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The fourth moment of automorphic L-functions at prime power level

The main result of this dissertation is an asymptotic formula for the fourth moment of automorphic L-functions of prime power level ρ ν , ν Ñ 8. This is a continuation of the work of Rouymi, who computed the first three moments at prime power level, and a generalisation of results obtained for prime level by Duke, Friedlander & Iwaniec and Kowalski, Michel & Vanderkam. Résumé Le résultat principal de cette thèse est une formule asymptotique pour le quatrième moment des fonctions L automorphes de niveau ρ ν , où ρ est un nombre premier et ν Ñ 8. Il prolonge le travail de Rouymi, qui a calculé les trois premiers moments de niveau ρ ν , et il généralise les résultats obtenus en niveau premier par Duke, Friedlander & Iwaniec et Kowalski, Michel & Vanderkam.

List of Abbreviations and Symbols

pa, bq the greatest common divisor of a and b ra, bs the least common multiple of a and b xf, f y q Petersson inner product defined in (2.12)

a n " opb n q a n {b n Ñ 0 as n Ñ 8

a n " Opb n q there is c ą 0 with |a n | ă c|b n | for all n f ! g Vinogradov's symbol: f " Opgq q "

? q 2π P prq polynomial dependence on parameter r Gpsq even polynomial vanishing at all poles of Γps `ir `k{2qΓps ´ir `k{2q in the range s ě ´L for some large constant L ą 0.
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Introduction

Let Lps, f q be an automorphic L-function associated to a primitive form f of weight k and level q. An important subject in analytic number theory is the behavior of such Lfunctions near the critical line s " 1{2. Questions of particular interest are subconvexity bounds, equidistribution, gaps between zeros and proportion of vanishing (or non-vanishing)

L-functions. See, for example, [START_REF] Duke | The critical order of vanishing of automorphic L-functions with large level[END_REF], [START_REF] Duke | Bounds for automorphic Lfunctions[END_REF], [START_REF] Duke | Bounds for automorphic Lfunctions. II[END_REF], [START_REF] Iwaniec | The non-vanishing of central values of automorphic L-functions and Landau-Siegel zeros[END_REF], [START_REF] Kowalski | Mollification of the fourth moment of automorphic L-functions and arithmetic applications[END_REF], [START_REF] Kowalski | Non-vanishing of high derivatives of automorphic L-functions at the center of the critical strip[END_REF], [START_REF] Rouymi | Formules de trace et non-annulation de fonctions L automorphes au niveau p ν[END_REF], [START_REF] Rouymi | Mollification et non annulation de fonctions L automorphes en niveau primaire[END_REF], [START_REF] Royer | Taille des valeurs de fonctions L de carrés symétriques au bord de la bande critique[END_REF].

A possible way to analyse these problems is the method of moments and its variations: mollification and amplification. The given techniques proved to be extremely effective in the past years. However, the majority of results are known under assumption that the level q is either prime or square-free number. See [START_REF] Duke | The critical order of vanishing of automorphic L-functions with large level[END_REF], [START_REF] Iwaniec | Low lying zeros of families of L-functions[END_REF], [START_REF] Kowalski | A lower bound for the rank of J 0 pqq[END_REF], [START_REF] Kowalski | Non-vanishing of high derivatives of automorphic L-functions at the center of the critical strip[END_REF], [START_REF] Vanderkam | The rank of quotients of J 0 pN q[END_REF].

Recently, D. Rouymi considered the case q " ρ ν , where ρ is a fixed prime number and ν Ñ 8. He computed the asymptotics of the first three moments and established a positive proportion of non-vanishing L-functions at the critical point s " 1{2.

Denote the rth harmonic moment by

M r " h ÿ f PH k pqq Lp1{2, f q r , (1.1) 
1 where

h ÿ f PH k pqq :" ÿ f PH k pqq Γpk ´1q p4πq k´1 xf, f y q (1.2)
is the harmonic average over primitive newforms H k pqq.

Theorem 1.0.1. (Rouymi, [START_REF] Rouymi | Formules de trace et non-annulation de fonctions L automorphes au niveau p ν[END_REF]) Let q " ρ ν , ν ě 3. Then M 1 " φpqq q `Ok,ρ pq ´cq, 0 ă c ă 1{2, M 2 " ˆφpqq q ˙2 log q `Ok,ρ p1q,

M 3 " 1 6
ˆφpqq q ˙4 plog qq 3 `Ok,ρ pplog qq 2 q.

Corollary 1.0.2. By Cauchy-Schwartz inequality

h ÿ f PH k pqq Lp1{2,f q‰0 1 ě pM 1 q 2 M 2 " 1 log q .
Remark 1.0.3. Using the technique of mollification, Rouymi [START_REF] Rouymi | Mollification et non annulation de fonctions L automorphes en niveau primaire[END_REF] obtained a bound independent of log q. Let k ě 2 be an even integer and ρ be a prime number. Then for every δ ą 0 there exists ν 0 " ν 0 pk, ρ, δq such that for ν ě ν 0 and q " ρ ν h

ÿ f PH k pqq Lp1{2,f q‰0 1 ě ρ ´1 6ρ ´δ.
Here H k pqq is a subset of H k pqq such that the sign of the functional equation (2.23) is plus.

The fourth moment of automorphic L-functions of weight k " 2 and prime level q, q Ñ 8, was studied in [START_REF] Duke | Bounds for automorphic Lfunctions. II[END_REF] and [START_REF] Kowalski | Mollification of the fourth moment of automorphic L-functions and arithmetic applications[END_REF].

Theorem 1.0.4. (Kowalski,Michel and Vanderkam,[START_REF] Kowalski | Mollification of the fourth moment of automorphic L-functions and arithmetic applications[END_REF], corollary 1.3) Let q be a prime.

For all ą 0

h ÿ f PH 2 pqq
Lpf, 1{2q 4 " Qplog qq `O pq ´1{12` q, (1.3)

where Q is a polynomial of degree 6 and leading coefficient is 1 60π 2 .

In this dissertation, the result of theorem 1.0.4 is extended as follows.

• We consider the level of the form q " ρ ν , where ρ is a fixed prime number and ν Ñ 8.

• We assume that the weight k ą 0 is an arbitrary even integer.

• We slightly shift each L-function in the product from the critical line s " 1{2

M 4 pt 1 , t 2 , r 1 , r 2 q " h ÿ f PH k pqq
Lp1{2 `t1 `ir 1 , f qLp1{2 `t1 ´ir 1 , f qLp1{2 `t2 `ir 2 , f qLp1{2 `t2 ´ir 2 , f q,

where |t 1 | ă 1{2, |t 2 | ă 1{2 and t 1 , t 2 , r 1 , r 2 P R.

Theorem 1.0.5. For all ą 0, the fourth moment can be written as follows M 4 pt 1 , t 2 , r 1 , r 2 q " M D `M OD `M OOD `O ,ρ,t 1 ,t 2 pP pr 1 qP pr 2 qq |t 1 |´t 1 `|t 2 |´t 2 ` pq ´2k´3 12 `q´1{4 qq, where

M D `M OD " φpqq q ÿ 1 , 2 "˘1 q´2t 1 ´2t 2 `2 1 t 1 `2 2 t 2
ˆζq p1 `2 1 t 1 qζ q p1 `2 2 t 2 q ś ζ q p1 ` 1 t 1 ` 2 t 2 ˘ir 1 ˘ir 2 q ζ q p2 `2 1 t 1 `2 2 t 2 q ˆΓp 1 t 1 `ir 1 `k{2qΓp q´2t 1 ´2t 2 `2i 1 r 1 `2i 2 r 2 ζ q p1 `2i 1 r 1 qζ q p1 `2i 2 r 2 q ˆś ζ q p1 ˘t1 ˘t2 `i 1 r 1 `i 2 r 2 q ζ q p2 `2i 1 r 1 `2i 2 r 2 q Γpk{2 ´t1 `i 1 r 1 qΓpk{2 ´t2 `i 2 r 2 q Γpk{2 `t1 ´i 1 r 1 qΓpk{2 `t2 ´i 2 r 2 q . (1.5)

The shifts simplify analysis of the off-off-diagonal term M OOD , reveal more clearly a combinatorial structure of mean values and allow us to verify random matrix theory conjectures (including lower order terms) by Conrey, Farmer, Keating, Rubinstein and Snaith [START_REF] Conrey | Integral moments of L-functions[END_REF].

Conjecture 1.0.6. (RMT, particular case of conjecture 3.0.6)

Up to an error term, we have

M 4 pt 1 , t 2 , r 1 , r 2 q " φpqq q q´2t 1 ´2t 2 ÿ 1 , 2 , 3 , 4 "˘1 1 2 3 4 "1
qt 1 p 1 ` 2 q`t 2 p 3 ` 4 q`ir 1 p 1 ´ 2 q`ir 2 p 3 ´ 4 q ˆˆΓp´t 1 ´ir 1 `k{2qΓp´t 1 `ir 1 `k{2qΓp´t 2 ´ir 2 `k{2qΓp´t 2 `ir 2 `k{2q Γpt 1 `ir 1 `k{2qΓpt 1 ´ir 1 `k{2qΓpt 2 `ir 2 `k{2qΓpt 2 ´ir 2 `k{2q ˙1{2 ˆˆΓp 1 pt 1 `ir 1 q `k{2qΓp 2 pt 1 ´ir 1 q `k{2q Γp´ 1 pt 1 `ir 1 q `k{2qΓp´ 2 pt 1 ´ir 1 q `k{2q ˙1{2 ˆˆΓp 3 pt 2 `ir 2 q `k{2qΓp 4 pt 2 ´ir 2 q `k{2q Γp´ 3 pt 2 `ir 2 q `k{2qΓp´ 4 pt 2 ´ir 2 q `k{2q ˙1{2 ˆζq p1 `t1 p 1 ` 2 q `ir 1 p 1 ´ 2 qqζ q p1 `t2 p 3 ` 4 q `ir 2 p 3 ´ 4 qq ζ q p2 `t1 p 1 ` 2 q `t2 p 3 ` 4 q `ir 1 p 1 ´ 2 q `ir 2 p 3 ´ 4 qq ˆζq p1 ` 1 pt 1 `ir 1 q ` 3 pt 2 `ir 2 qqζ q p1 ` 1 pt 1 `ir 1 q ` 4 pt 2 ´ir 2 qq ˆζq p1 ` 2 pt 1 ´ir 1 q ` 3 pt 2 `ir 2 qqζ q p1 ` 2 pt 1 ´ir 1 q ` 4 pt 2 ´ir 2 qq.

Remark 1.0.7. The condition 1 , 2 , 3 , 4 " ˘1, 1 2 3 4 " 1 implies that there are eight terms in the sum. The four of them p 1 , 2 , 3 , 4 q " p1, 1, 1, 1q, p1, 1, ´1, ´1q, p´1, ´1, 1, 1q, p´1, ´1, ´1, ´1q coincide with the summands of (1.4), and the other four p 1 , 2 , 3 , 4 q " p´1, 1, ´1, 1q, p´1, 1, 1, ´1q, p1, ´1, ´1, 1q, p1, ´1, 1, ´1q

with the summands of (1.5).

By letting the shifts tend to zero in theorem 1.0.5, we obtain an asymptotic formula for the fourth moment at the critical point s " 1{2.

Theorem 1.0.8. For all ą 0, we have

h ÿ f PH k pqq Lp1{2, f q 4 " Qplog qq `O ,ρ pq pq ´2k´3 12 `q´1{4 qq, (1.6) 
where Q is a polynomial of degree 6 and leading coefficient is

ˆφpqq q ˙7 ρ 2 ρ 2 ´1 1 60π 2 . (1.7)
The structure of the proof of theorem 1.0.5 is described by the figure 1.1. The main term of asymptotic formula consists of diagonal M D , off-diagonal M OD and off-off-diagonal M OOD parts. Therefore, it requires three different stages of analysis.

First, we apply approximate functional equation (4.1.5) to the product of L-functions

Lp1{2 `t1 `ir 1 , f qLp1{2 `t1 ´ir 1 , f qLp1{2 `t2 `ir 2 , f qLp1{2 `t2 ´ir 2 , f q.
This allows us to use the Petersson trace formula (2.4.2). As a result, M 4 pt 1 , t 2 , r 1 , r 2 q splits into diagonal M D and non-diagonal is given by theorem 4.0.4. The off-off-diagonal term M OOD is analysed using δ-symbol method in chapter 5. 

M N D " M N D 1 `M N D 2 parts: M D " φpqq q q´2t 1 ´2t 2 ÿ pq,nq"1 τ 1{2`ir 1 pnqτ 1{2`ir 2 pnq n W t 1 ,r 1 p n q2 qW t 2 ,r 2 p n q2 q, (1.8) M N D 1 " 2πi ´k q´2t 1 ´2t 2 ÿ q|c 1 c 2 T pcq, (1.9) 
M N D 2 " ´2πi ´k ρ q´2t 1 ´2t 2 ÿ q ρ |c 1 c 2 T pcq. ( 1 
M 4 pt 1 , t 2 , r 1 , r 2 q
Petersson trace formula

M D M N D
Poisson type summation formula Another important property is the twisted multiplicativity ( [START_REF] Iwaniec | Topics in classical automorphic forms[END_REF] formula (4.12)). Suppose (2.9)

M OOD M OD δ-
pc 1 , c 2 q " 1, c 2 c 2 " 1(mod c 1 q, c 1 c 1 " 1(mod c 2 q, then Spm, n, c 1 c 2 q " Spmc 2 , nc 2 , c 1 qSpmc 1 , nc 1 , c 2 q. ( 2 
A holomorphic function f on H is called a cusp form of weight k and of level q if it satisfies the following conditions:

f pγzq " pcz `dq k f pzq for all γ " ˆa b c d ˙P Γ 0 pqq, (2.10) 
p zq k{2 |f pzq| is bounded on H.

(2.11)

Let S k pqq be the space of cusp forms of weight k ě 2 and of level q. It is equipped with the Petersson inner product xf, gy q :" ż

F 0 pqq f pzqgpzqy k dxdy y 2 , (2.12) 
where F 0 pqq is a fundamental domain of the action of Γ 0 pqq on H.

Any f P S k pqq has a Fourier expansion at infinity

f pzq " ÿ ně1 a f pnqepnzq. (2.13)
According to the Atkin-Lehner theory [START_REF] Atkin | Hecke operators on Γ 0 pmq[END_REF], the space S k pqq can be decomposed into two subspaces

S k pqq " S new k pqq ' S old k pqq. (2.14) 
The space of old forms contains cusp forms of level q coming from lower levels S old k pqq " tf plzq : lq 1 |q, q 1 ă q, f pzq P S k pq 1 qu , (2.15)

and the space of new forms is defined as an orthogonal compliment to S old k pqq. We denote by H k pqq an orthogonal basis of S new k pqq. Elements of H k pqq with normalised Fourier coefficients

λ f pnq :" a f pnqn ´pk´1q{2 , (2.16 
)

λ f p1q " 1 (2.17)
are called primitive forms.

Fourier coefficients of primitive forms satisfy the following properties

λ f pn 1 qλ f pn 2 q " ÿ d|pn 1 ,n 2 q pd,qq"1 λ f ´n1 n 2 d 2 ¯, (2.18) 
λ f pn 1 n 2 q " λ f pn 1 qλ f pn 2 q if pn 1 , n 2 q " 1, (2.19) 
λ f pp j`1 q " λ f ppqλ f pp j q ´λf pp j´1 q for prime p such that pp, qq " 1.

(2.20)

Let Repsq ą 1, then for f P H k pqq we define an automorphic L-function Lps, f q " ÿ ně1 λ f pnqn ´s.

(2.21)

The completed L-function

Λps, f q " ˆ?q 2π ˙s Γ ˆs `k ´1 2 ˙Lps, f q (2.22)
can be analytically continued on the whole complex plane and satisfies the functional equation

Λps, f q " f Λp1 ´s, f q, (2.23) 
where s P C and f " ˘1.

Large sieve inequality

Suppose that λ 1 " λ 1 pqq is the smallest positive eigenvalue of the automorphic Laplacian for Γ 0 pqq.

Theorem 2.3.1. (Selberg's bound, [START_REF] Selberg | On the estimation of Fourier coefficients of modular forms[END_REF]) One has that

λ 1 ě 3 16 . (2.24)
Let θ q :" a max p0, 1 ´4λ 1 q. We define

}a M } 2 " p ÿ M ămď2M |a m | 2 q 1{2 (2.25)
and 

}b N } 2 " p ÿ N ănď2N |b n | 2 q 1{2 . ( 2 

Petersson trace formula in case of prime power level

The key ingredient of our proof is the Petersson trace formula, which allows to express Fourier coefficients of cusp forms in terms of Kloosterman sums weighted by Bessel functions.

Theorem 2.4.1. (Petersson trace formula) For m, n ě 1 we have

∆ q pm, nq :" h ÿ f PH k pqq λ f pmqλ f pnq " δ m,n `2πi ´k ÿ q|c Spm, n, cq c J k´1 p 4π ? mn c
q.

(2.29)

If q is a prime number and k ă 12, the Petersson trace formula also works for moments of L-functions associated to primitive forms since the space of old forms is empty and

H k pqq " H k pqq .
When q is a power of prime, one needs to exclude the contribution of old forms. This has been done by Rouymi. He constructed a special basis in order to find an analogue of the Petersson trace formula for primitive forms at prime power level.

Theorem 2.4.2. (Rouymi, remark 4 of [START_REF] Rouymi | Formules de trace et non-annulation de fonctions L automorphes au niveau p ν[END_REF])

Let q " ρ ν , ν ě 2, then ∆ q pm, nq :"

h ÿ f PH k pqq λ f pmqλ f pnq " $ ' & ' % ∆ q pm, nq ´∆q{ρ pm,nq ρ´ρ ´1
if pq, mnq " 1 and ν " 2, ∆ q pm, nq ´∆q{ρ pm,nq ρ if pq, mnq " 1 and ν ě 3, 0 if pq, mnq ą 1.

(2.30)

Random matrix theory and moments of automorphic L-functions

The behaviour of mean values of L-functions at the critical point can be modelled using characteristic polynomials of random matrices for compact groups OpN q, U Spp2N q and U pN q . Accordingly, we distinguish families of L-functions with othogonal, symplectic and unitary symmetry types. The most general prediction is given in [START_REF] Conrey | Mean values of L-functions and symmetry[END_REF].

