
HAL Id: tel-01206423
https://theses.hal.science/tel-01206423v1

Submitted on 29 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Trajectory planning for aerial vehicles with constraints
Pawit Pharpatara

To cite this version:
Pawit Pharpatara. Trajectory planning for aerial vehicles with constraints. Automatic Control En-
gineering. Université Paris-Saclay; Université d’Evry-Val-d’Essonne, 2015. English. �NNT : �. �tel-
01206423�

https://theses.hal.science/tel-01206423v1
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT
DE L’UNIVERSITE PARIS-SACLAY,

Préparée à “Université d’Évry-Val-d’Essonne”

ÉCOLE DOCTORALE N◦ 580 STIC

Sciences et Technologies de l’Information et de la Communication

Spécialité de doctorat : AUTOMATIQUE

par

M. Pawit PHARPATARA

“Planification de trajectoire sous contraintes d’aéronef”

“Trajectory planning for aerial vehicles with constraints”

Thèse preésentée et soutenue à l’Onera Palaiseau en salle NA-00-63, le 22 Septembre 2015

Composition du Jury:

Président du jury: Véronique PERDEREAU Prof. à l’UPMC, Paris

Rapporteurs: Isabelle FANTONI Directrice de Recherche CNRS

Labo. Heudiasyc, CNRS, UTC, Compiègne

Krzysztof KOZLOWSKI Prof., Chair of control au Poznan

University of Technology, Poland

Examinateur: Romain PEPY Ingénieur de recherche (PhD) au MBDA

Encadrant: Bruno HÉRISSÉ Ingénieur de recherche (PhD) à l’ONERA

Directrice de thèse: Yasmina BESTAOUI Prof. à l’Université d’Évry-Val-d’Essonne

06/2015 Pawit Pharpatara

Abstract

The focus of this PhD thesis is on the trajectory planning module as a part of autonomous

aircraft system. Feasible trajectories for aircraft flying in environment cluttered by obstacles

are studied. Since aircraft dynamics are complex, nonlinear and nonholonomic; trajectory

planning for such systems is very difficult and challenging.

Rapidly-exploring Random Tree or RRT path planner is used as a basis to find a feasible

trajectory. The advantage of this algorithm is that it does not consider only the complete

vehicle model but also the environment. Two algorithms are developed to find a feasible and

optimal solution. The RRT algorithm, combined with a preprocessing of the exploration

space, is used for a complete realistic model of the system. However, this approach does

not consider any optimal criteria. In order to consider performance criteria, the RRT*

algorithm is used based on a simplified model with the help of the artificial potential field

as a heuristic to improve the convergence rate to the solution.

The algorithms are simulated in an application of hypersonic aerial vehicles, for example,

interceptor missiles flying in high altitude. This makes the aerodynamically controlled

aircraft have less maneuverability since the air density decreases exponentially with altitude.

3D shortest paths are developed and used as a metric. Therefore, a feasible and optimal

trajectory is obtained efficiently. With these results, real-time constraints will be easier to

verify if the algorithm is implemented on board the vehicle. In future work, replanning will

be considered to improve the performance of the algorithm in case of dynamic environment

or changes in the mission.

Keywords: Path planning, Aerial robotics, Complex environment, RRT algorithm,

Artificial potential fields

i

Résumé

Le sujet de cette thèse porte sur la planification de trajectoire pour un aéronef autonome.

Les trajectoires d’aéronefs se déplaçant dans un environnement encombré par des obstacles

sont étudiées. La dynamique des aéronefs étant complexe, non linéaire, et non holonome,

la planification de trajectoire de ce type de systèmes est un problème très difficile.

L’algorithme Rapidly-exploring Random Tree, ou RRT, est utilisé comme planificateur

de base. L’avantage de cet algorithme est qu’il permet de considérer des modèles d’aéronefs

complets dans un environnement complexe. Deux algorithmes sont développés pour trouver

une solution faisable et optimale. Pour un modèle complet, L’algorithme RRT avec un

prétraitement de l’espace d’état est utilisé dans le cas d’une prise en compte du modèle

complet du système. Cependant, cette méthode ne considère pas de critères optimaux. Pour

y remédier, l’algorithme RRT* est utilisé pour un modèle simplifié du système avec l’aide

de champs de potentiels artificiels comme heuristique pour améliorer le taux de convergence

vers la solution.

Les algorithmes sont simulés pour une application d’aéronefs hypersoniques, comme par

exemple des missiles intercepteurs volants à haute altitude. Les aéronefs ont donc moins

de manœuvrabilité parce que la densité de l’air diminue exponentiellement avec l’altitude.

Les chemins les plus courts en 3D sont développés et utilisés comme une métrique. Des

trajectoires réalisables et optimales sont obtenues efficacement. A partir de ces résultats, les

contraintes de temps réel à bord du véhicule seront plus faciles à vérifier. Dans les travaux

futurs, la replanification sera considérée pour améliorer la performance de l’algorithme en

cas d’environnement dynamique ou de changements dans la mission.

Mots clés: Planification de trajectoire, Robotique aérienne, Environnement complexe,

Algorithme RRT, Champs de potentiels artificiels

iii

Acknowledgment

First of all, I would like to express my heartfelt gratitude to my thesis committee members.

I gratefully thank Prof. Krzysztof Koz lowski and Prof. Isabelle Fantoni for accepting to be

my reviewers of this thesis. I also give my sincerely thanks to Prof. Véronique Perdereau

and Dr. Romain Pepy to review this research.

I would like to express my sincerest gratitude to my respectable Supervisor, Prof. Yasmina

Bestaoui, and Adviser, Dr. Bruno Hérissé, whose guidance and encouragement were very

valuable during my PhD research.

My thanks will be out of tune, if I do not express my thanks to Prof. Samia Bouchafa, who

always followed up with my PhD research every year.

I thank Onera and Université d’Évry-Val-d’Essonne as a part of Université Paris-Saclay for

giving me a financial support and an opportunity to do this PhD research.

I take this opportunity to express my gratitude to Lindsay Custodio to be an English proof-

reader of this thesis.

My heartfelt thanks to my PhD colleagues at Onera who have always been with me during

my PhD research.

I will be failing with my responsibility as a son if I do not acknowledge the love, support

and care of my mother, father, and my siblings.

Last but not least, my final thanks are reserved for my grandfather who motivates me to

continue my PhD study. Without him, this PhD thesis will not be possible.

v

Contents

Page

Abstract i

Résumé iii

Acknowledgment v

Contents vii

List of Figures xii

Nomenclature xv

Part I: Introduction 1

1 Introduction 3

1.1 Trajectory generation for aerial vehicles . 4

1.1.1 Motivations . 4

1.1.2 Difficulties in trajectory planning in a complex environment 4

1.2 Scientific context of this thesis . 5

1.3 Thesis objectives . 5

1.4 Solution approach . 6

1.5 Thesis contributions . 7

1.6 Disseminations, presentations from this thesis 7

vii

viii CONTENTS

1.6.1 International conferences papers . 7

1.6.2 International journal papers . 8

1.7 Organization of the thesis . 8

2 Unmanned aerial vehicle modeling for path planning 13

2.1 System modeling . 13

2.1.1 Coordinate Systems . 13

2.1.2 Dynamics . 16

2.1.3 Simplified UAV equations of motion for path planning 17

2.2 Environmental modeling . 21

2.2.1 US-76 model . 21

2.2.2 Simplified environmental model . 22

2.3 Problem formulation . 23

2.4 Conclusions . 23

Part II: State of the art 25

3 UAV flight controls 27

3.1 Linear flight control techniques . 27

3.1.1 Classical and PID controllers . 28

3.1.2 Successive loop closure . 28

3.1.3 Multi-Input-Multi-Output control 29

3.2 Nonlinear flight control techniques . 29

3.2.1 Feedback-based control . 30

3.2.2 Sliding mode control . 30

3.2.3 Model Predictive Control . 30

3.3 Specific guidance laws . 31

3.3.1 Classical guidance . 31

3.3.2 Guidance based on optimal control theory 33

3.4 Numerical methods . 38

3.4.1 Indirect approaches . 38

3.4.2 Direct approaches . 38

3.4.3 Methods used in solving indirect and direct approaches 39

3.5 Artificial intelligence techniques . 42

3.5.1 Genetic algorithm . 42

3.5.2 Fuzzy logic . 42

3.5.3 Neural networks . 43

06/2015 Pawit Pharpatara

CONTENTS ix

3.6 Conclusion . 43

4 Trajectory planning methods 45

4.1 Problem statement . 45

4.2 Path planning methods . 46

4.2.1 Roadmap and cell decomposition methods 46

4.2.2 Artificial Potential Field . 49

4.2.3 Sampling-based methods . 50

4.3 Path planning methods for nonholonomic system 51

4.3.1 Probabilistic Roadmap Planner Method (PRM) 51

4.3.2 Rapidly-exploring Random Trees (RRT) 52

4.4 Conclusion . 58

Part III: Trajectory planning using a realistic model 61

5 RRT path planning for an aerial vehicle 63

5.1 RRT algorithm . 63

5.1.1 An overview . 63

5.1.2 Important components . 64

5.2 Application for an interceptor missile . 67

5.2.1 System modeling . 67

5.2.2 The Predicted Intercept Point (PIP) 69

5.2.3 Problem formulation . 69

5.2.4 Dubins’ paths . 69

5.2.5 RRT configurations . 71

5.3 Simulation results . 75

5.4 Conclusions . 78

6 RRT path planning with preprocessed exploration space 83

6.1 Preprocessing of the exploration space X . 84

6.1.1 Artificial potential field . 84

6.1.2 Trajectory generation methods . 85

6.2 Application for an interceptor missile . 85

6.2.1 Dubins’ paths in a heterogeneous environment 85

6.2.2 Preprocessed exploration space using Dubins’ paths in a heteroge-

neous environment . 86

6.2.3 RRT reconfigurations . 88

06/2015 Pawit Pharpatara

x CONTENTS

6.3 Simulation results . 97

6.4 Conclusions . 101

Part IV: Path planning using a simplified model 107

7 Path planning of aerial vehicles based on RRT* algorithm 109

7.1 Motion planning framework . 110

7.1.1 Optimal RRT known as RRT* algorithm: An overview 110

7.1.2 Important components . 112

7.1.3 State generation using Artificial Potential Fields or APF 114

7.2 Property Analysis . 117

7.2.1 Probabilistic completeness . 117

7.2.2 Asymptotic optimality . 117

7.3 Application for a hypersonic aerial vehicle 118

7.3.1 Environment modeling . 118

7.3.2 System modeling . 119

7.3.3 Problem formulation . 120

7.3.4 RRT* configurations . 121

7.3.5 3-dimensional Dubins’ paths in heterogeneous environment 124

7.4 Simulation results . 129

7.4.1 2D application . 129

7.4.2 3D application . 131

7.5 Conclusions . 134

Conclusions and perspectives 137

Part V: Appendix 141

A Calculation of time-vary gains for Kappa guidance 143

A.1 Analytic optimal control in vertical plane 144

A.1.1 Vehicle without propulsion . 145

A.1.2 Vehicle with propulsion . 147

B Dubins’ path calculation 149

B.1 Trajectory calculation . 150

B.2 CSC paths . 151

B.2.1 Determination of θ1 . 151

06/2015 Pawit Pharpatara

CONTENTS xi

B.2.2 Determination of intermediate length si 153

B.3 CCC paths . 153

B.3.1 Determination of θ1 and θ2 . 154

B.3.2 Determination of intermediate length si 155

B.4 CS paths . 155

B.4.1 Determination of θ1 . 155

B.4.2 Determination of intermediate length si 156

C Usage of APF as a preprocessing method of exploration space 157

C.1 Brief description of APF . 157

C.2 Preprocessing of exploration space using the APF 158

C.2.1 APF in quadratic form ϕi = Kir
n
i 158

C.2.2 APF in logarithm form ϕi = Ki ln ri 160

D Dubins’ curves in a heterogeneous environment 165

D.1 Dubins-like model . 165

D.2 Computation of the curve C in a plane . 166

D.3 CSC path generation . 168

E Estimation of attacking velocity 171

E.1 Estimation of a linear trajectory . 172

E.1.1 Non-propulsive stage . 172

E.1.2 Propulsion phase . 173

E.2 Estimation of a circular trajectory . 173

E.2.1 Non-propulsive phase . 173

E.2.2 Propulsive phase . 174

Bibliography 175

06/2015 Pawit Pharpatara

List of Figures

2.1 Illustration of ECEF and local NED coordinates 14

2.2 UAV body-fixed coordinates . 15

2.3 Motions of a UAV . 17

2.4 Illustration of the flight path angle γ and azimuth angle χ 18

2.5 Illustration of the air velocity va and the angle of attack α 19

2.6 Relation between the control input a and the angle of attack α 20

2.7 The variation of air density and atmospheric pressure with altitude: US-76

model . 22

3.1 A classical UAV control system architecture . 28

3.2 Illustration of line-of-sight (LOS) . 32

3.3 Illustration of proportional navigation . 32

3.4 Illustration of kappa guidance . 35

3.5 Dubins’ paths . 37

3.6 Diagram of direct and indirect methods . 38

3.7 Schematic description of the differential inclusion approach 39

3.8 Schematic of shooting methods using the analogy of a canon firing at a target . 40

4.1 A* path versus Theta* path . 48

4.2 Example of potential fields path planning with obstacles [Hel11] 49

4.3 The robot is trapped in a local minimum from several different initial positions

[Hel11] . 50

4.4 Example of the PRM roadmap . 52

xii

List of Figures xiii

4.5 Example of Voronoi diagram . 53

4.6 The rrt extend operation . 53

4.7 The RRT is biased by large Voronoi regions to rapidly explore, before

uniformly convering the space . 54

4.8 Illustration of area around the goal for RRT-goalzoom algorithm 55

4.9 The rrt connect operation . 56

4.10 Process in finding the nearest path to xnew . 57

4.11 Rewire process of the tree around xnew . 58

5.1 Definition of reference frames in vertical plane 67

5.2 The goal set Xgoal for path planning using RRT 72

5.3 CS type path arrives in the arrival cone . 73

5.4 CS type path does not arrive in the arrival cone 73

5.5 RRT expansion with proportional navigation guidance law 75

5.6 Simulation results using RRTPN for scenario 1 79

5.7 Simulation results using RRTkappa for scenario 1 80

5.8 Simulation results using RRTPN for scenario 2 81

5.9 Simulation results using RRTkappa for scenario 2 82

6.1 Xfree . 86

6.2 The starting trajectories coincide with each other 87

6.3 The new exploration space X . 87

6.4 References of a point in Xfree . 89

6.5 Location line calculation . 91

6.6 Approximated orientation calculation . 93

6.7 Illustration of a connecting trajectory between two state 94

6.8 Illustration of a connecting trajectory between two state on different parallel

linear trajectories . 94

6.9 Control strategy for pseudometric calculation 95

6.10 Preprocessed RRT expansion . 98

6.11 Scenario 1: Simulation result using RRTkappa 100

6.12 Scenario 2: Simulation result using RRTkappa 101

6.13 Scenario 3: Simulation result using RRTkappa 102

6.14 Simulation result for scenario 1 . 103

6.15 Simulation result for scenario 2 . 104

6.16 Simulation result for scenario 3 . 105

7.1 Example of rotational vector field around the obstacle 115

06/2015 Pawit Pharpatara

xiv List of Figures

7.2 Definition of convex cone C(x, φ) . 116

7.3 Definition of a plane P with a normal vector b 125

7.4 Example of Dubins’ path in 3D . 126

7.5 Four possible CSC paths between two states . 128

7.6 Exploration tree expansion and results for scenario 1 130

7.7 Simulation result for scenario 2 . 131

7.8 Illustration of the scenario . 132

7.9 Exploration trees and results after 1000 iterations of RRT algorithm: path length

200km . 134

7.10 Exploration trees and results after 200 iterations 135

C.1 Potential field respecting the decided curvature κf at (xf , zf) 161

C.2 Potential field respecting the decided curvature κ0 at (x0, z0) 162

D.1 Examples of arcs of maximum curvature . 167

D.2 Dubins’ path in a heterogeneous environment 168

06/2015 Pawit Pharpatara

Nomenclature

Abbreviation

APF Artificial Potential Field

APN Augmented Proportional Navigation

BPN Biased Proportional Navigation

ECEF Earth-Centered Earth-Fixed coordinate system

ENU East-North-Up coordinate system

FIFO First-In First-Out

GA Genetic Algorithm

GPN Generalized Proportional Navigation

GPOPS General Purpose Optimal Control Software

IPN Ideal Proportional Navigation

LIFO Last-In First-Out

LOS Line-Of-Sight

LQG Linear-Quadratic-Gaussian

LQR Linear-Quadratic Regulator

xv

xvi Nomenclature

MIMO Multi-Input-Multi-Output

MPC Model Predictive Control

NED North-East-Down coordinate system

OPN Optimal Proportional Navigation

PIP Predicted Intercept Point

PN/PNG Proportional Navigation Guidance

PPN Pure Proportional Navigation

PRM Probabilistic RoadMap path planner

PRM Probabilistic Roadmap Planner Method

QFT Quantitative Feedback Theory

RRT Rapidly-exploring Random Tree

RRT* Optimal Rapidly-exploring Random Tree

SISO Single-Input-Single-Output

SMC Sliding Mode Control

TPN True Proportional Navigation

UAV Unmanned Aerial Vehicle

UCAV Unmanned Combat Air Vehicle

US-76 U.S. Standard Atmospheres 1976

Constants

ω0 Angular frequency

ζ Damping ratio

Scalar variables

αcom Commanded angle of attack

αd Desired angle of attack

αstb
max Maximum angle of attack at the actuators limit

06/2015 Pawit Pharpatara

Nomenclature xvii

αstruct
max Maximum angle of attack at the structural limit of the missile

χ Azimuth angle

γ Flight path angle

λ Longitude

X (t) Collision-free trajectory at time t

Ψ Geocentric latitude

ρ Atmospheric density

θ,φ,ψ Euler angles

a Acceleration norm

CD Drag force coefficient

CL Lift force coefficient

h Altitude

m Vehicle mass

patm Atmospheric pressure

Q Dynamic pressure

S Surface of reference

Tatm Atmospheric temperature

v Speed

Mathematical operation

× Cross product

f(·) State transition function

‖ · ‖ Euclidean norm

| · | Absolute value

> Transpose

Set

06/2015 Pawit Pharpatara

xviii Nomenclature

Xfree Collision-free exploration space

Xgoal Objective exploration space

Xobs Obstacle space

U Admissible control input space

X State space

Column vector variables

τ net Net torque

ω Rotational velocity

ξ Position

eb
1 ,eb

2 ,eb
3 Unit vectors in body-fixed coordinate system

eecef
1 ,eecef

2 ,eecef
3 Unit vectors in ECEF coordinate system

ened
1 ,ened

2 ,ened
3 Unit vectors in NED coordinate system

fnet Net force

a Acceleration

g Gravity of the Earth

u Control input

v Linear velocity

x State variable

06/2015 Pawit Pharpatara

Part I

Introduction

1

1 Introduction

The development of human technology has grown very rapidly from the ground to water,

water to air, and air to space. It had been an impossible dream for the human to fly in the

sky until the world’s first successful manned airplane was built by the Wright brothers in

1903. Since then, aircraft technologies have grown rapidly. Aircraft are machines or vehicles

capable of flying by using the support of the atmosphere, mainly the air. Aircraft are not

only airplanes but can also be any flying machines such as kites, hot air balloons, airships,

gliders, missiles, and drones or unmanned aerial vehicles (UAVs). Then, technologies evolve

from manual to autonomous system. Autonomous systems are systems that can operate by

themselves without any human interventions so that the mission in the uninhabited areas

can be done flawlessly. Thus, the study of autonomous aircraft is an interesting subject

nowadays.

The general mission of aircraft is defined by a starting location to a destination such

as going from one city to another. A trajectory between two vehicle states can be found

under several different types of constraints (variation of air density, wind velocity, different

flight stages, obstacles, etc.) and some uncertainties in state measurement or in dynamic

model. The environment or the mission can also change any time during the flight. Thus,

as a part of an autonomous mission, the trajectory generation module is very important.

Once a feasible solution is known, the vehicles such as military drones (unmanned combat

air vehicles also known as UCAVs) will be able to complete the mission successfully. The

trajectory generation module can be computed offline before the mission starts and then

gives the obtained solution to the vehicles. In the even better scenario, the trajectory

generation module can be embedded on board the vehicle. Consequently, the vehicles are

3

4 1.1. TRAJECTORY GENERATION FOR AERIAL VEHICLES

capable of finding the solution by themselves during the mission in case of any perturbations,

any changes in mission or in a dynamic environment. This increases choices of decisions

to make, i.e. the reactivity of the vehicles increases, which makes the vehicles work more

efficiently.

In this thesis, we are interested in the trajectory generation for UAVs whose mission

is to travel from one state to another. It is very similar to the rendezvous problem in

navigation.

1.1 Trajectory generation for aerial vehicles

1.1.1 Motivations

Trajectory generation is an important part of any autonomous system involving motions.

Originally, trajectory generation is widely studied in ground robotics and manipulator sys-

tems. As time passes, more and more studies in trajectory planning are extended to un-

derwater and aerial robotics.

In aeronautics and aerospace, the trajectory generation starts with a prelaunch phase of

the vehicles. A generated trajectory should not consider only the aircraft states (position,

orientation, and speed), departure and arrival points, but also aerodynamic constraints

(maneuverability, gravity, air density, etc.) and constraints induced by obstacles. These

make the problem of trajectory generation very challenging.

Trajectory generation has to face both static and dynamic environments, for example,

radar detection systems, cooperating and non-cooperating vehicles, as well as the con-

straints imposed on the system. Moreover, if the objective task changes during the mission,

the trajectory has to be re-configured with no performance loss. Consequently, such embed-

ded algorithms that can be very demanding in terms of numerical computations also need

to consider real-time constraints. Then, it is of significance to solve a trajectory planning

problem with a good computational efficiency.

1.1.2 Difficulties in trajectory planning in a complex environment

In most of aerial applications, autonomous aerial vehicles are operated aerodynamically

using the forces caused by the air pressure applied on the control surface of the vehicles and

by propulsion. For example, air density, atmospheric pressure, and temperature decrease

exponentially with altitude. Since a lot of aerial vehicles can fly in a wide range of altitude,

their maneuvering capability also decreases exponentially with altitude. Moreover, obstacle

avoidance is a difficult problem since obstacles can induce state constraints to the system.

These state constraints make problems very difficult to solve with many methods. The

06/2015 Pawit Pharpatara

1.2. SCIENTIFIC CONTEXT OF THIS THESIS 5

nature of obstacles can be both static and dynamic such as no-fly zones, physical obstacles,

cooperated or non cooperated aerial vehicles, and some perturbations in the environment.

For example, at low altitude, the perturbations can be caused by the wind or the weather

conditions, while, at higher altitude, these perturbations decrease and then can be less

observed.

These make the trajectory planning for aerial vehicles complex and nonlinear problems

with constraints. Thus, the trajectory planning in such system is very challenging and

interesting.

1.2 Scientific context of this thesis

Several methods have been studied using UAV flight controls: linear flight control theories,

nonlinear flight control theories, guidance laws, numerical methods, etc. However, the

problem cannot be solved completely. Even if some methods such as trajectory optimization

can solve and find an optimal solution, it is time consuming to solve complex and nonlinear

problems using realistic system with obstacle constraints. Most of the solutions are based

either on the simplified system or under other restrictive hypotheses.

On the other hand, in robotics, trajectory planning have been very popular recently.

Trajectory planning methods are used in many fields such as in biology, marketing and

even in video games. The aim of trajectory planning is to find a feasible path from an

initial state to a goal state while avoiding obstacles. Trajectory planning methods are

interesting because some of them can find a solution while considering the complete system

and the environment cluttered with obstacles. This is what is missing from the previously

mentioned methods. However, the solution found by these methods are rarely optimal, or

in the best case suboptimal.

In this thesis, trajectory planning algorithms are studied by combining trajectory plan-

ning methods with optimal control theory. The trajectory planning method is used in order

to consider complex systems and environment models in the calculation. Then, the optimal

control theory is used to improve the quality of the solution found by trajectory planning

method regarding a specified criterion.

1.3 Thesis objectives

The objective of this thesis is to find an algorithm(s) that can find an optimal trajectory

for aerial vehicles flying from one state to another in a complex environment cluttered by

obstacles. The nature of the obstacles can be, for example, radar detection systems, cooper-

ating and non-cooperating vehicles, etc. Thus, trajectory planning in such environment is a

06/2015 Pawit Pharpatara

6 1.4. SOLUTION APPROACH

complex, nonlinear, nonholonomic problem that is difficult to solve using only the classical

UAV control laws.

In this thesis an application of hypersonic aerial vehicles such as the interceptor missiles,

is considered as a case study. Since the aerial vehicle flies in the earth atmosphere, the

environment can be considered heterogeneous in the sense that the air density decreases

with altitude. This makes the aerodynamically controlled aircraft such as missiles have less

maneuverability at higher altitude. The trajectory planning algorithms developed in this

thesis should be able to find a trajectory from one state to another state successfully while

considering these constraints.

1.4 Solution approach

The basic approach of trajectory planning for aerial vehicles is the waypoints planning.

Waypoints planning is widely used in many domains. However, it can lead to an unfeasible

trajectory if all constraints of the system are not considered or the path following algorithm

cannot follow the waypoints. In this thesis, instead of finding waypoints for the aircraft to

follow, directly finding a feasible trajectory that can be followed by path following algo-

rithms without any difficulty can be more interesting since the path following is not needed

to be used after. Two approaches of solving this problem are proposed.

The first approach is to find a feasible trajectory using a realistic model. This approach

does not require any path following algorithms for the aircraft to execute the path since

the obtained trajectory is the real feasible trajectory itself. Control input sequence used

to execute this trajectory is also obtained at the same time as the obtained trajectory. A

preprocessing of the exploration space is introduced to improve the convergence rate to the

solution of the algorithm. However, it is difficult to prove the optimality according to a

specified criterion of the solution using this method.

The second approach is proposed using a simplified model instead of using a realistic

model since it is easier to prove the optimality of the solution. The optimal RRT or RRT*

algorithm which has an asymptotic optimality property, i.e. almost-sure convergence to an

optimal solution, is used as a basis path planner. The aim of this approach is to find a

feasible and easy to follow reference trajectory using path following algorithms. Heuristic

using the Artificial Potential Field or APF is proposed to increase the convergence rate of

the algorithm.

06/2015 Pawit Pharpatara

1.5. THESIS CONTRIBUTIONS 7

1.5 Thesis contributions

� This thesis focuses on trajectory planning of a single unmanned aerial vehicle (UAV)

for a rendez-vous problem. The methodology for the trajectory planning is divided

into two approaches. In the first approach, the trajectory planning algorithm tries to

find a realistic trajectory for UAVs together with a sequence of control inputs. The

advantage of this approach is that missions are surely achieved by the vehicles in real-

ity. However, it is very difficult to prove the optimality of obtained trajectories using

the complete model of vehicle and environment. The second approach is proposed,

by using a simplified model; optimal trajectories can be found and proven. These

trajectories are used as references for the vehicles to follow using trajectory tracking

and path following algorithms.

� The trajectories are generated using different methods. Guidance laws are used to

generate trajectories to find a realistic trajectory in the first approach, while the

shortest path based on Dubins-like model is used to generate trajectories in the second

approach.

� In both 2D and 3D application, the shortest path based on Dubins-like model is

developed so that they can adapt to a heterogeneous environment where the turning

radius of the vehicle is not constant and is decreasing with altitude. The shortest

path length is also used as a metric function to determine a distance between two

vehicle states in space.

� A framework using an algorithm with asymptotic optimal property is used in order

to achieve an optimal trajectory.

� Two approaches are proposed to improve the convergence rate of the algorithm to the

optimal solution: preprocessing of the exploration space and integration of Artificial

Potential Field or APF.

1.6 Disseminations, presentations from this thesis

1.6.1 International conferences papers

� Pharpatara, P., Hérissé, B., Pepy, R., and Bestaoui, Y. (2013). Sampling-based

path planning: a new tool for missile guidance. In Proceedings of the IFAC Sym-

posium on Automatic Control in Aerospace, pages 131-136, DOI:10.3182/20130902-5-

DE-2040.00091.

06/2015 Pawit Pharpatara

8 1.7. ORGANIZATION OF THE THESIS

� Pharpatara, P., Pepy, R., Hérissé, B., and Bestaoui, Y. (2013). Missile trajectory

shaping using sampling-based path planning. In Proceedings of the IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems, pages 2533-2538, DOI:

10.1109/IROS.2013.6696713.

� Pharpatara, P., Hérissé, B., Pepy, R., and Bestaoui, Y. (2015). Shortest path for

aerial vehicles in heterogeneous environment using RRT*. In Proceedings of the

IEEE International Conference on Robotics and Automation, pages 6388-6393, DOI:

10.1109/ICRA.2015.7140096.

� Pharpatara, P., Hérissé, B., and Bestaoui, Y. (2015). 3D-shortest paths for a hyper-

sonic glider in a heterogeneous environment. In Proceedings of the IFAC Workshop on

Advanced Control and Navigation for Autonomous Aerospace Vehicles, pages 186-191.

1.6.2 International journal papers

� Pharpatara, P., Hérissé, B., and Bestaoui, Y. (2015). 3D trajectory planning of aerial

vehicles using RRT*. IEEE Transactions on Control Systems Technology, submitted.

1.7 Organization of the thesis

This thesis is divided into five parts. Part I is the general introduction to trajectory

generation for aerial vehicles and the problem formulation of this thesis. Part II contains

two chapters concerning the state of the art. One chapter is about the UAV flight controls

and another is about the trajectory planning methods used in robotics. The contributions

of this thesis are included in part III and IV. All of the results presented in these parts are

obtained from MATLAB simulations. Part V includes all necessary calculations from both

literature reviews and contribution work. They are all detailed below:

� In part I, the trajectory generation for aerial vehicles is firstly explained along with

problems, the proposed approaches, and the importance of this. Then, the general dy-

namics of a UAV and the environment are explained along with necessary constraints

in mathematical form. Then, the problem formulation is presented.

� In part II, the state of the art of the existing methods are presented in two chapters

separated by domain of applications.

– In chapter 3, some existing UAV flight controls are presented and explained

with their advantages and drawbacks. The classical control laws including linear

and nonlinear control laws and specific guidance laws are simple and easy to

06/2015 Pawit Pharpatara

1.7. ORGANIZATION OF THE THESIS 9

implement on board the vehicle but they cannot anticipate the future changes

in missions and environment. The optimal control theory can be used to im-

prove the performance of the classical control laws. However, the same problem

persists. The numerical methods can find an optimal solution for problems but

they need a good initial guess to make the methods converge to the optimal

solution. Sometimes, they also require a lot of computational effort for a com-

plex and nonlinear problem with constraints. These make them not suitable for

the real time implementation. The artificial intelligent methods are introduced

to improve the performance of the existing methods by combining or training

knowledge to the machine. These methods require good know-hows suitable for

each problem. Most of these methods are calculated based on the restrictive

vehicle model. They do not consider the environment model or the future condi-

tions in the calculation either. In the next chapter, trajectory planning methods

used in robotics are presented to help integrating the complete system model

and environment into the calculation.

