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Abstract

Nature provides an unlimited source of inspiration for engineers, either by exhibiting new
solutions to existing problems or by challenging them to develop systems displaying new func-
tionalities. Recent advances in the characterization and modeling of natural systems reveal new
design principles, which can be increasingly mimicked by engineers thanks to the progress in the
production and modeling of man-made materials.

In this thesis, we are inspired by biological actuators (e.g. pine cone) which change their
shape under an external fluctuating stimulus as a result of their material architecture. Our
goal is to explore the design space of the morphing of solid objects controlled by an imposed
distribution of inelastic strain (eigenstrain). We focus on elongated and thin objects where one
dimension is either much bigger or much smaller than the other two (rods and sheets) and
restrict ourselves to the framework of linear elasticity. Patterns of shape change are usually
induced by large transformations, which requires considering a nonlinear dependency between
strain and displacements. This requires the use of numerical methods in order to predict the
morphing patterns. We looked at relaxation of springs, energy minimization and finite-elements.
These patterns were also illustrated using experimental methods such as pre-straining, thermal
expansion and swelling.

In the context of rod-like objects, two fundamental morphers are studied displaying bending
and twisting respectively : benders and twisters. The standard mirror-symmetric bilayer eigens-
train architecture of benders can be smoothened in order to lower interfacial stress and modified
in order to produce longitudinally graded or helical benders. By stacking benders in a honey-
comb like manner, the relatively small mid-deflection of benders is geometrically amplified and
produces relatively large displacements. According to finite-element simulations, the proposed
rotationally-symmetric eigenstrain architecture of twisters displays a stretching-twisting instabi-
lity, which is analyzed using energetical arguments. Similarly to benders, twisting can be varied
along the longitudinal direction by grading the material properties along the twister . By com-
bining benders and twisters, an arbitrary configuration of a rod can be obtained. In the context
of sheets, we focus on diffusion-driven morphing, where the eigenstrain is applied progressively
instead of instantaneously as motivated by experiments on thermo-responsive polymer bilayers.
This leads to long-side rolling of rectangular shapes (instead of the standard short-side rolling
of benders) and reveals a complex multi-step morphing process in the case of star shapes, where
the edges wrinkle and bend and the initially flat star eventually folds into a three-dimensional
structures (e.g. pyramid). With the progress in designing new materials, the morphers presented
in this thesis could be used in different fields, including the design of macroscopic structures for
Architecture.
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Résumé

La nature fournit une source d’inspiration intarissable pour les ingénieurs, soit en exhibant de
nouvelles solutions à des problèmes d’ingénierie existants ou en les mettant au défi de développer
des systèmes possédant de nouvelles fonctionnalités. Les progrès récents dans la caractérisation
et la modélisation des systèmes naturels révèlent de nouveaux principes de conception, qui
peuvent être de plus en plus imité par les ingénieurs grâce aux progrès dans la production et la
modélisation de matériaux synthétiques.

Dans cette thèse, nous sommes inspirés par des actuateurs biologiques (par exemple la pomme
de pin) qui changent de forme en présence d’un stimulus externe variable en raison de leur ar-
chitecture matérielle. Notre objectif est d’explorer l’espace de conception du morphing d’objets
solides contrôlées par une distribution imposée des déformations inélastiques (eigenstrain). Nous
nous concentrons sur des objets allongés ou minces pour lesquels une dimension est soit pré-
dominante ou négligeable devant les deux autres (tiges et feuilles) et nous nous limitons au
cadre de l’élasticité linéaire. Les motifs de changement de forme correspondent généralement à
de grandes transformations, ce qui requiert de considérer une dépendance non-linéaire entre les
déformations et les déplacements. L’utilisation de méthodes numériques permet de prédire ces
motifs de morphing. Nous avons examiné la relaxation de ressorts, la minimisation d’énergie et
les éléments finis. Ces motifs ont également été illustrés à l’aide des méthodes expérimentales
telles que la pré-déformation, la dilatation thermique et le gonflement.

Dans le contexte des tiges, deux morphers fondamentaux sont étudiés qui démontre la flexion
et la torsion : flexeurs et torseurs. L’architecture d’eigenstrain standard du bilame à symétrie
miroir peut être lissée afin de réduire la contrainte interfaciale d’un flexeur et modifiée afin
de produire des flexeurs à gradient longitudinal ou hélicoïdaux. En assemblant des flexeurs en
forme de nid d’abeille, la déflection relativement petite est amplifiée géométriquement et pro-
duit de relativement grands déplacements. Des simulations aux éléments finis démontre que
l’architecture d’eigenstrain à symétrie de révolution proposée pour les torseurs induit une insta-
bilité extension-torsion, laquelle est analysée en utilisant une approche énergétique. De même
que pour les flexeurs, la torsion peut être variée longitudinalement en introduisant un gradient
de propriétés le long du torseur. En combinant flexeurs et torseurs, une configuration arbitraire
d’une tige peut être obtenue. Dans le contexte de feuilles, nous nous concentrons sur le morphing
contrôlé par la diffusion, où l’eigenstrain est appliquée progressivement au lieu de instantané-
ment, motivé par des résultats expérimentaux sur de bi-couches en polymères qui gonflent diffé-
remment en fonction de la température. Cela démontre l’enroulement selon le long côté de formes
rectangulaires (au lieu de roulement côté court des flexeurs) et révèle un processus de morphing
complexe en plusieurs étapes dans le cas de formes étoilés, où les bords rides et s’enroulent et
l’étoile initialement plate prend un configuration trois-dimensionnelle (par exemple pyramidale).
Grâce aux progrès récents dans la conception de nouveaux matériaux, les morphers présentés
dans cette thèse peuvent être utilisés dans une pluralité de domaines, y compris la conception
de structures macroscopiques en Architecture.
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Résumé étendu

Les motifs de changement de forme des systèmes naturels ont depuis longtemps intéressés
les scientifiques avec les contributions modernes commençant par Darwin (C. Darwin and F.
Darwin 1897). La diversité de ces motifs est large comme remarquablement illustré par les
travaux d’Ernst Haeckel (Haeckel 2013). Dans son livre pionnier (Thompson et al. 1942), D’Arcy
Thompson a commencé l’explication de formes naturelles à l’aide de lois physiques. Depuis lors,
les efforts pour expliquer la morphogénèse—création de forme—ou le changement de forme par
le biais de mécanismes physiques s’intensifie. Ces modèles combinent géométrie, mécanique et
une force motrice, qui peut être due soit à la croissance, soit à un eigenstrain (déformation
inélastique telle que le gonflement).

Cette thèse explore l’espace de conception d’objets solides, qui changent de forme en réponse
à une fluctuation d’un stimulus extérieur. Nous appelons ces objets morphers et les considérons
comme constitués d’un matériau élastique linéaire. L’objectif est d’identifier des architectures
d’eigenstrain, qui conduisent à des motifs spécifiques de changement de forme. L’accent est
mis sur des objets élancés qui possède une dimension plus petite ou plus grande que les deux
autres—tiges et feuilles. Pour cela, le cadre théorique de la mécanique des milieux continus est
utilisé lequel est exploré à l’aide de méthodes numériques et expérimentales.

Les sections suivantes donne un bref résumé des différents chapitres de la thèse pour le lecteur
francophone.

De la recherche biomimétique à l’Architecture bioinspirée

Chapter 1 fait le lien entre les leçons tirés de l’étude de morphers biologiques et les ap-
plications potentielles dans le domaine de l’Architecture. Un designer nécessite une source
d’inspiration pour créer. Section 1.1 argumente que les connaissances scientifiques précisent la
vision du monde des designers, en démontrant ce qui est possible et en dressant les limites de ce
qui ne l’est pas. À l’intérieur des limites dictés par la science, la technologie et les contraintes
programmatiques du projet en question, les designer peuvent s’inspirer de la Nature. Une pra-
tique existante consiste alors à copier l’apparence de systèmes naturels, comme par exemple les
bulles de savons. Section 1.2 propose d’aller plus loin, en copiant les principes fonctionnels de
systèmes naturels. En effet, les plantes sont capables de générer des contraintes internes et de
modifier leur forme grâce à leur architecture matérielle (fig. 1.2). Dans le cas de systèmes passifs
(comme la pomme de pin), le changement de forme est la conséquence de l’interaction de cette
architecture matérielle avec un stimulus extérieur (par exemple l’humidité). Ce principe peut
être copié en Architecture pour créer des structures mouvantes.

xi



xii

Bref aperçu de motifs de changement de forme

Chapter 2 donne un aperçu de quelques motifs typiques de changement de forme décrits
dans la littérature. Ces motifs sont décrits d’un point de vue géométrique indépendamment
des causes qui mènent au morphing (croissance ou eigenstrain). Section 2.1 présente quelques
motifs de morphing typiques de tiges (fig. 2.1). Du fait de sa nature uni-dimensionnelle, une
tige possède des motifs fondamentaux de morphing découplés : élongation, flexion et torsion.
Une combinaison de ces trois modes conduit à une morphologie hélicoïdale. En présence de
contraintes extérieures (champ gravitationnel, contraintes géométriques), ces motifs de morphing
se diversifient souvent à cause d’une instabilité des modes fondamentaux: flambement d’Euler,
perversion hélicoïdale, instabilité de Michell, ondulations fractales . . . . Section 2.2 présente un
aperçu quelques motifs de morphing typiques de feuilles (fig. 2.5). À l’inverse des tiges, les motifs
de morphing fondamentaux des feuilles (élongation, flexion simple, flexion double) ne sont pas
découplés en raison du théorème remarquable de Gauss. Ceci suffit à générer une pluralité de
motifs de morphing: dômes, selles de cheval, configuration bi-stable, . . . .

Description théorique du morphing

Chapter 3 décrit le cadre théorique qui sert à modéliser le processus de morphing. Les
concepts fondamentaux de la mécanique des milieux continus sont rappeler dans appendix A
(déformation, contrainte, énergie). Les motifs de morphing correspondent souvent à des grandes
transformations (déplacements et rotations), ce qui justifie d’utiliser des modèles non-linéaires
du point de vue de la géométrie. Section 3.1 présente le modèle de tige non-linéaire—poutre de
Cosserat—qui consiste en une courbe spatiale à laquelle sont attachés des repères orthonormés
locaux qui décrivent l’orientation des sections de la tige. Dans ce formalisme, les motifs de
morphing de tiges sont décrits par les courbures matérielles (deux de flexion et une de torsion).
Section 3.2 introduit la notion d’eigenstrain, qui permet de modéliser toutes déformations in-
élastique du matériau (gonflement, expansion thermique, . . . ) sans pour autant modifier les
caractéristiques élastiques du matériau.

Méthodes numériques

Chapter 4 présente les méthodes numériques ainsi que les logiciels utilisées pour simuler les
motifs de morphing: relaxation de ressorts (section 4.1), minimisation de l’énergie (section 4.2)
et la méthode des éléments finis (section 4.3).

Méthodes expérimentales

Chapter 5 présente les méthodes expérimentales utilisées pour illustrer les motifs de morphing:
pré-déformation (section 5.1), dilatation thermique (section 5.2) et gonflement (section 5.3).

Flexeurs

Chapter 6 étend la solution classique du bilame de Timoshenko à des flexeurs en montrant
que la contrainte interfaciale est réduite en lissant la distribution d’eigenstrain (section 6.1),
que les flexeurs peuvent être gradués longitudinalement ou modifiés pour obtenir des morpholo-
gies hélicoïdales (section 6.2) et que la flèche d’un flexeur est amplifié géométriquement en les
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empilant en nid d’abeille (section 6.3).

Torseurs

Chapter 7 propose une nouvelle architecture d’eigenstrain par analogie avec les flexeurs qui
produit de la torsion—torseurs. Le morphing de torseurs consiste en une instabilité extension-
torsion ainsi que confirmé par la méthode des éléments finis et modéliser analytiquement (sec-
tion 7.1). En combinant flexeurs et torseurs, on obtient une configuration arbitraire d’une tige
(section 7.2).

Morphing controllé par la diffusion en 2D

Chapter 8 examine des bicouches à deux dimensions—feuilles—pour lesquels l’eigenstrain est
appliqué progressivement au lieu de instantanément. Cela conduit à l’enroulement inattendu de
formes rectangulaires selon le long côté (section 8.1) et au processus de morphing complexe de
forme étoilés menant à des configurations tri-dimensionnelles (section 8.2).

Conclusion et perspectives

Les morphers représentent un domaine de recherche florissant dans lequel il reste beaucoup
à faire. Les trois morpher présentés dans cette thèse (flexeurs, torseurs et feuilles bicouches)
sont trois éléments qui enrichissent les possibilité de morphing que nous montre la Nature. Le
fait de contrôler le changement de forme en imposant une architecture d’eigenstrain donnée par
le couple “stimulus-proprieté” ouvre de nouvelles perspectives en termes de structures passives
potentiellement intéressantes en Architecture.
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Introduction

“All the branches of a tree at every stage of its height when put
together are equal in thickness to the trunk [below
them].”—Leonardo da Vinci (Bell and Richter 1970)

Patterns of shape change of natural systems have long interested scientists with modern
contributions beginning with Darwin (C. Darwin and F. Darwin 1897). The diversity of these
patterns is broad as remarkably illustrated by Ernst Haeckel (Haeckel 2013). In his pioneering
book (Thompson et al. 1942), D’Arcy Thompson started the explanation of shape by means
of physical laws and mechanisms. Since then, efforts to explain morphogenesis—creation of
shape— or shape change by means of physical models have been growing. Such models combine
geometry, mechanics and a driving force, which can be due to growth or to an eigenstrain 1.

This thesis explores the design space of solid objects, which change their shape upon interac-
tion with an external stimulus. We call these objects morphers and model them as linear elastic
bodies. Our goal is to identify specific architectures of eigenstrain that lead to specific patterns
of shape change. For this, we use the theoretical framework of continuum mechanics, which we
address using numerical and experimental methods.

Part I starts with an introductory chapter which aims at drawing a connection between
insights gained from the study of biological morphers and potential applications in the field of
man-made Architecture (chapter 1). Chapter 2 reviews some typical patterns of shape change
that have been described in the literature.

Part II addresses the materials and methods used to explore the design space of morphers.
Chapter 3 recalls fundamental concepts of continuum mechanics—such as strain, stress and
energy—in the three-dimensional (appendix A) and one-dimensional setting and specify the
role taken by eigenstrain. Chapter 4 presents the three numerical methods used to simulate
morphers: relaxation of springs, energy minimization and the finite-element method. Chapter 5
describes the experimental methods used to illustrate morphers: prestraining, thermal expansion
and swelling.

Part III presents the results of the thesis. Chapter 6 expands Timoshenko’s classical solution
of the bending of bilayer to benders by showing: how interfacial stress is lowered by smoothening
the differential eigenstrain, how benders can be longitudinally graded or modified into helical
morphologies and how the deflection of benders is geometrically amplified by a honey-comb
like stacking. Chapter 7 proposes a new eigenstrain architecture in analogy with benders, that
leads to twisting—twisters. By combining benders and twisters, arbitrary configurations of
an elongated object can be achieved. Finally, chapter 8 discusses bilayer sheets, where the
eigenstrain is applied progressively instead of instantaneously. This leads to unexpected long-
side rolling of rectangular shapes and to complex multi-step folding of star shapes.

1. We use the word eigenstrain to refer to an imposed inelastic strain field (e.g. due to swelling, thermal
expansion) (see chapter 3).
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Chapter 1

From Biomimetic Research to

Bioinspired Architecture

Contents
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What is the connection between architectural 1 design and biomimetic research? An architect
needs a source of inspiration in order to create. On the other hand, biomimetic research reveals
new design principles drawn from Nature. This chapter proposes the latter as a source of
inspiration for the former 2.

Section 1.1 tackles the question of inspiration in architectural design. Scientific knowledge
both enriches and constrains the worldview of designers 3 (subsection 1.1.1). The bounds of
the design space where creativity can be inspired by biomimetic research in the architectural
design process can be defined and implemented using modern digital softwares (subsection 1.1.2).
Subsection 1.1.3 gives an example of Architecture mimicking the shape of a natural system—soap
bubbles. Section 1.2 proposes the morphing of plants as a new inspiration for designers. More
specifically, the structure-function relationship which enables plant morphing (subsection 1.2.1)
can serve as a potential source for bioinspired morphing in Architecture (subsection 1.2.2).

1. Throughout this thesis, we use the word “architecture” to refer either to the mesoscopic architecture of a
material or to an architecture (distribution) of eigenstrain. In this chapter, we shall use “Architecture” with an
upper case first letter or “architectural design” when referring to macroscopic Architecture.

2. It’s a difficult task to argue why architects should be inspired by Nature rather than something else. However,
it seems even harder to argue that they should not. History provides enough examples where this proved to be
successful (i.e. Leonardo da Vinci or Antoni Gaudi).

3. We use the word designer to refer to both engineers and architects.
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1.1. INSPIRATION IN ARCHITECTURAL DESIGN CHAPTER 1. BIOINSPIRATION

1.1 Inspiration in Architectural Design

We do not want to dwell on trying to define inspiration properly, but simply state that it
has to do with creativity. First, subsection 1.1.1 argues that scientific knowledge both enriches
and constrains the worldview 4 of designers. Then, subsection 1.1.2 defines where creativity has
room for expression within the architectural design process. Finally, subsection 1.1.3 gives an
example of Architecture mimicking the shape of a natural system—soap bubbles.

1.1.1 Scientific knowledge enriches and constrains the worldview of designers

The worldview of designers is on one hand enriched by scientific knowledge which increases
the resolution at which they see the world and the other hand is constrained by providing the
limits of what’s physically possible.

“I have a friend who’s an artist and has sometimes taken a view which I don’t agree
with very well. He’ll hold up a flower and say “look how beautiful it is” and I’ll agree.
Then he says “I as an artist can see how beautiful this is but you as a scientist take
this all apart and it becomes a dull thing” and I think that he’s kind of nutty. First
of all, the beauty that he sees is available to other people and to me too, I believe.
Although I may not be quite as refined aesthetically as he is ... I can appreciate the
beauty of a flower. At the same time, I see much more about the flower than he sees.
I could imagine the cells in there, the complicated actions inside, which also have a
beauty. I mean it’s not just beauty this dimension, at one centimeter; there’s also
beauty at smaller dimensions, the inner structure, also the processes. The fact that
the colors in the flower evolved in order to attract insects to pollinate it is interesting;
it means that insects can see the color. It adds a question: does this aesthetic sense
also exist in the lower forms? Why is it aesthetic? All kinds of interesting questions
which the science knowledge only adds to the excitement the mystery and the awe
of flower. It only adds. I don’t understand how it subtracts.” (Feynman 1981)

What Richard Feynman highlights in this citation is that scientific knowledge does not sub-
tract anything to the “beauty in the world”. On the contrary, it adds to it. The main reason is
simply that it reveals more things in the world around us—from the nanometer scale of particles
to the light-year scale of the universe. In a world seen in increased resolution, there is a lot more
to see than in a blurry environment. One can thus assume that the chance to find beauty (or
perhaps something else?) is increased 5. Like the flâneur popularized by Charles Baudelaire or
Walter Benjamin in the 19th century, scientists have the capability to enjoy perambulating in the
world 6. For a scientific mind, everything that exists potentially triggers myriads of questions
related to “how it is made?” and “how does it work?”.

Structural engineers will restrict their worldview to structures in the mechanical sense. They
will look at cities and man-made constructions with a much more informed view than the layman
and recognize static schemes underlying buildings, bridges or skyscrapers, look how connection

4. The term “worldview” is a calque of the German word “Weltanschauung”.
5. This skepticism to scientifically unravel world secrets may have had religious roots, probably because it

threatened the religious explanation of the world. Friederich Nietzsche, who grappled a lot with religion has this
quote about science, which may be categorized as misogynous today, but shows that skepticism against science
was still around even after “God was dead”: “All rightful women find science goes against their modesty. They feel
as if one wanted to look under their skin - even worse! under their dress and make-up.”. We translated this from
the German original: “Allen rechten Frauen geht Wissenschaft wider die Scham. Es ist ihnen dabei zu Muthe, als
ob man damit ihnen unter die Haut, - schlimmer noch! unter Kleid und Putz gucken wolle.” (Nietzsche 1886).

6. This approach should not be confused with hypothesis-free research as we assume that the world behaves
according to existing theoretical models. This is clearly debatable in biology, but reasonable in the context of
structural mechanics. We are thus still under the umbrella of hypothesis-driven research.
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CHAPTER 1. BIOINSPIRATION 1.1. INSPIRATION IN ARCHITECTURAL DESIGN

details are solved and imagine forces flowing through structures. The human-built world is
their oyster. In fact, they do not have to limit their interest to human constructions, but can
extend their curiosity to natural systems such as animals and plants, which may reveal new
design principles (Vincent, Currey, et al. 1980). Egyptians recognized the pyramid as being
a stable and scalable form more than ∼ 4000 years ago and the Gizeh pyramids challenged
builders for millennia. Greeks followed by Romans managed to built impressive constructions
(temples, aqueducts) using Aristotelean physics principles and thorough surveying techniques
(Dijksterhuis, Dikshoorn, and Knorr 1987; Pollio 1914). During the middle-age, new cathedrals
where replicas of previous ones with only small variations in the design and progress was made
slowly through trial and error (Follett 1989). One had to wait the 17th century for Galileo Galilei
(Galileo, Crew, and Salvio 1914), Robert Hooke (Hooke 1678) and Isaac Newton (Newton 1934)
to lay the foundations of the science of strength of material and structural mechanics. The
treatment of the cracks in Brunelleschi’s Dome in Florence are often referred to as the first
real-world application of this “new science”, where—based on force calculations and material
strength assumptions—steel rings were added at the base of the dome to bear the tensile forces
(Ottoni, Coïsson, and Blasi 2010). Unfortunately, this lead to a separation of tasks within the
building process between architects responsible of the design and engineers responsible of the
structural integrity. Schematically, architects seek to express their creativity, while engineers
need to compel to the principle of reality. This opposition between two aspects of the design
process is questionable 7. Indeed, the work-flow of an architect “drawing something pretty” and
of an engineer “doing their best to fix it afterwards” has some obvious drawbacks: the actual
construction often does not meet the expectancy of the architect and is irrational from the
viewpoint of the engineer. Would it not be better if architects where creating within the realm
of what’s possible in the first place? 8 Indeed, not only does structural mechanics reveal if a
construction works in the real world, it also define the limits of the design space containing
what’s physically possible.

1.1.2 Where is creativity needed in the Architectural design process?

This subsection gives a brief description of today’s digital modeling tools before emphasizing
the decision space where creativity has room to express itself in the architectural design process.

Computer aided design Using modern theoretical models describing the behavior of materi-
als and structures, architects and engineers are now capable of exploring new designs, which can
be drastically different from any existing constructions. Thanks to three-dimensional drawing
programs, it is possible to create willingly complex free-form geometries—blobs—using non-
uniform basis spline (NURBS) (subsection 4.1.1). Free forms are then usually decomposed into
a set of ruled surfaces, a step called rationalization or paneling (Pottmann 2007). So-called
digital materials that do not correspond to any real material, but take into account various
other constraints (e.g. ease of fabrication or aesthetics) can help to reveal original designs (Piker
2014). The resulting shape is then often approximated regarding what is technically and eco-
nomically feasible. The limit is thus not set by what can be drawn anymore, but by what can be
built. However, this freedom in the design of the shape can lead to a pitfall, which is illustrated
by the following citation by Nikola Tesla’s replacing the word “scientists” with “architects”,
“mathematics” with “computer aided design” and “equation” with “design”:

“Today’s scientists have substituted mathematics for experiments, and they wander

7. In today’s French school system, this opposition is reflected by the separation between scientific education
and humanities.

8. The philosophy of the Bauhaus, founded by Walter Gropius at the beginning of the 20th century in Germany,
aims at reconciling these two aspects of the design process.

7
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off through equation after equation, and eventually build a structure which has no
relation to reality.” (Tesla 1934)

Constraint driven design Beyond the potential improvement in time efficiency, the prospect
of creativity expressing itself within the limits fixed by knowledge, technology and finance results
in more efficient designs 9. One critic of this approach is the argument that creativity only works
in an unconstrained environment. This is obviously wrong, as musicians for example are able
to express their creativity within the bounds of what their instrument is capable of—it just
needs more preliminary work. Nevertheless, this remains a complex task as the constraints with
which the architect must comply are numerous. Apart from programmatic constraints fixed by
the investor (e.g. budget, location, program), logistic constraints (e.g. size of trucks, number
of cranes), available manufacturing techniques (prefabrication or on-site assembly facilities),
structures must obey principles of structural design (Bruno et al. 2010). The approach which
consists in considering all the constraints during the design process—also referred to as integrated
or constraint-driven design (Kilian 2006)—starts to be implemented in software programs under
the common name “building information modeling (BIM)”. Even within the bounds of what’s
physically possible and limited by what’s technically doable or accessible, architects need a
source of inspiration to draw their construct. Imagination can come from many sources and it
seems impossible to present them consistently. However, two obvious sources of inspiration for
architects are:

1. Human constructions (. 200 000 years);

2. Natural constructions (. 3.5 Myears).

As Nature has a much longer experience in building things than humans do, it would be very
surprising if designers could not learn something from it. This is where creativity can be inspired
by biological research.

1.1.3 Mimicking the appearance of Nature

Copying Nature is a very old idea and has a long history in arts, culture, music and Archi-
tecture 10. This subsection presents soap bubbles as an example of a natural system that has
successfully inspired architects by starting to recall some of the physical principles underlying
their formation and by giving some examples of architectural designs inspired by them.

The physics of soap bubbles Soap bubbles fascinate not only children, but also scientists,
engineers and architects. A lot of observations on soap bubbles 11 can be found in the work of
Isenberg (Isenberg 1978). At equilibrium, a cluster of soap bubbles consist of portions of entirely
smooth surfaces with constant curvature and have two remarkable properties 12:

1. Soap films always meet in three along an edge at an angle of 120◦C;

2. These edges meet in four at a vertex at an angle of ∼ 109◦C (tetrahedral angle).

9. Carola Zwick’s work from the Bild-Wissen-Gestaltung cluster is based on this approach.
10. Poetically speaking, the first houses can be seen as reconstructions of caves and the first bridges as trees

thrown over rivers. Greek columns are similar to trunks of tall trees and traditional roofs can be seen as replicas
of canopies in the forest. A lot of decorations are clearly inspired by vegetation such as flowers and leafs, and
mimicking the appearance of natural shapes certainly has a good chance to please the human eye.

11. Observations include the description of their molecular structure, of their macroscopic properties such as
varying light diffraction as a function of their thickness, and their use in solving physical problems such as the
motorway problem or minimum area solutions.

12. These phenomenological laws—also referred to as Plateau’s law—were found by Joseph Plateau in the end
of the 19th century.

8
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The Young-Laplace-Gauss equation 13 describes how the geometry of a soap film accommodates
pressure differences:

∆p = σ ∗ 2H = σ ∗ (κ1 + κ2) = σ ∗ (
1

R1
+

1
R2

), (1.1)

where ∆p is the pressure difference across the soap film, σ the surface tension of the film and H
the mean curvature of the film with κα and Rα (α ∈ {1, 2}) the principal curvatures and radi
of curvature of the film surface respectively. Energetically speaking, soap films minimize their
energy which scales linearly with its area and so take a minimal surface between imposed edge
boundaries.

Architectural designs inspired by soap bubbles Many architectural designs are based
on the physics of soap bubbles and films. So-called minimal structures minimize the amount
of material needed under some fixed boundary conditions similarly to how soap films behave.
One way to design minimal structures is to use catenaries, which is the curve produced by a
hanging chain under its own weight. The design of the Sagrada Familia in Barcelona by Gaudi
is probably the most famous example of such a structure 14 (fig. 1.1a-c). The roof of the Munich
Olympic stadium by Frei Otto also mimics the shape of a soap film 15 (fig. 1.1d). Soap bubbles
can also inspire architectural designs. Using Surface Evolver 16 (Brakke 1992), one can calculate
soap bubble clusters made of 2, 3, ..., n intersecting bubbles, which can serve as a draft for the
design of “bubble-houses” (Demin and Turcaud 2009) (fig. 1.1e). Quite recently, the facade of
the Beijing watercube strikingly mimics a soap bubble cluster (fig. 1.1f).

1.2 Biomimetic Morphing in Architecture?

The study of natural systems reveals structure-function relationships, which link a specific
material architecture to a specific behavior of the system (Fratzl 2007). In the context of Ar-
chitecture, one can mimic these relationships instead of mimicking the appearance of natural
systems. They can be used by architects in two ways, either by providing them with an interest-
ing solution to an existing problem 17, or by challenging them to find new applications for this
existing solution. Subsection 1.2.1 describes the structure-function relationship enabling plant
movement and subsection 1.2.2 addresses the question where bioinspired morphing can be used
in Architecture.

1.2.1 The structure-function relationship of plant morphing

Unlike animals, plants do not need bones as they possess a stiff cell wall which—among other
functions—ensures their structural integrity 18. If differences occur between different species

13. This equation bears three names as it results from the unification by Johann Carl Friedrich Gauss in the
beginning of the 19th century of the qualitative description of soap films by Thomas Young with their corresponding
mathematical theory by Simon Laplace.

14. The computer program called CADenary by Axel Kilian allows to play with such catenaries. The program
is available free of charge (CADenary).

15. For the anecdote, Frei Otto allegedly came to the meeting with the investors carrying a cranky construction
made out of wire, which he then poured in soap water to show the design.

16. Surface Evolver is a computer program written by Kenneth Brakke twenty years ago, which minimizes a
surfaces energy (e.g. surface tension, gravity) subjected to constraints similarly to how soap bubbles work. The
program is available free of charge (surface evolver).

17. The self-healing capabilities of the byssal thread due to the rebounding of sacrificial bounds (Krauss et al.
2013) could inspire new solutions for the self-repairing of construction materials. A solution based on the use of
bacterias is heading towards this direction (Jonkers et al. 2010).

18. Structural integrity is thus localized in animals, whereas it is distributed in plants. A similar distribution
of resources is found in the mechano-sensing of spiders (Fratzl and Barth 2009).

9
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(a) (b) (c)

(d) (e) (f)

Figure 1.1 – (a) Gaudi’s original hanging chain models used to determine the shape of the vaults
of the Sagrada Familia in Barcelona. (b) Sagrada Familia in Barcelona still in construction
planned to be finished in 2026. (c) Example of a minimal structure based on catenaries using
the CADenary software by Axel Kilian. (d) The roof of the Munich Olympic stadium mimics
the shape of a soap film. (e) Simulated clusters of soap-bubble clusters. (f) The facade of the
Beijing watercube mimics a soap bubble cluster.

and types, many plants are organized in a similar hierarchical way (Niklas 1994). This enables
us to describe these common principles taking a reductionist view without referring to any
specific plant. The following describes the hierarchical ordering of the constitutive material of
the structural cells in plants and discusses how the eigenstrain can be tuned in plants simply by
changing the microfibrilar angle of the cells.

The hierarchical material architecture of plants The constitutive material of many
plants is organized across three hierarchical scales 19. It is organized like a cellular solid com-
posed of individual plant cells, where the cell wall of each cell is itself a laminate composite.
This composite material consists of a matrix of hemicelluloses and lignin reinforced by cellulose
microfibrils 20. These microfibrils are roughly parallel and wind around the cell in a helical
manner at an angle called the microfibrilar angle (MFA) which is denoted by α 21.

Tuning the expansion/contraction of a plant cell through microfibrilar angle 22 The
cellulose microfibrils are stiff and impermeable to water, whereas the matrix is soft and highly
swellable. For a given eigenstrain of the matrix (ǫ∗), the longitudinal elongation of the cell is

19. For a detailed description of the hierarchical material architecture of plants, see (Fratzl and Weinkamer
2007).

20. The composition of this composite material varies across the different layers of the cell wall. This description
focuses on the secondary cell wall, which is the thickest and predominant for load bearing.

21. We do not use the notation µ for the MFA, as we already use it to denote the first Lamé coefficient of an
isotropic material (appendix A.2.4).

22. Here, only the behavior of “dead” cells is discussed. In the case of “living” cells, the expansion/contraction
is controlled by turgor pressure.

10
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a function of the MFA 23 (fig. 1.2). When the fibers are parallel to the cell-axis (α = 0◦), the
longitudinal eigenstrain of the cell is nearly zero (ǫ∗

zz ≈ 0). When the fibers are perpendicular
to the cell-axis (α = 90◦), the longitudinal eigenstrain of the cell is equal to the imposed
eigenstrain (ǫ∗

zz ≈ ǫ∗). Interestingly, the intermediate values of MFA (0◦ < α < 90◦) do not
lead to an intermediate longitudinal eigenstrain of the cell, but there is a window of MFA
(11◦ < α < 43◦) for which the cell shrinks longitudinally 24. This simple model of the plant cell
wall shows how plants are able to tune the longitudinal eigenstrain across their cross-section by
tuning the microfibrilar angle.

Figure 1.2 – For a given eigenstrain of the matrix (ǫ∗), the longitudinal swelling of the cell
(ǫx) is zero when the fibers are parallel (α = 0◦) to the cell axis, and equal to the imposed
eigenstrain when the fibers are perpendicular (α = 90◦) to the cell axis. For a sufficiently high
stiffness contrast between the fibrils and the matrix, there exist a range of microfibrilar angles
(11◦ < α < 43◦) for which the cell shrinks longitudinally. Modified and reproduced from (Fratzl,
Elbaum, and Burgert 2008) by permission of The Royal Society of Chemistry.

23. For a detailed discussion of how the MFA tunes the swelling (and stiffness) of a cell in the longitudinal
direction, see (Fratzl, Elbaum, and Burgert 2008).

24. Longitudinal shrinking occurs for a stiffness ratio of the microfibrils compared to the matrix higher than 20
(Fratzl, Elbaum, and Burgert 2008).
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1.2.2 Morphing in Architectural design

This subsection describes how the structure-function relationship underlying plant morphing
can inspire architects either to add smaller hierarchical scales to their designs or to potentially
create morphing Architectures.

The concept of hierarchy in Architecture Architects are already familiar with the idea of
hierarchy found in all natural systems at different degrees of refinement, except that they start
at larger length scales 25. A skyscraper for example is composed of floors and columns, which
consists of a variety of connected beams and sheets with different profiles (lattice structures),
which in turn can be analyzed in terms of singular elements with specific micro-structures. All
Nature does, is going several more steps down towards smaller length scales 26. In the context
of steel construction, introducing a supplementary length scale between the micro-structure and
the macroscopic profile diversifies the macroscopic properties of the object, thus potentially
filling new holes in material space (Dunlop and Bréchet 2009; Bouaziz, Bréchet, and Embury
2008; Bréchet and Embury 2013).

Potential areas where morphing can be used in Architecture Currently, areas related
to movement in Architecture are limited to openings (e.g. doors, facades) and to convertible
structure (e.g. roofs, bridges) 27. Existing realization of such moving structures includes in no
specific order:

1. the expandable structures by Chuck Hoberman 28 across the world (Hoberman 2014b);

2. the facade of the Institut du Monde Arabe by Jean Nouvel in Paris 29;

3. the kinetic facade of one of the main buildings at the EXPO in Yeosu, South Korea, by
Jan Knippers.

These are impressive realization, but they are all actuated by means of electrically-driven motors
and sensors (see footnote 29). As sustainability is one of the main issues of our generation, one
would wish to be able to farm the surrounding energy mimicking natural actuators. Also, even
if the resulting morphing patterns can be quite elegant—such as the kinetic facade of Knippers
based on a lateral-torsion instability inspired by the bird-of-paradise flower (Schleicher et al.
2011)—their driving force is discrete. In this thesis, we are interested in distributed actuation—
morphing—driven by external fluctuating fields (such as humidity or temperature). To our
knowledge, only two such realizations exist:

1. the hygroscopic structures by Achim Menges exposed at the Centre Pompidou in Paris;

2. the bimetallic structures by Doris Kim Sung (Kim Sung 2014).

Even if these structures are still more sculptures than buildings, this is a promising start. It
would be interesting to realize more of these construction, especially trying out new eigenstrain
architectures such as the twisters presented in chapter 7. Letting our creativity run free, an
interesting question is “where else can movement be used in Architecture?”. This opens a whole
new paradigm in Architecture that yet needs a vision before it really start to grow 30.

25. Realization of architects are typically bigger than the biological morphers proposed for inspiration (e.g. pine
cone).

26. Man-made structures can be analyzed at arbitrary small length scales, but contrary to natural systems,
order disappears for sufficiently small length scales. Nature acts like a sculptor that arranges elements not only
at the macroscopic scale, but also at very small length scales.

27. This list is most probably not exhaustive.
28. Chuck Hoberman is also known for his expandable toys (Hoberman 2014a).
29. Upon visiting the Institute, I was told that the facade only moved during the opening ceremony.
30. Neri Oxman seems to be an adequate person to formulate such a vision. The aesthetics of such a morphing

city could be inspired by Hundertwasser.
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Conclusions

This chapter describes how biological research can potentially inspire architectural design.
First, the role of inspiration within the architectural design process is discussed. Scientific
knowledge both enriches and constrains the worldview of a designer. Within the design space
of what’s possible to build, creativity can draw inspiration from biomimetic research in the
architectural design process. Mimicking the shape of natural systems—such as soap bubbles—
already inspires Architectural designs. Instead of copying the appearance of Nature, one can
draw inspiration from the structure-function relationship of natural systems. As such, plant
morphing can inspire new Architectures which morph in response to energy fluctuations in their
environment.
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Patterns of shape change is a subject of increasing interest as suggested by multiple recent
reviews on non-euclidean plates (Sharon and Efrati 2010), morphological instabilities and surface
wrinkling of soft materials (Li et al. 2012), stimuli-responsive polymer films (Gracias 2013),
swelling or shrinking of hydrogels (Liu, Swaddiwudhipong, and W. Hong 2013; Ionov 2013),
finite elasticity (Nardinocchi, Teresi, and Varano 2013), reconfigurable matter (Studart and Erb
2014) and foldable origami (Peraza-Hernandez et al. 2014) 1. They emerge from the interplay of
geometry, elasticity and eigenstrain, and can often be illustrated using simple toy models.

This chapter reviews some typical patterns of shape change, which can be found in natural
and man-made systems. The main focus is on shape changes controlled by an architecture of
eigenstrain, but some examples of growth or externally-induced shape changes are also covered
when relevant. This approach reveals similarities between morphers stemming from appar-
ently unrelated fields such as growing natural materials, swelling polymers or heated metals.
A systematic approach of shape changes follows both the dimensionality of the shape and the
dimensionality in which the shape change occurs 2. This enable to establish a non-exhaustive
taxonomy of patterns of shape change, which is used throughout this thesis. The shape of an
object, which has two dimensions much smaller or much larger than the third 3, can be regarded
as a line or a surface respectively. A line may deform on a line (stretching), in a plane (bending)
or in space (twisting), whereas a surface may only deform on a surface (stretching) or in space
(bending). The following discusses patterns of shape changes of one-dimensional objects (rods

1. This list is far from being exhaustive, as they have been many recents reviews on this growing topic.
2. The dimensionality in which the shape change occurs is equal to the dimensionality of the final configuration

of the shape.
3. Volumetric morphers seems to be rare in nature.
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and ribbons in section 2.1) and of two-dimensional objects (plates and shells in section 2.2)
based on the dimensionality of the morphing space.

2.1 Rods and ribbons

An object which has two dimensions much smaller than the third (a, b ≪ L) can be regarded
as a line. As presented in section 3.1, such an object can be described by rod theory, where a rod
is represented by a spatial curve with attached orthonormal frames giving the orientation of the
cross-sections (subsection 3.1.1). In subsection 2.1.1, we discuss the three fundamental morphing
modes of rods 4: stretching (subsubsection 3.1.2.1), bending (subsubsection 3.1.2.2) and twisting
(subsubsection 3.1.2.3). Locally, a combination of these modes leads to coiling 5 as illustrated by
the ubiquitous helical patterns found in nature (Galloway 2002). In subsection 2.1.2, we discuss
the morphing patterns of rods which appear under external or topological constraints. Due to
the presence of constraints, a rod might buckle from one morphing mode into the other or show
localized morphologies such as perversions and kinks. When increasing the external torque for
example, a rod will super-coil and might display local over-coiling also called plectoneme as in
the case of DNA (Yang, Tobias, and Olson 1993). Finally, rod models also help to understand
differential edge-growth which constitutes a transition to the patterns of shape change described
in section 2.2. An overview of these morphing patterns is given in fig. 2.1.

Figure 2.1 – Some shape changing patterns of rods. (i-iv) Free modes displaying changes in
length—stretching (i), changes in curvature—bending (ii) and change in torsion—twisting (iii).
A combination of these three modes leads to a local helical configuration—coiling (iv). (v-
xii) Constrained patterns displaying stretching to bending instability under external (v) and
geometrical constraint (ix), curvature to writhe instability under external constraint (vi, x),
twisting to bending instability under topological constraint (vii, xi) and local (viii) or global
(xii) overcoiling.

4. This is discussed in more details in subsection 3.1.2
5. The word curling could be used equivalently to coiling.
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2.1.1 Free modes

In this subsection, we present the free morphing modes of rods analyzed in subsection 3.1.2,
along with some examples of natural morphers. Due to the one-dimensional nature of rods,
these modes are uncoupled 6 and constitute thus the basis in which all morphing patterns of
rods can be expressed.

Stretching Free growing or expanding rods are probably the simplest systems to start with
(fig. 2.1i). As analyzed in subsubsection 3.1.2.1, stretching corresponds to a uniform distribution
of the longitudinal strain across the cross-section (see also fig. 7.17a). Without external or
topological constraints, homogeneous tip growth or bulk growth 7 will lead to simple extension
of the rod with no internal stresses. Interestingly, exponential tip growth leads to a linear
increase of the rod length for a constant tip length (Goriely and Moulton 2011).

Bending Bending is ubiquitous in rod-like objects (fig. 2.1ii). As analyzed in subsubsec-
tion 3.1.2.2 and extensively discussed in section 6.1, bending corresponds to a transversal dis-
tribution of the longitudinal strain across the cross-section (see also fig. 7.17b). The seminal
paper of Timoshenko on bi-metal thermostats (Timoshenko et al. 1925) paved the way to the
understanding and controlling of many bilayer systems: from nano-architectured bilayers using
lattice misfit (M. Huang et al. 2005), to biological actuators using differential swelling such
as pine cones (Harlow, Cote, and Day 1964; Dawson, Vincent, and Rocca 1997), wheat awns
(Elbaum, Zaltzman, et al. 2007; Elbaum, Gorb, and Fratzl 2008) and ice plant seed capsules
(Harrington et al. 2011). The way transversal variations of expansion generate curvature is best
illustrated by simple paper-plastic bilayers (Reyssat and Mahadevan 2009) or simply by a piece
a paper placed on water (Reyssat and Mahadevan 2011). The distribution of eigenstrain can
be smoothened by increasing the number of layers (Vasudevan and Johnson 1961), which will
decrease the intersurfacial stress for the same curvature generation. A perfectly graded distri-
bution will not produce any stress, as it is the actual distribution of elastic strain when a bar is
bended (subsection 6.1.2).

Twisting Rods can also twist as their cross-section rotate around their straight middle-line
(fig. 2.1iii). As analyzed in subsubsection 3.1.2.3, twisting corresponds to a radial gradient of
shear strain across the cross-section (see also fig. 7.17c). Pure twist is quite rare in natural
system 8 and usually occurs in combination with bending to produce coiling.

Coiling A mixture of the free morphing modes of a rod—coiling, produces a helical mor-
phology (fig. 2.1iv). As initiated by Kirchhoff (Kirchhoff 1859), it can be proven that helical
configurations constitute a rich family of solutions to the rod model (Chouaieb, Goriely, and
Maddocks 2006), thereby underlying its frequent occurrence in nature. Among biological ac-
tuators, the stork’s bill awn show an interesting example of coiling serving two purposes: the
ballistic detachment from the mother plant (Evangelista, Hotton, and Dumais 2011) and the
self-burial mechanism (Stamp 1984). Recently, it was shown that the coiling pattern is produced
by a tilted microfibrilar helicoidal arrangement at the cell-wall level 9, which results in intrinsic
coiling (Abraham et al. 2012). The intrinsic curvature and twist associated with this particular
material architecture can be calculated using a non-linear rod model (Aharoni et al. 2012).

6. This is an approximation as there might be some coupling between bending and twisting in the case of
anisotropic materials or thin-walled cross-sections.

7. For a review of plant cell growth, see Geitmann and Ortega 2009.
8. I couldn’t find any natural actuator that displays pure twisting.
9. See subsection 1.2.1 for a description of the cell-wall architecture.
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2.1.2 Constrained modes

Morphing patterns of rod-like objects become more diverse in the presence of external or topo-
logical constraints. We separated the constraints into global constraints due to self-weight (sub-
subsection 2.1.2.1), confinements (subsubsection 2.1.2.2), end constraints (subsubsection 2.1.2.3)
and side constraints (subsubsection 2.1.2.4).

2.1.2.1 Global constraint: self-weight

In the presence of an external field such as gravity, the morphing patterns achieved through
eigenstrain will be forced into an intermediate configuration, which minimizes both their elastic
energy as well as their potential energy of interaction with this field.

Growing rod under self-weight For sufficient expansion, a straight growing rod of length
L will finally buckle under its own weight at a critical length Lc =

√

7, 837EI/ρ, where E
is the Young modulus of the material, I the moment of inertia of the cross-section and p the
weight per unit length of the rod (Greenhill 1881). For a given volume of material, shape
of cross-section and Young modulus, one finds that the shape which yields the tallest column
stable against buckling is a paraboloid shape 10, which can be approximately twice as tall as
a cylindrical column (Niordson and J. Keller 1966). Allometric studies of trees suggest that
this plays a role in the maximum observed height of trees (McMahon 1975; Niklas 1994) even
though water-transport is another huge constraint whose predominance is still debated (King
et al. 2009).

Curved hair under gravity In the presence of gravity, a naturally curved rod such as a hair
will display an intermediate equilibrium configuration between its natural curved configuration,
which minimizes its elastic energy, and the straight down configuration, which minimizes its
potential energy (Bertails et al. 2006). For a relatively moderate weight compared to the bending
rigidity of the rod, the curls will be localized near the end of the hair (fig. 2.2).

(a) (b) (c)

Figure 2.2 – (Left) Initial straight configuration. (Middle) Natural curved configuration. (Right)
Final configuration under gravity. This images were produced using the energy-minimization
approach presented in section 4.2.

10. Greek columns posses a slightly paraboloid shape, even though there are also thinner at their base.
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2.1.2.2 Confinement

A growing rod in confined space will switch from one morphing mode to another in order to
release some of its stretching energy 11.

Euler Take a one-dimensional wire growing between two stiff boundaries. Its stretching energy
scales like t ε∗2, while its bending energy scales as t3 κ2, where t is the thickness, ǫ∗ the eigenstrain
and κ the curvature. For sufficiently thin wire or sufficiently large eigenstrain, the bended
configuration becomes more favorable than the straight configuration 12. This is equivalent to
Euler buckling (Euler 1952) with the well-known critical load Nc = π2EI/L2, where E is the
Young modulus, I the moment of inertia and L the length of the rod.

Michell Analogous to Euler buckling, a rod shaped as a circular ring will buckle out of plane
into an eight-shape for a sufficient intrinsic twist 13 (fig. 2.1vii). The critical twist is a function of
the ratio a = RB/RT of flexural to torsional rigidity: Tc = 2π

√
3/a. The eight-shape is actually

a metastable state, since work has to be done on the ring in order to return to the circular shape
(Charitat and Fourcade 1998).

Crumpling Take a one-dimensional wire growing in a two-dimensional space such as a cir-
cular disk 14. As the relative confinement space gets smaller, the wire starts to bend, comes
in contact with the confinement and self-contacts until a jammed configuration of rearranging
loops emerges. Self-contact and high packing densities require considering plasticity and fric-
tion as additional ingredients besides geometry and elasticity. Different global morphologies of
crumpling can be achieved depending on the static wire friction as well as their elastic yield
curvature (N Stoop, Wittel, and Herrmann 2008). High friction produces a symmetric cascade
of loop, whereas low friction leads to asymmetric spiral morphology. Plasticity induces even
more symmetry loss and results in an visually chaotic cascade of loops, which was also observed
in (Gomes et al. 2008). Locally, the morphology of crumpling can be decomposed into S- and
C-shaped curves (Boué et al. 2006), where the maximum curvature is inversely proportional
to numbers of layers in contact κmax ∼ 1/N , where N is the number of layers (Spears and
Alben 2008). The crumpled morphology of the wire can be analyzed using statistical analysis.
This reveals a simple mass-size relation m ∼ RF , where m is the mass of wire, R the radius
of the confining disk. The exponent F is close to the fractal dimension as determined by the
box-counting method (Mandelbrot 1983) (F = 1.8 ± 0.2) 15: F = 1.9 ± 0.2 (Donato, Gomes, and
Souza 2003), and F = 1.85 (high friction) or F = 1.75 (plastic) (Gomes et al. 2008).

2.1.2.3 End constraints

Another way to produce morphing patterns, is to subject the rod to end constraints such as
torques or displacements. This reveals a regular triangular buckling pattern, local or staggered

11. Such a bifurcation between morphing modes is called buckling in the context of structures.
12. Even though the bended configuration is characterized by a supplementary bending strain, it is longer than

the straight configuration and thus the stored stretching energy is smaller.
13. This problem was discussed as early as 1889 by Michell (Michell 1889), then rediscovered in the context of

submarine cables (Zajac 1962) and derived a third time twice independently in the DNA community (Benham
1989; Le Bret 1984) until credit was given back to Michell recently (Goriely 2006).

14. This can be achieved either by pushing a long wire into a small circular disk of constant size (Donato,
Gomes, and Souza 2002), by reducing the size of the disk around a wire of constant length (Spears and Alben
2008) or by using a cylindrical sheet shaped into a conical shape and pulled through a circular hole (Boué et al.
2006)

15. The fact that F ≈ 2 shows that crumpled morphology is close to filling the two-dimensional confinement
space.
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perversions and plectoneme or supercoils.

Triangular buckling When a thin strip is twisted between its end points under a sufficiently
high tension, one observes, at some critical load, a buckling of the strip into a regular triangular
pattern (Korte, Starostin, and Heijden 2010).

Perversion and hemi-helix Tendril perversion already fascinated Darwin (Darwin 1865;
Darwin 1888) and remains ubiquitous in telephone cords. A first modeling of perversion was
given by Keller (J. B. Keller 1980) and a n extensive review on the subject can be found
in (McMillen, Goriely, et al. 2002). A perversion is a junction of two helices with opposite
handiness (fig. 2.1vi). Once the growing tendril attaches to a support after circumnutation, it
generates intrinsic curvature in order to increase its rigidity and toughness. As the attachments
cannot rotate, the net twist has to stay zero, which leads to a perverted morphology. The
change in morphology is thus a curvature-to-writhe instability (Goriely and Tabor 1998), where
the symmetry breaking is constrained by a topological invariant (Pieranski, Baranska, and
Skjeltorp 2004). In a recent paper (Gerbode et al. 2012), the counterintuitive over-winding of
the tendril when pulled apart was explained by a large bending stiffness compared to its twisting
stiffness. This behavior was reproduced using physical models of prestrained rubber strips and
confirmed by a mathematical model. Another morphological pattern can emerge if one slowly
releases the tension at the end of a bi-strip where one of the strips was initially prestrained. A
staggering of perversion also called hemi-helix (fig. 2.1x) appears 16. Interestingly, this hemi-
helix also appears when one end of the helix is free to rotate indicating that this configuration
is a stable minimum. However, this is a local minimum (metastable) as the helical configuration
displays a lower elastic energy (global minimum ) at the cost of overcoming an energy barrier.

Plectoneme and supercoiling When the ends of a twisted straight rod are brought together,
a local twisted loop—plectoneme—will appear (fig. 2.1viii). The same morphology is achieved
by twisting the ends of a rod in the presence of gravity (Bergou et al. 2008; Martin et al. 2010). If
instead a twisted ring is twisted further, supercoiling morphologies appear (fig. 2.1xii) as studied
extensively in the DNA community (Tobias and Olson 1993). A supercoiled morphology can
also be demonstrated using a simple elastic band rotated at its ends (fig. 2.3).

