
HAL Id: tel-01204992
https://theses.hal.science/tel-01204992v1

Submitted on 24 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Investigating the expressivity of linear logic subsystems
characterizing polynomial time

Matthieu Perrinel

To cite this version:
Matthieu Perrinel. Investigating the expressivity of linear logic subsystems characterizing polyno-
mial time. Other [cs.OH]. Ecole normale supérieure de lyon - ENS LYON, 2015. English. �NNT :
2015ENSL1001�. �tel-01204992�

https://theses.hal.science/tel-01204992v1
https://hal.archives-ouvertes.fr

T

H

E

S

E

École doctorale 512 : Infomaths

THÈSE

École Normale Supérieure de Lyon

Discipline: Informatique

présentée et soutenue publiquement par

Matthieu Perrinel

le 02 juillet 2015

Investigating the expressivity of linear logic subsystems
characterizing polynomial time

Directeur de thèse : Patrick Baillot

Jury

M. Jean-yves Marion, Professeur, LORIA, Université de Lorraine Président

M. Patrick Baillot, Directeur de recherche, LIP, ENS Lyon Directeur de thèse

M. Simone Martini, Professeur, Università di Bologna Rapporteur

M. Ian Mackie, Chargé de recherche, LIX, Polytechnique Rapporteur

M. Damiano Mazza, Chargé de recherche, LIPN, Université Paris 13 Examinateur

Laboratoire de l’Informatique du Parallélisme (LIP)
UMR CNRS 5668, 69007 Lyon, France

Contents

Abstract v

Résumé v

Remerciements vi

1 Introduction 1
1.0.1 Motivation for a Linear Logic subsystem characterizing polynomial time 1
1.0.2 Specificities of our approach . 4
1.0.3 Primitive recursion . 9
1.0.4 Interaction nets . 10
1.0.5 Organisation of the thesis . 11

2 Context Semantics and Linear Logic 13
2.1 Linear Logic . 14
2.2 Definition of Context Semantics . 18

2.2.1 Capturing the notion of residue . 21
2.2.2 Dealing with the digging . 22

2.3 Dal Lago’s weight theorem . 26
2.3.1 Comparison with Dal Lago’s context semantics . 36

3 Paths criteria for elementary and polynomial complexity 39
3.1 An introduction to paths criteria . 40

3.1.1 History and motivations . 40
3.1.2 Stratification on λ-calculus . 41
3.1.3 Stratification on proof-nets . 43
3.1.4 A LL-subsystem characterizing elementary time 45
3.1.5 Correspondence between λ-calculus stratification and proof-net stratification 47
3.1.6 Simple characterization of Poly . 54
3.1.7 Conclusion of this introduction . 57

3.2 Elementary time . 58
3.2.1 Definition of −> −> −>-stratification . 58
3.2.2 Restricted copies and canonical potentials . 61
3.2.3 Elementary bound for −> −> −>-stratified proof-nets 67

3.3 Polynomial time . 74
3.3.1 Dependence control . 74

i

3.3.2 Nesting . 78
3.4 Definition and acyclicity of ". 83

3.4.1 From (B, P) to the inside of (B, P) . 83
3.4.2 From the inside of (B, P) to (B, P) . 85

3.5 More expressive polynomial time characterization . 91
3.5.1 Improved stratification condition . 91
3.5.2 Improved nesting condition . 102

4 Paths criteria for primitive recursive characterization 109
4.1 Definition and acyclicity of ¨ −> −> −> . 110
4.2 Tracing back paths . 114
4.3 Definition of S n . 119
4.4 Primitive recursive bound . 123

5 Linear logic subsystems and λ-calculus type-systems 129
5.1 Stratified Dependence control Nested Linear Logic . 130

5.1.1 Definition of S DNLL . 130
5.1.2 Underlying Formula . 131
5.1.3 S DNLL is sound for Poly . 137
5.1.4 Encoding of light logics . 139
5.1.5 S DNLL as a type-system for λ-calculus . 142

5.2 Quantifier Predicative Linear Logic . 148
5.3 Sweetened Linear Logic . 152

5.3.1 Definition of S wLLdc . 152
5.3.2 Definition of S wLLnest . 155
5.3.3 Definition of S wLLlast . 158
5.3.4 Definition of S wLLstrat . 160
5.3.5 Combining the previous systems into S wLL . 163

6 Interaction nets 167
6.1 Definition of interaction nets . 169

6.1.1 Statics . 169
6.1.2 Dynamics . 170

6.2 Context semantics . 173
6.2.1 Motivation and definition of the paths . 173
6.2.2 Soundness of the context semantics . 175

6.3 Complexity bounds . 178
6.4 Denotational semantics . 180

6.4.1 Observational equivalence . 180
6.4.2 Definition of a denotational semantics . 181
6.4.3 Stability of [] by reduction and gluing . 182
6.4.4 Soundness and full abstraction . 184

6.5 Application on interaction combinators . 186
6.5.1 Comparison of ~ � and [] on symmetric combinators 186
6.5.2 Comparison with semantics of encodings in symmetric combinators 187

ii

A Notations 199
A.1 Arrows . 200
A.2 Orders . 202
A.3 Letters . 203
A.4 Greek letters . 206
A.5 Words . 207
A.6 Exponents . 213
A.7 Others . 214

iii

iv

Abstract
Implicit computational complexity is the characterization of complexity classes by syntactic restrictions on
computation models. Several subsystems of linear logic characterizing polynomial time have been defined:
these systems are sound (terms normalize in polynomial time) and complete (it is possible to simulate a
Turing machine during a polynomial number of steps).

One of the long term goals is to statically prove complexity bounds. This is why we are looking for
the most expressive characterizations possible. Our main tool is context semantics: tokens travel across
proof-nets (programs of linear logic) according to some rules. The paths defined by these tokens represent
the reduction of the proof-net.

Contrary to previous works, we do not directly define subsystems of linear logic. We first define relations
→ on subterms of proof-nets such that: B → C means “the number of copies of B depends on the number
of copies of C”. The acyclicity of→ allows us to bound the number of copies of any subterm, this bounds
the complexity of the term. Then, we define subsystems of linear logic guaranteeing the acyclicity of→.

We also study characterizations of elementary time and primitive recursive time. In order to adapt our
linear logic subsystems to richer languages, we adapt the context semantics to interaction nets, used as a
target language for small programming languages. We use this context semantics to define a denotational
semantics on interaction nets.

Résumé
La complexité implicite est la caractérisation de classes de complexité par des restrictions syntaxiques

sur des modèles de calcul. Plusieurs sous-systèmes de la logique linéaire (LLL, S LL, L4,...) caractérisant le
temps polynomial ont été définis: ces systèmes sont corrects (l’élimination des coupures normalise en temps
polynomial) et complets: pour toute fonction f réalisable en temps polynomial (par ex. le tri de liste) il est
possible de simuler une machine de Turing calculant f . Cependant les réseaux de preuves représentant des
algorithmes usuels calculant f (par ex. le tri par insertion) ne sont pas tous typables dans ces systèmes.

Un des buts sur le long terme est de donner statiquement des bornes de complexité. C’est pourquoi dans
cette thèse nous cherchons à obtenir les caractérisations du temps polynomial les plus expressives possible.
Notre principal outil est la sémantique des contextes: des jetons voyagent à travers le réseau selon certaines
règles. Les chemins définis par ces jetons représentent la réduction du réseau.

Contrairement aux travaux précédents, nous ne définissons pas directement des sous-systèmes de la
logique linéaire. Nous définissons d’abord des relations → sur les sous-termes des réseaux de preuves tel
que: B→ C ssi “le nombre de copies de B dépend du nombre de copies de C”. L’acyclicité de→ permet de
borner le nombre de copies de chaque sous-terme, donc la complexité du terme. Ensuite nous définissons
des sous-systèmes de la logique linéaire assurant l’acyclicité de→.

Nous étudions aussi des caractérisations du temps élémentaire et des fonction primitives récursives. Fi-

v

nalement, dans le but d’adapter nos sous-systèmes de la logique linéaire à des langages plus riches, nous
adaptons la sémantique des contextes aux réseaux d’interaction, utilisés comme langage cible pour de pe-
tits langage de programmation. Nous utilisons cette sémantique des contexte pour définir une sémantique
dénotationnelle sur les réseaux d’interactions.

Remerciements

Le premier remerciement revient sans aucun doute à Patrick, toujours disponible au cours de ma thèse.
Il m’a lancé sur un sujet sur lequel j’ai pris beaucoup de plaisir, a aiguillé mes recherches, m’a permis
de prendre plus de recul sur mes travaux, et m’a aidé les nombreuses fois où j’ai rencontré des difficultés
scientifiques ou administratives.

Je voudrais remercier les membres du jury pour avoir accepté d’examiner mes travaux, en particulier les
rapporteurs Simone Martini et Ian Mackie pour leur lecture détaillée de ce document.

De nombreux chercheurs ont contribué par leurs remarques à cette thèse et il serait trop long de tous les
citer. J’aimerais tout de même spécialement remercier Ugo Dal Lago pour de nombreuses discussions sur la
sémantique des contextes, la complexité implicite en général, et pour notre collaboration sur les fonctions
primitives récursives. Ainsi que Damiano Mazza: une discussion que j’ai eu avec lui au tout début de
cette thèse sur l’expressivité ont réorienté mon sujet de thèse, et les discussions que nous avons eu sur
les réseaux d’intéractions ont considérablement amélioré le dernier chapitre de cette document. Enfin, je
remercie toute l’équipe de PLUME pour leur aide que ce soit au travers de discussions scientifiques, sur la
manière de présenter mes résultats, ou sur le monde de la recherche en général. L’équipe et le laboratoire ne
pourraient fonctionner si il n’y avait que des chercheurs. Merci aux secrétaires, notamment Catherine, pour
leur réactivité et leur patience tout au long de la thèse.

Pour finir, parce qu’il faut se changer les idées, merci à ceux qui m’ont accompagné pendant ces années:
ma famille, mes amis, le foyer et mes colocs qui m’ont supporté pendant ces longs mois de rédaction. Et
enfin, merci à ceux qui ont pris le temps de venir à ma soutenance, ou de lire une partie de cette thèse.

vi

Chapter 1

Introduction

1.0.1 Motivation for a Linear Logic subsystem characterizing polynomial time

Motivations for type-systems capturing polynomial time Programming is a notoriously error-prone
process. The behaviours of the programs written by programmers on their first attempt often differ from
their expected behaviours. This may be because of a typo (as in Figure 1.1a) or because the behaviour of the
program is complex. Type systems can detect some of those mistakes so that programmers can correct them
more easily. For instance, in Figure 1.1a, OCaml type system notices that the type of pie does not match
its use in line 5. Thus, the programmer notices that they wrote pie instead of pi in line 5, and can fix their
mistake.

In this thesis, the property we are interested in is time complexity: the time of the execution of a program
as a function of the size of its input. A type system S giving a bound on the time complexity of a program
would be useful in several ways:

• In some applications, it is very important to have a certified bound on the time of execution. In hard
real-time system, programs can never miss a deadline, otherwise the whole system is a failure. For
instance, if a pacemaker, a car engine control system, or a missile detection system takes too much
time to react to an event, it can cost a life. In these cases, it is not enough to verify that the system
reacted fast enough during tests. We want an absolute certainty.

• In complexity theory, the main method to prove that a problem is NP-complete, is to define a poly-
nomial time reduction from another NP-complete problem. If S is well-trusted, it could be used as a
specialized proof assistant: the fact that the reduction is typable in S would increase the trust in the
proof. Polynomial time reductions are also used in cryptography to prove that a protocol is secure [59].
Such type systems have also been proposed to reason about computational indistinguishability [65].
More generally, S could be used in any proof relying on a complexity bound for a program.

• For some softwares, it seems enough to get an empirical estimate of the complexity by running tests.
For example, for a console video game, if players do not have slowness problems during the tests
one may suppose that such problems are rare enough to be unimportant. In this case, S could be
useful to find the origin of the slowness observed during tests (this requires the type inferrer to give
useful information when it fails to type a term). For instance, in the program of Figure 1.1b, one
can imagine that the type inferrer would answer “Failure to infer a polynomial-time bound: hanoi l
makes recursive calls to hanoi q and hanoi q (line 5 and 5). Inequality |q| + |q| ≤ |l| could not be

1

1 let returnPi () =

let pie = "Pies are delicious"

and pi =3.14159

in pie

5 in 2. *. returnPi() ;;

(a) A (non-compiling) OCaml program

1 let rec hanoi l=

match l with

| [] -> 0

| t:: q ->

5 (hanoi q)+1+(hanoi q)

in hanoi [5;4;3;2;1];;

(b) This naive program computes the number of
moves required to move the stack of disk l to another
rod in “Tower of Hanoi” puzzle

1 let rec divide a l=

match l with

|[] -> ([],[])

|h::q ->

5 let (smaller,bigger)= divide a q in

if h < a then

(h::smaller,bigger)

else

(smaller, h::bigger)

10 in

let rec quicksort l =

match l with

| [] -> []

| h::q ->

15 let (q1,q2)= divide h q in

(quicksort q1)@[h]@(quicksort q)

in

quicksort [0;2;1;5;4]

(c) An exponential time OCaml program

Figure 1.1: Those programs do not compile because of a type error.

inferred”. Thus, the programmer can easily fix this by replacing line 5 by let hanoiQ= hanoi q in
hanoiQ+1+hanoiQ

• Even when time complexity is not an issue, if the type system fails to infer a bound on execution time
corresponding to what the programmer is expecting, it may suggest an error in the program (in the
same way the type system of Ocaml notice the error in the program of Figure 1.1a). For instance,
the program of Figure 1.1c is an attempt to program the sorting algorithm Quicksort. The program
should normalize in polynomial time, but because the programmer made a mistake (in line 16 it
should be quicksort q2 instead of quicksort q), this program normalizes in exponential time. As
for the program of Figure 1.1b, one can imagine that the type inferrer would answer “Failure to infer a
polynomial-time bound: quicksort l makes recursive calls to quicksort q1 and quicksort q (line
16 and 16). Inequality |q1| + |q| ≤ |l| could not be inferred”. Thus, the programmer would quickly
notice their mistake and correct line 16.

In this thesis, we define type systems of λ-calculus (those type systems are refinements of System
F [35, 62]), such that every typed term normalizes in polynomial time (resp. elementary time and prim-
itive recursive). This property is called polynomial time soundness. And, for every function f computable
in polynomial time (resp. elementary time and primitive recursive time) there exists a typed term t f which
computes f . This property is called polynomial time extensional completeness. We write that a type system
S characterizes a complexity class C if and only if S is both sound and extensionally complete for C.

Expressiveness and decidability Determining if λ-term t normalizes in polynomial time is undecidable,
even if we are given a System F type derivation for t. Thus, every type system S characterizing polynomial
time is in one of the two following situations:

2

1 let identite n =

if n == n then

n

else

5 while (true) {};

n

in

identite 5

Figure 1.2: This program terminates in polynomial time but not blindly.

• Either determining whether a term t is typable in S is undecidable.

• Or S is not intensional complete: it is to say that there exist λ-terms of System F which normalize in
polynomial time and are not typed by S .

A system can be interesting even if it is undecidable. Dal Lago and Gaboardi have defined the type sys-
tem dlPCF [22] which characterizes exactly the execution time of PCF programs. Type-checking in dlPCF
is undecidable. However, one can imagine defining a heuristics for type inference, asking the programmer
to add annotations to help the type inferrer, or restricting dlPCF to a decidable fragment. Their framework
can be seen as a top-down approach.

Here we follow instead a bottom-up line of work: we take inspiration from previous decidable type
systems characterizing Ptime and try to relax conditions without losing neither soundess nor decidability.
The type systems S characterizing polynomial time we define are decidable and intensionally incomplete.
Let us consider list sorting, because it is computable in polynomial time there exists a turing machine M and
a polynomial P such that, when M is applied to the list l, M sorts l in at most P (|l|) steps. We define tsort as a
term which, on input l, simulates M during P (|l|) steps. Because tsort is proved to be typable in S , this proves
the extensional completeness of S . However, people never program by simulating Turing machines (because
it is quite tedious) and λ-terms representing usual sorting algorithms (e.g. insertion sort and quicksort) may
be untypable in S . The more intensionally expressive S is (i.e. the more terms are typable by S), the more
useful S is. Indeed, the four motivations for systems characterizing polynomial time we described earlier
require S to type programs written by non-specialists: people who may not have a thorough understanding
of S . Thus, we want S to type as many “natural” programs as possible.

Restriction to λ-calculus This quest for expressivity is quite complex. This is why, rather than defining
a type system on C++ or OCaml characterizing polynomial time, we first define a subsystem of System
F on λ-calculus. We only focus on one aspect of computation: how, in a higher-order setting, does the
application of a function to another cause the complexity to be non-polynomial? and how can we prevent it?
Moreover, we do not look into the data, only at their size. For instance, typing the λ-terms corresponding to
the program of Figure 1.2 is not in the scope of this thesis. Indeed, the fact that this program normalizes in
polynomial time comes from the fact that line 5 is never executed because n is always equal to itself. If, in
line 2, we replaced the second occurrence of n by another object of same type and size, the polynomial time
bound would no longer hold.

On the contrary, in the programs of Figure 1.1 (after the respective corrections proposed earlier), the
polynomial time bounds can be proved without examining the values of the data. One only needs to consider

3

their sizes. We thus say that they are blindly polynomial time [6]. In this thesis, we are only interested (for
the sake of simplicity) in the λ-terms which are typable in System F and blindly polytime.

Thus we try to define a type system S for λ-calculus which characterizes polynomial time and is as
expressive as possible. We consider that, in future works, S may be modified to take into account other
features of modern programming languages. Such modifications have already been defined for some type
systems on pure λ-calculus. For instance, Baillot and Terui defined a type system DLAL characterizing
polynomial type in pure λ-calculus [12]. Taking inspiration from this work, Baillot, Gaboardi and Mogbil
defined a type system characterizing polynomial time in λ-calculus enriched with constructors for algebraic
data-types, pattern matching and recursive definitions [7]. Similarly, Antoine Madet defined a type system
characterizing polynomial time in λ-calculus enriched with multithreading and side effects [54]. One could
also imagine capturing non-blindly polynomial programs by extending S with (limited) dependent types.

Linear logic and proof-nets Linear logic (LL) [36] can be considered as a refinement of System F where
we focus especially on how the duplication of formulae is managed. In linear logic, the structural rules
(contraction and weakening) are carefully controlled. In System F, A1, · · · , An ` B means that “one can
prove B using the hypotheses A1,...,An as many times as needed”. In linear logic, A1, · · · , An ` B means that
“one can prove B using exactly once every hypothesis in A1,...,An”. To retrieve the whole expressivity of
linear logic, a modality ! is introduced: !A intuitively means “as many instances of A as needed”. Contraction
and weakening are only allowed for formulae of the shape !A:

Γ, !A, !A ` B
?C

Γ, !A ` B
Γ ` B ?W
Γ, !A ` B

With the three following additional rules (promotion, dereliction and digging), linear logic is as expres-
sive as System F, so the elimination of the cut rule (corresponding to the β-reduction of λ-calculus) is not
even primitive recursive because the Ackermann function can be expressed in linear logic (Figure 3.12).

A1, · · · , An ` B
!P!A1, · · · , !Ak ` !B

Γ, A ` B
?D

Γ, !A ` B
Γ, !!A ` B

?N
Γ, !A ` B

However, because the structural rules are handled by 5 distinct rules, one can enforce a subtle control on the
utilisation of ressources by modifying one of them. If we restrict some of those rules, it restricts the dupli-
cation of formulae (so the duplication of subterms through the proofs-as-programs paradigm). For instance,
Danos and Joinet proved in [24] that, in the absence of ?D and ?N rules, the cut-elimination normalizes
in elementary time. The set of such proofs is defined as Elementary Linear Logic (ELL). Through the
proof-as-programs correspondence, subsystems of linear logic enjoying a bound on cut-elimination can be
transformed into type systems for λ-calculus enforcing a bound on β-reduction [12].

Proof-nets [37] are an alternative syntax for linear logic, where proofs are considered up-to meaningless
commutations of rules. Proof-nets are graph-like structures where nodes correspond to logical rules. One
of the reasons we use proof-nets instead of proof derivations is that context semantics, the main tool we use
in this thesis, is much simpler to define and use in proof-nets (although it was also defined directly on proof
derivations [49]).

1.0.2 Specificities of our approach

Previous polynomial time subsystems of Linear logic There already exist several subsystems of linear
logic characterizing polynomial time. The first such subsystem is Bounded Linear Logic (BLL), defined by
Girard, Scedrov and Scott in 1992 [39]. The main mechanism of BLL is the labelling of ! modalities by

4

LLL

MS

L4

L4
0

SDNLL

S LL

SwLL

BLL

QBAL

Decidable Undecidable ?

Figure 1.3: State of the art and contributions

polynomials. In 2009, Hofmann and Dal Lago defined Quantified Bounded Affine Logic (QBAL) which
is a generalization of BLL. However, given a proof-net G, determining if G is in BLL (resp. QBAL)
seems undecidable. Moreover, given a λ-term t typed in System F, determining whether there is a proof-net
corresponding to t in those systems also seems undecidable. Thus, they do not fit in our approach.

The first decidable system was Light Linear Logic (LLL) defined by Girard in 1994 [34, 38]. LLL is
defined as the proofs of ELL such that the contexts have at most one formula in every !P rule1. A type
system DLAL for λ-calculus was inspired by LLL [12] and determining whether a λ-term t typed in System
F can be typed in DLAL is decidable [2]. Type inference for ELL has also been the object of various
studies [17, 18, 11].

In 2010, Baillot and Mazza generalized ELL with a subsystem L3 of linear logic characterizing elemen-
tary time [8]. Then they defined L4 and L4

0, characterizing polynomial time, based on L3 in the same way as
LLL is based on ELL. Those two systems are generalizations of LLL. In a separate direction, Roversi and
Vercelli also extended LLL with MS 2 [64] (also in 2010). Those three systems are obtained by decorating
formulae with labels and adding local constraints on the labels. One can observe that L4, L4

0 and MS are
trivially decidable on proof-nets: given a proof-net G there exist only a finite number of possible ways to
label the formulae of G. One can try every possibility and check whether the labels verify the constraints.
And one can conjecture that they can be transformed into decidable type systems for λ-calculus similarly to
the transformation between LLL and DLAL.

Lafont defined another subsystem of linear logic characterizing polynomial time in 2004: Soft Linear
Logic [47] (S LL). This system does not contain LLL, and none of the above generalization of LLL contains
S LL. However, in practice, S LL really seems less expressive than LLL (and its generalizations). A hint
is that (contrary to the MS and L4

0 cases for example) the soundness of S LL is “very easy to prove” while
the completeness “is more delicate to prove” (according to Lafont [47]). Because of its simplicity, S LL
inspired many systems to characterize polynomial time in λ-calculus [9, 33], to characterize other classes of
complexity [31, 32], and to bound the length of interactions of processes [21, 48].

Figure 1.3 summarizes the state of the art. There is an arrow from the system S to the system T if there
is a canonical embedding of S in T . The arrow between MS and S DNLL is dotted because the canonical
embedding is only defined for one of the maximal systems of MS . The systems in bold are the systems we
define in this thesis.

1To keep some expressivity, Girard adds a new modality §.
2Which is a set of system rather than a unique system, we give more details in Chapter 5.

5

⊗ `
cut

ax
ax

ax
e1 e8

e2

e7

e3 e4

e5e6

cut

cut

ax

ax

ax
e1 e8

e2

e7

e5

e6

ax
e1 e8

cut cut
2

G1 = G2 = G4 =

Figure 1.4: Simple example of context semantics:

Context semantics Our main tool is context semantics. Context semantics is a presentation of geometry
of interaction [40, 25] defined by tokens traveling across proof-nets according to some rules. The paths
defined by those tokens are stable by reduction so they represent the reduction of the proof-net. As a first
example, let us consider Figure 1.4. It represents the cut-elimination of a proof-net G1 →cut G2 →2

cut G4.
The rules we define in Section 2.2 give us the following path in G1:

((e1, []),T) 7→ ((e2, []),T) 7→ ((e3, []),T.⊗r) 7→ ((e4, []),T.⊗r) 7→ ((e5, []),T) 7→
((e6, []),T) 7→ ((e4, []),T.`l) 7→ ((e3, []),T.`l) 7→ ((e7, []),T) 7→ ((e8, []),T)

It corresponds to the following path in G2:

((e1, []),T) 7→ ((e2, []),T) 7→ ((e5, []),T) 7→ ((e6, []),T) 7→ ((e7, []),T) 7→ ((e8, []),T)

And to the following path in G4:

((e1, []),T) 7→ ((e8, []),T)

Context semantics has first been used to study optimal reduction in λ-calculus [40] and linear logic [41].
It has also been used for the design of interpreters for λ-calculus [52]. Finally, it has been used to prove
complexity bounds on subsystems of System T [19] and linear logic [10, 20]. In [20], Dal Lago defines for
every proof-net G a weight WG ∈ N ∪ {∞} based on the paths of context semantics such that, whenever G
reduces to H, WG ≥ WH +1. Thus WG is a bound on the length of the longest path of reduction starting from
G. Then we can prove theorems of the shape “whenever G satisfies some property (for instance if G belongs
to a subsystem such as LLL), WG satisfies some bound (for instance WG ≤ P(|G|) with P a polynomial and
|G| the size of G).” From this point of view, context semantics has two major advantages compared to the
syntactic study of reduction:

• Its genericity: some common results can be proved for different variants of linear logic, which allows
to factor out proofs of complexity results for these various systems.

• It proves strong bounds on reduction: the bounds stand for any strategy of reduction. On the contrary,
most bounds proved by syntactic means are only proved for a particular strategy. If the reduction
strategy corresponded to strategies frequently used by programming languages (such as left-to-right
call-by-value), it would not be a big problem. However, in some cases (L4 for instance [8]), the
strategy is rather farfetched and unlikely to be implemented in a programming language.

Our context semantics, presented in Section 2.2, is slightly different from Dal Lago’s context semantics.
In particular, Dal Lago worked in intuitionnistic linear logic, and we work in classical linear logic. So the
results of [20] can not be directly applied. However most theorems of [20] have correspondents in our
framework, with quite similar proofs.

6

Semantic criteria based on context semantics The existing subsystems refuse many proof-nets whose
polynomiality seems straightforward. Thus, one may fear that their extension to real world programming
languages will not type a great number of natural polynomial time programs. In this thesis, we push the
limits of expressivity of linear logic subsystems characterizing polynomial time.

Contrary to previous works, we do not directly define linear logic subsystems. First, we define semantic
criteria forbidding behaviours which can result in non-polynomial complexity. Typically, we define a rela-
tion → on boxes (special subterms of proof-nets) such that B → C means that ”the number of times B is
copied depends on the number of times C is copied”. Then, the acyclicity of →, ensures a bound on the
number of times every subterm is copied so a bound on the length of normalization sequences.

Let us suppose that there exist two relations →1 and →2 whose acyclicity entail a bound on the com-
plexity of cut-elimination. If we have→1⊆→2 then the acyclicity of→2 entails the acyclicity of→1. So the
criterion “→1 must be acyclic” is a generalization of “→2 must be acyclic”: it is true on at least as many
proof-nets. This is why we will endeavour to define the smallest relations possible whose acyclicity entails
a polynomial bound.

Then (in Chapter 5), we define subsystems of linear logic such that those relations are acyclic on every
proof-net of the subsystem. This gives us a bound on the length of normalization for every proof-net of the
subsystem. The relations→ we study are based on the paths of context semantics. The rules defining those
paths are local, as the typing constraints. We use the typing constraints to define invariants along the paths,
proving that if B→ C then the ”types” of B and C are such that we can not have C → B.

Stratification, Dependence control, Nesting More precisely, our criteria entailing polynomial time bounds
will be composed of three conditions: a stratification condition (which, alone, implies an elementary time
bound), a dependence control condition and a nesting condition.

In Section 3.1, as a toy example, we define a relation � whose acyclicity entails an elementary time
bound (here, the stratification condition is the acyclicity of �). On proof-nets G which have at most one
formula in the contexts of their !P rules3 (dependence control condition) and without ?N nodes (nesting
condition), it entails a polynomial bound. On proof-nets of ELL, � is acyclic. So this section proves the
elementary bound of ELL. Because the LLL proof-nets are ELL proof-nets without ?N nodes and whose
boxes have at most one auxiliary door, this section proves the polynomial bound of LLL.

The boxes of the proof-nets of L4 and L4
0 also have at most one auxiliary door, so this dependence control

condition is general enough for those systems. However, because� is not always acyclic on the proof-nets
of those system, this is not enough to prove their polynomial time bounds. Let us notice that L4, L4

0, MS and
S LL do not have ?N, so this nesting condition is general enough for every previous decidable subsystem of
linear logic characterizing polynomial time.

In Section 3.2, we define a relation −> −> −>⊆� whose acyclicity entails an elementary time bound (stratifi-
cation condition). This relation is acyclic on every proof-net of L3 (so every proof-net of L4 and L4

0), proving
the elementary time bound of L3.

In Section 3.3, we define relations . . . and / / / . The acyclicity of . . . is a dependence control condition
more general than the condition “at most one auxiliary door by box”. In fact, if contexts of !P rules have
at most one formula, . . . is the empty relation which is trivially acyclic. The relation . . . is also acyclic on
every proof-net of MS and S LL. The relations −> −> −> and . . . were published in [60] where we proved that
their acyclicities entail a polynomial time bound in the absence of ?N nodes.

The acyclicity of / / / is a nesting condition which is a generalization of “no ?N nodes”: for proof-nets
without / / / nodes, / / / is the empty relation. If −> −> −>, . . . and / / / are acyclic, it entails a polynomial time

3It means that boxes have at most one auxiliary door

7

LLL

MSL4

L4
0 SDNLL

S LL

SwLL

� is acyclic
 −> −> −> is acyclic
Weak-stratifications

(a) Stratification on LL subsystems

LLL

MSL4

L4
0 SDNLL

S LL

SwLL

≤ 1 auxiliary door

. . . is acyclic
Weak-stratifications

(b) Dependence control on LL subsystems

LLL

MSL4

L4
0

SDNLL

S LL

SwLL

No ?N node/ / / is acyclic/ is acyclic

(c) Nesting on LL subsystems

Figure 1.5: Tools needed to prove the polynomial time bounds of LL subsystems.

bound. This proves the polynomial bound of L4 and MS . Because there seems to be lot of room between
the condition “ −> −> −>, . . . and / / / are acyclic” and the systems LLL, L4 and MS , we define a new system
called Stratified Dependence controlled Nested Linear Logic (S DNLL). This system is trivially decidable
(for any given proof-net, there is a finite number of possible labels). L4 and a maximal system of MS are
trivially embedded in S DNLL.

Finally in Section 3.5 we define a condition called “weak stratification” which is a generalization of
previous stratification and dependence control conditions. We also define a relation / ⊆ / / / whose acyclic-
ity is a nesting condition. The stratification condition is general enough for S LL and L4

0. The situation
is summarized in Figure 1.5. Thus, this section proves the polynomial bound of every previous decidable
subsystem of linear logic characterizing polynomial time. Because there is a lot of room between the con-
ditions of this section and previously defined systems, we define a new system Sweetened Linear Logic
(S wLL). S DNLL and all the systems of MS are trivially embedded in S wLL. It is unclear whether L4

0 can
be embedded in S wLL or not.

Although it is nice to have a single system in which we can embed L4, MS and S LL, if it was our goal
we would be killing a fly with a sledgehammer: S wLL is a lot more expressive than either of those systems.
In particular, contrary to previous systems, S wLL contains proof-nets which are not hereditarily polynomial
time: they contain subproof-nets which do not normalize in polynomial time. Another interesting feature is
that, in some cases, we can iterate a function obtained by iteration. The price we pay is that the definition of
S wLL is quite complex. One might argue that such a complex system could not be understood by program-
mers. But it does not need to be understood, we only need the type inference engine to give meaningful
messages when it fails to infer a type for a term. We will argue in Section 5 that, because S wLL is much
closer to the set of polynomial time proof-nets than LLL, we can expect the indications of the type inference
engine to be much more meaningful.

Iteration of functions obtained by iteration Non-size-increasing (NSI) type systems [1, 43], a line of
work prompted by Hofmann [44], were also an important inspiration for this thesis. In previous subsystems
of linear logic characterizing polynomial time, one can iterate4 a function f only if f has a type of the shape
A (A. And the iteration of f then has type B (C with B , C. Thus, one can never iterate a function

4For instance, to define a function computing n 7→ f (· · · f (f (x)) · · ·) with n successive applications of f to some term x

8

obtained by iteration. To understand this restriction, one can consider the function f : n 7→ n + 2. Its
iteration is of the shape g : n 7→ 2 · n + x. Thus the iteration of g is of the shape h : n 7→ y ·∑n

i=0(2i · x). This
function h is not computable in polynomial time. However, this restriction forbids many natural algorithms.
For instance, insertion sort is usually defined as the iteration of a function obtained by iteration.

In [44] Hofmann noticed that, if the size of f (n) is at most 1 plus the size of n, then one can iterate the
iteration of f . For instance, if we consider f : n 7→ n + 1, the iteration of f is of the shape g : n 7→ n + x. The
iteration of g is of the shape h : n 7→ x · n + y which is computable in polynomial time. Non-size-increasing
type systems discriminate between the two cases by a careful handling of constructors.

In linear logic, whenever we iterate a function obtained by iteration we have B� B and B −> −> −> B with
B a box, and � and −> −> −> the relations defined in Sections 3.1 and 3.2. Thus, the iteration of a function
obtained by iteration prevents those relations from being acyclic. But the criteria defined in Section 3.5 and
the type system S wLL of Section 5.3 allow iteration of functions obtained by iteration in some cases.

Characterizing polynomial time in other frameworks Characterizations of polynomial time have also
been defined for other frameworks. The first such characterizations were restrictions of recursion [15, 50].
The direction of research defining the most expressive characterizations is the one where programs are term
rewriting systems. Polynomial time bounds are enforced by path orderings and quasi-interpretations [16].
They are considered much more expressive than type-systems based on subsystems of linear logic. One
of their limitations is that they only deal with first-order functions (although Baillot and Dal Lago recently
generalized quasi-interpretations to a framework allowing higher-order functions in a limited way [4, 5]).

With this thesis, we have reduced the gap of expressivity between the interpretation and the linear logic
approaches. But we do not view these approaches are competitors, we think that they will be combined. For
instance, one can imagine that for every term rewriting system R, with a quasi-interpretation and an ordering
of function satisfying the conditions of [16], one could assign S wLL types to the constructor and function
symbols of R such that S wLL, augmented with the constructors and functions of R, still characterizes poly-
nomial time.

1.0.3 Primitive recursion

Dal Lago, Roversi and Vercelli defined a strategy of reduction on proof-nets called “superlazy reduc-
tion” [23]. This strategy is not complete: there exist blocking proof-nets which are not in normal forms
with respect to cut-elimination but are normal with respect to superlazy reduction. They prove that this
strategy characterizes primitive recursion in the following meaning: superlazy reduction is computable in
time bounded by a primitive recursive function, and every primitive recursive function f is representable by
a proof-net G f which does not block (superlazy reduction reduces G f to a non-blocking proof-net). How-
ever, as they wrote: “Unfortunately, we do not even know any criteria allowing to guarantee that certain
proof nets can be reduced to normal form (w.r.t. ordinary reduction) by way of superlazy reduction”.

After seeing our work on polynomial time, Dal Lago defined a relation �̇ and conjectured that: for
every proof-net G, if �̇ is acyclic, then G does not block. This relation is closely related to the relation�
we defined to enforce elementary time: � can be viewed as a projection of �̇ (in particular, if� is acyclic
then �̇ is acyclic). We proved directly (without using the notion of superlazy reduction) that the acyclicity
of �̇ enforces a primitive recursive bound. In fact, in Section 4, we define a smaller relation ̇−> whose
acyclicity entails a primitive recursive bound. In Section 5.2, we define Quantifier Predicative Linear Logic
(QPLL), a subsystem of linear logic characterizing primitive recursion: ̇−> is acyclic on every QPLL
proof-net.

9

1.0.4 Interaction nets

Earlier, we wrote that for the sake of simplicity, we only considered subsystems of linear logic. We think
that, with respect to the set of blindly polynomial LL proof-nets, S wLL is quite expressive. However, the
whole set of LL proof-nets (let alone the set of blindly polynomial ones) is not quite expressive, because it
is only as expressive as System F. For instance, common algorithms such as merge sort and quicksort are
hard to implement in System F/linear logic. Indeed, recursion is usually implemented by the iteration of a
function. However, such recursive definitions is very limited. For instance, functions defined by the iteration
of a list only make one recursive call. This rules out programs such as the one of Figure 1.1c.

To gain some expressivity, we need to extend linear logic with more primitives: built-in arithmetic,
inductive types, pattern matching, less constrained recursion, side-effects, multi-threading, exceptions,... If
we extended linear logic with one of the above features, there are risks that we would spend a lot of time
just to transpose the basic results of this thesis to this extension. Then, we may need a lot more time to
add another feature, or even slightly modify the language, and so on. As the set of features needed is not
precisely defined, a general framework of systems would be preferred to a single system. This way, we
would need to define the context semantics and prove the general theorems only once, and they will stand
for any system of the framework.

The framework we chose is interaction nets: a well-behaved class of graph rewriting systems [45].
Interaction nets are a model of asynchronous deterministic computation. A net is a graph-like structure
whose nodes are called cells. Each cell is labelled by a symbol. A library defines the set of symbols and the
rewriting rules for the symbols. Thus, a library corresponds to a programming language. Interaction nets as
a whole, correspond to a set of programming languages. Interaction nets present several major advantages:

• The definition of interaction nets was inspired by the proof-nets of linear logic. Because they have
many similarities, it may be relatively easy to transpose the methods of the present thesis to interaction
nets (compared to other equally expressive frameworks).

• Interaction nets have been used to encode several systems. Proof-nets [53] and λ-calculus [51] but
also functional programming languages containing pattern-matching and built-in recursion [30]. A
non-deterministic extension is powerful enough to encode the full π-calculus [55]. This could be used
to control ressources of processes as in the S HOπ calculus [48].

Because context semantics is our main tool, our first step will be to extend context semantics to every
library of interaction nets. As context semantics is a model of geometry of interaction, the most relevant
work is the definition of a geometry of interaction for an arbitrary library by De Falco [27]. De Falco
defines a notion of paths in nets and a notion of reduction of those paths. Then, he defines a geometry of
interaction of a library as a weighing of paths by elements of a semi-group such that the weights are stable
along reduction. However, he exhibits such a semi-group only for some particular libraries (based on linear
logic). Thus, there is no complete geometry of interaction model of interaction nets yet.

The most difficult part to define a context semantics on interaction net was to define a notion of tokens.
Then, defining the rules of the paths, proving that these paths are stable along reduction, defining a weight
WG ∈ N∪ {∞}, and proving that it decreases along reduction is relatively easy and natural. For instance, the
paths of context semantics for interaction nets are governed by only 5 rules, compared to the 29 of context
semantics for linear logic. However, it seems harder to use it than the linear logic context semantics. We
think we still need to define additional tools.

We study another application for this context semantics: a denotational semantics for a large class of
interaction net systems. We define a notion of observational equivalence for each library. Then we define

10

a denotational semantics which is, on a class of libraries named crossing libraries, sound and fully abstract
with respect to our equivalence. We previously presented those works in [61].

Related works Concerning our first application, we are not aware of other works aiming at proving com-
plexity bounds on generic interaction nets. There are also few tools to analyze the semantics of generic
libraries. Lafont defined an observational equivalence, based on paths, for a special library called interac-
tion combinators [46]. Then, he defines a geometry of interaction for interaction combinators: he assigns
a weight to each path in the nets such that two nets are equivalent if and only if their paths have the same
weights. Thus, the set of weights of paths is a denotational semantics sound and fully abstract for his
equivalence.

In [56], Mazza designed an observational equivalence for every library. This equivalence is similar, but
not equal to Lafont’s on interaction combinators. Then, he defines a denotational semantics for symmetric
combinators, a variant of interaction combinators [56, 57]. Symmetric combinators are Turing-complete and
can encode a large class of libraries (called polarized libraries). However, as we will detail later, defining the
semantics of a net as the semantics of its translation in interaction combinators does not give quite a good
semantics. It would differentiate nets that behave similarly. Our definition of observational equivalence is
strongly inspired from Mazza’s.

Finally, in [29], Fernandez and Mackie define an observational equivalence for every library. This
equivalence is stronger than Mazza’s semantics on symmetric combinators but, in general, they are not
comparable.

1.0.5 Organisation of the thesis

In Chapter 2, we present linear logic and context semantics. The results of this chapter either correspond to
similar results proven by Dal Lago in his presentation of context semantics [20] or small technical lemmas.
In Chapter 3, we present our semantic criteria entailing elementary and polynomial bounds. Section 3.1
presents simple criteria for polynomial and elementary bound (both on cut-elimination and β-reduction).
Its goal is mainly pedagogic: the criterion defined for polynomial time is only general enough to prove the
soundness of LLL. In Section 3.2 we define a more general criterion for elementary time. And in Section 3.3
we use it to define a more general criterion for polynomial time. Those two sections contain the main ideas
of this thesis. Those ideas are pushed to their limits in Section 3.5, where we define an even more general
characterization of polynomial time. In Chapter 4, we use a criterion similar to the criterion of Section 3.2
to define a criterion entailing a primitive recursive bound.

In Chapter 5, we define subsystems of Linear Logic whose complexity bounds rely on the criteria of
Chapters 3 and 4. The system S DNLL of Section 5.1.1 characterizes polynomial time and is based on
Section 3.3. The system QPLL of Section 5.2 entails a primitive recursive bound and is based on Chapter 4.
The system S wLL of Section 5.3 characterizes polynomial time and is based on Section 3.5.

Finally, Chapter 6 presents a context semantics for interaction nets and use it to define a denotational
semantics. This chapter is almost independent from the other chapters.

11

12

Chapter 2

Context Semantics and Linear Logic

13

ax` A⊥, A
` Γ, A ` ∆, A⊥

cut` Γ,∆

` Γ, A ` ∆, B ⊗` Γ,∆, A ⊗ B
` Γ, A, B `` Γ, A ` B

` Γ, A[B/X] ∃` Γ,∃X.A

` Γ, ?A, ?A
?C` Γ, ?A

` A1, · · · , An, B !P` ?A1, · · · , ?An, !B
` Γ ?W` Γ, ?A

` Γ, A
?D` Γ, ?A

` Γ, ??A
?N` Γ, ?A

` Γ, A ∀` Γ,∀X.A

Figure 2.1: Sequent calculus presentation of linear logic. In the ∀ rule, we suppose that X does not appear
free in Γ.

2.1 Linear Logic

Linear logic (LL) [36] can be considered as a refinement of System F [35, 62] where we focus especially
on how the duplication of formulae is managed. In System F, A ⇒ B means “with many proofs of A, I can
create a proof of B”. Linear logic decomposes it into two connectives: !A means “infinitely many proofs
of A”, A (B means “using exactly one proof of A, I can create a proof of B”. We can notice that we can
represent A⇒ B with (!A)(B. In fact, A(B is a notation of A⊥`B. ()⊥ can be considered as a negation
and ` as a disjunction. In fact the disjunctions ∨ and conjunction ∧ are separated into two disjunctions (`
and ⊕) and two conjunctions (⊗ and &). In this work, we will only use the “multiplicative” ones: ` and ⊗.

Finally ∀ and ∃ allow us, as in System F, to quantify over the sets of formulae. As examples, let us
notice that ∀X.X (X is provable (for any formula X, using exactly one proof of X, we can create a proof
of X). On the contrary, ∀X.X ((X ⊗ X) is not provable because, in the general case, we need two proofs of
X to prove X ⊗ X.

In this work we use neither the additives (⊕ and &) nor the constants. This fragment is usually named
Multiplicative Exponential Linear Logic with Quantifiers (abbreviated by MELL∀). To simplify notations,
we will abusively refer to it as Linear Logic (abreviated by LL). The set FLL, defined as follows, designs the
set of formulae of linear logic.

FLL = X | X⊥ | FLL ⊗FLL | FLL `FLL | ∀X FLL | ∃X FLL | !FLL | ?FLL

You can notice that the “negation” ()⊥ is only defined on atomic formulae. We define inductively an
involution ()⊥ on FLL, which can be considered as a negation: (X)⊥ = X⊥, (X⊥)⊥ = X, (A⊗B)⊥ = A⊥`B⊥,
(A ` B)⊥ = A⊥ ⊗ B⊥, (∀X.A)⊥ = ∃X.A⊥, (∃X.A)⊥ = ∀X.A⊥, (!A)⊥ = ?(A⊥) and (?A)⊥ = !(A⊥).

Linear logic is usually presented as a sequent calculus (Figure 2.1). In this thesis, we will consider an
alternative syntax, proof-nets, which corresponds to the sequent calculus [37]. They are graph-like structures
whose nodes correspond to uses of logical rules. Intuitively, proof-nets are λ-terms where applications and
abstractions are respectively replaced by ⊗ and ` and with additional information on duplication. Figure 2.2
illustrates this intuitive correspondence. On the right is a graphical representation of the syntactic tree of
λn.λ f .λx.(n f)(n f)x, on the left is a corresponding proof-net

Definition 1 (proof-net). A LL proof-net is a graph-like structure, defined inductively by the graphs of
Figure 2.3 (G and H being LL proof-nets). Every edge e is labelled by βG(e) ∈ FLL (written β(e) if the
proof-net is obvious from context) satisfying the constraints of Figure 2.3. The set of edges is written EG.

A proof-net is a graph-like structure, whose edges are not labelled, defined inductively by the graphs of
Figure 2.3 (G and H being proof-nets). The constraints of Figure 2.3 on labels are not taken into account.

Let us notice that every LL proof-net is a proof-net. For the following definitions, we supposed fixed a
proof-net G.

14

`

`

!P

`

?C

?C

axaxax
⊗⊗

⊗⊗
?P ?P

?D ?D

axax

λn

λ f
λx

@
@

@
@

Figure 2.2: We can observe graphically the proofs-as-program correspondence: if we erase the !P, ?P and
?C of the proof net, we obtain the syntactic tree of the corresponding λ-term

ax
A⊥A G H

cutA A⊥
G H

⊗A B
A ⊗ B

G

`
A B

A ` B

G

∃
A[B/X]

∃X.A

G

∀
A

∀X.A

G

?D
A

?A

G

?C
?A?A

?A

G ?W
?A

G

!P?P?P
A1 An B

?A1 ?An !B

G

?N
??A

?A

Figure 2.3: Construction of LL proof-nets. For the ∀ rule, we require X not to be free in the formulae
labelling the other conclusions of G

ax · · ·
cut

A⊥

A
A

· · ·
A ∀ ∃

· · · · · ·

cut

A A⊥[B/X]

∀X.A ∃X.A⊥

· · · · · ·
cut

A[B/X] A⊥[B/X]

` ⊗
cut

· · · · · · · · · · · ·
A B A⊥ B⊥

A`B A⊥ ⊗B⊥
cut cut

A A⊥B B⊥

Figure 2.4: Non-exponential cut-elimination steps. For the ∀/∃ step, the substitution [B/X] takes place on
the whole net.

15

Nodes Let X be a node label (i.e. X ∈ {ax, cut,⊗,`,∃,∀, ?P, !P, ?W, ?D, ?N}), then NX
G refers to the nodes

of G whose label is X. The set of nodes of G is written NG.

Directed edges The edges of proof-nets are directed. For any (l,m) ∈ EG, we denote its inverted edge (m, l)
by (l,m). We define ~EG as the set of all edges of G as well as their inverted edges (~EG = EG ∪ {e | e ∈ EG}).
We consider that e is labelled by the dual of the formula labelling e : for any e ∈ EG, we define β(e) = β(e)⊥.

Premises and conclusions For any node n, the incoming edges of n are called the premises of n. The
outgoing edges of n are called the conclusions of n. Whenever n has only one premise (resp. conclusion),
premn (resp. concln) refers to the premise of n (resp. conclusion of n). The tail of the edge (m, n) refers to
m, while the head of (m, n) refers to n. Some edges have no conclusion. Such edges are called the pending
edges of G.

Boxes The rectangle of Figure 2.3 with the ?P and !P nodes is called a box. Formally a box is a subset of
the nodes of the proof-net. We say that an edge (m, n) belongs to box B if n is in B.

Let us call B the box in figure 5.1. The node labelled !P is the principal door of B, its conclusion is
written σ(B) and called the principal edge of B. The ?P nodes are the auxiliary doors of box B. The edge
going out of the i-th auxiliary door is written σi(B) and called the i-th auxiliary edge of B. DG(B) is the set
of doors of B and DG = maxB∈BG |DG(B)| (for any set E, |E| refers to the cardinality of E). The doors of box
B are considered in box B, they are exactly the nodes which are in B but whose conclusions are not in B.

The number of boxes containing an element (box, node or edge) x is its depth written ∂(x). ∂G is the
maximum depth of an edge of G. The set of boxes of G is BG. ρG(e) is the deepest box of G containing e.

Quantifiers We call eigenvariables of a proof-net, the variables X quantified by a ∀ node. We will always
suppose that they are pairwise distinct. Any proof-net which does not respect this convention can be trans-
formed in a proof-net with pairwise distinct eigenvariables by substitutions of variables. This is possible
because when we add a ∀ node to a proof-net, the eigenvariable can not be free in the other pending edges,
so even if the eigenvariables are equal, they can not be related. This allows to refer to “the node associated
to the eigenvariable X”.

cut-elimination cut-elimination, is a relation on proof-nets which is related to β-reduction. The rules of
cut-elimination can be found in figures 2.4 and 2.5.

Lemma 2. [37] Proof-nets are stable under cut-elimination.

16

G′

!P
B

?P?P

AAkA1

?Ak?A1

?D

cut
!A ?A⊥

· · ·
A⊥

G′

?D?D
AkA1

?A1 ?Ak

· · ·

cut
A A⊥

G′

!P?P?P

AAk

?Ak

A1

?A1

H′

!P?P?P

BBl

?Bl

A⊥

!B
cut

!A ?A⊥

G′

?P?P

H′

!P?P?P
cut

A A⊥Ak

?Ak

A1

?A1

Bl

?Bl

B2

?B2

B

!B

G′

!P?P?P

AAkA1

?Ak?A1

?W

cut
!A ?A⊥

?W ?W
?A1 ?Ak

G′

!P
B

?P?P

AAkA1

?Ak?A1

?N

cut
!A ?A⊥

· · ·
??A⊥

G′

!P Bi?P?P
AAkA1

!P Be?P?P
!A?Ak?A1

?N ?N
??A1 ??Ak

?A1 ?Ak

· · ·

cut
!!A

??A⊥

G′

!P
B

?P?P

AAkA1

?Ak?A1

?C

cut
!A ?A⊥

· · · · · ·
?A⊥ ?A⊥

G′l

!P?P?P

AA1Ak

G′r

!P?P?P

AA1Ak

?C ?C

?A1

?A1

?Ak

?Ak

?A1 ?Ak

· · · · · ·

cut cut
!A ?A⊥ !A ?A⊥

Figure 2.5: Exponential cut-elimination steps

17

2 3
G0= !P?P

axa b
B

`
e1c

⊗
cute2 e3

ax

?C
g e4 e5

⊗
ax

axj

l
k

m

n

a

b c

d
f

g

h
i

j

k

l
G2= !P?P

axa b

g
?C

cute1 e5

⊗
ax

axj

l
k

m

n

a

b c

f ′
i

j

k

l G5= !P?P

axal bl

!P?P

axar br

?C ⊗
m kc1 c2

ng

al

bl cl

ar

br cr

i′ l

Figure 2.6: Notion of residue. The ei refers to edges, other lower cases refer to nodes.

2.2 Definition of Context Semantics

A common method to prove strong bounds on a rewriting system is to assign a weight WG ∈ N to each term
G such that, if G reduces to H, WG > WH . In LL, the !P/?C step makes the design of such a weight hard: a
whole box is duplicated, increasing the number of nodes, edges, cuts,... The idea of context semantics is to
define WG as the number of nodes which can appear during reduction.

Let us suppose that G reduces to H. The reduction concerns only parts of the proof-net, elsewhere
there is a canonical one-to-one correspondence between the nodes of G and the nodes of H. We identify
corresponding nodes. For instance, in Figure 2.6, the ⊗ node l is never affected by cut-elimination so we
identify the nodes named l in the three nets. There are some nodes of G which are not in H (at least the
reduced cuts): in Figure 2.6, the nodes d, f , g and h are deleted in the reduction from G0 to G2, the nodes a,
b, c, f ′, i, j and k are deleted in the reduction from G2 to G5. Finally, there may be some nodes of H which
are not in G: in Figure 2.6, the edge f ′ is created from G0 to G2, al, bl, cl, ar, br, cr and i′ are created from
G2 to G5. If one defines, for any proof-net G, CanG as the set of nodes which can appear during reduction
and UG as |CanG |, then G →cut H implies UG > UH (CanH ⊆ CanG and any cut-elimination step deletes at
least 1 node). So UG is a bound on the longest cut-elimination sequence starting from G. For instance, in
Figure 2.6, we have:

CanG0 = {a, b, c, d, f , g, h, f ′, i, j, k, l,al, bl, cl, ar, br, cr, i′} UG0 = 19

CanG2 = {a, b, c, f ′, i, j, k, l,al, bl, cl, ar, br, cr, i′} UG2 = 15

CanG5 = { l,al, bl, cl, ar, br, cr, i′} UG5 = 8

How can we prove bounds on UG? In Figure 2.6, the creation of new nodes mostly happens during
the !P/?C step. Whenever a box B is duplicated, for every node n ∈ B, two new edges corresponding to
n are created. Those edges are residues of n. We consider “is a residue of” as a reflexive and transitive
relation. Let n be a node of G, Can(n) refers to all the residues of n. For instance Can(a) = {a, al, ar},
Can(b) = {b, bl, br} and Can(e) = {e}.

We define new weights VG and WG by VG =
∑

n∈NG |Can(n)| and WG = 2 · ∑e∈EG |Can(e)|. Let us
observe that VG is not precisely equal to UG: for example, in Figure 2.6, there are no n ∈ G0 such that
Can(n) contains f ′. Observing every cut-elimination rule, we can verify that G → H implies VG > VH . For
instance, for the proof-nets of Figure 2.6, VG0 = 17 (a, b and c have three residues, the other nodes have only
one), VG2 = 14 and VG5 = 8. The weight WG does not necessarily decrease at each reduction step. However,
for every proof-net we have VG ≤ WG so WG is also a bound on the length of→cut sequences starting from
G. We prefer to use WG than VG because our paths are defined on edges and it will be more natural to prove
bounds on the canonical sets of edges.

18

6
!P

`
ax

C
e

!P B

p

a

?C
cut

?W ?P

?C

?D

⊗

!P

ax

ax

b
c

j d

f

g h

i

k

!P

`
ax

e1

!P

p1

B1

a1

?W
cut

!P

`
ax

e2

!P

p2

B2

a2

?P
cut

?C

?D

⊗
!P

ax

ax

⊗
!P

!P !P

` `p3 p4

ax ax

e3

e4

h
i

k

Figure 2.7: Cut-elimination of a proof-net.

To prove bounds on the number of residues of nodes, we will simulate cut-elimination by paths in the
proof-net. Those paths will be generated by contexts travelling across the proof-net according to some rules.
The paths of context semantics in a proof-net G are exactly the paths which are preserved by cut-elimination
(such paths are called persistent in the literature [25]). Computing those paths is somehow like reducing the
proof-net, and the persistent paths starting at the principal edge of a box correspond to the residues of this
box. Proving bounds on the number of residues thanks to those paths rather than proving bounds directly on
the reduction will offer two advantages:

• Complex properties on the behaviour of the proof-net, which may be hard to manipulate formally, are
transformed into existence (or absence) of paths of a certain shape.

• The rules generating the paths are local, in the same way as typing constraints. We will define subsys-
tems of proof-nets: sets S of proof-nets verifying stricter typing constraints than Figure 2.3. We will
prove that, along a path in a proof-net of S , the contexts verify some invariant. From this invariant,
we will deduce that it is impossible for the paths to have certain shapes. Finally, because paths only
have a certain shape, we will prove a complexity bound for the proof-nets of S .

To represent lists we will use the notation [a1; · · · ; an]. To represents concatenation, we will use @:
[a1; · · · ; an]@[b1; · · · ; bk] is defined as [a1; · · · ; an; b1; · · · ; bk] and . represents “push” ([a1; · · · ; an].b is
defined as [a1; · · · ; an; b]). |[a1; · · · ; a j]| refers to j, the length of the list. If X is a set, |[a1; · · · ; a j]|X is the
number of indices i such that ai is in X.

A context is a pair ((e, P),T) composed of a potential edge (e, P) representing a residue of a directed edge
(e is a directed edge of the proof-net) and a trace T used to remember some information about the beginning
of the path. This information is necessary to ensure that the paths are preserved by cut-elimination. Indeed,
let us suppose that in Figure 2.6, there is a path of the shape ((e1,),) 7→ ((e2,),) 7→ ((e3,),). If the next
edge is e4, the path will not be persistent because e1 and e4 will be separated during the `/⊗ cut-elimination
step. So the next edge must be e5. Information will be put on the trace to remember that we have crossed a
` from its right premise to its conclusion, this information will be used to force the path to go on e5. The
following definition introduces the components of potential edges and traces.

To denote signatures, we will usually use the letters t, u and v. The language S ig of signatures is defined
by induction by the following grammar:

S ig = e | l(S ig) | r(S ig) | p(S ig) | n(S ig, S ig)

A signature corresponds to a list of choices of premises of ?C nodes, to designate a particular residue of a
box. The signature r(t) means: “I choose the right premise, and in the next ?C nodes I will use t to make

19

my choices”. The construction n(t, u) allows to encapsulate two sequels of choices into one. It corresponds
to the digging rule (!!A ` B !A ` B, represented by the ?N node in proof-nets) which “encapsulates”
two ? modalities into one. The p(t) construction is a degenerated case of the n construction. Intuitively, p(t)
corresponds to n(∅, t).

A potential is a list of signatures: a signature corresponds to the duplication of one box, but an element
is copied whenever any of the boxes containing it is cut with a ?C node. The set of potentials is written Pot.
A potential edge is a pair (e, P) with e an edge and P ∈ Pot such that |P| = ∂(e) (a signature for each box
containg e). For e ∈ EG, we define Pot(e) as {(e, P) | P ∈ Pot and |P| = ∂(e)}. We define similarly the notion
of potential boxes, potential nodes and the notations Pot(B) and Pot(n).

Potentials will be used to represent residues. For instance, the residues of e in Figure 2.7, (e, e1, e2, e3
and e4) will be respectively represented by the potential edges (e, [e; e]), (e, [l(e); e]), (e, [r(e); r(e)]) and
(e, [r(e); l(e)]).

A trace element is one of the following characters: `l,`r,⊗l,⊗r,∀,∃, !t, ?t with t a signature. A trace
element means “I have crossed a node with this label, from that premise to its conclusion”. A trace is a
non-empty list of trace elements. The set of traces is Tra. A trace is a memory of the path followed, up to
cut-eliminations. We define duals of trace elements: `⊥l = ⊗l, !⊥t =?t,... and extend the notion to traces by
([a1; · · · ; ak])⊥ = [a⊥1 ; · · · ; a⊥k].

A context is a tuple ((e, P),T) with (e, P) a potential edge and T ∈ Tra. It can be seen as a state of a
token that will travel around the net. It is located on edge e (more precisely its residue corresponding to P)
and carries information T about its past travel. The set of contexts of G is written ContG. We extend the
mapping ()⊥ on contexts by ((e, P),T)⊥ = ((e, P),T⊥).

The nodes define two relations and ↪→ on contexts. The rules are presented in Figure 2.8. Observe
that these rules are deterministic. For any rule C D presented in Figure 2.8, we also define the dual
rule D⊥ C⊥. We define 7→ as the union of and ↪→. In other words, 7→ is the smallest relation on
contexts including every instance of rules in Figure 2.8 together with every instance of their duals and
every instance of the ↪→ rule.

Let us notice that the rules are sound: if ((e, P),T) 7→ ((f ,Q),U), then ∂(e) = |P| if and only if ∂(f) = |Q|.
The only rules which modify the length of potentials are the rules entering and leaving a box. Let us also
notice that if e is the conclusion of a ?N or ?P, then the context C such that ((e, P),T.!t) 7→ C depends on
the size of T : there is a rule in the case T = [] and another in the case T , [].

For every sequence ((e1, P1),T1) ((e2, P2),T2) · · · ((en, Pn),Tn), the sequence of directed
edges e1, · · · , en is a path (i.e the head of ei is the same node as the tail of ei+1). The ↪→ relation breaks this
property as it is non-local, in the sense that it deals with two non-adjacent edges. It is the main difference be-
tween Dal Lago’s context semantics and Girard’s geometry of interaction. The study of 7→-paths, sequences
of the shape C1 7→ C2 7→ . . . , will give us information on complexity. The trace keeps track of the history
of previously crossed nodes to enforce path persistence: the 7→-paths are preserved by cut-elimination.

As an example, the path in the first proof-net of Figure 2.7:

((e, [r(e); r(e)]), [`r]) 7→ ((a, [r(e)]), [`r; !r(e)]) 7→ ((b, []), [`r; !r(e); !r(e)]) 7→
((c, []), [`r; !r(e); !r(e)]) 7→ ((d, []), [`r; !r(e); !e]) 7→ ((f , [e]), [`r; !r(e)]) 7→ ((g, [e]), [`r; !e]) 7→
((h, [e]), [`r; !e]) 7→ ((i, [e]), [`r; !e;⊗r]) 7→ ((k, []), [`r; !e;⊗r; !e])

becomes ((e4, [e; e]), [`r]) 7→ ((h, [e]), [`r; !e]) 7→ ((i, [e]), [`r; !e;⊗r]) 7→ ((k, []), [`r; !e;⊗r; !e]) in the
third proof-net of Figure 2.7.

Let us notice, with Lemma 3, that is injective. It is not the case for the 7→ relation. Indeed, if B
is a box with two auxiliary doors then, for every potential P and signature t, we have ((σ1(B), P), [!t]) 7→

20

cut fe
axg h ((e, P), T) ((f , P), T)

((g, P), T) ((h, P), T)

`
a b

c
⊗

e f

g

((a, P), T) ((c, P), T.`l)
((b, P), T) ((c, P), T.`r)
((e, P), T) ((g, P), T.⊗l)
((f , P), T) ((g, P), T.⊗r)

∀
e

f
∃

g

h

((e, P), T) ((f , P), T.∀)
((g, P), T) ((h, P), T.∃)

?D
e

f
?C

g h

i

((e, P), T) ((f , P), T.?e,+)
((g, P), T.?t) ((i, P), T.?l(t),+)
((h, P), T.?t) ((i, P), T.?r(t),+)

?N
g

h
and |T | ≥ 1

((g, P), T.?t1 .?t2) ((h, P), T.?n(t1,t2))
((g, P), [?t]) ((h, P), [?p(t)])

?P
e

f
!P

g

h

((e, P.t), T) ((f , P), T.?t)
((g, P.t), T) ((h, P), T.!t)
((f , P), [!t]) ↪→ ((h, P), [!t])

Figure 2.8: Rules of the context semantics

((σ(B), P), [!t]) and ((σ2(B), P), [!t]) 7→ ((σ(B), P), [!t]).

Lemma 3. If C1 D and C2 D then C1 = C2

2.2.1 Capturing the notion of residue

Let e ∈ EG, there are potential nodes in Pot(e) which do not correspond to residues of e. For instance, in
Figure 2.7 a has three residues: a, a1 and a2. The residue a1 is obtained by choosing the left box during the
duplication of box B, so it will be represented by (a, [l(e)]). Similarly, a2 will be represented by (a, [r(e)])
and a by (a, [e]). However, (a, [r(l(e))]) does not represent any residue. The potential node (a, [r(l(e))])
means that whenever the box B2 is cut with a ?C node, we chose the left box. But this situation never
happens. It can be observed by the following path:

((σ(B), []), [!r(l(e))]) 7→ ((c, []), [!r(l(e))]) 7→ ((d, []), [!l(e)]) 67→
The l() has not been used because we did not encounter a second ?C node. On the contrary, the signatures
corresponding to residues are entirely used:

((σ(B), []), [!e]) 7→0 ((b, []), [!e])

((σ(B), []), [!l(e)]) 7→2 ((j, []), [!e])

((σ(B), []), [!r(e)]) 7→2 ((d, []), [!e])

So, as a first try, we could say that for any object x at depth 1 (with B the box containing x), and t ∈ S ig,
(x, [t]) represents a residue of x if and only if ((σ(B), []), [!t]) 7→∗ ((,), [!e]@T). Throughout the thesis,

21

!P?P

axa

B
G = ?N

cut

f
!PH = ?P

axa′

B2

!P?P
B1

?N
cut

f ′

Figure 2.9: The potential edge (a, [n(t2, t1)] corresponds to (a′, [t1; t2]).

we use to denote an object whose name and value are not important to us, for example C 7→ means
∃D ∈ ContG,C 7→ D.

Now, let us consider an object x at depth ≥ 2 and B = ρG(x) (for example the ` node p in Figure 2.7).
By analogy with the case ∂(x) = 1, we could say that “(x, P.t) represents a residue of x if ((σ(B), P), [!t]) 7→∗
((,), [!e]@T). However, in Figure 2.7, for any t ∈ S ig, (p, [r(t), e]) would satisfy this condition. Indeed
((σ(C), [r(t)]), [!e]) 7→3 ((d, []), [!e; !t]) 7→ ((f , [t]), [!e]). But n has only 5 residues (p, p1, p2, p3 and p4),
not an infinity, so the condition we tried is too weak.

If n ∈ B∂(n) ⊂ · · · ⊂ B1, then in the potential node (n, [t1; · · · ; t∂(e)]), the signature ti corresponds to the
choices we make whenever Bi is cut with a ?C node. So, (n, [t1; · · · ; t∂(e)]) corresponds to a residue of n if
and only if for every 1 ≤ i ≤ ∂(n), ((σ(Bi), [t1; · · · ; ti−1]), [!ti]) 7→∗ (, [!e]).

2.2.2 Dealing with the digging

Now we will consider what happens when ?N nodes are allowed. Let us consider the node a in Figure 2.9.
The residues of a are exactly the residues of a′ and a itself. So “(a′, [t1; t2]) corresponds to a residue of a” is
successively equivalent to: {

((σ(B2), [t1]), [!t2]) 7→∗ ((,), [!e]@)
((σ(B1), []), [!t1]) 7→∗ ((,), [!e]@){
((f ′, []), [!t2 ; !t1]) 7→∗ ((,), [!e]@)
((f ′, []), [!t1]) 7→∗ ((,), [!e]@){
((f , []), [!t2 ; !t1]) 7→∗ ((,), [!e]@)
((f , []), [!t1]) 7→∗ ((,), [!e]@){
((σ(B), []), [!n(t2,t1)]) 7→∗ ((,), [!e]@)
((σ(B), []), [!p(t1)]) 7→∗ ((,), [!e]@)

In this case, we write that (a, [n(t2, t1)]) corresponds to a residue of a. In fact, the p() construction never
appears in the signatures of potential nodes corresponding to residues: any node in B will be inside both B1
and B2 during reduction, so we need a signature describing the sequences of choices for both B1 and B2.
However, we need to check that both sequences of choices are valid: both n(t2, t1) and p(t1) must be entirely
used during the 7→-paths. Let us notice that a box may encounter several ?N nodes during cut-elimination.
To check every box, we will define a relation v on signatures such that, in particular n(t2, t1) v n(t2, t1) and
n(t2, t1) v p(t1). Then, (a, [t]) will correspond to a residue of a if and only if for every u such that t v u,
((σ(n), []), [!u]) 7→∗ (, [!e]@).

22

Definition 4 (standard signature). A signature is said standard if it does not contain the constructor p. A
signature t is quasi-standard iff for every subtree n(t1, t2) of t, the signature t2 is standard.

The binary relation v on S ig is defined as follows:

e v e
l(t) v l(t′) ⇔t v t′

r(t) v r(t′) ⇔t v t′

p(t) v p(t′) ⇔t v t′

n(t1, t2) v p(t′) ⇔t2 v t′

n(t1, t2) v n(t′1, t′2) ⇔t1 v t′1 and t2 = t′2

If t v t′, then t′ is a simplification of t. We also write t @ t′ for “t v t′ and t , t′”. We can observe that v is
an order and @ a strict order.

Our notation is reversed compared to Dal Lago’s notation in [20]. Intuitively, v corresponds to an
inclusion of future duplicates, but with the notation of [20], v corresponds to ⊇. We find this correspondence
counter-intuitive, so we reversed the symbol.

Lemma 5. Let t ∈ S ig, then v is a total order on {u ∈ S ig | t v u}.
Proof. Let t ∈ S ig and u, v ∈ S ig such that t v u and t v v. We will prove the lemma by induction on t that
either u v v or v v u.

If t = e, then u = v = e so u v v and v v u. If t = l(t′) then u = l(u′) with t′ v u′ and v = l(v′) with
t′ v v′. By induction hypothesis, either u′ v v′ (and in this case u v v) or v′ v u′ (and in this case v v u).
The cases t = r(t′) and t = p(t′) are similar.

If t = n(t1, t2) then either u = n(u1, t2) with t1 v u1 or u = p(u2) with t2 v u2. And either v = n(v1, t2)
with t1 v v1 or v = p(v2) with t2 v v2.

• If u = n(u1, t2) and v = n(v1, t2) then, by induction hypothesis, either u1 v v1 (and in this case u v v)
or v1 v u1 (and in this case v v u).

• If u = p(u2) and v = p(v2) then, by induction hypothesis, either u2 v v2 (and in this case u v v) or
v2 v u2 (and in this case v v u).

• If u = n(u1, t2) and v = p(v2), then u v v.

• If u = p(v2) and v = n(v1, t2), then v v u.

�

Definition 6. A context ((e, [P1; · · · ; P j]), [T0; T1; · · · ; Tk]) is said quasi-standard if:

• For 1 ≤ i ≤ j, Pi is standard.

• For 1 ≤ i ≤ k, if Ti = !u or Ti = ?u, then u is standard.

• If T0 = !t or T0 = ?t, then t is quasi-standard.

23

If we additionally suppose that either T0 is of the shape !t with t a standard signature or T0 is not an
exponential trace element (i.e. T0 is not of the shape ! or ?), then ((e, [P1; · · · ; P j]), [T0; T1; · · · ; Tk]) is
said standard.

The following Lemma proves that those contexts are stable along 7→. For most of the contexts C′ we
will study, there exists a context C = ((σ(B), [p1; · · · ; pk]), [!t]) with p1, · · · , pk standard signatures and t a
quasi-standard signature such that C 7→ C′. By Lemma 7, C′ is a quasi-standard context. Thus, unless we
explicitly state otherwise, all the contexts we define are quasi-standard.

Lemma 7. If C 7→ D then C is quasi-standard if and only if D is quasi-standard.

Proof. The only steps where a n(,) or p() appears or disappears during a 7→-step is crossing a ?N node.

• If C = ((f , P), [!p(u)]) 7→ ((e, P), [!u]) = D, let us notice that p(u) is quasi-standard iff u is quasi-
standard. So C is quasi-standard iff D is quasi-standard.

• If C = ((f , P), [!n(t,u)]) 7→ ((e, P), [!t; !u]) = D, let us notice that n(t, u) is quasi-standard iff t is
quasi-standard and u is standard. So C is quasi-standard iff D is quasi-standard.

• If C = ((f , P),T.!n(t,u)) 7→ ((e, P),T.!t.!u) with |T | ≥ 1, then n(t, u) is standard iff t is standard and u is
standard. So C is quasi-standard iff D is quasi-standard.

• If C = ((e, P), [?u]) 7→ ((f , P), [?p(u)]) = D, let us notice that p(u) is quasi-standard iff u is quasi-
standard. So D is quasi-standard iff C is quasi-standard.

• If C = ((e, P), [?t; ?u]) 7→ ((f , P), [?n(t,u)]) = D, let us notice that n(t, u) is quasi-standard iff t is
quasi-standard and u is standard. So D is quasi-standard iff C is quasi-standard.

• If C = ((e, P),T.?t.?u) 7→ ((f , P),T.?n(t,u)) with |T | ≥ 1, then n(t, u) is standard iff t is standard and u
is standard. So D is quasi-standard iff C is quasi-standard.

�

Lemma 8. If C 7→ D and C is standard then D is standard.

Proof. The only steps where a n(,) or p() appears or disappears during a 7→-step is crossing a ?N node.

• If C = ((f , P),T.!n(t,u)) 7→ ((e, P),T.!t.!u), then n(u, v) is standard iff t is standard and u is standard.
So C is standard iff D is standard.

• If C = ((e, P),T.?t.?u) 7→ ((f , P),T.?n(t,u)) with |T | ≥ 1, then n(t, u) is standard iff t is standard and u
is standard. So C is standard iff D is standard.

�

If C = ((e, P),T) 7→ ((f ,Q),U) and this step only depends on the rightmost trace element of T , then
for every trace V , ((e, P),V@T) 7→ ((f ,Q),V@U). The only 7→-steps which are not in this case are steps
of the shape C = ((e, P), [?t]) ((f , P), [?p(t)]) and C = ((f , P), [!p(t)]) ((e, P), [!t]) (in those cases, C is
not standard) and ((σi(B), P), [!t]) ↪→ ((σ(B), P), [!t]). Thus, as stated in Lemma 8, if we only consider the
relation on on standard contexts, then path are stable by the concatenation of traces on the left.

Lemma 9. If ((e, P),T) is a standard context, ((e, P),T) ∗ ((f ,Q),U) and V ∈ Tra, ((e, P),V@T) ∗

((f ,Q),V@U).

24

Proof. It is enough to prove the lemma for one step. To prove this lemma, we just have to examine the
 rules which depend on other trace elements than the rightmost one. If ((e, P), [!p(t)]) ((f , P), [!t]), then
((e, P),T) is not a standard context which contradicts our hypothesis.

Let us notice that the Lemma would not stand if we replaced ((e, P),T) ∗ ((f ,Q),U) by ((e, P),T) 7→∗
((f ,Q),U). Indeed we can have ((σi(B), P), [!t]) 7→ ((σ(B), P), [!t]) and ((σi(B), P),V.!t) 7→ ((f , P.t),V). �

25

2.3 Dal Lago’s weight theorem

We capture the notion of residue by canonical potentials. The definition of canonical potentials relies on
copies. A copy represents the choices for one box, a canonical potential for an element x is a list of copies:
one copy for each box containing x.

Definition 10. A copy context is a context of the shape ((e, P), [!t]@T) such that for every u w t, there exists
a path of the shape ((e, P), [!u]@T) 7→∗ ((,), [!e]@).

Let (B, P) ∈ Pot(BG), the set Cop(B, P) of copies of (B, P) is the set of quasi-standard signatures t such
that ((σ(B), P), [!t]) is a copy context.

Definition 11. Let x be an element (box, edge or node) of G such that x ∈ B∂(x) ⊂ ... ⊂ B1. The set Can(x)
of canonical potentials for x is the set of tuples (x, [p1; ...; p∂(e)]) with p1, · · · , p∂(e) signatures such that:

∀1 ≤ i ≤ ∂(x), pi ∈ Cop(Bi, [p1; · · · ; pi−1])

For example, in Figure 2.6, Cop(B, []) = {e, l(e), r(e)} so Can(a) = {a} × {[e], [l(e)], [r(e)]}. In Fig-
ure 2.7, Cop(B, []) = {e, l(e), r(e)}, Cop(C, [e]) = Cop(C, [l(e)]) = {e} and Cop(C, [r(e)]) = {e, l(e), r(e)},
so:

Can(p) = {p} × {[e; e], [l(e); e], [r(e); e], [r(e); l(e)]; [r(e); r(e)]}
Let us notice that the canonical potentials of e only depend on the boxes containing e. More formally, if

e and f are contained in the same boxes then Can(e) = {(e, P) | (f , P) ∈ Can(f)}.
A canonical edge (resp. node, box) is a tuple (x, P) ∈ Can(x) with x an edge (resp. node, box). The set

of canonical edges of G is represented by Can(EG). More generally, if f is a mapping from A to B and A′ is
a subset of A then f (A′) refers to the image of A′ (the set { f (x) | x ∈ A′}).

The main result of this section is the weight theorem (Theorem 18) stating that whenever G →cut H,∑
n∈NG |Can(n)| > ∑

n∈NH |Can(n)|. It is a slight variation of the Lemma 6 of Dal Lago in [20]. This result
allows to prove strong complexity bounds for several systems.

Definition 12. Let us suppose that G →cut H then we define a partial mapping πG→H() (or simply π when
the reduction considered can be deduced from the context) from ContH to ContG. If G1 →cut G2 · · · →cut

Gk, then we define πG1→Gk (C) as πG1→G2(πG2→G3(· · · πGk−1→Gk (C) · · ·)). Below, we only define π((e, P),T)
whenever e is a positive arrow. For any e ∈ EH such that π((e, P),T) = ((f ,Q),U), we define π((e, P),T⊥) =

((f ,Q),U⊥).
Let us consider the following reduction steps

• ax · · ·
cutc

d

a · · ·
a

` ⊗
cut

· · · · · · · · · · · ·
a b e f

c d

cut cut
a eb f

∀ ∃

· · · · · ·

cut

a b

c d

· · · · · ·
cuta b

26

G′

!P?P?P

aak

ck

a1

c1

H′

!P?P?P

bbl

dl

b1

d
cutc d1

G′

?P?P

H′

!P?P?P
cuta b1

ak

ck

a1

c1

bl

dl

b2

d2

b

d

G′

!P?P?P

aaka1

dkd1

?W

cutc
d

?W ?W
d1 dk

In those reduction steps, for any (e, P) ∈ Pot(EH) and T ∈ Tra,

π((e, P),T) = ((e, P),T)

G′

!P
B

?P?P

aaka1

ckc1

?D

cutc d

· · ·
b

G′

?D?D

aka1

c1 ck

· · ·

cuta b

Let P ∈ Pot with |P| = ∂(B), and T ∈ Tra,

– For any (e, P@Q) ∈ Pot(EG′), π((e, P@Q),T) = ((e, P. e@Q),T).

– Else, π((e, P),T) = ((e, P),T)

•
G′

!P
B

?P?P

aaka1

ckc1

?C

cutc d

· · · · · ·
f g

G′l

!P?P?P
alal

kal
1

G′r

!P?P?P

arar
kar

1

?C ?C

bl
1

br
1

bl
k

br
k

c1 ck

· · · · · ·

cut cut
cl f cr g

For every e ∈ EG′ , we name el (resp. er) its residue in G′l (resp. G′r). Let us consider P ∈ Pot with
|P| = ∂(B), and T ∈ Tra,

– For any (e, P.t@Q) ∈ Pot(EG′), π((el, P.t@Q),T) = ((e, P. l(t)@Q),T) and π((er, P.t@Q),T) =

((e, P. r(t)@Q),T).

– If T = U.!t, then we set π((cl, P),T) = ((c, P),U.!l(t)) and π((cr, P),T) = ((c, P),U.!r(t)). Else,
π((cl, P),T) and π((cr, P),T) are undefined.

– For any 1 ≤ i ≤ k, if T = U.?t then π((bl
i, P),T) = ((ci, P),U.?l(t)) and π((br

i , P),T) =

((ci, P),U.?r(t)). Else π((bl
i, P),T) and π((br

i , P),T) are undefined.

– Else, π((e, P),T) = ((e, P),T).

27

•
G′

!P
B

?P?P

aaka1

ckc1

?N

cutc d

· · ·
f

G′

!P Bi?P?P

aaka1

!P Be?P?P
bbkb1

?N ?N
e1 ek

c1 ck

· · ·

cutc
f

Let P ∈ Pot with |P| = ∂(B) and T ∈ Tra,

– For any (e,Q) ∈ Pot(EG′), π((e, P.t.u@Q),T) = ((e, P. n(t, u)@Q),T).

– If T = [!t], π((c, P),T) = ((c, P), [!p(t)]). If T = U.!t.!u, π((c, P),T) = ((c, P),U.!n(t,u)). Else,
π((c, P),T) is undefined.

– If T = U.!t, π((b, P.u),T) = ((c, P),U.!n(t,u)). else π((b, P.u),T) is undefined.

– For any 1 ≤ i ≤ k, if T = [?t] then π((ei, P),T) = ((ci, P), [?p(t)]). If T = U.?t.?u then
π((ei, P),T) = ((ci, P),U.?n(t,u)). Else π((ei, P),T) is undefined.

– For any 1 ≤ i ≤ k, if T = U.?u then π((bi, P.t),T) = ((ci, P),U.?n(t,u)). Else π((bi, P.t),T) is
undefined.

– Else, π((e, P),T) = ((e, P),T)

Lemma 13. Let us suppose that G →cut H and C,D are contexts of H such that π(C) and π(D) are defined.
Then,

C 7→∗ D⇒ π(C) 7→∗ π(D)

C 7→+ D⇐ π(C) 7→+ π(D)

Proof. One can observe every possible reduction. Let us notice that:

• It is enough to check both implications for minimal paths: i.e. C 7→∗ D and none of the intermediary
contexts in the path are in the domain of π, or π(C) 7→+ π(D) and none of the other contexts in the
path are in the codomain of π.

• The context ((e, P),T) is invariant by π whenever e is not concerned by the cut-elimination step.

• In the exponential steps, if a path stays inside G′ or inside H′, both implications are trivially true.
Indeed, even if the contexts are not invariant by π, they are all modified in the same way (a modification
of the potential) which does not affect the 7→ rules.

So, for each possible reduction step, there are only a few short 7→-paths in H which are interesting to check.
Here are some of the most interesting cases:

• In the !P/?D reduction step. If π(C) = ((ci, P),T.!t) 7→ ((ai, P.t),T) = π(D). Then, by definition of π,
we have t = e, C = ((ci, P),T.!e) 7→ ((ai, P),T) so C 7→ D.

• In the !P/?C reduction step. If π(C) = ((c, P),T.!l(t)) 7→2 ((f , P),T.!t) = π(D), then C = ((cl, P),T.!t)
and D = ((f , P),T). So C 7→ D.

28

• In the !P/?C reduction step. If C = ((ar, P.t),T) 7→ ((cr, P),T.!t) = D then π(C) = ((a, P. r(t)),T) and
π(D) = ((c, P),T.!r(t)). So π(C) 7→ π(D).

• In the !P/?C reduction step. If C = ((ci, P),T.!l(t)) 7→1 ((bl
i, P),T) = D then π(C) = π(D) =

((ci, P),T.!l(t)) so π(C) 7→0 π(D).

• In the !P/?N reduction step. If C = ((c, P), [!u]) 7→ ((f , P), [!u]) = D, then π(C) = ((c, P), [!p(u)]) and
π(D) = ((f , P), [!p(u)]). So π(C) 7→2 π(D).

• In the !P/?N reduction step. If π(C) = ((ci, P), [!v]) 7→ ((c, P), [!v]) = D, then by definition of π either
v = n(t, u) or v = p(u).

– If v = n(t, u), C is equal to either ((ci, P), [!n(t,u)]), ((ei, P), [!t; !u]) or ((bi, P.u), [!t]). And
D is equal to either ((c, P), [!n(t,u)]) or ((b, P.u), [!t]). We can notice that ((ci, P), [!n(t,u)]) 7→
((ei, P), [!t; !u]) 7→ ((bi, P.u), [!t]) 7→ ((b, P.u), [!t]) 7→ ((c, P), [!n(t,u)]). So, in every case we have
C 7→+ D.

– If v = p(u), C is equal to either ((ci, P), [!p(u)]) or ((ei, P), [!u]). And D is equal to ((c, P), [!p(u)]).
We can notice that ((ci, P), [!p(u)]) 7→ ((ei, P), [!u]) 7→ ((c, P), [!p(u)]). So, in every case we have
C 7→+ D.

�

Lemma 14. If π((σ(B′), P′), [!t′]) = ((σ(B), P), [!t]) then:

• For every u′ w t′, there exists u w t such that π((σ(B′), P′), [!u′]) = ((σ(B), P), [!u]).

• For every u w t,

– Either there exists u′ w t′ such that π((σ(B′), P′), [!u′]) = ((σ(B), P), [!u]).

– Or there exists C′ ⊃ B′, Q′.v′@ = P′ and w′ w v′ such that π((σ(C′),Q′), [!w′]) = ((σ(B), P), [!u]).

Proof. Most of the cases are trivial. Let us consider a !P/?C reduction step. We suppose that π((σ(Bl), P), [!t]) =

((σ(B), P), [!l(t)]). For every u′ w t, l(u′) w l(t) and π((σ(Bl), P), [!u′]) = ((σ(B), P), [!l(u′)]). For every
u w l(t), u = l(u′) with u′ w t and π((σ(Bl), P), [!u′]) = ((σ(B), P), [!l(u′)]).

The only interesting case is the !P/?N step. Let us first suppose that π((σ(Be), P), [!t]) = ((σ(B), P), [!p(t)]).
For every u′ w t, p(u′) w p(t) and π((σ(Be), P), [!u′]) = ((σ(B), P), [!p(u′)]). For every u w p(t), u = p(u′)
with u′ w t and π((σ(Be), P), [!u′]) = ((σ(B), P), [!p(u′)]).

Then, let us suppose that π((σ(Bi), P.t2), [!t1]) = ((σ(B), P), [!n(t1,t2)]). For every u1 w t1, n(u1, t2) w
n(u1, t2) and π((σ(Bi), P.t2), [!u1]) = ((σ(B), P), [!n(u1,t2)]). For every u w n(t1, t2),

• Either u = n(u1, t2) with u1 w t1 and π((σ(Bi), P.t2), [!u1]) = ((σ(B), P), [!n(u1,t2)]).

• Or u = p(u2) with u2 w t2 and π((σ(Be), P), [!u2]) = ((σ(B), P), [!p(u2)]).

�

Lemma 15. Let us suppose that G →cut H. Then, for any B′ ∈ BH , there exists B ∈ BG such that for every
(B′, P′) ∈ Can(B′) and t′ ∈ S ig, there exist (B, P) ∈ Pot(B) and t ∈ S ig such that:

π((σ(B′), P′), [!t′]) = ((σ(B), P), [!t])

29

Furthermore the mapping from (B′, P′, t′) to (B, P, t) is a injection and

((σ(B′), P′), [!t′]) is a copy context⇔ ((σ(B), P), [!t]) is a copy context

Proof. Examining all possible cut-elimination steps, one can observe that the image by π of a principal edge
σ(B′) ∈ BH is always a principal edge σ(B) ∈ BG which does not depend on the potential and the trace.

