N

N

Contréle des applications fondé sur la qualité de service
pour les plate-formes logicielles dématérialisées (Cloud)
Ge Li

» To cite this version:

Ge Li. Controle des applications fondé sur la qualité de service pour les plate-formes logicielles
dématérialisées (Cloud). Informatique mobile. Université Grenoble Alpes, 2015. Francais. NNT:
2015GREAAQ18 . tel-01204770

HAL Id: tel-01204770
https://theses.hal.science/tel-01204770

Submitted on 24 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-01204770
https://hal.archives-ouvertes.fr

UNIVERSITE GRENOBLE ALPES

THESE

Pour obtenir le grade de

DOCTEUR DE L’'UNIVERSITE GRENOBLE-ALPES
Spécialité : STIC Informatique

Arrété ministériel : 7 aolt 2006

Présentée par

Ge LI

Thése dirigée par Patrice MOREAUX
codirigée par Frédéric POURRAZ

préparée au sein du Laboratoire d'Informatique, Systémes,
Traitement de I'information et de la Connaissance (LISTIC)
dans I'Ecole Doctorale Sciences et Ingénierie des Systémes
de I'Environnement et des Organisations (SISEO)

Contréle des applications fondé
sur la qualité de service pour
les plate-formes logicielles
dématérialisées (Cloud)

Thése soutenue publiquement le 21/07/2015,
devant le jury composé de :

Mme. Frédérique Laforest

Professeur, Université Jean Monnet, Rapporteur

M. Jean-Marc Menaud

Professeur, Ecole des Mines de Nantes, Rapporteur

Mme. Tatiana Aubonnet

Maitre de conférences, CNAM Paris, Examinateur

M. Bruno Dillenseger

Docteur, Orange FranceTélécom R&D, Examinateur

M. Patrice Moreaux

Professeur, Université Savoie Mont Blanc, Directeur de thése
M. Frédéric Pourraz

Maitre de conférences, Université Savoie Mont Blanc, Co-Directeur de thése

Acknowledgement

I really enjoy my three years scientific research experience in such a beautiful environment. I
gain not only knowledge, but also friendship here.

I would like to thank Prof. Frédérique Laforest and Prof. Jean-Marc Menaud for helping
me to improve my thesis.

I would like to thank Dr. Bruno Dillenseger for being part of my thesis committee and help-
ing me patiently during the experiment.

I would like to thank Assoc.Prof. Tatiana Aubonnet for being part of my thesis committee
and contributing towards the completion of this degree.

I 'am very grateful to my advisor Prof. Patrice Moreaux and co-advisor Assoc.Prof. Frédéric
Pourraz for their patience and helpful advice throughout my research. I would like to thank

Prof. Patrice Moreaux translated the "Résumé étendu" of this thesis for me.

I would thank the laboratory of LISTIC. I would like to thank my colleagues, especially
Cedric Deffo-Sikounmo and Jerome Dupenloup, for their effort during the experiments.

I want to thank my dearest parents. I couldn’t complete this thesis without their support.

I would like to thank my friends, especially Yajing Yan, Weiqun Liu, Li Tao, Linjuan Yan,
Peng He and Zaoli Huang , and they are with me everywhere in my beautiful memory of Annecy.

Finally, I would like to thank my beloved husband Lichun Fan. Thank you for asking my
phone number in English course five years ago.

Résumé : Le « Cloud computing » est un nouveau modele de systémes de calcul. L’infrastruc-
ture, les applications et les données sont déplacées de machines localisées sur des systemes
dématérialisés accédés sous forme de service via Internet. Le modele « cofit a 'utilisation »
permet des économies de colit en modifiant la configuration a I’exécution (élasticité). L’ objec-
tif de cette these est de contribuer a la gestion de la Qualité de Service (QdS) des applications
s’exécutant dans le Cloud. Les services Cloud prétendent fournir une flexibilité importante dans
I’attribution des ressources de calcul tenant compte des variations percues, telles qu’une fluc-
tuation de la charge. Les capacités de variation doivent €tre précisément exprimées dans un
contrat (le Service Level Agreement, SLA) lorsque 1’application est hébergée par un fournis-
seur de Plateform as a Service (PaaS). Dans cette theése, nous proposons et nous décrivons
formellement le langage de description de SLA PSLA. PSLA est fondé sur WS-Agreement qui
est lui-méme un langage extensible de description de SLA. Des négociations préalables a la
signature du SLA sont indispensables, pendant lesquelles le fournisseur de PaaS doit évaluer
la faisabilité des termes du contrat. Cette évaluation, par exemple le temps de réponse, le débit
maximal de requétes servies, etc, est fondée sur une analyse du comportement de 1’applica-
tion déployée dans I’infrastructure cloud. Une analyse du comportement de 1’application est
donc nécessaire et habituellement assurée par des tests (benchmarks). Ces tests sont relative-
ment coliteux et une étude précise de faisabilité demande en général de nombreux tests. Dans
cette these, nous proposons une méthode d’étude de faisabilité concernant les criteres de perfor-
mance, a partir d’une proposition de SLA exprimée en PSLA. Cette méthode est un compromis
entre la précision d’une étude exhaustive de faisabilité et les coflits de tests. Les résultats de
cette étude constituent le modele initial de la correspondance charge entrante-allocation de res-
sources utilisée a I’exécution. Le contrdle a I’exécution (runtime control) d’une application gere
I’allocation de ressources en fonction des besoins, s’appuyant en particulier sur les capacités
de passage a 1’échelle (scalability) des infrastructures de cloud. Nous proposons RCSREPRO
(Runtime Control method based on Schedule, REactive and PROactive methods), une méthode
de contrdle a I’exécution fondée sur la planification et des contrdles réactifs et prédictifs. Les
besoins d’adaptation a 1’exécution sont essentiellement dus a une variation de la charge sou-
mise a ’application, variations difficiles a estimer avant exécution et seulement grossicrement
décrites dans le SLA. Il est donc nécessaire de reporter a I’exécution les décisions d’adaptation
et d’y évaluer les possibles variations de charge. Comme les actions de modification des res-
sources attribuées peuvent prendre plusieurs minutes, RCSREPRO réalise un contrdle prédictif
fondée sur I’analyse de charge et la correspondance indicateurs de performance-ressources at-
tribuées, initialement définie via des tests. Cette correspondance est améliorée en permanence
a I’exécution. En résumée, les contributions de cette these sont la proposition de langage PSLA
pour décrire les SLA ; une proposition de méthode pour 1’étude de faisabilité d’un SLA ; une
proposition de méthode (RCSREPRO) de contrdle a I’exécution de I’application pour garantir
le SLA. Les travaux de cette these s’inscrivent dans le contexte du projet FSN OpenCloudware
(www.opencloudware.org) et ont été financés en partie par celui-ci.

Mots-clefs:PaaS, QoS, SLA, SLA étude de faisabilité, le provisioning des ressources, le
controle Runtime.

vi

Abstract: Cloud computing is a new computing model. Infrastructure, application and data
are moved from local machines to internet and provided as services. Cloud users, such as appli-
cation owners, can greatly save budgets from the elasticity feature, which refers to the “pay as
you go” and on-demand characteristics, of cloud service. The goal of this thesis is to manage
the Quality of Service (QoS) for applications running in cloud environments Cloud services
provide application owners with great flexibility to assign “suitable” amount of resources ac-
cording to the changing needs, for example caused by fluctuating request rate. “Suitable” or
not needs to be clearly documented in Service Level Agreements (SLA) if this resource de-
manding task is hosted in a third party, such as a Platform as a Service (PaaS) provider. In
this thesis, we propose and formally describe PSLA, which is a SLA description language for
PaaS. PSLA is based on WS-Agreement, which is extendable and widely accepted as a SLA
description language. Before signing the SLA contract, negotiations are unavoidable. During
negotiations, the PaaS provider needs to evaluate if the SLA drafts are feasible or not. These
evaluations are based on the analysis of the behavior of the application deployed in the cloud
infrastructure, for instance throughput of served requests, response time, etc. Therefore, appli-
cation dependent analysis, such as benchmark, is needed. Benchmarks are relatively costly and
precise feasibility study usually imply large amount of benchmarks. In this thesis, we propose
a benchmark based SLA feasibility study method to evaluate whether or not a SLA expressed
in PSLA, including QoS targets, resource constraints, cost constraints and workload constraints
can be achieved. This method makes tradeoff between the accuracy of a SLA feasibility study
and benchmark costs. The intermediate of this benchmark based feasibility study process will
be used as the workload-resource mapping model of our runtime control method. When appli-
cation is running in a cloud infrastructure, the scalability feature of cloud infrastructures allows
us to allocate and release resources according to changing needs. These resource provision-
ing activities are named runtime control. We propose the Runtime Control method based on
Schedule, REactive and PROactive methods (RCSREPRO). Changing needs are mainly caused
by the fluctuating workload for majority of the applications running in the cloud. The detailed
workload information, for example the request arrival rates at scheduled points in time, is dif-
ficult to be known before running the application. Moreover, workload information listed in
PSLA is too rough to give a fitted resource provisioning schedule before runtime. Therefore,
runtime control decisions are needed to be performed in real time. Since resource provision-
ing actions usually require several minutes, RCSREPRO performs a proactive runtime control
which means that it predicts future needs and assign resources in advance to have them ready
when they are needed.Hence, prediction of the workload and workload-resource mapping are
two problems involved in proactive runtime control. The workload-resource mapping model,
which is initially derived from benchmarks in SLA feasibility study is continuously improved
in a feedback way at runtime, increasing the accuracy of the control.

To sum up, we contribute with three aspects to the QoS management of application running
in the cloud: creation of PSLA, a PaaS level SLA description language; proposal of a benchmark
based SLA feasibility study method; proposal of a runtime control method, RCSREPRO, to
ensure the SLA when the application is running. The work described in this thesis is motivated
and funded by the FSN OpenCloudware project (www.opencloudware.org).

Keywords:PaaS, QoS, SLA, SLA feasibility study, Resource provisioning, Runtime con-
trol.

Contents

List of Figures Xi
List of Tables xiii
1 Résumé étendu 1
1.1 Introduction e 1
1.1.1 Cloudcomputing i 1

1.1.2 Leprojet OpenCloudware 2

1.1.3 Contrats de niveaude service oo 2

1.1.4 Controle al’exécution 3

1.2 PSLA, un langage de description pourlesPaaS 4
1.2.1 Description sémantique de PSLA 4

1.2.2 Fonctionnalitésde PSLA 5

1.3 Etude de faisabilité fondée sur le benchmarking 7
1.3.1 Descriptionduprobleme, . 8

1.3.2 Dimensionnement des machines virtuelles 8

1.3.3 Capacité maximald’une flavor 10

1.3.4 Meéthode d’étude la faisabilit¢ ’'un SLA 11

1.4 RCSREPRO - contrdle a I’'exécution 11
141 Défis 11

1.4.2 Echelles temporelleso 12

1.4.3 Architecture systeme du contrdle a 'exécution 13

1.5 Expérimentations 13
1.5.1 Buts des expérimentations 13

1.5.2 Application synthétique 14

1.5.3 Environnement d’expérimentation 14

1.5.4 Conception des expérimentations 14

1.6 Conclusion et travaux futurs L Lo 15
1.6.1 Conclusion e 15

1.6.2 Travaux futurs 16

2 Introduction 17
2.1 Cloudcomputing e e 17
2.1.1 The emergence of cloud computing 17

2.1.2 Definition of cloud computing 17

2.1.3 Cloud service architecture, 18

viil CONTENTS

2.1.4 Cloud Management 21

2.2 OpenCloudware e 22
2.3 Contributions 22
2.4 Organisation of thedocument 23
3 State of the art- SLA management 25
3.1 Introduction 25
3.2 SLAmanagement i e e 25
3.2.1 SLAdefinition 26

322 SLAlifecycle e 27

3.23 SLAnegotiation 28

3.3 Review of SLA management studies in cloud computing 29
34 SLAstandards 31
3.4.1 SLA specification standards literature review 31

342 WS-Agreemento Lo 32

3.5 Conclusion L 35
4 State of the art-Runtime control 37
4.1 Introduction L 37
4.2 Virtualized Componentized Application Architecture schema 37
4.2.1 Component based architecture 37

4.2.2 Virtualized Componentized application architecture 39

43 Runtimecontrol L L 42
43.1 MAPE-K 42

432 Classification Lo 43

4.3.3 Runtime control schema 44

4.4 Runtime scaling literature review oL 46
4.4.1 Methods used inruntime scaling 46

4.4.2 Runtime scaling literature reviews 48

4.4.3 Time series based workload forecasting methods 51

4.5 Benchmarking 52
4.5.1 Benchmarking definition 52

45.2 SLA oriented benchmarking, 53

4.5.3 Benchmarkingtools 56

4.6 Conclusion 58
S PSLA: SLA description language for PaaS 61
5.1 Introduction L e e 61
5.2 PaaSSLArequirementso 62
5.2.1 PSLA semantic description 62

5.22 PaaSSLAFeatures 64

5.3 PSLA syntactic eXpressionot v i et e e 65
5.3.1 AgreementContext e 66

532 AgreementTerms 66

533 ServiceTerms 67

534 Guarantee Terms 76

5.4 Conclusion e s 89

CONTENTS ix

6 Benchmarking Based SLA Feasibility study 91
6.1 Introduction 91
6.2 SLA feasibility study context 92

6.2.1 Problemdescription 92
6.2.2 Sizeofflavor 93
6.2.3 Maximum Flavor Capability 96
6.3 Benchmark based MFC modeling 97
6.3.1 Stepl: find the smallest median configuration flavor 99
6.3.2 Step2: find the biggest optimal configuration flavor 101
6.3.3 Step3: find the most tailored flavor 101
6.3.4 Step4: calculate MFCs of flavors no bigger than most tailored flavor . . 104
6.3.5 Step5: calculate MFCs of flavors bigger than most tailored flavor . . . 104
6.4 SLA constraints evaluation Lo 107
6.4.1 Resource constraints evaluation 107
6.4.2 Costconstraints evaluation 107
6.5 Scenario e 110
6.5.1 PSLAbased SLAexample 110
6.5.2 Benchmark based MFC modelling 112
6.5.3 MFC based SLA evaluation 118
6.6 Conclusion 120

RCSREPRO: Runtime Control method based on Schedule, REactive and PROac-

tive methods 121
7.1 Introduction e e e 121
7.2 Problemdescription 121
7.2.1 Challenges e 122
7.2.2 Time granularities 123
7.2.3 Runtime control system architecture 124
7.3 RCSREPRO runtime control method description 128
7.3.1 Schedule based runtime control 128
7.3.2 Proactive runtime control method in RCSREPRO 129

7.3.3 Mapping model improvement based on reactive runtime control in RC-
SREPRO 134
7.4 Conclusion e 137
Experiments 139
8.1 Goalsoftheexperiment 139
8.1.1 Abstractapplication 139
8.2 Experiment environment L e e e 140
8.2.1 Cloud environment based on OpenStack 140
8.2.2 Benchmark environment 141
8.3 Experimentdesign 141
8.3.1 Rubberband and Request construct 141
8.3.2 Whatisthereal MFC? 142

8.3.3 Whether or not our workload-resource mapping model works correctly? 143
8.3.4 Whether or not MFC can be improved by RCSREPRO? 143

X CONTENTS

9 Conclusions and future works
0.1 Conclusions e e e
0.2 Future works e

A PSLA XML Schema
B XSL based PSLA contract display

Bibliography

145
145
146

149

159

181

List of Figures

2.1

3.1
32
33
34
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

Three kinds of cloud services. [iaalS5].. 19
WS-Agreement Architecture oL 32
An example of term tree in WS-Agreement 32
Business Value List structure. Lo 33
Service Term structure. 33
Context Structure. e e e e 33
Componentized Application Architecture schema. 39
Three possible Virtualized Componentized Application Architectures. 40
Multi-IaaS Virtualized Componentized Application Architecture example. . . . 41
MAPE-K . . . e 43
Schedule based runtime control. Lo 44
Reactive runtime scaling. o 45
Weak point of reactive runtime scaling. L. 45
Proactive runtime scaling. L oo 45
The relationship between workload and response time 54
The response time composition in typical web application 54
The relation between throughput and workload. 55
The relation between resource utilization and workload. 55
CLIF Architecture [Pro]. 57
SelfBench architecture [Benl2]. 57
The situation that our SLA feasibility study method is applicable. 98
The situation that our SLA feasibility study method is NOT applicable. 98
Stepl: find the smallest median configuration flavor. 100
Step2: find the biggest optimal configuration flavor. 102
Step3: find the most tailored flavor. L. 103
Step4: calculate MFCs of flavors no bigger than most tailored flavor. 105
StepS: calculate MFCs of flavors bigger than most tailored flavor. 106
Resource constraints evaluation based on MFC™. 108
Cost constraints evaluation basedon MFC:. 109
Linear estimation leads to over-estimation and under-estimation. 115
Linear estimation for Stage; 116
Linear estimation for Stages 0. 117

Linear estimation for Stages 117

xii LIST OF FIGURES
7.1 Runtime control time intervals. L Lo 124
7.2 Runtime control system architecture. 125
7.3 Proactive runtime control.o 129
7.4 Provisioning resources for next one scaling time interval. 131
7.5 Provisioning resources for the scaling time interval afternext.. 131
7.6 Provisioning resources for next two scaling time interval. 131
7.7 MFC model improvement based on reactive runtime control. 134
8.1 One example of Rubberband architecture. 141
8.2 The deployment architecture for performing SelfBench on Rubberband. 142
8.3 The first Rubberband under SelfBenchtest. 142
8.4 The second Rubberband under SelfBenchtest. 143

List of Tables

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

6.11
6.12
6.13
6.14
6.15
6.16

6.17
6.18
6.19
6.20

6.21
6.22

Description of available flavors for Stage;. 111
Description of available flavors for Stages. 111
Description of available flavors for Stages. 111
Resource constraints in SLA: maximum number of instances MazNol!.. . . . 112
Resource constraints in SLA: minimum number of instances MinNol,. 112
Ratio} and Distance’ calculated in Stepl for Stagey. 112
Ratio} and Distancel, calculated in Stepl for Stages. 113
Ratioy and Distancel, calculated in Stepl for Stages. 113
Extrapolation of OptimizedRatios based on SelfBench results of stepl. 113
Step2 SelfBench on one instance of f4 on Stage; , two instances of {2 on Stages

and one instance of f7 on Stages.e = 1.5, ARmax=200.. 114
Better tailored flavor exploring for Stage; inStep3. 114
Better tailored flavor exploring for Stagesin Step3. 114
Better tailored flavor exploring for Stagesin Step3. 115
Linear extrapolation factor k. instepd. 115
Stepd: MFCy = 200M FCy =1000MFC3 =200. 115

Step5: SelfBench on 1 instance of f4 on Stage; , 6 instances of 2 on Stages
and 3 instances of f6 on Stages.c = 1.ARmax= 500. Therefore,]\4FC’j1 = 500. 116
Step5S: SelfBench on 2 instances of f6 on Stage; , 2 instances of fl on Stages
and 2 instances of f6 on Stagez.c = 1.ARmax= 260. Therefore, M FC} = 130. 117
Step5: SelfBench on 2 instances of f6 on Stage; , 4 instances of f2 on Stages
and 1 instance of 7 on Stagez.c = 1.5.ARmax= 270. Therefore, M FCI =

2700« L 118
Final MFC! 118
SLA resource constraints evaluation based on M FC!(MaxNol!) 118
Needed amount of instances to serve SLAWorkloadARmax. 119

Cost for serving SLAWorkloadARmax. 119

Chapitre 1

Résumé étendu

1.1 Introduction

1.1.1 Cloud computing

Le cloud computing est un nouveau modele d’architecture informatique. L’infrastructure, les
plateformes, 1’application et les données sont déplacées de la machine locale a I’ Internet et sont
utilisées sous forme de services. Avec le cloud computing, les utilisateurs peuvent utiliser ces
ressources simplement, de la méme maniere qu’on utilise les services d’eau et d’électricité, sans
se soucier de leur maintenance. De plus, les utilisateurs de Cloud peuvent espérer des réductions
de cofit en payant uniquement ce qu’ils utilisent effectivement.

Services dans le Cloud

Les services de cloud peuvent étre classés en Infrastructure as a Service (1aaS), Platform as
a Service (PaaS) et Software as a Service (SaaS). Les IaaSs fournissent a leurs clients des ma-
chines virtuelles, de I’espace de stockage et des connectivités réseau. Un [aaS fournit également
des services tels que 1’équilibrage de charge, les pare-feux. Le client peut déployer et exécuter
une variété de logiciels sur la machine virtuelle, y compris I’environnement d’exécution. Les
PaaSs fournissent la plate-forme de développement de logiciels sous la fomre de service au
client. Un PaaS comprend habituellement un systeme d’exploitation, un environnement d’exé-
cution pour les serveurs d’application, les outils liés aux langages de programmation, les sys-
teme de gestion de base de données et les outils de gestion via le WEB. Les clients peuvent dé-
ployer et gérer leurs propres applications sur une telle plate-forme. Ils ont un comtr6le complet
sur leurs applications, mais ils ne peuvent pas contrler ni gérer 1’infrastructure sous-jacente.
L’expression SaaS désigne la mise a disposition de logiciels via internet. Les clients utilisent
les logiciels via le WEB au lieu de I’acheter et I’installer sur leurs systemes informatiques. Un
client de SaaS peut configurer 1’application, mais il ne peut pas gérer I’infrastructure cloud ni
la plate-forme sous-jacente sur laquelle s’exécute 1’application.

Gestion du Cloud

Comparativement aux centres de données (Data centers), le plus grand avantage du cloud com-
puting est certainement la simplification de la gestion des systemes mis en jeu. La gestion est un
point fondamental de I’exploitation des [aaS, PaaS et SaaS. Elle doit fournir des informations

2 CHAPITRE 1. RESUME ETENDU

sur les systemes dans le Cloud et permettre de prendre des décisions pertinentes pour leur fonc-
tionnement. De nombreuses études ont ét€ menées a partir de plusieurs points de vue concernant
la gestion des systemes dans le Cloud. Dans cette these, nous nous concentrons sur la gestion
des services. Par conséquent, les probléemes d’approvisionnement des ressources, ceux de la
virtualisation des ressources, de la migration de VM, etc. ne sont pas abordés dans notre tra-
vail. Plus précisément, nous nous concentrons sur la gestion des contrats de niveaux de services
(Service Level Agreement, SLLA) au niveau PaaS ; d’une part en étudiant I’expression formelle
des SLAs ; d’autre part en proposant une méthode pour 1’étude de la faisabilité d’un SLA lors
de sa négociation, puis en contrOlant I’application a I’exécution, en liaison avec son SLA.

1.1.2 Le projet OpenCloudware

Le travail décrit dans cette these a été réalisé dans le contexte du projet OpenCloudware [ocw].
OpenCloudware est un projet qui vise a développer des modules logiciels pour construire un
PaaS multi-IaaS. En tant que tel, il fournit une plate-forme de développement (construction,
déploiement) et d’exécution (maintenance, modification, qualité de service) pour les applica-
tions dans le Cloud. Les différents fonctionnalités pour réaliser ces opérations sont fournies en
ligne grace a un portail de services. OpenCloudware est un des projets retenus du programme
« développement de I’économie numérique », opéré par le Fonds national pour la Société Nu-
mérique (FSN). Couvrant la période de janvier 2012 a septembre 2015, ce projet de recherche
et développement regroupe 18 partenaires industriels en académiques, dont I’ Université Savoie
Mont Blanc et son laboratoire LISTIC dans lequel ce travail de these a été réalisé.

1.1.3 Contrats de niveau de service

Un SLA est une partie des accords conclus entre un consommateur de services et un fournis-
seur de services. Il est utilisé pour décrire de maniere structuré les €léments de qualité de service
(Quality of Service, QoS) contractualisés entre les deux parties. I permet de définir précisément
les responsabilités des parties contractantes y compris les actions a réaliser par chaque partie
dans différentes conditions. Habituellement, les services offerts par le fournisseur dans le SLA
sont quantitativement et de maniere exhaustive définis par une série de parametres de qualité
de service avec des plages de valeurs. Non seulement le niveau de qualité de service doit Etre
garanti, mais aussi des « récompenses » et des « sanctions » sont également spécifiées dans le
SLA selon que le contrat est respecté ou non. La gestion des systemes informatiques dans le
Cloud, y compris gestion des SLA, est essentiellement réalisée par des outils automatiques. Il
est donc nécessaire de disposer d’une représentation des SLAs utilisable par une machine, par
exemple en eXtended Markup Language (XML). Lutilisation des SLA n’est pas restreinte a la
qualité de service. Par exemple, les systeémes de facturation peuvent utiliser les parametres de
récompense et sanction pour moduler le prix a payer par le consommateur de services. Dans
la pratique, actuellement, la plupart des fournisseurs de services dans le Cloud énoncent un
SLA sous forme textuelle et informelle. Par exemple, le service de cloud public Google App
Engine [goo15] et Amazon Elastic Compute Cloud (EC2) [ec213] publient leurs SLAs en ligne
et sous une forme générique, non spécifique a un client donné. Aujourd’hui, avec le dévelop-
pement des applications structurées en composition de services (Service Oriented Architecture,
SOA) et du Cloud, de plus en plus de services sont construits ou fondées sur d’autres services
fonctionnant dans le Cloud. Ces services peuvent de plus, étre offerts par différents fournis-

1.1. INTRODUCTION 3

seurs. Cela impose une définition claire, complete et formelle des interactions et des relations
entre ces services, et donc I’utilisation des mécanismes de gestion de SLAs. Dans notre travail,
nous développons notre proposition de SLA de niveau PaaS fondée sur WS-Agreement.

1.1.4 Controle a ’exécution

Pendant la négociation du SLA, le fournisseur de PaaS doit évaluer si le SLA en cours de né-
gociation est réalisable ou non. Ces évaluations sont basées sur une analyse dépendant de I’ap-
plication, par exemple une campagne de test (benchmark). Les résultats de ces tests constituent
la base de la correspondance entre la charge de travail (workload) soumise a I’application et sa
configuration, correspondance utilisée par notre méthode de contrdle de I’exécution. Lorsque
I’application est en cours d’exécution dans une infrastructure Cloud, la fonctionnalité de va-
riabilité des infrastructures de Cloud nous permet d’allouer ou de libérer des ressources selon
I’évolution des besoins. Ces activités d’attribution/retrait de ressources sont nommées controle
de I’exécution. Comme I’évolution des besoins est principalement causée par la variation de
la charge de travail pour la majorité des applications exécutées dans le Cloud, des décisions
relatives au contrdle d’exécution sont nécessaires.

Il'y a essentiellement deux niveaux de contrdle de I’exécution. D’une part, on alloue des res-
sources sous la forme de machines virtuelles a I’application et cette allocation est motivée par les
objectifs de performance de I’application définis par le SLA de haut niveau [VITMO09]. D’ autre
part,on place le placement des machines virtuelles sur les hotes physiques est une conséquence
des politiques de gestion des centres de données relatives aux cofits de gestion [VITMO09]. Dans
cette thése, nous traitons du premier type de controle.

Dans les systemes informatiques, les performance d’un systéme sont difficiles a évaluer a
partir des parametres de configuration. Les méthodes de tests (Benchmark) sont considérées
comme un moyen efficace d’évaluation des indicateurs de performance spécifiques d’un sys-
teme informatisé. Un systeme de test est composé du systeme a tester (System Under Test,
SUT), d’une entité d’injection de la charge de travail, d’un mécanisme de collecte des perfor-
mances et d’une analyse des résultats. Les Benchmarks doivent étre quantifiés et comparables.
Par exemple, le niveau d’utilisation du(des) processeur(s) (Central Processing Unit(s), CPU)
de calcul en flottant, la bande passante utilisée pour les acces réseau aux données peuvent aider
les utilisateurs a juger si chaque type de CPU peut exécuter 1’application dans des conditions
satisfaisantes. Les méthodes de benchmarking sont largement utilisées pour évaluer les perfor-
mance des CPU, mais elles peuvent également Etre utilisées pour les systemes logiciels. Les
benchmarks orientés SLA complete le benchmarking traditionnel en guidant la démarche de
test par les contraintes explicitées dans le SLA (chagre de travail, performances attendues). On
espere ainsi respecter le SLA en se fondant de véritables comportements de I’ application.

CLIF [Dil09, Pro] est un systeme logiciel de benchmarking, fond€ sur le modele a compo-
sants Fractal et écrit en Java. Environnement de benchmarking, il est spécialement congu pour
s’adapter a tout type de systeme a tester en termes de ressources comme en termes de méthodes
d’utilisation du logiciel du SUT. On trouvera dans [Dil09] une présentation détaillée de 1’archi-
tecture de CLIF. SelfBench [Ben12] est un outil de test automatique destiné a déterminer les
capacités maximales de traitement d’un SUT. Il est fondé sur CLIF et utilise ses composants fon-
damentaux (sondes (blade), injecteurs, mécanismes de configuration). Mais SelfBench controle
pendant son fonctionnement le comportement du SUT et augmente de maniere contrdlée la
charge soumise au SUT, jusqu’a apparition d’un phénomene de saturation du SUT. On obtient

4 CHAPITRE 1. RESUME ETENDU

ainsi les performances maximales que peut assurer le SUT.

1.2 PSLA, un langage de description pour les PaaS

Le prestataire de niveau SaaS s’engage avec le fournisseur de PaaS sur un SLA de niveau PaaS
(PaaS-SLLA), niveau qui correspond a nos travaux. Du point de vue du fournisseur de PaaS, le
SLA de niveau PaaS est donc fondamental pour qu’il puisse assurer sa fonction, en particulier

en ce qi concerne la capacité d’adaptation a la charge de I’application, appelée élasticité.

PSLA [LPM14] est un langage de description de PaaS-SLA fondé sur WS-Agreement [ACD07].

WS-Agreement est lui-méme un modele extensible de description de SLA. Apres avoir passé

en revue nombre de propositions, il nous semble que WS-Agreement constitue une base adap-

tée aux besoins particuliers d’un PaaS-SLA. A notre connaissance, nous sommes les premiers

a proposer un langage de description de PaaS-SLA effectivement utilisable par des outils logi-
ciels.

1.2.1 Description sémantique de PSLA

Un PaaS-SLA comprend deux types d’informations : des informations générales sur la SLA
nommées Métadonnées SLA (Metadata) et une description détaillée de la QoS désignées par
le terme comme Criteres de QoS (QoS criteria). Dans la suite, nous utiliserons 1’application
Springoo pour illustrer notre propos. C’est une application a trois étages (tiers), employée
comme cas d’utilisation dans le projet OpenCloudware. Le premier tiers de Springoo est un
serveur Apache, le second tiers est un serveur d’application JavaEE Jonas et le troisieme est
un serveur de bases de données MySQL. Nous pouvons instancier plusieurs serveurs d’applica-
tions Jonas. Ce tiers possede donc la capacité de changement d’échelle horizontale (horizontal
scaling). Nous pouvons changer les ressources attribuées au troisiecme tiers (CPU ou mémoire
centrale) qui dispose ainsi de la capacité de changement d’échelle vertical (vertical scaling).
Nous donnons ci-dessous une description des clauses utilisées dans PLSA.

Metadonnées de SLA

Les métadonnées SLA définissent les informations de base du SLA. Ces informations sont
valides pour le SLA dans son ensemble. Les métadonnées SLA comprennent

— Agreement Name : c’est I’identification (unique) de 1’accord, par exemple "Springoo".

— Agreement Initiator : c’est la partie qui commence la demande de création de 1’accord.
Par exemple, I’initiateur de cet accord est Développeur Springoo.

— Agreement Responder : c’est la partie qui répond a la demande de création d’accord. Par
exemple, le répondant est OpenCloudware.

— Service provider : c’est la partie qui met a disposition les services concernés par I’ accord.
Lautre partie est le consommateur de services. Par exemple, le prestataire de services
est également OpenCloudware.

— Agreement Expiration Time : c’est la date a partir de laquelle 1’accord n’est plus valide.
Toutes les périodes de validité définies dans les QoS Criteria devraient étre des sous-
ensembles de la période de temps définie par cette date.

1.2. PSLA, UN LANGAGE DE DESCRIPTION POUR LES PAAS 5

Criteres de qualité de service (QoS)

L’un des objectifs importants d’'un SLA est de donner des garanties concernant les QoS délivrés
par le fournisseur de service. Nous détaillons ici les clauses correspondantes, en expliquant les
droits et obligations de chaque partie.

Valid Period : spécifie la période de temps pendant laquelle ce critere de QoS critére sera
pris en compte. Elle peut étre soit continue ou composée d’intervalles temporels réguliers. On
la décrit par une heure de début, une heure de fin et un intervalle de temps facultatif.

Valid Workload : décrit pour quels types de charge de I’application le critere de QoS sera
appliqué. Elle est décrite par : la taille des données, la constitution des données et la variation
des données.

Service Level Objective : c’est I’élément central du critere de QoS. Il exprime ce qu’est
exactement I’objectif de qualité de service en quantifiant la plage de valeurs de la métrique
de qualité de service correspondante. Comme il est souvent difficile pour le consommateur
lui-méme, de spécifier une valeur correspondant a une satisfaction ou une insatisfaction, nous
utilserons les notions de Confiance (7rust) et de valeur floue (Fuzziness) pour permettre la
description d’un seuil flou.

Metric Description : pour un critere de QoS, un Objectif de niveau de service (Service Level
Objectif, SLO) quantifie ce qui est contractualisé par une plage de valeurs de la métrique. Les
parametres du SLA sont décrits pour assurer qu’il n’y a pas d’ambiguité sur la métrique entre
les parties (voir la section 5.2.2). La description comporte une unité, un type de valeur, une
source de valeurs et le mode de mise a jour de la valeur.

Business Values : ce sont des informations de type commercial qui différencient un SLA
d’un autre, comme par exemple le niveau de pénalité ou de récompense. Ces valeurs seront
utilisées dans le systeme de facturation pour calculer le colit du service.

Check Plan : le systtme de facturation ayant besoin de vérifier la qualité du service et le
service lui-méme tels qu’énoncés dans le SLA, cette valeur indique quand cette vérification
doit étre effectuée.

Priority : le prestataire de services ne dispose pas toujours de suffisamment de ressources
pour assurer tous les SLO en méme temps. On précise donc la priorité relative de chaque SLO.

1.2.2 Fonctionnalités de PSLLA

PSLA est un langage de de PaaS-SLLA, donc congu pour décrire le contrat entre le fournisseur
de PaaS et le « propriétaire » de 1’application. Le fournisseur de PaaS prend en charge I’ap-
provisionnement dynamique des ressources nécessité par la fluctuation de la charge de travail.
Habituellement, les propriétaires d’applications ont des objectifs antagonistes comme la dispo-
nibilité de ressources ou un cofit maximum pour maintenir la qualité de service. Par conséquent,
I’application ne pourra probablement pas fonctionner si la charge de travail n’est pas limitée.
Les métriques doivent étre décrites sans ambiguité pour que les objectifs de QoS qui doivent étre
garantis par le fournisseur de PaaS, puissent étre clairement définis. Inspiré par CSLA [KL"12],
qui définit une limite floue pour la plage de QoS acceptable pour la gestion effective de 1’appli-
cation, nous introduisons également la notion de plage de valeurs floue dans PSLA.

6 CHAPITRE 1. RESUME ETENDU

Charge élastique

L’élasticité a un instant donné peut &tre exprimée par un vecteur a quatre dimensions (s, ¢, t)
ou :

— s, la taille des données, désigne la quantité totale de données pendant une unité de temps
donnée.

— ¢, la composition de charge de travail, donne la proportion de chaque type de charge
qui forment la charge de travail. La composition de charge de travail lui-méme peut €tre
décrit par un vecteur et chaque dimension peut étre définie par les ressources requises
par une quantité unitaire de la charge. Les détails sont décrits ci-dessous.

— t, le temps, désigne le moment ol la charge de travail est observée.

Différents services ont besoin de divers types de ressources et en quantités différentes. Du
point de vue des fournisseurs de PaaS, les besoins en ressources sont le point essentiel pour
assurer la qualité de service garanti. Nous classons donc les charges en fonction de la quantité
de chaque type de ressources exigées sur chaque composant (nous supposons que le systeme
logiciel est a base de composants). Comme il existe plusieurs types de ressources (toujours
en quantité limitée), par exemple la mémoire centrale, nous pouvons résumer les métriques
de ressources disponibles et leurs utilisations par deux vecteurs. Dans nos travaux, nous nous
limitons a trois ressources (C'PU, RAM, NET) (NET pour Network). Cette limitation pourra
étre levée dans de futurs travaux. Notons que la charge de travail étant composée de plusieurs
charges élémentaires, différents ratios de charges peuvent conduire a des répartitions différentes
des ressources nécessaires.

Métriques

Pour modéliser les métriques (ou mesures), il nous faut d’abord déterminer les plus significa-
tives pour le niveau PaaS. Nous en déduisons ensuite une abstraction et nous définissons une
structure capable d’exprimer les propriétés nécessaires de ces métriques. Pour les PaaS-SLA,
pour autant que nous le sachions, il n’existe pas de modele de métrique. Dans [AAAT10], cer-
tains des indicateurs de performance couramment utilisés, y compris le débit, la fiabilité, I’équi-
librage de charge, la durabilité, 1’élasticité, la linéarité, 1’agilité, I’automatisation et le temps de
réponse du service sont répertoriés. Certaines métriques du PaaS-SLA dérivent de métriques du
niveau SaaS, comme le temps de réponse, que nous prenons en considération.

Nous considérons d’abord les propriétés suivantes :

— Unit : unité de mesure de cette métrique. Les unités communément utilisées, comme la
seconde, sont intégrése dans PSLA, mais on dispose aussi du mécanisme d’extension
pour des unités définies par 1’ utilisateur.

— Value type : le type de la valeur de la métrique, par exemple chaine, entier ou décimal.

— Value source : la source d’acquisition de cette métrique. PSLA permet d’utiliser un iden-
tifiant de ressource uniformisé (Uniform Resource Identifier, URI) pour décrire I’empla-
cement de la valeur de la métrique.

— Value update mode : la facon dont la nouvelle valeur de 1a métrique est obtenue a partir
de sa source.

1.3. ETUDE DE FAISABILITE FONDEE SUR LE BENCHMARKING 7

Plage de valeurs floue

Nous utilisons les expressions de logique élémentaire pour décrire la plage de valeurs. Nous dé-
finissons des opérateurs logiques, les opérateurs de comparaison et les valeurs limites. Comme
il est difficile de définir des valeurs limites exactes concernant le fonctionnement réel, nous utili-
sons les notions de «flou» (fuzzyness, fuzzy) et de «confiance» (confidence) comme dans [KL*12].
Le terme confidence est cependant rebaptisé trust («confiance») pour le distinguer du terme sta-
tistique confidence.

— Opérateurs logiques : N, U et —;

— Opérateurs de comparaison : <, >, <, > et =;

— Metric : a quelle métrique ces plages de valeurs s’appliquent ;

— Valeurs limites : bornes des plages de valeurs ;

— Trust : quel pourcentage minimal de valeurs de la mesure doivent étre dans la plage de
valeurs décrite ;

— Fuzziness : le degré acceptable de déviation d’une valeur par rapport aux limites.

1.3 Etude de faisabilité fondée sur le benchmarking

L utilisation efficace d’un SLA établi pour répondre aux besoins du client (initialement énoncés
au début de la négociation) suppose que 1’on peut satisfaire ce SLA a ’exécution. L’étude de
faisabilité du SLA évalue si la cible de QoS peut étre atteinte avec des ressources précisées avec
une charge de travail spécifiée. L’ étude de faisabilité du SLA sera appliquée a plusieurs reprises
au cours du processus de négociation du SLA. La modélisation du taux d’arrivées des requétes
de service et de la demande adaptée de ressources pour satisfaire la cible de QoS sont les fonde-
ments de I’évaluation de capacité (Capacity planing). Cette modélisation peut étre obtenue soit
par un modele de simulation, soit par un modele analytique. Puisque nous voulons concevoir
une méthode non intrusive par rapport a I’application, notre modele de comportement de 1’ap-
plication sera basé sur les résultats de benchmarks réalisés dans I’environnement PaaS cible,
en utilisant des mesures, disponibles également a I’exécution en production. Nous proposons
donc pour le gestionnaire de PaaS, une méthode d’étude de faisabilité de SLA, indépendante de
I’application et efficace, fondée sur le benchmarking.

Dans le cadre de cette these, nous considérons des applications dont I’architecture est conforme
au modele Virtualized Componentized Application Architecture (VCAA). Ce modele définit une
application a bas de composants regroupés dans des étages (stage). Les interactions entre com-
posants (appel et réponse de service entre composants) sont synthétisés en liaisons entre étages.
Un étage lui-méme est instancié en machines virtuelles (Virtual Machine, VM) toutes identiques
pour un étage donné. Rappelons qu'une VM est une entité informatique en exécution, associant
une image disque (un fichier) contenant le systeéme de fichiers d’une « machine » ayant déja été
exécutée et préte a continuer son exécution, et un ensemble de ressources virtuelles qui seront
allouées lors de I’exécution de la VM. Nous appelons modele virtuel de ressources physiques
(flavor) cet ensemble de ressources. On trouvera dans la section 4.2.2 une description détaillé
du modele VCAA.

8 CHAPITRE 1. RESUME ETENDU

1.3.1 Description du probleme

Une étude de faisabilité de SLA vise a évaluer si une proposition de SLA est acceptable ou non.
L’évaluation prendra en compte toutes les contraintes définies dans le SLA proposé et vérifiera
si la proposition est cohérente.

Parmi les difficultés de ce type d’étude, le temps nécessaire (et/ou disponible !) et le coflit
de I’étude sont des contraintes tres fortes. Par exemple, le taux maximal d’arrivées des requétes
peu nécessiter une quantité tres importante de ressources, ce qui entraine un coft élevé pour
disposer, par exemple, de centaines de machines virtuelles. Nous avons donc développé un
processus d’étude de faisabilité afin de réduire autant que possible le cofit d’étude.

Comme décrit dans la section précédente, en PSLA, la partie centrale est Guanrantee-
Term. Dans GuaranteeTerm, la partie QualifyingCondition contient la définition des objectifs
de QoS. Les ServiceLevelObjectives définissent les (niveaux des) objectifs de QoSe tels que par
exemple : temps de réponse < 3 s. BusinessValueList donne des informations pour la facturation
comme les contraintes de colt. Dans le contexte de PSLA, I’objectif de I’étude de faisabilité
est d’évaluer si, avec les contraintes de ressources définies dans QualifyingCondition et les
contraintes de colit définies dans BusinessValueList, la plage de charge de travail définie dans
QualifyingCondition peut étre servie avec les exigences de QoS définies dans ServiceLevel Ob-
jective.

1.3.2 Dimensionnement des machines virtuelles

Un support matériel de machine virtuelle (flavor) posséde de nombreux types de ressources.
Nous considérons principalement les ressources CPU et mémoire. Par conséquent, la définition
de la notion de plus puissante flavor est un probleme multicritere. Nous pouvons seulement dire
qu’une flavor a est plus puissante qu’une autre b lorsque les deux quantités de ressources, CPU
et mémoire, sont plus grandes pour a que pour b. Si les deux grandeurs (CPU, mémoire) ne sont
pas ordonnées de la méme maniere, il est impossible de dire a priori, que la flavor a est plus
puissante que b car les performances de la flavor dépendent du type d’utilisation des ressources
par I’étage donné de I’application. Nous introduisons donc un mécanisme de comparaison de
flavors par étage d’application (étape FLAVOR).

Comparaison des flavors par étage

La comparaison de flavors doit étre effectuée séparément pour chaque étage. On note MFC
(Maximal Flavor Capability), 1a limite supérieure du taux d’arrivées global des requétes si I’on
utilise une flavor donnée pour un étage donné. MFC peut étre considérée comme une mesure de
la flavor. Nous disons que pour un étage donné, une flavor est plus petite (ou égale) a une autre
lorsque sa MFC est plus petite (ou égale). Les valeurs de MFC peuvent étre déterminées par
des benchmarks. Toutefois, le calcul de certains MFCs sans benchmark, permettrait de réduire
le colit de I’étude de faisabilité du SLA. L’obtention de ces MFCs calculés est réalisée selon
le niveau des ressources et du MFC obtenu par benchmark avec des flavors dont les ressources
sont utilisées au maximum (VM ou flavors dites saturées). Il est nécessaire d’obtenir la flavor
saturée pour effectuer une déduction crédible de MFC parce que notre calcul utilisera le rapport
de ressources minimal comme rapport du taux d’arrivées maximal. Toutefois, si le rapport de
ressources minimal correspond a une ressource non saturée, il ne suffit pas de dire que le taux
d’arrivées maximal sera plus petit. Par exemple, la flavor A a 2 vCPU et 4 GO mémoire. 80

1.3. ETUDE DE FAISABILITE FONDEE SUR LE BENCHMARKING 9

% de vCPU mais seulement 10 % de la mémoire sont utilisés au cours du benchmark , ce qui
signifie probablement que 0,5 GO de mémoire sont suffisants en prenant 80 % comme seuil
d’utilisation maximal de la mémoire. La flavor B a 4 vCPU et 2 GO de mémoire. Le rapport
de ressources minimal est de 0,5 (mémoire). Toutefois, 2 GO de mémoire sont probablement
suffisants pour une flavor dont les 4 vCPU soient saturés puisque seulement 0,5 G de mémoire
sont suffisants pour 2 vCPU. Par conséquent, B devrait étre en mesure de servir un plus grand
taux d’arrivées et son MFC doit tre plus grand aussi. C’est la raison pour laquelle on essaie de
sélectionner une flavor provoquant la saturation de toutes les ressources pendant le processus
de benchmarking (étape 3 ci-dessous).

Apres avoir trouvé les flavors appropriées, nous pouvons comparer les flavors et dire si une
flavor est plus grande (ou plus petite) qu’une autre. Nous considérons le rapport de ressources
minimal entre une flavor et une flavor testée saturée. Plus faible est la valeur de ce rapport,
plus la flavor sera petite. Si le rapport est plus petit que 1, la flavor est considérée comme plus
petite que la flavor saturée testée. Si le rapport est plus grand que 1, la flavor est considérée
comme plus grand que la flavor saturée testée. La flavor avec le plus grand rapport minimal est
considérée comme la plus grande flavor (pour un étage donné).

Toutes les flavors disponibles ne peuvent pas €tre saturées. Méme la plus grande flavor peut
ne pas étre saturée pendant les benchmarks. Le MFC de la plus grande flavor non saturée sera
utilisée pour déduire les MFC des petites flavors. Toutefois, le rapport utilisé pendant le calcul
reste celui obtenu par comparaison avec le MFC de flavors saturées obtenus par benchmarking.
Par conséquent, la situation mentionnée ci-dessus ne pose aucun probleéme.

Comparaison de flavors indépendamment de 1’étage

La comparaison de flavors indépendamment des étages est une comparaison d’un point de vue
purement matériel. Le niveau des ressources mémoire allouée par unité de CPU pour flavor? est

Ratio’, = == Nous définissons I’écart de configuration entre f lavor et la flavor sans res-

sources CPU ni mémoire par Distance’(0,0) = \/ memoryi® + cpui”. Lorsque deux flavors
ont le méme Ratio', Distance’ (0, 0) peut &tre utilisé pour indiquer la taille de flavors et on pose

Distance’,(mem, cpu) = \/(memoryg — mem)® + (cpul — cpu)’. Distancel(mem, cpu) est
I’écart de configuration entre flavor! et une flavor avec vC PU cpus et mem GO de ressources
mémoire.

Plus Distance’(mem, cpu) est petit, plus proches sont flavor? et la flavor avec mem oc-
tets de mémoire et cpu de ressource CPU. Lorsque Distance’(mem,cpu) = 0, flavor! a
la méme configuration que la flavor avec mem octets de mémoire et cpu de ressource CPU.
Distance’(0,0) est une description quantitative des différences de taille entre flavor’ et la fla-
vor avec une configuration de mémoire et 0 0 CPU. Distance’ (0, 0) peut étre considérée comme
une description de la taille de flavor®. Nous disons que flavor? est plus petite qu’une autre fla-
vor B lorsque Distance’(0,0) est plus petit que celle de B. Pour autant, Distance’(0,0) ne
suffit pas pour décrire la capacité de traitement de flavor?.

Par exemple, la flavor avec 10 vCPU et une mémoire de 1 GO a la méme valeur de la
distance que la flavor avec 1 vCPU et 10 GO de mémoire mais les capacités de ces deux flavors
peuvent étre trés différentes. Lorsque Ratio’, est plus élevé pour une flavor A que pour une
flavor B, , nous pouvons dire que A attribue plus de ressources mémoire a chaque unité de
CPU. Nous pouvons également dire que deux flavors avec le méme rapport attribuent la méme

10 CHAPITRE 1. RESUME ETENDU

quantité de ressources mémoire pour chaque unité de CPU. Dans ce cas, la flavor A avec une
plus grande valeur de Distance qu’une flavor B est plus puissante que 5. Une flavor peut étre
choisie comme la configuration de ressource équilibrée.

Le terme « Configuration de ressources équilibrée » signifie que les différentes ressources ne
sont pas sensiblement supérieures ou inférieures a une autre. Aucune configuration standard ne
peut étre considéré comme équilibrée. De plus, la quantité de CPU et la quantité de mémoire ont
différentes unités de mesure. Par conséquent, il est également difficile de spécifier une valeur de
ratio pour représenter 1’état de « configuration de ressources équilibrée ». Nous définissons la
flavor avec une valeur médiane de ce ratio parmi toutes les flavors disponibles pour un étage s
comme la configuration de la ressource la plus équilibrée pour s. Lorsque I’on calcule la valeur
médiane, au lieu de prendre plusieurs méme valeur du rapport en considération, une valeur du
rapport est compté une seule fois pour éviter que de nombreux ratios déséquilibrés menent a
valeur médiane biaisée.

Ratio’ et Distance’ (0, 0) décrivent la proportion de I’allocation de ressources et la quantité
de ressources attribuées a flavor’. Ratio’, et Distance’(0,0) synthétisent la configuration des
différentes ressourceset sont utilisés avant que la comparaison de flavors pour un étage donné
soit disponible. Ils ne suffisent pas pour définir la flavor la plus puissante et nous ne pouvons
pas décrire quantitativement la puissance intrinseque d’une flavor pour un étage. Apres bench-
marking, nous pouvons décrire quantitativement par MFC, la capacité d’une flavor pour chaque
étage.

1.3.3 Capacité maximal d’une flavor

La capacité maximale d’une flavor (Maximum Flavor Capability, MFC) est au cceur de cette
méthode d’étude de faisabilité de SLA fondée sur les benchmarks. M FC/ est la limite supé-
rieure (en requétes par seconde) de la vitesse des arrivées de requétes globales lorsque 1’on
utilise une flavor f en étage s, assurant que la QoS voulue est atteinte. On note M FCY(n) la
limite supérieure du taux des arrivées globales pour n instances de la flavor f en étage s. On a
MFC!(n)=n* MFC! et MFC{ = MFC!(n)/n

MEFC dépend généralement de I’étage considéré : une flavor utilisable sur deux étages dis-
tincts produira probablement des taux d’arrivées maximaux différents puisque la méme de-
mande exige des ressources différentes sur les deux étages. M F'C" change lorsque les exi-
gences de QoS changent. Par exemple, toutes choses égales par ailleurs, passer d’un temps de
réponse maximal de 3 secondes a 3 minutes permet probablement d’obtenir un taux d’arrivées
plus élevé. Par conséquent, une valeur de M F'C? est également liée a une périoide de temps
pendant laquelle le SLA est stable. Cependant, puisque nous déterminons les MFC a SLA et
charge fixés, nous les mentionnons pas dans la suite.

Si I’on utilise n instances d’une flavor 7 pour un étage s, la limite supérieure du taux d’arri-
vées maximal sera n fois M FC!. Les M FC" de tous les étages ainsi que le nombre d’instances
utilisées a chaque étage permettent de déterminer la limite supérieure du taux d’arrivées maxi-
mal de I’ensemble du systeme. Ce taux est fonction de 1’étage qui constitue le goulet d’étran-
glement. On peut considérer que le(s) MFC(s) de cet(ces) étage(s) sont les taux maximaux du
systeme dans la configuration donnée. Ainsi, nous prenons comme limite supérieure du taux
d’arrivées globales du systeme, la plus petite valeur de taux d’arrivées maximaux de ces étages.

