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INTRODUCTION 

 

Avant l'apparition du vivant, l'oxygène était quasiment absent de l'atmosphère. Il  n’y  a 

finalement  que  2,5  milliards  d’années  qu’il  est  produit  en  excès  et  qu’il  est  devenu  un 

composant de l’atmosphère terrestre, pour atteindre la proportion de l’ordre de 20% que nous 

connaissons aujourd’hui. Progressivement et à l’exception de certain organismes anaérobies, 

l’oxygène  est  devenu  indispensable  à  la  vie  des  animaux,    plantes  et  bactéries  en  leur 

permettant  de  produire  de  l’énergie. Cette  production  d’énergie  est  caractérisée  par  la 

formation  régulière  de  composés  prooxydants  souvent  délétères,  que  l’on  appelle  Espèces 

Oxygénées et Azotées Réactives (EOR/EAR). Les cellules se sont adaptées à cet 

environnement en se dotant d’un système de défense enzymatique capable de procéder à la 

détoxification de ces métabolites. Néanmoins, les EOR/EAR ne sont pas seulement nocives 

vis-à-vis  de  l’organisme,  elles  exercent également des fonctions indispensables. 

Malheureusement, lorsque ces espèces réactives sont produites en quantité trop importante et 

que la cellule ne parvient plus à réguler cette formation, le compartiment cellulaire connaît 

alors un état appelé « stress oxydant ». Dans plusieurs maladies graves, notamment celles 

liées au vieillissement, le stress oxydant est impliqué dans l’étiologie de la maladie. C’est le 

cas par exemple de cancers, de pathologies oculaires et de maladies neurodégénératives. Par 

conséquent, depuis de nombreuses années les chercheurs tentent de développer différentes 

thérapies afin de limiter les effets néfastes de ce phénomène. L’une des stratégies consiste à 

renforcer le système de défense  cellulaire  par  l’administration  d’antioxydants  naturels  ou 

synthétiques. Malheureusement,  la  prise  d’antioxydants  naturels  n’apporte  pas  toujours  les 

bénéfices escomptés et ces composés peuvent même être prooxydants dans certains cas. Il a 

donc fallu se tourner vers l’élaboration de molécules antioxydantes synthétiques, qui sont très 

souvent des analogues structuraux d’antioxydants naturels. Parmi les analogues synthétiques 

largement utilisés, on peut citer le Trolox qui est un dérivé hydrosoluble de la vitamine E. 
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Une autre voie explorée a consisté à utiliser dans le domaine biologique, des molécules dont 

le rôle initial était de mettre en évidence et de caractériser les radicaux libres sur le plan 

physico-chimique. En  effet,  l’identification  d’espèces  radicalaires  par  Résonance 

Paramagnétique  Electronique  (RPE)  a  permis  d’obtenir  de  précieuses informations sur la 

nature et la structure des radicaux. Cette  technique  très sensible s’appuie sur  le piégeage de 

spin  permettant,  par  addition  d’un  composé  diamagnétique  au milieu  radicalaire,  de  former 

des adduits de spin beaucoup plus stables que  l’on  peut  donc  étudier  facilement.  Cette 

technique  a  permis  d’améliorer  la  compréhension  de  processus  pathologiques  liés  au  stress 

oxydant  et  a  vu  l’émergence  de  nouvelles  molécules  capables  de  piéger  les  radicaux 

libres d’origine  biologiques,  c’est le cas des nitrones. Il existe deux grandes catégories de 

nitrones : les nitrones linéaires dérivés de l’α-Phényl-N-tert-Butyl-Nitrone (PBN) et les 

nitrones cycliques dérivés de 5,5-DiMéthyl-1-Pyrroline-N-Oxide (DMPO).  

 

De nombreuses études ont été réalisées sur les effets protecteurs des nitrones et la PBN s’est 

avérée plus efficace que la DMPO en tant qu’agent à propriétés thérapeutiques. Son caractère 

partiellement amphiphile,  qui  lui  permet  d’être  à  la  fois  soluble  en milieux aqueux et en 

milieux lipidiques, serait à l’origine de sa bonne biodisponibilité in vivo. Plusieurs équipes de 

chercheurs ont tenté d’améliorer l’efficacité thérapeutique de ces antioxydants synthétiques en 

développant différents analogues ou en favorisant leur ciblage vers des sites endommagés par 

la production d’espèces oxydantes.  

C’est  dans  cette  optique  que  depuis de nombreuses années, notre laboratoire développe 

différent type de structures monomoléculaires amphiphiles capables de transporter un principe 

actif dans  l’organisme par modulation de  sa balance hydrophile-lipophile. L’objectif de ces 
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structures est de mieux contrôler le passage transmembranaire d’un principe actif et ainsi lui 

assurer un meilleur ciblage. Cette stratégie a donc été appliquée aux nitrones. Les résultats ont 

montré que le greffage de la PBN ou de la DMPO sur une structure amphiphile augmente 

significativement leur biodisponibilité et leur activité biologique. Ce principe a aussi été 

appliqué  à  d’autres antioxydants et différents types de transporteurs amphiphiles ont été 

synthétisés, dans le but d’améliorer l’activité biologique du principe actif étudié. 

Les travaux menés au cours de ma thèse ont consisté à poursuivre cette thématique de 

recherche en modulant l’activité de la PBN. Le premier chapitre de ce manuscrit est présenté 

sous forme d’introduction bibliographique, faisant l’état de l’art des différentes structures de 

nitrones connues à ce jour. La PBN étant reconnue depuis plusieurs années pour ses activités 

protectrices, plusieurs auteurs ont synthétisé des analogues afin d’améliorer ses propriétés et 

sa biodisponibilité. Leurs  travaux ce sont d’abord focalisés sur des modifications chimiques 

assez simples portant sur la partie N-terminale et aromatique de la PBN, puis les études se 

sont orientées vers la synthèse de nitrones aromatique dérivées de la PBN jusqu’au 

développement de dérivés au ciblage plus spécifique. Dans  ce  chapitre  d’introduction 

bibliographique, l’accent sera mis à la fois sur la capacité des nitrones à piéger les radicaux 

libres ainsi que sur leurs propriétés physico-chimiques et leur activité biologique.  

Dans le second chapitre, nous nous sommes intéressés à différentes modulations autour de la 

PBN  afin  d’améliorer  ses  propriétés  intrinsèques. Ce chapitre est découpé en trois parties. 

Dans un premier temps, nous avons effectué des modifications sur la partie N-tert-butyl de la 

PBN en greffant un, deux ou trois substituant(s) afin d’augmenter la réactivité de la fonction 

nitrone. Ainsi,  nous  avons  étudié  l’influence des différents substituants sur les propriétés 

physico-chimiques et biologiques de nos composés. La seconde partie de notre travail s’est 

portée sur l’étude  de  composés  modifiés en para du groupement phényl, préalablement 

synthétisés au laboratoire. Dans cette partie nous nous sommes focalisés sur  l’influence des 
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effets électroniques générés par les substituants sur les propriétés physico-chimiques. Enfin, 

dans la dernière  partie de ce chapitre, nous avons modifié le groupement tert-butyl par un  

groupement bifonctionnalisé composé d’un cyclohexane et d’une chaîne alkyle substituable. 

D’une part, le cyclohexane présent en α du groupe nitronyl devrait permettre d’augmenter la 

rigidité globale de la molécule, stabiliser le radical formé et ainsi améliorer ses capacités de 

piégeage  d’EOR/EAR.  D’autre  part,  la  fonction  acide  carboxylique présente sur la chaîne 

alkyle  pourra être greffée à un autre composé, permettant ainsi un ciblage spécifique de la 

nitrone. Après exploration de ces trois types de modifications autour de la PBN, l’objectif à 

plus long terme est de combiner les structures les plus intéressantes afin de synthétiser un 

dérivé, substitué à la fois en para du phényl et en N-tert-butyl de la nitrone, présentant des 

propriétés physico-chimiques optimales. 

 

Figure 1. Structure générale de la PBN substituée. 

Dans le troisième chapitre de ce manuscrit, nous nous sommes penchés sur le ciblage 

spécifique de nitrones dans l’organisme. La première partie de ce travail a consisté à greffer le 

motif PBN sur des structures amphiphiles afin de favoriser le passage transmembranaire. 

Nous avons ainsi poursuivit les travaux du laboratoire sur la synthèse de transporteurs 

amphiphiles à fixation latérale comportant un acide aminé jouant le rôle de bras espaceur 

entre la tête hydrophile, la partie hydrophobe et l’antioxydant. La nouveauté dans cette partie 

a été de développer des transporteurs comportant deux acides aminés consécutifs afin de 

greffer deux antioxydants sur un même transporteur amphiphile (structures schématisées ci-

dessous). Nous  avons  d’abord  synthétisé  un  transporteur  amphiphile  portant  deux  motifs 

nitrones, dans le but d’étudier  l’effet  de  divalence. Ensuite, nous avons synthétisé un 
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transporteur amphiphile permettant de coupler deux antioxydants différents, par exemple une 

nitrone et un autre antioxydant, afin d’envisager un effet de synergie.  

       

Figure 2. Représentation schématique des deux transporteurs amphiphiles. 

Enfin, dans la deuxième et dernière partie de ce chapitre, nous avons voulu apporter un 

ciblage actif à nos nitrones et cibler cellules responsables du mélanome, les mélanocytes. En 

collaboration avec l’université de Clermont-Ferrand, nous avons modifié la partie hydrophile 

du transporteur amphiphile par un groupement benzamide capable de cibler spécifiquement 

les mélanocytes. Les dérivés benzamides ont une certaine affinité pour la mélanine, 

synthétisée dans les mélanocytes, qui a elle-même montré un effet protecteur dans la 

dégénérescence  oculaire  liée  à  l’âge. Ce type de pathologie étant également associé à une 

production  excessive  d’EOR, nous avons trouvé intéressant de combiner la PBN à un 

groupement benzamide afin de cibler spécifiquement les mélanocytes. Deux dérivés ont été 

synthétisés et caractérisés, leur activité biologique sur un modèle rétinien est actuellement en 

cours d’étude. 

Nous avons fait le choix de rédiger ce manuscrit en Anglais, sous forme de Thèse d’articles. 

Ainsi, les parties expérimentales sont décrites à la fin de chaque sous-partie. Afin d’éviter les 

redondances nous avons consigné les références bibliographiques à la fin de chaque chapitre. 

Les différentes techniques physico-chimiques utilisées au cours de cette thèse sont présentées 

en annexe de ce manuscrit. 
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Reactive oxygen species (ROS) that are mostly free radicals along with reactive nitrogen 

species (RNS) are known to play a dual role in biological systems, since they can be either 

harmful or beneficial to the living organisms. ROS and RNS at low concentration have been 

demonstrated to regulate a variety of normal functions, such as signal transduction, 

mitogenetic response and defence against infectious agents. ROS/RNS are balanced with an 

endogenous antioxidant system, which includes enzymatic and non-enzymatic defences. 

There is a second class of antioxidant that is obtained from the diet constituting the so-called 

exogenous antioxidant system. However, excessive production or deficient degradation of 

ROS/RNS in cells leads to an in vivo redox unbalance which can be deleterious. This is 

commonly termed as oxidative stress. Indeed ROS/RNS are responsible of severe damages to 

biological macromolecules such as proteins, DNA and lipids. Therefore, this biological state 

is often associated to several pathologies and syndromes such as ischemia-reperfusion, 

chronic inflammation, ageing as well as some genetic diseases to name a few.[1, 2] To 

prevent oxidative damages, therapeutic strategies using natural antioxidants have been 

extremely developed and promising results have been reported. Unfortunately, clinical trials 

have provided inconstant results[3-6] and therefore other antioxidant strategies have been 

developed. Synthetic antioxidants have been developed with two main goals: having more 

potent agents than the natural ones in preventing oxidative stress, and/or having agents that 

exhibit a specific targeting properties so as on site protection is achieved.  

Spin-trapping properties. Nitrones were initially designed as spin traps for detecting 

transient free radicals using electron paramagnetic resonance (for a recent review see 

Villamena & Zweier, 2004).[7] As shown in Figure 1.1, free radicals react with the 

diamagnetic nitrone to from a paramagnetic spin adduct whose half-life is significantly longer 

than that of the parent radical. Among the family of nitrone, two classes have been mainly 
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developed, the cyclic ones derived from the 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and 

the linear ones derived from the α-phenyl-N-tert-butyl nitrone (PBN) (Figure 1.2). 

 

Figure 1.1. Mechanism of spin trapping by linear PBN.  

Cyclic nitrones have been widely employed as probes for the detection of free radicals 

because of their better ability to trap oxygen-centered radicals compared to linear ones. 

Therefore, several analogues of DMPO have been designed over the past two decades. One 

can cite the phospshorylated analogue 5-diethoxyphosphoryl-5-methyl-1pyrroline N-oxide 

(DEPMPO)[8] as well as the ester analogs, 5-ethoxycarbonyl-5-methyl-1-pyrroline N-oxide 

(EMPO)[9] and 2-tert-butoxycarbonyl-5-methyl-1-pyrroline N-oxide (BocMPO).[10] 

Recently, a new amido derivative AMPO was reported to have the highest rate constant of 

superoxide trapping, followed by EMPO, both DEPMPO and DMPO, having the slowest 

reactivity.[11, 12] 

 

Figure 1.2. Chemical structure of linear PBN, cyclic DMPO and some derivatives. 

Although linear nitrones are generally considered to be poorer traps compared to cyclic ones, 

they have been also employed in spin trapping experiments to trap carbon-centered radicals 

either in organic or aqueous phase. Toxicity of nitrone compounds is low rendering their use 

in biological systems possible without inducing any severe side effect.[13-15] However, the 



Chapter I 

 

 

10 

 

use of both the linear PBN series and the cyclic DMPO one as spin-traps in biological milieu 

has encountered some limitation. Indeed, the DMPO-superoxide spin adducts decomposes 

quickly in polar environment and its biological uses to extracellular spin trapping are limited 

by its hydrophilicity.[16-18] On the other hand, because of its lipophilicity, the distribution of 

PBN within tissues and cells is much higher than that of the hydrophilic DMPO[16-18] but its 

spin-trapping properties are rather limited with low spin-adduct stability. 

Synthesis of nitrones. Several methods are available for the synthesis of nitrones.[19, 20] 

The condensation between aldehydes and N-monosubstituted hydroxylamine is the most 

widely used method for the preparation of nitrones. One-pot synthesis is also used through in 

situ reduction of a nitro group to its hydroxylamine, which is subsequently condensed with a 

benzaldehyde derivative. Another method consists in the N-oxidation of an imine intermediate 

directly into nitrone using strong oxidants such as peracids.[21, 22] Finally, N-alkylation of 

aldoximes also leads to nitrone formation.[23, 24] 

Biological properties. Mode of action of nitrones. Since the seminal work of Novelli et 

al.[25] nitrone spin traps have been widely used as antioxidants in several biological models 

and their use as pharmaceutical agents have been extensively reviewed.[26, 27] The 

biological activity of nitrones had been first explained by their radical trapping activity, 

however, experimental evidence have suggested other mechanisms. For instance, the 

concentrations used for spin trapping experiments in chemical media are roughly one 

thousand times higher than those commonly employed in biological studies of protection (10-

50 µM). In addition, concentration of nitrones in target tissues is usually inferior to 50 µM, 

which is not sufficient to quench all the radical species. These findings support the 

invalidation of the spin-trapping mechanism as the primary mode of action of nitrones. In 

addition, there are strong evidence that PBN act to quell signal transduction processes 

providing therefore, potent anti-inflammatory and anti-apoptotic properties.[26, 28] Nitrones 
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also exhibit NO-releasing properties which may be partly responsible for their 

pharmacological properties.[29, 30] Hensley et al. demonstrated that PBN interacts with the 

mitochondrial complex I by inhibiting complex-I stimulated H2O2 flux.[31]  

Considering the very broad activity of nitrones, there has been extensive research on the 

development of novel nitrone-based compounds with improved biological and spin trapping 

properties as well as enhanced intra-cellular compartmentalization. The chemical and 

pharmacological properties of nitrones depend mainly on the connectivity as well as on the 

nature and the position of the substituents on the nitrone group. Several analogs of PBN, and 

to a lesser extend of DMPO, have been synthesized during the last years combining in their 

structures chemical functions that can improve the intrinsic properties of the spin-trap 

compound. Chemical modifications have been made either on the phenyl ring and/or on the 

N-tert-butyl group of PBN so as to improve the reactivity of the nitronyl group and the 

stability of the nitroxide spin-adduct. Modifications have also been applied on the nitronyl 

group such as substitutions on the carbon atom of the nitrone function with a heretoaryl or an 

azulenyl group. Moreover, to target nitrones to specific tissues and/or cellular compartments, 

the nitronyl group was grafted onto specific cargo such as lipophilic cations, peptides or 

amphiphilic carriers. The different strategies used to improve the potency of PBN-Based 

nitrones either as spin-traps or as therapeutics will be described in this chapter.  

 

1. Modifications on the phenyl ring and the N-tert-butyl groups 

-phosphorylated derivatives. Oxygen-centered radical trapping of nitrones is of particular 

interest as theses radicals are involved in many chemical and biological process. Among the 

most widely employed spin-traps, PBN is much more lipophilic than DMPO, making PBN 

more suitable for biological applications. However, the use of PBN against superoxide-

hydroperoxyl and hydroxyl radicals has shown limitation. Therefore, various PBN analogs 
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bearing substituents on the phenyl ring were developed, mainly by Janzen and co-

workers.[32-35] However, these compounds presented similar limitations that are rapid 

disappearance of hydroxyl and superoxide radicals in aqueous solution, and very similar EPR 

spectra with close hyperfine splitting constants (hfsc) leading to possible misinterpretation. A 

phosphorylated derivative of DMPO, denoted DEPMPO and represented in Figure 1.3, 

showed interesting spin-trapping properties with half-lives values about fifteen times higher 

than that of DMPO in aqueous solutions.[36-38] This improvement of the hydroperoxyl spin-

adduct stability was found to be induced by the presence of the diethylphosphoryl group 

which tends to stabilize the aminoxyl obtained during the trapping. Therefore, the use of a 

phosphoryl group was also extended to linear PBN and 4-PyOBN nitrones. Structures of the 

corresponding N-benzylidene-1-diethoxyphosphoryl-1-methylamine N-oxide (PPN) and 1-

diethoxyphosphoryl-1-methylamine N-oxide (4-PyOPN) are represented in Figure 1.3.[39] 

Replacement of the methyl group by a diethylphosphoryl group led to a significant increase of 

the spin-adduct half-lives. 

 

Figure 1.3. Structure of 4-PyOBN and -phosphorylated nitrones. 

Several PPN-type nitrones, by varying substitutions on the aryl group, were synthesized 

(Figure 1.4).[40] Except 4-DOPPN, all PPN-type nitrones were able to trap carbon-centered 

radicals and formed intense and persistent spin adducts in aqueous and organic media. PPN 

and 4-PyOPN were the most potent of this series in trapping superoxide radical in aqueous 

environment, with acceptable decay kinetics as well. One of the advantages of the PPN-type 
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series is that their various spin-adducts are easily identified by their EPR spectra, because of 

the existence of a strong hyperfine coupling with the phosphorus nucleus. 

ster derivatives. Tuccio and co-workers studied the spin trapping properties of N-2-(2-

ethoxycarbonyl-propyl)- -phenylnitrone (EPPN)[41] bearing an ethoxycarbonyl group in -

position.[42], [43] EPPN showed higher lipophilicity than PPN with octanol-phosphate buffer 

partition coefficient (Kp) of  29.8 and 10.2, respectively, suggesting that EPPN could cross 

biomembranes. EPPN was also found to be a very efficient trap for carbon-centered radicals 

but unsuitable for hydroxyl trapping in aqueous conditions. The superoxide spin adduct of 

EPPN was found to be more stable than those of PBN, DMPO, 4-PyOBN and PPN, yielding 

to a persistent spin adduct without any artifactual signals.[43] But the short-lived superoxide 

spin adduct of EPPN at physiological pH has limited its used in biological media. Finally, it 

was demonstrated that the presence of an electron-withdrawing group at the -position of the 

nitrone function, in the case of PPN, 4-PyOPN and EPPN, greatly enhances the superoxide 

adduct stability. Stolze and co-workers have developed EPPN analogs either by replacing the 

ethoxy group by a propoxy, iso-propoxy, n-butoxy, sec-butoxy and tert-butoxy moiety or the 

phenyl ring by a pyridyl ring (Figure 1.4).[44] As observed for the parent EPPN, these new 

compounds were efficient for the detection of carbon-centered radical but no significant 

improvement of the superoxide adduct stability could be obtained for these lipophilic EPPN 

derivatives.  

Two ester nitrone derivatives with improved spin adduct stability were next designed. 

EPPyON derives from 4-PyOBN by addition of an ethoxycarbonyl group in -position, the 

oxidopyridinium group exhibiting stabilization of the superoxide spin adduct, whereas 

DEEPN, bears two electron-withdrawing groups in -position of the nitrone function (Figure 

1.4).[42] DEEPN (Kp = 4.8) is less lipophilic than PBN, PPN and EPPN but more lipophilic 
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than DEPMPO (Kp = 0.16). On the contrary, EPPyON is highly hydrophilic with a partition 

coefficient of Kp = 0.33. The two nitrones were found to efficiently trap various carbon- and 

oxygen-centered radicals in aqueous media but were unsuitable for detecting hydroxyl radical. 

The superoxide spin adducts of these two nitrones decay approximately at the same rate at 

neutral pH but DEEPN-O2H spectrum is simpler, making DEEPN an efficient spin trap for 

superoxide detection in the PBN series.  

Consequently, these results led to combine in the same molecule an oxidopyridinium and two 

ethoxycarbonyl groups yielding the nitrone DEEPyON.[45] Spin trapping abilities were 

studied as well as the kinetic aspects of the superoxide detection that is the trapping reaction 

rate constants and for the spin adduct decay at pH 7.2. Results were compared to the 

monoester nitrone EPPyON and to its corresponding cyclic derivatives bearing two ester 

groups denoted as DEPO. Unfortunately, it was shown that the presence of a second ester 

group gave weaker superoxide trapping capacities in the oxidopyridinium series. On the 

contrary in the cyclic series an opposite effect was observed with DEPO being three times 

more potent than its corresponding analog with only one ester group (EMPO). However, 

DEPO-O2H decayed much faster than EMPO-O2H at nitrone concentration up to 0.005 mol.L-

1, making EMPO preferred in detecting superoxide radical. 

 

Figure 1.4. EPPN (R = CO2Et) and the EPPN series (with R = propoxy, iso-propoxy, n-
butoxy, sec-butoxy or tert-butoxy) as well as other ester derivatives including cyclic nitrones. 
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N-tert-butyl substituted derivatives. In our group, a series of mono-, di- and tri-N-tert-butyl-

substituted PBN derivatives was developed in order to study the effects of the substituents in 

β-position of the nitronyl function (Figure 1.5).[46] An increased positivity on the nitronyl 

carbon was observed and was found to correlate well with experimental NMR chemical shifts. 

A moderate nucleophilic nature was observed for superoxide addition to nitrone as well as for 

phenyl radical addition to nitrone using UV-vis. stopped-flow kinetic and spin-trapping 

kinetics, respectively. Moreover, the antioxidant properties against H2O2-induced cell death 

were found to be affected by the nature of the substituents, with a good correlation with the 

oxidation potentials as determined by cyclic voltammetry. This work is presented in the 

second chapter of this thesis report.  

 

Figure 1.5. mono-, di- and tri-N-tert-butyl-substituted PBN derivatives. 
 

Adamantan substituted nitrones. The tert-butyl group of PBN was also modified with a 

cyclic moiety derived from adamantane,[47, 48] which has itself being investigated as 

bioactive compound. The rational was to increase the lipophilicity of the nitrone and to ensure 

enhanced spin adduct stability. Hydroxyl adducts exhibited significantly higher stability than 

those of PBN, very likely due to rigid adamantane ring. Among the adamantly derivatives 

synthesized, the three following compounds (Figure 1.6) proved soluble enough in water for 

spin trapping in aqueous media.[48] 

 

Figure 1.6. Structures of adamantly PBN-type nitrone derivatives. 



Chapter I 

 

 

16 

 

The hydroxyl adducts stability of PyAN and POAN was the highest of the series and 

consequently, these two compounds were further study on UV-B-damaged isolated thylakoid 

membranes. The primary target of UV-B is photosystem (PSII) which is one essential 

pigment-protein complexes conducting photosynthetic transport. The two adamantyl nitrones 

were less toxic than their corresponding N-tert-butyl nitrones (IC50 of ~10 mM for PyAN and 

POAN compared to 6.7 and 1.9 for PyBN and 4-PyOBN, respectively). Moreover, they 

proved suitable for detecting hydroxyl radical produced in thylakoid membrane under UV-B 

stress, with enhanced spin adduct stability.[47] 

α-aryl substitutions of PBN. A phosphorylated nitrone derivative bearing a hydroxyl in para 

position of the phenyl ring (4-HOPPN) was found to trap various carbon-, oxygen- and sulfur-

centered radicals and to stabilize superoxide spin adduct.[49] The optimized geometry 

observed for 4-HOPPN superoxide spin adduct confirmed that the introduction of the 

phosphoryl group efficiently stabilize the spin adduct compare to PBN superoxide spin 

adduct. Moreover, stronger intra-molecular interactions, including Hydrogen bonding and the 

nonbonding attractive interactions as well as the bulky steric protection in 4-HOPPN-OOH 

were suggested to be responsible for stabilizing the superoxide spin-adduct. In the series of 

ortho-, meta- and para-substituted PBN developed by Janzen and co-workers in the 90s, 

NMR and EPR data of the meta- and para-substituted derivatives were found to correlate with 

the Hammett constants which indicates the polar effect of substituents.[19] Our group has 

recently worked on the reactivity of six para-substituted PBN derivatives toward superoxide 

radical anion and hydroperoxyl radical, structures are represented in Figure 1.7.[50] 

Competitive spin trapping using stopped-flow kinetics and EPR spectroscopy were employed 

to determine the rate of O2
•- and HO2

• radical addition. Computational methods were used to 

predict the nitronyl atom charge densities and the free energies of superoxide and 

hydroperoxide radical addition to nitrones. The combined experimental and theoretical data 
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suggest that the addition of O2
•- is weakly electrophilic and not affected by the substituents 

properties whereas HO2
• addition  is  predominantly  electrophilic  and  follows  Hammett’s 

equation. The relative rate of Ph• trapping showed no correlation with the Hammett values, 

indicating the absence of a polar effect and supporting the non nucleophilic nature of phenyl 

radical. This demonstrated that the reactivity of the nitrone function can be modulated by the 

nature of the substituents but this is quite dependent to the radical trapped. Moreover, a good 

correlation was observed between the electrochemical potentials and the Hammett sigma para 

constant (σp) with compounds bearing an electron-donating group being more easily oxidized 

than those bearing an electron-withdrawing group. The polar effect can be explained by the 

stabilization of the intermediate nitroxide formed through resonance structures. This work is 

presented in the second chapter of this thesis report. 

 

Figure 1.7. Examples of para-substituted PBN derivatives including S-PBN and NXY-059. 

 

Sulfophenyl substituted PBN. In order to improve the hydrophilicity of PBN, sulfonic acid 

substituents were grafted onto the phenyl ring. The ortho monosubstituded derivative is called 

S-PBN and the ortho, para disubstituted derivative is called NXY-059 (Figure 1.7). The 

ability of PBN, S-PBN and NYX-059 to form radical adducts and prevent salycilate oxidation 

were studied in aqueous media.[51] The three compounds were found to efficiently trap 

oxygen- and carbon-centered radicals and PBN was the most potent to prevent salycilate 
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oxidation. Yang and co-workers studied the neuroprotective effect of PBN and S-PBN in a 

focal cerebral ischemia model and a significant attenuation of about 35% infarct volume was 

noted.[52] This was further confirmed on an embolic model of focal cerebral ischemia[53] 

and despite differences in their pharmacokinetics and absorption through the blood–brain 

barrier, the two spin traps appeared to have similar properties. S-PBN also exhibited 

neuroprotective properties in ischemia/reperfusion nerve injury.[54] However, PBN was 

found most potent than S-PBN as neuroprotectant in cortical areas, probably due to the poor 

brain penetration by S-PBN.[55] With two sulfonic acid groups, NXY-059 is more water-

soluble but its superiority compared to PBN as a neuroprotectant against stroke was 

demonstrated.[56] NXY-059 was the first compound to reach phase III clinical trials in the 

USA conducted by its licensee AstraZeneca.[57, 58] Unfortunately pooled analysis concluded 

that NXY-059 was not effective,[59] which led to the termination of NXY-059 as therapeutics 

for acute ischemic stroke. The success of NXY-059 has been mainly limited by its poor 

bioavailability, limited stability which required administration of high doses. In addition 

several critiques about the preclinical studies have been raised and it appears that more 

rigorous and strenuous testing at the preclinical stage is needed when evaluating 

neuroprotective agents.[60] 

Cyclic analogs of PBN. A high interest in developing treatment for stroke, septic shock and 

related diseases led Hoechst Marion Roussel Int. to develop 3,4-dihydro-3,3-dimethyl- 

isoquinoline N-oxide, a cyclized version of PBN also called MDL 101.02.[61] This compound 

which was supposed to have more potent radical trap due to the constrained and potentially 

more coplanar orientation of the nitrone and aromatic ring was in fact less planar than PBN, 

according to subsequent molecular modeling studies. However, MDL 101.002 was found to 

be more potent than PBN in several tests of antioxidant and radical trapping activity. A wide 

range of isoquinoline analogs were next synthesized such as aryl-substituted nitrones as well 
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as related spiro compounds (Figure 1.8) and they were found to be at least 10-fold better than 

PBN in reducing liposomes oxidation. Other chemical modifications were conducted with the 

fused phenyl ring being replaced by a more extended aromatic system or with electron rich 

heterocycles as well as five, six or seven atom nitrone-containing rings as shown in Figure 

1.8.[62, 63] 

 

Figure 1.8. General structures of cyclic PBN derivatives including the hydroxylated 
metabolites and two derivatives. 
 

When a second antioxidant functionality was added such as (o,o’-dimethylphenol) which is an 

antioxidant based on α-tocopherol, the activity was increased. The lipophilicity (log k’W) was 

measured by a chromatographic technique and a general trend was noted with the more 

lipophilic compounds being the more active in vitro. An interesting hydroxylated metabolite 

of MDL 101.002 was isolated and identified by the same group.[64] Despite its less potent 

antioxidant activity than MDL 101.002 in an in vitro lipid peroxidation assay, this metabolite 

was found to greatly reduce acute toxicity and exhibited sedative properties. Therefore, 

additional analogs were synthesized to increase the lipophilicity of this metabolite. Among 

them, oxidation and acetylation of the hydroxyl function can be quoted (Figure 1.8), as well 

as the replacement of the gem-dimethyl moiety with a spirocyclo alkyl group in both alcohol 

and ketone series. These compounds were found to be more lipophilic and more active than 

the hydroxyl metabolite in the in vitro lipid peroxidation assay, while only the ketone 
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derivatives were more potent in the in vitro neuronal peroxidation assays. This beneficial 

activity results from the ketone formation which simultaneously increases lipophilicity and 

removes the stereocenter. In addition, the introduction of an electron-withdrawing group 

conjugated with the nitrone group renders it more reactive toward radicals. However as 

regards to the side effects, the improvement brought by the ketones derivatives compared to 

MDL 101.002 remained limited.  

The therapeutic potential of a series of 2-benzazepine nitrones developed by Soto-Otero and 

co-workers against age-related neurodegenerative disorders was studied.[65, 66] Among the 

several analogs synthesized, two derivatives bearing respectively a C-3 spiro cyclopentyl and 

a tetrahydropyranyl moieties (Figure 1.9), showed promising protection of dopaminergic 

neurons intoxicated with 6-hydroxydopamine, a toxin implicated in Parkinson’s disease. One 

of these compounds was also found potent in a model of Alzheimer neurodegeneration. These 

observations may contribute to improve therapeutic potential of 2-benzazepine nitrones in 

age-related neurodegenerative diseases. 

 

Figure 1.9. Potential neuroprotective agents in age-related diseases. 

 

2. Modification of the nitronyl function  

Heteroaryl nitrones. A survey of the literature on heteroaryl nitrones from 1980 to 1999 has 

been reviewed by Golstein and Lestage, in which pyridyl, thienyl, furyl and immidazolyl 

substituted nitrones were described.[67] Results have demonstrated that the presence of a 

hetero-aromatic substituent on the nitrone double bond increased efficiently the stability of 

the spin-adduct and the ability to trap radicals. Moreover, lipophilicity and solubility are 
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modulated by the presence of a heterocycle and therefore so is crossing of biological 

membranes. Several groups have next designed a number of heteroaryl nitrones and their 

protective effects against various damages were studied. Nepveu and co-workers designed 

potent compounds against microvascular damages induced by ischemia/reperfusion[68] and a 

majority of these compounds were more efficient to trap •CH3 than •OH radical. No 

correlation was observed between the protective effect and their partition coefficient or their 

capacity to trap •CH3 and •OH radicals. Three compounds derived from piperol, O-benzyl 

vanillin and furfural (Figure 1.10) were the most potent of the series. Dias et al. synthesized 

other derivatives including N-methyl nitrone derivatives, which potency in preventing 

microvascular damage induced by ischemia/reperfusion.[69] It has to be underlined that a 

correlation between the lipophilicity and and their biological action was noted. 

 

Figure 1.10. Nitrones derived from piperonal, O-benzyl vanillin and furfural. 

 

Porcal and co-workers have synthesized thiadiazole and furanoxyl nitrone derivatives 

combining in their structures a nitronyl group with neuroprotection properties, an antioxidant 

fragment and an heterocyclic group able to stabilize the spin adduct (Figure 1.11).[70] These 

compounds proved excellent spin-trapping capacity, scavenging oxygen, carbon, sulfur and 

nitrogen-center free radicals.[71] The neuroprotective activity was demonstrated on a human 

neuronal-like cellular system exposed to H2O2 without any cytotoxicity at 10 M. N-alkyl 

substitutions such as tert-butyl, cyclohexyl or benzyl group showed to affect both the spin-

adduct stability and the biological activity with the N-cyclohexyl derivative exhibiting better 

cell viability than its N-tert-butyl derivative, while this latter exhibited better radical 

scavenging activity and the benzyl derivative was the less potent compound. These results 
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suggest that heteroaryl nitrones have therapeutic potential as neuroprotective agents in 

preventing cell death against oxidative stress and damage. 

 

Figure 1.11. General structures of thiadiazolylnitrones,  furoxanylnitrones, -aryl-N-alkyl 
and indoline nitrones. 

The 4-furoxanyl nitrone denoted FxBN[71] showed appropriate solubility in aqueous 

conditions, which is an important physical chemical property for biological application. FxBN 

formed hydroxyl and superoxide spin adduct with long half-life of >2h and ~0.5 h, 

respectively, which suggests it could be a better trap than PBN and DMPO for oxygen-

trapping in biological conditions.  