The fact that the mapping from (B′, P′, t′) to (B, P, t) is an injection is also straightforward by considering
the definition of π. The most complex part of the lemma is to prove that t′ is a copy of (B′, P′) if and only if
t is a copy of (B, P).

⇒ Let us suppose that ((σ(B′), P′), [!t′]) is a copy context, let us prove that ((σ(B), P), [!t]) is a copy con-
text. Let us consider u w t, we have to show that there exists a path ((σ(B), P), [!u]) 7→∗ ((,), [!e]@).
By Lemma 14:

– Either there exists u′ w t′ such that π((σ(B′), P′), [!u′]) = ((σ(B), P), [!u]). Then, by defini-
tion of copy contexts, there exists a context ((e′,Q′), [!e]@T) such that ((σ(B′), P′), [!u′]) 7→∗
((e′,Q′), [!e]@T). We can suppose that ((e′,Q′), [!e]@T) is the first context in the 7→-path to
have !e as its leftmost trace element. Thus, we are in one of the following cases:

∗ ((e′,Q′), [!e]@T) = ((σ(B′), P′), [!u′]), so in particular u′ = e.
· If the reduction step is a !P/?C step with box B, then u = l(e) or u = r(e). In

the first case, ((σ(B), P), [!u]) 7→∗ ((f , P), [!e]), in the other case ((σ(B), P), [!u]) 7→∗
((g, P), [!e]).
· If the reduction step is a !P/?N step with box B, then u = p(e) or u = n(e, e). In both

cases ((σ(B), P), [!u]) 7→ ((f , P), [!e]@).
· Else u = e so ((σ(B), P), [!u]) 7→0 ((σ(B), P), [!e]).

∗ The last 7→ step is crossing a ?C or a ?N upwards with a trace of the shape [!v]. In all cases,
π((e′,Q′), [!e]) is defined and of the shape ((e,Q), [!e]). By Lemma 13, ((σ(B), P), [!t]) 7→+

((e,Q), [!e]).

– Or, there exists C′ ⊃ B′, Q′.v′@ = P′ and w′ w v′ such that π((σ(C′),Q′), [!w′]) = ((σ(B), P), [!u]).
Then by definition of copies, there exists a context ((e′,Q′), [!e]@T) such that ((σ(C′),Q′), [!w′]) 7→∗
((e′,Q′), [!e]@T). In this case, we can prove as in the previous case that ((σ(B), P), [!u]) 7→
((,), [!e]@).

⇐ Let us suppose that ((σ(B), P), [!t]) is a copy context. Let us prove that ((σ(B′), P′), [!t′]) is a copy con-
text. Let us consider u′ w t′, we have to show that there exists a path of the shape ((σ(B′), P′), [!u′]) 7→∗
((,), [!e]@). By Lemma 14, there exists u w t such that π((σ(B′), P′), [!u′]) = ((σ(B), P), [!u]).
By definition of copy contexts, there exists a context ((e,Q), [!e]@T) such that ((σ(B), P), [!u]) 7→∗
((e,Q), [!e]@T). We suppose that ((e,Q), [!e]@T) is the first context in the 7→-path to have !e as its
leftmost trace element. Thus, we are in one of the following cases:

– ((e,Q), [!e]@T) = ((σ(B), P), [!u]), so in particular u = e. So u′ = e and ((σ(B′), P′), [!u′]) 7→0

((,), [!e]@).

– The last 7→ step is crossing a ?C or a ?N upwards with a trace of the shape [!v]. In all cases, there
exists (e′,Q′) ∈ Pot(~EG) such that π((e′,Q′), [!e]@T) = ((e,Q), [!e]@T). So ((σ(B), P), [!u]) 7→∗
((,), [!e]).

�

30

Lemma 16. If G →cut G′, and ((e, P),T) = π((e′, P′),T ′) then

(e, P) ∈ Can(~EG)⇔ (e′, P′) ∈ Can(~EG′)

Proof. We prove the lemma by induction on ∂(e). If ∂(e) = 0, then we have ∂(e′) = 0, P = P′ = [] so
(e, P) ∈ Can(~EG) and (e′, P′) ∈ Can(~EG′).

Else, we set [p1; · · · ; p∂(e)] = P and [p′1; · · · ; p′
∂(e′)] = P′. Let C (resp B′) be the deepest box containing

e (resp. e′). Then, by definition of π, we are in one of the following cases:

• The→cut step is a !P/?D step involving the box C thus p∂(e) = e and P′ = [p1; · · · ; p∂(e)−1]. We have
the following equivalences (with b the premise of the ?D node):

(e, [p1; · · · ; p∂(e)−1; e]) ∈ Can(~EG)⇔ (σ(C), [p1; · · · ; p∂(e)−1]) ∈ Can(~EG)⇔
(b, [p1; · · · ; p∂(e)−1]) ∈ Can(~EG)⇔ (b, [p1; · · · ; p∂(e)−1]) ∈ Can(~EG′)⇔
(e′, [p1; · · · ; p∂(e)−1]) ∈ Can(~EG′)

• The→cut step is a !P/?N step on the box C thus P = [p1; · · · ; pk; n(t, u)] and P′ = [p1; · · · ; pk; t; u].
We have the following equivalences

(e, [p1; · · · ; pk; n(t, u)]) ∈ Can(~EG)⇔
{

(σ(C), [p1; · · · ; pk]) ∈ Can(~EG)
n(t, u) ∈ Cop(B, [p1; · · · ; pk])

⇔
{

(σ(Be), [p1; · · · ; pk]) ∈ Can(~EG′)
n(t, u) ∈ Cop(B, [p1; · · · ; pk])

by induction hypothesis

⇔
{

(σ(Be), [p1; · · · ; pk]) ∈ Can(~EG′)
((σ(B), [p1; · · · ; pk]), [!n(t,u)]) is a copy context

⇔
{

(σ(Be), [p1; · · · ; pk]) ∈ Can(~EG′)
((σ(Bi), [p1; · · · ; pk; u]), [!t]) is a copy context

by Lemma 15

⇔ (e′, [p1; · · · ; pk; t; u]) ∈ Can(~EG′)

• Else, let [p′1; · · · ; p′
∂(e′)] = P′ and [p1; · · · ; p∂(e)] = P. Then π((σ(B′), [p′1; · · · ; p′

∂(e)−1]), [!p′
∂(e)

]) is
defined and has the shape ((σ(B), [p1; · · · ; p∂(e)−1]), [!p∂(e)]), B and C are contained in the same box
and ((σ(C), [p1; · · · ; p∂(B)]), [!p]) 7→∗ ((σ(B), [p1; · · · ; p∂(e)−1]), [!p]). We have the following equiva-
lences:

(e, [p1; · · · ; p∂(e)]) ∈ Can(~EG)⇔
{

(σ(B), [p1; · · · ; p∂(e)−1]) ∈ Can(~EG)
p∂(e) ∈ Cop(B, [p1; · · · ; p∂(e)−1])

⇔
 (σ(B′), [p′1; · · · ; p′

∂(e)−1]) ∈ Can(~EG′)
p∂(e) ∈ Cop(B, [p1; · · · ; p∂(e)−1])

by induction hypothesis

⇔
 (σ(B′), [p′1; · · · ; p′

∂(e)−1]) ∈ Can(~EG′)
p′
∂(e) ∈ Cop(B′, [p′1; · · · ; p′

∂(e)−1])
by Lemma 15

⇔ (e′, [p′1; · · · ; p′∂(e)]) ∈ Can(~EG′)

�

31

We can formalize the weigh VG we described intuitively in the introduction of Section 2.2. As hinted in
the introduction, Lemma 18 shows that the weight decreases along reduction. However, in the general case,
VG may be infinite. If G is a LL proof-net, then G is strongly normalizing and we will prove that, because G
is strongly normalizing, VG is finite. To do so, we will reduce the !P/?W cuts last.

Definition 17. For any proof-net G, we define weights VG and WG in N ∪ {∞} by VG =
∑

n∈NG |Can(n)| and
WG = 2 ·∑e∈EG |Can(e)| = ∑

e∈~EG
|Can(e)|.

Theorem 18. If G →cut H, then VG ≥ VH + 1. If, moreover, VH is finite and (if this is a !P/?W step then all
cuts are !P/?W cuts) then VG is finite.

Proof. The proof depends on the scheme of cut-elimination used for the reduction from G to H. From
Lemma 16 and the definition of π, we can deduce that the nodes which are not represented in the scheme
have exactly the same canonical potentials in G and in H. The same goes for the pending edges of the
schemes of cut-elimination. Thus, it is enough to show the lemma supposing this scheme is at depth 0.

We write c the cut node we reduce. In each case, we will define an injection φ from the canonical
nodes of H to the canonical nodes of G such that 1 ≤ |Can(NG) − Codom(φ)| (this proves that VG ≥
VH + 1) and if VH is finite then |Can(NG) − Codom(φ)| < ∞ (this proves that VG is finite). The fact that the
image of the mappings φ we define is indeed included in Can(NG), and the claims we do on the value of
Can(NG) − Codom(φ) are based on Lemma 16.

In the case of a !P/?W reduction, let a1, · · · , ak be the auxiliary doors of the box deleted in the step
and w1, · · · ,wk the ?W nodes created. We define φ(wi, P) = (ai, P) and φ(n, P) = (n, P) otherwise. So
Can(NG) − Codom(φ) = {Can(n) | n ∈ NG′}, 1 ≤ |Can(NG) − Codom(φ)|. Moreover, if we suppose that the
premises of every cut node are !P and ?W nodes. Then for every node n of G, Can(n) = {(n, [e; · · · ; e])}, so
|Can(NG) − Codom(φ)| ≤ |NG | < ∞.

In the following steps, we will prove that 1 ≤ |Can(NG)−Codom(φ)| ≤ k · |VH | for some k ∈ N. Thus, if
VH is finite, so is |Can(NG) − Codom(φ)|.

In the case of the reduction of an ax node a, we define φ by φ(n, P) = (n, P). Then, Can(NG) −
Codom(φ) = Can(c) ∪ Can(a). So |Can(NG) − Codom(φ)| ≥ 2. Because there is at least one node in H
included in the same boxes as c, |Can(c)| ≤ 2 · |VH |.

In the case of a `/⊗ step, let p and t be the ` and ⊗ nodes of G which are deleted in the step and c1, c2 be
the cut nodes which are created during the step. Then, we define φ by φ(c1, P) = (p, P), φ(c2, P) = (t, P) and
φ(n, P) = (n, P) otherwise. Thus |Can(NG) − Codom(φ)| = |Can(c)|, so 1 ≤ |Can(NG) − Codom(φ)| ≤ VH .
The ∀/∃ step is similar.

For the !P/?P scheme, let p be the !P node and a be the ?P node deleted during the step and c′ be the
cut node created during the step. We define φ by φ(c′, P) = (b, P) and φ(e, P) = (e, P) otherwise. Then,
Can(NG) − Codom(φ) = Can(c) ∪Can(a) ∪Can(p). So 3 ≤ |Can(NG) − Codom(φ)| ≤ 3 ·Can(c′) ≤ 3 · VH .

For the !P/?D scheme, let a1, · · · , ak, p, d be the auxiliary ports, principal port and ?D node deleted in the
step, and let d1, · · · , dk, c′ be the ?D nodes and cut node created in the step. We define φ by φ(c′, P) = (c, P),
φ(di, P) = (ai, P), φ(n, P) = (n, P. e) (if n is a node of G′) and φ(n, P) = (n, P) otherwise.

For the !P/?N scheme, let p (resp. pi, pe) be the principal door of B (resp. Bi, Be), let c′ be the cut node
created by the step. We set φ(c′, []) = (c, []), φ(pi, [t; u]) = (p, [n(u, t)]) and φ(pe, [t]) = (p, [p(t)]).

• For every (n, P) ∈ CanG′ , we set φ(n, [t; u]@P) = (n, [n(u, t)]@P).

• For every 0 ≤ j ≤ k, if m j (resp. mi
j, me

j) is the j-th auxiliary door of B (resp. Bi, Be) and n j is the j-th
?N node of H, we set: φ(mi

j, [t; u]) = (m j, [n(u, t)]), φ(me
j, [t]) = (m j, [p(t)]) and φ(n j, []) = (m j, [e]).

32

We can notice that Can(NG) − Codom(φ) = {(n, [e]@P) ∈ Can(n) | n ∈ G′} ∪ {(p, [e]), (n, [])} so we have
1 ≤ |Can(NG) − Codom(φ)| ≤ VH .

For the !P/?C scheme, let cl and cr be the cuts on the right side, c be the cut on the left side and d the
?C node on the left side,

• We set φ(cl, []) = (c, []) and φ(cr, []) = (d, []).

• For (nl, [t]@P) ∈ CanG′l we set φ(nl, [t]@P) = (n, [l(t)]@P) and for (nr, [t]@P) ∈ CanG′r we set
φ(nr, [t]@P) = (n, [r(t)]@P).

• For every 0 ≤ i ≤ k, let us name ci the i-th contraction node. We set φ(σi(Bl), [t]) = (σi(B), [l(t)]),
φ(σi(Br), [t]) = (σi(B), [r(t)]) and φ(ci, []) = (σi(B), [e]).

We can notice that Can(NG) − Codom(φ) = {(n, [e]@P) ∈ Can(n) | n ∈ G′}{(p, [e]), (n, [])} so we have 1 ≤
|Can(NG) − Codom(φ)| ≤ VH . �

Corollary 19. If G is a strongly normalizing proof-net, then VG ∈ N, and the length of any path of reduction
is bounded by VG

Proof. Let us suppose that G is a proof-net. We consider a reduction sequence G →cut G1 →cut · · · →cut

Gm. We can observe that it is possible to commute rules such that the !P/?W reductions happen last (an
observation also used in [20] with the definition of the =⇒ reduction strategy). In particular, there exists a
reduction sequence G →cut H1 →cut · · · →cut Hn 6→cut such that m ≤ n and, if one of the Hi →cut Hi+1 steps
is a !P/?W, then every cut nodes of Hi is a !P/?W cut. We know that Hn is in normal form so, by definition
of VHn , VHn = |{(n, [e; · · · ; e])

∣∣∣ n ∈ NHn

}| = |NHn | which is finite. So, according to Theorem 18, we can
prove by induction on n − i that VHi is finite and VG > VH1 > · · · > VHn ≥ 0. So m ≤ n < VG. �

Theorem 20. If G is a strongly normalizing proof-net, then WG ∈ N, and the length of any path of reduction
is bounded by WG

Proof. By Corollary 19, it is enough to prove that WG = 2 · |Can(EG)| ≥ |Can(NG)| = VG. In fact, we will
prove by induction on subproof-nets H of G that:

2 ·
∑
e∈EH

|Can(e)| ≥
∑

n∈NH

|Can(n)| +
∣∣∣{pending edges of H}

∣∣∣ · min
e∈EH
|Can(e)|

Where we are referring to the canonical potentials in the proof-net G (the edges and nodes of H are edges
and nodes in G). The main ingredient is that, if every box containing the node n contains the edge e, then
|Can(e)| ≥ |Can(n)|.

The inequality stands in the case of axioms because there are two edges, one node and two pending
edges (and for every x, 2 · 2 · x ≥ x + 2 · x). Otherwise, we consider a subproof-net H, such that the
inequality stands for the strict sub-proofnets H′ of H. When we add a ?W node n then we also add an
edge e with |Can(e)| = |Can(n)| and there is one more pending edge. By induction hypothesis and because
∀x ∈ R, 2 · x ≥ x + x, the inequation stands for H. When we add a ∀, ∃, ⊗, `, ?D, ?N, or ?C node n then it
is the same as in the ?W case and the gap is larger because we do not add pending edges. When we add a
cut node, we add one node but compensate it by deleting two pending edges.

The most interesting case is whenever H is constructed by creating a box B around a sub-proofnet H′.
In this case, we add k nodes n1, · · · , nk (the doors) and k edges e1, · · · , ek with |Can(n1)| = · · · = |Can(nk)| =
mine∈EH′ |Can(e)| |Can(e1)| = · · · = |Can(ek)| = mine∈EH |Can(e)|, and H and H′ have both k pending edges.

33

2 ·
∑
e∈EH

|Can(e)| ≥ 2 · k · |Can(B)| + 2 ·
∑

e∈EH′
|Can(e)|

≥ 2 · k · |Can(B)| +
∑

n∈NH′
|Can(n)|+

∣∣∣{pending edges of H′}
∣∣∣ · min

e∈EH′
|Can(e)|

≥ 2 · k · |Can(B)| +
∑

n∈NH′
|Can(n)|+ k · min

e∈EH′
|Can(e)|

≥ 2 · k · |Can(B)| +
∑

n∈NH

|Can(n)| − k · min
e∈EH′

|Can(e)|+ k · min
e∈EH′

|Can(e)|

>
∑

n∈NH

|Can(n)| + k · |Can(B)|

2 ·
∑
e∈EH

|Can(e)| >
∑

n∈NH

|Can(n)| +
∣∣∣{pending edges of H}

∣∣∣ · min
e∈EH
|Can(e)|

�

Lemma 21. Let G be a normalizing proof-net, there is no path of the shape ((e, P), [!t]) 7→+ ((e, P), [!u])
with (e, P) a canonical edge.

Proof. First we will prove it on proof-nets where all cut nodes are !P/?W. Then we will prove that if there
is such a path in a proof-net G and G →cut H (and this is not a !P/?W step) then there is such a path in H.

Let G be a proof-net where all the cut nodes are !P/?W, and let us suppose that ((e, P), [!t]) 7→+

((e, P), [!u]). If e is the conclusion of a ?W node, then 67→ ((e, P), [!u]), which is a contradiction. Else, if
e is downward and all the edges of the path are downwards, then e is strictly under itself in the proof-net
which is impossible. Else if e is downward and there is an upward edge in the path, then the first upward
edge of the path is the conclusion of a ?W node so the path stops there, which is a contradiction because
the path stops at e, which we supposed downward. If e is the conclusion of a ?W node, then ((e, P), [!t]) 67→
which is a contradiction. Else, if e is upward and all the edges of the path are upwards, then e is strictly
above itself in the proof-net which is impossible. Else if e is upward and there is a downward edge in the
path, then the last downward edge of the path is the conclusion of a ?W node so the path starts there, which
is a contradiction because the path starts at e, which is a upward.

Let us suppose that G →cut H and there exist (e, P) ∈ Pot(~EG) and t, u ∈ S ig such that ((e, P), [!t]) 7→+

((e, P), [!u]).

1. Let us suppose that the G →cut H reduction is a !P/?C step involving a box B and either e =

σ(B) or e is the other premise of the cut node. Then the 7→-path is of the shape ((e, P), [!t]) 7→+

((σi(B), P), [!u]) 7→∗ ((e, P), [!u]). Thus ((σi(B), P), [!t]) 7→+ ((σi(B), P), [!u]) is a path of G. Let
ci be the conclusion of the i-th ?C node created in this reduction step. Then πG→H(((ci, P), [!t])) =

((σi(B), P), [!t]) and πG→H(((ci, P), [!u])) = ((σi(B), P), [!u]) so by Lemma 13, we can deduce that
((ci, P), [!t]) 7→+ ((ci, P), [!u]) is a path of H.

2. Let us suppose that the G →cut H reduction is a !P/?N step involving a box B and either e = σ(B)
or e is the other premise of the cut node. We prove similarly to the previous case, that there exists a
conclusion ni of a ?N node such that ((ni, P), [!t]) 7→+ ((ni, P), [!u]) is a path of H.

3. Else, if ((e, P), [!t]) or ((e, P), [!u]) is in Codom(πG→H()) they both are and there exists (e′, P′) ∈
Pot(~EH) and t′, u′ ∈ S ig such that πG→H(((e′, P′), [!t′])) = ((e, P), [!t]) and πG→H(((e′, P′), [!u′])) =

((e, P), [!u]). We can conclude by Lemma 13.

34

4. Else, if the G →cut H reduction is a ax step e is one of the premise of the cut, then either ((a, P), [!t]) 7→+

((a, P), [!u]) or ((a, P), [!t]) 7→+ ((a, P), [!u]) (with a the conclusion of the ax node which is not a
premise of the reduced cut). So we can use point 3 of this list to conclude.

5. Else, if the G →cut H reduction is a ⊗/` or ∀/∃ step, e can not be one of the premises of the cut
because ((e, P), [!t]) can not cross a `, ⊗, ∀ or ∃ node upwards.

6. Else, if the G →cut H reduction is a !P/?P step between the principal door of B and an auxiliary door
of C and e is one of the premise of the cut involved, then ((σ(C), P), [!t]) 7→+ ((σ(C), P), [!u]) so we
can use point 3 of this list to conclude.

7. Else, if the G →cut H reduction is a !P/?D involving a box B, e can not be one of the premises of the
cut because ((e, P), [!t]) can not cross a ?D or !P node upwards. So e is in B and P = Q.v@R with
|Q| = ∂(B) and v , e. This would contradict our hypothesis that (e, P) is canonical.

8. Let us suppose that the G →cut H is a !P/?C involving a box B, e ∈ B and P = Q.v@R with |P| = ∂(B).
Then v is not of the shape e, l() or r(). This contradicts our assumption that (e, P) is canonical.

9. Let us suppose that the G →cut H is a !P/?N involving a box B, e ∈ B and P = Q.v@R with |P| = ∂(B).
Then v is not of the shape e, p() or n(,). This contradicts our assumption that (e, P) is canonical.

�

Finally, as we defined (quasi)-standard contexts and proved their stability by the 7→ relation to be able to
consider only contexts of this shape, we will define canonical contexts based on the definition of canonical
edges and copies.

Definition 22. A quasi-standard context C = ((e, P), [T1; · · · ; Tk]) is canonical if (e, P) ∈ Can(e) and:

• For every Ti = !t, and u w t, ((e, [P1; · · · ; P∂(e)]), [!u; Ti+1; · · · ; Tk]) 7→∗ ((,), [!e]@)

• For every Ti = ?t, and u w t, ((e, [P1; · · · ; P∂(e)]), [!u; T⊥i+1; · · · ; T⊥k]) 7→∗ ((,), [!e]@)

Lemma 23. If C 7→ D, then C is canonical if and only if D is canonical.

Proof. We set ((e, P),T) = C and ((f ,Q),U) = D. If C is canonical then C is quasi-standard so, by
Lemma 7, D is quasi-standard. Conversely, if D is canonical, D is quasi-standard so C is quasi-standard.
We will prove the other points.

• Let us suppose that the step from C to D does not cross an exponential node (i.e. a node labelled
by ?D, ?C, ?N, ?P and !P). Then, in particular, the step neither enters nor leaves a box, so C and D
are of the shape ((e, P),) and ((f , P),). Thus (e, P) is canonical if and only if (f , P) is canonical.
Verifying the conditions on the trace is straightforward. As an example, let us examine the case where
C = ((e, P), [T1; · · · ; Tk]) 7→ ((f , P), [T1; · · · ; Tk;`l]) crossing a ` node downwards. Then we have
the following equivalences:

((e, P), [!u; Ti+1; · · · ; Tk]) 7→∗ ((,), [!e]@)⇔ ((f , P), [!u; Ti+1; · · · ; Tk;`l]) 7→∗ ((,), [!e]@)

((e, P), [!u; T⊥i+1; · · · ; T⊥k]) 7→∗ ((,), [!e]@)⇔ ((f , P), [!u; T⊥i+1; · · · ; T⊥k ;⊗l]) 7→∗ ((,), [!e]@)

Similarly, even in the case of exponential 7→ steps, proving the conditions on trace elements is straight-
forward except for the rightmost ones.

35

• If C = ((σi(B), P),U.!t) 7→ ((f , P.t),U) = D (entering a box by an auxiliary door), then:

P.t ∈ Can(f)⇔ P ∈ Can(σ(B)) ∧ t ∈ Cop(B, P) ⇔
{

P ∈ Can(σ(B))
∀u w t, ((σ(B), P), [!u]) 7→∗ ((,), [!e])

P.t ∈ Can(f)⇔
{

P ∈ Can(σ(B))
∀u w t, ((σi(B), P), [!u]) 7→∗ ((,), [!e])

• If C = ((e,Q.t),U) 7→ ((σi(B),Q),U.?t) = D (leaving a box by an auxiliary door), then:

Q.t ∈ Can(f)⇔ Q ∈ Can(σ(B)) ∧ t ∈ Cop(B,Q) ⇔
{

Q ∈ Can(σ(B))
∀u w t, ((σ(B),Q), [!u]) 7→∗ ((,), [!e])

Q.t ∈ Can(f)⇔
{

Q ∈ Can(σ(B))
∀u w t, ((σi(B),Q), [!u]) 7→∗ ((,), [!e])

• If C = ((e, P), [!l(t)]) 7→ ((f , P), [!t]) = D (crossing a ?C node upwards) then we can notice that the
simplifications of l(t) are the signatures of the shape l(u) with u a simplification of t. Then the lemma
follows because we have the following equivalence:

((e, P), [!l(u)]) 7→∗ ((,), [!e])⇔ ((f , P), [!u]) 7→∗ ((,), [!e])

• The other exponential steps are similar.

�

2.3.1 Comparison with Dal Lago’s context semantics

The definition of copies does not correspond exactly to the copies defined by Dal Lago [20] (which we will
refer to as maximal copies in this section). In fact, by our definition, t ∈ S ig is a copy of (B, P) if and only
if there exists a maximal copy u of (B, P) such that t is a pruning of u: t can be obtained by replacing some
branches by e. The notion of “pruning” will be formally captured by the relation J defined in Definition 54,
section 3.2.2.

The change of the definition of copies had two major benefits:

• Our definition of copies is simpler and our weight WG is simpler than the weight TG defined by Dal
Lago. Thus, they are both easier to understand and to work with.

• In the general case, WG ≥ TG, which may seem a disadvantage (the bound given by TG is tighter than
the bound given by WG). However, we are never interested in computing the exact value of WG or TG.
In [20] and this thesis, we make some assumptions on G, and prove bounds T ′G ≥ TG or W′G ≥ WG

based on those assumptions. And in most cases, using the same techniques, we get a better bound on
WG than on TG (i.e. W′G ≤ T ′G).

In this section, we include a definition of maximal copies. It is equivalent to Dal Lago’s definition of
copies. For the readers familiar with the definitions of Dal Lago, it may ease the understanding of ours. First
we consider a relation → on contexts and define notions of →-reducible contexts, →-normal contexts and
→-maximal contexts. In this section we only use these notions with →=7→, the general definition will be
needed in the next sections.

36

Definition 24 (normal contexts). Let ((e, P), [!t]@T) be a context of G,

• ((e, P), [!t]@T) is→-reducible if there exists paths of the following shape (with (f1, |U1|) , (f2, |U2|))

((e, P), [!t1]@T)→k ((f1,Q1),U1)

((e, P), [!t2]@T)→k ((f2,Q2),U2)

• Else, ((e, P), [!t]@T) is said→-normal

Definition 25. A context C is said→-maximal if for every context D, (C →∗ D9)⇒ D is→-normal.

Definition 26. Let (B, P) be a potential box, the maximal copies of (B, P) are the elements of:

MaxCop(B, P) = {t ∈ Cop(B, P) | ∀u w t, ((σ(B), P), [!u]) is 7→ -maximal}

Let x be an element (box, node or edge) with x ∈ B∂(x) ⊂ · · · ⊂ B1, the maximal canonical potentials for
x are the elements of the following set:

MaxCan(x) =
{
(B, [P1; · · · ; P∂(x)])

∣∣∣ ∀1 ≤ i ≤ ∂(x), Pi ∈ MaxCop(Bi, [P1; · · · ; Pi−1])
}

Finally, the weight TG is defined as follows:

TG =
∑

n∈NG −N?P
G −N!P

G

|MaxCan(n)| +
∑

(B,P)∈MaxCan(BG)

∣∣∣{auxiliary doors of B}
∣∣∣ · ∑

t∈MaxCop(B,P)

|t|

37

38

Chapter 3

Paths criteria for elementary and
polynomial complexity

39

3.1 An introduction to paths criteria

3.1.1 History and motivations

A stratification refers to a restriction of a framework, which forbids the contraction (or identification) of
two subterms belonging to two morally different “strata”. Russell’s paradox in naive set theory relies on
the identification of two formulae which belong morally to different strata. The non-terminating λ-term
(λx.(x)x)λy.(y)y relies on the identification of an argument with the function duplicating it. In recursion
theory, to create from the elementary sequences θm(n) = 2n

m (tower of exponential of height m in n), the
non elementary sequence n 7→ 2n

n, we also need to identify n and m which seem to belong to different
strata. Stratification restrictions might be applied to those frameworks (naive set theory, linear logic, lambda
calculus and recursion theory) to entail coherence or complexity properties [8].

Let us consider more precisely the cases of λ-calculus and Linear Logic. To define a stratification
condition, one has to define, for every term t, a stratification relation > between the subterms of t. Then, we
will consider that u belongs to a higher stratum than v if u(>)+v. The relation > must be defined such that
the number of residues of every subterm u of t is bounded by the maximum number of residues of subterms
in lower strata. It is to say there exists a function f such that:

|Residues(u)| ≤ f
(
max
u>v
|Residues(v)| , |t|

)
(3.1)

One says that t is >-stratified if > is acyclic. If t is >-stratified, then for every subterm u of t, one defines
the >-stratum of u as the depth of u for the relation > (written s>(u)). This depth is formally defined as
follows:

Definition 27. Let S be a set and > be a relation on S , for any e ∈ S , we define s>(e) as the greatest
i ∈ N∪ {∞} such there exists e2, · · · , ei ∈ S such that e > e2 > e3 > · · · > ei. We define | > | as maxe∈S s>(e).

We can notice that, by definition, for any relation > on S and e ∈ S , s>(e) ≥ 1. To keep the notations
coherent, whenever we consider a pre-order R, if aRb, we say that a is smaller than b for R. Thus, if
s>(e) = 1, then e is maximal for the order >. Usually, we use the reverse symbol to denote the inverse
relation: for instance e < f if and only if f > e. Thus, e is maximal for the order > if and only if it is
minimal for the order <.

If t is >-stratified, the >-stratum of every subterm is in N because the number of subterms is finite. One
can bound the number of residues of subterms u of t by induction on s>(u).

In most previous works, the stratum s() is rather explicit while > is left implicit (it can be defined by
“u > v iff s(u) > s(v)”). Concretely, in [38] and [24], the stratum of a box is defined as its depth (the number
of boxes containing it). To enforce Equation 3.1, digging and dereliction (?N and ?D nodes) are forbidden.
In [8], Baillot and Mazza label the edges with their strata. To enforce Equation 3.1, Baillot and Mazza define
some local conditions that those labels have to satisfy. Those works are presented as subsystems of Linear
Logic: ELL [38] and L3 [8]. In both cases, the function f in Equation 3.1 is an elementary function (tower
of exponential of fixed height), thus ELL and L3 proof-nets normalize in a number of steps bounded by an
elementary function of its size, and this function only depends on maxB∈BG s(B) ≤ |BG |.

In this work, we will consider several relations, whose acyclicity entail complexity bounds (elementary
time, polynomial time and primitive recursive). We want to find characterizations of complexity classes
which are as intensionally expressive as possible. So we will try to find the smallest possible relations >
(with respect to inclusion) whose acyclicity entails a bound of the shape of Equation 3.1. Indeed if for every
proof-net �⊆>, then the acyclicity of > implies the acyclicity of �. So more proof-nets are �-stratified than

40

>-stratified. As the relations become smaller, the proofs that they entail the wanted complexity bounds tend
to become very complex. This is why we will first study simple examples.

For any λ-term t, we will define a relation �λ on variables of t. We will prove that, if �λ is acyclic,
then t normalizes in an elementary number of β-reduction steps. Then we will define a similar relation on
proof-nets.

3.1.2 Stratification on λ-calculus

The λ-terms of λ-calculus are generated by the following grammar, where x ranges over a countable set of
variables:

Λ = x | λx.Λ | (Λ)Λ

For t ∈ Λ, |t| is the size of the construction of t: for every variable x, and t, u ∈ Λ we set |x| = 1,
|λx.t| = 1 + |t| and |(t)u| = |t| + |u|.

Throughout this thesis, whenever we will define a set “something” by induction, hole-something will
refer to the elements of something where a subterm has been replaced by ◦. For instance, hole-λ-terms will
refer to the set Λ◦ with Λ◦ defined by:

Λ◦ = ◦ | λx.Λ◦ | (Λ◦)Λ | (Λ)Λ◦

Then, if h is a hole-something and t is a something, then h[t] refers to the something obtained by replacing
◦ by t in h. For instance (λx.(◦)x)[y] = λx.(y)x. In the literature, hole-somethings are often referred-to as
contexts. However, in this thesis, we give another meaning to the word “context”.

To differentiate the different occurrences of a variable, we will use indexes. For example, we write
λxλy.(x1)(x2)(x3)y for λx.λy.(x)(x)(x)y. Hole-λ-terms allow us to isolate one of the variable occurrences:
t = h[x] means that x is an occurrence of variable of t.

We define a relation →β, named β-reduction, on Λ by h[(λx.t)u] →β h[t[u/x]] for every h ∈ Λ◦. If
h[x]→∗β t′, the residues of x are the copies of x, by β-reduction. If x′ is a residue of x then x is the lift of x′.
We give an example to guide the intuition: let us consider t = (λx.λy.((y)x1)x2)λz.z→β λy.((y)λz.z1)λz.z2 =

t′, then the residues of z are z1 and z2. The residue of y is the only occurrence of y in t′. Finally x1 and x2 do
not have residues in t′.

We want to give a condition on λ-terms entailing a bound on the length of→β normalization sequences.
In Section 3.1.1, we wrote that the non-terminating λ-term Ω = (λx.(x)x)λy.(y)y relies on the identification of
an argument with the function duplicating it: (λx.(x)x)λy.(y)y reduces to (λy.(y)y)λy.(y)y. So the “function”
(λy.(y)y) and its argument λy.(y)y are residues of the same subterm of Ω. To prevent this, we define a relation
�λ on variables such that x �λ y if the variable x will be in the argument of a function λy. , and we will
require�λ to be acyclic.

Definition 28. Let t ∈ Λ and x, y be occurrences of variables in t, x �λ y if t →∗β g[(λy.h1[y′])h2[x′]] = t′

(with x′ and y′ residues of x and y). A λ-term t is said �λ-stratified if the relation �λ is acyclic on the
occurrences of variables of t.

We will analyse the term t = (λy. (λw.(w)(w)y) (λx.(x)(x)y) z) z. We have the following reduction (for
each step, the λ being reduced is written in bold):

(λy. (λw.(w1)(w2)y1) (λxλxλx.(x1)(x2)y2) z1) z2 →β

(
λy. (λwλwλw.(w1)(w2)y1) (z1

1)(z2
1)y2

)
z2

→β

(
λyλyλy.((z3

1)(z4
1)y1

2)((z5
1)(z6

1)y2
2)y1

)
z2

→β

(
((z3

1)z4
1)z1

2

) (
((z5

1)z6
1)z2

2

)
z3

2

41

x1 x2 y1 y2

y1
2 y2

2

w1 w2

z2

z1
2 z3

2z2
2

y1
2 y2

2

y1

z1

z1
1 z2

1

z3
1 z4

1 z5
1 z6

1

x1 x2

w1 w2 w1 w2

Figure 3.1: Trees of residues for (λy. (λw.(w)(w)y) (λx.(x)(x)y) z) z.

The relation�λ is exactly: {z2 �λ y1, z2 �λ y2, z2 �λ w1, z2 �λ w2, z1 �λ x1, z1 �λ x2, z1 �λ w1, z1 �λ

w2, y2 �λ w1, y2 �λ w2, x1 �λ w1, x1 �λ w2, x2 �λ w1, x2 �λ w2}. In this→β sequence there is no term
of the shape g[(λw.h1[w′1])h2[z′2]] with w′1 and z′2 residues of w1 and z2, but we have z2 �λ w1 nonetheless
because of another→β path (the situation is similar for z2 �λ w2).

Thus, t is�λ-stratified and we have s�λ(w1) = s�λ(w2) = s�λ(y1) = 1, s�λ(x1) = s�λ(x2) = s�λ(y2) =

2 and s�λ(z1) = s�λ(z2) = 3. We can bound the number of residues of every variable by induction on their
�λ-stratum. The variables whose stratum is 1 (w1, w2 and y1) can not be in the argument of a reduction,
so they can not be duplicated, and they have exactly one residue. Else, the residues of an occurrence of a
variable a form a tree where each node corresponds to a substitution (the trees are displayed in Figure 3.1).
Each substitution is of the shape t →∗β g[(λb.h1[b′])h2[a′]] →β g[h′1[h2[a′]]] with b′ the residue of an
occurrence of variable b. Let us notice that a �λ b, so by induction hypothesis we have a bound on the
number of such b′. This gives us a bound on the number of residues of a.

Let us consider non-terminating λ-term Ω = (λx.(x)x)λy.(y1)y2. We have Ω →β (λy.(y1
1)y1

2)λy.(y2
1)y2

2.
So, if we set g = ◦, h1 = λy.(y1

1)◦ and h2 = λy.(y2
1)◦, we can notice that y2 �λ y2. So Ω is not�λ-stratified.

The�λ-stratified terms will satisfy an elementary bound (tower of exponential of fixed height), to express
this bound we introduce the following notation: let a, b, c ∈ N, then ab

0 = b and ab
c+1 = aab

c .

Theorem 29. If�λ is acyclic on t, then every→β sequence beginning by t has length at most

|t| · 2|t|2·|�λ |

Proof. Let us consider a reduction t →β t1 →cut→β tn and an occurrence of variable x in t. Then, the
residues of x in (ti)1≤i≤n form a tree: every residue of x in ti+1 “comes” from a residue of x in ti. The set of
leaves of this forest is written Lx. We prove by induction on i that

∑
s�λ (x)≤i |Lx| ≤ 2|t|2·i.

If s�λ(x) = 1 then, whenever ti = g[(λy.u)h[x′]]→β g[u[h[x′]/y]] with x′ a residue of x, then there is no
occurrence of y in u (otherwise we would have x �λ y which contradicts the assumption that s�λ(x) = 1).
So the residues of x are never duplicated, and |Lx| = 1.

If s�λ(x) = i + 1 > 1, let us consider a branch x = x0
y1−→ x1

y2−→ · · · yk−→ xk of the residues tree associated
with x. We can notice that xk is uniquely determined by the sequence y1, · · · , yk. For 1 ≤ j < k, t reduces
to a term of the shape ti j = g[(λy.h1[y j+1])h2[x j]] →β ti j+1 with y j+1 a residue of an occurrence of variable
z j+1. Thus, we have x �λ z j+1 so s�λ(z j+1) ≤ i. We can observe that y j+1 is a leaf of the residues tree
associated with z j+1 and y j+1 has no residue in ti j+1. So y1, · · · , yk are distinct leaves of occurrences of
variables z1, · · · , zk whose�λ-strata are at most i.

By induction hypothesis, there exist at most 2|t|2i such leaves. Thus, there are at most 2|t|2i possibilities for

each y j and k ≤ 2|t|2i. So, for each x with s�λ(x) = i + 1, there are at most
(
2|t|2i

)2|t|2i leaves of the residues tree
associated with x.

42

∑
s�λ (x)≤i+1

|Lx| ≤ |t|.
(
2|t|2i

)2|t|2i

∑
s�λ (x)≤i+1

|Lx| ≤ 2log |t|.
(
22|t|2i−1

)2|t|2i

∑
s�λ (x)≤i+1

|Lx| ≤ 2log |t|+2|t|2i−1·2|t|2i

log |t| + 2|t|2i−1 · 2|t|2i ≤ |t| + 2|t|2i−1 · 2|t|2i ≤ 2|t|2i−1 + 2|t|2i−1 · 2|t|2i

log |t| + 2|t|2i−1 · 2|t|2i ≤ 222|t|2i−1
= 2|t|2i+1∑

s�λ (x)≤i+1

|Lx| ≤ 2|t|2(i+1)

Let us notice that at each ti = g[(λx.u)v]→β g[u[v/x]] = ti+1 step,
∑

x∈ti |Lx| > ∑
x∈ti+1 |Lx|. Indeed, there

is an injection from ∪x∈ti+1 Lx to ∪x∈ti+1 Lx (every occurrence of variable of ti+1 comes from an occurrence
of variable of ti). And there is at least one occurrence of variable y of ti which is a leaf (no occurrence of
variable of ti+1 comes from y): if there is a free occurrence of x in u then x has no residue in ti+1, else the
variables of v (and there is at most one by definition of λ-terms) have no residues in ti+1.

So, the length of any→β sequence is bounded by 2|t|2·|�λ |. �

3.1.3 Stratification on proof-nets

We would like to define a type-system on λ-calculus such that �λ would be acyclic on every typed term
(thus every typed term normalizes in an elementary number of steps). Because Linear Logic pays a special
attention to structural rules, we will define our type system as a subsystem of LL. In fact, to prove that the
type-system enforces an elementary bound, we found it easier to define a relation� on boxes of proof-nets
(similar to�λ) such that if� is acyclic on the boxes of G, then G normalizes in an elementary number of
steps. In Section 3.1.5, we will prove that if the proof-net G ”corresponds” to the λ-term t, the acyclicity of
� on the boxes of G implies the acyclicity of�λ on the variables of t. The intended meaning of� is that
B � C if and only if there exists a cut-elimination sequence such that a residue B′ of B is inside a residue
C′ of C.

Definition 30. Let (B, P), (C,Q) be potential boxes of a proof-net G. We write (B, P)�̇(C,Q) if and only if
there exists e ∈ C, R ∈ Pot, t ∈ S ig and T ∈ Tra such that:

((σ(B), P), [!t]) 7→∗ ((e,Q@R),T)

Let B,C be potential boxes, we write B� C if there exists P,Q ∈ Pot such that (B, P)�̇(C,Q).

For example in the proof-net of Figure 3.2, we have (By, [e])�̇(Bx, []) because ((σ(By), [e]), [!e]) 7→0

((σ(By), [e]), [!e]) and σ(By) ∈ Bx (the box By is already inside Bx). We have (Bz, [])�̇(Bx, []) because
((σ(Bz), []), [!l(n(e,e))]) 7→6 ((dx, [e]), [!e]) (we enter Bx by its auxiliary door). In this case let us notice
that, along cut-elimination, there is a residue Blz of Bz inside a residue B′x of Bx. Finally, let us notice

43

!P?P

?D
ax

⊗
ax

?D

?P?P !P

?N

⊗

?C

?N ?D

ax

`x ⊗
cut

!P

`z

ax

?D

ax
?N

dy

ey

dx

e(y)x

e(x)(x)y

ez

dz

By

Bx

Bz

cut
∗

!P?P

?D
ax

⊗
ax

?D

!P

`

ax
?D

cut

dlz

?P !P

?N

⊗
?D

ax

!P
cut

`

ax
?D

?N

drz

B′y

B′x

Blz

Brz

Figure 3.2: Proof-net “corresponding” to (λx.(x)(x)y)λz.z

that (Bx, [])�̇(Bz, []) and (By, [e])�̇(Bz, []) because we have ((σ(Bx), []), [!e]) 7→8 ((dz, [r(e)]), [!e]) and
((σ(By), [e]), [!e]) 7→8 ((dz, [l(n(e, e))]), [!e]) (we enter Bz by its principal door). In this case there is never a
residue of Bx and By inside a residue of Bz, because the ?D nodes “open” the boxes. But the principal doors
of Bx and By are cut with edges drz and dlz appearing inside residues Brz and Blz of Bz.

Because canonical boxes represent residues of boxes, the sets of the shape Can(B) play the same role in
the proof of Theorem 32 as the residues trees play in the proof of Theorem 29. We will bound |Can(B)| by
induction on s�(B).

Lemma 31. The number of signatures whose depth is ≤ d is at most 222·d

Proof. For d ∈ N, we write Md for the number of signatures whose depth is ≤ d. We will prove by induction
hypothesis that Md ≤ 222·d

. For d = 1, we have M1 = 1 ≤ 24. And for d > 1, a signature of depth ≤ d + 1 is
either e, l(t), r(t), p(t) or n(t, u) with t, u signatures of depth ≤ d. So,

Md+1 = 1 + 3Md + (Md)2 ≤ 1 + 3 · 222·n
+

(
222·n)2

Md+1 ≤ 4 · 222·n
+ 221+2·n

< 221+2·n
+ 221+2·n

Md+1 ≤ 21+21+2·n ≤ 222·(n+1)

�

Theorem 32. If� is acyclic on BG and x = |~EG |, then

WG ≤ 2x
3·|�|

Proof. We first prove by induction on s�(B) that, for every Q ∈ Pot, |Cop(B,Q)| ≤ 2x
3·s�(B)−2.

Let (B, P) ∈ Pot(BG) with s�(B) = k + 1, let us consider t ∈ Cop(B, P) and u w t. By definition of
copies, there exists a path of the shape ((σ(B), P), [!u]) 7→∗ ((f ,R), [!e]). Let us consider the contexts in the
path of the shape ((e,Q), [!v]) with e the conclusion of a ?N node or ?C node. Because of the acyclicity of
proof-nets (Lemma 21), a given potential edge (e, [q1; · · · ; q∂(e)]) appears only once among those contexts.
How many such potential edges are there? There at most x choices for e. Let us observe that for every every
box C containing e, we have B � C. So, by induction hypothesis, if [q1; · · · ; q∂(C)] is fixed, there are at

most at most 2x
3k−2 choices for qi. So there are at most x ·

(
2x

3k−2

)∂G choices for (e, [q1; · · · ; q∂(e)]).

44

G ⊗
cut

ax
H

Figure 3.3: This proof-net, written (G)H, corresponds to the application of a function G to an argument H.

If we consider u as a tree, those contexts are the only ones where the length of the leftmost branch of u
can decrease, and it decreases by at most 1. So, for any t ∈ Cop(B, P) and u w t the length of the leftmost

branch of u is at most x.
(
2x

3k−2

)∂G . Let us notice that there exists a simplification u of t such that the leftmost
branch of u corresponds to the deepest branch of t. Thus, for every t ∈ Cop(B, P) the depth dt of t is at most

x ·
(
2x

3k−2

)∂G . So we have the following inequalities:

2 · dt ≤ 2 · x ·
(
2x

3k−2

)∂G ≤ 2x ·
(
2x

3k−2

)∂G ≤ 2x+(2x
3k−3)·∂G

log(2 · dt) ≤ x + (2x
3k−3) · ∂G ≤ x · 2x

3k−3 ≤ 22x
3k−3 ≤ 2x

3k−2

Thus 2 · dt ≤ 2x
3k−1 and, by Lemma 31, we have |Cop(B, P)| ≤ 222x

3k−1
= 2x

3k+1 = 2x
3(k+1)−2.

We proved that, for every potential box (B, P), |Cop(B, P)| ≤ 2x
3|�|−2. So, |Can(EG)| ≤ x.

(
2x

3|�|−2

)∂G , as
in the above sequence of inequalities, we can deduce that WG = 2 · |Can(EG)| ≤ 2x

3|�|−1 ≤ 2x
3|�| which is the

expected result. �

3.1.4 A LL-subsystem characterizing elementary time

Elementary Linear Logic (ELL, defined by Danos and Joinet [24]) is the subsystem of Linear Logic where
dereliction (?D nodes) and (?N nodes) are forbidden. Every proof-net of ELL is �-stratified, as will be
proved by Lemma 34. The idea is that the only 7→-steps which increase or decrease the number of signatures
in the context are the ones crossing a ?D or ?N node. Indeed, when a context leaves a box we delete a
signature in the potential (P.t becomes P) and create one in the trace (T becomes either T.!t or T.?t), so the
total number of signatures is constant. When a context enters a box, we create a signature in the potential
and delete one in the trace. The other steps (except the steps crossing a ?D or ?N node) neither create nor
delete signatures. Because of this property we will deduce that, in a ELL proof-net, whenever B � C we
have ∂(B) > ∂(C), which entails the acyclicity of�.

Definition 33. Let [T1; · · · ; Tk] ∈ Tra, we define |[T1; · · · ; Tk]|!,? as |{i | ∃t ∈ S ig,Ti = !t or Ti = ?t}|.

Lemma 34. If the proof-net G does not contain any ?D or ?N node, then G is�-stratified

Proof. We can prove by induction on k that, in the absence of ?D and ?N nodes,

((e, P),T) 7→k ((f ,Q),U)⇒ ∂(e) + |T |!,? = ∂(f) + |U |!,?
If B� C, there exists e ∈ C, P,Q ∈ Pot and t, u ∈ S ig such that ((σ(B), P), [!t]) 7→∗ ((e,Q), [!u]@U). Thus,

∂(σ(B)) + |[!t]|!,? = ∂(e) + |[!u]@U |!,?
∂(B) + 1 ≥ ∂(e) + 1

∂(B) ≥ ∂(e) > ∂(C)

So� is acyclic and for every B ∈ BG, s�(B) ≤ ∂(B). In particular, we have |� | ≤ ∂G. �

45

∀
`

!P?P ?P ?P

?C ?C

⊗ ⊗ ⊗
ax ax ax ax

`

(a) Encoding EncN (3) of 3

∀
`
`

!P?P ?P ?P
?C

⊗ ⊗ ⊗
ax ax ax ax

`

(b) EncB([0; 1; 1])

!P?P ?P

⊗ ⊗ `
ax ax ax

⊗
ax

?C
`

`
∃ ∀

(c) Encoding S ucc of the suc-
cessor function.

Figure 3.4: Encoding of natural numbers and binary lists in ELL.

We proved that the length of any→cut sequence starting from a ELL proof-net G depends on an elemen-
tary function of |EG |. However, we are not trying to prove a compexity bound on a single proof-net but on
a function. So we would like to prove that for every ELL proof-net G there exists an elementary function
e such that for every ELL proof-net H, the proof-net (G)H (corresponding to the application of G to H and
represented in Figure 3.3) normalizes in at most e (|EH |) steps. However, in the general case, the elementary
function depends on |� | which depends on H.

So, in what meaning does ELL correspond to elementary time? We encode the set N of natural numbers
(resp. the set B of binary lists) in ELL by the proof-nets whose only pending edge is labelled by the formula
NELL (resp. BELL) with:

NELL = ∀X.!(X (X)(!(X (X)

BELL = ∀X.!(X (X)(!(X (X)(!(X (X)

Figure 3.4 shows the encoding EncN (3) of 3 and the encoding EncB([0; 1; 1]) of [0; 1; 1]. Figure 3.4c
shows the encoding S ucc of the successor (the function n 7→ n + 1). Then, the set of elementary time
functions from B to B is captured by the set of proof-nets G of ELL whose only pending edge is labelled
by a formula of the shape BELL (!! · · · !BELL. To prove the soundness, let us consider such a proof-net G.
Then, for every l ∈ B,

∣∣∣∣~E(G)EncB(l)

∣∣∣∣ ≤ ∣∣∣∣~EG

∣∣∣∣+ 4 · |l|+ 10 and |� | ≤ |B(G)EncB(l)| ≤ |BG |+ 1. So, by Theorem 32,

W(G)EncB(l) ≤ 24·|l|+10+2|EG |
3|BG |+1

So there exists an elementary function eG such that for every binary list l, (G)EncB(l) normalizes in at most
eG(|l|) steps. The completeness of this characterization (the fact that any elementary-time function from
binary lists to binary lists can be encoded in such a way) is proved by Danos and Joinet [24]. This is in
this way that ELL characterizes elementary time. Let us formalize the notion of Linear Logic subsystems,
soundness and completeness.

Definition 35. A subsystem S of Linear Logic is a tuple (FS ,ΠS ,GS , BS , Enc ()) with:

• FS a set and ΠS is a mapping from FS to FLL. So FS can be understood as a refinement of the LL
formulae.

• GS is a set of LL proof-nets whose edges are labelled by formulae of FS compatible with βG(): if
βG(e) = A and e is labelled by B ∈ FS then ΠS (B) = A.

46

x∗ =
ax

?D
x

λx.v∗ =

`

v∗

y ?W
x

λx.w∗ =

`

w∗

y x

[(t)u] =

u∗

!P?P?P

?N

?C

y

y

xy

⊗t∗
y

z cut

ax

Figure 3.5: Encoding of λ-calculus in untyped proof-nets.

• BS is a subset of FS representing the formulae of the encoding of binary lists. The encoding is
represented by Enc (): for every A ∈ BS , EncA() is a mapping from binary lists to distinct sets
proof-nets in GS whose conclusion is labelled by A (if l , m then EncA(l) ∩ EncA(m) = ∅). Finally,
we require that the size of the encoding of a binary list depends linearly on the size of the list. Formally,
for every A ∈ BS , there exist a, b ∈ N such that for every binary list l and G ∈ EncA(l), |EG | ≤ a · |l|+b.

Definition 36. Let us fix a subsystem S of LL, and a set C of mappings from N to N.
We say that S is sound for C if, for every proof-net G whose only conclusion’s label is of the shape

A (B with A ∈ BS , there exists cG ∈ C such that, for every binary list l and H ∈ EncA(l) such that
(G)H ∈ GS , we have W(G)H ≤ cG (|l|).

We say that S is complete for C if for every function f from B to B whose time complexity is in C, and
A ∈ BS there exists a proof-net G f whose only conclusion is labelled by A (B with B ∈ BS such that for
every binary list l and H ∈ EncA(l), (G f)H reduces to H′ ∈ EncB(f (l)).

Finally, we say that S characterizes C if S is sound and complete for C.

In the case of ELL, we can set FELL = FLL, ΠS is the identity on FELL, GS is the set of proof-nets which
does not contain ?D and ?N nodes, BS is the set of formulae of the shape !iBELL (the formula BELL preceded
by i modalities !) and, for i ∈ N, Enc!iBELL

(l) is the singleton whose element is the proof-net obtained by

putting EncB(l) inside i boxes. Finally we set Elem as the set
{
x 7→ 2x

k

∣∣∣ k ∈ N
}
. By Lemma 34, and because

every proof-net of the shape Enc!iBELL
(l) has i + 1 boxes, ELL is sound for Elem. Danos and Joinet proved

the Elem completeness of ELL with Theorem 8 of [24]. The fact that the number of boxes in proof-nets of
the shape Enc!iBELL

(l) is bounded will be a key feature of all of our subsystems. We define this property as
box-boundedness:

Definition 37. A LL subsystem is said box-bounded if for every A ∈ BS , there exists nA ∈ N such that, for
every binary list l and G ∈ EncA(l), there are at most nA boxes in G.

Most of the characterizations S of complexity classes C we will consider are generalizations of previous
characterization S ′ of C, i.e. S ′ is included in S . Thus, the completeness of S can be immediately deduced
from the completeness of S ′. This is why, we will focus on soundness.

3.1.5 Correspondence between λ-calculus stratification and proof-net stratification

The idea of this subsection is to state that for every λ-term t, if the proof-net corresponding to t is �-
stratified, then t is �λ-stratified. Even though λ-terms and proof-nets are related, there is no one-to-one
correspondence. For any λ-term t, there are many different proof-nets corresponding to t. The correspon-
dence will hold for a specific encoding of λ-terms in proof-nets, named Girard’s encoding [36].

47

?N

?D

a

a′
?N

?N

?W

b

?W

b′?N ?N

?C

c
?C

?N ?N

c′
?N

!P?P?P

?N

?N
d

?N !P?P?P

?N

?N
d′

Figure 3.6: The→?N relation fixes the slight mismatch between λ-terms and their encodings.

A λ-term t whose free variables are x1, · · · , xn will be encoded by a proof-net t∗ with n + 1 pending
edges. One of the pending edge is distinguished (in Figure 3.5 it is thicker), the other ones are labelled by
the variables x1, · · · , xn. The encoding of λ-terms is defined in Figure 3.5.

In the (λx.t)∗ case, the free variables of t are the free variables of λx.t (represented by the variable y)
and, possibly, x. To represent both cases, we suppose that x is a free variable of w but not a free variable of
v. In the definitions of (t)u∗, we use variables x, y and z to represent the different cases (free variables of t,
free variables of both t and u, and free variables of u).

The ()∗ mapping defines a proof-net corresponding to each λ-term. If u is a subterm of t, then the
definition of t∗ uses u∗ as a subproof-net. We define the edge corresponding to u (written eu) as the thick
edge created in the definition of u∗. For any occurrence of variable x, dx refers to the conclusion of the
?D node appearing in the definition of x∗. And, if there exists a box containing ex, we define Bx as the
deepest such box. We can observe that the proof-net of Figure 3.2 is ((λx.(x)(x)y)λz.z)∗ (up to some ax
cut-elimination steps, to simplify the proof-net). The edge dx, and the box Bx correspond to the second
occurrence of x.

The encoding presented in [36] is done with an equivalent presentation of linear logic where, whenever
the label of the conclusion of an auxiliary door is ?A, the label of its premise is ?A (in our presentation, called
“functorial promotion”, the label of its premise is A). We chose functorial promotion because it simplifies
the definition of context semantics. However, with our presentation, there is a slight mismatch between→β

and→cut. To fix this mismatch, we define a relation→?N on proof-nets as described in Figure 3.6.

Lemma 38. If G →?N H then there exists a mapping ρG→H() from the contexts of H whose edge is not
modified by the→?N step to the contexts of G such that(

C 7→∗ D
)⇔ (

ρG→H(C) 7→∗ ρG→H(D)
)

Proof. The dotted edges of Figure 3.6 are the edges e for which ρG→H(((e, P),T)) is undefined. For each
→?N step, there are only a few interesting cases which we present below. In each case, when we define
ρG→H(((e′, P),T@[?t]))= ((e, P),T@[?u]), then we define ρG→H(((e′, P),T@[!t]))=ρG→H(((e, P),T@[!u])).
Then, if ((e′, P),T@[!t]) 7→∗ C, we define ρG→H(C) as the context obtained from C by replacing t by u. And,
if C 7→∗ ((e′, P),T@[!t]), we define ρG→H(C) as the context obtained from C by replacing t by u1.

In the first case, we define ρG→H(((a′, P),T@[?t])) = ((a, P),T@[?n(t,e)]). Similarly, in the second case
we define ρG→H(((b′, P),T@[?t])) = ((b, P),T@[?n(t,e)]).

In the third case, in order to have ρG→H(C) 7→∗ ρG→H(D)⇒ C 7→∗ D we define:

ρG→H(((c′, P),T@[?l(n(t,u))])) = ((c, P),T@[?n(t,l(u))])

ρG→H(((c′, P),T@[?l(r(t,u))])) = ((c, P),T@[?n(t,r(u))])

ρG→H(((c′, P),T@[?l(p(u))])) = ((c, P),T@[?p(l(u))])

ρG→H(((c′, P),T@[?r(p(u))])) = ((c, P),T@[?p(r(u))])

1The acyclicity of ", Lemma 100 in page 90 ensures that ρG→H() is well-defined.

48

G = = H

G′ =
= H′′

!P?P ?P ?N
?W

cutb

!P?P ?P ?W
cutb2

?W ?W

?N ?N
b1

?W ?W
b′

cut
∗

?N ?N∗

cut
∗

G = = H

G′ = = H′′

!P?P ?P ?N
?C

cutc

!P?P ?P ?C

?N?N

cutc2

!P?P?P

!P?P?P
cut

!P?P?P

!P?P?P
cut

?C ?C
?N ?Nc1

!P?P?P

!P?P?P

?N ?N cut

!P?P?P

!P?P?P

?N ?N cut
?C ?C

c′

∗ ?N

cut
∗

?N

cut

∗

G = = H

G′ = = H′′

!P?P ?N

?N

?P !P

cutd

!P?P ?N

?P

?N

!P

cutd2

!P?P

!P?P

?P ?P !P

?N
?N

cutd1

!P?P

!P?P

?N

?P ?P !P

?N

cutd′

∗ ?N

cut
∗

?N

cut

∗

Figure 3.7: Critical pairs for the commutation of→?N and→cut.

49

Similarly, in order to have C 7→∗ D⇒ ρG→H(C) 7→∗ ρG→H(D), we define:

ρG→H(((c′, P),T@[?n(t,l(u))])) = ((c, P),T@[?l(n(t,u))])

ρG→H(((c′, P),T@[?n(t,r(u))])) = ((c, P),T@[?r(n(t,u))])

ρG→H(((c′, P),T@[?p(l(u))])) = ((c, P),T@[?l(p(u))])

ρG→H(((c′, P),T@[?p(r(u))])) = ((c, P),T@[?r(p(u))])

In the fourth case, we define:

ρG→H(((d′, P),T@[?n(n(t,u),v)])) = ((d, P),T@[?n(t,n(u,v))])

ρG→H(((d′, P),T@[?n(p(u),v)])) = ((d, P),T@[?p(n(u,v))])

ρG→H(((d′, P),T@[?p(v)])) = ((d, P),T@[?p(p(v))])

�

Lemma 39. If G →?N G′ →∗cut H′ then there exist proof-nets H and H′′ such that H′ →∗cut H′′, G →∗cut
H →∗?N H′′. Moreover, we have πG→H ◦ ρH→H′′ = ρG→G′ ◦ πG′→H′′ .

Proof. The critical pairs are presented in Figure 3.7. To prove the commutation of π and ρ, we will only
present the most interesting cases.

πG→H ◦ ρH→H′′((a2, P),T.!t) = πG→H((a1, P),T.!n(t,e)) = ((a, P),T.!n(t,e))

ρG→G′ ◦ πG′→H′′((a2, P),T.!t) = ρG→G′((a2, P),T.!t) = ((a, P),T.!n(t,e))

πG→H ◦ ρH→H′′((b′, P),T.!t) = πG→H((b1, P),T.!n(t,e)) = ((b, P),T.!n(t,e))

ρG→G′ ◦ πG′→H′′((b′, P),T.!t) = ρG→G′((b2, P),T.!t) = ((b, P),T.!n(t,e))

πG→H ◦ ρH→H′′((c′, P),T.!l(n(t,u))) = πG→H((c1, P),T.!n(t,l(u))) = ((c, P),T.!n(t,l(u)))

ρG→G′ ◦ πG′→H′′((c′, P),T.!l(n(t,u))) = ρG→G′((c2, P),T.!l(n(t,u))) = ((c, P),T.!n(t,l(u)))

πG→H ◦ ρH→H′′((d′, P.v),T.!t.!u) = πG→H((d1, P.v),T.!t; !u) = ((d, P),T.!n(t,n(u,v)))

ρG→G′ ◦ πG′→H′′((d′, P.v),T.!t.!u) = ρG→G′((d2, P),T.!n(n(t,u),v)) = ((d, P),T.!n(t,n(u,v)))

�

Lemma 40 proves that the encoding is compatible with reduction. In particular: during a reduction step,
the residues of the edge corresponding to a subterm t′ are the edges corresponding to the residues of t′.

Lemma 40. Let t be a λ-term and x be a free variable of t,

G =

!P
B

?P?P

?N?N

u∗
t∗

cut x

→∗cut G′ →∗?N
t[u/x]∗ = G′′

50

• Let us consider a subterm t′ of t, for every context of t[u/x]∗ of the shape ((et′[u/x], P),T), we have
πG→G′ ◦ ρG′→G′′((et′[u/x], P),T) = ((et′ , P),T). Let us recall that πG→G′() is defined in Definition 12,
page 26.

• If u′ is a strict subterm of u and ((eu′ , P),T) ∈ ContG′′ , then πG→G′ ◦ρG′→G′′((eu′ , P),T) = ((eu′ ,Q),T)
with Q ∈ Pot.

• If x is a free occurrence of variable in t and (dx, [P1; · · · ; P∂(dx)]) ∈ Pot(dx), there exists a stan-
dard signature v such that ((σ(B), []), [!v]) ∗ ((dx, [P1; · · · ; P∂(dx)]), [!e])) and for every box C of t∗

containing ex, there exists w A v such that ((σ(B), []), [!w]) 7→∗ ((σ(C), [P1; · · · ; P∂(C)−1]), [!P∂(C)]).

Proof. We prove it by induction on t.

• If t = x, then G =

!P?P?P

?N?N

u∗

?D
cut dx

ax f
→∗cut G′ =

u∗ = t[u/x]∗

?D ?D
?N ?N

f →∗?N G′′ =

t[u/x]∗

f

– The only subterm of x is x, if ((f , []),T) is a context of G′′, then ((f , []),T) is a context of G.

– If u′ is a strict subterm of u, and ((eu′ , P),T) is a context of G′′, then by definition of π and ρ, we
have πG→G′ ◦ ρG′→G′′((eu′ , P),T) = ((eu′ , [e]@P′),T ′).

– ((σ(B), []), [!e]) ∗ ((dx, []), [!e]) and there is no box containing ex.

• If t = λy.t1, we suppose that y appears free in t1 (the other case is quite similar)

G =

!P
B

?P?P

?N?N

u∗

`

t∗1

cut
x

→∗cut G′ →∗?N
t1[u/x]∗

`
= G′′

which is the expected result because (λy.t1)[u/x] = λy.(t1[u/x]). We write G1 the proof-net obtained
by cutting the box B with the edge labelled x of t∗1. And we write G′1 and G′′1 the proof-nets obtained
by induction hypothesis.

– If t′ is a subterm of t, either t′ = t (and in this case we have πG→G′ ◦ ρG′→G′′((et[u/x], P),T) =

πG→G′((e, P),T) = ((e, P),T) = ((et, P),T)) or t′ is a subterm of t1 (and in this case we have
πG1→G′1 ◦ρG′1→G′′1 ((et′[u/x], P),T) = ((et′ , P),T) by induction hypothesis so, by definition of π and
ρ, we have πG→G′ ◦ ρG′→G′′((et′[u/x], P),T) = ((et′ , P),T)).

– If u′ is a strict subterm of u, for every context ((eu′ , P),T), we know by induction hypothesis
that there exists Q ∈ Pot such that πG1→G′1 ◦ ρG′1→G′′1 ((eu′ , P),T) = ((eu′ ,Q),T). So πG→G′ ◦
ρG′→G′′((eu′ , P),T) = ((eu′ ,Q),T).

– If x is a free occurrence in t and (dx, [P1; · · · ; P∂(dx)]) is a potential edge, by induction hypothesis,
there exists a standard signature v such that ((σ(B), []), [!v]) ∗ ((dx, [P1; · · · ; P∂(dx)]), [!e])).
Let C be a box containing ex in t∗, then C also contains ex in t∗1 so there exists w ∈ S ig such that
((σ(B), []), [!w]) 7→∗ ((σ(C), [P1; · · · ; P∂(C)]), [!∂(C)+1]).

51

• If t = (t1)t2, we will suppose that x is a free variable of both t1 and t2 (otherwise it is simpler as we do
not have to deal with the ?C node).

G =

t∗2

!P
D′

?P

?N

?C!P
B

?P

?N

u

cut

⊗t∗1
cut

ax f
→2

cut H =
!P

t∗2!P
B2

?P

u

cut
?P

?N ⊗t∗1
cut

!P
B1

?P

u

cut?C
?N

ax f ′′

→∗?N H′ =
!P

t∗2!P
B2

?P

u

cut

?P

?N

⊗t∗1
cut!P

B1
?P

u

cut
?C

?N

?N

ax f ′′
→∗cut I′′ →∗?N G′′ =

t2[u/x]∗

!P?P

?N

?C

⊗t1[u/x]∗

cut

ax f ′

Which is the expected result as ((t1)t2)[u/x] = (t1|u/x])t2[u/x] and (by Lemma 39) →?N and 7→
commute: there exists a proof-net G′ such that H →∗cut G′ →∗?N I′′ and πH→G′ ◦ ρG′→I′′ = ρH→H′ ◦
πH′→I′′ . So G →∗cut G′ →∗?N G′′ and πG→G′ ◦ ρG′→G′′ = πG→H ◦ ρH→H′ ◦ πH′→I′′ ◦ ρI′′→G′′ . We write
G1 (resp G2) the proof-net obtained by cutting the box B with the edge labelled x of t∗1 (resp. t∗2). And
we write G′1, G′′1 , G′2 and G′′2 the proof-nets obtained by induction hypothesis.

– If t′ is a subterm of t and ((et′[u/x], P),T) ∈ ContG′ , then:

∗ Either we have t = t′. In this case πG→G′ ◦ρG′→G′′((et′[u/x], []),T) = πG→H◦ρH→H′ ◦πH′→I′′ ◦
ρI′′→G′′((f ′, []),T) = ((f , []),T) which is the expected result because et′ = f .

∗ Or t1 = h′[t′]. Then we know by induction hypothesis that πG1→G′1◦ρG′1→G′′1 ((et′[u/x], P),T) =

((et′ , P),T) so πH′→I′′ ◦ ρI′′→G′′((et′[u/x], P),T) = ((et′ , P),T) and, finally, we have πG→G′ ◦
ρG′→G′′((et′[u/x], P),T) = ((et′ , P),T).

∗ Or t2 = h′[t′] and P = Q.q. By induction hypothesis, πG2→G′2 ◦ ρG′2→G′′2 ((et′[u/x],Q),T) =

((et′ ,Q),T) so πH′→I′′ ◦ ρI′′→G′′((et′[u/x], P),T) = ((et′ , P),T) and, finally, we have πG→G′ ◦
ρG′→G′′((et′[u/x], P),T) = ((et′ , P),T).

– Let us suppose t = g[x], u′ is a strict subterm of u and ((eu′ , P),T) ∈ ContG′ . Either t1 =

g′[x] or t2 = g′[x]. If we suppose that t1 = g′[x], then by induction hypothesis there ex-
ists a potential [q]@Q such that πG1→G′1 ◦ ρG′1→G′′1 ((eu′ , P),T) = ((eu′ , [q]@Q),T) so πH′→I′′ ◦
ρI′′→G′′((eu′ , P),T) = ((eu′ , [q]@Q),T), thus πG→G′ ◦ ρG′→G′′((eu′ , P),T) = ((eu′ , [r(q)]@Q),T).
If t2 = g′[x], then P = q2@P′ and by induction hypothesis there exists a potential [q1]@Q
such that πG2→G′2 ◦ ρG′2→G′′2 ((eu′ , P′),T) = ((eu′ , [q1]@Q),T) so we can deduce that πH′→I′′ ◦
ρI′′→G′′((eu′ , P),T) = ((eu′ , [q2; q1]@Q),T) and finally we have πG→G′ ◦ ρG′→G′′((eu′ , P),T) =

((eu′ , [l(n(q1, q2))]@Q),T).

52

– If t = g[x] and (dx, [P1; · · · ; P∂(dx)]) ∈ Pot(~EG), then either t1 = g′[x] or t2 = g′[x]. If t1 = g′[x],
then by induction hypothesis there exists v ∈ S ig such that ((σ(B), []), [!v]) ∗ ((dx, P), [!e])
is a path of G1 so ((σ(B1), []), [!v]) ∗ ((dx, P), [!e]) is a path of H′ and ((σ(B), []), [!r(v)]) ∗

((dx, P), [!e]) is a path of G. If C is a box of t∗ containing ex then C is a box of t∗1 containing
ex. By induction hypothesis, there exists w ∈ S ig such that v v w and ((σ(B), []), [!w]) 7→∗
((σ(C), [P1; · · · ; P∂(C)]), [!P∂(C)+1]) is a path of G1 so we can deduce that ((σ(B), []), [!r(w)]) 7→∗
((σ(C), [P1; · · · ; P∂(C)]), [!P∂(C)+1]) is a path of G and r(v) v r(w).
If t2 = g′[x] then P = [v2]@P′ and, by induction hypothesis, there exists v1 ∈ S ig such that
((σ(B), []), [!v1]) ∗ ((dx, P′), [!e]) is a path of G2 so we can deduce that ((σ(B2), [v2]), [!v1]) ∗

((dx, [v2]@P′), [!e]) is a path of H′. Finally, ((σ(B), []), [!l(n(v1,v2))]) ∗ ((dx, P), [!e]) is a path
of G. If C is a box of t∗ containing ex, either C = D′ or C is a box of t∗2 containing ex. In
the first case, let us notice that ((σ(B), []), [!p(v2)]) 7→∗ ((σ(C), []), [!v2]). In the second case,
by induction hypothesis there exists w1 ∈ S ig such that v1 v w1 and ((σ(B), []), [!w1]) 7→∗
((σ(C), [P1; · · · ; P∂(C)]), [!P∂(C)+1]) is a path of G2. So we can deduce that ((σ(B2), [v2]), [!w1]) 7→∗
((σ(C), [v2; P1; · · · ; P∂(C)]), [!P∂(C)+1]) is a path of H′ and finally ((σ(B), []), [!l(n(w1,v2))]) 7→∗
((σ(C), [v2; P1; · · · ; P∂(C)]), [!P∂(C)+1]) is a path of G (Lemma 13) and l(n(w1, v2)) v l(n(v1, v2)).

�

Corollary 41. If v→∗β v′ then there exists a proof-net H such that v∗ →+
cut H →∗?N v′∗ and, for every occur-

rence of variable y′ in v′ (whose lift in v is written y) and (dy′ , P′) ∈ Pot(dy′), πv∗→H ◦ ρH→v′∗((dy′ , P′), [!e])
is of the shape ((dy, P), [!e]) and, for every context ((σ(By′), P′), [!w′]) there exists a context ((σ(By), P), [!w])
such that ((σ(By), P), [!w]) 7→∗ πv∗→H ◦ ρH→v′∗((σ(By′), P′), [!w′]).

Proof. It is enough to prove it in the case of one →β step, then the general case is obtained by induction
using Lemma 38 and Lemma 39. So, let us suppose that v →β v′. By definition of→β, v and v′ are of the
shape g[(λx.t)u] and g[t[u/x]].

Let us suppose that x appears free in t. Then v∗ reduces to the proof-net obtained from v∗ = g[(λx.t)u]∗

by replacing ((λx.t)u)∗ by the proof-net G of Lemma 40. Thus, v∗ reduces (by →cut) to the proof-net H
obtained from v∗ by replacing ((λx.t)u)∗ by the proof-net G′ of Lemma 40. And H reduces (by→?N) to the
proof-net obtained from v∗ by replacing ((λx.t)u)∗ by t[u/x]∗, which is exactly g[t[u/x]] = t′.

• If y′ is in u, then the results are obtained by the first point of Lemma 40.

• If y′ is in u, then πv∗→G ◦ ρG→v′∗((dy′ , P′), [!e]) is of the shape ((dy, P), [!e]) by the second point of
Lemma 40. Either By is the box B of Lemma 40 (in this case ((σ(By), P), [!w]) is obtained by the third
point of Lemma 40) or By is a box inside B and ((σ(By), P), [!w]) is obtained by the second point of
Lemma 40.

• Else, y′ is in g and is not concerned by the reduction so the result is straightforward.

If x does not appear free in t, then y′ can not be in u so the proof is even simpler. �

Lemma 42. Let t be a→β-normalizing λ-term, and x, y variables of t. If Bx, By are well-defined, then:

(x�λ y)⇒ (Bx �+ By)

53

Proof. Let us suppose that x �λ y, then t →∗β g[(λy.h1[y′])h2[x′]] = t′. We will prove by induction on
the length of the length of this reduction sequence, that there exists a box B, P,Q ∈ Pot and v ∈ S ig such
that Bx ⊆ B and ((σ(B), P), [!v]) 7→∗ ((dy,Q), [!e]). Once we prove this property, by definition of�, either
Bx � By or Bx � B� By.

Let us suppose that t →0
β t′, then let B be the box created in the definition of ((λy.h1[y])h2[x])∗. The term

(λy.h1[y])h2[x] contains x so Bx ⊆ B. By Lemma 40, for every [P1; · · · ; P∂(dy)] ∈ Pot, there exists v ∈ S ig
such that ((σ(B), [P1; · · · ; P∂(Bx)]), [!v]) ∗ ((dy, [P1; · · · ; P∂(dy)]), [!e]).

Let us suppose that t = h1[(λz.t1)t2] →β t′′ = h1[t1[t2/z]] →k
β t′, and x and y have residues x′′

and y′′ in t′′ (so x and y are not occurrences of z) such that x′′ �λ y′′. By induction hypothesis, there
exists a box B′′, potentials P′′,Q′′ and signature v′′ such that Bx′′ ⊆ B′′ and ((σ(B′′), P′′), [!v′′]) 7→∗
((dy′′ ,Q′′), [!e]). By Corollary 41, there exists a proof-net G such that t∗ →+

cut G →∗?N t′′∗, there exists
a context ((Bx, P), [!v]) such that ((Bx, P), [!v]) 7→∗ πt∗→G ◦ ρG→t′′∗((Bx′′ , P′′), [!v′′]) (with x the lift of x′′ in
t) and πt∗→G ◦ ρG→t′′∗((dy′′ ,Q′′), [!e]) is of the shape ((dy,Q), [!e]) (with y the lift of y′′ in t). By Lemma 38,
ρG→t′′∗((σ(B′′), P′′), [!v′′]) 7→∗ ρG→t′′∗((dy′′ ,Q′′), [!e]). And, by Lemma 13, we have ((σ(Bx), P), [!v]) 7→∗
πt∗→G ◦ ρG→t′′∗((Bx′′ , P′′), [!v′′]) 7→∗ πt∗→G ◦ ρG→t′′∗((dy′′ ,Q′′), [!e]) = ((dy,Q), [!e]). �

Corollary 43. Let t be a λ-term. If t∗ is�-stratified, then t is�λ-stratified.

Proof. We prove it by contraposition: if there exists variables x1, · · · , xn of t such that x1 �λ x2 · · · �λ

xn �λ x1, then by Lemma 42 Bx1 �
+ Bx2 · · ·�+ Bx1 . �

3.1.6 Simple characterization of Poly

Although�λ-stratification and�-stratification give us a bound on the length of the reduction, elementary
time is not considered as a reasonable bound. The complexity class we are interested in is polynomial time.
We want to capture the set Poly =

{
P

∣∣∣ P is a polynomial on N
}
. To understand how the complexity arises

despite stratification, let us define for k ∈ N, Encλ(k) = λ f .λx.(f)(f) · · · (f)x (k successive applications of f
to x) and let us consider the term t = λn.((n)λw.(w)w)u.

(t)Encλ(3)→∗β (λx.(x)x)(λy.(y)y)(λz.(z)z)u→∗β (((u)u)(u)u) ((u)u)(u)u

More generally, for any k ∈ N, (t)Encλ(k) reduces to a term of size 2k. So t does not normalize in polynomial
time2. However, for any k ∈ N s�λ(n) = 1, s�λ(w) = 3 and s�λ(u) = 4. So (t)Encλ(k) is�λ-stratified and
we have |�λ | = 4 which does not depend on k.

To analyse this reduction, let us first define some terminology (inspired by the terminology on assign-
ments in [16]). These definitions are not quite formal, their only purpose is to guide the intuition in the
motivation of future definitions. Let us suppose that we have two quantities Q and R. We say that Q depends
additively on R if we have a bound on Q of the shape Q ≤ R + a. We say that Q depends affinely on R if we
have a bound on Q of the shape Q ≤ b · R + a. We say that Q depends multiplicatively on R if we have a
bound on Q of the shape Q ≤ b · Rc + a). We say that Q depends non-additively on R if there is no additive
dependence of Q on R (non-affine dependence and non-multiplicative dependence are defined similarly).
Let us notice that, for every proof-net G, if W(G)H depends non-multiplicatively on |H| then the complexity
of G is not polynomial.

The term λz.(z)z creates two residues of u. For each such residue u′, λy.(y)y creates two residues of
u′. And for each such residue u′′, λx.(x)x creates two residues of u′′. In other words, the total number of

2The number of→β steps is linear in k, but those steps are not computable in polynomial time because of the size of the term.
The corresponding reduction in proof-nets requires a non-polynomial number of→cut steps.

54

!P
B

?P?P

?C

⊗
ax ax

`
!P

⊗
?D

⊗
u ax

` ⊗
cut

ax

`

!P
B2

?P ?P ?P

?C
?C

⊗ ⊗ ⊗
ax ax ax ax

`

G

Figure 3.8: For every k ∈ N this proof-net, corresponding to (t)Encλ(k), is�-stratified but does not normal-
ize in polynomial time.

residues of the argument of λz.(z)z depends affinely on the total number of residues of the argument of λy.(y)y
which depends itself affinely on the total number of residues of the argument of λx.(x)x. The composition
of affine dependence is not an issue per se: let us suppose that for 1 ≤ i ≤ k, we have Qi ≤ bi · Qi+1.
Then Q1 ≤ (Π1≤i<kai) · Qk. Thus, Q1 depends affinely on Qk (for instance the number of residues of the
argument of λx.(x)x is 4 times the number of residues of the argument of λz.(z)z). However, if the length k of
the sequence of dependence depends on R, then Q1 depends non-multiplicatively on R. For instance, in the
reduction of (t)Encλ(n), the number of residues of u depends non-multiplicatively on n (so the normalization
of (t)Encλ(n) can not be computed in polynomial time).

To entail a polynomial bound, we add a restriction on λ-terms: if λx.u is a subterm of t there is at most
one free occurrence of x in u. Then, the size of the λ-term strictly decreases along every →cut reduction
step so the λ-term reduces in linear time (so in polynomial time). However, this restriction is extremely
strict. This restriction rules out most polynomial time λ-terms (for example, every λ-term which enjoys
a polynomial time bound but not a linear time bound). To define subtler criteria, we will define them on
proof-nets.

First, we will take a look at the proof-net of Figure 3.8, a proof-net “corresponding” to (t)Encλ(3).
This is not precisely the encoding we presented in Section 3.1.5, but another encoding. In terms of context
semantics (x)x, (y)y and (z)z correspond respectively to (B, [r(e)]), (B, [l(r(e))]) and (B, [l(l(e))]). Let us
observe that for every signature t,{

((σ(B), [l(l(e))]), [!l(t)]) 7→∗ ((σ1(B), [l(r(e))]), [!t]) 7→ ((σ(B), [l(r(e))]), [!t])
((σ(B), [l(l(e))]), [!r(t)]) 7→∗ ((σ2(B), [l(r(e))]), [!t]) 7→ ((σ(B), [l(r(e))]), [!t])

Thus, for every copy t of (B, [l(r(e))]), l(t) and r(t) are copies of (B, [l(l(e))]). So the number of copies
of (B, [l(l(e))]) depends affinely on the number of copies of (B, [l(r(e))]). Similarly |Cop(B, [l(r(e))])|
depends affinely on |Cop(B, [r(e)])|. And, in the general case the sequence of affine dependence has length
n − 1 and |Cop(B, [l(l(· · · l(e)))])| = 2n−1 · |Cop(B, [r(e)])|.

The affine dependences rely on the fact that B has 2 auxiliary doors. As we will prove with Lemma 45,
the ELL proof-nets whose boxes have at most one auxiliary door normalize in polynomial time.

55

Lemma 44. Let us consider a proof-net G whose boxes have at most one auxiliary door. Let us suppose
that there exist paths ((σ(B), P), [!t]) 7→k ((e,Q), [!e]) and ((σ(B), P), [!t′]) 7→k′ ((e,Q), [!e]). Then t = t′.

Proof. Let us consider the paths, there exists sequences (Ci)1≤i≤k and (C′i)1≤i≤k′ such that

((σ(B), P), [!t]) = Ck 7→ Ck−1 · · · 7→ C2 7→ C1 = ((e,Q), [!e])

((σ(B), P), [!t′]) = C′k′ 7→ C′k′−1 · · · 7→ C′2 7→ C′1 = ((e,Q), [!e])

We prove by induction on i that Ci = C′i . Indeed, in the general case, the only non-injective step of 7→
is ↪→: for every potentiel box (B, P), signature t and i, j ∈ N, ((σi(B), P), [!t]) ↪→ ((σ(B), P), [!t]) and
((σ j(B), P), [!t]) ↪→ ((σ(B), P), [!t]). However, given the restriction that there is at most one auxiliary door
by box of G, we know that ((σi(B), P), [!t]) ↪→ ((σ(B), P), [!t]) implies i = 1. So this step is also injective.

If k , k′, let us assume without loss of generality that k < k′. Then, ((σ(B), P), [!t′]) 7→+ C′k = Ck =

((σ(B), P), [!t]). This contradicts Lemma 21. Thus k = k′ and Ck = C′k, so t = t′. �

In LLL, there are two types of boxes the “!-boxes” and the “§-boxes”. The !-boxes have at most one
auxiliary door. For every potential box (B, P) with B a §-box, we have Cop(B, P) = {e}. This exactly the
idea of the following lemma.

Lemma 45. Let G be a�-stratified proof-net. We suppose that for every box B having more than 1 auxiliary
door, and (B, P) ∈ Pot(B) we have Cop(B, P) = {e}. Then, we have:

|Cop(B, P)| ≤ |EG |∂G
2|�|

Proof. We prove by induction on s that, if (B, P) ∈ Can(BG) and s�(B) ≤ s, then |Cop(B, P)| ≤
(
|EG |∂G

)2s
.

Indeed, let (B, P) be a canonical box with s = s�(B, P) and t ∈ Cop(B, P) then, by definition of copies:

((σ(B), P), [!t]) 7→ C1 7→ · · · 7→ Ck = ((e, [q1; · · · ; q∂(e)]), [!e])

We consider the minimal such path (for i < k, the leftmost trace element of Ci is not !e). For every box
B′ containing e, we have s�(B′) < s�(B) ≤ s. By induction hypothesis, the number of such contexts is
bounded by:

|EG | ·
(
|EG |∂

2(s−1)
G

)∂G ≤ |EG |1+∂2·s−1
G ≤ |EG |∂2·s

G

If we prove that the choice of (e, [q1; · · · ; q∂(e)]) entirely determines t, this gives us the expected bound. Let
us consider 1 ≤ i ≤ k such that Ci = ((σ(B′), P′), [!t′]). We know that ((σ(B), P), [!t]) is a canonical context
so, by Lemma 23, (B′, P′) ∈ Can(BG) and t′ ∈ Cop(B′, P′). By assumption of minimality of the path, t′ , e.
Thus, by assumption on the proof-net, B′ has at most one auxiliary door. Thus, proving that the choice of
(e, [q1; · · · ; q∂(e)]) entirely determines t, can be done exactly as in the proof of Lemma 44. �

Corollary 46. If G is a�-stratified proof-net such that its boxes with more than one auxiliary door have at
most 1 copy, then:

WG ≤ |EG |∂G
2(|�|+1)

As in Subsection 3.1.4, it is realistic to suppose that the exponent does not depend on the argument of the
function. So, such proof-nets normalize in polynomial time. In particular, Corollary 46 is general enough to
directly imply the Poly-soundness of LLL.