1.4. RCSREPRO - CONTROLE A L’EXECUTION 11

1.3.4 Méthode d’étude la faisabilité d’un SLA

Nous avons proposé une méthode SLA de I’étude de faisabilité fondée sur les benchmarks. La
description détaillée de notre méthode est donnée en section 6.3 et en section 6.4. Les analyses
de type « Que se passe-t-il si? » (what-if analysis) répondent a la question de savoir si la
cible de QoS peut étre atteinte avec les valeurs de charge de travail, de ressources allouées
et de contraintes de colit énoncés dans le SLA. Les benchmarks permettent une analyse du
comportement de I’application, par exemple déterminer le débit des requétes servies et leur
temps de réponse. Notre méthode de 1’étude de faisabilité de SLA par benchmarking réalise
un compromis entre la précision et les colits en limitant le nombre de tests pour établir une
correspondance charge-configuration. Cette correspondance sera utilisée dans notre méthode
de contrdle a I’exécution.

1.4 RCSREPRO - controle a ’exécution

Le but du controle a I’exécution est de satisfaire le SLA pendant I’exécution tout en évitant au-
tant que possible de sous-employer des ressources. Notre approche du contrdle est donc guidée
par le SLA. Notre méthode est générique, mais nous expliquerons le probleme du contrdle a
I’exécution en nous basant sur PSLA. Apres la phase d’étude de faisabilité du SLA, les res-
sources disponibles sont en mesure de servir la charge de travail prévue avec une QoS définie
et pour un colit précisé. Pour garantir le SLA a I’exécution, le plus siir moyen est de toujours
déployer le maximum de ressources. Cependant, cette stratégie alloue bien entendu en général
plus de ressources que nécessaire a I’application.

Nous proposons RCSREPRO (Runtime Control method based on Schedule, REactive and
PROactive methods), une méthode de contrdle a I’exécution fondée sur 1’ordonnancement, les
méthodes de contrdle a I’exécution réactives et proactives. RCSREPRO nous permet de bénéfi-
cier de la capacité de variation des infrastructures de cloud et d’allouer et de libérer automati-
quement des ressources aux applications selon I’évolution des besoins. En plus d’ordonnancer
la mise a disposition de ressources en fonction de la charge de travail et des informations figu-
rant dans le SLA avant I’exécution, RCSREPRO prévoit également les fluctuations de la charge
de travail afin de mettre a disposition de maniere proactive les ressources qui seront néces-
saires. RCSREPRO effectue une prédiction de la charge de travail en utilisant 1’outil WCF 7.3.2
de prévision dynamique basée sur les séries chronologiques. MFC, le modele de correspon-
dance charge de travail- ressources attribuées, qui est utilisé dans RCSREPRO, est initialement
construit pendant I’étude de faisabilité du SLA et amélioré en permanence par suivi de 1I’exécu-
tion afin d’affiner la qualité du contrdle.

1.4.1 Défis

Lallocation de ressources adaptées en fonction du contexte et d’'un SLA est un travail difficile.
Nous identifions quatre défis : la fluctuation de la charge de travail fournie a I’application,
le contréle des dépassements de charge, 1’adéquation d’une configuration de ressources a une
charge donnée pour une application donnée, la variabilité de I’environnement d’exécution a
configuration fixée.

Dans la plupart des applications placées dans le Cloud, la charge soumise varie dans des
proportions importantes, soit de manicre prévisible, soit de maniere imprévisible. Ce dernier

12 CHAPITRE 1. RESUME ETENDU

cas nécessite qu’un contrdle a I’exécution soit mis en place, tenant compte de cette variabilité.

Méme si le SLA prévoit des limites supérieures aux taux d’arrivées des différents types de
requétes soumises a I’application, il est souhaitable de controler cette charge entrante afin de ne
pas saturer le systeme. Des procédés relevant des méthodes de contr6le d’admission sont donc
nécessaires.

Notre travail se voulant générique, nous devons définir des mécanismes de contrdle appli-
cables quelque soit I’application placée dans le Cloud (mais conforme au schéma VCAA). Ces
mécanismes s’ appuieront sur des résultats de benchmarks de 1’application mais seront indépen-
dants de I’application considérée.

Enfin, méme a charge fixée, ’application peut réagir de maniere variable en raison des
fluctuations de son environnement. Par exemple, des VMs de I’application peuvent étre en exé-
cution sur un hote dont I’hyperviseur est équipé de fonctions fines d’allocation de ressources.
Ainsi, la présence de VMs tres consommatrices de ressource sur cet hdte peut ammener 1’hy-
perviseur a réduire les ressources normalement attribuées aux VMs de notre application. Un
mécanisme de controle réactif doit donc €tre mis en place, puisque ces variations sont exogenes
pour I’application.

A partir d’un SLA, on peut déterminer les périodes temporelles dans chacune desquelles
les SLO et leurs valeurs sont stables. RCSREPRO fonctionne sur une période stable de SLOs.
Lorsque I’on passe d’une période a I’autre, les différents éléments utilis€s par RCSREPRO
doivent étre adaptés. Si le contexte de la nouvelle période n’a jamais €té rencontré, cela exigera
de reconstruire ces éléments et donc, potentiellement de réaliser de nouveaux benchmarks par
exemple. Le processus d’amélioration continu utilis€é dans RCSREPRO devra aussi étre ré-
initialisé.

1.4.2 Echelles temporelles

Afin d’assurer la meilleure précision possible au systeme de controle a I’exécution, les modifica-
tions de configuration doivent étre réalisées des que possible lorsqu’une condition de controle
change. Les métriques ou indicateurs de performance sont généralement fournis par des sys-
temes de surveillance et les échelles de temps de délivrance de ces informations sont variables,
pouvant aller de quelques secondes quelques minutes. Par exemple, les indicateurs de perfor-
mance dans Amazon-EC2 peuvent étre obtenus toutes les minutes via le service AWS Cloud-
Watch [Serl5]. Par ailleurs, une VM prend habituellement au moins 5 minutes pour démarrer
et le systeme d’exploitation peut également avoir besoin de plusieurs minutes pour s’adapter a
la nouvelle configuration des ressources. L’intervalle de temps entre deux actions d’adaptation
devrait donc étre au moins le temps total de démarrage des VMs et de la disponibilité d’une
nouvelle configuration des ressources. Il est aussi nécessaire d’éviter de trop fréquentes actions
d’adaptation des ressources pour laisser le systeme tirer partie de ces actions.

Les méthodes de facturation des VMs varient d’un fournisseur a 1’autre (voir par exemple
[LBMALI12] pour un raffinement de la demande de VM selon les modes de facturation, ou
[Qin15] pour une facturation a la seconde). Dans notre méthode, nous supposons que 1’unité
temporelle de facturation pour I’utilisation d’une VM est inférieur au temps de démarrage d’une
VM.

La dimension proactive de notre méthode de contrdle a I’exécution est fondée sur la classifi-
cation et la prévision de la charge par des méthodes d’analyse de séries temporelles appliquées
a la charge soumise au systeme. Nous utilisons pour cela le systeme logiciel de prévision dyna-

1.5. EXPERIMENTATIONS 13

mique de charge WCF (Workload Classification and Forecasting) [HHKA14]. Nous renvoyons
le lecteur a la section 7.2.2 pour une présentation détaillée de WCF. Une connaissance a priori
du comportement de la charge, donc des comprtements des utilisateurs de 1’application, permet
d’accélérer I’efficacité de WCEF, mais cette connaissance n’est pas disponible, WCF pourra pro-
duire des prévisions fiables apres une période plus ou moins longue d’observation de la charge.
Au final, nous avons donc trois échelles de temps en jeu dans le contrdle a I’exécution. La
plus grande est définie par les expressions Guarantee terms du SLA. L’échelle intermédiaire
correspond aux fréquences des prévisions (systtme WCF). La plus petite échelle est associée a
I’intervalle de temps nécessaire pour effectuer des actions de reconfiguration des ressources.

1.4.3 Architecture systeme du controle a I’exécution

Notre systeme de contrdle a I’exécution est un systeme informatique autonome autogéré conforme
a I’architecture MAPE-K de boucle de régulation MAPE-K [CT06]. Cette architecture est rap-
pelée en détails dans la section 4.3.1. Nous présentons ici un résumé de notre architecture dont
on trouvera les détails en section 7.3.

La surveillance (monitoring) du systeme est assurée a la fois par la prise de mesures sur les
indicateurs de bout en bout de 1’application définis dans le SLA et les indicateurs d’utilisation
des ressources donnés par le systeme d’exécution des VMs.

La partie analyse assure plusieurs fonctions. D’une maniere réactive, elle compare les in-
dicateurs internes d’exécution (usages de ressources) a I’aide d’un systeme de comparaison a
des seuils. Les données de charge sont utilisées par le composant WCF pour prédire la situation
de la charge de travail dans deux intervalles de temps dont la durée correspond au temps mini-
mal pour une action sur 1’allocation de ressources. L’ ensemble des informations est aussi utilisé
pour affiner le modele de correspondance charge-configuration qui constitue le coeur de la base
de connaissances (knowledge) de notre boucle MAPE-K.

La partie planification calcule les actions d’adaptation dans les trois modes : controle fondé
sur un ordonnancement déduit du SLA (modifications planifiées des SLOs), contrdle réactif et
controle proactif. La partie réactive agit en fait de maniere indirecte en adaptant la correspon-
dance charge-ressources pendant le fonctionnement. La partie proactive est elle assurée par la
prévision de charge. Les résultats de la planification sont traduits par des artefacts techniques
qui dépendent de I’environnement sous-jacent au PaaS. Par exemple, dans le projet OpenCloud-
ware, on définit une nouvelle configuration dans un fichier texte conforme a la syntaxe OVF++
(voir par exemple [SEDP*13]) qui est transmis a 1’outil d’exécution de reconfiguration VAMP
qui lui-méme dialogue avec les IaaS en jeu.

1.5 Expérimentations

1.5.1 Buts des expérimentations

Nous avons expliqué que notre méthode comporte une partie proactive fondée sur la prévision
de charge. Dans les expérimentations que nous réalisons, nous supposons que la précision des
prédictions fournies par le systeme WCEF est suffisamment bonne pour que 1’on puisse considé-
rer qu’elles décrivent exactement le futur de la charge. Ceci nous a permis de ne pas (encore)
déployer WCF pour nos expérimentations. Nous nous concentrons donc dans ces expérimenta-

14 CHAPITRE 1. RESUME ETENDU

tions sur la vérification de la pertinence du modele MFC de correspondance charge-ressources
allouées et I’amélioration continue de ce modele pendant 1’exécution.

1.5.2 Application synthétique

Nous avons développé une application, nommée « Rubberband » (élastique), pour réaliser nos
expérimentations. Rubberband est architecturé selon le modele VCAA et une requéte de service
définit la charge de travail demandée a chaque étage tant en nature (CPU, mémoire, etc.) qu’en
intensité. Chaque étage n’assure qu’un service. On peut donc dire que RubberBand constitue
une synthése d’une véritable application conforme au modele VCAA, les différents appels de
service de I’étage s a 1’étage s’ étant regroupés dans 1’unique appel de s a s’ dans RubberBand.

1.5.3 Environnement d’expérimentation

Nous utilisons deux infrastructures d’expérimentation : une interne au LISTIC, I’autre, la pla-
teforme OpenCloudware, disponible au sein des infrastructures Bull de Grenoble. Nos expéri-
mentations actuelles ont été réalisées uniquement sur la plateforme du LISTIC et seront portées
sur la plateforme OpenCloudware prochainement. La plateforme LISTIC est fondée sur OpenS-
tack et implantée sur un (et bientot deux) nceud(s) de calcul, installés dans les locaux du centre
de calcul MUST de I’Université Savoie Mont Blanc a Annecy le Vieux. OpenStack [Jacl2]
est une plateforme [aaS open source fonctionnant sur un systeme d’exploitation Linux, com-
plété par différents services. Nous utilisons en particulier le systeéme de surveillance Ceilome-
ter [Wik15a].

Concernant le benchmarking, nous utilisons le systeme open source (OW2) CLIF et son
extension de recherche automatique de saturation SelfBench. On se rapportera au chapitre 3
pour une présentation détaillée de ces outils.

1.5.4 Conception des expérimentations

Notre expérimentation comporte trois séries d’expériences. La premiere série permet d’ obtenir
la valeur réelle des MFCs de chaque étage en utilisant SelfBench. Dans la deuxieme série,
nous employons CLIF pour vérifier que notre modele de correspondance charge de travail -
ressources fonctionne correctement en supposant que nos valeurs de MFC sont précises. Enfin,
dans la derniere série, nous cherchons a vérifier que les MFC, qui sont au cceur de notre modele
de connaissances, peut étre améliorée avec la partie réactive de notre méthode de contrdle a
I’exécution.

Nous définissons un RubberBand simple pour la premicre série. Rubberband est composé
de deux étages connectés séquentiellement. Chaque étape peut avoir une ou plusieurs machines
virtuelles, et dispose donc d’un équilibreur de charge (load balancer). Chaque étage dispose au
minimum d’une VM et d’une seule flavor. La charge est constituée d’un calcul plus ou moins
intensif sur chaque étage.

Nous obtenons les MFC a travers un ensemble de tests avec Selfbench. Pour obtenir un
MEFC, nous avons besoin d’effectuer un test SelfBench, donc deux tests SelfBench seront néces-
saires pour notre RubberBand. Dans ce test, I’application doit avoir le nombre minimal d’ins-
tances sur 1’étage étudié et « suffisamment » d’instances sur les autres étages pour s’assurer

1.6. CONCLUSION ET TRAVAUX FUTURS 15

que les ressources sur 1’étage étudié peuvent étre pleinement utilisées. Nous obtenons au final
MFCl et MFCQ

Dans la deuxieme série, nous vérifions que les ressources allouées sont suffisantes en utili-
sant les valeurs M F'C et M F'C',. Pour ce faire, nous utilisons CLIF 3 fois. Chaque test injecte
une charge a taux d’arrivée constant et pour une configuration de RubberBand optimisée fondée
sur M F'C'y et M FCs. Les trois taux d’arrivées de requétes sont définis par un premier inférieur
au minimum de M F'C et M F (5, un deuxieme entre M F'C; et M F'Cs et un dernier plus grand
que le maximum de M F'C; et M FCs.

Avec la derniere série d’expérimentations, nous vérifions que les valeurs initiales (peut étre
imprécises) des MFCs peuvent étre améliorées avec notre méthode RCSREPRO lorsque la pré-
diction de la charge est exacte. Nous utilisons pour cela les données de surveillance fournies par
ceilometer. Nous modifions les valeurs de MFCs par nos observations issues de Ceilometer et
nous observons le comportement du systeéme de contrdle. On se reportera a la section 7.3.3 pour
les détails. Nous vérifions ainsi que les valeurs imprécises des MFCs peuvent étre améliorées
avec RCSREPRO si M F'CY et M FC!, sont « proches » de M F'Cy et M FCs.

1.6 Conclusion et travaux futurs

1.6.1 Conclusion

Dans cette these, nous nous sommes concentrés sur les problemes de gestion de la QoS au ni-
veau PaaS avant et pendant 1’exécution. Nous avons introduit un langage, PSLA, de définition
de SLA et de sa gestion apres avoir rappelé la nécessité d’un tel moyen d’expression des pro-
priétés des services et de leurs qualités. Ce langage correspond aux contrats entre fournisseurs
du PaaS et clients du PaaS. PSLA est fondé sur WS-Agreement et emploie les technologies
XML pour permettre une exploitation machine-a-machine (machine to machine) des contrats
par les contractants.

Le benchmarking (tests) fournit une analyse du comportement des applications, par exemple
débit de requétes servies, temps de réponse d’une requéte. Des tests permettent donc de savoir
si les différents SLOs d’un SLA peuvent étre satisfaits.

Dans cette theése, nous proposons une méthode d’analyse de faisabilité de SLA fondée sur
les benchmarks. Notre méthode réalise un compromis entre des tests exhaustifs, coliteux et une
précision insuffisante résultant d’une faible couverture de tests. Nous en déduisons un modele
de correspondance charge de travail soumise - ressources allouées a I’application utilisé dans
notre méthode de contrdle a I’exécution.

le contrdle a I’exécution vise a attribuer de fagon appropriée des ressources aux applications
tout en satisfaisant les contraintes définis dans le SLA. Les méthodes actuelles sont essentielle-
ment de nature réactive ol a base de modeles mathématiques de 1’application et de son support
d’exécution. Par ailleurs, la planification a priori ne peut seule assurer une adaptation a I’exé-
cution. Nous proposons donc dans ce travail la méthode de controle a I’exécution RCSREPRO.
RCSREPRO est une méthode fondée sur I’ordonnacement et des méthodes de controle a I’exé-
cution réactives et proactives. RCSREPRO prend en compte les variations planifiées définies
dans le SLA et gere les variations de charge dans le cadre du SLA de maniere proactive en s’ ap-
puyant sur des prévisions, a base de séries temporelles, de cette variation. Les MFCs constituent
le modele de correspondance charge de travail - ressources utilisées dans RCSREPRO. Ils sont

16 CHAPITRE 1. RESUME ETENDU

initialement dérivés de benchmarks réalisés a travers une étude de faisabilité de SLA et sont
améliorés en permanence (rétro-action) par observation du systeme en focntionnement.

1.6.2 Travaux futurs

Dans notre proposition actuelle, nous supposons que les requétes a 1’application sont homo-
genes, i.e. induisent une charge de travail de mémes caractéristiques sur les différents étages de
I’application. Une des premieres extensions de nos travaux consistera a étendre notre méthode
a une charge composite. Cette extension nécessite d’abord de définir une caractérisation des
différents types de charge. Ceci étant réalisé, il s’agira d’étudier de quelle maniere la notion de
MEC peut étre étendue pour prendre en compte les types de charges définis précédemment.

Chapter 2

Introduction

2.1 Cloud computing

2.1.1 The emergence of cloud computing

With the development of multi-core computer and parallel technique, the high performance
computers in data center can provide much more services. Tasks, such as scientific comput-
ing, search engine, multimedia processing, require a lot of CPU, Memory, network or database
resources. These tasks can be running in data centers to guarantee the performance. Clus-
tering computing is a clustering system based network computing pattern. Clustering system
is composed of independent computers connected by high speed networks and managed to-
gether by resource management software to provide an unified access interface and hide the
underground running machines to end users. When too many task requirements come, lim-
ited clustered resources are intensively competed among tasks. The system may be overloaded
and the tasks need longer time to finish. Grid computing [FKO03] integrates geographically dis-
tributed computing resources to process large scale computing requirements. Resources are
shared. Therefore, the duration of big task processing can be reduced and the one who con-
tribute their resources can also acquire economic benefits. Users are motivated to provide their
idle resource, but the dynamic and heterogeneity of the grid environment make it difficult to
manage. Moreover, grid computing can’t be widely used because it is designed for a specific
kind of task. Cloud computing provides resources as a service. Infrastructures, platforms and
applications are all treated as resources. With cloud computing, users can use these resources
simply as using water and electricity services without caring about maintaining the resources.

2.1.2 Definition of cloud computing

Cloud computing is a new computing model. Infrastructure, application and data are moved
from local machine to internet and provided as services. Cloud users greatly save budgets by
buying only what they need. Cloud computing is not defined uniformly. [G"09] summarized
the cloud computing definition from 21 cloud experts. Klems thinks that the infrastructure
which can increase or decrease resource allocation within several minutes or even several sec-
onds to avoid over provisioning or under provisioning should be named as cloud. Many other
researchers think that this is only a necessary but not a sufficient condition for cloud. From
business aspect, Martin et al. [Mar10] think that cloud services should be "pay as you go" in the

18 CHAPTER 2. INTRODUCTION

scope of internet to extend the scale of computing resources. [BY VOS] thinks that the biggest
issue for cloud is the user friendliness as well as ability of delivery SLA guaranteed service.
[VRMCLO8] summarized different cloud computing definition as "Clouds are a large pool of
easily usable and accessible virtualized resources (such as hardware, development platforms
and/or services). These resources can be dynamically reconfigured to adjust to a variable load
(scale), allowing also for an optimum resource utilization. This pool of resources is typically
exploited by a pay-per-use model in which guarantees are offered by the Infrastructure Provider
by means of customized SLAs." Cloud should be defined from several aspects. [SJ12] sum-
maries cloud characteristics from functional, non-functional and economic aspects. Functional
feature include virtualization and elasticity. It can hide the complicated underground technical
details and custom hardware and software configurations to dynamically adapt to the require-
ments of changing workload. Non-functional characteristics, such as flexibility, allow users
to monitor and maintain several dynamic changing service environments to provide simplified
interfaces and QoS guaranteed services. Economic characters, such as pay as you go, allow
users to dynamically require and release computing, storage and network resources according
to actual demand. In this way, the start-up cost and management cost can be greatly reduced.

2.1.3 Cloud service architecture
Stakeholders in cloud services

To understand the cloud service architecture, the stakeholders involved in cloud service should
be clearly defined. [RJIKG11] classified cloud service stakeholders from business point of view
as cloud provider, enterprise user and end user. Cloud provider provides infrastructure, software
development platform or software applications to enterprise users and end users. Enterprise
users use the service interface provided by cloud provider to deploy and manage the application.
End user is the one who uses the application service directly. Cloud provider provides IaaS,
PaaS and SaaS web service interfaces based on standard protocol, such as SOAP and REST,
and Service Oriented Architecture (SOA) [KBSO05].

SaaS, IaaS, PaaS

According to the type of services, cloud services can be classified as Infrastructure as a Service
(IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS) as depicted in figure 2.1.

IaaS provide their clients virtual machines, storage space and network connectivity. It also
provides services like load balancing and firewalls. The clients deploy and run a variety of
software on the virtual machine, including software environment, such as operating system
and application. The clients of IaaS get all of these services of infrastructure through inter-
net. Amazon EC2, IBM Blue Cloud and Cisco UCS are three of the most representative laaS
products. Amazon EC2 provides different kinds of computing resources in the form of virtual
machines. Its performance or stability has been met in enterprise-class needs. It provides API
and Web management interface for users. IBM Blue Cloud is the first and technically advanced
enterprise-class cloud computing solutions. It integrates enterprise’s existing infrastructure by
virtualization and automated management technology into cloud computing business centers. It
manages hardware resources and software resources in a unified way. In other words, manage-
ment, distribution, deployment, monitoring and backup are organized and centralized. Cisco

2.1. CLOUD COMPUTING 19

Q
Application o Application §7 Application Application
Data £ Data I Data Data
©
5 = P = . -
Runtime . Runtime :é Runtime Runtime
° Middleware = Middleware Middleware = Middleware
g - = - = Q B
2< g 0S ° 0s 5 0S & 0S
(S5 o o] o)
218 % Virtualization | | & Virtualization | | % Virtualization 2: Virtualization
2l o 2 ~ =
—| 2 Servers & Servers o Servers - Servers
ol B © = S
2 Storage Storage = Storage =4 Storage
& & o
E Networking Networking e Networking - Networking
TAAS PAAS SAAS

Figure 2.1. Three kinds of cloud services. [iaal5].

UCS allows Users to install VMware vSphere (cloud computing virtualization operating sys-
tem provided by VMware) on UCS to support thousands virtual machines. Enterprises can use
Cisco UCS to quickly build a cloud in local data center.

PaaS provides the software development platform as a service to the client. PaaSs speed up
the SaaS development. PaaS usually includes operating system, runtime environment for the
programming language, database and web server. Clients can deploy and run their own applica-
tion on this platform. Clients have the full control of their application but they can not control
and manage the underlying infrastructure. For example, they can deploy and run their own
applications but they don’t know where the application is running. PaaS provides a software
engineering platform, including Software Development Kit (SDK for short), test environment
and deployment environment to the client, so that the client can develop and deploy applica-
tions easily. Clients do not need to consider about the operations and maintenance on servers,
operating systems, network and storage resources. The clients of PaaS are mainly developers.
PaaS is the latest cloud service of three layers. The first PaaS platform was born in 2007. It is
Salesforce’s Force.com. Clients can use comprehensive development tools and frameworks to
develop applications easily. Applications can be deployed directly into Salesforce infrastruc-
ture. By using its development environment and robust infrastructure, companies can deliver
robust, reliable, and scalable online applications. In April 2008, Google launched the Google
App Engine. It also supports Web applications. Google App Engine provides Google’s infras-
tructure to deploy applications. It also provides a set of development tools and SDK to help
application development. Windows Azure Platform is offered by Microsoft. It is running on
Microsoft data center. It has scalable cloud operating system, data storage and networking.
Windows Azure SDK provides a set of development, deployment and management tools and
APIs for Windows Azure cloud services.

There are many technologies involved in PaaS. The main technology, includes REST, Paral-
lel processing (MapReduce), multi-tenancy technology and general-purpose distributed mem-
ory caching system (Memcached). Representational State Transfer (short for REST) is a tech-
nology providing services to the client conveniently. Multi-tenancy allows a single application
instance to be used by multiple clients with good isolation and security. Multi-tenancy can ef-
fectively reduce the cost of buying and maintaining applications. Parallel processing is a kind

Jopuap Aq peSeur]

20 CHAPTER 2. INTRODUCTION

of technology to process large amounts of data. Google’s MapReduce is a representative work
of using huge clusters to do parallel processing. Application server is also optimized to satisfy
cloud computing, such as the Jetty application server for Google App Engine. Distributed cache
is a kind of technology for reducing the load on the server and speeding up the response speed
effectively. The most famous example is the distributed cache Memcached. Application server
and distributed cache is essential for most PaaS. REST technology is usually used to provide an
external interface. Multi-tenancy is mainly used behind SaaS application. Parallel processing
technology is usually provided as a service.

SaaS(Software as a Service): SaaS means providing software through internet. Clients
hire the software based on web instead of buying the software. SaaS providers install and run
application in the cloud, and SaaS clients use web browser or other client to use the application.
SaaS client can only configure the application, but can not manage the cloud infrastructure and
platform underlying the application.

Public, private and hybrid cloud

Cloud can be classified into private cloud, public cloud and hybrid cloud architectures according
to the deployment.

Public cloud is the most popular cloud computing model at this moment. It provides a cloud
service opened to the public. It can support a large number of requests with low cost. Public
cloud providers provide their clients with a variety of resources, including physical infrastruc-
ture, applications, software runtime environment and security, management, deployment and
maintenance of these resources. When clients are using IT resources, they only need to pay re-
sources and services they use. Though they share resources with other public cloud clients, they
do not need to know about other clients or how the cloud platform is structured. Cloud provider
is the only one who can control the physical facilities and make sure of the non-functional re-
quirements like safety and reliability. Many big IT companies, like Amazon’s AWS, Microsoft
Windows Azure, Google’s Google Apps and Google App Engine, provide their own public
cloud services.

Public cloud has many advantages. Firstly, it serve for large scale of workload, so it makes
the optimization of resource allocation possible. It may result in reducing operating costs of
each workload. Secondly, using public cloud requires no upfront investment, and client can
save money for managing and maintaining the IT resources. With the development of public
cloud itself, the price of public cloud service will be lower and lower. Thirdly, compared to the
computing resources required by one client, the public cloud provider can provide resources
without limitation. So the client can be satisfied by the ability of the cloud in almost every case.
Finally, public cloud can support most popular operating systems and hundreds of thousands of
applications. Public cloud has also some shortcomings, for example, clients may worry about
the data security since the data are not stored locally.

Although public cloud represents the general trend, for many enterprises, it is difficult to
fully benefit from public clouds in a short time because of the restrictions and conditions inside
the enterprises. Private cloud help these clients to benefit from the cloud technology. Pri-
vate cloud service only used inside the enterprise. It works behind the firewall and can not be
achieved by people outside. The IT staff in the enterprise is taking responsibility for the data,
security and quality of service. Private cloud infrastructures are more dynamic and flexible than
the traditional enterprise data centers. Building private cloud is a good way to reduce the com-

2.1. CLOUD COMPUTING 21

plexity of IT infrastructure. There are two kinds of private cloud products. One is provided by
IBM and its partners such as IBM Blue Cloud. The other is provided by VCE (VMware, Cisco
and EMC) such as Cisco UCS. Private clouds are mainly running inside the data centre of the
enterprise. They are maintained by the IT department of the enterprise. These two aspects make
the data more safe, the SLA is easily guaranteed, can make a good use of the existing hardware
resources, the bygone applications can be easily adapted to the cloud, and IT department can
better integrate the existing I'T management processes with cloud. But the costs and expenses
of building a private cloud is much higher than using public cloud, especially if the enterprise
buys a private cloud solution directly from a big company. To maintain a private cloud, it is
necessary to operate a professional cloud computing team which also costs a lot.

Hybrid cloud means combining public and private clouds together to keep the client’s pri-
vacy and low the costs of building the cloud. By using hybrid cloud, enterprise can put the
important or high security level parts of applications in their private infrastructure while others
in the public clouds to decrease costs. Though hybrid cloud is not as popular as public cloud
and private cloud, there are still some hybrid cloud products, like Amazon VPC (Virtual Private
Cloud) which accesses some Amazon EC2 computing power behind the firewall but isolated
with private computing power. VMware vCloud is also an example of hybrid cloud product. By
using hybrid cloud, enterprises can own the privacy close to private cloud and the costs close
to public cloud. It can quickly access to a large amount of computing resources in the public
cloud when it is necessary. But there haven’t a lot of hybrid cloud products to chose, and the
operations of hybrid cloud are much more complicated. After all, privacy is not as good as
private cloud and the cost is higher than public cloud.

2.1.4 Cloud Management

Compared to data centers, the biggest advantage of cloud computing is the management. Cloud
management is the fundamental of operating IaaS, PaaS and SaaS. It provides information to
learn about the cloud and to make decision in the cloud. It provides the technology to manage
and maintain the cloud environment. It gives a safe and easily used interface of the cloud
services to the cloud clients.

Although cloud services use standard protocols, such as SOAP and REST, as their web
services interface, it is still a challenge of cooperating several services and providing effective
service management. In literature [DTB10], [MKF10], [TAPB10], [LTCC12] propose hier-
archical and modular cloud services management methods. The entire service architecture is
composed of a three-layers structure. The top-layer is user interface. The middle layer is the
service management. The bottom layer is the resource supply.

Resource supply layer provides service management layer with customized virtual resources
above the physical resources through virtualization technology which can be classified as full
virtualization technology and paravirtualization technology [LUC™05] according to the differ-
ent levels of hardware virtualization. Multiple client servers (or say virtual machines) can be
started in one single physical server with different operating systems by using virtualization
technology. Virtual machines which share the same physical machine may have interlaced peak
and idle periods so that resource utilization of the physical server can be increased. When
multiple virtual machines on a single server have high load at the same time, part of the vir-
tual machines can be migrated to another server to ensure virtual machine performance and
avoid business interruption. On the contrary, when the load is too low, virtual machines can be

22 CHAPTER 2. INTRODUCTION

migrated to shut down the server and reduce energy consumption.

Service management layer is the most important layer of cloud service management sys-
tems. Service management layer mainly contains user management, image management, re-
source management, and security management. In the user management part, there are user
authentication, access control, request management and billing management. In EC2, user iden-
tity authentication is done by X. 509 standard certificate mode [Qui]. Access control means
authority management of reading and writing of resources. Billing management calculates the
cost based on the user’s resource usage monitoring information. Image management, including
image database management, image creation and image deployment, aims at facilitating the
deployment of complex applications to the cloud environment. Resource management includes
resources demanding, load balancing, monitoring statistics and fault detection. Security man-
agement includes security auditing, access authorization and so on. Service management layer
needs to choose the appropriate resource for requests. It also should be able to increase and
decrease the size of resource pool dynamically to adapt to the changing workload and ensure
Service Level Agreement (SLA).

The user interface layer consists mainly of service registration, service discovery, service
composition, service access and service monitoring. Service registration means that cloud ser-
vice developers can register to and use the service interfaces provided by service management
layer to design and deploy an application in the resource supply layer. Service discovery helps
a user to find an available services according to its needs. Service composition helps to cus-
tom the service process. Service access helps users to submit data to obtain the corresponding
service through service interface. Service monitoring helps to monitor the status of the request
execution.

In the literature, extensive discussions have been performed from several points of view.
We will focus on the service management perspective. Hence, resource supply layer and user
interface layer problems, such as resource virtualization, VM migration and service registration,
are out of the scope. More precisely speaking, we concentrate on the SLA management of PaaS
including formally expressing SLA, SLA feasibility study method during SLA negotiation and
runtime SLA enforcement.

2.2 OpenCloudware

The work described in this thesis is in the context of OpenCloudware project [ocw]. Open-
Cloudware is a project which aims at developing software modules to build a multi-IaaS based
PaaS. OpenCloudware provides a development platform for application. This platform includes
tools to manage complex virtual appliances during the whole life cycle. OpenCloudware itself
is composed by components. The services are provided online through a service portal as a
SaaS. With the help of OpenCloudware, clients can build, generate and operate enterprise dis-
tributed applications. OpenCloudware is supported by the French FSN, from January 2012 to
September 2015. It is a co-funded collaborative R&D project. 18 partners involve in the project.

2.3 Contributions

Cloud computing is a new computing model. Infrastructure, application and data are moved
from local machines to internet and provided as services. Cloud users, such as application own-

2.4. ORGANISATION OF THE DOCUMENT 23

ers, can greatly save budgets from the elasticity feature, which refers to the “pay as you go”
and on-demand characteristics, of cloud service. The goal of this thesis is to manage the Qual-
ity of Service (QoS) for applications running in cloud environments. Cloud services provide
application owners with great flexibility to assign “suitable” amount of resources according to
the changing needs, for example caused by fluctuating request rate. “Suitable” or not needs
to be clearly documented in Service Level Agreements (SLA) if this resource demanding task
is hosted in a third party, such as a Platform as a Service (PaaS) provider. In this thesis, we
propose and formally describe PSLA, which is a SLA description language for PaaS. PSLA is
based on WS-Agreement, which is extendable and widely accepted as a SLA description lan-
guage. Before signing the SLA contract, negotiations are unavoidable. During negotiations,
the PaaS provider needs to evaluate if the SLA drafts are feasible or not. These evaluations are
based on the analysis of the behavior of the application deployed in the cloud infrastructure, for
instance throughput of served requests, response time, etc. Therefore, application dependent
analysis, such as benchmark, is needed. Benchmarks are relatively costly and precise feasibil-
ity study usually implies large amount of benchmarks. In this thesis, we propose a benchmark
based SLA feasibility study method to evaluate whether or not a SLA expressed in PSLA,
including QoS targets, resource constraints, cost constraints and workload constraints can be
achieved. This method makes tradeoff between the accuracy of a SLA feasibility study and
benchmark costs. The intermediate of this benchmark based feasibility study process will be
used as the workload-resource mapping model of our runtime control method. When applica-
tion is running in a cloud infrastructure, the scalability feature of cloud infrastructures allows
us to allocate and release resources according to changing needs. These resource provision-
ing activities are named runtime control. We propose the Runtime Control method based on
Schedule, REactive and PROactive methods (RCSREPRO). Changing needs are mainly caused
by the fluctuating workload for majority of the applications running in the cloud. The detailed
workload information, for example the request arrival rates at scheduled points in time, is dif-
ficult to be known before running the application. Moreover, workload information listed in
PSLA is too rough to give a fitted resource provisioning schedule before runtime. Therefore,
runtime control decisions are needed to be performed in real time. Since resource provision-
ing actions usually require several minutes, RCSREPRO performs a proactive runtime control
which means that it predicts future needs and assign resources in advance to have them ready
when they are needed.Hence, prediction of the workload and workload-resource mapping are
two problems involved in proactive runtime control. The workload-resource mapping model,
which is initially derived from benchmarks in SLA feasibility study is continuously improved
in a feedback way at runtime, increasing the accuracy of the control.

To sum up, we contribute with three aspects to the QoS management of application running
in the cloud: creation of PSLA, a PaaS level SLA description language; proposal of a benchmark
based SLA feasibility study method; proposal of a runtime control method, RCSREPRO, to
ensure the SLA when the application is running. The work described in this thesis is motivated
and funded by the FSN OpenCloudware project [ocw].

2.4 Organisation of the document

This document is structured as follows. SLA management related issues will be introduced in
section 3. Researches around SLA management will be discussed in section 3.3. Standardized

24 CHAPTER 2. INTRODUCTION

SLA descriptions will be introduced in section 3.4.

The Virtualized Componentized Application Architecture will be described in section 4.2.
Runtime control methods will be introduced in section 4.3. Existing proactive and reactive
runtime control methods will be introduced in section 4.4. Our runtime control method is based
on benchmarking. Benchmarking will be introduced in section 4.5.

The requirements of a PaaS level SLA will be discussed in section 5.2. The syntactic ex-
pression of PSLA will be given in section 5.3. This chapter will be concluded in section 5.4.

The context of SLA feasibility study will be introduced in section 6.2. The benchmarking
based activities described in section 6.3.1, 6.3.2, 6.3.3, 6.3.4 and 6.3.5, which devote to
explore Maximum Flavor Capability modeling will be introduced in section 6.3. Based on
the Maximum Flavor Capability model explored in section 6.3, the constraints described in
section 6.2.1 can be evaluated and the evaluation results will lead to reject or accept of the SLA
contract. These constraints evaluation processes will be introduced in section 6.4. To make
our benchmark based SLA feasibility study method understandable, we will give an example in
section 6.5. This chapter will be concluded in section 6.6.

The challenges, time granularities and runtime control system architecture based on MAPE-
K will be discussed in section 7.2. RCSREPRO, our runtime control method, will be described
in section 7.3. This chapter will be concluded in section 7.4.

Chapter 3

State of the art- SLA management

3.1 Introduction

The goal of this thesis is to manage the Quality of Service (QoS) for applications running in
cloud environment cloud services provide application owners with great flexibility to assign
resources according to the changing needs, for example caused by fluctuating request rate. QoS
requirements need to be clearly documented in Service Level Agreements (SLA) if this resource
demanding task is hosted in a third party, such as a Platform as a Service (PaaS) provider.
In this chapter, SLA management related issues will be introduced in chapter 3. Researches
around SLA management will be discussed in section 3.3. Standardized SLA descriptions will
be introduced in section 3.4.

3.2 SLA management

As the developed research of utility computing, grid computing and parallel computing, cloud
computing has been the main form of network services because its virtualized shared resource,
on-demand and pay-per-use features attract a large number of users. In the context of cloud
computing, applications and data move from the local machines to the cloud. Users can run their
business appropriately through web interface without buying a lot of infrastructure resources or
maintain the software stack. Accordingly, cloud service provider can obtain economic benefits
from their customer. Cloud services have been widely adopted in the fields of bank, e-commerce
and academic because of the flexibility, scalability and cost-effectiveness. Cloud services are
easy to use and clear paid, but due to the complexity, such as uncertainty of physical location
of cloud resources or performance variation, cloud service quality can be different. Therefore,
the guarantee of Quality of Service (QoS) in the cloud becomes one of the core concern when
adopting cloud services. Cloud services such as Amazon EC2 usually promise the available rate
and corresponding service credit percentage during the service [ec213]. Service Level Agree-
ment (SLA) is one of the agreements between service consumer and service provider. It is used
to structurally describe QoS related rights and obligations between contracted parties. Cloud
computing service consumers and service providers will negotiate the SLA terms before sign-
ing the SLA and start the service. During the service, cloud service providers will provide the
service under SLA. Usually, a SLA draft with service quality restrictions such as the deadline
(deadline), budget (budget) and punishment (penalty rate) will be proposed to service provider.

26 CHAPTER 3. STATE OF THE ART- SLA MANAGEMENT

If the SLA draft is received, a formal SLA contract is achieved between the cloud service con-
sumer and the cloud service provider. Both cloud service consumer and cloud service provider
should fulfil the terms listed in SLA. Or else, penalty will be caused because of SLA violation
besides the adverse impact on credibility. For service providers, the best way to obtain the
maximum economic benefits is accepting the maximum services requirements while improving
customer service and satisfaction by meeting the SLA. In this way, cloud service providers can
obtain high service reputation [Ver04]. Therefore, how to determine the maximum achievable
SLA and how to formally and effectively describe a SLA are two important issues for effective
QoS management.

In this section, SLA management related issues will be introduced. The definition of SLA
is given in section 3.2.1. SLA lifecycle will be explained in section 3.2.2. SLA negotiation
process will be introduced in section 3.2.3.

3.2.1 SLA definition

SLA is a negotiated agreement between service consumers and service providers to define QoS
specific issues. SLA is an important way for guaranteeing the QoS of network services. In a
SLA for network services, network resources are abstracted into measurable parameters, such
as network latency, bandwidth, and response time. The promise about QoS between the network
service consumer and the network service provider are ensured by guaranteeing these parame-
ters within the negotiated range during the whole network service process. The QoS is managed
by establishing an interactive protocol between service providers and service consumers. The
protocol can also be used to the effective maintenance of all types of services and management
of resources, thus desirable QoS is guaranteed [LWK™10], [MNM*07].

SLA has already been widely adopted in many kinds of web services before the spring up of
cloud computing. For example, WSLA [LKD"03] proposed by IBM and WS-Agreement [ACD*07]
proposed by OGF (Open Grid Forum). According to [SMJO00], an instant SLA should include
the following 6 aspects:

e Parties is the role of consumers and providers in the cloud service market.

e Parameter is the metrics used to measure the cloud service. The parameters can be decided
by negotiating between service provider and the service consumer.

e Service Level Objective (SLO) defines the quality of service promised by service providers.
Usually, each service should include at least one SLO. In each SLO, there are some pa-
rameters. Moreover, each SLO should have a period of validity and a set of clauses to
describe and measure the details of work flow.

e Monitoring monitors and evaluates the QoS parameters defined in SLA. The service
provider and the service consumer should be notified when a SLA violation happens.

e Violation process means that when service provider can’t satisfy the service consumer
with what they promised in the SLA, SLA pre-defined actions will be taken.

e Life Cycle explains the changing state of SLA with the evolution of service.

The measurement of service level and the monitoring of service quality should be based on cor-
responding service parameters. The parameters considered when signing SLA between service

3.2. SLA MANAGEMENT 27

provider and service consumer should be customized according to different services. Cloud
service parameters can be designed from 4 aspects: service aspect, technical aspect, business
aspect and QoS aspect. Service aspect describe the detailed information about services provided
to service consumer including the negotiated service content and the service level. For example,
number of instances needed for running a job, the amount of jobs submitted by users, the load
of one single instance, the duration of running each instance, the time constraints of running
each instance, the budget of each instance, the budget of running each job, the type of instance
and the price of each kind of instance. Technical aspect describes the measuring unit of QoS
parameters and some technical support facilities. For example, the CPU power and Memory
size of VM, booting up time of VM, the scale of long term and short term of data storage, the
maximum and minimum number of VMs to serve one single user, the duration needed to in-
crease or decrease n VMs, the runtime scaling ability of the data center, the maximum number
of VMs that can be configured on one single physical server and the geographic location for
data storage. Business aspect describes some business information and rules related to pro-
vided services including SLA violation handling and charging scheme: for example, penalty
and billing. QoS parameters can be Availability, Response time, Security, Reliability, Usability,
Privacy, Customizability, Scalability, System throughout, Networking, Recovery, Latency. The
determination of QoS parameters is made based on service aspect, technical aspect and busi-
ness aspect. The QoS monitoring informations are important for evaluating and improving the
quality of services guaranteed through SLA contract.

3.2.2 SLA lifecycle

In fact, organizations have different definitions of SLA life cycle . For [RWQ"08], the SLA life
cycle is divided into six stages as discovering provider, defining SLA, agreeing on SLO terms,
monitoring SLA, terminating and enforcing penalty. In the stage of discovery provider, service
consumers search for service providers which meet certain properties and select a provider as
final service provider. In Phase of defining SLA, SLA is defined according to certain criteria.
For example, WS-Agreement [ACD"07] is a SLA standard developed by OGF which specifies
how to define the SLA, including the specifications like what terms should be in SLA and in
what format terms should be expressed in SLA. In WS-Agreement, SLA can be classified as
template and agreement in the form of XML documents. In the stage of agreeing on SLO terms,
all the service level objectives (SLO) and corresponding penalty terms will be considered and
finally fixed after several rounds of negotiation. In monitoring SLA stage, a trusted third party
monitor is needed in the service delivery process to record the provided services as a basis for
judging contravention. When the service is completed, SLA expires or service provider is no
longer able to provide desirable services, SLA goes into the SLA terminated state. If SLA vio-
lation occurred, SLA enters the state of enforcing penalties and punishments will be executed.
WSLA [LKD"03] is a SLA standard developed by IBM. IBM defines SLA lifecycle as five
SLA lifecycle states including SLA identified, SLA requested, SLA inactive, SLA active and
SLA terminated [IBM]. SLA enters SLA identified state when a customer requires the defini-
tion of SLA. During SLA requested state, the specific content of the SLA will be determined.
SLA requester needs to agree on, reject or propose modifications to the SLA. SLA negotia-
tions will continue during SLA inactive status until all the negotiations completed which means
SLA enters SLA active state. SLA terminated state indicates that the service is completed or
terminated according to the violation related terms defined in SLA.

28 CHAPTER 3. STATE OF THE ART- SLA MANAGEMENT

3.2.3 SLA negotiation

There are many negotiation methods. Negotiation methods can be classified into three cat-
egories: game theory based methods, rule-based approaches and heuristic-based approaches
[GLDKO03], [LLD*03], [FSJ98], [Sim02]. [GLDKO3] proposes an auto-negotiation and
decision-making scheme based on all parties’ benefits and rules. For grid computing, [LLD"03]
uses the time-dependent model and resource-dependent model in negotiation decision function
[FSJ98] to achieve an acceptable SLA collection for both grid resource buyer and sellers. In
this acceptable SLA collection, an optimized SLA for both parties is chosen as the final SLA.
However, the impact of market trends is not taken into consideration during negotiation.

[Sim02] proposes a market-oriented negotiation strategy, using market information to cal-
culate the suitable propositions for both service consumers and service providers. Market infor-
mations and negotiation conditions are used during the negotiation process to adjust the SLA
terms flexibly. Game theory has been applied by researchers to solve SLA negotiation and
resource management problems involved in cloud. [WVZX10] applies game theory to the re-
source supply and demand modelling problems in cloud computing. [SCW10] proposes an
algorithm to maximize the economic benefits of both cloud service providers and cloud service
consumers to overcome the shortcomings of the existing mechanisms. [ALIZ10] proposes a
distributed negotiation mechanism for cloud computing environment. [Sim10] points out that
in the context of multi-cloud, service markets among cloud services providers, cloud service
consumers and cloud service intermediary require a more complex negotiation mechanism to
achieve dynamic SLA negotiation. In WSLA, SLA negotiation is achieved by WSLA docu-
ment interaction. In most cases, the internet service provider’s WSLA document defines most
of the content, the user simply agrees to provide some relevant information. Usually, the service
provider defines most of the content in a WSLA document, and the service consumer simply
provides some relevant information and agrees on the SLA document. More flexibly, the ser-
vice provider defines SLA parameters and the service consumer defines SLO and SLA violation
handling terms. Service consumers and service providers can also work together to define the
SLA parameters, SLO and violation handling terms. In any case, negotiations are starting from
a WSLA template, and finally generate a WSLA document. WSLA negotiation process can be
a face to face communication between both parties, or else, it can be done online. Negotiation
protocol can be any general electronic document negotiation protocol [Sta98].

In WS-Agreement, the agreement negotiation is started from an agreement template [ADK104].
The agreement template is sent to the agreement consumer by the agreement initiator. Com-
paring to the real SLA agreement, the structure of the agreement template is associated with
agreement creation constraints such as acceptable value range of variables in SLO. Then, the
service consumer creates the initial version of the SLA according to the WS-Agreement tem-
plate, and sends it back to the service provider. The service provider does feasibility study on
the offer and makes the decision of acceptance or rejection. Feasibility study is based on the
amount and type of resources which can be used, the cost constraints from service consumer, the
QoS requirements, the target workload and so on. The feasibility study method, as an important
action of SLA negotiation process, is one of the main goal of this thesis.

3.3. REVIEW OF SLA MANAGEMENT STUDIES IN CLOUD COMPUTING 29

3.3 Review of SLA management studies in cloud computing

Various entities such as service providers, service consumer and end-users are involved in cloud
services. Different entities have different objectives. SLA sets performance goals, privacy and
protection constraints. SLA also defines actions that need to be taken to guarantee the QoS
attributes. SLA includes obligations such as penalties and necessary informations for service
provider. With the aforementioned information defined in SLA, dynamic and efficient resource
provisioning can be performed for ensuring QoS of changing application demands.

A lot of researches take SLA specifications and term languages into consideration. 4CaaSt
project [CT] creates a PaaS Cloud platform [GGJGT™12]. This PaaS platform introduces a
description language to define dependencies among services, elasticity and multi-tenancy man-
agement rules and necessary informations about application to achieve the mapping from the
application level to the resource level which is essential for elasticity management and SLA
enforcement at runtime. With the business model simulation tool related to eMarketplace, com-
plex pricing and business models for any type of cloud service (even composite cloud services
offered by different providers) can be established. With business resolution feature [MGV11],
experience of end users and customers can be used to propose better business offers which better
meet the demands of service consumers.

CloudScale project [Prol2] aims at supporting scalable service engineering. CloudScale
supports analysing, predicting and resolving scalability problems service providers’ perspec-
tive [BSL*13]. CloudScale provides a language named as ScaleDL (Scalability Description
Language) to describe the scalability requirements of a service. ScaleDL can be used to spec-
ify informations like application usage and cost, application deployment to support scalability
analyses of services. CloudScale can discover resource related causes of potential SLA vio-
lations based on the source code of the service. Scalability problem solutions are given and
what-if analysis are done to find out the best solutions such as changing the implementation of
the source code.

SLA@SOI [proll] aims at developing an open-source framework for managing the en-
tire service stack, including negotiating, provisioning, monitoring and adaptation of SLAs. It
provides SLA(T), as described in [KTK10], a SLA model to describe functional and non-
functional requirements of a service. SLA(T) is based on vocabularies like QoS metrics or
constraints and described as abstract syntax. To instantiate a SLA based on SLA(T), concrete
syntactic format such as XML, OWL, or human-readable formats will be needed. SLA@SOI
implements a SLA negotiations framework to negotiate across business, software, and infras-
tructure tiers. The framework contains a negotiation protocol to make interaction behaviours
maintainable, readable and machine readable. It also contains a protocol engine and a negoti-
ation protocol to execute the negotiation protocol for the customer and the provider interacting
stateful. SLA@SOI provides a three-layered dynamically configurable monitoring framework
to manage monitored metrics defined in SLAs, to map high level SLAs to monitorable low level
metrics of monitoring system and also to manage intrusive and non-intrusive reasoners which
can analyse SLA terms and perform monitoring actions.

CONTRAIL [CCD%12] aims at providing an elastic PaaS over a federation of IaaSs.
With CONTRAIL, small IaaS providers can join a Cloud Federation of bigger players to de-
velop there business QoS, SLA management, security, interoperability and scalability issues
can be handled uniformly. CONTRAIL extended the SLA model proposed by the project
SLA@SOI[prol1] to express virtual resources in standard OVF form, to express guarantees

30 CHAPTER 3. STATE OF THE ART- SLA MANAGEMENT

terms and association with related OVF. Guaranteed Actions in SLA specify the automatic scal-
ing which requires more resources when cross the predefined thresholds. CONTRAIL SLA
specification can describe both generic parameters for any resource and specific parameters
for specific resources. CONTRAIL SLA specification includes Quality of Protection terms to
express data locality, protection, replication, etc., which can be linked with different pricing
models. User negotiates a SLA with CONTRAIL, and CONTRAIL looks for the best solution
by negotiating with IaaS providers on behalf of the users and selects the best SLA offer ac-
cording to user criteria. CONTRAIL also coordinates the runtime interaction within the cloud
federation to minimize SLA violations.

ETICS [LSCD™10] aims at supporting the provision of composite services based on atomic
services from different providers. The SLA template includes entities identification, service de-
scription, business aspects and technical aspects like QoS parameters. A hierarchical SLA is de-
signed to finally define SLA for end-to-end, QoS-enabled and network-guaranteed application
service. Interconnections among applications, network providers and end-users are described
by static SLAs at the atomic service layer [LSCD™10]. ETICS identifies and realizes different
SLA composition paradigms. SLA composition can either be centralized as a unique entity or
distributed. ETICS also supports different business or charging models.

OPTIMIS [FHT'12] aims at supporting and optimizing the whole life cycle of service
provision, operation, delivery and use of organizations who want to use cloud services to extend
their services and applications automatically. OPTIMIS provides a service manifest [FHT12]
which can be used to describe the requirements for running applications in [aaS. Both functional
and non-functional requirements can be specified for each component of the application. The
manifest can include the VM images with data constraints and protection, elasticity description,
legal terms and other standard contractual clauses.

PrestoPRIME [Ter10] helps management of long-term preservation of audio-visual digital
media objects, program and collections. The preservation is done by a “service provider” which
can be either the same as producer and consumer or not. The interactions between preservation
service and producers and consumers are defined in SLAs. The SLA framework includes met-
rics such as availability of services, storage occupation, sets QoS terms such as threshold on
the SIP ingestion time, constraints such as maximum number of simultaneous users, clarifies
pricing terms and also penalty terms. Automatic monitoring system are used by the service
provider to support the capacity management system to maintain the QoS defined in SLA.

