviator is plotted versus global axial strain. Specimens were taken to different axial strain
values. (Charalampidou, 2011).

2007; 2010a; Hall, 2009; Restaino, 2008). During the precedent analysis the travel time
picking was carried out with the aid of a picker based on the Akaike Information Criterion
(AIC) (see Kurz et al., 2005). This method is not precise and required the user to visually
control every selected time and eventually modify it by hands; this procedure introduces
an user depended error that reduces the confidence on the data. A first improvement
to this procedure was introduced by Tudisco (2009). Further improvements are possible
through the application of the DBF approach described in chapter 2, as presented in the
following.

Time delay maps Figure 5.6 shows two time delay maps, with respect to a homoge-
neous field. The first data-set was obtained by E.M. Charalapidou, using the AIC picking,
while the second one has been obtained using the procedure described in section 2.5 on
signals processed by DBF. The new procedure allows the analysis of more signals, thanks
to the improved signal to noise ratio and the separation of different arrivals. This effect
is particularly visible in correspondence with the notches (placed at a height of about 5
cm at the source side and about 3 cm at receiver side). Moreover in the previous picking
all signals emitted by the transducer placed above 3.3 cm and received by the transducers
placed below 3.4 cm, as well as the waves propagating in the top part of the sample, could
not be analysed. The new procedure provide a much smoother, structured. and defined
time-delay map that confirm the data are more reliable.

Model-based tomography Figure 5.7 shows the 0-offset velocity profile and two
model-based tomographies obtained using the travel time picked with the AIC method.
The first inversion has been carried out using a code, implemented by S.A. Hall, based
on the least square method; the regularisation consisting of control of the local gradient
(see Santamarina and Fratta, 2006). The second tomography has been obtained using
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Figure 5.6: Time delay maps corresponding to time picking performed with AIC picker (a) and
the procedure developed in this work (b).

the procedure described in chapter 2. The tomographies display the same structure; the
new inversion process, however, produces a smoother image. Furthermore, the artefacts
seem to be reduced.

In following part of this section the results obtained following the new procedure (picking
plus inversion) are presented. It must be underlined that in this new analysis only 32 x 32
travel time data are used in the inversion (discarding every other transducer), while the
complete set of signals have been used in the DBF process. The use of a reduced set
of data in the inversion allows decreasing the computational time. Moreover, since the
wavelength of propagating waves is about 3 mm, information provided by transducers
spaced 0.75 mm is probably redundant. However, the very rich original set of data can
be useful in DBF analysis. Figure 5.8 shows some examples of model-base tomographies
carried out using different values for the starting velocity. Based on a visual analysis the
best value for the background velocity seems to be 2600 m/s since it better capture the
velocity inside the material surrounding the low velocity areas.

The choice of the ¢ parameter has been guided by the trade-off curve shown in Figure 5.9.
The correlation lengths A, and A, have been set, in a first stage, to 1.5 mm as suggested by
study on synthetic data. A parametric study, presented in Figure 5.10 shows that, in this
particular case, a value of 6 mm is more appropriate. Furthermore, for such correlation
lengths, a value of 50 for the £ parameter seems to high, since the result is too smooth,
thus a value of 20 has been selected. This choice is confirmed by the new trade-off curve
(Flgure 5.11).

The correlation lengths A, and A, have been set, in a first stage, to 1.5 mm as suggested by
the study on synthetic data (see section 3.3.1). A parametric study, presented in Figure
5.10 shows that, in this particular case, a value of 6 mm is more appropriate. Furthermore,
for such correlation lengths, a value of 50 for the € parameter seems to high, since the
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Figure 5.7: 0-offset velocity profile calculated from the time data set in Figure 5.6 (a) and
the corresponding ultrasonic tomographies carried out using the inversion method impemented
by S.A Hall (Charalampidou, 2011) (b) and the procedure developed in this work (c).
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Figure 5.8: Parameiric study to guess the background velocity value. Model-based tomographies
carried out using straight rays as propagation model and the initial velocity value of (a) 2276

m/s, which is the value found by the fitting procedure, (b) 2500 m/s, (¢) 2600 m/s, and (d) 2700
m/s.