Samadi and co-worker developed a series of -aryl and N-alkyl substituted heteroaryl nitrones 

as potential agents for stroke treatment in cerebral ischemia (Figure 1.11). In a first report, 

various -aryl-N-alkyl nitrones were synthesized in order to evaluate the effect of different 

electron-donating or electron-withdrawing substituents in the aromatic ring.[72] The in vitro 

antioxidant activity was determined using two different tests. The stable free radical 2,2-

diphenyl-1-picylhydrazyl (DPPH) was used as reagent to investigate the scavenger properties 

and showed that for phenol derivatives, the para position was preferred over the meta 

position, as well as the absence of the bromine atom at the ortho position. The oxygen radical 

absorbance capacity (ORAC) using a fluorescent probe was used to measure the peroxyl free 

radical scavenging ability of nitrones in the second in vitro assay. A significant antioxidant 
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activity was demonstrated for most of the nitrones and the substituted indole was the most 

potent, followed by the two phenol benzene-type nitrones. Conversely to the first in vitro 

assay, the meta position of the hydroxyl group as well as the presence of a bromine in ortho 

position were found to increase the antioxidant activity. PBN was poorly active in the first 

assay and inactive in the second one. Furthermore, the scavenging of hydroxyl radical was 

investigated and all the nitrones were able to efficiently trap •OH free radical. Theoretical and 

computational approaches were used to predict the antioxidant capacity and were found in 

agreement with the DPPH assay with the phenol derivatives being more efficient in electron 

transfer processes. The calculated energy values for hydroxyl and peroxyl trapping predicted 

that the most favorable adduct-spin will take place between the indole derivative and 

compounds containing a ortho-bromo, a meta-hydroxyl and a para-methoxy function on the 

aryl group. Finally, the in vitro pharmacological analysis was carried out, in human 

neuroblastoma cells previously stressed, in order to determine the neuroprotective capacity of 

these nitrones but protection was in general low.  

A series of α-aryl and heteroaryl-N-alkyl nitrones were developed as potential agents for 

stroke treatment. The α-aryl-N-alkyl nitrone derivatives comprised a strong electron 

withdrawing group or a highly hindered phenol or nitrooxy-alkoxy chain at position C-4.[73] 

The heterocyclic groups, such as quinoline or furan, were substituted with halogen atoms in 

appropriate position, as showed in Figure 1.12. Theoretical calculations were first carried out 

to predict their ability to cross the blood-brain-barrier (BBB) and suggested that, except 

nitrones bearing a 3-(nitrooxy)-alkoxy-benzilidene substituents, they should present a good 

brain penetration profile. The neuroprotection afforded by the compounds was estimated 

following Goldstein et al. approach which is based on the calculation of orbital energies and 

lipophilicity,[74] suggesting that nitrones bearing a para-hydroxyl group or quinolinyl group 

would exhibit good level of neuroprotection. On the contrary, the presence of a 3-(nitrooxy)-
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alkoxy-benzilidene group would lead to a poor level of neuroprotection. Data showed that 

both the presence of an electron-withdrawing group (CF3) in the benzene ring or the quinoline 

heterocyclic ring system conjugated with the nitrone moiety are key structural motif for 

neuroprotection. However, the presence of a highly hindered phenol moiety or a bromofuran 

ring was associated with strong toxicity. Therefore, it demonstrates that theoretical prediction 

were in good agreement for a majority of the compounds but not for all. It was also observed 

that N-benzyl nitrones presented higher neuroprotection than their corresponding N-tert-butyl 

nitrones. Among the whole range of nitrones synthesized, the quinolinyl nitrones showed 

potent combined antioxidant and neuroprotective properties and could therefore be considered 

as lead compounds.  

 

Figure 1.12. Exemples of a-aryl, heteroaryl and triazole-N-alkyl nitrone derivatives. 

More recently, Sambasiva Rao et al. developed a series of 1,2,3-triazole substituted N-phenyl 

nitrones and studied their anti-inflammatory and anti-cancer activity against various cancer 

cells lines.[75] Among the series, only the derivative bearing a six-carbon fluorinated chain 

exhibited both anti-inflammatory and anti-cancer activity. Most of the others exhibited either 

good anti-inflammatory or good anti-cancer activity. 4-fluorophenyl or 4-chlorophenyl 

substitution on the triazole moiety as well as phenyl and tert-butyl N-alkyl nitrones promoted 

the highest cytotoxicity which, however, remained significantly lower than doxorubicin. 

Imidazolyl nitrones. A series of imidazolyl nitrones was developed by Servier and exhibited 

good water-solubility with improved spin-trapping properties than the parent PBN.[74] 

Imidazolyl nitrones either with aromatic or heteroaromatic cycle substitutions proved higher 
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efficiency than PBN in an in vitro lipid peroxidation test on cortical membranes. Their 

capacity to oppose lethality induced by intracerebroventricular administration of tert-butyl 

hydroperoxide (t-BHP) in mice was also demonstrated with better protection compared to 

PBN. However, this was accompanied by hypothermia and only the phenylimidazolyl nitrone 

(Figure 1.13) showed significant protection (80% survival) without any hypothermia 

observed. The neuroprotection afforded by imidazolyl nitrones was found to correlate with the 

partition coefficient with the more lipophilic compounds being the more active. Moreover, it 

was shown that HOMO energy level of imidazolyl nitrones also influenced the biological 

behavior with higher protection when the HOMO energy is higher.  

 

Figure 1.13. Structure of triazole of two imidazolyl nitrones. 

The capacity of ten imidazolyl nitrones to directly scavenge free radicals was also studied in 

vitro by Reybier and co-workers and showed a high capacity to trap and stabilize carbon-

centered radicals.[76] Among the derivatives, S34176 bearing a trifluoro group in para 

position of the phenylimidazolyl nitrone (Figure 1.13) was selected for its in vivo activities. 

Lockhart and co-workers studied the neuroprotective effect of this compound in different in 

vivo paradigms of neuronal degeneration.[77] When S34176 was administrated 30 min before 

global ischemia (75mg/kg i.p.), the neuronal protection was 50% better compared to the 

control. Similar injection 5 min after ischemia showed same results. However, when S34176 

was administered 3 h post-ischemia, a limited efficacy was observed and this derivative was 

also ineffective in preventing focal permanent-occlusion ischemia. Unfortunately, the short 

active window of S34176 demonstrated that this compound alone have a limited therapeutic 

benefit in acute phase of cerebral ischemia.  
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Azulenyl and stilbazulenyl nitrones. Since the beginning of the 90s, the Becker’s group in a 

collaborative work with UpJohn Company has been interested in azulenyl nitrones derivatives 

named AZN (Figure 1.14). As already observed for cyclic analogs and imidazolyl nitrones, 

the aromatic rings confer higher rigidity and stability to the spin adducts. These compounds 

are prepared from guaiazulene, a natural product which is itself known to exhibit antioxidant 

and anti-inflammatory properties[78] and which has been used in a number of medical 

applications.[79, 80] Another important feature is that the guaiazulene ring system confers an 

oxidation potential exceptionally low in addition of being lipophilic. Indeed, cyclic 

voltammetry studies showed that the oxidation potential of AZN was 0.84V vs. SCE while 

that of PBN is 1.47 V. This potential is close to that of essential antioxidants such as 

glutathione (0.69 V vs. SCE) and -carotene (0.76 V vs. SCE).[81] Thus, compared to 

conventional nitrones, azulene-based spin traps exhibit improved antioxidant properties and 

may more readily penetrate the blood–brain barrier.  

 

Figure 1.14. Structures of AZN, w-AZN and STAZN. 

AZN nitrone also allows a colorimetric approach to the detection, isolation and analysis of 

free radical adducts in the case of rapid nitroxide decay. Indeed, AZN was found to react with 

peroxyl radicals to form a nitroxide that decomposes into aldehyde and secondary nitroxide 

by-products which exhibit different color and therefore can be easily distinguished.[82] 

Biological results have demonstrated that AZN may be promising as a clinical 

neuroprotectant in ischemic brain injury.[83] Both AZN and its water-soluble derivative w-
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AZA produced significant in vivo neuroprotection activity in a mouse Parkinson’s  disease 

model using MPTP as a neurotoxin.[84, 85]  

A second-generation of azulenyl nitrones called stilbazulenyl nitrones (STAZN) were 

synthesized in five steps from the natural guaiazulene (Figure 1.14).[86] STAZN possesses an 

oxidative potential of 0.33 V vs. SCE which is about half lower than that of AZN and 

therefore exceptionally lower compared to PBN. Antioxidant assays demonstrated that 

STAZN possesses remarkable potency as chain-breaking antioxidant and displays a far 

superior antioxidant profile comparing to PBN and AZN which were studied at concentration 

double or more than STAZN. Moreover STAZN appears to be more potent than the first-

generation nitrone AZN for neuroprotection in vivo.[87] Other studies demonstrated that 

STAZN is also a highly potent cardioprotective agent in acute coronary ischemia, suggesting 

the potential for clinical benefit in the setting of acute coronary syndromes.[88] 

STAZN was also studied in heterogeneous media i.e. micelles and liposomes. The rate 

constant for reaction with peroxyl radicals and a number of radicals trapped were studied and 

compared to three phenolic antioxidants and showed that the inhibition rate constant for 

STAZN depends on the reaction medium and the type of initiator.[89] More recently, in vitro 

assays were carried out to evaluate the efficacy and safety of STAZN as a lead compound to 

treat ischemic stroke.[90] CeeTow analysis was used to determine the acute toxicity profile of 

the STAZN and results have shown an excellent safety profile. Moreover, a lack of mutagenic 

activity was observed, indicating that STAZN may have significant potential as a novel 

neuroprotective agent and should continue to be developed as a lead compound to treat stroke. 

Hartley and co-workers have designed a compound combining in its structure a nitrone spin-

trap and a phenol antioxidant with a cyclopropane radical clocklike unit (Figure 1.15). The 

nitrone and the phenol group acts as radical sensors with different selectivity. Very reactive 

electron-rich radicals are expected to react with nitrone whereas electron-poor species would 
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react with the phenol moiety. The cyclopropane should open rapidly to give an unstable 

primary radical which will cyclize onto nitrone to generate a nitroxyl actuator.[91]  

 

Figure 1.15. Dual detector probe detects and distinguishes between hydroxyl radicals, methyl 
radicals and iron (III) ions. 
 

3. Towards the targeting of nitrone spin-traps 

Although some of the strategies developed towards the synthesis of nitrones with improved 

antioxidant properties proved to be promising as described above, it appears that one of the 

limitation in  having  a  “super”  nitrone  spin-traps results from insufficient control of 

biodistribution, membrane crossing and specific targeting. Therefore, several groups have 

designed antioxidants or nitrones derivatives by grafting them onto suitable carriers able to 

target specific production site of ROS such as the mitochondria or phospholipidic membranes. 

Mitochondria-targeting. For example, one of the most promising strategies consists to 

directly link the antioxidant onto a mitochondria-targeted compounds as mitochondria is the 

main source and the first target of reactive oxygen species. Lipophilic phosphonium cations 

were first used to investigate mitochondrial biology by Vladimir Skulachev and colleagues in 

the late 1960s.[92] Despite their negative charge, lipophilic cations are relatively lipid-soluble 

and can pass easily through all biological membranes, including the blood-brain-barrier and 

into muscle cells and thus reach tissues that are most affected by mitochondrial oxidative 

damage. Therefore, these compounds are able to cross the mitochondria inner membrane and 

accumulate within the mitochondria matrix. For this reason, they have proven to be among the 

most useful probes for the investigation of mitochondria function.[93, 94] Various 
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mitochondria-targeted antioxidants were synthesized by grafting the triphenylphosphonium 

cations (TPP) to  antioxidants  such  as  α-tocopherol (MitoVitE)[95] and PBN spin-trap 

(MitoPBN)[96]  (Figure 1.16). It has been reported that MitoPBN reaches 2.2-4.0 mM 

concentration within the mitochondria and blocks the oxygen-induced activation of 

uncoupling proteins. This concept has been extended to cyclic nitrone[97, 98] and to acyclic 

nitroxide.[99] However, the toxicity of triphenyl-phosphonium derivatives at low 

concentration has limited their use as therapeutic agents. N-aryl pyridinium nitrone (Figure 

1.16) have also been used to detect superoxide production from the mitochondria.[100] 

Carnitine, which is used in the transport of fatty acids into mitochondria, was also used as 

potential method of targeting the nitronyl group to mitochondria and the conjugate CarnDOD-

7C was prepared (Figure 1.16).[101] 

Biological membrane-targeting. Another family of spin traps, tailored to intercept radicals 

within biological membranes was developed such as the DOD-8C nitrone (Figure 1.16).[102] 

In lipid membranes, its hydrophilic carboxylate group orientates towards the aqueous phase, 

whereas the nitrone moiety sunk into the membrane. The radical penetration of lipid bilayers 

was determined using lipophilic spin traps with a combination of NMR and ESR techniques. 

Three families of homologous spin-traps derives from DMPO, PBN and adamantyl-PBN were 

synthesized by varying the chain length of the substituent and therefore the overall 

lipophilicity.[103] The intercalation depth of these spin-traps within the liposomal bilayer was 

then determined, in order to predict the susceptibility of lipid moieties to radicals attack. This 

showed that the more lipophilic the spin adduct, the deeper it is found in the bilayer. 

However, the depth of penetration also depends on the steric bulk of the intercalant.[104] 

Lipophilic nitrones with two long alkyl chains have also been developed[105, 106] as well as 

a lipophilic β-cyclodextrin cyclic nitrone conjugate[107] or cholesteryl-based nitrones.[108, 

109] 
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Figure 1.16. Examples of lipophilic cationic and neutral nitrones. 

Amphiphilic-nitrone derivatives.  

With the expectation that amphiphilic compounds possessing both a hydrophilic polar head 

and a lipophilic group would exhibit improved bioavailability and membrane crossing ability, 

our work over the past 15 years has been devoted to the design and the synthesis of 

amphiphilic antioxidants with a particular attention to nitrones derivatives. The use of 

antioxidants is limited by their low bioavailability and conjugation to an amphiphilic carrier is 

expected to improve the bioactivity. Tuning of the hydrophilic/lipophilic balance would 

ensure a better ability to cross membranes and consequently would improve the protective 

activity of nitrone-type synthetic antioxidants. The lipophilic group is typically a large 

hydrocarbon or fluorocarbon moiety and confers to the molecule a hydrophobic character; 

while the hydrophilic polar functional group can be a charged group such as anionic or 

cationic groups or an uncharged group. As a result, an amphiphilic compounds which has 

lipophilic and hydrophilic groups may dissolve in water and to some extent in non-polar 

organic solvents.  
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Our laboratory has focused on the design of amphiphilic nitrone compounds. Two original 

series of amphiphilic PBN derivatives were developed. In the first series, a polar head group 

was grafted onto the aromatic ring of PBN and a hydrophobic moiety, either hydrogenated or 

perfluorinated, was linked to the N-tert-butyl group through a thioether, a carbamate or an 

amide bond.[110] The nature and the length of the hydrophobic chain as well as the nature of 

the polar head were varied,[105, 111, 112] and some examples are represented in Figure 1.17. 

Preliminary biological evaluations showed that amphiphilic derivatives were more potent than 

PBN, demonstrating that amphiphilicity is a key feature in determining bioactivity and 

protection against in vitro and in vivo oxidative toxicity.[110, 111, 113, 114] Among the 

series, LPBNAH (Figure 1.17) exhibited very high antioxidant activity as well as anti-ageing 

effect.[112, 115, 116] A structural isomer, for which the position of the polar head and 

hydrophobic chain on the PBN moiety is reversed were next synthesized (Figure 1.17) and 

showed even better potency in preventing oxidative-stress mediated damages.[117] However, 

this first series was only developed for the PBN moiety. In order to extend the amphiphilic 

strategy to other antioxidants, we, therefore, developed a second series of amphiphilic 

carriers.  

 

Figure 1.17. Examples of the first series of amphiphilic PBN derivatives. 
 
In the second series, an amino acid was used as the core of the carrier upon which 

hydrophobic and hydrophilic parts are linked, respectively by the carboxyl and amino groups 
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of the amino acid. The choice of an amino acid as a central scaffold was evident both for its 

absence of toxicity and for the various functionalization possibilities it allows. Among the 

twenty amino acids available, lysine (bearing an amino group) and aspartic acid (bearing a 

carboxylic acid group) were chosen because they can be easily functionalized on their side 

chains, through an amide bond. The carrier was made of : i) a glycosidic polar head derived 

from lactobionic acid which provides good water solubility to the molecule, ii) a 

perfluorinated chain that supplies hydrophobicity without inducing cytolytic effect[118] and 

therefore enabling membrane crossing ability, and iii) an amino acid as scaffold, bridging the 

polar and apolar groups, and upon which the antioxidant moiety can be grafted through an 

amine bond. The choice of the antioxidants was supported by their singular intrinsic 

properties. In a first study, the biological activity of three antioxidants such as lipoic acid, 

indole-3-propionic acid and Trolox® as well as PBN were studied (Figure 1.18).[119] Using 

in vitro primary cortical mixed cell cultures and in vivo rotifers cultures we confirmed that the 

amphiphilic character of the antioxidant drug improve the protection by at least two times. 

Only for indole-3-propionic acid, the protection was lowered after conjugation to the 

amphiphilic carrier indicating that the free acid group may be involve in the antioxidant 

mechanisms.  

 

Figure 1.18. Examples of the second series of amphiphilic antioxidant derivatives including 
the PBN derivative called FAPBN and the DMPO derivative called FAMPO. 
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More recently, the cyclic nitrone DMPO was grafted onto the same amphiphilic carrier 

(FAMPO) and its protection against different stress inducers was compared to the PBN 

derivative (FAPBN) and to the non-amphiphilic parent compounds.[120] Cytoprotection was 

studied on bovine aortic endothelial cells (BAEC) against hydrogen peroxide (H2O2), 3-

morpholinosynonimine hydrochloride (SIN-1) and 4-hydroxynonenal (HNE) induced cell-

death. FAPBN was found to be the most efficient against H2O2 whereas FAMPO was better 

protective against ONOO- and none of them were effective against HNE. This indicates that 

all amphiphilic nitrones were more potent than their corresponding parent derivatives. 

However, the difference in the cytoprotective properties of FAPBN and FAMPO may indicate 

different intrinsic antioxidant properties and localization in the cell. The continuation of this 

work will be presented in the third chapter of this thesis report. I will describe a series of 

derivatives in which two lysine amino acids have been conjugated allowing the presence of 

two antioxidant groups on the same amphiphilic. Along the series, we will tune the 

hydrophilic/lipophilic balance of the derivatives from lipophilic ones (without a polar head) to 

amphiphilic ones (with a lactobionamide polar head group). The second part of the chapter 

will present the latest series developed in which the polar head group is a specific ligand that 

targets melanosomes. Physical-chemical and antioxidant properties of these new amphiphilic 

nitrone derivatives will be presented as well.  

 
Conclusion 

Nitrone spin traps have been recognized as efficient protecting agent against harmful 

oxidative stress in in vitro and in vivo models and therefore they can both be used as 

analytical and biological tools. The connectivity as well as the nature and the position of 

substituents on a nitrone molecule may significantly affect the chemical and biological 

properties of the nitronyl group. Over the past years, research has been notably focused on the 

development of analogs of both PBN and DMPO in order to improve their biological and 
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spin-trapping properties. Among the PBN derivatives described in this chapter, simple 

chemical structural modifications were firstly carried out either on the phenyl ring or on the 

N-tert-butyl group of PBN. Various analogs were designed to improve the spin-adduct 

stability, we can cite the addition of a phosphorylated substituent on the N-tert-butyl group of 

the nitronyl which led to increased stability of the spin adducts formed. Furthermore, cyclic 

PBN analogs as well as heteroaryl or azulenyl nitrone derivatives were found to increase the 

spin-adduct stability by the presence of an aromatic ring which confers higher rigidity to the 

system. From the therapeutic side, of particular interest is the sulfophenyl series which went 

up to phase III clinical trials although their spin-trapping activity was lower than PBN. This 

clearly confirms previous findings that the biological protection afforded by PBN-type nitrone 

is not mediated by the spin-trapping action. In some series, a second antioxidant moiety was 

added in the nitrone structure such as a guaiazulene or phenolic groups. Through these various 

chemical modification, the intrinsic properties of nitrones has been improved in some cases 

but at the moment no nitrone derivative used as a drug is on the market.  

Another strategy to improve the bioactivity of nitrone has been focused on improving its 

bioavailability. Conjugation to a lipophilic cations has shown to specifically target the 

mitochondria allowing detection of free radical on site. Another approach relies on the use of 

amphiphilic carriers which are believed to improve the ability to cross cell membranes. By 

modulating the hydrophilic/lipophilic balance of the cargos, several amphiphilic derivatives 

were developed in our group and showed high potency in preventing oxidative stress 

mediated damages in in vitro and in vivo models. 
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I. Introduction 

 

The addition of free radicals to nitrones yields a persistent aminoxyl-based spin-adduct that 

can be detected and characterized by electron paramagnetic resonance (EPR) spectroscopy. 

Spin trapping by EPR spectroscopy is a popular method for the detection of free radicals in 

chemical and biological systems.[1] The  α-phenyl-N-tert-butylnitrone (PBN) and its 

derivatives are widely employed as spin-traps in in-vitro, in-vivo and ex-vivo systems.[2, 3] 

Aside from their application as spin-traps, nitrones have also exhibited a variety of protective 

properties in animal models against oxidative stress mediated injury.[4, 5] However, despite 

the promising pharmacological properties of PBN, the molecular mechanism of its action is 

not well understood.  Of the many PBN derivatives that have been synthesized over the years, 

disodium-[(tert-butylimino)-methyl]benzene-1,3-disulfonate N-oxide (NXY-059) has gained 

the most attention since it is the first neuroprotective agent that had reached the phase 3 

clinical trial in the USA.[6] Although it has been suggested that the radical trapping properties 

of NXY-059 is the basis of its neuroprotective action, experimental evidences suggest other 

possible mechanisms being involved.  

One of the promising strategies in the design of novel nitrone-based spin-traps is to 

selectively target these compounds in relevant sites of radical production, mainly the 

mitochondrial electron transport chain, the cytosol, and the membrane bound NAD(P)H 

oxidase.[7-9] Selective targeting is usually achieved by conjugating the nitronyl group to 

specific target ligands, and therefore, the choice of linker groups for optimal spin tapping 

properties is highly desirable. In addition to the type of ligands that are tethered to nitrones, it 

has been demonstrated that the nature of the linker group also affects its bioactivity.[10]  
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Figure 2.1.1. General structure and some examples of substituted linear nitrones. 

 

Only a relatively limited number of N-tert-butyl substituted nitrones have been synthesized 

over the past years where functionalization of the aromatic ring being the most facile. Several 

N-tert-butyl substituted PBNs have been synthesized such as N-benzylidene-1-

diethoxyphosphoryl-1-methylethylamine N-oxide (PPN), [11] N-benzylidene-1,1-

bis(ethoxycarbonyl)ethylamine N-oxide (DEEPN),[12] or the amide amphiphilic nitrones 

developed by our group (LPBNAH),[9] (Figure 2.1.1), but the effect of the substituents on the 

electronic properties of the nitrones and their reactivity to radicals such as O2
•– are not known. 

The substituent effect on the reactivity of DMPO-type cyclic nitrones has been extensively 

studied through experimental and computational approaches[13-15] demonstrating the 

nucleophilic nature of O2
•– addition to C-5-substituted DMPO nitrones.[13]. Therefore, 

derivatization of the tert-butyl group of the PBN may exhibit electronic properties that 

enhance O2
•– addition to nitrones and offers opportunities for multi-functionalization of the 

spin-trap for subcellular target specificity and controlled delivery in in-vitro and in-vivo 

systems. 

Our previous computational and kinetic studies showed that para-substitution by electron 

withdrawing substituents in PBN gave no significant polar effects on their reactivity towards  
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O2
•–, while with HO2

•, a more pronounced increase in the kinetic of addition was observed 

indicating the electrophilic nature of this reaction. Our current goal is to explore the reactivity 

of various N-tert-butyl substituted phenyl nitrones so as to identify the most optimal linker 

groups. Through optimization of the linkers, we would be able to design selective targeted 

nitrone-based spin-traps with improved reactivity towards free radicals.  

In this work, five new N-tert-butyl substituted PBNs were synthesized along with a series of 

mono-, di- and tri-hydroxymethyl N-tert-butyl substituted PBN derivatives. The water 

solubility, lipophilicity and electrochemical properties were determined. A UV-Vis stopped-

flow competitive technique was employed to determine the relative rate constants of reaction 

with O2
•–. The relative rate constants of phenyl adduct formation were experimentally 

determined by EPR competition kinetic technique. Using a computational approach, the effect 

of the N-tert-butyl substituents on the nitronyl-atom charge density and electron density 

localization as well as on the free energies of nitrone reactivity with O2
•–and HO2

• were 

calculated. Finally, the cytroprotective property of selected compounds against oxidant-

induced cell death was investigated.  

 

II. Results and Discussion. 

Synthesis of tert-substituted nitrones. All the mono-, di- and trisubstituted nitrones with the 

substituents in β-position (See Figure 2.1.1 for details) were synthesized by a one pot 

reduction/condensation of nitro derivatives onto the commercially available benzaldehyde as 

shown in Scheme 1. The PBN-CH2OH[16] was synthesized from 2-methyl-2-nitro-1-propanol 

and benzaldehyde in the presence of zinc powder and AcOH in ethanol according to our 

recently described procedure.[17] After purification by flash chromatography and two 

successive crystallizations from EtOAc/n-hexane, nitrone 1 was obtained in 65% yield which 

is slightly higher than the procedure used by Janzen and Zawalsky (55%).[16] Acetylation of 
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nitrone 1 by a mixture of Ac2O/pyridine 1:1 v/v led to compound 2 (also called PBN-

CH2OAc) in 98% yield, after purification by flash chromatography. The synthesis of 

compound 3 was carried out in one step. First, 2-methyl-2-nitro-1-propanol was activated 

using 1,1'-carbonyldiimidazole (CDI) in the presence of 4-dimethylaminopyridine (DMAP) in 

THF then methylamine was added to the reaction mixture to give after purification compound 

3 in 98% yield. In parallel, 2-methyl-2-nitro propanamine 4 was obtained from 2-methyl-2-

nitro-1-propanol in three steps[9] and was then acetylated to give the nitro compound 5 in 

94% yield. The one pot reduction/condensation of compounds 3 and 5 to benzaldehyde after 

purification by flash chromatography and two successive crystallization from EtOAc/n-

hexane led to nitrones 6 (also called PBN-CH2OCONHMe) and 7 (also called PBN-

CH2NHAc) in 70% and 68% yield, respectively. 

 

Scheme 2.1.1. Synthesis of mono-, di- and tri-β-substituted nitrones. Reagents and 
conditions: (a) Benzaldehyde, zinc powder, AcOH, 4 Å molecular sieves; ethanol, 15→ 60°C, 
10 h; (b) Ac2O/pyr (1:1 v/v), rt, 12h; (c) CDI, DMAP, THF, 2h, rt, then CH3NH2, 18h, rt. 
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Following the same synthetic procedure, the PBN-(CH2OH)2 8 was also synthesized from 2-

methyl-2-nitro-1,3-propadinol in 65% yield, which corresponds to a significant improvement 

compared to the procedure used by Janzen and Zawalsky with15%.[16] The PBN-(CH2OH)3 

9 was obtained following our recent procedure from 2-hydroxymethyl-2-nitro-1,3-

propanediol.[17] Finally, PBN-(CH2OAc)2 10 and PBN-(CH2OAc)3 11 were obtained by 

acetylation of nitrone 8 and 9, respectively. 

Water solubility & partition coefficient. Nitrones 1, 7 and 8 are soluble in water up to a 

concentration of ~ 200 g/L, after which the solution becomes viscous but remained 

transparent. This is significantly higher than PBN whose solubility limit was found to be ~ 21 

g/L. When comparing the amide and carbamate derivatives, 7 and 6, a significant difference 

was noted with 6 exhibiting a water-solubility limit of ~ 11 g/L. Carbamates are indeed 

known to be hardly soluble in water.[18] We also demonstrated that the solubility of 

hydroxylated compounds was not linearly correlated with the number of hydroxyl groups. 

Whereas, the mono- and di-substituted hydroxyl compounds are highly soluble in water (>200 

g/L), the tri-substituted one reaches its solubility limit at ~ 21 g/L likely due intra-molecular 

hydrogen bonding between the three hydroxyl groups as previously observed.[17] Due to the 

oily form of the three ester derivatives their solubility was not determined. 

The relative lipophilicity (log k’w) of the nitrones was measured by HPLC and values are 

reported in Table 1. This confirms the higher lipophilic character of the three ester compounds 

compared to PBN with log k’w values of 1.89, 1.95 and 2.17 for compounds 2, 10 and 11, 

respectively, whereas 1.64 was found for PBN. Although compounds 6 and 7 exhibit different 

water-solubility, they were both found to have similar lipophilicity, slightly lower than that of 

PBN. Finally, the hydroxylated derivatives 1, 8 and 9 were found to be the least lipophilic 

derivatives where the lipophilicity correlates with the number of hydroxyl groups, that is, the 

lower the number of hydroxyl groups, the higher the lipophilicity. Calculated partition 
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coefficients (ClogP) were also determined using Marvin software. Except for the three ester 

derivatives, a good correlation between log k’w and ClogP was obtained (Figure 2.1.2).  

 

Figure 2.1.2. Correlation between log k’w and ClogP. Hydroxylated compounds 1, 8 and 9 
are marked as ( ). 

 

Table 2.1.1. Physical-chemical and electrochemical properties of PBN derivatives.  

Compounds 

Water  

solubility 

(g/L) 

Lipophilicity Ep(c) (V) 

 

Ep(a)
 

(V) 

log k’wb Clog Pc
 

In 
H2O

d 
In CH3CNe 

In CH3CNe 
2nd Peak 1st Peak 

PBN-CH2OH 1 >200 1.35 1.61 -1.70 -2.12 -1.92 1.57 

PBN-CH2OAc 2 nda 1.89 2.05 -1.69  -2.40 -2.03 1.67 

PBN-CH2OCONHMe 6 10.8 1.41 1.94 -1.71 -2.14 -1.96 1.77 

PBN-CH2NHAc 7 >200 1.37 1.32 -1.70  -2.15 -1.97 1.44 

PBN-(CH2OH)2 8 >200 0.95 0.57 -1.74  -2.29 -2.12 1.55 

PBN-(CH2OH)3 9 21.4 0.85 -0.48 -1.67  -2.27 -2.08 1.58 

PBN-(CH2OAc)2 10 nda 1.95 1.45 -1.72 -2.31  -1.93 1.76 

PBN-(CH2OAc)3 11 nda 2.17 0.84 -1.75 -2.28  -1.89 1.83 

PBN  21.4 1.64  2.66 -1.70  -2.23 -2.10 1.60 

aNot determined. bPartition coefficient values obtained by HPLC. cCalculated octanol/water partition coefficient 
values obtained using Marvin software (http://www.chemaxon.com/marvin/help/index.html). dContaining 50 
mM of NaCl. eContaining 50 mM of TBAP.  
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Spin trapping. To evaluate the spin trapping ability of the PBN substituted derivatives, we 

investigated the formation of various oxygen-centered radical spin-adducts i.e. HO•, O2
•–, and 

MeO• adducts. The hyperfine coupling constants (hfcc’s) of the mono substituted derivatives 

1, 2, 6-7 and those of the di- and tri-hydroxylated derivatives 8-9 are reported in Table 2.1.2. 

In most cases, the nitrones tested gave rise to a standard six-line EPR spectrum whose values 

are in agreement with the literature.[19] Two different conditions were used to generate the 

superoxide adducts that is pyridine/H2O2 and DMSO/KO2. In the pyridine/H2O2 system, one 

predominant radical adduct was detected in most cases with hfcc values in agreement with a 

O2
•– adduct. In the KO2 system, the hyperfine coupling constants suggest O2

•– adduct 

formation with higher values than in pyridine/H2O2 system which is likely due to solvent 

effect as previously observed for para-substitued nitrones.[20] For the hydroxylated 

derivatives, the presence of a second nitroxide having a six-line pattern spectrum was also 

observed. This second species corresponds to an oxazolidine-N-oxyl compound coming from 

a cyclization reaction between one hydroxyl group and the nitronyl carbon.[17]  

 

Under Fenton condition, the ratio of the cyclic species increased with the number of hydroxyl 

groups: ~ 1/3 for compound 1 (aN = 15.9, aH = 20.1), ~ 2/3 for compound 8 (aN = 15.6, aH = 

19.9) while for compound 9 bearing three hydroxyl groups (aN = 15.3, aH = 19.7), the cyclic 

species was predominant (>90%). This suggests that cyclization may be favored with an 

increasing number of hydroxyl groups and a thorough investigation on this is currently in 

progress in our labs. The formation of five-membered cyclic nitroxides was also evident in 

KO2 system for the hydroxylated derivatives, however, in this case, the ratio of the cyclic 

nitroxide decreased with the number of hydroxyl groups. Cyclisation was observed during 

methoxy radical trapping for the monohydroxylated compound but not for the di-and tri-
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hydroxylated derivatives. Regardless of the radical generating system used, no evidence of 

cyclization was found for the carbamate- and ester-based compounds, while for the amide 

derivative, cyclisation was only evident in the KO2 system. This suggests that cyclization 

involving a nitrogen atom may also occur in basic condition. 

We also investigated the trapping of a carbon-centered radical. The phenyl radical spin-

adducts was obtained by photolysis of a phenyliodide solution in benzene in the presence of 

the nitrones. Although, all the nitrones tested trapped Ph• giving rise to a standard six-line 

EPR spectrum, it should be noted that a weak signal was obtained with the trihydroxylated 

compound 9. In all cases, aN and aH values determined are in agreement with an aryl radical 

adduct of a PBN-type nitrone. 

 

Cyclic Voltammetry. The oxidative and reductive character of these nitrones was 

investigated using cyclic voltammetry and values are reported in Table 1. We first carried out 

cyclic voltammetry in 50 mM NaCl aqueous solution. As already observed for other nitrones, 

the oxidation of the nitronyl group was not detected.[21, 22] On the contrary, we observed 

that all the nitrones exhibited an irreversible one-step reduction, as shown in Figure 2.1.3.  
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Figure 2.1.3. Cyclic voltammograms of PBN and compounds 2, 6 and 7 (A); PBN and 
compounds 2, 10 and 11 (B); PBN and compounds 1, 8 and 9 (C). Reduction in water 
containing 50 mM of NaCl with a sweep rate of 0.1 V.s-1. 
 

The cathodic peak potential of the β-substituted derivatives is observed between -1.67 V and -

1.75 V vs. Ag/AgCl, and that of the PBN being at -1.70 V. This is consistent with the findings 

by Zuman and Exner[23] who reported the weak influence of N-alkyl substituents on the 

reduction potential of α-phenyl-N-alkylnitrones, which was further confirmed by McIntire et 

al.[21] We next studied the electrochemical properties of the nitrones in acetonitrile 

containing tetra-butylammonium perchlorate (TBAP) as electrolyte. Previous works showed 

that PBN undergoes an irreversible one-electron oxidation and a one-step, two-electron 

reduction.[21, 24, 25] Compared to the aqueous conditions, oxidation of nitrones was clearly 

observed in acetonitrile as shown in Figure 2.1.4 and Figure 2.1.5 with values ranging from 

1.44 V to 1.83 V. For the monosubstituted derivatives, the highest observed oxidation 

potential was for the carbamate derivative 6 followed by the ester 2 and then by the 

hydroxylated 1 which suggest a strong inductive effect of the carbamate bond, making nitrone 

6 harder to oxidize than nitrones 2 and 1. This shows that the presence of β-substituents 

affects the oxidation of the nitronyl function. The amide compound 7 with the lowest anodic 

peak potential in the series is, therefore, the easiest to oxidize demonstrating that the oxidation 

of the nitronyl group is more difficult in the presence of electron-withdrawing substituents, in 

agreement with the literature.[21, 25] With regard to the number of substituents, the oxidation 
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potential of the ester derivatives 2, 10 and 11 increases with the number of substituents 

suggesting that the electronic effects are additive. No significant trend was observed for the 

mono-, di- and tri-hydroxylated derivatives whose potential was close to that of PBN, in 

agreement with the literature.[21] 

       

Figure 2.1.4. Cyclic voltammograms of PBN and compounds 2, 6 and 7 in acetonitrile 
containing 50 mM of TBAP with a sweep rate of 0.1 V.s-1; (A) oxidation and (B) reduction. 