Q-ImPrESS [C'10] aims at helping the design decisions and forecasting performance, reli-
ability and maintainability through quality impact analysis and simulation. Service Architecture
Meta Model (SAMM) [BBB*08] is proposed to define service attributes, parameters like data
volume, configuration, execution environment and the dependencies between parameters. Q-
ImPrESS develops a trade-off analysis framework to estimate performance metrics which take
propagation effects across systems into consideration. In this way, potential SLA violations can
be forecasted and optimized design can be performed in an early stage [KSBT11].

SERSCIS [SCHM™ 12] aims at providing an infrastructure for dynamically managing chang-
ing situations, risks of an interconnected IT system. SERSCIS architecture consists of Appli-
cation layer, Management layer, and Decision Support layer. The Application Layer refers to
enterprise applications, service-oriented workflows, computation, storage, networks, and sen-
sors. The Management Layer provides autonomic and predictive management of SLA terms.
With QoS metrics and Key Performance Indicators, the Decision Support Layer provides oper-
ational decision support tools and analytic.

3.4. SLA STANDARDS 31

3.4 SLA standards

Nowadays, with the development of SOA and cloud market, more and more services are con-
structed or based on other services. These services may be offered by different providers. Inter-
actions and relationships among services need to be clearly, completely and formally described
as input of SLA management of composed services.

In this section, standardized SLA descriptions will be introduced. Existing SLA description
languages will be introduced in section 3.4.1. We develop our PaaS level SLA description
language based on WS-Agreement which will be introduced in section 3.4.2.

3.4.1 SLA specification standards literature review

There are many standardization proposals related to QoS requirements description, for ex-
ample Web Service Offering Language [TPP02] (WSOL), Web Service Modelling Ontol-
ogy [RKL*05](WSMO), Web Service Management layer [CV03](WSML) and WS-Policy
[BCH'03] proposed by the World Wide Web Consortium (W3C). But none of them can be
used as a SLA description language.

SLA description language design is a core concern of many SLA related works. A lot of
researches has been done to commit to SLA standardizing. Web Service Agreement [ACD*07]
(WS-Agreement) from Open Grid forum (OGF) and Web Service Level Agreement language
and framework (WSLA) [LKD"03] from IBM are two widely adopted SLA description lan-
guage for web services.

WSLA can not be extended and no further implementation and maintenance exist. There-
fore, WSLA is not a good choice for expressing SLA specific to PaaS. The works in WSLA is
further developed in WS-Agreement.

WS-Agreement [ACD"07] is based on existing standards such as web service description
language (WSDL) and the web service resource framework (WSRF) which also comes from
OGFE. SLAs are finally expressed as XML documents which have been validated according
to a XML schema document based on WS-Agreement specification. WS-Agreement can be
extended. The extended SLA should also be validated according to a XML-Schema which is
extended according to the WS-Agreement specification.

SLAng [LSEQ03] uses OMG’s MetaObject Facility (MOF) in its SLA description language
to achieve a certain level of language independence. SLAng is difficult to use in the context of
cloud computing with domain-specific QoS constraints, since SLAng is designed for electronic
services.

CC-Pi [BMO7] proposes a domain independent SLA description language without basic
SLA elements such as contract parties. Thus, it is difficult to use CC-Pi without its attached
negotiation process. Rule-based Service Level Agreement (RBSLA) [Pas05] is based on rules
and adopts RuleML [BTWOI] to express SLA.

SLA@SOI provides a SLA model [KFI11] which is representation language independent
by offering an abstract syntax description instead of a specific language such as XML, which
means abstract SLA description language proposed in SLA@SOI needs to be implemented in
a specific language schema, then extended to our cloud context.

CSLA [KL"12] is specially designed for cloud computing. CSLA consults well known
SLA languages like [LKD"03] [ACD*07] [LSE03]. However, at this moment, CSLA still

32 CHAPTER 3. STATE OF THE ART- SLA MANAGEMENT

Agreement Guarantee Terms
Name Obligated
Context ServiceScope

QualifyingCondition

Terms
Service Terms ServiceLevelObjective
Guarantee Terms BusinessValueList

Figure 3.1. WS-Agreement Architecture

Figure 3.2. An example of term tree in WS-Agreement

needs a lot of completion of basic clauses before using. “Confidence” and “Fuzziness” are first
introduced in CSLA to express the ambiguous of the boundary value of target range of QoS
metrics.

3.4.2 WS-Agreement

As mentioned above, WS-Agreement Specification [ACD*07] is a better choice for formally
specifying QoS requirements as a SLA.

A SLA based on WS-Agreement is a XML document which describes mainly the non-
functional properties of a web service, but functional description can also be found to refer to
the services guaranteed by this SLA. The structure of WS-Agreement based SLA document
has been clearly defined in [ACD"07]. In this section, a shorter summary and introduction of
WS-Agreement will be given.

As demonstrated in figure 3.1, besides a human-understandable Name of the SLA, a WS-
Agreement based SLA should contain agreement Context and the Agreement Terms.

As depicted in Figure 3.5, Agreement Context describes SLA metadata including Agree-
mentlnitiator, AgreementResponder, ServiceProvider, ExpirationTime, TemplateID and Tem-
plateName. Additional metadata can also be specified in Agreement Contexts to express do-
main specific needs. Agreementlnitiator means the agreement creation proponent. Agreemen-

3.4. SLA STANDARDS

BusinessValuelList

Importance

Penalty

Reward

Preference

CustomBusinessValue

Figure 3.3. Business Value List structure.

ServiceTerms

ServiceDescriptionTerm

ServiceReference

ServiceProperties

Figure 3.4. Service Term structure.

Context

Agreementlinitiator

AgreementResponder

ServiceProvider

ExpirationTime

Templateld

TemplateName

any

Figure 3.5. Context structure.

34 CHAPTER 3. STATE OF THE ART- SLA MANAGEMENT

tResponder means the agreement proposal respondent. ServiceProvider identifies the service
which is provided by Agreementlnitiator or AgreementResponder. ExpirationTime express the
SLA lifetime, which means during which period of time, the agreement is valid, by specifying
the time point when this SLA is no longer valid. SLA template is the mould for creating a SLA
offer accordingly. TemplateID and TemplateName specify which template the SLA contract or
offer is based on.

Agreement Terms part is the most important part of the SLA. In Agreement Terms, both
functional and non-functional requirements are specified. Correspondingly, there are two kinds
of Agreement Terms: Service Description Terms and Guarantee Terms.

Logical operators, such as AND, OR and XOR which correspond to All, ExactlyOne and
OneOrMore , can be used to logically group terms to recursively construct all terms together as
a TermTree. Figure 3.2 is an example of TermTree.

Service Terms, as depicted in Figure 3.4, describe services which guarantee terms are ap-
plied to. There can be several services guaranteed under one SLA contract. Service Terms can
be further expressed as service description terms, service reference terms and service property
terms to specify different aspects of a service.

Service Description Term provides functional description of a service that will be delivered
under an agreement, such as the information required from service consumer part. The service
description term may contain three parts, including a unique name of the Service Description
Term, ServiceName attribute to identify a service delivered under the agreement and a domain-
specific functionality description of the offer.

ServiceReference contains a domain-specific reference which points to an existing service,
including the name of the service reference and the ServiceName which identifies related func-
tional services. This reference should be understandable for both parties.

ServiceProperties specify domain-specific aspects of a service that can be used to express
guarantee terms. This property can be used to query the properties of the delivered services.
To be more specific, properties means measurable metrics related to a service and will be used
in expressing service level objectives (SLOs), such as response time. Besides the name of the
service properties and the ServiceName which identifies related functional services, detailed
variable definitions will be expressed in the form of Variable and wrapped up in Variable Set.
To clearly define guarantee terms, metrics such as availability and response time must be clearly
defined. Variable in ServiceProperties are the place to declare these metrics. Variable should
be defined from three aspects, including location, Name and Metric. Location can refer to any
field defined in service terms by using XML based domain-specific service description language
such as XPATH to clarify this variable can be used with in which services. Metric can also be
used when Location of the variable is not sufficient. A name-space, a local name and the type
of the metric must be defined for the metric. And a unique string Name should be defined for
each variable for using the variable easier later.

Guarantee terms [DKLRO04] describe the quantified detailed QoS requirements between in-
volved parties specified in Agreement Context. These guaranteed services are already described
in Service Description Terms. Guarantee terms will be further used by SLA management sys-
tems to monitor and enforce the reached SLA. As demonstrated in figure 3.1, in each Guarantee
Term, there are five parts involved, including obligated, Service Scope, Qualifying Condition,
Service Level Objective and Business Value List.

Obligated specify which party is responsible for the current Guarantee Term. It can also be
the case that service consumer should take responsibility so that service provider can provide

3.5. CONCLUSION 35

their services.

Service Scope specifies one of the services delivered under this Guarantee Term. There
can be several Service Scope inside one guarantee term which means several services have
overlapped service level objectives so that they can be written into and guaranteed by the same
Guarantee Term. One Service Scope should contains a ServiceName and a XML reference
which refers to a part of service.

Qualifying Conditions specifies conditions which should be met for current guarantee term
coming into force. Time and constraints on the service consumer are two commonly used
examples of Qualifying Conditions. For example, response times of querying services are lower
than 3 seconds can be assured only if the arrival rate of the queries is lower than 1000 requests
per second from 9:00 to 17:00 of each day. Qualifying Condition can be composed of several
constraints. Meeting the Qualifying Conditions means that each constraint needs to be met.

Service Level Objective expresses the quantified QoS requirements, such as average re-
sponse time, availability, in the form of target for a Key Performance Indicator (KPI) or Custom-
ServiceLevel which can be used to express domain specific expression beyond WS-Agreement
specification. Service Level Objective can be composed of several QoS requirements over dif-
ferent variables. Satisfying one Service Level Objective means meeting all of these require-
ments. And all of these requirements should share the same obligated, Service Scope, Qual-
ifying Condition and Business Value List. For example, requirements with different level of
importance should not be combined in one Service Level Objective.

Business Value List, as depicted in Figure 3.3, includes business values related to current
Service Level Objectives from different business perspective. For example, the importance of
this Service Level Objective to the non obligated part of this Guarantee Term. Or what should
be done if the Service Level Objective is not satisfied. For example, Penalty is used to specify
compensation when the Service Level Objective is not satisfied. Usually, penalty will be set
higher by the non obligated party if it is more important. In this way, it is more important for
the obligated party to meet this Service Level Objective.

3.5 Conclusion

In this chapter, we introduced SLA standards and SLA management. SLA, as a contract which
specifies the service and QoS criterion, is indispensability for service oriented business. PaaS
providers, which take charge of application’s QoS, need to consider the on-demand resources
and dynamic resource requirements and describe these characters in their PaaS level SLA. One
PaaS level SLA contract should be customized for each contracted application since QoS is an
application dependent topic. However, existing SLA description languages are not suitable for
PaaS level SLA. Therefore, in chapter 5 of this thesis, we will propose PSLA which is a generic
PaaS level SLA based on WS-Agreement skeleton. PSLA will be implemented in XML to make
PSLA based SLA contract machine readable for automated SLA management.

Chapter 4

State of the art-Runtime control

4.1 Introduction

During SLA negotiation, the PaaS provider needs to evaluate if the SLA drafts are feasible or
not. These evaluations are based on application dependent analysis, such as benchmark. These
benchmarks provide workload-resource mapping model of our runtime control method. When
application is running in a cloud infrastructure, the scalability feature of cloud infrastructures
allows us to allocate and release resources according to changing needs. These resource provi-
sioning activities are named runtime control. Changing needs are mainly caused by the fluctu-
ating workload for majority of the applications running in the cloud. Runtime control decisions
are needed to be performed in real time. In this chapter, runtime control will be discussed. This
chapter is arranged as follows. The Virtualized Componentized Application Architecture will
be described in section 4.2. Runtime control methods will be introduced in section 4.3. Existing
proactive and reactive runtime control methods will be introduced in section 4.4. Our runtime
control method is based on benchmarking. Benchmarking will be introduced in section 4.5.

4.2 Virtualized Componentized Application Architecture schema

Computing architectures which reduce the connection between hardware and application from
both design level and runtime level, for example, container based and Google App Engine
applications, can benefit from cloud services. Among several architecture paradigms, this thesis
only focuses on Virtualized Componentized Application Architecture.

In this section, the Virtualized Componentized Application Architecture will be described.
Component based architecture will be explained in section 4.2.1. Virtualized Componentized
Application Architecture will be introduced in section 4.2.2.

4.2.1 Component based architecture

[MBNRG68] proposed the concept of component based architecture for reusing software to
build complex software system quickly and easily. With the increasing efforts from industry
leaders such as Microsoft COM Component Object Model [WK94] CCM CORBA Component
Model [SKOO] and Sun EJB Enterprise Java Beans [DeM02], component based architecture is
widely accepted from 90s.

38 CHAPTER 4. STATE OF THE ART-RUNTIME CONTROL

The thinking of developing software based on components is not entirely new. Traditionally,
the composition of complex software systems always start from defining subsystem modules
such as the lower-level modules, classes, procedures, etc.

Software development reuse mechanism has been adopted for many years. Although the
Object-oriented model has already been widely used to solve the problems of software reusing
from the developers’ perspective, component based architecture allow roles like administrator,
architect and integrator taking the software reuse problem into consideration. Component-based
architecture has further increased the possibility of software reusing. Using component tech-
nology to develop large-scale software systems is faster and more cost effective.

Component oriented software engineering is described in [Szy02]. A component is a unit
of composition whose interfaces and contextual dependencies are specified as explicit contracts
[Szy02].

The Fractal Model is a language and technical independent component model [BCS04]
developed by France Telecom R & D and INRIA. Fractal is one project of free software project
consortium OW?2 (formerly ObjectWeb) which aims at reducing the costs of software systems
development, deployment and maintenance. Fractal can be adopted in all kinds of software
system, such as operating systems, middle-ware platforms and graphical user interfaces. Fractal
can be realized in languages such as Java, C, NET and Python.

Conventionally, a Fractal component is a processing unit with a heavily encapsulated state.
A Fractal component interacts with the outside through customer interfaces and server inter-
faces. An interface does not specify an abstract type definition as in object-oriented languages,
but an access point (typed and identified by name) on a component.

In Fractal, the external interface and the subcomponent interface are connected through
an internal interface. It makes it possible to define composite component. Fractal provides a
recursive component model instead of a single hierarchy because a subcomponent can belong to
several parent components. This sharing of components was specifically designed to represent
the shared resource, such as operating systems.

The component content is isolated by a membrane, whose function is to control the interac-
tions at the external interfaces and provide observation and component reconfiguration capabil-
ities. This membrane is controlled by control interfaces. Fractal model specification mentions
some control interfaces such as naming, establishment or abolition of a connection between a
client interface and a server interface, access to the content of a composite, lifecycle manage-
ment and access to component state. Thus, the Fractal model was clearly specified to enable
observation and hot reconfiguration of a system, including the addition, removal or replacement
of a component. Moreover, a Fractal component is not only an element of design but also an
element at runtime.

Componentized Application Architecture (CAA) is extracted from the design level informa-
tion, such as application architecture, owned by application developer. CAA contains necessary
information for deploying an application into the cloud infrastructure. To be more precise, CAA
contains the hardware and software requirements of running each component, such as CPU
compute power, available memory, network bandwidth required for supporting the communica-
tion between two components, the software stack, including required operating system, which
are used for constructing the runtime environments for the application. In Figure 4.1, compo-
nent C1 and component C2 both require services from component C4, but through different
interfaces provided by component C4. Component C3 requires services both from component
C4 and component C7. Application owner can shield system implementation details by only

4.2. VIRTUALIZED COMPONENTIZED APPLICATION ARCHITECTURE SCHEMA 39

CAA - Componentised Application Architecture (extract)

Horizontal
scaling

Require
Disk
Storage
R/W

Vertical
scaling
of a
component

Figure 4.1. Componentized Application Architecture schema.

provide the layout’s requirements of its components. According to Figure 4.1, component C1
and Component C2 should be installed in the same VM, component C3 and Component C7
should be installed in the same VM and component C4 should be installed in one VM alone.
These deployment requirements can come from application owner’s understanding of the sys-
tem. Component C4 is only allowed to do horizontal scaling at runtime, while component C7 is
only allowed to do vertical scaling. Horizontal scaling is allowed to be used for one component,
the change of resource allocation can be performed by increasing or decreasing the number of
duplications of the component. When vertical scaling can be used for one component, means
that the change of resource allocated to the unique copy of this component can be done by in-
creasing or decreasing its allocated resources. Since component C4 allows horizontal scaling, a
load balancer is needed for routing workload among duplications of component C4.

4.2.2 Virtualized Componentized application architecture

Figure 4.1 is only an abstract description of the deployment requirements of an application.
Several practical deployment schemas can be deducted from CAA described in figure 4.1. Fig-
ure 4.2 and Figure 4.3 depict typical practical deployments. These practical deployments in
a virtualized environment such as cloud environment is named as Virtualized Componentized
Application Architecture(VCAA).

In Figure 4.2, three different ways of deploying CAA described in 4.1 are depicted. Com-
ponents C1, C2, C3, C4 and C7 are deployed together or separately accordingly. The differences
among these three VCAA conditions are the ways of realizing vertical scaling for component
C7 and horizontal scaling for component C4. Vertical scaling can be performed by two ways.
One way is increasing or decreasing the allocated resource in component level, as depicted in
condition 1 and condition 2 of Figure 4.2, which means the size of VM is kept and VM changes

40

CHAPTER 4. STATE OF THE ART-RUNTIME CONTROL

7 VCAA - condition1)

Figure 4.2. Three possible Virtualized Componentized Application Architectures.

4.2. VIRTUALIZED COMPONENTIZED APPLICATION ARCHITECTURE SCHEMA 41

VCAA - Virtualised Componentised Application Architecture

Inter-DC
Service
Link

Intra-DC
Service

Link

Figure 4.3. Multi-IaaS Virtualized Componentized Application Architecture example.

resource assigned to the component. Another way is that resource reallocation is performed in
VM level, as depicted in condition 3 of Figure 4.2, which means the size of VM changes in
order to increase or decrease resources allocated to the component. It can be the case when VM
do not have enough resources to assign to the component.

Horizontal scaling can be performed in two ways. One way is that increasing or decreasing
the number of component duplications in component level, as depicted in condition 1 in Figure
4.2, which means there are still one VM but the number of component duplications changes to
have variational available resources for component C4. Another way is that horizontal scaling is
performed in VM level, as depicted in condition 2 and condition 3 of Figure 4.2, which means
VMs are copied together when duplicating components. In this way, workload is distributed
by a VM level load balancer among identical VMs. It is worth mentioning that components of
an application are not necessarily deployed in the same [aaS. As depicted in Figure 4.3, the
VM carrying component C1 and C2 can locate alone in geographically different [aaS. This is a
practical scenario, for example web server can locate closer to the end user to improve the speed
of browsing articles of a e-commercial web site. If components are deployed in a geographically
same [aaS, connection bandwidth and cost usually is out of question. However, bandwidth and
cost can be a challenge if connections are through external network exactly the case described
in Figure 4.1.

In this thesis, only VM level horizontal scaling and VM level vertical scaling are considered.
We also make the hypothesis that all the VMs are of the same size when adopting horizontal
scaling.

As mentioned before, adding or removing servers and changing server sizes are two ways
of increasing and decreasing system capacity. Adding or removing servers refer as horizontal
scaling. Another name of horizontal scaling is scaling out/ in. Changing server sizes refer as
vertical scaling. Another name of vertical scaling is scaling up/ down.

Vertical scaling means changing the allocated amount of resource of a server. Vertical scal-
ing can be achieved by reconfiguring the server or by replacing the server with a new server

42 CHAPTER 4. STATE OF THE ART-RUNTIME CONTROL

of different resource allocation. Aforementioned resources can be any kinds of resources, such
as CPUs and memory. Cloud environment provides the possibility of adopting vertical scaling
based on the virtualization technology. As an infrastructure based on virtualization technology,
servers’ resource allocation can be reconfigured without power off, and it leads to significant re-
duction of vertical scaling time compared to traditional I'T environment. Vertical scaling can be
used to simplify the changing of resources shared among application modules. Vertical scaling
is suitable for changing the size of the database.

Horizontal scaling means adding or removing servers to the system to handle the changing
demand. When the number of user requests for an application increases, additional server
resources can be launched to adapt to the increasing workload. When resources are no longer
needed which means there are underutilized servers, resources can be released by terminating
underutilized servers. Usually, in a runtime control problem, we only considering same size of
servers for horizontal scaling. It is also the case for this thesis.

Before the emerging of cloud computing, vertical scaling is the first choice of serving an
increasing workload. Horizontal scaling is performed on individual part of an application only
if it reaches the vertical scaling limitation. In the context of cloud computing, horizontal scaling
is the overwhelming majority of the scaling choice. ‘“Vertical scaling” can not be supported
because most of the operating systems can not change usable CPU or memory without restart
the operating system [VRMBI1].

4.3 Runtime control

Runtime control refers to the ability of increasing and decreasing system capacity. There are
two levels of runtime control. One is allocating resources in the form of virtual machines to
application and this allocation is driven by application’s performance goals defined by the high
level SLA [VTMO09]. Another is placing virtual machines to the physical hosts and this place-
ment is driven by the data center’s management policies related to management costs [VTMO09].
This thesis focuses on the former one.

To ensure that the allocated resources are able to meet QoS requirements defined in SLA
while optimizing the use of resources. Runtime control is a necessary management process to
prepare suitable IT resources for satisfying business needs.

In this section, runtime control methods will be introduced. MAPE-K based control sys-
tem will be introduced in section 4.3.1. The classification of runtime control methods will be
discussed in section 4.3.2. The schema of schedule based runtime control, proactive runtime
control and reactive runtime control will be discussed in section 4.3.3.

43.1 MAPE-K

To provide a guaranteed cloud service, only clearly defined SLA is far from enough. Another
goal of this thesis is to make scheduling decisions based on VMs at runtime by analysis the
informations collected from monitoring system. MAPE-K [CT06] can be adopted to perform
runtime control. As depicted in Figure 4.4, there are five parts involved in a MAPE-K based
runtime control system, including Monitor, Analyze, Plan, Execute and Knowledge. MAPE-K
is a control loop. Each part of MAPE-K is as follows.

4.3. RUNTIME CONTROL 43

Analyze - Plan

| ﬂ II l
Monitor [{—>(Knowledge){—)| Execute

| |

Managed System

Figure 4.4. MAPE-K

e Monitor gathers informations from managed system. These informations are passed to
Analyze.

e Analyze analyses and process the informations from Monitor based on the knowledges
from Knowledge. Analyze will generate preliminary events and pass them to the Plan.

e Plan processes the preliminary events coming from Analyze and generates final execu-
tion decisions based on knowledges from Knowledge. The final execution decisions are
passed to Execute.

e Execute takes the final execution decision generated by planning and implementing it.

e Knowledge stores the strategy and the historical data of handling all kinds of situations.
It is the foundation for Analyze and Plan. Knowledge can either be inherent knowledge
or acquisitive knowledge. Inherent knowledges are the strategies known in advance and
configured into Knowledge before runtime. Acquisitive knowledges are acquired during
running the system. Acquisitive knowledges are the results of adapting to the managed
system.

4.3.2 Classification

Generally speaking, there are two ways of increasing and decreasing system capacity, which are
adding or removing servers and changing server sizes. We can increase or decrease the allocated
resource either according to a predefined schedule or according to the changing demands at
runtime.

Schedule based runtime control, which changes allocated resource according to a predefined
schedule, takes priori knowledges, statistical data and the periodical pattern of the workload into
consideration to configure resource allocation manually before runtime. The ability of configur-
ing resource allocation before runtime is interesting even in the context of cloud computing. It
is because big IaaS providers, like AMAZON AWS, provide reserved VMs with a much lower
price than on-demand VMs.

44 CHAPTER 4. STATE OF THE ART-RUNTIME CONTROL

——— Real workload

— "~ Workload range
, estimated before runtime

Maximum resource
capable workload
workload P

A P s

\/

: : ’ ’ time
t0 t1 t2 t3 t4

Figure 4.5. Schedule based runtime control.

The weak point of schedule based runtime control is obviously that the system cannot adapt
to the unexpected changes of workload. Compared to the traditional IT environment and ben-
efiting from the on-demand feature of cloud services, schedule based runtime control in cloud
environment does not mean to prepare VMs for maximum workload, have idle resources during
most of the time and undergo bad system performance when workload is more heavier than
expected.

Changing allocated resource according to the changing demands at runtime is named as run-
time scaling. Runtime scaling is based elasticity, the most attracting feature of cloud computing.
Runtime scaling is also named as auto scaling in literatures [MLH10], [BBB*11]. With the
ability of runtime scaling, cloud based systems can allocate suitable amount of resources for
current workload, both reducing the amount of idle resources and be prepared for serving the
peak workload.

Compared to schedule based runtime control, runtime scaling benefits a lot from the "pay
as you go" feature of cloud services which means paying only for the resources you use. Re-
searches in the runtime control domain is mainly around runtime scaling.

4.3.3 Runtime control schema

We adopt runtime control based on both schedule based runtime control and runtime scaling.
The schema of schedule based runtime control will be introduced in section 4.3.3. The schema
of proactive runtime control and reactive runtime control will be introduced in section 4.3.3.

Schedule based runtime control schema

When schedule based runtime control methods are adopted, a certain degree of workload knowl-
edge is required to make the resource allocation schedule. More specifically, the more workload
knowledge we have, the more accurate runtime resource allocation will be.

As depicted in Figure 4.5, the workload feature of requests arrival rate range is known
before runtime. In the case when the real requests arrival rate measured during runtime fits the
predicted workload feature. As a result, balanced amount of resources are allocated to serve the

4.3. RUNTIME CONTROL 45

— — Real workload

Kload _______ Maximum resource
WOorkloa capable workload

A

: : 5 : ‘ " time
t0 t1 t2 t3 t4
Figure 4.6. Reactive runtime scaling.
VM booting up — — Real workload
delay time Maximum resource
workload Y capable workload
A : S
: time

t0 1t t2 t2' 3 t4

Figure 4.7. Weak point of reactive runtime scaling.

VM booting up — — Real workload

Kload ______ Maximum resource
workKloa capable workload

A

\/

' ' ' time
t0 t1”t1 t2” 12 t3” 13 t4” t4

Figure 4.8. Proactive runtime scaling.

46 CHAPTER 4. STATE OF THE ART-RUNTIME CONTROL

runtime workload with acceptable performance.

Since resource is allocated only according to the predefined schedule, the system perfor-
mance will be challenged if workload does not behave as expected. For this reason, the ability
of predicting workload behaviour precisely and meticulously before runtime is very important
for schedule based runtime control methods. If workload can be well predicted before runtime,
schedule based runtime control method can have acceptable performance.

Moreover, only understanding workload well is not enough for arranging suitable amount
of resources before runtime. The mapping from workload to resource allocation is an important
step for runtime control.

Runtime scaling schema

Runtime scaling, also named as auto-scaling method can be classified as reactive runtime scal-
ing and proactive runtime scaling.

As depicted in Figure 4.6, reactive runtime scaling will not predict the future system per-
formance or changing demands. Reactive runtime scaling methods only act when the current
system is under a predefined situation. As depicted in Figure 4.7, to instantiate a new VM,
it may take up to 15 minutes. If the system is suffering a sudden burst of traffic, this will be
too long and the system can enter an even odious situation which means serious SLA violation.
Therefore, pure reactive runtime scaling methods are not enough. Proactive runtime scaling
methods are needed to prepare resources and have them ready when they are needed to cope
with the fluctuating resource demands on time.

Proactive runtime scaling methods, as depicted in Figure 4.8, predict the future resource de-
mands caused by fluctuating end user demands or system maintaining and reconfigure resource
allocation in advance. In this way, resources increase or resources decrease can be performed
ahead of the real needs.

4.4 Runtime scaling literature review

Existing runtime scaling methods are mainly based on model. In this section, proactive and
reactive runtime control methods will be introduced. The theoretical models which have been
used in runtime scaling methods will be briefly introduced in section 4.4.1. Existing runtime
control methods will be introduced in section 4.4.2. We will focus on time series analysis based
proactive runtime control methods. Time series based workload forecasting methods will be
introduced in section 4.4.3.

4.4.1 Methods used in runtime scaling

In the literature, many techniques are used. For example, queuing theory [BFF90], control
theory [AstlZ], reinforcement learning [Bar98], time-series analysis [Ham94] and rule-based
system [HR85]. Techniques will be firstly introduced in this section. Literature will be dis-
cussed in next part.

Rule-based method is the simplest but most widely used runtime scaling method. Famous
cloud providers like Amazon AWS and RightScale provided rule-based runtime scaling meth-
ods. The typical rule-based runtime scaling method defines a couple of pre-defined rules on
a set of target metrics for a group of VMs so that under rule-based conditions, certain actions

4.4. RUNTIME SCALING LITERATURE REVIEW 47

will be triggered. To be more precise, one rule for describing when and how to scaling up and
another for scaling down. For example, when the average RAM usage of application server
group is above 80%, the scaling action “add a new VM" for application server group should be
performed.

Threshold based runtime scaling method is based on a set of rules. Each rule is expressed
in the form of "if... then... ".

In " then ", scaling actions are defined. Theoretically, scaling action can be either horizontal
scaling or vertical scaling. In practice, vertical scaling is not supported by most of the IaaS
providers. A cooling down time is set for each scaling action to tell after executing current
scaling action, after how long time corresponding preconditions should not be able to trigger this
scaling action. This cooling down time is designed to avoid the situation that scaling actions are
continuously triggered before previous scaling action contributes on the performance metrics.
It’s because the boot up time of a VM takes several minutes.

In "if ", the preconditions to execute the corresponding scaling action are defined. Pre-
conditions are usually a logical expression composed of one or more comparison expressions
Each comparison expression defines the threshold of metric. For one metric, at least a couple
of thresholds should be defined. One for upper bounder of the acceptable range of the metric
value. Another one for lower bounder. For each precondition, a time value is set to tell how
long the logic expression must be met to trigger the corresponding scaling actions. This time
value is designed to avoid the situation that the threshold based runtime control system is too
sensitive to the threshold.

The metrics used in the comparison expression can be different for different applications.
For different applications and different server of applications, the key metrics for application
performances are variational. Key metric is a resource utilization indicator which instructs that
application system is under pressure of increasing allocated resource to guarantee the QoS or
decreasing resource allocation to eliminate unnecessary cost. Potential metrics can be related
to storage capacity, server processing power, RAM capacity, Network bandwidth , Database
transactions per second and storage input/output operations per second [GoG10].

These metrics can be collected and computed periodically by monitoring system at runtime.
For example, AWS Auto Scaling service makes the scaling up or scaling down decisions accord-
ing to the performance metrics provided by CloudWatch which is a monitoring tool provided
by AWS. CloudWatch collects performance data, such as CPU utilization, from AWS resources
like instances every 5 minutes (performance data can also be collected every 1 minute with
extra charges). These performance data can be used in defining the Auto-Scaling strategy. For
example, if average CPU utilization is more than 70% , then start one more instance.

Reinforcement learning (RL) technical can help system to automate understanding, learn-
ing and making decision without any priori knowledge. RL can be used to solve runtime scal-
ing problems by capturing performance informations about application and infrastructure from
monitoring system. Typically, RL has an agent to interact with its environment and learn to
establish its theory for decision making based on the rewards or punishments from environ-
ment. Agent should always try to maximize their rewards and minimize their punishment. In
the context of runtime scaling, a scaling engine performs as the agent to make the decision of
increasing or decreasing the allocated amount of resource. The aforementioned environment is
an application deployed in the cloud infrastructure. The metrics such as metrics collected by
monitoring system or the coming workload of the application environment are provided to the
scaling engine as the state. It will be used as the input of scaling engine. The application envi-

48 CHAPTER 4. STATE OF THE ART-RUNTIME CONTROL

ronment also provides the scaling engine a reward or punishment for scaling engine to optimize
its decision to maximize the reward and minimize the punishment.

Traditionally, queuing theory is widely used to model application for analysing application
performance, for example the inter-arrival time, the average number of requests, the average
waiting time. Typically, when request arrives at the system, it joins the system and waits in the
queue until it is processed by one of the servers. There can be several or only one servers in the
queuing model which is not necessary the same as the real application system.

The aforementioned typical three tier application can be modelled by using queuing theory
in two different way. One way is using one single queue for the load balancer and several
VMs as servers to process requests. The other way is using several queues in one complicated
queuing model. This complicated queuing model uses one queue to depict each tier of the
application and one or more VMs are depicted together as one server in the model.

The inconstant coming requests and changing ability of servers are the big problems of
adopting queuing theory for our problem. For example, the amount of allocated resources for
one tier or the application can be changed dynamically at runtime. These will leads to different
number of servers in the queuing model. Therefore, the queuing model needs to be calculated
for all possibility of deployment for each workload condition in advance or periodically recal-
culated at runtime which makes queuing theory difficult to use in practice for runtime scaling
problem.

Control theory has also been used to solve runtime scaling problems. The simplest control
system is open loop control system. Open loop controller only computes the input of the target
system based on the current state of the system by using the model of the system but do not
have a look at the outputs of the target system and not to speak of correcting the model with the
undesirable output as what feedback controller did. An even better developed control system
is feed-forward controller. Based on feedback controller, it predicts the potential error of the
output of target system and adjusts the output of controller, which is also the input of the target
system, to avoid errors in advance. Fuzzy controller which means a control system based on a
fuzzy model can also be used for runtime scaling problems. Fuzzy models can help to locate
the required resource for workload according to predefined rules in the form of fuzzy sets.
These rules have one precondition and corresponding consequence. The fuzzy model should
be defined before runtime which makes fuzzy controller based runtime scaling method not well
adapted to dynamic workloads.

Time-series represent a series of data recorded according to one specific time interval, for
example the average response time of the whole application calculated at every one minute.
Time-series analysis means the method which has been intensely used to represent and analyse
the change of a measurement with time. For runtime scaling problem, time-series, such as
average memory usage or average requests arrival rate periodically collected by monitoring
system, can be analysed to predict the future data. This prediction will be further used by
proactive runtime scaling method to make the scaling decision. The repeated patterns hidden
in time-series can be dig based on the past observations, and then be used to predict the future
workload or metrics.

4.4.2 Runtime scaling literature reviews

Rule-based runtime scaling methods are reactive methods because they won’t anticipate and ac-
tions are only triggered when something already happened. Rule-based runtime scaling method

4.4. RUNTIME SCALING LITERATURE REVIEW 49

is very simple and easy to understand and use. So, the Rule-based methods are the most ex-
tensively used method in cloud industry. IaaS provider Amazon EC2 is the most representative
one. Amazon EC2 allows its users to set rules to autocratically manage the allocated resources
referred to an application to adapt to the changing demands and guarantee the SLA at the same
time. However, selecting the suitable metrics and designing the logical combination are not
easy. Moreover, in [DRM™10], the tuning of the thresholds is important for avoiding oscilla-
tions in the system. Cool-down periods which will have no scaling actions can also be set to
avoid oscillations. All of these require both deep understanding of the application and abundant
experience of these tasks. [HMC™12] proposed a method with four thresholds instead of two
on each set of metrics. They are the upper threshold, the secondary upper threshold, the lower
threshold and the secondary lower threshold. With these four thresholds, more sophisticated
rules can be defined to perform more complicated runtime controls. In particular, most authors
and cloud providers use only two thresholds per performance metric. As mentioned before,
the choice of metrics to be used in rules is a technical task. Usually, one or two performance
metrics will be used in the rule and average CPU load, average response time and request ar-
rival rate are frequently the choice. [HMC™12] chose to set the metrics in a more complicated
way. Different kinds of metrics and combinations of metrics of compute type, storage type and
network type can be used together. For example, increasing the bandwidth of the network link
resource when both the response time and the network link load are high. RightScale [rig07]
provides an innovative rule-based runtime scaling method [Rigl5]. It introduced democratic
voting into the scaling decision making progress. The scaling up or down decision can only
be made when most of the VMs want to scaling up or down. Cool-down period mechanism
is also adopted and 15 minutes of cool-down time is suggested because it usually take from 5
minutes to 10 minutes to start a new VM. If cool-down time is too short, scaling up decisions
can be continuously made while new VMs are still booting. Based on RightScale’s rule-based
voting system, [CMK11] extended their own previous work [CMKS09] which adopted active
sessions. In work [CMKI11], scaling one VM up decisions are made only when all VMs have
session amount bigger than the upper threshold, scaling one VM down decisions are made when
at least one VM have a session amount lower than threshold and all other VMs are lower than
the threshold, and the VM without session will be released. [SGLI11] proposed a strategy
tree to evaluate and chose different rules. These rules are set for different workloads so that
rules can be switched at runtime to serve different workloads. This method is designed to solve
the problem of rule-based runtime scaling that is both typical rule based runtime scaling and
rule-based voting system [KSJBO09] require extra effort of choosing performance metrics and
tuning thresholds. [KSJBO09] takes the charge unit of VMs into consideration and proposes
" smart kill" which means only release a VM when the charged unit is finished even if the
VM is no longer needed to guarantee the SLA. There are also considerations of using dynamic
thresholds. [BB10] proposes to monitor all the CPU utilization of VMs on one host node and
determine the frequently range of CPU utilization based on probability distribution to set the
upper and lower thresholds at runtime. Time-series forecasting can be combined with reactive
techniques. [IDCJ11] uses rule-based runtime scaling for scaling up decisions but make scaling
down decisions based on regression approach.

PID controller is widely used in the literature. For example, in work [LBCP09] and
[LBC10], integral controller is used to increase or decrease the number of VMs according to
the average CPU usage. In [PHO9], PI controller is used to control the allocation of resources
to batch jobs. [PHO9] proposed a model to evaluate the progress of resource provisioning

50 CHAPTER 4. STATE OF THE ART-RUNTIME CONTROL

of a job. [AETEI12] proposed a method to determine the dynamic gain parameters for scal-
ing down decisions based on workload. [XZF'07] used fuzzy controller on business tier and
works in [WXZ*11] performed on the database tier. Both of them can not adapt their method
for highly dynamic workloads. Also [LZ10] adopted neural fuzzy controller to automatically
construct fuzzy controller.

Reinforcement learning is seen as a good choice for runtime scaling problem, but there
are still several weakness need to be solved. For example it takes very long time to learn and
establish the decision model which means the affect of the runtime scaling can be very poor for
an unacceptable long time at the beginning. Besides, when too many metrics are used to choose
the suitable action to perform, the speed of decision making can be extremely low because there
are too many states. These two problems are the main consideration for researches who adopted
reinforcement learning for runtime scaling in their works [DRM™10], [DKM*11] [BHD13],
[TJDBO6], [RBXT09].

Queuing theory is used to model the performance of applications. [TJDB06] model one
tier of the application as a queuing model of n servers which serve requests in a round-robin
pattern. The average response time is modelled by using a parallel M/M/1 queuing model.
The authors also propose to model the application as n independent parallel closed networks
of one server and 1/n of the customers on each to deal with the condition of finite number of
customer. [VPRO7] models each application tier server as a M/GI/1/PS queue. They mentioned
that the arrival process can be depicted as a Poisson process. Multi-tier applications can also
be addressed using queuing networks, either considering a queue per server [USCT08], or just
a queue per tier [ZCSO07]. The first approach is adopted by [USC*08] use a G/G/1 queues
for each server to depict multi-tier application. The peak workload is estimated by using this
queuing model to determine and prepare servers for each tier. These may leads to great low
resource utilization. [ZCS07] uses one queue to model each tier of the application. Closed
queuing model is used by them for the finite number of users.

Time-series analysis based runtime scaling methods can be seen as proactive methods be-
cause they use the past data to predict future data. Many time-series techniques are used for
prediction purpose. Moving average is used in [PH09], [LBCP09] to remove noise from time-
series. Moving average usually can’t be used to achieve good result [GGW10], [HLY12].
[MWY *10] takes both current and history data into consideration by using quadratic exponen-
tial smoothing on real workload and achieve high accurate of prediction.

Auto-regression is adopted in [KSJB09], [CHL*08], [GGW10], [CGS03], [KGM10].
[KSJBO9] uses auto-regression with order 1. [RDG11] predicts workload based on latest three
data and using a second order ARMA. Then, the response time will be estimated based on
the prediction of workload. Finally the response time and costs will be used to make the best
runtime scaling decision.

History window can be used with neural network [IKLL12] or multiple linear regression
equation [KSJB09], [BGST09], [IKLL12].

[KSJB09] mentions that the model can be too sensitive to the workload because of the size
of sample of window. Regressing over changing size of windows and using the mean of all pre-
dictions are proposed to avoid these. [IKLL12] proposes predicting every 12-minute because
of the typically 5-15 minutes of VM boot up time. As mentioned before, repeated patterns rec-
ognizing is another goal of using time-series for runtime scaling problem. [GGW 10] compares
methods and identifies CPU, memory, network and I/O resource usage pattens by using FFT.

4.4. RUNTIME SCALING LITERATURE REVIEW 51

4.4.3 Time series based workload forecasting methods

Our runtime control method will be based on the mapping knowledge from workload to con-
figuration. Among aforementioned methods, time series analysis is the most promising one
for proactive runtime control. Time series can be used on workload to perform forecasting.
Therefore, we focus on time series analysis methods.

A time series is a sequence of data points, typically consisting of successive measurements
made over a time interval [Ham94]. A time series can be decomposed into trend, season and
noise [HKO7], [HKOSO08], [SS10]. Trend usually can be described by linear monotonic
increasing or decreasing functions. Breaks may be existing due to external factors and be in-
ferred according to the durations of historic trends. Season describes the repeated patterns in
the time series. Noise describes the random unpredictable influence of the fast transforming
factors. Applying smoothing techniques in an appropriate degree can be helpful to reduce the
noise to improve the accuracy of forecasting as well as to control the information loss within an
acceptable level.

Time series analysis comprises methods for analysing time series data in order to extract
meaningful statistics and other characteristics of the data. Time series forecasting is the use of
a model to predict future values based on previously observed values [wik15b]. In [HKO07]
[HKOSO08] [SS10], time series forecasting approaches are discussed in detail. Here we briefly
describe the conditions of usage, merits and demerits.

The listed time series forecasting strategies can deal with different objectives, data charac-
teristics.

Naive forecast methods assume that the next observed value has the highest probability to be
the same as the most recently observation. Naive forecast method requires only one historical
data to be applied.

Moving average method uses the data included in a sliding window to do forecasting. The
naive forecast method can be seen as a special case of moving average method with a sliding
window size of one. Taking the average of the observation values in the sliding window can
help to remove noise in a certain degree.

Simple exponential smoothing method takes the weighted moving average value of the his-
torical observations in the sliding window. The more recent values are assignned with higher
factors while the remote ones are with lower factors. Simple exponential smoothing method can
better deal with the influence of trend and seasonal than moving average method because of the
weight factors. However, simple exponential smoothing still set the predicted value back from
the change introduced by trends and seasonal. In another word, simple exponential smoothing
method can not take trend and seasonal into consideration. Cubic smoothing splines [HKPBO0S5]
can be applied in unidimensional data and the trend of the time series can be linearly extimated.
Cubic smoothing splines [HKPBO05] method can better predict trends than simple exponential
smoothing method but still can’t detect the seasonal pattern of time series.

Croston’s method [SHO5] is suitable for time series containing zero values. Croston’s
method [SHOS5] decomposes the observed time series observation data as two time series, one
without zero values and another records the durations of zero valued. Then, these two time
series are processed seperately by applying simple exponential smoothing method.

Extended exponential smoothing [HKOSO08] uses state space approach and bases on simple
exponential smoothing. The trend and season can be detected and selectively compounded in
the final forecast result.

52 CHAPTER 4. STATE OF THE ART-RUNTIME CONTROL

tBATS [DLHS11] develops the extended exponential smoothing method through trigono-
metric representation to better detect seasonal pattern.

Auto-Regressive Integrated Moving Averages (ARIMA) [Box76] has seven parameters to
define the trend, noise and seasonality. ARIMA model can accept zero or positive integers as
parameters. The selection of parameters can be achieved through space limitation and intelli-
gent model space traversion by unit-root tests and Akiake’s information criterion (AIC). The
parameter selection has been automated in R forecast package. The ARIMA (1,0,1) model is
one of the ARIMA models. ARIMA (1,0,1) assumes the time series is stationary. It applies
auto-regressive and moving average.

The computational complexity of these time series forecasting strategies are discrepant. A
detailed comparision of these methods are provided in [HHKA14]. [HHKA14] provides Work-
load Classification and Forecasting (WCF) to select the most applicative time series forecasting
method automatically at runtime. In this thesis, we will adopt WCF to perform the forecasting.
WCF will be introduced and discussed in chapter 7.

4.5 Benchmarking

We will propose a runtime control method based on benchmark. We use benchmark results to
explore knowledges and workload forecasting as a mean to proactive adapt the configuration.
In this section, we will introduce benchmarking and tools used by us.

The general benchmarking approach will be introduced in section 4.5.1. We adopt bench-
marking to achieve application knowledges and manage SLA accordingly. Our SLA oriented
benchmarking will be discussed in section 4.5.2. We adopt CLIF and SelfBench as our bench-
mark tools. They will be introduced in section 4.5.3.

4.5.1 Benchmarking definition

The performance of a system is difficult to be judged from the configuration parameters in
computing technology. Benchmark is seen as an effective method of evaluating specific per-
formance metrics of an object by running a set of tests. One benchmarking is composed of
system under test, workload injection, performance monitoring and benchmark result analysis.
Benchmarking should be quantificational and comparable. For example, the benchmark of CPU
float point operation performance and the bandwidth and delay of data access can help users to
judge whether each kind of CPU can run the application with proper computing performance
and operating capacity. Benchmarking is a widely used method for judging the performance
of CPU, but it can also be used in software systems. For example, the benchmark on Atom-
icity, Consistency, Isolation, Durability (ACID), query time and online transaction processing
(OLTP) of database management systems (DBMS), can help users to choose the most suitable
database. Benchmark is useful for the application developer to understand their application and
optimize software or hardware environments to advance the performance of their target applica-
tion. Application benchmark can measure the performance of the application better by running
the real workload or customized workload on the real application to achieve an achievable and
comparable result. There are many challenges when adopting a benchmark based approach. In
the context of cloud computing, large scale of computing resources can be available. Running a
benchmark on real large scale system can be costly and not practical. Cost effective pre-defined

4.5. BENCHMARKING 53

workload and extrapolation based methods are required. It’s not easy to define a cost effective
workload for small scale system benchmarking to achieve a set of comparable results which
can be directly used to decide which system performs better. It’s also difficult to understand
and explain the benchmark results and extrapolate the performances on large scale system. The
design of benchmarking should also follow scientific method such as variable control, small
sample size and repeatable results [Cas06].

4.5.2 SLA oriented benchmarking

SLA oriented benchmarking run different workload described in SLA on target application and
observe the response of the application system according to SLA. SLA oriented benchmarking
process is necessary comparing to traditional benchmarking which aims at providing a score
of the system to generally mark the system performance. SLA oriented benchmarking focus
on the evaluation of the ability of satisfying customers’ requirements by taking the QoS re-
quirements specified in SLA into consideration. By doing these, the benchmark results can
be more persuasive for customer to judge the performance of the system. The performance of
a web application can be affected by the software environment, hardware environment, oper-
ating system, network bandwidth and workload. The performance of a web application can
be analysed from different perspectives. For example, an application with good performance
means rapid response and no access denying from end users’ perspective, while throughput and
resource utilization from application owners’ perspective. The performance of an web applica-
tion is evaluated from several models, for example, workload model, performance model and
cost model. Workload model describes the characteristics of system resource requirements and
system resource utilization when performing different types of requests on the system. Perfor-
mance models are used to predict response time, resource utilization and system throughput.
Cost model describes the affection of software, hardware, network and supporting system op-
eration costs. A series of performance metrics can be used in performance model, for example,
response time, throughput, resource utilization, concurrent users, HT' TP transactions per second
and session per second, network statistics, resource request queue length.

e Response time is waiting time from the moment end user request is sent from the client
to the moment the client received the response from the server. It is usually measured by
time, for example seconds per request or milliseconds per request. Usually, response time
is inversely to free system resource and in direct proportion to workload.

Figure 4.9 illustrates the relationship between workload and response time. As depicted
in figure 4.9, with the increasing of workload, the response time increases slowly and
almost linearly until one or more resources are widely consumed and intensely competed.
In figure 4.9, the sudden increasing of response time is usually because at least one of the
resources utilizations are already beyond the maximum resource utilization thresholds.
For example, one web server uses a fixed number of threads to process requests. When
the number of concurrent requests exceeds the number of threads affordable by the web
server, any coming request will be added into the request queue and wait to be processed.
The time spend in request queue will also be calculated as part of response time.

To better understanding the meaning of response time in the context of web application,
we can cut response time into small pieces. These small pieces of time can be classified
as network waiting time and application waiting time. Network waiting time means the

54

CHAPTER 4. STATE OF THE ART-RUNTIME CONTROL

Qwin asuodsay

»

workload

Figure 4.9. The relationship between workload and response time

N /-\ oA N2 _

A2
P N4 A3 N3 \i

Client w Server DB Server

Y
Y

Figure 4.10. The response time composition in typical web application

time data is transformed from one server to another. Application waiting time means the
time for data staying inside one server and being processed.

As depicted in figure 4.10, response time = (NI+N2+N3+N4)+(A1+A2+A3). Nx repre-
sents network waiting time. Ax represents application waiting time. Usually, response
time is highly depending on N1 and N4 which are decided by the way of client connected
to servers. Methods, such as installing web application closed to their clients, are used
to reduce the time spent on data transforming on internet. Network waiting time N2 and
N3 usually depend on the capability of network card interface of servers. It is difficult to
analyse and decrease the application waiting time A1, A2 and A3 because of the complic-
ity of software. Especially when several components of the application works together to
one single request.

Throughput means the number of requests processed by the system during a specific time
unit. The measuring unit is usually requests/second or pages/second. Throughput is an
important concept during the whole lifecycle of an application. For example, during
capacity planning phase, throughput is the key metric for deciding the hardware config-
uration of web application. Besides, throughput plays an important role in recognizing
performance bottleneck and performance improvement.

Figure 4.11 illustrates the relationship between throughput and workload. At the begin-
ning, the throughput increases proportionally to the workload. However, due to the limi-
tation of system resources, throughput can not be indefinitely increasing. It will gradually
reach the maximum throughput , and then the whole system throughput will decrease as
the workload increases. This maximum throughput depicts the maximum number of con-

4.5. BENCHMARKING 55

indybnoayy

-

workload

Figure 4.11. The relation between throughput and workload.

uonezi|iin 32IN0SaY

-

° workload

Figure 4.12. The relation between resource utilization and workload.

current user requests can be served by the system. Throughput and response time can
be seen as two different perspective of the same problem. Generally, throughput will be
smaller if response time is longer. It is not right to ignore waiting time when measuring
throughput because the waiting time usually suddenly increases before reaching the max-
imum throughput. Maximum throughput will probably appear on a workload point where
the response time is not acceptable.

Resource utilization refers to the utilization degree of different resources of the system,
such as CPU, memory, network bandwidth. It is usually expressed as the used percentage
of the maximum usable amount of resources. Figure 4.12 shows the relationship between
resource utilization and workload.

Generally speaking, resource utilization is proportional to the workload until workload
reaches a certain number from where the resource utilization will remain at a constant
level as the workload continues growing. This constant level of resource utilization is
seen as the maximum availability of this resource. When resource utilization is main-
tained at a constant value of 100%, it indicates that the resource has become the bot-
tleneck of the system. System throughput can be increased and response time can be
decreased by prompting the capacity of this resource. In order to locate system bottle-
necks, a long and arduous performance benchmarking process is unavoidable to check all

56 CHAPTER 4. STATE OF THE ART-RUNTIME CONTROL

suspicious resource by adding more this kind of resources and observing the improvement
of performance.

e The number of concurrent users is the number of user sessions on a particular site defined
within a given time. When the number of concurrent users increases, system resource
utilization will also increase.

e The number of requests per second and Number of sessions per second. The number of
requests per second refers to the number of GET or POST requests per second reaches
the Web sites . Number of sessions per second is the number of users per second to reach
and visit the web site. It is closely related to performance.

e Network traffic statistics should also be monitored to determine the appropriate network
bandwidth. Typically, network bandwidth can be the bottleneck of the application when
network utilization is more than 40%.