82



5.3. RESULTS

VEC4 0001

straight
g, = 0.0015 . = 0.0015

9 [ —
8 - —
? - —
6 - —
g s |
c
=
Sar .
2
3 - —
il .
21 - 5 B
1k * =50 f‘ -
* £=200
ol 00
0.01 0.02 0.03 0.04 0.08
misfit

Figure 5.9: Trade—off curve for straight rays and correlation lengths A\, = Ay = 1.5 mm.
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Figure 5.10: Model-based tomographies carried out using straight rays as propagation model,
= 50 and correlation lengths Ay = Ay = 1.5 mm (a), Ay = Ay =3 mm (b), Ay = Ay =6 mm
(¢c), and Ay = Ay = 6 mm and e =20 (d).
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result is too smooth, thus a value of 20 has been selected. This choice is confirmed by the
new trade-off curve (Figure 5.11).

Figure 5.12 presents the inversion results, obtained using different propagation models.
Resulting images are very similar, therefore it can not be clearly stated which model gives
the best result in this case. The eikonal rays, however, provide a slightly better defined
band and reduced high velocity artefact at the top left, hence it has been preferred.
Beside a average velocity shift of about 400 m/s, the main differences between this set of
tomographies and the tomographies carried out using the AIC-picked data are reduced
high/low artefacts at the top and bottom, and that, with the new procedure, beside
the low velocity band observable between the notches, two more bands are visible. The
band starting from the top notch is well formed and reaches the top boundary of the
sample, while the band starting from the bottom notch is less well defined. The central
band, however, seems to be less defined than in the previous (with the AIC-picked data)
inversion; a possible explanation could be excessive smoothing by both the DBF and the
correlation lengths. Another reason can be the strong velocity discontinuity occurring at
the notches. As shown for other similar samples, in this kind of situation the waves are
split and two wave fronts are registered (see Figure 2.10). Considering multiple arrivals
could be helpful in this situation. The difference between the tomographies obtained using
the two data sets might also be due to the smaller number of transducers used. Despite
32 transducers seeming to be sufficient to achieve a good result, this hypothesis must be
validated by testing the inversion using the whole set of data.

A further proof of the problematic situation close to the notches is given by the ray density,
calculated for cubic and eikonal rays; Figure 5.13 shows the normalised ray densities and
the ratios between curved ray densities and straight ray density. In both cases a lack of
raypaths is clearly visible in the regions of the notches. The good agreement between
the ray densities calculated for cubic and eikonal rays, suggests that the eikonal tracing
can reproduce well the take off and arrival angles measured by DBF; on the other hand,
this indicates that the hypothesis of cubic paths is not so far from the reality. It must be
noted that the velocity gradients are quite large, especially in the region of the notches,
and so perhaps the resolution of the current approach is not able to fully capture such
gradients.

Figure 5.14 presents a preliminary result obtained using Sensitivity Kernels based on
Green’s functions calculated numerically. The tomography obtained at the first iteration
is similar to the tomographies obtained using the other propagation models (the artefacts
on the right middle part are due to choice of the inversion parameters). Based on the
velocity field recovered at the first iteration the wave propagation is simulated to calculate
the Green’s functions and thus the SK for the inhomogeneous field (see section 2.6.2). The
second iteration has not been carried out because of technical problems in the updating
of the modelled travel times. The figure shows, however, that the procedure is place even
though a further effort is needed to reach the benefit of the updated propagation model.
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Figure 5.11: Trade—off curve for straight rays and correlation lengths A, = Ay = 6 mm.
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Figure 5.12: Model-based tomographies carried out using straight rays (a), cubic rays (b),
etkonal rays (c) and 2D-SK (d) as propagation model.
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Figure 5.14: Model-based tomographies carried out using numerical SK as propagation model
(a) and SK-numericl “raydensity” calculated for this velocity field.
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Figure 5.15: Vertical slices of X-ray tomography carried out after the mechanical test for low
resolution (a), and its variance (b), and high resolution (Charalampidou, 2011) (c) scans.

