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A toi, lecteur aventureux en quéte de
savoir, qui peut-étre un jour tombera sur ces
pages jaunies par le temps.

Puisses-tu y trouver quelque réconfort !

‘Palaeohistology now stands as a powerful
tool to reconstruct fossil vertebrates as living
organisms, and accordingly, it is becoming a
more and more popular approach for the
more palaeobiologically-oriented students of
vertebrate evolution.’

Armand de Ricqlés

‘It is paradoxical, yet true, to say, that the
more we know, the more ignorant we
become in the absolute sense, for it is only
through enlightenment that we become
conscious of our limitations. Precisely one of
the most gratifying results of intellectual
evolution is the continuous opening up of
new and greater prospects.’

Nikola Tesla
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Introduction

Les archosaures

Les archosaures sont un groupe de vertébrés comprenant les oiseaux et les
crocodiliens, ainsi que les groupes fossiles qui leur sont plus prochement apparentés qu’ils ne
le sont de n’importe quel autre groupe de vertébrés. Ces groupes fossiles incluent, entre
autres, les ptérosaures et les dinosaures non aviens. Le terme « archosaure » fut a I’origine
défini par Cope (1869) dans un sens beaucoup moins restrictif que celui qui lui est attribué de
nos jours — il incluait notamment des organismes aujourd’hui rattachés aux lépidosauriens ou
aux synapsides. Durant la seconde moitié du XXe siécle, le développement de la méthode
cladistique permit de clarifier les relations de parenté entre tous les organismes jusqu’alors
regroupés sous I’appellation « reptiles », et le groupe des archosaures fut redéfini en fonction
de plusieurs caractéres dérivés, tels la présence d’une fenétre antéorbitaire ou le quatrieme
trochanter (Benton, 2004). Le groupe fut méme régulierement cité comme un exemple
d’apport significatif de la cladistique a la paléontologie (Hennig, 1975), et le crown group des
archosaures acquit sa définition actuelle en 1986. Le stem group incluant les archosaures et
leurs groupes-fréres plus proches d’eux que des lépidosauriens est désigné sous le terme

« archosauromorphes » (Figure 1).

Avant méme que la définition formelle des archosaures ne soit établie, un débat
existait déja sur le thermométabolisme des « reptiles » et sur leur évolution. Aprés que
I’origine dinosaurienne des oiseaux actuels fut mise en évidence par Ostrom (1969, 1974)
grace aux descriptions d’Archaeopteryx et de Deinonychus, plusieurs interrogations furent

soulevées par de nombreux paléontologues concernant I’origine du thermométabolisme des
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Figure 1. Arbre phylogénétique des archosauromorphes mettant en évidence les principaux groupes actuels et
fossiles ; les crocodiliens actuels appartiennent au clade des Crocodylomorpha, les oiseaux actuels & celui des
Theropoda (modifié d’aprés Nesbitt, 2011).

oiseaux. L’endothermie correspond a la capacité d’un organisme a produire sa propre chaleur
corporelle au moyen d’une activité métabolique spécifiqguement dédiée a cette tache (Hulbert
& Else, 2000). On considérait traditionnellement que deux groupes avaient acquis cette
capacité au cours de I’évolution des vertébrés : les mammiféres et les oiseaux. Ces derniers

ayant été rattachés aux dinosaures, I’endothermie pouvait donc avoir été acquise a un niveau



plus inclusif de I’arbre et étre une synapomorphie d’un groupe beaucoup plus large que le
clade Aves. Au cours des années 1970, de nombreux articles furent consacrés a la potentielle
endothermie des dinosaures — étonnamment, sans jamais aborder la question du
thermomeétabolisme des autres archosaures. Les partisans d’une apparition de I’endothermie
au nceud Dinosauria, tels Bakker (1972, 1974), se basaient principalement sur des assertions
liées a des caractéristiques globales des organismes considérés, comme la taille du cerveau ou
la posture droite. Selon cette hypothése, des animaux tels que les dinosaures, dotés d’un
cerveau de taille élevée comparé a celui d’un Iépidosaurien, ainsi que de membres
parasagittaux comme ceux des mammiféres et des oiseaux, ne pouvaient étre que des

endothermes vrais.

Cependant, ces affirmations se heurterent a de nombreuses critiques (e.g. Feduccia,
1973, 1974) : en effet, ces caractéres n’avaient pas été comparés de maniere précise avec ceux
des oiseaux, et la différence entre ectothermes et endothermes ne pouvait étre percue de
maniere évidente en se basant sur ces seuls critéres de ressemblance globale. L’utilisation de
méthodes phylogénétiques en paléontologie ne se généralisa qu’au début des années 1980
(Cracraft, 1981), ce qui peut expliquer I’absence de considérations phylogénétiques dans les
articles de Bakker et de définition claire de I’endothermie en tant que caractére dérivé partagé.
Dans une longue description des arguments pour et contre I’endothermie dinosaurienne,

Benton (1979, p. 988) précise :

Different forms of endothermy have arisen independently several times. There
is no clear dividing line between ectotherms and endotherms either today or
presumably also in the past, and thus attempts to reclassify vertebrates on the

basis of endothermy alone [...] hardly seem justified.



Benton montre également que les caractéristiques liées a I’endothermie selon Bakker
(1974) peuvent étre retrouvées chez des ectothermes homéothermes, c’est a dire capables de
maintenir leur température corporelle a un niveau constant, et ne peuvent donc pas étre
interprétées comme des preuves directes d’une endothermie chez les dinosaures. Il va méme
jusqu’a affirmer a la fin de I’article que I’ectothermie des dinosaures aurait pu contribuer a
leur extinction liée aux bouleversements climatiques de la fin du Crétacé, ce qui rendrait
I’hypothése de leur ectothermie plus probable. Cette hypothese ne sera pas remise en question
au cours des années 1980-1990, et le débat sur le thermométabolisme des dinosaures tombera

dans un relatif oubli jusqu’au début des années 2000.

Les arguments histologiques

Plusieurs arguments utilisés par les défenseurs de I’hypothése des dinosaures
endothermes se basent sur la microstructure osseuse de ces derniers. L’histologie osseuse est
une discipline connue depuis plusieurs siécles (Havers, 1691) ; I’étude de la microstructure
des os des vertébrés fut I’un des principaux champs d’investigation liés au développement de
la microscopie optique, et au cours du XlIXe siecle plusieurs groupes de vertébrés firent
I’objet d’études sur le sujet. Plusieurs de ces études définirent des caracteres histologiques
dans un cadre systématique en utilisant une nomenclature osseuse a usage taxonomique,
notamment au sein des ostéichtyens (Agassiz, 1833-1844). Au cours du XXe siécle,
cependant, I’histologie osseuse eut tendance a se focaliser sur des problématiques plus liées a
I’étude de contraintes fonctionnelles ou d’interprétations paléobiologiques, sans chercher a
replacer ces éléments dans un cadre taxonomique ou phylogénétique (pour une révision
détaillée, voir Cubo & Laurin, 2011). Bien que la nomenclature des différents types de tissus
osseux et de leurs modes de formation ait connu un développement important (Francillon-

Vieillot et al., 1990 ; de Ricqgles et al., 1991), tous les grands types de tissus osseux (0s a



fibres paralléles, complexe fibrolamellaire...) ont été retrouvés chez I’ensemble des grands
groupes de vertébrés ; de fait, les caractéres liés a I’histologie osseuse furent progressivement
considérés comme trop homoplasiques et trop liés a des contraintes d’ordre fonctionnel pour

étre utilisés dans une approche évolutionniste.

Pourtant, c’est I’histologie osseuse qui fut a I’origine d’une nouvelle hypothese
concernant I’évolution du thermométabolisme chez les archosaures : Gross (1934), dans une
étude sur la microstructure osseuse des organismes alors encore regroupés sous le nom de
reptiles, décrit celle d’un spécimen fossile d’Afrique du Sud, Erythrosuchus africanus, plus
tard identifié comme un archosauromorphe non archosaure. Ce spécimen présente un o0s
compact avec un complexe fibrolamellaire trés dense, caractéristique d’une croissance
osseuse extrémement rapide sur une durée prolongée. Ce type d’os, connu uniquement chez
des organismes présentant une activité métabolique tres élevée, semble indiquer un
métabolisme trés probablement endotherme chez cet animal. Des les années 1970, de Ricqgles
(1975, 1976, 1977a, b) décrira I’histologie osseuse de nombreux tétrapodes, associera de
maniere précise un type de tissu osseux a des modalités de croissance osseuse, et inscrira ces
descriptions dans une perspective évolutionniste, ouvrant la voie a de nouvelles pistes de
réflexions concernant I’évolution du taux de croissance osseuse et du thermométabolisme au

sein des vertébrés.

Deés les années 2000, plusieurs éléments issus de nombreux domaines différents de la
biologie feront naitre I’hypothése d’une endothermie primitivement acquise par les premiers
archosauromorphes, et non par les seuls oiseaux actuels. Cette hypothése implique donc que
les crocodiliens actuels soient devenus secondairement ectothermes, probablement en réponse

a leur retour au milieu aquatique, ou I’ectothermie représente un net avantage en terme de
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co(t énergétique (Seymour et al., 2004, et références y figurant). Les découvertes a I’origine
de cette hypothése ont été effectuées au niveau de I’histologie osseuse de crocodiliens actuels
(Tumarkin-Deratzian, 2007), mais aussi de leur anatomie (Summers, 2005), ainsi que I’étude
de leur physiologie cardiaque (Seymour et al., 2004) et respiratoire (Farmer & Sanders,
2010). Par ailleurs, il existe de nombreuses descriptions histologiques d’archosauromorphes
non archosaures présentant une structure osseuse de type endotherme comme celle
d’Erythrosuchus (de Ricqgles et al., 2008 ; Botha-Brink & Smith, 2011) qui confortent

également cette hypothése.

Les méthodes phylogéenétiques comparatives

En parallele de ces travaux s’est déroulé le développement considérable des méthodes
phylogénétiques comparatives (souvent abrégées en PCMs en anglais) appliquées a
I’histologie osseuse. Les PCMs, créées a I’origine pour éliminer I’influence de la composante
phylogénétique des caractéres quantitatifs dans une analyse statistique, trouvent leur origine
dans les travaux de Felsenstein (1985) sur les contrastes phylogénétiques indépendants. Au
cours des années 1990, avec le développement des premiers outils informatiques facilement
utilisables par un large public, ces méthodes ont connu un engouement trés important et ont
rapidement fait I’objet d’une formalisation (Harvey & Pagel, 1991). Aujourd’hui, ces
méthodes permettent une caractérisation extrémement poussée de données quantitatives dans
une perspective phylogénétique, et il existe un nombre trés important de tests statistiques
dédiés a la mesure de I’'influence de la phylogénie sur un jeu de données, ainsi qu’a la
modélisation prédictive de valeurs a partir d’un jeu de données dans un cadre phylogénétique
(Paradis, 2012). De cette maniére, on peut facilement mesurer le signal phylogénétique d’une
variable quantitative. Le signal phylogénétique (sensu Blomberg & Garland, 2002) est défini

comme la tendance qu’ont deux especes proches phylogénétiquement a étre plus proches
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entre elles que de n’importe quelle autre espéce plus éloignée dans I’arbre, pour un caractére
donné. Ainsi, on peut déterminer pour un caractere quantitatif quelle part de sa variation peut
étre expliquée par I’influence de contraintes phylogénétiques, fonctionnelles, structurales et

leur chevauchement (Seilacher, 1970 ; Gould, 2002).

Cubo et al. (2005, 2008) ont montré I’importance de ce signal phylogénétique en
histologie osseuse, et identifié plusieurs variables histologiques quantitatives présentant un
signal statistiqguement significatif. Montes et al. (2007, 2010) ont mis en évidence que ces
variables histologiques sont significativement corrélées au taux de croissance osseuse des
spécimens sur lesquelles elles avaient été mesurées, ainsi qu’a leur taux métabolique. Il est
donc possible, en utilisant les PCMs pour construire un modele statistique prédictif, d’estimer
le taux de croissance osseuse et le taux métabolique de spécimens sur lesquels on a mesuré
des variables histologiques quantitatives, tout en prenant en compte I’information

phylogénétique présente chez ces spécimens (Cubo et al., 2012).

Objectifs de la thése

Le premier objectif de cette thése consiste a construire un modele prédictif permettant
d’estimer le taux de croissance osseuse et le taux métabolique d’un organisme dans un cadre
phylogénétique, a partir d’un échantillon de vertébrés actuels pour lesquels ces deux variables
sont connues. Ce modele sera ensuite utilisé pour prédire ces variables chez des
archosauromorphes fossiles, ce qui permettra de connaitre le taux de croissance osseuse et le
taux métabolique dans I’ensemble des grands groupes d’archosaures. Ainsi, nous serons a
méme de pouvoir retracer I’évolution de ces deux variables au cours du temps, et ainsi de
répondre a notre problématique initiale : les archosaures étaient-ils primitivement

endothermes, et si oui, comment cette endothermie a-t-elle évolué ? Cela éclaircira également
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d’autres points : a quel niveau de la phylogénie les pseudosuchiens ont-ils pu perdre cette
endothermie ? Et comment a-t-elle évolué dans la lignée des ornithodiriens, dont font partie

les dinosaures, sur lesquels se focalisait le débat au cours des années 1970 ?

Toutefois, avant de pouvoir modéliser ces variables et répondre a ces questions, il
convient de se pencher sur un autre débat, beaucoup plus ancien: I’histologie osseuse
renferme-t-elle vraiment un signal phylogénétique ? En effet, méme si les travaux de Cubo et
al. (2005) avaient permis d’identifier un signal significatif dans plusieurs caracteres
histologiques, I’échantillonnage utilisé se restreignait au clade des sauropsidés, et le nombre
de spécimens et de variables pris en compte était encore tres restreint. Pour cette raison, le
débat sur la présence ou non d’une information phylogénétique significative dans I’histologie
osseuse reste d’actualité. Dans la mesure ou I’interprétation des résultats de notre modele
prédictif dépend en grande partie de la pertinence de nos caracteres dans un cadre
phylogénétique, nous avons consacré une premiere partie de cette thése a tester la présence
d’un signal phylogénétique dans la variation des caractéres ostéohistologiques au sein d’un
large échantillonnage de vertébrés, afin de mieux formaliser les prérequis de notre approche
prédictive ultérieure. Il nous a également semblé crucial de mieux caractériser les méthodes a
utiliser pour mesurer spécifiqguement ce signal sur des caractéres histologiques, en utilisant un
bon modéle d’étude. Pour cela, nous avons choisi le groupe des paléognathes (Aves,

Palaeognathae), en raison de sa grande diversité malgré un nombre d’espéces assez peu élevé.

Aprés cette premiére partie consacrée au signal phylogénétique, nous nous sommes
focalisés sur la construction de modeéles prédictifs au moyen des PCMs, et sur notre
problématique initiale de I’évolution du thermométabolisme chez les archosaures. Nous avons

tout d’abord effectué une premiére étude consacrée a la construction d’un modeéle prédictif du
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taux de croissance osseuse chez les amniotes. Cette variable est causalement liée au taux
métabolique puisque un taux de croissance élevé comporte une grande consommation
énergétique liée a un important turnover protéique (synthése au niveau du périoste,
destruction au niveau endostéal ; Montes et al., 2007). Nous avons ensuite construit un
modeéle permettant d’estimer directement le taux métabolique chez I’ensemble des tétrapodes,

appliqué a un échantillonnage fossile d’archosauromorphes.

Deux publications collatérales a la thése ont également été incluses comme annexes a
ce travail : une étude sur les caractéres ostéologiques quantitatifs chez les ratites et le type de
modeéle d’évolution (gradualiste ou spéciationnel) auquel ils peuvent étre associés, et une
comparaison entre les contraintes énergétiques s’exercant sur la vascularisation osseuse chez

les oiseaux et chez les Iépidosauriens.
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Le signal phylogenétique dans la variation des caracteres
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| — 1. Phylogenetic signal in bone histology of amniotes

revisited

Lucas Legendre, Nathalie Le Roy, Cayetana Martinez-Maza, Laetitia Montes,

Michel Laurin et Jorge Cubo

Publication originale in: Zoologica Scripta 42: 44-53 (Janvier 2013)

Résumé

Il existe actuellement un débat concernant la présence d’un signal phylogénétique
dans les données relatives a I’histologie osseuse, mais peu d’études rigoureuses ont
été menées pour tenter de répondre a cette problématique. Au cours de cette étude,
nous avons effectué de nouvelles analyses utilisant un large jeu de données
comprenant sept caractéres histologiques mesurés sur 25 taxons (dont seize actuels
et huit fossiles), a I’aide de trois méthodes : la régression de vecteurs propres
phylogénétiques, la distribution de longueurs de branches et les régressions sur
matrices de distances. Nos résultats montrent clairement que le signal
phylogénétique dans notre échantillonnage de caractéres ostéohistologiques est
élevé, méme aprés correction pour tests multiples. Une majorité de caractéeres
présente un signal phylogénétique significatif pour au moins un de nos trois tests, la
phylogénie expliquant entre 20 et 60% de la variation de ces caracteres. En
conclusion, les méthode phylogénétiques comparatives devraient étre utilisées
systématiquement dans les analyses interspécifiques de la diversité histologique de
I’0s, afin d’éviter les problemes liés a la non-indépendance des observations.

Abstract

There is currently a debate about the presence of a phylogenetic signal in bone
histological data, but very few rigorous tests have fuelled the discussions on this
topic. Here, we performed new analyses using a larger set of seven histological
traits and including 25 taxa (nine extinct and sixteen extant taxa), using three
methods: the phylogenetic eigenvector regression, the tree length distribution and
the regressions on distance matrices. Our results clearly show that the phylogenetic
signal in our sample of bone histological characters is strong, even after correcting
for multiple testing. Most characters exhibit a significant phylogenetic signal
according to at least one of our three tests, with the phylogeny often explaining 20 —
60% of the variation in the histological characters. Thus, we conclude that
phylogenetic comparative methods should be systematically used in interspecific
analyses of bone histodiversity to avoid problems of non-independence among
observations.
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Introduction

The putative presence of a phylogenetic signal in bone histological data has played a
prominent role in the development of paleohistology. Paleohistology was born during the
early 19th century with the publication of the first observations of fossil samples (Agassiz,
1833-1844). The history of this discipline contains two well-delimited phases (Cubo &
Laurin, 2011). During the second half of the 19th and the first half of the 20th centuries,
paleohistologists were mainly interested in problems of taxon determination using fragments
of bone tissue (e.g. Queckett, 1849a, b, 1855). All these studies assumed that
osteohistological variation contains diagnostic information and a phylogenetic signal. In fact,
a number of bone histological traits are synapomorphies at different nodes of the vertebrate
phylogeny — for instance, the presence of endochondral bone tissue in Osteichthyes (Janvier,

1996) or the presence of acellular bone tissue in several teleosts (Meunier, 2011).

From the second half of the 20th century onwards, paleohistologists seemed no longer
interested in utilizing bone tissue for systematics, and focused on paleobiology instead. These
scientists used bone histological information to infer life history traits of extinct vertebrates,
assuming that bone histodiversity is linked to functional parameters (e.g. Enlow & Brown,
1956, 1957, 1958; de Ricqlés, 1975, 1976, 1977a, b; Sander, 2000; Horner, Padian & de
Ricqglés, 2001; Padian, de Ricqlés & Horner, 2001). This dichotomy between historicism and
functionalism is unsatisfactory from a conceptual point of view because a given feature may
simultaneously contain a phylogenetic signal (it may constitute a synapomorphy at a given

node) and have a functional significance.

Desdevises et al. (2003) developed a statistical method allowing to partition the
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variation of a trait into a phylogenetic component, a functional or ecological component, the
covariation between these fractions, and finally an unexplained fraction. Cubo et al. (2005)
applied this method to bone microstructural and histological traits and concluded that while
phylogenetic signal was highly significant at the microstructural level of organization, it was
significant for some histological traits, but not for others. This conclusion has been cited by
many authors to argue that ‘the histological level of organization by itself may reflect at best a
weak signal’ (de Ricqlés et al., 2008) and that bone histodiversity mainly reflects functional
aspects (de Buffrénil, Houssaye & Bohme, 2008). The aim of this study is to test the presence
of a phylogenetic signal in bone histodiversity of amniotes using a larger set of bone

histological traits than previous studies and including extinct as well as extant taxa.

Material and methods

Material

We analyzed the histological data set published by Cubo et al. (2012). It includes
information from humeri, femora and tibiae of a sample of 52 specimens belonging to 16
extant species of amniotes, plus the following samples of extinct archosaurs: Postosuchus
UCMP 28353 (humerus), Calyptosuchus UCMP 25914 (femur), Rutiodon UCMP 25921
(femur) and Typothorax A269 25905 (femur) among Pseudosuchia, and Lesothosaurus QR
3076 (femur), Maiasaura MOR 005 (tibia), Coelophysis AMNH 27435 (tibia), Allosaurus
UUVP 3694 (femur) and UUVP 154 (tibia), and Troodon MOR 748 (femur) among

Ornithodira.
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Methods

Phylogeny. A reference phylogeny is used in our analyses (Fig. 1). The divergence
times are based mostly on fossil evidence. The topology for Testudines follows the
established consensus according to which Cryptodira and Pleurodira are sister taxa, as was
established long ago (Gaffney & Meylan, 1988). Our sample includes only three turtle
terminal taxa, Trachemys (Emydidae), Pelodiscus (Trionychidae) and Macrochelodina
(Pleurodira). For the squamates, the topology was compiled from Estes (1982), Estes, de
Queiroz & Gauthier (1988), Rieppel (1988), and Caldwell (1999). The placement of
Testudines is still controversial (Rieppel & Reisz, 1999; Zardoya & Meyer, 2001); therefore,
we placed Testudines as the sister-group of Diapsida, as humerous paleontological studies

have argued (Laurin & Reisz, 1995; Lee, 2001; Lyson et al., 2010).

Considering that the oldest known amniote (Hylonomus lyelli) comes from the late
Bashkirian (Marjanovi¢ & Laurin, 2007), we used a divergence time between mammals and
sauropsids (last common ancestor of Amniota) of 310 Ma. Divergence times between
lepidosaurs and crocodylians (252 Ma) and between crocodiles and birds (last common
ancestor of Archosauria, 243 Ma) were taken from Reisz & Muller (2004). The last two
divergence times are reliable estimates because of the high quality of the fossil record before
and after the first occurrence of these taxa (Reisz & Miiller, 2004). Divergence time between
Lacertidae and Varanidae (189 Ma) and the age of the last common ancestor of dinosaurs
(230 Ma) were respectively taken from Evans (2003) and Langer et al. (2010), both obtained

from the fossil record.

19



Microcebus murinus

Cavia porcellus

Mus musculus

Trachemys scripta

Pelodiscus sinensis

AMNIOTA

Chelodina siebenrocki

Lacerta vivipara

Podarcis muralis

Varanus exanthematicus

SAUROPSIDA

Varanus niloticus

Crocodylus niloticus

Postosuchus

DIAPSIDA Typothorax

Calyptosuchus

Rutiodon

ARCHOSAURIA

L Lesothosaurus

Maiasaura

Coelophysis
— Allosaurus

Troodon

Struthio camelus

Dromaius novaehollandiae

Anas platyrhynchos

Streptopelia decaocto

Turdus merula
300.0 200.0 100.0 0.0

Figure 1. Phylogeny (topology and divergence dates) including the species of the sample (modified after Cubo
et al., 2012). The bottom edge contains a time calibration in Ma.

A few divergence times were taken from Pyron (2010), who used a molecular

approach calibrated by the four well-constrained fossil dates obtained by Muller & Reisz

20



(2005). Dates taken from Pyron (2010) include divergence times between Paleognathae and
Neognathae (last common ancestor of modern birds, 112 Ma) and between Anas and Turdus
(last common ancestor of Neognathae, 77 Ma). These molecular clock estimates are
congruent with vicariance biogeography and fossil evidence, respectively (Laurin et al.,

2012).

All histological measures were performed on transverse bone sections 100 + 10 um
thick, which were made across the diaphysis using a diamond-tip circular saw. Each thin
section was ground and polished before being mounted on a side, and then observed using
optical microscopy and digital imaging (Eclipse E6G00POL with DXM 1200 Digital Eclipse
Camera System; Nikon, Japan). Vascular orientation and density were measured with a

magnification of 40x, whereas cellular variables were measured with a 400x magnification.

Ontogenetic control. Considering that there is a marked ontogenetic variation of bone
histological features mainly linked to bone growth rate, we standardized our data acquisition
by measuring bone histological features in regions formed during the phase of sustained high
growth rate. Whereas in our sample of extant species bone formed at sustained high growth
rate is located at the bone periphery (specimens were actively growing when they were
euthanized), in our samples from extinct taxa, this region is located in the deep cortex (i.e.

fossil specimens were ontogenetically older than those belonging to extant species).

Variables

Vascular orientation. Blood vessels in the bones were lost during sample preparation

in extant species, and during the fossilization process in the extinct taxa. Thus, this variable
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Figure 2. Cross sections in long bone diaphyses of archosaurs in ordinary light. —A. Two radial vascular canals
(black arrows) in a mostly circular vascular pattern (white arrowheads), in Dromaius (femur). —B. Oblique
vascular canals, in Lesothosaurus (femur). —C. Dense circular vascular pattern, in Struthio (femur). —D.
Osteocytes of Postosuchus (humerus) with fitting ellipses, and major (MA) and minor (ma) axes figured to
illustrate the measuring process of cell size (the ellipse area) and shape (the ma/MA ratio) in ImageJ. Scale bars:
1 mminA, B, C; 0.05 mm in D.

measures the orientation of the cavities (called vascular canals) that contained the blood
vessels and associated connective tissues (Fig. 2A, B). The orientation of each vascular cavity
was determined using ImageJ. We inserted the largest ellipse that could fit into each vascular
cavity. To improve repeatability, the orientation of each vascular cavity was measured using
the radial index published by de Boef & Larsson (2007). The orientation of these cavities was
computed as the angle between the major axis of each ellipse and a vector tangent to bone
periphery. Thus, vascular canals running parallel to bone periphery have angles approaching
0°, and those running parallel to the radius of bone cross-section have angles approaching 90°
(de Boef & Larsson, 2007). Vascular canal orientation is a continuously varying trait that we

transformed into discrete orientation classes: circular canals (C), which run roughly parallel to
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the bone periphery (0°+22.5°; 180°-22.5°); radial canals (R), which run roughly orthogonal to
the bone periphery (90°+ 22.5°); and oblique canals (O), that is, those canals excluded from
the intervals corresponding to radial canals and to circular ones. These types of vascular
orientation are illustrated in de Margerie (2002), de Margerie et al. (2004), and de Boef &
Larsson (2007). We used three variables to describe the major vascular orientations found on
each bone section: proportion of circular canals (C/[C+R+0]), proportion of radial canals
(R/[C+R+0]), and proportion of oblique canals (O/[C+R+0]). In avascular bones, the

proportions of circular, radial and oblique canals were considered as zero.

Vascular density. Vascular density was measured by Cubo et al. (2005) as the ratio of
total vascular canal area to primary bone area (Fig. 2C). Here we measured the number of
canals divided by mm? because the osteons are not yet filled in our sample of extant taxa (the
individuals were still growing). Sections showing a single vascular canal were considered to
be avascular because this single vascular canal most probably corresponds to a blood vessel
running from the periosteum to the endosteum (a Volkmann canal oriented more or less

radially).

Cellular variables. Cellular shape, size and density were carefully measured outside
the osteons both in extant taxa (in which osteons are not yet filled because they are still
growing) and in extinct taxa (in which osteons are already filled). Like vascular canals,
osteocytes were lost during the preparation of bone samples in extant species and during the
process of fossilization in extinct taxa (Fig. 2D). Thus, we measured the shape, size, and
density of cavities (osteocyte lacunae) that contained bone cells (osteocytes). When possible

in extant species (i.e. when the bone section contained enough osteocyte lacunae), we
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measured 120 osteocyte lacunae for each bone section (i.e. 30 lacunae measured in four areas
in each bone section — rostral, lateral, medial and caudal).