4.5.3 Benchmarking tools

To benchmark the application, we use SelfBench services which are provided as services un-
der OpenCloudware project. SelfBench [Ben12] provides a virtualized and self-scalable load
injection system to automatically detect the supportable upper bounder arrival rate of the sys-
tem. SelfBench is based on CLIF. CLIF [Dil09] is designed for generating predefined traffic
on a system to measure QoS target and observe the computing resources usage at the same
time. CLIF can be used for deployment, remote control, monitored measurements collection
of its distributed load injectors and probes. Acceptable request response time at the injector
side and resource utilization upper bounder (e.g. RAM utilization = 80%) at the probe side is
configured as the termination conditions of detection. System maximum capable arrival rate
and corresponding resource utilization can be achieved by applying SelfBench. In other words,
after doing SelfBench on system under test, we can get maximum arrival rate for current system
under test and resource utilization for each instance.

CLIF, a benchmarking environment

CLIF [Dil09] is a software based on Fractal component and written in Java. CLIF [Pro] can be
used to charge injection and performance measurement. With its software framework approach,
itis especially designed to adapt to any kind of system under test in terms of invocation protocols
and resources to observe. It also offers different user interfaces such as Separate GUI, Eclipse
plug-ins, command line and continuous integration server Jenkins.

Figure 4.13 shows the execution principles of CLIF test. CLIF is a distributed Fractal appli-
cation to deploy and supervise injection components and resource consumption measurement
through the network.

The factory-type CLIF servers are used by injector or sensor components. These enable
the instantiation of remote components. When the test is started, the injectors begin to send
requests to the system under test and produce reports with response time and type of request.

In parallel, the probes measure the specific resources utilization, such as CPU utilization,
memory utilization, and then produce measurement reports.

4.5. BENCHMARKING

57

test

supervision

injector

injector

[J91]
1oL,

System under test

Probe | L Probe |
A A

injector

saturation
controller

Figure 4.13. CLIF Architecture [Pro].

-

saturated
or not

Y

injector
controller

injector K
- Dorobe |

System under test

saturation

controlller - - -

metrics test =F - —

s : ‘ :

supervision = = =

Probe | Probe | Probe |
injector
resource usage

—® Benchmark result

Figure 4.14. SelfBench architecture [Ben12].

58 CHAPTER 4. STATE OF THE ART-RUNTIME CONTROL

All these measurement reports will be stored in a storage component for the analytical com-
ponent to produce test report. These measurements will also be available after running a col-
lection operation at the end of the test. Compared to centralized storage component, measure-
ments are stored on each injector and probe to avoid interrupting the performance of system
under test. Instead of transporting and storing all the measurements in centralized storage com-
ponent in real time, distributed measurements storage allows CLIF to support High traffic, such
as millions of virtual users, thousand injectors and probes.

CLIF provides periodical statistics of measured metrics on injectors and probes offer, such
as average response time and average CPU utilization. This feature allows to monitor the chang-
ing of metrics in real time and in an intuitive way.

Figure 4.13 describes the component architecture of CLIF. There are storage, analyser
and blades. Blades can be either injectors or sensors. All the sensors, injectors and storage
are connected to and under the control of one management component named as supervisor.
Detailed explanation of the architecture can be found in [Dil09].

SelfBench

SelfBench [Benl12] is based on CLIF without modification. Blades, the fundamental of CLIF,
provides CLIF with the ability of deploying and controlling parallel computing components.
With blades, measurements can be observed and controlling can be performed at runtime which
means before retrieving the results by "collecting" at the end of execution.

SelfBench benefits from the standard features of CLIF including injectors, probes, configu-
ration and starters to compose SelfBench deployment.

Compared to CLIF, the different part for SelfBench are an optimization controller including
the injection controllers and saturation controllers.

Figure 4.14 demonstrates the SelfBench architecture. The Supervisor component, the same
as in CLIF, controls and supervises the whole platform of test.

Informations such as the state of the test, the state of the injectors and probes and runtime
periodical statistics measurements can be found.

The activity of the probes and injectors can be controlled and reconfigured at runtime. All
the informations are centralized and achievable.

The injection control component and the saturation detection component implement two
separate control loops. They specify a unique customer interface of type of Test Control. Test
Control type allows the controllers to control, monitor and reconfigure all the deployed probes
used by the saturation controller.

Optimization component is also Fractal controllerType. It’s connected to the supervisor
component. It can be used to start the configurators and starters with well defined parameters.

4.6 Conclusion

Benchmarking provides cloud application dependent analysis of the application behavior, for
instance throughput of served requests, response time. Through benchmark, the feasibility of a
SLA can be known. In other words, the question that whether QoS target can be satisfied with
the workload, resource and cost constraints stated in SLA can be answered. We will describe our
benchmark based SLA feasibility study method in chapter 6. Benchmarks are relatively costly
and precise feasibility study usually imply large amount of benchmarks. Our benchmark based

4.6. CONCLUSION 59

SLA feasibility study method makes tradeoff between accuracy and costs. Limited amount
of benchmarks are performed to achieve a workload-resource mapping model. This mapping
model, as an intermediate of this benchmark based feasibility study process, will also be used
in our runtime control method which will be introduced in chapter 7.

Runtime control aims at provisioning resources for running applications to satisfy the terms
defined in SLA. Existing runtime control methods are in a schedule, reactive or proactive way,
based on rule, control theory, queuing theory, reinforcement learning or time series. Sched-
ule based runtime control methods can not adapt to fluctuating workload. However, reactive
runtime control methods require great efforts and knowledges about the running application
behaviour from application owners, while proactive runtime control methods have strong con-
straints which block these methods from applying in practice. Therefore, we will propose a
runtime control method which releases the burden of application owners through a set of bench-
marking in chapter 7. The results of benchmarks will also provide an initial proactive runtime
control model to make our method more practical. This initial proactive runtime control model
will be continuously improved in a reactive way with the accumulation of application behaviour
knowledges to make our runtime control method better adapting to the application. Our runtime
control method is based on schedule, reactive and proactive runtime control methods.

Chapter 5

PSLA: SLA description language for PaaS

5.1 Introduction

Most cloud services are provided in the way of "Pay as you go". PaaS is one kind of these
services. PaaS is a special kind of SaaS, and it is based on IaaS. IaaS providers loan virtual
resources, like virtual machine, to their clients. SaaS providers loan software usage rights
to their clients through internet. PaaS providers run their business by loaning a platform for
whole SaaS application lifecycle, including development, testing, deployment, runtime main-
taining [MG11]. It is widely accepted that SaaS providers save investments on purchasing and
maintaining hardware by using IaaSs. But activities and difficulties involved in SaaS application
lifecycle are quite different from past. So PaaS is designed to lower the sill of using cloud in-
frastructure and popularize the cloud. By using PaaS, SaaS providers can ignore the differences
among laaSs, accelerate SaaS application development and acquire elasticity of SaaS.

SLA is a part of the agreements between service consumer and service provider. It is used
to structurally describe QoS target. SLA is needed for several reasons. The responsibilities
of contracting parties should be clearly defined in SLA. For example the actions carried out
by each part in different conditions. Usually, in SLA, the services promised by provider are
quantitatively and comprehensively defined by a series of QoS metrics with value ranges. Not
only the level of QoS should be guaranteed but also the corresponding rewards and penalties
will also be specified in SLA for the fulfilling or violating of promise. Most of the management
involved in cloud computing, including SLA management, relies on automatic tools. So struc-
tured and machine readable SLA definition, e.g. in XML, is necessary so that the SLA can be
used as input file of SLA management system. Other management systems in the cloud may
also benefit from it. For example, billing systems can use penalty and reward attached to each
QoS promise to charge to service consumer. In reality, most cloud service providers offer SLA
in text, even informative way. For example, public cloud service Google App Engine [goo15]
and Amazon Elastic Compute Cloud (EC2) [ec213] publish their uniform and non custom SLA
online.

In this chapter, we introduce PSLA [LPM14], a PaaS level SLA description language. PSLA
is based on WS-Agreement [ACD*07]. WS-Agreement is an extendable SLA skeleton. We
consider the particular needs in PaaS level SLA and design PSLA properly based on WS-
Agreement skeleton. PSLA is well structured and practical. To our best knowledge, we are
the first one who propose a commonly usable and machine readable PaaS level SLA description
language.

62 CHAPTER 5. PSLA: SLA DESCRIPTION LANGUAGE FOR PAAS

In this chapter, PSLA will be explained with more details compared to our previous publica-
tion [LPM14]. The rest of this chapter is arranged as follows. The specific problems of PaaS are
analysed in section 5.2. In section 5.2, the semantic expression of PSLA is also summarized.
In section 5.3, a detailed description of the syntactic PSLA is made. Finally, we conclude this
chapter in section 5.4.

5.2 PaaS SLA requirements

If SaaS provider authorize PaaS provider to deploy and run application, the SaaS level SLA
should be guaranteed by PaaS provider. So SaaS level SLA will be expressed in correspond-
ing PaaS level SLA with appropriate constraints. Because the end users’ behaviour pattern can
be formed based on SaaS level contracts or end user statistic which probably are business se-
crets. So the workload is elastic and the elasticity is unpredictable for PaaS provider. PaaS
provider can only deliver under a certain workload. This is expressed as constraints and they
are obligatory.

In this section, the requirements of a PaaS level SLA will be discussed in section 5.2. The
semantic description of PSLA will be given in section 5.2.1. The features of PaaS level SLA
will be given in section 5.2.2.

5.2.1 PSLA semantic description

In this part, we list and explain semantic clause involved in PaaS level SLA. PaaS level SLA
includes two kinds of informations. They are general informations about the SLA named as
"SLA Metadata" and detailed QoS target descriptions of the SLA named as "QoS Criterion".
"Springoo", a three tier application, is used in OpenCloudware project as an example to demon-
strate its QoS management. The first tier of "Springoo" runs Apache server, the second runs
Jonas server and the third tier runs Mysql server. We can instantiate several application servers
to do horizontal scaling on the second tier. We can change the allocated virtual CPU or memory
to do vertical scaling on third tier.

SLA Metadata

SLA Metadata defines the basic informations of the SLA. These informations are constant
within one SLA. SLA metadata includes:
e Agreement Name
Agreement Name is the identification of the agreement. It is a unique ID or name. e.g.
Name of the agreement is “Springoo”.
e Agreement Initiator
Agreement Initiator is the party who starts the agreement creation request. For example,

the initiator of this agreement is "Springoo Developer".

e Agreement Responder Agreement Responder is the party who responds to the agreement
creation request. For example, the responder is OpenCloudware.

5.2. PAAS SLA REQUIREMENTS 63

Service provider

Service provider is the party who will provide services. The contrary party is service
consumer. e.g. Service provider is also OpenCloudware.

Agreement Expiration Time

Agreement Expiration Time is the time point that current agreement is no longer valid.
All the "Valid Period"s defined in "QoS Criterion" should be subsets of it. E.g. Agreement
will be expired at 01/09/2015 00:00:00.

QoS Criterion

One important purpose of creating SLA is giving an insurance to the QoS delivered by service
provider. In this part, the detailed clauses are described. The rights and obligations of each
party are defined.

Valid Period:

Valid Period specifies the period of time that this QoS Criterion will be taken into effect.
Valid Period can either be continuous or regularly discrete 5.2.2. This is achieved by a
start time, a end time and a optional time Interval.

Valid Workload:

Valid Workload describes that the QoS Criterion will be taken into effect for what kinds of
workload acting on SaaS application. The workload can be described from three aspects:
data size, data composition and data variation.

Service Level Objective:

Service Level Objective (SLO) is the core part of QoS Criterion. It expresses what exactly
the QoS target is by quantifying the acceptable QoS metric value range. Sometimes, it is
even difficult for service consumers themselves to specify a value as an exactly threshold
between satisfactory and unsatisfactory. So, inspired by "Confidence" and "fuzziness"
proposed by CSLA, we use "Trust" and "Fuzziness" to allow the fuzzy description of
threshold 5.2.2.

Metric Description:

In QoS Ceriterion, each SLO is quantified by QoS metric value scopes. The metrics are
described to make sure that there is no ambiguity about the metric among parties 5.2.2.
This is achieved by a unit, a value Type, value Source and value update mode.

Business Values:

Different SLOs are usually reflected in different business values, like penalty and reward.
These values will be used in billing system to calculate the cost of service. Relevant
penalty will play a part when the Service Level Objective is not met.

Check Plan:

Billing system needs to check the QoS and service promised in SLA to do the calculation.
The time when this action should be take is specified in SLA.

64 CHAPTER 5. PSLA: SLA DESCRIPTION LANGUAGE FOR PAAS

e Priority:

Sometimes the service provider doesn’t have enough resources to meet all SLO at the
same time, so it is necessary to specify priority for each SLO. So that the service provider
can make trade-off.

5.2.2 PaaS SLA Features

PSLA is designed for the contract between PaaS provider and application owner. PaaS provider
takes charge of the dynamic resource provisioning caused by fluctuating workloads. Usually,
application owners will have constraints such as available resources or maximum cost for main-
taining the QoS. Therefore, the application probably could not run application under unlimited
workload. Metrics should be described without ambiguity so that the QoS, which need to be
guaranteed by PaaS provider, can be clearly defined. Inspired by CSLA [KL*12], giving a
fuzzy border to the acceptable QoS range can be helpful for managing the application in a cost
effective way, we also introduce the fuzzy value range into PSLA.

Elastic workloads

The elasticity of a given time can be expressed by a three-dimensional vector (s, ¢, t):
e s, Data size, means the total amount of data during a given unit of time.

e ¢, Workload composition, means the proportion of each kind of load which form the
workload. Workload composition itself can be described by a multi-dimensional vector
and each dimension can be defined by the resources required by a unit amount of the load.
The details are described in the following content.

e ¢, Time, means the time when the workload happened.

Different services need different amount and various kinds of resources. From the PaaS
providers’ point of view, resource needs is the fundamental gist to ensure the promised QoS. So
we classify the loads according to the amount of each kind of resources demanded on each
component(We consider the component based software system). We use matrix L, , =
{0l = 0,0 <m < M,0<n< N} Where L}, represents the load i. [, repre-
sents the amount of resources,, required on component,, by load;. M represents the number
of components in software system. /N represents the number of kinds of resources. Since
there are limited kinds of resources, like memory usage rate, we can summary commonly
used resource metrics and use a fix single dimension vector here. Now, we describe it as
(CPU, RAM, Network) preliminary, and these will be lucubrated in our future work.

Workload is composed by several loads. Different ratios of loads can lead to different dis-
tributions of total resources demanding.

Metric

To model PaaS level metric, the metrics that are interesting should be find out first. Then, we
abstract and define a structure to express all necessary metric properties.

5.3. PSLA SYNTACTIC EXPRESSION 65

For PaaS level SLA, as far as we know, there is no existing metric model. In [AAA110],
some of the commonly used performance metrics, including throughput, reliability, load bal-
ancing, durability, elasticity, linearity, agility, automation and customer service response times,
are listed. Since SaaS level QoS metrics may partly be transferred to PaaS level SLA, we take
SaaS QoS metrics, like response time, into consideration . We consider the following properties
initially:

e Unit: The measurement unit of this metric. Common used units, like second, are built-in
in PSLA, but there is also mechanism for user defined unit.

e Value type: Which type the value of the metric should be, for example string, integer or
decimal.

e Value source: Where the value of this metric is acquired from. PSLA allows to use a URI
to describe the location of metric value.

e Value update mode: The way new metric value is retrieved from the value source.

Fuzzy Value Range

We use elementary logical expression to describe value range. We define logical operators,
comparison operators and boundary values. However, it is difficult to give a fine line as bound-
ary in the real world. So we adopt "fuzziness" and "confidence" as in [KL*12] to make the
boundary more practical. "confidence" is renamed as "trust" to distinguish statistical term.

e Logical operators: Including N, U and —.

e Comparison operators: Including<, >, <, > and =.

e Metric: Value range acts on which metric.

e Boundary values: the boundary of range.

e Trust: At least how many percentage of the metric value should be within the value range
described by logical operators, comparison operators and boundary values.

Fuzziness: The acceptable degree of deviation of metric values which are out of bounds.

5.3 PSLA syntactic expression

<wsag: AgreementOffer ...>
<wsag :Name>Springoo </wsag : Name>
<wsag: Context >... </wsag: Context>
<wsag:Terms >... </wsag: Terms>
</wsag: AgreementOffer >

Listing 5.1. WS-Agreement based PSLA structure example.

In this section, we will demonstrate PSLA’s expression power by introducing whole syntac-
tic structure of PSLA. As demonstrated in listing 5.1, AgreementOffer is comprised by Name,
Context and Terms. This section is focus on AgreementOffer but not AgreementTemplate.
AgreementOffer delivers the same informations as AgreementTemplate only lack Constraint
to express when the offer can be accepted as formal AgreementOffer. As mentioned before,
PSLA is based on WS-Agreement skeleton. PSLA extends WS-Agreement from five aspects,

66 CHAPTER 5. PSLA: SLA DESCRIPTION LANGUAGE FOR PAAS

including Context, Service Description Term, Service Reference, Qualifying Condition and
CustomServiceLevel.

In this section, the syntactic expression of PSLA will be given. We present here the syntactic
expression of Agreement Context and the syntactic expression of Agreement Terms. The de-
tailed explanations of the syntactic expression of Service Term will be described in section 5.3.3.
The syntactic expression of Guarantee Term will be described in section 5.3.4.

5.3.1 Agreement Context

<element name="ContextExtension" type="ocw:ContextExtensionType"/>
<complexType name="ContextExtensionType">
<sequence >
<element name="OVFLocation" type="anyURI"/>
</sequence >
</complexType>

Listing 5.2. Context extension in PSLA.

In WS-Agreement, Context is the place to describe SLA Metadata, including Agreement
Name, Agreement Initiator, Agreement Responder, Service provider and Agreement Expiration
Time, of the AgreementOffer. Context is designed to be the place for expressing various meta-
datas about the agreement. Pre-mentioned informations may not be enough and WS-Agreement
is designed to be extendable. As demonstrated in LIST 5.2, in PSLA, Context is extended to
express the "OVFLocation", which means the location of VCAA file. In the context of Open-
Cloudware, OVF++ file, which describes the VCAA, is adopted.

<wsag:Context>
<wsag:Agreementlnitiator>Springoo Developer</wsag:AgreementInitiator>
<wsag:AgreementResponder>OpenCloudware</wsag:AgreementResponder>
<wsag:ServiceProvider>AgreementResponder</wsag:ServiceProvider>
<wsag:ExpirationTime>2015—-01-01T00:00:00</wsag:ExpirationTime>
<ocw:ContextExtension>
<ocw:OVFLocation>
http: //www. polytech .univ—savoie. fr/opencloudware/v2/models/springoo.ovf
</ocw:OVFLocation>
</ocw:ContextExtension>
</wsag:Context>

Listing 5.3. PSLA Context example

Listing 5.3 gives an example of PSLA agreement Context. In this example, the agree-
ment is firstly proposed by Springoo Developer. OpenCloudware is the one who responds
to the PSLA proposal. OpenCloudware is also the one who provides the services which are
guaranteed under this PSLA agreement. This agreement will be effective until 0 o’clock of
01/09/2015. The VCAA description of the guaranteed application can be found through the
URL of “http://www.polytech.univ-savoie.fr/opencloudware/v2/models/springoo.ovf™.

5.3.2 Agreement Terms

Terms is the core part of AgreementOffer. Services and QoS promised by service provider are
described in Terms. Most of our works are inside Terms. The syntactic expression of Service

5.3. PSLA SYNTACTIC EXPRESSION 67

Term and Guarantee Term will be described in section 5.3.2. The structure of Agreement Term
will be described in section 5.3.2.

Classification

There are two kinds of terms in WS-Agreement. They are ServiceTerm (see section 5.3.3) and
GuaranteeTerm (see section 5.3.4).

Structure

All terms are organised together by All, ExactlyOne and OneOrMore as a TermTree. LIST 5.4
is an example of TermTree. In this example, 3 ServiceTerms, including 2 ServiceReferences
and 1 ServiceDescriptionTerm, and 1 GuaranteeTerm are organized together by "All" which
means all of these four Terms should be taken into effect at the same time.

<wsag:Terms>
<wsag:All>
<wsag:ServiceReference Name="Counting" ServiceName="elasticity">...</
wsag:ServiceReference>
<wsag:ServiceReference Name="Monitoring" ServiceName="elasticity">...</
wsag:ServiceReference>
<wsag:ServiceDescriptionTerm Name="Springoo Description Terms"
ServiceName="elasticity ">...</wsag:ServiceDescriptionTerm>
<wsag:GuaranteeTerm Name="Request Response Time" Obligated="
ServiceProvider">...</wsag:GuaranteeTerm>
</wsag:All>
</wsag:Terms>

Listing 5.4. One Terms example according to WS-Agreement.

5.3.3 Service Terms

ServiceTerm mainly contains functional descriptions. There are three kinds of ServiceTerm
in WS-Ageement. They are ServiceDescriptionTerm, ServiceReference and ServiceProperties.
ServiceDescriptionTerm and ServiceReference have the same syntax expression and they can
be extended. ServiceDescriptionTerm is designed for domain specific description, and we have
extended it to express "Metric Description”. In PSLA, ServiceReference has been extended to
describe a service provided by PaaS provider. One or more URIs are used to refer to the entry
point of service. In WS-Agreement, ServiceProperties is used to packet all the QoS metrics
as Variable which will be used in GuaranteeTerm. In this section, the syntactic expression of
Service Term will be described in section 5.3.3. The syntactic expression of Service Description
Term will be described in section 5.3.3. The syntactic expression of Service Reference will be
described in section 5.3.3. The syntactic expression of Service Properties will be described in
section 5.3.3.

<complexType name="NamedElement">
<attribute name="Name" type="ID" use="required"/>
</complexType>

Listing 5.5. Shared type NamedElement definition in PSLA.

68 CHAPTER 5. PSLA: SLA DESCRIPTION LANGUAGE FOR PAAS

NamedElement is a shared type defined in PSLA. As shown in LIST 5.5, an extension based
on NamedElement must be tagged by a Name which is unique in the whole PSLA document. In
PSLA, three types of elements are extended based on NamedElement, including InputdataType,
ResourceType and MetricType.

Service Description Terms

<element name="ServiceDescriptionTermExtension" type="ocw:
ServiceDescriptionTermExtensionType"/>
<complexType name="ServiceDescriptionTermExtensionType">
<choice maxOccurs="unbounded">
<element name="Metric" type="ocw:MetricType"/>
<element name="InputData" type="ocw:InputDataType"/>
<element name="Resource" type="ocw:ResourceType"/>
</choice >
</complexType>

Listing 5.6. ServiceDescriptionTerm extension definition in PSLA.

In WS-Agreement, ServiceDescriptionTerms is designed to express domain specific service
descriptions. ServiceDescriptionTerms can be extended for customer needs. In PSLA, Ser-
viceDescriptionTerms, is extended as listing 5.6 to express Metric, InputData and Resource.
They will be further used in Guarantee Terms to express QoS responsibilities and obligations
unambiguously and clearly. Listing 5.7 is an example of ServiceDescriptionTerm in PSLA.
The requests,"Atomic_Request_A" and "Atomic_Request_B", composing the workload are
described as "InputData" of ServiceDescriptionTerm extension. computing resource, such as
Jonas, Apache and MySQL, and storage resources, such as AppDiskID1, AppDiskID2 and Ap-
pDiskID3, are described as "Resource" of ServiceDescriptionTerm extension. All the metrics
which will be used in corresponding GuaranteeTerms 5.3.4 will be described here. For exam-
ple, "RequestsThroughput”, "Variation" and "Instructions" are the metircs which will be used
to express the workload constraints in QualifyingCondition of GuaranteeTerms 5.3.4. "Mem-
ory", "NetworkThroughput" and "Storage" are the metrics which will be used to express the
scalability constraints in QualifyingCondition of GuaranteeTerms 5.3.4. "ResponseTime" and
"Availability" are the metrics which will be used to express the scalability constraints in QoS
requirements of GuaranteeTerms 5.3.4. It can also be the case that there is no Metric, no Input-
Data or no Resource.

<wsag:ServiceDescriptionTerm Name="Springoo Description Terms"

wsag:ServiceName="elasticity ">
<ocw:ServiceDescriptionTermExtension>

<ocw:Metric Name="RequestsThroughput">...</ocw:Metric>
<ocw:Metric Name="Variation">...</ocw:Metric>
<ocw:Metric Name="Instructions">...</ocw:Metric>
<ocw:Metric Name="Memory">...</ocw:Metric>
<ocw:Metric Name="NetworkThroughput">...</ocw:Metric>
<ocw:Metric Name="Storage">...</ocw:Metric>
<ocw:Metric Name="ResponseTime">...</ocw:Metric>
<ocw:Metric Name="Availability ">...</ocw:Metric>
<ocw:InputData Name="Atomic_Request_A">...</ocw:InputData>
<ocw:InputData Name="Atomic_Request_B">...</ocw:InputData>
<ocw:Resource Name="Jonas">...</ocw:Resource>
<ocw:Resource Name="Apache">...</ocw:Resource>

5.3. PSLA SYNTACTIC EXPRESSION 69

<ocw:Resource Name="MySQL">...</ocw:Resource>
<ocw:Resource Name="appDiskldl">...</ocw:Resource>
<ocw:Resource Name="appDiskId2">...</ocw:Resource>
<ocw:Resource Name="appDiskld3">...</ocw:Resource>
</ocw:ServiceDescriptionTermExtension>
</wsag:ServiceDescriptionTerm>

Listing 5.7. ServiceDescriptionTerm PSLA extension example.

1. wsag:ServiceDescriptionTerm
/ocw:ServiceDescriptionTermExtension/ocw:InputData

InputData is the place to define the basic element of workload which will be suffered
by the virtualized application deployed under current PSLA contract. As shown in list-
ing 5.8, in the definition of the InputData, the detailed description of the basic element of
workloads will be given, including Scenario, Description and a unique name. It can also
be extended.

<complexType name="InputDataType">
<complexContent>
<extension base="ocw:NamedElement">
<sequence >
<element name="Scenario" type="anyURI"/>
<element name="Description" minOccurs="0" type="string"/>
<any minOccurs="0" namespace="#any" processContents="strict"/>
</sequence >
</extension >
</complexContent >
</complexType>

Listing 5.8. InputData definition in ServiceDescriptionTerms extension of PSLA.

<ocw:InputData Name="Atomic_Request_A">
<ocw:Scenario>
http: //www. polytech .univ—savoie . fr/opencloudware/v2/models/springoo .
Xis
</ocw:Scenario>
</ocw:InputData>

Listing 5.9. One InputData example in PSLA.

(a) wsag:ServiceDescriptionTerm
/ocw:ServiceDescriptionTermExtension/ocw:InputData/ @ ocw:Name

Attribute "Name" is an unique name based on NamedElement. The "NamedEle-
ment" based "Name" of InputData should be unique in the whole agreement. For
example, in listing 5.9, "Atomic_Request_A" could be adopted as the name of an
element only once in the whole PSLA document.

(b) wsag:ServiceDescriptionTerm
/ocw:ServiceDescriptionTermExtension/ocw:InputData/ocw:Scenario

Scenario is a URI based external description. For example, in listing 5.9, Scenario
can be a CLIF scenario file in the context of OpenCloudware.

CHAPTER 5. PSLA: SLA DESCRIPTION LANGUAGE FOR PAAS

(c) wsag:ServiceDescriptionTerm
/ocw:ServiceDescriptionTermExtension/ocw:InputData/ocw:Description
The string based Description is a human readable text description of the input data.
This description is optional.

(d) wsag:ServiceDescriptionTerm
/ocw:ServiceDescriptionTermExtension/ocw:InputData/{ any }
To make PSLA adaptable to a variety of application workloads, InputData is de-
signed to be extendable.

2. wsag:ServiceDescriptionTerm
/ocw:ServiceDescriptionTermExtension/ocw:Resource

<complexType name="ResourceType">
<complexContent >
<extension base="ocw:NamedElement">
<sequence >
<element name="XPath" type="string"/>
<any minOccurs="0" namespace="\#any" processContents="strict
"/>
</sequence >
</extension >
</complexContent >
</complexType>

Listing 5.10. Resource definition IN ServiceDescriptionTerm of PSLA.

<ocw: Resource Name="Jonas">
<ocw : XPath>
/ovf:Envelope/ovf: References/pm: DynamicIlmage[ovf:id="appDiskl "]
</ocw : XPath>

</ocw: Resource >

Listing 5.11. One Resource example in PSLA.

"Resource" of ServiceDescriptionTerms is the place to define referred virtualized re-
sources provided by laaS providers. Resources can be VMs, network resources, data
storage and so on. As shown in listing 5.10, each Resource should have following infor-
mations:

(a) wsag:ServiceDescriptionTerm
/ocw:ServiceDescriptionTermExtension/ocw:Resource/ @ocw:Name
Similar as the "Name" of "InputData" defined in ServiceDescriptionTerms extension
of PSLA, attribute "Name" is based on NamedElement which is a shared type de-
fined in PSLA. For example, in listing 5.11, "Jonas" should be unique in the whole
agreement.

(b) wsag:ServiceDescriptionTerm
/ocw:ServiceDescriptionTermExtension/ocw:Resource/ocw: XPath
As mentioned before, OVF++ file is adopted by OpenCloudware project to describe
the VCAA of the application which is managed under corresponding PSLA contract.
"XPath" gives the location of the resource description, for example the XPath of a
specific tag in an OVF++ file.

5.3. PSLA SYNTACTIC EXPRESSION 71

(c) wsag:ServiceDescriptionTerm
/ocw:ServiceDescriptionTermExtension/ocw:Resource/{any }

Similar as "InputData" definition, "Resource" is also designed to be extendable to
express all kinds of resource.

3. wsag:ServiceDescriptionTerm
/ocw:ServiceDescriptionTermExtension/ocw:Metric

As defined in listing 5.12, each Metric should have the informations about metric unit,
metric value type and metric value generation mode tagged as Unit, Type and ValueGen-
erateBy correspondingly. Detailed description of each element will be specified below.

<complexType name="MetricType">
<complexContent >
<extension base="ocw:NamedElement">
<sequence >
<element name="Unit" type="ocw:UnitType"/>
<element name="Type" type="ocw:Type"/>
<element name="ValueGenerateBy" type="ocw: ValueGenerateByType
">
</sequence >
</extension >
</complexContent >
</complexType>

Listing 5.12. Metric definition of ServiceDescriptionTerms extension in PSLA.

<ocw: Metric Name="Variation">

<ocw: Unit >... </ocw: Unit>

<ocw: Type>integer </ocw: Type>

<ocw: ValueGenerateBy >... </ocw: ValueGenerateBy >
</ocw: Metric >

Listing 5.13. Metric example of PSLA.

(a) wsag:ServiceDescriptionTerm
/ocw:ServiceDescriptionTermExtension/ocw:Metric/ @ocw:Name

Similarly as the "Name" of "InputData" and "Resource", Metrics defined in ServiceDescrip-
tionTerm will be later used in GuaranteeTerms 5.3.4 by referring the unique name based on
NamedElement which is a shared type defined in PSLA.

(b) wsag:ServiceDescriptionTerm
/ocw:ServiceDescriptionTermExtension/ocw:Metric/ocw:Unit

<complexType name="UnitType">
<choice >
<element name="BuiltInUnit">
<simpleType>
<restriction base="string">
<enumeration value="second"/>
<enumeration value="minute"/>
<enumeration value="hour"/>
<enumeration value="percent"/>

72

CHAPTER 5. PSLA: SLA DESCRIPTION LANGUAGE FOR PAAS

<enumeration

value="number"/>

<enumeration value="Euro"/>
<enumeration value="USD"/>
<enumeration value="Pound"/>
<enumeration value="requests/s"/>
<enumeration value="MIPS"/>
<enumeration value="Mo"/>
<enumeration value="Go"/>
<enumeration value="To"/>
<enumeration value="Mb/s"/>
<enumeration value="Gb/s"/>
</restriction >

</simpleType >
</element>
<element name="UserDefinedUnit"
</choice >
</complexType>

type="UserDefinedUnitType"/>

Listing 5.14. Unit definition in Metric definition of ServiceDescriptionTerms extension in PSLA.

"Unit" describes the unit of measurement of the metric value. "Unit" is the place to define
how to understand the string based metric value, for example with the same metric value
"3", "3 USD" related to money and "3 Mb/s" may related to data transforming speed. "Unit"
can either be created according to customers’ needs, which is named as UserDefinedUnit,
or directly adopt the predefined units which is defined in BuiltinUnit.

(a) wsag:ServiceDescriptionTerm
/ocw:ServiceDescriptionTermExtension/ocw:Metric/ocw:Unit/ocw:BuiltinUnit

non

As shown in listing 5.14, BuiltinUnit includes "second", "minute", "hour", "percent",
"number", "Euro", "USD", "Pound", "requests/s", "MIPS", "Mo", "Go", "To", "Mb/s"
and "Gb/s".

<ocw:Unit>
<ocw:BuiltInUnit>Mo</ocw:BuiltInUnit>
</ocw:Unit>

Listing 5.15. One Unit example in PSLA.

In the example of listing 5.15, the predefined unit "Mo" is adopted.
(b)

wsag:ServiceDescriptionTerm
/ocw:ServiceDescriptionTermExtension/ocw:Metric/ocw:Unit/ocw:UserDefineUnit
As shown in listing 5.16, if none of the predefined units described in BuiltinUnit
is suitable for describing the unit of measurement of the metric value, PSLA also
provides a mechanism for customizing Unit according to UserDefinedUnit.

<complexType name="UserDefinedUnitType">
<sequence >
<element name="Description"
</sequence >
<attribute name="Name" type="string" use="required"/>
</complexType>

type="string"/>

Listing 5.16. UserDefinedUnit definition for Unit of Metric in ServiceDescriptionTerms extension of

PSLA.

5.3. PSLA SYNTACTIC EXPRESSION 73

(©)

(d)

To create a UserDefinedUnit, besides a string based name, a human readable unam-
biguous description of the unit of measurement of metric value should be given.

<ocw:UserDefinedUnit Name="requests/s/min">
<ocw:Description>
The variation of the number of requests per second during one
minute .
</ocw:Description>
</ocw:UserDefinedUnit>

Listing 5.17. One UserDefinedUnit example in PSLA.

In the example of listing 5.17, an UserDefinedUnit which name is "requests/s/min" is
defined by describing meaning of this unit is "The variation of the number of requests
per second during one minute.".

wsag:ServiceDescriptionTerm
/ocw:ServiceDescriptionTermExtension/ocw:Metric/ocw:Type

<simpleType name="Type">
<restriction base="string">
<enumeration value="boolean"/>
<enumeration value="decimal"/>
<enumeration value="float"/>
<enumeration value="double"/>
<enumeration value="short"/>
<enumeration value="integer"/>
<enumeration value="long"/>
<enumeration value="negativelnteger"/>
<enumeration value="positivelnteger"/>
<enumeration value="unsignedLong"/>
<enumeration value="unsignedInteger"/>
<enumeration value="unsignedShort"/>
</restriction >
</simpleType >

Listing 5.18. Type definition of Metric in ServiceDescriptionTerms of PSLA.

"Type" defines the numeric data type of the metric value. As defined in listing 5.18, PSLA
provides 12 kinds of numeric data types, including "boolean", "decimal", "float", "dou-

ble", "short", "integer", "long", "negativelnteger", "positivelnteger", "unsignedLong", "un-
signedInteger" and "unsignedShort".

wsag:ServiceDescriptionTerm
/ocw:ServiceDescriptionTermExtension/ocw:Metric/ocw: ValueGenerateBy

"ValueGenerateBy" is the place to define how the metric value is retrieved. As shown in
listing 5.19, the generating mode should be defined by restricting this metric value coming
from which service and which operation on this service. The schedule of extracting the
metric value is also defined.

<complexType name="ValueGenerateByType">
<sequence >
<element name="ServiceReferenceName" type="string"/>

74 CHAPTER 5. PSLA: SLA DESCRIPTION LANGUAGE FOR PAAS

<element minOccurs="0" name="ServiceReferenceOperation" type="string

">
<element name="Schedule" type="duration"/>

</sequence >
</complexType>

Listing 5.19. ValueGenerateBy definition in Metric of ServiceDescriptionTerm extension in PSLA.

<ocw:ValueGenerateBy>
<ocw:ServiceReferenceName>Counting</ocw:ServiceReferenceName>
<ocw:ServiceReferenceOperation>getVariation</

ocw:ServiceReferenceOperation>

<ocw:Schedule>PT1H</ocw:Schedule>
</ocw:ValueGenerateBy>

-i-

-11-

-1ii-

Listing 5.20. One ValueGenerateBy example in PSLA.

wsag:ServiceDescriptionTerm
/ocw:ServiceDescriptionTermExtension/ocw:Metric/ocw: ValueGenerateBy
/ocw:ServiceReferenceName

ServiceReferenceName represent a service already defined in ServiceReference 5.3.3
of ServiceTerm. ServiceReferenceName should not only be a string based name but
also be unique. For example, in listing 5.20, "counting" represents only one service
defined in ServiceReference.

wsag:ServiceDescriptionTerm
/ocw:ServiceDescriptionTermExtension/ocw:Metric/ocw: ValueGenerateBy
/ocw:ServiceReferenceOperation

ServiceReferenceOperation describe that the metric is achieved exactly by which op-
eration of the service which is referred by ServiceReferenceName. In the example
of listing 5.20, the metric is generated by the operation of "getVariation" of service
"Counting".

wsag:ServiceDescriptionTerm
/ocw:ServiceDescriptionTermExtension/ocw:Metric/ocw: ValueGenerateBy
/ocw:Schedule

Schedule describes the time granularity of gathering metric value from the operation
of the service. In the example of listing 5.20, the metric value is collected every one
hour.

Service Reference

<element name="ServiceReferenceExtension" type="ocw:
ServiceReferenceExtensionType"/>
<complexType name="ServiceReferenceExtensionType">

<sequence >
<element name="WSDLLocation" type="anyURI"/>
<element maxOccurs="unbounded" name="Operation" type="string"/>
<any minOccurs="0" namespace="#any" processContents="strict"/>
</sequence >
</complexType>

5.3. PSLA SYNTACTIC EXPRESSION 75

Listing 5.21. ServiceReference extension definition in PSLA.

In WS-Agreement, "ServiceReference" is designed to be the place to define domain specific
reference to existing services. "ServiceReference" can refer to any kind of endpoint of the
service as long as the reference can be understood by both party of the agreement. In PSLA,
"ServiceReference" is extended as listing 5.21 to refer to an external Web Services Description
Language (WSDL) file of the service and operations delivered by the service. The WSDL is an
XML-based interface definition language that is used for describing the functionality offered by
a web service [WIK15c¢].

1. wsag:ServiceReference
focw:ServiceReferenceExtension/ocw:WSDLLocation

"WSDLLocation" gives the location of the WSDL file of the service. In the example of
listing 5.22, "http://www.opencloudware.org/Monitoring.wsdl" is the URL of WSDL file
of monitoring service.

2. wsag:ServiceReference
/ocw:ServiceReferenceExtension/ocw:Operation

"Operation" lists all the related operations which will be mentioned or guaranteed in
this agreement. For example, in listing 5.22, "getAllocatedInstructions”, "getAllocated-
Memory", "getAllocatedNetworkThroughput", "getAllocatedStorage", "getAvailability"
and "getResponseTime" are listed for service "monitoring".

3. wsag:ServiceReference
/locw:ServiceReferenceExtension/{any }

In PSLA, "ServiceReference" is still designed to be extendable to express all kinds of
service references.

<wsag:ServiceReference Name="Monitoring" ServiceName="elasticity ">
<ocw:ServiceReferenceExtension>
<ocw:WSDLLocation>http: //www. opencloudware . org/Monitoring . xsdl</
ocw:WSDLLocation>
<ocw:Operation>getAllocatedInstructions</ocw:Operation>
<ocw:Operation>getAllocatedMemory</ocw:Operation>
<ocw:Operation>getAllocatedNetworkThroughput</ocw:Operation>
<ocw:Operation>getAllocatedStorage</ocw:Operation>
<ocw:Operation>getAvailability</ocw:Operation>
<ocw:Operation>getResponseTime</ocw:Operation>
</ocw:ServiceReferenceExtension>
</wsag:ServiceReference>

Listing 5.22. One ServiceReferenceExtension example of PSLA.

Service Properties

In WS-Agreement, ServiceProperties is designed to be the place for defining measurable and
exposed properties of a service. The properties will be further used to express QoS requirements

76 CHAPTER 5. PSLA: SLA DESCRIPTION LANGUAGE FOR PAAS

in GuaranteeTerms 5.3.4. Service metrics, such as response time, should be described here
according to WS-Agreement. However, it is not the mechanism for PSLA. In PSLA, metrics
are expressed in "ServiceDescriptionTerms" because it provides flexible extension mechanism
compared to “ServiceProperties”. In this way, "Metric" definition can be with more detailed
information in PSLA.

5.3.4 Guarantee Terms

GuaranteeTerm 5.3.4 is designed for non-functional part of the agreement, including precondi-
tions which are related to elasticity of workload, QoS target and related business clause.

In this section, the syntactic expression of Guarantee Term will be described. The structure
of Guarantee Term will be described in section 5.3.4. The syntactic expression of Qualifying
Condition will be described in section 5.3.4. The syntactic expression of Service Level Objec-
tives will be described in section 5.3.4. The syntactic expression of Business Value List will be
described in section 5.3.4.

Structure

As the listed example listing 5.23 demonstrated, the GuaranteeTerm is composed of ServiceScope,
QualifyingCondition, ServiceLevelObjectives and BusinessValueList. QualifyingCondition and
CustomServiceLevel are extended in PSLA.

<wsag:GuaranteeTerm Name="Request Response Time" Obligated="ServiceProvider
">
<wsag:ServiceScope ServiceName="elasticity"/>
<wsag:QualifyingCondition>
<ocw:QualifyingConditionExtension>...</ocw:QualifyingConditionExtension
>
</wsag:QualifyingCondition>
<wsag:ServiceLevelObjective>
<wsag:CustomServiceLevel>
<ocw:CustomServiceLevelExtension>...</ocw:CustomServiceLevelExtension
>
</wsag:CustomServiceLevel>
</wsag:ServiceLevelObjective>
<wsag:BusinessValueList>...</wsag:BusinessValueList>
</wsag:GuaranteeTerm>

Listing 5.23. GuaranteeTerm structure example in PSLA.

e ServiceScope indicates this GuaranteeTerm is about which services.

e QualifyingCondition declares this GuaranteeTerm becomes effective under which premises.
QualifyingCondition usually constraints for the one who takes advantages from the Guar-
anteeTerm. QualifyingCondition is also open to be extended.

e ServiceLevelObjectives is open to be extended. We extend it to express the quantify
expression of the requirement on QoS metrics.

5.3. PSLA SYNTACTIC EXPRESSION 77

e BusinessValueList describes the importance of this GuaranteeTerm from many aspects.
BusinessValueList describes "Check Plan", "Priority" and "Business Values", including
"Penalty" and "Reward". It is extendable.

These informations can be helpful for PaaS provider to make a choice when the resources
are not enough to meet all GuaranteeTerms. For example, to be helpful when making
choices among GuaranteeTerms. "Check Plan" is expressed in Penalty and Reward in
BusinessValueList.

We can see that WS-Agreement skeleton provides the commonly used clauses of web ser-
vice based agreement. We extend it to meet domain specific needs. In PSLA, we extend WS-
Agreement by considering the characteristic of PaaS level service and QoS mentioned before.
Metric is expressed in SeviceDescriptionTerm extension. Elasticity workload is expressed in
QualifyingCondition extension and ServiceLevelObjectives uses fuzzy value range to express
the uncertain boundary of QoS target.

Qualifying Condition

In WS-Agreement, "QualifyingCondition" is designed to be the place of expressing a precon-
dition under which a GuaranteeTerm should be taken into effect. "QualifyingCondition" is
extendable.

In PSLA, "QualifyingCondition" is extended to describe under which conditions the obli-
gate part of this GuaranteeTerm should ensure the QoS requirements. In another word, this
GuaranteeTerm should be taken into consideration during runtime by the obligate part.

<element name="QualifyingConditionExtension" type="ocw:
QualifyingConditionExtensionType"/>
<complexType name="QualifyingConditionExtensionType">
<sequence >
<element name="Periods" type="ocw:PeriodsType"/>
<element name="Workloads" type="ocw: WorkloadsType"/>
<element name="ScalabilityPoints" type="ocw: ScalabilityPointsType"/>
<element minOccurs="0" name="AffinityConstraints" type="ocw:
AffinityConstraintsType "/>
</sequence >
</complexType>

Listing 5.24. QualifyingCondition definition in PSLA.

As shown in listing 5.24, there are four kinds of QualifyingConditions. They are "Periods",
"Workloads", "ScalabilityPoints" and "AffinityConstraints".

1. wsag:QualifyingCondition
/ocw:QualifyingConditionExtension/ocw:Periods

<complexType name="PeriodsType">
<sequence >
<element name="Period" type="ocw:PeriodType" maxOccurs="
unbounded"/>
</sequence >
</complexType>
<complexType name="PeriodType">
<sequence >

CHAPTER 5. PSLA: SLA DESCRIPTION LANGUAGE FOR PAAS

<element name="Start" type="dateTime"/>
<element name="End" type="dateTime"/>
<element name="Interspace" type="ocw:InterspaceType"
minOccurs="0"/>
</sequence >
</complexType>
<complexType name="InterspaceType">
<sequence >
<element name="Timelnterval" type="duration"/>
<element name="Step" type="duration"/>
</sequence >
</complexType>

Listing 5.25. Periods definition in QualifyingCondition extension of PSLA.

"Periods" is composed of a set of period which is dedicate to describe a time period.
Each period is described by a start time point, and end time point and a time interval.
Each time interval is defined through two time duration. They are "Timelnterval" and
"Step". "Timelnterval" is the time duration of which the GuaranteeTerm should be effec-
tive. "Step" is the time duration between two "Timelnterval". "Step" presents the time
which the current GuaranteeTerm should be not taken into effects. Listing 5.26 is an ex-
ample of period defined according to PSLA. The period is from 01/01/2014 00:00:00 to
01/01/2015 00:00:00, everyday from 00:00:00 to 07:00:00. Value PT7H of Timelnterval
means from the start time, valid time will last for 7 hours. Value PT17H of Step means
there will always be a 17 hours time break between two Timelnterval.

<ocw:Periods>
<ocw:Period>
<ocw:Start>2014—01—-01T00:00:00</ocw:Start>
<ocw:End>2015—-01-01T00:00:00</ocw:End>
<ocw:InterSpace>
<ocw:Timelnterval>PT7H</ocw:Timelnterval>
<ocw:Step>PT17H</ocw:Step>
<ocw:InterSpace>
</ocw:Period>
</ocw:Periods>

Listing 5.26. One Period example of PSLA.

. wsag:QualifyingCondition
/ocw:QualifyingConditionExtension/ocw: Workloads

<complexType name="WorkloadsType">
<sequence >
<element name="Workload" type="ocw: WorkloadType" maxOccurs="
unbounded"/>
</sequence >
</complexType>

<complexType name="WorkloadType">
<sequence >
<element name="InputDataName" type="IDREF"/>
<element name="MetricName" type="IDREF"/>
<element name="LowerBound" type="positivelnteger"/>

5.3. PSLA SYNTACTIC EXPRESSION 79

<element name="UpperBound" type="positivelnteger"/>
<element name="Average" type="positivelnteger"/>
<element minOccurs="0" name="Variation" type="ocw: VariationType"/>
</sequence >
</complexType>

<complexType name="VariationType">
<sequence >
<element name="MetricName" type="IDREF"/>
<element name="Threshold" type="positivelnteger"/>
</sequence >
</complexType>

Listing 5.27. Workloads definition in QualifyingCondition of PSLA.

As described in listing 5.27, Workloads is composed of a set of workloads. Each workload
represents the composition of one kind of InputData which is defined in ServiceDescrip-
tionTerms extension. For each workload, the range of the workload, the average value
of the workload and the variation of the workload are defined. Workload is typically de-
scribed by the metric of Arrival Rate. For example, the lower-bounder of requests arrival
rate, upper-bounder of requests arrival rate, average requests arrival rate and variation
condition of the requests arrival rate. The variation of the workload is defined by giving
a positive integer as the threshold of the variation metric value. When the retrieved vari-
ation metric value is bigger than this threshold value, the current QualifyingCondition is
no longer satisfied.

Listing 5.28 gives an example of workloads in QualifyingCondition of PSLA. In this
example, workload is composed of two kinds of requests, Atomic_Request_A and
Atomic_Request_B Atomic_Request_A’s requests arrival rate is between 400 requests/s
and 900 requests/s. The average requests arrival rate of Atomic_Request_A should be
lower than 700 requests/s. The increasing of requests arrival rate should be lower than 10
requests/s for each hour. Atomic_Request_B is defined similarly.

<ocw:Workloads>
<ocw:Workload>
<ocw:InputDataName>Atomic_Request_A</ocw:InputDataName>
<ocw:MetricName>RequestsThroughput</ocw:MetricName>
<ocw:LowerBound>400</ocw:LowerBound>
<ocw:UpperBound>900</ocw:UpperBound>
<ocw:Average>700</ocw:Average>
<ocw:Variation>
<ocw:MetricName>Variation</ocw:MetricName>
<ocw:Threshold>10</ocw:Threshold>
</ocw:Variation>
</ocw:Workload>
<ocw:Workload>
<ocw:InputDataName>Atomic_Request_B</ocw:InputDataName>
<ocw:MetricName>RequestsThroughput</ocw:MetricName>
<ocw:LowerBound>100</ocw:LowerBound>
<ocw:UpperBound>500</ocw:UpperBound>
<ocw:Average>300</ocw:Average>
<ocw:Variation>
<ocw:MetricName>Variation</ocw:MetricName>
<ocw:Threshold>10</ocw:Threshold>

80

CHAPTER 5. PSLA: SLA DESCRIPTION LANGUAGE FOR PAAS

</ocw:Variation>
</ocw:Workload>
</ocw:Workloads>

Listing 5.28. One Workloads example of PSLA.

. wsag:QualifyingCondition

/ocw:QualifyingConditionExtension/ocw:ScalabilityPoints

<complexType name="ScalabilityPointsType">
<choice maxOccurs="unbounded">
<element name="ComputeScalabilityPoint
ComputeScalabilityPointType"/>
<element name="StorageScalabilityPoint
StorageScalabilityPointType "/>
</choice >
</complexType>

type="ocw:

type="ocw:

Listing 5.29. ScalabilityPoints definition in QualifyingCondition of PSLA.

"ScalabilityPoints" is the place to describe what scaling actions can be performed in order
to ensure this GuaranteeTerm. As described in listing 5.29, scaling actions can either
be performed on computing resources or storage resources. e.g. Bandwidth between
Compute component and DataNode is 100 M/s. Memory size of NameNode is 4G. Upper-
bound of memory usage of NameNode is 75 %.

(a) wsag:QualifyingCondition

/ocw:QualifyingConditionExtension/ocw:ScalabilityPoints
/ocw:ComputeScalabilityPoint

<complexType name="ComputeScalabilityPointType">

Listing

<sequence >
<element name="ResourceName" type="IDREF"/>
<element minOccurs="0" name="HorizontalScaling" type="
ocw: HorizontalScalingType "/>
<element minOccurs="0" name="ComputeVerticalScaling"
type="ocw: ComputeVerticalScalingType"/>
</sequence >
</complexType>

5.30. ComputeScalabilityPoint definition in ScalabilityPoints extension of PSLA.

<ocw:ComputeScalabilityPoint>
<ocw:ResourceName>Apache</ocw:ResourceName>
<ocw:HorizontalScaling>...</ocw:HorizontalScaling>
<ocw:ComputeVerticalScaling>...</ocw:ComputeVerticalScaling>
</ocw:ComputeScalabilityPoint>

Listing 5.31. ComputeScalabilityPoint example in PSLA.

According to ComputeScalabilityPoint definition listing 5.30, to define a "Com-
puteScalabilityPoint", the computing resources and allowed scaling actions, includ-
ing horizontal scaling and vertical scaling, can both be defined. For example, as
listing 5.31, both horizontal scaling and vertical scaling actions are defined and can
be performed on Apache server.

5.3. PSLA SYNTACTIC EXPRESSION 81

(b) wsag:QualifyingCondition

/ocw:QualifyingConditionExtension/ocw:ScalabilityPoints
/ocw:StorageScalabilityPoint

<complexType name="StorageScalabilityPointType">
<sequence >
<element name="ResourceName" type="IDREF"/>
<element minOccurs="0" name="HorizontalScaling" type="
ocw: HorizontalScalingType "/>
<element minOccurs="0" name="StorageVerticalScaling"
type="ocw: StorageVerticalScalingType"/>
</sequence >
</complexType>

Listing 5.32. StorageScalabilityPoint definition in ScalabilityPoints in QualifyingCondition

(©

extension of PSLA.