X-Ray Tomography and 3D-DIC

This section presents examples of X-ray tomographies carried out on the localised sample.
The results of 3D-DIC, correlating the volumes representing the sample before and after
the mechanical test, are also exposed. Figure 5.15(a) shows one slice, selected in the
middle of the sample, of the low resolution X-ray tomography carried out after the triaxial
test. From this image the localised deformation is not clearly visible, except for two
small fractures starting from the notches. Note that these fractures will represent strong
discontinuities in the velocity field (in fact the waves will probably not propagate across
them), which might explain some of the difficulties in the ultrasonic data analysis in
these regions. Therefore, some filters (variance and gaussian blur) have been applied to
enhance the contrast in the image (Figure 5.15(b)). Despite the effort done to improved
the visualisation, only one deformation band is visible, the main one in the centre, and
this is only barely discernible. To the contrary, in the high resolution X-ray tomography,
a slice through which is presented in Figure 5.15(c). Three bands are clearly visible, the
main one in the centre and two bands heading towards the ends of the sample from each
notch; of these the upper one seems more developed, although does not seem to extend
far, and the lower one only appears to exist close to the notch. This resolution allows also
the visualisation of the internal structure of the band. The localised deformation appears
as a more homogeneous and denser band.

The volume strain and the shear strain resulting from 3D-DIC are shown in Figure 5.16.
The two images are obtained by calculating the median of all the vertical slices, which
gives, in some way, an image comparable to that seen by the ultrasonic waves. The volu-
metric strain shows that the central band is compactant, as is expected at this confining
pressure. Around the band, however, a wide zone of “relative dilation” is visible i.e.,
a zone which is less compacted than the rest of the sample, suggesting that it initially
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Figure 5.16: Average volumetric (a) and shear (b) strain fields from 3D-DIC.

underwent the same compaction as the rest of the rock but then experienced dilation
when the deformation localised to give a net reduced compaction. This could indicate
that the localised damage zone is larger than the central compacted zone (although the
mechanisms are likely to be different, the effect in both cases will be a reduction in the
ultrasonic wave propagation velocity). The top band can not be clearly distinguished
while the bottom bands is not visible. The shear strain shows a much more localised
phenomenon, in which the structure shown in Figure 5.15(c) can be recognised. In this
image the top band is well defined and it can be seen that it reaches the top boundary of
the sample. The bottom band is not really visible in this image.

Comparison between ultrasonic tomography and X-Ray Tomography / 3D-
DIC

The best result obtained with the ultrasonic tomography (obtained using eikonal rays as
propagation model, correlation lengths A, = A, = 6 mm and ¢ = 20) has been overlapped
to the high resolution X-ray slice to check the quality of the reconstructed geometry of
the velocity field (Figure 5.17(a)). It can be seen that the inclinations of the three bands
are well reproduced and that the intensity of the velocity anomalies are proportional to
the deformation occurred, i.e., the central band, which is well formed, produces a lower
velocity zone while the bottom band, which only started propagation from the notch,
is represented by a lower contrast respect to the background velocity. A superposition
of images has also been carried out between the ultrasonic tomographies and a slice of
shear strain volume in which the three bands are visible (Figure 5.17(b)). This analysis
(Figure 5.17(c)) confirms the good performance of the ultrasonic tomography in terms
of the inclinations reproduction. The comparison between ultrasonic tomography and
volumetric strain (Figure 5.17(d)) suggests that the wide low velocity anomaly can be

88



5.4. CONCLUSIONS

VEC4 0001 VEC4 0001 VEC4 0001
eikonal eikonal eikonal
AX = 0.006 Ay =0.006 =20 AX = 0.006 Ay =0.006 €=20 AX = 0.006 Ay =0.006 €= 20

iteration 3 iteration 3 iteration 3
mean error = 2.7345e-07 mean error = 2.7345e-07 mean error = 2.7345e-07

2700 2700
2600 2600
2500 2500
2400 2400
2300 2300

2200 2200

shear

2100 2100

£ [ 2000 2000

1900 1900

1800 1800

1700 1700

0
0 001 002 003
width (m) width (m) width (m) width (m)

() (b) (c) (d)
Figure 5.17: Average volumetric (a) and shear (b) strain fields from 3D-DIC.

0 0
0 0.01 002 003 0 001 002 003

0
0 001 002 003 s

m/ls

mls

related to the relative dilations occurring outside the band and indicates that there is
damage associated with this dilation.