 

        

Figure 2.1.5. Cyclic voltammograms of PBN and compounds 2, 10 and 11(A); PBN and 
compounds 1, 8 and 9 (B). Oxidation in acetonitrile containing 50 mM of TBAP with a sweep 
rate of 0.1 mV.s-1. 

The reduction of nitrones in a non-aqueous medium was then investigated and exhibited two 

reduction potentials for all the β-substituted derivatives, whereas for PBN, only one reduction 

peak was observed (Figure 2.1.4 and Figure 2.1.6). 
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Figure 2.1.6. Cyclic voltammograms of PBN and compounds 2, 10 and 11 (A); PBN and 
compounds 1, 8 and 9 (B). Reduction in acetonitrile containing 50 mM of TBAP with a sweep 
rate of 0.1 V.s-1. 
 

The presence of two reduction potentials had been  observed  for  β-phosphorylated nitrone 

spin-traps.[24] For the monosubstituted derivatives, only a modest ease of reduction was 

observed compared to PBN with only ~ 0.1-0.2 V shift in potential. The reduction of the ester 

derivatives becomes slightly easier with increasing number of substituent suggesting an 

additive effect as also observed for the oxidation which is contrary to the hydroxylated 

derivatives where no correlation was found. We further studied the influence of the sweep rate 

of PBN and compounds 2 and 7 on the anodic and cathodic peak current densities. The plot of 

current intensity versus square root of the sweep rate showed a linear decrease for the 

reduction and a linear increase for the oxidation, as shown in Figures 2.1.7 and 2.1.8, 

demonstrating that the electrochemical process is diffusion-controlled.[26, 27] The diffusion 

coefficients of the three nitrones were found in the same range for both oxidation and 

reduction. The reduction of nitrones 2 and 7 exhibited two separate reduction potentials where 

the current intensity and the square scan speed were linear for both peaks. 
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Figure 2.1.7. Sweep rate variations on PBN oxidation (A) and reduction (B) in acetonitrile 
containing 50 mM of TBAP at sweep rate ranging from 0.1 V.s-1 to 1 V.s-1 with corresponding 
linear regression curve. 

 

 

Figure 2.1.8. Linear regressions corresponding to sweep rate variations on PBN, PBN-
CH2OAc and PBN-CH2NHAc oxidation (A) and reduction (B) in acetonitrile containing 50 
mM of TBAP at sweep rate ranging from 0.1 V.s-1 to 1 V.s-1. 
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Nitronyl atoms charge density correlation with NMR chemical shift. Examination of the 

optimized structures at the B3LYP/6-31G* level of theory shows C=N and N-O bond 

distances that are in the range of 1.312-1.317 Å and 1.276-1.292 Å, respectively, which are 

consistent with the X-ray crystallographic C=N and N-O bond lengths observed for N-tert-

butyl- -(2-pyridyl)nitrone of 1.307 Å and 1.294 Å, respectively.[28] The natural population 

analysis (NPA) charges on the nitronyl-carbon, nitronyl-nitrogen, and nitronyl-oxygen atoms 

were determined at the PCM/B3LYP/6-31+G** level for compounds 1-3 and 5-11 as well as 

for the other N-tert-butyl substituted derivatives (Table 2.1.3).  

Table 2.1.3. Natural population analysis (NPA) charge densities of the nitronyl- atoms of 

PBN derivatives at the PCM/B3LYP/6-31+G**//B3LYP/6-31G* level of theory. In bold are 

the data for the molecules synthesized. 

Nitrones monosubstitution disubstitution trisubstitution 
C N O C N O C N O 

PBN -CH3 0.009 0.073 -0.606 n/a n/a n/a n/a n/a n/a 

α-
su

bs
ti

tu
ti

on
 

-COOH 0.029 0.067 -0.607 0.041 0.059 -0.606 0.050 0.056 -0.590 
-C(=O)OMe 0.005 0.077 -0.577 0.037 0.063 -0.601 0.040 0.061 -0.576 
-C(=O)NH2 0.043 0.055 -0.617 0.074 0.037 -0.631 0.068 0.039 -0.613 
-OMe 0.014 0.047 -0.595 0.020 0.030 -0.601 0.023 0.016 -0.595 
-OC(=O)Me 0.028 0.050 -0.596 0.034 0.028 -0.592 0.040 0.012 -0.577 
-OC(=O)NHMe 0.016 0.049 -0.601 0.049 0.017 -0.617 0.049 0.018 -0.584 
-NHC(=O)Me 0.023 0.057 -0.609 0.005 0.055 -0.583 0.004 0.046 -0.564 
-SMe 0.017 0.057 -0.596 0.012 0.048 -0.584 0.014 0.035 -0.567 
-P(=O)(OMe)2 0.021 0.048 -0.586 0.031 0.047 -0.575 0.051 0.028 -0.582 

β-
su

bs
ti

tu
ti

on
 

-CH2OH 0.015 0.070 -0.608 0.015 0.074 -0.605 0.023 0.062 -0.613 

-CH2OC(=O)Me 0.023 0.065 -0.608 0.025 0.062 -0.605 0.037 0.053 -0.608 

-CH2NHC(=O)Me 0.028 0.063 -0.619 0.035 0.059 -0.620 0.052 0.049 -0.624 
-CH2OC(=O)NHMe 0.023 0.066 -0.608 0.041 0.150 -0.241 0.027 0.056 -0.596 
-CH2C(=O)NH2 0.036 0.054 -0.621 0.061 0.042 -0.633 0.038 0.050 -0.609 
-CH2C(=O)OMe 0.023 0.067 -0.610 0.034 0.061 -0.611 0.034 0.063 -0.604 
-CH2OMe 0.016 0.070 -0.607 0.020 0.067 -0.609 0.022 0.066 -0.610 
-CH2P(=O)(OMe)2 0.030 0.054 -0.609 0.024 0.055 -0.601 0.008 0.068 -0.566 
-CH2SMe 0.016 0.070 -0.604 0.018 0.071 -0.597 0.022 0.067 -0.594 

In general, increasing the number of substitution results in more positive charge densities on 

the nitronyl-C with the exception of few compounds such as PBN-NHC(=O)Me and PBN-

CH2P(=O)(OMe)2, whereas for the nitronyl-N, an opposite but less pronounced trend was 

observed. As for the nitronyl-O, no significant effect of the substitution was observed 

throughout the series of N-tert-butyl substituted derivatives. This observation is consistent 

with increased distribution of the mesomeric B to the resonance hybrid form in the presence 
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of multiple substituents, where there is an increased electron density on the nitronyl-N and a 

decreased electron density on the nitronyl-C. This is further supported by natural bond orbital 

(NBO) analysis showing that there is a decrease in the percent (0.25%-2.97%) of electron 

localization on the nitronyl-C with increasing substitution (from mono to tri) except for PBN–

NHC(O)Me and PBN-CH2P(=O)(OMe)2  where there is an increase in electron distribution 

(Table 2.1.4). 
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49.88 

36.97 
63.03 (50.32) 

49.68 
37.05 

62.95 (50.27) 
49.73 

π 
39.91 

60.09 
 

38.36 
61.64 

 
37.93 

62.07 
 

-O
C
(=O

)M
e  σ

 
36.97 

63.03 (50.33) 
49.67 

36.83 
63.17 (50.41) 

49.59 
36.76 

63.24 (50.89) 
49.11 

π 
38.96 

61.04 
 

37.45 
62.55 

 
36.79 

63.21 
 

-O
C
(=O

)N
H
M
e  σ

 
36.93 

63.07 (50.39) 
49.61 

36.91 
63.09 (50.19) 

49.81 
37.10 

62.90 (50.14) 
49.86 

π 
39.29 

60.71 
 

36.62 
63.38 

 
36.92 

63.08 
 

-N
H
C
(=O

)M
e  σ

 
37.06 

62.94 (50.13) 
49.87 

37.19 
62.18 (49.95) 

50.05 
37.39 

62.61 (49.62) 
50.38 

π 
39.13 

60.87 
 

40.01 
59.99 

 
39.73 

60.27 
 

-SM
e  σ

 
36.93 

63.07 (50.24) 
49.76 

36.77 
63.23 (50.39  

49.61 
36.79 

63.21 (50.26) 
49.74 

π 
39.52 

60.48 
 

39.08 
60.92 

 
38.21 

61.79 
 

-P
(=

O
)(O

M
e)2   σ 

36.90 
63.10 (50.38) 

49.62 
36.59 

63.41 (50.44) 
49.56 

36.38 
63.62 (50.49) 

49.51 
π 

38.30 
61.70 

 
37.84 

62.16 
 

36.09 
63.91 

 

 
β-substitution 

-C
H

2 O
H

  σ 
37.01 

62.99 (50.22) 
49.78 

36.99 
63.01 (50.22) 

49.78 
36.76 

63.24 (50.33) 
49.67 

π 
39.88 

60.12 
 

40.12 
59.88 

 
37.95 

62.05 
 

-C
H

2 O
C
(=O

)M
e  σ

 
36.96 

63.04 (50.29) 
49.71 

36.85 
63.15 (50.29) 

49.71 
36.73 

63.27 (50.49) 
49.51 

π 
39.43 

60.57 
 

38.38 
61.62 

 
37.34 

62.66 
 

-C
H

2 N
H
C
(=O

)M
e  σ

 
37.06 

62.94 (50.08) 
49.92 

36.98 
63.02 (50.16) 

49.84 
36.96 

63.04 (50.16) 
49.84 

π 
39.41 

60.59 
 

38.68 
61.32 

 
38.08 

61.92 
 

-C
H

2 O
C
(=O

)N
H
M
e  σ

 
36.96 

63.04 (50.29) 
49.71 

36.86 
63.14 (50.39) 

49.61 
36.82 

63.18 (50.46) 
49.54 

π 
39.46 

60.54 
 

38.43 
61.57 

 
37.82 

62.18 
 

-C
H

2 C
(=

O
)N

H
2   σ

 
37.07 

62.93 (50.15) 
49.85 

37.12 
62.88 (49.93) 

50.07 
37.00 

63.00 (50.26) 
49.74 

π 
38.82 

61.18 
 

37.68 
62.32 

 
38.14 

61.86 
 

-C
H

2 C
(=O

)O
M
e  σ

 
36.97 

63.03 (50.22) 
49.78 

36.94 
63.06 (50.24) 

49.76 
36.75 

63.25 (50.19) 
49.81 

π 
39.29 

60.71 
 

38.79 
61.21 

 
38.70 

61.30 
 

-C
H

2 O
M
e  σ

 
37.01 

62.99 (50.23)  
49.77 

36.93 
63.07 (50.31) 

49.69 
36.81 

63.19 (50.34) 
49.66 

π 
39.92 

60.08 
 

39.54 
60.46 

 
38.65 

61.35 
 

-C
H

2 P
(=

O
)(O

M
e)2   σ 

36.97 
63.03 (50.27) 

49.73 
37.03 

62.97 (50.16) 
49.84 

37.06 
62.94 (49.71) 

50.29 
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The effect of the nature of substituent on the charge density of the nitrone moiety was also 

studied using 1H and 13C NMR spectroscopy. Similar to carbonyl compounds, nitrones are 

susceptible to nucleophilic addition reaction, and therefore, the electronic nature of the 

nitronyl-C can affect its reactivity towards nucleophilic radicals such as O2
•–. Figure 2.1.10.A 

shows good correlation between the 13C NMR chemical shift in CDCl3 of the nitronyl-C and 

the calculated nitronyl-C charge density where there is a downfield shift with increasing 

positive charge of the nitronyl-C. This confirms the presence of a polar effect from the 

substituent in β  position  on  the  nitronyl  charge  density  and  suggests  a  stabilization  of  the 

mesomeric B form due to the electron withdrawing effect of the substituents. Only the mono- 

and dihydroxylated derivatives 1 and 8 looked out of the range, likely due to the formation of 

intra-molecular hydrogen bonding between the hydroxyl group and the nitronyl-O,[17] which 

may induce a downfield shift. An opposite trend was observed for the 1H NMR chemical shift 

in CDCl3 of the nitronyl-H where an upfield shift of the β-hydrogen was observed with 

increased positivity of the nitronyl-C further confirming the polar effect from the N-tert-butyl 

substituents. (Figure 2.1.9).  

 

Figure 2.1.9. Correlation of the nitronyl-carbon charge densities with the nitronyl-H chemical 
shifts of nitrones 1, 2, 6-8, 10 and 11 (R2 = 0.656) excluding nitrone 9. 
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UV-Vis stopped-flow kinetics. We then applied the UV-Vis stopped-flow technique for the 

determination of the rate constant of O2
•- reaction to nitrones. Phenol red was used as a probe 

to measure O2
•- production, and the rate of formation of this new species at 575 nm is directly 

proportional to the kinetics of O2
•- decay.[13, 20] The kinetic values obtained using the 

stopped-flow technique were shown to correlate well with the trends in rate constants 

obtained using the EPR technique. The slope of the linear line generated from the UV-Vis 

absorption plot was used to calculate the rate of nitrone-spin trapping by using equation 1, 

where N is the PBN derivative, V and v are the initial rates of O2
•- addition to phenol red (PR) 

in the absence and presence of PBN derivatives, respectively.  

V/v -1  = ksN[N] / kPR[PR]     (1) 

Table 2.1.5. Relative Rate Constants for O2
•- and Ph• Adduct Formation 

Nitrones UV-Vis.
a
 EPR

b
 

ksN/kPR (10-3) ksN/ksPBN 

 

kpN/kTN 

(± 0.05) 
kpN/kpPBN 

 

PBN-CH2OH (1) 16.7 ± 0.6 12.8 0.09 0.68 
PBN-CH2OAc (2) 73.6 ± 0.7 56.6 0.18 1.37 

PBN-CH2OCONHMe (6) 19.1 ± 0.3 14.7 0.22 1.66 
PBN-CH2NHAc (7) 13.8 ± 0.2 10.6 0.27 2.01 
PBN-(CH2OH)2 (8) 11.7 ± 0.4 9.0 0.11 0.80 
PBN-(CH2OH)3 (9) 14.2 ± 0.1 10.9 ndc,d ndc,d 

PBN-(CH2OAc)2 (10) ndc ndc 0.37 2.79 
PBN-(CH2OAc)3 (11) ndc ndc 0.26 1.94 

PBN 1.3 ± 0.0 - 0.13 - 
DMPO 17.6 ± 0.5 13.5 ndc ndc 

TN ndc ndc - 7.58 

aRatio of the second order rate constants for the superoxide radical reaction with various nitrones (ksN) and by 
PBN (ksPBN) in DMF/KO2. 

bRatio of the second order rate constants for the phenyl radical trapping by various 
nitrones (kpN) and by PBN (kpPBN) in benzene. cNot determined. dThe EPR signal of the adduct 9-Ph was too 
weak to allow a reliable determination of the ratio.  
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Figure 2.1.10. Correlation of the nitronyl-carbon charge densities with: (A) Nitronyl-C 
chemical shifts of nitrones 2, 6, 7, 10, 11 and PBN (R2 = 0.965) excluding nitrones 1 and 8 
marked as (○) and 9 which is not soluble in CDCl3. (B) Experimental relative rate constant of 
O2

•– addition to nitrones (ksN/kPR) including para-substituted nitrones marked as ( ) from 
Durand et al, 2008 (R  = 0.451) and excluding nitrone 2 marked  as  (○).  (C) Experimental 
relative rate constant of phenyl addition to nitrones (kpN/kTN) (R  = 0.504).  

The slopes of the KO2 controls were averaged to give kPR. The relative rate constants (ksN/kPR) 

are shown in Table 3, and for comparison, the rate of formation of DMPO and PBN were 
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included. All of the relative rates were significantly lower than 1, demonstrating that O2
•- 

reacts faster with phenol red than with the nitrone spin-traps. From these values, ksN/ksPBN 

ratio was calculated leading to the following order of increased reactivity to O2
•-: PBN-

(CH2OH)2 < PBN-CH2NHAc < PBN-(CH2OH)3 < PBN-CH2OH < DMPO < PBN-

CH2OCONHMe < PBN-CH2OAc. It is worth mentioning that all substituted nitrones exhibit 

~ 10-50 times higher rates of trapping compared to PBN. As shown in Figure 2.1.10.B, the 

plot of the rate constant of O2
•--nitrone reaction with the nitronyl-C charge density shows 

increased rates of reaction for the more positively charged carbons, however, with a fairly 

poor correlation coefficient. For the sake of comparison, we also plotted the data for para-

substituted nitrones.[20] The correlation for para-substituted nitrones is even weaker, which 

made us to conclude in our previous work that O2
•- addition to nitrone might be weakly 

electrophilic. With more compounds included in this study, the trend may suggest a 

nucleophilic nature of O2
•- addition to this set of nitrones although the correlation is not 

satisfactory. This may also suggest that the reaction of O2
•- to nitrone is not charge-controlled 

but rather orbital-controlled, hence, warrants further investigation.   

Spin trapping kinetics. Since some nitrones in the series were poorly water-soluble or were 

found to be highly reactive towards HO•, the use of a Fenton system was precluded. 

Therefore, we chose to study phenyl radical (Ph•) trapping in benzene where the 

corresponding adducts show high stability. The 1,3,5-tri[(N-(1-diethylphosphono)-1-

methylethyl) N-oxy-aldimine] benzene (TN)[29] was used as competitive scavenger to 

examine the relative rates of trapping by the nitrones 1, 2, 6-11 compared to PBN (Figure 

2.1.11). It is worth noting that the adduct decay must be slow enough to be neglected to obtain 

reliable results with this approach.[30] The Ph• was generated by UV photolysis of a solution 

containing large excess of iodobenzene in the presence of TN and of the nitrone of interest, 

denoted as N. As previously observed,[29] the possibility of multiple-trapping by TN was 
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neglected since the poly-adducts were never observed by EPR in our study. In this method, 

the Ph• spin trapping rate was monitored by measuring the intensity (as the signal area) of the 

EPR signal of the corresponding adducts. The standard kinetic competition model employed 

as described elsewhere [29] yielded equation 2. In this equation, the second-order rate 

constants for Ph• trapping by the nitrone N and TN are denoted as kpN and kTN respectively, 

while r and R represent the trapping rate by TN only in presence of N, and by both TN and N, 

respectively.  

R/r   = 1 + kpN[N] / kTN[TN]     (2) 

By plotting the R/r ratio as a function of the [N]/[N]ratio for each nitrone 1, 2, 6-11, a straight 

line was obtained with a slope equal to kpN/kTN. Five experiments were performed at five 

different [N]/[TN] ratios kept between 1 and 4. The commercially available PBN was then 

employed instead of N in order to determine the kpPBN/kTN ratio. From these results, the 

kpN/kpPBN ratio was calculated and the values obtained for nitrones 1, 2, 6-11 are reported in 

Table 2.1.5. 

 

Figure 2.1.11. EPR signals recorded in benzene by photolysis of 3 mol.L-1 phenyliodide 
solution in the presence of the nitrones 10 and 7 at two different ratios [10]/[TN]: a) [10]/[TN] 
= 0.67 ([10] = 20 mmol.L-1 and [TN] = 30 mmol.L-1); b) [10]/[TN] = 2 ([10] = 40 mmol.L-1 
and [TN] = 20 mmol.L-1). The peaks with cross (×) correspond to the phenyl radical adduct of 
10, while the other lines correspond to the phenyl radical adduct of TN. 
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Though all the nitrones studied were found less efficient than the tri-(phosphorylated nitrone) 

TN, many of the substituted PBN trapped Ph• significantly faster than PBN where only the 

hydroxylated compounds exhibited slower trapping rates than PBN. It should be mentioned 

that the EPR signal of the phenyl radical adduct on 9 was much too weak to permit a reliable 

evaluation of kpN/kTN. This could be due to a much lower trapping efficiency of 9 and/or to a 

more rapid decay of the spin-adduct. Actually, it turned out that the Ph• adducts of the 

hydroxylated nitrones exhibited faster decay than those of other nitrones, and this was more 

particularly evident in the case of 9. This observation suggests that the hydroxyl groups would 

intervene in the nitroxide decay mechanism. The most efficient compounds in the series for 

trapping Ph• are the di- and tri-acetylated nitrones 10, and 11 and the amide derivative 7, 

while the least effective were PBN and the di- and monohydroxylated nitrones 1 and 7. 

Similar to what was observed for the stopped-flow kinetics experiments, the rates of reaction 

correlate with the nitronyl-C charge density where reasonable correlation can be observed 

with Ph• (Figure 2.1.10.C). The increased rate of trapping by β-substituted nitrones with 

increasing positive nitronyl-C charge density suggests a nucleophilic nature of the Ph• 

addition to the nitronyl-carbon atom. It has been shown that electron-withdrawing substituent 

on the aromatic ring of PBN-type compounds increases the reactivity of the nitronyl group for 

nucleophilic addition reactions and nucleophilic radical addition.[31, 32] On the contrary, 

PBN-type nitrones bearing an electron-donating substituent have also been suggested to 

exhibit high reactivity to electrophilic radicals.[33, 34] In this work the polar effect of the N-

tert-butyl substituents is obviously electron-withdrawing with hydroxyl, ester, amide and 

urethane groups, which therefore may favour nucleophilic addition. This is in agreement with 

the findings by Sueishi et al., who suggested the nucleophilic nature of phenyl radical 

addition to nitrones.[31] More recently De Vleeshouwer et al. confirmed the moderate 

nucleophilic character of phenyl radical using natural population analysis.[35] 
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Thermodynamics of adduct formation. Examination of the optimized structures at the 

B3LYP/6-31G(d) level of theory of various spin-adducts show Cnitronyl-N and N-O bond 

distances of 1.280-1.292 Å and 1.472-1.513 Å, respectively, and are consistent with the X-ray 

crystallographic Cnitronyl-N and N-O bonds observed for the phenyl radical adduct of N-tert-

butyl- -(2-pyridyl)nitrone with bond distances of 1.287-1.291 Å and 1.462-1.466 Å, 

respectively.[28] Table 4 shows the energetics of O2
•– and HO2

• addition to various mono-, di-, 

and tri-, - and -substituted PBN derivatives. Majority of the nitrones (22 out of 35) 

exhibited decreased reactivity of O2
•– and HO2

• as the number of substitution increases from 

mono-to tri-substitution (Table 4). Only in few cases were the favorability of radical addition 

significantly increases with increasing substitution (i.e., from mono- to tri-substitution) such 

as in the addition of O2
•– to –COOH, -NHC(=O)Me, -CH2OC(=O)Me, and -CH2SMe, and 

HO2
•  to –COOH, -NHC(=O)Me, and -CH2C(=O)NH2. Reactivity of O2

•– in general are 

endoergic with -NHC(=O)Me mono-, di-and tri-substitution to be the most favorable with 

ΔGrxn, 298K  (kcal/mol) of 12.7, 11.9 and 6.9, respectively. Structure of these O2
•–  adducts 

shows intramolecular H-bonding interaction between the amide-H and peroxyl-O (Figure 

2.1.13) resulting in proton abstraction of one of the amide-H’s by the peroxide-O to form the 

hydroperoxyl moiety, similar to that observed for the 5-carbamoyl-5-methyl-1pyrrroline N-

oxide (AMPO)[36] with an endoergic ΔGrxn, 298K of 6.1 kcal/mol, and with diamide-substituted 

DMPO derivatives with ΔGrxn, 298K  = -3.3 kcal/mol  both of which became the basis for the 

fast and favorable reactivity of amide-conjugated nitrones compared to other spin-traps with 

no such strong intramolecular interactions.[13, 14] The reactivity of HO2
• to nitrones that are 

mono-substituted with -CH2OC(=O)Me and di-substituted with -OC(=O)Me gave the most 

exoergic free energies of reaction with  ΔGrxn,298K (kcal/mol) of -4.4 and -3.5, respectively. 

However, the most exoergic ΔGrxn,298K(kcal/mol) value observed among all the tri-substituted 

analogues was only -1.0 for the –OMe tri-substitution. Previously, at the same level of theory, 
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we showed that addition of HO2
• to monoester-substituted, EMPO, and the diester-substituted, 

DEPO,  gave  the  most  exoergic  ΔGrxn,298K of -6.2 kcal/mol compared to other DMPO-

derivatives. This suggests that ester conjugation to nitrones are preferred for HO2
• 

trapping.[37] 

Table 2.1.6. Free energies (ΔGrxn,298K,aq in kcal/mol) of O2
•– and HO2

• addition to N-tert-butyl-
substituted PBN derivatives at the PCM/B3LYP/6-31+G(d,p)//B3LYP/6-31G(d) level of 
theory in water. 

aAfter several attempts to optimize this adduct, only fragmented  products were obtained. 

The absence of a significant global trend in HO2
•/O2

•– reactivity as a function of increasing 

nitronyl-C charge density and/or increasing substitution could be accounted for the competing 

inductive effects of the methyl group in the partially and -substituted PBN as well as the 

competing resonance effect by the phenyl ring with the inductive effect of the and -

substitution. For mono- substituted PBN (with the exception of two outliers, -

P(=O)(OMe)2, -NH(C=O)Me), a fairly poor correlation (R² = 0.473) can be observed between 

Nitrones Free energies of radical addition (kcal/mol) 
O2

•– addition HO2
• addition 

mono- di- tri- mono- di- tri- 
PBN -CH3 18.3 n/a n/a -0.9 n/a n/a 

α-
su

bs
ti

tu
ti

on
 

-COOH 16.8 13.1 7.5 1.7 0.5 0.1 
-C(=O)OMe 16.3 21.9 17.2 1.9 0.5 3.1 
-C(=O)NH2 15.2 14.1 14.8 4.5 4.0 3.4 
-OMe 17.7 19.3 18.3 -3.1 -2.9 -1.0 
-OC(=O)Me 15.8 15.2 a -1.4 -3.5 2.6 
-OC(=O)NHMe 16.7 20.1 21.2 3.6 -2.7 2.0 
-NHC(=O)Me 12.7 11.9 6.9  0.4 0.9 0.6 
-SMe 17.2 22.4 18.3 -2.2 2.0 0.0 
-P(=O)(OMe)2 20.0 28.1 24.5 -0.9 0.4 3.0 

β-
su

bs
ti

tu
ti

on
 

-CH2OH 16.1 19.5 20.3 0.8 3.0 2.6 
-CH2OC(=O)Me 16.7 24.7 12.3 -4.4 1.5 1.7 
-CH2NHC(=O)Me 18.0 24.6 16.0 3.4 4.9 1.0 
-CH2OC(=O)NHMe 13.9 17.4 22.6 -2.5 1.1 1.3 
-CH2C(=O)NH2 17.1 14.8. 15.1 3.0 5.5 -0.7 
-CH2C(=O)OMe 17.8 20.4 18.3 0.9 5.0 -0.3 
-CH2OMe 19.8 17.5 21.7 0.2 1.0 1.1 
-CH2P(=O)(OMe)2 16.1 23.6 16.8 1.0 0.8 2.4 
-CH2SMe 19.7 18.6 10.3 -0.2 0.9 0.6 
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the charge densities on the nitronyl-C  with  their  respective  free  energies  (ΔGrxn,298 K) of 

addition with O2
•– (Figure 2.1.9).  

 

 

 

Figure 2.1.12. Plots of NPA charge densities of the nitronyl carbon of the monosubstituted 
nitrones  versus  their  free  energies  (ΔGrxn, 298K) of O2

•– addition  reactionsμ  (A)  α-substituted 
nitrones ( ) (R  = 0.473) excluding -P(=O)(OMe)2 and -NHC(=O)Me derivatives ( ). (B) β-
substituted nitrones ( ) (R  = 0.169). 

In a similar study involving para-substitution on PBN, we showed that there was no 

correlation  that can be observed  for ΔGrxn,298 K and nitronyl-carbon charge densities in both 

O2
•– and HO2

•  addition reactions.[20] Therefore, reactivity of O2
•– and HO2

•  to mono- -

substituted PBN might be similar in nature (i.e., nucleophilic) to those observed for the O2
•– 

addition to 5-substituted DMPO analogues which are also mono- -substituted ones,[13] but 

the effect is much less pronounced indicating that inductive effect of the substituents is 

weaker for PBN than that of DMPO analogues. For the mono- β-substitution, no correlation 
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were be observed with the charge density and their respective ΔGrxn,298K of reactivity to O2
•– 

(Figure 2.1.12) which could be due to the presence of the methylene group that can further 

diminish the inductive effect by the functional substituent groups. 

 

 

 

 

 

 

 

 

 

 

Figure 2.1.13. Optimized O2
•– adduct structures with the least endoergic free energies of 

formation showing the intramolecular H-bond interaction of the amide-H with the peroxyl-O.  

PBN-tri-NHC(=O)Me 

1.66 

1.02 

1.10 

1.52 

PBN-mono-NHC(=O)Me PBN-di-NHC(=O)Me 

1.66 

1.03 
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Cell culture and viability studies. Cytoprotective properties of nitrones against H2O2-

induced cell death was investigated in vitro using bovine aortic endothelial cells (BAEC). 

BAEC were pre-incubated with varying concentrations (10-50 M) of nitrone derivatives 1, 2, 

and 6-8 (i.e., PBN-CH2OH, PBN-CH2OAc, PBN-CH2OCONHMe, PBN-CH2NHAc, and 

PBN-(CH2OH)2) and were challenged for two hours with H2O2 (1 mM). Extent of 

cytoprotection was measured using [3-(4,5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium-

bromide] (MTT) assay. Our results are presented in Figure 2.1.14 and show that at 10 µM 

nitrones 2 and 7 exhibited the highest cytoprotection against H2O2-induced toxicity. At 50 

µM, the protection afforded by the nitrones was more pronounced for PBN and compounds 1, 

7 and 8 while for compounds 2 the protection remained similar. A significant decrease of cell 

viability for compound 6 was noted which was even lower than the control and may indicate a 

slight toxicity due to the urethane substituent. 

 

Figure 2.1.14. Cytoprotectivity of PBN derivatives at 10 and 50 µM on Bovine Aortic 
Endothelial Cells against 1 mM H2O2 after 2 hours of incubation.  

To examine the relationship between the electrochemical properties and the antioxidant 

activity of our derivatives, we tried to correlate the cytoprotection data versus the 

electrochemical potentials of the nitrones. While no correlation between the reduction 

potential and the cell viability of nitrone-treated BAEC was observed, a good correlation was 
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observed for the oxidation potentials recorded in acetonitrile with the following order of 

increasing protective property: PBN-CH2OCONHMe < PBN-CH2OAc < PBN-CH2OH ~ 

PBN-(CH2OH)2 < PBN < PBN-CH2NHAc. Whereas this correlation is particularly obvious at 

50 µM where increased cytoprotection is inversely correlated with the oxidation potential 

(Figure 2.1.15), at 10 µM no correlation was observed (data not shown). It has to be noted 

that at 10 µM, the protection afforded by the nitrones against 1 mM H2O2 was very limited. 

This indicates that the ability of nitrones to be oxidized at lower potentials offers better 

cytoprotection, further supporting the role of nitrones in attenuating oxidant-mediated toxicity 

by an antioxidant mechanism and not solely through spin trapping properties.  

 

Figure 2.1.15. Correlation of cell viability with oxidation potential of nitrones 1, 2, 6-8 and 
PBN in acetonitrile (R2 = 0.910).  
 

III. Conclusion 

In this work, we have studied the electronic effect of various substituents on the reactivity of 

α-phenyl N-tert-butyl nitrones. A series of N-tert-butyl substituted mono-hydroxyl (CH2OH); 

mono-ester (CH2OAc); mono-amide (CH2NHAc) and mono-urethane (CH2OCONHMe) as 

well as di- and tri-hydroxyl and ester derivatives was prepared in good yield. The substituent 

effect on the redox properties was investigated by cyclic voltammetry and showed that 

electron-withdrawing groups make the nitronyl group more difficult to oxidize. The 
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substituent effect was also demonstrated by computational approach where increased 

positivity on the nitronyl-carbons were observed for multiple α- and β-substituted compounds, 

which correlates well with experimental NMR chemical shifts. A UV-Vis stopped-flow 

kinetic technique was used to demonstrate the nucleophilic nature of superoxide (O2
•–) 

addition to nitrone in agreement with previous findings on cyclic nitrones. The 

thermodynamics of O2
•– adduct formation showed that the reactivity is endoergic in general, 

however  for  α-substituted derivatives, a modest correlation was observed with the nitronyl 

charge density suggesting a weak nucleophilic nature of O2
•– addition. Moreover, the 

nucleophilic nature of phenyl radical (Ph•) addition to nitrone was also observed using EPR 

kinetic method. Finally, a correlation between the cytoprotective property of nitrones against 

H2O2-induced cell death and their oxidation potential was observed indicating the antioxidant 

properties is also affected by the nature of the substituent. This study confirms that the 

electronic effect of the substituents grafted on the N-tert-butyl group is of high importance in 

the design of nitrone with improved trapping and antioxidant properties. Among the nitrones 

tested, the amide derivative PBN-CH2NHAc gave the best properties such as low oxidation 

potential, good trapping properties combined with cytoprotective activity making the amide 

bond an efficient linker for N-tert-butyl functionalization of the α-phenyl N-tert-butyl nitrone.  

 

IV. Experimental Section 

Synthesis. All reagents were from commercial sources and were used as received. All 

solvents were distilled and dried according to standard procedures. TLC analysis was 

performed on aluminum sheets coated with silica gel (40-63 µm). Compound detection was 

achieved either by exposure to UV light (254 nm) and by spraying a 5% sulphuric acid 

solution in ethanol or a 2% ninhydrin solution in ethanol, and then by heating at ~ 150°C. 

Flash chromatography was carried out on silica gel (40-63µm). Size exclusion 
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chromatography was carried out on hydroxypropylated cross-linked dextran. UV/vis spectra 

were recorded on UV/vis spectrometer aquipped with a double-compartment quartz cell of 

10-mm length.. Melting points have not been corrected. The 1H NMR spectra were recorded 

at 250 or 400 MHz and the 13C NMR at 62.86 or 100 MHz. Chemical shifts are given in ppm 

relative to the solvent residual peak as a heteronuclear reference for 1H and 13C. Abbreviations 

used for signal patterns are: bs, broad singulet; s, singlet; d, doublet; dd, doublet of doublet; t, 

triplet; q, quartet; m, multiplet. HR-MS spectra were recorded on a mass spectrometer 

equipped with a TOF analyzer for ESI + experiments. 