2.1.2.4 Side constraints

Yet another way to enrich the morphing patterns of rods, is to attach them to a passive
element along their length 17. This reveals two types of morphing patterns: loops and ripples.

Looping When a growing rod is attached to an elastic sheet along its side, it will buckle into
a looping morphology reminiscent of the hemi-helix mentioned above. The characteristics of
this looping pattern (wavelength and amplitude), which is present in the guts of vertebrate, can
be determined as a mere function of the geometrical, mechanical and eigenstrain characteristics
measured experimentally on different guts (Savin et al. 2011).

Rippling The extending edge of a flat sheet will buckle into a multi-scale ripple (fig. 2.1ix).
This morphological pattern can be observed in several natural and man-made systems, as for
example along the edge of torn plastic sheets (Sharon, Roman, Michael Marder, et al. 2002)

16. The hemi-helix morphology was first reported in (El-Shiekh, Bogdan, and Gupta 1971a; El-Shiekh, Bogdan,
and Gupta 1971b) among the textile literature and rediscovered recently in (J. Huang et al. 2012).

17. This substrate can have finite rigidity as in the case of loops or infinite rigidity as in the case of ripples.
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(a) (b) (c)

Figure 2.3 – (Left) Initially configuration of an elastic band attached to a support and straight-
ened by a hanging weight. (Middle) After a sufficient rotation of the bottom point, the elastic
band displays a helical morphology. (Right) When the bottom point is rotated further, the
helical band starts to coil into a helix.

(see fig. 2.4 were we reproduced the experiment by tearing a plastic bag 18)), along the edges of
leafs (M Marder 2003) or simply in the design of clothes 19. The excessive edge-length is either
due to the irreversible plastic deformations along the edges of the crack produced by the high
stress near the crack tip, the differential edge-growth or the geometry of the assembled fabric.
As the bending rigidity of a sheet is much smaller than its stretching rigidity, the excessive
edge-length will relax into a cascade of ripples in order to lower its elastic energy. The ripples
in (Sharon, Roman, Michael Marder, et al. 2002) show 6 levels of self-similar waveform with a
scaling factor of 3.2, while their amplitude stays proportional to their wavelength A = 0.15λ.
This is thus an experimental realization 20 of a fractal, which spans 2.5 orders of magnitude and
stop at a very small length scale (only 6.5 times the sheet’s thickness). Generally speaking, the
associated geometric problem consists in studying the embedding of non-euclidean surfaces (in
this case hyperbolic) in 3D Cartesian space. The existence of such embeddings remains an open
question and existing solutions are often far from unique (Spivak 1975). In this particular case, an
explicit embedding of the hyperbolic surface resulting from edge-activation can be constructed—
a "surface à godets” or "gored surface”, which features the multi-scale ripple (Nechaev and
Voituriez 2001). On top of this geometrical approach, elastic theory can be used to try to
predict the observed morphological change. In first approximation, one can only model the
distended edge by an elastic strip with appropriate boundary conditions instead of the entire
sheet (Audoly and Boudaoud 2002; M Marder 2003; M Marder et al. 2003). When cut from the
bulk, the distended edge relaxes into its natural configuration: a ring which curls on itself like
a Slinky R©. When the ends of the Slinky R© are pulled apart, the ring becomes a helix which
progressively unloops as the pulling force increases. Now the Slinky R© is constrained to the bulk
and therefore cannot overwind. In other words its linking number must be zero, which can only
be accomplished by a combination of bending and twisting. The resulting rippled shape consists
of a staggered perversion reminiscent of the hemi-helix. In more details, one can study the
self-similarity of the ripples using elastic plate theory (Landau and Lifshitz 1959), thus finding a
theoretical scaling factor close to the one observed experimentally (Audoly and Boudaoud 2003;
Sharon, Roman, and Swinney 2007).

18. For the anecdote, we asked the cleaning ladies to borrow some samples of their trash bags.
19. A purely geometric approach to this pattern was apparently introduced as early as 1878 in Paris by the

Russian mathematician Chebyshev (Chebyshev 1878), but his works remains unpublished (traces of it can be
found in (McLachlan 2014)).

20. A mathematical fractal spans an infinite order of magnitude.
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(a) (b)

Figure 2.4 – (Left) Multi-scaled ripples along the edge of a torn plastic sheet. (Right) This view
of the ripples looks similar to the edge of a leaf, whose morphology follows the same principles.

2.2 Plates and shells

Sheets 21 have one dimension much smaller than the two others and can thus be assimilated to
a surface. Deformation of a surface can be decomposed into bending and stretching deformation.
While stretching energy scales linearly with the thickness (∼ t), bending energy scales with
the third power of the thickness (∼ t3). For sufficiently thin plates, the energy of isometric
deformations 22 is thus much lower than deformations involving significant stretching of the
center surface 23. The variety of morphing patterns of sheets is huge and we only review a small
number of them (fig. 2.5).

Figure 2.5 – Some shape changing patterns of shells. (i-iii) Free modes displaying uni- or bi-axial
stretching (i), single bending in one direction (ii) or double bending (iii). (iv-vi) Constrained
patterns displaying bi-stability (iv) local Gaussian curvature (v) and global Gaussian curvature
(vi) constraints.

21. We use the word sheets to refer both to plates and shells.
22. Per definition, isometric transformations don’t affect the distances.
23. This is an accordance with Gauss theorema egregium (see footnote 13 of chapter 8).
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2.2.1 Stretching and single bending

In the case of stretching (fig. 2.5i) or single bending (fig. 2.5ii), the analyzes of the morphology
can be done using the same theoretical framework as for rod-like objects (subsection 2.1.1). One
only has to use a two-dimensional theoretical framework when both stretching and single bending
are present at the same time, or in the presence of double bending.

2.2.2 Disks and annuli

Take a flat disk/annuli with a radial gradient in eigenstrain. Depending on the direction
of the gradient—decreasing or increasing from inside to outside—the eigenstrain will impose
a positive (K > 0) or negative (K < 0) Gaussian curvature respectively (fig. 2.5v) 24. Em-
bedding the elliptic plane (K > 0) in Euclidean space results in an axisymmetric dome shape,
which minimizes its bending energy with almost no stretching energy through local accommo-
dation of the prescribed Gaussian curvature. On the other hand, embedding the hyperbolic
plane (K < 0) in Euclidean space is far less trivial (Han and J.-X. Hong 2006) and leads to a
wavy structure 25 that breaks axial symmetry as was reviewed by (Gemmer and Venkataramani
2013). This azimuthally oscillating morphology only meets the target Gaussian curvature in
average and the wrinkled configuration minimizes both stretching and bending energy. This
was observed in (Klein, Efrati, and Sharon 2007; Efrati et al. 2007), where they used NIPA
gels (see subsection 5.3.3) with changing monomer concentrations to locally tune the swelling
rate. Interesting morphologies can also be achieved by considering an anisotropic eigenstrain in
the radial and circumferential direction (Dervaux and Amar 2008). Radial growth leads to an
axially symmetric conic shape, while circumferential growth leads to a saddle shape with two
oscillations—e(xcessive)-cone 26. This two morphologies strongly resembles two of the stages
in the growing pattern of the algae Acetabularia acetabulum during its development (Serikawa
and Mandoli 1998). Actually, n-fold saddle shapes are also stable such that the two-fold sad-
dle shape could flip spontaneously to higher order folds in case as the circumferential growth
increases (Müller, Amar, and Guven 2008; Santangelo 2009). Another possibility would be for
the disk to stay in this two-fold configuration upon growth until it starts to form a skewed
cone after self-contact occurs (Norbert Stoop et al. 2010). More generally, one can solve for the
inverse problem of determining the two-dimensional eigenstrain which will lead to a given three
dimensional axisymmetric shape (Dias, Hanna, and Santangelo 2011).

2.2.3 Bi-stability

Sheets can possess more than one equilibrium configuration upon morphing. As we discuss
in section 8.1, the actual morphing pattern may depend on the history of activation. In the
following, we present two examples of morphers which possess two stable configuration: the
Venus fly-trap and the slap-bracelet.

The Venus fly-trap The Venus fly-trap is probably the most known carnivorous plant. It is
also the best example of a natural bi-stable system 27. When triggered by an adequate pray 28,

24. For an decreasing radial eigenstrain, the natural configuration would like to be “longer” inside, whereas for
an increasing radial eigenstrain, it would like to be “longer” outside.

25. This is similar to the ripples discussed in subsubsection 2.1.2.4.
26. A related morphology to this e-cone is the d-cone where deformations are localized in the case of crumpling

(Cerda et al. 1999).
27. The Venus fly-trap—a living system—is triggered by turgor pressure instead of passive swelling (see footnote

22 of chapter 1).
28. The trap is set free by stimulating at least two separate hairs, which ensures that the pray is not too small.
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it closes suddenly (τc ≈ 100ms), making it one of the fastest movements in the plant kingdom
(Skotheim and Mahadevan 2005). The open configuration is curved outward (convex), while
the closed configuration is curved inward (concave). Upon snapping, both the Gaussian and
the mean curvature of the leaf change suddenly. According to (Forterre et al. 2005), the elastic
energy of the leaf displays a region of bi-stability for sufficiently large curved leafs. However,
this buckling scenario is “too fast” as the inertial time is hundred times less than the snapping
time, but can be adjusted by adding a viscous term due to the fluid flow inside the leaf which
triggers the instability.

The slap-bracelet A famous example of a man-made bi-stable system is the slap-bracelet
(fig. 2.5iv). A slap-bracelet is a bilayer where each layer is prestrained in a perpendicular
direction (fig. 6.11). When the bilayer is sufficiently narrow or thick, it has a unique saddle
equilibrium shape, while it displays two metastable cylindrical equilibrium shapes with the same
curvature if wide or thin enough. The stability is controlled by two dimensionless parameters,
which depend on mechanical properties, geometrical dimensions and the surface stress exerted
by each layer on the intermediate strip 29 (Chen et al. 2012).

2.2.4 Flowers, fruits and leaves

Last but not least, morphing patterns can be found in profusion amongst flowers, fruits and
leaves. Looking at their shape, one can try to guess the architecture of eigenstrain which tuned
their morphing process. In the following, we discuss some general ideas underlying the morphing
of flowers, fruits and leaves.

Flowers By changing the natural distance between points on a surface or by differential growth
across a surface, growth acts either as a source of Gaussian or mean curvature in the case of two-
dimensional shapes. At equilibrium, shapes minimize their elastic energy and accommodate both
curvatures if possible. In case where no such surface exists, sufficiently thin shapes will usually
nullify their stretching energy by accommodating their Gaussian curvature while minimizing
their bending energy by playing with their mean curvature. The morphology of bell-shaped
sympetalous flowers with approximate constant Gaussian curvature can be understood in this
context. Examples of surfaces with constant Gaussian curvature are the sphere 30 (K = 1)
and the pseudo-sphere 31 (K = −1) (fig. 2.5vi). Amongst many, we can cite the brugmansia
(“Angel’s trumpet”) and the surfinia as examples of flowers which resemble an ideal piecewise
sphere or pseudo-sphere separated by a number of veins (Amar, Müller, and Trejo 2012).

Fruits A lot of fruits display undulating surface morphologies—ridges. Generally speaking,
these ridges appear because the skin grows faster than the core, which puts the skin under
compression. When reaching a critical compressive stress, the skin starts to buckle and ridges
appear. In the presence of anisotropic growth of the skin, such core/skin models can explain
some global feature of fruits (Yin et al. 2008).

29. In Chen et al. (2012), they bonded two prestreched rubber sheets to a thick elastic strip, which they then
analyzed using classic continuum theory. It would be interesting to see if one could apply their approach in the
absence of this intermediate layer.

30. Other examples are the spindle (“rugby ball” with two cupsidal singularities) and the bulge (a sphere cut
by two planes symmetrically resulting in two opposite circular singularities).

31. Equivalent variations to the ones described in footnote 30 exist also for the pseudo-sphere.
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Leaves Long leaves often display a typical morphology with a saddle-like mid-surface and
rippled edges 32. The morphology of these leafs is often controlled by the profile of longitudinal
growth across the leaf (Liang and Mahadevan 2009). This profile is often increasing towards
the edge. As they illustrated by pulling on the edges of a rectangular foam past its yield point,
an inhomogeneous profile of plastic strains 33 leads to saddle-shape configurations in case of
moderate strains (ǫ∗ ∼ 5%) or to edge ripples for larger strains (ǫ∗ ∼ 20%). Returning to
flowers, a similar mechanism is responsible for the blooming of asiatic lily Lilium casablanca
(Liang and Mahadevan 2011). This approach illuminates the analogy of Goethe, who argued
that flower petals are analogous to leafs physiologically (Goethe 1790).

32. See for example the leafs of the plantain lily Hosta lancifolia as studied in Liang and Mahadevan (2009).
33. The plastic strains being residual strain, they can act as an eigenstrain.
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Conclusions

Patterns of shape changes are ubiquitous in natural systems. They can be found in biological
actuators, which change shape upon interaction with some external stimulus, be the result
of growth or simply demonstrated using experimental systems. Using arguments of geometry
and elasticity, one can explain (sometimes even predict) these patterns. The richness of these
patterns is huge, including bends, curls, crumples, perversions, loops and ripples.
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“All linear problems are trivial, all non-linear problems are
impossible.”

—Rainer von Sachs (Berkeley, 1970)

A morpher is an object that changes its shape in response to some external energy fluctuation.
The morphing 1 process can be theoretically described using the traditional framework of con-
tinuum mechanics and its theory of elasticity. In classical structural mechanics, shape changes
and internal stresses usually results from external forces or moments applied to the boundary
of an object 2. Inspired by biological morphers, we are instead interested in morphing caused by
an internal (potentially heterogeneous) inelastic strain field (which we refer to as eigenstrain).
Such eigenstrain can be imposed by a variety of physical phenomena inducing inelastic volume
changes (amongst others we can cite thermal expansion, swelling and phase transformation).

The fundamental concepts of the three-dimensional theory of elasticity are recalled in ap-
pendix A: the concepts of strain (appendix A.1), stress (appendix A.2), constitutive law (ap-
pendix A.2.4), mechanical equilibrium (appendix A.3) as well as elastic energy (appendix A.4).
One complication that arises naturally in the description of morphing comes from the fact that
substantial shape changes (large transformations) need to be considered instead of the usual as-
sumption of small displacements. In a three-dimensional setting, large transformations usually
induce finite strains which require considering the adequate material law and bring along a quite
heavy formalism.

However, in the case of elongated objects where one dimension is either much bigger (rod)
or much smaller (shell) than the other two, it is possible to obtain large transformations (dis-

1. We introduce the new word morphing to refer to what is sometimes known as distributed actuation.
2. Shape changes and internal stresses resulting from the interaction with an external (often homogeneous)

field such as the gravitational- or a magnetic field can also be seen as a cause for morphing
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placements and rotations) while still having small material strains. This is convenient for a
theoretical approach as most materials possess a linear elastic behavior when experiencing small
strains (Hooke’s law) and so we only have one source of nonlinearity: geometric nonlinearity.
This complication is unavoidable and justifies using a nonlinear rod model instead of the stan-
dard beam theory (section 3.1). Subsection 3.1.1 presents the kinematics of such a Cosserat rod
and describe its fundamental modes of deformation (subsection 3.1.2): extension (subsubsec-
tion 3.1.2.1), bending (subsubsection 3.1.2.2) and twisting (subsubsection 3.1.2.3).

Section 3.2 closes the theoretical framework by introducing the concept of eigenstrain in the
three-dimensional and one-dimensional case (subsection 3.2.1). Subsection 3.2.2 discusses how
an arbitrary eigenstrain can be decomposed into two types of eigenstrains, impotent eigenstrains,
which produces strain and no stress and nilpotent eigenstrains, which produces stress and no
strain (subsection 3.2.2). Finally, subsection 3.2.3 describes how an eigenstrain can be applied
progressively instead of instantaneously using a diffusion equation.

3.1 One-dimensional rods

For objects which have one dimension much larger than its other two, one would like to
look at a simplified reduced one-dimensional model 3. Classical beam theory is such an example
and its knowledge is mandatory among structural engineers. However, such a beam theory
usually rests on the assumption of small displacements (see appendix A.1.9) and so its use is
limited in the case of morphing which implies large transformations. A nonlinear theory of
elastic rods was pioneered by Euler’s Elastica in two dimensions and completed by Kirchhoff
in the three-dimensional case. It is based on differential geometry and imposes no restriction
on the behavior of the rod. Such a rod-object, also called a Cosserat rod, is a one-dimensional
example of a micropolar medium 4. Subsection 3.1.1 presents the kinematics of such a rod and
subsection 3.1.2 describes its fundamental modes of deformation. Finally, the elastic energy of
such a rod is given in subsection 3.1.3.

3.1.1 Kinematics

A rod R is defined by a spatial curve Γ living in Euclidean space and the surrounding cross-
section, which orientation is described by a field local material frames attached to the curve.
Instead of using global Cartesian coordinates, spatial curves are best described using a intrinsic
approach. This is done through a field of local orthonormal frames that follows the geometry
of the curve 5. Subsubsection 3.1.1.1 defines the geometrical and material frames attached to a
rod, which are used to parametrize its configuration (subsubsection 3.1.1.2).

3.1.1.1 Geometrical and material frames attached to a space curve

Let Γ be a smooth curve living in three-dimensional Euclidean space. The position vector
field spanning Γ is r(s) where s is the arc-length (0 ≤ s ≤ L) 6. The projections x(s), y(s), z(s)
of r(s) on the fixed reference frame (ex, ey, ez) are its Cartesian coordinates. In the following,

3. In a one-dimensional model, all unknowns (stress and strain) depend only one degree of freedom: the
longitudinal coordinate along the long direction of the object.

4. As opposed to a Cauchy medium where every point in space has three degrees of freedom, a micropolar
medium adds a directionality to every point, thus possessing three more degrees of freedom.

5. The geometrical and material frames are related (see fig. 3.2).
6. In the context of rods, the actual configuration is directly parameterized by s and we use the prime notation

r′(s) to denotes the derivation with respect to s. When needed, the initial configuration is denoted with a
subscript x0, where x is the quantity considered.
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two local orthonormal frames attached to Γ are defined, which are useful to describe both the
geometry of the curve Γ and the mechanical state of the rod R.

Geometrical frame The geometrical frame (also called the Serret-Frénet frame) is a local
orthonormal frame that arises naturally from the geometry of Γ . It is defined by the three
vectors t(s), n(s), b(s) such that:















t(s) = r′(s),

n(s) = t′(s)
/

‖t′(s)‖,

b(s) = t(s) × n(s),

(3.1)

where t(s) is called the tangent vector, n(s) the normal vector and b(s) the binormal vector
(see fig. 3.1). Since we chose an arc-length parametrization, the tangent vector t(s) is unitary
(‖t(s) = 1‖). From the tangent vector field t(s), the curve Γ can be recovered by integrating
the first equation in eq. 3.1. The curvature of the curve is given by κ(s) = ‖t′(s)‖ and expresses
the rate of rotation of t(s) and n(s) around b(s). For κ(s) 6= 0, the second line of eq. 3.1 can
be rewritten n(s) = t′(s)

/

κ(s) = R(s) t′(s), where R(s) = 1/κ(s) is the radius of the osculating
circle 7 also called radius of curvature. The torsion of the curve is given by τ(s) = n′(s) · b(s)
and expresses the rate of rotation of n(s) and b(s) around t(s). Introducing the geometrical
Darboux vector ωg(s) = τ(s) t(s) + κ(s) b(s), the rate of change of the geometrical frame along
the curve is then given by:

t′(s) = ωg(s) × t(s), n′(s) = ωg(s) × n(s), b′(s) = ωg(s) × b(s). (3.2)

In matrix notation, this is expressed by:






t′(s)
n′(s)
b′(s)






=







0 κ(s) 0
−κ(s) 0 τ(s)

0 −τ(s) 0













t(s)
n(s)
b(s)






. (3.3)

The two scalar functions κ(s) and τ(s) entirely define the curve Γ as long as κ(s) = ‖t′(s)‖ 6= 0.
This means that whenever the curve is straight (locally in the case of an inflexion point or
globally when the curve is straight or has straight portions), the geometrical frame is ill-defined.
This is why this frame that appears naturally in the analysis of mathematical curves is not well
suited for building a rod model.

Material frame The material frame (also called the Darboux frame) is a local orthonormal
frame attached to Γ that follows the material of the rod upon deformation. It is defined by
the three vectors d1(s), d2(s), d3(s) such that d3(s) is tangent to the curve (d3(s) = t(s)) and
d2(s), d3(s) span the principal axis of the cross-section 8. By assumption, we consider that the
triad (d1(s), d2(s), d3(s)) remains approximately orthonormal 9. Now for a unitary vector di(s),
we have by definition ‖di(s)‖2 = 1. By computing the derivate of this constant quantity with
respect to s, one obtains (‖di(s)‖2)′ = 2 d′

i(s) · di(s) = 0. This means that the derivative of a
unitary vector yields a vector that is perpendicular to it. In particular, there exist three scalar
functions κ1, κ2, κ3 for which:







d′
1(s)

d′
2(s)

d′
3(s)






=







0 κ3 −κ2

κ3 0 κ1

κ2 −κ1 0













d1(s)
d2(s)
d3(s)






. (3.4)

7. The best circle that approximates the curve at s. This circle is obviously degenerate for a straight line, thus
the condition κ(s) 6= 0.

8. The principal axis of a cross-section are defined as the two perpendicular directions where the second
moments of inertia a minimum and maximum respectively.

9. This is also known as the Euler-Bernoulli kinematical hypothesis, which means that in the small strain
approximation, we can neglect the shear deformations between those three material vectors (see eq. A.19).
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0

ex

ey

ez

t(s)
n(s)

b(s)

Figure 3.1 – Geometrical frame along a spatial curve given by the tangent vector t(s), the normal
vector n(s) and the binormal vector b(s).

Introducing the material Darboux vector ωm(s) = κ1d1(s) + κ2d2(s) + κ3d3(s) = κidi(s), we
have: d′

i(s) = ωm(s) × di(s). The components κi of the material Darboux vector express the
rate of rotation of the material frame around the directions given by di(s). The numbers κ1

and κ2 are called the material curvatures (as opposed to the geometric curvature) and the κ3 is
called the material twist (as opposed to the geometric torsion). The material Darboux vector
is different while related to the geometrical Darboux vector expressing the rate of rotation of
the geometrical frame introduced previously. Indeed, one can pass from the geometrical frame
to the material frame through a rotation of angle θ about the tangent vector d3(s) = t(s) (see
fig. 3.2). The relations between (κ1, κ2, κ3) and (κ, τ, θ) are:

κ =
√

(κ1)2 + (κ2)2,

κ3 = τ +
dθ

ds
.

(3.5)

0 d1

d2

n

b

θ

κ1

κ2
κ

Figure 3.2 – The geometrical frame and the material frame are related by a rotation of angle θ
about the tangent vector d3(s) = t(s). The dependence of all quantities on s is implicit.
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3.1.1.2 Parametrization of the rod

Using the previously defined material frame, the rod can be parametrized as:

r(x, y, z) = x d1(z) + y d2(z) + z d3(z), (3.6)

where x and y span the cross-section of the rod 10. The configuration of the rod is then entirely
characterized by the orientation of the material vectors (di(s)), which evolution along the rod
is given by the material Darboux vector (ωm(s) = κidi(s)) through eq. 3.4 and can be concisely
written as:

d′
i(s) = ωm(s)di(s). (3.7)

The components (κi) of the material Darboux vector are the measures of strain of the rod (κ1

and κ2 are the material curvatures and κ3 is the material twist) 11.

3.1.2 Fundamental modes

Due to its one-dimensional nature, the rod model display uncoupled fundamental modes of
deformation 12, which appear in the geometric description of a rod-object: the rod can change
its length (subsubsection 3.1.2.1), bend (subsubsection 3.1.2.2) or twist (subsubsection 3.1.2.3).
In general, these modes can vary along the length of the rod, in which case the one-dimensional
strain measures (κi) and the corresponding three-dimensional strain et stress state become
functions of the curvilinear abscissa (s). As long as the characteristic length of variation is
larger than the characteristic thickness of the cross-section, the following analysis of uniform
(translationally invariant) modes of deformation still applies.

3.1.2.1 Extension

Extensions or contractions corresponds to a re-parametrization of the curve Γ 13. The new
parametrization of the curve is given by:

ŝ = λs, (3.8)

where λ − 1 is the rate of extension of the rod similarly to what is discussed in eq. A.42. Using
our analysis of traction (see appendix A.2.4), the three-dimensional strain state under extension
is given by:

ǫzz = λ, ǫxx = ǫyy = −ν λ, (3.9)

where all the non-diagonal strain components are zero by symmetry (ǫij = 0, i 6= j). As shown
on the right side of the above equations, extension leads to a contraction of the cross-section
according to Poisson effect. Using Hooke’s law (eq. A.73), the three-dimensional stress state
under extension is given by:

σzz = Eǫzz = Eλ, (3.10)

where all the other stress components are zero.

10. −a/2 ≤ x, y ≤ a/2 for a square cross-section of side a.
11. The components of the material Darboux vector are the one-dimensional measures of strain, but should not

be confused with the three-dimensional strain as defined in eq. A.11.
12. Classical rod models capture either extension effects, or bending and twisting effects. In Audoly and Pomeau

2010, chapter 3, it is argued that rod models should illustrate one of those effects, but not both, as they don’t
occur together. In our case, however, as deformations are imposed from within, it is possible to have both large
extensions and bending/twisting effects.

13. This re-parametrization can a priori be non-uniform and vary along the length of the rod.
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3.1.2.2 Bending

Bending corresponds to a change of the material curvature κ1 and κ2. The material Darboux
vector describing the configuration of the rod is given by ωm(s) = κ1d1 + κ2d2. Assuming that
every straight filament in the initial configuration undergoes a traction along z in an amount
proportional to the material curvatures of the rod, one can use the previous analysis of extension
(subsubsection 3.1.2.1) in order to write the three-dimensional strain state under bending:

ǫzz(x, y) = κ1x + κ2y, ǫxx(x, y) = ǫyy(x, y) = −ν ǫzz(x, y). (3.11)

As in the case of extension, bending leads to a contraction (resp. extension) of the cross-section
according to Poisson effect 14. It can be shown that this strain field is compatible 15 and that this
is indeed the strain state under bending. Using Hooke’s law (eq. A.73), the three-dimensional
stress state under bending is given by:

σzz = E ǫzz, (3.12)

while all the other stress components are zero. This stress field satisfies equilibrium (δσzz/δz =
0).

3.1.2.3 Twisting

Twisting corresponds to a change of the material twist κ3. The material Darboux vector
describing the configuration of the rod is given by ωm(s) = κ3d3. In the case of twisting, the
strain field can not be guessed immediately 16 and one has to solve the complete equation of
elasticity (eq. A.77). The three-dimensional strain state actually depends on the shape of the
cross-section and can be determined by solving a two-dimensional Poisson equation. In general,
the solution is quite complex and involves warping 17. In the case of a circular cross-section, the
resulting strain state is quite and is given by:

ǫxz = ǫyz =
κ3 r

2
, (3.13)

where r is the radius of the cross-section and all the other strain components are zero. Using
Hooke’s law (eq. A.73), the three-dimensional stress state under twisting is given by:

σxz = σyz =
E

2(1 + ν)
κ3 r, (3.14)

while all the other stress components are zero 18.

3.1.3 Elastic energy

In the case of rods, the elastic energy given by eq. A.80 becomes:

Erod =
1
2

∫

(

EA(λ − 1)2 + EI(1)κ2
1 + EI(2)κ2

2 + µJ (τ)κ2
3

)

ds (3.15)

14. The upper filaments (x, y > 0) are extended, while the bottom filaments (x, y < 0) are contracted. Due to
Poisson effect, the upper cross-section is contracted, while the bottom cross-section is extended (for ν > 0).

15. To prove that this strain field is compatible, one would need to write the displacement field describing
bending from which it derives.

16. It is no coincidence that twist was solved lastly historically as rotations are in general more confusing than
translations.

17. Warping stands for out of plane deformation.
18. The coefficient G = E/(2(1 + ν)) is referred to as shear modulus.
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where E is the Young modulus and µ is the shear modulus (see eq. A.74). A is the area and I1

and I2 are the principal moments of inertia of the cross-section. Section 4.2 explains how this
energy can be minimized using a code written in python in order to calculate morphing patterns
of rods.

3.2 Tuning morphing through eigenstrain

Appendix A recalls some of the fundamental concepts at the heart of the three-dimensional
theory of elasticity, which were particularized in the case of elongated objects in section 3.1.
This section adds one more concept to the theoretical framework describing the morphing of
solid objects. Instead of applying external loads in order to trigger shape changes, one can im-
pose an internal inelastic strain field, so called eigenstrain inspired from the biological morphers
reviewed in chapter 2. Subsection 3.2.1 presents the concept of eigenstrain and describe its role
in the three-dimensional and one-dimensional theoretical framework. Subsection 3.2.2 discusses
an interesting distinction between two types of eigenstrain, which produce strain or stress exclu-
sively. Finally, subsection 3.2.3 considers the case of a progressively applied eigenstrain, which
accounts for the diffusion-driven morphing discussed in chapter 8.

3.2.1 The concept of eigenstrain

The concept of eigenstress was introduced as early as 1931 by Reissner to account for auto-
equilibrated internal stress field in an elastic bodies (Reissner 1931) 19. Such eigenstresses will
emerge naturally in the presence of an internal strain field that can result from thermal di-
latations or be due to dislocations and cracks. This concept was taken further by Eshelby,
who famously solved for the elastic field around an ellipsoidal inclusion or inhomogeneity by a
sequence of “imaginary cutting, straining and welding operations” (Eshelby 1957). His semi-
nal work help to lay the foundations of the emerging field of micro-mechanics that deals with
the analysis of heterogeneous materials especially regarding problems related to inclusions and
dislocations at the microscopic scale of the material. The term eigenstrain 20 was later coined
by Mura (Mura 1987) as a generic name to describe any nonelastic or stress-free strain that
can arise from multiple causes such as thermal expansion, phase transformation, initial strains,
plastic strains, misfit strains, photo-induced strains, . . . This was formalized into the eigenstrain
method, which despite its potential generality is mainly used for the static shape control of
macroscopic structures. The main idea of shape control is to actively tune the internal eigen-
strain field (i.e. by embedded piezoelectric actuators) in order to nullify all shape changes due
to external causes. Based on this idea, intelligent structures for aerospace (such as satellites or
telescopes) have been studied and designed in the recent years (Loewy 1997, Chopra 2002). In
the spirit of Eshelby, let us introduce an auxiliary configuration, which represent the state of
the object once all its stressed parts have been cut out and allowed relaxing into their desired
state. Contrary to the initial and final configuration, the natural configuration is not a physical
state of the object, but an imaginary configuration that helps to write down the mechanical
equations of a solid body subjected to an eigenstrain distribution. By definition, it is stress-free
and can be seen as the new reference configuration of the object from which elastic strains are
to be measured.

Natural configuration Let Ω∗ be the natural state of the object. In general, the natural
configuration is not a connected domain in Euclidean space, but corresponds to a collection of

19. In the engineering literature, the term residual stress is used to describe such an auto-equilibrated internal
stresses.

20. Sometimes the word inherent strain is used equivalently see (Ueda et al. 1975).
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unstressed (potentially infinitesimal) domains.

Total strain The total strain ✎(r) is defined by the transformation between the initial configu-
ration Ω and the final configuration Ω′. The total strain must fulfill the compatibility equations
(see appendix A.1.11). This means that there exist a displacement vector field u(r) from which
✎(r) derives (see eq. A.11).

Eigenstrain The eigenstrain ✎∗(r) is defined by the transformation between the initial con-
figuration Ω and the natural configuration Ω∗. The eigenstrain can be chosen arbitrarily. This
means that there might not exist a displacement vector field from which it derives.

Elastic strain The elastic strain ✎el(r) 21 is defined by the transformation between the virtual
configuration Ω∗ and the final configuration Ω′. Elastic strains arises whenever the eigenstrain
is incompatible, i.e. in order to ensure the compatibility of the total strain.

Additive decomposition of strain In the context of small strains (eq. A.24), the total strain
is given by the sum of the eigenstrain and the elastic strain:

✎(r) = ✎el(r) + ✎∗(r). (3.16)

Hooke’s law in the presence of eigenstrain By construction, only the elastic strain gen-
erates stresses. In the presence of eigenstrain, Hooke’s law in term of the Lamé coefficients
(eq. A.72) becomes:

σij(r) = 2µ
(

ǫij(r) − ǫ∗
ij(r)

)

+ λ
(

ǫkk(r) − ǫ∗
kk(r)

)

δij . (3.17)

In terms of the Young modulus and Poisson ratio (eq. A.73), one obtains:

σij(r) =
E

1 + ν

(

(

ǫij(r) − ǫ∗
ij(r)

)

+
ν

1 − 2ν

(

ǫkk(r) − ǫ∗
kk(r)

)

δij

)

, (3.18)

which can be written in a concise form as:

σij(r) = Cijkl : (ǫkl(r) − ǫ∗
kl(r)) , ǫij(r) − ǫ∗

ij(r) = Sijkl : σkl(r), (3.19)

where C and S = C−1 are the stiffness and compliance rank-four tensors respectively. This means
that the change in material properties as it is subjected to eigenstrain is disregarded 22.

Equilibrium By substituting Hooke’s law in the presence of eigenstrain (eq. 3.19) into the
equation of equilibrium in the absence of body forces (eq. A.71), one obtains 23:

[Cijkl : (ǫkl(r) − ǫ∗
kl(r))],j = 0. (3.20)

Assuming that the material is homogeneous, the stiffness tensor Cijkl does not depend on position
r and can be taken out from the partial derivative:

Cijkl : ǫkl,j (r) − Cijkl : ǫ∗
kl,j (r) = 0. (3.21)

21. One should be careful to express r in the initial configuration.
22. This approximation seems reasonable as long as the eigenstrain is relatively small.
23. Here we use the comma derivative notation to write the partial derivation δ/δxj .
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Comparing eq. 3.21 with eq. A.70, the contribution of the eigenstrain to the equation of equilib-
rium appears to play a similar role as a volumic force −Cijkl : ǫ∗

kl,j
(r) 24. The boundary condition

for the free external boundary becomes:

✛ · n = 0 =⇒ Cijkl : ǫkl(r) nj = Cijkl : ǫ∗
kl(r) nj , (3.22)

which shows that the effect of the eigenstrain is that of a surface force Cijkl : ǫ∗
kl(r) nj acting on

the boundary.

Eigenstrain mechanical problem Similarly to appendix A.3, let’s write all the equation
describing the static equilibrium of a continuous elastic medium subjected to an eigenstrain
field and in the absence of (other) volumic forces nor imposed external forces and displacements
in a concise form (the dependence on r is implicit):

(SF)∗



























∇ · ✛ = 0 in Ω,

✛ = C : ✎el in Ω,

✎ = ✎∗ + ✎el = 1
2(∇u + ∇tu) + 1

2(∇u · ∇tu) in Ω,

✛ · n = 0 on δΩ.

(3.23)

Remark (On the inapplicability of the eigenstrain method). The above eigenstrain problem
appears in (Mura 1987) and constitute the basis of the eigenstrain method. The next step con-
sists in finding solutions to eq. 3.21 by using Fourier series, which enable to express arbitrary
eigenstrain distribution. However, this approach is based on the superposition principle, which
only holds when using the linearized strain tensor. To our knowledge, an analytical solution in
the nonlinear case is not known.

Elastic energy in the presence of eigenstrain Correspondingly, the elastic energy of a
continuous elastic media in the presence of eigenstrain becomes (see eq. A.80):

Eel =
1
2

∫∫∫

V
σij

[(

ǫij(r) − ǫ∗
ij(r)

)] (

ǫij(r) − ǫ∗
ij(r)

)

dV. (3.24)

Energy of a rod with natural curvatures The elastic energy of a rod with natural curva-
tures is given by:

Erod =
1
2

∫

(

EA (ǫ − ǫ∗)2 + EI(1) (κ1 − κ∗
1)2 + EI(2) (κ2 − κ∗

2)2 + µJ (κ3 − κ∗
3)2
)

ds (3.25)

where κ∗
i are the natural curvatures 25.

3.2.2 Decomposition of eigenstrain

An interesting distinction can be made between two types of eigenstrain (Nyashin, Lokhov,
and Ziegler 2005): impotent eigenstrain that doesn’t produce stress and nilpotent eigenstrain
that doesn’t produce strain. In fact, any eigenstrain can be decomposed into a impotent-

24. The first term of this equation gives the stress corresponding to the total strain. In fact, only the elastic
strain creates stress.

25. The natural curvatures are one-dimensional measures of the three-dimensional eigenstrain. There is no
bijection between the natural curvatures and the eigenstrain due to the possibility of nilpotent eigenstrain which
do not produce any strain (subsection 3.2.2).
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and a nilpotent part. Let’s consider an arbitrary eigenstrain ✎∗. In order to fulfill the set
of equations given in (eq. 3.23), this eigenstrain induces an elastic strain ✎el, which generates an
auto-equilibrated stress field ✛ (that respects equilibrium as well as the free surface boundary
condition). In addition, the object is deformed according to the total strain ✎ 26

Impotent eigenstrain Let ✎∗
I = ✎ be the eigenstrain which is equal to the total strain.

This eigenstrain is impotent and does not produce any stress in the body 27. Subtracting this
eigenstrain on both sides of the additive decomposition of strain (eq. 3.16), one obtains:

0 = ✎el + ✎∗ − ✎∗
I . (3.26)

Nilpotent eigenstrain Let’s define the eigenstrain ✎∗
N = ✎∗ − ✎∗

I . The previous equation
becomes:

0 = ✎el + ✎∗
N . (3.27)

Thus, ✎∗
N is nilpotent as it does not create any strain. By construction, ✎∗ = ✎∗

I + ✎∗
N , which

shows that an arbitrary eigenstrain can be decomposed into an impotent and a nilpotent part.
In fact, it can be proven that this decomposition is unique (Nyashin, Lokhov, and Ziegler 2005).
This decomposition of eigenstrain enables to fully separate the generation of strain and stress in
actuated structures. Impotent eigenstrain enable to generate arbitrary shape changes and only
depends on the chosen initial geometry and the desired final geometry 28.

One-dimensional example To understand how eigenstrain can create both displacements
(strain) and forces (stress), let’s look at a bar of length L and rigidity EA attached to a spring
of stiffness K growing with an eigenstrain ε∗ such that the bar is in compression when ε∗ > 0
(fig. 3.3). Hooke’s law in the presence of eigenstrain (eq. 3.19) σ = E(ε − ε∗) states that the
internal stress σ is proportional to the elastic strain, which is the difference between the geometric
strain ε = δu/δε and the eigenstrain ε∗. Integrating over the cross-section and considering the
boundary conditions u(x = 0) = 0 and N = Ku(x = L) where N is the internal force, one
obtains N = λEAε∗/(1 − λ) and u = ε∗x/(1 − λ), where λ = KL/EA is the rigidity contrast.
This example shows that there are no efforts in the bar when λ → 0 and all eigenstrain gives
rise to displacements. If λ → ∞, there are no displacements and all eigenstrain is taken up in
compression.

Figure 3.3 – One-dimensional bar of length L and stretching rigidity EA expanding against
a spring of rigidity K. Depending on the rigidity contrast between the bar and the spring
(λ = KL/EA), the eigenstrain is either converted into stress (nilpotent) or strain (impotent).

26. One should be careful to note that the total strain depends on the eigenstrain and so tuning the eigenstrain

effectively changes the total strain.
27. This eigenstrain is obviously compatible as the total strain must be compatible.
28. The only limitation is given by topological consideration. In particular, eigenstrain only enable to trigger

shape changes within the homotopic class of an object.
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3.2.3 Diffusion-driven morphing

As we’ll discuss in chapter 8, the eigenstrain can be applied progressively instead of instan-
taneously. This can be modeled using a diffusion equation similar to the heat equation:

δ✎

δt
= D∆L✎, (3.28)

where ∆L is the Laplace operator 29 and D the diffusion constant. From eq. 3.28, the charac-
teristic length of diffusion is given by:

Lc ≈
√

Dτc, (3.29)

where τc is the characteristic time. Analytical solutions to eq. 3.28 are not trivial in 2D, which
is why we used the fem as described in section 4.3.

29. The Laplace operator is defined by ∆L = ∇2 = δ2

δx
+ δ2

δy
+ δ2

δz
.
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Conclusions

This chapter describes the theoretical framework used to explore the design space of mor-
phers. It consists of a combination of fundamental concepts of continuum mechanics (e.g. strain,
stress, equilibrium, energy) with the concept of eigenstrain from micro-mechanics. Due to the
fact that morphing patterns often imply large shape changes, the common small displacements
assumption can not be made. This justifies using the non-linear theory of elasticity, which is
presented in the case of elongated rod-like objects.
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Finding analytical solutions to the theoretical models presented in chapter 3 is not trivial
in general and numerical methods are helpful. This chapter presents the numerical methods as
well as the software environment used to calculate and represent some of the patterns of shape
changes presented in chapter 6, chapter 7 and chapter 8. Three different and complementary
approaches are used:

1. elongated (continuous) morphers can be represented by a discrete mass-spring particle
system, where the differential eigenstrain is tuned by modifying the rest length of the
springs. The equilibrium configuration of the structure is found by minimizing the forces
inside the system using dynamic relaxation. This is done within the 3D modeling software
Rhinoceros R© with the help of the plug-in KangarooTM, which is itself a module of the
visual programming interface of Rhinoceros called Grasshopper R© (section 4.1);

2. elongated morphers can also be represented as one-dimensional rods (section 3.1), where
the differential eigenstrain is tuned directly through the natural curvatures. The equilib-
rium configuration of the structure is found by minimizing the energy of the system using a
quasi-newton method. This is done with the help of python programming language within
the working environment IPython using the Scipy package for computation and MayaVi
for visualization (section 4.2);

3. morphing patterns can also be calculated using the finite-element method in order to
solve for the static equilibrium of a thermo-mechanical problem, where the differential
eigenstrain is imposed by means of a thermal field interacting with the thermal expansion
coefficients of the material. This is done using the software Abaqus R© with the help of
parametric models written in python within the Python Developing Environment (PDE)
(section 4.3).
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4.1 Relaxation of springs

Instead of representing morphers as continuous media, they can be represented by three-
dimensional squared lattice connected by springs. The stiffness of the springs (k) accounts for
the elasticity of the material while their rest length (l0) corresponds to their natural state. Mod-
ifying the rest lengths of the springs relatively to the initial geometrical distance between the
nodes of the lattice amounts to impose a differential eigenstrain throughout the structure. This
representation enables to grasp the somehow abstract concept of strain more intuitively and
can be used to visualize the bending and twisting morphing patterns discussed in subsubsec-
tion 6.1.3.1 and subsubsection 7.1.4.1. Subsection 4.1.1 presents the software environment that
used to implement the model, while subsection 4.1.2 describes the squared lattice model used
to represent elongated morphers.

4.1.1 Rhinoceros R©

Rhinoceros R© (Rhino) is computer aided design (CAD) program based on non-rational uni-
form b-splines (NURBS) that enables to draw willingly complex shapes. Currently, its usage
is widespread in the architectural community and it experienced an intense development in re-
cent years (McNeel and Associates 2014b). Besides its capabilities in terms of drawing complex
three-dimensional geometries, its key features are its relatively low learning curve as well as its
interoperability making it a useful software in a workflow with other programs such as finite-
element (subsection 4.3.1) and 3-D printing programs (subsection 5.3.2). Subsubsection 4.1.1.1
and subsubsection 4.1.1.2 present the visual programming plug-in for Rhino called Grasshopper 1

and the Kangaroo plug-in for grasshopper, which is used to draw and to calculate the squared
lattice model representing a beam.

4.1.1.1 Grasshopper R©

Grasshopper R© is a plug-in for Rhino that enables to parametrize geometries 2 using visual
programming 3 (McNeel and Associates 2014a). The advantage of parametric geometry over
datum geometry, is that it enables to explore families of geometries instead of just one. Compared
to standard scripting methods, visual programming offers a simpler toy-like interface, which
allows for efficient interactive scripting as long as the size of the block diagram is reasonably
small (fig. 4.1). Also, besides the standard objects already defined within Grasshopper, one is
also able to write new blocks with their own code.

4.1.1.2 Kangaroo

Kangaroo is a live physics engine for Grasshopper written in visual basic for grasshopper by
Daniel Piker (Piker 2014a). It enables to embed physical or pseudo-physical 4 behavior between
the geometrical entities defined in grasshopper, such as gravity and springs. It is mainly used
in the context of form-finding and is based on dynamic relaxation.

1. All the plug-ins for Rhino happen to have animal names.
2. A parametric geometry is defined through the formal relations between the parameters which define the

geometry, where these parameters are subjected to change.
3. Visual programming uses block diagrams to connect the geometrical parameters and the objects which

generate the geometry.
4. See Piker 2014b for an interesting discussion about pseudo-physical materials.
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Figure 4.1 – Example of a block diagram in Grasshopper.

Dynamic relaxation Dynamic relaxation is a numerical method, which aims at finding the
equilibrium geometry of a lattice model where all the forces are in equilibrium. For each iteration,
the sum of the forces acting on each node are converted into accelerations using Newton’s second
law of motion. The acceleration is then doubly integrated numerically over a small time step in
order to determine the positions of the nodes for the next iteration. This actualization of the
geometry leads to different forces within the system and the process is repeated iteratively until
all the forces in the system are zero 5. In order to make the system converge faster, one can had
a damping factor in the form of a drag force pointing in the opposite direction of the particle
motion. In Kangaroo, this damping can be defined either globally throughout the lattice, or
locally for each individual spring. If no damping factor is defined or if the damping factor is
too low, the system might oscillate for a long time before reaching equilibrium. If the damping
factor is too high, the nodes will move very slowly and convergence will be slow. Finding the
accurate damping factor is a matter of trial and error and is hard to know beforehand.

Springs The force exerted by a spring on a node of the lattice is given by:

f = k(l − l0), (4.1)

where k is the stiffness, l the actual and l0 the natural length of the spring. When the spring
is at its natural length (l = l0), the force exerted by the spring is zero. When the spring is
stretched or compressed (l > l0 or l < l0), the equation above states that the force is propor-
tional to the relative change in distance. This relation is the discrete equivalent of Hooke’s law
(appendix A.2.4) defined in the continuous case. In the case where the natural length of the
spring is also a variable, this relation appears to be equivalent to Hooke’s law in the presence of
eigenstrain (eq. 3.19), where the difference between the natural length and the initial geometrical
distance between the nodes of the lattice is equivalent to the eigenstrain.

4.1.2 Squared lattice model for elongated objects

In order to model a continuous morpher as particle system, one needs to discretize the
continuum into a lattice. Subsubsection 4.1.2.1 presents the discretization chosen to represent
elongated morphers, while subsubsection 4.1.2.2 discusses the connection between the lattice
model and the continuous model.

5. In practice, the process is finished when the residual forces are smaller than a specified value.
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4.1.2.1 Description of the model

In the case of elongated objects 6, the cross-section is modeled using four nodes connected
by six springs 7, which are then repeated along the longitudinal direction and connected by
longitudinal and diagonal springs 8 (fig. 4.2).

(a) (b)

Figure 4.2 – (Left) The cross-section of an elongated morpher is represented by four nodes
connected by six springs. The horizontal and vertical springs correspond to extensional strains,
while the diagonal springs correspond to shear strains within the plane of the cross-section.
(Right) Extruded squared lattice structure representing an elongated morpher . The longitudinal
springs account for extensional strains, while the diagonal springs between the transversal and
the longitudinal direction account for shear strains perpendicular to the plane of the cross-
section.

4.1.2.2 Connection between discrete and continuous model

As shown in subsubsection 6.1.3.1 and subsubsection 7.1.4.1, the longitudinal springs account
for extensions or contractions normal to the plane of the cross-section (ǫzz) while the diagonal
springs account for the longitudinal shears (ǫxz and ǫyz). Indeed, changing the side-length of a
square leads to extension, while changing the length of the diagonals leads to a change in angle
(fig. 4.3).

4.2 Energy minimization

In the case of elongated morphers, the morphing pattern at equilibrium corresponds to a
minimum of the elastic energy as given in subsection 3.1.3 and eq. 3.25. This minimum is
characterized by specific values for the actual curvatures (κeq

1 (s), κeq
2 (s), κeq

3 (s)) along the rod
amongst all possible candidates for the actual curvatures (κ1(s), κ2(s), κ3(s)). Knowing the
equilibrium curvatures, the material frame described in subsubsection 3.1.1.1 is obtained by
integrating eq. 3.4 along the rod 9. The configuration of the rod is then entirely characterized
by the orientation of its material frame, such that it suffices to know the equilibrium curvatures
to know the morphing pattern. Subsection 4.2.1 presents the software environment used to
implement the energy minimization and summarizes the python code written in subsection 4.2.2.

6. This approach could also be used to model two- or three-dimensional morphers.
7. In order to be more accurate, the number of nodes could be increased to fit the specific shape of the cross-

section. Also, a finer lattice would enable to impose more complex variations of eigenstrain within the morpher

and to capture the resulting elastic strains in more details.
8. In the following, we call diagonal springs the springs between the longitudinal and the transversal direction.

As distortions within the plane of the cross-section can be neglected in the case of sufficiently elongated objects,
the length of transversal diagonal springs is fixed and their is no ambiguity.

9. One needs to impose a boundary conditions at a point of the rod, such as fixing the orientation of the
material frame at one end of the rod for example.

48



CHAPTER 4. NUMERICAL METHODS 4.2. ENERGY MINIMIZATION

(a) (b)

Figure 4.3 – A square representing a side-view of the beam can be extended or sheared by
changing the length of the longitudinal or diagonal springs respectively. (Left) Extension (Right)
Shear.

4.2.1 Python

In order to solve for the minimum of the elastic energy of an elongated morpher , one can use
the capabilities of the python programming language 10 taking advantage of its scientific library
Pylab (Developers 2014). The Ipython shell (Pérez and Granger 2007) was used to compute the
code and Mayavi (Ramachandran and Varoquaux 2011) to visualize the morphing patterns.

4.2.2 Code

The python code that computes and visualizes the morphing of rods in 2-D and 3-D is give in
appendix B.1 and appendix B.2 11. Thanks to the characteristics of python, the code is almost
readable straightforwardly. It can be summarized as follows 12:

1. The initial configuration of the rod is defined by the coordinates of its middle line and the
orientation of its material frame 13;

2. The rod is discretized by a finite number of points along its length;

3. For a given set of natural curvatures (κ∗
i ), the elastic energy is minimized using the quasi-

Newtonian minimization algorithm Broyden-Fletcher-Goldfarb-Shanno (Alben, Balakris-
nan, and Smela 2011);

4. Without the presence of external constraints or other forces, the solution is trivial and
the energy is minimum when (κi = κ∗

i ). The configuration of the rod is reconstructed by
integrating twice 14 over the material curvatures;

5. In the presence of an external field such as gravity, the energy does not only depend on
the shape of the rod given by the components of its material Darboux vector (κi), but
also on its position in space given by its absolute coordinates (x, y, z). This is why the
minimization of energy becomes an iterative process where the absolute coordinates need
to be calculated at each iteration of the energy minimization;

10. Python is a widely used general-purpose high-level programming language. Its main advantages over other
commonly used programming languages such as C/C++ are its readability and the conciseness of its syntax.

11. I give credit to Felix Repp, who introduced me to python and helped me writing and debugging the first
canvas of the code.

12. The 2-D and 3-D versions follow the same logic.
13. We choose a straight initial middle line (κ1 = κ2 = 0) with zero twist (κ3 = 0).
14. The first integration of the material curvatures gives the material frame along the curve, while the second

integration gives the coordinates of the middle line.
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6. Finally, the final equilibrium configuration is plotted using Mayavi.

4.3 Finite-Element analysis

In the general case of an arbitrary distribution of eigenstrain, one can use a “brute-force” 15

finite-element approach. Subsection 4.3.1 presents the commercial software Abaqus R© and its
python development environment (PDE), which was used to parametrize and calculate morphing
patterns. Subsection 4.3.2 summarizes the workflow of a finite-element calculation.