<ocw:StorageScalabilityPoint>
<ocw:ResourceName>appDiskID2</ocw:ResourceName>
<ocw:HorizontalScaling>...</ocw:HorizontalScaling>
<ocw:StorageVerticalScaling>...</ocw:StorageVerticalScaling>
</ocw:StorageScalabilityPoint>

Listing 5.33. StorageScalabilityPoint example of PSLA.

As defined in listing 5.32, similar to the definition of "ComputeScalabilityPoint",
the storage resources and corresponding scaling actions can be defined. As in the
example of listing 5.33, there are two kinds of scaling actions, horizontal scaling
and vertical scaling, can be performed on storage of appDiskID2.

wsag:QualifyingCondition
/ocw:QualifyingConditionExtension/ocw:ScalabilityPoints
/ocw:ComputeScalabilityPointlocw:StorageScalabilityPoint
/ocw:HorizontalScaling

Horizontal scaling for both computing resources and storage resources are defined
in the same way. The definition of HorizontalScaling is given in listing 5.34.

<complexType name="HorizontalScalingType">
<sequence >
<element name="LowerBound" type="positivelnteger"/>
<element name="UpperBound" type="ocw:UpperBoundType"/>
</sequence >
</complexType>
<simpleType name="UpperBoundType">
<union memberTypes="positivelnteger">
<simpleType>
<restriction base="string">
<enumeration value="unbounded"/>
</restriction >
</simpleType>
</union>
</simpleType >

Listing 5.34. HorizontalScaling definition in ScalabilityPoints extension of PSLA.

CHAPTER 5. PSLA: SLA DESCRIPTION LANGUAGE FOR PAAS

In listing 5.34, one positive integer is given as the lower bound of resource dupli-
cation. Another positive integer or "unbounded" is given as the upper-bounder of
resource duplication.

<ocw:HorizontalScaling>
<ocw:LowerBound>I1</ocw:LowerBound>
<ocw:UpperBound>unbounded</ocw:UpperBound>

</ocw:HorizontalScaling>

Listing 5.35. HorizontalScaling example in PSLA.

(d) wsag:QualifyingCondition
/ocw:QualifyingConditionExtension/ocw:ScalabilityPoints
/ocw:ComputeScalabilityPoint/ocw:Compute VerticalScaling

<complexType name="ComputeVerticalScalingType">
<sequence >
<element maxOccurs="unbounded" name="Set" type="ocw:
ComputeSetType"/>
</sequence >
</complexType>
<complexType name="ComputeSetType">
<sequence >
<element name="CPU" type="ocw:LowerBoundType"/>
<element name="RAM" type="ocw:LowerBoundType"/>
<element maxOccurs="unbounded" minOccurs="0" name="
NetworkThroughput" type="ocw:NetworkThroughputType"/>
</sequence >
</complexType>
<complexType name="LowerBoundType">
<sequence >
<element name="MetricName" type="IDREF"/>
<element name="LowerBound" type="positivelnteger"/>
</sequence >
</complexType>
<complexType name="NetworkThroughputType">
<sequence >
<element name="MetricName" type="IDREF"/>
<element name="UploadSpeed" type="positivelnteger"/>
<element name="DownloadSpeed" type="positivelnteger"/>
<element name="ResourceName" type="IDREF"/>
</sequence >
</complexType>

Listing 5.36. ComputeVerticalScaling definition in ScalabilityPoints extension of PSLA.

Vertical scaling for computing resources and storage resources are defined differ-
ently. As defined in listing 5.36, Compute VerticalScaling is composed of several
sets of VM configuration descriptions. In each VM configuration, the requirements
of CPU, memory and network bandwidth should be described.

The CPU or RAM requirements are defined according to LowerBoundType which
has a Metric and a positive integer to describe the suitable value of the metric. Both
the "UploadSpeed" and "DownloadSpeed" of the network are defined as the network
configuration requirements for vertical scaling of computing resources.

5.3. PSLA SYNTACTIC EXPRESSION 83

To unambiguously express network throughput requirements, related resources should
be defined in ServiceDescriptionTerm, and be referenced.

<ocw:ComputeVerticalScaling>
<ocw:Set>
<ocw:CPU>
<ocw:MetricName>Instructions</ocw:MetricName>
<ocw:LowerBound>20</ocw:LowerBound>
</ocw:CPU>
<ocw:RAM>
<ocw:MetricName>Memory</ocw:MetricName>
<ocw:LowerBound>1024</ocw:LowerBound>
</ocw:RAM>
<ocw:NetworkThroughput>
<ocw:MetricName>NetworkThroughput</ocw:MetricName>
<ocw:UploadSpeed>10</ocw:UploadSpeed>
<ocw:DownloadSpeed>10</ocw:DownloadSpeed>
<ocw:ResourceName>appDiskld2</ocw:ResourceName>
</ocw:NetworkThroughput>
</ocw:Set>
<ocw:Set>
<ocw:CPU>
<ocw:MetricName>Instructions</ocw:MetricName>
<ocw:LowerBound>40</ocw:LowerBound>
</ocw:CPU>
<ocw:RAM>
<ocw:MetricName>Memory</ocw:MetricName>
<ocw:LowerBound>2048</ocw:LowerBound>
</ocw:RAM>
<ocw:NetworkThroughput>
<ocw:MetricName>NetworkThroughput</ocw:MetricName>
<ocw:UploadSpeed>10</ocw:UploadSpeed>
<ocw:DownloadSpeed>10</ocw:DownloadSpeed>
<ocw:ResourceName>appDiskld2</ocw:ResourceName>
</ocw:NetworkThroughput>
</ocw:Set>
</ocw:ComputeVerticalScaling>

Listing 5.37. Compute VerticalScaling example in PSLA.

(e) wsag:QualifyingCondition
/ocw:QualifyingConditionExtension/ocw:ScalabilityPoints
/ocw:StorageScalabilityPoint/ocw:Storage VerticalScaling

<complexType name="StorageVerticalScalingType">
<sequence >
<element maxOccurs="unbounded" name="Set" type="ocw:
StorageSetType"/>
</sequence >
</complexType>
<complexType name="StorageSetType">
<sequence >
<element name="Size" type="ocw:LowerBoundType"/>
<element name="DiskThroughput" type="ocw:
DiskThroughputType"/>
</sequence >

CHAPTER 5. PSLA: SLA DESCRIPTION LANGUAGE FOR PAAS

</complexType>
<complexType name="DiskThroughputType">
<sequence >
<element name="MetricName" type="IDREF"/>
<element name="ReadSpeed" type="positivelnteger"/>
<element name="WriteSpeed" type="positivelnteger"/>
</sequence >
</complexType>

Listing 5.38. StorageVerticalScaling definition in ScalabilityPoints extension of PSLA.

As defined in listing 5.38, StorageVerticalScaling is composed of several sets of
storage configuration descriptions. In each Storage configuration description, the
storage size and the disk throughput requirements should be given. Disk throughput
includes both read speed and write speed of the storage. The storage size require-
ment is defined according to LowerBoundType which has a metric and a positive in-
teger to describe the suitable value of the metric. Both the "ReadSpeed" and "Write-
Speed" of the Disk throughput are defined for storage vertical scaling. Listing 5.39
gives an example of expressing the vertical scaling can be performed.

<ocw:StorageVerticalScaling>
<ocw:Set>
<ocw:Size>
<ocw:MetricName>Storage</ocw:MetricName>
<ocw:LowerBound>1</ocw:LowerBound>
</ocw:Size>
<ocw:DiskThroughput>
<ocw:MetricName>NetworkThroughput</ocw:MetricName>
<ocw:ReadSpeed>6</ocw:ReadSpeed>
<ocw:WriteSpeed>6</ocw:WriteSpeed>
</ocw:DiskThroughput>
</ocw:Set>
<ocw:Set>
<ocw:Size>
<ocw:MetricName>Storage</ocw:MetricName>
<ocw:LowerBound>2</ocw:LowerBound>
</ocw:Size>
<ocw:DiskThroughput>
<ocw:MetricName>NetworkThroughput</ocw:MetricName>
<ocw:ReadSpeed>6</ocw:ReadSpeed>
<ocw:WriteSpeed>6</ocw:WriteSpeed>
</ocw:DiskThroughput>
</ocw:Set>
</ocw:StorageVerticalScaling>

Listing 5.39. Storage Vertical Scaling example in PSLA.

4. wsag:QualifyingCondition
/ocw:QualifyingConditionExtension/ocw:AffinityConstraints

<complexType name="AffinityConstraintsType">
<sequence >
<element name="AffinityConstraint" type="ocw:
AffinityConstraintType" maxOccurs="unbounded"/>

5.3. PSLA SYNTACTIC EXPRESSION

85

</sequence >
</complexType>
<complexType name="AffinityConstraintType">

<sequence >

<element maxOccurs="unbounded" name="ResourceName" type="

<element maxOccurs="unbounded" name="Constraint" type="ocw

:ConstraintType"/>

</sequence >
</complexType>
<simpleType name="ConstraintType">

<restriction base="string">

<enumeration
<enumeration
<enumeration
<enumeration
<enumeration
<enumeration

value="Host
value="Host
value="Rack
value ="Rack
value="Data
value="Data

Affinity "/>
Anti—Affinity "/>
Affinity "/>
Anti—Affinity "/>

Center Affinity"/>
Center Anti—Affinity"/>

<enumeration value="Lonely"/>
</restriction >
</simpleType >

Listing 5.40. AffinityConstraints definition in QualifyingCondition extension of PSLA.

"AffinityConstraints" is the place to define the deployment location requirements. As
defined in listing 5.40, in one "AffinityConstraints", one or more location constraints can
be set on one ore more resources. In PSLA, 7 kinds on location constraints are provided.
They are "Host Affinity", "Host Anti-Affinity", "Rack Affinity", "Rack Anti-Affinity",
"Data Center Affinity" and "Data Center Anti-Affinity".

e "Host Affinity" means relevant resources should be deployed in the same host.

e "Host Anti-Affinity" means relevant resources should be deployed in the different
host.

e "Rack Affinity" means relevant resources should be deployed in the same rack.
e "Rack Anti-Affinity" means relevant resources should be deployed in different rack.

e "Data Center Affinity" means relevant resources should be deployed in the same
data center.

e "Data Center Anti-Affinity" means relevant resources should be deployed in differ-
ent data center.

<ocw:AffinityConstraints>
<ocw:AffinityConstraint>
<ocw:ResourceName>Apache</ocw:ResourceName>
<ocw:Constraint>Host Affinity</ocw:Constraint>
</ocw:AffinityConstraint>
<ocw:AffinityConstraint>
<ocw:ResourceName>Jonas</ocw:ResourceName>
<ocw:Constraint>Data Center Affinity</ocw:Constraint>
</ocw:AffinityConstraint>
<ocw:AffinityConstraint>
<ocw:ResourceName>Apache</ocw:ResourceName>

86 CHAPTER 5. PSLA: SLA DESCRIPTION LANGUAGE FOR PAAS

<ocw:ResourceName>Jonas</ocw:ResourceName>
<ocw:Constraint>Data Center Affinity</ocw:Constraint>
<ocw:Constraint>Host Anti—Affinity</ocw:Constraint>

</ocw:AffinityConstraint>

<ocw:AffinityConstraint>
<ocw:ResourceName>MySQL</ocw:ResourceName>
<ocw:Constraint>Lonely</ocw:Constraint>

</ocw:AffinityConstraint>

</ocw:AffinityConstraints>

Listing 5.41. AffinityConstraints example in PSLA.

QualifyingCondition is mainly used to express the condition that this GuaranteeTerm will
become effective under which condition. If we put all the QualifyingConditions in this Agree-
mentOffer together, it will be a panorama of the elasticity of workload 5.2.2. We extend Quali-
fyingCondition to describe "Valid Period" and "Valid Workload". "Valid Period" includes "Start
Time", "End Time" and "Time Interval". "Valid Workload" includes "Data Size", "Data Com-
position" and "Location".

Service Level Objectives

<element name="CustomServiceLevelExtension" type="ocw:
CustomServiceLevelExtensionType"/>
<complexType name="CustomServiceLevelExtensionType">
<group ref="ocw:ExpressionGroup"></group>
</complexType>
<group name="ExpressionGroup">
<choice >
<group ref="ocw:LogicExpressionGroup"/>
<group ref="ocw:ComparisonExpressionGroup"/>
</choice >
</group>

Listing 5.42. CustomServiceLevel extension definition in PSLA.

In WS-Agreement, "CustomServiceLevel" can be extended to express customised SLO. In
PSLA, we benifit from this extension mechanism to express SLO more precisely. As defined
in listing 5.42 in PSLA, the expression of SLO is based on logic expression and comparison
expression.

1. Logic Expression and Comparison Expression

<group name="LogicExpressionGroup">
<choice >
<element name="And" type="ocw:BinaryLogicOperatorType"/>
<element name="Or" type="ocw:BinaryLogicOperatorType"/>
<element name="Not" type="ocw: UnaryLogicOperatorType"/>
</choice >
</group>
<group name="ComparisonExpressionGroup">
<choice >
<element name="Greater" type="ocw:PredicateType"/>
<element name="Less" type="ocw:PredicateType"/>

. PSLA SYNTACTIC EXPRESSION 87

<element name="Equal" type="ocw:PredicateType"/>
<element name="GreaterOrEqual" type="ocw:PredicateType"/>
<element name="LessOrEqual" type="ocw:PredicateType"/>
</choice >
</group>
<complexType name="UnaryLogicOperatorType">
<group ref="ocw:ExpressionGroup"/>
</complexType>

<complexType name="BinaryLogicOperatorType">
<group maxOccurs="2" minOccurs="2" ref="ocw:ExpressionGroup"/>

</complexType>

Listing 5.43. LogicExpressionGroup and ComparisonExpressionGroup definition in PSLA.

Listing 5.43 gives the definitions of logic expression and comparison expression used
in SLO of PSLA. According to listing 5.43, three kinds of logical operators, including
"And", "Or" and "Not", are supported in "PSLA". Five kinds of comparison operators, in-
cluding "Greater", "Less", "Equal”, "GreaterOrEqual" and "LessOrEqual"”, are supported
in "PSLA".

<wsag:ServiceLevelObjective>
<CustomServiceLevel>
<ocw:CustomServiceLevelExtension>
<ocw:And>
<ocw:LessOrEqual>
<ocw:MetricName>ResponseTime</ocw:MetricName>
<ocw:Threshold>...</ocw:Threshold>
</ocw:LessOrEqual>
<ocw:GreaterOrEqual>
<ocw:MetricName>Availability</ocw:MetricName>
<ocw:Threshold>...</ocw:Threshold>
</ocw:GreaterOrEqual>
</ocw:And>
</ocw:CustomServiceLevelExtension>
</CustomServiceLevel>
</wsag:ServiceLevelObjective>

Listing 5.44. ServiceLevelObjective example of PSLA.

Listing 5.44 is an example of ServiceLevelObjective in PSLA. This SLO expresses the
requirement of ResponseTime should be lower than or equals to a given threshold and
Availability should be bigger than or equals to a specific threshold.

2. Fuzzy threshold expression

<complexType name="PredicateType">
<sequence >
<element name="MetricName" type="IDREF"/>
<element name="Threshold" type="ocw: ThresholdType"/>
</sequence >
</complexType>
<complexType name="ThresholdType">
<sequence >
<element name="Value" type="float"/>

88

CHAPTER 5. PSLA: SLA DESCRIPTION LANGUAGE FOR PAAS

<element name="Confidence" type="ocw:ConfidenceType" minOccurs
="0"/>
</sequence >
</complexType>
<complexType name="ConfidenceType">
<sequence>
<element name="Trust" type="ocw: Trust"/>
<element name="Fuzziness" type="ocw:Fuzziness"/>
</sequence >
</complexType>
<simpleType name="Trust">
<restriction base="float">
<maxInclusive value="1.00"/>
<minInclusive value="0.00"/>
</restriction >
</simpleType >
<simpleType name="Fuzziness">
<restriction base="float">
<maxInclusive value="1.00"/>
<minlInclusive value="0.00"/>
</restriction >
</simpleType >

Listing 5.45. PredictionType definition in PSLA.

"ComparisonExpression” is of "PredicateType". As defined in listing 5.45, besides the
comparison operator implied by the name of element, each comparison expression should
also contain the related metrics and corresponding threshold. The threshold is composed
of a float value and the confidence of this threshold value.

Confidence represents the stringency of the threshold value. The stringency is depicted
from two aspects. They are "Trust" and "Fuzziness".

"Trust" and "Fuzziness" are both float value between 0.00 and 1.00. "Trust" represents
how many percent of the value of comparison expression should be within the range
specified by threshold. "Fuzziness" represents how many percent of the deviation between
real metric value and threshold if the real metric value is not within the range specified
by threshold.

When "Trust" is 1.00 or "Fuzziness" is 0.00, it means no deviation is allowed which
means judging the SLO violation strictly according to comparison expression.

When "Trust" is 0.00, it means any metric value will be accepted and no SLO violation
will be raised.

However, when "Fuzziness" is 1.00, it means the acceptable metric value range is "Greater"
or "GreaterOrEqual” to O or "Less" or "LessOrEqual" to two times of threshold value.

<ocw:LessOrEqual>
<ocw:MetricName>ResponseTime</ocw:MetricName>
<ocw:Threshold>
<ocw:Value>1.0</ocw:Value>
<ocw:Confidence>
<ocw:Trust>0.9</ocw:Trust>
<ocw:Fuzziness>0.5</ocw:Fuzziness>
</ocw:Confidence>

5.4. CONCLUSION 89

</ocw:Threshold>
</ocw:LessOrEqual>

Listing 5.46. ComparisonExpression example of PSLA.

Listing 5.46 gives an example of ComparisonExpression in PSLA. In this example, at
least 90% of the ResponseTime should be lower or equals to 1.5.

Business Value List

<wsag:BusinessValueList>
<wsag:Importance>2</wsag:Importance>
<wsag:Penalty>
<wsag:Assessmentlnterval>
<wsag:Timelnterval>PTIH</wsag:Timelnterval>
</wsag:AssessmentInterval>
<wsag:ValueUnit>EURO</ wsag:ValueUnit>
<wsag:ValueExpression>2</wsag:ValueExpression>
</wsag:Penalty>
<wsag:Reward>
<wsag:AssessmentInterval>
<wsag:Timelnterval>PTIH</wsag:Timelnterval>
</wsag:AssessmentInterval>
<wsag:ValueUnit>EURO</wsag:ValueUnit>
<wsag:ValueExpression>3</wsag:ValueExpression>
</wsag:Reward>
</wsag:BusinessValueList>

Listing 5.47. Business Value List example in PSLA.

In WS-Agreement, BusinessValueList is defigned to be the place for expressing business
related terms. Listing 5.47 gives an example of BusinessValueList in PSLA. In this example, if
it is abide by OpenCloudware, 3 USD will be gained. If it is violated, 2 USD will be charged.
This term should be checked once per hour. The priority of this term is 2.

5.4 Conclusion

SLA, as a contract which specifies the service and QoS criterion, is indispensable for service
oriented business. In PaaS, the QoS of SaaS and elasticity of workload are cooperated by
PaaS provider. So it is necessary to consider the elasticity and SaaS QoS target characters in
PaaS level SLA. In this chapter, we propose PSLA. It is a generic PaaS level SLA structured
language based on WS-Agreement skeleton. PSLA is implemented in XML. PSLA is adopted
by OpenCloudware [ocw] project which aims at building a PaaS platform to manage application
running over multiple laaSs during lifecycle. The XML schema of PSLA is available. The XML
based PSLA example described in this chapter is transformed through our XSLT based tool and
displayed in "http://www.polytech.univ-savoie.fr/opencloudware/".

Chapter 6

Benchmarking Based SLA Feasibility
study

6.1 Introduction

Service Level Agreements (SLA) are contracts established between Software as a Service
(SaaS) providers and Platform as a Service (PaaS) providers. SLA is related to properties of the
services running in the platform. We propose a generic method to evaluate SaaS provider pro-
posed Quality of Service (QoS) targets, such as response time or maximal throughput, can be
guaranteed with constraints on workload, resources and cost or not. These "what-if" evaluations
are based on small scale benchmarking and ability of the application to be scaled.

SaaS providers rely on PaaS features to benefit from the " pay as you go" paradigm corre-
sponding to pay only " adapted" resources usage at runtime while satisfying a set of constraints
related to QoS, workload and cost. Elasticity is the property of the platform to meet all these re-
quirements at a given variation rate. SLA are used to describe the responsibilities of contracting
parties (SaaS provider and PaaS provider). Existing SLA in cloud industry is not customiz-
able, machine readable or formally constructed which limit the automated QoS management.
SLA management involves two stages: establishing a SLA before runtime, and fulfilling the
SLA at runtime. Establishing SLA is usually done through an automated negotiation process
which consists several turns of SLA feasibility study. It involves benchmarking and/or mod-
elling the system (application and runtime support) to define the levels of QoS accepted by the
SaaS "client" and offered by the PaaS provider and the constraints that both parties will fulfil.
Benchmarking is an approach of evaluating system performance before runtime. It is neces-
sary to derive an universal unified benchmark processes to collect information for automating
the SLA feasibility process and exploring runtime SLA oriented resource management strategy.
The limited knowledge about application behaviour, non-linearity and the willing of reducing
SLA evaluation cost makes this problem challenging. Creating SLA before runtime means
formally construct the SLA contract through SLA feasibility studies. A successful SLA man-
agement means the constructed SLA can meet the client’s original needs (initially proposed at
the beginning of the negotiation) at the most extent, and the SLA can be fulfilled during run-
time. SLA feasibility study evaluates whether the QoS target can be fulfilled with permitted
resources underling the qualified workload or not. SLA feasibility study will be repeatedly
applied during the whole negotiation process. Modelling arrival rate and resource demands
when satisfying QoS target are foundations of capacity evaluation. This modelling can either

92 CHAPTER 6. BENCHMARKING BASED SLA FEASIBILITY STUDY

be achieved through simulation modelling or analytic modelling. Since we want to design a
non intrusive method with respect to the application, our model will be based on results of
benchmarks running in the target PaaS context, using measures also available at runtime. In
this chapter, we propose an application independent, cost effective, benchmarking based, SLA
feasibility study method from the PaaS provider’s perspective.

In this chapter, our SLA feasibility study method is developed and formally described com-
pared to our previous publication [LPM15]. The rest of the chapter is as follows. The context
of SLA feasibility study will be introduced in section 6.2. The benchmarking based activities
described in section 6.3.1, 6.3.2, 6.3.3, 6.3.4 and 6.3.5, which devote to explore Maximum
Flavor Capability modeling will be introduced in section 6.3. Based on the Maximum Fla-
vor Capability model explored in section 6.3, the constraints described in section 6.2.1 can be
evaluated and the evaluation results will lead to reject or accept of the SLA contract. These con-
straints evaluation processes will be introduced in section 6.4. To make our benchmark based
SLA feasibility study method understandable, we will give an example in section 6.5. This
chapter will be concluded in section 6.6.

6.2 SLA feasibility study context

SLA feasibility study is based on the evaluations of elasticity constraints described in PSLA. In
this section, we discuss constraints clarified in PSLA terms, then we give the example.

In this section, the important concepts will be introduced and discussed. The goals and
challenges of PaaS level SLA feasibility study will be explained. What kind of problems are
involved in a SLA feasibility study will be explained in section 6.2.1. The evaluation of size of
flavor will be discussed in section 6.2.2. The stage dependent evaluation of size of flavor will be
discussed in section 6.2.2. The stage independent evaluation of size of flavor will be discussed
in section 6.2.2. Maximum Flavor Capability, which is the core concept of our SLA feasibility
study methods, will be explained and discussed in section 6.2.3.

6.2.1 Problem description

SLA is a contract between service provider and service consumer to formally describe the rights
and obligations between two contract parties to satisfy the SLA. SLA feasibility study aims at
evaluating one proposed SLA offer is acceptable or not. The evaluation will take all constraints
defined in SLA offer into consideration and check whether there are conflicts existing in the
proposed SLA offer.

The difficulties of SLA feasibility study is how we can do feasibility study with a low cost
to save both money and time. Thinking about that, the highest arrival rate of the workload can
be served with huge amount of resources. It is costly to do benchmark on such a large scale
VMs. So, we developed a feasibility study processes to reduce the cost as much as possible.

As described in previous section, in PSLA, the core part is GuaranteeTerm. In Guaran-
teeTerm, QualifyingCondition is the place where preconditions of QoS targets are defined. Ser-
viceLevelObjectives is the place to define QoS targets such as response time<3 s. BusinessVal-
ueList gives billing informations such as cost constraints. In the context of PSLA, the goal of
SLA feasibility study is to evaluate, with the resource constraints defined in QualifyingCondi-
tion and cost constraints defined in BusinessValueList, if the possible workload range defined

6.2. SLA FEASIBILITY STUDY CONTEXT 93

in QualifyingCondition can be served with QoS requirements defined in ServiceLevelObjective
or not.

Here we will list some formally described terms which can be found in SLA. These terms
will be used in rest of this chapter to precisely express our benchmark based SLA feasibility
study method and to make our method visual.

o STAGE = {s| sistheindex of stages of a VCAA}

— STAGE is the set of stages of a VCAA.
— s is the index of the stage of a VCAA.

e Number of instances defined in SLA

— MaxNol/: the maximum number of instances allowed according to SLA when
adopting flavor f on stage s. For the same stage, different flavors could have differ-
ent MaxNol!. For example, the maximum cost for maintain the QoS is given in
SLA and the bigger the flavor is, the more expensive the tariff is. When adopting
the bigger flavors, the available maximum number of instances is smaller than the
others.

— MinNol: the minimum number of instances allowed according to SLA for stage
s. We consider that the constraints of minimum number of instances is probably a
constraints from technical point of view. Therefore, we assume that the minimum
number of instances when adopting different flavors on one stage are the same.

e Available flavors defined in SLA

— FLAV ORy: the set of available flavors for stage s according to SLA.

— card(F LAV ORjy): the number of available flavors for stage s according to SLA.
- flavor’ = (memory!, cpul)i = 1,2, ..., card(FLAVOR,)

— flavor! is the ith available flavor for stage s.

— flavor® has a configuration of memory’ gigabyte of memory and cpu’, vCPU.

6.2.2 Size of flavor

One flavor has many different kinds of resources. We mainly consider CPU and memory re-
sources. Therefore, which flavor is bigger is a multiple criteria problems. In another word,
we can only say one flavor is bigger (or smaller) than another when both CPU and memory
resources are more (or smaller) than the other flavor. Otherwise, for example, CPU resources is
more than the other one, while memory resource is less than the other one, it is difficult to say
one flavor is more powerful than another and the performances of adopting different flavors are
depending on which resources are demanded more. Therefore, one flavor is bigger than another
is an stage dependent assertion. However, before enough benchmarks are performed, no stage
dependent comparision of flavors can be performed. Flavors can only be compared according
to their configurations. Therefore, we also introduce a stage independent flavor comparision
mechanism to support the process of exploring stage dependent FLAVOR comparision. It is
worth mentioning that the performance can be different because of hardware architecture. As
a simplification of the problem, we ignore these performance differences caused by hardware
architecture and compare flavors from the [aaS consumer’s perspective.

94 CHAPTER 6. BENCHMARKING BASED SLA FEASIBILITY STUDY

Stage dependent flavor comparision

The comparision of flavors should be performed separately for each stage. MFC, the upper-
bound of capable request arrival rate when adopting one instance of this flavor on current stage,
can be seen as a measurement of the flavor. We say that for a specific stage, one flavor is smaller
(or bigger) than another when its MFC is smaller(or bigger). MFC values are supposed to be
achieved through benchmarks. However, in order to save the cost of SLA feasibility study, only
limited amount of benchmarks could be performed and some of the MFCs should be deduced
from other MFCs achieved through benchmark. The deduction is performed according to the
configured amount of resources and the benchmarked MFC with saturated flavor instances. It
is necessary to get the benchmarked flavor saturated to achieve believable MFC deduction. It is
because that our deduction will take the minimum ratio of resources as the ratio of maximum
capable arrival rate. However, if the minimum ratio of resources is on the unsaturated resource,
it is not sufficient to say that the maximum capable arrival rate will be smaller. For example,
flavor, has 2 vCPU and 4 G memory. 80 % of vCPU but only 10% of memory are used during
benchmark which means probably 0.5 G memory is enough by taking 80% memory utilization
threshold into consideration. flavor, has 4 vCPU and 2 G memory. The minimum resource
ratio is 0.5 because of memory. However, 2G memory probably is enough for this flavor to get
the 4 vCPU saturated on this stage since only 0.5 G memory is enough for 2 vCPU. Therefore,
flavory, should be able to serve bigger request arrival rate and its MFC should be bigger too.
That is the reason of trying to select one suitable flavor for each stage which can get every
resources saturated during the benchmark process for MFC involved in step 3.

After found the suitable flavors during step 3, we can compare flavors and say one flavor
is bigger (or smaller) than another one. We will take the minimum ratio of resources between
one flavor and the benchmarked and saturated one. For one stage, the lower the minimum ratio
value is, the smaller the flavor is . If the minimum ratio value is smaller than 1, the flavor is
seen as a flavor smaller than the saturated and benchmarked one. If the minimum ratio value is
bigger than 1, the flavor is seen as a flavor bigger than the saturated and benchmarked one. The
flavor with the biggest minimum ratio value is seen as the biggest flavor for this stage.

Not every available flavor can be saturated on stages. Also the biggest flavor may not be able
to be saturated during the benchmark of step 5. The unsaturated benchmarked MFC of biggest
flavor will also be used to deduce the smaller flavors. However the ratio used during deduction
is still the one achieved by comparing with the saturated benchmarked MFC of flavors during
step 3. Therefore, the aforementioned situation is not a problem.

Stage independent flavor comparision

This section will introduce Stage independent comparision of flavors, which are the comparision
of flavors from a pure hardware point of view. We firstly list the important formally expressions
with will be used in this section.

e Ratio

-9 memor ¢
- Ratio’, = L
Cpug

- Ratio’, is the amount of memory resources allocated per CPU unit for flavor?.

e Distance

6.2. SLA FEASIBILITY STUDY CONTEXT 95

- Distance’(0,0) = \/memoryg2 + cpui®
* Distance’(0,0) is the configuration gap between flavor! and flavor with no
CPU and memory resources.

* When two flavors have the same Ratio’, values, Distance’ (0, 0) can be used to
indicate the size of flavors.

- Distancel(mem, cpu) = \/(memoryg — mem)® + (cpui — cpu)®

* Distance'(mem, cpu) is the configuration gap between flavori and flavor
with cpu vCPU and mem gigabyte of memory resources.

Stage independent comparision of flavor compares flavors from a pure hardware configura-
tion point of view. We introduce Distance’(mem,cpu) as a quantitative description of the
size differences between flavor’ and the flavor with a configuration of "mem" memory and
"cpu" CPU. The smaller Distance’(mem, cpu) is, the more similar flavor® and the flavor with
"mem" memory and "cpu" CPU are. When Distance’(mem, cpu) is 0, flavor® has the same
configuration as the flavor with "mem" memory and "cpu" CPU.

Distance’(0,0) is a quantitative description of the size differences between flavor’ and the
flavor with a configuration of 0 memory and 0 CPU. Distance’ (0, 0) can be seen as a descrip-
tion of the size of flavor’. We say flavor® is smaller than another when the Distance’ (0, 0)
is smaller.

Distance’,(0,0) is not sufficient to describe the ability of flavor:. For example, the flavor
with 10 vCPU and 1 G memory has the same Distance value as the flavor with 1 vCPU and
10 G memory but the ability of these two flavor may totally different. Therefore, Ratio’ is
introduced as a description of the resource configuration proportion of flavor?.

Ratio’ = %

When Ratio’ is higher than another one, we can say one flavor allocated more memory
resources for each unit of CPU. We can also say that two flavors have been allocated the same
amount of memory resources for each CPU unit when two flavors have the same ratio value. In
this case, the flavor with bigger Distance value is more powerful than another flavor.

Ratio’. can be used as the criteria of judging the allocated amount of memory per CPU unit
is high, medium or low. One flavor configuration can be chosen as the Balanced resource con-
figuration. "Balanced resource configuration" means that one allocated resource, for example.
CPU or memory, is not markedly more or less than another one. There is no standard configura-
tion which can be seen as balanced. The amount of CPU and amount of memory have different
units of measurement. Therefore, it is also difficult to specify one Ratio value to represent the
state of "balanced resource configuration" . We take the flavor with median value of this ratio
among all flavors available for one stage as the most balanced resource configuration for this
stage. When we calculate the median value, instead of taking several same ratio value into
consideration, one ratio value is counted only once to avoid that many unbalanced ratios lead to
biased median value.

Ratio’, together with Distance’ (0, 0) describe the resource allocation proportion and allo-
cated amount of resources for flavori. Ratio’ and Distance’(0,0) merge the configuration
description of different resources together. Ratio’ and Distance’(0,0) are used before the
stage dependent comparision of flavors are available. Ratio’ and Distance’(0,0) are not suf-
ficient to say that which flavor is more powerful and we can not quantitatively describe how

96 CHAPTER 6. BENCHMARKING BASED SLA FEASIBILITY STUDY

powerful one flavor is for this stage. After a series of benchmark, we can quantitatively de-
scribe the ability of one flavor for each stage by MFC.

6.2.3 Maximum Flavor Capability

This section will introduce Maximum Flavor Capability (MFC), which is the core of this bench-
mark based SLA feasibility study method. We firstly list the important formally expressions
with will be used in this section.

e MFC/: the upper-bound of capable request arrival rate for one instance of flavor f on
stage s. Capable arrival rate means that when this amount of requests are loaded on this
instance, the QoS target still can be ensured.

e MFC!(n): the upper-bound of capable request arrival rate for n instances of flavor f on
stage s.

e MFC!(n)=nx MFC{
e MFC!/ = MFC{(n)/n

Maximum Flavor Capability (M FC") is the upper-bound of capable arrival rate when adopting
one instance of a specific flavor i on a specific stage s. M F'C" describes the ability for serving
requests of flavor i used on stage s. M F'C' represents how many requests can be served when
using flavor i on stage s. The unit of M F'C" is requests/s. The number of requests is calculated
at the entrance of the application. The requests are not the one comes from one stage to another
but the one comes from external to the entrance of the whole application.

MEFC is not a concept which can be meaningful by only attached to one flavor, instead, stage
should also be specified. For example, when one flavor can be used on two different stages,
the capable arrival rate could be probably different since serving the same request may require
different kinds and amount of resources on two different stages.

MFC'! will change when the QoS requirements changes. For example, for the same kind
and amount of requests, the required amount of resources are different when the maximum
request response time promotes from 3 seconds to 3 minutes. Therefore, one M F'C? value
should be also related to a stable SLA duration. Since our discussion focus on solving the
problems during which the QoS requirements and workload compositions has no change, we
will not specify a stable SLA duration when we mention M FC".

When adopting n instances of a specific flavor i on a specific stage s, the upper-bound of
capable arrival rate will be n times of M FC". M FC" of each stages together with the number
of instances used on each stage can determine the upper-bound of capable arrival rate of the
whole system. The capable arrival rate of the system is depending on the bottle neck stage. In
another word, the upper-bound of capable arrival rate of the bottle neck stages can be seen as the
capable arrival rate upper-bound of the application running under that resource configuration.
Therefore, we take the smallest value of capable arrival rate upper-bound among stages as the
upper-bound of capable request arrival rate of the whole system.

6.3. BENCHMARK BASED MFC MODELING 97

6.3 Benchmark based MFC modeling

Our SLA feasibility study method is based on SelfBench 4.5.3. Here we list the formal expres-
sion of part of the informations of a VCAA configuration 4.2.

e Number of instances adopted in one configuration.

- NOI = {nois | sin STAGE, nois is the number of instance of stage s }
— NOI is the set of number of instances for each stage for a specific configuration.

— noi, 1s the number of instances used on stage s.
e Flavors adopted in one configuration.

- FLAVOR = {flavor, | sin STAGE, flavor,isthe flavor adopted by stage s }
— FLAVOR is the set of flavors adopted on each stage for a specific configuration.

— flavory is the flavor used on stage s.
e One configuration.

- Configuration(NOI, FLAVOR): the resource configuration of a VCAA. The
flavors used on each stage is specified in the set FFLAVOR. The number of in-
stances of flavors on each stages are specified in the set NOI.

e The configuration and results of one SelfBench.

— (ReUtil?", ReUtilT* ™™, ARmax) = Sel f Bench(Con figuration(NOI, FLAVOR))
— Run SelfBench on the VCAA with a configuration of Con figuration(NOI, FLAVOR).

— The SelfBench results include the CPU resource utilization ReUt:[P* on each stage
s, the memory resource utilization ReUt:[]*"°"™¥ on each stage s and the maximum
capable arrival rate ARmazx.

The goal of Step1 and Step2 is to find the biggest most tailored flavor for each stage. One flavor
is better tailored than another for one stage if the resource utilizations of CPU and memory are
more balanced than another flavor. We consider that the balanced level of CPU utilization and
memory utilization is determined on the configured amount of CPU and memory resources. We
take the ratio between CPU amount and memory amount to represent the resource proportion
of one flavor. For different stages, the most tailored flavor should be different. Stepl and
Step2 will do benchmark to determine the starting point of searching the potential best tailored
flavor based on used amount of CPU and memory. We try to set the starting point as big as
possible so that a bigger MFC of a bigger flavor can be achieved during benchmark. Therefore
more MFCs of smaller flavors can be achieved by linear estimation during the Step4. Step3
will positioning the best tailored flavors for serving step by step according to the used amount
of CPU and memory and the resource utilization upper-bound. The achievable arrival rates
will be approximately the same among all benchmarks during Step3, including the one with
best tailored flavor and minimum number of instances, since the positioning process will try to
guarantee the used amount of resources and resource utilization.

CHAPTER 6. BENCHMARKING BASED SLA FEASIBILITY STUDY

MFCi“ Unknown real MFC

Linear estimated MFC
O Benchmarked MFC

Under-estimation
of MFC

v
L

Figure 6.1. The situation that our SLA feasibility study method is applicable.

MFC” Unknown real MFC
s Linear estimated MFC
O Benchmarked MFC
Over-estimation
of MFC
> ki
0 s

Figure 6.2. The situation that our SLA feasibility study method is NOT applicable.

6.3. BENCHMARK BASED MFC MODELING 99

Step4 will calculate the MFC for flavors smaller than or equal to the best tailored flavors
during the last benchmark of Step3. This calculation is simply linear estimation with an ac-
ceptable level of under-estimation. The premise of this linear estimation, as demonstrated in
figure 6.1 is that with the increase of the size of flavors, while the size of the flavor is no bigger
than the benchmarked one, the increment of upper-bound of capable request arrival rate will
be slower. The diversity of applications makes this premise may not be suitable for any case.
On the contrary, for example, as demonstrated in figure 6.2, the growth rate of one application
may increase with the increasing of flavor size. In this case, linear estimation will lead to over
estimation of MFC which will further lead to under provisioning and SLA violation. Therefore,
our SLA feasibility study method is not applicative. Or else, the maximum capable arrival rate
may have no obvious relationship with flavor size. In this case, deducing MFC of one flavor
based on benchmarking result of another flavor is risky and suspect so that our SLA feasibility
study method is not adaptive. Our SLA feasibility study method do have constraints on the ap-
plication. In another word, before adopting our SLA feasibility study method, it is necessary to
have basic knowledge of the application to say that the growth rate of maximum capable arrival
rate of this application will decrease(but still positive) with the increasing of the size of flavor.

Step5 will perform one benchmark for each stage which existing flavors bigger than the one
used during the last benchmark of Step3. It is because that linear estimation can only be used
to deduce the MFC of smaller flavors according to benchmarked MFC of bigger flavor, not vice
versa. At least the biggest flavor’s MFC need be achieved through benchmark. During previous
4 steps, benchmarked MFCs are those flavors used during the last benchmark of Step3. In order
to limit the cost of SLA feasibility study process, only the minimum number of instances are
used since there is no reasonable evidences for configuring the number of instances for a target
request arrival rate during the benchmark and there is even no idea about what request arrival
rate can be set as a target to perform consciously benchmark. However, after previous four steps,
the over estimated MFC of biggest flavor is achievable and each stages can allocate resources
accordingly to set up an environment for benchmarking the biggest MFC for each stages. Then,
the benchmarked biggest MFC together with the benchmarked MFC during Step3 can later be
used to estimate MFCs of undiscovered flavors.

6.3.1 Stepl: find the smallest median configuration flavor

The goal of first two steps is to find one flavor, which has balanced resource configuration ratio
and as big as possible amount of resources, as the start point of searching the best tailored flavor
when serving a certain amount of request arrival rate for each stage.

In Step1, a benchmark is performed on the smallest flavors with Balanced resource config-
uration which means neither CPU nor memory is obviously more or less than another resource.
Since we only want to check the ratio of used resource for each stages, these flavors should be
as small as possible so that the benchmark process can be stopped quickly and the benchmark
cost of step1 could be smaller.

As demonstrated in figure 6.3, for each stage s, we firstly calculate the Ratz’ofg and
Distance’(0,0) value for every available flavors. Then, we compare different Ratio’ val-
ues and take the median value as MedianRatioV alue, for current stage s. There may ex-
ist several flavors with the Ratio value of MedianRatioV alues. Finally, for each stage, we
choose the flavor with the smallest Distance’(0,0) among the flavors with a Ratio value of
MedianRatioV alues. These flavors are chosen to be used with the minimum number of in-

100 CHAPTER 6. BENCHMARKING BASED SLA FEASIBILITY STUDY

G

s=1

s<card (STAGE)
Yes

Distance'(0,0)=+ memory'*+cpu’?

!

i=i+1

v

MedianRatioValue .= Median of Ratio. VALUE

!

flavor =a flavor with
(Ratio' = MedianRatioValue) A
(smallest Distance' (0,0))

'

noi, = MinNol

'

s=s+1

Y

(ReUHil?" , ReULI™ ™™ , ARmax)
=SelfBench (Configuration (NOI , FLAVOR))

Figure 6.3. Stepl: find the smallest median configuration flavor.

6.3. BENCHMARK BASED MFC MODELING 101

stances MinNol, for SelfBench. The SelfBench gives the CPU resource utilization ReUtilP*
on each stage, the memory resource utilization ReUt:[]""°"™¥ on each stage and the maximum
capable arrival rate ARmax. These benchmark results will be used later in step2 to determine
the start point of exploring the most tailored flavor for each stage.

6.3.2 Step2: find the biggest optimal configuration flavor

In the SelfBench results of Stepl, probably the resource utilization of each resources on each
stages are not in the same level. For example, for one stage, the CPU may already saturated
while the memory utilization is quite low. It indicates that the Ratio value of chosen flavor is
not optimized. In Step2, we will try to find the optimized Ratio for flavors.

As demonstrated in figure 6.4, for each stage s, we will check the CPU resource utiliza-
tion ReUti[P* and the memory resource utilization ReUtil]**™°"Y to calculate how many CPU
resources and memory resources are used on each stages by simply multiplying resource uti-
lization and corresponding resource amount together. The ratio of these used resources is seen
as the OptimizedRatio, for stage s. Then, the flavor which has biggest Distance’, among the
flavors with a Ratio’ value of Optimized Ratios will be adopted to perform next SelfBench.
The number of instances for each stage is still the Min/Nol,. This configuration is taken as the
start point of exploring the best tailored flavors during Step3. This exploring process is consist
of several SelfBenchs. The first SelfBench is performed at the end of Step2 and the results of
this SelfBench will be used as the input of Step3.

6.3.3 Step3: find the most tailored flavor

The most tailored flavor for each stage could be different because the resource requirements
for running each stage are not necessary the same. Benchmarks on the most tailored flavors
provides the possibility of fully using the capability of one flavor on the stage. The maximum
capable arrival rate can be reached when adopting instances of the most tailored flavors during
SelfBench processes.

Fully using all resources during the final SelfBench of step3 makes the linear estimation
of speculated MFCs more accurate. To be more precise, in our SLA feasibility study method,
under estimation(no over estimation) of MFCs exist when one MFC is achieved not through
benchmark. The higher resource utilizations are, the smaller the under estimation level is.

As demonstrated in figure 6.5, for each stage s, the needed amount of CPU or memory re-
sources will be calculated again if the resource utilization is less than 80%. The needed amount
of resources consider how many resource should be allocated when resource utilization is 80%.
It is computed by dividing the used amount of resources by 80%. The used amount of resource
is computed by multiplying resource utilization from SelfBench and allocated resources. For
each stage, these needed amount of resources cpu and mem are used as a optimized configu-
ration of flavor. This optimized flavor probably are not existing according to SLA. Therefore,
we will use the flavor with the smallest Distance’(mem, cpu) value among the flavors closer
to the flavor with no CPU and memory than current one.

If one stage finds a new flavor, one more SelfBench will be performed. The SelfBench
results will be calculated as mentioned above and the whole process will circulate until no new
configuration is derived. The last SelfBench results will be used to calculate and speculate

102 CHAPTER 6. BENCHMARKING BASED SLA FEASIBILITY STUDY

s<card (STAGE)

OptimizedRatio

memory

_ memory X ReUltil

"~ cpu, X ReUtil™

ReUtIl""™™
ReUtil™

= MedianRatioValue ;X

v

flavor ;=a flavor with
(Ratio' =~ OptimizedRatio,) A
(biggest Distance'(0,0))

'

noi,= MinNol

'

s=s+1

v

(ReUHtl™", ReULI™ ™™ , ARmax)
= SelfBench (Configuration (NOI , FLAVOR))

Figure 6.4. Step2: find the biggest optimal configuration flavor.

6.3. BENCHMARK BASED MFC MODELING 103

A

s<card (STAGE)

No

ReUtil">0.8

Yes

_ ReUtil?xcpu
P08

-t
%

Y

ReUHil" " >0.8

es

ReUHl™"™ xmemory,
mem=—————"
0.8

/

existing flavor=a flavor with
(Distance’(0,0)< Distance™" (0,0)) A

istance' mem ,cpu)<e
Distance, P

Yes
Y

| flavor ;= flavor

current

flavor ;= flavor

Y
bef =theindex of flavor

- noi,= MinNol —>| s=s+1 l—

Yes

Configuration(NOI , FLAVOR)#
previous Configuration(NOI , FLAVOR)

Y
(ReUtiI?" , ReUL™™™™” , ARmax)
=SelfBench(Configuration(NOI , FLAVOR))

s<card (STAGE)

No
Yes

flavorONE = flavor

s=s+1

END

Figure 6.5. Step3: find the most tailored flavor.

104 CHAPTER 6. BENCHMARKING BASED SLA FEASIBILITY STUDY

M FC'’s in step4 and step5. The flavors used in the last SelfBench is recorded in flavorON E
and later used in step3.

6.3.4 Step4: calculate MFCs of flavors no bigger than most tailored flavor

In step4, the MFC of flavors used in the last SelfBench of step3 will be calculated. One flavor
on each stage achieve its MFC value. This MFC value and its flavor resource configuration are
used to speculate the MFC of some of the other flavors.

As demonstrated in figure 6.6, for each stage s, its available flavors allocated resources
are compared with the resource configuration of the last benchmarked flavor. For one flavor
flavor®, the minimum ratio of these resources is marked as k’. k' represents that flavor’
is how many times more powerful than the last benchmarked flavor on one stage. k' can be
smaller than, equal to or be bigger than 1. When k! equals to 1, it means flavor? is as powerful
as the last benchmarked flavor but not necessary has the same configuration of resources. When
k' is smaller than 1, it means that flavor! is less powerful than the last benchmarked flavor.
Since it is reasonable to assume that the MFC of a flavor with 0 vCPU and O gigabyte of
memory is 0, the less powerful flavors” MFC can be linearly estimated according to figure 6.1.
The linear estimation is according to MFC! = (MFC,) = k. When k! is bigger than 1,
it means that flavor’ is more powerful than the last benchmarked flavor. However, linear
estimation based on M F'C" = (M FC,) * k' will lead to over estimation of MFC which is not
acceptable for our SLA feasibility study. For flavor’ with k'’ bigger than 1, more SelfBenchs
are needed. The SelfBench processes will be performed in stepS. As described in section 6.2.2,
the linear extrapolation of MFC should be based on the benchmark result on saturated resources.
However, it is possible that the last SelfBench in Step3 still can’t get every flavor on every stage
saturated. Therefore, the linear estimation based on the benchmark result on this unsaturated
stage, will be under estimated too. To avoid these under estimation, we can perform more
SelfBenchs on the configurations with more instances on saturated stages. However, we still
take the unsaturated benchmark result and accept the under estimation of MFC to reduce the
cost of SLA feasibility study. These under estimation of MFC can be improved during runtime
control as described in chapter runtime control 7.

6.3.5 StepS5: calculate MFCs of flavors bigger than most tailored flavor

For the more powerful flavor?, linear estimation based on M FC! = (MFC,) * k! will lead
to over estimation of M FC?. Over estimation of M FC" is not acceptable, but it can be a
reference for establishing the benchmark for bigger M FC". In order to achieve all the bigger
MFC values through minimum amount of SelfBenchs in step3, the biggest flavorf™e® which
has the biggest k; value, will be benchmarked. Therefore, rest of the flavors can speculate their
M FC' linearly.

As demonstrated in figure 6.7, for each stage s, if there is existing flavor! with k' bigger
than 1, one more SelfBench is needed for this stage s. This SelfBench will be performed to
fully use the ability of the biggest flavor on this stage. The resource configuration will be
using the minimum number of instances of the biggest flavor on current stage s, while other
stages will use the flavor used during the last SelfBench of step3. The number of instances for
other stages will be enough for serving the maximum requests arrival rate of the configuration
on stage s. This maximum requests arrival rate is unknown yet, but the upper-bound of this

6.3. BENCHMARK BASED MFC MODELING 105

STEP4
START
s=1

s<card (STAGE)
Yes

memory,

cpu,

J

ki=min{ ,
cpu,’ memory

<>

Yes

MFC'=k'* MFC,

Figure 6.6. Step4: calculate MFCs of flavors no bigger than most tailored flavor.

106 CHAPTER 6. BENCHMARKING BASED SLA FEASIBILITY STUDY

s<card (STAGE)

e 101
K =max (k|

| Kmax =the index of flavor with k"

k>1
No
Yes
OverMFC! =k * MFC
Y
OverARmax ;= OverMFC" x MinNol |
No

- Kmax
|ﬂavorﬁﬂavor$ |

Navor ;= flavorONE ; |

j=j+1 (ReUtil™, ReULI™™"" , ARmax ™) |
=SelfBench(Configuration (NOI , FLAVOR))

MFCKWMI‘(= ARmaX;"‘l\/
* MinNol

<
Yes
@ No

MFC?—MFC, MFC{""~MFC,

k=1 k-1

A 4

m=m+1

=

s=s+1 |t

Figure 6.7. Step5: calculate MFCs of flavors bigger than most tailored flavor.

6.4. SLA CONSTRAINTS EVALUATION 107

value is known by over estimation based on Over ARmax, = kE™ x MFC, * MinNol,.
Therefore the number of instances of other stage j will be Over ARmax /M FC;. According
to this SelfBench results, the rest of MFCs can be calculated and deduced. The M F C’sKm‘l‘” 18
derived through this SelfBench. The other flavors which have £!" bigger than 1 but smaller than
kEmaz will be linearly estimated according to M FC! = ((MFCE™ — MFC,)/(kXmaz —
1)) * (k™ — 1) + M FC;. Up to now, all M FC" are derived. These M FC? will be later used in
step6 to evaluate the resource constraints and cost constraints are reasonable or not.

6.4 SLA constraints evaluation

The goal of SLA feasibility study is to evaluate whether there are conflicts of constraints in the
SLA.

We evaluate these constraints based on the M FC's which are benchmarked and derived
through aforementioned process. The evaluation of the limited amount of instances of permitted
flavors will be introduced in Resource constraints evaluation. The evaluation of the budget will
be introduced later in Cost constraints evaluation. QoS targets are satisfied during the SLA
feasibility study process since QoS targets are taken as reference during the whole benchmark
process. Therefore, QoS targets are not evaluated in speciality.

In this section, resource constraints evaluation will be introduced in section 6.4.1. Cost
constraints evaluation will be introduced in section 6.4.2.

6.4.1 Resource constraints evaluation

Resource constraints evaluation checks that the target workload can be served or not by regard-
ing to the QoS target with the limited amount of instances of permitted flavors. The maximum
capable workload is depending on the maximum capable request arrival rate according to the
resource constraints on the finest bottleneck stage.