Cellular shape was quantified as the ratio between the minor and the major axes of
these cavities (0 < shape < 1). The lacunae are perfectly circular in the plane of the section
when the shape is equal to 1.

Cellular cross-sectional size was computed using the major and minor axes of
osteocyte lacunae and assuming the geometry of an ellipse following the equation © x L/2 X
/2.

Cellular density was quantified as the number of lacunae divided by the surface of the

bone section in mm?.

All measurements were carried out using a microscope focused on a single layer of
osteocyte lacunae. Thus, the measurements refer to a single layer of osteocyte lacunae
whatever the thickness of the ground section. Cellular density was computed including all
osteocyte lacunae of the selected single layer. Following Organ et al. (2007), only the largest
osteocyte lacunae included in this layer were measured to compute cell size and shape, to

ensure that cell lacunae were measured near the middle of their longitudinal axis.

Phylogenetic comparative methods

Three methods were used to test for phylogenetic signal. Obtained results were

corrected for multiple testing.

Phylogenetic eigenvector regression. The phylogeny of our sample of amniotes (Fig.

1) was expressed in the form of principal coordinates (Diniz-Filho, de Sant’Ana & Bini,
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1998) to be used as explanatory variables in tests of phylogenetic signal. Considering that we
obtained as many principal coordinate axes as terminal taxa included in the analyses, a
selection procedure was necessary. We retained and used the phylogenetic principal
coordinate axes significantly related to the dependent variable as explanatory variables

(Desdevises et al., 2003).

Regressions on distance matrices. This method was described by Mantel (1967).
Firstly we computed pairwise phylogenetic (patristic) distances using the consensus
phylogeny (Fig. 1). For each pair of species, the histological dissimilarity was quantitatively
assessed using the absolute value of the difference between the character values. Two distance
matrices were constructed: the phylogenetic distance matrix (the sum of branch lengths
connecting two taxa, in Ma) and the histological dissimilarity matrix. Afterwards, the
histological dissimilarity (the dependent variable) was regressed on the phylogenetic distance
(the independent variable). The significance of the regression coefficient could not be tested
using a parametric test because the values of the phylogenetic distance matrices (the
independent variables) are not normally distributed, and a normal distribution is a
fundamental condition of parametric testing. In these cases, significance of statistics must be
tested through randomization tests (Harvey & Pagel, 1991:. 152-155). Therefore, the
significance of the R? parameter was tested by a permutation test (Mantel, 1967) using
Permute 3.4a9 (Casgrain, 2009), a software that can perform regressions on distance matrices
as described by Legendre, Lapointe & Casgrain (1994). Each regression and its statistics were
recomputed 9999 times by repeatedly randomizing the values of the histological dissimilarity
matrix to obtain a null distribution against which to test the significance of the statistics of the

regression on the original dataset.
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Random squared tree length distribution. A phylogenetic signal can also be detected
in a character by determining if the character requires fewer steps on the reference phylogeny
than on most randomly generated trees, provided that the phylogeny has been produced using
other characters. In the case of continuous characters, squared length (rather than number of
steps) of the character over the tree can be used (Maddison, 1991). The squared length is the
most appropriate statistic for a continuous character. It is the sum of the square of changes
between each node or between nodes and terminal taxa. Squared change parsimony
minimizes this statistic, and in the version that we used (weighted square-change parsimony,
implemented in Mesquite), what is minimized is the sum over all branches of the squared
change divided by branch length (Maddison, 1991). The probability that the character values
are distributed randomly with respect to the phylogeny is simply the proportion of random
trees in which squared length is equal or less than on the reference tree. These simulations
were performed by the TreeFarm package of modules of Mesquite (Maddison & Maddison,
2011; Maddison, Maddison & Midford, 2011). The appropriate procedure is to randomly
permute the taxa (along with their character values) on the tree while holding the topology as
well as the branch lengths constant (Laurin, 2004). This procedure has the advantage of
yielding random trees that have a branch length distribution identical to that of the reference
tree. This is necessary because the squared length of a character over a tree depends on tree

depth (Maddison, 1991).

All these tests were performed for our whole sample (Amniota), as well as for three
nested sub-groups: Sauropsida, Diapsida, and Archosauria. We could not test other subsets of
our sampled taxa because the sample size would have been insufficient, resulting in very low

power and hence meaningless negative results.
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Corrections for multiple testing. Given that we have seven characters, three bones,
three tests, and four nested clades on which these tests were applied, we have performed 252
tests. Thus, corrections for multiple testing are required because at the customary 0.05
probability threshold, twelve or thirtheen false positives are expected. For this purpose, we
have used the False Discovery Rate (FDR) analysis, which is reasonably easy to use and
powerful, as it retains more significant results than classical Bonferroni corrections
(Benjamini & Hochbert, 1995; Curran-Everett, 2000). This is why it has been used in recent

papers that included multiple tests (e.g. Laurin, Canoville & Quilhac, 2009).

Results

Most histological traits exhibit a significant phylogenetic signal according to at least
one of our three tests (Table 1), at least for Amniota (15 bone by character combinations, out
of 21, yielded significant results even after correction for multiple testing). For smaller, nested
clades, the number of significant results was lower, presumably reflecting decreased power
with a lower taxonomic sample size because the number of significant results is directly
proportional to the number of included taxa (significant results for 12 bone by character
combinations out of 21 for Sauropsida, but only 10 for Diapsida and four for Archosauria).
Among these traits, only tibia cell shape yields non-significant results (with any of the three
methods). The probabilities yielded by tree length distribution on tibia were higher than those
obtained from phylogenetic eigenvector regression or regressions on distance matrices (Table
1). Of the 110 probabilities that were < 0.05 when taken in isolation, 77 remain significant

after FDR analysis.

Bone histological variation explained by the phylogeny is in the order of 20 — 60%, as
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shown by the phylogenetic eigenvector regression analysis (Table 2, first column). Variation
explained by the phylogeny obtained using regressions on distance matrices are lower, as
expected, because this method underestimates the real values, as Legendre (2000) showed
using simulations. Here, the regression coefficients obtained using phylogenetic eigenvector
regression are always much higher than those obtained using regressions on distance matrices

(Table 2), which is congruent with the findings of Legendre (2000).

Discussion

Mayr (1961) separates evolutionary biology (concerning historical, or ultimate,
causation) from functional biology (tackling immediate, or proximate, causation). The nature
of the evidence is comparative in evolutionary biology, whilst it is typically experimental in
functional biology. Within evolutionary biology, systematists and functional morphologists
are interested in different patterns. For the former, interested in the reconstruction of
phylogenetic patterns, the functional adaptation to current conditions (autapomorphies) may
mask a pure phylogenetic signal (for example, the autapomorphic flightless condition of the
Galapagos cormorant is associated with a whole array of morphological changes that may
mask synapomorphies of more inclusive nodes, e.g. Phalacrocoracidae — Cubo & Casinos,
1997). For functional morphologists, phylogenetic patterns are factors that may explain why
organisms do not appear to have reached optimal adaptation to current conditions. In ‘The
shadow of forgotten ancestors differently constrains the fate of Alligatoroidea and
Crocodyloidea’, Piras et al. (2009) suggest that the phylogenetic inheritance of a clade may
determine its evolutionary fate. According to Seilacher (1970), a third set of factors (in
addition to history and function) may contribute to explain evolutionary patterns: the

properties inherent in the materials found in organs and their self-organization properties
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Table 1. Probability that the observed covariation between the histological data and the phylogeny is random.
This is obtained using phylogenetic eigenvector regression, tree length distribution, and regressions from
distance matrices. Phylogenetic signal is considered as significant at a 0.05 threshold when taken in isolation.
However, only the P-values marked with asterisks are still significant after correction for multiple testing (False
Discovery Rate analysis). These data are available as Mesquite Nexus files in the supporting information (Data

S1-S3).

Bone Histological traits n Phylogenetic Tree length Regressions
eigenvector distribution from
regression distance

matrices

Femur Cell density

Amniota 22 - 0.023 0.607
Sauropsida 19 0.0002* 0.020 0.373
Diapsida 16 0.002* 0.023 0.033
Archosauria 12 0.040 0.110 0.028
Cell size
Amniota 22 0.020* 0.0009* 0.020*
Sauropsida 19 - 0.0006* 0.442
Diapsida 16 - 0.0006* 0.255
Archosauria 12 0.011* 0.003* 0.024
Cell shape
Amniota 22 0.012* 0.014* 0.945
Sauropsida 19 0.026 0.019 0.379
Diapsida 16 0.047 0.038 0.775
Archosauria 12 - 0.056 0.678
Vascular radial orientation
Amniota 22 0.015* 0.047 0.009*
Sauropsida 19 0.004* 0.050 0.0005*
Diapsida 16 0.003* 0.025 0.0001*
Archosauria 12 - 0.897 0.613
Vascular oblique orientation
Amniota 22 0.001* 0.085 0.022
Sauropsida 19 - 0.255 0.165
Diapsida 16 - 0.560 0.765
Archosauria 12 0.007* 0.221 0.732
Vascular circular orientation
Amniota 22 0.010* <0.0001* 0.000*
Sauropsida 19 0.0001* 0.0001* 0.0001*
Diapsida 16 0.0001* 0.0008* 0.0001*
Archosauria 12 - 0.578 0.927
Vascular density
Amniota 22 0.001* 0.0002* 0.016*
Sauropsida 19 0.0001* 0.0002* 0.0008*
Diapsida 16 0.0002* 0.001* 0.0001*
Archosauria 12 0.062 0.028 0.023
Humerus  Cell density
Amniota 17 - 0.154 0.600
Sauropsida 14 0.002* 0.161 0.133
Diapsida 11 0.014 0.165 0.016
Archosauria 7 0.054 0.119 0.004*
Cell size
Amniota 17 0.002* 0.140 0.089
Sauropsida 14 0.010* 0.106 0.654
Diapsida 11 0.037 0.084 0.805
Archosauria 7 - 0.598 0.287
Cell shape
Amniota 17 - 0.006* 0.027
Sauropsida 14 0.0003* 0.004* 0.0005*
Diapsida 11 0.0009* 0.004* 0.0001*
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Table 1. Continued.

Bone Histological traits n Phylogenetic Tree length Regressions
eieigenvector distribution from distance
regression matrices

Humerus Archosauria 0.037 0.046 0.0008*

Vascular radial orientation
Amniota 17 0.008* 0.870 0.738
Sauropsida 14 - 0.818 0.898
Diapsida 11 - 0.768 0.397
Archosauria 7 - 0.897 0.613
Vascular oblique orientation
Amniota 17 0.003* 0.043 0.040
Sauropsida 14 - 0.070 0.217
Diapsida 11 - 0.051 0.154
Archosauria 7 0.050 0.942 0.259
Vascular circular orientation
Amniota 17 - 0.005* 0.056
Sauropsida 14 0.0003* 0.007* 0.019
Diapsida 11 0.0002* 0.005* 0.0001*
Archosauria 7 0.050 0.713 0.778
Vascular density
Amniota 17 - 0.012* 0.533
Sauropsida 14 0.001* 0.018 0.162
Diapsida 11 0.009* 0.013* 0.006*
Archosauria 7 - 0.248 0.449
Tibia Cell density
Amniota 19 - 0.505 0.018*
Sauropsida 16 - 0.480 0.343
Diapsida 13 - 0.581 0.144
Archosauria 9 - 0.834 0.801
Cell size
Amniota 19 0.045 0.388 0.015*
Sauropsida 16 - 0.472 0.036
Diapsida 13 - 0.295 0.575
Archosauria 9 - 0.205 0.442
Cell shape
Amniota 19 0.073 0.283 0.133
Sauropsida 16 - 0.298 0.342
Diapsida 13 - 0.289 0.459
Archosauria 9 - 0.138 0.823
Vascular radial orientation
Amniota 19 - 0.839 0.117
Sauropsida 16 - 0.860 0.633
Diapsida 13 - 0.872 0.212
Archosauria 9 - 0.483 0.529
Vascular oblique orientation
Amniota 19 0.007* 0.396 0.017*
Sauropsida 16 0.004* 0.463 0.008*
Diapsida 13 0.042 0.624 0.021
Archosauria 9 - 0.614 0.493
Vascular circular orientation
Amniota 19 0.037 0.0007* 0.139
Sauropsida 16 0.002* 0.0002* 0.005*
Diapsida 13 0.001* 0.0005* 0.0001*
Archosauria 9 - 0.393 0.721
Vascular density
Amniota 19 - 0.803 0.000*
Sauropsida 16 - 0.746 0.002*
Diapsida 13 - 0.683 0.066
Archosauria 9 - 0.933 0.148
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Table 2. Covariation between bone histology and the phylogeny assessed as the R values of histological
variances explained by the tree, as obtained in tests of phylogenetic signal using phylogenetic eigenvetor
regression and regressions on distance matrices. In phylogenetic eigenvector regression, we retained and used
the phylogenetic principal coordinate axes significantly related to the dependent variable as explanatory
variables. When no axes were retained, the analysis could not be performed. Note that the third phylogenetic
signal test (tree length distribution) does not yield an explained variance, so it is not reported here.

Bone Histological traits n Phylogenetic Regressions from
eigenvector distance matrices
regression

Femur Cell density

Amniota 22 - 0.001
Sauropsida 19 0.666 0.005
Diapsida 16 0.676 0.038
Archosauria 12 0.327 0.073
Cell size
Amniota 22 0.247 0.024
Sauropsida 19 - 0.004
Diapsida 16 - 0.011
Archosauria 12 0.397 0.077
Cell shape
Amniota 22 0.378 0.000
Sauropsida 19 0.258 0.005
Diapsida 16 0.252 0.0007
Archosauria 12 - 0.003
Vascular radial orientation
Amniota 22 0.247 0.028
Sauropsida 19 0.834 0.071
Diapsida 16 0.818 0.176
Archosauria 12 - 0.004
Vascular oblique orientation
Amniota 22 0.576 0.022
Sauropsida 19 - 0.012
Diapsida 16 - 0.0008
Archosauria 12 0.536 0.002
Vascular circular orientation
Amniota 22 0.286 0.117
Sauropsida 19 0.908 0.250
Diapsida 16 0.945 0.438
Archosauria 12 - 0.0001
Vascular density
Amniota 22 0.598 0.024
Sauropsida 19 0.775 0.061
Diapsida 16 0.811 0.438
Archosauria 12 0.307 0.077
Humerus  Cell density
Amniota 17 - 0.002
Sauropsida 14 0.767 0.025
Diapsida 11 0.656 0.107
Archosauria 7 0.527 0.355
Cell size
Amniota 17 0.582 0.021
Sauropsida 14 0.585 0.002
Diapsida 11 0.408 0.001
Archosauria 7 - 0.059
Cell shape
Amniota 17 - 0.037
Sauropsida 14 0.857 0.132
Diapsida 11 0.813 0.370
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Table 2. Continued.

Bone Histological traits n Phylogenetic Regressions from
eieigenvector distance matrices
regression

Humerus Archosauria 0.609 0.431

Vascular radial orientation
Amniota 17 0.482 0.001
Sauropsida 14 - 0.0002
Diapsida 11 - 0.014
Archosauria 7 - 0.146
Vascular oblique orientation
Amniota 17 0.57 0.031
Sauropsida 14 - 0.017
Diapsida 11 - 0.038
Archosauria 7 0.798 0.067
Vascular circular orientation
Amniota 17 - 0.027
Sauropsida 14 0.764 0.061
Diapsida 11 0.886 0.247
Archosauria 7 0.608 0.004
Vascular density
Amniota 17 - 0.003
Sauropsida 14 0.613 0.021
Diapsida 11 0.625 0.136
Archosauria 7 - 0.031
Tibia Cell density
Amniota 19 - 0.033
Sauropsida 16 - 0.008
Diapsida 13 - 0.029
Archosauria 9 - 0.002
Cell size
Amniota 19 0.215 0.033
Sauropsida 16 - 0.038
Diapsida 13 - 0.004
Archosauria 9 - 0.017
Cell shape
Amniota 19 0.179 0.013
Sauropsida 16 - 0.008
Diapsida 13 - 0.007
Archosauria 9 - 0.002
Vascular radial orientation
Amniota 19 - 0.014
Sauropsida 16 - 0.002
Diapsida 13 - 0.021
Archosauria 9 - 0.011
Vascular oblique orientation
Amniota 19 0.308 0.034
Sauropsida 16 0.058 0.559
Diapsida 13 0.295 0.072
Archosauria 9 - 0.014
Vascular circular orientation
Amniota 19 0.219 0.013
Sauropsida 16 0.067 0.539
Diapsida 13 0.676 0.234
Archosauria 9 - 0.004
Vascular density
Amniota 19 - 0.094
Sauropsida 16 - 0.077
Diapsida 13 - 0.043
Archosauria 9 - 0.060
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(with few genetic inputs). These three perspectives are not necessarily mutually exclusive.

In the field of bone biology, Cubo et al. (2005) found a significant phylogenetic signal
at the microanatomical level of bone organization, but concluded that the histological level
contained a lower signal. However, considering that Cubo et al. (2008, 2012) showed
evidence for a significant phylogenetic signal in the variation of bone growth rate in amniotes,
and that, according to Amprino’s rule, bone histodiversity may reflect variation in bone
growth rates (Amprino, 1947; Montes et al., 2010), we expected that bone histological
variation contained a significant phylogenetic signal. Here we expand upon the analyses
initiated by Cubo et al. (2005) using a larger set of histological traits and including extinct

faxa.

Our results clearly show that the phylogenetic signal in the bone histological
characters that we studied is strong, with the phylogeny often explaining 20 — 60% of the
variation in the histological characters. The proportion of significant results appears to depend
rather strongly on taxonomic sample size, reflecting the common and expected increase
power at larger sample sizes. Nevertheless, our results do not imply that functional factors are
unimportant. In fact, some of the variation explained by the phylogeny may represent
covariation with functional factors (rather than purely phylogenetic variation), although
variation partition analyses would be required to determine this. These are beyond the scope
of this study, as they would require additional data (such as growth rate, metabolic rate, etc.).
However, some evidence suggests that part of this phylogenetic signal represents covariation
with functional factors, at least for the femur. Cubo et al. (2012) constructed a paleobiological
inference model using extant taxa for estimating bone growth rate of extinct taxa (a functional

factor according to Amprino’s rule) from bone histological data. The response variable (i.e.
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the functional variable, bone growth rate) was significantly correlated with, and could be
reliably inferred from, predictor variables (bone histological traits). These results are evidence
of a significant functional effect on bone histological variation, and are complementary to the

evidence presented in this study for a significant phylogenetic signal on the same traits.

We conclude that, in view of the results reported above, phylogenetic comparative
methods should be used in any study dealing with interspecific variation of bone histology to
avoid problems of non-independence among observations. This is unfortunately still not
common practice. Some disciplines such as ecology and, to a lesser extent, vertebrate
morphology incorporated phylogenetic comparative methods soon after the initial
development of this approach in the middle of the 1980s (see a review in Harvey & Pagel,
1991). In contrast, the use of these methods is not yet generalized in other fields such as bone
histology (e.g. de Buffrénil, Houssaye & Bohme, 2008), but we hope that this study will help

motivate bone histologists to adopt these methods.
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Résumé

La présence d’un signal phylogénétique dans la variation des traits
ostéohistologiques a fait récemment I’objet d’un débat dans la littérature. Des études
précédentes avaient identifié un signal significatif pour certains caracteres, mais ces
résultats avaient été obtenus sur un nombre peu élevé de caractéres et avec un
échantillonnage réduit. Nous effectuons ici une étude trés complete au cours de
laquelle nous quantifions le signal phylogénétique pour soixante-deux caractéres
ostéohistologiques au sein d’un échantillonnage exhaustif d’oiseaux paléognathes.
Nous avons utilisé quatre estimateurs différents pour mesurer le signal
phylogénétique — le A de Pagel, le Crean d’Abouheif, le K de Blomberg et les PVR
de Diniz-Filho, ainsi que quatre topologies issues de la litérature. La taille de I’os et
la densité vasculaire osseuse présentent un fort signal phylogénétique, tandis que
tous les autres caractéres, a I’exception de quatre — la taille des cellules pour les
transects caudal et médial des fémurs, et la proportion de canaux vasculaires
obliques pour les transects rostral et caudal des tibiotarses — présentent un signal
plus faible. Nous avons également découvert que I’effet des topologies utilisées
dans les analyses est trés faible comparé a celui de la taille de I’échantillonnage.
Pour conclure, I’analyse d’un échantillonnage exhaustif est indispensable pour
obtenir des estimations fiables du signal phylogénétique.

Mots-clés : Histologie osseuse — signal phylogénétique — paléognathes — méthodes
phylogénétiques comparatives
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Abstract

The presence of a phylogenetic signal in the variation of osteohistological features
has been recently debated in the literature. Previous studies have found a significant
signal for some features, but these results were obtained on a small amount of
characters and a reduced sample. Here we perform a comprehensive study in which
we quantify the phylogenetic signal on sixty-two osteohistological features in an
exhaustive sample of palaeognathous birds. We used four different estimators to
measure phylogenetic signal — Pagel’s A, Abouheif’s Cmean, Blomberg’s K, and
Diniz-Filho’s PVR — and four topologies taken from the literature. Bone size and
bone vascular density exhibit a strong phylogenetic signal, whereas all but four of
the remaining features measured at the histological level — cellular size in caudal
and medial transects of femora, and proportion of oblique vascular canals in rostral
and caudal transects of tibiotarsi — exhibit a weaker signal. We also found that the
impact of the topologies used in the analyses is very low compared to that of sample
size. We conclude that the analysis of a comprehensive sample is crucial to obtain
reliable quantifications of the phylogenetic signal.

Keywords: Bone histology — phylogenetic signal — palaeognaths — phylogenetic
comparative methods

Introduction

Early palaeohistologists were interested in problems of taxon determination using
small bone fragments, assuming that bone histological variation contains diagnostic
information and thus, put in modern terms, a phylogenetic signal (e.g. Queckett, 1849a, b,
1855). In the second half of the 20th century, palaeohistologists (with some exceptions such
as Houde (1988), who focused on identifying synapomorphies in the bone histology of
palaeognathous birds) were mainly interested in problems of palaeobiology and used bone
histological features to infer life history traits of extinct vertebrates (review in Cubo & Laurin,

2011; de Ricqlés, 2011).

The first decade of the 21st century has been marked by a renewed interest for the
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study of phylogenetic signal in bone histological variation. On the one hand, some studies
have found that a number of bone histological features are synapomorphies at different nodes
in the vertebrate phylogeny. For instance, Rensberger & Watabe (2000) suggested that
mammals and hadrosaurs may have retained the primitive condition among amniotes
characterized by the presence of canaliculi aligned in parallel with the direction of growth —
that is, in a radial direction toward either the outer, periosteal surfaces, the inner, endosteal
surfaces, or the lumina of vascular canals — while coelurosaurs (e.g. ornithomimid dinosaurs
and birds) may have acquired the derived condition characterized by the presence of
canaliculi organized as extensively branching channels that diverge at large angles from each
other. Padian, de Ricqlés & Horner (2001) suggested that the last common ancestor of
archosaurs was characterized by the presence of parallel-fibered bone tissue, whereas
dinosaurs may share the derived condition characterized by the presence of fibrolamellar bone
tissue. A more recent work (de Ricglés et al., 2008) places the origin of fibrolamellar bone
tissue at the more inclusive archosauromorph node. More recently, Bourdon et al. (2009a)
showed that bone growth marks may have been absent in the last common ancestor of ratites,
and suggested they may have been acquired by the last common ancestor of the clade (Kiwi —

Moa).

Other studies used modern statistical methods to test the presence of phylogenetic
signal in bone histological variation. For instance, Cubo et al. (2005) concluded that
phylogenetic signal was strong at the microanatomical level of organization, whereas at the
histological level it was weak at best. This last result was probably the outcome of the small
sample size (35 species of sauropsids over a total of almost 20,000 extant species), the small
number of bone histological features analyzed (three variables) and the absence of fossils in

the analyzed sample. Efforts were recently made by Legendre et al. (2013) and Houssaye,
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Tafforeau & Herrel (in press) in amniotes, Dumont et al. (2013) and Marin-Moratalla et al.
(in press) in mammals, and Houssaye et al. (2013) in squamates. However, in all these cases,

sample size compared to clade size was still reduced.

This study aims to quantify the phylogenetic signal in the variation of bone
histological features on an exhaustive sample using a statistical approach. The palaeognath
clade was selected because it contains a reduced number of species (thus allowing an
exhaustive sampling) and has a long geological history deep into the Cretaceous (Cracraft,
2001; Bourdon, de Ricqglés & Cubo, 2009b). This large sample is thus likely to improve our
ability to detect phylogenetic signal in bone histological features. Those features showing a
significant signal can be included in predictive models to infer various life history traits in
fossil specimens using phylogenetic comparative methods (Revell, 2010; Legendre, Segalen

& Cubo, 2013).

Material and methods

Material

This study was performed using a sample of 46 specimens belonging to 21 species,
covering all extant ratite genera (Apteryx, Casuarius, Dromaius, Rhea and Struthio), three
(over nine) tinamou genera (Tinamidae: Eudromia, Nothura and Rhynchotus), all New
Zealand moa genera (Dinornithidae: Anomalopteryx, Dinornis, Emeus, Euryapteryx,
Megalapteryx and Pachyornis) and one elephant-bird genus (Aepyornithidae: Aepyornis)
from Madagascar. These specimens come from the collections of the Muséum National

d’Histoire Naturelle (MNHN; Paris, France), the Naturhistorisches Museum Wien (NHMW,
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Vienna, Austria), the National Museum of Natural History (NMNH; Washington, United
States), the Natural History Museum of Los Angeles County (LACM; Los Angeles, United
States), the Canterbury Museum (Christchurch, New Zealand) and the National Museum of

New Zealand Te Papa Tongarewa (Wellington, New Zealand).

Ontogenetic control

All analyzed specimens are subadults or young adults: primary osteons are fully
formed in the outer cortex and there are few (if any) secondary (haversian) osteons outside the
inner cortex (Francillon-Vieillot et al., 1990; de Ricqglés et al., 1991). Osteohistological
features were measured in the deep cortex of primary periosteal bone tissue, in order to
analyse the bone tissue formed at the fastest recorded rate, following the procedure described

in Cubo et al. (2012).

Osteohistological features

We prepared 100 + 10 um thick bone sections from femoral and tibiotarsal midshafts.
These sections were photographed with a polarizing microscope (Nikon Eclipse E600POL).
The pictures were then edited and analyzed using Photoshop 7.0 and Image) 1.44. We

followed Cubo et al. (2012) and defined osteohistological features as follows (Table 1):

Vascular canal orientation.— Blood vessels in bones were lost during sample
preparation in extant species, and during post-mortem mechanisms in moa and elephant-bird
subfossils. Thus, this variable measures the orientation of the cavities (called vascular canals)

that contained the blood vessels and associated connective tissues (Figure 1). We inserted the
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Figure 1. Cross-sections of long bones of palaeognaths in ordinary light. —A: Femur of a red-winged tinamou
(Rhynchotus rufescens), showing oblique canals (arrowheads) isolated from each other. —B: Tibiotarsus of a
southern brown Kiwi (Apteryx australis); vascular canals are scattered and do not form a conspicuous pattern in
the cortex. —C: Femur of a South Island giant moa (Dinornis robustus); the deep cortex lacks vascular pattern,
and a line of arrested growth (LAG) is visible (arrowhead). —D: Femur of an elephant bird (Aepyornis
maximus); the bone is seemingly fibrolamellar with a majority of circular canals (white arrow), connected with
each other by large, radial anastomoses (black arrowheads). —E: Femur of a Darwin’s rhea (Rhea pennata). —
F: Tibiotarsus of an ostrich (Struthio camelus). —G: Femur of a southern cassowary (Casuarius casuarius). —
H: Femur of an emu (Dromaius novaehollandiae). All bones in E, F, G and H present a dense pattern of circular
canals (arrowheads), sometimes connected by radial canals formed by anastomosis (arrows in H). Scale bars
equal 1 mm.

largest ellipse into each vascular cavity. To improve repeatability, the orientation of each
vascular cavity was measured using the radial index published by de Boef & Larsson (2007).
The orientation of these cavities was computed as the angle between the major axis of each
ellipse and a vector tangent to bone periphery. Thus, vascular canals running parallel to bone
periphery have angles approaching 0°, and those running parallel to the radius of bone cross-
section have angles approaching 90° (de Boef & Larsson, 2007). Vascular canal orientation is
a continuously varying trait that we transformed into discrete orientation classes using the
following criteria: three types of standard vascular canal orientation were defined in our
transverse sections (Figure 1) - circular canals (C), which run roughly parallel to the bone
periphery (0°+22.5°; 180°-22.5°); radial canals (R), which run roughly orthogonal to the bone
periphery (90°+ 22.5°); and oblique canals (O), i.e. those canals excluded from the intervals
corresponding to radial canals and circular ones. These types of vascular orientation are
illustrated in de Margerie, Cubo & Castanet (2002), de Margerie et al. (2004), and de Boef &
Larsson (2007). We used three variables to describe the major vascular orientations found on
each bone section: proportion of circular canals: C/(C+R+0); proportion of radial canals:
R/(C+R+0); and proportion of oblique canals: O/(C+R+0), in order to provide a reliable

account of the variation of vascular orientation across each section.
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Figure 2. Schematic representation of the measures used to compute osteocyte size and shape: for each cell
selected on the histological section — here on the femur of an emu (Dromaius novaehollandiae) observed at x400
magnification — we insert with ImageJ the biggest possible ellipse and measure the major axis (MA) and minor
axis (ma) in this ellipse.