4.3.1 Abaqus R©

Abaqus is a commercial 16 software, which can solve a variety of physical problems using
fem. A thorough presentation of the fem would be beyond the scope of this thesis (Hibbett,
Karlsson, and Sorensen 1998). The general idea behind fem, is to decompose a complex problem
into a large number of simple problems. Instead of trying to solve the equations for mechanical
equilibrium in the presence of eigenstrain as given in eq. 3.23 across the whole domain of the
morpher , these equations are solved on a lot of small elements which pave the geometry of
the morpher . This discretization follows a similar approach to the one proposed in section 4.1,
where the continuum was represented by a lattice model. Instead of connecting the nodes of the
domain with linear springs, the elements can display a more complex behavior depending on the
modeled physical phenomenon. Similarly to what is described in section 4.2 where the unknown
material curvatures along the rod where reduced to a finite number of unknowns, the unknown
displacement field within the morpher is replaced by a finite number of displacement vectors at
the nodes of the domain. The discretized solution can then be smoothen again, leading to an
approximate continuous solution.

4.3.1.1 Python development environment

The python development environment (PDE) is a graphical interface of Abaqus, which en-
ables to create and analyze Abaqus models using the python scripting language. Similarly to
the Grasshopper plug-in for Rhino (subsubsection 4.1.1.1), this allows to do parametric studies
of models by defining formal relations between the parameters rather than having fixed values.
Also, scripting a model instead of defining it through the graphical user interface, has the benefit
of being more easily editable and reproducible (appendix B.3).

4.3.2 Workflow

This subsection presents the workflow behind a finite-element calculation, which consists of
three stages: pre-processing, processing and post-processing. These stages are captured in the
script given in (appendix B.3).

4.3.2.1 Pre-processing

The pre-processing stage consists of defining the input file which contains all the information
of the finite-element model: the geometry, the material architecture, the material properties,

15. The expression “brute-force” emphasizes the fact that the finite-element method (fem) is a powerful numer-
ical method, but one can sometimes loose a simple understanding of the morphing process.

16. Commercial fem software have the disadvantage to be expensive, but the advantage of being more reliable
than open source fem softwares.
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the load, the boundary conditions and the mesh.

Geometry The geometrical objects are rectangular cuboids or right rectangular cylinders.
The width, thickness and length of the object are respectively given by w, t, L (fig. 4.4).

(a) (b)

Figure 4.4 – Using the script given in appendix B.3, (left) one can input different sizes of cuboids
by specifying their width (w), thickness (t) and length (L). The resulting geometry is shown on
the right.

Material architecture The geometry is partitioned through an orthogonal grid parametrized
by h, v, l. The result is an assembly of Nr = h ∗ v ∗ l rectangular cuboids of dimension w

h , t
v , L

l .
The partition is needed in order to assign different material properties to different regions of the
solid (fig. 4.5).

Material properties Two different materials are used. They both follow a linear isotropic
elastic material behavior and a linear orthotropic thermal expansion behavior, which leads to
four elastic constants E1, E2, ν1, ν2 and six coefficient of thermal expansion αT

1
1, αT

1
2, αT

1
3, αT

2
1,

αT
2
2, αT

2
3 (fig. 4.6).

Load Two uniform constant temperature fields are defined over the solid, one in the initial
state T0 and one in the final state T . The initial state is considered to be stress-free (T0 = 0),
so that only the thermal gradient matters ∆T (fig. 4.7).

Boundary Condition Under the thermal load case only, the stress-state solution is auto-
equilibrated and no boundary conditions are needed. However, we still need to fix rigid-body
motions, otherwise the object "flies around". We do this by fixing a point (center or one corner).

Mesh The mesh is composed of linear 8-node brick elements (C3D8). Its degree of refinement
is defined through the mesh density factor (fig. 4.8).

4.3.2.2 Processing

During the processing step, the static thermo-mechanical problem is solved considering ge-
ometric nonlinearity. The solver works like a black-box and the user only needs to tune size of
the increments in order for the calculation to converge.
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(a) (b)

(c) (d)

Figure 4.5 – Using the script given in appendix B.3, one can partition the geometry using an
orthogonal grid parametrized by h, v, l (top left). The user is then prompted to associate either
an active (green) or a passive (pink) element to the different regions of the grid (rest of the
figures).

(a) (b)

(c) (d)

Figure 4.6 – Using the script given in appendix B.3, the user is prompted to input the material
properties. (Top) Elastic constants of the active (left) and passive (right) phase. (Bottom)
Expansion constants the active (left) and passive (right) phase.

4.3.2.3 Post-processing

Once the calculation converged, the output file containing the results can be analyzed by
looking at the deformed configuration in terms of displacements, strain and stress (fig. 4.9).
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Figure 4.7 – Temperature in the initial (T0) and final state (T ).

Figure 4.8 – The mesh is composed of linear 8-node brick elements (C3D8). The size of the
mesh is adjusted by the mesh density factor.

(a) (b) (c)

Figure 4.9 – Once the calculation converged, the deformed configuration can be analyzed in
terms of displacements (left), strain (middle) and stress. (red) represents a high value and
(blue) a zero value.
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Conclusions

This chapter presents the numerical methods used to simulate morphing patterns. Elongated
morphers can either be represented by an extruded square lattice connected springs—which
relaxes into an equilibrium configuration upon changing the rest-length of the springs, or as a
one-dimensional rod which equilibrium configuration corresponds to a minimum of its elastic
energy. Finally, the finite-element method can also be used to solve for arbitrary eigenstrain
distributions.
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Chapter 5

Experimental systems
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This chapter presents experimental systems that can be used to explore morphing patterns
controlled by eigenstrain distributions. Those systems provide a real world demonstration or
“toy-model” that can be used to illustrate specific morphing patterns and to confirm or in-
firm theoretical calculations. Amongst the various existing means to produce eigenstrain dis-
tributions experimentally (from crocheting or knitting the hyperbolic plane (Henderson and
Taimina 2001) to frying potato chips), we looked at three: prestrain (section 5.1), thermal ex-
pansion 1(section 5.2) and swelling (section 5.3). For each technique, one can find relatively
cheap and easy to manufacture materials available in the commerce. The following describes
the manufacturing and assembly process of these experimental systems 2.

5.1 Prestrain

Prestrain is arguably the most comfortable method of all three as it occurs in a dry environ-
ment and only requires stretching and gluing. The idea is to introduce a differential prestrain
in a structure by stretching parts of it and glue them to unstretched parts. Upon release, the
stretched parts tend to go back to their natural state, which is partially prohibited by their
neighboring unstretched parts. This imposes an eigenstrain distribution in the structure of op-
posite sign to the prestrain distribution. However, an important drawback of this method is

1. This work was down by Fanny Chouteau, Madge Martin and Alan le Goallec, three students from my former
engineering school (École des Ponts) in a six month student project which I set up and supervised.

2. Our goal was mainly the qualitative reproduction of morphing patterns. Nevertheless, mechanical and
expansion properties were also measured in order to allow for subsequent quantitative comparison with theoretical
calculations (see appendix C).
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that the produced morphing patterns are irreversible. One could unglue them to see if the parts
relax to their original state, but it is a rather cumbersome procedure. The order of magnitude of
the imposable eigenstrain with this technique is only limited by the failure strain of the material
(✎∗ < ✎❢ ). Upon release, the prestrain is accommodated by an elastic strain as the structure
relaxes to its equilibrium. The total strain (✎ = ✎❡❧ + ✎∗) is smaller than the failure strain (✎❢ )
as the elastic strain relaxes the prestrain (sgn (✎❡❧ ) = − sgn (✎∗)). In the literature (Liang and
Mahadevan 2009), straining is also used directly without gluing by stretching the structure in
such a way that only some parts of it are stretched above the yield point. The elastic regions
relax to their original state, while the plastic regions go back to a state containing residual plas-
tic strain. This mismatch in the natural state caused by plastic regions acts as an eigenstrain
and leads to elastic relaxation as well. Subsection 5.1.1 describes the two types of elastomers
considered and subsection 5.1.2 presents the setup used to prestrain and assembly them 3.

5.1.1 Choice of materials

To be able to generate large eigenstrain using preferably small force installations, one can
look at soft materials with large elastic range such as elastomers. Amongst those, the one with
a simple manufacturing process allows to test new eigenstrain distributions quickly. Due to its
good availability, we opted for the widely used Polydimethylsiloxane (PDMS). We also tested a
similar silicon compound called Elite-Double produced by Zhermack R©, which is typically used
for dental molds and requires an even quicker manufacturing than standard PDMS 4.

5.1.1.1 Polydimethylsiloxane

Description Polydimethylsiloxane (PDMS) belongs to a family of organo-silicon compound
also known as silicones. It is optically clear, non-hazardous (inert, non-toxic and non-inflam-
mable) and particularly known for its rheological properties. PDMS is elastic at room temper-
atures and becomes viscous at higher temperatures.

Manufacturing process Monomer and cross-linking agent are mixed in a beaker with a
ratio of 10: 1. Mixing is done manually with a wooden spatula. The mixture is put in a
vacuum desiccator for ∼ 30 min in order to remove potential bubbles that formed during mixing.
Alternatively, remaining bubbles can be sucked out manually with a micro-pipette. When no
more bubbles are visible the liquid polymer is poured on a glass plate with a resulting thickness
of t ∼ 1 mm. The solution is then cured in an oven at a controlled temperature of 80 ◦C for
∼ 3 h. PDMS can then be easily pulled from the glass plate, before cutting it with a scalpel into
desired shapes. All in all, the manufacturing process lasts ∼ 5 h.

5.1.1.2 Elite-double

Description Elite double is a silicone produced by Zhermack R© which is used for duplications
by artists or dental technicians. It comes in different hardness of Shore A value 8, 16 and 22.

Manufacturing process Both components are mixed in a glass beaker with a ratio of 1 : 1.
Mixing is done manually with a wooden spatula. The viscous liquid is then poured on a glass
plate with a resulting thickness of t ∼ 1 mm. Elite Double cures at room temperature in ∼ 5 min

3. See appendix C.1 for the characterization of the mechanical properties of these elastomers.
4. We’d like to thank Etienne Reyssat for pointing out this convenient material.
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and can be easily pulled from the glass plate, before cutting it with a scalpel into desired shapes.
All in all, the manufacturing process last . 1 h.

5.1.2 Applying prestrains

Two setups were fabricated from the mechanical lab in order to apply uniaxial and biaxial
prestrains. Uniaxial strain is applied by clamping an elastomer strip on its two ends and increas-
ing the distance between the clamps (fig. 5.1a). A ruler enables to read the elongated length in
order to deduce the applied strain. Biaxial strain is applied by applying uniaxial strain in two
perpendicular directions (fig. 5.1b). Once the sample is prestrained, one can glue unstrained
elastomer onto it.

(a) (b)

Figure 5.1 – Setups used to apply uniaxial (a) and biaxial (b) prestrain on elastomer strips. The
prestrain is tuned by changing the distance between the clamps holding the elastomer strips.

5.1.2.1 Gluing

Composite structures are achieved by applying uncured solution (PDMS or Elite Double) at
the interface between differentially stretched parts before undergoing a subsequent hardening
step. The complete manufacturing process of prestrained composite shapes with PDMS takes
∼ 1 d and . 3 h for Elite Double 5.

5.2 Thermal Expansion

Gradients in thermal expansion are probably the oldest mechanism used to trigger shape
changes. Its main limitation is the relatively low coefficients of thermal expansion (CTE)
of most materials. According to Ashby maps, the highest CTE of materials are quite small
(αT . 10−4 ◦C−1). Even a temperature change of ∆T = 100 ◦C—which is high compared
to daily temperature changes—would result in a relatively small eigenstrain of the order of
ε∗ = αT ∆T ∼ 1 % (assuming constant CTE as justified by the small temperature range). As
geometry can counterbalance the effect of low eigenstrain to some extent, thermal expansion
is still a reasonable candidate for morphing, but it requires sufficiently elongated structures.
Subsection 5.2.1 describes the materials used and subsection 5.2.2 the assembly and activation
of thermal morphers 6.

5. Gluing can become quite tricky in the biaxial case due to accessibility issues.
6. See appendix C.2 for the characterization of the mechanical and expansion properties of these thermal

morphers.
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5.2.1 Choice of materials

Thermal expansion based actuators—also known as thermostats—are classically used as pas-
sive sensors or switches and very common in industry. They are usually made from metallic
alloys, which ensure good structural integrity. In this case, they typically consist of a low ex-
pansion alloy such as Invar, which is combined with a high expansion alloy usually iron-based
and containing nickel and chromium (Harner 2013). The students 7 were asked to choose two
materials with high CTE mismatch amongst the ones available to them. They chose silicone
elastomer with a CTE of αT ∼ 10−4 ◦C−1 and simple balsa with a CTE of αT ∼ 10−6 ◦C−1.
Also, their choose a temperature difference of ∆T ∼ 20 ◦C, which is realistic for West European
latitudes.

5.2.1.1 Silicone elastomer

Three types of Wacker Silicones produced by Elastosil R© of increasing hardness were used:
M4601, M4643 and M4670. They were cured in a square shaped mold of side length 4.5 cm ∗
4.5 cm and with different heights: 2.34 mm for red, 3.15 mm for white and 3.76 mm for grey
(fig. 5.2). In order to measure their elastic properties and their CTE (see appendix C.2), flat
rectangular sheets as well as cylindrical samples were respectively cast.

Figure 5.2 – Rectangular silicone sheets for tensile testing of dimensions ∼ 10 cm ∗ 5 cm ∗ 5 mm
and cylinders for CTE measurements of dimensions ∼ 3 cm ∗ 5 mm. M4601 is red (left), M4643
is white (middle) and M4670 is gray (right).

5.2.1.2 Balsa

Thin balsa slices were cut perpendicular and parallel to their fibers with the same shape as
the silicone parts of side length 4.5 cm ∗ 4.5 cm and three different heights: 1.0 mm, 1.5 mm and
2.0 mm (fig. 5.3). For tensile testing (see appendix C.2), flat rectangular sheets were prepared
along and perpendicular to the fiber direction .

5.2.2 Assembly and activation

Nine samples were prepared by combining the three types of silicones with the three thick-
nesses of balsa (table 5.1).

A thorough choice for the glue is crucial as it should bound the two materials together for
assembly, but it is also crucial that it does not unbound during heating and deformation of the

7. See footnote 1.
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Figure 5.3 – Flat rectangular balsa sheets of dimensions ∼ 10 cm∗4 cm∗2 mm samples for tensile
testing. The three on the left are cut perpendicular to the fiber direction, whereas the three on
the right are cut parallel to it.

sample 1 2 3 4 5 6 7 8 9
tsilicon[mm] 2.34 2.34 2.34 3.15 3.15 3.15 3.76 3.76 3.76
tbalsa[mm] 1.0 1.5 2.0 1.0 1.5 2.0 1.0 1.5 2.0

Table 5.1 – Silicone and balsa thicknesses for the samples shown in fig. 5.4.

system. Also, the glue layer’s impact on the mechanical behavior of the structures should be
minimal. In view of the chosen temperature difference of ∆T ∼ 20 ◦C, a simple sealing mastic—
which is typically used to prevent water leakages in bathroom—was used. After a night rest, the
samples are now ready for heat treatment (fig. 5.4). Heating took place in an oven during 3 h
at 40 ◦C to simulate the effect of a temperature increase of ∆T ∼ 20 ◦C for a room temperature
of T0 ∼ 20 ◦C.

Figure 5.4 – Glued silicone-balsa bilayer samples before heat treatment. (Left, gray) M4670,
(middle, white) M4643, (right, red) M4601 with different thicknesses of elastomer and three
different thicknesses of balsa (table 5.1).

5.3 Swelling

Swelling is the actual physical phenomenon that leads to morphing in many natural systems
(Dawson, Vincent, and Rocca 1997). Influx of solvent inside the material induces a volume
change that acts as an eigenstrain. What makes swelling intricate is that the swelling content
depends on the actual stress state (Treloar 1975, chapter 7). A compressed material swells less
whereas an extended material swells more. This introduces a coupling between the eigenstrain
and the elastic relaxation, which adds a theoretical difficulty. Also, the stiffness of the material
changes as a function of swelling—materials becomes softer as swelling increases. Finally, re-
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versibility can still be an issue as the structural integrity tends to deteriorate upon swelling cycles.
Subsection 5.3.1 presents the wood-based materials, subsection 5.3.2 the printed multi-materials
and subsection 5.3.3 the thermo-activated polymers used to produce swelling morphers.

5.3.1 Wood based materials

The simplest 8 “toy model” to mimic morphing of natural systems is to take the building
blocks of those systems and to arrange them differently. This could be done by tuning the
average micro-fibril angle inside the cell walls of a wooden structure. Until this is technically
feasible, another possibility is to play with “higher order” building blocks such as macroscopic
wood slices which swell considerably more perpendicular to the fiber direction than parallel to
it: αperp

T ≫ αparal
T (section 6.3).

5.3.2 Printed multi-materials

We had access to multi-material structures made with the printer Object Connect 500 from
Stratasys R© 9. The printer works similarly to an inkjet traditional printer, but instead of jetting
drops of ink onto paper, it jets layers of liquid photo-polymer onto a build tray and instantly cures
them with UV light. This process is repeated layer-by-layer with a very fine spatial resolution of
∼ 10 µm. By using different combinations of polymer precursors (monomer and cross-linkers),
which are jetted simultaneously, the printer can produce up to 90 digital materials. The materi-
als used where variants of thermoplastic polyurethanes (TPU) with different hardnesses as well
as polyacrylates for the passive parts. As shown in appendix C.1, hardness correlates with stiff-
ness, which inversely correlates with swelling. The ability to print three-dimensional composite
structures of different hardnesses allows us thus to control the distribution of eigenstrain inside
the active parts of the structure. TPUs swell slightly in aliphatic alcohols such as isopropanol
and a lot in ketones such as acetone (Huntsman 2013). See appendix C.3 for the characterization
of the mechanical and swelling properties of printed multi-materials.

5.3.3 Thermo-activated polymers

5.3.3.1 Material description

Two families of polymeric bilayers, made of an active and a passive layer, are studied. The
complete manufacturing process can be found in (Zakharchenko et al. 2010).

Active component The active component is a thermoresponsive hydrogel formed either by
photo-cross-linked poly-(N-isopropylacrylamide-co-acrylic acid-co-benzophenone acrylate)
(P(NIPAM-AA-BA)) or by poly(N-isopropylacrylamide-co-benzophenone acrylate) (P(NIPAM-
BA)). Thermo-responsive hydrogels swell and shrink at reduced and elevated temperature, re-
spectively.

Passive component The passive component is either hydrophobic polycaprolactone (PCL) or
random copolymer poly-(methylmethacrylate-co-benzophenone acrylate) (P(MMA-BA)). The
passive hydrophobic layers restrict swelling of the active hydrogel.

8. An even simpler illustration of swelling inspired from (Reyssat and Mahadevan 2011) is to place a piece of
tracing paper on water, which triggers differential swelling across its thickness (see fig. 6.10).

9. Thanks to the collaboration with James Weaver from the Wyss Institute at Harvard.
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5.3.3.2 Manufacturing process

P(NIPAM-AA-BA)/P(MMA-BA) and P(NIPAM-BA)/PCL bilayers were prepared using
photolithography. In a typical experiment, the active polymer was spin-coated from solution on
a silica wafer substrate. The passive layer was then spin-coated on top of it. The bilayer film
was then illuminated through specific masks by halogen lamp for 15 min to crosslink polymers.
Finally, the illuminated film was rinsed in chloroform to remove non-irradiated polymer areas.
The resulting bilayers have the desired shapes (rectangle, stars) and their characteristic length
is L ∼ 500 µm.

5.3.3.3 Activation

When the temperature goes under a critical value Tc, which can be tuned by changing the
composition of the solution, the active polymer starts to swell (fig. 5.5).

Figure 5.5 – Scheme of folding of a bilayer polymer film consisting of two polymers: hydrophobic
P(MMA-BA) and thermoresponsive hydrogel P(NIPAM-AA-BA). Reprinted with permission
from (Stoychev et al. 2012). Copyright (2012) American Chemical Society (see appendix F.2).
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Conclusion

This chapter describes experimental “toy-models” which are used to illustrate morphing pat-
terns. Amongst the various means that mimic plant morphing, we looked at three: pre-straining,
swelling and thermal expansion. Pre-straining is mostly illustrative as it is irreversible by na-
ture, but it has the advantage of working in a dry environment. On the other hand, swelling
and thermal expansion are both good candidates for real world applications.
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This chapter defines benders as a type of elongated morphers that bends when activated. As
discussed in subsection 3.1.2, bending is one of the fundamental deformation modes of rod-like
objects.

Section 6.1 starts by studying standard bilayers, which consist of an active layer expanding
against a passive producing bending. According to Timoshenko’s solution (Timoshenko et al.
1925), the curvature of a bilayer is proportional to the ratio of the differential longitudinal
eigenstrain divided by the total thickness of the bilayer (subsection 6.1.1). The proportionality
factor is a function of the thickness and stiffness contrasts as discussed in subsubsection 6.1.1.1.
Subsubsection 6.1.1.2 derives the elastic strain inside a bilayer, which gives rise to the interfacial
stress 1. Knowing the strain state inside a bilayer, bending is confirmed to be more favorable
than stretching from an energetical viewpoint (subsubsection 6.1.1.3). Subsection 6.1.2 con-
siders the effect of adding intermediates layers and discuss the limiting case of a transversally
graded bender . As the number of layers increases, the elastic strain inside the bender progres-
sively decreases eventually leading to stress-free bending. Subsection 6.1.3 shows numerical and
experimental illustrations of bilayers using the techniques described in section 4.1 and chapter 5.

Section 6.2 extends the bilayer principle by showing how to generate variations in curvature
along the length of a bender and how to produce helical morphologies. On the one hand,
variations in curvature are achieved by changing the differential eigenstrain along the length of
a bender (subsection 6.2.1). On the other hand, helical morphologies are produced by either
rotating the bending plane along the bender or by introducing an angle between the principal
directions of eigenstrain and the principal directions of geometry (subsection 6.2.2).

1. When the interfacial stress exceeds the interfacial resistance delamination occurs, which is the main cause
of failure in bilayers (and in composite structures in general).
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Section 6.3 presents the concept of geometric amplification, which enables to transform a
relatively small eigenstrain into a relatively large displacements. This is done by introducing
one more level of hierarchy in the material looking at an assembly of bilayers forming a honey-
comb like geometry 2.

6.1 Single Benders

One fundamental example of a distribution of eigenstrain inside a one-dimensional elongated
object is the bilayer. The invention of the bi-metallic strip is usually accredited to 18th cen-
tury clockmaker John Harrison (Betts 1993) and these thermo-actuators are commonly used
since then for example to compensate temperature-induced changes in clocks, as thermostats
in heating and cooling systems, as switches in electrical systems or simply as thermometers. A
bilayer is made out of two flat strips of materials displaying a different longitudinal eigenstrain 3,
which are bonded on top of each other. If the differential longitudinal eigenstrain is small, the
elastic strain will also be small and the material can be considered linear elastic. As soon as the
differential longitudinal eigenstrain is nonzero, the straight configuration becomes less favorable
than the bended configuration and the bilayer starts to bend.

6.1.1 Bilayers

According to appendix D.1, the curvature of a bilayer experiencing uniform heating is given
by:

κ =
6(αT 2 − αT 1)∆T (1 + m)2

t[3(1 + m)2 + (1 + mn)(m2 + 1/mn)]
, (6.1)

where αT β is the coefficient of thermal expansion of each layer, ∆T the temperature difference,
t the total thickness, m = t1/t2 the thickness contrast and n = E1/E2 the stiffness contrast.
Equation 6.1 is known as Timoshenko’s formula (Timoshenko et al. 1925). Subsubsection 6.1.1.1
studies the influence of the thickness and stiffness contrasts on the curvature of a bilayer, sub-
subsection 6.1.1.2 presents the elastic strain distribution in a bilayer of unitary thickness and
stiffness contrasts and subsubsection 6.1.1.3 calculates the energy in the straight and curved
configuration.

6.1.1.1 Influence of thickness and stiffness contrast

In a concise form, eq. 6.1 can be written as:

κ = f(m, n)
∆ǫ∗

t
, (6.2)

where m and n are the thickness and stiffness contrasts respectively. Equation 6.2 shows that
the curvature of a bilayer is proportional to the differential longitudinal eigenstrain and inversely
proportional to the total thickness of the bimetallic strip. The coefficient of proportionality is
given by:

f(m, n) =
6(1 + m)2

3(1 + m)2 + (1 + mn)(m2 + 1/mn)
. (6.3)

2. The concept as well as the experimental realization of honeycomb bilayers was made by Khashayar
Razghandi (Razghandi 2014). His idea was inspired by the origami-like unfolding of ice-plant seed capsules
(Harrington et al. 2011) (See also (Guiducci 2013) for an in-depth study of meso-structural lattice systems that
enable to amplify and tune microscopic eigenstrain.)

3. As we consider elongated rod-like objects (t, w ≪ L), we do not consider extension/contraction strains within
the plane of the cross-section (✎xx = ✎yy = 0. In the same way, we only consider the longitudinal component of
the eigenstrain (✎∗ = ǫ∗

zz = ǫ∗).
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The proportionality factor f(m, n) is plotted in fig. 6.1. It takes its maximal value for m = n = 1
and decreases smoothly to 0 when m, n → ∞.
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Figure 6.1 – The proportionality factor between the curvature κ and the ratio of the differential
longitudinal eigenstrain ∆ǫ∗ with the total thickness t is a function of the thickness contrast
(1 < m < 10) and the stiffness contrast (1 < n < 10).

Equal thickness If both layers have the same thicknesses (m = 1), the coefficient of propor-
tionality reduces to:

f(m = 1, n) =
24

14 + n + 1/n
. (6.4)

In this expression, we see that n and 1/n play symmetric roles, which is consistent with the fact
that the way we label the layers shouldn’t affect the curvature. Also, when the stiffness of one
layer becomes predominant compared to the other, the curvature goes to zero:

f(m = 1, n) n→0−−−→
n→∞

0.

This means that when one of the layers is sufficiently stiff compared to the other, it can be
considered rigid and the bilayer does not curve 4. The effect of the stiffness contrast (n) on
the curvature (κ) of a strip with unitary thickness contrast (m = 1) is plotted in fig. 6.2 for
1 ≤ n ≤ 10.

n

f(m = 1, n)

1 2 3 4 5 6 7 8 9 10
0

1

2

Figure 6.2 – The effect of the stiffness contrast (n) for a unitary thickness contrast (m = 1)
on curvature (κ) is given by f(m = 1, n), which decreases slowly to zero. For n = 1 we have
f(m = 1, n) = 1.5 while for n = 10 we have f(m, n = 1) ≈ 1.

4. f(m = 1, n) = 0.01 =⇒ n ≈ 2400
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Equal stiffness On the contrary, if the stiffnesses of both layers are equal (n = 1), the
coefficient of proportionality becomes:

f(m, n = 1) =
6(1 + m)2

3(1 + m)2 + (1 + m)(m2 + 1/m)
=

6m

(m + 1)2
. (6.5)

Again, if we replace 1/m for m in this expression we obtain the same expression, which is
consistent with the fact that the way we label the layers shouldn’t affect the curvature. Also,
when the thickness of one layer becomes predominant compared to the other, the curvature goes
to zero:

f(m, n = 1) n→0−−−−→
m→∞

0.

This means that when one layer is sufficiently thin relatively to the other, it becomes effectively
negligible and the bilayer can be considered a mono-layer which has no reason to bend. The effect
of the thickness contrast (m) on the curvature of the strip (κ) with unitary stiffness contrast
(n=1) is plotted in fig. 6.3 for 1 ≤ m ≤ 10.

m

f(m,n = 1)

1 2 3 4 5 6 7 8 9 10
0
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2

Figure 6.3 – The effect of the thickness contrast (m) for unitary stiffness contrast (n = 1) on
the curvature (κ) as given by f(m, n = 1) is also small. For m = 1 we have f(m, n = 1) = 1.5
while for n = 10 we have f(m, n = 1) ≈ 0.5.

Equal thickness and stiffness If both contrast are equal to one (same thickness contrast
m = 1 and same stiffness contrast n = 1), then f(m = 1, n = 1) = 1.5 and the curvature is
given by:

κ =
3
2

∆ǫ∗

t
. (6.6)

Remark (Influence of thickness and stiffness contrast on curvature.). The influence of the
thickness contrast (m) and the stiffness contrast (n) on the curvature of the bender κ is relatively
small. An increase of one order of magnitude in stiffness for unitary thickness contrast leads to
a reduction of the curvature by 2/3, while an increase of one order of magnitude in thickness
for unitary stiffness contrast leads to a reduction of curvature by 1/3. What mainly controls
the curvature of bilayers is the magnitude of the differential eigenstrain (∆ǫ∗) and the total
thickness (t). If one wants to generate the maximum amount of curvature, one should aim for
the maximum differential eigenstrain and the minimum total thickness, which makes intuitive
sense. This curvature can then be slightly lowered compared to the equal thickness and stiffness
scenario by tuning the stiffness and thickness contrasts.

6.1.1.2 Interfacial stress

From subsection 3.2.1, the total strain is equal to the sum of the elastic strain and the
eigenstrain. Thus, given the imposed eigenstrain distribution inside a bilayer, the elastic strain
distribution can be deduced by subtracting the eigenstrain from the total strain. The cor-
responding stress distribution is related to the elastic strain distribution using the simplified
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one-dimensional constitutive law of the material (σzz = Eǫzz, see appendix A.2.4). In partic-
ular, the jump in elastic stress at the interface between the two layers, also called interfacial
stress, can be calculated. At the center line (x = 0) the total strain is zero and the jump in in-
terfacial elastic strain is equal to the jump in eigenstrain (JǫelKx=0 = ∆ǫ∗). The expanding layer
on bottom is mainly compressed (ǫel < 0) and the contracting layer on top is mainly stretched
(ǫel > 0), which fits intuition. In the case of equal thickness and stiffness, the maximum total
strain at the outer layers can be computed using eq. 6.6:

ǫ(x=± t
2 ) = ±κ

t

2
= ±3

∆ǫ∗

4
. (6.7)

The value of the elastic strain is obtained by a simple subtraction, which can be done graphically
in fig. 6.4 5:

ǫel
(x=± t

2 ) = ǫ(x=± t
2 ) − ǫ∗

(x=± t
2 ) = ±∆ǫ∗

4
. (6.8)
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2
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2

−
t
2
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Figure 6.4 – (Left) Total longitudinal strain component ǫzz, which is proportional to the transver-
sal coordinate x in the case of bending where the curvature κ is the coefficient of proportionality.
(Middle) Eigenstrain longitudinal component in the case of a bilayer. One must be careful to
plot the eigenstrain distribution around the average extension of the two layers which is equal
to (ǫ∗

1 + ǫ∗
2)/2. This “eigen-stretching” of the bilayer doesn’t produce any stress and corresponds

to a re-parametrization of the length of the rod (subsubsection 3.1.2.1). (Right) Elastic longi-
tudinal strain component, which can be deduced by subtracting the eigenstrain from the total
strain.

6.1.1.3 Energetic considerations

Another way to understand the bending of bilayers, is to look at it from an energetical
viewpoint. Amongst the various possible configurations for the rod, two scenarios are considered:
the rod remains straight and the rod bends. In each case, an increase in differential eigenstrain
as given by (∆T ) leads to an increase in the elastic energy of the rod. Which of the stretching
and bending energy is lower will determine if the rod stays straight or bends. In this sense, the
bending of benders can be seen as a mechanical instability.

Straight If the rod remains straight, the only nonzero displacement component is along the
z direction and is equal to uz = (L − L0)z/L0. The total strain is thus constant and its only

5. Even if the longitudinal elastic strain component ǫel
zz is a function of the transversal coordinate x, we prefer

to plot x as a function of ǫel
zz such that the cross-section of the bilayer is vertical and the longitudinal strain is

horizontal.
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nonzero components is:

ǫzz =
L − L0

L0
+

1
2

(

L − L0

L0

)2

=
1
2

(

(

L

L0

)2

− 1

)

. (6.9)

The elastic longitudinal 6 strain in the top and bottom layers are constant as well and equal to:

ǫel
β = ǫ − ǫ∗

β =
1
2

(

(

L

L0

)2

− 1

)

− αT β∆T. (6.10)

According to appendix A.4, the elastic energy with only the longitudinal stress and strain com-
ponents reduces to:

Estraight

L0
=
∫

CS
E(ǫel

zz)2 dx dy. (6.11)

Plugging the expression eq. 6.10 for the elastic longitudinal strain components, one obtains:

Estraight

L0
= Ew



t1

[

1
2

(

(

L

L0

)2

− 1

)

− αT 1∆T

]2

+ t2

[

1
2

(

(

L

L0

)2

− 1

)

− αT 2∆T

]2


 . (6.12)

At equilibrium, the elastic energy is minimum:

δEstraight

δL
= 0. (6.13)

In the case of equal thickness, this implies that the total longitudinal strain is equal to the
average of the eigenstrains 7:

ǫzz =
(αT 1 + αT 2)∆T

2
. (6.14)

From eq. 6.10, the elastic strain components are:

ǫel1
zz =

∆ǫ∗

2
, ǫel2

zz = −∆ǫ∗

2
, (6.15)

and the energy per unit length becomes:

Estraight

L0
= Ewt

(∆ǫ∗)2

4
. (6.16)

Curved In the bended configuration, the longitudinal elastic strain component is stepwise
linear instead of constant (see fig. 6.4 in the case of equal thickness):

ǫel
zz =







−3∆ǫ∗

2t x + ∆ǫ∗

2 0 < x < t
2 ,

−3∆ǫ∗

2t x − ∆ǫ∗

2 − t
2 < x < 0.

(6.17)

Using eq. 6.11, the elastic energy per unit length is:

Ebended

L0
= Ew

t
2
∫

t=0

(

−3∆ǫ∗

2t
x +

∆ǫ∗

2

)2

dx + Ew

0
∫

t=− t
2

(

−3∆ǫ∗

2t
x − ∆ǫ∗

2

)2

dx, (6.18)

which after simplification leads to:

Ebended

L0
= Ewt

(∆ǫ∗)2

16
. (6.19)

6. The subscript zz is dropped for the sake of readability.
7. One obtains the same value for the total longitudinal strain considering only the linearized strain L−L0/L0.
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Comparison between stretching and bending energy Let us compare the stretching
energy of the bilayer in case it remains straight as given in eq. 6.16 and the bending energy in
case it’s curved as given in eq. 6.19. The bending energy in the curved scenario is four times
lower than the stretching energy in the straight scenario. This means that bending is always
energetically favored when ǫ∗

1 6= ǫ∗
2

8. In this sense, the bending instability is supercritical 9.

6.1.2 Multi-layer and graded benders

This section shows how adding intermediate layers between the bottom active and top passive
layers affects the behavior of a bender : the interfacial is decreased for a finite amount of layers
(subsubsection 6.1.2.1) and becomes zero for an infinite amount of layers possessing adequate
CTEs (subsubsection 6.1.2.2).

6.1.2.1 Multi-layer benders

The previous analysis of bilayers was extended to the case of N -layers (Vasudevan and John-
son 1961). Using the same three steps as in appendix D.1 (balance of forces, balance of moments
and compatibility of strain), a general expression for the curvature of an N -strip as a function
of the thickness, stiffness and expansion coefficient of the different layers can be found. These
expressions are rather cumbersome in the general case, but they reduce to simple expressions in
the case where all thicknesses are the same (ti = t/N) and all stiffnesses are the same (Ei = E).
In the case of a tri-layer for example, the curvature takes a similar form to eq. 6.6:

κtri =
4
3

(αT 1 − αT 3)∆T

t
. (6.20)

The expansion coefficient of the intermediate layer (αT 2) does not affect the overall curvature 10.
Its effect is to decrease the distribution of normal stress at the intersurface. In this sense, adding
intermediate layers smooths out the distribution of elastic strains in the normal direction (see
subsubsection 6.1.2.3).

6.1.2.2 Graded benders

If the number of intermediate layers is very large (N → ∞), the multi-layer becomes ef-
fectively a graded bender 11. The coefficient of thermal expansion can now be seen as a scalar
field that varies through the thickness of the bender (αT = αT (x) 12) producing a continuously
varying eigenstrain (✎∗(x) = αT (x)∆T ). For simple bending, the longitudinal elastic strain
component 13 is given by (see fig. E.3b):

ǫel
zz = κx. (6.21)

If the differential longitudinal eigenstrain is imposed to be equal to this elastic strain, one
obtains the following definition for the scalar field representing the graded coefficient of thermal
expansion:

αT (x) =
κx

∆T
. (6.22)

8. When ǫ∗

1 = ǫ∗

2, both energies are zero.
9. Supercritical instability means that the bilayer is linearly stable when going from the straight into the curved

configuration. On the contrary, a subcritical instability would mean that the bilayer jumps from the straight into
the curved configuration (see subsubsection 7.1.3.3).

10. This is true as long as αT 3 > αT 2 > αT 1.
11. So-called functionally graded materials are not new (Ichikawa 2001), but the idea of grading the eigenstrain

instead of the stiffness appears to be original.
12. We regard a graded bender as a one-dimensional rod where the transversal coordinate is −t/2 ≤ x ≤ t/2
13. Disregarding the Poisson effect, bending only affects the longitudinal component of the strain tensor ǫzz.
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6.1.2.3 Adding layers decreases interfacial stress

As discussed in subsubsection 6.1.1.2, the elastic strain (or stress) distribution is due to the
difference between the total strain and the imposed eigenstrain. If the eigenstrain becomes
closer to the total strain, the generated elastic strains and thus the interfacial jumps decrease.
This means that when N additional layers are added between the passive and active layers with
staggered expansion coefficients (αT 1 < αT 2 < . . . < αT N ) there will be more, but smaller
jumps. In the limiting case of a graded bender (N → ∞), the eigenstrain ǫ∗

zz = αT (x)∆T = κx
is impotent 14 and as such produces no stress (see subsection 3.2.2). In particular, there are no
interfacial stress.

6.1.3 Experimental illustrations of bilayers

This section presents numerical and experimental illustrations of the bending of bilayers.
Subsubsection 6.1.3.1 shows bending using the mass-spring model presented in section 4.1. Us-
ing three of the techniques presented in chapter 5, bending is then illustrated experimentally:
pre-straining (subsubsection 6.1.3.2), thermal expansion (subsubsection 6.1.3.3) and swelling
(subsubsection 6.1.3.4).

6.1.3.1 Mass-spring system undergoing bending

Using the mass-spring model presented in section 4.1, the differential longitudinal eigenstrain
between the bottom active and top passive layer is represented by a different rest length of the
longitudinal springs on each side of the extruded square lattice structure that represents the
bilayer (see fig. 6.5).

(a) (b)

Figure 6.5 – Bending corresponds to a different rest length of the longitudinal springs on each
side of the extruded square lattice structure that represents a bilayer. (Left) Initial straight
state. (Right) Final bended state. (Red) compression. (Blue) tension).

6.1.3.2 Bending using prestrained systems

The prestrained systems presented in section 5.1 enable to illustrate the concept of a bilayer.
One layer is prestretched by a certain amount and then glued to an unstretched layer. Upon
release, the unstretched layer tries to go back to its initial state. From the perspective of the
stretched layer (pink on bottom), the unstretched layer (yellow on top) appears to have become
bigger by the amount by which the stretched layer was stretched. This mismatch in natural
strain implies a relatively important stretching energy, which is lowered through bending of the
bilayer. In the longitudinal direction, bending is concave downwards (see fig. 6.6 15). Observing
the deformed configuration of the bilayer, we see that curvature is also generated along the

14. It is obviously compatible, because the elastic strain that results from bending is compatible by definition.
15. We’d like to thank Ailyn Bornmüller for helping us in doing the pre-strained experiments.
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1/κl

1/κt

Figure 6.6 – A stretched layer of elastomer (pink on bottom) is glued to an unstretched layer of
elastomer (yellow on top). Upon release, the stretched layer tries to go back to its unstreched
state, which compresses the unstreched layer. Bending occurs in order to release the stretching
energy of the bilayer.

transverse direction (the two black lines in fig. 6.6 live in perpendicular planes and are both
curved). Indeed, when the pink layer is stretched in the longitudinal direction before gluing,
the rubber band contracts in the transversal directions in accordance with Poisson effect (see
appendix A.2.4). This leads to a differential longitudinal eigenstrain along the transversal direc-
tion (width) between the pre-stretched and the unstretched rubber. The differential transversal
eigenstrain due to pre-stretching is ∆ǫ∗

t ≈ −0.5∆ǫ∗
l

16.

6.1.3.3 Bending using thermal expansion

As being the original focus of Timoshenko’s paper and as also presented in section 5.2, thermal
expansion is a suitable way to impose eigenstrain distributions inside shapes. The relatively low
CTE of elastomers leads to small curvature of the bilayer (fig. 6.7).

6.1.3.4 Bending using swelling

Bending can also be demonstrated using swelling systems (section 5.3). The simplest ex-
ample of such a system is a piece of tracing paper gently laid on the surface of a water bath
(subsection 5.3.1 and illustrated for helical benders in fig. 6.10). Due to the separation of time
scales between the diffusion of water through the medium and the speed of mechanical waves
(see subsection 3.2.3), the diffusion process triggers quasi-static actuation (see fig. 6.10).

16. The minus signs is due to the fact that the pink layer contracts in the transversal direction while stretched in
the longitudinal direction. From the perspective of the pink layer, the yellow layer appears to be shorter and the
bending is concave upwards. Also, rubber is usually considered incompressible, which explains the value ν ≈ 0.5.
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1/κ

Figure 6.7 – Upon heating, the silicone expands isotropically, which leads to a slight bending
perpendicular to the fiber direction.

6.2 Playing with benders

Section 6.1 described how a transversal differential longitudinal eigenstrain produces bending.
This section shows how the curvature along the longitudinal direction of a bender can be tuned
(subsection 6.2.1) and how to produce helical bending (subsection 6.2.2).

6.2.1 Longitudinally graded benders

Changing the curvature along the longitudinal direction can be achieved by changing the
differential longitudinal eigenstrain along this direction. As long as the characteristic length of
change of the differential longitudinal eigenstrain along the longitudinal direction is larger than
the total thickness of the bilayer, the analysis given in appendix D.1 still applies. According to
eq. 6.2, we have:

κ(z) = f(m, n)
∆ǫ∗(z)

t
, (6.23)

Figure 6.8 illustrates this using the mass-spring model 17 presented in section 4.1 and the energy
minimization presented in section 4.2.

(a)
(b)

Figure 6.8 – Illustration of longitudinally graded bending using a mass-spring model (left) or
energy minimization (right).

17. Only the hull of the rod-like object is shown (not the springs).
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6.2.2 Helical benders

It is also possible to produce helical geometries from bilayer eigenstrain distributions. This
can be achieved by rotating the bending plane along the rod (fig. 6.9).

(a) (b)

Figure 6.9 – Helical bending is obtained by rotating the bending plane along the rod. Locally,
the rod bends along the direction given by the eigenstrain gradient. (white) passive, (green)
active regions.

Another option is to introduce an angle between the principal directions of eigenstrain and
either the principal directions of the material stiffness or the principal directions of the geometry.
This idea, which enriches the morphing potentiality of the bilayer principle, is illustrated in the
following using two of the approaches presented in chapter 5 (swelling and pre-straining) 18.

Swelling helical benders The printing direction of paper is the direction of maximal stiffness.
Upon swelling 19, the eigenstrain will be maximal in the plane perpendicular to the printing
direction. When cutting strips at an angle θ with respect to the printing direction from a piece
of tracing paper 20, the strips undergo helical bending where the pitch of the helix is a function
of θ as shown in fig. 6.10.

Figure 6.10 – Tracing paper is probably the simplest toy-model to illustrate benders. (Top)
Geometry vs. direction of maximal stiffness (black line). (Bottom) Resulting rolling geometry.
Depending on the angle between the geometry and the direction of maximal stiffness, the strips
undergo: long-side rolling (left), short-side rolling (middle) or diagonal rolling (right).

18. See (Chen et al. 2011) for an extensive study of helical benders.
19. The swelling is controlled by the diffusion of water through the thickness of the strip (see chapter 8).
20. Common paper looses its structural integrity upon wetting.

75



6.3. GEOMETRIC AMPLIFICATION CHAPTER 6. BENDERS

Prestrained helical benders Helical bending through prestrain can be demonstrated by pre-
straining a rectangular PDMS square sheet in one direction, which is then glued to a rectangular
PDMS square sheet that has been prestrained in the perpendicular direction. The release of
the differential longitudinal eigenstrain in both directions leads to a saddle-shaped configura-
tion (fig. 6.11a). Elongated strips cut in different directions will morph into different helical
configurations depending on the cutting angle (fig. 6.11b).

(a)
(b)

Figure 6.11 – (Left) Saddle-shaped configuration of a biaxially stretched elastomer. (Right top)
Different helical configurations are obtained depending on the cutting angle of elongated strips.
(Right bottom) Cutting pattern. This experiment reproduces the results of (Chen et al. 2011).

6.3 Geometric amplification using hierarchical architecture

This section present the concept of geometric amplification and compares theoretical predic-
tions to the experimental results of (Razghandi 2014).

6.3.1 The concept of geometric amplification

The relatively small differential eigenstrain within a bender generates curvature through
eq. 6.1. This curvature is converted into a relatively large mid-deflection depending on the
length of the bilayer 21. This mid-deflection can be further amplified by stacking benders on top
of each other (fig. 6.15). This way, the relatively small eigenstrain is converted into a relatively
large displacement by a factor that only depends on the length and the total amount of bilayers.
This is the meaning of geometric amplification. Subsubsection 6.3.1.1 derives the mid-deflection
of a bender , subsubsection 6.3.1.2 the opening of a bender cell and subsubsection 6.3.1.3 the
opening of stacked cells.

6.3.1.1 Deflection of a single bender

A simply supported bender between two points separated by L will bend into an arc of circle
of radius 1/κ. The deflection δ is expressed using Pythagoras’s theorem in the triangle ABC
(see fig. 6.12):

(

1
κ

− δ

)2

+
(

L

2

)2

=
(

1
κ

)2

=⇒ δ

(

2
κ

− δ

)

=
(

L

2

)2

. (6.24)

21. The conversion factor is a quadratic function of the length of the bilayer (eq. 6.25).
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A

B
C

1/κ

L

δ

Figure 6.12 – Deflection of a simply supported bender .

Assuming that the deflection is small compared to the radius of curvature (δ ≪ 1/κ), eq. 6.24
becomes:

δ ≈ κ
L

8

2

. (6.25)

6.3.1.2 Opening of a bender cell

Let’s place two benders on top of each other and call it a cell (see fig. 6.13). If they are
simply supported, the opening of the cell is just the double deflection (2δ ≈ κL2/4). According
to eq. 6.2, the opening of the cell is:

2δ ≈ f(m, n)
∆ǫ∗L2

4t
, (6.26)

where m and n are the thickness and stiffness contrasts respectively. For unitary stiffness and
thickness contrasts, the double deflection according to eq. 6.6 becomes:

2δ ≈ 3∆ǫ∗L2

8t
. (6.27)

L

2δ

Figure 6.13 – Cell composed of two benders stacked on top of each other.

6.3.1.3 Opening of many bender cell

Let’s stack bender cells on top of each other (see fig. 6.14). If they are simply supported 22,
then the opening of each cell is equal to the double deflection (2δ ≈ κL2/4). For N cells stacked

22. A simple support has no rotational stiffness. In other words, it allows for free rotations.
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upon each other, the total opening amounts to ON = 2δN . According to eq. 6.26, the total
opening is:

ON ≈ Nf(m, n)
∆ǫ∗L2

4t
. (6.28)

For unitary stiffness and thickness contrasts, the total opening is according to eq. 6.27:

ON ≈ N
3∆ǫ∗L2

8t
. (6.29)

L
2δ

ON

Figure 6.14 – Vertical stacking of multiple cells. The total opening of the stack is given by
D = 2δN , where N is the amount of cells.

6.3.2 Comparison between theory and experimental prototype

As mentioned in footnote 2, an experimental prototype of a honey-comb bilayer was developed
by Khashayar Razghandi in his PhD-thesis (Razghandi 2014). The bilayers are made up of spruce
veneer (active layer), which is glued to thick paper (passive layer). Due to the anisotropic
structure of wood, the spruce veneers swell mainly in their longitudinal direction, which is
perpendicular to the orientation of the cellulose fibrils and placed along the long direction of
the bilayer. This leads to a differential longitudinal eigenstrain along the longitudinal direction
which generates curvature according to the bender principle highlighted previously in section 6.1.
By connecting two benders together into a cell, the mid-deflection of such a bender is doubled
as described in subsubsection 6.3.1.2. If the cells are stacked upon each other, the openings
of each cell add up as described in subsubsection 6.3.1.3. As a result, the relatively small
eigenstrain generated within the benders is amplified by the geometry of the stacking into a
large displacement (fig. 6.15).

Figure 6.15 – Snapshots during the opening process of the bilayer-honeycomb at 0, 2, 4 and
16 hours in 95% relative humidity. This picture was taken from the PhD-Thesis of Khashayar
Razghandi (Razghandi 2014).
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6.3.2.1 Experimental parameters of honey-comb bilayers

The parameters describing the experimental prototype of a honey-comb bilayer are its thick-
ness contrast (m = t1/t2), its stiffness contrast (n = E1/E2) as well as its differential longitudinal
eigenstrain (∆ǫ∗ = ǫ2 − ǫ1). For the two layers, the thickness and stiffness were measured exper-
imentally. The eigenstrain is evaluated for each layer separately as it undergoes free swelling 23.
According to table 6.1 we have m = 3, n ≈ 0.05 and ∆ǫ∗ ≈ 0.05.

Layer thickness (t[mm]) stiffness (E[MPa]) eigenstrain (ǫ∗)

active t1 = 0.6 E1 = 284 ǫ∗
1 = 0.05

passive t2 = 0.2 E2 = 5147 ǫ∗
2 = 0.001

Table 6.1 – Parameters describing the experimental prototype of a honey-comb bilayer.

6.3.2.2 Experimental- vs. theoretical curvature

Using the parameters given in subsubsection 6.3.2.1, the coefficient of proportionality is
f(m = 3, n ≈ 0.05) ≈ 1.5 (6.3) and the theoretical curvature is κtheory ≈ 1.5 ∗ 0.05/0.8 ≈
0.094 mm−1 (eq. 6.2). The theoretical radius of curvature is thus Rtheory ≈ 10 mm. As mea-
sured from the experimental pictures using Rhino, the experimental radius of curvature is
Rexp ≈ 60 mm . The analytical radius of curvature is much smaller than the experimental
radius curvature (Rexp ≈ 6 ∗ Rtheory). Assuming that there was no error in our calculation nor
in measuring the experimental parameters, this means that some of the assumption underlying
the theoretical model must be revised. One assumption that is made throughout this thesis, is
that the constitutive law is not affected by the eigenstrain. In reality, increasing the eigenstrain
within a material usually decreases its stiffness (fig. C.7). However, as plotted in fig. 6.1, the
influence of the stiffness contrast on the curvature is too small to explain this discrepancy 24.
Another assumption which was made in calculating the theoretical curvature, is that the bilayer
is simply supported. Regarding the experimental system, this assumption can be questioned
(subsubsection 6.3.2.3).

6.3.2.3 Rigidity of the connections

The assumption of simple supports leads to a theoretical curvature that is much larger than
the experimental one (κtheory ≈ 6 ∗ κexp) as discussed in subsubsection 6.3.2.2. If instead one
assumes that the support has some rotational rigidity, then the curvature of each bilayer will be
reduced. Indeed, the experimental geometry of the connection does not allow for free rotation.
Using the finite-element method, one can draw the geometry of the connection, thereby given it
some rotational rigidity (fig. 6.16).