56

3.1.7 Conclusion of this introduction

Section 3.1 is supposed to be an introduction to the more complex criteria we will define later. Here are
some principles of this section which will still be used in the next criteria:

• We will define relations Ṙ on potential boxes, such that (B, P)Ṙ(C,Q) if the number of copies of (B, P)
depends on the number of copies of (C,Q). To bound the number of copies of boxes, we have to limit
the depth of Ṙ. Usually, we will require the collapse R of Ṙ on boxes (i.e. the relation R defined by
BRC iff ∃P,Q, (B, P)Ṙ(C,Q)) to be acyclic. Indeed, if R is acyclic, its depth is bounded by the number
of boxes of the proof-net. And the number of boxes can be reasonably supposed to be independent of
the argument.

• To prove elementary bounds, the idea will be to prove that it is impossible that ((σ(B), P), [!t]) 7→∗
((e,Q), [!u]) 7→∗ ((e,Q′), [!u′]) with Q “similar” to Q′. So, the number of contexts of the shape
((e,Q), [!u]) in a path beginning by ((σ(B), P), [!t]) is bounded. This bounds the depth of any copy of
(B, P), so |Cop(B, P)| is bounded.

• To prove polynomial bounds, the idea will be to prove that if ((σ(B), P), [!t]) 7→ Ck · · · 7→ C1 7→
((e,Q), [!e]), ((σ(B), P), [!t′]) 7→ C′k′ · · · 7→ C′1 7→ ((e,Q′), [!e]) and Q is “similar” to Q′ then one can
prove by induction on i that Ci is “similar” to C′i . So, in particular, k = k′ and t = t′.

57

3.2 Elementary time

3.2.1 Definition of −> −> −>-stratification

Examining the proof of Theorem 32, we can observe that the proof that the acyclicity of � entails an
elementary bound on cut-elimination, relies on the following property:

Property 47 (Elementary stratification). For every potential box (B, P) and signature t ∈ S ig, if we have
a bound on max(B,P)�(C,Q) |Cop(C,Q)|, then we have a bound on the number of potential edges (e,R) such
that ∃u ∈ S ig, ((σ(B), P), [!t]) 7→∗ ((e,R), [!u]).

The idea of this section is to identify unnecessary (B, P)�̇(C,Q) pairs. It is to say, potential boxes (B, P)
and (C,Q) such that (B, P)�̇(C,Q) but bounding |{(e,R) | ((σ(B), P), [!t]) 7→∗ ((e,R), [!u])}| does not require
to know a bound on |Cop(C,Q)|. Then, based on those examples, we will define a smaller relation −> −> −>
which still enjoy the “Elementary stratification” property.

The first such example is whenever B ⊂ C and no 7→ path from ((σ(B), P), [!t]) to ((e,R), [!u]) leaves
the box C. In this case, the signature corresponding to C never changes along the path. So, whenever
((σ(B), P), [!t]) 7→∗ ((e,R), [!u]) 7→∗ ((e,R′), [!u′]) the signature corresponding to C is the same in P, R and
R′. This is why, knowing |Cop(C,Q)| is not necessary to bound |Cop(B, P)|.

More formally, let us define EB as the set of boxes C such that ((σ(B), [p1; · · · ; p∂(B)]), [!t]) 7→∗ ((e,Q), [!u])
with e ∈ C and at least one edge in the sequence of contexts is outside C. Let us suppose that there exists
k ∈ N such that for every C ∈ EB, we have max(C,Q)∈Pot |Cop(C,Q)| ≤ k. Finally, let us suppose that
((σ(B), [p1; · · · ; p∂(B)]), [!t]) 7→∗ ((e, [q1; · · · ; q∂(e)]), [!u]) 7→∗ ((e, [q′1; · · · ; q′

∂(e)]), [!v]) with e ∈ B∂(e) ⊂
· · · ⊂ B1 and qi = q′i for every Bi ∈ EB. Then, for 1 ≤ i ≤ ∂(e) either the path did not go out of Bi (so
qi = q′i = pi) or Bi ∈ EB (so qi = q′i by supposition). Thus [q1; · · · ; q∂(e)] = [q′1; · · · ; q′

∂(e)] which is a contra-

diction because of Lemma 21. Thus |{(e,Q) | ((σ(B), P), [!t]) ∗ ((e,Q), [!u])}| ≤ |~EG | · k∂G . We proved that
such pairs are unnecessary to enforce the elementary stratification property.

Thus, B � C couples are necessary only if there is a 7→ path from ((σ(B), P), [!t]) which enters C by
one of its doors (either auxiliary or principal). In fact, we will prove that the B � C couples are necessary
only if there is a 7→ path from ((σ(B), P), [!t]) which enters C by its principal door. To understand why, we
will study an example. In Figure 3.9, if ((σ(D), P), [!t]) 7→∗ ((w, [qA; qB]), [!e]) and ((σ(D), P′), [!t′]) 7→∗
((w, [q′A; q′B]), [!e]), we only need to know qB to trace those paths back (i.e to deduce the list of edges of
those paths). Indeed the paths do not enter A by its principal door, so qA and q′A can only appear on ! trace
elements, never on ? trace elements. Thus, if qB = q′B, the paths take the same edges and t = t′. We do not
need to know that qA = q′A so D� A is an unnecessary pair. On the contrary,{

((σ(B), [e]), [!l(r(e))]) 7→9 ((d, [r(l(e))]), [!e])
((σ(B), [e]), [!r(r(e))]) 7→9 ((d, [l(l(e))]), [!e])

So B� C is a necessary pair. Tracing those paths backwards, the difference in the potential corresponding
to C becomes a difference in a ? trace element (in the ((σ(C), []), [!e; ?v]) 7→ ((d, [v]), [!e]) step). And
because of this difference on a ? trace element, the reverse paths separate when the paths cross a ?C node
downwards: ((g, []), [!e; ?l(e)]) 7→ ((f , []), [!e; ?l(l(e))]) and ((h, []), [!e; ?l(e)]) 7→ ((f , []), [!e; ?r(l(e))]).

We define a relation −> −> −> between boxes of proof nets. B −> −> −> C means that there is a path beginning
by the principal door of B which enters C by its principal door. We first define the relation on potential boxes
as it will be useful in some proofs. Throughout this thesis, many relations on boxes and potential boxes are
defined. As a mnemotechnic mean, every time we define a relation Ṙ on potential boxes (a symbol with a
dot), we will define R (the same symbol without the dot) by B R C ⇔ ∃P,Q ∈ Pot, (B, P)Ṙ(C,Q).

58

?P !P

?W
w

?C
?C ?C

cut

ax
ax
ax
ax

?P ?P ?P ?P!P

e

?C ?C

?C
g h

!P

?D

!P

d

cut
f

A

B

C

D

?N

?C

?W?D

cut

ax

Figure 3.9: D� A but it is an “unnecessary” couple because |Cop(B, P) does not depend on |Cop(A, [])|.

Definition 48. Let (B, P) and (C,Q) be potential boxes. Then we write (B, P) ˙ −> −> −>(C,Q) if there exist t ∈ S ig
and T ∈ Tra such that:

((σ(B), P), [!t]) ∗ ((σ(C),Q),T)

We define the relation −> −> −> on boxes by B −> −> −> C iff there exist P,Q ∈ Pot such that (B, P) ˙ −> −> −>(C,Q).

We can notice that for every proof-net, −> −> −>⊆�. For instance in the proof-net of Figure 3.9, we have
B � A, B � C, D � C, D � A and D � B. Whereas, in −> −> −> we only have two pair: D −> −> −> B, and
B −> −> −> C. So every�-stratified proof-net is −> −> −>-stratified, and s −> −> −>(B) ≤ s −> −> −>(C).

The proof-net of Figure 3.10 is −> −> −> stratified but not � stratified. Indeed, the only −> −> −> pairs are
B −> −> −> C and B −> −> −> A whereas � also contains the pair A � B. If a proof-net does not normalize in
elementary time, then it is not −> −> −>-stratified. For instance, the proofnet of Figure 3.12 (which represents the
Ackermann function applied to 3) is not −> −> −>-stratified because B1 −> −> −> B1. Indeed if we set U = [!e;⊗l;∃]
and T = U@[⊗r; ?l(r(e));`l;∀], then

((σ(B1), [l(l(e))]), [!n(l(e),n(l(r(e)),e))]) 14 ((σ1(B2), [r(e)]), [!n(l(e),n(l(r(e)),e));`r; !e]) 5

((σ2(B2), [r(e)]), [!n(l(e),n(l(r(e)),e));⊗l; ?e]) 15 ((σ1(B1), [l(r(e))]), [!l(e); !n(l(r(e)),e)]) 19

((σ(B1), [l(r(e))]),U@[`l; !n(l(r(e)),e)]) 53 ((σ(B1), [r(e)]),U@[`l; !r(e);⊗l;∃;`l; !e]) 18

((σ(B2), [r(e)]),U@[`l; !r(e);⊗l;∃;`l; !e;`r; !e]) 14 ((e, []),U@[`l; !r(e);⊗l;∃]) 10

((σ3(B2), [l(e)]),U@[`l; !e]) 16 ((e, []),T) 14 ((σ(B2), [r(e)]),T@[⊗l; ?e;⊗r; ?e]) 5

((σ3(B2), [r(e)]),T@[⊗l; ?e;⊗r; ?e]) 13 ((σ(B1), [r(e)]),T@[⊗l; ?e])

Claim 1 As hinted previously, if there exist -paths ((σ(B), P), [!t]) ∗ ((e, [q1; · · · ; q∂(e)]), [!u]) and
C′ ∗ ((e, [q′1; · · · ; q′

∂(e)]), [!u′]) with e ∈ B∂(e) ⊂ · · · B1 and
(

B −> −> −> Bi ⇒ qi = q′i
)
, then one can trace

back the two paths and they will never separate. Both paths pass exactly by the same sequences of edges.
Knowing qi for every box Bi (possibly) entered by its principal door is enough to know where the path came
from.

For example, in the proof-net of Figure 3.11, B −> −> −> A′′ and ((σ(B), [n(e, l(e)); r(e)]), [!r(e)]) 16

((w, [r(n(e, l(e)))]), [!e]) (and we write e1, · · · , e16 the edges of this path). And indeed (because is

59

!P

`
ax

?P

?D
ax

!P
cut

`
?N

!P ?C
cut

?D ?D

⊗ ⊗
axA

B

C

Figure 3.10: This proof-net is −> −> −> stratified but not� stratified.

injective) if C 16 ((w, [r(n(e, r(e)))]), [!e]) then the edges of the path are e1, · · · , e16. One can observe
that to trace back the path, it is necessary to have information on which copy of A′′ we are in. Indeed:{

((σ1(D), []), [!e;`r; !r(e); ?e]) 6 ((w, [l(e)]), [!e])
((σ2(D), []), [!e;`r; !r(e); ?e]) 6 ((w, [r(e)]), [!e])

This is coherent with the result we stated, because the path enters A′′ by its principal door. However, let us
notice that it is not necessary to know exactly in which copy we are. The only information needed to trace
back the path is that it is of the form r(x). Knowing that x = n(e, r(e)) is useless because the information in
x would only be used if the path entered D by its principal door and that is not the case.

The aim of the following definitions is to formalize the notion of the information needed to trace back
the paths. The 7→S -copies of a potential box (B, P) are the copies t of (B, P) such that there exists a path
of the shape ((σ(B), P), [!t]) 7→ ((,), [!e]) such that, for every ((σ (C),Q), [!u]) ↪→ ((σ(C),Q), [!u]) step
of the path, C ∈ S . For instance, in the proof-net of Figure 3.11, the 7→{A′′}-copies of (A′′, []) are e, l(e)
and r(e). And the set of 7→{A′′,D}-copies of (A′′, []) is exactly the set of copies of (A′′, []): Cop(A′′, []) =

{e, l(e), r(e), l(n(e, e)), r(n(e, e)), l(n(e, l(e))), r(n(e, l(e))), l(n(e, r(e))), r(n(e, r(e)))}
To be a little more precise, the 7→S -copies of a potential box (B, P) are the copies t of (B, P) such that

there exists a path of the shape ((σ(B), P), [!t]) 7→ ((e,R), [!e]) such that if there is a context ((σ(C),Q), [!u])
in the path with C < S , then the path stops there. So, in particular as we told, if there is a ((σ (C),Q), [!u]) ↪→
((σ(C),Q), [!u]) step in the path with C < S , then ((e,R), [!e]) = ((σ(C),Q), [!u]) so ((σ(B), P), [!t]) 7→∗
((σ (C),Q), [!e]) and for every ((σ (C′),Q′), [!u′]) ↪→ ((σ(C′),Q′), [!u′]) step of this path, (C′,Q′, u′) ∈ S .
Moreover, with this new definition, if B < S , the set of 7→S -copies of (B, P) is {e}.

Then, we will define 7→S -canonical potentials and 7→S -canonical contexts from the notion of 7→S -copies
in the same way as we defined canonical potentials and canonical contexts from the notion of copies.

So, in the proof-net of Figure 3.11, if we suppose that we know that C k ((w, [t]), [!e]) and C′ k

((w, [t′]), [!e]) and we want to prove that those paths take the same edges. We only need to know that the
7→{A′′}-copies of (A′′, []) “corresponding” to t and t′ are equal. We define u (resp. u′) as the “biggest” 7→{A′′}-
copy of (A′′, []) which is a “truncation” of t (resp. t′). For instance, if t = r(n(e, l(e))) and t′ = r(n(e, r(e))),
then t , t′. But the 7→{A′′}-copy of (A′′, []) corresponding to t will be u = r(e). And the 7→{A′′}-copy of
(A′′, []) corresponding to t′ will be u′ = r(e). Knowing that u = u′ = r(e) is enough to know that t and t′ are
of the shape r(x) and r(x′) and, as we observed before, this information is enough to trace back the paths,
so to prove that the paths take the same edges.

The 7→S -copy of (B, P) corresponding to t will be written ((σ(B), P), [!t])/7→S . It represents the part of
t which is used if we refuse the ↪→ steps over the potential boxes which are not in S . For instance, in
Figure 3.11, ((σ(A′′), []), [!r(n(e,l(e)))])/7→{(A′′} = r(e) and ((σ(A′′), []), [!r(n(e,r(e)))])/7→{A′′} = r(e) because, if
we refuse to jump over (D, []), only r() is consumed in the 7→ paths starting from those contexts. Then,

60

!P
B

?P
axb

`
!P

B′
?P !P

A
⊗ `

ax?C
e

ax?W

cut

?P?P!P
axD

?N

?C

?W?D

cut

ax

?C
vv′

!P
A′′

?C
?D ?D

⊗ ⊗
ax!P

A′
`
ax

?W
w

cutc

Figure 3.11: ((σ(B), [xD; l(e)]), [!r(r(e))]) 7→33 ((σ(B), [xD; r(e)]), [!r(e)]) 7→16 ((w, [r(xD)]), [!e])

(e, P) 7→S will be defined from the ((σ(B), P), [!t])/ 7→S construction in the same way as canonical potentials
are defined from copies: if e ∈ Bn ⊂ · · · ⊂ B1, then (e, [p1; · · · ; pn]) 7→S = (e, [q1; · · · ; qn]) such that, for
1 ≤ i ≤ n, ((σ(Bi), [q1; · · · ; qi−1]), [!pi])/ 7→S = qi. For example, in Figure 3.11, (w, [r(n(e, l(e)))]) 7→{A′′} =

(w, [r(n(e, r(e)))]) 7→{A′′} = (w, r(e)). Thus, if we know that ((σ(B), P), [!t]) ∗ ((w,Q), [!e]), it is enough to
know that (w,Q) 7→{(C,[])} to trace back the path.

Claim 2 We can precise Claim 1 as follows: let (B, P) be a potential box and S be the set of boxes C such
that s ̇−> −> −>(C) < s ̇−> −> −>(B). If there exist -paths ((σ(B), P), [!t]) ∗ ((e,Q), [!u]) and C′ ∗ ((e,Q′), [!u′])
with (e,Q) 7→S = (e,Q′) 7→S , then one can trace back the two paths and they will never separate.

3.2.2 Restricted copies and canonical potentials

Now that we gave the intuition and motivation behind the definition, we can give the formal definitions.

Definition 49. Let G be a proof-net and S ⊂ BG. We define 7→S and S as follows:

C 7→S D⇔
{

C 7→ D
If C = ((σ(B), P), [!t]), then B ∈ S

C S D⇔
{

C D
If D = ((σ(B), P),T.?t), then B ∈ S

In Section 3.2.1, we gave some intuition on 7→S -copies, but in further section we will need a notion of
→-copies for other relations on contexts. In the following, we suppose given a relation→ on contexts such
that→⊆7→.

Definition 50. A →-copy context is a context of the shape ((e, P), [!t]@T) such that for every u w t, there
exists a path of the shape ((e, P), [!u]@T)→∗ ((,), [!e]).

Let (B, P) ∈ Pot(BG), the set Cop→(B, P) of copies of (B, P) is the set of standard signatures t such that
((σ(B), P), [!t]) is a→-copy context.

For instance, in Figure 3.11, the set of 7→∅-copies of (D, []) is {e}. Similarly, the set of 7→∅-copies of
(B′, [e]) is {e}. Let us consider a set S containing {A, B′}, the set of 7→S -copies of (B′, [e]) is {e, l(e), r(e)}.
The set of 7→S -copies of (B, [e; e]) and the set of 7→S -copies of (B, [e; r(e)]) are both equal to {e, l(e), r(e)}.
On the contrary, for x ∈ S ig, ((σ(B), [e; l(e)]), [!r(x)]) ∗ ((σ1(B), [e; r(e)]), [!x]). So, the set of 7→{A,B,B′}-
copies of (B, [e; l(e)]) is {e, l(e), r(e), r(l(e)), r(r(e))} whereas the set of 7→{A,B′}-copies of (B, [e; l(e)]) is
only {e, l(e), r(e)}.

61

!P
B1

?P

`
cut
⊗ S ucc

ax ∃
⊗

ax
?D

⊗
1 ax

`
?N

!P

⊗
∃

?D
?C

`

?D
⊗!P

S ucc

?D
⊗

ax

?D

ax
e

⊗
cut

!P

∀
`

!P
B2

?P ?P ?P

?C
?C

⊗ ⊗ ⊗
ax ax ax ax

`

ax
Ack

Figure 3.12: This proof-net, representing the Ackermann function applied to 3, is not −> −> −>-stratified.

Definition 51. Let x be an element (edge or node) of G such that x ∈ B∂(x) ⊂ ... ⊂ B1. The set Can→(x) of
→-canonical potentials for x is the set of potentials [s1; ...; s∂(e)] such that:

∀1 ≤ i ≤ ∂(x), si ∈ Cop→(Bi, [s1; · · · ; si−1])

For instance, in Figure 3.11, we can observe that Can7→{A,B′}(D) = Can7→{A,B,B′}(D) = {(D, [])}. Then,
because D ∈ {A, B, B′}, Cop7→{A,B,B′}(D, []) = Cop7→{A,B′}(D, []) = {e} so Can7→{A,B′}(B

′) = Can7→{A,B,B′}(B
′) =

{(B′, [e])}. We noticed in page 61 that Cop7→{A,B′}(B
′, [e]) = Cop 7→{A,B,B′}(B

′, [e]) = {e, l(e), r(e)}. Thus, we
have Can7→{A,B′}(B) = Can7→{A,B,B′}(B) = {(B, [e; e]), (B, [e; r(e)]), (B, [e; l(e)])}. Finally:

Can 7→{A,B′}(b) =
{
(b, [e; e; e]), (b, [e; e; l(e)]), (b, [e; e; r(e)]), (b, [e; r(e); e]), (b, [e; r(e); l(e)]),

(b, [e; r(e); r(e)]), (b, [e; l(e); e]), (b, [e; l(e); l(e)]), (b, [e; l(e); r(e)])
}

Can7→{A,B,B′}(b) =
{
(b, [e; e; e]), (b, [e; e; l(e)]), (b, [e; e; r(e)]), (b, [e; r(e); e]), (b, [e; r(e); l(e)]),

(b, [e; r(e); r(e)]), (b, [e; l(e); e]), (b, [e; l(e); l(e)]), (b, [e; l(e); r(e)]),

(b, [e; l(e); r(l(e))]), (b, [e; l(e); r(r(e))])
}

In Definition 22, we defined a notion of canonical contexts stable by 7→ paths. Similarly, we define in
Definition 52 a notion of→-canonical contexts. In the general case, such paths are not stable by→ paths.
For instance, in Figure 3.13, ((c, []), [!e; ?l(e);`r]) 7→∅ ((σ(C), []), [!e; ?l(e)]) and ((c, []), [!e; ?l(e);`r]) is a
7→∅-canonical context, but ((σ(C), []), [!e; ?l(e)]) is not 7→∅-canonical because ((σ(C), []), [!l(e)]) 67→∅

62

Definition 52. A quasi-standard context3 C = ((e, P), [T1; · · · ; Tk]) is→-canonical if (e, P) ∈ Can→(e) and:

• For every Ti = !t, ((e, [P1; · · · ; P∂(e)]), [!t; Ti+1; · · · ; Tk]) is a→-copy context.

• For every Ti = ?t, ((e, [P1; · · · ; P∂(e)]), [!t; T⊥i+1; · · · ; T⊥k]) is a→-copy context.

We can notice that, in particular, the definitions of Cop7→(B, P), Can7→(x) and 7→-canonical contexts
match respectively the definitions of Cop(B, P) (Definition 10 in page 26) , Can(x) (Definition 11) and
canonical contexts (Definition 22, page 35).

Let us consider a potential box (B, P) and t ∈ Cop(B, P), then there exists a context ((e,Q), [!e]) such
that ((σ(B), P), [!t]) 7→∗ ((e,Q), [!e]). If some of the 7→ steps of this path are not in →, then we may have
((σ(B), P), [!t]) →∗ ((f ,R), [!v]) 9 with v , e. In this case, t would not be a →-copy of (B, P). As we
wrote in Section 3.2.1, we want to define ((σ(B), P), [!t])/→ as the “biggest”→-copy t′ of (B, P) which is a
“truncation” of t. As an intuition, let us consider the contexts ((f ,R), [!v]) and ((f ,R), [!e]). By the following
Lemma 53, we deduce that there exist t′ ∈ S ig such that ((σ(B), P), [!t′]) 7→∗ ((f ,R), [!e]). And with most
of the relations→ we will consider, we will have ((σ(B), P), [!t′]) →∗ ((f ,R), [!e])4. In this case and in the
absence of n() construction in t, we would have ((σ(B), P), [!t])/→ = t′. Thus t′ represents the part of t
which is consumed in the part of the ((σ(B), P), [!t]) 7→∗ ((e,Q), [!e]) path which is a→-path.

Lemma 53. If ((e, P), [!t]@T) 7→∗ ((f ,Q), [!u]@U), for every u′ ∈ S ig, there exists t′ ∈ S ig such that
((e, P), [!t′]@T) 7→∗ ((f ,Q), [!u′]@U).

Proof. Because traces can not be empty, the leftmost trace element is never popped. So in every context of
the path, the leftmost trace element is a ! trace element. Thus, it is enough to prove the lemma in the case
of a single 7→ step, i.e. whenever ((e, P), [!t]@T) 7→ ((f ,Q), [!u]@U).

The only steps which modify this trace element are when we cross a ?C or ?N node upwards. If
((e, P), [!n(u,v)]) 7→ ((f , P), [!u; !v]), for every u′ ∈ S ig, we set t′ = n(u′, v) and we can notice that we
indeed have ((e, P), [!t′]) 7→ ((f , P), [!u′ ; !v]). The other cases are similar. �

As we wrote, we want to define ((σ(B), P), [!t])/→ as the “biggest” →-copy t′ of (B, P) which is a
“truncation” of t. But we did not precise the meaning of “biggest” and “truncation”. First, we say that t is a
truncation of u if t J u with J defined as follows:

Definition 54. We define an order J on signatures by induction. For every signature t, t′, u, u′, we set e J t
and if we suppose t J t′ and u J u′ then l(t) J l(t′), r(t) J r(t′), p(t) J p(t′) and n(t, u) J n(t′, u′).

As a first attempt, one might say that “biggest” means “the maximum for the order J”. However, in
the general case, the set of →-copies of (B, P) which are truncations of t may not have a maximum. For
instance, in Figure 3.13, if we set t = n(l(e), r(e)) and→ as the relation obtained from 7→ by removing the
transition ((σ(D), [r(e)]), [!l(e)]) 7→ ((d, [r(e)]), [!l(e)]), then we can observe that n(l(e), e) and n(e, r(e))
are→ copies of (B, []) but n(l(e), r(e)) is not a→-copy of (B, []). So, the set of→ copies of (B, []) which
are truncations of t has 2 maximal elements.

The solution we chose is to first maximize the rightmost branch. Then, once this branch is fixed, we
maximize the second rightmost branch and so on. Formally, we define “biggest” as “the maximum for the
order E” with E defined as follows.

3A context is said quasi-standard if its signatures are standard except for the leftmost trace element (Definition 6, page 23).
4for instance 7→S does not depend on the leftmost trace: if ((e, P), [!t]@T) 7→S ((f ,Q), [!u]@U) and ((e, P), [!t′]@T) 7→

((f ,Q), [!u′]@U) then this 7→ step is also a 7→S step. Else, it would mean e = σ() and T = [], which contradicts ((e, P), [!t]@T) 7→S

63

`

ax

!P
e B

?N

cut b

?P

?P !P
D

ax a

?C
cut d

⊗
ax
ax

!P
C

⊗
ax

`
cutc

?C⊗
ax
ax

Figure 3.13: Motivation for the definition of E

Definition 55. We first define a strict order C on signatures by induction. For every signature t, t′, u, v, e C t
and if we suppose t C t′ then l(t) C l(t′), r(t) C r(t′), p(t) C p(t′), n(u, t) C n(v, t′) and n(t, u) E n(t′, u).

Then we define an order E on signatures by: t E t′ iff either t = t′ or t C t′.

Lemma 56. Let t, u ∈ S ig. If t J u then t E u.

Proof. By induction on t. �

Lemma 57. Let t be a signature, then E is a total order on {u ∈ S ig | u J t}.
Proof. Let u, v ∈ S ig such that u J t and v J t. We prove by induction on t that either u E v or v E u.

If t = e then u = v = e so u E v. If t = l(t′) then either u = e (in this case u E v), v = e (in this case
v E u) or u = l(u′), v = l(v′), u′ J t′ and v′ J t′ (in this case, by induction hypothesis, either u′ E v′ and
u E v, or v′ E u′ and v E u). The cases t = r(t′) and t = p(t′) are similar.

If t = n(t1, t2), then either u = e (in this case u E v), v = e (in this case v E u), or u = n(u1, u2),
v = n(v1, v2), u1 J t1, u2 J t2, v1 J t1 and v2 J t2. Then, by induction hypothesis, either u2 E v2 or v2 E u2.

• If u2 C v2, then u C v so u E v.

• If v2 C u2, then v C u so v E u.

• If u2 = v2, then let us observe that, by induction hypothesis, either u1 E v1 (in this case u E v) or
v1 E u1 (in this case v E u).

�

Thus, we can define Restr→((σ(B), P), [!t]) as the→-copies of (B, P) which are smaller than t for J. This
set is totally ordered by E and finite (if t is of size k, it has at most k truncations) so it admits a maximum.
This maximum is the→-copy restriction of t for (B, P), written ((σ(B), P), [!t])/→.

Definition 58. Let ((e, P), [!t]@T) be a context. We define Restr→((e, P), [!t]@T) as the set of signatures u
such that u J t and ((e, P), [!u]@T) is a→-copy context. Then, we define ((e, P), [!t]@T)/→ as the maximum
(for the order E) element of Restr→((e, P), [!t]@T).

For instance in the proof-net of Figure 3.13, we can notice that Restr→((σ(B), P), [!n(l(e),r(e))]) (with→
defined as above by removing the transition ((σ(D), [r(e)]), [!l(e)]) 7→∗ ((d, [r(e)]), [!l(e)]) from 7→) is the
set {n(l(e), e), n(e, r(e), n(e, e), e}. Thus, ((σ(B), P), [!n(l(e),r(e))])/→ = n(e, r(e)).

In Figure 3.13, we can notice that for any set S and t ∈ S ig, t′ = ((σ(B), []), [!t])/ 7→S if and only if
t′ = ((b, []), [!t])/ 7→S . Similarly, t′ = ((σ(C), []), [!t])/7→S iff t′ = ((c, []), [!t;⊗r])/ 7→S . We generalize this
observation in Lemma 59.

64

Lemma 59. Let us consider t ∈ S ig. Let us suppose that for every u, v ∈ S ig such that u J t and v w u, we
have ((e, P), [!v]@T)→ ((f ,Q), [!v]@U). Then, ((e, P), [!t])/→ = ((f ,Q), [!t])/→.

Proof. Let us consider u ∈ S ig such that u J t. For every v ∈ S ig, if v w u, we have ((e, P), [!v]@T) 7→S

((f ,Q), [!v]@U). So ((e, P), [!v]@T) 7→∗S ((,), [!e]@) if and only if ((f ,Q), [!v]@U) 7→∗S ((,), [!e]@).
So, for every signature u, u ∈ Restr→((e, P), [!t]@T) iff u ∈ Restr→((f ,Q), [!t]@U). In particular, the
maximal element (for E) of Restr→((e, P), [!t]@T) is the maximal element of Restr→((f ,Q), [!t]@U). So
((e, P), [!t]@T)/→ = ((f ,Q), [!t]@U)/→. �

Lemma 60. If ((e, P), [!t]@T) is a→-copy context, then t = ((e, P), [!t]@T)/→.

Proof. Let us notice that t J t and ((e, P), [!t]@T) is a →-copy context so t ∈ Restr→((e, P), [!t]@T). If
we set t′ = ((e, P), [!t]@T)/→, by definition of ((,),)/→, t E t′. We also know that t′ J t, so t′ E t
(Lemma 56). Finally, E is an order so E is antisymmetric, t = t′. �

Now, for any potential edge (e, P), we want to define (e, P)→ as the “biggest” truncation P′ of P such
that (e, P′) is a→-canonical edge. Like for the definition of ((σ(B), P), [!t])/→, we need to precise “biggest”.
For instance, in Figure 3.13, let us define → as the relation obtained from 7→ by removing the transition
((σ(D), [r(e)]), [!l(e)]) 7→∗ ((d, [r(e)]), [!l(e)]). The potential edges (a, [e; l(e)]) and (a, [r(e); e]) are →-
canonical but (a, [r(e); l(e)]) is not→-canonical. Thus, the set of truncations P′ of P such that (e, P′)→ is a
→-canonical edge does not have a maximum element.

Definition 61. For every potential edge (e, P), we define (e, P)→ by induction on ∂(e). If ∂(e) = 0, then we
set (e, [])→ = (e, []). Else, P = Q.t, let B be the deepest box containing e, (σ(B),Q′) = (σ(B),Q)→ and
t′ = ((σ(B),Q′), [!t])/→ then we set (e,Q.t)→ = (e,Q′.t′).

For example, in the proof-net of Figure 3.13, (a, [r(e); l(e)])→ = (a, [r(e); e]). This is coherent with
our choice in the definition of ((,),)/→, because ((σ(B), []), [`r; !n(l(e),r(e))]) 5 ((a, [r(e); l(e)]), [`r]),
((σ(B), []), [`r; !n(l(e),r(e))])/ 7→S = n(e, r(e)) and ((σ(B), []), [`r; !n(e,r(e))]) 5 ((a, [r(e); e]), [`r]).

Definition 62. We extend J on potentials by [p1; · · · ; pk] J [p′1; · · · ; p′k] iff for 1 ≤ i ≤ k, pi J p′i .

Lemma 63. If (e, P′) = (e, P)→ then P′ J P and (e, P′) ∈ Can→(e).

Proof. We prove the Lemma by induction on ∂(e). If ∂(e) = 0, then P = P′ = []. We can verify that [] J [],
(e, []) ∈ Can→(e) and (e, []) = (e, [])→.

Else, let B be the deepest box containing e. We have P′ = Q′.t′ with Q′ = (σ(B),Q)→ and t′ =

((σ(B),Q′), [!t])/→. By induction hypothesis, Q′ J Q and, by definition of ((,),)/→, t′ J t so P′ J P.
By induction hypothesis, (σ(B),Q′) ∈ Can→(~EG) so (B,Q′) ∈ Can→(BG). Moreover, t is standard so
every truncation of t is standard and, by definition of ((,),)/→, t′ ∈ Cop→(B,Q′) so (e, P′) = (e,Q′.t′) ∈
Can→(~EG). �

Lemma 64. If (e, P) ∈ Can→(e) then (e, P)→ = (e, P)

Proof. Let us suppose that (e, P) ∈ Can→(e) and we set (e, P′) = (e, P)→. We prove that P = P′ by
induction on ∂(e). If ∂(e) = 0, then P = P′ = []. Else, let B be the deepest box containing e, then
P = Q.t with (σ(B),Q) ∈ Can→(σ(B)) and t ∈ Cop→(B,Q). By definition of ()→, we have P′ = Q′.t′ with
(σ(B),Q′) = (σ(B),Q)→ and t′ = ((σ(B),Q′), [!t])/→. By induction hypothesis, Q = Q′. And by Lemma 60,
t = t′. Thus, P = P′. �

65

We can notice that, in the same way as the definition of Can(e) only depends on the boxes containing
e (cf. page 26), the definition of (e, P)→ only depends on the boxes containing e. We formalize it with the
next lemma.

Lemma 65. Let us suppose that e, f ∈ ~EG are included in the same boxes. If (e, P)→ = (e, P′) then
(f , P)→ = (f , P′).

Proof. If ∂(e) = 0, then (e, P)→ = (e, []) and (f , P)→ = (f , []). Else, P = Q.t. Let B be the deepest
box containing e, then B is also the deepest box containing f . Let (σ(B),Q′) be (σ(B),Q)→ and t′ =

((σ(B),Q), [!t])→. Then (e,Q.t)→ = (e,Q′.t′) and (f ,Q.t)→ = (f ,Q′.t′). �

In the general case, for any proofnet, let us suppose that ((σ(B), P), [!t]) ∗ ((e,Q), [!e]) and let S be
the set of boxes which are entered by their principal door by this path. Then, we will prove that it is enough
to know (e,Q) 7→S to trace back the path which arrives to ((e,Q), [!e]). To do so, we need to prove that for
every intermediary step (((ek, Pk),Tk) ((ek+1, Pk+1),Tk+1) we have enough information about Pk+1 and
Tk+1 to determine ek. This is the role of the following definition.

Definition 66. For every context ((e, P), [Tn; · · · ; T1]) ∈ ContG we define the context ((e, P), [Tn; · · · ; T1])→

as ((e, P′), [T ′n; · · · ; T ′1]) with (e, P′) = (e, P)→ and T ′i is defined by induction on i as follows:

• If Ti = !t, and ((e, P′), [!t; T ′i+1; · · · ; T ′1])/→ = t′ then T ′i = !t′ .

• If Ti = ?t, and ((e, P′), [!t; T ′i+1
⊥; · · · ; T ′1

⊥])/→ = t′ then T ′i = ?t′ .

• Else, T ′i = Ti.

As an intuition, if ((e, P′),T ′) = ((e, P),T)→ then ((e, P′),T ′) is the “biggest” →-canonical context
which is a truncation of ((e, P),T).

Definition 67. We also extend the relation J on traces by [T1; · · · ; Tk] J [T ′1; · · · ; T ′k] iff for 1 ≤ i ≤ k, we
are in one of the following cases: (Ti = !t, T ′i = !t′ and t J t′), or (Ti = ?t, T ′i = ?t′ and t J t′) or Ti = T ′i .

Finally we extend J on contexts by ((e, P),T) J ((e, P′),T ′) iff P J P′ and T J T ′.

Similarly to Lemmas 63 and 64, the ()→ mapping is idempotent: for every context C, C→ is →-
canonical. And C→ = C for every→-canonical context C.

Lemma 68. If ((e, P′),T ′) = ((e, P),T)→ then ((e, P′),T ′) J ((e, P),T) and ((e, P′),T ′) is a →-canonical
context.

Proof. By definition of ((,),)→, (e, P′) = (e, P)→. So, by Lemma 63, P′ J P and (e, P′) ∈ Can→(e). Let
[Tn; · · · ; T1] = T and [T ′n; · · · ; T ′1] = T ′. For every 1 ≤ i ≤ n,

• If T ′i = !u′ and Ti = !u then u′ = ((e, P′), [Ti; · · · ; T1])/→ so, by definition of →-copy restrictions,
u′ J u and ((e, P′), [!u′]@[T ′i+1; · · · ; T ′1]) is a→-copy context.

• If T ′i = ?u′ and Ti = ?u then u′ = ((e, P′), [Ti; · · · ; T1]⊥)/→ so, by definition of →-copy restrictions,
u′ J u and ((e, P′), [!u′]@[T ′i+1; · · · ; T ′1]⊥) is a→-copy context.

�

Lemma 69. If C is a→-canonical context then C = C→.

66

Proof. Let ((e, P), [Tn; · · · ; T1]) = C and ((e, P′), [T ′n; · · · ; T ′1]) = C→. By definition of →-canonical con-
text, (e, P) ∈ Can→(e). So, by Lemma 64, (e, P′) = (e, P)→ = (e, P).

Let us prove by induction on i that T ′i = Ti. If Ti = !u then T ′i = !u′ with u′ = ((e, P), [!u; T ′i−1; · · · ; T ′1])/→.
By induction hypothesis, T ′i−1 = Ti−1,...,T ′1 = T1 so u′ = ((e, P), [!u; Ti−1; · · · ; T1])/→. By definition of→-
canonical contexts, ((e, P), [!u; Ti−1; · · · ; T1]) is a→-copy context. So by Lemma 60, u′ = u. Thus, T ′i = Ti.
The case Ti = ?u is treated similarly. In the other cases, T ′i = Ti by definition of ((,),)→. �

The following theorem is a generalization of Lemma 59 to contexts. For example, in Figure 3.13, we
can notice that for every S ⊆ BG and t ∈ S ig, ((e, [n(l(e), r(e))]), [!t;`r]) 7→S ((a, [r(e); l(e)]), [!t;`r]). So
we can deduce that, if ((e, [n(l(e), r(e))]), [!t;`r])7→S = ((e, P), [!u;`r]) and ((a, [r(e); l(e)]), [!t;`r])7→S =

((a,Q), [!v;`r]) then u = v.

Lemma 70. Let (e, P), (e,Q) be potential edges and U,V be lists of trace elements. Let us suppose that,
for every trace element list T , ((e, P),T@U) → ((f ,Q),T@V) and ((f ,Q),T⊥@V⊥) → ((e, P),T⊥@U⊥).
Then, for any trace T , ((e, P),T@U)→ and ((f ,Q),T@V)→ are of the shape (,T ′@U′) and (,T ′@V ′)
with |T | = |T ′|.

Proof. Let [Tk; · · · ; T1] = T , ((,), [T ′k; · · · ; T ′1]@U′) = ((e, P),T@U)→ and ((,), [T ′′k ; · · · ; T ′′1]@V ′) =

((f ,Q),T@V)→. We prove by induction on i that T ′i = T ′′i .
Let us suppose that Ti = !t. By definition, T ′i = !t′i with t′i = ((e, P), [!t; T ′i−1; · · · ; T ′1]@U′)/→ and

T ′′i = !t′′i with t′′i = ((f ,Q), [!t; T ′′i−1; · · · ; T ′′1]@V ′)/→. By induction hypothesis, we have [T ′′i−1; · · · ; T ′′1] =

[T ′i−1; · · · ; T ′1]. By supposition, ((e, P), [!t; T ′i−1; · · · ; T ′1]@U′) →∗ ((f ,Q), [!t; T ′i−1; · · · ; T ′1]@V ′). Thus, as
in the proof of Lemma 59 Restr→((e, P), [!t; T ′i−1; · · · ; T ′1]@U′) and Restr→((f ,Q), [!t; T ′i−1; · · · ; T ′1]@V ′)
are equal. In particular, the maximum element of those sets is the same, so T ′i = T ′′i .

Let us suppose that Ti = ?t. By definition, T ′i = ?t′i with t′i = ((e, P), [!t; T ′i−1
⊥; · · · ; T ′1

⊥]@U′⊥)/→ and
T ′′i = ?t′′i with t′′i = ((f ,Q), [!t; T ′′i−1

⊥; · · · ; T ′′1
⊥]@V ′⊥)/→. By induction hypothesis, we have [T ′′i−1; · · · ; T ′′1] =

[T ′i−1; · · · ; T ′1]. By supposition, ((f ,Q), [!t; T ′i−1
⊥; · · · ; T ′1

⊥]@V ′⊥) →∗ ((e, P), [!t; T ′i−1
⊥; · · · ; T ′1

⊥]@U′⊥).
Thus, as in the proof of Lemma 59, we can deduce that the sets Restr→((e, P), [!t; T ′i−1

⊥; · · · ; T ′1
⊥]@U′⊥)

and Restr→((f ,Q), [!t; T ′i−1
⊥; · · · ; T ′1

⊥]@V ′⊥) are equal. In particular, the maximum element of those sets
is the same, so T ′i = T ′′i . �

For instance in Figure 3.11, for t, u, v ∈ S ig, we have:

((w, [e]), [!t])7→{A′′} = ((w, [e]), [!e]) ((w, [n(x, y)]), [!t])7→{A′′} = ((w, [e]), [!e])

((w, [r(x)]), [!t])7→{A′′} = ((w, [r(e)]), [!e]) ((c, []), [!t;`r; !r(u); ?r(v)])7→{A′′} = ((c, []), [!e;`r; !r(e); ?r(e)])

((w, [l(x)]), [!t])7→{A′′} = ((w, [l(e)]), [!e]) ((c, []), [!t;`r; !r(u); ?l(v)])7→{A′′} = ((c, []), [!e;`r; !r(e); ?l(e)])

((w, [r(e)]), [!t])7→{A′′ ,D} = ((w, [r(e)]), [!e]) ((w, [r(n(u, r(v)))]), [!t])7→{A′′ ,D} = ((w, [r(n(e, r(e)))]), [!e])

((c, []), [!e?r(t)])7→{A′′ ,D} = ((c, []), [!e?r(e)]) ((c, []), [!r(e); ?r(n(t,r(u)))]) 7→{A′′ ,D} = ((c, []), [!r(e); ?r(n(t,r(u)))])

((σ(B′), [t]), [!u])7→∅ = ((σ(B′), [e]), [!e]) ((σ(B), [t; u]), [!v])7→∅ = ((σ(B), [e; e]), [!e])

3.2.3 Elementary bound for −> −> −>-stratified proof-nets

The first goal of this subsection is to prove Claim 2. Let us consider a −> −> −>-stratified proof-ned and a
potential box (B, P). We set S as the set of boxes C such that s −> −> −>(C) < s −> −> −>(B) (let us recall that s () is
defined in Definition 27). If, there exist -paths ((σ(B), P), [!t]) k ((e,Q), [!u]) and C′ k ((e,Q′), [!u′])

67

with (e,Q) 7→S = (e,Q′) 7→S , then we have to prove that one can trace back the two paths and they will never
separate.

The formalization of Claim 2 is Lemma 75. Most of the technical work will be done in Theorem 72,
which we consider to be the technical core of this thesis: most of the work in this thesis drew their inspiration
from this theorem and its generalizations (Theorem 104, Lemma 136 and Theorem 145), and we use them
in numerous proofs.

Definition 71. Let G be a −> −> −>-stratified proof-net and n ∈ N, we set S n = {B ∈ BG | s −> −> −>(B) ≤ n}. To
simplify notations, in Section 3.2.3, we will write ((e, P),T)/n for ((e, P),T)/ 7→S n , (e,Q)n for (e,Q) 7→S n ,
((e, P),T)n for ((e, P),T) 7→S n , Copn(B, P) for Cop7→S n

(B, P) and Cann(B, P) for Can 7→S n
(B, P).

Thus, if s −> −> −>(B) = n, the set of boxes C such that B −> −> −> C is included in S n−1.

Theorem 72. For any proof-net G, and S ⊂ BG. Let Ce, C f and C′f be canonical contexts such that
Ce S C f and C f

7→S = C′f
7→S , then there exists a context C′e such that C′e S C′f and Ce

7→S = C′e 7→S .

Proof. We will detail an easy step (crossing a ` node upward). Most of the other steps are quite similar.
For the steps which offer some particular difficulty, we will only detail the points which differ from crossing
a ` upward.

`
e

f
Let us suppose that Ce = ((e, P),T.⊗l) S ((f , P),T) = C f (crossing a ` upwards, such

that f is not a principal edge) and C f
7→S = C′f

7→S . So C′f is of the shape ((f , P′),T ′). We set
C′e = ((f , P′),T ′.⊗l). Let ((f , P′′),T ′′) = C f

7→S , then (f , P) 7→S = (f , P′) 7→S = (f , P′′). So, by
Lemma 65, (e, P)7→S = (e, P′) 7→S = (e, P′′). Moreover, by Lemma 70, Ce

7→S = ((e, P′′),T ′′.⊗l)
and C′e 7→S = ((e, P′′),T ′′.⊗l) so Ce

7→S = C′e 7→S .

!P
cute f

In the case where e is the principal edge of a box B (we consider the case where we cross
a cut) then Ce = ((e, P),T.!t) S ((f , P),T.!t) = C f . So C′f is of the shape ((f , P′),T ′.!t′).
We set C′e = ((e, P′),T ′.!t′). By supposition, C f

7→S = C′f
7→S = ((f , P′′),T ′′.!t′′). In particular

((f , P′′), [!t])/ 7→s = ((f , P′′), [!t′])/ 7→s . If B ∈ S , by Lemma 70, we have Ce
7→S = C′e 7→S =

((e, P′′),T ′′.!t′′). Else, we have Ce
7→S = C′e 7→S = ((e, P′′),T ′′.!e).

!P
cutf e

In the case where f is the principal edge of a box B (we consider the case where we cross
a cut) then Ce = ((e, P),T.?t) S ((f , P),T.?t) = C f . So C′f is of the shape ((f , P′),T ′.?t′).
We set C′e = ((e, P′),T ′.?t′). By supposition, C f

7→S = C′f
7→S = ((f , P′′),T ′′.?t′′). By defini-

tion of S , B is in S . So, we can notice that C′e S C′f and, using Lemma 70, we have
Ce
7→S = C′e 7→S = ((e, P′′),T ′′.?t′′).

!P
f

e

Let us suppose that Ce = ((e, P),T.?t) S ((f , P.t),T) = C f (crossing the principal door of C
upwards). Then, C′f must be of the shape ((f , P′.t′),T ′). We set C′e = ((e, P′),T ′.?t′). The only
particular point is to prove that ((e, P)7→S , [!t])/7→S = ((e, P′) 7→, [!t′])/ 7→S . By definition, (f , P.t) 7→S =

(f ,Q.u) with (e, P) 7→S = (e,Q) and (e,Q), [!t])/ 7→S = u. Similarly, (f , P′.t′) 7→S = (f ,Q′.u′) with
(e, P′)7→S = (e,Q′) and ((e,Q′), [!t′])/ 7→S = u′. We know that C f

7→S = C′f
7→S , so (f ,Q.t) 7→S =

(f ,Q′.t′) 7→S . Thus u = u′, i.e. ((e, P) 7→S , [!t])/ 7→S = ((e, P′)7→S , [!t′])/ 7→S .

!P
e

f

Let us suppose that Ce = ((e, P.t),T) S ((f , P),T.!t) = C f (crossing the principal door of
B downwards). Then C′f must be of the shape ((f , P′),T ′.!t′). We set C′e = ((e, P′.t′),T ′). The
only particular point is to prove that (e, P.t) 7→S = (e, P′.t′) 7→S . By definition of (,)7→S , (e, P.t)7→S =

(e,Q.u) with (f , P)7→S = (f ,Q) and ((f ,Q), [!t])/ 7→S = u. Similarly, (e, P′.t′) 7→S = (e,Q′.u′) with

68

(f , P′) 7→S = (f ,Q′) and ((f ,Q′), [!t′])/ 7→S = u′. By supposition,

((f , P),T.!t)7→S = ((f , P′),T ′.!t′)7→S(
(f , P) 7→S , @

[
!((f ,P) 7→S ,[!t])/7→S

])
=

(
(f , P′) 7→S , @

[
!((f ,P′)7→S ,[!′t])/7→S

])
((f ,Q), @[!u]) = ((f ,Q′), @[!u′])

Q.u = Q′.u′

?P
f

e

Let us suppose that Ce = ((e, P),T.!t) S ((f , P.t),T) = C f (crossing an auxiliary door of
B upwards). Then, C′f must be of the shape ((f , P′.t′),T ′). We set C′e = ((e, P′),T ′.!t′). The
only particular point is to prove that ((e, P) 7→S , [!t])/ 7→S = ((e, P′)7→S , [!t′])/ 7→S . By definition of
(,)7→S , (f , P.t) 7→S = (f ,Q.u) with (σ(B),Q) = (σ(B), P) 7→S and u = ((σ(B),Q), [!t])/7→S . Similarly,
(f , P′.t′) 7→S = (f ,Q′.u′) with (σ(B),Q′) = (σ(B), P′) 7→S and u′ = ((σ(B),Q′), [!t′])/ 7→S . We know

that (f , P.t) 7→S = (f , P′.t′) 7→S , so u = u′. By Lemma 70, ((e, P) 7→S , [!t])/ 7→S = ((e, P′)7→S , [!t′])/ 7→S .

?P
e

f

Let us suppose that Ce = ((e, P.t),T) S ((f , P),T.?t) = C f (crossing an auxiliary door
of C downwards). Then C′f must of of the shape ((f , P′),T ′.?t). We set C′e = ((e, P′.t′),T ′).
The only particular point is to prove that (e, P.t) 7→S = (e, P′.t′) 7→S . By definition of (,) 7→S ,
(e, P.t) 7→S = (e,Q.u) with (σ(B), P) 7→S = (σ(B),Q) and ((σ(B),Q), [!t])/ 7→S = u. Similarly,
(e, P′.t′)7→S = (e,Q′.u′) with (σ(B), P′) 7→S = (σ(B),Q′) and ((σ(B),Q′), [!t′])/ 7→S = u′. By

Lemma 65, (f , P) 7→S = (f ,Q) and (f , P′) 7→S = (f ,Q′). By Lemma 70, ((f ,Q), [!t])/ 7→S = ((σ(B),Q), [!t])/ 7→S

and ((f ,Q′), [!t′])/ 7→S = ((σ(B),Q′), [!t′])/ 7→S . By supposition, we have:

((f , P),T.?t) 7→S = ((f , P′),T ′.?t′)7→S(
(f , P) 7→S , @

[
?((f ,P) 7→S ,[!t])/7→S

])
=

(
(f , P′) 7→S , @

[
?((f ,P′)7→S ,[!′t])/7→S

])
(
(f , P) 7→S , @

[
?((σ(B),Q),[!t])/7→S

])
=

(
(f , P′) 7→S , @

[
?((σ(B),Q′),[!′t])/7→S

])
((f ,Q), @[?u]) = ((f ,Q′), @[?u′])

Q.u = Q′.u′

?C
f

e
Let us suppose Ce = ((e, P),T.?t) 7→S ((f , P),T.?l(t)) = C f (crossing a ?C node downwards).

Then C′f must be of the form ((f , P′),T ′.?u′). We first have to prove that u′ is of the shape l(t′).
We know that C f

7→S = C′f
7→S so (f , P) 7→S = (f , P′) 7→S (we will write (f , P′′) for (f , P) 7→S) and

((f , P′′), [!l(t)])/ 7→S = ((f , P′′), [!u′])/7→S (we will write u′′ = ((f , P′′), [!l(t)])/ 7→S). By definition
of ((,),)/ 7→S , u′′ J l(t) so either u′′ = e or u′′ = l(t′′). In the first case, let us notice that

u′′ C l(e) J l(t) and ((f , P′′), [!l(e)]), which would contradict the definition of ((f , P′′), [!l(t)])/ 7→S . So
u′′ = l(t′′) and, because u′′ J u′, u′ is of the shape l(t′).

We set C′e = ((e, P′),T ′.?t′). The only particular point to prove is the fact that ((e, P′′), [!t])/ 7→S =

((e, P′′), [!t′])/7→S . Let us notice that for any signature v, we have ((f , P′′), [!l(v)]) 7→S ((e, P′′), [!v]) so
Restr 7→S ((f , P′′), [!l(t)]) = {e} ∪ {

l(v)
∣∣∣ v ∈ Restr 7→S ((e, P′′), [!t])

}
. In particular, l(t′′) = ((f , P′′), [!t])/7→S =

l (((e, P′′), [!t])/ 7→S). Similarly l(t′′) = ((f , P′′), [!t′])/ 7→S = l (((e, P′′), [!t′])/ 7→S). So we can deduce that
((e, P′′), [!t])/ 7→S = ((e, P′′), [!t′])/ 7→S = t′′.

?N
f

e
Let us suppose Ce = ((e, P),T.?t1 .?t2) 7→S ((f , P),T.?n(t1,t2)) = C f (crossing a ?N node

downwards). Then, C′f must be of the shape ((f , P′),T ′.?u′]). We first have to prove that
u′ is of the shape n(t′1, t

′
2). We know that C f

7→S = C′f
7→S so (f , P) 7→S = (f , P′) 7→S (we

will write (f , P′′) for (f , P) 7→S) and ((f , P′′), [!n(t1,t2)])/ 7→S = ((f , P′′), [!u′])/ 7→S (we will write

69

u′′ = ((f , P′′), [!n(t1,t2)])/ 7→S). By definition of ((,),)/ 7→S , u′′ J n(t1, t2) so either u′′ = e or
u′′ = n(t′′1 , t

′′
2). In the first case, let us notice that u′′ C n(e, e) J u′ and ((f , P′′), [!n(e,e)]) is a 7→S -copy

context, which would contradict the definition of ((f , P′′), [!n(t1,t2)])/ 7→S . So u′′ = n(t′′1 , t
′′
2) and, because

u′′ J u′, u′ is of the shape n(t′1, t
′
2).

We set C′e = ((e, P′),T ′.?t′1 .?t′2). The only particular points to prove are that ((e, P′′), [!t2])/ 7→S =

((e, P′′), [!t′2])/ 7→S and (if we set t′′2 = ((e, P′′), [!t2])/ 7→S), ((e, P′′), [!t1 ; !t′′2])/ 7→S = ((e, P′′), [!t′1 ; !t′′2])/ 7→S . Let
us set t′′1 = ((e, P′′), [!t1 ; !t′′2])/ 7→S .

Let us observe that n(t′′1 , t
′′
2) ∈ Restr 7→S (((f , P′′), [!n(t1,t2)])) and for every u′′2 w t′′2 , p(u′′2) w n(t′′1 , t′′2).

By definition of Restr 7→S (), ((f , P′′), [!p(u′′2)]) 7→∗S ((,), [!e]@). So for every u′′2 w t′′2 , ((e, P′′), [!u′′2]) 7→S

((,), [!e]@), moreover t′′2 J t2 (because n(t′′1 , t
′′
2) J n(t1, t2)). By Definition of Restr 7→S (), t′′2 belongs to

Restr 7→S (((e, P′′), [!t2])). By definition of ((,),)/ 7→S , t′′2 E ((e, P′′), [!t2])/ 7→S . Let v2 = ((e, P′′), [!t2])/ 7→S , if
t′′2 C v2, then n(t′′1 , t

′′
2) C n(e, v2) and n(e, v2) ∈ Restr 7→S (((f , P′′), [!n(t1,t2)])) so n(t′′1 , t

′′
2) is not the maximal

element of Restr 7→S (((f , P′′), [!n(t1,t2)])) for C, which contradicts the definition of n(t′′1 , t
′′
2). So t′′2 E v2 and

¬(t′′2 C v2), which means that v2 = t′′2 . In other words: ((e, P′′), [!t2])/7→S = t′′2 . We prove similarly that
((e, P′′), [!t′2])/ 7→S = t′′2 .

For every u′′1 w t′′1 , n(u′′1 , t
′′
2) w n(t′′1 , t′′2). By definition of Restr 7→S (), there exists a path of the shape

((f , P′′), [!n(u′′1 ,t′′2)]) 7→∗S ((,), [!e]@). So for every u′′1 w t′′1 , ((e, P′′), [!u′′1 ; !t′′2]) 7→S ((,), [!e]@), more-
over t′′1 J t1, so t′′1 ∈ Restr 7→S (((e, P′′), [!t1 ; !t′′2])). By definition of ((,),)/ 7→S , t′′1 E ((e, P′′), [!t1 ; !t′′2])/ 7→S .
Let v1 = ((e, P′′), [!t1 ; !t′′2])/ 7→S , if t′′1 C v1 then n(t′′1 , t

′′
2) C n(v1, t′′2) and n(v1, t′′2) ∈ Restr 7→S (((f , P′′), [!n(t1,t2)]))

so n(t′′1 , t
′′
2) is not the maximal element of Restr 7→S (((f , P′′), [!n(t1,t2)])) for C, which contradicts the definition

of n(t′′1 , t
′′
2). So t′′1 E v1 and ¬(t′′1 C v1), which means that t′′1 = v1. In other words: ((e, P′′), [!t1 ; !t′′2])/ 7→S = t′′1 .

We prove similarly that ((e, P′′), [!t′1 ; !t′′2])/ 7→S = t′′1 . �
Theorem 72 allows us to trace back some paths provided that we have some information about the

last context of the path. In this subsection, we will show how this implies that ˙ −> −> −> satisfies the elementary
stratification property (Lemma 75). But, first, we need a technical lemma.

Lemma 73. Let us consider →⊆7→. Let us suppose that ((σ(B), P), [!t]) →∗ C, then there exists a unique
context of the shape ((σ(B′), P′), [!t′]) such that ((σ(B), P), [!t])→∗ ((σ(B′), P′), [!t′])(∩ →)∗C

Proof. First we prove the existence of such a context. Let us consider the ↪→ steps in the →-path from
((σ(B), P), [!t]) to C. If there is no such step, then ((σ(B), P), [!t]) →0 ((σ(B), P), [!t])(∩ →)∗C.
Else we consider the last such step ((σi(B′), P′), [!t′]) ↪→ ((σ(B′), P′), [!t′]), we can observe that we have
((σ(B), P), [!t])→∗ ((σ(B′), P′), [!t′])(∩ →)∗C.

Then, we prove the unicity of such a context. If ((σ(B1), P1), [!t1]) ∗ C and ((σ(B2), P2), [!t2]) ∗ C
then, because is injective, either ((σ(B1), P1), [!t1]) ∗ ((σ(B2), P2), [!t2]) or ((σ(B2), P2), [!t2]) ∗

((σ(B1), P1), [!t1]). However, for any context of the shape ((σ(B′), P′), [!t′]), there is no context C′ such that
C′ ((σ(B′), P′), [!t′]) so ((σ(B2), P2), [!t2]) = ((σ(B1), P1), [!t1]). �

Lemma 74. Let us consider n ∈ N. If ((σ(B), P), [!t]) 7→S n Ck · · · 7→S n C0 and C0
n−1 = C′0

n−1 then there
exists (C′i)0≤i≤k such that C′k 7→S n · · · 7→S n C′0 and, for 0 ≤ i ≤ k, Ci

n−1 = C′i
n−1.

Proof. We will prove (by induction on i) the existence of a context C′i such that C′i 7→S n C′i−1 and Ci
n−1 =

C′i
n−1. If i = 0, we can verify that C′0 (given by assumption) satisfies the property. Else, by induction

hypothesis we know that there exists a context C′i−1 such that (Ci−1)n−1 = (C′i−1)n−1.
If the Ci 7→S Ci−1 step is a ↪→ step, it is of the shape Ci = ((σ j(D),Q), [!u]) ↪→ ((σ(D),Q), [!u]) =

Ci−1. So C′i−1 is of the shape ((σ(D),Q′), [!u′]) with σ(D),Qn−1 = (σ(D),Q′)n−1 = (σ(D),Q′′) and

70

((σ(D),Q′′), [!u])/n−1 = ((σ(D),Q′′), [!u′])/n−1 = u′′. Let us set C′i = ((σ j(D),Q′), [!u′]). By Lemma 65,
(σ j(D),Q)n−1 = (σ j(D),Q′)n−1 = (σ j(D),Q′′). If D ∈ S , by Lemma 59, we have ((σ j(D),Q′′), [!u])/ 7→S =

((σ j(D),Q′′), [!u′])/ 7→S = u′′ (and in this case Ci
7→S = C′i

7→S = ((σ j(D),Q′′), [!u′′])). Else, D < S so we have
Ci
7→S = C′i

7→S = ((σ j(D),Q′′), [!e]).
If the Ci 7→S n Ci−1 step is a ↪→ step then, by Lemma 73, there exists a context of the shape ((σ(D),Q), [!u])

such that ((σ(B), P), [!t]) 7→S n ((σ(D),Q), [!u])(∩ 7→S n)∗Ci−1. By definition of 7→S n , we have D ∈ S n.
So, if Ci−1 is of the shape ((σ(Di),Qi), [!v]), then we have D −> −> −> Di so s −> −> −>(D) < s −> −> −>(Di) ≤ n, which
means that Di ∈ S n−1. Thus, we have Ci S n−1 Ci−1. By Theorem 72, there exists a context C′i such that
C′i S n−1 C′i−1 and Ci

n−1 = C′i
n−1. �

Lemma 75 (strong acyclicity). Let G be a normalizing proof-net. For every n ∈ N, if ((σ(B), P), [!t]) 7→∗S n

((e,Q), [!u]) 7→+
S n

((e,Q′), [!v]) then (e,Q)n−1 , (e,Q′)n−1.

Proof. We will prove it by contradiction. Let us suppose that we have ((σ(B), P), [!t]) 7→l
S n

((e,Q), [!u]) and
((σ(B), P), [!t]) 7→l+m

S n
((e,Q′), [!u′]) = D′, and (e,Q)n−1 = (e,Q′)n−1. Then, ((e,Q), [!u′])n−1 = D′n−1. By

Lemma 74, there exists a context C′1 such that C′1 7→l+m ((e,Q), [!u′]) and C′1
n−1 = ((σ(B), P), [!t])n−1. So C′1

is of the shape ((σ(B), P1), [!t′1]). By Lemma 53, there exists a signature t1 such that ((σ(B), P1), [!t1]) 7→l+m

((e,Q), [!u]) so ((σ(B), P1), [!t1]) 7→l+2m ((e,Q′), [!u′]).
We define C1 as the context ((σ(B), P1), [!t1]). For k ∈ N, we can define by induction on k a context

Ck = ((σ(B), Pk), [!tk]) such that Ck 7→l+k·m
S n

D and Ck 7→l+(k+1)·m
S n

D′.
Thus, if m > 0, we define an infinite path. In particular, this path will go through infinitely many contexts

of shape ((σ(B), P′), [!t′]). According to Theorem 20, the number of canonical potentials for an edge is finite.
So there is some (σ(B), P′) ∈ Can(~EG) and v, v′ ∈ S ig such that ((σ(B), P′), [!v]) 7→+ ((σ(B), P′), [!v′]). This
is impossible as we proved proof-nets to be acyclic (Lemma 21). This is a contradiction, so our hypothesis
is wrong, m = 0. There is no path of the shape ((σ(B), P), [!t]) 7→∗S n

((e,Q), [!u]) 7→+
S n

((e,Q′), [!v]) with
(e,Q)n−1 = (e,Q′)n−1. �

Lemma 76. Let us consider a relation on contexts→⊆7→, and a potential box (B, P). Let us suppose that
|{(e,Q) | ∃t, u ∈ S ig, ((σ(B), P), [!t])→ ((e,Q), [!u])}| ≤ M. Then, Cop→(B, P) ≤ 222·M

.

Proof. Let us consider u ∈ S ig such that there exists t ∈ Cop→(B, P) such that t v u. By definition of
Cop () (Definition 50, in page 61), there exists a path of the shape ((σ(B), P), [!t]) →∗ ((,), [!e]). We
will consider u as a tree. During the path beginning by ((σ(B), P), [!u]), the height of the left-most branch
of u (viewed as a tree) decreases to 0 (the height of e). The height of the left-most branch decreases
only by crossing a ?C or ?N nodes upwards (which corresponds to contexts of the shape ((e,Q), [!v])) and
during those steps it decreases by exactly 1. So the height of the left-most branch of u is inferior to the
number of contexts of the shape ((e,Q), [!v]) through which the path goes. From the strong acyclicity
lemma (Lemma 75), we can deduce that the height of the left-most branch is inferior to M.

Let t be a →-copy of (B, P), then the height of t is the height of its deepest branch. Once we consider
signatures as trees, a simplification u of t can be viewed as a subtree of t obtained as follows: we choose a
branch of t and u is the part of t on the right of this branch, in particular this branch becomes the leftmost
branch of u. So there exists a simplification u of t such that the leftmost branch of u is the deepest branch
of t. So the heigth of t is equal to the heigth of the leftmost branch of u. By the preceding paragraph, the
height of u is at most M so the height of t is at most M. The result is obtained by Lemma 31. �

Lemma 77. For every x ∈ R, if x ≥ 1 then 2x ≥ x + 1. If x ≥ 2, then 2x ≥ 2 · x. And, if x ≥ 4, then 2x ≥ 4 · x.

71

Proof. For each of this inequality, we first check that the inequality is true for the minimal value of x.
Indeed, 21 = 2 ≥ 2 = 1 + 1, 21 = 2 ≥ 2 = 2 · 2, and 24 = 16 ≥ 16 = 4 · 4. Then, we check that the derivative
of the left part is higher than the derivative of the right part: if x ≥ 1 then log(2) · 2x ≥ log(2) · 2 ≥ 1, if x ≥ 2
then log(2) · 2x ≥ log(2) · 4 ≥ 2 and, if x ≥ 4 then log(2) · 2x ≥ log(2) · 16 ≥ 4. �

Theorem 78. If a proof-net G normalizes and is −> −> −>-stratified, then the length of its longest path of
reduction is bounded by 2|

~EG |
3| −> −> −>|

Proof. By Lemmas 75 and 76, we have:

max
(B,P)∈Pot(BG)

|Copn(B, P)| ≤222·|Cann−1(~EG)|

max
(e,P)∈Pot(~EG)

|Cann(e)| ≤
(
222·|Cann−1(~EG)|)∂G

∣∣∣∣Cann(Pot(~EG))
∣∣∣∣ ≤ ∣∣∣∣~EG

∣∣∣∣ (2∂G ·22·|Cann−1(~EG)|)

We define un as 2

∣∣∣∣~EG

∣∣∣∣
3·n . We will show by induction that, for every n ∈ N,

∣∣∣∣Cann(Pot(~EG))
∣∣∣∣ ≤ un. For n = 0,

we can notice that for every e ∈ ~EG, we have |Can0(e)| = 1 (the only canonical potentials are lists of e) so∣∣∣∣Can0(Pot(~EG))
∣∣∣∣ ≤ ∣∣∣∣~EG

∣∣∣∣ ≤ u0. If n ≥ 0, let us notice that G has at least two edges so
∣∣∣∣~EG

∣∣∣∣ ≥ 4. We have the

following inequalities (to simplify the equations, we will write s for
∣∣∣∣~EG

∣∣∣∣):∣∣∣∣Cann+1(Pot(~EG))
∣∣∣∣ ≤ s

(
2∂G ·22·|Cann(~EG)|) ≤ s

(
2∂G ·22·un

)
≤ 2

s
2
(
2s·22·un

)
log

(∣∣∣∣Cann+1(Pot(~EG))
∣∣∣∣) ≤ s

2
+ s · 22·un ≤ (2 · s) · 22·un ≤ 2s+2·un ≤ 24un ≤ 22un∣∣∣∣Cann+1(Pot(~EG))

∣∣∣∣ ≤ 2un
3 = 2s

3n+3 = un+1

Then, corollary 20 gives us the announced bound. �

Let us notice that | −> −> −> | ≤ |BG | and (as we argued in Section 3.1.4, page 46) it is reasonable to assume
that the number of boxes does not depend on the argument of the function. So, when we will consider
subsystems of LL enforcing −> −> −>-stratification, for every typed proof-net G there exists an elementary
function eG such that for every argument H in normal form, (G)H normalizes in ≤ eG (|EH |) steps. So, if a
subsystem LL enforces −> −> −>-stratification, then this subsystem is elementary time sound.

Theorem 79. Let us suppose that there exists a box-bounded5 subsystem6 S such that every proof-net of GS

is −> −> −>-stratified, then S is sound for Elem =
{
x 7→ 2x

i

∣∣∣ i ∈ N
}
.

Proof. Let us consider a proof-net G whose only conclusion’s label is of the shape A(B with A ∈ BS . By
definition of LL subsystems, there exist a, b ∈ N such that for every binary list l, and H ∈ EncA(l), we have∣∣∣∣~EH

∣∣∣∣ ≤ a · |l| + b. There exists k ∈ N such that, for every x ≥ 0, ax + b + 3 +
∣∣∣∣~EG

∣∣∣∣ ≤ 2x
k . By definition of

box-boundedness, there exists nA ∈ N such that for every binary list l and H ∈ EncA(l), there is at most nA

boxes in H. We define n as nA + |BG |.
5cf. Definition 37 in Section 3.1.4
6cf. Definition 35 in Section 3.1.4

72

For every binary list l and H ∈ EncA(l),
∣∣∣∣~EH

∣∣∣∣ ≤ a · |l| + b so
∣∣∣∣~E(G)H

∣∣∣∣ ≤ a · |l| + b +
∣∣∣∣~EG

∣∣∣∣ + 3. We can also

notice that
∣∣∣B(G)H

∣∣∣ ≤ |BH | + |BG | ≤ nA + |BG | = n.
Moreover, (G)H is −> −> −>-stratified, so S = | −> −> −> | is lower than

∣∣∣B(G)H
∣∣∣ so is lower than n − k. Thus, by

Theorem 78,

W(G)H ≤ 2

∣∣∣∣~E(G)H

∣∣∣∣
3·n ≤ 2|l|3·n+k

Let us notice that x 7→ 2x
3·n+k ∈ Elem. Thus, by definition, S is sound for Elem. �

73

!P

C

?P?P

?C

⊗ax
ax

!P

B

?P?P

?CcB

⊗ax
ax

!P

A

?P?P

?CcAcut cut

⊗ax
ax

(a) This proof-net (if extended to n boxes) re-
duces in O(2n) reduction steps

!P

C

?P?P

?C
?W

⊗ax
ax

!P

B

?P?P

?C
?W

⊗ax
ax

!P

A

?P?P

?C
?W

cut cut

⊗ax
ax

(b) This proof-net (if extended to n boxes) reduces in O(n) reduc-
tion steps.

Figure 3.14: Motivation for the definition of . for the dependence control condition.

3.3 Polynomial time

Though −> −> −>-stratification gives us a bound on the length of the reduction, elementary time is not considered
as a reasonable bound. As stated in Section 3.1.6, the complexity class we are interested in is polynomial
time. In this section, we will refine the analysis of Section 3.1.6 in order to define a more expressive
characterization of Poly.

Figure 3.14a shows us a way for the complexity to arise, despite stratification. On this proof-net, node
cA duplicates the box B and creates contractions cl

A and cr
A above the premises of cB. Then, cB, cl

A and
cr

A duplicate C (so the box C has 4 residues) and create contractions cl
B, cr

B, cll
A, clr

A , crl
A and crr

A above
the premises of cC ,... In [63], this situation is called a chain of “spindles”. We call “dependence control
condition” any restriction on linear logic which aims to tackle this kind of spindle chains. The solution
chosen by Girard [38] (presented in Section 3.1.6) was to limit the number of auxiliary doors of each !P-box
to 1. To keep some expressivity, he introduced a new modality § with §-boxes which can have an arbitrary
number of auxiliary doors.

Baillot and Mazza generalized ELL with L3, a system capturing elementary time [8]. Contrary to ELL,
L3 allows dereliction and digging (?D and ?N nodes). The presence of digging allows another way to create
an exponential blow up, shown in Figure 3.17. Notice that in this proof-net, all the boxes have at most one
auxiliary door. So, contrary to the case of ELL where the “one auxiliary door” condition alone ensures
polynomial time, Baillot and Mazza added another restriction. They defined the L4 proof-nets as the L3

proof-nets without ?N node and with at most one auxiliary door by box. We call “nesting condition” any
restriction on linear logic which aims to prevent exponential blow-ups by chains of the type of Figure 3.17.
The nesting condition of LLL and L4 is “no ?N node”. L4 proof-nets normalize in polynomial time. However,
we think that having all the node labels of linear logic (with some restriction on them) in L3 was a nice
feature and it is unfortunate that the authors could not keep the digging in L4. The nesting condition defined
in Section 3.3.2 (together with our stratification and dependence control condition) enforces polynomial
time normalization without forbidding the digging. In Section 5 we define S NLL, a subsystem of Linear
Logic characterizing Poly which includes digging (in a constrained way).

3.3.1 Dependence control

The “one auxiliary door”condition forbids a great number of proof-nets containing boxes with more than
one auxiliary door but whose complexity is still polynomial. The complexity explosion in Figure 3.14a
comes from the fact that two copies of a box B fuse with the same box A. A box with several auxiliary doors
is only harmful if two of its auxiliary edges are contracted as in Figure 3.14a. For instance, the proof-net
of Figure 3.14b normalizes in linear time. The copies of C depend on the copies of B which depend on the

74

!P
C

?P?P

?C

⊗ax
ax

cut

!P
B

?P?P

?C

⊗ax
ax

cut

!P
A

?P?P

?C

⊗ax
ax

` ⊗
cut

ax

H

Figure 3.15: If H is in normal form, this proof-net reduces in exactly 32 cut-elimination steps

copies of A: Cop(C, []) = {r(e)} ∪ {l(t) | t ∈ Cop(B, [])} and Cop(B, []) = {r(e)} ∪ {l(t) | t ∈ Cop(A, [])}. But
the dependences are additives: |Cop(C, [])| ≤ 1 + |Cop(B, [])| and |Cop(B, [])| ≤ 1 + |Cop(A, [])|. Contrary
to the dependences in Figure 3.14a which are affine: |Cop(C, [])| ≤ 2 · |Cop(B, [])| and |Cop(B, [])| ≤
2 · |Cop(A, [])|.

Moreover, as we insisted on in Section 3.1.4, we are interested in the complexity of functions, not stand-
alone proof-nets. We can create a proof-net which has Figure 3.14a as a subproof-net and whose complexity
is polynomial (see Definition 36 for a formalization of complexity). In fact, as Figure 3.15 shows, such a
proof-net can even have a constant time complexity.

As noticed in Section 3.1.6, the exponential happens when the length of the chain of affine dependence
depends on the input. Here it means that the exponential blow up happens when the length of a chain of
spindles depends on the input, as in Figure 3.16. If we replace the sub proof-net H = EncN (3) (which
represents 3) by a proof-net EncN (n) representing n, the resulting proof-net (i.e. (G)EncN (n)) normalizes
in more than 2n steps of→cut.

That is the reason why, in the system L3a [28], Dorman and Mazza replaced the “one auxiliary door”
condition by a looser dependence control condition:

• Each edge is labelled with an integer, the label of an auxiliary edge must be greater or equal to the
label of the principal edge of the box.

• For a given box at most one auxiliary edge can have the same label as the principal edge.

Thus, if one tries to type the proof-net of Figure 3.14a in L3a, either σ0(A) or σ1(A) has a label strictly
greater than the label of σ(A). They are contracted so they must have the same label. So both auxiliary
edges have a label strictly greater than the label of σ(A). The label of σ(B) is equal to the label of those
auxiliary edges. Thus the label of σ(A) is inferior to the label of σ(B) which is inferior to the label of σ(C).
In general, the length of chains of spindles is bounded by the maximum label of the proof-net, which does
not depend on the input. The dependence control of L3a seems to give a greater expressive power than the
dependence control of LLL. In our view, the main limitation of L3a is that it uses the same labels to control
dependence and to enforce stratification. This entails useless constraints on the strata corresponding to the
auxiliary edges of boxes.

Our dependence control condition is closer to MS : in [64], Roversi and Vercelli proposed to generalize
the “one auxiliary door” condition by considering a framework of logics: MS . MS is defined as a set of
subsystems of ELL with indexes on ! and ? connectives. Roversi and Vercelli provide a characterization of
the MS systems which are sound for Poly. This criterion says that a MS system is sound for Poly if and
only if for every k ∈ N, one of the two following condition holds:

75

!P
B

?P?P

?C

⊗ax
ax

`
∀ ∃

!P
⊗

?D

⊗
∃
`

ax

ax

∃
` ⊗

cut

ax
∀
`

!P
B2

?P ?P ?P

?C
?C

⊗ ⊗ ⊗
ax ax ax ax

`

G

H

Figure 3.16: The complexity of G is not polynomial.

• If ?iA and ? jA can be contracted in ?kA, then k ≤ i, k ≤ j and at least one of those inequality is strict.
And for every box whose principal door is indexed by !kA, the indexes on the ?-s of the auxiliary doors
are smaller or equal to k.

• If ?iA and ? jA can be contracted in ?kA, then k ≤ i, k ≤ j. And for every box whose principal door is
indexed by !kA, the indexes on the ?-s of the auxiliary doors are smaller or equal to k with all but (at
most) one of those inequalities being strict.

Instead of a criterion on type-systems, we propose here a criterion on proof-nets. Ours is more general: every
proof-net of every Poly sound system of MS satisfies our dependence control condition. Our dependence
control condition is rather close to the MS dependence control condition. However our stratification and
nesting conditions are a lot more general than those of MS .

We try to have as few false negatives as possible for our criterion (proof-nets which are in Poly but do
not satisfy the criterion) so we will only forbid proof-nets where, along the cut elimination, two (or more)
residues of a box B join the same residue of B. Indeed, let us suppose that a chain of spindles appears during
cut-elimination and that the boxes of the sequence are residues of pairwise distinct boxes of the original
proof-net. Then, the length of the sequence is bounded by the number of boxes of the original proof-net.
Because it is reasonable to assume that the number of boxes does not depend on the argument, the length
of the sequences of spindle would be bounded by a number which does not depend on the argument. Our
condition is given in the following way: we define a relation B . . . B′ on boxes meaning that there exist
residues B1 and B2 of B and residues B′1 and B′2 of B′ such that σ(B1) and σ(B2) are cut with distinct
auxiliary edge of B′1 and B′2. Our dependence control condition is the acyclicity of

Let us observe that the relation . . . is defined by considering 7→-paths ending by a context on an (re-
versed) auxiliary edges of a box B′ while the relation −> −> −> (Definition 48 in page 59) was defined by
considering -paths passing through the (reversed) principal edge of a box B′.

Definition 80. We define a relation . . . on boxes by:

B . . . B′ ⇔ ∃P, P′1, P
′
2 ∈ Pot,∃t, u ∈ S ig,∃i , j,

{
((σ(B), P), [!t]) 7→+ ((σi(B′), P′1), [!e]) and
((σ(B), P), [!u]) 7→+ ((σ j(B′), P′2), [!e])

76

Definition 81. A proof-net G is said . . . -stratified if . . . is acyclic on BG.

For example, in Figure 3.14a, we have B . . . A because ((σ(B), []), [!l(e)]) 7→2 ((σ1(A), []), [!e]) and
((σ(B), []), [!r(e)]) 7→2 ((σ2(A), []), [!e]). The proof-net of Figure 3.16 is not . . . -stratified because we have
((σ(B), [l(r(e))]), [!l(e)]) 7→29 ((σ1(B), [r(e)]), [!e]) and ((σ(B), [l(r(e))]), [!r(e)]) 7→29 ((σ2(B), [r(e)]), [!e])
and those paths imply B . . . B.

Lemma 82. Let G be a −> −> −>-stratified proof-net, s ∈ N and (B, P) be a potential box with d = s . . . (B).

There are at most
∣∣∣∣Cans−1(~EG)

∣∣∣∣d sequences (ei)1≤i≤l of directed edges such that, there exists a potential
sequence (Pi)1≤i≤l, a trace sequence (Ti)1≤i<l and t ∈ S ig such that:

((σ(B), P), [!t]) 7→S s ((e1, P1),T1) 7→S s · · · 7→S s ((el−1, Pl−1),Tl−1) 7→S s ((el, Pl), [!e])

Proof. We prove it by induction on d. Let us suppose that ((σ(B), P), [!t]) 7→S s ((e1, P1),T1) 7→S s · · · 7→S s

((el−1, Pl−1),Tl−1) 7→S s ((el, Pl), [!e]). If there exists a context in the path of the shape ((σ(C),Q), [!]) with
s . . . (C) < s . . . (B), then we set k as the smallest index such that ((ek+1, Pk+1),Tk+1) is such a context. Else,
we set k = l.

First, let us notice that by induction hypothesis, there are at most |Cans−1(~EG)|d−1 possibilities for
ek+1, · · · , el. Then, let us determine the number of possibilities for e1, · · · , ek. There are at most |Cans−1(~EG)|
choices for (ek, Pk)s−1. Once (ek, Pk)s−1 is determined, we will prove by contradiction that it determines
e1, · · · , ek. Let us suppose that there exists two possible sequences: e1, · · · , ek and e′1, · · · , e′k′ , then we
consider the last different edges:

((σ(B), P), [!t]) 7→S s ((e1, P1),T1) 7→S s · · · ((ek− j, Pk− j),Tk− j) · · · 7→S s ((ek, Pk), [!tk]) ↪→ ((σ(C),Q), [!tk])

((σ(B), P), [!t′]) 7→S s ((e′1, P
′
1),T ′1) 7→S s · · · ((e′k′− j, P

′
k′− j),T

′
k′− j) · · · 7→S s ((e′k′ , P

′
k′), [!t′k′

]) ↪→ ((σ(C),Q′), [!t′k′
])

with (ek, Pk)s−1 = (e′k′ , P
′
k′)

s−1, ek− j , ek′− j and
[
e1+k− j; · · · ; ek

]
=

[
e′1+k′− j; · · · ; e′k′

]
. By Lemma 53, there

exist signatures u, u′ and sequences of traces (Ui)1≤i≤k and (U′i)1≤i≤k′ such that

((σ(B), P), [!u]) 7→S s C1 = ((e1, P1),U1) 7→S s · · ·Ck− j = ((ek− j, Pk− j),Uk− j) · · · 7→S s Ck = ((ek, Pk), [!e])

((σ(B), P), [!u′]) 7→S s C′1 = ((e′1, P
′
1),U′1) 7→S s · · ·C′k′− j = ((e′k′− j, P

′
k′− j),U

′
k′− j) · · · 7→S s C′k′((e

′
k′ , P

′
k′), [!e])

Let us prove by induction on i that for 0 ≤ i < j, Ck−i/s−1 = C′k′−i
/s−1. By supposition, we know that

(ek, Pk)s−1 = (ek′ , P′k′)
s−1 so Ck/s−1 = C′k′/s−1. If 0 < i < j then, by induction hypothesis, we have

Ck+1−i/s−1 = Ck′+1−i/s−1. If the Ck−i 7→ Ck+1−i step is a step, then it is a s−1 step so by Theorem 72,
Ck−i

s−1 = C′k′−i
s−1. If the Ck−i 7→ Ck+1−i step is a ↪→ step, because ek−i = e′k′−i, Ck−i

s−1 = C′k′−i
s−1.

So Ck+1− j
s−1 = C′k′+1− j

s−1. Let us examine the Ck− j 7→ Ck+1− j step. Every step of those paths is a
 S s−1 step so, by Theorem 72, the Ck− j 7→ Ck+1− j step can not be a step. So these steps are of the shape:

Ck− j = ((σi1(D), Pk− j), [!v]) ↪→ ((σ(D), Pk− j), [!v]) = Ck+1− j

C′k′− j = ((σi2(D), P′k′− j), [!v′]) ↪→ ((σ(D), P′k− j), [!v′]) = C′k′+1− j

with (Ck+1− j)s−1 = (C′k′+1− j)
s−1 and (Ck− j)s−1 , (C′k′− j)

s−1. So i1 , i2. By definition of . . . , it means that
B . . . D and s . . . (D) < s . . . (B). This contradicts the definition of k. So our hypothesis is false, [e1; · · · ; ek] =

[e′1; · · · ; e′k′].
Thus, there are at most |Cans−1(~EG)| possibilities for e1, · · · , ek and at most |Cans−1(~EG)|d−1 possibilities

for ek+1, · · · , el. In total, there are at most |Cans−1(~EG)|d possibilities for e1, · · · , el. �

77

!P
C

?P

?C ⊗
ax
ax

?N

!P
B

?P

?C ⊗
ax
ax

?N

e

cut f

!P
A

?P

?C ⊗
ax
ax

?N

c

cut g

Figure 3.17: This proof-net (if extended to n boxes) reduces in O(2n) reduction steps.

3.3.2 Nesting

In this section, we will present a nesting condition (a condition preventing exponential blow-ups by chains
of the type of Figure 3.17). First, we will analyse this blow-up from the point of view of context semantics.
Let (B, P) be a potential box of a stratified proof-net G and let t ∈ Cops(B, P). Then, there exists a path of
the shape:

((σ(B), P), [!t]) 7→S s ((e1, P1),T1) 7→S s · · · 7→S s ((ek−1, Pk−1),Tk−1) 7→S s ((ek, Pk), [!e])

In the previous subsection, we proved a bound on the number of possible sequences e1, · · · , ek. Let us
suppose that there is no context of the shape ((ei, Pi), [!ti]) with ei being the conclusion of a ?N node. Then,
there is no n(,) or p() in t, t is only formed by l(), r() and e. One can reconstruct t by observing the list
of contexts in the path, of the shape ((ei, Pi), [!ti]) with ei being a premise of a contraction node.

To understand why the ?N nodes break this property, we can consider an example in Figure 3.17. We
have (e, [n(l(e), e)])0 = (e, [n(r(e), e)])0 = (e, [e]) and

((σ(C), []), [!n(e,n(r(e),e))]) 7→∗S 1
((e, [n(r(e), e)]), [!e])

((σ(C), []), [!n(e,n(l(e),e))]) 7→∗S 1
((e, [n(l(e), e)]), [!e])

However n(e, n(l(e), e)) , n(e, n(r(e), e)). If we follow the paths backwards we see that the crucial step is
((f , []), [!n(e,n(r(e),e))]) 7→1 ((σ1(B), [], [!e; !n(r(e),e)]) where a difference on the second trace element (which
comes from a box B, with s −> −> −>(B) = 1) becomes a difference on the first trace element, which will correspond
to the copy. The paths corresponding to n(e, n(l(e), e)) and n(e, n(r(e), e)) may be the same, but their
simplifications are different and have different paths.