5.4 Conclusions

This chapter has presented the results obtained using full field measurements on a natural
rock containing localised deformation features. In particular, a sample deformed under
triaxial compression has been analysed using ultrasonic tomography, X-ray tomography,
and 3D-DIC. The ultrasonic tomography has been carried out using travel times picked in
a previous work (Charalampidou, 2011) and with both the inversion procedure developed
by S.A. Hall and the new procedure developed during this work. The resulting images
display a well formed band of low velocity between the notches. The new procedure
provides smoother images and smaller artefacts. The travel times have also been repicked
using the DBF method developed during this work. The new set of data appears more
reliable since the associated map shows a smoother and more defined structure. The
ray coverage has also been improved. The different propagation models do not seem to
provide significantly different results; the eikonal rays, however, are preferred since they
minimize the artefacts. In the ultrasonic tomographies carried out using this set of data
two extra bands are visible. The presence of these two bands, extending from the notches
to the top and bottom boundaries of the sample, is confirmed by the high resolution
X-ray tomography. To appreciate the localised deformation in the low resolution X-ray
tomography it is necessary to manipulate the image, but this manipulation still only
reveals the central band. 3D-DIC between the volumes representing the sample before
and after the mechanical test has also been performed. From the volumetric strain it can
be inferred that the band is compactant, as expected at this confining pressure, and there
is also relative dilation around the band. The shear strain shows the three bands and
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indicates that the top band extends until the upper boundary of the sample, as shown
by the ultrasonic tomography. A comparison between the two techniques confirms the
good quality of the reconstructed geometry of the velocity field and the good accordance
between velocity anomaly values and the deformation level. Further work to improve
the ultrasonic tomography results in this material should involve the implementation of
multiple arrivals in the inversion as well as detailed study on the number of transducers
to be used in both DBF and inversion processes. The use of numerical Sensitivity Kernels
also help to achieve a higher resolution.
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Chapter 6

Rock sample with a known geometry

This chapter presents a case study carried out on samples of natural rock in which an
inclined layer of cemented soil has been introduced. The aim of this analysis is to study
the resolution of the ultrasonic tomography in a simplified situation in which the geometry
of the problem is known. In fact, during the loading the deformation is expected to occur
only inside the layer while the two parts of rock behave like rigid blocks; the layer being
expected to be weaker than the rock. In the first section, the experimental methods used
during the study are introduced then the material and the sample preparation procedure
are described. The last part of the chapter is dedicated to the presentation of the results
obtained using the different techniques.

6.1 Experimental Methods

6.1.1 Plane strain compression test

The plane strain compression tests were carried out using the apparatus at the Laboratoire
3SR in Grenoble. This apparatus, developed by Desrues during is thesis (Desrues, 1984)
allows pictures to be taken of the surface of a sample while it is loaded in plane strain
conditions, a sketch of the device is shown in Figure 6.1. Two transparent rigid walls, 50
mm thick, prevent displacements, and so strain, to occur in the direction perpendicular
to the photographed surface. Within these walls a 35 mm thick prismatic specimen is
mounted, surrounded a membrane if confining pressure is applied. Conforming to the
conception of the apparatus, the size of tested samples in the plane of deformation can
vary in the ranges of 75-350 mm and 90-175 mm of height and width respectively. During
this work smaller specimens had to be used since preliminary tests suggested that the
ultrasonic waves would not propagate through more than 3-4 cm of the study material;
the size of the tested samples is 35 x 35 x 70 mm?. The top platen is free to rotate and
to slide horizontally, in the plane of deformation, to follow the displacement of the upper
portion of the specimen, in case strain localisation occurs during the deviatoric loading.
All the surfaces of the sample in contact with the machine are lubricated with a mixture
of grease and vaseline. The apparatus is equipped with a large cell that surrounds the
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Figure 6.1: Schematic of the “biazial” cell (Desrues and Viggiani, 2004).

specimen and can be filled with silicone oil to apply a confining pressure. The cell has 4
large Plexiglas windows, parallels to specimen surfaces, which allow the direct observation
of the specimen during the test through this confinement cell. However, all the tests
carried out during this work have been performed without confining pressure. In fact,
for the last set of experiments the cell was replaced with a tripod supporting the loading
system; this configuration facilitates the set up of the experiments, as it allows the plane
strain device to be used without removing the pressure cell (by the overhead crane: see
Figure 6.2). A screw jack, which rests on top of the device, applies a strain—controlled
axial loading with a speed of 6 pum/minute. The vertical displacements of the top platen
are measured by an LVDT while the axial load is measured by an internal load cell. Data
acquisition is carried out with a process interface unit linked to a computer.