Conjecture 2.5.1. (Conrey, Farmer) Suppose the family of L-functions is partially ordered by a conductor cpf q and Q ˚is the number of elements with cpf q ď Q. Then

1 Q ˚ÿ f PF cpf qďQ V pLp1{2, f qq n " g n a n Γp1 `Bpnqq plog Q A q Bpnq . (2.

31)

Here V pzq " |z| 2 for unitary symmetry and V pzq " z for othogonal and symplectic symmetries. The constant A depends both on the type of symmetry and the functional equation. The values of g n , Bpnq are completely determined by the symmetry type and a n can be computed for each particular family.

Automorphic L-functions for primitive forms is an example of family with orthogonal symmetry type. In that case, V pzq " z and Bpnq " 1{2npn ´1q. There are two categories of L-functions of this type: even and odd, corresponding to SOp2N q and SOp2N `1q, respectively.

Conjecture 2.5.2. (Keating, Snaith [START_REF] Keating | Random matrix theory and L-functions at s " 1{2[END_REF]) Let q be a prime number. Then

ÿ f PH 2 pqq L f p1{2, f q n " q 3 R n plog qq `Opq 1{2` q,
where R n is a polynomial of degree Remark 2.5.3. This conjecture has been proven for n " 1, 2, 3, 4. See [START_REF] Duke | The critical order of vanishing of automorphic L-functions with large level[END_REF], [START_REF] Iwaniec | The non-vanishing of central values of automorphic L-functions and Landau-Siegel zeros[END_REF], [START_REF] Kowalski | Mollification of the fourth moment of automorphic L-functions and arithmetic applications[END_REF], [START_REF] Kowalski | Non-vanishing of high derivatives of automorphic L-functions at the center of the critical strip[END_REF].

A more general conjecture, which describes not only the leading term but also all lower order terms, is given in [START_REF] Conrey | Integral moments of L-functions[END_REF].

Conjecture 2.5.4. (Conrey, Farmer, Keating, Rubinstein, Snaith) Let q be square-free and let Xpsq :" ´q 4π 2 ¯1{2´s Γp1{2 ´s `k{2q Γp´1{2 `s `k{2q .

Then

ÿ f PH k pqq xf, f y ´1 q Lp1{2 `α1 , f qLp1{2 `α2 , f q . . . Lp1{2 `αr , f q " r ź j"1 Xp1{2 ´αj q ´1{2 ÿ j "˘1 ś r j"1 j "1 Xp1{2 ` j α j q ´1{2 ˆź 1ďiăjďr ζp1 ` i α i ` j α j qA r p 1 α 1 , . . . , r α r qp1 `Opkqq ´1{2` q,
where A r is absolutely convergent for z j ă 1{2 and it is given by

A r pz 1 , z 2 , . . . , z r q " ź p q ź 1ďiăjďr ˆ1 ´1 p 1`z i `zj 2 π ż π 0 sin 2 θ r ź j"1
e iθ p1 ´eiθ {p 1{2`z j q ´1 ´e´iθ p1 ´e´iθ {p 1{2`z j q ´1 e iθ ´e´iθ dθ.

3

Random matrix theory and heuristic predictions in case of prime power level Conjecture 2.5.4 gives predictions for moments of automorphic L-functions of square-free level. Following the recepe described in [START_REF] Conrey | Integral moments of L-functions[END_REF], we find a similar conjecture in case of prime power level q " ρ ν , ν ě 2.

Let q "

? q 2π . The functional equation (2.23) can be written as

Lps, f q " f X f psqLp1 ´s, f q, (3.1) 
where

X f psq :" q1´2s Γp1{2 ´s `k{2q Γp´1{2 `s `k{2q . (3.2)
We denote the Vandermonde determinant by ∆pz 1 , . . . , z r q :" ź 1ďiăjďr pz j ´zi q.

(3.3)

Suppose k be an even integer, q " ρ ν , ν ě 2 and Cpqq :"

# φpqq q if ν ě 3, ρ 2 ´ρ´1 ρ 2 ´1 if ν " 2 . Let A r pz 1 , . . . , z r q :" ź p q ź 1ďiăjďr ˆ1 ´1 p 1`z i `zj 2 π ż π 0 sin 2 θ r ź j"1 e iθ ´1 ´eiθ p 1{2`z j ¯´1 ´e´iθ ´1 ´e´iθ p 1{2`z j ¯´1 e iθ ´e´iθ dθ (3.4) 
and T pz 1 , . . . , z r q :" A r pz 1 , z 2 , . . . , z r q ź 1ďiăjďr ζ q p1 `zi `zj q.

(3.5) Proposition 3.0.5. For the fourth moment

A r pz 1 , z 2 , z 3 , z 4 q " 1 ζ q p2 `z1 `z2 `z3 `z4 q . ( 3.6) 
Proof. Consider Ipz 1 , . . . , z 4 q :" 2 π

ż π 0 sin 2 θ 4 ź j"1 e iθ ´1 ´eiθ p 1{2`z j ¯´1 ´e´iθ ´1 ´e´iθ p 1{2`z j ¯´1 e iθ ´e´iθ dθ " 2 π ż π 0 sin 2 θ 4 ź j"1 p 1`2z j p 1`2z j ´2p 1{2`z j cos θ `1 dθ.
We note that 2 π ż π 0 sin 2 θ pa 2 ´2a cos θ `1qpb 2 ´2b cos θ `1qpc 2 ´2c cos θ `1qpd 2 ´2d cos θ `1q dθ " abcd ´1 pab ´1qpac ´1qpad ´1qpbc ´1qpbd ´1qpcd ´1q .

Therefore, Ipz 1 , . . . , z 4 q " p 4`2z 1 `2z 2 `2z 3 `2z 4 pp 2`z 1 `z2 `z3 `z4 ´1q ś 1ďiăjď4 pp 1`z i `zj ´1q and A r pz 1 , z 2 , z 3 , z 4 q " ź p q p 4`2z 1 `2z 2 `2z 3 `2z 4 pp 2`z 1 `z2 `z3 `z4 ´1q

ź 1ďiăjď4 1 p 1`z i `zj " ź p q ˆ1 ´1 p 2`z 1 `z2 `z3 `z4 ˙" 1 ζ q p2 `z1 `z2 `z3 `z4 q .
Consider a product of r shifted L-functions Lps, α 1 , α 2 , . . . , α r q :" Lps `α1 , f qLps `α2 , f q . . . Lps `αr , f q.

(3.7)

In section 3.3.1 we obtain the following conjecture.

Conjecture 3.0.6.

h ÿ f PH k pqq Lp1{2, α 1 , α 2 , . . . , α r q " M p1{2, α 1 , α 2 , . . . , α r q `error, (3.8) 
where

M p1{2, α 1 , α 2 , . . . , α r q " Cpqq r ź j"1 X f p1{2 ´αj q ´1{2 ˆÿ j "˘1 ś r j"1 j "1 r ź j"1
X f p1{2 ` j α j q ´1{2 T p 1 α 1 , . . . , r α r q.

Conjecture 3.0.6 can be stated in terms of contour integrals for odd ( f " ´1) and even ( f " `1) forms separately.

Conjecture 3.0.7.

h ÿ f PH k pqq f is even
Lp1{2, α 1 , α 2 , . . . , α r q " 1{2M 1 p1{2, α 1 , α 2 , . . . , α r q `error, where

M 1 p1{2, α 1 , α 2 , . . . , α r q " Cpqq p´1q rpr´1q{2 p2πiq r 2 r r! r ź j"1 X f p1{2 ´αj q ´1{2 ˆ¿ . . . ¿ r ź j"1
X f p1{2 `zj q ´1{2 T pz 1 , . . . , z r q ∆pz 2 1 , . . . , z 2 r q ś r j"1 z j ś r i"1 ś r j"1 pz i ´αj qpz i `αj q dz 1 . . . dz r .

Conjecture 3.0.8.

h ÿ f PH k pqq f is odd Lp1{2, α 1 , α 2 , . . . , α r q " 1{2M 2 p1{2, α 1 , α 2 , . . . , α r q `error,
where

M 2 p1{2, α 1 , α 2 , . . . , α r q " Cpqq p´1q rpr´1q{2 p2πiq r 2 r r! r ź j"1 X f p1{2 ´αj q ´1{2 ˆ¿ . . . ¿ r ź j"1
X f p1{2 `zj q ´1{2 T pz 1 , . . . , z r q ∆pz 2 1 , . . . , z 2 r q ś r j"1 α j ś r i"1 ś r j"1 pz i ´αj qpz i `αj q dz 1 . . . dz r .

Remark 3.0.9. These results are consistent with asymptotic formulas for mean values of characteristic polynomials of odd and even othogonal matrices. See Theorem 1.5.6 of [START_REF] Conrey | Integral moments of L-functions[END_REF].

Averages over the family

Log conductor of f is defined as

cpf q :" |p f X f q 1 p1{2q|. (3.9) Equation (3.2) implies that cpf q " 2 log q `2 Γ 1 Γ pk{2q. (3.10)
The number of elements for which log conductor doesn't exceed T is called counting function M pT q :" 7tf : cpf q ď T u. (3.11) Let G be a function defined on the family F . Then its expected value is

xGpf qy " lim T Ñ8 M pT q ´1 ÿ f PF cpf qďT Gpf q.
(3.12)

Here we consider harmonic average with respect to Petersson inner product (2.12)

h ÿ f PH k pqq :" ÿ f PH k pqq Γpk ´1q p4πq k´1 xf, f y q . (3.13)

Mean values of Fourier coefficients

The property of multiplicity (2.18) implies that

λ f pn 1 qλ f pn 2 q . . . λ f pn r q " ÿ jě1 b j λ f pjq (3.14)
for some b j .

Lemma 3.2.1. Let q " ρ ν , pq, n 1 n 2 . . . n r q " 1. Then δpn 1 , n 2 , . . . , n r q :" xλ f pn 1 qλ f pn 2 q . . . λ f pn r qy " b 1 Cpqq.

(3.15)

Proof. It follows from equation (3.14) that

δpn 1 , n 2 , . . . , n r q " lim qÑ8 ÿ jě1 b j h ÿ f PH k pqq λ f pjqλ f p1q.
Weil's bound (2.7) and asymptotic formula (C.7) imply that

8 ÿ c"1 Spj, 1, cqqJ k´1 ´4π ? j cq cq ! k,j 8 ÿ c"1 τ pcqqpcqq ´k`1{2
tends to zero as q Ñ 8. Applying Petersson's trace formula (Theorem 2.4.2), we have

δpn 1 , n 2 , . . . , n r q " lim qÑ8 ÿ jě1 b j ∆ q pj, 1q " b 1 Cpqq. Lemma 3.2.2. If p q, then δpp t 1 , . . . , p tr q " c 0 Cpqq and c 0 " 2 π ż π 0 sin 2 θ r ź j"1
e ipt j `1qθ ´e´ipt j `1qθ e iθ ´e´iθ dθ.

(3.16)

If p|q and t 1 , t 2 , . . . , t r ‰ 0, then δpp t 1 , . . . , p tr q " 0.

Proof. Fourier coefficients λ f pp j q satisfy the same recurrence relation as Chebyshev polynomials of the second kind (compare (2.20) and (F.4)). Therefore,

λ f pp j q " U j pcos θ f,p q. Consider U t 1 U t 2 . . . U tr " ÿ lě0 c l U l .
On the one hand, Lemma 3.2.1 gives δpp t 1 , . . . , p tr q " c 0 Cpqq.

On the other hand, the property of orthogonality (F.7) implies that

c 0 " 2 π ż π 0 sin 2 θ r ź j"1
e ipt j `1qθ ´e´ipt j `1qθ e iθ ´e´iθ dθ.

Corollary 3.2.3. Assume that p q. Then ÿ t 1 ,t 2 ,...,tr δpp t 1 , p t 2 , . . . , p tr q p t 1 s 1 `t2 s 2 `...`trsr " 2Cpqq π

ż π 0 sin 2 θ r ź j"1 e iθ ´1 ´eiθ p s j ¯´1 ´e´iθ ´1 ´e´iθ p s j

¯´1

e iθ ´e´iθ dθ.

(3.17) Lemma 3.2.4. (Lemma 2.5.2 of [START_REF] Conrey | Integral moments of L-functions[END_REF]) Suppose F is a symmetric function of r variables, regular near p0, 0, . . . , 0q, and f psq has a simple pole of residue 1 at s " 0 and is otherwise analytic in a neighbourhood of s " 0, and let Kpa 1 , . . . , a r q " F pa 1 , . . . , a r q ź 1ďiďjďr f pa i `aj q (3.18)

or Kpa 1 , . . . , a r q " F pa 1 , . . . , a r q

ź 1ďiăjďr f pa i `aj q. (3.19)
If α i `αj are contained in the region of analyticity of f psq then

ÿ j "˘1 Kp 1 α 1 , . . . , r α r q " p´1q rpr´1q{2 p2πiq r 2 r r! ¿ . . . ¿ Kpz 1 , . . . , z r q ∆pz 2 1 , . . . , z 2 r q 2 ś r j"1 z j ś r i"1 ś r j"1 pz i ´αj qpz i `αj q dz 1 . . . dz r , (3.20) 
and

ÿ j "˘1 p r ź j"1 j qKp 1 α 1 , . . . , r α r q " p´1q rpr´1q{2 p2πiq r 2 r r! ¿ . . . ¿ Kpz 1 , . . . , z r q ∆pz 2 1 , . . . , z 2 r q 2 ś r j"1 α j ś r i"1 ś r j"1 pz i ´αj qpz i `αj q dz 1 . . . dz r , (3.21) 
where the path of integration encloses ˘αj 's.

Conjectures

The general case

We follow step by step the recipe given in [START_REF] Conrey | Integral moments of L-functions[END_REF] (section 4.1).

1. Consider a product of r shifted L-functions Lps, α 1 , α 2 , . . . , α r q :" Lps `α1 , f qLps `α2 , f q . . . Lps `αr , f q.

(3.22)

2. The precise version of approximate functional equation can be found in [START_REF] Iwaniec | Analytic number theory[END_REF] (Theorem 5.3). For our purposes the following form is sufficient

Lps, f q " ÿ λ f pnq n s ` f X f psq ÿ λ f pnq n 1´s `remainder. (3.23) 
Since f P H k pqq, coefficients λ f pnq P R and λ f pnq " λ f pnq.

3. Each L-function can be replaced with the two order terms of (3.23), ignoring remainder.

Multiplying out the resulting expression, one obtains 2 r terms of the form

p f q r´l p r ź j"l`1 X f ps `αj qq ÿ n 1 ,n 2 ,...,nr λ f pn 1 qλ f pn 2 q . . . λ f pn r q n s`α 1 1 . . . n s`α l l n 1´s´α l`1 l`1 . . . n 1´s´αr r (3.24)
for l " 0, 1, . . . , r. Note that

X f psq " X f p1 ´sq ´1. (3.25) 
Also, if we set s " 1{2, expression (3.24) is equivalent to

p f q r´l p r ź j"l`1 X f ps ´αj q ´1q ÿ n 1 ,n 2 ,...,nr λ f pn 1 qλ f pn 2 q . . . λ f pn r q n s`α 1 1 . . . n s`α l l n s´α l`1 l`1 . . . n s´αr r (3.26) and r ź j"l`1 X f ps ´αj q ´1 " r ź j"1 X f ps ´αj q ´1{2 l ź j"1 X f ps `αj q ´1{2 r ź j"l`1 X f ps ´αj q ´1{2 . (3.27)
4. Next, we replace each product of f by its expected value when averaged over the family. For orthogonal family, f is randomly ˘1. Thus, x f y " 0 unless r ´l is even. This gives 2 r´1 terms in the final expression.

5. Finally, the product λ f pn 1 qλ f pn 2 q . . . λ f pn r q is replaced by its expected value δpn 1 , n 2 , . . . , n r q " xλ f pn 1 qλ f pn 2 q . . . λ f pn r qy.

When n 1 , n 2 , . . . , n r are integral, the value of δpn 1 , n 2 , . . . , n r q is multiplicative:

δpn 1 m 1 , n 2 m 2 , . . . , n r m r q " δpn 1 , n 2 , . . . , n r qδpm 1 , m 2 , . . . , m r q (3.28) if pn 1 n 2 . . . n r , m 1 m 2 . . . m r q " 1.
Thus, in expression (3.26)

ÿ n 1 ,n 2 ,...,nr λ f pn 1 qλ f pn 2 q . . . λ f pn r q n s`α 1 1 . . . n s`α l l n s´α l`1 l`1 . . . n s´αr r can be replaced by ÿ n 1 ,n 2 ,...,nr δpn 1 , n 2 , . . . , n r q n s`α 1 1 . . . n s`α l l n s´α l`1 l`1 . . . n s`αr r " Rps, α 1 , . . . , α l , ´αl`1 , . . . , ´αr q, (3.29)
where Rps, α 1 , α r , . . . , α r q :" ź p ÿ t 1 ,t 2 ,...,tr δpp t 1 , p t 2 , . . . , p tr q p t 1 ps`α 1 q`t 2 ps`α 2 q`...`trps`αrq .

(3.30)

6. Lemma 3.2.2 allows us to compute δpp t 1 , p t 2 , . . . , p tr q.

If p|q, then δpp t 1 , p t 2 , . . . , p tr q " 0. Assume that p q. For any j, i " 1, 2, . . . , r, we have δp1, 1, . . . , 1q " Cpqq, δp1, . . . , p t j , . . . 1q " 0 if t j " 1, δp1, . . . , p t j , . . . , p t i , . . . 1q " Cpqq if i ‰ j and t i " t j " 1, δp1, . . . , p t j , . . . 1q " 0 if t j " 2.

Therefore,

Rps, α 1 , α r , . . . , α r q " Cpqq ź p q ˜1 `ÿ 1ďiăjďq 1 p 2s`α i `αj `Opp ´3s` q ¸" Cpqq ź p q « ź 1ďiăjďr ˆ1 `1 p 2s`α i `αj ˙ˆp1 `Opp ´3s` qq ff .
The product ś p q p1 `Opp ´3s` qq is regular for s ą 1{3. And

ź p q ˆ1 `1 p 2s`α i `αj
ḣas a simple pole at s " 1{2 ´1{2pα i `αj q.

To apply Lemma 3.2.4, one needs to separate a polar part of Rps, α 1 , α r , . . . , α r q. This gives Rps, α 1 , α r , . . . , α r q "

ź 1ďiăjďr ζ q p2s `αi `αj q ˆ» - ź p q ź 1ďiăjďr ˆ1 ´1 p 2s`α i `αj ˙ÿ t 1 ,t 2 ,.
..,tr δpp t 1 , p t 2 , . . . , p tr q p t 1 ps`α 1 q`t 2 ps`α 2 q`...`trps`αrq fi fl .