Vascular density.— Vascular density was measured as the number of canals divided
by mm? We used this variable instead to the ratio vascular canal area / cortical bone area to
minimize the bias caused by the ontogenetic status of specimens in our sample of extant taxa

(some peripheral primary osteons still had residual centripetal apposition).

Cellular variables (Figure 2).— Cellular shape and size were carefully measured
outside primary osteons. Like vascular canals, osteocytes were lost during the preparation of
bone samples in extant species and during the post-mortem mechanisms in moa and elephant-
bird subfossils. Thus, we measured the shape and size of cavities (osteocyte lacunae) that
contained bone cells (the osteocytes).

Cellular shape was quantified as the ratio between the minor and the major axes of
these cavities (0 < shape < 1). A value of 1 means that the lacunae are perfectly circular.

Cellular size was computed using the major and minor axes of osteocyte lacunae and

assuming the geometry of an ellipse (t x L/2 x 1/2).
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All measurements were carried out using a microscope focused on a single layer of
osteocyte lacunae. Thus, the measurements refer to a single layer of cells whatever the
thickness of the ground section. Following Organ et al. (2011), only the largest osteocyte
lacunae included in this layer were measured to compute cell size and shape, to ensure that

cell lacunae were measured near the mid axis.

Bone size.— This variable was measured as bone cross-sectional area (bone surface

encircled by the periosteum in mm?).

All features (except bone size) were measured through four bone transects on each
specimen, corresponding to the four main anatomical quadrants of the cortical bone (rostral,
caudal, lateral and medial) on a bone section. These quadrants correspond to anatomical
regions that can experience differences in appositional growth rate (cortical drift) or
mechanical strains (e.g. tension or compression). By comparing the same topological regions

within a given bone, we assumed to work in a strict frame of homology.

Unfortunately, several subfossil specimens used in this study do not present a whole
bone section with the four intact quadrants, so that the number of measurements was not the
same for all specimens/features. Moreover, sometimes it was impossible to orientate bone
sections. To minimize the impact of this lack of information, we also computed mean values
for each cross-section as additional variables. Each feature was measured 30 times and a
mean was computed on each quadrant, and then for the whole section (4 x 30 measures, i.e.
120 measures when the whole section was available). For the fragmentary sections, the mean

of the whole section included at least one transect, i.e. 30 measures.
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Table 1. List of 62 osteohistological features measured for this study, with p-values for each estimator of
phylogenetic signal we used (Pagel’s A, Blomberg’s K, Diniz-Filho’s PVR and Abouheif’s Cpean), USing the
phylogeny taken from Haddrath & Baker (2012). Significant values (i.e. p < 0.05) are highlighted in bold. The
complete dataset including specimen numbers is available as project 1133 in MorphoBank
(http://lwww.morphobank.org/index.php). Abbreviations : C, caudal; L, lateral; M, medial; R, rostral transects.

Diniz-Filho's Abouheif’s

Variables Pagel’'s A Blomberg’s K PVR Cinean
1  Femur size 0,00172 0,00045 0,00532 0,02670
2 Femur vascular density R 0,00085 0,00070 0,00209 0,00310
3 Femur vascular density C 0,00729 0,00160 0,00118 0,00500
4 Femur vascular density L 0,09104 0,07040 0,00149 0,02720
5  Femur vascular density M 0,00311 0,00270 0,00078 0,00530
6  Femur vascular density mean 0,00146 0,00690 0,07477 0,00110
7  Femur proportion of circular canals R 1,00000 0,98010 0,00000 0,90140
8  Femur proportion of circular canals C 1,00000 0,57950 0,07829 0,49420
9  Femur proportion of circular canals L 0,27198 0,13070 0,16050 0,35950
10 Femur proportion of circular canals M 0,23352 0,11970 0,02580 0,16680
11 Femur proportion of circular canals mean 0,24212 0,09550 0,17300 0,06590
12 Femur proportion of radial canals R 1,00000 0,95070 0,43610 0,89280
13 Femur proportion of radial canals C 1,00000 0,66035 0,24580 0,47880
14 Femur proportion of radial canals L 0,39112 0,35455 0,00749 0,05090
15 Femur proportion of radial canals M 0,57946 0,57520 0,01699 0,11060
16 Femur proportion of radial canals mean 0,00246 0,00120 0,03608 0,00290
17 Femur proportion of oblique canals R 0,92241 0,63095 0,08429 0,36170
18 Femur proportion of oblique canals C 1,00000 0,37890 0,03563 0,33880
19 Femur proportion of oblique canals L 0,48361 0,15865 0,57300 0,19330
20 Femur proportion of oblique canals M 1,00000 0,21775 0,11410 0,48110
21 Femur proportion of oblique canals mean 0,22129 0,05250 0,09429 0,13100
22 Femur osteocyte shape R 1,00000 0,44090 0,38900 0,45690
23 Femur osteocyte shape C 0,83003 0,13950 0,01273 0,73140
24 Femur osteocyte shape L 1,00000 0,42640 0,39770 0,74930
25 Femur osteocyte shape M 0,07663 0,02650 0,03546 0,06610
26 Femur osteocyte shape mean 0,01327 0,13030 0,00005 0,00180
27 Femur osteocyte size R 1,00000 0,06320 0,25030 0,41340
28 Femur osteocyte size C 0,00504 0,03300 0,00389 0,04280
29 Femur osteocyte size L 0,02427 0,07540 0,03730 0,11190
30 Femur osteocyte size M 0,01258 0,03770 0,00194 0,03340
31 Femur osteocyte size mean 1,00000 0,04430 0,01758 0,21850
32 Tibiotarsus size 0,00115 0,00025 0,01659 0,03160
33 Tibiotarsus vascular density R 0,05549 0,05735 0,01059 0,07710
34 Tibiotarsus vascular density C 0,07130 0,10970 0,43580 0,06300
35 Tibiotarsus vascular density L 0,09792 0,03245 0,01220 0,08060
36 Tibiotarsus vascular density M 0,23817 0,12840 0,01368 0,11450
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37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

Tibiotarsus vascular density mean
Tibiotarsus proportion of circular canals R
Tibiotarsus proportion of circular canals C
Tibiotarsus proportion of circular canals L
Tibiotarsus proportion of circular canals M
Tibiotarsus proportion of circular canals mean
Tibiotarsus proportion of radial canals R
Tibiotarsus proportion of radial canals C
Tibiotarsus proportion of radial canals L
Tibiotarsus proportion of radial canals M
Tibiotarsus proportion of radial canals mean
Tibiotarsus proportion of oblique canals R
Tibiotarsus proportion of oblique canals C
Tibiotarsus proportion of oblique canals L
Tibiotarsus proportion of oblique canals M
Tibiotarsus proportion of oblique canals mean
Tibiotarsus osteocyte shape R

Tibiotarsus osteocyte shape C

Tibiotarsus osteocyte shape L

Tibiotarsus osteocyte shape M

Tibiotarsus osteocyte shape mean
Tibiotarsus osteocyte size R

Tibiotarsus osteocyte size C

Tibiotarsus osteocyte size L

Tibiotarsus osteocyte size M

Tibiotarsus osteocyte size mean

1,00000
0,01227
0,41427
1,00000
1,00000
0,49267
1,00000
1,00000
0,49560
1,00000
1,00000
0,00958
0,01668
1,00000
1,00000
1,00000
0,45295
0,16205
0,85346
0,56820
0,70686
1,00000
0,66471
1,00000
0,99349
1,00000

0,32710
0,00810
0,45320
0,98575
0,60320
0,69500
0,68105
0,72555
0,15120
0,80290
0,73280
0,00470
0,00405
0,99820
0,28865
0,97690
0,32145
0,14505
0,20495
0,52195
0,18950
0,69710
0,15340
0,33280
0,62840
0,43370

0,31070
0,02498
0,00989
0,72310
0,01452
0,12220
0,37420
0,31500
0,60740
0,37100
0,19990
0,00004
0,00210
0,51450
0,30270
0,10580
0,15390
0,39990
0,21010
0,03158
0,03305
0,22620
0,22600
0,26300
0,06275
0,04715

0,20890
0,07540
0,05450
0,95950
0,98400
0,14950
0,31260
0,71460
0,54630
0,60300
0,62750
0,00310
0,03290
0,92870
0,88110
0,45370
0,06790
0,01300
0,22990
0,08160
0,09040
0,73690
0,37580
0,64760
0,26960
0,18280

Table 1. Continued.

When several individuals were available for a given species, we computed mean

species values for each histological trait. We obtained a data matrix for 21 palaeognathous

bird species and 62 histological features (see Table 1). The complete character matrix, as well

as all the pictures used to measure those features, are archived as Project 1133 in

MorphoBank (http://www.morphobank.org/index.php).
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Measurement of phylogenetic signal

Quantification of phylogenetic signal using statistical approaches assumes that the
phylogeny (topology and divergence times) is known. Monophyly and interrelationships of
Palaeognathae are still hotly debated. With the exception of Johnston (2011), most
morphoanatomical phylogenies of birds always identified flightless ratites as a monophyletic
group distinct from flying tinamous (Livezey & Zusi, 2007, and references therein), but the
relationships among ratites varied a lot from one study to another. Early molecular
phylogenies also supported this dichotomy between tinamous and ratites (e.g. Sibley &
Ahlquist, 1990; Van Tuinen, Sibley & Hedges, 2000; Paton, Haddrath & Baker, 2002;
Harrison et al., 2004; Slack et al., 2006), but many recent molecular phylogenies found
tinamous to be nested within ratites, thus supporting the hypothesis of multiple, independent
losses of flight among palaeognaths (e.g. Hackett et al., 2008; Harshman et al., 2008; Phillips
et al., 2010; Haddrath & Baker, 2012; Smith et al., 2013), but the topologies differ depending

on the genes used.

We used four of the most recent phylogenies of palaeognathous birds as our reference
topologies. Among these, the first two were built using 129 and 179 morphoanatomical
characters, respectively (Bourdon et al., 2009b; Worthy & Scofield, 2012). Both of them
found ratite monophyly, with a kiwi-moa clade sister-group to a rhea-emu-ostrich clade
(Figure 3A, B). The two other topologies were built using 27 nuclear genes and 27
retroposons (Haddrath & Baker, 2012; Figure 3D), and 40 nuclear genes (Smith, Brown &
Kimball, 2013; Figure 3C), respectively. These two studies, like most phylogenetic analyses
of palaeognaths based on molecular characters, provided evidence that ratites are

paraphyletic, with tinamous as sister-group to either moa or emu-cassowary, and the ostrich
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Figure 3. The four reference phylogenies used in this study, taken respectively from Bourdon et al., 2009b (A),
Worthy & Scofield, 2012 (B), Smith et al., 2013 (C), and Haddrath & Baker, 2012 (D), figuring the species
included in our taxonomic sample. For phylogenies shown in C and D, some species in our original sample were
removed as they were not included in the analysis performed by the authors. Branch lengths on time scale at the
right of the trees are expressed in million years (Ma).

as the most basal palaeognath. With the exception of Haddrath & Baker (2012), relationships
to solve these inner nodes was compiled from Baker et al. (1995) and Bertelli, Giannini &

Goloboff (2002).

Dating the reference phylogenies.— Our reference phylogenies were dated assuming
that the minimum age for a node in the tree corresponds to the age of the oldest fossil
included in it (Marjanovi¢ & Laurin, 2007). The divergence between the genera Dromaius
and Casuarius has thus been dated at 38-35 Ma ago (Boles, 2001; Paton, Haddrath & Baker,

2002). The oldest known ratite, Diogenornis, has been referred to the Rheidae (Alvarenga,
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1983; Mayr, 2009), which allowed us to estimate the divergence between Rheidae and their
sister group to 59-56 Ma ago, in the Upper Palaeocene. Finally, moa remains and eggshells
from the Lower Miocene (Worthy et al., 2007; Tennyson et al., 2010) indicate that the

divergence of the moa clade from other palaeognaths is at least 19-16 Ma old.

The fossil record of other ratites groups is otherwise mostly incomplete: Struthio
coppensi, the oldest known fossil in the genus Struthio (Mourer-Chauviré et al., 1996), is
dated from the Lower Miocene, and most fossil Apterygidae and Dinornithidae are found only
in quaternary deposits (Worthy & Holdaway, 2002), although some Miocene kiwi fossils have
recently been described (Worthy et al., 2013). Oldest fossil tinamous are 17.5-16.5 Ma old
(Bertelli & Chiappe, 2005). Some other palaeognath fossils, like Palaeotis (Houde &
Haubold, 1987) or Lithornithidae (e.g. Houde, 1988; Leonard, Dyke & Van Tuinen, 2005),
were not included in our study because of their controversial position among palaeognaths

(e.g. Livezey & Zusi, 2007; Mayr, 2009; Johnston, 2011; Worthy & Scofield, 2012).

Topologies by Bourdon et al. (2009b) and Worthy & Scofield (2012) were dated using
congruent informations taken from both the fossil record and vicariance biogeography (see
Laurin et al., 2012). The phylogenetic tree taken from Haddrath & Baker (2012) was already
dated using a molecular clock calibrated with fossil anchor points which were used in this
study, and the tree taken from Smith et al. (2013) was dated using the fossil record, except for

the rooting that was dated using information taken from Haddrath & Baker (2012).

We could not find palaeontological or molecular data to reliably date terminal
branches for some nodes. Thus, we enforced a minimal branch length of 5 Myr to both

terminal branches within each ratite genus and internal branches stemming from nodes that
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we were not able to date using either fossils or vicariance biogeography. This is analogous to
the method proposed by Laurin, Canoville & Quilhac (2009) to deal with missing branch

length data in comparative analyses.

Quantification of phylogenetic signal.— We chose four different measures commonly
used to estimate phylogenetic signal in evolutionary biology and ecology — see Mlinkemller
et al. (2012) and references therein for a comprehensive review: Pagel’s A (Pagel, 1999),
Abouheif’s Cpean (Abouheif, 1999), Blomberg’s K (Blomberg, Garland & lves, 2003), and
Diniz-Filho’s phylogenetic eigenvector regressions (PVR; Diniz-Filho, de Sant’Ana & Bini,

1998).

The efficiency of PVR has been criticised in recent literature (Adams & Church, 2011;
Freckleton, Cooper & Jetz, 2011). However, Diniz-Filho et al. (2012) found PVR to perform
well with an appropriate phylogenetic eigenvector selection procedure, and suggested directly
minimizing residual Moran’s | as a powerful iterative approach; for this reason, we used this
method for eigenvector selection. Although PVR was not included in the methodological
review by Minkemdller et al. (2012), we decided to include it in this study because it was
used by Cubo et al. (2005) and Legendre et al. (2013) for measuring the phylogenetic signal
in osteohistological features. Including PVR in this work is thus essential to compare our

estimations with the results of these previous studies.

Phylogenetic signal was estimated independently for each of the 62 histological
characters, which were regressed on each of the four reference phylogenies using each of the
four methods to measure signal, i.e. 992 estimations. All analyses were performed in R using

the following functions: phylosig, from the package ‘phytools’ (Revell, 2012) for Pagel’s A,
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phylosignal, from package ‘picante’ (Kembel et al., 2010), for Blomberg’s K; abouheif.moran
(method: oriAbouheif), from package ‘adephylo’ (Jombart, Balloux & Dray, 2010), for
Abouheif’s Cpean; and PVR (method: moran), from package ‘PVR’ (Santos et al., 2012), for

Diniz-Filho’s PVR.

Results

An important amount of bone histological features — 27 to 32 characters out of 62,
depending on the topology — do present a significant phylogenetic signal (p < 0.05) using at
least one of the four methods (see Table 1). Among these, 5 to 16 (19 to 50%, depending on
the topology) are selected by at least three of the four methods, suggesting the presence of a

signal in these features.

All bone size features present a significant signal for every topology and at least three of the
four methods (Table 2), which is also the case for most features related to vascular density
(significant signal for at least 70% of the variables, with a congruence among estimators >
50% except for the Smith et al. (2013) topology). These results are congruent with the
findings of Cubo et al. (2005) and Legendre et al. (2013). Conversely, most features linked to
osteocytes and relative proportions of vascular canals exhibit a much lower signal (< 60%
characters selected by any method, and a congruence among estimators < 40% except for cell
size for both morphoanatomical topologies). Mean values, i.e. features created by compiling
the mean of all four transects for a given section, share a much weaker signal than features
measured on each individual transect (Table 2); with the exception of the Haddrath & Baker
(2012) topology, the congruence among estimators for mean values is always less than half of

the one observed for individual features.
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Number of Number of variables presenting a significant signal for at least one

variables phylogenetic comparative method

Bourdon et al. Worthy & Scofield  Haddrath & Baker Smith et al.

Bone size 2 2 2 2 2
Vascular density 10 8 9 8 7
Proportion of vascular canal types 30 14 12 11 12
Cell shape 10 6 5 6 3
Cell size 10 4 3 5 3
All characters, except mean values 50 27 24 26 27
All mean values 12 7 8 6 4

Number of Number of features presenting a significant signal for at least three of the

variables four phylogenetic comparative methods

Bourdon et al. Worthy & Scofield  Haddrath & Baker Smith et al.

Bone size 2 2 2 2 2
Vascular density 10 5 7 4 0
Proportion of vascular canal types 30 5 4 4 3
Cell shape 10 0 1 1 0
Cell size 10 2 2 2 0
All characters, except mean values 50 13 14 10 5
All mean values 12 1 2 3 0

Table 2. Number of features considered as presenting a significant phylogenetic signal, for each category of
features, plus for all characters measured on individual transects and all compiled mean values, independently
(list on first column).

Overall, the amount of features selected as presenting a significant and congruent
phylogenetic signal is very consistent through all four phylogenies. However, the amount of
selected features is slightly weaker for the topology taken from Smith et al. (2013), which
might be due to its reduced sample (only seven species) compared to other phylogenies that
incorporate kiwi and moa species. This is particularly obvious in the case of Abouheif’s Cpean,
for which there are twice as many characters with a high signal when regressed on the two
morphoanatomical topologies — the ones with the largest sample — as when regressed on the
Smith et al. (2013) one, since Abouheif’s Cyean IS known to be strongly dependent on the
structure and size of the phylogeny (Minkemdller et al., 2012). Concerning methods for
measuring phylogenetic signal, the number of features with a high signal is consistent through
all four estimators for a given topology, with the exception of PVR, which identifies many

more variables with a high signal for the two molecular phylogenies.
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Finally, we identified four variables that are neither measures of bone size nor vascular
density, but that nonetheless show a significant phylogenetic signal for every topology and
almost every method. These variables include the cellular size measured in the caudal and
medial transects of femora, and the proportion of oblique vascular canals measured in the

rostral and caudal transects of tibiotarsi (Table 1).

Discussion

Phylogenetic signal in palaeognaths

We quantified phylogenetic signal in osteohistological features measured on a
comprehensive palaeognath sample using various topologies and methods, in order to test the
presence of a significant signal in these features, and the congruence between different
topologies or different methods. Our results are congruent with previous ones (Cubo et al.,
2005) and show that two categories of features (i.e. bone size and vascular density) tend to be
identified by most methods and for most phylogenies as those showing the highest
phylogenetic signal. This supports the hypothesis of a high congruence between methods and,
surprisingly, a relative independence between the presence of a strong signal in a feature and
the topology used for the analysis. In contrast, sample size seems to have a strong influence
on the identification of a character as presenting a high phylogenetic signal: topologies by
Haddrath & Baker (2012) and Smith et al. (2013) are very similar, but the later identifies
much less characters as having a significant signal than the former because of a much smaller

sample size.
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‘Traditional’ bone histology has mostly focused on the influence of functional
constraints rather than historical constraints on the variation of qualitative histological
characters over the last decades (reviews in Cubo & Laurin, 2011; Legendre et al., 2013). All
studies that intended to measure phylogenetic signal on osteohistological characters always
found significantly better results for characters measured at the microanatomical level than at
the histological one (e.g. Laurin, Girondot & Loth, 2004; Cubo et al., 2005; Montes, Castanet
& Cubo, 2010). Hence, even if the presence of a phylogenetic component in histological
variability has been acknowledged by palaeohistologists, it is generally accepted that
guantitative features measured on vascular canals and osteocytes also vary following a
functional constraint. The strongest signal identified in this study was found at the
macrostructural (bone size) and mesostructural (vascular density) level (sensu Huttenlocker,
Woodward & Hall, 2013). The other four characters (proportion of oblique vascular canals in
caudal and medial transects and size of osteocyte lacunae in rostral and caudal transects) with
a significant and highly congruent phylogenetic signal were measured at the histological
scale. The fact that mean features do present a weaker signal than features measured along
transects (i.e. rostral, lateral, medial and caudal) indicates a potential bias in these type of
variables for analysing phylogenetic signal. Hence, compiling measures from a whole
histological section without distinguishing the different transects may result in the ‘mixing’ of
different characters altogether by breaking the strict frame of secondary homology (sensu de
Pinna, 1991), thus preventing the detection of a potentially high phylogenetic signal. For this
reason, the procedure described in this paper for the measurement and organization of
guantitative histological features is probably better than previous attempts to measure
phylogenetic signal in histological characters, and should be applied to more taxa at a more

inclusive level within vertebrates.
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The phylogenetic comparative method in palaeohistology

The link between bone histology and phylogeny has long been a matter of controversy
among palaeohistologists. Originally thought to be of great interest in the field of systematics
(Queckett, 1849a, 1855), osteohistological characters have progressively become mostly used,
at least among tetrapods, to study biomechanical and other functional constraints, relegating

the phylogenetic information they potentially contain to a ‘secondary’ signal.

Studies on the bone histology of vertebrates in a phylogenetic perspective have been in
constant increase over the last decade (e.g. Padian et al., 2001; Padian, Horner & de Ricqles,
2004; de Ricgles, Castanet & Francillon-Vieillot, 2004; Cubo et al., 2005, 2008, 2012,
Montes et al., 2007, 2010; Dumont et al., 2013; Houssaye et al., 2013; Houssaye, Tafforeau
& Herrel, in press; Marin-Moratalla et al., in press), and the dichotomy between phylogenetic
and functional signals for histological features has been described as misleading (since these
explanatory factors are not mutually exclusive and any feature can significantly exhibit both
of them). Yet, most incursions of palaeohistologists in the field of phylogeny have consisted
in optimizing these descriptive characters on phylogenies taken from the literature without
further investigation on a potentially informative signal. De Ricqgles et al. (2008: 73), while
acknowledging the presence of a significant phylogenetic signal in the bone histology of
archosaurs at the microanatomical level, considered features measured at the histological level
as reflecting “mostly [...] autapomorphic signals” (citing the results obtained by Cubo et al.,
2005), and considered themselves “agnostic about whether the histological character-states
that [they] tentatively used really depict apomorphic or plesiomorphic (or homoplastic)
conditions at the nodes involved”. In a recently published book, Padian (2013: 4) identifies

the “four signals” of fossil bone histology as being ontogeny, phylogeny, mechanics, and
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environment; the phylogenetic signal is described as being “persistent, but [...] never the
strongest signal”. Padian et al. (2013: 271) consider that “Separating phylogenetic signal of
bone microstructure from ontogeny, biomechanics and environment will be extremely

difficult, because these other signals are often directly related to phylogeny”.

The reason why qualitative, descriptive histological characters have mostly failed to
reflect any significant phylogenetic signal and always been identified as being mostly
influenced by autapomorphic, functional constraints, is that these characters are the result of
the categorization of continuous features into discrete characters relative to bone matrix and
bone tissue types, following a reference nomenclature established by Francillon-Vieillot et al.
(1990) and de Ricgles et al. (1991). These seminal works allowed a generation of
palaeohistologists to provide accurate descriptions of the bone histology in major vertebrate
taxa and to identify numerous characteristics of bone growth mecanisms, and brought
evidence of extremely high levels of homoplasy ocurring at the histological level for discrete
features. The discretisation of the variation present in vertebrate bone histology at all
organization levels into unequivocal characters has been used to describe patterns of variation
in entire bone sections. This may have resulted in ambiguous interpretations of some of these
characters, especially because some of them have recently been considered dubious due to
methodological biases for identifying some bone tissue types (Bromage et al., 2003; Lee,
2013; Stein & Prondvai, 2014). For this reason, the ‘traditional’, descriptive histological
nomenclature can still be regarded as a very powerful tool to describe the comparative
anatomy of bone, but it is unsuitable for a precise account of the variation of bone
microstructure in a phylogenetic context, and its use may have prevented previous workers
from identifying all signals accounting for this variation, including the phylogenetic one. It is

worth noting that the bone histological features showing a high phylogenetic signal (and
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hence a potential interest in systematics) at the phylogenetic level considered in this study
(palaeognaths) can show a homoplastic pattern of variation at more inclusive levels (birds,

dinosaurs, archosaurs, diapsids, etc).

Phylogenetic comparative methods (PCMs, sensu Harvey & Pagel, 1991) include a
very wide variety of techniques to incorporate the phylogenetic information in the analysis of
quantitative features. The measure of phylogenetic signal itself (sensu Blomberg & Garland,
2002 — see also Munkemdiller et al., 2012) has been considerably developed since the first
attempt by Felsenstein (1985) to take it into account using phylogenetically independent
contrasts; the four indexes used in this paper are only a few examples inside an array of
methods that are now available to describe and quantify the influence of phylogenetic
constraints. In this study, the use of PCMs allowed us to find significant and congruent
measures of the phylogenetic signal in osteohistological features, not only at the
macrostructural level, but also at the microstructural one. This shows that the use of an
exhaustive sample inside a given clade and a strict frame of homology for the measure of
guantitative characters is essential to find phylogenetic information, which can be described
independently from the three other signals present in bone histology and is otherwise
inaccessible in this type of features. We believe that this methodology provides a new way to
study bone histology in a phylogenetic context. PCMs should be consistently used in
palaeohistological studies to ensure a better understanding of the often neglected, but now

easily measurable, phylogenetic signal.
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Conclusions de la premiere partie

+ Un signal phylogénétique significatif peut étre observé pour un grand nombre de
caractéres ostéohistologiques, a différents niveaux de I’arbre phylogénétique des

vertébrés, et pour différentes méthodes de mesure de ce signal.

+ L ’utilisation d’un échantillonnage exhaustif et d’un cadre d’homologie strict permet
d’affiner ces résultats et d’identifier un signal significatif pour des caractéres

ostéocytaires, traditionnellement considérés comme peu informatifs.
+ Les méthodes phylogénétiques comparatives sont un outil essentiel en histologie

osseuse quantitative, et devraient étre appliquées a I’ensemble des analyses

comparatives au sein de cette discipline.
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PARTIE |1

L’évolution de la croissance osseuse et du thermomeétabolisme
chez les archosauromorphes
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Il - 1. Evidence for high bone growth rate in Euparkeria
obtained using a new paleohistological inference model for

the humerus

Lucas J. Legendre, Loic Segalen et Jorge Cubo

Publication originale in: Journal of Vertebrate Paleontology, 33: 1343-1350 (Novembre
2013).