In fact, for every u ∈ Cop1(B, []), n(e, u), n(l(e), u) and n(r(e), u) are in Cop1(C, []). So |Cop1(C, [])|
depends affinely on |Cop1(B, []). Similarly, |Cop1(B, [])| depends affinely on |Cop1(A, [])|. We will define a
relation / / / on boxes capturing this dependence. For instance, we will have C

/ / /

B and B

/ / /

A. If we extend
this sequence to n boxes, the leftmost box (in the direction of Figure 3.17) has more than 3n−1 copies. As
we noticed in Section 3.3.1 for the relation . . . and Figure 3.15, if the length of / / / does not depend on
the argument, then those dependencies do not prevent the proof-net from normalizing in polynomial time.
Because we can reasonably suppose that the number of boxes does not depend on the argument we will only
require the relation / / / to be acyclic.

Definition 83. Let B and C be boxes of G, then

B

/ / /

C ⇔ ∃P,Q ∈ Pot,∃t ∈ Cop(B, P),∃v A t, ((σ(B), P), [!v]) 7→∗ ((σ(C),Q), [!e])

A proof-net G is said

/ / /

-stratified if

/ / /

-is acyclic on BG.

78

!P
B

?P

⊗?C
ax
ax

?N

`
∀ ∃

!P
⊗

?D

⊗
∃
`

ax

ax

∃
` ⊗

cut

ax
∀
`

!P
B2

?P ?P ?P

?C
?C

⊗ ⊗ ⊗
ax ax ax ax

`

G

H

Figure 3.18: The complexity of G is not polynomial.

For example, in Figure 3.17, we have B

/ / /

A because p(e) is a strict simplification of n(r(e), e) and
((σ(B), []), [!p(e)]) 7→3 ((σ(A), []), [!e]). Similarly, in Figure 3.18, we have ((σ(B), [l(l(e))]), [!p(e)]) 7→3

((σ(B), [l(r(e))]), [!e]) so B

/ / /

B and the proof-net of Figure 3.18 is not / / / -stratified.
To prove that / / / -stratification (together with −> −> −>-stratification and . . . -stratification) implies polyno-

mial time, we will need some technical lemmas to handle simplifications of copies.
In the following, we consider a −> −> −>-stratified, / / / -stratified, . . . -stratified proof-net G. Let s, n ∈ N, we

set Ts,n =
{
B ∈ BG

∣∣∣ (s −> −> −>(B), s / / / (B)) ≤lex (s, n)
}

with ≤lex referring to the usual strict lexicographic order:
(a, b) ≤lex (a′, b′) iff a < a′ or (a ≤ a′ and b ≤ b′).

Lemma 84. Let →⊆� be two relations on contexts included in 7→. Let (B, P) ∈ Can�(BG) and t, t′ ∈
Cop�(σ(B), P) such that there exist sequences of contexts (Ci)1≤i≤n and (C′i)1≤i≤n such that

• ((σ(B), P), [!t]) = C1 � C2 · · ·Cn = ((e,Q), [!e]), ((σ(B), P), [!t′]) = C′1 � C′2 · · ·C′n = ((e,Q′), [!e])
and for every 1 ≤ i ≤ n, Ci

→ = C′i
→,

• If u A t, ((σ(B), P), [!u]) �k ((σ j(C),Q), [!v]), the edges of those paths are the edges of C1, · · · ,Ck

and Ck = ((σ j(C),Q),V@[!v]) with V ∈ Tra then ((σ(C),Q), [!v])/→ = v.

• If u′ A t′, ((σ(B), P), [!u′])�k ((σ j(C),Q′), [!v′]), the edges of those paths are the edges of C′1, · · · ,C′k
and C′k = ((σ j(C),Q′),V ′@[!v′]) with V ′ ∈ Tra, then ((σ(C),Q′), [!v′])/→ = v′.

Then, we have t = t′.

Proof. We will prove, by induction on s@(u), that for every u ∈ S ig (u w t) ⇒ (u w t′). This entails the
result because, in particular, it gives us that t w t′ so t = t′ (because t is a copy, it is standard so we can not
have t A t′).

We consider u w t and we suppose that for every signature w A u, w A t′. Let us consider the maximal
signature w (for the order w) such that u @ w. By induction hypothesis, t′ @ w. Let us set u′ as the minimal
signature (for the order w) such that t′ v u′ @ w. We will show that u = u′ (thus we will have u w t′).
We can notice that the only differences between u and u′ are on their leftmost branches. For i ∈ N, we
define Di = ((di, Pi), [!ti]@Ti) and D′i = ((d′i , P

′
i),T

′
i) as the contexts such that ((σ(B), P), [!u]) �i Di and

((σ(B), P), [!u′])�i D′i .

79

By definition of Cop�(), there exists m ∈ N such that Dm is of the shape ((f ,R), [!e]) (we choose the
highest such m). Let us consider the lowest k ∈ N such that Bk is not of the shape ((di, Pi), [!]@Ti), this
step (if it exists) must cross a ?N node upwards. We also consider the lowest l ∈ N such that the edge of Cl

is different from the edge of Dl. If l exists then, by definition, k exists and k ≤ l.

• If such a l does not exist, because the edges of (Ci)1≤i≤m and (C′i)1≤i≤m are the same, the edges of
(Di)1≤i≤m and (D′i)1≤i≤m are the same. In particular, D′m is of the shape ((f ,R), [!v′]). This gives us that
u J u′, but we want u = u′. To prove u = u′, we need to prove that v′ = e.

Either n = m and in this case D′m = ((e,Q′), [!e]). Or Cm is of the shape ((f ,R),V.!e) with V ∈ Tra.
Because m is maximal, ((f ,R), [!e]) 67→ and Cm = ((f ,R),V.!e) 7→. So f is the conclusion of a ?D
node. Because, C′m � C′m+1 �

∗ C′n, we have v′ = e.

• Else, let us consider the paths Ck 7→∗ Cl and Dk 7→∗ Dl. By Lemma 8, Cl−1 and Dl−1 are of the
shape ((σ j(C),R),V.!v) and ((σ j(C),R), [!v]) (the steps preserve the invariant “Ci is of the shape
((di, Pi), [!]@Ti)”). Because Cl−1

→ = C′l−1
→ (by assumption of the lemma), C′l−1 is of the shape

((σ j(C),R′),V ′.!v′) and the edges of those paths are the same. Then, because u differs only from u′

on its leftmost branch, we can prove by induction on j that for 1 ≤ j ≤ l, Di and D′i are of the shape
((fi,Qi), [!vi]@Vi) and ((fi,Qi), [!v′i]@Vi). In particular, D′l is of the shape ((σ j(C),R), [!v′]). Because
Cl/→ = C′l /→, we have ((σ j(C),R), [!v])/→ = ((σ j(C),R), [!v′])/→. Thus, because of the assumptions
of the lemma, v = ((σ j(C),R), [!v])/→ = ((σ j(C),R), [!v′])/→ = v′. So u = u′.

�

Lemma 85. For s, n ∈ N − {0} and every (B, P) ∈ Can(BG),∣∣∣Cop 7→Ts,n
(B, P)

∣∣∣ ≤ ∣∣∣∣Cans−1(~EG)
∣∣∣∣∣∣∣ . . . ∣∣∣ · ∣∣∣∣~EG

∣∣∣∣ · (max
(C,Q)∈Pot(BG)

∣∣∣∣Cop 7→Ts,n−1
(C,Q)

∣∣∣∣)∂G

Proof. If s / / / (B, P) > n, then Cop7→Ts,n
(B, P) = {e} so the lemma stands. Else (if s / / / (B, P) ≤ n), let us

consider t, t′ ∈ CopTs,n(B, P). By definition, there exists paths of the shape:

((σ(B), P), [!t]) 7→Ts,n Ck = ((ek, Pk),Tk) 7→Ts,n · · · 7→Ts,n C1 = ((e1, P1),T1) 7→Ts,n ((e,Q), [!e])

((σ(B), P), [!t′]) 7→Ts,n C′k′ = ((e′k′ , P
′
k′),T

′
k′) 7→Ts,n · · · 7→Ts,n C′1 = ((e′1, P

′
1),T ′1) 7→Ts,n ((e′,Q′), [!e])

Let us suppose that [en; · · · ; e1] = [e′n′ ; · · · ; e′1]. By Lemma 82, there are at most
∣∣∣∣Cans−1(~EG)

∣∣∣∣∣∣∣ . . . ∣∣∣
possible

choices for [en; · · · ; e1].
If (e,Q) 7→Ts,n−1 = (e′,Q′) 7→Ts,n−1 , then by Theorem 72, for 1 ≤ i ≤ k, Ci

7→Ts,n−1 = C′i
7→Ts,n−1 . Let us

suppose that there exist u A t, such that ((σ(B), P), [!u]) 7→l
Ts,n

((σ j(C),R), [!v]), the edges of those paths

are the edges of Ck, · · · ,Ck−l and Ck−l = ((σ j(C),Q),V@[!v]) with V ∈ Tra then there exists t′′ J t and
u′′ w t′′ such that ((σ(B), P), [!u′′]) 7→Ts,n ((σ j(C),R), [!e]). By definition of / / / , B

/ / /

C so s / / / (C) ≤ n − 1
and ((σ(C),R), [!v])/ 7→Ts,n−1 = v. We can prove a similar result for the path C′k, · · · ,C′k−l. And thus, by
Lemma 84, t = t′.

So we proved that, if we choose [en; · · · ; e1] and (e,Q) 7→Ts,n−1 then t is uniquely determined. Thus,∣∣∣Cop 7→Ts,n
(B, P)

∣∣∣ ≤ ∣∣∣∣Cans−1(~EG)
∣∣∣∣∣∣∣ . . . ∣∣∣ · ∣∣∣∣Can7→Ts,n−1

(~EG)
∣∣∣∣∂G

∣∣∣Cop 7→Ts,n
(B, P)

∣∣∣ ≤ ∣∣∣∣Cans−1(~EG)
∣∣∣∣∣∣∣ . . . ∣∣∣ · ∣∣∣∣~EG

∣∣∣∣ · (max
(C,Q)∈Pot(BG)

∣∣∣∣Cop 7→Ts,n−1
(C,Q)

∣∣∣∣)∂G

�

80

Theorem 86. Let x =
∣∣∣∣~EG

∣∣∣∣, S = | −> −> −> |, D = | . . . |, N = | / / / |, and ∂ = ∂G, then:

max
(B,P)∈Pot(BG)

|Cop(B, P)| ≤ xDS ·∂N·S

Proof. For s, n ∈ N, we set u0,n = us,0 = 1 and us,n = uN
s−1,N · x · u∂s,n−1. Then, thanks to Lemma 85, we can

prove by induction on (s, n) that us,n ≤ max(B,P)∈Pot(BG) Cop 7→Ts,n
(B, P). Let us prove by induction on n that

for every s, n ∈ N, us,n ≤ (x · (us−1,N)D)∂
2·n

. For n = 0, we have us,n = 1 ≤ x · uD
s−1,N , and if n ≥ 0,

us,n+1 = uD
s−1,N · x · u∂s,n ≤

(
x · (us−1,N)D

)
·
((

x · (us−1,N)D
)∂2·n)∂

us,n+1 ≤
(
x · uD

s−1,N

)
· (x · uD

s−1,N)∂
1+2·n ≤

(
x · uD

s−1,N

)1+∂1+2·n
≤ (x · uD

s−1,N)∂
2+2·n

Then, let us set M = D · ∂N , we prove by induction on s that for every s ∈ N, us,N ≤ xM2·s
. For s = 0, we

have u0,N = 1 ≤ x. And if n ≥ 0,

us+1,N ≤ x∂
N · (us,N)M ≤ x∂

N ·
(
xM2·s)M

≤ x∂
N · xM1+2·s ≤ x∂

N+M1+2·s ≤ xM+M1+2·s

us+1,N ≤ xM2+2·s

Finally, let us notice that 7→TS ,N =7→, so Cop 7→TS ,N
(B, P) = Cop(B, P). �

Corollary 87. Let us consider a −> −> −>-stratified,

/ / /

-stratified, . . . -stratified proof-net G. Let x =
∣∣∣∣~EG

∣∣∣∣,
S = | −> −> −> |, D = | . . . |, N = | / / / |, and ∂ = ∂G, then:

WG ≤ x1+DS ·∂1+N·S

Proof. By Theorem 86, we have

WG =
∣∣∣∣Can(~EG)

∣∣∣∣ ≤ ∣∣∣∣~EG

∣∣∣∣ · max
(B,P)∈Pot(BG)

|Cop(B, P)| ≤ x ·
(
xDS ·∂N·S)∂

WG ≤ x1+DS ·∂1+N·S

�

The degree of the polynomial in the bound only depends on | −> −> −> |, | . . . |, | / / / |, and ∂G. Those four
parameters are bounded by the number of boxes. So a stratified proof-net controlling dependence normalizes
in a time bounded by a polynomial on the size of the proof-net, the polynomial depending only on the number
of boxes of the proof-net.

Theorem 88. Let us suppose that there exists a box-bounded7 subsystem8 S such that every proof-net of GS

is −> −> −>-stratified, . . . -stratified and

/ / /

-stratified, then S is sound for Poly.

7cf. Definition 37 in Section 3.1.4
8cf. Definition 35 in Section 3.1.4

81

Proof. Let us consider a proof-net G whose only conclusion’s label is of the shape A(B with A ∈ BS . By

definition of LL subsystems, there exist a, b ∈ N such that for every binary list l,
∣∣∣∣~EEncA(l)

∣∣∣∣ ≤ a · |l| + b. By
definition of box-boundedness, there exists nA ∈ N such that for every binary list l, there is at most nA boxes
in EncA(l). We define n as nA + |BG |. Let us set

P =

(
a · X + b +

∣∣∣∣~EG

∣∣∣∣ + 3
)1+n1+n+n2

P is a polynomial so P ∈ Poly. And, for every binary list l,
∣∣∣∣~EEncA(l)

∣∣∣∣ ≤ a · |l| + b so
∣∣∣∣~E(G)EncA(l)

∣∣∣∣ ≤ a · |l| + b +∣∣∣∣~EG

∣∣∣∣ + 3. We can also notice that
∣∣∣B(G)EncA(l)

∣∣∣ ≤ ∣∣∣BEncA(l)
∣∣∣ + |BG | ≤ nA + |BG | = n.

Moreover, (G)EncA(l) is −> −> −>-stratified, . . . -stratified and / / / -stratified so S = | −> −> −> |, D = | . . . |,
N = | / / / |, and ∂ = ∂G are lower than

∣∣∣B(G)EncA(l)
∣∣∣ so are lower than n. Thus, by Corollary 87,

W(G)EncA(l) ≤
∣∣∣∣~E(G)EncA(l)

∣∣∣∣1+DS ·∂1+N·S
≤

(
a · |l| + b +

∣∣∣∣~EG

∣∣∣∣ + 3
)1+nn·n1+n·n

W(G)EncA(l) ≤ P (|l|)

Thus, by definition, S is sound for Poly. �

We defined intuitively the notions of “stratification condition”, “dependence control condition” and
“nesting condition” by giving examples of the kind of proof-nets those conditions should forbid. A more
interesting way to view those conditions is to observe how they are used in the proofs leading to Theorem 87.

• Stratification allows us to trace back the paths. Thus, if C ∗ D, we need a bounded amount of
information on D to know all the edges of the path.

• Dependence control allows us to trace back the ↪→ steps. So, in presence of a stratification condition,
if C 7→∗ D, we need a bounded amount of information to know all the edges of the path.

• Nesting allows us to bound the strict simplifications of copies. If we know all the edges of the path
((σ(B), P), [!t]) 7→∗ D, we need a bounded amount of information on D to know t.

Let us notice that these criteria are rather independent from one another. With these principles in mind, one
can try to relax any of the three criteria. This is exactly what we do in Section 3.5: we try to push those
principles to their limits. Before this, we prove lemmas in Section 3.4 which are used throughout this thesis.

82

3.4 Definition and acyclicity of "

In the following we will prove two generalizations of Lemma 21. Those generalizations are used in the
Definition of ρG→H() (Lemma 38), in Section 3.5.2 and Chapter 4.

Formally, Lemma 21 (Section 2.3) states that for every normalizing proof-net G, there is no path of the
shape ((e, P), [!t]) 7→+ ((e, P), [!u]). So Lemma 21 proves that a path starting from the principal door of
(B, P) can not arrive at an auxiliary door of (B, P). With Lemma 91, we prove that such a path can not get
inside (B, P) by an auxiliary door. So, intuitively a path can not go from a door of (B, P) to the inside of
(B, P). The acyclicity of "(a relation defined in Definition 92) intuitively means that a path can not go
from the inside of (B, P) to a door of (B, P).

3.4.1 From (B, P) to the inside of (B, P)

Along a sequence G →∗cut H of reductions, a box B may have several residues: there might exist B′1 , B′2
such that πG→H((σ(B′1), P′1),T ′1) = ((σ(B), P1),T1) and πG→H((σ(B′2), P′2),T ′2) = ((σ(B), P2),T2). However,
(B, P, t) has only one residue and, if the reductions does not involve the principal door of B, (B, P) has only
one residue. This intuition is formalized by Lemma 89.

Lemma 89. Let us consider a reduction G →cut H and let us suppose that πG→H((σ(B′1), P′1),T ′1.!t′1) =

((σ(B1), P1),T1.!t1) and πG→H((σ(B′2), P′2),T ′2.!t′2) = ((σ(B2), P2),T2.!t2).

• If (B1, P1, t1) = (B2, P2, t2) then (B′1, P
′
1, t
′
1) = (B′2, P

′
2, t
′
2).

• If (B1, P1) = (B2, P2) and the reduction does not involve σ(B1), then (B′1, P
′
1) = (B′2, P

′
2).

Proof. By observation of the definition of πG→H(), (Definition 12, page 26). To better understand the
premises of the lemma, let us suppose that (B1, P1) = (B2, P2) = (B, P) and let us consider a !P/?N step
involving σ(B). Either t1 is of the shape n(t′1, t

′′
1) and B′1 is the inner residue of B, or t1 is of the shape p(t′1)

and B′1 is the outer residue of B. This is why, to deduce that (B′1, P
′
1) = (B′2, P

′
2) (or even, to deduce that

B′1 = B′2) we need to know that the top-connectives of t1 and t2 are the same. The case of a !P/?C step
involving σ(B) is similar.

However, if the reduction step does not involve σ(B), one does not need any information on t1 and t2 to
deduce that (B′1, P

′
1) = (B′2, P

′
2). For instance, let us suppose that the reduction step is a !P/?C step involving

σ(C) and B is immediately included in C.

• If P = Q. l(u), then (B′1, P
′
1) = (B′2, P

′
2) = (Bl,Q.u) with Bl the residue of B in the left residue of C.

• If P = Q. r(u), then (B′1, P
′
1) = (B′2, P

′
2) = (Br,Q.u) with Br the residue of B in the right residue of C.

• The other cases are impossible because we supposed that ((σ(B), P),T1.!t1) and ((σ(B), P),T2.!t2) are
in the image of πG→H().

�

Lemmas 90 and 91 are based on the preceding observation (and Lemma 89). Intuitively, it is enough to
consider the cases where the only cut node is the head of the box B considered. Figures 3.19a and 3.19b
give an insight on the reason why the paths considered in Lemmas 90 and 91 are impossible.

Lemma 90. There is no path of the shape ((σ(B), P), [!t]) 7→∗ ((σi(B), P),T) with (B, P) ∈ Can(B).

83

!P?P· · ·

?C

cut
(a) Intuition behind Lemma 90: ((σ(B), []), [!e]) ∗

((σ1(B), []), [!e]) but this is not a valid proof-net.

!P
B

?C

ax · · ·
⊗

?D

cut
(b) Intuition behind Lemma 91: ((σ(B), []), [!l(e)]) ∗

((σ(B), []), .?r(e)) and l(e) , r(e).

Figure 3.19: Intuitions underlying the results of Section 3.4.1.

Proof. We prove it by contradiction. Let us suppose that there exists a path of the shape ((σ(B), P), [!t]) 7→∗
((σi(B), P),T). We will prove that it leads to a contradiction.

We first prove it in the case where every cut node is either the head of σ(B) or a !P/?W cut. In this
case, let us suppose that ((σ(B), P), [!t]) 7→∗ ((σi(B), P),T). Let us consider the last step of the path of the
shape ((e,Q),U) 7→ ((f ,Q),U) with e, f premises of a cut node. Because ((σ(B), P), [!t]) 7→∗ ((e,Q),U), e
is not the conclusion of a ?W node. Because ((f ,Q),U) 7→∗ ((σi(B), P),T), f is not the conclusion of a ?W
node. And because the path ((f ,Q),U) 7→∗ ((σi(B), P),T) does not cross any cut node, f , σ(B) (else all
the edges of this path would be inside B) so e = σ(B). This violates Theorem 1 of [37]: indeed there exists
a switching containing all the edges of the path ((e,Q),U) 7→∗ ((σi(B),R),T) so there is a cyclic switching.
Our hypothesis is false, there is no path of the shape ((σ(B), P), [!t]) 7→∗ ((σi(B), P),T).

Else, we can reduce any cut node except the !P/?W cuts and the ones whose premise is σ(B). Let us
write G →cut H this reduction step. There exist (B′, P′) ∈ Can(BH) such that πG→H((σ(B′), P′), [!t]) =

((σ(B), P), [!t]) and πG→H((σi(B′), P′),T) = ((σi(B), P),T) (Lemma 89). By Lemma 13, we deduce that
((σ(B′), P′), [!t]) 7→∗ ((σi(B′), P′),T). We can keep on reducing until we obtain a proof-net whose cut
nodes are either the head of σ(B′) or !P/?W cuts. This is a contradiction. �

Lemma 91. If ((σ(B), P), [!t]) 7→∗ ((σ(B), P),U.?u), then u 6v t.

Proof. We prove the lemma by contradiction. Let suppose that ((σ(B), P), [!t]) 7→∗ ((σ(B), P),U.?u) with
u v t. We can reduce every cut in the path except the !P/?W cuts. Let us write G →cut H this reduction
step. Observing the definition of πG→H(), one can verify that we are in one of the following cases:

• Either there exists a potential box (B′, P′) and t′, u′ ∈ S ig such that u′ v t′, πG→H((σ(B′), P′), [!t′]) =

((σ(B), P), [!t]) and πG→H((σ(B′), P′),U.?u′) = ((σ(B), P),U.?u). In this case, by Lemma 13, we have
((σ(B′), P′), [!t′]) 7→∗ ((σ(B′), P′),U.?u′).

• Or u = n(u1, u2), t = p(t2) with u2 v t2, and the step from G to H is the reduction of the box
B with a ?N node. In this case there exist boxes Bi and Be (we use the same notations as in Fig-
ure 2.5) of H such that πG→H((σ(Be), P), [!t2]) = ((σ(B), P), [!t]) and πG→H((σ(Bi), P.u2),U.?u1) =

((σ(B), P),U.?n(u1,u2)). By Lemma 13, we have ((σ(Be), P), [!t2]) 7→∗ ((σ(Bi), P.u2),U.?u1). Because
there is only one choice for the last 7→ step, ((σ(Be), P), [!t2]) 7→∗ ((σ(Be), P),U.?u1 .?u2).

We can keep on reducing until we obtain a proof-net whose cut nodes are !P/?W cuts. In this case,
we know that the path crosses a cut node because σ(B) is downward and σ(B) is upwards but in this case,
we have: ((σ(B), P), [!t]) 7→+ ((e,Q),V) 7→ ((f ,Q),V) 7→+ ((σ(B), P),U.?u) with either e or f being the
conclusion of a ?W node, which is impossible. �

84

!P ?P

?P !P· · ·

?C
?N

cut

B

C

(a) Intuition behind the irreflexiveness of ".

!P ?P !P

!P ?P !P

cut

B1 B2

B′1 B′2

(b) Some intution behind Lemma 98.

Figure 3.20: Proof-nets providing the intuitions underlying Section 3.4.2.

3.4.2 From the inside of (B, P) to (B, P)

We use the notation BoxS igG for the set
{
(B, P, t)

∣∣∣ (B, P) ∈ Pot(BG), t ∈ S ig, and t is quasi-standard
}
. Simi-

larly we define CanCopG as the set {(B, P, t) | (B, P) ∈ Can(BG), u ∈ Cop(B, P) and t v u}.
In the following we will need to prove the acyclicity of a relation ". Intuitively, (B, P, t) "(C,Q, u)

means that G reduces to a proof-net G′ where the residue of (B, P, t) is inside the residue of (C,Q, u). Let us
recall that we can write “the residue” instead of “a residue” because of Lemma 89.

First, we define a relation ⊆ on BoxS igG, based on v. (B, P, t) ⊆ (C,Q, u) means that the residues of
(B, P, t) are inside the residues of (C,Q, u). Then, we define a relation x.. on BoxS igG, (B, P, t) x.. (C,Q, u)
means that G reduces to a proof-net G′ where the residues of (B, P, t) and (C,Q, u) have fused (they were the
two boxes of a !P/?P step).

Definition 92. Let (B, P, t), (C,Q, u) ∈ BoxS igG, we write (B, P, t) ⊆ (C,Q, u) if either ((B, P) = (C,Q)
and t v u) or (B ⊂ C and there exists v v u such that P = Q.v@). As in the signature case, we write
(B, P, t) ⊂ (C,Q, u) if (B, P, t) ⊆ (C,Q, u) and (B, P, t) , (C,Q, u).

Let (B, P, t), (C,Q, u) ∈ BoxS igG, we write (B, P, t) x.. (C,Q, u) if ((σ(B), P), [!t]) 7→∗ ((σ(C),Q), [!u]).
We write

"

as a shortcut for ⊆ x.. : let (B, P, t) , (C,Q, u) ∈ BoxS igG, we write (B, P, t) "(C,Q, u) if
there exists (D,R, v) ∈ BoxS igG such that (B, P, t) ⊆ (D,R, v) and (D,R, v) x.. (C,Q, u).

Similarly, we write (B, P, t) #(C,Q, u) if there exists (D,R, v) ∈ BoxS igG such that (B, P, t) ⊆ (D,R, v)
and (C,Q, u) x.. (D,R, v).

It is rather easy to prove that "is irreflexive. Let us suppose that (B, P, t) ⊆ (C,Q, v) x.. (B, P, u). Ei-
ther (B, P) = (C,Q) and t v v, which contradicts Lemma 21. Or B ⊂ C and there exists v′ v v such that
P = Q.v′@ . Let us consider the path ((σ(C),Q), [!v]) 7→∗ ((σ(B), P), [!u]), this path enters (C,Q, v′).
So either ((σ(C),Q), [!v]) 7→+ ((σi(C),Q),V.!v′) (which contradicts Lemma 90, as in Figure 3.20a) or
((σ(C),Q), [!v]) 7→+ ((σ(C),Q),V.?v′) (which contradicts Lemma 91).

The problem is to prove that there is no cycle of length ≥ 2. An idea would be to prove that "

is transitive: let us suppose that (B, P, t) "(B′, P′, t′) "(B′′, P′′, t′′), then by definition of "we have
(B, P, t) ⊆ (D,Q, u) x.. (B′, P′, t′) ⊆ (D′,Q′, u′) x.. (B′′, P′′, t′′). To prove that (B, P, t) "(B′′, P′′, t′′), we
need to prove that x.. and ⊆ commute. Then we would have (B, P, t) ⊆⊆ x.. x.. (B′′, P′′, t′′) so (B, P, t) ⊆

x.. (B′′, P′′, t′′) because ⊆ and x.. are transitive, as proven by the following lemma.

Lemma 93. v and x.. are orders on BoxS igG

Proof. Let (B, P, t) ∈ BoxS igG, we can notice that t v t so (B, P, t) v (B, P, t). We can also notice
((σ(B), P), [!t]) 7→0 ((σ(B), P), [!t]) so (B, P, t) x.. (B, P, t).

85

If (B, P, t) v (C,Q, u) and (C,Q, u) v (B, P, t). Then B ⊆ C and C ⊆ B so B = C. Thus P = Q, t v u and
u v t. Because v is an order, t = u.

If (B, P, t) x.. (C,Q, u) and (C,Q, u) x.. (B, P, t) then there exists k, l ∈ N such that ((σ(B), P), [!t]) 7→k

((σ(C),Q), [!u]) and ((σ(C),Q), [!u]) 7→l ((σ(B), P), [!t]). So ((σ(B), P), [!t]) 7→k+l ((σ(B), P), [!t]). By
Lemma 21, k + l = 0. So (B, P, t) = (C,Q, u).

Let us suppose that (B, P, t) v (C,Q, u) v (D,R, v). If we are in the case (B, P) = (C,Q) and t v u then:
if (C,Q) = (D,R) and u v v then (B, P) = (D,R) and t v v so (B, P, t) v (D,R, v). And if C ⊂ D and
Q = R.v′@ with v′ v v then B ⊂ D and P = Q = R.v′@ with v′ v v so (B, P, t) v (D,R, v). If we are
in the case B ⊂ C and P = Q.u′@ with u′ v u then: if (C,Q) = (D,R) and u v v then B ⊂ C = D and
P = Q.u′@ with u′ v v so (B, P, t) v (D,R, v). And if C ⊂ D and Q = R.v′@ with v′ v v then B ⊂ D and
P = R.v′@ .u′@ so (B, P, t) v (D,R, v).

Let us suppose that (B, P, t) x.. (C,Q, u) x.. (D,R, v), then we have ((σ(B), P), [!t]) 7→∗ ((σ(C),Q), [!u]) 7→∗
((σ(D),R), [!v]) so ((σ(B), P), [!t]) 7→∗ ((σ(D),R), [!v]) and (B, P, t) x.. (D,R, v). �

So we want to prove that x.. and ⊆ commute. More precisely, in the case where (D,Q, u) x.. (B′, P′, t′) ⊆
(D′,Q′, u′), we would like to prove that (D,Q, u) ⊆ x.. (D′,Q′, u′). The idea is to consider the path
((σ(D),Q), [!u]) 7→ ((ek, Pk),Tk) · · · ((e1, P1),T1) 7→ ((σ(B′), P′), [!t′]), and to prove by induction on i
that for every 1 ≤ i ≤ k, there exists a context ((fi,Qi),Ui) such that ((ei, Pi),Ti) ⊆ ((fi,Qi),Ui) and
((fi,Qi),Ui) 7→∗ ((σ(D′),Q′), [!u′]). With ⊆ the following relation defined on contexts, corresponding to the
relation ⊆ on BoxS igG.

Definition 94. Let C and C′ be contexts, we write C ⊆ C′ iff we are in one of the following situations:

1. C = ((e, P.t@Q),T) and C′ = ((σ(B), P), [!t′]) with e ∈ B and t v t′

2. C = ((e, P),T@[!t]@U) and C′ = ((e, P), [!t′]@U) with t v t′

3. C = ((e, P),T@[?t]@U) and C′ = ((e, P), [!t′]@U⊥) with t v t′

4. There exists a ?D node n, a potential Q and a trace T such that C 7→+ ((concln,Q),T.?e) and C′ =

((concln,Q), [!e]).

5. There exists a ?D node n, a potential Q and a trace T such that C(7→∗)(←[+)((concln,Q),T.!e), C′ =

((concln,Q), [!e]) and the contexts of the 7→∗ path are distinct from the contexts of the←[+ path.

We define the relation

"

on contexts as a shortcut for ⊂ (7→ ∪ ←[)∗.

The two first situations of Definition 94 correspond to the ⊆ relation on BoxS igG, as shown by the
following lemma.

Lemma 95. For every (B, P, t) and (B′, P′, t′) in BoxS igG, (B, P, t) ⊆ (B′, P′, t′) if and only if ((σ(B), P), [!t]) ⊆
((σ(B′), P′), [!t′]).

Proof. Let us suppose that (B, P, t) ⊆ (B′, P′, t′). By definition of ⊆ on BoxS igG,

• Either (B, P) = (B′, P′) and t v t′. In this case, ((σ(B), P), [!t]) ⊆ ((σ(B′), P′), [!t′]) by situation 2 of
Definition 94.

• Or B ⊂ B′ and there exists u′ v t′ such that P = P′.u′@ . Then, ((σ(B), P), [!t]) ⊆ ((σ(B′), P′), [!t′])
by situation 1 of Definition 94.

86

Let us suppose that ((σ(B), P), [!t]) ⊆ ((σ(B′), P′), [!t′]). Then,

• If we are in situation 1 of Definition 94, then σ(B) ∈ B′ and P = P′.u′@ with u′ v t′. Then, by
definition of ⊆ on BoxS igG, (B, P, t) ⊆ (B′, P′, t′).

• If we are in situation 2 of Definition 94, so (B, P) = (B′, P′) and t v t′. Then, by definition of ⊆ on
BoxS igG, (B, P, t) ⊆ (B′, P′, t′).

• Situation 3 is impossible because there is no ? trace element in the trace of ((σ(B), P), [!t]).

• Situations 4 and 5 are impossible because σ(B′) can not be the conclusion of a ?D node.

�

The situations 3, 4 and 5 of Definition 94 are necessary to prove the commutation between the relations
⊆ and (7→ ∪ ← [) (Lemma 98). Let us notice that it is weaker than what we announced previously: if
C 7→∗ C′ and C′ ⊆ D′, then there might not exist a context D such that C ⊆ D 7→∗ D′. For example, let
us consider the proof-net of Figure 3.20b: we have C = ((σ(B1), [e]), [!e]) 7→∗ ((σ(B2), [e]), [!e]) = C′ and
C′ ⊆ ((σ(B′2), []), [!e]) = D′. The natural choice for D would be ((σ(B′1), []), [!e]). However, we do not have
D 7→∗ D′, only D← [2 D′.

We will often use the relation (7→ ∪ ←[)∗. Let us notice that this relation is not equal to 7→∗ ∪ ←[∗. Indeed,
if B is a box with at least 2 auxiliary doors, then ((σ1(B), P), [!t]) 7→ ((σ(B), P), [!t]) ←[((σ2(B), P), [!t])
but we have neither ((σ1(B), P), [!t]) 7→∗ ((σ2(B), P), [!t]) nor ((σ2(B), P), [!t]) 7→∗ ((σ1(B), P), [!t]). The
following Lemma gives a characerization of (7→ ∪ ←[)∗.

Lemma 96. If C(7→ ∪ ←[)∗C′, there exists a context D such that C 7→∗ D and C′ 7→∗ D.

Proof. We prove it by induction on the length of the (7→ ∪ ← [)∗ between C and C′. If C = C′ then we can
set D = C. Else, there exists a context C′′ such that C(7→ ∪ ← [)∗C′′(7→ ∪ ← [)C′. By induction hypothesis,
there exists a context D′′ such that C 7→∗ D′′ and C′′ 7→∗ D′′. If C′′ ← [C′ then we can set D = D′′ (we can
verify that C 7→∗ D and C′ 7→+ D). If C′′ 7→ C′ and C′′ 7→+ D′′ then we can set D = D′′ (because 7→ is
deterministic, we can verify that C 7→∗ D and C′′ 7→∗ D). Finally, if C′′ 7→ C′ and C′′ = D′′, then we set
D = C′ (we can verify that C 7→+ D and C′ 7→0 D). �

Lemma 97. Let C,D,D′ ∈ ContG. If C(7→ ∪ ←[)D ⊆ D′, then there exists C′ such that C ⊆ C′(7→ ∪ ←[)∗D′.

Proof. First let us study some of the easy cases.

• Let us suppose that C = ((c, P.t@Q),T) 7→ ((d, P.t@Q),T) = D (crossing a cut node) and D′ =

((σ(B), P), [!t′]) with d ∈ B and t v t′. We can notice that c ∈ B so we set C′ = D′ (we can notice that
C′ 7→0 D′).

• Let us suppose that C = ((c, P),T@[!t]@U) ←[((d, P),T@[!t]@U.`l) = D (crossing a ⊗ node
upwards) and D′ = ((d, P), [!t′]@U.`l) with t v t′. Then we set C′ = ((c, P), [!t′]@U) (we can notice
that C′ ←[D′).

• Let us suppose that C = ((c, P),T@[?t]@U) 7→ ((d, P),T@[?t]@U.∀) = D (crossing a ∀ node
downwards) and D′ = ((d, P), [!t′]@U⊥.∃) with t v t′. Then we set C′ = ((c, P), [!t′]@U⊥) (we can
notice that C′ ←[D′).

87

• Let us suppose that C = ((c, P),T) 7→ ((d, P),T) = D (crossing an ax node) and there exists a
?D node n such that D′ = ((concln,Q), [!e]) and D 7→+ ((concln,Q),U.?e). Then, we have D 7→+

((concln,Q),U.?e). So we set C′ = D′.

• Let us suppose that C = ((c, P),T) 7→ ((d, P),T) = D (crossing an ax node) and there exists a ?D
node n such that D′ = ((concln,Q), [!e]) and D(7→∗)(←[+)((concln,Q),U.?e). In this case, we have
C(7→+)(←[+)((concln,Q),U.?e). So we set C′ = D′.

Now we will study the interesting cases. For the most part, they are the cases where the “situation” we
will use to prove that C ⊆ C′, is not the same as the one proving that D ⊆ D′ (cf Definition 94).

• If D ⊆ D′ is in the situation 1 of Definition 94.

– If C = ((σ(B), P),T.!t) ←[((d, P.t),T) = D and D′ = ((σ(B), P), [!t′]) with t v t′, then we set
C′ = D′. One can verify that C ⊆ C′ (situation 2).

– If C = ((σ(B), P),T.?t) 7→ ((d, P.t),T) = D and D′ = ((σ(B), P), [!t′]) with t v t′, then we set
C′ = D′. One can verify that C ⊆ C′ (situation 3).

– If C = ((σi(B), P),T.?t) ←[((d, P.t),T) = D and D′ = ((σ(B), P), [!t′]) with t v t′, then we set
C′ = ((σi(B), P), [!t′]). One can verify that C ⊆ C′ (situation 3) and C′ 7→ D′.

– If C = ((σi(B), P),T.!t) 7→ ((d, P.t),T) = D and D′ = ((σ(B), P), [!t′]) with t v t′, then we set
C′ = ((σi(B), P), [!t]). One can verify that D ⊆ D′ (situation 2) and C′ 7→ D′.

• If D ⊆ D′ is in the situation 2 of Definition 94.

– If C = ((c, P),T@[!u; !v]) ← [((d, P),T@[!n(u,v)]) = D (crossing a ?N node upwards) and
D′ = ((d, P), [!p(v′)]) with v v v′, then we set C′ = ((c, P), [!v′]). One can verify that C ⊆ C′

(situation 2) and C′ ← [D′.
– If C = ((c, P),T@[!n(u,v)]) 7→ ((d, P),T@[!u; !v]) = D (crossing a ?N node upwards) and

D′ = ((d, P), [!v′]) with v v v′, then we set C′ = ((c, P), [!p(v′)]). One can verify that C ⊆ C′

(situation 2) and C′ 7→ D′.

– If C = ((c, P),T@[!n(u,v)]) 7→ ((d, P),T@[!u; !v]) = D (crossing a ?N node upwards) and D′ =

((d, P), [!u′ ; !v]) with u v u′, then we set C′ = ((c, P), [!n(u′,v)]). One can verify that C ⊆ C′

(situation 2) and C′ 7→ D′.

– If C = ((c, P.t),T) ←[((σi(B), P),T@[!t]) = D (crossing an auxiliary door upwards) and D′ =

((σi(B), P), [!t′]) with t v t′, then we set C′ = ((σ(B), P), [!t′]). One can verify that C ⊆ C′

(situation 1) and D′ 7→ C′.

– If C = ((c, P),U) ←[((concln, P),U.!e) = D (crossing a ?D node upwards) and let us suppose
that D′ = ((concln, P), [!e]), then we set C′ = D′. We can verify that C(7→0)←[((concln, P),U.!e)
so C ⊆ C′ (situation 5).

• If D ⊆ D′ is in the situation 3 of Definition 94.

– If C = ((c, P),T@[?n(u,v)]) ←[((d, P),T@[?u; ?v]) = D (crossing a ?N node downwards) and
D′ = ((d, P), [!v′]) with v v v′, then we set C′ = ((c, P), [!p(v′)]). One can verify that C ⊆ C′

(situation 3) and C′ 7→ D′.

88

– If C = ((c, P),T@[?u; ?v]) 7→ ((d, P),T@[?n(u,v)]) = D (crossing a ?N node downwards) and
D′ = ((d, P), [!p(v′)]) with v v v′, then we set C′ = ((c, P), [!v′]). One can verify that C ⊆ C′

(situation 3) and C′ ← [D′.
– If C = ((c, P.t),T) ←[((σ(B), P),T@[?t]) = D (crossing a principal door upwards) and D′ =

((σ(B), P), [!t′]) with t v t′, then we set C′ = D′. One can verify that C ⊆ C′ (situation 1).

– If C = ((c, P.t),T) 7→ ((σi(B), P),T@[?t]) = D (crossing an auxiliary door downwards) and
D′ = ((σi(B), P), [!t′]) with t v t′, then we set C′ = ((σ(B), P), [!t′]). One can verify that C ⊆ C′

(situation 1) and C′ ← [D′.
– If C = ((c, P),U) 7→ ((concln, P),U.?e) = D, crossing a ?D node downwards, and D′ =

((concln, P), [!e]), then we set C′ = D′. One can verify that C 7→ ((concln, P),U.?e) so C ⊆ C′

(situation 4).

• Let us suppose that D ⊆ D′ is in the situation 4 of Definition 94. There exists a ?D node n, a potential
Q and a trace T such that D 7→+ ((concln,Q),T.?e) and D′ = ((concln,Q), [!e]). If C 7→ D, then
C 7→+ ((concln,Q),T.?e) so we can set C′ = D′ and we have C ⊆ C′ (situation 4). If C ←[D, then
C 7→∗ ((concln,Q),T.?e).

– Either C 7→+ ((concln,Q),T.?e) then C ⊆ D′ (situation 4) so we can set C′ = D′.

– Or C = ((concln,Q),T.?e) so C ⊆ D′ (situation 3) so we can set C′ = D′.

• Let us suppose that D ⊆ D′ is in the situation 5 of Definition 94. There exists a ?D node n, a potential
Q and a trace T such that D(7→∗)(←[+)((concln,Q),T.!e), D′ = ((concln,Q), [!e]) and the contexts of
the 7→∗ path are distinct from the contexts of the←[+ path.

– Let us first suppose that C 7→ D and D 7→0 (←[+)((concln,Q),T.!e), then there exists a context E
such that D←[E ← [∗ ((concln,Q),T.!e).

∗ Either C , E and in this case C 7→ (←[+)((concln,Q),T.!e) and the contexts of the 7→∗
path are distinct from the contexts of the ← [+ path so C ⊆ D′ (situation 5) and we can set
C′ = D′.
∗ Or C = E and C(←[∗)((concln,Q),T.!e). In this case, either C(←[+)((concln,Q),T.!e) and

C ⊆ D′ (situation 5) or C = ((concln,Q),T.!e) and C ⊆ D′ (situation 2). In both cases, we
can set C′ = D′.

– In the other cases, we stay in situation 5.

�

Corollary 98. Let C,D,D′ ∈ ContG. If C(7→ ∪ ←[)∗D ⊆ D′, there exists C′ such that C ⊆ C′(7→ ∪ ←[)∗D′.

Proof. Simple induction on the length of the (7→ ∪ ←[)∗ path, using Lemma 97. �

Lemma 97 is the main technical lemma of this section. We will use it to prove that the relation "

is acyclic on contexts of any proof-net G. We will consider a "cycle and will prove that it leads to a
contradiction. If G is in normal form, then the 7→ paths of the situations 4 and 5 of Definition 94 can not
cross a cut node. Thus, it is easier to find a contradiction when G is in normal form. In the general case,
we will reduce the proof-net as much as possible while preserving the "cycle, thanks to the following
lemma.

89

Lemma 99. If G →cut H, then C ⊆ D iff πG→H(C) ⊆ πG→H(D).

Proof. Simple observations of the πG→H() mapping, using Lemma 13.
For instance, let us suppose that the cut-elimination step from G to H is a !P/?C step duplicating the

box B. We consider an edge c ∈ B. We write cl and Bl the left residues of c and B. We then consider the
contexts C = ((cl, P.t@Q),T) and D = ((σ(Bl), P), [!t′]) of H with t v t′ (by situation 1 of Definition 94,
we have C ⊆ D). Let us notice that πG→H(C) = ((c, P. l(t)@Q),T) and πG→H(D) = ((σ(B), P), [!l(t′)]). By
definition of v, because t ⊆ t′, we have l(t) v l(t′) so πG→H(C) ⊆ πG→H(D) (situation 1). �

Lemma 100. There is no

"

sequence of the shape ((e, P), [!t])

"+((e, P), [!u]).

Proof. We prove the lemma by contradiction. Let us suppose that ((e, P), [!t])

"∗((e, P), [!u]). Then, by
Corollary 98, there exists a path of the shape ((e, P), [!t]) ⊆ C1 ⊆ · · · ⊆ Ck(7→ ∪ ←[)∗((e, P), [!u]). By
Lemma 99, we can suppose that every cut node of the proof-net has a premise which is either e, the conclu-
sion of a ?W node, or the edge of a context Ci (with 1 ≤ i ≤ k).

We can build the proof-net in such a way that in the step creating the edge of Ci, the edge of Ci−1 is
already created. If the edges of every Ci was e, then it would violate Lemma 21. Else, we are in one of the
following cases:

• If there is some Ci of the shape ((σ(B),Q), [!v]), then e is included in strictly more boxes than Ck:
Ck = ((ek, Pk), [!tk]) and P = Pk.uk@ with uk v tk. This would contradict Lemma 90.

• Or for every 1 ≤ i ≤ k, Ci is of the shape ((conclni ,Qi), [!e]) (with ni a ?D node). For 1 ≤ i < k,
because Ci 67→, there exists Vi ∈ Tra such that, ((conclni ,Qi), [!e])(7→0) ←[+ ((conclni+1 ,Qi+1),Vi.!e).
One can verify, that this violates the correctness criterion of proof-nets [37] (it is similar to the proof
of Lemma 90).

�

Lemma 101. There is no sequence of the shape (B, P, t) "+(B, P, u) or (B, P, t) #+(B, P, u).

Proof. Let us suppose that (B, P, t) "∗(B, P, u). By definition of "on BoxS igG, there exists a sequence
of elements of BoxS igG of the shape: ((σ(B), P), [!t]) = ((σ(B0), P0), [!t0]) ⊆ ((σ(C0),Q0), [!u0]) 7→∗
((σ(B1), P1), [!t1]) · · · 7→∗ ((σ(Bk), Pk), [!tk]) ⊆ ((σ(Ck),Qk), [!uk]) = ((σ(B), P), [!u]).

Either, for every 0 ≤ i ≤ k (Bi, Pi, ti) = (Ci,Qi, ui), in this case ((σ(B), P), [!t]) 7→+ ((σ(B), P), [!u])
which contradicts Lemma 90. Or there exists 0 ≤ i ≤ k such that ((σ(Bi), Pi), [!ti]) ⊂ ((σ(Ci),Qi), [!ui]), and
in this case we can notice that there exists ui ∈ S ig such that ((σ(Bi), Pi), [!ti])

"+((σ(Bi), Pi), [!ui]) which
contradicts Lemma 100.

Similarly, if (B, P, t) #∗(B, P, u) either ((σ(B), P), [!u]) 7→+ ((σ(B), P), [!t]) (which contradicts Lemma 90)
or there exists (Bi, Pi, ti) ∈ BoxS igG and ui ∈ S ig such that ((σ(Bi), Pi), [!ti])

"+((σ(Bi), Pi), [!ui]) (which
contradicts Lemma 100). �

90

?C

?D

⊗
ax?C

c
h

b

?D

⊗
?C

?W ?W
axf g

e

d

!P

cut
a

`

ax

B ax

(a) This proof-net is not ˙ −> −> −>-stratified.

!P ?P !P
cut

ax
B B′

(b) Proof-nets can be made R1-stratified.

Figure 3.21: Motivating examples for the definition of ̈−>.

3.5 More expressive polynomial time characterization

In Section 3.3, we defined three relations −> −> −>, . . . and / / / such that the acyclicity of −> −> −> is a stratification
condition, the acyclicity of . . . is a dependence control and the acyclicity of / / / is a nesting condition. If
every proof-net of a subsystem satisfies the three conditions, then this subsystem is sound for Poly.

In order to define more expressive subsystems sound for Poly, we want to define smaller relations
whose acyclicity still are stratification/dependence control/nesting conditions. We improve the stratification
condition (which becomes entangled with dependence control) in Section 3.5.1. The nesting condition is
improved in Section 3.5.2. Those results are used to define the subsystem S wLL of Linear Logic, but they
are not used in Chapter 4 and Section 5.1.1.

3.5.1 Improved stratification condition

3.5.1.1 Motivating examples

To understand why −> −> −> is too large and produces too much false negatives, we will observe several ex-
amples where ((σ(B), P), [!t]) ∗ ((σ(C),Q), [!t1]@U.?u) so (B, P) ˙ −> −> −>(C,Q) but this pair does not seem
necessary because the copies of (B, P) do not depend on the copies of (C,Q).

Whenever the -path leaves (C,Q, u) Let us observe the proof-net of Figure 3.21a. The proof-net
is not −> −> −>-stratified because ((σ(B), []), [!r(e)]) ∗ ((σ(B), []), [!e;⊗r; ?l(e)]) so (B, []) ˙ −> −> −>(B, []) and
B −> −> −> B. However, one can still prove a result similar to Lemma 74. Lemma 74 states that, when-
ever ((σ(B), P), [!t]) 7→S n Ck · · · 7→S n C0 and C0

n−1 = C′0
n−1, then there exists (C′i)0≤i≤k such that C′k 7→S n

· · · 7→S n C′0 and, for 0 ≤ i ≤ k, Ci
n−1 = C′i

n−1. This lemma is essential to prove the elementary and polyno-
mial bounds because it allows us to bound the number of sequences of edges ek, · · · , e0 such that there is a
path of the shape ((σ(B), P), [!t]) 7→S n ((ek,),) · · · 7→S n ((e0,), [!]).

On the proof-net of Figure 3.21a, we associate to every t ∈ Cop(B, []), a potential edge (et,Qt) such that
((σ(B), []), [!t]) 7→∗ ((et,Qt), [!e]). We define (ee,Qe) = (σ(B), []), (el(e),Ql(e)) = (b, []), (er(e),Qr(e)) =

(c, []), (er(l(e)),Qr(l(e))) = (d, []), (er(r(e)),Qr(r(e))) = (e, []), (er(r(l(e))),Qr(r(l(e)))) = (f , []), and finally
(er(r(r(e))),Qr(r(r(e)))) = (g, []). We can prove by induction on i that, if Ci i ((et,Qt), [!e]) and C′i

i

91

((e′,Q′), [!e]) with (et,Qt)∅ = (e′,Q′)∅ then9 Ci
∅ = C′i

∅. Most of the steps can be proved using Theorem 72.
The only interesting step is whenever Ci−1 is of the shape ((σ(B), []),T.?u). For instance:

((σ(B), []), [!r(l(e))]) 6 C11 = ((a, []), [!l(e);⊗r; ?l(e)]) C10 = ((σ(B), []), [!l(e);⊗r; ?l(e)])

 6 C4 = ((a, []), [!l(e);`l; !l(e)]) 4 ((er(l(e)),Qr(l(e))), [!e]) = ((d, []), [!e])

C′11 = ((a, []), [!v;⊗r; ?u]) C′10 = ((σ(B), []), [!v;⊗r; ?u])

 6 C′4 = ((a, []), [!y;`l; !x]) 4 ((d, []), [!e]) = ((d, []), [!e])

To prove that C11
∅ = C′11

∅, we need to prove that ((a, []), [!l(e)])/∅ = ((a, []), [!u])/∅. We can observe that,
by the shape of the paths u must be equal to x. Moreover, we know that C4

∅ = C′4
∅ so ((a, []), [!l(e)])/∅ =

((a, []), [!x])/∅ = ((a, []), [!u])/∅. Thus C11
∅ = C′11

∅.
Observing the example of Figure 3.21a, a first try to generalize ˙ −> −> −> would be the relation R1 on

potential boxes defined by (B, P)R1(C,Q) if and only if there exists t ∈ S ig, T ∈ Tra and e ∈ C such that
((σ(B), P), [!t]) ∗ ((σ(C),Q),T) ∗ ((et,Qt), [!e]) with Qt = Q@R, and all the edges in the second part
of the path are in C.

The proof-net of Figure 3.21a would indeed be R1-stratified. However, the acyclicity of R1 does not
entail an elementary bound (it does not satisfy the elementary stratification property). Indeed (as one can
observe in Figure 3.21b) one can transform any proof-net G in a R1-stratified proof-net G′ which reduces to
G. The transformation is to add, for every box B of G, another box B′ containing only an axiom and linked
to B by its auxiliary door. We can observe that:

• There is no potential box C and potential P such that (B, P)R1(C,Q).

• There is no potential box C and potential P′ such that (C,Q)R1(B′, P′): no path stays in (B′, P′)
because every path leaves (B′, P′) by its auxiliary door.

So G′ is R1-stratified. The problem is that, if the -path beginning by ((σ(C),Q), [!t]) enters many dif-
ferent copies of (B, P), then the number of copies of (C,Q) depends on the number of copies of (B, P)
which depends itself on the number of copies of (B′, P). So |Cop(C,Q)| depends on |Cop(B′, P)| even if
¬ ((C,Q)R1(B′, P)).

Observing these examples, it seems that whenever there exists a path of the shape ((σ(B), P), [!t]) ∗

((σ(C),Q),U.?u) ∗ ((et,Qt), [!e]), then we should have (B, P)R(C,Q). Unless the path has left the box
(C,Q) by its principal door. The following definition precises what we mean by “leaving a potential box by
its principal door” and Theorem 104, which is a strong version of Theorem 72, proves that the intuition we
gave is correct.

Definition 102. A path of the shape ((σ(B), P),T.?t) 7→k C, is said to leave (B, P, t) if there exist j < k,
e1, · · · , e j ∈ ~EG and T ′ ∈ Tra such that

((σ(B), P),T.?t) 7→ ((e1,),) · · · 7→ ((e j,),) = ((σ(B), P),T ′.!t)

∀U.?u ∈ Tra, ((σ(B),Q),U.?u) 7→ ((e1,),) · · · 7→ ((e j,),) = ((σ(B),R),V)⇒ (R = Q ∧ V = .!u)

Otherwise the path is said to stay in (B, P, t).
A path C 7→∗ D is said to definitely enter (B, P, t) ∈ BoxS igG if there exist T.?t ∈ Tra such that

C 7→∗ ((σ(B), P),T.?t) 7→+ D and ((σ(B), P),T.?t) 7→∗ D stays in (B, P, t).
9Let us notice that, for any potential box (e, P), (e, P)∅ = (e, [e; · · · ; e]). Thus (et,Qt)∅ = (e′,Q′)∅ means et = e′

92

!P

?C

?D?D

⊗

ax
ax

?P

a

?C
cut

⊗
?D ?D

ax
!P ?P

ax

C

B

Figure 3.22: (B, []) ˙ −> −> −>(C, []) but this pair is unnecessary.

In the following, we suppose defined a mapping from BoxS igG to contexts such that: for every (B, P, t) ∈
BoxS igG, CB,P,t is of the shape ((,), [!]) and ((σ(B), P), [!t]) ∗ CB,P,t.

Definition 103. We define a relation R1 on BG by: BR1D if there exists a path ((σ(B), P), [!t]) ∗ CB,P,t

which enters (D,Q, v) definitely.

Theorem 104. Let us consider a subset S of BG and a path of the shape Ck · · · C1 C0 such that, if
Ck ∗ C0 definitely enters (B, P, t) then B ∈ S . For every context C′0 such that C0

7→S = (C′0) 7→S , there exists
a path of the shape C′k · · · C′0 and for 0 ≤ i ≤ k, Ci

7→S = C′i
7→S .

Proof. We define C′i by induction on i. C′0 is already defined by assumption. Let us consider 1 ≤ i ≤ k and
let us suppose that we defined C′i−1, · · · ,C′0 such that for 0 ≤ j < i, C j

7→S = C′j
7→S . We know that Ci Ci−1.

If Ci S Ci−1 then, by Lemma 72, there exists a context C′i such that C′i C′i−1 and Ci
7→S = C′i

7→S .
Else, Ci−1 is of the shape ((σ(B), P),T.?t) with B < S . Because the path Ck ∗ C1 does not enter

(B, P, t) definitely, the path Ci−1 ∗ C0 leaves (B, P, t). So there exists 0 < j < i − 1, T ′ ∈ Tra and a
sequence of edges e j · · · ei−2 such that Ci−1 Ci−2 = ((ei−2,),) · · ·C j = ((σ(B), P),T ′.!t) and for every
trace U.?u, the existence of a path of the shape ((σ(B),Q),U.?u) ((ei−2,),) · · · ((σ(B),R),V) implies
that R = Q and V is of the shape .!u.

Let us notice that Ci−1
7→S = C′i−1

7→S so C′i−1 is of the shape ((σ(B),Q),U.?u) with ((σ(B), P), [!t]) 7→S =

((σ(B),Q), [!u]) 7→S (we write ((σ(B),R), [!e]) for ((σ(B), P), [!t]) 7→S). Let us notice that for every j ≤ j′ <
i− 1, C j′

7→S = C′j′
7→S so the edge of C′j′ is the same as the edge of C j′ (which is e j′). Thus, C′j is of the shape

((σ(B),Q),U′.!u). Because j − 1 ≥ 0, C j−1
7→S = C′j−1

7→S . We will assume that C j 7→ ((e, P),T ′.!t), crossing
a cut node (the other cases are similar). Thus, we have C′j−1 = ((e,Q),U′.!u). Because C j−1

7→S = C′j−1
7→S ,

we have ((e,R), [!t])/ 7→S = ((e,R), [!u])/ 7→S . Let us notice that Ci and C′i must be of the shape ((e, P),T.?t)
and ((e,Q),U.?u). So Ci

7→S = C′i
7→S . �

Then, if R1 is acyclic on a proof-net G, one may deduce an elementary bound on WG, the elementary
function depending only on |R1|. The proof is done from Theorem 104 exactly as the proof of Theorem 78
from Theorem 72. However the acyclicity of R1 is not general enough: there are many proof-nets which can
easily be proved to normalize in elementary time, but for which R1 is cyclic.

When t has not been used Let us consider the proof-net of Figure 3.22. Let us observe the -path
((σ(B), []), [!l(e)]) 3 ((σ(C), []), [!l(e); ?l(e)]) 2 ((a, [l(e)]), [!e]), we have (B, []) ˙ −> −> −>(C, []). How-
ever, one can still prove a result similar to Theorem 104, if we did not have this pair. Let us suppose
that ((σ(B), []), [!t′]) 3 ((σ(C), []), [!t′1 ; ?u′]) ((a, [u′]), [!e]) then, even if (C, []) has three copies (e, l(e)
and r(e)), the only possibility for u′ is l(e).

Definition 105. A context C is said used if there exists a path ((σ(B), P), [!t]) 7→∗ ((e,Q), [!t1]@T) with
t , t1 and C∅ = ((e,Q), [!t1]@T)∅.

93

Definition 106. We define a relation R2 by BR2D if there exists a path of the shape ((σ(B), P), [!t]) ∗

((σ(D),Q), [!t1]@U.?u) ∗ CB,P,t, ((σ(D),Q), [!t1]@U.?u) is used and the path ((σ(D),Q), [!t1]@U.?u) ∗

CB,P,t stays in (D,Q, u).

Theorem 107. Let G be a normalizing proof-net and S a subset of BG. Let us suppose that C0
7→S = C′0

7→S ,
there exist paths of the shape

((σ(B), P), [!t]) = Cl 7→l−k ((σ(B′),Q), [!u]) = Ck k C0

((σ(B), P), [!t′]) = C′l′ 7→l′−k′ ((σ(B′′),Q′), [!u′]) = C′k′
k′ C′0

And for every used context ((σ(D),R),V.?v) in the path from Ck to C0 we are in one of the following
situations: D is in S , ((σ(D),R),V.?v) is not used, or the path ((σ(D),R),V.?v) C0 leaves (D,R, v).

Then either (k = k′ and for every 0 ≤ i ≤ k, Ci
7→S = C′i

7→S) or (C0 and C′0 are not used).

Proof. For 1 ≤ i ≤ l, we set ((ei, Pi), [!ti]@Ti) = Ci. For 1 ≤ i ≤ l′, we set ((e′i , P
′
i), [!t′i]) = C′i . Let us

consider the smallest 0 ≤ j ≤ min(k, k′) such that C j
7→S , C′j

7→S .
If such a j does not exist, then Cmin(k,k′)

7→S = C′min(k,k′)
7→S . So Cmin(k,k′) and C′min(k,k′) are both of the

shape ((σ(),), [!]). Because contexts of this shape have no antecedent by , k = k′.
Else, let us notice that j > 0 so C j+1

7→S = C′j+1
7→S . By Theorem 104, the steps C j C j+1 and

C′j C′j+1 are of the shape:

((e j, P j), [!t j]@T j) ((σ(D),R),V.?v) = ((e j+1, P j+1), [!t j+1]@T j+1)

((e′j, P
′
j), [!t′j]@T ′j) ((σ(D),R′),V ′.?v′) = ((e j+1, P′j+1), [!t′j+1

]@T ′j+1)

with D a box which is not in S and such that C j+1 ∗ C0 stays in (D,R, v).
So, by assumption on the path from Ck to C0, the context ((σ(D),R),V.?v) is not used. We can notice

that ((σ(D),R),V.?v)
∅

= ((σ(D),R′),V ′.?v′)
∅

. Thus, ((σ(D),R′),V ′.?v′) is not used either. For 1 ≤ i ≤ l − j
and 1 ≤ i′ ≤ l′ − j, the contexts Cl−i and C′l′−i′ are not used. We can prove by a straightforward induction on
i that, for 1 ≤ i ≤ max(l, l′) − j, we have ((el−i, Pl−i),Tl−i) = ((e′l′−i, P

′
l′−i),T

′
l′−i), ti = u = t and t′i = u′ = t′

(indeed, crossing a ?C or ?N node upwards with a trace of the shape [!] would “use” the context).

• Let us suppose that l < l′. We will prove by contradiction that C0 and C′0 are not used. Let us suppose
that one of them is used. Let us consider the highest index j′ such that either C j′ or C′j′ is used.
Because C j and C′j are not used, we have j′ < j. We can notice that C j′

7→S = C′j′
7→S so they are both

used. Let us consider C j′ = Cl−(l− j′) so, as we proved above, the only difference between C j′ and
C′l′−(l− j′) is the signature on their leftmost trace element. So, by definition of used contexts, C′l′−(l− j′)
is used. Because l < l′, l′ − l + j′ > j′ which contradicts our hypothesis of maximality of j′.

• If we suppose that l > l′, we can prove similarly that C0 and C′0 are not used.

We can now suppose that l = l′. In this case, Ck′ = Cl−(l′−k′), so Ck′ is of the shape ((σ(B′′),Q′), [!]).
Such a context has no antecedent for so k ≤ k′. We prove similarly that k′ ≤ k so k = k′. And for every
0 ≤ i ≤ k, Ci = Cl−(l′−i) so Ci

7→S = C′i
7→S . �

Thanks to this Lemma, we could prove that the acyclicity of R2 entails an elementary bound. And the
acyclicity of R2, . . . and / / / entail a polynomial bound. However, we have other improvements to define.
Soft Linear Logic (S LL [47]) is defined as the set of proof-nets without ?N nodes, and where the premises

94

Ack3 ∃
⊗

cut

?D ⊗
ax

cut
!P

`

ax

ax
EncN(n)

B

G

Figure 3.23: The weight of (G)EncN (n) is linear in n.

of ?C nodes are either conclusions of ?C nodes or conclusions of ?D nodes. For instance, we can notice that
the proof-net of Figure 3.22 is a proof-net of S LL. In our understanding, the stratification of S LL comes
from Theorem 107: if ((σ(B), P), [!t]) ∗ ((σ(C),Q), [!t1]@U.?u) then this path has not crossed any ?C
node or ?N node, so t = t1. Thus, in S LL proof-nets, −> −> −> and R1 may be cyclic, but R2 is always equal the
empty relation ∅ (which is obviously acyclic).

Whenever theR2 cycle does not depend on the argument Let us name Ack3 the proof-net of Figure 3.12.
We have Ack3 = (Ack)EncN (3) with Ack a proof-net representing the ackermann function ack (we recall
that, for n ∈ N, EncN (n) is defined in Section 3.1.4 with EncN (3) presented in Figure 3.4). The proof-
net Ack3 strongly normalizes to EncN (ack(3)). So WAck3 is finite. Let us notice that, in the proof-net
(G)EncN (n) of Figure 3.23, there are exactly 2(ack(3)) − 1 copies of (B, []), and the only copy of the box
inside EncN (n) is e. Thus,

W(G)EncN (N) ≤ WAck3 + 3 · (2 · ack(3) − 1) + (4n + 18) · 1 ≤ (8 · ack(3)) · n + (36 · ack(3))

So we have a bound on W(G)EncN (n) which is linear in n, even though (G)EncN (N) is not R2-stratified. In
terms of context semantics, R2 is cyclic on (G)EncN (N). But, for every box B in a R2 cycle and (B, P) in
Pot(BG), the number of copies of (B, P) is bounded by a number which does not depend on n.

We could define for every k ∈ N, an elementary function ek and prove that, for every proof-net G
and subset S of BG such that R2 is acyclic on BG − S , WG is bounded by e|(R2)/BG−S | (|EG | ,M) with M =

max(B,P)∈Pot(S) |Cop(B, P)|. Thus, if a proof-net G satisfies “for every box B in a R2 cycle and (B, P) in
Pot(BG), the number of copies of (B, P) is bounded by a number which does not depend on the argument”
then G normalizes in elementary time.

Whenever the R2 dependence is additive We will make a final improvement. Let us consider the proof-
net of Figure 3.24. Its sub-proof-net G normalizes in elementary time. To guide intuition, G is an encoding
of t = λm.((m)(λn.((n)S uccλ)1))2 with S uccλ = λn.λ f .λx.((n) f)(f)x (the λ-term S uccλ corresponds to the
proof-net S ucc defined in Figure 3.4c). One can observe that λn.((n)S uccλ)1 is equivalent to λn.(S uccλ)n,
so t is equivalent to λm.(S uccλ)(S uccλ)m. However, the proof-net does not satisfy the above criterion for
elementary time. Indeed, if the proof-net G is applied to EncN (k) with k ≥ 2, then |Cop(B, r(e))| = k + 2
and BR2B. For instance, we have:

((σ(B), [l(r(e))]), [!l(r(e))]) ∗ ((σ(B), [l(l(e))]), [!r(e);⊗l;⊗r; ?l(e)]) 4 ((σ2(C), [l(l(e)); l(e)]), [!e])

95

`
`⊗

?C
ax

?P?P !P

⊗ ⊗
`

ax ax ax

C

!P
B

?D

⊗

⊗
ax`

!P?P

ax
F

`

!P
A

?D
⊗

⊗
ax`

!P
E

?P ?P

`
⊗ ⊗

ax ax ax

?C

` ⊗
cut

`
ax

!P
D

?P ?P ?P

?C ?C

⊗ ⊗ ⊗
ax ax ax ax

`

G

Figure 3.24: R2 is acyclic on this proof-net but it normalizes in linear time

The reason why (in the general case) the cycles of R2 can entail a non-elementary complexity is because,
if (B, P)R2(C,Q), the number of copies of (B, P) may depend non-additively on the number of copies of
(C,Q). However, in the case of Figure 3.24, the dependence of Cop(B, [l(r(e))]) on Cop(B, [l(l(e))]) is
additive: for every copy u of (B, [l(l(e))]), there is only one maximal copy t of (B, [l(r(e))]) such that there
is a path of the shape

((σ(B), [l(r(e)))], [!t]) ∗ ((σ(B), [l(l(e))]), [!e;⊗l;⊗r?u]) 4 ((σ2(C), [l(l(e)); u]), [!e]) = CB,[l(r(e))],t

Intuitively in this section we split the dependencies of R2 between the additive dependencies (a relation
�) and the non-additive ones (a stratum s(B) assigned to each box B). To be more precise: if the path
starting from ((σ(B), P), [!t]) definitely enters (D,Q, u) we will have either s(B) > s(D) (which intuitively
corresponds to B −> −> −> D) or (B, P, t)� (D,Q, u).

Let us recall that we defined (in Definition 92, page 85) the relation x.. on BoxS igG by (B, P, t) x.. (D,Q, u)
if and only if there exists a path of the shape ((σ(B), P), [!t]) ∗↪→ ((σ(D),Q), [!u]). By Lemma 53,
if (B, P, t) x.. +(D,Q, u), then for every u′ ∈ Cop(D,Q) there exists (at least one) t′ ∈ Cop(B, P) such that
((σ(B), P), [!t′]) 7→+ ((σ(D),Q), [!u′]). So, whenever (B, P, t) x.. (D,Q, u), Cop(B, P) depends on Cop(D,Q).
We can have B x+B (with xdefined by B xD iff ∃P,Q ∈ Pot,∃t, u ∈ S ig, (B, P, t) x.. (D,Q, u)) in a
proof-net G satisfying the conditions of Section 3.3: if this dependence is additive such a cycle does not lead
to a non-polynomial complexity.

However, if there exist distinct paths (B, P, t) = (B1, P1, t1) x.. (B2, P2, t2) · · · (Bk, Pk, tk) = (D,Q, u) and
(B, P, t′) = (B′1, P

′
1, t
′
1) x.. (B′2, P

′
2, t
′
2) · · · (B′k′ , P′k′ , t′k′) = (D,Q′, u′) then we have B . . . D (and Cop(B, P)

may depend non-additively on Cop(D,Q)). Similarly, if (B, P) x.. (D,Q) and (B, P, t) � (D,Q, u), then
Cop(B, P) may depend non-additively on Cop(D,Q). For each box B, we will define an index d(B) such
that d(B) > d(D) whenever the copies of B depend non-additively on the copies of D (intuitively, it corre-
sponds to B . . . D).

96

3.5.1.2 Definition of weak stratifications

Definition 108. A weak stratification is a tuple (S ,�, s(), d()) with S a subset of BG, � an acyclic
relation on BoxS igG, and s() and d() mappings from BG to N, satisfying the following conditions.

For every B ∈ S , we have s(B) = 0. And for every B ∈ BG − S , we have s(B) ≥ 1. For s ∈ N, we define
S s as the set {B ∈ BG | s(B) ≤ s} (in particular S 0 = S).

For every B ∈ BG − S and (B, P, t) ∈ CanCopG, there exists a context CB,P,t = ((e,Q), [!u]) such that

• ((σ(B), P), [!t]) 7→∗ CB,P,t. For every ((σ(D),R), [!v]) in the path we have d(B) = d(D) and s(B) ≥ s(D).
If e is not an auxiliary edge then u = e and there is no path of the shape CB,P,t + ((σ(),),). If
� (B, P, t), then the path ((σ(B), P), [!t]) 7→∗ CB,P,t is a -path.

• Let us suppose that ((σ(B), P), [!t]) 7→∗ ((σ(D),R),V.?v) 7→∗ CB,P,t and the second part of the path
does not leave (D,R, v) then we are in one of the following situations:

– s(B) > s(D)

– s(B) = s(D), (B, P, t) � (D,R, v) and the first part of the path is a -path (it is to say that
((σ(B), P), [!t]) ∗ ((σ(D),R),V.?v)).

– ((σ(D),R),V.?v) is not used and 6� (B, P, t).

• Let (B, P, t), (B′, P′, t′) ∈ CanCopG. If (B, P, t)� (D,R, v), (B′, P′, t′)� (D,R′, v′) then there exist
paths of the shape (notice that the edges are the same in the second part of the path):

((σ(B), P), [!t]) ∗ ((σ(D),R),V.?v) ((e1,),) · · · ((ek,),) = CB,P,t

((σ(B′), P′), [!t′]) ∗ ((σ(D),R′),V ′.?v′) ((e1,),) · · · ((ek,),) = CB′,P′,t′

and the paths do not enter boxes. Moreover, if ek is an auxiliary edge of a box C, we have d(B) > d(C)
and s(B) ≤ s(C).

Let us consider a box B ∈ BG. Either d(B) = 0 and ((σ(B), P), [!t]) 7→∗ ((e,Q), [!u]) implies that every
box containing C is in S . Or d(B) ≥ 1 and we have the following conditions:

• If (B, P, t) x.. (C,Q, u) or (B, P, t)� (C,Q, u) then d(B) ≥ d(C).

• For s ∈ N, if ((σ(B), P), [!t]) 7→∗S s
((σi(C),Q), [!u]) and ((σ(B), P), [!t′]) 7→∗S s

((σi′(C),Q′), [!u′]) with
(C,Q) 7→S s = (C,Q′) 7→S s then either i = i′ or d(B) > d(C).

• Let us suppose that (B, P, t) x.. ∗(C,Q, u), (B, P, t′) x.. ∗(D,R, v) �+ (C,Q′, u′) and s = s(D) then we
have (C,Q) 7→S s−1 , (C,Q′) 7→S s−1 .

The following lemma shows that the notion of weak stratification is, indeed, a generalization of −> −> −>-
stratification and . . . -stratification.

Lemma 109. If −> −> −> and . . . are acyclic, we can define a weak stratification on G by S = ∅, �= ∅,
s(B) = s −> −> −>(B) and d(B) = s . . . (B).

Proof. Because S = ∅, every box is in BG − S . By definition of s (), s −> −> −>(B) ≥ 1. And, because −> −> −> is
supposed acyclic on the finite set BG, s −> −> −>(B) ∈ N.

For every (B, P, t) ∈ CanCopG, we set CB,P,t as the last context of the path ((σ(B), P), [!t]) ∗ 6 of
the shape ((e,Q), [!u]). Let us suppose that e is not an auxiliary door then, there is no path of the shape

97

CB,P,t 7→+ ((,), [!]) (otherwise it would contradict the definition of CB,P,t). In particular u = e (because,
by supposition, t ∈ Cop(B, P)) and there is no path of the shape CB,P,t 7→+ ((σ (),), [!]).

Let us suppose that ((σ(B), P), [!t]) 7→∗ ((σ(D),R),V.?v) 7→∗ CB,P,t. Then this path is a path so
B −> −> −> D and s(B) > s(D).

For every box B we have d(B) = s . . . (B) which is inN (because . . . is supposed to be acyclic) and ≥ 1 (by
definition of s ()). If (B, P, t) x.. (C,Q, u) then s . . . (B) ≥ s . . . (C). If ((σ(B), P), [!t]) 7→∗S s

((σi(C),Q), [!u])
and ((σ(B), P), [!t′]) 7→∗S s

((σi′(C),Q′), [!u′]) then we have B . . . C so d(B) = s . . . (B) > s . . . (C) = d(C).
Let us consider (B, P, t) x.. ∗(C,Q, u), (B, P, t′) x.. ∗(D,R, v)�+ (C,Q′, u′) with (C,Q) 7→S s = (C,Q′) 7→S s .

Because we supposed that �= ∅, we have ((σ(B), P), [!t]) = ((σ(C),Q), [!u]) and ((σ(B), P), [!t′]) 7→∗S s
((σ(C),Q′), [!u′]). Thus, ((σ(C),Q), [!u]) 7→+

S s
((σ(C),Q′), [!u′]). It contradicts Lemma 75. �

Defining a weak stratification in the motivating examples We can verify that every proof-nets used as
motivating examples of this section have a weak stratification. For the proof-net of Figure 3.21a, we can set
S = ∅, s(B) = 1, d(B) = 1 and�= ∅. The contexts CB,[], are defined as we wrote in the introduction. For
every t of the shape r() the path ((σ(B), []), [!t]) ∗ CB,[],t enters the box (B, [],) but leaves the box by its
principal door before reaching CB,[],t.

For the proof-net of Figure 3.22, we set S = ∅, s(B) = s(C) = 1, d(B) = d(C) = 1 and�= ∅. We can
set CB,[],t (resp. CC,[],t) as the last context of the path beginning by ((σ(B), []), [!t]) (resp. ((σ(C), []), [!t]))
this context is on the conclusion of a ?C node if t = e, of a ?D node in the other cases. The only interesting
cases to consider are the paths of the shape ((σ(B), []), [!t]) 3 ((σ(C), []), [!t; ?l(e)]) ∗ CB,[],t. These
paths enter (C, [], l(e)) definitely, but ((σ(C), []), [!t; ?l(e)]) is not used so we need neither s(B) > s(D) nor
(B, [], t)� (C, [], l(e)).

For the proof-net of Figure 3.23, we set S = BG. So for every B ∈ BG, we set s(B) = 0 and d(B) = 0. If
we name C the box in EncN (n), we set s(B) = 1 and d(B) = 1. Finally we set�= ∅.

Definining a weak stratification in Figure 3.24 The most interesting proof-net is the proof-net of Fig-
ure 3.24, because it is the only one which needs to use �. We set S = ∅, s(A) = s(D) = s(E) = 1,
s(B) = s(C) = s(F) = 2. We set d(C) = d(D) = d(E) = d(F) = 1, d(B) = d(A) = 2.

The only copy of (D, []) is e and we can set BD,[],e = ((σ(D), []), [!e]). The maximal copies of (A, []) are
l(l(e)), l(r(e)) and r(e). We can set BA,[],t as the last context of the -paths beginning by ((σ(A), []), [!t]):
BA,[],l(l(e)) = ((σ1(D), []), [!e]), BA,[],l(r(e)) = ((σ2(D), []), [!e]) and BA,[],r(e) = ((σ3(D), []), [!e]). Then, let us
notice that the only copy of (E, []) is e. We could set BE,[],e as the last context ((dA, [l(l(e))]), [!e]) (with dA

the conclusion of the ?D node in A) of the -path beginning by ((σ(E), []), [!e]). Let us notice that the path
from ((σ(E), []), [!e]) to ((σ(A), []), [!e;`r;⊗l; ?l(l(e))]) does not cross any ?C or ?N node. But this context
is nonetheless used because we have ((σ(B), [l(l(e))]), [!l(e)]) 7→45 ((σ(A), []), [!e;`r;⊗l; ?l(l(e))]), so if we
set BE,[],e = ((dA, [l(l(e))]), [!e]) we would need to set s(E) ≥ 2. This is why we make the other choice:
BE,[],e = ((σ(E), []), [!e]).

Things get more complicated for the box B. To keep the description of the weak stratification relatively
short we only deal with maximal canonical potentials and copies. We can observe that the maximal copies
of (B, [l(l(e))]) are l(e) and r(e) because of the following paths:

((σ(B), [l(l(e))]), [!l(t)]) 23 ((σ1(E), []), [!t])

((σ(B), [l(l(e))]), [!r(t)]) 23 ((σ2(E), []), [!t])

We set CB,[l(l(e))],l(e) = ((σ1(E), []), [!e]), CB,[l(l(e))],r(e) = ((σ2(E), []), [!e]). Those paths do not enter any
box by its principal door.

98

To find the copies of (B, [l(r(e))]), let us first observe the following path:

((σ(B), [l(r(e))]), [!t]) 50 ((σ(E), []), [!t;⊗l;⊗r; ?e]) 29 ((σ(B), [l(l(e))]), [!t;⊗l;⊗r; ?r(e)])

If t = r(e), then the path chooses the right premise of the ?C node in B and the path ends on the second
auxiliary edge of C. We set CB,[l(r(e))],r(e) = ((σ2(C), [l(l(e)); r(e)]), [!e]). We can observe that this path
enters definitely the boxes (E, [], e), (A, [], l(l(e))) and (B, [l(l(e))], r(e)) without crossing ?C or ?N nodes
but the corresponding contexts are nonetheless used. We have s(B) = 2 > 1 = s(E) = s(A) so those are not
problematic. On the contrary, s(B) = s(B) so we have to set (B, [l(r(e))], r(e)) � (B, [l(l(e))], r(e)). In
the path described above, if we have t = r() the path finishes in 4 steps, but if t = l() the paths
leaves (B, [l(l(e))], r(e)) by its principal door. Let us observe the following path:

((σ(B), [l(r(e))]), [l(t)]) 79((σ(B), [l(l(e))]), [!l(t);⊗l;⊗r; ?r(e)]) 61((σ(B), [l(l(e))]), [!t;⊗l;⊗r; ?l(e)])

If t = r(e) then the path chooses the right premise of the ?C node in B and the path ends on the second
auxiliary edge of C. Thus, similarly to the case (B, [l(r(e))], r(e)), we define CB,[l(r(e))],l(r(e)) as the context
((σ2(C), [l(l(e)); l(e)]), [!e]) and we set (B, [l(r(e))], l(r(e)))� (B, [l(l(e))], l(e)).

Finally, to find the last maximal copy of (B, [l(r(e))]), let us observe the following path:

((σ(B), [l(r(e))]), [l(l(t))]) 79 ((σ(B), [l(l(e))]), [!l(l(t));⊗l;⊗r; ?r(e)])

 61 ((σ(B), [l(l(e))]), [!l(t);⊗l;⊗r; ?l(e)])

 63 ((σ1(F), [l(l(e))]), [!t])

We can observe that this path enters both (B, [l(l(e))], l(e)) and (B, [l(l(e))], r(e)) but not definitely. Thus,
this path does not require any� pair. We define CB,[l(r(e))],l(l(e)) = ((σ1(F), [l(l(e))]), [!e]). There is no
other copy of (B, [l(r(e))]) because the only copy of (F, [l(l(e))]) is e as can be observed with this path.

((σ(F), [l(l(e))]), [!e]) 58((σ1(C), [l(l(e)); l(e)]), [!e])

↪→ 37((σ1(C), [l(l(e)); r(e)]), [!e])

↪→ 82((dA, [l(r(e))]), [!e]) 67→

Because d(F) = d(C) = 1, we can set CF,[l(l(e))],e = CC,[l(l(e));l(e)],e = CC,[l(l(e));r(e)],e = ((dA, [l(r(e))]), [!e]).
Rather than detailing the (very long) paths corresponding to the copies of (B, [r(e)]), we will describe

the general case (G)EncN (n) for n ∈ N (in this case D has n auxiliary doors). Every copy of (B, P) is of the
shape l(l(· · · l(r(e)))) or l(l(· · · l(e))). We write li(t) for the signature obtained by i l() constructions on
t. Intuitively, there is an order on the copies of potential boxes in this proof-net. We have r(e) < l(r(e)) <
l(l(r(e))) · · · li−1(r(t)) < li(t). Then, for 0 ≤ i < |Cop(B, P)|, we write (B, P, i) for (B, P, ti) with ti the i-th
copy of (B, P) for the order described above. For instance, in Figure 3.24 (where we have n = 3) (C, [], 0),
(C, [], 1) and (C, [], 2) represent respectively (C, [], r(e)), (C, [], l(r(e))) and (C, [], l(l(e))). Thus (B, [2], 0)
and (B, [2], 1) represent respectively (C, [l(l(e))], r(e)) and (C, [l(l(e))], l(e)).

Then, for every j < |Cop(B, [i + 1])|, the path beginning by ((σ(B), [i]), [!l j(r(e))]) enters (B, [i + 1], 0)
by its principal door, uses a l() on the leftmost trace element and leaves (B, [i + 1], 0) by its principal door.
Then, it enters (B, [i + 1], 1), uses a l() and leaves (B, [i + 1], 0),... Eventually, the path enters (B, [i + 1], j)
with the context ((σ(B), [i + 1]), [!r(e);⊗l;⊗r; ? j]). Thus, we use the r() on the leftmost trace element
and the path ends with ((σ2(C), [i + 1; j]), [!e]). Thus, we set CB,[i],l j(r(e)) = ((σ2(C), [i + 1; j]), [!e]) and
(B, [i], l j(r(e))) � (B, [i + 1], j). Thus, for every 0 ≤ j < |Cop(B, [i + 1])|, l j(r(e)) is a copy of (B, [i]).
There are |Cop(B, [i + 1])| such copies of (B, [i]).

99

Then, let us notice that the path beginning by ((σ(B), [i]), [!lk(e)]) (with k = |Cop(B, [i+1])|) enters every
(B, [i + 1], j) for 0 ≤ j < k, uses a l() each time, and leaves them. Then, the path ends on ((dA, [i + 1]), [!e]).
So we set CB,[i],lk(e) = ((dA, [i + 1]), [!e]). In total, we can notice that (B, [i]) has 1 + Cop(B, [i + 1]) copies,
one of which does not need a� pair to satisfy the criteria of weak stratification.

3.5.1.3 Tracing back paths

We now consider a proof-net G and a weak stratification (S ,�, s(), d()) of G. We write sG and dG for
maxB∈BG s(G) and maxB∈BG d(G). Similarly to the sets S s of Section 3.2.3, for every s ∈ N, we define in this
section S s as the set {B ∈ BG | s(B) ≤ s}. To simplify notations, in this section, we will write ((e, P),T)/s

for ((e, P),T)/ 7→S s , (e,Q)s for (e,Q) 7→S s , ((e, P),T)s for ((e, P),T) 7→S s , Cops(B, P) for Cop7→S s
(B, P) and

Cans(B, P) for Can 7→S s
(B, P). We write M for max(B,P)∈Pot(S) |Cop(B, P)| andM for

(
|EG | · M∂G

)|EG |·M∂G
.

The goal of Section 3.5.1.3 is to prove a theorem corresponding to Lemma 82. For every canonical box
(B, P), we prove a bound on the number of sequences e1, · · · , el of edges such that there exists a path of the
shape ((σ(B), P), [!t]) ((e1, P1),T1) ((e2, P2),T2) · · · ((el, Pl), [!e]). To prove this bound, if s = s(B),
we fix (el, Pl)s−1 and (Bi, Pi)s−1 for every ((σ (Bi), Pi−1), [!]) ↪→ ((σ(Bi), Pi), [!]) step where d() strictly
decreases (it is to say d(Bi) is strictly smaller than the d() of the previous ↪→ step). Then, when those
restricted potentials are fixed, we prove that it determines uniquely the sequence of edges. This result is
formalized by Lemma 111. First, we need a technical lemma to handle the� relation.