23. By doing this, we assume that the eigenstrain of each layer taken separately is the same when they are
together.

24. The proportionality factor is already close to its maximum value (f(m = 3, n ≈ 0.2) ≈ 1.5).
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(a)

(b)

(c) (d)

Figure 6.16 – Dry (bottom) and wet (top) configuration of a single bilayer (left) or a bilayer
cell (right). The radius of curvature of a simply supported bilayer found by fem is equal to its
theoretical value Rtheory ≈ 10 mm, while the radius of curvature of the bilayer cell is reduced by
the rigidity of the supports, thus getting closer to its experimental value Rexp ≈ 60 mm.
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Conclusions

Bilayers are known since more than 150 years. However, they remain a clever way to trans-
form some external source of energy (like heat or water) into bending. The main cause of failure
of bilayers (and composite structures in general) is delamination which is due to high interfacial
stress. This interfacial stress can be lowered by adding intermediate layers between the most
passive and the most active layer. In the limiting case of a graded bender , the actuation is
stress-free. Variations of curvature along the longitudinal direction can be achieved by grading
the benders along its length. Also, introducing an angle between the principal directions of
eigenstrain and the principal directions of the geometry (either directly or by using the principal
directions of stiffness), one obtains different helical morphologies. Finally, bilayers can also be
used to transform a relatively small differential eigenstrain into a relatively large displacement
by adding higher levels of hierarchy in the geometry of the material (geometric amplification).
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Intrigued by twisting motions of some natural morphers like the twist-like opening of seed
pods (Armon et al. 2011) and the coiling actuation of the stork’s bill awn (Abraham et al.
2012), one can ask the question if there exist an analogous solution for twisting as benders are
for bending. This chapter concerns itself with finding eigenstrain architectures that produces
twisting inside elongated rod-like shapes.

Section 7.1 explores the design space of elongated translationally invariant 1 binary 2 mor-
phers with the goal of finding analogous solutions for twisting as benders are for bending. Based
on Curie’s principle, the design space is restricted to rotationally symmetric morphers in terms
of shape and eigenstrain (subsection 7.1.1). Using the finite-element method (section 4.3), this
reveals a new class of twisting morphers which we call twisters (subsection 7.1.2). The morphing
of these twisters consists of a stretched configuration followed by a twisted configuration. Sub-
section 7.1.3 identifies the critical transition point using an analytical approach. Subsection 7.1.4
illustrates twisters using the mass-spring model presented in section 4.1 as well as the swelling
of 3d printed materials presented in subsection 5.3.2.

As described in subsection 3.1.2, the fundamental morphing modes of rods are stretching,
bending and twisting 3. Section 7.2 shows how an arbitrary configuration (with some restrictions)
of a rod-like object can be achieved by combining benders and twisters. In this sense, twisters
appear as a complementary solution to the benders presented in chapter 6.

1. Translationally invariant structures have the advantage of being extrudable, which makes them easy to
process. This can be done by co- or multi-extrusion in the case of bi- or multi-nary structures.

2. Here binary means that the longitudinal components of the eigenstrain take two constant values in two
complementary regions of the object, whereas all the other components of eigenstrain are zero everywhere (✎∗(r) =
ǫ∗

zz ∈ {ǫ∗

1, ǫ∗

2} where Ω1 ∪ Ω2 = Ω).
3. We use to world coiling to refer to a combination of bending and twisting.
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7.1 Analog of a bender for twisting?

This section presents the twisters, which were partially published in (Turcaud et al. 2011). As
in the case of bilayers, we first look at binary eigenstrain inside elongated rod-like shapes. For
production purposes, translationally invariant arrangement of the active and passive 4 regions is
preferred 5.

Subsection 7.1.1 explores the design space of such binary morphers looking for eigenstrain
architectures that leads to twisting. Subsubsection 7.1.1.1 recalls the symmetry operations in
two dimensions and subsubsection 7.1.1.2 discusses the symmetry of a morpher in terms of
the symmetry of its cross-section section and of its eigenstrain architecture. Based on these
symmetry considerations and Curie’s principle, the design space is restricted to rotationally
symmetric eigenstrain architectures inside rotationally symmetric cross-sectional shapes (sub-
subsection 7.1.1.3). Subsection 7.1.2 presents the deformed configuration of these morphers
based on the finite-element method. Some of the designs display twisting, while others don’t.
We call twisters the ones that twists and identify two configurations during their morphing:
stretching and twisting (subsubsection 7.1.2.2). In subsection 7.1.3, we parametrize the stretched
and twisted state using a simple geometrical model (subsubsection 7.1.3.1), from which we can
calculate the corresponding energies and discuss the transition between the two configurations
(subsubsection 7.1.3.2). Finally, twisters are illustrated in subsection 7.1.4 using the mass-
spring model (subsubsection 7.1.4.1) as well as the swelling of 3d printed materials (subsubsec-
tion 7.1.4.2).

7.1.1 Restricting the design space of morphers

Not knowing beforehand if an analogous solution as benders for bending exists for twisting,
the design space of extrudable binary morphers is restricted through symmetry considerations.
Using Curie’s principle 6, which states that the symmetry of some effects cannot be smaller than
the symmetry of their causes, this unravels a class of binary morphers that might display a
twisting behavior. Subsubsection 7.1.1.1 discusses the symmetry operations in two-dimensions
and subsubsection 7.1.1.2 uses them to classify morphers according to the symmetry of their
cross-section and eigenstrain architecture. Subsubsection 7.1.1.3 then restricts the design space
of potentially twisting morphers based on Curie’s principle.

7.1.1.1 Symmetry operations

The characteristic symmetry of a morpher is the symmetry of its geometry and of its eigen-
strain architecture. In the case of extrudable shapes with uniform cross-sections, both the
geometry of the cross-section and the eigenstrain are a function of the two transversal coordi-
nates spanning the cross-section. In the two-dimensional plane of the cross-section the symmetry
operations thus reduce to two: mirror symmetry and rotational symmetry.

Mirror symmetry Mirror symmetry is defined by the presence of mirror planes. In the case
of objects which are translationally invariant in one direction, all mirror planes are parallel to
the center line 7. The projection of such a mirror plane in the plane of the cross-section is a line

4. We use the terminology active and passive to denote the regions with the highest (ǫ∗

a = ǫ∗

2) and lowest
eigenstrain (ǫ∗

p = ǫ∗

1) respectively (α2 > α1).
5. See footnote 1.
6. See (Ismael 1997) for a general discussion about the relevance of Curie’s principle in science.
7. There is one other trivial mirror plane which lies perpendicular to the center line at half-length (z = L/2).
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that corresponds to a mirror axis of the cross-section. We note mirror planes 8 as (Mi) with
(1 ≤ i ≤ n), where n is the total number of mirror planes (see fig. 7.1).

(M1)

(M2)

Figure 7.1 – Mirror symmetry is characterized by a mirror plane. In the case of translationally
invariant shapes, only mirror planes parallel to the center line of the object matter (see footnote
7). The projection of those planes in the plane of the cross-section is a line that corresponds
to a mirror axis of the cross-section. This figure shows the two mirror axis in the case of a
rectangular cross-section (n = 2). The area in gray represents the smallest portion of the cross-
section, which if reflected along the mirror axes generates the entire cross-section (see Repetitive
unit cell).

Rotational symmetry Rotational symmetry is defined by the presence of a rotational axis.
In the case of objects which are translationally invariant in one direction, the only possible
rotational axis is along the center line 9. Its projection onto the plane of the cross-section is
the centroid of the cross-section. We note this rotational axis Rn, where n is the order of the
rotational symmetry 10. The angle of a n-fold rotation is given by αn = 360/n◦, where n ≥ 2 11

(see figure 7.2).

R2

Figure 7.2 – Rotational symmetry is characterized by a rotational axis. In the case of trans-
lationally invariant shapes, only the center line is a potential rotational axis (see footnote 9),
which projection onto the plane of the cross-section is its centroid. This figure shows a two-fold
rotationally symmetric shape made out of two shifted rectangles. The angle of rotation is 180◦.
The small gray area represents the smallest portion of the cross-section, which if reflected along
the mirror axis generates the entire cross-section (see Repetitive unit cell).

8. As we only consider translationally invariant shapes, there is no need to have separate notations for the
mirror planes and the mirror axis.

9. Contrary to mirror planes, there cannot be multiple rotational axis perpendicular to the plane of the cross-
section. The axes along the two transversal direction contained in the trivial mirror plane (see footnote 7) are
also trivial rotational axis of order 2.

10. In two-dimensions the order of the rotational symmetry of the cross-section is either equal to its number
of mirror planes or its number of mirror planes is zero. That’s why we can choose the same symbol n to denote
both the number of mirror planes and the order of the rotational symmetry.

11. If an object displays n-fold rotational symmetry then it also displays p-fold rotational symmetry, where p
is the product of a subset of the primary numbers present in the decomposition of n (n = p1 · p2 · . . . · pm and
p = pi1

· pi2
· . . . · pik

, where {i1, . . . , ik} is a subset of {1, . . . , m}).
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Repetitive unit cell We name repetitive unit cell (RUC) the smallest portion of the cross-
section, which if reflected and rotated along the symmetry elements (Mn) and (Rn) generates
the entire cross-section (see gray regions in fig. 7.1, fig. 7.2 and fig. 7.3). In this sense, the RUC
is the smallest building block required to reconstruct the cross-section.

7.1.1.2 Symmetry of shape and symmetry of eigenstrain

The symmetry elements of the morpher correspond to the intersection between the symmetry
elements of its shape and the symmetry elements of its eigenstrain. Because the eigenstrain is
defined within the geometry of the shape, the symmetry elements of the eigenstrain are a subset
of the symmetry elements of the shape. The symmetry of the morpher is thus equal to the
symmetry of the eigenstrain. The following presents examples of cross-sectional shapes along
with their symmetry elements and discuss how the choice of eigenstrain diminishes the symmetry
of the morpher .

Symmetry of shape Cross-sections can be anything from asymmetric to multiply symmetric.
Examples of the latter are regular n-sided polygons, which posses (Mn) mirror axis and (Rn)
rotational symmetry 12. Figure 7.3 shows regular n-sided polygons along with their symmetry
elements and their RUC for n = 3, 4, 5, 6, 7 and 36.

n = 3

M1

M2

M3

R3

n = 4

M1

M2

M3

M4

R4

n = 5

M1

M2

M3
M4

M5

R5

n = 6

M1

M2

M3
M4M5

M6

M7 R6

n = 7

M1

M2

M3
M4M5

M6

M7
R7

n = 36

M1

M10

M20

M30

M36 R36

Figure 7.3 – Regular n-sided polygons possess (Mn) mirror axis and (Rn) rotational symmetry.
(From left to right) triangle (n = 3), square (n = 4), pentagon (n = 5), hexagon (n = 6),
heptagone (n = 7). For n → ∞, the number of symmetry elements increases as n and the
n-sided polygon converges to its circumscribed circle (see the 36-gone on the bottom right).

Symmetry of eigenstrain As mentioned above, the symmetry elements of the eigenstrain
form a subset of the symmetry elements of the shape. For a given shape, the eigenstrain can only

12. This is why there is no ambiguity in using the same symbol n for the number of sides of a regular polygon,
the number of mirror planes and the order of rotational symmetry (see footnote 10).
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maintain or decrease its symmetry elements. In this sense, the eigenstrain breaks the symmetry
of the shape 13 (see fig. 7.4).

M1

R2

M2 R2

R4

M4 R4

Figure 7.4 – The eigenstrain reduces the symmetry given by the shape. In case of a square
cross-section, we have 4 mirror planes and a 4-fold rotational axis. (First column) Square cross-
section with its symmetry elements. (Other columns) Non-exhaustive examples of eigenstrain
that reduces the symmetry of the morpher (Last column) symmetry of the morpher (Mn, Rn,
where n is the number of mirror planes and the order of rotational symmetry). (Black) active
region. (White) passive region. Figure reprinted with permission from (Bruno et al. 2010).
Copyright (2010) Carl Hanser Verlag, Muenchen.

7.1.1.3 Restricting the design space using Curie’s principle

The following recalls the definition of Curie’s principle and uses to restrict the design space
of potentially twisting morphers.

Curie’s principle

When certain causes produce certain effects, the element of symmetry of the causes
must be found in the effects 14. (Curie 1894, p. 9)

In short, Curie’s principle can be rephrased as “effects have at least the symmetry of their
causes” 15. Here, the effect we consider is twisting, which corresponds to a differential rotation

13. Actually the word breaking is misleading. Adding eigenstrain simply reduces the symmetry of the morpher

relatively to the symmetry of its geometry.
14. The original statement in french is “Lorsque certaines causes produisent certains effets, les éléments de

symétrie des causes doivent se retrouver dans les effets produits.”
15. It is important that all the effects be considered. In the case of Euler buckling of a circular rod for example,

there is no privileged plane for the buckling to happen. The problem is entirely symmetric along the longitudinal
direction and one needs to introduce an imperfection in order to trigger buckling. In an experiment, the ensemble
of solutions will be symmetric along the longitudinal direction in accordance with Curie’s principle, even if each
individual solution breaks the longitudinal symmetry.
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of the cross-sections around the longitudinal direction 16. Due to this differential rotation of the
cross-sections, all existing mirror planes parallel to the center line in the initial configuration are
no longer mirror planes in the twisted configuration. However, if a morpher displays rotational
symmetry in its initial configuration, then the rotationally symmetry is maintained in its final
twisted configuration.

Rotationally symmetric morphers According to Curie’s principle, the design space of
potentially twisting morphers is restricted to the ones possessing a rotationally symmetric initial
configuration (both in terms of their shape as in terms of their eigenstrain). It is important that
they do not possess any mirror plane in their initial configuration, because no mirror plane is
present in the final twisted configuration 17.

The rotational order of the cross-section, restricts the potential rotational symmetry of the
eigenstrain candidates 18. For example, a triangular cross-section(n = 3) only allows for a 3-fold
rotational symmetric eigenstrain, while a square cross-section (n = 4) allows for both 2- and
4-fold rotational symmetric eigenstrain. In the case of a circular cross-section, as the circle
possesses an infinite order or rotation (n = ∞), all orders 2 ≤ n ≤ ∞ are possible for the
rotational symmetry of the eigenstrain (see fig. 7.5).

∞ 2 3 4 5 6 36

Figure 7.5 – The rotational order of the cross-section restricts the possible rotational orders of the
eigenstrain. In the case of a circular cross-section, which has as an infinite order of rotation(n =
∞), all orders 2 ≤ n ≤ ∞ are possible for the rotational symmetry of the eigenstrain. (From
left to right) n = 2, 3, 4, 5, 6, . . ., 36. The RUCs are represented in gray (see Repetitive unit
cell).

The choice of eigenstrain within the cross-section reduces to the choice of eigenstrain within
the RUC for a given rotation order. Inside the RUC, any choice for the passive and active regions
will preserve the rotation order of the eigenstrain, but some choices will display unwanted mirror
symmetry (see fig. 7.6 top-left, center and bottom-right), which should be avoided 19.

Convex vs. concave cross-sections Another global way to restrict the design space, is
to classify the shapes of the cross-sections into convex and concave. An informal definition of
a convex shape is that any line drawn between two arbitrary points of the shape is entirely
contained in the shape. On the contrary, for concave shapes it is always possible to find a line
connecting two points of the shape, that is not entirely contained in the shape (see fig. 7.7).
Subsubsection 7.1.2.1 shows that the concavity of the cross-sections of a morpher has an impact
on whether it twist or stays straight.

16. This is a approximation as the cross-sections don’t remain planar in general and warp out of plane during
twisting (see subsubsection 3.1.2.3).

17. Morphers displaying both rotational and mirror symmetry are locked according to Curie’s principle in the
sense that they cannot bend nor twist as both morphing would break one of these symmetries (see fig. 7.4 first
and third row).

18. See footnote 11.
19. See footnote 17.
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Figure 7.6 – Filling the RUC of a rotationally symmetric shape can result in unwanted mirror
symmetries. In the case of a square (M4, R4) (middle), choosing mirror symmetric eigenstrain for
the RUCs (first crown) can result in unwanted mirror planes (top-left, center and bottom-right)
that leads to lock the morpher . (Black) active region. (White) passive region. Figure reprinted
with permission from (Bruno et al. 2010). Copyright (2010) Carl Hanser Verlag, Muenchen.

Figure 7.7 – Convex (left) and concave (right) shape.

7.1.2 A new type of morpher: the twister

According to subsection 7.1.1, binary elongated extrudable morphers are considered where
both the cross-section (which can be convex or concave) as well as the eigenstrain displays
rotational symmetry without mirror symmetry. We look at their final configuration using the
finite-element method (section 4.3) and discuss their morphing patterns obtained (subsubsec-
tion 7.1.2.1). This reveals a special family of concave morphers that display twisting, which we
call twisters. The morphing of these twisters consists of a stretched configuration followed by a
twisted configuration, which we’ll describe in (subsubsection 7.1.2.2).

7.1.2.1 Finite-element results

This section presents the deformed configuration of elongated translationally invariant bi-
nary morphers displaying rotationally symmetric eigenstrain using the finite-element method as
described in section 4.3 inside Abaqus R©. The following observations are made from fig. 7.8 20:

— Rotational symmetric eigenstrain (even in the absence of mirror symmetry) is not a suf-
ficient condition for twisting. In the case of a convex cross-section such as a square, the
morpher remains straight no matter how much the differential eigenstrain is increased
(fig. 7.8(b));

20. The bilayer shown on the left of fig. 7.8 is for confirmation of the finite-element model only.
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— In the case of a concave cross-section, twisting is obtained for a sufficiently high value of
the differential eigenstrain (fig. 7.8 (c));

— The twisting rate appears to be inversely correlated to the inertia of the cross section (see
(fig. 7.8(c)) and (fig. 7.8(d)));

— The concavity of the cross-section is not a sufficient conditions for twisting (fig. 7.8 (e));

— The morphers in fig. 7.8(b) and fig. 7.8(e) appear to be locked in the sense that they
remain straight regardless of how much the differential eigenstrain is increased.

(a) (b) (c) (d) (e)

Figure 7.8 – Final configuration of morphers with different cross-sectional shapes and eigenstrain
distributions using the finite-element method in Abaqus R©. (Top row) Cross-section with active
(black) and passive (white) regions. (Bottom row) Deformed configuration (a) Convex (square)
cross-section with one mirror plane eigenstrain displays bending (for reference). (b) Convex
(square (M4, R4)) cross-section with 4-fold rotationally symmetric eigenstrain remains straight.
(c) Concave (R4) cross-section with 4-fold rotationally symmetric eigenstrain display twisting.
(d) Same as (c) with more elongated wings leads to less twisting. (d) Same as (c) with different
eigenstrain inside the RUC remains straight. Figure reprinted with permission from (Bruno
et al. 2010). Copyright (2010) Carl Hanser Verlag, Muenchen.

As discussed in subsubsection 7.1.4.1, when a rod-like object undergoes twisting, its center line
remains approximately unchanged, while its external lines 21 deform helically and wind around
the center line. The morpher shown in fig. 7.8(c) display a similar behavior. We refer to it as a
twister and describe its morphing in subsubsection 7.1.2.2.

7.1.2.2 Stretching and twisting configuration of twisters

The morphing of a twister consists of two configurations: a stretched configuration where
the twister extends while remaining straight followed by a twisted configuration in which the
twister twists without extending. From the finite-element simulation, the critical differential
temperature 22 depicted in fig. 7.9, which correspond to the twister shown in fig. 7.8(c), is
∆Tc ≈ 0.75◦C for a = 0.5 (see fig. 7.11), αT 2 = 1 and αT 1 = 0. Subsection 7.1.3 studies these
two configurations theoretically and identifies the critical differential eigenstrain at which the
transition occurs.

7.1.3 Theoretical description of twisters

Subsection 7.1.1 explored the design space of elongated binary extrudable morphers. Based
on symmetry considerations, the design space was restricted to rotationally symmetric morphers

21. The external lines are parallel to the center line and constitute the boundary of the rod.
22. We call differential temperature the temperature difference between the initial and the final state.
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str
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∆T < ∆Tc ∆T > ∆Tc

Figure 7.9 – (Left) Initial straight configuration. (Middle) Transition point (Right) Twisting
configuration. The critical differential temperature is ∆Tc ≈ 0.75◦C for a = 0.5, αT 2 = 1
and αT 1 = 0. The pictures are at scale and were obtained using the finite-element method in
Abaqus R©

that allow for twisting to occur according to Curie’s principle. Subsubsection 7.1.2.1 presented
the deformed configuration of these morphers according to the finite-element method. This
revealed a particular family of morphers that we call twisters 23, which possess a concave cross-
section and are such that the active regions (wings) are positioned around the passive (core)
region in an eccentric manner 24. Figure 7.9 shows that the morphing of such a twister consist of
two configurations: a stretched configuration followed by a twisted configuration. This subsec-
tion aims at studying these two configurations theoretically and identifies the critical differential
eigenstrain at which the transition occurs using the one-dimensional rod model presented in
section 3.1. As the eigenstrain depends on the transversal coordinates of the rod and doesn’t
correspond to a simple deformation mode such as bending or twisting, the natural curvatures 25

of a twister are functions of the final configuration of the rod. This is why the twister is con-
sidered to be made of five distinct rods linked through geometry (the core and the four wings),
each possessing their own elastic energy.

Subsubsection 7.1.3.1 parametrizes the two configurations of the morphing of twisters using
a simple geometrical model: the winding of the wings around the core during the twisting
configuration is assumed to be a perfect helix. This helps us in relating the morphing of the
wings to the morphing of the core. Subsubsection 7.1.3.2 calculates the elastic energy in the
straight and in the twisted configurations and identifies the equilibrium stretch (ǫeq) and the
equilibrium torsion (τeq) in the stretched and in the twisted configuration respectively as well
as identify the critical temperature difference between the final and the initial state (∆Tc) at
which the transition between the two regimes occurs.

7.1.3.1 Geometrical description of the morphing of twisters

Figure 7.9 shows that—as the temperature difference between the final and the initial state
(∆T ) increases—the twister adopts two different configurations. For 0 < ∆T < ∆Tc, the twister

23. We coined the word twister in analogy to the word bender that we used for bending.
24. We call wings the active regions and core the passive region and so we write equivalently ǫ∗

2 = ǫ∗

a = ǫ∗

wing

and ǫ∗

1 = ǫ∗

p = ǫ∗

core.
25. Sometimes in the text, we make no explicit distinction between the natural curvatures (κ∗

1 and κ∗

2) and the
natural torsion (κ∗

3), but call them all natural curvatures.
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follows a stretched configuration and both wings and core are stretched 26. For ∆T > ∆Tc, the
twister follows a twisted configuration where the wings wind around the core in a helical manner
thereby twisting the core whose extension remains constant. The transition between the two
configurations (stretched and twisted 27) happens for a critical temperature difference between
the final and the initial state (∆Tc) 28.

In order to find the equilibrium stretch (ǫeq) and the equilibrium torsion (τeq) in the stretched
and twisted configuration as a function of the differential temperature (∆T ), the strain state
of the twister in the two configurations needs to be described. In general, the total strain
inside a rod depends on its extension and material curvatures 29 (see subsection 3.1.1). As the
twister is described as five distinct rods (one core and four wings), the total strain inside the
twister is expressed by the extension and material curvatures of both the core and the wings.
By symmetry, the extension and material curvatures are equal in each wing. This means that
there are a priori 8 parameters that characterize the total strain inside the twister (ǫβ and κβ

i ,
where β ∈ {core, wing}). The following shows how the number of parameters that describe the
total strain inside the twister reduces to one in each configuration: the total extension (ǫ) in the
first stretched configuration and the material torsion of the core (κcore

3 ) in the second twisted
configuration.

Straight configuration In the first configuration where the twister remains straight (fig. 7.10
left), all material curvatures are zero (κβ

i = 0) and both core and wings have the same total
extension:

ǫ =
(L/L0)2 − 1

2
, (7.1)

where L0 and L are the initial and final length of the twister respectively 30. The strain in the
stretched configuration is thus entirely parametrized by the extension of the twister (ǫ).

Twisted configuration Let us express the extensions (ǫβ) and material curvatures (κβ
i ) of the

wings and core in the second configuration where the twister twists (fig. 7.10 right). The total
extension of the core remains constant and equal to its value at the end of the first configuration
(ǫcore = ǫc, where ǫc is the critical total extension of the twister). Assuming that the wings
wind around the core in a perfect helical manner, their center line follows a helix between the
two end-points of the core spanned by r(θ) = r(x(θ), y(θ), z(θ)) parametrized by the azimuthal
angle along the longitudinal direction (θ). The coordinates x(θ), y(θ), z(θ) of this helix are given

26. Both core and wings are stretched in terms of the total strain. In terms of the elastic strain, the wings are
contracted while the core is stretched (eq. 7.16).

27. We refer to the configuration of the twister in the two configurations by describing the configuration of its
core which is stretched in the first configuration and twisted in the second. However, one should keep in mind
that the configuration of the wings is contracted in the first configuration and helical in the second, which implies
a combination of contraction, bending and twisting.

28. The temperature difference between the final and the initial state (∆T ) corresponds to a differential eigen-

strain (∆ǫ∗ = ∆αT ∆T = (αT 2 − αT 1)(T − T0)) between the active and passive regions. Also, the critical
temperature difference between the final and the initial state (∆Tc) corresponds to a critical differential eigen-

strain (∆ǫ∗

c). As we consider constant expansion coefficients (αT β), we can use both temperature and eigenstrain

equivalently.
29. Sometimes in the text, we make no explicit distinction between the two material curvatures (κ1, κ2) and

the material torsion κ3, but call them all material curvatures (see footnote 25).
30. The initial length of the core is equal to initial length of the wings (Lcore = Lwing

0 = L0).
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Figure 7.10 – Center lines of the core and wings from a twister in its first stretched configuration
(left) and in its second twisted configuration (right). (Left) All center lines are straight and the
total strain inside the twister is parametrized by the total extension of the twister (ǫ). (Right)
The center line of the core is straight and the center lines of the wings wind around the center
line of the core in a perfect helical manner (only one wing center line is drawn fully opaque for
the sake of visual readability). The total strain is parametrized by the torsion of the core (τ core).
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Figure 7.11 – Rotationally symmetric concave cross-section of twister. In the case of unitary
volume contrast between the active and passive regions, the side-length of the wings are half the
side-length of the core. The coordinate axes whose orientation is given by ex and ey intersect
the centroids of the core and wings. (Black) active wings. (White) passive core.

by 31:














x(θ) = r cos(θ),

y(θ) = r sin(θ),

z(θ) = p θ,

0 < θ <
Lcore

p
, (7.2)

31. This set of parametric equations gives the coordinates of the fully opaque center line drawn in fig. 7.10 right.
The coordinates of the other wings are obtained by adding kπ/2 (k = 1, 2, 3) to θ.
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where r is the radius of the cylinder onto which the helix is drawn and 2πp is the pitch of the
helix. The radius of the helix is known and equal to the distance between the center lines of the
wings and the center line of the core as given by the geometry of the cross-section (fig. 7.11).
Using Pythagoras’s theorem one has r =

√
5a/(2

√
2) where a is the side-length of the core 32.

The curvilinear abscissa of a wing (0 < s < Lwing) is related to the azimuthal angle (θ) by:

ds = ‖dr(θ)‖,

=
√

(dx(θ))2 + (dy(θ))2 + (dz(θ))2,

=
√

(−r sin(θ) dθ)2 + (r cos(θ) dθ)2 + (p dθ)2,

=
√

r2 + p2 dθ.

(7.3)

Also, the curvilinear abscissa of the core (0 < z < Lcore) 33 is related to the azimuthal angle (θ)
by:

dz = p dθ. (7.4)

In particular, the length of a wing and of the core are related by:

Lcore =
∫ Lcore

0
dz = p

∫ Lcore

p

0
dθ =

p
√

r2 + p2

∫ Lwing

0
ds =

Lwing

√

1 +
r2

p2

(7.5)

Using eq. 7.5 and the nonlinear definition of the extensional strain (eq. A.40 with λ =
L

L0
), the

extension of the wings (ǫwing) is linked to the extension of the core (ǫcore) by:

ǫwing =

(

Lwing

L0

)2

− 1

2
,

=

(

1 +
r2

p2

)

(

Lcore

L0

)2

− 1

2
,

= (0.5 + ǫcore)
r2

p2
+ ǫcore.

(7.6)

Let us identify the material vectors (dwing
i (s)) of one wing in order to compute its material

curvatures (κwing
i (s)). We first compute the geometric curvature and geometric torsion of a helix

by looking at its local geometrical frame (t(s), n(s), b(s)). By applying eq. 3.1 to eq. 7.2 one

32. In the case of a unitary volume contrast (V core = V wings = a2L), the side-length of the wings is half the
side-length of the core.

33. We directly denote the curvilinear abscissa of the core by its longitudinal coordinate z in order to avoid
ambiguity with the curvilinear abscissa of the wing denoted by s.
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obtains 34:






































































t(s) = r′(s) =







−r sin(θ)
r cos(θ)

p







1
√

r2 + p2
,

n(s) =
t′(s)

‖t′(s)‖ =







−r cos(θ)
−r sin(θ)

0







1
r2 + p2

/

r

r2 + p2
=







− cos(θ)
− sin(θ)

0






,

b(s) = t(s) × n(s) =







p sin(θ)
−p cos(θ)

r







1
√

r2 + p2
,

(7.7)

where t(s), n(s), b(s) are the tangent-, normal- and binormal-vectors. By definition κ(s) =
‖t′(s)‖ and τ(s) = n′(s) · b(s), so the geometric curvature and geometric torsion of a helix are
constant and given by:

κwing =
r

r2 + p2
, τwing =

p

r2 + p2
. (7.8)

Assuming perfect attachment between the wing and the core (which is required by the com-
patibility of strain before delamination), the orientation between the material frame and the
geometrical frame of the wings is constant. This means that the material torsion of the wing
is equal to its geometric torsion (κwing

3 = τwing). Also, because the squared cross-section of the
wing is isotropic, one can set one of its transversal material vector equal to its binormal vector
(dwing

1 (s) = b(s)). The geometrical and the material frame of the wing can thus be identified:







d
wing
1 (s)

d
wing
2 (s)

d
wing
3 (s)






=







t(s)
n(s)
b(s)






.

The material curvatures of the wing are thus equal to its geometric curvatures 35 and constant
along the center line of the wings:

κwing
1 =

r

r2 + p2
, κwing

2 = 0, κwing
3 =

p

r2 + p2
. (7.9)

Let us identify the material vectors (dcore
i (z)) of the core in order to compute its material

curvatures (κcore
i (z)) where 0 < z = p θ < Lcore is the curvilinear abscissa of the center line

of the core. Its center line remains straight and so its tangent vector is along the longitudinal
direction (dcore

3 (z) = ez). Because the tangent vector is constant, the geometric curvature and
the geometric torsion of the core are zero (κ(z) = τ(z) = 0). As the wing is perfectly attached to
the core, the transversal material vector of the core dcore

1 (z) can be identified with the projection
of the position vector of the helix r(θ) onto the xy-plane:

dcore
1 (z) =

r(θ) − r(θ) · ez

‖r(θ) − r(θ) · ez‖ =







r cos(θ)
r sin(θ)

0







1
r

=













cos

(

z

p

)

sin

(

z

p

)

0













, dcore
2 (z) =













−sin

(

z

p

)

cos

(

z

p

)

0













,

34. We parametrize the helix by its azimuthal angle (θ), but derive the geometrical and material vectors with
respect to the arc-length (s). Applying the chain rule, derivation amounts to multiply by a factor 1/

√

r2 + p2

(eq. 7.3).
35. Sometimes in the text, we make no explicit distinction between the geometric curvature (κ) and the geometric

torsion (τ), but call them both geometric curvatures (see footnote 25 and 29).
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where the fact that the material frame is orthonormal is used to write dcore
2 (z). The material

curvatures of the core are thus:

κcore
1 (z) = 0, κcore

2 (z) = 0, κcore
3 (z) = (dcore

1 (z))′ · dcore
2 (z) =

1
p

. (7.10)

This means that the material torsion of the core and the pitch of the helix representing the center
line of the wing are inverse quantities (κcore

3 = 1/p). Indeed, the material torsion of the core is
defined by the rotation of its transversal material vectors (dcore

1 (z), (dcore
2 (z)) along its center line,

which is expressed by their change in orientation in the xy-plane given by the azimuthal angle
(κcore

3 = dθ/dz). From eq. 7.4 the change in azimuthal angle along the longitudinal direction
and the pitch p of the helix are inverse quantities (dθ/dz = 1/p). For simplicity of notation, we
note τ = κcore

3 to denote the material torsion of the core 36 and so p τ = 1.

The strain in the twisted configuration is parametrized by the extensions (ǫβ) and material
curvatures (κβ

i ) of the wings and core, which are all functions of the pitch (p) of the helix
representing the center line of the wings. The pitch and the material torsion of the core are
inverse quantities and so the strain in the twisted configuration is entirely characterized by the
material torsion of its core (τ = κcore

3 ) through eq. 7.6, eq. 7.9 and eq. 7.10.

7.1.3.2 Energetic considerations

Subsubsection 7.1.3.1 showed that the strain inside a twister is entirely parametrized by its
stretching in its stretched configuration (ǫ as given by eq. 7.1) and by the torsion 37 of its core
in its twisted configuration (τ through eq. 7.9 and eq. 7.10). The following calculates the elastic
energy of a twister in its straight and twisted configuration and find the equilibrium stretch (ǫeq)
and equilibrium twist (τeq), which correspond to a minimum of the elastic energy.

The elastic energy of a twister is the sum of the elastic energy of its core and of the elastic
energy of its wings (E twister = Ecore + 4 ∗ Ewing). According to eq. 3.25, the elastic energy of a
rod with natural extension (ǫ∗) and natural curvatures (κ∗

i ) is given by:

Erod = 0.5
∫

(

EA (ǫ − ǫ∗)2 + EI(1)(κ1 − κ∗
1)2 + EI(2)(κ2 − κ∗

2)2 + µJ(κ3 − κ∗
3)2
)

ds, (7.11)

where E and µ are the Young and the shear modulus and A, Iα, J the area, bending inertias and
twisting inertia of the cross-section of the rod. In the case of translationally invariant morphers,
the integration along the longitudinal coordinate (s for the wings and z for the core) amounts
to a simple multiplication by the length of the core or of the wings 38 (Lcore or Lwing). Also, as
only a differential longitudinal eigenstrain is imposed, the natural curvatures of the core and of
the wings are equal to zero (κ∗β

i = 0) and only the natural extensions are nonzero (ǫ∗
1 = αT 1∆T

and ǫ∗
2 = αT 2∆T where αT 2 > αT 1). According to eq. 7.8, the wings undergo simple bending

and only one of the transversal material curvatures is nonzero as the first material vector (d1)
is defined along the bending direction 39 (κ1 = κ and κ2 = 0 according to eq. 7.9). The elastic
energy of a rod with natural extension undergoing a combination of stretching, single bending
and torsion is thus given by:

Erod(ǫ, κ, τ) =
L

2

(

EA(ǫ − ǫ∗)2 + EIκ2 + µJτ2
)

, (7.12)

36. There is no ambiguity with the geometric torsion of the core, which is zero as its center line remains straight,
and the geometric torsion of the wings as we’ll only consider material curvatures during the energy considerations.

37. Equivalently, the twisted configuration can be entirely characterized by the pitch of the helix representing
the center line of the wings winding around the core (p τ = 1).

38. In the straight configuration, the length of the core and of the wings is equal (Lcore = Lwing = L). In the
twisted configuration, the length of the wing is related to the length of the core through eq. 7.5.

39. The wings have an isotropic cross-section (square) in terms of their bending inertia (EI(1) = EI(2)) and
so their bending energy is unchanged if we define the first material vector (d1) not along the bending direction
(Ea2κ2/12 = Ea2(κ2

1 + κ2
2)/12 because κ = κ2

1 + κ2
2).
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where L is the length of the rod. As the core has a square cross-section of side-length a, we have
Acore = a2, Icore = a4/12 and Jcore ≈ a4/7. In the case of a unitary volume contrast, the wings
have a square cross-section of side-length a/2 and so we have Awing = a2/4, Iwing = a4/192 and
Jwing ≈ a4/112.

Elastic energy in the straight configuration In the straight configuration, the core and
the wings undergo simple stretching, which is characterized by the stretch ǫ. Also, the core and
wings have the same length (Lcore = Lwing = L). According to eq. 7.12, the elastic energy of the
twister is:

E twister
straight(ǫ) = Ecore

straight(ǫ) + 4 ∗ Ewing
straight(ǫ) =

Ea2L

2

[

(ǫ − ǫ∗
1)2 + (ǫ − ǫ∗

2)2
]

. (7.13)

At equilibrium, the elastic energy of the twister is minimum. In the straight configuration, we
have:

dE twister
straight(ǫ)

dǫ
= 0 =⇒ 4ǫ − 2(ǫ∗

1 + ǫ∗
2) = 0. (7.14)

The equilibrium stretch is thus simply the average of the two eigenstrains:

ǫeq =
ǫ∗
1 + ǫ∗

2

2
=

αT 1 + αT 2

2
∆T. (7.15)

Knowing the equilibrium stretch (ǫeq), we can deduce the elastic strain in the core and wings
using eq. 3.16:

ǫel
core = ǫeq − ǫ∗

1 =
∆ǫ∗

2
, ǫel

wing = ǫeq − ǫ∗
2 = −∆ǫ∗

2
, (7.16)

which shows that in the straight configuration the core is stretched and the wings are compressed
(∆ǫ∗ > 0 for αT 1 > αT 2). In the straight configuration, the elastic energy of a twister is then
simply a quadratic function of the differential eigenstrain:

E twister
straight =

Ea2L

4
(∆ǫ∗)2. (7.17)

Elastic energy in the twisted configuration In the twisted configuration, the elastic en-
ergy of a twister is parametrized by the stretch (ǫ) and the material torsion of its core (τ).
However, as its expression is more complicated than in the straight configuration, we look at
the elastic energy of the core and of the wings in two separate steps.

In the twisted configuration, the core is twisted as given by eq. 7.10. According to eq. 7.12,
its elastic energy is given by:

Ecore
twisted(τ, ǫ) =

Ea2L

2
(ǫ − ǫ∗

1)2 +
µa4L

14
τ2, (7.18)

where L = Lcore is the length of the core.

In the twisted configuration, the wings are stretched as given by eq. 7.6, and bended and
twisted as given by eq. 7.9. Also, their final length is related to the length of the core through
eq. 7.5. According to eq. 7.12, the elastic energy of one wing is given by:

Ewing
twisted(τ, ǫ) =

Ea2L

8
(ǫ − ǫ∗

2)2
√

1 + r2τ2

(

1 +
0.5 + ǫ

ǫ − ǫ∗
2

r2τ2
)2

+
Ea4L

384

√

1 + r2τ2

(

rτ2

1 + r2τ2

)2

+
µa4L

224

√

1 + r2τ2

(

τ

1 + r2τ2

)2

.

(7.19)

97



7.1. ANALOG TO BENDER CHAPTER 7. TWISTERS

Simplifying and combining eq. 7.18 and eq. 7.19, we obtain the elastic energy of the twister in
the twisted configuration in term of the stretch (ǫ) and the torsion of its core (τ):

E twister
twisted(τ, ǫ) = Ecore(τ, ǫ) + 4 ∗ Ewing(τ, ǫ),

=
Ea2L

2

[

(ǫ − ǫ∗
1)2 + (ǫ − ǫ∗

2)2
√

1 + r2τ2

(

1 +
0.5 + ǫ

ǫ − ǫ∗
2

r2τ2
)2
]

+
Ea4L

96

[

r2τ4

(1 + r2τ2)3/2

]

+
µa4L

14

[

τ2
(

1 +
1

4(1 + r2τ2)3/2

)]

.

(7.20)

For τ = 0 the elastic energy of the twister in the twisted configuration is equal to the elastic
energy of the twister in the straight configuration (E twister

twisted(τ = 0, ǫ) = E twister
twisted(ǫ) according to

eq. 7.17). This means that we can use eq. 7.20 to describe the elastic energy of the twister
in both the straight (τ = 0) and in the twisted configuration (τ 6= 0). In this equation, the
prefactors appear as the product of the effective stretching, bending and twisting inertias of
the twister (Ea2, Ea4/48 and µa4/7) with the half-length of the core (L/2), while the parts
in brackets represent the corresponding stretching, bending 40 and twisting contributions of the
core and the wings to the elastic energy of the twister .

Solving for the cancellation of the derivatives of the elastic energy of the twister with respect
to the stretch (ǫ) and the torsion (τ) of its core is difficult as it requires finding the roots of
a 9-order fractional polynomial. Instead, let us look at the scaled elastic energy of a twister
(Ê twister = 2 E twister/(Ea2L)) as a function of the stretching (ǫ) and of the torsion (τ) of its core
for different values of the eigenstrains (ǫ∗

1 and ǫ∗
2) in more details:

Ê twister(τ, ǫ) =
2 E twister(τ, ǫ)

Ea2L

=

[

(ǫ − ǫ∗
1)2 + (ǫ − ǫ∗

2)2
√

1 + r2τ2

(

1 +
0.5 + ǫ

ǫ − ǫ∗
2

r2τ2
)2
]

+
a2

48

[

r2τ4

(1 + r2τ2)3/2

]

+
µa2

7E

[

τ2
(

1 +
1

4(1 + r2τ2)3/2

)]

.

(7.21)

In accordance with the finite-element simulations, the side-length of the squared cross-section
of the core is a = 0.5, which implies that the radius of the cylinder onto which the helix is drawn
is fixed (r2 = 0.25 ∗ 5/8 = 0.39) where a2 = 0.25. Also, we have αT 1 = 0◦C−1 and αT 2 = 1◦C−1,
so that the eigenstrain in the passive region is zero (ǫ∗

1 = 0) and the eigenstrain in the active
region equal to differential eigenstrain (ǫ∗

2 = ∆ǫ∗) and to the differential temperature (ǫ∗
2 = ∆T ).

As we consider elongated objects, we neglect shape changes within the plane of the cross-section
(ν = 0) and so the contrast between the shear modulus and the Young modulus of the material
is given by: µ/E = 1/2(1 + ν) = 1/2. The scaled elastic energy of the twister is then only a
function the differential temperature (∆T ):

Ê twister(τ, ǫ) =

[

ǫ2 + (ǫ − ∆T )2
√

1 + 0.39τ2

(

1 +
0.5 + ǫ

ǫ − ∆T
0.39τ2

)2
]

+
0.25
48

[

0.39τ4

(1 + 0.39τ2)3/2

]

+
0.25
14

[

τ2
(

1 +
1

4(1 + 0.39τ2)3/2

)]

.

(7.22)

40. The bending contribution is entirely due to the wings as the core remains straight in the twisted configura-
tion.
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(a) ∆T = 0◦C.
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(b) ∆T = 0.1◦C.
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(c) ∆T = 0.2◦C.

Figure 7.12 – Elastic energy of a twister as a function of the stretching (ǫ) and of the torsion (τ)
of its core for different values of the differential temperature: (a) ∆T = 0◦C, (b) ∆T = 0.1◦C and
(c) ∆T = 0.2◦C (opaque surface with the same gray-scale for the three differential temperatures).
The transparent surface represents the stretching contribution. For ∆T = 0◦C and ∆T = 0.1◦C,
the bending and twisting contributions are negligible. For ∆T = 0.2◦C, the bending contribution
is still negligible (half-transparent surface indistinguishable from the total elastic energy), but
the twisting contribution becomes more and more relevant as the twist (τ) increases.
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In fig. 7.12, we plot the scaled elastic energy (eq. 7.22) as a function of the stretching (ǫ)
and of the torsion (τ) of its core for different values of the differential differential temperature
(∆T = 0, 0.1, 0.2 ◦C) 41. We make the following observations:

1. For the trivial case ∆T = 0◦C, the scaled energy of the twister is monotonically increasing
in ǫ and τ and its minimum is reached at the origin ǫeq = τeq = 0 (fig. 7.12a).

2. For the case ∆T = 0.1◦C, the scaled energy of the twister is monotonically increasing in
τ and is concave upward in ǫ. Its minimum is reached at τeq = 0 and ǫeq = 0.5 = ∆T/2
(fig. 7.12b).

3. For the case ∆T = 0.2◦C, the scaled energy of the twister possesses a complex double-
curved shape and its minimum appears to be reached around ǫeq ≈ 0.05 6= ∆T/2 and
τeq ≈ 0.6 (fig. 7.12c).

As the differential temperature increases, the energetic landscape changes and its minimum
switches from stretching with zero torsion (ǫeq 6= 0 and τeq = 0) to a combination of stretching
with some torsion (ǫc 6= 0 and τeq 6= 0) for 0.1◦C < ∆T < 0.2◦C. Using Mathematica R©, we can
compute this minimum for a given differential temperature. According to fig. 7.13, the critical
differential temperature is equal to ∆Tc ≈ 0.10◦C.
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Figure 7.13 – Equilibrium stretching and torsion of the core (ǫeq and τeq) that minimize the
elastic energy of the twister at different differential temperature (∆T ). The dotted line is the
tangent to the curve at (T = 0.1◦C), which gives the trend of the torsion-stretching curve.

7.1.3.3 Comparison between numerical and theoretical model

Contrary to what we observed in the finite-element simulation (subsubsection 7.1.2.2), the
stretch of the core is not constant as its torsion increases. Also, the theoretical critical differ-
ential temperature is much smaller than the numerical differential temperature (∆T numeric

c ≈
7∆T theory

c ). A potential reason for this discrepancy, is that the straight configuration is an un-
stable equilibrium for the twister , which jumps into the twisted configuration after the critical
differential temperature is reached. Indeed, making the finite-element calculation converge is
rather difficult, which would corroborate the instability argument (section 4.3). However, even
for high differential temperatures, the theoretical model does not converge to a constant stretch

41. The differential temperature are rather small, because we choose an thermal expansion coefficients of αT 1 =
1◦C−1 for the active region. In fact, only the eigenstrain is meaningful ǫ∗

1 = αT 1∆T ≈ 0.1, which is reasonably
large.
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corresponding to a vertical asymptote in fig. 7.13, but rather tends to a diagonal asymptote
(dashed line in fig. 7.13).

7.1.4 Experimental illustrations of twisters

Here, we present simple table-top experiments which illustrate the twisting of twisters. First,
we present a simple numerical experiment based on the mass-spring model presented in sec-
tion 4.1 that illustrates twisting and relate it to the behavior of twisters (subsubsection 7.1.4.1).
Then, we use differential swelling as presented in chapter 5 to illustrate twisting experimentally
(subsubsection 6.1.3.4). These illustrations help our intuition regarding the understanding of
the twisting of twisters.

7.1.4.1 Mass-spring system undergoing twisting

Using our mass-spring model presented in section 4.1 to represent a rod-like elongated object,
twisting is obtained by activating 42 one of the families 43 of the diagonal 44 springs spanning
the sides of the extruded square lattice structure (compressed springs (red) in the initial state
fig. 7.14a). Upon relaxation, the straight lattice morphs into a twisted configuration, where the
stress state redistributes across the structure (tensed (blue) and compressed (red) springs in
fig. 7.14b). Indeed, the longitudinal springs account for extensions or contractions normal to the
plane of the cross-section while the diagonal springs are related to longitudinal shears, which
correspond to twisting (subsubsection 3.1.2.3).

(a) (b)

Figure 7.14 – Twisting corresponds to a different rest length of the diagonal springs spanning the
sides of the extruded square lattice structure that represents a twister . (Left) Initial straight
state with one set of diagonals activated. (Right) Final twisted state where the stress state
redistributes across the springs. (Red) compression. (Blue) tension.

In the deformed configuration, both the diagonal and the longitudinal springs wind around
the center line of the lattice in a helical way (fig. 7.14b). In fact, any straight line in the initial
configuration, becomes helical upon twisting (fig. A.2). In this sense, our mass-spring model
helps us to understand the morphing of twisters.

7.1.4.2 Proof of principle of twisting using swelling

Using multi-material 3D printing as presented in (section 5.3), we can inquire twisters exper-
imentally. In fig. 7.15, we observe the morphing of a 3D printed multi-material twister triggered
by differential swelling. Here the active and passive regions are reversed and the core is softer

42. We use the word activate to describe the process of applying nonzero eigenstrain to some regions of an
object. In our mass-spring model, eigenstrain corresponds to the rest length of the springs.

43. Depending on the choice of the diagonal spring family which we activate, twisted configurations with opposite
chiralities are obtained (left-handed or right-handed).

44. We call diagonal the diagonal springs between the longitudinal and the transversal direction. See footnote
subsubsection 4.1.2.1.
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than the wings 45. Interestingly, this leads to an interesting morphing pattern, where the expand-
ing core seems to follow a helical configuration while the wings simply follow its geometry 46.

(a) (b)

Figure 7.15 – Biphasic soft-stiff structure in its dry state (a) displaying a curling behavior (b)
when plunged into an acetone bath due to differential swelling between the soft core and the
stiff wings.

7.2 Generating arbitrary configurations of spatial rods

The fundamental modes of deformation of a rod-like object are stretching, bending and twist-
ing (subsection 3.1.2). Generating stretching inside a morpher is trivial 47, bending was discussed
in chapter 6 and twisting in section 7.1. Similarly to subsection 6.2.1, the twisting rate can be
varied along the length of a morpher by relaxing the assumption of translational invariance (see
appendix E.2). Subsection 7.2.1 shows how coiling is obtained by adding the eigenstrains archi-
tectures that lead to bending and twisting. This enables to generate an arbitrary configuration
of a rod-like object starting with the desired material curvatures (subsection 7.2.2).

7.2.1 Coiling is a combination of bending and twisting

Using the mass-spring model presented in section 4.1, bending and twisting can be combined
by activating the according spring families. Bending corresponds to a differential activation of
the longitudinal springs, while twisting is produced by a differential activation of the diagonal
springs. This leads to a helical configuration, coiling (fig. 7.16).

Coiling can also be demonstrated using fem as presented in section 4.3. Figure 7.17a, fig. 7.17b
and fig. 7.17c shows the elastic strain distributions associated with the three-fundamental mor-
phing modes of rods (extension, bending and twisting):

— Extension is produced by a uniform stretching strain over the cross-section (see fig. 7.17a);

— Bending is produced by a transversal gradient in stretching strain over the cross-section
(see fig. 7.17b);

45. This inversion is explained by the fact that we first wanted to use hydrostatic pressure to impose differential
eigenstrain inside the twister , so the core needed to be softer than the wings in order to shrink less. It would be
interesting to try out a real twister .

46. This particular geometry could be due to the confinement of the tube.
47. To generate stretching, it suffices to build a rod out of a uniformly expanding material.
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(a) (b)

Figure 7.16 – Initial (left) and final (right) configuration of a straight rod-like object. A differ-
ential activation of the longitudinal springs leads to bending, while a differential activation of
the diagonal springs produces twisting. When combined, coiling is obtained.

— Twisting is produced by a radial gradient in shearing strain over the cross-section (see
fig. 7.17c);

Subsection 7.2.1 shows how an arbitrary combination of these three fundamental morphing
modes of rods produces a locally helical configuration 48. Using the concept of impotent eigen-
strain, these elastic strain distributions can be imposed as eigenstrain, which will lead to the
same final configuration. The only difficulty consists in imposing a shear strain distribution
through an eigenstrain, which is why we designed twisters in section 7.1.

(a) (b) (c)

(d)

Figure 7.17 – (Top) Strain distributions corresponding to the fundamental morphing modes of a
rod-like object: extension (left), bending (middle) and twisting (right). (Bottom) An arbitrary
combination of these modes produces a locally helical configuration.

7.2.2 The inverse problem

Take an arbitrary configuration of a rod, what is the eigenstrain distribution one has to apply
to a straight rod in order to obtain this configuration? This question can now be answered
using what we learned in chapter 6 and in the current chapter. An arbitrary configuration
of a rod is characterized by its material curvatures κ(i)(s) along the rod (fig. 7.18). Locally,

48. We don’t give the specific values of the strain fields as we only want to make a qualitative statement here.
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the two material curvatures κ1 and κ2 of a rod can be obtained by tuning the transversal
gradients of longitudinal strain in the two material directions d1 and d2. The third material
curvature (or rather material torsion) κ3 can be obtained by tuning the radial shear gradient.
Alternatively, using the twister design, material torsion can be obtained using differentially
longitudinally expanding wings around a core 49. In the case where shear is used to produce
twisting, the gradients of longitudinal strain can simply be added to the radial gradient of shear
as discussed in subsection 7.2.1. In the case where twisters are used to produce twisting, one
could introduce local twisting hinges between bending domain similarly to what we discussed in
subsection 6.2.2 50.