Résumé

L’ etude de I’évolution du taux de croissance osseuse et du taux meétabolique chez
les archosaures (crocodiliens, dinosaures — oiseaux compris — et ptérosaures) et leurs
proches groupes-fréres est devenu une préoccupation majeure au sein de la
communauté des paléontologues au cours des derniéres années. Dans cette étude,
nous estimons le taux de croissance osseuse d’Euparkeria en utilisant un nouveau
modéle d’inférence statistique pour I’humérus. Nous avons modifié
I’échantillonnage taxonomique d’espéces existantes utilisées dans des études
antérieures, sur lequel nous avons effectué des mesures gquantitatives de caracteres
histologiques et du taux de croissance osseuse. Les valeurs du taux de croissance
osseuse estimees chez Euparkeria sont cruciales pour comprendre la condition
ancestrale chez les archosaures, car ce taxon est considéré comme 1’un des plus
proches parents du crown group des archosaures. Nous avons obtenu un taux de
croissance osseuse instantané de 6,12 um/jour, ce qui suggere qu’Euparkeria
partageait avec d’autres archosauromorphes non-archosaures (Prolacerta,
Proterosuchus et Erythrosuchus) un taux de croissance élevé compatible avec un
métabolisme endotherme. Cet état dérivé pourrait avoir été hérité par certains
pseudosuchiens du Trias, comme le suggeére le taux de croissance osseuse instantané
éleve (14,52 pml/jour) estimé dans cette étude chez Postosuchus. Les
pseudosuchiens du Jurassique pourraient avoir perdu I’endothermie lors de la
transition d’habitats terrestres et d’une prédation active vers des habitats aquatiques
et des comportements de prédation de type embuscade, de telle sorte que les
crocodiliens du Crétacé seraient des ectothermes secondaires, ce qui est suggéré par
les valeurs de §'®0. En conclusion, nous apportons de nouveaux résultats en faveur
de I’hypothése d’un état ancestral endotherme chez le dernier ancétre commun des
archosaures, et considérons que les archosauromorphes non-archosaures et les
pseudosuchiens du Trias pourraient avoir présenté un thermométabolisme plus
proche de celui des dinosaures que de celui des Iépidosauriens ou des tortues.
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Abstract

The study of bone growth rate and metabolic rate evolution in archosaurs
(crocodiles, dinosaurs including birds, and pterosaurs) and close outgroups has
become a subject of major interest among paleontologists in recent years. In this
paper, we estimate the bone growth rate of Euparkeria using a new statistical
inference model for the humerus. We modified the taxonomic range of extant
species used in previous studies, on which we performed quantitative measurements
of histological features and bone growth rates. Bone growth rate values estimated
for Euparkeria are crucial in understanding the ancestral condition for archosaurs
because this taxon is considered one of the closest relatives to the archosaur crown-
group. We obtained an instantaneous growth rate of 6.12 um/day, suggesting that
Euparkeria shared with other non-archosaurian archosauromorphs (Prolacerta,
Proterosuchus and Erythrosuchus) a condition of high growth rate compatible with
endothermy. This derived state may have been inherited by some Triassic
pseudosuchians, as suggested by the high instantaneous bone growth rate (14.52
um/day) estimated in this study for Postosuchus. Jurassic pseudosuchians may have
lost endothermy during the transition from terrestrial habitats and active predation to
aquatic habitats and sit-and-wait predation behaviors, so that Cretaceous crocodiles
may be secondarily ectotherms, as suggested by 820 values. In conclusion, we
provide new evidence for the hypothesis of an ancestral endothermic state for the
last common ancestor of archosaurs, and predict that non-archosaurian
archosauromorphs and Triassic pseudosuchians may have been characterized by a
thermometabolism more similar to that of dinosaurs than to that of lepidosaurs and
turtles.

Introduction

The evolution of thermometabolism in archosaurs has been a matter of debate among
paleontologists and evolutionary biologists for decades. Since Ostrom (1969, 1974) described
the osteology of Deinonychus and Archaeopteryx and discovered evidence for a dinosaurian
origin of birds, considerations on bone histological features have proved to be crucial in
determining whether fossil archosaurs, and dinosaurs in particular, had an ectothermic or an
endothermic thermometabolic condition. Numerous studies on thermoregulatory physiology
of dinosaurs found evidence for endothermy in the 1970s, most notably those of Bakker

(1972, 1974), but these results were highly criticized because they were based only on

61



qualitative observations of global similarities between birds and dinosaurs, or on unreliable
features such as brain size or erect stance (see Benton, 1979, for a full review of arguments
pro/against endothermy in dinosaurs). Moreover, these studies lack analyses of evolutionary
patterns, because they were published before the rise of cladistics in paleontology (Cracraft,

1981).

Recent investigations on physiological (Farmer & Sanders, 2010), anatomical
(Summers, 2005), bone histological (Tumarkin-Deratzian, 2007), and developmental
(Seymour et al., 2004) features support the evolutionary hypothesis according to which the
last common ancestor of archosaurs was endothermic and living crocodiles have reverted to
an ectothermic state. Paleontological studies are needed to constrain the temporal and
phylogenetic frameworks of the origin of endothermy in archosauromorphs, and its loss in
pseudosuchians (i.e. taxa more closely related to crocodiles than to birds inside archosauria).
It has experimentally been shown that bone tissue contains a metabolic signal: resting
metabolic rate is related to bone growth rate, which, in turn, is related to bone histology
(Montes et al., 2007, 2010). Thus, the analysis of bone histology of extinct archosaurs and
closely related taxa may prove useful in understanding the origin and evolution of
endothermy in archosauromorphs. A series of recent paleohistological studies has allowed the
reconstruction of evolutionary patterns of bone growth rates and metabolic rates in non-
archosaurian archosauromorphs (comprehensive review in Botha-Brink & Smith, 2011).
Among these taxa, Euparkeria is generally considered as the closest known relative to the
archosaur crown-group (Nesbitt et al., 2009; Nesbitt, 2011; contra Dilkes & Sues, 2009).
Thus, estimating the bone growth rate of this taxon is crucial for the estimation of the
ancestral state of archosaurs. An objective of the present paper is to estimate the bone growth

rate of Euparkeria using the approach developed by Cubo et al. (2012), who performed
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guantitative measurements of histological features and experimental quantifications of bone
growth rates on a sample of extant species of amniotes and compiled a predictive equation
that enabled them to estimate the instantaneous bone growth rates for extinct species. Cubo et
al. (2012) computed predictive models on the basis of three long bones: the femur, humerus,
and tibia. Cross-validation tests revealed that although the femoral equation performed well,
the two other models were not statistically significant and therefore growth rates of the
humeri and tibiae could not be estimated based on their fossil sample. Modification of the
original sample of extant taxa with the addition of new species is likely to improve the
significance and predictive power of these models. Thus, we attempt to build new predictive
equations for the humerus and tibia by modifying the taxonomic sample of extant amniote
species used by Cubo et al. (2012). Finally, we discuss the congruence between our results
and published data obtained using the oxygen isotope proxy to infer the thermometabolic
status of extinct vertebrates (e.g. Barrick, Showers & Fischer, 1996; Fricke & Rogers, 2000;

Amiot et al., 2006).

Material and methods

Material

We used the 52 specimens belonging to 16 species of extant amniotes already sampled
in Cubo et al. (2012), with the addition of eight new specimens belonging to two species of
extant birds: the chicken Gallus gallus and the king penguin Aptenodytes patagonicus. The
penguin specimens were previously used by de Margerie et al. (2004) and the chicken
specimens by Montes et al. (2007) to estimate the relationship between bone microstructure

and bone growth rate, and between bone growth rate, body mass and metabolic rate,
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respectively. These species were added to improve the significance of our predictive models

for the two bones included in this study, i.e. the humerus and tibia.

Our predictive models were used to estimate bone growth rates in the following
extinct diapsids: Euparkeria capensis SAM-PK-7868 (stylopod, i.e. either humerus or femur;
originally indexed in de Ricgles et al. (2008) as SAM 7868) among non-archosaurian
archosauromorphs; Postosuchus kirkpatricki UCMP 28353 (humerus) within pseudosuchians;
and Lesothosaurus diagnosticus MNHN 1G27 (tibia), Maiasaura peeblesorum MOR 005
(tibia), Coelophysis bauri AMNH 27435 (tibia), Allosaurus fragilis UUVP 154 (tibia),
Thecodontosaurus antiquus YPM 2192 (tibia) and Lourinhanosaurus antunesi (tibia) among
ornithodirans. Postosuchus, Maiasaura, Coelophysis and Allosaurus were sampled, and their
histological features measured, in Cubo et al. (2012). Euparkeria and Lesothosaurus
specimens were previously described by de Ricqglés et al. (2008), Thecodontosaurus by
Benton et al. (2000), and Lourinhanosaurus by de Ricgles et al. (2001) and were analyzed
quantitatively in this study. High-resolution histological images (M153039 and M153041) of
the Euparkeria specimen are archived as Project 880 in  Morphobank

(http://www.morphobank.org/index.php).

Phylogenetic information was taken from Cubo et al. (2012) for all taxa with the
following exceptions. The Coelophysis stratigraphic range spreads from the early Norian to
the late Rhaetian (Spielmann et al., 2007). Euparkeria is considered the closest relative to
crown group Archosauria (Gower & Weber, 1998; Nesbitt, 2011) and dates from the Anisian
onward (Rubidge, 2005). As a basal sauropodomorph dinosaur, Thecodontosaurus is sister
group to all theropod dinosaurs (including birds) in our tree; specimens were found in the

fissure deposits of Durdham Down in Bristol, UK, dated from the Rhaetian (Whiteside &
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Marshall, 2008). Lourinhanosaurus is an allosauroid theropod (Mateus, 1998) from the
Lourinhd Formation (Kimmeridgian-Tithonian) in Portugal (Antunes & Mateus, 2003;
Mateus et al., 2006). Divergence times for Gallus and Aptenodytes, as for extant bird species

already used by Cubo et al. (2012), were taken from Pyron (2010).

Both bone growth rates and bone tissue types undergo ontogenetic variation, which is
why we incorporated ontogenetic control into our comparative analyses. We always measured
bone growth rate in regions formed during the phase of sustained high growth rate (i.e. after
the end of the acceleration phase, and before the beginning of the deceleration phase, both
phases being easily identifiable on the bone sections we used). We selected these regions by
assuming that bone tissues formed before and after the selected region are histologically

similar and were formed at the same rate as bone tissue of the selected region.

Variables

Periosteal bone growth rate. This is the dependent variable that is to be estimated in
extinct species. Bone growth rate was quantified in extant species using in vivo fluorescent
labeling (Montes et al., 2007). The histological thin sections were observed under ultraviolet
light (Zeiss Axiovert 35; Jena, Germany) and digitally imaged (Olympus, Japan). The highest
density across the fluorescent label was used as the endpoint of the fluorescent mark. We
measured bone growth rates in pm/day using the image analysis software ImageJ (Schneider,
Rasband & Eliceiri, 2012) as the distance (in um) between two consecutive fluorescent labels,
or between the last label and the bone periphery, divided by the elapsed time (days). This

distance was measured as the difference between the radius of the external circle (delimited
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by either the external label or the bone periphery) and the radius of the internal one (delimited
by the internal label) for each bone section.

Vascular orientation. Blood vessels in the bones were lost during sample preparation
in extant taxa, and during the fossilization process in extinct taxa. Thus, this variable
measures the orientation of the vascular canals, i.e. the cavities that had contained the blood
vessels and associated connective tissues during life. We determined the orientation of
vascular canals by inserting the largest ellipse into each vascular cavity using Image J. When
a conspicuous anastomosis was observed between two cavities, each cavity was measured
independently. To improve repeatability, the orientation of each vascular cavity was measured
using the radial index (sensu de Boef & Larsson, 2007). The orientation of these cavities was
computed as the angle between the major axis of each ellipse and a vector tangent to bone
periphery; thus, vascular canals extending parallel to the bone periphery have angles
approaching 0° and those extending parallel to the radius of the bone cross-section have
angles approaching 90° (de Boef & Larsson, 2007). Vascular canal orientation is a
continuously varying trait; to incorporate this trait in our character matrix, we categorized this
continuous variation into three orientation classes (see Table 1). These types of standard
vascular canal orientation were defined in our transverse sections as follows: circular canals
(C), which run roughly parallel to the bone periphery (0° + 22.5°; 180° — 22.5°); radial canals
(R), which run roughly orthogonal to the bone periphery (90° £ 22.5°); and oblique canals
(0), i.e. those canals excluded from the intervals corresponding to radial canals and to circular
ones (see de Margerie, Cubo & Castanet, 2002; de Margerie et al., 2004; de Boef & Larsson,
2007). Thus, we used three variables to describe the major vascular orientations found on
each bone section: proportion of circular canals (C/[C+R+0Q]), proportion of radial canals
(R/[C+R+0]), and proportion of oblique canals (O/[C+R+0]). In avascular bones, the

proportions of circular, radial and oblique canals were considered as zero.
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Table 1. Measured values for all seven ostechistological features, on humeri obtained from new specimens
sampled for this study. For other specimens in the humeri sample, see supplementary material of Cubo et al.
(2012) deposited at Dryad: doi:10.5061/dryad.j2m25n82/

Histological features Species Mean values for each specie n
Cell density Gallus gallus 0.002 3
(osteocyte/pm?) Aptenodytes patagonicus 0.002 4
Euparkeria capensis 0.002 1
Postosuchus kirkpatricki 0.001 1
Cell size (um?) Gallus gallus 31.21 3
Aptenodytes patagonicus 43.35 4
Euparkeria capensis 54.9 1
Postosuchus kirkpatricki 20.71 1
Cell shape Gallus gallus 0.469 3
Aptenodytes patagonicus 0.547 4
Euparkeria capensis 0.46 1
Postosuchus kirkpatricki 0.519 1
Radial index Gallus gallus 0.106 3
Aptenodytes patagonicus 0.294 4
Euparkeria capensis 0.158 1
Postosuchus kirkpatricki 0.067 1
Oblique index Gallus gallus 0.386 3
Aptenodytes patagonicus 0.427 4
Euparkeria capensis 0.292 1
Postosuchus kirkpatricki 0.3 1
Circular index Gallus gallus 0.508 3
Aptenodytes patagonicus 0.28 4
Euparkeria capensis 0.55 1
Postosuchus kirkpatricki 0.633 1
Vascular density Gallus gallus 143.4 3
(canals/mm?) Aptenodytes patagonicus 49.3 4
Euparkeria capensis 43.94 1
Postosuchus kirkpatricki 0.0001 1

Vascular density. Vascular density was measured by Cubo et al. (2005) as the ratio of
total vascular canal area to primary bone area; here we measured the number of canals
divided by mm? because the osteons are not yet entirelly filled in our sample of extant
species. As for vascular orientation, branching cavities were considered as two different
entities rather than as a single vascular canal. Sections showing a single vascular canal were
considered to be avascular, because this single vascular canal most probably corresponds to a

Volkmann canal (i.e. a blood vessel running from the periosteum to the endosteum).
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Cellular variables. Cellular shape, size and density were carefully measured both in
extant and extinct taxa. As for vascular canals, we measured the shape, size, and density of
cavities (osteocyte lacunae) that contained bone cells (the osteocytes). Where possible in
extant species (i.e. where the bone section contained enough osteocyte lacunae), we measured
30 osteocyte lacunae for each of the four main transects we defined on our sections (rostral,
lateral, medial and caudal), i.e. 120 osteocyte lacunae per bone section.

Cellular shape was quantified as the ratio between the minor and the major axes of
these cavities (0 < cellular shape < 1). A value of 1 means that the lacuna is perfectly circular.

Cellular size was computed using the major (M) and minor (m) axes of the osteocyte
lacuna and assuming its geometry as that of an ellipse (7t X M/2 x m/2).

Cellular density was quantified as the number of lacunae divided by the surface in

um?,

We performed all measurements using a microscope focused on a single layer of
osteocyte lacunae. Thus, the measurements refer to this single layer of osteocyte lacunae
whatever the thickness of the ground section. Cellular density was computed including all
osteocyte lacunae of the quoted single layer. To ensure that cell lacunae were measured near
their mid axis, only the largest osteocyte lacunae included in this layer were measured to

compute cell size and shape (Organ et al., 2011).

Phylogenetic Comparative Methods

Constructing paleobiological models of bone growth rate estimation. The
paleobiological growth rate inference models were constructed using multiple linear

regression tested for significance using permutations (Legendre et al., 1994) using the
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computer program Permute! version 3.4 alpha 9 (Casgrain, 2009). We obtained a standardized
coefficient for each variable (a’), which was unstandardized into a raw coefficient (a) by
using the expression:

d; = a’l * (Syl Sx1)

where sy is the standard deviation of the dependent variable and sx; is the standard
deviation of the independent variable under analysis. The intercept was computed using the

following equation:

b:Ymean—al*leean—aZ*XZmean— a-n*xnmean

The dependent variable (to be estimated in extinct taxa) was bone growth rate. As
independent variables, we used all histological features. The multiple regression method takes
into account the redundancy of information, called colinearity, among independent variables.
Using redundant variables may inflate the coefficient of determination (R?). However,
contrary to studies of variation partitioning (Cubo et al., 2008), here we are not concerned
with R?, the only statistical parameter of interest for our study being the P-value of the cross-

validation test (see below).

Computing confidence intervals for bone growth rate estimations in fossils. Each
extinct taxon of our sample was transformed into a node by splitting it into two sister taxa of
standardized branch lengths of 2 Ma. Values of the two newly created terminal taxa were
empirically modified in order to obtain, at the newly created node occupying the phylogenetic
position of our extinct taxon, the bone growth rate estimated for this extinct taxon. A 95%

confidence interval was then computed for each extinct taxon following the method of Laurin
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(2004) for nodes other than the root node, using the PDAP module in Mesquite (Midford,

Garland Jr. & Maddison, 2003).

Cross-validation tests. In regression analysis, any equation will fit better on the data
set used to create it than on a new data set. This effect is known as shrinkage. In our study,
predictive equations were optimized for the samples used to create them, which prevented
them from performing as well in other samples (e.g. for estimating bone growth rate in our
sample of extinct taxa). Thus cross-validation tests were necessary to determine whether we
can be confident in the reliability of our models or not. We compiled 16 subsamples for each
bone, each of them including every species in the sample but one. For each subsample, a
predictive regression (of bone growth rate) was computed and used to estimate predicted
scores for the species not included in the subsample. Then, the predicted bone growth rates
(obtained using the 16 predictive equations) were correlated with observed scores
(experimentally measured growth rates). This method (leave-one-out cross validation)
provides a significant improvement compared with that used by Cubo et al. (2012), who
performed cross-validation tests by splitting the sample of each bone into two arbitrary
subsamples, the first one to compute an inference model, the other one to perform bone
growth rate estimations, to be correlated with bone growth rate empirical measurements (2-
fold cross-validation). Leave-one-out cross-validation performs better because it avoids this
arbitrary split of the sample and, on the other hand, allows us to work with larger sample

sizes.

Results
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Humerus and tibia predictive equations obtained with all species of the sample were
significant (humerus: R? = 0.814, p = 0.013; tibia: R?> = 0.755, p = 0.022; tested computing

9999 permutations), when tested with all the data.

Cross-validation tests showed that the correlation between predicted growth rates and
observed scores were not significant. For the humerus, however, we observed that both
subsamples obtained from removing respectively one or the other ratite species (i.e. Struthio
camelus and Dromaius novaehollandiae) showed much more significant predictive equations
(p < 0.01) than other subsamples. In fact, the transverse diameters of the humeri of Struthio
camelus and Dromaius novaehollandiae are placed below the regression line in a sample of
flightless birds (Cubo & Casinos, 1997). This means that the humeri of these birds have
smaller diameters than expected for their body masses (compared with other flightless birds
also characterized by having smaller wing bones than flying birds). This is probably the
outcome of a heterochronic mechanism of either earlier cessation or slower growth rate,
which, by modifying bone histology, would disrupt the relationship between bone growth rate
and histological features. The inclusion of “outliers” in the sample (species with a very
derived morphology, e.g. ratites characterized by paedomorphic forelimbs and peramorphic
hindlimbs in which the functional relationship between bone growth rate and bone histology
has been disrupted by heterochronic mechanisms) decreases the coefficient of determination
(describing how well the predictive equation fits the set of data from which it was derived) as
well as the explanatory and predictive power of the equation. Thus we removed both ratite
species from our sample and compiled a new equation for the humerus. The king penguin also
has a very derived condition, but in this case the functional relationship between bone growth

rate and bone histology (on which the predictive model is based) was not disrupted.
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Summarizing, the significance of the model does not exclusively rely on the sample
size but also on the choice of relevant species characterized by a strong functional relationship

between their bone growth rate and bone histology.

72



Figure 1. Humeral cross-section of Euparkeria (SAM-PK-7868) in ordinary (A) and polarized (B) lights. Both
scale bars equal 0.5 mm.
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New predictive equations were computed for the humerus and tibia using the quoted
subsample (excluding ratites). The corresponding cross-validation tests show that although
the humeus model was significant (p = 0.032; tested computing 9999 permutations), the tibia
model was still non-significant. Hence this last model will be excluded from the following
analyses and discussion. For the humerus, we obtained the following predictive model (R? =
0.896, p = 0.003) tested computing 9999 permutations (the b coefficients and the intercepts

are not standardized):

Humeral growth rate = -97.9159 + 0.8420 x Vascular density + 15252.3752 x Cellular
density + 109.3471 x Cellular shape + 1.3826 x Cellular size — 167.3197 x Proportion of
circular canals + 0.6198 x Proportion of oblique canals — 34.1275 x Proportion of radial

canals

We quantified all the histological variables in our fossil samples (Figs. 1, 2), applied
the humeral predictive equation to them, and obtained the following bone growth rate
estimations and 95% confidence intervals: Euparkeria SAM-PK-7868: 6.12 um / day (0 —

15.68 um / day); Postosuchus UCMP 28353: 14.52 um / day (4.93 — 24.11 um / day).

According to de Ricqlés et al. (2008), Euparkeria SAM-PK-7868 is an undertermined
stylopod, and potentially either a femur or a humerus. Without a proper identification for this
sample, the bone growth rate estimation performed above may be irrelevant. Some evidence
suggesting that the stylopod SAM-PK-7868 is a humerus was obtained from analysis of the k
index variation: SAM-PK-7868 has a k index (k = 0.435) closer to that of the humerus SAM-
PK-13666 (k = 0.44) than to the mean k indices of femora SAM-PK-K10010 (k = 0.73) and

SAM-PK-K10548 (k = 0.53) published by Botha-Brink & Smith (2011). Definitive evidence
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in favor of stylopd SAM-PK-7868 being a humerus was obtained from bone size and
ontogenetic stage. J. Botha-Brink (pers. comm.) provided digital images of complete sections
of Euparkeria samples, so that we were able to compare the size of these sections with that of
our stylopod. The cross-sectional area of our presumed humerus SAM-PK-7868 (14.15 mm?)
is similar to that of the confirmed humerus SAM-PK-13666 (12.20 mm?), and less than half
of the cross-sectional area of the femora SAM-PK-K10010 (30.26 mm?) and SAM-PK-
K10548 (33.74 mm?). Two hypotheses have to be analyzed: the stylopod SAM-PK-7868 is
either a < 50% adult-sized femur or an adult-sized humerus. Considering that Ewer (1965)
suggested that all Euparkeria specimens were approximately of the same ontogenetic stage
(subadults or adults), and that the outer layer of SAM-PK-7868 cortex has lower vascular
density than deeper layers (Fig. 3), we conclude that this specimen undoubtedly corresponds
to an adult-sized humerus. The presence of the deltopectoral crest on the plane of section may
indicate that this section is not entirely diaphyseal but rather metaphyseal (two complete
cross-sections were uploaded into Morphobank: one from which the histological measuments
were performed [M153043] and other that was used to compute bone size [M153044];

http://www.morphobank.org/index.php/Projects/ProjectOverview/project_id/880).

Discussion

Evolution of Growth Patterns and Metabolic Rates in Archosauromorpha

The evolution of bone growth rates and metabolic rates in Archosauromorpha is a
subject of major interest among paleontologists. Gross (1934) discovered fibrolamellar bone
tissue (i.e. formed at high growth rate and compatible with a high metabolic rate) in

Erythrosuchus — one of the most basal archosauriformes. This result, confirmed by de Ricglés
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(1976), attracted the attention of many
paleontologists towards non-archosaurian
archosauromorphs as key taxa to understand
the thermometabolism of the last common
ancestor of archosaurs (e.g. de Ricgles et al.,
2008; Neshitt et al., 2009; Botha-Brink &
Smith, 2011; Werning et al., 2011). Among
these contributions, that by Botha-Brink and
Smith (2011) is particularly relevant because
these authors performed for the first time
bone growth rate estimations in non-
archosaurian  archosauromorphs. Their
estimates are the most conservative possible
values because they were computed by
measuring the amount of cortex deposited
between two successive growth rings
(assuming that a growth ring is deposited
annually), divided by 380 days of a Triassic
year (Botha-Brink and Smith, 2011).
Considering that these taxa may have grown
for only 6 months (i.e. spring and summer),
the growth rate estimates would in fact double

(J. Botha-Brink, pers. comm.). Moreover,

Figure 3. Humeral cross-section of Postosuchus
(UCMP 28353) in ordinary light. Scale bar equals 0.5
mm.
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Figure 4. Humeral cross-section of Euparkeria (SAM-PK-7868) in ordinary light. Black arrow: peripheral
parallel-fibered bone tissue. Abbreviations: mc, medullary cavity.

these values are also averaged using all analyzed skeletal elements, i.e. certain elements may
have grown more quickly than others. As an outcome of this interest on non-archosaurian
archosauromorphs, we now have a larger picture of evolutionary patterns of bone tissue and
associated growth rates in these taxa. These are (from taxa more distantly related to to taxa

more closely related to Archosauria) as follows (Fig. 4):

Trilophosaurus (Werning & Irmis, 2011; observations performed on femora, humeri,
tibiae and ulnae) and Rhynchosauria (de Ricgles et al., 2008; observations made on ribs) may
have retained the primitive condition that characterizes lepidosaurs, with lamellar-zonal bone
tissue formed at very slow growth rates.

Prolacerta, Proterosuchus and Erythrosuchus grew at rates of, respectively, 2.1 — 4.2
um/day, 11.3 — 22.6 um/day, and 21 - 42 um/day and shared the derived capacity of forming

fibrolamellar bone tissue (Botha-Brink & Smith, 2011). These estimations were performed on
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tibiae, femora, and fibulae in Prolacerta and Proterosuchus, and on ribs, a tibia, and a radius
in Erythrosuchus, assuming either a growth period of 380 days by Triassic year or a growth
period restricted to the spring and summer (Botha-Brink & Smith, 2011). The juvenile
Proterosuchus femur and tibia show a radial bone tissue pattern, with vascular canals
arranged perpendicular to the periosteum and no growth rings or annuli (Botha-Brink &
Smith, 2011). Extant bone tissue patterns of this type have been found in the chicken by
Montes et al. (2007), with an associated instantaneous bone growth rate of 47.01 um/day for
the tibiotarsus, and in the king penguin by de Margerie et al. (2004), with an instantaneous
bone growth rate interval of roughly 50 — 165 um/day in the humerus. Erythrosuchus
possesses a dense reticular pattern in the tibia, which has also been found in the tibiotarsi of
emus and ostriches by Castanet et al. (2000), with associated instantaneous bone growth rates
of 30.1 and 35.8 — 42 um/day, respectively. Although it is highly unlikely that Proterosuchus
and Erythrosuchus grew at rates as high as those characterizing the quoted bird species, the
presence of radial and reticular bone tissue suggest that they showed higher bone growth rates
than those estimated for more basal archosauromorphs.

Vancleavea shows a reversion to the primitive condition, and is characterized by
lamellar-zonal bone tissue formed at very slow growth rates (Nesbitt et al., 2009;
observations performed on a femur).