α-Phenyl-N-(2-methyl-1-hydoxy-2-propyl)nitrone (1). In an argon atmosphere and under 

stirring, benzaldehyde (0.80 g, 7.54 mmol), 2-methyl-2-nitro-1-propanol (1.8 g, 15.1 10-3 

mol) and AcOH (2.5 mL, 45.08 mmol) were dissolved in EtOH. The mixture was cooled 

down to 0°C then zinc powder (1.92 g, 29.6 mmol) was slowly added in order to keep the 

temperature below 15°C. The mixture was stirred at room temperature for a couple of minutes 

then heated at 60°C in the dark for 10 h in the presence of molecular sieves (4 Å). The 

reaction mixture was filtered off through a pad of Celite, and the solvent was removed under 

vacuum. The crude mixture was purified by flash chromatography (EtOAc/cyclohexane 6:4 

v/v) followed by two successive crystallizations from EtOAc/n-hexane to give compound 1 

(0.94 g, 4.87 mmol, 65%) as a white powder. Rf 0.42 (EtOAc/cyclohexane 8:2 v/v); mp 78.5-

78.9°C; 1H NMR (CDCl3, 400 MHz) δ 8.27 (2H, m), 7.48 (1H, s), 7.43 (3H, m), 4.24-4.27 

(1H, t, J = 6.2 Hz), 3.79-3.80 (2H, d, J = 6.0 Hz), 1.61 (6H, s); 13C NMR (CDCl3, 100 MHz) δ 

132.1, 130.7 (CH), 130.3 (C), 129.2 (CH), 128.5, 72.9 (C), 70.0 (CH2), 23.9 (CH3); UV 

(MeOH) max 296 nm; HR-MS (ESI+, m/z) calcd for C11H15NO2 [(M+H)+]: 194.1181, found 

194.1180. The spectra data of compound 1 were in agreement with those reported by Janzen 

et al. except for the melting point that was found to be 75-76°C.[16] 
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α-Phenyl-N-(2-methyl-1-acetate-2-propyl)nitrone (2). Under stirring, compound 1 (0.35 g, 

1.81 mmol) was dissolved in a Ac2O/pyridine (1:1 v/v) mixture at 0°C. After 12h of stirring at 

room temperature, the mixture was poured into cold 1 N HCl and extracted with CH2Cl2 (3×). 

The organic layer was washed with brine, dried over Na2SO4, and concentrated under 

vacuum. The crude mixture was purified by flash chromatography (cyclohexane/EtOAc 6:4 

v/v) to give compound 2 (0.42 g, 1.79 mmol, 98%) as a white oil. Rf 0.38 

(EtOAc/cyclohexane 5:5 v/v); 1H NMR (CDCl3, 400 MHz) δ 8.30 (2H, m), 7.50 (1H, s), 7.43 

(3H, m), 4.43 (2H, s), 2.03 (3H, s), 1.62 (6H, s); 13C NMR (CDCl3, 100 MHz) δ 170.5 (CO), 

130.7 (C), 130.5, 129.0, 128.5 (CH), 72.1 (C), 68.3 (CH2), 23.7, 20.8 (CH3); UV (MeOH) 

max 298 nm; HR-MS (ESI+, m/z) calcd for C13H17NO3 [(M+H)+]: 236.1286, found 236.1283. 

2-methyl-2-nitropropyl methylcarbamate (3). In an argon atmosphere and under stirring in 

a sealed tube, 2-methyl-2-nitro-1-propanol (1 g, 8.39 mmol), DCI (2.11 g, 16.78 mmol) and 

DMAP (0.102 g, 0.839 mmol) were dissolved in THF under argon atmosphere. After 2 h of 

stirring at room temperature, methylamine (1.13 g, 16.78 mmol) was added and the stirring 

was continued for 18 h. Then, the mixture was filtered and the solvent was removed under 

vacuum. The crude mixture was purified by flash chromatography (cyclohexane/EtOAc 9:1 

v/v) to give compound 3 (1.45 g, 8.23 mmol, 98%) as a white powder. Rf 0.30 

(cyclohexane/EtOAc 8:2 v/v); mp 48.3-49.3°C; 1H NMR (CDCl3, 250 MHz) δ 4.76 (1H, bs), 

4.39 (2H, s), 2.78 (3H, d, J = 4.90 Hz), 1.59 (6H, s); 13C NMR (CDCl3, 62.86 MHz) δ 156.0 

(CO), 86.7 (C), 68.7 (CH2), 27.6, 23.0 (CH3). HR-MS (ESI+, m/z) calcd for C6H13N2O4 

[(M+H)+]: 177.0875, found 177.0878. 

2-methyl-2-nitro propanamide (5). The synthetic procedure was essentially the same as for 

compound 2. 2-methyl-2-nitro propanamine[38](3.70 g, 31.50 mmol) was used as starting 

material. The crude mixture was purified by flash chromatography (EtOAc/cyclohexane 8:2 

v/v) to give compound 5 (4.7 g, 29.16 mmol, 94%) as a white powder. Rf 0.48 (EtOAc); mp 
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102.6-103.1°C; 1H NMR (CDCl3, 250 MHz) δ 6.15 (1H, bs), 3.71 (2H, d, J = 6.6 Hz), 2.00 

(3H, s), 1.56 (6H, s); 13C NMR (CDCl3, 62.86 MHz) δ 170.7 (CO), 88.8 (C), 46.1 (CH2), 

24.0, 23.2 (CH3). HR-MS (ESI+, m/z) calcd for C6H13N2O3 [(M+H)+]: 161.0926, found 

161.0927. 

α-Phenyl-N-(2-methyl-1-methylcarbamate-2-propyl)nitrone (6). The synthetic procedure 

was essentially the same as for compound 1. Benzaldehyde (0.30 g, 2.84 mmol) and 

compound 3 (1 g, 5.67 mmol) were used as starting materials. The crude mixture was purified 

by flash chromatography (EtOAc/cyclohexane 5:5 v/v) followed by two successive 

crystallizations from EtOAc/n-hexane to give compound 6 (0.5 g, 2.0 mmol, 70%) as a white 

powder: Rf 0.23 (EtOAc/cyclohexane 7:3 v/v); mp 127.8-128.1°C; 1H NMR (CDCl3, 400 

MHz) δ 8.30 (2H, m), 7.48 (1H, s), 7.42-7.43 (3H, m), 4.66 (1H, m), 4.45 (2H, s), 2.76-2.77 

(3H, d, J = 4.9 Hz), 1.60 (6H, s); 13C NMR (CDCl3, 100  MHz) δ 156.6 (CO), 131.4 (CH), 

130.7 (C), 130.4, 128.9, 128.5 (CH), 72.6 (C), 68.5 (CH2), 27.6, 23.6 (CH3); UV (MeOH) 

max 298 nm; HR-MS (ESI+, m/z) calcd for C13H18N2O3 [(M+H)+]: 251.1395, found 

251.1390. 

α-Phenyl-N-(2-methyl-1-acetamide-2-propyl)nitrone (7). The synthetic procedure was 

essentially the same as for compound 1. Benzaldehyde (0.26 g, 2.45 mmol) and compound 5 

(0.8 g, 5.0 mmol) were used as starting materials. The crude mixture was purified by flash 

chromatography (EtOAc) followed by two successive crystallizations from EtOAc/n-hexane 

to give compound 7 (0.39 g, 1.66 mmol, 68%) as a white powder. Rf 0.35 (EtOAc/methanol 

9.5:0.5 v/v); mp 114.1-114.6°C; 1H NMR (CDCl3, 400 MHz) δ 8.27 (2H, m), 7.50 (1H, s), 

7.44 (3H, m), 6.62 (1H, m), 3.68-3.70 (2H, d, J = 6.3 Hz), 1.98 (3H, s), 1.60 (6H, s); 13C 

NMR (CDCl3, 100  MHz) δ 170.5 (CO), 131.7, 130.7 (CH), 130.4 (C), 129.0, 128.6 (CH), 

73.4 (C), 47.3 (CH2), 25.1, 23.3 (CH3); UV (MeOH) max 298 nm; HR-MS (ESI+, m/z) calcd 

for C13H18N2O2 [(M+H)+]: 235.1446, found 235.1442. 
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α-Phenyl-N-(2-methyl-1,3-dihydroxy-2-propyl)nitrone (8). The synthetic procedure was 

essentially the same as for compound 1. Benzaldehyde (0.78 g, 7.40 mmol) and 2-methyl-2-

nitro-1,3-propanediol (2 g, 14.80 mmol) were used as starting materials. The crude mixture 

was purified by flash chromatography (EtOAc) followed by two successive crystallizations 

from EtOAc/n-hexane to give compound 8 (0.99 g, 4.74 mmol, 65%) as a white powder. Rf 

0.21 (EtOAc); mp 84.2-85.6°C; 1H NMR (CDCl3, 400 MHz) δ 8.24 (2H, m), 7.52 (1H, s), 

7.43 (3H, m), 3.91-3.98 (6H, m), 1.50 (3H, s); 13C NMR (CDCl3, 100 MHz) δ 134.7, 131.1 

(CH), 129.9 (C), 129.6, 128.6 (CH), 75.9 (C), 66.8 (CH2), 19.3 (CH3); UV (MeOH) max 296 

nm; HR-MS (ESI+, m/z) calcd for C11H15NO3 [(M+H)+]: 210.1130, found 210.1126. The 

spectra data of compound 8 were in agreement with those reported by Janzen et al.[16] except 

for the melting point that was found to be 52-55°C. 

α-Phenyl-N-(2-methyl-1,3-di-O-acetyl-2-propyl)nitrone (10). The synthetic procedure was 

essentially the same as for compound 2. Compound 8 (0.40 g, 1.79 mmol) was used as 

starting material. The crude mixture was purified by flash chromatography 

(cyclohexane/EtOAc 4:6 v/v) to give compound 10 (0.25 g, 0.85 mmol, 45%) as a white oil. 

Rf 0.27 (EtOAc/cyclohexane 6:4 v/v); 1H NMR (CDCl3, 400 MHz) δ 8.22 (2H, m), 7.41 (1H, 

s), 7.36 (3H, m), 4.50 (2H, d, J = 11.7 Hz), 4.35 (2H, d, J = 11.7 Hz), 1.98 (6H, s), 1.59 (3H, 

s); 13C NMR (CDCl3, 100 MHz) δ 169.2 (CO), 131.9, 129.8 (CH), 129.3 (C), 128.1, 127.5 

(CH), 72.9 (C), 64.3 (CH2), 19.7, 17.8 (CH3); UV (MeOH) max 298 nm; HR-MS (ESI+, m/z) 

calcd for C15H19NO5 [(M+H)+]: 294.1341, found 294.1337. 

α-Phenyl-N-(2-O-acetylmethyl-1,3-di-O-acetyl-2-propyl)nitrone (11). The synthetic 

procedure was essentially the same as for compound 2. α-Phenyl-N-(2-hydroxymethyl-1,3-

dihydroxy-2-propyl)-nitrone[17] (0.40 g, 1.77 mmol) was used as starting material. The crude 

mixture was purified by flash chromatography (cyclohexane/EtOAc 6:4 v/v) to give 

compound 11 (0.43 g, 1.22 mmol, 69%) as a white oil. Rf 0.42 (EtOAc/cyclohexane 5:5 v/v); 
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1H NMR (CDCl3, 400 MHz) δ 8.28 (2H, m), 7.45 (3H, s), 7.34 (1H, m), 4.61 (6H, s), 2.06 

(9H, s); 13C NMR (CDCl3, 100 MHz) δ 169.9 (CO), 133.9, 131.1 (CH), 130.0 (C), 129.3, 

128.6 (CH), 75.5 (C), 61.4 (CH2), 20.6 (CH3); UV (MeOH)  max 300 nm; HR-MS (ESI+, m/z) 

calcd for C17H21NO7 [(M+H)+]: 352.1396, found 352.1388.  

Determination of water solubility. For PBN and nitrones 6 and 9, a UV-calibration curve at 

290 nm was established from solutions ranging from 10-3 to 10-2 g/L (R  > 0.995).  A 

saturated solution of nitrone was prepared at 40°C and then let stand at RT overnight. After 

centrifugation (12000 g – 15 minutes) at room temperature, the concentration of the 

supernatant solution was determined using the calibration curve. For nitrones 1, 7 and 8, 

weighted amounts of the nitrone were added into a vial containing water at RT. After each 

addition, the solution was carefully shaken and the complete dissolution was checked by 

visual observation. 

Determination of log k’W values. Compounds were dissolved in MeOH at 1.0 mg/mL and 

were injected onto a C18 reverse phase column (250 mm x 4.6 mm, 5 m). The compounds 

were eluted at various MeOH and water ratios (7:3 to 3:7 v/v) using a flow rate of 0.8 

mL/min. The column  temperature was 25°C,  and  the UV detector wavelength was   = 2λ8 

nm. Linear regression analysis were performed on three data points for compound 9 (from 5:5 

to 3:7; r2 = 0.9996); four points for compound 1 (from 6:4 to 3:7; r2 = 0.9945), compound 8 

(from 6:4 to 3:7; r2 = 0.9973), compound 2 (from 7:3 to 4:6; r2 = 0.9957),  compound 10 

(from 7:3 to 4:6; r2 = 0.9951),  compound 11 (from 7:3 to 4:6; r2 = 0.9976); five points for 

compound 7 (from 7:3 to 3:7; r2 = 0.9936) and compound 6 (from 7:3 to 3:7; r2 = 0.9944). 

The log k’ values were calculated by using the equationμ log k’ = log((t-t0)/t0), where t is the 

retention time of the nitrone and t0 is the elution time of MeOH, which is not retained on the 

column. 
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Determination of ClogP values. The partition coefficient octanol/water (ClogP) was 

determined using MarvinSketch 5.9.0 that is available at www.chemaxon.com/marvin. 

Cyclic Voltammetric Measurement.The electrochemical experiments were carried out using 

a three-electrode cell in a dry argon atmosphere at room temperature. An Ag/AgCl/saturated 

NaCl electrode was used as the reference electrode and a platinum wire as the auxiliary 

electrode. The working electrode (glassy carbon) was polished prior to each experiment using 

a 0.04 µm aqueous alumina slurry on a wetted polishing cloth. 

EPR Measurements. EPR measurements were carried out on a bench EPR spectrometer. The 

general instrument settings used for spectral acquisition were as follows: microwave power, 

10 mW; modulation amplitude, 2 G; received gains, 9 x 101 – 9 x 102; scan time, 60 s and 

sweep width, 99, 147 or 249 G. Spectra were recorded at room temperature and measurements 

were performed using a 50µL quartz cell or capillary tube for UV or non-UV irradiations 

experiments, respectively. The spectrum simulation was carried out using the WINSIM 

program [39] available as free software from Public Electron Paramagnetic Resonance 

Software Tools (http://www.niehs.nih.gov/research/resources/software/tox-pharm/tools/). 

Spin Trapping Studies. Hydroxyl radical adduct. To generate the hydroxyl radical, nitrone 

(20 mM) was dissolved in a Fenton system containing hydrogen peroxide (0.2%), EDTA (2 

mM), and iron-(II) sulfate (1 mM) in Phosphate Buffer Saline solution. Superoxide radical 

adduct. KO2 generating System. The superoxide anion radical was generated using different 

concentrations of nitrones (40mM for compound 2 and 6; 80 mM of compound 10 and 20 

mM in other case) to a solution of DMSO containing 20 % of saturated solution of KO2 in 

DMSO. Pyridine/H2O2 System. A pyridine solution of nitrone (20 mM) containing 230 mM 

H2O2 was used. Methoxy radical adduct. The methoxy radical was generated by adding ~ 1 

mg of solid Pb(OAc)4 to a DMSO solution of nitrone (25 mM) containing 10% v/v of MeOH. 

Phenyl radical adduct. The  phenyl radical was generated by photolysis of a benzene 
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solution of phenyliodide (3mM), using a xenon discharge lamp (250W) giving near UV and 

visible radiations in the presence of nitrone (50 mM). 

General computational methods. For the addition of each radical species (O2
– or  HO2 ) to 

substituted PBN derivatives, density functional theory[40, 41] computational approach was 

employed to determine the optimized geometry, vibrational frequencies, and single-point 

energy of all stationary points.[35, 42-44] The effect of aqueous solvation was also 

investigated using the polarizable continuum model (PCM).[45-49] All calculations were 

performed using Gaussian 03[50] at the Ohio Supercomputer Center. Single-point energies 

were obtained at the B3LYP/6-31+G** level[51] based on the optimized B3LYP/6-31G* 

geometries. Charge and spin densities were obtained from a natural population (NPA)[52] 

analysis and percent electron localization obtained from natural bond orbital (NBO)[53] 

analysis at the single point PCM/B3LYP/6-31+G**//B3LYP/6-31G* level. These calculations 

used six Cartesian d functions. Stationary points for nitrones and its respective adducts have 

zero imaginary vibrational frequency as derived from a vibrational frequency analysis 

(B3LYP/6-31G*). A scaling factor of 0.9806 was used for the zero-point vibrational energy 

(ZPE) corrections for the B3LYP/6-31G* level.[54]  Here, thermal correction to Gibbs free 

energy was added to the total energy, that is, the sum of total electronic (ε0) and thermal free 

(Gcorr)  energies  with  ZPE  correction  (as  outputs  from  Gaussian)  were  used  for  ΔG values 

estimation at 6-31G* with the solvent effect added at 6-31+G**. The ΔG of reactions were 

simply the difference of the sums of these values for the reactants and the products. Spin 

contamination for all of the stationary point of the radical structures was negligible, i.e., S
2  = 

0.75.  

Stopped-flow kinetics. Procedure followed similar to Villamena et al.[13] A solution of KO2 

saturated DMF was prepared by adding ~ 200 mg of KO2 to 5 mL DMF under nitrogen 

atmosphere. The solution was sonicated and let stand for 5 min. The supernatant (1 mL) was 
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further diluted with 10 mL DMF to reach a maximum absorbance of ~ 3 at 575 nm when 

mixed with 500 µM phenol red in 90% DMF – 10% H2O. This solution was kept on ice and 

under a nitrogen atmosphere and let stand for 10 min before stopped-flow testing. Solutions 

of the nitrones and 500 µM phenol red in 90% DMF – 10% H2O were prepared. A stopped-

flow technique consisted of 150 µL KO2 solution and 150 µL nitrone solution, and the growth 

and decay of absorption was measured using a UV-vis spectrophotometerrapid mix accessory. 

The plot was exported to Sigma Plot 11.0 and the absorption increase was fitted to a linear 

equation (y = ax + b). To ensure a constant concentration of KO2 throughout the experiment, a 

control of KO2 and 500 µM phenol red was performed both before and after nitrone testing. 

Each nitrone was tested with four or more concentrations ranging from 5 – 200mM.  

Spin trapping kinetics. The solvents were of the highest grade of purity commercially 

available and used without further purification. The trinitrone TN was synthesized and 

purified as previously described.[29] Phenyl radical was produced directly in the EPR 

spectrometer cavity by UV photolysis of a 3 mol.L-1 iodobenzene solution in benzene. The 

method of kinetic competition permitted to evaluate the ratio of the second-order rate 

constants for the trapping of Ph• by one of the nitrone N of interest (kpN, corresponding to the 

compounds 1, 2 and 6-11) and TN (kTN), used as competitive inhibitor. Then, the 

commercially available PBN was also tested versus TN in order to determine the ratio of the 

rate constants for the trapping of Ph· by PBN and by TN, i.e. kpPBN/kTN. The concentration of 

the various nitrones was varied from 5 to 20 mmol.L-1 keeping the [N]/[TN] ratio between 1 

and 4. For each nitrone, five experiments were repeated twice at [N]/[TN] values equal to 1, 

1.6, 2, 3.2 and 4. In each case, a series of 30 EPR spectra was then recorded (scan time for a 

single spectrum; 15 s) on a spectrometer operating at X-band with 100 kHz modulation 

frequency. The signal-to-noise ratio was improved using a SVD procedure, as described 

elsewhere.[55] The signal recorded exactly 1.5 min after the beginning of the reaction was 
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then simulated using the winsim software in order to determine the relative areas of the 

adducts N-Ph and TN-Ph. In this approach, the ratio R/r was evaluated as follows: 

r
=

R area of N-Ph signal + area of TN-Ph signal

area of TN-Ph signal  

Cell culture and viability studies. Bovine aortic endothelial cells (BAEC) were cultured in 

T-75 flasks, in Dulbecco's modified eagle medium (DMEM) supplemented with 4.5 g/L 

glucose, 10 % Fetal bovine serum, L- glutamine, 2.5 mg/L endothelial cell growth 

supplement, 1% non-essential amino acids, and 1% pen/strep at 37°C in a humidified 

atmosphere of 5% CO2 and 20% O2. Cells were subcultured after 85-90 % confluence. 

Cytoprotection of β-substituted nitrones against H2O2-induced toxicity was assessed via 

intracellular reduction of MTT (3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium 

bromide) to its insoluble formazan form. A confluent BAEC culture was seeded onto 96-well 

plates (~ 1.0 x 104 cells/well) and incubated for 24 hrs. BEAC were pretreated with various 

nitrone concentrations (25 μM, 50 μM, and 100 μM) and incubated for 24 hrs. The cells were 

then incubated in 1 mM hydrogen peroxide for 2 hrs, followed by the addition of 100 µL 

phosphate buffered saline (PBS) and 50 µL of MTT solution (5 mg/mL, 5% ethanol) for 1 hr. 

The cells were then incubated in 200 µL of dimethyl sulfoxide (DMSO) for 2 hrs. Formazan 

formation was measured using a microplate reader at 595 nm absorbance. Data were 

calculated as percent absorbance of untreated cells ± SEM (n=5). 
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I. Introduction 

Oxidative stress has been implicated in several pathophysiological disorders such as 

cardiovascular diseases,[56] cancer,[57] stroke and neurodegenerative diseases.[58] The 

ability of nitrones to prevent oxidative stress-mediated damage in in-vitro, in-vivo and ex-vivo 

models has made them promising synthetic antioxidants with considerable potential as 

therapeutics.[5, 59] Within the past twenty years, several nitrone derivatives have been 

developed among which, one can cite MDL cyclic nitrones[60, 61], azulenyl-based 

nitrones[62, 63], imidazolyl nitrones [64, 65], α-aryl-N-alkyl nitrones[66, 67] as well as 

conjugate of tetramethylpyrazine[68] to name only a few.  

Aside from their use as therapeutic antioxidants, nitrones have been used for spin-trapping 

experiments where the nitronyl group reacts with a free-radical to form a stable and 

identifiable aminoxyl radical that is detected by EPR spectroscopy.[69] The spin trapping 

technique was developed in the late 1960s and since then nitrones have been widely used as 

analytical reagents to identify biological relevant free radicals such as oxygen-, carbon- or 

sulfur-centered radicals. Although there are several evidence that support that radical trapping 

and antioxidant properties of nitrones are not dependent each other, the precise mechanism by 

which these compounds act in different biological models has not yet been fully elucidated.[4] 

The nitronyl moiety exhibits electrochemical activity both in aqueous and non-aqueous 

media. Because of the redox behavior of nitrone spin-traps, “inverted spin-trapping” has been 

reported.[24] In this process, the nitronyl group is oxidized to its radical cation, or reduced to 

its radical anion which can then react, respectively, with a nucleophile or an electrophile 

yielding an aminoxyl radical in both cases. It is important to know the redox behavior of 

nitrones in order to determine in which conditions spin-trapping reactions occur. In addition, 

the ease of oxidation of nitrone derivatives has been found to correlate with antioxidant 

properties.[62, 70] Similar to this, correlation of the ease of reduction of indolone-N-oxide 
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and their anti-malarial activity has been established.[71] 

One of strategies in the design of efficient nitrone-based spin-traps is to target the nitronyl 

group in relevant sites of radical production by conjugating it to specific target ligands. The 

choice of linker groups for optimal spin-trapping properties is highly desirable [14, 20] and it 

has been demonstrated that the nature of the linker group also affects its bioactivity.[70] Over 

the past years, we have explored the reactivity of various para- and N-tert-butyl-substituted 

phenyl nitrones [20, 70] so as to identify the most optimal linker groups and design selective 

targeted nitrone-based spin-traps with improved reactivity towards free radicals. 

In this work, we report the redox properties of para-substituted nitrones (Figure 2.2.1) using 

cyclic voltammetry in aqueous and organic media. The relationship between the 

electrochemical behavior of the nitronyl group and the nature of the substituent i.e. electron-

donating vs. electron-withdrawing was studied. The rate constant of phenyl radical trapping 

by these nitrones was next determined using an EPR competition kinetic method.  

 

Figure 2.2.1. Chemical structures of the para-substituted nitrones used in this work. 
 

II. Results and Discussion 

The electrochemical characterization of these nitrones was investigated using cyclic 

voltammetry and values are reported in Table 2.2.1. We first studied the electrochemical 

properties of nitrones in acetonitrile containing tetra-butylammonium perchlorate (TBAP) as 

electrolyte. Aldonitrones are known to undergo a one-electron oxidation in non-aqueous 

media.[21] For all the nitrones tested, one oxidation potential was clearly observed ranging 

from +1.29 V to +1.94 V. Only, for Me2N-PBN (1) three distinct peaks were observed (Figure 

2.2.2).  



 Chapter II - Part 2 

 

86 
 

 

Figure 2.2.2. Oxidation of PBN and compounds 1, 5 and 6 in acetonitrile containing 50 mM 

of TBAP at 0.1 V.s-1. Inset is the correlation of Hammett sigma para constants ( p) with 
oxidation potentials (R2=0.97). 

C-Anilinonitrones were found to undergo a series of oxidation,[25] which suggests that the 

two supplementary oxidation potentials at +0.84 V and +1.67 V originates likely from the 

oxidation of the dimethylaminogroup. A good correlation between the anodic potential and 

the Hammett  sigma para  constants  (σp) of the para-substituents was observed (Inset Figure 

2.2.2), with compounds bearing electron-withdrawing substituents being hardly oxidized 

while those bearing electron-donating substituents were more easily oxidized. Looking at the 

resonance structures shown in Figure 2.2.3, the polar effect from the substituent can therefore 

be explained by the stabilization of the nitroxide formed after oxidation of the nitronyl group 

when there is an electron-donating group (A).  

 

Figure 2.2.3. Oxidation and reduction of PBN and resonance structures in the presence of: 
(A) an electron-donating group (EDG) and (B) an electron-withdrawing group (EWG). 

 

Reduction of nitrones in acetonitrile was also investigated (Figure 2.2.4). Aldonitrones are 

known to undergo a one-step two-electron reduction in non-aqueous media.[21] In our hands, 

for PBN and the  nitrones bearing an electron-donating group i.e. Me2N-PBN (1), MeO-PBN 
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(2) and AcNHCH2-PBN (3), two reductions potentials were observed and whose difference 

from each other was similar for the four compounds (0.19 ± 0.05 V). The presence of two 

peaks may indicate the formation of unstable intermediate one-electron reduction species as 

already suggested by McIntire et al. for pyridyl nitrones.[21] On the contrary, for the three 

nitrones bearing an electron-withdrawing substituent only one reduction peak was observed. 

This may indicate that an EWG, by stabilizing the intermediate radical anion as shown in 

Figure 2.2.3.B, results in an easiest overall reduction. For MeNHCO-PBN (4) and NC-PBN 

(6), a second peak was also observed however with a difference from that of the nitronyl 

group of ~ 0.7 V. It is worth noting that in dry acetonitrile although it was not the most 

common scenario, in some cases only one peak could be observed whose potential was the 

lower of the two peaks. We therefore considered the lowest reduction potential for the 

correlation with the Hammett values and a good correlation was noted (Inset Figure 2.2.4), 

with an increased ease of reduction as the substituent becomes electron-withdrawing, in 

agreement with the stabilizing effect of the nitroxides as shown in Figure 2.2.3.B. This is in 

agreement with the usual trend that electron-donating substituents retard the addition of 

electrons leading to more negative potentials.[25, 72]  

 

Figure 2.2.4. Reduction of PBN and nitrones 1 and 4 in acetonitrile containing 50 mM of 

TBAP at 0.1 V.s-1 Inset is the correlation of Hammett sigma para constants ( p) values with 
reduction potentials  (R2=0.92). 



 Chapter II - Part 2 

 

88 
 

Voltammograms were recorded with increasing amount of water (Figure 2.2.5). Addition of 

water from 1% to 30% in volume led to less negative potentials in agreement with the 

findings by Nepveu and colleagues on N-oxide derivatives[71] who suggested that water 

acting as a proton source could protonate the nitroxide radical anion. For the nitrones 

exhibiting two reduction peaks, the shift was similar for the two peaks until a certain amount 

of water (>10%) where they become broader and progressively coalesce. For MeNHCO-PBN 

(4) and NC-PBN (6) the single reduction peak of the nitronyl group followed the same trend 

shifting towards less negative potential values as the water contain increased, while the 

second peak that was not assigned to the nitrone group was not affected. 

 

Figure 2.2.5. Reduction of PBN in acetonitrile containing 50 mM of TBAP at 0.1V.s-1 with 
increasing amount of water. 

We next carried out cyclic voltammetry in 50 mM NaCl aqueous solution and as already 

observed no oxidation of the nitronyl group was observed.[21] On the contrary, we observed 

that all nitrones exhibited an irreversible one-step reduction (Figure 2.2.6). The cathodic peak 

potential of the PBN derivatives was comprised between -1.41 V and -1.92 V vs. Ag/AgCl, 

that of the PBN being -1.74 V. Along the series as already observed in acetonitrile, 

compounds bearing an electron-donating group were more hardly reduced than those having 

an electron-withdrawing substituent, the effect being linearly correlated with the Hammett 

values (Figure 2.2.6). This is in agreement with the resonance structures in Figure 2.2.3.A. 
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Figure 2.2.6. Reduction of PBN and compounds 1-6 in water containing 50 mM of NaCl at 

0.1 V.s-1. Insert is the correlation of Hammett Sigma Para Constants ( p) values with reductive 
potentials (R2=0.87). 
 

In a recent report we studied the electrochemical properties of N-tert-butyl substituted nitrone 

derivatives.[70] We observed that the polar effect was less pronounced on both reduction and 

oxidation potentials when compared to the data reported herein. This indicates the stronger 

polar effect of aromatic substituents compared with N-tert-butyl in agreement with the 

literature.[21, 23] 

 

Table 2.2.1. Physical-chemical and electrochemical properties of PBN derivatives.  

 

Compounds 

 
σp

a 
In CH3CN

b
 In H2O

f
 EPR

i
 

Ep(c) (V)c 
Ep(a) (V)c Ep(c) (V) 

kpN/kTN 
(± 0.05) 1st peak 2nd peak 

4-Me2N-PBN 1 -0.83 -2.30 ± 0.04 -2.49 ± 0.03 1.29 ± 0.05e -1.92 0.16 

4-MeO-PBN 2 -0.27 -2.15 -2.41 ± 0.09 1.42 ± 0.10 -1.87 0.25 

4-AcNHCH2-PBN 3 -0.05 -2.02 -2.17 ± 0.01 1.61 ± 0.06 -1.78 0.23 

PBN - 
0 

-2.02 
-2.17 ± 0.01 

(-2.40d) 

1.62 ± 0.06 

(1.47d) 

-1.74 

(-1.88g) 
0.13 

4-MeNHCO-PBN 4 0.36 -1.82 ±0.11 -2.51 ± 0.13 1.79 ± 0.09 -1.65 n.d.j 

4-HOOC-PBN 5 0.45 -2.18  1.82 ± 0.08 n.d.h 0.22 

4-NC-PBN 6 0.66 -1.68 ±0.03 -2.37 ± 0.04 1.94 ± 0.04 -1.41 0.15 

a Data from Hansch et al.[73] b Containing 50 mM of TBAP. cAverage of three experiments. d Data 
from McIntire et al. in acetonitrile containing 0.10 M of TEAP vs. SCE at Pt with a sweep rate of 150 
mV/s.[21] e Two supplementary peaks were observed at 0.84 ± 0.05 V and 1.67 ± 0.04 V. f Containing 
50 mM of NaCl. g Data from McIntire et al. in water containing 0.10 M of LiClO4 vs. SCE at Pt with a 
sweep rate of 150 mV/s.[21] hNot determined due to insolubility in water. i Ratio of the second-order 
rate constants for the phenyl radical trapping by various nitrones (kpN) in benzene. j Not determined. 
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We next studied the spin-trapping properties of the derivatives using the phenyl radical (Ph•) 

adduct formation in benzene in the presence of 1,3,5-tri[(N-(1-diethylphosphono)-1-

methylethyl) N-oxy-aldimine] benzene (TN) as competitive scavenger. [29] The Ph• was 

generated by UV photolysis of a solution containing large excess of iodobenzene in the 

presence of TN and of the nitrone of interest, denoted as N. The Ph• spin trapping rate was 

monitored by measuring the intensity (as the signal area) of the EPR signal of the 

corresponding adducts (Figure 2.2.6). The standard kinetic competition model employed as 

described elsewhere [29] yielded equation 1. In this equation, the second-order rate constants 

for Ph• trapping by the nitrone N and TN are denoted as kpN and kTN respectively, while r and 

R represent the trapping rate by TN only in presence of N, and by both TN and N, 

respectively.  

R/r = 1 + kpN[N] / kTN[TN]         (1) 

By plotting the R/r ratio as a function of the [N]/[TN]ratio for each nitrone, a straight line was 

obtained with a slope equal to kpN/kTN. Five experiments were performed at five different 

[N]/[TN] ratios kept between 1 and 4. 

 

Figure 2.2.7. EPR signals recorded in benzene by photolysis of a 3 mol.L-1 phenyl iodide 
solution in the presence of nitrone 6 and TN at two different concentration ratios [6]/[TN] : a) 
[6]/[TN] = 1.6 ([6] = 32 mmol.L-1 and [TN] = 20 mmol.L-1; b) [6]/[TN] = 3.2 ([6] = 32 
mmol.L-1 and [TN] = 10 mmol.L-1. The peaks topped by a cross (x) correspond to the phenyl 
radical adduct of TN.  
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All the nitrones tested were found to be less efficient than TN with values of kpN/kTN ranging 

from 0.13 to 0.25 (Table 2.2.1). The PBN was the least potent of the series while MeOPBN 

(2) was the most potent in trapping Ph•. The absence of any correlation between the rate of 

trapping and the Hammett values is univocally observed in Figure 2.2.8.  

The nature of radical addition to nitrone has been thoroughly studied over the past decades. It 

has  been  suggested  that  the  positive  ρ  values  are  due  to  the  nucleophilic  character  of  the 

radicals as observed for alkyl,[32, 74] hydroxyl and phenyl radicals.[31] The substituent 

effect was also interpreted in terms of electron-transfer interaction between the free radical 

and the nitrone compound with a negative ρ value for phenyl radical bearing an EWG while 

those bearing an EDG led to a positive slope.[34] It was concluded that the reaction of the 

unsubstituted phenyl radical is an intermediate case. For the sake of comparison we added in 

Figure 2.2.8 the data from Murofushi et al.[34] and from Sueshi et al.[31] which further 

confirm the absence of any marked polar effect.  

 

Figure 2.2.8. Plots of relative rate constant of phenyl radical trapping vs. Hammett sigma 
para constants (σp). ( ) This work. (×) Data from Murofushi et al.[34] (+) Data from Sueshi 
et al.[31] 

Some inconstancies on the polar effect on the reactivity of nitrone have already been noted. 

The observed positive  slope  for HO•  trapping  by  PBN derivatives,  and  the  conclusion  that 

HO•  addition  to nitrones is nucleophilic in nature[31] is contrary to the report by De 
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Vleeschouwer et al.[35] which demonstrated the electrophilic character of HO• using natural 

population analysis. This latter group also concluded to a moderate nucleophilic nature for 

•CH3 that is in agreement with the conclusion of Sueishi et al.[32] According to the 

electrophilic scale of De Vleeschouwer et al., phenyl radical exhibits a moderate nucleophilic 

nature while our experimental data and those of other suggest the absence nucleophilic 

properties. This suggests  that  the sign of ρ value is more dependent on the nature of radical 

addition than on the intrinsic characteristic of the radical itself.  