– In chapter 4, basic trajectory planning methods used in robotics are presented

to introduce interesting ideas. Some of methods are suitable for the low dimen-

sional problems such as A* and its variants for the discrete system. The potential

field path planning is suitable for a continuous system but it is quite difficult

to be implemented with a complex and nonlinear system. The sampling-based

path planning methods are the most interesting ones, especially the Probabilistic

RoadMap path planner (PRM) and the Rapidly-exploring Random Tree (RRT).

The PRM is a multi-query path planner which is suitable for finding paths for

several robots at the same time, while the RRT is a single-query path planner.

Since the RRT is a single-query path planner, it can find a solution while search-

ing the state space at the same time unlike the PRM. Thus, the RRT is chosen

to be used as a path planner in this thesis.

� In part III, trajectory planning using a realistic model is studied. The algorithm

framework is generally presented and the performance is demonstrated using an in-

terceptor missile application.

– In chapter 5, the RRT algorithm is used as a basis path planner. It is applied

in an interceptor missile application including both boost phase and midcourse

phase. The path calculations based on the optimal control theory, namely Du-

bins’ paths, are used as a metric. Moreover, the classical guidance laws, such as

proportional navigation and kappa guidance, are used to build an exploration

06/2015 Pawit Pharpatara

10 1.7. ORGANIZATION OF THE THESIS

tree. The results are satisfying compared to the ones obtained by using solely

the classical guidance laws. The results show that, while the classical guidance

laws have a difficulty to find solutions for some problems, the RRT algorithm

is capable of finding ones. However, no optimal criterion is considered and the

computational time can be long.

– In chapter 6, preprocessing methods of the exploration space are introduced to

improve the results obtained from the previous chapter. The artificial potential

fields (APF) and the Dubins’ paths in a heterogeneous environment are proposed

for the preprocessing. However, It is difficult to find a suitable APF function

since the system is complex, nonlinear, and nonholonomic. Then, the Dubins’

paths, in a heterogeneous environment, are used in to preprocess the exploration

space. Then, the same algorithm used in the previous chapter is launched. This

framework is then tested with an interceptor missile application during the mid-

course phase. Apparently, the algorithm converges to a solution more rapidly.

Moreover, the obtained solutions appear to be smoother and shorter than the

previous ones. Yet, no global optimal criterion is verified in this method. In addi-

tion, the reduced exploration space also makes the RRT lose its main advantage,

the exploration of high-dimensional problem without a need of approximations.

Thus, another approach is proposed in the next part.

� In part IV, trajectory planning using a simplified model is studied. The aim is to find a

reference trajectory for the UAVs to follow using some path following algorithms. The

algorithm framework is also generally presented and the performance is demonstrated

using a hypersonic aerial vehicle application.

– In chapter 7, the optimal RRT or RRT* algorithm with its asymptotic optimal

property is explained. The motion planning framework is developed using the

RRT* algorithm as a basis path planner. Moreover, the APF is integrated in

the algorithm as a heuristic to accelerate the convergence rate to the optimal

solution. In hypersonic aerial vehicle applications such as interceptor missiles,

the framework is simulated in both 2D and 3D applications. Dubins’ paths in

heterogeneous environment are used as metric and node expansion method. In

2D application, only the RRT* algorithm is used. The aim is to show the capa-

bility of the RRT* algorithm in finding a solution close to the optimal solution

while avoiding obstacles within permitted time. In 3D application, the complete

framework is simulated. The 3D Dubins’ paths in a heterogeneous environment

are developed and used based on a Dubins-like aerial vehicle model. As a result,

06/2015 Pawit Pharpatara

1.7. ORGANIZATION OF THE THESIS 11

this framework shows good performance in finding a feasible and optimal tra-

jectory while avoiding obstacles in 3D plane. However, the obtained trajectories

are based on the simplified but yet close to real system model. Even though,

they are not totally executable by the real system, they are very close to the real

executable trajectory. Hence, they can be used as reference trajectories which

facilitate the path following algorithm using, for example, MPC algorithm.

� The overall conclusions are made. Moreover, some perspectives and ideas are given

for the future work.

� In part V, all mathematical calculations are separated from the main body of this

thesis and shown in this part.

06/2015 Pawit Pharpatara

2 Unmanned aerial vehicle

modeling for path planning

In order to solve trajectory planning problems of UAVs, the system model of the UAV and

of the environment must be studied and defined. In this paper, the introduction to the UAV

system model is presented such as the coordinate systems used in aeronautics and aerospace.

Then, the dynamics of the UAV and the environment model are described in details. Finally,

the problem statement containing system modeling and problem formulation is described.

2.1 System modeling

Before going into the UAV equations of motion and dynamics, several coordinate systems

used in aeronautics and aerospace domains are explained.

2.1.1 Coordinate Systems

Four orthogonal-axes systems are usually defined to develop the appropriate equations of

motion of aerial vehicles:

1. The inertial frame, which is fixed in space for which Newton’s laws of motion are

valid.

2. An Earth-Centered frame that rotates with the Earth.

3. An Earth-Surface frame that is parallel to the Earth surface, whose origin is at the

vehicle center of gravity defined in two ways: north, east and down (NED) directions

or east, north and up (ENU) directions.

13

14 2.1. SYSTEM MODELING

4. A body-fixed frame that is conventional to the body of the vehicle. The center of this

frame is at the center of gravity of the vehicle, and its components are forward, out

of the right side, and down for NED coordinate and forward, out of the left side, and

up for ENU coordinate.

eecef
1

eecef
2

eecef
3

north,ened
1

east,ened
2

down,ened
3

Ec

Oc

Ψ

λ

p
ri

m
e

m
er

id
ia

n

Figure 2.1: Illustration of ECEF and local NED coordinates

Figure 2.1 illustrates relation between Earth-Centered Earth-Fixed (ECEF), which is equiv-

alent to inertial coordinate system, and North-East-Down (NED) coordinate system. The

ECEF coordinate system is presented by the blue dashed line while the NED coordinate

system is presented by the green solid line.

The ECEF coordinate system (eecef
1 ,eecef

2 ,eecef
3) has its origin at the centre of the Earth

Ec and rotates with the Earth. The eecef
1 -axis passes through the equator at the prime

meridian. The eecef
3 -axis passes through north pole but it does not exactly coincide with

the instantaneous Earth rotational axis. The eecef
2 -axis can be determined by the right-hand

rule to be passing through the equator at 90◦ longitude. The NED coordinate system is

defined from a plane tangent to the Earth surface at a specific location Oc. By convention,

the north axis is labeled ened
1 , the east ened

2 and the down ened
3 . We can transform the ECEF

coordinate system into the local NED coordinate system by using a local reference point.

In our case, if the location of the control station is located at (xecef
0 ,yecef

0 ,zecef
0) in ECEF

06/2015 Pawit Pharpatara

2.1. SYSTEM MODELING 15

coordinate and a UAV at (xecef
m ,yecef

m ,zecef
m) in ECEF coordinate then the vector pointing

from the control station to the UAV in the NED frame is:
xned

yned

zned

 =

− sinλ cos Ψ − sinλ sin Ψ cosλ

− sin Ψ cos Ψ 0

− cosλ cos Ψ − cosλ sin Ψ − sinλ

xecef

m − xecef
0

yecef
m − yecef

0

zecef
m − zecef

0

 (2.1)

where λ is the longitude and Ψ is the geocentric latitude.

eb
1

eb
2

eb
3

ened
1

ened
2

ened
3

Cg
θ

Ψ

φ

Figure 2.2: UAV body-fixed coordinates

The UAV body-fixed coordinate system, shown in figure 2.2, is denoted (eb
1 ,eb

2 ,eb
3). It

is fixed with respect to the UAV at its center of gravity Cg and moves with the UAV.

The positive eb
1-axis coincides with the forward direction of the UAV. The eb

2-axis is to the

right of the missile. The positive eb
3-axis points down according to right-hand rule. This

coordinate system is similar to NED coordinate system.

Positions on the local NED coordinate system (xned, yned, zned) can also be transformed

into the missile body-fixed system (xb, yb, zb) by using:
xb

yb

zb

 = Cb
ned

xned

yned

zned

 , (2.2)

on the other hand
xned

yned

zned

 = Cned
b

xb

yb

zb

 , (2.3)

06/2015 Pawit Pharpatara

16 2.1. SYSTEM MODELING

where

Cb
ned = Cb

nedx
Cb

nedy
Cb

nedz
=

1 0 0

0 cosφ sinφ

0 − sinφ cosφ

cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

cosψ sinψ 0

− sinψ cosψ 0

0 0 1

=

cos θ cosψ cos θ sinψ − sin θ

sinφ sin θ cosψ − cosφ sinψ sinφ sin θ sinψ + cosφ cosψ sinφ cos θ

cosφ sin θ cosψ + sinφ sinψ cosφ sin θ sinψ − sinφ cosψ cosφ cos θ

 ,
and

Cned
b = Cb

ned
−1

= (Cb
ned)T

=

cos θ cosψ sinφ sin θ cosψ − cosφ sinψ cosφ sin θ cosψ + sinφ sinψ

cos θ sinψ sinφ sin θ sinψ + cosφ cosψ cosφ sin θ sinψ − sinφ cosψ

− sin θ sinφ cos θ cosφ cos θ

 ,
where (θ,φ,ψ) are euler angles , Cb

ned is the transformation from NED to body-fixed coor-

dinate system and vice-versa for Cned
b .

Please note that ambiguities (or singularities) can result from using the above transfor-

mation (i.e., as θ, φ, ψ → π). Therefore, in order to avoid these ambiguities, the ranges of

the Euler angles (θ, φ, ψ) are limited as follows:

− π 6 φ < π or 0 6 φ < 2π,

− π 6 ψ < π,

− π/2 6 θ < π/2 or 0 6 ψ < 2π.

2.1.2 Dynamics

It is assumed that the UAV has six degrees of freedom (6-DOF). The six degrees of freedom

consist of three translations and three rotations along and about the aircraft axes (eb
1 , eb

2 ,

eb
3). These motions are illustrated in figure 2.3, the linear velocity is denoted v = (vx, vy, vz)

and the angular velocity is denoted ω = (ωx, ωy, ωz). In compact form, the dynamics of the

translation and the rotation of a rigid body with mass m may be expressed by the following

equations (see [Sio04] for more details):

Translation : f = mv̇ + ω ×mv, (2.4)

Rotation : τ = Jω̇ + ω × Jω, (2.5)

06/2015 Pawit Pharpatara

2.1. SYSTEM MODELING 17

eb
1

eb
2

eb
3

ev
1

ev
2

ev
3

v

ω

Cg

i

j

k

O

Figure 2.3: Motions of a UAV

where fnet = (Fx, Fy, Fz) is the net force on the UAV, τ = (τx, τy, τz) is the net torque of

these forces about its center of mass Cg, the dot indicates differentiation with respect to

time, and J is the UAV inertia tensor which is constant in the body-fixed frame.

In general, UAVs are left-right symmetric. By assuming that the y-axis is orthogonal

to the UAV plane of symmetry, the inertia tensor J is defined as

J =

Jxx 0 −Jxz
0 Jyy 0

−Jxz 0 Jzz

 .
According to equations (2.4) and (2.5), the dynamics of the UAV is:

1

m
f ≡ 1

m

Fx

Fy

Fz

 =

v̇x + ωyvz − ωzvy
v̇y + ωzvx − ωxvz
v̇z + ωxvy − ωyvx

 , (2.6)

τ ≡

τx

τy

τz

 =

Jxxω̇x − Jxzω̇z + ωyωz(Jzz − Jyy)− ωxωyJxz
Jyyω̇y + ωxωz(Jxx − Jzz) + (ω2

x − ω2
z)Jxz

Jzzω̇z − Jxzω̇x + ωxωy(Jyy − Jxx) + ωyωzJxz

 . (2.7)

The net force includes aerodynamic forces, trust, and gravity.

2.1.3 Simplified UAV equations of motion for path planning

Since the complete equations of motion are very complex. They can be simplified for the

path planning purpose by using the vehicle as a rigid point mass model with kinematic

path constraints.

06/2015 Pawit Pharpatara

18 2.1. SYSTEM MODELING

eb
1

eb
2

eb
3

ev
1

ev
2

ev
3

v

Cg

i

j

k

O

γ

χ

Figure 2.4: Illustration of the flight path angle γ and azimuth angle χ

In figure 2.4, denote γ and χ the orientation w.r.t I of the velocity v, where γ is the

flight path angle, i.e. the angle between the vehicle axis eb
1 and the horizontal plane (i, j),

and χ is the azimuth angle, i.e. the angle from the horizontal axis i to the projection of the

velocity v on horizontal plane (i, j). There are four principal forces acting on the UAV: the

weight mg where g is the gravity of the Earth, thrust T = (T1, T2, T3), aerodynamic force

fa = (Fa1 , Fa2 , Fa3), and other perturbation forces fp = (Fp1 , Fp2 , Fp3). The standard model

in [Tré12] is used as a basis with the hypothesis that the mission can be accomplished in

shortest time. Thus, the Earth rotation has very few effects on the vehicle so it is neglected.

The equations of motion of a point mass model aircraft can be formulated as

ẋ = v cos γ cosχ,

ẏ = v cos γ sinχ,

ż = v sin γ,

v̇ = −g sin γ +
Fa1
m

+
Fp1
m

+
T1

m

γ̇ = −g
v

cos γ +
Fa3
mv

+
Fp3
mv

+
T3

mv
,

χ̇ =
Fa2

mv cos γ
+

Fp2
mv cos γ

+
T2

mv cos γ
,

(2.8)

where x, y, z are positions, v is the vehicle speed, g = ||g||, γ ∈ [−π/2, π/2] and χ ∈ [−π, π].

The aerodynamic forces Fa1 , Fa2 , and Fa3 including the drag force fD and the lift forces fL2

and fL3 are expressed as follows:

fD = −1

2
ρ(z)SCDv

2
ae

va
1 ,

fL2 =
1

2
ρ(z)SCL2v

2
ae

va
2 ,

fL3 = −1

2
ρ(z)SCL3v

2
ae

va
3 ,

06/2015 Pawit Pharpatara

2.1. SYSTEM MODELING 19

where CD is the drag coefficient, CL2 and CL3 are the lift coefficients, S is the surface of

reference, ρ(z) is the density of air and va is the magnitude of the air velocity va expressed

as va = v − vw where vw is the wind velocity (see figure 2.5). eva
1 , eva

2 , and eva
3 are the

basis vectors related to va. Note that if vw = 0, eva
2 = ev

2, eva
3 = ev

3 and the drag and lift

coefficients depend on the angle of attack α [Sio04], i.e. the angle between the vehicle axis

eb
1 and the air velocity va (see figure 2.5).

eb
1

eb
2

eb
3

eva
1

eva
2

eva
3

v

−vw

va

Cg

i

j

k

O

α

Figure 2.5: Illustration of the air velocity va and the angle of attack α

For the control of the vehicle, the aerodynamic forces fL2 and fL3 as well as the propulsion

forces (T1, T2, T3) are used.

2.1.3.1 Control Input

The desired angle of attack αd of the UAV is required in order to calculate the control

input a, the acceleration which is normal to the vehicle velocity, equivalent to aerodynamic

lift divided by mass. The desired angle of attack αd is decided by calculating the following

angles of attack [Sio04]: commanded angle of attack αcom, maximum angle of attack at

the actuators limit αstb
max, and maximum angle of attack at the structural limit of the UAV

αstruct
max . Then, αd is the lowest of all three angles, i.e. αd = min(αcom, α

stb
max, α

struct
max).

1. Commanded angle of attack αcom

The commanded angle of attack is the angle of attack related to the normal accelera-

tion of the UAV in velocity frame V. The commanded angle of attack can be obtained

by iteratively solving this equation:

a = ||a|| = QS

m
CL(αcom) +

||T⊥||
m

sinαcom

where Q = 1
2ρv

2 is the dynamic pressure, T⊥ is the propulsive force, containing T2

and T3 from system (2.8), perpendicular to the vehicle velocity axis.

06/2015 Pawit Pharpatara

20 2.1. SYSTEM MODELING

Here, a is the aerodynamic lift acceleration which is computed from the commanded

acceleration acom by

a = acom − Igg · ev
3

where acom is computed by the guidance algorithm and Ig is zero if the input guidance

parameter is zero or negative, and Ig is equal to one otherwise.

α

1

2 3a

Control input

Aα cosα−B sinα

Figure 2.6: Relation between the control input a and the angle of attack α

The iteration starts by increasing α from zero gradually until the solution α for the

command a is found. In figure 2.6, we start from moving the blue dot number 1 along

the example graph Aα cosα − B sinα until the solution Aα cosα − B sinα = a is

reached (blue dot number 2) but if the iteration continues, another solution, the red

dot number 3, is found. In reality, only the first solution can maintain the stability

of the UAV while the later solutions are found after the vehicle becomes unstable.

2. Maximum angle of attack at the actuators limit αstb
max is the maximum angle of attack

being able to maintain the velocity and stability of the vehicle. This value depends

on altitude and speed of the UAV. It is usually given by wind tunnel experiments.

3. Angle of attack αstruct
max , which yields the maximum normal acceleration aLmax , is

parametrised by structural limit of the UAV. It is related to the maximum effort

that the UAV can take without deforming its structure. This angle of attack can be

calculated by solving this equation:

aLmax =
QS

m
CN(αstruct

max).

If CN = CNαα is considered, then

αstruct
max =

maLmax

QSCNα
.

06/2015 Pawit Pharpatara

2.2. ENVIRONMENTAL MODELING 21

Dynamic response: The dynamic response of α is also considered and modeled as a

second order system:

α

αc
=

1

1 + 2ζ
ω0
p+

(
1
ω0

)2
p2

, (2.9)

with a damping ratio ζ and an angular frequency ω0.

This dynamic response represents a hierarchical controller whose inner loop stabilizes

the rotational velocity of the UAV and the outer loop controls the dynamics of the angle

of attack α [DSF00].

As the angle of attack α is a parameter using to control the UAV. The UAV cannot

directly move in the sideways direction. Thus, the UAV system is nonholonomic.

2.2 Environmental modeling

2.2.1 US-76 model

The U.S. Standard Atmosphere has been the work of the U.S. Committee On Extension

to the Standard Atmosphere (COESA) since 1953. There are several versions: 1953, 1958,

1962, 1966, and 1976. These models were published in book form jointly by the National

Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space

Administration (NASA), and the U.S. Air Force. These models are obtained based on

rocket and satellite data and perfect gas theory by cooperation of 30 U.S. organizations

representing the government, industry, research institutions, and universities. The U.S.

Standard Atmospheres 1976 (US-76 model) represent the atmospheric densities and tem-

peratures from sea level to 1000 km. Below 32 km the U.S. Standard Atmosphere is identical

with the Standard Atmosphere of the International Civil Aviation Organization (ICAO).

The US-76 consists of single profile representing the idealized, steady-state atmosphere for

moderate solar activity. The altitude resolution varies from 0.05 km at low altitudes to 5

km at high altitudes shown in figure 2.7. In the lower earth atmosphere (altitude < 35 km),

density of air and atmospheric pressure decrease exponentially with altitude and approach

zero at about 35 km.

The closed-form solutions of this model are as follows:

For h > 25 km (Upper Stratosphere):

Tatm = −131.21 + 0.00299h,

patm = 2.488

[
Tatm + 273.1

216.6

]−11.388

.

06/2015 Pawit Pharpatara

22 2.2. ENVIRONMENTAL MODELING

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.5

1

1.5
k
g/
m

3

altitude

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

5

10

15
x 10

4

P
a

air density
atmospheric pressure

Figure 2.7: The variation of air density and atmospheric pressure with altitude: US-76
model

For 11 km < h < 25 km (Lower Stratosphere):

Tatm = −56.46,

patm = 22.65 exp−1.73−0.000157h .

For h < 11 km (Troposphere):

Tatm = 15.04− .00649h,

patm = 101.29

[
Tatm + 273.1

288.08

]5.256

.

with ρ = patm/(0.2869(Tatm + 273.1)) where ρ is the air density (kg/m3), patm is the

atmospheric pressure (kPa), Tatm is the atmospheric temperature (°C) and h is the altitude

(m).

2.2.2 Simplified environmental model

The simplified air density function can be expressed as

ρ(z) = ρ0e
−z/zr , (2.10)

06/2015 Pawit Pharpatara

2.3. PROBLEM FORMULATION 23

where ρ0 is the air density at standard atmosphere at sea level and zr is the reference

altitude.

As a consequence, the path curvature can be written in the same way as

c(z) = c0e
−z/zr . (2.11)

where c0 is the maximum curvature at sea level.

2.3 Problem formulation

Let x(t) = (ξ>, v, γ, χ)> ∈ X = R6 be the measurable state of the system where ξ =

(x, y, z)> be the vehicle position, v be the vehicle speed, γ be the flight path angle, χ be

the azimuth angle, u ∈ U be a control input, including aerodynamic and propulsion forces,

in the set U of admissible controls. Then, the differential system (2.8) can be rewritten as

ẋ = f(x,u), (2.12)

where f is the vehicle system model.

X is the state space. It is divided into two subsets. Let Xfree be the set of admissible

states. Xobs = X \ Xfree is defined as the obstacle region. The initial state of the system is

xinit ∈ Xfree.

The trajectory planning algorithm is given a rendezvous set Xgoal ⊂ Xfree. In order to

achieve its mission, the vehicle has to reach Xgoal while avoiding obstacles and minimizing

a performance criterion J defined as

J (t0, tf ,u) =

∫ tf

t0

f0(x(t),u(t)) dt+ g(x(tf)), (2.13)

where f0 : R6 × R2 → R and g : R6 → R are C1 [Tré12]. Note that if the minimal time

problem is considered, f0 = 1 and g = 0 are chosen, and if the minimal maximum final

speed is considered, f0 = 0 and g = −v(tf) are chosen.

To sum up, the trajectory planning problem is to find a collision free trajectory x(t) :

[0, tf] → Xfree with ẋ = f(x,u), that starts at xinit, reaches the goal region Xgoal, i.e.

x(0) = xinit and x(tf) ∈ Xgoal and minimizes the cost function J . The function f is defined

by the dynamics of the UAV.

2.4 Conclusions

To conclude, the objective of this thesis is to find an optimal or near-optimal trajectory

generation algorithm for rendez-vous problems of UAVs. This is a very challenging problem

because:

06/2015 Pawit Pharpatara

24 2.4. CONCLUSIONS

� Some UAVs are hybrid systems such as missiles that have a propulsive phase and a

non-propulsive phase

� The environment is complex and cluttered with obstacles

� The goal area must be reached with optimal criteria such as shortest distance or

maximum velocity

� The possibility of replanning is required if there are some changes during the mission

� At the end, the method must be implementable in a real time system

In the next part, the state of the art of UAV flight controls and trajectory planning

methods are presented.

06/2015 Pawit Pharpatara

Part II

State of the art

25

3 UAV flight controls

A flight control system is an important module for any aerial vehicles. The UAV flight

control systems must provide such technologies or techniques that ensure that the UAVs

can fulfill their missions. The missions of the UAVs can be to follow a desired trajectory in

presence of external perturbations or to perform risky tasks under extreme flight conditions

that are impossible for the manned aerial vehicles. Therefore, the UAV flight control

systems must consider safety or mission critical, such as error in model and measurement,

obstacle avoidance, etc. A classical UAV control system architecture is shown in figure 3.1.

The general goal of the UAV is to track the desired trajectory or commands in presence of

external and internal perturbations.

In this chapter, several general control techniques used to design the control systems for

the UAV flight controls are presented. There are five main methods: linear flight control

techniques, nonlinear flight control techniques, specific guidance laws, numerical methods,

and artificial intelligent techniques.

3.1 Linear flight control techniques

The linear flight control techniques are used on linear systems which are unlikely for UAV

systems. In order to apply these techniques for UAV systems, the dynamics of the vehicle

must be linearized. The linear flight control techniques are widely used due to their sim-

plicity, easy implementation, and associated metrics of stability and performance. Several

linear control techniques are presented in this section.

27

28 3.1. LINEAR FLIGHT CONTROL TECHNIQUES

Control
System

UAV
Dynamics

Set up
Command

-

Error
Control
Inputs

Disturbances

State Outputs

NoiseState Output
Estimates

Sensors/
Navigation

Figure 3.1: A classical UAV control system architecture

3.1.1 Classical and PID controllers

These controllers are used for single-input-single-output (SISO) loop which is very similar

to the control structure in figure 3.1. Considering a SISO loop, three standard forms of the

classical controllers can be used to design the control system:

� Proportional feedback: this controller is used to modify the gain of the system

� Integral feedback: the steady-state error is typically corrected by this controller

� Derivative feedback: this controller provides the feedback of the error change rate so

that the future error can be anticipated

These three standard controllers can be combined with one another. The combination

of three feedback controller is the standard PID controller. The robust PID controller is

designed for a UAV flight control system in [KG11]. The PID controllers are easy to be

implemented. However, the PID controllers have to balance the gains among all three

controllers. This can impact the entire system resulting in settling time and oscillations for

example.

3.1.2 Successive loop closure

If the dynamics of the vehicle is complex, the problems have to be decomposed to identify

components of the dynamics that are controlled by each specific controller. For each con-

troller, the classical controller is applied. Then, the successive loop closure is performed

where the reference of each control loop comes from another control loop. An example of

successive loop closure is the system decomposed into 3 controllers: position, velocity and

attitude. The input of the system is the desired position which is given to the position

controller plant. Then, the output of the position controller plant is used as a reference

velocity for the next velocity controller plant and so on.

06/2015 Pawit Pharpatara

3.2. NONLINEAR FLIGHT CONTROL TECHNIQUES 29

3.1.3 Multi-Input-Multi-Output control

In the actual UAV system, there are multiple sensors and actuators. This makes the system

a multi-input-multi-output (MIMO) problem. Several techniques can be used to handle the

additional complexity of the MIMO.

� Full state feedback controller: Linear-Quadratic Regulator (LQR) and Linear-

Quadratic-Gaussian (LQG) controllers have been used in several applications of UAVs.

The performances of the LQR and PID applied to an indoor micro quadrotor are

analyzed and compared in [BNS04]. The LQR is also used together with the Kalman

estimator to control the longitudinal dynamics of the UAV in [HV13]. In [MBB05],

the LQG controller is used in a helicopter application.

� Robust Control techniques: H2, H∞, and Quantitative Feedback Theory (QFT)

are the robust control techniques used for MIMO control problems. The combination

of H2 and H∞ is used on the landing control of a flying-wing UAV in [WZS07]. The

QFT and its application in UAV flight control can be found in [XY12].

The linear flight control techniques are very simple and easy to implement. The linear

flight control techniques also works effectively for simple missions such as attitude-hold

navigation, non-agile waypoint navigation, etc. Although the linear control techniques can

still be used for linearized dynamics, they can only guarantee to be locally stable. The

H∞ can usually extend the stability area around the equilibrium point in exchange for a

degraded performance. Thus, the desired performance may be difficult to achieve using the

linear flight control techniques. Moreover, with a growth in aeronautic and aerospace tech-

nologies, the aerial vehicles become more capable of executing difficult missions involving

significant model and environment uncertainties. Thus, the linear flight control techniques

are not sufficient to solve these problems.

3.2 Nonlinear flight control techniques

Since the linear flight control techniques are not sufficient to solve the modern UAV prob-

lems, the nonlinear flight control techniques are introduced. In order to use these techniques,

the UAV dynamics are basically considered nonlinear and can be written in a generic form

as

ẋ(t) = f(x(t),u(t)), (3.1)

where t ∈ R+ denotes the time, x(t) ∈ Rn is the n-dimension state of system, and u(t) ∈ Rm

is the control inputs of m dimensions.

Several techniques can be used to solve the problems modeled with this dynamic.

06/2015 Pawit Pharpatara

30 3.2. NONLINEAR FLIGHT CONTROL TECHNIQUES

3.2.1 Feedback-based control

� Gain scheduling: Gain scheduling approach [Lei99] can be classified in both lin-

ear and nonlinear control techniques. The gain scheduling treats linear or nonlinear

problems by decomposing the problems into a finite number of linear or nonlinear sub-

problems. This approach tries to find a set of gains associating to each sub-model

and applies the corresponding (linear or nonlinear) control law. However, the stability

of the closed-loop control system must be guaranteed; for example, using Lyapunov

function. Then, the control design task is to select the gain that satisfies the stability

of the system. This results in switching between sub-models in the closed-loop control

system.

� Backstepping: Backstepping [Kok92] is a recursive approach to stabilizing the sys-

tems that can be represented in cascade, i.e. control loops within control loops.

The idea is very simple. Starting from the inner-most loop whose stabilizing con-

trol law and a Lyapunov function are known, an integrator is added to its input.

Thus, a new stabilizing control law with a new Lyapunov function is explicitly de-

signed for the augmented systems. It can be applied in several types of aerial vehicles

[MH04, GHM08, JT08, RA05].

3.2.2 Sliding mode control

Sliding mode control or SMC [Zin90] is a variable structure control (VSC) methods. The

nonlinear feed-back control has one or several discontinuities in the state space. The multi-

ple control structures are designed so that, when its state crosses these discontinuities, the

control structure is altered to a different control structure. The SMC is developed to deal

with uncertainties. It stabilizes the dynamics by switching the control structure. Several

UAV flight controls are designed based on this method such as the SMC based on the back-

stepping approach of a UAV type-quadrotor demonstrated in [BBT07] and the adaptive

multiple sliding surface control for a missile guidance in [WHD10].

3.2.3 Model Predictive Control

Model Predictive Control or MPC [GPM89] is an advanced method combing open loop

optimal control with feedback control. It is a multivariable control algorithm designing

an admissible continuous control input by minimizing the error between the actual state

of system and the reference model without violating any given constraints in a short time

horizon. The main advantage of this method is that it optimizes a current horizon while

06/2015 Pawit Pharpatara

3.3. SPECIFIC GUIDANCE LAWS 31

considering the future horizon, i.e. it is locally optimal. The applications of the MPC on

the UAVs are shown in [BHPL06, YS12].

Note that there are some unmentioned techniques that can be used as a nonlinear flight

control techniques; for example, singular perturbation techniques [Kok81, SOK84].

To conclude, the nonlinear control techniques work very well to solve the nonlinear

problems of the UAVs. Each one of them has the advantages over the specific types of

objectives. For example, the SMC is very good and robust to deal with uncertainties while

the MPC can deal very well with problems with constraints imposed on the system. The

advantage over the global optimization is that solutions can be obtained rapidly and is

possible to implement to the real time system. However, some of them do not consider the

future conditions and environment. Therefore, in a dynamic environment or environment

cluttered with obstacle, a feasible trajectory might not be found by these methods. Even

if some techniques such as the MPC can consider the future conditions and environment,

they are only with in the local optimization horizon using a reference trajectory. If the

reference trajectory is too far from the feasible trajectory, the MPC might have difficulties

in finding a feasible trajectory and ends up in some obstacles. Thus, it is preferable that

future conditions and environment are considered globally.

3.3 Specific guidance laws

Specific guidance laws are developed to solve specific problems such as missile guidance

problems. In this section, some specific guidance laws are described. The interesting fact of

these guidance laws is that they have closed-form solutions that are easy to implement on

board the vehicles. As it is not easy to obtain the closed-loop control for nonlinear systems,

a lot of open-loop guidance laws are designed to solve nonlinear problems. The objective

of guidance is to direct the vehicle toward a given destination. In most of guidance laws,

in order to view an object or destination, one must sight along a line to that object or

destination. This line is called the line-of-sight (LOS) (see figure 3.2).

The LOS that passes through the objective of the guidance is an important concept of

guidance. Most of the classical guidance laws use this LOS as basis for their calculation.

Here, several guidance laws are explained.