Chanaresuchus is characterized by early rapid growth, as suggested by the inner
region of the bone cortex formed by fibrolamellar bone tissue (de Ricglés et al., 2008;
observations made on an undetermined long bone).

Euparkeria, the closest sister group to archosaurs (Nesbitt et al., 2009; Nesbitt, 2011),
Is characterized by the presence in femur, humerus, tibia, and fibula of parallel-fibered bone

tissue formed at bone growth rates of 1.4 - 2.8 um/day assuming either a growth period of 380
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days by Triassic year or a growth period restricted to the spring and summer (Botha-Brink &

Smith, 2011).

Summarizing, Trilophosaurus and Rhynchosauria may have retained the primitive
condition (lamellar-zonal bone tissue formed at very slow growth rates) and the last common
ancestor of Prolacerta and birds may have acquired the derived condition (fibrolamellar bone
tissue formed at high to very high growth rates). Within this last clade, Vancleavea may have

undergone a reversion to the primitive condition (lamellar bone tissue; Nesbitt et al., 2009).
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We constructed a new paleohistological model of bone growth rate inference for the
humerus using an improved procedure (compared to that used by Cubo et al., 2012 — see
above) and used it notably to estimate the bone growth rate of the Euparkeria humerus based
on SAM-PK-7868 (see above). We obtained an estimated growth rate value of 6.12 um/day,
the 95% confidence interval of which (0 — 15.68 um / day) includes the prediction made by J.
Botha-Brink (pers. comm.) for humerus SAM-PK-13666 of 1.98 — 3.97 um/day (lower value
obtained assuming a growth period of 380 days by Triassic year, higher value obtained
assuming a growth period restricted to a 6-months period). Our bone growth rate estimate is
congruent with the presence of an extensive fibrolamellar complex in humerus SAM-PK-
7868 (Fig. 1; see also the histological description of this specimen by de Ricgleés et al., 2008).
The formation of fibrolamellar bone during the phase of sustained high growth rate may be an
apomorphic feature shared by Prolacerta, Proterosuchus, Erythrosuchus, Chanaresuchus,
Euparkeria, and the last common ancestor of archosaurs. In this phylogenetic context, the last
common ancestor of archosaurs may have been characterized by high growth rates and high
metabolic rates compatible with endothermy. This derived state may have been inherited by
ornithodirans (pterosaurs and dinosaurs including birds) and by Triassic pseudosuchians (taxa
more closely related to crocodiles than to birds), as previously suggested by de Ricqglés et al.
(2008), Botha-Brink & Smith (2011), and Werning et al. (2011). Within this last group, we
inferred an instantaneous bone growth rate of 14.52 um/day for the humerus of Postosuchus
(Fig. 2), a taxon that was able to form densely vascularized fibrolamellar bone tissue (de
Ricqglés, Padian & Horner, 2003). Pseudosuchians may have lost endothermy during the
transition in the Jurassic from a terrestrial habitat and active predation to an aquatic habitat
and a sit-and-wait predation behavior, resulting in extant crocodiles becoming secondarily

ectothermic (Seymour et al., 2004).
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Do Isotopic Analyses suggest that Crocodiles are Secondarily Ectothermic?

The analysis of the oxygen isotopic composition of phosphate in biogenic apatite
(bone, teeth) has been used to estimate the ectothermic or endothermic status of extinct
vertebrates (e.g. Barrick et al., 1996; Fricke & Rogers, 2000; Amiot et al., 2006). Considering
that oxygen isotope fractionation between PO, and body water is thermally dependant
(Longinelli & Nuti, 1973), several studies have shown that for animals living in the same
biota and having the same water strategies (obligate or non-obligate drinkers), the 5'®Opos
values are expected to be different between endotherms and ectotherms (Amiot et al., 2004,
2006). In terrestrial ecosystems, the water source depends on the isotopic composition of
meteoric water, which is in turn controlled by latitude and air temperature (Dansgaard, 1964;
Fricke & O’Neil, 1999). Model curves of present-day &0 values of endothermic and
ectothermic vertebrates have been established as a function of the latitude. According to these
models, endothermic vertebrates are expected to have higher 8'°0 values than ectothermic
ones above 50° latitude, but ectothermic vertebrates should be similar to endotherms, or

display higher 820 values at low latitudes (Amiot et al., 2004, 2006).

While results obtained in dinosaurs are compatible with endothermy (thus supporting
the hypothesis of a widespread high metabolic rate in Cretaceous dinosaurs), the isotopic
values obtained for Cretaceous crocodiles and turtles suggest that these animals were
ectothermic (Amiot et al., 2006). This last result is compatible with our hypothesis of an
ancestral endothermic state for the last common ancestor or archosaurs because, as quoted
above, crocodylomorphs may have lost their endothermic condition when they became
aquatic in the Jurassic. The other prediction derived from our hypothesis suggests that

Triassic pseudosuchians and non-archosaurian archosauromorphs may have been
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characterized by 820 values more similar to those of endothermic Triassic dinosaurs than to

those of ectothermic Triassic lepidosaurs and turtles.
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Il — 2. Paleohistological evidence for ancestral endothermy

In archosaurs

Lucas J. Legendre, Guillaume Gueénard, Jennifer Botha-Brink et Jorge Cubo

Résumé

L’évolution de la production métabolique de chaleur chez les archosaures fait depuis
longtemps I’objet d’un débat en paléontologie. L’étude de I’histologie osseuse chez
les organismes fossiles fournit des informations cruciales sur leur taux de croissance
osseuse, et indirectement sur leur taux métabolique, qui ont été utilisées pour étudier
I’évolution du thermométabolisme chez les archosaures. Des caractéres compatibles
avec un taux de croissance osseuse élevé et un métabolisme endotherme ont été
identifiés chez plusieurs espéces fossiles d’archosaures, dont des dinosaures non-
aviens. Néanmoins, aucune estimation quantitative du taux métabolique n’a jamais
été effectuée sur des fossiles en utilisant des caractéres ostéohistologiques. Ici, nous
avons construit un modele statistique prédictif dans un cadre phylogénétique en
utilisant un échantillonnage de vertébrés actuels et fossiles et un ensemble de
caractéres ostéohistologiques dans le but d’estimer les taux métaboliques
d’archosauromorphes fossiles. Nos résultats montrent que les dinosaures théropodes
du Mésozoique présentent des taux métaboliques comparables a ceux des oiseaux
actuels, que les archosaures partagent un taux métabolique primitivement plus élevé
que celui des ectothermes actuels, et que I’acquisition de cet état de caractére dérivé
a eu lieu a un niveau bien plus inclusif de la phylogénie, au sein des
archosauromorphes non-archosaures.

Abstract

The evolution of metabolic heat production in archosaurs has long been a matter of
debate in palaeontology. The study of fossil bone histology provides crucial
information on bone growth rate (and indirectly metabolic rate), which has been
used to investigate the evolution of thermometabolism in archosaurs. Several
species of fossil archosaurs, including non-avian dinosaurs, have been shown to
exhibit features compatible with a high metabolic rate and endothermy. However,
no quantitative estimation of metabolic rate has ever been performed on fossils
using bone histological features. Here we performed statistical predictive modeling
in a phylogenetic context using a sample of extant and extinct vertebrates and a set
of bone histological features in order to estimate metabolic rates of fossil
archosauromorphs. Our results show that Mesozoic theropod dinosaurs exhibit
metabolic rates very close to those found in modern birds, that archosaurs share an
ancestral metabolic rate significantly higher than extant ectotherms, and that this
derived high metabolic rate was acquired at a much more inclusive level of the
phylogenetic tree, among non-archosaurian archosauromorphs.
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The Archosauria clade includes extant crocodiles and birds, as well as numerous
extinct groups such as pterosaurs and non-avian dinosaurs. The latter group has always been a
matter of controversy regarding their capacity for metabolic heat production (Ostrom, 1969;
Bakker, 1971). The hypothesis of endothermy being a synapomorphy of modern birds among
sauropsids has been challenged countless times during the 1970s, after the discovery of the
dinosaurian origin of birds (Bakker, 1974), but these studies were all based on observations of
global similarities between birds and dinosaurs, and only qualitative features were used
without performing any quantitative estimation of thermometabolism. For this reason,
evidence of endothermy in dinosaurs was considered inconclusive by most palaeontologists;
dinosaurs were labelled ectothermic with probable homeothermy given their large size
(Benton, 1979), and non-avian archosaurs considered as ectothermic by most

palaeontologists.

However, over the past decade, investigations on thermometabolism in fossil
vertebrates have increased dramatically (Nespolo et al., 2011). Evidence for an endothermic
ancestral condition of heat production at the archosaur node, and a reversal in modern-day
crocodiles to an ectothermic state, has been raised in different fields of biology including
development (Seymour et al., 2004), physiology (Farmer & Sanders, 2010), anatomy

(Summers, 2005), and palaeohistology (de Ricgleés et al., 2008).

It has been shown experimentally that bone tissue contains a metabolic signal: resting
metabolic rate is related to bone growth rate, which, in turn, is related to bone histology
(Montes et al., 2007). Thus, the analysis of bone histology of extinct archosauromorphs
proves useful in understanding the origin and evolution of endothermy. A series of

palaeohistological studies has allowed the reconstruction of evolutionary patterns of bone
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growth rates in non-archosaurian archosauromorphs using qualitative assessments of bone
histological features (de Ricqgles et al., 2008; Botha-Brink & Smith, 2011). More recently, two
studies used quantitative histological characters to build statistical predictive models and
estimate bone growth rates of fossil archosauromorphs (Cubo et al., 2012; Legendre, Segalen
& Cubo, 2013). All these predictions provided indirect information on the evolution of

metabolic rate in archosaurs, but they were not estimations of thermometabolism itself.

To date, no study has provided quantitative estimations of metabolic rate in extinct
diapsids using bone histological features. Although the relationship between bone growth rate
and metabolic rate is statistically significant, no definitive answer to the origin of endothermy
in archosaurs can be found without a precise estimation of metabolic rate. Furthermore, even
if phylogenetic signal is known to be a major influence on the variation of osteohistological
variables (Cubo et al. 2012; Legendre et al., 2013; Legendre et al., in press), to date no
inference model has included phylogenetic information in the form of predictive variables.
Thus this study involves two further steps in investigating the evolution of thermometabolism
in diapsids: the direct estimation of quantitative values of mass-specific metabolic rate in

extinct diapsids, and the use of phylogenetic variables as predictive ones.

Guénard et al. (2013) recently published a powerful new approach to deal with
phylogenetic information in predictive modeling: the structure of a phylogenetic tree is
expressed as a set of eigenfunctions, termed phylogenetic eigenvector maps (PEM), which
depict a set of patterns of phenotypic variation among species from the structure of the
phylogenetic tree. Thus, a subset of eigenfunctions from a PEM can be selected to predict
phenotypic values of traits for species that are represented in a tree, but for which trait data

are otherwise lacking — which is the case in fossil species for traits that can only be measured
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in vivo, such as metabolic rate. For this reason, we selected this approach to estimate mass-

specific resting metabolic rate (mass-specific RMR, in mL O, h™t g%¢’

) in this study, using
histological parameters (Supplementary Tables 1-3) and phylogenetic information. The value
0.67 is the allometric exponent of the ratio surface to volume versus body mass for
geometrically similar organisms. It has been used to correct the effect of body mass on mass-
specific RMR, assuming that the effect of body mass on metabolic rate is mediated by the fact

that both the surface to volume ratio and the caloric loss per mass unit decrease as body mass

increases (Withers, 1992; White & Seymour, 2005; Montes et al., 2007).

We built three inference models (humerus, femur and tibia) that showed high
statistical significance (R? > 0.99; p < 10°). We thus obtained three mass-specific RMR
estimations for specimens with all three long bones included in the sample. However, mass-
specific RMR is an organism-level parameter. We used the higher estimation for each
specimen in further analyses because an organism with a mass-specific RMR typical of
endotherms can grow slowly (e.g. Microcebus murinus; Castanet et al., 2004), but the
converse does not hold (a specimen with low mass-specific RMR does not have a high bone
growth rate because this process involves a high protein turnover that is very energy
consuming; Montes et al., 2007). Moreover, osteohistological features included in the model
were measured in regions formed during the phase of sustained high bone growth rate (Cubo
et al., 2012). For a given body mass, the resting metabolic rate of endotherms are more than
one order of magnitude higher than those of turtles, lepidosaurs and crocodiles (Clarke &
Portner, 2010). These differences are the outcome of metabolic heat production through the
mitochondrial uncoupling activity in endotherms (Walter & Seebacher, 2009). The RMR
(mLO, h™*) of mammals is 12 times higher, and those of birds 15 times higher, than those of

ectotherms of similar body masses (Clarke & Portner, 2010). We can observe this large gap
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Figure 1. Mass-specific resting metabolic rate for all species included in our sample. The black dotted lines
delimit the values attributed respectively to truly ectothermic (blue), truly endothermic (red), and intermediate
(purple) metabolic rates for all species. The purple dotted lines delimit a small gap between values of metabolic
rates for fossil species, inside the large gap of intermediate mass-specific RMR values. The resulting
optimization of the character is plotted on the associated phylogeny (blue: true ectothermy, red: true endothermy,
purple: intermediate metabolic rate).

among values in our sample: Crocodylus shows the highest mass-specific RMR observed in
our sample of ectotherms (0.34 mLO, h™* g®®) and Microcebus the lowest mass-specific
RMR observed in the sample of endotherms (1.53 mLO, h™* g°°"; Figure 1). Thus we
conclude that mass-specific RMR inferences equal to, or lower than, 0.34 mLO, h* g%’
correspond to ectothermic animals, whereas inferences equal to, or higher than, 1.53 mLO, h*

g"* correspond to endotherms,

The analysis of evolutionary patterns (Figure 1) shows that, among non-archosaur

archosauromorphs, Prolacerta shows a high value of mass-specific RMR (1.73 mLO, h™ g°

067y compatible with the hypothesis of a ancestral high metabolism at the archosauromorph

node, whereas Proterosuchus, Garjainia, and Euparkeria show values intermediate between
extant ectotherms and endotherms (from 1.04 mLO, h™* g’ for Euparkeria to 1.45 mLO, h*
g%’ for Garjainia). The phytosaur Rutiodon shows a much lower value (0.41 mLO, h™ g®¢")
very close to that of Crocodylus, which is congruent with the strong similarities in
morphology and lifestyle between phytosaurs and crocodilians. This finding supports a
previous study by Cubo et al. (2012) who, using a different approach, inferred a bone growth
rate for Rutiodon lower than those measured in extant ectotherms. Among pseudosuchians,

-0.67

Calyptosuchus has a very high mass-specific RMR (1.88 mLO, h™* g®®'), typical of extant

-0.67

endotherms, whereas Postosuchus presents a lower value (0.51 mLO, h™* g®¢"), which may

indicate a reversion to a low heat production state shared with extant crocodilians.
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Most seven non-avian dinosaur species share high metabolic rate values. Both
ornithopod dinosaurs Lesothosaurus and Maiasaura present a mass-specific RMR typical of
extant endotherms, but the sauropodomorph dinosaur Thecodontosaurus exhibits an

intermediate value (1.12 mLO, h™ g7

, the lowest value among dinosaurs). Highest values in
the whole sample are found in theropod dinosaurs, all higher than 2 mLO, h™* g®.
Allosaurus and Coelophysis, with respective values of 8.36 and 12.5 mLO, h™* g®® have

mass-specific RMR similar to those of modern birds.

A recent comprehensive study (Grady et al., 2014) estimated the resting metabolic rate
of fossil dinosaurs using body mass growth rate as independent variable, and found them to be
‘mesotherms’ (i.e. with a metabolic rate intermediate to those of ectotherms and endotherms).
Our results do not agree with those obtained by this study: we have found a conspicuous gap
between mass-specific RMR of endotherms and ectotherms, and all non-avian dinosaur
species but one clearly placed in the cluster of endotherms. Though the intermediate values of
mass-specific RMR estimated for most non-archosaurian archosauromorphs in the present
study can neither be associated to endothermy nor ectothermy, the ancestral condition at the
archosaur node is significantly above a typical ectothermic metabolism as measured in our
sample of extant species. Among archosauromorphs with values of mass-specific RMR
intermediate between those of ectotherms and endotherms, we can observe that Rutiodon and
Postosuchus share very low values (0.41 and 0.51 mLO, h™ g®®, respectively), whereas all
other archosauromorphs present values higher than 1 mLO, h™* g®®. This might reflect the
existence of a smaller gap of values inside the larger gap observed in extant species, which
implies that Rutiodon and Postosuchus shared a metabolism more similar to that of extant
ectotherms, and that all fossil archosauromorphs with values of mass-specific RMR higher

than 1 mLO, h™ g®® presented a metabolism more similar to that of extant endotherms.
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Hence, what has been described as ‘mesothermy’ probably consists in a whole array of
physiological responses to different environmental constraints (Supplementary Information).
These various metabolic strategies appeared independently during the evolution of
archosauromorphs, and cannot be interpreted as a homologous character state in a

phylogenetic context.

Results of the optimization onto the phylogenetic tree of archosauromorphs are
congruent with the hypothesis of an ancestral high metabolic rate shared by all species in the
archosaur crown group, and suggest that this derived state may have been acquired by the last
common ancestor of Prolacerta and Gallus. Archosauromorphs like Prolacerta must have
shared a series of physiological adaptations linked to true endothermy, including a four-
chambered heart similar to that of mammals, crocodiles, and birds. The separation of a high
systemic blood pressure from a low pulmonary blood pressure may have allowed a high
hematocrit (linked to high oxygen consumption), high viscosity blood to flow through the
body, as well as sufficient blood pressure to enable efficient ultrafiltration in the kidneys
(Seymour et al., 2004). The endothermic state may also explain the histological profile
compatible with high bone growth rate observed in a large archosauromorph like

Erythrosuchus (Gross, 1934; de Ricqgles et al., 2008; Botha-Brink & Smith, 2011).

Our sample of fossil pseudosuchians does not allow us to identify the ancestral
condition for this node. Though the rauisuchian Postosuchus presents a low mass-specific
RMR value, some crocodylomorphs (i.e. pseudosuchians closer to extant crocodiles than they
are from rauisuchians) like Hesperosuchus or Terrestrisuchus (de Ricglés et al., 2003, 2008)
display morphological characteristics very similar to those of endotherms, like parasagittal

stance, and, in the case of Terrestrisuchus, a histological profile compatible with high bone
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growth rate. A larger sample of pseudosuchians is likely to solve this problem and to improve

our understanding of the evolution of metabolic rate in this clade.

It has been argued that endothermy in dinosaurs was restricted to the smaller species,
since very large dinosaurs like sauropods or hadrosaurs would have required an impossibly
large heart and too high lung ventilation rates to sustain mammalian- or avian-like metabolic
rates, and because the internal temperature linked to body size may have been too elevated
(McNab, 1978; Benton, 1979; Seebacher, 2003; Seymour et al., 2004). In this context, the
lower mass-specific RMR values found for sauropodomorph Thecodontosaurus and
hadrosaurid Maiasaura compared to that of other dinosaurs in our sample is congruent with
these observations. Conversely, theropod dinosaurs exhibit very high mass-specific RMR
values, similar to those of modern birds, which is congruent with the high systemic blood

pressure inferred for such bipedal, active predators (Seymour, 1976).

Methods summary

The models were built using 57 specimens belonging to 14 extant species, and 14
extinct species, of tetrapods. Histological bone sections have been sampled and described in
previous studies (Montes et al., 2007; Cubo et al., 2012). They were observed using a Zeiss
Axiovert microscope and digitally imaged. We measured eight histological quantitative
characters — vascular density; relative proportions of circular, longitudinal, oblique, and radial
vascular canals; osteocyte shape, size and density — on each bone section following a
standardized procedure for each of them (Cubo et al., 2012). The dependent variable in our
models — resting metabolic rate — was taken from published literature, as well as phylogenetic

relationships between all species (Cubo et al., 2012; Legendre et al., 2013; see Figure 2). We
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Figure 2. Phylogenetic relationships between species included in our sample, with branch lengths. Clades
discussed in the text are labelled. Timescale in million years (Ma).

used the R package MPSEM (Guénard et al., 2013) to convert the phylogeny into PEM and
predict values of the dependent variable for fossil species; a predictive model was compiled
for each of the three bones (femur, humerus and tibia). Independent variables for each model
consisted of these PEM, with the addition of one of the eight histological characters per
model, both selected using their AICc values. All models were cross-validated using leave-

one-out cross-validation. Values of resting metabolic rate with 95% confidence intervals were
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then estimated for each fossil species in our sample.

Supplementary information

Supplementary discussion

Mesothermy and the scaling of metabolic rates

In their recent study on the thermometabolism of dinosaurs, Grady et al. (2014) built a
predictive model for resting metabolic rate (RMR) based on ontogenetic growth using a
sample of 381 species of vertebrates. All 21 non-avian dinosaurs in their sample were
unambiguously found to be what they labelled ‘mesothermic’, i.e. with RMR values
intermediate between those of extant ectotherms and endotherms. Though numerous
examples of extant vertebrate species with intermediate metabolic rates are quoted as being
present-day mesotherms (e.g. tunas, lamnid sharks, leatherback sea turtles), some of them are
acknowledged as presenting significantly different metabolic heat productions from each
other. For example, echidnas are described as able to maintain a thermal set point, but their
body temperature (Tp) range is subject to an important variation due to a very low metabolic
rate and a limited capacity to thermoregulate. For this reason, they are classified as being
‘near the intersection of mesothermy and endothermy’, but are identified as mesotherms on

the basis of their high thermal lability (Grady et al., 2014).

However, thermal lability is also important in a number of small poikilothermic
mammals; mouse lemurs (Microcebus), for example, alternate between an active phase with a
preferred range of body temperature around 37°C and a torpor phase with lower temperatures

(Schmid, Ruf & Heldmaier, 2000). This torpor is conditioned by environmental constraints
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such as low ambient temperatures (Ty); for this reason, mouse lemurs display very low RMR
values and large temperature ranges compared to those of other placental mammals, but they
do not fit into the definition of mesothermy because of their inability to maintain a high Ty
when T, is below their preferred range (Grady et al., 2014). Conversely, lamnid sharks and
tunas display high RMR values compared to those of ectotherms because they present many
convergent physiological adaptations to fast swimming, like the ability to retain metabolic
heat produced by continuous activity of red muscles during swimming to elevate their global
body heat (Bernal et al., 2001), but resting metabolic heat production in these taxa is not
significantly different from that of ectotherms. Thus, the existence of a difference between

mesothermy and ectothermy / endothermy is still controversial (Ruben, 1995).

The interval of RMR values between ‘true’ endotherms and ectotherms comprises
mostly large ectotherms that have acquired the autapomorphic ability to maintain a high
metabolic rate in an aquatic environment where true endothermy would be impossible, or
small endotherms that have acquired the autapomorphic ability to modify their preferred
range of Ty in a dry environment with large variations of T,. These autapomorphies probably
correspond to various metabolic adaptations associated with very specific physiological
constraints, and the use of the term ‘mesothermy’ to describe a mosaic of different heat
production strategies may thus be misleading. Grady et al. (2014, p. 1268) are right when they
state that « the modern dichotomy of endothermic versus ectothermic is overly simplistic »,
but creating a trichotomy with the addition of a single mesothermic state is likely another
simplification; a comprehensive review of all metabolic strategies in vertebrates without using

discrete categories is yet to come.
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Comparison between methods used in this study and in Grady et al. (2014)

In the present study, we used osteohistological features and phylogenetic eigenvector
maps (PEM) as independent variables in our predictive modeling of mass-specific RMR ;
these variables were all measured for this study. A contrario, Grady et al. (2014) built their
predictive model using growth rate as an independent variable; growth rate was compiled
from measurements from previous studies, and expressed as maximum growth rate (Gmax), in
g day™. However, not all growth rates taken from literature were originally measured in g day’
! which might generate some uncertainty and conversion errors. For example, Psittacosaurus
mongoliensis is identified has having a Gmax Of 5.82 kg year™ (Erickson, Curry-Rogers &
Yerby, 2001). In Grady et al. (2014) this number becomes 13.8 g day™, which would imply a
number of 422 days in an Early Cretaceous year, from which Psittacosaurus is dated; even
when considering the variation of length of a day over time (Myhrvold, 2013), this estimation
is incorrect. Similarly, Tenontosaurus tilletti has a Gmax Of 27 kg year' (Lee & Werning,
2008), which would require an impossibly small number of days (139) in a Middle
Cretaceous year to match the value of 194.5 g day™ used by Grady et al. (2014). Some
estimations of growth rates for extinct dinosaur species may thus be biased by these

conversion rates.

The other major difference between this study and that of Grady et al. (2014) is the
type of phylogenetic regression used for building predictive models. The construction of PEM
for a given trait involve weighting the edges (i.e. branches) of the phylogenetic tree on the
basis of the among-species phylogenetic covariance matrix of this trait, using a steepness
parameter a — related to Pagel’s « (Pagel, 1999) and to the Ornstein-Uhlenbeck selection
strength parameter a (Butler & King, 2004) — to describe the relationship between changes in

traits values and branch lengths in the tree (a = 0 under purely neutral evolution). This
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procedure is a significant improvement on the arbitrary assumption of purely neutral
evolution (i.e. following a Brownian motion model) assumed by phylogenetic independent
contrasts (PICs; Felsenstein, 1985) used by Grady et al. (2014), which imply a strict
relationship between the variation of a given trait and branch length information for the
corresponding phylogeny. Furthermore, although most of the species in their sample of non-
avian dinosaurs have been the matter of precise dating studies in the literature (Cubo et al.,
2012; Legendre et al., 2013), no branch length information was included by Grady et al.
(2014) in their trees for both non-avian dinosaurs and crocodilians, which adds an important

bias to the way their model takes into account phylogenetic information.

In conclusion, a better characterization of both datasets and modeling procedures are
required for further modeling of archosauromorph metabolic rate. Grady et al.’s study is the
most comprehensive work ever performed on dinosaurs in a phylogenetic perspective, and is a
strong attempt to solve one of the oldest mysteries in palaeontology; the present study is a
further description of the thermometabolism evolutionary pattern in archosauromorphs, using
a new and powerful predictive method and the largest osteohistological dataset ever
assembled for this clade. However, some riddles on metabolic heat production of archosaurs
still remain unanswered. Future works on this matter will have to rely on larger datasets,
better knowledge of the phylogeny, and more accurate characterization of heat production in
extant vertebrates, in order to improve our understanding of the metabolism of dinosaurs and

other archosauromorphs.

96



Table S1. Resting metabolic rate measured for extant species and osteohistological characters measured for all
species in the sample, with the number of specimens for each of them, for femora of all specimens.

Species Number Resting Relative Relative Relative
of metabolic rate proportion of proportion of proportion of
specimens (mLO, h* g% circular vascular  longitudinal oblique vascular

canals vascular canals canals
Anas platyrhynchos 4 10.865 0.367 0.356 0.185
Cavia porcellus 3 3.477 0.369 0.359 0.236
Chelodina oblonga 2 0.085 0.085 0.000 0.000
Crocodylus niloticus 3 0.336 0.207 0.449 0.267
Mus musculus 5 1.696 0.346 0.394 0.241
Pelodiscus sinensis 4 0.083 0.000 0.000 0.000
Zootoca vivipara 4 0.124 0.000 0.000 0.000
Podarcis muralis 3 0.084 0.000 0.000 0.000
Trachemys scripta 4 0.117 0.000 0.000 0.000
Varanus exanthematicus 2 0.173 0.000 0.313 0.063
Varanus niloticus 1 0.157 0.000 0.000 0.000
Microcebus murinus 3 1.526 0.213 0.470 0.239
Gallus gallus 3 8.289 0.359 0.262 0.265
Pleurodeles waltl 5 0.084 0.000 0.000 0.000
Calyptosuchus wellesi 1 - 0.367 0.367 0.200
Lesothosaurus diagnosticus| 1 - 0.267 0.467 0.233
Troodon formosus 1 - 0.933 0.033 0.033
Allosaurus fragilis 1 - 0.767 0.133 0.100
Rutiodon carolinensis 1 - 0.500 0.333 0.133
Maiasaura peeblesorum 1 - 0.600 0.133 0.233
Proterosuchus fergusi 1 - 0.058 0.400 0.217
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Table S1. Continued.