Lemma 110. Let us suppose that s(Bk) = s > 0, CB0,P0,t0
s−1 = CB′0,P

′
0,t
′
0

s−1, CBk ,Pk ,tk is a used context, the
paths from ((σ(Bk), Pk), [!tk]) to CBk ,Pk ,tk and from ((σ(B′k′), P

′
k′), [!t′k′

]) to CB′k′ ,P
′
k′ ,t
′
k′

are -paths, and there
exist sequences of the shape:

(B, P, t) x.. ∗(Bk, Pk, tk) � · · ·� (B1, P1, t1)� (B0, P0, t0) 6�
(B, P, t′) x.. ∗(B′k′ , P

′
k′ , t
′
k′)� · · ·� (B′1, P

′
1, t
′
1)� (B′0, P

′
0, t
′
0) 6�

Then k = k′, the paths ((σ(Bk), Pk), [!tk])
∗ CBk ,Pk ,tk and ((σ(B′k), P′k), [!t′k])

∗ CB′k ,P
′
k ,t
′
k

have the same
length and their contexts are pairwise equivalent for 7→s−1: if we have Ck,i i CBk ,Pk ,tk and C′k,i

i C′B′k ,P′k ,t′k
then Ck,i

s−1 = C′k,i
s−1.

Proof. For 1 ≤ j ≤ k, we write C j,i as the context (if it exists) such that C j,i i CB j,P j,t j . For 1 ≤ j ≤ k′, we
write C′j,i as the context (if it exists) such that C′j,i

i CB′j,P
′
j,t
′
j
. We will prove by induction on (j, i) that C j,i

is defined if and only if C′j,i is defined, and C j,i
s−1 = C′j,i

s−1.
First, let us notice that for 0 ≤ j ≤ k, the path ((σ(B j), P j), [!t j]) 7→∗ CB j,P j,t j is a -path. Indeed, either

j = k and in this case the property is an assumption of the lemma. Else (B j+1, P j+1, t j+1) � (B j, P j, t j) so
the property follows from the definition of weak stratifications.

We can also notice that, because (Bk, Pk, tk) � (Bk−1, Pk−1, tk−1) � · · · � (B0, P0, t0) we have
s(B0) = s(B1) = · · · = s(Bk) = s (by definition of weak stratifications).

We already know by assumption that CB0,P0,t0
s−1 = CB′0,P

′
0,t
′
0

s−1. So C0,0
s−1 = C′0,0

s−1. Let us consider a
context of the shape ((σ(D),R),V.?v) in the path ((σ(B0), P0), [!t0]) 7→∗ CB0,P0,t0 such that ((σ(D),R),V.?v) 7→∗
CB0,P0,t0 stays in (D,R, v). By definition of weak stratification we are in one of the following situations:

• Either (B0, P0, t0)� (D,R, v), but this is impossible because we supposed (B0, P0, t0) to be maximal
for�. So this case does not happen.

100

• Or ((σ(D),R),V.?v) is not used (which implies that CB0,P0,t0 is not used so k , 0) and 6� (B0, P0, t0)
(which implies k = 0). This is a contradiction so this case does not happen.

• Because we have shown that the two first cases are impossible, we are in the last possible case: it is
to say that s(D) < s(B0) = s. By Lemma 107, C0,i is defined iff C′0,i is defined and C0,i

s−1 = C′0,i
s−1.

If 0 < j ≤ min(k, k′), we know that (B j, P j, t j)� (B j−1, P j−1, t j−1) and (B′j, P
′
j, t
′
j)� (B′j−1, P

′
j−1, t

′
j−1).

So, by definition of weak stratifications, we have paths of the shape:

((σ(B j), P j), [!t j])
∗ D j ((σ(B j−1), P j−1), [!]@V j.?t j−1) ((e1,),) · · · ((ek,),) = CB j,P j,t j

((σ(B′j), P
′
j), [!t′j])

∗ D′j ((σ(B′j−1), P′j−1), [!]@V ′j.?t′j−1
) ((e1,),) · · · ((ek,),) = CB′j,P

′
j,t
′
j

Let us notice that D j and D′j are of the shape ((e, P), [!]@V j.?t j−1@W j) and ((e, P′), [!]@V ′j.?t′j−1
@W′j)

with C j−1,1 = ((e, P), [!t j−1]@W j) and C′j−1,1 = ((e, P′), [!t′j−1
]@W′j). By induction hypothesis, C j−1,1

s−1 =

C′j−1,1
s−1. Because none of the e is a principal edge or auxiliary edge of a box and CB j,P j,t j , CB′j,P

′
j,t
′
j

are of
the shape ((,), [!]), V j and V ′j do not contain any ? trace element and their ! trace elements are equal.
Finally, by definition of weak stratifications, CB j,P j,t j

s−1 = CB′j,P
′
j,t
′
j
s−1 = e. Thus, D j

s−1 = D′j
s−1. Let

us consider a context of the shape ((σ(D),R),V.?v) in the -path from ((σ(B j), P j), [!t j]) to C j such that
((σ(D),R),V.?v) ∗ C j stays in (D,R, v). By definition of weak stratification we are in one of the following
situations:

• Either (B j, P j, t j) � (D,R, v), but this is impossible because the path ((σ(D),R),V.?v) ∗ CB j,P j,t j

enters B j−1 by its principal door.

• Or ((σ(D),R),V.?v) is not used (which implies that CB j,P j,t j is not used so k , j) and 6� (B j, P j, t j)
(which implies k = j).

• Because we have shown that the two first cases are impossible, we are in the last possible case:
s(D) < s(B j) = s. By Lemma 107, C j,i is defined iff C′j,i is defined and C j,i

s−1 = C′j,i
s−1.

Thus, Cmin(k,k′),i is defined iff C′min(k,k′),i is defined and Cmin(k,k′),i
s−1 = C′min(k,k′),i

s−1. Let us suppose that
k < k′, then we have (B, P, t) x.. ∗(Bk, Pk, tk) and (B, P, t′) x.. ∗(B′k′ , P

′
k′ , t
′
k′)�

+ (B′k, P
′
k, t
′
k) with (Bk, Pk)s−1 =

(B′k, P
′
k)s−1, which contradicts the definition of weak stratifications. If we suppose that k > k′, we have a

similar contradiction so k = k′. �

Lemma 111. Let s > 0 and (B, P) be a canonical box box with d = d(B). There are at mostM
∣∣∣∣Cans−1(~EG)

∣∣∣∣d
sequences (ei)1≤i≤l of directed edges such that, there exists a simplification of a copy of (B, P), a potential
sequence (Pi)1≤i≤l, and a trace sequence (Ti)1≤i<l such that:

((σ(B), P), [!t]) 7→S s ((e1, P1),T1) 7→S s · · · 7→S s ((el−1, Pl−1),Tl−1) 7→S s ((el, Pl), [!e])

Proof. The proof is quite similar to the proof of Lemma 82. We prove the lemma by induction on d. We can
notice that, because is injective, e1, · · · , el is determined uniquely by (el, Pl) and the set of potential edges
(e j, P j) such that ((e j, P j),T j) is of the shape ((σ (),), [!]). If d = 0, then there are at most |EG | ·M∂G such
(e j, P j). And, by Lemma 21, they can appear only once in the path. So there are at mostM possibilities for
the sequence e1, · · · , el.

101

Else d > 0. Let us suppose that ((σ(B), P), [!t]) 7→S s ((e1, P1),T1) 7→S s · · · 7→S s ((el−1, Pl−1),Tl−1) 7→S s

((el, Pl), [!e]). If there exists a context in the path of the shape ((σ(C),Q), [!c]) with s . . . (C) < s . . . (B), then
we set k as the smallest index such that ((ek+1, Pk+1),Tk+1) is such a context. Else, we set k = l.

We set ((σ(B0), P0), [!t0]) as the last context of the path ((σ(B), P), [!t]) 7→+
S s

((σ(C),Q), [!c]) of the shape
((σ(),), [!]). By definition of k, we have d(B0) = d. We set (D0,Q0, u0) as the element of CanCopG such
that (B0, P0, t0) �∗ (D0,Q0, u0) 6�. We will prove that (CD0,Q0,u0)s−1 determines e1, · · · , ek in a unique
way. Either CB0,P0,t0 is not used, in this case t = t0 so there is only one possibility for e1, · · · , ek. We now
suppose that CB0,P0,t0 is used.

We consider a simplification t′ of a copy of (B, P). We define ((e′i , P
′
i),T

′
i)1≤i≤l′ , k′, ((σ(B′0), P′0), [!t′0])

and (D′0,Q
′
0, u
′
0) in the same way we defined ((ei, Pi),Ti)1≤i≤l, k, ((σ(B0), P0), [!t0]), and (D0,Q0, u0) from

(B, P, t). And we suppose that (CD0,Q0,u0)s−1 = (CD′0,Q
′
0,u
′
0
)s−1. By Lemma 110, we can deduce that the paths

((σ(B0), P0), [!t0]) ∗ CB0,P0,t0 = ((ek, Pk),Tk) and ((σ(B′0), P′0), [!t′0]) ∗ CB′0,P
′
0,t
′
0

= ((e′k′ , P
′
k′),T

′
k′) have

the same length and are pairwise equivalent for 7→S s−1 .
Because d(B) = d(B0), for every context of the shape ((σ(B1), P1), [!t1]) in the 7→ path from ((σ(B), P), [!t])

to ((σ(B0), P0), [!t0]):

• (B1, P1, t1) is maximal for�. So, if ((σ(B1), P1), [!t1]) ∗ ((σ(C1),Q1),U1.?u1) with sC1(≥)s then
the path ((σ(C1),Q1),U1.?u1) 7→∗ CB1,P1,t1 leaves (C1,Q1, u1). We can notice that this path is included
in the path ((σ(C1),Q1),U1.?u1) 7→∗ CB0,P0,t0 .

• We make the same “choice” of auxiliary door (as in the proof of Lemma 82).

Thus, by Lemma 107, the paths ((σ(B), P), [!t]) 7→k ((ek, Pk),Tk) and 7→k ((e′k′ , P
′
k′),T

′
k′) are pairwise

equivalent for 7→S s−1 . If k , k′, we could trace back this path infinitely, so k = k′. In particular the paths
((σ(B), P), [!t]) 7→∗ ((ek, Pk),Tk) and ((σ(B), P), [!t′]) 7→∗ ((ek′ , Pk′),Tk′) have the same edges: [e1; · · · ; ek] =

[e′1; · · · ; e′k′].
So the choice of CD0,Q0,u0

s−1 determines e1, · · · , ek. There are at most |Cans−1(~EG)| choices for e1, · · · , ek.
And by induction hypothesis there are at most M · |Cans−1(~EG)|d−1 choices for ek+1, · · · , el. In total, there
are at mostM · |Cans−1(~EG)|d possibilities for e1, · · · , el. �

3.5.2 Improved nesting condition

In this section, we will present an improved nesting condition (a condition preventing exponential blow-ups
by chains of the type of Figure 3.25a). From the point of view of context semantics, a nesting condition
is a criterion such that, if we know all the edges of the path ((σ(B), P), [!t]) 7→∗ D, we need a “bounded”
amount of information on D to know t. In Section 3.3.2, we used Figure 3.25a to motivate the definition of/ / / . We need to have C

/ / /

B because |Cop(C, [])| depends non-additively on |Cop(B, [])|. Indeed for every
t ∈ Cop(B, []), n(l(e), t) and n(r(e), t) are in Cop(C, []).

However, we can notice that we also have C

/ / /

B in Figure3.25b but it is not necessary. Indeed the set
of copies of C is exactly the set of signatures n(e, t) with t ∈ Cop(B, []). So the dependence of |Cop(C, [])|
on |Cop(B, [])| is additive. As a comparison, in Figure 3.14b we have C xB, the set of copies of (C, []) is
exactly the set of signatures l(t) with t ∈ Cop(B, []) and we did not require C . B (or d(C) > d(B)) because
this dependence is additive.

102

!P
C

?P

?C ⊗
ax
ax

?N

!P
B

?P

?C ⊗
ax
ax

?N

e

cut f

!P
A

?P

?C ⊗
ax
ax

?N
cut g

(a) This proof-net (if extended to n boxes) re-
duces in O(2n) reduction steps.

!P
C

?P

ax

?N

!P

`
ax

B
?P

?W
w

?N
cut

!P
A

?P

ax

?N
cut

(b) This proof-net (if extended to n boxes) re-
duces in O(n) reduction steps.

Figure 3.25: Motivation for the definition of / for the nesting condition.

Definition 112. Let (B, P) and (C,Q) be potential boxes, then

(B, P) ./ (C,Q)⇔ ∃t, u ∈ Cop(B, P), v,w ∈ S ig

t , u, t @ v, u @ v and,
((σ(B), P), [!v]) 7→∗ ((σ(C),Q), [!w])
w is standard

B

/

C ⇔ ∃P,Q, (B, P) ./ (C,Q)

For example, in Figure 3.25a, we have (B, []) ./ (A, []) because p(e) is a strict simplification of both
n(r(e), e) and n(l(e), e) and ((σ(B), []), [!p(e)]) 7→3 ((σ(A), []), [!e]). Similarly, in Figure 3.18, we can notice
that (B, [l(l(e))]) ./ (B, [l(r(e))]) because ((σ(B), [l(l(e))]), [!p(e)]) 7→30 ((σ(B), [l(r(e))]), [!e]). Let us
notice that, in Figure 3.25b, we do not have (B, []) ./ (A, []). Indeed, even if we have ((σ(B), []), [!p(e)]) 7→3

((σ(A), []), [!e]), there is only one copy of (B, []) which has p(e) as a strict simplification.
For every (B, P, t) ∈ CanCopG, we define a subset Repr(B, P, t) of the simplifications of t. Intuitively, it

is the set of simplifications u of t containing enough information to deduce t. For instance, in the proof-net
of Figure 3.25b, p(e) ∈ Repr(B, [], n(e, e)) because there is only one copy t of (B, []) such that t v p(e). On
the contrary, in the proof-net of Figure 3.25a, p(e) < Repr(B, [], n(e, e)) because there are three copies t of
(B, []) such that t v p(e). This intuition is formalized by Lemma 115.

Definition 113. Let (B, P) be a potential box and t a standard signature. We define Repr(B, P, t) as the set
of simplifications of u such that, for every simplification v of t and paths of the shape

((σ(B), P), [!u]) 7→ ((e1,),) · · · ((ek,Q),) 6 ((σ(B), P), [!v]) 7→ ((e1,),) · · · ((ek,),)

Then ek is an auxiliary edge of a box C, with s ./ (C,Q) ≥ s ./ (B, P).

For instance, in the proof-net of Figure 3.25a we have s ./ (C, []) = 3, s ./ (B, []) = 2 and s ./ (A, []) = 1.
Let us set t = n(l(e), n(r(e), e)). The simplifications of t are t, p(n(r(e), e)) and p(p(e)). Only t is in
Repr(C, [], t) as proved below.

• t ∈ Repr(C, [], t) because there is no path of the shape ((σ(C), []), [!t]) 7→∗ ((σ (),), [!]).

• p(n(r(e), e)) < Repr(C, [], t) because s ./ (B, []) < s ./ (C, []) and we have:

((σ(C), []), [!p(n(r(e),e))]) 7→2 ((σ1(B), []), [!n(r(e),e)])

((σ(C), []), [!t])) 7→2 ((σ1(B), []), [!l(e); !n(r(e),e)])

103

• Similarly, we can observe that p(p(e)) < Repr(C, [], t) because s ./ (B, []) < s ./ (C, []) and we have:

((σ(C), []), [!p(p(e))])) 7→2 ((σ1(B), []), [!p(e)])

((σ(C), []), [!t])) 7→2 ((σ1(B), []), [!l(e); !n(r(e),e)])

Now, let us observe the proof-net of Figure 3.25b. We have s ./ (C, []) = s ./ (C, []) = s ./ (A, []) = 1.
Let us set t = n(e, n(e, e)). The simplifications of t are t, p(n(e, e)) and p(p(e)). They are all in Repr(C, [], t).

• t ∈ Repr(C, [], t) because there is no path of the shape ((σ(C), []), [!t]) 7→∗ ((σ (),), [!]).

• p(n(e, e)) ∈ Repr(C, [], t): the only pair of paths satisfying the conditions of Definition 113 is:

((σ(C), []), [n(e, n(e, e))]) 7→2 ((σ1(B), []), [!e; !n(e,e)])

((σ(C), []), [p(n(e, e))]) 7→2 ((σ1(B), []), [!n(e,e)])

And we have s ./ (B, []) = 1 ≥ 1 = s ./ (C, []).

• p(p(e)) ∈ Repr(C, [], t). Indeed, there are two pair of paths satisfying the conditions of Definition 113:

((σ(C), []), [n(e, n(e, e))]) 7→2 ((σ1(B), []), [!e; !n(e,e)])

((σ(C), []), [p(p(e)))]) 7→2 ((σ1(B), []), [!p(e)])

And we have s ./ (B, []) = 1 ≥ 1 = s ./ (C, []).

((σ(C), []), [p(n(e, e))]) 7→5 ((σ1(A), []), [!e; !e])

((σ(C), []), [p(p(e)))]) 7→5 ((σ1(A), []), [!e])

And we have s ./ (A, []) = 1 ≥ 1 = s ./ (C, []).

Let us suppose that there exists a weak stratification on a / / / -stratified proof-net G. Then, we could prove
a bound on the number of copies of boxes of B as in the proof of Lemma 85. Let us consider t ∈ Cops(B, P).
By definition, there exists a path of the shape ((σ(B), P), [!t]) 7→∗S s

((e,Q), [!e]). By Lemma 111, there are

at most M
∣∣∣∣Cans−1(~EG)

∣∣∣∣d choices for the sequences of edges in the path (with d = d(B)). Then the choice
of (e,Q)s determines t. We prove that the choices of 7→S s-copies we need to make are 7→S s-copies of boxes
(C,R) such that B

/ / /

C. This allows to bound CopS s(B, P) by induction on s / / / (B, P).
Let us consider the proof-net of Figure 3.25b, and its weak stratification defined by S = ∅, s(C) =

s(B) = s(A) = 1, d(C) = d(B) = d(A) = 1 and�= ∅. Then n(e, n(e, e)) ∈ Cop1(C, []) and there is a path
((σ(C), []), [!n(e,n(e,e))]) 3 ((w, [n(e, e)]), [!e]). Using the method of Lemma 111, we would need a bound
on |Cop1(B, [])| to deduce a bound on |Cop1(C, [])| and this is why we required C

/ / /

B.
Here we can notice that, to determine a copy t of (C, []), it is enough to choose u ∈ Repr(C, [], t)

(Lemma 114). In particular, the maximum (for v) element of Repr(C, [], t) determines t. This is why,
instead of considering the path beginning by ((σ(C), []), [n(e, n(e, e))]), we consider the path beginning by
((σ(C), []), [p(p(e))]). We have ((σ(C), []), [p(p(e))]) 5 ((σ1(A), []), [!e]). Because σ1(A) is not included
in any box, once we have chosen the edges of the path, it entirely determines t.

Lemma 114. Let ((e, P), [!t′′]@T) be a copy context such that, for every u v t′′, ((σ(B), P), [!t′′]) k 6
implies that ((σ(B), P), [!u]) k 67→.

Let t, t′ be standard signatures such that t v t′′, t′ v t′′ and ((e, P), [!t]@T), ((e, P), [!t′]@T) are copy
contexts. Then t = t′.

104

Proof. We prove the lemma by induction on the length k of the longest path beginning by ((e, P), [!t′′]@T).
If k = 0, then ((e, P), [!t]@T) 67→ and ((e, P), [!t′]@T) 67→. Because we supposed that those contexts are copy
contexts, t = t′ = e.

Most of the other cases are trivial, the only interesting case is when t′′ = p(u′′2), T = [] and ((e, P), [!t′′])
((f , P), [!u′′2]) (crossing a ?N node upwards). Because t and t′ are standard, they are of the shape t = n(u1, u2)
and t′ = n(u′1, u

′
2) with u2 v u′′2 and u′2 v u′2. By induction hypothesis, u2 = u′2.

According to Lemma 9, ((f , P), [!u1,u2]) k−1 ((f , P), [!u1]@). By hypothesis, of the lemma, we can
deduce that ((f , P), [!u1]@) 67→. Because ((e, P), [!t]) is a copy context, u1 = e. Because t and t′ play
symmetric roles, u′1 = e. So t = n(e, u2) = n(e, u′2) = t′. �

Lemma 115. Let t, t′ ∈ Cop(B, P) . If Repr(B, P, t) ∩ Repr(B, P, t′) , ∅ then t = t′.

Proof. Let us consider t′′ ∈ Repr(B, P, t) ∩ Repr(B, P, t′′), we prove that t and t′ are equal by induction on
s x.. (B, P, t′′). If (B, P, t′′) is maximal for x.. , we have t = t′ by Lemma 114.

Then, let us suppose that (B, P, t′′) x.. (C,Q, u′′). There exists a path of the shape ((σ(B), P), [!t′′])
((e1,),) · · · ((ek,),) ((σi(C),Q), [!u′′]). Because t′′ is a simplification of t and t′, by Lemma 9
there exist paths of the shape

((σ(B), P), [!t]) = ((e1,),) ((e2,),) · · · ((ek,),) = ((σi(C),Q),U.!u)

((σ(B), P), [!t′]) = ((e1,),) ((e2,),) · · · ((ek,),) = ((σi(C),Q),U′.!u′)

Let us prove u′′ ∈ Repr(C,Q, u) ∩ Repr(C,Q, u′). Because t and t′ play symmetric roles, it is enough to
prove u′′ ∈ Repr(C,Q, u). Let us suppose that u′′ < Repr(C,Q, u). Then, by definition of Repr(), there
exist w w u and paths of the shape:

((σ(C),Q), [!u′′]) = ((f1,),) · · · ((fl,R),) 6
((σ(C),Q), [!v]) = ((f1,),) · · · ((fl,),)

And, either ek is not an auxiliary edge. Or ek = σi(C) with s ./ (C,Q) < s ./ (B, P). Then we can notice that
there exists v w t such that:

((σ(B), P), [!t′′]) = ((e1,),) · · · ((ek,Q), [!u′′]) ↪→ ((f1,Q), [!u′′]) · · · ((fl,R),) 6
((σ(B), P), [!t′]) = ((e1,),) · · · ((ek,Q), [!v]) ↪→ ((f1,Q), [!v]) · · · ((fl,R),)

Which entails that t′′ < Repr(B, P, t). This is a contradiction, so our hypothesis was false, u′′ ∈ Repr(C,Q, u)
(and u′′ ∈ Repr(C,Q, u′)). By induction hypothesis, we have u = u′.

If U = [], then there is no ((,), [!p(x)]) ((,), [!x]) step in the path from ((σ(B), P), [!t′′]) to
((σ(C),Q), [!u′′]). Thus, we also have U′ = []. Thus, by injectivity of , t = t′. Similarly, if U′ = []
then U = [] and t = t′. So, in the remaining of the proof, we suppose that U , [] and U′ , []. Thus, t @ t′′

and t′ @ t′′. Moreover ((σi(C),Q),U.!u) so, by definition of Repr(B, P, t), s ./ (B, P) ≤ s ./ (C,Q).
Let us notice that there exist t v t0 v t′′ and t′ v t′0 v t′′ such that ((σ(B), P), [!t0]) ∗ ((σ(B), P), [!u])

and ((σ(B), P), [!t′0]) ∗ ((σ(B), P), [!u′]). Because u = u′ is standard, if we had t , t′, we would have
(B, P) ./ (C,Q) (remember that we deduced t @ t′′ and t′ @ t′′ in the previous paragraph). So s ./ (B, P) >
s ./ (C,Q). This would be a contradiction because we proved in the previous paragraph that s ./ (B, P) ≤
s ./ (C,Q). Thus, our hypothesis was false, t = t′. �

The following Lemma corresponds to the Lemma 85 of Section 3.3.2. Let us recall that we defined M

as max(B,P)∈Pot(S) |Cop(B, P)| andM as
(
|EG | · M∂G

)|EG |·M∂G
.

105

Lemma 116. We prove by induction on (s, n) that for every potential box (B, P) with n = s ./ (B, P),

|Cops(B, P)| ≤ M ·
∣∣∣∣Cans−1(~EG)

∣∣∣∣dG · max
s ./ (C,Q)<n

|Cops(C,Q)|
∂G

Proof. Let us consider t, t′ ∈ Cops(B, P), and u (resp. u′) the maximum (for v) element of Repr(B, P, t)
(resp. Repr(B, P, t′)). Then, there exists paths of the shape:

((σ(B), P), [!u]) 7→s ((en, Pn), [!tn]@T1) 7→s · · · 7→s ((e1, P1), [!t1]@T1) 7→s ((e,Q), [!e])

((σ(B), P), [!u′]) 7→s ((e′n′ , P
′
n′), [!t′n′

]@T ′n′) 7→s · · · 7→s ((e′1, P
′
1), [!t′1]@T ′1) 7→s ((e′,Q′), [!e])

Let us suppose that [en; · · · ; e1] = [e′n′ ; · · · ; e′1]. By Lemma 111, there are at most M ·
∣∣∣∣Cans−1(~EG)

∣∣∣∣dG
possible choices for [en; · · · ; e1].

If e is contained in the box D, Q = Q1@[q]@Q2 and Q′ = Q′1@[q′]@Q′2. Then we can notice that
((e,Q), [!e]) ⊆ ((σ(D),Q1), [!q]) and ((e,Q′), [!e]) ⊆ ((σ(D),Q′1), [!q′]). By Corollary 98 and Lemma 96,
there exist ((σ(B1), P1), [!u1]) ⊇ ((σ(B), P), [!u]), ((σ(B′1), P′1), [!u′1]) ⊇ ((σ(B), P), [!u′]), ((σ(B2), P2), [!u2])
and ((σ(B′2), P′2, [!u′2]) such that we have: ((σ(B1), P1), [!u1]) 7→∗ ((σ(B2), P2), [!u2]) ←[∗ ((σ(D),Q1), [!q])
and ((σ(B′1), P′1), [!u′1]) 7→∗ ((σ(B′2), P′2), [!u′2])←[∗ ((σ(D),Q′1), [!q′]).

Let us set N = |maxs ./ (C,Q)<n Cops(C,Q)|1+∂(D). We will prove by induction on ∂(D) that there is
at most N1+∂(D) choices for u1. If we suppose that this property is true for every box containing D, then
there are at most N∂(D) possibilities for the maximal simplification of u1. We can suppose that the strict
simplifications of u1 and u′1 are the same and show that there are at most N possibilities for u1.

• If B , B1 then we can prove that (B1, P1, t1) = (B′1, P
′
1, t
′
1) (otherwise it would violate the acyclicity

of ⊆ on contexts) so ((σ(B2), P2), [!u2]) = ((σ(B′2), P′2), [!u′2]). There is only 1 possibility for u2.

• Otherwise, it means that (B1, P1) = (B′1, P
′
1) = (B, P), u1 A u and u′1 A u′. Let us recall that we

have ((σ(B1), P1), [!u1]) 7→∗ ((σ(B2), P2), [!u2]) and ((σ(B′1), P′1), [!u′1]) 7→∗ ((σ(B′2), P′2), [!u′2]). Be-
cause we supposed that [e1; · · · ; en] = [e′1; · · · ; e′n′] and the strict simplifications of u1 and u′1 are the
same, we have (B2, P2) = (B′2, P

′
2). If we had s ./ (B2, P2) ≥ s ./ (B, P), then u1 ∈ Repr(B, P, t) and

u′1 ∈ Repr(B, P, t′) which contradicts the assumption of maximality of u and u′. Thus, s ./ (B2, P2) <
s ./ (B, P) = n. Moreover, by definition of copies u2 ∈ Cops(B2, P2). Thus, there are at most
|Cops(B2, P2)| possibilities for u2, which is inferior to N.

Thus, there are at mostM · |Can(s − 1)EG | .N∂G possibilities for u. The lemma follows by Lemma 115. �

Corollary 117. For s ∈ N and B ∈ BG we have:

|Cans(B)| ≤
(
M · |EG | ·

∣∣∣∣Cans−1(~EG)
∣∣∣∣dG)∂G

2·| ./ |

Proof. Thanks to Lemma 116, we prove by induction on n, that for every (B, P) ∈ Pot(BG) with n =

s ./ (B, P) we have:

|Cops(B, P)| ≤
(
M · |EG | ·

∣∣∣∣Cans−1(~EG)
∣∣∣∣dG)∂G

2·n−1

We can conclude because, by definition of | . . |, for every (B, P) ∈ Pot(BG), s . . (B, P) ≤ | . . |. �

106

Corollary 118. For B ∈ BG we have:

|Can(B)| ≤
(
MM∂G · |EG | · M∂G

)dsGG ·∂G
2·sG ·| ./ |

Proof. Let us recall that we defined M as max(B,P)∈Pot(S) |Cop(B, P)|. We define a = M · |EG | and b =

dG · ∂G
2·| ./ |. Then, we define a sequence (us)s∈N by u0 = M∂G and us = (a · us−1)b. By definition of M and

Corollary 117, for every s ∈ N, |Cans(B)| ≤ us. We can prove by induction on s that us ≤ (a · u0)b2·s
, which

proves the corollary because 7→sG =7→. �

Theorem 119. Let us suppose that there exists a box-bounded subsystem S ub such that every proof-net
(G)H10 of GS ub there exists a weak-stratification (S ,�, s(), d()) of (G)H such that:

• For every B ∈ S , if ((σ(B), P), [!t]) 7→∗ ((e,),) then e ∈ EG.

• If (B, P) ./ (B,Q) then every box containing B is in S .

Then S ub is sound for Poly.

Proof. For every potential box (B, P) with B ∈ S , because the paths starting from σ(B) do not leave G,
Cop(B, P) does not depend on H. Thus, M andM do not depend on H. We also notice that | ./ | is bounded
by |BG | + |BH | + |Can7→S (EG)| ≤ |BG | + |BH | + |EG | ·M∂G which does not depend on H. The rest of the proof
can be done, as in the proof of Theorem 88, using Corollary 118. �

10Let us recall that we defined the notation (G)H in Figure 3.3.

107

108

Chapter 4

Paths criteria for primitive recursive
characterization

109

4.1 Definition and acyclicity of ¨ −> −> −>
Let us recall that, in Section 3.1.3 we defined a relation �̇ on potential boxes by (B, P)�̇(C,Q) if and only if
there exists a path of the shape ((σ(B), P), [!t]) 7→∗ ((e,Q@R),T) with e ∈ C. We proved that the acyclicity
of� (which is the projection of �̇ on boxes) entails an elementary bound on cut-elimination.

Dal Lago, Roversi and Vercelli defined a strategy of reduction on proof-nets called “superlazy reduc-
tion” [23]. This strategy is not complete: there exist blocking proof-nets which are not in normal form with
respect to cut-elimination but are normal with respect to superlazy reduction. They prove that this strat-
egy characterizes primitive recursion in the following meaning: superlazy reduction is computable in time
bounded by a primitive recursive function, and every primitive recursive function f is representable by a
proof-net G f which does not block (superlazy reduction reduces G f to a non-blocking proof-net). Dal Lago
conjectured that, if �̇ is acyclic on a proof-net, this proof-net does not block. Thus, the acyclicity of �̇
would entail a primitive recursive bound.

On his suggestion we proved directly that the acyclicity of �̇ entails a primitive recursive bound. In
Section 3.2, we defined a relation −> −> −>⊆� whose acyclicity also entails an elementary bound. Similarly,
we will prove that the acyclicity of ˙ −> −> −> is enough to entail a primitive recursive bound. For Poly, we
consider that our criteria may be used in the long run to certify complexity bounds for programs outside the
scope of academics. For such an application, one wants to have as few false negatives as possible, thus it
is interesting to have criteria as general as possible. However the primitive recursive class is generally not
considered feasible and such an application is unlikely. Here, the motivations to get a criterion as general as
possible were different:

• To define a type system as simple as possible based on the criterion. To ensure the acyclicity of the
unnecessary large relation �̇, one had to put additional labels on judgements and require unnecessary
constraints on boxes.

• To define a type system large enough to embed simply-typed λ-calculus.

• To define a type system based on the restriction of the quantifiers instead of a restriction on the ! and
? modalities.

We will not work directly with ˙ −> −> −> but with a corresponding relation on BoxS igG. We define relation
¨ −> −> −> on BoxS igG as follows:

Definition 120. Let (B, P, t), (C,Q, u) ∈ BoxS igG, then (B, P, t) ¨ −> −> −>(C,Q, u) if and only if there exists a
path of the shape

((σ(B), P), [!t]) ∗ ((σ(C),Q), [!v]@U.?u)

We can notice that (B, P, t) ¨ −> −> −>(C,Q, u) implies (B, P) ˙ −> −> −>(C,Q). For example, in the proof-net of Fig-
ure 4.1, we have (C, [], r(l(e))) ¨ −> −> −>(B, [], r(e)) because ((σ(C), []), [!r(l(e))]) ∗ ((σ(B), []), [!l(e); ?r(e)]).
And (B, [], l(e)) ¨ −> −> −>(C, [], l(e)) because of the path ((σ(B), []), [!l(e)]) ∗ ((σ(C), []), [!e;⊗r; ?l(e)]).

Although this proof-net normalizes in a constant number of steps, this proof-net is not ˙ −> −> −>-stratified
because (B, []) ˙ −> −> −>2(B, []) and (C, []) ˙ −> −> −>2(C, []). Nevertheless, one can notice that ¨ −> −> −> is acyclic and
| ¨ −> −> −>| does not depend on the input (it does not depend on n). This property is enough to enforce an
elementary bound.

Indeed, for every k ∈ N, we will define an elementary function ek() such that for every proof-net G,
WG is bounded by e| ̈−> −> −>|

(
~EG

)
(Theorem 148). Let us notice that BoxS igG is infinite so, even when ¨ −> −> −> is

acyclic, | ¨ −> −> −>| and WG may be infinite, as illustrated by the next example.

110

?P!P
B

ax

?C
?D?W

h
?C

cut

ax
?D

⊗
axax

?C

?D f g

ed

⊗
∃

ax

`

`
∀
⊗

ax

cut

!P
C

?P ?P ?P

?C ?C

⊗ ⊗ ⊗
ax ax ax ax

`

EncN (n)

Figure 4.1: In this proof-net, represented with n = 3, ˙ −> −> −> is cyclic but | ̈−>| does not depend on n.

The proof-net corresponding to Ω = (λx.(x)x)λx.(x)x (Figure 4.2) is not ˙ −> −> −>-stratified because we have
((σ(B), []), [!l(e)]) 7→11 ((σ(B), []), [!e;⊗l; ?r(e)]) so (B, [], [l(e)]) ¨ −> −> −>(B, [], [r(e)]) and (B, []) ˙ −> −> −>(B, []).
Let us observe that (B, [], [l(l(l(r(e))))]) ¨ −> −> −>(B, [], [l(l(r(e)))]) ¨ −> −> −>(B, [], [l(r(e))]) ¨ −> −> −>(B, [], [r(e)]).
This path can be extended (on its left) infinitely so | ¨ −> −> −>| = ∞ and the bound mentioned above gives us
WG ≤ ∞. In fact, because this proof-net does not normalize, WG = ∞. However the signatures are always
distinct (they are even orthogonal) and ¨ −> −> −> is acyclic on this proof-net.

In fact, we prove in Corollary 123 that ¨ −> −> −> is acyclic for every proof-net (even those which are not
LL proof-nets). To understand why, let us notice that (B, P, t) represents a residue of a box: if G →∗cut H,
πG→H((σ(B1), P1), [!t1]) = ((σ(B), P), [!t]) and πG→H((σ(B2), P2), [!t2]) = ((σ(B), P), [!t]) then (B1, P1, t1) =

(B2, P2, t2). Thus (B, P, t) ¨ −> −> −>(B, P, t) would mean that, along cut elimination, a residue B1 of B would be
cut with an edge inside B1 (not another residue of B, the same residue) which is impossible by construction
of proof-nets.

On the contrary (B, P) only represents a residue of a box B when the cuts involving σ(B) are not reduced.
Thus we may have (B, P) ˙ −> −> −>(B, P): let us consider (B, P, t1), (B, P, t2) ∈ BoxS igG, reducing a cut involving
B with a ?C node can “separate” the two residues. This way, the residue B2 corresponding to (B, P, t2) can
be opened by a ?D node while the residue B1 corresponding to (B, P, t1) is preserved. Then σ(B1) can be
cut with an edge which was inside B2. In superlazy reduction, we only allow to reduce a cut between a box
B and a ?C node c if the exponential tree above c (the tree of ?N, ?C, ?W, ?D and ?P nodes above c) opens
every residue of B (for example if there is no ?N node in this tree and every leaf is a ?D, ?W or ?P node).
We can notice that the proof-nets of Figures 4.1 and 4.2 block: the principal door of each box will meet a
contraction node which has a premise which is the conclusion of an ax node (so the residue of the box on
this side of the contraction is not opened). This was expected since they are not ˙ −> −> −>-stratified.

The elementary bound mentioned above has no practical interest unless we have a bound on | ¨ −> −> −>|. More
importantly we will prove that the acyclicity of ˙ −> −> −> entails a primitive recursive bound on cut elimination
(Section 4.4).

Lemma 121. If (B, P, t) ¨ −> −> −>(C,Q, u) then u is a standard signature.

Proof. By definition, there exists a path of the shape ((σ(B), P), [!t]) ∗ ((σ(C),Q),U.?u). By definition of
BoxS igG, t is quasi-standard so ((σ(B), P), [!t]) is a quasi-standard context. By Lemma 7, ((σ(C),Q),U.?u)

111

`
?C

?D

⊗
ax ax

e ⊗
cut

ax
!P

B
`

?C
?D

⊗ax ax

f

Figure 4.2: This proof net corresponds to Ω.

!P

?D

!P

?D

!P

cut

C

B

D
!P

!P

?D

!P

cut

D

B

C

Figure 4.3: Intuition underlying Lemma 122.

is quasi-standard. Because ?u is not the leftmost trace element, u is standard. �

Lemma 122. If (B, P, t) ¨ −> −> −>+(C,Q, u) then there exists U ∈ Tra such that:

Either ((σ(B), P), [!t]) ∗ ((σ(C),Q),U.!u)
Or ((σ(B), P), [!t]) ∗ ((σ(C),Q),U.?u)

Proof. Figure 4.3 provides an intuition for this proof. In both proof-nets we have (D, [], e) ¨ −> −> −>(C, [], e) and
we suppose that (B, [e], e) ¨ −> −> −>+(D, [], e) (for the right proof-net, the figure only shows that it satisfies the
induction hypothesis).

Let us suppose that (B, P, t) ¨ −> −> −>k(C,Q, u), we prove the result by induction on k. If k = 1, the result is
trivial because, by definition of ¨ −> −> −>, there exists U ∈ Tra such that ((σ(B), P), [!t]) ∗ ((σ(C),Q),U.?u).

If k > 1, (B, P, t) ¨ −> −> −>k−1(D,R, v) ¨ −> −> −>(C,Q, u). The intuition of the remaining of the proof is shown in
Figure 4.3. By definition of ¨ −> −> −>, there exists a trace U such that ((σ(D),R), [!v]) ∗ ((σ(C),Q), [!u]). By
induction hypothesis, there exists a trace V such that:

• Either ((σ(B), P), [!t]) ∗ ((σ(D),R),V.!v). By Lemma 121, ((σ(D),R), [!v]) is a standard context. In
this case, by Lemma 8:

((σ(B), P), [!t]) ∗ ((σ(D),R),V.!v) ∗ ((σ(C),Q), (V@U).?u)

• Or ((σ(B), P), [!t]) ∗ ((σ(D),R),V.?v). By Lemma 121, ((σ(D),R), [?v]) is a standard context. We
know that ((σ(D),R), [!v]) ∗ ((σ(C),Q),U.?u) so ((σ(C),Q),U.?u) is standard (Lemma 8) and,
by Definition of , ((σ(C),Q),U.!u) ∗ ((σ(D),R), [?v]). Let us observe that ((σ(C),Q),U.!u) is
standard so, by Lemma 8,

((σ(C),Q), (V@U).!u) ∗ ((σ(D),R),V.?v)

 is injective, so either ((σ(B), P), [!t]) ∗ ((σ(C),Q), (V@U).!u) or ((σ(C),Q), (V@U).!u) ∗

((σ(B), P), [!t]). But the second one is ruled out because ((σ(B), P), [!t]) has no antecedent for .

�

Corollary 123. For any proof-net G, ¨ −> −> −> is acyclic on BoxS igG.

112

Proof. Let us suppose that (B, P, t) ∈ BoxS igG and (B, P, t) ¨ −> −> −>+(B, P, t). Then, by Lemma 122, there exists
T ∈ Tra such that either ((σ(B), P), [!t]) ∗ ((σ(B), P),T.!t) or ((σ(B), P), [!t]) ∗ ((σ(B), P),T.?t). The
second case is a contradiction because of Lemma 91.

So ((σ(B), P), [!t]) ∗ ((σ(B), P),T.!t). Let us consider the first context of the path which is inside B
with a potential of the shape P.t@ . The path must enter the box B by one of its doors so there exists a trace
U such that either ((σ(B), P), [!t]) ∗ ((σi(B), P),U.!t) (which is a contradiction because of Lemma 90) or
((σ(B), P), [!t]) ∗ ((σ(B), P),U.!t) (which is a contradiction because of Lemma 91). �

113

`

ax

!P
B

?N

cut f

?P

?P !P
D

ax a

?C
cut

⊗
ax
ax

!P
C

⊗
ax

`
cutc

?C⊗
ax
ax

Figure 4.4: Motivation for the definition of mixable sets.

4.2 Tracing back paths

In Section 3.2, to prove that the acyclicity of −> −> −> entails an elementary bound, we defined relations 7→S

and S for every S ⊆ BG. Here, to prove that the acyclicity of ˙ −> −> −> entails a primitive recursive bound,
we will need a refinement of those relations.

Definition 124. Let G be a proof-net and S ⊆ BoxS igG. We define 7→S and S as follows:

C 7→S D⇔
{

C 7→ D
If C = ((σ(B), P), [!t]), then (B, P, t) ∈ S

C S D⇔
{

C D
If D = ((σ(B), P),T.?t), then (B, P, t) ∈ S

In Section 3.2, we proved Theorem 72 which states that for every S ⊆ BG, whenever Ce S C f and
C f
7→S = C′f

7→S , there exists a context C′e such that C′e S C′f and Ce
7→S = C′e 7→S . We would like to prove a

similar result for S ⊆ BoxS igG. However, adapting the proof of Theorem 3.2 we have two issues:

• Let us suppose that Ce is on the principal edge of a box. For instance, we suppose that Ce =

((σ(B), P),T.!t) ((f , P),T.!t) = C f (crossing a cut node), C′f = ((f , P′),T ′.!t′) and C f
7→S =

C′f
7→S = ((f , P′′),T ′′.!t′′). We may notice that C′e = ((σ(B), P′),T ′.!t′) C′f . In the proof of Theo-

rem 72 we had either B ∈ S (and in this case Ce
7→S = C′e 7→S = ((σ(B), P′′), .!t′′)) or B < S (and in this

case Ce
7→S = C′e 7→S = ((σ(B), P′′), .!e)). However, here we may have (B, P, t) ∈ S and (B, P′, t′) < S .

In this case we would have Ce
7→S = ((σ(B), P′′), .!t′′) , ((σ(B), P′′), .!e) = C′e 7→S .

• Similarly, if C f = ((σ(B), P),T.?t) with (B, P, t) ∈ S and C′f = ((σ(B), P′),T ′.?t′) (crossing a !P node
upwards) we may have (B, P′, t′) < S . In this case, there exists no context C′e such that C′e S C′f .

In Section 4.2, we deal with the first issue. And in Lemma 136 we will prove that, provided some
condition on S , if Ce S C f , C′e S C′f and C f

7→S = C′f
7→S we have Ce

7→S = C′e 7→S . We will deal with the
second issue in Section 4.3.

For example, let us consider the proof-net of Figure 4.4. It is exactly the same figure as Figure 3.13
used to motivate the definition of E because the two issues are quite similar. To motivate the definition of
E, we considered the relation → where the transition ((σ(D), [r(e)]), [!l(e)]) 7→ ((d, [r(e)]), [!l(e)]) was re-
moved. Here we set S = {(C, [], t) | t ∈ S ig} ∪ {(B, [], n(l(e), e)), (B, [], n(e, e)), (D, [r(e)], e), (D, [e], l(e))},
so ((σ(D), [r(e)]), [!l(e)]) 67→S ((d, [r(e)]), [!l(e)]).

Let us set Ce = ((σ(B), []), [!n(l(e),r(e))]), C′e = ((σ(B), []), [!n(e,r(e))]), C f = ((f , []), [!n(l(e),r(e))]) and
C′f = ((f , []), [!n(e,r(e))]). Then we have Ce S C f , C′e S C′f and C f

7→S = C′f
7→S = ((f , []), [!n(e,r(e))]).

114

Indeed C f
7→S is not C f itself because C f 7→∗ ((σ(D), [r(e)]), [!l(e)]) 67→. However, we can notice that

Ce
7→S = ((σ(B), []), [!n(l(e),e)]) , ((σ(B), []), [!n(e,e)]) = C′e 7→S . The right branch of the n(,) in the signatures

must be e because (B, [], n(e, r(e))) and (B, [], n(l(e), r(e))) are not in S . But, because we restrict the right
branch of the signature, the l(e) in Ce can be used because (D, [e], l(e)) is in S .

Intuitively the problem is that (D, [r(e)], e) and (D, [e], l(e)) are in S but (D, [r(e)], l(e)), obtained by
mixing two elements of S , is not in S . We will prove that, if S is mixable, then Ce

7→S = C′e 7→S .

Definition 125. Let t, u ∈ S ig, we define mix(t, u) by induction as follows: mix(e, u) = u, mix(t, e) = t,
mix(l(t1), l(u1)) = l(mix(t1, u1)), mix(r(t1), r(u1)) = r(mix(t1, u1)), mix(p(t2), p(u2)) = p(mix(t2, u2)) and
mix(n(t1, t2), n(u1, u2)) = n(mix(t1, u1),mix(t2, u2)). Else, mix(t, u) is undefined.

We extend the definition on potentials by mix([p1; · · · ; pk], [q1; · · · ; qk]) = [mix(p1, q1); · · · ; mix(pk, qk)].
Then, we extend the definition on traces by mix([T1; · · · ; Tk], [U1; · · · ; Uk]) = [M1; · · · ; Mk] with Mi defined
as follows:

• If Ti = !t and Ui = !u, we set Mi = !mix(t,u).

• If Ti = ?t and Ui = ?u, we set Mi = ?mix(t,u).

• Else, if Ti = Ui, we set Mi = Ti = Ui.

• Else, Mi is undefined (so mix([T1; · · · ; Tk], [U1; · · · ; Uk]) is undefined).

Finally, we extend the definition on contexts by mix(((e, P),T), ((e,Q),U)) = ((e,mix(P,Q)),mix(T,U)).

We are interested in restriction of copies. In this case, the signatures considered are truncations of a same
signature. Lemma 126 shows that, in this case, mix(,) is always defined. Let us notice that, by definition,
mix(,) is commutative so Lemma 127 also states that u J mix(t, u).

Lemma 126. If t J v and u J v then mix(t, u) is defined and mix(t, u) J v.

Proof. By induction on v. If v = e then t = u = e, so mix(t, u) = e. And we can verify that e J e. If
v = n(v1, v2), then either t = e (in this case mix(t, u) = u, and u J v), u = e (in this case mix(t, u) = t,
and t J v) or t and u are of the shape n(t1, t2) and n(u1, u2) with t1 J v1, t2 J v2, u1 J v1 and u2 J v2.
By induction hypothesis, m1 = mix(t1, u1) and m2 = mix(t2, u2) are defined. Thus mix(t, u) = n(m1,m2) is
defined. Moreover mix(t1, u1) J v1 and mix(t2, u2) J v2 so mix(t, u) J v.

The other cases are similar. �

Lemma 127. If mix(t, u) is defined then t J mix(t, u)

Proof. Straightforward induction on t. �

Lemma 128. If mix(t, u) = u then t J u.

Proof. By induction on t. If t = e then e J u. Else, because u = mix(t, u) I t, u , e. We can examine
every case. For instance, if t = l(t1) and mix(t, u) = u = l(u1) with mix(t1, u1) = u1 then (by induction
hypothesis) t1 J u1 so t J u. �

Definition 129. Let S be a subset of BoxS igG, we write that S is mixable if and only if

∀(B, P, t), (B,Q, u) ∈ S , (B,mix(P,Q),mix(t, u)) ∈ S

∀(B, P) ∈ Pot(BG), (B, P, e) ∈ S

115

We wrote that whenever S is mixable, we can deduce that Ce
7→S = C′e 7→S . And, indeed, in the previous

example where we had Ce
7→S , C′e 7→S , the set S was not mixable: (D, [e], l(e)) and (D, [r(e)], e) are in S

but (D, [r(e)], l(e)) = (D,mix([e], [r(e)]),mix(l(e), e)) is not in S .
Because C J mix(C,D) and D J mix(C,D), the 7→-path beginning by mix(C,D) is at least as long as

the paths beginning by C and D (Lemma 130). And in fact, if we only consider the paths until the leftmost
trace element becomes !e, the 7→-path beginning by mix(C,D) is exactly as long as the longest of those two
paths. Examining the paths only until they reach a context ((,), [!e]) makes sense because, in Sections 3.2
and 3.3, to bound the number of copies t of a potential box (B, P) we consider the paths of the shape
((σ(B), P), [!t]) 7→k ((e,Q), [!e]) and we could suppose k minimal: the last step uses the last constructor on
the signature of the leftmost trace element..

Lemma 130. If C and C′ are canonical contexts and C 7→ D (resp. D 7→ C) and C J C′ then there exists a
canonical context D′ such that C′ 7→ D′ (resp. D′ 7→ C′) and D J D′.

Proof. Most of the steps are trivial. The only interesting case is whenever C = ((e, P),T.!e) 7→ ((f , P),T) =

D crossing a ?D node upwards. Then, by definition of J, C′ is of the shape ((e, P′),T ′.!t′) with P J P′,
T J T ′ and e J t′. Because we know that C′ is a canonical context, t′ = e so if we set D′ = ((f , P′),T ′) we
have C′ 7→ D′ and D J D′. �

Lemma 131. If C1 7→ C′1, C2 7→ C′2 and mix(C1,C2) is defined. Then mix(C1,C2) 7→ mix(C′1,C
′
2).

Proof. Straightforward analysis of every 7→ step possible. For example, if e is the conclusion of a ?C node,
C1 = ((e, P1), [!t1]) 7→ ((f , P1), [!u1]) and ((e, P2), [!t2]) 7→ ((g, P2), [!u2]). Because of those steps t1 , e and
t2 , e. Because mix(C1,C2) = ((e,mix(P1, P2)), [!mix(t1,t2)]) is defined, mix(t1, t2) is defined. So the top
constructors of these signatures are the same. Either t1 = l(u1) and t2 = l(u2), and in this case f and g
are both the left premise of the ?C node and mix(C1,C2) = mix(C1,C2) = ((e,mix(P1, P2)), [!mix(t1,t2)]) 7→
((f ,mix(P1, P2)), [!mix(u1,u2)]). Or t1 = r(u1) and t2 = r(u2). �

Lemma 132. Let C1 and C2 be canonical contexts. If mix(C1,C2) 7→k ((,), [!t]@) with t , e. Then either
C1 7→k ((,), [!u1]@) with u1 , e or C2 7→k ((,), [!u2]@) with u2 , e.

Proof. We prove the lemma by induction on k. Let us set ((e, P1), [!t1]@T1) = C1 and ((e, P2), [!t2]@T2) =

C2. Then, mix(C1,C2) = ((e,mix(P1, P2)), [!mix(t1,t2)]@(mix(T1,T2))). Because the leftmost signature de-
creases along 7→ paths, mix(t1, t2) , e. So, either t1 , e or t2 , e. This proves the lemma when k = 0. Now,
we will suppose that k > 0.

If t1 = e then we have mix(t1, t2) = t2. Because C2 is a canonical context, there exists a path of the
shape C2 7→ ((f1,Q1), [!u1]@U1) 7→ ((f2,Q2), [!u2]@U2) · · · 7→ ((fl,Ql), [!e]@Ul). By Lemma 130, for
every 1 ≤ i ≤ l, mix(C1,C2) 7→i ((fi,Q′i), [!u′i]@U′i) with Qi J Q′i , Ui J U′i and ui J u′i . In fact, because the
edges of the paths are the same, ui = u′i . In particular, k < l so C2 7→k ((,), [!uk]@Uk) and uk = t , e. The
case t2 = e is solved similarly.

If t1 , e and t2 , e then we can notice that there exist contexts C′1 and C′2 such that C1 7→ C′1 and
C2 7→ C′2. Thus, by Lemma 131, mix(C1,C2) 7→ mix(C′1,C

′
2) 7→k−1 ((,), [!t]@). By induction hypothesis,

either C1 7→ C′1 7→k−1 ((,), [!u1]@) with u1 , e or C2 7→ C′2 7→k−1 ((,), [!u2]@) with u2 , e. �

Lemma 133. Let S be a mixable subset of BoxS igG. If C1 and C2 are 7→S -copy contexts, then mix(C1,C2)
is a 7→S -copy context.

116

Proof. Let us set ((e, P1), [!t1]@T1) = C1 and ((e, P2), [!t2]@T2) = C2. Then, mix(C1,C2) = ((e, P), [!t]@T) =

((e,mix(P1, P2)), [!mix(t1,t2)]@(mix(T1,T2))). Let us consider u w t. Then, there exist u1 w t1 and u2 w t2
such that u = mix(u1, u2). Because C1 and C2 are 7→S -copy contexts, there exist k1, k2 ∈ N such that
((e, P1), [!u1]@T1) 7→k1

S ((,), [!e]@) and ((e, P2), [!u2]@T2) 7→k2
S ((,), [!e]@). By Lemma 130, there

exists a path ((e, P), [!u]@T) 7→max(k1,k2) ((,), [!v]@). By Lemma 132, v = e. To prove the lemma we have
to show that all these 7→ steps are 7→S steps.

Let us suppose without loss of generality that k1 ≤ k2. Then, for 1 ≤ i < k1, if we name D1 and
D2 the contexts such that C1 7→i D1 and C2 7→i D2, we have mix(C1,C2) 7→i mix(D1,D2). In particular,
if mix(D1,D2) is of the shape ((σ(B),Q), [!v]), then Q = mix(Q1,Q2) and v = mix(v1, v2) with D1 =

((σ(B),Q1), [!v1]) and D2 = ((σ(B),Q2), [!v2]). Because D1 7→S and D2 7→S , (B,Q1, v1) and (B,Q2, v2) are
in S . We supposed that S is mixable, so (B,mix(Q1,Q2),mix(v1, v2)) is in S .

For k1 ≤ i < k2, if C 7→i ((σ(B),Q), [!v]) then C2 7→i ((σ(B),Q2), [!v]) with Q2 J Q. Because
((σ(B),Q2), [!v]) 7→S , we know that (B,Q2, v) is in S . We supposed that S is mixable, so (B,Q, e) ∈ S .
Thus, because S is mixable (B,Q, v) = (B,mix(Q,Q2),mix(e, v)) is in S .

�

The motivations for the definitions of mixable sets and E (Definition 55, page 64) are similar (and that
is the reason why we used the same proof-nets as examples). We defined E because there exist relations
→ on contexts and (B, P, t) ∈ BoxS igG such that the set Restr→(((σ(B), P), [!t])) does not have a max-
imum for J. Here, we will prove that this does not happen whenever → is of the shape 7→S with S a
mixable set. If S is mixable, and (B, P, t) ∈ BoxS igG, then ((σ(B), P), [!t])/ 7→S is the maximum element of
Restr 7→S (((σ(B), P), [!t])) for the order J (Lemma 134).

Lemma 134. Let S be a mixable subset of BoxS igG, and C = ((e, P), [!t]@T) be a canonical context,

Restr 7→S (C) = {u J C/ 7→S | ((e, P), [!u]@T) is a 7→S -copy context}

Proof. Let us write t′ for C/ 7→S . Let us consider u ∈ Restr 7→S (C). By definition of Restr 7→S (), ((e, P), [!u]@T)
is a 7→S -copy context. Let us notice that t′ J t and u J t, so mix(t′, u) is defined and mix(t′, u) J t
(Lemma 126). By Lemma 133, ((e, P), [!mix(t′,u)]@T) is a 7→S -copy context. By definition of Restr 7→S (),
mix(t′, u) ∈ Restr 7→S (C). Moreover, t′ J mix(t′, u) (Lemma 127) so t′ E mix(t′, u) (Lemma 56). However t′

is the maximum element of Restr 7→S (C) for E so mix(t′, u) = t′. By Lemma 128, u J t′.
Let us consider u J t′ such that ((e, P), [!u]@T) is a 7→S -copy context. Let us notice that t′ J t. Then,

by transitivity of J, we have u J t. So, by definition of Restr (), u is in Restr7→S (C). �

Lemma 135. Let S be a mixable subset of BoxS igG, ((e, P), [!t]@T) be a canonical context and t′ ∈ S ig
such that ((e, P), [!t]@T)/7→S = ((e, P), [!t′]@T)/ 7→S = t′′. For Q J P and U J T,

((e,Q), [!t]@U)/ 7→S = ((e,Q), [!t′]@U)/ 7→S J t′′

Proof. Let us set u = ((e,Q), [!t]@U)/ 7→S and u′ = ((e,Q), [!t′]@U)/7→S . By definition of mix(,), we can
notice that ((e,mix(P,Q)), [!mix(e,u)]@ mix(T,U)) = ((e, P), [!u]@T) so, by Lemma 133, ((e, P), [!u]@T)
is a 7→S -copy context. Moreover, because u ∈ Restr 7→S (((e,Q), [!t]@U)), we know that u J t, so u ∈
Restr 7→S (((e, P), [!t]@T)). By Lemma 134, u J t′′. Because t and t′ play symmetric roles, u′ J t′′.

Thus, Restr 7→S (((e,Q), [!t]@U)) and Restr 7→S (((e,Q), [!t′]@U)) are both equal to the set of v J t′′ such
that Restr 7→S (((e,Q), [!v]@U)) is a 7→s-copy context. In particular, their maximums for E are the same: it is
to say u = u′. �

117

Lemma 136. For any proof-net G and mixable subset S of BoxS igG, let Ce, C f , C′e and C′f be contexts such
that Ce S C f , C′e S C′f and C f

7→S = C′f
7→S , then Ce

7→S = C′e 7→S .

Proof. Let S ′ be the projection of S on BG: S ′ = {B ∈ BG | ∃P ∈ Pot, t ∈ S ig, (B, P, t) ∈ S }. The proof is
quite similar to the proof of Theorem 72. The only important cases, are the cases where 7→S differs from
7→S ′ : whenever the path enters or leaves a box by its principal door.

!P
cute f

In the case where e is the principal edge of a box B (we consider the case where we cross
a cut) then Ce = ((e, P),T.!t) S ((f , P),T.!t) = C f . So C′f is of the shape ((f , P′),T ′.!t′).
We set C′e = ((e, P′),T ′.!t′). By supposition, C f

7→S = C′f
7→S = ((f , P′′),T ′′.!t′′). In particular

((f , P′′), [!t])/ 7→s = ((f , P′′), [!t′])/ 7→s = t′′.

Restr 7→S ((e, P′′), [!t])) = {e} ∪ {
u ∈ Restr 7→S (((f , P′′), [!t]))

∣∣∣ ∀v w u, (B, P′′, v) ∈ S
}

Restr 7→S (((e, P′′), [!t])) = {e} ∪
{

u J ((f , P′′), [!t])/ 7→S

∣∣∣∣∣∣ ∀v w u, (B, P′′, v) ∈ S
((e, P′′), [!u]@T) is a 7→S -copy context

}
Restr 7→S (((e, P′′), [!t])) = {e} ∪

{
u J ((f , P′′), [!t′])/ 7→S

∣∣∣∣∣∣ ∀v w u, (B, P′′, v) ∈ S
((e, P′′), [!u]@T) is a 7→S -copy context

}
Restr 7→S ((e, P′′), [!t])) = {e} ∪ {

u ∈ Restr 7→S (((f , P′′), [!t′]))
∣∣∣ ∀v w u, (B, P′′, v) ∈ S

}
Restr 7→S ((e, P′′), [!t])) = Restr 7→S ((e, P′′), [!t′]))

So ((e, P′′), [!t])/ 7→S = ((e, P′′), [!t′])/ 7→S = u′′, and u′′ J t′′. Let [Tk; · · · ; T1] = T , [T ′k; · · · ; T ′1] =

T ′ and [T ′′k ; · · · ; T ′′1] = T ′′, let us prove by induction on i that ((e, P), [Ti; · · · ; T1; !t])7→S =

((e, P′), [T ′i ; · · · ; T ′1; !t′]) 7→S = ((e, P′′), [U′′i ; · · · ; U′′1 ; !u′′]) with [U′′i ; · · · ; U′′1] J [T ′′i ; · · · ; T ′′1]. For i = 0,
the result is straightforward because we know that (e, P) 7→S = (e, P′) 7→S = (e, P′′) (Lemma 65) and
((e, P′′), [!t])/ 7→S = ((e, P′′), [!t′])/ 7→S = u′′. For i > 0, we use Lemma 135. Let us notice that those
steps were not detailed in the proof of Theorem 72. Out of pedagogical concern, we decided do introduce
the technical points progressively.

In the case where f is the principal edge of a box B (we consider the case where we cross a cut) then
Ce = ((e, P),T.?t) S ((f , P),T.?t) = C f . So C′f is of the shape ((f , P′),T ′.?t′). We set C′e = ((e, P′),T ′.?t′).
By supposition, C f

7→S = C′f
7→S = ((f , P′′),T ′′.?t′′). By definition of S , (B, P) and (B, P′) are in S . So

Ce
7→S = C′e 7→S = ((e, P′′),T ′′.?t′′). �

Corollary 137. For any proof-net G and mixable subset S of BoxS igG. Let us suppose that Ce 7→ C f ,
C′e 7→ C′f , Ce

7→S = C′e 7→S . Finally we suppose that, if Ce or C′e is of the shape ((σ(B), P),T.!t) with T a list
of trace elements, then (B, P, t) ∈ S . Then, C f

7→S = C′f
7→S .

Proof. Either Ce C f . In this case we also have C′e C′f . Let us notice that (C′e)⊥7→S = (C′e 7→S)⊥ =

(Ce
7→S)⊥ = (Ce)⊥7→S . By definition of , (C f)⊥ (Ce)⊥ and (C′f)

⊥ (C′e)⊥. Moreover, by assumption
on Ce and C′e, we have (C f)⊥ S (Ce)⊥ and (C′f)

⊥ S (C′e)⊥. By Lemma 136, we have (C⊥f) 7→S =

(C′f)
⊥7→S . Which gives us (C f

7→S)⊥ = (C′f
7→S)⊥ and, finally, C f

7→S = C′f
7→S .

Else, Ce = ((σi(B), P), [!t]) ↪→ ((σ(B), P), [!t]) = C f . Because Ce
7→S = C′e 7→S , the context C′e is of the

shape ((σi(B), P′), [!t′]). Thus C′f is of the shape ((σ(B), P′), [!t′]). We can notice that σ(B) and σi(B) are
contained in the same boxes so, by Lemmas 59 and 65, C f

7→S = C′f
7→S . �

Let us notice that we had to suppose that Ce S C f and C′e S C′f while in Theorem 72, we only
need to suppose one of those. To get a formulation similar to Theorem 72, we will need to make further
assumptions on S .

118

4.3 Definition of S n

By analogy with Section 3.2, one might want to define S n as the set of (B, P, t) ∈ BoxS igG such that
s ̈−> −> −>(B, P, t) ≤ n. However, with such a definition, S n would not be mixable and we could not use Lemma 136.

To understand the problem, let us sketch an attempt of proof of mixability of {(B, P, t) | s ̈−> −> −>(B, P, t) ≤ n}.
We prove it by contraposition: let us set P = mix(P1, P2) and t = mix(t1, t2) and let us suppose that
s ̈−> −> −>(B,mix(P1, P2),mix(t1, t2)) > n, we need to show that either s ̈−> −> −>(B, P1, t1) > n or s ̈−> −> −>(B, P2, t2) > n.
Because s ̈−> −> −>(B, P, t), we have (B, P, t) ¨ −> −> −>(C,Q, u) with s ̈−> −> −>(C,Q, u) ≥ n. By definition, there exists a path
of the shape

((σ(B), P), [!t]) ∗ ((σ(C),Q), [!t′]@U.?u)

We would like to prove that there is such a path beginning by ((σ(B), P1), [!t1]) or ((σ(B), P2), [!t2]). Among
the lemmas we proved previously, Lemma 132 gives a very similar result, but it requires t′ , e which is not
always the case with ¨ −> −> −>.

This is why we define new relations ̈−> and ̇−> which are respectively included in ¨ −> −> −> and ˙ −> −> −>.
In particular ̈−> is acyclic because ¨ −> −> −> is acyclic (Corollary 123). And, whenever ˙ −> −> −> is acyclic, ̇−>
is also acyclic.

Definition 138. For (B, P, t) and (C,Q, u) in CanCopG, we write (B, P, t) ̈−>(C,Q, u) if and only if there
exists a path of the following shape (with v , v′)

((σ(B), P), [!t]) ∗ ((σ(C),Q), [!v]@U.?u) ∗ ((,), [!v′]@)

For (B, P), (C,Q) ∈ Pot(BG), we write (B, P) ̇−>(C,Q) iff ∃t, u ∈ S ig, (B, P, t) ̈−>(C,Q, u).

In the remaining of this chapter, we will work with ̈−>. The main reasons for the definition of ¨ −> −> −>
were pedagogical: ¨ −> −> −> is simpler than ̈−>, it is closely related to the previously defined relation ˙ −> −> −>,
and the proof of Lemma 122 is slightly more readable than if we proved it directly on ̈−>.

Definition 139. For n ∈ N, we set S n as the subset of CanCopG defined by:

{(B, P, t) ∈ CanCopG | s ̈−>(B, P, t) ≤ n}
To simplify notations, in this section, we will write ((e, P),T)/n for ((e, P),T)/ 7→S n , (e,Q)n for (e,Q) 7→S n ,

((e, P),T)n for ((e, P),T) 7→S n , Copn(B, P) for Cop7→S n
(B, P) and Cann(B, P) for Can7→S n

(B, P).
In the proof-net of Figure 4.1, the only ̈−> pairs are of the shape (C, [], r(l(x))) ̈−>(B, [], r(e))

or (C, [], r(r(x))) ̈−>(B, [], r(e)). The copies of (B, []) are {e, l(e), r(e)} and the copies of (C, []) are
{e, l(e), r(e), r(l(e)), r(r(e))}. So the only pairs of ̈−> in CanCop2

G are (C, [], r(l(e))) ̈−>(B, [], l(e))
and (C, [], r(r(e))) ̈−>(B, [], r(e)).

So S 0 = ∅, S 1 = {(B, [], e), (B, [], l(e)), (B, [], r(e)), (C, [], e), (C, [], l(e)), (C, [], r(e))}. For every k ≥ 2,
S k = {(B, [], e), (B, [], l(e)), (B, [], r(e)), (C, [], e), (C, [], l(e)), (C, [], r(e)), (C, [], r(l(e))), (C, [], r(r(e)))}.

So Cop0(B, []) = {e}, Cop1(B, []) = Cop2(B, []) = {e, l(e), r(e)}. For (C, []), we can notice that we have
Cop0(C, []) = {e}, Cop1(C, []) = {e, l(e), r(e)} and Cop2(C, []) = {e, l(e), r(e), r(l(e)), r(r(e))}.
Lemma 140. Let us suppose that there exist paths of canonical contexts of the shape:

((σ(A), P0), [!t0]) ((e1, P1),T1) ((e2, P2),T2) · · · ((ek, Pk),Tk) = ((σ(B), P),U.?t)

((σ(A), P′0), [!t′0]) ((e1, P′1),T ′1) ((e2, P′2),T ′2) · · · ((ek, P′k),T ′k) = ((σ(B), P′),U′.?t′)

Then s ̈−>(B, P, t) = s ̈−>(B, P′, t′)

119

Proof. Because the paths play symmetric roles, it is enough to prove s ̈−>(B, P, t) ≤ s ̈−>(B, P, t). We prove
the lemma by induction on n = s ̈−>(B, P, t). If n = 1 then, by definition of s (), we have s ̈−>(B, P′, t′) ≥ 1
(this is true for every element of BoxS igG).

If n > 1 there exists (C,Q, u) ∈ CanCopG such that (B, P, t) ̈−>(C,Q, u) and s ̈−>(C,Q, u) = n − 1.
By definition of ̈−>, there exists a path of the following shape (we consider the first step after (σ(C),Q)
where the signature of the leftmost trace element decreases)

((σ(B), P), [!t]) ∗ ((σ(C),Q), [!v]@V.?u) ∗ ((e,R), [!v]) ((f ,R), [!w]@W)

Because ((σ(B), P),U.?t) is quasi-standard, t is a standard signature. Thus

((σ(B), P),U.!t) ∗ ((σ(C),Q),U.!v@V.?u) ∗ ((e,R),U.!v) ((f ,R),U.!w@W)

By definition of the relation, we have the dual path:

((f ,R),U⊥.?w@W⊥) ((e,R),U⊥.?v) ∗ ((σ(C),Q),U⊥.?v@V⊥.!u) ∗ ((σ(B), P),U⊥.?t)

Because is injective and ((σ(A), P0), [!t0]) has no antecedent for , This path is a suffix of the path
((e0, P0),T0) k ((ek, Pk),Tk). Thus, the k last steps of the path ((e′0, P

′
0),T ′0) k ((ek, Pk),Tk) are of the

shape

((f ,R′),U′⊥.?w′@W′⊥) ((e,R′),U′⊥.?v′) ∗ ((σ(C),Q′),U′⊥.?v′@V ′⊥.!u′) ∗ ((σ(B), P′),U′⊥.?t′)

with w′ , v′ and U′ is a strict prefix of every trace. Thus, we can remove U′ on every trace and reverse the
path. We obtain the following path:

((σ(B), P′), [!t′]) ∗ ((σ(C),Q′), [!v′]@V ′.?u′) ∗ ((e,R′), [!v′]) ((f ,R′), [!w′]@W′)

By definition of ̈−>, we have (B, P′, t′) ̈−>(C,Q′, v′). Moreover, we know by induction hypothesis that
s ̈−>(C,Q′, v′) = s ̈−>(C,Q, v) = n − 1 so s ̈−>(B, P′, t′) ≥ n. �

Lemma 141. For every (B, P) ∈ Pot(BG), s ̈−>(B, P, e) = 1.

Proof. We can prove the lemma by contradiction. If s ̈−>(B, P, e) > 1 then there exists (C,Q, u) such that
(B, P, e) ̈−>(C,Q, u). It is to say, there is a path of the shape:

((σ(B), P), [!e]) ∗ ((σ(C),Q), [!v]) ∗ ((,), [!w])

with v , w. However, by definition of 7→, we have v = w = e. �

Lemma 142. For every n ≥ 1, S n is mixable.

Proof. The second property of the definition of S n is proved in Lemma 141. Here, we will prove the
first property by induction on n. We have to prove that for every (B, P1, t1) and (B, P2, t2) in CanCopG, if
(B, P1, t1) ∈ S n and (B, P2, t2) ∈ S n then (B,mix(P1, P2),mix(t1, t2)) is also in S n.

For n ≥ 1, we will prove the property by contraposition. Let us consider (B, P1, t1) and (B, P2, t2) in
CanCopG. Let us suppose that (B, P, t) = (B,mix(P1, P2),mix(t1, t2)) is not in S n. We will prove that
either (B, P1, t1) < S n or (B, P2, t2) < S n. By definition of this set, s ̈−>(B, P, t) > n. So there exists
(C,Q, u) ∈ CanCopG such that (B, P, t) ̈−>(C,Q, u) and s ̈−>(C,Q, u) ≥ n. By definition of ̈−>, there
exists a path of the following shape (with v , w):

((σ(B), P), [!t]) ∗ ((σ(C),Q), [!v]@V.?u) ∗ ((e,R), [!v]) ((f ,R), [!w]@W)

120

Because v , w, we can deduce that v , e. By Lemma 132, either there exists a path of the following shape
(with v1 , e):

((σ(B), P1), [!t1]) ∗ ((σ(C),Q1), [!v1]@V1.?u1) ∗ ((e,R1), [!v1]) ((f ,R1), [!w1]@W1)

or there exists a similar path beginning by ((σ(B), P2), [!t2]). Because (B, P1, t1) and (B, P2, t2) play sym-
metric roles, we suppose without loss of generality that we are in the first case. By definition of ̈−>, we
have (B, P1, t1) ̈−>(C,Q1, u1). By Lemma 140, s ̈−>(C,Q1, u1) = s ̈−>(C,Q, u) = n so s ̈−>(B, P1, t1) > n and
(B, P1, t1) < S n. �

Lemma 143. Let us consider (B, P, t) ∈ S n such that ((σ(B), P), [!t]) ∗ ((σ(C),Q), [!t0]@U.!u) ∗

((,), [!t1]@) with t0 , t1. Then (C,Q, u) ∈ S n.

Proof. We prove it by contraposition. Let us suppose that (C,Q, u) < S n then by definition of S n, we
have s ̈−>(C,Q, u) > n. So there exists a path of the shape ((σ(C),Q), [!u]) ∗ ((σ(D),R), [!u1]V.?v) ∗

((,), [!u2]) with u1 , u2 and s ̈−>(D,R, v) ≥ n.
By Lemma 9, we can deduce the following path:

((σ(B), P), [!t]) ∗ ((σ(C),Q), [!t0]@U.!u)

 ∗ ((σ(D),R), [!t0]@U@[!u1]@V.?v) ∗ ((,), [!t0]@U@[!u2])

 ∗ ((,), [!t1])

So, by definition of ̈−>, we have (B, P, t) ̈−>(D,R, v) and s ̈−>(B, P, t) > s ̈−>(D,R, v) ≥ n. By definition
of S n, (B, P, t) < S n. �

Lemma 144. Let us consider n ∈ N, (B, P, t) and (B, P′, t′) in CanCopG such that (B, P, t) < S n and
((σ(B), P), [!t])n = ((σ(B), P′), [!t′])n then (B, P′, t′) < S n.

Proof. We prove the lemma by induction on (s, s "(B, P, t)). By definition of S n, s ̈−>(B, P, t) > n. So there
exists (C,Q, u) ∈ CanCopG such that s ̈−>(C,Q, u) ≥ n and there exists a path of the shape:

((σ(B), P), [!t]) ∗ ((σ(C),Q), [!t1]@U.?u) ∗ ((e, Pe), [!te])

with t1 , te. Let us consider the lowest i such that ((σ(B), P), [!t]) 7→i ((σ(D),R), [!td]@V.!v) 7→∗ ((e, Pe), [!te])
with td , te and (D,R, v) < S n.

• If such a step does not exist, by Lemmas 142 and 137, there exists a path of the shape

((σ(B), P′), [!t′]) ∗ ((σ(C),Q′), [!t′1]@U′.?u′) 7→∗ ((e, P′e), [!t′e])

with ((σ(C),Q), [!t1]@U.?u)
n

= ((σ(C),Q′), [!t′1]@U′.?u′)
n

and ((e, Pe), [!te])n = ((e, P′e), [!t′e])
n. Let

us notice that (B, P′, t′) ̈−>(C,Q′, u′). By induction hypothesis (we could also use Lemma 140)
s ̈−>(C,Q′, u′) ≥ n so s ̈−>(B, P′, t′) > n.

• If such a step does exist, by Lemmas 142 and 137, there exists a path of the shape

((σ(B), P′), [!t′]) i ((σ(D),R′), [!t′1]@V ′.!v′)

with ((σ(D),R), [!v])n = ((σ(D),R′), [!v′])n. We know that (D,R, v) < S n and (B, P, t) "+(D,R, v).
Thus, by induction hypothesis, we have (D,R′, v′) < S n. So, by Lemma 143, (B, P′, t′) < S n−1.

121

�

Theorem 145. Let C,D,D′ be canonical contexts. If C S n D and Dn = D′n then there exists a canonical
context C′ such that C′ S n D′ and Cn = C′n.

Proof. Immediate from Lemmas 136 and 144. �

Lemma 146. Let n ∈ N. If ((σ(B), P), [!t]) 7→∗S n
C 7→∗S n

D and Dn = D′n then there exists a context C′ such
that C′ 7→∗S n

D′ and Cn = C′n.

Proof. This Lemma is deduced from Theorem 145 exactly as Lemma 74 is deduced from Theorem 72. �

Lemma 147. For n ∈ N, if ((σ(B), P), [!t]) 7→∗S n
((e,Q), [!u]) 7→+

S n
((e,Q′), [!v]) then e,Qn−1 , e,Q′n−1.

Proof. This Lemma is deduced from Lemma 146 exactly as Lemma 75 is deduced from Lemma 74. �

Theorem 148. For any proof-net G, the length of its longest path of reduction is bounded by 2|
~EG |
3| ̈−>|.

Proof. This Lemma is deduced from Lemma 147 exactly as Lemma 78 is deduced from Lemma 75. �

Thus, to have an elementary bound on a proof-net G, it is enough to suppose that, for every proof-net H,
the depth of the relation | ̈−>| on (G)H is bounded by MG which does not depend on H.

122

4.4 Primitive recursive bound

In this section, we will prove that the acyclicity of ̇−> entails a primitive recursive bound on the length
of cut-elimination. To guide intuition, we will sketch the proof that the acyclicity of �̇ entails a primitive
recursive bound. The idea is to view canonical boxes as a forest whose roots are the canonical boxes (B, [])
(with ∂(B) = 0), there is an arrow from (B, P) to (C, P.t) iff B is the deepest box containing C. The idea is to
progressively unveil the forest, starting by its roots.

Let us consider a finite set S of canonical boxes. Because �̇ is supposed acyclic, S admits a minimal
element (B0, P0) for �̇ (it is to say, (B0, P0)�̇(B1, P1) implies that (B1, P1) is not in S). Let us notice that,
if there exists an arrow from (B, P) to (C, P.t), then (C, P.t)�̇(B, P). Thus (B0, P0) must be minimal with
respect to the forest: if there is an arrow from (B1, P1) to (B0, P0) then (B1, P1) < S .

Because of this property, we know that one of the (B1, []) potential boxes at depth 0 is minimal for
�̇. Then, the elementary stratification property gives us a bound on |Cop(B1, [])|. Thus, for every box C
immediately included in B1, we have a bound on |Can(C)|. Then, there is a potential box (B2, P2) among
{(B, []) ∈ Can(BG) | B , B1} ∪ {(B, [t]) ∈ Can(BG) | B ⊂ B1} such that (B2, P2)�̇(C,Q) ⇒ (C,Q) = (B1, []).
Thus, by the elementary stratification property, one can prove a bound on |Cop(B2, P2)|. Then, for every box
C immediately included in B2, we have a bound on |Can(C)|...

Let us consider, at each step, the leaves of the subforest: the potential boxes (B, [p1; · · · ; p∂(B)]) with
B ⊂ B∂(B) ⊂ · · · ⊂ B1 such that

• For every 1 ≤ i < ∂(B), we have proved a bound on Cop(B, [p1; · · · ; pi]).

• We have not yet proved a bound on Cop(B, [p1; · · · ; p∂(B)]).

At each step we delete a leaf (B, P) at a certain depth ∂(B), and the leaves we create (the elements of
{(C, P.t) ∈ Pot(BG) |C ⊂ B ∧ t ∈ Cop(B, P)}) all are at depth ∂(B) + 1. Thus, the sets of weight decreases
along the multiset order. Such order allows us to deduce a primitive recursive bound on reduction [42].

However, as written before, our goal is not to prove that the acyclicity of �̇ entails a primitive recursive
bound, but that the acyclicity of ̇−> entails a primitive recursive bound. In this case, it is possible that no
maximal element of S for ̇−> is minimal for the forest. Thus, the order we use is a bit more complex.
It relies on the acyclicity of "on contexts (Lemma 100, Section 3.4). As a parallel, one might compare
the proof that the acyclicity of � entails an elementary bound (Theorem 32, Section 3.1.3) and the proof
that the acyclicity of −> −> −> entails an elementary bound (Theorem 78, Section 3.2.3). For Theorem 32, we
bound max(B,P)∈Pot(B) |Cop(B, P)| one box B at a time. For Theorem 78, we bound the number of restricted
copies (which, at the end of the proof, correspond to copies because we consider n = | −> −> −> |). This is the
approach we will use. We build, step by step, a set S of canonical boxes and bound the size of Can 7→S (EG).
Here, the set Can7→S (BG) plays the same role as the sub-forest progressively unveiled in the proof sketch for
�̇-stratified proof-nets. The leaves correspond to the set Can7→S (BG) − S .

In order to prove the bounds by induction, the set S will be required to verify certain constraints. Indeed,
S is supposed to be a set of canonical boxes (B, P) for which we have a bound on Cop7→S (B, P). Let us
suppose that B0 is a box included in B, (B, P) ∈ S , (B0, P. l(e)) ∈ S , (C,Q) < S , t′ , e ∈ S ig and we have
paths of the shape:

((σ(B), P), [!l(r(e))]) ∗↪→ ((σ(C),Q), [!r(e)])

((σ(B0), P. l(r(e)), [!t]) ∗ ((σ(C),Q), [!t′]@U@[!u]) ∗ ((,), [!e])

((σ(B0), P. l(r(e))) 7→S , [!t]) =((σ(B0), P. r(e)), [!t]) ∗ ((σ(C),Q), [!t′]@U@[!e]) ∗ ((,), [!t′]@V) 6

123

Then, if we add (C,Q) in S (i.e. when we define S ′ = S ∪ {(C,Q)}), the signature t is a 7→S ′-copy of
(B, P. l(r(e)))7→S ′ even if it is not a copy of (B, P. l(r(e)))7→S . Such behaviour would make the proof of
bounds very hard. This is why, we forbid such behaviour in the following definition of n-coherent sets.

Definition 149. Let n ∈ N. A n-coherent set is a subset S of Cann(BG) such that:

• For every (B, P) ∈ S and t ∈ S ig, (B, P, t) ∈ S n.

• If (B, P) ∈ Cann(BG) − S then there exists t ∈ S ig such that (B, P, t) < S n−1.

• If (B, P) ∈ S and (B, P)n = (B,Q)n then (B,Q) ∈ S .

• If (B, P) ∈ S and ((σ(B), P), [!t]) ∗ ((σ(C),Q),U@[!u]) then (C,Q) ∈ S

To understand why the proof of this section is delicate, let us consider the following case: (B, P) ∈ S ,
(C,Q) ∈ Can7→S (BG)− S , ((σ(B), P), [!l(r(e))]) ∗↪→ ((σ(C),Q), [!r(e)]) and B0 (resp. C0) is a box included
in B (resp. C). In this case (B0, P. l(e)) is in Can 7→S (BG) and (B0, P. l(r(e))) is not in Can7→S (BG). Let us
suppose that we add (C,Q) to S (i.e. S ′ = S ∪ {(C,Q)}). Let us observe the effect this step has on the leaves:

• (C,Q) goes from Can 7→S (BG) − S to S ′, so there is one less leaf at depth ∂(C).

• (C0,Q. r(e)) is not in Can7→S (BG) but is in Can7→S ′ (BG)− S ′ so we have new leaves at depth ∂(C) + 1.
Because it is at a higher depth, it is not a problem with respect to the multiset ordering.

• (B0, P. l(r(e)) is not in Can7→S (BG) but is in Can7→S ′ (BG)−S ′ so we have new leaves at depth ∂(B)+1.
However, we may have ∂(B) < ∂(C).

So, the multiset previously defined is not precise enough. We have to define a new ordering. This is the goal
of the Definition 150.

Definition 150. For any coherent set S , the weight of S is the tuple WS =
(
|Can7→S (EG)|, (wS

i, j)0≤i, j<∂G

)
with

wS
i, j defined as

∣∣∣∣eS
i, j

∣∣∣∣ with eS
i, j a set of pairs of potential boxes defined by:

eS
i, j =

((B, P), (C,Q)) ∈ Can7→S (BG)2

∣∣∣∣∣∣∣∣∣
∂(B) = i, ∂(C) = j

(C,Q) < S , and ∃P′ I P,Q′ I Q,∃t ∈ S ig such that
((σ(B), P′), [!t]) 7→∗ ((σ(C),Q′), [!e])

We order the weights by the lexicographic order. We write WS < WT if and only if |Can7→S (EG)| ≤
|Can7→T (EG)| and there exists 1 ≤ a, b ≤ ∂(G) such that:

• wS
a,b < wT

a,b

• For i < a and 0 ≤ j < ∂G, wS
i, j ≤ wT

i, j

• For j < b, wS
a, j ≤ wT

a, j

Lemma 151. There exist primitive recursive functions p, p′ satisfying the following condition. For every
coherent set S such that Can7→S (BG) is finite and Can(BG) * S , there exists a coherent set T such that
WT < WS , |Can7→T (EG)| ≤ p

(|Can7→S (EG)|) and for every 0 ≤ a, b < ∂G, wT
a,b ≤ p′

(
max0≤i, j<∂G wS

i, j

)
.

124

Proof. Let us consider the set S = Can(BG) − S . By assumption the set is not empty. For (B, P) ∈
Can(BG) − S , we can notice that (B, P) 7→S ∈ Can7→S (BG) and ((B, P)7→S) 7→S = (B, P) 7→S so (by definition of
coherent sets) (B, P)7→S < S . So the set Can7→S (BG) − S is not empty. We write n for the natural number
such that S is n-coherent

• If there exists (B, P) ∈ Can7→S (BG) − S such that, for every t ∈ S ig, (B, P, t) ∈ S n then we set

E = {(B, P) ∈ Can7→S (BG) − S | ∀t ∈ S ig, (B, P, t) ∈ S n}

We can observe that E is finite and non-empty. Moreover, by Lemma 101, we know that the pro-
jection of "on this set is acyclic. So there exists (B, P) ∈ E which is maximal in E for "

(i.e. (B, P, t) "∗(C,Q, u) implies that (C,Q) is not in E). Then we define T as the set T = S ∪{
(B, P′) ∈ Can7→S (B)

∣∣∣ (B, P)n = (B, P′)n} and we will show that T is n-coherent.

– Let us consider (C,Q) ∈ T and u ∈ S ig. If (C,Q) ∈ S then, because S is a n-coherent set,
(C,Q, u) ≤ n. Else (B, P)n = (C,Q)n. Because (B, P) ∈ E, (B, P, u) ∈ S n.

– Let us consider (C,Q) ∈ Cann(BG)−T then (C,Q) ∈ Cann(BG)−S . So, because S is a n-coherent
set, there exists u ∈ S ig such that (C,Q, u) < S n−1.