3.3.1 Classical guidance

The classical guidance laws are guidance techniques which are a part of the postlaunch

phase. In other words, they are the guidance laws applied directly to the aircraft during

06/2015 Pawit Pharpatara

32 3.3. SPECIFIC GUIDANCE LAWS

Line-Of-Sight (LOS)

Figure 3.2: Illustration of line-of-sight (LOS)

the mission. There are some well-known guidance laws such as Beam rider guidance [Zar94],

Command to line-of-sight guidance [Hea52], Pursuit guidance [Zar94], etc.

Proportional navigation guidance [Sio04] known as PN or PNG is a guidance law

which is widely used in interceptor missile guidance in practice.

λ

r

vt

vm

LOS

acom

Figure 3.3: Illustration of proportional navigation

The basic philosophy behind PN is that the missile velocity vector should rotate at

a rate proportional to the rotation rate of the line-of-sight (LOS-rate), and in the same

direction. Specifically, the classical PN tries to nullify the heading error for intercepting

the target. The PN is illustrated in figure 3.3. vt is the target velocity, vm is the missile

velocity, λ = (λx, λy, λz) is the Euler angles of LOS, r is the vector representing the distance

between the target and the missile, and acom = (acomx , acomy , acomz) is the commanded

acceleration of the missile acting perpendicular to the instantaneous LOS. Mathematically,

proportional navigation can be expressed as

acom = Nvc ×
(
dλ

dt

)
(3.2)

06/2015 Pawit Pharpatara

3.3. SPECIFIC GUIDANCE LAWS 33

where N is the navigation constant, vc = (vcx , vcy , vcz) = vm−vt is the relative velocity of

the missile to the target.

After some straightforward calculation and some assumptions, the equation (3.2) can

be rewritten as (see the demonstration in [Sio04])

acom = N
ZEM

t2go

= N
r− vctgo

t2go

(3.3)

where ZEM = r − vctgo is the zero-effort-miss, i.e. the miss distance calculated at any

time t assuming that the missile and the target do not maneuver or accelerate after the

moment t until their collision at tf , and tgo = tf − t is the time-to-go until the end of flight.

By interpreting ZEM as a predicted intercept point (PIP), which can be calculated

based on some knowledge, or assumptions, of the future motion of the target, the PN

guidance law (3.3) can be considered as predictive guidance.

Proportional navigation and its variants have been treated extensively in the litera-

ture. The variations that are worth mentioning are: Pure Proportional Navigation (PPN)

[Bec90] , Biased Proportional Navigation (BPN) [MC66] , True Proportional Navigation

(TPN) [Gue76] , Generalized Proportional Navigation (GPN) [YY87] , Ideal Proportional

Navigation (IPN) [YC92] , and Augmented Proportional Navigation (APN) [Zar94].

Among the mentioned variations of PN, the APN captures attention from many re-

searchers. The APN is developed in order to be applied against the maneuvering target

which is the general case of the interceptor missile. Thus, it is the PN that can be used

for maneuvering target. It includes an additional term considering the acceleration of the

target.

In the APN law, an addition term concerning the target acceleration at is added to

ZEM which is

ZEM = r− vctgo +
1

2
att

2
go (3.4)

Please note that in reality, the target acceleration is not known a priori. Thus, the

estimation of the target acceleration is required continuously during the flight.

The classical guidance laws are very simple to be implemented because of the closed-

form solution. However, they do not consider the aerodynamic drag and some other external

factors which can affect the maneuverability of the vehicle. This results in a loss of perfor-

mance of the guidance laws.

3.3.2 Guidance based on optimal control theory

The typical dynamic system used in optimization problems takes form of general nonlinear

differential equations:

06/2015 Pawit Pharpatara

34 3.3. SPECIFIC GUIDANCE LAWS

ẋ = f(x(t),u(t),p, t) (3.5)

where x ∈ Rnx is the state with nx dimensions, u ∈ Rnu is the control input with nu

dimensions, and p ∈ Rnp is the additional system parameter with np dimensions.

The optimal control problem is to minimize the cost function of the system (cf. equation

(2.13)):

J =

∫ tf

t0

f0(x(t),u(t),p, t) dt+ g(x(t),p, t), (3.6)

where f0 : Rnx × Rnu × Rnp → R and g : Rnx × Rnp → R are C1.

The optimal control theory can be derived using the minimum principle of Pontryagin.

In order to solve the optimal control problem using this method, the Hamiltonian is required

and is defined as

H(x(t),λ(t),u,p, t) = λ>(t)f(x(t),u(t),p, t) + L[x(t),u(t),p, t], (3.7)

where λ(t) is a vector of the costate variables of the same dimension as x(t).

The optimal control theory aims to solve this problem with the given initial conditions,

terminal conditions, path constraints, and the boundary conditions of the state or costate

parameters. Usually, the closed-form solutions can be obtained only when the problem is

simplified with less constraints. Here, several optimal control guidance laws with a closed-

form solution are presented.

3.3.2.1 Optimal proportional navigation

The optimal control theory is used on the PN to find an optimal navigation gain NOPN

[Zar94, Waw02] of the optimal proportional navigation or OPN. Moreover, the dynamics

of the first order is included in the study, i.e. α
αd

= 1
1+τp where α is the commanded angle

of attack and αd is its desired value. The optimal control theory tries to minimize the final

miss distance and the energies. As a consequence, the optimal commanded acceleration of

the missile is obtained.

acom = NOPN(ε)(vr ×
dλ

dt
− k1(ε)am +

1

2
at) (3.8)

with

ε = tgo/τ

k1(ε) = (e−ε + ε− 1)/ε2

NOPN(ε) =
N(ε)

6µ
τ3

+D(ε)

06/2015 Pawit Pharpatara

3.3. SPECIFIC GUIDANCE LAWS 35

where

N(ε) = 6ε2(e−ε + ε− 1)

D(ε) = 2ε3 − 6ε2 + 3− 12εe−ε − 3e−2ε

µ is a constant

am is the actual acceleration of the missile

at is the acceleration of the target

The OPN only concerns the first two terms of equation (3.8) while the optimal aug-

mented proportional navigation is the entire equation (3.8) which includes the acceleration

of the target. According to equation (3.8), if τ = 0 and µ = 0, we obtain the gain

NOPN(ε) = 3 which is the optimal gain that is usually used for the proportional navigation

(N in equation (3.3)). Please note that τ = 0 implies that the dynamics of the angle of

attack is perfect and µ = 0 implies that the final miss distance is null.

3.3.2.2 Kappa guidance and optimal kappa guidance

r

vt

vm0

ad

vPIP

ξPIP

Figure 3.4: Illustration of kappa guidance

Kappa guidance [Lin91] is a guidance law designed using the optimal control theory to

maximize the final speed of the vehicle by controlling the curvature of the vehicle trajectory.

The kappa guidance is another famous law used in missile guidance.

The kappa guidance uses a form of proportional navigation guidance to ensure a min-

imization of the energy loss along with another term to direct missile velocity to the de-

manded terminal angle of approach. Thus, the constraint of the final approach angle is

06/2015 Pawit Pharpatara

36 3.3. SPECIFIC GUIDANCE LAWS

applied to this guidance law. Then, the minimum principle of Pontryagin is used to derive

the guidance solutions.

The explicit guidance is used as a basis of the kappa guidance. The desired commanded

acceleration vector acom of the explicit guidance can be expressed explicitly as

acom = a1 + a2, (3.9)

with

a1 =
K1

tgo
(vpip − vm0),

a2 =
K2

t2go

(r− vctgo),
(3.10)

choosing ||vpip|| = ||vm0 ||, K1 and K2 are the gains.

The second term a2 is the proportional navigation term which nullifies the heading error to

the PIP while the first term a1 is the shaping term which rotates the flight path angle so

that the initial or current flight path angle γ(vm0) converges to the final or desired flight

path angle γf (vmf
).

In [Lin91], Lin also studied the optimal kappa guidance in order to find the optimal

gains K1 and K2. The approximation of these gains are shown in appendix A. At the

boundary conditions, the gain K1 = −2 and K2 = 6. These gains are usually used for the

terminal missile guidance.

In general, kappa guidance is a PN with a trajectory shaping term which considers the

final flight path angle. As kappa guidance is developed based on the PN, its performance

also degrades sharply in the presence of rapidly maneuvering targets and large off-boresight

angle launches.

3.3.2.3 Dubins’ paths

Dubins’ paths are developed based on a Dubins’ car model. They are usually used in

terrestrial mobile robotics. Even though Dubins’ car does not have the exact same model

as aerial vehicles, they are used in some aerial vehicle applications. Thus, it is interesting

to study the Dubins’ paths.

Instead of searching for a set of control inputs for the vehicle, Dubins supposes that

the vehicles are always operated with the maximal control inputs in order to achieve the

shortest path. With this hypothesis, the Dubins’ paths are developed [Dub57] based on

Dubins’ car model. Dubins’ paths are calculated using the optimal control method for

2-dimensional problems.

In the study of Dubins, the minimal length path is composed of two types of trajectories:

an arc of circle (C) and a segment (S). This is studied and developed again by Boissonat’s

06/2015 Pawit Pharpatara

3.3. SPECIFIC GUIDANCE LAWS 37

team based on the minimal principle of Pontryagin [BCL91]. In their study, the system of

Dubins’ car is expressed as
ẋ = cos θ,

ż = sin θ,

θ̇ = u, u 6 1,

(3.11)

where (x, z) ∈ R2 is the vehicle position, θ ∈ R is the path angle, and u ∈ [−1, 1] is the

control input.

The optimization problem for the Dubins’ car is to minimize the total time of the

trajectory, i.e. J = tf . Boissonat’s team has proved that the optimal path between two

states cannot be any combinations of arcs of circle (C) and segments (S). The optimal

path must be one of these two types: CSC (arc-segment-arc), CCC (arc-arc-arc) or their

degenerate forms (C, S, CS, SC). They also state that, for the CCC path, the angle of the

second arc must be superior to π. The CSC and CCC types are illustrated in figure 3.5.

(i) CCC type (ii) CSC types

xinit xfinal
xinit

xfinal

xinit

xfinal

Figure 3.5: Dubins’ paths

The Dubins’ paths are optimal and work very well for the 2-dimentional nonholonomic

problems. However, there is a discontinuity of the control input at the section between C

and S path, i.e. a rapid change of u from 1,-1 to 0 and vice versa. Thus, it is not suitable

to be used as a guidance law. In the other hand, it can be used as a metric to determine

the distance between two states of a nonholonomic robot/vehicle.

The guidance laws presented in this section have the closed-form solutions. Thus, they

are very easy to be implemented in real-time systems. However, these guidance laws rely

on some restrictive approximations such as very simplified model. Moreover, no future

condition is considered such as the changes of control limitation or environment. For such

complex systems and missions, the optimal problem needs to be considered globally.

06/2015 Pawit Pharpatara

38 3.4. NUMERICAL METHODS

3.4 Numerical methods

Certain trajectory optimization problems are conveniently solved by analytical optimal

control such as Dubins’ paths [Dub57]. However, if the system has complicated nonlinear

dynamics of high dimension and many types of constraints, it is very difficult to obtain an

analytical solution. Thus, the numerical solutions of the optimal control problem have been

studied and developed. The numerical methods for solving optimal control problems can

be divided into two main approaches [Rao09]: indirect and direct approaches, according to

an approach of solving the problems shown in figure 3.6.

Systems of

Nonlinear Equations

Costate Systems

(Nonlinear Optimization)

H
a

m
ilt

o
n

ia
n

Solution

Problem solving

with

Differential Equations

and

Integration of Functions

D
ir
e

c
t

m
e

th
o

d
s

In
d

ir
e

c
t

m
e

th
o

d
s

Optimal control

Problem

Figure 3.6: Diagram of direct and indirect methods

3.4.1 Indirect approaches

The indirect approaches solve the optimal control problem by solving the Hamiltonian

(costate system). These approaches lead to a multiple-point boundary-value problem. This

problem is solved to determine candidate optimal solutions called extremals. The extremals

can be local minimum, maximum or saddle points. Each computed extremals are compared

and the particular extremal with the lowest cost is chosen as an optimal solution. The

indirect approaches give an accurate solution. However, there are three major problems

[Shi08]. First, the analytical forms of the Hamiltonian and all necessary optimal control

conditions must be expressed. Second, the good initial guesses are required. Third, since

the initial guess is required, the domain of convergence can be very small.

3.4.2 Direct approaches

Unlike indirect approaches, direct approaches find a solution by means of discretion and

parameterization so that the traditional continuous optimal control problem is converted

06/2015 Pawit Pharpatara

3.4. NUMERICAL METHODS 39

into parameters optimization problem. This reduces the programming complexity and

makes direct approach widely used. Although the direct approaches are less accurate than

indirect approaches, the fact that they are easier to implement, have a larger domain

of convergence, and have reduced problem size makes them very attractive [Shi08]. The

xi

U
xi+1

Figure 3.7: Schematic description of the differential inclusion approach

differential inclusion [Sey93] is a method using the direct approach. It enforces the system

at each discrete node by applying inequality constraints on the state derivatives. These

inequality constraints are obtained by substituting the upper and lower bounds on the

control input into the equations of motion. When the inequality constraints are met, the

states at xi+1 are said to lie in the attainable set at that node given the state values at

an adjacent node xi and the set of admissible controls U (see figure 3.7). The advantage

given by differential inclusions is that it effectively eliminates the explicit dependence on

control values at each node. This method was demonstrated on 1-D rocket ascent (Goddard

problem [God19]) in presence of a dynamic pressure constraint in [Sey93]. It was also

demonstrated on a flight maneuver simulation in [Rac]. However, these methods can become

numerically unstable and the formulation can be problem dependent [Bet98].

3.4.3 Methods used in solving indirect and direct approaches

There are several methods in solving both indirect and indirect approaches.

06/2015 Pawit Pharpatara

40 3.4. NUMERICAL METHODS

3.4.3.1 Shooting and multi-shooting methods

The idea of the shooting method is to reduce a boundary value problem to an initial value

problem. In the typical shooting method [Kel76], an initial guess is made of the unknown

boundary conditions at one end of the interval. By using this guess along with the known

initial conditions, the system is integrated to the other end. Upon reaching the other

end, the obtained terminal conditions are compared to the known terminal conditions.

If the obtained terminal conditions differ from the known terminal conditions by more

than a specified tolerance, the unknown initial conditions are adjusted and the process

is repeated until the difference between the obtained terminal conditions and the known

terminal conditions is less than the specified tolerance. This method is illustrated by using

the analogy of a canon firing at a target in figure 3.8. The shooting method is very simple.

(a) First try

(b) Second try

(c) Last try

Figure 3.8: Schematic of shooting methods using the analogy of a canon firing at a target

06/2015 Pawit Pharpatara

3.4. NUMERICAL METHODS 41

However, there are significant numerical difficulties due to ill-conditioning of the system

dynamics. As a result, errors made in the unknown boundary conditions will amplify as

the dynamics are integrated in either direction of time. The shooting method possesses

particularly poor characteristics when the optimal control problem is hyper-sensitive, i.e.

when the time interval of interest is large in comparison with the time-scales of the system

in a neighborhood of the optimal solution [Rao09].

The multi-shooting method [SB02] is proposed in order to overcome these difficulties.

Instead of integrating the system over a single large time interval, the multi-shooting method

applies the shooting method over each subinvertal divided from that single large time

interval. It is the improved version of shooting method because the sensitivity to errors in

the unknown initial conditions is reduced due to the integration over significantly smaller

time intervals. Nevertheless, a sufficiently good initial guess is still required. This method

is applied in the domain of missile in [Sub11, Tau02].

3.4.3.2 Collocation methods

Collocation methods enforce the equations of motion through quadrature rules or interpola-

tion. An interpolating function (interpolant) is solved in such a way that it passes through

the state values and maintains the state derivatives at the nodes spanning subinterval of

time. Collocation methods can be divided into local collocation and global collocation. The

local collocation is similar to the multi-shooting method that the time interval is divided

into several subintervals while the global (orthogonal) collocation considers the problem

globally.

Pseudospectral method is a global form of orthogonal collocation, i.e. the state is

approximated using the global polynomial and collocation is performed at chosen points.

The majority of pseudospectral methods use global orthogonal Lagrange polynomials as

the interpolant while the different nodes are selected as the roots of the derivative of the

polynomial such as Legendre pseudospectral method [EKR95], Chebyshev pseudospectral

method [ER98].

General purpose optimal control software or GPOPS [RBD+10] was developed in 2010

by Anil V. Rao and his team to solve multiple-phase optimal control problems using a

Gauss pseudospectral method. This software is very well known tool in optimal control

problem solving. The Gauss pseudospectral method has been studied for the anti-ship

missile trajectory generation in [ZZZL11] by using GPOPS.

06/2015 Pawit Pharpatara

42 3.5. ARTIFICIAL INTELLIGENCE TECHNIQUES

3.5 Artificial intelligence techniques

The concept of techniques in this group is to implant knowledge into a machine (algorithm)

so that it can solve the problems by itself. It is more likely to create an artificial intelligence

or a pattern to solve a problem. Techniques classified in this category are as followed.

3.5.1 Genetic algorithm

A genetic algorithm or GA [Whi] is inspired by the idea of the evolution of living things,

i.e. Darwinian theory. It simulates the evolution of the initial population of random

chromosomes. These chromosomes can reproduce themselves or mutate. Each chromosome

may have more or less fitness, i.e. desirable objective values. Reproduction and mutation

of the chromosomes ensure diversity and give the algorithm a non-zero chance of locating

the global optimum of the objective function. The process is repeated for a given number

of generations. Then, the individual with the most fitness is selected as a solution.

In trajectory optimization, the genetic algorithm has some attractive features over the

gradient methods (direct and indirect methods). Because of its randomness in creating the

candidate, it has higher probability of locating the global optimum than gradient-based

methods when the cost function has multiple local extrema. However, also because of its

randomness, there is no well-defined convergence criterion such as those used in the gradient

methods (nonlinear programming). The genetic algorithm is applied to the missile guidance

and control in [YA11].

3.5.2 Fuzzy logic

Fuzzy logic [Cox92] solves a problem by posing the conditional questions; for example, if

something happens, then do that. Thus, the knowledge of how to solve each problem is

required a priori. Fuzzy control [PY98] provides a formal methodology for representing,

manipulating, and implementing human’s heuristic knowledge about how to control a sys-

tem. The most important thing in fuzzy logic is how to interpret the knowledge into the

logic form. The fuzzy logic has been popular in the recent years and has been applied in

the UAV in many ways.

The framework of fuzzy logic based UAV navigation and control can be found in

[DVTK04]. It can be used to improve the performance of the existing guidance laws in

[LM99, DDG04, GC95]. The combination of fuzzy logic and genetic algorithm on the mis-

sile guidance laws is studied in [CSW98]. Lately, the optimization of rules in the fuzzy logic

is studied in [LY09].

06/2015 Pawit Pharpatara

3.6. CONCLUSION 43

3.5.3 Neural networks

The neural networks are first proposed in a logical calculus in [MP43]. The neural networks

or the artificial neural networks are an information processing paradigm that is inspired

by the simulation of the brain. The neural networks learn from experiences and examples.

The neural networks solve the problem by combining information from their networks.

This makes the neural networks the best in identifying patterns or trends in data. Thus,

they are widely used in different domains such as sale forecasting, risk management, target

marketing and even in UAV flight controls.

The neural networks are implemented with the existing control techniques to improve

their performance like other artificial intelligent techniques. The neural networks applica-

tions can be found in [Zho02, ST02, ABSJM07, WC14] for missiles and in [DJ10, Efe11] for

UAVs.

The artificial intelligent techniques are not primary techniques for UAV flight controls.

They are often used to improve the performance of the existing control laws. Even if, the

performance of the new control laws is improved, the improving control laws still inherit

some drawbacks or basic properties from the original control laws.

3.6 Conclusion

The principal UAV flight control techniques are presented in this chapter. Linear control

techniques are capable of solving simple missions for the local system model. However,

difficult missions involving significant model and environment uncertainties are very difficult

to solve using linear control techniques. Nonlinear control techniques are more suitable for

these missions since they consider the nonlinearity of UAV systems. Some techniques of

the nonlinear control techniques; for example the MPC, consider the optimal criteria for

the problems. However, the optimal criteria are observed locally in the chosen horizon.

The advantage over the global optimization is that solutions can be obtained rapidly and

is possible to implement to the real time system. However, if there are some changes in

missions or in dynamic environment, the UAVs could end up in the obstacles and the

feasible trajectory might not be found. Thus, it is better to consider the problem globally.

The guidance laws are very simple and easy to implement. Yet, the future conditions and

environment are not considered. The numerical methods give the optimal results but it

is time consuming to solve the problem with constraints induced by the obstacles. Even

though the artificial intelligent techniques are very interesting, a priori knowledge of how

to solve the problems is required.

Some of these techniques are interesting to use in the trajectory generation for UAVs.

06/2015 Pawit Pharpatara

44 3.6. CONCLUSION

Still, there are also some attractive techniques used in the robotic field that consider the

complete vehicle model in the complex environment. Thus, they are interesting to be

introduced in the UAV domain to find a feasible and optimal path for the UAVs in the next

chapter.

06/2015 Pawit Pharpatara

4 Trajectory planning

methods

Recently, autonomous vehicles perform more and more missions in complex environments

such as exploration on hazardous terrain or in inaccessible areas. The ideal autonomous

vehicles must have a capability to execute tasks without any human intervention in both

decision and control. One of the problems is to find a collision-free path in a complex envi-

ronment with either static or dynamic obstacles. Thus, some knowledge of the surrounding

environment is required in order for the system to make a decision. Thus, trajectory plan-

ning is an interesting topic for autonomous systems.

In this chapter, several well-known path planning algorithms are generally presented.

The organization of this chapter starts by introducing the problem statement of path plan-

ning. Frequently used notations are explained along with the objective for path planning

algorithms. Then, path planning methods are shown and explained. Some illustrations are

presented in order to understand the algorithms easily.

4.1 Problem statement

In path planning, a state or a configuration is denoted x, and a set of all possible state is

called a state space X. In order to change from one state to another, the application of

actions are chosen by the planner. When each action, denoted u, is applied from the current

state x, a derivative with respect to time ẋ is produced as specified by a state transition

function f , i.e. ẋ = f(x,u). Then, a new state xnew can be deduced from ẋ. A set of all

possible applications of actions at the state x is denoted U(x). The initial state is denoted

xinit.

45

46 4.2. PATH PLANNING METHODS

The objective of path planning is to find a feasible path from the initial state xinit in the

collision-free state space Xfree ∈ X to the goal area Xgoal ∈ Xfree while avoiding obstacles

denoted Xobs = X \ Xfree.

4.2 Path planning methods

There are many methods to find a path between xinit and xgoal ∈ Xgoal. Currently, the path

planning algorithms can be categorized as roadmap, cell decomposition, potential field, and

sampling-based methods. In this section, most of the basic path planning methods are

described along with their advantages and drawbacks. Some of them are presented with

illustrations for better understanding of the methods.

4.2.1 Roadmap and cell decomposition methods

The idea of the roadmap is to construct a roadmap by fitting a graph to the state space

while cell decomposition methods try to divide the state space into smaller cells. Then, a

graph search algorithm is used to find a solution. In general, forward search algorithm is

used. It searches the state space starting from the initial state xinit and other states waiting

in queue to go to adjacent states. The search will continue until it reaches the goal state

xgoal or until all states are investigated. Several well-known graph search algorithms are

presented in this section.

� Breadth first: Breadth-first search [LaV06] uses the first-come first-serve princi-

ple to select states in queue, as known as First-In First-Out (FIFO) queue. This

search guarantees that the first obtained solution will use the smallest numbers of

iterations. However, a large memory space is required since the states stored in queue

increase gradually with time. This search algorithm is used widely in electronic design

automation.

� Depth first: Contrary to breadth-first search, depth-first search [Tar72] uses a Last-

In First-Out (LIFO) queue. As a consequence, this search algorithm prefers to expand

toward longer paths. This makes the search easily focus on one direction and com-

pletely miss large areas of search space. The iterative deepening depth-first search

[Kor85] is developed to overcome this problem. The depth-first search algorithm is

successfully used in chess programs.

� Dijkstra: Dijkstra’s algorithm [Dij59, Dij65] is one of the first successful search

algorithm which can find optimal paths. It is a special form of dynamic programming

[Bel54]. Dijkstra’s algorithm introduces the cost function to the search algorithm.

06/2015 Pawit Pharpatara

4.2. PATH PLANNING METHODS 47

The cost-to-go to each state from the initial state is verified each time. These cost

values are used as a sorting function in queue in order to determine in which order

states are to expand. Dijkstra’s algorithm is guaranteed to find a shortest path from

the initial state to the goal state as long as none of the edges have a negative cost. A

Dijkstra algorithm for fixed-wing UAV motion planning is presented in [MS10].

� Best-First-Search: Best-First-Search algorithm is very similar to Dijkstra’s algo-

rithm in the way that it uses the estimated cost function, called a heuristic. This

heuristic is used as a sorting function in queue and is determined by how far from

the goal state to any state. The heuristic function represents additional knowledge of

how to solve the problem, i.e. how to reach the goal. One and well-known best-first

search algorithm is Greedy Best-First-Search algorithm [RN09]. Instead of selecting

the closest state to the initial state, it tries to expand the state that is the closest

to the goal by assuming that it is likely to lead to a solution quickly. It runs much

faster than Dijkstra’s algorithm because it uses the heuristic function to guide its way

toward the goal very quickly. However, it is not guaranteed to find the shortest path.

� A*: A* [HNR68, RN09] is an extension of Dijkstra’s algorithm using heuristics from

Greedy Best-First-Search algorithm. It tries to reduce the total number of states

explored by incorporating a heuristic estimate of the cost-to-go to the goal from a

given state. This algorithm is as fast as best-first-search in the simple problem and

can also find the shortest path. The UAV applications using A*-based algorithm are

shown in [SJFD08, uVP09, Dic12].

� D* Lite: D* [Ste93] or Dynamic A* is an A* algorithm whose cost parameters can

change during the problem-solving process. However, the D* algorithm is complex

and hard to understand. D* Lite [KL02] which acts the same way as D* but easier to

understand is developed. D* and D* Lite have an advantage over the A* algorithm

because of their propriety, i.e. “dynamic” cost function. Thus, they are more suitable

than A* algorithm to be implemented in the real system with conditions that the

environment is known in advance.

� Theta*: Theta* [NDKF07, DNKF10] is another variant of A*. Theta* is identical

to A* except that Theta* and its variants [NKT10] allows the parent of a vertex to be

any vertices, unlike A* where the parent must be a successor. Therefore, Theta* and

its variants propagate information along grid edges without constraining the paths to

grid edges as shown in figure 4.1. Theta* is simple and fast. It can find short and

realistic looking paths. However, it is not guaranteed to find the shortest paths. It is

applied for a 3D path planning for UAVs in [FGQ12].

06/2015 Pawit Pharpatara

48 4.2. PATH PLANNING METHODS

xinit

xgoal

(a) A* path

xinit

xgoal

(b) Theta* path

Figure 4.1: A* path versus Theta* path

� Other search methods: There are some other search methods that use the same

search algorithms previously described with the different schemes such as backward

search which starts the search from the goal state xgoal supposing that there is a single

goal state or bidirectional search [Poh69] which is a combination of both forward and

backward search. A tree grows from the initial state xinit and another tree grows

from the goal state xgoal. Then, the search terminates with success when both trees

connect.

The roadmap methods try to fit graphs in the state space while the cell decomposition

methods divide the work space into smaller subspace . Then, they search their graphs for

solutions. They are very simple and fast to be implemented in low dimensional systems.

They are used widely in the robot motion planning and graph searching application. How-

ever, the UAV path planning with the constraints of kinematics and dynamics can hardly

be solved by these methods effectively. Moreover, implementation of these algorithms for

high dimensional problems can be expensive in terms of computational time.

06/2015 Pawit Pharpatara

4.2. PATH PLANNING METHODS 49

4.2.2 Artificial Potential Field

Artificial Potential Field or APF [AH83, Kha85] uses an idea from nature. By assuming that

the vehicle is a charged particle inside the electric or magnetic field, the vehicle is moved

by the induced forced guided by the vector field. In robotics, the same effect is simulated

by creating an artificial potential field that moves the robot to the desired destination.

There are several types of artificial potential fields; for example, the attractive field

and the repulsive field. Attractive field is usually used to guide the vehicle to the desired

destination xgoal while repulsive field is created by the obstacles in order for the robot

to avoid them or by the initial state xinit to make the robot leave its starting point. By

combining these two types of artificial potential field, the robot can follow the force induced

by the potential field to reach xgoal while avoiding the obstacles.

(a) Illustration of potential field (b) Illustration of command field

Figure 4.2: Example of potential fields path planning with obstacles [Hel11]

Figure 4.2 shows an example of an APF planning with 3 obstacles and one goal. The

black lines represent the path of the robot. The grey scale represents different speed of the

robot. In figure 4.2(a), the color gradient represents different magnitude of the APF. In

figure 4.2(b), red circles represent repulsive obstacles and the green circle represents the

attractive goal.

Despite of how well this method works, the vehicle has some oscillatory movement

around the obstacle and is sometimes trapped in the local minima (see figure 4.3). The

problems of oscillatory movement can be solved by assigning some distance criteria from

the obstacles which may indicate attraction distance. Moreover, several methods have been

suggested to deal with the local minima phenomenon in APF. For example, some random

movements are used while hoping that these movements will help escape the local minima

06/2015 Pawit Pharpatara

50 4.2. PATH PLANNING METHODS

Figure 4.3: The robot is trapped in a local minimum from several different initial positions
[Hel11]

in [BL90, BL91]. Or, in [AKH90], potential fields that are solutions to the Laplace equation

(harmonic function), which do not have local minima, are used. The APF using harmonic

function generates smoother paths, which makes it more suitable to aircraft-like vehicles,

than the previous methods. Moreover, it cannot be applied only to a fixed obstacle but also

to a moving obstacle. More literature reviews and the application of the APF in robotics

can be found in [RK91, RK92, SHSS07]. Navigation functions, a improved version of the

APF, that overcome the local minima problem can be found in [FK11, FKA12, FK12].

4.2.3 Sampling-based methods

Sampling-based path planning tries to connect each state in the state space X by sampling

it. For difficult problems, the randomized approach is applied to provide fast solutions.

Since the state space is usually formed from Cartesian products, random sampling is the

easiest method to generate samples. The sampling based planning is proposed to overcome

the complexity of planning algorithms for vehicles of high degree of freedom. However, the

solutions are widely regarded as no optimal, or in the better case, suboptimal solution.

Some sampling-based algorithms for the honolomic system are presented here.

� Random walk planner: Random walk planning builds a search graph by generating

a new sample at each iteration. According to a multivariate Gaussian distribution,

the new sample is created in the neighborhood of the last successful state whose

connecting edge lies in Xfree. The covariance parameters of the Gaussian distribution

are adaptively tuned according to the success of the last iteration. It is combined

06/2015 Pawit Pharpatara

4.3. PATH PLANNING METHODS FOR NONHOLONOMIC SYSTEM 51

with the APF planner in [CP05]. The drawback of this method is that it is difficult

to find a path across the long and narrow corridors.

� Ariadne’s Clew algorithm: Ariadne’s Clew algorithm [MATB96, MAB98] is de-

veloped based on the genetic algorithm [Whi]. This algorithm attempts to explore

the state space where it has never been before while searching for a solution to xgoal

at the same time. It is unlike the APF that tries to approach the destination at

each iteration. Thus, there is no local minima problem. The genetic algorithms are

used to solve the optimization for where to place a new state at each iteration. This

algorithm is designed to solve a path planning problem in static and dynamic envi-

ronment. However, these methods require a lot of tuning parameters which is not

suitable for path planning.