7. According to corollary 3.2.3 ÿ t 1 ,t 2 ,...,tr δpp t 1 , p t 2 , . . . , p tr q p t 1 ps`α 1 q`t 2 ps`α 2 q`...`trps`αrq " 2Cpqq π

ż π 0 sin 2 θ r ź j"1 e iθ ´1 ´eiθ p s`α j ¯´1 ´e´iθ ´1 ´e´iθ p s`α j

¯´1

e iθ ´e´iθ dθ.

(3.31)

8. Summing all 2 r´1 terms, we have

M ps, α 1 , α 2 , . . . , α r q " Cpqq r ź j"1 X f ps ´αj q ´1{2 ˆÿ j "˘1 ś r j"1 j "1 r ź j"1 X f ps` j α j q ´1{2 ź 1ďiăjďr ζ q p2s` i α i ` j α j q ź p q ź 1ďiăjďr ˆ1 ´1 p 2s` i α i ` j α j ź p q 2 π ż π 0 sin 2 θ r ź j"1 e iθ ´1 ´eiθ p s` j α j ¯´1 ´e´iθ ´1 ´e´iθ p s` j α j ¯´1 e iθ ´e´iθ dθ.
And our conjecture is the following:

h ÿ f PH k pqq
Lp1{2, α 1 , α 2 , . . . , α r q " M p1{2, α 1 , α 2 , . . . , α r q `error.

9. Now we consider odd and even cases separately. Approximately one half of L-functions will have an even symmetry type. Another half will be odd, vanishing at the critical point s " 1{2. Let A r pz 1 , z 2 , . . . , z r q :"

ź p q ź 1ďiăjďr ˆ1 ´1 p 1`z i `zj 2 π ż π 0 sin 2 θ r ź j"1 e iθ ´1 ´eiθ p 1{2`z j ¯´1 ´e´iθ ´1 ´e´iθ p 1{2`z j ¯´1 e iθ ´e´iθ dθ and T pz 1 , z 2 , . . . , z r q :" A r pz 1 , z 2 , . . . , z r q ź 1ďiăjďr ζ q p1 `zi `zj q. (3.32) 
Applying Lemma 3.2.4, we have

ÿ j "˘1 r ź j"1 X f p1{2 ` j α j q ´1{2 T p 1 α 1 , . . . , r α r q " p´1q rpr´1q{2 p2πiq r 2 r r! ˆ¿ . . . ¿ r ź j"1 X f p1{2 `zj q ´1{2 T pz 1 , . . . , z r q ∆pz 2 1 , . . . , z 2 r q 2 ś r j"1 z j ś r i"1 ś r j"1 pz i ´αj qpz i `αj q dz 1 . . . dz r (3.33) and ÿ j "˘1 r ź j"1 j X f p1{2 ` j α j q ´1{2 T p 1 α 1 , . . . , r α r q " p´1q rpr´1q{2 p2πiq r 2 r r! ˆ¿ . . . ¿ r ź j"1
X f p1{2 `zj q ´1{2 T pz 1 , . . . , z r q ∆pz 2 1 , . . . , z 2 r q 2 ś r j"1 α j ś r i"1 ś r j"1 pz i ´αj qpz i `αj q dz 1 . . . dz r .

(3.34)

10. Finally, we obtain conjectures for moments of L-functions associated to even and odd primitive forms:

h ÿ f PH k pqq f is even Lp1{2, α 1 , α 2 , . . . , α r q " 1{2M 1 p1{2, α 1 , α 2 , . . . , α r q `error,
where

M 1 p1{2, α 1 , α 2 , . . . , α r q " p´1q rpr´1q{2 p2πiq r 2 r r! Cpqq r ź j"1 X f p1{2 ´αj q ´1{2 ˆ¿ . . . ¿ r ź j"1 X f p1{2 `zj q ´1{2 T pz 1 , . . . , z r q ∆pz 2 1 , . . . , z 2 r q 2 ś r j"1 z j ś r i"1 ś r j"1 pz i ´αj qpz i `αj q dz 1 . . . dz r ; h ÿ f PH k pqq f is odd Lp1{2, α 1 , α 2 , . . . , α r q " 1{2M 2 p1{2, α 1 , α 2 , . . . , α r q `error,
where

M 2 p1{2, α 1 , α 2 , . . . , α r q " p´1q rpr´1q{2 p2πiq r 2 r r! Cpqq r ź j"1 X f p1{2 ´αj q ´1{2 ˆ¿ . . . ¿ r ź j"1
X f p1{2 `zj q ´1{2 T pz 1 , . . . , z r q ∆pz 2 1 , . . . , z 2 r q 2 ś r j"1 α j ś r i"1 ś r j"1 pz i ´αj qpz i `αj q dz 1 . . . dz r .

The fourth moment at the critical point

By letting shifts tend to zero, we find a more explicit conjecture for the fourth moment.

Conjecture 3.3.1. Let q " ρ ν with ν ě 2. Then M p1{2, 0, 0, 0, 0q is a polynomial of degree 6 in log q and leading coefficient is

Cpqq ˆ1 ´1 ρ ˙6 a 4 b 4 2 ,
where

a 4 " ź p q ˆ1 ´1 p ˙6 ˆ2 π ż π 0 p 4 sin 2 θdθ pp `1 ´2? p cos θq 4 " 1 ζp2q ρ 2 ρ 2 ´1, b 4 " 2 4 45 . Remark 3.3.2.
The coefficient b 4 is consistent with its random matrix analogue. See Theorem 1.5.6 of [START_REF] Conrey | Integral moments of L-functions[END_REF].

Remark 3.3.3. Recall that q " ? q 2π . Therefore, M p1{2, 0, 0, 0, 0q is a polynomial of degree 6 in log q and leading coefficient is

Cpqq ˆ1 ´1 ρ ˙6 a 4 b 4 2 7 .
For ν ě 3 we recover Theorem 1.0.8.

Let α j " 0 for j " 1, 2, . . . , r. Reflection formula (A.9) and functional equation (A.4) give Γpk{2 `zj q Γpk{2 ´zj q " pz j `k{2 ´1qpz j `k{2 ´2q . . . pz j `1q p´z j `k{2 ´1qp´z j `k{2 ´2q . . . p´z j `1q z j Γpz j q 2 sin πz j π .

For |z j ´1| ă 1, relation (A.8) implies Γpk{2 `zj q Γpk{2 ´zj q " 1 `Opz 3 j q.

Thus, X f p1{2 `zj q ´1{2 " e z j log q ˆΓpk{2 `zj q Γpk{2 ´zj q ˙1{2 " e z j log qp1 `Opz 3 j qq.

Replacing X f p1{2 `zj q ´1{2 by e z j log q, we have M p1{2, 0, 0, . . . , 0q " p´1q rpr´1q{2 p2πiq r 2 r´1 r! Cpqq ˆ¿ . . . ¿ e ř r j"1 z j log qT pz 1 , . . . , z r q ∆pz 2 1 , . . . , z 2 r q 2 ś r j"1 z 2r´1 j dz 1 . . . dz r .

Let x :" log q. We change variables

z j Ñ z j {x so that M p1{2, 0, 0, . . . , 0q " p´1q rpr´1q{2 p2πiq r 2 r´1 r! Cpqq ˆ¿ . . . ¿ e ř r j"1 z j A r pz 1 {x, . . . , z r {xq ź 1ďiăjďr ζ q ´1 `zi `zj x ¯∆pz 2 1 , . . . , z 2 r q 2 ś r j"1 z 2r´1 j dz 1 . . . dz r .
Let r " 4, then

M 4 pxq :" M p1{2, 0, 0, 0, 0q " 1 p2πiq 4 2 3 4! Cpqq ˆ¿ . . . ¿ e ř 4 j"1 z j A 4 pz 1 {x, . . . , z 4 {xq ź 1ďiăjď4 ζ q ´1 `zi `zj x ¯∆pz 2 1 , . . . , z 2 4 q 2 ś 4 j"1 z 7 j dz 1 . . . dz 4 .
The ζ function has a simple pole at 1. Thus,

M 4 pxq " A 4 p0, 0, 0, 0q p2πiq 4 2 3 4! Cpqq ˆ1 ´1 ρ ˙6 x 6 p1 `Opx ´1qq ˆ¿ . . . ¿ e ř 4 j"1 z j ∆pz 2 1 , . . . , z 2 4 q 2 ś 1ďiăjď4 pz i `zj q ś 4 j"1 z 7 j dz 1 . . . dz 4 " A 4 p0, 0, 0, 0q p2πiq 4 2 3 4! Cpqq ˆ1 ´1 ρ ˙6 x 6 p1 `Opx ´1qq ˆ¿ . . . ¿ e ř 4 j"1 z j ∆pz 2 1 , . . . , z 2 4 q∆pz 1 , . . . , z 4 q ś 4 j"1 z 7 j dz 1 . . . dz 4 .
Let a 4 :" A 4 p0, 0, 0, 0q "

ź p q ˆ1 ´1 p ˙6 ˆ2 π ż π 0 p 4 sin θ 2 dθ pp `1 ´2? p cos θq 4 " ź p q ˆ1 ´1 p ˙6 pp `1qp 4 pp ´1q 5 " 1 ζp2q ρ 2 ρ 2 ´1.
Then the leading coefficient corresponding to plog qq 6 equals

c 4 " 1{2Cpqq ˆ1 ´1 ρ ˙6 a 4 b 4 with b 4 :" lim xÑ8 M 4 pxq 1{2Cpqq ´1 ´1 ρ ¯6 a 4 x 6 " 1 p2πiq 4 2 4 4! ˆ¿ . . . ¿ e ř 4 j"1 z j ÿ S sgn pSqz 2S 0 1 z 2S 1 2 z 2S 2 3 z 2S 3 4 ÿ T sgn pT qz T 0 1 z T 1 2 z T 2 3 z T 3 4 4 ź j"1 z ´7 j dz 1 . . . dz 4 " 2 4 p2πiq 4 ˆ¿ . . . ¿ e ř 4 j"1 z j ÿ S sgn pSqz ´p7´2S 0 q 1 z ´p6´2S 1 q 2 z ´p5´2S 2 q 3 z ´p4´2S 3 q 4 dz 1 . . . dz 4 .
Finally,

b 4 " 2 4 ÿ S sgn pSq 1 Γp7 ´2S 0 qΓp6 ´2S 1 qΓp5 ´2S 2 qΓp4 ´2S 3 q " 2 4 1 Γp7q 1 Γp6q 1 Γp5q 1 Γp4q 1 Γp5q 1 Γp4q 1 Γp3q 1 Γp2q 1 Γp3q 1 Γp2q 1 Γp1q 1 Γp0q 1 Γp1q 1 Γp0q 1 Γp´1q 1 Γp´2q " 2 4 
45 .
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The fourth moment: diagonal and off-diagonal terms

Let q " ρ ν , where ρ is a fixed prime number and ν Ñ 8. Our goal is to verify heuristic predictions of random matrix theory for the fourth moment of L-functions associated to primitive forms of level q and weight k ě 2. Combinatorial structure of mean values is more clearly revealed if each L-function in a product is slightly shifted from the critical line s " 1{2. We consider

M 4 " M 4 pα 1 , α 2 , α 3 , α 4 q " h ÿ f PH k pqq Lp1{2 `α1 , f qLp1{2 `α2 , f qLp1{2 `α3 , f qLp1{2 `α4 , f q,
where α 1 :" t 1 `ir 1 , α 2 :" t 1 ´ir 1 , α 3 :" t 2 `ir 2 , α 4 :"

t 2 ´ir 2 , |t 1 | ă 1{2, |t 2 | ă 1{2 and t 1 , t 2 , r 1 , r 2 P R.
In this chapter, we decompose the main term of M 4 into diagonal M D , off-diagonal M OD and off-off-diagonal M OD parts. Further, we prove an asymptotic formula for the diagonal and off-diagonal terms.

Theorem 4.0.4. For all ą 0, up to an error term

O ,ρ,t 1 ,t 2 pP pr 1 qP pr 2 qqq |t 1 |´t 1 `|t 2 |´t 2 ` pq ´2k´3 12 `q´1{4 qq,
we have By letting shifts tend to zero, we obtain an asympotic formula at the critical point.

M D `M OD " φpqq q ÿ 1 , 2 "˘1 q´2t 1 ´2t 2 `2 1 t 1 `2 2 t 2 ˆζq p1 `2 1 t 1 qζ q p1 `2 2 t 2 q ś ζ q p1 ` 1 t 1 ` 2 t 2 ˘ir 1 ˘ir 2 q ζ q p2 `2 1 t 1 `2 2 t 2 q ˆΓp 1 t 1 `ir 1 `k{2qΓp 1 t 1 ´ir 1 `k{2q Γpt 1 `ir 1 `k{2qΓpt 1 ´ir 1 `k{2q
Theorem 4.0.6. For all ą 0,

M D `M OD " Qplog qq `O ,ρ pq pq ´2k´3 12 `q´1{4 qq, (4.2) 
where Q is a polynomial of degree 6 with leading coefficient If v " 1{2, then τ v pnq reduces to the divisor function τ pnq. Furthemore, τ v pnq satisfies the property of multiplicity (see [START_REF] Kuznetsov | Trace formulas and some of its applications in analytic number theory[END_REF], page 74) Lp1{2 `s `ir, f qLp1{2 `s ´ir, f q " ζ q p1 `2sq

p φpqq q q 7 ρ 2 ρ 2 ´1 1 60π 2 . ( 4 
τ v pnqτ v pmq " ÿ d|pn,mq τ v ´nm d 2 ¯. ( 4 
ÿ ně1 λ f pnq n 1{2`s τ 1{2`ir pnq, (4.8) 
Proof. Consider

Lp1{2 `s `ir, f qLp1{2 `s ´ir, f q " ÿ a,b,dě1 pd,qq"1

λ f pab{d 2 q a 1{2`s`ir b 1{2`s´ir d 1`2s " ζ q p1 `2sq ÿ ně1 λ f pnq n 1{2`s τ 1{2`ir pnq.
Let Gpsq be an even polynomial vanishing at all poles of Γps `ir `k{2qΓps ´ir `k{2q in the range s ě ´L for some large constant L ą 0. We define 

W t,

Proof. Asymptotic expansion for the ratio of gamma functions (A.7) gives

ΓpC `ir `k{2qΓpC ´ir `k{2q Γpt `ir `k{2qΓpt ´ir `k{2q " p|r|q 2pC´tq p1 `Op1{|r|qq .

First, without crossing any pole, we can shift the contour of integration to s " C with C ą |t|. This implies (4.10).

Second, we move the contour of integration to s " ´C, meeting two simple poles at s " ˘t. Therefore, as y Ñ 0, we have W t,r pyq " ζ q p1 `2tqy ´t `ζq p1 ´2tqy t Γp´t `ir `k{2qΓp´t ´ir `k{2q Γpt `ir `k{2qΓpt ´ir `k{2q `OC,t pP prqy C q.

Lemma 4.1.5. For t, r P R with |t| ă 1{2, we have

Lp1{2 `t `ir, f qLp1{2 `t ´ir, f q " pqq ´2t ÿ ně1 τ 1{2`ir pnq λ f pnq ? n W t,r ˆn q2 ˙. (4.12) 
Proof. Consider

I t :" 1 2πi ż p3q
Λp1{2 `s `ir, f qΛp1{2 `s ´ir, f q Gpsq s ´tds.

Moving the contour of integration to s " ´3, we pick up a simple pole at s " t. The functional equation (2.23) imples that

I t ` 2 f I ´t " Res s"t ˆΛp1{2 `s `ir, f qΛp1{2 `s ´ir, f q Gpsq s ´t " GptqΛp1{2 `t `ir, f qΛp1{2 `t ´ir, f q.
Therefore, by Lemma Proof. By Lemma 4.1.5

Lp1{2 `t1 `ir 1 , f qLp1{2 `t1 ´ir 1 , f qLp1{2 `t2 `ir 2 , f qLp1{2 `t2 ´ir 2 , f q "

q´2t 1 ´2t 2 ÿ m,ně1 τ 1{2`ir 1 pmqτ 1{2`ir 2 pnq λ f pmqλ f pnq ? mn W t 1 ,r 1 ˆm q2 ˙Wt 2 ,r 2 ˆn q2 ˙.
Summing over f P H k pqq, one has

M 4 " q´2t 1 ´2t 2 ÿ m,ně1 τ 1{2`ir 1 pmqτ 1{2`ir 2 pnq 1 ? mn W t 1 ,r 1 ˆm q2 ˙Wt 2 ,r 2 ˆn q2 ˙∆q pm, nq.

Applying the Petersson trace formula

Here we apply Theorem 2.4.2 for ν ě 3. The case ν " 2 can be treated similarly, but it doesn't seem to be of particular interest since the final goal is ν " 8. Let

T pcq :" c ÿ m,n pq,mnq"1 τ 1{2`ir 1 pmqτ 1{2`ir 2 pnq ? nm W t 1 ,r 1 p m q2 qW t 2 ,r 2 p n q2 qSpm, n, cqJ k´1 p 4π ? mn c q. (4.14)
Using the trace formula (2.30), the fourth moment (4.13) can be written as a sum of diagonal and non-diagonal parts.

Proposition 4.2.1.

M 4 " M D `M N D 1 `M N D 2 , (4.15) 
where

M D " φpqq q q´2t 1 ´2t 2 ÿ pq,nq"1 τ 1{2`ir 1 pnqτ 1{2`ir 2 pnq n W t 1 ,r 1 p n q2 qW t 2 ,r 2 p n q2 q, (4.16) 
M N D 1 " 2πi ´k q´2t 1 ´2t 2 ÿ q|c 1 c 2 T pcq, (4.17) 
and

M N D 2 " ´2πi ´k ρ q´2t 1 ´2t 2 ÿ q ρ |c 1 c 2 T pcq. (4.18)
We study the given sums using techniques developed by Duke, Friedlander, Iwaniec in [START_REF] Duke | Bounds for automorphic Lfunctions. II[END_REF] and Kowalski, Michel, Vanderkam in [START_REF] Kowalski | Mollification of the fourth moment of automorphic L-functions and arithmetic applications[END_REF]. Accordingly, we split the non-diagonal terms into off-diagonal and off-off-diagonal parts. As expected, the main technical difficulty is caused by the off-off-diagonal term. In [START_REF] Kowalski | Mollification of the fourth moment of automorphic L-functions and arithmetic applications[END_REF] (when q is prime), the off-off-diagonal term was further separated into two parts. The first one was evaluated using Theorem 5.1.1 of [START_REF] Duke | Bounds for automorphic Lfunctions. II[END_REF],

which is based on δ-symbol method. And the second part was shown to be an error term in section 4.4. This is not the case when q is a prime power. Accordingly, we apply δ-symbol method to the whole off-off-diagonal term.