With regards to the rate of trapping by N-tert-butyl substituted nitrone, a reasonable 

correlation was observed with the nitronyl-C charge density suggesting a nucleophilic nature 

of phenyl radical.[70] With more compounds to add in the correlation (Figure 2.2.9) the 

nucleophilic nature of Ph• addition appears less pronounced although a slight polar effect is 

still noticeable. This may also suggest that the reaction of Ph•  to nitrone is rather orbital-

controlled than charge-controlled. 

 

Figure 2.2.9. Correlation of the nitronyl carbon charge densities from Durand et al.[20] with 
experimental relative rate constants of phenyl addition to nitrones (kpN/kpPBN) (y=24.98x + 
1.167; R =0.269) including para-substituted nitrones (marked as▲) from Rosselin et al.[70] 
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III. Conclusion 

In summary, we reported the polar effect of para-substituents on the electrochemical 

properties  of  α-Phenyl-N-tert-butyl nitrones. Both in aqueous and organic solution, 

compounds bearing an electron-withdrawing group were more easily reduced than those 

having an electron-donating group, the effect being linearly correlated with the Hammett 

values of the substituent. An opposite trend was observed for the oxidation. The polar effect 

can be explained by the stabilization of the intermediate nitroxide formed through resonance 

structures. The ease of oxidation of nitrone derivatives has been found to correlate with 

antioxidant properties[62, 70] and therefore the lowest oxidation potential of 4-Me2N-PBN 

and 4-MeO-PBN compared to PBN suggests they may exhibit improved antioxidant 

properties. The relative rate of Phenyl radical trapping showed no correlation with the 

Hammett values indicating the absence of a polar effect in agreement with previous data. This 

further supports the non nucleophilic nature of phenyl radical. Among the nitrones tested, 4-

MeO-PBN exhibited interesting properties such as low oxidation potential, good trapping 

properties making the ether bond an efficient linker for para- functionalization  of  the  α-

phenyl N-tert-butyl nitrone. 

 

IV. Experimental Section 

General methods of cyclic voltammetry and spin-trapping kinetic experiments are described 

in part 1 of this chapter. The only difference in the spin-trapping kinetic experiments is the 

concentration of nitrones 1-6 which was varied from 5 to 35 mmol.L-1. 
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I. Introduction 

 

Nitrone-based compounds have been widely used as spin-traps for detecting transient free 

radicals where the nitronyl group reacts with a free radical to form a stable and identifiable 

aminoxyl radical that is detected by electron paramagnetic resonance (EPR) spectroscopy.[69, 

75] Two families of nitrones are mainly employed to do so, the cyclic nitrones derived from 

the 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and the linear ones derived from the α-phenyl-

N-tert-butyl nitrone (PBN). Aside from their use as spin-traps, the ability of nitrones to 

prevent oxidative stress-mediated damage in in-vitro, in-vivo and ex-vivo models has made 

them promising synthetic antioxidants with considerable potential as therapeutics.[4, 5, 59] 

While the rate constant of free radicals addition to nitrones is rather high, ranging usually 

from 107 to 109 M-1s-1, in some cases, i.e. superoxide radical, the reaction is significantly 

slower rendering the detection difficult. It is therefore of the utmost importance to design 

nitrones that have the highest rate constant of free radical trapping when using them as 

probes. The ease of detection of a free radical is also determined by the stability of the 

aminoxyl spin-adduct. In general, cyclic nitrones lead to more stable spin adducts than linear 

ones and therefore, several analogues of DMPO with improved stability have been 

designed.[75] One can cite the phosphorylated analogue 5-diethoxyphosphoryl-5-methyl-

1pyrroline N-oxide (DEPMPO), [76] the ester 5-ethoxycarbonyl-5-methyl-1pyrroline N-oxide 

(EMPO),[77] the 2-tert-butoxycarbonyl-5-methyl-1-pyrroline N-oxide (BocMPO)[78] or an 

amido derivative (AMPO).[13, 36] On the other hand, efforts to synthesize analogs of PBN 

with improved adduct stability have met with limited success when compared to their cyclic 

analogs.[12, 79, 80] In our group, series of para- and N-tert-butylsubstituted PBN derivatives 

have been prepared but although some of our derivatives proved more potent than PBN, their 

rate of trapping remained within the same order of magnitude.[20, 70]  
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Several cyclic variants of PBN have been reported and examined as spin-traps and/or 

therapeutic agents. Thomas and colleagues reported the synthesis of 3,3-dimethyl-3,4-

dihydroisoquinoline N-oxide (MDL 101,002, Figure 1) and several analogs whose presence of 

the cycle made the nitronyl group more reactive toward radical because of restricted rotation 

and higher accessibility.[60, 81] They also reported higher energy HOMO orbital and lower 

energy LUMO orbital for their lead compound compared with PBN making it more reactive 

toward both electrophilic and nucleophilic radicals.[60, 81] Hideg and colleagues also 

reported a series of cyclic variants of PBN derived from adamantane (PyAN, Figure 1) whose 

hydroxyl adduct stability was increased for the most efficient derivative by ~7 times 

compared to that of PBN.[82, 83] An heteroarylnitrone with a N-cyclohexyl group showed 

interesting antioxidant properties although surprisingly it failed to show detectable HO• 

adduct signals while its analog with a N-tert-butyl group did.[84] With the rational that 

increasing the lipophilicity as a result of an expansion of the nitrone-containing ring may 

improve the activity, series of 2-Benzazepine nitrones were developed with the derivatives 

bearing a spirocyclic moiety (SpFigure 1) being significantly more potent than PBN in 

protecting neuronal cells against oxidative stress.[85] A DMPO derivative with a rigid 

spirolactonyl moiety was prepared and showed higher rate constant of superoxide trapping 

compared to several DMPO analogs.[86] 

In connection with our program devoted to the design of targeted nitrone-based spin-traps 

with improved reactivity towards free radicals we report herein the design of bifunctional α-

phenyl-N-cyclohexyl-nitrones (Figure 2.3.1). Our expectation is that the cyclohexyl ring will 

impart lipophilicty to the molecule, high reactivity of the nitronyl group and, stability of the 

spin adduct formed. Further functionalization of the nitrone to accommodate target-specific 

groups may achieve high reactivity to radicals, longer adduct half-life, and enhanced and 

controlled bioavailability in a unified molecular design (Figure 2.3.1). The synthesis of the α-
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phenyl-N-cyclohexyl-nitrone 4 and its OtBu-protected form 3 is reported. The water 

solubility, lipophilicity and electrochemical properties of these two derivatives were 

determined. Their ability to trap oxygen- and carbon-centered radicals were studied using 

EPR experiments. Moreover, EPR competition kinetic experiments are currently under 

progress to determine the relative rate constants of spin-adduct formation. 

 

Figure 2.3.1. Structure of PBN, DMPO, examples of structure of cyclic variants of phenyl- 
and arylnitrones, and general concept of α-Phenyl-N-cyclohexyl nitrone. 
 

II. Results and Discussion 

The synthesis of nitrone 4 is summarized in Scheme 1. Nitrocyclohexane was used as starting 

material and the first step consisted in the grafting of tert-butyl acrylate onto the cyclohexyl 

ring through a Michael reaction. Several experimental conditions were tested and Table 2.3.1 

summarizes the outcome of our screening. In our hands, the use of a 1/35 mixture of 

KOH/MeOH in dry Et2O following the procedure described by Kolter et al. was the most 

efficient condition,[87] leading to compound 1 in 67 % yield after flash chromatography 

purification. When using tBuOK as a base, higher amount of tert-butyl acrylate were needed 
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to ensure a reasonable yield. Moreover degradation of the reaction mixture could occur in 

some cases with no compound 1 formed. Next step consisted in the condensation of the 

nitronyl group onto the bezaldehyde to form the nitronyl group. We investigated two synthetic 

strategies. The first synthetic route relied on the reduction of the nitro group to its 

hydroxylamine form which was further purified and isolated. Reduction was conducted in the 

presence of zinc dust and NH4Cl in a THF/H2O mixture (3:1, v/v) under argon atmosphere 

following our classical procedure.[9] Hydroxylamine 2 was obtained in 75% yield and was 

next condensed to benzaldehyde under argon atmosphere in a dry 3:2 THF/AcOH mixture 

(v/v) in the presence of molecular sieves to give nitrone 3 in 85% yield. The second synthetic 

route consisted in a one-pot reduction-condensation of the nitro derivative 1 onto the 

benzaldehyde in the presence of Zinc dust and AcOH in EtOH.[17] Under these conditions, 

nitrone 3 was isolated after purification in 30% yield and although this second strategy was 

one step shorter, it failed to improve the overall yield. Finally, removal of the tert-butoxy 

protecting group under acidic condition led to nitrone 4 in 92% yield. It is worth noting that 

despite the use of TFA no degradation of the nitronyl group was observed. Before any 

physical-chemical investigation both nitrone 3 and 4 were recrystallized twice in order to 

ensure high purity.  

 

Scheme 2.3.1. Synthesis of α-Phenyl-N-cyclohexyl Nitrone derivatives. 
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Table 2.3.1. Optimization of Michael reaction to furnish compound 1. 

Solvent Base Reactant Reaction Time Temp. Yield 

THF 1.1 eq tBuOK 1.1 eq acrylate Overnight RT 31 
THF 3 eq. tBuOK 1 eq. acrylate Overnight RT 28 
THF 1.5 eq. tBuOK 1.5 eq. acrylate Overnight RT 40 
Et2O KOH/MeOH 1/35 1 eq. acrylate Overnight 0°C to RT 67 

 

The water solubility of nitrones 3, 4 and its sodium salt was determined using a UV 

spectroscopic method[70] and was compared to that of PBN (Table 2.3.2). Nitrone 3 was 

found insoluble in water while nitrone 4 exhibited a water solubility of 2.1 g/L, which is ten 

times lower than that of PBN (21.4 g/L). Water solubility of nitrone 4 was significantly 

improved after conversion under carboxylic salt form (17.1 g/L). The relative lipophilicity 

(log k’w) of the nitrones was measured by HPLC and values are reported in Table 2.3.2. This 

confirms the higher lipophilic character of the ester nitrone 3 compared to nitrone 4 with log 

k’w values of 3.56 and 2.32, respectively, whereas 1.68 was found for PBN in agreement with 

previous reports.[9] Calculated partition coefficients (ClogP) were also determined using 

Marvin software and a good correlation was observed between the experimental and the 

calculated data (R2>0.999). 

 

 

Figure 2.3.2. Partition coefficients (log k’w) versus Clog P. 
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Table 2.3.2. Physical-chemical and electrochemical properties of nitrones 3 and 4. 

Nitrones 

Water 

solubility 

(g/L) 

Lipophilicity Ep(c) (V) Ep(a) (V) 

log k’wc Clog Pd
 In H2O

d In CH3CNe 

3 -a 3.56 4.53 -a -2.19; -2.07 1.56 

4 2.1 (17.1)b 2.32 3.33 -1.90 -2.28 ; -2.12 1.62 

PBN 21.4 1.68 2.66 -1.74 -2.23; -2.04 1.61 

aNot soluble. bCarboxylate form. cPartition coefficient values obtained by HPLC. dCalculated 
octanol/water partition coefficient values obtained using Marvin software 
(http://www.chemaxon.com/marvin/help/index.html). dContaining 50 mM of NaCl. eContaining 50 
mM of TBAP.  

The electrochemical behavior of the two nitrones was investigated using cyclic voltammetry 

and values are reported in Table 2.3.2. We first carried out cyclic voltammetry in 50 mM 

NaCl aqueous solution. As already observed for other nitrones, the oxidation of the nitronyl 

group was not detected.[21, 22] On the contrary, we observed that nitrone 4 exhibited an 

irreversible one-step reduction, as shown in Figure 2.3.3, with a cathodic peak potential of -

1.90 V vs. Ag/AgCl, that of the PBN being -1.74 V. Due to its insolubility in water, nitrone 3 

was not tested. We next studied the electrochemical properties of the nitrones in acetonitrile 

containing tetra-butylammonium perchlorate (TBAP) as electrolyte. Previous works showed 

that PBN undergoes an irreversible one-electron oxidation and a one-step, two-electron 

reduction.[21, 24, 25] Compared to the aqueous conditions, oxidation of nitrone 3 and 4 was 

clearly observed in acetonitrile as shown in Figure 2.3.3 with values of 1.56 V and 1.62 V, 

respectively. Reduction of the nitrones in a non-aqueous medium showed the presence of two 

reduction potentials for the two nitrones 3 and 4 with ~0.15 V between each peak. A similar 

observation has been made for para-substituted-α-phenyl-N-tert butyl nitrone derivatives (see 

chapter 2, part 2). Only a modest ease of reduction was observed for nitrone 3 compared to 

nitrone 4 and PBN. This data shows that the presence of the cyclohexyl ring does not affect 

both reduction and oxidation potentials of the nitronyl group which is in agreement with 
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findings by Zuman and Exner,[23] McIntire et al.,[21] and our group on the effect of N-alkyl 

modification of phenyl nitrones. 

 

         

Figure 2.3.3. Cyclic voltammograms of PBN and compounds 3 and 4 in acetonitrile 
containing 50 mM of TBAP with a sweep rate of 0.1 V.s-1; (A) reduction and (B) oxidation. 

 

Spin trapping. The spin trapping ability of the two α-Phenyl-N-cyclohexyl PBN derivatives 

were evaluated by formation of oxygen-centered radical spin-adducts i.e. MeO•, tBuO•, HOO•, 

O2
•– and HO• adducts. The corresponding hyperfine coupling constants (hfcc’s) are reported in 

Table 2.3.3. In most cases, the nitrones tested gave rise to a standard six-line EPR spectrum 

with more or less well-defined signals but whose values are in agreement with the 

literature.[19] The methoxy radical was generated by addition of lead tetraacetate (PbOAc4) in 

a solution of DMSO/MeOH (9:1, v/v) containing the nitrone. Compound 3 and 4 were found 

to efficiently trap MeO• radical  with  hfcc’s  in  good  agreement  with  PBN  methoxy  spin-

adducts. The ill-defined spectrum obtained with compound 3 led to less precise determination 

of hfcc’s, compared to compound 4 (Figure 2.3.4). The two compounds were found to trap 

tBuO•  radical, generated by UV-irradiation in DMSO solution containing (tBuO)2, however, 

signals were broad. The hydroperoxyl radical was generated using hydrogen peroxide in 

pyridine solution. In this system, it’s  believed that the hydroperoxide ion reacts first by 

nucleophilic addition onto the nitronyl function, then, oxidation of the resulting 

hydroxylamine gives the hydroperoxyl radical spin-adduct. In our hand we observed broad 
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signals and despite bubbling of the solution with argon to remove the oxygen, no 

improvement of the line width was observed. EPR signals of the superoxide radical spin-

adduct (O2
•⁻), generated using a solution of KO2 in DMSO, were too weak to be analyzed. 

Concerning the hydroxyl radical generated in aqueous solution by hydrogen peroxide 

photolysis, compound 4 was not studied due to its insolubility in water.  Unfortunately, only 

weak signals were observed for compound 3, which can be explain by the instability of 

hydroxyl spin-adduct generally observed with PBN-type nitrones. We also investigated the 

trapping of a carbon-centered radical. The methyl radical was obtained by a Fenton reaction in 

DMSO/phosphate buffer solution (7:3, v/v) in presence of hydrogen peroxide. The two 

nitrones tested trapped CH3
•, leading to ill-defined signals but simulations gave aN and aH 

values in agreement with the methyl radical adduct of a PBN-type nitrone. 

Table 2.3.3. EPR hyperfine coupling constants of different radical adducts of compounds 3 

and 4. 

Compounds N-Cy-Hex-OH N-Cy-Hex-OtBu 

Radicals trapped aN aH aN aH 

CH3O
• 14.4 G 2.9 G 13.7 G 2.3 G 

tBuO• 13.7 G 2.3 G 13.7 G 2.2 G 

HOO• 13.3 G 1.4 G 13.7 G 2.0 G 

CH3
• 14.3 G 2.6 G 14.3 G 2.6 G 

OO-• Weak signals 
HO• Weak signals Not soluble 

 

 

 



 Chapter II - Part 3 

  

103 
 

  
 
 

  

Figure 2.3.4. Methoxy radical spin-adduct of compound 3 (A) and compound 4 (B); Methyl 
radical spin-adduct of compound 3 (C) and compound 4 (D). 

 

III. Conclusion  

We have designed two α-phenyl-N-cyclohexyl-nitrones by addition of a rigid cyclohexyl ring 

instead of the tert-butyl group in order to improve the reactivity towards free radicals. The 

higher lipophilicity of the two derivatives compare to PBN was confirmed by HPLC. 

However, only the carboxylic salt form of compound 3 showed sufficient water solubility, 

making it suitable for biological evaluation. The redox properties were investigated using 

cyclic voltammetry and results have shown that the presence of a cyclohexyl ring had no 

influence on both oxidation and reduction potentials of the nitronyl group. This is not 

surprisingly as the substituent exerts no electronic effect onto the nitronyl function. The 

ability of the two compounds to trap oxygen- and carbon-centered radicals was next 
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confirmed by EPR experiments and kinetic experiments are currently in progress to evaluate 

if the cyclohexyl ring effectively stabilize the spin adduct formed. If interesting results are 

obtained, the next step will consist in the design of α-phenyl-N-cyclohexyl-nitrone derivatives 

with substituents in para position of the phenyl ring.  Moreover, the carboxylic acid group 

will be used to graft specific-targeted ligands such as cell penetrating peptides. 

IV. Experimental Section 

General methods and materials for the synthesis, water solubility determination, log k’W 

determination, ClogP values determination, spin-trapping experiments and cyclic 

voltammetry experiments are described in part 1 of this chapter. 

Compound 1. Under argon atmosphere 5 g (38.7 mmol. 1 eq) of nitrocyclohexane were 

dissolved in Et2O (8 mL). The solution was cooled down and 0.44 mL of a 1.5:8.5 KOH/MeOH 

solution (m/m) (1.11 mmol. 1/35 eq) and 4.9 mL of tert-butoxy acrylate (38.7mmol. 1 eq) were 

successively added dropwise. The solution was stirred at RT for 16 hours then AcOH was 

added until the pH of the solution reached ~5. The solvents were removed under vacuum and 

the resulting crude residue was purified by flash chromatography (cyclohexane/Et2O 95:5 v/v) 

to lead to compound 1 (6.24 g, 25.93 mmol, 67%) as a yellow oil. Rf (cyclohexane/Et2O) = 

0.37. RMN 1H (CDCl3. 400 MHz) δ 2.46-2.41 (2H. m). 2.22-2.14 (4H. m). 1.64-1.34 (8H. m). 

1.46 (3H. s). RMN 13C (CDCl3. 100 MHz) δ 171.4. 91.3. 80.6. 35.0. 33.4. 29.5. 28.1. 24.5. 

22.4. MS (ESI+. m/z) : 258 [(M+H)+]. 275 [(M+NH4)
+]. 280 [(M+Na)+]. 296 [(M+K)+]. 

Compound 2. Under argon atmosphere. 1 g of compound 1 (4.14.10-3 mol. 1 eq) and 0.33 g 

of NH4Cl (6.21.10-3 mol. 1.5 eq) were dissolved in 3:1 THF/H2O mixture (v/v). The solution 

was cooled down and 1.07 g of Zinc dust (16.56 mmol. 4 eq) were added portion wise keeping 

the temperature below 15°C during the addition then the solution was stirred for two hours at 

RT and filtered off through a pad of celite. The solvents were removed under vacuum and the 

crude residue was purified by flash chromatography (cyclohexane/EtOAc. 8:2 v/v) to lead to 
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compound 2 (0.75 g, 3.09 mmol, 75%) as a white powder. Rf (cyclohexane/EtOAc. 8:2 v/v) = 

0.22. 1H NMR (CDCl3. 400 MHz) δ 5.55 (1H. bs). 2.19 (2H. t. J= 6.0 Hz). 1.71 (2H. t. J= 6.0 

Hz). 1.60-1.10 (10H. m). 1.39 (9H. s). 13C NMR (CDCl3. 100 MHz)  δ  174.4. 80.2. 57.82. 

32.5. 31.2. 29.4. 28.0. 25.9. 21.8. MS (ESI+. m/z) : 244 [(M+H)+]. 266 [(M+Na)+]. 282 

[(M+K)+]. 

Compound 3. Under argon atmosphere. 0.21 g of benzaldehyde (2.03 mmol. 1 eq) and 0.37 g 

of compound 2 (1.62 mmol. 0.8 eq) were dissolved in a 3:2  THF/AcOH mixture (v/v) in the 

presence of 4 Ǻ molecular sieves. The solution was stirred at 60°C for 16 hours and 0.2 eq of 

compound 2 was added after 3 and 14 hours of stirring. The crude mixture was filtered off 

through a pad of celite and the solvents were removed under vacuum. The resulting crude 

residue was purified by flash chromatography (cyclohexane/EtOAc. 8:2 v/v) to lead to 

compound 3 (0.57 g. 1.73 mmol. 85%) as a white powder. Rf (cyclohexane/EtOAc. 8:2 v/v) = 

0.40. 1H NMR (CDCl3. 400 MHz) δ 8.2λ (2H. m). 7.50-7.35 (4H. m). 2.30-2.10 (6H. m). 1.84 

(2H. m). 1.61 (4H. m). 1.50 (2H. m). 1.40 (9H. s). 13C NMR (CDCl3. 100 MHz)  δ  172.4. 

131.7. 130.8. 130.2. 128.9. 128.5. 80.5. 75.2. 34.3. 29.6. 28.0. 25.4. 22.30. MS (ESI+. m/z) : 

332 [(M+H)+]. 354 [(M+Na)+]. 370 [(M+K)+]. HR-MS (ESI+.m/z) calcd for C20H29O3N 

[(M+H)+] : 332.2226. found 332.2252. 

Compound 4. Under argon atmosphere. 0.5 g of compound 3 (1.51 mmol) were dissolved in 

2:8 TFA/CH2Cl2 mixture (v/v). The solution was stirred for 4 hours at RT then the solvents 

were removed under vacuum. The resulting crude mixture was purified by flash 

chromatography (EtOAc/cyclohexane. 6:4 v/v) to lead to compound 4 (0.38 g. 1.39 mmol. 

92%) as a white powder. Rf (cyclohexane/EtOAc. 6:4 v/v) = 0.12. 1H NMR (CDCl3. 400 

MHz) δ 8.2λ (2H. m). 7.53 (1H. s). 7.44 (3H. m). 2.32-2.28 (2H. m). 2.21-2.17 (4H. m). 1.90-

1.83 (2H. m). 1.63-1.58 (4H. m). 1.50 (2H. m).  13C NMR (C DCl3. 100 MHz) δ 176.6. 134.9. 

131.3. 130.1. 129.8. 128.7. 75.5. 34.4. 32.6. 28.5. 25.5. 22.3. MS (ESI+. m/z) : 276 [(M+H)+]. 
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298 [(M+NH4)
+]. 314 [(M+K)+]. HR-MS (ESI+.m/z) calcd for C16H21O3N [(M+H)+] : 

276.1600. found 276.1611. 

Determination of water solubility. For PBN and nitrones 3 and 4, a UV-calibration curve at 

290 nm was established from solutions ranging from 10-3 to 10-2 g/L (R  > 0.997). A saturated 

solution of nitrone was prepared at 40°C and then let stand at RT overnight. After 

centrifugation (12000 g – 15 minutes) at room temperature, the concentration of the 

supernatant solution was determined using the calibration curve.  

Determination of log k’W values. Compounds were dissolved in MeOH at 0.5 mg/mL and 

were injected onto a C18 reverse phase column (250 mm x 4.6 mm. 5 m). The compounds 

were eluted at various MeOH and water ratios (9:1 to 4:6 v/v) with 0.1% acetic acid using a 

flow rate of 0.8 mL/min. The column temperature was 25°C. and the UV detector wavelength 

was   = 2λ8 nm. Linear regression analysis were performed on four data points for compound 

3 (from 9:1 to 6:4; R2 > 0.997); compound 4 (from 7:3 to 4:6; R2 > 0.999) and PBN (from 7:3 

to 4:6; R2 > 0.999). The log k’ values were calculated by using the equationμ log k’ = log((t-

t0)/t0). where t is the retention time of the nitrone and t0 is the elution time of MeOH. which is 

not retained on the column. 

Determination of ClogP values. The partition coefficient octanol/water (ClogP) was 

determined using MarvinSketch 5.9.0 that is available at www.chemaxon.com/marvin. 

Cyclic Voltammetric Measurement. The electrochemical experiments were carried out 

using a three-electrode cell in a dry argon atmosphere at room temperature. An 

Ag/AgCl/saturated NaCl electrode was used as the reference electrode and a platinum wire as 

the auxiliary electrode. The working electrode (glassy carbon) was polished prior to each 

experiment using a 0.04 µm aqueous alumina slurry on a wetted polishing cloth. 
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I. Introduction 

Bioavailability of antioxidants is of particular interest in the development of new compounds 

with improved protective activity against oxidative stress-induced damage. For several years, 

our laboratory has been interested in improving the protective activity of nitrone-type 

synthetic antioxidants. Our strategy is based on the modulation of the hydrophilic/lipophilic 

balance of the nitrone-containing derivatives, in order to ensure an enhanced membrane 

crossing ability. The amphiphilic character of these nitrones has therefore been demonstrated 

to improve the bioavailability and the protection against oxidative stress.[1-4]  

The design of hybrid molecules including two pharmacophores in one molecular scaffold is 

currently being investigated for several types of drug and active compounds. The hybrid 

approach consists in the conjugation of two or more different active moieties in order to 

provide improved properties to the molecule.[5],[6] This has been used in the field of 

antioxidants molecules. For example, the synergistic interactions between lipoic acid and 

other antioxidants were described by several groups and were generally found to be beneficial 

for the antioxidant activity.[7-9] Hybrids compounds combining the -tocopherol chroman 

moiety and other antioxidants were also synthesized, demonstrating that the antioxidant 

activity greatly depend upon the synergistic action of the two different antioxidants.[10-12] 

More recently, Hadjipavlou-Litina and co-workers have designed compounds with high 

inhibition of soybean lipoxygenase (LOX) by conjugation of different antioxidant 

scaffolds.[13] 

 

Figure 3.1.1. Exemples of hybrid antioxidants. 
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Therefore, the synthesis of hybrid molecules bearing one nitrone moiety and another type of 

antioxidant appears to be a promising strategy as it allows to combine in one unified 

molecular scaffold, two antioxidant moieties with particular properties. Our group previously 

developed an amphiphilic hybrid of lipoic acid and PBN, called PBNLP (Figure 3.1.1), in 

which the nitronyl group is the linker between the lipophilic lipoic acid and the polar head 

group.[14] In vitro protection afforded by PBNLP against AAPH-induced hemolysis of 

erythrocytes demonstrated the beneficial effect of chemical association of a water soluble 

derivative of PBN and lipoic acid compared to these two derivatives in admixture and, to 

PBN and lipoic acid alone. It was suggested that the amphiphilic character of PBNLP 

partially governs the beneficial effect by increasing the bioavailability and by reducing the 

negative chemical interactions between the two compounds. Balogh and co-workers have also 

synthesized trolox-nitrone conjugates (Figure 3.1.1) whose antioxidants properties have been 

evaluated in vitro and in vivo.[15] The conjugates exhibited a comparable activity as Trolox 

against in vitro lipid peroxidation and exceeded nitrone-type references PBN and NXY-059 in 

a mice model of permanent focal ischemia. 

As an ongoing effort towards the design of highly potent antioxidants, we have decided to 

synthesize new hybrid amphiphilic antioxidants using the optimized amphiphilic carrier 

developed in our laboratory and composed of a sugar-based polar head, a perfluorinated 

hydrophobic tail and a lysine amino-acid as central scaffold upon which the antioxidant 

moiety can be grafted through an amide bond.[4] By combining two lysine amino acids, the 

synthesis of multivalent antioxidant derivative was made possible. We first worked on the 

synthesis of a divalent amphiphilic derivative in which two PBN moieties were grafted onto 

the lysine side chains of the carrier. This compound is called FADiPBN, FA meaning 

“Fluorinated Amphiphilic carrier” and Di denoting the presence of two nitrone moieties. By 

comparing this derivative to its monovalent derivative FAPBN,[3, 4] we can study the effect 
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of the multi-valence effect on the antioxidant properties. We then extended our work on the 

search for a synergistic effect between different antioxidants grafted onto the same carrier. 

This led us to develop a hybrid derivative bearing both PBN and Trolox moieties. This 

derivative was called using our nomenclature FATxPBN, Tx denoting the Trolox group. 

In the search for new amphiphilic derivatives, we also developed compounds in which the 

sugar-based polar head was replaced either by an anionic (carboxylate) or a cationic 

(ammonium) polar head group so as to obtain pH-dependent derivatives. With the anionic 

carboxylate derivative, one can expect to obtain a better solubility at high pH whereas with 

the cationic ammonium compound one should obtain better solubility at low pH.  In biology, 

pH is of particular importance, the physiological pH in living system is around 7.4 but differs 

in the several cellular compartment or organs. Therefore, having these two ionic compounds 

in hand would allow us to work on a large range of pH. For the sake of comparison, their 

corresponding protected derivatives bearing one or two PBN moieties were also synthesized 

in order to study their physical-chemical properties as well as antioxidant and anti-

inflammatory activities. 

II. Results and discussion 

1. Synthesis of the divalent antioxidants FADiPBN and FATxPBN. 

Synthesis of the DiLysine carriers 4 and 5. The synthesis starts from compound 1, which 

was prepared following our established procedure[4] from the commercially available 

1H,1H,2H,2H-perfluoroctyl iodide. First, deprotection of compound 1 was carried out in a 

dichloromethane solution containing 20% of trifluoroacetic acid (TFA) and the resulting 

amino form was directly used without purification. On the one hand, Boc-Lys(Z)-OH was 

grafted on the deprotected compound 1 using the classical N,N'-Dicyclohexylcarbodiimide 

(DCC) reagent in presence of a catalytic amount of hydroxybenzotriazole (HOBt), in dry 

dichloromethane to obtain compound 2 in 98% yield. In parallel, the lactobionolactone polar 
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head was prepared by deshydratation of lactobionic acid in acidic media following a 

procedure routinely used in our laboratory. Compound 2 was then deprotected in acidic 

conditions and lactobionolactone was added to the resulting amino compounds in solution in 

Ethanol with a few drops of TEA (pH ~ 8-9). The mixture was stirred at 60-70°C until 

complete consumption of the amino compound and was then acetylated using Ac2O/Pyridine 

(1/1 v:v). After purification by flash chromatography, compound 4 was obtained in 60% 

(Scheme 3.1.1). On the other hand, the second carrier was easily obtained following a 

connected procedure. The only difference lies in the second lysine moiety which was 

protected with a fluorenylmethyloxy carbonyl group (Fmoc) on the C-terminal part and with a 

Boc group on the side chain. This led to compound 3 in 82% yield. The corresponding 

amphiphilic carrier (5) was then obtained in 62% yield (Scheme 3.1.1). 
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Scheme 3.1.1. Synthesis of FADiPBN and FATxPBN. a) CH2Cl2/TFA (8:2); b) Boc-Lys(Z)-
OH, DCC, HOBt, CH2Cl2; c) Fmoc-Lys(Boc)-OH, DCC, HOBt, CH2Cl2; d) 
Lactobionolactone, EtOH, 60°C; e) Ac2O/Pyridine; f) CH3CN/DEA (9:1); g) H2, Pd/C, 
EtOH/AcOH (99:1), 5 bars; h) HOSu-PBN, dry CH2Cl2; i) Trolox®, DCC, HOBt, dry 
CH2Cl2; j) MeONa, MeOH. 
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Synthesis of FADiPBN (7). The two protecting groups of compound 4 were removed by 

hydrogenolysis using a catalytic amount of 10% Pd/C in ethanol/acetic acid (99:1 v/v) and 

submitted to a hydrogen atmosphere of 5 bars. After filtration of the catalyst through a pad of 

Celite, the resulting amino compound was added to a solution of HOSu-PBN[4] in dry 

dichloromethane at room temperature and under argon atmosphere. After purification by flash 

chromatography followed by size exclusion chromatography, the acetylated compound 6 was 

obtained in 46% yield in the two steps. Finally removal of the acetyl groups by Zemplén 

desacetylation in presence of a catalytic amount of sodium methoxide in dry methanol led, 

after purification on size exclusion chromatography, to FADiPBN in 86% yield. The overall 

yield for the preparation of FAPBN is 16 % in 5 steps. 

Synthesis of FATxPBN (10). The Boc protecting group of compound 5 was first removed 

using 20% of TFA in dry CH2Cl2 and the resulting amino compound was directly coupled to 

Trolox® in the presence of DCC and HOBt in dry CH2Cl2. Previous work in our group 

showed that the preparation of activated ester of Trolox was troublesome.[4] That is why we 

rather used the classical DCC/HOBt coupling system. After purification by flash 

chromatography, compound 8 was obtained in 74% yield. Then, the carboxyphenyl group (Z) 

was deprotected by hydrogenolysis following the same procedure as described above and the 

resulting amino compound was added to a solution of HOSu-PBN[4] in dry dichloromethane 

at room temperature and under argon atmosphere. After purification by flash chromatography 

followed by size exclusion chromatography, the acetylated compound 9 was obtained in 58% 

yield. Finally, deprotection of the hydroxyl groups following Zemplén transeterification led 

after purification by size exclusion chromatography to FATxPBN in 96% yield. The overall 

yield for the preparation of FATxPBN was 15 % in 6. Both FADiPBN and FATxPBN were 

characterized by 1H, 13C and HSQC NMR experiments as well as mass spectroscopy. The 

purity (98%>) was then confirmed by C18 reverse phase HPLC at 290 nm. 
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2. Synthesis of the ionic antioxidant derivatives. The main characteristic of a carboxylate- 

or an amino-based amphiphile is that depending on the pH of the solution, it can be either 

charged or uncharged altering thereby its solubility in water. Two ionic antioxidant 

derivatives with a carboxylate and an amino group were synthesized (Schemes 3.1.2 and 

3.1.3) and were respectively called and RF-Lys(PBN)-OH and H-Lys(PBN)-RF, “RF” 

denoting the perfluorinated chain -CH2CH2C6F13. 

Synthesis of RF-Lys(PBN)-OH (13). The anionic derivative was easily obtained in four steps. 