– If (C,Q) ∈ T and (C,Q)n = (C,R)n then, either (C,Q) ∈ S so (because S is a n-coherent set)
(C,R) ∈ S ⊆ T . Or (B, P)n = (C,Q)n = (C,R)n so (C,R) ∈ T .

– If (C,Q) ∈ T and there exist a path of the shape ((σ(C),Q), [!t]) ∗ ((σ(D),R),U@[!u]).
Then either (C,Q) ∈ S and in this case, because S is a n-coherent set, (D,R) ∈ S ⊆ T . Or
(B, P)n = (C,Q)n. In this case there exists R′ ∈ Pot and u′ ∈ S ig such that (D,R′)n = (D,R)n

and ((σ(B), P), [!t]) ∗ ((σ(D),R′),U′@[!u′]). Let us notice that (B, P, t) "(D,R′, u′). So,
(D,R′) < E. It is to say, either (D,R′) ∈ S or there exists v ∈ S ig such that (D,R′, v) < S n.
In the second case we would have (C,Q, t) < S n (Lemma 143) so s ̈−>(B, P, t) > n which is a
contradiction. So (D,R′) ∈ S . And, because S is n-coherent, we have (D,R) ∈ S .

• Else, we can observe that Can7→S (BG) − S is finite and non-empty. So, by Lemma 101, there exists
(B, P) ∈ Can 7→S (BG) − S so that whenever (B, P, t) "+(C,Q, u), (C,Q) < Can7→S (BG) − S . We will
show that T = S ∪

{
(B, P′) ∈ Can 7→S (B)

∣∣∣ (B, P)n+1 = (B, P′)n+1
}

is a n + 1-coherent set.

– Let us consider (C,Q) ∈ T and u ∈ S ig. If (C,Q) ∈ S then, because S is a n-coherent set,
(C,Q, u) ∈ S n ⊂ S n+1.
Else (B, P)n+1 = (C,Q)n+1. Let us suppose that (C,Q, u) < S n+1, then we would have (B, P, u) <
S n+1 (Lemma 144). So s ̈−>(B, P, u) > n+1. By definition of s (), there exists (D,R,w) such that
(B, P, u) ̈−>(D,R,w) and s ̈−>(D,R,w) > n. Because S is n-coherent, (D,R) < S . So (D,R) < S
and (B, P, u) "(D,R,w). This contradicts the minimality of (B, P). So our hypothesis was
wrong, s ̈−>(C,Q) ≤ n + 1.

– Let us consider (C,Q) ∈ Cann(BG)−T then (C,Q) ∈ Cann(BG)−S . By supposition, there exists
u ∈ S ig such that (C,Q, u) < S n.

– If (C,Q) ∈ T and (C,Q)n+1 = (C,R)n+1 then, either (C,Q) ∈ S . In this case, let us notice
that we also have (C,Q)n = (C,R)n. So, because S is a n-coherent set, (C,R) ∈ S ⊆ T . Or
(B, P)n+1 = (C,Q)n+1 = (C,R)n+1 so (C,R) ∈ T .

125

– If (C,Q) ∈ T and there exists a path of the shape ((σ(C),Q), [!t]) ∗ ((σ(D),R),U@[!u]). Then
either (C,Q) ∈ S and in this case, because S is a n-coherent set, (D,R) ∈ S ⊆ T . Or (B, P)n+1 =

(C,Q)n+1. In this case there exists R′ ∈ Pot and u′ ∈ S ig such that (D,R′)n+1 = (D,R)n+1

and ((σ(B), P), [!t]) ∗ ((σ(D),R′),U′@[!u′]). Let us notice that (B, P, t) "(D,R′, u′). So,
(D,R′) < Can7→S (BG) − S . So (D,R′) ∈ S . So, because (D,R′)n+1 = (D,R)n+1, (D,R′)n =

(D,R)n. Because S is n-coherent, we have (D,R) ∈ S ⊆ T .

As we proved above, for every t ∈ S ig, if (B, P, t) ⊆ (C,Q, u) or (B, P, t) ̈−>(C,Q, u) then (C,Q) ∈ S .
We set m = n if we are in the first case, m = n + 1 otherwise. Let us consider (B, P′) ∈ Can7→S (BG) such
that (B, P)m = (B, P′)m. Then, for every t ∈ S ig, if (B, P′, t) ⊆ (C,Q′, u) or (B, P′, t) ̈−>(C,Q′, u) then
there exists (C,Q)m = (C,Q)m such that (B, P, t) ⊆ (C,Q, u) or (B, P, t) ̈−>(C,Q, u). So (C,Q) ∈ S and
(C,Q′) ∈ S .

Let us give a bound on |Cop7→T (B, P′)|. Let us consider t ∈ Cop 7→T (B, P′) and u w t. By definition there
exists a path of the shape ((σ(B), P′), [!u]) 7→∗T ((,), [!e]). Thus, ((σ(B), P′), [!u]) 7→T 7→∗S ((,), [!e]). Let
us suppose that there exists two contexts ((e,Q), [!v]) and ((e,Q′), [!v′]) in the paths such that (e,Q) 7→S =

(e,Q′) 7→S . Then, as in the proof of Lemma 75, we can prove that it entails a contradiction. So the number of
contexts of the shape ((,), [!]) in the path is bounded by

∣∣∣Can7→S (BG)
∣∣∣. Thus, as in the proof of Theorem 78,

we can deduce that: ∣∣∣Cop 7→T (B, P′)
∣∣∣ ≤ 222·|Can7→S (EG)|

We can notice that
∣∣∣Can7→S (BG)

∣∣∣ ≤ ∑
0≤i, j<∂G wS

i, j. Thus, there exists a primitive recursive function q such

that
∣∣∣Cop7→T (B, P′)

∣∣∣ ≤ q
(
|EG | ,max0≤i, j<∂G wS

i, j

)
. So there exists a primitive recursive function p such that

|Can7→T (EG)| ≤ p
(|Can7→S (EG)|).

Let b be the depth of B. And let a the minimal index such that there exists a box C at depth a, (C,Q) ∈
Can7→S (BG), Q′ I Q and P′ I P such that (C,Q′) x. (B, P′). Let us notice that (B, P) x. (B, P) so a is
well-defined and a ≤ b.

• Let us consider i ≤ a, j ≤ b and ((C,Q), (D,R)) ∈ eT
a,b. Then (C,Q) and (D,R) are in Can7→T (BG),

(D,R) < T , |Q| = a, |R| = b and there exist Q′ I Q, R′ I R and v ∈ S ig such that ((σ(C),Q′), [!v]) 7→∗
((σ(D),R′), [!e]).

If (C,Q) is not in Can 7→S (BG), then it would mean that there exists (C0,Q′0) ⊃ (C,Q′) such that
(C0,Q′0) x. (B, P′) which contradicts the definition of a. So (C,Q) ∈ Can7→S (BG).

If (D,R) is not in Can7→S (BG), then it would mean that there exists (C0,Q′0) ⊃ (C,Q′) such that
(C0,Q′0) x. (B, P′). So there exists (D0,R′0) ⊃ (D,R′) such that: either (D0,R′0) x. (B, P′) or there
exists w ∈ S ig such that (D,R′,w) ̈−>(B, P, t) with t the signature such that s ̈−>(B, P, t) = m. Then,
we would have s ̈−>(D,R′,w) > m so (D,R) < S . In both case, we have a contradiction so (D,R) ∈
Can7→S (BG).

Then, (C,Q) and (D,R) are in Can 7→S (). Thus, ((C,Q), (D,R)) ∈ eS
a,b. So eT

i, j ⊆ eS
i, j and wT

i, j ≤ wS
i, j.

Moreover, we can notice that, there exists ((C,Q), (B, P)) ∈ eS
a,b but ((C,Q), (B, P)) < eT

a,b because
(B, P) ∈ T . So eT

a,b ⊂ eS
a,b and wT

a,b < wS
a,b.

• Otherwise, because wT
i, j ⊆ Can7→T (BG), so:

wT
i, j ≤

(
max

(B,P)m=(B,P′)m
‖Cop7→T (B, P)‖ ·

∣∣∣Can7→S (BG)
∣∣∣)2

126

So there exists a primitive recursive function p′ such that wT
i, j ≤ p′

(
|EG | ,max0≤i, j<∂G wS

i, j

)
.

�

Theorem 152. For every k ∈ N, there exists a primitive recursive function pk such that, if G is a ̈−>-
stratified proof-net and ∂(G) ≤ k then WG ≤ pk (|EG |).
Proof. We define a symbol φ of arity k2 + 1 and a term-rewriting system defined by the transition:

φ(WS)→ φ(WT) if T is the coherent set obtained from S in the proof of Lemma 151

Then, with the notations of [42], for every l → r, we have l �MPO r (with the precedence relation �= ∅).
Then there exists a primitive recursive function qk such that the length of any → sequence starting from
φ(n1, · · · , nk2+1) is bounded by qk(size(φ(n1, · · · , nk2+1))).

In particular, let us notice that ∅ is a 0-coherent set and W∅ = (n1, · · · , nk2+1) with ni ≤ |EG | for
1 ≤ i ≤ k2 + 1. Thus, there exists a primitive recursive function pk such that there exists a coherent set S
with

∣∣∣Can7→S (EG)
∣∣∣ ≤ pk (|EG |) and φ(WS)9. So, by definition of→, S = Can(BG). Thus:

Can7→S (EG) = Can(EG)

Can7→S (EG) ≤ pk (|EG |)

�

127

128

Chapter 5

Linear logic subsystems and λ-calculus
type-systems

In Chapters 3 and 4 we defined semantic criteria on proof-nets implying bounds on the length of cut elimina-
tion. Those criteria are all decidable in the following meaning: given a strongly normalizing proof-net G (let
us recall that every LL proof-net is strongly normalizing), one can determine whether the relations�, −> −> −>,

. , / / / , / and ̇−> are acyclic. Indeed, one can compute every path of context semantics by reducing
the proof-net. Then, one can check each of those paths to compute the above relations. Similarly one can
compute, for every possible assignments s() and d() and every subset S of BG, the minimum relation�
satisfying the definition of weak stratification. Finally, one can verify whether this relation is acyclic.

However, computing the complexity of G by normalizing G has no practical interest. We are interested
in the complexity of functions. In this section, we will define subsystems of linear logic by decorating
formulae with labels and require them to verify some local criteria. Every proof-net G normalizes in at most
f|BG | (|EG |). For every LL proof-net G, the set of possible decorations to consider is finite. Thus, checking
if there exists a decoration for G is decidable (even if searching labels this way is inefficient, because there
may be more than xx possible decorations with x = |EG |). Let us suppose that there exists a decoration of
G such that the conclusion of G is A (B, then for every (decorated) proof-net H of conclusion A, then
(G)H. Let us also suppose that there exists MA ∈ N such that, for every such proof-net H in normal form,
|BG | ≤ MA (we noticed in Section 3.1.4 that it is a reasonable assumption). Then, (G)H normalizes it at
most f|BG |+MA (|EG |) steps, and we can notice that the function does not depend on H.

The first system we define is S DNLL, a type system enforcing the acyclicity of −> −> −>, . . . and / / /

(Sections 3.2 and 3.3) than linear logic is. The ! and ? modalities are labeled with three indices s, d and
n in N. The labels represent respectively the depth of a box for −> −> −>, . . . and / / / . This subsystem can
be seen as a generalization of LLL, L4 and of a maximal system of MS . The long term goal is to use our
criteria on programming language outside of academics. Even if λ-calculus is not used directly it is closer
to functionnal programming languages (such as Caml or Haskell). This is why we adapt S DNLL to a type-
system S DNLLλ for λ-calculus. By translating type derivations of S NLLλ into proof-nets of S DNLL, we
prove the that S DNLLλ enjoys subject reduction and enforces a polynomial bound on β-reduction.

Then we define a subsystem S wLL (based on the weak stratifications of Section 3.5) of linear logic
generalizing S DNLL. One can embed S LL and every system of MS in S wLL. This subsystem is quite
complex. The main purpose of S wLL is to demonstrate that the improvements made from Section 3.3 to
Section 3.5 on our semantic criteria, can be used by syntactical (and decidable) criteria.

129

5.1 Stratified Dependence control Nested Linear Logic

5.1.1 Definition of S DNLL

We define a LL subsystem, called S DNLL (for Stratification Dependence control Nesting Linear Logic)
characterizing Poly. In S DNLL, to enforce −> −> −>-stratification1, . . . -stratification2 and / / / -stratification3,
we label the ! and ? modalities with integers s, d and n. Let us consider a S DNLL proof-net G and boxes B
and B′ with βG(σ(B)) = !s,n,dA and βG(σG(B′)) = !s′,d′,n′A′. Then we will have the following implications:
(B −> −> −> B′ implies s > s′), (B . . . B′ implies d > d′) and (B / / /

B′ implies n > n′). This implies that G is
 −> −> −>-stratified, . . . -stratified and / / / -stratified.

Definition 153. For s ∈ N, we define Fs by the following grammar (with t, d, n ∈ N, t ≥ s and X ranges
over a countable set of variables). Notice that F0 ⊇ F1 ⊇ · · ·

Fs := Xt | X⊥t | Fs ⊗ Fs | Fs ` Fs | ∀Xt.Fs | ∃Xt.Fs | !t,d,nFt+1 | ?t,d,nFt+1

For any formula of the shape A = !s′,d′,n′A′, we write sA for s′, dA for d′ and nA for n′. For A ∈ F0, smin
A

refers to the minimum s ∈ N such that A = h[!s, ,]. To gain expressivity, we define a subtyping relation ≤
on F0. The relation ≤, defined as the transitive closure of the following ≤1 relation, follows the intuition that
a connective !s,d,n in a formula means that this connective “comes” from a box B with stratum s −> −> −>(B) ≥ s,
s . . . (B) ≥ d and s / / / (B) ≥ n.

A ≤1 B⇔
{

Either A = g[!s,d,nD], B = g[!s′,d′,n′D], s ≥ s′, d ≥ d′ and n ≥ n′

Or A = g[?s,d,nD], B = g[?s′,d′,n′D], s ≤ s′, d ≥ d′ and n ≤ n′

Definition 154 (S DNLL proof-net). A S DNLL proof-net is a graph-like structure defined inductively by
the graphs of Figure 5.1 (G and H being proof-nets). Every edge e is labelled by a F0 formula β(e).

In order to prove the Poly soundness of S DNLL, we first have to prove a technichal lemma. Whenever
((e, P), [!t]@T) ∗ ((f ,Q), [!u]@U), the formulae of e and f are related. To be more precise, we will prove
that (if G does not contain any ∃ or ∀ node, we will deal with those later), (β(e))|T ≤ (β(f))|U , with A|T
defined as follows:

Definition 155. Let A be a formula and T a trace, we define A|T by induction on A as follows: A|[] = A,
(A ⊗ B)|T.⊗l = (A ` B)|T.`l = A|T , (A ⊗ B)|T.⊗r = (A ` B)|T.`r = B|T , (∀X.A)|T.∀ = (∃X.A)|T.∃ = (!s,d,nA)|T.!t =

(?s,d,nA)|T.?t = A|T .

Let us suppose that ((e, P),T) ((f ,Q),U) implies β(e)T ≤ β(f)U (it will be formally proved in
Lemma 166). For instance, if ((e, P),T) ((f , P),T.parrr) then βG(e) and β(f) are of the shape B and
A′ ` B′ with B ≤ B′. Let us notice that βG(f)T.`r = (B′)T ≥ (B)T = βG(f)T . Let us notice that the ↪→
step breaks this property: if β(σi(B)) = ?s,d,nA and β(σ(B)) = !s′,d′,n′B then A and B are a priori unrelated.
The only relation required on those formulae is that d ≥ d′ and n ≥ n′. Thus, whenever ((σ(B), P), [!t]) 7→∗
((σ(B′), P′), [!t′]) with β(σ(B)) = !s,d,nA and β(σ(B′)) = !s′,d′,n′A′, we have d ≥ d′ and n ≥ n′ (it will be
formally proved in Lemma 167).

To understand why every S DNLL proof-net is −> −> −>-stratified, . . . -stratified and / / / -stratified, we con-
sider boxes B and B′ with σ(B) = !s,d,nA and σ(B′) = !s′,d′,n′A′.

1Defined in Section 3.2
2Defined in Section 3.3.1
3Defined in Section 3.3.2

130

G
B1 Bk

ax
A⊥A

G H

cutA A⊥
G

∃
A[B/X]

∃XA

G

∀
A

∀XA

G H

⊗A B
A ⊗ B

G

`A B
A ` B

G ?W
?s,d,nAi

G

?D
A

i
?s,d,nAi-1

G

?N
?s,d,n?s,d,n+1A

i
?s,d,n+1Ai-1

G

?C
?s,d,nA ?s,d,nA

?s,d,nAi

G

!P?P?P?P
A1

i
A2

i
Ak

i
C

i
?s1,d,nA1i-1

?s2,d+1,nA2i-1
?sk ,d+1,nAki-1

!s,nC
i-1

Figure 5.1: Construction of S DNLL proof-nets. For the ∀ rule, we require X not to be free in the formulae
labelling the other conclusions of G. For the ∃ rule, we require smin

B ≥ s. For the top-left rule, we suppose G
is a proof-net of conclusions A1,. . . ,Ak and ∀i, Ai ≤ Bi.

Let us suppose that B −> −> −> B′, then there exists a path ((σ(B), P), [!t]) ∗ ((σ(B′), P′), [!v]@U.?u). So,
!s,d,nA =

(
!s,d,nA

)
[] ≤ (βG(f))U.?u

, which means that A′ = h[?t,e,oB⊥] with !s,d,nA ≤ !t,e,oB. By definition of
≤, s ≥ t. And, by definition of F0, s′ < t. Thus s > s′.

Let us suppose that B . . . B′. Then there exists paths of the shape ((σ(B), P), [!t]) 7→+ ((σi(B′), P′1), [!e])
and ((σ(B), P), [!u]) 7→+ ((σ j(B′), P′2), [!e]) with i , j. Let ? ,di, Ai = β(σi(B)) and ? ,d j, A j = β(σ j(B)), then
d ≥ di and d ≥ d j. Either i , 1 (so d ≥ di > d′ by definition of SDNLL) or j , 1 (so d ≥ d j > d′ by
definition of SDNLL).

Let us suppose that B
/ / /

B′, then there exists a non-standard signature v such that ((σ(B), P), [!v]) 7→∗
((σ(B′), P′), [!e]). Let us consider the first context of the path whose leftmost trace is element is stan-
dard. Thus, there exists an edge e which is the conclusion of a ?N node such that ((σ(B), P), [!v]) 7→∗
((e,Q), [!p(w)]) 7→∗ ((f ,Q), [!w]) 7→∗ ((σ(B′), P′), [!e]). Let ?se,de,ne Ae = β(e) and ?s f ,d f ,n f A f = β(f). Then,
n ≥ ne and n f ≥ n′. Moreover, because of the S DNLL constraints, ne > n f so n > n′.

5.1.2 Underlying Formula

5.1.2.1 Intuition of the proof

The idea of this subsection is to prove that, if a context ((e, P),T) 7→∗ C, then C still has information about
the formula β(e). We can define an underlying formula for the contexts, and this underlying formula will
be stable by in typed proof-nets. A consequence from this is that, if we begin a path by a context with
a “right trace”, then this path will never be blocked by a mismatch between the trace and the type of link
above our edge (the tail of our edge). For example we will never have ((e, P),T.∀) with the tail of e being
a ⊗ link. However, it does not prevent blocking situations such as ((e, P),T.!e) with the tail of e being a ?C
link.

Our first idea to define the underlying formula of ((e, P),T) would be (βG(e))T . For example the un-
derlying formula of ((e, P), [!l(e);`r;∀]) with β(e) = ∀X.?(X ⊗ X⊥) ` !(X⊥ ` X) would be X⊥ ` X. Let
us remember that, if we defined β(e) as β(e)⊥. Thus, if ((e, P),T) ((f , P),T) by crossing a cut node,
β(e) = β(f) and β(e)T = β(f)T .

131

However, there is a problem with this definition when we cross a ∃ link downwards. For example if
((c, []), [`r; !e;⊗r]) 7→ ((d, []), [`r; !e;⊗r;∃]) with β(c) = ?(X ⊗ X⊥) ⊗ !(X⊥ ` X) and β(d) = ∃Y.Y ⊗ Y⊥.
Then β(c)[`r;!e;⊗r] = X, but β(d)[`r;!e;⊗r;∃] is undefined: the trace is not compatible with the syntactic tree of
β(d). We will have to pay attention to the substitution caused by the ∀/∃ cut-elimination.

Let us recall that N∀G (resp. N∃G) represents the set of ∀ nodes (resp. ∃ nodes) of G. We define a mapping
φG from Pot(N∀G) to F0 × Pot(N∃G). Intuitively, if φG(l, P) = (A, (m,Q)), the node residues corresponding to
(l, P) and (m,Q) are cut together, and A is the formula replaced by m. More formally, if l is a ∀ node, we
define φG(l, P) by:

φG(l, P) = (A, (m,Q))⇔
{

m is a ∃ node and its associated formula is A
((concll, P), [∀]) 7→∗ ((conclm,Q), [∀])

Let us notice that if φG(l, P) = (A, (m,Q)), A might itself contain variables which will be susbstituted
during reduction. This creates a chain of dependence of variables, described below:

Definition 156. A ∀/∃ dependence sequence is a sequence of maximal canonical nodes (li, Pi)0≤i≤n (with
n ≥ 1) such that

• For every 0 ≤ 2i < n, l2i is a ∀ node and φG(l2i, P2i) = (, (l2i+1,Q2i+1)).

• For every 0 ≤ 2i + 1 < n, l2i+1 is a ∃ node, and if we set X2i+2 as the variable associated to l2i+2, then
X2i+2 is a free variable of the formula associated to l2i+1, and P2i+2 is a prefix of P2i+1.

We define the relation <∀ on maximal canonical ∀ and ∃ nodes by (l, P) <∀ (l′, P′) if and only if there
exists a ∀/∃ dependence sequence (li, Pi)0≤i≤n with (l0, P0) = (l, P) and (ln, Pn) = (l′, P′).

Lemma 157. If G is a normalizing proof-net, then <∀ is a strict order on maximal canonical nodes of G.4

Proof. The transitivity of <∀ is trivial, so we only have to prove its irreflexivity. It is enough to prove that
there is no maximal canonical ∀ node (l, P) such that (l, P) <∀ (l, P): if there exists a maximal canonical
∃ node (m,Q) <∀ (m,Q), then there exists a maximal canonical ∀ node (l, P) such that ((l, P), [∀]) 7→∗
((m,Q), [∀]) and (l, P) <∀ (l, P).

The proof is done by induction on the length of the longest normalizing sequence of G. We consider a
∀/∃ dependence sequence [(l0, P0); (m0,Q0); (l1, P1); (m1,Q1); · · · ; (ln, Pn)]. For 0 ≤ i ≤ n we set Xi as the
variable associated with li and Ci as the formula associated with mi.

• If every cut node of G has a premise which is the conclusion of a ?W node, then for every maximal
canonical node (l, P) with l a ∀ node, φG(l, P) is undefined.

• Let us suppose that G →cut G′ and this reduction step is neither a ∀/∃ reduction step nor a !P/?W
reduction step.

Then for every 0 ≤ i ≤ n, there exists a maximal canonical ∀ node (l′i , P
′
i) and a maximal canonical

∃ node (m′i ,Q
′
i) such that πG→G′((concll′i , P

′
i), [∀]) = ((conclli , Pi), [∀]) and πG→G′((concll′i ,Q

′
i), [∀]) =

((conclli ,Qi), [∀]). Moreover, let us notice that if Xi is a free variable of the formula Ci associated
to li and is associated with li+1, and Pi+1 is a prefix of Qi, then the formula associated to l′i is also
equal to Ci and the ∀ node associated to Xi is (l′i+1, P

′
i+1). For this last property, notice that when li

has several residues (if G →cut G′ is a !P/?C reduction reducing a box B containing li) knowing that

4Let us recall that maximal canonical nodes are defined in Definition 26

132

πG→G′((l′i+1, P
′
i+1), [∀]) = ((li, Pi), [∀]) and πG→G′((m′i ,Q

′
i), [∃]) = ((mi,Qi), [∃]) is not enough. Indeed

l′i+1 might be the ”left” residue of li and m′i the ”right” residue of mi. However this is ruled out because
we know that Pi+1 is a prefix of Qi.

(l′i , P
′
i)0≤i≤n and (m′i ,Q

′
i)0≤i≤n satisfy the hypotheses of the lemma so, by induction hypothesis, (l′1, P

′
1) ,

(l′n, P′n). Thus (l1, P1) , (ln, Pn).

• Let us suppose that every cut node is either a ∀/∃ or ?W/!P cut. Let us consider, in the construction

of G, the last step of the shape H =

G1 G2

∀ ∃
cut

. Let us name c, l and m the cut, ∀ and ∃ nodes of the

figure. And let G′ be the proof-net obtained by reducing c.

We suppose that l1 = ln and is a minimal such path (for 0 < i < j ≤ n, li , l j) and we will find a
contradiction.

If l1 , l, then we can prove the lemma similarly to the case where the G →cut G′ step is not a ∀/∃ step.
We only have to be careful whenever li = l (with 0 < i < n). In this case, let (m′i−1,Q

′
i−1) and (l′i+1, P

′
i+1)

such that πG→G′((conclm′i−1
,Q′i−1), [∀]) = ((conclmi−1 ,Qi−1), [∀]) and πG→G′((concll′i+1

, P′i+1), [∀]) =

((conclli+1 , Pi−1), [∀]). By assumption Xi is a free variable of Ci−1 and Xi+1 is a free variable of Ci.
Let us observe that the formula associated with m′i−1 is Ci−1[Ci/Xi]. Moreover, Pi is a prefix of Qi−1
and Pi+1 is a prefix of Qi = Pi so Pi+1 is a prefix of Qi−1. Thus, (l′j, P

′
j)0≤ j≤n

l j,l
and (m′j,Q

′
j)0≤ j≤n

m j,m
are

sequences of maximal canonical nodes of G′ satisfying the hypotheses of the lemma. By induction
hypothesis, l′1 , l′n so l1 , ln.

If l1 = l then we can prove that for every 0 ≤ i ≤ n, li and mi are nodes of H. Indeed,

– Let us suppose that mi is in H. We know that ((conclli , Pi), [∀]) 7→∗ ((conclmi ,Qi), [∀]). Let us
suppose that there is a context ((e,R),T) in the path with e < H, let us consider the last such
context. The edge e is upward and conclli is downward so the 7→ path from ((conclli , Pi), [∀])
to ((e,R),T) crosses a cut node. The last such cut node is under e so, it is a !P/?W cut. It is a
contradiction because the 7→ should either begin or stop at a ?W node. So ((conclli , Pi), [∀]) 7→∗
((conclmi ,Qi), [∀]) is a path of H. (and in particular mi is a node in H).

– Let us suppose that li is in H. We know that the variable corresponding to li is a free variable of
the formula corresponding to mi−1. So the rule creating li is under the rule creating mi−1, mi−1 is
a node of H.

We can normalize G1 and G2 to respectively G′1 and G′2. The reduction steps do not break the cycle, the
only difficult steps are ∀/∃ reducing l j with m j (as in the case where we supposed that l1 , l). In this
case, let (m′j−1,Q

′
j−1) and (l′j+1, P

′
j+1) such that πG→G′((conclm′j−1

,Q′j−1), [∀]) = ((conclm j−1 ,Q j−1), [∀])
and πG→G′((concll′j+1

, P′j+1), [∀]) = ((concll j+1 , P j−1), [∀]). By assumption X j is a free variable of C j−1

and X j+1 is a free variable of C j. Let us observe that the formula associated with m′j−1 is C j−1[C j/X j].
Moreover, P j is a prefix of Q j−1 and P j+1 is a prefix of Q j = P j so P j+1 is a prefix of Q j−1.

So there exist sequences (l′j, P
′
j)0≤ j≤k and (m′j,Q

′
j)0≤ j≤k of maximal canonical nodes of G′′ =

G′1 G′2
∀ ∃

cut
satisfying the hypotheses of the lemma, with l′0 = l′k = l. We know that the variable corresponding to
l1 is a free variable of the formula corresponding to m′0 = m. So the rule creating l′1 is under the rule
creating m. We know that ((concll′1 , P

′
1), [∀]) 7→∗ ((m′1,Q

′
1), [∀]). Let us consider the first cut node of

133

` ⊗

ax ax
A A

∃ ∃
A ` A⊥ h A⊥ ⊗ Ag

∀ ∀l1 l2
cut

cut
∃X.X ⊗ X⊥

∃X.X⊥ ` X

∃

`

ax
ax

Z⊥1 ` Z1
Z2 ⊗ Z⊥2

(Z1 ⊗ Z⊥1) ` (Z⊥2 ` Z2)f

∃
∃Y.Y

∀l

∀
cut∃X.∃Y.Y ∀X.∀Y.Y⊥

∀Y.Y⊥

· · ·
Z⊥

Figure 5.2:
φlim

G (l, []) = (Z1 ⊗ Z⊥1) ` (Z⊥2 ` Z2)[φlim
G (l1, [])/Z1; φlim

G (l2, [])/Z2]
φlim

G (l, []) = (Z1 ⊗ Z⊥1) ` (Z⊥2 ` Z2)[A⊥/Z1; A⊥/Z2]
φlim

G (l, []) = (A⊥ ⊗ A) ` (A ` A⊥)

the path. Because G′2 is in normal form, the cut can not be in G′2. And because of our assumptions, it
must be in G′. So the first cut of the path is the cut node between l and m. So the rule creating l′1 is
above the rule creating m. This is a contradiction, so our assumption is wrong. There is no cycle.

�

If l is a ∃ node then φlim
G (l, P) is a formula A such that there is a residue l′ of (l, P) whose associated

formula is A. If l is a ∀ node then φlim
G (l, P) is a formula A such that there is a residue l′ of (l, P) which is

cut with a ∃ node m′ whose associated formula is A. Finally, if (e, P) is a potential edge then θ(e, P) is the
substitution which associates to every variable X in β(e) the formula which will replace X along reduction.

Definition 158. We define φlim
G as the mapping from Pot(N∀G) to F0 by induction on s>∀(l, P):

• If φG(l, P) is undefined then φlim
G (l, P) = X (with X the variable associated with X).

• If φG(l, P) = (A, (m, [q1; · · · ; q∂(m)])), Z1, · · · ,Zk are the free variables of A which are associated to a
∀ node (which we write respectively l1, · · · , lk) then:

φlim
G (l, P) = A[φlim

G (l1, [q1; · · · ; q∂(l1)])/Z1; · · · ; φlim
G (lk, [q1; · · · ; q∂(lk)])/Zk]

Definition 159. Let (e, [p1; · · · ; p∂(e)]) ∈ Pot(~EG), Z1, · · · ,Zk be the free variables of A which are associated
to a ∀ node (which we write respectively l1, · · · , lk) then:

θ(e, [p1; · · · ; p∂(e)]) =
{
Z1 7→ φlim

G

(
l1, [p1; · · · ; p∂(l1)]

)
, · · · ,Zk 7→ φlim

G

(
lk, [p1; · · · ; p∂(lk)]

)}
Definition 160. We extend the mapping φlim

G on potential N∃G as follows. Let (l, P) ∈ Pot(N∃G) with B the
formula associated to l, φlim

G (l, P) = B[θ(preml, P)].

Lemma 161. If G is a normalizing proof-net, then there exists M ∈ N such that for every maximal canonical
node (l, P) with l a ∀ node, the depth of φlim

G (l, P) is at most M.

Proof. Let D be the maximum depth of formulae associated to ∃ node. One can prove by induction on the
depth of (l, P) for the <∀ order (written s<∀(l, P)) that the depth of φlim

G l, P is at most D · s<∀(l, P). So we can
define M as D · |MaxCan(EG)|. �

134

We will define the notion of underlying formulae on objects a bit different from contexts, because it is
easier to make an induction definition on these.

Definition 162. Let (e, P) ∈ Pot(EG), A ∈ F0 and T,T ′ be two lists of trace elements (traces or empty list)
and p a polarity, β(A, e, P,T,T ′) is defined by induction on |T | by:

β(A, e, P, [],T) = A
β(A ⊗ B, e, P,T.⊗l,U) = β(A, e, P,T, [⊗l]@U) ⊗ B β(A ⊗ B, e, P,T.⊗r,U) = A ⊗ β(B, e, P,T, [⊗r]@U)
β(A ` B, e, P,T.`l,U) = β(A, e, P,T, [`l]@U) ` B β(A ` B, e, P,T.`r,U) = A ` β(B, e, P,T, [`r]@U)
β(!s,d,nA, e, P,T.!t,U) = !s,d,nβ(A, e, P,T, [!t]@U) β(?s,d,nA, e, P,T.?t,U) = ?s,d,nβ(A, e, P,T, [?t]@U)

If l is a ∀ node and ((concll,Q), [∀]) ∗ ((e, P), [∀]@U), then

β(∀X.A, e, P,T.∀,U) = β(A, e, P,T, [∀]@U)[φlim
G (l,Q)/X]

If l is a ∃ node, C is the formula associated to l and ((concll,Q), [∃]) ∗ ((e, P), [∃]@T ′), then

β(∃X.A, e, P,T.∃,U) = β(A, e, P,T, [∃]@U)[C[θ(concll,Q)]/X]

Lemma 163. For every -path ((e, P),T) ∗ ((f ,Q),U) and for every list of trace elements V, the for-
mula β(β(e)[θ(e, P)], e, P,V@T, [])|T is defined if and only if β(β(f)[θ(f ,Q)], f ,Q,V@U, [])|T is and, if these
formulae are defined,

β(β(e)[θ(e, P)], e, P,V@T, [])|T ≤ β(β(f)[θ(f ,Q)], f ,Q,V@U, [])|U

Proof. We make a disjunction on the rule used.

• If the rule is neither a ∃ nor a ∀ rule, then the proof is technical but straightforward. The formulae β(f)
and β(e) are almost the same. The only possible differences are a modification of indices (because
of the subtyping relation) and the addition or deletion of the head connective and this modification
is compensated by the modification of the trace. For instance, if we cross a ` node downwards,
β(e) = A, there exists a formula B such that β(f) ≥ A` B, P = Q and U = T.`l. Thus β(f) = A′` B′

with A′ ≥ A. Let us notice that the free variables of A are included in the free variables of B and
P = Q so θ(e, P) = θ(f ,Q). Thus,

β(β(f)[θ(f ,Q)], f ,Q,V@U, [])|U = β((A′ ` B′)[θ(f ,Q)], f , P,V@T.`l, [])|T.`l

=
(
β(A′[θ(f ,Q)], f , P,V@T, [`l]) ` B′[θ(f ,Q)]

)
|T.`l

= β(A′[θ(f ,Q)], f , P,V@T, [`l])|T
β(β(f)[θ(f ,Q)], f ,Q,V@U, [])|U ≥ β(β(e)[θ(e, P)], e, P,V@T, [])|T

For the last equality, notice that the only cases where the edge and the second trace are used are the
quantifiers cases. They are used to determine the ∃ or ∀ node to consider with a path. We can
notice that for every context C which is on the conclusion of a quantifier node, C ∗ ((e, P),U) if
and only if C ∗ ((f , P),U.`l).

135

In the case of crossing an ∃ link downward, ((e, P),T) ((f , P),T.∃). Then β(e) = A[C/X] and
β(f) = ∃X.A′ with A ≤ A′.

β(β(f)[θ(f , P)], f , P,V@T.∃, [])|U = β(∃X.A′[θ(f , P)], f , P,V@T.∃, [])|T.∃
= β(A′[θ(f , P)], f , P,V@T, [∃])[C[θ(e, P)]/X])|T
= β(A′[θ(f , P)][C[θ(e, P)]/X], f , P,V@T, [∃])|T
= β(A′[C/X][θ(e, P)], f , P,V@T, [∃])|T
= β(A′[C/X][θ(e, P)], e, P,V@T, [])|T
≥ β(A[C/X][θ(e, P)], e, P,V@T, [])|T

β(β(f)[θ(f , P)], f , P,V@T.∃, [])|U ≤ β(β(e)[θ(e, P)], e, P,T, [])|T

In the case of crossing a ∀ node l downward. ((e, P),T) ((f , P),T.∀). Then β(e) = A and β(f) =

∀X.A′. Let us notice that the free variables of β(e) are exactly the free variables of β(f) and X. Moreover
(e, P) and (f , P) belong to the same potential boxes, so θ(e, P) = φlim

G (l, P) ◦ θ(f , P).

β(β(f)[θ(f , P)], f , P,V@T.∀, [])|U = β(∀X.A′[θ(f , P)], f , P,V@T.∀, [])|T.∀
= β(A′[θ(f e, P)], f , P,V@T, [∃])|T [φlim

G (l, P)]

= β(A′[θ(f , P)][φlim
G (l, P)], f , P,V@T, [∃])|T

= β(A′[θ(e, P)], f , P,V@T, [∃])|T
≥ β(A[θ(e, P)], e, P,V@T, [])|T

β(β(f)[θ(f , P)], f , P,V@T.∀, [])|U ≥ β(β(e)[θ(e, P)], e, P,V@T, [])|T

�
Whenever the trace begins by a ! trace element, we have a slightly better result. Let us suppose that

((e, P), [!t]) ∗ ((f ,Q), [!u]) with βG(e) = !s,d,nA and βG(f) = !s′,d′,n′A′. Then, by Lemma 163, βG(e)|!t =

A ≤ A′ = βG(f)|!u . In fact, examining closely the rules of , one can deduce that s ≥ s′, d ≥ d′ and n ≥ n′,
so βG(e)|[] ≤ βG(f)|[]. The following Lemma is the generalization of this statement.

Lemma 164. If ((e, P), [!t]@T) ∗ ((f ,Q), [!u]@U) then for every list of trace elements V, the formula
β(β(e)[θ(e, P)], e, P,V@T, [])|T is defined if and only if β(β(f)[θ(f ,Q)], f ,Q,V@U, [])|T is and, if these for-
mulae are defined,

β(β(e)[θ(e, P)], e, P,V@T, [])|T ≤ β(β(f)[θ(f ,Q)], f ,Q,V@U, [])|T

Proof. It is enough to prove it whenever the length of the path is 1, i.e. ((e, P), [!t]@T) ((f ,Q), [!u]@U).
If T , [] and U , [], then ((e, P),T) ∗ ((f ,Q),U) so the result can be deduced from Lemma 163. Else,
if T , [] or U , [] or the step crosses an ax or cut node, one can prove the result as in the first case of
the proof of Lemma 163. The only interesting cases are whenever T = [], U = [] and the step crosses a
node n upward whose label is in {?N, ?C}. In those cases, let us notice that the labels in the premise of the
node (f in this case) are lower than the labels in the conclusion of the (e in this case). �

Definition 165. For any context ((e, P), [!t]@T), we write βββ((e, P), [!t]@T) for β(β(e)[θ(e, P)], e, P,T, [])|T

136

Lemma 166. If C ∗ C′, we have βββ(C) ≤ βββ(C′).

Proof. This is a direct consequence of Lemma 164. �

Lemma 167. If C 7→∗ C′ and βββ(C) = ! ,d,nA then βββ(C′) = ! ,d′,n′B with d ≥ d′ and n ≥ n′.

Proof. For the steps, we can use Lemma 166. For the ↪→ steps, one can notice that, if β(σi(B)) = ?s,d,nA
and β(σ(B)) = !s′,d′,n′B then d ≥ d′ and n ≥ n′. �

5.1.3 S DNLL is sound for Poly

Thanks to Lemmas 164 and 168, we will formalize the proofs we sketched in the end of Section 5.1.1.

Lemma 168. If C 7→∗ C′ then βββ(C) is defined if and only if βββ(C′) is. If these formulae are defined and
respectively equal to !s,d,nA and !s′,d′,n′A′, then d ≥ d′ and n ≥ n′.

Proof. Most of the cases can be deduced from Lemma 164. The only interesting case is ((e, P), [!t]) ↪→
((f , P), [!u]). In this case e and f are an auxiliary edge and a principal edge of the same box. So the formula
β(β(e)[θ(e, P)], e, P, [], [])|[] is defined and equal to β(e)[θ(e, P)] and β(β(f)[θ(f , P)], f , P, [], [])|[] is defined
and equal to β(f)[θ(f , P)]. From the constraints of S DNLL, we deduce that d ≥ d′ and n ≥ n′. �

Lemma 169. If B −> −> −> B′, β(σ(B)) = !s,d,nA and β(σ(B′)) = !s′,d′,n′A′ then s > s′.

Proof. Let us suppose that B −> −> −> B′, βG(σ(B)) = !s,d,nA and βG(σ(B′)) = !s′,d′,n′A′. Then there exist
P, P′ ∈ Pot and t, u ∈ S ig such that ((σ(B), P), [!t]) ∗ ((σ(B′), P′), !uT) ∗ ((e,Q), [!e]). We can
notice that βββ((σ(B), P), [!t]) = β(σ(B))[θ(σ(B), P)] = !s,d,n(A[θ(σ(B), P)]) so, according to Lemma 163,
βββ((σ(B′), P′), [!u]@T) is defined and

!s,d,n(A[θ(σ(B), P)]) ≤ βββ((σ(B′), P′), [!u]@T)

We set !s′′,d′′,n′′A′′ = βββ((σ(B′), P′), [!u]@T) (let us notice that by definition of≤, s ≥ s′′). Thus, A′[θ(σ(B′), P′)]
is of the shape H[!s′′,d′′,n′′A′′]. Either A′ is of the shape H[!s′′,d′′,n′′A′′] (in this case by definition of F0,
s′ < s′′ so s > s′), or there exist sequences A′ = A0, A1 · · · , Ak of formulae, X1, · · · , Xk of variables and
s1, · · · , sk such that for 0 ≤ i < k, Ai is of the shape Hi[Xi

si
] and there exists a ∃ node ni whose associated

variable is Xi
si

and whose associated formula is Ai+1. And Ak is of the shape Hk[!s′′,d′′,n′′A′′]. In this case,
s′ < s0 ≤ s1 ≤ · · · ≤ sk−1 ≤ s′′ so s′ < s′′ ≤ s. �

Lemma 170. If B . . . B′, β(σ(B)) = !s,d,nA and β(σ(B′)) = !s′,d′,n′A′ then d > d′

Proof. By definition of . . . , there exists i , j and paths of the shape ((σ(B), P), [!t]) 7→+ ((σi(B′), P′1)[!e])
and ((σ(B), P), [!u]) 7→+ ((σ j(B′), P′2), [!e]). Either i , 1 or j , 1. We suppose without loss of generality that
i , 1. By definition of S DNLL, β(σi(B)) = ! ,d′′, with d′′ > d′. Then, by Lemma 168, d ≥ d′′ > d′. �

Lemma 171. If B

/ / /

B′, β(σ(B)) = !s,d,nA and β(σ(B′)) = !s′,d′,n′A′ then n > n′

Proof. By definition of / / / , there exist P,Q ∈ Pot, t ∈ Cop(B, P) and v A t, such that ((σ(B), P), [!v]) 7→∗
((σ(C),Q), [!e]). Let us consider the first context of the path such that the leftmost trace element is !u with u
a standard signature. This step must be of the shape ((e,R), [!p(u)]) ((f ,R), [!u]) with e the conclusion of
a ?N node. By definition of S DNLL, β(e) = ? , ,ne and β(f) = ? , ,n f with ne > n f . Then, by Lemma 168,
n ≥ ne > n f ≥ n′. �

137

∀
`

N s,d,n

∀Xs+1, !s,d+1,n(Xs+1 (Xs+1)(!s,d,n(Xs+1 (Xs+1)

!P?P ?P ?P

?C

?C

⊗ ⊗ ⊗

ax ax ax ax

`

?s,d+1,n(Xs+1 ⊗ X⊥s+1)

?s,d+1,n(Xs+1 ⊗ X⊥s+1)

?s,d+1,n(Xs+1 ⊗ X⊥s+1) ?s,d+1,n(Xs+1 ⊗ X⊥s+1)

?s,d+1,n(Xs+1 ⊗ X⊥s+1)

Xs+1 ⊗ X⊥s+1 Xs+1 ⊗ X⊥s+1 Xs+1 ⊗ X⊥s+1

!s,d,n(Xs+1 (Xs+1)

Figure 5.3: Encoding Encs,d,n(3) of 3

Corollary 172. Let G be a S DNLL proof-net, then G is −> −> −>-stratified, . . . -stratified and

/ / /

-stratified.
Moreover, for every B ∈ BG with βG(σ(B)) = !s,d,nA, s −> −> −>(B) ≤ s, s . . . (B) ≤ d and s / / / (B) ≤ n.

Proof. Immediate consequence of the three previous lemmas. �

Theorem 173. Let G be a S DNLL proof-net, then the maximal reduction length of G (with n = |~EG |, ∂ = ∂G,
S = maxB∈BG sσ(B), D = maxB∈BG dσ(B) and S = maxB∈BG nσ(B)) is bounded by

WG ≤ n1+DS ·∂1+N·S

Proof. The bound is an immediate consequence of Corollaries 172 and 87. �

To prove that S DNLL is Poly sound, we need to define an encoding of binary lists. For any s, d, n ∈ N,
we define the formulae N s,d,n and Bs,d,n by

N s,d,n = ∀Xs+1, !s,d+1,n(Xs+1 (Xs+1)(!s,d,n(Xs+1 (Xs+1)

Bs,d,n = ∀Xs+1, !s,d+1,n(Xs+1 (Xs+1)(!s,d+1,n(Xs+1 (Xs+1)(!s,d,n(Xs+1 (Xs+1)

Then for any s, d, n ∈ N, k ∈ N and binary list l, we can define encodings Encs,d,n(k) and Encs,d,n(l) of
k and l as shown in Figures 5.3 and 5.4. We can verify that the sizes of Encs,d,n(k) and Encs,d,n(l) depend
linearly on the size of k and l. Finally, there is exactly one box in Encs,d,n(k) and Encs,d,n(l) so the encoding
is box-bounded.

Theorem 174. S DNLL is sound for Poly

Proof. Immediate from Theorem 173, Theorem 88 and the box-boundedness of the encoding. �

138

∀
`

Bs,d,n

!P

`

!s,d+1,n(Xs+1 (Xs+1)(!s,d,n(Xs+1 (Xs+1)

?P ?P ?P

?C

⊗ ⊗ ⊗

ax ax ax ax

`

?s,d+1,n(Xs+1 ⊗ X⊥s+1)

?s,d+1,n(Xs+1 ⊗ X⊥s+1)

?s,d+1,n(Xs+1 ⊗ X⊥s+1) ?s,d+1,n(Xs+1 ⊗ X⊥s+1)

Xs+1 ⊗ X⊥s+1 Xs+1 ⊗ X⊥s+1 Xs+1 ⊗ X⊥s+1

!s,d,n(Xs+1 (Xs+1)

Figure 5.4: Encoding Encs,d,n([0; 1; 1]) of [0; 1; 1]

5.1.4 Encoding of light logics

There are already many subsystems of LL characterizing Poly. We argue that the interest of S DNLL over
the previous systems is its intentional expressivity. To support our claim we define encodings of L4 [8] and
a maximal subsystem of MS [64] in L4. Baillot and Mazza already proved that LLL can be embedded in L4,
thus S DNLL is at least as expressive as the union of those systems.

5.1.4.1 Encoding of L4

The formulae of L4 are defined as the formulae with an additional modality § and an element of N indexing
the formula. More formally, the set FL4 of formulae of L4 is defined by the following grammar.

FL4 = GL4 × N
GL4 = X | X⊥ | GL4 ⊗ GL4 | GL4 ` GL4 | ∀X.GL4 | ∃X.GL4 | !GL4 | ?GL4 | §GL4

The index in N (called level) is usually written as an exponent. Intuitively, if the principal edge of B is
labelled with (!A)s, the label s represents the stratum of B for −> −> −>. More precisely, it corresponds to a
formula of the shape !s+∂(B), , A in S DNLL. Let us notice that, to connect two boxes B and B′ labelled with
(!A)s and (!A′)s′ with s , s′, we need to use § nodes.

Let us notice that every box of L4 proof-nets have only one auxiliary door. Thus . . . = ∅ and, for every
box B s . . . (B) = 1. We can also notice that there is no ?N node in L4 proof-nets, so for every box B, we
have s / / / (B) = 1.

We define a mapping ‖ ‖ from hole-formulae of GL4 to N which will be used to decide the indices of
variables and exponential modalities. For every formulae A in GL4 and hole-formula H, ‖ ◦ ‖ = 0, ‖C ⊗H‖ =

‖H ⊗C‖ = ‖C ` H‖ = ‖H ` C‖ = ‖H‖, ‖∀X.H‖ = ‖∃X.H‖ = ‖H‖, and ‖!H‖ = ‖?H‖ = ‖§H‖ = 1 + ‖H‖.

139

ax
(Ai)(A⊥)i

cut(Ai) (A⊥)i
⊗(Ai) (Bi)

(A ⊗ B)i
`

(A)i (B)i

(A ` B)i
∀

(A)i

(∀X.A)i
∃(A[B/X])i

(∃X.A)i

?D
(A)i

(?A)i−1
?W

(?A)i
?C

(?A)i (?A)i

(?A)i
§

(A)i

(§A)i−1
!P?P

(B)i

(!B)i−1

(A)i

(?A)i−1

Figure 5.5: Relations between levels of neighbour edges in L4. We also allow boxes with 0 auxiliary doors.

Any L4 proof-net G can be transformed into a S DNLL proof-net G′ as follows:for every variable X
appearing in the proof-net, we define MX as the maximum of the set{

s + ‖H‖
∣∣∣ β(e) = H[X] or β(e) = (H[X⊥])s

}
Then, we replace every occurrence of X by XMX . If β(e) = (H[!A])s (resp. (H[?A])s), we replace the
modality by !s+‖H‖,1,0 (resp. ?s+‖H‖,1,0). One can easily verify that G is a valid S DNLL proof-net. The §
node becomes trivial (it does not change the sequent). Let us consider the boxes:

• Let us suppose that e is the premise of the i-th auxiliary door of a box B and f is its conclusion. If
βG(e) = (H[!A])s then βG(f) = ?(H[!A])s−1. We can notice that βG′(e) = H′[!s+‖H‖,1,0] and βG′(f) =

H′[!s−1+‖?H‖,1,0]. Those labels are the same because s + ‖H‖ = (s − 1) + (1 + ‖H‖) = (s − 1) + ‖?H‖.

• If we have βG′(σ1(B)) = ?s,d,nA and βG′(σ(B)) = !s′,d′,n′A′ then we have d ≥ d′. Indeed: either B is a
! box in G and d = 1 ≥ 1 = d′, or B is a § box in G and d ≥ 0 = d′.ie

5.1.4.2 Encoding of a maximum subsystem of MS

In [64], Roversi and Vercelli proposed to generalize the “one auxiliary door” condition by considering a
framework of logics: MS . MS is defined as a set of subsystems of ELL with indexes on ! and ? connectives.
The formulae of MS are defined as the formulae of LL with a label d ∈ N on ! and ? modalities. More
formally, the set FMS of formulae of MS is defined by the following grammar, with d ranging over N.

FMS = X | X⊥ | FMS ⊗ FMS | FMS ` FMS | ∀X.FMS | ∃X.FMS | !dFMS | ?dFMS

Roversi and Vercelli provide a characterization of the MS systems which are sound for Poly. This
criterion says that a MS system is sound for Poly if and only if for every k ∈ N, one of the two following
condition holds:

• If ?iA and ? jA can be contracted in ?kA, then k ≤ i, k ≤ j and at least one of those inequality is strict.
And for every box whose principal door is indexed by !kA, the indexes on the ?-s of the auxiliary doors
are smaller or equal to k.

• If ?iA and ? jA can be contracted in ?kA, then k ≤ i, k ≤ j. And for every box whose principal door is
indexed by !kA, the indexes on the ?-s of the auxiliary doors are smaller or equal to k with all but (at
most) one of those inequalities being strict.

140

ax
A)A⊥ cutA A⊥ ⊗A B

A ⊗ B
`

A B

A ` B
∀

A

∀X.A
∃A[B/X]

∃X.A

?D
A

?dA
?W

?dA
?C

?cA ?dA

?min(c,d)A
!P?P?P?P

B

!dB

A1 A2 Ak

?d−d1 A1 ?d−d2−1A2 ?d−dk−1Ak

Figure 5.6: Constraints of MS max on the labels of exponential connectives.

According to this characterization, the subsystem MS max defined in Figure 5.6 is sound for Poly (we are in
the second case).

Following the intuitions given above, we define a mapping ‖ ‖ from hole-formulae of MS max to N
which is similar to the mapping defined on the hole-formulae of L4. For every formulae A in FMS max and
hole-formula H, ‖ ◦ ‖ = 0, ‖C ⊗H‖ = ‖H ⊗C‖ = ‖C ` H‖ = ‖H `C‖ = ‖H‖, ‖∀X.H‖ = ‖∃X.H‖ = ‖H‖, and
‖!dH‖ = ‖?dH‖ = 1 + ‖H‖.

Let us consider a MS proof-net G, then we transform it into a S DNLL proof-net G′ as follows. First let
us set D as the maximul label of ? and ! labels in G. And, for every variable X appearing in the proof-net,
we define MX as the maximum of the set{

∂(e) + ‖H‖
∣∣∣ (β(e) = H[X] or β(e) = H[X⊥])

}
Then, we replace every occurrence of X be XMX . If β(e) = H[!dA] (resp. H[?dA]) and s = ∂(e) + ‖H‖, we
replace the modality by !s,D−d,0 (resp. ?s,D−d,0).

To prove that the proof-net G′ obtained is in S DNLL, most of the conditions are straightforward to
check. For example,

• Let us suppose that e is the premise of the i-th auxiliary door of a box B and f is its conclusion. If
βG(e) = H[!A] then βG(f) = ?H[!A]. We can notice that βG′(e) = H′[!∂(e)+‖H‖,1,0] and βG′(f) =

H′[!∂(f)+‖?H‖,1,0]. Those labels are the same because ∂(e) + ‖H‖ = ∂(f) + 1 + ‖H‖ = ∂(f) + ‖?H‖.
• Let us suppose that βG′(σ1(B)) = ? ,d′1, A and βG′(σ(B)) = ! ,d′, . Then we can notice that d′1 and d′

are of the shape d′1 = D − (d − d1) and d′ = D − d. Thus, d′1 ≥ d′.

• Let us suppose that βG′(σi(B)) = ? ,d′i , and βG′(σ(B)) = ! ,d′, with i > 1 then we can notice that d′i
and d′ are of the shape d′i = D − (d − di − 1) and d′ = D − d. Thus d′i ≥ D − d + 1 > d′.

Concerning the other LL subsystems characterizing Poly: L4
0 [8], S LL, BLL and QBAL contain proof-

net which are not −> −> −>-stratified, so which are not in S DNLL. However, no λ-term typable in L4
0 and

untypable in S DNLL has been found yet. Even if S LL is orthogonal to LLL, S LL is generally thought to be
less expressive than LLL. Finally, type-checking is undecidable in BLL and QBAL so they do not fit in our
goal of automatic bound inferring.

Concerning intensional expressivity, we are more interested in λ-calculus than in proof-nets. The sub-
systems S LL and LLL of linear logic have been transformed into type systems of λ-calculus[12, 33]. We
conjecture that MS , L4 and S DNLL could be transformed similarly into type systems for λ-calculus enforc-
ing polynomial time bounds, such that the embeddings between LL systems become embeddings between

141

ax
x : A∅ ` x : A

Γ ` t : A Xs is not free in Γ

Γ ` t : ∀Xs.A
Γ ` t : ∀X.A smin

B ≥ s
Γ ` t : A[B/X]

Γ, x : A∅ ` t : B
?D

Γ, x : As,d,n ` t : B
Γ ` t : B ?W

Γ, x : As,d,n ` t : B
Γ, y : As,d,n, z : As,d,n ` t : B

?C
Γ, x : As,d,n ` t[x/y; x/z] : B

Γ, x : A∅ ` t : B (i
Γ ` λx.t : A(B

Γ, x : As,d,n ` t : B ⇒i
Γ ` λx.t : !s,d,nA(B

Γ ` t : A(B ∆ ` u : A (e
Γ,∆ ` (t)u : B

Γ ` t : !s,d,nA(B ∆,Σ∅ ` u : A d(∆ ∪ Σ) = d n(Σ) ≥ n n(∆) > n ⇒e
Γ,∆,Σ ` (t)u : B

Figure 5.7: S DNLLλ as a λ-calculus type-system.

the corresponding type systems for λ-calculus. In Section 5.1.5, we define a type system S DNLLλ inspired
by DLAL. However the embedding of LLL in S DNLL can not be transposed into an embedding of DLALL
in S DNLLλ because, in S DNLLλ, we do not allow weakening on linear variables.

Because we are interested in expressivity in λ-calculus, it would not be very relevant to give examples
of S DNLL proof-nets which are neither LLL, L4 nor MS max proof-nets. Proof-nets correspond to type
derivations. However, the existence of S DNLL proof-nets which are not in LLL, does not imply that the
λ-calculus type system corresponding to S DNLL type strictly more λ-terms than the λ-calculus type system
corresponding to LLL. It is possible that a S DNLLλ type derivation D1 of conclusion ` t : A in S DNLLλ
does not correspond to a DLAL type derivation, while there exists another derivation D2 of conclusion ` t : A
which is in DLAL.

5.1.5 S DNLL as a type-system for λ-calculus

As noticed by Baillot and Terui [12], translating naively a subsystem of linear logic into a type-system
for λ-calculus can result in a type-system which enjoys neither subject reduction nor the complexity bound
enforced by the linear logic subsystem. The subsystem we define is heavily inspired by DLAL. For instance,
the proof of subject reduction follows the proof of subject reduction of DLAL presented in [14].

We restrict the formulae considered by only allowing ! modalities on the left side of(connectives.

Definition 175. For s ∈ N, we define F λ
s by the following grammar (with t, d, n ∈ N, t ≥ s and X ranges

over a countable set of variables). Notice that F λ
0 ⊇ F λ

1 ⊇ · · ·

F λ
s := Xt | F λ

s (F λ
s | !t,d,nF λ

t+1 (F λ
s | ∀Xt.F λ

s

We define contexts5 as sets of the shape {x1 : Al1
1 , · · · , xk : Alk

k } where the xis are pairwise distinct
variables of λ-calculus, the Ais are formulae of F λ

0 and the lis are elements of {∅} ∪ N3. Intuitively As,d,n

represents !s,d,nA while A∅ represents A. The sets of all contexts is written Conλ, the set of contexts whose
labels are all in N3 is written Con!, the set of contexts whose labels are all equal to ∅ is written Con§.

In this paragraph, we consider Γ = {x1 : As1,d1,n1
1 , · · · , xk : Ask ,dk ,nk

k } ∈ Con!. Then we write Γ∅ for
the context {x1 : A∅1 , · · · , xk : A∅k }. For s, d, n ∈ Z, we write Γs,d,n for {x1 : As1+s,d1+d,n1+n

1 , · · · , xk :
Ask+s,dk+d,nk+d

k }. We write s(Γ) for the multiset of left indices, more formally s(Γ) = {{x 7→ |{i ∈ N | si = x}|}}.
We define d(Γ) and n(Γ) similarly.

5Because we do not use context semantics in this subsection, there is no ambiguity

142

ax AA⊥ GE

∀
A

∀Xs.A
Γ

GE
∃

cut

ax

∀X.A
A[B/Xs]

Γ

GE

?D
A⊥

?s,d,nA⊥
BΓ

GE

?W
?s,d,nA⊥

BΓ

GE

?C
?s,d,nA⊥ ?s,d,nA⊥

?s,d,nA⊥
BΓ

GE

`
A⊥ B

A(B
Γ

GE

`
?s,d,nA⊥ B

!s,d,nA(B
Γ

GE

ax
⊗

GF

cut
A(B

A
B

∆
Γ

GE

!P?P?P

?N

AA⊥σ?sδ,dδ,nδA
⊥
δ

?sδ,dδ,nδ−1?sδ,dδ,nδA
⊥
δ

?sδ,dδ,nδA
⊥
δ

?sσ,dσ,nσA⊥σ ax⊗
GF

cut
!s,d,nA(B

!s,d,nA
BΓ

Figure 5.8: Derivations of S NLLλ can be translated into S NLL proof-nets

If M is a multiset, then we write M ≥ x for “for every y such that M(y) > 0, we have y ≥ x”. Similarly,
we write M > y for “for every y such that M(y) > 0, we have y > x”. Finally, we write M = y for “M ≥ x
and M(x) ≤ 1”.

We present the type system S DNLLλ in Figure 5.7. In the type derivations, judgements are of the shape
Γ ` t : A with Γ a context. If x : B∅ is in Γ then xi appears exactly once in t.

To prove subject reduction and the polynomial bound we define (in Figure 5.8) for every type derivation
D of A∅1 , · · · , A∅k , Bs1,d1,n1

1 , · · · , Bsl,dl,nl
l ` t : C, we define a S DNLL proof-net GD with k + l + 1 conclusions

labelled with A⊥1 , · · · , A⊥k , ?s1,d1,n1 B⊥1 , · · · , ?sl,dl,nl B
⊥
l and C. In Figure 5.8, we suppose that the derivation D

is obtained by applying a rule r (the rule used is at the same position in Figure 5.7) to the derivation E (if
the last rule is binary, the derivation on the right is named F).

Lemma 176 (linear substitution). Let us consider derivations D and E of respective conclusions ∆ ` u : A
and Γ, x : A∅ ` t : B. Then there exists a derivation F of conclusion Γ,∆ ` t[u/x] : B and

D E
cutu : A x : A⊥

∆ Γ t : B
F

∆ Γ t[u/x] : B
cut
∗

Proof. Simple induction on E. Because the label of x is ∅, x is not the conclusion of a ?D, ?C or ?P
node. �

Lemma 177 (exponential substitution). Let us consider derivations D and E of respective conclusions
∆,Σ∅ ` u : A and Γ, x : As,d,n ` t : B with d(∆ ∪ Σ) = d, n(Σ) ≥ n and n(∆) > n. Then there exists a
derivation F of conclusion Γ,∆,Σ ` t[u/x] : B and

143

D

!P?P?P

?N

AΣ∆

E
cut

u : !s,d,nA x : ?s,d,nA⊥
Γ t : B

F
∆ Σ Γ t[u/x] : B

cut
∗

Proof. By induction on E. The most interesting step is the ⇒e step. In this case, let us write C the box
created in this step, and let us set !s′,d′,n′ = σ(C). Either d > d′ so d(∆ ∪ Σ) ≥ d > d′. Or d = d′,
d(∆ ∪ Σ) = d ≥ d′ and d(Γ) > d′, thus d(∆ ∪ Σ ∪ Γ) = d′. �

Lemma 178. Let us consider a derivation D of conclusion ∆ ` λx.t : A then GD →∗cut GD′ (considering the
untyped proof-nets) with D′ a derivation of conclusion Γ ` λx.t : A and the last rule R introduces the top
connective of A (if A = ∀A1 then R = ∀i, if A = !s,d,nA1 (A2 then R is⇒i, if A = A1 (A2 with A1 ∈ F λ

0
then R =(i)

Proof. We prove it by induction on D. The last rule R can not be in {ax,(e,⇒e}, because the λ-term of the
conclusion would be of the shape λx.t. If R in {∀i,(i,⇒i}, then the lemma is trivial. If R is in {?D, ?W, ?C},
the derivation is of the shape:

E
∆ ` λx.t : A R
Γ ` λx.t : A

By induction hypothesis, GE →∗cut GE′ with E′ a derivation of conclusion ∆ ` λx.t : A and the last rule of E′

introduces the top connective of A. We will examine the case where this last rule is(i, the two other cases
are similar. Let us examine the following derivation D′′ (let us notice that, because GE →∗cut GE′ , we have
GD →∗cut GD′′).

F′
∆, x : A1 ` t : A2 (i

∆ ` λx.t : A1 (A2 R
Γ ` λx.t : A1 (A2

In every case we can define D′ as the following derivation (let us notice that GD′′ = GD′)

F′
∆, x : A1 ` t : A2 (i
Γ, x : A1 ` t : A2 R

Γ ` λx.t : A1 (A2

The last case to examine is R = ∀e. In this case, the derivation is of the shape:

E
Γ ` λx.t : ∀Xs.A1 R

Γ ` λx.t : A1[B/Xs]

By induction hypothesis, GE →∗cut GE′ with E′ a derivation of conclusion Γ ` λx.t : ∀Xs.A and the last rule
of E′ is ∀i. Let us examine the following derivation D′′ (let us notice that, because GE →∗cut GE′ , we have
GD →∗cut GD′′)

F′
Γ ` λx.t : A1 ∀i

Γ ` λx.t : ∀Xs.A1 ∀e
Γ ` λx.t : A1[B/X]

144

Then we can set D′ as the proof-net obtained from F′ by replacing Xs by B in the derivation. We can notice
that D′′ →2

cut D′ (a ∀/∃ step and an axiom step).

F′
∆, x : A1 ` t : A2 (i
Γ, x : A1 ` t : A2 R

Γ ` λx.t : A1 (A2

�

Lemma 179 (subject reduction). If there exists a type derivation D whose conclusion is Γ ` t : B and t →β t′

then there exists a type derivation D′ whose conclusion is Γ ` t′ : B and GD →+
cut GD′ .

Proof. We prove the lemma by induction on D. Because there is a redex in t, t can not be a variable so the
last rule is not an ax rule. Let us suppose that the last rule is a unary rule. Then D is of the shape:

E
∆ ` u : A R
Γ ` t : B

In every case, u is a subterm of t containing the redex. So, by induction hypothesis, u reduces to a λ-term
u′. By induction hypothesis, there exists a derivation E′ of conclusion ∆ ` u′ : B and GE →k

cut GE′ (with
k ≥ 1). We can verify that in every case we can define D′ as the following derivation.

E′
∆ ` u′ : A R
Γ ` t′ : B

If the last rule is a(e or⇒e step which does not correspond to the redex, the lemma is proved similarly.
If the last rule is a (e rule corresponding to the redex then, by Lemma 178, GD 7→∗ GE with E a

derivation of the following shape:

El
Γ,∆x : A ` v : B (i

Γ,∆ ` λx.v : A(B
Er

∆ ` u : A
Γ,∆ ` (λx.v)u : B

By Lemma 176, GE reduces to a derivation of conclusion Γ,∆ ` v[u/x] : B. If the last rule is a ⇒e rule
corresponding to the redex then, the result follows similarly by Lemmas 178 and 177. �

Theorem 180. If there exists a type derivation E whose conclusion is Γ ` t : B, x the size of the E, S − 1,
D − 1 and N − 1 the maximum indexes in E, and ∂ be the depth of E (in terms of⇒e rules).

t →k
β t′ ⇒ k ≤ x1+DS ·∂1+N·S

Proof. Immediate from Theorem 173 and Lemma 179. �

We can notice that, contrary to DLAL, S DNLLλ does not allow weakening on linear variables. Thus
one can never derive ` λx.t : A (B when x is not a free variable of t. We are confident that adding the
following rule to S DNLL does not break Lemma 180.

Γ ` t : B
Γ, x : A∅ ` t : B

145

g : (Xs (Xs)∅ ` g : Xs (Xs

h : (Xs (Xs)∅ ` h : Xs (Xs a : (Xs)∅ ` a : Xs

h : (Xs (Xs)∅, a : (Xs)∅ ` (h)a : Xs

g : (Xs (Xs)∅, h : (Xs (Xs)∅, a : (Xs)∅ ` (g)(h)a : Xs

g : (Xs (Xs)s−1,d,n, h : (Xs (Xs)∅, a : (Xs)∅ ` (g)(h)a : Xs

g : (Xs (Xs)s−1,d,n, h : (Xs (Xs)s−1,d,n, a : (Xs)∅ ` (g)(h)a : Xs

f : (Xs (Xs)s−1,d,n, a : (Xs)∅ ` (f)(f)a : Xs

f : (Xs (Xs)s−1,d,n ` λa.(f)(f)a : Xs (Xs

` λ f .λa.(f)(f)a : !s−1,d,n(Xs (Xs)(Xs (Xs

` λ f .λa.(f)(f)a : ∀Xs, !s−1,d,n(Xs (Xs)(Xs (Xs

Figure 5.9: Type derivation of 2 : ∀Xs, !s−1,d,n(Xs (Xs)(Xs (Xs.

m : N `m : N
m : N `m : !s,d,nF(F g : F `g : F

m : N, g : F s,d,n ` (m)g : F

n : N `n : N
n : N `n : !s,d,nF(F h : F `h : F

n : N, h : F s,d,n ` (n)h : F x : X∅s ` x : Xs

n : N, h : F s,d,n, x : X∅s ` ((n)h)x : Xs

m : N, n : N, g : F s,d,n, h : F s,d,n, x : X∅s ` ((m)g)((n)h)x : Xs

m : N, n : N, f : F s,d,n, x : X∅s ` ((m) f)((n) f)x : Xs

m : N, n : N, f : F s,d,n `λx.((m) f)((n) f)x : Xs(Xs

m : N, n : N `λ f .λx.((m) f)((n) f)x : N s,d,n

m : N `λn.λ f .λx.((m) f)((n) f)x : N s,d,n(N s,d,n

`λm.λn.λ f .λx.((m) f)((n) f)x : N s,d,n(N s,d,n(N s,d,n

Figure 5.10: Type derivation of add : N s,d,n(N s,d,n(N s,d,n. To simlify the proof derivation, we write F
for Xs(Xs and N for N∅s,d,n.

However, one can not extend the encoding of Figure 5.8 to this rule because Linear Logic does not allow
weakening on a formula A unless A is of the shape ?A′. Thus we would have to prove the bound directly
on λ-calculus (or a similar language as in [12]). Which makes the proof more difficult, because we can not
use the lemmas we proved on context semantics. If we had defined the context semantics and the criteria
on a more general framework (for example interaction nets, for which we define a context semantics in
Chapter 6) we would not have problems to accomodate such a simple modification.

To give an intuition on the system, let us give some examples of proof derivations. For any s ≥ 1, and
k ∈ N, k can be typed with the following type (see Figure 5.9 for the type derivation of 2):

Ns,d,n = ∀Xs, !s−1,d,n(Xs (Xs)(Xs (Xs

Then, the addition can be typed as shown in Figure 5.10. Finally, although this type system has no built-in
mechanism to type tuples, we can encode them by the usual church encoding (Figure 5.11). Let us notice
that this encoding does not require any additional constraint on the types, contrary to L4 (where the terms
must have the same level).

We isolate four constraints that each light logic has and which S DNLL does not have. We illustrate each
constraint with an intuitive description and a λ-term which can be typed in S DNLL but seemingly not in
any other light logic because of this constraint. We set S = λm.λ f .λx.((m) f)(f)x implementing succesor,

146

.

f : (A(B(X)∅ ` f : A(B(X Γ ` t : A
Γ, f : (A(B(X)∅ ` (f)t : B(X ∆ ` u : B

Γ,∆, f : (A(B(X)∅ ` ((f)t)u : X
Γ,∆ ` λ f .((f)t)u : (A(B(X)(X

Γ,∆ ` λ f .((f)t)u : ∀X.(A(B(X)(X
Γ,∆ ` 〈t, u〉 : 〈A, B〉

Figure 5.11: Simple encoding of pairs.

and + = λm.λn.λ f .λx.((m) f)((n) f)x implementing addition on Church integers and x + y + z is a notation
for ((+)((+)x)y)z.

• In light logics, in 〈t, u〉, t and u must have the same stratum indices (depth in LLL and MS , level in
L4). The term (k)λ〈x, y, z〉.〈x, ((x)S)0, x + y + z〉 is not typable in light logics: because the function
λ〈x, y, z〉.〈x, ((x)S)0, x + y + z〉 is iterated, we have s(y) = s

(
((x)S)0

)
so s(y) > s(x). But, because they

are in the same tuple, it must be s(y) = s(x). The x + y + z term ensures that the stratum indices of y
and x can not be modified by § modalities.

• There is no N rule in light logics and in their encodings in S DNLL. This seems to prevent the typing
of k(λ〈v,w, x, y, z〉〈w,w, x,w + x + y, ((x)(+)v)0〉).

• Contrary to LLL and L4, one can have several variables in the context during a ⇒e rule. So, t =

k(λ〈x, y, z〉.〈x, x + y, y〉) is typable in S DNLL but not in LLL and L4. Moreover, the maximum nest of
terms is not a priori bounded by the type system, so if we set u = λ〈x, y, z〉.〈z, z, z〉, then (t)(u)(t) · · · (u)t
is typable in S DNLL whatever the length of the chain of applications, whereas in MS the maximum
length of such a chain is bounded.

• In light logics, there is no subtyping. For example, in L4, a Ai formula can not be considered as a Ai−1

formula. The example in the first item of this list would be typable in L4 if it was allowed to decrease
the level of a formula by mean of a subtyping relation.

147

5.2 Quantifier Predicative Linear Logic

In this section we define a type system, named Quantifier Predicative Linear Logic (QPLL), entailing a
primitive recursive bound on cut-elimination. This type system is inspired by the constraints of S DNLL on
its leftmost index. The constraints are relaxed to allow (B, P) ¨ −> −> −>(B,Q) when P , Q. The idea is that, if
((σ(B), P), [!t]) ∗ ((σ(B), P),U.?u), by Lemma 166 we have

βββ((σ(B), P), [!t]) = βββ((σ(B), P),U.?u)

Thus, U must be of the shape U1@[∃]@U2 trace element (otherwise βββ((σ(B), P),U.?u) would be a subfor-
mula of βββ((σ(B), P), [!t]))). So there exists a ∃ node l such that there exist paths of the shape:

((σ(B), P), [!t]) ∗ ((concll,Q),U1.∃)

((concll,Q), [∃]) ∗ ((σ(B), P), [∃]@U2.?u)

Let us set !sH[∀Xt,q.] = β(σ(B)) with H the hole-formula corresponding to U2: it is to say that β(σ(B))|U⊥2 .!u =

β(σ(B))|U2.?u
= ∀Xt,q. Because the ∀Xt,q. is under the !s we have s ≤ t. Then, because ((σ(B), P), [!t]) ∗

((concll,Q),U1.∃) the formula associated with l contains a label equal to s so t ≤ s. So we know that s = t.
Finally, the path βββ((σ(B), P), [!t]) = βββ((σ(B), P),U.?u) must cross a ?C node n or ?N node upwards with

[!] on its trace (Lemma 182). Thus β(concln) is of the shape ?sH[∃Xs,q.]. According to the rules of QPLL,
the premises of n are labelled with formulae of the shape ?sH[∃Xs,⊥.]. Thus, β(concll) must be of the shape
∃Xs,⊥. . The formula associated with such a context can not contain labels equal to s, this is a contradiction.
So our hypothesis was false, ¨ −> −> −> is acyclic.

The formulae of QPLL are defined by the following grammar, with X ranging over a countable set of
variable, s, t ranging over N with t ≥ s and q ∈ {⊥,>}.

F s
QP = Xt | X⊥t | F s

QP ` F s
QP | F s

QP ⊗ F s
QP | ∀Xt,q.F s

QP | ∃Xt,q.F s
QP | !tF t

QP | ?tF t
QP

In the introduction of this section, we wrote that for every ?C or ?N node n such that β(concln) is of the
shape ?sH[∃Xs,q.], the premises of n are labelled with formulae of the shape ?sH[∃Xs,⊥.]. To implement
this condition, for s ∈ N, we define a mapping ()/s as follows: (∃Xs,q.A)/s = ∃Xs,⊥.A/s and in the other cases
()/s has no effect on the constructor: (Xt)/s = Xt, (X⊥t)/s = X⊥t , (A`B)/s = A/s `B/s, (A⊗B)/s = A/s⊗B/s,
(∀Xt,q.A) = ∀Xt,q.(A/s), (!tA)/s = !tA/s, (?tA)/s = ?tA/s and (if t > s) (∃Xt,q.A)/s = ∃Xt,q.A/s.

We present the system as a proof derivation system because it is easier to present side conditions (for
the ∃ rules) this way.

Definition 181. The proofs of QPLL are defined inductively by the rules of Figure 5.12. A proof derivation
is considered valid if and only if every formula is in F 0

QP.

We only prove that this system is sound for primitive recursive functions, we do not know yet whether
the system is complete. If QPLL is not powerful enough, there would be various ways to increase its
expressivity. For instance, because the proof of soundness of this system is rather technical, we did not
define a subtyping relation. Defining a subtyping relation on indices as in S DNLL (Section 5.1.1) and
S wLL (Section 5.3) could increase the expressivity of the system.

Lemma 182. Let G be a LL proof-net, let us suppose that ((σ(B), P), [!t]) 7→∗ ((σ(B), P), [!]@U.?u) with
(B, P) a anonical box and t a copy of (B, P), then the path contains a context ((e,Q), [!v]) with e the conclu-
sion of a ?N or ?C node.

148

A ∈ F 0
QP

` A, A⊥
` Γ, A ` ∆, A⊥

` Γ,∆

` Γ, A ` ∆, B
` Γ,∆, A ⊗ B

` Γ, A, B
` Γ, A ` B

` Γ, A Xs < FV(Γ)
` Γ,∀Xs,q.A

` Γ, A[B/Xs] B ∈ F s
QP

` Γ,∃Xs,>.A
` Γ, A[B/Xs] B ∈ F s+1

QP

` Γ,∃Xs,⊥.A

` Γ, ?sA/s, ?sA/s

` Γ, ?sA
` Γ, ?s?sA/s

` Γ, ?sA
` Γ, A
` Γ, ?sA

` Γ
` Γ, ?sA

` A1, · · · , An, A
` ?s1 A1, · · · , ?sn An, !sA

Figure 5.12: Definition of QPLL, s ranges over N and q ranges over {⊥,>}

Proof. If there is no such node, for every x ∈ S ig, we have ((σ(B), P), [!x]) 7→∗ ((σ(B), P), [!x]@U.?u). In
particular, we can notice that ((σ(B), P), [!u]) 7→∗ ((σ(B), P), [!u]@U.?u). Thus, we have (B, P, u) ¨ −> −> −>(B, P, u)
which contradicts Corollary 123. �

Lemma 183. Let θ and θ′ be substitutions on variables. If (β(A[θ], e, P,T,U)[θ′])|V is defined, then either
A|V is defined or there exists a suffix V ′ of V such that A|V′ is a variable.

Proof. We can prove it by induction on min(|V |, depth of A).

• If V = [], then A|V = A|[] = A is defined.

• If A = X or A = X⊥, then we set V ′ = [] and can verify that A|V′ = A|[] = A is a variable.

• Else, the cases are similar so we will only show the cases where V is of the shape W.∃. In this case,
we know that (β(A[θ], e, P,T,U)[θ′])|W.∃ is defined so β(A[θ], e, P,T,U)[θ′] is of the shape ∃X.A′.
Because we know that A is not a variable, A is of the shape ∃X.A′. So, by Definition 162, there exists
a subsitution θ′′ such that:(

β(A[θ], e, P,T,U)[θ′]
)
|W.∃ =

(∃X.β(A′[θ], e, P,T,U)[θ′′][θ′]
)
|W.∃(

β(A[θ], e, P,T,U)[θ′]
)
|W.∃ =

(
β(A′[θ], e, P,T,U)[θ′′][θ′]

)
|W

By induction hypothesis, either A′|W is defined (and in this case A|V = (∃X.A′)|W.∃ = A′|W is defined) or
there exists a suffix W′ of W such that A′|W′ is a variable (and in this case A|W′.∃ = (∃X.A′)|W′.∃ = A′|W′
is a variable).

�

Lemma 184. Let us suppose that ((σ(B), P), [!t]) ∗ ((σ(B), P),U.?u). Then there is a finite suffix V of
· · ·@U@U@U@U@U such that σ(B)|V.!t is a variable.

Proof. For i ∈ N, we define Vi by induction on i by V0 = [] and Vi+1 = Vi@U. Then we will prove by
induction on i that either β(σ(B))|Vi.!t is defined or there exists a suffix V of Vi such that β(σ(B))|V.!t is a
variable. Then, because the depth of β(σ(B)) is finite, there exists some i and a suffix V of Vi such that
β(σ(B))|V.!t is a variable.

The formula labelling σ(B) is of the shape !A so β(σ(B))|V0.!t = A, β(σ(B))|V0.!t is defined.
Let us suppose that either β(σ(B))|Vi.!t is defined or there exists a suffix V of Vi such that β(σ(B))|V.!t

is a variable. If we are in the second case, then we can notice that V is also a prefix of Vi+1, thus
proving the property for i + 1. Else, let us notice that ((σ(B), P),Vi.!t) ∗ ((σ(B), P),Vi@U.?u). We

149

know that β(σ(B))|Vi.!t is defined so β(β(σ(B))[θ(σ(B), P)], σ(B), P, [!t], [])|Vi.!t is defined. By Lemma 164,
β(β(σ(B))[θ(σ(B), P)], σ(B), P,U.?u, [])|U.?u is defined and we have the following equalities:

β(β(σ(B))[θ(σ(B), P)], σ(B), P, [!t], [])|[!t] = β(β(σ(B))[θ(σ(B), P)], σ(B), P,U.?u, [])|U.?u

β(β(σ(B))[θ(σ(B), P)], σ(B), P, [!t], [])|Vi.!t = β(β(σ(B))[θ(σ(B), P)], σ(B), P,U.?u, [])|Vi@U.?u

β(β(σ(B))[θ(σ(B), P)], σ(B), P, [!t], [])|Vi.!t = β(β(σ(B))[θ(σ(B), P)], σ(B), P,U.!u, [])|Vi@U.!u

β(β(σ(B))[θ(σ(B), P)], σ(B), P, [!t], [])|Vi.!t = β(β(σ(B))[θ(σ(B), P)], σ(B), P,U.!u, [])|Vi+1.!t

So β(β(σ(B))[θ(σ(B), P)], σ(B), P,U.!u, [])|Vi+1.!t is defined. By Lemma 183, either β(σ(B))|Vi+1.!t is de-
fined or there exists a suffix V of Vi+1 such that β(σ(B))|V.!t is a variable. �

Lemma 185. If ((σ(B), P), [!t]) ∗ ((σ(B),Q),U.?u) then P , Q.

Proof. We prove the lemma by contradiction. Let us suppose that there exists (B, P) ∈ Pot(BG), U ∈ Tra
and t, u ∈ S ig and ((σ(B), P), [!t]) ∗ ((σ(B), P),U.?u). We consider the shortest such path.

Let us write !sA = β(σ(B)). By Lemma 164, we know that

β(β(σ(B))[θ(σ(B), P)], σ(B), P, [!t], [])|[!t] = β(β(σ(B))[θ(σ(B), P)], σ(B), P,U.?u, [])|U.?u

So, if U does not contain ∃ or ∀ trace elements, A[θ(σ(B), P)] = A[θ(σ(B), P)]|U which is contradiction (it
would mean that A[θ(σ(B), P)] is strictly deeper than itself). So U contains a ∃ or a ∀ trace element. So,
U = R1@R2 with either R2 = [∃]@R′2 or R2 = [∀]@R′2.

By Lemma 184, there exists a suffix V of · · ·@U@U@U such that β(σ(B))|V.!t is a variable. Thus

β(β(σ(B))[θ(σ(B), P)], σ(B), P, [!t], [])|V.!t = β(β(σ(B))[θ(σ(B), P)], σ(B), P,U.!u, [])|V@U.!u
. Let us notice

that there exist S 1, S 2 such that V@U = S 1@S 2@V and (either S 2 = [∀]@ or S 2 = [∃]@). Let us
consider the smallest suffix U′ of U such that β(β(σ(B))[θ(σ(B), P)], σ(B), P,U′.!u, [])|S 2@V.!u is defined.

So there exists lists of trace elements U1,U2 verifying the following property P(U1,U2):

• Either U = U1@[∀]@U2 and there exists (l,Q) ∈ Pot(N∀G), and trace elements lists U′1,U
′
2,W1,W2,W′2

such that ((concll,Q), [∀]) ∗ ((σ(B), P), [∀]@U2.?u), U1 = U′1@W1@W2@U′2, β(concll)|U′2 is the
variable corresponding to l, φlim

G (l,Q)|W1@W2 is defined and (either W2 = [∀]@W′2 or W2 = [∃]@W′2).

• Or U = U1@[∃]@U2 and there exists (l,Q) ∈ Pot(N∃G) and trace elements lists U′1,U
′
2,W1,W2,W′2

such that ((concll,Q), [∃]) ∗ ((σ(B), P), [∃]@U2.?u), U1 = U′1@W1@W2@U′2, β(concll)|U′2 is the
variable corresponding to l, φlim

G (l,Q)|W1@W2 is defined and (either W2 = [∀]@W′2 or W2 = [∃]@W′2).

We consider the couple (U1,U2) with the shortest U2 possible.

• Either U = U1@[∀]@U2 and there exists (l,Q) ∈ Pot(N∀G) and trace elements lists U′1,U
′
2,W1,W2,W′2

such that ((concll,Q), [∀]) ∗ ((σ(B), P), [∀]@U2.?u), U1 = U′1@W1@W2@U′2 such that β(concll)|U′2
is the variable corresponding to l, φlim

G (l,Q)|W1@W2 and (either W2 = [∀]@W′2 or W2 = [∃]@W′2).
We will prove that this case would lead to a contradiction. Indeed, let us reduce every cut except
those which have (σ(B), P) (or its reduct) as one of its premises. We would still have a path of
the shape ((σ(B), [e; · · · ; e]), [!t]) ∗ ((concll,Q),U1@[∀]) ∗ ((σ(B), P),U1@[∀]@U2) and the
only cut has σ(B) as one of its premises, there is a suffix U′2 of U1 such that β(concll)|U′2 is the
variable Zl corresponding to l and (either φlim

G (l,Q) = @[∃]@ or φlim
G (l,Q) = @[∀]@). Thus

150

the path has the following shape: ((σ(B), P), [!t]) ((e1,), [!]) · · · ((ei−1,), [!])
((ei,), [!]) ((ei+1,),) · · · ((e j,),) ((σ(B), P),U.?u) (with e1, · · · , e j downwards arrows).
Zl can not be free in σ(B). Let us consider the last context C preceding ((concll,Q),U1@[∀]) in the
path whose formula does not contain any free occurrence of Zl. Either C = ((concll,Q),W@[∃]) or
C = ((conclm,Q′)W@[∀]) (with m a ∃ node whose associated formula contains Zl). In both cases, we
have a contradiction because the edge is upward and different from σ(B), the trace is not limited to a
! trace element.

