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Abstract
Pavlovian conditioning, the acquisition of responses associated to neutral stimuli that
have been paired with rewards, and instrumental conditioning, the expression of a be-
haviour in order to achieve a goal, are at the heart of our learning capacities. However,
while evidences clearly suggest that they are strongly entangled in the brain, they are
mainly studied separately. The general framework of reinforcement learning (RL), learn-
ing by trials and errors to decide what to do in each situation to subsequently achieve
a goal, while early used in the modelling of Pavlovian conditioning, is now mainly used
for modelling instrumental conditioning. Models of Pavlovian conditioning rely now on
more specific and dedicated architectures, focused on individual stimuli. This complicates
the investigation of interactions between both types of conditioning since combining the
various computational models is often neither straightforward nor natural. In the present
thesis, we aim at finding key concepts that could be used in RL computational models to
allow the study of Pavlovian conditioning, instrumental conditioning and their interac-
tions. In particular, we model experimental data during autoshaping experiments in rats
and negative automaintenance in pigeons.

When presented with a neutral lever before reward delivery, some rats come to ap-
proach, bite and chew the lever itself more and more avidly, whereas other rats come to
approach the location of food delivery in a similar consumption-like manner. This inter-
individual difference can be observed not only at the behavioural level but also at the
physiological and pharmacological levels. When presented with a key light before reward
delivery, pigeons start to peck more or less persistently at the key light. Furthermore, such
pigeons persist in pecking the key light even if it blocks reward delivery. This maladaptive
behaviour is more or less pronounced in pigeons. We show that combining a classical RL
system, that learns values over situations, with a revised RL system, that learns values
over individual features rather than classical canonic states and subsequently makes them
compete to bias the behaviour towards reward-related stimuli, is sufficient to account for
the aforementioned experimental data.

We explain maladaptive behaviours as the result of the detrimental collaboration of
the two systems that, learning values over different elements, are not always guiding the
behaviour towards an optimal solution. The model explains inter-individual differences
as the result of a simple variation at the population level in the contribution and influ-
ence of each system on the overall behaviour. The model also explains some unexpected
dopaminergic patterns with regard to the dominant hypothesis that dopamine parallels a
reward prediction error signal, as the result of this signal being computed over features
rather than over situations. Finally, we suggest that the revised version of the signal
makes it also compatible with an alternative hypothesis that dopamine contributes to the
acquisition of incentive salience, that makes reward-related stimuli wanted for themselves.

In conclusion, we present a unifying architecture able to explain yet unaccounted for
experimental data at multiple levels, and show promising properties for the investigation
of Pavlovian conditioning, instrumental conditioning and their interactions.
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Introduction
Les neurosciences computationelles s’appuient sur des modèles informatiques pour étu-
dier le système nerveux [Day94]. Elles permettent la synthèse entre les théories sur son
fonctionnement et les larges quantités de données expérimentales récoltées à tous les ni-
veaux, du niveau moléculaire au niveau comportemental. Nous nous intéressons ici aux
capacités des animaux, humains compris, à apprendre, prédire, décider ou agir. Parmi ces
capacités on distingue notamment le conditionnement Pavlovien et le conditionnement
instrumental. Le conditionnement Pavlovien [Pav27] consiste en l’acquisition de réponses
envers des stimuli neutres qui ont été associés avec des récompenses, comme par exemple
quand nous salivons à la musique du marchand de glace. Le conditionnement instrumental
[Ski38] consiste en l’acquisition d’un comportement dans le but d’atteindre un objectif,
comme quand quelqu’un apprend à composer un numéro spécifique de téléphone pour
appeler une personne. Combinés ensembles, ces conditionnements sont au cœur de nos
capacités d’apprentissage et leur étude bénéficie de et repose grandement sur des modèles
informatiques.

L’apprentissage par renforcement [SB98], qui modélise l’apprentissage par essai erreur
pour décider quelle action choisir dans une situation donnée, est l’un des paradigmes
les plus utilisés dans les modèles du conditionnent Pavlovien et instrumental. Comme
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exemple de son importante contribution dans le conditionnement Pavlovien, l’algorithme
d’apprentissage TD-Learning [SB81], tout d’abord développé pour expliquer les capacités
de prédiction des animaux dans certains tâches expérimentales [SB87; Sut88], a par la
suite été prouvé reposer sur un signal qui pouvait être mis en parallèle avec l’activité des
neurones dopaminergiques durant ces mêmes tâches [Sch+97]. Ce modèle permet donc de
faire le lien entre l’expression d’un comportement et certains corrélats neuronaux sous-
jacents. Il est maintenant communément accepté que le conditionnement résulte en partie
de processus d’apprentissage par renforcement [Niv09; Mai09; DB12a; DN08].

Alors qu’ayant acquis sa notoriété dans l’étude du conditionnement Pavlovien [Sut88;
Sch+97], le cadre moderne de l’apprentissage par renforcement est plus adapté à l’étude
du conditionnement instrumental, où des actions sont en effet nécessaires pour atteindre
un but. Les modèles informatiques récents du conditionnement instrumental sont souvent
la résultante d’une combinaison de plusieurs systèmes d’apprentissage [Daw+05; Ker+11;
Pez+13; DB12a; DD13]. Les modèles informatiques du conditionnement Pavlovien ne re-
posent principalement plus sur ce cadre général mais sur des architectures plus spécifiques
et dédiées ou la notion d’action est secondaire [Sch+96; MM88; Cou+04; SM07; Jam+12;
Has+10]. L’étude par des modèles informatiques des interactions entre ces deux types de
conditionnement est limitée par la difficulté de combiner ces modèles, ceux-ci reposant
sur des paradigmes et mécanismes rarement compatibles sans de profondes modifications.

Dans cette thèse, nous avons pour objectif de trouver des concepts clés utilisables dans
le cadre de l’apprentissage par renforcement pour permettre l’étude des conditionnements
Pavlovien et instrumental ainsi que de leurs interactions.

Observations

Apprentissage par renforcement
L’apprentissage par renforcement [SB98] est un cadre formel permettant l’étude et la réso-
lution de problèmes de décision dans des environnements dont au moins la dynamique est
inconnue a priori. Nous nous concentrons ici sur sa version standard, communément uti-
lisée dans l’étude du conditionnement [Niv09; DB12a]. L’apprentissage par renforcement
nécessite de définir la tâche à résoudre au travers d’un Processus de Décision Markovien
(MDP), afin d’y faire tourner un algorithme qui cherche par essai erreur à en extraire une
solution optimale.

Un MDP est défini par un ensemble 〈S,Q, T,R〉. S est un ensemble fini d’états qui
représentent les différentes situations rencontrées par l’agent de manière abstraite (e.g.
s0, . . . , s1) perdant toute notion de similitude entre ces situations (e.g. la présence d’un
levier). Nous nous intéressons cependant à une version factorisée de ces états dans la-
quelle ces informations sont préservées et accessibles aux algorithmes. A est l’ensemble
fini d’actions possibles dans chaque état. T : S × A × S → [0, 1] est une fonction de
probabilité de transition qui définit la probabilité P (s′|s, a) d’atteindre l’état s′ en faisant
l’action a dans l’état s. R : S × A → R est une fonction de récompense qui définit la
récompense R(s, a) de faire l’action a dans l’état s. Cette formalisation en MDP implique
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que l’état futur ne dépend que de l’état présent et de l’action réalisée, et non de l’historique
de l’agent. Cela implique également que l’environnement reste stable (T et R invariants)
au cour du temps. Ces contraintes sont souvent relâchées en neurosciences et l’intérêt des
algorithmes d’apprentissage est de pouvoir s’y adapter au cours de l’expérience comme
pourrait le faire un animal [Sut+92].

Les algorithmes d’apprentissage par renforcement n’ont pas besoin de connaissances a
priori sur le problème pour pouvoir en trouver une solution optimale. Il en existe deux
grandes catégories. Les algorithmes Model-Based (MB) construisent un modèle interne
du monde à partir de leurs expériences, sur lequel il est possible d’inférer une solution
optimale [Sut90; MA93; PW93; Glä+10; BT03; KS02; Wal+10; KS06; Bro+12]. Celle-ci
est souvent représentée par une liste de valeur Q(s, a) pour chaque paire état-action qui
définit l’espérance de gain cumulée si l’on réalise l’action a dans l’état s et que l’on suit
ensuite le meilleur plan possible. Les algorithmes Model-Free (MF) ne passent pas par
cette étape intermédiaire d’un modèle interne mais construisent directement ces valeurs
en calculant et propageant un signal d’erreur de prédiction (RPE) entre ce qui est attendu
et finalement observé, d’états proches de la récompense à ceux qui en sont éloignés [SB87;
Sut88; Bar+83; WD92] . C’est ce signal qui a été corrélé à l’activité phasique de la
dopamine [Sch+97; Gli11]. Même si les algorithmes MB et MF se comportent différemment
au cours de l’apprentissage, ils convergent mathématiquement vers les mêmes solutions.
Les systèmes MB sont souvent plus lents à exécuter, du fait d’un nombre potentiellement
important de calculs par pas de temps, mais peuvent rapidement obtenir des politiques
correctes, et s’adapter rapidement à tout changement dans la dynamique du monde. Les
systèmes MF sont souvent rapides à l’exécution mais peuvent nécessiter un certain temps
avant de trouver une solution acceptable ou réviser celle-ci en cas de changement de la
dynamique du monde. Ces propriétés sont particulièrement importantes dans l’étude du
conditionnement instrumental [AD81; Ada82].

Conditionnement
L’étude du conditionnement animal se divise principalement entre conditionnement Pav-
lovien [Pav27] et conditionnement instrumental [Ski38].

Le conditionnement instrumental résulte de la confrontation d’un animal à une tâche
qui nécessite une séquence d’une ou plusieurs actions pour obtenir et maximiser des ré-
compenses. Ce type de conditionnement permet d’étudier les stratégies mises en place
par l’animal pour construire ces séquences et les réviser suite à une modification de leurs
conséquences ou résultats [Dol+08; KH12]. Des expériences ont montré que l’animal ne
se base pas toujours sur la même stratégie et qu’il est possible de distinguer les compor-
tements dits habituels de ceux orientés vers un but (GD) [AD81; Ada82]. Les algorithmes
MF et MB de l’apprentissage par renforcement présentent des propriétés très similaires
à ces stratégies [Daw+05; Ker+11; DD13]. Les comportements GD sont souvent modé-
lisés par des algorithmes MB. En effet, les comportements GD sont souvent visibles en
début d’expérience, quand il faut s’adapter, trouver rapidement la récompense quitte à
dépenser beaucoup d’énergie, et où les animaux semblent également capables en cas de
modification de l’environnement (e.g. fermeture d’une porte) de trouver immédiatement
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la nouvelle solution comme s’ils possédaient une connaissance du monde sur laquelle pla-
nifier. Les comportements habituels sont souvent modélisés par des algorithmes MF. En
effet, Une fois que la tâche a été répétée de nombreuses fois, il est souvent observé que les
animaux sont plus rapides à effectuer celle-ci, n’hésitent plus face à des choix et en cas de
changement d’environnement sont lents à s’adapter. Aussi, le comportement instrumental
est souvent modélisé par une combinaison de deux systèmes d’apprentissage par renfor-
cement classique, l’un MB et l’autre MF [Daw+05; Ker+11; Pez+13; Huy+12; DB13;
Ger+14; DB02; Glä+10]. Le critère qui fait qu’un système domine plutôt que l’autre dans
une situation donnée n’est pas encore clairement défini (e.g. [Ott+13; Foe+06; Fau+05;
Ger+14; Ker+11; Daw+05]).

Les éléments biologiquement importants (e.g. la nourriture) produisent automatique-
ment certaines réponses chez les animaux (e.g. saliver), alors que d’autres éléments sont
complètement neutres (e.g. une lumière). Pourtant, si ces éléments neutres sont suivis
d’une récompense de manière répétée, les animaux commencent à développer à leur appa-
rition une réponse souvent similaire à celle induite par la récompense. Le conditionnement
Pavlovien [Pav27] étudie ces réponses, particulièrement leurs formes, leurs intensités et
leurs propriétés. Cette capacité de certains éléments, appelés alors stimuli conditionnés,
à induire ces réponses est à l’origine de phénomènes complexes. Certains phénomènes
(e.g. second order conditioning [RR72; HR75], sensory preconditioning [Bro39; RR72])
mettent en évidence que dans une chaîne de stimuli neutres amenant à une récompense,
les réponses peuvent être propagées des éléments les plus proches de la récompense à ceux
les plus éloignés dans le temps, d’une manière ressemblant à ce que réalisent les systèmes
d’apprentissage par renforcement MF. D’autres phénomènes (e.g. blocking [Kam67], ove-
rexpectation [LN98; KM96; Res99], overshadowing [Rey61; Mac76]) montrent clairement
que les stimuli peuvent rentrer en compétition dans la génération des réponses condi-
tionnées. Les algorithmes d’apprentissage par renforcement classique basés sur des MDP
avec des états abstraits sont incapables de rendre compte de cet élément. Ces mêmes
phénomènes, ainsi que d’autres (e.g. ABA renewal [BR94; Bou04]), suggèrent aussi que
ce conditionnement nécessite parfois une connaissance plus générale de la tâche, comme
dans les systèmes d’apprentissage par renforcement MB. Au final, les modèles récents
du conditionnement Pavlovien se sont éloignés du cadre général de l’apprentissage par
renforcement pour se tourner vers des architectures plus spécialisées capables de rendre
compte d’un grand nombre de phénomènes non détaillés ici [Sch+96; SL06; LS08; MM88;
Den+01; SM07; Cou+04; GN12; AS12].

Bien que généralement étudiés séparément, certains phénomènes sont clairement iden-
tifiés comme résultant d’une interactions entre conditionnement instrumental et Pavlo-
vien (negative automaintenance [WW69; San+06; DW77; GR73; Kil03; Woo+74; Loc+76;
O’C79; GH72], Pavlovian-Intrumental-Transfer [Hol+10; Huy+14; CB05; CB11] et Condi-
tioned Reinforcement Effect [Wil94b; Ski38; RF09]). La majorité des protocoles utilisés
dans le conditionnement instrumental font intervenir des stimuli propices au développe-
ment de réponses dans le cadre du conditionnement Pavlovien, et il n’est pas invraisem-
blable de penser que d’autres phénomènes restent à découvrir ou à réinterpréter comme
ne résultant pas exclusivement d’un seul type de conditionnement. Alors que de nombreux
modèles sont développés pour rendre compte du conditionnement Pavlovien et d’autres

..
20

.
Résumé étendu

..



aussi nombreux sont développés pour rendre compte du conditionnement instrumental,
il n’existe pour l’instant que peu de modélisations de phénomènes évidents d’interactions
[Day+06; Huy+11]. En effet, les modèles récents de conditionnement reposent sur des
paradigmes relativement différents qui rendent leur combinaison non triviale si ce n’est
impossible sans de profondes modifications. Les modèles du conditionnement Pavlovien
décrivent essentiellement les variations d’intensité d’une unique réponse conditionnée,
et sa propagation à d’autres stimuli est souvent définie par une valeur sur des associa-
tions entre stimuli et plus rarement sur les stimuli eux-mêmes. La notion d’action y est
presque toujours absente. Les modèles du conditionnement instrumental, reposant sur le
cadre de l’apprentissage par renforcement, se concentrent principalement sur les séquences
d’actions, la forme et l’intensité de ces actions n’étant souvent pas traitées. De plus, la
notion de stimuli est cachée par l’utilisation d’états abstraits dés lors que plusieurs stimuli
sont présents simultanément.

Hypothèse de travail

Puisant dans la littérature du conditionnement Pavlovien et instrumental, y compris de
leurs interactions, nous avons cherché à identifier des concepts clés qui permettraient de
réunir leurs études respectives dans un cadre commun, en prenant pour base l’apprentissage
par renforcement classique, adapté au conditionnement instrumental, et l’étendant à des
notions qui semblent nécessaires pour rendre compte du conditionnement Pavlovien.

Pour cela, nous nous sommes fortement inspirés de données expérimentales non encore
reproduites à l’aide de modèles informatiques [Fla+11b; RF09; WW69; San+06]. Les
premières données expérimentales mettent en lumière la présence d’une forte variabilité
entre individus dans une population de rats sur l’expression d’une réponse conditionnée
[Fla+11b]. Cette variabilité est présente non seulement au niveau comportemental, mais
aussi aux niveaux physiologique (i.e. des enregistrements de l’activité dopaminergique) et
pharmacologique (i.e. dans l’effet que pouvait avoir l’injection de certains drogues) [SR12;
Fla+11b; RF09]. Les autres données proviennent de pigeons qui persistent à produire une
réponse inappropriée dans une protocole particulier où il faut apprendre à se refréner
d’agir [WW69; San+06]. Ces expériences suggèrent la présence de plusieurs systèmes
d’apprentissage dont l’interaction conduirait à favoriser des comportements non optimaux.
De plus, les comportements observés semblent clairement indiquer le développement d’une
motivation particulière envers des éléments de la tâche d’où la présence d’au moins un
système traitant les éléments séparément du reste.

Forts de ces intuitions, nous avons cherché à développer un modèle reposant sur la com-
binaison de plusieurs systèmes d’apprentissage par renforcement pouvant s’appuyer sur
des représentations factorisées et ainsi accéder et traiter certains éléments indépendam-
ment de l’état où ils se trouvent. Nous avons cherché à valider ce modèle sur ces données
et plus généralement à en discuter la portée pour l’investigation des interactions entre
Pavlovien et instrumental.
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Résultats

Modèle informatique

Le modèle informatique développé au cours de cette thèse repose sur l’architecture pré-
sentée en Figure 1. Il est composé principalement de deux systèmes d’apprentissage par
renforcement distincts qui collaborent à la sélection d’actions à chaque pas de temps au
cours de l’expérience. Un système favorise des comportement rationnels et optimaux pour
maximiser les gains, l’autre amène à des choix plus impulsifs.

Figure 1 – Architecture générale du modèle. Le modèle est composé d’un système Model-
Based (MB, en bleu) et d’un système Feature-Model-Free (FMF, en rouge) qui fournissent
respectivement une fonction Avantage A pour les actions ai dans un état donné s et une fonction
valeur V pour chaque élément fi composant l’état courant. Ces valeurs sont intégrées en P, avant
d’être passées au mécanisme de sélection de l’action (softmax). Certains composants reposent
sur des paramètres (en violet).

Le premier système est un système Model-Based qui apprend les conséquences à long
terme des actions en estimant un modèle approximatif du monde (une fonction de tran-
sition T et une fonction de récompense R) à partir duquel il est possible d’anticiper les
actions à réaliser, i.e. planifier. Par exemple, le modèle est suffisant pour anticiper la distri-
bution d’une récompense et qu’il est donc intéressant de s’approcher de la mangeoire avant
même de voir celle-ci tomber dedans. Dans notre implémentation, ce système construit la
fonction Avantage A qui évalue à partir du modèle l’avantage de réaliser chaque action
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dans chaque situation, et qui est donnée par les formules

Q(s, a)←R(s, a) + γ
∑
s′

T (s′|s, a)max
a′
Q(s′, a′) (1)

A(s, a)← Q(s, a)−max
a′
Q(s, a′) (2)

où le taux d’actualisation 0 ≤ γ ≤ 1 représente la préférence pour obtenir la récompense
immédiatement plutôt que retardée et Q(s, a) est la valeur estimée des gains futurs à faire
l’action a dans l’état s (cela correspond à la récompense accumulée attendue en suivant
le meilleur plan d’actions). A chaque pas de temps, l’action avec la valeur la plus élevée
est celle qui permettra d’accumuler le plus de récompenses le plus tôt possible sur le long
terme (e.g. s’approcher d’une mangeoire pour manger la nourriture dés qu’elle y tombe).
L’équation 1 représente le processus par lequel un agent estime les conséquences futures de
réaliser l’action a dans l’état s. Si l’action a est supposée amener à une récompenseR(s, a)
ou avec une bonne probabilité T (s′|s, a) à un autre état s′ avec une haute probabilité
d’actionQ(s′, a′) alors l’agent lui associe une forteQ-valeur. L’équation 2 déduit l’avantage
de réaliser une action a dans un état s en comparant les Q-valeurs à celles de toutes les
autres actions possibles dans l’état. Il est à noter que d’autres implémentations pourraient
être envisagées [Glä+10; BT03; KS02; Wal+10; KS06; Bro+12; Sut90; MA93; PW93].

Le second système est un système Model-Free. Il n’apprend pas de modèle interne
du monde mais apprend progressivement à associer une valeur à chaque élément de
l’environnement, favorisant les actions vers ceux les plus valorisés. En conséquence, ce
système produit un comportement réactif, similaire aux habitudes [Gra08; DD13].

Dans l’apprentissage par renforcement traditionnel (e.g. le système MB), les valeurs
sont généralement apprises sur les états et non les éléments qui les composent, de telle
sorte que les similarités entre états (e.g. la présence d’une mangeoire) sont ignorées. Le
système actuel apprend des valeurs V sur les éléments (e.g. un levier, de la nourriture) et
est appelé Feature-Model-Free (FMF). L’apprentissage progressif des valeurs repose sur
une erreur de prédiction de récompense (RPE) δ, utilisée comme suit :

V(f)← V(f) + αδ (3)
δ ← r + γmax

f ′∈s′
V(f ′)− V(f)

où f est l’élément sur lequel se concentre l’action a dans l’état s. Le max suggère que
tous les éléments f ′ qui composent l’état suivant s′ sont considérés et que l’élément le plus
valorisé est utilisé pour calculer la RPE, même s’il ne sera pas forcément l’élément sur
lequel se focalisera la prochaine action [WD92]. On fait l’hypothèse traditionnelle que ce
signal d’erreur correspond à l’activité phasique dopaminergique [Sch98; Gli11]. Ce signal
permet de mettre à jour et d’attribuer des valeurs, vues comme source de motivation,
à des éléments sans la nécessité d’un modèle interne du monde. Quand un élément est
complètement attendu, il ne devrait pas y avoir de RPE car sa valeur est complètement
anticipée ; si un évènement est surprenant, la RPE sera positive. Ces valeurs apprises
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biaisent le comportement vers les actions qui se focalisent sur les éléments les plus valorisés.
Cela peut conduire à des comportements sous-optimaux en ce qui concerne l’accumulation
de récompenses. Le système FMF modélise l’attraction développée par certains stimuli
associés aux récompenses, i.e. le phénomène d’incentive salience [MB09; DB12b; Ber07].

Le modèle ne base pas sa décision sur un seul système à la fois. Les valeurs du système
MB (AMB) et du système FMF (VFMF ) sont intégrées de telle sorte qu’une seule décision
est prise à chaque pas de temps. Les valeurs sont combinées par une somme pondérée et
transmises à la fonction softmax, un mécanisme de sélection d’action qui les convertit en
probabilités de choisir ces actions dans une situation donnée (Figure 1). L’intégration est
réalisée comme suit :

P(s, a) = (1− ω)AMB(s, a) + ω

{
0 si a = ngo
VFMF (f) avec f = c(s, a) sinon (4)

où 0 ≤ ω ≤ 1 est un paramètre de combinaison qui définit l’importance de chaque
système dans le comportement généré par le modèle. La fonction d’éléments c : S ×A →
{touche(s),magasin, nourriture, ∅} retourne l’élément sur lequel se concentre l’action a
dans l’état s (e.g. elle retourne la touche lumineuse quand l’action est de s’engager vers
cette touche). Nous faisons l’hypothèse que seules les actions d’engagement vers un élément
(e.g. approche ou interaction) bénéficient du bonus calculé par le système FMF, d’où la
condition sur l’action a = ngo dans la seconde partie de l’équation. Cette hypothèse
se base sur les travaux de [GM+12; GM+14] qui suggèrent la présence d’un biais pour
s’engager par rapport à se refréner.

Le modèle apprend par expérience à chaque pas de temps. Les systèmes FMF et MB
sont mis à jour par rapport à l’action a choisie par le modèle complet dans l’état s, et
l’observation de l’état s′ et la récompense r en résultant.

Nous utilisons des algorithmes évolutionnaires [Deb+02; MD10] pour optimiser les pa-
ramètres du modèle à chacune des études de conditionnement que nous souhaitons simuler,
i.e. minimiser la différence entre les résultats expérimentaux et ceux simulés au niveau du
comportement, et ainsi obtenir des résultats qualitativement proche des originaux.

Variabilité inter-individuelle dans une tâche d’autoshaping
Utilisant une procédure de conditionnement Pavlovien, où un levier est présenté pendant
8 secondes, suivi immédiatement après par une distribution de nourriture dans un ma-
gasin adjacent, Flagel et al. [Fla+11b] ont observé une forte variabilité dans les réponses
induites chez des rats. Certains rats (sign-trackers ; ST) développent rapidement une ré-
ponse d’approche suivi du grignotement du levier, bien que cela ne soit pas nécessaire
à la distribution de nourriture. D’autres rats (goal-trackers ; GT), développent une ap-
proche similaire mais vers la mangeoire (Figure 2). Ils ont de plus constaté que l’activité
dopaminergique enregistrée dans le cœur du nucleus accumbens différait selon les rats.
Chez les ST, cette activité est conforme à la littérature actuelle sur le sujet, avec un pic
d’activité à l’apparition de la nourriture qui au cours de temps se déplace à l’apparition
du levier [Sch+97]. De plus, toute interruption du fonctionnement de la dopamine (e.g.
par l’injection de drogues) empêche le développement de ce type de comportement. Chez
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les GT, au contraire, l’activité est différente, le pic de dopamine n’est pas propagé et
un second apparaît à l’apparition du levier. De plus, l’acquisition du comportement ne
semble pas sensible au blocage de la dopamine.

Figure 2 – Reproduction des différences de comportement dans une population de
rats réalisant une expérience d’autoshaping. Probabilité moyenne de s’engager au moins
une fois avec le levier (A,C) ou le magasin (B,D) pendant les essais. Les données sont exprimées
en moyennes ± SEM et regroupées par blocs de 50 essais (2 sessions). (A,B) Reproduction des
résultats expérimentaux de Flagel et al. [Fla+09] (Figure 2 A,B). Les sign-trackers (ST) appuient
le plus sur le levier (noir), les goal-trackers (GT) appuient le moins sur le levier (gris), et le
groupe intermédiaire (IG) est entre les deux (blanc). (C,D) Simulation de la même procédure
(carrés) avec le modèle informatique. Les rats simulés sont répartis entre ST (ω = 0.499) en
rouge, GT (ω = 0.048) en bleu et IG (ω = 0.276) en blanc. Le modèle reproduit les même
différences comportementales. Avec de l’entraînement, les ST s’engagent de plus en plus vers le
levier et de moins en moins vers le magasin, alors que les GT négligent le levier au profit d’un
engagement croissant vers le magasin. Les IG oscillent entre les deux.

Ces données posent problème aux modèles actuels du conditionnement Pavlovien [Cla+12]
qui ne rendent souvent compte que d’un seul type de comportement à la fois et d’un seul
type de réponse. Elles posent également problème à d’autres modèles qui s’appuieraient
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essentiellement sur le cadre de l’apprentissage par renforcement classique. Dans [Les+14b]
nous comparons notre modèle à ces modèles plus classiques et montrons qu’il est le seul
à même de rendre compte des diverses données expérimentales collectées autour de cette
expérience [Fla+09; Fla+11b; Fla+07; RF09; Mey+12] (Figure 3).

Figure 3 – Synthèse des simulations. Chaque ligne représente un modèle différent composé
d’une paire de systèmes d’apprentissage par renforcement. Chaque colonne représente une ex-
périence simulée. Les expériences sont groupées par le type de données expérimentales qu’elles
impliquent : comportementales (autoshaping [Fla+09; Fla+11b], CRE [RF09], Incentive sa-
lience [MB09; DB12b]), physiologique [Fla+09] et pharmacologique (Flu post-NAcC [SR12], Flu
pre-systemic [Fla+09]).

Nous modélisons l’expérience décrite avec le MDP illustré en Figure 4. L’agent com-
mence dans un état vide (s0) où il n’y a rien d’autre à faire qu’explorer. A un certain
moment, le levier apparaît (s1) et l’agent doit faire un choix : il peut s’engager avec le
levier (s2) et interagir avec, s’engager vers le magasin (s4) et interagir avec, ou continuer
à explorer (s3, s6). A un certain moment, le levier est rétracté et de la nourriture est dé-
livrée. Si l’agent est loin du magasin (s5,s6), il doit d’abord s’en approcher. Une fois prêt
(s7), il mange la nourriture. Il finit dans un état vide (s0) qui symbolise le début de la
période de repos entre deux essais (ITI) : pas de nourriture, pas de levier et un magasin
toujours présent mais vide. Le même MDP et le même jeu de paramètres est utilisé pour
toutes les expériences, i.e. notre modèle peut faire le lien entre des données physiologiques
et l’expression d’un comportement.

Aussi, notre modèle explique la différence entre les ST et le GT par une pondération
différente dans la contribution des systèmes MB et FMF (Figure 2). Les ST se reposent
principalement sur le système FMF, tandis que les GT se reposent principalement sur
le système MB. De plus, cette différence se retrouve au niveau du signal de prédiction
d’erreur δ du système FMF que l’on peut alors de nouveau mettre en parallèle avec les
données dopaminergiques, et ainsi résoudre le conflit que ces données présentaient par
rapport à la littérature actuelle. Nous faisons la proposition que certains signaux dopa-
minergiques peuvent encoder une erreur de prédiction calculée sur des stimuli individuels
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Figure 4 – Représentation informatique de la procédure d’autoshaping (A) MDP
représentant l’expérience décrite en [Fla+09; Fla+11b; RF09; Mey+12]. Les état sont décrits
par un jeu de variables : L/F - levier/nourriture disponible, cM/cL - proche du magasin/levier,La
- apparition du levier. L’état initial est doublement cerclé, l’état final est représenté en pointillé
et termine l’épisode courant. Les actions sont : s’engager avec le stimulus le plus proche (eng),
explorer (exp), s’approcher (go) du magasin ou du levier ou manger (eat). Pour chaque action,
l’élément central à l’action est présenté entre crochets. Le chemin que les ST devraient préférer
est en rouge. Le chemin que les GT devraient préférer est en bleu pointillé. (B) Chronologie
correspondant au déroulement du MDP.

et non des situations globales. Pour finir, cette différence de contribution dans les deux
systèmes explique également pourquoi le comportement des GT ne semble pas affecté par
l’injection de flupentixol, un antagoniste de la dopamine, alors que celui des ST est bloqué
tant dans son acquisition que son expression.

Comportements inadaptés dans une tâche de negative automain-
tenance
Dans une procédure presque similaire à celle utilisée par [Fla+11b] mais avec une touche
lumineuse à la place du levier, et tout contact avec cette touche entraînant une omis-
sion de la distribution de la nourriture, Williams and Williams [WW69] ont montré que
certains pigeons étaient incapables de s’empêcher de becqueter cette touche malgré son
effet néfaste. De plus, d’autres résultats semblent indiquer que tous les pigeons ne sont
pas incapables d’apprendre à retenir leurs coups de becs [San+06], suggérant ici aussi une
variabilité dans les réponses observées pour une même tâche dans différent individus de
la même espèce. Dans l’expérience de Williams and Williams [WW69], divers protocoles
mettent en valeur que, bien qu’incapables de se refréner de becqueter, les pigeons sont
capables dans une certaine mesure de choisir vers quel élément saillant ils dirigent leurs
coups de bec.

..
27

...



Ces données posent une fois de plus problème à la littérature classique, avec plusieurs
réponses tournées vers plusieurs cibles, et une variabilité inter-individuelle difficilement
explicable par un seul système. Dans [Les+14a] nous confirmons que notre modèle est
capable d’expliquer également ce jeu de données sans modifications.

Le problème est presque identique à celui sur la tâche d’autoshaping de Flagel et al.
[Fla+11b] (Figure 5). Nous avons remplacé dans le MDP précédent le levier par une
touche lumineuse, et rajouté la possibilité, ici nécessaire, de se réfréner d’agir (ngo) une
fois proche d’un stimulus. Le contact (eng) avec la touche lumineuse amenant directement
au début de la période de repos (ITI) sans obtention de la récompense. D’autres MDP
similaires ont été utilisés pour les différents protocoles, en rajoutant d’autres chemins pour
d’autres leviers.

Figure 5 – Représentation informatique de la procédure de negative automainte-
nance. MDP représentant l’expérience 1 de Williams and Williams [WW69] et du protocole
Brief PA de Sanabria et al. [San+06]. Les états sont représentés par un jeu de variables : K/F -
touche lumineuse négative/nourriture est disponible (le magasin est toujours disponible, même
s’il n’est pas montré), cM/cK - proche du magasin/touche lumineuse, Ka - apparition de la
touche lumineuse. L’état initial est doublement cerclé, l’état terminal est représenté en pointillé
et termine l’épisode courant. Les actions sont : s’engager (eng) ou se réfréner de s’engager (ngo)
avec le stimulus le plus proche, explorer (exp) ou s’approcher (go) du magasin ou de la touche
de lumière, et manger (eat). Pour chaque action, l’élément central à l’action est présenté entre
crochets.

Notre modèle arrive à reproduire les données tant de Williams and Williams [WW69]
que Sanabria et al. [San+06] avec le même jeu de paramètres, à l’exception principale de
la pondération entre les deux systèmes (Figure 6). Ainsi, nous expliquons l’incapacité des
pigeons à s’empêcher de becqueter par une forte prépondérance du système MF dans la
décision. A l’inverse, les pigeons capables de ne pas toucher la lumière ont une prépon-
dérance pour le système MB. Notre modèle explique également la prévalence des stimuli
contingents aux récompenses à attirer les coups de becs par rapport à ceux présents tout
au long de l’expérience, même dans le cas où l’interaction qui en résulte est néfaste à
l’accumulation de récompenses.
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Figure 6 – Simulation de l’expérience 1 de Williams and Williams [WW69] et du
protocole Brief PA de Sanabria et al. [San+06]. (A) Coup de becs cumulés envers la
touche lumineuse négative réalisés par 8 pigeons GT simulés (bleu) et 8 pigeons ST simulés
(rouge). La courbe en gris pointillé simule le pire scénario (si les pigeons avaient becqueté
la touche lumineuse à chaque essai). Les données sont exprimées en moyenne ± SEM. (B)
Agrandissement de (A) pour un meilleure lisibilité de la courbe bleue (GT). (C) Coups de becs
cumulés pour un pigeon ST par bloc de 50 essais. A mettre en parallèle avec la Figure 1 de
Williams and Williams [WW69]. (D) Coups de becs cumulés pour un pigeon GT par bloc de 50
essais.

De manière plus générale, nous expliquons une fois de plus la variabilité des compor-
tements par la seule différence de pondération entre deux systèmes MB et FMF. Nous
mettons en évidence que cette collaboration peut effectivement amener à des comporte-
ments inadaptés.

..
29

...



Discussion
Synthèse des contributions
Cette thèse présente nos contributions dans la modélisation de certains phénomènes Pav-
loviens et instrumentaux à l’aide du cadre de l’apprentissage par renforcement, étendu
pour utiliser des représentations factorisées.

Nous expliquons que les variabilités inter-individuelles observées chez les rats [Fla+11b]
et les pigeons [WW69; San+06] sont la résultante d’une collaboration de deux systèmes
basés sur des principes d’apprentissage par renforcement [Les+14b; Les+de]. Le premier
système (MB) évalue les situations rencontrées de manière globale alors que le second
système (FMF) traite des éléments indépendants. Ces systèmes ne favorisent donc pas
toujours les mêmes actions, et selon la prépondérance accordée à l’un plutôt qu’à l’autre,
différents individus peuvent présenter des comportements radicalement différents sur le
long terme [Fla+07; Fla+09; RF09; Fla+11b; MB09; DB12b; SR12; Mey+12; Mey+14].

Cette collaboration peut amener à des comportements inadaptés [BB61; Her86; GM+12],
comme ceux étudiés chez les pigeons [Les+de]. Nous montrons que l’acquisition d’une cer-
taine valeur, source de motivation, par des éléments contingents aux récompenses, peut
biaiser de manière permanente le comportement vers des actions néfastes à l’accumulation
de récompenses.

Le calcul de la RPE au niveau du système FMF dépend du comportement au niveau
du modèle, et peut donc être différente d’un individu à un autre. Nous expliquons ainsi
que l’incohérence observée entre l’activité dopaminergique des GT [Fla+11b] et ce qui est
attendu par la littérature classique [Sch+97] viendrait de la différence de comportement
induite par la différence de pondération entre les deux systèmes et du calcul de la RPE sur
des éléments individuels et non sur la situation globale à laquelle les rats sont confrontés.

Pour finir, notre modèle explique l’acquisition d’incentive salience [Ber07; MB09; Ber12]
par l’évaluation individuelle de certains éléments saillants. L’attribution d’une valeur
propre pour ces éléments, permet alors de biaiser le comportement en favorisant des
actions d’approches et d’engagement avec ces derniers.

Perspectives et limites
Jusqu’à présent, nous avons uniquement envisagé l’utilisation de représentations factori-
sées dans le système MF de notre architecture. Cependant, rien n’empêcherait d’utiliser
de telles représentations dans le système MB. Il serait même surprenant qu’un système
se passe de représentations plus riches si elles sont accessibles. Leur utilisation pour-
rait cependant être différente dans chaque système. Il existe déjà un certain nombre
d’algorithmes MB s’appuyant sur des représentations factorisées [Bou+00; Deg+06; VB08].
Ceux-ci utilisent leur connaissance de la structure du monde pour représenter les fonctions
valeurs de manière plus compacte, généraliser certains calculs et ainsi gagner en espace
et temps de calculs requis. Ces optimisations ne servent qu’à étendre les algorithmes
classiques à de plus gros problèmes, mais ne changent en rien les solutions optimales trou-
vées. Aussi, il serait possible de remplacer notre système MB par une version factorisée
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traditionnelle sans changer les résultats. Cependant, les propriétés de généralisation de
ces algorithmes peuvent introduire des comportements en début d’apprentissage qui dif-
fèrent des algorithmes classiques, et il serait opportun d’étudier si de tels comportements
peuvent être observés chez certains animaux et confirmer l’utilisation de tel algorithmes.
Il est aussi à noter qu’à notre connaissance, il n’existe pas de version factorisée des sys-
tèmes MF classiques, qui n’ont pas accès à la structure du monde pour en extraire une
organisation compacte des valeurs.

Bien que notre modèle soit la combinaison d’un système MB et d’un système MF, il est
important de le distinguer des modèles du conditionnement instrumental qui impliquent
aussi ces deux aspects [Daw+05; Ker+11; Pez+13], où des études qui suggèrent égale-
ment la présence de ces deux composantes dans le Pavlovien [Jon+12; RB13]. Dans le
cas instrumental, la combinaison de deux modèles est utilisée pour reproduire la variation
des capacités d’un même individu selon certains critères ou expériences (e.g. motivation
ou entraînement) [Ott+13; Daw+05; Ker+11; Daw+11; Dol+12; Bei+11]. Dans le cas
Pavlovien, il est également question de rendre compte de la capacité d’un même individu
à prendre en compte certaines informations passées dans une nouvelle situation [RB13;
Jon+12]. Notre modèle au contraire, utilise cette combinaison pour rendre compte de la
variabilité de comportement de différent individus dans les mêmes conditions théoriques.
Nous pensons avoir ici principalement modélisé les aspects MF du Pavlovien et MB de
l’instrumental. Il est à noter que le système FMF se comporte comme un système MF
classique dans certains cas (par exemple, pour les ST, il se comporte comme attendu par
la théorie classique [Sch+97; Sch98; Sut88]) et on pourrait envisager de l’y substituer dans
les modèles utilisant des systèmes MF classiques. Un modèle plus complet pourrait inté-
grer les quatre systèmes (MF/MB instrumental et Pavlovien), en s’inspirant des modèles
déjà existants, soulevant la question alors importante de savoir comment s’organise leur
intégration [Yin+08; Mee+12; LO12; Mee+10; Mai09].