Estimation of the diagonal term

Lemma 4.3.1. One has M D ! ,t 1 ,t 2 P pr 1 qP pr 2 q φpqq q q ´t1 ´t2 for any ą 0. (

Proof. Consider

M D " φpqq q q´2t 1 ´2t 2 ÿ ně1 pq,nq"1 τ 1{2`ir 1 pnqτ 1{2`ir 2 pnq n W t 1 ,r 1 p n q2 qW t 2 ,r 2 p n q2 q.
Note that τ 1{2`ir pnq ! n for all ą 0. The sum over n can be decomposed into two cases

ÿ ně1 pq,nq"1 " ÿ 1ďnďq 2 pq,nq"1 `ÿ nąq 2 pq,nq"1 .
According to (4.11),

φpqq q q´2t 1 ´2t 2 ÿ 1ďnďq 2 pq,nq"1 τ 1{2`ir 1 pnqτ 1{2`ir 2 pnq n W t 1 ,r 1 p n q2 qW t 2 ,r 2 p n q2 q
! ,t 1 ,t 2 P pr 1 qP pr 2 q φpqq q q ´t1 ´t2 .

Using (4.10), we estimate the second sum

φpqq q q´2t 1 ´2t 2 ÿ nąq 2 pq,nq"1 τ 1{2`ir 1 pnqτ 1{2`ir 2 pnq n W t 1 ,r 1 p n q2 qW t 2 ,r 2 p n q2 q
! ,t 1 ,t 2 P pr 1 qP pr 2 q φpqq q q ´t1 ´t2 .

It follows that

M D ! ,t 1 ,t 2 P pr 1 qP pr 2 q φpqq q q ´t1 ´t2 .

Remark 4.3.2. The asymptotics of this term will be evaluated in section 4.8.

Smooth partition of unity and restriction of summations

In order to simplify computations of the non-diagonal terms (4.17) and (4.18), it is useful to restrict the ranges of summation.

First, following [START_REF] Kowalski | Mollification of the fourth moment of automorphic L-functions and arithmetic applications[END_REF], we make a smooth partition of unity

1 ? mn W t 1 ,r 1 p m q2 qW t 2 ,r 2 p n q2 q " ÿ M,N ě1 F M,N pm, nq,
where

F M,N pm, nq :" 1 ? mn W t 1 ,r 1 p m q2 qW t 2 ,r 2 p n q2 qF M pmqF N pnq. (4.20) 
We assume that F M pmq and F N pnq are compactly supported functions in rM {2, 3M s and rN {2, 3N s, such that for any integral i, j ě 0

x j F pjq M pxq ! j 1 and y i F piq N pyq ! i 1. (4.21)
The term (4.14) can be written as

T pcq " ÿ M,N ě1 T M,N pcq, (4.22) 
where

T M,N pcq " c ÿ m,n pq,mnq"1 τ 1{2`ir 1 pmqτ 1{2`ir 2 pnqSpm, n, cqF M,N pm, nqJ k´1 p 4π ? mn c q. (4.23) Lemma 4.4.1. For any α 1 ě |t 1 |, α 2 ě |t 2 | x i y j B i B i x B j B j y F M,N px, yq ! α 1 ,α 2 ,t 1 ,t 2
P pr 1 qP pr 2 qpM N q ´1{2 ˆq 2 x ˙α1 ˆq 2 y ˙α2 if M, N " q 1` ; (4.24)

x i y j B i B i x B j B j y F M,N px, yq ! α 1 ,t 1 ,t 2 P pr 1 qP pr 2 qpM N q ´1{2 ˆq 2 x ˙α1 ˆq 2 y ˙|t 2 | if M " q 1` , N ! q 1` ; (4.25) x i y j B i B i x B j B j y F M,N px, yq ! α 2 ,t 1 ,t 2 P pr 1 qP pr 2 qpM N q ´1{2 ˆq 2 x ˙|t 1 | ˆq 2 y ˙α2 if M ! q 1`
, N " q 1` ; (4.26)

x i y j B i B i x B j B j y F M,N px, yq ! t 1 ,t 2 P pr 1 qP pr 2 qpM N q ´1{2 ˆq 2 x ˙|t 1 | ˆq 2 y ˙|t 2 | if M, N ! q 1` . (4.27)
Proof. Consider

x i y j B i B i x B j B j y F M,N px, yq " ˆxi B i B i x 1 ? x W t 1 ,r 1 p x q2 qF M pxq ˙ˆy j B j B j y 1 ? y W t 2 ,r 2 p y q2 qF N pyq Ṅote that x i 1 B i 1 B i 1 x 1 ? x ! M ´1{2 .
By (4.21),

x i 2 B i 2 B i 2 x F M pxq ! 1.
If M " q 1` , we use (4.10) to get

x i 3 B i 3 B i 3 x W t 1 ,r 1 p x q2 q ! α 1 ,t 1 P pr 1 qp x q2 q ´α1 , If M ! q 1`
, we use (4.11) to get

x i 3 B i 3 B i 3 x W t 1 ,r 1 p x q2 q ! t 1 P pr 1 qp x q2 q ´|t 1 | .
By Leibniz's rule (D.1),

x i B i B i x 1 ? x W t 1 ,r 1 p x q2 qF M pxq ! α 1 ,t 1 1 ? M P pr 1 qp x q2 q ´α1 if M " q 1`
and

x i B i B i x 1 ? x W t 1 ,r 1 p x q2 qF M pxq ! t 1 1 ? M P pr 1 qp x q2 q ´|t 1 | if M ! q 1` .
Proposition 4.4.2. For any ą 0, any A ą 0 and l " 0, 1 ) can be restricted to M, N ! q 1` .

ÿ max pM,N q"q 1` ÿ q ρ l |c 1 c 2 T M,N pcq ! ,ρ,A,
Proof. Since max pM, N q " q 1` , there are three cases to consider:

• M " q 1` , N ! q 1` ;

• M ! q 1` , N " q 1` ;

• M " q 1` , N " q 1` .

We give a proof for the first case. The other two can be treated in the same manner.

ÿ M "q 1` N !q 1` ÿ q ρ l |c 1 c 2 T M,N pcq " ÿ M "q 1` N !q 1` ÿ q ρ l |c ÿ m,n pq,mnq"1 τ 1{2`ir 1 pmqτ 1{2`ir 2 pnq Spm, n, cq c F M,N pm, nqJ k´1 p 4π ? mn c q.
We decompose the sum over c into two cases and apply (C.7) and (2.7):

ÿ q ρ l |c Spm, n, cq c J k´1 p 4π ? mn c q " ÿ că ? mn q ρ l |c
Spm, n, cq c J k´1 p 4π ? mn c q `ÿ cě ? mn q{ρ l |c Spm, n, cq c J k´1 p 4π ? mn c q ! pmnq 3{4`δ for any δ ą 0. Applying Lemma 4.4.1 with i " j " 0, one obtains

ÿ M "q 1` N !q 1` ÿ q ρ l |c 1 c 2 T M,N pcq ! α 1 ,ρ,t 1 ,t 2 P pr 1 qP pr 2 qpM N q 1{4`δ ´q M ¯α1 ´q N ¯|t 2 | .
Taking α 1 sufficiently large (for example, α 1 " 1{2 `2δ `A`2δ`1{2`|t 2 | ), it follows that for any ą 0, any A ą 0 and l " 0, 1

ÿ M "q 1` N !q 1` ÿ q ρ l |c 1 c 2 T M,N pcq ! ,ρ,A,t 1 ,t 2 P pr 1 qP pr 2 qq ´A.
Finally, the range of summation on c can be restricted via the large sieve inequality.

Lemma 4.4.4. Let l " 0, 1. Assume that M, N ! q 1` . For any C ą ? M N we have

ÿ cěC q ρ l |c 1 c 2 T M,N pcq ! ,ρ,t 1 ,t 2 P pr 1 qP pr 2 q ˆq 2 M ˙|t 1 | ˆq 2 N ˙|t 2 | q ˆ?M N C ˙k´3{2 . (4.29) 
Remark 4.4.5. We choose C " minpq 2{3 M 1{2 , q 7{6 q. Thus, the error term is

P pr 1 qP pr 2 qq |t 1 |´t 1 `|t 2 |´t 2 ` q ´2k´3 12 .
Proof. We would like to apply Theorem 2.3.2. In order to do so, we make a dyadic partition of the interval rC, 8q and assume that c P rC, 2Cs. By definition,

ÿ q ρ l |c 1 c 2 T M,N pcq " ÿ n,m pq,nmq"1 ÿ q ρ l |c τ 1{2`ir 1 pmqτ 1{2`ir 2 pnq 1 c Spm, n, cqJ k´1 ˆ4π ? mn c ˙FM,N pm, nq ! pM N q ρ l q ÿ m,n ÿ c 1 1 c 1 Spm, n, c 1 q{ρ l qJ k´1 ˆ4π ? mnρ l c 1 q ˙FM,N pm, nq.
Here m P rM {2, 3M s, n P rN {2, 3N s and c 1 P rC 1 , 2C 1 s with C 1 :" Cρ l {q. Let X :" P pr 1 qP pr 2 q

ˆq 2 M ˙´|t 1 | ˆq 2 N ˙´|t 2 | ? M N C 1 ˆ?M N C ˙´k`1 .
As a test function we choose

gpm, n, c 1 q :" X c 1 F M,N pm, nqJ k´1 ˆ4π ? mnρ i c 1 q ˙.
Since C ą ? M N , the following version of (C.7) can be used

J pjq k´1 pzq ! z k´1´j for z ! 1. 40 
The function F M,N pm, nq can be bounded using (4.27). Then gpm, n, c 1 q satisfies condition (2.27), and Theorem 2.3.2 can be applied with r " 1 and s " q{ρ l . Selberg's bound (2.24) implies that θ rs ď 1{2. Finally,

ÿ q ρ l |c 1 c 2 T M,N pcq ! ,ρ pM N q ρ l q 1 X ÿ n,m ÿ c 1 Spm, n, c 1 q{ρ l qgpm, n, c 1 q ! ,ρ,t 1 ,t 2 q ρ l q ? M N X ˆ1 `q? C 1 ρ l ? M N ˙1{2 ´q ρ l C 1 `?M N `b q ρ l M C 1 ¯´q ρ l C 1 `?M N `b q ρ l N C 1 q ρ l C 1 `?M N .
Plugging in the expression for X, we have

ÿ q ρ l |c 1 c 2 T M,N pcq ! ,ρ,t 1 ,t 2 q P pr 1 qP pr 2 q ˆq 2 M ˙|t 1 | ˆq 2 N ˙|t 2 | ˆ1 C ˆ?M N C ˙k´3{2 ˆ?M N C `c 1 C 1 ˙1{2 Cρ l q a q{ρ l `M a q{ρ l `N .
Conditions C ą ? M N and M, N ! q 1` imply that

ˆ?M N C `c 1 C 1 ˙1{2 ! 1, ρ l q a q{ρ l `M a q{ρ l `N ! 1.
Finally,

ÿ q ρ l |c 1 c 2 T M,N pcq ! ,ρ,t 1 ,t 2 P pr 1 qP pr 2 q ˆq 2 M ˙|t 1 | ˆq 2 N ˙|t 2 | q ˆ?M N C ˙k´3{2 .

Poisson summation formula connected with the Eisenstein-Maass series

In [START_REF] Kowalski | Mollification of the fourth moment of automorphic L-functions and arithmetic applications[END_REF], Julila's extension of Voronoi summation formula was used to transform Kloosterman sums into Ramanujan sums. The series (4.33) converges absolutely for s ą 1.

Theorem 4.5.2. Let x be a rational number x " d c with pd, cq " 1, c ě 1. Then the function D v ps, xq of two complex parameters s and v is meromorphic over the whole of C 2 . If we fix v such that v " 1{2 and v ‰ 1{2, then D v ps, d{cq as a function of single variable s has two simple poles at s " v `1{2 and s " 3{2 ´v with residues c ´2v ζp2vq and c 2v´2 ζp2 ´2vq, respectively, and it is regular elsewhere. Also it satisfies the functional equation where ad " 1 pmod cq.

D v ˆs, d c ˙" ˆ4π c ˙2s´1 γp1 ´s, vq ! ´cos πsD v ´1 ´s, ´a c ¯`sin πvD v ´1 ´s, a c ¯) , ( 4 
Proof. The requirements of the theorem imply that φp2sq is regular in σ 0 ď s ď σ 1 for some σ 0 ă 0 and σ 1 ą 1. Then by the inverse Mellin transform

φ ˆ4π ? n c ˙" 1 iπ ż pbq φp2sq ´c 4π ¯2s 1 n s ds, 1 ă b ă σ 1 .
Therefore,

4π c ÿ mě1 e ˆmd c ˙τv pmqφ ˆ4π ? m c ˙" 1 iπ ż pbq ´c 4π ¯2s´1 D v ˆs, d c ˙φp2sqds.
Note that the change of order of integration and summation in the last formula is justified by the absolute convergence. Moving the contour of integration to s " δ with σ 0 ă δ ă 0, we cross two simple poles of D v `s, d c ˘at the points v `1{2 and 3{2´v. Computation of residues gives the first two summands on the right-hand side of (4.39). We are left to evaluate Note that condition (4.36) is satisfied for g 1 pxq if

# 1 ´2α ą ´1 as x Ñ 0, 1{2 ´2α ă ´1 as x Ñ 8.
This explains our choice of α. Analogously, 1 iπ ż pαq γp1 ´s, vq sin πv φp2sqm s´1 ds "

ż 8 0 k 1 px ? m, vqφpxqxdx.
In order to apply Theorem 4.5.4, one has to exclude the coprimality condition in the sum. This can be done using the criterion of vanishing of classical Kloosterman sum (2.1.2).

Let f pm, n, cq :" F M,N pm, nqJ k´1 p 4π ? mn c q.

Proposition 4.5.5. Let m, n, c be three strictly positive integers and ρ be a prime number. Suppose ρ 2 divides c. Then

ÿ pq,mnq"1 τ 1{2`ir 1 pmqτ 1{2`ir 2 pnqSpm, n, cqf pm, n, cq " ÿ m,ně1 τ 1{2`ir 1 pmqτ 1{2`ir 2 pnqSpm, n, cqf pm, n, cq ´τ1{2`ir 2 pρq ÿ m,ně1 τ 1{2`ir 1 pmqτ 1{2`ir 2 pnqSpm, nρ, cqf pm, nρ, cq `ÿ m,ně1 τ 1{2`ir 1 pmqτ 1{2`ir 2 pnqSpm, nρ 2 , cqf pm, nρ 2 , cq.
Proof. Recall that q " ρ ν . Therefore, Finally, we plug this in (4.41) to get the required result.

ÿ
The first summand, including T S ˚pcq, is an error term.

Lemma 4.6.2. Let l " 0, 1. Then

ÿ q ρ l |c ÿ M,N ďq 1` c ´2T S ˚pc, Bq ! t 1 ,t 2 , ,ρ P pr 1 qP pr 2 qq |t 1 |`|t 2 | q ´1` . (4.49) 
Proof. We use (4.27) to estimate F M,N pm, nq. J-Bessel function can be trivially bounded by 1. Then

G ˚pnρ B q ! t 1 ,t 2 P pr 1 qP pr 2 q ˆq 2 M ˙|t 1 | ˆq 2 N ˙|t 2 | ˆM N ˙1{2 . Since Sp0, nρ B , cq ! pnρ B , cq,
we have

T S ˚pc, Bq ! t 1 ,t 2 pnρ B , cqpM N q 1{2 q P pr 1 qP pr 2 q ˆq 2 M ˙|t 1 | ˆq 2 N ˙|t 2 | .
Therefore,

ÿ q ρ l |c ÿ M,N ďq 1` c ´2T S ˚pc, Bq ! t 1 ,t 2 , ,ρ P pr 1 qP pr 2 qq |t 1 |`|t 2 | q ´1` .
We use (4.27) to estimate F M,N pxc 2 , nρ B q, (C.7) to estimate

J k´1 ´4π a xnρ B ¯and k 0 ´4π a xnρ B , 1{2 `ir 1 ¯! 1.
Then

T 1 ! ,t 1 ,t 2 P pr 1 qP pr 2 qq |t 1 |`|t 2 |` ÿ M,N !q 1` 1 ? M N ÿ n"N ż q ´4{3 0 p ? xnq k´1 M qx dx ! ,ρ,t 1 ,t 2 P pr 1 qP pr 2 qq |t 1 |`|t 2 |` q ´k{6`1{6 .
Proposition 4.7.2. For any ą 0, any A ą 0 and l " 0, 1 where F pxq is a smooth function, compactly supported in r1{2, 8q such that F pxq " 1 for

ÿ q ρ l |c φpcq c 2 ÿ max pM,N q"q 1` ÿ n τ 1{2`ir 1 pnρ B qτ 1{2`ir 2 pnqG ŕ1 pnρ B , nρ B q ! ,ρ,A,
x ě 1.
Proposition 4.7.3. Up to an error term

P pr 1 qP pr 2 qq |t 1 |´t 1 `|t 2 |´t 2 ` q ´k{2 ,
the product F pxqF pyq can be replaced by 1 in (4.55).

T 2 :" ÿ c q|c φpcq c 2 ÿ n τ 1{2`ir 1 pnρ B qτ 1{2`ir 2 pnq ż 1 0 k 0 ˜4π a xnρ B c , 1{2 `ir 1 Jk´1 ˜4π a xnρ B c ¸1 a xnρ B W t 1 ,r 1 p x q2 qW t 2 ,r 2 p nρ B q2 qp1 ´F pxqqdx.
We estimate k 0 ˆ4π ?

xnρ B c
, 1{2 `ir 1 ˙trivially by 1 and

J k´1 ˜4π a xnρ B c ¸! ˆ?xn c ˙k´1 .
Suppose that n ă q. Then W t 2 ,r 2 can be estimated using (4.11). This gives

T 2 ! t 1 ,t 2 , P pr 1 qP pr 2 qq |t 1 |`|t 2 |` q ´k{2 .
Suppose that n ě q. We use (4.10), so that

T 2 ! t 1 ,t 2 , P pr 1 qP pr 2 qq |t 1 |` q ´k{2 .