� Expansive-space planner: Expansive-space planner [HLM97, SL03] attempts to

explore the state space in the same way as the Ariadne’s Clew algorithm with an ad-

ditional idea borrowing from the bidirectional search scheme. This algorithm samples

only the state space that is relevant to the current search graph to avoid the compu-

tational cost for the entire state space. This method can solve a lot of problems by

using a simple criterion for the placement of states. However, it requires substantial

parameter tuning which is specified for each different domain of problems. Moreover,

the performance of this method tends to degrade in the long and winding labyrinth.

There are a lot of sampling-based path planning methods that can solve a honolomic

problem with a static or dynamic environment but not all of them are capable to solve the

problem in general without any parameter tuning.

In the following section, path planning methods for nonholonomic system are presented.

4.3 Path planning methods for nonholonomic system

4.3.1 Probabilistic Roadmap Planner Method (PRM)

Probabilistic Roadmap Planner Method or PRM [KSLO96] is one of the most famous

incremental sampling-based path planning methods to plan a collision-free path. The PRM

is a two-query path planning methods consisting of a learning/construction phase and a

query phase.

An indirect graph or a roadmap is built during a construction phase (see figure 4.4(a)).

Then, the query phase attempts to connect the initial state xinit and the goal state xgoal to

some two states, respectively x̃init and x̃goal, in the roadmap, with feasible paths. If it fails

06/2015 Pawit Pharpatara

52 4.3. PATH PLANNING METHODS FOR NONHOLONOMIC SYSTEM

to connect them to the roadmap, the query fails. Otherwise, a feasible path from xinit to

xgoal is found. The feasible path is illustrated in figure 4.4(b).

(a) Construction phase of PRM

xinit

x̃init

xgoal

x̃goal

(b) Query phase of PRM

Figure 4.4: Example of the PRM roadmap

In PRM, multiple queries can be answered at the same time and the learning and the

query phases do not have to be executed sequentially. If there are some difficulties during

the query phase, the PRM can switch to the learning phase to adapt the size of the roadmap

instead. Thus, the learning flavor of the PRM increases. This makes the PRM suitable for

trajectory planning for the multi-agent because it can look for solutions for every agent at

the same time. However, the main shortcoming of this method is its poor performance on

problems requiring paths that pass through narrow passages in the free space. The Medial

Axis Probabilistic Roadmap Planner or MAPRM [WAS99] is developed to overcome this

weakness. This method combines the approach of PRM and the Medial axis together by

generating random networks whose states lie on the medial axis of the free state space.

4.3.2 Rapidly-exploring Random Trees (RRT)

RRT [LK99] is another famous sampling-based planning algorithm. While the PRM is a

two-query path planning methods, the RRT is a single-query planning methods, i.e. build-

ing a search graph and finding a solution at the same time. The RRT is an incremental

sampling-based planning algorithm that rapidly searches high-dimensional space with alge-

braic and differential constraints. Its principle is to bias the exploration toward unexplored

areas by sampling states in the exploration space, i.e. breaking its large Voronoi diagrams

[Vor07], and then extending the exploration tree toward them.

Definition 1 Voronoi diagrams

The Voronoi diagram partitions the state space into regions based on the samples. Each

samples x has an associated Voronoi region Vor(x). For any state xi ∈ Vor(x), x is the

closest sample to xi using euclidean distance (see figure 4.5).

06/2015 Pawit Pharpatara

4.3. PATH PLANNING METHODS FOR NONHOLONOMIC SYSTEM 53

Voronoi
region

Figure 4.5: Example of Voronoi diagram

The algorithm proceeds by growing a single tree G from the initial state xinit until one of

its branches reaches the destination xgoal. For each iteration, the RRT algorithm generates

a random state xrand ∈ Xfree. Then, it tries to expand the closest state in the tree xnear ∈ G
in the tree to xrand according to a metric d by applying a control input u to the system.

A new state xnew is obtained after an integration step ∆t. A newly obtained state and

its connection edge are tested if they are collision-free. If they are collision-free, they are

added to the tree. This is called the rrt extend operation illustrated in figure 4.6. This

procedure repeats until K iterations or a solution is found. The exploration tree and its

Voronoi regions are illustrated in figure 4.7. These figures are taken from Lavalle’s RRT

webpage (http://msl.cs.uiuc.edu/rrt/gallery 2drrt.html).

xinit

xnear xnew xrand

f(xnear,u,∆t)

G

Figure 4.6: The rrt extend operation

This makes RRT more suitable than other methods for real-time implementation. The

generation of random state serves only to expand the search tree in the state space. The

RRT algorithm is suitable for many practical planning problems due to its properties:

� The expansion of the RRT is principally biased toward large voronoi areas, i.e. the

06/2015 Pawit Pharpatara

54 4.3. PATH PLANNING METHODS FOR NONHOLONOMIC SYSTEM

Figure 4.7: The RRT is biased by large Voronoi regions to rapidly explore, before
uniformly convering the space

unexplored areas of the exploration space. This makes the RRT explores the entire

space rapidly.

� The RRT is probabilistically complete [KL00]. It means that the probability of finding

a solution approaches one as time approaches infinity. However, no solution can be

found if no solution exists.

� There is no need for any local planners because the global planner is capable of finding

a feasible path between two states by itself.

� The RRT always remains connected with the fewest edges. Due to this property, the

RRT might be faster than a basic PRM because the PRM often has many extra edges

generated trying to form a connected roadmap.

� The RRT uses a single nearest neighbor query while the PRM uses a more expensive

k-nearest queries search.

� The RRT is a collision-free path planner algorithm.

According to these properties, it seems that the RRT algorithm may have better perfor-

mance than the PRM algorithm. However, it is difficult to prove with the experimental

comparison [LaV98].

06/2015 Pawit Pharpatara

4.3. PATH PLANNING METHODS FOR NONHOLONOMIC SYSTEM 55

The RRT has been a point of interest in robotics for the past 10 years. There are a lot

of extensions of RRT. In this section, some interesting extensions are explained.

4.3.2.1 RRT-goalbias

This extension [LK01] is developed to ameliorate the performance of the RRT algorithm by

directing the branches of the search tree to the desired destination. Instead of uniformly

generating random states xrand ∈ Xfree, xrand ∈ Xgoal is generated with a probability p and

xrand ∈ Xfree is generated with a probability (1 − p). This makes the algorithm converge

to xgoal much faster than the classic RRT. However, if too much bias p is introduced, the

search tree tends to expand its branches to xgoal even if the cost is too expensive. This will

lead to the local minima problem, like potential field planner.

4.3.2.2 RRT-goalzoom

The improvement of this extension [LK01] is based on a biased coin toss, that chooses

a random state xrand from either a region around xgoal or Xfree. The size of the region

around the goal is defined by the closest RRT-node to xgoal at any iterations (see figure

4.8). The consequence of this method is that the focus of the random states gradually

increases around the destination as the RRT draws closer. This works very well in practice.

However, its performance can also be degraded due to local minima.

xinit

xgoal

G

area around xgoal

Figure 4.8: Illustration of area around the goal for RRT-goalzoom algorithm

06/2015 Pawit Pharpatara

56 4.3. PATH PLANNING METHODS FOR NONHOLONOMIC SYSTEM

4.3.2.3 RRT-connect

This extension [LK01] is designed, after considering the size of iterations used to build the

search tree, specifically for path planning problems that involve no differential constraints.

In this case, the need for incremental motions is less important. The method is based on

two ideas: the connect heuristic that attempts to move over a longer distance if an obtained

state is far from colliding, and the growth of RRTs from both xinit and xgoal, i.e. Dual-RRT

[LK01] in the next section.

xinit

xnear xnew xrand

f(xnear,u,∆t, q)

G

Figure 4.9: The rrt connect operation

The connect heuristic can be considered as an alternative to the extend function. Instead

of attempting to extend the RRT by a single integration step ∆t, the connect heuristic

keeps repeating that step q times or until an obstacle is reached (see figure 4.9). It is very

similar to the artificial potential function in a randomized potential field approach. In both

approaches, the search tree converges rapidly to a solution. However, with this extension,

the heuristic is combined well with the properties of the RRT. The algorithm seems to avoid

the well-known local minima problem and can find a solution rapidly. In one sense, with

the connect heuristic, the center of attraction continues to move around as the RRT grows,

while the center of attraction remains fixed at the destination in the APF.

After experiments on a variety of problems [LK01], it is concluded that the primitive

connect yields the best performance for holonomic planning problems while the primitive

extend seems to be the best for nonholonomic problems. One reason for this difference is

that connect places more faith in the metric, and it becomes more challenging to design

good metric for nonholonomic problems.

4.3.2.4 Dual-RRT

The Dual-RRT [LK01] uses a bidirectional scheme [Poh69], i.e. two search trees, to accel-

erate the exploration. One tree grows from the initial state and another grows from the

goal state. Both trees are connectable in the realistic way, verified by the connect heuristic,

06/2015 Pawit Pharpatara

4.3. PATH PLANNING METHODS FOR NONHOLONOMIC SYSTEM 57

if their states are very close or the same state. This method is not suitable for problems

whose decided destination is not a single state xgoal but a set of states Xgoal.

4.3.2.5 RRT* (optimal RRT)

Optimal RRT or RRT* [KF10, KF11] is a RRT algorithm with the asymptotic optimality

property, i.e. almost-sure convergence to an optimal solution, along with probabilistic

completeness guarantees. The RRT* is like the RRT that it can find a feasible path quickly.

Moreover, the quality of the path is improved toward the optimal solution when more time

passes before the path execution is complete. Since most robotic systems usually spend

more time to execute trajectories than to plan them, this property is very advantageous.

The RRT* algorithm is the same as the RRT algorithm with some additional functions.

Once xnew is obtained, the algorithm search the tree G around xnew in near vertex zone for a

better path, i.e. less cost-to-go to xnew. If there is a better path, the algorithm disconnects

a path form xnearest and establish a new path from xmin, equivalent to xnear from the RRT

algorithm, to xnew as shown in figure 4.10. Then, the algorithm searches among the states

xinit

xnew

xgoal

xnearest

xmin
near vertex zone

Figure 4.10: Process in finding the nearest path to xnew

in the near vertex zone again. This time, it is looking for a better path from xnew to any

states of the search tree in the near vertex zone. If there are better paths, the old paths are

replaced by the new paths from xnew. This process is called rewire process. The illustration

of this process is shown in figure 4.11.

The RRT* algorithm is more time consuming than the RRT algorithm because of the

two newly added functions. However, it can find a solution closer to the optimal solution

than the RRT algorithm while using the remaining time after the first solution is found

and before the path is executed by the vehicle.

06/2015 Pawit Pharpatara

58 4.4. CONCLUSION

xinit

xnew

xgoal

near vertex zone

Figure 4.11: Rewire process of the tree around xnew

4.4 Conclusion

All the planning algorithms presented here are very interesting with their own advantages.

The search algorithms such as A*, D*, and Theta* are very simple and used widely. How-

ever, their performance depends mostly on the grid resolution. If the resolution is too low,

i.e. large grid size, the feasible path can be missed by the search algorithm. If the resolution

is too high, large computational effort is required. Moreover, for a complex system where

the control capability varies in the state space. It is very hard to find a suitable resolution

of the grid.

The APF is very interesting if the system can be interpreted into potential fields. For

the complex system such as UAVs, it is quite difficult to find potential field functions that

can represent the system.

While the PRM and RRT are suitable for high dimensional problems as their proprieties

say. The principle of PRM and RRT is the same. It is to construct a roadmap or a tree

in order to explore the space for a solution. The difference is that the PRM is a two-query

algorithm while the RRT is a single-query. The PRM builds a roadmap in one query and

tries to find a solution in another query. It is suitable for problems whose calculation time

is not very important and for multiple robot path planning. While, the RRT builds its

tree and tries to find a solution at the same time. It is more suitable for systems whose

calculation time is important such as hypersonic aerial vehicles. Moreover, the RRT is more

likely implementable in a real-time system. Thus, the RRT is the subject of interest in this

thesis.

In the following chapter, a trajectory planning framework based on RRT algorithm for

06/2015 Pawit Pharpatara

4.4. CONCLUSION 59

an aerial vehicle will be studied. In chapter 5, the RRT will be tested along with some

classical guidance laws and a specific metric. The performances are shown and analyzed.

06/2015 Pawit Pharpatara

Part III

Trajectory planning using a

realistic model

61

5 RRT path planning for an

aerial vehicle

The main contribution of this chapter is to introduce a new and novel method of trajectory

planning for UAVS such as interceptor missiles using a probabilistic method especially the

RRT algorithm.

In this chapter, the combination of path planning method and optimal control theory

is proposed and is used to generate a feasible trajectory while considering complex system

and environment. The RRT algorithm is used as a basic path planner together with the

shortest Dubins’ path as a metric function and a classical closed-loop control law as a node

expansion method to find a feasible solution.

The objective of this chapter is to show the capability of finding a feasible trajectory for

rendez-vous problems for UAVs. First, the RRT algorithm is explained in detail. Then, the

application and modification of the RRT algorithm for an intercept mission of an interceptor

missile are explained attentively. Next, the simulation results are presented and analyzed.

Finally, the concluding remarks are made at the end of this chapter.

5.1 RRT algorithm

5.1.1 An overview

Rapidly-exploring Random Trees (RRT) [LK01] is an incremental method designed to effi-

ciently explore non-convex high-dimensional space. The key idea is to visit the unexplored

part of the state space by breaking its large Voronoi areas [Vor07]. The principle of the

RRT as a path planner is described in Algorithm 1.

63

64 5.1. RRT ALGORITHM

Algorithm 1 RRT path planner

Function : build rrt(in : K ∈ N, xinit ∈ Xfree, Xgoal ⊂ Xfree, out : G)

1: G← xinit

2: i = 0
3: repeat
4: xrand ← random state(Xfree)
5: xnew ← rrt extend(G,xrand)
6: until i+ + > K or (xnew 6= null and xnew ∈ Xgoal)
7: return G

Function : rrt extend(in : G, xrand, out : xnew)

8: xnear ← nearest neighbour(G,xrand)
9: (xnew,u)← steer(xrand,xnear,∆t)

10: if collision tests(xnear,xnew) then
11: G.AddNode(xnew)
12: G.AddEdge(xnear,xnew)
13: return xnew

14: else
15: return null
16: end if

The search starts from the initial state xinit as the root of the tree G. Then, a state

xrand ∈ Xfree is randomly generated in random state function. In rrt extend function, the

algorithm searches the tree G for the nearest vertex to xrand according to a user-defined

metric d in nearest neighbor function. This state is called xnear. In steer function, a

control input u is selected according to a specified criterion in order to move the vehicle from

xnear to xrand. The system model, environment model, and other constraints are considered

and integrated for an integration step ∆t. A newly obtained state is called xnew. Finally, a

collision test is performed in collision test function: if xnew and the path between xnear

and xnew lie in Xfree then they are added to the tree.

These steps are repeated until K iterations are reached or when a solution is found, i.e.

xnew ∈ Xgoal.

5.1.2 Important components

According to LaValle and Kuffner, in order for the RRT algorithm to work effectively, the

following elements must be well-defined.

5.1.2.1 Exploration space X

The exploration space X determines the space where the RRT algorithm should explore

for solutions. It can intuitively define how long the algorithm will take to find a solution.

06/2015 Pawit Pharpatara

5.1. RRT ALGORITHM 65

Thus, it is very important to the RRT algorithm.

� If the exploration space X is too large, the algorithm will take time to find a solution.

� If the exploration space X is too small, the algorithm cannot guarantee to find a

solution because the small exploration space X can possibly contain no solution.

The exploration space can be defined by considering the maximum capability and range of

the vehicle. A exploration space X must be large enough in order to ensure that X contains

all possible solutions. Thus, in a 2-dimensional plane, X is defined as

X = P× V,

P = {ξ = (x, z)> ∈ R2},

V = {(v, γ) ∈ R2}.

(5.1)

A state x ∈ X is represented by a position ξ, a vehicle speed v and a vehicle orientation

γ, where x is a horizontal distance, and z is an altitude,

The exploration space contains two main subsets: collision-free space Xfree and collision

space Xobs, i.e. Xfree = X/Xobs. These two subsets are defined according to each problem.

5.1.2.2 Random state generation

The random state generation is one of the key elements of the RRT algorithm. It determines

where the algorithm tries to explore at each iteration. The principle of the RRT algorithm is

to explore the space by expanding the exploration tree toward large Voronoi areas [Vor07].

In other words, the random states are normally generated in order to break large Voronoi

areas into smaller ones.

Some criteria are applied in the random state function to generate a random state

xrand ∈ Xfree. The random state function usually generate xrand randomly and uniformly

in the exploration space, i.e. the uniform distribution is normally used.

The rate of convergence to a solution of the algorithm can be increased by adding some

heuristics such as RRT-goalbias or RRT-goalzoom [LK01].

5.1.2.3 Metric

Metric is used to determine a distance between two vehicle states in the RRT algorithm.

The importance of the precision of the metric depends on each problem which we will see

later in this thesis. Generally, the metric d(xnear,xrand) determines a distance between two

vehicle states, xnear and and xrand, in nearest neighbor function. The definition of metric

is defined in definition 2.

06/2015 Pawit Pharpatara

66 5.1. RRT ALGORITHM

Definition 2 Metric

A metric is a positive-definite function which determines a distance between elements of a

set X, i.e. d : X×X→ R. For all ξ1, ξ2, ξ3 in X, the following conditions must be satisfied:

1. d(ξ1, ξ2) > 0 (non-negativity);

2. d(ξ1, ξ2) = 0 if and only if ξ1 = ξ2 (identity of indiscerniblility);

3. d(ξ1, ξ2) = d(ξ2, ξ1) (symmetry);

4. d(ξ1, ξ3) 6 d(ξ1, ξ2) + d(ξ2, ξ3) (subadditivity/triangle inequality).

Usually, an Euclidean metric is used to determine a distance between two states.

The euclidean metric gives the shortest distance of a line-of-sight between two states. In

Cartesian coordinates, euclidean metric is defined as

d(ξ1, ξ2) = d(ξ2, ξ1) = ||ξ1 − ξ2||

.

� Advantages: the Euclidean metric is very simple and very easy-to-implement in a

real system. This metric is usually used and probably is the best choice in most of

holonomic systems and also some very simple nonholonomic systems since for simple

systems, the euclidean distance can be considered the shortest path.

� Drawbacks: it does not take the orientation of the vehicle into account. Thus, it is

not as interesting for nonholonomic vehicles as for holonomic vehicles.

Since the Euclidean metric is not always suitable to solve the nonholonomic problem, a

user-defined metric d can be used instead.

Remark 1 Determining an ideal metric for a problem can be quite difficult and challenging

as solving the problem itself.

5.1.2.4 Node expansion methods

Node expansion methods are used to move the vehicle from one state to another state. In

order to expand the tree, a control input u used to expand the tree from xnear to xrand

is determined. The control input can be computed randomly or using a specific criterion

such as some guidance control laws. The system model, environment model, and other

constraints are integrated for an integration step ∆t to obtain xnew in steer function.

06/2015 Pawit Pharpatara

5.2. APPLICATION FOR AN INTERCEPTOR MISSILE 67

5.1.2.5 Collision tests

Collision tests are methods used to verify a newly obtained state xnew and a trajectory

between xnear and xnew if they are collision-free, i.e. xnew ∈ Xfree. The collision-free states

and trajectories are added to the tree G.

5.2 Application for an interceptor missile

A hypersonic aerial vehicle such as an interceptor missile is chosen to be a case study here.

The reason is that the missile flies in a large range of altitude which results in an exponential

decrease of maneuverability at high altitude compared to the one at low altitude. This is

due to the exponential decrease of the air density with respect to altitude. Moreover, the

surface of reference of the missile is much smaller than the other aerial vehicles. As a

consequence, the air resistance caused by wind has less effect on the missile than any other

aerial vehicles. Thus, it can be ignored.

5.2.1 System modeling

fL

fD

eb
1

eb
3

α v
Cg

mg

ev
3

ev
1

i

k

O

γ

T

Figure 5.1: Definition of reference frames in vertical plane

The missile is modeled as a rigid body of mass m and inertia I maneuvering in a vertical

2-dimensional plane. A round Earth model is used. Due to small flight times (less than

one minute), the Earth rotation has very few effects on the missile so it is neglected. Three

frames (see figure 5.1) are introduced to describe the motion of the vehicle: an Earth-

Centred Earth-Fixed (ECEF) reference frame I centered at point O and associated with

the basis vectors (i,k); a body-fixed frame B attached to the vehicle at its center of mass

Cg with the vector basis (eb
1 , e

b
3); and a velocity frame V attached to the vehicle at Cg with

06/2015 Pawit Pharpatara

68 5.2. APPLICATION FOR AN INTERCEPTOR MISSILE

the vector basis (ev
1, e

v
3) where ev

1
def
= v
‖v‖ and v is the translational velocity of the vehicle

in I. Position and velocity defined in I are denoted ξ = (x, z)> and v = (ẋ, ż)>. Since

the velocity of the missile is much greater than the velocity of the wind and the flight time

is less than a minute, it is reasonable to assume that wind has no effect on the vehicle.

Thus, the translational velocity v is assumed to coincide with the apparent velocity. The

orientation of the missile is represented by the pitch angle γ from horizontal axis to eb
1 .

The angular velocity is defined in B as q
def
= γ̇.

The model of interceptors with a boost phase and a midcourse phase is studied in this

chapter. Thus, translational forces include lift fL, drag fD, thrust T, and weight mg (see

figure 5.1). Aerodynamic and perturbation torque are denoted τaero and τpert, respectively.

Using these notations, the vehicle dynamics can be written as

ξ̇ = v, (5.2)

mv̇ = fD + fL + T +mg, (5.3)

γ̇ = q, (5.4)

Iq̇ = τaero + τpert. (5.5)

The aerodynamic forces are

fD = −1

2
ρv2SCDev

1,

fL = −1

2
ρv2SCLev

3,

(5.6)

where ρ is the air density, S is the missile reference area, CD is the drag coefficient, CL is

the lift coefficient, and v
def
= ‖v‖. CL and CD both depend on the angle of attack α [Sio04].

A hierarchical controller is used to control the lateral acceleration u = uev
3 perpendicular

to v: an inner loop stabilizes the rotational velocity q of the vehicle and an outer loop

controls the angle of attack α [DSF00]. In the following, uc denotes the acceleration set

point and αd denotes the desired angle of attack related to uc. The second order dynamic

response of α is modeled as

α

αd
=

1(p
ω

)2
+ 2ζ

ω0
p+ 1

, (5.7)

where ζ is a damping ratio and ω0 is an angular frequency.

For the environment modeling, the US Standard Atmosphere 1976 (US-76) is used. In

the lower earth atmosphere (altitude < 35 km), density of air, and atmospheric pressure

decrease exponentially with altitude and approach zero at approximately 35 km. As we

consider a missile with only aerodynamic flight controls, the maneuvering capabilities are

linked to the density of air (cf. equation (5.6)) and approach zero at 35 km.

06/2015 Pawit Pharpatara

5.2. APPLICATION FOR AN INTERCEPTOR MISSILE 69

5.2.2 The Predicted Intercept Point (PIP)

In interceptor missile guidance, the mission is defined by the destination xgoal called a

predicted intercept point or PIP denoted xpip. The predicted intercept point is defined by

a specific algorithm after receiving information from a radar station where target trajectory

is predicted and estimated. Then, the missile trajectory to a specific point on the target

trajectory is computed. Thus, the trajectory generation to the PIP is studied.

5.2.3 Problem formulation

Let x(t) = (ξ(t)>, v, γ)> ∈ X = R4 be the state of the system, uc ∈ U(x) ⊂ R2 be an

admissible control input and consider the differential system

ẋ = f(x,uc), (5.8)

where f(·) is defined in section 5.2.1. Note that the state is hypothetically measurable for

the trajectory planning method.

X = R4 is the state space. It is divided into two subsets. Let Xfree be the set of

admissible states. Xobs = X \ Xfree is the obstacle region i.e. the set of non-admissible

states.

The initial state of the system is xinit ∈ Xfree. The path planning algorithm is given a

predicted intercept point xpip = (ξpip,vpip). In order to achieve its mission, the interceptor

has to reach a goal set Xgoal ⊂ Xfree.

The motion planning problem is to find a collision-free trajectory X (t) : [0, tf] → Xfree

with ẋ = f(x,uc), that starts at xinit and reaches the goal region, i.e. x(0) = xinit and

x(tf) ∈ Xgoal. The secondary objective is to obtain a trajectory that maximizes the final

speed v(tf).

5.2.4 Dubins’ paths

5.2.4.1 An overview

Dubins’ paths [Dub57, BCL91] (cf. section 3.3.2.3) are calculated using the optimal control

method while fixing the maneuverability of the car to the maximum, i.e. minimal turning

radius. For nonholonomic systems, the minimal length path is studied by Dubins [Dub57].

Dubins succeeds in finding the shortest path between two vehicle states considering their

departure and arrival orientations. The vehicle used in his study is known as Dubins’ car.

06/2015 Pawit Pharpatara

70 5.2. APPLICATION FOR AN INTERCEPTOR MISSILE

The Dubins’ car is modeled as follows:
ẋ = cos γ,

ẏ = sin γ,

γ̇ = cmaxu,

(5.9)

where (x, y) ∈ R2 is the vehicle position, γ ∈ R is the vehicle orientation, cmax is the

maximum path curvature, and u ∈ [−1, 1] is the control input.

As state in section 3.3.2.3, according to Dubins, the optimal path must be one of these

two types: CSC (arc-segment-arc) and CCC (arc-arc-arc) or their degeneration forms (C,

S, CS, SC). The CSC and CCC paths are illustrated in figure 3.5 in chapter 3.

5.2.4.2 Dubins’ paths for aerial vehicles

In order for our system to be considered as a Dubins’ car, the gravity g is neglected. Thus

the system in two-dimensional plane is simplified and can be expressed as
ẋ = v cos γ,

ż = v sin γ,

γ̇ = vc(z)u,

(5.10)

where v is the vehicle speed and c(z) ∈ R+ is the maximum path curvature that the

vehicle can perform at the altitude z. Here, c(z) is considered constant at the initial altitude

z0. Thus, the path curvature at z0 is written as c(z0) = 1
2mρSCL where ρ = ρ(z0).

The optimization problem is to minimize the total length of the trajectory. It means

minimizing the function

sf =

∫ tf

0
vdt,

where tf is the final time assumed to be free (free interval optimal control problem) and sf

is the total length of the path.

Since the speed v varies along the flight, the system is very difficult to solve. Changing

variable from time t to curvilinear abscissa s(t) =
∫ tf

0 v(u)du is necessary to solve this

problem since the dynamics of the speed v is not specified. Thus, the model of the vehicle

can be represented by:
x′ = cos γ,

z′ = sin γ,

γ′ = c(z)u, |u| 6 1.

(5.11)

Therefore, the problem consists in minimizing sf , the path length which is equivalent to

the system used by Dubins and Boissonnat’s team. Notice that in case of constant velocity

v, minimizing the path length sf is equivalent to minimizing the final time tf .

06/2015 Pawit Pharpatara

5.2. APPLICATION FOR AN INTERCEPTOR MISSILE 71

This simplified system (5.11) can represent our problem. However, the structural limi-

tation and the control saturation due to the diminution of air density are not considered in

the calculation. Thus, the Dubins’ paths cannot represent the actual trajectory of the mis-

sile directly. However, they can still be used to estimate the distance between two missile

states. The detailed calculation of how to find Dubins’ paths and their length are shown in

appendix B.

5.2.5 RRT configurations

5.2.5.1 Exploration space

1. Obstacle space Xobs: this space contains obstacles, i.e. a set of inadmissible states,

such as mountains, radar detection zones, no-fly zones, etc. It can also contain condi-

tions of the vehicle state that are considered impossible to complete the mission; for

example, low vehicle speed. In this chapter, Xobs is defined as

Xobs = Pobs × Vobs,

Pobs = {ξ = (x, z)> ∈ R2 : z < 0},

Vobs = {(v, γ) ∈ R2 : v(t > tboost) < vmin},

(5.12)

where tboost is the duration of the boost phase starting from launch, and vmin is

the acceptable minimal speed of the missile defined by a lethal system to be able to

destroy the target.

2. Collision-free exploration space Xfree = X/Xobs: this is the space where the RRT

algorithm will try to explore to find a solution.

3. Destination set Xgoal ∈ Xfree: this space, illustrated in figure 5.2, is defined by con-

sidering the capability of lethal system of the missile, mostly the capability to detect,

hit, and destroy the target. Thus,

Xgoal = Pgoal × Vgoal,

Pgoal = {ξ ∈ Pfree : ‖ξ − ξpip‖ < Rmin},

Vgoal = {(v, γ) ∈ Vfree : γ ∈ C(ξ, γpip, φf)},

(5.13)

where Rmin is a radius of a sphere centered at ξpip and φf is an angle related to the

maximum capability of the terminal guidance system. Values of Rmin and φf are

defined by the lethal system of the missile.

06/2015 Pawit Pharpatara

72 5.2. APPLICATION FOR AN INTERCEPTOR MISSILE

vpipφf

φf
Vgoal

Pgoal

ξpip

R

Figure 5.2: The goal set Xgoal for path planning using RRT

5.2.5.2 Random state generation

The random state xrand is generated such that xrand ∈ Xfree. A uniform distribution is used.

Moreover, a bias toward the goal can be introduced to reduce the number of generated states

in order to reach Xgoal. The RRT-goalbias [LK01] is used. Instead of randomly generating

random states, random state function returns xrand ∈ Xgoal with a probability p and returns

randomly generated state using uniform distribution with a probability (1− p). According

to LaValle and Kuffner the bias p must not be too large in order for the RRT algorithm to

explore the state space and not be trapped in a local minimum.

5.2.5.3 Metric

A metric, called Dubins’ metric in this thesis, is developed based on Dubins’ paths described

in section 5.2.4. The shortest Dubins’ path is chosen as the distance function. There are

two cases to consider in order to use this metric to solve the problem:

1. xrand /∈ Xgoal: the shortest CSC path is used to calculate the nearest neighbor.

2. xrand ∈ Xgoal: according to Xgoal stated in section 5.2.5.1, it means that the arrival

condition is no longer a state (position and orientation). It is more interesting to

consider the shortest path between each x ∈ G and a set of goal states Xgoal than

considering a single state xrand ∈ Xgoal. Indeed, there can exist the shortest path

to another element of Xgoal than the shortest path to xrand. To this manner, the

degenerated form, CS path, of CSC path needs to be considered first. Indeed, if the

shortest path to the set Xgoal is a CS path, then the arrival orientation is within the

arrival cone, i.e. γf 6 φpip±φf , the shortest path is the CS path (blue curve in figure

5.3). If no CS path arrives in Xgoal, the shortest path is necessarily a CSC path whose

arrival orientation is one of the extremities of the arrival cone (black solid curve in

figure 5.4), i.e. γf ∈ {φpip − φf , φpip + φf}.