Tous les algorithmes MF reposent sur un signal d’erreur de prédiction, mais ce signal
n’est pas forcément calculé de la même manière [SB87; Sut88; WD92; SB98]. Bien que
l’hypothèse que la dopamine encode effectivement un signal d’erreur reste assez majoritaire
dans la communauté [Sch+97; Sch10; Sch13; Mor+06; Roe+07; Eno+11], il existe un
débat quant à son mode de calcul. Certaines études suggèrent un calcul de type “Q-
Learning” i.e. on considère que la prochaine action réalisée sera celle avec la valeur la
plus élevée [Roe+07], d’autre un calcul de type “SARSA”, i.e. au moment du calcul de la
RPE, l’action suivante est déjà choisie et donc prise en compte [Mor+06], cette question
est en cours d’investigation et il semble que le problème est plus complexe [Bel+12a;
Bel+13]. Nous avons arbitrairement choisi une règle de type “Q-Learning” mais l’autre
possibilité reste à explorer. De manière plus générale, la RPE calculée dans notre système
FMF repose sur la propagation de valeur entre éléments et non entre états, il n’est donc
pas impossible que les données conflictuelles de Morris et al. [Mor+06] et Roesch et al.
[Roe+07] puissent résulter de cette différence plus que le type de règle impliqué, car les
protocoles de ces deux expériences ne sont pas identiques au niveau de la présentation
des stimuli conditionnés. Pour finir, les données de Roesch et al. [Roe+07] suggèrent
que l’acquisition du comportement est plus rapide que l’évolution de la dopamine. Notre
modèle ne dépendant que partiellement sur le système FMF, en complètement d’un autre
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système MB supposé plus rapide, pourrait expliquer ces données. Nous n’avons pas encore
étudié la dynamique de notre modèle ni les données exploitées sur cet aspect.

Une partie importante de nos résultats s’appuie sur l’hypothèse que la présence d’un
stimulus pendant la période de repos entre les essais induit une diminution de la valeur
qu’il a pu acquérir pendant la phase de conditionnement [Les+14b; Les+14a; Les+de].
Cette hypothèse explique pourquoi la mangeoire ne serait pas aussi attractive qu’un levier
[Fla+11b; RF09], ou qu’une touche lumineuse qui ne s’éteint jamais n’arriverait pas à
attirer les coups de becs des pigeons en présence d’une autre touche lumineuse contingente
à la distribution de nourriture [WW69]. Des travaux préliminaires semblent montrer que
cette dévaluation n’est pas dûe à un quelconque engagement envers ces éléments pendant
cette période. Nous avons proposé dans [Les+14a] des protocoles qui permettraient de
confirmer que la simple présence en serait la cause. Il serait également possible d’envisager
que chaque stimulus diffère dans la valeur qu’il est capable d’acquérir, en fonction de
sa forme ou d’autres propriétés [RW72; Mey+14; Hol77], comme certains phénomènes
Pavlovien semblent le suggérer [LN98; Rey61; Mac76; Kam67; KM96; Res99].

Pour finir, nous avons pris le parti d’utiliser l’apprentissage par renforcement, utilisé
dans le conditionnement instrumental, comme base de nos travaux et de l’étendre au
concept des représentations factorisées présent et nécessaire au cadre Pavlovien. Une autre
approche aurait pu être de prendre pour base un modèle du conditionnement Pavlovien,
comme par exemple les travaux sur la Latent Cause Theory [Cou+04; Cou+06; GN12]
et de l’étendre avec des notions nécessaires au conditionnement instrumental comme les
actions. Cette approche a notamment été utilisée par Cartoni et al. [Car+13] pour rendre
compte de certains phénomènes d’interactions entre instrumental et Pavlovien. Dans les
deux cas, cette approche soulève la question de la différence entre réponses/réflexes condi-
tionnées et actions volontaires [Bal+08].

Conclusion
Cette thèse est une petite étape dans le développement d’un cadre unifié pour l’étude des
conditionnements Pavlovien et instrumental, et particulièrement pour l’étude des tâches
expérimentales qui les impliquent tous les deux. En prenant inspiration de différences
inter-individuelles et de comportements inadaptés observés dans le conditionnement des
rats et des pigeons, nous avons pu extraire deux concepts qui semblent importants pour
ce conditionnement : la combinaison de plusieurs systèmes d’apprentissage par renforce-
ment et le traitement individuel des stimuli ainsi que leur compétition. L’interprétation
d’autres données expérimentales pourrait bénéficier de cette approche. Nous espérons que
poursuivre cette démarche apportera de nouvelles idées dans le domaine.
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Chapter 1

Introduction

..

1

The best material model of a cat is another, or preferably the same, cat. -
Norbert Wiener

1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.1 Motivations
Computational models are determinant tools in the scientific study of the nervous sys-
tem [Day94]. They help to synthesize large quantities of empirical data in all disciplines
of neuroscience, from studies at the molecular level to studies at the behavioural level.
Theories regarding the mechanisms and functional roles of the various elements of the
nervous system, e.g. anatomical parts or specific chemicals, or even more general capaci-
ties, e.g. memory, are often validated afterwards, suggested beforehand and/or formalized
by computational models. They allow one to replicate results, to explain findings with
simple notions, to draw predictions and to guide research processes towards important
questions.

Computational neuroscience is of particular interest for studying how one learns from
its interactions with the world, anticipates future events and ultimately selects and/or
produces actions. Among these capacities one can distinguish between Pavlovian and
instrumental conditioning. Pavlovian conditioning [Pav27] consists in the acquisition of
responses towards neutral stimuli that have been paired with rewards, such as when one
salivates at the bell of the ice cream truck. Instrumental conditioning [Ski38] consists
in the expression of a behaviour in order to achieve a goal, such as when one learns to
dial a specific number on a phone to call someone. Combined together these mechanisms

..
33

...



are at the heart of our learning capacities and their study significantly benefits from
computational models.

Reinforcement learning (RL) [SB98], in short learning by trials and errors to decide
which action to take in a given situation to achieve a specific goal, is one of the major
frameworks used in the current computational models of Pavlovian and instrumental con-
ditioning. As an example of its deep contribution in the expansion of Pavlovian condition-
ing, the learning algorithm TD-Learning [SB81], first developed to explain the prediction
capacities of animals in some experimental task, was subsequently shown to rely on a
signal that could be paralleled with the activity of some dopaminergic neurons during
the experimental task [Sch+97]. Hence, TD-Learning successfully linked the expression of
a behaviour with some possible underlying neural correlates. With the accumulation of
evidences, it is now well accepted that conditioning results from the combination of some
kind of reinforcement learning processes.

Surprisingly, while early used in the investigation of Pavlovian conditioning, the mod-
ern RL framework is more suited for the investigation of instrumental conditioning, where
actions are indeed required to achieve goals. Recent computational models of instrumen-
tal conditioning are often the result of a combination of multiple RL systems [Daw+05;
Ker+11; Pez+13]. However, recent computational models of Pavlovian conditioning do
not rely much more on this general framework but on more specific architectures [Sch+96;
MM88; Cou+04; SM07; Jam+12; Has+10]. This is a problem when one investigates the
interactions between both types of conditioning as the combination of the various com-
putational models is often not straightforward nor natural.

1.2 Objectives
In the present thesis, we aim at finding key concepts that could be used in RL compu-
tational models to allow the study of Pavlovian conditioning, instrumental conditioning
and their interactions. Taking inspiration from a variety of experimental data, our in-
tuition is that combining dual-learning and factored representations may help to explain
experimental data yet unaccounted for. Dual learning is a commonly accepted concept in
the study of instrumental conditioning while factored representations are a concept ne-
glected in RL algorithms of conditioning but often present in the alternative architectures
developed to account for Pavlovian conditioning. Especially, we investigated some experi-
mental data about behavioural inter-individual differences in rats undergoing a Pavlovian
conditioning task and other experimental data about maladaptive behaviours expressed
by pigeons in a supposed interaction task, that could well be explained by such concepts.

1.3 Methods
In order to address these issues, the work presented in this thesis is grounded on a multidis-
ciplinary approach, combining tools or data from neuroscience and artificial intelligence.

On the neuroscience side, we took inspiration from experimental data about mal-
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adaptive behaviours and inter-individual variability in conditioning tasks, including be-
havioural, neurophysiological, neuropharmacological and neuropsychological data. Be-
havioural analyses involve the observation of animals behaviours in experimental task
to investigate their response properties, their capacities, their limits and the strategies
developed. Neurophysiology consists in recording the activity of brain regions and/or par-
ticular cells, using various techniques such as functional Magnetic Reasonance Imaging
(fMRI) or Fast Scan Cycling Voltammetry (FSCV). It helps to investigate the signals on
which might rely learning processes that lead to the observed behaviours and locate where
values, variables or associations might be stored. Neuropharmacolocy studies the effect
of drugs on the nervous system. By injecting drugs that affect specific cells or chemicals,
e.g. dopamine, either locally or systemically, it helps to investigate their functions and
contributions in the observed behaviours. Similarly, neuropsychology studies the effect
of lesions of parts of the brain to identify which and how brain areas contribute to the
different aspects of particular behaviours.

On the artificial intelligence side, we mainly use computational models based on ma-
chine learning and evolutionary algorithms. Machine learning, from which reinforcement
learning algorithms are a subset, are algorithms designed to learn from data in a wide
diversity of manners for as many different purposes. In our case, we use it mainly to learn
how to successfully accumulate rewards in an efficient way. Evolutionary algorithms are
population-based metaheuristic optimization algorithms that can be used to tune algo-
rithms to fit as closely as possible some particular behaviours or results.

In the present work, we first investigated experimental data about conditioning, col-
lected by different approaches, from which we extracted challenging data for the current
literature and hints about the mechanisms they might be the result of. Then we developed
a computational model with such mechanisms, tuned it with evolutionary algorithms and
confronted it to the data for validation.

1.4 Organization
This thesis comprises 2 background chapters, 3 main results chapters and a concluding
chapter.

Chapter 2 is an overview of the reinforcement learning framework on which are based
the computational modelling aspects of our work. This background provides the nec-
essary notions of this field that are commonly used in computational models of animal
conditioning, among which the new computational model developed in the main chapters.

Chapter 3 is an overview of animal conditioning, defining what are Pavlovian and in-
strumental conditioning and how their interactions are currently understood. It especially
lists key phenomena and computational models that fuelled our thoughts regarding the
mechanisms expected in the developed computational model.

The 3 main chapters are articles that have been published or are under review in peer-
reviewed journals. Chapter 5 introduces a new computational model of animal condition-
ing that embeds factored representations in reinforcement learning. It uses the model to
explain recent experimental data about inter-individual variability in a Pavlovian con-
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ditioning task that are conflictual with the current literature. Chapter 6 extends the
first one with detailed predictions drawn from the model through new simulations in pro-
posed variants of the original experimental protocol. Chapter 7 shows some generalization
abilities of the computational model by applying it to another set of experimental data
suggesting inter-individual variability in a different conditioning task about maladaptive
behaviours. Each chapter begins with a short introduction that outlines the content of
the article and how it is related to the present work.

Finally, Chapter 8 details our contributions, their limits, discusses our architecture
choices, and give possible directions for future research.
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Chapter 2

Reinforcement learning

..

2

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2 Markov Decision Processes . . . . . . . . . . . . . . . . . . . . . 38

2.2.1 Classical definition . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.2 Value function and policy . . . . . . . . . . . . . . . . . . . . . 39
2.2.3 Dynamic programming . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.1 Model-Free algorithms . . . . . . . . . . . . . . . . . . . . . . . 44
2.3.2 Model-Based algorithms . . . . . . . . . . . . . . . . . . . . . . 47
2.3.3 Action selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4 Extensions of the classical framework - Factored representations 50

2.1 Introduction
Reinforcement learning (RL) is the synthesis of two separate lines of research in different
fields, psychology of animal learning (the study of predispositions of animals to act and
behave in a certain way, especially in the presence of rewards) [Tho11] and optimal control
(solving tasks in an optimal way) [Bel57] (see [SB98] for a deeper review of the steps
that led to modern RL). The former provided most of the principles used in current
algorithms while the latter especially provided the formalism. As a result, Modern RL
offers a normative framework to solve decision making problems in initially unknown
environments, achieving goals (e.g. maximizing accumulation of rewards) by trial-and-
error searches [SB98].

In this chapter, we first introduce the classical framework of Markov Decision Processes
(Section 2.2) used to represent decision problems, its basic notations and key concepts.
We subsequently describe the key concepts of the reinforcement learning paradigm (Sec-
tion 2.3), especially with examples of Model-Free and Model-Based algorithms, and finally
action selection processes. Finally we discuss some of the recent advances in reinforcement
learning (Section 2.4) that contributed or could contribute to the investigation of animal
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conditioning.
This chapter does not intend to be exhaustive and focuses specifically on work related

to the current thesis. For a deeper overview on reinforcement learning, we refer the
reader to dedicated books and reviews [SB98; Kae+96; Sze10; WO12]. For an overview
of reinforcement learning in the field of neuroscience, we refer the reader to more specific
reviews [Bal+08; Niv09; DB12a]. The subsequent sections are mainly drawn on these
studies.

2.2 Markov Decision Processes
Markov Decision Processes (MDPs) provide a mathematical framework (Section 2.2.1) to
formalize (Section 2.2.2) and solve (Section 2.2.3) decision problems in uncertain environ-
ments [Bel57].

2.2.1 Classical definition
An MDP is formally defined by a tuple 〈S,A, T,R〉 where

• S is a finite set of states,

• A is a finite set of actions,

• T : S×A×S → [0, 1] is a transition probability function that defines the probability
P (s′|s, a) to reach a state s′ by doing action a in state s,

• R : S ×A→ R is a reward function that defines the reward R(s, a) of doing action
a in state s.

This formalism implies that the decision problem studied must comply with the Markov
Property: the future state depends only on the present state and the action taken but not
on its past. More formally, it states that

P (st+1|st, at, st−1, at−1, . . . , s0, a0) = P (st+1|st, at)

where st is the state at time t and at is the action realized by the agent at time t. For
simplification, we usually write s′ for st+1, s for st, a′ for at+1 and a for at.

It also implies that the environment is stable, that is T and R are not supposed to evolve
over time. In the current form, all state transitions are supposed to take a same amount
of time. It is often the case that they are used in neuroscience to describe experiments
which are only stable by blocks or with gradual shifts in probabilities over time. We will
come back later to this point and see which limits it implies.

Finally, an MDP is defined as episodic if it includes at least one state which terminates
the current episode. It is usually used to define decision problems with unique goals,
or repetitive tasks that can be split into independent trials, given that they are clearly
delimited. This is usually the case of neuroscience experimental tasks where animals are
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required to repeatedly achieve the same task or go through the same process for multiple
sessions of multiple trials, each trial being separated by some informative cues or resting
period, often called the inter-trial interval (ITI).

MDPs are classically represented by directed graphs with states as nodes and transitions
probabilities and associated rewards as labelled edges (Figure 2.1). Note that informations
provided within states are only here to help the reader but are usually hidden from classical
RL algorithms (but see section 2.4).

Figure 2.1: Example of an MDP representation. This MDP could be used to represent
a classical instrumental setup. An animal starts in an empty Skinner box (s0) where at some
point 2 levers appear (s1). The animal must then choose between pressing one lever or the other,
the first one leads to the delivery of food (s2) while the other directly brings the animal back
to the terminal state (s3) which symbolizes the start of the inter-trial interval before next lever
appearance. Informations within states are provided for easier readability.

2.2.2 Value function and policy
Once a decision problem is defined as an MDP, one can define a solution through a policy
π : S → A that specifies for each state of the MDP what action should the agent take.

Given a policy π, for each state s one can define a value function Vπ(s) : S → R that
describes the sum of cumulative rewards that can be expected by the agent starting from
state s and subsequently following policy π. More formally

Vπ(s) = E

[
∞∑
t=0

γtR(st, π(st))|s0 = s

]
(2.1)

where the discount factor 0 ≤ γ < 1 defines the preference of obtaining a reward imme-
diately rather than delayed (e.g. to get a milkshake today rather than in ten days). This
function can be recursively defined as

Vπ(s) = R(s, π(s)) + γ
∑
s′

P (s′|s, π(s))V π(s′). (2.2)

The interest of the current formalism is to find an optimal policy π∗ that maximizes
the cumulative rewards of the agent over time, that is ∀π∀s ∈ S : Vπ∗(s) ≥ Vπ(s). Note
that while there can be multiple optimal policies, they all share a unique optimal value
function

V ∗(s) = max
π

[Vπ(s)] . (2.3)
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Hence, provided Equation 2.2, V ∗ can be defined as

V ∗(s) = max
a

[
R(s, a) + γ

∑
s′

P (s′|s, a)V ∗(s′)

]
. (2.4)

The action-value function Qπ : S × A → R is usually preferred to the value function
Vπ. It corresponds to the sum of cumulative rewards that can be expected by the agent
from taking action a in state s and subsequently follow the policy π:

Qπ(s, a) = R(s, a) + γ
∑
s′

P (s′|s, a)Vπ(s
′). (2.5)

Handling an action-value function Q rather than a value function V permits a compar-
ison between the different actions available in a given state, which is especially useful for
action selection algorithms.

In a similar way the optimal action-value function Q∗ can be defined as

Q∗(s, a) = max
π

[Qπ(s, a)] (2.6)

or recursively as in Equation 2.4 by

Q∗(s, a) = max
a

[
R(s, a) + γ

∑
s′

P (s′|s, a)V ∗(s′)

]
. (2.7)

Hence, provided with the optimal value function V ∗ or the optimal action-value function
Q∗, an optimal policy π∗ can be defined as

π∗(s) = argmax
a

[Q∗(s, a)] . (2.8)

To summarize, MDPs are a way of describing a task into a series of experienced states,
actions and rewards. From an MDP, an agent can determine an optimal solution, that is
which action it should perform in each state in order to maximize the cumulative sum of
rewards on the long term.

The optimal value function, action-value function or policy can be found in different
ways depending on the amount of information which is a priori given to the algorithm. If
the agent has a perfect knowledge of the MDP (he is given a model of the environment
which enables it to know exactly what are the consequences of doing each possible action
in each possible state), the algorithm can simply consist in propagating the reward infor-
mation throughout the model, i.e. the directed graph, in order to find the most valuable
path (often the shortest to reward). These methods are called dynamic programming. If
the agent does not have such an initial model of the world, he can either learn it through
exploration and then use it, or directly try to estimate the optimal action-value function
and an associated policy. These methods are called reinforcement learning.
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2.2.3 Dynamic programming
Given the full knowledge of an MDP, it can be solved by dynamic programming algorithms
[Bel57]. They usually define two steps, (1) policy evaluation and (2) policy improvement,
which can be combined and repeated of different manners.

Policy evaluation consists in computing Vπ(s) for all s ∈ S provided a policy π. It can
be incrementally computed given Equation 2.2 by

V k+1
π (s) = R(s, π(s)) + γ

∑
s′

P (s′|s, π(s))V k
π (s

′). (2.9)

When k → ∞, V k
π should converge to Vπ [Put95]. Hence, provided a policy π, one can

estimate for each state what rewards might be expected by following it.
Policy improvement consists in computing a new and better policy π′ given the value

Vπ of the current policy π. To test and find if there exists such a better policy, one can
simply test that for each state s, one of the available actions a can lead to a better state
(i.e. Vπ(s

′)) than the current action proposed by the policy π(s), that is

π′(s) = argmax
a

[
R(s, a) + γ

∑
s′

P (s′|s, a)Vπ(s
′)

]
. (2.10)

When no better policy can be found, then π′ is optimal with regard to the current value
function.

Standard dynamic programming algorithms are Value Iteration and Policy Iteration.

Policy Iteration

In Policy Iteration (Algorithm 2.1) [How60], given an initial policy π0, we can compute Vπ0

(step 1) that can be used to yield an equal or better policy π1 (step 2) which can be again
used to compute Vπ1 and so on, until the best policy is found (i.e. Vπt is optimal). The
algorithm is guaranteed to converge to the optimal policy in a finite number of iterations.
It is however usually the case that it stops as soon as a near-convergence criterion is
reached. Figure 2.2 illustrates such process.

Figure 2.2: Illustration of Policy Iteration. The algorithm alternates phases of Policy
Evaluation (PE) and Policy Improvement (PI).

Value Iteration

To evaluate a policy π at each time step is costly, as it requires each time to iterate a
possibly significant number of times to converge to Vπ. Hence, Policy Iteration can be a
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Algorithm 2.1: Policy Iteration (from [SB98])
input : ∅
output: V ∗(s), π∗

Initialize Vπ and π arbitrarily
Policy Evaluation1

repeat
(a) ∆← 0
(b) forall s ∈ S do

i. v ← V π(s)
ii. Vπ(s)← Rπ(s) + γ

∑
s′ P (s′|s, π(s))v(s′)

iii. ∆← max (∆, |v − Vπ(s)|)
until ∆ < ε (with a positive small ε)
Policy Improvement2

stable← true
forall s ∈ S do

(a) b← π(s)
(b) π(s)← argmaxa [R(s, a) + γ

∑
s′ P (s′|s, a)V (s′)]

(c) if b 6= π(s) then stable← false

if not stable then go to step 1
return Vπ and π

Algorithm 2.2: Value Iteration (from [SB98])
input : ∅
output: V ∗(s), π∗

Initialize Vπ

repeat
(a) ∆← 0
(b) forall s ∈ S do

i. v ← Vπ(s)
ii. Vπ(s)← maxa [R(s, a) + γ

∑
s′ P (s′|s, a)v(s′)]

iii. ∆← max (∆, |v − Vπ(s)|)
until ∆ < ε (with a positive small ε)
π∗(s)← argmaxa [R(s, a) + γ

∑
s′ P (s′|s, a)Vπ(s

′)]
return Vπ and π∗
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time consuming algorithm. Value Iteration [Bel57] offers a nice alternative. It has been
shown that for some problems, it is not necessary to wait until the converge of Vπ and
a small number of iterations in the policy evaluation step are sufficient for the Policy
Iteration algorithm to converge. More precisely, it is possible to only iterate once, which
gives Value Iteration (Algorithm 2.2). Note that the two steps can easily be merged by
using the max operator in the second step (ii) of the policy evaluation process.

2.3 Reinforcement learning
Dynamic programming algorithms are efficient methods when the problem is fully known.
However, it is often the case, especially in neuroscience experiments, that agents do not
have a complete knowledge of their environment and need to interact and move within it
to acquire useful information for eventually solving the problem.

The computational field of reinforcement learning [SB98] addresses such limitation.
The agent starts with no prior knowledge about the environment and learns from the
consequences of its actions by trial-and-error experiences. It learns the optimal value
and/or an optimal policy over time. Interestingly, while based on the MDP formalism,
such methods are well suited for changing environments as they can revise their beliefs
about the world’s dynamic over time. This is a useful property in animal conditioning
experiments.

Figure 2.3: Illustration of reinforcement learning algorithms. The agent has no
knowledge of the world’s dynamic (black box) and acquires it through trial-and-error interactions,
taking an action a and observing the resulting new state s′ and possible reward r. Model-Based
algorithms learn a model (Model learning) of the world from observations from which they infer
a value function/policy (Planning). Model-Free algorithms directly learn a value function/policy
from observations (Direct RL). These values/policy are used by action selection mechanisms to
select the next action.

There are two main categories of RL algorithms, using different pathways to achieve
the same goal (Figure 2.3). Model-Based algorithms (Section 2.3.2) incrementally learn
an internal model of the world by experience from which they can infer values over states
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that help to guide behaviour. Model-Free algorithms (Section 2.3.1) directly learn these
values by experience without relying on some internal model. While these algorithms are
usually seen as the full process of learning, planning and acting, they mainly define the
process of the two first steps, which can then be combined with various action selection
mechanisms (Section 2.3.3) that only need values over state-action pairs to work.

2.3.1 Model-Free algorithms
In the following section, we present 3 Model-Free (MF) algorithms (Actor-Critic, Q-
Learning and SARSA) that have been extensively linked to instrumental and Pavlovian
phenomena. MF algorithms have in common that they rely on the incremental learning
of value functions by trial-and-error experiences without the help of an internal model of
the world. These algorithms derive from the Temporal Difference Learning principle.

Temporal Difference Learning

The Temporal Difference Learning principle (TD-Learning) [SB87; Sut88] offers a way to
estimate the value function over time through experience with the environment. It does
not require the knowledge of T or R nor builds a representation of it. It essentially relies
on the key concept of Reward Prediction Error (RPE).

The RPE signal is the difference between the current estimation by the agent of the
value function V̂t(st), i.e. its expectation, and the value of its last observation rt+γV̂t(st+1).
Provided the recursive definition of the value function (Equation 2.2) and that R(s, a)
and P (s′|s, a) can be approximated by the last observation 〈rt, st+1〉, there should be no
difference (i.e. a null RPE) if the value function V̂t is correct. This signal is formally
defined as

δt ← rt + γV̂t(st+1)︸ ︷︷ ︸
V (observation)

− V̂t(st)︸ ︷︷ ︸
V (expectation)

(2.11)

where rt is the reward retrieved after doing action at in state st and ending in the new
state st+1.

Hence, if the signal is not null, it implies that the current estimate of the value function
needs to be revised, which is done by

V̂t+1(st)← V̂t(st) + αδt (2.12)

where the learning rate 0 ≤ α ≤ 1 defines at which rate to revise the estimated value
function, i.e. how much the agent relies on the last observation versus its cumulative
history. While it is common to decrease α over time in a stable environment, such that
V̂t eventually converges to the correct value V ∗ on an infinite horizon, a fixed α allows
the agent to adapt in changing environments, which is often a need in computational
neuroscience tasks.

As presented in more details in Section 3.3.2, the RPE signal used in TD-learning has
been shown to mirror the phasic activity of some dopamine neurons, increasing at the de-
livery of a better than expected reward, diminishing at the omission of an expected reward
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and not responding when the delivered reward could be expected. This discovery greatly
influenced the computational contribution of the RL framework to the neuroscience field
of conditioning [Sch+97; Sch98; Sch10; Sch13; Gli11; Har+14; BG05].

MF algorithms that rely on the TD-Learning principle have the advantage of being fast
to execute, as they almost require a single computationally simple update at each agent
step. The associated drawback results in relatively slow learning and revision capacities.

The TD-Learning principle provides an efficient tool to maintain and update a valued
estimation of all the situations that an agent can face. However, without knowledge
of the world transition function T , the agent has no way to decide which action will
guide him to the most rewarding situations when only provided with a value function
V . The subsequent algorithms offer a solution to this problem by providing values over
state-action pairs, which can be subsequently used by action selection mechanisms.

Actor-Critic

Actor-Critic methods [Bar+83] are split into two components. The Critic estimates the
value function V of the current policy of the agent over time, and is a direct application
of the TD-Learning principle. The Actor maintains a function p that defines the agent’s
preference for each action in each situation and uses the RPE signal computed in the
Critic to revise it (Figure 2.4).

Such methods are of particular interest to neuroscientists because a parallel can be
made between their architecture and the anatomy of the Basal Ganglia. Its ventral part
seems to estimate and store values about expected rewards [CS03; Kha+08] and directly
projects on dopaminergic neurons, while its dorsal part seems to learn the value of actions
[Sam+05].

When the action taken at time t results in a positive signal δt, it implies that the action
taken improved the prospects for future rewards. Therefore, such an action should be
selected more often. The inverse is also true for a negative signal. Hence, the preference
function p can be incrementally revised by

p(at|st)t+1 ← p(at|st)t + ηδt (2.13)

where 0 ≤ η ≤ 1 is another learning rate. Hence, for a given state s, the estimated best
action is the most valued one in p, that is maxa p(s, a).

SARSA

SARSA (for State-Action-Reward-State-Action) is built on a straightforward revision of
the TD-Learning principle to embed actions by replacing V by Q in Equations 2.11 and
2.12, in the following way

Q̂t+1(st, at)← Q̂t(st, at) + α
[
rt + γQ̂t(st+1, at+1)− Q̂t(st, at)

]
︸ ︷︷ ︸

δ

(2.14)

where the next action at+1 has already been chosen by the system.
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Figure 2.4: Illustration of the Actor-Critic architecture. The agent is composed of
two modules: an Actor and a Critic. The Critic learns and updates a value function V with
the temporal learning principle, i.e. using a reward prediction error signal δ Á. This signal is
also used by the Actor to build a policy π Á. This signal is computed as the difference between
the value of what was expected from doing action a in the current state and what was actually
observed 〈s′, r〉 À.

This method is defined as on-policy as its learning phase, the RPE signal, depends on
the actions at and especially at+1 chosen by the agent policy.

Q-Learning

Q-Learning [WD92] is an off-policy alternative to SARSA, where the RPE signal does
not rely on the agent policy, i.e. it does not need the next chosen action to be computed.
Furthermore, the updated value can be taken into account in the choice of the next action.
Equation 2.14 is revised as

Q̂t+1(st, at)← Q̂t(st, at) + α
[
rt + γmax

a′
Q̂t(st+1, a

′)− Q̂t(st, at)
]

︸ ︷︷ ︸
δ

(2.15)

where the max operator suggests that the RPE is computed with respect to what is
believed to be the best action on the subsequent state. It is not necessarily the case that
such action will be chosen.

Interestingly, while Q-Learning and SARSA are proven to converge to the true optimal
policies over time [WD92; Sin+00], their RPE signals can present very distinct patterns
in specifically designed tasks. Based on the hypothesis that phasic dopaminergic activity
encodes RPE signals, different experiments were conducted to determine whether such
patterns would suggest Q-Learning like or SARSA like RPEs [Mor+06; Roe+07]. Con-
flicting results make this question still under investigation [Bel+12a; Bel+13; Bel+12b]
(see Section 3.3.2).
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2.3.2 Model-Based algorithms
Model-Based algorithms (MB) lie between Dynamic programming approaches, which as-
sume a complete knowledge of the world and can infer an optimal policy without the need
to interact with it, and MF algorithms that avoid the need of such knowledge but require
direct and repeated interactions.

Such algorithms rely on the acquisition by experience of some knowledge regarding the
structure of the world and use it to infer an optimal policy with regard to their current
beliefs.

Dyna-Q

Dyna-Q [Sut90] combines MF updates with a learned internal model of the world (i.e. the
transition function T and reward function R) to accelerate and refine the computation of
an action-value function.

At each time step, the world is revised with the new observation, either by accumulating
samples of observations or building an estimate of the transition function T̂ and reward
function R̂, for example with the following formulae

T̂ (s, a, s′)←
{

(1− αT )× T̂ (s, a, s′′) + αT if s′ = s′′

(1− αT )× T̂ (s, a, s′′) otherwise (2.16)

R̂(s, a)← R̂(s, a) + αR(r − R̂(s, a)) (2.17)

where 0 ≤ αT ≤ 1 and 0 ≤ αR ≤ 1 are two learning rates that represent the speed at
which new experiences replace old ones.

At each time step, the agent internally replays multiple time some observations that
already have occurred in the past and update the action-value function Q accordingly as
in Equations 2.15 or 2.14 (Algorithm 2.3).

One of the drawbacks of Dyna-Q is the requirement of the arbitrary free parameter N
(Algorithm 2.3), that fixes a limit in the number of off-line iterations. If close to 0, the
agent is almost equivalent to an MF algorithm, requiring more memory usage (to store
its internal model), with the same results. A large N , which would successfully make Q
converge to Q∗ can significantly slow down the update phase, making it unsuitable for
real-time environments. Such parameter might be replaced by other convergence criteria
(e.g. similar to the one used in dynamic programming methods). Dyna-Q can be revised to
improve how states and actions are selected in the simulation step to optimize convergence
(e.g. Prioritized sweeping [MA93] or Queue-Dyna [PW93]).

Dyna-Q has been used with success in some neuroscience experiments. For example, it
explained well how some subjects implicitly learned a model of the biomechanical costs of
their movements during a motor babbling phase and how they implicitly integrated these
costs into subsequent choices to reach equally distant targets but which would require
moves with different costs [Cos+13].
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Algorithm 2.3: Dyna-Q (from [SB98])

Initialize Q and M = 〈T,R〉 ∀s ∈ S and ∀a ∈ A

repeat
s← current non terminal state
a← select an action
observe 〈s′, r〉 from taking a in s
Q(s, a)← Q(s, a) + α [r + γmaxa′ Q(s′, a′)−Q(s, a)]
update M given 〈s′, a〉
repeat

s← random previously observed state
a← random previously taken action in s
retrieve 〈s′, r〉 from M
Q(s, a)← Q(s, a) + α [r + γmaxa′ Q(s′, a′)−Q(s, a)]

until N times
until forever

Q-Learner / Tree search methods

Provided with a learned internal model (Equations 2.16 and 2.17) one can directly rely on
the formal definition of Q (Equation 2.5) without using the TD-Learning principle. One
can use dynamic programming methods on the internal model [Glä+10; BT03; KS02] at
each time step. This is computationally expensive as the tree of the possible paths can
grow exponentially with the number of states. In more realistic situations, (e.g. complex
navigation tasks in real-time environments), the high number of states makes such MB
systems less efficient than expected [Cal+12; Ren+14].

It is also possible to use lookahead methods or shortest path algorithms to find the
full plan of actions (or at least for multiple steps) that leads to a specified reward [KS02;
Wal+10; KS06; Bro+12]. One can then use the formal definition of Q (Equation 2.5) in
an efficient way to back-propagate values from the goal state to the current state. Such
methods are however only tractable for simple MDPs. It is not uncommon that MB pro-
cesses are described as tree searches in conditioning studies, even if their implementation
usually rely on estimations of Q value functions.

In some conditioning experiments, it has been shown that animals seem to take the
time to plan ahead before acting (e.g. showing head movements towards alternative paths
at crossing [Red+07; Red+08] before any subsequent engagement). Furthermore, if after
some training in a maze, the optimal path is blocked, rats directly choose the next shortest
path that should lead to reward, which also suggests that they may use a topological
representation of their environment to take decisions [Mar+11].
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2.3.3 Action selection
Provided with an action-value function Q (or p), there is an infinite number of ways to
define a policy π that guides the behaviour of the agent. We present 3 major action
selection algorithms.

Greedy

The simplest algorithm consists in a greedy policy that always takes the most valued
action, that is

πGreedy(s) = argmax
a

[Q(s, a)] . (2.18)

This policy is a wrong solution for reinforcement learning algorithms as it could lead
to a local maximum. Indeed, such a policy favours paths that have already been taken
and rewarded, and can miss alternative higher rewarding paths, especially in changing
environments. This problem is called the exploration/exploitation trade-off.

Exploration/Exploitation trade-off

The exploration/exploitation trade-off is a classical dilemma of reinforcement learning,
which is to decide how to balance between exploitation – using the already acquired
knowledge to optimize cumulative rewards – and exploration – acquiring new knowledge
that could improve the general behaviour. For example, when confronted to a changing
environment, it is impossible to know if a path already visited and discarded at first might
actually now lead to a high reward. There is no optimal solution to this problem.

ε-Greedy

One solution is to be greedy most of the time, except for some exploration steps drawn
with a small probability ε that guarantees sufficient exploration to avoid local minima.
More formally

πε-Greedy(s) =

{
random action with a probability ε
πGreedy(s) otherwise (2.19)

where 0 < ε < 1.

SoftMax

In ε-Greedy, when an action is of almost equal value as the best action, it will still be
selected only with a probability ε. Any action other than the best one, is selected with
an equally low probability disregarding its relative value compared to others. However,
if an action has a very bad value (especially with negative rewards as in punishment
experiments) one would expect to avoid it most of the time relative to, for example,
actions with neutral values. If an action is almost equivalent to the top most action, we
would expect it to be chosen almost as often.
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Based on this idea, the softmax function provides such an action selection mechanism,
as it selects actions based on probabilities that are built from the state-action values,
which are computed with

πsoftmax(s, a) =
eQ(s,a)/τ∑′
a e

Q(s,a′)/τ
(2.20)

where 0 < τ < ∞ is called the temperature. At high temperatures (τ → ∞) all actions
have almost the same probability to be chosen as Q-values become negligible given τ . At
low temperatures (τ → 0+), the probability of selecting the action with the highest value
tends to 1.

This process is widely used in computational neuroscience [Daw+06b; Day+06; Glä+10;
Hum+12; Daw+05; Ker+11; Huy+12; Doy+02; Red+07]. The computational model de-
veloped in this work also relies on such mechanism.

2.4 Extensions of the classical framework - Factored
representations

Markov Decision Processes have benefited from various extensions to address very dif-
ferent problems, usually leading to new or revised versions of reinforcement learning al-
gorithms. MDPs were extended to continuous times and actions [Bai93; Duf95; Doy00];
for partially observable environments (POMDPs) [Jaa+95; Hau00]; to allow factored rep-
resentations [Bou+00; Deg+06; VB08]. Another example is the concept of hierarchical
RL where problems can be defined at multiple details levels such that one can define
sequences of actions as subroutines (options) to be played as one action at a higher level
[Sut+99; Bot+09; Bot12; Diu+13]. Most of these extensions have been pushed back into
the field of neuroscience and nourished some animal conditioning investigations [Daw+03;
Daw+06c; Bot+09; Doy00; RF+11]. However, to our knowledge factored representations
for reinforcement learning have been left apart.

The original algorithms in the literature that use factored representations rely on MB
learning principles, while in the present work, we develop an algorithm based on MF learn-
ing principles. This part of the manuscript will thus describe the original algorithms in a
mainly informational manner, in order to understand on which principles we implemented
factored representations for MF learning without sticking to the original formalism.

The idea of factorization comes from the necessity to deal with large-scale problems.
The standard MDP representation and classical algorithms do not scale well to high
dimensional spaces and ends up requiring too much physical space or computation time,
a phenomenon named the curse of dimensionality [Bel57]. We illustrate the principle of
factorization and associated algorithms through the common CoffeeRobot example task
[Bou+95; Bou+00], in which, one robot needs to go buy a coffee across a street and deliver
it back to an employee, earning extra credits if it does not get wet in case of rain.

Real application problems are often described through a set of parameters that describe
the current state of the system. Hence, the set of states S can formally be described
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through a set of random variables X = {X1, . . . , Xn} where each variable Xi can take
several values. A state is therefore an instantiation of X. It is also commonly the case
that the random variables are binary, that is Xi ∈ [0, 1]. In such a case, states can
be defined by the active/present variables in the situation they describe. With factored
representations, informations embedded within states are explicitly made available to the
algorithms. The CoffeeRobot task is described by a set of 6 binary variables: the robot
is wet W , the robot has an umbrella U , the robot is in the office O (outside otherwise),
it is raining R, the robot has the coffee RC or the employee has it EC. Hence, the set
〈RC,R,O〉 describes the state where the robot has a coffee, is in the office while it is
raining, but has not delivered the coffee to the owner yet, and is neither wet nor has an
umbrella. While simple at first sight, this toy problem already has 26 = 64 states.

Actions are still described as in the standard MDP framework. For example, the robot
can go to the next location (Go), buy a coffee (buyC), deliver the coffee (delC) to the
owner and get an umbrella if in the office (getU).

T and R are also usually redefined to take advantage of the factored representation,
describing problems through Factored MDPs [Bou+95; Bou+00; Deg+06; VB08]. Factored
MDPs use Dynamic Bayesian Networks [DK89] to define dependencies between variables,
combined with compact conditional probability distribution described through trees. The
important idea is that some aspects of the task are independent of others. In our example,
the fact that it is raining has no impact on the success of delivering the coffee (Figure 2.5).

Figure 2.5: Illustration of the CoffeeRobot task state transition. Representation of
the transitions of doing the action of delivering the coffee (delC). (A) Dependencies between
variables (DBN). Associated conditional probability distribution P (OC ′|O,RC,OC, delC) under
tabular form (B) and compact tree form (C). The full problem is described by one DBN per
action and one conditional probability distribution for each variable and actions. If the owner
already has a coffee, it will still have it at the next state (1.0). If the owner does not have a
coffee, but the robot is in the office and has a coffee and performs action delC, the owner might
successfully retrieve it 80% of the time, i.e. failures are possible.
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It is also possible to split the reward function into orthogonal goals that can be dealt
with independently (Figure 2.6).

Figure 2.6: Illustration of the CoffeeRobot task reward function. (A) Dynamic
Bayesian Network representation of the reward function. (B) Associated conditional probability
distribution P (R|OC,W ). (C) Representation of the function once split into sub-goals. Deliv-
ering the coffee and being dry are two rewarding components. However, they are independent of
each other and can be dealt separately.

Value function approximations and factored reinforcement learning (FRL) are the main
methods that have been developed to take advantage of factored representations.

Value function approximations [Doy+02; Kha+06; Elf+13] attempt to split problems
into orthogonal sub-problems making computations easier and providing valuations that
can then be aggregated to estimate the value of states. This paradigm is illustrated in
Figure 2.7, where one can split the problem according to the two orthogonal goals of the
reward function (Figure 2.6).

Figure 2.7: Illustration of value function approximations methods. The problem
is separable into 2 different sub-problems (1) being wet, (2) delivering a coffee, such that the
aggregation of values over their respective sub-spaces defines the value function of the global
problem. Note that the real problem might be more complicated and the sub-problems have
overlapping domains.