(a) (b) (c)

Figure 7.18 – An arbitrary configuration of a rod is locally characterized by its material
curvatures κi. (left) single bending (κ1 6= 0), (middle) torsion (κ3 6= 0), (right) coiling
(κ1 6= 0 ∧ κ3 6= 0).

49. As we discussed in subsubsection 7.1.2.2, the twisting of a twister is preceded by a stretching regime.
Instead of having active (expanding) wings around a passive (not expanding) core, making a twister with a core

that contracts at the same rate as the wings are extending could potentially lower the critical transition point at
which twisting occurs.

50. Another option would be to make a twister with a bending core.
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Conclusions

This chapter explored the design space of extrudable biphasic morphers and found a specific
design, which exhibits a stretching-twisting instability according to finite-element simulations.
We described its behavior using an energetical approach and found that the twisted configuration
becomes favorable for a sufficient differential eigenstrain. Using a mass-spring model and a
simple experiment, we can understand why the twisters twist qualitatively. Similarly to the
benders described in chapter 6, these twisters can be graded along their longitudinal direction in
order to exhibit tunable twisting. The combination of benders and twisters enables to generate
arbitrary configurations of a rod in space, and as such appear as fundamental units for the
morphing of one-dimensional objects.
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Diffusion-driven morphing in 2D
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Chapter 6 and chapter 7 proposed specific design of morphers, benders and twisters, which
demonstrate the fundamental deformation modes of elongated rod-like objects (bending and
twisting respectively). This chapter considers objects where only one dimension is smaller than
the other two (t ≪ L, W )—sheets 1. Another difference with the previous chapters, is that
here the eigenstrain is applied progressively 2 instead of instantaneously as motivated by exper-
iments 3. This demonstrates path-dependent morphing patterns in the case of two-dimensional
objects 4 in the sense that, even if the final activation state is equal as the one reached instan-
taneously, the resulting morphing pattern is different depending on the history of activation.

Section 8.1 discusses the morphing pattern of rectangular bilayers, where the active layer
is progressively activated from the sides of the bilayer. As opposed to the short-side rolling
of instantaneously activated bilayers (chapter 6), this progressive activation leads to long-side
rolling as shown by experiments (subsection 8.1.1). Subsection 8.1.2 models this morphing
pattern theoretically using energetical considerations and finite-element simulations. We show
that, even if instantaneous activation of rectangular bilayers leads to short-side rolling as recently
proven in the literature (Alben, Balakrisnan, and Smela 2011) 5, progressive activation leads to

1. In structural engineering, the distinction between flat (plates) and curved (shells) two-dimensional objects is
often made. We consider flat objects in their initial configuration, which become curved in their final configuration
and refer to them as sheets.

2. By progressive, we mean that the value of the eigenstrain at a given location inside the body is a function
of some time (✎∗ = ✎

∗(x, t)), whereas an instantaneous eigenstrain (as considered in chapter 6 and chapter 7)
only depends on location (✎∗ = ✎

∗(x)).
3. The experiments where performed by Leonid Ionov’s team at the IPFDD and we contributed to the theo-

retical modeling and understanding of the experimental results.
4. In the case of one-dimensional objects, bending and twisting are path-independent as the corresponding

strain states can simply be added (subsection 7.2.1). In the presence of non-conservative forces, some morphing

patterns of rods still display path-dependency (such as knots for example).
5. In appendix D.1, the analysis of the bending of bilayers was performed by neglecting the transversal direction

and by setting (w = 1). If what happens in the transversal direction is not neglected, the reason why the bilayer
rolls along the long direction is not trivial as discussed in subsubsection 8.1.2.1.
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long-side rolling as published in (Stoychev, Zakharchenko, et al. 2012) (see appendix F.1).

Section 8.2 discusses the multi-step morphing pattern of star-shaped bilayers as published in
(Stoychev, Turcaud, et al. 2013) (see appendix F.2). Due to the progressive activation from the
sides of the bilayer, the morphing process goes through two different intermediate configurations
(subsection 8.2.1): a combination of bending and wrinkling, which we call tubular-wrinkling
(subsubsection 8.2.2.1) followed by a folding step (subsubsection 8.2.2.2). For specific geometri-
cal parameters, the flat star-shaped pyramids remarkably morph into perfect three-dimensional
pyramids (see appendix F.3). Subsection 8.2.2 describes the morphing process theoretically
using the knowledge of patterns of shape change (chapter 2) and backed up with energetical
considerations and finite-element calculations.

8.1 Long-side rolling of rectangular bilayers

This section discusses the long-side rolling of rectangular bilayers which were partially pub-
lished in (Stoychev, Zakharchenko, et al. 2012) (see appendix F.1). Subsection 8.1.1 presents the
experimental results of thermo-responsive rectangular bilayers, which show that long-side rolling
is preferred for a sufficient aspect ratio of the bilayers. Subsection 8.1.2 discusses the short- and
long-side rolling scenarios in energetical terms for instantaneous (subsubsection 8.1.2.1) and
progressive activation (subsubsection 8.1.2.2).

8.1.1 Experimental observations

This subsection recalls the experimental preparations (subsubsection 8.1.1.1) and summarizes
the experimental results published in (Stoychev, Zakharchenko, et al. 2012) 6.

8.1.1.1 Experimental preparation

Rectangular bilayers where prepared according to the method presented in subsection 5.3.3.
Two sets of experiments were made, each consisting of many rectangular bilayers with different
lengths (L = 100, 200, 500 and 1000 µm) and different aspect ratios (L/W = 1, 2, 4 and 5),
where the only difference between the two sets is the thickness of the passive layer (t1

p = 500 nm
and t2

p = 1200 nm) for the same thickness of the active layer (t1
a = t2

a = 1200 nm) (see fig. 8.1).

tp

ta

L

W

Figure 8.1 – Geometrical parameters of rectangular bilayers: length (L), width (W ) and thickness
of the active (ta) and passive layer (tp).

8.1.1.2 Experimental results

The bilayer is undeformed while exposed to a phosphate buffered saline (PBS) solution (0.1M
and pH = 7.4) at T > 70 ◦C and when the temperature drops below T < 70 ◦C, the active

6. The interested reader is strongly advised to look into (Stoychev, Zakharchenko, et al. 2012) given in ap-
pendix F.1 for a complete presentation of the experimental results.
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layer starts to swell and the bilayers morph into tubes. Using optical microscopy, the morphing
pattern and the rolling radius as well as the activation mechanism is determined for the different
rectangular bilayers.

Activation mechanism In order to assess the activation mechanism of the rectangular bi-
layers, one can look at a bilayer possessing a relatively thin active layer (ta = 35 nm) and a
sufficiently thick passive layer (tp = 400 nm), such that bending is prevented. This enables to
investigate the evolution of swelling using a optical microscope. Indeed, the swollen regions have
a longer optical path length (OPL) than the unswollen ones (the OPL varies as a function of the
film thickness and refractive index, which in turn depends on the swelling degree). This reveals
that swelling starts from the edges of the active layer (see figure 6 of appendix F.1).

Morphing patterns and rolling radius In accordance with Timoshenko’s formula (eq. 6.1),
the rolling curvature 7 of the bilayers was confirmed to be independent of the size the bilayer
(L, W ) and constant for each set (see table 8.1). Indeed, as discussed in subsection 6.1.1,
the curvature of a bilayer is only a function of the thickness and stiffness contrast for a given
differential eigenstrain. The fact that the rolling radius is smaller (or equivalently that the
curvature is larger) for the first experimental set makes intuitive sense as the thickness of the
passive resisting layer is smaller for the same thickness of the active layer 8. This is also confirmed
by our study of the influence of the thickness contrast on the curvature of a bilayer for equal
stiffness (subsubsection 6.1.1.1) 9.

Experimental set Thickness of the passive layer Rolling radius Curvature
tp [nm] r [µm] κ [1/µm]

1 500 20 0.05
2 1200 80 0.0125

Table 8.1 – According to optical microscopy, the rolling radius (r) or equivalently the curva-
ture (κ) upon morphing of the rectangular bilayers is approximately constant for each set of
experiment.

Interestingly, contrary to the benders described in chapter 6, sufficiently elongated rectangular
bilayers display long-side (transversal) rolling instead of short-side (longitudinal) rolling (see
figure 2, 3, 4 and 5 of appendix F.1).

8.1.2 Theoretical considerations

This subsection aims at understanding the observed experimental results from subsubsec-
tion 8.1.1.2 theoretically, namely that rectangular bilayers display long-side (transversal) rolling.
Subsubsection 8.1.2.1 starts by recalling the reason why instantaneously activated rectangular
bilayers display short-side rolling (Alben, Balakrisnan, and Smela 2011). This step is necessary,
as it will reveal the conceptual arguments, which we use afterwards. Subsubsection 8.1.2.2 con-
siders the case of progressive activation and shows that long-side rolling is always preferred as
long as the active layer is not entirely activated 10 using simple energetic arguments.

7. The curvature is the inverse of the radius rκ = 1.
8. In a subsequent work, one could assess the mechanical and swelling characterization of the experimental

system to verify Timoshenko’s formula quantitatively.
9. We don’t know the exact values of the stiffness contrast for our experimental system. Nevertheless, the

trend is is the same for unequal stiffnesses.
10. Actually, short-side rolling becomes preferable slightly before the active layer is fully activated.
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8.1.2.1 Instantaneous activation

The fact that rectangular bilayers display short-side rolling is less trivial than it may seem.
As the active layer expands isotropically, curvature can a priori be generated along any direc-
tion. Generation of curvature along more than one direction is unfavored 11 as a double curved
bilayer would imply a significant stretching energy 12 due to Gauss theorema egregium 13. The
bilayer thus assumes a single-curved configuration (longitudinal, transversal or diagonal). As
the curvature is solely dictated by the thickness and stiffness contrasts for a given differential
eigenstrain (eq. 6.1), the energy is the same in any rolling direction 14. Based on symmetry
arguments, we don’t consider the diagonal scenario, but only the longitudinal- and transversal-
scenarios.

The detailed demonstration why short-side rolling is preferred can be found in (Alben, Bal-
akrisnan, and Smela 2011). There, the authors minimize the energy of a bilayer, which they
express in the framework of the Föppl-von-Karman theory of sheets 15. This results in energy
density maps of the two scenarios, which show that short-side rolling has a lower energy than
long-side rolling. The reason for this energy difference is due to an edge-effect, which lowers the
elastic energy by different amounts depending on the rolling direction. Indeed, as observed by
the authors:

“The bilayer does not bend into a perfect tube, but has narrow regions of double-
curvature at the curved edges that lower the energy density at those locations. The
total length of curled edge is greater for bending in the long direction, so during
the transition from a spherical to a singly curved shape, it is more favorable for the
rectangle to adopt the spiral geometry.” 16

(Alben, Balakrisnan, and Smela 2011)

This means that the bilayer is single curved in its bulk, but double curved along its edges. If
we denote by (b) the depth of this boundary layer 17(fig. 8.2), then the energy in the short- and
long-side rolling scenarios is given by:

Eshort = (W − 2 b) L Esingle + 2 b L Edouble,

Elong = (L − 2 b) W Esingle + 2 b W Edouble,
(8.1)

where the energy along the free edge is smaller 18 than the energy in the bulk (Edouble ≪ Esingle).
The difference between these two energies is given by:

Eshort − Elong = −2 b (L − W )(Esingle + Edouble) < 0. (8.2)

11. In fact, for a relatively small eigenstrain compared to the total thickness of the bilayer, a double-curved
(spherical) configuration is obtained, but becomes unstable as the eigenstrain increases further.

12. The stretching energy of a plate scales linearly with its thickness, while the bending energy scales to the
power three of its thickness (Eel = t Êstretch + t3 Êbend), so when the thickness is sufficiently small (t ≪ 1), bending
transformations are favored in front of stretching transformations.

13. Gauss theorema egregium implies the conservation of the Gaussian curvature (K = κ1 ∗ κ2, where κ1

and κ2 are the two principal curvatures of the surface) under local isometries (isometries are distance preserving
transformation). As the initial configuration of the bilayer is flat, its initial Gaussian curvature is zero (κ1 ∗κ2 = 0)
and so any double-curved configuration would imply stretching of the surface. This is illustrated by the fact that
it is impossible to draw a flat map of the earth without introducing distortions.

14. The energy density is given by the curvature in the rolling direction and the frustrated stretching in the or-
thogonal direction. When multiplied by the area of the bilayer, this leads to the same elastic energy independently
of the rolling direction.

15. This theoretical framework is the two-dimensional counterpart of the one-dimensional rod theory presented
in section 3.1

16. Here, “long direction” and “spiral” are synonymous to our notion of short-side rolling.
17. The depth of this boundary layer is estimated to scale as

√
t where t is the thickness of the bilayer (Efrati,

Sharon, and Kupferman 2009).
18. The fact that the double curved edge has less energy than the single curved bulk seems to be contradicting

the argument we gave previously for dismissing double-curved configurations of the bilayer. It would be interesting
to look into this in more details.
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W

L

b

W

L

b

Figure 8.2 – Double-curved boundary layer along the edge of the single curved bilayer. For
clarity, we show the regions in the flat configuration. (left) short-side rolling, (right) long-side
rolling, (black) double-curved region, (white) single curved region.

This shows that the energy in the short-side rolling scenario is smaller than the energy in the long-
side rolling scenario because L > W for rectangular bilayers. This explains why instantaneous
activation of rectangular bilayers results in short-side rolling.

8.1.2.2 Progressive activation

Diffusion of eigenstrain In the first moments after the beginning of activation, only the
edges of the active layer are activated as observed experimentally (subsubsection 8.1.1.2). The
reason for this is purely geometrical, the active layer being confined between the substrate below
and the passive layer above. The activation front then slowly diffuses through the active layer
following a diffusion law as described in (subsection 3.2.3). This diffusion process is modeled
using fem as shown in figure 6a of appendix F.1. In general, the activation profile depends on the
shape, boundary conditions and diffusive properties of the active layer (fig. 8.3). This introduces
a history in the activation of the bilayer, which biases the configuration of the bilayer.

(a) (b) (c)

Figure 8.3 – The activation profile depends on the shape, boundary conditions and diffusive
properties of the active layer. (red) maximum normalized temperature (T = 1 ◦C), (blue)
minimum temperature (T = 0 ◦C).

Separation of timescales The characteristic timescale of the diffusion of the activation front
inside the active layer is much larger (τd ∼ s) than the characteristic timescale of morphing
(τm ∼ ms) 19. This is convenient as it enable to decouple the two phenomena and to consider
morphing to be quasi-static.

Quasi-static morphing Due to the separation of time scales, the modeling of the morphing
process can be done in two subsequent steps:

19. A similar separation of timescales is observed in natural actuatorsSkotheim and Mahadevan 2005.
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1. Calculate the activation profile at a given time point;
2. Calculate the corresponding shape change.

It is sufficient to consider what happens immediately after the beginning of activation in order
to explain why long-side rolling is preferred over short-side rolling in the case of progressive
activation 20. Once the bilayer starts to morph according to the short- or long-side rolling
scenario, it will continue to do so when activated further even if the other configuration becomes
energetically more favored.

Comparaison of energies between short- and long-side rolling Let us apply a similar
reasoning as in subsubsection 8.1.2.1 with the difference that only the edge of the active layer
is activated. We denote by d the depth of the activated edge (fig. 8.4).

W

L

d

W

L

d

Figure 8.4 – Single curved (gray) and flat (black) regions of the activated crown in the short-side
(left) and long-side (right) rolling scenario.

Neglecting the boundary layers, the energy in the short-side and long-side rolling scenarios
are given by 21:

Eshort = 2 d W Ebend + 2 d (L − d) Estretch,

Elong = 2 d L Ebend + 2 d (W − d) Estretch,
(8.3)

Calculating the difference between these two energies, we obtain:

Eshort − Elong = 2 d (L − W ) [Estretch − Ebend] > 0. (8.4)

This shows that long-side rolling is preferred because the bending energy of a plate is smaller
than its stretching energy (Estretch ≫ Ebend).

Finite-element confirmation Figure 7 of appendix F.1 shows that long-side rolling is pre-
ferred according to fem calculations,at least for a sufficiently elongated rectangular bilayer (as-
pect ratio larger than 4) 22. According to the previous energetic considerations, long-side rolling
is always preferred as long as L > W .

8.2 Multi-step folding of star-shaped bilayers

This section discusses the multi-step folding of star-shaped bilayers, which were partially
published in (Stoychev, Turcaud, et al. 2013) (see appendix F.2). Subsection 8.2.1 presents the

20. If one wanted to exactly reproduce the morphing process, the two steps mentioned above should be reiterated
as time increases. One complexity which arises is that the boundary conditions of the diffusive process change as
morphing goes on. Indeed, as soon as the bilayer starts to bend, the active layer detaches from the substrate and
so is no longer confined. This means that the diffusion profile would have to be recalculated for each change of
configuration.

21. Single curved bending releases the eigenstrain perpendicular to the edge of the bilayer, while the eigenstrain

parallel to the edge of the bilayer is frustrated and leads to stretching. In the expression of the energy, we didn’t
write the frustrated stretching eigenstrains, which cancel out in the difference anyway.

22. The short-side rolling like morphing pattern found for an aspect ratio smaller than 4 is not possible experi-
mentally as the long edges are slightly curved downwards, which is prevented by the presence of the substrate.
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experimental results of thermo-responsive star-shaped bilayers. This reveals two morphing steps
(tubular-wrinkling and folding), which can be codified according to phenomenological rules. Sub-
section 8.2.2 discusses these steps using the knowledge of patterns of shape changes (chapter 2)
combined with energetical considerations and finite-element calculations (subsection 8.2.2).

8.2.1 Experimental observations

Similarly to subsection 8.1.1, this subsection recalls the experimental preparations (subsub-
section 8.2.1.1) and summarizes 23 the experimental results published in (Stoychev, Turcaud,
et al. 2013) (subsubsection 8.2.1.2).

8.2.1.1 Experimental preparation

Similarly to subsubsection 8.1.1.1, bilayers were prepared according to the method presented
in subsection 5.3.3, the only difference being the shape of these bilayers. Instead of rectangles,
the bilayers now have rounded shapes, either convex like ellipses or concave like stars (with four
or six arms) (see figure 2 in appendix F.2).

8.2.1.2 Experimental results

Similarly to subsubsection 8.1.1.2, the bilayer is undeformed while exposed to a phosphate
buffered saline (PBS) solution (0.1M and pH = 7.4) at T > 70 ◦C and when the temperature
drops below T < 70 ◦C, the active layer starts to swell and the bilayers undergo a complex
multi-step morphing. Using optical microscopy, the activation mechanism is resolved and the
different steps of the morphing process are analyzed.

Activation mechanism Identically to the case of rectangular bilayers, looking at bilayers
possessing a relatively thin active layer (ta = 35 nm) and a sufficiently thick passive layer (tp =
400 nm or tp = 500 nm), such that bending is prevented. This enables to investigate the evolution
of swelling using a optical microscope. Indeed, the swollen regions have a longer optical path
length (OPL) than the unswollen ones (the OPL varies as a function of the film thickness and
refractive index, which in turn depends on the swelling degree). This reveals that swelling starts
from the edges of the active layer (see figure 2a-f of appendix F.2). Also, one can distinguish
the evolution of the swelling front from the evolution of the detachment front (fig. 8.5).

(a) (b) (c) (d)

Figure 8.5 – Evolution of the swelling and detachment front in a 6-arm star-shaped bilayer.
(Experimental figure send to us by Leonid Ionov.)

23. See footnote 6.
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Multi-step morphing process The morphing process of star-shaped bilayers is more com-
plex than the morphing of rectangular bilayers. Contrary to the straight edges of the rectangular
bilayer which simply roll up, the curved edges of the star-shaped bilayers also display wrinkling
as they roll up 24 (see figure 2i-l of appendix F.2). As the swelling front progresses, the number of
wrinkles decreases until it finally stops when the edges are composed of straight tubes. Then, the
morphing process stops for a while until the arms suddenly flap (see figure 3 of appendix F.2).
By playing with the number and shape of the arms, one achieves a variety of morphing patterns
(see figure 4 of appendix F.2). Interestingly, this enables to create three-dimensional structures
from two-dimensional bilayers such as pyramids (see figure 4 of appendix F.2 and appendix F.3).

8.2.2 Theoretical considerations

This subsection aims at understanding the two stages of the morphing of star-shaped bilayers
presented in subsubsection 8.2.1.2 using the knowledge of patterns of shape change presented in
chapter 2 as well as finite-element calculations: tubular wrinkling in subsubsection 8.2.2.1 and
folding in subsubsection 8.2.2.2.

8.2.2.1 Tubular wrinkling

As discussed in chapter 2, a radial gradient (edge-activation) in swelling leads to the formation
of wrinkles. The number of wrinkles is inversely proportional to the activation depth d 25. In
the presence of a transversal gradient (bilayer), wrinkling and bending add up according to
finite-element calculations(fig. 8.6). This is what we call tubular-wrinkling.

(a) (b) (c) (d) (e)

Figure 8.6 – Number of wrinkles inversely proportional to the activation depth.

Finite-element calculations also predict tubular-wrinkling in the case of a straight edge, which
means that rectangular bilayers should display them in the first moment of morphing (fig. 8.7).

(a) (b)

Figure 8.7 – Finite-element calculation also predicts tubular-wrinkling in the case of rectangular
bilayers.

24. For the anecdote, the experimentalists confirmed the presence of wrinkles after I predicted them.
25. We call activation depth the distance over which the differential edge-growth occurs.
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8.2.2.2 Folding

Once the tubular-wrinkling morphing stage is over, the arms suddenly fold. This happens
when the swelling front crosses a hinge line connecting two weak points (see figure 3 of ap-
pendix F.2).
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Conclusions

This chapter discussed the diffusion-driven morphing of bilayer sheets. If the eigenstrain
architecture follows the simple bilayer as discussed in chapter 6, the obtained patterns are quite
rich due to two factors: two-dimensional sheets are considered instead of one-dimensional rods
and the eigenstrain is applied progressively instead of instantaneously. This enables to obtain
different morphing patterns than if the sheets were activated instantaneously (as highlighted in
the case of the long-side rolling of rectangular sheets). Also, this allows to control the formation
of three-dimensional structures (such as pyramids) from two-dimensional sheets.
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Conclusion and Outlook

This thesis explored some patterns of shape change inspired by natural actuators. We suggest
to build morphing structures, which change shape in response of fluctuating external stimuli
(such as humidity or temperature). This could serve to make already existing moving elements in
Architecture sustainable and challenges designers to think about new applications of movement
in Architecture.

Conclusions

The theoretical framework needed to explore morphing patterns consists of a combination
of fundamental concepts of continuum mechanics (e.g. strain, stress, equilibrium, energy) with
the concept of eigenstrain from micro-mechanics. Due to the fact that morphing patterns are
usually associated with large shape changes in the case of elongated objects (rods and sheets),
the common small displacements assumption can not be made. This justifies using the so-called
non-linear theory of elasticity, which we presented in the case of elongated rod-like objects.

The numerical methods used to simulate patterns of shape change are diverse. We used a
simple lattice representation of rod-like objects using springs, which relax into an equilibrium
configuration upon changing the rest-length of the springs, a script written in Python which min-
imizes the elastic energy of a one-dimensional rod, and the “brute force” finite-element method to
analyze arbitrary eigenstrain distributions (e.g. twisters and sheets). The experimental systems
we used to illustrate the morphing patterns rely on three driving forces: prestraining, swelling
and thermal expansion. These methods were used in a systematic investigation of rods (benders
and twisters) and for an exploration of sheets.

We discussed the bending of elongated morphers, which we call benders. Bilayers are known
for more than 150 years and represent the simplest example of an eigenstrain architecture. The
intersurfacial stress within a bender can be lowered by smoothening the transversal gradient
of eigenstrain leading to stress-free bending in the case where the eigenstrain architecture is
equal to the elastic strain distribution associated to bending. Variations of curvature along the
longitudinal direction can be achieved by grading the benders along its length. Also, bilayers
are a way to transform relatively small strains into a relatively large displacement—through the
concept of geometric amplification—by adding higher levels of hierarchy in the geometry of the
material. Introducing an angle between the principal directions of eigenstrain and the principal
directions of the geometry (either directly or by using the principal directions of stiffness), helical
morphologies can also be obtained.

In analogy to benders, we propose a new design of morphers with a rotationally symmetric
eigenstrain architecture that twists, which we call twisters. Such twisters exhibit a stretching-
twisting instability according to finite-element simulations. The behavior of twisters is described
using an energetical approach, which enables to find the critical eigenstrain at which the insta-
bility occurs. This twisting instability can be understood qualitatively using the mass-spring
model. Similarly to benders, twisters can be graded along their longitudinal direction in order to
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exhibit tunable twisting. The combination of benders and twisters enables to generate arbitrary
configurations of a rod in space, and as such appear as fundamental units for the morphing of
one-dimensional objects.

Finally, we discussed the diffusion-driven morphing of bilayer sheets as motivated by experi-
ments. Due to the fact that the eigenstrain is applied progressively instead of instantaneously,
the two-dimensional bilayers morph into different patterns than if they were activated instanta-
neously. This leads to long-side rolling of rectangular bilayers (instead of short-side rolling) and
enables the formation of three-dimensional structures (such as pyramids) from two-dimensional
star-shaped bilayers through a complex multi-step morphing process (tubular-wrinkling of the
edges, locking, and folding).

Outlook

Analyzing, modeling and mimicking patterns of shape change is growing new field, where a
lot can still be done. Concerning one-dimensional objects, generation of curvature and torsion
suffice to generate arbitrary configurations. In the case of two-dimensional objects, there are
still many open questions regarding the generation of specific patterns, which we only started to
inquire in this thesis. The fact that different morphing patterns are obtained depending on the
history of activation drastically increases the number of potential patterns. A systematization
of diffusion-driven two-dimensional morphing patterns would require a thorough investigation.

As a long term goal, we would like to design macroscopic morphers for Architecture based
on the ideas presented in this thesis. Figure 9.8 shows a wood-plastic prototype for an umbrella,
which morphs upon wetting thus providing a shelter for rainy days 26. In order to scale up such
morphers, one would need to find sufficiently strong driving forces that balance gravity. Also, in
the case of load-bearing elements, the rigidity of morphers during the morphing process becomes
essential. Intuitively, we believe that the rigidity of a morpher could be tuned as a function of
its internal stress state, which would be interesting to look into in more details.

26. This prototype—inspired by (Reyssat and Mahadevan 2009)—was developed in collaboration with Khasha-
yar Razghandi (researcher), Alexander Warth (designer) and Ulises Iturbe (architect) during the Kosmos Summer
University 2012 (Razghandi et al. 2012).
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(a) (b) (c) (d)

(e) (f)

Figure 9.8 – (a) Simply supported mast held by cables, (b) mold for shaping the plastic elements,
(c) individual wood-plastic leafs (d) complete structure, (e) closed and (f) open configuration of
the wood-plastic prototype triggered by humidity change.
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Appendix A

Three-dimensional elasticity

This appendix is meant to be both a refresher for the reader already familiar with standard
continuum mechanics and a broad introduction for the layman. The concepts of strain (ap-
pendix A.1), stress (appendix A.2), constitutive law (appendix A.2.4), mechanical equilibrium
(appendix A.3) as well as elastic energy (appendix A.4) are presented and emphasis is drawn
upon the notion of geometric nonlinearity. Some definitions are very close (or even identical) to
the ones given in (Audoly and Pomeau 2010, chapter 2). In particular, the same notations are
used which leads to the same formal definitions of the concepts of three-dimensional elasticity.
For the sake of brevity, some jumps in the derivations of concepts were made and the interested
reader is strongly advise to look therein for the complete derivations.

A.1 The concept of strain

“Given the positions of the points of the body in its initial state (i.e. before defor-
mation) and in its terminal state (i.e. after deformation), determine the change in
the distance between two arbitrary infinitely near points of the body caused by its
transition from the first state to the second. This question is purely geometrical,
and neither the causes which give rise to the deformation nor the law according to
which the body resists are of any importance in its study.” (Novozhilov 1999)

As highlighted by Novozhilov in 1947, strain is a pure geometric concept that measures the
change of the shape of an object independently of the underlying causes and the generation
of stress. This change of shape is expressed in terms of differences in infinitesimal distances
between the initial and final 1 configuration 2 of the object. The important part is to remove
rigid-body motions that do not affect the size nor the shape of the object, but only its position
in space. In a three-dimensional setting, this is best done through a rank-two tensor field, which
contains all the information concerning local changes in distances and changes in angles in all
directions 3.

1. To avoid a potentially confusing reference to time, the words initial and final are sometimes replaced by
reference and actual.

2. The words state and configuration are used synonymously. They correspond to a snapshot of the geometry
of the object, the initial one before the cause of shape change and the final one after the shape reached static
equilibrium.

3. The concept of tensor can be intimidating and are introduce here it merely as a convenient notation to
represent the matrix containing the components of strain in the reference frame. Also, as only orthonormal
frames are used, there is no need to distinguish covariant and contravariant indices.
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A.1.1 Transformation

In the continuum approach, a solid object is represented by a closed region in Euclidean
space delimited by an envelope representing its external boundary. The material points of
the body are reached by a position vector field expressed in some reference frame. We define
two configurations that correspond to two states of the object: the initial configuration before
deformation and the final configuration after deformation.

Initial configuration Let Ω be the initial state of the object with Γ its boundary. Let
r = (x, y, z) be the initial position vector field where its coordinates (x, y, z) correspond to the
projections of the material points on the axis of some fixed orthonormal frame (ex, ey, ez) (see
fig. A.1).

Final configuration Let Ω′ be the final state of the object with Γ ′ its boundary. Let r′ =
(x′, y′, z′) be the final position vector field where its coordinates 4(x′, y′, z′) are expressed in the
same fixed orthonormal frame (ex, ey, ez) (see fig. A.1).

O

ex

ey

ez

r

M

r
′

M ′

x

y

z

x′

y′

z′

Figure A.1 – Position vectors r(x, y, z) and r′(x′, y′, z′) expressed in the fixed orthonormal frame
(ex, ey, ez) spanning the solid body in its initial state Ω and final state Ω′ respectively.

The transformation between the initial and the final configuration is simply defined by the
mapping between Ω spanned by r and Ω′ spanned by r′ (see fig. A.1). This mapping requires
expressing the final state as a function of the initial state 5 (r′(r)). The final configuration is
thus characterized by the three scalar functions (x′(x, y, z), y′(x, y, z), z′(x, y, z)) giving the final
coordinates (x′, y′, z′) as functions of the initial coordinates (x, y, z). In vector form, this is
expressed by:

r′(x′, y′, z′) =







x′(x, y, z)
y′(x, y, z)
z′(x, y, z)






. (A.1)

4. In the three-dimensional setting, we use the prime symbol ’ to refer to the final (deformed) configuration.
We use another notation in the context of rods (see footnote subsubsection 3.1.1.1).

5. This is the so-called Lagrangian description of the system. The other approach consisting in describing the
system by referring to its current state is known as Eulerian description.
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A.1.2 Displacement

Let u = (u, v, w) be the displacement vector field defined by u(r) = r′(r) − r, where its
coordinates (u, v, w) in the same fixed orthonormal frame (ex, ey, ez) all potentially depend
on position 6. In vector form we have:

u(x, y, z) =







u(x, y, z)
v(x, y, z)
w(x, y, z)






=







x′(x, y, z) − x
y′(x, y, z) − y
z′(x, y, z) − z






. (A.2)

We can then write the final configuration spanned by r′ in terms of the displacement field u:

r′(x, y, z) = (x + u(x, y, z)) ex + (y + v(x, y, z)) ey + (z + w(x, y, z)) ez. (A.3)

In order to use Einstein’s notation 7, we write equivalently:

r′(x, y, z) = r′(x1, x2, x3) = (xi), u = (u, v, w) = (ux, uy, uz) = (u1, u2, u3) = (uj).

This enable us to write eq. A.3 in a more compact form:

r′(xj) =
3
∑

i=1

[xi + ui(xj)] ei = [xi + ui(xj)] ei. (A.4)

An interesting observation (pointed out in Novozhilov 1999) is that the Cartesian coordinates of
the initial state (x, y, z) become curvilinear coordinates in the final state (see appendix A.1.3).
The important point is that the final configuration spanned by r′ is entirely characterized by the
knowledge of the initial configuration spanned by r′ and of the displacement field u expressed
in the fixed orthonormal frame (ex, ey, ez).

A.1.3 Cartesian and curvilinear coordinates

As pointed out in Novozhilov 1999, the cartesian coordinates of the initial state (x, y, z) be-
come curvilinear coordinates in the final state. Let’s illustrate this by looking at the deformation
of a line initially parallel to the z-axis. In the initial state, it is parametrized by r = (x0, y0, z),
where x0 and y0 are constants. From eq. A.4, we obtain its coordinates in the final state:

r′(x0, y0, z) =







x0 + u(x0, y0, z)
y0 + v(x0, y0, z)
z + w(x0, y0, z)






. (A.5)

The deformed line is curved along the z direction if u∨v 6= 0. In general, this means that straight
lines in the initial state become curved lines in the final state (see fig. A.2). Equivalently, the
Cartesian coordinates of the final state x′, y′, z′ correspond to curvilinear coordinates of the
initial state, which means that straight lines in the final state were in general curved lines in
the initial state.

6. For the sake of notation, we sometimes drop the dependency on position of the displacement vector field
u(r) = u.

7. Einstein’s notation implies implicit summation over repeated indices such as
∑

i
xiei = xiei = x ex +y ey +

z ez = x1 e1 + x2 e2 + x3 e3. Also, indices are generic, which means that an equality is true for all values of an
index when it is present only once on one side of an equation.
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Figure A.2 – Straight line in the initial state become curved lines in the final state and vice-
versa. Here we see the displacements components (u, v, w) at different points (a, b, c, d) along
an initial straight line.

A.1.4 Derivation of the strain tensor

The concept of strain aims at measuring the change of an object’s shape between its initial
and final state. The important point is to define strain such that it is invariant under rigid-body
motions. Indeed, rigid-body motions don’t affect the shape of the object, but only its position
and orientation in space. In order to express the strain tensor, let’s look at the change in length
of an infinitesimal vector dr between the initial and final state. The variation of the squared 8

length of this infinitesimal vector is given by:

(dr′)2 − (dr)2 = (d[xi + ui(xj)] ei)2 − (dxi ei)2,

=

([

dxi +
δui

δxj
dxj

]

ei

)2

− (dxi ei)2.
(A.6)

8. If we only look at the variation of length, the displacement gradients δui/δxj appear as a natural measure
of deformation. However, this is not a good candidate for strain as it is not invariant under rigid-body motions.
Actually, it is invariant under translations, but not under rotations (see appendix A.1.9).

126



APPENDIX A. THREE-DIMENSIONAL ELASTICITY A.1. THE CONCEPT OF STRAIN

Expanding the first square in the right-hand side of eq. A.6 as a2 = aiei · akek, one obtains:
[(

dxi +
δui

δxj
dxj

)

ei

]2

=

(

dxi +
δui

δxj
dxj

)

ei ·
(

dxk +
δuk

δxl
dxl

)

ek,

=

(

dxi dxk +
δui

δxj
dxj dxk + dxi

δuk

δxl
dxl +

δui

δxj
dxj

δuk

δxl
dxl

)

δik,

=

(

dxi dxi +
δui

δxj
dxj dxi + dxi

δui

δxl
dxl +

δui

δxj
dxj

δui

δxl
dxl

)

,

=

(

δij +
δui

δxj
+

δuj

δxi
+

δuk

δxi

δuk

δxj

)

dxi dxj .

(A.7)
The fact that the frame (ex, ey, ez) is orthonormal is used to derive the second line of the above
equation (ei · ej = δij). The zero contributions are suppressed by setting k = i to derive the
third line. Finally, the indices are renamed in order to collect the coefficients in front of dx2,
dxdy, etc. in the last line. The second square in the right-hand side of eq. A.6 is written in
tensorial form:

dr2 = dxi dxi = δij dxi dxj . (A.8)

Combining eq. A.7 and eq. A.8leads to:

(dr′)2 − (dr)2 =

(

δui

δxj
+

δuj

δxi
+

δuk

δxi

δuk

δxj

)

dxi dxj . (A.9)

This equation shows that the variation of the squared length of an infinitesimal vector (dr′)2 −
(dr)2 is a quadratic form 9 of this vector dr 10. The coefficients of this quadratic form are com-
binations (sums and products) of the derivatives of the components of displacement (ux, uy, uz)
with respect to the components of position (x1, x2, x3). These displacement gradients are func-
tions of position through the implicit dependence of the displacement vector field on position 11.
Equation A.9 can be written concisely as 12:

(dr′)2 − (dr)2 = 2 ǫij(r) dxi dxj . (A.10)

The tensor field ✎(r) is the so-called Green-St. Venant strain tensor 13. According to eq. A.9, its
coordinates in the orthonormal frame (ex, ey, ez) are given by:

ǫij(r) =
1
2

(

δui(r)
δxj

+
δuj(r)

δxi

)

+
1
2

δuk(r)
δxi

δuk(r)
δxj

. (A.11)

By construction and looking at eq. A.11, the indices i and j play a symmetric role, which means
that the strain tensor ✎(r) is symmetric:

ǫij(r) = ǫji(r). (A.12)

The strain tensor ✎(r) thus has six a priori independent components 14 [ǫxx(r), ǫyy(r), ǫzz(r),
ǫxy(r), ǫxz(r), ǫyz(r)] that all potentially depend on r. It can thus be represented by a 3 by 3

9. A quadratic form is an homogeneous polynomial of degree two as is for example the distance in Euclidean
space (r2 = x2 + y2 + z2). In the case of strain, the cross-terms (xy, xz, yz) are nonzero and its components are
s (δui/δxj).

10. dr = (dx, dy, dz) = (dx1, dx2, dx3).
11. See footnote 6.
12. See footnote 25 for the reason why a factor 2 is introduced here.
13. The Green-St.Venant strain tensor ✎ is also sometimes called the Green-Lagrange strain tensor.
14. Due to the necessary compatibility of strain which is an implicit consequence of the continuum assumption

(there is no appearance of holes or overlaps in the body as it deforms into its final configuration), the six com-
ponents of strain are in fact subjected to three compatibility equations (appendix A.1.11). This is in accordance
with the fact that the displacement field only has three components.
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symmetric matrix 15:

✎(r) =







ǫxx(r) ǫxy(r) ǫxz(r)
ǫyy(r) ǫyz(r)

ǫzz(r)






. (A.13)

Let’s write a diagonal and a non-diagonal component of strain in explicit terms using eq. A.11.
Along the x-axis for example, the diagonal component of strain (ǫxx(r)) is given by:

ǫxx(r) =
δux

δx
+

[

1
2

(

(

δux

δx

)2

+
(

δuy

δx

)2

+
(

δuz

δx

)2
)]

. (A.14)

Between the x- and y-axis for example, the non-diagonal component of strain (ǫxy(r)) is given
by:

ǫxy(r) =
1
2

(

δux

δy
+

δuy

δx

)

+
[

1
2

(

δux

δx

δux

δy
+

δuy

δx

δuy

δy
+

δuz

δx

δuz

δy

)]

. (A.15)

In these two expressions, the parts in brackets is quadratic with respect to the gradients of dis-
placement. This nonlinearity appears naturally in the definition of strain (see appendix A.1.9).

The strain tensor characterizes local changes in distance in the neighborhood of a point
and varies with position. As shown in appendix A.1.5, it fully characterizes the deformed
state of the body in terms of change of lengths (appendix A.1.6) and change of angles (ap-
pendix A.1.7). By construction, the strain tensor vanishes for rigid-body motions (rigid-body
rotations and rigid-body translations), which do not modify distances between material points
(see appendix A.1.10).

A.1.5 Change of lengths and angles

The strain tensor fully characterizes the deformed state of the body in terms of change of
lengths (appendix A.1.6) and angles (appendix A.1.7).

A.1.6 Change of length

The strain tensor (✎) contains all the information about the change in lengths between the
two (initial and final) state of the object. Let’s calculate the deformed length of an arbitrary
curve given by r(s) = (xi(s)) (0 ≤ s ≤ 1) in the initial state. Using eq. A.10 we have:

∣

∣dr′∣
∣ =

√

(dr′)2 =
√

(dr)2 + 2 ǫij dxi dxj . (A.16)

Writing dr = δijdxi dxj , the length of the curve in the deformed configuration is:

l ′ =
∫ 1

0
ds

√

(δij + 2 ǫij)
dxi

ds

dxj

ds
. (A.17)

This equation shows that the strain tensor can be used to compute the actual length of an
arbitrary material curve drawn into the solid. In this sense, the strain tensor fully characterizes
the change of lengths that occurs during deformation.

15. Alternatively, the strain tensor can be represented through its principal strains expressed in the principal
directions of strain (see appendix A.1.8).
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A.1.7 Change of angles

The strain tensor (✎) also contains full information about the change of angles between the
two two (initial and final) state of the object. Let r, r + dr1 and r + dr2 be three position
vectors pointing to three neighboring points M , M1 and M2 in the initial state and r′, r′ + dr′

1

and r′ + dr′
2 the three position vectors pointing to their location M ′, M ′

1 and M ′
2 in the final

state. To calculate the change of the angle M̂M1M2 we use the definition of the scalar product:

cos θ′ =
dr′

1 · dr′
2

|dr′
1| |dr′

2| =
(dr1 · dr2) + (dr′

1 · dr′
2 − dr1 · dr2)

|dr′
1| |dr′

2| (A.18)

On the right-side of this equation, the first term of the numerator concerns the initial config-
uration and so is known and the denominator can be calculated using eq. A.16. There is only
the need to calculate the variation of the scalar product:

dr′
1 · dr′

2 − dr1 · dr2 =
1
4

(

[dr′
1 + dr′

2]2 − [dr′
1 − dr′

2]2
)

− 1
4

(

[dr1 + dr2]2 − [dr1 − dr2]2
)

,

=
1
4

(

[dr′
1 + dr′

2]2 − [dr1 + dr2]2
)

− 1
4

(

[dr′
1 − dr′

2]2 − [dr1 − dr2]2
)

.

Here a geometric identity is used to deduce the first equality above and the terms are simply
reordered in the second. The two terms in parentheses in the second line of the above equation
can be expressed in terms of the strain tensor using eq. A.10:

dr′
1 · dr′

2 − dr1 · dr2 =
2 ǫij d(r1 + r2)i d(r1 + r2)j

4
− 2 ǫij d(r1 − r2)i d(r1 − r2)j

4
.

By writing the components of dr1 and dr2 as dx
(1)
i and dx

(2)
i respectively and by using the

symmetry of the strain tensor, the above expression can be expanded into:

dr′
1 · dr′

2 − dr1 · dr2 = 2 ǫij dx
(1)
i dx

(2)
j . (A.19)

This equation generalizes eq. A.10 and shows that strain characterizes not only the change in
length of material vectors, but also the change of scalar products between two material vectors.
Combined with eq. A.16, this equation can be used to calculate an angle θ′ in the deformed
configuration between two arbitrary material directions using eq. A.18:

cos θ′ =
(δij + 2ǫij)dx1

i dx2
j

√

(dr1)2 + 2 ǫij dx1
i dx1

j

√

(dr2)2 + 2 ǫij dx2
i dx2

j

. (A.20)

It is in that sense that the strain tensor fully characterizes the changes in relative positions
between material points in terms of distances and angles.

A.1.8 Diagonalization

As can be proven mathematically, any real symmetric matrix has real eigenvalues and so can
be diagonalized by a suitable rotation of the reference frame. Let (êx, êy, êz) be the orthonormal
basis that diagonalizes the strain tensor ✎ at a given position r and let ✎̂xx, ✎̂yy, ✎̂zz be the
associated eigenvalues. In this frame, the strain matrix at a given point r is given by:

✎̂ =







✎̂xx 0 0
0 ✎̂yy 0
0 0 ✎̂zz






= diag (✎̂xx, ✎̂yy, ✎̂zz) . (A.21)

This means that for any points in the solid, there exist a frame in which the deformation can be
expressed by a combination of pure stretching and contraction. The directions defined by this
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frame are called the principal directions of strain, while the eigenvalues (✎̂xx, ✎̂yy, ✎̂zz) are called
the principal strains 16 The frame of principal directions is obtained by a 3D rotation of the
reference frame that can be expressed by three parameters (i.e. Euler angles). This is consistent
with the fact that the strain tensor possesses six independent components.

A.1.9 The difference between the approximation of small strain and the ap-

proximation of small displacements

Until now the notion of strain has been derived in all generality. In our work, we focus our
interest on a special class of transformation where the values of the components of strain are
everywhere small, but we still allow for large displacement gradients (large transformations). In
the following, we highlight the nonlinearity which appears naturally in the definition of strain.
Then, we discuss two approximations which are both common in continuum mechanics, but often
confused: the approximation of small strains and the approximation of small displacements. We
make the point that we only use the first one.

Geometric nonlinearity As we see in eq. A.11 the components of the strain tensor ✎ depend
non-linearly on the displacement gradients (δui/δxj). As Audoly puts it: "Geometry, through
the squares in the definition of the Euclidean distance, brings nonlinearity at the heart of the
theory of elasticity" (Audoly and Pomeau 2010, p. 23). To be more precise, we can split eq. A.11
into a linear and a non-linear part:

ǫij(r) = ǫlin
ij (r) + ǫnl

ij (r), (A.22)

where

ǫlin
ij (r) =

1
2

(

δui(r)
δxj

+
δuj(r)

δxi

)

, (A.23a)

ǫnl
ij (r) =

1
2

δuk(r)
δxi

δuk(r)
δxj

. (A.23b)

In table A.1, we summarize the linear or nonlinear strain dependency on the displacement
gradients depending on their magnitude. As we discuss in the following, we only look at cases
where the components of strain are small, but it is possible that the linear and nonlinear parts
of strain are both large if a cancellation takes place between them.

Displacement gradients
∣

∣

∣

δui

δxj

∣

∣

∣

small (≪ 1) large (≫ 1)

Strain eq. A.23a eq. A.11
Dependency linear nonlinear

Table A.1 – Linear or nonlinear definition of strain depending on the magnitude of the displace-
ment gradients.

The approximation of small strain The components of strain are dimensionless numbers
(also called pure numbers) as they are obtained by taking spatial derivatives of the components
of displacement, which have the dimension of a length. This means that the values of strain

16. It should be noted that both the principal directions of strain and the principal values of strain are fields,
which means that they vary in general within the solid.
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have an absolute meaning (they can be small or large absolutely without comparison to another
physical quantity) and that the following approximation makes sense:

|ǫij | ≪ 1. (A.24)

In the general, this geometric approximation enables to make a physical approximation which
applies to most materials, namely that they respond elastically and linearly for small strains.
This enable us to consider the simplest material behavior law there is (Hooke’s law, see ap-
pendix A.2.4).

The approximation of small displacements The approximation of small displacements is
broader than the approximation of small strains 17. Let’s assume that the components of the
displacement field are everywhere small compared to the linear dimensions of the body. Then
we have the following condition:

∣

∣

∣

∣

∣

δui

δxj

∣

∣

∣

∣

∣

≪ 1. (A.25)

Let’s also assume that the gradients of displacements all have approximately the same typical
value (x ∈ R+) throughout the solid body:

∣

∣

∣

∣

∣

δui

δxj

∣

∣

∣

∣

∣

≈ x. (A.26)

According to eq. A.23a and eq. A.23b, the linear and nonlinear part of the strain tensor can
then be estimated as:

∣

∣

∣ǫlin
ij

∣

∣

∣ ≈ x,
∣

∣

∣ǫnl
ij

∣

∣

∣ ≈ 3x2

2
. (A.27)

As x ≪ 1, the nonlinear term appears to be negligible compared to the linear term in the
definition of strain:

|ǫij | =
∣

∣

∣ǫlin
ij + ǫnl

ij

∣

∣

∣ ≈ x

(

1 +
3x

2

)

≈
x≪1

x. (A.28)

In general, this means that the nonlinear part of strain is smaller than its linear part for small
displacement gradients:

∣

∣

∣ǫnl
ij

∣

∣

∣ ≪
∣

∣

∣ǫlin
ij

∣

∣

∣. (A.29)

Thus, in the small displacement approximation, the quadratic term can be neglected in the
definition of strain and the strain expression is linearized into:

ǫij(r) ≈ ǫlin
ij (r) =

1
2

(

δui(r)
δxj

+
δuj(r)

δxi

)

. (A.30)

This tensor is the so-called linearized strain tensor and is commonly used 18 as a definition of
strain 19.

17. Broader means that small displacement gradients imply small strains, but the converse implication is false
(see footnote 19).

18. Using the linearized strain tensor is absolutely fine as long the approximation of small displacements holds.
19. The distinction between the approximation of small strain and the approximation of small displacements

is subtle and often confused in the literature (as already pointed out in Novozhilov 1999). We can guess three
reasons why it is the case: The approximation of small displacements implies the approximation of small strains,
but the converse is false (A =⇒ B, but B 6=⇒ A). This implication can be wrongly taken for an equivalence
(logical fallacy). Also, as highlighted in the citation at the beginning of the chapter, considering nonlinear term
adds complexity to the subject. According to Ockham’s razor principle, unnecessary terms are rightfully ignored,
but wrongfully if those terms are necessary (oversimplification). The displacements and rotations characterize
the deformation of a body as a whole (deflection of a beam, twisting of a shaft), whereas the extensions and
shears (strain) characterize the deformation of an infinitesimal element of volume of the body. The same word
"deformation" used to describe either the microscopic or macroscopic change of shape is a potential source of
confusion (imprecise vocabulary).
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A.1.10 Examples of transformation

Let us consider a few simple examples of transformations in order to illustrate the concepts
of displacement and strain defined previously. First, we’ll make sure that strain as defined
by eq. A.11 is invariant under rigid-body motions (translations and rotations). In particular,
we’ll see that the linearized strain (eq. A.23a) is not invariant under rigid-body rotations. This
highlights the importance of considering the nonlinear part of strain (eq. A.23b) when dealing
with large rotations. Then, we’ll consider two simple types of transformations: stretching or
contraction and shearing. These transformations will help us to identify the physical meaning
of the components of strain.

Rigid-body translation A rigid-body translation of the entire object by a constant vector
a = aiei (ai ∈ R) is defined by the transformation:

r′(x′, y′, z′) =







x′(x, y, z)
y′(x, y, z)
z′(x, y, z)






=







x + ax

y + ay

z + az






. (A.31)

The corresponding displacement field is then simply the translation vector a:

u(r) = r′(r) − r =







ax

ay

az






= aiei = a. (A.32)

As the displacement field is a constant vector, all the displacement gradients are equal to zero.
From eq. A.11, the strain is zero everywhere:

✎(r) = ✵. (A.33)

This shows that strain does not measure changes in absolute position 20.

Rigid-body rotation A rigid-body rotation of the entire object by an angle (θ ∈ [0; π]) about
the z direction is defined by the transformation 21:

r′(x′, y′, z′) =







x′(x, y, z)
y′(x, y, z)
z′(x, y, z)






=







x cos θ − y sin θ
x sin θ + y cos θ

z






. (A.34)

The displacement field is then given by:

u(r) = r′(r) − r =







x(cos θ − 1) − y sin θ
x sin θ + y(cos θ − 1)

0






. (A.35)

Here, only the displacement gradients of the z displacement components or with respect to z
are equal to zero, whereas the ones with respect to x or y are not:

δux

δx
= cos θ − 1,

δux

δy
= − sin θ,

δux

δz
= 0,

δuy

δx
= sin θ,

δuy

δy
= cos θ − 1,

δuy

δz
= 0,

δuz

δx
= 0,

δuz

δy
= 0,

δuz

δz
= 0.

(A.36)

20. Both the linearized and the nonlinear strain tensor are invariant under rigid-body translations.
21. In all generality, we should consider a rotation about an arbitrary direction. However, the expressions

become rather long, so we only consider specific rotations about one of the main directions of the orthonormal
frame (the z direction could easily be replaced by the x or y direction).
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However, from eq. A.11 we find that all the strain components are all equal to zero as the nonzero
terms cancel out:

✎xx = (cos θ − 1) +
1
2

(

(cos θ − 1)2 + (sin θ)2
)

= 0,

✎xy =
1
2

(− sin θ + sin θ) +
1
2

((cos θ − 1)(− sin θ) + sin θ(cos θ − 1)) = 0,

✎yy = (cos θ − 1) +
1
2

(

(cos θ − 1)2 + (− sin θ)2
)

= 0,

✎iz = 0.