06/2015 Pawit Pharpatara

5.2. APPLICATION FOR AN INTERCEPTOR MISSILE 73

Thus, for each x ∈ G, the approach first consists in finding the shortest CS path to

the desired final position, i.e. xrand ∈ Xgoal. If the final orientation is in the arrival

cone, it is the expected solution. If not, the solution is the shortest CSC path to one

of the extremities of Xgoal.

x

xgoal

C

Figure 5.3: CS type path arrives in the arrival cone

x

xgoal

Cv

Figure 5.4: CS type path does not arrive in the arrival cone

� Advantages: the Dubins’ metric considers the orientation of both states. It is an

optimal length solution in two-dimensional plane in case of constant curvature.

� Drawbacks: it takes more computational time than Euclidean metric. There are

some discontinuities of curvature at the intersection between different type paths.

This leads to the discontinuities of control input.

Remark 2 There are some drawbacks to the Dubins’ metric such as the computational

time and discontinuities along the path. However, these discontinuities are not important

in our case since Dubins’ metric is only used to estimate the shortest distance between two

states while considering their orientation. Moreover, the objective of this section is to show

06/2015 Pawit Pharpatara

74 5.2. APPLICATION FOR AN INTERCEPTOR MISSILE

that the RRT algorithm can find a solution while the classical guidance laws cannot. Thus,

the computational time is not considered important at this moment.

Therefore, the Dubins’ metric is used in nearest neighbor function instead of Eu-

clidean metric.

5.2.5.4 Node expansion methods

To rapidly explore the exploration space Xfree, the control input ucom is chosen in order

to create a new state xnew as close as possible to xrand. Two guidance laws are used and

tested in control input function.

1. Proportional Navigation (PN) guidance law [Sio04] :

ucom =

(
N

t2go

(ξrand − ξnear − vneartgo) · ev
3

)
ev

3 (5.14)

where N is a constant gain and tgo is the estimated time-to-go, i.e. tgo = tf − t.

2. Kappa guidance law [Lin91] :

ucom = ((a1 + a2) · ev
3)ev

3, (5.15)

with

a1 =
K1

tgo
(vrand − vnear),

a2 =
K2

t2go

(ξrand − ξnear − vneartgo),
(5.16)

choosing ||vrand|| = ||vnear||, K1 and K2 are the gains.

The second term a2 is the proportional navigation term which nullifies the heading

error to the PIP while the first term a1 is the shaping term which rotates the ori-

entation of the missile so that γ converges to γf . The optimal gains K1 and K2 are

approximated, shown in [Lin91] and are adapted to our system in appendix A.

The estimation of tgo is a difficult problem as it theoretically necessitates to estimate the

entire flight time tf to the target. There exists many techniques to provide an approximate

of tgo [Lin91].

To satisfy the missile constraints, the desired control input uc is obtained after saturat-

ing ucom so that uc ∈ U(t,x). Then, the second order dynamic response of α is considered

to obtain the real control input applied to the system u ∈ U(t,x).

06/2015 Pawit Pharpatara

5.3. SIMULATION RESULTS 75

5.3 Simulation results

The RRT algorithms using the previously mentioned configurations are simulated in cer-

tain scenarios. The one using NP as the control input selection will be referred as RRTPN

published in [PHPB13] and the one using kappa guidance will be referred as RRTkappa

published in [PPHB13]. In this section, the results obtained by the RRT algorithms are

compared with the ones obtained by the classical missile guidance law, the kappa guidance

with optimal gains. The results are visualized by MATLAB simulations. Figure 5.5 illus-

trates an example of the tree expansion of the RRT algorithm using this framework. It

shows that the exploration tree covers the entire state space X.

−20 −15 −10 −5 0 5 10 15 20
0

5

10

15

20

25

30

horizontal distance (km)

al
ti
tu
d
e
(k
m
)

(a) 200 iterations

−20 −15 −10 −5 0 5 10 15 20
0

5

10

15

20

25

30

horizontal distance (km)

al
ti
tu
d
e
(k
m
)

(b) 500 iterations

−20 −15 −10 −5 0 5 10 15 20
0

5

10

15

20

25

30

horizontal distance (km)

al
ti
tu
d
e
(k
m
)

(c) 2000 iterations

−20 −15 −10 −5 0 5 10 15 20
0

5

10

15

20

25

30

horizontal distance (km)

al
ti
tu
d
e
(k
m
)

(d) 4000 iterations

Figure 5.5: RRT expansion with proportional navigation guidance law

Both algorithms are simulated and analyzed with two scenarios. For both scenarios, the

integration step ∆t = 2s, the initial position ξinit = (0km, 0km)>, the missile is launched

vertically, γpip = 0 (vpip is parallel to the ground), and the second order dynamic response

of α, ζ = 0.8 and ω0 = 16rad/s. The difference lies in the PIP:

06/2015 Pawit Pharpatara

76 5.3. SIMULATION RESULTS

1. scenario 1: ξpip = (15km, 15km)>

2. scenario 2: ξpip = (10km, 25km)>

In the following figures, the dashed curve is the trajectory obtained using only the kappa

guidance, the tree G is represented in grey, Xgoal is represented by a red circle with two

dashed line segments. The boost phase of the generated trajectory between xinit and Xgoal

is in green, the second phase in pink.

The simulation results for scenario 1 are shown in figures 5.6 and 5.7. The maximum

control input tolerated by the missile is denoted u(αmax). The control input given by the

kappa guidance and the RRT-based algorithm are denoted ukappa and uRRT, respectively.

Figures 5.6(a) and 5.7(a) illustrate the exploration tree and the obtained trajectories. The

number of generated nodes to find the result of scenario 1 shown in figures 5.6(a) and 5.7(a)

are 1380 and 473 for the RRTPN and RRTkappa, respectively (cf. table 5.1). The final speed

for the kappa guidance is 1635m/s. Whereas, the final speed of the trajectory found by

RRTPN and the one found by RRTkappa are 1360m/s and 1290m/s, respectively (cf. table

5.1). It is reasonable that the final speed of the solutions found by the RRT-based algorithm

is lower than the one found by the kappa guidance. This is due to the randomness of the

algorithm.

Figures 5.6(b) and 5.7(b) illustrate the normalized control inputs ||ukappa||/||u(αmax)|| and

||uRRT||/||u(αmax)|| returned by system using kappa guidance and RRT-based algorithm,

respectively. Although the control input of the kappa guidance method is saturated at

the end of the trajectory (t/tf > 0.9), i.e. the desired control input is larger than the

maximum control input that the missile can tolerate; and the control input of the RRT-

based algorithm is saturated at some points during the trajectory, both trajectories reach

Xgoal successfully. Note that the envelope of the maximum control input is calculated using

the solution trajectory of the RRT-based algorithm as the reference. Thus, it may not

always be compatible with the trajectory obtained by the kappa guidance as shown later

in the results of the scenario 2.

Scenario 1 illustrates a case where a solution can be found using a classical guidance

law. It is a representative of general cases for an interceptor missile. In this case, the

RRT-based algorithm is also able to provide a trajectory with similar performance even

though the final speed is smaller than the one given by the classical guidance law.

The simulation results for the scenario 2 are presented in figures 5.8 and 5.9. Figures

5.8(a) and 5.9(a) illustrate the exploration trees and the obtained trajectories simulated in

scenario 2. This case differs from scenario 1 since the target is higher in altitude and closer

in terms of horizontal distance. It is a representative of difficult cases for an interceptor

missile since the difficulty for aerodynamically controlled missiles lies in the low maneuver-

06/2015 Pawit Pharpatara

5.3. SIMULATION RESULTS 77

ability at high altitude due to the low density of air. Therefore, it is hard to satisfy the

constraint ∠(v(tf),vpip) = (γf −γpip) < φf where vpip is parallel to the ground (γpip = 0)).

Since the trajectory found by kappa guidance (dashed curve) has ∠(v(tf),vpip) = (γf −
γpip) > π/8 rad, it cannot satisfy this arrival constraint. It does not anticipate the future

lack of maneuverability and sends a sequence of low control inputs until t/tf = 0.6 (see fig-

ures 5.8(b) and 5.9(b)). Thus, at the end of the trajectory (t/tf > 0.9), the kappa guidance

tries to respect the aspect angle by sending large control input sequence to the controller.

As the maneuvering capabilities are low, the missile cannot perform such demanded control

input. Thus, the control input is saturated. As a consequence, the missile fails to reach

Xgoal.

On the contrary, since the RRT-based algorithm anticipates the loss of maneuverability at

high altitude near Xgoal, the generated trajectory performs a back-turn. Indeed, it moves

away from the line-of-sight at the beginning in order to reduce the curvature of the trajec-

tory when approaching Xgoal. Thus, the needed control input at the end of the trajectory

remains lower than the maneuvering capabilities at these altitudes (see figures 5.8(b) and

5.9(b)). Since this problem is harder to solve than the previous one, the number of generated

nodes increases and reaches 18149 for RRTPN and 11261 for RRTkappa (cf. Table 5.1). Fur-

thermore, ‖v(tf)‖ = vf = 1129m/s > vmin for RRTPN and ‖v(tf)‖ = vf = 953m/s > vmin

for RRTkappa are respected (cf. table 5.1).

Method
Scenario 1 Scenario 2

Number of iterations Final speed (m/s) Number of iterations Final speed (m/s)

RRTPN 1380 1360 18149 1129

RRTkappa 473 1290 11261 953

Kappa - 1635 - ×

Table 5.1: Results of simulations using RRT algorithm

This scenario illustrates the effectiveness of the RRT-based guidance law compared

to classical midcourse guidance laws, based on its capability to anticipate future flight

conditions.

Note that it is normal that the control input of the RRT algorithm is continuous but

not smooth. This is due to the randomly generated state xrand. The desired control input

is calculated each time with the different xrand. In figures 5.6(b), 5.7(b), 5.8(b), and 5.9(b),

we can see the points where the control input increases or decreases dramatically. That is

where xrand is changed.

06/2015 Pawit Pharpatara

78 5.4. CONCLUSIONS

5.4 Conclusions

This trajectory planning framework is a combination of a sampling-based RRT path plan-

ner, Dubins’ paths, and classical guidance laws. The RRT path planner is used as a basis.

The shortest Dubins’ path is used as a metric to determine a distance between two vehicle

states. Classical guidance laws such as PN and kappa guidance law determine sequences

of control inputs to move from one state to another state. The critical midcourse guidance

problems that cannot be easily solved using classical guidance laws can be solved by this

method as it anticipates the future flight conditions. The difference between RRTPN and

RRTkappa is that RRTkappa uses the guidance law that considers both orientations of the

starting and ending states unlike the RRTPN which considers only the orientation of the

starting state. This makes the RRTkappa can find a solution with less number of nodes than

the RRTPN while the final speed of the solution found by RRTkappa is a bit less than the

one found by RRTPN as shown in Table 5.1.

Even though this method can find a solution for problems which are difficult to solve

using the classical guidance laws. There are still some problems:

� The optimality neither in path length nor in final speed of the obtained solutions is

not guaranteed

� The acquisition of solutions is not guaranteed for the fixed time since a large number

of iterations are required in order to solve this problem

In order to improve the performance of this algorithm, a solution to these problems is

proposed in the next chapter.

Note that the researches described in this chapter are published in a paper presented in

“The 19th IFAC Symposium on Automatic Control in Aerospace” under the title “Sampling-

based path planning: a new tool for missile guidance” and in a paper presented in “The

IEEE/RSJ International Conference on Intelligent Robots and Systems” under the title

“Missile trajectory shaping using sampling-based path planning” in 2013.

06/2015 Pawit Pharpatara

5.4. CONCLUSIONS 79

−20 −15 −10 −5 0 5 10 15 20
0

5

10

15

20

25

30

horizontal distance (km)

al
ti
tu
d
e
(k
m
)

phase 1 (boost)

phase 2

kappa

(a) RRTPN: Trajectories

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

t/tf

u
/u

(α
m
ax

)

RRT
kappa
max

(b) RRTPN: Lateral accelerations along the solution trajectories

Figure 5.6: Simulation results using RRTPN for scenario 1

06/2015 Pawit Pharpatara

80 5.4. CONCLUSIONS

−20 −15 −10 −5 0 5 10 15 20
0

5

10

15

20

25

30

horizontal distance (km)

al
ti
tu
d
e
(k
m
)

phase 1 (boost)

phase 2

kappa

(a) RRTkappa: Trajectories

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

t/tf

u
/u

(α
m
ax

)

RRT
kappa
max

(b) RRTkappa: Lateral accelerations along the solution trajectories

Figure 5.7: Simulation results using RRTkappa for scenario 1

06/2015 Pawit Pharpatara

5.4. CONCLUSIONS 81

−20 −15 −10 −5 0 5 10 15 20
0

5

10

15

20

25

30

horizontal distance (km)

al
ti
tu
d
e
(k
m
)

phase 1 (boost)

phase 2

kappa

(a) RRTPN: Trajectories

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

t/tf

u
/
u
(α

m
ax

)

RRT
kappa
max

(b) RRTPN: Lateral accelerations along the solution trajectories

Figure 5.8: Simulation results using RRTPN for scenario 2

06/2015 Pawit Pharpatara

82 5.4. CONCLUSIONS

−20 −15 −10 −5 0 5 10 15 20
0

5

10

15

20

25

30

horizontal distance (km)

al
ti
tu
d
e
(k
m
)

phase 1 (boost)

phase 2

kappa

(a) RRTkappa: Trajectories

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

t/tf

u
/
u
(α

m
ax

)

RRT
kappa
max

(b) RRTkappa: Lateral accelerations along the solution trajectories

Figure 5.9: Simulation results using RRTkappa for scenario 2

06/2015 Pawit Pharpatara

6 RRT path planning with

preprocessed exploration

space

As a consequence of the previous chapter, the main contribution of this chapter is focused on

the methods used to find the preprocessed exploration space. A new pseudometric function

related to the preprocessed exploration space is also developed for an interceptor missile

application.

The RRT algorithm using the original Dubins’ paths [PHPB13, PPHB13] as the metric

to determine the distance between two vehicle states in the exploration space is studied

in the previous chapter. The results show that an admissible trajectory between xinit and

Xgoal can be found. However, the approach has some drawbacks:

� Since the vehicle model is more complex than the Dubins’ car, the metric based on

Dubins’ car is not perfectly suitable for the trajectory planning of an aerial vehicle

� The optimality of obtained trajectories is not guaranteed neither in path length or in

final speed; No optimal criterion is considered

� As the exploration space is large, a large number of iterations are often required to

obtain a result

To remediate to these problems, a reduction of the exploration space Xfree is proposed in

such a way that it includes the optimal or near-optimal solutions.

In this chapter, the preprocessing methods of the exploration space X are presented.

Then, it is introduced to the RRT framework presented in previous chapter. An intercep-

tor missile is also used as a case study to demonstrate the performance of the proposed

algorithm. The demonstration of how to find and use the preprocessed exploration space

83

84 6.1. PREPROCESSING OF THE EXPLORATION SPACE X

for an interceptor missile is explained. Then, some modifications of the RRT algorithm are

explained. A pseudometric related to the preprocessing exploration space is also developed.

Next, the simulation results are shown and analyzed. Finally, the concluding remarks are

made at the end of this chapter.

6.1 Preprocessing of the exploration space X

The idea of using the preprocessed exploration space X is that, by reducing the exploration

space, a solution can be obtained faster. However, please note that the probabilistic methods

like RRT algorithm can find a solution if and only if the solution exists. Thus, one of these

hypothesis must be hold:

Hypothesis 1 In order to find a feasible trajectory using a probabilistic method, the pre-

processed exploration space X must contain at least a feasible trajectory.

Hypothesis 2 In order for find the optimal trajectory, the preprocessed exploration space

X must contain the optimal trajectory so that obtained trajectories can be improved and

approach the optimal solution. Therefore, it can be considered a suboptimal solution.

Hypothesis 1 is automatically required in order to use this framework to find a solution.

In addition, if the optimal solution is requested, the hypothesis 2 must be hold.

There are several ways to preprocess the exploration space. Here, two methods are

presented.

6.1.1 Artificial potential field

Artificial Potential Field or APF [AH83, Kha85] is inspired by nature. By assuming that

the vehicle is a charged particle inside the electric or magnetic field, the vehicle is moved

by the induced forced guided by the vector field. In robotics, the same effect is simulated

by creating an artificial potential field that moves the robot to the desired destination.

With help of a good combination of APF, an estimated trajectory from one point

to another can be found. Given position and orientation of two vehicle states, several

trajectories can be found and used as a preprocessing exploration space (see Appendix

C). This method can justify hypothesis 1. However, it is very difficult to find a suitable

APF function for the complex system in our case. Moreover, several tuning parameters are

required. Thus, it is not suitable for our problem (see Appendix C for more details).

06/2015 Pawit Pharpatara

6.2. APPLICATION FOR AN INTERCEPTOR MISSILE 85

6.1.2 Trajectory generation methods

The objective of preprocessed exploration space to to limit the exploration zone of the

algorithm. Thus, any methods that can generate trajectories can be applied for the prepro-

cessing methods. Thus, trajectory generation methods can be used to define the prepro-

cessed exploration space. For example, Bézier curve, Pythagorean Hodographs, polynomial

curves, cubic spline, etc. can be used to find the trajectories surrounding the interesting

exploration space while justifying one of the mentioned hypothesis.

6.2 Application for an interceptor missile

The algorithm is studied in the same application as in chapter 5, i.e. an interceptor missile.

The algorithm is looking for a feasible trajectory of an interceptor missile between two

vehicle states in 2-dimensional plane. The same system model and problem formulation are

used (see section 5.2 for details) and will not be mathematically recalled here. In addition

to the framework presented in section 5.2, only the midcourse phase without propulsion

of an interceptor missile is studied and the exploration space is preprocessed to obtain

smaller but efficient exploration space. For an interceptor missile, the Dubins’ paths in a

heterogeneous environment is used.

6.2.1 Dubins’ paths in a heterogeneous environment

The environment is heterogeneous in the sense that the maximum path curvature of the

vehicle is not constant and varies with the position of the vehicle. In [HP13], it is shown

that, analogously to Dubins’ paths [Dub57][BCL91], shortest paths are a combination of

curves of maximum curvature C and straight lines S. Several examples of these Dubins’

paths are shown in [HP13]. For the problem considered in this paper, only CSC paths are

considered since the distance between xinit and Xgoal is sufficiently large. The Dubins’ paths

are proven to be the optimal solution between two vehicles states. Thus, they can be used to

find the preprocessed exploration space using two shortest Dubins’ paths with the extremity

conditions. This method can be easily used to determine the preprocessed exploration

space under hypothesis 1. Moreover, the extremity of the preprocessed exploration space is

composed by the trajectories proven to be optimal. Then, the hypothesis 2 can be justified

by supposing that a space constructed by two optimal solutions (with different condition

initial/condition final) also contains optimal solutions.

06/2015 Pawit Pharpatara

86 6.2. APPLICATION FOR AN INTERCEPTOR MISSILE

6.2.2 Preprocessed exploration space using Dubins’ paths in a

heterogeneous environment

The new admissible exploration space consists of position space P and velocity space V, i.e.

X = P×V. P and V are defined in the following sections such that Xgoal ⊂ X (see definition

of Xgoal in section 5.2.5.1).

6.2.2.1 The position space P

An envelope P that is a subset of R2, including ξinit and Pgoal is defined here.

xinit

φf

φf

Xgoalvi
ξi

Cv

xsup
pip

xpip

xinf
pip

Figure 6.1: Xfree

The envelope P is built from two extremity Dubins’ CSC paths in a heterogeneous

environment starting at xinit and ending in Xgoal. For this propose, xsup
pip ,x

inf
pip ∈ Xgoal, are

defined as follows:

� The positions ξsup
pip and ξinf

pip are both on the sphere of radius R around ξpip in the

direction perpendicular to vpip as shown in figure 6.1;

� The orientations γsup
pip and γinf

pip are equal to γpip;

� If two trajectories have their starting path that coincides with each other, xinit is

redefined to be the state xnew
init where both trajectories separate from each other as

shown in figure 6.2. This is done with the assumption that the UAVs can perfectly

follow the calculated trajectory.

06/2015 Pawit Pharpatara

6.2. APPLICATION FOR AN INTERCEPTOR MISSILE 87

Once the envelope P is obtained, it is assumed that an optimal trajectory is contained

inside the envelope since the envelope is constructed from two extremity optimal Dubins-like

trajectories.

xinit

xnew
init

Figure 6.2: The starting trajectories coincide with each other

The admissible exploration space Pfree = P \ Pobs is the collision-free envelope where

Pobs ∈ R2 is a set of positions of the obstacles in the state space (see red dashed curves in

figure 6.3).

xinit

xnew
init

obstacles

Pgoal

Figure 6.3: The new exploration space X

6.2.2.2 The velocity space V

The velocity space V is defined as

V = {(v, γ) ∈ R2 : v > vmin}, (6.1)

06/2015 Pawit Pharpatara

88 6.2. APPLICATION FOR AN INTERCEPTOR MISSILE

where vmin is the acceptable minimal speed of the missile defined by a lethal system to be

able to destroy the target.

The admissible velocity space Vfree is defined such that the exploration tree does not

waste time searching non-optimal space. Thus, given a position ξi ∈ Pfree, the shortest CSC

path from xinit to Xgoal passing by ξi is considered (see dashed curve in figure 6.1). Then,

by considering the unit vector ev
1 of the velocity frame V tangent to this path at ξi, Vfree is

defined as follows:

� ξi /∈ Pgoal,

Vfree = {(v, γ) ∈ R2 : v > vmin, γ ∈ C(xi, φf)}, (6.2)

where C(xi, φf) is the convex cone pointing toward vi with apex ξi and apex angle

2φf ;

� ξi ∈ Pgoal,

Vfree = Vnew
goal, (6.3)

Vnew
goal is defined in the next section.

6.2.2.3 Definition of Xgoal

Once Xfree is defined, Xgoal is refined as Xnew
goal with condition Xgoal ⊂ Xfree. Thus, Xnew

goal =

Xgoal ∩ Xfree:

Xnew
goal = Pgoal × Vnew

goal,

Pgoal = {ξ = (x, z)> ∈ R2 : ‖ξ − ξpip‖ < Rmin},

Vnew
goal = {(v, γ) ∈ R2 : v > vmin, γ ∈ C(ξ, γpip, φ

pip
f) ∩ C(ξ, γ, φpip

f)},

(6.4)

where Rmin is a radius of a sphere centered at ξpip and φf is an angle related to the

maximum capability of the terminal guidance system. Values of Rmin and φf are defined

by the lethal system of the missile.

6.2.3 RRT reconfigurations

The RRT algorithm in this chapter uses the RRT framework explained in chapter 5 as a

basis. Thus, see section 5.2.5 for detailed configurations. Only the configurations that are

modified or different from the ones from section 5.2.5 are presented in this section.

6.2.3.1 Random state generation

The random state xrand is generated such that xrand ∈ Xfree. A bias called RRT-goalbias

[LK01] is also used here. It consists in choosing xrand ∈ Xgoal with a probability p. As

06/2015 Pawit Pharpatara

6.2. APPLICATION FOR AN INTERCEPTOR MISSILE 89

stated in section 6.2.2 that the velocity is generated based on the shortest path from xinit

to Xgoal. Here, the methodology of finding the suboptimal trajectories lying inside the

envelope for implementation is explained.

Since the envelope P gives the idea about what the optimal trajectory should be, the

ideal way to generate xrand = (ξ>rand, vrand, γrand)> ∈ Xfree is to find the optimal trajectory,

illustrated by a dashed curve in figure 6.1, containing the position ξrand. Then, the orien-

tation γrand is generated while respecting the orientation of the suboptimal trajectory with

a random marge φf as shown in figure 6.1. However, it requires a large computational ef-

fort to be implemented in the algorithm. Thus, an approximated interpolation is proposed

under the following assumptions.

Assumption 1 Both extremity trajectories must have about the same length. If not, the

envelope should be divided into i small envelopes Pi ∈ P i = 1, 2, 3, ..., n.

Assumption 2 There always exists a suboptimal trajectory from xinit to Xgoal containing

ξi ∈ P (see figure 6.1).

Assumption 1 and 2 ensure the precise approximation of suboptimal trajectories inside

P. The larger the difference of their length, the less precise the approximation is. In order

to generate the orientation γrand of the vehicle, the suboptimal trajectory (see figure 6.4)

containing ξrand must be determined using the following definitions:

0

1

0

1

Pi

nloc

ntra

ξi`i

superior bound

inferi
or bound

suboptimal trajectory

Figure 6.4: References of a point in Xfree

Definition 3 Location number (nloc)

On each normalized trajectory, the location of a point ξ is indicated by a variable called

06/2015 Pawit Pharpatara

90 6.2. APPLICATION FOR AN INTERCEPTOR MISSILE

“location number”, i.e. nloc ∈ [0, 1]. The beginning of the trajectory (xinit) is indicated by

nloc = 0 and the end of the trajectory (xgoal ∈ Xgoal) is indicated by nloc = 1.

Definition 4 Location line

A “location line” is formed by connecting all points with the same value of nloc with a curve.

It is denoted `.

Definition 5 Trajectory location number(ntra)

On each normalized location line between two extremities trajectories of P, a location of a

point ξi is indicated by a variable called “trajectory location number”, i.e. ntra ∈ [0, 1]. The

inferior extremity trajectory is indicated by ntra = 0 and the superior one is indicated by

ntra = 1.

The illustration of these definitions is shown in figure 6.4.

In the following paragraphs, the calculations of nloc and ntra are demonstrated. Then,

the position and orientation generation of the random state are explained.

Calculation of nloci

According to definitions 3 and 4, if all normalized trajectories are sampling into N

points, then there are N − 1 location lines known along with a point, xinit (the starting

point is the same for both extremity trajectories). The location number of each location

line is defined as nmloc1
= m−1

N−1 where m = 0, 1/(N − 1), 2/(N − 1), ..., (N − 2)/(N − 1), 1 is

a number of sampling points.

For the sake of locating ξi, the two closest location lines must be found. The simplest

method is to calculate a distance between ξi and every location line. The shortest distance

d(ξi, `j) between a point ξi = (xi, zi) and a line `j: ajx+ bjz + cj = 0 can be calculated by

d(ξi, `j) =
|ajxi + bjzi + cj|√

a2
j + b2j

. (6.5)

Then, the inverse distance weighting (explained later in this section) is used to estimate

the location line `i passing by this point ξi. However, this method takes an enormous

computational effort, 8Nn, where N is a number of sampling points and n is a number of

iterations. Thus, the dichotomy paradox illustrated in figure 6.5 is used to find the location

line in order to accelerate the calculation.

Suppose that the number of sampling points on each extremity trajectory is N = 2k

(highly recommended) where k ∈ N+ is a number of iterations to find a line closest to a

given point.

Two distances (see figure 6.5) are required to use the dichotomy paradox:

06/2015 Pawit Pharpatara

6.2. APPLICATION FOR AN INTERCEPTOR MISSILE 91

`sup`inf

deltinf deltsup

xi

`mid

deltmid

(a) Calculation at nth iteration

`sup`inf

deltinf deltsup

xi

`mid

deltmid

(b) Calculation at (n+ 1)th

Figure 6.5: Location line calculation

� Distance between the first location line, called `inf, here is a point xinit, and a given

point xi, called deltinf

� Distance between the last location line, `sup, a location line passing by xgoal, and a

given point xi, called deltsup

Then, the location number nloci of ξi can be calculated by following the instruction below:

1. Let `mid denote a location line in the middle of `inf and `sup in figure 6.5(a). Then,

a distance between `mid and ξi is denoted deltmid. This line `mid becomes lineinf if

deltinf > deltsup and vice-versa (see figure 6.5(b)). This step is repeated until the two

closest location lines to ξi are obtained, i.e. k iterations.

2. The inverse distance weighting is used to calculated the location line passing by xi.

Then, the location number nloci of ξi can be expressed as:

nloci =
ninf

locdeltsup + nsup
loc deltinf

deltsup + deltinf
, (6.6)

where ninf
loc is the location number of `inf and nsup

loc be the location number of `sup.

The computational effort of this method is only (16 + 8N1/k)n which is much faster than

8Nn for N >> 0.

Calculation of ntra1

06/2015 Pawit Pharpatara

92 6.2. APPLICATION FOR AN INTERCEPTOR MISSILE

The value of ntra1 can be calculated by using the formulation below:

ntraji =
dinf

i

dinf
i + dsup

i

,

where dinf
i is a distance between ξi and an intersection between the inferior bound and the

location line containing ξi and dsup
i is a distance between ξi and an intersection between

the superior bound and the location line containing ξi.

With nloc and ntra, the random state xrand can be generated.

� Position generation: Position ξrand of a random state xrand is generated within the

envelope (see figure 6.1). Since we do not have an analytic solution for the envelope,

it is very hard to verify if the generated position is within the envelope. Thus, we

propose the following approximated method.

Once the location line containing ξrand is identified using the method from figure 6.5,

five more information can be found:

– The length Lloc
rand of this location line

– The intersection point ξsup between this location line and the superior extremity

trajectory of the envelope P

– The intersection point ξinf between this location line and the inferior extremity

trajectory of the envelope P

– A distance dsup
rand between ξrand and ξsup

– A distance dinf
rand between ξrand and ξinf

By using these variables, the randomly generated point ξrand ∈ P if dsup
rand and dinf

rand

are inferior or equal to Lloc
rand.

� Orientation generation: Once ξrand ∈ P is obtained, the reference orientation γ

of the suboptimal trajectory containing ξrand at ξrand can be estimated by using the

inverse distance weighting as follows (see figure 6.6):

ei =
esup

i dinf
rand + einf

i dsup
rand

dinf
rand + dsup

rand

(6.7)

where ei is the orientation at the decided position, esup
i is the orientation at ξsup and

einf
i is the orientation at ξinf.

Then, γrand is generated using erand within a given margin of error φf .

06/2015 Pawit Pharpatara

6.2. APPLICATION FOR AN INTERCEPTOR MISSILE 93

eiesup
i

einf
i

dsup
rand dinf

rand

location line
ξrand

Figure 6.6: Approximated orientation calculation

Finally, the random state xrand is obtained in such a way that xrand ∈ Xfree. A bias

consisting in choosing xrand ∈ Xgoal with a probability p is also chosen (RRT-GoalBias

[LK01]) to accelerate the convergence to the solution.

6.2.3.2 Pseudometric

The Euclidean metric is not suitable for this problem since it does not consider any prop-

erties of each state other than its position. Moreover, Dubins’ metric (see section 5.2.4)

is calculated using a simplified system. Therefore, it is not the best metric to be used.

Thus, a new pseudometric is developed, while respecting definition 6, to define the nearest

neighbor to xrand.

Definition 6 Pseudometric

These three properties must be considered while respecting the pseudometric conditions:

1. d(x1,x2) > 0 (non-negativity);

2. d(x1,x1) = 0;

3. d(x1,x2) = d(x2,x1) (symmetry);

4. d(x1,x3) 6 d(x1,x2) + d(x2,x3) (subadditivity/triangle inequality).

Note that, one property of metric, which is d(x1,x2) = 0 if and only if x1 = x2, is omitted.

It implies that a state in a pseudometric does not need to be distinguishable.

The objective of the wished pseudometric is to define the nearest state while considering

three conditions:

� The distance between two states must be considered as all other metrics

06/2015 Pawit Pharpatara

94 6.2. APPLICATION FOR AN INTERCEPTOR MISSILE

� The dynamics of the missile must be considered, i.e. less maneuver are preferred over

more maneuver

� The velocity of the missile must be considered, i.e. high speed missile is preferred

over slow speed missile

According to assumption 1 and 2, there always exists an optimal trajectory inside the

envelope P connecting xinit to Xgoal including ξ. Thus, for two position ξ1 with a velocity

vector v1 and ξ2 with a velocity vector v2, there exists two dotted trajectories as shown in

figure 6.7.