Species Relative Vascular density Osteocyte density Osteocyte size (um?) Osteocyte

proportion of (vascular canals / (osteocyte / pm?) shape

radial vascular mm?)

canals
Anas platyrhynchos 0.092 128.695 0.0025 20.644 0.496
Cavia porcellus 0.036 106.281 0.0019 34.155 0.497
Chelodina oblonga 0.000 0.000 0.0009 28.125 0.615
Crocodylus niloticus 0.078 33.077 0.0007 29.694 0.475
Mus musculus 0.020 183.789 0.0012 29.485 0.480
Pelodiscus sinensis 0.000 0.000 0.0009 24.486 0.522
Zootoca vivipara 0.000 0.000 0.0021 13.677 0.427
Podarcis muralis 0.000 0.000 0.0011 11.992 0.438
Trachemys scripta 0.000 0.000 0.0014 28.963 0.495
Varanus exanthematicus 0.125 14.286 0.0011 33.362 0.463
Varanus niloticus 0.000 0.000 0.0010 39.700 0.479
Microcebus murinus 0.078 46.912 0.0039 30.008 0.587
Gallus gallus 0.113 90.861 0.0025 27.733 0.524
Pleurodeles waltl 0.000 0.000 0.0006 134.939 0.595
Calyptosuchus wellesi 0.067 282.651 0.0041 33.151 0.500
Lesothosaurus diagnosticus| 0.033 218.121 0.0027 103.046 0.370
Troodon formosus 0.000 90.065 0.0015 69.503 0.447
Allosaurus fragilis 0.000 227.895 0.0055 31.252 0.470
Rutiodon carolinensis 0.033 153.226 0.0011 37.294 0.411
Maiasaura peeblesorum 0.033 38.354 0.0011 44.413 0.551
Proterosuchus fergusi 0.325 24.002 0.0010 27.931 0.558
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Table S2. Resting metabolic rate measured for extant species and osteohistological characters measured for all
species in the sample, with the number of specimens for each of them, for humeri of all specimens.

Species Number Resting Relative Relative Relative proportion
of metabolic rate proportion of proportion of of oblique vascular
specimens (mLO, h* g% circular vascular longitudinal canals

canals vascular canals
Anas platyrhynchos 4 10.865 0.527 0.272 0.172
Cavia porcellus 3 3.477 0.314 0.286 0.317
Chelodina oblonga 3 0.085 0.000 0.000 0.000
Crocodylus niloticus 1 0.336 0.234 0.489 0.234
Mus musculus 5 1.696 0.312 0.312 0.302
Pelodiscus sinensis 5 0.083 0.000 0.000 0.000
Zootoca vivipara 4 0.124 0.000 0.000 0.000
Podarcis muralis 2 0.084 0.000 0.000 0.000
Trachemys scripta 4 0.117 0.000 0.000 0.000
Varanus exanthematicus | 3 0.173 0.000 0.179 0.154
Varanus niloticus 1 0.157 0.000 0.000 0.000
Microcebus murinus 3 1.526 0.227 0.490 0.223
Gallus gallus 3 8.289 0.545 0.285 0.153
Pleurodeles waltl 5 0.298 0.000 0.000 0.000
Euparkeria capensis 1 - 0.000 0.900 0.067
Postosuchus kirkpatricki | 1 - 0.433 0.500 0.067
Garjainia prima 1 - 0.133 0.125 0.342
Prolacerta broomi 1 - 0.092 0.417 0.208
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Table S2. Continued.

Species Relative Vascular density ~ Osteocyte density Osteocyte size Osteocyte shape

proportion of (vascular canals/  (osteocyte / pm?) (um?)

radial vascular ~ mm?)

canals
Anas platyrhynchos 0.028 172.948 0.0023 24.291 0.509
Cavia porcellus 0.082 112.748 0.0020 34.986 0.485
Chelodina oblonga 0.000 0.000 0.0012 24.278 0.563
Crocodylus niloticus 0.043 48.957 0.0007 34.602 0.485
Mus musculus 0.074 98.517 0.0012 22.624 0.526
Pelodiscus sinensis 0.000 0.000 0.0012 20.926 0.497
Zootoca vivipara 0.000 0.000 0.0033 10.454 0.442
Podarcis muralis 0.000 0.000 0.0009 11.953 0.404
Trachemys scripta 0.000 0.000 0.0012 27.135 0.516
Varanus exanthematicus | 0.000 5.542 0.0012 36.293 0.435
Varanus niloticus 0.000 0.000 0.0014 38.164 0.471
Microcebus murinus 0.060 71.309 0.0038 28.516 0.527
Gallus gallus 0.017 114.114 0.0024 31.206 0.469
Pleurodeles waltl 0.000 0.000 0.0008 107.919 0.553
Euparkeria capensis 0.033 48.157 0.0025 54.896 0.460
Postosuchus kirkpatricki | 0.000 189.542 0.0013 20.712 0.519
Garjainia prima 0.400 50.771 0.0024 38.865 0.597
Prolacerta broomi 0.283 73.892 0.0014 32.306 0.619
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Table S3. Resting metabolic rate measured for extant species and osteohistological characters measured for all
species in the sample, with the number of specimens for each of them, for tibiae of all specimens.

Species Number Resting Relative Relative Relative proportion
of metabolic rate proportion of proportion of of oblique vascular
specimens (mLO, h* g% circular longitudinal canals

vascular canals  vascular canals
Anas platyrhynchos 4 10.865 0.394 0.423 0.175
Cavia porcellus 3 3.477 0.328 0.484 0.141
Chelodina oblonga 1 0.085 0.000 0.000 0.000
Crocodylus niloticus 3 0.336 0.318 0.383 0.271
Mus musculus 3 1.696 0.440 0.274 0.214
Pelodiscus sinensis 3 0.083 0.000 0.000 0.000
Zootoca vivipara 1 0.124 0.000 0.000 0.000
Podarcis muralis 3 0.084 0.000 0.000 0.000
Trachemys scripta 5 0.117 0.000 0.000 0.000
Varanus exanthematicus 2 0.173 0.000 0.000 0.000
Varanus niloticus 1 0.157 0.000 0.000 0.000
Microcebus murinus 3 1.526 0.108 0.542 0.251
Gallus gallus 4 8.289 0.294 0.537 0.136
Pleurodeles waltl 5 0.298 0.000 0.000 0.000
Allosaurus fragilis 1 - 0.900 0.100 0.000
Coelophysis bauri 1 - 0.500 0.367 0.133
Lesothosaurus diagnosticus 1 - 0.733 0.200 0.067
Lourinhanosaurus antunesi 1 - 0.800 0.033 0.133
Maiasaura peeblesorum 1 - 0.533 0.308 0.142
Thecodontosaurus antiquus 1 - 0.100 0.533 0.300
Garjainia prima 1 - 0.125 0.225 0.275
Prolacerta broomi 1 - 0.108 0.600 0.192
Proterosuchus fergusi 1 - 0.075 0.175 0.475
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Table S3. Continued.

Species Relative Vascular density Osteocyte density Osteocyte size Osteocyte

proportion of (vascular canals / (osteocyte / pm?) (um?) shape

radial vascular mm?)

canals
Anas platyrhynchos 0.008 149.983 0.0022 19.064 0.516
Cavia porcellus 0.047 107.370 0.0017 31.000 0.462
Chelodina oblonga 0.000 0.000 0.0015 19.956 0.589
Crocodylus niloticus 0.027 37.287 0.0010 31.432 0.480
Mus musculus 0.071 96.908 0.0023 35.120 0.529
Pelodiscus sinensis 0.000 0.000 0.0098 24.919 0.471
Zootoca vivipara 0.000 0.000 0.0032 9.388 0.483
Podarcis muralis 0.000 0.000 0.0013 11.401 0.402
Trachemys scripta 0.000 0.000 0.0014 23.302 0.486
Varanus exanthematicus 0.000 0.000 0.0008 41.051 0.536
Varanus niloticus 0.000 0.000 0.0012 19.448 0.485
Microcebus murinus 0.099 41.074 0.0038 28.430 0.618
Gallus gallus 0.033 91.200 0.0034 31.148 0.507
Pleurodeles waltl 0.000 0.000 0.0006 134.939 0.595
Allosaurus fragilis 0.000 210.890 0.0003 23.326 0.407
Coelophysis bauri 0.000 734.742 0.0113 3.477 0.476
Lesothosaurus diagnosticus| 0.000 31.565 0.0017 33.361 0.590
Lourinhanosaurus antunesi| 0.033 39.097 0.0017 38.053 0.502
Maiasaura peeblesorum 0.017 37.976 0.0020 52.750 0.577
Thecodontosaurus antiquus| 0.067 14.899 0.0017 64.729 0.502
Garjainia prima 0.375 45.408 0.0007 66.621 0.732
Prolacerta broomi 0.100 60.714 0.0013 19.089 0.637
Proterosuchus fergusi 0.275 31.102 0.0016 26.047 0.626
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Conclusions de la seconde partie

+ Les caractéres ostéohistologiques quantitatifs sont de bons prédicteurs du taux de

croissance osseuse et du taux métabolique des vertébrés fossiles.

+ Les archosauromorphes fossiles présentent tous des taux métaboliques au repos
supérieurs a ceux des ectothermes typiques; certains d’entre eux, notamment la
majorité des dinosaures de notre échantillonnage, sont clairement identifiés comme

endothermes par notre modeéle, avec des taux métaboliques comparables a ceux des

mammiféres ou des oiseaux.

+ Si plusieurs incertitudes demeurent quant a I’apparition de ce caractere au sein des
archosauromorphes et a son évolution au sein de la lignée des pseudosuchiens, ces
résultats démontrent clairement I’apparition d’un métabolisme élevé au sein des
archosauromorphes non-archosaures, et d’une perte de ce métabolisme chez les
crocodiliens actuels, probablement en réponse aux contraintes de leur environnement

aquatique.
+ Un échantillonnage plus conséquent dans les registres actuel et fossile permettra

certainement de visualiser plus précisément I’évolution du thermométabolisme au sein

du clade des archosauromorphes.
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Conclusion genérale et perspectives

Le signal phylogénétique en histologie osseuse

Les principaux résultats de ce travail sont a la fois d’ordre biologique et
méthodologique. En effet, si nous nous sommes focalisés sur I’évolution du
thermomeétabolisme et des caractéres ostéohistologiques qui lui sont liés au sein des
archosaures, cette étude a également fourni plusieurs pistes de réflexion relatives a

I’utilisation de données ostéohistologiques dans un cadre phylogénétique.

Nous avons pu confirmer les résultats préliminaires obtenus par Cubo et al. (2005) sur
les sauropsidés, aussi bien pour un clade plus inclusif — les amniotes — que pour un clade
moins inclusif — les paléognathes — en utilisant pour ce dernier un échantillonnage exhaustif et
un large jeu de données. Les caractéres quantitatifs ostéohistologiques sont donc bien porteurs
d’une information phylogénétique facilement identifiable et mesurable par de multiples
méthodes, et cette information peut étre utilisée lors de la construction de modéles statistiques

prédictifs.

Dans une revue des méthodes quantitatives utilisées pour inférer les taux de croissance
globaux des dinosaures non-aviens, Myhrvold (2013) a montré que bon nombre des études sur
le sujet, dont des analyses de coupes histologiques, présentent des résultats difficilement
reproductibles et des échantillonnages soumis a d’importants biais. Dans cette perspective, le
cadre strict d’homologie, utilisé dans notre étude sur les paléognathes aussi bien pour les
spécimens que pour les caracteres, a permis d’identifier un fort signal phylogénétique pour
des caractéres jusque la considérés comme peu informatifs. Il apparait donc absolument

indispensable d’appliquer ce type de méthodologie et ce cadre systématique a toute étude
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paléohistologique souhaitant incorporer des méthodes phylogénétiques comparatives, ce qui

est le cas d’un nombre croissant d’entre elles (Stein & Werner, 2014; Huttenlocker, 2014).

L’endothermie des archosaures

Le principal résultat de la thése est I’apport du modeéle prédictif statistique qui identifie
formellement les archosaures comme présentant primitivement un taux métabolique élevé,
supérieur a celui des ectothermes actuels, également partagé par les archosauromorphes non-
archosaures inclus dans notre échantillonnage. Cela confirme donc I’hypothése, formulée
pour la premiére fois par de Ricgles (1978), selon laquelle les crocodiles ont acquis
secondairement une ectothermie qui leur a conféré un avantage énergétique certain au cours

de leur retour au milieu aquatique.

Toutefois, ce résultat préliminaire ne résout pas entierement la condition primitive
présente au nceud archosaures. En effet, si le modele construit a I’aide des Phylogenetic
Eigenvector Maps (PEM) permet de prédire efficacement les taux métaboliques de nos
spécimens fossiles, notre échantillonnage assez restreint d’archosauromorphes non-
archosaures et de pseudosuchiens fossiles laisse une incertitude quant a I’endothermie
primitive éventuelle de ces groupes. Il est intéressant de noter que Euparkeria, une espéece
identifiée comme présentant un faible taux de croissance osseuse par Botha-Brink & Smith
(2011) et un taux de croissance bien plus élevé par notre modele prédictif du taux de
croissance osseuse (voir Partie Il. — 1), s’est vu attribué un taux métabolique intermédiaire
entre ceux des endothermes et des ectothermes, ce qui est cohérent avec une certaine
variabilité intraspécifique du taux de croissance osseuse, probablement influencé par les

importants bouleversements climatiques au Trias moyen (Botha-Brink & Smith, 2011). Ces
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conditions climatiques ont certainement joué un rdle essentiel dans I’apparition de

métabolismes plus élevés que ceux des autres diapsides chez les premiers archosauromorphes.

L’article de Grady et al. (2014), qui identifie les dinosaures comme mésothermes (i.e.
présentant un métabolisme « intermédiaire » entre celui des ectothermes et des endothermes),
n’est pas exempt de biais ni d’imprécisions méthodologiques. Il insiste pourtant sur une
information essentielle, souvent passée sous silence dans les multiples articles sur le
thermomeétabolisme des dinosaures : la capacité de produire sa propre chaleur corporelle n’est
pas un caractére discret, et le débat sur le métabolisme des archosaures ne se résume pas a une
simple dichotomie endothermie / ectothermie. De multiples conditions métaboliques, souvent
liées a des contraintes d’ordre environnemental, peuvent étre observées au sein des vertébrés,
selon que I’on s’intéresse a la capacité a maintenir sa température corporelle a un niveau
constant (Seymour, 2013), a I’intervalle préférentiel de température corporelle, a I’activité
enzymatique ou a la consommation d’oxygéne au repos (Ruben, 2005), a I’alternance entre
endothermie et ectothermie observée chez certains vertébrés (e.g. Schmid, Ruf & Heldmaier,
2000 ; Bernal et al., 2001) identifiés comme « mésothermes » par Grady et al. (2014)... Il
existe donc une multitude d’adaptations physiologiques liées a la production de chaleur,
conditionnées par le milieu de vie dans lequel elles apparaissent, qui ne saurait étre
correctement prise en compte par un caractére binaire tel qu’utilisé couramment dans la

littérature.

Dans cette optique, il apparait donc comme indispensable de définir plus clairement
les multiples stratégies évolutives au sein des vertébrés et de se baser sur un échantillonnage
intégrant le plus possible de ces stratégies pour mieux retracer I’évolution du

thermomeétabolisme au sein de clades aussi diversifiés que celui des archosauromorphes. De
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nombreux groupes d’archosauromorphes (les dinosaures, bien sdr, mais également les
erythrosuchidés, sauropodomorphes, pseudosuchiens, crocodylomorphes...), dont la condition
primitive n’est pas formellement identifiée par notre modéle, et pour lesquels peu d’études
guantitatives ont été menées dans ce sens, pourraient étre intégrés a une telle approche, et leur
métabolisme pourrait ainsi étre plus clairement défini. Sur le long terme, cela permettrait
d’inférer le thermométabolisme de ces groupes a un niveau trés inclusif de I’arbre, et de
comparer ces résultats a la succession des différentes conditions climatiques au cours des
temps géologiques (Haywood, Valdes & Markwick, 2004 ; Selwood & Valdes, 2006 ;
Belcher & McElwain, 2008) afin de mieux comprendre les processus a I’ceuvre derriére
I’acquisition de ces modifications du thermométabolisme au cours de I’évolution. 1l serait
également intéressant de modéliser d’autres caractéres liés au thermométabolisme,
d’appliquer d’autres méthodes phylogénétiques comparatives telles que les PGLS
(Phylogenetic Generalized Least Squares; Grafen, 1989), ou encore de prendre en
considération le métabolisme spécifique de certains organes plutdt que la production de
chaleur a I’échelle de I’organisme, afin d’estimer les bilans énergétiques des différents

groupes d’archosauromorphes.
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Annexe | — Testing gradual and speciational models of

evolution in extant taxa: the example of ratites

Michel Laurin, Sander W. S. Gussekloo, David Marjanovic,

Lucas Legendre et Jorge Cubo

Publication originale in: Journal of Evolutionary Biology 25: 293-303 (Février 2012)

Abstract

Ever since Eldredge and Gould proposed their model of punctuated equilibria,
evolutionary biologists have debated how often this model is the best description of
nature and how important it is compared to the more gradual models of evolution
expected from natural selection and the neo-Darwinian paradigm. Recently, Cubo
proposed a method to test whether morphological data in extant ratites are more
compatible with a gradual or with a speciational model (close to the punctuated
equilibrium model). As shown by our simulations, a new method to test the mode of
evolution of characters (involving regression of standardized contrasts on their
expected standard deviation) is easier to implement and more powerful than the
previously proposed method, but the Mesquite module CoMET (aimed at
investigating evolutionary models using comparative data) performs better still.
Uncertainties in branch length estimates are probably the largest source of potential
error. Cubo hypothesized that heterochronic mechanisms may underlie
morphological changes in bone shape during the evolution of ratites. He predicted
that the outcome of these changes may be consistent with a speciational model of
character evolution because heterochronic changes can be instantaneous in terms of
geological time. Analysis of a more extensive data set confirms his prediction
despite branch length uncertainties: evolution in ratites has been mostly speciational
for shape-related characters. However, it has been mostly gradual for size-related
ones.

Keywords: birds — comparative studies — morphometrics — phylogenetics —
simulations
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Introduction

The proposal of the model of punctuated equilibria by Gould & Eldredge (1977)
triggered a debate about the tempo and mode of evolution. Several palaeontological studies
attempted to determine which of the two main models (natural selection with variable rates of
evolution, or punctuated equilibria characterized by long periods of stasis interrupted by brief
periods of change that coincide with cladogenetic events) was most compatible with data
from several successive populations representing a few evolving lineages sampled over
relatively long periods of time (several tens of thousands of years to a few million years).
Based on a review of the literature (including previous reviews), Benton & Pearson (2001)
argued that both patterns occur in the fossil record of eukaryotes, but that in unicellular
eukaryotes of the marine plankton, gradual evolution prevails, whereas in metazoans, a
punctuated equilibrium pattern may be more common. However, this latter conclusion
remains tentative because the fossil record of metazoans is much less complete than that of

many unicellular organisms with mineralized skeletons.

Evolutionary models of characters are interesting because they can produce evidence
for the presence of selection and trends, limits on character value, and patterns of change and
thus contribute to refining evolutionary theory. Determining the correct evolutionary model is
also important because modern comparative methods used to test character correlation and
infer ancestral values assume a Brownian motion model, whereas strong departures from this
model can lead to inaccurate results (Diaz-Uriarte & Garland, 1996; Martins, Diniz-Filho &
Housworth, 2002). Punctuated equilibrium is such a departure. Comparative data that result
from such an evolutionary model can be analysed by most comparative tests, but instead of

using branch lengths proportional to evolutionary time or to the variance observed in other
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characters (which may have evolved according to other models), branches of equal lengths on
a tree including a representative sample of all known (extant and extinct) lineages of a clade
should be used. Using appropriate branch lengths should lead to more accurate estimates of

correlation and ancestral values.

More recently, comparative data from extant taxa have been used to investigate the
preponderance of these evolutionary models. Ratites are good candidates to test models of
character evolution because this clade contains a low number of species (thus making
exhaustive sampling possible). Note that the model of punctuated equilibria has two variants:
(i) the punctuational model, in which changes occur at the time of speciation (cladogenesis)
only in a single daughter species (clade), and (ii) the speciational model, according to which
changes occur at the time of speciation in both daughter species (clades) (Rohlf et al., 1990).
Cubo (2003) recently proposed a method to test whether a character evolved according to a
gradualist or a speciational model. His test is based on determining which phylogenetic
distance matrix best explains the phenotypic distance matrix of the relevant character. One
matrix is based on estimated times of divergence between terminal taxa and represents a
gradual model of evolution, whereas the other has unitary branch lengths and represents a
speciational model of evolution. Thus, Cubo (2003) regressed distance matrices of individual
characters against the phylogenetic distance matrices of the taxa assuming gradual evolution
(branch lengths reflecting evolutionary time) and a speciational model (branches were of
equal lengths). His data set included dimensionless shape variables: the ratio diaphyseal
diameter / total length of stylopodial (humerus and femur) and zeugopodial bones (ulna,
radius and tibiotarsus) and the ratio wing length / leg length. Cubo (2003) tested the
significance of these regressions using permutations. This procedure suggested that some

phylogenetic distance matrices explained the character data better than others, as shown by
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the probability that the regression coefficients reflected random fluctuations. However, in
some cases, neither phylogenetic distance matrix seemed to explain the character data,
whereas in others, both the gradual and the speciational model of evolution seemed to be
compatible with the data. Thus, the resolution of this method may not be optimal. We propose
instead to regress standardized contrasts on their expected standard deviation, a test that is
implemented in Mesquite, and we use simulations to assess the relative merits of both tests, as
well as the performance of a third approach available in the Mesquite module COMET (Lee et

al., 2006).

One of the most sophisticated tools to investigate evolutionary model using
comparative data is the Mesquite module CoMET, which uses maximum likelihood and the
Akaike Information Criterion (AIC) values to compare the fit of nine evolutionary models to
the data (Lee et al., 2006). This implements methods presented in more detail by Oakley et al.
(2005). The nine models represent all possible combinations of two properties of the model,
each of which can follow one of three submodels (Lee et al., 2006: fig. 1). Thus, evolutionary
change can be purely phylogenetic (each branch of the reference phylogeny is used),
nonphylogenetic (only terminal branches are used, the internal ones are set to 0) or
punctuated, in which only one of every pair of sister branches stemming from a node has a
positive length (the other is set to 0). The length of the branches can follow the reference
phylogeny (‘distance’ in the terminology of Lee et al., 2006), can be of equal length or can be
estimated from the data (‘free’ in the terminology of Lee et al., 2006). The evolutionary
model that Cubo (2003) called gradual is the distance, purely phylogenetic model of Lee et al.
(2006), whereas Cubo’s (2003) speciational model is Lee et al.’s (2006) equal, pure
phylogenetic model. Note that in this last model, according to Mooers et al. (1999),

phenotypic change between taxa is proportional to the number of speciation events
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(cladogeneses) that have occurred between them.

Later, we use COMET to reanalyse the data on appendicular bone shape, based on
which Cubo (2003) argued for a mostly speciational model of evolutionary change in
osteological characters in ‘ratites’. We added 48 characters to this data set. These analyses
were performed using a phylogeny based on morphological characters and suggesting that
ratites are monophyletic (Bourdon, de Ricglés & Cubo, 2009), as well as on three molecular

phylogenies.

Methods

Analysis of the evolutionary model (gradual/ speciational)

We tested the performance of the test developed by Cubo (2003) to determine whether
a character evolved according to a gradualist or a speciational model. For this purpose, we
simulated the evolution of 100 characters using a Brownian motion model in Mesquite
(Maddison & Maddison, 2011) on two phylogenies (Fig. 1a, ¢) with 36 terminal taxa. These
represent the characters that have evolved according to a gradual model. We also simulated
the evolution of 100 characters using a Brownian motion model on two phylogenies with
unitary branch lengths (Fig. 1b, d); these represent the characters that have evolved according
to a speciational model. We then regressed distance matrices obtained from each character
against the phylogenetic distance matrices that reflect two phylogenies: (i) the original
phylogeny; (ii) a phylogeny with the same topology in which all branches were of equal
length. As in Cubo (2003), the test is based on determining which phylogenetic distance

matrix (one is based on estimated times of divergence between terminal taxa, whereas the
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(a) (c)

(b) (d)

Figure 1. Trees used to establish the validity of two proposed methods to determine whether characters evolved
according to a speciational or a gradualistic model of evolution. (a) The first random (Yule) tree produced by
Mesquite used to simulate the characters that evolve according to a Brownian motion model. This also represents
the true tree (in which branch lengths represent time). (b) Tree of identical topology but in which all branches are
of equal length. This tree was used to generate characters that evolve according to a speciational model of
evolution. Note that branch lengths do not represent time here; the true tree, in which branch lengths represent
time, is still represented by (a). Similar pairs are presented for the second (c, d) random tree, also generated
using a Yule process.

other has unitary branch lengths) best explains the distance matrix of the relevant character.
For this purpose, we regressed distance matrices of individual characters against the
phylogenetic distance matrices using multiple linear regressions. The significance of these

regressions was tested using permutations and a forward selection procedure (p-to-enter =
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0.05). Cubo (2003) used a similar procedure to discriminate between two main alternative sets
of branch lengths: the original branch lengths (implying a gradual model) and equal branch

lengths implying a speciational model.

In our tests using Cubo’s (2003) original implementation, the procedure using forward
selection selects the variable (in this case, a phylogenetic distance matrix representing a tree)
with the most significant coefficient of correlation (lowest probability, not necessarily the
highest R?), provided that both the probability of the R? and of the b coefficient (slope) are
inferior to the p-to-enter (here, 0.05 for the first step of the analysis). Then, the remaining
variable(s) are tested to determine whether their addition significantly improves the regression
model (using multiple regression); again, if both the probabilities of the R? and of the b
coefficient are inferior to the p-to-enter value (here 0.025 because at this step, it must be half
of the p-to-enter value of the first step), the variable is entered into the model. With two
competing trees, this analysis requires up to two steps (a single step is required minimally, in
the cases in which none of the trees yields a significant regression). The statistical
significance of the R? and the b coefficient is tested using 999 permutations in the program
Permute! (Casgrain, 2009); the regression on the unpermuted values is added to this sample of
randomized data, which makes the test conservative. Thus, up to 3000 individual regressions
are used to determine which tree(s) correspond to the model of character evolution. In sum,
over 1200000 regressions were performed for this study. Given that the forward selection
procedure can select more than one tree, the accuracy score of the test is 1/ n, where n is the
number of selected trees, provided that the latter included the correct tree. If none of the trees
were selected, the correctness score is 0. The values reported later are the average of the

correctness scores for 100 characters.
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We also evaluated two other related but somewhat simpler procedures to determine the
evolutionary model of a character, which consists of choosing the tree that has the lowest
probability (even if it is > 0.05) associated with the explained variance or with the b
coefficient in the first step of the forward selection procedure. In case of a tie, the correctness
score is 1/ n, where n is the number of selected trees, provided that the latter includes the

correct tree.

We also test the performance of a second method to establish whether a character has
evolved according to a gradual or to a speciational model. This method consists in regressing
standardized contrasts on their expected standard deviation (based on the branch lengths), a
method that is implemented in Mesquite and which is commonly used to determine whether
selected branch lengths are adequate to standardize data prior to performing an analysis of
phylogenetically independent contrasts (e.g. Laurin, 2004; Cubo et al., 2005). If the character
has evolved according to a Brownian motion model and the branch lengths have been
estimated correctly, there should be no significant relationship (the slope should be about 0
and its associated probability should be high, typically over 0.05, reflecting adequate contrast
standardization), but unitary branch lengths should provide inferior standardization (the
probability associated with the slope should be lower). If the character has evolved according
to a speciational model, a nonsignificant relationship will usually be found using unitary
branch lengths, provided that all cladogeneses are documented (or a representative sample
thereof), including those that have given rise to lineages that are now extinct. Conversely,
branch lengths reflecting time should yield inferior standardization (with a lower probability
associated with the slope). This test thus selects the phylogeny with the highest probability
associated with the linear regression slope between standardized contrasts and branch lengths

as the best one. Note that the test used by Cubo (2003), as well as any other test that we could
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imagine, is also subject to this latter (and most problematic) requirement when a speciational
model is among those tested. Clearly, the quality of the fossil record is the most limiting

factor in our ability to detect speciational change from comparative data.