Factored reinforcement learning [Bou+00; Deg+06; VB08] reduces the physical space
needed to store the value function by representing it with a tree which leaves, i.e. the
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values, can account for multiple states. For example, if the owner already has a coffee
and the robot is not wet, all other variables are irrelevant to decide the value of the state
(Figure 2.8). Planning and learning algorithms also rely on Factored Markov Decision
Processes to optimize computations. For example, one can take advantage of the tree form
of a conditional probability distribution to compute a Q-value for a particular action for
all states at once (e.g. Structured Value Iteration [Bou+00]). Figure 2.9 illustrates such
a possibility on the simplified version of the CoffeeRobot problem where only variables U ,
R and W are taken into consideration, the robot is only interested in not getting wet.

Figure 2.8: Illustration of model-based factored reinforcement learning value func-
tions. All variables are not meaningful at all time to value a state. In the CoffeeRobot
example, if OC = 1 in the current state, only W is relevant to determine the value of the state.

Figure 2.9: Illustration of Structured Value Iteration. Example of the computation
of a Q value for all states for action getU (A) optimized by the use of trees. Starting from
the conditional probability distribution P (w′|R,U, getU) (B) and the reward function R as the
current value function V (C), we apply a PRegression step (D), which computes the gray
underlined part in the formula, and then a Regression step (E), which computes the Q value.
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In the main chapters, we introduce a version of an MF algorithm that also takes ad-
vantage of factored representations. However, in contrast to FRL algorithms, we do not
intend to build a compact value function nor to infer the value of states from values of
features but rather make these values compete in the choice for the next action.
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3.1 Introduction
The study of animal conditioning can be broadly divided between Pavlovian conditioning
[Pav27] and instrumental conditioning [Ski38]. In instrumental or operant conditioning
(Section 3.2), animals are required to make actions (e.g. pulling a chain or refraining
from it) for rewards to be delivered or punishments to be avoided. The study of instru-
mental conditioning aims at investigating the strategies developed by animals to achieve
such tasks and understanding their underlying mechanisms. In contrast, in Pavlovian or
classical conditioning (Section 3.3), neutral stimuli (e.g. sound or light) are paired with
rewards or punishments and delivered regardless of the animal’s behaviour. With train-
ing, animals usually develop responses (e.g. salivation or freezing) towards these neutral
stimuli. The study of Pavlovian conditioning aims at measuring these behaviours and
understanding their underlying mechanisms.

In this chapter, we first develop instrumental conditioning (Section 3.2) and how associ-

..
55

...



ated computational models mainly rely on the reinforcement learning framework. Then we
develop Pavlovian conditioning (Section 3.3), with an emphasis on some phenomena that
are challenging to classical RL algorithms and classical MDPs, and give a brief overview
of the wide variety of associated computational models. Finally, we discuss phenomena
that combine Pavlovian and instrumental aspects (Section 3.4) and their sparse related
computational models.

3.2 Instrumental conditioning
Instrumental conditioning results from the confrontation of animals to tasks that actively
require specific sequences of actions (often a single action) to maximize rewards or avoid
punishments [Ski38; Tol38; Tol39]. Such experiments allow the study of the strategies
developed by animals to construct or revise such sequences, especially when confronted
with stochastic results or changing environments. Such tasks usually introduce some
operant objects (e.g. a lever or a chain) which, when actively engaged (e.g. pressed or
pulled), lead to the next phase of the task up to reward delivery or its omission. An
example is provided in Figure 3.1.

Figure 3.1: Example of an instrumental conditioning task. A rat is presented with
two levers À. When one press occurs, levers are retracted. If the correct lever is pressed Á, food
is delivered in a magazine. If the wrong lever is pressed Â, reward is omitted. Conditioning is
assessed in a second phase, where the rat is presented with the two levers in extinction Ã(no
reward is available). If successfully conditioned, the rat shows a preference for the previously
rewarded lever Ä.

While not shown in Figure 3.1, it is often the case that a single action (e.g. pressing a
lever) should not be sufficient to get a reward. Hence, experimental tasks usually involve
different reinforcement schedules [Dom14; Nev+01; BB08]. Rewards may be delivered after
a number of responses (ratio schedules) or after some delay interval (interval schedules).
The number of responses required might be fixed (FR) or vary during the task (VR).
The interval can also be fixed (FI) or vary during the task (VI). One can also distinguish
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between variable and random schedules, the latter being a subset of the former that
arranges a constant probability across these numbers of responses (RR) or delay interval
(RI) involved. The type of schedule may influence the expressed behaviours [Nev+01;
Wil+12; Bau93]. Such reinforcement schedules aim first at avoiding any confusion between
an engagement resulting from conditioning versus a random interaction.

It is commonly assumed that animals do not always rely on the same strategies to
guide their behaviour and that one can distinguish between Habitual and Goal-Directed
behaviours [AD81; Ada82]. In the following, we discuss this dichotomy and experiments
allowing to distinguish it (Section 3.2.1), theories on their expression (Section 3.2.2), and
computational models that have been developed to account for it (Section 3.2.3).

For a big picture about instrumental conditioning, especially regarding biological links,
we refer the reader to dedicated reviews [DD13; Yin+08; BO09; Dom14].

3.2.1 Habitual versus Goal-Directed behaviours
It is now well accepted that animals’ behaviours rely on two learning processes when
involved in instrumental tasks, one Goal-Directed (GD) and the other Habitual [AD81;
Ada82; Fan+13; Ash+10; Tho+10; KH12; Bal+07; BO09; Bro+11]. A behaviour is con-
sidered Goal-Directed if it clearly (1) links actions to their consequences and (2) is guided
by a desirable outcome, such that it quickly adapts to changing situations or evolutions
in its motivational state. A behaviour is considered Habitual when it does not respect the
preceding conditions, i.e. it is decorrelated from the expected result of actions, in their
consequences or resulting outcomes.

In simple and stable instrumental tasks, Goal-Directed and Habitual behaviours cannot
be distinguished, as they produce similar undistinguishable outputs. It has been shown
that behaviour usually shifts from Goal-Directed to Habitual with overtraining (exten-
sive training on the same task, on multiple days and multiple trials per days) [AD81].
This property has been deeply investigated through outcome devaluation and contingency
degradation, two processes (implemented in many different ways) that help to distinguish
between both phenomena.

Outcome devaluation

The outcome devaluation procedure consists in reducing the value of the instrumental task
outcome and observing its effect on the behaviour [AD81; Ada82; DB94; Dic+95; Tri+09;
Val+07; CR85; BD98b]. This devaluation is usually done by specific satiation – giving free
access to the current reward to animals – or with paired illness – combining the current
reward with some nauseous substance. After an initial phase of instrumental conditioning,
animals undergo a devaluation protocol and are subsequently tested in extinction. If
animals produce less instrumental responding for an outcome that has been devalued
than for an outcome that has not, then the behaviour of these animals is devaluation
sensitive and is assumed to be driven by the outcome, i.e. it is Goal-Directed. Figure 3.2
shows an example of such a devaluation procedure. If animals persist to respond with the
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same intensity as before devaluation, their behaviour is disconnected from the expected
outcome value, i.e. Habitual.

Figure 3.2: Illustration of devaluation procedure. After a first phase of instrumental
conditioning (e.g. with 2 levers) ÀÁÂ, the reward of one lever is devalued Ã(e.g. by satiation or
illness pairing). In a third test phase, the persistence or suppression of conditioning is assessed
in extinction ÄÅÆ. If the behaviour is sensitive to the devaluation, during the extinction test
the animal chooses more often to press the non-devalued lever Æ.

Contingency degradation

The contingency degradation procedure consists in breaking the current consequence (re-
sulting state or reward) of an action in the sequence that initially led to the reward, or
making such contingency weaker, for example by delivering rewards without the need
for acting [KC03; BD98a; CR86; DM89]. The simplest case is to stop the delivery of the
reward in the presence of one action. As in outcome devaluation, if the animal reduces its
level of instrumental responding in extinction, its behaviour is driven by the outcome, i.e.
Goal-Directed. If the animal persists to behave at a similar level as before contingency
degradation, the behaviour is disconnected from the outcome expectancy, i.e. Habitual.

3.2.2 Behavioural expression and Neuronal correlates
While the transition from Goal-Directed towards Habitual behaviours with overtraining is
a standard phenomenon of the literature [AD81; Ada82; DB94; Dic+95; Tri+09; Val+07;
CR85; BD98b; KC03; BD98a; CR86; DM89], other experiments showed that overtraining
is not decisive to define which process is currently driving the behaviour [KD10; YK06]. At
the behavioural level, it has been shown that stress seems to induce Habitual behaviours
[SW09; SW11], as limited working-memory capacities [Ott+13] and distractions [Foe+06].
The characteristics of the responses (pulling a chain versus pressing a lever) have also been
suggested to elicit different behaviours [Fau+05].
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At the biological level, a significant number of studies were realized on the importance
of the Dorsal Striatum (DS) for instrumental conditioning [BO09]. Using lesions, pharma-
cological interventions or brain recordings, studies have shown correlates of Goal-Directed
behaviours in Dorsomedial Striatum (DMS) [Boo+09; Wit+09; Glä+10; KC03; Wun+12;
Yin+05; Ske+14; Fan+13]. In contrast, the expression of Habitual behaviours was corre-
lated with the Dorsolateral Striatum (DLS) [Wun+12; Yin+04; Yin+06; YK06; Fan+13;
Ske+14]. Lesions studies in the prefrontal cortex could induce a switch between systems
[OB05; KC03; Smi+13; MC01; BB00; Rag+02]. Furthermore, Goal-Directed and Habitual
capacities have been shown to differ across individuals [Ska+13].

Hence, while Habitual and Goal-Directed behaviours have clearly been identified and
shown to rely, at least partially, on different brain regions, how one system comes to
control the behaviour is still unclear. The current literature suggests a potentially complex
integration or competition mechanism.

3.2.3 Theories and Models
The reinforcement learning framework has been decisive in the computational modelling
of instrumental phenomena [DD13; DB12a; Huy+12; Daw+05; Ker+11; Bei+11; Dol+12;
Daw+11; SD12], the core of which being the distinction between Model-Based (MB) and
Model-Free (MF) algorithms.

It is now commonly accepted that MB reinforcement learning is well suited to explain
Goal-Directed behaviours [Daw+05; DD13; BO09; Dol+12]. As it relies on an internal
model of the world (transitions and reward values) to build and search for the best plan
of actions, it can immediately adapt if the dynamic of the world is unexpectedly modified,
such as in outcome devaluation or contingency degradation. Moreover, maintaining an
internal model of the world and inferring on it on the fly is costly in term of computation
time and requires some space capacity. This is consistent with observations that Goal-
Directed behaviours require sufficient attention and working memory capacities [Ott+13;
Foe+06; Ger+14].

MF learning on the other side, is well suited to explain habitual behaviours [Daw+05;
DD13; BO09; Dol+12]. Its slow capacity to update makes it look persistent and unaffected
immediately by changes in the environment. This capacity is emphasized in models that
decrease their learning rate over time or models that have a constant but very small learn-
ing rate, which has been shown to better cope with noisy uncertain environments. Hence,
in case of devaluation or contingency degradation, an MF system mainly replicates what
it has been extensively trained to do. Its limited requirements in term of computational
capacities also make it consistent with observations that limited attention or reduced
memories capacities favour Habitual behaviours [Ott+13; Foe+06; Ger+14].

The exact interaction between the two systems is however still an open question [SD12;
Dol+12]. Various propositions have been made, which we classified in two categories:
winner-take-all models and integration models.

Note that alternatives combining RL systems with other systems (e.g. with a working-
memory system [CF12] or with an action sequence learner [DB12a; DB13]) or based on
principles at the biological-level exist [Mar+11; Arl+04; AG00; Che+13; CS11; Bal+13].
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For example, some have argued that the parallel between Model-Free and Habits was
misleading and suggested that Habitual behaviours would better be explained by a system
that learns sequences of actions [DB12a; DB13].

Winner-take-all models

We define as winner-take-all models, those where only one system (or value from one
system) drives the behaviour at a time such that systems compete for the control of the
expressed behaviour [Daw+05; Ker+11; Pez+13; Doy+02; Cha+05; KNR09; Dol+10].
This competition usually relies on some predefined criterion.

For example, Daw et al. [Daw+05] proposed a competition based on uncertainty. That
is, the system in control should be selected given how accurate it is estimated to be in
the current situation. At early stages, an MB algorithm is usually more accurate than an
MF system. After a single successful trial, an MB algorithm has already acquired enough
information to build a full policy. The more complex the problem, the more trials it takes
an MF system to propagate the final reward value to the initial state, and finally provide
a first useful policy. However, after extensive training in a stable environment, an MF
algorithm is as accurate as an MB system. Depending on the metric used to compute
uncertainty (in this case a Bayesian method [Dea+99]), it is even possible for the MF
system to be considered more accurate than the MB one. Hence, at early stages the MB
system guides behaviour but is replaced by the MF system on the long run, in accordance
with experimental observations [AD81; Ada82].

Keramati et al. [Ker+11] proposed another criterion: the speed/accuracy trade-off.
Contrary to the former model, the competition is not at the system level but at the ac-
tion level. The main idea is to have Model-Free values defined as Gaussian probability
distributions, such that they embed accuracy information with their variance. Hence,
for an action which value is supposed to be very inaccurate, the MB system is used to
infer a better value using tree search methods. Hence, the criterion defines for each ac-
tion whether the Model-Free value is accurate enough or whether it is worth to invest
some computational time and energy to rely on the more expensive MB system (see also
[Pez+13]). At early stages, the MF system is not accurate and the global model finds it
worth to use the MB system for most of the actions. However, after extensive training, the
MF system accuracy is good enough to avoid slow and costly tree searches. Once again,
this is consistent with experimental observations that Model-Based approaches dominate
early stages of training but seem overtaken by Model-Free processes after extensive train-
ing [AD81; Ada82].

Some models [Doy+02; Cha+05; Dol+10; Cal+12] suggest to combine reward prediction
errors and/or estimated values into an estimated performance criterion. For example, the
model of Dollé et al. [Dol+10] uses a mechanism that memorizes which system has been
the most efficient in each regions of a maze, and is updated through some kind of RPE
signal. The model successfully reproduced the behaviour of rats in navigation tasks in
which a cue-guided strategy and a path-planning strategy were shown to interact [Pea+98;
Dev+99].

Other models propose to combine multiple identical algorithms but parametrized dif-
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ferently or specialized on sub-parts of the problem, hence providing a repertoire of be-
haviours that can be selected at each step to efficiently solve the current task [Doy+02;
CK12; Kha+06; Bal02]. For example, by varying the discount rate, one can have systems
specialized on short term versus long term horizons. In such cases, the selection criterion
is often based on the estimated performance.

Winner-take-all approaches imply to define whether all systems are active at a time, and
whether they all are revised based on the current behaviour. In some cases, one system
might actually be very costly to update and block the current process (e.g. tree-searches
in complex problems may become intractable without some pruning method [Daw+05;
Ker+11]). In other cases, it might be hard to estimate the performance of a system on a
current situation without actually running the system multiple times on it [Dol+10]. How
systems can be be compared, i.e. to find a common currency, is not often straightforward
[Dol+10]. Finally, such approaches usually result in each system expressing a particular
and independent behaviour, even if selecting a different system at each step might lead
to observe some kind of mixed behaviour.

In the present work, we focus on the inter-variability of some behaviours [Fla+11b].
However, while they seem very distinct at a higher level, they share some similarities in
their properties (e.g. learning rate) or aspects (e.g. consumption-like engagement) that
might be difficultly explained by winner-take-all models.

Integration models

We regroup under the term integration models, those that integrate information from
multiple systems to guide the behaviour. For example, systems can blend multiple value
functions into one that will be used to select the final decision. Another possibility is to
have a dominant system that uses a second system at a certain level of its process.

Huys et al. [Huy+12] proposed a computational model where an MB system guides the
behaviour using tree search methods, but some paths in the tree are pruned and replaced
by values computed in a Model-Free way to limit the time and space capacity require-
ments. If such capacities are sparse (by stress or overload tasks), the MF dominates, i.e. it
produces a Habitual behaviours. If such capacities are abundant, then one can deal with
big trees and make important lookahead and adapt to changing situations quite quickly,
as in Goal-Directed behaviours. This is again consistent with experimental data regard-
ing the impact of limited working-memory capacities [Ott+13; Ger+14] or distractions
[Foe+06] on the general behaviour.

In a different way, Dezfouli and Balleine [DB13] proposed that the behaviour is con-
trolled by an MB system, where not only actions but also sequences of actions can be
selected (similar to options in Hierarchical RL literature [Sut+99; Bot+09]). Such se-
quences would be learned by another system relying on the Model-Based values and using
some kind of TD-Learning principle to compute the advantage of grouping actions into
sequences (it is not an MF system). Hence, once launched in a sequence of actions, the
behaviour would be Habitual. It is also usually argued that such options develop over time
to fasten reaction times and is once again consistent with the shift from Goal-Directed to
Habitual behaviours over time [AD81; Ada82].
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Gershman et al. [Ger+14] proposed that the behaviour is controlled by an MF system,
but which may be trained offline by an MB system, much like in the DYNA architecture
[Sut90]. The model successfully explained how subjects might change their choice prefer-
ences in the first step of a 2-steps task after observing the result in the second step given
their cognitive load. Participants that were asked to perform a demanding secondary task
during the second step were less able of retrospection capabilities than participants that
did not have to perform it. This is interpreted as if the MB system may only be able to
train the MF system in resting periods [Ott+13; Ger+14].

Finally, other studies suggested that the systems work in parallel in a flat collaborative
way. More precisely, each system learns its own action-value functions, which are after-
wards integrated into a unique action-value function on which to decide what action to do
next [DB02; Day+06; Glä+10; Daw+11]. This kind of model accounted for the choice pref-
erences of humans in a stochastic 2-steps task, especially in explaining how such choices
were revised after the action taken did not lead to the most probable state [Daw+11]. Such
integration produces a behaviour that is neither fully Model-Based nor fully Model-Free,
and is a mix between both systems. Any resulting behaviour embeds some aspects and
properties of both systems. Depending on how the integration is made, one can make one
system more influential than the other in the decision, which may explain some observed
inter-individual variabilities of particular interest in our work [Fla+11b; Mey+12]. This
is the integration approach we followed for our computational model [Les+14b; Les+14a;
Les+de]. However, contrary to the currently described models, we do not only focus on
instrumental conditioning but also on Pavlovian conditioning.

3.3 Pavlovian conditioning
Biologically important objects (e.g. food) automatically elicit some kind of responses in
animals (e.g. salivating). They are labelled as unconditioned stimuli (US) and uncon-
ditioned responses (UR). Neutral stimuli (e.g. a light or a sound) do not usually elicit
such responses, however when repeatedly paired with a US, the animal tends to develop
a conditioned response (CR) towards them, CRs being most of the time similar to the
UR. In such experiments, neutral stimuli are initially defined as conditioned stimuli (CS).
Such CRs will remain for some time even in the absence of the contingent US. Pavlo-
vian conditioning experiments study the development of such responses, especially their
shapes, intensities and properties.

This property of stimuli to elicit responses can lead to very complex phenomena, for
example when involving the concurrency of multiple stimuli, different types of contingen-
cies, temporal properties or the involvement of memories. In this section, we discuss a
subset of such phenomena (Section 3.3.1), linking them to reinforcement learning con-
cepts when possible, or highlighting the difficulties faced when using this framework (for
a deeper review of the known phenomena, we refer the reader to a dedicated special is-
sue [AS12]). We discuss some neural correlates of Pavlovian conditioning (Section 3.3.2).
Finally, we list some of the existing computational models to show their diversity and
their distance with respect to reinforcement learning (Section 3.3.3). The present thesis
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develops a model that is a way of conciliating some properties shared by these dedicated
models, to account for a number of phenomena [AS12], with the RL framework.

3.3.1 Phenomena
The simplest and oldest form of Pavlovian conditioning, autoshaping, was discovered by
Pavlov [Pav27]. The name of the field itself is often confounded with this phenomenon. In
Pavlov’s experiment, the salivation of a dog (UR) was measured before the consumption
of some food (US). Interestingly, the delivery of food was always preceded by a sound (CS)
which after enough repetitions started to elicit salivation (CR) on its own (Figure 3.3).
The phenomenon was gradual as CRs (the production of saliva) at CS time increased up
to a significant level over repetitive conditioning trials. It is interpreted as if the animal
learned to associate the neutral stimulus to reward delivery and started to react to it. As
a good predictor of reward, the animal could anticipate the US from the CS and prepare
for it. This phenomenon and most of the other phenomena subsequently described were
replicated in multiple species and proved to be persistent with various conditioned stimuli
and rewards, positive or negative [Dom14; BO09].

One must note that it has been observed that CRs might vary between individuals,
in their intensity but also in their shapes, for example rats might either approach and
engage with the CS (e.g. lever) or approach and engage with the magazine where food
would be delivered [Fla+11b]. Such inter-individual variabilities are of particular interest
for the present work as they are challenging to some current models of the literature that
do not distinguish between multiple possible responses or which always produce one kind
of response (Chapter 5).

Figure 3.3: Illustration of Pavlovian autoshaping. Before conditioning, the neutral
stimulus does not produce any particular response À. The Unconditioned Stimulus (US), e.g.
some food, produces an Unconditioned Response (UR) Á, e.g. salivation. During conditioning,
the neutral stimulus is paired sequentially with the US, which continues to produce a UR Â.
After conditioning, the neutral stimulus elicits a Conditioned Response (CR) on its own (in
extinction), thereby becoming a Conditioned Stimulus (CS) Ã.

Conditioning is usually assessed in extinction [Ski38; Pav27; Del04; Ger+13a], that is
in a subsequent session where the CS is presented alone without subsequent presentation
of the US. Conditioning is successful if animals keep producing CRs for some time in the
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absence of the US. The extinction procedure consists in repeating such protocol multiple
times until animals completely stop to produce CRs. As its acquisition, the extinction of
a CR is progressive.

From these phenomena, it is commonly accepted that the animal’s behaviour results
from reinforcement learning processes to build and possibly break associations between
US and CS [Niv09; Mai09]. By repeatedly experiencing contingencies between CS and US,
some kind of value/properties is propagated from the US to the CS or strengthens links
between the two.

Stimuli competition

Autoshaping and extinction phenomena suggest that some kind of associations can be
built and broken between CS and US, but do not provide information regarding a possi-
ble competition between multiple potential CSs. Phenomena such as blocking [Kam67;
Hol+14], overexpectation [LN98; KM96; Res99] or overshadowing [Rey61; Mac76] spread
light on this aspect of Pavlovian conditioning.

The blocking phenomenon [Kam67; Hol+14] can be observed when trying to condition
a neutral stimulus S2 (e.g. light) in the presence of an already conditioned stimulus CS1

(e.g. sound) (Figure 3.4). After an autoshaping phase with CS1, the second stimulus S2

is presented in parallel to it before the presentation of the US. One could expect that S2

would also become a CS as it is contingently paired with the US, however, when tested
alone, it does not produce a CR. Hence, it is said that CS1 blocked S2 from becoming a
CS.

Figure 3.4: Illustration of Pavlovian blocking. After an autoshaping phase À, a second
neutral stimulus is presented in parallel to the CS and the US, which continues to elicit a CR/UR
Á. After this second conditioning phase Â, contrary to what would be expected from autoshaping,
the neutral stimulus fails to produce a CR, i.e. it remains neutral.

In an overexpectation procedure [LN98; KM96; Res99; McD+14], two stimuli are con-
ditioned independently with the same reward. When presented alone, they elicit a certain
level of CR. Interestingly, when presented together in a subsequent session where only
one reward is available, they first start to elicit a higher level of CR. It is interpreted as
if the animal was, to a certain extent, summing its expectations about rewards [Res99].
Furthermore, if subsequently tested again alone, the two CSs elicit a lower level of CR
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than originally produced, as if their compounded presentation reduced their individual
level of producing CRs.

In an overshadowing [Rey61; Mac76] procedure, an autoshaping procedure is conducted
where the CS is a compound of two stimuli. When presented alone, each CS produces a
lower level of CR than when presented in compound. Furthermore, one of the stimuli usu-
ally elicits a stronger level of CR than the other. It is said that one stimulus overshadowed
the second during conditioning.

These three phenomena reflect that a compound of stimuli should not be considered
as a single stimulus. Each stimulus seems to acquire its own motivational property,
which is revised in the presence of others. Hence, these kinds of phenomena do not
fit well with the classical MDP framework (Section 2.2) where the whole situation –
the compound presentation of the stimuli – would be defined as a single state, without
taking into consideration the underlying structure and therefore without propagating
value modifications to situations, i.e. other states, where stimuli are presented alone.

Propagation

Sensory preconditioning [Bro39; RR72; Pol+13] and second order conditioning [RR72;
HR75; Jar+06; Mol+12] procedures consist in making an animal produce a CR in the
presence of a stimulus that has never been paired directly with a reward, but instead
paired with another CS that did produce a CR.

In a second-order conditioning procedure [RR72; HR75; Jar+06; Mol+12], the animal
first undergoes a classical autoshaping experiment resulting in a CS1 (e.g. light) that elic-
its a CR. In a second phase, this CS1 is preceded with another CS2 (e.g. sound). Finally,
in a final test phase, one can observe that the CS2 now elicits a CR. Hence, the animal
propagated the link or value between CS1 and US to CS2. Note that time is important,
since if presented together, the first stimulus might have blocked the second from becom-
ing a conditioned stimulus [Pol+13; Mol+12; MM14b]. The procedure is illustrated in
Figure 3.5.

Figure 3.5: Illustration of second-order conditioning. In a first phase, the animal
undergoes an autoshaping procedure and is conditioned to a stimulus CS1 À. In a second phase,
the CS1 is paired with a second neutral stimulus Á. In a third test phase, the neutral stimulus
is confirmed to be a conditioned stimulus CS2 Â.

In a sensory preconditioning procedure [Bro39; RR72; Pol+13], the two first phases of
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the second-order conditioning procedure are reversed, such that the link between the two
initially neutral stimuli is learned first. As a result, the neutral stimulus that was never
paired with the reward still elicits a CR in the final test phase.

The first procedure [RR72; HR75; Jar+06; Mol+12] suggests that any conditioned
stimulus can, to some extent, work as a reinforcer to subsequently condition other stimuli.
Hence, there can be a propagation of the animal “anticipation” from the most proximal
to the most distal stimuli of a chain that is expected to lead to a reward, which is well
accounted for by value functions in reinforcement learning processes. Indeed, the optimal
path in the MDP is learned by propagating the value of an immediate reward V (US) to
the immediately preceding state CS1, which value V (CS1) can in the second phase be
also propagated to its preceding state CS2. The value V over a stimulus is suggested to
reflect the level of CR it produces. Hence, as soon as it has some value, a stimulus may
propagate it to others.

The second procedure [Bro39; RR72; Pol+13] suggests that the link between the two
stimuli was indeed learned in the first phase – while no reward was present, thus relying
on some sort of latent learning –, otherwise the CS2 would never have elicited a CR by
itself. In such case, a pure MF algorithm would fail, as the absence of reward in the first
phase keeps the values of CS1 and CS2 null. In the second phase, the value acquired by
CS1 cannot be propagated to CS2 as this stimulus is not present. Hence, entering the
test phase, the value of CS2 should be null and, contrary to observations, no CR should
occur. An MB algorithm, on the contrary would have learned the contingency between
CS1 and CS2 in the first phase, as part of its internal model and used it to propagate the
value of CS1 to CS2 before (or at) the test phase. Hence, MB processes are better suited
to explain such data. Subsequently, the presence of a CR at the very first presentation
of the second CS in the third phase of the two experiments suggests that either an offline
process occurred between the second and third phase (e.g. Dyna-Q) or that values could
be dynamically inferred at CS presentation (e.g. tree search methods) [Tin+09; Jon+12].

Contextual informations

Blocking, overshadowing and overexpectation phenomena suggest some kind of individual
processing of stimuli. However, this does not necessarily exclude that other informations
are processed differently and used in the resulting behaviour. The spontaneous recovery
[Res97; Res97; LW08; Ger+13a] and renewal phenomena [Ros+07; BR94; Bou04; Tho+03]
provide some insights on this issue.

To observe spontaneous recovery [Res97; Res04; LW08], the animal first undergoes
an autoshaping procedure and develops a CR at CS presentation. Then, the animal
undergoes an extinction procedure and stops producing such CR. After some time, the
animal is once again presented with the CS alone and, surprisingly, it starts to produce
a CR again (Figure 3.6). Such a recovery can also be produced by presenting the US in
the context of extinction (reinstatement phenomenon [RH75; BB79]) or by playing with
the conditioning context (renewal).

Renewal phenomena [BR94; Bou04; Tho+03; Ros+07] occur when the context of ex-
tinction differs from the context of autoshaping and test (e.g. by a different Skinner box,
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Figure 3.6: Illustration of spontaneous recovery. The animal first undergoes an au-
toshaping procedure and starts eliciting a CR at CS À. In a second phase, the animal undergoes
extinction and stops producing CRs Á. After some time, the animal is once again presented with
the CS, and usually spontaneously starts to produce a CR again Â.

or different contextual cues such as coloured lights). Especially, if autoshaping is done in
a context A, extinction is done in a context B and test is done in context A without a
resting period (ABA renewal), the animal immediately produces a CR. It is interpreted as
if the animal learned that extinction was specific to context B. If test is done in another
context C (ABC renewal), the animal also produces to a lesser extent some CR, as if
autoshaping was global while extinction was context-specific.

These phenomena suggest that extinction cannot be attributed to unlearning only, as
spontaneous recovery shows that the CS-US association may persist despite extinction.
There are various interpretations [Ger+13b; MM14a; BT14; GN12; SM07; Red+07], but
all of them agree on a competition between either multiple systems, multiple contexts,
or multiple memories. These phenomena also suggest that, while stimuli can compete
within a same situation, there might be other mechanisms working at the context level,
that is, splitting tasks into different contexts or states [Red+07; Cal+12]. The classical
MDP representation, where states would embed contextual information, is well suited to
explain such context-dependency. However, this representation lacks the generalization
properties that would let the animal immediately produce CRs in new contexts (e.g. ABC
renewal).

3.3.2 Neural correlates
While mostly put aside in the discussed phenomena, the discovery and understanding of
the neural correlates of Pavlovian conditioning are an important part of the current liter-
ature (see [Niv09; Bal+08] for reviews). In this section, we describe the most influential
hypothesis of dopamine as an RPE signal in the brain, and regions that were correlated
with Pavlovian conditioning processes.

The Reward Prediction Error hypothesis of dopamine

Dopamine is a neurotransmitter that has been found to play a number of important
roles in the human brain and is secreted in the Substantia Nigra Pars Compacta (SNc)
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and Ventral Tegmental Area (VTA) in strong interaction with the Basal Ganglia [TS12;
Abr+14]. In a seminal paper, [Sch+97] found that the phasic dopaminergic activity in
SNc and VTA evoked during Pavlovian conditioning paralleled the RPE signal involved in
MF reinforcement learning algorithms. More precisely, at the beginning of conditioning,
dopamine neurons fire only at US time but after sufficient training, when the CS elicits
a CR, dopamine neurons fire at CS onset only. That is, there is some kind of dopamine
signal that propagates from US time to CS time with conditioning. Interestingly, if the
US is omitted (as in extinction), dopaminergic neurons stop firing, i.e. their activity is
below baseline, at the expected US time (Figure 3.7 A). Modelling the conditioning task
with the MDP framework and applying a TD-learning algorithm on it produces similar
results (Figure 3.7 B).

Figure 3.7: Illustration of the Reward Prediction Error hypothesis of dopamine
(A) Dopamine recordings during autoshaping and extinction. (Top) Before learning, dopamine
neurons only fire at US. (Middle) After conditioning, dopamine neurons fire at CS only. (Bot-
tom) If reward is omitted, dopamine neurons show a pause in firing at the time it was expected.
Reproduction of Figure 1 of [Sch+97]. (B) Reproduction of these patterns with a TD-Learning
algorithm, for each phase showing the MDP used, the values currently learned V and the reward
prediction error δ computed.

Since this discovery [Sch+97], dopaminergic activity have been deeply investigated and
shown to present numerous properties, a significant number of which being consistent with
such hypothesis [Sch10; Sch13]. For example, the dopamine signal may encode multiple
and distal rewards [Eno+11; Yam+13]. Its activity varies relatively to the quantity of
rewards [BG05] and the probability of expected rewards [Fio+03]. It is sensitive to time
[Fio+08] and may be context-dependent [Nak+04]. Interestingly, phasic dopaminergic
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activity has also been observed in instrumental tasks, matching RPEs that would take
actions into account [Roe+07; Mor+06; Bel+12a; Bel+13].

Of particular importance for the present work, some studies showed that different pat-
terns could be observed depending on the CR actually produced by animals [Fla+11b].
In an autoshaping task, where a lever was used as the conditioned cue, rats which mainly
engaged with it displayed an activity similar to the one initially observed by [Sch+97],
other rats which mainly engaged with the magazine during lever presentation did not have
such pattern. Instead, they developed a phasic peak at both US time and CS time. Such
data are challenging to the RPE hypothesis of dopamine, and unaccounted for by classical
models that can only produce and explain the former pattern. The computational model
developed in this work suggests an explanation for these conflicting results and a way to
solve this problem with regard to the RPE hypothesis of dopamine.

Most of these results suggest that phasic dopamine is a key signal for conditioning.
Since its first parallel between the RPE of TD-Learning (see Section 3.3.3), various com-
putational models have been developed on top of an internal RPE signal that would map
a maximum of the properties of phasic dopaminergic activity (e.g. [Mir+13; Roe+12;
KNR09; Fio+14; Igl+13]).

One must note that such extensive analyses of dopaminergic activity have lead to an
active debate regarding its exact role in the brain [Red+99a; SC02; Ber07; SC12; Eve14;
Nic10; Sch10; Fio+13; Hir14; Gli11; Ste+13]. In the present work, we tend to agree with
the RPE hypothesis of dopamine and the computational model developed embeds such
an RPE signal.

Anatomical correlates

Similarly to instrumental conditioning, various methods (e.g. pharmacological studies,
lesion studies and brain imaging) shed some light on the potential brain regions on which
would rely the expression of Pavlovian conditioning. For example, functional Magnetic
Resonance Imaging (fMRI) of Striatum showed that prediction error signals in the Dor-
sal Striatum (DS) and Ventral Striatum (VS) could be attributed to different systems
[O’D+04]. Signals in Pavlovian conditioning tasks were restricted to VS, while signals
in instrumental tasks were present in both VS and DS. Lesions of Orbitofrontal Cortex
disrupt Pavlovian conditioning [OB07], especially [Jon+12] seem to block Model-Based
capacities in Pavlovian conditioning tasks. Injection of flupentixol (an antagonist of the
dopamine) blocked the expression of some CRs in rats undergoing an autoshaping experi-
ment [Fla+11b]. Lesions of Ventral Striatum, or infusion of dopaminergic agonist within it
have been shown to disrupt the learning and expression of Pavlovian approaches [Par+99;
Par+02].

From these observations, it is commonly assumed that Pavlovian and instrumental
conditioning rely on separate mechanisms that are mainly distributed within the Basal
Ganglia, but also in the rest of the brain. Hence, it is common that models of Pavlovian
conditioning do not embed instrumental aspects, and vice versa.
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3.3.3 Theories and models
It is interesting to note that while reinforcement learning developed significantly through
the study of Pavlovian conditioning, the formal framework of RL (which is about learning
sequences of actions) is actually better suited for instrumental conditioning.

The current section tries to show the wide diversity of approaches in modelling Pavlo-
vian conditioning through some examples of dedicated computational models. Some rely
on simple RL principles, some on multiple specialized modules and some on neural net-
work architectures. However, they share in common that their output reflects intensity
of responses rather than possible sequences of actions, and process stimuli individually.
The computational model developed in the present work (Chapter 5) takes advantage of
the latter idea.

TD-Learning

Introduced as an extension to earlier models [RW72; SB81], the TD (Temporal Difference)
model [SB87] is the straightforward application of the Temporal Difference Learning prin-
ciple (Section 2.3.1). There is no action and it is assumed that the values acquired by
stimuli reflect the intensity of CRs that would be expressed towards them. In its original
version [SB81], values are defined over stimuli rather than states, and the value of a situ-
ation (necessary to compute the RPE in a traditional way (Equation 2.11)) is computed
as a sum of the values of stimuli that compose it, that is V (s) =

∑
csi∈s V (csi).

This TD model can replicate some Pavlovian conditioning phenomena, such as blocking
effects or secondary conditioning [Sut90; BM98; Niv09; Lud+12]. Depending on the MDP
representation used (e.g. by making intermediate states unique), it might be able to
represent delayed conditioning (when the CS offset and the US onset are separated by
some time) [BM98; Lud+12; KNR09]. Purely based on learning, it fails to show any
recovery effect or pre-exposure effects. It also fails to account for phenomena that suggest
Model-Based aspects [DB14; Jon+12]. This model is actually well suited to explain the
core aspects of known phenomena but shows its limits as soon as subtleties are introduced
[Lud+12]. However, it is interesting on the biological side, as phasic dopaminergic activity
has been observed to match the RPE signals of this model in a significant number of cases
[Sch+97; Sch07; Sch10] (Figure 3.7).

SLG model

Schmajuk et al. [Sch+96] have been developing the SLG (for Schmajuk-Lam-Gray) model
over several years [Sch+96; SL06; LS08], extending it to account for a significant number
of phenomena, especially variants of the main Pavlovian phenomena (most of which will
not be discussed in this chapter) that imply for example delayed responding, inhibition
or temporal precision in CS presentation.

The SLG model is composed of multiple modules (Novelty, Attention, Feedback, In-
hibition and Model) that interact with each other to return the intensity of the CR and
OR (Orienting Response) that should be expected from the animal, given the presenta-
tion of one or multiple CSs. The feedback system provides the necessary tools to handle
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delayed conditioning, by maintaining a trace of oldest events. The attentional system
shifts the animal’s attention towards either salient stimuli or novel stimuli. The novelty
system computes the global novelty of the current situation which is propagated to other
modules of the model. The inhibition system accounts for some observations that novelty
might inhibit conditioned responses at first, but not orienting responses. Finally, the last
system is the core of the model, where links are built between CSs and US providing some
kind of valued map of the world (Figure 3.8).

Figure 3.8: Illustration of the SLG model. The model possibly takes multiple CSs and
a unique US as input over time and through a set of specialized modules is able to express as
output the intensity of the associated CR and of the associated oriented response (OR). Inspired
from Figure 1 of [Sch+96] and Figure 1 [SL06].

This model and its extensions can account for a significant number of phenomena and
their derivatives (see Table 1 of [KS12]).

The comparator hypothesis

The comparator hypothesis and its extensions [MM88; Den+01; SM07; MM14a] are built
on the idea that the sole contiguity of a CS and a US, or two CSs build direct associations
between them. The complex phenomena of Pavlovian conditioning occurs only at the
expression time of CRs, due to some competition process (see Figure 3.9). At CS onset,
memories of the comparator stimuli (other CSs associated to CS) are retrieved and com-
pete in the control of behaviour. While the CS directly activates a (direct) representation
of US, it is compared to (indirect) representations of the US activated by the comparator
stimuli. For example in blocking, when presented alone, S2 (the light) retrieves a memory
of CS1 (the sound) that activates a stronger indirect representation of US than the direct
representation, and results in the absence of CR. If CS1 is presented alone, the indirect
representation of US activated by S2 is weaker and a CR is produced. Each association
can be modulated by second-order comparator stimuli, which allows the model to explain
complex stimuli-competition phenomena.

This model and its extensions can explain complex stimuli-competition phenomena but
is limited on some other aspects such as extinction and renewal (see Figure 15 of [SM07]).

Latent Cause Theory

In contrast to classical associative theories where animals are hypothesised to learn CS-US
associations (e.g. the comparator hypothesis), Courville et al. [Cou+04] hypothesised that
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Figure 3.9: Illustration of the extended comparator hypothesis. Presented with a
CS1, it elicits a direct representation of the US (dUS), and an indirect representation of the
US (iUS) through a comparator stimulus Cc. The strength of each indirect link can undergo
the same process, such that for example a CS1 can elicit a direct representation (dCc) and an
indirect representation (iCc) of a comparator stimulus, and so on. Inspired from Figure 1 of
[MM14a].

animals instead attempt to infer a generative model of the world. In the Latent Cause
Theory [Cou+04] or related alternatives [GN12], it is assumed that any observation arises
from an invisible cause and co-occurring events share this same hidden cause. Links are
therefore created between a probable cause and an observation, hence stimuli are only
connected through a latent cause. For example, the CS (e.g. sound) and the subsequent
US (e.g. food) of a classical Pavlovian task are to be seen as co-occurring because of some
hidden cause (e.g. the procedure defined by the experimentalist). More precisely, what
is learned is actually probabilities P (observation|cause) (see Figure 3.10 for a graphical
presentation of the theory).