• Or U = U1@[∃]@U2 and there exists (l,Q) ∈ Pot(N∃G) and trace elements lists U′1,U
′
2,W1,W2,W′2

such that ((concll,Q), [∃]) ∗ ((σ(B), P), [∃]@U2.?u), U1 = U′1@W1@W2@U′2, β(concll)|U′2 is
the variable corresponding to l, and φlim

G (l,Q) = W1@W2 (and either W2 = [∃]@W′2 and W2 =

[∀]@W′2). We will prove that it leads to a contradiction. By Lemma 163, we know that the context
β(β(σ(B)), σ(B), P, [∃]@U2.?u, [])|[∃]@U2.?u is well-defined. So either, β(σ(B))|[∃]@U2.?u

is defined, or
U2 = V1@[∃]@V2 or U2 = V1@[∀]@V2 and P(U1@[∃]@V1,V2) which contradicts our hypothesis
that (U1,U2) is the pair satisfying P with the shortest right element.

So β(σ(B))|[∃]@U2.?u
is defined, β(σ(B))|[∀]@U2.!t

is defined. Thus β(σ(B)) = !sH[∀t,q.A′] with s ≤ t.

There exists edges e, f , g such that e, f are premises of a ?C (or ?N) node whose conclusion is g and:

((σ(B), P), [∀]@U2@[!u]) ∗ ((g,), [∀]@U2@[!]) ((e,), [∀]@U2@[!]) ∗ ((concll,Q), [∀])

((σ(B), P), [!t]) ∗ ((g,), [!]) ((f ,), [!]) ∗ ((concll,Q), .∃)

Let us notice that the formula associated to l contains a label equal to s, so t ≥ s and t = s. By
Lemma 163, β(g) is of the shape !sH[∀Xs,q′ .A′] so β(e) = ?sH⊥[∃Xs,⊥.]. Thus β(concll) = ∃Xs,⊥ .
The formula associated to l can not contain a label equal to s.

�

Lemma 186. Let (B, P, t) and (B, P, u) in MaxCanCopG, then ¬
(
(B, P, t) ¨ −> −> −>+(B, P, u)

)
Proof. We prove the lemma by contradiction. Let us suppose that (B0, P0, t0) ¨ −> −> −>(B2, P2, t2) · · · (Bk, Pk, tk)
and (B0, P0) = (Bk, Pk). By Lemma 122, we know that either ((σ(B0), P0), [!t0]) ∗ ((σ(B0), P0), [!]@T.!tk)
or ((σ(B0), P0), [!t0]) ∗ ((σ(B0), P0),T.?tk). The first alternative is ruled out because of Lemma 90.
So there exists a path of the shape ((σ(B), P), [!t]) ∗ ((σ(B), P),U.?u). This is in contradiction with
Lemma 185. �

Lemma 187. QPLL is sound for primitive recursion.

Proof. Immediate from Theorem 152. �

151

` al : X⊥, ar : X ` bl : X⊥, br : X
` al : X⊥, bl : X⊥, t : X ⊗ X

B ` σ2(B) : ?1X⊥, σ1(B) : ?0X⊥, σ(B) : !0(X ⊗ X)
` σ2(B) : ?1X⊥, σ1(B) : ?1X⊥, σ(B) : !0(X ⊗ X)

` c : ?1X⊥, σ(B) : !0(X ⊗ X)
` p : (?1X⊥) ` !0(X ⊗ X)

!P?P?P

⊗ax
ax

?C
`

bl
al

br
ar

t B

σ1(B) σ2(B)
c

σ(B)

p

Figure 5.13: Correspondence between proof derivation and proof-net.

5.3 Sweetened Linear Logic

The idea of this section is to take advantage of the more general criteria defined in Section 3.5 to define a
more expressive decidable subsystem of Linear Logic. The type system is called “Sweetened” Linear Logic
(S wLL) by analogy with the food industry. Linear Logic as a whole can lead to very high time complexity,
in the same way as eating food without restriction leads to obesity. To prevent this, one may enfore a strict
discipline (only considering the proof-nets of LLL or sugar-free food). With these restrictions, programming
becomes tedious and meals might become boring. To get some expressivity (sugar taste) back, one may relax
the restrictions (allow sweeteners). However, as in the food industry, there is a new flaw. Sweeteners are
allegedly associated with cancer. Here, our cancer is the complexity of the system. The number of labels
carried by ! and ? connectives in the formulae of S wLL is very high and the rules of S wLL are quite complex.
This is the reason why we will present S wLL as an intersection of several systems. Each system enforces
some property on the labels. The conjunction of those properties entails the existence of a weak stratification
(Definition 108) and a bound on | ./ |, implying a polynomial bound (Theorem 119).

In the definition of weak stratifications, a subset S of BG is distinguished. For several of the subsystems
defined below, we suppose given S (this does not break decidability because BG is a finite set and one may
try to infer types for every S ⊆ BG). We also suppose given a subset S� of BG. This set will have the
following meaning: if (B, P, t)� (C,Q, u) then C ∈ S�.

We present every system as proof derivation systems as this presentation is much more compact. Let
us notice that boxes of proof-nets correspond to promotion rules of proof derivation. Thus, the sets S and
S� mentioned in the previous paragraph will be sets of instances of promotion rules. The instances will be
identified by their names, written on their left.

We also suppose defined sets E◦, and E� of “edges”. In proof derivation systems, edges correspond
to a set of formulae in judgements. The correspondence is illustrated by Figure 5.13. It represents a proof
derivation in S wLLdc and the corresponding proof-net. Let us observe that the edge al correspond to two
occurrences of the formula X⊥. Similarly, σ1(B) corresponds to occurrences of ?0X⊥ and ?1X⊥. In the
general case, the formulae corresponding to an edge can differ only on their labels (the underlying LL
formula is the same). In fact, for every proof derivation system S wLLz, we will define a subtyping relation
≤z such that, if the edge e corresponds to occurrences e1, ..., ek of formulae (from top to bottom), then
e1 ≤z e2 ≤z · · · ≤z ek.

5.3.1 Definition of S wLLdc

The role of the first subsystem is to enforce the conditions on d() required by the second part of Defini-
tion 108. In S wLLdc, the ! and ? connectives carry a label which plays a role quite similar to the second
label (usually denoted d) of S DNLL. There are three differences:

152

• For every box B, if ((σ(B), P), [!t]) 7→∗ ((σ(C),), [!]) implies that every box containing C is in S ,
then B does not need to abide to the same rules. This allows to have B . . . B when |Can(B)| does not
depend on the argument. A formula e is labelled by an element of {0, 1} which is equal to 1 only if
every box containing e is in S .

• Whenever (B, P, t) x.. ∗(C,Q, u) and (B, P, t′) x.. ∗�+ (C,Q′, u′) we must have d(B) > d(C). We will
enforce a stronger property: for every box C ∈ S�, we require the labels corresponding to every
auxiliary door (even the leftmost one) of C to be strictly greater than the label corresponding to its
principal door. Thus, if (B, P, t) x.. ∗(C,Q, u) and (B′, P, t′) x.. ∗�+ (C,Q′, u′) we have d(B′) > d(C).

• Finally, we fuse two previously defined way to enforce dependence control. Let us suppose that B . . . B
because of paths of the following shape (with e the conclusion of a ?C node and i , j)

((σ(B), P), [!t]) 7→∗ ((e,Q), [!l()]) 7→ ((el,Q), [!]) 7→∗ ((σi(B),Q), [!]) ↪→ ((σ(B),Q), [!])

((σ(B), P), [!t′]) 7→∗ ((e,Q), [!r()]) 7→ ((er,Q), [!]) 7→∗ ((σ j(B),Q′), [!]) ↪→ ((σ(B),Q′), [!])

Let !dB , ?de , ?dl , ?dr , ?di and ?d j be the formulae labelling σ(B), e, el, er, σi(B) and σ j(B). To
forbid such paths, we require that the label controlling dependence decreases along those paths and
it strictly decreases in at least one of these steps: dB ≥ de ≥ dl ≥ di ≥ dB, dB ≥ de ≥ dr ≥ d j ≥ dB

and at least one of those inequalities is strict. The choice we made in S DNLL is to require the label
to strictly decrease along one of the ↪→ step: either di > dB or d j > dB. On the contrary, in [58],
Mazza requires the label to strictly decrease along one of the step crossing e upwards6: either de > dl

or de > dr. In [64], Roversi and Vercelli defined a framework MS where the step where the label must
decrease can depend on dB. For instance, we may define a system such that (de = 3 implies that either
dl < 3 or dr < 3) and (dB = 5 implies that either di > 5 or d j > 5). Here, we require the even labels to
strictly decrease on ?C, and the odds labels to strictly decrease on ↪→.

In the definition of weak stratifications (Definition 108), we defined d(B) (for B ∈ BG) as an element of
N−{0} because the bounds were easier to state this way, and the proofs were simpler. Here, to give a simpler
and more intuitive definition of the system, the labels are elements of N ∪ {⊥}.
• If σ(B) is labelled by !⊥ then we will set d(B) = 1.

• If σ(B) is labelled by !d with d ∈ N, then we will set d(B) = d + 2.

For every set E, we define E⊥ (resp. E>) as the set E ∪ {⊥} (resp. E ∪ {>}). If E admits an order ≤, the
order is extended to E⊥ (resp. E>) by setting, for every e ∈ E, ⊥ ≤ e ≤ >. For every binary operation f on
E and e ∈ E, we extend f by f (⊥, e) = f (e,⊥) = ⊥ and f (>, e) = f (e,>) = >. Similarly, we will represent
booleans by the set {⊥,>} = {⊥,>} and we define an order ≤ by: a ≤ b iff a = ⊥ or b = >.

We define Fdc by the following grammar (with X ranging over a countable set of variables and d ∈ N⊥).

Fdc := X | X⊥ | Fdc ⊗ Fdc | Fdc ` Fdc | ∀X.Fdc | ∃X.Fdc | !dFdc | ?dFdc

In the first four subsystems (S wLLdc, S wLLnest, S wLLused and S wLLlast), to define the subsystem
S wLLz, we define a set of labels L?

z (here L?
dc = N⊥). Then, Fz is defined by the following grammar

(with X ranging over a countable set of variables, and l ∈ L?
z):

Fz := X | X⊥ | Fz ⊗ Fz | Fz ` Fz | ∀X.Fz | ∃X.Fz | !lFz | ?lFz

6!A and §A can be viewed as !2A and !1A

153

`a Γ, A A ≤dc B a ≤ b
`b Γ, B

A ∈ Fdc − {?⊥B} − {!⊥B}
`⊥ A, A⊥

A ∈ Fdc

`> !>A, ?>A⊥
`a Γ, A `a ∆, A⊥

`a Γ,∆

`a Γ, A `a ∆, B
`a Γ,∆, A ⊗ B

`a Γ, A, B
`a Γ, A ` B

`a Γ, A X < FV(Γ)
`a Γ,∀X.A

`a Γ, A[B/X] B ∈ Fdc
`a Γ,∃X.A

`a Γ, ?2d+1A, ?2d+1A
`a Γ, ?2d+1A

`a Γ, ?2d+2A, ?2d+1A
`a Γ, ?2d+2A

`a Γ, ?⊥A, ?⊥A
`> Γ, ?⊥A

`a Γ, A
`> Γ, ?⊥A

`a Γ

`> Γ, ?⊥A

`a Γ, ?2d+1?2dA
`a Γ, ?2d+1A

`a Γ, ?2d+2?2d+1A
`a Γ, ?2d+2A

`a Γ, ?⊥?⊥A
`> Γ, ?⊥A

`a A1, · · · , An, A
`> ?⊥A1, · · · , ?⊥An, !⊥A

`a A1, · · · , An, A (a = ⊥) ∨ (B ∈ S)
B `a ?2dA1, · · · , ?2dAn, !2dA

`a A1, A2 · · · , An, A (a = ⊥) ∨ (B ∈ S)
B `a ?2d+1A1, ?2d+2A2, · · · , ?2d+2An, !2d+1A

Figure 5.14: Definition of S wLLdc, d ranges over N. In promotion rules, if B ∈ S�, the indices on the ?
must be strictly greater than the !.

Then, we define a subtyping order ≤z. This order will be based on an order 4?
z on elements of L?

z . Then ≤z

by induction on formulae by:

• For every formula A, we have A ≤z A.

• Let us suppose that A ≤z A′ and B ≤z B′ then (A⊗B) ≤z (A′⊗B′), (A`B) ≤z (A′`B′), ∀X.A ≤z ∀X.A′

and ∃X.A ≤z ∃X.A′.

• Let us suppose that A ≤z A′ and a, b ∈ L?
z such that a 4z b then ?aA ≤z ?bA′ and !bA ≤z !aA′.

Definition 188. The proofs of S wLLdc are defined inductively by the rules of Figure 5.14. The judgements
`a Γ are composed of a non-empty list Γ of formulae (as usual) and an element a of {⊥,>}. If `> Γ then
every promotion rule below this judgement is in S .

We also require that, if σi(B) ∈ E� then there are formulae ?nA and !n′A′ corresponding to σi(B) and
σ(B) such that n > n′.

Definition 189. We define a mapping from BG to N⊥ by dsw(B) = d iff the highest σ(B) is labelled by a
formula of the shape !d . We also define a partial mapping dsw() on contexts by: dsw(((e, P), [!t]@T)) = d
iff βββ((e, P), [!t]@T) = !d (considering the lowest e).

Lemma 190. If ((e, P),T) 7→∗ ((f ,Q),U) then dsw(((e, P),T)) is defined iff dsw(((f ,Q),U)) is defined. If
they are defined dsw(((e, P),T)) ≥ dsw(((f ,Q),U)).

Proof. Let us consider the steps where dsw() is modified.

• It can be modified by the subtyping relation. In this case P = Q and T = U. For dsw(((e, P),T)) to
differ from dsw(((f , P),T)), the trace T must point to a ? or ! modality (not inside a variable).

– Either e is a downward edge, f is below e (so β(e) ≤dc β(f)) and T points to a ! modality. In this
case, the label is smaller in the formula associated to f . Thus, dsw(((e, P),T)) ≥ dsw(((f ,Q),U)).

– Or e is an upward edge, f is above e (so β(f) ≤dc β(e)) and T points to a ? modality. In this case,
the label is smaller in the formula associated to f . Thus, dsw(((e, P),T)) ≥ dsw(((f ,Q),U)).

154

• Or T = [!t] and the 7→ step from ((e, P), [!t]) to ((f ,Q),U) is crossing a ?C, ?N upwards or a ↪→ step.
We can verify that in every case it decreases the labels: the labels above the contraction and digging
rules are smaller or equal than below them, the label on the ! of a promotion rule is smaller (or equal)
than on the ? modalities.

�

Lemma 191. Let B be a box, if dsw(((e, P), [!t])) = ⊥ then every box containing e is in S

Proof. Because dsw(((e, P), [!t]) = ⊥, β(e) is of the shape !⊥A or ?⊥A. The conclusion of every possible rule
creating e (axiom, contraction, digging, weakening, dereliction, and promotion) is of the shape `> . Thus,
every judgement below this rule is of the shape `> Γ. Thus for every promotion rule below this judgement,
the box is in S . �

Lemma 192. If dsw(B) = ⊥ and ((σ(B), P), [!t]) 7→∗ (((e,Q), [!u]) then every box containing e is in S .

Proof. We have dsw(((σ(B), P), [!t])) ≤ dsw(B) = ⊥ so dsw(((σ(B), P), [!t])) = ⊥. Because ((σ(B), P), [!t]) 7→∗
((e,Q), [!u]), by Lemma 190, dsw(((e,Q), [!u])) ≤ ⊥ so dsw(((e,Q), [!u])) = ⊥. By Lemma 191, every box
containing e is in S . �

Lemma 193. If ((σ(B), P), [!t]) 7→∗ ((σi(B′), P′), [!t′]) ((σ(B), P), [!t′]) 7→∗ ((σi′(B′), P′′), [!t′′]) with i , i′,
and dsw(B) ∈ N then dsw(B) > dsw(B′).

Proof. The proof depends on whether dsw(B) = 2 · k or dsw(B) = 2 · k + 1.

• If dsw(B) = 2·k, then let us consider the first i such that ((σ(B), P), [!t]) 7→i Ci 7→ Ci+1 = ((e, P), [!u]@T),
((σ(B), P), [!t]) 7→i C′i 7→ C′i+1 and C′i+1 is not of the shape ((e, P), [!u′]@T). By Lemma 190,
2 · k ≥ dsw(Ci), 2 · k ≥ dsw(C′i), dsw(Ci+1) ≥ dsw(B′) and dsw(C′i+1) ≥ dsw(B′). Concerning the
Ci 7→ Ci+1 and C′i 7→ C′i+1 steps:

– Either these steps cross a ?C node upwards with the trace of Ci and C′i being of the shape [!l()]
and [!r()]. Then, either dsw(Ci) > dsw(Ci+1) or dsw(C′i) > dsw(C′i+1).

– Or these steps cross a ?N node upwards with the trace of Ci and C′i being of the shape [!n(,v)]
and [!n(,v′)] with v , v′. In this case dsw(Ci) > dsw(Ci+1) and dsw(C′i) > dsw(C′i+1).

In each case, it implies that dsw(B) = 2 · k > dsw(B′) so dsw(B) ≥ 1 + dsw(B′).

• If dsw(B) = 2 · k + 1, we know that dsw(B′) ≤ 2 · k + 1 by Lemma 190. If dsw(B′) = 2 · k + 1 then let
us notice that either i , 1 or j , 1. This would mean that either dsw(((σi(B′), P′), [!t′])) = 2 · k + 2 or
dsw(((σi′(B′), P′′), [!t′′])) = 2 · k + 2. Each possibility would contradict Lemma 190.

�

5.3.2 Definition of S wLLnest

The role of this subsystem is to control nesting by bounding the depth of ./ . We will do so as in the premises
of Theorem 119: we require that (B, P) ./ (B,Q) is only possible if every box containing B is in S . This is
why, as in S wLLdc judgements, the judgements of S wLLdc will carry a boolean a whose meaning is “every
promotion rule below this judgement is in S ”. The ! and ? connectives will carry a label (n, c) inN>⊥×{⊥,>}.

155

`a Γ, A A ≤nest B a ≤ b
`b Γ, B

a ∈ {⊥,>} A ∈ Fnest

`a A, A⊥
`a Γ, A `a ∆, A⊥

`a Γ,∆

`a Γ, A `a ∆, B
`a Γ,∆, A ⊗ B

`a Γ, A, B
`a Γ, A ` B

`a Γ, A X < FV(Γ)
`a Γ,∀X.A

`a Γ, A[B/X] B ∈ Fnest
`a Γ,∃X.A

`a Γ, ?n,>A, ?n,>A
`a Γ, ?n,>A

`a Γ, A
`a Γ, ?⊥,⊥A

`a Γ

`a Γ, ?⊥,⊥A
`a Γ, ?n,>?n+1,>A
`a Γ, ?n+1,>A

`a Γ, ?n,>?n,⊥A
`a Γ, ?n,>A

`a A1, · · · , Ak, A (a = ⊥) ∨ (B ∈ S)
`> ?⊥,cA1, · · · , ?⊥,cAk, !⊥,cA

`a A1, · · · , Ak, A (a = ⊥) ∨ (B ∈ S)
`> ?>,cA1, · · · , ?>,cAk, !>,cA

`a A1, · · · , Ak, A (a = ⊥) ∨ (B ∈ S) n ∈ N
B `a ?n,cA1, · · · , ?n,cAk, !n,cA

Figure 5.15: Definition of S wLLnest

• The n ∈ N>⊥ plays a role quite similar to the third label (also usually denoted n) of S DNLL. Let us
consider a box B such that β(σ(B)) = !n,c . Provided that every box containing the box B is in S , n
may be equal to ⊥ or >. In those cases, it is possible to have (B, P) ./ (B,Q). If n = ⊥ then, as in
S wLLdc, for every box B such that B xC, β(σ(C)) is of the shape !⊥, (so every box containing such
a C is in S). Similarly, if n = > and C xB then β(σ(C)) is of the shape !>, (so every box containing
such a C is in S).

• Intuitively, the difference between / / / and / is that, whenever ((σ(B), P), [!p(u)]) 7→∗ ((σ(C),Q), [!e])
it always implies that B

/ / /
C. This is why, when m is a ?N node, we have β(conclm) = ?n, A and

β(premm) = ?n′, ? ,cA we require that n > n′.

On the contrary, ((σ(B), P), [!p(u)]) 7→∗ ((σ(C),Q), [!e]) implies B

/

C only if there exist two dis-
tinct copies n(t1, u) and n(t2, u) of (B, P). This is why, when m is a ?N node, β(conclm) = ?n, A
and β(premm) = ?n′, ? ,cA, we may have n = n′ provided that there is no 7→-paths of the shape
((conclm, P), [!n(t,u)]) 7→ ((premm, P), [!t; !u]) 7→∗ ((conclm′ ,Q), [!]) with m′ a ?C node. To ensure this
property, we will require (when n = n′) that c = ⊥. And conclusions of ?C nodes can not be labelled
by formulae of the shape ? ,⊥B.

We define L?
nest as the set N>⊥ × {⊥,>}. Thus, Fnest is defined by the following grammar (with X ranging

over a countable set of variables, n ∈ N>⊥ and c ∈ {⊥,>}).

Fnest := X | X⊥ | Fnest ⊗ Fnest | Fnest ` Fnest | ∀X.Fnest | ∃X.Fnest | !n,cFnest | ?n,cFnest

We define 4?
nest by (n, c) 4?

nest (n′, c′) iff (n < n′) or (n = n′ and c ≤ c′). Then the subtyping relation ≤?
nest is

defined from 4?
nest as described in Section 5.3.1.

Definition 194. The proofs of S wLLnest are defined inductively by the rules of Figure 5.15.

Definition 195. We define a mapping from BG to N>⊥ by nsw(B) = n iff the highest σ(B) is labelled by a
formula of the shape !n, A. We also define a partial mapping nsw() on contexts by: nsw(((e, P), [!t]@T)) = n
iff βββ((e, P), [!t]@T) = !n, (considering the lowest e).

156

Lemma 196. If ((e, P),T) 7→∗ ((f ,Q),U) then nsw(((e, P),T)) is defined iff nsw(((f ,Q),U)) is defined. If
they are defined nsw(((e, P),T)) ≥ nsw(((f ,Q),U)).

Proof. The proof is quite similar to the proof of Lemma 190. Let us consider the steps where nsw() is
modified.

• It can be modified by the subtyping relation. In this case P = Q and T = U. For nsw(((e, P),T)) to
differ from nsw(((f , P),T)), the trace T must point to a ? or ! modality (not inside a variable).

– Either e is a downward edge, f is below e (so β(e) ≤dc β(f)) and T points to a ! modality. In this
case, the label is smaller in the formula associated to f . Thus, nsw(((e, P),T)) ≥ nsw(((f ,Q),U)).

– Or e is an upward edge, f is above e (so β(f) ≤dc β(e)) and T points to a ? modality. In this case,
the label is smaller in the formula associated to f . Thus, nsw(((e, P),T)) ≥ nsw(((f ,Q),U)).

• Or T = [!t] and the 7→ step from ((e, P), [!t]) to ((f ,Q),U) is crossing a ?N node upwards. This step
decreases the labels: the labels above the digging rules are smaller or equal than below them.

�

Lemma 197. If βββ(C) = !n,c and C 7→∗ D then βββ(D) = !n′,c′ and (n, c) <nest (n′, c′).

Proof. Let us consider the steps where this label is modified.

• It can be modified by the subtyping relation. As in the proof of Lemma 190, the label can only
decrease this way.

• If C = ((e, P), [!n(t,u)]) 7→ ((f , P), [!t; !u]) = D (crossing a ?N node upwards) with e and f labelled by
?n,>A and ?n,>?n,⊥A, then βββ(C) = !n,> and βββ(D) = !n,⊥ . By definition, we have (n,>) <nest (n,⊥).

• If C = ((e, P), [!p(u)]) 7→ ((f , P), [!u]) = D (crossing a ?N node upwards) with e and f labelled by
?n+1,>A and ?n,>?n+1,>A, then βββ(C) = !n+1,> and βββ(D) = !n,> . By definition, we have (n + 1,>) <nest

(n,>).

�

Lemma 198. Let B be a box, if nsw(B) = ⊥ or nsw(B) = > then every box containing B is in S .

Proof. The proof is the same as the proof of Lemma 191. �

Lemma 199. If nsw(B) ∈ N and (B, P) ./ (B′, P′) then nsw(B) > nsw(B′).

Proof. By definition of ./ (Definition 112), there exist t , u ∈ Cop(B, P) and a simplification v of t
and u, and ((σ(B), P), [!v]) 7→∗ ((σ(B′), P′), [!x]) with x a standard signature. Let us consider the lowest i
such that: ((σ(B), P), [!t]) 7→i+1 ((ei+1, Pi+1), [!ti+1]@Ti+1), ((σ(B), P), [!u]) 7→i C and C is not of the shape
((ei+1, Pi+1), [!ui+1]@Ti+1) with ui+1 w ti+1. The only possibility is that the last step crosses a ?N node
upwards. Thus, we have paths of the following shape (with v′ w w)

((σ(B), P), [!t]) 7→i ((e,Q), [!n(t′,w)]) 7→ ((f ,Q), [!t′ ; !w])

((σ(B), P), [!u]) 7→i ((e,Q), [!n(u′,w)]) 7→ ((f ,Q), [!u′ ; !w])

((σ(B), P), [!v]) 7→i ((e,Q), [!p(v′)]) 7→ ((f ,Q), [!v′])

157

` Γ, A A ≤last B
` Γ, B

A ∈ Flast

` A, A⊥
` Γ, A ` ∆, A⊥

` Γ,∆

` Γ, A ` ∆, B
` Γ,∆, A ⊗ B

` Γ, A, B
` Γ, A ` B

` Γ, A Xx < FV(Γ)
` Γ,∀Xx.A

` Γ, A[B/X⊥] B ∈ Flast
` Γ,∃X⊥.A

` Γ, A[B/X>] B ∈ F >last
` Γ,∃X>.A

` Γ, ?⊥?⊥A A ∈ F >last
` Γ, ?>A

` Γ A ∈ F >last
` Γ, ?>A

` Γ, ?⊥A, ?⊥A A ∈ F >last
` Γ, ?>A

` Γ, A
` Γ, ?>A

` Γ, e : ?>A e ∈ E◦
` Γ, e : ?⊥A

` A1, · · · , Ak, A f1 ∈ E◦,... fk ∈ E◦
` f1 : ?>A1, · · · , fk : ?>Ak, !>A

Figure 5.16: Definition of S wLLlast.

• Either e and f are labelled by formulae of the shape ?n,>?n+1,>A and ?n+1,>A. By Lemma 196,
nsw(B) ≥ nsw(((σ(B), P), [!v])) ≥ n + 1 and n ≥ nsw(B′). Thus nsw(B) > nsw(B′).

• Or e and f are labelled by formulae of the shape ?n,>?n,⊥A and ?n,>A. Because t , u, we have t′ , u′.
So either t′ , e or u′ , e. Thus, there exists a path of the shape ((f ,Q), [!t′ ; !w]) 7→∗ ((g,R), [!])
with g the conclusion of a ?C node or ?N node. Let ?n′′,> be the label of g. By Lemma 196, we have
nsw(B) ≥ n, (n,⊥) <nest (n′′,>) and n′′ ≥ nsw(B′). By definition of <nest, (n,⊥) <nest (n′′,>) implies
that n > n′′. Thus, we have nsw(B) > nsw(B′).

�

5.3.3 Definition of S wLLlast

The system S wLLlast restricts the contexts of the shape ((e, P), [!u]) such that there exists (B, P, t) ∈ BoxS igG

such that CB,P,t = ((e, P), [!u]). For (B, P) ∈ Pot(BG) and t ∈ Cop(B, P) we define (B, P, t) as the last7 context
of the path beginning by ((σ(B), P), [!t]) of the shape ((e, P), [!u]) with e ∈ E◦. In S wLLlast, the ! and ?
modalities carry a label l in {⊥,>}. Let us consider an edge f labelled by !>A, for every path of the shape
((e, P), [!t]) 7→∗ ((f ,Q), [!u]) with e the conclusion of a ?C or ?N node, there exists a context of the shape
((g,R), [!]) in the path with g ∈ E◦ (Lemma 201).

We define L?
last as the set L?

used = {⊥,>} and 4?
last=4

?
used. In this subsystem, variables are also labelled by

elements of LX
last = {⊥,>}. Then Flast is defined by the following grammar (with X ranging over a countable

set of variables, l ∈ L?
last and x ∈ LX

last):

Flast := Xx | X⊥x | Flast ⊗ Flast | Flast ` Flast | ∀Xx.Flast | ∃Xx.Flast | !lFlast | ?lFlast

Then, F >last refers to the formulae of Flast whose labels (both on exponential modalities and on variables) are
all equal to >.

Definition 200. The proofs of S wLLlast are defined inductively by the rules of Figure 5.16.

Lemma 201. Let us suppose that e is the conclusion of a ?C or ?N node, f is labelled by !>A and
((e, P), [!t]) 7→∗ ((f ,Q), [!u]). Then, there exists a context of the shape ((g,R), [!]) in the path with g ∈ E◦.

7The name of the system comes from this definition.

158

Proof. Let C be the context such that ((e, P), [!t]) 7→ C. By definition of S wLLlast, βββ(C) is of the shape !⊥A.
And βββ((f ,Q), [!u]) is of the shape !>A′. Let us consider the first context of the path where the label changes
from ⊥ to >. Most of the steps decrease the labels (so we can only go from > to ⊥) as in the proofs of
Lemmas 190, 196 and 206. The only rule changing the label the other way is the second of the last line.
Thus there exists an edge g ∈ E◦ such that the path goes through the context ((g,), [!]). �

Lemma 202. Let ((e, P), [!t]@T) be a context such that βββ((e, P), [!t]@T) is defined. If β(e) ∈ F >last, then
βββ((e, P), [!t]@T) ∈ F >last.

Proof. First we can notice that, for every (f , P) in Pot(N∀) such that βconcl f is of the shape ∀X>.A and
φG(f , P) = (B, (e,Q)) then B ∈ F >last. Indeed, because the labels on variables can not be modified by
subtyping relation, for every context C of the path ((concl f , P), [∀]) 7→∗ ((concle,Q), [∀]) is of the shape
∀X>. . In particular, β(concle) is of the shape ∃X>.A′. Thus, by Definition of S wLLlast, the formula B
associated with e is in F >last.

Then, we can deduce that for every (f , P) in Pot(N∀G) such that β(concl f) is of the shape ∀X>.A,
φlim

G (f , P) ∈ F >last. We prove it by induction on <∀. By definition of φlim
G , either φG(f , P) is undefined

and φlim
G (f , P) = X> ∈ F >last. Or φG(f , P) = (B, (e, [q1; · · · ; q∂(m)])), Z1

l1
, · · · ,Zk

lk
are respectively associated

to ∀ nodes f1, · · · , fk and

φlim
G (f , P) = B[φlim

G (f1, [q1; · · · ; q∂(f1)])/Z1; · · · ; φlim
G (fk, [q1; · · · ; q∂(fk)])/Zk]

According to the previous paragraph, B is in F >last so l1 = · · · = lk = >. Thus, by induction hypothesis,
φlim

G (f1, [q1; · · · ; q∂(f1)]), · · · , φlim
G (fk, [q1; · · · ; q∂(fk)]) ∈ F >last. By definition of F >last, φ

lim
G (f , P) ∈ F >last.

Finally, by definition, of βββ((e, P), [!t]@T) = β(β(e)[θ(e, P)], e, P,T, [])|T . By supposition, β(e) ∈ F >last
so every eigenvariable of β(e) is labelled by >. Thus, according to the previous paragraph, β(e)[θ(e, P)] ∈
F >last. In the computation of β(β(e)[θ(e, P)], e, P,T, []), for every step of the shape β(∀Xx.A, e, P,U.∀,V) with
((concl f ,Q), [∀] ∗ ((e, P), [∀]@V), we have x ∈ > so β(concl f) is of the shape ∀X>. and φlim

f ,Q ∈ F >last.
The steps β(∃Xx.A, e, P,U.∃,V) are similar. So, βββ((e, P),T) is in F >last. �

Lemma 203. Let us consider a S wLLlast proof-net G such that no ⊥ appears in its conclusions. For every
(B, P, t) ∈ CanCopG, there exists a context CB,P,t = ((e,Q), [!u]) such that ((σ(B), P), [!t]) ∗ CB,P,t and,

• Either e ∈ E◦ or CB,P,t = ((σ(B), P), [!t]).

• If ((e,Q), [!u]) k ((σ(),), [!]) then we have k = 0.

• If e is not an auxiliary door, then u = e.

Proof. By definition of CanCopG, there exists a path of the shape ((σ(B), P), [!t]) ∗ ((f ,R), [!v]@T) 6 .
Let !lA = βββ((f ,R), [!v]@T), let us prove that l = >. Because ((f ,R), [!v]@T) 67→, we are in one of the
following cases:

• f is the conclusion of a ?W node, a ?N node or a ?C node. In those cases, let us notice that β(f) ∈ F >last
(by definition of S wLLlast). Thus, by Lemma 202, βββ((f ,R), [!v]@T) is in F >last.

• f is the conclusion of a ?D or ?P node and T = []. In these cases, β(f) is of the shape ?>A′ and
βββ((f ,R), [!v]) = β(f)[θ(f ,R)]. So l = >.

• f is a conclusion of G. In this case, by assumption β(f) ∈ F >last. Thus, by Lemma 202, βββ((f ,R), [!v]@T)
is in F >last.

159

Let us consider the last context of the path ((σ(B), P), [!t]) ∗ ((f ,R), [!v]@T) of the shape ((e,Q), [!u])
with e ∈ E◦. If such a context does not exist, we set ((e,Q), [!u]) = ((σ(B), P), [!t]). By definition,
((σ(B), P), [!t]) ∗ CB,P,t and (either e ∈ E◦ or CB,P,t = ((σ(B), P), [!t]))

• If ((e,Q), [!u]) k ((σi(B),), [!]) then this context is ((f ,R), [!v]@T). By definition of S wLLlast,
σi(B) is in E◦. So ((e,Q), [!u]) = ((f ,R), [!v]@T) and k = 0.

• Let us suppose that e is not an auxiliary door, then (according to the previous item) ((f ,R), [!v]@T)
is not of the shape ((σ(),), [!]) and ((f ,R), [!v]@T) 6↪→. Thus, ((f ,R), [!v]@T) 67→ and by definition
of copies it implies that v = e. If we had u , e then, in the path ((e,Q), [!u]) ∗ ((f ,R), [!e]@T),
there would be a step of the shape ((concln, P′), [!]) C with n a ?C node or ?N node. Let us notice
that in every case βββ(C) is of the shape !⊥ . Because there is no context of the shape ((e′,Q′), [!u′])
with e′ ∈ E◦ in the path from C to ((f ,R), [!v]@T) it implies that βββ((f ,R), [!v]@T) is of the shape !⊥ .
However, we proved that l = >. So u , e leads to a contradiction, we have u = e.

�

5.3.4 Definition of S wLLstrat

The subsystem S wLLstrat enforces stratification. The ! and ? modalities are decorated with three labels:

• A label s ∈ N⊥ corresponding to the mapping s() of weak stratifications. If σ(B) is labelled by !⊥, , A
then B ∈ S . If σ(B) is labelled by !n, , A with n ∈ N then we will set s(B) = n + 1.

• A label w ∈ {�, ♦,>} helping us to capture the notion of “entering definitely a box”. Let us suppose
that ((σ(B), P), [!t]) ∗ ((σ(B′), P′),T ′.?t′]) ∗ ((e,Q), [!u]), with σ(B), σ(B′) and e being labelled
respectively by !s, , A and !s′, , A′ and !t,w, B. If ((σ(B′), P′),T ′.?t′]) is a used context, we are in one
of the following conditions:

– w = > and s ≥ 1 + s′. So s(B) ≥ s(B′) + 1. This is what happens in S DNLL.

– w = � and the path ((e,Q), [!u]) ∗ CB,P,t leaves (B′, P′, t′).

– w = ♦ and (B, P, t)� (B′, P′, t′).

• A label u ∈ {⊥,>} helping us to capture the notion of used contexts. The idea is that, if ((e, P), [!t]) is
a used context, then e is labelled by a formula of the shape ! , ,⊥A (Lemma 208).

Let L?
strat = N⊥ × {�, ♦,>} × {⊥,>} and LX

strat = N⊥ × {�, ♦,>}. Then we define Fstrat by the following
grammar (with X ranging over a countable set of variables, l ∈ L?

strat and x ∈ LX
strat)

Fstrat := Xx | X⊥x | Fstrat ⊗ Fstrat | Fstrat ` Fstrat | ∀X.Fstrat | ∃X.Fstrat | !lFstrat | ?lFstrat

We define an order ≤ on {�, ♦,>} by > ≥ ♦ ≥ �. We also define 4strat on L?
strat by (s,w, u) ≤ (s′,w′, u′)

iff (s ≤ s′, w ≤ w′ and u ≤ u′). Then, we define a subtyping order ≤strat from this order similarly to the
definitions of subtyping orders in previous sections.

• For every formula A, we have A ≤strat A.

• Let us suppose that A ≤strat A′ and B ≤strat B′ then (A ⊗ B) ≤strat (A′ ⊗ B′), (A ` B) ≤strat (A′ ` B′),
∀X.A ≤strat ∀X.A′ and ∃X.A ≤strat ∃X.A′.

160

` Γ, A A ≤strat B
` Γ, B

A ∈ Fstrat

` A, A⊥
` Γ, A ` ∆, A⊥

` Γ,∆

` Γ, A ` ∆, B
` Γ,∆, A ⊗ B

` Γ, A, B
` Γ, A ` B

` Γ, A Xs,>, Xs,�, Xs,♦ < FV(Γ)
` Γ,∀X.A

` Γ, A{B/Xs} B ∈ Fs,♦ ∩ Fs,♦

` Γ,∃X.A

` A1, · · · , Ak, A A1, · · · , Ak ∈ F⊥,> A ∈ Fs,♦ B ∈ S�
B ` e1 : ?s1,w1,uA1, · · · , ek : ?sk ,wk ,uAk, !s,>,uA>

` Γ, A
` Γ, ?0,♦,⊥A

` Γ
` Γ, ?0,♦,⊥A

` A1, · · · , Ak, A A1, · · · , Ak ∈ F⊥,> A ∈ Fs,�
B ` e1 : ?s1,w1,uA1, · · · , ek : ?sk ,wk ,uAk, !s,>,uA>

` Γ, ?s,w1,⊥A1, ?s,w2,⊥A2

` Γ, ?s,w1+w2,⊥(A1 + A2)
` Γ, ?s,w1,⊥?s,w2,⊥A
` Γ, ?s,w1+w2,⊥A

Figure 5.17: Definition of S wLLstrat

• If A ≤strat A′ and a, b ∈ L?
strat such that a 4strat b then ?aA ≤strat ?bA′ and !bA ≤strat !aA′.

We also define an operation + on {�, ♦,>} by � + � = �, � + ♦ = ♦ + � = ♦, > + > = > and w1 + w2 is
otherwise undefined. Let us notice that, whenever w1 + w2 = w, we have w1 ≤ w and w2 ≤ w. The operation
+ is extended on formula by Xs,w1 +Xs,w2 = Xs,w1+w2 , X⊥s,w1

+X⊥s,w2
= X⊥s,w1+w2

, (A⊗B)+ (A′⊗B′) = (A+A′)⊗
(B+B′), (A`B)+(A′`B′) = (A+A′)`(B+B′), (∀X.A)+(∀X.A′) = ∀X.(A+A′), (∃X.A)+(∃X.A′) = ∃X.(A+A′),
(!s,w,uA) + (!s,w,uA′) = !s,w,u(A + A′) and finally (?s,w1,uA) + (?s,w2,uA′) = ?s,w1+w2,u(A + A′). In the other cases,
A + A′ is undefined.

We wrote above that for every path of the form ((σ(B), P), [!t]) ∗ ((σ(B′), P′),T ′.?t′]) ∗ ((e,Q), [!u])
with ((σ(B′), P′),T ′.?t′]) a used context, this path satisfies one of three possible conditions. To enforce those
conditions, we requireσ(B′) to be of the shape !s′,>, A and A ∈ Fs,♦ withFs,♦ a set of formulae defined below.
Intuitively, in this case there exists a hole-formula H such that A = H[?s,w,uA′] and this ? corresponds to
((σ(B), P), [!t]): it is to say β(σ(B′))T ′ = ?s,w,uA′. Then, by definition of Fs,♦, we are in one of the following
situations: Either (w = > and s ≥ 1 + s′), or w = �, or (w = ♦ and s ≥ s′).

For s ∈ N>, we define sets of formulae Fs,>, Fs,� and Fs,♦. In the formulae of Fs,> neither � nor ♦
appear. In the formulae of Fs,�, ♦ does not appear. In the formulae of F♦, the label ♦ appears at most once.
Moreover, if A ∈ Fs,� or A ∈ Fs,♦, for every ?t, ,⊥ and Xt,� in A, we have t ≥ s + 1. In the following
grammars, X ranges over a countable set of variables s, t, s′ ∈ N⊥ with t ≥ s + 1, w ∈ {�,>}, w′ ∈ {�, ♦,>}
and u ∈ {⊥,>}.

Fs,> :=Ft,> | Xs,> | X⊥s,> | Fs,> ⊗ Fs,> | Fs,> ` Fs,> | ∀X.Fs,> | ∃X.Fs,> | !s′,>,uFs,> | ?t,>,uFs,>
Fs,� :=Ft,� | Fs,> | Xs,� | X⊥s,� | Fs,� ⊗ Fs,� | Fs,� ` Fs,� | ∀X.Fs,� | ∃X.Fs,� | !s′,w,uFs,� |

?t,>,uFs,� | ?s′,�,uFs,� | ?s′,w,>Fs,�

Fs,♦ :=Ft,♦ | Fs,� | Xs,♦ | X⊥s,♦ | Fs,♦ ⊗ Fs,� | Fs,� ⊗ Fs,♦ | Fs,♦ ` Fs,� | Fs,� ` Fs,♦ | ∀X.Fs,♦ | ∃X.Fs,♦ |
!s′,w′,uFs,♦ | ?t,>,uFs,♦ | ?s′,�,uFs,♦ | ?s′,w′,>Fs,♦ | ?s,♦,uFs,�

We can observe that for every s ∈ N⊥, Fs,> ⊆ Fs,� ⊆ Fs,♦. Moreover, if s ≤ t ∈ N⊥, we have Fs,> ⊇ Ft,>,
Fs,� ⊇ Ft,� and Fs,♦ ⊇ Ft,♦.

Then, we define projections ()� and ()> of Fs,♦ on Fs,� and F⊥,>. The formula A� is obtained from A by
replacing the possible Xs,♦, X⊥s,♦ or ?s,♦,u with (respectively) Xs,�, X⊥s,� and ?s,�,u. The formula A> is obtained

161

from A by replacing the Xs,w, X⊥s,w, and ?s,w,u with (respectively) Xs,>, X⊥s,> and ?s,>,u. Because Fs,� ⊆ Fs,♦,
()> can be seen as a projection of Fs,� on Fs,>.

Then we define a refinement of usual substitution as follows. For A, B ∈ Fstrat and variable X, we write
A{B/Xs} for A[B/Xs,♦; B�/Xs,�; B>/Xs,>].

Lemma 204. If A ∈ Fs,♦ (resp. Fs,�, Fs,>) and B ∈ Fs,♦ ∩ Fs,♦ then A{B/Xs} ∈ Fs,♦ (resp. Fs,�, Fs,>).

Proof. We prove it by induction on A. We only prove the result for A ∈ Fs,♦ (the proofs for A ∈ Fs,� and
A ∈ Fs,> are similar). For every formula A (with possible indices), we write AX for A[B/Xs,♦; B�/Xs,�].
If A does not contain X, then AX = A ∈ Fs,♦. If A ∈ Ft,♦ with t ≥ s + 1 then by induction hypothesis
AX ∈ Ft,♦ ⊆ Fs,♦. If A ∈ Fs,� then AX ∈ Fs,� ⊆ Fs,♦. If A ∈ Xs,♦ then AX = A ∈ Fs,♦∩Fs,♦ ⊆ Fs,♦. If A ∈ X⊥s,♦
then AX = A⊥ ∈ Fs,♦ ∩ Fs,♦ ⊆ Fs,♦. If A = A1 ⊗ A2 with A1 ∈ Fs,♦ and A2 ∈ Fs,� then AX = AX

1 ⊗ AX
2 . By

induction hypothesis, AX
1 ∈ Fs,♦ and AX

2 ∈ Fs,� so AX ∈ Fs,♦. The other cases are solved similarly by using
the induction hypothesis. �

Definition 205. The proofs of S wLLstrat are defined inductively by the rules of Figure 5.17. Moreover, we
require that:

• If σ(B) is labelled by !⊥, , then B ∈ S .

• For every edge σi(B) labelled by ?si,wi , either wi = > or (wi = ♦ and ei ∈ E�).

• If e ∈ E◦ then e is labelled by a formula of the shape ? ,w, A with w ∈ {♦,>}.
Lemma 206. If C 7→∗ C′, βββ(C) = !s, ,uA and βββ(C′) = !s′, ,u′A′ then s ≥ s′ and u ≥ u′.

Proof. The proof is exactly the same as the proofs of Lemmas 190 and 196. �

Definition 207. We define a mapping from BG to N⊥ by ssw(B) = s iff σ(B) (considering the highest oc-
currence of σ(B) in the proof derivation) is labelled by a formula of the shape !s . We also define a partial
mapping ssw() on contexts by: ssw(((e, P), [!t]@T)) = s iff βββ((e, P), [!t]@T) = !s (considering the lowest
e).

Lemma 208. If ((e,Q), [!t1]@T) is used and β(e)|T = ! , ,uA then u = ⊥.

Proof. By definition of used contexts (Definition 105), there exists a path of the shape ((σ(B), P), [!t]) 7→∗
((e,Q′), [!t′1]@T ′) with t′ , t′1 and ((e,Q), [!t1]@T)∅ = ((e,Q′), [!t′1]@T ′)∅. Because t′ , t′1, there exists a
context in the path from ((σ(B), P), [!t]) to ((e,Q′), [!t′1]@T ′) of the shape ((f ,R), [!v]) (with f the premise
of a ?C or ?N node).

By definition of , β(e)|T ′ is of the shape ! , ,u′A′. By definition of βββ(), there exists a substitution θ such
that βββ((e,Q′), [!t′1]@T ′) = !u′A′[θ]. By Lemma 206, βββ((f ,R), [!v]) is of the shape !uB with u ≥ u′. Because
f is the premise of a ?C or ?N node, we have u = ⊥ so u′ = ⊥. �

Lemma 209. If β(e) ∈ Fs,♦ (resp. Fs,�, Fs,>), then β(β(e)[θ(e, P)], e, P,V@T, []) ∈ Fs,♦ (resp. Fs,�, Fs,>).

Proof. The proof is similar to the proof of Lemma 202. The important point to notice is that, if A ∈ Fs,♦

and Xt,w or X⊥t,w appears in A then t ≥ s. If this variable is replaced by a formula B in a ∃ node, then
B ∈ Ft,♦ ⊆ Fs,♦.

If we also suppose that A ∈ Fs,� then for every variable Xt,w or X⊥t,w appearing in A we have w ∈ {�,>}.
Thus, this variable can only be replaced by formulae of the shape B� with B ∈ Ft,♦. Let us notice that in this
case, B� ∈ Ft,�. �

162

Lemma 210. Let us suppose that ((e, P.p),T) ∗ C′, βββ((e, P.p),T) = ! ,w, A with w ∈ {♦, �}, B is the deepest
box containing e and the path contains no contex of the shape ((σ(B), P),U.!p).

Then C′ is of the shape ((e′, P.p),T ′) with e′ ∈ B and βββ(C′) is of the shape ! ,w′, A′ with w ≥ w′.

Proof. We can observe that it is enough to prove the result when C = ((e, P.p),T) C′ (the length of the
path is 1), then the general result is obtained by induction on the length of the path.

By supposition, βββ((e, P.p),T) < F⊥,> and βββ((e, P.p),T) < F⊥,>. By Lemma 209, β(e) < F⊥,> ∪ F⊥,>. So
e is not the conclusion of a ?P node or !P node: the C C′ step does not enter a box. And e is not the
premise of a ?P node: the C C′ step does not leave the box by an auxiliary door. By supposition, the
C C′ step does not leave B by its principal door.

This proves that C′ is of the shape ((e′, P.p),T ′). Moreover, the only 7→ step which increase the second
label are the ↪→ step (this is not the case here because C C′) and the step leaving a box by its principal
door (this is not the case here by assumption). The other steps modifying the second label are: the subtyping
rule (which can only decrease the label, similarly to Lemmas 206, 190 and 196), crossing a ?C or ?N node
upwards (we go from a label w1 + w2 to w1 so it decreases the label). �

5.3.5 Combining the previous systems into S wLL

In this section, we want to prove that, for every proof-net G belonging to S wLLdc, S wLLnest, S wLLlast and
S wLLstrat, there exists a weak stratification. In fact there is one property which we fail to prove: no criterion
prevents sequences of the shape (C,Q, u) �+ (C,Q′, u′) with s = s(C) and (C,Q)s−1 = (C,Q′)s−1. Thus,
we may have (C,Q, u) x.. 0(C,Q, u) and (C,Q, u′) x.. 0(C,Q, u′) �+ (C,Q′, u′′), s = s(C) and (C,Q′)s−1 =

(C,Q′′)s−1 which contradicts the last condition of weak stratifications.
We think that such a property could be enforced by criteria close to QPLL (Section 5.2). However this

part is still a work in progress. This is why, in the meantime, we set S� = ∅. Even with this constraint,
S wLL is still expressive enough to embed S DNLL (so LLL, L4 and MS max), the Poly-sound systems of
MS , and S LL.

Definition 211. The proof-nets of S wLL are the proof-nets G such that there exist decorations of G: Gdc in
S wLLdc, Gnest in S wLLnest, Glast in S wLLlast and Gstrat in S wLLstrat. And those decorations use the same
subsets S of BG, and subsets E◦ and E� of EG. The set S� used by those systems is ∅.

The sets S , S�, E◦ and E� are only used to communicate between the 4 systems used. We could define
S wLL as a single system. The ! and ? modalities of this system would be labelled by tuples (s, d, n, c, l, u,w)
with s ∈ N⊥, d ∈ N⊥, n ∈ N>⊥, c ∈ {⊥,>}, l ∈ {⊥,>}, u ∈ {⊥,>} and w ∈ {�, ♦,>}. The variables of this
system would be labelled by tuples (s, l,w) with s ∈ N⊥, l ∈ {⊥,>}, and w ∈ {�, ♦,>}. We did not present
the system this way because its rules are quite complex. Separating S wLL into four systems allowed us to
prove step by step the properties enforced by S wLL.

Let us consider a S wLL proof-net G whose only conclusion is e. We suppose that, in Gdc, e is labelled
by Adc (Bdc and no ⊥ appears in Adc. We also suppose that, in Glast, e is labelled by Alast (Blast and no ⊥
appears in Bdc. We consider a S wLL proof-net H in normal form with only one conclusion. Let us suppose
that (G)H is a S wLL proof-net (i.e. the formulae match in S wLLdc, S wLLnest, S wLLlast and S wLLstrat). Let
us notice that no ⊥ appears in the conclusions of (Glast)Hlast. We define a weak stratification candidate of
(G)H as follows:

• If B ∈ S , we set s(B) = 0, else we set s(B) = 1 + ssw(B).

• If (B, ,)�∗ (B′, ,), and B′ ⊂ C′ < S we set d(B) = 1 + dsw(B). Else we set d(B) = 1.

163

• For every box B, we set (B, P, t) � (B′, P′, t′) if and only if there exists a path of the shape
((σ(B), P), [!t]) ∗ ((σ(B′), P′),T ′.?t′) C ∗ CB,P,t (with CB,P,t the context of Lemma 203)
and βββ(C) (in (Gstrat)Hstrat) is of the shape ! ,♦, .

Lemma 212. For every B ∈ BG − S , we have s(B) ≥ 1.

Proof. By definition of S wLLstrat, ssw(B) ∈ N. So we defined s(B) as ssw(B) + 1 ≥ 1. �

Lemma 213. If (B, P, t) x.. ∗(B′, P′, t′) and there is a box of BG − S containing B′, d(B) ≥ 1.

Proof. By Lemma 192, dsw(B) ∈ N. So, we defined d(B) as dsw(B) + 1 ≥ 1. �

Lemma 214. Let us suppose that ((σ(B), P), [!t]) ∗ ((σ(D),R),V.?v) ∗ CB,P,t, the second part of the
path does not leave (D,R, v) and ((σ(D),R),V.?v) is a used context.

Then, we have s(B) ≥ s(D). Moreover, if s(B) = s(D), (B, P, t)� (D,R, v).

Proof. Let us consider the context C such that ((σ(D),R),V.?v) ((e,R.v),V). Let us set !s,w,uA =

βββ((e,R.v),V) (in (Gstrat)Hstrat). By Lemma 206, we have ssw(B) ≥ s. Let !s′,w′,u′A′ = β(σ(D)). Observing
the promotion rule of S wLLstrat, either A′ ∈ Fs′,� or (D ∈ S� and A′ ∈ Fs′,♦). By definition of βββ(), !s,w,uA
is a subformula of A′′ = β(β(e)[θ(e,R.v)], e,R.v,V, []). By Lemma 209, A′′ ∈ Fs′,♦ and either A′′ ∈ Fs′,� or
D ∈ S�. Thus, we are in one of the following cases:

• Either u = >. In this case, by Lemma 208, ((σ(D),R),V.?v) is not used. Which contradicts our
assumption.

• Or w = �. In this case, by Lemma 210, βββ(CB,P,t) would be of the shape ! ,�, . So there exists an edge
f of E� with β(f) = ? ,�, . This is in contradiction with the definition of S wLLstrat.

• Or s ≥ s′ + 1. In this case, s(B) > s(D).

• Or s = s′ (so s(B) ≥ s(D)), w = ♦ and D ∈ S�. By definition, we have (B, P, t)� (D,R, v).

�

Lemma 215. Let (B, P, t), (B′, P′, t′) ∈ CanCopG. If (B, P, t) � (D,R, v), (B′, P′, t′) � (D,R′, v′) then
there exist paths of the shape:

((σ(B), P), [!t]) ∗ ((σ(D),R),V.?v) ((e1, P1), [!t1]@T1) · · · ((ek, Pk), [!tk]@Tk) = CB,P,t

((σ(B′), P′), [!t′]) ∗ ((σ(D),R′),V ′.?v′) ((e′1, P
′
1), [!t′1]@T ′1) · · · ((e′k, P

′
k), [!t′k]@T ′k) = CB′,P′,t′

For every 1 ≤ i ≤ k, we have ei = e′i and the paths do not enter boxes. Moreover, if ek is of the shape σ (D),
then d(B) > d(D).

Proof. By definition of�, βββ((σ(D),R),V.?v) = ! ,♦, A and βββ((σ(D),R′),V ′.?v′) = ! ,♦, A′. Thus, because
the paths to CB,P,t and CB′,P′,t′ do not leave (D,R, v) and (D,R′, v′), and βββ(CB,P,t) and βββ(CB′,P′,t′) can not be
of the shape ! ,�, , for every context C in one of the paths we have βββ(C) = ! ,♦, .

Let us observe that ei = e′i (they are the premise of the principal door of D) and, because the formulae of
F⊥,♦ have at most one ♦ label, T1 and T ′1 “point” to the same connective of β(e1): either β(e1)T1 = β(e1)T ′1 =

! ,♦, and T1 only differs from T ′1 on exponential trace elements, or there exist prefixes U1 and U′1 of T1 and
T ′1 such that β(e1)U1 = β(e1)U′1 = X ,♦ (it can also be equal to X⊥,♦ but this case is treated in the same way)
and U1 only differs from U′1 on exponential trace elements.

We can prove by induction on i that this property is preserved for ((ei, Pi), [!ti]@Ti) and ((ei, Pi), [!ti]@Ti).
The interesting cases are the following:

164

• When ei is the conclusion of a ?C node. Then, there are two choices for ei+1, however there is only
one choice which preserves ♦ as the second label (indeed ♦ + ♦ is undefined). So ei+1 = e′i+1.

• When ei is the conclusion of a ?N node. Then, there are two choices for |Ti+1|, however there is only
one choice which preserves ♦ as the second label (indeed ♦ + ♦ is undefined). So |Ti+1| = |T ′i+1|.

• When ei is the conclusion of an ∃ node whose associated variable is X and whose associated formula is
A′′. Let us suppose that there exist prefixes U1 and U′1 of T1 and T ′1 such that β(e1)U1 = β(e1)U′1 = X ,♦.

Because A′′ must be in F⊥,♦∪F⊥,♦, there is only one possibility to extend Ui and U′i to traces pointing
to a connective carrying a ♦ label.

�

Lemma 216. If d(B) ≥ 1, and (B, P, t) x.. (C,Q, u) then d(B) ≥ d(C).

Proof. Immediate from Lemma 190. �

Lemma 217. If d(B) ≥ 1, and (B, P, t)� (C,Q, u) then d(B) ≥ d(C).

Proof. By Definition of the weak stratification candidate and the proof of Lemma 210. �

Lemma 218. For s ∈ N, if ((σ(B), P), [!t]) 7→∗S s
((σi(C),Q), [!u]) and ((σ(B), P), [!t′]) 7→∗S s

((σi′(C),Q′), [!u′])
with (C,Q) 7→S s = (C,Q′)7→S s then either i = i′ or d(B) > d(C).

Proof. It is a weak version of Lemma 199. �

Lemma 219. Let us suppose that (B, P, t) x.. ∗(C,Q, u) and (B, P, t′) x.. ∗�+ (C,Q′, u′). Then, d(B) > d(C).

Proof. Because we supposed S� = ∅,�= ∅ so such a situation never happens. �

Lemma 220. The tuple (S ,�, s(), d()) defined above is a weak stratification.

Proof. Let us examine the definition of weak stratification:

• By Lemma 212, “For every B ∈ S , we have s(B) = 0. And for every B ∈ BG − S , we have s(B) ≥ 1.”

• By Lemma 203, “((σ(B), P), [!t]) 7→∗ CB,P,t. For every ((σ(D),R), [!v]) in the path we have d(B) =

d(D) and s(B) ≥ s(D). If e is not an auxiliary edge then u = e and there is no path of the shape
CB,P,t + ((σ(),),). If� (B, P, t), then the path ((σ(B), P), [!t]) 7→∗ CB,P,t is a -path.”

• By Lemma 214, we have “Let us suppose that ((σ(B), P), [!t]) 7→∗ ((σ(D),R),V.?v) 7→∗ CB,P,t and the
second part of the path does not leave (D,R, v) then we are in one of the following situations:

– s(B) > s(D)

– s(B) = s(D), (B, P, t) � (D,R, v) and the first part of the path is a -path (it is to say that
((σ(B), P), [!t]) ∗ ((σ(D),R),V.?v)).

– ((σ(D),R),V.?v) is not used and 6� (B, P, t).

”

165

• By Lemma 215, we satisfy the condition “Let (B, P, t), (B′, P′, t′) ∈ CanCopG. If (B, P, t)� (D,R, v),
(B′, P′, t′)� (D,R′, v′) then there exist paths of the shape (notice that the edges are the same in the
second part of the path):

((σ(B), P), [!t]) ∗ ((σ(D),R),V.?v) ((e1,),) · · · ((ek,),) = CB,P,t

((σ(B′), P′), [!t′]) ∗ ((σ(D),R′),V ′.?v′) ((e1,),) · · · ((ek,),) = CB′,P′,t′

and the paths do not enter boxes. Moreover, if ek is an auxiliary edge of a box C, we have d(B) > d(C)
and s(B) ≤ s(C).”

• By Lemma 213, we have “Let us consider a box B ∈ BG. Either d(B) = 0 and ((σ(B), P), [!t]) 7→∗
((e,Q), [!u]) implies that every box containing C is in S . Or d(B) ≥ 1”.

• By Lemmas 216 and 217 we satisfy “Let us suppose that d(B) ≥ 1. If (B, P, t) x.. (C,Q, u) or
(B, P, t)� (C,Q, u) then d(B) ≥ d(C).”

• By Lemma 218 we have “For s ∈ N, if ((σ(B), P), [!t]) 7→∗S s
((σi(C),Q), [!u]) and ((σ(B), P), [!t′]) 7→∗S s

((σi′(C),Q′), [!u′]) with (C,Q) 7→S s = (C,Q′) 7→S s then either i = i′ or d(B) > d(C).”

• By Lemma 219, we satisfy the last condition: “Let us suppose that we have (B, P, t) x.. ∗(C,Q, u),
(B, P, t′) x.. ∗(D,R, v)�+ (C,Q′, u′) and s = s(D) then we have (C,Q) 7→S s−1 , (C,Q′)7→S s−1 .”

�

Theorem 221. S wLL is sound for Poly.

Proof. By Lemmas 220, 198 and 199, we can use Lemma 119. �

Let us sketch the encoding of S DNLL in S wLL. For every proof-net G of S DNLL we define a proof-net
G′ of S DNLL as follows. We set S = ∅, and the judgements in S wLLdc and S wLLnest are always of the
shape `⊥. Thus, we will not use the indices⊥ in S wLLdc and S wLLnest. For every modality !s,d,n of S DNLL,
we consider the labels !s,>,⊥ in S wLLstrat, !2d+1 in S wLLdc, S wLLn,> in S wLLnest. Finally, we set E◦ as the
set of every edge, so in S wLLlast we can consider the labels !>.

Encoding the systems of MS is straightforward: we can replace every !d by !2d. in S wLLdc. The labels
in the other systems are defined as in the encoding of S DNLL.

To encode S LL, we can notice that we may label every ? (except on the conclusion of ?D nodes) by ? , ,>,
thus all the other conditions of S wLLstrat become trivial. Because there is no ?N node, we can set all the
labels to 0 in S wLLnest. In S wLLdc, we can consider the label 2 on every connective, except on the premises
of ?C nodes where we consider the label 1. Finally, we set E◦ as the set of every edge, so in S wLLlast we
can label every connective by >.

166

Chapter 6

Interaction nets

In the previous sections we push the boundaries of intensional expressivity for subsystems of linear logic
characterizing polynomial time. There is still room for improvement, but we think that the most promis-
ing direction to increase the intensional expressivity of our systems is to extend linear logic with more
primitives: built-in arithmetic, inductive types, pattern matching, less constrained recursion, side-effects,
multi-threading, exceptions,... As a simple limitation of linear logic we observed, in S DNLLλ we did not
allow weakening on linear variables (if x does not appear free in t, the type of λx.t must be of the shape
!A (B). Indeed, if we allowed such linear weakening, there would be no canonical encoding of typing
derivations into proof-nets. Because the set of features we want in our language is not fixed, a general
framework of systems would be preferred to a single system. This way, we would need to define the context
semantics and prove the general theorems only once, and they will stand for any system of the framework.

The framework we chose is interaction nets: a well-behaved class of graph rewriting systems [45].
Interaction nets are a model of asynchronous deterministic computation. A net is a graph-like structure
whose nodes are called cells. Each cell is labelled by a symbol. A library defines the set of symbols and the
rewriting rules for the symbols. Thus, a library corresponds to a programming language. Interaction nets as
a whole, correspond to a set of programming languages. Interaction nets present several major advantages:

• The definition of interaction nets was inspired by the proof-nets of linear logic. Because they have
many similarities, it may be relatively easy to transpose the methods of the present thesis to interaction
nets (compared to other equally expressive frameworks).

• Interaction nets have been used to encode several systems. Proof-nets [53] and λ-calculus [51] but
also functional programming languages containing pattern-matching and built-in recursion [30]. A
non-deterministic extension is powerful enough to encode the full π-calculus [55]. This could be used
to control ressources of processes as in the S HOπ calculus [48].

Because context semantics is our main tool, our first step will be to extend context semantics to every
library of interaction nets. As context semantics is a model of geometry of interaction, the most relevant
work is the definition of a geometry of interaction for an arbitrary library by De Falco [27]. De Falco
defines a notion of paths in nets and a notion of reduction of those paths. Then, he defines a geometry of
interaction of a library as a weighing of paths by elements of a semi-group such that the weights are stable
along reduction. However, he exhibits such a semi-group only for some particular libraries (based on linear
logic). Thus, there is no complete geometry of interaction model of interaction nets yet.

The most difficult part to define a context semantics on interaction net was to define a notion of tokens.
Then, defining the rules of the paths, proving that these paths are stable along reduction, defining a weight

167

WG ∈ N∪ {∞}, and proving that it decreases along reduction is relatively easy and natural. For instance, the
paths of context semantics for interaction nets are governed by only 5 rules, compared to the 29 of context
semantics for linear logic. However, it seems harder to use it than the linear logic context semantics. We
think we still need to define additional tools.

We study another application for this context semantics: a denotational semantics for a large class of
interaction net systems. We define a notion of observational equivalence for each library. Then we define
a denotational semantics which is, on a class of libraries named crossing libraries, sound and fully abstract
with respect to our equivalence. We previously presented those works in [61].

168

`

ax

ax
cut

(a) Proof-net G

` q|q′

p|p′

(b) Interaction net corresponding to G

Figure 6.1: Intuition behind the merging ports

6.1 Definition of interaction nets

6.1.1 Statics

Interaction nets have been defined in many ways. Here, to define properly the paths of context semantics,
we had to use a formal definition. Our presentation is inspired by De Falco’s [26].

Definition 222. We fix a symbol set S = (S, α) with S a countable set whose elements will be called symbols
and α a mapping from S to N associating an arity to each symbol.

For instance in the case of linear logic, we set:

S LL = {`,⊗,∀,∃, ?C, ?D, ?N, ?W} ∪ {
BoxG

∣∣∣ G is a proof-net
}

αLL = {` 7→ 2,⊗ 7→ 2,∀ 7→ 1,∃ 7→ 1, ?C 7→ 2, ?D 7→ 1, ?N 7→ 1, ?W 7→ 0,

BoxG 7→ number of conclusions of G minus 1}

A net is a set of cells joined by wires. Wires may have one (or both) ends unattached. We will often
connect nets, those connections are made by those unattached ends. Formally, the ends of wires will be
represented by a set PN of ports. There are three types of ports: ports attached to a cell (the set PN

c), free
ports (the set PN

f) and merging ports (the set PN
m). This latest group is used for technical reasons, when

connecting the nets p
q

r
s and p′

q′ the result will be p|p′
q|q′

r
s , where the ports p, p′, q and q′ are

merging ports. This net will be considered equivalent to r
s . The merging ports correspond to ax and cut

nodes. For instance, the proof-net of Figure 6.1a corresponds to the interaction net of Figure 6.1b.

Definition 223. A net N is a tuple (PN ,CN , lN , σN
w , σ

N
m, σ

N
c) with:

• PN = PN
c] PN

f] PN
m is a finite set called set of ports.

• CN is a finite set whose elements will be called cells

• lN : CN 7→ S labels each cell with a symbol.

• σN
w is an involution on PN with no fixpoint. We also write p for σN

w (p). σN
w represents the wires: if

there is a wire between the ports p and p′, then p = p′ and p′ = p.

• σN
m is an involution on PN

m with no fixpoint. This mapping associates two merging ports.

• σN
c is a bijection from PN

c to {(c, i) | c ∈ CN , 0 ≤ i ≤ α(lN(c))}. σN
c represents the cells. For instance,

σN
c (p) = (c, 2) if p is the second auxiliary port of c and σN

c (p) = (c, 0) if p is the principal port of c.

169

G =
ax

G =

H

` G =

H1 H2

⊗ G =

H1 H2

cut G =

H

!P?P?P

↓ ↓ ↓ ↓ ↓

GIN = GIN =
HIN

`
GIN =

HIN
1 HIN

2

⊗
GIN =

HIN
1 HIN

2 GIN = BH

Figure 6.2: A simple encoding of linear logic in interaction nets.

ζ
b0

b1

b2
ε

e0

δ
a0

a1

a2 m1|m2
δ c0

c1

c2
f1

f2

Figure 6.3: Net N. Names of ports and labels of cells are represented while names of cells are not.

For example, let S comb = {ζ, δ, ε} be symbols with α(ζ) = α(δ) = 2 and α(ε) = 0. Then, Figure 6.3
represents the net N with:

• PN = {a0, a1, a2, b0, b1, b2, c0, c1, c2, e0, f1, f2,m1,m2}, CN = {A, B,C, E}
• lN = {A 7→ δ, B 7→ ζ,C 7→ δ, E 7→ ε}
• σN

w = {a1 ↔ a2, a0 ↔ b0, b2 ↔ e0, b1 ↔ m1,m2 ↔ c2, c1 ↔ c0, f1 ↔ f2} and σM
m = {m1 ↔ m2}

• σN
c = {a0 7→ (A, 0), a1 7→ (A, 1), a2 7→ (A, 2), b0 7→ (B, 0), b1 7→ (B, 1), b2 7→ (B, 2), c0 7→ (C, 0), c1 7→

(C, 1), c2 7→ (C, 2), e0 7→ (E, 0)}.
For every proof-net G, we define an encoding GIN of G in nets (with the symbol set S LL). The main

cases of the encoding are presented in Figure 6.2.
The merging ports are introduced for technical reasons but are not essential. Let p, q be merging ports

of a net N such that p , q. Let N′ be the net equal to N where p|qp q is replaced by p q , then
we write N →m N′. We define the equivalence relation�m as the reflexive symmetric transitive closure of
→m. The nets will be considered up to�m equivalence and α-equivalence (renaming of the ports and cells).
Notice that →m is confluent and strongly normalizing, we will usually represent a net by its →m normal

form (the only merging ports are the cycles of shape p|q).
Let c be a cell of N. We write pi(c) the port p such that σN

c (p) = (c, i). The principal port of c denotes
p0(c). If i ≥ 1, pi(c) is called the i-th auxiliary port of c.

6.1.2 Dynamics

The interaction between two nets is done by merging some of their free ports. This operation is called gluing
and will be the main tool to define the dynamics of nets.

170

i1
iα(s) o1

oα(t)
s t

(a) The net Rs,t

O1

Oα(t)

ψ(iα(s))

ψ(i1)
R

I1

Iα(s1)

(b) The reduct Ns,t of s/t

Figure 6.4: Interaction rule with explicit bijection (Ok = ψ(ok)).

δ ζ

ζ

ζ

δ

δ

d2
d1

2

d2
2

d1

d1
1

d2
1

z1

z1
1

z2
1

z2
z1

2

z2
2

ζ ζ

δ δ

ε ζ

ε

ε

r2

r1e1

e2

ε δ

ε ε

Figure 6.5: The symmetric combinators, library Lcomb for S comb

Definition 224. Let M and N be nets and φ be a partial injection from PM
f to PN

f , then M1φN is the net
whose ports and cells are those of M and N, the free ports in the domain and codomain of φ become merging
nodes with σM1φN

m (p) = φ(p) and σM1φN
m (φ(p)) = p.

As an example, if we set M = ζ
ε

δ m1
, N = m2 δ f1 f2 and φ = {m1 7→ m2}, then

M1φN is the net of Figure 6.3.
The computation in interaction nets is done by reduction of active pairs. An active pair is a set of two

cells linked by their principal ports. Libraries will define which pairs of symbols can interact. When an
active pair is labelled by symbols which can interact together, we may reduce it: those cells are replaced
by a net Ns,t which only depends on the symbols of the active pair. The rest of the interaction net is left
untouched.

Definition 225. Let s, t ∈ S, Rs,t is the net of Figure 6.4a.
An interaction rule for (s, t) is a tuple (R, ψ) where R is a net and ψ is a bijection from PRs,t

f to PR
f . For

1 ≤ j ≤ α(s), we name I j the edge ψ(i j) of R. For 1 ≤ j ≤ α(t), we name O j the edge ψ(o j) of R, as in
Figure 6.4b.

In practice, we will describe interaction rules by displaying an active pair and the reduct linked by an
arrrow as in Figure 6.5. The bijection is given implicitly by the position of the ports.

Definition 226 (library). A library for the symbol set (S, α) is a partial mapping L on S×S. To each (s1, s2)
in the domain of L, L associates an interaction rule for (s1, s2).

Let us suppose that L(s1, s2) = (R, ψ). Then we require that L(s2, s1) is defined and equal to the sym-
metric of L(s1, s2) where inputs and outputs are switched, i.e. L(s2, s1) = (R, ψ ◦ {ik ↔ ok}).

Once we fixed a library, the reduction→ is defined by N1φRs1,s2 → (N1ψ◦φR).

171

N1 =

ζ

ζ

δ

δ

ε
e0d2a1|a′1

a2|a′2 m1|m2
δ c0

c1

c2

|b2

f1

f2

N2 =

N3 =

N4 =

ζ

ζ δ

ε

ε

i1

i2

h1
h′1
h2
h′2

a1

a2
δ f1

f2

δ

j1

j2ε

ε
i1
i2

δ
f1

f2

δ

j1

j2
δ

f1

f2

Figure 6.6: Example of reduction with the library Lcomb.

Ia b

m IM

Ia []

a []

S a

Ia S

S []

[]

a a

Figure 6.7: Lsort library. The rules stand for any a, b ∈ A, m = min(a, b) and M = max(a, b)

Because of the symmetry condition, the rules shown in Figure 6.5 are enough to describe the whole
library Lcomb of symmetric combinators. The net of Figure 6.3 successively reduces to the nets of Figure 6.6.

As another example, let us consider an ordered set (A,≤), and the symbols {S , []}∪A∪{Ia | a ∈ A}∪{a | a ∈
A}. The arities and the library Lsort are defined by Figure 6.7. Then,

a1[] an S b1[] bn

with [b1; · · · ; bn] the sorted list corresponding to [a1; · · · ; an]. More precisely, it is an implementation of
insertion sort.

Finally, in Figure 6.8, we define a library for the encoding of proof-nets we defined in Figure 6.2. We
can notice that this does not correspond exactly to the cut-elimination of linear logic because: we lack the
!P/?P rule, and we can not reduce inside a box. However, the only purpose of this encoding is to make a
comparison with the linear logic case to guide intuition. So this slight mismatch will have little importance.

∀ ∃ ⊗ ` BH ?D

HIN

BH ?N

B!H

BH ?C

?C
BH

BH

BH ?W

?W

?W

Figure 6.8: Library for the encoding of LL in interaction net. For the ?C rule, we consider a box with only
one auxiliary door to simplify the figure. In the other rules, we represent two doors.

172

a) (P.(pk(c),N) ,T) 7→ (P.(p0(c),N) ,T.(s, k))

b) (P.(p0(c),N) ,T.(s, k)) 7→ (P.(pk(c),N) ,T)

c) (P.(p0(c′),N) ,T.(s, k)) 7→ (P.(p0(c′),N).(Ik,Ns,s′) ,T)

d) (P.(p0(c′),N).(Ok′ ,Ns,s′) ,T) 7→ (P.(pk′(c),N) ,T)

e) (P.(p0(c′),N).(Ik,Ns,s′) ,T) 7→ (P.(p0(c),N) ,T.(s, k))

f) (P.(m,N) ,T) 7→ (P.(m′,N) ,T)

Figure 6.9: Rules of context-semantics

6.2 Context semantics

6.2.1 Motivation and definition of the paths

In this section, we fix a library L. For any (s1, s2) in the domain of L, we write (Ns1,s2 , φs1,s2) = L(s1, s2).
Let us consider, in the net N3 of Figure 6.6, the wire from i1 to i2. The wire appears in N3 because

the interaction of the two ζ cells in N2 creates a wire between the second auxiliary ports of the cells. So,
intuitively, the path P3 = i1, i2 in N3 comes from P2 = i1, h1, a1, a2, h2, i2 in N2. The path P1 in N1 corre-
sponding to P2 seems harder to define because the extremities i1 and i2 are not in N1, they correspond to the
ports e1 and e2 of Nδ,ε . We could represent the port i1 in N1 by the stack [(e0,N); (e2,Nδ,ε)], remembering
what kind of port is created (e2) and by which interaction it is created (e0).

It is exactly the idea of our context semantics. The ports which will appear along the reduction are
characterized by stacks called potential ports (e.g. [(e0,N); (e2,Nδ,ε)]). The reduction is simulated by paths,
which are defined by contexts travelling across the net according to a relation 7→. The contexts are pairs of
a potential port P and a trace T . The trace Ti represents information about the beginning of the path.

The set PotN of potential ports of net N is the set of lists [(p0,N); (p1,Ns1,t1); · · · ; (pk,Nsk ,tk)] such that
for each i: pi is a port of Nsi,ti and pi−1 is the principal port of a cell labelled by ti. For P ∈ PotN , we set
P.(p,N′) = P.(p,N′).

A positive trace element is (s, i) with s ∈ S and 1 ≤ i ≤ α(s). The meaning of (s, i) is “I have crossed a
cell of symbol s, from its i-th auxiliary port to the principal port”. A positive trace is a list of positive trace
elements. The set of positive traces is written Tra+.

A negative trace element is (s, i) with s ∈ S and 1 ≤ i ≤ α(s). The meaning of (s, i) is “I will arrive
at the principal port of a cell of symbol s. When this happens I will choose to leave it by its i-th auxiliary
port”. A trace element is either a positive trace element or a negative trace element. A trace is a list of trace
elements. The set of traces is written Tra.

We define the set of contexts of N1 by ContN1 = PotN1 × Tra. The intuitive meaning of a context
([(p1,N1); · · · ; (pk,Nk)], [(t1, i1); · · · ; (tl, il)]) is: “N1 reduces to a net of the shape of Figure 6.10 where for
1 ≤ j ≤ l, q j is the i j-th auxiliary port of the cell labelled by t j”.

Thus, a potential port is a nesting of interaction nets: in the net N1 there is a cell which will be part of an
active pair and will produce the interaction net N2 when reducing. Inside this N2, there is a cell which will
be part of an active pair and will produce N3 when reducing, and so on.

Let us notice that the trace is transformed into a net consisting of a line of cells labelled by the symbols
of the trace, the wire linking the cells according to the indices of the trace. We will use this construction

173

t1
q1 t2

q2 t3
q3

N2
N3

Nk
p0| p1| pk|

Figure 6.10: Intuition behind the definition of contexts

again, representing the net corresponding to T by T .

Definition 227. For any net N, we define a relation 7→ on ContN by the rules of Figure 6.9. In those rules,
we suppose s, s′ ∈ S, c, c′ ∈ CN , lN(c) = s, lN(c′) = s′, 1 ≤ k ≤ α(s), 1 ≤ k′ ≤ α(s′) and m,m′ ∈ PN

m with
σN

m(m) = m′.

This relation simulates reduction, in the sense that if ([(p,N)], []) 7→∗ (P,T) and Figure 6.10 is the
net intuitively representing (P,T), then q1 = p. The 7→ relation is deterministic and incomplete (there are
contexts C such that C 67→, i.e. ∀D ∈ ContN ,¬(C 7→ D)). Let C = (P,T) ∈ ContN , the possible context D
such that C 7→ D is defined depending on the right-most port p of P.

If p is an auxiliary port, we cross the cell and add the information on the trace (rule a).
If p is a principal port, the behaviour depends on whether the right-most trace element t is positive or

negative (if the trace is empty, C 67→L): if t is positive (rule c), then t = (s, k) it corresponds to an active
pair {c, c′} of symbols {s, s′}. During reduction Ns,s′ will be glued to N, here we jump to Ns,s′ to simulate
reduction. Else if t is negative (rule b), then t = (s, k). It means that at some moment in the path we crossed
the cell c from its auxiliary port to its principal port. Then, we found a cell c′ such that {c, c′} will be an
active pair. The 7→-path lead us to a Ik free port. This port will correspond to the k-th auxiliary port of c
during reduction, so we pushed (s, k) on the trace and took the path backward from c′ to c so that we can
reach the k-th auxiliary port of c.

If p is free, we are in the net Ns,s′ corresponding to the interaction of the future active pair {c, c′}. The
behaviour depends on whether p is a Ok′ (rule d) or a Ik (rule e). In the first case, we must go to the k′-th
auxiliary port of c′ and it is local, in the second we have to go back to the cell c.

If p is a merging port, we cross the merging port (rule f).
Let us recall that we consider the interaction nets up to α-conversion and port merging. So we need to

verify that the relation is the same on equivalent nets. The names of the ports have no importance, so the
7→ relation is the same on α-equivalent nets (up to the renaming of the ports in the potential ports of the
contexts). We can verify that whenever ([(p1,M1); · · · ; (pk,Mk)],T) 7→∗ ([(q1,N1); · · · ; (ql,Nl)],U), with:

• For all 1 ≤ i ≤ k, pi is not a merging port and there exists a net M′i such that Mi �m M′i .

• For all 1 ≤ j ≤ l, q j is not a merging port and there exists a net N′j such that N j �m N′j.

Then, the path ([(p1,M′1); · · · ; (pk,M′k)],T) 7→∗ ([(q1,N′1); · · · ; (ql,N′l)],U) exists.
As an example, the following 7→-path in the net N of Figure 6.3, goes from the principal port of E to the

δ cell which will form an active pair with E. Notice that this δ cell does not exist yet (it will be created by
the ζ/δ reduction): ([(b2,N)], []) 7→ ([(a0,N)], [(ζ, 2)]) 7→ ([(a0,N); (I2,Rζ,δ)], []).

As a more involved example, we will study in the net N, the path between the two ε cells created during

174

the δ/ε step of reduction (first step of Figure 6.6).

([(e0,N); (r1,Rδ,ε)], []) 7→ ([(b2,N)], [(δ, 1)])

7→ ([(a0,N)], [(δ, 1); (ζ, 2)]) 7→ ([(a0,N); (d2,Rζ,δ)], [(δ, 1)])

7→ ([(a0,N); (z2
1,Rζ,δ)], []) 7→ ([(a0,N); (O1,Rζ,δ)], [(ζ, 2)])

7→ ([(a1 = a2,N)], [(ζ, 2)]) 7→ ([(b0,N)], [(ζ, 2); (δ, 2)])

7→ ([(b0,N); (z2,Rδ,ζ)], [(ζ, 2)])

7→ ([(b0,N); (z2,Rδ,ζ); (I2 = O2,Rζ,ζ)], [])

7→ ([(b0,N); (d2
2,Rδ,ζ)], []) 7→ ([(b0,N); (d2,Rδ,ζ)], [(δ, 2)])

7→ ([(e0,N)], [(δ, 2)]) 7→ ([(e0,N); (e2,N)], [])

Let us consider the net of Figure 6.11 which corresponds1 to the proof-net of Figure 2.7 (through
the encoding defined in Figure 6.2). In the proof-net of Figure 2.7, we had ((e, [r(e); l(e)]), [`r]) 7→9

((i, [e]), [`r;⊗r]). Here, one of the corresponding path (on the leftmost net) is:

([(b,N1); (br,R?C,BB); (c,R?D,BB); (cl,R?C,BC); (p,R?D,BC)], [])

7→([(b,N1); (br,R?C,BB); (c,R?D,BB); (cl,R?C,BC)], [(?D, 1)])

7→([(b,N1); (br,R?C,BB); (c,R?D,BB)], [(?D, 1); (?C, 2)]) 7→ ([(b,N1); (br,R?C,BB)], [(?D, 1); (?C, 2); (?D, 1)])

7→([(b,N1)], [(?D, 1); (?C, 2); (?D, 1); (?C, 1)]) 7→ ([(dB,N1)], [(?D, 1); (?C, 2); (?D, 1)])

7→([(cC ,N1)], [(?D, 1); (?C, 2)]) 7→ ([(dC ,N1)], [(?D, 1)]) 7→2 ([(f ,N1)], [(⊗, 2)])

On the rightmost net N5, this path simply becomes ([(p,N)], []) 7→ ([(f ,N1)], [(⊗, 2)]).
Let us notice that, not only the path in interaction net is harder to follow than in linear logic, but it also

seems less structured: there is no obvious difference in the potential of the first context between (cl,R?C,BC)
(which represents a residue, or copy, of the cell represented by the prefix [(b,N1); (br,R?C,BB); (c,R?D,BB)])
and (p,R?D,BC) (which is not a residue of the box represented by [(b,N1); (br,R?C,BB); (c,R?D,BB); (cl,R?C,BC)]
but a cell inside it). Because of this lack of distinction between “signatures” and “potentials”, it is not clear
how Lemma 21 would be formulated (let alone proved) in interaction nets. Similarly, most of our definitions
and results on the linear logic context semantics rely on the notions of copies, and can not be easily translated
into the interaction net context semantics. This is why we defined our criteria on linear logic and leave their
extensions to interaction nets for future works.

6.2.2 Soundness of the context semantics

We wrote that 7→ simulates the reduction of the net. We will prove that the 7→-paths are stable by reduction.
Formally, if N → N′, we will define a projection Π from the potential ports of N to potential ports of N′ so
that (P,T) 7→∗ (Q,U)⇔ (Π(P),T) 7→∗ (Π(Q),U).

In this section, we suppose that N → N′ by reducing the active pair {c1, c2} labelled by s1, s2. We set
(R1, φ1) = L(s2, s1) and (R2, φ2) = L(s1, s2). So N = N01φ2Rs1,s2 and N′ = N01ψ◦φ2R2.

The mapping Π defined below loosely correspond to πN→N′()−1. Let us notice that this definition is
inversed: Π is a mapping from the potentials of the original net to the potentials of the reduced nets. On the
contrary, πG→H() is a mapping from the contexts of the reduced net to the contexts of the original net.

1To be precise, because of the mismatch between proof-nets and interaction nets, we replaced the right box by a dereliction

175

2 2

BB
b

?C

?W ?D
dB

?C
cC

?D
dC

⊗

N1 = f
BB

bl

BB
br

?W ?D

?C

?D

⊗ BC
c

?C

?D

⊗ `
p

BC
cr

⊗ = N5

f

Figure 6.11: Reduction of the encoding of a proof-net in interaction nets.

Definition 228. We define a mapping Π from PotN to PotN′ which depends on the left-most port p:

• If p ∈ PN0 , we set Π([(p,N)]@P) = [(p,N′)]@P.

• If p = p0(ci) for i ∈ {1, 2}, we set:

Π([(p0(ci),N); (r,Ri)]@P) = [(r,N′)]@P

• Otherwise, Π is undefined.