Lastly, we tested the performance of COMET (Lee et al., 2006) by determining which
of the two models of interest (pure phylogenetic/ distance and pure phylogenetic/ equal) best
fit the data (lower AIC scores are better). When the best model was neither of these two, we
still scored the character on the basis of the fit of both of these models, ignoring the score of
the seven other models. We followed the same procedure in our analysis of the empirical

ratite data set.

All our tests of the methods relied on two random trees generated by the Yule
algorithm of Mesquite, to cover a diversity of tree symmetry and branch length distribution.
Testing the impact of tree symmetry, number of taxa, and branch length distribution would of
course improve reliability of such tests, but such a procedure would require software

development that is beyond the scope of this study.

Description of characters

The skull was described using a total number of 18 continuous characters distributed
over the ventral side of the cranium (Table 1). Each character was measured twice using a
digital caliper (accuracy 0.01 mm; Sylvac, Crissier, Switzerland). The average of the two
values was used for further analysis. To reduce size effects, all character were scaled to the
width of the skull measured at the quadrate—jugal articulation (parameter A), which adds 17

continuous characters to the data set. When possible, multiple specimens of a single species
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A: Skull width at the quadrate—jugal articulation (standard)

B: Distance between most distal points of proc. orbitales quadrati

C: Width at pterygoids at quadrate—pterygoid articulation

D: Width at most rostral part of pterygoids at the pterygoid—palatine connection

E: Maximal width of the right pterygoid in the transversal plane

F: Width of the vomer (caudal)

G: Width of the vomer (rostral)

H: Distance between the anguli caudolaterales of the palatal wings (pars lateralis)

I: Maximal distance between the lateral margins of the palatal wings at their rostral endings

J: Width between palates at position ‘I’

K: Width at most caudal part of the palatines at the pterygoid—palate connection

L: Width between the connection of the proc. palatinus and proc. jugalis of the maxilla

M: Width of the rostrum parasphenoidale incl. proc. basipterygoidei if present

N: Distance foramen magnum to measurement ‘N’

O: Distance foramen magnum to most caudal part of an element of the PPC connecting or crossing the r.
parasphenoidale

P: Maximal length palatine

Q: Width at palatine—maxillae articulation

R: Internal width at palatine—-maxillae articulation

Table 1. Description of the continuous morphological characters representing the ventral side of the cranium of
ratites and related taxa. These correspond to characters 20-37 (raw measurements) and characters 38-54
(standardized characters) in Data S1-S3. They are denoted by the same letter followed by ‘m’ (for raw
measurement) or ‘s’ (standardized) in Data S1-S3.

were measured to obtain a mean species value for the analysis. When a character was absent,
the value for this character was set to be zero. In four cases, the museum specimens were
incomplete and some characters could not be measured. Only if less than three characters
were impossible to measure was the specimen included in the analysis. In four such cases,
missing values were calculated based on the mean relative value of the species in the same
genus. These relative values were then used to calculate absolute values for the missing
parameter. The characters used in the analyse give a good description of the palatine—
pterygoid complex (PPC) (Gussekloo & Zweers, 1999; Gussekloo & Bout, 2002), which
plays an important role in the cranial kinesis of birds (Zusi, 1984). The pterygoid, the palatine
and in some cases the vomer are bony elements that play an important role in transferring
muscle force to either open or close the upper bill (Bock, 1964; Gussekloo, Vosselman &

Bout, 2001).

The morphology of appendicular bones was quantified through measurements of total

length and diaphyseal diameter of stylopodial bones (humerus and femur) and zeugopodial
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bones (ulna, radius and tibiotarsus) to the nearest 0.01 mm using a digital caliper (Roch,
Lunéville, France). Dimensionless variables were computed: for each bone, the ratio
diaphyseal diameter/total length was calculated (shape characters). In addition, the ratio wing
length / leg length was also calculated (limb length was computed as stylopodial length +
zeugopodial length). Thirteen appendicular bone characters were added to the data set by
Cubo (2003): the 10 size characters used to compute shape characters (i.e. total length and
diaphyseal diameter of stylopodial and zeugopodial bones) plus tarsometatarsus total length,
diaphyseal diameter and shape. Mean values of these ratios for each species were used,
assuming no sampling error because of small sample sizes. Data were collected for twelve
species, but each character is documented for ten species (not always the same ones). All data

can be found in Data S1.

Choice of the reference phylogenies and temporal calibration

Ratite phylogeny is still in a state of flux, with important differences between molecular
(Cooper et al., 2001; Haddrath & Baker, 2001; Hackett et al., 2008; Harshman et al., 2008;
Phillips et al., 2010; Johnston, 2011; and references therein) and morphological studies
(Bourdon et al., 2009, and references therein), and even between studies using the same kind
of evidence. Divergence times are even more difficult to estimate within the context of a
molecular phylogeny, although Phillips et al. (2010) provide a very good starting point. For
all these reasons, and because Cubo (2003) had used two phylogenies (Cooper et al., 2001,
Haddrath & Baker, 2001), we decided to use four phylogenies to test evolutionary models in
ratites. These include those of Cooper et al. (2001: fig. 2) and Haddrath & Baker (2001: fig.
2), both as modified by Cubo (2003: fig. 1a), and Phillips et al. (2010: fig. 5), which are all

molecular phylogenies, as well as a morphological one (Bourdon et al., 2009)
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Figure 2. One of the four trees (called ‘palaeontological tree’ in the text) used for the species-level analysis of
the ratite empirical data set. The genus-level analysis was carried out by pruning the tree to retain one terminal
taxon per genus and by inserting the generic averages into the remaining taxa.

that we dated using a combination of fossil and biogeographical data. These four trees allow

us to assess the robustness of our results to phylogenetic uncertainties.

Bourdon et al. (2009), using 129 morphological characters, assumed that ratites were
monophyletic, but were unable to find evidence for the monophyly of extant Australasian

ratites suggested by all molecular studies. Bourdon et al. (2009) found the New Zealand
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ratites (kiwis plus moas) as the sister group of all other ratites. Within this last clade, the
aepyornithids (Madagascar) are the sister group of a clade comprising all other extant ratites.
Finally, Struthio (Africa) and Rhea (South America) are successive sister groups of the

Australian Casuarius-Dromaius clade (Bourdon et al., 2009).

To date the tree by Bourdon et al. (2009), we estimated divergence times using well-
known ratite fossils: the minimal age for a node was determined by the age of the oldest fossil
included in this node, if there is one. The divergence between Dromaius and Casuarius was
dated to 35-38 Ma, following Boles (2001) and Paton, Haddrath & Baker (2002). The oldest
known ratite, Diogenornis fragilis, has been identified as a rheid (Alvarenga, 1983; Mayr,
2009), allowing us to estimate an age of 56-59 Ma for the divergence Rheidae/ Casuaridae, in
the late Palaeocene. Other Tertiary ratite fossils were not relevant in this study, because there
were either too recent to estimate the age of other nodes (Mourer-Chauviré et al., 1996;
Bertelli & Chiappe, 2005) or not well enough known to unambiguously estimate their position
in the phylogeny (Houde, 1986; Houde & Haubold, 1987; Grellet-Tinner & Dyke, 2005;
Mayr, 2005; Bibi et al., 2006). A possible exception is the Eocene Lithornis, but its affinities
may be with tinamous (Grellet-Tinner & Dyke, 2005; Johnston, 2011), which would place it

outside ratites and hence outside the sampled taxa on the topology of Bourdon et al. (2009).

Vicariance biogeography proved to be congruent with the ages estimated by the use of
fossils, and some ornithologists have hypothesized that all ratites are descended from a
flightless ancestor that was widespread in Gondwana (see for instance Cracraft, 1973, 1974,
2001; Bourdon et al., 2009). This hypothesis allowed us to use geological events to date parts
of the tree. Indeed, South America and Australia remained in contact through Antarctica until

the Paleogene (Woodburne & Case, 1996), and sweepstake dispersal was still possible until
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the early Eocene (Veevers, Powell & Roots, 1991; Lawver, Gahagan & Coffin, 1992). Thus,
we estimated a divergence time between the South American Rhea clade and the Australian
Casuarius-Dromaius clade at 60 Ma, which is consistent with the age of Diogenornis, the first
South American ratite. The loss of contact between Australia and south-east Papua occurred
in the early Eocene (Veevers & McElhinny, 1976), about 25 Ma before the divergence
between Casuarius and Dromaius. Africa drifted away from South America (and thus from
Antarctica) in the late Albian (Scotese, 2001), which may fix the divergence between Struthio
and the clade Rheidae-Casuaridae at 90-110 Ma. However, this is tentative because there is
no fossil record of paleognaths in Africa before the Miocene, by which time there are
ostriches both there and in Eurasia. Phillips et al. (2010: 102) suggest that ostriches invaded
Africa from Eurasia in the Miocene, but that is not certain because this is based on claimed
close relationships between the mid-Eocene Palaeotis from Messel (Germany) and ostriches,
for which Phillips et al. (2010: 99) cite Houde (1986), whereas a more recent unpublished
analysis cited by Dyke & van Tuinen (2004: 161) has instead found it to be a stem-ratite. We
estimated that the divergence between Aepyornithidae and the clade Struthio-Rheidae-
Casuaridae occurred between 130 and 110 Ma, as the Madagascar / India block drifted away

from Antarctica in the Early Cretaceous (Scotese, 2001).

The palaeogeographic dating roots the clade of paleognathous birds in the Early
Cretaceous, a very old estimate compared to the oldest undoubted ratite fossils known from
the Paleogene (around half the age of the Early Cretaceous) or indeed the oldest undoubted
fossils of crown-group birds (Kurochkin, Dyke & Karhu, 2002; Clarke et al., 2005) and their
sister group (Clarke & Chiappe, 2001) from the end of the Cretaceous. The much lower ages
implied by the fossil record (Hope, 2002; Clarke, 2004) would require several independent

losses of flight among ratites during the Tertiary to explain their distribution and thus much
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morphological convergence between the various ratite taxa. This hypothesis is suggested by
the most recent molecular phylogenies, which place tinamous within ratites (Hackett et al.,
2008; Harshman et al., 2008; Phillips et al., 2010), but this is unproblematic because we have
included such phylogenies among those used in our tests; we have not changed the dates of

the molecular phylogenies.

A problem in the vicariance model is the case of New Zealand ratites, because New
Zealand drifted away from Antarctica after the separation between Madagascar and
Antarctica. Assuming ratite monophyly and a single loss of flight, as we have done to date the
tree by Bourdon et al. (2009), this incongruence can be resolved only by the hypothesis that
the initial divergence between the moa-kiwi lineage and all other ratites occurred before the
separation of Gondwana and New Zeland, and that differential extinction events led to the
extinction of the other ratite lineage in New Zealand, and the extinction of the kiwi-moa
lineage on other continents, as suggested by Bourdon et al. (2009). The fossil record is so far

silent on this question.

We did not find palaeontological or molecular data that could be used to reliably date
the divergences between species. Thus, we simply inserted the minimal branch lengths that
we enforced throughout all trees (5 Myr) between species, whenever molecular ages were
unavailable. This is analogous to the method proposed by Laurin, Canoville & Quilhac (2009)
to deal with missing branch length data in comparative analyses. For the two other trees, we
used the branch lengths shown in Cubo (2003: fig. 1a). However, to assess whether unreliable
branch lengths between closely related species (within genera) favour the speciational model
over the gradual one, we performed the analyses using generic averages (first analysis) for all

characters and repeated them using species data (second analysis) for the four trees.
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Proportion of simulations in which each method yields
correct results
True evolutionary model | Tree 1 Tree 2 Average for the two trees
Test of the characters
Cubo (2003), matrix selection Gradual 0.610 0.050 0.330
Cubo (2003), matrix selection, modified | Gradual 0.600 0.170 0.385
Cubo (2003), slope Gradual 0.605 0.275 0.440
Contrast Gradual 0.770 0.760 0.765
CoMET Gradual 0.950 0.970 0.960
Cubo (2003), matrix selection Speciational 0.610 0.820 0.715
Cubo (2003), matrix selection, modified | Speciational 0.570 0.940 0.755
Cubo (2003), slope Speciational 0.550 0.935 0.742
Contrast Speciational 0.970 0.990 0.980
CoMET Speciational 0.970 0.990 0.980

Table 2. Power of the three tests to determine whether a character evolved according to a gradualistic or a
speciational model. These are the test proposed by Cubo (2003), as originally implemented (‘matrix selection’),
modified to use the smallest probability (even if greater than 0.05) associated with the explained variance,
modified to use the probability associated with the slope, the test using phylogenetic independent contrasts and
the maximum likelihood test (using AIC scores) implemented in COMET (Lee et al., 2006). In the tests of Cubo
and the new contrast-based test, four trees were used to discriminate between the models: two topologies and
two evolutionary models (one in which the branch lengths reflect geological time, and another with unitary
branch lengths). The original method by Cubo (2003) is based on linear regressions between phylogenetic
distance and phenetic distance matrices. The proportion of the simulations in which the correct tree was selected
for all methods is the average for 100 simulations for each of the two trees and for each evolutionary model
(speciational and gradual); when Cubo’s (2003) original test selected both phylogenetic distance matrices, this
simulation was scored as 0.5. The modified version of Cubo’s (2003) test is the proportion of times that the
correct tree has the lowest probability associated with the explained variance or with the slope, even when these
probabilities exceed the 0.05 threshold. When, for a given topology, the probability associated with the slope
was the same for both evolutionary models, we scored 0.5. The contrast-based method (‘contrasts’ in the table) is
based on a regression between standardized contrasts and their expected standard deviation (based on branch
lengths). The choice of the model is based on the probability associated with the slope (higher is better).

Results

Our simulations indicate that the test proposed by Cubo (2003) to determine whether a
character evolved according to a gradualistic or a speciational model has only a moderate
success rate (Table 2). When forward selection was used to determine which of the two
phylogenetic distance matrices (unitary branch length or branch lengths reflecting
evolutionary time) best explained character data, the correct matrix was identified in only 5-
82% of the cases (with an average success rate of 52%). This low and very heterogeneous
success rate is attributable to the fact that in many cases neither phylogenetic distance matrix
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was found to be significantly correlated with the phenotypic data, and when one was, it was
often the wrong one; in both cases, this was scored as a failure of the test. Using the
probability associated with the explained variance or with the b coefficient to choose between
phylogenetic distance matrices gives slightly better, but still very heterogeneous results (17—
94% of correct results using the probability associated with the variance; 28-94% of correct
results using the b coefficient). This great heterogeneity concerns mostly the Yule two tree, in
which a bias in favour of the speciational phylogenetic distance matrix was present, yielding
very low success rates (5-27.5%) when the true model of evolution was continuous.
Conversely, these three approaches (Cubo’s original, or both modifications thereof) on the
same tree yielded very high success rates when characters follow speciational evolution
(success rate of 82-94%), apparently reflecting the same bias. Note that, of all methods
analysed in this study, Cubo’s original method is the only one that takes into account
exclusively those phylogenetic distance matrices significantly related to the trait under
analysis. Variants of this method, although more performant in terms of success rates, select
phylogenetic distance matrices on the basis of the lowest probability, even when this
probability is higher than 0.05. In other words, even when the analyses conclude that neither
of the models significantly explain the variation of the trait under analysis, these methods

consider that one of them fit the data better than the other.

Our proposed test, which consists of regressing standardized contrasts against their
expected standard deviation, is slightly better, with a global success rate ranging from 76% to
99%, depending on the real evolutionary model of the characters and, to a lower extent, on the
tree. The contrast-based method performed overall better with characters evolving according
to a speciational model (maximum success rate of 99%) than with characters evolving

gradually, according to a Brownian motion model (maximum success rate of 77%). However,
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Taxonomic level
Genus Species
Number of gradual Number of Number of gradual Number of
characters speciational characters speciational
Tree Data set characters characters
Paleontological and biogeographical All 39 19 38 16
Size 26 4 29 1
Shape 9 15 9 15
Phillips et al., 2010 All 37 17 39 15
Size 26 4 29 1
Shape 11 13 10 14
Haddrath & Baker, 2001 All 40 14 38 16
Size 27 3 29 1
Shape 13 11 9 15
Cooper et al., 2001 All 35 19 37 17
Size 25 5 29 1
Shape 10 14 8 16
Average of four trees All 36.75 17.25 38 16
Size 26 4 29 1
Shape 10.75 13.25 9 15

Table 3. Evolutionary model of ratite osteological characters according to the four tested trees. For the data set,
‘all’ indicates results for all 54 characters; ‘size’ indicates results for the 30 unstandardized, size-related
characters; ‘shape’ indicates results for the 24 shape characters.

CoMET outperformed both, with a global success rate around 97%, and not differing
significantly between both models. Therefore, only COMET was used to test the evolutionary

model of our ratite data.

The CoMET analyses of the 54 osteological characters of ratites show that about 70%
(37) evolved according to a gradual model, and only about 30% (17) according to a
speciational model (Table 3). This result represents the grand average over the four trees and
using both generic averages and species data; the tree and taxonomic level have little
influence on these results. The tree that implies the lowest number of ‘gradual’ characters
(Cooper et al., 2001) still finds 35, whereas the tree that supports the greatest amount of
gradual change (Haddrath & Baker, 2001) finds 40, at the genus level (at the species level, the

spread is even narrower, from 37 to 39). A paired-sample t test, performed manually (Zar,
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1984) and repeated using Statistica, shows that overall more characters evolve according to a
gradual than a speciational model (Data S3), both when genera (t° = 8.25, P = 0.003726) and
species (t° = 26.94, P = 0.000112) are used. However, the size characters (measurements)
follow predominantly a gradual model (87% to 97%, according to genus- and species-level
trees, respectively), whereas the shape characters (ratios of the former) predominantly follow
a speciational model (55-63%, according to genus- and species-level trees, respectively).
Again, this conclusion does not heavily depend on the selected tree; among the size
characters, the trees support from 25 (Cooper et al., 2001) to 27 (Haddrath & Baker, 2001)
‘gradual’ characters at the genus level (at the species level, all trees find 29). Similarly,
among shape characters, these numbers range from 9 (palaeontological tree) to 13 characters
(Haddrath & Baker, 2001) at the genus level; these numbers range from 8 in Cooper et al.
(2001) to 10 in Phillips et al. (2010). A paired-sample t test (Zar, 1984) shows that the
difference in model between raw and shape measurements is very highly significant (Data S3)
for both genera (t* = 24.24, P = 0.000154) and species (t2 = 48.99, P = 0.000019). This
suggests a fair amount of independence between raw (size-related) and shape characters. No
single tree seems to give outlier values, and each yields one of the highest or lowest values at
least once; the two trees that most often yield extreme (but by no means ‘outlying’) values are

those of Haddrath & Baker (2001) and Cooper et al. (2001).

Discussion

Speciational vs. gradual models of evolution

A survey of the literature suggests that it will be generally difficult to determine

whether characters evolved according to a gradual or a punctuational model, for several
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reasons. First, as pointed out previously, the tests that have been proposed so far (including
the new test presented earlier) require fairly precise knowledge about the evolutionary time
separating the sampled species to assess the fit of a gradual model of evolution to the data.
This is currently problematic because neither of the two main sources of timing data currently
provides more than a crude estimate of the chronology of taxonomic diversification. Namely,
the fossil record is notoriously incomplete, and molecular dating relies on calibration
constraints predominantly extracted from the fragmentary fossil record. To illustrate this, of
about 320 lissamphibian clades for which Marjanovi¢ & Laurin (2007) proposed minimal
divergence dates based on the fossil record, only four clades had enough known extinct
relatives to estimate their maximum age. Yet, Marjanovi¢ & Laurin (2007) demonstrated that
these few maximum age constraints were crucial for deriving plausible molecular estimates of
the ages of most other clades. Other methodological problems plaguing molecular dating are
well known and have been adequately described elsewhere (Rodriguez-Trelles et al., 2002;
Shaul & Graur, 2002; Brochu, 20044, b; Graur & Martin, 2004; Britton, 2005). Maximum

ages were used for every calibration constraint by Phillips et al. (2010).

Second, assessing the fit of a speciational model to the data requires data about all
extant and extinct species of a taxon, or at least a representative sample of the latter (i.e. with
fairly homogeneous sampling in all groups). This condition is most limiting because < 1% of
the species that have ever lived on this planet are known from fossils, according to plausible
models and our knowledge of the past biodiversity (Newman, 2001; Laurin, 2005). Mooers et
al. (1999) argued that a punctuational model can be established using extant species if most of
the extant species of a clade are included in the study. However, this method assumes that the
proportion of extinct species is homogeneously distributed on the tree or negligible (Mooers

et al., 1999), and at least the second is in most cases unrealistic because most species are
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already extinct, as mentioned earlier. Thus, in practice, such a test is possible only within a
taxon that has a very dense fossil record that allows detection of most cladogenetic events, a

very uncommon situation (Prothero, 2004; Laurin, 2010).

Nonetheless, our simulations show that if all the rather restrictive conditions
mentioned earlier are met, the correct model of evolution of characters can be inferred by
CoMET with great reliability (about 97% global success rate). Thus, the problem does not lie
in the statistical analysis of the data, but rather in obtaining a phylogeny with correct topology

and branch lengths.

Our results are encouraging because, despite the methodological differences, increased
sample of characters and number of phylogenies, they confirm the conclusion by Cubo (2003)
that the osteological characters of ratites that reflect shape evolved mostly according to a
speciational model. Our results provide additional information by suggesting that this does
not apply to size-related characters; thus, over two-thirds of the characters in our sample
(which includes 30 size-related and 24 shape-related characters) have evolved according to a
gradual model. Size- and shape-related characters appear to follow different models in ratites.
These results provide additional support for the hypothesis by Cubo (2003) that heterochronic
mechanisms may underlie morphological changes in bone shape during the evolution of
ratites because it has been argued that (i) heterochronic changes are instantaneous on a
geologic time scale (Gould, 1977), in such a way that the outcome of these changes may be
consistent with a speciational model of character evolution, and that (ii) only evolutionary
shape changes (and not evolutionary size changes) could be evidence for heterochrony

(Gould, 2000).
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Our conclusions on these points should be seen as tentative because the uncertainties
in branch lengths and topology remain substantial. Nevertheless, the fact that the choice of
tree (among the four tested) impacts very little on the results suggests that our results are
fairly robust to phylogenetic uncertainties concerning ratites. The palaeontological tree,
whose paleobiogeographical dating rests on the highest number of hypotheses, yields results
congruent with the other trees, and indeed, it is not one of the two trees (Cooper et al., 2001,
Haddrath & Baker, 2001) that most frequently yields extreme (but still not outlying) values.

Thus, in this case, there is no sharp difference between morphological and molecular signals.
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Abstract

Periosteal, endosteal, and intracortical blood vessels bring oxygen and nutrients to
and evacuate the metabolic byproducts from osteocytes. This vascular network is in
communication with bone cells through a network of canaliculi containing osteocyte
cytoplasmic processes. The geometric and physiologic contraints involved in the
relationships between osteocytes (including canaliculi) and blood vessels in bones
remain poorly documented in a comparative point of view. First we test the
hypothesis (1) that osteocytes in endotherms may have higher energetic expenditure
and may produce more metabolic byproducts than in ectotherms. For this, we test
and find evidence for the prediction derived from this hypothesis that the maximum
absolute thickness of avascular bone tissue is significantly higher in lepidosaurs
than in birds. We also test two alternative hypotheses explaining the variation of
bone vascular density in diapsids: (2a) As body mass increases, the relative
effectiveness of vascular supply of the periosteum decreases because its surface
increases proportionally to the second power of bone length, whereas bone mass to
be supplied increases proportionally to the third power. Accordingly, we predict and
find evidence that bone vascular density is directly related to bone size in both
lepidosaurs and birds. The alternative hypothesis (2b) suggesting that bone vascular
density, like mass-specific resting metabolic rate, may decrease as body mass
increases has been refuted by these last results. Knowledge of the cytologic
relationship between osteocytes and blood vessels in diapsids is poor. Here we also
present preliminary results of a comparative cytologic study on such relationship.

Keywords: birds — bone vascularization — lepidosaurs — metabolism — size
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Introduction

Osteocytes obtain nutriments and oxygen and evacuate their metabolic byproducts
through cytoplasmic expansions located inside canaliculi and linked to vascular networks
(Mishra, 2009). These vascular networks are housed within bone cortices (Brookes, 1971;
Francillon-Vieillot et al., 1990) and in the inner (endosteal) and outer (periosteal) connective
tissues associated with the bones (Simpson, 1985). The geometric constraints that control the
structure of the vascular networks and their final relationships with local and systemic
metabolic processes have been very poorly studied at a comparative level (Mishra, 2009). We
analyze here the impact of the scaling of metabolic rate on two bone histological features: the
thickness of peripheral layer of avascular bone tissue and the density of bone vascular supply.
Previous studies have shown that femoral cortices of small adult lepidosaurs and birds are
avascular or almost avascular (Cubo et al., 2005; de Buffrénil, Houssaye & Béhme, 2008), so
that osteocytes perform metabolic exchanges exclusively with the inner and outer connective
tissues. In birds, the relative thickness of the outer layer of avascular bone tissue scales to
bone size with negative allometry (Ponton et al., 2004). The maximum thickness of avascular
bone in lepidosaurs and birds could be explained by a main hypothesis: (1) Osteocytes in
endotherms have higher energetic expenditure and produce more metabolic byproducts than
in ectotherms, which suggests that when bone cortical vascularization is absent endotherms
need to have thinner layers of avascular bone, if transport of metabolites via canaliculi is
under similar constraints in the different taxa. We thus expect significantly higher thickness of
avascular bone tissue in lepidosaurs than in birds. Moreover, we analyzed the scaling of bone
vascular density in the bones that actually display vascular canals. Two antagonist factors
could possibly explain the variation of this feature: Considering that mass-specific resting

metabolic rate (oxygen consumption, in ml/h, per body mass, grams) decreases as body mass
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increases, we expect that the metabolic demands of osteocytes do likewise, in which case
bone vascular density should decrease as body mass increases (hypothesis 2b). Conversely, as
bone size increases, the vascular supply of the periosteum decreases in relative effectiveness
because its surface increases proportionally to the second power of bone length, whereas bone
mass (to be supplied) increases proportionally to the third power. So we expect that bone
vascular density increases as body mass increases to compensate the smaller relative
effectiveness of vascular supply of the periosteum (hypothesis 2a). It is well documented that
osteocytes communicate with each other through the lacunocanalicular system (Mishra,
2009), but knowledge on the cytologic relationship between osteocytes and blood vessels
(intracortical, endosteal and periosteal) in diapsids is poor. Here we present also preliminary

results of a comparative cytologic study on such relationship.