Figure 3.10: Visual interpretation of the Latent Cause Theory. (A) Classical asso-
ciative theory: CS and US are associated. (B) Latent cause theory: CS and US are associated
to their shared latent cause. The first layer is composed of hidden variables (latent causes). The
second layer is composed of observations. (C) Illustration of the probabilistic properties of the
Latent Cause Theory.

Using Bayes theorem

P (cause|obs) = P (obs|cause)× P (cause)

P (obs)
(3.1)
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one can first compute the conditional distribution over the possible (new) causes given
the current observations P (cause|obs), and then infer new observations to be expected.
Furthermore, new observations lead to the incremental revision and improvement of the
model.

Depending on the exact implementation of the Bayesian processes involved, especially
regarding how latent causes are selected or newly created (e.g. through a discriminative
versus a generative process), one might be able to account for different sets of Pavlovian
phenomena (e.g. stimuli competition [Cou+06], contextual properties [GN12]).

3.4 Pavlovian-instrumental interactions
Pavlovian and instrumental conditioning are usually studied separately, assuming that
protocols are sufficient to solicit one conditioning and not the other. But, while Pavlovian
and instrumental conditioning have been shown to rely, at least partially, on different brain
mechanisms, their complete separation is not so clear [Yin+08; Mee+12; LO12; Mee+10;
Mai09].

Some Pavlovian phenomena have counterparts in the instrumental world, for example,
recovery phenomena [Nak+00; Tod+12; Bou+12], overexpectation [LN98] or contextual
effects [Bou+14; Mar+13]. Some Pavlovian procedures use conditioned stimuli (e.g. lever)
that are used as operant objects in instrumental task [Fla+11b]. It is often the case that
instrumental tasks embed cues commonly used as conditioned stimuli (e.g. sounds) to
inform animals about the different phases of the task. Finally, some phenomena clearly
emphasize that they can easily interact in a very tight and complex way.

These phenomena have recently been the focus of an increasing number of studies
[Lov83; Hal+01; HG03; CB05; CB11; Tal+08; Car+13; Hol+10]. In this section, we briefly
present some of the major interaction phenomena (Section 3.4.1), their neural correlates
(Section 3.4.2), and the few computational models that have been developed to account
for them (Section 3.4.3).

3.4.1 Phenomena
Phenomena that have been suggested to arise from Pavlovian and instrumental interac-
tions can emerge in different ways: by preceding a classical instrumental protocol with a
Pavlovian one, or vice versa, by combining instrumental and Pavlovian protocols or by
training subjects separately on Pavlovian and instrumental protocols and subsequently
testing the result in a combined protocol. Here we list phenomena that have been ef-
fectively listed as Pavlovian-instrumental interactions. New interaction phenomena may
still be discovered yet, or older one reinterpreted as interactions.

Conditioned Reinforcement Effect (CRE)

It has been shown that an initially neutral stimulus that has been conditioned in a Pavlo-
vian process can subsequently be used as the desired outcome of an instrumental task,
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such that animals will actively engage in a task to make them appear and interact with
them [Wil94b; Ski38; RF09].

For example, in a study of Robinson and Flagel [RF09], rats first underwent a classical
autoshaping procedure with a lever as CS. In a subsequent phase, rats were presented
with an active and an inactive nose port. Nose poking into the active port resulted in
presentation of the lever for 2 seconds without subsequent reward delivery, whereas poking
into the inactive one had no consequence. The authors observed that rats significantly
preferred the active nose port to an inactive one, clearly suggesting that the CS became
actively desired by the animal during the Pavlovian phase.

This shows that the properties/values acquired by stimuli during Pavlovian conditioning
can be subsequently used in an instrumental conditioning process and definitely impact
it.

Pavlovian-Instrumental Transfer (PIT)

A major example of a Pavlovian and instrumental conditioning interaction is the invigo-
ration that a Pavlovian CS can have on a instrumental action, an effect named Pavlovian-
Instrumental Transfer (PIT) [CB05; Hol04; Tal+08; Cor+07; CB11; Bal94; CJ07; Hol+10;
Huy+14; Hal+01]. This phenomenon has been the focus of more and more studies in the
past few years, as it seems to deeply contribute to addictive behaviours, where cues seem
to take control over rational behaviours. Many species, including humans show PIT effects
[Hol+10; Huy+14; Tal+08].

PIT can classically be observed in rats with the following 3 steps procedure. Rats are
first trained to associate some sound with the delivery of some food (Pavlovian procedure).
Subsequently, rats are trained to press a lever to be rewarded (instrumental procedure)
on some reinforcement schedule (i.e. multiple presses or some delay is needed for reward
to be delivered). Finally, once again presented with the lever (in extinction), rats show a
higher number of presses on the lever when the sound is concurrently played relative to
when it is not [CB05; Cor+07; Hal+01; Hol04].

PIT is actually not a unitary effect and must be further divided between Specific PIT
and General PIT, depending on whether the rewards used in the Pavlovian and instru-
mental procedures are similar or different. Especially, lesions of the core and shell of the
nucleus accumbens can block Specific PIT and General PIT respectively [CB05; CB11].

The PIT effect suggests that what was passively learned during a Pavlovian procedure
directly impacts actions in a subsequent instrumental task. Note that some experiments
combining overexpectation and instrumental tasks [LN98] also suggest that the PIT ef-
fect could be affected by other Pavlovian phenomena. Furthermore, while General PIT
suggests a process where the sole presence of a reward, whatever its identity, is sufficient,
Specific PIT suggests a process that takes the identity of the reward into consideration.
Hence, it is often seen as if General PIT could depend on some MF system, where the
computational principles do not allow the system to keep information regarding the iden-
tity and only focus on values. On the other side, Specific PIT could depend on some MB
system, where the internal model makes it possible to keep track of the identity of the
currently investigated reward [Jon+12; Cla+12].
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Negative auto-maintenance

In a negative automaintenance procedure, animals are presented with stimuli that precede
food delivery (exactly as in an autoshaping procedure). However, if they develop the CR
usually observed under autoshaping, reward is omitted. In the case of pigeons [WW69;
San+06], they are presented with a colored key light and any peck on that key light
terminates the trial without rewards. The experimental setup is illustrated in Figure 3.11.

It has been observed in multiple species [DW77; GR73; Kil03; Woo+74; Loc+76;
Loc+78; O’C79; GH72; Kon48; She65] that animals are unable to completely block CRs,
such that they lose a significant amount of reward during the process.

Of particular interest to the present work, results vary on how this procedure is in-
effective at blocking a CR expression. More precisely, it has been observed in pigeons
that some are more efficient at refraining from pecking than others [WW69; San+06]. It
suggests once again some form of inter-variability in the population (see Chapter 7).

Figure 3.11: Negative-automaintenance procedure. The pigeon is put in a Skinner box
where a key light is subsequently turned on À. If pigeon pecks at the key light, it is immediately
turned off and no reward is delivered Á. If it waits for a small period of time (8s) after which
the key light is turned off, reward is delivered in the food cup Â. Trials are separated by some
inter-trial interval.

According to multiple studies [Day+06; Loc+78; San+06], this phenomenon confronts
Pavlovian processes and instrumental ones. Conditioned responses develop because of
the contingency between the conditioned stimulus and the reward (Pavlovian condition-
ing). We would expect pigeons not to peck as it prevents them from being rewarded
(instrumental conditioning). Contrary to CRE where the Pavlovian phase seems to only
contribute initially to the subsequent instrumental conditioning phase, or to PIT where
the two types of conditioning seem to collaborate, this phenomenon seems to directly
confront Pavlovian and instrumental conditioning.

3.4.2 Neural correlates
Current studies suggest that Pavlovian and instrumental conditioning phenomena rely,
at least partially, on different brain regions, and each type of conditioning might also
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rely on multiple systems (Figure 3.12). However, how these systems interact remains
unclear. They might still overlap on non-investigated aspects, they could be organized
hierarchically, or offer multiple and redundant pathways.

Figure 3.12: Hypothesized functional domains of the Striatum. While illustrated by
clear separations, these regions are anatomically continuous and approximation of what are com-
monly known as Nucleus Accumbens Shell and Core (Ventral Striatum), Dorsomedial Striatum
(DMS) and Dorsolateral Striatum (DLS). Reproduction of Figure 1 of [Yin+08].

3.4.3 Theories and models
With numerous models exclusively accounting for Pavlovian conditioning or instrumen-
tal conditioning, one would expect that explaining some of their interactions should be
easily achieved by combining two of these models. However, these models usually rely on
very distinct paradigms, making their combination neither straightforward nor natural
[Mee+12].

Pavlovian models tend to describe the varying intensity of a unique response and its
propagation to conditioned stimuli is usually defined as the acquisition of some kind of
value [SB81; SB87; SB90; Sch+96; SL06; LS08; MM88; Den+01; SM07; Cou+04; GN12;
Jam+12; Has+10]. The notion of action/reflex is almost always absent or hidden from
such models. Instrumental models [Daw+05; Ker+11; DD13; DB12a; Huy+12; Bei+11;
Dol+12; Daw+11; SD12], relying mainly on the RL-paradigm, focus on the acquisition
of sequences of actions, where action selection is central to the process. The shapes of
actions are almost always neglected from such models, and sometimes also their intensity.
As situations are defined as states, the possibility to use relevant informations about
combinations of stimuli is often lost.
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As a result, few computational models have actually been developed to account for
Pavlovian-instrumental interactions, most of them being very specific to the tasks studied
[Kil03; Day+06; Huy+11; Car+13]. A difficulty of such approaches lies in the lack of
knowledge regarding the integration of Pavlovian and instrumental systems [Mee+12]. In
this thesis, we develop another computational model that account for the experimental
data of multiple studies, some of which involving interactions.

The computational model of Cartoni et al. [Car+13] is an attempt to model and explain
the separation between General and Specific PIT. It is also an interesting (and promising)
attempt to extend the Latent Cause Theory [Cou+04] used for Pavlovian conditioning, to
instrumental conditioning by introducing the notion of action. It suggests to add a third
layer for actions in the DBN network of the Latent Cause Theory, but which would only
be connected to primary rewards. It explains Specific PIT as resulting from the increase
in the probability of being rewarded when the CS played is associated to the same food
that is obtained by the currently available action (Figure 3.13 A). It also explains the
lack of PIT effect, when the CS played is associated to a food that is reachable by a
different action, as a necessary exclusion of latent causes due to the necessity of actions
(Figure 3.13 B). Finally, it explains General PIT as some sum between multiple expected
rewards (Figure 3.13 C). However, the model is yet at an early stage of investigation and
would difficultly generalize to other instrumental experiments.

Figure 3.13: Illustration of the model of Cartoni et al. [Car+13]. (A) Illustration of
the conditioning phases. The Pavlovian conditioning phase pairs 3 different CSs with 3 different
foods ÀÁÂ. The instrumental conditioning phase pairs 2 levers with 2 of the food used in the
Pavlovian phase ÃÄ. (B) Specific PIT appears when the CS and the lever lead to the same
food ÀÃ. (C) Absence of PIT is observed when the CS and the lever lead to different food, the
CS leading to a food that would have been reachable by another action ÁÃ. (D) General PIT
appears when no action would have lead to the different food associated with the CS ÂÃ.

Dayan et al. [Day+06] proposed a general computational model of interactions be-
tween Pavlovian and instrumental conditioning and took negative automaintenance as
an illustration [WW69], but did not attempt to precisely fit the model to the experimen-
tal data. Interestingly, this model suggests a dual-learning mechanism where a simple
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RL system (accounting for the instrumental aspect) computes action values that are
subsequently biased by the second Pavlovian system before the action selection phase.
More precisely, the RL system learns an advantage function (A), which computes the
advantage of an action relative to the other by computing its (negative) advantage value
A(s, a) = Q(s, a) − max′a Q(s, a′), that is how worse it is relative to the estimated best
action. This advantage is subsequently combined with a Pavlovian impetus towards a
priori defined Pavlovian actions that are assumed to be hard coded in the brain (here
pecking). This impetus is equal to the averaged value of the current state V (s), i.e. the
more rewarding is the current situation, the more biased the behaviour should be. The
combination of the impetus and the advantage value is done as the following

P (s, a) = (1− ω)× A(s, a) + ω

{
V (s) if a is Pavlovian
0 otherwise (3.2)

where 0 ≤ ω ≤ 1 is a weighting parameter that enables to vary the Pavlovian influence
in the overall behaviour. The computational model presented in this work [Les+14b] is
originally inspired by this model.

Interestingly, Huys et al. [Huy+11] used a computational model that combined similar
mechanisms to explain the results of a specific go/no-go task combined with PIT. In
their instrumental phase, the subjects had to either click on an image (approach trials),
click on the opposite side of the image (withdrawal trials) or do nothing (no go). The
instrumental phase was conducted in a neutral context, i.e. no background image or
sound. In the Pavlovian phase, the subjects passively heard sounds or saw images and
were subsequently informed of a loss or a win on their final outcome. Then, they were
tested on the instrumental task but with sounds played or background images displayed
behind the instrumental images. They successfully explained the inhibition impact of
appetitive Pavlovian stimuli on withdrawal trials, i.e. making subjects press on the image
or wait rather than click on the opposite side, and the reversed impact of aversive stimuli
on approach trials.
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Chapter 4

Synthesis and working hypothesis

..

4

Pavlovian and instrumental conditioning are mainly studied separately, even if some phe-
nomena clearly suggest that they are strongly entangled in the brain [Lov83; Hal+01;
HG03; CB05; CB11; Tal+08; Car+13; Hol+10; Day+06]. They are mostly accounted for
by different computational models that are often incompatible and rely on different princi-
ples. Few models have been developed to account for Pavlovian-instrumental interactions
phenomena [Kil03; Day+06; Huy+11; Car+13]. Furthermore, such models are specific to
the task modelled or not yet validated on experimental data. Hence, the research of a
unifying framework, or at least a collection of compatible frameworks, is of particular
interest in the study of their interactions.

The reinforcement learning framework seems particularly interesting for the given task.
It explains some basic Pavlovian phenomena at the behavioural level [SB81; SB87; Sut88;
RR72; HR75; Jar+06; Mol+12] and physiological level [Sch+97; Sch98; Sch10; Sch13;
Gli11; Har+14; BG05]. Furthermore, the dichotomy between Model-Free and Model-Based
algorithms is well suited to explain the Habitual and Goal-Directed aspects of instrumen-
tal behaviours [Daw+05; Ker+11; DD13; DB12a; Huy+12; Bei+11; Dol+12; Daw+11;
SD12]. However, in its standard form this framework fails to account for some impor-
tant Pavlovian phenomena, among which phenomena involving the competition between
multiple stimuli [Kam67; Hol+14; LN98; KM96; Res99; Rey61; Mac76]. Such phenomena
are usually explained by other models with dedicated architectures that deal with stimuli
independently [Sch+96; LS08; MM88; Den+01; SM07; Cou+04; GN12]. Hence, it is of
interest to see if possible extensions of the framework would overcome some of the rein-
forcement learning framework limitations. In particular, using factored representations
[Bou+95], classical RL systems could be revised to use information about individual stim-
uli. This could provide useful generalization properties that are currently lacking to the
general framework. It could also allow some competition or collaboration between stimuli
in the expression of the behaviour.

Some experimental data about maladaptive behaviours [WW69; San+06; GM+12] are
suggested to result from the interactions between Pavlovian and instrumental systems
[Day+06; GM+12]. The underlying intuition is that such maladaptive behaviours can be
explained by the behaviour being biased by a Pavlovian system towards selecting subop-
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timal actions [Day+06; GM+12]. Hence, this would suggest that the involved Pavlovian
system is suboptimal with respect to the MDP framework. Some experimental data about
inter-individual differences in conditioning tasks [Fla+07; Fla+09; Fla+11b; Fla+11a;
RF09; Mey+12; SR12] also suggest the coexistence of multiple systems. In these data,
some individuals are more prone to focus on specific reward-related cues than others,
which suggests that one system should take into consideration individual cues. The inter-
individual variability might then result from the importance accorded to that system by
individuals.

Taking inspiration from these yet unaccounted for experimental data, our intuition is
that combining two reinforcement learning systems and extending at least one of them
to factored representations, which could lead to competition between cues the resolution
of which being possible through both optimal and non-optimal solutions, might actu-
ally explain some of these puzzling results. Hence, we propose to investigate whether a
computational model based on these concepts would successfully replicate such results.
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This chapter presents the computational model developed over this PhD thesis and
its first application to experimental data. This work is presented under the form of a
published journal paper:

Florian Lesaint, Olivier Sigaud, Shelly B Flagel, Terry E Robinson, and Mehdi
Khamassi. “Modelling Individual Differences in the Form of Pavlovian Condi-
tioned Approach Responses: A Dual Learning Systems Approach with Factored
Representations”. In: PLoS Comput Biol 10.2 (2014), e1003466
http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1003466

It aims at revising the study of Pavlovian conditioning with the RL framework by
combining it with factored representations in a dual-learning system model. It proves
the interest of such a method by confronting it to experimental data unaccounted for by
classical theories, especially regarding recordings that do not fit with the classical RPE
hypothesis of dopamine.

It shows that a computational model composed of a Model-Based system and a Model-
Free system revised to use factored representations enables to reproduce inter-individual
behavioural, physiological and pharmacological differences observed in rats called sign-
trackers and goal-trackers in a Pavlovian autoshaping task [Fla+11b].

Simulations suggest that the behaviour of both types of animals results from a difference
in the balance of the contributions of the MB and MF systems (values integrated through

..
81

...

http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1003466


a weighted sum). Sign-trackers would mainly rely on the MF system, while goal-trackers
would mainly rely on the MB system. The model also explains why the acquisition of goal-
tracking is dopamine-independent unlike the acquisition and expression of sign-tracking.
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Modelling Individual Differences in the Form of
Pavlovian Conditioned Approach Responses: A Dual
Learning Systems Approach with Factored
Representations
Florian Lesaint1,2,∗, Olivier Sigaud1,2, Shelly B. Flagel3−5, Terry E. Robinson5, Mehdi
Khamassi1,2
1 Institut des Systèmes Intelligents et de Robotique, UMR 7222, UPMC
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2 Institut des Systèmes Intelligents et de Robotique, UMR 7222, CNRS,
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Abstract
Reinforcement Learning has greatly influenced models of conditioning, providing powerful
explanations of acquired behaviour and underlying physiological observations. However,
in recent autoshaping experiments in rats, variation in the form of Pavlovian conditioned
responses (CRs) and associated dopamine activity, have questioned the classical hypoth-
esis that phasic dopamine activity corresponds to a reward prediction error-like signal
arising from a classical Model-Free system, necessary for Pavlovian conditioning. Over
the course of Pavlovian conditioning using food as the unconditioned stimulus (US), some
rats (sign-trackers) come to approach and engage the conditioned stimulus (CS) itself –
a lever – more and more avidly, whereas other rats (goal-trackers) learn to approach the
location of food delivery upon CS presentation. Importantly, although both sign-trackers
and goal-trackers learn the CS-US association equally well, only in sign-trackers does
phasic dopamine activity show classical reward prediction error-like bursts. Furthermore,
neither the acquisition nor the expression of a goal-tracking CR is dopamine-dependent.
Here we present a computational model that can account for such individual variations.
We show that a combination of a Model-Based system and a revised Model-Free system
can account for the development of distinct CRs in rats. Moreover, we show that revising
a classical Model-Free system to individually process stimuli by using factored representa-
tions can explain why classical dopaminergic patterns may be observed for some rats and
not for others depending on the CR they develop. In addition, the model can account for
other behavioural and pharmacological results obtained using the same, or similar, au-
toshaping procedures. Finally, the model makes it possible to draw a set of experimental
predictions that may be verified in a modified experimental protocol. We suggest that
further investigation of factored representations in computational neuroscience studies
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may be useful.

Author Summary
Acquisition of responses towards full predictors of rewards, namely Pavlovian condition-
ing, has long been explained using the reinforcement learning theory. This theory for-
malizes learning processes that, by attributing values to situations and actions, makes
it possible to direct behaviours towards rewarding objectives. Interestingly, the implied
mechanisms rely on a reinforcement signal that parallels the activity of dopamine neurons
in such experiments. However, recent studies challenged the classical view of explaining
Pavlovian conditioning with a single process. When presented with a lever whose retrac-
tion preceded the delivery of food, some rats started to chew and bite the food magazine
whereas others chew and bite the lever, even if no interactions were necessary to get the
food. These differences were also visible in brain activity and when tested with drugs,
suggesting the coexistence of multiple systems. We present a computational model that
extends the classical theory to account for these data. Interestingly, we can draw pre-
dictions from this model that may be experimentally verified. Inspired by mechanisms
used to model instrumental behaviours, where actions are required to get rewards, and
advanced Pavlovian behaviours (such as overexpectation, negative patterning), it offers
an entry point to start modelling the strong interactions observed between them.

Introduction
Standard Reinforcement Learning (RL) [SB98] is a widely used normative framework for
modelling conditioning experiments [SB87; Bar95]. Different RL systems, mainly Model-
Based and Model-Free systems, have often been combined to better account for a variety
of observations suggesting that multiple valuation processes coexist in the brain [Cla+12;
SD12; Car+02]. Model-Based systems employ an explicit model of consequences of ac-
tions, making it possible to evaluate situations by forward inference. Such systems best
explain goal-directed behaviours and rapid adaptation to novel or changing environments
[Yin+05; SB12; Daw+11]. In contrast, Model-Free systems do not rely on internal models
and directly associate values to actions or states by experience such that higher valued sit-
uations are favoured. Such systems best explain habits and persistent behaviours [Gra08;
Yin+04; Daw+11]. Of significant interest, learning in Model-Free systems relies on a com-
puted reinforcement signal, the reward prediction error (RPE). This signal parallels the
observed shift of dopamine neurons’ response from the time of an initially unexpected
reward – an outcome that is better or worse than expected – to the time of the condi-
tioned stimulus that precedes it, which, in Pavlovian conditioning experiments, is fully
predictive of the reward [Sch98; Fio+03].

However recent work by Flagel et al. [Fla+11b], raises questions about the exclusive
use of classical RL Model-Free methods to account for data in Pavlovian conditioning
experiments. Using an autoshaping procedure, a lever-CS was presented for 8 seconds,
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followed immediately by delivery of a food pellet into an adjacent food magazine. With
training, some rats (sign-trackers; STs) learned to rapidly approach and engage the lever-
CS. However, others (goal-trackers; GTs) learned to approach the food magazine upon
CS presentation, and made anticipatory head entries into it. Furthermore, in STs, phasic
dopamine release in the nucleus accumbens, measured with fast scan cyclic voltammetry,
matched RPE signalling, and dopamine was necessary for the acquisition of a sign-tracking
CR. In contrast, despite the fact that GTs acquired a Pavlovian conditioned approach
response, this was not accompanied with the expected RPE-like dopamine signal, nor was
the acquisition of a goal-tracking CR blocked by administration of a dopamine antagonist
(see also [DE10]).

Classical dual systems models [Day+06; Daw+05; Ker+11; Glä+10] should be able to
account for these behavioural and pharmacological data, but the physiological data are not
consistent with the classical view of RPE-like dopamine bursts. Based on the observation
that STs and GTs focus on different stimuli in the environment, we suggest that the
differences observed in dopamine recordings may be due to an independent valuation
of each stimulus. In classical RL, valuation is usually done at the state level. Stimuli,
embedded into states – snapshots of specific configurations in time –, are therefore hidden
to systems. In this case, it would prevent dealing separately with the lever and the
magazine at the same time. However, such data may still be explained by a dual systems
theory, when extended to support and benefit from factored representations; that is,
learning the specific value of stimuli independently from the states in which they are
presented.

In this paper, we present and test a model using a large set of behavioural, physiological
and pharmacological data obtained from studies on individual variation in Pavlovian
conditioned approach behaviour [Fla+07; Fla+09; RF09; Fla+11b; MB09; DB12b; SR12].
It combines Model-Free and Model-Based systems that provide the specific components of
the observed behaviours [Mey+12]. It explains why inactivating dopamine in the core of
the nucleus accumbens or in the entire brain results in blocking specific components and
not others [Fla+11b; SR12]. By weighting the contribution of each system, it also accounts
for the full spectrum of observed behaviours ranging from one extreme – sign-tracking –
to the other [Mey+12] – goal-tracking. Above all, by extending classical Model-Free
methods with factored representations, it potentially explains why the lever-CS and the
food magazine might acquire different motivational values in different individuals, even
when they are trained in the same task [RF09]. It may also account for why the RPE-
like dopaminergic responses are observed in STs but not GTs, and also the differential
dependence on dopamine [Fla+11b].

Results
We model the task as a simple Markov Decision Process (MDP) with different paths that
parallel the diverse observed behaviours ranging from sign-tracking – engaging with the
lever as soon as it appears – to goal-tracking – engaging with the magazine as soon as the
lever-CS appears – (see Figure 5.1).
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Figure 5.1: Computational representation of the autoshaping procedure. (A)
MDP accounting for the experiments described in [Fla+09; Fla+11b; RF09; Mey+12]. States
are described by a set of variables: L/F - Lever/Food is available, cM/cL - close to the Maga-
zine/Lever, La - Lever appearance. The initial state is double circled, the dashed state is terminal
and ends the current episode. Actions are engage with the proximal stimuli, explore, or go to
the Magazine/Lever and eat. For each action, the feature that is being focused on is displayed
within brackets. The path that STs should favour is in red. The path that GTs should favour is
in dashed blue. (B) Time line corresponding to the unfolding of the MDP.

The computational model (see Figure 5.2) consists of two learning systems, employing
distinct mechanisms to learn the same task: (1) a Model-Based system which learns the
structure of the task from which it infers its values; (2) a Feature-Model-Free system where
values for the relevant stimuli (lever-CS and the food magazine) are directly learned by
trial and error using RPEs. The respective values of each system are then weighted by
an ω parameter before being used in a classical softmax action-selection mechanism (see
Methods).

An important feature of the model is that varying the systems weighting parameter
ω (while sharing the other parameter values of the model across subgroups) is sufficient
to qualitatively reproduce the characteristics of the different subgroups of rats observed
experimentally during these studies.

To improve the matching of the following results with the main experimental data, a
different set of parameter values was used for each subgroup (ST, GT and IG). The values
were retrieved after fitting autoshaping data only (see Methods, Table S5.1). Simulated
results on other behavioural, physiological and pharmacological data are generated with
the same parameter values. While it might result in a weaker fitting of the other exper-
imental data, this permits a straightforward comparison of results at different levels for
the same simulation. Moreover, it confirms that the model can reproduce behavioural,
physiological and pharmacological results with a single simulation per subgroup.

On each set of experimental data, we compare different variants of the computational
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Figure 5.2: General architecture of the model and variants. The model is composed
of a Model-Based system (MB, in blue) and a Feature-Model-Free system (FMF, in red) which
provide respectively an Advantage function A and a value function V values for actions ai given
a state s. These values are integrated in P, prior to be used into an action selection mechanism.
The various elements may rely on parameters (in purple). The impact of flupentixol on dopamine
is represented by a parameter f that influences the action selection mechanism and/or any reward
prediction error that might be computed in the model.

model in order to highlight the key mechanisms that are required for their reproduction.
Simulation results on each data subset are summarized in Figure 5.3. The role of each
specific mechanism of the model in reproducing each experimental data is detailed in
Figure 5.4.

Behavioural data
Autoshaping

The central phenomenon that the model is meant to account for is the existence of indi-
vidual behavioural differences in the acquisition of conditioned approach responses in rats
undergoing an autoshaping procedure; that is, the development of a sign-tracking CR, a
goal-tracking CR, or an intermediate response.

Based on their engagement towards the lever, Flagel et al. [Fla+09] divided rats into
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Figure 5.3: Summary of simulations and results. Each line represents a different model
composed of a pair of Reinforcement Learning systems. Each column represents a simulated
experiment. Experiments are grouped by the kind of data accounted for: behavioural (autoshaping
[Fla+09; Fla+11b], CRE [RF09], Incentive salience [MB09; DB12b]), physiological [Fla+09] and
pharmacological (Flu post-NAcC [SR12], Flu pre-systemic [Fla+09]). Variant 4 (i.e. Model-based
/ Model-Free without features) is not included as it failed to even reproduce the autoshaping
behavioural results and was not investigated further.

three groups (see [Mey+12] for a more recently defined criterion). At lever appearance,
rats that significantly increased their engagement towards it (top 30%) were classified as
STs, whereas rats that almost never engaged with the lever (bottom 30%) were classified
as GTs (these latter animals engaged the food magazine upon CS presentation). The
remaining rats, engaging in both lever and magazine approach behaviours were defined as
the Intermediate Group (IGs) (see Figure 5.5 A, B). STs and GTs acquired their respective
CRs at a similar rate over days of training [RF09].

The current model is able to reproduce such results (see Figure 5.5 C, D). By running
a simulation for each group of rats, using different parameters (mainly varying the ω
parameter) the model reproduces the different tendencies to engage with the lever (ω =
0.499), with the magazine (ω = 0.048) or to fluctuate between the two (ω = 0.276).
A high ω strengthens the influence of the Feature-Model-Free system, which learns to
associate a high motivational value to the lever CS, and a sign-tracking CR dominates.
A low ω increases the influence of the Model-Based system, which infers the optimal
behaviour to maximize reward, and goal-tracking is favoured. When both systems are
mixed, i.e. with an intermediate ω, the behaviour is more likely to oscillate between sign-
and goal-tracking, representative of the intermediate group.

These results rely on the combination of two systems that would independently lead
to ‘pure’ sign-tracking or goal-tracking CRs. Three tested variants of the model could
reproduce these behavioural results as well (see Figure S5.1): a combination of Feature-
Model-Free systems and simple Model-Free system (Variant 1); a multi-step extension of
Dayan 2006’s model [Day+06] giving a Pavlovian impetus for the lever (Variant 2); and
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Figure 5.4: Summary of the key mechanisms required by the model to reproduce
experimental results. Each line represents a different mechanism of the model. Each column
represents a simulated experiment. For each mechanism, it states in which experiment and for
which behaviour – sign-tracking (red), goal-tracking (blue) or both (+) – it is required. Note
however that all mechanisms and associated parameters have, to a certain extent, an impact on
any presented results.

a symmetrical version of this last model with two impetuses, one for the lever, and one
for the magazine (Variant 3) (see Methods). Interestingly, a combination of Model-Based
and classical Model-Free (not feature-based : Variant 4) fails in reproducing these results
(see Figure S5.8). This is because both systems are proven to converge to the same values
and both would favour pure goal-tracking, such that varying their contribution has no
impact on the produced behaviours.

Thus, at this stage, we can conclude that several computational models based on dual
learning systems can reproduce these behavioural results, given that the systems favour
different behaviours (see Figure S5.1). However, Variants 1, 2 and 3 fail to reproduce
other behavioural, pharmacological and physiological data characteristic of STs and GTs
(see following sections).

Incentive salience

The results in Figure 5.5 only represent the probability of approach to either the lever-CS
or the food magazine. Thus, they do not account for the specific ways rats engage and
interact with the respective stimuli. In fact, if food is used as the US, rats are known
to chew and bite the stimuli on which they are focusing [MB09; DB12b] (see Figure 5.6
A). Importantly, both STs and GTs express this consumption-like behaviour during the
CS period, directed towards the lever or the food magazine, respectively. It has been
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Figure 5.5: Reproduction of sign- versus goal-tracking tendencies in a population
of rats undergoing an autoshaping experiment. Mean probabilities to engage at least
once with the lever (A,C) or the magazine (B,D) during trials. Data are expressed as mean
± S.E.M. and illustrated in 50-trial (2-session) blocks. (A,B) Reproduction of Flagel et al.
[Fla+09] experimental results (Figure 2 A,B). Sign-trackers (ST) made the most lever presses
(black), goal-trackers (GT) made the least lever presses (grey), Intermediate group (IG) is in
between (white). (C,D) Simulation of the same procedure (squares) with the model. Simulated
groups of rats are defined as STs (ω = 0.499; β = 0.239; α = 0.031; γ = 0.996; uITI = 0.027 ;
Qi(s1, goL) = 0.844; Qi(s1, exp) = 0.999; Qi(s1, goM) = 0.538; n=14) in red, GTs (ω = 0.048
; β = 0.084; α = 0.895; γ = 0.727; uITI = 0.140; Qi(s1, goL) = 1.0; Qi(s1, exp) = 0.316;
Qi(s1, goM) = 0.023; n=14) in blue and IGs (ω = 0.276; β = 0.142; α = 0.217; γ = 0.999;
uITI = 0.228; Qi(s1, goL) = 0.526; Qi(s1, exp) = 0.888; Qi(s1, goM) = 0.587; n=14) in white.
The model reproduces the same behavioural tendencies. With training, STs tend to engage more
and more with the lever and less with the magazine, while GTs neglect the lever to increasingly
engage with the magazine. IGs are in between.

argued that this behaviour may reflect the degree to which incentive salience is attributed
to these stimuli, and thus the extent to which they become “wanted” [MB09; DB12b;
Ber07].

In an RL-like framework, incentive salience attribution can be represented as a bonus
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Figure 5.6: Possible explanation of incentive salience and Conditioned Reinforce-
ment Effect by values learned during autoshaping procedure. Data are expressed as
mean ± S.E.M. Simulated groups of rats are defined as in Figure 5.5. (A) Number of nibbles
and sniffs of preferred cue by STs and GTs as a measure for incentive salience. Data extracted
from Mahler et al. [MB09] from Figure 3 (bottom-left). (B) Reproduction of Robinson et al.
[RF09] experimental results (Figure 2 B). Lever contacts by STs and GTs during a conditioned
reinforcer experiment. (C) Probability to engage with the respective favoured stimuli of STs and
GTs at the end of the simulation (white, similar to the last session of Figure 5.5 C for STs
and D for GTs) superimposed with the contribution in percentage of the values attributed by
the Feature-Model-Free system in such engagement for STs (red) and GTs (blue). We hypoth-
esize that such value is the source of incentive salience and explains why STs and GTs have a
consumption-like behaviour towards their favoured stimulus. (D) Probability to engage with the
lever versus exploring when presented with the lever and no magazine for STs (red), GTs (blue)
and a random-policy group UN (white), simulating the unpaired group (UN) of the experimental
data. Probabilities were computed by applying the softmax function after removing the values
for the magazine interactions (see Methods). STs would hence actively seek to engage with the
lever relatively to GTs in a Conditioned Reinforcement Effect procedure.

mechanism for interacting with stimuli. The Feature-Model-Free system in the model
realizes such a function, providing a specific bonus for each stimulus in any simulated
rat. Such bonus was inspired by the Pavlovian impetus mechanism of Dayan 2006’s
model [Day+06]. Figure 5.6 C shows the percentage of Feature-Model-Free value that
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contributed to the computation of the probability to engage with the respective favoured
cues of STs and GTs at the end of the simulation.

The presence of the magazine in the inter-trial interval (ITI), and the necessary revision
of the associated bonus at a lower value when exploring, makes the associated bonus
smaller than that of the lever (see Methods). This results in a even smaller contribution of
this bonus in GTs behaviour (blue bar in Figure 5.6 C) compared to STs (red bar in Figure
5.6 C). Although it is not straightforward to interpret how the probability of engagement
(white bars in Figure 5.6 C) in the model might be translated into a consumption-like
behaviour from a computational point of view, we propose that the different contributions
of bonuses could explain the slightly smaller number of nibbles and sniffs of preferred cue
observed experimentally in GTs compared to STs (Figure 5.6 A, adapted from [MB09]).
This may also explain why other studies have observed a smaller proportion of nibbles on
the magazine in GTs [DB12b] and less impulsiveness [Lov+11] in GTs compared to STs.
We come back to this issue in the discussion.

Variants 1 and 3 also realize such function by providing bonuses for actions leading to
both stimuli (see Figure S5.2). Only providing bonus for sign-tracking behaviour – as in
Dayan’s model (Variant 2) – does not fit well with the attribution of incentive salience
to both stimuli. It would suggest that we should not observe incentive salience towards
the magazine in any rats, which is in discrepancy with the experimental data. Thus, the
important mechanism here is that stimuli are not processed differently. Any stimulus is
attributed with its respective bonus, which is pertinent in regard to the attribution of
incentive salience.

Conditioned Reinforcement Effect (CRE)

An important question about the difference in observed behaviours is about the properties
acquired by the lever that makes it more attractive to STs than to GTs. To answer this
question, Robinson and Flagel studied the dissociation of the predictive and motivational
properties of the lever [RF09]. Part of their results involves asking whether the Pavlovian
lever-CS would serve as a conditioned reinforcer, capable of reinforcing the learning of a
new instrumental response [Wil94b; Ski38]. In a new context, rats were presented with an
active and an inactive nose port. Nose poking into the active port resulted in presentation
of the lever for 2 seconds without subsequent reward delivery, whereas poking into the
inactive one had no consequence. The authors observed that while both STs and GTs
preferred the active nose port to an inactive one, STs made significantly more active
nose pokes than GTs (see Figure 5.6 B, see also [Lom+11]). This suggests that the lever
acquired greater motivational value in STs than in GTs.

Without requiring additional simulations, the model can explain these results by the
value that has been incrementally learned and associated with approaching the lever in
the prior autoshaping procedure for STs and GTs. In the model, STs attribute a higher
value to interacting with the lever than GTs and should actively work for its appearance
enabling further engagement. Figure 5.6 D shows the probabilities of engagement that
would be computed at lever appearance after removing the magazine (and related actions)
at the end of the experiment. Indeed, even though the lever is presented only very briefly,
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upon its presentation in the conditioned reinforcement test, STs actively engage and
interact with it [RF09]. Any value associated to a state-action pair makes this action in
the given state rewarding in itself, favouring actions (e.g. nosepokes) that would lead to
such state. Repeatedly taking this action without receiving rewards should eventually
lead to a decrease of this value and reduce the original engagement.

Physiological data
Not only have Flagel et al. [Fla+11b] provided behavioural data but they also provide
physiological and pharmacological data. This raises the opportunity to challenge the
model at different levels, as developed in the current and next sections.

Using Fast Scan Cyclic Voltammetry (FSCV) in the core of the nucleus accumbens
they recorded the mean of phasic dopamine (DA) signals upon CS (lever) and US (food)
presentation. It was observed that depending on the subgroup of rats, distinct dopamine
release patterns emerge (see Figure 5.7 A,B) during Pavlovian training. STs display the
classical propagation of a phasic dopamine burst from the US to the CS over days of
training and the acquisition of conditioned responding (see Figure 5.7 A). This pattern of
dopamine activity is similar to that seen in the firing of presumed dopamine cells in mon-
keys reported by Schultz and colleagues [Sch98] and interpreted as an RPE corresponding
to the reinforcement signal δ of Model-Free RL systems [SB98]. In GTs, however, a dif-
ferent pattern was observed. Initially there were small responses to both the CS and US,
of which the amplitudes seemed to follow a similar trend over training (see Figure 5.7 B).

By recording the mean of the RPEs δ computed in the Feature-Model-Free system
during the autoshaping simulation (i.e. only fitted to behavioural data), the model can
still qualitatively reproduce the different patterns observed in dopamine recordings for STs
and GTs (see Figure 5.7 C,D). For STs, the model reproduces the progressive propagation
of δ from the US to the CS (see Figure 5.7 C). For GTs, it reproduces the absence of such
propagation. The RPE at the time of the US remains over training, while a δ also appears
at the time of the CS (see Figure 5.7 D). In the model, such discrepancy is explained by
the difference in the values that STs and GTs use for the computation of RPEs at the time
of the CS and the US. STs, by repeatedly focusing on the lever, propagate the total value
of food to the lever and end up having a unique δ at the unexpected lever appearance
only. By contrast, by repeatedly focusing on the magazine during the lever appearance
but, as all rats, also from time to time during ITI, GTs revise the magazine value multiple
times, positively just after food delivery and negatively during ITI. Such revisions lead
to a permanent discrepancy between the expected and observed value, i.e. a permanent
δ, at lever appearance and food delivery, when engaging with the magazine.