Asymptotics of the diagonal and off-diagonal terms

In this section we prove Theorems 4.0.4 and 4.0.6. Recall that

F pm, nq " 1 ? mn W t 1 ,r 1 ˆm q2 ˙Wt 2 ,r 2 ˆn q2 ȧnd G ŕ1 pnρ B , nρ B q " 2π ż 8 0 k 0 ˜4π a xnρ B c , 1{2 `ir 1 ¸Jk´1 ˜4π a xnρ B c ¸F px, nρ B qdx.
Then the off-diagonal term can be written as

M OD pBq " q´2t 1 ´2t 2 ÿ n τ 1{2`ir 1 pnρ B qτ 1{2`ir 2 pnq nρ B W t 2 ,r 2 ˆnρ B q2 ˙Zpnρ B q, B " 0, 1, 2 52 with Z " Zpnρ B q :" 2πi ´k ż 8 0 k 0 pz, 1{2 `ir 1 qJ k´1 pzq ˆ¨ÿ q|c c!q A φpcq c W t 1 ,r 1 ˆz2 c 2 p4πq 2 q2 nρ B ˙´1 ρ ÿ q ρ |c c!q A φpcq c W t 1 ,r 1 ˆz2 c 2 p4πq 2 q2 nρ B ˙‹ ‹ ‹ ' dz.
Note that we made a change of variables x " z 2 c 2 p4πq 2 nρ B in the integral. Applying (4.9), we have

Z " 2πi ´k ż 8 0 k 0 pz, 1{2 `ir 1 qJ k´1 pzq 1 2πi ż p3q Gpsq Γps `ir 1 `k{2qΓps ´ir 1 `k{2q Γpt 1 `ir 1 `k{2qΓpt 1 ´ir 1 `k{2q ˆζq p1 `2sq ˆz2 
p4πq 2 q2 nρ B ˙´s ˆ» - ÿ q|c φpcq c 1`2s ´1 ρ ÿ q ρ |c φpcq c 1`2s fi fl 2sds s 2 ´t2 1 dz.
The term in the brackets can be simplified. Consider

ÿ q|c φpcq c 1`2s " ÿ kěν φpρ k q ρ kp1`2sq ÿ pc,ρq"1 φpcq c 1`2s " φpqq q ÿ kěν 1 pρ 2s q k ÿ pc,ρq"1 φpcq c 1`2s " φpqq q 1`2s 1 1 ´ρ´2s ζ q p2sq ζ q p2s `1q .
Analogously,

ÿ q ρ |c φpcq c 1`2s " φpqq q 1`2s ρ 2s 1 ´ρ´2s ζ q p2sq ζ q p2s `1q
.

Combining the last two formulas,

ÿ q|c φpcq c 1`2s ´1 ρ ÿ q ρ |c φpcq c 1`2s " φpqq q 1`2s 1 ´ρ2s´1 1 ´ρ´2s
ζ q p2sq ζ q p2s `1q .

Lemma C.0.19 implies that ż 8 0 k 0 pz, 1{2 `ir 1 qJ k´1 pzqz ´2s dz " Γp2sq 2 2s`1 cos pπp1{2 `ir 1 qq ˆΓpir 1 `k{2 ´sqΓp´ir 1 ´k{2 `s `1q ´Γp´ir 1 `k{2 ´sqΓpir 1 ´k{2 `s `1q

Γp´ir 1 `k{2 `sqΓpir 1 `k{2 `sqΓpir 1 ´k{2 `s `1qΓp´ir 1 ´k{2 `s `1q .

By duplication formula (A.10) and reflection formula (A.9), ż 8 0 k 0 pz, 1{2 `ir 1 qJ k´1 pzqz ´2s dz " ´ik ΓpsqΓps `1{2q 2 2 π 3{2 sin pπir 1 q ˆΓpir 1 `k{2 ´sqΓp´ir 1 `k{2 ´sq Γpir 1 `k{2 `sqΓp´ir 1 `k{2 `sq rsin pπp´s ´ir 1 qq ´sin pπp´s `ir 1 qqs.

Note that

Γp1{2 ´sqΓp1{2 `sq 2π sin pπir 1 q rsin pπp´s ´ir 1 qq ´sin pπp´s `ir 1 qqs " ´1.

Consequently,

Z " φpqq q 1 2πi ż p3q Gpsq Γp´s `ir 1 `k{2qΓp´s ´ir 1 `k{2q Γpt 1 `ir 1 `k{2qΓpt 1 ´ir 1 `k{2q ζ q p1 ´2sq ˆnρ B q2 ˙s 2sds s 2 ´t2 1 .
Shifting the contour of integration to psq " ´3, we cross poles at s " ˘t1 . Hence

Z " ´φpqq q 1 2πi ż p3q Gpsq Γps `ir 1 `k{2qΓps ´ir 1 `k{2q Γpt 1 `ir 1 `k{2qΓpt 1 ´ir 1 `k{2q ζ q p1 `2sq ˆnρ B q2 ˙´s 2sds s 2 ´t2 1 `φpqq q ÿ 1 "˘1 Γp 1 t 1 `ir 1 `k{2qΓp 1 t 1 ´ir 1 `k{2q Γpt 1 `ir 1 `k{2qΓpt 1 ´ir 1 `k{2q ζ q p1 `2 1 t 1 q ˆnρ B q2 ˙´ 1 t 1 .
Substitution of Z into M OD pBq gives

M OD pBq " φpqq q q´2t 1 ´2t 2 ÿ n τ 1{2`ir 1 pnρ B qτ 1{2`ir 2 pnq nρ B W t 2 ,r 2 p nρ B q2 q ˆ´W t 1 ,r 1 p nρ B q2 q `ÿ 1 "˘1 Γp 1 t 1 `ir 1 `k{2qΓp 1 t 1 ´ir 1 `k{2q Γpt 1 `ir 1 `k{2qΓpt 1 ´ir 1 `k{2q ζ q p1 `2 1 t 1 q ˆnρ B q2 ˙´ 1 t 1 ¸.
The property of multiplicity (4.5) implies that ÿ ně1 pn,ρq"1 τ 1{2`ir 2 pnqf pnq "

ÿ ně1 τ 1{2`ir 2 pnqf pnq ´τ1{2`ir 2 pρq ÿ ně1 τ 1{2`ir 2 pnqf pnρq `ÿ ně1 τ 1{2`ir 2 pnqf pnρ 2 q.
Thus,

M D `M OD " φpqq q q´2t 1 ´2t 2 ÿ pn,ρq"1 τ 1{2`ir 1 pnqτ 1{2`ir 2 pnq n W t 2 ,r 2 p n q2 q ˆ˜ÿ 1 "˘1 Γp 1 t 1 `ir 1 `k{2qΓp 1 t 1 ´ir 1 `k{2q Γpt 1 `ir 1 `k{2qΓpt 1 ´ir 1 `k{2q ζ q p1 `2 1 t 1 q ˆn q2 ˙´ 1 t 1 ¸. (4.57)
Ramanujan's identity (4.6) gives ÿ pn,ρq"1 τ 1{2`ir 1 pnqτ 1{2`ir 2 pnq n 1` 1 t 1 `s " ζ q p1 ` 1 t 1 `s `ir 1 ´ir 2 qζ q p1 ` 1 t 1 `s ´ir 1 `ir 2 q ˆζq p1 ` 1 t 1 `s `ir 1 `ir 2 qζ q p1 ` 1 t 1 `s ´ir 1 ´ir 2 q ζ q p2 `2 1 t 1 `2sq .

Therefore,

M D `M OD " φpqq q ÿ 1 "˘1 Γp 1 t 1 `ir 1 `k{2qΓp 1 t 1 ´ir 1 `k{2q Γpt 1 `ir 1 `k{2qΓpt 1 ´ir 1 `k{2q ζ q p1 `2 1 t 1 q ˆq ´2t 1 ´2t 2 `2 1 t 1 1 2πi ż s"3 Gpsq Gpt 2 q q2s ζ q p1 `2sq Γps `ir 2 `k{2qΓps ´ir 2 `k{2q Γpt 2 `ir 2 `k{2qΓpt 2 ´ir 2 `k{2q ˆś ζ q p1 ` 1 t 1 `s ˘ir 1 ˘ir 2 q ζ q p2 `2 1 t 1 `2sq 2sds s 2 ´t2 2 .
Shifting the contour of integration to s " ´1{2, the resulting integral is bounded by P pr 1 qP pr 2 qq p 1 ´1qt 1 ´t2 q ´1{2 plus the contribution of simple poles at s " ˘t2 . Up to an error 55 term,

M D `M OD " φpqq q ÿ 1 , 2 "˘1 q´2t 1 ´2t 2 `2 1 t 1 `2 2 t 2 ˆζq p1 `2 1 t 1 qζ q p1 `2 2 t 2 q ś ζ q p1 ` 1 t 1 ` 2 t 2 ˘ir 1 ˘ir 2 q ζ q p2 `2 1 t 1 `2 2 t 2 q ˆΓp 1 t 1 `ir 1 `k{2qΓp 1 t 1 ´ir 1 `k{2q Γpt 1 `ir 1 `k{2qΓpt 1 ´ir 1 `k{2q Γp 2 t 2 `ir 2 `k{2qΓp 2 t 2 ´ir 2 `k{2q Γpt 2 `ir 2 `k{2qΓpt 2 ´ir 2 `k{2q .
By letting shifts tend to zero in (4.57), we find

M D `M OD " ˆφpqq q ˙2 ÿ pn,ρq"1 τ pnq 2 n W 0,0 p n q2 q log ˆq 2 n ˙. (4.58) 
The equality (4.7) gives

M D `M OD " 1 2πi ˆφpqq q ˙2 ż p3q Gpsq Gp0q Γpk{2 `sq 2 Γpk{2q 2 ζ q p1 `2sqq 2s ζ q p1 `sq 4 ζ q p2 `2sq ˆ«log q2 `4 ζ 1 q ζ q p1 `sq ´2 ζ 1 q ζ q p2 `2sq ff 2ds s .
Shifting the contour of integration to s " ´1{2, the resulting integral is bounded by q ´1{2 plus the contribution of multiple poles at s " 0. Calculation of the residue

ˆφpqq q ˙7 1 ζ q p2q
Res s"0 q2s s 6 ˆlog q ´4 s ṡhows that the main term is

p φpqq q q 7 ρ 2 ρ 2 ´1 plog qq 6 60π 2 . Theorem 5.1.1. (Duke, Friedlander, Iwaniec) Let a, b ě 1, pa, bq " 1, h ‰ 0. Let D f pa, b; hq " ÿ am¯bn"h τ pmqτ pnqf pam, bnq with 
x i y j f pijq px, yq ! p1 `x X q ´1p1 `y Y q ´1P i`j . (5.1) 
Assume that ab ă P ´5{4 pX `Y q ´5{4 pXY q 1{4` .

(5.2)

Then D f pa, b; hq " ż 8 0 gpx, ˘x ¯hqdx `OpP 5{4 pX `Y q 1{4 pXY q 1{4` q.
Here gpx, yq " f px, yqΛ a,b,h px, yq with Λ a,b,h px, yq " 1 ab

8 ÿ w"1
w ´2pab, wqSp0, h, wqplog x ´λaw qplog y ´λbw q, λ aw " ´2γ `logp aw 2 pa, wq 2 q.

Applying formula (4.39), we generalize Theorem 5.1.1 as follows.

Theorem 5.1.2. Let a, b ě 1, pa, bq " 1, h ‰ 0. Let D f pa, b; hq " ÿ am¯bn"h τ 1{2`ir 1 pmqτ 1{2`ir 2 pnqf pam, bnq with x i y j f pijq px, yq ! p1 `x X q ´1p1 `y Y q ´1P i`j . (5.3)
Assume that ab ă P ´5{4 pX `Y q ´5{4 pXY q 1{4` .

(5.4)

Note that

U " Q 2 ą wQ.

Therefore,

B i Bx i B j
By j Epx, yq ! a i b j pwQq i`j`1 . Lemma 5.1.6. ( [START_REF] Duke | A quadratic divisor problem[END_REF], p.216) We have Contribution to the main term is given by the integral I. Let Cpx, yq :" Integration by parts gives

ż 8 0 ż 8 0 Epx, yqdxdy ! pabq ´1pX `Y q ´1X Y log Q. ( 5 
I b pnq " 2π ÿ 1 "˘1 pa, wq 2i 1 r 1 w 2i 1 r 1 ζp1 `2i 1 r 1 q ˆż 8 0 ż 8 0 k 0 ˆ4πpb,
ÿ 1 , 2 "˘1 pa, wq 2i 1 r 1 pb, wq 2i 2 r 2 a 1`i 1 r 1 b 1`i 2 r 2 w 2i 1 r 1 `2i 2 r 2 ˆζp1 `2i 1 r 1 qζp1 `2i 2 r 2 qF px, yqx i 1 r 1 y i 2
G 1 pz, yq " c 2 8πz sin πir 1 ż 8 0 u 1`2ir 1 J 1`2ir 1 puqf 1 puqdu " ´c2 8πz sin πir 1 ż 8 0 u 2`2ir 1 J 2`2ir 1 puqp 1 u f 1 puqq 1 du.
Then the bound (4.27) implies

u i´j´m g pi´j´mq 2 puq ! ÿ pm 1 ,m 2 q m 1 `2m 2 "i´j´m p c 2 16π 2 z u 2 q m 1 `m2 F pm 1 `m2 q M,N p c 2 u 2 16π 2 z , yq ! t 1 ,t 2 P pr 1 qP pr 2 qpM N q ´1{2 q |t 1 |`|t 2 | .
The J Bessel function can be bounded trivially

J n`2ir 1 puq ! 1.
Then

G 1 pz, yq ! t 1 ,t 2 P pr 1 qP pr 2 qq |t 1 |`|t 2 | ˆQc ? M z ˙n M 1{2 N 1{2 ˆ?M N c ˙k´1 Q ´k`1{2
for every integer n ą 0. The same estimate is valid for G ŕ1 pz, yq. So, if z ą Z, the value of G ŕ1 pz, yq is small. Suppose z ď Z, then we estimate G ŕ1 pz, yq directly (without integration by parts)

G ŕ1 pz, yq ! t 1 ,t 2 P pr 1 qP pr 2 qq |t 1 |`|t 2 | M 1{2 N 1{2 ˆ?M N c ˙k´1 Q ´k`1{2 .
Let Y :" N . Since y P rN {2, 3N s, we can add a multiple p1 `y Y q ´n2 .

Combining two estimates for G ŕ1 pz, yq in one, we have that for all positive n 1 and n 2

G ŕ1 pz, yq ! t 1 ,t 2 p1 `z Z q ´n1 p1 `y Y q ´n2 P pr 1 qP pr 2 qq |t 1 |`|t 2 | M 1{2 N 1{2 ˆ?M N c ˙k´1 Q ´k`1{2 .
Analogously, using relation (C.6) and bound (C.9) for K-Bessel function, we estimate

G r1 pz, yq.
Finally, differentiating G ȓ1 pz, yq in z variable j times and in y variable i times, we find

z j y i B j Bz j B i By i G ȓ1 pz, yq ! t 1 ,t 2 P pr 1 qP pr 2 qq |t 1 |`|t 2 | p1 `z Z q ´n1 p1 `y Y q ´n2 M 1{2 N 1{2 ˆ?M N c ˙k´1 Q j`i´k`1{2 .
where Λph ˘ρB y, ρ B yq :"

8 ÿ w"1 Sp0, h, wq ÿ 1 , 2 "˘1 pρ B , wq 1`2i 2 r 2 w 2`2i 1 r 1 `2i 2 r 2 ˆζp1 `2i 1 r 1 qζp1 `2i 2 r 2 qph ˘ρB yq i 1 r 1 y i 2 r 2
and the error term is

ET :" P pr 1 qP pr 2 qq |t 1 |´t 1 `|t 2 |´t 2 M 1{2 N 1{2 ˆ?M N c ˙k´1 Q ´k`1{2 Q 5{4 pZ `N q 1{4 pZN q 1{4` . Since Z " Q 2 c 2 M ą N , ET ! P pr 1 qP pr 2 qq |t 1 |´t 1 `|t 2 |´t 2 M 1{2 N 1{4 ˆ?M N c ˙k´2 Q ´k`11{4 .
Note that T h pcq is small when |h| " Zq because G ¯is small when z " Zq . This allows adding ´1 `|h| Z ¯´2 into the error term ET . Multiplying by Sp0, h, cq and summing over h, we have

ET 1 :" ÿ h Sp0, h, cq ˆ1 `|h| Z ˙´2 ET ! P pr 1 qP pr 2 qq |t 1 |´t 1 `|t 2 |´t 2 c 2 N 1{4 M ´1{2 ˆ?M N c ˙k´2 Q ´k`2`11{4 .
Finally, we sum over c. If k " 2,

ÿ cďC q|c c ´2ET 1 ! P pr 1 qP pr 2 qq q |t 1 |´t 1 `|t 2 |´t 2 N 1{4 M 1{2 ÿ cďC q|c « 1 `ˆ? M N c ˙11{4 ff ! P pr 1 qP pr 2 qq |t 1 |´t 1 `|t 2 |´t 2 ˆN 1{4 M 1{2 C q `N 13{8 M 7{8 q 11{4
˙.