Dt

Dn

n

v1refv1

v2refv2

δ1

δ2

ξ⊥1

ξ1

ξ2

Figure 6.7: Illustration of a connecting trajectory between two state

In figure 6.7, the orientation of the velocity is represented by an arrow. The velocities

v1ref and v2ref are the velocities of reference trajectories including ξ1 and ξ2, respectively.

The position ξ⊥1 is a projection of ξ1 on another trajectory. Dn is a distance between two

trajectories from ξ1 to ξ⊥1 in n direction. Dt is a length of trajectory from ξ⊥1 to ξ2. δ1 is

an angle from v1 to v1ref , the same goes for δ2.

Dt

Dn

v1ref

v1

v2ref

v2

δ1

δ2

ξ⊥1

ξ1

ξ2

δint

vintref

Figure 6.8: Illustration of a connecting trajectory between two state on different parallel
linear trajectories

06/2015 Pawit Pharpatara

6.2. APPLICATION FOR AN INTERCEPTOR MISSILE 95

Supposing that these two states are sufficiently far from each other, these two trajectories

can be considered parallel linear trajectories. Let’s study a particular case shown in figure

6.8 where vintref is an orientation tangent to the optimal trajectory at the intermediate

position and δint is an angle from the corresponding trajectory to vintref . In order to calculate

a distance between two vehicle states, a simplified system of a missile is considered and

shown below:

ẏ = v sin δ ≈ vδ

δ̇ = ucv
(6.8)

where y is the position on n-axis, u ∈ {−1, 1} is the control input, c is the curvature of the

missile, v is considered constant speed, and δ is considered a small angle. Since c varies

during the flight, an average curvature is used in this case, i.e. c = cav = 1
z2−z1

∫ z2
z1
c(z)dz.

After integrating the system , we have

δ − δ1 = ucvt

∆y =
ucv2t2

2
+ δ1vt

(6.9)

The essential total time T to move from x1 to x2 is given by considering Dt = vT . As

v is a constant, we have T = Dt/v. The control strategy for pseudometric calculation is

shown in figure 6.9. The control u = u is applied during the first part of the trajectory and

then u = −u is applied for the second part.

u

−u

u

t
T = Dt/vt1

Figure 6.9: Control strategy for pseudometric calculation

If δ0 = δ1 6= 0 and δ0 = δ2 6= 0 as shown in the black line in figure 6.8, the trajectory is

divided into two arcs of circle at δint at time t1 with control input u = u for the first arc

and u = −u for the second.

06/2015 Pawit Pharpatara

96 6.2. APPLICATION FOR AN INTERCEPTOR MISSILE

� u = u :

δint = δ1 + uvct1 (6.10)

∆y(t1) = vδ1t1 + u
v2c

2
t21 (6.11)

� u = −u :

δ2 = δint − uvc(T − t1) (6.12)

∆y(T − t1) = vδint(T − t1)− uv
2c

2
(T − t1)2 (6.13)

By substituting δint from equation (6.10) in equations (6.12) and (6.13), we have

t1 =
T + δ2−δ1

uvc

2
(6.14)

Then, by substituting δint again in the summation of equations (6.11) and (6.13), we

have

∆y(T) = ∆y(t1) + ∆y(T − t1) = −ucv
2

2
T 2 + vδ1T + 2ucv2t1T − ucv2t2i (6.15)

With equations (6.14) and (6.15), we have

∆ymax =
1

4
ucD2

t +
Dt(δ2 + δ1)

2
− (δ2 − δ1)2

4uc

According to the fact that δ1 = γ1 − γ1ref and δ2 = γ2 − γ2ref , we finally have

∆ymax =
1

4
ucD2

t +
Dt(γ2 + γ1 − γ1ref − γ2ref)

2
− (γ2 − γ1 + γ1ref − γ2ref)

2

4uc
(6.16)

where Dt = vT . This result is also applicable for the general case shown in figure 6.7.

Once ∆ymax is obtained, the pseudometric function d(x1,x2) is processed as follows:

1. If sign(∆ymax) 6= sign(Dn), it means that it is not possible to move from one state to

another. Thus,

d(x1,x2) =∞ (6.17)

2. If sign(∆ymax) = sign(Dn) and ||Dn|| 6 ||∆ymax||, it means that it is possible to move

from one state to another. Thus,

d(x1,x2) =

√
α

(
Dt

Dtmax

)2

+

(
Dn

∆ymax

)2

/
vav

vmax
(6.18)

where Dtmax is the maximal total distance of the optimal trajectory connecting xinit

and Xgoal, vav is the estimated average velocity of the missile which is presented in

Appendix E, vmax is the maximal velocity of the missile and α is the tuning parameter.

06/2015 Pawit Pharpatara

6.3. SIMULATION RESULTS 97

Justification of pseudometric calculation

There are several possible choices to define a pseudometric. Here, equation (6.18) is chosen

while considering the three primary conditions previously mentioned:

� The first condition, i.e. distance between two states, for defining the pseudometric is

respected by the first term of equation (6.18)

� The second condition, i.e. dynamics of the missile, is respected by the second term

of equation (6.18). If Dn is larger while ∆ymax is the same, it means that the state

with the larger Dn requires less maneuver. Thus, that state is preferred over another

� The third condition, i.e. velocity of the missile, is considered by the third term of

equation (6.18)

All terms are normalized by their maximal values in order to be compatible to one another.

Since the first term stands for the distance in an axis and the second term stands for the

perpendicular distance to that axis, it is logical to use Pythagorean distance to calculate

the total distance between these two states. By dividing this Pythagorean distance by

the normalized speed, the pseudometric is equivalent to the time to go from one state to

another.

6.2.3.3 Node expansion method

Kappa guidance law, cf. equation (5.15), is used to select the control input ucom to move

the vehicle from xnear to xrand. The desired control input uc ∈ U(t,x) is obtained after

saturating ucom by the control loop that satisfies the system constraints. A new state xnew

is obtained after integrating the system model while considering the dynamics of the angle

of attack α until the closest state to xrand is found.

6.2.3.4 Collision tests

The collision tests are used to verify that the path between xnear and xnew lie in Xfree. If it

is collision-free, the path between xnear and xnew is added to the tree G.

6.3 Simulation results

The framework presented in this chapter is simulated in several scenarios. The unpowered

interceptor missile during the midcourse phase is considered. The missile speed at the end

06/2015 Pawit Pharpatara

98 6.3. SIMULATION RESULTS

−5 0 5 10
10

15

20

25

horizontal distance (km)

al
ti
tu
d
e
(k
m
)

(a) 10 iterations

−5 0 5 10
10

15

20

25

horizontal distance (km)

al
ti
tu
d
e
(k
m
)

(b) 50 iterations

−5 0 5 10
10

15

20

25

horizontal distance (km)

a
lt
it
u
d
e
(k
m
)

(c) 100 iterations

Figure 6.10: Preprocessed RRT expansion

of the boost phase is approximately 2000m/s. Every scenario is analyzed with the initial

state xinit = (0, 10km, 2000km/s, π/2)>,

Pgoal = {ξ = (x, z)> ∈ R2 : ‖ξ − ξpip‖ < 500m},

Vgoal = {(v, γ) ∈ R2 : v > 500m/s, γ ∈ C(xpip, π/8)},
(6.19)

The configurations of each scenario are:

� Scenario 1: ξpip = (9km, 25km)>, and vpip is parallel to the ground (γpip = 0) without

obstacle

� Scenario 2: ξpip = (15km, 20km)>, and γpip = 0 with a presence of a stationary radar

detection zone as an obstacle

� Scenario 3: ξpip = (20km, 17.5km)>, and γpip = −π/12 with a presence of several sta-

tionary obstacles such as radar detection zone, forbidden area, and altitude restriction

zone

06/2015 Pawit Pharpatara

6.3. SIMULATION RESULTS 99

The difficulty to solve the problem increases from scenario 1 to 3. The starting ori-

entation at π/2 is selected in order not to biased toward neither forward nor backward

direction.

Moreover, the dynamics response of the angle of attack α is parameterized with a

damping ratio ζ = 0.8 and an angular frequency ω0 = 16rad/s corresponding to a delay of

0.2s. The probability to generate xrand ∈ Xgoal is set to p = 0.01 (this is usually a default

value used by the RRT algorithm).

Two algorithms are considered and visualized by MATLAB simulations:

� RRTkappa (cf. Chapter 5), i.e. an RRT algorithm using the shortest Dubins’ path as

a metric and kappa guidance law as a control selection

� RRTprepro framework from this chapter

Figure 6.10 illustrates RRT expansion using this framework.

In the following figures, the preprocessed exploration space Xfree is enveloped by dash-

dotted curves while the obstacles are presented by the red dashed curves. The red circle

with two dashed lines represent Xgoal. The exploration tree is represented in grey and the

magenta curve represents a path between the original xinit and the separation point of the

two extremities of the envelope of Xfree which becomes the new starting point xnew
init of the

algorithm.

Figures 6.11, 6.12, and 6.13 show the simulation results obtained by using RRTkappa

framework on each scenario. They are the results obtained after 5000 iterations and the

feasible trajectories are hardly found. The reason is that the missile only uses aerodynamic

forces to control its path, the loss of velocity along the path is very critical. The random

sampling in large exploration space makes the missile unnecessarily lose its velocity which

can result in not finding a feasible solution. On the other hand, figures 6.14, 6.15, and

6.16 show the simulation results obtained by using the RRTprepro. Only in the first scenario

that the result is compared to the one obtained using kappa guidance with the desired flight

path angle γ = φf = π/8 which is the easiest arrival condition at xgoal.

In figures 6.14(a), 6.15(a), and 6.16(a), Xfree is illustrated in dashdotted curve, the

dotted curve represents the result of the kappa guidance, the solid curve represents the result

of the RRTprepro. Figures 6.14(b), 6.15(b), and 6.16(b) present their lateral accelerations

along the computed trajectory along with the maximal control inputs along the trajectories

represented by the dashdotted curves.

In scenario 1 (see figure 6.14), the trajectory generated by the kappa guidance fails

to reach Xgoal because it does not anticipate the lack of maneuverability at the end of

the trajectory (see figure 6.14(b)). On the contrary, as the RRTprepro anticipates the loss

06/2015 Pawit Pharpatara

100 6.3. SIMULATION RESULTS

−5 0 5 10 15
10

12

14

16

18

20

22

24

26

28

horizontal distance (km)

a
lt
it
u
d
e
(k
m
)

Figure 6.11: Scenario 1: Simulation result using RRTkappa

of maneuverability at high altitude near Xgoal, the interceptor is maneuvered before this

loss happens to reduce the curvature of the trajectory when approaching Xgoal. As a

consequence, an admissible trajectory that satisfies the final constraints is found.

For in-depth analysis, the numerical results are obtained by simulating 100 Monte-

Carlo simulations. Each simulation is launched for 2000 iterations. After 100 Monte-Carlo

simulations for scenario 1, the solutions are found around the 46th iteration with the average

final speed of 907m/s. The optimal solution obtained by using GPOPS [RBD+10] has the

final velocity equal to 1117.5m/s. It implies that the RRTprepro is capable of finding a

solution closer to the optimal one with less number of iterations than the RRTkappa.

An obstacle is added in scenario 2. Figure 6.15 shows one of its simulation results.

According to 100 Monte-Carlo simulations, the RRTprepro is capable of finding a solution

within the average of 114 iterations. The average final velocity is 762m/s that respects the

final constraints represented by a dashed cone at the end of the trajectory.

Scenario 3 is more difficult to solve than the first one because there are more obstacles.

One of the simulation results for this scenario is presented in figure 6.16. A solution is

found within the average of 469 iterations with the average final velocity of 596m/s as a

result of 100 Monte-Carlo simulations.

06/2015 Pawit Pharpatara

6.4. CONCLUSIONS 101

0 2 4 6 8 10 12 14 16
10

12

14

16

18

20

22

radar
detection
zone

horizontal distance (km)

a
lt
it
u
d
e
(k
m
)

Figure 6.12: Scenario 2: Simulation result using RRTkappa

These results show that the RRT framework together with the preprocessed exploration

space is capable of finding a feasible solution for an aerial vehicle flying in an environment

cluttered with obstacles that the classical methods cannot.

6.4 Conclusions

The simulation results show that the preprocessed exploration space ameliorates the com-

puting efficiency and the optimality of the RRT algorithm. However, there are some critical

drawbacks and problems:

� There is no theoretical proof that the envelope of preprocessed exploration space

contains an optimal or near-optimal solutions

� The preprocessed exploration space does not take the obstacle zones into consider-

ation; This can lead to two or more completely separated exploration space that

contains no feasible solution

� The preprocessed exploration space is some sort of an estimated initial configuration

for the optimal control problem; Moreover, the exploration space becomes smaller;

06/2015 Pawit Pharpatara

102 6.4. CONCLUSIONS

0 5 10 15 20
10

11

12

13

14

15

16

17

18

19

20

radar
detection
zone

altitude restriction zone

horizontal distance (km)

a
lt
it
u
d
e
(k
m
)

forbidden
area

Figure 6.13: Scenario 3: Simulation result using RRTkappa

Thus, the non-linear optimization approach, such as GPOPS, can be used to find an

optimal solution instead of the RRT

According to these drawbacks, it seems that the preprocessed exploration space can be

used as an estimated initial condition for other non-linear optimization approaches rather

than the RRT. The reduced exploration space also makes the RRT lose its main advantage,

the exploration of high-dimensional problem without a need of approximations [PLM06].

Moreover, with the non-linear optimization approaches, the solution is ensured to be an

optimal solution. Thus, in the next part of the thesis, the problem is reformulated. More-

over, the optimal RRT or RRT* is used to find an optimal trajectory of aerial vehicles in

the slightly different approach of using sampling-based path planning algorithms.

06/2015 Pawit Pharpatara

6.4. CONCLUSIONS 103

0 5 10 15
10

15

20

25

horizontal distance (km)

al
ti
tu
d
e
(k
m
)

pre-processed RRT

kappa

extremities

(a) Trajectories

0 0.2 0.4 0.6 0.8 1
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

t/tf

av
/a
v
(α

m
ax

)

pre-processed RRT

kappa
max

(b) Control inputs along the computed trajectories

Figure 6.14: Simulation result for scenario 1

06/2015 Pawit Pharpatara

104 6.4. CONCLUSIONS

0 2 4 6 8 10 12 14 16
10

12

14

16

18

20

22

radar
detection
zone

horizontal distance (km)

al
ti
tu
d
e
(k
m
)

pre-processed RRT

extremities

(a) Trajectories

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t/tf

||a
v
||/
||a

v
(α

m
ax

)|
|

RRT
max

(b) Control inputs along the computed trajectories

Figure 6.15: Simulation result for scenario 2

06/2015 Pawit Pharpatara

6.4. CONCLUSIONS 105

0 5 10 15 20
10

11

12

13

14

15

16

17

18

19

20

radar
detection
zone

altitude restriction zone

horizontal distance (km)

al
ti
tu
d
e
(k
m
)

forbidden
area

pre-processed RRT

extremities

(a) Trajectories

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t/tf

||a
v
||/
||a

v
(α

m
ax

)|
|

RRT
max

(b) Control inputs along the computed trajectories

Figure 6.16: Simulation result for scenario 3

06/2015 Pawit Pharpatara

Part IV

Path planning using a simplified

model

107

7 Path planning of aerial

vehicles based on RRT*

algorithm

From the results of the previous chapters, the complete system model makes the prob-

lem more difficult to prove the optimality of the solution. Moreover, the preprocessing

of the exploration space makes the RRT lose its charm as a method of exploration for

high-dimensional problems without a need of approximation. Thus, the system model is

simplified in order to prove the optimality of the obtained solution. The objective of the

trajectory planning is slightly changed since the previous approach encounters some diffi-

culties. Instead of finding a trajectory corresponding to the complete system model, the

trajectory planning algorithm focuses on finding a reference trajectory using a simplified

system model that is easy to follow by using path following algorithms such as MPC.

Moreover, the optimality of the solution is easier to prove than the one using a complete

model.

Therefore, the main contribution of this chapter is to the expansion of the framework

from 2D plane to 3D plane with help of the shortest 3D Dubins’ path in heterogeneous

environment developed in this chapter for missile application. The computational effort is

also improved by integrating the Artificial Potential Fields in a random state generation of

the algorithm. Moreover, the optimal RRT or RRT* is used as a main path planner in this

chapter.

In this chapter, the RRT*, the RRT algorithm with asymptotic optimality property, is

used as a basis path planner to find an optimal reference trajectory between two vehicle

states. The classical guidance laws are no longer used as a node expansion method. The

reason is that they cannot ensure the arrival at the desired destination. Not using a complete

model is also supported by this reason. This issue is a serious problem when using the

109

110 7.1. MOTION PLANNING FRAMEWORK

RRT* algorithm since there are some deconnections and reconnections of the exploration

tree, which are explained in the description of the RRT* algorithm. Then, the application

of the RRT* algorithm for aerial vehicles is explained attentively. Later, the simulation

results are presented and analyzed. Finally, some conclusions are made at the end of this

chapter.

7.1 Motion planning framework

The motion planning framework is developed based on the RRT* algorithm as a basis path

planner. The details of the RRT* algorithm can be found in Algorithm 2 in section 7.1.1.

A heuristic is added to the RRT* algorithm in order to increase the convergence rate to

the optimal solution of the algorithm. The APF is used as a heuristic in random state

generation of the RRT* algorithm [PHB15b]. The integration of the APF in the RRT*

algorithm is explained in section 7.1.3.

7.1.1 Optimal RRT known as RRT* algorithm: An overview

Optimal RRT known as RRT* [KF10, KF11] is a RRT algorithm with the asymptotic

optimality property, i.e. almost-sure convergence to an optimal solution, along with proba-

bilistic completeness guarantees. The RRT* algorithm achieves the asymptotic optimality

absent from the RRT without incurring substantial computational overhead. Thus, the

RRT* provides substantial benefits, especially for real-time applications.

The RRT* is like the RRT that it can find a feasible path quickly. Moreover, the

quality of the path is improved toward the optimal solution over the remaining time before

the path execution is complete. Since most robotic systems usually spend more time to

execute trajectories than to plan them, this property is very advantageous. The principle

of the RRT* as a path planner is described in Algorithm 2.

Let G be the exploration tree, V be the set of vertices of the tree, E be the set of

connecting edges of the tree, cost({(x1,x2)}) be the minimal cost from x1 to x2 accord-

ing to the specified criterion J . Let cost(x) also be the total cost-to-go to x, that is

cost(x)=cost({(xinit,x)}).

First, the initial state xinit is added to the treeG. Then, a state xrand ∈ Xfree is generated

randomly using the uniform distribution. The nearest neighbor function searches the tree

G for the nearest vertex to xrand according to a user-defined metric d. This state is called

xnearest. In steer function, a control input u∗ is selected according to the specified criterion,

i.e. such that J (tnearest, trand,u
∗) is minimized.

06/2015 Pawit Pharpatara

7.1. MOTION PLANNING FRAMEWORK 111

Algorithm 2 RRT* path planner

Function : build rrt*(in : K ∈ N, xinit ∈ Xfree, Xgoal ⊂ Xfree, ∆t ∈ R+, out : G)

1: G← xinit

2: cost(xinit)← 0
3: i = 0
4: repeat
5: xrand ← random state(Xfree)
6: xnew ← rrt* extend(G,xrand)
7: until i+ + > K
8: return G

Function : rrt* extend(in : G, xrand, out : xnew)

9: V ← G.Node
10: E ← G.Edge
11: xnearest ← nearest neighbor(G,xrand)
12: (xnew,u

∗)← steer(xnearest,xrand)
13: if collision free path(xnearest,xnew) then
14: V ← V ∪ {xnew}
15: cost(xnew)← cost(xnearest) + cost({(xnearest,xnew)})
16: Xnear ← near vertices parents(G,xnew)
17: E ← best edge(E,Xnear,xnearest,xnew)
18: Xnear ← near vertices children(xnew, G)
19: E ← rewire(E,Xnear,xnearest,xnew)
20: end if
21: G = (V,E)
22: return xnew

Function : best edge(in : E, Xnear, xmin, xnew out : E)

23: for all xnear ∈ Xnear \ {xmin} do
24: (xnew,u

∗)← steer(xnear,xnew)
25: if collision free path(xnear,xnew) and cost(xnew) > cost(xnear) + cost({(xnear,xnew)}) then
26: cost(xnew)← cost(xnear) + cost({(xnear,xnew)})
27: xmin ← xnear

28: end if
29: end for
30: E ← E ∪ {(xmin,xnew)}
31: return E

Function : rewire(in : E, Xnear, xnearest, xnew out : E)

32: for all xnear ∈ Xnear \ {xnearest} do
33: (xnear,u

∗)← steer(xnew,xnear)
34: if collision free path(xnew,xnear) and cost(xnear) > cost(xnew) + cost({(xnew,xnear)}) then
35: xparent ← parent(xnear)
36: E ← E\{(xparent,xnear)}
37: E ← E ∪ {(xnew,xnear)}
38: cost(xnear)← cost(xnew) + cost({(xnew,xnear)})
39: end if
40: end for
41: return E

06/2015 Pawit Pharpatara

112 7.1. MOTION PLANNING FRAMEWORK

Then, the system model is integrated from tnearest to trand, to find a new state xnew, that is

xnew = xnearest +

∫ trand

tnearest

f(x,u∗) dt.

A collision test (collision free path function) is performed: if xnew and the path between

xnearest and xnew lie in Xfree then xnew is added in V .

Next, the RRT* algorithm tries to find a better parent for xnew, that is a parent pro-

viding a lower cost to xnew than xnearest. The near vertices parents function in line 16

will search the tree G for a set of other potential parents in a neighborhood Xnear ⊂ V of

xnew. The state xmin ∈ Xnear ∪ {xnearest} that is collision-free and minimizes the cost to

xnew is chosen to be its new parent. Therefore, the connecting edge from xmin to xnew is

added in E.

Afterward, the near vertices children function in line 18 will search the tree G for a set

of potential children in a neighborhood Xnear ⊂ V of xnew. For each xnear ∈ Xnear, if the

cost to xnear passing by xnew is better than cost(xnear) and the path is collision-free, then

the rewire function will replace the existing connecting edge by the connecting edge from

xnew to xnear.

These steps are repeated until the algorithm reaches K iterations. Thus, the RRT*

algorithm will improve the optimality of the solution over time even after the first solution

is found.

7.1.2 Important components

The RRT* algorithm inherits the properties of the RRT algorithm. Thus, most of the

important elements of the RRT* algorithm are the ones of the RRT algorithm:

� Exploration space

� Random state generation

� Metric

� Node expansion methods

� Near vertices search

� Collision tests

The explication of the mentioned elements can be found in section 5.1.2. In this section,

only the elements that have additional concerns and the newly introduced element are

explained.

06/2015 Pawit Pharpatara

7.1. MOTION PLANNING FRAMEWORK 113

7.1.2.1 Node expansion methods

Node expansion methods are used to move the vehicle from one state to another state. In

order to expand the tree, a control input u∗ used to expand the tree from xnear to xrand

is determined. The control input can be computed randomly or using a specific criterion

such as some guidance control laws. The system model, environment model, and other

constraints are integrated until the vehicle reaches xrand, i.e. from tnear to trand, in steer

function.

In the RRT* algorithm, node expansion methods are not only used in expanding the tree

but also used to reconnect the tree with the existing vertices. Thus, it is highly recommend

to use the control laws that can move the vehicle from one state to another state perfectly

or mostly perfect in order to avoid the extra computational cost of recalculating the entire

tree.

7.1.2.2 Near vertices search

The near vertices search is introduced in the RRT* algorithm to improve the quality of

the obtained solution. The asymptotic optimality property of the RRT* algorithm comes

from this procedure. The near vertices search can be considered as a generalization of the

nearest neighbor search. While the nearest neighbor search returns the closest vertex to

the interested state x, the near vertices search return a collection of vertices close to x.

In the RRT* algorithm described in [KF10, KF11], the near vertices function uses the

same metric function as nearest neighbor function to determine the neighborhood Xnear

of the state x. There are several ways to define the near vertices search. In the original

RRT* algorithm [KF10, KF11], the near vertices search of x is defined to be a set of all

vertices within the closed ball of radius rn centered at x where rn decreases with number

of iterations. In this thesis, the k-nearest search is used for the near vertices search instead

of using a closed ball of radius rn. Please note that rn and k have to be large enough to

contains all possible near vertices (see section 7.2.2).

The original near vertices function is divided into 2 functions in this thesis according

to their purpose: near vertices parents function in line 16, and near vertices children

function in line 18. The first one searches for the k-nearest vertices to arrive at xnew while

the latter one searches for the k-nearest vertices from xnew to other vertices. Note that in

case of using the Euclidean distance as the metric, both functions are the same and the

latter is not required in the algorithm.

06/2015 Pawit Pharpatara

114 7.1. MOTION PLANNING FRAMEWORK

7.1.3 State generation using Artificial Potential Fields or APF

The random state xrand is generally generated by a uniform distribution in such a way that

xrand ∈ Xfree. In this paper, a biased random state generation using APF [AH83, Kha85]

is introduced.

APF is a reactive approach where trajectories are not generated explicitly. Instead,

the environments generate some forces leading the vehicle to the destination. However,

problems such as local minima and oscillatory movement can make the goal non-reachable.

The APF can be used to direct the randomly generated state to the goal, i.e. the orien-

tation of the random state is generated using the APF. By combining with the RRT*, the

disadvantages of the APF can be solved by the randomness of the RRT*, i.e. the vehicle

leaves the local minima by trying to go to random states [BL90, BL91]. At the same time,

it is expected that the APF also increases the rate of convergence to a solution of the RRT*.

An artificial vector fAPF used to direct the vehicle is induced by an artificial potential

U ∈ R, i.e. fAPF = −∇U ∈ R3. The potentials can be defined in several ways according

to the characteristics of the mathematical functions. In this paper, the following artificial

potentials and vectors are used.

� The repulsive potential [Kha85] is usually used around an obstacle in order for the

vehicle to avoid it. It can also be used to move the vehicle away from the starting

state. The repulsive potential and force can be expressed as

Uinit =
1

2
Kinit

1

||ξ − ξinit||22
, (7.1)

finit = Kinit
ξ − ξinit

||ξ − ξinit||42
, (7.2)

where Uinit, finit are the repulsive potential and vector field centered at ξinit and Kinit

is a constant.

� The attractive potential, opposing to the repulsive potential, is used to direct the

vehicle to the desired destination. The attractive potential and force can be expressed

as

Ugoal = −1

2
Kgoal

1

||ξ − ξgoal||22
, (7.3)

fgoal = −Kgoal

ξ − ξgoal

||ξ − ξgoal||42
, (7.4)

where Ugoal, fgoal are the attractive potential and vector fields centered at ξgoal and

Kgoal is a constant.

06/2015 Pawit Pharpatara

7.1. MOTION PLANNING FRAMEWORK 115

dobs

robs

tξobsc
Sobs

ξgoal

ξ

σ

λ

ξobs

Figure 7.1: Example of rotational vector field around the obstacle

� The rotational vector field [Fal14] is used instead of the repulsive potential to guide

the vehicle around the obstacles in order to avoid the local minimum problem. In

figure 7.1, let ξobsc denote the center of gravity of an obstacle, Sobs denote the set of

the obstacle surface, dobs denote a maximum distance of influence from the obstacle,

robs denote the shortest distance of the vehicle from the obstacle, and t, σ, λ are unit

vectors defined as

σ =
ξgoal − ξobsc

||ξgoal − ξobsc ||
,

λ =
ξ − ξobs

||ξ − ξobs||
,

t =
λ× (σ × λ)

||λ× (σ × λ)||
.

The vector field function can be defined as

fobs = Kobs(
dobs − robs

robs
)t, robs 6 dobs (7.5)

fobs = 0, robs > dobs (7.6)

where ξobs ∈ Sobs is the nearest point of an obstacle to ξ, and Kobs is a constant.

Note that for a spherical obstacle, λ =
ξ−ξobsc
||ξ−ξobsc ||

06/2015 Pawit Pharpatara

116 7.1. MOTION PLANNING FRAMEWORK

Thus, the summation of artificial vector fields expressed as

fAPF =
n∑
i=1

fi = fgoal + finit + fobs, (7.7)

is used as a basis to generate the orientation (γrand, χrand) of a random state xrand.

Remark 3 Some more adaptive artificial potential functions or navigation functions can

be found in [FK11, FKA12, FK12] which will be useful for future works in practical and

experimental studies. In this thesis, only simple artificial potential functions are only to

demonstrate the concept of this framework.

φ

φ

x

C

Figure 7.2: Definition of convex cone C(x, φ)

Thus, the random state function generates a random state xrand ∈ Xfree by using the

uniform distribution as in the original algorithm. The orientation of the randomly generated

state is biased toward the destination using the direction of fAPF with a given margin, that

is xrand is chosen in the convex cone illustrated in figure 7.2 pointing toward fAPF with

apex ξrand and apex angle 2φAPF. Moreover, a bias toward the goal, used in RRT-goalbias

[LK01], is also used to increase the rate of convergence to an optimal solution. It consists

in choosing xrand ∈ Xgoal with a probability p.

This framework biased using APF is expected to be able to find a feasible and optimal

solution with less number of iterations than the existing RRT* algorithm. This will be

demonstrated in simulations in section 7.4.2 for the application considered in section 7.3.

The properties of this framework are analyzed in the next section.

06/2015 Pawit Pharpatara

7.2. PROPERTY ANALYSIS 117

7.2 Property Analysis

7.2.1 Probabilistic completeness

The algorithm is said to be probabilistic complete if it finds a feasible path with probability

approaching one as the number of iterations approaches infinity [KF10]. Since the RRT*

algorithm returns a connected tree G including xinit on Xfree as the RRT algorithm does,

there always exists a collision-free path starting from xinit to any vertex in the tree G. Thus,

if there exists a feasible path to Xgoal, then this framework is automatically probabilistically

complete.

7.2.2 Asymptotic optimality

In this section, a set of sufficient conditions is proposed to guarantee the convergence

of the RRT* algorithm to an optimal solution for the aerial vehicle path planning, i.e.

the probability to find an optimal solution approaches one when the number of iterations

approaches infinity.

The convergence to an optimal solution is guaranteed if two conditions are met. The first

condition is that there exists an optimal path with sufficient free space in its neighborhood.

The second condition is that the system is local controllable, i.e. the system can be moved

around in its entire neighborhood using only admissible control inputs. With these two

conditions, asymptotic optimality of the RRT* algorithm is guaranteed. The aerial system

considered in this paper is assumed to be controllable in its domain of use. Therefore, it is

only required to assume that there exists an optimal trajectory with free space around it.

A trajectory Xε is said ε-collision-free, for ε ∈ (0, ε̄) where ε̄ ∈ R>0 if all states along

X ε are at least ε away from the obstacles. Assume that there exist an optimal feasible

trajectory X ∗ and a function X ε such that X ε is an ε-collision-free trajectory for all ε > 0

that X ε(0) = xinit and X ε(tf) ∈ Xgoal. Moreover, X ε converges to X ∗ when ε approaches

zero. Based on these assumptions and local controllability of the system, it is shown in

[KF10] that the RRT* algorithm can execute the reconnection process around X ε infinitely

often and then, approaches X ∗ asymptotically.