Firstly, the commercially available 2H,2H,3H,3H-Perfluorononanoic acid was grafted on the 

free amino group of H-Lys(Z)-OtBu in dry dichloromethane using DCC/HOBt. After 

purification, compound 11 was obtained in 90% and was then submitted to a 5 bars hydrogen 

atmosphere with a catalytic amount of 10% Pd/C. The activated ester HOSu-PBN[4] was 

grafted onto the resulting amino derivative and after purification, compound 12 was obtained 

in 74% in the two steps. Finally, removal of the tert-butyl ester protecting group was carried 

out in acidic condition and appeared the most sensitive step. Indeed, the nitronyl group is 

rather sensitive and can easily decompose in aqueous solution under acidic conditions to give 

the corresponding benzaldehyde and N-tert-butyl hydroxylamine, as previously reported in 

the literature.[16, 17] To avoid degradation of the nitrone function, we first tried to remove 

the ester group with 20% of TFA in dry dichloromethane. TLC monitoring and 1H NMR 

spectroscopy showed the complete absence of deprotection, even after 3 h of stirring. The 

concentration of TFA was then increased to 30% and reaction time to 6 h but the deprotection 

was only partial. Complete deprotection of the amino group was obtained with 50% of TFA in 

dry dichloromethane. However, 1H NMR spectroscopy showed the presence of around 20-30 

% of benzaldehyde by-product, arising from the cleavage of the nitronyl function, which was 

difficult to purify because of the relatively close retention factor to that of the nitrone 

derivative. To avoid the cleavage of the nitronyl group, tetraethylsilane (TES) was used as a 
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scavenger of the carbocation formed during the reaction. Finally, after a rapid screening of the 

experimental condition, the best one was the use of a solution of TFA/CH2Cl2 (5:5, v/v) with 

2 equivalents of TES at 0°C and under argon atmosphere. After 3 h of stirring, the crude 

mixture was purified by flash chromatography eluted with EtOAc/MeOH (8:2, v/v) 

containing 1% of AcOH and RF-Lys(PBN)-OH was obtained in 76% yield.  

 

Scheme 3.1.2. Synthetic pathway of Rf-Lys(PBN)-OH. a) DCC/HOBt/CH2Cl2; b) H2, Pd/C, 
EtOH; c) HOSu-PBN, CH2Cl2; d) CH2Cl2, TFA (5:5, v/v), TES. 

Synthesis of H-Lys(PBN)-RF (15). The synthesis starts from compound 1 whose side chain 

was deprotected under hydrogen atmosphere with a catalytic amount of 10% Pd/C. An excess 

of active ester HOSu-PBN[4] was then added to the resulting amino compound in solution 

with dry CH2Cl2 and after purification, compound 14 was obtained in 69% yield. Like for the 

synthesis of the anionic compound, the deprotection of the amino group was difficult with the 

formation of by-products even in the presence of TES scavenger. After several assays, the 

best condition was found to be CH2Cl2/TFA (8:2, v/v) at 0°C with 2 equivalents of TES.  

Purification by flash chromatography eluted with EtOAc/MeOH (9:1, v/v), led to H-

Lys(PBN)-RF in 78% yield. 

 

Scheme 3.1.3. Synthetic pathway of H-Lys(PBN)-RF. a) H2, Pd/C, EtOH; b) HOSu-PBN, 
CH2Cl2; d) CH2Cl2, TFA (8:2, v/v), TES. 
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3. Synthesis of uncharged lipophilic antioxidant derivatives. We were also interested in the 

synthesis of divalent ionic derivatives with either a carboxylate or an amino group. We 

therefore developed another synthetic strategy as described in Scheme 3.1.4. However, the 

last step consisting in the removal of the protective groups failed to provide the desired 

compounds in spite of several attempts. We report herein the synthesis until to the 

penultimate step. This led us to two lipophilic divalent derivatives bearing two PBN moieties, 

denoted as RF-[Lys(PBN)]2-OtBu (17) and Boc-[Lys(PBN)]2-RF (18) that can be compared to 

the univalent derivatives, respectively compounds 12 and 14. 

Synthesis of RF-[Lys(PBN)]2-OtBu (17). Starting with compound 11, the first step consisted 

in the removal of the ester protecting group in acidic conditions. The carboxylic acid group of 

the resulting compound was then coupled with H-Lys(Z)-OtBu in presence of DCC and a 

catalytic amount of HOBt in dry dichloromethane with few drops of TEA (pH~8-9) to obtain, 

after purification, compound 16 in 44% yield. With regard to the relatively low yield, a 

second assay was carried out with 2-(1H-Benzotriazol-1-yl)-1,1,3,3-tetramethyluronoium 

hexafluorphosphate (TBTU) as a coupling reagent in the presence of DIEA in dry 

dichloromethane but no significant improvement of the yield was observed. Then the two 

carboxybenzyl groups were simultaneously removed under hydrogen atmosphere with a 

catalylic amount of 10% Pd/C. The active ester of PBN was grafted on the two amino 

functions of the resulting compound to give RF-[Lys(PBN)]2-OtBu in 60% yield. 

Some assays were done to remove the tert-butyl protecting group and obtain an amphiphilic 

pH-dependant compound bearing two PBN moieties but results were unsuccessful. Because 

of the two nitrone functions present, a wide range of by-products were obtained and after 

purification, no fraction of the desired product was observed. We decided to study the 

properties of the protected compound itself. We will further pursue our efforts to synthesize 

the corresponding deprotected compound. 



   Chapter III - Part 1 

 

124 
 

Synthesis of Boc-[Lys(PBN)]2-RF( 18). Compound 2 was synthesized from compound 1. The 

two lysine side chains were deprotected using a catalytic amount of 10% Pd/C in EtOH 

solution and under hydrogen atmosphere. The active ester of PBN was then grafted on the two 

resulting amino functions to give after purification by flash chromatography and by size 

exclusion chromatography, compound Boc-[Lys(PBN)]2-RF in 50% yield. In light of the 

degradations observed when removing the protecting group in acidic conditions, we choose 

not to deprotect it and study the physical chemical and biological properties of the protected 

form. 

 

Scheme 3.1.4. Synthetic pathway of RF-[Lys(PBN)]2-OtBu and Boc-[Lys(PBN)]2-RF. a) 
CH2Cl2, TFA (5:5, v/v); b) H-Lys(Z)-OtBu/DCC/HOBt/CH2Cl2; c) CH2Cl2, TFA (8:2, v/v); 
d) Boc-Lys(Z)-OH/DCC/HOBt/CH2Cl2H2, e) H2, Pd/C, EtOH; f) HOSu-PBN, CH2Cl2. 
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Physical-chemical measurements. 

The three non-ionic amphiphilic FAPBN, FADiPBN and FATxPBN were freely soluble in 

water (~10 g.L-1) whereas RF-Lys(PBN)-OH and H-Lys(PBN)-RF were insoluble in water and 

were therefore studied at different pH solutions. The theoretical pKa of the acidic function of 

lysine is 2.18 suggesting that at higher pH value, the carboxylate form should predominate, 

therefore favoring the solubility of the amphiphilic compound. However, experiments showed 

that a 1mM solution of RF-Lys(PBN)-OH was, neither in pH 4 buffer nor in ultrapure water, 

soluble. Few drops of a 15 mM sodium hydroxide solution (NaOH) were slowly added to that 

solution in order to favor deprotonation of the carboxylic acid and afford complete 

solubilization. RF-Lys(PBN)-OH was found freely soluble at pH~9-10 and after hand shaking, 

the characteristically foam of a solution of an amphiphilic compound was observed. To study 

the stability of the sensitive PBN moiety, a solution of PBN at pH ~10 was followed by NMR 

spectroscopy. After one week in solution, no degradation of the nitrone was observed. 

Concerning the amine function of lysine, the theoretical pKa is 8.95 suggesting that below this 

value, the ammonium form should predominate, favoring the solubility of the amphiphilic 

compounds. H-Lys(PBN)-RF was, neither in pH 4 buffer nor in ultrapure water, soluble. A 

more acidic buffer was prepared using KCl and HCl in water solution and the cationic 

compound 15 was found soluble at pH ~2. Because of the nitrone sensitivity to acidic 

solution, solution of compound 15 in that pH ~2 buffer was analyzed by 1H NMR 

spectroscopy and hydrolysis of the nitrone function into its corresponding aldehyde and 

hydroxylamine derivatives was observed. The insolubility of H-Lys(PBN)-RF above pH ~4 

and the degradation observed at pH ~2 greatly limits its use as a water soluble compound.  

Determination of partition coefficients (log k’w). All the newly synthesized compounds 

were found to be more lipophilic than the parent PBN due to the presence of the hydrophobic 

fluorinated chain. When comparing the mono and divalent derivatives, we showed that the 
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lipophilcity is slightly increased for the di-lysines derivatives. Indeed, a partition coefficient 

of 4.92 was found for FADiPBN while that of FAPBN is 4.30. This was also confirmed for 

compounds 17 and 18 compared to compounds 12 and 14, respectively. The high lipophilicity 

of FATxPBN arises from the presence of the lipophilic Trolox moiety, leading to a log k’w 

value of 6.37. We also observed that position of the fluorinated group on the amino acid i.e. 

amino or carboxylic acid group has no significant effect on the lipophilicity. Lipophilicity of 

the anionic compound 13 was found lower than its corresponding protected compound 12, 

due to the free carboxylic acid function which confers hydrophilicity. The partition coefficient 

of H-Lys(PBN)-RF was not determined due to its insolublility in methanol. Results are 

summarized in Figure 3.1.2. 

 

Figure 3.1.2. Lipophilicity values of nitrone derivatives. a Values from the literature.[4] 

Critical micelle concentration (CMC). 19F NMR spectroscopy was used to determine the 

concentration above which micelles are formed. Among the experimental techniques available 

for the study of micelle formation of fluorinated surfactants, the 19F NMR offers the 

advantage of being rapid without requiring large amount of samples. It has been used to study 

the mixed surfactant systems as it allows to give information on the composition of the mixed 

micelles.[18] The chemical shift of the CF3 group varies under isotropic or anisotropic 
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conditions, therefore when plotting the chemical shifts of the group with the concentration; 

one can observe a transition indicating the CMC is reached. A concentrated solution of 

FAPBN, FADiPBN and FATxPBN (~1 to 3 mM) was prepared in H2O/D2O (9:1, v/v) and 

dilutions were then made with this H2O/D2O, using a trifluoroacetate salt as a reference. For 

FAPBN, the intersection of the two linear curves gave a CMC of ~ 0.33 mM, whereas a lower 

value of ~ 0.05 mM was obtained by the surface tension method.[4] For FADiPBN and 

FATxPBN, no well-defined transition was observed between the anisotropic and isotropic 

regimes as it was observed for FAPBN. We plotted the chemical shift versus log C as it is 

commonly done for surface tension measurements. As shown in Figure 3-3B, two domains of 

concentration where the chemical shit was constant were observed with in between a drop of 

the shift of ~ 2 ppm. The CMC was therefore approximated by averaging the two closest 

concentration of the chemical shift change; leading to value of ~ 0.30 mM for FADiPBN and 

~ 0.40 mM for FATxPBN. This indicates that FAPBN and FADiPBN both self-assemble at 

concentration near to 0.3 mM suggesting that the incorporation of a second linker bearing 

PBN have no significant effect on self-agregation properties, which is an agreement with the 

close log k’W values observed. However for FATxPBN the value of 0.40 mM looks 

suspicious. We previously reported a CMC value of 0.025 mM determined by surface tension 

for the FATx derivative, the univalent lysine derivative with one Trolox moiety,[4] which 

indicates higher hydrophobicity of the Trolox derivatives compared to the PBN ones. The 

opposite trend observed here when comparing FATxPBN and FADiPBN is therefore rather 

surprising and indicated that further experiments must be conducted as this result arises from 

only one experiment. 
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Figure 3.1.3. (A) CMC measurement of FAPBN; (B) CMC measurement of FADiPBN, inset 
is shown corresponding logarithmic values. 

Determination of the CMC of RF-Lys(PBN)-OH was carried out using at pH=10 in order to 

have the compound freely soluble. The higher lipophilicity of RF-Lys(PBN)-OH compared to 

FAPBN as demonstrated by the higher log k’W value of the former compound suggests it 

should exhibit a lower CMC value as well. Surprisingly, we found that compound 13 self-

aggregates at a concentration of ~1.1 mM which is 3-fold that of FAPBN (The experiment 

was done in triplicate). One hypothesis is that the high pH of the solution (10) necessary to 

ensure a complete solubility of compound 13 may alter the CMC value compared to that of 

FAPBN measured in pure water. This point will be investigated in the near future. Finally, the 

CMC of H-Lys(PBN)-RF was not investigated because of its insolubility and instability. 

Dynamic light scattering (DLS). The self-assemblies properties of FAPBN, FADiPBN and 

RF-Lys(PBN)-OH were determined in water by DLS at 25°C. All compounds were studied at 

a concentration higher than 10 × CMC. We showed that both FAPBN and FADiPBN self-

assemble into compact and well-defined micelles of ~8 nm diameter, demonstrating that the 

presence of a second lysine scaffold has no influence on the self-assembly properties (Figure 

3.1.4.A). This is in agreement with our previous observation where we measured an 

hydrodynamic diameter of ~6 nm for FAPBN.[3] We also investigated the effect of the pH on 

the self-aggregation of RF-Lys(PBN)-OH with the non-ionic FAPBN as a reference. We 

observed that at pH=4, 6, 8 and 10, FAPBN self-assembles into stable and compact micelles 
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with a slight increase of the particle size when increasing the pH. Repeated Contin analysis of 

FAPBN showed a hydrodynamic diameter of ~12 nm at pH=10, with a negligible population 

of bigger particles (Figure 3.1.4.B, inset). It should be noted that, although a bimodal pattern 

was observed in the intensity-weighed particle size distribution, the larger particles account 

for only a small fraction of the total material present in the samples; otherwise the scattering 

contributions from these particles would have completely masked those from the smaller 

particles. In the relevant size range, the scattering intensity scales with d6, a 200 nm particle 

thus scatters ~4 × 109 times more light than a 5 nm particle. On the contrary, the anionic 

compound RF-Lys(PBN)-OH showed larger aggregates of ~200 nm in diameter. As illustrated 

with the ill-defined correlation function (Figure 3.1.4.C) the aggregates formed are 

heterogenous and rather unstable. 

 

 

 

         

Figure 3.1.4. Contin analysis (volume percentage) of (A) FAPBN and FADiPBN in water 
and (B) FAPBN in water (pH=10); inset is shown intensity contin distribution. Intensity 
Contin distribution of RF-Lys(PBN)-OH in water (pH=10); inset is shown autocorrelation 
function (C). 

(A) 

(B) (C) 
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Electronic Paramagnetic Resonance (EPR) spectroscopy. The spin-trapping properties of 

amphiphilic nitrones derivatives were studied using Electron Paramagnetic Resonance (EPR) 

spectroscopy. The two amphiphilic derivatives bearing one or two PBN moiety were used to 

study the influence of the amphiphilic carrier as well as the presence of the second nitrone 

function on the spin-trapping properties. The methoxy radical was chosen because of its 

easiness to be generated using methanol, dimethylsufoxide and lead tetraacetate. A solution of 

nitrone (20 mM) in DMSO containing 10% v/v of MeOH was prepared and ~1 mg of solid 

Pb(OAc)4 was added. In these conditions, the methoxy spin-adduct of FAPBN and FADiPBN 

was immediately observed by EPR spectroscopy (Figure 3.1.5). 

  

Figure 3.1.5. EPR spectrums of FAPBN (A) and FADiPBN (B) methoxy spin-adducts. 

For both derivatives, a six lines spectrum was obtained due to the hyperfin coupling of the 

electron with the nitrogen giving three lines which are split because of hyperfine interactions 

with the hydrogen in β position of the nitrone function. Simulation of the experimental results 

led to hyperfine splitting coupling constants of aN = 14.04 G and aH = 2.44 G for FAPBN 

while for FADiPBN we obtained aN = 13.74 G and aH = 2.30. These results are in good 

agreement with the literature for methoxy spin-adduct of linear nitrones. This shows that 

despite the steric hindrance brought by the amphiphilic carrier, the nitronyl function keeps its 

ability to trap free radicals. However, experimental spectra showed broad and asymmetric line 

width which is characteristic of a slow molecular tumbling motion witnessing anisotropic 
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conditions. This restricted rotational motion of the spin-adducts has already been observed for 

amphiphilic nitrones and was explained as a result of the micellar aggregate formation.[2, 3]  

Cyclic voltammetry (CV). The electrochemical characterization of FAPBN and FADiPBN 

was investigated using cyclic voltammetry (CV) both in aqueous and organic solutions. We 

first carried out cyclic voltammetry in aqueous conditions with 50 mM of NaCl as electrolyte. 

An irreversible one-step reduction of about -1.74 V vs. Ag/AgCl was observed for PBN in 

aqueous conditions, in agreement with values obtained by McIntire et al.[19] A higher 

cathodic potential was obtained for FAPBN and FADiPBN with values of -1.46 V and -1.48 

V, respectively (Figure 3.1.6). This indicates that once grafted onto the carrier the nitronyl 

group is more easily reduced. On the contrary, no oxidation potentials were detected in 

aqueous solution, as previously observed for other nitrones.[19, 20]  

 

Figure 3.1.6. Reduction of PBN, FAPBN and FADiPBN in 50 mM NaCl at 0.1 V/s. 

The electrochemical properties of these three compounds were next study in non-aqueous 

media using tertabutylamonium perchlorate (TBAP) as electrolyte. As previously observed 

for the para-substituted nitrone series (see chapter 2), two reduction potentials were observed 

for PBN whose difference from each other was 0.18 ± 0.02 V. For FAPBN and FADiPBN, 

two peaks were also observed however with higher difference. Reduction potentials of the 

nitronyl group were assigned to the peak at -1.87 V for FAPBN and at -1.89 V for FADiPBN 
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whereas the second peak, observed at lowest potentials, may witness the contribution of the 

amphiphilic carrier (Figure 3.1.7.A). Oxidative potentials were then determined in acetonitrile 

and no potentials were observed for FAPBN and FADiPBN at scan field between 0 and 2.0 V. 

When increasing the potential window until 3.0 V, two potential values of 1.90 V and 2.58 V 

were obtained for FAPBN. According to the data observed for the PBN derivatives presented 

in chapter 2, the oxidation potential of 1.90 V was assigned to the nitronyl function whereas 

the highest peak was assigned to the amphiphilic carrier. For FADiPBN, however, only one 

peak was observed at 2.56 V, which might indicate that the oxidation potential of the nitronyl 

function is hidden under the highest peak potential (Figure 3.1.7.B). 

 

 

Figure 3.1.7. Reduction (A) and Oxidation (B) of PBN, FAPBN and FADiPBN in 
acetonitrile containing 50mM of TBAP at 0.1 V/s. 

In the second chapter of this manuscript, we have demonstrated that para-substitution on the 

phenyl group of PBN moiety with electron-donating or electron-withdrawing substituents 

have an influence on the electrochemical properties of the nitronyl group. Compounds bearing 
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an electron-withdrawing group in para-position are more easily reduced and hardly oxidized 

than those having an electron-donating substituent, the effect being linearly correlated with 

the Hammett sigma para constants (σp). For both FAPBN and FADiPBN, the PBN moiety is 

grafted onto the carrier through an amide bond which is slightly electro-withdrawing. The 

oxidation and reduction potentials observed here for FAPBN and FADiPBN support our 

observations that electron-withdrawing substitutions in para-position of the phenyl ring lead 

to more easily reduced and hardly oxidized compounds both in aqueous or non-aqueous 

media. 

In vitro antioxidant activity and radical scavenging activity study. In collaboration with 

the School of Pharmacy, Aristotle University of Thessaloniki, the in vitro antioxidant activity 

of FAPBN, FADiPBN, Boc-Lys(PBN)-RF, Boc-Lys(PBN)-Lys(PBN)-RF and RF-Lys(PBN)-

OH was evaluated. Several assays are used in order to assess in vitro antioxidant activity 

because the antioxidant ability of a compound must be evaluated in a variety of milieus. 

Factors such as solubility or steric hindrance may be of overriding importance in different 

environments. Each method relates to the generation of a different radical.[21] In this work, 

two types of assays were employed. The first assay is based on the scavenging reduction of a 

preformed free radical by a hydrogen atom or electron donation and is taken as a marker of 

antioxidant activity. The second assay involves the presence of an antioxidant during the 

generation of a free radical. These assays require a spectrophotometric measurement and a 

certain reaction time in order to obtain reproducible results. Accordingly, we have used the 

reduction of the water-soluble azo compound 2, 2-azo-bis(2-amidinopropane)-

dihydrochloride (AAPH) and the 2,2’-cationic radical ABTS•+
 decolorization assay.   

The water-soluble 2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH) is a free radical-

generating azo compound used to initiate oxidation reactions via both nucleophilic and free 

radical mechanisms. This model is appropriate for measuring radical-scavenging activity in 
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vitro because the reactivity of the peroxyl radicals by the action of AAPH shows a greater 

similarity to cellular activities such as lipid peroxidation. In the AAPH assay the highly 

reactive alkylperoxyl radicals are intercepted mainly by a hydrogen atom transfer (HAP) from 

the antioxidant.[22]  All of our PBN derivatives studied caused inhibition of lipid 

peroxidation (LPO) higher than the parent PBN with only 34% of inhibition (experimental 

values are summarized in Table 3.1.1). FADiPBN (79%) was the most potent with value 

slightly higher than the reference molecule trolox (78%). This indicates that our nitrone 

derivatives exhibit good antioxidant potency against lipid peroxidation. In a liposome model, 

the superiority of Trolox over lipophilic bitailed PBN derivatives was observed, showing that 

nitrones do not act as chain-breaking antioxidants but rather as retarders[23] in agreement 

with the findings of others.[24] Although the kinetics was not studied in this work, this 

suggests that the DiPBN derivative exhibit a stronger retarder effect than PBN that arises 

from the presence of two antioxidant groups but that might also be due to the presence of a 

sugar group. 

Concerning the ability of compounds to reduce the preformed ABTS cation radical, the 

majority of the tested compounds also showed very high antioxidant activity (57-100%). 

FADiPBN and FAPBN reduced the ABTS cation radical by 76 and 57% respectively, 

whereas the parent molecule PBN was by far the strongest. Comparing FADiPBN and 

FAPBN it seems that the presence of a second nitrone group within FAPBN leads to an 

increase of the antioxidant activity. The rest compounds present almost equipotent high 

activity. Thus, our nitrones appear to be good electron donors to the ABTS radical cation.  

In vitro inhibition of soybean lipoxygenase. Eicosanoids are oxygenated metabolites of 

arachidonic acid with a broad implication in a diversity of diseases. The lipoxygenase (LOX) 

catalyzes the first two steps in the metabolism of arachidonic acid to leukotrienes.  LTB4 

generation is considered to be important in the pathogenesis of neutrophil-mediated 
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inflammatory diseases[22] with a marked relation to the severity of cardiovascular diseases, 

asthma and cancer.   

In this context, we decided to evaluate the synthesized conjugates for their ability to inhibit 

soybean LOX by the UV absorbance based enzyme assay.[25] Most of the LOX inhibitors are 

antioxidants or free radical scavengers.[26] LOXs contain a “non-heme” iron per molecule in 

the enzyme active site as high-spin Fe2+ in the native state and the high spin Fe3+ in the 

activated state. Some studies suggest a relationship between LOX inhibition and the ability of 

the inhibitors to reduce Fe3+ at the active site to the catalytically inactive Fe2+.[26] This 

inhibition is related to their ability to reduce the iron species in the active site to the 

catalytically inactive ferrous form,[27] whereas several LOX inhibitors are excellent ligands 

for Fe3+. NDGA, a known inhibitor of soybean LOX, has been used as a reference compound 

(IC50 28μΜ). All the tested compounds inhibited LOX activity whereas the parent PBN did 

not present any inhibition under the reported experimental conditions. FADiPBN and Boc-

[Lys(PBN)]2-RF exhibited equipotent IC50 values and are more potent than the other 

derivatives, followed by FAPBN. However their activity is much lower than the reference 

molecule NDGA.  

 AAPH inhibition ABTS-• inhibition LOX inhibition 

FAPBN 66 % 57 % 100 µM 

FADiPBN 79 % 76 % 65 µM 

Boc-Lys(PBN)-RF 66 % 90 % 23 % 

Boc-[Lys(PBN)]2-RF 52 % 100 % 65 µM 

RF-Lys(PBN)-OH 60 % 90 % 43 % 

PBN 34 % 100 % No 

Trolox 78 % 91 % - 

NDGA - - 28μM 

Table 3.1.1. Biological results of lysine-based nitrones. 
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III. Conclusion 

On the one hand, we have designed a new amphiphilic carrier comprising lactobionolactone 

as a polar head, a perfluorinated hydrophobic tail and two lysines as central scaffold upon 

which nitrone antioxidants can be grafted. We extended that concept of divalent antioxidants 

for the search of a synergistic effect between nitrone PBN and antioxidant Trolox. Physical-

chemical experiments have demonstrated that amphiphilic character of the carrier increase the 

overall lipophilicity of the antioxidants. However, the nature of the antioxidant i.e. hydrophile 

or lipophile also affects the overall amphiphilic character. More hydrophilic is the antioxidant 

and more lipophilic is its corresponding amphiphilic derivative. Among the divalent 

antioxidants synthesized, we showed that FADiPBN and FATxPBN keep their ability to trap 

free radicals despite the steric hindrance of the amphiphilic carrier, as it was already observed. 

Moreover, the slight electron-withdrawing effect brought by the amide linker also affects the 

electrochemical properties, leading to more hardly oxidized compounds. One the other hand, 

two ionic amphiphilic PBN derivatives were designed. There were found poorly water-soluble 

due to the small hydrophilic part compared to the fluorinated hydrophobic tail. Consequently, 

these two ionic PBN derivatives might be useful for targeting of the nitrone group toward 

hydrophobic domain such as membranes. 

IV. Experimental Section. General methods and materials for the synthesis, log k’W 

determination, spin-trapping and cyclic voltammetry experiments are described in chapter 2.  

Synthesis of Boc-Lys(Z)-C6F13 (1). Sodium azide (31.65 mmol, 2.05 g, 3 eq) was added to a 

solution of 1H, 1H, 2H, 2H-perfluorooctyl iodide (10.55 mmol, 5 g, 1 eq) in DMF. After 24 h 

of stirring at room temperature, the mixture was poured into cold water and extracted three 

times with Et2O. The organic layer was washed with brine (2×), dried over Na2SO4, filtered, 

and concentrated under vacuum. The resulting yellow oil was dissolved in Et2O with 0.60 g of 

10% Pd/C and submitted to a hydrogen atmosphere for 8 h (8 bars). Filtration of the catalyst 
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through a pad of Celite and evaporation of the solvent gave 1H, 1H, 2H, 2H-

perlfluorooctylamine (9.17 mmol, 3.33 g) in 87% yield. The resulting amino compound (8.26 

mmol, 3.0 g, 1 eq), Boc-Lys(Z)-OH (9.09 mmol, 3.45 g, 1.1 eq), DCC (9.91 mmol, 2.04 g, 1.2 

eq) and a catalytic amount of HOBt were dissolved in dry CH2Cl2 and stirred under argon 

atmosphere at room temperature for 5 hours, filtered and then concentrated under vacuum. 

Purification by flash chromatography eluted with EtOAc/CH (4:6 v/v) gave compound 1 

(8.26 mmol, 4.30 g, 71 %) as a white viscous product. Rf  0.27 (EtOAc/CH 4:6 v /v); 1H NMR 

(CDCl3, 400 MHz) δ 7.27 (5H, CH Ph ,m), 6.64 (1H, NH, s), 5.09 (1H, NH, d, J = 8 Hz), 5.02 

(2H, CH2Ph, s), 4.83 (1H, NH, s), 3.94 (1H, CH, s), 3.49 (2H,  NH-CH2-CH2-C6F13,  q, J = 4 

Hz), 3.10 (2H,  CH2-NH Lys, t, J = 4 Hz),  2.19-2.32 (2H, CH2-C6F13, m), 1.40-1.87 (6H, 3 

CH2 Lys, m), 1.35 (9H, tBu, s); 13C NMR (CDCl3, 100 MHz) δ 156.6, 156.0 (CO), 136.5 (C), 

128.4, 128.0 (CH), 80.0 (C), 66.6 (CH2), 54.4 (CH), 40.1, 33.9, 31.8, 31.2, 30.6 (CH2), 28.1 

(CH3), 24.9 (CH2); 
19F NMR (CDCl3, 377 MHz) δ -80.8 (3F, CF3), -114.7 (2F, CF2), -121.9, -

122.9, -123.5 (6F, 3CF2), -126.2 (2F, CF2). 

Synthesis of Boc-Lys(Z)-Lys(Z)-C6F13 (2). After removal of the tert-butoxycarbonyl group 

of compound 1 (2.07 mmol, 1.5 g, 1eq) using 20 % of trifluoroacetic acid in dry CH2Cl2, the 

resulting amino intermediate was concentrated under vacuum and immediately added to Boc-

Lys(Z)-OH (2.69 mmol, 1.02 g, 1.3 eq), DCC (2.69 mmol, 0.55 g, 1.3 eq) and a catalytic 

amount of HOBt dissolved in dry CH2Cl2. After 5 hours of stirring under argon atmosphere at 

room temperature, the mixture was filtered and concentrated under vacuum. Purification by 

flash chromatography eluted with EtOAc/CH (6:4 v/v) and by size exclusion chromatography 

gave compound 2 (1.87 mmol, 1.85 g, 91 %) as a white viscous product. Rf  0.25 (EtOAc/CH 

6:4 v /v); 1H NMR (CDCl3, 400 MHz) δ 7.27 (10H, CH, m)), 6.95 (1H, NH, m), 6.54 (1H, 

NH, m), 5.42 (1H, NH, m), 5.02 (4H, CH2, s), 4.95 (2H, NH, m), 4.28 (1H, CH, m), 3.92 (1H, 

CH, m), 3.38 (2H, CH2, m), 3.10 (4H, CH2, m), 2.25 (2H, CH2, m), 1.88-1.40 (21H, CH2 + 
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CH3, m); 13C NMR (CDCl3, 100 MHz) δ 171.8, 157.0, 156.7 (CO), 136.5, 136.5 (C), 128.5, 

128.2, 128.1, 128.0 (CH), 80.6 (C), 66.7, 66.6 (CH2), 53.0, 49.2 (CH), 40.3, 39.8, 33.9, 32.0, 

30.8, 30.5, 29.4, 29.3 (CH2), 28.3, 28.2, (CH3), 25.6, 24.9, 22.5, 22.2 (CH2). HR-MS (ESI+, 

m/z) calcd for C41H50F13N5O8 [(M+H)+] 988.3530, found 988.3536. 

Synthesis of Fmoc-Lys(Boc)-Lys(Z)-C6F13 (3). Compound 1 (2.48 mmol, 1.8 g) was 

dissolved in CH2Cl2/TFA (8:2 v/v). After 2h of stirring, the mixture was concentrated under 

vacuum and to give the resulting crude amino compound. A solution of Fmoc-Lys(Boc)-OH 

(2.98 mmol, 1.39 g, 1.2 eq), DCC ( 2.98 mmol, 0.62 g, 1.2 eq) and HOBt (2.98 mmol, 0.54 g, 

1.2 eq) in dry CH2Cl2 was stirred for 30 minutes. The crude amino compound and TEA 

(pH=8-9) were then added to the solution and stirred under argon atmosphere for two days. 

The mixture was poured into NaCl, the organic layer was extracted three times with CH2Cl2, 

dried over Na2SO4 and concentrated under vaccum. After purification by flash 

chromatography eluted with EtOAc/CH (6:4), compound 3 (2.04 mmol, 2.2 g) was obtained 

as a white viscous powder in 82 % yield. Rf  0.45 (EtOAc/CH 7:3 v /v); 1H NMR (CDCl3, 400 

MHz) δ 7.76 (2H, CH, d, J = 4 Hz), 7.57 (2H, CH, m), 7.39 (2H, CH, t, J = 12 Hz), 7.31 (7H, 

CH, m), 6.91 (1H, NH, m), 6.73 (1H, NH, m), 6.71 (1H, CH, m), 5.05 (2H, CH2, s), 5.00 (1H, 

NH, m), 4.72 (1H, NH, m), 4.39 (3H, CH + CH2, m), 4.18 (1H, CH, t, J = 8 Hz), 4.11 (1H, 

CH, m), 3.48 (2H, CH2, m), 3.13 (4H, 2CH2, m), 2.30 (2H, CH2, m), 2.27 (2H, CH2, m), 1.91 

(2H, CH2, m), 1.70 (2H, CH2, m), 1.42 (11H, CH2 + 3CH3, m), 1.35 (4H, 2CH2, m); 13C NMR 

(CDCl3, 100 MHz) δ 172.48, 171.79, 157.23, 156.82 (CO), 143.65, 143.69, 141.28, 136.49 

(C), 128.50, 128.09, 127.96, 127.78, 127.68, 127.10, 127.07, 125.00, 124.93, 120.02 (CH), 

79.39 (C), 67.17, 66.63 (CH2), 53.09, 49.33, 47.05 (CH), 40.19, 39.47, 33.77, 31.99, 30.45, 

29.51, 29.25 (CH2), 28.39, 28.28 (CH3), 25.53, 24.86, 22.46 (CH2); HR-MS (ESI+, m/z) calcd 

for C48H55F13N5O8 [(M+H)+] 1076.3843, found 1076.3832. 

Synthesis of Lacto(OAc)8-Lys(Z)-Lys(Z)-C6F13 (4). Compound 2 (0.40 mmol, 0.40 g, 1 eq) 
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was dissolved in dry CH2Cl2/TFA (8:2, v/v) at 0°C for 2 hours and then concentrated under 

vacuum. In parallel, lactobionolactone (0.52 mmol, 0.18 g, 1.3 eq) was prepared according to 

a published procedure[4] and was added to a solution of the resulting amino derivative 

dissolved in EtOH with few drops of TEA (pH=8-9). The solution was stirred at 78°C for 24 h 

until complete consumption of the amino derivative. Then the solvent was evaporated in 

vacuum and the residue was added to a solution of Ac2O/pyridine (1:1 v/v) at 0 °C. After 5 h, 

the mixture was poured into cold 1 N HCl and extracted three times with CH2Cl2. The organic 

layer was washed with brine, dried over Na2SO4, and concentrated in vacuum. After 

purification by flash chromatography, eluting with EtOAc/CH (8:2) and then by size 

exclusion chromatography eluted with CH2Cl2/MeOH (1:1 v/v) compound 4 was obtained 

(0.29 mmol, 0.45 g, 60%) as a white powder. Rf  0.38 (EtOAc/CH 9:1 v /v) ; 1H NMR (CDCl3, 

400 MHz) δ 7.34 (10H, CH, m), 7.00 (1H, NH, m), 6.91 (1H, NH, m),  6.70 (1H, NH, d, J = 4 

Hz), 5.47 (1H, CH, m), 5.37 (1H, CH, d J = 2 Hz), 55.07-5.13 (7H, m), 4.99-5.02 (2H, CH, 

m), 4.54-4.59 (2H, CH, m), 4.00-4.08 (7H, m), 3.88 (1H, CH, t, J = 8 Hz), 3.39-3.62 (2H, 

CH2, m), 3.10-3.24 (4H, CH2, m), 2.32 (2H, CH2, m), 1.99-2.19 (24H, CH3, m), 1.90 (2H, 

CH2, m), 1.66 (2H, CH2, m), 1.49 (4H, CH2, m), 1.36 (4H, CH2, m); 13C NMR (CDCl3, 62.86 

MHz) δ 171.85, 171.09, 170.61, 170.47, 170.04, 169.67, 169.29, 156.80 (CO), 136.51 (C), 

128.53, 128.12, 128.00, 127.82 (CH), 101.59, 71.16, 70.81, 69.33, 68.93, 66.82, 66.66, 61.80, 

61.03, 53.46 (CH), 40.39, 32.00, 30.49, 30.22, 29.34, 29.17 (CH2), 20.70, 20.57 (CH3); HR-

MS (ESI+, m/z) calcd for C64H79F13N5O25 [(M+H)+] 1564.4856, found 1564.4891. 