The key mechanism to reproduce these results resides in the generalization capacities
of the Feature-Model-Free system. Based on features rather than states, feature-values
are to be used, and therefore revised, at different times and states of the experiment,
favouring the appearance of RPEs. Variants 2, 3 and 4 relying on classical Model-Free
systems are unable to reproduce such results (see Figure S5.3). By using values over
abstract states rather than stimuli, it makes it impossible to only revise the value of the
magazine during ITI. Therefore, given the deterministic nature of the MDP, we observe
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Figure 5.7: Reproduction of patterns of dopaminergic activity of sign- versus goal-
trackers undergoing an autoshaping experiment. Data are expressed as mean ± S.E.M.
(A,B) Reproduction of Flagel et al. [Fla+11b] experimental results (Figure 3 d,f). Phasic
dopamine release recorded in the core of the nucleus accumbens in STs (light grey) and GTs
(grey) using Fast Scan Cyclic Voltammetry. Change in peak amplitude of the dopamine signal
observed in response to CS and US presentation for each session of conditioning (C,D) Average
RPE computed by the Feature-Model-Free system in response to CS and US presentation for
each session of conditioning. Simulated groups of rats are defined as in Figure 5.5. The model
is able to qualitatively reproduce the physiological data. STs (blue) show a shift of activity from
US to CS time over training, while GTs develop a second activity at CS time while maintaining
the initial activity at US time.
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a classical propagation of RPEs in all pathways up to the appearance of the lever.

Pharmacological data
Effects of systemic flupentixol administration on the learning of sign- and
goal-tracking behaviours

Flagel et al. [Fla+11b] also studied the impact of systemic injections of the non specific
dopamine antagonist, flupentixol, on the acquisition of sign-tracking and goal-tracking
CRs. The authors injected flupentixol in rats prior to each of 7 sessions and observed the
resulting behaviours. Behaviour during the 8th session was observed without flupentixol.

Systemic injections of flupentixol in STs and GTs (Flu groups, black curves in Figure 5.8
A,B) blocked expression of their respective behaviours during training. Saline injections
(white curves in Figure 5.8 A,B) left their performances intact. The crucial test for
learning took place on the 8th day, when all rats were tested without flupentixol. STs
failed to approach the lever, and performed as the saline-injected controls did on the first
day of training.

Thus, in STs flupentixol blocked the acquisition of a sign-tracking CR (see Figure 5.8 A).
Interestingly, on the flupentixol-free test day GTs did not differ from the saline-injected
control group, indicating that flupentixol did not block the acquisition of a goal-tracking
CR (see Figure 5.8 B). Thus, acquisition of a sign-tracking CR, but not a goal-tracking
CR, is dependent on dopamine (see also [DE10]).

The model reproduces these pharmacological results (see Figure 5.8 C,D). As in the
experimental data, simulated GTs and STs do not show a specific conditioned response
during the first 7 sessions under flupentixol. On the 8th session, without flupentixol, we
observe that STs still do not show a specific conditioned response while GTs perform at
a level close to that of the saline-injected control group (see Figure 5.8 C,D).

The absence of specific conditioned response in the whole population for the first 7
sessions is first due to the hypothesized [Hum+12] impact of flupentixol on action selection
(see Methods). With enough flupentixol, the elevation of the selection temperature leads
to a decrease of the influence of learned values in the expressed behaviour, masking any
possibly acquired behaviour.

The absence of a specific conditioned response in STs is due to the blockade of learning
in the second system by flupentixol, since it is RPE-dependent. Therefore almost no
learning occurs in the system (see Figure 5.8).

In contrast, with the first system being RPE-independent, flupentixol has no effect
on learning, because it is Model-Based rather than Model-Free [KH12]. The expression
of behaviour is blocked at the action selection level, which does not make use of values
learned by the Model-Based system. Thus, GTs, relying mainly on the first system, learn
their CR under flupentixol but are just not able to express it until flupentixol is removed.
The lower level of goal-tracking in the Flu group relative to the saline-injected control
group on the 8th session is due to the lack of exploitation induced by flupentixol injection
during the previous 7 sessions. By engaging less with the magazine, the Flu group ends
up associating a lower value to the magazine (i.e. the value did not fully converge in 7
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Figure 5.8: Reproduction of the effect of systemic injections of flupentixol on sign-
tracking and goal-tracking behaviours. Data are expressed as mean ± S.E.M. (A,B)
Reproduction of Flagel et al. [Fla+11b] experimental results (Figure 4 a,d). Effects of flupentixol
on the probability to approach the lever for STs (A) and the magazine for GTs (B) during lever
presentation. (C,D) Simulation of the same procedure (squares) with the model. Simulated
groups of rats are defined as in Figure 5.5. (C) By flattening the softmax temperature and
reducing the RPEs of the Feature-Model-Free system, to mimic the possible effect of flupentixol,
the model can reproduce the blocked acquisition of sign-tracking in STs (red), engaging less the
lever relatively to a saline-injected control group (white). (D) Similarly, the model reproduces
that goal-tracking was learned but its expression was blocked. Under flupentixol (first 7 sessions),
GTs (blue) did not express goal-tracking, but on a flupentixol-free control test (8th session) their
engagement with the magazine was almost identical to the engagement of a saline-injected control
group (white).

sessions) to guide its behaviour.

Interestingly, if the model had been constituted of Model-Free systems only – as in
Variants 1, 2 and 3 – it would not have been able to reproduce these results, because both
systems would have been RPE-dependent and thus sensitive to the effect of flupentixol
(see Figure S5.4).
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Effects of local flupentixol administration on the expression of sign- and goal-
tracking behaviours

In a related experiment, Saunders et al. [SR12] studied the role of dopamine in the
nucleus accumbens core in the expression of Pavlovian-conditioned responses that had
already been acquired. After the same autoshaping procedure as in [Fla+07], they injected
different doses of flupentixol in the core of the nucleus accumbens of rats and quantified its
impact on the expression of sign-tracking and goal-tracking CRs in an overall population
(without distinguishing between STs and GTs).

They found that flupentixol dose dependently attenuated the expression of sign-tracking,
while having essentially no effect on goal-tracking (see Figure 5.9 A, B). Along with the
Flagel et al. [Fla+11b] study, these results suggest that both the acquisition and ex-
pression of a sign-tracking CR is dopamine-dependent (at least in the core) whereas the
acquisition and expression of a goal-tracking CR is not.

Given the assumption that the Feature-Model-Free system would take place in or rely
on the core of the nucleus accumbens, this model reproduces the main experimental result:
the decreased tendency to sign-track in the population (see Figure 5.9 C). Note that in the
previous experiment, the injection of flupentixol was systemic, and assumed to affect any
region of the brain relying on dopamine, whereas in the present experiment it was local
to the core of the nucleus accumbens. Therefore, we modelled the impact of flupentixol
differently between the current and previous simulations (see Methods). In the model,
the tendency to sign-track is directly correlated with a second operational system. Any
dysfunction in the learning process (here by a distortion of RPEs) reduces this trend.

The model successfully reproduced the absence of reduction of goal-tracking, in contrast
to the reduction of sign-tracking. However, it was unable to reproduce the invariance
in goal-tracking (see Figure 5.9 D) and rather produced an increase in goal-tracking.
This is due to the use of a softmax operator for action selection, as this is the case in
the vast majority of computational neuroscience RL models [Day+06; Glä+10; Hum+12;
Daw+05; Ker+11; Huy+12; Doy+02; Red+07], which automatically favours goal-tracking
when sign-tracking is blocked (see Limitations). We did not attempt to cope with this
limitation because our focus here was the absence of reduction of goal-tracking.

Besides, the model could, after re-learning, reproduce the selective impact of intra-
accumbal flupentixol injections observed in sign-tracking but not in goal-tracking, because
such injections affected the learning process in the Feature-Model-Free system only.

Discussion
We tested several mechanisms from the current literature on modelling individual vari-
ation in the form of Pavlovian conditioned responses (ST vs GT) that emerge using a
classical autoshaping procedure, and the role of dopamine in both the acquisition and
expression of these CRs. Benefiting from a rich set of data, we identified key mecha-
nisms that are sufficient to account for specific properties of the observed behaviours.
The resulting model relies on two major concepts: Dual learning systems and factored
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Figure 5.9: Reproduction of the effect of post injections of flupentixol in the core
of the nucleus accumbens. Data are expressed as mean ± S.E.M. (A,B) Reproduction
of Saunders et al. [SR12] experimental results (Figure 2 A,D). Effects of different doses of
flupentixol on the general tendency to sign-track (A) and goal-track (B) in a population of rats,
without discriminating between sign- and goal-trackers. (C,D) Simulation of the same procedure
with the model. The simulated population is composed of groups of rats defined as in Figure
5.5. By simulating the effect of flupentixol as in Figure 5.8, the model is able to reproduce the
decreasing tendency to sign-track in the overall population by increasing the dose of flupentixol.

representations. Figure 5.4 summarizes the role of each mechanism in the model.

Dual learning systems
Combining Model-Based and Model-Free systems has previously been successful in ex-
plaining the shift from goal-directed to habitual behaviours observed in instrumental
conditioning [Daw+05; Ker+11; Huy+12; KH12; Glä+10]. However, few models based on
the same concept have been developed to account for Pavlovian conditioning [Day+06].
While the need for two systems is relevant in instrumental conditioning given the distinct
temporal engagement of each system, such a distinction has not been applied to Pavlovian
phenomena (but see recent studies on orbitofrontal cortex [Tak+09; McD+11; McD+12]).
The variability of behaviours and the need for multiple systems have been masked by fo-

..
98

.
Modelling individual differences in autoshaping CRs (article)

..



cusing on whole populations and, for the most part, ignoring individual differences in
studies of Pavlovian conditioning. The nature of the CS is especially important, as many
studies of Pavlovian conditioned approach behaviour have used an auditory stimulus as
the CS, and in such cases only a goal-tracking CR emerges in rats [CD83; Mey+10].

As expected from the behavioural data, combining two learning systems was successful
in reproducing sign- and goal-tracking behaviours. The Model-Based system, learning the
structure of the task, favours systematic approach towards the food magazine, and waiting
for food to be delivered, and hence the development of a goal-tracking CR. The Feature-
Model-Free system, directly evaluating features by trials and errors, favours systematic
approach towards the lever, a full predictor of food delivery, and hence the development of
a sign-tracking CR. Moreover, utilizing the Feature-Model-Free system to represent sign-
tracking behaviour yields results consistent with the pharmacological data. Disrupting
RPEs, which reflects the effects of flupentixol on dopamine, blocks the acquisition of a
sign-tracking CR, but not a goal-tracking CR. The model does not make a distinction
between simple approach behaviour versus consumption-like engagement, as reported for
both STs and GTs [MB09; DB12b]. However given that such engagement results from
the development of incentive salience [MB09; DB12b], the values learned by the Feature-
Model-Free system to bias behaviour towards stimuli attributed with motivational value
are well-suited to explain such observations. The higher motivational value attributed to
the lever by STs relative to GTs can also explain why the lever-CS is a more effective
conditioned reinforcer for STs than for GTs [RF09].

Importantly, none of the systems are dedicated to a specific behaviour, nor rely on a
priori information to guide their processes. The underlying mechanisms increasingly make
one behaviour more pronounced than the other through learning. Each system contributes
to a certain extent to sign- and goal-tracking behaviour. This property is emphasized by
the weighted sum integration of the values computed by each system before applying the
softmax action-selection mechanism. The variability of behaviours in the population can
then be accounted for by adjusting the weighting parameter ω from 1 (i.e. favouring sign-
tracking) to 0 (i.e. favouring goal-tracking). This suggests that the rats’ actions result
from some combination of rational and impulsive processes, with individual variation
contributing to the weight of each component.

The integration mechanism is directly inspired by the work of Dayan et al. [Day+06]
and as the authors suggest, the parameter ω may fluctuate over time, making the contri-
bution of the two systems vary with experience. In contrast to their model, however, the
model presented here does not assign different goals to each system. Thus, the current
model is more similar to their previous model [Daw+05], which uses another method for
integration.

A common alternative to integration when using multiple systems [Daw+05; Ker+11;
Doy+02] is to select at each step, based on a given criterion (certainty, speed/accuracy
trade-off, energy cost), a single system to pick the next action. Such switch mechanism
does not fit well with the present model, given that it would be interpreted as if actions
relied sometimes only on motivational values (i.e. Feature-Model-Free system) and some-
times only on a rational analysis of the situation (i.e. Model-Based system). It also does
not fit well with pharmacological observation that STs do not express goal-tracking ten-
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dencies in the drug-free test session following systemic-injections of flupentixol [Fla+11b],
as Flagel et al. stated, “[sign-tracking] rats treated with flupentixol did not develop a
goal-tracking CR”.

Factored representations
Classical RL algorithms used in neuroscience [Daw+05; Ker+11; Doy+02; Day+06], de-
signed mainly to account for instrumental conditioning, work at the state level. Tasks are
defined as graphs of states, and corresponding models are unaware of any similarity within
states. Therefore, any subsequent valuation process cannot use any underlying structure
to generalize updates to states that share stimuli. Revising the valuation process to han-
dle features rather than states per se, makes it possible to attribute motivational values
to stimuli independently of the states in which they are presented.

Recent models dedicated to Pavlovian conditioning [Sch+96; Bal99; Red+07; SM07;
Cou+06; GN12] usually represent and process stimuli independently and can be said to
use factored representations, a useful property to account for phenomena such as block-
ing [Kam67] or overexpectation [LN98]. In contrast to the present model, while taking
inspiration from RL theory (e.g. using incremental updates), these models are usually far
from the classical RL framework. Of significant difference with the present study, most
of these models tend to describe the varying intensity of a unique conditioned response
and do not account for variations in the actual form of the response, as we do here. In
such models, the magazine would not be taken into account and/or taken as part of the
context, making it unable to acquire a value for itself nor be the focus of a particular
response.

In RL theory, factorization is mainly evoked when trying to overcome the curse of di-
mensionality [Bel57] (i.e. standard algorithms do not scale well to high dimensional spaces
and require too much physical space or computation time). Amongst methods that intend
to overcome this problem are value function approximations and Factored Reinforcement
Learning. Value function approximations [Doy+02; Kha+06; Elf+13] attempt to split
problems into orthogonal subproblems making computations easier and providing valua-
tions that can then be aggregated to estimate the value of states. Factored Reinforcement
Learning [Bou+00; Deg+06; VB08] attempts to find similarities between states so that
they can share values, reducing the physical space needed and relies on factored Markov
Decision Processes. We also use factored Markov Decision processes, hence the “factored”
terminology. However, our use of factored representations serves a different purpose. We
do not intend to build a compact value-function nor infer the value of states from values
of features but rather make these values compete in the choice for the next action.

Taking advantage of factored representations into classical RL algorithms is at the
very heart of the present results. By individually processing stimuli within states (i.e. in
the same context, at the same time and same location) and making them compete, the
Feature-Model-Free system favours a different policy – oriented towards engaging with
the most valued stimuli – (sign-tracking) than would have been favoured by classical
algorithms such as Model-Based or Model-Free systems (goal-tracking). Hence, com-
bining a classical RL algorithm with the Feature-Model-Free system enables the model
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to reproduce the difference in behaviours observed between STs and GTs during an au-
toshaping procedure. Moreover, by biasing expected optimal behaviours towards cues
with motivational values (incentive salience), it is well suited to explain the observed
commitment to unnecessary and possibly counter-productive actions (see also [Day+06;
GM+12; Huy+11]). Most of all, it enables the model to replicate the different patterns of
dopamine activity recorded with FSCV in the core of the nucleus accumbens of STs and
GTs. The independent processing of stimuli leads to patterns of RPE that match those
of dopamine activity for STs – a shift of bursts from the US to the CS; and in GTs – a
persistence of bursts at both the time of the US and the CS.

A promising combination
By combining the two concepts of dual learning systems and factored representations in a
single model, we are able to reproduce individual variation in behavioural, physiological
and pharmacological effects in rats trained using an autoshaping procedure. Interestingly,
our approach does not require a deep revision of mechanisms that are extensively used in
our current field of research.

While Pavlovian and instrumental conditioning seem entangled in the brain [Yin+08],
the two major concepts on which rely their respective models, dual learning systems and
factored representations, have to our knowledge never been combined into a single model
in this field of research.

This approach could contribute to the understanding of interactions between these two
classes of learning, such as CRE or Pavlovian-Instrumental Transfer (PIT), where motiva-
tion for stimuli acquired via Pavlovian learning modulates the expression of instrumental
responses. Interestingly, the Feature-Model-Free system nicely fits with what would be
expected from a mechanism contributing to general PIT [CB05]. It is focused on values
over stimuli without regard to their nature [CB05], it biases and interferes with some more
instrumental processes [CB05; Huy+11; GM+12] and it is hypothesized to be located in
the core of the nucleus accumbens [CB05]. It would thus be interesting to study whether
future simulations of the model could explain and help better formalize these aspects of
PIT.

We do not necessarily imply that instrumental and Pavlovian conditioning might rely
on a unique model. Rather, we propose that if they were the results of separated systems,
they should somehow rely on similar representations and valuation mechanisms, given the
strength of the observed interactions.

Theoretical and practical implications
The proposed model explains the persistent dopamine response to the US in GTs over
days of training as a permanent RPE due to the revision of the magazine value during
each ITI. Therefore, a prediction of the model is that shortening the ITI should reduce the
amplitude of this burst (i.e. there should be less time to revise the value and reduce the
size of the RPE); whereas increasing the ITI should increase the amplitude of this burst.
Removing the food dispenser during ITI, similar to theoretically suppressing the ITI,
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should make this same burst disappear. Studying physiological data by grouping them
given the duration of the preceding ITI might be sufficient, relatively to noise, to confirm
that its duration impacts the amplitude of dopamine bursts. In the current experimental
procedure, the ITI is indeed randomly picked in a list of values with an average of 90 sec.
Moreover, reducing ITI duration should lead to an increase of the tendency to goal-track
in the overall population. Indeed, with a higher value of the food magazine, the Feature-
Model-Free system would be less likely to favour sign-tracking over goal-tracking CR.
The resulting decrease in sign-tracking in the overall population would be consistent with
findings of previous works [BP79; GB81; GG00; Tom+03], where a shorter ITI reduces the
observed performance in the acquisition of sign-tracking CRs. Alternatively, it would also
be interesting to examine the amplitude of dopamine bursts during the ITI (especially
when exploring the food magazine), to determine whether or not physiological responses
during this period affect the outcome of the conditioned response.

It would be interesting to split physiological data not only between STs and GTs but
also between the stimuli on which the rats started and/or ended focusing on during CS
presentation at each trial. This would help to confirm that the pattern of dopamine
activity is indeed due to a separate valuation of each stimuli. We would predict that
at the time of the US, dopamine bursts during engagement with the lever should be
small relatively to dopamine bursts during engagement with the magazine. Moreover,
comparing dopamine activity at the time of the CS when engaging with the lever versus
the magazine could help elucidate which update mechanism is being used. If activity
differs, this would suggest that the model should be revised to use SARSA-like updates,
i.e. taking into account the next action in RPE computation. Such a question has already
been the focus of some studies on dopamine activity [Mor+06; Roe+07; Bel+12b].

There is no available experimental data for the phasic dopaminergic activity of the
intermediate group. The model predicts that such a group would have a permanent
phasic dopamine burst, i.e. RPE, at US and a progressively appearing burst at CS (see
Figure S5.6). Over training, the amplitude of the phasic dopamine burst at US should
decrease until a point of convergence, while at the mean time the response at CS should
increase until reaching a level higher than the one observed at US. However, one must
note, that the fitting of the intermediate group is not as good as for STs or GTs, as it
regroups behaviours that range from sign-tracking to goal-tracking, such that this is a
weak prediction.

There is the possibility that regularly presenting the magazine or the lever could, with-
out pairing with food, lead to responses that are indistinguishable from CRs. However,
ample evidence suggests that the development of a sign-tracking or goal-tracking CR is not
due to this pseudoconditioning phenomenon, but rather a result of learned CS-US associ-
ations. That is, experience with lever-CS presentations or with food US does not account
for the acquisition of lever-CS induced directed responding [Tom+12; RF09]. Nonetheless,
it should be noted that the current model cannot distinguish between pseudoconditioning
CR-like responses and sign-tracking or goal-tracking behaviours. This would require us
to introduce more complex MDPs that embed the ITI and can more clearly distinguish
between approach and engagement.

..
102

.
Modelling individual differences in autoshaping CRs (article)

..



Limitations
The Feature-Model-Free system presented in this article was designed as a proof of con-
cept for the use of factored representations in computational neuroscience. In its present
form it updates the value of one feature (the focused one) at a time, and this is sufficient
to account for much of the experimental data. It does not address whether multiple fea-
tures could be processed in parallel, such that multiple synchronized, but independently
computed, signals would update distinct values relative to the attention paid to the as-
sociated features. Further experiments should be performed to confirm this hypothesis.
Subsequently, using factored representations in the Model-Based system was not neces-
sary to account for the experimental data and the question remains whether explaining
some phenomena would require it.

While using factored representations, our approach still relies on the discrete-time state
paradigm of classical RL, where updates are made at regular intervals. Although such
simplification can explain the set of data considered here, one would need to extend this to
continuous time if one would like to also model experimental data where rats take more or
less time to initiate actions that can vary in duration [Fla+11b]. The present model, which
does not take timing into consideration, cannot account for the fact that STs and GTs
both come to approach their preferred stimuli faster and faster as a function of training
nor does it make use of the variations of ITI duration. Our attempt to overcome this
limitation using the MDP framework was unsuccessful. Focusing on features, it becomes
more tempting to deal with the timing of their presence, a property that is known to be
learned and to have some impact on behaviours [GG00; KS08; Daw+06c; Fio+08].

Moreover, in the current model, we did not attempt to account for the conditioned
orienting responses (i.e. orientation towards the CS) that both STs and GTs exhibit upon
CS presentation [SR12]. However, we hypothesize that such learned orienting responses
could be due to state discrimination mechanisms that are not included in the model,
and would be better explained with partial observability and actions dedicated to collect
information. This is beyond the scope of the current article, but is of interest for future
studies.

As evident by the only partial reproduction of the flupentixol effects on the expres-
sion of sign- and goal-tracking behaviours, the model is limited by the use of the softmax
action-selection mechanism, which is widely used in computational neuroscience [Day+06;
Glä+10; Hum+12; Daw+05; Ker+11; Huy+12; Doy+02; Red+07]. In the model, all ac-
tions are equal – there is no action with a specific treatment – and the action-selection
mechanism necessarily selects an action at each time step. Any reduction in the value of
one action favours the selection of all other actions in proportion to their current asso-
ciated values. In reality, however, blocking the expression of an action would certainly
lead mainly to inactivity rather than necessarily picking the alternative and almost never
expressed action. One way of improving the model in this direction could be to replace
the classical softmax function by a more realistic model of action selection in the basal
ganglia (e.g. [Gur+04]). In such a model, no action is performed when no output activity
gets above a certain threshold. Humphries et al. [Hum+12] have shown that changing the
exploration level in a softmax function can be equivalent to changing the level of tonic
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dopamine in the basal ganglia model of Gurney et al. [Gur+04]. Interestingly, in the
latter model, reducing the level of tonic dopamine results in difficulty in initiating actions
and thus produces lower motor behaviour, as is seen in Parkinsonian patients and as can
be seen in rats treated with higher doses of flupentixol [Fla+11b]. Thus a natural sequel
to the current model would be to combine it with a more realistic basal ganglia model for
action selection.

We simulated the effect of flupentixol as a reduction of the RPE in the learning processes
of Model-Free systems to parallel its blockade of the dopamine receptors. While this is
sufficient to account for the pharmacological results previously reported [Fla+11b], it fails
to account for some specific aspects that have more recently emerged. Mainly, it is unable
to reproduce the instant decreased engagement observed at the very first trial after post-
training local injections of flupentixol [SR12]. Our current approach requires re-learning
to see any impact of flupentixol. A better understanding of the mechanisms that enable
instant shifts in motivational values, by shifts in the motivational state [RB13] or the use
of drugs [SR12; Fla+11b], might be useful to extend the model on such aspects.

We also tried to model the effect of flupentixol on RPEs with a multiplicative effect, as
it would have accounted for an instant impact on behaviour. However, it failed to account
for the effects of flupentixol on learning of the sign-tracking CRs, as a multiplicative effect
only slowed down learning but did not disrupt it. How to model the impact of flupentixol,
and dopamine antagonists or drugs such as cocaine remains an open question (e.g. see
[Pan+07; Red04]).

Finally, our work does not currently address the anatomical counterpart of ω at the
heart of the model, nor the regions of the brain that would match the current Model-Based
system and the Feature-Model-Free system. Numerous studies have already discussed
the potential substrates of Model-Based / Model-Free systems in the prefrontal cortex
/ dorsolateral striatum [Daw+06a], or the dorsomedial and dorsolateral striatum [YK06;
Tho+10; BD11; KH12; Mee+12]. The weighted sum integration may suggest a crossed
projection of brains regions favouring sign- and goal-tracking behaviours (Model-Based
and Feature-Model-Free systems) into a third one. We postulate there is a difference in
strength of “connectivity” between such regions in STs vs GTs [Fla+11a]. Further, one
might hypothesize that the core of the nucleus accumbens contributes to the Feature-
Model-Free system. The integration and action selection mechanisms would naturally
fit within the basal ganglia, stated to contribute to such functions [Min96; Red+99b;
Gur+01; Hum+12].

Conclusion
Here we have presented a model that accounts for variations in the form of Pavlovian con-
ditioned approach behaviour seen during autoshaping in rats; that is, the development of
a sign-tracking vs goal-tracking CR. This works adds to an emerging set of studies sug-
gesting the presence and collaboration of multiple RL systems in the brain. It questions
the classical paradigm of state representation and suggests that further investigation of
factored representations in RL models of Pavlovian and instrumental conditioning exper-
iments may be useful.
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Methods

Modelling the autoshaping experiment
In the classical reinforcement learning theory [SB98], tasks are usually described as
Markov Decision Processes (MDPs). As the proposed model is based on RL algorithms,
we use the MDP formalism to computationally describe the Pavlovian autoshaping pro-
cedure used in all simulations.

An MDP describes the interactions of an agent with its environment and the rewards
it might receive. An agent being in a state s can execute an action a which results in a
new state s′ and the possible retrieval of some reward r. More precisely, an agent can
be in a finite set of states S, in which it can perform a finite set of discrete actions A,
the consequences of which are defined by a transition function T : S ×A→ Π(S), where
Π(S) is the probability distribution P(s′|s, a) of reaching state s′ doing action a in state
s. Additionally, the reward function R : S×A→ R is the reward R(s, a) for doing action
a in state s. Importantly, MDPs should theoretically comply with the Markov property:
the probability of reaching state s′ should only depend on the last state s and the last
action a. An MDP is defined as episodic if it includes at least one state which terminates
the current episode.

Figure 5.1 shows the deterministic MDP used to simulate the autoshaping procedure.
Given the variable time schedule (30-150s) and the net difference observed in behaviours
in inter-trial intervals, we can reasonably assume that each experimental trial can be
simulated with a finite horizon episode.

The agent starts from an empty state (s0) where there is nothing to do but explore.
At some point the lever appears (s1) and the agent must make a critical choice: It can
either go to the lever (s2) and engage with it (s5), go to the magazine (s4) and engage
with it (s7) or just keep exploring (s3,s6). At some point, the lever is retracted and food
is delivered. If the agent is far from the magazine (s5,s7), it first needs to get closer. Once
close (s7), it consumes the food. It ends in an empty state (s0) which symbolizes the start
of the inter-trial interval (ITI): no food, no lever and an empty but still present magazine.

The MDP in Figure 5.1 is common to all of the simulations and independent of the
reinforcement learning systems we use. STs should favour the red path, while GTs should
favour the shorter blue path. All of the results rely mainly on the action taken at the
lever appearance (s1), when choosing to go to either the lever, the magazine, or to explore.
Exploring can be understood as not going to the lever nor to the magazine.

To fit with the requirements of the MDP framework, we introduce two limitations in our
description, which also simplify our analyses. We assume that engagement is necessarily
exclusive to one or no stimulus, and we make no use of the precise timing of the procedure
– the ITI duration nor the CS duration – in our simulations.

Inter-trial interval (ITI)

While the MDP does not model the ITI, the results regarding physiological data rely
partially on its presence. Extending the MDP with a set of states to represent this interval
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would increase the complexity of the MDP and the time required for simulations. The
behaviour that could have resulted from such an extension is easily replaced by applying
the following formula at the beginning of each episode:

V(M)← (1− uITI)× V(M) (5.1)
where the parameter 0 ≤ uITI ≤ 1 reflects the interaction with the magazine that occurred
during the ITI. A low uITI → 0 symbolizes a low interaction and therefore a low revision
of the value associated to the magazine. A high uITI → 1 symbolizes a strong exploration
of the magazine during the inter-trial interval and therefore a strong decrease in the
associated value due to unrewarded exploration.

Model
The model relies on the architecture shown in Figure 5.2. The main idea is to combine the
computations of two distinct reinforcement learning systems to define what behavioural
response is chosen at each step.

Model-Based system (MB)

The first system is Model-Based [SB98], and classically relies on a transition function T
and a reward function R which are learned by experience given the following rules:

T (s, a, s′)←
{

(1− α)× T (s, a, s′′) + α if s′ = s′′

(1− α)× T (s, a, s′′) otherwise (5.2)

R(s, a)←R(s, a) + α(r −R(s, a)) (5.3)
where the learning rate 0 ≤ α ≤ 1 classically represents the speed at which new ex-
periences replace old ones. Using a learning rate rather than counting occurrences is a
requirement for accordance with the incremental expression of the observed behaviours.
This can account for some resistance or uncertainty in learning from new experiences.

Given this model, an action-value function Q can then be computed with the following
classical formula:

Q(s, a)←R(s, a) + γ
∑
s′

T (s′|s, a)max
a′
Q(s′, a′) (5.4)

where the discount rate 0 ≤ γ ≤ 1 classically represents the preference for immediate
versus distant rewards. The resulting Advantage function A [Bai93; DB02], the output
of the first system, is computed as follows:

A(s, a)← Q(s, a)−max
a′
Q(s, a′) (5.5)

It defines the (negative) advantage of taking action a in state s relatively to the optimal
action known. The optimal action therefore has an advantage value of 0.
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In terms of computation, the advantage function could be replaced by the action-value
function without changing the simulation results (we only compare A-values over the
same state and therefore maxa′Q(s, a′) is constant whatever the action). It has been used
in preceding works dealing with interactions between instrumental and Pavlovian condi-
tioning [DB02; Day+06] and we kept it for a better and more straightforward comparison
with variants of the model that were directly inspired by these preceding works.

Feature-Model-Free system (FMF)

A state is generally described by multiple features. Animals, especially engaged in a
repetitive task, might not pay attention to all of them at once. For example, when the
lever appears and a rat decides to engage with the magazine, it focuses primarily on the
magazine while ignoring the lever, such that it could update a value associated to the
magazine but leave intact any value related to the lever (see Figure 5.10 A). Although
this could be related to an attentional process that bias learning, we do not pretend to
model attention with such a mechanism.

Figure 5.10: Characteristics of the Feature-Model-Free system. (A) Focusing on a
particular feature. The Feature-Model-Free system relies on a value function V based on features.
Choosing an action (e.g. goL, goM or exp), defines the feature it is focusing on (e.g. Lever,
Magazine or nothing ∅). Once the action is chosen (e.g. goM in blue), only the value of the
focused feature (e.g. V(M)) is updated by a standard reward prediction error, while leaving the
values of the other features unchanged. (B) Feature-values permit generalization. At a different
place and time in the episode, the agent can choose an action (e.g. goM in blue) focusing on
a feature (e.g. M) that might have already been focused on. This leads to the revision of the
same value (e.g. V(M)) for two different states (e.g. s1 and s0). Values of features are shared
amongst multiple states.

Relying on this idea, the second system is a revision of classical Model-Free systems
which is based on features rather than states. It relies on a value function V : C → R
based on a set of features C, which is updated with an RPE:
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V(c(s, a))← V(c(s, a)) + αδ (5.6)
δ ← r + γmax

a′
V(c(s′, a′))− V(c(s, a))

where c : S ×A → C is a feature-function that returns the feature c(s, a) the action a was
focusing on in state s (see Table S5.2; Figure 5.1 also embeds the features returned by c
for each action and state). One could argue that this feature-function, defined a priori,
introduces an additional requirement relative to classical Model-Free systems. This is a
weak requirement since this function is straightforward when actions, instead of being
abstractly defined, are described as interactions towards objects in the environment. This
function simply states that, for example, when pressing a lever, the animal is focusing on
the lever rather than on the magazine. Similar to Q-learning, we assume that the future
action to be chosen is the most rewarding one. Therefore, the value chosen for the reached
state s′, in the computation of the RPE, is the highest value reachable by any possible
future action maxa′ V(c(s′, a′)).

Classical Model-Free systems do not permit generalization in their standard form: even
when two states share most of their features, updating the value of one state leaves the
value of the other untouched. This new system overcomes such limitation (see Figure 5.10
B). In Feature-Model-Free Reinforcement Learning, multiple states in time and space can
share features and their associated values. For example, while in ITI, rats tend from time
to time to explore the magazine [RF09; Mey+12], which might lead them to revise any
associated value, which can also be used when the lever appears. Therefore, actions in
ITIs might impact the rest of the experiment.

In the simulated experiment (see Figure 5.1), this generalization phenomenon happens
as follows: Assuming that the simulated rat was engaging the magazine (eng) before
food delivery (from s4 to s7), then the value V of c(s4, eng) = M is updated with the
following δ = 0 + γmax′a V(c(s7, a′)) − V(M). As the best subsequent action (and, for
simplification, the only possible one) is to consume the food (in s7), it results in a positive
δ = γV(F )−V(M). During ITI (which in the MDP is simulated by the uITI parameter),
if the simulated rat checks the magazine (goM) and finds no food, then V(M) is revised
with a negative δ = γV(∅)− V(M) (Figure 5.10 B). The value V(M) is therefore revised
at multiple times in the experiment and, for example, a decrease of value during ITI has
an impact on the choice of engaging with the magazine (goM) at lever appearance.

Processing features rather than states and the generalization that results from it is a
key mechanism of the presented model. It makes the system favour a different path than
the one favoured by classical reinforcement learning systems.

Contrary to what the system suggests, it is almost certain that rats might handle
multiple features at once and could simultaneously update multiple values. We present
here a version without such capacity since it is not required in the simulated experiments
and simplifies its understanding.
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Integration

The Feature-Model-Free system accounts for motivational bonuses V that impact values
A computed by the Model-Based system. The integration of these values is made through
a weighted sum:

P(s, a) = (1− ω)A(s, a) + ωV(c(s, a)) (5.7)

where 0 ≤ ω ≤ 1 is a combination parameter which defines the importance of each
system in the overall model. ω is equivalent to the responsibility signal in Mixture of
Experts [Jac+91; Doy+02]. We want to emphasize that the two systems are not in simple
competition, and it is not the case that there is a unique system acting at a time. Rather,
they are both active and take part in the decision proportionally to the fixed parameter
ω. A simple switch between systems would not account for the full spectrum of observed
behaviours ranging from STs to GTs [Mey+12].

Action selection

We use a softmax rule on the integrated values P to compute the probability to select an
action A in state s:

p(a = A) =
eP(s,A)/β∑
a′ e

P(s,a′)/β
(5.8)

where β > 0 is the selection temperature that defines how probabilities are distributed.
A high temperature (β →∞) makes all actions equiprobable, a low one makes the most
rewarding action almost exclusive.

Impact of flupentixol

When simulating the pharmacological experiments, namely the impact of flupentixol, a
parameter 0 ≤ f < 1 is used to represent the impact of flupentixol on parts of the model.

As a dopamine receptor antagonist, we model the impact of flupentixol on phasic
dopamine by revising any RPE δ used in the model given the following formula:

δf ←
{

δ − f if δ−f
δ
≥ 0

0 otherwise (5.9)

where δf is the new RPE after flupentixol injection. The impact is filtered ( δ−f
δ
≥ 0) such

that flupentixol injection could not lead to negative learning when the RPE was positive,
but at most block it (i.e. the sign of δf cannot be different from the one of δ). With a
low f → 0, the RPE is not affected (δf → δ). A high f → 1 reduces the RPE, imitating
a blockade of dopamine receptors.

Various studies (e.g. [Hum+12]) also suggest that tonic dopamine has an impact on
action selection such that any decrease in dopamine level results in favouring exploration
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over exploitation. We therefore simulated the effect of flupentixol on action selection by
revising the selection temperature given the following formula:

βf ←
β

1− f
(5.10)

where βf is the new selection temperature, and 0 ≤ f < 1 represents the strength of the
flupentixol impact. A strong f → 1, which represents an effective dose of flupentixol,
favours a high temperature βf → ∞ and therefore exploration. A low f → 0, i.e. a low
dose or an absence of flupentixol, leaves the temperature unaffected: βf → β.

For the first pharmacological experiment (Effects of systemic flupentixol administration
on the learning of sign- and goal-tracking behaviours) both the impact on the softmax
and on the RPE were activated, as the flupentixol was injected systemically and assumed
to diffuse in the whole brain. For the second experiment (Effects of local flupentixol
administration on the expression of sign- and goal-tracking behaviours) only the impact
on the RPE was activated, as the flupentixol was injected locally in the core of the nucleus
accumbens. We hypothesize that the Feature-Model-Free system relies in the core of the
nucleus accumbens whereas the selection process (softmax) does not.

Initialization

In the original experiments [Fla+07; Fla+11b], prior to the autoshaping procedure, rats
are familiarized with the Skinner box and the delivery of food into the magazine. While
the MDP does not account for such pretraining, we can initialize the model with values
(Qi(s1, goL), Qi(s1, goM) and Qi(s1, exp)) that reflect it (see the estimation of the model
parameters). These initial values can be seen as extra parameters common to the model
and its variants.

Variants
Given the modular architecture of the model, we were able to test different combinations
of RL systems. Their analysis underlined the key mechanisms required for reproducing
each result (see Figures S5.1, S5.2, S5.4 and S5.5). Figure 5.11 (B, C and D) schematically
represents the analysed variants.

Most of the results rely on the action taken by the agent at the lever appearance.
The action taken results from the values P(s1, goL), P(s1, goM) and P(s1, exp), the
computation of which differs in each of the variants described below.

Variant 1 : Model-Free / Feature-Model-Free

Variant 1 was tested to assert the necessity of the Model-Based system as part of the
model to reproduce the results. Thus in Variant 1, the Model-Based system is replaced
by a classical Model-Free system, Advantage learning [Bai93; DB02], while the Feature-
Model-Free system remains unchanged (see Figure 5.11 B).
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Figure 5.11: Systems combined in the model and the variants. Variants of the model
rely on the same architecture (described in Figure 5.2) and only differ in the combined systems.
Colours are shared for similar systems. (A) The model combines a Model-Based system (MB,
in blue) and a Feature-Model-Free (FMF, in red) system. (B) Variant 1 combines a Model-Free
system (MF, in green) and a Feature-Model-Free system. (C) Variant 2 combines a Model-Free
system and a Bias system (BS, in grey), that relies on values from the Model-Free system. (D)
Variant 3 combines a Model-Free system and two Bias systems, that rely on values from the
Model-Free system. Variant 4 is not included as it failed to even reproduce the autoshaping
behavioural results.

In such a Model-Free system, the action-value functionQMF is updated online according
to the transition just experienced. At each time step the function is updated given an
RPE δ that computes the difference between the observed and the expected value, as
follows:

QMF(s, a)← QMF(s, a) + αδ (5.11)
δ ← r + γmax

a′
QMF(s

′, a′)−QMF(s, a)

Computation of the associated Advantage function AMF follows Equation (5.5). This
model computes integrated values as follows:

P(s, a) = (1− ω)AMF(s, a) + ωV(c(s, a)) (5.12)

It is important to note that while Equation (5.12) looks similar to Equation (6.4), the
Advantage function is computed by a Model-Based system in the model (A) and a Model-
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Free system in this variant (AMF), leading to very different results on pharmacological
experiments.

Variant 2 : Asymmetrical

Inspired by a work from Dayan et al. [Day+06], Variant 2 combines a classical Advantage
learning system [Bai93; DB02] with some Bias system taking its values directly from the
other system (see Figure 5.11 C). This system computes the integrated values as follows:

P(s, a) = (1− ω)×AMF(s, a) + ω

{
V(s) if a = goL
0 otherwise (5.13)

It asymmetrically gives a bonus to the path that should be taken by STs. In slight
discrepancy with the original model, it uses the maximum value over action-value function
QMF as the value function VMF used to compute the advantage function. Hence, there is
a single RPE computed at each step.

Variant 3 : Symmetrical

In the same line as Variant 2, Variant 3 symmetrically gives a bonus to both paths using a
classical Advantage learning system in combination with a Pavlovian system. This system
computes the integrated values as follows:

P(s, a) = AMF(s, a) +


ωV(s) if a = goL
(1− ω)V(s) if a = goM
0 otherwise

(5.14)

This model does not exactly fit Equation (6.4) of the general architecture. It is based
on 3 systems, where the real competition is between the two bias systems, whereas the
Model-Free system is mainly used to compute the values used by the two others (see
Figure 5.11 D). The rest of the architecture is not impacted.