However, this result is true for all ε provided that the area of research around neigh-

borhood in the near vertices function (see section 7.1.2.2) is large enough. Indeed, if the

area of research contains a ball of volume γRRT*1 ln(n)/n, γRRT*1 needs to be large enough

to ensure asymptotic optimality of the algorithm. It is proven in [KF10] the asymptotic

optimality is ensured if γRRT*1 > 2(1 − 1/d)
(
µ(Xfree)
ζd

)
, where d is the dimension of the

exploration space x, µ(Xfree) is the volume of Xfree, and ζd is the volume of the unit ball in

d-dimensional euclidean space.

06/2015 Pawit Pharpatara

118 7.3. APPLICATION FOR A HYPERSONIC AERIAL VEHICLE

Since the uniform distribution is used for the state generation, the expected number of

vertices contained in a ball of volume γRRT*1 ln(n)/n after iteration n is γRRT*1 ln(n)/µ(Xfree).

The proof is straightforward since the number of vertices contained in the ball follows a

binomial distribution with parameters n and γRRT*1 ln(n)/nµ(Xfree). Thus, if k-nearest

search is used in the same manner, k needs to verify k > γRRT*2 ln(n). The asymptotic

optimality is ensured if γRRT*2 > 2d+1e(1−1/d) as proven in [KF10]. Note that γRRT*2 de-

pends only on d not the problem instance, unlike the original RRT*. Thus, γRRT*2 = 2d+1e

is a valid choice for all problem instances.

If all these assumptions hold, the RRT* algorithm can find an optimal trajectory almost

surely. A thorough proof can be found in [KF11].

Remark 4 The APF bias that is used in the framework does not contradict this assumption

since a given margin φAPF described in section 7.1.3 is used for the uniform state generation.

Indeed, to ensure free space in the neighborhood, it is only required that any states x on the

optimal path are in the convex cone C(xAPF, φAPF) (see figure 7.2 for a definition of C),

where xAPF is a state on the vector field at position ξ (ξAPF = ξ).

7.3 Application for a hypersonic aerial vehicle

The performance of the framework is demonstrated using the Dubins’ path in a heteroge-

neous environment as the user-defined metric d [PHB15a]. The framework is simulated on

2D and 3D applications for a hypersonic aerial vehicle, namely an interceptor missile. In

a 2D application, only the RRT* algorithm without heuristic is used. It is to verify the

capability of the original RRT* algorithm in find an optimal solution. After verifying the

capability of the RRT* algorithm, the framework is then fully used in a 3D application. In

the following sections, the environmental and system modeling are described. Then, the

problem statement of the case study is described. The calculation of the 3D path based on

a simplified heterogeneous environment and a Dubins-like vehicle is detailed. Then, how to

use Dubins’ path for the metric is explained.

7.3.1 Environment modeling

The environment is considered heterogeneous in a 2-dimensional vertical plane because of

variation of air density ρ, decreasing exponentially with altitude. The environment model

can be expressed as:

ρ = ρ0e
−z/zr (7.8)

where ρ0 is the air density at standard atmosphere at the sea level and zr is the reference

altitude.

06/2015 Pawit Pharpatara

7.3. APPLICATION FOR A HYPERSONIC AERIAL VEHICLE 119

7.3.2 System modeling

A simplified hypersonic Dubins-like vehicle is used to simulate results. In this paper, an

unpowered interceptor missile during midcourse phase is chosen. For the hypersonic missile,

wind speed has so few effect to the system that a zero wind assumption is applied. Then,

the translational velocity v is assumed to coincide with the apparent velocity. Besides, a

hypersonic missile is studied. Thus, the gravity can be neglected, i.e. g = 0 in system (2.8),

which is a strong hypothesis that is only valid for missile-like aircraft flying with a high

Mach number in a short distance. The propulsion of the vehicle is considered coincide with

the axis of the vehicle, i.e. T2 = T3 = 0 in system (2.8). No external perturbation force

is considered in the simplified model neither, i.e. Fp1 = Fp2 = Fp3 = 0 in system (2.8).

Moreover, the drag can be ignored since the objective is to find the shortest path between

two states, i.e. the path of minimum length. Thus, the dynamics of the velocity does not

need to be considered. Moreover, the aerodynamic coefficient CL2 is equal to CL3 because

an axisymmetric missile is considered here (cf. system (2.8)).

7.3.2.1 3D system modeling

By simplifying system (2.8) according to the mentioned conditions, the only external force

that effects the motion of the vehicle is the lift force, i.e. fL = 1
2mρ(z)SCL(α)v2ev

1. There-

fore, by applying a change of variables from t to curvilinear abscissa s(t) =
∫ t

0 v(u) du, the

equation of motions of a Dubins-like aerial vehicle can be written as

x′ =
dx

ds
= cos γ cosχ,

y′ =
dy

ds
= cos γ sinχ,

z′ =
dz

ds
= sin γ,

γ′ =
dγ

ds
=

1

2m
ρ(z)SCL(α) cosα =

1

2m
ρ(z)SCLmax

CL(α)

CLmax

cosα = c(z)µ,

χ′ =
dχ

ds
=

1

2m
ρ(z)SCL(α)

sinα

cos γ
=

1

2m
ρ(z)SCLmax

CL(α)

CLmax

sinα

cos γ
= c(z)

η

cos γ
,

(7.9)

where CL(α) is the lift coefficient at α, CLmax is the maximum lift coefficient at αmax ,

µ = CL(α)
CLmax

cosα, η = CL(α)
CLmax

sinα are the normalized control inputs bounded by condition√
µ2 + η2 6 1, ρ(z) is the air density, and c(z) = 1

2mρ(z)SCLmax is the maximum path

curvature of the vehicle. Note that µ, η are directly related the angle of attack and the

sideslip angle.

06/2015 Pawit Pharpatara

120 7.3. APPLICATION FOR A HYPERSONIC AERIAL VEHICLE

7.3.2.2 2D system modeling

The equations of motion (7.9) can be deduced in 2D as
x′ =

dx

ds
= cos γ,

z′ =
dz

ds
= sin γ,

γ′ =
dγ

ds
= c(z)u, |u| 6 1.

(7.10)

where u ∈ R is the control input (u ∈ [−1, 1]) and γ = χ is the orientation of the vehicle in

2D plane.

As a consequence of the environmental model (7.8), the path curvature can be written

in the same way as

c(z) = c0e
−z/zr . (7.11)

where c0 is the maximum curvature at sea level. At this point, it can be noticed that

the maneuverability of the vehicle is exponentially decreasing with altitude since c(z) is

exponentially decreasing. Thus, it is a challenging problem to control such a vehicle at high

altitudes.

Remark 5 Our objective is to find a reference trajectory for such a vehicle. It is meant

to follow the reference trajectory with its own controller. Therefore, elements related to the

controller [DSF00] such as model uncertainties and measurement errors are not considered

here.

7.3.3 Problem formulation

7.3.3.1 System notations for 3D problems

In the 3D application, let x =
(
ξ>, γ, χ

)> ∈ X = R5 be the measurable state of the system

and u∗ = (µ, η)> ∈ U be an admissible control input. The set of admissible control inputs

is defined as

U = {u∗ ∈ R2 : ||u∗|| 6 1} (7.12)

The differential system (7.9) is rewritten as

x′ = f(x,u∗). (7.13)

where f(·) is defined in section 7.3.2 equation (7.9).

06/2015 Pawit Pharpatara

7.3. APPLICATION FOR A HYPERSONIC AERIAL VEHICLE 121

7.3.3.2 System notations for 2D problems

While in the 2D application, let x(t) = (ξ>, γ)> ∈ X = R3 be the measurable state of

the system, u∗ ∈ U = [−1, 1] be the admissible control input and consider the differential

system

x′ = f(x,u∗), (7.14)

where f(·) is defined in section 7.3.2 equation (7.10).

7.3.3.3 Common notations

The obstacle region Xobs is defined by the exploration space occupied by no-fly zones such

as city areas and radar detection zones and the set of admissible states is the remaining of

the exploration space, i.e. Xfree = X \ Xobs.

The path planning starts at the initial state xinit ∈ Xfree. The destination of the path

planning is given by a rendez-vous set Xgoal ⊂ Xfree.

7.3.3.4 Objective

The objective of path planning algorithm is to find a collision-free trajectory X (s) : [0, sf]→
Xfree with x′ = f(x,u∗), that starts at xinit, reaches the goal region Xgoal, i.e. x(0) = xinit

and x(sf) ∈ Xgoal and minimizes the cost function

J =

∫ sf

0
ds. (7.15)

7.3.4 RRT* configurations

7.3.4.1 Exploration space

1. Obstacle space Xobs: in this chapter, only the static obstacles such as the coverage

areas of the radar station, are considered. Thus, Xobs is defined as

� 3D problems:

Pobs = {ξ ∈ R3 : ξ is the position surrounded

by bounders of obstacles},

Vobs = {(γ, χ)> ∈ R2},

(7.16)

� 2D problems:

Pobs = {ξ ∈ R2 : ξ is the position surrounded

by bounders of obstacles}

Vobs = {γ ∈ R}

(7.17)

06/2015 Pawit Pharpatara

122 7.3. APPLICATION FOR A HYPERSONIC AERIAL VEHICLE

2. Collision-free exploration space Xfree = X/Xobs: this is the space where the RRT

algorithm will try to explore to find a solution.

3. Destination set Xgoal ∈ Xfree: this space in 3D problem, which has the same illustration

as in figure 7.2, is defined as

� 3D problems:

Xgoal = Pgoal × Vgoal,

Pgoal = {ξrdv},

Vgoal = {(γ, χ)> ∈ R2 : (γ, χ) ∈ C(xrdv, φf)},

(7.18)

where xrdv is the rendez-vous state, C(xrdv, φf) is the convex cone (see figure

7.2) pointing toward the orientation of the vehicle defined by γrdv and χrdv with

apex ξrdv and apex angle 2φf where φf is a maximal acceptable orientation error

defined by the detection range of the embedded radar or infrared sensor.

� 2D problems:

Xgoal = Pgoal × Vgoal,

Pgoal = {ξ ∈ R2 : ξ = ξrdv},

Vgoal = {γ ∈ R : γ ∈ C(xrdv, φf)},

(7.19)

7.3.4.2 Random state generation

� 2D problems: the goal of 2D application is to show and verify the performance of the

original RRT* algorithm in solving trajectory planning problems for aerial vehicles.

Thus, the random state xrand is generated such that xrand ∈ Xfree. A uniform distribu-

tion is used. Moreover, the RRT-goalbias [LK01] is used. It means that random state

function returns xrand ∈ Xgoal with a probability p and returns randomly generated

state using uniform distribution with a probability (1− p).

� 3D problems: the random state is generated using the methodology shown in section

7.1.3.

7.3.4.3 Metric

The Euclidean metric is often used in such an algorithm. It finds a shortest line-of-sight

distance between two positions. Moreover, the kd-tree [Ben75] can be used to enhance

the robustness of the algorithm. Thus, it is fast and easy to implement. However, for a

nonholonomic vehicle, the Euclidean metric is not appropriated for several reasons. The

main reason is that it does not take the orientation of the vehicle into account. A suitable

06/2015 Pawit Pharpatara

7.3. APPLICATION FOR A HYPERSONIC AERIAL VEHICLE 123

metric can be, for example, based on the shortest Dubins’ path used in [Dub57] even if it is

not perfectly realistic. Although more complex to compute, the most interesting metric in

our framework consists in considering the cost from xnear to xrand, i.e. cost({(xnear,xrand)}).
For the application considered in this chapter, a user-defined metric d based on the

shortest 2D Dubins’ path in a heterogeneous environment (see Appendix D for calculation

detail) is used in the 2D application. 3D Dubins’ paths in a heterogeneous environment

are developed and used as a metric in the 3D application (see section 7.3.5). There are two

cases to consider when using Dubins’ paths as the user-defined metric d:

� xrand /∈ Xgoal: the shortest CSC path shown in figure 7.4 is used to calculate the

nearest neighbor.

� xrand ∈ Xgoal: it is more interesting to consider the shortest path between each x ∈ G
and a set of goal states Xgoal than considering a single xrand ∈ Xgoal. Indeed, there can

exist the shortest path to another element of Xgoal than the shortest path to xrand.

To this manner, the degenerated form (CS) of CSC path needs to be considered first.

Indeed, if the shortest path to the set Xgoal is a CS path, then it arrives with the

arrival orientation within the arrival cone C, the expected shortest path is this CS

path. If no CS path arrives in Xgoal, the shortest path is necessarily a CSC path

whose arrival orientation is the extremity of the arrival cone C.

Thus, for each x ∈ G, the approach first consists in finding the shortest CS path to the

desired final position, i.e. ξrand = ξrdv. If the final orientation is in the arrival cone, it is the

expected solution. If not, the solution is the shortest CSC path to one of the extremities

of Xgoal. The illustrations of these two cases are the same as shown in figures 5.3 and 5.4.

7.3.4.4 Node expansion method

In both 2D and 3D applications, node expansion method is used to move the vehicle from

one state to another. In this chapter, the Dubins’ path in a heterogeneous environment is

also used to compute the path between two vehicle states. The control input ||u∗|| = ±1

is used for curves of maximum curvature C and ||u∗|| = 0 is used for straight line S.

The control input ||u∗|| is applied to the system (7.9) during an integration step ∆s for

epsilon steps in 2D applications or until the arrival state is reached or until an obstacle is

encountered for 3D applications. Then, a new state xnew is obtained.

7.3.4.5 Near vertices search

In this framework, the k-nearest algorithm is used to determine a set of near vertices Xnear

of the state x. It selects the first k-nearest vertices according to the user-defined metric d

06/2015 Pawit Pharpatara

124 7.3. APPLICATION FOR A HYPERSONIC AERIAL VEHICLE

and returns them to the set Xnear. To ensure asymptotic optimality, k(n) is chosen with

respect the condition in section 7.2.

7.3.4.6 Collision tests

The path between xnear and xnew are verified if they lie in Xfree. If it is collision-free, the

path between xnear and xnew is added to the tree G.

7.3.5 3-dimensional Dubins’ paths in heterogeneous environment

In this section, a user-defined metric d is defined based on the shortest 3-dimensional

Dubins’s path [PHB15a] developed from [HG10] and [HP13].

It is shown in [Dub57, BCL91] that the shortest 2-dimensional path between two fixed

states of Dubins’ vehicle is composed of straight line (S) and arc of circle of minimum

turning radius (C), i.e. CSC or CCC path. In [SL01], it is proven that CSC path and not

CCC path is the shortest path if two states are sufficiently far from each other.

In [Sus95], it is also demonstrated that, for sufficiently close distance between two states

in a 3-dimensional plane, the helicoidal arc can be shorter than the CSC path. Then, the

shortest path is proven to be a helicoidal arc, a CSC path, a CCC path or a degenerated

form of these Dubins’ paths, i.e. S, C, CS, SC, and CC paths. Later, in [Sha07], Dubins’

path in 2-dimensional plane is extended to 3-dimensional plane for multiple UAVs path

planning. Suboptimal CCSC paths are used.

In this paper, a 3-dimensional length-optimal path between two given states for an

aerial vehicle in a heterogeneous environment, i.e. variable turning radius, is considered as

a user-defined metric d used in the RRT* algorithm. The CSC paths are only considered

under the hypothesis of “x0 and xf are sufficiently far from each other”.

In the following sections, the computation of the curve C of Dubins’ path in a heteroge-

neous environment in a particular 2-dimensional plane is described. Then, the methodology

of 3-dimensional path generation is demonstrated.

7.3.5.1 Computation of the curve C in a particular 2D plane

In [HP13], the shortest Dubins’ path in a heterogeneous environment in a 2-dimensional

plane where the curvature of the vehicle decreases exponentially with altitude is demon-

strated. Let P denote a plane with its unit normal vector b as shown in figure 7.3. The

position (xp, yp, zp) is associated with vector basis (ep
1 , e

p
2 , e

p
3), of the vehicle on the plane.

It can be expressed in frame I in function of angles φ and ψ as shown in figure 7.3.

06/2015 Pawit Pharpatara

7.3. APPLICATION FOR A HYPERSONIC AERIAL VEHICLE 125

In this 2-dimensional system (yp = 0), γp = ∠(ep
1 ,v) is the turning angle. In this

coordinate system, the dynamics of the vehicle can be modeled as:

x′p =
dxp
ds

= cos γp,

z′p =
dzp
ds

= sin γp,

γ′p =
dγp
ds

= c(zp)up where up ∈ [−1, 1].

(7.20)

x

y

z

ep
1

ep
3

ψ

φ

b

P

Figure 7.3: Definition of a plane P with a normal vector b

As a consequence of the calculation on the plane P , the environment model, i.e. equation

(7.8), on the plane P is rewritten as

ρ(zp) = ρ0e
−z/zr = ρ0e

−zp cosφ/zr . (7.21)

Moreover, curvature equation (7.11) can be written as

c(zp) = c0e
−z/zr = c0e

−zp cosφ/zr . (7.22)

Using the same and straightforward calculation as in Appendix D, γp, xp, and zp can

be written in functions of ζ(s) as follows:
γp(ζ) = 2 arctan ζ + k(s)π,

xp(ζ) =
zr

cosφ
(γp(ζ)− γp0)− zr

cosφ
(A+B)s,

zp(ζ) = − zr
cosφ

ln

(
1 + ζ2

0

A+Bζ2
0

A+Bζ2

1 + ζ2

)
,

(7.23)

06/2015 Pawit Pharpatara

126 7.3. APPLICATION FOR A HYPERSONIC AERIAL VEHICLE

where k(s) is an integer depending on the distance s. For C1 curve, k(s) is calculated as

k(s) =

⌊
sA

√
B

A
/

(
up
π

2
− arctan

(√
B

A
ζ0

))⌋
, up = ±1 (7.24)

where b�c is a floor division. Otherwise, k(s) = 0 for C2 curve.

7.3.5.2 3D paths generation

0

xy

z

x0
xf

ξ1

ξ2

P1

P2

`

Figure 7.4: Example of Dubins’ path in 3D

In order to find the shortest Dubins’ path in a heterogeneous environment shown in

figure 7.4, let ` ∈ R3 denote a line segment which lies in both plane P1 and P2, i.e. ` ∈ P1

and ` ∈ P2.

In the followings, the cross product of u and v is defined by u×v. In order to find both

curves, the following normal vector to each particular plane P1 and P2 must be defined:

� The unit vector perpendicular to the first plane:

b1 =
`× v0

||`× v0||
; (7.25)

� The unit vector perpendicular to the second plane:

b2 =
`× vf

||`× vf||
; (7.26)

06/2015 Pawit Pharpatara

7.3. APPLICATION FOR A HYPERSONIC AERIAL VEHICLE 127

Remark 6 In case ` × v0 = 0 or ` × vf = 0, it means that there is no curve. Thus, the

CSC path degrades to CS, SC, or S path.

γp1 on plane P1 and γp2 on plane P2 in equation (7.23) are defined as follows

γp1 = ∠(ep11 , `) (7.27)

γp2 = ∠(ep21 , `) (7.28)

Then, the position of ξ1 on plane P1 and ξ2 on plane P2 can be found using the calcula-

tion shown in Section 7.3.5.1. Therefore, ξ1 = (x1, y1, z1)> and ξ2 = (x2, y2, z2)> in frame

I can be found as follows:
x1 = −zp1 sinφ1 cosψ1 − xp1 sinψ1 + x0

y1 = −zp1 sinφ1 sinψ1 + xp1 cosψ1 + y0

z1 = zp1 cosφ1 + z0

(7.29)

x2 = −zp2 sinφ2 cosψ2 − xp2 sinψ2 + xf

y2 = −zp2 sinφ2 sinψ2 + xp2 cosψ2 + yf

z2 = zp2 cosφ2 + zf

(7.30)

Recall that both curves are obtained by considering (xp1 , yp1 , zp1) = (xp2 , yp2 , zp2) =

(0, 0, 0) as an origin in this coordinate system, i.e. (xp1 , yp1 , zp1) = x0 and (xp2 , yp2 , zp2) =

xf in frame I, and (φ1, ψ1) and (φ2, ψ2) are orientation of b1 and b2, respectively.

The orientations of v1 and v2 can be found by rotating v0 and vf by ∆γ1 = γp1 − γp0
and ∆γ2 = γp2 − γpf around the vector b1 and b2, respectively.

Given an axis b and an angle δγ, the rotation matrix can be found using the following

formulation:

R = cos ∆γI + sin ∆γ(b× b) + (1− cos ∆γ)(b⊗ b) (7.31)

where × is the cross product operation and ⊗ is the tensor product operation.

By applying this formulation (7.31), We have

v1 = Rb1v0 (7.32)

Rb1 = cos ∆γ1I3 + sin ∆γ1C1 + (1− cos ∆γ1)D1 (7.33)

v2 = Rb2vf (7.34)

Rb2 = cos ∆γ2I3 + sin ∆γ2C2 + (1− cos ∆γ2)D2 (7.35)

where I3 is an identity matrix of order 3. C1 and C2 are the cross products of b1 and

b2, respectively. D1 and D2 are the tensor products of b1 and b2, respectively. They are

06/2015 Pawit Pharpatara

128 7.3. APPLICATION FOR A HYPERSONIC AERIAL VEHICLE

defined as follows:

C1 =

0 −b1z b1y

b1z 0 −b1x
−b1y b1x 0

D1 =

b21x b1xb1y b1xb1z

b1xb1y b21y b1yb1z

b1xb1z b1yb1z b21z

C2 =

0 −b2z b2y

b2z 0 −b2x
−b2y b2x 0

D2 =

b22x b2xb2y b2xb2z

b2xb2y b22y b2yb2z

b2xb2z b2yb2z b22z

−5
0

5
10

15

−10
0

10
20

30
4

6

8

10

12

14

x0

x (km)

xf

y (km)

al
ti
tu
d
e
(k
m
)

u1 = 1, u2 = −1
u1 = 1, u2 = −1
u1 = −1, u2 = 1
u1 = −1, u2 = −1

Figure 7.5: Four possible CSC paths between two states

Once two curves have been found, for example, a Newton method, is used to find the

06/2015 Pawit Pharpatara

7.4. SIMULATION RESULTS 129

parameter ` by verifying the objective function F (`) = ` − (ξ2 − ξ1) = 0. Thus, the line

segment `, which is on both plane P1 and plane P2, connecting both curves is found.

Remark 7 With this methodology, the conditions `×v1 = 0 and `×v2 = 0 are automat-

ically verified.

There can exist four types of CSC paths where up = ±1 for both circular arcs shown

in figure 7.5. The path with the shortest length, presented by the violet dotted curve, is

chosen and its distance is used as a distance metric d(x1,x2) between two states.

7.4 Simulation results

Here, MATLAB is used as a simulator to visualize and analyze the results. As author is

interested in the methodology of solving the problems, no robustness of coded algorithms

is analyzed. Moreover, MATLAB is used to simulated the results which is not the real lan-

guage used on the real embedded system. Therefore, the computational effort is discussed

in number of iterations instead of the computation time.

7.4.1 2D application

Two scenarios are analyzed with the initial state xinit = (0km, 0km, π/2),

Pgoal = {ξ ∈ R2 : ‖ξ − ξpip‖ < 500m},

Vgoal = {γ ∈ R : γ ∈ C(ξ, γpip, π/8)},
(7.36)

with ξpip = (30km, 5km)> and γpip = −π/12 for both scenarios. Moreover, the bias to Xgoal

is set to p = 0.1, the integration distance ∆s = 1km, ε = 3 steps, and ρ0 = 1.225km/m3,

zr = 7.5km for the environment model.

The first scenario has only one obstacle which is a coverage area of the detection radar

station. It is centered at (10km,0km) with 8km detection radius. While the second scenario

has two obstacle areas that increase the complexity of the problem. In this scenario, the

obstacles are a fixed direction radar detection beam whose origins are (−8km,0km) and

(19km,0km). The initial and final conditions and obstacles are chosen while considering

the feasibility and the interceptor missile mission.

In the following figures, Xgoal is represented as a point with two dashed lines, Xobs is

represented by space surrounded by red dashed curves, the exploration tree is represented

by the thick grey solid curve is the solution found by the RRT* algorithm.

Figure 7.6 shows one of the simulation results for scenario 1. Subfigures show the

improvement of the solutions while the number of iterations increases. Figure 7.6(d) shows

06/2015 Pawit Pharpatara

130 7.4. SIMULATION RESULTS

−5 0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

radar
detection
zone

horizontal distance (km)

a
lt
it
u
d
e
(k
m
)

(a) 100 iterations

−5 0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

radar
detection
zone

horizontal distance (km)

a
lt
it
u
d
e
(k
m
)

(b) 150 iterations

−5 0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

radar
detection
zone

horizontal distance (km)

al
ti
tu
d
e
(k
m
)

(c) 300 iterations

−5 0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

radar
detection
zone

horizontal distance (km)

al
ti
tu
d
e
(k
m
)

(d) 400 iterations

Figure 7.6: Exploration tree expansion and results for scenario 1

the shortest length solution with 33.5km found within 400 iterations. Results from 100

Monte-Carlo simulations show that the first solution is acquired around 69th iteration and

the average shortest path is 34.2km long. As we can see from the improvement of the

obtained solutions over time, the search continues after the first solution is found which is

the advantage of this algorithm.

In scenario 2, several obstacles increase the complexity of the problem. A simulation

result for scenario 2 is shown in figure 7.7. After 400 iterations, several solutions were

found but just two solutions are presented in figure 7.7(a). The first obtained solution is

represented by the thick dotted curve and the last obtained solution is represented by the

thick solid curve with a length of 43.5km. As it is not clear that these trajectories respect

the final constraints in figure 7.7(a), figure 7.7(b) represents the enlarged area around Xgoal

which shows that the vehicle makes a small turn at the end of the trajectory to arrive in

Xgoal while respecting the final constraints. According to the 100 Monte-Carlo simulations,

the mean iteration where the first solution is obtained is 152 and the mean path length

solution is 44.2km.

06/2015 Pawit Pharpatara

7.4. SIMULATION RESULTS 131

−10 −5 0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

18

20

radar
detection
zone

horizontal distance (km)

al
ti
tu
d
e
(k
m
)

(a) 400 iterations

29.2 29.4 29.6 29.8 30 30.2 30.4 30.6 30.8

4.4

4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

5.4

horizontal distance (km)

al
ti
tu
d
e
(k
m
)

(b) Enlarged image at Xgoal area

Figure 7.7: Simulation result for scenario 2

7.4.2 3D application

In order to test the algorithm framework, the scenario shown in figure 7.8 is considered

with the following configurations: the initial state xinit = (1km, 1km, 1km, π/2, 0)>,

06/2015 Pawit Pharpatara

132 7.4. SIMULATION RESULTS

0

20

40

60

80

100

0
20

40
60

80
100

0

20

40

Figure 7.8: Illustration of the scenario

Xgoal = Pgoal × Vgoal,

Pgoal = {ξrdv},

Vgoal = {(γ, χ)> ∈ R2 : (γ, χ) ∈ C(xrdv, 5
◦)},

(7.37)

with xrdv = (90km, 90km, 25km, 0,−π/8)>.

In figure 7.8, the arrows represent the orientations of the initial state xinit and of the

rendez-vous state

xrdv =
(
ξ>rdv, γrdv, χrdv

)>
.

Xobs is represented by the 3-dimensional shaded surfaces (in gradient color). The nature of

obstacles can be no-fly zones such as the area above and around cities which are represented

by cylinders and radar detection zones which are represented by a half sphere.

Here, 3 different algorithms are considered:

� RRT

� RRT*

06/2015 Pawit Pharpatara

7.4. SIMULATION RESULTS 133

� RRT* biased by APF with a given margin for the orientation of the randomly gener-

ated state xrand of 10◦ (φAPF = 10◦)

For all algorithms, a bias toward the goal consisting in generating xrand ∈ Xgoal with a

probability p = 0.1 is used.

In the following figures, the exploration tree is represented by the thick light grey solid

curve is the final solution found by the algorithms. Figure 7.9 shows a result obtained

after 1000 iterations by the RRT algorithm. It shows that the RRT algorithm is capable

of finding a solution for the problem. However, the obtained trajectory is clearly not the

shortest since some loops and turns can be observed. This is because the RRT algorithm

does not consider any optimal criteria. Moreover, no reconnection is done in order to

improve the path quality.

The other two algorithms are employed on the same scenario. Figure 7.10 shows one of

the best results obtained by the RRT* and by the RRT* biased by APF after 200 iterations.

As we can see from the results, the RRT* algorithm can find a better solution than the

RRT. In figure 7.10, the difference between the two RRT* algorithms is that the exploration

tree of the RRT* biased by APF (see figure 7.10(b)) tends to direct to the destination while

the other one extends in every direction (see figure 7.10(a)).

For in-depth analysis, for each algorithm, 100 Monte Carlo simulations within 200 it-

erations are simulated to obtain statistic results. The average iteration needed to obtain

the first solution, the average length of the first solution, and the average length of the

final solution are observed in table 7.1. According to the statistic results in table 7.1, the

RRT algorithm has the worst performance in all observed values, which is expected because

no optimal criterion and reconnection are considered. For the RRT* algorithm, the first

solution is obtained at mostly the same iteration as the RRT algorithm but with a better

result. Moreover, the optimality of the final solution is improved with respect to the number

of iterations. While the RRT* biased by APF is the fastest to find the first solution. On

top of that the solutions (both first and final solutions) are more optimal than the others.

The reason is that the heuristic using the APF helps to bias the search toward the feasible

solutions rather than blindly search the exploration space, i.e. increase the probability of

reconnection of the RRT*. Obviously, the RRT* can achieve the same final performance if

more iterations are given.

Monte-Carlo simulations of several scenarios which are not shown here have also been

simulated. For less complex scenarios, i.e. less obstacles, the results of the RRT* and

the RRT* biased with APF are mostly the same. Since there are few obstacles, the algo-

rithms converge rapidly because the probability of reconnection is already high. Thus, it is

reasonable that the performance does not improve as much in less complex environments.

06/2015 Pawit Pharpatara

134 7.5. CONCLUSIONS

0

20

40

60

80

100

020406080100
0

20

40

x (km)

y (km)

z
(k
m
)

Figure 7.9: Exploration trees and results after 1000 iterations of RRT algorithm: path
length 200km

Method
1st solution Average length of Average length of

(iteration) the 1st solution (km) the final solution (km)

RRT 85 241 239

RRT* 82 197 185

RRT* biased by APF 46 169 155

Table 7.1: Results of 100 Monte-Carlo simulations within 200 iterations

7.5 Conclusions

In this chapter, an efficient trajectory planning framework for aerial vehicles traveling in 2D

and 3D space while avoiding obstacles is presented. The algorithm is based on the RRT*

algorithm to find an optimal trajectory. In 2D application, the original RRT* algorithm is

used. It is shown that the RRT* algorithm is capable of finding a solution for the trajectory

planning of the aerial vehicle in vertical plane while avoiding obstacles. The solution keeps

on improving during the remaining time that results in finding a near-optimal solution. The

trajectories obtained by this framework is based on the simplified system model. Thus,

it is not totally executable by the real system. However, the simplified system is more

adaptable to the aerial vehicles model than the Dubins’ car model. This makes the obtained

trajectories be close to the real executable trajectory. Hence, they can be used as reference

06/2015 Pawit Pharpatara

7.5. CONCLUSIONS 135

0

20

40

60

80

100

020406080100
0

20

40

x (km)

y (km)

z
(k
m
)

(a) RRT*: path length 140.36km

0

20

40

60

80

100

020406080100
0

20

40

x (km)

y (km)

z
(k
m
)

(b) RRT* biased by APF: path length 139.89km

Figure 7.10: Exploration trees and results after 200 iterations

trajectories which facilitate the control using, for example, MPC algorithm. However, the

2D trajectory is not interesting for the aerial vehicle trajectory planning because the aerial

06/2015 Pawit Pharpatara

136 7.5. CONCLUSIONS

vehicles usually fly in 3D space.