Synthesis of Lacto(OAc)8-Lys(Boc)-Lys(Z)-C6F13 (5). Compound 3 (1.39 mmol, 1.5 g) was 

dissolved in ACN/DEA (9:1 v/v) for 1 hour and then concentrated under vacuum.  In parallel, 

lactobionolactone (1.81 mmol, 0.62 g, 1.3 eq) was prepared according to a published 

procedure[4] and was added to a solution of the resulting amino derivative dissolved in EtOH 

with few drops of TEA (pH=8-9). The solution was stirred at 60°C for 48 h and the solvent 
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was evaporated in vacuum. The residue was then added to a solution of Ac2O/pyridine (1:1 

v/v) at 0 °C. After 5 h, the mixture was poured into cold 1 N HCl and extracted three times 

with CH2Cl2. The organic layer was washed with brine, dried over Na2SO4, and concentrated 

in vacuum. After purification by flash chromatography, eluting with EtOAc/CH (8:2 v/v) and 

by size exclusion chromatography eluted with CH2Cl2/MeOH (1:1 v/v) compound 5 was 

obtained (0.83 mmol, 1.27 g, 62%) as a white powder. Rf  0.33 (EtOAc/CH 8:2 v /v); 1H NMR 

(CDCl3, 400 MHz) δ 7.35 (5H, CH, m), 7.10 (1H, NH, m), 6.97 (1H, NH, m),  6.90 (1H, NH, 

m), 5.48 (1H, CH, m), 5.38 (1H, CH, m), 5.31 (1H, CH, m), 4.93-5.29 (7H, CH + CH2 + NH, 

m), 4.52-4.61 (2H, CH, m), 4.18-4.32 (4H, CH + CH2, m), 4.10 (2H, CH2, m), 3.91 (1H, CH, 

m), 3.38-3.61 (2H, CH2, m), 3.02-3.22 (4H, CH2, m), 2.37 (2H, CH2, m), 1.99-2.21 (24H, 

CH3, m), 1.34-1.90 (21H, CH2 + CH3, m); 13C NMR (CDCl3, 100 MHz) δ 171.82, 171.19, 

170.62, 170.56, 170.44, 170.15, 170.00, 169.63, 169.26, 156.92, 156.70, 156.33 (CO), 136.57 

(C), 128.49, 128.06, 127.95, 101.51 (CH), 79.14 (C), 78.01, 72.22, 71.14, 70.82, 70.27, 69.40, 

69.01, 66.83 (CH), 66.59, 61.82, 61.02 (CH2), 54.09, 53.50 (CH), 40.40, 39.98, 33.87, 31.96, 

30.38, 29.32 (CH2), 28.39 (CH3), 25.58, 24.89, 22.92, 22.52 (CH2), 20.68, 20.56, 20.46 

(CH3); HR-MS (ESI+, m/z) calcd for C61H81F13N5O25 [(M+H)+] 1530.5013, found 

1530.5011. 

Synthesis of Lacto(OAc)8-Lys(PBN)-Lys(PBN)-C6F13 (6). At 0°C, compound 4 (0.26 

mmol, 0.40 g, 1eq) was dissolved in ethanol/acetic acid (99:1 v/v) and catalytic amount of 

10% Pd/C was slowly added. The reaction mixture was submitted to a hydrogen atmosphere 

for 18 h (5 bars). After filtration of the catalyst through a pad of Celite and evaporation of the 

solvent under vacuum, the resulting amino compound was added to a solution of HOSu-PBN 

(0.57 mmol, 0.22 g, 2.2 eq) in dry CH2Cl2 at room temperature and under argon. After 24 h, 

the solvent was removed under vacuum and the crude mixture was purified by flash 

chromatography eluting with EtOAc/MeOH (95:5 v/v) and by size exclusion chromatography 
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eluting with CH2Cl2/MeOH (1:1 v/v) to give the acetylated derivative 6 (0.12 mmol, 0.20 g, 

46% yield) as a white powder. Rf 0.30 (EtOAc/MeOH 95:5 v /v); 1H NMR (MeOD, 400 MHz) 

δ 8.31 (4H, CH, m), 7.89 (1H, CH, s), 7.88 (1H, CH, s), 7.82 (4H, CH, m), 5.41 (1H, CH, d, J 

= 4 Hz), 5.27 (1H, CH, d, J = 2 Hz), 5.19 (1H, CH, d, J = 2 Hz), 4.97-5.05 (3H, CH, m), 4.68 

(1H, CH, d, J = 2 Hz), 4.40 (1H, CH, m), 3.91-4.18 (7H, m),  3.38 (6H, CH2, m), 2.31 (2H, 

CH2, m), 1.98-1.84 (24H, CH3, m), 1.74 (2H, CH2, m), 1.64 (2H, CH2, m), 1.50 (22H, CH2 + 

CH3, m), 1.36 (4H, CH2, m); 13C NMR (MeOD, 100 MHz) δ 174.40, 173.83, 172.22, 172.17, 

172.14, 171.80, 171.51, 171.38, 171.27, 170.45, 169.32, 169.23 (CO), 137.27, 134.86 (C), 

133.44, 133.37, 130.51, 130.47, 128.46, 128.38 (CH), 102.72, 79.88, 74.27, 72.71, 72.68, 

72.39, 72.13, 71.11, 70.80, 70.54, 68.77, 63.09, 62.60, 54.89 (CH), 40.96, 40.56, 32.78, 

32.32, 32.02, 31.29, 29.98, 29.93 (CH2), 28.42 (CH3), 24.41, 24.05 (CH2), 20.97, 20.91, 

20.81, 20.72, 20.61, 20.48 (CH3); HR-MS (ESI+, m/z) calcd for C72H93F13N7O25 [(M+H)+] 

1702.6013, found 1702.6036. 

Synthesis of Lacto(OAc)8-Lys(Trolox)-Lys(Z)-C6F13 (8).Compound 5 (0.39 mmol, 0.60 g, 

1 eq) was dissolved in dry CH2Cl2/TFA (8:2, v/v) at 0°C for 2 hours and then concentrated 

under vacuum. The resulting amino derivative was dissolved in dry CH2Cl2 with few drops of 

DIEA (pH=8-9) and was added to a solution of Trolox® (0.51 mmol, 0.13 g, 1.3 eq), DCC 

(0.51 mmol, 0.11 g, 1.2 eq) and a catalytic amount of HOBt in dry CH2Cl2. After one night of 

stirring under argon atmosphere at room temperature, the solution was filtered and then 

concentrated under vacuum. Purification by flash chromatography eluted with EtOAc/CH 

(8:2 v/v) and then by size exclusion chromatography eluting with CH2Cl2/MeOH (1:1 v/v) 

gave compound 8 (0.29 mmol, 0.48 g, 74 %) as a white powder. Rf0.22 (EtOAc/CH 9:1 v /v); 

1H NMR (CDCl3, 400 MHz) δ 7.33 (5H, CH, m), 6.89 (2H, NH, m), 6.79 (1H, NH, m), 6.48 

(1H, NH, m), 6.36 (1H, NH, m), 5.46 (1H, CH, m), 5.38 (1H, CH, d, J = 4 Hz), 5.29-5.18 

(2H, CH, m), 5.08-5.12 (4H, CH + CH2, m), 5.02  (1H, CH, m), 4.51-4.61 (2H, CH2, m), 4.30 
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(1H, CH, m), 4.21 (2H, CH2, m), 4.02-4.10 (2H, CH2, m), 3.90 (2H, CH2, m), 3.44-3.65 (2H, 

CH2, m), 3.05-3.30 (4H, CH2, m), 2.33-2.63 (6H, CH2, m), 1.99-2.20 (33H, CH3, m), 1.76-

1.84 (2H, CH2, m), 1.70-1.47 (9H, CH3 + CH2, m), 1.38 (2H, CH2, m), 1.21 (2H, CH2, m); 13C 

NMR (CDCl3, 100 MHz) δ 174.87, 172.16, 172.07, 171.53, 171.42, 170.74, 170.67, 170.28, 

170.20, 170.15, 169.80, 169.44, 169.09 (CO), 145.80, 144.69, 136.69 (C), 128.67, 128.25, 

128.11 (CH), 122.97, 121.89, 120.28, 118.52, 118.29 (C), 101.76, 78.67 (CH), 72.52, 72.38, 

71.32, 71.25, 70.99, 70.48, 69.17 (CH), 67.02, 66.96, 66.81, 61.98, 61.11, 60.54 (CH2), 54.42, 

53.60, 40.69, 38.26, 38.06, 32.15, 30.70, 29.73, 29.43, 25.46, 25.30 (CH2) 20.90, 20.87, 

20.75, 20.72, 20.66, 12.51, 12.05, 11.99, 11.55 (CH3). HR-MS (ESI+, m/z) calcd for 

C70H89F13N5O26 [(M+H)+] 1662.5588, found 1662.5581. 

Synthesis of Lacto(OAc)8-Lys(Trolox)-Lys(PBN)-C6F13 (9). At 0°C, compound 8 (0.26 

mmol, 0.44 g, 1eq) was dissolved in ethanol/acetic acid (99:1 v/v) and catalytic amount of 

10% Pd/C was slowly added. The reaction mixture was submitted to a hydrogen atmosphere 

for 18 h (5 bars). After filtration of the catalyst through a pad of Celite and evaporation of the 

solvent under vacuum, the resulting amino compound was added to a solution of HOSu-PBN 

(0.31 mmol, 0.12 g, 1.2 eq) in dry CH2Cl2 at room temperature and under argon. After 24 h, 

the solvent was removed under vacuum and the crude mixture was purified by flash 

chromatography eluting with EtOAc/MeOH (95:5 v/v) and by size exclusion chromatography 

eluting with CH2Cl2/MeOH (1:1 v/v) to give the acetylated derivative 9 (0.15 mmol, 0.26 g, 

58% yield) as a white powder. Rf 0.24 (EtOAc/MeOH 95:5 v /v) ; 1H NMR (CDCl3, 400 

MHz) δ 8.28 (2H, CH, d, J = 8 Hz), 7.80 (2H, CH, d, J = 12 Hz), 7.62 (1H, CH, s), 7.27 (2H, 

NH, m), 7.09 (2H, NH, m), 6.37 (1H, NH, m), 6.32 (1H, NH, m), 5.49 (1H, CH, m), 5.34 (2H, 

CH, m), 5.07-5.16 (2H, CH, m), 5.01 (1H, CH, m), 4.60 (1H, CH, m), 4.45 (1H, CH, m), 4.28 

(1H,CH, m), 4.18 (2H, CH2, m), 4.05 (2H, CH2, m), 3.90 (2H, CH2, m), 3.46-3.55 (4H, CH2, 

m), 3.27 (2H, CH2, m), 2.35-2.51 (6H, CH2, m), 1.96-2.17 (33H, CH3, m), 1.74 (2H, CH2, m), 
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1.59 (12H, CH3 + CH2, m), 1.49 (2H, CH2, m), 1.38 (2H, CH2, m), 1.24 (4H, CH2, m), 1.07 

(2H, CH2, m); 13C NMR (CDl3, 100 MHz) δ 174.61, 174.51, 172.19, 172.10, 171.74, 171.63, 

170.46, 170.02, 169.63, 169.25, 168.68, 168.58, 167.12 (CO), 145.69, 144.51, 135.15, 133.68 

(C), 129.31, 128.68, 127.07 (CH), 123.41, 122.88, 121.57, 120.68, 117.67 (C), 101.56, 78.38 

(CH), 78.27 (C), 72.45, 71.43, 70.84, 70.24, 69.31, 69.24, 66.81 (CH), 61.69, 60.86 (CH2), 

54.21, 54.11, 53.50 (CH), 39.36, 38.20, 38.02, 31.86, 30.45, 29.62, 29.55, 28.84 (CH2), 28.24 

(CH3), 25.23, 25.09, 2307 (CH2), 20.69, 20.64, 20.61, 20.53, 20.45, 12.41, 11.82, 11.74, 11.44 

(CH3). HR-MS (ESI+, m/z) calcd for C74H96F13N6O26 [(M+H)+] 1731.6166, found 1731.6161. 

Synthesis of Lacto(OH)8-Lys(PBN)-Lys(PBN)-C6F13 (FADiPBN, 7). A catalytic amount of 

sodium methoxide was added under argon to a solution of compound 6 (0.10 mmol, 0.17 g, 1 

eq) in MeOH. The mixture was stirred for 4 h, and few drops of 1 N HCl solution were added 

to neutralize the solution. Purification by size exclusion chromatography eluting with MeOH 

give FADiPBN (0.09 mmol, 0.12 g, 86% yield). Rf 0.53 (EtOAc/MeOH/H2O 7:2:1 v/v/v); 1H 

NMR (MeOD, 400 MHz) δ 8.41 (4H, CH, d, J = 4 Hz), 7.98 (2H, CH, s), 7.90 (4H, CH, m), 

4.51 (1H, CH, d, J = 4 Hz), 4.44 (1H, CH, d, J = 2 Hz), 4.34 (1H, CH, m), 4.25 (2H, CH, m), 

3.99 (1H, CH, t, J = 6 Hz), 3.90 (1H, CH, m), 3.84-4.72 (5H, m), 3.62-3.58 (3H, CH, m), 

3.55-3.362.31 (6H, CH2, m), 2.49-2.36 (2H, CH2, m), 1.93-1.45 (30H, CH2 + CH3, m); 13C 

NMR (MeOD, 100 MHz) δ 176.17, 174.42, 174.36, 169.33, 169.31 (CO), 137.35, 137.30, 

134.78, 134.74 (C), 133.66, 133.58, 130.57, 130.56, 128.41, 128.38, 105.87, 83.15, 77.31, 

74.82, 74.47, 73.24, 73.13, 72.77, 72.69, 70.30, 63.72, 62.66, 58.34, 55.15, 55.01 (CH), 

40.70, 4.060, 32.80, 32.28, 32.18, 31.50, 31.29, 31.07 (CH2), 28.42 (CH3), 25.44, 24.40, 

22.02, 18.39 (CH2); HR-MS (ESI+, m/z) calc for C56H77F13N7O17 [(M+H)+] 1366.5168, found 

1366.5166.  

Synthesis of Lacto(OH)8-Lys(Trolox)-Lys(PBN)-C6F13 (FATxPBN, 10). A catalytic 

amount of sodium methoxide was added under argon to a solution of compound 9 (0.13 
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mmol, 0.22 g, 1 eq) in MeOH. The mixture was stirred for 5 h, and few drops of 1 N HCl 

solution were added to neutralize the solution. Purification by size exclusion chromatography 

eluting with MeOH give FATxPBN (0.12 mmol, 0.17 g, 96% yield). Rf  0.60 

(EtOAc/MeOH/H2O 7:2:1 v/v/v); 1H NMR (MeOD, 400 MHz) δ 8.36 (1H, OH, s), 8.30 (2H, 

CH, d, J = 8 Hz), 7.88 (1H, CH, s), 7.82 (2H, CH, d, J = 8 Hz), 4.44 (1H, CH, d, J = 8 Hz), 

4.34 (1H, CH, s), 4.05-4.18 (3H, CH, m), 3.91 (1H, CH, m), 3.81 (1H, CH, m), 3.64-3.75 

(5H, CH + CH2, m), 3.21-3.52 (7H, CH + CH2, m), 2.90-3.16 (2H, CH2, m), 2.20-2.50 (6H, 

CH2, m), 2.05 (6H, CH3, m), 1.96 (3H, CH3, m), 1.50-2.06 (16H, CH2 + CH3, m), 1.38 (4H, 

CH2, m), 1.16-1.20 (4H, CH2, m); 13C NMR (MeOD, 100 MHz) δ 176.60, 176.57, 175.93, 

174.34, 170.49, 169.21 (CO), 147.05, 145.75, 137.12, 134.73 (C), 133.31, 130.45, 128.34 

(CH), 124.97, 122.88, 122.85, 122.48, 118.72 (C), 105.92, 83.41 (CH), 79.12 (C), 77.17, 

74.71, 74.33, 73.07, 72.73, 72.61, 70.27 (CH), 63.54, 62.59, 61.48 (CH2), 55.06, 54.88 (CH), 

40.46, 39.65, 32.73, 32.34, 32.12, 31.25, 30.65, 29.92, 28.40, 25.01 (CH2), 21.62 (CH3), 

14.44, 12.91, 12.18, 11.95 (CH2). HR-MS (ESI+, m/z) calc for C56H77F13N7O17 [(M+H)+] 

1395.5322, found 1395.5314. 

Synthesis of C6F13-Lys(Z)-OtBu (11). 2H,2H,3H,3H-perfluorononanoic acid (2.55 mmol, 

1g, 1eq), DCC (3.31 mmol, 683 mg, 1.3 eq) and a catalytic amount of HOBt were dissolved 

in dry CH2Cl2. After few minutes of activation, H2N-Lys(Z)-OtBu (2.81 mmol, 1g, 1.1 eq) 

and DIEA (pH = 8-9) were added and the mixture was stirred 16h under argon 

atmosphere.The solution was then filtered, concentrated under vacuum and purified by flash 

chromatography eluted with EtOAc/CH (3:7) to give compound 11 (2.41 mmol, 1.71 g, 90 

%)as a white powder. Rf 0.28 (EtOAc/CH 3:7 v /v); 1H NMR (CDCl3, 400 MHz) δ 7.31 (5H, 

CH, m), 6.29 (1H, NH, m),5.10 (2H, CH2, s), 4.83 (1H, NH, m), 4.45 (1H, CH, q, J = 20 Hz), 

3.19 (2H, CH2, q, J = 16 Hz), 2.52 (4H, CH2, m), 1.85-1.24 (15H, m); 13C NMR (CDCl3, 100 

MHz)δ171.42, 169.57, 156.61 (CO), 136.52 (C), 128.51, 128.11, 128.00 (CH), 82.36, 66.63 
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(C), 52.63 (CH), 31.90, 29.49 (CH2), 27.96 (CH3), 26.88, 26.63, 21.99 (CH2).
19F NMR 

(CDCl3, 377 MHz)δ -80.80 (3F, CF3), -114.55 (2F, CF2), -121.90, -122.88, -123.47 (6F, 

3CF2), -126.14 (2F, CF2). HR-MS (ESI+, m/z) calcd for C27H32F13N2O5 [(M+H)+] 711.2104, 

found 711.2101. 

Synthesis of C6F13-Lys(PBN)-OtBu (12). Compound 11 (1.34 mmol, 1g, 1eq) was dissolved 

in ethanol and 0.080 g of 10% Pd/C was slowly added at 0 °C. The reaction mixture was then 

submitted to a 5 bar hydrogen atmosphere during 2 h. After filtration of the catalyst through a 

pad of Celite and concentration under vacuum, the resulting amino compoundwas added to a 

solution of HOSu-PBN (1.61 mmol, 612 mg, 1.2 eq) in dry CH2Cl2 at room temperature under 

argon atmosphere. After 14h the solution was concentrated under vacuum and purified by 

flash chromatography eluted with EtOAc/CH (8:2) to give compound 12 as a white powder 

(0.94 mmol, 734 mg) in 74 % yield. Rf 0.22 (EtOAc/CH 8:2 v /v); 1H NMR (CDCl3, 400 

MHz) δ 8.32 (2H, CH, d), 7.82 (2H, CH, d), 7.26 (1H, CH, s), 6.41 (2H, NH, m), 4.45 (1H, 

CH, q, J = 20 Hz), 3.47 (2H, CH2, m), 2.48 (4H, CH2, m), 1.88-1.62 (15H, m), 1.49 (9H, CH3, 

s); 13C NMR (CDCl3, 100 MHz) δ171.40, 169.80, 167.05(CO), 135.15, 133.71 (C), 129.01, 

128.60, 126.99 (CH), 82.20, 71.41 (C), 52.67 (CH), 39.26, 31.75, 29.05 (CH2), 28.26, 27.94 

(CH3), 26.80, 26.66, 22.24 (CH2); 
19F NMR (CDCl3, 377 MHz) δ -80.77 (3F, CF3), -114.56 

(2F, CF2), -121.90, -122.86, -123.48 (6F, 3CF2), -126.13 (2F, CF2). MS ESI+ [M+H]+=780.2; 

HR-MS (ESI+, m/z) calcd for C31H39F13N3O5 [(M+H)+] calc 780.2682, found 780.2686. 

Synthesis of C6F13-Lys(PBN)-OH (13). At 0°C, compound 12 (0.38 mmol, 0.30 g, 1eq) was 

dissolved in a solution of dry CH2Cl2 / TFA (5:5 v/v) and 150µL of scavenger TES was added 

to the mixture. The solution was stirred 3h under argon atmosphere and was concentrated 

under vacuum. After purification by flash chromatography eluted with EtOAc/MeOH (8:2 

v/v) containing 1% of AcOH, compound 13 was obtained (0.29 mmol, 0.212 g) as a white 

powder in 76% yield. Rf 0.18 (EtOAc/MeOH 8:2 v /v); 1H NMR (CDCl3, 400 MHz) δ 8.58 
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(1H, NH, m), 8.41 (2H, CH, d), 7.98 (1H, CH, s), 7.89 (2H, CH, d), 4.39 (1H, CH, m), 3.40 

(2H, CH2, q, J = 12 Hz), 2.56 (4H, 2 CH2, m), 1.95-1.48 (15H, m); 13C NMR (CDCl3, 100 

MHz) δ 176.81, 173.87, 170.83 (CO), 138.50, 135.66 (C), 134.52, 131.76, 129.71 (CH), 

73.99 (C), 54.97 (CH), 42.05, 33.60, 31.28 (CH2), 30.18 (CH3), 29.09, 28.87, 25.46 (CH2); 

19F NMR (CDCl3, 377 MHz) δ -79.06 (3F, CF3), -112.74 (2F, CF2), -119.90, -120.88, -121.56 

(6F, 3CF2), -124.22 (2F, CF2). MS ESI+ [M+H]+ = 724.1; HR-MS (ESI+, m/z) calcd for 

C27H32F13N2O5 [(M+H)+] 724.2056, found 724.2058. 

Synthesis of Boc-Lys(PBN)-C6F13 (14).At 0°C, compound 1 (1.38 mmol, 1 g, 1eq) was 

dissolved in diethyl ether and 0.08 g of 10% Pd/C was slowly added. The reaction mixture 

was submitted to a hydrogen atmosphere for 30 h (7 bars). After filtration of the catalyst 

through a pad of Celite and evaporation of the solvent under vacuum, the resulting amino 

compound was added to a solution of HOSu-PBN (1.52 mmol, 0.58 g, 1.1eq) in dry CH2Cl2 at 

room temperature under argon. After 24 h, the solvent was removed under vacuum and the 

crude mixture was purified by flash chromatography eluting with EtOAc/CH (9:1 v/v) and by 

size exclusion chromatography eluting with CH2Cl2/MeOH (1:1 v/v) to give compound 14 

(0.0.90 mmol, 0.72 g, 69% yield) as a white powder. Rf 0 .22 (EtOAc/CH 8:2 v /v); 1H NMR 

(CDCl3, 400 MHz) δ 8.33 (2H, CH, d, J = 4 Hz), 7.83 (2H, CH, d, J = 4 Hz), 7.61 (1H, CH, 

s), 6.89 (1H, NH, t, J = 6 Hz), 6.63 (1H, NH, m), 5.31 (1H, NH d, J = 4 Hz), 4.06 (1H, CH, 

m), 3.76 (2H, CH2, m), 3.44 (2H, CH2, m), 2.35 (2H, CH2, m), 1.87 (1H, m), 1.62 (12H, m), 

1.42 (11H, m); 13C NMR (CDCl3, 100 MHz) δ 172.58, 167.10 (CO), 135.19, 133.71 (C), 

129.09, 128.65, 127.04 (CH), 80.25, 71.45 (C), 54.31 (CH), 39.09, 31.86, 30.87, 30.66, 29.06 

(CH2), 28.30, 28.23 (CH3), 22.53 (CH2). HR-MS (ESI+, m/z) calcd for C27H32F13N2O5 

[(M+H)+] 795.2791, found 795.2794. 

Synthesis of H2N-Lys(PBN)-C6F13 (15). At 0°C, compound 14 (0.13 mmol, 0.10 g, 1eq) was 

dissolved in a solution of dry CH2Cl2 / TFA (8:2 v/v) and 40µL of scavenger TES were added 



   Chapter III - Part 1 

 

147 
 

to the mixture. The solution was stirred 2h under argon atmosphere and was concentrated 

under vacuum. After purification by silica gel chromatography eluted with EtOAc/MeOH (9:1 

v/v), compound 15 was obtained (0.01 mmol, 0.07 g) as a white powder in 78% yield. Rf 0.18 

(EtOAc/MeOH 8:2 v /v); 1H NMR (MeOD, 400 MHz) δ 8.41 (2H, CH, d, J = 8 Hz), 7.99 

(1H, CH, s), 7.89 (2H, CH, d, J = 8 Hz), 3.75 (1H, CH, t, J = 12 Hz), 3.56 (2H, CH2, t, J = 12 

Hz), 3.41 (2H, CH2, t, J = 8 Hz), 2.45 (2H, m), 1.86 (2H, m), 1.69 (2H, m), 1.66 (9H, s), 1.47 

(2H, m); 13C NMR (CDCl3, 100 MHz) δ 169.38 (CO), 137.12, 134.87 (C), 133.50, 130.51, 

128.28 (CH), 72.72 (C), 54.55 (CH), 40.36, 32.99, 32.72, 30.14 (CH2), 28.39 (CH3), 27.66, 

23.36 (CH2); MS ESI+ [M+H]+ = 724.1; HR-MS (ESI+, m/z) calcd for C26H32F13N4O3 

[(M+H)+] 695.2267, found 695.2269. 

Synthesis of C6F13-Lys(Z)-Lys(Z)-OtBu  (16).The tert-butoxycarbonyl protecting group of 

compound 11 (0.62 mmol, 0.44 g, 1eq) was remonved using 50 % of trifluoroacetic acid in 

dry CH2Cl2, the resulting compound was concentrated under vacuum and added to a solution 

of  H-Lys(Z)-OtBu (0.68 mmol, 0.25 g, 1.1 eq), DCC (0.79 mmol, 0.16 g, 1.3 eq) and a 

catalytic amount of HOBt in dry CH2Cl2, few drops of TEA were added to control pH~8-9. 

After one night of stirring under argon atmosphere and at room temperature, the mixture was 

filtered and concentrated under vacuum. The crude product was purify by flash 

chromatography eluted with EtOAc/CH (4:6 v/v) to give compound 16 (0.26 mmol, 0.26 g, 

44 %) as a white product. Rf  0.36 (EtOAc/CH 6:4 v /v); 1H NMR (CDCl3, 400 MHz) δ 7.30 

(10H, CH, m), 7.13 (1H, NH, m), 7.06 (1H, NH, m), 5.40 (1H, NH, m), 5.30 (1H, NH, m), 

5.07 (4H, CH2, m), 4.55 (1H, CH, m), 4.36 (1H, CH, m), 3.14 (4H, CH2, m), 2.45 (4H, CH2, 

m), 1.78 (2H, CH2, m), 1.66 (2H, CH2, m), 1.34-1.50 (17H, CH2 + CH3, m); 13C NMR 

(CDCl3, 100 MHz) δ 171.72, 171.21, 171.15, 170.30, 156.75 (CO), 136.60, 136.56 (C), 

128.47, 128.45, 128.07, 128.02 (CH), 82.12 (C), 66.62, 66.53 (CH2), 53.01, 52.81 (CH), 

40.27, 40.19, 32.00, 31.35, 29.26 (CH2), 27.87 (CH3), 26.72, 26.51, 26.29, 22.16, 22.09 
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(CH2). HR-MS (ESI+, m/z) calcd for C41H50F13N4O8 [(M+H)+] 973.3421, found 973.3429. 

Synthesis of C6F13-Lys(PBN)-Lys(PBN)-OtBu  (17). At 0°C, compound 16 (0.51 mmol, 

0.50 g, 1eq) was dissolved in ethanol with a catalytic amount of 10% Pd/C and the mixture 

was submitted, overnight, to a hydrogen atmosphere (6 bars). After filtration of the catalyst 

through a pad of Celite and evaporation of the solvent under vacuum, the resulting amino 

compound was added to a solution of HOSu-PBN (1.12 mmol, 0.38 g, 2.2 eq) in dry CH2Cl2 

at room temperature under argon atmosphere. After 24 h, the solvent was removed under 

vacuum and the crude mixture was purified by flash chromatography eluting with 

EtOAc/MeOH (95:5 v/v) and by size exclusion chromatography eluting with CH2Cl2/MeOH 

(1:1 v/v) to give compound 17 (0.30 mmol, 0.34 g, 60% yield) as a white powder. Rf 0.32 

(EtOAc/MeOH 9:1 v /v) ; 1H NMR (CDCl3, 400 MHz) δ 8.29 (4H, CH, m), 7.84 (4H, CH, 

m), 7.59 (2H, CH, m), 7.05 (3H, NH, m), 4.40 (2H, CH, m), 3.33-3.55 (4H, CH2, m), 2.43 

(4H, CH2, m), 1.73-1.85 (39H, CH2 + CH3, m); 13C NMR (CDCl3, 100 MHz) δ 171.63, 

171.22, 170.35, 167.32, 167.14 (CO), 135.32, 135.16, 133.61, 135.58 (C), 129.25, 129.15, 

128.65, 128.62, 128.50, 127.25, 127.15, 127.08 (CH), 82.16, 71.40 (C), 53.31, 52.58 (CH), 

39.19, 31.41, 28.86, 28.73 (CH2), 28.28, 27.95 (CH3), 26.71, 26.61, 22.32, 22.11 (CH2). HR-

MS (ESI+, m/z) calcd for C49H64F13N6O8 [(M+H)+] 1111.4578, found 1111.4584.  

Synthesis of Boc-Lys(PBN)-Lys(PBN)-C6F13 (18).Compound 2 (0.50 mmol, 0.50 g, 1eq) 

was dissolved in ethanol at 0°C with a catalytic amount of 10% Pd/C. The mixture was then 

submitted, overnight, to a hydrogen atmosphere (6 bars). After filtration of the catalyst 

through a pad of Celite and evaporation of the solvent under vacuum, the resulting amino 

compound was added to a solution of HOSu-PBN (1.11 mmol, 0.42 g, 2.2 eq) in dry CH2Cl2 

at room temperature and under argon atmposphere. After 24 h, the solvent was removed under 

vacuum and the crude mixture was purified by flash chromatography eluting with 

EtOAc/MeOH (95:5 v/v) and by size exclusion chromatography eluting with CH2Cl2/MeOH 
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(1:1 v/v) to give compound 18 (0.26 mmol, 0.29 g, 50% yield) as a white powder. Rf 0.28 

(EtOAc/MeOH 9:1 v /v) ; 1H NMR (CDCl3, 400 MHz) δ 8.30 (4H, CH, m), 7.88 (4H, CH, 

m), 7.64 (2H, CH, m), 7.40 (2H, NH, m)), 7.27 (1H, NH, m), 7.08 (1H, NH, m), 5.75 (1H, 

NH, m), 4.35 (1H, CH, m), 3.97 (1H, CH, m), 3.51 (4H, CH2, m), 3.31 (3H, CH2 + NH, m), 

2.35 (2H, CH2, m), 1.31-2.05 (39H, CH2 + CH3, m); 13C NMR (CDCl3, 100 MHz) δ 173.09, 

172.14, 171.19, 167.40, 167.20 (CO), 156.64, 135.55, 135.30, 133.51, 133.46 (C), 129.70, 

129.64, 128.83, 127.27, 127.17 (CH), 80.48, 71.49, 71.43 (C), 55.58, 53.20 (CH), 50.67, 

39.09, 38.98, 31.94, 30.49, 29.67, 29.02, 28.86 (CH2), 28.25, 28.24 (CH3), 22.57, 22.45 

(CH2). HR-MS (ESI+, m/z) calcd for C49H65F13N7O8 [(M+H)+] 1126.4687, found 1126.4680. 

19
F NMR experiments. Critical micelle concentrations were determined using 19F NMR 

spectroscopy. All the samples were dissolved in a deuterated water/water mixture (1:9, v/v) 

containing CF3CO2Na as internal reference. A concentrated solution of 1-3 mM was prepared 

and a range of diluted solutions were obtained by successive dilutions. All solutions were 

vortexed for a few minutes and then incubated at room temperature for 12 h. 19F NMR spectra 

were recorded at 25°C on a Bruker AC 400 spectrometer operating at 400 MHz. The NMR 

spectrum was calibrated using the internal reference peak of CF3CONa and chemical shift of 

the CF3 group was given in ppm. 

Dynamic light scattering. Hydrodynamic particle size distributions were determined on a 

Zetasizer Nano-S model 1600 (Malvern Instruments, UK) equipped with a He-Ne laser ( = 

633 nm, 4.0 mW). The surfactant solution was prepared 24 h prior to measurements using 

Milli-Q water. The solution was vortexed for a few minutes and then incubated at room 

temperature for 24 h. The surfactant solution was passed through a 0.45-µm filter before 

being transferred into a 45-μL low-volume quartz batch cuvette. The time-dependent 

correlation function of the scattered light intensity was measured at an angle of 173
o
 

(backscattering detection). The hydrodynamic diameter (DH) of the particles was estimated 



   Chapter III - Part 1 

 

150 
 

from their diffusion coefficient (D) using the Stokes–Einstein equation, H3 DTkD B , 

where kB is the Boltzmann's constant, T absolute temperature, and η the viscosity of the 

solvent. CONTIN analysis was used for evaluating autocorrelation functions. All 

measurements were done at (25 ± 0.5)°C. 

Inhibition of linoleic acid lipid peroxidation.[27] Production of conjugated diene 

hydroperoxide by oxidation of linoleic acid in an aqueous dispersion is monitored at 234 nm. 

AAPH is used as a free radical initiator. Ten microliters of the 16 mM linoleic acid sodium 

salt solution was added to the UV cuvette containing 0.93 mL of 0.05 M phosphate buffer, pH 

7.4 prethermostated at 37 °C. The oxidation reaction was initiated at 37 °C under air by the 

addition of 50 μL of 40 mM AAPH solution. Oxidation was carried out in the presence of 10 

μL of the compounds. 

ABTS
+
 – decolorization assay in ethanolic solution for antioxidant activity.[28] ABTS is 

dissolved in water to a 2 mM concentration. ABTS radical cation (ABTS +) is produced by 

reacting the ABTS stock solution with 0.17 mM potassium persulfate in phosphate buffer (pH 

7.4, 20 mM) and allowing the mixture to stand in the dark at room temperature for 12–16 h 

before use. For steady state measurements, 100 mM ABTS + was used. For the present study, 

the 100 mM ABTS  solution (200 μL) was diluted with ethanol (790 μL) to an absorbance of 

0.70 at 734 nm, equilibrated at room temperature, mixed with 10 μL of the tested compounds 

(stock solutions 10 mM) and the absorbance reading was taken at room temperature 1 min 

after the initial mixing. Trolox was used as a standard. 