An optimal value of C can be found by making equal the first summand and the error term in Lemma 4.4.4 we obtain

M OOD pBq " 2πi k q´2t 1 ´2t 2 ÿ 1 , 2 "˘1 ζp1 `2i 1 r 1 qζp1 `2i 2 r 2 q ˆ¨ÿ g,v µpgq g 2 µpvq v 2`2i 1 r 1 `2i 2 r 2 ÿ q|cg cgăq Ω 1 c ÿ w pρ B , wvq 1`2i 2 r 2 w 1`2i 1 r 1 `2i 2 r 2 ÿ h‰0 rw,cs|h `V ´phq `V `phq 1 ρ ÿ g,v µpgq g 2 µpvq v 2`2i 1 r 1 `2i 2 r 2 ÿ q ρ |cg cgăq Ω 1 c ÿ w pρ B , wvq 1`2i 2 r 2 w 1`2i 1 r 1 `2i 2 r 2 ÿ h‰0 rw,cs|h `V ´phq `V `phq ˘‹ ‹ ‹ ' , where V ´phq `V `phq " 2π ż 8 0 ż 8 0 1 pρ B xyq 1{2 W t 1 ,r 1 ˆx q2 ˙Wt 2 ,r 2 ˆρB y q2 ˙Jk´1 ˜4π a xρ B y cg «δ h`ρ B yą0 k 0 ˜4π a xph `ρB yq cg , 1{2 `ir 1 ¸ph `ρB yq i 1 r 1 y i 2 r 2 `δh´ρ B yą0 k 1 ˜4π a xph `ρB yq cg , 1{2 `ir 1 ¸ph ´ρB yq i 1 r 1 y i 2 r 2 ff F pxqF pρ B yqdxdy.
In the expression V ´phq `V `phq we replace negative h by their absolute value and make a change of variables ρ B y h Ñ y in the integral. As a result,

V ´phq `V `phq " 2π h 1{2`i 1 r 1 `i 2 r 2 ρ Bp1`i 2 r 2 q ˆż 8 0 ż 8 0 y i 2 r 2 pxyq 1{2 W t 1 ,r 1 ˆx q2 ˙Wt 2 ,r 2 ˆhy q2 ˙Jk´1 ˆ4π ? xhy cg «k 0 ˜4π a xhp1 `yq cg , 1{2 `ir 1 ¸p1 `yq i 1 r 1 `δyą1 k 0 ˜4π a xhpy ´1q cg , 1{2 `ir 1 ¸p´1 `yq i 1 r 1 `δyă1 k 1 ˜4π a xhp1 ´yq cg , 1{2 `ir 1 ¸p1 ´yq i 1 r 1 ff F pxqF phyqdxdy.
Finally, we apply Mellin transforms of Bessel functions (E.5), (E.11) and (E.12)

V ´phq `V `phq " ´1 p2πiq 2 1 ρ Bp1`i 2 r 2 q ˆż β"0.7 ż z"´0.1 Γpβ `ir 1 qΓpβ ´ir 1 qp4πq k`2z´2β 2 ´k´2z`2β
Γp1 `zqΓpk `zq sin pπzq pcgq ´k`1´2z`2β ˆhk{2`z´β`i 1 r 1 `i 2 r 2 ż 8

x"0

x z´β`k{2 W t 1 ,r 1 ˆx q2 ˙F pxq dx x ż 8 y"0 y z`k{2`i 2 r 2 W t 2 ,r 2 ˆhy q2 ˙F phyq ˆˆcos pπβq p1 `yq β´i 1 r 1 `δyą1 cos pπβq p´1 `yq β´i 1 r 1 `δyă1 cos pπir 1 q p1 ´yq β´i 1 r 1 ˙dy y dzdβ.

Note that the contour of integration p˚q (see figure E.1) is shifted to β " 0.7, which is possible due to the rapid decay of the x integral in β. The change of the order of integration in V ´phq `V `phq is justified by absolute convergence of all integrals.

5.6

Replacing F pxqF phyq by 1 on the interval r0, 8q 2

This step allows us to simplify the integration and can be performed with a cost of negligible error.

y-integral

Consider IY :" O ,ρ pP pr 1 qP pr 2 qq ´t1 ´t2 q ´1{2` q.

ż 8 y"0 y z`k{2`i 2 r 2 W t 2 ,
Proof. F phyq is a smooth function, compactly supported in r1{2, 8q such that F phyq " 1 for hy ě 1. Thus, we only need to estimate the integral for y ă 1{h . It is bounded by `1 h ˘k{2` z cos πβ. We are left to estimate

T :" ÿ g,v,w 1 g 2 v 2 w ÿ q|cg cgăq Ω 1 c ÿ rc,ws|h h ´β ż β"0.7 ż z"´0.1
Γpβ `ir 1 qΓpβ ´ir 1 q cos πβ Γp1 `zqΓpk `zq sin pπzq ˆpcgq ´k`1´2z`2β ż 8

x"0

x z´β`k{2 W t 1 ,r 1 ˆx q2 ˙F pxq dx x .

To make the sums over h and w absolutely convergent, one has to move β contour to the right β ą 1. At the same time, partial integration shows that the x-integral decays rapidly in β:

ż 8 0 x z´β`k{2 W t 1 ,r 1 ˆx q2 ˙F pxq dx x " 1 pz ´β `k{2qpz ´β `k{2q . . . pz ´β `k{2 `n ´1q ˆż 8 0 B n Bx n ˆWt 1 ,r 1 ˆx q2 ˙F pxq ˙xz´β`k{2`n´1 dx ! P pr 1 qP pr 2 q 1 |β| n q z´β`k{2 .
78 Assume that β ą 1. We have

T ! P pr 1 qP pr 2 qq z´β`k{2 ÿ v,w,h 1 v 2 w 1`β h β ÿ q|cg cgăq Ω 1 c 1`β g 2 pcgq ´k`1´2z`2β
! P pr 1 qP pr 2 qq z´β`k{2 ÿ q|cg cgăq Ω pcgq ´k´1´2z`2β ! P pr 1 qP pr 2 qq z´β`k{2´1 q Ωp´k´2z`2βq .

Moving β contour to β " k{2 `δ and z contour to ´δ, M OOD is dominated by P pr 1 qP pr 2 qq ´t1 ´t2 q ´1q 4δΩ´2δ .

Choosing δ " 1 4p2Ω`1q , we obtain the result. Lemma 5.6.2. One has

IY " 1 2πi ż t"k{2´0.2 Gptq Gpt 2 q Γpt `ir 2 `k{2qΓpt ´ir 2 `k{2q Γpt 2 `ir 2 `k{2qΓpt 2 ´ir 2 `k{2q ζ q p1 `2tq ˆq 2 h ˙t ˆΓpk{2 `z ´t `i 2 r 2 qΓp´k{2 ´z `t `β ´i 1 r 1 ´i 2 r 2 q
Γpβ ´i 1 r 1 q ˆˆcos pπβq `cos pπβq sin pπpk{2 `z ´t `i 2 r 2 qq sin pπpβ ´i 1 r 1 qq `cos pπir 1 q sin pπp´k{2 ´z `t `β ´i 1 r 1 ´i 2 r 2 qq sin pπpβ ´i 1 r 1 qq

˙2tdt t 2 ´t2 2 .
Proof. By Lemma 5.6.1, the y-integral is equal to

IY " ż 8 y"0 y z`k{2`i 2 r 2 W t 2 ,r 2 ˆhy q2 ċos pπβq p1 `yq β´i 1 r 1 `δyą1 cos pπβq p´1 `yq β´i 1 r 1 `δyă1 cos pπir 1 q p1 ´yq β´i 1 r 1 ˙dy y .
We plug in the expression 

W t 2 ,
q sin pπp´k{2 ´z `t `β ´i 1 r 1 ´i 2 r 2 qq sin pπpβ ´i 1 r 1 qq Γpk{2 `z ´t `i 2 r 2 qΓp´k{2 ´z `t `β ´i 1 r 1 ´i 2 r 2 q Γpβ ´i 1 r 1 q 2tdt t 2 ´t2 2 .
Remark 5.6.3. If β ´i 1 r 1 " 0, ´1, ´2, . . . , poles of 1{ sinpπpβ ´i 1 r 1 qq in IY are cancelled by zeroes of 1{Γpβ ´i 1 r 1 q. Poles at β ´i 1 r 1 " j with j " 1, 2, 3 . . . are compensated by vanishing numerator.

x-integral

Lemma 5.6.4. The function F pxq can be replaced by 1 in the expression V ´phq `V `phq at the cost of negligible error P pr 1 qP pr 2 qq ´t1 ´t2 ` q ´k{2`0.5 .

Proof. We show that the contribution of F 1 pxq " 1 ´F pxq is negligible. Note that F 1 pxq " 0 for x ě 1 since in that case F pxq " 1. The part of M OOD , which affects the x-integral, can be written as follows ÿ v,w 1 v 2 w ÿ c,g q|cg ÿ rc,ws|h g ´k´1´2z`2β c ´k´2z`2β h k{2`z´β´t q t Γp´k{2 ´z `t `β ´i 1 r 1 ´i 2 r 2 q ˆΓpk{2 `z ´t `i 2 r 2 qH 1 pt, z, βq

ż 1 0 x z´β`k{2 W t 1 ,r 1 p x q2 qF 1 pxq dx x .
Here H 1 is an analytic function. We have z " ´0.1, β " 0.7, t " k{2 ´0.2.

Without crossing any pole, we shift β-contour to β " 0.3.

In order to make the sums over h and w absolutely convergent, we move t contour to t " k{2 `0.7, crossing a pole at t " k{2 `z `i 2 r 2 . Since z ´ β `k{2 ą 0, the x-integral can be integrated by parts n times (for sufficiently large n) to make β-integral convergent. This gives ż 1 0

x z´β`k{2 W t 1 ,r 1 p x q2 qF 1 pxq dx x ! P pr 1 qP pr 2 q 1 |β| n .

Finally, all sums and integrals are absolutely convergent and q ´k´1`t´2z`2β can be factored out due to divisibility conditions. In total, this gives an error P pr 1 qP pr 2 qq ´t1 ´t2 ` q ´k{2`0.5 . where V ´phq `V `phq " ´ik p2πiq 3 ż t"k{2`0.7 ż s"k{2´0.4 ż z"´0.1 q2s`2t ρ Bp1`i 2 r 2 q pcgq 1´2s h s´t`i 1 r 1 `i 2 r 2 ˆp2πq 2s GpsqGptq Gpt 1 qGpt 2 q ζ q p1 `2tqζ q p1 `2sq Γpt ´s ´i 1 r 1 ´i 2 r 2 q sin pπzqΓp1 `zqΓpk `zq ˆΓpk{2 `s ˘ir 1 qΓpk{2 `t ˘ir 2 qΓpk{2 `z ´s `i 1 r 1 qΓpk{2 `z ´t `i 2 r 2 q Γpk{2 `t1 ˘ir 1 qΓpk{2 `t2 ˘ir 2 q ˆˆcos pπpz ´sqq `cos pπpz ´sqq sin pπpz ´t `i 2 r 2 qq sin pπpz ´s ´i 1 r 1 qq `cos pπir 1 q sin pπpt ´s ´i 1 r 1 ´i 2 r 2 qq sin pπpz ´s ´i 1 r 1 qq ˙dz 2sds s 2 ´t2 1 2tdt t 2 ´t2 2 plus the contribution of poles at t " k{2 `z `i 2 r 2 ( while shifting the t-contour to the right).

Remark 5.6.6. We do not compute the contribution of poles at t " k{2 `z `i 2 r 2 since it will be cancelled by another contour shift in 5. Gpz ´β `k{2q Gpt 1 q ζ q p1 `k `2z ´2βqq k`2z´2β ˆΓpk `z ´β `ir 1 qΓpk `z ´β ´ir 1 q Γpk{2 `t1 `ir 1 qΓpk{2 `t1 ´ir 1 q k{2 `z ´β pk{2 `z ´βq 2 ´t2 1 for pz ´β `k{2q ą ´1. Then the result follows by letting s :" k{2 `z ´β.

Shifting the z-contour

The z-integral is given by IZ :" 1 2πi ż z"´0.1

Γpk{2 `z ´s `i 1 r 1 qΓpk{2 `z ´t `i 2 r 2 q sin pπzqΓp1 `zqΓpk `zq ˆˆcos pπpz ´sqq `cos pπpz ´sqq sin pπpz ´t `i 2 r 2 qq sin pπpz ´s ´i 1 r 1 qq `cos pπir 1 q sin pπpt ´s ´i 1 r 1 ´i 2 r 2 qq sin pπpz ´s ´i 1 r 1 qq ˙dz. (5.35)

ÿ A"0
CpA, 2qpρ A q t`s´i 1 r 1 ´i 2 r 2 " p1 ´ρt`s`1´i 1 r 1 ´i 2 r 2 qp1 ´ρt´s`1´i 1 r 1 ´i 2 r 2 q.

Since B " 0, 1, 2, the condition B ą α `β is satisfied in four cases pB, α, βq " tp1, 0, 0q, p2, 0, 0q, p2, 1, 0q, p2, 0, 1qu. Thus, Φps, tq " q2i 1 r 1 `2i 2 r 2 ζ q p1 `t `s `i 1 r 1 `i 2 r 2 qζ q p1 `t ´s `i 1 r 1 `i 2 r 2 q ζ q p2 `2i 1 r 1 `2i 2 r 2 q ˆζq p1 ´t `s `i 1 r 1 `i 2 r 2 qζ q p1 ´t ´s `i 1 r 1 `i 2 r 2 q ˆ"pρ ir 2 `1 ρ ir 2 qpρ i 2 r 2 ´1 ρ 1`i 2 r 2 q ´ρ2i 2 r 2 `1 ρ 2`2i 2 r 2 `1 ρ 2`2i 1 r 1 ´1 ρ 3`2i 1 r 1 `2i 2 r 2 ´1 ρ 1`2i 1 r 1 `1 ρ 2`2i 1 r 1 `2i 2 r 2  .

Simplifying, we have Φps, tq " φpqq q q2i 1 r 1 `2i 2 r 2 ζ q p1 `t `s `i 1 r 1 `i 2 r 2 qζ q p1 `t ´s `i 1 r 1 `i 2 r 2 q ζ q p2 `2i 1 r 1 `2i 2 r 2 q ˆζq p1 ´t `s `i 1 r 1 `i 2 r 2 qζ q p1 ´t ´s `i 1 r 1 `i 2 r 2 q ˆ1 ´1 ρ 1`2i 1 r 1 ˙ˆ1 ´1 ρ 1`2i 2 r 2 ˙. ζ q p1 `2i 1 r 1 qζ q p1 `2i 2 r 2 q ζ q p2 `2i 1 r 1 `2i 2 r 2 q ˆq ´2t 1 ´2t 2 `2i 1 r 1 `2i GpsqGptq Gpt 1 qGpt 2 q ζ q p1 `t `s `i 1 r 1 `i 2 r 2 qζ q p1 `t ´s `i 1 r 1 `i 2 r 2 q ˆζq p1 ´t `s `i 1 r 1 `i 2 r 2 qζ q p1 ´t ´s `i 1 r 1 `i 2 r 2 q ˆΓpk{2 `s `i 1 r 1 qΓpk{2 `t `i 2 r 2 qΓpk{2 ´s `i 1 r 1 qΓpk{2 ´t `i 2 r 2 q Γpk{2 `t1 `ir 1 qΓpk{2 `t1 ´ir 1 qΓpk{2 `t2 `ir 2 qΓpk{2 `t2 ´ir 2 q .

The function I 1 , 2 ps, tq is even in both s and t. Therefore, ζ q p1 `2i 1 r 1 qζ q p1 `2i 2 r 2 q ζ q p2 `2i 1 r 1 `2i 2 r 2 q q´2t 1 ´2t 2 `2i 1 r 1 `2i 2 r 2 ˆζq p1 `t1 `t2 `i 1 r 1 `i 2 r 2 qζ q p1 `t2 ´t1 `i 1 r 1 `i 2 r 2 q ˆζq p1`t 1 ´t2 `i 1 r 1 `i 2 r 2 qζ q p1´t 1 ´t2 `i 1 r 1 `i 2 r 2 q Γpk{2 ´t1 `i 1 r 1 qΓpk{2 ´t2 `i 2 r 2 q Γpk{2 `t1 ´i 1 r 1 qΓpk{2 `t2 ´i 2 r 2 q .

5.8. ˙" ˆφpqq q ˙7 1 ζ q p2q 1 6! p4r p6q p0q `30r p4q p0qplog qq 2 q.

Therefore, the M OOD p0, 0, 0, 0q is a polynomial in log q of order 2.

where f 1 pvq " Γpk{2 `v{2 ´sq Γp´k{2 `v{2 `s `1qΓpk{2 `v{2 `sqΓpk{2 ´v{2 `sq f 2 pvq " f 1 p´vq " Γpk{2 ´v{2 ´sq Γp´k{2 ´v{2 `s `1qΓpk{2 ´v{2 `sqΓpk{2 `v{2 `sq .

Differentiating and letting v :" µ 2 " 0, we have x ´2β γpβ, 1{2 `irq2dβ, (E.12)

ż
where the contour of integration p˚q is given on figure E.1.

Figure 1 . 1 :

 11 Figure 1.1: Structure of the fourth moment

. 3 ) 4 . 1

 341 Approximate functional equation Let τ v pnq " |n| v´1{2 σ 1´2v pnq " |n| v´1{2 ÿ d|n,dą0 d 1´2v .(4.4)

Proposition 4 . 5 . 1 . 30 )

 45130 (Jutila,[START_REF] Jutila | Lectures on a method in the theory of exponential sums[END_REF], Theorem 1.7) Let gpxq be a smooth, compactly supported function on R `and pc, dq " 1.In our case, τ pmq is replaced by τ 1{2`ir pmq.Consider theBessel kernels k 0 px, vq :" 1 2 cos πv pJ 2v´1 pxq ´J1´2v pxqq, (4.31) k 1 px, vq :" 2 π sin πvK 2v´1 pxq. (4.32) Let D v ps, xq :" ÿ ně1 τ v pnq n s epnxq, v " 1{2. (4.33)

  can apply functional equation(4.34) and write the result in terms of Dirichlet series(4.33). Since p1 ´sq ą 1, the order of summation and integration can be changed. Now we can move the contour of integration to s " α such that 3{4 ă α ă 1. Then the result follows from Lemmas E.0.31 and 4.5.3. Indeed, let g 1 pxq :" xk 0 px ? m, vq, then ĝ1 p1 ´2sq " ´γp1 ´s, vq cos pπsqm s´1 and ´1 iπ ż pαq γp1 ´s, vq cos πs φp2sqm s´1 ds "

r 2 . 8 0

 28 Cpx, x ´h `uq∆ w puqdudx. (5.22) Lemma 5.1.

7 . 1 . 8 0x

 718 Proof. By inverse Mellin transform we haveż z´1´β`k{2 W t 1 ,r 1 p x q2 qdx " 2

5. 8 . 3 1 By

 831 Proof of Theorem 5.0.

2 .

 2 Each of the four given residues has the same value. Consequently,

  If we let one of the parameters m or n to be zero, then Kloosterman sum reduces to Ra-

	manujan sum					
							ˆnd	˙.
					ÿ	
			Sp0, n, cq "	d(mod c)	e	c	(2.5)
					pc,dq"1
							2
							Background Information
	2.1 Kloosterman sums					
	Consider the sum					
	Spm, n, cq "	ÿ d(mod c)	e	ˆmd `nd c
				pc,dq"1	
							symbol method
							(2.2)
	Further, since					
	ÿ d(mod c)	e	Main term ˆmd `nd c ˙" ÿ e(mod c)	e	c ˆme `ne	˙,
	pc,dq"1				pc,eq"1
	we have					

˙(2.1)

with dd " 1(mod c).