(A.37)

This shows that strain does not measure changes in absolute orientation 22.

Remark (Importance of the nonlinear terms in the definition of strain). Per definition, rigid-
body motions don’t affect the distances between material points of a solid object and thus create
no strain (nor stresses). In calculating the strain associated with a rigid-body rotation, we see
that a cancellation occurs between the linear and the nonlinear part of strain (ǫnl

ij = −ǫlin
ij ). If

we had omitted the nonlinear term, the strain would not have been zero. This illustrates the fact
that the linearized strain tensor is not invariant under rotations.

Uniaxial stretching/contraction Uniaxial stretching or contraction of an object along the
x direction is defined by the transformation:

r′(x′, y′, z′) =







x′(x, y, z)
y′(x, y, z)
z′(x, y, z)






=







λxx
y
z






, λx ∈ R

∗
+. (A.38)

Lines parallel to the x-axis are stretched when λx > 1 or contracted when 0 < λx < 1. For λx = 1
there is no deformation 23. Also, negative values of λx are not possible 24. The displacement
field is then:

u(r) = r′(r) − r =







(λx − 1) x
0
0






= (λx − 1) x ex. (A.39)

The only nonzero component of the displacement vector field is ux = (λx − 1) x, which is equal
to zero in the absence of deformation (λx = 1). The only non-zero displacement gradient is thus
δux/δx = λx − 1 and from eq. A.11 we have:

✎(r) =

[

(λx − 1) +
(λx − 1)2

2

]

ex ⊗ ex =
λ2

x − 1
2

ex ⊗ ex. (A.40)

We see that ǫij = 0 except for ǫxx = (λ2
x − 1)/2. In the first bracket, we distinguish the

linear and nonlinear contributions to the strain component ǫxx. The difference between the
non-linearized strain and the linearized strain in the case of uniaxial stretching is plotted in
fig. A.3 for 0 < λx < 2.

Remark (Physical interpretation of the diagonal components of strain). The interpretation of
the strain component ǫxx becomes straightforward if we consider an elementary material vector

22. Only the nonlinear strain tensor (not the linearized strain tensor) is invariant under rigid-body translations.
23. For λx = 1, the final configuration is identical to the initial configuration and the transformation is the

identity mapping.
24. Negative values of λx would imply an inversion of the orientation of space.
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Figure A.3 – Non-linearized (ǫxx = (λ2
x − 1)/2) and linearized (ǫlin

xx = λx − 1) strain in the case
of uniaxial stretching for (0 < λx < 2). The linearized strain is a good approximation of the
non-linearized strain when the transformation is close to identity (λx ≈ 1).

aligned with the x direction in the reference configuration dr = dx ex. Upon transformation, the
length of this vector is scaled by a factor:

λ =
|dr′|
|dr| =

√

dr′2

dr2
=

√

dx2 + 2ǫxxdx2

dx2
=

√
1 + 2ǫxx. (A.41)

When there is no stretching (λx = 1, ǫxx = 0), this number is λ = 1. The stretching rate of dr

is then defined as:

λ − 1 =
√

1 + 2ǫxx − 1, (A.42)

which is positive for actual stretching, negative for contraction and zero when the length is
not modified. Combining eq. A.42 with eq. A.40 we find λ = λx, which means that the rate of
stretching imposed when building the transformation is recovered for elementary vectors. Another
remark is that the strain of this particular transformation is uniform, that is independent of
position. This is by no means general and defines what is called a homogeneous transformation.
Under the approximation of small strain (eq. A.24), we can do a finite expansion of eq. A.42
around |ǫxx| ≈ 0 and obtain:

λ − 1 ≈ ǫxx. (A.43)

Under this approximation, the strain component ǫxx can be directly interpreted as the rate of
stretching or contraction along the x direction 25. In the frame of principal directions 26, the
components of the diagonalized strain tensor (the principal strains ǫ̂ii) correspond to simple
extensions/contractions.

Simple shear Simple shear between the x and y directions of an object is a priori defined by
the transformation:

r′(x′, y′, z′) =







x′(x, y, z)
y′(x, y, z)
z′(x, y, z)






=







x + 2γxyy
y
z






, γxy ∈ R

∗
+. (A.44)

25. This simple interpretation of ǫxx explains why a factor two was introduced in the definition of the strain
tensor in eq. A.10.

26. See appendix A.1.8.
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The displacement field is then given by:

u(r) = r′(r) − r =







2γxyy
0
0






= γxyy ex. (A.45)

The only non-zero displacement gradient is:

δux

δy
= 2γxy. (A.46)

From eq. A.11, the components of strain are:

ǫxy =
1
2

(2γxy) = γxy, ǫyy =
1
2

(2γxy)2 = 2γ2
xy,

ǫxx = 0, ǫiz = 0.
(A.47)

The ǫyy strain component 27 can be nullified by adding a displacement gradient in the y direction:

δuy

δy
= α, α ∈ R. (A.48)

When plugged back in eq. A.14, ǫyy becomes:

ǫyy = α +
1
2

(α2 + 4γ2
xy). (A.49)

Requiring ǫyy = 0, the adequate value 28 for α is:

α = −1 +
√

1 − 4γ2
xy. (A.50)

The correct transformation for simple shear is thus:

r′(x′, y′, z′) =







x′(x, y, z)
y′(x, y, z)
z′(x, y, z)






=







x + 2γxyy
√

1 − 4γ2
xyy

z






, γxy ∈ R

∗
+. (A.51)

r′(x′, y′, z′) =







x′(x, y, z)
y′(x, y, z)
z′(x, y, z)






=







x + 2γxyy
√

1 − 4γ2
xyy

z






, γxy ∈ R

∗
+. (A.52)

The displacement field is then given by:

u(r) = r′(r) − r =







2γxyy

(−1 +
√

1 − 4γ2
xy)y

0






. (A.53)

The only non-zero displacement gradient are:

δux

δy
= 2γxy,

δuy

δy
= (−1 +

√

1 − 4γ2
xy). (A.54)

27. In the small strain approximation, ǫxy = γxy ≪ 1 and so the ǫyy strain component is of second order, thus
negligible in front of the ǫxy strain component.

28. According to eq. A.49, there are two displacements gradients in the y direction (α) which lead to the
cancellation of the ǫyy strain component: α = −1 ±

√

1 − 4γ2
xy. As we have y′ = (1 + α)y = ±

√

1 − 4γ2
xy and

y′ > 0, we find α = −1 +
√

1 − 4γ2
xy.
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From eq. A.11, we find the components of strain:

ǫxy =
1
2

(2γxy) = γxy, ǫxx = 0, ǫiz = 0,

ǫyy = (−1 +
√

1 − 4γ2
xy) +

1
2

[

(−1 +
√

1 − 4γ2
xy)2 + (2γxy)2

]

= 0.
(A.55)

In simple shear between the x- and y-axis, only the non-diagonal component ǫxy is nonzero.

Remark (Physical interpretation of non-diagonal strain components). Using eq. A.19, the scalar
product of two perpendicular material vectors dr(x) = dx ex and dr(y) = dy ey which are per-
pendicular in the initial configuration becomes in the final configuration:

(dr(x))′ · (dr(y))′ = 2 ǫxy dx dy. (A.56)

The cosine of the new angle between (dr(x))′ and (dr(y))′ is thus:

cos θ′ =
2ǫxy√

1 + 2ǫxx
√

1 + 2ǫyy
. (A.57)

Under the approximation of small strain (eq. A.24), we obtain:

cos θ′ ≈ 2ǫxy. (A.58)

The strain component ǫxy can thus be directly linked to the change of angle between the x and y
directions. In general, the strain component ǫij (i 6= j) can thus be directly linked to the change
of angle between the i and j directions.

In the small strain approximation, the components of the strain tensor thus possess a straight-
forward meaning. The diagonal components represent extensions or contractions along the di-
rections of the frame, while the non-diagonal components are associated with shears (change of
angles) between these directions 29.

A.1.11 Compatibility of strain

The strain tensor has six independent components while the displacement vector only has
three independent components. This means that the task of taking an arbitrary strain field and
then trying to find a displacement field from which this strain field derives may be impossible
(a solution does not always exist). Therefore the components of strain are subjected to compat-
ibility conditions. These equations of compatibility have to do with the fact that the deformed
object lives in Euclidean space and cannot display holes or overlaps upon deformation. If they
can be written rather concisely in the small displacement approximation, these compatibility
equations become rather cumbersome when keeping the nonlinear dependencies of strain. We
do not write them here, because we don’t attempt to solve them. However, the compatibility of
strain plays a crucial role in morphing as we wish to control the morphing pattern by imposing
an a priori arbitrary eigenstrain field. The compatible part of eigenstrain simply triggers shape
change, while it is their incompatible part that generates internal stresses within the body (see
subsection 3.2.2).

A.2 The concept of stress

In this subsection, we introduce the concept of stress. In appendix A.2.1, we start be dis-
tinguishing between two types of forces: remote forces, which act over the entire volume of the

29. The components of strain do not possess such a straightforward meaning outside this approximation.
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object, and interior forces, which are transmitted across the boundary. In appendix A.2.2, we
derive the concept of stress using the balance of linear momentum applied to a small tetrahe-
dron. Similarly to strain, stress inside a body can be represented by a rank-two tensor field,
which is symmetric due to the balance of angular momentum. Finally, in appendix A.2.3, we
write the equation of static equilibrium in terms of stress.

A.2.1 Remote forces and interior forces

Forces are a foundational concept of physics. A force is defined as what causes mass to
accelerate or a body to deform. At the fundamental level, four interactions are conventionally
recognized (gravitational, electromagnetic, strong and weak nuclear) and there is an ongoing
effort to try to unify them. In the continuum mechanics idealization, however, forces are defined
from a classical viewpoint as simply what causes strain without necessarily linking them to
elementary interactions. This descriptive gap between fundamental and non-fundamental forces
is justified in practice by the utility of this approach 30. Nevertheless, one should keep in mind
that the continuum description is an idealization, which is only valid at orders of magnitude
larger than any characteristic microscopic length scale where the material can no longer be
considered homogeneous 31. In order to introduce the concept of stress and to write down the
conditions of mechanical equilibrium, let us isolate a small arbitrary volume V of the body and
analyze the forces applied to it. We can distinguish between two types of forces 32: volumic
forces which act over the entire volume V and surface forces which are transmitted across its
boundary S = dV 33.

Remote forces Remote forces are long-ranged forces (such as gravity, electric or magnetic
forces) also known as volumic forces that affect all points inside V . Let ρ be the volumic mass
of the body and g(r) the mass density of volumic forces. The total volumic force acting on V
is:

G =
∫∫∫

V
ρ(r) g(r) dx dy dz. (A.59)

Interior forces Interior forces are short-ranged forces (such as interatomic, intermolecular or
intergrain forces) between the elementary components of the body. Let f(r, n) be the surface
density of the interior forces transmitted through the boundary, where r is the position vector
spanning the boundary and n(r) the local normal to the boundary pointing outwards 34. The
net interior force across the boundary S is:

F =
∫∫

S
f(r, n) dS. (A.60)

A.2.2 Derivation of the stress tensor

Stress aims at measuring the area density of internal forces throughout a solid body. It
corresponds to a force divided by an area and has the dimension of a pressure (Pa or N m−2). It
can be seen as an extension of the notion of hydrostatic pressure. Unlike most fluids, solids are
not only capable to transmit normal forces, but also shear forces. Also, the magnitude of these

30. “We will not get very far in helping the engineer if we keep thinking a bridge as a pile of atoms” Z.Suo
31. In particular, it remains a challenge to successfully describe natural materials through a (potentially multi-

scaled) continuum approach, as one their main features is to display hierarchical structure and thus possess many
intermediate characteristic length scales.

32. We do not consider external forces such as pressure or contact forces.
33. These forces represent the effect of the surrounding medium on this arbitrary volume.
34. The fact that f only depends on the normal n for a given position r is referred to as Cauchy’s postulate.
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normal forces may also depend on the direction of space. The notion of hydrostatic pressure
therefore needs to be extended to account both for shear stresses and for the possible anisotropy
of stress.

Balance of linear momentum Let’s apply Newton’s fundamental law of dynamics to the
volume V , with m its mass and a its acceleration:

G + F = ma. (A.61)

If we note d ∼ V 1/3 the typical dimension of the volume, we observe that G and ma both
scale like the volume (∼ d3), whereas F scales like the area (∼ d2). When d goes to zero area
effects dominate volume effects (d2/d3 = 1/d) and so the net interior force F (proportional to
area) dominates over the total volumic force G and the change in linear momentum ma (both
proportional to volume). At this leading order, the net force F has to cancel:

lim
d→0

F

d2
= 0. (A.62)

Equilibrium of a tetrahedron Let us consider a tri-rectangular tetrahedron as shown in
fig. A.4 positioned such that the normal n to its base displays an arbitrary orientation, while
its three other faces are normal to the x, y and z axis of the reference frame. The net force per
typical area d2 of this tetrahedron is obtained by adding the contributions from each face:

F

d2
= f(r, n)

dS

d2
+ f(r, −ex)

dS(x)

d2
+ f(r, −ey)

dS(y)

d2
+ f(r, −ez)

dS(z)

d2
. (A.63)

Using eq. A.62 by letting d → 0 and writing dS(i) as projections of dS along the axes of the
Cartesian frame (dS(i) = dS n · ei), we can write:

f(r, n) = σij(r) nj ei, (A.64)

where the quantity σij(r) = ei · f(r, ej) 35 has been introduced. Plugging this in eq. A.60, we
find:

F =
∫∫

S
σij(r) nj ei dS. (A.65)

The components σij(r) are the amount by which the j component of the vector n dS gets
multiplied when computing the i component of the interior force. The stress tensor ✛(r) hereby
defined entirely characterizes the local state of stress inside the body.

Balance of angular momentum Using a similar reasoning as previously, a balance of angular
momentum over a small volume of typical size d shows that the torque due to internal forces is
predominant (of order d3) compared to the torque du to volumic forces (of order d4) and to the
acceleration of rotation (of order d5). When d → 0, the torque must cancel, which implies the
symmetry of the stress tensor 36:

σij = σji. (A.66)

The stress tensor ✛(r) thus has six a priori independent components [σxx(r), σyy(r), σzz(r),
σxy(r), σxz(r), σyz(r)] that all potentially depend on r. It can be represented by a 3 by 3
symmetric matrix:

✛(r) =







σxx(r) σxy(r) σxz(r)
σyy(r) σyz(r)

σzz(r)






. (A.67)

35. f(r, ej) = −f(r, −ej) according to Newton’s third law (action-reaction).
36. See (Audoly and Pomeau 2010, chapter 2) for the complete derivation of the symmetry of the stress tensor.
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Figure A.4 – Tri-rectangular tetrahedron used to define the stress tensor.

Remark (Physical interpretation of stress components). The components of the stress tensor
have a similar interpretation to the components of the strain tensor. The diagonal components
correspond to normal stresses (the interior force f(r, n) is aligned with the normal n), while
the non-diagonal components correspond to shear stresses (the internal force f(r, n) is parallel
to the boundary of the volume) 37.

A.2.3 Static equilibrium

The body is in static equilibrium when its linear momentum is equal to zero. Using eq. A.65
and eq. A.59, the balance of force on the isolated volume of the body is equal to:

F + G =
∫∫

S
σij(r) nj ei dS +

∫∫∫

V
ρ g(r) dx dy dz. (A.68)

Using the divergence theorem 38, the net internal force can be written as a volume integral:

F + G =
∫∫∫

V

(

δσij(r)
δxj

+ ρ(r) gi(r)

)

ei dV. (A.69)

As this true for an arbitrary volume V , the condition of equilibrium for a continuous media is 39:

δσij(r)
δxj

+ ρ(r) gi(r) = 0. (A.70)

37. Being represented by a real symmetric matrix, the stress tensor can be diagonalized similarly to the strain
tensor (see footnote 26). This defines the principal stress directions and the principal stresses. However, the
principal stress directions do not correspond to the principal strain directions in general.

38. The divergence theorem is a multi-dimensional generalization of the fundamental formula of calculus
∫ q

p
f(x)dx = f(q) − f(p). It relates the divergence of a vector field in a volume to its flux across the bound-

ary of this volume.
39. This is known as the Cauchy-Poisson condition of equilibrium.
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In the absence of volumic forces, the equilibrium condition simply becomes 40:

σij,j
(r) = 0. (A.71)

A.2.4 Hookean elasticity

In order to close the equations of elasticity, one needs to define a relationship between the
strain tensor and the stress tensor. This is the so-called constitutive law of the material. As we
restrict ourselves to small material strains, we consider the simplest constitutive law there is:
Hooke’s law of linear elasticity. Published two years before as an anagram cediinnoopsssttuu 41,
Robert Hooke revealed the subject of the anagram ut tensio sic vis that translates to “as the
extension, so the force” in Hooke 1678. In the continuum mechanics formalism, this is expressed
by a relation of proportionality between the stress tensor and the strain tensor. In the absence
of material symmetries, such a relationship possesses thirty-six parameters (the stress and strain
tensors are symmetric order-two tensors with six parameters each). The amount of parameters if
drastically decreased in the isotropic case as this proportionality relation should be invariant for
all changes of the coordinate frame. In fact, it can be shown that any linear relation between two
symmetric rank-two tensors that remains invariant under coordinate change takes the following
form:

σij = 2µ ǫij + λ ǫkk δij . (A.72)

The coefficients µ and λ are called the Lamé coefficients and characterize the elasticity of the
material and ǫkk = ǫxx + ǫyy + ǫzz is the trace of the strain tensor. The previous equation can
be rewritten as:

σij =
E

1 + ν

(

ǫij +
ν

1 − 2ν
ǫkk δij

)

. (A.73)

Comparing the two previous equations shows the relation between the Lamé coefficients and the
more known Young modulus E 42 and Poisson ratio ν as:

µ =
E

2(1 + ν)
λ =

Eν

(1 + ν)(1 − 2ν)
. (A.74)

The constitutive equation can be inverted to rather express the strain as a function of stress:

ǫij =
1 + ν

E
σij − ν

E
σkk δij . (A.75)

In compact form, we’ll simply write:

σij = Cijkl : ǫkl, ǫij = Sijkl : σkl, (A.76)

where C and S = C−1 are the stiffness and compliance rank-four tensors respectively.

Remark (Interpretation of the elastic constants). The Young modulus E is a positive number,
which has the same dimension as stress (Pa). A typical strain ǫ induces a typical strain E ǫ. To
illustrate the meaning of E and ν, let’s take an elongated bar of length L and cross-sectional area
A under simple traction by a force F . In this case, both stress and strain are homogeneous 43

within the bar and the only nonzero component of stress is the longitudinal one σzz = F/A. Using
the inverse constitutive relation (eq. A.75), we find the diagonal strain components ǫzz = F/EA
and ǫxx = ǫyy = −νǫzz (the non-diagonal components of strain are zero by symmetry). This

40. See footnote 23.
41. Anagrams were a common practice at that time to ensure intellectual property
42. The letter E is used in honour of Euler.
43. Actually, stress and strain are only homogeneous far from the ends of the bar, as they may be afffected by

the boundary condiditons (this is known as St-Venant’s principle).
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reveals the meaning of the Poisson’s ratio ν, which gives the ratio of the rate of contraction in
the cross-section to the rate of elongation along the axis (with a minus sign). The admissible
values of Poisson’s ratio are in the range −1 ≤ ν ≤ 1/2 44.

A.3 Standard mechanical problem

We can now summarize all the equations describing the static equilibrium of a continuous
elastic medium in a compact form 45:

(SF)



































∇ · ✛ + ρ g = 0 in Ω,

✛ = C : ✎ in Ω,

✎ = 1
2(∇u + ∇tu) + 1

2(∇u · ∇tu) in Ω,

✛ · n = Te on δΩσ,

u = ue on δΩu,

(A.77)

where Ω is a solid object of boundary dΩ, u(r) is the displacement vector field between the
initial and the final configuration, ✛(r) and ✎(r) are the elastic stress and strain tensor fields,
and C is the stiffness tensor. The first equation in eq. A.77 expresses static equilibrium 46, the
second equation relates stress to strain (Hooke’s law of linear elasticity) and the third equation
is the definition of strain in terms of displacement gradients. The two last equations express
the boundary conditions. δΩσ and δΩu are subsets of dΩ where forces Te and displacements
ue are applied respectively. We have δΩ = δΩσ + δΩu, which means that those two boundary
conditions are complementary (components by components). In the absence of external fields
(such as gravity) or imposed external forces or displacements eq. A.77 becomes:

(SF)0



























∇ · ✛ = 0 in Ω,

✛ = C : ✎ in Ω,

✎ = 1
2(∇u + ∇tu) + 1

2(∇u · ∇tu) in Ω,

✛ · n = 0 on δΩ,

(A.78)

where the boundary condition is now only relative to force as the boundary dΩ is free to move.
One trivial solution for (SF)

0
is that both stress and strain tensor are identically equal to zero

within the whole body Ω. This is what is commonly assumed for the reference configuration: a
stress-free state. In particular, the stresses due to inter-atomic forces (ionic, metallic and van der
Waals forces) are supposed to cancel out and the stresses generated during the manufacturing
process of the body are neglected. However, as we’ll discuss in subsection 3.2.1, another way to
trigger shape changes (generation of stress and strain) is to impose an internal strain distribution
(eigenstrain) directly in the initial state.

A.4 Elastic energy

A different approach to describe the static equilibrium of a body, is to look at his mechanical
energy. The equilibrium state of the body corresponds to the strain for which the mechanical

44. This can shown by considering particular classes of normal and shear deformations. The 1/2 bound corre-
sponds to incompressible materials, while negative values for ν correspond to auxetic that have the unintuitive
property to expand transversely when stretched.

45. The dependence on position r is implicit (see footnote 6).
46. The condition for static equilibrium can be replaced by the condition that the elastic energy is minimum

(see appendix A.4).
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energy is minimum 47. The elastic energy of a continuous elastic medium is defined indirectly
by its variation:

δEel =
∫∫∫

V
σij δǫijdV. (A.79)

By integration, the general expression for the elastic energy is:

Eel =
1
2

∫∫∫

V
σij [ǫij(r))] ǫij(r))dV. (A.80)

where σij is linked to ǫij through the constitutive relation (see eq. A.72). The condition of
equilibrium becomes:

δEel

δǫij
= 0. (A.81)

47. The strain has to be kinematically admissible, which means that it has to be compatible (see ap-
pendix A.1.11) and satisfy the displacement boundary conditions (see appendix A.3).
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Numerics

B.1 2-D Beam

# −∗− coding : u t f −8 −∗−
" " "
Created on Tue Feb 14 14 : 00 : 28 2012
@author : Fe l i x Repp and Sebas t i en Turcaud
q
" " "
import pdb
import time
import s c ipy . opt imize as op
from enable . component_editor import ComponentEditor
from t r a i t s . ap i import HasTraits , Int , Float , Str , Property , Range , Array ,

cached_property , Color , Instance , on_trait_change
from t r a i t s u i . ap i import View , Item , Label , ApplyButton
from chaco . chaco_plot_editor import ChacoPlotItem
from chaco . ap i import Plot , ArrayPlotData
from pylab import ∗

class Beam_2D( HasTraits ) :
x0=0.
z0 =0.
theta0=Range(−pi , pi , p i /2)
N=Range (10 ,1000 ,20)
L=Float ( 1 . )
alpha=Range ( − 5 . , 5 . , 0 . )
beta=Range ( 0 . , 1 0 0 0 . , 0 . )
x=Array ( )
z=Array ( )
theta=Array ( )
kappa=Array ( )
kappaopt=Array ( )
e _ e l a s t i c=Float ( )
e_potent ia l=Float ( )
e_tota l=Float ( )
p l o t i n s t a n c e=None
c o l o r=Color ( ’ b lue ’ )
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t ra i t s_v iew = View (
ChacoPlotItem ( " x " , " z " , x_bounds =( −1. ,1.) , y_bounds

=( −1. ,1.) ,
x_auto=False , y_auto=False , r e s i z a b l e=True , show_label=

False , x_label=" x " , y_label=" z " , t i t l e=" " ) ,
Item (name=’N ’ ) , Item (name=’L ’ ) , Item (name=’ beta ’ ) , Item (

name=’ alpha ’ ) , Item (name=’ theta0 ’ ) ,
Item (name=’ e _ e l a s t i c ’ ) , Item (name=’ e_potent ia l ’ ) , Item (

name=’ e_tota l ’ ) ,
#but tons =[ApplyButton ] ,
r e s i z a b l e=True , width =600 , he ight =500 , t i t l e=" 2D Beam" )

def __init__( s e l f ) :
s e l f . kappa0=s e l f . getKappa0 ( )
s e l f . minimizeEnergy ( )

def getKappa0 ( s e l f ) :
return −2∗pi ∗ s e l f . L∗ s e l f . a lpha ∗ ones ( s e l f .N−2)

def intTheta ( s e l f , theta ) :
ds=s e l f . L/( s e l f .N−1)
x=ze ro s ( theta . shape [0 ]+1)
z=ze ro s ( theta . shape [0 ]+1)
x [0 ]= s e l f . x0
z [0 ]= s e l f . z0
for i in range (0 , theta . shape [ 0 ] ) :

x [ i +1]=x [ i ]+ds∗ cos ( theta [ i ] )
z [ i +1]=z [ i ]+ds∗ s i n ( theta [ i ] )

return x , z

# de f derTheta ( s e l f , t h e t a ) :
# ds=s e l f .L/( s e l f .N−1)
# kappa=( t h e t a [1 : ] − t h e t a [ : −1 ] ) /ds
# re turn kappa

def intKappa ( s e l f , kappa ) :
ds=s e l f . L/( s e l f .N−1)
theta=ze ro s ( kappa . shape [0 ]+1)
theta [0 ]= s e l f . theta0
for i in range (0 , kappa . shape [ 0 ] ) :

# t h e t a [ i +1]= t h e t a [ i ]+math . atan ( kappa [ i ] /2 )
theta [ i +1]=theta [ i ]+ds∗kappa [ i ]

return theta

def Energy ( s e l f , kappa ) :
# i f kappa . __class__==(1,0) . __class__ :

# kappa=kappaopt [ 0 ]
ds=s e l f . L/( s e l f .N−1)
theta=s e l f . intKappa ( kappa )
x , z=s e l f . intTheta ( theta )
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s e l f . e _ e l a s t i c=ds /2∗sum( ( kappa−s e l f . kappa0 ) ∗∗2)
s e l f . e_potent ia l=ds∗ s e l f . beta ∗sum( z )
s e l f . e_tota l=s e l f . e _ e l a s t i c+s e l f . e_potent ia l
return s e l f . e_tota l

def minimizeEnergy ( s e l f ) :
# pdb . se t_trace ( )
kappa0=s e l f . kappa0
#
s e l f . kappaopt=op . fmin_bfgs ( s e l f . Energy , kappa0 )

#
# i f kappaopt . __class__==(1,0) . __class__ :

# kappaopt=kappaopt [ 0 ]
# s e l f . t h e t a f i n=append ( [ s e l f . t h e t a0 ] , t he taop t , a x i s =0)
s e l f . theta=s e l f . intKappa ( s e l f . kappaopt )
s e l f . x , s e l f . z=s e l f . intTheta ( s e l f . theta )
return

# de f plotbeam ( s e l f ) :
# s e l f . p l o t i n s t a n c e=p l o t ( s e l f . x , s e l f . z , c o l o r=s e l f .

c o l o r )
# p r i n t t h e t a f i n
# p r i n t derTheta ( t h e t a o p t )

def apply ( s e l f , i n f o ) :
s e l f . apply_ ( )
s e l f . kappa0=s e l f . getKappa0 ( )
mimumizeEnergy ( )
s e l f . r e p l o t ( )
return

def _L_changed( s e l f , i n f o ) :
s e l f . kappa0=s e l f . getKappa0 ( )
s e l f . minimizeEnergy ( )
return

def _N_changed( s e l f , i n f o ) :
s e l f . kappa0=s e l f . getKappa0 ( )
s e l f . minimizeEnergy ( )
return

def _alpha_changed ( s e l f , i n f o ) :
s e l f . kappa0=s e l f . getKappa0 ( )
s e l f . minimizeEnergy ( )
return

def _beta_changed ( s e l f , i n f o ) :
s e l f . minimizeEnergy ( )
return

def _theta0_changed ( s e l f , i n f o ) :
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s e l f . minimizeEnergy ( )
return

beam_2D=Beam_2D( )

beam_2D . c o n f i g u r e _ t r a i t s ( )

B.2 3-D Beam

# −∗− coding : u t f −8 −∗−
" " "
Created on Tue Feb 14 14 : 00 : 28 2012
@author : Fe l i x Repp and Sebas t i en Turcaud
q
" " "
import pdb
import time
import s c ipy . opt imize as op
from enable . component_editor import ComponentEditor
from t r a i t s . ap i import HasTraits , Int , Float , Str , Property , Range , Array ,

cached_property , Color , Instance , on_trait_change
from t r a i t s u i . ap i import View , Item , Label , ApplyButton
from chaco . chaco_plot_editor import ChacoPlotItem
from chaco . ap i import Plot , ArrayPlotData
from pylab import ∗
from mayavi . core . ap i import Pipe l ineBase
from mayavi . core . u i . ap i import MayaviScene , SceneEditor , MlabSceneModel

class Beam_3D( HasTraits ) :
#Number o f Points
N=Range (3 ,1000 ,10)
#Length
L=Float ( 1 . )
#Coordinates
x=Array ( )
y=Array ( )
z=Array ( )
#Origin
x0=0.
y0=0.
z0 =0.
#Pos i t i on Vector
r=Array ( )
r0=x0 , y0 , z0
#Mater ia l Frames
d1=Array ( )
d2=Array ( )
d3=Array ( )
#I n i t i a l Mater ia l Frames (POSSIBILITY TO ROTATE INITIAL FRAME

)
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d10=array ( [ 1 . , 0 . , 0 . ] )
d20=array ( [ 0 . , 1 . , 0 . ] )
d30=array ( [ 0 . , 0 . , 1 . ] )
#Sca lar Products
s12=Array ( )
s13=Array ( )
s23=Array ( )
#Curvatures and Twist
kappa1=Array ( )
kappa2=Array ( )
kappa3=Array ( )
#Darboux Vector
omega0=Array ( )
omega=Array ( )
#Natural Curvatures and Twist
kappa10=Range ( −20 . , 2 0 . , 0 . )
kappa20=Range ( −20 . , 2 0 . , 0 . )
kappa30=Range ( −20 . , 2 0 . , 0 . )
#Magnitude o f P o t e n t i a l Energy
g=Range ( −10000 . , 10000 . , 0 . )
#Energy
e _ e l a s t i c 1=Float ( )
e _ e l a s t i c 2=Float ( )
e _ e l a s t i c 3=Float ( )
e _ e l a s t i c=Float ( )
e_potent ia l=Float ( )
e_tota l=Float ( )

p l o t i n s t a n c e=None
c o l o r=Color ( ’ b lue ’ )
scene=Ins tance ( MlabSceneModel , ( ) )
p l o t=Ins tance ( P ipe l ineBase )
l i n e s o u r c e=None
vec to r sou r c e=None

t ra i t s_v iew = View (
Item ( ’ scene ’ , e d i t o r=SceneEditor ( s cene_c la s s=

MayaviScene ) , he ight =250 , width =300 , show_label=Fal se
) ,

Item (name=’N ’ ) , Item (name=’L ’ ) , Item (name=’ kappa10 ’ ) ,
Item (name=’ kappa20 ’ ) , Item (name=’ kappa30 ’ ) , Item (
name=’ g ’ ) ,

Item (name=’ e _ e l a s t i c 1 ’ ) , Item (name=’ e _ e l a s t i c 2 ’ ) , Item (
name=’ e _ e l a s t i c 3 ’ ) , Item (name=’ e _ e l a s t i c ’ ) , Item (
name=’ e_potent ia l ’ ) , Item (name=’ e_tota l ’ ) ,

#but tons =[ApplyButton ] ,
r e s i z a b l e=True , width =600 , he ight =500 , t i t l e="Beam_3D" )

def update_plot ( s e l f ) :
i f s e l f . p l o t i s None :
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s e l f . p l o t=s e l f . scene . mlab . p lot3d ( s e l f
. x , s e l f . y , s e l f . z , tube_radius =0.01 ,
colormap=’ Spec t r a l ’ )

s e l f . l i n e s o u r c e=s e l f . p l o t . mlab_source
s e l f . p l o t=s e l f . scene . mlab . quiver3d ( (

s e l f . x [: −1]+ s e l f . x [ 1 : ] ) /2 , ( s e l f . y
[: −1]+ s e l f . y [ 1 : ] ) /2 , ( s e l f . z [: −1]+
s e l f . z [ 1 : ] ) /2 , s e l f . d1 [ : , 0 ] , s e l f . d1
[ : , 1 ] , s e l f . d1 [ : , 2 ] )

s e l f . v e c to r sourc e1=s e l f . p l o t .
mlab_source

s e l f . p l o t=s e l f . scene . mlab . quiver3d ( (
s e l f . x [: −1]+ s e l f . x [ 1 : ] ) /2 , ( s e l f . y
[: −1]+ s e l f . y [ 1 : ] ) /2 , ( s e l f . z [: −1]+
s e l f . z [ 1 : ] ) /2 , s e l f . d2 [ : , 0 ] , s e l f . d2
[ : , 1 ] , s e l f . d2 [ : , 2 ] )

s e l f . v e c to r sourc e2=s e l f . p l o t .
mlab_source

s e l f . p l o t=s e l f . scene . mlab . quiver3d ( (
s e l f . x [: −1]+ s e l f . x [ 1 : ] ) /2 , ( s e l f . y
[: −1]+ s e l f . y [ 1 : ] ) /2 , ( s e l f . z [: −1]+
s e l f . z [ 1 : ] ) /2 , s e l f . d3 [ : , 0 ] , s e l f . d3
[ : , 1 ] , s e l f . d3 [ : , 2 ] )

s e l f . v e c to r sourc e3=s e l f . p l o t .
mlab_source

s e l f . p l o t=s e l f . scene . mlab . quiver3d (
s e l f . x [ 1 : −1 ] , s e l f . y [ 1 : −1 ] , s e l f . z
[ 1 : −1 ] , s e l f . omega [ : , 0 ] , s e l f . omega
[ : , 1 ] , s e l f . omega [ : , 2 ] )

s e l f . vectorsourceD=s e l f . p l o t .
mlab_source

else :
s e l f . l i n e s o u r c e . r e s e t ( x=s e l f . x , y=s e l f

. y , z=s e l f . z )
s e l f . v e c to r sourc e1 . r e s e t ( x=( s e l f . x

[: −1]+ s e l f . x [ 1 : ] ) /2 , y=( s e l f . y
[: −1]+ s e l f . y [ 1 : ] ) /2 , z=( s e l f . z
[: −1]+ s e l f . z [ 1 : ] ) /2 ,u=s e l f . d1
[ : , 0 ] , v=s e l f . d1 [ : , 1 ] ,w=s e l f . d1
[ : , 2 ] )

s e l f . v e c to r sourc e2 . r e s e t ( x=( s e l f . x
[: −1]+ s e l f . x [ 1 : ] ) /2 , y=( s e l f . y
[: −1]+ s e l f . y [ 1 : ] ) /2 , z=( s e l f . z
[: −1]+ s e l f . z [ 1 : ] ) /2 ,u=s e l f . d2
[ : , 0 ] , v=s e l f . d2 [ : , 1 ] ,w=s e l f . d2
[ : , 2 ] )

s e l f . v e c to r sourc e3 . r e s e t ( x=( s e l f . x
[: −1]+ s e l f . x [ 1 : ] ) /2 , y=( s e l f . y
[: −1]+ s e l f . y [ 1 : ] ) /2 , z=( s e l f . z
[: −1]+ s e l f . z [ 1 : ] ) /2 ,u=s e l f . d3
[ : , 0 ] , v=s e l f . d3 [ : , 1 ] ,w=s e l f . d3
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[ : , 2 ] )
s e l f . vectorsourceD . r e s e t ( x=s e l f . x

[ 1 : −1 ] , y=s e l f . y [ 1 : −1 ] , z=s e l f . z
[ 1 : −1 ] , u=s e l f . omega [ : , 0 ] , v=s e l f .
omega [ : , 1 ] ,w=s e l f . omega [ : , 2 ] )

def __init__( s e l f ) :
s e l f . omega0=s e l f . getOmega0 ( )
s e l f . minimizeEnergy ( )

def getKappa10 ( s e l f ) :
return array (2∗ pi ∗ s e l f . L∗ s e l f . kappa10∗ ones ( s e l f .N−1) )
# return array ( s e l f . kappa10∗ ones ( s e l f .N−1))

def getKappa20 ( s e l f ) :
return array (2∗ pi ∗ s e l f . L∗ s e l f . kappa20∗ ones ( s e l f .N−1) )
# return array ( s e l f . kappa20∗ ones ( s e l f .N−1))

def getkappa30 ( s e l f ) :
return array (2∗ pi ∗ s e l f . L∗ s e l f . kappa30∗ ones ( s e l f .N−1) )
# return array ( s e l f . kappa30∗ ones ( s e l f .N−1))

def getOmega0 ( s e l f ) :
return array ( [ s e l f . getKappa10 ( ) , s e l f . getKappa20 ( ) ,

s e l f . getkappa30 ( ) ] )

def inttOmega ( s e l f , omega ) :
ds=s e l f . L/( s e l f .N−1)
r =[ s e l f . r0 ]
x=[ s e l f . x0 ]
y=[ s e l f . y0 ]
z=[ s e l f . z0 ]
d1=[ s e l f . d10 ]
d2=[ s e l f . d20 ]
d3=[ s e l f . d30 ]
s12 =[ ]
s13 =[ ]
s23 =[ ]
# pdb . se t_trace ( )
omega=omega . reshape (3 , −1) . t ranspose ( )
for i in range ( s e l f .N−1) :

d1 . append ( ( d1 [ i ]+ds∗ c r o s s ( omega [ i ] , d1 [ i ] ) ) /
norm( d1 [ i ]+ds∗ c r o s s ( omega [ i ] , d1 [ i ] ) ) )

d2 . append ( ( d2 [ i ]+ds∗ c r o s s ( omega [ i ] , d2 [ i ] ) ) /
norm( d2 [ i ]+ds∗ c r o s s ( omega [ i ] , d2 [ i ] ) ) )

d3 . append ( ( d3 [ i ]+ds∗ c r o s s ( omega [ i ] , d3 [ i ] ) ) /
norm( d3 [ i ]+ds∗ c r o s s ( omega [ i ] , d3 [ i ] ) ) )

s12 . append ( d1 [ i ] [ 0 ] ∗ d2 [ i ] [ 0 ] + d1 [ i ] [ 1 ] ∗ d2 [ i
] [ 1 ] + d1 [ i ] [ 2 ] ∗ d2 [ i ] [ 2 ] )

s13 . append ( d1 [ i ] [ 0 ] ∗ d3 [ i ] [ 0 ] + d1 [ i ] [ 1 ] ∗ d3 [ i
] [ 1 ] + d1 [ i ] [ 2 ] ∗ d3 [ i ] [ 2 ] )
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s23 . append ( d2 [ i ] [ 0 ] ∗ d3 [ i ] [ 0 ] + d2 [ i ] [ 1 ] ∗ d3 [ i
] [ 1 ] + d2 [ i ] [ 2 ] ∗ d3 [ i ] [ 2 ] )

print s12 [ i ] , s13 [ i ] , s23 [ i ] , omega [ i ] , norm( ds∗
omega [ i ] )

s e l f . d1=array ( d1 )
s e l f . d2=array ( d2 )
s e l f . d3=array ( d3 )
s e l f . s12=array ( s12 )
s e l f . s13=array ( s13 )
s e l f . s23=array ( s23 )
for i in range ( s e l f .N) :

r . append ( r [ i ]+ds∗ s e l f . d3 [ i ] )
r=array ( r )
for i in range (1 , s e l f .N+1) :

x . append ( r [ i ] [ 0 ] )
y . append ( r [ i ] [ 1 ] )
z . append ( r [ i ] [ 2 ] )

x=array ( x )
y=array ( y )
z=array ( z )
return r , x , y , z

def Energy ( s e l f , omega ) :
ds=s e l f . L/( s e l f .N−1)
r , x , y , z=s e l f . inttOmega ( omega )
kappa1 =[ ]
kappa2 =[ ]
kappa3 =[ ]
omega=omega . reshape (3 , −1)
kappa1 . append ( omega [ 0 ] )
kappa2 . append ( omega [ 1 ] )
kappa3 . append ( omega [ 2 ] )
kappa1=array ( kappa1 )
kappa2=array ( kappa2 )
kappa3=array ( kappa3 )
kappa10=s e l f . getKappa10 ( )
kappa20=s e l f . getKappa20 ( )
kappa30=s e l f . getkappa30 ( )
s e l f . e _ e l a s t i c 1=ds /2∗sum( ( kappa1−kappa10 ) ∗∗2)
s e l f . e _ e l a s t i c 2=ds /2∗sum( ( kappa2−kappa20 ) ∗∗2)
s e l f . e _ e l a s t i c 3=ds /2∗sum( ( kappa3−kappa30 ) ∗∗2)
s e l f . e _ e l a s t i c=s e l f . e _ e l a s t i c 1+s e l f . e _ e l a s t i c 2+s e l f .

e _ e l a s t i c 3
s e l f . e_potent ia l=ds∗ s e l f . g∗sum( z )
s e l f . e_tota l=s e l f . e _ e l a s t i c+s e l f . e_potent ia l
return s e l f . e_tota l

def minimizeEnergy ( s e l f ) :
omega0=s e l f . omega0
s e l f . omega=op . fmin_bfgs ( s e l f . Energy , omega0 )
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s e l f . r , s e l f . x , s e l f . y , s e l f . z=s e l f . inttOmega ( s e l f . omega
)

s e l f . omega=s e l f . omega . reshape (3 , −1)
s e l f . kappa1=s e l f . omega [ 0 ] / ( 2 ∗ pi ∗ s e l f . L)

# s e l f . kappa1=s e l f . omega [ 0 ]
s e l f . kappa2=s e l f . omega [ 1 ] / ( 2 ∗ pi ∗ s e l f . L)

# s e l f . kappa2=s e l f . omega [ 1 ]
s e l f . kappa3=s e l f . omega [ 2 ] / ( 2 ∗ pi ∗ s e l f . L)

# s e l f . kappa3=s e l f . omega [ 2 ]
s e l f . omega=s e l f . omega . t ranspose ( )
s e l f . update_plot ( )
return

def apply ( s e l f , i n f o ) :
s e l f . apply_ ( )
s e l f . omega0=s e l f . getOmega0 ( )
mimumizeEnergy ( )
s e l f . r e p l o t ( )
return

def _L_changed( s e l f , i n f o ) :
s e l f . omega0=s e l f . getOmega0 ( )
s e l f . minimizeEnergy ( )
return

def _N_changed( s e l f , i n f o ) :
s e l f . omega0=s e l f . getOmega0 ( )
s e l f . minimizeEnergy ( )
return

def _kappa10_changed ( s e l f , i n f o ) :
s e l f . omega0=s e l f . getOmega0 ( )
s e l f . minimizeEnergy ( )
return

def _kappa20_changed ( s e l f , i n f o ) :
s e l f . omega0=s e l f . getOmega0 ( )
s e l f . minimizeEnergy ( )
return

def _kappa30_changed ( s e l f , i n f o ) :
s e l f . omega0=s e l f . getOmega0 ( )
s e l f . minimizeEnergy ( )
return

def _g_changed ( s e l f , i n f o ) :
s e l f . minimizeEnergy ( )
return
return

beam_3D=Beam_3D( )
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# p l o t (beam_3D . x , beam_3D. z )

# # 3D Plo t
# import m a t p l o t l i b . p y p l o t as p l t
# from mp l_too l k i t s . mplot3d import Axes3D
# f i g = p l t . f i g u r e ( )
# ax = f i g . add_subplot (111 , p r o j e c t i o n =’3d ’)
# ax . p l o t (beam . x , beam . y , z s=beam . z )
beam_3D . c o n f i g u r e _ t r a i t s ( )

# from mayavi import mlab
# h=1
# mlab . qu iver3d ((beam_3D. x [ : −1: h]+beam_3D. x [ 1 : : h ] ) /2 ,(beam_3D. y [ : −1: h

]+beam_3D . y [ 1 : : h ] ) /2 ,(beam_3D. z [ : −1: h]+beam_3D. z [ 1 : : h ] ) /2 ,beam_3D.
d1 [ : , 0 ] [ : : h ] , beam_3D. d1 [ : , 1 ] [ : : h ] , beam_3D. d1 [ : , 2 ] [ : : h ] )

# mlab . qu iver3d ((beam_3D. x [ : −1: h]+beam_3D. x [ 1 : : h ] ) /2 ,(beam_3D. y [ : −1: h
]+beam_3D . y [ 1 : : h ] ) /2 ,(beam_3D. z [ : −1: h]+beam_3D. z [ 1 : : h ] ) /2 ,beam_3D.
d2 [ : , 0 ] [ : : h ] , beam_3D. d2 [ : , 1 ] [ : : h ] , beam_3D. d2 [ : , 2 ] [ : : h ] )

# mlab . qu iver3d ((beam_3D. x [ : −1: h]+beam_3D. x [ 1 : : h ] ) /2 ,(beam_3D. y [ : −1: h
]+beam_3D . y [ 1 : : h ] ) /2 ,(beam_3D. z [ : −1: h]+beam_3D. z [ 1 : : h ] ) /2 ,beam_3D.
d3 [ : , 0 ] [ : : h ] , beam_3D. d3 [ : , 1 ] [ : : h ] , beam_3D. d3 [ : , 2 ] [ : : h ] )

# Mater ia l Frames
# beam_3D . scene . mlab . qu iver3d (beam_3D. x [ : −1] ,beam_3D. y [ : −1] ,beam_3D. z

[ : −1] ,beam_3D. d1 [ : , 0 ] , beam_3D. d1 [ : , 1 ] , beam_3D. d1 [ : , 2 ] )
# beam_3D . scene . mlab . qu iver3d (beam_3D. x [ : −1] ,beam_3D. y [ : −1] ,beam_3D. z

[ : −1] ,beam_3D. d2 [ : , 0 ] , beam_3D. d2 [ : , 1 ] , beam_3D. d2 [ : , 2 ] )
# beam_3D . scene . mlab . qu iver3d (beam_3D. x [ : −1] ,beam_3D. y [ : −1] ,beam_3D. z

[ : −1] ,beam_3D. d3 [ : , 0 ] , beam_3D. d3 [ : , 1 ] , beam_3D. d3 [ : , 2 ] )

B.3 Cuboid

" This Python s c r i p t works with Abaqus 6 .6 "
" Author : Sebas t i en Turcaud "
" Date : June 2010 "

from abaqus import ∗
from abaqusConstants import ∗

from abaqus import get Inputs
from abaqus import getWarningReply ,YES,NO
import random

os . chd i r ( r ’C: / Documents and S e t t i n g s / Sebas t i en Turcaud/My Documents/
Seb/Abaqus ’ )

# Create a model

Mdb( )
myModel = mdb. Model (name=’Beam ’ )
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del mdb. models [ ’ Model−1 ’ ]

# Viewport

myViewport = s e s s i o n . v iewports [ ’ Viewport : 1 ’ ]

########################
#GEOMETRY and PARTITION#
########################

import part

## User input window

f i e l d s = ( ( ’ a : ’ , ’ 1 ’ ) , ( ’b : ’ , ’ 1 ’ ) , ( ’L : ’ , ’ 1 ’ ) )
a , b , L = get Inputs ( f i e l d s=f i e l d s , l a b e l=’ Spec i f y dimensions : ’ ,

d i a l o g T i t l e=’ Create Block ’ , )
a = f loat ( a )
b = f loat (b)
L = f loat (L)

# Create a s k e t ch f o r the base f e a t u r e

mySketch = myModel . Sketch (name=’ beamProf i l e ’ , s h e e t S i z e=max( a , b ) )

# Create the r e c t a n g l e

mySketch . r e c t a n g l e ( po int1=(−a /2 ,b/2) , po int2=(a/2,−b/2) )

# Create a three −dimensional , de formab le par t

myBeam = myModel . Part (name=’Beam ’ , d imens i ona l i t y=THREE_D, type=
DEFORMABLE_BODY)

# Coordinate system

myBeam. DatumCsysByThreePoints ( o r i g i n =(0 ,0 ,0) , po int1 =(0 ,0 ,L) , po int2=(a
/2 ,0 ,0 ) ,name=’CSYS ’ , coordSysType=CARTESIAN)

# Create the par t ’ s base f e a t u r e by ex t rud ing the s k e t ch through a
d i s t ance o f L

myPart = myBeam. BaseSol idExtrude ( sketch=mySketch , depth=L)

myViewport . view . f i tV i ew ( )
myViewport . view . se tVa lues ( s e s s i o n . views [ ’ I s o ’ ] )
myViewport . view . s e t P r o j e c t i o n ( p r o j e c t i o n=PARALLEL)
myViewport . s e tVa lues ( d i sp layedObject=myBeam)

# P a r t i t i o n s
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## User input window

f i e l d s = ( ( ’ Hor i zonta l : ’ , ’ 2 ’ ) , ( ’ V e r t i c a l : ’ , ’ 2 ’ ) , ( ’ Long i tud ina l : ’ , ’ 2 ’ )
)

h , v , l = get Inputs ( f i e l d s=f i e l d s , l a b e l=’ Spec i f y p a r t i t i o n i n g : ’ ,
d i a l o g T i t l e=’ Orthogonal g r id ’ , )

h = int (h)
v = int ( v )
l = int ( l )

ho r i zon ta l , v e r t i c a l , l o n g i t u d i n a l = ( ) , ( ) , ( )

for i in range (1 , h ) :
h o r i z o n t a l = h o r i z o n t a l + ((−a/2+ i ∗a/h,−b /2 ,0) , )

for j in range (1 , v ) :
v e r t i c a l = v e r t i c a l + ((−a/2,−b/2+ j ∗b/v , 0 ) , )

for k in range (1 , l ) :
l o n g i t u d i n a l = l o n g i t u d i n a l + ((−a/2,−b/2 , k∗L/ l ) , )

for i in range ( len ( h o r i z o n t a l ) ) :
myBeam. PartitionCellByPlaneNormalToEdge ( edge=myBeam. edges . f indAt (

h o r i z o n t a l [ i ] ) , po int=h o r i z o n t a l [ i ] , c e l l s=myBeam. c e l l s )

for j in range ( len ( v e r t i c a l ) ) :
myBeam. PartitionCellByPlaneNormalToEdge ( edge=myBeam. edges . f indAt (

v e r t i c a l [ j ] ) , po int=v e r t i c a l [ j ] , c e l l s=myBeam. c e l l s )

for k in range ( len ( l o n g i t u d i n a l ) ) :
myBeam. PartitionCellByPlaneNormalToEdge ( edge=myBeam. edges . f indAt (

l o n g i t u d i n a l [ k ] ) , po int=l o n g i t u d i n a l [ k ] , c e l l s=myBeam. c e l l s )

myViewport . s e tCo lo r ( colorMapping=myViewport . colorMappings [ ’ Sec t i on ’ ] )
myViewport . d i s a b l e M u l t i p l e C o l o r s ( )
myViewport . enab l eMul t ip l eCo lo r s ( )
myViewport . s e tCo lo r ( i n i t i a l C o l o r=’#3DB3FF ’ , t rans lucency =0.3)

# Define reg i ons

r eg i on = [ [ [ 0 for i in range (h) ] for j in range ( v ) ] for k in range ( l )
]

for k in range ( l ) :
for j in range ( v ) :

for i in range (h) :
r eg i on [ k ] [ j ] [ i ] = (myBeam. c e l l s . f indAt ((( −a/2+a /(2∗h)+i ∗a