Soybean LOX inhibition study in vitro.[27] The tested compounds dissolved in DMSO 

were incubated at room temperature with sodium linoleate (0.1 ml) and 0.2 ml of enzyme 

solution (1/9 x 10-4 w/v in saline). The conversion of sodium linoleate to 13-

hydroperoxylinoleic acid at 234nm was recorded and compared with the appropriate standard 

inhibitor NDGA. 
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I. Introduction 

Melanoma is a very aggressive skin cancer which has dramatically increased in recent years 

and has become a major worldwide public health problem.[29] It represents only a minority 

of skin cancers but it is the worst of them and appears in any part of the body. Melanoma is a 

result of an uncontrolled growth of melanocytes, the cells responsible for the production of 

melanin, which are found in the basal layer of the epidermis. More precisely, melanin is 

produced in highly specialized organelles known as melanosomes. The life span of patients 

with metastases at stage IV is less than one year[30, 31] and unfortunately, there is currently 

no specific and effective treatment for this cancer. The lack of treatments and specific 

therapies led researchers to develop compounds with a specific affinity to melanoma tissues. 

Different melanoma targets have been investigated such as melanin pigment which can be 

itself a specific target for melanoma tissue. Melanin is made of covalently linked eumelanin 

and pheomelanin (Figure 3.2.1) but the exact chemical structure of melanin is still under 

debate.[32] 

 

Figure 3.2.1. Structures of eumelanin and pheomelanin. 

Benzamide derivatives used to specifically target the melanoma. Many drugs derived from 

polycyclic aromatic compounds are able to bind to melanin, probably due to the interaction 

between the aromatic rings of the drugs and the aromatic rings of the melanin subunits.[33] A 

wide range of benzamide derivatives such as spermidine benzamide derivatives,[34] iodinated 
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benzamides derivatives[35, 36] and aromatic or heteroaromatic benzamide analogs[33] were 

developed as potent melanoma-seeking agents. 

 

Figure 3.2.2. General structures of benzamide derivatives with a high affinity for melanin.  
(Ar or Het = naphtalene, pyridine, indole, benzo[b]furan, benzo[b]thiophene, imidazole[1,2-
a]pyridine, benzimidazole, quinoline, quinolone, isoquinoline, quinoxaline, 1,6-
naphthyridine).[33] 

All benzamides derivatives represented above (Figure 3.2.2) exhibit an affinity for melanoma 

but with different pharmacokinetic profiles; the quinoline and quinoxaline derivatives were 

the most potents.[33] After pharmacomodulation study, ICF 01012 was selected for its high, 

sustained and specific tumor concentration with a rapid clearance from non-target organs, 

making it promising for application in targeted radionuclide therapy.[37] A convenient 

analytical protocol, based on high-performance liquid chromatographic method, was 

developed for detection of [131I] ICF 01012 in biological samples in order to follow the in vivo 

metabolism.[38] Anti-tumoral study of [131I] ICF01012 showed a strong efficacy associated 

with low toxicity, supporting the concept of targeted radionuclide therapy using [131I] 

radiolabelled iodoquinoxaline for an effective melanoma treatment.[39]  

The high affinity of ICF 01012 towards melanin led Chezal and co-workers to develop three 

melanin-targeted ligands in order to graft goldonium based nanoparticules that have been 

developed for multimodal imaging and theranostic applications. The binding site of the three 

compounds is a free amino function and in two of them a pegylated spacer was added in one 
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or other of the two extremities in order to study the importance of both ionic and hydrophobic 

sites.[40] 

 

Figure 3.2.3. Structure of melanin-targeted ligands with pegylated spacer. 

Macular pigment and melanin in age-related maculopathy: Targeting of nitrones. Tumor 

cells produce high amounts of ROS and melanocytes are continuously exposed to reactive 

biochemical species. This is finely tuned via the intrinsic antioxidant and radical properties of 

melanin. But, an imbalance in the antioxidant system can lead to endogenous generation of 

ROS in human melanomas and melanin is able to induce DNA damage. Moreover, the 

macular pigment and melanin have been suggested to protect against age-related maculopathy 

(ARM) by its abilities to scavenge free radicals and PBN has already shown potency against 

light-induced retinal degeneration.[41] Therefore, the presence of a PBN moiety able to 

scavenge radicals conjugated with a melanoma-targeting ligand could be beneficial against 

ARM. 

A melanin-targeted ligand grafted on the PBN will ensure intracellular targeting of the nitrone 

group specifically into the melanomas. In collaboration with the University of Clermont-

Ferrand, we developed two nitrone derivatives conjugated with a benzamide compound 

susceptible to target the melanoma. This would allow us to target PBN in melanoma tissues in 

which reactive species are widely formed. In order to achieve this targeting, we synthesized 

two linear nitrones conjugated to the melanin-targeted ligand via an amide bond. Chezal and 

col. have provided compound 1, a ICF01012 derivative in which iodine was replaced by a 

pegylated spacer.[40] The first derivative denoted PBN-ICF (compound 2) was directly 
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obtained by conjugating PBN to the ICF group, while the second derivative bearing a 

perfluorocarbonated chain was obtained by grafting the RF-Lys(PBN)-OH derivative onto 

ICF, leading to compound 3 also called RF-Lys(PBN)-ICF. 

II. Results and discussion 

Synthesis of PBN-ICF (2). The primary amino group of the melanin targeted ligand was 

linked in a single step with HOSu-PBN, in dry dichloromethane. The mixture was stirred at 

room temperature and under argon atmosphere until complete consumption of the amine (t=6 

h). The solvent was then evaporated and purification on silica gel chromatography followed 

by size exclusion chromatography led to PBN-ICF (2) in 97 % yield. 

 

Scheme 3.2.1. Synthesis of a melanoma-targeted nitrone (PBN-ICF). 

Synthesis of RF-Lys(PBN)-ICF (3). In continuation with the project described in the first 

part of this chapter, an amphiphilic lysine-based compound targeting melanoma was 

synthesized. Compound 1 was used as a hydrophilic part and RF-Lys(PBN)-OH as a 

hydrophobic part. RF-Lys(PBN)-OH was previously synthesized following procedure 

describes in the first part of this chapter. The amino group of compound 1 was then coupled to 

the acidic function of RF-Lys(PBN)-OH using dicyclohexylcarbodiidimide (DCC) and 1-

hydroxybenzotriazole (HOBt) as coupling reagents. After complete consumption of the amino 

compound, reaction was stopped. Purification on silica gel chromatography followed by size 

exclusion chromatography, gave RF-Lys(PBN)-ICF in 60 % yield.  
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Scheme 3.2.2. Synthesis of the amphiphilic melanoma-targeted nitrone RF-Lys(PBN)-ICF. 

Physicochemical Measurements. 

The PBN-ICF compound was soluble in water until ~ 4 g.L-1, whereas its corresponding 

amphiphilic derivative was more hardly soluble due to the presence of the fluorinated chain. 

We found that RF-Lys(PBN)-ICF was soluble up to ~1 g.L-1 afterward the solution became 

slightly cloudy. 

Electronic Paramagnetic Resonance (EPR) spectroscopy. The spin-trapping properties of 

the two melanoma-targeted derivatives were studied using Electron Paramagnetic Resonance 

(EPR) spectroscopy to evaluate their spin strapping ability. We investigated the spin-adducts 

formation of methoxy radical (CH3O
•) and superoxide radical (O2

•), using two standard 

systems conditions DMSO/MeOH/Pb(OAc)4  and H2O2/Pyridine, respectively.  

 

(A) (B) 



Chapter III - Part 2 

 

157 

 

 
Figure 3.2.4. Experimental and simulated EPR spectrum of methoxy radical adduct of (A) 
PBN-ICF and (B) RF-Lys(PBN)-ICF; experimental and simulated EPR spectrums of 
superoxide radical adduct of (C) PBN-ICF and (D) RF-Lys(PBN)-ICF. 

Both nitrone derivatives were found to trap the methoxy and superoxide radical. A standard 

six lines spectrum was observed for the methoxy spin-adduct formation, corresponding to the 

hyperfine coupling with the nitrogen and the hydrogen in β position of  the nitrone function. 

After simulation, we obtained values of aN = 13.73 G and aH = 2.23 G for PBN-ICF and aN = 

13.72 G and aH = 2.23 G for RF-Lys(PBN)-ICF, in good agreement with a PBN-type radical 

adduct. Despite of the bulky ICF-group grafted, PBN keeps its ability to trap free radicals, as 

previously observed for amphiphilic nitrones. The asymmetric signals observed for both 

PBN-ICF and RF-Lys(PBN)-ICF are characteristics of anisotropic conditions leading to a 

slow molecular tumbling motion. This suggests that even compound 2 has a slightly 

amphiphilic character, in which PBN plays the role of hydrophobic group. Concerning the 

superoxide radical trapping, only three lines were observed for both compounds. This might 

be due to the presence of oxygen in the pyridine solution, leading to broader lines and 

therefore the interactions with β-hydrogen cannot be determined. For the hyperfine coupling 

with the nitrogen, we found constant values of 13.92 G for compound 2 and 13.70 for 

compound 3. 

Cyclic voltammetry (CV). The electrochemical characterization of the two melanoma-

targeted nitrones was studied using cyclic voltammetry (CV) in aqueous conditions 

(C) (D) 
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containing 50 mM of NaCl. In these conditions, the nitronyl function of PBN moiety 

exhibited an irreversible one-step reduction with a cathodic peak potential about -1.74 V vs. 

Ag/AgCl, in agreement with values of the literature.[19] Both PBN-ICF and RF-Lys(PBN)-

ICF are more easily reduced than PBN, with potentials values of -1.45 V and -1.38 V, 

respectively (Figure 3.2.5). The electron-withdrawing amide bond in para-position of the 

PBN moiety is responsible of the highest reductive potentials observed in water for the two 

melanoma-targeted nitrone derivatives. A second peak potential was observed at about ~ -1.0 

V, this peak was also present in the voltammogram of ICF alone and was therefore assigned 

to the melanoma-targeted ligand. 

 

Figure 3.2.5. Reduction of PBN, ICF01012, PBN-ICF and RF-Lys(PBN)-ICF in 50 mM NaCl 
at 0.1 V/s. 
 

III. Conclusion 

Two new conjugates of a melanoma-targeting ligand and a PBN moiety were synthesized. 

EPR experiments have demonstrated that despite the presence of a bulky group, the nitronyl 

function is still able to trap free radicals. As observed for amphiphilic derivatives described in 

part 1 of this chapter, cyclic voltammetry experiments have demonstrated that the electron-

withdrawing effect of the amide bond that links the PBN to the carriers tend to decrease the 

reduction potential of compounds 2 and 3 in aqueous media. Biological evaluation against 
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macular degenerative disorders is currently in progress, for these two melanoma-targeted 

derivatives, in the lab of Pr Isabelle Ranchon-Cole in Clermont-Ferrand. 

IV. Experimental Section 

General methods and materials for the synthesis, spin-trapping experiments and cyclic 

voltammetry experiments are described in part 1 of chapter 2. 

 

Synthesis of PBN-ICF (2). Under agron atmosphr, compound 1[40] (0.17 mmol, 80 mg, 1 

eq) was dissolved in dry CH2Cl2. HOSu-PBN (0.21 mmol, 70 mg, 1.2 eq) was added to the 

solution. After 22 h of stirring at room temperature, the solvent was evaporated under 

vacuum. The crude mixture was purified by silica gel chromatography eluted with 

CH2Cl2/EtOH (6:4 v/v) and then by size exclusion chromatography eluted with 

CH2Cl2/MeOH (1:1 v/v) to give compound 2 (0.17 mmol, 111 mg, 97% yield) as a yellow 

powder. Rf  = 0.18 (CH2Cl2/EtOH 6:4  v /v); 1H NMR (CDCl3, 400 MHz) δ 9.35 (1H, H(i), s), 

9.03 (1H, NH(n), s), 8.37 (1H, NH(p), s), 8.17 (2H, CH Ph, d, J = 8 Hz), 7.99 (1H, CH = N+, 

s), 7.91 (1H, H(l), d, J = 12 Hz ), 7.76 (3H, CH Arom. (k), m ), 7.53 (1H, NH(o), s), 7.49 (1H, 

H(j), s), 6.23 (1H, NH(m), s), 3.62 (2H, H(h), t, J = 4 Hz), 3.53-3.58 (8H, H(e, e’, f, f’), m ), 

3.46 (2H, H(c), m), 3.33 (2H, H(d), t, J = 8 Hz), 2.72 (2H, H(g), t, J = 8 Hz), 2.6 (4H, H(b), q, 

J = 8 Hz), 1.5 (9H, tBu, s), 1.03 (6H, H(a), t, J = 8 Hz); 13C NMR (CDCl3, 100 MHz) δ 167.8, 

163.9, 155.6 (CO), 144.8, 143.6 (C), 143.5 (CH), 141.1, 136.4, 135.2, 133.5 (C), 129.9, 129.7, 

128.7, 127.2, 124.5, 113.2 (CH), 71.4 (C), 70.5, 70.2, 70.0, 69.6, 51.5, 47.0, 40.1, 39.6, 36.9 

(CH2), 28.2, 11.4 (CH3). HR-MS (ESI+, m/z) calcd for C27H32F13N2O5 [(M+H)+] 665.3775, 

found 665.3735. 



Chapter III - Part 2 

 

160 

 

 

Synthesis of RF-Lys(PBN)-ICF (3). RF-Lys(PBN)-OH (0.047 mmol, 34 mg, 1.1 eq), DCC 

(0.06 mmol, 110 mg, 1.1 eq) and a catalytic amount of HOBt were dissolved in dry CH2Cl2. 

Compound 1 (0.04 mmol, 20 mg, 1 eq) was added and the mixture was stirred overnight 

under argon atmosphere. The solution was then filtered over a pad of Celite, concentrated 

under vacuum and purified by silica gel chromatography eluted with CH2Cl2/EtOH (6:4 v/v) 

and asize exclusion chromatography eluted with CH2Cl2 / MeOH (1:1 v/v) to give  compound 

3 (0.03 mmol, 30 mg, 60% yield) as a yellow powder. Rf 0.18 (CH2Cl2/EtOH 6:4  v /v); 1H 

NMR (CDCl3, 400 MHz) δ 9.36 (1H, H(i), s), 9.03 (1H, NH(n), s), 8.38 (1H, NH(p), s, 8.17 

(2H, CH Arom., d, J = 8 Hz), 8.02 (1H, H(l), d, J = 12 Hz), 7.94 (1H, CH = N+, s), 7.80 (1H, 

NH(r), s), 7.75 (2H, CH Arom., d, J = 8 Hz), 7.56 (1H, NH(o), s), 7.50 (2H, H(j)-H(k), m), 

7.42 (1H, NH (q), s), 6.30 (1H, NH(m), s), 4.36 (1H, CH*, s), 3.28-3.55 (16H, H(c, d, e, f, e’, 

f’, g, h), m), 2.71 (2H, CH2-NH Lys, t, J = 12 Hz), 2.62 (4H, H(b), q, J = 8 Hz), 2.35-2.49 

(4H, CH2-CH2-C6F13, m), 1.67-1.75 (2H, CH2 Lys, m), 1.51 (11H, tBu- CH2 Lys, s), 1.31-

1.35 (2H, CH2 Lys, m), 1.02 (6H, H(a), t, J = 8 Hz); 13C NMR (CDCl3 , 100 MHz) δ 172.3, 

170.9, 167.5, 163.8, 155.6 (CO), 144.7, 143.7 (C), 143.6 (CH), 141.3, 136.5, 135.0, 133.6 (C), 

130.1, 129.3, 128.6, 127.1, 124.4, 113.1 (CH), 71.4 (C), 70.3, 70.2, 69.9, 69.4 (CH2), 53.6 

(CH), 51.5, 47.0 (CH2), 39.4 (CH2-C6F13, J = 20 Hz), 36.9, 31.3 (CH2), 28.2 (CH3), 26.7, 

26.5, 26.3, 22.5 (CH2), 11.4 (CH3); 
19F NMR (CDCl3, 377 MHz) δ -80.8 (3F, CF3), -114.7 

(2F, CF2), -121.9, -122.9, -123.5 (6F, 3CF2), -126.2 (2F, CF2). MS ESI+ [M+H]+ = 1167.5; 

HR-MS (ESI+, m/z) calcd for C27H32F13N2O5 [(M+H)+] 1167.4701, found 1167.4696.
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CONCLUSION 

 

Les travaux entrepris au cours de cette Thèse avaient pour but d’améliorer les propriétés de 

piégeage de radicaux libres ainsi que les propriétés antioxydantes de la PBN. Notre premier 

objectif a été de modifier la structure de base de la PBN par ajout de différents substituants 

afin d’améliorer ses propriétés intrinsèques. Par la suite, nous avons essayé de favoriser son 

transport au sein des fluides biologiques ainsi que son passage cellulaire, en greffant la PBN 

sur des structures possédant un motif de ciblage spécifique. L’objectif de cette seconde partie 

était de disposer, à long  terme,  d’outils  plus  efficaces  dans  le  traitement  de  pathologies 

associées au stress oxydant. 

Dans un premier temps, nous avons développé plusieurs analogues simples de la PBN afin de 

moduler  ses  propriétés  intrinsèques.  Nous  nous  sommes  d’abord  focalisés sur des 

modifications de la partie N-tert-butyl que nous avons substituée par des groupements aux 

propriétés électroniques différentes. Des analogues mono, di et tri-substitués ont également 

été développés. Les études de calcul de densités de charge ont quant à elles été effectuées sur 

une plus large gamme de composés. Les résultats ont montré une augmentation de la charge 

positive du carbone de la nitrone en  fonction de  l’ajout de substituants sur la partie N-tert-

butyl. Des études de cinétique de piégeage de spin, par UV visible ou par spectroscopie RPE, 

ont démontré une addition nucléophile du radical superoxyde et du radical phényl sur le 

carbone de la nitrone. La détermination des propriétés redox de nos composés par 

voltammétrie cyclique nous a permis de montrer que la présence de groupements électro-

attracteurs sur la partie N-tert-butyl rend l’oxydation de la fonction nitrone plus difficile. De 

plus,  l’évaluation  de  l’activité  cytoprotectrice  in-vitro de nos nitrones contre le peroxyde 

d’hydrogène  nous  a  permis  de  mettre  en  évidence  une  corrélation  avec  les propriétés 

électrochimiques. Nous  avons  remarqué  que  les  nitrones  à  faible  potentiel  d’oxydation 
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protégeaient mieux les cellules contre un stress oxydant induit par du peroxyde d’hydrogène. 

Ceci démontre que la nature des substituants en β du nitronyl a une influence directe sur les 

propriétés de la fonction nitrone, au travers des effets inductifs. Dans la série que nous avons 

développée, la nitrone substituée par une liaison amide (PBN-CH2NHAc)  s’est  montrée  la 

plus intéressante avec un faible potentiel d’oxydation, de bonnes capacités de piégeage et une 

bonne activité antioxydante contre le peroxyde d’hydrogène. 

Sur une série de dérivés de PBN substitués en para du phényl par des groupements aux effets 

électroniques variables, des travaux préliminaires avaient démontré l’influence importante des 

effets mésomères de ces substituants en para. Au cours de cette thèse, nous avons donc étudié 

leurs propriétés électrochimiques. Nos expériences de voltammétrie cyclique nous ont permis 

de montrer une corrélation entre les constantes de Hammett des substituants et les potentiels 

redox des nitrones. Les composés substitués par des groupements électro-donneurs se sont 

avérés plus facilement oxydés et plus difficilement réduits tandis que l’inverse a été constaté 

pour les composés substitués par des groupements électro-attracteurs. Ces informations nous 

ont conduits à  suggérer  que  l’effet  mésomère  des  groupements  électro-donneurs tend à 

stabiliser le nitroxyde cationique  intermédiaire,  favorisant  ainsi  l’oxydation.  Parmi  les 

composés étudiés, ceux substitués par un groupe diméthyl-amine ou par un méthoxy ont 

montré de meilleures propriétés électrochimiques, avec de faibles potentiels d’oxydation. De 

plus, ces études de cinétique de piégeage par RPE ont montré que tous les dérivés piégeaient 

mieux le radical phényl que la PBN.  D’après  les  calculs  de  densité  de  charge  et  les 

expériences de piégeage de radicaux libres effectuées sur les deux séries de composés, il 

semblerait que l’addition du radical phényl sur la nitrone soit plutôt sous contrôle orbitalaire 

que sous contrôle de charge. Finalement, le composé substitué par un methoxy s’est montré le 

plus  efficace de  cette  série,  avec un  faible potentiel  d’oxydation et de bonnes propriétés de 
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piégeage, faisant de la liaison éther un bras de liaison intéressant pour  d’éventuelles 

fonctionnalisations en para du phényl de la PBN. 

Un troisième type de modulation a été effectué par substitution du tert-butyl par un 

groupement cyclohexane. Cette modification avait pour but de rigidifier la molécule et donc 

de lui conférer une meilleure stabilité des adduits formés. Les études de voltammétrie 

cyclique ont montré que  l’ajout  du  cycle  n’avait  pas  d’influence  significative  sur  les 

propriétés redox de la nitrone. Par contre, les dérivés conservent leur capacité à piéger les 

radicaux libres et les adduits de spin semblent plus intenses et plus stables que ceux de la 

PBN. Des études de cinétiques sont actuellement en cours pour vérifier cette hypothèse.  

Aux vues des résultats obtenus avec ces trois types de modifications et dans le but d’améliorer 

davantage les propriétés intrinsèques de la PBN, il serait désormais opportun de synthétiser 

une série de composés modifiés à la fois en para du phényl et sur la partie N-tert-butyl de la 

nitrone. De plus, nous pourrions envisager des modifications en ortho et méta du phényl. 

Le deuxième objectif de mes travaux de Thèse  était  d’améliorer  la  biodisponibilité  et  le 

ciblage des nitrones en les insérant sur des structures spécifiques. Nous avons choisi dans un 

premier temps de poursuivre les recherches menées au laboratoire sur un modèle de 

transporteur monomoléculaire amphiphile à fixation latérale.  Ce concept de vectorisation qui 

repose sur le greffage d’un antioxydant sur la chaîne latérale d’un acide aminé lui-même relié 

à une partie hydrophile et une chaîne hydrophobe, a démontré par le passé qu’il était  tout à 

fait généralisable à différents antioxydants ou agents thérapeutiques. Nous avons donc trouvé 

opportun de développer de nouveaux transporteurs amphiphiles sur lesquels plusieurs 

antioxydants pourraient être greffés. Ainsi, deux lysines ont été insérées  au  cœur  de  cette 

structure, soit avec des protections similaires sur leurs chaînes latérales, soit protégées 

orthogonalement. Deux nouveaux composés amphiphiles ont alors été synthétisés,  l’un 

comportant deux motifs PBN et le second combinant dans sa structure une PBN et un Trolox, 
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analogue synthétique de la vitamine E. Les études des propriétés physico-chimiques ont 

permis de confirmer que greffer un ou plusieurs antioxydant(s) sur un transporteur amphiphile 

améliore  à  la  fois  la  solubilité  dans  l’eau  et  la  lipophilie  globale  de  l’antioxydant. Les 

premiers résultats biologiques ont montré de meilleures activités antioxydantes pour le 

composé FADiPBN portant deux motifs nitrones que pour son analogue comportant une seule 

PBN.  L’activité  du  conjugué  mixte  FATxPBN  contenant  une  PBN  et  un  Trolox  est 

actuellement en cours d’étude.  

 

La conception d’une  telle structure amphiphile ouvre  la possibilité à diverses stratégies. Par 

exemple,  il  serait  envisageable  d’incorporer  plusieurs  lysines  consécutives  afin  d’étudier  la 

multivalence de la PBN. De plus, la structure divalente mise au point dans ce travail, pourrait 

également être fonctionnalisée par d’autres  types d’antioxydants. Enfin, en combinant les 

résultats obtenus dans les chapitres II et III, nous  pourrions  envisager  la  synthèse  d’un 

nouveau composé dans lequel la PBN serait substituée par un groupement amide en β de la 

fonction nitrone et reliée à un transporteur amphiphile par une liaison éther située en para du 

phényl de la PBN. Ainsi, nous pourrions espérer améliorer les propriétés intrinsèques de la 

PBN tout en lui assurant une meilleure biodisponibilité et un ciblage plus spécifique. 
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Partition coefficient (log k’W) 

The capacity of an active compound to reach its intended target in the body within any 

degradation is of particular interest to determine its pharmacologic efficacy. However, during 

its transport through the body, the active compound crosses hydrophilic and hydrophobic 

media such as for example blood serum or membranes. Following this principle, Hansch has 

developed a technique to determine how a compound divides between two mixtures and 

defined the partition coefficient, marked as P.[1-3] This is the ratio of concentrations of a 

compound in a mixture of two immiscible phases at equilibrium. The first solvent is water and 

the second is the hydrophobic 1-octanol, used to mimic the lipid membrane. The partition 

coefficient is defined as the difference of solubility of the compound in these two phases, a 

useful parameter in estimating the distribution of drugs within the body, which can be 

determine following this equation: 

 

α is the degree of dissociation of compound in water and P is experimentally determined by 

decantation, measuring the compound concentration in variable volumes of octanol and water. 

Collander has demonstrated that organic compound motions are proportional to partition-

coefficient logarithm[4] and a new equation was then established by Hansch[5] as: 

Log 1/C = -k (log P)
2
 + k’ (log P) + k’’ 

in which C is the molar concentration for a standard biological response and k, k’ and k’’ are 

constants determined using the least square method. This relation allows to conclude that 

hydrophobic drugs with high octanol/water partition coefficients are preferentially distributed 

to hydrophobic compartments such as lipid bilayers. Conversely, hydrophilic drugs with 

octanol/water partition coefficients near to zero are preferentially found in aqueous 

compartments such as blood serum. 
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Determination of partition coefficient (log k’w). High-performance liquid chromatography 

is a faster method of log P determination. This faster and easy technique needs relatively low 

quantities of product and can be applied to a wide range of organic compounds. The principle 

is based on the compound capacity to interact with the alkyl chains of silica gel, and on the 

mobile phase polarity. The retention time, which is specific to each compound at different 

mobile phase polarity, is strongly affected by these two parameters. After determining the 

retention time, the k’ constant can be obtained using the following relation: k’ = (tR-t0)/t0 in 

which tR and t0 represent the retention time of the eluted compound and of the mobile phase, 

respectively. When plotting the log k’ with the percentage of methanol in the mobile phase, a 

linear regression curve is obtained and intersection with the ordinate axe gives the theoretical 

value of log k’ eluted with 100% of H2O, denoted as log k’w. An example is shown in Figure 

A.1 for the log k’W determination of PBN. The retention times of the compounds described in 

the first part of chapter III are listed in Table A.1. 

 

Figure A.1. Determination of log k’W of PBN. 
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Cyclic Voltammetry (CV) 

Cyclic voltammetry is the most widely used technique for acquiring qualitative information 

about electrochemical reactions because it offers a rapid and easy characterization of redox 

electroactive species. The principle consists to measure the variation of faradic current against 

the voltage variation applied to the redox system. The resulting potential produces an 

excitation signal which is measured between two voltage values, starting from the initial 

potential to the extrema ended potential, through a linear potential variation and at fixed rate. 

When the voltage reaches the extrema potential, also called switching potential, the reverse 

scan occurs and the voltage is swept back to the initial potential. This cycle can be repeated 

and the scan rate can be varied. 

Determination of electrochemical potential. To obtain this variation, the voltammetric 

system might be constituted of the studied electrolyte, the solvent, an electrolyte to provide 

ions and ensure sufficient conductivity as well as a specific three-electrode setup composed 

of: 

 A working electrode constituted of glassy carbon, on which the reaction of interest 

is occurring; the working electrode’s potential is varied linearly with time, 

 A reference electrode constituted of a silver wire and with constant concentration 

of AgCl solution, which maintains a constant and well-known electrode potential, 

 An auxiliary electrode also called the counter electrode, which conducts electricity 

from the signal source to the working electrode. 

A CV system consists of an electrolysis cell, a potentiostat, a current-to-voltage converter, 

and a data acquisition system. The current-to-voltage converter measures the current, and the 

data acquisition system produces the resulting voltammogram.[7, 8] 
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Figure A.2. Cyclic voltammetry of PBN in acetonitrile containing 50 mM of TBAP at 

0.1mV/s. 
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Electron Paramagnetic Resonance (EPR) 

Spin-trapping by EPR spectroscopy is a popular method for the detection and identification of 

short-lived free radicals in biological and chemical systems. EPR spectroscopy detects 

paramagnetic species such as unpaired electron of free radicals but when the half-life of 

radicals is too short, they generally cannot be detected by EPR. This is particularly true when 

stationary concentration of radicals studied is lower than the limit detection of EPR 

spectrometers used (about 10
-8

 mol.L
-1

). The spin-trapping method consists in using a 

diamagnetic compound able to covalently react with fleeting free radicals and form a more 

stable paramagnetic spin adduct, whose half-life is significantly longer than that of the parent 

radical, and which can be observed and characterized by EPR spectroscopy. In the case of 

nitrones, the spin-adduct observed is a relatively stable radical species, called nitroxide. 

 

Figure A.3. Schematic representation of spin-trapping reaction using PBN. 

 

Efficacy of the spin-trapping reaction depends to the following conditions: 

 the spin-trap must be chemically stable in the experimental conditions, 

 the rate of the free radical R
•
 addition onto the spin-trap must be high enough,  

 the spin-adduct formed must be sufficiently persistent to be observed, 

 the spin-trap must specifically react with the free radical R•. 

 

Interpretation of EPR spectrum. EPR spectrometers measure the absorption of 

electromagnetic radiation. A phase-sensitive detector is used in EPR spectrometers which 

converts the normal absorption signal to its first derivative which is represented in the 

spectrum obtained. In the EPR spectrum, the magnetic field is on the x-axis in Gauss (G) unit 
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(1 Tesla = 10000 Gauss) whereas the derivative of the imaginary part of the molecular 

magnetic is on the y-axis, in arbitrary unit. EPR spectra are often very complicated and a 

computer program is used to analyze the spectra. The experimental spectrum is simulated 

using specific software such as for example the WINSIM program, available as free software 

from Public Electron Paramagnetic Resonance Software Tools 

(http://www.niehs.nih.gov/research/resources/software/tox-pharm/tools/). Through the 

simulated spectrum, important parameters can be determined such as the hyperfine coupling 

constant which is analogous to spin-spin coupling in NMR spectroscopy. The multiplicities of 

lines in the EPR spectrum of a spin adduct result from hyperfine interactions between the 

unpaired electron and cores of diamagnetic moment. Intensities of the spectral lines follow 

Pascal’s  triangle  for  I  =  1/2  nuclei,  similar  to  J-coupling in NMR. For example, when the 

linear nitrone PBN traps methyl radical, we obtain a six lines spectrum as represented in 

Figure A.4. Due to the hyperfin coupling with the nitrogen element (spin IN = 1) the spectrum 

includes three lines which are then spitted because of hyperfine interactions with the hydrogen 

(spin IH = ½) in ß position. 

 

Figure A.4. PBN-CH3 adduct spectrum (in black) obtained after trapping methyl radical in 

water, simulated spectrum (in red). 
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Critical Micelle Concentration (CMC) 

Amphiphilic compounds are surfactants and one of their main characteristic is to self-

assemble in aqueous environments to form small aggregates also called micelles. When 

placed in an immiscible biphasic system composed of aqueous and organic solvents, the 

amphiphilic compound will initially partition into the interface, between the two phases, 

reducing the system free energy. Subsequently, when the surface coverage by the surfactants 

increases and the surface free energy has decreased, the surfactants start aggregating into 

micelles. Consequently, the system free energy decreases again by decreasing the contact area 

of hydrophobic parts of the surfactant with water. A schematic diagram of the different steps 

which characterize micelles formation is represented in Figure A.5. The critical micelle 

concentration (CMC) is defined as the concentration of surfactants above which micelles are 

spontaneously formed (B) and all additional surfactants added to the system go to micelles. 

Before reaching the CMC, the surface tension changes strongly with the concentration of the 

surfactant (A). After reaching the CMC, the surface tension remains relatively constant or 

changes with a lower slope (C). 

Self-association depends on the molecular structure of the drug, concentration, and 

physicochemical conditions such as temperature, pressure, pH, ionic strength, and on the 

presence and concentration of other surface active substances and electrolytes. Various shapes 

of aggregates are possible such as spherical, ellipsoidal or cylindrical. 



  

177 

 

 
Figure A.5. Evolution of surfactant concentration around the critical micelle concentration. 

Determination of critical micelle concentration. A large number of methods have been 

applied to determine the critical micelle concentration of surface-active agents. Most of 

the physico-chemical properties changes can be used to determine the CMC, provided that the 

measurement can be carried out accurately. For example, tension-surface, UV-Vis 

spectroscopy, luminescence spectroscopy, and electrical conductivity can be used. In this 

manuscript, CMC of fluorinated amphiphilic compounds was determined using 
19

F NMR 

spectroscopy. This technique is easily achieved and the NMR spectra obtained are relatively 

simple. Experiments can be directly carried out in water with only 10% of D2O, avoiding 

possible CMC shift in 100% of D2O. The chemical shifts obtained in isotropic or anisotropic 

conditions and at different concentration are directly correlated to the nuclear spin interactions 

between molecules. At high concentration and under anisotropic conditions, micelles are 

formed and a broad and shielded NMR signal is observed. Under isotropic conditions there 

are only monomers in the solution, resulting in narrow and deshielded peaks, as represented in 

Figure A.6.  

 

Figure A.6. Chemical shift variation from anisotropic conditions to isotropic conditions. 
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A concentrated solution of the fluorinated amphiphilic compound is firstly prepared in 

H2O/D2O (9:1) containing sodium trifluoroacetate salt (1 mg/1 mL) as interne standard and 

successive dilutions are then prepared. The trifluoroacetate peak is used to calibrate the 

spectrum. To determine the CMC value of our perfluorinated amphiphilic compounds, the last 

fluorinated carbon (CF3) of the hydrophobic chain was chosen to measure the chemical shift. 

This typical peak is isolated compare to the other fluorinated signals and is usually observed 

around -82 ppm. After plotting the inverse concentration with the chemical shift values, we 

obtained two linear curves and their intersection gives the CMC value, as shown in Figure A.7 

for FAPBN. 

 

Figure A.7. CMC measurement of FAPBN. 

  

CMC ~ 0.3 mM 
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Dynamic Light Scattering (DLS) 

Dynamic light scattering is a well-known technique used to determine the size distribution 

profile of small particles in suspension or polymers in solution.[9] Small molecules in 

solution are undergoing random motion called Brownian motion and when a light hits small 

molecule, the light scatter in all directions. Dynamic Light Scattering works by measuring the 

intensity of light scattered by the molecules in the sample as a function of time. Since all 

molecules in solution diffuse with Brownian motion in relation to the detector, there will be 

interference which causes a change in light intensity. This leads to time-dependent 

fluctuations in the intensity of the scattered light. In DLS, the time scale of light intensity 

fluctuations are measured by a fast photon counter and can provide information regarding to 

the average size, size distribution, and polydispersity of molecules and particles in solution. 

Fluctuations are directly related to the rate of the diffusion of the molecule through the solvent 

and the translational diffusion coefficient D of the particles can be determined. With this 

information, the particle size can be determined by calculation of the hydrodynamic diffusion 

coefficient DH following the Stock-Einstein relation:  

H3 DTkD B  

in which kB : Boltzmann constant; T : absolute temperature; η : viscosity of the solvent; D : 

transitional diffusion coefficient. 

Determination of Dynamic light scattering.  

In practice, a first solution is prepared at concentration more than ten times the CMC, diluted 

solutions are then prepared and each sample is analyzed using a Nanosizer ZS apparatus. 

Once the autocorrelation data is generated and after different mathematical approaches 

employed by the software, we obtain information such as, for example, volume distribution or 

intensity distribution. 
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