As demonstrated in figure 6.8, for each stages, the capable request arrival rate when adopt-
ing each flavors are calculated by M FC{(MaxNol!) = MFC? x* MaxNol’ and the biggest
one are recorded as the maximum capable request arrival rate MaxM FCy(n) for this stage
s. The smallest M axzM FC,(n) value among stages is taken as the maximum capable request
arrival rate SLAResourceARmaz of the whole application according to the resources con-
straints defined in SLA. SLAW orkload ARmaz is the maximum request arrival rate defined in
the workload constraints of SLA. With the resource constraints defined in SLA, the maximum
capable request arrival rate is at most SLAResourceARmax. If SLAResourceARmax <
SLAW orkload ARmaz, it means that the target upper-bound of request arrival rate is too
high for the permitted flavors and available amount of instances. The SLA proposal should
be rejected because the permitted resource is not enough for serving the target workload. If
SLAResourceARmax > SLAW orkloadARmax, it means that the target upper-bound of
request arrival rate can be served with the permitted flavors and available amount of instances.
The SLA proposal passes the resource constraints evaluation.

6.4.2 Cost constraints evaluation

Cost constraints evaluation checks that the target workload can be served within the budget
or not. To be more precise, the cost of serving the maximum request arrival rate defined in

108 CHAPTER 6. BENCHMARKING BASED SLA FEASIBILITY STUDY

Resource

evaluation
START

\
SLAResourceARmax =

SLAResourceARmax> MaxMFC (n

No

|SLAResourceARmax =MaxMFC (n)

A

s=s+1

SLAResourceARmax<SLAWorkloadARma

Yes SLAresource
constraints accepted !

SLA rejected ! More resources areneeded !

END

Figure 6.8. Resource constraints evaluation based on M FC'.

6.4. SLA CONSTRAINTS EVALUATION 109

MinCost ;=

i<card(FLAVOR,)

No

UpperWorkloadNol' = SLAWorkloadARmax| MFC'.

Y
| Cost'.= flavor',. cost*UpperWorkloadNol ; |

SLAUpperWIMinCost =SLAUpperWIMinCost + MinCost

v

SLAUpperWIMinCost>SLACost

SLA cost
constraints accepted !

I SLArejected ! More budget are needed ! I

Figure 6.9. Cost constraints evaluation based on M F'C".

110 CHAPTER 6. BENCHMARKING BASED SLA FEASIBILITY STUDY

workload constraints will be calculated and compared with the permitted cost for maintain-
ing the QoS. As demonstrated in figure 6.9, for each stage s, the need amount of instances
UpperWorkloadNol! for serving the maximum request arrival rate SLAW orkload ARmax
are calculated by dividing M F'C? for adopting each permitted flavors. If the number of in-
stances UpperW orkload N ol are available according to resource constraints, UpperW orkload Nol:
together with the cost of this flavor flavort.cost give the cost Coost’ for serving the maximum
request arrival rate with relevent flavor on this stage. The minimum Cost’, will be taken as the
minimum cost MinC'ost, for serving the maximum request arrival rate SLAW orkload ARmax
on stage s. The minimum cost MinCost for each stages are sumed up as the minimum cost
SLAUpperWIMinCost of the whole application for serving the maximum request arrival rate
SLAW orkloadARmaz. If this whole cost SLAUpperWIMinCost is higher than the cost
upper-bound SLACost defined in SLA, this SLA proposal should be rejected because of the
cost constraint evaluation.Otherwise, the cost constraints evaluation is passed.

6.5 Scenario

To make our benchmark based SLA feasibility study method understandable, we will give an ex-
ample. The PSLA based SLA example will be described in section 6.5.1. The Benchmark based
MFC modelling example will be given and explained in section 6.5.2. The SLA evaluations ex-
ample based on MFC derived in section 6.5.2 will be given and explained in section 6.5.3.

6.5.1 PSLA based SLA example

Besides the QoS target, such as response time < 3s, there are many different constraints defined
in one SLA offer, including resource constraints, workload constraints, QoS constraints and
cost constraints. A PSLA based SLA example will be described in this section so that we can
visually know what kind of problem we are facing. The QoS target example will be given in
section 6.5.1. The workload constraints example will be given in section 6.5.1. The resource
constraints example will be given in section 6.5.1. The cost constraints example will be given
in section 6.5.1.

QoS target

QoS target quantifies the acceptable QoS metric "Value Range", QoS target is expressed in
core part of QoS Criterion, "Service Level Objective(SLO)", by quantifying the acceptable QoS
metric "Value Range". e.g. Response time < 13 seconds.

Workload constraints

Workload constraints define the capable request arrival rate with allowed resources and bud-
get. Workload constraints is expressed in "QualifyingCondition" of "GuaranteeTerm", includ-
ing "Data Size", "Data Composition", e.g. it is composed of only "atomicrequestA" with a
maximum arrival rate of 600 requests/s. However, workload composed of several different
kinds of requests bring in difficulties of calibration through benchmarks. In order to simplify
the problem for the first step, we assume that the workload is composed of the same kind of
requests which require the same kind and amount of resources.

6.5. SCENARIO 111

FLAVOR, f4 f5 f6

cpu; 6 4 2
memory: 3 2 1
cost 3 2 1

Table 6.1. Description of available flavors for Stage; .

FLAVOR, fl 2 f3 f4

cpub 12 6 3 6
memorys 3 2 1 3
cost 6 4 2 3

Table 6.2. Description of available flavors for Stages.

Resource constraints

Resource constraints are defined in the "QualifyingCondition" of a "GuaranteeTerm". Resource
constraints have the information of which flavors can be used on each stages and the range of
acceptable number of instances when adopting one specific flavor. Resource constraints indicate
the kinds of allowed scaling actions and its limits. Scaling actions for virtualized application are
at the virtual machine level. Two kinds of scaling, "horizontal scaling up/down" and "vertical
scaling up/down", can be applied for resource allocation at runtime.

As demonstrated in table 6.1, 6.2 and 6.3, flavor f4, 5 and f6 can be used on Stage;, flavor
f1, f2, 3 and f4 can be used on Stage, and flavor f1, 12, {3, {4, {5, {6, {7, {8 and f9 can be used
on Stages. The memory and CPU configuration of each flavors are listed. The price of using
one instance of each flavor is also given. The measurement units for cpu’, memory’ and cost
are respectively vCPU, gigabyte and Euro/s. For example, flavor f4 has 6 vCPU, 3G of memory
and using one instance of flavor f4 will be charged 3 Euro per second.

We indicate the minimum (in table 6.5) and maximum (in table 6.4) number of instances
(MaxNoI! and MinNol!) for flavors and stages which can be used for scaling actions. Both
MazxNol! and MinNol! are constraints of available resources. MaxNol! could be a con-
straints depending on the available instances in the resource pool. It can be the case that the
available amount of instances of different flavors are different. Therefore, Maxz N olsi can be
different for different flavors on different stages. For example, as demonstrated in table 6.4,
Stage; could use at most 2 instances of flavor f4, Stages could use at most 4 instances of flavor
fl and Stages could use at most 2 instances of flavor f1.

It seems that the minimum number of instances when adopting one flavor on a stage is not a
necessary information since a too low used amount of resources is not a problem to be worried.
However, MinNol could be set for technical or functional reasons. Therefore, we specify
the minimum number of instance Min/Nol; for each stage. For example, as demonstrated in

FLAVOR; fl f2 f3 f4 f5 f6 f7 {8 19

cpul 126 3 6 4 2 5 3 1
memorys 32 1 3 2 1 10 6 1
cost 6 4 2 3 2 1 5 3 1

Table 6.3. Description of available flavors for Stages.

112 CHAPTER 6. BENCHMARKING BASED SLA FEASIBILITY STUDY

MaxNolI! f1 2 3 f4 5 f6 {7 f8 {9
Stage, 2 3 4

Stages 4 6 8 5

Stages 2 3 4 2 3 4 2 3 4

Table 6.4. Resource constraints in SLA: maximum number of instances MazNol?.

Stage MinNol,

Stage; 1
Stages 2
Stages 1

Table 6.5. Resource constraints in SLA: minimum number of instances MinNol.

table 6.5, for any flavors, Stage; should have at least 1 instance, Stage, should have at least 2
instances and Stages should have at least 1 instance.

Cost constraints

Cost constraints is defined either in BusinessValueList or as a QoS target in Service Level
Objective. Cost constraints restrict the acceptable cost for maintaining the QoS. Cost constraints
can also be transformed into permitted resources provided with pricing model which is beyond
the scope of this thesis. Cost constraints tell how much money can be spent per time unit, e.g.
cost < 20 Eurof/s.

6.5.2 Benchmark based MFC modelling

In Stepl, as demonstrated in figure 6.3, a series of calculation will be performed. Firstly,
Ratiotand Distance’, for each flavors and stages will be calculated according to Ratio!, =

% and Distance’(0,0) = \/ memoryi® 4+ cpui®. In our scenario, the Ratio’and Distance’
calculation results for Stagey, Stages and Stages are listed respectively in table 6.6, table 6.7
and table 6.8.

As demonstrated in figure 6.3, based on the calculated Ratio’ and Distance’(0,0) listed
in table 6.6, 6.7 and 6.8, the smallest flavor(flavor has smallest Distance’ (0, 0) value) among
median values of Ratio’, is adopted for each Stage,. In this scenario, the median ratio value for
Stage;, Stage, and Stages are 1/2, 1/3 and 1/2. The smallest flavors with these median ratio
value for Stage,, Stage, and Stages are f6, f3 and f6. The amount of instances for Stage;,
Stages and Stages are the minimum number of instances defined in SLA, which are 1 instance,
2 instances and 1 instance, as demonstrated in table 6.5. The benchmark results is demonstrated
in table 6.9.

FLAVOR, f4 5 f6
Ratio, 12 172 12
Distance}(0,0) 6.7 4.5 22

Table 6.6. Ratio} and Distance! calculated in Stepl for Stage;.

6.5. SCENARIO 113

FLAVOR, fl 2 f3 f4
Ratio /4 13 13 12
Distance’(0,0) 124 63 32 6.7

Table 6.7. Ratiol, and Distancel calculated in Stepl for Stages.

FLAVOR; fl 2 f3 4 f5 16 f7 8 9
Ratiok /4 13 13 12 12 12 2 2 1
Distancey(0,0) 124 63 32 67 45 22 112 67 14

Table 6.8. Ratio} and Distance} calculated in Stepl for Stages.

According to the algorithm of step2, which is demonstrated in figure 6.4, the memory and
CPU resource utilization (ReUtil**"*"™Y and ReUtil"") for each stage Stage, together with the
allocated amount of memory memory, and CPU cpu,, the used amount of resources U sed ReP"
and UsedRe'**™°™ can be calculated. An optimized resource ratio value OptimizedRatios is
derived from the used amount of resources U sed ReSP" and U sed Re**°™Y. This Optimized Ratio,
will be used as the guideline for choosing the flavors for next SelfBench. The flavor with biggest
Distance}(0,0) will be chosen and a bigger flavor’ MFC will be get through benchmark.

Taking Stage, for example, ReUtily " is 40% and ReUtil?") is 30%. The allocated
amount of memory memory; is 3G and CPU cpu; is 12. The used amount of CPU U sed Re*
is 1.2 and UsedRe**™°"™ is 3.6. The optimized resource ratio OptimizedRatios is 1.2/3.6 =
1/3. The flavor chosen for the SelfBench at the end of Step2 should be approximate to
OptimizedRatio, = 1/3. According to table 6.12, flavor f2 and f3 both have a Ratiol, of 1/3.
Flavor f2 is chosen for Stage, in the next SelfBench because f2 has a bigger Distances(0,0)
value than f3. Similarly, flavor 4 is chosen for Stage; and flavor {7 is chosen for Stages.

Table 6.10 presents the SelfBench results of Step2. In our scenario, the SelfBench result
ARmaz is 200. The memory utilization ReUt:l]**™°"™¥ and CPU utilization ReUtil%" together
with allocated amount of memory memory,s and CPU cpu, indicate that the optimized amount
of memory mem and CPU cpu. The determination of mem and cpu takes 80% of resource uti-
lization threshold into consideration. mem and cpu can be seen as the optimized configuration
of flavor for serving request arrival rate ARmax = 200.

Taking Stages for example, The memory utilization ReUtil**"*" is 40% and CPU utiliza-
tion ReUti[P" is also 40%. The allocated amount of memory memory; is 10G and CPU cpu,
is 5. The resource utilization threshold for CPU and memory are both 80%. The optimized
amount of memory mem is 5 gigabyte and CPU cpu is 5/2.

The SelfBench results of step2 will be used in step3 as the starting point of searching the
configuration for getting the benchmarked MFC. Taking Stages for example, as demonstrated
in table 6.13, the minimum Distance}(5,5/2) value exceed the configurable threshold value
¢ = 1. Therefore, the flavor for Stages in next configuration of SelfBench is the same as the

memorys cpus ReUtilm°™Y ReUtilP" UsedRe]**™°™ UsedRe®P* OptimizedRatios

Stager 1 2 80% 80% 0.8 1.6 172
Stages 1 3 70% 70% 0.7 2.1 1/3
Stages 1 2 80% 20% 0.8 0.4 2

Table 6.9. Extrapolation of OptimizedRatios based on SelfBench results of stepl.

114 CHAPTER 6. BENCHMARKING BASED SLA FEASIBILITY STUDY

memorys cpus ReUtilT*™™V ReUtil®* mem cpu flavors ™™ flavor,
Stage; 3 6 30% 30% 9/8 9/4 f4 fo
Stages 2 6 80% 80% 2 6 2 2
Stages 10 5 40% 40% 5 512 17 f8

Table 6.10. Step2 SelfBench on one instance of f4 on Stage; , two instances of f2 on Stages and one instance of
f7 on Stages.e = 1.5.ARmax= 200.

FLAVOR, f4 {5 {6
Distance(9/8,9/4) 42 2 0.28
Distance’ (0,0) 6.7 45 22

Table 6.11. Better tailored flavor exploring for Stage; in Step3.

current one which is flavor f6.

Similarly, referring to table 6.11 and table 6.12, flavor for Stage; is still flavor f6 and flavor
for Stage, is still flavor f2. According to algorithm described in figure 6.5, the exploring of
better tailored flavors will be stopped because there is no change of flavors. Otherwise, the
SelfBench will be continuous and the exploring will be performed from all over again, until
there is no change of flavors on each stages.

At the end of Step3, one flavor for each stages will be achieved its M F'C? through bench-
mark. These benchmarked M F'C? will be used to extrapolate the M F'C? of smaller flavors.
The benchmarks for bigger flavors in step5 will be established based on these benchmarked
M FC' too. The linear estimation factor is k%. £’ is derived by comparing each flavors with the
saturated flavor for each Stage, separately. As described in figure 6.6, & is the minimum ratio
between the ratio of CPU and the ratio of memory. The ratio of CPU is derived by comparing
the configured amount of CPU to the saturated flavor used in the last SelfBench in Step3. The
ratio of memory is derived in the same way. As demonstrated in table 6.14, taking flavor f1 used
on stage Stage, for example, flavor] has 12 vCPU and 3 gigabyte of memory. The flavor used
on stage Stages in the last SelfBench of Step3 is flavor f2, which has 6 vCPU and 2 gigabyte
of memory. Therefore, the ratio of CPU is 2 and the ratio of memory is 1.5. k%, the linear
factor of flavory, is 1.5. Other linear factors & are calculated in the same way and are listed in
table 6.14.

The linear factor &’ will be used in step4 to get the MFC for flavors has a &’ lower than or
equal to 1. Taking flavor f3 on stage Stage, for example, k3 is 0.5 and the benchmarked MFC
is 100, therefore M FC3 = k3 % 100 is 50. Flavor 6 for stage Stage;, flavor £2, {3, f4 for stage
Stages and flavor 3, {6, f9 for stage Stages have a k' lower than or equal to 1. Their M FC"
can be derived similarly and are listed in table 6.15.

Flavor f4 and 5 for stage Stage;, flavor f1 for stage Stages and flavor f1, f2, f4, f5, £7, £8
for stage Stages have k' bigger than 1.

As depicted in figure 6.10, their M F'C' can not be derived only based on previous bench-

FLAVOR, f1 2 f3 f4
Distancey(2,6) 6.1 0 32 1
Distances(0,0) 124 63 32 6.7

Table 6.12. Better tailored flavor exploring for Stages in Step3.

6.5. SCENARIO 115

FLAVOR; fl 2 13 4 f5 16 f7 8 19
Distance(5,5/2) 9.7 46 4 4 34 4 56 1.1 43
Distancei(0,0) 124 63 32 67 45 22 112 67 14

Table 6.13. Better tailored flavor exploring for Stages in Step3.

k! fl 2 f3 f4 5 f6 7 {8 {9
Stage, 3 2 1

Stages 1.5 1 05 1

Stages 1/2 1/3 1/6 1/2 1/3 1/6 5/3 1 1/6

Table 6.14. Linear extrapolation factor k¢ in step4.

MFC' f1 2 3 4 5 f6 7 f8 19
Stage, ? ? 200

Stages ? 100 50 100

Stages 100 67 33 100 67 33 ? 200 33

Table 6.15. Step4: M FC7 = 200,M FCy = 100,M FC5 = 200.

Unknown real MFC
Linear estimated MFC

i
MFC 4 _
o . Over-estimation
O Benchmarked MFC of MEC

Under-estimation
of MFC

Figure 6.10. Linear estimation leads to over-estimation and under-estimation.

116 CHAPTER 6. BENCHMARKING BASED SLA FEASIBILITY STUDY

MFC' f1 2 f3 f4 5 f6 7 f8 {9
Stage, 500 350 200

Table 6.16. Step5: SelfBench on 1 instance of f4 on Stage; , 6 instances of f2 on Stages and 3 instances of f6 on
Stages.e = 1.ARmax= 500. Therefore, M FC} = 500.

A
MFCll e [inear estimated based on SelfBench in step3
- Linear estimated based on SelfBench in step5
500 .
(3, 500)
*
*
*
350 .
. (2, 350)
200
(1, 200)
> k|
1
0 1 2 3

Figure 6.11. Linear estimation for Stage;

marks. At least the benchmarks fully using the flavor with biggest linear factor k' are needed
to extrapolate rest of the M FC". The linear estimation based on factor k' and previous Self-
Bench results will lead to over estimation of M F'C? of flavors with &’ bigger than 1. However,
these over estimated M F'C? give us the upper-bound of real M F'C' and we can establish new
SelfBench accordingly.

Taking stage Stage; for example, flavor f4 has the biggest ki which is 3. Therefore, the
biggest flavor is f4 and the M F'C} is at most 3 * 200 = 600. To get flavor f4 saturated on stage
Stagey, other stages Stages and Stages only need to configure enough resources for serving
600 request/s. In step5, we will perform SelfBench on 1 instance of flavor f4 on Stage; , 6
instances of flavor f2 on Stages and 3 instances of flavor f6 on Stages. The SelfBench result
show that the maximum capable arrival rate is 500 request per second. Therefore, M FC} =
500.

As demonstrated in figure 6.11, M FC? can be linear estimated according to the algorithm
depicted in figure 6.7. After this SelfBench in step5, all M F'C' for stage Stage; are known as
listed in table 6.16.

Flavor fl for Stage; and flavor f4 for stage Stages can be benchmarked similarly. As
demonstrated in figure 6.12 and 6.13, the M F'C" for the rest of flavors on each stage can be
derived as listed in table 6.17 and table 6.18.

Until now, as summarized and listed in table 6.19, we have the all the M FCZ for all stages
and possible flavors. The resource constraints evaluation and cost constraint evaluation depicted

6.5. SCENARIO

117

A
MFCIZ e incar estimated based on SelfBench in step3
Linear estimated based on SelfBench in step5
130 .
o (3, 130)
*
100
(2, 100)
50
(1, 50)
> k'
2
0 1 2 3

Figure 6.12. Linear estimation for Stages

MFCI3 e [inear estimated based on SelfBench in step3

Linear estimated based on SelfBench in step5

500 .
o (3, 560)
K * (2, 470)

350 K

R (2, 380)

(1.5, 290)
200
(1, 200)
(0.5, 100)
> k;
0 05 1 15 2 25 3

Figure 6.13. Linear estimation for Stages

MFC!

f1 2 3 4 5 f6 {7 {8 19

Stages

130 100 50 100

Table 6.17. Step5: SelfBench on 2 instances of f6 on Stage; , 2 instances of f1 on Stages and 2 instances of f6
on Stages.c = 1.ARmax= 260. Therefore, M FC3 = 130.

118 CHAPTER 6. BENCHMARKING BASED SLA FEASIBILITY STUDY

MFC' f1 2 f3 4 5 f6 7 8 9
Stages 100 67 33 100 67 33 270 200 33

Table 6.18. Step5: SelfBench on 2 instances of f6 on Stage; , 4 instances of f2 on Stages and 1 instance of f7 on
Stagesz.c = 1.5.ARmax= 270. Therefore, M FC3 = 270.

MFC! f1 2 f3 f4 5 f6 7 8 f9
Stagey 500 350 200

Stages 130 100 50 100

Stages 100 67 33 100 67 33 270 200 33

Table 6.19. Final M FC!

in figure 6.8 and figure 6.9 can be performed according to table 6.19.

6.5.3 MFC based SLA evaluation

In this section, the SLA evaluations example based on MFC derived in section 6.5.2 will be
given and explained. Resources constraints evaluation example will be given in section 6.5.3.
Cost constraints evaluation example will be given in section 6.5.3.

Resources constraints evaluation

Now, we have the M F'C" for each flavors and each stages. As mentioned before, The maximum
arrival rate can be served under the resource constraints is actually depending on the weakest
bottleneck stage. According to algorithm depicted in figure 6.8, we take the minimum value of
MFC!(MaxNol’) among stages as the maximum capable arrival rate according to resource
constraints in the SLA.

For example, flavor f4, f5 and {6 can be used on stage Stage;. When using the maximum
amount of flavor f4, which is 2 instances, on stage Stage;, the whole application could serve
at most 2 * 500 = 1000 requests/s. Similarly, the application could serve at most 1050 request-
s/s when using flavor f5 and 800 requests/s when using f6. Therefore, the maximum capable
arrival rate for stage Stage; is 1050 requests/s when adopting maximum amount of flavor f5.
Similarly, the maximum capable arrival rate for stage Stages is 600 requests/s when adopting
maximum amount of flavor f2. The maximum capable arrival rate for stage Stages is 600 re-
quests/s when adopting maximum amount of flavor f8. Therefore, SLAResource ARmax, the
maximum capable arrival rate under the resource constraints defined in SLA, is 600 requests/s.
From the resource constraint evaluation process, we can also see that the resources allowed for

MFC(MaxNol) fl 2 13 4 5 f6 f7 18 19 MaMFC,n)

Stage, 1000 1050 800 1050
Stages 520 600 400 500 600
Stages 200 201 132 200 201 132 540 600 132 600
SLAResource ARmax 600

Table 6.20. SLA resource constraints evaluation based on M FC!(MaxzNol?)

6.5. SCENARIO 119

UpperWorkloadNol! 1 2 3 f4 5 f6 {7 f8 f9

Stage, 2 2 3
Stages X 6 X X
Stages X X X X X x x 3 x

Table 6.21. Needed amount of instances to serve SLAW orkloadARmazx.

Cost', fl 2 {3 f4 {5 f6 7 {8 f9 MinCost,

Stage, 6 4 3 3
Stages X 24 x X 24
Stages X X X X X x x 9 x 9
SLAcost 36

Table 6.22. Cost for serving SLAW orkload ARmazx.

stage Stages and Stages makes stage Stages and Stages be the bottleneck which block the
application fully uses available resources on stages Stage; to serve higher request arrival rate.

Obviously, SLAW orkload A Rmaz, the maximum arrival rate defined in the SLA should
not be higher than SLAResource ARmax, which is 600 requests/s in our scenario. Otherwise,
this SLA proposal should be rejected.

Cost constraints evaluation

For cost constraints, we also take the maximum arrival rate into consideration. As described
in figure 6.9, With M FC?, we can know how many instances are needed on each stage. The
minimum cost on each stage can be get with the cost of each flavors flavor!.cost.

Taking Stage; for example, to serve a request arrival rate of SLAW orkloadARmazx =
600, 2 instances of flavor f4, 2 instances of flavor f5 or 3 instances of flavor f6 are needed
according to M FC" listed in table 6.19. For Stages and Stages, UpperWorkloadNol, the
needed amount of instances for each flavors can be derived similarly as table 6.21. When
adopting one flavor, it is possible that the needed amount of instance of this flavor is more than
SLA allowed. In this case, only SLA allowed number of instances can be taken into account.

UpperWorkloadN ol listed in table 6.21 together with flavor®.cost in table 6.1, table 6.2
and table 6.3, we can know the C’osti, which is the cost for adopting flcwori, to serve the
SLAW orkload ARmaz = 600.

According to algorithm 6.9, the cost for each stages with each flavors are shown in ta-
ble 6.22. The minimum cost to serve SLAW orkloadARmazx is the sum of the minimum
Costi for each stages. In this scenario, it is 3+24+9 = 36 (euro/s).

The sum of minimum cost should be no bigger than maximum cost defined as cost con-
straints in SLA. Otherwise, the SLA proposal should be rejected for cost constraints. Therefore
the SLA proposal should be rejected because maintaining the QoS of serving 600 requests/s
need at least 36 euro/s which is higher than SLA defined 20 euro/s.

120 CHAPTER 6. BENCHMARKING BASED SLA FEASIBILITY STUDY

6.6 Conclusion

We proposed a SLA feasibility study method based on benchmarking. The "what-if" evaluations
answer the question that whether QoS target can be satisfied with the workload, resource and
cost constraints stated in SLA. Benchmarking provides cloud application dependent analysis of
the application behavior, for instance throughput of served requests, response time. Benchmarks
are relatively costly and precise feasibility study usually imply large amount of benchmarks.
In this chapter, our benchmark based SLA feasibility study method makes tradeoff between
accuracy and costs. Limited amount of benchmarks are performed to achieve a workload-
resource mapping model. This mapping model, as an intermediate of this benchmark based
feasibility study process, will be used in our runtime control method which will be introduced
in chapter 7.

Chapter 7

RCSREPRO: Runtime Control method
based on Schedule, REactive and
PROactive methods

7.1 Introduction

Cloud services provide their service consumers with the possibility of running their applications
or tasks under optimized resource configuration. Over-provisioning, which means allocating
more resources than actual needs, will lead to spend money to no avail. On the contrary, under-
provisioning, which makes matter worse, means allocated resource is not sufficient to run the
application with an acceptable level of QoS. The resource demand of an application is dynamic.
The dynamic resource demand makes the optimized resource configuration changing. Choosing
an optimized resource configuration from plentiful candidates according to VCAA and SLA is
very challenging. This work can be performed either manually or automatically. In order to
apply the runtime control on large scale application, it is important to automate the runtime
control process.

We propose Runtime Control method based on Schedule, REactive and PROactive meth-
ods (RCSREPRO). RCSREPRO aims at automatically allocating suitable amount of resources
at runtime. RCSREPRO is based on a continual improved workload resource mapping model
which makes the runtime control more and more accurate with the cumulation of runtime work-
load and application knowledges.

This chapter is arranged as follows. The challenges, time granularities and runtime con-
trol system architecture based on MAPE-K will be discussed in section 7.2. RCSREPRO, our
runtime control method, will be described in section 7.3. This chapter will be concluded in
section 7.4.

7.2 Problem description

The goal of runtime control is satisfying SLA at runtime while avoiding over-provisioning as
much as possible. The fundamental of runtime control is the SLA. Our method is generic, but
we explain the runtime control problem based on PSLA in this section.

After the SLA feasibility study phase, the available resource and cost are able to serve the

CHAPTER 7. RCSREPRO: RUNTIME CONTROL METHOD BASED ON SCHEDULE,
122 REACTIVE AND PROACTIVE METHODS

possible workload with target QoS. To guarantee the SLA at runtime, the safest way is always
deploying the maximal amount of resources. However, this strategy stand a good chance of vast
over-provisioning.

In this section, the challenges of runtime control will be described in section 7.2.1. The
time granularities of runtime control will be discussed in section 7.2.2. MAPE-K based runtime
control system architecture will be described in section 7.2.3.

7.2.1 Challenges

The optimal runtime control method should always allocate just right resources to real needs
which means the allocated resource can serve the runtime workload with QoS target and the
resources are adequately used.

To allocate resources according to actual circumstances is a challenging work. The workload
is always changing because of the fluctuating end user requests. The workload characteristic
for a given time period is uncertain so that it is difficult to arrange suitable amount of resources
before runtime. Runtime control decisions and activities need to be performed at real time
according to the workload situation. The new resource allocation needs a period of time to take
into effect. Therefore, the accuracy of workload prediction is crucial for arranging right amount
of resources in advance. The diversity of workloads may need different resource configuration.

Since there are cost constraints and resources constraints which are evaluated for serving
the target workload with required QoS defined in SLA, it stands a good chance that the work-
load beyond upper-bound of SLA request arrival rate can not be served. Admission control is
necessary at the entrance of the application to deal with the workload beyond the upper-bound
defined in SLA. For example, if the upper-bound of SLA request arrival rate is 1000 requests/s,
when real request arrival rate is 2000 requests/s, only half of the requests will be served and rest
of the requests will be discarded.

The mapping from workload to underneath resource configuration is a per application task.
The experience of runtime control is application dependent, in another word, there is no uni-
versal way of mapping resources for any kinds of applications. This application dependent
mapping knowledge can be either achieved through either analysing application implementa-
tion detail or accumulating of application performance under variance workload circumstances.
However, it is possible that the implementation detail is not achievable for the party who per-
forms runtime control. The behaviour of application can also be unknown because the property
knowledge is deficient for a new application. Therefore, benchmark can be an effective mean
of obtaining application behaviours under different workload.

The cloud environment can also be not stable because of the resource competition among
VMs located on the same host. The unstable cloud environment based on virtualization tech-
nology makes the real usable resources lower than the declared amount of resources. It is more
feasible to observe than predict from the [aaS consumer’s point of view. Based on this fact,
reactive runtime control is adoptable.

Above mentioned aspects, such as workload prediction, resource mapping and reactive re-
source allocation, will be described. To describe RCSREPRO method clearly and concisely,
the following method description focus on a time duration which has no change of SLA terms.
In other words, the QoS targets keeps still which means the method description is suitable of
ensuring one GuaranteeTerm or GuaranteeTerms with same ServiceLevelObjectives. As the
time goes on, GuaranteeTerms may shift from one to another and QoS target may changes. In

7.2. PROBLEM DESCRIPTION 123

this case, the method needs to be reconfigured and the continual improvement process needs
to be started from all over again. For example the MFC model should be changed because the
reference QoS of benchmark activities for establishing the initial MFC model are changed.

In this chapter, MFC refers to the MFC value for adopting one instance on one stage. The
MFC model is initially the same as the MFC table achieved after applying SLA feasibility study.

7.2.2 Time granularities

Our runtime control method aims at provisioning resources as meticulous as possible. To
achieve this goal, scaling actions should be performed every-time when a QoS metric or a
performance indicator is available so that the scaling decisions can be made correspondingly.
These metrics or indicators are usually provided by monitoring systems. Depending on the
time granularity of monitoring system, these values can be available within a very short time
duration. For example, every 1 minute, performance metrics can be observed through AWS
CloudWatch service [Ser15] with an extra fee. However, one VM usually takes at least 5 min-
utes to boot up. The application system can also need several minutes to adapt to the new
resource configuration. So, the time interval between two scaling actions should be at least the
total time of booting up VMs and adapting to new resource allocation. It’s to avoid the scaling
actions are too frequently and new resource configuration can not achieve the goal of scaling
actions.

In some laaSs, VMs are charged hourly. Due to this fact, " smart kill" is proposed by some
researchers [LBMALI12]. "Smart kill" means never stopping a VM before its end of a charge
unit. "Smart kill" is considerable in practice when adopting IaaS services provided by providers
like AWS at this moment. However, there are already existing IaaS providers who charge their
resources by second [Qin15] and these services show superiority on saving maintenance costs.

In our method, we assume that resources billing time unit is smaller than the VM boot up
time to make our method appropriate for advanced billing system.

Therefore we don’t need to take "Smart kill" problem into consideration. Our scaling action
time interval is at least the total time of booting up VMs and adapting to new resource allocation.
In RightScale’s technical report, this sum up time is usually between 10 and 15 minutes.

Our runtime control method is a proactive method based on Workload Classification and
Forecasting (WCF) [HHKA14]. WCEF can select the most accurate forecasting method from
several candidate time series analysis models dynamically. Before each scaling action, WCF
will be performed to predict the future maximal request arrival rate of the workload. To make
sure the time needed by WCF to perform forecasting is stable under 1 minute, the historical
data used to forecast time interval should be at most 200 data. However, most of the time series
analysis methods require at least 3 periods data to detect seasonal characteristic. So, at most
200 = 3 ~ 66 data per period can be collected. Depending on the nature of the workload, one
period could last for various time durations. For different length of period, the minimum time
interval between two data is different. The longer period is, the bigger data time interval will
be. Human behaviour are the fundamental of changing workload for applications which interact
with human users. In this case, one period can last for one day, one week, one month or even one
year. We take one day period for example to explain the minimum data time interval required
to get forecasting result with in 1 minute. 66 data per 1 day period means time interval between
two data should be at least 21.8 minutes. WCF requires that the forecasting can be performed
at least when one new data is observed. That is to say, the smallest time interval between two

CHAPTER 7. RCSREPRO: RUNTIME CONTROL METHOD BASED ON SCHEDULE,
124 REACTIVE AND PROACTIVE METHODS

Monitoring time point
scaling time point
GuaranteeTerm changed
time point

SLA Time interval
(Schedule based runtime control)

Runtime scaling Time interval
(Reactive and proactive

runtime control)

Monitoring System
Time interval

\/

Figure 7.1. Runtime control time intervals.

forecasting should be at least the time interval between two observed data. Since forecasting
needs to be performed before each scaling action, the time interval for scaling actions should be
at least the minimal required forecasting time interval. In this day period example, the scaling
time interval should be at least 21.8 minutes. However, if scaling actions perform at each time
that an observed data is available for workload forecasting, the effect of scaling actions may
not be able to be seen because the time between two scaling actions is too short. Therefore,
the time interval for scaling actions should also be bigger than or equals to the total time of
booting up VMs plus adapting to new resource allocation. This is similar to the idea of "Cooling
down" time introduced in section 4.4.2. The "Cooling down" time can be various. We takes a
15 minutes "Cooling down" for example. Therefore, the scaling time interval is at least 21.8
minutes in this example. In the other word, every 21.8 minutes, the resource allocation will be
evaluated and the scaling actions will be performed in this one day period example.

However, when period is remarkable higher than one day, the scaling time interval cloud be
too long to forecast and reallocate resource to ensure SLA effectively. In this case, more fine
granularity level of runtime control need to be performed. For example we can do workload
prediction between two WCF based forecasting. However, this part of work will be a consid-
eration of our future work. In this thesis, we take the widely applicable one day period and the
21.8 minutes scaling time interval for example to explain our method.

Figure 7.1 describes 3 different time scales. Biggest time scale is defined according to Guar-
antee terms of SLA. Middle size time scale is defined according to the forecasting frequency.
Small size time scale is defined according to the time interval required for performing scaling
actions.

7.2.3 Runtime control system architecture

Runtime control system is an autonomic computing system which has the ability of self-managing.
The runtime control system follows the MAPE-K 4.3.1 control loop which was firstly intro-
duced by IBM. In this part, the runtime control system architecture will be introduced. The
introduction of runtime control system architecture is organized by Monitor, Analyze, Plan,
Execute and Knowledge.

7.2. PROBLEM DESCRIPTION 125

Workload Lower-bound | Schedule based
Availtble Runtlmi control
Maximum Workload Resopirces
_|Workload analysis for next|2 time interval proactive
"| based on WCF Runtime control
Workload [Prediction A
accuragy v
[| SLA reactive
S check == o N
. Qo
Q0S metric valug S| | satisfiction Runtlmi control Plan
[
Resource _[Resource usage Resom:r re Iusage MFC odel N
utilization " check elve ew
MFC model Configuration
Analyze (VCAA)
MFC
corfection

oS llequirement & Workload rangef Bl
system

adapter

Mpnitoring

Figure 7.2. Runtime control system architecture.

CHAPTER 7. RCSREPRO: RUNTIME CONTROL METHOD BASED ON SCHEDULE,
126 REACTIVE AND PROACTIVE METHODS

Monitor

As demonstrated in figure 7.2, the part in blue background is Monitor. Monitor gathers infor-
mations from managed resources. For runtime control system, monitoring services is the source
of Monitor. resource utilizations informations may be collected from monitoring services, be
analysed and later be used by reactive runtime controller to adjust the allocated amount of re-
sources. QoS metrics, such as response time, can also be collected through monitoring services
and be used by proactive runtime controllers to judge the current configuration can serve work-
load with satisfactory QoS or not. The mapping model from workload to underneath workload
requirement is continuously improved according to this judgement. The workload situation,
typically request arrival rate, will be collected and used as the input of the workload forecast-
ing component which is based on WCF in our case. Monitor component provides necessary
informations about the underlying resources.

Analyze

As demonstrated in figure 7.2, the part in orange background is Analyze. Analyze receives
the observation values from Monitor and perform analysis. Resource utilizations are compared
with the predefined experience based threshold. Resource allocation message will be passed to
reactive runtime controller of Plan. Workload request arrival rates will be analysed by WCF
component to predict the workload situation of the nearest two time interval. The workload
prediction results will be further used by proactive runtime controller of Plan to arrange suit-
able amount of resources. The QoS target metrics will be analysed according to both SLA
and resource utilization to give the judgement that with allocated resources are sufficient with-
out redundancy or not. This judgement will be further used by reactive runtime controller to
improve the workloads and resources mapping model. With the accumulation of runtime work-
load and resource allocation observations, this mapping model will be more and more accuracy.
Therefore, the accuracy of runtime control system will be continuously improved.

Plan

As demonstrated in figure 7.2, the part in pink background is Plan. Plan takes the results of
the Analyze part and makes the decision, which is resource provisioning decision, as the input
of Execute. Execution plans are made also based on the understanding of the characteristics of
application. There are three components in Plan including schedule based runtime controller,
reactive runtime controller and proactive runtime controller. These three controllers correspond
to three kinds of runtime control methods adopted in RCSREPRO. Schedule based runtime
controller performs resource reservation according to workload defined in SLA Reactive run-
time controller update the workload-resource mapping model which will be used by proactive
runtime controller. Proactive runtime controller makes the final resource provisioning decisions
based on workload predicted by WCF and workload-resource mapping model continuously up-
dated by reactive runtime controller.

The scaling decisions from all three controllers are aggregated and expressed formally as
the input of Execute. Proactive runtime controller takes the workload prediction informations
as the input and check at the MFC model to get the possible resource configuration. Reactive
runtime controller improves the proactive runtime control decision by taking how busy the cur-
rent system is into consideration. The conclusion of system is busy or not is given by Analyze.

7.2. PROBLEM DESCRIPTION 127

When detected resource utilization is beyond the threshold, it means that the system is busy and
under high level of pressure to serve requests with required QoS. resource utilization threshold
is regarded as the indicator that the allocated resource well-matched the real need or not. The
configuration of resource utilization thresholds are empirical tasks. In RCSREPRO, resource
utilization thresholds are configurable and predefined. If the system is busy, certain proportion
of extra resources will be assigned indirectly through the correction of MFC model and as a
consequence of proactive runtime control. The schedule based runtime controller is only in
action at the very beginning of a stable SLA period. Schedule based runtime control is typically
seen as a manually task before runtime. Resource reservation is according to the lower-bound
of workload request arrival rate defined in SLA. Based on the assumption of only same flavor
can be used on one stage, the schedule based runtime controller will only be used on a specific
stage where only one flavor is available.

Execute

As demonstrated in figure 7.2, the part in green background is Execute. Execute takes the
formally described Plan result as the input. This formally described Plan result includes in-
formation about the new resource configuration of the application. Execute takes charge of
realizing the decision of Plan. Execute is the one who deals with the underling infrastructure.
For example, in the context of the OpenCloudware project, this result is described in OVF++
file [SEDP*13], which contains the VCAA informations, and VAMP reconfigures the under-
neath resource allocation of the application.

Knowledge

As demonstrated in figure 7.2, the part in purple background is Knowledge. All three runtime
controllers made their scaling decisions based on the understanding of workload and application
runtime characteristics which are named knowledge. The accuracy of RCSREPRO relies on
the precision of the knowledge. The knowledges are more close to the effective situation, the
more accurate RCSREPRO will be. Knowledge takes charge of organising, managing and
continuously improving the knowledge.

There are two kinds of knowledge including the mapping model from workload to resource
configurations and SLA constraints.

Mapping model from workload to resource configurations is expressed as MFC. MFC is
the foundation and intermediates of SLA feasibility study. MFC is the core of knowledge.
MEC is further used in RCSREPRO to allocate resources according to workload request arrival
rate accordingly. The initial version of MFC is based on under-estimation of the capability of
resources. MFC is more and more close to the real capable workload request arrival rate as a
consequence of updating the mapping model with runtime observations.

The schedule based controller takes the lower-bound of request arrival rate defined in SLA.
However, it is possible that application owner may set an extremely small lower-bound to make
sure that the QoS can be guaranteed for a wide range of workload situations. One extreme
situation is setting O requests/s as the lower-bound. In this case, schedule based controller is
useless.

QoS targets, which is defined in SLA, are the yardstick of runtime control. QoS targets is
used by the reactive controller to judge the allocated resource is sufficient or not. The judgement
will be further be used to update the MFC model.

CHAPTER 7. RCSREPRO: RUNTIME CONTROL METHOD BASED ON SCHEDULE,
128 REACTIVE AND PROACTIVE METHODS

7.3 RCSREPRO runtime control method description

Our RCSREPRO runtime control method explores what the optimized resource configuration
is for current application under different workload. These benchmarks have been performed
during SLA negotiation as described in section 6.3. With the benchmarked and continuing
improved knowledge, RCSREPRO can decide when to reallocate on which resources and the
required amount of resources. As the name suggested, our runtime control methods are based
on schedule, reactive and proactive based runtime control methods. Schedule based runtime
control is performed at the beginning of each SLA Time interval as described in figure 7.1.
Reactive and proactive based runtime control methods are performed at the beginning of each
Runtime scaling Time interval as described in figure 7.1. At the beginning of each Runtime
scaling Time interval, reactive method is firstly performed to correct the workload resource
mapping model, then the proactive runtime control method will allocate resources according to
the modified mapping model.

In this section, schedule based runtime control part of RCSREPRO will be described in
section 7.3.1. Proactive runtime control part of RCSREPRO will be described in section 7.3.2.
MFC based Mapping model can be continuously improved in RCSREPRO. This improvement
is in a reactive way. The MFC improvement method will be introduced in section 7.3.3.

7.3.1 Schedule based runtime control

Schedule based runtime control is performed for one SLA stable duration, which means the
attached SLA has no change during the time between two schedule based runtime control activ-
ities. Each schedule based runtime control will be validated at the beginning of a SLA period.

Schedule based runtime control method arranges computing resources according to SLA
requirements and workload situations before runtime. When the workload characteristic can be
known before runtime, schedule based runtime control method has remarkable advantage. It
is because the public laaS providers usually provide lower price to buy in advance resources.
Schedule based runtime control method typically decides and allocates the right amount of
resources based on the experience and knowledge about the application. However, this knowl-
edge is difficult to be rich enough for performing accurate schedule based runtime control.
More over, when there is unknown changes in the system, the application can not adapt to
unexpected situations. Therefore, in our runtime control method RCSREPRO, we will adopt
schedule based runtime control method to provision the minimal required amount of resources
because of the lower buy in advance price. The fluctuating workload and unexpected situa-
tions will be processed by reactive and proactive part of RCSREPRO which will be explained
later in this chapter. Comparing to manage application with proactive and reactive runtime con-
trol method, schedule based runtime control requires enough knowledges to reserve suitable
amount of resources. Allocating right amount of resources to maintain QoS requires two kinds
of knowledges including workload knowledge and the resource allocation knowledges.

When applying schedule based runtime control, the workload knowledges may be not suf-
ficient to give a more accurate minimal workload request arrival rate. Therefore, we arrange
resources according to the lower-bound of workload defined in SLA.

Resource allocation knowledges are expressed as MFC model in RCSREPRO. MFC is con-
tinuously developed to improve the accuracy of resource allocation. However, when applying
schedule based runtime control, the initial MFC derived from SLA feasibility study is not yet

7.3. RCSREPRO RUNTIME CONTROL METHOD DESCRIPTION 129

Proactive
runtime control
Start

Y

Use WCF to predict
Maxi_ArrivalRate

i

Use MFC to obtain
Resource Configuration
for Maxi_ArrivalRate

y

End

Figure 7.3. Proactive runtime control.

accurate enough to reserve resources accordingly. We have the assumption that only the VMs
of same flavor can be adopted for one stage at the same time to perform the horizontal scaling.
Time-shared resource reservation among several stages may be an intelligent but complicated
strategy. To simplify the schedule based controller, we make resource reservation for each stage
separately. Once one resource is reserved for a stage for a reservation duration, this resource is
better be used during reservation duration to fully use the paid resources. Therefore, schedule
based runtime control can not be available for one stage when several flavors can be chosen
from. As explained before, when apply schedule based runtime control, it should have one
available flavor on this stage and the MFC are all achieved through benchmark. Therefore,
when schedule based runtime control is considerable for one stage, the MFC model for this
stage is achieved through benchmark and they are seen as accurate enough.

7.3.2 Proactive runtime control method in RCSREPRO

As explained in figure 7.3, proactive runtime control method includes two steps. Firstly fore-
casting the future workload, then arrange suitable amount of resources for the predicted work-
load. In this section, workload forecasting method of RCSREPRO in section 7.3.2. The prob-
lems involved in resource provisioning according to forecasted workload will be introduced
in section 7.3.2. The workload-resource mapping model based on MFC will be introduced in
section 7.3.2.

Workload forecasting

Trend and season characteristics are seen as the inherent nature of time series. Different applica-
tions probably have different workload characteristics. For a specific application, the workload
could also be evolving. Therefore, choosing the right model is not an once for all work when
applying time series analysis and forecasting methods. Trend and season analysis result are
crucial for the accuracy of time series forecasting. Trend and season are not necessary to be
constant during the whole time series process in practice. In other words, as a dynamic stochas-

CHAPTER 7. RCSREPRO: RUNTIME CONTROL METHOD BASED ON SCHEDULE,
130 REACTIVE AND PROACTIVE METHODS

tic process, the trend and season are changing over time and one time series forecasting model
probably can not be applied to the whole process. One specific model can only be applied
within a period of time to achieve better accuracy. In order to automate runtime control pro-
cess, it is necessary to be able to select the appropriate time series forecasting model at runtime
automatically.

WCF [HHKA14] is one of the system to automate the selection of time series forecasting
model based on a decision tree according to the current available historical data, the require-
ments of forecasting, the characteristic of time series forecasting models and the accuracy of
forecasted result.

In [HHKA14], the experiment results show that WCF, as a sophisticated approach, can
achieve better accuracy than applying one single approach such as extended exponential smooth-
ing on real world workload. Therefore, we adopt WCF in our runtime control approach to
continuously forecast workload request arrival rate for our proactive part of runtime control.

In WCF [HHKA14], 13 important characteristics of the workload are introduced to classify
different kinds of workload with an acceptable calculation cost. WCF takes 9 existing time
series forecasting methods into consideration. WCF summarizes the requirements, applicable
situations, advantages and disadvantages of these 9 time series 4.4.3 forecasting methods and
uses these characteristics to narrow the scope of choosing the suitable method online. WCF
developed a decision tree based approach to automatically select an appropriate time series
forecasting model from all nine candidates.

The selection of a suitable forecasting method is performed periodically. The selection is
done according to characteristics of time series, such as the length of available historical data
in time series, the customizable forecasting goals, such as the acceptable maximal computa-
tion time, and forecasting accuracy evaluation based on Mean Absolute Scaled Error (MASE).
MASE is one of the metrics to evaluate the accuracy of forecasted result and its observa-
tions [HK06]. MASE is calculated according to formula 7.3.2.

1
n—1

MASE — mean < forecastValue; — observedV alue; > 7.1

Yoy lobservedV alue; — observedV alue;_ |

WCEF forecasts according to several potential time series forecasting methods while the
accuracy is calculated by MASE in parallel. One forecasting method is selected according
to the MASE value as a feedback mechanism. Therefore the accuracy of WCF time series
forecasting is improved compared to each method.

From forecasting to provisioning

When performing resource scaling actions, scaling up and scaling down actions take remarkable
different amount of time to take the new resource configuration into effect. As mentioned
before, scaling up actions usually may take a period of time to boot up VMs and get new
configuration to perform stable. However, scaling down actions impact the system resource
utilization and performance almost as soon as the scaling down command is given. The resource
allocation strategy should take these differences of time into consideration.

In our runtime control method, we will allocate resources according to the maximal resource
requirement for the time interval from now to two times of scaling time interval. The consider-
ations of doing so will be explained by comparing three different resource allocation strategies

7.3. RCSREPRO RUNTIME CONTROL METHOD DESCRIPTION 131

800
700
600
500
400
300
200

A Request arrival rate

----- Placed resource
—— Realresource
7\ Requestarrival rate

séz sa3 554 sa5 sab 557 sa8

- time

Figure 7.4. Provisioning resources for next one scaling time interval.

800
700
600
500
400

[

A Request arrival rate

----- Placed resource
— Realresource
"\ Request arrival rate

sa0 sal

sa2 sa3 sa4 sa5 sab sa7 sa8

p time

Figure 7.5. Provisioning resources for the scaling time interval after next.

[
800

700
600

400

A Request arrival rate

----- Placed resource
— Realresource
/\ Request arrival rate

sa0 sal

sa2 sa3 sa4 sa5 sa6 sa7 sa8

p time

Figure 7.6. Provisioning resources for next two scaling time interval.

CHAPTER 7. RCSREPRO: RUNTIME CONTROL METHOD BASED ON SCHEDULE,
132 REACTIVE AND PROACTIVE METHODS

demonstrated in figure 7.4, 7.6 and 7.5. The resource provisioning situation can be disparate
for different size of scaling time interval. To clearly explain the problem, we take a special ex-
ample, which is the scaling up actions take almost the whole scaling time interval to be ready for
the workload and the scaling down action can be immediately ready. In figure 7.4, 7.5 and 7.6,
three different resource allocation strategies are demonstrated. In these figures, the X-axes are
time, the Y-axes are workload request arrival rates, the curves are the workload request arrival
rates, the dotted lines are the planned amount of resources according to capable request arrival
rate of workload and the continuous lines are the real allocated amount of resources according
to capable request arrival rate of workload.

Figure 7.4 demonstrates the resource provisioning situation when allocating resources ac-
cording to the maximal request arrival rate of time interval from now to one scaling time interval
later. When allocated amount of resources need to be decreased, the real available amount of
resources reach planned amount resources immediately. So resource over-provisioning and
under-provisioning will not be caused by resource deallocation. When allocated amount of
resources need to be increased, the real available amount of resources are not able to reach
planned amount resources. Increased amount of resources will be ready one step later than it’s
needed. So this strategy may lead to under-provisioning.

Figure 7.5 demonstrates the resource provisioning situation when allocate resources accord-
ing to the maximal request arrival rate of time interval from one scaling time interval later to two
times of scaling time interval later. When allocated amount of resources need to be increased,
the real available amount of resources will reach planned amount resources just when the re-
source is needed. So resource over-provisioning and under-provisioning will not be caused.
When allocated amount of resources need to be decreased, the real available amount of re-
sources will be deallocated immediately even if the resources are still needed in current time
interval. Therefore, decreased amount of resources will be one step before it’s needed. So this
strategy may lead to under-provisioning.

In figure 7.4, we can see that allocating resources according to the maximal request arrival
rate of time interval from now to one scaling time interval later performs well when resources
need to be deallocated but can lead to under-provisioning when the resources need to be in-
creased. In figure 7.5, we can see that allocating resources according to the maximal request
arrival rate of time interval from one scaling time interval later to two scaling time interval later
performs well when resources need to be increased but can lead to under-provisioning when
deallocation. There is one of the methods to combine the benefits of both. Resources should
be increased according to workload condition from one scaling time interval later to two times
of scaling time interval later. Resources should be decreased according to workload condition
from now to one scaling time interval later. However, at a specific scaling time point, resource
allocating and deallocating decisions can be in conflict. For example, when request arrival rate
is low from now to one scaling time interval later and workload is high from one scaling time
interval later to two times of scaling time interval later. Resources should be allocated accord-
ing to the highest workload to avoid under-provisioning caused by long booting up and system
adapting time. As demonstrated in figure 7.6, in our runtime control method, at each scaling
time point sa;, resources are allocated according to the maximal possible request arrival rate for
next two scaling time interval that is time interval [sa;, sa;;2].