Barrette-holding device

To acquire acoustic data during the loading the transducer array “barrettes” have to been
held in place by a support. A device has been designed during this work for this purpose.
Figure 6.3 shows a schematic representation of the designed pieces, integrated into the
pre-existing configuration, plus a detail of the barrettes housing. The new pieces include
a wide support, that is placed between the base and the bottom platen, in which two
vertical supports are fixed; the barrette housings are themselves fixed to these vertical
supports. The horizontal position of the supports and the vertical position of the barrettes
housings are adjustable. Four springs are placed between each barrette and its housing to
assure the contact with the sample throughout a test, even with sample displacements.

6.1.2 Ultrasonic Tomography

Ultrasonic waves were emitted and acquired using two barrettes of 32 transducers element
each transducer being 1.5 mm high and about 15 mm wide, the characteristic frequency of
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(b)

Figure 6.2: Set—up of the sample inside the “biaxial” apparatus including a preliminary version
of the barrette-holding device (a), placement of the pressure cell (b) and the tripod supporting
the loading system used when no confining pressure is applied (c).

(a) (b)
Figure 6.3: Design of the barrette-holding device (a) with a details of the barrette housing (b).
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the transducers is 0.5 MHz. A complete set of ultrasonic data was obtained about every
45 seconds, which is the time needed to acquire and download the data. The acquisition
system was connected to a computer that allowed the data acquisition to be monitored
during the test.

Based on the insight gained from the synthetic data test (section 3.4), ultrasonic tomo-
graphies have been carried out using eikonal rays as propagation model, a grid size of 1.5
mm, and correlation lengths of 1.5 mm. The ¢ parameter and the starting velocity value
are, conversely, adapted to the particular case.

6.1.3 Photo set up for DIC

High resolution pictures of the surface of the sample were taken during loading. The
Nikon D3, camera that was used allows pictures to be taken at fixed internals thanks
to an internal timer. During the tests presented in this section, photographs were taken
every two minutes. The square image pixels with this set up are about 19um wide and
each image was 6080 x 4044 pixels.

6.1.4 X-Ray Tomography

Every tested sample was scanned in an X-ray tomograph before and after the mechanical
test. To obtain an image of the complete samples they can not be placed close to the X-
ray source due to the geometry of the system (see section 4.2.1). The closest distance that
allows the full sample to be imaged provides a voxel size in the reconstructed tomographies
of 50 x 50 x 50um?. One sample was scanned after the test with 7 um voxel width by
performing a local tomography.

6.2 Material and sample preparation

Samples were prepared by cutting a prismatic block of rock so that the edges formed
on the front and back surfaces are inclined of 45° while the edges formed on the lateral
surfaces are horizontal as shown in Figure 6.4(a). The two resulting blocks are then
placed in a mold with a square section of 35 mm per side and height of 70 mm. Since the
objective was to create a layer of cemented soil between the two blocks the initial block
of rock is shorter than the mold, while its section matches the mold section. The void
between the two blocks is filled by a mixture of Hostun HN31 sand, cement, and water,
the proportion between cement and sand being 0.5 while the water was added until the
paste assumed a adequate consistency. To improve the cohesion between the rock and the
cemented soil the rock surfaces were impregnate by a product made for the purpose. Two
thicknesses for the layer were realised: 5 mm and 10 mm. The rock used in the specimens
is the Fontainebleau sandstone, the mechanical behaviour of which is described elsewhere
(Bésuelle et al., 2000).

Figure 6.4 shows a vertical slice through an X-ray tomography (b) and the median of all
vertical slices (c) from before loading. It can be seen that the layer is composed by a more
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density

(a) (b) (c) (d)

Figure 6.4: Ezample of blocks of rock used to prepare samples (a). X-ray tomography images
from before loading: a vertical slice from the centre of the sample (b), the median of all vertical
slices (c¢) and a vertical slice, close to the centre of the sample, showing a defeat in sample
preparation (d).

porous material but is on average more dense and that the interfaces between the rock
and the cemented soils are characterized by a thin very dense layer but slightly open to
bottom-left. Despite the careful attention paid during the preparation the mixture of soil
and cement was not perfectly distributed as can been seen in Figure 6.4(d).