Variant 4 : Model-Based / Model-Free

Variant 4 was developed to confirm the necessity of a feature-based system. It combines
two advantage functions computed from a Model-Based (A) and a Model-Free (AMF)
system.

P(s, a) = (1− ω)A(s, a) + ωAMF(s, a) (5.15)

While computed differently, both advantage functions will eventually converge to the
same optimal values [SB98] making both systems favouring the same optimal policy.
Note that uITI cannot be used in this variant as there exists no value over the magazine
itself. While varying the parameters might slow down learning or make the process
more exploratory, this could never lead to sign-tracking as both systems, whatever the
weighting, would favour goal-tracking. As such, Variant 4 is unable to even account for
the main behavioural results in the autoshaping procedure (see Figure S5.8).
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Given that all the subsequent simulated results relies on a correct reproduction of the
default behaviours, this variant was not investigated further and is not compared to the
other variants in supplementary results figures.

Estimating the model parameters
The model relies on model-specific parameters (ω, β, α and γ) and experience-specific
parameters (uITI , Qi(s1, goL), Qi(s1, goM) and Qi(s1, ∅)). If the model were used to
simulate a different experiment, the model-specific parameters would be the same while
different experience-specific parameters might be required. For an easier analysis and a
simpler comparison between the model and its variants, we reduce the number of param-
eters by sharing parameters with identical meanings amongst systems (i.e. both systems
within the model share values for their learning rates α and discount rates γ, rather than
having independent parameter values).

Due to the number of parameters, finding the best values to qualitatively fit the ex-
perimental data cannot be done by hand. Using a genetic algorithm makes it possible to
optimize the search of suitable values for the parameters.

Parameter values were retrieved by fitting the simulation of the probabilities to engage
either the lever or the magazine with the experimental data of one of the previous studies
[Fla+09]. No direct fitting was intended on other experimental data. Hence, a single set
of values was used to simulate behavioural, physiological and pharmacological data.

If for a variant, the optimization algorithm fails to fit the experimental data, it suggests
that whatever the values, the mechanisms involved cannot explain the behavioural data
(Variant 4).

Probabilities to engage the lever or the magazine were taken as independent objectives of
the algorithm, since fitting sign-tracking probabilities is easier than fitting goal-tracking
probabilities. For each objective, the fitness function is computed as the least square
errors between the experimental and simulated data. Parameter optimization is done with
the multi-objective genetic algorithm NSGA-II [Deb+02]. We used the implementation
provided by the Sferes 2 framework [MD10]. All parameters required for reproducing the
behavioural data were fitted at once.

For NSGA-II, we arbitrarily use a population of 200 individuals and run it over 1000
generations. We use a polynomial mutation with a rate of 0.1, and simulate binary cross-
overs with a rate of 0.5. We select the representative individual, to be displayed in figures,
from the resulting Pareto front by hand, such that it best visually fits the observed data.

To confirm that ω is the key parameter of the model, we additionally tried to fit the
whole population at once (i.e. sharing all parameter values in agents but ω) and we were
still able to reproduce the observed tendencies of sign- and goal-tracking in the population
(see Figure S5.7 A,B) and the resulting different phasic dopaminergic patterns (see Figure
S5.7 C,D).

It is however almost certain that each subgroup does not express the exact same values
for the other parameters. Removing such constraint by fitting each subgroup separately,
indeed provides better results. Results presented in this article are based on such separate
fitting.
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Supporting Information

Figure S5.1: Comparison of variants of the model on simulations of autoshaping
experiment. Legend is as in Figure 5.5 (C,D). Simulation parameters for STs (red), GTs
(blue) and IGs (white) in the model (A), Variant 1 (B), Variant 2 (C) and Variant 3 (D)
are summarized in Table S5.1. All variants reproduce the spectrum of behaviours ranging from
sign-tracking to goal-tracking.
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Figure S5.2: Comparison of variants of the model on incentive salience and Condi-
tioned Reinforcement Effect intuitions. Legend is as in Figure 5.6. Simulation parameters
for STs (red), GTs (blue) and IGs (white) are summarized in Table S5.1. Variant 2 (C) rely-
ing on asymmetrical bonuses given only to sign-tracking cannot reproduce the attribution of a
motivational value by the second system to both the lever and the magazine. Others (A,B,D)
attribute values to both stimuli and parallels the supposed acquisition of motivational values by
stimuli, i.e. incentive salience. All variants are able to account for a Conditioned Reinforcement
Effect more pronounced in STs than in GTs.
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Figure S5.3: Comparison of variants of the model on simulations of patterns of
dopaminergic activity. Legend is as in Figure 5.7 (C,D). Simulation parameters for STs
(left) and GTs (right) are summarized in Table S5.1. The model (A) and Variant 1 (B) can
reproduce the difference observed in dopaminergic patterns of activity in STs versus GTs. Other
variants (C,D) fail to do so, given that the classical Model-Free system propagates the RPE
from food delivery to lever appearance on all pathways of the MDP.
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Figure S5.4: Comparison of variants on simulations of the effect of systemic injec-
tions of flupentixol. Legend is as in Figure 5.8 (C,D). Simulation parameters for STs (left)
and GTs (right) are summarized in Table S5.1. Only the Model (A) can reproduce the difference
in response to injections of flupentixol observed in STs versus GTs. All variants (B,C,D) fail to
do so, given that they only rely on Model-Free, i.e. RPE-dependent, mechanisms that are blocked
by flupentixol.
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Figure S5.5: Comparison of variants on simulations of the effect of post injections
of flupentixol. Legend is as in Figure 5.9 (C,D). Simulation parameters for groups of rats
composing the population are summarized in Table S5.1. Variants 2 (C) and 3 (D), accounting
for sign- and goal-tracking using a single set of values, have a similar impact of flupentixol on both
behaviours, leaving relative probabilities to engage with lever and magazine unaffected. Variant
1 (B) uses different systems, thus flupentixol impacts sign-tracking in the model in the same
way as it does in experimental data. However, given that both systems rely on RPE-dependent
mechanisms, the impact is not as visible as in the model (A).
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Figure S5.6: Prediction of the model about expected patterns of dopaminergic
activity in intermediate groups. Data are expressed as mean ± S.E.M. Average RPE
computed by the Feature-Model-Free system in response to CS and US presentation for each
session of conditioning in the intermediate group. Simulated group is defined as in Figure 5.5.
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Figure S5.7: Behavioural and Physiological simulations of autoshaping with shared
parameter values across STs, GTs and IGs. (A,B) Legend is as in Figure 5.5 (C,D).
Reproduction of the respective tendencies to sign- and goal-track of STs (ω = 0.5), IGs (ω =
0.375) and GTs (ω = 0.05)) using a single set of parameters (α = 0.2, γ = 0.8, β = 0.09,
uITI = 0.2, Qi(s1, goL) = 0.0, Qi(s1, exp) = 0.5 and Qi(s1, goM) = 0.5). (C,D) Legend is as
in Figure 5.7 (C,D). Reproduction of the different patterns of phasic dopaminergic activity in
STs and GTs using the same single set of parameters. By simply varying the ω parameter, the
model can still qualitatively reproduce the observations in experimental data.
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Figure S5.8: Simulation of autoshaping experiment for Variant 4. Legend is as
in Figure 5.5 (C,D). Simulation for parameters STs (red), GTs (blue) and IGs (white) in the
Variant 4 are summarized in Table S5.1. Variant 4 is not even able to reproduce the main
behavioural data.

Table S5.1: Summary of parameters used in simulations

Parameters retrieved by optimisation with NSGA-II and used to produce the results
presented in this article for the model and its variants. Parameters for STs, GTs and IGs
were optimized separately (A,B,C,D,E). To confirm that ω is the key parameter of the
model, we also optimized parameters for STs, GTs and IGs by sharing all but the ω
parameter (F) to produce Figure S5.7.
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Table S5.2: Definition of feature-function c

Stimuli (Lever, Magazine, Food or ∅) returned by the feature-function c for each
possible state-action pair 〈s, a〉 in the MDP described in Figure 5.1. The feature-function
simply defines the stimulus that is the focus of an action in a particular state.
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This chapter lists some predictions drawn from the computational model developed in
Chapter 5. This work is presented under the form of a published journal paper:

Florian Lesaint, Olivier Sigaud, Jeremy J Clark, Shelly B Flagel, and Mehdi
Khamassi. “Experimental predictions drawn from a computational model of
sign-trackers and goal-trackers”. In: J Physiol Paris (2014). in press
http://www.sciencedirect.com/science/article/pii/S0928425714000242

We develop in details predictions scarcely evoked in the discussion of our first paper
[Les+14a]. We suggest new data analyses and revised experimental setups. If conducted,
such studies would have the power to reinforce or refute the model, and would definitely
contribute to the understanding of the biological mechanisms involved in the present task.
It aims at comforting the model, especially regarding the key concepts it combines, that
is dual-learning systems and factored representations, and regarding hypotheses on the
impact of the inter-trial interval.

The predictions suggest that dopaminergic patterns for IGs should be a mixed signal
between those observed for STs and GTs. We predict that looking separately at the DA
patterns given the prior engagement towards either the lever or the magazine should lead
to clearly distinct patterns. We predict that the removal of the magazine during the ITI
should lead to an increased motivational engagement towards the magazine, a decreased
tendency in sign-tracking within the population and a different pattern of dopaminergic
activity when goal-tracking. Finally, we predict that local injections of flupentixol to the
core of the nucleus accumbens would preserve goal-tracking and prevent the learning of a
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sign-tracking response, a result that should also be observed following lesions of the core
of the nucleus accumbens prior to conditioning. Lesions after conditioning would only
block the expression of the learned sign-tracking behaviour.
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Experimental predictions drawn from a
computational model of sign-trackers and
goal-trackers
Florian Lesaint1,2,∗, Olivier Sigaud1,2, Jeremy J. Clark3, Shelly B. Flagel4−6, Mehdi
Khamassi1,2
1 Sorbonne Universités, UPMC Univ Paris 06, UMR 7222, Institut des
Systèmes Intelligents et de Robotique, F-75005, Paris, France
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3 Department of Psychiatry and Behavioral Sciences, University of
Washington, Washington, USA
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Abstract

Gaining a better understanding of the biological mechanisms underlying the individual
variation observed in response to rewards and reward cues could help to identify and treat
individuals more prone to disorders of impulsive control, such as addiction. Variation in
response to reward cues is captured in rats undergoing autoshaping experiments where the
appearance of a lever precedes food delivery. Although no response is required for food to
be delivered, some rats (goal-trackers) learn to approach and avidly engage the magazine
until food delivery, whereas other rats (sign-trackers) come to approach and engage avidly
the lever. The impulsive and often maladaptive characteristics of the latter response are
reminiscent of addictive behaviour in humans. In a previous article, we developed a
computational model accounting for a set of experimental data regarding sign-trackers
and goal-trackers. Here we show new simulations of the model to draw experimental
predictions that could help further validate or refute the model. In particular, we apply
the model to new experimental protocols such as injecting flupentixol locally into the
core of the nucleus accumbens rather than systemically, and lesioning of the core of the
nucleus accumbens before or after conditioning. In addition, we discuss the possibility
of removing the food magazine during the inter-trial interval. The predictions from this
revised model will help us better understand the role of different brain regions in the
behaviours expressed by sign-trackers and goal-trackers.

Reprinted from Journal of Physiology - Paris, Florian Lesaint, Olivier Sigaud, Jeremy J. Clark, Shelly
B. Flagel and Mehdi Khamassi, Experimental predictions drawn from a computational model of
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Introduction

A significant number of models have been developed since the 1970s to describe Pavlovian
and instrumental phenomena. Early models were mostly focusing on reproducing the
averaged behaviour expressed within a population, neglecting inter-individual variations
and possibly smoothing the true behaviour of individuals [Gal+04], or even masking the
variation in behaviour. However, this variation is of particular interest when trying to
identify those individuals within population prone to impulsive behaviours or having a
higher risk of addiction [Fla+11b; SR13; Huy+14].

Recent studies have investigated such intervariability among rats undergoing an au-
toshaping experiment [Fla+07; Fla+09; Fla+11b; Fla+11a; DB12b; MB09; RF09; Mey+12;
Fit+13], where a lever (conditioned stimulus, CS) was presented for 8 seconds, followed
immediately by delivery of a food pellet (unconditioned stimulus, US) into an adjacent
food magazine. Although no response was required to receive the reward, with train-
ing, some rats (sign-trackers; STs) learned to rapidly approach and engage the lever-CS.
However, others (goal-trackers; GTs) learned to approach the food magazine upon CS pre-
sentation, and made anticipatory head entries into it. Some rats (intermediate group; IG)
presented a mixed behaviour, switching between lever and magazine during presentation
of the CS, and sometimes engaging both during one trial. Furthermore, in STs, phasic
dopamine release in the core of the nucleus accumbens, measured with Fast Scan Cyclic
Voltammetry (FSCV), matched the pattern that would be predicted by reward prediction
error (RPE) signalling, and dopamine was necessary for the acquisition of a sign-tracking
conditioned response (CR). In contrast, despite the fact that GTs acquired a Pavlovian
conditioned approach response, this was not accompanied with the expected RPE-like
dopamine signal, nor was the acquisition of a goal-tracking CR blocked by administration
of a dopamine antagonist (see also Danna and Elmer [DE10]). While the proportion of
STs and GTs in the population varies [Fit+13], both phenotypes are typically represented
in an outbred population.

To our knowledge, only one model [Les+14b] accounts for these experimental results
and has been validated with existing data. This model is built on a combination of
model-free and model-based systems [Daw+05; Cla+12; Huy+14] and extended with state
factored representations. Combining multiple systems enables the model to express a large
repertoire of behaviours and considering features within states enables the model to learn
Pavlovian impetuses [Day+06] specific to the Pavlovian features within the task.

In this paper, we review the model described by Lesaint et al. [Les+14b], extending it
with a new tool to improve its reliability. We suggest new experimental protocols and
some new analyses of the data that would further validate the model and strengthen its
explanatory power, refine our understanding of the role of the nucleus accumbens in the
described behaviours, and help clarify the impact of some choices made in the original
protocol.

..
126

...Reprinted from Journal of Physiology - Paris, Florian Lesaint, Olivier Sigaud, Jeremy J. Clark, Shelly
B. Flagel and Mehdi Khamassi, Experimental predictions drawn from a computational model of

sign-trackers and goal-trackers, in press (doi:10.1016/j.jphysparis.2014.06.001), Copyright (2014), with
permission from Elsevier.

http://www.sciencedirect.com/science/article/pii/S0928425714000242


Material and methods
The model from which the present results are extracted is described in depth in a previous
article [Les+14b]. It is composed of two distinct reinforcement learning systems that
collaborate to define the action to be selected at each step of the experiment (see Figure
6.1 A; Clark et al. [Cla+12]).

The first system, a model-based system (MB), incrementally learns a model of the world
(a transition function T and a reward function R) from which it infers values (A) for each
action in each situation, given the classical following formulas:

Q(s, a)←R(s, a) + γ
∑
s′

T (s′|s, a)max
a′
Q(s′, a′) (6.1)

A(s, a)← Q(s, a)−max
a′
Q(s, a′) (6.2)

where the discount rate 0 ≤ γ ≤ 1 classically represents the preference for immediate
versus distant rewards. At each step, the most valued action is the most rewarding on the
long run (e.g. approaching the magazine to be ready to consume the food as soon as its
delivery). It favours goal-tracking because this is the shortest path towards the rewarding
state (see Figure 6.1 B).

The second system, a revised model-free system, learns values (V) over features (e.g.
food, lever or magazine). Contrary to the first system, which uses a classical abstract state
representation, it relies on the features that compose these abstract states. In traditional
reinforcement learning, each situation that can be encountered by the agent is defined as
an abstract state (e.g. arbitrarily defined as s1, s2 . . . sx), such that similarities between
situations (e.g. presence of a magazine) are lost. By using features, we reintroduce the
capacity to use and benefit from these similarities. The second system is further defined
as the feature model-free system (FMF). It relies on a RPE signal δ, computed as follows:

V(c(s, a))← V(c(s, a)) + αδ (6.3)
δ ← r + γmax

a′
V(c(s′, a′))− V(c(s, a))

where c : S×A → {lever,magazine, food, ∅} is a feature-function that returns the feature
c(s, a) the action a was focusing on in state s (e.g. it returns the lever when the action
was to engage with the lever). We hypothesized that, similarly to classical model-free
systems, δ parallels phasic dopaminergic activity [Sch98]. This signal enables to revise
and attribute values, seen as motivational, to features without the need of the internal
model of the world used by the MB system. When an event is fully expected, there
should be no RPE as its value is fully anticipated. When an event is positively surprising,
there should be a positive RPE. Actions are then valued by the motivational value of
the feature they are focusing on (e.g. engaging with the lever would be valued given the
general motivational value of the lever). Hence, it favours actions that engage with the
most motivational features. This might lead to favour suboptimal actions with regard to
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maximizing rewards (e.g. engaging with the lever keeps the rat away from the soon to
be rewarded magazine). It favours sign-tracking (a suboptimal path, see Figure 6.1 B) as
the lever, being a full predictor of reward, earns a strong motivational value relative to
the magazine.

Figure 6.1: Model and Markov Decision Process used for simulations. (A) The
model is composed of a model-based system (MB, in blue) and a Feature-Model-Free system
(FMF, in red) which provide respectively an advantage function A and a value function V values
for actions ai given a state s. These values are integrated in P, prior to be used into an action
selection mechanism. The various elements may rely on parameters (in purple). The impact
of flupentixol on dopamine is represented by a parameter f that influences the action selection
mechanism and/or any reward prediction error that might be computed in the model. (B) MDP
accounting for the experiments described in Flagel et al. [Fla+09; Fla+11b]; Robinson and Flagel
[RF09]; Meyer et al. [Mey+12]. States are described by a set of variables: L/F - Lever/Food
is available, cM/cL - close to the Magazine/Lever, La - Lever appearance. The initial state is
double circled, the dashed state is terminal and ends the current episode. Actions are engage
with the proximal stimuli, explore, or go to the Magazine/Lever and eat. The path that STs
should favour is in red. The path that GTs should favour is in dashed blue. (C) Time line
corresponding to the unfolding of the MDP.

The model does not base its decision on a single system at a time, rather the values of the
MB system (AMB) and the FMF system (VFMF ) are integrated such that a single decision
is made at each time step: producing a sort of cooperation between the two systems. The
values computed by these two systems are then integrated through a weighted sum and
passed to a softmax action selection mechanism that converts them into probabilities of
selecting the action given a situation (see Figure 6.1 A). The integration is done as follows:

P(s, a) = (1− ω)AMB(s, a) + ωVFMF (c(s, a)) (6.4)

where 0 ≤ ω ≤ 1 is a combination parameter which defines the importance of each
system in the overall model. Varying ω (while leaving the other parameters of the model
unchanged) is sufficient to reproduce the characteristics of the different subgroups of rats
[Les+14b]. The previous experimental data could be reproduced by having STs give a
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stronger weight to the FMF system whereas having GTs give a stronger weight to the
MB system. FMF and MB systems are then updated according to the action a taken by
the full model in state s - even if the systems would have individually favoured different
actions -and the resulting new state s′ and retrieved reward r, as previously done in
other computational models involving a cooperation between model-free and model-based
systems [Cal+12].

Simulations of experimental protocols
The experiment is described through an episodic Markov Decision Process (MDP) that
represents one trial of the session (see Figure 6.1 B,C). The inter-trial interval (ITI), not
being part of the MDP, is simulated between each run by revising downward the magazine
value (VFMF (M)← (1− uITI)× VFMF (M), uITI being a parameter of the model). This
simulates the hypothesis that the presence of the magazine in the absence of food delivery
reduces its value. If the magazine were removed during ITI, we would expect no revision
of its value.

The model is used to simulate experiments that involved injections of flupentixol, an
antagonist of dopamine, either systemically or within the core of the nucleus accumbens.
In the case of local injections, assuming that the FMF system relies on the core of the nu-
cleus accumbens, we simulate the impact of flupentixol on phasic dopamine by degrading
the reward predictions errors as follows:

δ ←
{

δ − f if δ−f
δ
≥ 0

0 otherwise (6.5)

where 0 ≤ f < 1 represents the impact of flupentixol. Its effect is defined such that
flupentixol injections cannot lead to negative learning when RPE is positive, but at most
blocks it. In the case of systemic injections, we also assume an additional impact on tonic
dopamine [Hum+12], which affects the action selection process. We simulate this impact
by revising the temperature parameter (β ← β

1−f
). Hence, flupentixol favours random

exploration instead of using learned values to take a decision.
Some predictions presented here suggest to lesion the core of the nucleus accumbens.

Such a lesion is simulated by removing the FMF system from the model , i.e. all values
that would have come from the system are replaced by 0. The rest of the model is left
intact. Equation 6.4 can be replaced by:

P(s, a) = (1− ω)AMB(s, a) (6.6)

Index Score
Introduced by Meyer et al. [Mey+12], the Pavlovian Conditioned Approach (PCA) Index
Score provides a metric to categorize rats as STs, GTs or IGs independent of the rest
of the population. That is, instead of ordering rats based on their engagement with
the lever and splitting the population in 3 groups of approximately equal size, as done
in previous studies [Fla+07; RF09], classifying rats based on PCA Index minimizes the
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chances of misclassification and allows one to compare across studies or populations of
rats. The PCA Index relies on the number of contacts with the lever and the magazine,
the probability to engage with one versus the other and the latencies to act towards each
(Table 1 in [Mey+12]).

We developed a similar Index Score as it provides a good metric for some of the predic-
tions described here. Simulated rats whose score is > 0.5 are defined as STs. Simulated
rats that have a score < −0.5 are defined as GTs. Remaining rats are defined as IGs.
Table 6.1 explains how it is computed based on the last two sessions of simulations. Con-
trary to the PCA Index Score, it cannot use latencies as they are not accounted for by
the model.

Table 6.1: Formulas for deriving the Index Score. The Index Score provides a way
to classify rats as STs, GTs or IGs, independently of the rest of the population. It relies on
averaging scores computed for the last two sessions of the simulations. The Score for session
n is derived by averaging its Response Bias and its Probability Difference. Responses Bias is
a ratio between the difference in lever presses versus magazine entries and the total number of
entries. Probability Difference is the difference between the probability to engage with the lever
and the probability to engage with the magazine.

Estimation of model parameters
The model relies on a set of 8 parameters (a shared learning rate, a shared discount rate,
a selection temperature, an integration parameter, a ITI impact parameter and 3 initial
conditions) that need to be tuned for simulations to fit experimental data. We use the
multi-objective algorithm NSGA-II [Deb+02; MD10] to find the best values (solutions)
for the parameters. This method is an efficient tool to fully explore the high dimensional
parameter space and avoid local minima.

As in [Les+14b], we search a set of parameter values per group. The two first objectives
of the fitness function are to fit the averaged behaviours of the simulated group to the
averaged behaviours of the experimental group. More formally, for each group, we try to
minimize the least square error between the probabilities of rats and simulated rats to
engage with the magazine and the lever over time (see Table 6.2). This results in multiple
solutions that are compromises between these two objectives. We subsequently select one
of the solutions that is visually acceptable (no misclassification, and a good compromise
between the two other criteria).

We noticed however, that without further constraints, as we are fitting averaged data,
some of the resulting solutions could induce great variability of behaviour within a group,
leading to misclassification. For example, a simulated rat classified as a GT by its pa-
rameters could have behaved as a ST and went undetected as its behaviour would have
been diluted in the averaged behaviours of the simulated GT group.
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The fitness function was extended with a new criterion based on the Index Score (see
Table 6.2), to favour sets of parameter values that lead to groups of rats that did not
introduce such errors, hence without strong inter variability. This is consistent with
experimental data [Mey+12]. The resulting new sets of parameter values (see Table 6.3)
did not affect the explanatory power of the model.

Table 6.2: Revised fitness function. Lists of the multiple objective/criterion of the fitness
function applied to each simulated group. refPCA is 1, 0 and -1 for STs, IGs, GTs respectively.
This function is combined with NSGA-II to retrieve parameter values that best reproduce the
experimental results. It results in a Pareto front of parameters from which we select by hand the
solution that is consistent (no agent being misclassified) and that best visually fits the observed
data (between engaging with the lever versus engaging with the magazine).

Table 6.3: Parameters used to produce the presented results. All results were
generated based on the same parameters. Some parameters might not be used or erased depending
on the specific experimental protocol simulated.

This metric ensures, for example, that using a set of parameter values for sign-tracking
will produce a sign-tracker when applying the model in a simulation reproducing the
original experiment. Interestingly, it allows us to predict qualitatively what the behaviour
of such a rat (ST in normal conditions) would be in new experimental conditions: for
example, whether the acquisition or the expression of the behaviour would be blocked or
shifted to intermediate or even a goal-tracking behaviour, according to the Index Score
defined above.

Note that initial Q − values have no impact on behaviours on the long run as they
are revised by incremental learning during the simulation. Estimated β parameters are
sufficient to generate exploration and avoid being permanently biased by such initial
values. They mainly help in reproducing the initial tendencies of rats to interact with
the experimental environment. They can reflect difference in traits (e.g. novelty-seeking
traits) that seem to differ between STs and GTs.

Results
The model has already been validated on a set of behavioural, physiological and phar-
macological data [Les+14b]. Interestingly, while the model was only tuned to fit the

Reprinted from Journal of Physiology - Paris, Florian Lesaint, Olivier Sigaud, Jeremy J. Clark, Shelly
B. Flagel and Mehdi Khamassi, Experimental predictions drawn from a computational model of

sign-trackers and goal-trackers, in press (doi:10.1016/j.jphysparis.2014.06.001), Copyright (2014), with
permission from Elsevier.

..
131

...

http://www.sciencedirect.com/science/article/pii/S0928425714000242


behavioural data for each group, simulations of additional experiments without changing
the parameters were consistent with the remaining experimental data.

The model accounts for the respective engagements of STs and GTs towards distinct
specific features [Fla+07; Fla+09; Fla+11b]. It reproduces the difference in patterns of
dopaminergic activity for GTs and STs [Fla+11b]. It also reproduces behaviours indica-
tive of incentive salience attribution, including the conditioned reinforcement effect of
the lever shown to a greater extent in STs than GTs [RF09], and the consumption-like
engagement of the lever or magazine [MB09; DB12b]. Finally, it also reproduces the im-
pact of flupentixol injected either systemically prior to training [Fla+11b], i.e. during
acquisition, or locally after the rats have acquired their respective conditioned responses
[SR12], i.e. expression.

In the following sections, taking inspiration from the set of studies used to validate the
model, we generate predictions that new experiments or extended analyses of the data
could confirm.

Dopaminergic patterns of activity
The model parallels the dopaminergic activity recorded in the core of the nucleus accum-
bens by Fast Scan Cyclic Voltammetry with the RPE signal used in the FMF system. At
US time, the RPE signal within the FMF system comes from the difference between the
value of the previously engaged cue and the value of the delivered food. At CS time, it
mainly reflects the value of the most rewarding cue between the lever and the magazine.

STs and GTs dopaminergic patterns at CS and US time are very distinct [Fla+11b].
While we observe a clear propagation of the signal from US to CS in STs (as expected
from the classical RPE theory [Sch98]), this is not the case for GTs for which the CS
and US signals are similar to one another and remain relatively constant across sessions
(hence, in discrepancy with the classical theory).

In the model, the RPE signal is dependent of the feature previously focused on by
the simulated rat. Thus, RPE patterns, averaged over sessions, strongly depend on the
dominant path taken by the simulated rats before food delivery. Simulated STs, that
mainly engage with the lever before food delivery, have an averaged signal that propagates
from US to CS. This reflects that any rat that engages with the lever, eventually learns
that it is a full predictor of food delivery. Simulated GTs, that mainly engage with
the magazine before food delivery, have an averaged signal that do not show such a
propagation. Indeed, the magazine is not fully informative of food delivery for any rat,
hence a persistent reward prediction error remains at food delivery when engaging with
the magazine during CS.

In Flagel et al. [Fla+11b], recordings of dopaminergic activity in outbred rats were
made to parallel those of the selectively bred STs and GTs but no recordings were made
in outbred IGs. We would expect that IGs, whose behaviour fluctuate between sign-
tracking and goal-tracking, would have a kind of mixed signal, averaging between those
following from sign-tracking and goal-tracking. The current parameters values used in
the model suggest that we would expect a high signal at CS time that would converge
to a certain point, while at the meantime, the signal at US time would keep fluctuating
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without fully disappearing (see Figure 6.2).

Figure 6.2: Prediction of the model about expected patterns of dopaminergic ac-
tivity in intermediate rats. Data are expressed as mean ± SEM. Average RPE computed
by the FMF system in response to CS and US presentation for each session of conditioning in
the intermediate group.

Note that the visual results of this prediction are not identical with those in Lesaint
et al. [Les+14b]. Contrary to ST and GT behaviours that deeply rely on the mechanisms,
IG results strongly depend on the parameter values, which are significantly different with
the introduction of the new score. Experimental recordings could help us refine the
appropriate set of values for further predictions.

The initial analysis [Fla+11b] and its reproduction [Les+14b] was done without taking
into account the features engaged by animals prior to food delivery, possibly averaging
very distinct patterns. The model predicts that if we were to organize the data per groups
and actions rather than only per groups, we would observe patterns as shown in Figure
6.3. At the time the CS is presented, there should be no differences as all rats are exploring
the world and not expecting the lever appearance, hence the positive RPE common to all
rats. The difference would be at US time.

STs previously engaged with the lever (Figure 6.3 A) would show a classical propagation
pattern, similar to the one of the initial analysis, as this condition dominates in the data.
It reflects the fully predictive value of the lever. STs previously engaged with the magazine
(Figure 6.3 C) would show a significant peak of DA activity, as they almost never engage
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with the magazine and hence attribute a low value to it, leading to an expected significant
RPE.

GTs previously engaged with the magazine (Figure 6.3 D) would show an absence of
propagation and patterns of DA activity that follow those at CS time, similar to the one
of the initial analysis, as this condition dominates in the data. It reflects the difference
between the value of the food delivered and the lower motivational value of the magazine.
GTs previously engaged with the lever (Figure 6.3 B) would show a noisy dopaminergic
activity that would decrease with time as the predictive value of the lever is learn.

Figure 6.3: Predictions about patterns of dopaminergic activity per groups and per
actions. Average RPE computed by the FMF system in response to CS and US presentation for
each session of conditioning for STs (A,C) and GTs (D,B) when engaged with the lever (A,B)
or with the magazine (C,D). The model predicts very distinct patterns of activity depending on
the feature engaged with prior to food delivery.

Removal of magazine during the ITI
In the present model, the simulation of the ITI has a significant impact on the data. We
hypothesize that the permanent presence of the magazine during the whole experiment
lead animals to revise its associated motivational value, upward at lever retraction (i.e.
food delivery) and downward during the ITI as there is no reward to be found then.
Hence, on average, its presence does not guarantee access to food. In contrast, the time-
locked presence of the lever before food delivery would lead to learn and maintain the
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motivational value of the lever to a certain level, as its presence guarantees food to be
delivered.

First, by keeping the motivational value of the lever higher than that of the magazine
in the FMF system, it makes simulated rats favouring this system (STs) to follow a
sign-tracking policy. The small contribution of the MB system, which would attract rats
towards the magazine does not compensate. Thus, the presence of the magazine in ITI is
central for the emergence of STs in the model.

Second, by revising downward the magazine value between episodes, it maintains a
discrepancy between the expectation (value) and the observation (reward) at food delivery
in simulated rats being engaged with the magazine. This leads to the persistent positive
RPE at US time and prevents a full propagation of the signal to CS time. Thus, the
presence of the magazine in ITI is also central for the model, to explain the distinct
dopaminergic patterns of activity in STs versus GTs that have been observed in Flagel
et al. [Fla+11b].

Third, we also hypothesize that values of the FMF system account for the motivational
engagement, i.e. incentive salience, observed in rats towards either the lever or the mag-
azine. The higher motivational value of the lever relative to that of the magazine implies
that simulated rats chew/bite more the lever than the magazine. While not central to
the model, it is consistent with experimental observations [MB09; DB12b].

If no magazine were available during the ITI then, according to the model, the magazine
would not loose its motivational value, as it would become a full predictor of food delivery
and be highly valued. Hence, we would expect (1) an increased motivational engagement
(chew/bite) towards the magazine, (2) a decreased tendency in sign-tracking within the
population and (3) a different pattern of dopamine activity when goal-tracking for all
rats.

As the motivational value of a feature accounts for the level of motivational engagement
towards it, a higher motivational value of the magazine, relative to a control group, would
necessarily lead to a relatively stronger motivational engagement towards it.

As the motivational value of the magazine would be as high as that of the lever, there
should be no reason for rats relying mainly on the FMF system (STs) to favour one over
the other, hence shifting to behaviours similar to those of IGs and GTs (see Figure 6.4).
GTs, relying mainly on the MB system would not be deeply affected (see Figure 6.4 B).

Finally, as the presence of the magazine would be time-locked to the moments before
the delivery of food, we would expect a propagation of the dopamine signal from US time
to CS time (see Figure 6.5). At some point (after the value of the food has been fully
learned) the signal at US time should start decreasing. Note that if we would have used
the same parameters (except for the weighting parameter) to simulate STs and GTs, we
would have expected an identical RPE signal for STs and GTs, and we know this is not
the case based on existing data [Fla+11b].

The expected decreased tendency in sign-tracking within the simulated population does
not mean that simulated rats would not be attracted any more by the lever. Simulated
rats would indeed be attracted by both the lever and magazine because their FMF system
attributes a high motivational value to all signs preceding reward delivery. Combined with
the contribution of the MB system which attracts rats towards to magazine, it could make
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Figure 6.4: Distribution of rats given the removal of the magazine during the ITI.
Simulated rats ordered by their Index Score. In blue simulated rats using parameter values tuned
for GTs, in red for STs and in white for IGs in the classical condition (control). Rats with
a score < −0.5 are GTs, with a score > 0.5 are STs and remaining rats are IGs. (A) As
expected, rats using parameters’ value for GTs are classified as GTs. Same for STs and IGs.
(B) Without magazine during the ITI, simulated rats that would have been classified as GTs in
normal conditions are still classified GTs. However, rats that would have been classified as STs
(red) have a score that classify them as GTs or IGs. One IG (white) is now classified as GT.

Figure 6.5: Patterns of dopaminergic activity for GTs given the removal of the
magazine during ITI. Average RPE computed by the FMF system in response to CS (black)
and US (blue) presentation for GTs for each session of conditioning. It is hypothesized to parallel
the patterns of dopaminergic activity observed by FSCV in the core of the nucleus accumbens.
(A) With the classical protocol (control), signal at CS and US seems to follow similar trends
and there is no propagation of signal from US to CS. (B) When magazine is time-locked to
CS presentation, the value of US is propagated to the CS. Thus, the signal at US time, after
sufficient learning (2 first sessions) start decreasing in favour of the CS time.
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the simulated animal engage more with the magazine than with the lever. Thus if the
computational model is valid, this would mean that the tendency to sign-track in real
animals can be gradually changed by affecting some of the signs or features present in the
context of the task (here the magazine during the ITI).

Injections of flupentixol in the core of the nucleus accumbens
In the model, flupentixol, an antagonist of dopamine, is hypothesized to impact the RPE
(hypothesized to parallel phasic dopamine) used in the FMF system, putatively based
within the core of the nucleus accumbens. Flupentixol is also assumed to affect any
action selection process, relying on tonic dopamine [Hum+12]. Hence, under systemic
injections of flupentixol, the learning process of the FMF system is disrupted and actions
are almost randomly picked barely using learned values.

With systemic injections of flupentixol [Fla+11b], no goal-tracking nor sign-tracking is
expressed in the population. However, when afterwards released from flupentixol, GTs
fully express goal-tracking, whereas STs behave as untrained rats.

The model accounts for the absence of behaviours under flupentixol by the hypothe-
sized impact of flupentixol on the action selection process, blocking the expression of any
acquired behaviour Lesaint et al. [Les+14b]. The subsequent absence of sign-tracking on
a last session free of flupentixol is explained by the disruption of the FMF system during
the 7 first sessions, blocking behaviour acquisition. The full expression of goal-tracking
as soon as flupentixol is removed, relies on the unaffected learning process in the MB sys-
tem, assumed to be dopamine-independent and hence keeps learning under flupentixol,
but which values are simply not used by the softmax function.

The model predicts that if flupentixol were injected locally in the core of the nucleus
accumbens rather than systemically prior to acquisition, GTs would normally express their
behaviour, as the action selection mechanism would not be disrupted and make use of the
values learned in the MB system; whereas STs’ behaviour would remain blocked because
of the disruption of the FMF system (see Figure 6.6), and this is indeed what happend
when Saunders and Robinson [SR12] locally injected flupetixol after the behaviours were
already acquired.

Lesions of core of the nucleus accumbens
While we did not try to find all anatomical counter parts of the mechanisms involved
in the model, the hypothesis that the FMF system relies mainly on the core of the nu-
cleus accumbens is important for the model. Indeed, RPEs used in the FMF system are
compared with the dopaminergic recordings (using FSCV) in the core of the nucleus ac-
cumbens. As already stated, the values learned by the FMF system are a key component
in the emergence of sign-tracking behaviours within a population and assumed to reflect
the motivational engagement observed towards the magazine and the lever.

As stated in the previous section, Flagel et al. [Fla+11b] studied the impact of sys-
temic injection of flupentixol on the acquisition of sign-tracking and goal-tracking. They
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Figure 6.6: Simulated impact of injections of flupentixol. (A,B) Simulation of the
impact of systemic injections of flupentixol [Fla+11b] on the probability to approach the lever
for STs (A) and the magazine for GTs (B) during lever presentation. Last session is without
flupentixol. Under flupentixol (first 7 sessions), both sign-tracking and goal-tracking are blocked.
On the last flupentixol-free session (8 session), STs are unable to express sign-tracking, its
learning having been blocked, whereas GTs fully express goal-tracking, which learning was only
covert. (C,D) Simulation of the impact of local injections of flupentixol in the core of the nucleus
accumbens, hypothesised to impact only the FMF-system. Contrary to the initial experiment, the
injections being localized to the FMF-system, the action selection mechanism is not impacted.
Hence, GTs fully express goal-tracking during the first 7 sessions (C). STs are still unable to
express sign-tracking (D).

observed that the acquisition of a goal-tracking behaviour did not require a fully func-
tional dopaminergic system contrary to sign-tracking. Another study [SR12] focused on
the impact of local injections of flupentixol in the core of the nucleus accumbens on the
expression of sign-tracking and goal-tracking, after 8 days of conditioning. On the last
day, with a sufficient dose of flupentixol, they observed a decrease in the general tendency
to sign-track in the overall population while leaving the level of goal-tracking unaffected.

Simulating injections of flupentixol in the core of the nucleus accumbens, by disrupting
RPEs in the FMF system and hence its contribution in the decision, the model accounts
for these last observations. The action selection mechanism remains functional and makes
use of the MB system values, such that the behaviour of GTs is preserved while the one
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of STs is disturbed and leads to a decrease in sign-tracking in the overall population.
We expect that lesions of the core of the nucleus accumbens would lead to similar effects

as the above experiments.
Lesions of the core of the nucleus accumbens prior to the experiment would (1) block the

expression of sign-tracking responses and (2) stop the motivational engagement towards
the magazine or the lever during approaches.

By disabling the FMF system (setting and keeping all values to 0), it cannot favour
the lever over the magazine any more. STs would therefore act randomly , approaching
lever and magazine indifferently, as observed in IGs. We would expect a shift towards
goal-tracking similar to the one expected for removing the magazine during the ITI (as
in Figure 6.4).

However, while a magazine removal would lead to an increase in motivational engage-
ment, we expect such a lesion to block any consumption-like behaviour. Especially, we
would expect GTs’ approach behaviour to remain similar to control group, but without
subsequent chewing and biting of the magazine.

We would expect that lesions of the core of the nucleus accumbens after the experiment
would disrupt the tendency to sign-track in the overall population, while leaving the ten-
dency to goal-track intact (see Figure 6.7). However, contrary to flupentixol injections,
that needed 35 min of infusion for a visible effect, we would expect the effect to be imme-
diate with a lesion. Such a lesion would disrupt the FMF system, hence (1) suppressing
any consumption-like engagement towards the features (motivational values being kept
to 0), and (2) stop favouring engagements towards the lever. The lesion would leave the
MB system unaffected and have no impact on the general tendency to goal-track.