It takes stably under 1 minute to forecast workload based on WCEF. Therefore, each fore-
casting is performed at 1 minute before each scaling time point sa; when the request arrival
rate of the workload at time point sa; is not yet available. At 1 minute before each scaling time

7.3. RCSREPRO RUNTIME CONTROL METHOD DESCRIPTION 133

point sa;, actually the workload condition for time interval [sa; — 1lminute, sa;,3 — lminute]
is forecasted to include the workload prediction for time interval [sa;, sa; o] when scaling time
interval is not significantly bigger than 1 minute. When scaling time interval is bigger enough,
we still forecast the workload condition for time interval [sa; — lminute, sa; 1o — lminute] to
approximately seen as the workload condition of time interval [sa;, $a; o).

MFC based resource mapping

RCSREPRO is a runtime control method based on MFC. The initial MFC model is established
through benchmark before runtime. Benchmark is interesting for runtime control because the
resource demanded by applications can’t be summarized as a general knowledge. In other
words, application behaviours under different workloads and different resource configurations
depend on characteristics of the application itself. Applications can be diverse. When imple-
mentation details of the application is not available and the performance of the application is
unknown as a freshly developed application, benchmark is a practical way of understanding the
application behaviours under different workloads and its resource consumption. In this way, the
runtime control system can determine the suitable condition for scaling actions to ensure the
continuing satisfaction of SLA.

During SLA feasibility study, we achieved a table of MFC for one instance of each possible
flavor on each stage. This MFC table tells us the maximal capable request arrival rate for adopt-
ing one instance on one specific stage. As explained in previous chapter 6.2.3, it is reasonable
to assume that the MFC of adopting "n" instances of the same flavor on one stage equals to "n"
times of MFC of one single instance of same flavor on the same stage. The maximal capable
request arrival rate of the whole deployment of the application is the minimal multiple instance
MFC among stages.

In a PSLA contract, the maximal number of instances and the minimal number of instances
are also defined. At runtime, when we want to assign resources for a predicted maximal request
arrival rate, we can search all possible deployments according to single instance MFC table
and number of instances constraints, and then select one deployment. The selection can follow
cost effective, balanced allocation of resources or fast scaling speed. Cost effective means
to always choose the cheapest deployment. Balanced allocation of resources means the gap
between maximal capable request arrival rates of each stage are small so that there is no obvious
bottleneck in the deployment. In this way, the resources are not wasted. Fast scaling speed
deployment means the time needed to deploy the new configuration is small. Which deployment
to be selected is a multiple criteria decision making problem. The developed mechanism for
solving this problem will be a part of our future work and is out of the discussion of this thesis.

Here we assume that fast scaling speed has the highest priority and horizontal scaling is
faster than vertical scaling. That is to say we usually prefer the deployment which uses the
same flavor as current one on each stage as long as the number of instances constraints are still
satisfied. The priority of balanced allocation of resources principle comes secondly. That is to
say, when the needed amount of instances is more than the MaxNol ; 6.5.3 defined in SLA for
current flavor, the configuration which has the smallest waste of capable arrival rate on each
stages will be adopted. The priority of cost effective comes last. That is to say, when several
configurations have the same amount of wasted capability, one of them which has smallest cost
will be adopted.

CHAPTER 7. RCSREPRO: RUNTIME CONTROL METHOD BASED ON SCHEDULE,
134 REACTIVE AND PROACTIVE METHODS

Reactive MFC correction

Y

WCF accuracy: | opservedAR - forecastedAR>d |observedAR— forecastedAR|<d JforecastedAR— observedAR>%
Resource usage: AggResourceUsage<LB LB< AggResourceUsage<UB AggResourceUsage>UB
MFC correction: MFC=(1+y)*MFC MFC:%(MFC+%) MFC=(1-x)xMFC

Figure 7.7. MFC model improvement based on reactive runtime control.

7.3.3 Mapping model improvement based on reactive runtime control in
RCSREPRO

One primal method of runtime control is creating a load balancing server cluster and manually
adding or removing servers. It is a typical practice when adopting IaaS. Nowadays, most [aaS
providers provide PaaS level services to automate this process. These services are named as
Auto-scaling services. Auto-Scaling services aims at automatically allocating and deallocat-
ing resources to ensure the application performance as well as avoid over-much. Auto-Scaling
services can be helpful for lowering maintenance cost. When workload of the application sig-
nificantly changes during runtime, Auto-Scaling service, which is a typical reactive runtime
control method, is the universal choice in the industry.

Our runtime control method continuously improves the accuracy of MFC, which is our
workload resource mapping model, based on reactive runtime control. Classical reactive run-
time control is a mechanism based on threshold. In this subsection, how and why we adapt
classical threshold based runtime scaling method in RCSREPRO will be introduced.

Why reactive runtime control in RCSREPRO

Theoretically, only proactive runtime control method should be able to allocate and deallocate
right amount of resource to guarantee SLA and save cost as much as possible. This could be
the truth when the prediction of the request arrival rate of the workload is extremely precise,
the mapping model from workloads to underneath resources is perfectly fit the physical truth
from the very beginning, the cloud environment keeps still for example VMs can achieve fixed
amount of resources even during the resource competition among VMs located in the same host.
Since none of these hypothesis can be easily realized in practice, we complete proactive runtime
control method with reactive runtime control method. Reactive method is adopted to evaluate
the effect of runtime control during the previous scaling time interval.

Comparing to the classical threshold based reactive runtime control method, we will not
adopt the system cool down time. It is not necessary to set system cool down time because we
already define the time duration between two scaling actions is at least the sum up of system

7.3. RCSREPRO RUNTIME CONTROL METHOD DESCRIPTION 135

cool down time and system performance stable under the new configuration.

The continuous beyond threshold duration will not be adopted in initial version of RCSRE-
PRO. It is not necessary to set the continuous beyond threshold duration to trigger the scaling
action.

Compared to classical threshold based runtime control method, which simply estimates the
future system usage amount will be the same as current situation, our method does not need this
continuous beyond threshold duration to make the prediction reliable and to avoid the runtime
control method too sensitive to the resource usage condition. Resources are assigned mainly
according to root cause which is workload condition while performance metrics and threshold
helps adjust the MFC model. MFC is improved step by step and system will not be too sensitive
to the modification as long as the parameter x percent and y percent are carefully tuned. For
example, defining x percent and y percent through benchmarks. The allocated resource for a
specific workload request arrival rate is more and more fitted with the development of the MFC
model.

Accuracy of workload forecasting

As demonstrated in figure 7.7, the WCF prediction is accurate or not based on the compari-
son of predicted request arrival rate (forecasted AR) and observed one (observedAR). If the
differences between forecastedAR and observed AR is smaller than 9, the WCF prediction is
seen as accurate. Otherwise, WCF prediction is not accurate. If WCF works with an acceptable
accuracy, the resource utilization represent the matching degree of required resources and allo-
cated resources and a series of MFC improvement activities can be performed for any resource
usage situation. On the contrary, when the WCF prediction result is not accurate, MFC model
can only be improved under certain circumstances.

Aggregated resource utilization and stable observations

When horizontal scaling is performed on one stage, more than one instances can be used on this
stage. As mentioned before, the cloud environment is not stable and the real available resources
for each instance of the same stage could be different. Therefore, it’s possible that not all of
these instances can reach the high level resource utilization at the same time. When only a
handful of instances can reach the high level resource utilization, MFC can not be updated. It
may caused by unstable cloud environment or the application hasn’t been adapted to the new
configuration.

Only the stable observations can be used to update the MFC. We define a stable observa-
tion as at least z percent of the instances on current stage have a resource utilization within a
specific resource usage range. In figure 7.7, AggResourceU sage is an aggregated value of re-
source utilization on all instances of one stage. AggResourcel sage means at least z percent of
the instances on this stage should satisfy the condition. Resource usage range is defined through
lower-bound (L B) or upper-bound (U B). For example, AggResourcelU sage < LB means that
at least z percent of the resource utilization is smaller than the lower-bound. A stable observa-
tion is defined through AggResourceUsage, LB and UB. z of AggResourceU sage, LB and
U B are configurable parameters. For example, one stable observation AggResourceU sage <
80(z = 90) means that at least 90% of the instances on current stage can reach resource utiliza-
tion higher than 80%. When stable observations on one or more stages are achieved, MFC can
be updated.

CHAPTER 7. RCSREPRO: RUNTIME CONTROL METHOD BASED ON SCHEDULE,
136 REACTIVE AND PROACTIVE METHODS

MFC value correction

In our runtime control method, the mapping from workload to resource configuration are mainly
based on MFC. As mentioned before, the initial MFC is achieved through benchmark and linear
under-estimation during the SLA feasibility study. The accuracy level of the MFC can influence
the result of runtime control. Limited time and resources can be used during benchmark and
our SLA feasibility study method itself can introduce wide range of under estimation on the
capability of flavors. Initial MFCs achieved through SLA feasibility study need to be improved
as a mapping model of runtime control method. With the accumulation of the runtime perfor-
mance metrics and system behaviours observations, MFC values may be improved. Resource
usage can be used to correct MFC model.

All stages of the application may not be able to reach the high level resource utilization at the
same time. It’s because there may existing one or more bottlenecks in the current configuration.
The bottleneck stages can reach the high level resource utilization while the other stages may
have lower resource utilization. The stages with acceptable resource utilization can be updated
with new MFC based on observed request arrival rate. The stages with too high or too low level
resource utilization will update its MFC according to two configurable parameters.

Even if our SLA feasibility study method is designed to eliminate the possibility of over-
estimation of MFC, we still design the MFC development part of our runtime control method
to be able to deal with MFC over-estimation because MFC could be over-corrected during the
process of improving an under-estimated MFC.

e MEFC correction when WCF forecasting is accurate

As demonstrated in figure 7.7, if the resource utilization AggResourcelUsage exceeds
the upper-bound threshold U B, for example CPU usage>80%, it means that there was an
under-provisioning of resources. Never the less, a high level of resource utilization also
means that there are still intense competitions of resources and probably certain amount
of requests are still waiting in the queue to be served. Since these historical requests still
need to be served during the coming scaling time interval and occupy the resources al-
located for new requests, more resources will be allocated during current scaling action
indirectly by decreasing MFC value. The incremental resources compared to the original
planning is depending on the configuration of parameter = percent. The bigger x percent
is, the larger increment of assigned resources per workload unit will be and vice versa. It
is possible that current scaling action chooses another flavor than previous one. There-
fore the increment of resources will not appear and under-provisioning of resources will
trigger the above process again.

If the resource utilization AggResourcelU sage is below the lower-bound threshold LB,
for example CPU usage<50%, it means that there is over-provisioning of resources. Re-
sources are wasted during the past time interval. Due to the feature of services, not
used services can not be kept for future use. Resource utilization below the lower-bound
threshold happens when predicated workload is much higher than real condition or the
model used to do workload resource mapping under estimated the capability of resources.
As long as the workload prediction accuracy is acceptable, we can get the assertion that
MFC mapping model under-estimated the capability of this flavor for this stage. So, we
will correct the MFC value by increasing y percent. y percent is configurable as = percent
and higher y percent value will lead to substantially decreasing of resource allocation.

7.4. CONCLUSION 137

When resource utilization AggResourcelUsage is within an acceptable range (within
[LB, U B]) and workload prediction is accurate, the observed workload and resource con-
figuration can also be used to correct the MFC model. In our runtime control method,
when resource utilization is in high level (but still within an acceptable range, for exam-
ple 50% - 80%), we assume that the current flavor fully uses its capability on current
stage. Then, we will use the current served request arrival rate to update the MFC of
current flavor and stage. To be more specific, the new MFC value will be the mean value
of old MFC value and the average request arrival rate on each instance. We will not al-
ways have request arrival rate monitoring informations for each instance. Our method is
based on minimal requirements on request arrival rate monitoring informations which is
the request arrival rate at the entrance of the application.

e MEFC correction when WCF forecasting is not accurate

The "number of instances" Nol is always assigned according to the predicted work-
load (forecastedAR). As demonstrated in figure 7.7, if AggResourcelUsage is too
high, it indicates that the allocated resource is not enough because the real workload
is heavier than expected or the MFC is over-estimated. If the observed AR is lower
enough than forecasted AR, the MFC value is too big to allocate enough instances ac-
cordingly. Therefore, MFC value should be decreased. If the observedAR is bigger
enough than forecastedAR, the accuracy of MFC value depending on the degree of
AggResourceUsage and differences level between observedAR and forecastedAR.
Therefore, no certain assertion can be made in this situation.

Similarly, when AggResourceU sage is too low and observed AR is bigger enough than
forecasted AR, it indicates that MFC value needs to be increased. When the forecasted AR
is not accurate, real request arrival rate observedAR is either bigger or smaller than
forecasted AR. However, the current MFC model can be either under-estimated or over-
estimated. Therefore, the AggResourcelU sage could still be within the acceptable range.
In this case, MFC value can also be updated by taking the mean value of current MFC
and the average request arrival rate afforded by one instance.

7.4 Conclusion

In this chapter, we propose RCSREPRO, a Runtime Control method based on schedule, reactive
and proactive runtime control methods. RCSREPRO allows us to benefit the scalability feature
of cloud infrastructures and to automatically allocate and release resources according to chang-
ing needs. Besides making a resource provisioning schedule according to workload information
listed in SLA before runtime, RCSREPRO also forecasts the fluctuating workload to achieve
the detailed workload information at runtime and provision resources accordingly in a proac-
tive way to have resources ready when they are needed. RCSREPRO predicts future workload
by using WCF which is a dynamic workload forecasting tool based on time series. MFC, the
workload-resource mapping model used in RCSREPRO, is initially derived from benchmarks
in SLA feasibility study described in section 6.3 and continuously improved in a feedback way
at runtime to increase the accuracy of the control.

Chapter 8

Experiments

8.1 Goals of the experiment

As described in chapter 7, our runtime control method RCSREPRO is based on both proac-
tive runtime control and reactive runtime control. In the proactive runtime control part of our
method, there are two important parts, workload prediction and workload-resource mapping.
We continuously improve our workload resource mapping model in the reactive runtime con-
trol part of our method. The workload prediction relies on WCE. We trust that WCF can predict
the workload with a high level of accuracy and we assume that the accuracy is 100%. So we
will not install WCF in our experiment. We will only check our workload-resource mapping
model part of our method. To be more precise, the goal of our experiment is to prove that MFC
can be used as a workload-resource mapping model and MFC can be improved according to
our runtime control method.

8.1.1 Abstract application

As described in chapter 4, several components can be deployed in the same VM and we consid-
ering scaling activities in VM level. To perform benchmarks in our experiment, it is necessary
to have detailed knowledge about the system under test. To be more precise, we need to know
how does one request use resources of the system under test.

We developed "Rubberband", an elastic application, to have more information and control
on the system under test. "Rubberband" follows the Service Oriented Architecture. When
one request is injected into "Rubberband", each component will be loaded (or not) according
to a configurable request. Compared to the other component based application, one VM has
only one component of "Rubberband" deployed on it. Therefore, "Rubberband" is actually an
abstract of stage.

Rubberband request structure

Since "Rubberband" is an abstract of stage, request of "Rubberband" consists informations that
which stages to load, the sequence of loading stages and the level of resource consuming. These
informations are expressed in a recursive way.

<Request> = <Stage_Name><Commands>{ Subsequent_Request_Order }{
Subsequent_Requests}

140 CHAPTER 8. EXPERIMENTS

Listing 8.1. Request structure of Rubberband.

<Stage_Name> indicates which stage should be loaded through the IP address of load bal-
ancer.

<Commands> is composed of several <Command>. One <Command> indicates one kind
of resource to load on, such as CPU, memory, I/O or network as while as the level of loading
this resource. The level of loading resource is expressed through one integer number from 0 to
unlimited. Taking CPU for example, this integer indicates how many times of a factor calcu-
lation will be performed to charge the CPU. This factorial calculation is done through for loop
and the used amount of RAM will not increase. When the integer is 0, no factorial calculation
will be performed. When the integer is 100, the factorial calculation will be performed 100
times and the request response time will be longer. The CPU utilization can change with the
dynamic request arrival rate.

{Subsequent_Request_Order} indicates the time sequence of executing the subsequent re-
quests. There are two kinds of order, sequential and parallel. Sequential means executing the
requests listed in {Subsequent_Requests} one after another. Parallel means executing the re-
quests listed in {Subsequent_Requests} all at the same time.

{Subsequent_Requests} is composed of several <Request>. Each <Request> listed in { Sub-
sequent_Requests} still have the structure defined for current request. Therefore, <Request> is
defined in a recursive way and the end of one request definition is a <request> without {Subse-
quent_Requests}.

Rubberband architecture

"Rubberband" is a software which can be constructed freely. "Rubberband" can be constructed
as a sequential application like typical 3 tier web application. "Rubberband" can also be con-
structed as a no circuit diagram which means the sequence of loading stages can be both sequen-
tial and parallel. This makes "Rubberband" can be used to test our method under complicated
application environment than just sequential one. Figure 8.1 is an example of "Rubberband"
application architecture. In this example, there are six stages, from stageO to stage5. StageO,
stage4 and stage5 have only one VM on each stage. Stage2 and stage3 have 2 VMs on each
stage. There are 3 VMs on stagel. One request can load one or several stages but not necessary
from stage0. When there are more than one VM in one stage, a load balancer will be needed,
for example LB1, LB2 and LB3. Load balancers will distribute requests equally among VMs
belonging to the same stage.

8.2 Experiment environment

8.2.1 Cloud environment based on OpenStack

We build our cloud infrastructure based on OpenStack [Jac12]. OpenStack is a software stack
which aims at managing large amount of compute, storage and network resources and providing
virtualized resources. We install OpenStack on one single node. Ceilometer [Wik15a] aims at
collecting physical and virtual resource utilization in cloud environment.

8.3. EXPERIMENT DESIGN 141

> VM|
VM,
» LB1 > VM » B2
VM3
> VM —
VM, Stage 1 Stage 2 » VM.
Stage 0 Stage 5
VM,
»(LB3 > VM
VM,
Stage 4
Stage 3

Figure 8.1. One example of Rubberband architecture.

8.2.2 Benchmark environment

We use CLIF and SelfBench to perform our benchmarks. For example, as depicted in figure 8.2,
we will use SelfBench to benchmark the Rubberband with two stages. There is one VM on each
stage. To perform SelfBench, one probe is installed on each VM of Rubberband. Besides the
VMs used to deploy Rubberband, we also installed one injector VM and one Benchmark con-
troller. The injector injects requests to Rubberband. Both injector and probes on Rubberband
are under the control of Benchmark Controller which takes charge of the whole benchmark pro-
cess. We also install Rubberband controller to automate the process of deploying Rubberband
and the configuring part of the CLIF based benchmarking environment.

8.3 Experiment design

Our experiment consists of three steps. Through the first step, we will get the real MFC value of
each stage through "SelfBench". In the second step, we will do "CLIF" benchmark to prove that
our workload-resource mapping model works correctly as long as our MFC values are accurate.
In the last step, we will prove MFC, which is the core of our workload-resource mapping model,
can be improved with the reactive part of our runtime control method.

8.3.1 Rubberband and Request construct

We construct a simple Rubberband to test our method for the first step. Our Rubberband appli-
cation consists of two stages connected sequentially. Each stage can have one or more VMs,
therefore there is one load balancer for each stage. The minimum number of instance is 1.

142 CHAPTER 8. EXPERIMENTS

Rubberband| Rubberband
Controllor
Injector ———p LB1 VM, »| LB2 VM,
| probe Frens probe probe
L) L) shee

Benchmark| .
Controllor . //

Figure 8.2. The deployment architecture for performing SelfBench on Rubberband.

> VM)
— VM| »(LB2 » VM’
Stage 1
> VM)
Stage 2

Figure 8.3. The first Rubberband under SelfBench test.

We have only one flavor for each stage. We have only one kind of request. Our request load
two stages sequentially. One request will first load stagel by performing one time of factorial
calculation 2000!. Then the second stage will be loaded by performing three times of factorial
calculation 2000!.

8.3.2 What is the real MFC?

We will get the real MFC through a set of Selfbench benchmark. To get one real MFC, we need
to perform one SelfBench. This SelfBench should have the minimum number of instance on
the MFC related stage and plenty instances on other stages to make sure that the resource on
MEC related stage can be fully used.

Since we have two stages, two times of SelfBench will be needed. As demonstrated in
figure 8.3, to fully use the resource of stagel, 3 instances are needed on stage2 so that stagel
can get saturated before stage2 and the SelfBench can be seen as real M F'C;. Similarly, as
demonstrated in figure 8.4, only one VM is needed on stagel to get the real M F'C5 through
SelfBench.

8.3. EXPERIMENT DESIGN 143

V! > LB2 '——— VM,

Figure 8.4. The second Rubberband under SelfBench test.

8.3.3 Whether or not our workload-resource mapping model works cor-
rectly?

The most accurate MFCs(M F'Cy and M F'C) have been achieved through benchmark based
on SelfBench. In this step, we will check that right amount of resources could be allocated
with the accurate MFC, M F'C'y and M F'C';. We use CLIF to perform 3 benchmarks. Each
benchmark will inject workload with constant request arrival rate in to its optimized Rubber-
band deployment. These deployments are defined according to the real MFC values(M F'C}
and M F'C5). These three different request arrival rate value are defined according to M F'C}
and M F'Cs. Therefore, we can prove that our workload-resource mapping model works appro-
priately under request arrival rate lower than the minimum value of M F'Cy and M F'Cy, bigger
than the maximum value of M F'C, and M F'C5 and between M F'C} and M F (5. Finally, it is
proved that right amount of resources can be allocated according to our MFC based mapping
model, if the resource utilizations and request response time are both within an acceptable range
during these three CLIF benchmark.

8.3.4 Whether or not MFC can be improved by RCSREPRO?

The initial Workload-resource mapping model is derived from benchmark. In practice, this
initial MFC could be not accurate enough. Therefore, our runtime control method can improve
the initial MFC value in a reactive way. In this step, we will check that the initial imprecise
MEFC value can be improved with our runtime control method RCSREPRO when the workload
prediction is accurate.

As explained in chapter 7, the MFC values are improved in a reactive way based on mon-
itoring information. We use the monitoring information provided by Ceilometer. We initially
set MFC] < MFC, and M FCY > MFC5,. Then, we allocate resources according to M F'C|
and M FC). We check the resource utilization of VMs on each stage. We set = and y, the
parameters to improve MFC, both as 10% which means the MFC value will be increased (or
decreased) by 10% when the average resource utilization is lower (or higher) than the lower-
bound (upper-bound). MFC values are improved according to reactive part of RCSREPRO
described in section 7.3.3. Finally, it is proved that imprecise MFC value can be improved with
RCSREPRO if M F (] closes to M F'Cy and M FCY, closes to M FCs.

Chapter 9

Conclusions and future works

Cloud, as a booming form of IT infrastructure, facilitates the provisioning of IT resources. IT
resources are moved from local to internet environment. Cloud clients deploy their application
and store their data in remote data center. Cloud services provide their clients with large scale
of computing services, storage services or network resources. These resources are elastic and
customizable. Cloud clients rent and use these resources in a "pay as you go" way which
greatly reduce the IT investment risk and management cost. Cloud computing has aroused wide
attention among academia and industry. Researches around QoS management, SLA, PaaS and
runtime control have attracted more and more attention.

9.1 Conclusions

In this thesis, we focus on the QoS management problems for PaaS. To be more specific, the
goal of this thesis is to manage the QoS of application running in cloud infrastructure.

In chapter 3, we introduced SLA standards and SLA management. SLA, as a contract which
specify the service and QoS criterion, is indispensability for service oriented business. PaaS
providers, which take charge of application’s QoS, need to consider the on-demand resources
and dynamic resource requirements and describe these characters in their PaaS level SLA. One
PaaS level SLA contract should be customize for each contracted application since QoS is an
application dependent topic. However, existing SLA description languages are not suitable for
PaaS level SLA. Therefore, in chapter 5 of this thesis, we proposed PSLA which is a generic
PaaS level SLA based on WS-Agreement skeleton. PSLA was implemented in XML to make
PSLA based SLA contract machine readable for automated SLA management.

Benchmarking provides cloud application dependent analysis of the application behaviour,
for instance throughput of served requests, response time. Through benchmark, the feasibility of
a SLA can be known. In other words, the question that whether QoS target can be satisfied with
the workload, resource and cost constraints stated in SLA can be answered. We described our
benchmark based SLA feasibility study method in chapter 6. Benchmarks are relatively costly
and precise feasibility study usually imply large amount of benchmarks. Our benchmark based
SLA feasibility study method makes tradeoff between accuracy and costs. Limited amount
of benchmarks are performed to achieve a workload-resource mapping model. This mapping
model, as an intermediate of this benchmark based feasibility study process, is used in our
runtime control method which is introduced in chapter 7.

146 CHAPTER 9. CONCLUSIONS AND FUTURE WORKS

As described in chapter 4, runtime control aims at provisioning resources for running appli-
cations to satisfy the terms defined in SLA. Existing runtime control methods are in a schedule,
reactive or proactive way, based on rule, control theory, queuing theory, reinforcement learning
or time series. Schedule based runtime control methods can not adapt to fluctuating workload.
However, reactive runtime control methods require great efforts and knowledges about the run-
ning application behaviour from application owners, while proactive runtime control methods
have strong constraints which block these methods from applying in practice. Therefore, we
proposed RCSREPRO, a runtime control method, to release the burden of application own-
ers through a set of benchmarking in chapter 7. The results of benchmarks provide an initial
proactive runtime control model to make our method more practical.

RCSREPRO is a Runtime Control method based on schedule, reactive and proactive runtime
control methods. RCSREPRO allows us to benefit the scalability feature of cloud infrastructures
and to automatically allocate and release resources according to changing needs. Besides mak-
ing a resource provisioning schedule according to workload information listed in SLA before
runtime, RCSREPRO also forecasts the fluctuating workload to achieve the detailed workload
information at runtime and provision resources accordingly in a proactive way to have resources
ready when they are needed. RCSREPRO predicts future workload by using WCF 7.3.2 which
i1s a dynamic workload forecasting tool based on time series. MFC, the workload-resource
mapping model used in RCSREPRO, is initially derived from benchmarks in SLA feasibility
study described in section 6.3 and continuously improved in a feedback way at runtime 7.3.3 to
increase the accuracy of the control.

9.2 Future works

In PSLA, the workload composed of multiple kinds of requests can be defined through the
definition of several kind of request. For the definition of one kind of request, both request
arrival rate and the variation of request arrival rate should be defined. However, understanding
the characteristic of an application which serves many kinds of requests through benchmark
is a challenging task. Each kind of requests probably requires different kinds and amount of
resources. When multiple kinds of requests are mixed and contend for resources together, the
QoS and system behaviours affected by multiple factors such as the composition of requests.
The workload-resource mapping model for multiple kinds of requests should takes these factors
into consideration. In our current workload-resource mapping model, only request arrival rate
is considered. Our SLA feasibility study method and runtime control method RCSREPRO
can’t be applied on workload consisted of multiple request arrival rate. In the next phases of
our research, we will improve our SLA feasibility study method and runtime control method
RCSREPRO to adapt to workload consisted of multiple requests and also introduce benchmarks
about the variation of request arrival rate.

List of publications

Workshop

e Ge Li, Frédéric Pourraz and Patrice Moreaux, PSLA: a PaaS level SLA description lan-
guage, in Cloud Engineering(IC2E), 2014 IEEE International Conference on, page 452-
457. IEEE, 2014.

International conferences

e Ge Li, Frédéric Pourraz and Patrice Moreaux, A benchmark based SLA feasibility study
method for platform as a service. CLOUD COMPUTING 2015, page 175, 2015.

Appendix A

PSLA XML Schema

PSLA is expressed in Extensible Markup Language (XML). A XML schema language is indis-
pensable to stipulate the PSLA contracts. We choose XML Schema Definition (XSD) to express
these rules. The XML Schema is listed in this appendix.

<?7xml version="1.0" encoding="UTF—-8"?>

<schema elementFormDefault="qualified"
targetNamespace="http ://www. polytech .univ—savoie. fr/opencloudware/v2/
metamodels/cloud—agreement"
xmlns="http ://www.w3.0rg/2001/XMLSchema">

<!—— LISTIC extensions —>

<!—— Context extension —>

<include schemalLocation="./listic_ocw_ContextExtension.xsd" />

<!—— ServiceDescriptionTerm extension —>

<include schemalLocation="./listic_ocw_ServiceDescriptionTermExtension .xsd

n />

<!—— ServiceReference extension —>

<include schemalLocation="./listic_ocw_ServiceReferenceExtension.xsd" />

<!—— QualifyingCondition extension —>

<include schemalLocation="./listic_ocw_QualifyingConditionExtension.xsd"

/>

<!—— CustomServicelLevel extension —>

<include schemalocation="./listic_ocw_CustomServiceLevelExtension.xsd" />
</schema>

<?xml version="1.0" encoding="UTF-8"7>

<schema elementFormDefault="qualified"
targetNamespace="http ://www. polytech .univ—savoie. fr/opencloudware/v2/
metamodels/cloud—agreement"
xmlns="http ://www.w3.0rg/2001/XMLSchema"
xmlns:ocw="http ://www. polytech .univ—savoie. fr/opencloudware/v2/
metamodels/cloud—agreement">

<!—— LISTIC Context extension —>

<element name="ContextExtension" type="ocw:ContextExtensionType" />

Chapter A. PSLA XML Schema

<complexType name="ContextExtensionType">
<sequence >
<element name="OVFLocation" type="anyURI"/>
</sequence >
</complexType>
</schema>

<?xml version="1.0" encoding="UTF-8"7>

<schema elementFormDefault="qualified"
targetNamespace="http ://www. polytech .univ—savoie. fr/opencloudware/v2/
metamodels/cloud—agreement"
xmlns="http ://www.w3.0rg/2001/XMLSchema"
xmlns:ocw="http ://www. polytech .univ—savoie. fr/opencloudware/v2/
metamodels/cloud—agreement">

<!—— LISTIC shared types —>
<include schemalLocation="./listic_ocw_SharedTypes.xsd" />

<!—— LISTIC ServiceDescriptionTerm extension —>
<element name="ServiceDescriptionTermExtension" type="ocw:
ServiceDescriptionTermExtensionType" />

<complexType name="ServiceDescriptionTermExtensionType">
<choice maxOccurs="unbounded">
<element name="Metric" type="ocw: MetricType" />
<element name="InputData" type="ocw:InputDataType" />
<element name="Resource" type="ocw:ResourceType"/>
</choice >
</complexType>

<l—— Metric —>
<complexType name="MetricType">
<complexContent >
<extension base="ocw:NamedElement">
<sequence >
<element name="Unit" type="ocw: UnitType"/>
<element name="Type" type="ocw:Type" />
<element name="ValueGenerateBy" type="ocw: ValueGenerateByType"
</sequence >
</extension >
</complexContent>
</complexType>

<complexType name="UnitType">
<choice >
<element name="BuiltInUnit">
<simpleType >
<restriction base="string">
<enumeration value="second" />
<enumeration value="minute" />
<enumeration value="hour" />
<enumeration value="percent" />
<enumeration value="number" />
<enumeration value="Euro" />
<enumeration value="USD" />

150

/>

<enumeration
<enumeration
<enumeration
<enumeration
<enumeration
<enumeration

value="Pound" />
value="requests/s"/>
value="MIPS"/>
value="Mo"/>
value="Go"/>
value="To"/>

<enumeration value="Mb/s"/>
<enumeration value="Gb/s"/>
</restriction >
</simpleType >
</element>
<element name="UserDefinedUnit">
<complexType>
<sequence>
<element name="Description" type="string" />
</sequence >
<attribute name="Name" type="string" use="required"/>
</complexType>
</element >
</choice >
</complexType>

<simpleType name="Type">
<restriction base="string">
<enumeration value="boolean" />
<enumeration value="decimal" />
<enumeration value="float" />
<enumeration value="double" />
<enumeration value="short" />
<enumeration value="integer" />
<enumeration value="long" />
<enumeration value="negativelnteger" />
<enumeration value="positivelnteger" />
<enumeration value="unsignedLong" />
<enumeration value="unsignedInteger" />
<enumeration value="unsignedShort" />
</restriction >
</simpleType >

<complexType name="ValueGenerateByType">
<sequence >
<!—— Should be an IDREF, but WS-Agreement ServiceReference s Name
attribute is define as a string and not an ID ——>
<element name="ServiceReferenceName" type="string" />
<element minOccurs="0" name="ServiceReferenceOperation" type="string"
/>
<element name="Schedule" type="duration" />
</sequence >
</complexType>

<!—— InputData —>
<complexType name="InputDataType">
<complexContent >
<extension base="ocw:NamedElement">
<sequence >
<!—— A scenario where the request is described — a Clif scenario

151

Chapter A. PSLA XML Schema

for example —>
<element name="Scenario" type="anyURI" />
<element name="Description" minOccurs="0" type="string" />
<!—— Can be extended —>
<any minOccurs="0" namespace="#any" processContents="strict" />
</sequence >
</extension >
</complexContent >
</complexType>

<!—— Resource —>
<complexType name="ResourceType">
<complexContent>
<extension base="ocw:NamedElement">
<sequence >
<element name="XPath" type="string" />
<!—— Can be extended —>
<any minOccurs="0" namespace="#any" processContents="strict" />
</sequence >
</extension >
</complexContent>
</complexType>
</schema>

<?xml version="1.0" encoding="UTF-8"7>

<schema elementFormDefault="qualified"
targetNamespace="http ://www. polytech .univ—savoie. fr/opencloudware/v2/
metamodels/cloud—agreement"
xmlns="http ://www.w3.0rg/2001/XMLSchema"
xmlns:ocw="http ://www. polytech .univ—savoie. fr/opencloudware/v2/
metamodels/cloud—agreement">

<!—— LISTIC ServiceReference extension —>
<element name="ServiceReferenceExtension" type="ocw:
ServiceReferenceExtensionType" />

<complexType name="ServiceReferenceExtensionType">
<sequence >
<element name="WSDLLocation" type="anyURI" />
<element maxOccurs="unbounded" name="Operation" type="string" />
<!—— Can be extended —>
<any minOccurs="0" namespace="#any" processContents="strict" />
</sequence >
</complexType>
</schema>

<?7xml version="1.0" encoding="UTF—-8"?>

<schema elementFormDefault="qualified"
targetNamespace="http ://www. polytech .univ—savoie. fr/opencloudware/v2/
metamodels/cloud—agreement"
xmlns="http ://www.w3.0rg/2001/XMLSchema"
xmlns:ocw="http ://www. polytech .univ—savoie. fr/opencloudware/v2/
metamodels/cloud—agreement">

<!—— LISTIC QualifyingCondition extension —>
<element name="QualifyingConditionExtension" type="ocw:

152

QualifyingConditionExtensionType" />

<complexType
<sequence >
<element
<element
<element
<element

name="QualifyingConditionExtensionType">

name="Periods"
name="Workloads"
name="ScalabilityPoints"

AffinityConstraintsType" />
</sequence >
</complexType>

<!—— Periods
<complexType
<sequence>
<element

</sequence >

—>
name="PeriodsType">

type="ocw: PeriodsType" />
type="ocw: WorkloadsType" />

type="ocw: ScalabilityPointsType'
minOccurs="0" name="AffinityConstraints"

type="ocw:

/>

name="Period" type="ocw:PeriodType" maxOccurs="unbounded" />

</complexType>

<complexType
<sequence>
<element
<element
<element

</sequence >

name="PeriodType">

name="Start" type="dateTime" />

name="End"
name="Interspace"

type="dateTime" />
type="ocw: InterspaceType" minOccurs="0" />

type="duration" />

interval —>

</complexType>
<complexType name="InterspaceType">
<sequence>
<element name="Timelnterval"
<!—— The duration between 2 times
<element name="Step" type="duration" />

</sequence >

</complexType>

<!—— Workloads —>

type="IDREF" />
type="IDREF" />
type="positivelnteger"/>
type="positivelnteger"/>
type="positivelnteger" />

type="ocw: VariationType"

<complexType name="WorkloadsType">
<sequence >
<element name="Workload"
">
</sequence >
</complexType>
<complexType name="WorkloadType">
<sequence>
<element name="InputDataName"
<element name="MetricName"
<element name="LowerBound"
<element name="UpperBound"
<element name="Average"
<element minOccurs="0" name="Variation"
</sequence >
</complexType>
<complexType name="VariationType">

<seéquence >

153

/>

type="ocw: WorkloadType" maxOccurs="unbounded

Chapter A. PSLA XML Schema

<element name="MetricName" type="IDREF" />
<element name="Threshold" type="positivelnteger"/>
</sequence >
</complexType>

<!—— ScalabilityPoints —>
<complexType name="ScalabilityPointsType">
<choice maxOccurs="unbounded">
<element name="ComputeScalabilityPoint" type="ocw:
ComputeScalabilityPointType" />
<element name="StorageScalabilityPoint" type="ocw:
StorageScalabilityPointType" />
</choice >
</complexType>

<complexType name="ComputeScalabilityPointType">
<sequence >
<element name="ResourceName" type="IDREF" />
<element minOccurs="0" name="HorizontalScaling" type="ocw:
HorizontalScalingType" />
<element minOccurs="0" name="ComputeVerticalScaling" type="ocw:
ComputeVerticalScalingType" />
</sequence >
</complexType>

<complexType name="StorageScalabilityPointType">
<sequence >
<element name="ResourceName" type="IDREF" />
<element minOccurs="0" name="HorizontalScaling" type="ocw:
HorizontalScalingType" />
<element minOccurs="0" name="StorageVerticalScaling" type="ocw:
StorageVerticalScalingType" />
</sequence >
</complexType>

<complexType name="HorizontalScalingType">
<sequence >
<element name="LowerBound" type="positivelnteger"/>
<element name="UpperBound" type="ocw:UpperBoundType"/>
</sequence >
</complexType>

<simpleType name="UpperBoundType">
<union memberTypes="positivelnteger">
<simpleType>
<restriction base="string">
<enumeration value="unbounded"/>
</restriction >
</simpleType>
</union>
</simpleType >

<complexType name="ComputeVerticalScalingType">
<sequence >
<element maxOccurs="unbounded" name="Set" type="ocw:ComputeSetType"
/>

154

</sequence >
</complexType>

<complexType name="ComputeSetType">
<sequence >
<element name="CPU" type="ocw:LowerBoundType" />
<element name="RAM" type="ocw:LowerBoundType" />
<element maxOccurs="unbounded" minOccurs="0" name="NetworkThroughput"
type="ocw:NetworkThroughputType" />
</sequence >
</complexType>

<complexType name="LowerBoundType">
<sequence >
<element name="MetricName" type="IDREF" />
<element name="LowerBound" type="positivelnteger"/>
</sequence >
</complexType>

<complexType name="NetworkThroughputType">
<sequence >
<element name="MetricName" type="IDREF" />
<element name="UploadSpeed" type="positivelnteger"/>
<element name="DownloadSpeed" type="positivelnteger"/>
<element name="ResourceName" type="IDREF" />
</sequence >
</complexType>

<complexType name="StorageVerticalScalingType">
<sequence >
<element maxOccurs="unbounded" name="Set" type="ocw: StorageSetType"
/>
</sequence >
</complexType>

<complexType name="StorageSetType">
<sequence >
<element name="Size" type="ocw:LowerBoundType" />
<element name="DiskThroughput" type="ocw:DiskThroughputType" />
</sequence >
</complexType>

<complexType name="DiskThroughputType">
<sequence >
<element name="MetricName" type="IDREF" />
<element name="ReadSpeed" type="positivelnteger"/>
<element name="WriteSpeed" type="positivelnteger"/>
</sequence >
</complexType>

<!l—— AffinityConstraints —>
<complexType name="AffinityConstraintsType">
<sequence >
<element name="AffinityConstraint" type="ocw: AffinityConstraintType"
maxOccurs="unbounded" />
</sequence >

155

Chapter A. PSLA XML Schema

</complexType>

<complexType name="AffinityConstraintType">
<sequence >
<element maxOccurs="unbounded" name="ResourceName" type="IDREF" />
<element maxOccurs="unbounded" name="Constraint" type="ocw:
ConstraintType" />
</sequence >
</complexType>

<simpleType name="ConstraintType">
<restriction base="string">
<enumeration value="Host Affinity"/>
<enumeration value="Host Anti—Affinity"/>
<enumeration value="Rack Affinity"/>
<enumeration value="Rack Anti—Affinity"/>
<enumeration value="Data Center Affinity"/>
<enumeration value="Data Center Anti—Affinity"/>
<enumeration value="Lonely"/>
</restriction >
</simpleType >
</schema>

<?xml version="1.0" encoding="UTF-8"7?>

<schema elementFormDefault="qualified"
targetNamespace="http ://www. polytech .univ—savoie. fr/opencloudware/v2/
metamodels/cloud—agreement"
xmlns="http ://www.w3.0rg/2001/XMLSchema"
xmlns:ocw="http ://www. polytech .univ—savoie. fr/opencloudware/v2/
metamodels/cloud—agreement">

<!—— LISTIC shared types —>
<include schemalLocation="./listic_ocw_SharedTypes.xsd" />

<!—— LISTIC CustomServiceLevel extension —>
<element name="CustomServiceLevelExtension" type="ocw:
CustomServiceLevelExtensionType" />

<complexType name="CustomServiceLevelExtensionType">
<group ref="ocw:ExpressionGroup"></group>

</complexType>

<!—— ExpressionGroup —>

<group name="ExpressionGroup">
<choice >

<group ref="ocw:LogicExpressionGroup"/>
<group ref="ocw:ComparisonExpressionGroup"/>
</choice >
</group>

<group name="LogicExpressionGroup">
<choice >
<element name="And" type="ocw:BinaryLogicOperatorType" />
<element name="Or" type="ocw:BinaryLogicOperatorType" />
<element name="Not" type="ocw: UnaryLogicOperatorType" />
</choice >

156

</group>

<group name="ComparisonExpressionGroup">
<choice >
<element name="Greater" type="ocw:PredicateType" />
<element name="Less" type="ocw:PredicateType" />
<element name="Equal" type="ocw:PredicateType" />
<element name="GreaterOrEqual" type="ocw:PredicateType" />
<element name="LessOrEqual" type="ocw:PredicateType" />
</choice >
</group>

<!—— Operators —>

<complexType name="UnaryLogicOperatorType">
<group ref="ocw:ExpressionGroup"/>

</complexType>

<complexType name="BinaryLogicOperatorType">
<group maxOccurs="2" minOccurs="2" ref="ocw:ExpressionGroup"/>
</complexType>

<!—— Predicates —>
<complexType name="PredicateType">
<sequence >
<element name="MetricName" type="IDREF" />
<element name="Threshold" type="ocw: ThresholdType" />
</sequence >
</complexType>

<complexType name="ThresholdType">
<sequence >
<element name="Value" type="float" />

<element name="Confidence" type="ocw:ConfidenceType" minOccurs="0" />

</sequence >
</complexType>

<complexType name="ConfidenceType">
<sequence>
<element name="Trust" type="ocw: Trust"/>
<element name="Fuzziness" type="ocw:Fuzziness"/>
</sequence >
</complexType>

<simpleType name="Trust">
<restriction base="float">
<maxInclusive value="1.00" />
<minlnclusive value="0.00" />
</restriction >
</simpleType >
<simpleType name="Fuzziness">
<restriction base="float">
<maxInclusive value="1.00" />
<minlnclusive value="0.00" />
</restriction >
</simpleType >

157

Chapter A. PSLA XML Schema

</schema>

<?7xml version="1.0" encoding="UTF-8"7>

<schema elementFormDefault="qualified"
targetNamespace="http ://www. polytech .univ—savoie. fr/opencloudware/v2/
metamodels/cloud—agreement"
xmlns="http ://www.w3.0rg/2001/XMLSchema"
xmlns:ocw="http ://www. polytech .univ—savoie. fr/opencloudware/v2/
metamodels/cloud—agreement">

<!—— LISTIC shared types —>
<complexType name="NamedElement">
<attribute name="Name" type="ID" use="required" />
</complexType>
</schema>

Listing A.1. XML Schema of PSLA contract.

158

Appendix B

XSL based PSLA contract display

XSL is the logogram for eXtensible Stylesheet Language. XSL can be used to display XML
based information in a human readable way. Therefore, a XSL based tool is developed to display
the PSLA contract in a friendly way. The XSL code is listed in this appendix.

<l—— @author frederic.pourraz@univ—savoie.fr —>

<xsl:stylesheet xmlns:ocw="http ://www.polytech.univ—savoie.fr/opencloudware
/v2/metamodels/cloud—agreement" xmlns:wsag="http ://schemas.ggf.org/graap
/2007/03/ws—agreement" xmlns: xsl="http ://www.w3.0rg/1999/XSL/Transform"
version="2.0">

<xsl:import href="./listic_ocw_ContextExtension.xsl"/>

<xsl:import href="./listic_ocw_ServiceDescriptionTermExtension. xsl"/>
<xsl:import href="./listic_ocw_ServiceReferenceExtension.xsl"/>
<xsl:import href="./listic_ocw_QualifyingConditionExtension.xsl"/>
<xsl:import href="./listic_ocw_CustomServiceLevelExtension.xsl"/>

<xsl:template match="wsag: AgreementOffer">

<html lang="fr">

<head>

<meta charset="utf —8"/>

<meta content="frederic.pourraz@univ—savoie.fr" name="author"/>

<meta content="initial —scale=1.0, maximum—scale=1.0, user—scalable=no,
width=device —width" name="viewport"/>

<link href="http ://www. polytech.univ—savoie.fr/opencloudware/media/image/
favicon.ico" rel="shortcut icon" type="image/x—icon"/>

<link href="http ://www. polytech .univ—savoie.fr/opencloudware/v2/
transformations/media/style/all.css" media="all" rel="stylesheet" type="
text/css"/>

<link href="http ://www. polytech.univ—savoie.fr/opencloudware/v2/
transformations/media/style/768.css" media="(max—width:768px)" rel="
stylesheet" type="text/css"/>

<link href="http ://www. polytech .univ—savoie.fr/opencloudware/v2/
transformations/media/style/640.css" media="(max—width:640px)" rel="
stylesheet" type="text/css"/>

<title >

<xsl:value—of select="wsag:Name"/>

</title >

<script src="http ://www.polytech.univ—savoie.fr/opencloudware/v2/
transformations/media/script/colorify.js" type="text/javascript"/>

<script src="http ://www. polytech.univ—savoie.fr/opencloudware/v2/

Chapter B. XSL based PSLA contract display

transformations/media/script/variables.js" type="text/javascript"/>
</head>
<body>
<xsl:apply—templates select="wsag:Name"/>
<xsl:apply—templates select="wsag: Context"/>
<xsl:apply—templates select="wsag:Terms"/>
</body>
</html>
</xsl:template >

<xsl:template match="wsag:Name">
<header>

<hl>

<xsl:value—of select="."/>

</hl>

</header>

</xsl:template >

<!—— Context —>

<xsl:template match="wsag: Context">

<section id="Context" onclick="colorify (event, this);">
<header>

<hl>Context </hl>

</header>

Agreement Initiator
:

<xsl:value—of select="wsag: AgreementInitiator"/>

Agreement Responder
:

<xsl:value—of select="wsag: AgreementResponder"/>

</1i>

Service Provider
:

<xsl:value—of select="wsag:ServiceProvider"/>

</1i>

Expiration Time
:

160

<xsl:value—of select="wsag:ExpirationTime"/>

</1i>

<xsl:apply—templates select="ocw:ContextExtension"/>
</section >

</xsl:template >

<!—— Terms ——>

<xsl:template match="wsag:Terms">

<section id="Terms" onclick="colorify (event, this);">
<header>

<h1>Terms </hl1>

</header>

<xsl:apply—templates select="wsag: All"/>

</section >

</xsl:template >

<l—— TermCompositor ——>

<xsl:template name="TermCompositor">
<xsl:apply—templates select="wsag: All"/>
<xsl:apply—templates select="wsag:ExactlyOne"/>
<xsl:apply—templates select="wsag:OneOrMore"/>
<xsl:apply—templates select="wsag: ServiceProperties"/>
<xsl:apply—templates select="wsag: GuaranteeTerm"/>
<div class="space"/>

<xsl:apply—templates select="wsag: ServiceDescriptionTerm"/>
<div class="space"/>

<xsl:apply—templates select="wsag: ServiceReference"/>
<div class="space"/>

</xsl:template >

<!—— Operators —>

<xsl:template match="wsag: All">

<section class="TermCompositorOperator" onclick="colorify (event,
<header>

<h1>All </h1>

</header>

<xsl:call —template name="TermCompositor"/>

</section >

</xsl:template >

<xsl:template match="wsag: ExactlyOne">

<section class="TermCompositorOperator" onclick="colorify (event,
<header>

<hl>Exactly One</hl>

</header>

<xsl:call —template name="TermCompositor"/>

</section >

</xsl:template >

<xsl:template match="wsag:OneOrMore">

<section class="TermCompositorOperator" onclick="colorify (event,
<header>

<h1>One or More</hl>

</header>

<xsl:call —template name="TermCompositor"/>

</section >

161

Chapter B. XSL based PSLA contract display

</xsl:template >

<!l—— ServiceDescriptionTerm ——>
<xsl:template match="wsag: ServiceDescriptionTerm">
<section onclick="colorify(event, this);">
<hl>ServiceDescriptionTerm </h1>

Name

:

<xsl:value—of select="@Name"/>

<ul class="serviceName">

Service Name
:

<xsl:value—of select="@ServiceName"/>

<xsl:apply—templates select="ocw:ServiceDescriptionTermExtension"/>
</section >

</xsl:template >

<l—— ServiceReference ——>

<xsl:template match="wsag: ServiceReference">
<section id="{@Name}" onclick="colorify (event, this);">
<hl>ServiceReference </hl>

Name

:

<xsl:value—of select="@Name"/>

</1i>

<ul class="serviceName">

Service Name
:

<xsl:value—of select="@ServiceName"/>

</1i>

<xsl:apply—templates select="ocw:ServiceReferenceExtension"/>
</section >

</xsl:template >

<!—— ServiceProperties —>
<xsl:template match="wsag: ServiceProperties">

162

<xsl:apply—templates select="wsag: VariableSet"/>

</xsl:template >

<l—— Variable ——>

<xsl:template match="wsag: VariableSet">
<xsl:apply—templates select="wsag: Variable"/>
</xsl:template >

<xsl:template match="wsag: Variable">
<xsl:apply—templates select="wsag:Location">
<xsl:with—param name="name" select="@Name"/>
</xsl:apply—templates >

</xsl:template >

<xsl:template match="wsag:Location">
<xsl:param name="name"/>

<xsl:variable name="metric">

<xsl:value—of select="substring —before(substring—after (.,

=),)
</xsl:variable >
<script>
addVariable ("
<xsl:value—of select="$name"/>

" "
b}

<xsl:value—of select="$metric"/>
")

</script>

</xsl:template >

<!—— GuaranteeTerm ——>
<xsl:template match="wsag: GuaranteeTerm">
<section id="{@Name}" onclick="colorify (event,
<h1>GuaranteeTerm </hl1>

Name
:

<xsl:value—of select="@Name"/>

</1li>

Obligated
:

<xsl:value—of select="@Obligated"/>

<div class="space"/>

this) ;">

<xsl:apply—templates select="wsag: ServiceScope"/>

<xsl:apply—templates select="wsag: QualifyingCondition"/>
<xsl:apply—templates select="wsag: ServiceLevelObjective"/>

<xsl:apply—templates select="wsag: BusinessValueList"/>

</section >
</xsl:template >

163

>ocw : MetricName

Chapter B. XSL based PSLA contract display

<!—— ServiceScope —>
<xsl:template match="wsag: ServiceScope">
<ul class="serviceName">

Service Name
:

<xsl:value—of select="@ServiceName"/>

</xsl:template >

<l—— QualifyingCondition —>

<xsl:template match="wsag: QualifyingCondition">

<section onclick="colorify (event, this);">
<hI>QualifyingCondition </hl>

<xsl:apply—templates select="ocw:QualifyingConditionExtension"/>
</section >

</xsl:template >

<!—— ServiceLevelObjective —>

<xsl:template match="wsag: ServiceLevelObjective">
<xsl:apply—templates select="wsag: CustomServiceLevel"/>
</xsl:template >

<xsl:template match="wsag: CustomServiceLevel">
<xsl:apply—templates select="ocw: CustomServiceLevelExtension"/>
</xsl:template >

<!—— BusinessValueList ——>

<xsl:template match="wsag: BusinessValueList">
<section onclick="colorify (event, this);">
<hl>BusinessValueList </hl>
<xsl:apply—templates select="wsag:Importance"/>
<xsl:apply—templates select="wsag:Penalty"/>
<xsl:apply—templates select="wsag:Reward"/>
<xsl:apply—templates select="wsag: Preference"/>
</section >