It depends only on the residue class of m, n modulo c because e 2πik " 1 for every k P Z.

The value of Spm, n, cq is always real because Spm, n, cq " Spm, n, cq. Spm, n, cq " Spn, m, cq,

(2.3)

Spma, n, cq " Spm, na, cq if pa, cq " 1.

(2.4)

  Theorem 2.3.2. (Deshouillers, Iwaniec, theorem 9 of[START_REF] Deshouillers | Kloosterman sums and Fourier coefficients of cusp forms[END_REF]) Let r and s be positive coprime integers, C, M , N be positive real numbers and g be real-valued function of C 6 class (first and second derivatives are continuous for each of variables) with support in rM, 2M s ˆrN, 2N s rC, Bm pjq Bn pkq Bc plq gpm, n, cq ˇˇˇď M ´j N ´kC ´l for 0 ď j, k, l ď 2.

	2Cs such that
			ˇˇˇB	pj`k`lq
				(2.27)
	Then for any ą 0 and complex sequences a, b one has
	ÿ	ÿ	ÿ
		a m	
	pc,rq"1	m	

.26) n b n gpm, n, cqSpmr, ˘n, scq ! C ˆ1 `s? rC ? M N ˙θrs ˆps ? rC `?M N `?sM Cqps ? rC `?M N `?sN Cq s ? rC `?M N }a M } 2 }b N } 2 . (2.28)

  Γp 2 t 2 `ir 2 `k{2qΓp 2 t 2 ´ir 2 `k{2q Γpt 2 `ir 2 `k{2qΓpt 2 ´ir 2 `k{2q . (4.1) Remark 4.0.5. The biggest error term appears in Lemmas 4.4.4, 5.3.1.

  Proposition 4.1.6. The fourth moment can be written as follows M 4 " q´2t 1 ´2t 2 1{2`ir 1 pmqτ 1{2`ir 2 pnq 1 ? mn W t 1 ,r 1 ˆm q2 ˙Wt 2 ,r 2 ˆn q2 ˙∆q pm, nq. (4.13)

	ÿ						
	τ					
	m,ně1						
	4.1.2				
	Lp1{2 `t `ir, f qLp1{2 `t ´ir, f q " pqq ´2t ÿ ně1	τ 1{2`ir pnq	λ f pnq ? n
	ˆ1 2πi	ż	p3q	Gpsq Gptq	ζ q p1 `2sq	Γps `ir `k{2qΓps ´ir `k{2q Γpt `ir `k{2qΓpt ´ir `k{2q ˆn q2	˙´s 2sds s 2 ´t2 .

  1{2`ir 1 pmqτ 1{2`ir 2 pnqSpm, nρ B , cqf pm, nρ B , cq with B " 0, 1, 2 (4.41) 1{2 `ir 1 ˙f px, nρ B , cqdx.

	where obtain									
	T Spc, Bq " c ÿ mě1 e ˆmd c ˙τ1{2`ir 1 pmqf pm, nρ B , cq " ÿ m,ně1 τ and f pm, n, cq " F M,N pm, nqJ k´1 ζp1 `2ir 1 q c 1`2ir 1 ż 8 0 f px, nρ B , cqx ir 1 dx `ζp1 ´2ir 1 q ˆ4π c 1´2ir 1 Proposition 4.6.1. One has `2π c ÿ mě1 τ 1{2`ir 1 pmq ż 8 0 e ˆ´md c ˙k0 ˆ4π c ? xm, 1{2 `ir 1 ˙f px, nρ B , cqdx ? ˙. ż 8 f px, nρ B , cqx ´ir 1 dx 0 mn c	(4.42)
	T Spc, Bq " T S ˚pc, Bq `T S `pc, Bq `T S ´pc, Bq, `2π c ÿ mě1 τ 1{2`ir 1 pmq ż 8 0 e ˆmd c ˙k1 ˆ4π c ? xm,	(4.43)
	where									
	T S ˚pc, Bq "	ÿ	τ 1{2`ir 2 pnqSp0, nρ B , cq	"	G r1 pnρ B q `G˚r	1 pnρ B q ‰	,	(4.44)
					n				
	T S ¯pc, Bq "	ÿ							
	G r pyq "	ζp1 `2irq c 2ir	ż 8 0	J k´1	ˆ4π	? xy c	˙FM,N px, yqx ir dx,	(4.46)
	G ŕ pz, yq " 2π	ż 8 0	k 0	ˆ4π	? xz c	, 1{2 `ir ˙Jk´1	ˆ4π	? xy c	˙FM,N px, yqdx	(4.47)
	and									
	G r pz, yq " 2π		ż 8 0	k 1	ˆ4π	? xz c	, 1{2 `ir ˙Jk´1	ˆ4π	? xy c	˙FM,N px, yqdx.	(4.48)
	Proof. The function f is smooth, compactly supported, and thus satisfies all conditions of
	Theorem 4.5.4. Applying the summation formula (4.39) with φpxq :" f p c 2 16π 2 x 2 , nρ B , cq, we
											.

pq,mnq"1 " ÿ ρ mn " ÿ m,n ´ÿ ρ|mn " ÿ m,n ´ÿ ρ|n ´ÿ ρ|m,ρ n m ÿ n τ 1{2`ir 1 pmqτ 1{2`ir 2 pnqSp0, nρ B ¯m, cqG r1 pm, nρ B q.

(4.45)

Functions G ˚, G ´, G `are defined as follows

  We prove the case am ´bn " h.D f pa, b, hq " D F pa, b; hq wq 2i 1 r 1 pb, wq 2i 2 r 2 w 2i 1 r 1 `2i 2 r 2 ζp1 `2i 1 r 1 qζp1 `2i 2 r 2 qEpx, yqx i 1 r 1 y i 2 r 2 dxdy; (5.16) 1{2 `ir 1 ˙Epx, yqy i 2 r 2 dxdy; (5.17)

										k 1 px, vq "	2 π	sin πvK 2v´1 pxq.
	Applying the summation formula for both variables m and n, we have
	w 2 pab, wq	ÿ m	ÿ n	τ 1{2`ir 1 pmqτ 1{2`ir 2 pnqe	ˆdam ´dbn w	˙Epm, nq " I
					`8 ÿ m"1	τ 1{2`ir 1 pmqe ˆ´m	ad w	˙Ia pmq	``8 ÿ n"1	τ 1{2`ir 2 pnqe	ˆnbd w	˙Ib pnq
										`ÿ m	ÿ n	τ 1{2`ir 1 pmqτ 1{2`ir 2 pnqe ˆ´m	ad w	`nbd w	.14) ˙Iab pm, nq `˚˚˚˚˚,
	where							
	5.1.2 Proof of Theorem 5.1.2
	I "		ÿ 1 , 2 "˘1	pa, ˆż 8	ż 8
										0	0
	"	ÿ 1ďwă2Q	ÿ d pmod wq	e	ˆ´dh w ˙ÿ m	ÿ n	τ 1{2`ir 1 pmqτ 1{2`ir 2 pnqe	ˆdam ´dbn w	˙Epm, nq. (5.15)
	pd,wq"1 According to Theorem 4.5.4, I a pmq " 2π ÿ 2 "˘1 pb, wq 2i 2 r 2 w 2i 2 r 2 ζp1 `2i 2 r 2 q
	ÿ mě1	e	ˆmd w	˙τ1{2`ir 1 pmqEpm, nq " ˆż 8 0 ż 8 0 k 0	ˆ4πpa, wq w	? xm,
								ζp1 `2ir 1 q w 1`2ir 1	ż 8 0	Epx, nqx ir 1 dx	`ζp1 ´2ir 1 q w 1´2ir 1	ż 8 0	Epx, nqx ´ir 1 dx
					`2π w	ÿ mě1	τ 1{2`ir 1 pmq	ż 8 0	e	ˆ´md w	˙k0	ˆ4π w	? xm, 1{2 `ir 1 ˙Epx, nqdx
										`2π w	ÿ mě1	τ 1{2`ir 1 pmq	ż 8 0	e	ˆmd w	˙k1	ˆ4π w	? xm, 1{2 `ir 1 ˙Epx, nqdx
	with								
										k 0 px, vq "	1 2 cos πv	pJ 2v´1 pxq ´J1´2v pxqq,

  1{2 `ir 2 ˙Epx, yqdxdy(5.19) and ˚˚˚˚˚are the five other terms with the k 1 Bessel kernel. 1{2`ir 1 pmqτ 1{2`ir 2 pnqSph, am ´bn, wqI ab pm, nq `˚˚˚˚˚ff .(5.20) 

	wq xm, 1{2 `ir 1 w ? ˆ4πpb, wq ? xn, 1{2 `ir 2 ˙Epx, yqx i 1 r 1 dxdy; (5.18) k0 w ? Sp0, h, wqI ˆ4πpa, wq w pab, wq ż 8 0 k 0 ÿ I ab pm, nq " 4π 2 D F pa, b, hq " wă2Q w 2 « `ÿ mě1 τ 1{2`ir 1 pmqSph, am, wqI a pmq `ÿ ně1 τ 1{2`ir 2 pnqSph, ´bn, wqI b pnq ÿ xn, Therefore, ně1 `ÿ mě1 τ

  1´ , then we apply the bound(5.14), which is valid for any wI ! P pr 1 qP pr 2 qpabq ´1pX `Y q ´1X Y log Q.The integrals I a pmq, I b pnq, I ab pm, nq and the five other term ˚˚˚˚˚contribute to D f pa, b, hq as an error.Consider I a pmq. If m ě aX pa,wq 2 Q ´2` , we integrate j times by parts in x using Lemma C.0.21. Bx j pEpx, yqx ´ir 1 qx ir 1 `j{2 J j`2irThus, the I a pmq can be made arbitrary small if m ě aX pa,wq 2 Q ´2` . Analogously, I b pnq is small if n ě bX pb,wq 2 Q ´2` and I ab pm, nq is small if m ě aX pa,wq 2 Q ´2` and n ě bX pb,wq 2 Q ´2` .In the range m ă aX pa,wq 2 Q ´2` and n ă bX pb,wq 2 Q ´2` , we use (5.14) and (C.7)I a pmq ! P pr 1 qP pr 2 q ˆaw 2 pa, wq 2Note that F M,N px, yq is compactly supported on rM {2, 3M s ˆrN {2, 3N s. Let f puq :" g 1 puqg 2 puqu ´2ir 1

	Proof. Consider											
	ÿ w"1 G ŕ1 pz, yq " 2π pab, wq w 2 Sph, 0, wq ż 8 0 k 0 ˆ4π ż 8 0 ? xz Cpx, x ´hqdx c , 1{2 `ir 1 ˙Jk´1 `O ˆP pr 1 qP pr 2 q ˆ4π ? xy c ˙FM,N px, yqdx 1 ab XY X `Y Q ´1` ˙.	(5.26)
	"	´π sin πir 1	ż 8 0	" J 2ir 1	ˆ4π	? xz c	˙´J ´2ir 1	ˆ4π	? xz c	˙ J k´1	ˆ4π	? xy c	˙FM,N px, yqdx.
	Suppose that z ą Z. Put u :" 4π ? xz c	, then		
	I a pmq ! P pr 1 qP pr 2 q G ŕ1 pz, yq " ´c2 ˆw pa, wq 8πz sin πir 1 ż 8 ? m 0 u rJ 2ir 1 puq ´J´2ir 1 puqs J k´1 ˙j	ˆuc	y z	˙FM,N	ˆc2 u 2 16π 2 z	, y ˙du.
	B j We estimate J-Bessel function by 1 and use (5.13) It is sufficient to estimate ˆżax"X G 1 pz, yq :" ´c2 8πz sin πir 1 ż 8 0 uJ 2ir 1 puqJ k´1	ˆuc	y z	˙FM,N	ˆ4πpa, wq w ˆc2 u 2 16π 2 z , y ˙du. ? xm	˙dx.
				I a pmq ! P pr 1 qP pr 2 q	1 wQ	ˆaX pa, wq 2 m	Q ´2`	˙j{2	.
	with												
		3 implies that g 1 puq :" J k´1	ˆuc	y z	˙and g 2 puq :" F M,N	16π 2 z ˆc2 u 2	, y	˙.
	ż 8 0 The recurrent relation (C.4) implies that Cpx, x ´h `uq∆ w puqdu " Cpx, x ´hq Xm ż 8	`O ˜1 ab ˙1{4 pabq P pr 1 qP pr 2 q ´1 XY X `Y Q , ˆw Q	˙j¸.	(5.23)
	If w ď Q 1´ , we can take j sufficiently large, so that I b pnq ! P pr 1 qP pr 2 q ˆbw 2 pb, wq 2 Xm ˙1{4 G 1 pz, yq " ´c2 0 8πz sin πir 1 `u1`2ir 1 J 1`2ir 1 puq ˘1f puqdu. pabq X `Y Q , ´1 XY
		I " I ab pm, nq ! P pr 1 qP pr 2 q ż Cpx, x ´hqdx `O ˆ1 ab ˆabw 4 pa, wq 4 pb, wq 4 P pr 1 qP pr 2 qpQq ´Ω˙f or any Ω ą 0. XY mn ˙1{4 pabq ´1 XY X `Y Q .	(5.24)
	Summing over m, n in the given range, we have If w ą Q (5.25) ÿ mă aX pa,wq 2 Q ´2` τ 1{2`ir 1 pmq|I a pmq| ! w 1{2 b X 3{2 Y X `Y Q ´3{2` ,

  Lemma 5.6.1. The function F phyq can be replaced by 1 in IY with an error

	r 2	ˆhy q2 ˙F phyq		
	ˆˆcos pπβq p1 `yq β´i 1 r 1 `δyą1	cos pπβq p´1 `yq β´i 1 r 1 `δyă1	cos pπir 1 q p1 ´yq β´i 1 r 1	˙dy y	. (5.34)

  r 2 Note that we shifted t from 3 to k{2 ´0.2 without crossing any pole 1 . Then

	IY "	1 2πi	ż	t"k{2´0.2	Gptq Gpt 2 q	Γpt 2 `ir 2 `k{2qΓpt 2 ´ir 2 `k{2q Γpt `ir 2 `k{2qΓpt ´ir 2 `k{2q	ζ q p1 `2tq	h ˆq 2	˙t
	ˆż 8 y"0	y z`k{2`i 2 r 2	´t ˆcos pπβq p1 `yq β´i 1 r 1 `δyą1	cos pπβq p´1 `yq β´i 1 r 1 `δyă1	cos pπir 1 q p1 ´yq β´i 1 r 1	˙dy y	2tdt t 2 ´t2 2	.
	Mellin transforms (E.0.26), (E.0.27), (E.0.28), and Euler's reflection formula (A.9) give
	IY "	1 2πi	ż	t"k{2´0.2	Gptq Gpt 2 q	Γpt 2 `ir 2 `k{2qΓpt 2 ´ir 2 `k{2q Γpt `ir 2 `k{2qΓpt ´ir 2 `k{2q	ζ q p1 `2tq	h ˆq 2	˙t
							ˆˆcos pπβq	`cos pπβq sin pπpk{2 `z ´t `i 2 r 2 qq sin pπpβ ´i 1 r 1 qq
							`cos pπir 1
			ˆhy q2	˙" 1 2πi	ż	t"k{2´0.2	Gptq Gpt 2 q	ζ q p1 `2tq	Γpt `ir 2 `k{2qΓpt ´ir 2 `k{2q Γpt 2 `ir 2 `k{2qΓpt 2 ´ir 2 `k{2q
										ˆˆhy q2	˙´t 2tdt t 2 ´t2

2

.

  Res s"t 1 ,t"t 2 Ips, tq 2s s 2 ´t2 Res s"t 1 ,t"´t 2 Ips, tq 2s s 2 ´t2 Res s"´t 1 ,t"t 2 Ips, tq 2s s 2 ´t2 Res s"´t 1 ,t"´t 2 Ips, tq 2s s 2 ´t2

	4	1 p2πiq 2	ż	t"k{2`0.7	ż	s"k{2´0.4	I 1 , 2 ps, tq	2sds s 2 ´t2 1	2tdt t 2 ´t2
									2t	2t
							1	t 2 ´t2	1	t 2 ´t2
										2t	2t
									1	t 2 ´t2	1	t 2 ´t2

2 " 2 `2 `2 `

  [START_REF] Beals | Special functions[END_REF] The off-off-diagonal term at the critical point Theorem 5.8.6. For any ą 0, up to an error O ,ρ pq pq

	then									
	ˆφpqq q	˙7 1 ζ q p2q	Res t"0	rptq t 5 ˆplog qq 2 `4 t 2		
											´2k´3 12	`q´1{4 qq, we have
	M OOD p0, 0, 0, 0q " lim r 1 Ñ0	lim r 1 Ñ0	lim t 1 Ñ0	lim t 2 Ñ0	M OOD	
								"	1 p2πiq 2	ż	t"k{2`0.7	ż	s"k{2´0.4	gps, tq	2ds s	2dt t	, (5.40)

This step is required to ensure that all poles of Γp´k{2 ´z `t `β ´i 1 r 1 ´i

r 2 q lie to the left of the t contour

q ζ q p2q `ÿ Γ 1 Γ pk{2 ˘tq `ÿ Γ 1 Γ pk{2 ˘sq ¸`ÿ Γ 1 Γ
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Off-diagonal and off-off-diagonal terms

By proposition 4.5.5, the term (4.23) can be decomposed as follows T M,N pcq " T Spc, 0q ´τ1{2`ir 2 pρqT Spc, 1q `T Spc, 2q, (

The last two summands require more detailed treatment. We rewrite the sums T S ˘in the form that is more convenient for later computations. At this point the non-diagonal term splits into off-diagonal (corresponds to h " 0) and off-off-diagonal (h ‰ 0) parts.

Theorem 4.6.3. The following decomposition takes place M OD " M OD p0q ´τ1{2`ir 2 pρqM OD p1q `M OD p2q, (4.51)

M OOD " M OOD p0q ´τ1{2`ir 2 pρqM OOD p1q `M OOD p2q. (4.52)

For B " 0, 1, 2 we have

Sp0, h, cqpT h pc, Bq `T h pc, Bqq

Sp0, h, cqpT h pc, Bq `T h pc, Bqq ‹ ‹ ' .

Here T h pc, Bq is given by (4.50) and G ȓ pz, yq by (4.48), (4.47).