6.3 Results: plane strain compression test with full
field measurements

This section presents the results obtained using full field measurements technique on tests
carried out in plane strain conditions. In Table 6.1 the samples tested are presented; the
table also provides information about the available data and the thickness of the included
layer. The loading curves obtained during the plane strain compression tests are shown
in Figure 6.5. Samples having a thicker layer, grey lines, show a lower stiffness than
samples with a thinner layer, black lines. Tests have been interrupted when the loss of
registered acoustic signal was significant, 7.e., probably well before reaching the peak. In
the following the results obtained for the sample FLET03 (bordered in red) are presented.

6.3.1 FLETO03

Ultrasonic Tomography
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i:ﬁgle ac qz?s‘;(teion photos X-ray pre X-ray post thiili[rell;ss
FLETO1 X X X X 5 mm
FLETO02 X X X X 10 mm
FLETO03 X X X X 5 mm
FLETO02 X X X X 10 mm

Table 6.1: Summary of tested samples with information on available data and cemented soil
layer thickness
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Figure 6.5: Stress-strain response of samples test in plane—strain compression. Axial stress is
plotted versus global axial strain.

0-offset velocity profile A first, rapid analysis of the ultrasonic data can be achieved
by analysing just a subset of the full dataset in terms of the total propagation time,
i.e., without reconstruction. Due to the 2D nature of this test a logical set of data for
this initial analysis are the “zero-offset” horizontal paths. A profile of average velocities
can be caleculated simply dividing the sample width (the first order assumed travel path)
by the arrival times corresponding to facing transducers; this profile is named “0-offset
velocity profile”. The 0-offset velocity profile is an useful tool to check the quality of the
measurements, in addition to the full time maps, but unlike the latter it contains less
information and is thus easier to interpret. Moreover, this approach allows to show the
velocity evolution through time based on the simplifying assumption of straight raypaths.
In Figure 6.6(a) a selection of 0-offset velocity profiles are presented; the figure also shows
the loading curve, in which the loading increment of each profile is highlighted. Figures
6.6(b) and (c) present the evolution of the 0-offset velocity profile and its changes, with
respect to the start, for the entire duration of the test (the vertical white line indicates one
acquisition file for which it was not possible to analyse the data). It can be seen that the
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velocity decreases with the loading but the velocity perturbations are not homogeneous
throughout the height of the sample. Despite the 0-offset velocity profile suggest an
inhomogeneity of the sample it is impossible from this simplified analysis to recover the
intrinsic geometry of the specimen.

Time maps Figure 6.7 shows the time map for the file 70 and the time delay maps for
file 110, 150, and 190 relative to file 70. During the first step only minor velocity changes
occur, as can be seen also from the 0-offset velocity profiles. In the step 150-70 a the red
zone to the left indicates an increase of travel time, and thus a low velocity perturbation,
located close to the bottom of the receiver barrette. In the last step the velocity pertur-
bation has propagated through the full specimen, moreover there is a significant loss of
acoustic signals, i.e., the amplitude of the registered signals is too low to allow the time
picking.

Model-based tomographies Figure 6.8(a) shows an example of model-based tomog-
raphy for the file 70, the 0-offset velocity profile obtained from measured and modelled
travel times, and the input data in the form of time delay map with respect to a homo-
geneous velocity field, the value of the constant velocity is 2640 m/s as determined by
the parameter fitting procedure. The tomography in Figure 6.8(a) is affected by a strong
cross artefact enhanced by the the data. The blue spot in the top left of the time map
corresponds to a high velocity anomaly inclined in the same direction as the artefact.
In fact, all data corresponding to the first two receivers and the last two sources seem
inconsistent, especially if the time delay map is compared to the one presented in Figure
2.13(c), which corresponds to the same geometry. These data have been removed and
the analysis repeated. The inversion result obtained using the new data set, presented in
Figure 6.8(b), shows that the cross artefact disappears. Therefore the analyses presented
in the following have been carried out using the reduced input data.

It is important to note that the layer of cemented soil results in a high velocity band.
This implies that the 