Figure 6.7: Predictions of the impact of lesions of the core of the nucleus accumbens
after conditioning. General tendencies to sign-track (A) and goal-track (B) in a population
of rats after training. Lesion of the core of the nucleus accumbens is simulated by a blockade
of the FMF system in the model. We expect a decrease in the tendency to sign-track (A) with
a lesion (purple) relative to a control group (black). General goal-tracking tendencies should
remain unchanged (B).
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Discussion
Relying on a model that was previously validated using experimental data to account
for variability in rats undergoing an autoshaping paradigm [Les+14b], we generate an
additional set of behavioural, physiological and pharmacological predictions.

We predict that dopaminergic patterns for IGs should be a mixed signal between those
observed for STs and GTs. We predict that looking separately at the DA patterns given
the prior engagement towards either the lever or the magazine should lead to clearly
distinct patterns. We predict that the removal of the magazine during the ITI should
lead to an increased motivational engagement towards the magazine, a decreased tendency
in sign-tracking within the population and a different pattern of dopaminergic activity
when goal-tracking. Finally, we predict that local injections of flupentixol to the core of
the nucleus accumbens would preserve goal-tracking and prevent the learning of a sign-
tracking response, a result that should also be observed following lesions of the core of the
nucleus accumbens prior to conditioning. Lesions after conditioning, would only block
the expression of the learned sign-tracking behaviour.

An important limitation of the present predictions is that most of them are based on
the behaviour that is expected to emerge from naive rats trained in a revised protocol,
assuming that they would have behaved in a specific manner in the standard protocol (e.g.
expecting a supposed ST to goal-track). To overcome this difficulty, one must look at the
population level rather than the individual level [SR12], which might be problematic as
the proportion of GTs, STs and IGs is highly variable in a population [Mey+12; Fit+13].
An alternative would be to use selectively bred rats that can more or less be ensured to
behave as STs or GTs in experimental conditions [Fla+11b].

Another limit of the present predictions are the hypotheses on which they are based.
It cannot be excluded that the core of the nucleus accumbens also contributes to the MB
system, but not by its dopaminergic activity [KH12; MR11; McD+11] (but see Meer et al.
[Mee+10]; Bornstein and Daw [BD12]; Penner and Mizumori [PM12]). Hence, completely
disrupting it might unexpectedly affect goal-tracking. Validating these predictions would
help to confirm this hypothesis. In the initial model [Les+14b] we interpreted the param-
eter which simulates the ITI as accounting for the engagement of the rats towards the
magazine during the ITI. Preliminary analyses of experimental data (not shown), while
still inconclusive, tend to mitigate such a strong hypothesis. Hence, in the current article,
we only assume that the presence of the magazine during the ITI impacts its general
motivational value within the experiment. Validating such predictions would definitely
help to clarify the impact of the ITI context on the expressed behaviours.

One could argue that, to some extent, describing STs with a MF system and GTs with
a MB system could be sufficient to explain dominant behaviours [Cla+12]. However, it
would fail to explain the full and continuous spectrum of observed behaviours [Mey+12]. If
the predictions that we make about IGs (which have an intermediate behaviour between
STs and GTs) are correct, this would argue in favour of a continuum in the weighting
between MB and MF systems rather than a pure dichotomy.

An alternative to the collaboration of both systems (through a weighted sum) would
be a reciprocal inhibition, such that only one system would be working at a time. This
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would be sufficient to account for the previous point and may even be able to account for
the absence of RPE pattern in the dopamine signal measures in GTs [Fla+11b] without
requiring a revision of the magazine value during ITI. The inhibition of the MF system
in GTs would indeed prevent any RPE signal from being observed. However, it would be
unable to properly account for the consumption-like engagement observed in both STs and
GTs without some kind of extension (see Zhang et al. [Zha+09] for a computational model
of incentive salience). It would also fail to explain why the pharmacological disruptions
of one system does not seem to let the other take control [Fla+11b].

Another possibility would be that the two systems run in parallel but that only one is
used to make the decision during a trial. Assuming that one system leads to the lever and
the other to the magazine, we would expect IGs to behave as STs when engaging with
the lever and GTs when engaging with the magazine. Experimental data goes against
such interpretation. Meyer et al. [Mey+12] observed that contrary to STs or GTs, IGs
tend to approach both the magazine and the lever during single trials. Some rats even
hold on to the lever while putting their head into the magazine (which no model that
selects a single action at a time can reproduce). While the task representation does not
allow multiple engagements in a trial, this suggests that both systems are active and
contribute actively to their behaviour at all time. We would also expect rats to behave
differently when using one system over the other, such that, for example, rats would
actively engage with the lever but quietly wait in front of the magazine, which is not
the case. Finally, the recent literature seems consistent with multiple systems working in
parallel and partially contributing to a global decision (e.g. Daw et al. [Daw+11]). Hence,
this does not suggest take-over competition between the systems. Trial-by-trial analyses
[Daw11] would allow us to definitely rule out such alternatives. Finally, if only the output
of the MF system was inhibited, given that the lever appearance is fully predictive of
food delivery, no classical MF system (relying on classical state representation) would
reproduce the differences observed in phasic dopaminergic patterns between STs and GTs
nor explain the differences of focused features. Hence, the model suggests to take features
into consideration.

The interest of the current computational model lies in its combination of simple con-
cepts actively used and accepted in the current field (Dual reinforcement learning and
factored representations) but rarely used together, to account for a variability of experi-
mental data, without resorting to arbitrary additions. As a result the current model does
not behave as state of the art algorithms would on the same task and produces a subop-
timal behaviour. This suboptimal behaviour is, however, in accordance with behavioural
observations in rats.

Subsequent studies could benefit from a different approach to estimate parameters. We
are currently fitting the model on the behavioural data per sessions and groups, using
trial-by-trial analyses could prove a better tool to fit the parameters at the individual
level [Daw+11] and comfort some choices in the architecture of the model.

It has been suggested that individuals for whom cues become powerful incentives (i.e.
STs) are more prone to develop addiction [SR12]. Thus, the current model and its predic-
tions will allow us to further investigate and possibly identify the neural mechanisms that
underlie addiction and related disorders. For example, the current model predicts that
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some manipulations could alter the behaviour of STs towards that of GTs, and the neuro-
biological targets of these manipulations may be used to alter drug-cue dependency and
prevent relapse (For further discussion regarding the role of learning-related dopamine
signals in addiction vulnerability, see Huys et al. [Huy+14]).

To conclude, the current article refines the model previously described by Lesaint et al.
[Les+14b] with an additional metric that strengthens its explanatory power. It mainly
suggests a set of predictions with which to further confront the model. The new proposed
experiments would help to better localize the anatomical counterparts of the mechanisms
involved and disentangle their contributions to the observed behaviours. It would also help
in refining the hypotheses and simplifications of the model and we hope would confirm
the interest and necessity of considering the features rather than the general situations
encountered by rats when modelling this kind of phenomena.
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This chapter presents an application of the computational model developed in Chapter
5 to a new set of experimental data. This work is presented under the form of a journal
paper currently under review:

Florian Lesaint, Olivier Sigaud, and Mehdi Khamassi. “Accounting for neg-
ative automaintenance in pigeons : A dual learning systems approach and
factored representations”. In: PLoS One (under review)

It aims at investing the opportunity to use dual-learning systems combined with fac-
tored representations [Les+14b] to study not only Pavlovian conditioning but also Pavlo-
vian and instrumental interactions. It once again proves the interest of such a method
by confronting the model to experimental data that have not been much accounted for
by computational neuroscientists, especially as it provides an explanation for conflicting
results in the current literature.

It shows that the computational model can reproduce inter-individual differences in
pigeons undergoing a negative automaintenance task [WW69; San+06]. It also suggests
some predictions that could confirm or revoke the model if tested in subsequent studies.
Simulations suggest that the variability of behaviour in pigeons can be interpreted in a
way similar to that of rats, that is by the presence of sign-trackers and goal-trackers,
which differently rely more on one system than on the other. The model also explains
some additional properties of the behaviours investigated in [WW69].
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Accounting for Negative Automaintenance in
Pigeons: A Dual Learning Systems Approach and
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Florian Lesaint1,2,∗, Olivier Sigaud1,2, Mehdi Khamassi1,2
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Univ Paris 06, Paris, France
2 Institut des Systèmes Intelligents et de Robotique, UMR 7222, CNRS,
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∗ E-mail: Corresponding lesaint@isir.upmc.fr

Abstract
Animals, including Humans, are prone to develop persistent maladaptive and suboptimal
behaviours. Some of these behaviours have been suggested to arise from interactions be-
tween brain systems of Pavlovian conditioning, the acquisition of responses to initially
neutral stimuli previously paired with rewards, and instrumental conditioning, the acquisi-
tion of active behaviours leading to rewards. However the mechanics of these systems and
their interactions are still unclear. While extensively studied independently, few models
have been developed to account for these interactions. On some experiment, pigeons have
been observed to display a maladaptive behaviour that some suggest to involve conflicts
between Pavlovian and instrumental conditioning. In a procedure referred as negative
automaintenance, a key light is paired with the subsequent delivery of food, however any
peck towards the key light results in the omission of the reward. Studies showed that in
such procedure some pigeons persisted in pecking to a substantial level despite its negative
consequence, while others learned to refrain from pecking and maximized their cumula-
tive rewards. Furthermore, the pigeons that were unable to refrain from pecking could
nevertheless shift their pecks towards a harmless alternative key light. We confronted a
computational model that combines dual-learning systems and factored representations,
recently developed to account for sign-tracking and goal-tracking behaviours in rats, to
these negative automaintenance experimental data. We show that it can explain the vari-
ability of the observed behaviours and the capacity of alternative key lights to distract
pigeons from their detrimental behaviours. These results confirm the proposed model
as an interesting tool to reproduce experiments that could involve interactions between
Pavlovian and instrumental conditioning. The model allows us to draw predictions that
may be experimentally verified, which could help further investigate the neural mecha-
nisms underlying theses interactions.

Introduction
Persistent maladaptive and suboptimal behaviours are commonly observed in animals,
including Humans, and supposed to results from possible constraints (e.g. energy versus
efficiency trade-off) solved by the interaction of neural mechanisms not clearly identified
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yet. Breland and Breland [BB61] studied animals that learned to retrieve rewards given
some action (e.g. drop an object to get food). They observed that, while successful at
first, these animals developed strange behaviours which blocked them in achieving the
rewarding action (e.g. paws kept clenched on the food-predicting object). Hershberger
[Her86] studied how chicks failed to learn to run away from visible food to eventually get
access to it. Guitart-Masip et al. [GM+12] showed that many humans have difficulties
to learn to withhold from acting to get rewarded in a go/no-go task. These maladaptive
behaviours have been suggested to arise from the interactions between multiple decision
systems in the brain [Day+06; Red+08; BD10; Cla+12], namely Pavlovian and instrumen-
tal systems. Pavlovian conditioning is the acquisition of responses associated to initially
neutral stimuli that have been paired with rewards while instrumental conditioning is
the acquisition of an active behaviour in order to retrieve rewards or avoid punishments.
However, the respective mechanisms of these two types of conditioning and how they
interact are still unclear.

An example of such maladaptive behaviour was experimentally investigated byWilliams
and Williams [WW69], whose initial goal was to explore the properties of the pecks de-
veloped by pigeons in procedures subsequently referred as autoshaping [Ski38]. A classical
autoshaping procedure elicits a standard Pavlovian phenomenon. It consists in pairing a
conditioned cue (e.g. a light) with the subsequent delivery of food and results in animals
developing robust conditioned responses (e.g. pecks) towards the conditioned cue, even
if these responses were unnecessary to be rewarded. Actually, Brown and Jenkins [BJ68]
found autoshaping to be a more effective way of getting animals to engage with objects
for subsequent instrumental experiments, such as pulling a chain or pressing a lever, than
other training protocols. Williams and Williams [WW69] developed another protocol,
that was afterwards referred as a negative automaintenance procedure, which consisted
in a setup identical to an autoshaping procedure, with the exception that pecking the
light turned it off and reward was subsequently omitted. Unexpectedly, they observed
that most of their pigeons persisted, although to a lower extent, to peck the light despite
its negative consequence, losing during the process a significant amount of reward. The
phenomenon was further investigated in both pigeons [DW77; GR73; Kil03; Woo+74],
and other species such as rats [Loc+76; Loc+78; O’C79] and rabbits [GH72] with similar
results. However, in a more recent study on pigeons with a slightly different negative
automaintenance procedure, Sanabria et al. [San+06] did not observe as much sustained
detrimental pecks as observed by Williams and Williams [WW69], casting a shadow over
the original results. While the differences in the procedures might be one reason of such
conflicting results, the present paper develops an additional possible reason.

According to multiple studies [Day+06; Loc+78; San+06], negative automaintenance
investigates the confrontation between Pavlovian processes and instrumental ones. It is
our interpretation that conditioned responses develop because of the contingency between
the conditioned stimulus and the reward (Pavlovian conditioning) and one would expect
pigeons not to peck as it prevents them from being rewarded (instrumental conditioning).
Understanding the underlying neural mechanisms that result in such behaviours is also
important to clarify the constraints and strategies developed by years of evolutions for
animals to survive in nature.
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Killeen [Kil03] and Sanabria et al. [San+06] have proposed computational models to
account for the pecking behaviour described above. However their models are very specific
to the task and not easily generalizable to the study of other phenomena. Dayan et al.
[Day+06] proposed a more general computational model of interactions between Pavlo-
vian and instrumental conditioning and took negative automaintenance as an illustration,
focusing on the first experiment of Williams and Williams [WW69], that introduces the
general phenomenon, but without investigating its subtleties resulting from more specific
subsequent experiments.

Initially inspired by this latter model, Lesaint et al. [Les+14b] developed a compu-
tational model that accounts for a variety of experimental results in rats undergoing an
autoshaping procedure [Fla+11b], especially observed inter-individual variabilities of be-
haviours within the population. In this study, some rats (sign-trackers) came to approach
and engage the conditioned stimulus (CS) itself more and more avidly, whereas other
rats (goal-trackers) learned to approach and engage the location of food delivery upon CS
presentation, a variability also visible at the physiological and pharmacological level.

In the present study, we show that the model of Lesaint et al. [Les+14b], initially
developed to account for autoshaping in rats, can reproduce with barely no modifications
the experimental data on autoshaping and negative automaintenance in pigeons. Espe-
cially, the model suggests as one of the plausible reasons regarding the conflicting data
of Williams and Williams [WW69] and Sanabria et al. [San+06], that the variability of
observed behaviours partially results from the presence of sign-trackers and goal-trackers
within pigeons. It is also able to account for other experimental data about the necessary
properties of the cues to express negative automaintenance [WW69]. Moreover, the model
generates predictions that may be tested with additional experiments. We further discuss
the interest of the combination of concepts on which the model relies for the reproduction
of experimental data on Palovian and instrumental conditioning.

Methods

Model
The model from which the present results are generated is described in depth in [Les+14b].
Here we describe the computational mechanisms of the model that capture the experi-
mental data in pigeons. The model is based on a reinforcement learning (RL) method,
which describes how an agent should adapt its behaviour to rewarding events. Rein-
forcement learning relies on Markov Decision Processes (MDP) where the environment is
described as a set of states between which the agent can move by acting (see next section).
The model is composed of two distinct reinforcement learning systems that collaborate,
through a weighted sum integration of values respectively computed by each system, to
select an action at each step of the experiment (Figure 7.1) [Cla+12]. One system favours
rational and optimal plans of actions while the other leads to more impulsive choices.

The first system is a model-based (MB) system that learns the long term consequences
of actions by estimating an approximate model of the world (a transition function T and
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a reward function R) on which to build action plans. The model is sufficient to anticipate
the delivery of food subsequently to key lights appearance and therefore the interest of
being close to the magazine even before its delivery. It is also sufficient to learn that
pecking leads to reward omission and should be avoided. This system produces a goal-
directed behaviour [Boa77; DB94]. In our implementation of this Model-Based process,
the system infers the advantage (A) of taking each action in each situation from its model,
given the classical following formulae:

Q(s, a)←R(s, a) + γ
∑
s′

T (s′|s, a)max
a′
Q(s′, a′) (7.1)

A(s, a)← Q(s, a)−max
a′
Q(s, a′) (7.2)

where the discount rate 0 ≤ γ ≤ 1 classically represents the preference for immediate
versus distant rewards and Q(s, a) is the expected value of doing action a in state s (it
corresponds to the discounted accumulation of rewards expected from that moment if
subsequently following the assumed best plan of actions). At each step, the most valued
action is the most rewarding in the long run (e.g. approaching the magazine to be ready
to consume the food as soon as it appears). Equation 7.1 reflects the prospective process
by which the simulated agent estimates the future consequences of performing action a
in state s. If action a is assumed to lead to a reward R(s, a) or with a good probability
T (s′|s, a) to another state s′ with a high quality action Q(s′, a′) then the agent will asso-
ciate a high Q-value to the state-action pair 〈s, a〉. Equation 7.2 deduces the advantage
of performing action a in state s by comparing its Q-value with the maximal possible
Q-value of all available actions in the same state. Note that other implementations could
be possible.

The second system is model-free (MF). It does not learn an internal model of the world
but incrementally learns to associate values to features of the environment, favouring
actions towards valued ones. As a result, this system produces a reactive behaviour in a
way similar to habits [Gra08; DD13]. Without an internal model, it cannot consider the
consequences of an action and hence solely bases its decision on the a priori expectation
values it learns.

In traditional RL (e.g. the MB system), values are learned over abstract states (e.g.
arbitrarily defined as s1, s2 . . . sx), such that similarities between situations (e.g. presence
of a magazine) are ignored. The present system learns values (V) over features (e.g. food,
lever or magazine) and is further defined as the feature model-free system (FMF). Using
features reintroduces the capacity to use and benefit from similarities between states.
The incremental learning of values relies on a reward prediction error (RPE) signal δ, and
works as follows:

V(f)← V(f) + αδ (7.3)
δ ← r + γmax

f ′∈s′
V(f ′)− V(f)
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where f is the feature that has been focused on by the action a in state s. The max
suggests that all the features f ′ of the new state s′ are considered and the most valued
one is used to compute the RPE, even if it might not be the feature focused by the
next chosen action. This update rule (Equation 7.3) may be paralleled with the one of
the classical Model-Free Q-Learning algorithm [SB98] where Q-values are used in place
of V-values. While very similar, such rules can actually produce very different results
and patterns depending on the involved situations. The model embeds a feature-function
c : S × A → {keylight(s),magazine, food, ∅} that returns the feature the action a was
focusing on in state s (e.g. it returns the key light when the action was to engage with the
key light). In [Les+14b] we hypothesized that, similarly to classical model-free systems, δ
parallels phasic dopaminergic activity [Sch98]. This signal enables to revise and attribute
values, seen as motivational or incentive, to features without the need of the internal
model of the world used by the MB system. When an event is fully expected, there
should be no RPE as its value is fully anticipated; when an event is positively surprising,
there should be a positive RPE [Niv09]. The values learned bias the behaviour towards
actions that are directed towards the most motivational features (e.g. engaging with the
key light would be biased by the general motivational value of the key light). This might
lead to favour suboptimal actions with regard to maximizing rewards (e.g. engaging with
the negative key light prevents pigeons from being rewarded). The FMF system models
the attraction developed by reward-predicting stimuli in such experiments, i.e. incentive
salience [MB09; DB12b; Ber07].

Figure 7.1: Model used for simulations. The model is composed of a model-based system
(MB, in blue) and a Feature-Model-Free system (FMF, in red) which provide respectively an
advantage function A for actions ai given a state s and a value function V for each feature fi
that compose the given state. These values are integrated in P, prior to be used into an action
selection mechanism. The various elements may rely on parameters (in purple).

The model does not base its decision on a single system at a time. Rather, the values
of the MB system (AMB) and the FMF system (VFMF ) are integrated such that a single
decision is made at each time step. The values computed by these two systems are com-
bined through a weighted sum and transmitted to a softmax action selection mechanism
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that converts them into probabilities of selecting actions given a situation (Figure 7.1).
The integration is done as follows:

P(s, a) = (1− ω)AMB(s, a) + ω

{
0 if a = ngo
VFMF (f) with f = c(s, a) otherwise (7.4)

where 0 ≤ ω ≤ 1 is a combination parameter which defines the importance of each system
in the overall model. Pigeons may be modelled with a particular ω value, different ω
values producing different characteristics of behaviour. The integration (Equation 7.4)
differs from the one suggested by Lesaint et al. [Les+14b] as the tasks presented here
introduce the new notion of refraining from engaging. We hypothesize that refraining
from engaging with a stimulus does not benefit from the FMF bonus associated with
such stimulus, hence the a = ngo condition in the second part of the equation. This
hypothesis is based on studies of go and no-go learning [GM+12; GM+14] that suggest
the presence of a bias for engaging against withholding. Note that this modification could
be propagated to the previous studies [Les+14b; Les+14a] without any impact. Indeed,
the experiments already accounted for by the model do not require to refrain from acting.

The model incrementally learns from experience at each step. FMF and MB systems
are updated according to the action a taken by the full model in state s and the resulting
new state s′ and retrieved reward r.

Task modelling
Figures 7.2, 7.3 and 7.4 show the MDPs used to simulate the different experiments of
Williams and Williams [WW69] and Sanabria et al. [San+06]. We assume that each
experimental trial can be simulated with a finite horizon episode, that is by a single run
in an MDP with an initial and a terminal state. Furthermore, to comply with the MDP
framework, we assume that engagement is necessarily exclusive to one or no stimulus and
we do not model time, which is sufficient to replicate the experimental data.

In Experiment 1 (Figure 7.2), the agent starts from an empty state (s0) where there is
nothing to do but explore. At some point the key light is turned on (s1). The agent can
either approach the key light (s2), approach the magazine (s4) or keep exploring (s3,s6).
If close to the key light (s2), it can either engage with it which ends the trial without
reward (s0), or refrain from engaging until food is eventually delivered (s5). If close to the
magazine (s4), engaging or not has no impact and leads to food delivery (s7). Finally, if
the agent is far from the magazine (s5,s6), it first needs to get closer (s7) before consuming
the food, hence retrieving the only available reward in this trial (R). It ends in an empty
state (s0) which symbolizes the start of the inter-trial interval (ITI): no food, no lever and
an empty but still present magazine. Paths in red are those that should be favoured by
the FMF system, leading to the potentially detrimental action of engaging with the Key
light. Paths in blue are those that should be favoured by the MB system, successfully
leading to reward delivery.

Experiments 3 and 4 use additional key lights (irrelevant and continuous). Each light
extends the previous MDP with an additional path as described in Figures 7.3 and
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Figure 7.2: Computational representation of the negative automaintenance proce-
dure. MDP accounting for Experiment 1 in Williams and Williams [WW69] and for the
Brief PA protocol of Sanabria et al. [San+06]. States are described by a set of variables: K/F
- negative Key light/Food is available (Magazine is always available, hence it is not shown),
cM/cK - close to the Magazine/negative Key light, Ka - Key light appearance. The initial state
is double circled, the dashed state is terminal and terminates the current episode. Actions are
engage (eng) or refrain from engaging (ngo) with the proximal stimuli, explore (exp), or go
to the Magazine/Key light and eat. Only the eat action is rewarded (R), such that in this
experiment, pigeons that engage with the Key light receive nothing during the trial. For each
action, the feature being focused on is displayed within brackets.

7.4. The main idea is that animals can orient towards any key light (or magazine)
and subsequently engage with it. Based on the simulated protocols, paths can be ac-
tivated/deactivated during experiments, such that only available actions are considered
by the model in its decision. In Experiment 3, the role of the keys (K and I) are reversed
multiple times during the experiment (Blocks A and B in Figure 7.3).

In Williams and Williams [WW69], the key light is immediately turned off following a
peck. In Sanabria et al. [San+06] protocol, the key light is maintained for a fixed period,
whatever the behaviour of the pigeon. Food is then only delivered if no contacts with the
key light are made during that period. Pigeons could therefore produce multiple pecks
during a trial, hence the difference in scales between both studies that is not replicated
in our results. Despite such difference in protocols, the MDP of Figure 7.2 is also used to
simulate the results by Sanabria et al. [San+06]. Consequently, we mainly explain the dif-
ference of behaviours between the two studies by an inter-individual variability in pigeons,
simulated by different parameter values, rather than by the difference in protocols.

Inter-trial interval (ITI)

While the MDP does not model the ITI, we assume that the presence of a stimulus (key
light or magazine) during ITI degrades its values in the model. This current hypothesis is
simulated by revising the values of the magazine and the continuous key light (if available)
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Figure 7.3: MDP for simulation of Experiment 3 in Williams and Williams.
Legend is as in Figure 7.2. The path involving an engagement with the negative key light is
highlighted in red. A new irrelevant key light (green), the associated paths and actions are
added to the MDP of Figure 7.3. The animal starts in block A. During the experiment,
blocks can be switched without informing the animal, such that the contingencies are
reversed between keys.

with the following formulae:

V(M)← (1− uITI)× V(M)
V(C)← (1− ucITI)× V(C)

(7.5)

where the parameters 0 ≤ uITI ≤ 1 and 0 ≤ ucITI ≤ 1 reflect the impact of the presence
of the magazine and the continuous key light during ITI on their acquired value in the
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Figure 7.4: MDP for simulation of Experiment 4 of Williams and Williams. Legend
is as in Figure 7.3. A new continuous irrelevant key light (purple), the associated paths and
actions are added to MDP of Figure 7.3 (Block A) . Note that while not shown, as for the
Magazine, the Continuous key light is present in all states. Paths are activated/deactivated
depending on the current phase of the current protocol (Table 7.2).

FMF system. A low value symbolizes a low impact and therefore a low revision of the
value associated to the stimulus.

Note that extending the MDP with a set of states to represent this interval would
have increased the complexity of the MDP, introduced non-Markov aspects to the task
and increased the time required for simulations. Furthermore, while it might have led
to the same results, the interpretation would have been different from our hypothesis, as
downgrading the values would have required engagement and not only the presence of
stimuli.

Pre-training

No MDP was used to simulate the possible autoshaping pre-training that underwent
some of the pigeons in the experiments, nor the necessary familiarization with the Skin-
ner box and the magazine mechanism. Rather, we initialize the model with values
(Qi(s1, goK),Qi(s1, goM),Qi(s1, exp)) that simulate the action-values acquired during
such pre-training phases.

These values have no impact in the long run behaviours as they are revised by in-
cremental learning during the simulation. They mainly help in reproducing the initial
tendencies of pigeons to interact with the experimental environment.
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Model parameters and simulations

The model relies on a set of 8 parameters (a shared learning rate, a shared discount rate,
a selection temperature, an integration parameter and 3 initial conditions) that need to
be tuned for simulations to reproduce experimental data. The parameter values used
were obtained by hand tuning. More automatic tuning methods (e.g. fitting optimisation
algorithms [Les+14b]) were not possible without more precise numerical experimental
data. Hence we only tried to qualitatively replicate the experimental results of Williams
and Williams [WW69] and Sanabria et al. [San+06].

Nevertheless, simulation results were generated with a single set of parameter values
for all experiments of Williams and Williams [WW69] and Sanabria et al. [San+06], with
the exception of ω and Qi(s1, goK) (see Table 7.1). Following the terminology used in
Lesaint et al. [Les+14b] to categorize rats, we can say that we simulated sign-trackers
(high ω) and goal-trackers (low ω) pigeons.

Varying the ω parameter is sufficient here to reproduce the experimental results. This
was done here for parsimony, in order to highlight the key important mechanisms to
explain experimental data without giving the model too many degrees of freedom. It is
however almost certain that pigeons would not share the exact same parameter values
in reality. Especially, breeding procedures, housing procedures and training procedures
might have some impact on the averaged neural mechanisms properties modelled with
these values.

Sanabria et al. [San+06] pigeons were divided into multiple groups that underwent
different protocols, with multiple mixed phases of positive and negative training. Except
for 3 pigeons, Williams and Williams [WW69] did not train their pigeons on the key lights
before the main experiments. For a better comparison between these studies, we only
focus on the pigeons of Sanabria et al. [San+06] that were briefly exposed to autoshaping
before being confronted to negative automaintenance (Brief PA protocol) and pigeons
with no pre-training in Williams and Williams [WW69], hence the difference of value for
the Qi(s1, goK) parameter.

Table 7.1: Parameters values used for simulations.

Pigeons Grp ω β α γ uITI ucITI Qi(s1, goL/goM/exp)
Williams and Williams * STs 0.9 0.15 0.2 0.9 0.3 0.2 0.0 / 0.2 / 0.2
Sanabria et al. GTs 0.2 0.15 0.2 0.9 0.3 0.2 0.8 / 0.2 / 0.2

Parameter values used to replicate studies from Williams and Williams [WW69] and
Sanabria et al. [San+06], with their interpretation: goal-trackers (GTs) or sign-trackers
(STs). * Note that one pigeon of Williams and Williams (P19) behaved as those of
Sanabria et al. (i.e. it would be simulated with GTs parameters).
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Results
We applied the present model to the various MDPs to replicate the results of Experiments
1, 3 and 4 of Williams and Williams [WW69] and also to some results of Sanabria et al.
[San+06] (Brief PA protocol).

Classical negative automaintenance
The central phenomenon that we intend to replicate with the present computational model
is the greater or lesser persistence in pigeons to peck a key light that, while predictive of
reward delivery, leads to its omission in case of contact.

In the first experiment of Williams and Williams [WW69], pigeons undergoing a neg-
ative automaintenance procedure failed to completely stop pecking at the key light such
that they missed a consequent number of rewards. Only one pigeon (P19) retrieved more
than 90% of the available rewards. The model can replicate the general behaviour of all
other pigeons with one set of parameter values, and P19 with a different set of values.
The red curve in Figure 7.5 shows pigeons that are unable to refrain from pecking and
lose almost half of the 50 possible available rewards per session. This behaviour persists
over time.

In a more recent study, Sanabria et al. [San+06] challenged these results of Williams
and Williams [WW69] as they ran a similar experiment but observed a significant decrease
in the detrimental pecks at key light (similar to P19, which was assimilated to a pigeon
of Sanabria et al. [San+06] in this experiment). They claimed that remaining pecks
did not differ significantly from those that can be observed after a classical extinction
procedure. Actually, in an extinction procedure, the conditioned key light is subsequently
decorrelated from food delivery, which results in pigeons stopping to emit conditioned
responses, except from few exploration pecks. The model is also able to replicate such
results using the same MDP despite a slight difference in the experimental protocols. The
blue curve in Figure 7.5 shows pigeons that start to peck (by exploration or familiarization)
but quickly learn to refrain from pecking to retrieve rewards. We would consider P19 as
part of such pigeons.

Each time a simulated pigeon does not peck the key light, its motivational value is
reinforced as the key light is contingent to reward delivery (Figure 7.2). This naturally
increases the tendency, promoted by the FMF system, to peck during subsequent trials.
As in Lesaint et al. [Les+14b], we assume that the presence of the magazine during ITI
makes it lose parts of its acquired motivational values (A low uITI), hence the magazine
remains less attractive than the key light and the pigeon never really focuses on it while
key light is active. The relative attractiveness of the key light is however balanced by
pecks, as the omission of rewards produces a decrease in the key light motivational value.

The MB system solves the task by finding the shortest sequence of actions until reward.
As a result, it favours approaches to the magazine, as this is the shortest path to reward
(Figure 7.2). Note that other paths would only delay reward delivery by one step and
hence are still positively evaluated (especially with a high γ). When close to the key
light, it strongly favours refraining from pecking, as this would prevent delivery of the
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Figure 7.5: Simulation of Experiment 1 of Williams and Williams [WW69] and
Brief PA protocol of Sanabria et al. [San+06]. (A) Cumulative pecks towards negative
key light made by 8 simulated GT pigeons (blue curve) and 8 simulated ST pigeons (red curve).
The dotted grey curve simulated the worse case scenario (if pigeons would have pecked at every
trials). Data are expressed as mean ± SEM. (B) Zoom of (A) for a better reading of the blue
curve (GTs). (C) Cumulative pecks for one ST pigeon by blocks of 50 Trials. To be paralleled
with Figure 1 of [WW69]. (D) Cumulative pecks for one GT pigeon by blocks of 50 Trials.

subsequent reward.
To summarize, in the MB system, the values of all actions but engaging with the key

light increase until a convergence level, which depends on how short is the following opti-
mal path to reward. The values then remain at that level until the end of the experiment.
The value of engaging the key light remains to 0 as it leads to no reward. In the FMF
system, the lever acquires a value that keeps oscillating around a certain level, decreasing
at key pecks and increasing otherwise. The magazine value increases at each trial but is
partially reset during ITI, such that its value remains at a low level.

When the model gives a high influence (large ω) to the FMF system in the decision
process, it produces pigeons that persist in pecking. The FMF system introduces a bias
towards actions that lead to approach and interact with stimuli that acquired motivational
values, in this case the key light. The resulting low influence of the MB system cannot
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compensate for this bias. This leads to the production of the expected maladaptive
behaviour observed in Williams and Williams pigeons, except for pigeon P19 (Figure 7.5,
red curve).

When the model gives a low influence (small ω) to the FMF system in the decision
process, it produces pigeons that quickly learn to stop pecking after a few exploration
pecks. Indeed, the MB system favours behaviours that maximize cumulation of rewards,
that is behaviours that do not lead to peck the key light. Pecks observed in such simulated
pigeons are mainly due to exploration. The FMF system is not able to bias the actions
enough to lead to a maladaptive behaviour and pigeons stop pecking as in Sanabria et al.
[San+06] study and for pigeon P19 of Williams and Williams [WW69] (Figure 7.5, blue
curve).

Given the provided equations, refraining from pecking does not completely compensate
for a prior peck and vice versa. Combined with exploration, this mechanism leads to
oscillations of the behaviour of pigeons that are not a perfect alternation of pecks and
abstentions. Hence, from time to time, pigeons will stop pecking, start accumulating
food, and by this process reinstate the attractiveness of the key light and the resulting
subsequent detrimental pecks.

Thus, the current model is able to account for these, at first sight, contradictory results.
With different parameter values (see Table 7.1), the model can reproduce pigeons that
fit those of Williams and Williams [WW69] and Sanabria et al. [San+06]. It explains
the difference between their findings as a result of a possible interindividual variability
in pigeons. Some are more prone to rely on the FMF system to guide their behaviours
while others rely on the MB system. We can define the pigeons of Williams and Williams
[WW69] as being mainly sign-trackers and those of Sanabria et al. [San+06] as being
goal-trackers.

It is important to note that the model describes the significantly lesser amount of reward
received by sign-trackers relative to goal-trackers as a consequence and not a cause of their
behaviour (simulated by a different ω parameter).

Avoidance strategies
Experiment 2 of Williams and Williams [WW69], using a different protocol, only con-
trolled that key lights had to be contingent to some rewards to produce key pecks and
was not simulated. In their Experiments 3 and 4, Williams and Williams [WW69] further
investigated the properties of the sustained pecks, especially if they could be oriented to
alternative keys with different contingencies (avoidance strategies). A model accounting
for negative automaintenance should reproduce these properties.

In Experiment 3, Williams and Williams [WW69] extended the protocol with an addi-
tional key light. The new key light would turn on and off at the same time as the previous
one, but pecks would have no effect on it, hence named irrelevant key (I). While it seems
that pigeons are unable to refrain from pecking, they are still able to orient their pecks
towards the less prejudicial target. They observed that in such procedure, a tendency
to peck also developed in pigeons, but favouring the irrelevant key, hence maximizing
accumulation of rewards. Furthermore, to study if such tendency could be revised once
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trained, the effect of keys (K and I) was reversed at some point without informing the
pigeon, i.e. pecks at the irrelevant key blocked reward delivery and pecks at the negative
one were without effect. They observed that pigeons quickly learned to switch to the new
irrelevant key (see Figures 5 and 6 of Williams and Williams [WW69]).

With the same parameter values used to simulate Experiment 1 of Williams and
Williams [WW69], the model is able to reproduce such properties (Figure 7.6). Simu-
lated pigeons learn to focus on the irrelevant key (I), learn to avoid the negative key (K),
and after a unexpected reversal (I becoming negative and K becoming irrelevant), quickly
learn to reverse their behaviour.

The irrelevant key provides pigeons with an alternative path, that is more favoured
by the model. The rational MB system favours equally well approaches towards the
irrelevant and negative keys as there exists a subsequent path of equal length to reach
rewards (classical reinforcement learning theory). Hence, the action selected ultimately
depends on the bias introduced by the second system. The FMF system gives a higher
value to the irrelevant key relative to the negative one, as the irrelevant key is always
contingent to reward whereas the negative key is only contingent to reward when no pecks
are performed. As a result, orienting towards the irrelevant key has a higher probability
of being chosen.

The effect of reversal is better explained through a concrete example. Assuming that
the key light K is negative in the current block i, then Vi(K) < Vi(I) (Vi denotes the value
during block i). When switching to block i + 1, I becomes irrelevant and V(I) quickly
lowers to the level of Vi(K) while V(K) eventually increases to the level of Vi(I), such
that after few trials, Vi+1(K) > Vi+1(I). Hence, the preferred key alternates between each
blocks. Hence, the model nicely explains why pigeons cannot refrain from pecking but
are still able to orient pecks to a less detrimental key.

In Experiment 4, Williams and Williams [WW69] extended the protocol with another
additional key light. The new key light would never turn off and pecks would have no
effect on it, hence labelled continuous key. Note that while always lit on, the position of
the key (left/right/middle of the key lights panel) was switched after each trial, such that
contrary to the fixed magazine, shifts in its positions were predictive of a new possible
reward. They studied the relative power of the three keys to attract pecks by combining a
subset of them and activating them at different times in different protocols (see Table 7.2).

They observed that all keys, presented alone produced sustained pecks. The continuous
key was ineffective in attracting key pecks when an alternative key, either negative (Figure
7 A and C in Williams and Williams [WW69]) or irrelevant (Figure 7 B and D in Williams
and Williams [WW69]) was presented. As in Experiment 3, the irrelevant key was effective
in attracting away pecks from the negative key (Figure 7 B and D inWilliams andWilliams
[WW69]).

The model is also able to explain these additional results (Figure 7.7). The effectiveness
of the irrelevant key to attract key pecks has already been explained for Experiment 3. The
ineffectiveness of the continuous key results from its presence during ITI. We hypothesize
that the presence of a stimulus within the ITI leads to a decrease of its motivational value.
Hence, the motivational value of such a stimulus is lower than those of the alternative
keys that are time-locked to reward delivery. Note that for the continuous key to be the
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Figure 7.6: Simulation of Experiment 3 of Williams and Williams [WW69]. (A)
Cumulative pecks towards negative key (red curve) and irrelevant key (green curve) over time
made by 8 simulated pigeons. Vertical bar indicates reversals of effects between key lights. The
dotted grey curve simulated the worse case scenario (if pigeons would have pecked the negative
key at every trials). Data are expressed as mean ± SEM. (B) Cumulative pecks for one pigeon
by blocks of 50 Trials. To be paralleled with Figures 5 and 6 of [WW69].

Table 7.2: Experimental setups for Experiment 4

Protocol Phase 1 Phase 2 Phase 3
A K K + C C
B K K + C + I C
C K + C K + C C
D K + C + I K + C + I C

Lists of keys activated during the different phases of protocols used in Experiment 4 of
Williams and Williams [WW69]. K stands for the negative key, I for the (intermittent)
irrelevant key and C for the continuous (irrelevant) key.

focus of pecks when presented alone, its motivational value should however remain higher
than the value of the magazine. We do not use the same parameter value to decrease
the value of the magazine and the value of the continuous key. A variability in the last
parameter could explain why in the experimental data, some pigeons did not engage with
this continuous key even presented alone.

Discussion
We applied the model of Lesaint et al. [Les+14b] to a new set of experimental data on a
negative automaintenance procedure and showed that it is able to qualitatively reproduce
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Figure 7.7: Simulation of Experiment 4 of Williams and Williams [WW69]. Cumu-
lative pecks towards negative key (solid line), irrelevant key (dashed line) and continuous key
(dotted line) over time made by 2 simulated pigeons in different protocols (described in Table
7.2). Vertical bar indicates phase switches. To be paralleled with Figure 7 of Williams and
Williams [WW69].

different properties of the resulting phenomenon. This model also provides a plausible
explanation, although maybe partial, for the conflictual observations between the studies
of Williams and Williams [WW69] and Sanabria et al. [San+06]. It suggests that negative
automaintenance arises from the competition of two reinforcement learning systems, one
of which relies on factored representations to use values over features rather than states.