/h,−b/2+b/(2∗v )+j ∗b/v , L/(2∗ l )+k∗L/ l ) , ) , ) , )
myBeam. DatumPointByCoordinate ( coords=(−a/2+a /(2∗h)+i ∗a/h

,−b/2+b/(2∗v )+j ∗b/v , L/(2∗ l )+k∗L/ l ) )
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myBeam. a s s i gnMat e r i a lOr i en ta t i on ( r eg i on=reg i on [ k ] [ j ] [ i ] ,
l o ca lCsy s=myBeam. datums [ 1 ] )

##########
#MATERIAL#
##########

import mate r i a l

# Create ma t e r i a l s

myNeutral = myModel . Mater ia l (name=’ Neutral ’ )
myExpanding = myModel . Mater ia l (name=’ Expanding ’ )

## User input window

f i e l d s 1 = ( ( ’Young : ’ , ’ 1 ’ ) , ( ’ Poisson : ’ , ’ 0 . 3 ’ ) )
f i e l d s 2 = ( ( ’Young : ’ , ’ 1 ’ ) , ( ’ Poisson : ’ , ’ 0 . 3 ’ ) )
youngn , po i s sonn = get Inputs ( f i e l d s=f i e l d s 1 , l a b e l=’ Neutra l : ’ ,

d i a l o g T i t l e=’ E l a s t i c p r o p e r t i e s ’ , )
younge , po i s sone = get Inputs ( f i e l d s=f i e l d s 2 , l a b e l=’ Expanding : ’ ,

d i a l o g T i t l e=’ E l a s t i c p r o p e r t i e s ’ , )
youngn = f loat ( youngn )
po i ssonn = f loat ( po i s sonn )
younge = f loat ( younge )
po i s sone = f loat ( po i s sone )

## User input window

f i e l d s 1 = ( ( ’ Neutral1 : ’ , ’ 0 ’ ) , ( ’ Neutral2 : ’ , ’ 0 ’ ) , ( ’ Neutral3 : ’ , ’ 0 ’ ) )
f i e l d s 2 = ( ( ’ Expanding1 : ’ , ’ 1 ’ ) , ( ’ Expanding2 : ’ , ’ 0 ’ ) , ( ’ Expanding3 : ’ , ’ 0 ’

) )
alphan1 , alphan2 , alphan3 = get Inputs ( f i e l d s=f i e l d s 1 , l a b e l=’ Neutral : ’ ,

d i a l o g T i t l e=’ Expansion ’ , )
alphae1 , alphae2 , a lphae3 = get Inputs ( f i e l d s=f i e l d s 2 , l a b e l=’ Expanding : ’

, d i a l o g T i t l e=’ Expansion ’ , )
T = f loat ( getInput ( ’ Temperature : ’ , ’ 1 ’ ) )
alphan1 = f loat ( alphan1 )
alphan2 = f loat ( alphan2 )
alphan3 = f loat ( alphan3 )
alphae1 = f loat ( alphae1 )
alphae2 = f loat ( alphae2 )
alphae3 = f loat ( alphae3 )

# Create the mater ia l p r o p e r t i e s

expans ionProper t i e sNeut ra l =(alphan1 , alphan2 , alphan3 )
myNeutral . E l a s t i c ( t ab l e =((youngn , po i s sonn ) , ) )
myNeutral . Expansion ( type=ORTHOTROPIC, t ab l e =((

expans ionProper t i e sNeut ra l ) , ) )
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expans ionPropert iesExpanding=(alphae1 , alphae2 , a lphae3 )
myExpanding . E l a s t i c ( t ab l e =((younge , po i s sone ) , ) )
myExpanding . Expansion ( type=ORTHOTROPIC, t ab l e =((

expans ionPropert iesExpanding ) , ) )

#########################
#SECTION and ASSIGNEMENT#
#########################

import s e c t i o n

# Create s e c t i o n s

myNeutralSection = myModel . HomogeneousSol idSection (name=’
beamNeutralSection ’ , mate r i a l=’ Neutra l ’ , t h i c k n e s s =1.0)

myExpandingSection = myModel . HomogeneousSol idSection (name=’
beamExpandingSection ’ , mate r i a l=’ Expanding ’ , t h i c k n e s s =1.0)

### Disp lay the ma t e r i a l s
##
##myViewport . s e tCo lor ( i n i t i a l C o l o r =’#BDBDBD’ , t rans lucency =0.5)
##myViewport . s e tCo lor ( colorMapping=myViewport . colorMappings [ ’ Mater ia l

’ ] )

# Assign a l gor i t hms #

## # Pick
##f or k in range ( l ) :
## f o r j in range ( v ) :
## f o r i in range (h ) :
## h i g h l i g h t ( reg ion [ k ] [ j ] [ i ] [ 0 ] [ 0 ] )
## s e c t i o n = getWarningReply ( message=’Expanding element ? ’ ,

bu t t ons=(YES,NO) )
## i f s e c t i o n == YES:
## myBeam. Sect ionAssignment ( reg ion=reg ion [ k ] [ j ] [ i ] ,

sectionName=’beamExpandingSection ’)
## e l i f s e c t i o n == NO:
## myBeam. Sect ionAssignment ( reg ion=reg ion [ k ] [ j ] [ i ] ,

sectionName=’ beamNeutra lSect ion ’)
## u n h i g h l i g h t ( reg ion [ k ] [ j ] [ i ] [ 0 ] [ 0 ] )
## #
## # Random
##P = f l o a t ( g e t Inpu t ( ’ Percent : ’ , ’ 5 0 ’ ) )
##f o r k in range ( l ) :
## f o r j in range ( v ) :
## f o r i in range (h ) :
## R = random . random ()
## p r i n t R
## i f R <= P/100:
## myBeam. Sect ionAssignment ( reg ion=reg ion [ k ] [ j ] [ i ] ,

sectionName=’beamExpandingSection ’)
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## e l i f R > P/100:
## myBeam. Sect ionAssignment ( reg ion=reg ion [ k ] [ j ] [ i ] ,

sectionName=’ beamNeutra lSect ion ’)
## #

# Hel i x ( genera l )
for k in range ( l ) :

for j in range ( v ) :
for i in range (h) :

c_hp = int ( c e i l (h/2) )
c_vp = int ( c e i l ( v/2) )
c_hm = int ( f l o o r (h/2) )
c_vm = int ( f l o o r ( v/2) )
i f k%4==0:

i f i==0 and j ==0:
for x in range (c_hp) :

for y in range ( c_vp) :
myBeam. Sect ionAssignment ( r eg i on=reg i on [ k

] [ j+y ] [ i+x ] , sectionName=’
beamExpandingSection ’ )

e l i f i>=c_hp or j>=c_vp :
myBeam. Sect ionAssignment ( r eg i on=reg i on [ k ] [ j ] [ i ] ,

sectionName=’ beamNeutralSect ion ’ )
e l i f k%4==1:

i f i==0 and j==c_vm:
for x in range (c_hp) :

for y in range ( c_vp) :
myBeam. Sect ionAssignment ( r eg i on=reg i on [ k

] [ j+y ] [ i+x ] , sectionName=’
beamExpandingSection ’ )

e l i f i>=c_hp or j<c_vm:
myBeam. Sect ionAssignment ( r eg i on=reg i on [ k ] [ j ] [ i ] ,

sectionName=’ beamNeutralSect ion ’ )
e l i f k%4==2:

i f i==c_hm and j==c_vm:
for x in range (c_hp) :

for y in range ( c_vp) :
myBeam. Sect ionAssignment ( r eg i on=reg i on [ k

] [ j+y ] [ i+x ] , sectionName=’
beamExpandingSection ’ )

e l i f i<c_hm or j<c_vm:
myBeam. Sect ionAssignment ( r eg i on=reg i on [ k ] [ j ] [ i ] ,

sectionName=’ beamNeutralSect ion ’ )
e l i f k%4==3:

i f i==c_hm and j ==0:
for x in range (c_hp) :

for y in range ( c_vp) :
myBeam. Sect ionAssignment ( r eg i on=reg i on [ k

] [ j+y ] [ i+x ] , sectionName=’
beamExpandingSection ’ )

e l i f i<c_hm or j>=c_vp :
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myBeam. Sect ionAssignment ( r eg i on=reg i on [ k ] [ j ] [ i ] ,
sectionName=’ beamNeutralSection ’ )

#
## myViewport . f o r ceRe f r e sh ()
## myViewport . s e tCo lor ( i n i t i a l C o l o r =’#BDBDBD’ , t rans lucency

=0.5)
## myViewport . s e tCo lor ( colorMapping=myViewport .

colorMappings [ ’ Mater ia l ’ ] )

##########
#ASSEMBLY#
##########

import assembly

# Create a par t in s tance

myAssembly = myModel . rootAssembly
myInstance = myAssembly . Ins tance (name=’ beamInstance ’ , part=myBeam,

dependent=OFF)

######
#STEP#
######

import s tep

# Create a s t ep

myModel . S ta t i cS t ep (name=’beamLoad ’ , p rev ious=’ I n i t i a l ’ , t imePeriod =1.0 ,
i n i t i a l I n c =0.01 ,maxNumInc=1000 , timeIncrementationMethod=AUTOMATIC,
d e s c r i p t i o n=’ Thermal l oad ing o f the beam ’ , nlgeom=ON)

######
#LOAD#
######

import load

# Create a boundary cond i t i on t h a t f i x e s four po in t o f the beam

##Point1 = myInstance . v e r t i c e s . f indAt (((−a/2,−b /2 ,0) , ) )
##Point2 = myInstance . v e r t i c e s . f indAt ( ( ( a/2,−b /2 ,0) , ) )
##Point3 = myInstance . v e r t i c e s . f indAt ( ( ( a/2 , b /2 ,0) , ) )
##Point4 = myInstance . v e r t i c e s . f indAt (((−a/2 , b /2 ,0) , ) )
##
##myModel . DisplacementBC (name=’Fixed1 ’ , createStepName=’ I n i t i a l ’ ,

r eg ion=(Point1 , ) , u1=0,u2=0,u3=0)
##myModel . DisplacementBC (name=’Fixed2 ’ , createStepName=’ I n i t i a l ’ ,

r eg ion=(Point2 , ) , u1=0,u2=0,u3=0)
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##myModel . DisplacementBC (name=’Fixed3 ’ , createStepName=’ I n i t i a l ’ ,
r eg ion=(Point3 , ) , u1=0,u2=0,u3=0)

##myModel . DisplacementBC (name=’Fixed4 ’ , createStepName=’ I n i t i a l ’ ,
r eg ion=(Point4 , ) , u1=0,u2=0,u3=0)

# Create a thermal load

myModel . Temperature (name=’ Fina l ’ , createStepName=’beamLoad ’ , r eg i on =(
myInstance . c e l l s , ) , d i s t r ibut i onType=UNIFORM,
c r o s s S e c t i o n D i s t r i b u t i o n=CONSTANT_THROUGH_THICKNESS, magnitudes=(T
, ) )

######
#MESH#
######

import mesh

# Assign an element type to the par t in s tance

elemType = mesh . ElemType ( elemCode=C3D8 , e lemLibrary=STANDARD)
myAssembly . setElementType ( r e g i o n s =(myInstance . c e l l s , ) , elemTypes=(

elemType , ) )

## User input window

dens i ty = eval ( getInput ( ’ Enter mesh dens i ty : ’ , ’ 2 ’ ) )

# Seed the Edges

Edgesh1 , Edgesh2 = ( ) , ( )
for i in range (h) :

for k in range ( l +1) :
Edgesh1 = Edgesh1 + ( myInstance . edges . f indAt ((( −a/2+a /(2∗h)+i

∗a/h , b/2 ,L−k∗L/ l ) , ) ) , )
Edgesh2 = Edgesh2 + ( myInstance . edges . f indAt ((( −a/2+a /(2∗h)+i

∗a/h,−b/2 ,L−k∗L/ l ) , ) ) , )

for i in range (h∗( l +1) ) :
myAssembly . seedEdgeByNumber ( edges=Edgesh1 [ i ] , number=dens i ty )
myAssembly . seedEdgeByNumber ( edges=Edgesh2 [ i ] , number=dens i ty )

Edgesv1 , Edgesv2 = ( ) , ( )
for j in range ( v ) :

for k in range ( l +1) :
Edgesv1 = Edgesv1 + ( myInstance . edges . f indAt ((( −a /2 ,b/2−b/(2∗

v )−j ∗b/v , L−k∗L/ l ) , ) ) , )
Edgesv2 = Edgesv2 + ( myInstance . edges . f indAt ( ( ( a /2 ,b/2−b/(2∗

v )−j ∗b/v , L−k∗L/ l ) , ) ) , )

for j in range ( v∗( l +1) ) :
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myAssembly . seedEdgeByNumber ( edges=Edgesv1 [ j ] , number=dens i ty )
myAssembly . seedEdgeByNumber ( edges=Edgesv2 [ j ] , number=dens i ty )

Edgesl1 , Edgesl2 , Edgesl3 , Edgesl4 = ( ) , ( ) , ( ) , ( )
for k in range ( l ) :

Edgesl1 = Edgesl1 + ( myInstance . edges . f indAt ((( −a /2 , b/2 ,L−L/(2∗ l
)−k∗L/ l ) , ) ) , )

Edgesl2 = Edgesl2 + ( myInstance . edges . f indAt ( ( ( a /2 , b/2 ,L−L/(2∗ l
)−k∗L/ l ) , ) ) , )

Edgesl3 = Edgesl3 + ( myInstance . edges . f indAt ((( −a/2,−b/2 ,L−L/(2∗ l
)−k∗L/ l ) , ) ) , )

Edgesl4 = Edgesl4 + ( myInstance . edges . f indAt ( ( ( a/2,−b/2 ,L−L/(2∗ l
)−k∗L/ l ) , ) ) , )

myAssembly . seedEdgeByNumber ( edges=Edgesl1 [ k ] , number=dens i ty )
myAssembly . seedEdgeByNumber ( edges=Edgesl2 [ k ] , number=dens i ty )
myAssembly . seedEdgeByNumber ( edges=Edgesl3 [ k ] , number=dens i ty )
myAssembly . seedEdgeByNumber ( edges=Edgesl4 [ k ] , number=dens i ty )

# Mesh the par t in s tance

myAssembly . generateMesh ( r e g i o n s =(myInstance , ) )

# Disp lay the meshed beam

myViewport . partDisp lay . s e tVa lues ( mesh=ON)
myViewport . s e tVa lues ( d i sp layedObject=myAssembly )

#####
#JOB#
#####

import job

# Create an a n a l y s i s j ob f o r the model and submit i t

jobName = ’ beam_thermal ’
myJob = mdb. Job (name=jobName , model=’Beam ’ , d e s c r i p t i o n=’Beam thermal

deformation ’ )
myJob . se tVa lues ( preMemory=10000 , standardMemory=1000000 ,

standardMemoryPolicy=MAXIMUM)

# Output

myModel . FieldOutputRequest (name=’ Output ’ , createStepName=’beamLoad ’ ,
v a r i a b l e s =( ’S ’ , ’E ’ , ’EE ’ , ’THE’ , ’U ’ , ’RBANG’ , ’RBROT’ , ’TEMP’ , ’EVOL’ , ’

COORD’ ) )

# Wait f o r the job to complete

myJob . submit ( )
myJob . waitForCompletion ( )
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###############
#VISUALIZATION#
###############

import v i s u a l i z a t i o n

# Open the output database and d i s p l a y a d i sp lacement contour p l o t

myOdb = s e s s i o n . openOdb(name=jobName + ’ . odb ’ )
myViewport . s e tVa lues ( d i sp layedObject=myOdb)
myViewport . odbDisplay . setFrame ( step=’beamLoad ’ , frame =100)
##myViewport . odbDisp lay . se tPr imaryVar iab le ( v a r i a b l e L a b e l =’U ’ ,

ou tpu tPos i t i on=NODAL, re f inement=(INVARIANT, ’ Magnitude ’ ) )
myViewport . odbDisplay . setPr imaryVar iab le ( va r i ab l eLabe l=’EE ’ ,

outputPos i t i on=INTEGRATION_POINT, re f inement=(INVARIANT, ’Max .
P r i n c i p a l ’ ) )

myViewport . odbDisplay . commonOptions . s e tVa lues ( un i formSca leFactor =1,
de fo rmat ionSca l ing=UNIFORM)

myViewport . odbDisplay . d i sp l ay . s e tVa lues ( p l o t S t a t e =(DEFORMED, ) )
myViewport . view . f i tV i ew ( )

# Movie

myViewport . f o r c e R e f r e s h ( )
myViewport . s e tCo lo r ( i n i t i a l C o l o r=’#BDBDBD’ , t rans lucency =0.5)
myViewport . s e tCo lo r ( colorMapping=myViewport . colorMappings [ ’ Mater ia l ’

] )
s e s s i o n . an imat ionContro l l e r . animationOptions . s e tVa lues ( frameRate =40,

mode=SWING)
s e s s i o n . an imat ionContro l l e r . s e tVa lues ( animationType=TIME_HISTORY,

v iewports=( ’ Viewport : 1 ’ , ) )
s e s s i o n . an imat ionContro l l e r . play ( durat ion=UNLIMITED)
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Appendix C

Experiments

This appendix gives the characterization of the mechanical and expansion properties of the
materials presented in chapter 5.

C.1 Characterization of mechanical properties of elastomers

Tensile testing was done using a classical tensile machine from Zwick R©.

PDMS Dogbone samples were cast in a mold made of photo-polymer produced by 3D pro-
totyping. The dimensions are L = 2.5 cm, B = 1.0 cm and T = 0.5 cm, where L, B and T are
the length, center width and thickness respectively (fig. C.1a). At room temperature, PDMS

(a) (b)

Figure C.1 – (a) Mold made of photopolymer by 3D prototyping for casting dogbone samples.
(b) Elite Double dogbone samples of different Shore A hardness.

has a failure strain of εmax ∼ 1 and a Young modulus 1 of E ∼ 1 − 2 MPa. A decrease in
cross-linking monomer concentration leads to a slight increase in failure strain and decrease in
stiffness (fig. C.2).

Elite Double Dogbone samples were casted in the same molds used for PDMS (fig. C.1b). At
the time, we only measured the failure strain with our homemade elongation machine (fig. 5.1a).
We can assess the respective stiffness for the different hardnesses using Gent’s relation between

1. Elastomers typically display a non-linear S-shaped stress-strain behavior, which is different from Hook’s
linear law of elasticity. The Young modulus here is a crude approximation that corresponds to the stress required
to reach failure strain.
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Figure C.2 – Stiffness versus failure strain of PDMS samples with different cross-linking agent
concentrations. Increasing the cross-linking monomer concentration leads to an increase in
stiffness (E) and to a decrease in failure strain (ǫmax).

shore A hardness (HA) and Young Modulus (E) derived from classical elasticity theory (Gent
1958):

E =
0.0981(56 + 7.62336 ∗ H)
0.137505(254 − 2.54 ∗ H)

(C.1)

At room temperature, Elite Double has a failure strain of εmax ∼ 1 and a Young modulus of
E ∼ 1 MPa. A decrease in hardness corresponds to a slight increase in failure strain and a
decrease in stiffness (fig. C.3).
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Figure C.3 – Stiffness versus failure strain of Elite Double samples of different shore A hardness.
Increasing the hardness leads to an increase in stiffness (E) and to a slight decrease in failure
strain (ǫmax).
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C.2 Characterization of mechanical and expansion properties of

thermal morphers

C.2.0.1 Elastic properties

Tensile testing Uniaxial tensile testing was performed to assess the elastic modulus of the
silicone and balsa samples using a typical tensile testing machine of the type (fig. C.4).

Figure C.4 – Uniaxial tensile machine where the clamped balsa sample is being tested perpen-
dicular to its fiber direction.

Silicone The averaged Young modulus of the silicone samples is E ≈ 0.5 MPa.

Balsa The averaged measured Young moduli of the balsa samples are E⊥ ≈ 12.8 MPa and
E‖ ≈ 43.8 MPa. The longitudinal Young modulus is thus ∼ 4 times higher than the transversal.

C.2.0.2 Coefficients of thermal expansion

Silicone The measure CTEs of the different silicone types are summarized in table C.1

sample red white gray
αT [◦C−1] 5 × 10−4 3 × 10−4 1 × 10−4

Table C.1 – Measured CTE (αT ) of the different silicone types.

Balsa The balsa has a CTE of αT ≈ 0◦C−1.

C.3 Characterization of mechanical and swelling properties of

printed multi-materials

Swelling In order to measure the swelling of the different varieties of materials, we printed
homogeneous blocks of each material. One must choose a solvent in which makes the material
swell, but that does not degrade it too much. TPUs swell slightly in aliphatic alcohols such as
isopropanol and a lot in ketones such as acetone (Huntsman 2013). Acetone leads to important
swelling (table C.2). However, after drying the structure is heavily degraded and visibly cracked
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(fig. C.5). Isopropanol leads to less important swelling, but the structure is less deteriorated
and morphing is thus “more” reversible.

Material V W 95 85 70 60 50 40 T+

Eigenstrain [%] 3 25 28 31 39 45 57 63

Table C.2 – Free swelling strain (eigenstrain) of different printed materials after ≈ 1 d.

Figure C.5 – Homogeneous bars of different material varieties after one swelling cycle in acetone.
The cracks are particularly visible for the softest material (T+ on the right).

Stiffness We performed compression tests on small cylindrical samples while swelling was
occurring (fig. C.6). As swelling occurs, the material becomes softer (fig. C.7).

(a)
(b)

Figure C.6 – (a) Sealed setup with only a small opening on top used for measuring stiffness
during swelling. (b) Tensile testing machine.
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Figure C.7 – Stiffness variation during swelling of the different 3d printed materials in iso-
propanol. The stiffness is inversely correlated to the swelling, which is increasing in time.





Appendix D

Benders

D.1 Timoshenko’s solution for bilayers

This section recalls Timoshenko’s solution describing the bending of bilayers (Timoshenko
et al. 1925). Consider two strips of equal length L and width w with thicknesses t1 and t2

respectively 1. The following analysis applies for an elongated rod-like object (w, t1, t2 ≪ L).
The stiffness contrast between the two layers is given by n = E1/E2. In the case where morphing
is triggered by thermal expansion, the eigenstrain in each layer is given by ǫ∗

β = αT β(T − T0),
where αT β is the thermal expansion coefficient and T0 the initial temperature of the bilayer 2.
When the temperature T increases, the differential longitudinal eigenstrain between the two
layers is given by 3:

∆ǫ∗ = ǫ∗
2 − ǫ∗

1 = (αT 2 − αT 1)(T − T0) = ∆αT ∆T. (D.1)

L0

∆T

L

t1

t2
t

w

E1,α1
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M2

F1
F2 M1
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Figure D.1 – (Top) Side-view of the initial flat configuration of the bilayer. (Right) Cross-section
of the bilayer. (Below) Side-view of the deformed configuration of the bilayer. We call the layer
which expands the more active and the layer which expands the less passive (αT 2 > αT 1). Figure
adapted from (Timoshenko et al. 1925).

The curvature of a bilayer is a function of the geometrical parameters (the total thickness
t = t1 + t2 and the thickness contrast m = t1/t2), the stiffness contrast n = E1/E2) and the

1. For a quantity x, the subscript x1 and x2 refer to the top and bottom layer respectively.
2. For T = T0, ǫ∗ = 0 and we assume that the bilayer is stress-free.
3. The notation ∆x just means a change in the quantity x. One should be careful that ∆αT denotes a spatial

change while ∆T corresponds to a temporal change.
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differential longitudinal eigenstrain (∆ǫ∗ = ∆αT ∆T ). At equilibrium, both forces and moments
balance out and the total strain is compatible.

Forces and moments inside a bilayer As shown in fig. D.1, a bilayer is translationally
invariant in the longitudinal direction and possesses one mirror plane along the transversal
direction. By symmetry considerations, the forces acting over the cross-section of each layer
while activated by a differential longitudinal eigenstrain can be represented by an axial force Nβ

and a bending moment Mβ .

Balance of forces As there is no applied external forces, the internal forces acting over any
cross-section must balance out:

N1 + N2 = 0 =⇒ N1 = −N2 = F, (D.2)

where Nβ is the force in the layer β ∈ {1, 2}. Applying Hooke’s law (see appendix A.2.4), the
force Nβ induces some longitudinal elastic strains ǫel,s

β :

N1

wt1
= E1ǫel

1 ,
N2

wt2
= E2ǫel

2 . (D.3)

Balance of moments As there is no applied external moment, the internal moments acting
over any cross-section must balance out. The balance of moment at the intersurface between
the two layers is 4:

M1 − N1t1

2
+ M2 +

N2t2

2
= 0. (D.4)

The moments inside the two layers M1 and M2 are related to the curvature 5 κ through the
constitutive law (see appendix A.2.4):

M1 = κE1I1, M2 = κE2I2, (D.5)

where Iβ = wt3
β/12 are the second moment of inertia of the two layers and EβIβ are the bending

moduli of the two layers. Also, these bending moments induce a linear variation of longitudinal
strain within each layer (ǫel,b

zz = κx 6 see subsubsection 3.1.1.2). Using these relations and the
previous balance of forces, the balance of moments becomes:

N
t

2
= κ(E1I1 + E2I2). (D.6)

Compatibility of strain At the interface between the two strips, the total longitudinal strains
must be equal in the two layers, so that:

ǫ∗
1 + ǫel,s

1 + ǫel,b
1 = ǫ∗

2 + ǫel,s
2 + ǫel,b

2 . (D.7)

4. The minus sign in front of the second term comes from the fact that N1 and N2 are both defined as pointing
outward the cross-section, but N1 is above the intersurface.

5. In the case a single bending, only one material curvature in each layer is nonzero. Assuming sufficient
elongation (w, t ≪ L,) they are both equal and correspond to the geometric curvature (κ = κ1) (see eq. 3.5.

6. In analyzing bilayers, we regard each layer as one-dimensional rods that are attached together through
compatibility conditions. Because the thickness of both layers is small compared to their length (tβ ≪ L), we
assume that the curvature of their center line is equal (κ). The transversal coordinate in each layer is given by
−tβ/2 ≤ x ≤ tβ/2.
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Introducing ǫ∗
β = αT β∆T , ǫel

β = Nβ/(Eβwtβ) and ǫel,b
β = κtβ/2 in this equation 7, we have:

αT 1∆T +
N1

E1wt1
− κ

t1

2
= αT 2∆T +

N2

E2wt2
+ κ

t2

2
. (D.8)

Using eq. D.2 and eq. D.6, we can substitute the force N for the curvature κ in terms of the
bending moduli EβIβ and the total thickness t. Using the definitions of the second moment of
inertia (Iβ = wt3

β/12), we find the following expression for κ:

κ =
6(αT 2 − αT 1)∆T (1 + m)2

t[3(1 + m)2 + (1 + mn)(m2 + 1/mn)]
, (D.9)

where m = t1/t2 is the thickness contrast and n = E1/E2 is the stiffness contrast. This is
Timoshenko’s formula that describes the curvature of a bilayer experiencing uniform heating.

7. Here again, the minus sign in front of the bending strain on the left-side of eq. D.7 is due to the fact that
the first layer is above the interface.
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An excursion into the design space of biomimetic
architectured biphasic actuators
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Natural hygromorph actuators, such as those found in the
pine cone or in the awns of wheat and the storksbill, achieve
a large variety of motions by controlling the distribution of
swellable tissues inside their geometries. Such natural sys-
tems provide inspiration for the design of artificial actuators
where swelling is triggered by any external expansion field.
One way to achieve differential swelling inside a structure
is to consider two elastic phases with different expansion
properties and to apply a uniform expansion field. The re-
sultant motion depends on the geometric distribution of the
two phases and the cross-section of the structure. This paper
uses the finite element method to explore how the geometry
and symmetry of the initial structure controls the range of
motion available.

Keywords: Actuators; Biomimetic; Architectured materi-
als; Bilayer; Symmetry

1. Introduction

The recent increase in investigations of structure–function
relationships in biological systems by materials scientists
[1, 2] opens a large range of potentially interesting design
principles that can be translated from Nature to the engi-
neering world [3]. Passive actuated plant systems are
particularly well-suited for a biomimetic approach to the
development of artificial actuators, as they do not require

hydrolysis of ATP (Adenosine triphosphate) to supply
chemical energy to cells. Actuation in these systems is
rather controlled by the architectural arrangement of dead
tissues, which swell to differing degrees upon hydration
[4–6], where water is transported via diffusion through the
pores in the dead tissues. An additional advantage for bioin-
spired robotics shared by many simple natural actuating
systems is their properties of decentralization and embodi-
ment [7]. By this it is meant their ability to integrate sensing
and actuating functions at the material level so as to avoid
central control of the system, which typically needs a com-
plex information pathway (sensors to central control unit
to actuator). Hygrophilic swelling of dead plant tissues
although somewhat simple in concept, still leads to com-
plex macroscopic movements such as bending, twisting
and helical actuation dependent on the underlying tissue ar-
chitecture. This article is based on a top-down approach,
where hygrophilic plant tissues are modelled as thermo-me-
chanical continua in order to explore the relation between
the architectural distribution of expanding properties inside
a given geometry and the resulting movement for a given
stimulus.

Nature provides several examples of nastic actuated sys-
tems, in which plant organs move or generate stresses due
to differential swelling of their constituent tissues. This is
nicely illustrated by seed dispersal units like wheat awns
and the pine cone. Wheat is propelled on and into the
ground by daily humidity cycles that give rise to reversible
planar bending of the awns [8, 9] while ratchets account
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1. Reprinted with permission from (Bruno et al. 2010). Copyright (2010) Carl Hanser Verlag, Muenchen.



for unidirectional movement [10] and closed wet pines
cones open while drying, thus releasing the seeds [11]. In
both cases, the orientation of stiff cellulose microfibrils em-
bedded in the hygroscopic hemicellulose matrix of the sec-
ondary cell walls is responsible for the differential swelling
properties of the seed dispersal units, as the shrinkage upon
drying will primarily occur transversally to the fibres. Such
a multi-cellular bilayer with one region’s fibres oriented
parallel to the cell axis and the other region’s fibres with
random or perpendicular orientations will give rise to pla-
nar bending and can inspire simple biomimetic systems
[12]. More generally, swelling can also generate either
compressive or tensile growth stresses in so-called “reac-
tion wood”, depending on the average angle of the cellulose
microfibrils to the main cell axis [13]. General mechanisms
of multi-cellular stiff cellulose architecture inside a soft
swellable matrix have been reviewed for plant actuation
systems in [14] and mechanosensing [5]. In poplar tension
wood for example [15], an additional G-layer of parallel
cellulose microfibrils, also found in the tissue of contractile
roots [16], is responsible for the generation of high tensile
stresses. Design limits between fast movements in which
active driving forces or instabilities are at play, as in the
buckling of the Venus flytrap [17] or the explosive fracture
of seed expulsions [18], and slow movements where pas-
sive dead tissue is at work, on which we focus here, can be
made based on mechanical and hydraulic considerations
[19]. Symmetry considerations (Curie’s principle) of the
geometry and material distribution can predict the planar
bending of the aforementioned plant systems (wheat awn,
pine cone). A large number of reversible motions or stresses
can be powered by choosing a clever couple of the distribu-
tion of material properties inside the geometry and an ap-
propriate expansion/contraction field.

Although nature is able to “design” its materials at each
hierarchical length-scale, this is difficult to achieve for artifi-
cial materials, due to limitations in common manufacturing
techniques. As in the pine cones, many artificial devices have
been produced based on the bending of a bilayer made up of
two materials, each showing a different volume change in re-
sponse to a changing external field. Well established manu-
facturing techniques such as l-stereolithography can be used
to produce bilayers of photocurable polymers that bend upon
changing humidity [20]. Other examples include Cu/Cr bi-
layers that change curvature reversibly upon oxidation/re-
duction cycles [21]. Shape-memory materials have also awa-
kened a great interest in the design of artificial actuators.
Actively foldable origami-like structures have been designed
in which simple bending motion of shape-memory joints is
coupled with a crease pattern of a planar sheet in order to ob-
tain several programmable shapes [22]. Shape-memory poly-
mers can in particular be tuned to respond not only to tem-
perature changes but also to electrical fields, light intensity,
humidity fields [23] or a combination of these [24]. Magnetic
shape-memory foams are also becoming intriguing for to-
morrow’s applications since significant induced strains have
been shown and some manufacturing drawbacks have been
overcome [25]. Even if such systems show the feasibility of
bioinspired actuation, many of them are based on bilayers
bending in a single plane, with different materials distributed
only along one transverse direction. More complex behav-
iour has been demonstrated in composite systems of epoxy
[26] or silicon nanopillars [27] embedded in a swellable hy-

drogel matrix in which self-organised shape transitions occur
during swelling.

Both the natural and artificial systems presented above are
actuated through the generation of a volume change giving
rise to differences in deformation or a stress in different re-
gions of the material. Controlling the spatial distribution of
deformation/stress is therefore fundamental to produce a giv-
en actuation behaviour. Ideally, this can be achieved by using
different materials, which respond differently to a given
stimulus. The goal of this paper is to explore the complexity
of movements of one body shape (straight slender element)
made of two elastic phases with different expansion coeffi-
cients distributed along the two transverse directions. The
role of symmetry in sampling the space of allowable move-
ments is addressed firstly in the next section. Examples of
two different families of biphasic actuators are then simulat-
ed in the sections following using the finite element method
in order to determine their actuation patterns.

2. Symmetry considerations

2.1. Curie’s principle

As we consider invariant architectures along the length of the
body (uniform cross-sections), symmetry elements reduce to
mirror symmetries (n �M) and rotation symmetries (Rn),
where n is respectively the number of mirror planes and the
multiplicity of the rotation (the angle of rotation is 360=n).
In the plane, the inversion centre is equivalent to R2. Multiple
mirror symmetries imply rotation symmetries, but the in-
verse statement doesn’t hold in general (n �M ) Rn). If
symmetry exists in the base configuration it is kept in the de-
formed configuration as stated by Curie’s principle: “Effects
have at least the symmetries of their causes” [28]. In general,
this means that mirror symmetries only allow planar bending
to occur in the mirror plane, whereas rotation symmetries
only allow the structure to twist around its rotation axis. If
multiple symmetries exist in the initial configuration, they
all remain in the deformed configuration. As a result, over-
lapping symmetries result in no deformation (symmetrical
locking). For example, the presence of both a mirror plane
and a rotation axis implies no bending and no twisting as
both movements would break one of the symmetries. Such
preliminary consideration enables predictions to be made on
the allowable actuation patterns based on the symmetry of
the undeformed actuator.

2.2. Material distribution restricts symmetries
of geometrical shape

Profiles can be anything from asymmetric to multiply sym-
metric. Examples of the latter are regular n-sided polygons,
possessing n symmetry planes (mirrors) which imply n-fold
rotational symmetries. Moreover n-sided polygons will also
possess all p-fold rotational symmetries, where p is a product
of a subset of primary numbers present in the decomposition
of n (n ¼ p1 � p2 � . . . � pm and p ¼ pi1 � pi2 � . . . � pik where
(i1 . . . ik) is a subset of (1 . . .m)). Distribution of two material
phases inside the profile can only maintain or decrease the
number of the symmetry elements of the geometrical shape.
The final symmetry elements of the body are thus equal to
the symmetry elements of the geometry reduced by the
choice of the material distribution (see Fig. 1).
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2.3. Repetitive unit cell

A systematic way of designing complex material distribu-
tion inside a given geometrical shape is to look at the smal-
lest portion of the profile, which if mirrored/rotated along a
defined number of symmetry elements of the profile builds
up the whole cross-section. The design of this portion, or re-
petitive unit cell (RUC) will produce different patterns. The
symmetry of the patterns can be larger than the symmetry
elements used for its generation (see Fig. 2).

3. Setting of the FE model

In the context of continuum thermo–mechanics, the spatial
distribution of the material properties (elastic Young modu-
lus, Poisson ratio and thermal expansion coefficient) within
a given geometry determines the deformation of the object
subjected to a uniform expansion field and thus its overall
movement. In principle a wide range of different fields could
be applied that give rise to local volume changes. Examples
include changes in humidity, pH, ionic content, and tempera-
ture, or by modifying magnetic or electrical fields. In the last
two examples the orientation of the field with respect to the
structure would also need to be taken into account. To keep
the analysis simple, in the following the stimulus (tempera-
ture changes) is taken be uniform everywhere.

In this study, all the architectures are based on a straight
slender beam with a square profile which can be mapped
to any geometrical form in the plane [29].

3.1. Implementation

Analytical solutions are known for the special case of ther-
mal bilayers, where thermal expansion coefficients vary in
one direction of the cross-section leading to a planar bend-
ing of the structure in its longitudinal mirror plane [30].
However, the general case of an arbitrary distribution of
materials is difficult to address analytically. This motivates
a solution using the finite element method implemented
parametrically in Abaqus 6.9 (www.simulia.com) through
an appropriate script written in Python. All the architectures
are based on a cubic lattice defined by adjustable length and
partitioning parameters. The lattice is filled with two differ-
ent material phases, active and passive, having the same
elastic properties (elastic modulus and Poisson’s ratio) and
different expansion properties (longitudinal coefficient of
thermal expansion). Additionally, a void phase made of a
very soft extensible material enables the making of me-
chanical holes in the system. A uniform constant expansion
field is applied to the structure and the static equilibrium
configuration is computed taking non-linear geometrical ef-
fects into account. An adaptive meshing technique (ALE) is
used in order to reduce distortion effects of the elements
which are simple 8-node linear brick elements (C3D8). No
boundary condition is needed as the thermal load only in-
duces an eigenstrain and no external loads are applied. The
aim of the calculation is to qualitatively predict actuation
patterns and to explore the space of allowable movements.

3.2. Simplifying assumptions

The reversibility of natural actuation processes translates
into elasticity in the context of continuum mechanics and
the differential swelling expansion of the actuating material
is analogous to thermal expansion with spatially varying
thermal expansion coefficients. In the calculation the as-
sumption of linear thermo-elasticity is made, and, thus,
does not consider potential changes in elastic and swelling
properties with the intensity of the expansion field. In order
to compare this simulation with classical beam theory in the
future, only expansion perpendicular to the cross-section is
considered. Looking at qualitative effects, the Young’s
modulus, Poisson ratio and expansion coefficient are re-
spectively taken equal to 1, 0.3 and 1%. The uniform tem-
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Fig. 1. Non-exhaustive examples of material-distributions reducing
the number of symmetries of a square profile, where Rn stands for a n-
fold rotational axis and n ·M for nmirror planes. Breaking mirror sym-
metries while preserving rotational ones allows twisting to occur (rows
2 and 4). When only one mirror plane remains bending can occur (row
5). When two many symmetries remains, symmetry locking takes
place (rows 1 and 3). When no symmetry elements is present,, actua-
tion is apparently unpredictable (row 6).

Fig. 2. The square profile possesses 4 mirror planes and a 4-fold rota-
tional axis (4 ·M, R4). For a constant passive/active area ratio of
50 :50, those symmetry elements can either be maintained by the mate-
rial distribution (centre, upper left and downer right corner), decreased
to a single mirror plane (inner contour) or to one 4-fold rotational axis
(outer contour). The inner contour is used as RUC for the outer contour
showing that the 4-fold patterned cross-section can still possess 4 mir-
ror planes if the RUC possess a mirror plane passing through the centre
of rotation.
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perature field is also taken equal to 1. Also, the focus on bi-
phasic materials and constant cross-section does not enable
modelling continuously varying properties as in function-
ally graded materials (FGM). Nevertheless, the context of
linear elasticity seems well suited to reproducing slowly ac-
tuated movements and to reflect, at least qualitatively, the
symmetry effects.

4. Results and discussion

In the context of elastic materials, actuation is reversible, as
observed in many natural actuators. Thus, it is possible to
go from a straight element to a curved or twisted one, and
to reverse the transformation. In the absence of buckling
phenomena, this transformation will be continuous, fully
reversible, and with no hysteresis. Complex movements
can be achieved by combining basic patterns. This combi-
nation, however, is not linear, as there is a coupling be-
tween bending and twisting. Indeed, if stresses are additive,
the strain energy is quadratic, and the cross terms will give
the coupling between the different deformation modes. It
appears to be more difficult to bend a twisted shape and
vice-versa. Depending on whether the aim is to generate
displacement or force, the stiffness must be respectively
small or large. Slender elements will enable large displace-
ments with small deformations and stresses through geome-
trical amplification. A classification of actuators could
further emphasise the ambivalence between displacement
and force generation [31].

4.1. Actuation patterns

All the symmetry elements of the initial object are pre-
served in the deformed state, which delimits the space of al-
lowable movements. In the absence of symmetry locking,
one mirror plane or rotational axis allows for planar bend-
ing and twisting respectively. The actual actuation pattern
inside the space of allowable movements for a given object
appears to depend on several geometrical properties of the
cross-section.

4.2. Bending

Bending is straightforward as the presence of a mirror plane
implies planar bending (Fig. 3a). Analytical formulas for
curvature are known for simple bilayers [30] and can be
generalised to other geometries. It is also possible to control
the local curvature of the straight element by rotating the
mirror plane of the cross-section along the length of the ob-
ject. Helical actuation can be achieved this way. The second
moment of inertia of the cross-section is inversely propor-
tional to the radius of curvature leading to large displace-
ments in the case of small inertia. Geometrical effects such
as opened cross-sections can amplify the global displace-
ments.

4.3. Twisting

Twisting seems more sensitive to other geometrical factors.
In the case of a compact cross-section (Fig. 3b), no actual
twisting is observed despite the 4-fold rotational symmetry
axis. However, the augmentation of free-borders with the
volume ratio of the two phases staying equal seems to trig-
ger twisting (Fig. 3c). The moment of inertia of the cross-
section seems to relate inversely to the amount of twisting
(Figs. 3d). The eccentricity of the expanding region relative
to the geometric centre of the cross-section is proportional
to the degree of twisting.

4.4. Geometrical parameters

Empirical definitions of geometrical parameters that con-
trol actual actuation can be proposed. These empirical defi-
nitions arise from the observed actuation patterns. The next
step (not attempted here) would be to try correlating quanti-
tative measures of movements (radius of curvature, twisting
angle) to these geometrical parameters.

A general parameter is the phase fraction, corresponding
to the ratio between the volume of the active and passive
domains. For a constant cross-section, the area ratio is equal
to the volume ratio. Topological considerations such as the
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Fig. 3. Simulated actuation patterns for several cross-sections with passive/active area ratio of 50 :50: (from left to right) (a) Classical bilayer bend-
ing in its mirror plane; (b) Closed 4-fold cross-section with bilayer RUC remains straight; (c) Opened 4-fold cross-section with bilayer RUC shows
huge twisting; (d) Opened 4-fold cross-section with bigger moment of inertia shows less twisting than (c). (e) Opened 4-fold cross-section with dif-
ferently oriented bilayer RUC remains straight.
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connectivity of the phase regions also play a role in the con-
trol of the actuation patterns.

In the case of twisting, other geometrical parameters are
necessary to distinguish between the observed actuation
patterns. One of them is compactness, defined as the ratio
between the area of the cross-section and the area of the n-
sided regular polygon (with the smallest possible n value)
containing the cross-section. All other parameters being
equal, a compact cross-section will not twist, whereas an
open cross-section will. Concavity defined as the ratio be-
tween the perimeter of the shape and the perimeter of the
smallest convex contour containing the shape also plays a
role similar to geometrical amplification. Compactness
and concavity are truly disjoined concepts as there are
cross-sections with equal compactness but different con-
cavity and vice-versa. Eccentricity defined as the distance
between the centres of the active regions to the geometrical
centre of the shape controls the twisting rate of the section.
These are only qualitative considerations based on the re-
sults of the finite element calculations, without the attempt
of a complete classification of all possible shapes.

5. Conclusion

In this contribution, the effects of material distribution and
overall architecture on the actuation patterns of a composite
made of swellable and non-swellable materials constituents
have been investigated. The space of possible actuation pat-
terns can be restricted by symmetry considerations regard-
ing the initial shape. For constant cross-sections, it is possi-
ble to achieve planar bending or twisting when the material
distribution breaks some of the symmetry elements of the
initial shape, preserving one mirror plane or one rotational
axis. The observed actuation behaviour seems to depend
on several geometrical parameters, which can be described
empirically as phase ratio, topology, compactness and con-
cavity of the cross-section as well as eccentricity. This
bioinspired approach towards actuation enables the design
space of biphasic actuators to be explored. Besides geome-
trical considerations, energies and internal stresses could
also play a role and it would be interesting to look at the
stress repartition inside the cross-section or to optimise the
stored strain energy, which has not been attempted in the
present work. The question whether asymmetric shapes
can be decomposed into a set of symmetric shapes in order
to predict their actuation patterns remains open, as well as
the influences of defects on the material. This paper has
been restricted to investigating only variations in architec-
ture and material distribution within the 2D cross-section
of a simple beam. Despite this extreme simplification, it
has been found that the space of allowed movements is
quite rich, including bending, twisting and curling. The
study reported in this paper is clearly preliminary and much
more remains to be investigated. For example, more com-
plex material distributions (in 3D) [32] and shapes could
enable further unexplored actuation movements. Moreover,
it is not clear what the effect would be if the discrete multi-
phase materials would be replaced by graded material prop-
erties. It is quite likely that material optimisation methods
could be of use for this problem [33]. Finally, it is important
to stress that such systems need to be manufactured to be
useful, which imposes further restrictions on the design
space. But this initial study already shows that this simple

bio-inspired approach may enable the design of artificial
actuated materials with a wide span of potential applica-
tions.

The authors would like to thank Yael Abraham, Thomas Antretter,
Rivka Elbaum, Matt Harrington, Davide Ruffoni and especially Ingo
Burgert for stimulating discussions on actuation in plant systems.
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E.2. GRADED TWISTER APPENDIX E. TWISTERS

E.2 Graded twister

Similarly to subsection 6.2.1, the twist can be varied along the longitudinal direction by re-
laxing the assumption of translational invariance. In this subsection, we investigate an elongated
rod-like object with a squared cross-section possessing a graded shear modulus (µ) along the
longitudinal direction in the absence of eigenstrain. When this rod is twisted by external forces,
the twist (τ) increases monotonically from the hard end (µmax) to the soft end (µmin). We make
the connection to twisters and reveal the concept of a graded twister .

E.2.1 Experimental illustration

In fig. E.1, we see a graded and a uniform 3D printed rod-like object, where one end is
fixed and the other end is rotated by approximately one turn (≈ 360◦). We make the following
observations:

1. In the uniform case, the twist is continuously distributed along the rod.

2. In the graded case, the twist is diminished near the hard end (left) and increased near the
soft end (right) compared to the uniform case.

Figure E.1 – (Top) graded and (bottom) uniform 3D printed rod-like object, where one end is
fixed (right) and the other end (left) is rotated by approximately one turn (≈ 360◦). In the
graded case, the hard end in one the left and the soft end is on the right. Image courtesy of
James Weaver from the Wyss Institute.

E.2.2 Theoretical description

Let us model the graded twister from fig. E.1. The constitutive relation for a beam undergoing
twisting is:

τ =
dθ

dz
=

MT

µJ
, (E.1)

where τ is the twisting rate, θ the rotation angle between the material and geometrical frame,
MT the external twisting moment, µ the shear modulus and J the twisting inertia.

Uniform beam In the uniform case, the shear modulus is constant (µ = µc) and eq. E.1 can
be integrated immediately:

θ(z) =
MT

µcJ
z. (E.2)

With the boundary conditions θ
∣

∣

(z=0)
= 0 and θ

∣

∣

(z=L)
= 2π, we have:

MT = 2π
µcJ

L
. (E.3)

180



APPENDIX E. TWISTERS E.2. GRADED TWISTER

The rotation angle is then simply a linear function of the longitudinal coordinate (z):

θ(z) = 2π

(

z

L

)

, ⇐⇒ z(θ) = L

(

θ

2π

)

. (E.4)

Graded beam In the graded case, the shear modulus is a linear function of the longitudinal
coordinate (z):

µ(z) = µ
∣

∣

(z=0)
+

z

L
∆µ, (E.5)

where ∆µ = µ
∣

∣

(z=L)
− µ

∣

∣

(z=0)
= µL − µ0 is the difference between the hardest and the softest

shear modulus. The constitutive equation eq. E.1 can be integrated:

θ(z) =
∫ z

0

MT

µ(s)J
ds,

=
MT L

∆µJ

∫ µ0+ z
L

∆µ

µ0

dU

U
,

=
MT L

∆µJ
ln (U)

∣

∣

∣

µ0+ z
L

∆µ

µ0

,

=
MT L

∆µJ
ln
(

1 +
z∆µ

Lµ0

)

.

(E.6)

With the boundary conditions θ
∣

∣

(z=0)
= 0 and θ

∣

∣

(z=L)
= 2π, we have:

MT = 2π
∆µJ

L ln
(

1 +
∆µ

µ0

) . (E.7)

The rotation angle as a function of the longitudinal coordinate (z) is given by:

θ(z) = 2π

ln
(

1 +
z∆µ

Lµ0

)

ln
(

1 +
∆µ

µ0

) , ⇐⇒ z = L

(

µ0

∆µ

)

(

(

1 +
∆µ

µ0

)
θ

2π

− 1

)

. (E.8)

E.2.3 Numerical model

Using the finite-element method (section 4.3), we calculate the deformed configuration of
graded beams with different shear modulus contrasts where one end is fixed and the other end
is rotated by 360◦. From fig. E.2, we observe that as the shear modulus contrast increases, the
twist localizes more and more near the softer end.

Comparison between theoretical and numerical model By analyzing the deformed con-
figuration given by the finite-element method (fig. E.2), we can see how the position where the
rotation angle is a half-turn (θ = 180◦) changes as the shear modulus contrasts increases 2. Ac-
cording to eq. E.8, the finite-element model and the theoretical approach lead to very similar
results (fig. E.3).

2. We choose the angle θ = 180◦ arbitrarily and any other angle 0 < θ < 2π would be also suitable.
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(a) µmax/µmin = 1.

(b) µmax/µmin = 2.

(c) µmax/µmin = 5.

(d) µmax/µmin = 10.

(e) µmax/µmin = 20.

(f) µmax/µmin = 50.

(g) µmax/µmin = 100.

(h) µmax/µmin = 200.

(i) µmax/µmin = 500.

(j) µmax/µmin = 1000.

Figure E.2 – Twisting of a graded beam with squared cross-section having a linearly varying
shear modulus in the longitudinal direction when one end is fixed (left) and the other end is
rotated by 360◦ (right). The different figures correspond to different shear modulus contrasts:
(a) µmax/µmin = 1 (uniform), (b) µmax/µmin = 2, (c) µmax/µmin = 5, (d) µmax/µmin = 10,
(e) µmax/µmin = 20, (f) µmax/µmin = 50, (g) µmax/µmin = 100, (h) µmax/µmin = 200, (i)
µmax/µmin = 500, (j) µmax/µmin = 1000. The color represents the rotation of the cross-section:
(red) 0◦, (yellow) 90◦, (green) 180◦, (light blue) 270◦ and (dark blue) 360◦. These figures were
obtained using the finite-element method in Abaqus R©.

E.2.4 Connection to twisters

Contrary to what is done throughout this thesis, the previous morphing pattern results from
externally applied forces instead of internal eigenstrain. These have the benefit of being simpler
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to produce experimentally 3 and are often simpler to analyze theoretically. Using the concept
of impotent eigenstrain, the elastic strain distribution inside a morphing pattern resulting from
some externally applied forces can be imposed as an eigenstrain, thus leading to this exact same
pattern. In the case of torsion, the corresponding elastic strain distribution is mainly shear
strains (subsubsection 3.1.2.3), which are more difficult to tune through material properties
than extension strains. This is why we developed the twisters, where the differential eigenstrain
can also be tuned along the longitudinal direction by varying the expansion properties.

The previous analysis shows how twisting can be tuned along a rod-like object by changing
the shear modulus along the rod. From eq. E.1, we see that the shear modulus (τ) and the
twisting rigidity (J) play symmetric roles, so changing the twisting rigidity along the rod should
lead to the same graded twisting. In the case of twister , the differential eigenstrain (∆ǫ∗) is
another potential tuning parameter in addition to the shear modulus (τ) and the twisting rigidity
(J).