Material and methods

The analysis of the effect of the scaling of metabolic rate on the histological features
was performed using a sample of femora of 46 species of lepidosaurs and 30 species of birds.
Only adult animals were used and all the sections were made in a transverse plane located at
mid-diaphysis to work in a strict frame of homology (Legendre et al., in press). The thin
sections belong to preexisting collections at the Pierre & Marie Curie University, Paris
(sample of birds) and the Muséum National d’Histoire Naturelle of Paris (sample of
lepidosaurs). We quantified a number of cross-sectional geometric and histological features
using ImageJ (Schneider, Rasband & Eliceiri, 2012): bone cross-sectional area (the area
encircled by the periosteum, including the medullary cavity); bone cortical area : black plus
grey in Fig. 1B : bone cross-sectional area (including vascular canals) minus medullary cavity

area; bone vascular area (in black in Fig. 1B : the area occupied by vascular cavities); total
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Figure 1. Fraction of a diaphyseal femoral transverse section of Corvus corone (Aves, Neognathae) showing the
histological features quantified in this study. A. Histological section. B. Gray: bone cortex; black: vascular
cavities. C. Gray: bone cortex minus the outer avascular layer; black: outer avascular layer.

number of vascular canals in a bone section; and the mean thickness of the outer layer of
avascular bone tissue (in black in Fig. 1C) measured as the radius of a circle of area equal to
bone cross sectional area minus the radius of a circle of area equal to the area encircled by the
outermost vascular canals (i.e. the area containing all intracortical vascular canals). When
vascular canals were absent, we measured the mean thickness of the whole cortex. Bone
vascular density was computed as total number of vascular canals / bone cortical area.
Moreover we analyzed bone vascular area / bone cortical area. In birds, when only a few (less
than ten) blood vessels were present in a bone section, the bone was considered to be
avascular because they probably were blood vessels running from the periosteum to the
endosteum (nutrient canals), and so did not form a vascular network inside the bone cortex.
All variables but the ratios were log transformed in order to spread the points more uniformly
in the graphs to improve the interpretability. We analyzed only transverse sections but,
considering that hydraulic resistance increases as the distance from osteocytes to blood vessel
increases (Mishra, 2009), the key functional constraint is the distance from osteocytes to
blood vessels (either intracortical or periosteal) in a given plane of section. In other words, a

given osteocyte can in principle obtain nutrients from blood vessels located at different
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positions in the 3D space, but in a given plane of section, the distance from an osteocyte to a
blood vessel must be lower than the threshold above which the transport of oxygen and
nutriments is no longer possible because of hydraulic resistance. In this context, because the
critical biological constraint is the absolute distance from cells to blood vessels, we analyzed
absolute (instead of relative to bone size) values of the thickness of the outer layer of

avascular bone tissue and of the bone vascular density.

All statistical analyses were performed using phylogenetic comparative methods
(sensu Harvey & Pagel, 1991). Phylogenetic relationships within the sample of birds used in
this study (Fig. 2) were compiled from Barker, Barrowclough & Groth (2002), and Livezey &
Zusi (2007). The phylogenetic tree of the sample of lepidosaurs used in this study (Fig. 3) was
compiled from Ast (2001) and Conrad (2008). Branch lengths were estimated using Pyron
(2010) for birds and Conrad (2008) for lepidosaurs. Regressions were performed using
phylogenetic generalized least squares (Grafen, 1989). Pagel’s lambda was compiled
simultaneously with each regression via maximum-likelihood using the function pgls from R
package ‘caper’ (Orme et al., 2012), thus ensuring an accurate estimation of phylogenetic
signal for each couple of variables (Revell, 2010): lambda = 0 means no phylogenetic signal;
lambda = 1 means high phylogenetic signal (traits evolve following a Brownian motion
model). The mean value for a given clade (i.e., lepidosaurs, birds) was obtained as the value
for the root node computed using squared-change parsimony optimization (Maddison, 1991)
in the PDAP module (Midford, Garland & Maddison, 2011) of Mesquite (Maddison &
Maddison, 2011). The corresponding confidence intervals were also computed using the

PDAP module of Mesquite.

The cytologic analysis of the relationship between osteocytes and blood vessels was
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Figure 2. Phylogenetic relationships among the sample of birds used in this study. Higher order relationships
were taken from Livezey & Zusi (2007). Relationships among passeriforms were compiled from Barker et al.
(2002). Branch lengths were taken from Pyron (2010).

performed using four subadult Varanus exanthematicus and four subadult Anas platyrhynchos
(Fig. 4). They all originate from breeding. After euthanasia, femora were fixed in a mixture
containing 2.5% glutatraldehyde, 2 % paraformaldehyde in 0.1 M cacodylate buffer. The
samples were demineralised using 5% EDTA added in the fixative. The demineralised
samples were post fixed with 1% osmium tetroxide in the cacodylate buffer, dehydrated, and
subsequently embedded in Epon. Semi-thin (1 um) sections were stained with toluidine blue
(pH 4) and examined using light microscopy. Thin (0.05 um) sections were double-stained
with uranyl acetate and lead citrate. The grids were viewed in a Zeiss Leo transmission

electron microscope with an operating voltage of 80 kV.
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FIGURE 3. Phylogenetic relationships among the sample of lepidosaurs used in this study. Higher order

relationships and branch lengths were taken from Conrad (2008). Relationships among Varanus species were

compiled from Ast (2001).

Results

Thickness of avascular bone tissue

In birds, the mean thickness of the outer layer of avascular bone tissue is 0.072 mm,

with lower and upper 95% confidence intervals of, respectively, 0.034 and 0.109 mm.

Variation ranges from 0.033 mm in Podiceps cristatus to 0.122 mm in Dendrocopos major. In

birds this layer was always present. In some species, the entire cortex is avascular: Emberiza

citrinella, Erithacus rubecula, Sylvia atricapilla, Parus caeruleus, Apus apus, Troglodytes

troglodytes and Parus major (table 1).
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Table 1. Dataset corresponding to the sample of birds.

Species Bone cross- Thickness Bone vascular Bone vascular
sectional area  outer layer density (1/mm2) area / Bone
(mmz) avascular cortical area
bone (mm)
Accipiter nisus 15.148 0.092 83.544 0.020
Alcedo atthis 1.916 0.079 69.069 0.006
Alectura lathami 80.828 0.043 89.291 0.080
Apus apus 1.450 0.102 0.000 0.000
Asio flammeus 13.703 0.050 81.832 0.022
Asio otus 9.038 0.099 124.238 0.028
Bubulcus ibis 17.500 0.051 149.603 0.035
Buteo buteo 31.349 0.102 71.583 0.026
Chroicocephalus ridibundus 16.243 0.057 79.141 0.023
Columba palumbus 12.000 0.055 110.776 0.031
Corvus corone 13.335 0.092 65.909 0.023
Dendrocopos major 4.095 0.122 33.247 0.004
Emberiza citrinella 1.275 0.114 0.000 0.000
Erithacus rubecula 1.112 0.116 0.000 0.000
Falco tinnunculus 8.379 0.089 98.127 0.030
Fulica atra 16.388 0.094 79.106 0.022
Megapodius nicobariensis 25.668 0.121 69.318 0.036
Parus caeruleus 0.859 0.086 0.000 0.000
Parus major 1.626 0.092 0.000 0.000
Pica pica 6.733 0.090 70.151 0.025
Picus viridis 6.274 0.067 48.317 0.008
Podiceps cristatus 16.620 0.033 122.169 0.065
Scolopax rusticola 12.755 0.102 81.699 0.015
Streptopelia decaocto 7.126 0.044 82.321 0.016
Strix aluco 21.400 0.069 93.447 0.020
Sturnus vulgaris 4,954 0.088 21.465 0.003
Sylvia atricapilla 1.080 0.049 0.000 0.000
Tringa hypoleucos 2.210 0.046 82.636 0.017
Troglodytes troglodytes 0.808 0.096 0.000 0.000
Turdus philomelos 4.377 0.079 26.600 0.004

In lepidosaurs, vascular canals, when present, appear throughout bone cortex, from

depth to periphery, so no outer layer of avascular bone tissue was defined. Instead, we

analyzed the thickness of the cortex in a subsample of lepidosaurs containing exclusively

species with avascular femora (see table 2). We obtained a mean thickness of the cortex in

lepidosaurs with avascular femora of 0.790 mm with lower and upper 95% confidence

intervals of, respectively, 0.381 and 1.199 mm. The range of variation is: 0.058 mm in

Coleonyx elegans and 1.455 mm in Amblyrhychus cristatus.

159



Table 2. Dataset corresponding to the sample of lepidosaurs.

Species Bone cross Thickness Bone vascular  Bone vascular area
sectional outer layer density / Bone cortical area
area avascular (1/mm2)

(mmz) bone (mm)

Agama atra 2.490 0.422 0.000 0.000

Agama bibroni 2.320 0.380 0.000 0.000

Amblyrhynchus cristatus 29.158 1.455 0.000 0.000

Ameiva ameiva 2.050 0.265 0.000 0.000

Ameiva bifrontala 2.490 0.350 0.000 0.000

Barisia imbricata 0.561 0.231 0.000 0.000

Callopistes maculatus 3.750 0.480 0.000 0.000

Cnemidophorus deppei 0.480 0.120 0.000 0.000

Cnemidophorus lemniscatus  1.040 0.230 0.000 0.000

Coleonyx elegans 0.208 0.059 0.000 0.000

Corucia zebrata 10.290 0.000 0.130 0.007

Crocodilurus lacertinus 5.030 0.760 0.000 0.000

Ctenosaura pectinata 23.022 0.702 0.000 0.000

Dipsosaurus dorsalis 1.609 0.242 0.000 0.000

Dracaena guianensis 17.950 0.000 6.760 0.369

Gallotia atlantica 0.875 0.221 0.000 0.000

Gallotia galloti 0.919 0.279 0.000 0.000

Gallotia goliath 18.390 0.940 0.000 0.000

Gerrhonotus viridiflavus 2.730 0.363 0.000 0.000

Heloderma horridum 13.219 1.018 0.000 0.000

Iguana iguana 17.843 0.800 0.000 0.000

Lacerta lepida 5.970 0.770 0.000 0.000

Lacerta viridis 1.509 0.391 0.000 0.000

Podarcis boccagei 0.319 0.188 0.000 0.000

Podarcis muralis 0.360 0.195 0.000 0.000

Pogona vitticeps 5.013 0.507 0.000 0.000

Sauromalus obesus 5.655 0.495 0.000 0.000

Sceloporus gadoviae 0.446 0.138 0.000 0.000

Sceloporus horridus 0.511 0.104 0.000 0.000

Sphenodon punctatus 10.281 1.057 0.055 0.003

Tupinambis rufescens 13.135 0.000 29.915 2.855

Tupinambis teguixin 15.327 0.000 11.177 0.188

Uromastyx aegyptiacus 10.791 0.655 0.000 0.000

Urosaurus bicarinatus 0.326 0.129 0.000 0.000

Varanus bengalensis 18.290 0.000 13.850 0.650

Varanus caudolineatus 0.640 0.220 0.000 0.000

Varanus doreanus 31.407 0.000 11.163 0.387

Varanus exanthematicus 24.233 0.000 17.953 2.410

Varanus flavescens 16.465 0.000 7.155 0.130

Varanus gilleni 1.415 0.372 0.000 0.000

Varanus glebopalma 7.115 0.475 0.000 0.000

Varanus gouldii 13.535 0.000 7.410 0.530

Varanus griseus 10.220 0.000 33.330 0.620

Varanus indicus 14.590 0.000 5.790 0.060

Varanus macrei 6.483 0.680 0.000 0.000

Varanus mertensi 25.510 0.000 11.050 0.250

Varanus niloticus 34.542 0.000 28.424 2.111

Varanus ornatus 18.255 0.000 12.785 0.385

Varanus prasinus 6.637 0.610 0.000 0.000

Varanus rudicollis 18.973 0.000 43.803 1.595
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We also regressed the log thickness of the outer layer of avascular bone tissue with log
bone cross-sectional area in birds and did not find a significant relationship between these
variables. The regression of log thickness of the outer layer of avascular bone tissue with log
bone radius in birds is not significant either (Pagel’s Lambda: 0.000; adjusted R* 0.04; p-

value: 0.146; Fig. 5).

Bone vascular density

Bone vascular density (computed as number of vascular canals / bone cortical area) is
positively related to log bone cross-sectional area in both lepidosaurs (Pagel’s Lambda: 0.225;
R?: 0.112; p-value: 0.007) and birds (Pagel’s Lambda: 1.000; R*: 0.2629; p-value: 0.002). The
ratio of bone vascular area / bone cortical area is also positively related to log bone cross-
sectional area in in both lepidosaurs (Pagel’s Lambda: 0.000; R?: 0.1703; p-value: 0.001) and
birds (Pagel’s Lambda: 1.000; R% 0.2398; p-value: 0.003). Finally, bone vascular density is
also related to log snout-vent maximal length in VVaranus (Pagel’s Lambda: 0.000; R% 0.2102;
p-value: 0.024; Fig. 6). In Varanus, femora with a bone cross-sectional area of more than 8
mm? are vascularized. In the whole clade Lepidosauria, no femur smaller than 8 mm? is
vascularized. However, many species with femora of bone cross-sectional area bigger than 8
mm? are avascular: Uromastyx aegyptiacus (10.7905 mm?), Heloderma horridum (13.2185
mm?), lguana iguana (17.8433 mm?), Gallotia goliath (18.3900 mm?), Ctenosaura pectinata

(23.0215 mm?), and Amblyrhynchus cristatus (29.158 mm?).

Cytologic analysis of the relationship between osteocytes and blood vessels

Anas platyrhynchos. The well-vascularized femoral periosteal bone tissue contains a
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rich osteocyte network (Fig. 4A, B). Osteocytes are numerous around vascular canals. Their
canaliculi clearly point towards blood vessels (Fig. 4B). In the periosteum, some osteoblasts
are in close contact with capillary blood vessels (Fig. 4A). TEM images confirm the presence
of a tight relationship between osteocytes and blood vessels (Fig. 4E). These osteocytes show
a prominent nucleus and endoplasmic reticulum in the cytosol (Fig. 4E). The contact is
established between the plasmic membrane of the blood vessel endothelial cell and the
plasmic membrane of the osteocyte processes. Multiple canalicular projections protrude from

the osteocyte body in all directions.

Varanus exanthematicus. The bone cortex is typically composed of a parallel-fibered
bone tissue and displays vascular canals that are evenly distributed. The osteocytes situated in
the periphery of the bone cortex show long canaliculi directed towards the periosteum (Fig.
4C) whereas those situated around vascular canals in the cortex show canaliculi directed

towards the wall of these blood vessels (Fig. 4D).

Discussion

A series of hypotheses concerning the variation of bone vascularization in lepidosaurs
and birds have been put forth in the introduction. We will successively discuss them. But
before we will briefly discuss the results obtained in the cytologic analysis aimed at exploring

the relationships between the osteocytes and the blood vessels.

Both animal models analyzed in this study (Varanus exanthematicus and Anas platyrhynchos)
show a cortical network of canaliculi preferentially oriented towards the vascular canals

(either intracortical or periosteal), which supply in nutrients and oxygen the
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Figure 4. Femoral semi-thin (A — D) and ultra-thin (E) mid-shaft cross sections of Anas platyrhynchos (A, B, E)
and Varanus exanthematicus (C-D). A, In the periosteum (P), an osteoblast (Ob) is in close contact with a blood
vessel (Bv). Osteocytes (Oc) are numerous in the periosteal bone (PB) and a rich canaliculi network is present.
B, Canaliculi (Ca) are clearly directed towards the blood vessel located in the periosteal bone. C, Long canaliculi
communicate with the periosteum where a blood vessel is visible. D, Osteocytes surrounding a blood vessel
containing an erythrocyte (E). A rich canaliculi network is observed. E, Transmission electron microscopy
micrograph showing a tight contact (black arrows) between the body cell of an osteocyte and the wall of a blood
vessel where an erythrocyte is visible. The osteocyte shows long processes in the canaliculi throughout the bone
matrix.

bone cells (Currey, 2002 ; Bonewald, 2011; Kennedy & Schaffler, 2012). Considering that
hydraulic resistance increases as distance from blood vessel increases, there may be a
threshold above which the transport may not be possible. Mishra (2009) concluded that osteon
diameter is determined by this threshold. Here we hypothesize that the thickness of avascular
bone tissue depends on the metabolic demands of bone cells; therefore this thickness is likely
to be higher in lepidosaurs than in birds. The 95% confidence intervals for birds and
lepidosaurs do not overlap: the lower limit of the lizard confidence interval (0.381 mm) is
more than three times higher than the upper limit of the bird confidence interval (0.109 mm).
On the other hand, the mean avascular thickness is more than ten times thicker in lepidosaurs
(0.790 mm) than in birds (0.072 mm). These results are strong evidence for hypothesis 1,
according to which we expect a higher thickness of avascular bone tissue in lepidosaurs than
in birds because osteocytes of the latter have higher energetic expenditure and produce more
metabolic byproducts than those of the former. Our result of a maximum thickness of the
avascular layer (i.e. the farthest distance of an osteocyte from a blood vessel located on the
periosteum) of 0.122 mm in birds is astonishingly congruent with those published by Mishra
(2009), according to which mammalian osteon diameter is of 0.250 mm (which would
represent the double of the farthest distance — i.e. 0.125 mm — between an osteocyte and the
osteonal vascular canal). Values obtained here for lepidosaurs with avascular bone are
extremely high to transport nutrients and oxygen from connective tissues (endosteum and

periosteum) to bone cells placed at the center of the cortex. Mean thickness of the cortex in
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lepidosaurs with avascular femora is 0.790 mm and the higher value, found in Amblyrhynchus
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Figure 5. PGLS regression of the log thickness of the outer layer of avascular bone tissue with log bone radius
in birds (R% 0.041; p-value: 0.146).
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Figure 6. PGLS regression of the log bone vascular density with log snout-vent maximal length in Varanus (R%
0.210; p-value: 0.024).

cristatus, is 1.455 mm (i.e. the distance from endosteal or the periosteal blood vessels and

osteocytes located in the middle of the bone cortex is 0.727 mm). These values are higher
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than those previously cited by Mishra (2009) for the avascular bones of amphibians (distance
between osteocytes and periosteal and endosteal blood vessels of 0.150 mm). This result is
surprising because, for a body mass smaller than roughly 100 g, the standard metabolic rate
(mL O, h) of amphibians is smaller than that of “reptiles” (White, Phillips & Seymour,

2006).

Within birds, Ponton et al. (2004) showed that the ratio of the thickness of the outer
layer of avascular bone tissue to bone cortical thickness scales with negative allometry
relative to bone radius. This would mean that the bigger a bone, the thinner, relative to
cortical thickness, its peripheral avascular layer. Here we have found that the absolute
thickness of the outer layer of avascular bone tissue is independent from both bone cross
sectional area and bone radius in birds. So we conclude that the negative allometry found by
Ponton et al. (2004) reflects the fact that they analyzed relative values of outer avascular layer
thickness. In other words, for a constant thickness of avascular bone, its relative thickness
may decrease with increasing bone size. When analyzing absolute values (as has been done
here), the thickness of the outer layer of avascular bone tissue is independent of bone size and

so it may also be independent from body size.

Different factors have been evoked in the literature to explain the variation of bone
vascularization in tetrapods. Our results allow a deeper knowledge on the determinism of

bone vascularization in diapsids, as discussed below.

Phylogeny. Cubo et al. (2005) showed that the ratio bone vascular area / bone cortical
area is explained by phyogeny at the nodes sauropsids, diapsids, archosaurs, lepidosaurs and

birds, but not in testudines. Results obtained in this study for the sample of birds (Pagel’s
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Lambda = 1.000 suggesting a high phylogenetic signal) agree with those of Cubo et al. (2005)
and those by Legendre et al. (in press). However, results obtained for lepidosaurs (Pagel’s
Lambda = 0.000 suggesting no phylogenetic signal) do not agree with those obtained by Cubo
et al (2005), probably because these last authors used a smaller sample size. De Buffrénil et al
(2008) concluded that phylogeny does not explain the variation of the ratio of bone vascular
area to bone cortical area in Varanus. Our results agree with their conclusion: we obtained a
Pagel’s lambda of 0.000 in the regression of bone vascular area / bone cortical area to snout-
vent maximal length (both with and without log transformation) in Varanus, suggesting no

phylogenetic signal in the variation of this feature.

Bone cross-sectional area and body size. Bone vascular density and the ratio of
vascular canal area / bone cortical area are positively related to bone cross-sectional area in
both lepidosaurs and birds. Results obtained here using PGLS regressions are congruent with
those obtained by Cubo et al (2005) for sauropsids using phylogenetically independent
contrasts. On the other hand, bone vascular density is related to snout-vent maximal length in
Varanus. This last result is congruent with that obtained by de Buffrénil et al. (2008) using a
statistical methodology that did not include phylogeny. All these results may be interpreted as
evidence for hypothesis 2a suggesting that bone vascular density increases as bone and body
size increase to compensate the smaller relative effectiveness of vascular supply of the
periosteum because periosteal supply depends on periosteal area, and thus increase
quadratically as compared to bone linear dimensions; conversely, bone volume or mass (to be
supplied) increase faster, with the third power of bone linear dimensions. The endosteum is
also a potential source of nutrients for bone cells. However, its relative contribution is smaller
than that of the periosteum because the cement line separating endosteal from periosteal bone

most likely disrupts the osteocyte network and prevents any communication between
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endosteal and periosteal canaliculi, as suggested by the fact that canaliculi are cut by, and do
not have any communication through, the cement lines of secondary osteons (Kerschnitzki et

al. 2011).

Metabolic rate. Mass-specific resting metabolic rate decreases as body mass increases
(Schmidt-Nielsen, 1997; Hulbert et al., 2007). We expect that the metabolic demands of
osteocytes do likewise, in which case bone vascular density and the ratio bone vascular area /
bone cortical area may also decrease as body mass (tightly related to bone size) increases (our
hypothesis 2b). We have found the opposite result, which refutes this hypothesis. However, a
small effect of metabolic rate on bone vascularization may exist, as suggested by the
following data: In Varanus, the threshold above which femora are vascularized is lower (bone
cross-sectional area = 8 mm?) than in other lepidosaurs, probably because the former have

higher metabolic rates.

Bone growth rate. De Buffrénil et al (2008) concluded that bone growth rate is the
main proximal factor explaining the variation of bone vascularization in Varanus, in
agreement wih Amprino’s rule (Amprino, 1947). This explanation may be correct for the
whole clade of diapsids when primary bone in the inner part of the cortex is analyzed.
However, when the whole cortex is analyzed (as it is the case in the present study), we must
take into account the fact that bone growth rate decreases with age, so that some regions are
formed at high rates (and show high vascular densities) whereas other, more peripheral
(younger) regions show low or no vascularization of all. In birds, considering that the
thickness of the outer avascular layer is independent from bone size and more or less constant,
big species may retain at adulthood a bigger fraction of rapidly formed, densely vascularized,

bone tissue than small species, which may retain exclusively the outer avascular layer.
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In conclusion, bone vascular density, bone growth rate, bone cross-sectional area and
mass-specific metabolic rate, are functionally linked and so they are constrained to co-evolve.
These characters may constitute a case of the correlated progression concept (Kemp, 2007),
the phylogeny being an explanatory (but not a causal) factor. On the other hand, the thickness
of the outer layer of avascular bone tissue is significantly higher in lepidosaurs than in birds
clearly showing a phylogenetic pattern which may be explained by different metabolic
requirements of osteocytes in these clades. Future work on the effect of osteocyte size and
density on the variation of both the thickness of the outer layer of avascular bone tissue and
the bone vascular density in a more comprehensive sample of diapsids may allow additional

tests of our hypotheses.
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Résumeé

Les archosaures sont un clade de vertébrés comprenant les oiseaux, les crocodiliens,
ainsi que de nombreux groupes fossiles (notamment les ptérosaures et les dinosaures non-
aviens). Ce groupe fait depuis plusieurs décennies I’objet d’un important débat parmi les
paléontologues quant a I’évolution du thermométabolisme au sein de ses différentes lignées.
L’hypothése classique considére que seuls les oiseaux modernes sont endothermes (i.e.
capables de produire leur propre chaleur corporelle), tandis que tous les autres archosaures
sont ectothermes (i.e. totalement dépendants du milieu extérieur pour maintenir leur corps a
une température élevée). L’histologie osseuse permet d’étudier et de modéliser plusieurs traits
relatifs a la croissance osseuse et au thermométabolisme, par ailleurs impossibles a mesurer
sur des spécimens fossiles ; c’est pourquoi nous avons utilisé des caractéres mesurés sur des
coupes histologiques d’os longs afin de tester cette hypothese.

Les relations phylogénétiques entre especes dans un échantillonnage peuvent avoir un
impact trés important sur la variation de caractéres quantitatifs lors de la construction d’un
modeéle statistique. Afin de mieux caractériser cet impact pour le prendre en compte
efficacement lors de nos analyses ultérieures, le premier volet de cette thése a consisté en une
étude approfondie de I’information phylogénétique présente dans la variation de nos
caractéres quantitatifs ostéohistologiques. Nous avons pu mettre en évidence la présence d’un
signal phylogénétique tres élevé dans plusieurs de ces caractéres pour un échantillonnage
d’amniotes et pour un autre, plus exhaustif, d’oiseaux paléognathes, ce qui justifie I’emploi de
méthodes phylogénétiques comparatives pour la construction de notre modeéle prédictif
appliqué au thermomeétabolisme.

Apreés une étude préliminaire consacrée a I’élaboration d’un modele prédictif du taux
de croissance osseuse, qui est un indicateur indirect du thermométabolisme, nous avons
construit un modele global capable de prédire directement le taux métabolique au repos de
nos spécimens fossiles en utilisant a la fois des caracteres histologiques et la position
phylogénétique de chaque spécimen comme variables indépendantes. Nos résultats montrent
gue la majorité des archosaures inclus dans notre échantillonnage, ainsi que de proches
groupes-freres, étaient endothermes, avec pour certains d’entre eux des taux métaboliques
comparables a ceux des oiseaux actuels. Cela implique que le dernier ancétre commun des
archosaures était probablement endotherme, et que les crocodiliens actuels sont donc devenus
secondairement ectothermes, probablement en réponse aux contraintes du milieu aquatique
auquel ils se sont adaptés. Plusieurs études antérieures sur la physiologie des crocodiliens et
sur la description de I’histologie osseuse d’archosaures fossiles corroborent ce résultat. Des
études plus spécifiques sur la lignée des pseudosuchiens (i.e. crocodiliens et groupes fossiles
apparentés) devraient permettre de déterminer de maniere plus précise a quel niveau de
I’arbre phylogénétique s’est effectué le retour a un état ectotherme, ainsi que les contraintes
adaptatives a I’origine de cette acquisition.

Mots-clés : archosaure — histologie osseuse — caracteres quantitatifs — paléontologie des
vertébrés — modele prédictif — méthodes phylogénétiques comparatives
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Abstract

Archosaurs are a clade of vertebrates that includes birds, crocodiles, and numerous
fossil groups (including pterosaurs and non-avian dinosaurs). This clade has been a matter of
debate among paleontologists for decades concerning the evolution of thermometabolism in
its different lineages. The classical hypothesis considers that only modern birds are truly
endotherms (i.e. able to produce their own body heat), whereas all other archosaurs are
ectotherms (i.e. relying entirely on the external environment to maintain their body at a high
temperature). Bone histology allows to study and to model several traits linked to bone
growth rate and thermometabolism, otherwise impossible to estimate on fossil specimens; for
this reason, we used characters measured on long bone histological sections in order to test
this hypothesis.

Phylogenetic relationships between species in a sample can have a very strong impact
on the variation of quantitative features when building a statistical predictive model. In order
to describe this impact more accurately to take it into account in further analyzes, the first part
of this thesis consisted in a comprehensive study of the phylogenetic information found in the
variation of our osteohistological quantitative characters. We were able to identify a very high
phylogenetic signal for several of these characters in a sample of amniotes, and in another,
more exhaustive sample of palaeognathous birds. This is why we used phylogenetic
comparative methods to build our predictive model applied to thermometabolism.

After a preliminary study during which we built a predictive model for bone growth
rate, which is an indirect estimator of thermometabolism, we built a global model to predict
the resting metabolic rate of our fossil specimens, using both histological features and
phylogenetic information for each specimen as independant variables. Our results show that a
majority of archosaurs in our sample, as well as some close outgroups, were endotherms, with
metabolic rates sometimes comparable to those of modern birds. This implies that the last
common ancestor of archosaurs was likely an endotherm, and that modern crocodiles became
secondarily ectothermic, probably in response to the constraint of their aquatic environment.
Several previous studies on crocodile physiology and descriptions of the bone histology of
fossil archosaurs corroborate this result. More specific studies on pseudosuchians (i.e.
crocodiles and close fossil outgroups) should allow to precisely identify the level of the
phylogenetic tree at which the ectothermic state was acquired, as well as adaptive constraints
behind this acquisition.

Keywords: archosaur — bone histology — quantitative features — vertebrate paleontology —
predictive modeling — phylogenetic comparative methods
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