Pavlovian and instrumental interactions
In [Les+14b], the computational model was used to account for a phenomenon described
as only Pavlovian, hence one could see both systems as different mechanisms of Pavlovian
conditioning [DB14]. Here, the same model is used to account for a Pavlovian and instru-
mental interaction phenomenon and systems are rather seen as each accounting for a
different type of conditioning [DB02; Day+06]. Hence, while using a similar Model-Based
system for both studies, it might actually reflect different systems in the brain which
would rely on similar principles. It is actually unclear if the whole behaviour of rats
undergoing autoshaping, from approach to consumption-like engagement, should be clas-
sified as purely Pavlovian [Nic10; Huy+11; Geu+13]. Further experiments (e.g. outcome
devaluation) should be conducted to clarify this point. Extending from studies on how
Pavlovian conditioning affects instrumental tasks [DB02; Yin+08] and studies on how
instrumental conditioning can also subsequently affect Pavlovian tasks [AE81; Pré+13],
we suggest that many conditioning tasks might present both Pavlovian and instrumental
aspects, with one possibly masking the sparse presence of the other.
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In the present case, a parallel can be made between Pavlovian conditioning versus
instrumental conditioning and the FMF system versus the MB system. Pecks towards key
lights arise because of the values they acquire within the FMF system. These motivational
values developed solely by contingencies of key lights with food delivery, independently of
actions taken. Hence, the FMF system is at the heart of the Pavlovian aspect in simulated
pigeons. It biases their actions towards attractive and predictive stimuli, possibly leading
to impulsive, and possibly detrimental engagements. Refraining from pecking, on the
other side, is learned by the MB system as the appropriate action to get rewarded. Hence,
animals know how to act to optimize their rewards. Therefore, the MB system is at the
heart of the instrumental aspect of the behaviour of pigeons. It allows them to learn,
to some extent, that they must refrain from acting to retrieve food in specific situations,
in this case from pecking. We do not state that instrumental conditioning is Model-
Based nor Pavlovian conditioning is Model-Free. It has been shown that both aspects are
present in both type of conditioning [DB14; Yin+08; BO09]. In the present work, only the
Model-Based aspect of instrumental conditioning and the Model-Free aspect of Pavlovian
conditioning are sufficient to replicate the data.

The computational model explains the behaviour of pigeons as a combination of both
systems. Each system provides valuation informations regarding the current situation,
which are further integrated to eventually determine the action to be taken. Moreover,
informations are not weighted equally but through a pigeon specific weight (ω) such that
one system can have to assess a situation as very detrimental to compensate for the weak
positive valuation of this situation attributed by the other system, and avoid a maladap-
tive behaviour. This is exactly what happens in the negative automaintenance procedure,
as the Pavlovian system records the key light as strongly motivational, whereas the in-
strumental system records any engagement as detrimental. Furthermore, the procedure
is such that applying the strategy favoured by one system subsequently reinforce the
strategy favoured by the other one. As a result, no system can forever be dominant.

While we currently modelled our integration of MB and FMF systems with a fixed
ω parameter, it might be possible, as suggested in the work of Dayan et al. [Day+06]
that such weighting parameter would fluctuate over time based on some yet unknown
and still debated criterion [Daw+05; Ker+11; Pez+13]. However, we would still expect
that subgroups of individuals would show different parameter values and/or that such
values would fluctuate differently. The currently investigated data on pigeons cannot rule
out an alternative interpretation that, based on a dynamically computed score (e.g. the
difference of estimated uncertainty of each system [Daw+05]), only one system might
be active and guide the behaviour at a time. However, based on the data about rats
undergoing autoshaping experiments simulated with the same model [Les+14b], the full
spectrum of observed behaviours ranging from STs to GTs [Mey+12] and the consumption-
like engagement of both STs and GTs, explained by the permanently active FMF system,
argues against it.

Interestingly, the current model does not necessarily imply that the two systems would
favour conflicting policies. For example, in the case of autoshaping [Les+14b] no rewards
are lost while the policies favoured are different. Furthermore, the system could even
lead to a fruitful collaboration if both systems would favour the same actions, possibly
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increasing the rate at which the animal would engage with some object and be rewarded ac-
cordingly (e.g. in general Pavlovian-to-Instrumental Transfer procedure [CB05; Huy+11;
GM+12]). We assume that these systems developed for collaboration rather than com-
petition, as negative automaintenance is not really common in a natural environment.
One system provides a rational plan of actions while the other offers the opportunity to
accelerate it (e.g. reacting at the shadow of a prey rather than waiting for the prey to be
entirely visible). Further investigations will be required to determine whether the collab-
oration between these systems better explains a variety of animal conditioning behaviours
than competition.

Factored representations
Taking advantage of features that compose the environment is not new in the study
of Pavlovian conditioning [Sch+96; Bal99; Red+07; SM07; Cou+06; GN12]. It is indeed
central to account for phenomena when conflicts arise from the presence of multiple stimuli
(e.g. blocking [Kam67] or overexpectation [LN98]). However, the computational models
accounting for Pavlovian conditioning phenomena are usually not relying on the classical
RL framework (e.g. MDPs or temporal discounting). Furthermore, they mainly tend to
describe the varying intensity of a unique conditioned response rather than the variations
of observed responses and they do not explain how an agent can learn sequences of actions.

In traditional studies of instrumental tasks, working at the state level is sufficient to
reproduce and explain behavioural data [Daw+05; Ker+11; Doy+02; Day+06]. Tasks are
defined as standard MDPs, and classical algorithms cannot use the underlying structure to
generalize updates to states that share similarities. These models are mainly used to study
learning phases and adaptive capabilities in a changing environment, when animals behave
near optimally. Classical algorithms are proven to converge to the optimal solution [SB98].
In the current task, without relying on very distinct sets of possibly unusual parameter
values, two classical algorithms combined in a model would eventually reach the same
optimal policy and hence would fail to explain the variability of observed maladaptive
behaviours [Les+14b].

Here factored representations used in one of the two simulated systems but not the other
enable these systems to propose different complementary decisions and thus to explain
the variety of behaviours observed in the data. Such factored representations are already
present in the RL literature and mainly used to overcome the curse of dimensionality
[Bel57], i.e. standard algorithms do not scale well to high dimensional spaces and require
too much physical space or computation time. Value function approximations [Doy+02;
Kha+06; Elf+13] or factored reinforcement learning [Bou+00; Deg+06; VB08] help to
build a compact value-function or infer the value of states from values of features. These
algorithms are only meant to optimize computations but should not produce outputs
that diverge from traditional flat RL algorithms. Here, we use factored representation in
a different way and make values over features compete in the choice for the next action.
The FMF algorithm generates an output different from traditional RL systems.

The capacity of the model to replicate the maladaptive behaviour of pigeons under nega-
tive automaintenance results from the difference between the policies developed by the MB
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system and the FMF system. Such difference is due to the way factored representations
are used by the latter system. While the MB system associates value to general situations
(states) and favours an optimal policy, the FMF system associates value to salient stimuli
(features) biasing actions towards them and favours a different sub-optimal policy (w.r.t
the MDP). The FMF system develops an impetus towards triggering low-level ingrained
Pavlovian behaviours towards these salient stimuli as soon as they are presented within
a context associated with reward value [Day+06]. In other words, the FMF system and
the MB system use different heuristics (paying attention to the situation versus paying
attention to salient elements) to guide behaviour. Once combined, these systems conflict
in the current experimental setup leading to the observed maladaptive behaviour.

It might be possible to use a factored implementation of the MB system. In such case,
we would assume that this system would still assess situations rather than stimuli individ-
ually. Hence, it would use factored representations in a traditional way, for computational
optimization purposes that should not change the resulting output of the system.

The capacity to attribute values to features also provides a straightforward explanation
for why the irrelevant key light attracts most of the pecks in the presence of the negative
key light and/or the continuous key light, and why the negative key light attracts most of
the pecks in the presence of the continuous key light. Having values over key lights allows
for a direct comparison, the development of a preference towards the most valued one,
and after its removal, a quick shift towards the second most valued one. By using factored
representations to attribute values to features in the classical RL framework, we therefore
reunite concepts of the Pavlovian conditioning and instrumental conditioning literature
that are rarely combined together, to model some Pavlovian-instrumental interactions.

One must note that the model of Dayan et al. [Day+06] is also able to replicate
the results of the first experiments. It also uses a weighted sum between a classical
RL system and some impetus system, and by varying the weight of the two systems, it
can also produce behaviours that may be paralleled to sign-tracking and goal-tracking.
However, in its current form, their model is unable to reproduce the other experiments of
Williams and Williams [WW69]. Their impetus system is designed to arbitrary bias the
model towards an action a priori defined as Pavlovian, in this case Go against NoGo, by
adding the mean reward value of the ongoing experiment. Introducing new alternative
Go actions raises questions on whether they should be defined as Pavlovian or not, and
on the way they should be biased, i.e. using the same mean reward value or a different
one. Even so, it seems that this would not explain the preference for intermittent keys
versus continuous keys. While there might be ways to make it work, we think that the
use of factored representations makes it straightforward and automatic for our model to
explain these experimental data and potentially predict how the model would behave in
the presence of new stimuli without filling it with a priori informations. The recording of
consumption-like engagements towards the magazine during goal-tracking like behaviours
would argue in favour of our model, which predicts the acquisition of some motivational
value towards the magazine, whereas the model of Dayan et al. [Day+06] does not.

..
162

.
Model of individual differences in negative automaintenance (article)

..



Resolution of conflicting results

The difference between all pigeons in Williams and Williams [WW69] but P19 and
Sanabria et al. [San+06] parallels well with the inter-variability observed by Flagel et
al. [Fla+11b] within rats undergoing an autoshaping procedure. In this study, a unique
population of rats provided very distinct subgroups. Sign-trackers were prone to engage
with the predictive conditioned stimulus (a lever), and goal-trackers were prone to engage
with the magazine where food would be delivered as soon as the lever appears. The com-
putational model reproduces the variability of behaviours in pigeons in these two studies
in a similar way, based on the varying influence attributed to each system. The simulated
pigeons of Sanabria et al. [San+06] mainly rely on the MB system, while those of Williams
and Williams [WW69] mainly rely on the FMF system (except for P19). Given the small
size of the populations of pigeons involved, one could hope that with a bigger population
we could observe within the same study a larger variation of behaviours similar to those
of sign-trackers and goal-trackers. Furthermore, it has been shown that populations of
rats taken from different vendors (or even different colonies of the same vendor) can show
significant differences in their proportion of sign-trackers and goal-trackers [Fit+13]. If
confirmed in pigeons, such a result could strengthen our hypothesis. This does not dis-
card that part of the difference in the observed behaviours also comes from the difference
in protocols between the two studies.

It is interesting to note that in a study about guinea pigs [PP78], the averaged individual
engaged with the conditioned cue under autoshaping phases and switched to engage with
the magazine during negative automaintenance phases. Hence, while not engaging with
the cue when detrimental, animals could redirect their engagement impulses towards the
magazine, in a manner similar to goal-trackers [Fla+11b]. Such a behaviour could easily
be explained by the model with the appropriate parameters, i.e. a reasonably high ω with
a low uITI . It would be interesting to know if pigeons in which negative automaintenance
is effective would do the same, i.e. whether they would redirect their pecks towards the
magazine, if made possible (e.g. no blocking door).

Gamzu and Schwam [GS74] studied negative automaintenance in 4 squirrel monkeys
and showed that only one did express a persistent detrimental engagement, and only
during early negative automaintenance sessions. They concluded that the procedure fails
to produce maladaptive behaviour in these monkeys. Interestingly, the authors state that
while key pressing is virtually eliminated, monkeys orient towards the key and occasionally
approach it without contact. The model would be able to account for such behaviour with
the motivational value of the key sufficiently high to favour approaches towards it rather
than the magazine but not high enough so that it would be impossible to refrain from
engaging with it. Gamzu and Schwam [GS74] discuss the fact that, contrary to pigeons,
the action of key pressing in monkeys is very different from their consumption behaviour,
which could be one of the reason of the failure of the negative automaintenance procedure
[Mey+14]. Another interpretation, based on the present model, would be that the 4
monkeys are mainly goal-trackers. It might be aslo the case that monkeys and human
brains offer a higher level of control in the integration of the two systems.
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Predictions
One of the motivations behind the development of the computational model of Lesaint et
al. [Les+14b] was to provide an explanation for the particular patterns of DA recordings
observed in rats undergoing an autoshaping procedure [Fla+11b], which challenged the
classical reward prediction error hypothesis [Sch98; Fio+03]. Assuming that some of the
dopaminergic pathways in pigeons share a similar role to those of rats [Gar+05], the
computational model gives predictions about what could be expected from physiological
recordings in a negative automaintenance procedure (Figure 7.8).
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Figure 7.8: Prediction of the model about expected patterns of dopaminergic ac-
tivity in negative automaintenance. Data are expressed as mean ± SEM. Average RPE
computed by the FMF system at CS appearance (red) and removal of the CS after engage-
ment with the negative key light (no US; gray) and withholding (US; black) for each session of
conditioning in the whole population of pigeons (STs and GTs).

The model predicts that in trials where pigeons orient towards the negative key light
(STs or GTs confounded) one should observe DA peaks at CS presentation (as classically
expected in such experiments [Sch98]). If pigeons refrain from pecking, one should also
observe DA peaks at reward delivery, but with a smaller amplitude (i.e. not a full prop-
agation of DA peaks from the US to the CS as would be expected in an autoshaping
experiment). Finally, if pigeons peck the negative key light, one should observe a dip in
DA activity when the key light is turned-off and no reward is delivered as expected by
the classical omission of an anticipated reward. Note that the model does not use an
asymmetrical representation of RPEs, hence it might be possible that DA recordings at
pecks might not exactly fit the current prediction [Niv+05a].

Furthermore, the model heavily relies on the hypothesis that the presence of a stimulus,
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e.g. continuous key light or magazine, during ITI necessarily reduces its value in the FMF
system [Les+14b; Les+14a]. Hence, the model predicts that changing the experimental
protocol for the ITI part could have some impact on the observed pecks. Indeed, we
expect that removing the magazine during ITI, e.g. by blocking it by a door, might
make it more attractive to pigeons during key light presentation and hence reduce their
detrimental pecks towards any negative key light.

In addition, given that RPEs of the FMF system parallel DA recordings within the
core of the nucleus accumbens in rats, we can hypothesize the results of possible lesions
or inactivation of the homologue of the dopaminergic system in pigeons. We expect that
disabling the FMF system would block any consumption-like behaviour, i.e. pecks towards
key lights or magazine. We also expect that pigeons that usually favour approach and
engagement towards the key lights will shift their behaviour towards a somewhat more
erratic one, i.e. engaging the magazine more often than key lights. Finally, the difference
of approach and engagement towards negative, irrelevant and continuous key lights should
vanish.

Limitations
As evoked in Lesaint et al. [Les+14b], while using factored representations, and making
use of the features within particular states, our approach still relies on the discrete time
state paradigm of classical RL, where updates are made at regular intervals and assuming
no time required for decisions to be taken. This simplification is sufficient to explain the
set of data considered here, however it cannot explain the latencies of responses recorded
by Williams and Williams [WW69]. It also prevents us from attempting to qualitatively
account for other results of Sanabria et al. [San+06], given that time is an important
factor of their protocols.

Model-based capacities of rats have been assessed in multiple studies, however such
capacities in pigeons remain to be confirmed. Miyata and Fujita [MF08] showed that
pigeons are able to plan one to two steps ahead in mazes, which would confirm their ability
to store models of tasks, if simple enough. Further experiments should be conducted to
confirm the presence of an MB system in pigeons. Note however that, while the presence
of an MB system is necessary to account for the pharmacological data of Flagel et al.
[Fla+11b], there is no experimental data on negative automaintenance that requires its
presence. A classical MF system would have provided similar results, as both algorithms
eventually converge to the same values.

The current results rely on parameters that are hand tuned and could benefit from
exhaustive raw data. While we are able to reproduce tendencies and to explain which
mechanisms of the model are responsible for them, we could benefit from data on which
to actually fit the model more closely, for example by individual trial-by-trial analyses
[Daw11]. Additionally, as done by Flagel et al. [Fla+11b], a study that combines not
only behavioural data but also physiological and pharmacological data could be of great
interest in confirming the model, as previously done by Lesaint et al. [Les+14b].

We did not focus on pretraining conditions and the impact they have on the resulting
behaviours. The only possibility offered by the model resides in its initialisation. As
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in most reinforcement learning studies, with sufficient time, the current model should
eventually converge towards a solution that is independent of initial conditions, which
is definitely in discrepancy with what was observed. Especially, data tend to show that
pigeons need some time to consider pecking, as if some kind of threshold needed to be
reached beforehand. The model does not model such aspects of the tasks.

Finally, we did not discuss possible anatomical counterparts of the systems in our
computational model, as the involved experiments did not imply any lesions or pharma-
cological manipulations, e.g. injections of antagonists of the dopamine. Therefore, at the
current stage, it would be highly speculative to define which regions of the pigeon brain
can be paralleled to each system.

Concluding remarks
Here we used an existing computational model to account for different properties of nega-
tive automaintenance, a suggested Pavlovian and instrumental interaction phenomenon.
This model was initially developed to account for the variability of behaviours observed
in autoshaping experiments [Les+14b]. Interestingly, the account of both autoshaping
and negative automaintenance phenomena relies on two major concepts of the model:
Dual learning systems and the use of factored representations to use values over features.
This works adds to an emerging set of studies suggesting the presence and collabora-
tion of multiple RL systems in the brain. It questions the classical paradigm of state
representation and suggests that further investigation of factored representations in RL
models of Pavlovian and instrumental processes experiments may be useful to explain
their interactions.
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All models are wrong, but some models are useful. - George E. P. Box

8.1 Contributions synthesis . . . . . . . . . . . . . . . . . . . . . . . 167
8.2 Limits and perspectives . . . . . . . . . . . . . . . . . . . . . . . 168

8.2.1 Reinforcement Learning framework . . . . . . . . . . . . . . . . 168
8.2.2 Stimuli processing . . . . . . . . . . . . . . . . . . . . . . . . . 170
8.2.3 Dopamine signal . . . . . . . . . . . . . . . . . . . . . . . . . . 171
8.2.4 Pavlovian and instrumental interactions . . . . . . . . . . . . . 173

8.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 175

8.1 Contributions synthesis
In the present thesis, we developed a computational model that combines through a
weighted sum a Model-Based RL system (MB) and a Feature-Model-Free RL system
(FMF). The FMF system is a Model-Free (MF) system revised to use factored represen-
tations to learn values over features and make them possibly compete against each other
in the determination of the behaviour [Les+14b]. This computational model contributes
to a better formalisation and hopefully understanding of yet unaccounted for experi-
mental data on individual differences during autoshaping in rats [Les+14b; Les+14a]. It
provides an explanation to experimental data on maladaptive behaviours during nega-
tive automaintenance in pigeons [Les+de]. Finally, it also suggests some new directions
in the investigation of the RPE hypothesis of dopamine [Sch+97; Sch98; Sch10; Sch13;
Gli11; Har+14; BG05] and incentive salience attribution [BR98; Ber07; Ber12; McC+03;
Zha+09; MB09; Tin+09; Lov+11; Mey+12].

The proposed model explains inter-individual differences in rats [Fla+09; Fla+11b;
SR12; RF09; Mey+12] and pigeons [WW69; San+06] mainly as the result of a difference
in how individuals within a population balance the contribution of the MB and FMF
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systems. Varying the value of a single weighting continuous parameter explains the con-
tinuum of observed behaviours ranging from goal-tracking to sign-tracking. Goal-tracking
behaviours are optimal in collecting rewards with regard to the MDP representation of
the task. Sign-tracking behaviours are more impulsive and stimuli-oriented. Relying on
a single set of parameters values for all experiments, the computational model can link
differences observed at the physiological and pharmacological levels to those present at
the behavioural level.

The collaboration of both systems also explains maladaptive behaviours [WW69]. By
learning values over features, the FMF system may bias the behaviour towards suboptimal
solutions that focus on high valued stimuli [Les+14b]. This can be observed in ST rats
that engage with the lever under an autoshaping procedure [Fla+09]. The FMF system
may even lead to detrimental solutions [Les+de]. This can be observed in the pigeons that
peck the conditioned negative key light and consequently block reward delivery under a
negative automaintenance procedure [WW69].

We explain the unexpected persistence of dopamine peaks at US time in GT rats
[Fla+11b] with respect to the RPE hypothesis of dopamine [Sch+97; Sch98; Sch10; Sch13;
Gli11; Har+14; BG05], as an RPE being computed over features rather than over states
[Les+14b]. As in classical MF RL models, when the computational model favours a be-
haviour that engage with a stimulus only partially predictive of reward, an RPE signal
remains at the time of the reward following the presentation of this stimulus [Les+14a].
The only partially predictive value of the magazine (focused on by goal-trackers) results
from an hypothesized downgrading impact of its value due to its continuous presence
during ITI.

Finally, we explain the expression of incentive salience [BR98; Ber07; Ber12; McC+03;
Zha+09; MB09; Tin+09; Lov+11; Mey+12], i.e. that some cues become wanted for them-
selves, by the bias introduced by the FMF system towards high valued stimuli. Such high
value, seen as motivational, is acquired as soon as they are contingent and time-locked to
reward delivery.

8.2 Limits and perspectives
The present work comes with limits and raises more or less general questions, especially
relative to other works in the current field. This section is split in different themes for a
better readability, but most of the points discussed can be linked to each other.

8.2.1 Reinforcement Learning framework
Classical RL systems, when simulated for enough time (which can sometimes be very
long), are mathematically guaranteed to converge to an optimal solution with regard to
the MDP [WD92; Sin+00]. The investigated experimental data [WW69; Fla+11b] are a
challenge for pure classical RL algorithms, as no algorithm (MB or MF without degen-
erative parameter values such as a null learning rate) can explain the unnecessary loss
of rewards by pigeons or energy-wasting behaviours of rats. Some models take into ac-
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count possible constraints (e.g. limits in the memory capacity or reactivity necessity) and
develop heuristics to drive the collaboration of multiple systems. Such models are able
to express maladaptive behaviours during adaptive phases, at initial learning or after a
switch in contingencies [Huy+12; Daw+05; Ker+11; Pez+13]. However, their components
relying on the same valuation concepts usually lead to near-optimal solutions after con-
vergence, especially when only one optimal solution exists. By relying on an FMF system
that may lead to suboptimal solutions with regard to MDPs, our model can account for
maladaptive behaviours [Les+14a]. An alternative approach would have been to set dif-
ferent goals to the different systems of the model or bias specific actions [Day+06], but
this would raise the question of how to define such goals and actions. It might also be pos-
sible that such maladaptive behaviours reside in mechanisms that can fasten learning in
some cases but which would make it detrimental in special cases (e.g. [Huy+11; GM+12;
GM+14]). More generally, answering this question involves the study of the heuristics
put in place by evolution to deal with limited resources and environmental constraints,
the use of reinforcement learning processes being only a part of it.

Given its classical use to account for instrumental conditioning, we chose reinforce-
ment learning as the basic concept of our architecture and we extended it with concepts
necessary to account for Pavlovian phenomena, i.e. individual stimuli processing. An
alternative could have been to start from a model accounting for Pavlovian phenomena
(e.g. the Latent Cause Theory [Cou+04; Cou+06; GN12]) and to extend it with concepts,
such as actions, seen as necessary for instrumental conditioning. This approach was used
by Cartoni et al. [Car+13] to theoretically account for some Pavlovian-instrumental in-
teraction phenomena and its experimental validation is still under process. Studying such
interactions actually raises the question of the difference between instrumental actions
and Pavlovian reflexes [Bal+08]. While it seems that humans can distinguish between
them (e.g. [Shu+80]), it is unclear whether they should be encoded differently and rely
on completely separate circuits. Some actions (e.g. salivating or approaching) can clearly
result from one’s conscious decision in some cases but also be pure reflexes in others
[Huy+11; Nic10; Har+13]. In our current model [Les+14b] as in other models accounting
for interactions [Day+06; Car+13], we do not distinguish between actions and reflexes.
One way to make this distinction in our model would be to interpret actions that would
have naturally been chosen by the MB system as instrumental actions, while those which
where only selected because of the bias introduced by the FMF as reflexes.

Based on the integration of values computed by both systems, our model relies on the
softmax action selection function to extract actions (and reflexes) that should be taken at
each step. This simplification of a complex system is extensively used [Daw+06b; Day+06;
Glä+10; Hum+12; Daw+05; Ker+11; Huy+12; Doy+02; Red+07], successful, and gen-
erally sufficient in RL models of instrumental conditioning. However, the investigated
experimental data show some of its limits, especially regarding temporal aspects. Pigeons
seem to never engage with key lights before multiple trials have occurred [WW69]. Fur-
thermore, the latency between rats responses and the reward-predicting cue appearance
only diminishes with training [Fla+09]. It is often the case, as in the current experiments
[Fla+09; WW69] that animals may take time to engage within a behaviour or a direction
[Tol38; Tol39]. It has been suggested that they may resolve conflicts and explore alter-
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natives (e.g. when moving their heads back and forth between multiple available paths
[Red+08]). Such reaction-time may increase with the number of options [Hic52; VN00] or
reduce over training as behaviour becomes more habitual [Hu+06; Wel80; MR59]. How-
ever, the softmax function necessarily selects an action at each time step and sees all
actions as being equal – there is no action with a specific treatment. This limitation
could be addressed by providing mechanisms that can simulate reaction-time, with ex-
tra intermediate states [Daw+06c; KNR09], or introducing some vigour/cost trade-off
[Niv+07].

On a more general point of view, this raises the question of the distinction between
passively waiting — maybe thinking — and actively refraining from engaging [GM+12;
GM+14]. While the latter seem to be an action as any other, could the former be some
kind of special default action that should be treated differently [Niv+07] ? This is of par-
ticular interest when investigating the impact of lesions or drug injections on the general
behaviour. We made the assumption that systemic injections of flupentixol immediately
disrupt action selection [Hum+12; Leb+10] (Chapter 5), such that all probabilities to
select an action become almost equal, i.e. producing mainly an exploratory behaviour,
when it could actually lead to reduce the probabilities of all engagement actions. When
we simulate the lesion of one system by setting its contributions to 0, the softmax function
immediately rebalances all actions probabilities, while one could expect that the animal
would rather reduce the rates of impacted actions without necessarily increasing the rates
of alternatives [SR12]. It could be of interest to investigate how more realistic models of ac-
tion selection in the Basal Ganglia [Kha+05; Gur+04; LG14; Lié+10; Leb+06; Che+13;
Bal+13] could actually integrate in the current model or RL-based models in general.
Such models indeed need to accumulate some evidences before reaching a decision, i.e.
reaching a threshold, and offer hypotheses about anatomical counterparts, that may be
better suited to replicate the impacts of specific lesions.

8.2.2 Stimuli processing
In the present model, we only investigated the interest of factored representations on
the MF system as it was sufficient to replicate the data. As factored representations
are richer than classical ones that ignore the underlying structure of the world, it would
be rather logical for other processes to also take advantage of it. Our intuition is that
while the FMF system learns values on individual features, we would expect from an MB
system using factored representations, to use them to build values over global situations
but in a more optimised way, allowing for example to share values between similar states.
A computational reason for such intuition is that we would think that a system should
be optimal with respect to the information it has access to, in the case of an MB sys-
tem, its internal model of the world. Factored Reinforcement Learning algorithms (FRL)
[Bou+00; Deg+06; VB08; SH04; KS02] are developed on such principle, taking advantage
of their knowledge of the structure of the world to build compact representations and
fasten computations. This also explains why, to our knowledge, no factored version of
MF algorithm have been developed so far, as they do not have access to the structure of
the world. If we were to replace our classical MB system with a factored version, it would
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maintain the important property that both systems should converge to different solutions,
given that FRL versions of classical algorithms are not supposed to change the learned
solutions [Deg+06; Bou+00; VB08]. Hence, we would expect to obtain the same results.
However, while converging to the same solutions, such algorithms can actually behave dif-
ferently during learning, as their generalization capacities might make them consider new
situations as highly valued, or consider impossible situations [Deg+06; Koz+09; Koz10].
Some protocols could be designed to check if some generalization capacities of animals
actually match those of such FRL algorithms, and validate their use in computational
models of conditioning. For example, if one feature of the experiment has been kept con-
stant during training (e.g. a green light always turned on), then such algorithms usually
find it irrelevant, hence, if such a variable changes (e.g. switches to red), one would expect
that it has no impact on the expressed behaviour. However, if such a change precedes a
modification in reward delivery, then it shall be soon integrated as an important part of
the task.

A significant part of our results relies on the hypothesis that the presence of a specific
stimulus during ITI makes the value it acquired during conditioning diminish [Les+14b;
Les+14a; Les+de]. This hypothesis explains why the magazine is not as attractive as
a CS-lever [Fla+11b; RF09], or that a continuously turned on key light will not attract
pecks when contingent to a key light that is time-locked to reward delivery even if negative
[WW69]. Preliminary work (on a incomplete subset of data) suggests that this devalua-
tion may not be fully explained by a possible engagement towards such elements during
ITI (e.g. the amplitude of activity peaks seems uncorrelated with the number of contacts
made during ITI). We suggested experimental protocols to confirm that the only presence
is sufficient [Les+14a]. An alternative view would be that each stimulus might differ in the
value that it can acquire [RW72], depending on its form [Mey+14; Hol77; Mey+10], the
conditioning context [BB12; Lub73; Kra+91; Bal+80], or other competition properties as
some Pavlovian phenomena could suggest (e.g. overexpectation [LN98; Rey61], overshad-
owing [Mac76; Res99], or blocking [Kam67; KM96]). Furthermore it has been shown that
the ITI duration, relative to the inter stimulus interval, impacts the speed of acquisition
and maintenance of conditioned responses to a stimulus [BP79; GB81]. Hence, studying
how the duration of ITI or what features are available during this period, could help us
clarify its role on stimuli processing and on dopaminergic patterns.

8.2.3 Dopamine signal
The RPE hypothesis of dopamine is not limited to Pavlovian conditioning [Sch+97; Sch98;
Sch10; Sch13; Gli11; Har+14; BG05]. Patterns matching RPEs that embed information
about actions [WD92; SB98] have also been observed in instrumental tasks [Roe+07;
Mor+06; Niv+06; Daw+11; Rob+06]. However, which kind of rule is used to compute
such RPEs is still an open question [Bel+12b; Bel+12a; NS08]. Some dopaminergic record-
ings [Roe+07] suggest a Q-Learning like computation, i.e. the next action is chosen after
the system has been updated. In contrast, others [Mor+06] suggest a SARSA-like com-
putation, i.e. the next action has already been chosen and is taken into account at update
time. In our model, we arbitrarily chose a Q-Learning-like computation, the next focused
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feature not being already defined at update time. Further investigation should be required
to confirm or revise this choice. However, we would propose that the above conflict might
also result from the fact that RPEs could be computed over features/stimuli rather than
states, and due to a difference in protocols. In Morris et al. [Mor+06], the two competing
stimuli are presented at once. Assuming that monkeys have already chosen the action,
hence the stimulus they will engage with, we expect, as observed in the experimental
data, a SARSA-like pattern. In Roesch et al. [Roe+07], a unique new stimulus (a new
odor) is presented to rats when they are free to choose in which rewarding tunnel they will
subsequently go. As only a single stimulus is available and therefore without competitors,
even with a SARSA-like rule, we would expect, as observed in the experimental data, a
unique pattern of activity whatever the subsequent choice of the rat might be. One could
try to redesign the protocol of these studies to use the alternative protocol proposed in
the contradictory study and see if the dopaminergic patterns are reversed.

Finally, one must note that the FMF system behaves as an MF system in certain cases
(e.g. for STs undergoing an autoshaping procedure [Fla+11b]) and produces RPE patterns
that fit expectations from the classical literature [Sch+97; Sch98; Sut88]. Hence, we think
that in simple tasks, where there is no stimuli competition such that states and stimuli
are equivalent (e.g. second order conditioning [RR72; HR75]) and sign-tracking behaviour
seems to dominate, it may be possible to substitute MF systems by FMF systems in
current RL-based accounting models. Moreover, in such cases dopaminergic recording
might be averaged over trials, sessions or individuals and might hide radically different
patterns [Gal+04; Daw11].

We are aware of the active debate over the exact role of dopamine [Red+99a; SC02;
Ber07; SC12; Eve14; Nic10; Sch10; Fio+13; Hir14; Gli11; Ste+13]. While we see our
system as consistent with the RPE hypothesis of dopamine, we do not challenge here
the theory that phasic dopamine might have multiple roles and contribute to multiple
systems. Our current implementation does not fit well with a multiphasic decomposi-
tion of its roles [Fio+13; Hir14], but is not incompatible with the idea of contributing to
multiple functions at once. For example, it may also help in the acquisition of incentive
salience [McC+03; Zha+09], given that the learning of the FMF values, assumed to par-
allel incentive salience, is learned through RPE signals in the FMF system [Ber07; Ber12].
Furthermore, to model the difference of impact between systemic versus local injections of
flupentixol, we made the assumption that tonic dopamine can be decorrelated from phasic
dopamine, has a specific role [Niv+07; Niv+05b; Hum+12] and is to be linked with action
selection [Hum+12; Leb+10]. However, not all models agree on such a clear separation
[Fra05; McC+03; Daw+02; Fio+14; She+11]. The exact role and impact of phasic and
dopamine activity on learning versus action selection remains currently unclear.

This makes our simulation of the impact of flupentixol rather weak given our limited
knowledge on existing experimental data about the precise mechanisms underlying its
impact. There are not much evidences on the correct way to model it for both phasic
and tonic activity [Hum+12; Leb+10]. We modelled the impact of flupentixol over phasic
dopamine in a subtractive way, removing a fixed value of any RPE computed in the model
(but see [Red04]). We argued against a multiplicative way, that is by multiplying any
RPEs by some small, possibly null, constant, because flattening values would only have

..
172

.
Discussion

..



slowed learning and not disrupted it as in the experimental data [Fla+11b]. In both cases,
such simulations completely neglect the complex dynamics involved and suggest an im-
mediate and fixed effect, which is particularly problematic when the effect of drugs might
vary depending on the infusion time (e.g. [SR12]). How to better model the impact of
flupentixol, and dopamine antagonists or drugs such as cocaine remains an open question
(e.g. see [Pan+07; Red04]).

Finally, experimental data in Roesch et al. [Roe+07] suggest that the expression of
conditioned responses is faster than the propagation of dopamine from US time to the
decision point, i.e. the informative cue appearance [Bel+12b; Bel+13]. The output of
our computational model is only partially based on the FMF system, and it also relies
on an MB system assumed to be faster at learning [Daw+05; Ker+11]. We have not yet
studied the dynamic of the model nor the investigated experimental data on such aspect,
but it would definitely be worth some investigations. It would actually be surprising
that a unique signal would explain the whole behaviour, regarding the accumulation of
evidences that more than two systems are involved in conditioning [Yin+08; Mee+12;
LO12; Mee+10; Mai09].

8.2.4 Pavlovian and instrumental interactions
While the present system is the combination of an MB and an MF system, it is im-
portant to distinguish it from models dedicated to instrumental conditioning that also
imply these two aspects [Daw+05; Ker+11; Pez+13; Daw+11], or from studies that sug-
gest both aspects in Pavlovian conditioning tasks [Jon+12; RB13]. In the instrumental
case, the combination of two systems is used to reproduce the variation in capacities
of a unique individual given some criteria (e.g. motivation or training) or experiences
[Ott+13; Daw+05; Ker+11; Daw+11; Dol+12; Bei+11]. In the Pavlovian case, it also
explains how a unique individual can take into account information from past experiences
to immediately revise its behaviour [RB13; Jon+12] in new situations. Our model uses
this combination to mainly account for the variability in behaviours of different individ-
uals in the same context, same experience and same conditions. In the present work,
we assume that we only modelled the MF aspects of Pavlovian conditioning and MB
aspects of instrumental conditioning (GD behaviours). However, some studies suggest
that autoshaping is purely Pavlovian [Cla+12; Har+13] and it might be the case that
our MB system actually reflect different conditioning aspects depending on the experi-
ments involved [Les+de]. In any case, a more complete model should integrate all aspects
(MF/MB instrumental, MF/MB conditioning), and could take inspiration from already
existing models. This raises the important question of their integration [Yin+08; Mee+12;
LO12; Mee+10; Mai09]. Figure 8.1 illustrates our intuition about this idea. We would
suggest that the integration of instrumental and Pavlovian values could actually arise
after the competition between the two instrumental systems (?1 in Figure 8.1) [Daw+05;
Ker+11] as experiments seem to show that Pavlovian aspects may still bias instrumen-
tal actions after overtraining, i.e. when behaviour supposedly became habitual (e.g. in
PIT [Hol+10; Wil+12]). We would also suggest that MB aspects of Pavlovian condition-
ing actually impact MF aspects (?2 in Figure 8.1) before integration [Jon+12; Wie+13;

..
173

.
8.2 Limits and perspectives

..



Tin+09; McD+11; McD+12]. Finally, while we currently modelled our integration of MB
and FMF systems with a fixed ω parameter, it might be possible, as suggested in the work
of Dayan et al. [Day+06] that it would fluctuate over time based on some yet unknown
criterion [Daw+05; Ker+11; Pez+13].

Figure 8.1: Illustration of an hypothesized more complete model. Instrumental MB
and MF subsystems (blue and green inner boxes) compete in the control of the output of the
instrumental system (blue outer box). Pavlovian MB subsystem (purple inner box) influences
the Pavlovian MF subsystem (red inner box) which provides the output of the Pavlovian system
(red outer box). Both outputs are integrated (ω) and subsequently passed to some action selection
mechanism (σ).

We have identified the FMF system as relying, at least partially, on the core of the
nucleus accumbens, given the parallel made between its RPE signal and dopaminergic
recordings in this region [Fla+11b]. Moreover, simulated behaviours resulting from dis-
ruptions of this system were consistent with behaviours of rats with flupentixol injected
locally to this region [SR12]. Except from that, we did not investigate much the anatom-
ical counterparts of the other systems in our computational model. Lesions studies, for
example of the DMS or OFC, could help identifying which part of the brain is actually
accounted for by the MB system in the computational model [Jon+12; Yin+05]. It could
also help to clarify whether our assumption that the MB system in the computational
model currently accounts for instrumental aspects, rather than some purely Pavlovian
aspects, is correct. Flagel et al. [Fla+11a] observed that GTs and STs do not share a
similar connectivity of some brain regions, nor the same level of gene expression [Fla+07].
Based on this, we suggest that the current weighted sum integration may result from a
crossed projection of brains regions favouring sign-tracking and goal-tracking behaviours
(MB and FMF systems) into a third one and that there is a difference in strength of
connectivity between such regions in STs vs GTs [Les+14b]. Using techniques such as
optogenetics [Ada+11], one could design experiments that manipulate such connectivi-
ties and try to make a parallel with our computational model. In the present work, we
neglected anatomical differences between species, first in evidence gathering (Chapter 3),
second in assuming that rats and pigeons share an MB and an MF systems that would
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behave similarly, also regarding the potential role of dopamine [Leb+10]. Our work could
benefit from a better understanding of differences and similarities between species (e.g.
[BO09]), which might help us clarify differences observed on negative automaintenance
responses in different species [WW69; GS74; Loc+76; PP78].

Both RL systems of our computational model learn values, over features or states,
without keeping information regarding the identity of the reward that was the premise to
conditioning. Some phenomena suggest that such identity might not always be taken into
account (e.g. [Wil94a; Bur+07]), and that they are based on general incentive properties,
such that one can replace a reward with another one without affecting the behaviour.
However, other phenomena clearly suggest that identity is an important component (e.g.
[McD+11; Jon+12; RB13]). This is especially the case in the PIT phenomenon, where
specific PIT occurs only when the currently executed action lead to the same reward than
the informative cue played along, while general PIT may enhance any action irrespectively
of the reward involved [CB05; CB11; Hol+10; Car+13]. MB systems are often thought as
able to embed identity informations, given their internal model, relative to MF systems
that would not [Dol+12; McD+11; McD+12; Daw+05].

8.3 Concluding remarks
The present work is a small step towards a unified framework for the study of Pavlovian
and instrumental conditioning, especially when experimental tasks might embed both
types of conditioning. By taking inspiration from inter-individual differences and mal-
adaptive behaviours observed in conditioning tasks in rats and pigeons, we were able to
extract two concepts that seem to be important in such conditioning: multiple reinforce-
ment learning systems and individual stimuli processing and competition. The study of
other experimental data might benefit from this approach. We hope that pursuing the
investigation of such a combination will provide new insights in the current field.
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thesis. Université Pierre et Marie Curie-Paris VI, 2010.

[Kra+91] Philipp J Kraemer, Christopher K Randall, and Timothy J Carbary. “Release
from latent inhibition with delayed testing”. In: Anim Learn Behav 19.2 (1991),
pp. 139–145.

[KS02] Michael Kearns and Satinder Singh. “Near-optimal reinforcement learning in poly-
nomial time”. In: Mach Learn 49.2-3 (2002), pp. 209–232.
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