</xsl:template >

<xsl:template match="wsag:Importance">

Importance

:

<xsl:value—of select="."/>

</1i>

</xsl:template >

<xsl:template match="wsag: Penalty">

Penalty
<xsl:apply—templates select="wsag: Assessmentlnterval"/>

164

<xsl:apply—templates select="wsag: ValueUnit"/>
<xsl:apply—templates select="wsag: ValueExpression"/>

</xsl:template >

<xsl:template match="wsag:Reward">

Reward
<xsl:apply—templates select="wsag: Assessmentlnterval"/>
<xsl:apply—templates select="wsag: ValueUnit"/>
<xsl:apply—templates select="wsag: ValueExpression"/>

</xsl:template >

<xsl:template match="wsag: AssessmentInterval">
<xsl:apply—templates select="wsag: Timelnterval"/>
<xsl:apply—templates select="wsag:Count"/>
</xsl:template >

<xsl:template match="wsag: Timelnterval">

Time Interval

:

<xsl:value—of select="."/>

</1i>

</xsl:template >

<xsl:template match="wsag:Count">

Count

:

<xsl:value—of select="."/>

</xsl:template >

<xsl:template match="wsag: ValueUnit">

Unit

:

<xsl:value—of select="."/>

</xsl:template >

<xsl:template match="wsag: ValueExpression">

Value

165

Chapter B. XSL based PSLA contract display

:

<xsl:value—of select="."/>

</xsl:template >

<xsl:template match="wsag: Preference">

Preference
<xsl:apply—templates select="wsag: ServiceTermReference"/>
<xsl:apply—templates select="wsag: Utility "/>
</1i>

</xsl:template >

<xsl:template match="wsag: ServiceTermReference">

ServiceTermReference
:

<xsl:value—of select="."/>

</1i>

</xsl:template >

<xsl:template match="wsag: Utility ">

Utility

:

<xsl:value—of select="."/>

</xsl:template >

</xsl:stylesheet >

<xsl:stylesheet xmlns:ocw="http ://www.polytech.univ—savoie. fr/opencloudware
/v2/metamodels/cloud—agreement" xmlns:xsl="http ://www.w3.0rg/1999/XSL/
Transform" version="2.0">

<l—— ContextExtension ——>

<xsl:template match="ocw:ContextExtension">
<div class="opencloudware">
<xsl:apply—templates select="ocw:OVFLocation"/>
</div>

</xsl:template >

<!l—— OVFLocation ——>

<xsl:template match="ocw:OVFLocation">

OVF Location

166

:

<xsl:value—of select="."/>

</1i>

</xsl:template >

</xsl:stylesheet >

<xsl:stylesheet xmlns:ocw="http ://www. polytech.univ—savoie. fr/opencloudware
/v2/metamodels/cloud —agreement" xmlns: xsl="http ://www.w3.0rg/1999/XSL/

Transform" version="2.0">

<!—— ServiceDescriptionTermExtension ——>

<xsl:template match="ocw: ServiceDescriptionTermExtension">

<div class="opencloudware">

<div class="space"/>

<xsl:apply—templates select="ocw:Metric"/>
<div class="space"/>

<xsl:apply—templates select="ocw:InputData"/>
<div class="space"/>

<xsl:apply—templates select="ocw:Resource"/>
</div>

</xsl:template >

<l—-— Metric ——>

<xsl:template match="ocw: Metric">
<section id="{@Name}" onclick="colorify (event,
<hl>Metric </hl1>

Name

:

<xsl:value—of select="@Name"/>

<xsl:apply—templates select="ocw: Unit"/>
<xsl:apply—templates select="ocw:Type"/>

this);">

<xsl:apply—templates select="ocw: ValueGenerateBy"/>

</section >
</xsl:template >

<!l—— Unit ——>
<xsl:template match="ocw: Unit">

<xsl:apply—templates select="ocw:BuiltInUnit"/>

<xsl:apply—templates select="ocw:UserDefinedUnit"/>

</xsl:template >

<xsl:template match="ocw:BuiltInUnit">

Built In Unit

167

Chapter B. XSL based PSLA contract display

:

<xsl:value—of select="."/>

</xsl:template >

<xsl:template match="ocw: UserDefinedUnit">

User Defined Unit
:

<xsl:value—of select="@Name"/>

<xsl:apply—templates select="ocw:Description"/>
</xsl:template >

<xsl:template match="ocw:Description">

Description
:

<xsl:value—of select="."/>

</xsl:template >

<!—— Type —>

<xsl:template match="ocw:Type">

Type
:

<xsl:value—of select="."/>

</xsl:template >

<!—— ValueGenerateBy ——>

<xsl:template match="ocw: ValueGenerateBy">

<xsl:apply—templates select="ocw:ServiceReferenceName"/>
<xsl:apply—templates select="ocw:Schedule"/>

</xsl:template >

<xsl:template match="ocw: ServiceReferenceName">

Value Generate by the Service Reference
:

168

<xsl:value—of select="."/>

<xsl:apply—templates select="../ocw:ServiceReferenceOperation"/>

</xsl:template >

<xsl:template match="ocw: ServiceReferenceOperation">

(

<xsl:value—of select="."/>
)
</xsl:template >

<xsl:template match="ocw:Schedule">

Schedule
:

<xsl:value—of select="."/>

</xsl:template >

<!—— InputData ——>

<xsl:template match="ocw:InputData">
<section id="{@Name}" onclick="colorify (event, this);">
<hlI>Input Data</hl>

Name

:

<xsl:value—of select="@Name"/>

<xsl:apply—templates select="ocw: Scenario"/>
<xsl:apply—templates select="ocw:Description"/>
</section >

</xsl:template >

<l—— Scenario ——>

<xsl:template match="ocw: Scenario">

Scenario
:

<xsl:value—of select="."/>

</xsl:template >

169

Chapter B. XSL based PSLA contract display

<l—— Resource ——>

<xsl:template match="ocw:Resource">
<section id="{@Name}" onclick="colorify (event, this);">
<hl>Resource </hl1>

Name

:

<xsl:value—of select="@Name"/>

</1i>

<xsl:apply—templates select="ocw:XPath"/>
</section >

</xsl:template >

<l—— Scenario ——>
<xsl:template match="ocw:XPath">

XPath inside the OVF document (see
OVF Location
)

:

<xsl:value—of select="."/>

</xsl:template >
</xsl:stylesheet >

<xsl:stylesheet xmlns:ocw="http ://www.polytech.univ—savoie.fr/opencloudware
/v2/metamodels/cloud—agreement" xmlns:wsag="http ://schemas.ggf.org/graap
/2007/03/ws—agreement" xmlns: xsl="http ://www.w3.0rg/1999/XSL/Transform"
version="2.0">

<l—— ServiceReferenceExtension ——>

<xsl:template match="ocw: ServiceReferenceExtension">
<div class="opencloudware">

<xsl:apply—templates select="ocw:WSDLLocation"/>
<xsl:apply—templates select="ocw:Operation"/>
</div>

</xsl:template >

<!l-— WSDLLocation ——>

<xsl:template match="ocw:WSDLLocation">

WSDL Location
:

170

<xsl:value—of select="."/>

</1i>

</xsl:template >

<!—— Operation —>

<xsl:template match="ocw:Operation">

Operation
:

<xsl:value—of select="."/>

</1i>

</xsl:template >

</xsl:stylesheet >

<xsl:stylesheet xmlns:ocw="http ://www. polytech.univ—savoie.fr/opencloudware
/v2/metamodels/cloud—agreement" xmlns: xsl="http ://www.w3.0rg/1999/XSL/
Transform" version="2.0">

<xsl:import href="./listic_ocw_SharedTypes.xsl"/>

<l—— QualifyingConditionExtension ——>

<xsl:template match="ocw: QualifyingConditionExtension">
<div class="opencloudware">

<div class="space"/>

<xsl:apply—templates select="ocw:Periods"/>

<div class="space"/>

<xsl:apply—templates select="ocw: Workloads"/>

<div class="space"/>

<xsl:apply—templates select="ocw: ScalabilityPoints"/>
<div class="space"/>

<xsl:apply—templates select="ocw: AffinityConstraints"/>
</div>

</xsl:template >

<!l—— Period —>

<xsl:template match="ocw: Periods">
<xsl:apply—templates select="ocw:Period"/>
</xsl:template >

<xsl:template match="ocw:Period">
<section onclick="colorify(event, this);">
<hl1>Period </hl1>

<xsl:apply—templates select="ocw: Start"/>
<xsl:apply—templates select="ocw:End"/>
<xsl:apply—templates select="ocw:Interspace"/>
</section >

</xsl:template >

<!l—— Start —>

171

Chapter B. XSL based PSLA contract display

<xsl:template match="ocw: Start">

Start
:

<xsl:value—of select="."/>

</1i>

</xsl:template >

<!l-—— End —

<xsl:template match="ocw:End">

End
:

<xsl:value—of select="."/>

</xsl:template >

<!—— Interspace ——>

<xsl:template match="ocw:Interspace">

Interspace
<xsl:apply—templates select="ocw: Timelnterval"/>
<xsl:apply—templates select="ocw:Step"/>
</1i>

</xsl:template >

<xsl:template match="ocw: Timelnterval">

Time Interval
:

<xsl:value—of select="."/>

</1i>

</xsl:template >

<xsl:template match="ocw: Step">

Step

:

<xsl:value—of select="."/>

172

</xsl:template >

<!—— Workload ——>

<xsl:template match="ocw: Workloads">
<xsl:apply—templates select="ocw: Workload"/>
</xsl:template >

<xsl:template match="ocw: Workload">

<section onclick="colorify (event, this);">
<h1>Workload </h1>

<xsl:apply—templates select="ocw:InputDataName"/>
<xsl:apply—templates select="ocw:MetricName"/>
<xsl:apply—templates select="ocw:LowerBound"/>
<xsl:apply—templates select="ocw:UpperBound"/>
<xsl:apply—templates select="ocw:Average"/>
<xsl:apply—templates select="ocw: Variation"/>
</section >

</xsl:template >

<xsl:template match="ocw:InputDataName">

Input Data

:

<xsl:value—of select="."/>

</1i>

</xsl:template >

<xsl:template match="ocw:LowerBound">

Lower Bound

:

<xsl:value—of select="."/>

</xsl:template >

<xsl:template match="ocw: UpperBound">

Upper Bound

:

<xsl:value—of select="."/>

</xsl:template >

<xsl:template match="ocw:Average">

Average

173

Chapter B. XSL based PSLA contract display

:

<xsl:value—of select="."/>

</xsl:template >

<xsl:template match="ocw: Variation">

Throughput Variation
<xsl:apply—templates select="ocw:MetricName"/>

Threshold
:

<xsl:value—of select="ocw:Threshold"/>

</xsl:template >

<l—— ScalabilityPoints ——>

<xsl:template match="ocw: ScalabilityPoints">
<xsl:apply—templates select="ocw:ComputeScalabilityPoint"/>
<div class="space"/>

<xsl:apply—templates select="ocw: StorageScalabilityPoint"/>
</xsl:template >

<!—— ComputeScalabilityPoint ——>

<xsl:template match="ocw: ComputeScalabilityPoint">
<section onclick="colorify (event, this);">

<hl>Compute Scalability Point </hl>

<xsl:apply—templates select="ocw:ResourceName"/>

<div class="space"/>

<xsl:apply—templates select="ocw:HorizontalScaling"/>
<xsl:apply—templates select="ocw:ComputeVerticalScaling"/>
</section >

</xsl:template >

<!—— StorageScalabilityPoint ——>

<xsl:template match="ocw: StorageScalabilityPoint">
<section onclick="colorify (event, this);">

<hl>Storage Scalability Point </hl>

<xsl:apply—templates select="ocw:ResourceName"/>

<div class="space"/>

<xsl:apply—templates select="ocw:HorizontalScaling"/>
<xsl:apply—templates select="ocw: StorageVerticalScaling"/>
</section >

</xsl:template >

<!—— ResourceName ——>
<xsl:template match="ocw:ResourceName">

174

Resource
:

<xsl:value—of select="."/>

</xsl:template >

<!l—— HorizontalScaling ——>

<xsl:template match="ocw:HorizontalScaling">
<section onclick="colorify (event, this);">
<hl>Horizontal Scaling </hl>
<xsl:apply—templates select="ocw:LowerBound"/>
<xsl:apply—templates select="ocw:UpperBound"/>
</section >

</xsl:template >

<l—— VerticalScaling ——>

<xsl:template match="ocw:ComputeVerticalScaling">
<section onclick="colorify (event, this);">
<hl>Vertical Scaling </hl>

<table >

<tr >

<xsl:for—each select="ocw:Set">

<td>

<xsl:apply—templates select="ocw:CPU"/>
<xsl:apply—templates select="ocw:RAM"/>
<xsl:apply—templates select="ocw:NetworkThroughput"/>
</td>

</xsl:for—each>

</tr>

</table >

</section >

</xsl:template >

<xsl:template match="ocw:CPU">

CPU
<xsl:apply—templates select="ocw:MetricName"/>
<xsl:apply—templates select="ocw:LowerBound"/>
</1i>

</xsl:template >

<xsl:template match="ocw:RAM">

RAM
<xsl:apply—templates select="ocw:MetricName"/>
<xsl:apply—templates select="ocw:LowerBound"/>

175

Chapter B. XSL based PSLA contract display

</xsl:template >

<xsl:template match="ocw:NetworkThroughput">

Network Throughput
<xsl:apply—templates select="ocw:MetricName"/>
<xsl:apply—templates select="ocw:UploadSpeed"/>
<xsl:apply—templates select="ocw:DownloadSpeed"/>
<xsl:apply—templates select="ocw:ResourceName"/>

</xsl:template >

<xsl:template match="ocw: UploadSpeed">

Upload Speed

:

<xsl:value—of select="."/>

</xsl:template >

<xsl:template match="ocw:DownloadSpeed">

Download Speed
:

<xsl:value—of select="."/>

</xsl:template >

<xsl:template match="ocw: StorageVerticalScaling">
<section onclick="colorify(event, this);">
<hl>Vertical Scaling </hl>

<table >

<tr >

<xsl:for—each select="ocw:Set">

<td>

<xsl:apply—templates select="ocw:Size"/>
<xsl:apply—templates select="ocw:DiskThroughput"/>
</td>

</xsl:for—each>

</tr>

</table >

</section >

</xsl:template >

<xsl:template match="ocw: Size">

Size
<xsl:apply—templates select="ocw:MetricName"/>
<xsl:apply—templates select="ocw:LowerBound"/>
</1i>

176

</xsl:template >

<xsl:template match="ocw:DiskThroughput">

Disk Throughput
<xsl:apply—templates select="ocw:MetricName"/>
<xsl:apply—templates select="ocw:ReadSpeed"/>
<xsl:apply—templates select="ocw: WriteSpeed"/>

</xsl:template >

<xsl:template match="ocw:ReadSpeed">

Read Speed
:

<xsl:value—of select="."/>

</xsl:template >

<xsl:template match="ocw: WriteSpeed">

Write Speed
:

<xsl:value—of select="."/>

</xsl:template >

<!—— AffinityConstraints ——>

<xsl:template match="ocw: AffinityConstraints">
<xsl:apply—templates select="ocw: AffinityConstraint"/>
</xsl:template >

<xsl:template match="ocw: AffinityConstraint">
<section onclick="colorify (event, this);">
<hl>Affinity Constraint </hl>
<xsl:apply—templates select="ocw:ResourceName"/>
<xsl:apply—templates select="ocw: Constraint"/>
</section >

</xsl:template >

<!—— Constraint ——>

<xsl:template match="ocw: Constraint">

Constraint
:

<xsl:value—of select="."/>

177

Chapter B. XSL based PSLA contract display

</xsl:template >
</xsl:stylesheet >

<xsl:stylesheet xmlns:ocw="http ://www.polytech.univ—savoie.fr/opencloudware
/v2/metamodels/cloud—agreement" xmlns: xsl="http ://www.w3.0rg/1999/XSL/

Transform" version="2.0">
<xsl:import href="./listic_ocw_SharedTypes.xsl"/>

<l—— CustomServiceLevelExtension ——>

<xsl:template match="ocw: CustomServiceLevelExtension">
<div class="opencloudware">

<div class="space"/>

<section id="{@Name}" onclick="colorify (event, this);">
<h1>SLO</hl>

<xsl:call —template name="LogicExpression"/>

</section >

<div class="space"/>

</div>

</xsl:template >

<!l—— LogicExpression ——>

<xsl:template name="LogicExpression">
<xsl:apply—templates select="ocw:And"/>
<xsl:apply—templates select="ocw:0r"/>
<xsl:apply—templates select="ocw:Not"/>
<xsl:apply—templates select="ocw: Greater"/>
<xsl:apply—templates select="ocw:Less"/>
<xsl:apply—templates select="ocw:Equal"/>
<xsl:apply—templates select="ocw:GreaterOrEqual"/>
<xsl:apply—templates select="ocw:LessOrEqual"/>
</xsl:template >

<!—— Operators ——>

<xsl:template match="ocw:And">

<section class="LogicExpressionOperator" onclick="colorify (event,
<header>

<hI>And</hl>

</header>

<xsl:call —template name="LogicExpression"/>

</section >

</xsl:template >

<xsl:template match="ocw:Or">

<section class="LogicExpressionOperator" onclick="colorify (event,
<header>

<h1>Or</hl>

</header>

<xsl:call —template name="LogicExpression"/>

</section >

</xsl:template >

<xsl:template match="ocw:Not">

<section class="LogicExpressionOperator" onclick="colorify (event,
<header>

<hI>Not</hl>

178

this);">
this);">
this);">

</header>

<xsl:call —template name="LogicExpression"/>
</section >

</xsl:template >

<!—— Predicates —>
<xsl:template match="ocw: Greater">

Greater
<xsl:apply—templates select="ocw:MetricName"/>
<xsl:apply—templates select="ocw:Threshold"/>

</xsl:template >

<xsl:template match="ocw:Less">

Less
<xsl:apply—templates select="ocw:MetricName"/>
<xsl:apply—templates select="ocw:Threshold"/>

</xsl:template >

<xsl:template match="ocw:Equal">

Equal
<xsl:apply—templates select="ocw:MetricName"/>
<xsl:apply—templates select="ocw:Threshold"/>

</xsl:template >

<xsl:template match="ocw: GreaterOrEqual">

Greater or Equal
<xsl:apply—templates select="ocw:MetricName"/>
<xsl:apply—templates select="ocw:Threshold"/>

</xsl:template >

<xsl:template match="ocw:LessOrEqual">

Less or Equal
<xsl:apply—templates select="ocw:MetricName"/>
<xsl:apply—templates select="ocw:Threshold"/>

</xsl:template >

<xsl:template match="ocw: Threshold">
<xsl:apply—templates select="ocw: Value"/>
<xsl:apply—templates select="ocw:Confidence"/>
</xsl:template >

<xsl:template match="ocw: Value">

179

Chapter B. XSL based PSLA contract display

Threshold
:

<xsl:value—of select="."/>

</xsl:template >

<xsl:template match="ocw:Confidence">

<xsl:apply—templates select="ocw: Trust"/>
<xsl:apply—templates select="ocw:Fuzziness"/>

</xsl:template >

<xsl:template match="ocw: Trust">

Trust
:

<xsl:value—of select=". x 100"/>
%

</xsl:template >

<xsl:template match="ocw:Fuzziness">

Fuzziness
:

<xsl:value—of select="."/>

</xsl:template >
</xsl:stylesheet >

Listing B.1. XSL code for displaying PSLA contract.

180

Bibliography

[AAAT10]

[ACD*07]

[ADK*04]

[AETE12]

[ALIZ10]

[Ast12]

[Bar98§]

[BB10]

[BBB'08]

[BBB*11]

Miha Ahronovitz, D Amrhein, P Anderson, A de Andrade, J Armstrong,
BE Arasan, J Bartlett, R Bruklis, K Cameron, M Carlson, et al. Cloud com-
puting use cases white paper. online, 2010.

Alain Andrieux, Karl Czajkowski, Asit Dan, Kate Keahey, Heiko Ludwig,
Toshiyuki Nakata, Jim Pruyne, John Rofrano, Steve Tuecke, and Ming Xu. Web
services agreement specification (ws-agreement). In Open Grid Forum, volume
128, 2007.

Alain Andrieux, Asit Dan, K Keahey, Heiko Ludwig, and John Rofrano. Ne-
gotiability constraints in ws-agreement. In Grid Resource Allocation Agreement
Protocol (GRAAP) Working Group Meetings, Tech. Rep, 2004.

Ahmed Ali-Eldin, Johan Tordsson, and Erik Elmroth. An adaptive hybrid elastic-
ity controller for cloud infrastructures. In Network Operations and Management
Symposium (NOMS), 2012 IEEE, pages 204-212. IEEE, 2012.

Bo An, Victor Lesser, David Irwin, and Michael Zink. Automated negotiation
with decommitment for dynamic resource allocation in cloud computing. In Pro-
ceedings of the 9th International Conference on Autonomous Agents and Multia-
gent Systems: volume 1-Volume 1, pages 981-988. International Foundation for
Autonomous Agents and Multiagent Systems, 2010.

Karl J Astrém. Introduction to stochastic control theory. Courier Corporation,
2012.

Andrew G Barto. Reinforcement learning: An introduction. MIT press, 1998.

Anton Beloglazov and Rajkumar Buyya. Adaptive threshold-based approach
for energy-efficient consolidation of virtual machines in cloud data centers. In
Proceedings of the S8th International Workshop on Middleware for Grids, Clouds
and e-Science, page 4. ACM, 2010.

S Becker, L Bulej, T Bures, P Hnetynka, L. Kapova, J Kofron, H Koziolek,
J Kraft, R Mirandola, J Stammel, et al. Q-impress project deliverable d2. 1:
service architecture meta model (samm). Project Deliverable, 2008.

Dominique Bellenger, Jens Bertram, Andy Budina, Arne Koschel, Benjamin
Pfiander, Carsten Serowy, Irina Astrova, Stella Gatziu Grivas, and Marc Schaaf.
Scaling in cloud environments. Recent Researches in Computer Science, 2011.

BIBLIOGRAPHY

[BCH'03]

[BCS04]

[Ben12]

[BFF90]

[BGST09]

[BHD13]

[BMO7]

[Box76]

[BSL*13]

[BTWO1]

[BYVO0S§]

[C*]
[C*06]

Don Box, Francisco Curbera, Maryann Hondo, Chris Kaler, Dave Langworthy,
Anthony Nadalin, Nataraj Nagaratnam, Mark Nottingham, Claus von Riegen,
and John Shewchuk. Web services policy framework (ws-policy), 2003.

Eric Bruneton, Thierry Coupaye, and Jean-Bernard Stefani. The fractal compo-
nent model. Draft of specification, version, pages 2—0, 2004.

El Hachemi Bendahmane. Introduction de fonctionnalités d’auto-optimisation
dans une architecture de selfbenchmarking. PhD thesis, Université de Grenoble,
2012.

Benjamin S Blanchard, Wolter J Fabrycky, and Wolter J Fabrycky. Systems en-
gineering and analysis, volume 4. Prentice Hall Englewood Cliffs, New Jersey,
1990.

Peter Bodik, Rean Griffith, Charles Sutton, Armando Fox, Michael Jordan, and
David Patterson. Statistical machine learning makes automatic control practical
for internet datacenters. In Proceedings of the 2009 conference on Hot topics in
cloud computing, pages 12—12, 2009.

Enda Barrett, Enda Howley, and Jim Duggan. Applying reinforcement learning
towards automating resource allocation and application scalability in the cloud.
Concurrency and Computation: Practice and Experience, 25(12):1656—1674,
2013.

Maria Grazia Buscemi and Ugo Montanari. Cc-pi: A constraint-based language
for specifying service level agreements. In Programming Languages and Sys-
tems, pages 18-32. Springer, 2007.

George E Box. P, and jenkins, gm, "time series analysis: Forecasting and con-
trol". Time Series and Digital Processing, 1976.

Gunnar Brataas, Erlend Stav, Sebastian Lehrig, Steffen Becker, Goran Kopcak,
and Darko Huljenic. Cloudscale: scalability management for cloud systems. In
Proceedings of the 4th ACM/SPEC International Conference on Performance
Engineering, pages 335-338. ACM, 2013.

Harold Boley, Said Tabet, and Gerd Wagner. Design rationale for ruleml: A
markup language for semantic web rules. In SWWS, volume 1, pages 381-401,
2001.

Rajkumar Buyya, Chee Shin Yeo, and Srikumar Venugopal. Market-oriented
cloud computing: Vision, hype, and reality for delivering it services as com-
puting utilities. In High Performance Computing and Communications, 2008.
HPCC’08. 10th IEEE International Conference on, pages 5—13. Ieee, 2008.

4CaaSt Consortium et al. 4caast project website.

Autonomic Computing et al. An architectural blueprint for autonomic comput-
ing. IBM White Paper, 2006.

182

BIBLIOGRAPHY

[CT10]

[Cas06]

[CCD'12]

[CGS03]

[CHL*08]

[CMKI11]

[CMKS09]

[CVO03]

[DeMO02]

[Dil09]

[DKLRO4]

[DKM*11]

[DLHS11]

Q-ImPrESS Consortium et al.
http://www. g-impress. eu, 2010.

The g-impress project. Project website:

Kevin Castor. Hardware testing and benchmarking methodology. online, 2006.
retrieve 01.2014.

Emanuele Carlini, Massimo Coppola, Patrizio Dazzi, Laura Ricci, and Giacomo
Righetti. Cloud federations in contrail. In Euro-Par 2011: Parallel Processing
Workshops, pages 159-168. Springer, 2012.

Abhishek Chandra, Weibo Gong, and Prashant Shenoy. Dynamic resource allo-
cation for shared data centers using online measurements. In Quality of Service-
IWQoS 2003, pages 381-398. Springer, 2003.

Gong Chen, Wenbo He, Jie Liu, Suman Nath, Leonidas Rigas, Lin Xiao,
and Feng Zhao. Energy-aware server provisioning and load dispatching for
connection-intensive internet services. In NSDI, volume 8, pages 337-350, 2008.

Trieu C Chieu, Ajay Mohindra, and Alexei A Karve. Scalability and performance
of web applications in a compute cloud. In e-Business Engineering (ICEBE),
2011 IEEE 8th International Conference on, pages 317-323. IEEE, 2011.

Trieu C Chieu, Ajay Mohindra, Alexei A Karve, and Alla Segal. Dynamic
scaling of web applications in a virtualized cloud computing environment. In
e-Business Engineering, 2009. ICEBE’09. IEEE International Conference on,
pages 281-286. IEEE, 2009.

Maria Agustina Cibrdn and Bart Verheecke. Modularizing web services man-
agement with aop. Orientation and Web Services, page 14, 2003.

Linda G DeMichiel. Enterprise javabeans specification, version 2.1. 2002.

Bruno Dillenseger. Clif, a framework based on fractal for flexible, distributed

load testing. annals of telecommunications-annales des télécommunications,
64(1-2):101-120, 20009.

Asit Dan, K Keahey, H Ludwig, and J Rofrano. Guarantee terms in ws-
agreement. In Grid Resource Allocation Agreement Protocol (GRAAP) Working
Group Meetings, Tech. Rep, 2004.

Xavier Dutreilh, Sergey Kirgizov, Olga Melekhova, Jacques Malenfant, Nicolas
Rivierre, and Isis Truck. Using reinforcement learning for autonomic resource
allocation in clouds: towards a fully automated workflow. In ICAS 2011, The

Seventh International Conference on Autonomic and Autonomous Systems, pages
67-74, 2011.

Alysha M De Livera, Rob J] Hyndman, and Ralph D Snyder. Forecasting time
series with complex seasonal patterns using exponential smoothing. Journal of
the American Statistical Association, 106(496):1513-1527, 2011.

183

BIBLIOGRAPHY

[DRM*10]

[DTB10]

[ec213]

[FHT+12]

[FK03]

[FSJ98]

[GT09]

[GGIGT"12]

[GGW10]

[GLDKO3]

[GoG10]
[gool5]

[Ham94]

Xavier Dutreilh, Nicolas Rivierre, Aurélien Moreau, Jacques Malenfant, and Isis
Truck. From data center resource allocation to control theory and back. In Cloud
Computing (CLOUD), 2010 IEEE 3rd International Conference on, pages 410—
417. IEEE, 2010.

Amir Vahid Dastjerdi, Sayed Gholam Hassan Tabatabaei, and Rajkumar Buyya.
An effective architecture for automated appliance management system apply-
ing ontology-based cloud discovery. In Cluster, Cloud and Grid Computing
(CCGrid), 2010 10th IEEE/ACM International Conference on, pages 104—112.
IEEE, 2010.

Amazon EC2 SLA. online, 06/2013. retrieve 02/2015.

Ana Juan Ferrer, Francisco HernaNdez, Johan Tordsson, Erik Elmroth, Ahmed
Ali-Eldin, Csilla Zsigri, RaillL Sirvent, Jordi Guitart, Rosa M Badia, Karim Dje-
mame, et al. Optimis: A holistic approach to cloud service provisioning. Future
Generation Computer Systems, 28(1):66-77, 2012.

Ian Foster and Carl Kesselman. The Grid 2: Blueprint for a new computing
infrastructure. Elsevier, 2003.

Peyman Faratin, Carles Sierra, and Nick R Jennings. Negotiation decision func-
tions for autonomous agents. Robotics and Autonomous Systems, 24(3):159-182,
1998.

Jeremy Geelan et al. Twenty-one experts define cloud computing. Cloud Com-
puting Journal, 4:1-5, 2009.

Sergio Garcia-Gomez, Miguel Jimenez-Ganan, Yehia Taher, Christof Momm,
Frederic Junker, Jozsef Biro, Andreas Menychtas, Vasilios Andrikopoulos, and
Steve Strauch. Challenges for the comprehensive management of cloud services

in a paas framework. Scalable Computing: Practice and Experience, 13(3),
2012.

Zhenhuan Gong, Xiaohui Gu, and John Wilkes. Press: Predictive elastic resource
scaling for cloud systems. In Network and Service Management (CNSM), 2010
International Conference on, pages 9—16. IEEE, 2010.

Henner Gimpel, Heiko Ludwig, Asit Dan, and Bob Kearney. Panda: Specifying
policies for automated negotiations of service contracts. In Service-Oriented
Computing-1CSOC 2003, pages 287-302. Springer, 2003.

GoGrid. Gogrid whitepaper " scaling your internet business". online, 2010.

Googleappengine sla. On line, 5 2015.

James Douglas Hamilton. 7ime series analysis, volume 2. Princeton university
press Princeton, 1994.

184

BIBLIOGRAPHY

[HHKA 14]

[HKO06]

[HKO07]

[HKOSO08]

[HKPBOS5]

[HLY12]

[HMC*12]

[HR85]

[1aal5]
[IBM]

[IDCJ11]

[IKLL12]

[Jac12]

[KBSO05]

Nikolas Roman Herbst, Nikolaus Huber, Samuel Kounev, and Erich Am-
rehn. Self-adaptive workload classification and forecasting for proactive re-
source provisioning. Concurrency and Computation: Practice and Experience,

26(12):2053-2078, 2014.

Rob J Hyndman and Anne B Koehler. Another look at measures of forecast
accuracy. International journal of forecasting, 22(4):679-688, 2006.

RJ Hyndman and Y Khandakar. Automatic time series forecasting: the forecast
package for r 7, 2008. URL http://www. jstatsoft. org/v27/i03, 2007.

Rob Hyndman, Anne B Koehler, J Keith Ord, and Ralph D Snyder. Forecast-
ing with exponential smoothing: the state space approach. Springer Science &
Business Media, 2008.

Rob J Hyndman, Maxwell L King, Ivet Pitrun, and Baki Billah. Local linear
forecasts using cubic smoothing splines. Australian & New Zealand Journal of
Statistics, 47(1):87-99, 2005.

Jinhui Huang, Chunlin Li, and Jie Yu. Resource prediction based on double
exponential smoothing in cloud computing. In Consumer Electronics, Commu-
nications and Networks (CECNet), 2012 2nd International Conference on, pages
2056-2060. IEEE, 2012.

Masum Z Hasan, Edgar Magana, Alexander Clemm, Lew Tucker, and Sree Lak-
shmi D Gudreddi. Integrated and autonomic cloud resource scaling. In Network
Operations and Management Symposium (NOMS), 2012 IEEE, pages 1327
1334. IEEE, 2012.

Frederick Hayes-Roth. Rule-based systems. Communications of the ACM,
28(9):921-932, 1985.

What is infrastructure as a service(iaas) definition. online, 2015.
IBM. Ibm service level agreement lifecycle. online. retrieved 01/2015.

Waheed Igbal, Matthew N Dailey, David Carrera, and Paul Janecek. Adaptive re-
source provisioning for read intensive multi-tier applications in the cloud. Future
Generation Computer Systems, 27(6):871-879, 2011.

Sadeka Islam, Jacky Keung, Kevin Lee, and Anna Liu. Empirical prediction
models for adaptive resource provisioning in the cloud. Future Generation Com-
puter Systems, 28(1):155-162, 2012.

Kevin Jackson. OpenStack cloud computing cookbook. Packt Publishing Ltd,
2012.

Dirk Krafzig, Karl Banke, and Dirk Slama. Enterprise SOA: service-oriented
architecture best practices. Prentice Hall Professional, 2005.

185

BIBLIOGRAPHY

[KF11]

[KGM10]

[KL*12]

[KSB*11]

[KSIB09]

[KTK10]

[LBC10]

[LBCP09]

[LBMALI12]

[LKD*03]

[LLD*03]

[LPM14]

T. Kearney Keven and Torelli Francesco. The SLA Model, volume 2, chapter 4,
pages 43—68. springer, jun 2011. Service Level Agreements for Cloud Comput-
ing.

Sunirmal Khatua, Anirban Ghosh, and Nandini Mukherjee. Optimizing the
utilization of virtual resources in cloud environment. In Virtual Environments
Human-Computer Interfaces and Measurement Systems (VECIMS), 2010 IEEE
International Conference on, pages 82—87. IEEE, 2010.

Yousri Kouki, Thomas Ledoux, et al. CSLA: a language for improving cloud
SLA management. In Proceedings of the International Conference on Cloud
Computing and Services Science, Porto, Portugal, April 18-21 2012.

Heiko Koziolek, Bastian Schlich, Carlos Bilich, Roland Weiss, Steffen Becker,
Klaus Krogmann, Mircea Trifu, Raffacla Mirandola, and Anne Koziolek. An
industrial case study on quality impact prediction for evolving service-oriented
software. In Proceedings of the 33rd International Conference on Software En-
gineering, pages 776—785. ACM, 2011.

Jonathan Kupferman, Jeff Silverman, Patricio Jara, and Jeff Browne. Scaling
into the cloud. CS270-Advanced Operating Systems, 2009.

Keven T Kearney, Francesco Torelli, and Constantinos Kotsokalis. Sla*: An
abstract syntax for service level agreements. In Grid Computing (GRID), 2010
11th IEEE/ACM International Conference on, pages 217-224. IEEE, 2010.

Harold C Lim, Shivnath Babu, and Jeffrey S Chase. Automated control for
elastic storage. In Proceedings of the 7th international conference on Autonomic
computing, pages 1-10. ACM, 2010.

Harold C Lim, Shivnath Babu, Jeffrey S Chase, and Sujay S Parekh. Automated
control in cloud computing: challenges and opportunities. In Proceedings of the
Ist workshop on Automated control for datacenters and clouds, pages 13—18.
ACM, 20009.

Tania Lorido-Botran, José Miguel-Alonso, and Jose Antonio Lozano. Auto-
scaling techniques for elastic applications in cloud environments. Department
of Computer Architecture and Technology, University of Basque Country, Tech.
Rep. EHU-KAT-IK-09, 12:2012, 2012.

Heiko Ludwig, Alexander Keller, Asit Dan, Richard P King, and Richard Franck.
Web service level agreement (wsla) language specification. IBM Corporation,
pages 815-824, 2003.

Richard Lawley, Michael Luck, Keith Decker, Terry Payne, and Luc Moreau.
Automated negotiation between publishers and consumers of grid notifications.
Parallel Processing Letters, 13(04):537-548, 2003.

Ge Li, Frédéric Pourraz, and Patrice Moreaux. Psla: a paas level sla description
language. In Cloud Engineering (IC2E), 2014 IEEE International Conference
on, pages 452-457. IEEE, 2014.

186

BIBLIOGRAPHY

[LPM15]

[LSCD*10]

[LSEO3]

[LTCC12]

[LUCT05]

[LWK*10]

[LZ10]

[Marl10]

[MBNR68]

[MG11]

[MGV11]

Ge Li, Frédéric Pourraz, and Patrice Moreaux. A benchmarking based sla fea-
sibility study method for platform as a service. CLOUD COMPUTING 2015,
page 175, 2015.

Nicolas Le Sauze, Agostino Chiosi, Richard Douville, Helia Pouyllau, Hékon
LONSETHAGEN, Paola Fantini, Claudio Palasciano, Antonio Cimmino, Maria
Angeles CALLEJO RODRIGUEZ, Olivier Dugeon, et al. Etics: Qos-enabled
interconnection for future internet services. Future network and mobile summit,
2010.

D Davide Lamanna, James Skene, and Wolfgang Emmerich. Slang: a language
for service level agreements. 2003.

Shou-Yu Lee, Dongyang Tang, Tingchao Chen, and WC-C Chu. A qos assurance
middleware model for enterprise cloud computing. In Computer Software and
Applications Conference Workshops (COMPSACW), 2012 IEEE 36th Annual,
pages 322-327. IEEE, 2012.

Joshua LeVasseur, Volkmar Uhlig, Matthew Chapman, Peter Chubb, Ben Leslie,
and Gernot Heiser. Pre-virtualization: Slashing the cost of virtualization. Cite-
seer, 2005.

Philipp Leitner, Branimir Wetzstein, Dimka Karastoyanova, Waldemar Hum-
mer, Schahram Dustdar, and Frank Leymann. Preventing sla violations in ser-
vice compositions using aspect-based fragment substitution. In Service-Oriented
Computing, pages 365-380. Springer, 2010.

Palden Lama and Xiaobo Zhou. Autonomic provisioning with self-adaptive neu-
ral fuzzy control for end-to-end delay guarantee. In Modeling, Analysis & Sim-
ulation of Computer and Telecommunication Systems (MASCOTS), 2010 IEEE
International Symposium on, pages 151-160. IEEE, 2010.

Timothy D Martin. Hey-you-get off of my cloud: Defining and protecting the
metes and bounds of privacy, security, and property in cloud computing. J. Pat.
& Trademark Off. Soc’y, 92:283, 2010.

M Douglas Mcllroy, JM Buxton, Peter Naur, and Brian Randell. Mass-produced
software components. In Proceedings of the Ist International Conference on
Software Engineering, Garmisch Pattenkirchen, Germany, pages 88-98. sn,
1968.

Peter Mell and Tim Grance. The nist definition of cloud computing. 2011.
Andreas Menychtas, Anna Gatzioura, and Theodora Varvarigou. A business
resolution engine for cloud marketplaces. In Cloud Computing Technology and

Science (CloudCom), 2011 IEEE Third International Conference on, pages 462—
469. IEEE, 2011.

187

BIBLIOGRAPHY

[MKF10]

[MLH10]

[MNM*07]

[MWY*10]

[ocw]

[Pas05]

[PHO9]

[Pro]
[proll]
[Pro12]

[Qinl5]
[Qui]
[RBX*09]

[RDG11]

Paul Marshall, Kate Keahey, and Tim Freeman. Elastic site: Using clouds to
elastically extend site resources. In Proceedings of the 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing, pages 43-52.
IEEE Computer Society, 2010.

Ming Mao, Jie Li, and Marty Humphrey. Cloud auto-scaling with deadline and
budget constraints. In Grid Computing (GRID), 2010 11th IEEE/ACM Interna-
tional Conference on, pages 41-48. IEEE, 2010.

Megha Mohabey, Y Narahari, Sudeep Mallick, P Suresh, and SV Subrahmanya.
A combinatorial procurement auction for qos-aware web services composition.
In Automation Science and Engineering, 2007. CASE 2007. IEEE International
Conference on, pages 716-721. IEEE, 2007.

Haibo Mi, Huaimin Wang, Gang Yin, Yangfan Zhou, Dianxi Shi, and Lin
Yuan. Online self-reconfiguration with performance guarantee for energy-
efficient large-scale cloud computing data centers. In Services Computing (SCC),
2010 IEEE International Conference on, pages 514-521. IEEE, 2010.

Opencloudware home page. online.

Adrian Paschke. Rbsla a declarative rule-based service level agreement language
based on ruleml. In Computational Intelligence for Modelling, Control and Au-
tomation, 2005 and International Conference on Intelligent Agents, Web Tech-
nologies and Internet Commerce, International Conference on, volume 2, pages
308-314. IEEE, 2005.

Sang-Min Park and Marty Humphrey. Self-tuning virtual machines for pre-
dictable escience. In Proceedings of the 2009 9th IEEE/ACM International Sym-
posium on Cluster Computing and the Grid, pages 356-363. IEEE Computer
Society, 2009.

CLIF Project. The clif project ow2 web page. online.
SLA@SOI project. Sla@soi project homepage. online, 2011.

CloudScale Project. Scalability management for cloud computing. online, 10
2012.

QingCloud. Only pay for the used. online, 2015.
Mick Quigley. X. 509 certificates.

Jia Rao, Xiangping Bu, Cheng-Zhong Xu, Leyi Wang, and George Yin. Vconf:
a reinforcement learning approach to virtual machines auto-configuration. In
Proceedings of the 6th international conference on Autonomic computing, pages

137-146. ACM, 2009.

Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale. Efficient autoscaling in
the cloud using predictive models for workload forecasting. In Cloud Computing
(CLOUD), 2011 IEEE International Conference on, pages 500-507. IEEE, 2011.

188

BIBLIOGRAPHY

[rig07]
[Rig15]

[RIKGI11]

[RKL*05]

[RWQ+08]

[SCHM'12]

[SCW10]

[SEDP*13]

[Serl5]
[SGLI11]

[SHOS5]

[SimO02]

[Sim10]

[SJ12]

Rightscale home page. online, 2007.
RightScale. Set up autoscaling using voting tags. Online, 02 2015.

Bhaskar Prasad Rimal, Admela Jukan, Dimitrios Katsaros, and Yves Goeleven.
Architectural requirements for cloud computing systems: an enterprise cloud
approach. Journal of Grid Computing, 9(1):3-26, 2011.

Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Rubén Lara,
Michael Stollberg, Axel Polleres, Cristina Feier, Cristoph Bussler, and Dieter
Fensel. Web service modeling ontology. Applied ontology, 1(1):77-106, 2005.

Omer F Rana, Martijn Warnier, Thomas B Quillinan, Frances Brazier, and Dana
Cojocarasu. Managing violations in service level agreements. In Grid Middle-
ware and Services, pages 349-358. Springer, 2008.

Mike Surridge, Ajay Chakravarthy, Martin Hall-May, Xiaoyu Chen, Bassem
Nasser, and Roman Nossal. Serscis: Semantic modelling of dynamic, multi-
stakeholder systems. 2012.

Dawei Sun, Guiran Chang, Chuan Wang, Yu Xiong, and Xingwei Wang. Ef-
ficient nash equilibrium based cloud resource allocation by using a continuous
double auction. In Computer Design and Applications (ICCDA), 2010 Interna-
tional Conference on, volume 1, pages V1-94. IEEE, 2010.

Gwen Salaiin, Xavier Etchevers, Noel De Palma, Fabienne Boyer, and Thierry
Coupaye. Verification of a self-configuration protocol for distributed applications
in the cloud. In Assurances for Self-Adaptive Systems, pages 60—79. Springer,
2013.

Amazon Web Service. Amazon cloudwatch. online, 2015.

Bradley Simmons, Hamoun Ghanbari, Marin Litoiu, and Gabriel Iszlai. Manag-
ing a saas application in the cloud using paas policy sets and a strategy-tree. In
Proceedings of the 7th International Conference on Network and Services Man-
agement, pages 343-347. International Federation for Information Processing,
2011.

Lydia Shenstone and Rob J Hyndman. Stochastic models underlying croston’s
method for intermittent demand forecasting. Journal of Forecasting, 24(6):389—
402, 2005.

Kwang Mong Sim. A market—driven model for designing negotiation agents.
Computational Intelligence, 18(4):618-637, 2002.

Kwang Mong Sim. Towards complex negotiation for cloud economy. In Ad-
vances in Grid and Pervasive Computing, pages 395—-406. Springer, 2010.

Lutz Schubert and Keith Jeffery. Advances in clouds: Research in future cloud
computing. Expert Group Report, Public version, 1, 2012.

189

BIBLIOGRAPHY

[SKO0]

[SMJOO0]

[SS10]

[Sta98]

[Szy02]

[TAPB10]

[Ter10]

[TIDBO6]

[TPP02]

[USCT08]

[Ver04]

[VPRO7]

[VRMBI11]

[VRMCLOS]

Douglas C Schmidt and Fred Kuhns. An overview of the real-time corba speci-
fication. Computer, 33(6):56-63, 2000.

Rick Sturm, Wayne Morris, and Mary Jander. Foundations of Service Level
Management. SAMS Publishing, April 2000.

Robert H Shumway and David S Stoffer. Time series analysis and its applica-
tions: with R examples. Springer Science & Business Media, 2010.

William Stallings. SNMP, SNMPv2, SNMPv3, and RMON 1 and 2. Addison-
Wesley Longman Publishing Co., Inc., 1998.

Clemens Szyperski. Component software: beyond object-oriented programming.
Pearson Education, 2002.

Claudio Teixeira, Ricardo Azevedo, Joaquim Sousa Pinto, and Tiago Batista.
User provided cloud computing. In Cluster, Cloud and Grid Computing (CC-
Grid), 2010 10th IEEE/ACM International Conference on, pages 727-732.
IEEE, 2010.

Daniel Teruggi. Prestoprime: Keeping digital content alive. Cultural heritage
on line, pages 1000-1002, 2010.

Gerald Tesauro, Nicholas K Jong, Rajarshi Das, and Mohamed N Bennani. A
hybrid reinforcement learning approach to autonomic resource allocation. In Au-
tonomic Computing, 2006. ICAC’06. IEEE International Conference on, pages
65-73. IEEE, 2006.

Vladimir Tosic, Kruti Patel, and Bernard Pagurek. Wsol-web service offerings
language. In Web Services, E-Business, and the Semantic Web, pages 57-67.
Springer, 2002.

Bhuvan Urgaonkar, Prashant Shenoy, Abhishek Chandra, Pawan Goyal, and
Timothy Wood. Agile dynamic provisioning of multi-tier internet applications.
ACM Transactions on Autonomous and Adaptive Systems (TAAS), 3(1):1, 2008.

Dinesh C Verma. Service level agreements on ip networks. Proceedings of the
IEEE, 92(9):1382-1388, 2004.

Daniel Villela, Prashant Pradhan, and Dan Rubenstein. Provisioning servers
in the application tier for e-commerce systems. ACM Transactions on Internet
Technology (TOIT), 7(1):7, 2007.

Luis M Vaquero, Luis Rodero-Merino, and Rajkumar Buyya. Dynamically scal-
ing applications in the cloud. ACM SIGCOMM Computer Communication Re-
view, 41(1):45-52, 2011.

Luis M Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A break
in the clouds: towards a cloud definition. ACM SIGCOMM Computer Commu-
nication Review, 39(1):50-55, 2008.

190

BIBLIOGRAPHY

[VTMO9]

[Wik15a]
[wik15b]
[WIK15c]

[WK94]

[WVZX10]

[WXZ*11]

[XZF+07]

[ZCSO07]

Hien Nguyen Van, Frederic Dang Tran, and J-M Menaud. Sla-aware virtual
resource management for cloud infrastructures. In Computer and Information
Technology, 2009. CIT’09. Ninth IEEE International Conference on, volume 1,
pages 357-362. IEEE, 2009.

OpenStack Wiki. Ceilometer, 2015.
wikipedia. Time series. online, 04 2015.
WIKIPEDIA. Web services description language. online, 4 2015.

Sara Williams and Charlie Kindel. The component object model: A technical
overview. Technical report, Microsoft Technical Report, 1994.

Guiyi Wei, Athanasios V Vasilakos, Yao Zheng, and Naixue Xiong. A game-
theoretic method of fair resource allocation for cloud computing services. The
Journal of Supercomputing, 54(2):252-269, 2010.

Lixi Wang, Jing Xu, Ming Zhao, Yicheng Tu, and Jose AB Fortes. Fuzzy mod-
eling based resource management for virtualized database systems. In Model-
ing, Analysis & Simulation of Computer and Telecommunication Systems (MAS-
COTS), 2011 IEEE 19th International Symposium on, pages 32—42. IEEE, 2011.

Jing Xu, Ming Zhao, Jose Fortes, Robert Carpenter, and Mazin Yousif. On the
use of fuzzy modeling in virtualized data center management. In Autonomic
Computing, 2007. ICAC’07. Fourth International Conference on, pages 25-25.
IEEE, 2007.

Qi Zhang, Ludmila Cherkasova, and Evgenia Smirni. A regression-based ana-
lytic model for dynamic resource provisioning of multi-tier applications. In Au-
tonomic Computing, 2007. ICAC’07. Fourth International Conference on, pages
27-217. IEEE, 2007.

191

	Thanks
	Résumé
	List of Figures
	List of Tables
	Résumé étendu
	Introduction
	Cloud computing
	Le projet OpenCloudware
	Contrats de niveau de service
	Contrôle à l'exécution

	PSLA, un langage de description pour les PaaS
	Description sémantique de PSLA
	Fonctionnalités de PSLA

	Étude de faisabilité fondée sur le benchmarking
	Description du problème
	Dimensionnement des machines virtuelles
	Capacité maximal d'une flavor
	Méthode d'étude la faisabilité d'un SLA

	RCSREPRO - contrôle à l'exécution
	Défis
	Échelles temporelles
	Architecture système du contrôle à l'exécution

	Expérimentations
	Buts des expérimentations
	Application synthétique
	Environnement d'expérimentation
	Conception des expérimentations

	Conclusion et travaux futurs
	Conclusion
	Travaux futurs

	Introduction
	Cloud computing
	The emergence of cloud computing
	Definition of cloud computing
	Cloud service architecture
	Cloud Management

	OpenCloudware
	Contributions
	Organisation of the document

	State of the art- SLA management
	Introduction
	SLA management
	SLA definition
	SLA lifecycle
	SLA negotiation

	Review of SLA management studies in cloud computing
	SLA standards
	SLA specification standards literature review
	WS-Agreement

	Conclusion

	State of the art-Runtime control
	Introduction
	Virtualized Componentized Application Architecture schema
	Component based architecture
	Virtualized Componentized application architecture

	Runtime control
	MAPE-K
	Classification
	Runtime control schema

	Runtime scaling literature review
	Methods used in runtime scaling
	Runtime scaling literature reviews
	Time series based workload forecasting methods

	Benchmarking
	Benchmarking definition
	SLA oriented benchmarking
	Benchmarking tools

	Conclusion

	PSLA: SLA description language for PaaS
	Introduction
	PaaS SLA requirements
	PSLA semantic description
	PaaS SLA Features

	PSLA syntactic expression
	Agreement Context
	Agreement Terms
	Service Terms
	Guarantee Terms

	Conclusion

	Benchmarking Based SLA Feasibility study
	Introduction
	SLA feasibility study context
	Problem description
	Size of flavor
	Maximum Flavor Capability

	Benchmark based MFC modeling
	Step1: find the smallest median configuration flavor
	Step2: find the biggest optimal configuration flavor
	Step3: find the most tailored flavor
	Step4: calculate MFCs of flavors no bigger than most tailored flavor
	Step5: calculate MFCs of flavors bigger than most tailored flavor

	SLA constraints evaluation
	Resource constraints evaluation
	Cost constraints evaluation

	Scenario
	PSLA based SLA example
	Benchmark based MFC modelling
	MFC based SLA evaluation

	Conclusion

	RCSREPRO: Runtime Control method based on Schedule, REactive and PROactive methods
	Introduction
	Problem description
	Challenges
	Time granularities
	Runtime control system architecture

	RCSREPRO runtime control method description
	Schedule based runtime control
	Proactive runtime control method in RCSREPRO
	Mapping model improvement based on reactive runtime control in RCSREPRO

	Conclusion

	Experiments
	Goals of the experiment
	Abstract application

	Experiment environment
	Cloud environment based on OpenStack
	Benchmark environment

	Experiment design
	Rubberband and Request construct
	What is the real MFC?
	Whether or not our workload-resource mapping model works correctly?
	Whether or not MFC can be improved by RCSREPRO?

	Conclusions and future works
	Conclusions
	Future works

	PSLA XML Schema
	XSL based PSLA contract display
	Bibliography