The two next propositions show that the projection behaves as expected. Lemma 231 shows that the
paths are preserved along reduction. It requires the potentials P and Q to be in the domain of the projection,
this condition is the counterpart of the “long enough” condition on paths in GoI settings [27].

Proposition 229. Let P′ ∈ PotN′ , then there exists P ∈ PotN such that Π(P) = P′.

Proof. Either P′ was already a potential of N (it represents a part of the net which is not modified by the
reduction N → N′). In this case Π(P′) = P′. Else, P′ is a potential of the shape [(p,N′)]@Q′ with p a port
of Rs1,s2 in this case Π([(p0(c2),N); (p,Rs1,s2)]@Q′) = Π([(p0(c1),N); (p,Rs2,s1)]@Q′) = P′. To be more
precise, let us notice that those alternatives are not mutually exclusive: because we consider the nets up to
merging, we have Π([(p0(c2),N); (Ii,Rs1,s2)]) = Π([(p0(c1),N); (Oi,Rs2,s1)]) = [(pi(c1),N)]. �

Proposition 230. Let P ∈ PotN such that Π(P) is defined, then Π(P) is defined and Π(P) = Π(P).

Lemma 231. If T,U ∈ Tra, P,Q ∈ PotN , Π(P) = P′ and Π(Q) = Q′ then (P,T) 7→∗ (Q,U) ⇒ (P′,T) 7→∗
(Q′,U)

If T,U ∈ Tra, P′,Q′ ∈ PotN′ and (P′,T) 7→+ (Q′,U) then there exists P,Q such that Π(P) = P′,
Π(Q) = Q′ and (P,T) 7→+ (Q,U)

Proof. We will only prove the first statement. The proof of the second is quite similar.
We will prove it for minimal such paths: let us suppose that (P,T) 7→∗ (Q,U) and that for every other

context (R,V) in the path, Π(R) is undefined. We will show that (P′,T) 7→∗ (Q′,U). Then, the lemma is
straightforward because any 7→∗ path between potentials in the domain of Π can be decomposed in such
smaller paths.

We set [(p,N)]@P1 = P and [(q,N)]@Q1 = Q.

176

• If p, q ∈ PN0 , then (P,T) 7→ (Q,U) (the path has length 1), P′ = [(p,N′)]@P1 and Q′ = [(q,N′)]@Q1.
Given that all 7→ rules are local, and that ports of N0 are unaffected by the reduction, (P′,T) 7→ (Q′,U).

• If p and q belong respectively to PRi and PR j with i, j ∈ {1, 2}, then a careful observation of the
7→ rules shows that the only possibility is i = j and (P,T) 7→ (Q,U). Because Π(P) and Π(Q) are
defined, we have P = [(p0(ci),N); (r,Ri)]@P1 and Q = [(p0(ci),N); (s,Ri)]@Q1 for some r, s ∈ PRi .
So P′ = [(r,N′)]@P1 and Q′ = [(s,N′)]@Q1. Considering that 7→ is local, (P′,T) 7→ (Q′,U).

• If p ∈ PN0 and q ∈ PRi (with i ∈ {1, 2}, we will write j = 3 − i to refer to the other cell), then the only
possibility is that p is a free port of N0 which, in N, is merged with the free port ik of Rs1,s2 and, in
N′, is merged with the free port ψ(ik) of Ri. So, we have (P,T) = ([(p,N)],T) 7→ ([(pk(c j),N)],T) 7→
([(p0(ci),N)],T.(s j, k)) 7→ ([(p0(ci),N); (Ik,Ri)],T) = (Q,U). We can notice that P′ = [(p,N′)] and

Q′ = [(Ik,N′)]. We get (P′,T) 7→ ([(σN′
m (p),N′)],T) = (Q′,U).

• If p ∈ PRi (with i ∈ {1, 2}, we will write j = 3 − i) and q ∈ PN0 , then q is a free port of N0 which, in
N, is merged with a free port of Rs1,s2 and, in N′, is merged with a free port ψ(ik) of Ri. And, either
p = Ik = ψ(ik) (and 1 ≤ k ≤ α(s j)) or p = Ok (and 1 ≤ k ≤ α(si)).

– If p = Ik, (P,T) = ([(p0(ci),N); (Ik,Ri)],T) 7→ ([(p0(c j),N)],T.(s j, k)) 7→ ([(pk(c j),N)],T) 7→
([(q,N)],T) = (Q,U). We can notice that P′ = [(ψ(ik),N′)] and Q′ = [(q,N′)]. In N′, ψ(ik) is
merged with q so (P′,T) 7→ (Q′,T) = (Q′,U).

– If p = Ok, (P,T) = ([(p0(ci),N); (Ok,Ri)],T) 7→ ([(pk(ci),N)],T) 7→ ([(q,N)],T) = (Q,U). We
can notice that P′ = [(Ok,N′)] and Q′ = [(q,N′)]. In N′, Ok is merged with q so (P′,T) 7→
(Q′,U).

�

In particular, the successive projections of free ports of a net will always be defined along a reduction
sequence. So a path between two free ports of a net will always be stable along reduction, as stated by
Corollary 232.

Corollary 232. If M →∗ N, p, q ∈ PM
f and T,U ∈ Tra, then

([(p,M)],T) 7→∗ ([(q,M)],U)⇔ ([(p,N)],T) 7→∗ ([(q,N)],U)

Let Π1, Π2, Π3 and Π4 be the projections corresponding to the reduction steps of Figures 6.3 and
6.6. We have Π1([(e0,N); (r1,Rδ,ε)]) = [(e0,N1); (r1,Rδ,ε)], then Π2([(e0,N1); (r1,Rδ,ε)]) = [(h1,N2)], next
Π3([(h1,N2)]) = [(i2,N3)] and Π4([(i2,N3)]) is not defined.

We can observe the reductions of the path of N ([(e0,N); (r1,Rδ,ε)], []) 7→13 ([(e0,N); (e2,N)], []) which
becomes ([(e0,N1); (r1,Rδ,ε)], []) 7→2 ([(d2,N1)], [(δ, 1)]) 7→4 ([(a′2,N1)], [(ζ, 2)]) 7→5 ([(e0,N); (e2,N)], [])
in N1, then ([(h1,N2)], []) 7→3 ([(i2,N2)], []) in N2 and finally ([(i2,N3)], []) 7→0 ([(i2,N3)], []) in N3.

177

6.3 Complexity bounds

In this section, we define canonical cells, which are the potential ports which correspond to cells that will
really appear during reduction. Then we use the canonical cells to define a weight WN ∈ N ∪ {∞} for any
net N such that, if M → N, then WM ≥ WN + 1. It follows that the length of any reduction sequence from
M is bounded by WM. Notice that it is not true that WM > WN because if WM = ∞, then WN = ∞.

The approach is inspired by Dal Lago’s context semantics for linear logic [20]. First, Dal Lago’s weight
allowed to show that every proof-net of some linear logic subsystems verified complexity properties (e.g.
every proof-net of LLL reduce in polynomial time w.r.t the size of the argument, whatever the reduction
strategy). These bounds were previously known, but Dal Lago’s proofs were much shorter. Then, his tool
was used to prove strong bounds which were previously unknown [3]. We hope that our tool will lead to
similar results.

We want to capture the “cells which will appear during reductions beginning by N”. Such a cell is either
a cell of N, or appears during the reduction of two cells c1 and c2 such that: c1 and c2 both appear during
reductions beginning by N, and {c1, c2} will form an active pair. This is the intuition behind the following
definition of canonical cells.

Definition 233. We define the set CanN of canonical cells of N by induction:

• For every cell c of N, [(p0(c),N)] is a canonical cell

• If P1.(p0(c1),N1) ∈ CanN , (P1.(p0(c1),N1), []) 7→ (P2.(p0(c2),N2), []), lN(c1) = s1, lN(c2) = s2 and
L(s1, s2) is defined. Then for every cell c of Ns2,s1 , P1.(p0(c1),N1).(p0(c),Ns2,s1) ∈ CanN .

Lemma 234. Let us suppose that N →L N′ by reducing the active pair {c1, c2} and Π is the associated
projection.

If P ∈ CanN , then either Π(P) is defined and Π(P) ∈ CanN′ or P corresponds to one of the ports of the
active pair: P ∈ {[(p0(c1),N)], [(p0(c2),N)]}.

If Π(P) exists and is in CanN′ , then P ∈ CanN .

As an example, let us consider the net N of Figure 6.3. We can show that C1 = [(e0,N); (e1,Rδ,ε)]
is a canonical cell. Indeed, b0 is a principal port of N so [(b0,N)] is a canonical cell. We know that
([(b0,N)], []) 7→0 ([(a0,N)], []) and L(ζ, δ) is defined so [(b0,N); (d2,Nδ,ζ)] is a canonical cell. Finally,
([(b0,N); (d2,Nδ,ζ)], []) 7→1 ([(e0,N)], []) and L(δ, ε) is defined so [(b0,N); (d2,Nδ,ζ); (e1,Rε,δ)] is canonical.

Similarly, C2 = [(a0,N); (d2,Nζ,δ); (e1,Nε,δ)] and C3 = [(e0,N); (e1,Nδ,ε)] are canonical. Let Π1, Π2,
be the projections corresponding to N → N1 and N1 → N2 (Figures 6.3 and 6.6). We can observe that
Π2 ◦ Π1(C1) = Π2 ◦ Π1(C2) = Π2 ◦ Π1(C3) so, intuitively, there are three canonical cells corresponding to
the same future cell.

The following theorem corresponds to the main result of [20]. The intuition behind it is that each
reduction step erases two canonical potentials: the ones corresponding to the active pair.

Theorem 235. For every interaction-net N, the length of any interaction sequence beginning by N is
bounded by :

TN =
∑

P∈CN

1
2|P|

Proof. We suppose that N reduces to N′ by reducing the active pair {c, d} labelled by s, t, Π is the associated
projection and D its domain. For any P′ ∈ CanN′ ,

178

• Either P′ = [(p′,N′)]@Q with p′ a port of Rs,t then p′ is also a port of Rt,s (or vice-versa). So
Π−1(P′) = {[(p0(c),N); (p′,Rt,s)]@Q, [(p0(d),N); (p′,Rs,t)]@Q}.

• Or P′ = [(p′,N′)]@Q and Π−1(P′) = {[(p′,N)]@Q}.
So, for any P′ ∈ CanN′ , we have: ∑

P∈Π−1(P′)

1
2|P|

=
1

2|P′ |

This gives the following equations:

TN =
∑

P∈CN∩D

1
2|P|

+
∑

P∈CN−D

1
2|P|

TN =
∑

P′∈CN′

1
2|P′ |

+
1

2|[(p0(c),N)]| +
1

2|[(p0(c),N)]|

TN = TN′ + 1

�

However we were unable to use this context semantics to prove complexity bounds in a way similar to
our proofs on subsystems of linear logic, even for trivial libraries. It seems we need further tools (corre-
sponding to the notion of copies, acyclicity of proof-nets and subtree properties in [20]) to ease the use of
Theorem 235 to prove bounds for interaction nets system. With the current definitions, it is not even clear
what a formulation (let alone the proof) of Lemma 21 in interaction nets would be.

The most obvious way to adapt the notion of copies to interaction nets would be to define the copies
of the canonical cell P as the canonical cells of the shape P.(q,N). However, we would have a mismatch
with the definition of copies in the case of linear logic. For instance, every cell (even in the case of non-
terminating nets) would have a finite number of copies: either 0 (if the cell is not part of a redex) or the
number of cells in the net Ns,t corresponding to its redex. Although we have some ideas to fix this mismatch,
this seems to be a complex issue which is beyond the scope of this thesis.

179

6.4 Denotational semantics

6.4.1 Observational equivalence

Corollary 232 shows us that the paths from a free port to a free port are stable along the reduction. Hence,
it seems natural to define a denotational semantics based on those paths. We would like our semantics to
enjoy a full abstraction property, i.e. a theorem stating that two proof-nets have the same semantics if and
only if they are observationally equivalent.

Let us recall that, in general, two programs P and Q are said observationally equivalent if for all context
C[], such that the execution of C[P] outputs some value v, the execution of C[N] outputs the same value
v2. In a framework as general as interaction nets, there are several possible notions of “outputting a value”,
each gives a different observational equivalence. The observational equivalence ≈ we will consider is based
on an observational equivalence ' defined by Mazza [56]. We modified a bit the equivalence, because in

some farfetched libraries, a b
c d

' a b
c d

. In our point of view, interaction nets are about “what can

interact with what”. So, if in a net a can only interact with b, it can not be equivalent to a net where a can
only interact with d. In every system studied by Mazza in [56], the property (N1 ≈ N2)⇔ (N1 ' N2) holds.
Both observational equivalences are based on observable paths defined below.

Definition 236. Let N be an interaction net, an observable path of N is a sequence p0, p1, · · · , pk of ports
of N such that we do not cross active pairs (if pi is an auxiliary port, for i < j ≤ k, p j is not a principal
port) and for every i < k:

• If pi = p j(c) (with j > 0), then pi+1 = p0(c) (crossing a cell from an auxiliary port to the principal
port).

• If pi = p0(c), then either there exists j > 0 such that pi+1 = p j(c) (crossing a cell from the principal
port to an auxiliary port) or pi+1 = p0(c) (bouncing on a principal port).

• If pi ∈ PN
m, pi+1 = σN

m(pi) (crossing a merging port).

The observable and 7→-path are closely linked. If (P1,T1) 7→ · · · 7→ (Pn,Tn), and [(p1,N)], · · · , [(pk,N)]
is the subsequence of P1, · · · , Pn of potentials of length 1, then p1, · · · , pk is an observable path. In fact the
observable paths which can be obtained in this way are exactly the observable paths which can not be
eliminated by reduction.

We wrote earlier that, according to us, interaction nets are about “what can interact with what”. Thus,
in interaction nets, an observation is a property of the shape “the ports p and q can communicate together”.
This communication is meaningful only it can be used by another process (the internal communications
between cells are not taken into accounts) so, in the definition of observations, we only consider free ports
p and q.

Definition 237. Let p, q be free ports of N. If N →∗ N′ and there exists an observable path from σN′
w (p) to

q, then we write N⇓p
q .

Definition 238 (observational equivalence). Let N1,N2 be nets with PN1
f = PN2

f , then we write N1 ≈ N2 if

for all nets N, φ partial injection from PN1
f to PN

f , and p, q ∈ PN11φN
f :

(N11φN)⇓p
q ⇔ (N21φN)⇓p

q

2Notice that the word “context” is not used here in our meaning of “token travelling through the net”, but in the usual meaning
of a “program with a hole”.

180

c a

a

a

c

c

c b

b

b

c

c

c c

c

c

c

c

a a

a b

b b

|

ε a

ε

ε

ε b

ε c

ε ε

Figure 6.12: Reduction rules for libraries L and Le

We wrote that our definition is inspired by Mazza’s observational equivalence. The observation consid-
ered by Mazza is “there is a communication between two free ports”. The difference is that, Mazza does not
take into account which free port communicates with which free port.

Definition 239. [56] Let N1,N2 be nets with PN1
f = PN2

f , then we write N1 ' N2 if for all nets N and φ

partial injection from PN1
f to PN

f ,

∃p, q ∈ PN11φN
f (N11φN)⇓p

q⇔ ∃p, q ∈ PN21φN
f (N21φN)⇓p

q

If the communications between free ports are the same in N11φN and N21φN then, in particular, there
is a communication in N11φN iff there is a communication in N21φN. This means that (N1 ≈ N2) implies
(N1 ' N2). However, the other implication is not true in general.

As an example, let us define the library L (resp. Le) whose symbols are {a, b} (resp. {a, b, c, e}), the
reduction rules are given in Figure 6.12. One can observe that c duplicates every cell, e erases every cell,
the other interactions (a/a, a/b and b/b) create wires between the free ports (b/b also creates a cycle).

In the library L, for any net N and p ∈ PN
f , there exists q ∈ PN

f such that N⇓p
q . So, for any N1 and N2

with the same number of free ports, N1 ' N2. On the contrary, N1 = a a 0 a a = N2. Indeed, let

us consider N = aa p
q , then (N11N)⇓p

q and ¬((N21N)⇓p
q).

In Le, we can prove a ≈ b and c c ≈ c c . On the contrary, a 0 c . Indeed, let us

consider N = qp a ee , then ¬
(
(N11N)⇓p

q

)
and (N21N)⇓p

q as we can observe by reduction:

a q
eae

pN11φN= ∗ e e
p q

a q
ecepN21φN= ∗

p qa ce e

Finally, if we extended the library Lsort with another cell T performing sort in any way (for example
merge sort), then we would have S ≈ T . But S 0 .

6.4.2 Definition of a denotational semantics

To define a denotational semantics matching our observational equivalence ≈, we need a mapping | , , , |
from (Tra+)4 to set of pairs of positive traces.

181

Definition 240. Let S ,T,U,V ∈ Tra+, then if we set N = p qS T U V , then we define |S ,T,U,V |
as {

(X,Y) ∈ (Tra+)2

∣∣∣∣∣∣ ∃P ∈ CanN ,
(P, []) 7→∗ ([(p,N)], X)
(P, []) 7→∗ ([(q,N)], X)

}
We have (X,Y) ∈ |S ,T,U,V | iff p qS T U V reduces to a net N′ such that p qX Y

is a subnet of N′. For example, in Le, |[(a, 1); (b, 2)], [(c, 1)], [], [(a, 2)]| = {([(c, 1)], [(a, 1)])} because

p qc aba c

c

a

a

p
b

c

q

∗

The interpretation [N] of a net will be the set of unordered pairs {{(p, S), (q,V)}} with p, q free ports of N

and S ,V positive traces such that, if we define M as the net a b
S N V
p q then M⇓a

b. So, [N]

corresponds to the observations of N when glued with a net consisting of only two lines of cells. Thus, the
full abstraction of the semantics means “If for every net N, N11N and N21N have the same observations,
then they have the same observations when N consists of two lines of cells.” Thus, the proof of the full
abstraction offers no real difficulty.

The soundness means that “If whenever N consists of two lines of cells, N11N and N21N have the
same observations, then this is also true for an arbitrary net N”. In fact, soundness is not true in the general
case. However, we did prove soundness in the case of crossing libraries. A library is said bouncing if
there is an interaction rule (R, ψ) and free ports Ik, Il of R such that R ⇓Ik

Il
. A typical bouncing rule is

r s
j1

j2

I2
I1

. A library is said crossing if it is not bouncing. For the rest of the paper, we

consider that L is crossing.

Definition 241. Let N be an interaction net, [N] is the set
{{(p, S), (q,V)}}
p, q ∈ PN

f
S ,V ∈ Tra+

∣∣∣∣∣∣∣∣∣ ∃ P ∈ PotN
+

T,U ∈ Tra
,

(P, []) 7→∗ ([(p,N)],T)
(P, []) 7→∗ ([(q,N)],U)
|S ,T,U,V | , ∅

Where {{(p, S), (q,V)}} represents a multiset (unordered pair in this case).

6.4.3 Stability of [] by reduction and gluing

Theorem 242. If N → N′, then [N] = [N′]

Proof. Follows from Lemma 231 and the definition of [N]. �

The proof of stability of [] by gluing is the most complex of this paper. It is necesary to prove the
soundness of [] with respect to ≈. The proof requires the following lemmas.

Lemma 243.
⋃

(Z,W)∈|[],[],V,Y | |X,T,U,Z| ∼ |X,T,U@V,Y |

Lemma 244.
⋃

(X,Y)∈|[],[],U,V | |S , X@T,Y,V |∼ |S ,T,U,Z@V |

182

T q
1 U r

1

V r′
1 V p

1

q r

r′ p

M1

N1

=V q1
1

p1 p1

q1 q1

X

Y

=

Xp

Yp

Figure 6.13: Sketch of the net G1 in the proof of Theorem 246.

Lemma 245. Let P,Q ∈ PotN and T,U ∈ Tra,

(P, []) 7→ (R,T)
(Q, []) 7→ (R,U)
|[], [],T,U | = (S ,V)

⇒ ∃R′ ∈ PotN ,
(R′, []) 7→ (P, S)
(R′, []) 7→ (Q,V)

Theorem 246. Let M1,N1,M2,N2 be nets such that [M1] = [N1], [M2] = [N2] and φ an injection from
PM1

f = PM2
f to PN1

f = PN2
f , then [M1 ./φ N1] = [M2 ./φ N2].

Proof. For concision, we will write G1 = M1 ./φ N1 and G2 = M2 ./φ N2. We will not consider the
7→m normal versions of R1 and R2 but will leave the merging ports created on the connecting ports (the
ports in the domain or codomain of φ) untouched. We need a notion of 7→-path with a bounded number of
alternations between ports of M1 and ports of N1. For every i ∈ N, we define a relation�i on ContG1 by:
(P,T)�i (Q,U) iff we are in one of those cases:

i = 0 and (P,T) = (Q,U)
(P,T) 7→ ([(p,G1)],V)�i−1 (Q,U) with p ∈ PM1

f ∪ PN1
f

(P,T) 7→ (R,V)�i (Q,U) with R < [((PM1
f ∪ PN1

f),G1)]

We define the�i relations on ContG2 similarly. We will prove the following property P(i + j) by induction
on i + j:

“Let p, q ∈ PM1
f ∪ PN1

f and P1 ∈ PotG1 such that (P1, []) �i ([(p,G1)],T1), (P1, []) � j ([(q,G1)],U1)

and |S ,T1,U1,V | is defined, then there exists P2 ∈ PotG2 such that (P2, []) 7→∗ ([(p,G2)],T2), (P2, []) 7→∗
([(q,G2)],U2) and |S ,T2,U2,V | is defined.”

This directly implies that [G1] ⊆ [G2] because PG1
f ⊆ PM1

f ∪ PN1
f . Because the roles of (M1,N1) and

(M2,N2) are symmetrical, it will imply [G2] ⊆ [G1] so [G1] = [G2].
Let us suppose that P(i + j − 1) is true. Let p, q, r ∈ PM1

f ∪ PN1
f and P1 ∈ PotG1 such that (P1, []) �i

([(r,G1)],Ur
1)�1 ([(p,G1)],T p

1), (P1, [])� j ([(q,G1)],T q
1) and |X,T q

1 ,T
p
1 ,Y | is defined.

Without loss of generality, we will suppose that r ∈ PM1
f . Thus, r ∈ PG1

m , let us write r′ = φ(r) = σG1
m (r).

Then, ([(r,G1)],Ur
1) 7→ ([(r′,G1)],Ur

1)�1 ([(p,G1)],T p
1).

We reduce M1 and N1 to nets M′1 and N′1 such that, if we write G′1 = M11φN1, Π(P1) has shape [(p1,G′1)]
and the paths ([(p′1,G

′
1), [])�i ([(r,G′1)],Ur

1), ([(p′1)], [])� j ([(q,G′1)],T q
1) and ([(r,G′1)],Ur

1)�1 ([(p,G1)],T p
1)

do not cross active pairs. The net G′1 is sketched in Figure 6.13.

183

The path ([(r′,G′1)],Ur
1) �1 ([(p,G′1)],T p

1) does not cross active pairs so the potential ports are first
principal ports, then auxiliary ports and finally the free port [(p,G′1)]. Let [(q1,G′1)] be the first non-principal
potential port of length 1 of the path. We have ([(p,G′1)], []) 7→∗ ([(q1,G′1)],Vq1

1) 7→∗ ([(p,G′1)],Vq1
1 @V p

1)
with T p

1 = Vq1
1 @V p

1 .
As L is crossing, there exists Vr′

1 ∈ Tra+ such that ([(q1,G′1)],[]) 7→∗ ([(r′,G′1)],Vr′
1) and |[],[],Vr′

1,U
r
1| =

([],V p1
1).

By Lemma 243, there exists (Y p, Xp) ∈ |[], [],V p
1 ,Y |, such that |X,T q

1 ,U
r
1,Y

p@Vr′
1 | is not empty. By

induction hypothesis, there exists P2 ∈ PotG2 such that (P2, []) 7→∗ ([(r,G2)],Ur
2), (P2, []) 7→∗ ([(q,G2)],T q

2)
and |X,T q

2 ,U
r
2,Y

p@Vr′
1 | is defined.

By Lemma 243, there exists (Yq, Xq) ∈ |X,T q
2 , [], []|, such that |Xq, [],Ur

2,Y
p@Vr′

1 | , ∅. But |Xq, [],Ur
2,Y

p@Vr′
1 | =

|Xq@Ur
2,V

r′
1 , [],Y

p| so, by Lemma 243 |Xq@Ur
2,V

r′
1 ,V

p
1 ,Y | , ∅. We know that [N′1] = [N1] = [N2]

so there exists some Q2 ∈ CanN2 such that (Q2, []) 7→∗ ([(p,N2)],V p
2), (Q2, []) 7→∗ ([(r′,N2)],Vr′

2) and
|Xq@Ur

2,V
r′
2 ,V

p
2 ,Y | is defined.

By Lemma 244, there exists (W p
2 ,W

q
2) ∈ |[], [],Vr′

2 ,U
r
2| such that |Xq,Wq

2 ,W
p
2 @V p

2 ,Y | , ∅. So by
Lemma 243, |X,Wq

2 @T q
2 ,W

p
2 @V p

2 ,Y | , ∅. From Lemma 245, there exists some potential port R2 ∈ CanG2

such that (R2, []) 7→∗ (Q2,W
p
2) 7→∗ ([(p,G2)],W p

2 @V p
2) and (R2, []) 7→∗ (P2,W

q
2) 7→∗ ([(q,G2)],Wq

2 @T q
2).
�

6.4.4 Soundness and full abstraction

Lemma 247. If P,Q ∈ CanN and (P,T) 7→∗ (Q,U), then we can reduce N to a net N′ such that Π is
the associated composition of projections, Π(P) and Π(Q) have shape [(p,N′)] and [(q,N′)], and the path
([(p,N′)],T) 7→∗ ([(q,N′)],U) does not cross active pairs

Proof. We prove it by induction on |P| + |Q|. If |P| + |Q| = 2 and the path crosses an active pair, then we
can reduce the pair. Notice that the path ([(p,N′)],T) 7→∗ ([(q,N′)],U) is strictly shorter than the path
(P,T) 7→∗ (Q,U). So we get the result after finitely many such reductions.

Else, we have P = P1.(p0(c),N1).(r,Rs,t) and (P1.(p0(c),N1), []) 7→∗ ([P2.(p0(d),N2)], []) (with lN(c) = s
and lN(d) = t). By induction hypothesis, we can reduce N so that this path does not cross active pairs. So
this path has length 0, {c, d} becomes an active pair that we can reduce. Then |Π(P)| < |P| and |Π(Q)| ≤ Q,
so we can apply the induction hypothesis. �

Lemma states that if [N1] = [N2] then the observations (the (N1)⇓p
q) on N1 and N2 are the same. As we

proved that [] is stable by context, we will get that if [N1] = [N2], for any N, the observations on N11N and
N21N are the same. This is exactly the soundness of [] with respect to ≈.

Lemma 248. If [N1] = [N2] and p, q ∈ PN1
f = PN2

f , then:

N1⇓p
q ⇔ N2⇓p

q

Proof. We consider the →m-normal representations of N1 and N2. Notice that N1 and N2 play symmetric
roles so we only need to prove one implication. Let us suppose that N1⇓p

q , then there exists some net N′1
such that N1 →∗ N′1 and there exists an observable path in N′1 from p to q.

By definition, the observable path is a (possibly empty) sequence of principal ports followed by a (possi-
bly empty) sequence of auxiliary ports and the free port q. Let us consider r, the first port of the path which
is not a principal port.

184

Then there is an observable path from r to q with only auxiliary ports (except q which is free), and
there is an observable path from r to p with only auxiliary ports (except p which is free). Thus there exists
T1,U1 ∈ Tra+ such that ([(r,N′1)], []) 7→∗ ([(p,N′1)],T1) and ([(r,N′1)], []) 7→∗ ([(q,N′1)],U1). We can notice
that |[],T1,U1, []| is defined.

We know that (p, q, [], []) ∈ [N′1] = [N1] = [N2]. Thus, there exists Q ∈ CanN2 , T2,U2 ∈ Tra+ such that
(Q, []) 7→∗ ([(p,N)],T2) and (Q, []) 7→∗ ([(q,N)],U2). Thanks to Lemma 247, we know that we can reduce
N2 to a net N′2 such that the projection of Q has shape [(s,N′2)] and the paths ([(s,N′2)], []) 7→∗ ([(p,N)],T2)
and ([(s,N′2)], []) 7→∗ ([(q,N)],U2) do not cross active pairs.

Thus, in N′2, there are observable paths from s to p and from s to q with only auxiliary ports. This means
that there is an observable paths, in N′2, from p to q. So N2⇓p

q . �

Theorem 249 (soundness). If PN1
f = PN2

f and [N1] = [N2], then N1 ≈ N2

Proof. Let us consider a net N and φ a partial injection from PN1
f to PN

f and p, q ∈ PN11φN
f , we need to prove

that (N11φN)⇓p
q⇔ (N21φN)⇓p

q .
By Theorem 246, we know that [N11φN] = [N21φN]. So, the result is given by Lemma 248. �

Theorem 250 (full abstraction). If PN1
f = PN2

f and N1 ≈ N2, then [N1] = [N2]

Proof. Let us consider {{(p, S), (q,V)}} ∈ [N1], we will prove that {{(p, S), (q,V)}} ∈ [N2]. We know that
there exists P ∈ CanN and T,U ∈ Tra+ such that (P, []) 7→∗ ([(p,N1)],T), (P, []) 7→∗ ([(q,N1)],U) and
|S ,T,U,V | , ∅ . We use Lemma 247 to reduce N1 to a net N′1 such that the projection |Π(P)| = 1
and the paths (Π(P), []) 7→∗ ([(p,N1)],T) and (Π(P), []) 7→∗ ([(q,N1)],U) do not cross active pairs. So

p qT U is a subterm of N′1. We set N = rq′o p′ VS and φ = {p 7→ p′, q 7→ q′}. Then

N11φN reduces to a net which has o rS T U V as a subnet. We know that |S ,T,U,V | , ∅
so (N11φN)⇓o

r . We know that N1 ≈ N2 so (N21φN)⇓o
r . Thus, N21φN reduces to a net N′2 with an ob-

servable path from o to r. We consider s the first port of the path which is not a principal port. Then
([(s,N′2)], []) 7→∗ ([(o,N′2)],T2) and ([(s,N′2)], []) 7→∗ ([(r,N′2)],U2). By Lemma 231, we know that s is
the projection of Q ∈ CanN21φN and that the paths exist in N21φN. Those paths begin in N2 and end
N, let us consider the traces T ′2 and U′2 at the interfaces. Then, we have (Q, []) 7→∗ ([(o,N21φN)],T ′2),
(Q, []) 7→∗ ([(r,N21φN)],U′2) and |S ,T ′2,U′2,V ′| , ∅. �

185

6.5 Application on interaction combinators

6.5.1 Comparison of ~ � and [] on symmetric combinators

As we stated, our observational equivalence is strongly inspired by Mazza’s equivalence [56]. If he defines
it for any interaction net library, he only defines a sound and fully abstract semantics ~ � for symmetric
combinators. The two equivalences coincide on symmetric combinators. In particular, ~N1� = ~N2� ⇔
[N1] = [N2]. Here, we will even see that the structures of those semantics are quite similar.

Mazza defines an arch for the interaction N as a multiset {{(p, S δ, S ζ), (q,Vδ,Vζ)}} where p, q are free
ports of N, and S δ, S ζ ,Vδ,Vζ ∈ {1, 2}N. We can notice that the shape is similar to our semantics, highlighted
by the use of similar names for corresponding objects. One of the differences is that the information in the
trace S is divided in a sequence S δ corresponding to the δ cells and a sequence S ζ corresponding to the
ζ cells. The link is made more precise by the mappings ()δ and ()ζ from traces S to finite sequences on
{1, 2}, defined by induction on |S |: []δ = []ζ = [], (T.(δ, i))ζ = Tζ , (T.(ζ, i))δ = Tδ, (T.(δ, i))δ = Tδ.i and
(T.(ζ, i))ζ = Tζ .i.

Let N be a net, the edifice of N is the set E(N) ={{(p, X@S δ,Y@S ζ), (q, X@Vδ,Y@Vζ)}}

∣∣∣∣∣∣∣∣∣∣∣∣
X,Y ∈ {1, 2}N

N →∗ S V

R

p q

However, it is possible that nets are observationally equivalent but have different edifices. To be fully

abstract, we will define a distance on arches and consider the metric completion of edifices. First, let us
consider the usual distance on infinite sequences: if S ,V ∈ {1, 2}N, we define d(S ,V) = 2−k where k is the
length of the longest common prefix between S and V . On PN

f , we will use the discrete topology: if p = q
then ddisc(p, q) = 0, else ddisc(p, q) = 1. We use those distances to define a distance on PN

f ×{1, 2}N×{1, 2}N:

d
(
(p, S , S ′), (q,V,V ′)

)
= max

{
d(S ,V), d(S ′,V ′), ddisc(p, q)

}
Finally, we can define a distance on arches. If a = {{µ, µ′}} and b = {{ν, ν′}}, then

d(a, b) = min{d(µ, ν) + d(µ′, ν′), d(µ, ν′) + d(µ′, ν)}
In other words, as the pairs are unordered, we compare them in the two possible ways and we choose the
best matching. Finally, we define ~N� as the metric completion of E(N).

Our semantics [] is based on the | , , , | function, we will study its behaviour on symmetric combina-
tors. We denote the prefix order on sequences by ≤ (i.e. T ≤ U ⇔ ∃V,V@T = U), and we define ≶ as
≤ ∪ ≥. We also define T − U as T ′@T − T = T ′ and otherwise T − U = []. Then, we can observe that for
every T,U ∈ Tra+,

|S ,T,U,V | , ∅⇔
{

S δ ≶ Tδ,Uδ ≶ Vδ, S δ − Tδ ≶ Vδ − Uδ

S ζ ≶ Tζ ,Uζ ≶ Vζ , S ζ − Tζ ≶ Vζ − Uζ

We can verify that [N] is the set of prefixes of merging (meaning that the {1, 2} sequences for δ and ζ are
merged into traces) of elements of E(N):

[N] =

{
{{(p, S), (q,V)}}

∣∣∣∣∣∣ ∃S ′,V ′ ∈ Tra+, S ≤ S ′,V ≤ V ′

{{(p, S ′δ, S
′
ζ), (q,V

′
δ,V

′
ζ)}} ∈ E(N)

}
186

We wrote that one of the differences between [N] and ~N� is that in the first the information correspond-
ing to δ and ζ are merged whereas they are separated in the second. On this point, Mazza’s specialized
semantics is better than our general semantics, because ~N� is closer to full-completeness. Indeed, the
structure of [N] allows to have {{(p, [(δ, 1); (ζ, 2)]), (q, [])}} ∈ [N] and {{(p, [(ζ, 2); (δ, 1)]), (q, [])}} < [N] but the
operational semantics of interaction combinators makes this impossible.

The second difference is that [N] is defined by prefixes of archs, while ~N� is defined by a metric
completion. Thus, we noticed that if E, F ⊆ {1, 2}N, then the completions of E and F are equal iff {S | ∃T ∈
E, S ≤ T } = {S | ∃T ∈ F, S ≤ T }. So we could interpret nets by the following semantics b c which is
equivalent to ~ � but which we consider simpler to understand because it does not use metric completions.

bNc =

{{(p, S 1, S 2), (q,V1,V2)}}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

X,Y ∈ {1, 2}N

N →∗ T U

R

p q

S 1 ≤ Tδ@X, S 2 ≤ Tζ@Y
V1 ≤ Uδ@X,V2 ≤ Uζ@Y

6.5.2 Comparison with semantics of encodings in symmetric combinators

As one can encode numerous libraries in symmetric combinators, one could try to define the semantics of a
net N as [Ñ] with Ñ the encoding of N in interaction combinators. However, this semantics does not match
≈. Indeed, let us consider the following encoding of library L (of Figure 6.12) in interaction combinators.

ã = ζ
ζ

ζ
b̃ = ζ

ζ

ζ

ε

ε

We wrote that in the library L every pair of nets with the same number of free ports are equivalent. In par-
ticular, in L, a ≈ b . However, {{(p, [(ζ, 1)]), (p, [(ζ, 2)])}} ∈

[
ã

]
whereas {{(p, [(ζ, 1)]), (p, [(ζ, 2)])}} <[

b̃

]
so ã 0 b̃ in Lcomb. The difference is that, in Lcomb, we can test nets with traces which do

not exist in L.

187

188

Conclusion

This thesis is full of technical definitions and results, which sometimes hide the main ideas underlying them.
This is why we thought it would be useful to sum up our main contributions, putting them in the perspective
of our long term goal: a programming language certifying complexity bounds at compilation time. To go
from the current characterizations of Poly to such a language, we have to solve several challenges:

1. Being more expressive: for most usual programs p terminating in polynomial time, the language
should find a polynomial bounding the computation time of p.

2. Proving tighter bounds: bounding the complexity of the insertion sort by |l|127 may be enough for a
proof of Ptime-reduction. However, the concrete bound is not useful because it is too far from the
actual bound.

3. Efficient type inferring: if the use of our language considerably slows down compilation time, it will
only be used in applications where the certification of the bound is an important issue. It would rule
out the third and fourth applications stated in the introduction (helping the programmer to find the
origin of a slowness, and detecting errors/typos in the program).

4. Accomodate several complexity classes: inside a single software, one may need to know that the func-
tion f computes in logarithmic space, g computes in polynomial time and h computes in exponential
time. Although one could imagine to use distinct type systems to test every complexity class, it would
be preferable to have a single type-system characterizing several classes (for instance, with distinct
class of types as in [13]).

Among those four challenges, we believe that the first is the most important. One argument is that, for some
applications, the other challenges are secondary. If one wants to certify a proofs of Ptime-reduction (in
computational complexity theory or cryptography, for instance) we only to infer a polynomial bound, the
degree of the polynomial is not important. For such an application, one may tolerate a long compilation time,
and characterizing only Poly is enough. With those first users, one could have feedback on our language
and its limits.

Moreover, it seems that the 2nd, 3rd and 4th challenges heavily depend on the first. For instance, if
we defined efficient type inferrence algorithms for S DNLL and the expressive programming languages we
obtain have nothing in common with S DNLL, those algorithms would be of no use. Thus, even if it is
interesting to face those challenges in the case of landmark systems (such as LLL), we believe that spending
too much time on the 2nd, 3rd and 4th challenges for the myriad of variations of subsystems would mainly
be a loss of time.

Figure 6.14 sums up the method by which we hope to reach an expressive programming language char-
acterizing polynomial time. We consider that this task can be divided in several subtasks: defining an
expressive functional core (a linear logic subsystem or λ-calculus type system) and, in a second step, adding

189

LLL DLAL

LPL

S HOπ

Madet’s system

λ-calculus

pattern

matching

recursive
definition

π-calculus

sideeffects multi-
threading

S DNLL

S wLL

?

?

interaction nets
?

?

ExpressiveLL Final goal

Figure 6.14: Path toward an expressive programming language

features. For example, previous works have added pattern-matching, recursive definitions, side-effects and
concurrent features to LLL. However, even with those transformations, LLL seemed to lack expressive
power. Thus, we believed that the most urgent direction was the “vertical” one: adding more expressive
power to current linear logic subsystems.

With this thesis, not only did we define more expressive linear logic subsystems, but we defined abstract
semantic criteria entailing polynomial bounds. Those criteria may be easier to transpose to another frame-
work than the syntax of S DNLL and S wLL because they have a meaning which goes beyond linear logic
itself: B � C means that the function C can be applied to a normal term containing B, B . . . C means that
C contains several occurrence of a variable which can be replaced by B along reduction, and B

/ / /

C means
that a strict subterm of C uses B. Admittedly, those meanings are not very formal and, for instance, the
difference between . . . and . may not have any correspondence in another framework. However, we think
that the notions of stratification, dependence control and nesting may be relevent in other frameworks based
on a local reduction. Thus rather than adapting the syntax of S DNLL and S wLL to richer languages, we
think that we will adapt the criteria underlying them. And we believe this transformation to be easier in
comparison.

We now think that the most urgent direction is the “horizontal” one (adding feature to our current crite-
ria/subsystems).

• First, trying to type terms in our subsystems, we “feel”3 that the main limit to expressivity is the
lack of basic constructors (lists and natural numbers for instance). We hoped that, with our work on
iterations of iterated functions (the w label in S wLLstrat), we could type most standard functions on
lists (iter, fold, filter,...) with adequate type. However, we were limited by the representations of lists
and natural numbers in linear logic. For instance 3 could be represented with 6 different proof-nets
by reordering the contractions and the ⊗ nodes. Because of such possible reorderings, it seems to

3Admittedly, the justification is not based on formal arguments.

190

us that typing many standard functions on lists would require bijections between sets of copies of
potential boxes. This technical difficulty only comes from the particular encoding of lists, which does
not correspond to anything used in usual programming languages. Thus, rather than getting an even
more expressive and complex type system of linear logic, we prefer to add basic constructors to our
language.

• And, indeed, the system S wLL is already quite complex. It contains a lot of different “features”. But
we are not even sure that all of them would be meaningful outside of linear logic. Trying to extend
our language, we could get a better sense of which labels/rules are useful to be expressive in other
languages, and which are not.

We are not sure that this functional core will be expressive enough to obtain (after transformation in a
richer language) an expressive characterization of Poly. It might even be the case that, after discovering
good ways to adapt linear logic subsystems into type systems for richer languages, we discover that LLL is
enough as a functional core. In the absence of a good measure of intensional expressivity which could guide
the research efforts, it seems that personal experience of typing terms in those languages is the best guide
we have, to decide which direction is the most crucial for expressivity.

191

192

Bibliography

[1] K. Aehlig and H. Schwichtenberg. A syntactical analysis of non-size-increasing polynomial time
computation. ACM Transactions on Computational Logic (TOCL), 3(3), 2002.

[2] V. Atassi, P. Baillot, and K. Terui. Verification of ptime reducibility for system F terms: Type inference
in dual light affine logic. Logical Methods in Computer Science, 3(4), 2007.

[3] P. Baillot, P. Coppola, and U. Dal Lago. Light logics and optimal reduction: Completeness and com-
plexity. Information and Computation, 209(2), 2011.

[4] P. Baillot and U. Dal Lago. Higher-order interpretations and program complexity. In P. Cégielski
and A. Durand, editors, Computer Science Logic (CSL’12) - 26th International Workshop/21st Annual
Conference of the EACSL, CSL 2012, September 3-6, 2012, Fontainebleau, France, volume 16 of
LIPIcs, pages 62–76. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

[5] P. Baillot and U. Dal Lago. Higher-order interpretations and program complexity (long version).
http://hal.archives-ouvertes.fr/hal-00667816, 2012.

[6] P. Baillot, U. Dal Lago, and J-Y. Moyen. On quasi-interpretations, blind abstractions and implicit
complexity. Mathematical Structures in Computer Science, 22(04):549–580, 2012.

[7] P. Baillot, M. Gaboardi, and V. Mogbil. A polytime functional language from light linear logic. Pro-
gramming Languages and Systems, 2010.

[8] P. Baillot and D. Mazza. Linear logic by levels and bounded time complexity. Theoretical Computer
Science, 411(2), 2010.

[9] P. Baillot and V. Mogbil. Soft lambda-calculus: A language for polynomial time computation. In Igor
Walukiewicz, editor, Foundations of Software Science and Computation Structures, 7th International
Conference, FOSSACS 2004, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2004, Barcelona, Spain, March 29 - April 2, 2004, Proceedings, volume 2987 of
Lecture Notes in Computer Science, pages 27–41. Springer, 2004.

[10] P. Baillot and M. Pedicini. Elementary complexity and geometry of interaction. Fundamenta Infor-
maticae, 45(1-2), 2001.

[11] P. Baillot and K. Terui. A feasible algorithm for typing in elementary affine logic. In Pawel Urzyczyn,
editor, Typed Lambda Calculi and Applications, 7th International Conference, TLCA 2005, Nara,
Japan, April 21-23, 2005, Proceedings, volume 3461 of Lecture Notes in Computer Science, pages
55–70. Springer, 2005.

193

[12] P. Baillot and K. Terui. Light types for polynomial time computation in lambda calculus. Information
and Computation, 207(1), 2009.

[13] Patrick Baillot, Erika De Benedetti, and Simona Ronchi Della Rocca. Characterizing polynomial and
exponential complexity classes in elementary lambda-calculus. In Josep Diaz, Ivan Lanese, and Davide
Sangiorgi, editors, Theoretical Computer Science - 8th IFIP TC 1/WG 2.2 International Conference,
TCS 2014, Rome, Italy, September 1-3, 2014. Proceedings, volume 8705 of Lecture Notes in Computer
Science, pages 151–163. Springer, 2014.

[14] Patrick Baillot and Kazushige Terui. Light types for polynomial time computation in lambda-calculus.
CoRR, cs.LO/0402059, 2004.

[15] S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the polytime functions.
Computational complexity, 2(2), 1992.

[16] G. Bonfante, J-Y. Marion, and J-Y. Moyen. Quasi-interpretations a way to control resources. Theor.
Comput. Sci., 412(25):2776–2796, 2011.

[17] P. Coppola and S. Martini. Optimizing optimal reduction: A type inference algorithm for elementary
affine logic. ACM Trans. Comput. Log., 7(2):219–260, 2006.

[18] P. Coppola and S. Ronchi Della Rocca. Principal typing for lambda calculus in elementary affine logic.
Fundam. Inform., 65(1-2):87–112, 2005.

[19] U. Dal Lago. The geometry of linear higher-order recursion. In Logic in Computer Science, 2005.
LICS 2005. Proceedings. 20th Annual IEEE Symposium on. IEEE, 2005.

[20] U. Dal Lago. Context semantics, linear logic, and computational complexity. ACM Transactions on
Computational Logic, 10(4), 2009.

[21] U. Dal Lago and P. Di Giamberardino. Soft session types. In Bas Luttik and Frank Valencia, editors,
Proceedings 18th International Workshop on Expressiveness in Concurrency, EXPRESS 2011, Aachen,
Germany, 5th September 2011., volume 64 of EPTCS, pages 59–73, 2011.

[22] U. Dal Lago and M. Gaboardi. Linear dependent types and relative completeness. In Logic in Computer
Science, 2011. IEEE, 2011.

[23] U. Dal Lago, L. Roversi, and L. Vercelli. Taming modal impredicativity: Superlazy reduction. In
Sergei N. Artëmov and Anil Nerode, editors, Logical Foundations of Computer Science, International
Symposium, LFCS 2009, Deerfield Beach, FL, USA, January 3-6, 2009. Proceedings, volume 5407 of
Lecture Notes in Computer Science, pages 137–151. Springer, 2009.

[24] V. Danos and J.B. Joinet. Linear logic and elementary time. Information and Computation, 183(1),
2003.

[25] V. Danos and L. Regnier. Proof-nets and the Hilbert space. London Mathematical Society Lecture Note
Series, 1995.

[26] M. De Falco. An explicit framework for interaction nets. In Rewriting Techniques and Applications.
Springer, 2009.

194

[27] M. De Falco. Géométrie de l’interaction et réseaux différentiels. These de doctorat, Université Aix-
Marseille, 2, 2009.

[28] A. Dorman and D. Mazza. Linear logic by asymmetric levels. Unpublished note, 2009.

[29] M. Fernández and I. Mackie. Operational equivalence for interaction nets. Theoretical Computer
Science, 297(1), 2003.

[30] M. Fernández, I. Mackie, S. Sato, and M. Walker. Recursive functions with pattern matching in
interaction nets. Electronic Notes in Theoretical Computer Science, 253(4), 2009.

[31] M. Gaboardi, J-Y. Marion, and S. Ronchi Della Rocca. Soft linear logic and polynomial complexity
classes. Electr. Notes Theor. Comput. Sci., 205:67–87, 2008.

[32] M. Gaboardi, J-Y. Marion, and S. Ronchi Della Rocca. An implicit characterization of PSPACE. ACM
Trans. Comput. Log., 13(2):18, 2012.

[33] M. Gaboardi and S. Ronchi Della Rocca. A soft type assignment system for lambda -calculus. In
Jacques Duparc and Thomas A. Henzinger, editors, Computer Science Logic, 21st International Work-
shop, CSL 2007, 16th Annual Conference of the EACSL, Lausanne, Switzerland, September 11-15,
2007, Proceedings, volume 4646 of Lecture Notes in Computer Science, pages 253–267. Springer,
2007.

[34] J-Y. Girard. Light linear logic. In Daniel Leivant, editor, Logical and Computational Complexity.
Selected Papers. Logic and Computational Complexity, International Workshop LCC ’94, Indianapo-
lis, Indiana, USA, 13-16 October 1994, volume 960 of Lecture Notes in Computer Science, pages
145–176. Springer, 1994.

[35] J.Y. Girard. Une extension de l’interpretation de gödel a l’analyse, et son application a l’elimination des
coupures dans l’analyse et la theorie des types. Studies in Logic and the Foundations of Mathematics,
63, 1971.

[36] J.Y. Girard. Linear logic. Theoretical computer science, 50(1), 1987.

[37] J.Y. Girard. Proof-nets: the parallel syntax for proof-theory. Logic and Algebra, 180, 1996.

[38] J.Y. Girard. Light linear logic. Information and Computation, 143(2), 1998.

[39] J.Y. Girard, A. Scedrov, and P.J. Scott. Bounded linear logic: a modular approach to polynomial-time
computability. Theoretical computer science, 97(1), 1992.

[40] G. Gonthier, M. Abadi, and J.J. Lévy. The geometry of optimal lambda reduction. In Proceedings of
the 19th ACM SIGPLAN-SIGACT symposium on Principles of programming languages. ACM, 1992.

[41] G. Gonthier, M. Abadi, and J.J. Lévy. Linear logic without boxes. In Logic in Computer Science,
1992. LICS’92., Proceedings of the Seventh Annual IEEE Symposium on. IEEE, 1992.

[42] D. Hofbauer. Termination proofs by multiset path orderings imply primitive recursive derivation
lengths. Theoretical Computer Science, 105(1):129–140, 1992.

195

[43] M. Hofmann. The strength of non-size increasing computation. In John Launchbury and John C.
Mitchell, editors, Conference Record of POPL 2002: The 29th SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Portland, OR, USA, January 16-18, 2002, pages 260–269.
ACM, 2002.

[44] M. Hofmann. Linear types and non-size-increasing polynomial time computation. Information and
Computation, 183(1), 2003.

[45] Y Lafont. Interaction nets. In Principles of programming languages, 17th ACM SIGPLAN-SIGACT
symposium on. ACM, 1989.

[46] Y. Lafont. Interaction combinators. Information and Computation, 137(1), 1997.

[47] Y. Lafont. Soft linear logic and polynomial time. Theoretical Computer Science, 318(1-2), 2004.

[48] U. Dal Lago, S. Martini, and D. Sangiorgi. Light logics and higher-order processes. In Sibylle B.
Fröschle and Frank D. Valencia, editors, Proceedings 17th International Workshop on Expressiveness
in Concurrency, EXPRESS’10, Paris, France, August 30th, 2010., volume 41 of EPTCS, pages 46–60,
2010.

[49] O. Laurent. A token machine for full geometry of interaction. In TLCA, pages 283–297, 2001.

[50] D. Leivant. Ramified recurrence and computational complexity i: Word recurrence and poly-time.
Feasible Mathematics II, 1994.

[51] S. Lippi. Encoding left reduction in the lambda-calculus with interaction nets. Mathematical Structures
in Computer Science, 12(6), 2002.

[52] I. Mackie. The geometry of interaction machine. In Ron K. Cytron and Peter Lee, editors, POPL.
ACM Press, 1995.

[53] I. Mackie and J.S. Pinto. Encoding linear logic with interaction combinators. Information and Com-
putation, 176(2), 2002.

[54] Antoine Madet. A polynomial time λ-calculus with multithreading and side effects. In Danny De Schr-
eye, Gerda Janssens, and Andy King, editors, Principles and Practice of Declarative Programming,
PPDP’12, Leuven, Belgium - September 19 - 21, 2012, pages 55–66. ACM, 2012.

[55] D. Mazza. Multiport interaction nets and concurrency. In CONCUR 2005–Concurrency Theory.
Springer, 2005.

[56] D. Mazza. Interaction nets: Semantics and concurrent extensions. These de doctorat, Université
Aix-Marseille II/Universita degli Studi Roma Tre, 2006.

[57] D. Mazza. Observational equivalence and full abstraction in the symmetric interaction combinators.
Logical Methods in Computer Science, 5(4:6), 2009.

[58] D. Mazza. Non-uniform polytime computation in the infinitary affine lambda-calculus. In Javier
Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and
Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014,
Proceedings, Part II, volume 8573 of Lecture Notes in Computer Science, pages 305–317. Springer,
2014.

196

[59] D. Nowak and Y. Zhang. Formal security proofs with minimal fuss: Implicit computational complexity
at work. Information and Computation, 2014.

[60] M. Perrinel. On paths-based criteria for polynomial time complexity in proof-nets. In U. Dal Lago
and Peña R., editors, FOPARA, volume 8552 of Lecture Notes in Computer Science, pages 127–142.
Springer, 2013.

[61] M. Perrinel. On context semantics and interaction nets. In T.A. Henzinger and D. Miller, editors,
CSL-LICS, pages 73:1–73:10. ACM, 2014.

[62] J. Reynolds. Towards a theory of type structure. In Programming Symposium. Springer, 1974.

[63] L. Roversi and L. Vercelli. Some complexity and expressiveness results on multimodal and stratified
proof nets. In Types for Proofs and Programs. Springer, 2009.

[64] L. Roversi and L. Vercelli. A local criterion for polynomial-time stratified computations. In Founda-
tional and Practical Aspects of Resource Analysis. Springer, 2010.

[65] Y. Zhang. The computational SLR: A logic for reasoning about computational indistinguishability.
In Typed lambda calculi and applications: 9th international conference, TLCA 2009, Brası́lia, Brazil,
July 1-3, 2009: proceedings, volume 5608. Springer-Verlag New York Inc, 2009.

197

198

Appendix A

Notations

199

A.1 Arrows

• : local relation on contexts. It is defined in page 20 and Figure 2.8.

• S with S a subset of BG is a restriction of which only enters boxes of S . It is defined in
Definition 49 in page 61. If S is a subset of BoxS igG, the notion is defined similarly in Definition 124
in page 124.

• ↪→: relation on contexts which makes a “jump” between an auxiliary door and a principal door of a
box. It is defined in page 20 and Figure 2.8.

• 7→: relation on contexts, it is the union of and ↪→. It is defined in page 20.

• 7→S with S a subset of BG is a restriction of 7→ which only makes ↪→ steps on boxes of S . It is
defined in Definition 49 in page 61. If S is a subset of BoxS igG, the notion is defined similarly in
Definition 124 in page 124.

• →β is the usual β reduction defined on λ-terms in page 41.

• �λ is a stratification relation on λ-calculus defined in Definition 28 in page 41.

• � is a relation on boxes defined in Definition 30 in page 43. Intuitively B � C means that there
exists a residue B′ of B which is inside a residue C′ of C. Formally, B � C iff there exists a path of
the shape ((σ(B), P), [!t]) 7→∗ ((e,Q@R),T) with e ∈ C.

• ˙ −> −> −> is a relation on potential boxes defined in Definition 48. We write (B, P) ˙ −> −> −>(C,Q) if ((σ(B), P), [!t]) ∗

((σ(C),Q),U).

• ̈−> is a relation on BoxS igG defined in Definition 138 in page 138. We write (B, P, t) ˙ −> −> −>(C,Q, u)
if ((σ(B), P), [!t]) ∗ ((σ(C),Q),U.?u).

• →?N is a reduction relation on proof-nets, moving ?N nodes around the proof-net to fix the mismatch
between cut-elimination and β-reduction. It is defined in Figure 3.6 in page 48.

• . . . is a relation on boxes whose acyclicity is a dependence control condition. B . . . C if copies t and
u of (B, P) lead to ((σi(C),), [!]) and ((σ j(C),), [!]) with i , j. It is defined in Definition 80 in
page 76.

• / / / is a relation on boxes whose acyclicity is a nesting condition. B

/ / /

C if there is a strict simplification
v of a copy of (B, P) such that ((σ(B), P), [!v]) 7→∗ ((σ(C),), [!e]). It is defined in Definition 83 in
page 78.

• / is a relation on boxes whose acyclicity is a nesting condition. Bs / (C) iff there exist P,Q such
that (B, P) ./ (C,Q). It is defined in Definition 112 in page 102.

• ./ is a relation on potential boxes. (B, P)s / (()C,Q) if there is a strict simplification v of two distinct
copies of (B, P) such that ((σ(B), P), [!v]) 7→∗ ((σ(C),Q), [!w]) with w a standard signature. It is
defined in Definition 112 in page 102.

• x.. is an order on BoxS igG defined (in Definition 92 in page 92) by: (B, P, t) x.. (C,Q, u) if ((σ(B), P), [!t]) 7→∗
((σ(C),Q), [!u]).

200

• "is a strict order on BoxS igG defined (in Definition 92 in page 92) as a shortcut for ⊆ x.. . The
definition is extended to contexts in Definition 94 in page 94.

• #is a strict order on BoxS igG defined (in Definition 92 in page 92) as a shortcut for ⊆x.. .

• � is the second component of a weak stratification (which are defined in Definition 108 in page 97).
It is a relation on BoxS igG representing additive dependences.

• ¨ −> −> −>: we write (B, P, t) ¨ −> −> −>(C,Q, u) if there exists a path of the shape ((σ(B), P), [!t]) ∗ ((σ(C),Q), [!v]@U.?u).
It is defined in Definition 120 in page 110.

• ̈−> is a relation on BoxS igG, which is a refinement of ¨ −> −> −>. It is defined (in Definition 138 in
page 119) by (B, P, t) ̈−>(C,Q, u) iff ((σ(B), P), [!t]) ∗ ((σ(C),Q), [!v]@U.?u) ∗ ((,), [!v′]@).

• ̇−> is the projection of ̈−> on Pot(BG). It is defined (in Definition 138 in page 119).

• →m is the rewriting relation on interaction nets which deletes the merging ports. It is defined in
page 170.

• �m is the equivalence relation obtained from→m, viewing the nets up to merging of merging ports.
It is defined in page 170.

• →, when dealing with interaction nets, is the relation on nets generated by a library. It is defined in
Definition 226 in page 171.

• N⇓p
q , with p and q two free ports of N, mean that there is an observable path from p to q. It is defined

in Definition 237 in page 180.

201

A.2 Orders

• v: cf. the definition of “simplification”.

• @: t @ t′ iff t v t′ and t , t′. It is defined in page 23.

• J: cf. the definition of “truncation”.

• C: Let t, u be signatures, we write t C u if the rightmost difference between t and u is a branch where
t is shorter than u. It is defined in Definition 55 in page 64.

• E: Let t, u be signatures, we write t E u if t C u or t = u. It is defined in Definition 55 in page 64.

• ≤lex, if A and B are two ordered sets, ≤lex is the order on A × B defined by (a, b) ≤lex (a′, b′) iff either
a < a′ or (a = a′ and b ≤ b′). It is defined in page 79.

• ⊆: besides being the symbol for the usual inclusion of sets, we use the symbol to represent an order
on BoxS igG defined (in Definition 92 page 85) by (B, P, t) ⊆ (C,Q, u) if: either ((B, P) = (C,Q) and
t v u) or (B ⊂ C and there exists v v u such that P = Q.v@). The definition is extended to contexts
in Definition 94 in page 94.

• <, is defined on the weights WS as the lexicographic order (it is defined in Definition 150 in page 124).

• ≤, is also defined as a subtyping order on the formulae of S DNLL in page 130.

• <∀ is an order on canonical ∀ and ∃ nodes, defined in Definition 156 in page 132. (l, P) <∀ (m,Q)
means that there is a dependence sequence from (l, P) to (m,Q).

• M ≥ x, with M a multiset, is defined (in page 142) as “for every y such that M(y) > 0, we have y ≥ x”.

• M > y, with M a multiset, is defined (in page 142) as “for every y such that M(y) > 0, we have y > x”.

• M = y, with M a multiset, is defined (in page 142) as “M ≥ x and M(x) ≤ 1”.

202

A.3 Letters

• BELL is a type encoding of binary lists in ELL. It is defined in page 46.

• ContG is the set of contexts of G. It is defined in page 20.

• Bx, with x an occurrence of variable of the λ-term t, is the deepest box containing ex in t∗. It is defined
in page 48.

• dx, with x an occurrence of variable of the λ-term t, is the conclusion of the ?D node associated to x
in t∗. It is defined in page 48.

• DG is the maximum number of doors of boxes of G. It is defined in page 16.

• DG(B) is the set of doors of B. It is defined in page 16.

• dA, with A a formula of the shape !s′,d′,n′A′ is the label d′. It is defined in page 130.

• d() is the fourth component of a weak stratification (which are defined in Definition 108 in page 97).
It is a mapping from BG to N, representing the stratum of a box for dependence control.

• d(Γ), with Γ a context in Con!, is the multiset of d indices of Γ. It is defined in page 142.

• dsw(B), with B a box, is the d index of β(σ(B)) in S wLLdc. It is defined similarly on contexts, using
βββ(). They are both defined in Definition 189 in page 189.

• eu, with u a subterm of the λ-term t, is the edge corresponding to u in u∗. It is defined in page 48.

• eS
i, j, with S a coherent set and i, j ∈ N, is a part of the weight WS . It is the number of leaves (B, P),

(C,Q) at respective depth i and j such that ((σ(B), P), [!]) 7→∗ ((σ(C),Q), [!e]). It is defined in
Definition 150 in page 124.

• E◦ is a set of edges used to parameterize S wLLlast. It is first mentioned in page 152.

• E!◦ is a set of edges used to parameterize. It is first mentioned in page 152.

• E� is a set of edges used to parameterize S wLLdc and S wLLstrat. It is first mentioned in page 152.

• FLL: designs the formulae of linear logic. It is defined in page 14.

• Fs, with s ∈ N represents the set of formulae of S DNLL whose s-labels are ≥ s. It is defined in
Definition 153 in page 130.

• FL4 is the set of formulae of L4. It is defined in page 139.

• F λ
s is the set of formulae for the intuitionnistic presentation of L4. It is defined in Definition 175 in

page 142.

• GL4 is a set of formulae, which are formulae of L4 without their level index. It is defined in page 139.

• I j is the name of the edge ψ(i j) of the net of an interaction rule. It is defined in Definition 225 in
page 171.

203

• O j is the name of the edge ψ(o j) of the net of an interaction rule. It is defined in Definition 225 in
page 171.

• L3 is a subsystem of linear logic characterizing Elem. It is defined in [8].

• L4 is a subsystem of linear logic characterizing Poly. It is defined in [8] and described in Sec-
tion 5.1.4.1.

• M is used, in Section 3.5.1.3, for max(B,P)∈Pot(S) |Cop(B, P)| (with S the first component of a weak
stratification). It is defined in page 3.5.1.3.

• M is used, in Section 3.5.1.3, for
(
|EG | · M∂G

)|EG |·M∂G
. It is defined in page 3.5.1.3.

• NX
G refers to the nodes of G whose label is X (page 16). The set of nodes of G is written NG.

• NELL is a type encoding of natural numbers in ELL. It is defined in page 46.

• nA, with A a formula of the shape !s′,d′,n′A′ is the label n′. It is defined in page 130.

• n(Γ), with Γ a context in Con!, is the multiset of n indices of Γ. It is defined in page 142.

• nsw(B), with B a box, is the n index of β(σ(B)) in S wLLnest. It is defined similarly on contexts, using
βββ(). They are both defined in Definition 195 in page 195.

• PN , with N a net, is the set of ports of N. It is defined in Definition 223 in page 169.

• PN
c , with N a net, is the set of ports of N which are attached to a cell. It is defined in Definition 223 in

page 169.

• PN
f , with N a net, is the set of free ports of N (corresponding to pending edges of proof-nets). It is

defined in Definition 223 in page 169.

• PN
m, with N a net, is the set of merging ports of N. It is defined in Definition 223 in page 169.

• pi(c), with c a cell of a net, is a port attached to c. If i = 0, pi(c) is the principal port of c. If i > 0,
pi(c) is the i-th auxiliary port of c. It is defined in page 170.

• Rs,t is the net obtained by connecting the principal port of a cell labelled by s with the principal port
of a cell labelled by t. It is defined in Definition 225 in page 171.

• S n is a set representing the boxes whose stratum is at most n. In Section 3.2, it is defined as a set of
boxes (Definition 71 in page 68) by S n = {B ∈ BG | s −> −> −>(B) ≤ n}. In Section 4, it is defined as a subset
of boxes (Definition 139 in page 119) by S n = {B ∈ BG | s −> −> −>(B) ≤ n}. It is defined in Definition 71 in
page 68.

• s>() cf. the definition of >-stratum.

• sA, with A a formula of the shape !s′,d′,n′A′ is the label s′. It is defined in page 130.

• smin
A , with A a formula, refers to the minimum s-label in A. It is defined in page 130.

• s() is the third component of a weak stratification (which are defined in Definition 108 in page 97).
It is a mapping from BG to N, representing the stratum of a box for stratification.

204

• s(Γ), with Γ a context in Con!, is the multiset of s indices of Γ. It is defined in page 142.

• S� is a subset of BG used to parameterize S wLLdc and S wLLstrat. It represents the boxes C such that
there exists a pair (, ,)� (C, ,). It is first mentioned in page 152.

• ssw(B), with B a box, is the s index of β(σ(B)) in S wLLstrat. It is defined similarly on contexts, using
βββ(). They are both defined in Definition 207 in page 207.

• Ts,n is a set of boxes, defined in page 79 for the definition of Lemma 85. The boxes of Ts,n are the
boxes B such that (s −> −> −>(B), s / / / (B)) ≤lex (s, n).

• VG: for any proof-net G, we define VG =
∑

n∈NG |Can(n)|. It is defined in Definition 17 (page 32).

• WG: for any proof-net G, we define WG = 2 ·∑e∈EG |Can(e)|. It is defined in Definition 17 (page 32).

• WS , with S a coherent set, is a tuple of natural numbers. The elements are defined by eS
i, j. The main

idea is that, if ̈−> is acyclic, there exists an extension T of S , such that WS > WT . It is defined in
Definition 150 in page 124.

205

A.4 Greek letters

• βG(e), if e is an edge of a LL proof-net, then βG(e) refers to the formula labelling e (Defined in
Definition 1, page 14).

• β(A, e, P,T,T ′) is the formula A, whose variables are substituted using the context ((e, P),T@T ′) It is
defined in Definition 162 in page 135.

• βββ((e, P), [!t]@T) is the formula corresponding to the context ((e, P), [!t]@T). It is defined in Defini-
tion 165 in page 136.

• λ-calculus, the terms Λ of λ-calculus are defined (in page 41) by Λ = x | λx.Λ | (Λ)Λ.

• πG→H(). If G →cut H then πG→H() is a mapping, from the contexts of H to the contexts of G.
Intuitively πG→H(C′) = C means that C′ is the residue of C. It is defined in Definition 12 in page 26.

• Π(): if there is a reduction N → N′ in an interaction net library, Π() is a projection from the
potentials of N to the potentials of N′. It is defined in Definition 228 in page 176.

• φG(l, P), when (l, P) is a potential ∀ node, is the tuple (A, (m,Q)) with (m,Q) the potential ∃ node
which will be cut with (l, P) and A the formula associated with l. If such a potential node does not
exist, φG(l, P) is undefined. It is defined in page 132.

• φlim
G is the mapping from canonical ∀ nodes to formulae defined by composing φG. Thus, φlim

G (l, P) =

A means that the variable associated to l will be replaced by A along reduction. It is defined in
Definition 158 in page 134. It is extended to ∃ nodes in Definition 160 in page 134.

• ρG(e), if e is an edge, ρG(e) is the deepest box of G containing e. It is defined in page 16.

• ρG→H(). If G →?N H, then ρG→H() is a mapping from the contexts of H to the contexts of G.
Intuitively πG→H(C′) = C means that C′ is the residue of C. It is defined in Lemma 38 in page 48.

• σ(B): conclusion of the principal door of B, it is defined in page 16.

• σi(B): conclusion of the i-th auxiliary door of B, it is defined in page 16.

• θ(e, P), with (e, P) a canonical edge, represents the substitution on the variables of β(e) obtained
by replacing every variable X by the formula replacing X along cut-elimination. It is defined in
Definition 159 in page 134.

206

A.5 Words

• auxiliary door: node labelled by ?P, it is defined in page 16.

• auxiliary edge: conclusion of an auxiliary door, it is defined in page 16.

• bouncing: a library is said bouncing if there is an interaction rule (R, ψ) and two free ports on the
same side of R which can communicate. It is defined in page 182.

• box: set of nodes of proof-nets represented by rectangles. It is defined in page 16.

• box-bounded: a subsystem S of linear logic is box-bounded if the number of boxes in the proof-net
representing the binary list l in S , does not depend on l. It is defined in Definition 37 in page 47.

• BoxS igG: set of tuples (B, P, t) with (B, P) a potential box and t a signature. It is defined in page 85.

• Can(x): cf the definition of canonical potential.

• CanN : if N is a net, then CanN represents the set of cells appearing during reduction. It is defined in
Definition 233 in page 178.

• CanCopG: set of tuples (B, P, t) with (B, P) a canonical box and t ∈ Cop(B, P). It is defined in page 85.

• Can→(x): cf the definition of→-canonical potentials for x.

• canonical box: a tuple (B, P) ∈ Can(B) with B a box. It is defined in page 26.

• canonical context: Intuitively, a context ((e, P),T) is canonical if (e, P) is a canonical edge and every
signature of T corresponds to a copy. It is defined in Definition 22 in page 35.

• canonical edge: a tuple (e, P) ∈ Can(e) with e an edge. It is defined in page 26.

• canonical node: a tuple (n, P) ∈ Can(n) with n a node. It is defined in page 26.

• canonical potential: a canonical potential for x represents a residue of x. It is a pair (x, P) with P a
potential composed of copies. It is defined in Definition 11 in page 26.

• →-canonical potential: a→-canonical potential for x (with→ a relation on contexts) is a pair (x, P)
with P a potential composed of→-copies. It is defined in Definition 51 in page 62.

• characterize: a subsystem S of linear logic characterizes C if it is sound and complete for C. It is
defined in Definition 36 in page 47.

• n-coherent: for n ∈ N, a n-coherent set is a set of canonical boxes which is somehow “well-behaved”
with respect to S n. It is defined in Definition 149 in page 124.

• complete: a subsystem S of linear logic is complete for C if every function computable in time c ∈ C
is representable in S . It is defined in Definition 36 in page 47.

• Conλ is the set of “contexts”, with the meaning of a set of variables typed by formulae. It is defined
in page 142.

• Con! is the subset of Conλ where every formula is exponential. It is defined in page 142.

207

• Con§ is the subset of Con§ where every formula is linear. It is defined in page 142.

• concln: cf. the definition of “conclusion”.

• conclusion: the conclusions of the node n refers to the outgoing edges of n. It is defined in page 16.
If n has only one conclusion, concln refers to the conclusion of n.

• context: A context of G is a tuple ((e, P),T) with (e, P) a potential edge of G and T a trace. The set of
contexts is written ContG. It is defined in page 20.

• Cop(B, P): cf. the definition of “copy”.

• Cop→(B, P): cf. the definition of “→-copy”.

• copy: a copy of a potential box (B, P) corresponds to residues of (B, P). It is a signature t such that for
every simplification u of t, ((σ(B), P), [!t]) 7→∗ (,), [!e]@). It is defined in Definition 10 in page 26.
More intuitions can be found in Section 2.2.1.

• →-copy: for any potential box (B, P), the set Cop→(B, P) of →-copies of (B, P) is defined similarly
to the set Cop(B, P) of copies of (B, P), considering →-paths instead of 7→-paths. It is defined in
Definition 50 in page 61.

• copy contexts: a context C = ((e, P), [!t]@T) is a copy context if t is entirely used by 7→-paths
beginning by C. It is defined in Definition 10 in page 26.

• →-copy context: →-copy contexts are defined similarly to copy-context, considering→-paths instead
of 7→-paths. It is defined in Definition 50 in page 61.

• crossing: a library is said crossing if it is not bouncing. It is defined in page 182.

• A ∀/∃ dependence sequence is a sequence of canonical ∀ and ∃ nodes such that the ∀ nodes will
be cut with the following ∃ node, and the formulae associated with the ∃ nodes have a free variable
corresponding to the next ∀ node. It is defined in Definition 156 in page 132.

• cut-elimination is a relation on proof-nets defined in Figures 2.4 (page 15) and 2.5 (page 17).

• definitely enter: A path C 7→∗ D is said to definitely enter (B, P, t) ∈ BoxS igG if there exist T.?t ∈ Tra
such that C 7→+ ((σ(B), P),T.?t) 7→∗ D and ((σ(B), P),T.?t) 7→∗ D stays in (B, P, t). Those notions
are defined in Definition 102 in page 92.

• dependence: An additive (resp. affine, multiplicative) dependence of Q on R corresponds to bounds
of the shape Q ≤ R + a (resp. Q ≤ b · R + a and Q ≤ b · Rc + a). It is defined in page 54.

• eigenvariable: the eigenvariables of a proof-net are the variables which are replaced in a ∀ link. It is
defined in page 16.

• Elem is the set of exponential towers. It is defined in page 47.

• Elementary stratification property: It is a property, defined in Property 47 in page 58, satisfied by �̇
and ˙ −> −> −>. Intuitively, if R satisfies this property, the acyclicity of R enforces an elementary bound.

• EncB(l), with l a binary list, is an encoding of l which can be typed by BELL. It is defined in Figure 3.4
in page 46.

208

• EncN (n), with n ∈ N, is an encoding of n which can be typed by NELL. It is defined in Figure 3.4 in
page 46.

• exponential signature: objects used to represent sequences of choices during a path. They are defined
by S ig = e | l(S ig) | r(S ig) | p(S ig) | n(S ig, S ig). It is defined in page 19.

• gluing: If φ is a mapping from the free ports of M to the free ports of N, the gluing of M and N by φ is
the net M1φN obtained by merging the ports of M with their corresponding ports by φ. It is defined
in Definition 224 in page 171.

• head: the head of the edge (l,m) refers to m. It is defined in page 16.

• something-hole: If “something” is a set defined by induction, something-holes are subterms where
subterms are replaced by ◦. It is defined in page 41.

• an interaction rule for (s, t) is a tuple (R, ψ) with R a net with the same free ports as Rs,t (the corre-
spondence is made explicit by ψ). It is defined in Definition 225 in page 171.

• leaves: A path of the shape ((σ(B), P),T.?t) 7→k C, is said to leave (B, P, t) if there exist j < k,
e1, · · · , e j ∈ ~EG and T ′ ∈ Tra such that ((σ(B), P),T.?t) 7→ j ((σ(B), P),T ′.!t). It is defined in Defini-
tion 102 in page 92.

• library: a library of interaction nets is a partial mapping from pairs (s1, s2) of symbols to an interaction
rule for (s1, s2). It is defined in Definition 226 in page 171.

• lift: We say that x is a lift of x if x′ is a residue of x. It is defined in page 41.

• LL, stands for Linear Logic. In fact, it is an abuse of language because the system considered contains
neither additives nor constant [36]. The acronym is defined in page 4, the system is defined by
Figure 2.1 (page 14) and Definition 1 (page 14).

• maximal canonical edge: a canonical edge (e, P) is said maximal if there is no canonical edge (e,Q)
with Q I P. It is defined in Definition 26, in page 37.

• MS is a framework of subsystems of LL defined in [64] and briefly described in Section 5.1.4.2.

• MS max is a maximal system of MS characterizing Poly. It is defined in Figure 5.6 in page 141.

• →-maximal context: A context ((e, P), [!t]@T) is said→-maximal if the→-paths beginning by con-
texts of the shape ((e, P), [!u]@T) are not longer than the→-path beginning by ((e, P), [!t]@T). It is
defined in Definition 25 in page 37.

• maximal: if R is an order, then a is maximal for R if there is no b , a such that a(R)b. We establish
this convention in page 40.

• maximal copy: for any potential box (B, P), a copy t of (B, P) is said maximal if there is no u ∈
Cop(B, P) with u I t. It is defined in Definition 26, in page 37.

• merging port: special kind of ports in interaction ports, corresponding to cut and ax in proof-nets. It
is first described in page 169 and formally defined in the definition of nets (Definition 223).

209

• minimal: if R is an order, then a is minimal for R if there is no b , a such that b(R)a. We establish
this convention in page 40.

• mix(t, u), with t, u ∈ S ig is defined (in Definition 125 in page 115) as the signatures obtained by
considering the longest branches of t and u. The mapping is extended to potentials and traces by
applying mix(,) on corresponding signatures.

• mixable: a subset S of BoxS igG is said mixable if it is stable by mix(,): if (B, P, t) and (B,Q, u) are
in S , then (B,mix(P,Q),mix(t, u)) is in S . It is defined in Definition 129 in page 115.

• a net, is the notion of program in interaction nets. It is defined as a tuple (PN ,CN , lN , σN
w , σ

N
m, σ

N
c)

with PN a set of ports, CN a set of cells, lN affecting a symbol to each cell, σN
w an involution on ports

representing the wires, σN
m is an involution on ports representing merging ports, and σN

c binding the
ports to cells. It is defined in Definition 223 in page 169.

• →-normal context: A context ((e, P), [!t]@T) is normal if there is no path of the shape ((e, P), [!t])→∗
((f , P), [!u]) with f the conclusion of a ?C or ?N node. It is defined in Definition 24 in page 24.

• observable path: if N is a net, an observable path is a sequence of ports of N. Intuitively, the 7→
paths correspond to the observable paths which can not be eliminated by reduction. It is defined in
Definition 236 in page 180.

• pending edge: In a proof-net, a pending edge is an edge which has no conclusion.

• Poly: the set of polynomials, it is defined in page 54.

• Pot: cf. the definition of “potential”.

• Pot(x): if x is an element of a proof-net, then Pot(x) is a pair (x, P) with P a potential and |P| = ∂(x).
It is defined in page 20.

• potential: list of signatures. The set of potentials is written Pot. It is defined in page 20.

• potential box: an element of Pot(B) with B a box. It is defined in page 20.

• potential edge: an element of Pot(e) with e an edge. It is defined in page 20.

• potential node: an element of Pot(n) with n a node. It is defined in page 20.

• prem : cf. the definition of “premise”.

• premise: the premises of the node n refers to the incoming edges of l. It is defined in page 16. If n has
only one premise, premn refers to the premise of n.

• principal door: node labelled by !P, it is defined in page 16.

• principal edge: conclusion of a principal door, it is defined in page 16.

• quasi-standard: We first define the notion on signatures. A signature t is said quasi-standard if for
every subtree n(t1, t2) of t, the exponential signature t2 is standard (definition 4, page 22). Then, we
extend the definition on contexts. A context is said quasi-standard if every signature of the context is
standard except (possibly) the signature of the leftmost trace element (Definition 6, page 23).

210

• →-reducible context: A context ((e, P), [!t]@T) is said reducible if there is a path of the shape
((e, P), [!t]@T) →∗ ((f , P), [!u]) with f the conclusion of a ?C or ?N node. It is defined in Defi-
nition 24 in page 37.

• Repr(): for (B, P, t) ∈ CanCopG, Repr(B, P, t) is a set of simplifications u of t containing enough
information to deduce t. It is defined in Definition 113 in page 103.

• residue: Let us suppose that there is a reduction from a term X to a term Y , and x is a subterm of X.
The residues of x are the subterms y of Y which “come” from x. This notion is used for the proof-nets
of linear logic (starting by an intuitive definition in page 18). If G →∗cut H, then πG→H() captures
the notion of residues: B′ is a residue of B iff πG→H(((σ(B′), P′), [!t′])) = ((σ(B), P), [!t]) for some
P, P′ ∈ Pot and t, t′ ∈ S ig. Finally, the notion of residues is used on λ-calculus in page 41.

• Restr→((e, P), [!t]@T) is a set of signatures. Precisely they are the truncations u of t such that
Restr→((e, P), [!u]@T) is a→-copy context.

• →-copy restriction: Let t ∈ S ig, the→-copy restriction of t for (B, P) is the maximum (for E) element
of Restr→((σ(B), P), [!t]).

• S DNLL is a subsystem of linear logic characterizing Poly and defined in Figure 5.1 in page 131.

• S DNLLλ is a type system for λ-calculus characterizing Poly and defined in Figure 5.7 in page 142.

• S ig: cf. the definition of “signature”.

• simplification: We say that t′ is a simplification of t (written t v t′) if we can transform t into t′ by
transforming some of the subtrees n(t1, t2) of t into p(t2). It is defined in page 23.

• smaller: if R is an order and a(R)b, then we say that a is smaller than b. We establish this convention
in page 40.

• standard: We first define the notion on signatures. A signature t is said standard if it does not contain
the constructor p() (Definition 4, page 22). Then we extend the definition on contexts. A context is
said standard if every signature of the context is standard (Definition 6, page 23).

• stays: A path of the shape ((σ(B), P),T.?t) 7→k C, is said to stay in (B, P, t) if it does not leave (B, P, t).

• >-stratum, if > is a relation on S and e ∈ S then the >-stratum refers to the (possibly infinite) maxi-
mum length s>(e) of > sequences starting from e. It is defined in page 40.

• subsystem: A subsystem S of Linear Logic is a tuple (FS ,ΠS ,GS , BS , Enc ()) with FS representing
the formulae of S , ΠS projecting those formulae on the formulae of LL, GS the set of proof-nets of S ,
BS represents the formulae encoding of binary lists, and EncA(l) represents the encoding of the binary
list l in A. It is defined in Definition 35 in page 35.

• S ucc refers to an encoding of the successor function n 7→ n+1 in proof-nets. It is defined in Figure 3.4c
in page 46.

• sound: a subsystem S of linear logic is sound for C if the proof-nets of S have a complexity c, with c
a function of C. It is defined in Definition 36 in page 47.

211

• S wLLdc is a subsystem of linear logic, defined in Definition 188 in page 154 and used to define the
part of S wLL controlling dependence.

• S wLLnest is a subsystem of linear logic, defined in Definition 194 in page 156 and used to define the
part of S wLL enforcing nesting.

• S wLLlast is a subsystem of linear logic, defined in Definition 200 in page 158 and used to ensure that
some contexts are not used in S wLL.

• S wLLstrat is a subsystem of linear logic, defined in Definition 205 in page 162 and used to ensure the
existence of a weak stratification in S wLL.

• S wLL is a subsystem of linear logic characterizing Poly. It is defined in Definition 211 in page 163.

• A symbol set is a tuple S = (S, α) with S a countable set of symbols and α : S 7→ N an arity function.
It is defined in Definition 222 in page 169.

• tail: the tail of the edge (l,m) refers to l. It is defined in page 16.

• Tra: cf. the definition of “trace”.

• trace: A trace is a non-empty list of trace elements. The set of traces is written Tra. It is defined in
page 20.

• trace element: A trace element is one of the following: `l, `r, ⊗l, ⊗r, ∀, ∃, !t and ?t (with t a
signature). It is defined in page 20.

• truncation: Let t, u ∈ S ig, we say that t is a truncation of u (written t J u), if t can be obtained by u
by replacing some subterms by S ig. It is defined in Definition 54 in page 63. The order is extended
to potential in Definition 62 in page 65.

• used context: A context C is said to be used if there exists a path D 7→∗ C crossing a ?N or ?C node,
using the leftmost trace element. It is defined in Definition 105, in page 93.

• weak stratification: A weak stratification is a tuple (S ,�, s(), d()) with S a subset of BG, � an
acyclic relation on BoxS igG, and s() and d() mappings from BG to N, satisfying the conditions of
Definition 108 (page 97).

212

A.6 Exponents

• ()⊥ is used to denote the “dual” of an object. It is first defined on variables in the definition of FLL
(page 14). We extend it on formulae (page 14), trace element and traces (page 20).

• t∗, with t a λ-term is a proof-net corresponding to t (specifically the girard Encoding of t). It is defined
in Figure 3.5 in page 47.

• ((e, P), [!t]@T)/→ is the maximum element (for E) of Restr→((e, P), [!t]@T).

• (e, P)→ is the maximum→-canonical potential (e, P′) such that P′ is a truncation of P. It is defined in
Definition 61 in page 65.

• ((e, P),T)→ is the maximum→-canonical context ((e, P′),T ′) such that P′ is a truncation of P and T ′

is a truncation of T . It is defined in Definition 66 in page 66.

• In several definition of exponents, a natural number n can be used instead of the relation 7→S n . For
instance, if C is a context, Cn stands for C 7→S n . Let us recall that the definition of 7→S n is not the same
in Section 4 and Section 3.2. Thus this shortcut is defined both in Definition 71 in page 68, and in
page 119.

• A|T , with A a formula and T a list of trace elements, is the formula obtained by pruning the syntactic
tree of A using T . It is defined in Definition 155 in page 130.

• Γ∅, with Γ a context in Con!, is the context in Con§ obtained by “linearizing” every formula. It is
defined in page 142.

• Γs,d,n, with Γ a context in Con!, is the context in Con! obtained by translating the labels by, respec-
tively, s, d and n. It is defined in page 142.

213

A.7 Others

• e, if e is a directed edge (l,m) then e refers to the inverted edge: (m, l). It is defined in page 16.

• ∂(x), if x is an element of a proof-net, ∂(x) refers to the number of boxes containing x. It is defined in
page 16.

• l1@l2 is equal to the concatenation of the lists l1 and l2. It is defined in page 19.

• l.x, with l a list, is the list obtained by adding the element x on the right of l. It is defined in page 19.

• |[a1; · · · ; ak]| is equal to k, the number of elements of the list. It is defined in page 19.

• |[a1; · · · ; ak]|X is the number of indices i such that ai is in X. It is defined in page 19.

• |T |!,?, with T a trace, refers to the number of ! and ? trace elements in T . It is defined in Definition 33
in page 45.

• | → | with → a relation on a set E refers to the maximum length of a → sequence. It is defined in
page 40.

• |t|, with t a λ-term refers to the size of t. It is defined in page 41.

• ‖H‖, with H a hole-formula, is the number of exponential connectives above ◦ in H. It is defined in
page 139.

• ≈ is an (observational) equivalence relation on nets, defined (in Definition 238 in page 180) by N1 ≈
N2 iff: in every context N, the ports connected by observable paths are the same in N11φN and
N21φN.

• ' is an (observational) equivalence relation on nets, defined (in Definition 239 in page 181) by N1 '
N2 iff: in every context N, there exists an observable paths in N11φN iff there exists one in N21φN.

214