∆µ
z

L

∣

∣

(θ=π)

0 1
2 = 0.500

1
√

2−1
1 ≈ 0.414

4
√

5−1
4 ≈ 0.309

9
√

10−1
9 ≈ 0.240

19
√

20−1
19 ≈ 0.183

49
√

50−1
49 ≈ 0.124

99
√

100−1
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199
√

200−1
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499
√

500−1
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999
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1000−1
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z
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∣

(θ=π)

theory
numeric

(b)

Figure E.3 – (Left) Using eq. E.8, we calculate the location along the rod where where the
rotation angle is a half-turn (θ = 180◦) as a function of the shear modulus contrast. (Right)
Analyzing fig. E.2, we can compare the finite-element results with the theoretical ones, which
are very similar.

3. Externally applied forces are usually easy to impose, whereas manufacturing a graded structure requires an
advanced multi-material printing machine.
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D
esign of hollow 3D objects such as

capsules and tubes is highly de-

manded for cell encapsulation, drug

delivery and design of self-healing materials.1

Most approaches for fabrication of capsules

are based on the use of particles or fibers as

templates, which are covered by functional

materials. Hollow functional structures are,

thus, formed after the removal of the core.

Recently, the use of self-folding films

that are able to form different 3D structures

was suggested as a template-free alterna-

tive to the traditional template-based

approaches.2,3 The main advantage of self-

folding films is the possibility to transfer a

pattern, created on the surface of the un-

folded film, into the inner and outer walls of

the folded 3D structure.4�6

Inorganic and polymer-based bilayers are

examples of self-folding films, which fold

due to relaxation of internal stresses origi-

nated from dissimilar properties of the two

layers, such as lattice mismatch, thermal

expansion, or swellability. Inorganic-based

self-folding films are promising for a variety

of fields including transport,7 nanooptics,8

energy storage elements,9 photovoltaic

power applications,10 optics,11 and engi-

neering of scaffolds,12�15 as well as being

suitable to investigate the role of confine-

ment on cell behavior.16 Polymer-based

self-folding films, on the other hand, are

particularly promising for biotechnological

applications such as encapsulation of cells17,18

and design of biomaterials.19 These and

other applications require precise control

of the folding for fabrication of 3D objects

with a defined shape. In particular, it was

demonstrated that the resulting shape of

the folded 3D object can be controlled by

the shape of the original bilayer. For exam-

ple, rectangular bilayers form tubes,17while

star-like bilayers are able to form envelope-

like capsules.18

Generally, the rolling of a rectangular

bilayermay occur according to three different

scenarios: long-side, short-side, and diago-

nal rolling (see Figure 1). The effects of film

shape on the character of folding were

experimentally investigated on examples

of purely inorganic and composite polyani-

line�inorganic bilayers. Smela et al. showed

that short-side rolling was preferred in the

case of free homogeneous actuation and

that this preference increased with aspect

ratio (ratio of length to width of rectangular

pattern).20 Li et al. experimentally demon-

strated the opposite scenario21 in the case

where bilayers are progressively etched

from a substrate, namely a preference for

long-side rolling. They observed that when

the tube circumference was much larger

than the width, or the aspect ratio of the

rectangle was high, rolling always occurred

from the long side. When the tube circum-

ference was much smaller than the width

* Address correspondence to

ionov@ipfdd.de.

Received for review January 7, 2012

and accepted April 24, 2012.

Published online

10.1021/nn300079f

ABSTRACT We investigated the folding of rec-

tangular stimuli-responsive hydrogel-based polymer

bilayers with different aspect ratios and relative

thicknesses placed on a substrate. It was found that

long-side rolling dominates at high aspect ratios

(ratio of length to width) when the width is

comparable to the circumference of the formed

tubes, which corresponds to a small actuation strain.

Rolling from all sides occurs for higher actuation,

namely when the width and length considerably exceed the deformed circumference. In the

case of moderate actuation, when both the width and length are comparable to the deformed

circumference, diagonal rolling is observed. Short-side rolling was observed very rarely and in

combination with diagonal rolling. On the basis of experimental observations, finite-element

modeling and energetic considerations, we argued that bilayers placed on a substrate start to

roll from corners due to quicker diffusion of water. Rolling from the long-side starts later but

dominates at high aspect ratios, in agreement with energetic considerations. We have shown

experimentally and by modeling that the main reasons causing a variety of rolling scenarios

are (i) non-homogenous swelling due to the presence of the substrate and (ii) adhesion of the

polymer to the substrate.

KEYWORDS: thermoresponsive . polymer . bilayer . tube . folding
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F.1 Shape-programmed folding of stimuli-responsive polymer

bilayers 1

1. Reprinted with permission from (Stoychev, Zakharchenko, et al. 2012). Copyright (2012) American Chem-
ical Society.
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and the aspect ratio of the rectangular bilayer was not

very high, the rolling resulted in a mixed yield of long-

and short-side rolling, as well as a “dead-locked turn-

over” shape. Short-side rolling occurred at small aspect

ratios when the deformed circumference is close to the

width. In these self-rolling systems, the active compo-

nent undergoes relatively small volume changes or

actuation strains, which are nearly homogeneous over

the whole sample. Hydrogel films, which are also

able to fold, demonstrate considerably different pro-

perties.22�24 First, hydrogels undergo large volume

changes (up to 10 times) upon swelling and contrac-

tion. Second, the swelling of a hydrogel is often

kinetically limited: due to slow diffusion of water

through a hydrogel, the parts that are closer to the

edges swell first, while the parts that are closer to the

center of the films swell later. Thus, the actuation

profile inside the active layer is heterogeneous. In this

paper we investigate the effects of shape, size, and

rolling curvature on the direction of folding of rectan-

gular polymer bilayers placed on a substrate, where the

bottom component is a stimuli-responsive hydrogel.

EXPERIMENTAL OBSERVATIONS

Experimental Preparation. Two families of polymeric

bilayers, made of an active and a passive layer, are

studied. The passive component is either hydrophobic

polycaprolactone (PCL) or random copolymer poly-

(methylmethacrylate-co-benzophenone acrylate) (P(MMA-

BA)). The active component is a thermoresponsive

hydrogel formed either by photo-cross-linked poly-

(N-isopropylacrylamide-co-acrylic acid-co-benzophenone

acrylate) (P(NIPAM-AA-BA)) or by poly(N-isopropylacryl-

amide-co-benzophenone acrylate) (P(NIPAM-BA)).

Thermoresponsive hydrogels swell and shrink at re-

duced and elevated temperature, respectively. The

passive hydrophobic P(MMA-BA) and PCL layers re-

strict swelling of the active hydrogel. As a result, the

bilayer made of these polymers does not uniformly

expand/shrink but folds and unfolds due to swelling

and collapse of the hydrogel layer.

P(NIPAM-AA-BA)/(P(MMA-BA) and P(NIPAM-BA)/PCL

bilayers were prepared using photolithography, as

described earlier.17 First, we prepared two sets of

patterned bilayers of P(NIPAM-AA-BA)/(P(MMA-BA),

which differ in thickness (H) of the P(MMA-BA) layer,

which results in different rolling curvature. One set

formed narrow tubes with a diameter d = 20 μm

(HP(MMA‑BA) = 500 nm; HP(NIPAM‑AA‑BA) = 1200 nm), while

the second set forms wider tubes with diameters in

the range d = 70�90 μm (HP(MMA‑BA) = 1200 nm;

HP(NIPAM‑AA‑BA) = 1200 nm). Rectangular bilayers of

different lengths (L = 100�1000 μm) and aspect ratios

(ratio of length (L) to width (W), A = L/W = 1�8) were

fabricated using specially designed photomasks. After

removal of the non-cross-linked polymer, the pat-

terned bilayers were exposed to PBS solution (pH =

7.4) at room temperature. As a result, photo-cross-

linked P(NIPAM-AA-BA) swelled, leading to rolling of

the bilayer and formation of tubes. The folded films

formed by each set of bilayers were then mapped by

optical microscopy in order to assess the rolling radius

aswell as the deformation pattern (see Figures 2 and 3).

Experimental Results. It was found that the final dia-

meter of the tube is independent of the size of the

bilayer (L, W), but everything else being equal (Young

modulus of active and passive layer as well as activa-

tion strain), it is solely controlled by the relative thick-

ness of the active and passive layers25 and, thus, is

(almost) constant for each set of experiments. The

direction of rolling strongly depends on the size and

shape of the films as well as on the thickness of the

active and passive layer (see Figure 4). We distin-

guished four general types of rolling: long-side rolling,

diagonal rolling, short-side rolling, and mixed all-side

rolling, which is a combination of the first three types.

The character of preferential rolling is plotted as a

function of the absolute values of width, length, and

aspect ratio, as well as normalized values, which are

obtained by dividing the length or width by the typical

circumference of the rolled tube (C = πd, Figure 1).

Three types of rolling were observed when narrow

tubes (d = 20 μm) are formed: long-side, diagonal, and

all-side rolling (see Figure 4a). It must be noted that no

short-side rollingwas observed. The all-side rolling (see

Figure 2, a1�3, b1�2) occurs when the width of the

films considerably exceeds the circumference of rolling

for aspect ratios of 1 or 2. A decrease of thewidth for an

aspect ratio of 2 or more results in preferential long-

side rolling (see Figure 2, b3, c1�3, d1�3), when the

normalized length is more than 2. Depending on the

ratio of width (W) to circumference (C), incompletely

rolled tubes (W/C< 1), completely rolled tubes (W/C≈ 1),

or doubled tubes (W/C g 2) are formed. A further

decrease of the length leads to a mixture between

Figure 1. Scheme of rolling of a polymer bilayer according
to different scenarios: short-side, long-side, and diagonal
rolling.

A
R
T
IC
L
E

F.1. LONG-SIDE ROLLING OF RECTANGULAR BILAYERS 187



STOYCHEV ET AL . VOL. 6 ’ NO. 5 ’ 3925–3934 ’ 2012

www.acsnano.org

3927

long-side and diagonal or all-side rolling (see Figure 2,

a4, b4, c4, and d4). The most promising parametric

window for potential applications, such as micro-

fluidics24 and cell encapsulation,17 is thus bilayers with

an aspect ratio of 4 or more.

Different rolling behavior is observed when wide

tubes (d = 70�90 μm) are formed (see Figure 4b). First,

the films with the highest aspect ratio slightly bend

and almost do not roll because of the large circumfer-

ence (see Figure 3, d1�4). Second, other bilayers roll

either according to diagonal or all-side rolling scenar-

ios. Diagonal rolling is observed in the cases of square

films (L/W = 1) when two opposite corners bend

toward each other (see Figure 3, a1�4). “Tick or check

mark-like” structures (see for example Figure 3, c1, the

film in the middle) in combination with diagonal roll-

ing are observed in almost all cases at L/W > 1 when

either adjacent or opposite corners bend toward

each other. Bending from short sides was observed

in combination with diagonal rolling only in one case

(see Figure 3, b4).

The results obtained for narrow (Figure 2 and 4a)

and wide (Figure 3 and 4b) tubes plotted as a function

of normalized length and width are not fully identical.

Figure 4b is shifted to larger values of L/C. The reason

for this effect is not completely clear and could be due

to effects related to heterogeneities in the swelling

behavior, which are hard to fully consider. On the other

hand, there is a clear correlation between the results

given in Figure 4a and b,which is qualitatively summed

up in Figure 4c. For example, all-side rolling is observed

when both length and width considerably exceed the

deformed circumference. Diagonal rolling is observed

when L = W, and both are comparable to the circum-

ference. Mixtures of diagonal rolling and the formation

of “tick or check mark-like” structures (tube in the

middle of Figure 3, c1) are observed when L > W and

both L and W are comparable to the circumference.

Figure 2. Microscopy snapshots of folded P(NIPAM-AA-BA)�P(MMA-BA) bilayers of different length (L) and width (W) that
form narrow tubes of diameter d = 20 μm; HP(MMA‑BA) = 500 nm; HP(NIPAM‑AA‑BA) = 1200 nm.
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The long-side rolling takes place when the length

considerably exceeds the deformed circumference

(L/C > 4) and the aspect ratio is larger than 4. As

a result, long tubes are formed, at least in the case

of narrow tubes (d = 20 μm). In order to test the

hypothesis that long tubes are formed when L/C > 4

and W ≈ C also in the case of wide tubes (d =

70�90 μm), we investigated rolling of 1800 μm �

300 μm large bilayer tubes (HP(MMA‑BA) = 1200 nm,

HP(NIPAM‑AA‑BA) = 1200 nm, W/C = 1.2; L/C = 7.5).

Indeed, rolling resulted in preferential formation of

long tubes (see Figure 4d), in agreement with our

predictions.

Mechanism of Rolling. In order to clarify the variety of

observed rolling scenarios, we experimentally investi-

gated swelling and rolling of the bilayers. Rolling was

investigated first using members of the second family

of patterned bilayers formed by poly(N-isopropylacry-

lamide-co-benzophenone acrylate) and polycaprolac-

tone with high aspect ratio (L/W = 6, HPCL = 300 nm,

HP(NIPAM‑BA) = 750 nm).17 Initially, the polymer films

were immersed in warm water, where the active

P(NIPAM-BA) hydrogel monolayer is shrunk. The tem-

perature was gradually decreased, and rolling was

observed. Diagonal rolling started from corners and

stopped when two rolling fronts met each other

(Figure 5a). Long-side rolling started later (Figure 5b)

but eventually dominated, leading to a switching of

the diagonally rolled corners to long-side rolled

(Figure 5c,d). The formed double tubes were unrolled

at elevated temperature (Supporting Information,

Movie S1). The central part of the rolled bilayer, which

has a shape of a line (Figure 5e), is still adhered to the

substrate after rolling because the bilayer remains

almost undeformed there. This adhesion area directs

long-side rolling during the second cycle of tempera-

ture decrease and prevents short-side rolling. The

second rolling, thus, proceeded similar to the first

one: rolling starts from the corners and then switches

to long-side rolling.

Figure 3. Microscopy snapshots of folded P(NIPAM-AA-BA)�P(MMA-BA) bilayers with different length (L) and width (W) that
form wide tubes of diameter d = 70�90 μm; HP(MMA‑BA) = 1200 nm; HP(NIPAM‑AA‑BA) = 1200 nm.
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In order to explain the fact that rolling starts from

the corners, we experimentally investigated the swel-

ling process. This was performed in a qualitative

manner by observing changes in the interference

pattern of white light with the bilayer during swelling.

In order to avoid bending and folding of the bilayer

during swelling, a very thin P(NIPAM-AA-BA) layer (H =

35 nm) under a thick P(MMA-BA) layer (H = 400 nm)

was used. Due to the effect of interference of light,

which is mirrored from the top and bottom surfaces of

the bilayer, the changes of colors (see Figure 6) reflect

changes in the film thickness. It is observed that the

color of the films starts to change at the corners first,

which confirms the assumption that edge-activation

of the active layer due to slow water diffusion into

the hydrogels is at the origin of the experimentally

observed fact that rolling starts at corners. Thus, on

the basis of the observations of rolling and swell-

ing mechanisms, we can argue that diffusion deter-

mines folding in the first moments of folding, while

adhesion seems to play a decisive role at later stages of

folding.

THEORETICAL CONSIDERATIONS

Diffusion-Driven Actuation. The observed long-side

folding of rectangular bilayers for some specific shape

parameters contradicts the bending of bilayer actua-

tors, which occurs along the short side.20,25 However,

this holds under the assumption that the active layer is

homogeneously activated and that there is no inter-

action with a substrate. This is the case of a freely

floating bilayer, where diffusion of water inside the

hydrogel layer is not restricted by any substrate. It was

confirmed that such freely floating bilayers undergo

short-side rolling that is similar to the behavior of

standard actuators (Figure 7a). As the studied bilayers

are placed on a substrate, it is reasonable to assume

that diffusion of water inside the active monolayer

upon activation (T < T_critic) occurs primarily through

its lateral sides. Additionally, not only does the substrate

Figure 4. Dependence of preferential rolling direction of P(NIPAM-AA-BA)�P(MMA-BA) bilayers on the size and shape of the
films when (a) narrow (d = 20 μm, HP(MMA‑BA) = 500 nm; HP(NIPAM‑AA‑BA) = 1200 nm) and (b) wide (d = 70�90 μm, HP(MMA‑BA) =
1200 nm;HP(NIPAM‑AA‑BA) = 1200 nm) tubes are formed. Dashed lines correspond to L/C= 1 andW/C= 1 (L andW are length and
width of thefilm, respectively;C is the circumference of the rolled tube). (c) Schematic diagramof rolling scenario as a function
of length andwidth. Arrows indicate how the diagram changes when circumference (C) increases. (d) Examples of wide tubes
(d = 80 μm, HP(MMA‑BA) = 1200 nm; HP(NIPAM‑AA‑BA) = 1200 nm) formed by rolling of 1800 μm � 300 μm large bilayers
(corresponds to the blue point in part b).
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Figure 5. Time-resolved rolling of the P(NIPAM-BA)�PCL bilayer (HPCL = 300 nm, HP(NIPAM‑BA) = 750 nm, 930 μm � 90 μm);
diameter of the tube d = 41 μm (a�e, supplementary Movie S1).

Figure 6. Colormapof the calculated swelling (from0 to 1) controlled bywater diffusion in the activemonolayerwith a lateral
constant boundary condition (blue is nonswollen) dependent on time (a) and shape (b) obtained by finite-element
simulations as well as experimentally obtained microscopy snapshot of swollen P(NIPAM-BA)�PMMA bilayer (HP(MMA‑BA) =
400 nm; HP(NIPAM‑AA‑BA) = 35 nm) after few seconds of swelling (c).
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confine diffusion, it also exerts adhesion forces to the

bottom surface of the bilayer that impede actuation

until a certain threshold of detachment forces is

reached. This means that bending, which requires

detachment of the substrate, occurs only for a suffi-

cient activation strain. In particular, nonswollen areas

do not bend.

Finite-Element Simulations. The diffusion pattern is

assumed to obey a classical diffusion law (Fick's law)

with a constant imposed boundary condition on the

lateral sides of the activemonolayer.Well known in one

dimension, the two-dimensional diffusion pattern was

obtained through a finite-element simulation using

ABAQUS at different time points for different mono-

layer shapes (aspect ratio). Diffusion of water inside a

hydrogel can be described as a first approximation by

steady-state heat diffusion inside a medium with con-

stant diffusivity. We used linear three-dimensional

diffusion elements (DC3D8), in order to be able to

apply the resulting activation field to actuate bilayers

subsequently, and applied a constant boundary con-

dition on the lateral surfaces. The solvent diffusion,

however, is a very complex process that is quite

difficult to fully describe because the boundary condi-

tions of diffusion change as the film deforms and

detaches from the substrate. We aimed to discuss

diffusion in the very first moments of swelling, when

the film starts to deform, aswebelieve that subsequent

deformation of the film is largely determined by its

starting deformation. The simulation allowed us to

predict an inhomogeneous two-dimensional diffusion

pattern that eventually becomes homogeneous after a

sufficient time (see Figure 6a,b).

Subsequently, we applied the obtained thermal

field at different time points to a bilayer of the same

aspect ratio. Both layers of the bilayer are made of a

linear elastic material with a normalized Young mod-

ulus of 1 and a Poisson ratio of 0.3. This crude simpli-

fication relies on the fact that the stiffness contrast

between the active and the passive layer does not

significantly affect the rolling radius of a bilayer.25 The

bottom layer possesses in-plane thermal expansion

coefficients equal to 1, whereas the top layer is ther-

mally inactive. In order to understand the influence of

substrate adhesion, we imposed a fixed kinematical

boundary condition at an internal rectangular bottom

surface, scaled from the external shape. We used a fine

mesh of first-order eight-node elements with reduced

integration (C3D8R), which are able to follow the large

displacements at reasonable cost. The deformed shape

corresponding to an edge activation of the bilayer at a

given time point in the diffusion process was calcu-

lated in a static step taking nonlinear geometric effects

into account. Adaptive meshing techniques were used

to avoid large distortions in mesh elements upon

actuation. We compared the obtained results with

the one obtained using the Riks method and found

no discrepancy between the predicted deformed

shapes. Surprisingly, convergence using a combination

of adaptive meshing techniques on a fine mesh with a

static nonlinear geometric step proved to be better

than using the Riks method. This simple uncoupled

model already shows that sharp activation strains near

the edges combined with an internal constraint of the

bottom layer produces interesting deformation pat-

terns for different aspect ratios. In particular, themodel

predicts that short- and long-side rolling is more

favorable at L/W < 4 and L/W > 4, respectively (see

Figure 7b).

The appearance of all-side and diagonal rolling in

experiments at smaller aspect ratios accounts for the

fact that no preferential direction appears for bending

Figure 7. Simulation and experimentally observed folding of rectangular bilayers at different conditions: (a) freely floating
rectangular bilayer (homogeneous swelling, supplementary Movie S2); (b) rectangular bilayer on substrate (inhomogeneous
swelling, supplementary Movie S1).
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deformations. Also, imperfections of thematerial prop-

erties of the polymer film and substrate can be respon-

sible for the observed symmetry-breaking.

Energetic Considerations. The fact that edge activation

of a constrained bilayer leads to long-side rolling is also

suggested by plate theory. The elastic energy of plate-

like objects can be decomposed into a stretching and a

bending term according to Föppl von Kármán plate

theory,26 in which the in-plane strains are integrated

over the thickness taking into account the edge activa-

tion. This formulation describes accurately the elastic

energy of a bilayer plate upon edge activation and can

be solved numerically (this will be done in a sub-

sequent paper). Another approach, which is less subtle,

but that also leads to accurate results, is solving the 3D

mechanical problem by a finite-element method. Es-

sentially the problem can be described in the following

way: we make an additive decomposition of the total

strain in the active layer into an eigenstrain (or swelling

strain) and an elastic strain εkl
T = εkl

eig
þ εkl

el. The eigen-

strain is given as εij
eig = Rδij, where δij is the Kronecker

delta tensor, and isotropic swelling is assumed in the

currentmodel. The amount of swelling depends on the

swelling coefficient R, which in turn can vary spatially

according to the solution of the diffusion equation. As

the active layer is constrained by the passive layer,

geometric incompatibilities result in elastic strains and

thus stresses through Hooke's law, σij = Eijklεkl
el. The final

shape of the structure upon changes in the spatial

distribution and magnitude of R is calculated by mini-

mizing the elastic energy of the system. For further

details of the finite-element method see, for example,

ref 27. With the stretching term being linear in thick-

ness, while the bending term is cubic, bending defor-

mations are favored when the plate is sufficiently thin.

Unlike in a beam-like bilayer, actuation triggers a

biaxial expansion field inside the plate, which creates

internal stresses in the long and in the short direction

of the plate. Relaxation of internal stresses perpendi-

cular to the edge of the bilayer will lead to bending,

whereas relaxation of internal stresses parallel to the edge

of the bilayer will produce stretching that will eventually

lead to wrinkling, as in the edge of long leaves.28 Because

of the presence of the substrate, internal stresses per-

pendicular to the edge of the bilayer are more easily

relaxed, leading to simplebending,while internal stresses

parallel to the edge of the bilayer produce simple

stretching. As the aspect ratio increases, it is thus less

costly to relax stresses into bending on the long side than

on the short side. This explains qualitatively why long-

side rolling is observed as the aspect ratio increases.

Finite-element modeling and energetic considera-

tions show that the experimentally observed appear-

ance of long tubes for large aspect ratios and high

activation strains are due to (i) non-homogenous

swelling due to slow lateral diffusion, as well as (ii)

adhesion of the bilayer to the substrate, constraining

the deformations. Both these factors are caused by

the specific arrangement of the experiment: (i) poly-

mer bilayer is deposited on the substrate and (ii) active

polymer is the bottom layer.

Rolling Scenario. Finally, by considering modeling

and experimental results, the following scenario of

rolling of hydrogel-based polymer bilayer lying on a

substrate is assigned. The rolling starts from the edges

due to faster diffusion of water from the lateral sur-

faces, which then are able to detach from the substrate

and to bend. Rolling can start either from two adjacent

(for example Figure 3, d2, right lower polymer film, or

Figure 3, b2, left upper film) or opposite edges (almost

all polymer films in Figure 2, a2) or from all corners

simultaneously, which is less probable if the bilayer is

small due to the presence of imperfections and be-

comes energetically unfavorable once a sufficient ac-

tuation strain is reached. Rolling is almost immediately

finished if the deformed circumference is comparable

to the size of the bilayer. As a result, diagonally rolled

tubes are formed if rolling starts from two opposite

corners (Figure 8a), and “tick or check mark-like”

structures (for example Figure 3, c1, the film in the

middle) are formed if rolling starts from two adjacent

corners.

A more complicated scenario is observed when the

width of the films is smaller and the length is consider-

ably larger than the deformed circumference. Rolling

starts at the corners first, like before, but long-side

rolling starts later (Figure 8b and Figure 5) and is

energetically favored. Rolling along the short side is

unfavorable because it implies more stored stretching

energy along the long side. Further long-side rolling

makes diagonally rolled corners unfavorable and leads

to the switching of bent corners to a “long-side rolling”

scenario. Depending on the width of the film com-

pared to the deformed circumference, either an in-

completely rolled tube is formed or the two long-side

rolling fronts collide into a completely rolled or

doubled tube.

If the deformed circumference is considerably

smaller than the width and length of the films

Figure 8. Schematic of rolling leading to diagonal rolling,
long-side rolling, and all-side rolling.
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(which implies a high activation strain), then rolling

starts first from corners and then continues along all

sides (Figure 8c). The rolling fronts do not collide until

several revolutions are made, which were shown to be

almost irreversible.17 As a result, already rolled fronts

are unable to unroll and irreversible all-side rolling is

observed.

CONCLUSIONS

We investigated in detail folding of rectangular

stimuli-responsive hydrogel-based polymer bilayers

located on a substrate with different lengths, widths,

and thicknesses. It was found that long-side rolling

dominates at high aspect ratios (ratio of length to

width) when the width is comparable to the circum-

ference of the formed tubes. Rolling from all sides

occurs when the width and length considerably ex-

ceed this circumference. Diagonal or all-side rolling is

observed when the width and length are comparable

to the circumference. Short-side rolling was observed

very rarely and in combination with diagonal rolling.

On the basis of both experimental observations and

theoretical assumptions, we argued that bilayers

placed on a substrate start to roll from corners due to

quicker diffusion of water. Rolling from long-side starts

later but dominates at high aspect ratio due to ener-

getic considerations. We have shown experimentally

and by finite-element modeling confirmed by theore-

tical considerations that the main reasons causing a

variety of rolling scenarios are (i) non-homogenous

swelling due to slow diffusion of water in hydrogels

and (ii) adhesion of polymer to a substrate until a

certain threshold. Moreover, non-homogenous swel-

ling determines folding in the first moments, while

adhesion plays a decisive role at later stages of folding.

The films that we investigated are fabricated on the

microscale. On the other hand, the knowledge ob-

tained in this work is applicable to thinner films to

direct their folding in order to form tubes with dia-

meter in the nano range. We believe that the obtained

knowledge can be particularly helpful for the design

of self-folding objects with highly complex shapes

and provides an interesting model system for path-

dependent actuation.

EXPERIMENTAL PART

Materials. N-Isopropylacrylamide (NIPAM, Aldrich), 4-hydro-
xybenzophenone (Fluka), polycaprolactone (Mn = 70 000�

90 000, Aldrich), benzophenone (Aldrich), and acryloyl chloride

(Fluka) were used as received. Methyl methacrylate (MMA,

Alrich) was purified by filtration through an Al2O3 column

before polymerization.

Synthesis of 4-Acryloylbenzophenone (BA). 4-Hydroxybenzo-
phenone (20 g, 0.1009 mol), diisopropylethylamine (19.3 mL,

0.1110mol), and 80mL ofmethylene chloridewere added into a

200 mL three-necked round-bottom flask fitted with an over-

head stirrer, a thermometer, and an addition funnel with

acroloyl chloride (9.02 mL, 0.1110 mol) solution in 20 mL of

methylene chloride. The acroloyl chloride solution was added

dropwise into the flask under cooling (0�5 �C) for ca. 3 h. The

methylene chloride was removed by rotary evaporation. The

residue was washed with 80 mL of 20% HCl and 80 mL of a

saturated solution of sodium hydrocarbonate and dried over

sodium sulfate. The solution was passed through a silica gel

column with chloroform as the eluent. Chloroform was re-

moved by rotary evaporator. Finally, 24.44 g (95%) of BA was

obtained. 1H NMR (CDCl3, 500 MHz): 6.05 (dd, J1 = 10.40, J2 =

1.26, 1H), 6.34 (dd, J1 = 10.40, J3 = 17.34, 1H), 6.64 (dd, J3 = 17.34,

J2=1.26, 1H), 7.27 (m, 2H), 7.49 (m, 2H), 7.59 (m, 1H), 7.80 (m, 2H),

7.86 (m, 2H).

Synthesis of P(NIPAM-BA). BA (0.02253 g, 0.089mmol; 0.04551 g,
0.18 mmol; 0.11737 g, 0.47 mmol), NIPAM (1 g, 0.0885 mol),

and azobisisobutyronitrile (AIBN) (0.01453 g, 0.089 mmol) were

added in 10 mL test tubes. Components were dissolved in

6 mL of 1,4-dioxane and degassed with nitrogen for 30 min.

Test tubes were tightly sealed and placed into a shaker (70 �C,

90 rpm) for 24 h. Then the P(NIPAN-BA) polymerizationmixtures

were cooled to room temperature and poured slowly into

diethyl ether. Products were filtered and dried under vacuum.

Synthesis of P(MMA-BA). A 6.2803 g amount of MMA
(62.72 mmol), 0.2405 g of BA (0.96 mmol), and 0.052 g of AIBN

(0.31 mmol) were dissolved in 30 mL of toluene. The mixture

was purged with nitrogen for 30 min. The polymerization was

carried at 70 �C under a nitrogen atmosphere with mechanical

stirring overnight. After cooling, the mixture was poured in

750 mL of diethyl ether, and the precipitate was filtered and
dried under vacuum at 40 �C.

Preparation of Polymer Bilayers. In a typical experiment, poly-
(NIPAN-BA) was dip-coated from its ethanol solution on a
silica wafer substrate. Polycaprolactone with 2�5 mass % of
benzophenone or P(MMA-BA) was spin-coated from a toluene
solution on poly(NIPAM-BA) film. The bilayer film was illuminated
through a specially designed photomasks by a halogen lamp for
40 min to cross-link polymers. The illuminated film was rinsed in
chloroform in order to remove polymers in nonirradiated areas.
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  1. Introduction 

 Nature offers an enormous arsenal of ideas for the design 
of novel materials with superior properties and interesting 
behavior. In particular, self-assembly and self-organization, 
which are fundamental to structure formation in nature, 
attract signifi cant interest as promising concepts for the design 
of intelligent materials. [  1  ]  Self-folding stimuli-responsive 
polymer fi lms are exemplary biomimetic materials [  2  ]  and 
can be viewed as model systems for bioinspired actuation. 
Such fi lms, on one hand, mimic movement mechanisms in 
certain plant organs [  3  ,  4  ]  and, on the other hand, are able to 
self-organize and form complex 3D structures. [  5  ]  These self-
folding fi lms consist of two polymers with different proper-
ties. Because of the nonequal expansion of the two polymers, 
these fi lms are able to form tubes, [  6  ,  7  ]  capsules [  8  ]  or more 
complex structures. [  9  ]  Similar to origami, the self-folding poly-
meric fi lms provide unique possibilities for the straightfor-
ward fabrication of highly complex 3D microstructures with 
patterned inner and outer walls that cannot be achieved using 
other technologies. 

 There are two general approaches for the design of self-
folding fi lms. The fi rst approach is based on the use of com-
plexly patterned fi lms, where locally deposited active materials 
form hinges. [  10  ]  Homogenous bilayer fi lms are used in the 

second approach. [  11  ]  Because of the isot-
ropy of the mechanical properties of the 
bilayer, the formed structures are hinge-
free and have rounded shapes. Impor-
tantly, in all reported cases, folding runs 
in one step. On the other hand there are 
reports that folding in nature can have a 
very complex character, which strongly 
depends on the geometry and swelling 
path [  12  ]  that may result in multistep 
folding (development of curvature in dif-
ferent directions). [  3  ]  In this contribution, 
we demonstrate that the shape of isotropic 
polymer bilayers is able to direct folding 

in a sophisticated manner leading to even more complex hier-
archical folding than in nature. In particular, fi lms can undergo 
sequential folding steps by forming various 3D shapes with 
sharp hinges. By analyzing the folding patterns we elucidated 
empirical rules, cross-checked by analytical considerations 
and backed up with fi nite-element simulations, which allow 
the folding to be directed, leading to the design of specifi c 3D 
shapes. We also highlight the importance of path-dependency 
in the activation of the actuator, which enables to lock it in a 
local energy minimum, which can differ from the global one.  

  2. Results and Discussions 

 For the experiments we used polymer fi lms consisting of two 
layers of photo-crosslinked polymers: the active layer being a 
random thermoresponsive copolymer poly(N-isopropylacryla-
mide-co-acrylic acid) (P(NIPAM-AA) and the passive layer being 
poly-(methylmethycrylate) (PMMA) ( Figure    1  ). The bilayer, pre-
pared as described elsewhere, [  7  ]  is located on a silica wafer in 
such a way that the active and passive polymers are the bottom 
and top layers, respectively. The bilayer is undeformed in PBS 
0.1 M pH  =  7.4 environment at T  >  70  ° C and folding occurs 
after cooling below 70  ° C (Figure  1 ).  

 Due to the relatively slow diffusion rate of water inside the 
P(NIPAM-AA) layer, actuation is driven by the progression of 
the diffusion front, along which the hydrogel starts to swell. 
This induces a path-dependency in the folding pattern as the 
bilayer is not homogeneously activated, but progressively swells 
as water diffuses from the lateral sides. The investigation of 
swelling was performed in a qualitative manner by observing 
the color change of the fi lms which, due to light interference, 
refl ects the change in optical path length (OPL) ( Figure    2  ). The 
OPL varies as a function of the fi lm thickness and refractive 
index, which in turn depends on the swelling degree. [  13  ]  The 
nonswollen elliptical and star-like fi lms have a homogenous 
blue (Figure  2 a) and reddish (Figure  2 d) color, respectively. The 
difference in the color of both fi lms is caused by their different 
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of the triangular-like arms swell faster than 
their base and their polygonal central part. 
This can be explained by the fact that after 
a certain time the diffusion fronts on either 
side of the arms intersect resulting in faster 
swelling. The experimental results show that 
the swelling starts from the periphery of the 
fi lms and that the activation profi le strongly 
depends on the shape of the fi lm as con-
fi rmed by simple fi nite element simulations 
(see Figure  2 c,f).  

 We next modeled and experimentally investigated the 
folding of circular/elliptical and star-like fi lms. Modeling pre-
dicts that multiple wrinkles are formed along the perimeter of 
folding bilayer when it is edge-activated (Figure  2 g). The spa-
tial wavelength of the wrinkles is proportional to the activation 
depth ( d ) as observed in the wrinkles of leafs due to excessive 
radial edge-growth [  15  ]  and solved analytically in the context of 
geometrically nonlinear elasticity. [  16  ]  As the activation depth 
increases, the number of wrinkles decreases as  P / d , where  P  
is the perimeter of the shape (Figure  2 h). The fact that there 
is both a gradient in radial- (edge-activation) and transversal 
direction (bilayer), results in a combination of wrinkling and 
bending, respectively (Figure  2 g,h). In full agreement with 
the modeling predictions, experimental results show that the 
number of wrinkles decreases during folding (Figure  2 i-l). Due 
to the transversal bending effect, the wrinkles actually evolve 
into local partial tubes as the activation depth increases. We 
observed that, at some point, the wrinkles stop to merge and 

their number remains constant. The proba-
bility of merging of two tubes depends on the 
angle ( β , Figure  2 h) between them. Experi-
mentally, we found that the critical value of  β  
below which merging of folded tubes was not 
observed is ca. 120–150 ° , which corresponds 
to 6–8 wrinkles when starting with a circular 
shape (inset in Figure  2 h and Figure S3 
in the Supporting Information). Based on 
these experimental observations we derived 
the fi rst folding rule: “ Bilayer polymer fi lms 
placed on a substrate start to fold from their 
periphery and the number of formed wrinkles/
tubes decreases until the angle between adjacent 
wrinkles/tubes approaches 130 °  ”. 

 After the number of wrinkles/tubes along 
the perimeter of the bilayer fi lm stopped to 
change the bilayers are locked for some time 
until the subsequent folding step occurs. For 
example, the wrinkled semi-ellipse bends 
towards its base ( Figure    3  a). To explain the 
origin of the second step of folding we con-
sidered the geometry of the fi lm after the 
fi rst folding step. As mentioned, wrinkling 
of a bilayer leads to the formation of tubes 
along the perimeter of the fi lm. Consid-
ering the fact that the rigidity of the tubes 
is higher than that of the undeformed fi lms, 
the polygonal shapes are stiffened by this 
tube formation, and therefore possess a 

     Figure  1 .     Scheme of folding of a bilayer polymer fi lm consisting of two polymers: hydrophobic 
PMMA and thermoresponsive hydrogel P(NIPAM-AA).  

     Figure  2 .     Swelling (upper panels) and fi rst step of folding (lower panels) of circular/elliptical 
(left panels) and star-like (right panels) bilayer polymer fi lms. a,b,d,e) Microscopy snapshots of 
swelling elliptical and star-like P(NIPAM-AA)/PMMA bilayers immediately after immersion in 
water (a,d) and after ca. 60 s incubation (b,e); c,f) Color map of the calculated swelling (from 
0 to 1) controlled by water diffusion in the active monolayer with a lateral constant boundary 
condition (blue is non swollen) dependent on shape obtained by fi nite element simulations; 
g) Finite element simulations of wrinkling of a bilayer crown representing the activated edge in 
case of a circular shape; h) The number of wrinkles is inversely proportional to the actuation 
depth. Dashed line corresponds to the experimental observation of heptahedrons (inset) when 
folding is typically stopped in the case of circular shapes. The red line corresponds to n  =  170/d. 
i–l) Two rays of six-ray star during wrinkling, decrease of number of wrinkles is observed. a,
b) H PNIPAM   =  35 nm, H PMMA   =  400 nm; d,e) H PNIPAM   =  35 nm, H PMMA   =  500 nm; i–l) H (PNIPAM-AA)   =  
1200 nm, H PMMA   =  400 nm, scale bar is 200  µ m.  

starting thicknesses (Figure  2 ). The color of the fi lms starts to 
change immediately after immersion in water at 25  ° C, with 
the elliptical fi lm becoming redder while the star-like fi lm 
becomes green (Figure  2 b,e). The changes of color in both 
cases start from the outer periphery of the bilayer fi lm. As the 
active layer is confi ned between a water-impermeable silicon 
wafer and hydrophobic PMMA, this suggests that water can 
only penetrate inside the layer from the lateral sides. [  14  ]  The 
depth of water penetration along the perimeter of the fi lm (acti-
vation depth) is uniform in both cases in the fi rst moments of 
swelling. The differences in the swelling behavior between the 
two shapes appear after several seconds of incubation in water. 
The activation pattern depends on the external shape of the 
bilayers, with the position of the diffusion front (the activation 
depth) depending on the distance to the tissue border. This 
can been seen clearly in the differences of the activation pat-
terns in the convex shapes like ellipse (Figure  2 b), and concave 
ones like star (Figure  2 d). For the star-like bilayers, the tips 
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is observed very rarely and in most cases tri-
angles (Figure  4 g) were formed. We investi-
gated the folding in a time-resolved manner 
in order to explain the formation of the tri-
angles ( Figure    5  ). Similar to the experiment 
demonstrated in Figure  2 , wrinkles get longer 
and bend transversally into tubes (Figure  5 b) 
thus increasing the rigidity of the ray. Next, 
one of the rays folds towards the center of 
the star (II in Figure  5 c). Folding of this ray 
leads to the formation of a rigid semi-rolled 
tube, which is formed by the folded ray and 
the tubular shoulders of the adjacent rays 
(Figure  5 c). The angle between the base of 
the folded ray and the shoulders of the neigh-
boring arms is close to 180 °  (Figure  5 c). In 
this confi guration, the weak points located at 
the intersection between I–II and II–III has 
disappeared and rays I and III (Figure  5 c) 
cannot bend anymore. As a result, only three 
remaining rays (IV, V, VI) can bend. If ray V 
folds, no additional rays can bend (Figure  4 l). 

If ray IV folds (Figure  5 d) ray V is blocked. Finally, ray VI can 
fold leading to the formation of a triangle (Figure  5 e). The dis-
cussed principle can be easily applied to understand the for-
mation of the other observed fi gures (Figure  4 c–l, Supporting 
Information Figure S2 and Figure S3). In fact, several factors 
can be held responsible for the observed symmetry breaking 
(rays do not fold at the same time) such as inhomogeneities 
in the fi lms and shape imperfections resulting in small devia-
tions from the symmetric diffusion profi le. Based on these 
experimental observations, one can derive the fourth folding 
rule: “Folding of the rays may result in blocking of the neighboring 
rays if the angle between the base of the folded ray and the shoulders 
of the neighboring rays is close to 180 ° ”.    

 Finally, we applied the derived rules for the design of truly 3D 
structures–pyramids. In fact, the reason why six-ray star formed 
fl attened folded structures is their short arms and the hindering 
of folding of rays. Therefore, in order to fabricate pyramids 
we increased the relative length of the rays and changed the 
angle between them by decreasing their number ( Figure    6  a,b). 
The rays of the fabricated four-ray stars fi rst wrinkle along 
their perimeter (Figure  6 c, d). Four tubes are formed along the 
perimeter of each ray (fi rst rule, Figure  6 c), which then collapse 
two by two and form triangles (second rule, Figure  6 d). Since 
the angle between the folds located on the shoulders of each ray 
is considerably smaller than 180 ° , the folding of rays is not self-
interfering (forth rule) and all rays fold in the direction of the 
center of the star (third rule) thus forming a hollow pyramid 
(Figure  6 e–g) that is supported by simulations (Figure  6 h). In 
fact these rules are also applicable to other shapes such as rec-
tangles. As an example we included two-step folding of rectan-
gles (Supporting Information Figure S4).  

 We observed that, in general, folding rules are applicable 
to all thickness (we performed many experiments with dif-
ferent thicknesses). The difference between the thin and 
thick fi lms are in minor. For example, we observe that when 
star-like thin fold than all six arms (Figure  4 d,k) can fold 
inside because rigidity of the fi lm is not that high. In the 

number of weak points located at the intersection of the tubes, 
i.e., at the vertices. These points act like hinges and folding 
is only observed along the lines connecting them (dashed line 
in Figure  3 a). The formation of hinges during folding of iso-
tropic bilayers, which to our knowledge has not been reported 
in the literature, is induced by the progressive activation from 
the lateral sides and the folded shapes are controlled by the 
initial shapes of the bilayers. This leads to the second rule of 
the folding:  “After the wrinkles along the perimeter of the fi lm form 
tubes, further folding proceeds along the lines connecting the ver-
texes of the folded fi lm”.   

 In case there are more than two hinges in the fi lm, a 
question arises: upon which connecting line will the folding 
occur? The number of hinges is largely determined by the 
shape of the semi-ellipses. The regular semi-ellipse, which 
has a triangular shape after the fi rst step of folding, simply 
bends toward the base along the line connecting the two 
bottom vertexes (dashed line in Figure  3 a). If the semi-ellipse 
is more rounded, it forms a trapezoid after the fi rst-step of 
folding (Figure  3 b). In the second step of folding, the trap-
ezoid bends along one of the lines connecting the opposite 
top and bottom vertexes (dashed line in the second image 
from the left in Figure  3 b). Next, the formed triangle bends 
towards its base along the line connecting the two bottom 
vertexes. The elongated semi-ellipse forms four folds after 
the fi rst step of folding (Figure  3 c). Interestingly, the semi-
ellipse folds further along the lines connecting the vertexes 
at the base and the top vertex and no folding along the lines 
connecting neither the vertexes of the middle nor the ones at 
the base is observed. Looking at the evolution of the activa-
tion pattern through time (diffusion profi le see Figure  2 ), we 
observe that the lines connecting the hinges can only be used 
if they are within the activated pattern (red). Thus, the third 
rule of the folding states: “ the folding goes along the lines which 
are closer to the periphery of the fi lms” . 

 Six-ray stars demonstrate the formation of very complex 
structures ( Figure    4  ). Notably simultaneous folding of all rays 

     Figure  3 .     Schematic illustration, experimental observation, and modeling of the second step 
of folding of the elliptical arms depending on their shape. a) H (PNIPAM-AA)   =  1200 nm, H PMMA   =  
170 nm; b) (H (PNIPAM-AA)   =  1200 nm, H PMMA   =  400 nm; c) H (PNIPAM-AA)   =  900 nm, H PMMA   =  
170 nm.  
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case of thick fi lms, we typically observed folding of 3–4 arms 
(Figure  4 g,l).  

  3. Conclusions 

 In conclusion, we investigated the actuation of patterned 
bilayers placed on a substrate. Due to the edge-activation of the 
bilayers, the observed deformed shapes differ from the clas-
sical ones obtained by homogeneous activation. We found that 
fi lms can demonstrate several kinds of actuation behavior such 
as wrinkling, bending and folding that result in a variety of 
shapes. It was demonstrated that one can introduce hinges into 
the folded structure by proper design of the bilayer’s external 
shape through diffusion without having to use site selective 

deposition of active polymers. Experimental 
observations lead us to derive four empirical 
rules backed up by theoretical understanding 
as well as simulations. We then demon-
strated how those rules can be used to direct 
the folding of edge-activated polymer bilayers 
through a concrete example–the design of 
a 3D pyramid. We believe that the derived 
understanding and know-how will allow very 
simple design of highly complex, self-folding 
3D objects and will open new horizons for 
3D patterning which is highly important for 
the design of microfl uidic devices, biomate-
rials, soft electronics, etc.  

  4. Experimental Section 

  Materials :  N -isopropylacrylamide (NIPAM, Aldrich), 
4-hydroxybenzophenone (Fluka), polycaprolactone 
( M  n   =  70 000–90 000 Da, Aldrich), benzophenone 
(Aldrich) and acryloyl chloride (Fluka) were used as 
received. Methyl methacrylate (MMA, Aldrich) and 
acrylic acid were purifi ed by fi ltration through Al 2 O 3  
column before polymerization. 

  Synthesis of 4-Acryloylbenzophenone (BA ): 
4-Hydroxybenzophenone (20 g, 0.1009 mol), 
diisopropylethylamine (19.3 mL, 0.1110 mol) and 
80 mL of methylene chloride were added into 200 mL 
three-necked round-bottom fl ask fi tted with an 
overhead stirrer, a thermometer, and an addition 
funnel with acroloyl chloride (9.02 mL, 0.1110 mol) 
solution in 20 mL of methylene chloride. The acroloyl 
chloride solution was added dropwise into the fl ask 
under cooling (0–5  ° C) for ca 3 h. The methylene 
chloride was removed by rotary evaporation. The 
residue was washed with 80 mL of 20% HCl, 80 mL 
of saturated solution of sodium hydrocarbonate 
and dried over sodium sulphate. The solution was 
passed through a silica gel column with chloroform 
as the eluent. Chloroform was removed by rotary 
evaporator. Finally, 24.44 g (95%) of ABP was 
obtained.  1 H NMR (CDCl 3 , 500 MHz): 6.05 (dd, J 1   =  
10.40, J 2   =  1.26, 1H), 6.34 (dd, J 1   =  10.40, J 3   =  17.34, 
1H), 6.64 (dd, J 3   =  17.34, J 2   =  1.26, 1H), 7.27 (m, 
2H), 7.49 (m, 2H), 7.59 (m, 1H), 7.80 (m, 2H), 7.86 
(m, 2H). 

  Synthesis of P(NIPAM-AA-BA) : BA (0.28 g, 
1,12 mmol); NIPAM (6 g, 51.57 mmol), AA (0.2556 g, 3.36 mmol), AIBN 
(0.01632 g, 0.38 mmmol) were added in 50 mL fl ask. Components were 
dissolved in 30 mL ethanol and degassed with nitrogen for 30 min. The 
mixture was purged with nitrogen for 30 min. The polymerization was 
carried at 70  ° C under nitrogen atmosphere with mechanical stirring 
overnight. After cooling, the mixture was poured in 750 mL diethyl 
ether, the precipitate was fi ltered and dried in vacuum at 40  ° C. 

  Synthesis of P(MMA-BA) : 6.3 g MMA (62.7 mmol), 0.24 g BA 
(0.96 mmol) and 0.05 g AIBN (0.31 mmol) were dissolved in 30 mL 
of toluene. The mixture was purged with nitrogen for 30 min. The 
polymerization was carried at 70  ° C under nitrogen atmosphere with 
mechanical stirring overnight. After cooling, the mixture was poured in 
750 mL diethyl ether, the precipitate was fi ltered and dried in vacuum at 
40  ° C. 

  Preparation of Polymer Bilayers : In a typical experiment, poly-
(NIPAN-BA) was dip-coated from its ethanol solution on silica wafer 
substrate. P(MMA-BA) was dip-coated from toluene solution on the 

     Figure  4 .     Examples of structures obtained by progressive edge-activation of six-ray star-
like bilayers. a) Patterned bilayers; b) First step of actuation: wrinkles collapse into tubes; 
c–l) Second step of actuation: rays fold leading to several confi gurations depending on the 
order of folding. Scale bars are 200  µ m, H (PNIPAM-AA)   =  1200 nm, H PMMA   =  260 nm.  
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no water. The observation of bilayer was performed 
by Axiovert Zeiss Microscope using 5 ×  and 10 ×  air 
objectives. 

  Numerical Simulations : Simulations were 
performed in Abaqus v6.11 using the standard 
fi nite-element method. In order to simulate the 
diffusion process in the active layer we performed 
a 2D heat transfer analysis with imposed 
temperature on the free perimeter of the shapes 
(circle, semi-ellipsoid) and constant diffusive 
properties This resulted in a time-dependent 
temperature distribution that mimics the swelling 
process The resulting nodal temperatures at 
an early point in time were then applied to 
the corresponding 3D bilayer shapes having a 
mismatch in expansion properties (passive layer 
has 0 thermal expansion, while the active layer 
has in-plane expansion coeffi cients of 1). Due to 
symmetries only the relevant part of the bilayers 
were simulated in order to reduce computational 
costs. The resultant actuated shape was obtained 
through a geometrically nonlinear static step. For 
more detailed information see ref.  [  14  ] . Doing this, 
we assumed that diffusion-driven actuation follows 
a quasistatic process in which the timescales of 
diffusion and actuation are clearly separated. The 
progression of the diffusion front is slow (s) while 
the resultant mechanical actuation is fast (ms). 
This enabled us to consider the two phenomena 
separately thereby neglecting potential couplings 
between swelling and mechanical properties. 
Results are only qualitative, as the actual 
material characteristics of the hydrogels were not 
measured. However, the actuation pattern, and 
thus the number of wrinkles, only depends on the 
depth of the differential edge-activation named 
“activation depth” in this paper. This enabled us 
to predict and confi rm the experimental actuation 

patterns with simple normalized properties.  
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poly-(NIPAM-BA) fi lm. The bilayer fi lm was illuminated through a 
photomask (Toppan Photomasks inc.) by halogen lamp for 40 min to 
crosslink the polymers. The illuminated fi lm was rinsed in chloroform in 
order to remove the polymers from non-irradiated areas. The prepared 
bilayers were then dried again in air before experiment and contained 

     Figure  5 .     Microscopy snap-shots illustrating the mechanism of formation of triangles during 
actuation of a six-ray stars. Scale bar is 200  µ m, H (PNIPAM-AA)   =  1200 nm, H PMMA   =  170 nm.  

     Figure  6 .     Sequential actuation of four-ray stars leads to the formation of pyramids. a,b) unac-
tivated fi lm; c,d) after wrinkling of the ray periphery into tubes, arrows indicate four wrinkles 
formed on each arm during fi rst step of folding; e–g) after folding of rays leading to the forma-
tion of pyramids. Scale bar is 200  µ m, H (PNIPAM-AA)   =  1200 nm; H PMMA   =  260 nm. h) Simulated 
folding of four-arm star.  
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