Extension of summations

Now we can reintroduce the summation over c ą C and max pM, N q " q 1` for the offdiagonal term at the cost of admissible error.

Proposition 4.7.1. For any ą 0 ÿ q ρ l |c cąC φpcq c 2 ÿ max pM,N q!q 1` ÿ n τ 1{2`ir 1 pnρ B qτ 1{2`ir 2 pnqG ŕ1 pnρ B , nρ B q ! ,ρ,t 1 ,t 2 P pr 1 qP pr 2 qq |t 1 |`|t 2 |` q ´k{6`1{6 . (4.53)

Consider The fourth moment: off-off-diagonal term

In this chapter, we study the off-off-diagonal part of the fourth moment and find its contribution to the main term of asymptotic formula.

Theorem 5.0.1. For any ą 0, up to an error

we have

Remark 5.0.2. The biggest error term appears in Lemma 5.3.1.

Quadratic divisor problem

The off-off-diagonal term can be treated by δ-symbol method. In [START_REF] Duke | A quadratic divisor problem[END_REF] Duke, Friedlander and Iwaniec proved Theorem 5.1.1 using Jutila's summation formula (4.30).

gpx, ˘x ¯hqdx `OpP pr 1 qP pr 2 qP 5{4 pX `Y q 1{4 pXY q 1{4` q.

Here gpx, yq " f px, yqΛ a,b,h px, yq with Λ a,b,h px, yq :"

(5.5)

Preliminary results

We follow the proof of [START_REF] Duke | A quadratic divisor problem[END_REF]. For any n P Z we define δpnq :"

Let ωpuq be a smooth compactly supported function on R such that

• ωp0q " 0,

• ωpuq " ωp´uq, ∆ w puq ! pwQ `Q2 q ´1 `pwQ `|u|q ´1.

(5.10)

Assume that the function f is compactly supported in rX, 2Xs ˆrY, 2Y s and it satisfies (5.3). Let φpuq be a smooth function supported on |u| ă U such that φp0q " 1 and φ piq ! U ´i.

Suppose U ď P ´1 min pX, Y q, then F px, yq :" f px, yqφpx ´y ´hq satisfies

Epx, yq " F pax, byq∆ w pax ´by ´hq.

(5.12)

Lemma 5.1.5. For all i, j ě 0 we have

.

By (5.11),

Using definition (5.8), we have

Finally, the contribution of I integral to D f pa, b, hq is

Finally, we use Weil's bound (2.7) for Kloosterman sums and the following bound for Ramanujan sums Sph, 0, qq ! ph, qq.

Then I a pmq, I b pnq and I ab pm, nq contribute to D f pa, b; hq as

The total error term is

Taking U " Q 2 " P ´1pX `Y q ´1X Y , we obtain the required result.

Estimation of G r1

In order to apply Theorem 5.1.2 to

we show that the functions G ȓ1 , defined by (4.47) and (4.48), satisfy condition (5.3).

Lemma 5.2.1. For all positive n 1 and n 2

Repeating the procedure n times, we have

where h 0 puq " f puq,

By induction for n ě 1 Faá di Bruno's formula (D.2) and the estimate (C.7) give

. Applying (D.2) to the second function, we obtain and the sum is over all j-tuples pm 1 , m 2 , . . . , m j q such that 1 ¨m1 `2 ¨m2 `. . . j ¨mj " j. Formula (C.13) gives

When z ą Z, the maximum of z j B j Bz j J 2ir 1 pα ? zq is attained when m 1 `m2 `. . . `mj " j.

Therefore,

This gives an extra multiple ´?Mz c ¯j and

for every integer n ą 0.

In the similar manner

gives an extra factor of Q i .

Applying Theorem 5.1.2

According to the formula (4.52), the off-off-diagonal term is equal to

where for B " 0, 1, 2

we have

with Λph ˘ρB y, ρ B yq :"

Proof. We apply Theorem 5.1.2 to the function T h pc, Bq and let x " h ˘ρB y. Then

Thus, C :" minpq 2{3 M 1{2 , q 7{6 q and

If k ě 4, then

Combining two estimates in one, we have that for any even k

Extension of summations

Analogously to the off-diagonal term, at the cost of admissible error, we can reintroduce summation over max pM, N q ě q 1` and extend the summation over c up to some large value C max " q Ω . Proposition 5.4.1. For l " 0, 1, we have

Proof. This estimate can be obtained using the large sieve inequality (2.28). More precisely, we repeat the proof of Lemma 4.4.4 with

Proposition 5.4.2. For any ą 0, any A ą 0 and l " 0, 1

Proof. This follows from the rapid decay of F M,N when max pM, N q " q 1` . See proof of proposition 4.4.2 for details.

Now it is possible to combine all functions

where F pxq is a smooth function, compactly supported in r1{2, 8q such that F pxq " 1 for

x ě 1.

Expression for the off-off-diagional term

Lemma 5.5.1. One has

, where

Γp1 `zqΓpk `zq sin pπzq pcgq ´k`1´2z`2β ˆhk{2`z´β`i 1 r 1 `i 2 r 2 ż 8

x"0

cos pπβq p´1 `yq β´i 1 r 1 `δyă1 cos pπir 1 q p1 ´yq β´i 1 r 1 ˙dy y dzdβ.

Proof. Lemma 5.3.1 implies

We plug in the expressions for G ŕ1 and G r1 given by (4.47) and (4.48) and use the identity

This gives

The off-off-diagonal term

Sp0, h, cqpT h pc, Bq `T h pc, Bqq ' contains two Ramanujan sums Sp0, h, cq and Sp0, h, wq. Applying the formulas Sp0, h, cq "

For the pole at t " k{2`z`i 2 r 2 another contour shift is required to make all sums absolutely convergent. We move z-contour to z " 0.5 `2 and β-contour to β " 1 ` .

Note that the pole of 1{ sin pπzq at z " 0 is cancelled by the zero of Gptq " Gpk{2`z `i 2 r 2 q.

The x integral is bounded by P pr 1 qP pr 2 q 1 |β| n . The power of q, corresponding to divisibility conditions on g, c, h, is q ´k´1`t´2z`2β . This gives an error term P pr 1 qP pr 2 qq ´t1 ´t2 q ´k{2`0.5 .

Proposition 5.6.5. One has

Stirling's formula implies that the integrand decays as |z| ´1´s´t . We shift z to D ą 0 and then let D Ñ `8. This leads to three types of possible poles described in the table below.

Possible poles at

Coming from function z " t ´k{2 ´i 2 r 2 Γpk{2 `z ´t `i 2 r 2 q z " n `s `i 1 r 1 1{ sin pπpz ´s ´i 1 r 1 qq z " n, n ě 0 1{ sin pπzq

Residues at these poles cancel whose mentioned in remark 5.6.6 (while performing the shift of t to the right). Consider

Shifting t integral to the right, we have the residue

Moving z to the right, we obtain ´Res t"k{2`z`i 2 r 2 Γpk{2 `z ´t `i 2 r 2 qf pz, tq.

Since z and t have different signs in Γpk{2 `z ´t `i 2 r 2 q, these residues cancel each other. Proof. To show this, we write sin pπpz ´t `i 2 r 2 qq " ´sin pπpt ´s ´i 1 r 1 ´i 2 r 2 qq cos pπpz ´s ´i 1 r 1 qq `cos pπpt ´s ´i 1 r 1 ´i 2 r 2 qq sin pπpz ´s ´i 1 r 1 qq and plug it in IZ. After simplifications,

Γpk{2 `z ´s `i 1 r 1 qΓpk{2 `z ´t `i 2 r 2 q sin pπzqΓp1 `zqΓpk `zq rcospπpz ´sqq `cospπpz ´sqq cospπpt ´s ´i 1 r 1 ´i 2 r 2 qq `sinpπpz ´sqq sinpπpz ´s `i 1 r 1 qqs .

This is holomorphic at z " n `s `i 1 r 1 .

5.7.3

Poles at z " n, n ě 0 Proposition 5.7.2. The poles at z " n are simple and its contribution is given by ´1 π Γps `t ´i 1 r 1 ´i 2 r 2 q Γpk{2 ´s `i 1 r 1 qΓpk{2 ´t `i 2 r 2 q Γpk{2 `s ´i 1 r 1 qΓpk{2 `t ´i 2 r 2 q ˆrcos pπsq `cos pπpt ´i 1 r 1 ´i 2 r 2 qqs ds.

Proof. We need to compute

Γp1 `nqΓpk `nq ˆˆcos pπpn ´sqq `cos pπpn ´sqq sin pπpn ´t `i 2 r 2 qq sin pπpn ´s ´i 1 r 1 qq `cos pπir 1 q sin pπpt ´s ´i 1 r 1 ´i 2 r 2 qq sin pπpn ´s ´i 1 r 1 qq ˙.

Since n P Z, we have

Γp1 `nqΓpk `nq ˆˆcos pπsq `cos pπsq sin pπpt ´i 2 r 2 qq sin pπps `i 1 r 1 qq ´cos pπir 1 q sin pπpt ´s ´i 1 r 1 ´i 2 r 2 qq sin pπps `i 1 r 1 qq ˙.

Using Gauss hypergeometric identity D.0.25,

Simplifying the trigonometric part, we obtain cos pπsq `cos pπsq sin pπpt ´i 2 r 2 qq sin pπps `i 1 r 1 qq ´cos pπir 1 q sin pπpt ´s ´i 1 r 1 ´i 2 r 2 qq sin pπps `i 1 r 1 qq " cos pπsq `cos pπpt ´i 1 r 1 ´i 2 r 2 qq.

This implies

ˆrcos pπsq `cos pπpt ´i 1 r 1 ´i 2 r 2 qqs .

As a result, the off-off-diagonal can be written as follows.

Proposition 5.7.3.

GpsqGptq Gpt 1 qGpt 2 q ζ q p1 `2sqζ q p1 `2tq q s`t p2πq 2t

ˆΓpt ´s ´i 1 r 1 ´i 2 r 2 qΓpt `s ´i 1 r 1 ´i 2 r 2 q ˆΓpk{2 `s `i 1 r 1 qΓpk{2 `t `i 2 r 2 qΓpk{2 ´s `i 1 r 1 qΓpk{2 ´t `i 2 r 2 q Γpk{2 `t1 `ir 1 qΓpk{2 `t1 ´ir 1 qΓpk{2 `t2 `ir 2 qΓpk{2 `t2 ´ir 2 q ˆ¨ÿ q|cg ÿ g µpgq g 2s`1 T Dpcq ´1{ρ

(5.36)

Asymptotics of the off-off-diagonal term

In this section, Theorem 5.0.1 is proved. As a consequence, we obtain an asymptotic formula for M OOD at the critical point.

Let us start with transforming the off-off-diagonal term.

Proposition 5.8.1. One has

Eps, tqΦps, tq2sds2tdt, (5.37) where Eps, tq :" q´2t 1 ´2t 2 GpsqGptq Gpt 1 qGpt 2 q

Γpk{2 `t1 `ir 1 qΓpk{2 `t1 ´ir 1 qΓpk{2 `t2 `ir 2 qΓpk{2 `t2 ´ir 2 q , (5.38)

Φps, tq :" 2ζ q p1 `2tq q s`t p2πq 2t rcos pπsq `cos pπpt ´i 1 r 1 ´i 2 r 2 qqs ˆΓpt ´s ´i 1 r 1 ´i 2 r 2 qΓpt `s ´i 1 r 1 ´i 2 r 2 q

and coefficients CpA, Bq are given in the table 5.1.

Proof. Consider the term M OOD pBq. Möbius function does not vanish only if pq, gq " 1 or pq, gq " ρ. Then we can write

GpsqGptq Gpt 1 qGpt 2 q ζ q p1 `2sqζ q p1 `2tq q s`t p2πq 2t

ˆΓpt ´s ´i 1 r 1 ´i 2 r 2 qΓpt `s ´i 1 r 1 ´i 2 r 2 q ˆΓpk{2 `s `i 1 r 1 qΓpk{2 `t `i 2 r 2 qΓpk{2 ´s `i 1 r 1 qΓpk{2 ´t `i 2 r 2 q Γpk{2 `t1 `ir 1 qΓpk{2 `t1 ´ir 1 qΓpk{2 `t2 `ir 2 qΓpk{2 `t2 ´ir 2 q ˆÿ pq,gq"1 µpgq g

Note that

ζ q p1 `2sq ÿ pq,gq"1 µpgq g 1`2s " 1.

In order to simplify notations, we denote Eps, tq :" q´2t 1 ´2t 2 GpsqGptq Gpt 1 qGpt 2 q

Γpk{2 `t1 `ir 1 qΓpk{2 `t1 ´ir 1 qΓpk{2 `t2 `ir 2 qΓpk{2 `t2 ´ir 2 q .

This is an even function since G is even. By equation (4.52)

M OOD " M OOD p0q ´τ1{2`ir 2 pρqM OOD p1q `M OOD p2q.

Next, we introduce parameter A corresponding to the summation condition q|cρ A . So that

Eps, tqζ q p1 `2tq q s`t p2πq 2t rcos pπsq `cos pπpt ´i 1 r 1 ´i 2 r 2 qqs ˆΓpt ´s ´i 1 r 1 ´i 2 r 2 qΓpt `s ´i 1 r 1 ´i 2 r 2 q

where coefficients CpA, Bq are given in the table 5.1.

The following lemma below will allow us to remove divisibility condition c, w|h in the expression ř q|cρ A T Dpcq. Let us make the following change of variables c " ρ ν´A c 1 " ρ ν´A dc 2 , w " ρ β w 1 " ρ β dw 2 , d " pc 1 , w 1 q so that pc 2 , w 2 q " 1 and ρ dw 2 , h " ρ δ dc 2 w 2 h 1 where δ " maxpν ´A, βq.

Finally, we remove the condition pc 2 , w 2 q " 1 by Möbius inversion

Proof. The expression T Dpcq is given by (5.36). Consider

Sum over v can be decomposed as

The asymmetric functional equation (B.3) implies Γpt ´s ´i 1 r 1 ´i 2 r 2 qΓpt `s ´i 1 r 1 ´i 2 r 2 q ś ζpt ˘s ´i 1 r 1 ´i 2 r 2 q p2πq 2t´2i 1 r 1 ´2i 2 r 2 " ζp1 ´t ´s `i 1 r 1 `i 2 r 2 qζp1 ´t `s `i 1 r 1 `i 2 r 2 q 2 rcos pπsq `cos pπpt ´i 1 r 1 ´i 2 r 2 qqs .

Thus,

Φps, tq "

Sums over α and β in Φps, tq can be evaluated by considering different cases. Proof. We have δ " β and Φps, tq " q t´s p2πq ´2i 1 r 1 ´2i 2 r 2 ζ q p1 `t `s `i 1 r 1 `i 2 r 2 qζ q p1 `t ´s `i 1 r 1 `i 2 r 2 q

Consider the sum over β.

This implies that the contribution of this case to M OOD is bounded by P pr 1 qP pr 2 qq ´1´t 1 ´t2 ` .

Case 2:

The sum over β can be decomposed in the following way:

The first sum does not contribute to Φps, tq since

For each fixed B the sum over A can be evaluated using the table 5.1:

CpA, 1qpρ A q t`s´i 1 r 1 ´i 2 r 2 " ´pρ ir 2 `ρ´ir 2 qp1 ´ρt`s`1´i 1 r 1 ´i 2 r 2 qp1 ´ρt´s`1´i 1 r 1 ´i 2 r 2 q, where gps, tq "

Here

ζ q p1 ` 3 t ` 4 sq.

Corollary 5.8.7. M OOD p0, 0, 0, 0q is a polynomial in log q of order 2.

Proof. First, we let t 1 , t 2 Ñ 0. Then M OOD p0, 0, r 1 , r 2 q :" lim

where

ˆζq p1 `t ´s `i 1 r 1 `i 2 r 2 qζ q p1 ´t `s `i 1 r 1 `i 2 r 2 qζ q p1 ´t ´s `i 1 r 1 `i 2 r 2 q ˆΓpk{2 `s `i 1 r 1 qΓpk{2 `t `i 2 r 2 qΓpk{2 ´s `i 1 r 1 qΓpk{2 ´t `i 2 r 2 q Γpk{2 `ir 1 qΓpk{2 ´ir 1 qΓpk{2 `ir 2 qΓpk{2 ´ir 2 q .

Let f pr 1 , r 2 q :" φpqq q

GpsqGptq

Gp0q 2 ˆζq p1 `t `s `ir 1 `ir 2 qζ q p1 `t ´s `ir 1 `ir 2 qζ q p1 ´t `s `ir 1 `ir 2 qζ q p1 ´t ´s `ir 1 `ir 2 q ˆΓpk{2 `s `ir 1 qΓpk{2 `t `ir 2 qΓpk{2 ´s `ir 1 qΓpk{2 ´t `ir 2 q Γpk{2 `ir 1 qΓpk{2 ´ir 1 qΓpk{2 `ir 2 qΓpk{2 ´ir 2 q .

Consider gps, tq :" lim

ζ q p1 `2i 1 r 1 qζ q p1 `2i 2 r 2 qq 2i 1 r 1 `2i 2 r 2 f p 1 r 1 , 2 r 2 q " ˆφpqq q ˙2 " p2 log q `γq 2 f p0, 0q `ip2 log q `γq ˆBf

 .

Here Bf Br 1 p0, 0q " ´if p0, 0q

Then 

ζ q p1 ˘t ˘sq `p2 log q `γq ˜4ζ

The function gps, tq is even in both variables s and t. Therefore, M OOD p0, 0, 0, 0q " 1 4

Res s"t"0 4gps, tq st " Res t"0 gp0, tq t .

To find the order of leading term, we replace all ζp1 ˘tq by 1 ˘t . Let rptq :" Gptq Gp0q

Γpk{2 `tqΓpk{2 ´tq Γpk{2q 2 , Appendix A

Gamma function

Let n be a positive integer, then

Γpnq " pn ´1q! (A. 

Appendix C

Bessel functions

We define the Bessel function of the first kind by

The Bessel function of the second kind can be expressed in terms of J ν pzq as follows

And the modified Bessel function of the second kind is given by the integral formula

Lemma C.0.17. ( [START_REF] Kowalski | Rankin-Selberg L-functions in the level aspect[END_REF], Lemma C.1) Let z ą 0 and v P C, then

Lemma C.0.18. ( [START_REF] Kowalski | Rankin-Selberg L-functions in the level aspect[END_REF], Lemma C.2) For z ą 0 and j ě 0 we have