In the 3D application, the APF is integrated in the RRT* algorithm to accelerate the

convergence speed to the optimal solution. The capability of this framework is demonstrated

on a missile application. The 3D Dubins’ paths in a heterogeneous environment are used

for the metric. As a result, the approach shows good performance in simulation results.

Compared to the RRT and the RRT* algorithms, better solutions can be found with much

less number of iterations due to the integration of the APF. Thus, real-time constraints will

be easier to verify if the algorithm is implemented on board the vehicle. The possibility of

implementing the algorithm on the real system will be discussed in perspectives and future

works in the following chapter.

Note that the researches on 2D application described in this chapter are published in

a paper presented in “The IEEE International Conference on Robotics and Automation”

under the title “Shortest path for aerial vehicles in heterogeneous environment using RRT*”

in 2015 and the researches on 3D path planning described in this chapter are submitted to

“The IEEE Transactions on Control Systems Technology” under the title “3D trajectory

planning of aerial vehicles using RRT*” in 2015. Moreover, the development of the 3D

Dubins’ paths is published in a paper presented in “The IFAC Workshop on Advances

Control and Navigation for Autonomous Aerospace Vehicles” under the title “3D-shortest

paths for a hypersonic glider in a heterogeneous environment.”

06/2015 Pawit Pharpatara

Conclusions and

perspectives

In the new era of autonomous aerial vehicles, trajectory planning module becomes an

important part of autonomous systems. The aim of the trajectory planning is to find a

feasible and optimal trajectory for autonomous vehicles. The obtained trajectory is used

as a decision for autonomous vehicles to execute missions by themselves. In the manuscript

of this PhD thesis, trajectory planning algorithms for aerial vehicles with constraints have

been researched. It is divided into two parts: trajectory planning using a realistic model

and path planning using a simplified model.

The aim of the trajectory planning by using a realistic model is to obtain directly the

executable trajectory. The sequence of control inputs is obtained along with the trajec-

tory. Thus, there is no need for path following algorithms to execute this trajectory. This

approach is ideal for any trajectory planning algorithms. The RRT algorithm is used as a

basis path planner. The principle of the RRT is to explore non-convex high-dimensional

space by growing the search tree toward unexplored areas. MATLAB is used to simulate

the results for analysis. Moreover, as author is interested in developing the methodology

that can solve the problems, no robustness of coded algorithms is analyzed. Moreover,

MATLAB is used to simulated the results which is not the real language used on the real

embedded system. Therefore, the computational effort is discussed in number of iterations

instead of the computation time.

First, the RRT algorithm is tested in a missile application to intercept a target at the

PIP. The Dubins’ paths are used to determine the distance between two vehicle states.

The classical guidance laws are used to expand the exploration tree toward unexplored

areas. The results show that the RRT algorithm is capable of finding a feasible solution

while the classical guidance laws have some difficulties in solving some scenarios. However,

137

138

no optimal criterion is considered in the algorithm and the computational effort can be

large. Therefore, a preprocessing of the exploration space is proposed in order to solve

these problems.

Two methods are proposed using APF or Dubins’ paths in a heterogeneous environ-

ment for preprocessing. However, it is very difficult to find a suitable APF function for a

nonholonomic system. Moreover, several tuning parameters are required. Thus, it is not

suitable for our situation. Yet, some studies in this topic is shown in Appendix C. There-

fore, the shortest Dubins’ path in a heterogeneous environment is used as a preprocessing

method. Since Dubins’ paths are considered optimal solutions, the exploration space is

then reduced and hypothetically contains optimal and suboptimal solutions. According to

the results of simulations, the quality of obtained trajectories improves a lot compared to

the results obtained using the RRT algorithm. The results are also obtained with less num-

ber of iterations. However, there is no theoretical proof that the preprocessed exploration

space contains the optimal solution except for the hypothesis. Moreover, the preprocessed

exploration space makes the RRT algorithm lose its charm as the method of exploration for

high-dimensional problems without a need of approximation. Therefore, another approach

is proposed.

Since the complete system model makes the problem difficult to prove the optimality of

the solution, the system model is simplified. Instead of finding a trajectory corresponding to

the complete system model, the trajectory planning algorithm focuses on finding a reference

trajectory using a simplified system model which is easy to follow by using path following

algorithms such as MPC. The optimal RRT or RRT* is used as a basis path planner to

find an optimal reference trajectory between two vehicle states. The RRT* is the RRT

algorithm with the asymptotic optimality property, i.e. almost-sure convergence to an

optimal solution, along with probabilistic completeness guarantees.

The RRT* algorithm is tested in hypersonic aerial vehicle applications such as intercep-

tor missiles. The Dubins’ paths in a heterogeneous environment are used to determine the

distance between two vehicle states in 2D plane. These Dubins’ paths are different from

the original Dubins’ paths that the maximum path curvature of the vehicle is no longer

constant and depends on position of the vehicle. These Dubins’ paths are also used as node

expansion method since they are calculated using the same simplified model used in the

RRT* algorithm. The simulation results are very satisfying since an optimal solution can

be obtained. However, it is not interesting enough to consider the 2D problem. Thus, 3D

Dubins’ paths in a heterogeneous environment are developed. Moreover, in order to increase

the convergence rate to the optimal solution, the integration of the APF is proposed.

The APF is used as a heuristic to guide randomly generated nodes toward the goal. The

06/2015 Pawit Pharpatara

139

APF is generated around the obstacles and tends to move toward the desired destination.

By combining the APF with the RRT*, the convergence rate of the RRT* algorithm to the

optimal solution increases while the RRT* algorithm solves the local minima problems of the

APF with the randomly generated states. In the hypersonic aerial vehicle application, the

3D Dubins’ paths in a heterogeneous environment are developed based on the assumption

that two vehicle states are sufficiently far from each other so that the shortest path is a

CSC path. Dubins’ paths are used as a metric and also as a node expansion method.

The simulation results show that the APF does not increase the convergence rate to the

optimal solution as much as in simple scenarios where there is no or less obstacles. However,

compared to the RRT and the RRT* algorithm, better solutions are found with less number

of iterations in a very complex environment where there are a lot of obstacles. Thus, real-

time constraints will be easier to verify; assuming that less number of iterations is equal to

less computation time, if the algorithm is implemented on board the vehicle.

The work in this thesis show promising results in finding a 3D optimal trajectory for

aerial vehicles in a heterogeneous environment. In future work, replanning ability of the

algorithm can be studied in order to implement the algorithm on board the vehicle. The

replanning ability of the algorithm is very important to missions in an unknown or dynamic

environment since it always searches for a solution. Anytime algorithm also has to be

considered in order to always have a solution during the mission. In the application, the

3D Dubins’ paths can also be studied with presence of constant wind. The realistic model

can also be considered using the Dubins’ paths in a heterogeneous environment as metric.

However, suitable control laws must be used. The only requirement of the suitable control

laws is that they must be capable of arriving at the desired state. At the same time,

the experimental test of the algorithms on the real UAVs can also be studied. Since the

framework is proposed in this thesis, the only thing required to implement this framework

on the real system is the real data of the vehicle to be used in the system model. This

study can be done by Phung Duc Kien, a postdoctoral researcher, at Onera.

06/2015 Pawit Pharpatara

Part V

Appendix

141

A Calculation of time-vary

gains for Kappa guidance

Note that the calculation in this chapter is reformulated based on the demonstration in

[Lin91] and is adapted to the system and notations in this thesis. Recall equation (3.9):

acom = a1 + a2,

with

a1 =
K1

tgo
(vpip − vm0),

a2 =
K2

t2go

(r− vctgo),

choosing ||vpip|| = ||vm0 ||, K1 and K2 are the gains.

Let δ be the predicted velocity angle error of the present and final vectors, and σ be the

heading error angle, R be the length of the LOS. To reduce the effect of an uncontrolled

axial acceleration command, let the first term of the equation (3.9) at the normal direction

to the velocity vector be (K1/tgo)v sin δ. The second term at the normal direction to the

velocity vector is reduced as −(K2/tgo)v sin δ/ cos δ. Moreover, R can be estimated as

R ≈ tgov cosσ. Thus, the normal acceleration in the body-fixed coordinates is written as

a =
K1

R
v2 sin δ cosσ − K2

R
v2 sinσ. (A.1)

The instantaneous curvature κ of the vehicle trajectory is defined as

κ =
dγ̂

ds
=

1

v

dγ̂

dt
=

1

v2
a, (A.2)

143

144 A.1. ANALYTIC OPTIMAL CONTROL IN VERTICAL PLANE

where γ̂ is the flight angle about some inertial reference and ds/dt = v. From equations

(A.1) and (A.2), the optimal curvature κ is

κ =
K1

R
sin δ cosσ − K2

R
sinσ. (A.3)

A.1 Analytic optimal control in vertical plane

In aeronautics, it is more convenient to use the guidance law in vehicle velocity coordinates

(equation (A.1)) than the one in inertial coordinates (equation (3.9)). The optimal guidance

gains K1 and K2 can be derived with a performance index

J = max vf, (A.4)

and boundary conditions δ(tf) = σ(tf) = 0. Maximizing the terminal speed in perfor-

mance index is equivalent to minimizing the total loss in the kinetic energy of the flight

path. Thus, it promises the extended range with more favorable endgame conditions which

is the goal of this optimal trajectory shaping.

In the vertical plane, the flight path angle γ is equal to γ̂ and δ, σ can be written as

δ(R) = γf − γ, (A.5)

σ(R) = γ + θ, (A.6)

where θ is the inertial LOS angle and

dR

dt
= −v cosσ, (A.7)

dθ

dt
=
v sinσ

R
. (A.8)

The state equations governing the states γ and σ and the control κ are derived from (A.2),

(A.6), and (A.7) and (A.8) as

dγ

dR
= −κ secσ, (A.9)

dσ

dR
= −κ secσ − tanσ

R
. (A.10)

In order to obtain the optimum guidance law ac(t), the optimal control theory needs

to be applied to find an optimal control law κ(R) respecting to the state equations (A.9)

and (A.10) and the boundary conditions δ(tf) = 0, σ(tf) = 0 and R(tf) = 0 such that the

missile terminal speed is maximized. Thus, we maximize the cost function

G =

∫ 0

R

dv

dR
dR, (A.11)

06/2015 Pawit Pharpatara

A.1. ANALYTIC OPTIMAL CONTROL IN VERTICAL PLANE 145

where G is a function of the state variables σ and γ, the control variable κ, and the

missile characteristics.

By neglecting mass change due to fuel consumption, the equations of motion can be

written as

v̇ =
T cosα−QSCD

m
− g sin γ, (A.12)

vγ̇ =
T sinα+QSCL

m
− g cos γ, (A.13)

where T = ||fthrust|| is the thrust of the missile, α is the angle of attack, Q = 1
2ρv

2 is

the dynamic pressure, CD and CL are the aerodynamic coefficients, g is the magnitude of

the gravity, and γ is the flight path angle of the vehicle.

By assuming cosα ≈ 1−α2/2, the derivation of G can be simplified to obtain an analytic

solution of κ. Thus, the equation (A.12) can be written as

dv

dR
=
QSCA − T +mg sin γ

mv cosσ
+
T/2−QSCA/2 +QSCNα

mv cosσ
α2. (A.14)

Moreover, by assuming sinα ≈ α using equations (A.2) and (A.13), the angle of attack

can be formulated as

α =
mv2(κ− g cos γ/v2)

T +QS(CNα − CA)
. (A.15)

By substituting (A.15) and (A.14) into (A.11), the cost function G is expressed as

G =
QSCA

mv
I −

∫ 0

R

T −mg sinα

mv cosσ
dR, (A.16)

where

I =

∫ 0

R

(
1 +

m2v4(κ− g cosα/v2)2(T/2 +QSCNα −QSCA/2)

QSCA(T +QS(CNα − CA))2 cosσ

)
dR. (A.17)

Moreover, if the effect of gravity is neglected, equation (A.16) can be rewritten as

G1 =
QSCA

mv
I1 −

∫ 0

R

T

mv cosσ
dR, (A.18)

where

I1 =

∫ 0

R

(
1 +

κ2

2F 2

)
secσdR and F 2 =

QSCA(T +QS(CNα − CA))2

2m2v4(T/2 +QSCNα −QSCA/2)
. (A.19)

A.1.1 Vehicle without propulsion

For the power-off stage of the vehicle, the second term of equation (A.18) does not exist.

Then, maximizing I1 is equivalent to maximizing G1, i.e. I1 becomes the new cost function.

The Hamiltonian is

H =

(
1 +

κ2

2F 2

)
secσ − λσ

tanσ

R
− (λσ + λγ)κ secσ, (A.20)

06/2015 Pawit Pharpatara

146 A.1. ANALYTIC OPTIMAL CONTROL IN VERTICAL PLANE

and the adjoint equations can be written as

dλσ
dR

= −∂H
∂σ

=

(
1 +

κ2

2F 2

)
secσ tanσ − λσ

R
sec2 σ − (λσ + λγ)κ secσ tanσ, (A.21)

dλγ
dR

= −∂H
∂γ

= 0 =⇒ λγ = C0, (A.22)

and
∂H

∂κ
=

κ

F 2
− (λσ + λγ) secσ = 0. (A.23)

Thus, the optimal variable κ is expressed as

κ = F 2(λσ + C0). (A.24)

Then, the equation (A.21) can be rewritten as

dλσ
dR

=
sec2 σ

F 2

[(
1 +

κ2

2

)
sinσ +

κ+ C

R

]
, C = −C0F

2. (A.25)

By substituting equation (A.25) in the derivative of equation (A.2) and , we have

dκ

dR
=

[(
1 +

κ2

2

)
sinσ +

κ+ C

R

]
sec2 σ,

dκ

dR
=

[(
1 +

κ2

2

)
sinσ +

κ+ C

R

]
(1 + sin2σ + ...).

(A.26)

Moreover, by neglecting higher-order terms of sinσ and κ2 sinσ of (A.26), we have

R
dκ

dR
+ F 2R sinσ − κ− C = 0. (A.27)

From equation (A.10), we have
d(R sinσ)

dR
= −Rκ. (A.28)

Then, the equation (A.28) is substituted into equation (A.27),

d2

dR2
(R sinσ)− 2

R

d(R sinσ)

dR
− F 2R sinσ + C = 0. (A.29)

The following solution is obtained by solving equation (A.29),

R sinσ =
C

F 2
+ C1e

FR(FR− 1) + C2e
−FR(FR+ 1). (A.30)

At the boundary conditions t = tf , Rf = 0, σf = 0,

C = (C1 + C2)F 2 (A.31)

Thus, equation (A.30) can be rewritten as

R sinσ = C1[eFR(FR− 1) + 1] + C2[e−FR(FR+ 1)− 1] (A.32)

06/2015 Pawit Pharpatara

A.1. ANALYTIC OPTIMAL CONTROL IN VERTICAL PLANE 147

By differentiating equation (A.32) using equation (A.28), we obtain

κ = −C1F
2eFR + C2F

2e−FR (A.33)

sin δ cosσ

F
= C1(1− eFR) + C2(1− e−FR) (A.34)

where

C1 =
(1− e−FR)R sinσ + [1− e−FR(FR+ 1)] sin δ cosσ/F

eFR(FR− 2)− e−FR(FR+ 2) + 4

C2 =
(eFR − 1)R sinσ + [eFR(FR− 1) + 1] sin δ cosσ/F

eFR(FR− 2)− e−FR(FR+ 2) + 4

Then, the optimal curvature κ can be reformulated in a form of equation (A.3)

κ =
K1

R
sin δ cosσ − K2

R
sinσ,

where

K1 =
2F 2R2 − FR(eFR − e−FR)

eFR(FR− 2)− e−FR(FR+ 2) + 4
,

K2 =
F 2R2(eFR + e−FR − 2)

eFR(FR− 2)− e−FR(FR+ 2) + 4
.

(A.35)

A.1.2 Vehicle with propulsion

In general, the cost function is

G1 =
QSCA − T

mv

(
1 +

κ2

2F

)
secσdR, F =

(QSCA − T)(T +QS(CNα − CA))2

2m2v4(T/2 +QSCNα −QSCA/2)
. (A.36)

For no thrust effects of (QSCA − T ≥ 0) with F ≥ 0, the optimal solutions are shown

previously. At the propulsive stage, T > QSCA so F < 0. Therefore, a new trajectory-

shaping coefficient F 2
2 needs to be defined as

F 2
2 = −F =

(T −QSCA)(T +QS(CNα − CA))2

2m2v4(T/2 +QSCNα −QSCA/2)
. (A.37)

Thus, the new cost function is defined as

G2 =
QSCA − T

mv

(
1− κ2

2F 2
2

)
secσdR. (A.38)

The Hamiltonian to maximizing equation (A.38) is

H2 =
QSCA − T

mv

(
1 +

κ2

2F 2

)
secσ − λσ

tanσ

R
− (λσ + λγ)κ secσ. (A.39)

Since the Hamiltonian is independent of the variable γ, we have λγ = C0. Thus, the optimal

variable κ is described below:

κ = − mv

QSCA − T
F 2

2 (λσ + C0). (A.40)

06/2015 Pawit Pharpatara

148 A.1. ANALYTIC OPTIMAL CONTROL IN VERTICAL PLANE

From equation (A.39) and (A.40), λσ for the unconstrained κ is given by

dλσ
dR

= −(QSCA − T) sec2 σ

mvF 2
2

[(
κ2

2
+ F 2

2

)
sinσ +

κ+ C

R

]
, C = − mv

QSCA − T
C0F

2
2

(A.41)

By substituting equation (A.41) into the derivative of equation (A.40), we have

dκ

dR
=

[(
κ2

2
+ F 2

2

)
sinσ +

κ+ C

R

]
sec2 σ,

dκ

dR
=

[(
κ2

2
+ F 2

2

)
sinσ +

κ+ C

R

]
(1 + sin2σ + ...).

(A.42)

Moreover, by neglecting higher-order terms of sinσ and κ2 sinσ of (A.42), we have

R
dκ

dR
− F 2

2R sinσ − κ− C = 0. (A.43)

Then, equation (A.28) is substituted into equation (A.43), we have

d2

dR2
(R sinσ)− 2

R

d(R sinσ)

dR
+ F 2

2R sinσ + C = 0. (A.44)

By solving equation (A.44), the following solution is obtained:

R sinσ = − C

F 2
2

+ C1[cos(F2R) + F2R sin(F2R)] + C2[sin(F2R)− F2R cos(F2R)]. (A.45)

At the boundary conditions t = tf , Rf = 0, σf = 0), we obtain

C1 =
C

F 2
2

. (A.46)

Thus, equation (A.45) can be written as

R sinσ = C1[cos(F2R) + F2R sin(F2R)− 1] + C2[sin(F2R)− F2R cos(F2R)] (A.47)

By differentiating equation (A.47) using equation (A.28), we obtain

κ = −C1F
2
2 cos(F2R)− C2F

2
2 sin(F2R), (A.48)

where

C1 =
F2[cos(F2R)− 1]R sinσ − [sin(F2R)− F2R cos(F2R)] sin δ cosσ/F2

F2[2− 2 cos(F2R)− F2R sin(F2R)]
,

C2 =
F2 sin(F2R)R sinσ + [cos(F2R) + F2R sin(F2R)− 1] sin δ cosσ/F2

F2[2− 2 cos(F2R)− F2R sin(F2R)]
.

Then, the optimal curvature κ can be reformulated in a form of equation (A.3)

κ =
K1

R
sin δ cosσ − K2

R
sinσ,

where

K1 =
F2R[sin(F2R)− F2R]

2− 2 cos(F2R)− F2R sin(F2R)
,

K2 =
F 2

2R
2[1− cos(F2R)]

2− 2 cos(F2R)− F2R sin(F2R)
.

(A.49)

06/2015 Pawit Pharpatara

B Dubins’ path calculation

Here, author shows the demonstration of how to find a closed form closed-form solutions of

Dubins’ paths. First, the aerial vehicle dynamics in the form of Dubins’ model is recalled:
x′ = cos θ,

z′ = sin θ,

θ′ = c.

(B.1)

where ′ is the derivative with respect to curvilinear abscissa s, θ is the vehicle orientation,

and c is the path curvature. The optimal control problem is to minimize the cost function

J =
∫
ds which is the shortest length. The Hamiltonian can be written as

H = 1 + λ1 cos(θ) + λ2 sin(θ) + λ3c. (B.2)

By using the minimum principal of Pontryagin, we know that in order to have the

optimal control input c∗, we have H(c∗) ≡ 0. Moreover, the adjoined equations of the

system must verify the following conditions:
λ′1 = −∂H

∂x
= 0,

λ′2 = −∂H
∂z

= 0,

λ′3 = −∂H
∂θ

= λ1 sin(θ)− λ2 cos(θ) = λ1z
′ − λ2x

′.

(B.3)

After system (B.3), λ1 and λ2 are constant and

λ3(θ) = λ3(0) + λ1z̃ − λ2x̃, (B.4)

149

150 B.1. TRAJECTORY CALCULATION

where x̃ = x− x0 and z̃ = z − z0.

Two types of solutions must be analyzed:

1. The solution where c is not constraint: in this case ∂H
∂c = λ3 = 0 and λ′3 = 0. z

is a linear function of x (cf. B.4). Thus, θ′ = c = 0. The trajectory is a segment (S).

2. The solution where cu is constraint: in this caseH(c∗) ≤ H(c) ∀c θ′ = c = u|c|max

with u = −sign(λ3). The trajectory is an arc (C).

Therefore, the solutions are in forms of the combinations of arcs (C) and segments (S).

Boissonnat and his team [BCL91] have demonstrated that the optimal path between two

states are of two types: CSC (arc-segment-arc) or CCC (arc-arc-arc). It is possible to

calculate the trajectories of these two types by using the simple geometric.

B.1 Trajectory calculation

The equations of the trajectory of CSC or CCC paths can be written geometrically as

combinations of two simple movements. Integrating the system (B.1), ∆x and ∆z depends

on θ and the length of curvature s depends on type of the trajectory.

The trajectory of CSC path is a combination of two circular movements, where c0 and

c1 are the curvature of the vehicle trajectory for the first and the second arcs, and a linear

movement. Thus,

∆x = xf − x0 =
u0(sin(θ1)− sin(θ0))

|c0|max
+ cos(θ1)(s2 − s1) +

u1(sin(θf)− sin(θ1))

|c1|max
, (B.5)

∆z = zf − z0 =
u0(cos(θ0)− cos(θ1))

|c0|max
+ sin(θ1)(s2 − s1) +

u1(cos(θ1)− cos(θf))

|c1|max
. (B.6)

Note that θ2 = θ1 for the linear movement and if ∆s = s2 − s1 = 0 and |c0|max = |c1|max,

The CSC path becomes a C path. However, the trajectory of CCC path is a combination

of three different circular movements. Thus,

∆x = xf − x0 =
u(sin(θ1)− sin(θ0))

|c0|max
− u(sin(θ2)− sin(θ1))

|c1|max
+
u(sin(θf)− sin(θ2))

|c2|max
, (B.7)

∆z = zf − z0 =
u(cos(θ0)− cos(θ1))

|c0|max
− u(cos(θ1)− cos(θ2))

|c1|max
+
u(cos(θ2)− cos(θf))

|c2|max
.

(B.8)

θ can also be written as a function of s.

θi = θi−1 + ui−1
(si − si−1)

|ci|max
. (B.9)

06/2015 Pawit Pharpatara

B.2. CSC PATHS 151

The trajectories can be calculated by using these equations with known values of the

following variables: angle at the end of each movement θi and intermediate length at the

end of each movement si. The optimal control theory is applied to find these values.

To solve this problem, all possible case must be analysed u = {−1, 1}. There are 4

possible cases for CSC paths (u0 = {−1, 1} and u1 = {−1, 1}) and 2 possible cases for CCC

paths (u = {−1, 1}).

B.2 CSC paths

The CSC path is completely determined by θ1 of a segment phase. Therefore, the first step

is to determine the value of this θ1.

B.2.1 Determination of θ1

For a segment phase, we have λ3(θ1) = 0. Thus,

z̃ =
−λ3(0)

λ1
+
λ2

λ1
x̃ if λ1 6= 0, (B.10)

where z̃ = z − z0 et x̃ = x− x0.

The equation B.10 is in a form of linear function: z̃ = a+ bx̃. Thus,

λ2

λ1
= tan(θ) if λ1 6= 0, (B.11)

θ =
π

2
or

3π

2
if not, (B.12)

where tan(θ) is a slope of a segment.

λ can also be written as a function of θ.

λ1 = k cos(θ), (B.13)

λ2 = k sin(θ), (B.14)

where k is a constant.

By substituting (B.13) and (B.14) in (B.2 ≡ 0) during S phase (θ = θ1 and λ3 = 0), we

have

0 ≡ 1 + k cos(θ1 − θ1)→ k = −1. (B.15)

Substituting also (B.13) and (B.14) in (B.2 ≡ 0) during C phase (ci = ui|ci|max), we

have H = 1− cos(θ − θ1) + uiλ3|ci|max ≡ 0. Thus,

λ3(θf) =
−u1(1− cos(θf − θ1))

|c1|max
, (B.16)

λ3(θ0) =
−u0(1− cos(θ1 − θ0))

|c0|max
. (B.17)

06/2015 Pawit Pharpatara

152 B.2. CSC PATHS

Equations (B.13) and (B.14) are substituted in λ3(θf) = λ3(θ0)−cos(θ1)∆z+sin(θ1)∆x.

Thus,

0 =
u1(1− cos(θ1 − θf))

|c1|max
− u0(1− cos(θ1 − θ0))

|c0|max
+ (sin(θ1)∆x− cos(θ1)∆z). (B.18)

Then,

|c1|maxu0− |c0|maxu1 = cos(θ1)(−|c0|max|c1|max∆z+ u0|c1|max cos(θ0)− u1|c0|max cos(θf))

+ sin(θ1)(|c0|max|c1|max∆x+ u0|c1|max sin(θ0)− u1|c0|max sin(θf)). (B.19)

Equation (B.19) can be reformulated as

A =
√
A2

1 +A2
2, (B.20)

A1 = −u1|c0|max cos(θf) + u0|c1|max cos(θ0)− |c0|max|c1|max∆z = A cos(α), (B.21)

A2 = −u1|c0|max sin(θf) + u0|c1|max sin(θ0) + |c0|max|c1|max∆x = A sin(α). (B.22)

Thus,

α = arctan

(
A2

A1

)
ifA1 6= 0, (B.23)

α =
π

2
or

3π

2
if not. (B.24)

We can also write

|c1|maxu0 − |c0|maxu1 = A1 cos(θ1) +A2 sin(θ1) = A sin(θ1 − α). (B.25)

Thus,

θ1 = α+ arccos

(
|c1|maxu0 − |c0|maxu1

A

)
if A 6= 0. (B.26)

Equation (B.26) has at least one solution if
∣∣∣ |c1|maxu0−|c0|maxu1

A

∣∣∣ < 1 if A 6= 0. If A = 0,

it means that |c1|maxu0 = |c0|maxu1 after the equation (B.25). For this condition to be

true, u0 = u1 and |c1|max = |c0|max = |c|max. While substituting this condition in equations

(B.21) and (B.22), we have

|c|max∆z = cos(θ0)− cos(θf), (B.27)

|c|max∆x = sin(θf)− sin(θ0). (B.28)

Equations B.27 and B.28 are substituted in equation B.5 and B.6. Thus,

0 = cos(θ1)∆s,

0 = sin(θ1)∆s.

06/2015 Pawit Pharpatara

B.3. CCC PATHS 153

That means ∆s = 0 or cos(θ1) = sin(θ1) = 0. However, cos and sin cannot be equal

to zero at the same time. Thus, ∆s = 0. With u0 = u1, |c1|max = |c0|max = |c|max and

∆s = 0, the trajectory is in a form of a arc (C) which is a degenerated form of CSC.

θ1 = α+ arccos

(
|c1|maxu0 − |c0|maxu1

A

)
if

∣∣∣∣ |c1|maxu0 − |c0|maxu1

A

∣∣∣∣ < 1 et A 6= 0, (B.29)

degenerated form (C) if not. (B.30)

B.2.2 Determination of intermediate length si

θ1 is Substituted in (B.9). Thus,

s1 =
(θ1 − θ0)

u0|c0|max
, (B.31)

s2f =
(θf − θ1)

u1|c1|max
, (B.32)

where s1 is a length of curvature of the first circular movement and s2f is a length of

curvature of the second circular movement. Sincethe lengths of both circular movement

(C) are known, the length of the linear movement (S) can be calculated by the following

equations.

x12 = ∆x− u1

|c1|max
(sin(θf)− sin(θ1))− u0

|c0|max
(sin(θ1)− sin(θ0)), (B.33)

z12 = ∆z − u1

|c1|max
(cos(θ1)− cos(θf))− u0

|c0|max
(cos(θ0)− cos(θ1)). (B.34)

Thus,

s12 =
z12

sin(θ1)
if cos(θ1) → 0, (B.35)

s12 =
x12

cos(θ1)
if not, (B.36)

and

s2 = s1 + s12, (B.37)

sf = s1 + s12 + s2f , (B.38)

where s2 is a summary length of the first two phases and sf is a total length of the trajectory.

B.3 CCC paths

The CCC paths do not only depend on θ1 but also θ2. These equations can be developed

in the same way as the CSC paths.

06/2015 Pawit Pharpatara

154 B.3. CCC PATHS

B.3.1 Determination of θ1 and θ2

Equations (B.7) and (B.8) can be reformulated as

A =
√
A2

1 +A2
2,

A1 =
u∆x|c0|max|c1|max|c2|max − |c0|max|c1|max sin(θf) + |c1|max|c2|max sin(θ0)

|c0|max|c2|max + |c0|max|c1|max
= A sin(α),

A2 =
u∆z|c0|max|c1|max|c2|max − |c1|max|c2|max cos(θ0) + |c0|max|c1|max cos(θf)

|c0|max|c2|max + |c0|max|c1|max
= A cos(α),

B1 = C sin(θ1)−A1,

B2 = C cos(θ1) +A2,

where C = |c1|max|c2|max+|c0|max|c2|max

|c0|max|c2|max+|c0|max|c1|max
> 0.

With the help of trigonometric, the equations (B.7) and (B.8) can be rewritten as

sin2(θ2) = B2
1 , (B.39)

cos2(θ2) = B2
2 . (B.40)

θ2 can be found by verifying the conditions of B1 and B2:

� if B1 < 1: θ2 = arcsin(B1)

� if B2 < 1: θ2 = arccos(B1)

� if B2 > 1 and B2 > 1: no solution

Then, α can be found by solving A1 and A2.

α = arctan

(
A1

A2

)
ifA2 6= 0, (B.41)

α =
π

2
or

3π

2
if not. (B.42)

Equations (B.39) and (B.40) can also be rewritten as

1 = (C sin(θ1)−A1)2 + (C cos(θ1) +A2)2,

= C2 − 2A1C sin(θ1) + 2A2C cos(θ1) +A2
1 +A2

2,

1− C2 −A2

2AC
= cos(α) cos(θ1)− sin(α) sin(θ1),

= cos(θ1 + α).

Thus,

θ1 = arccos

(
1− C2 −A2

2AC

)
− α if 0 < |1− C2 −A2| < |2AC| and |A| 6= 0, (B.43)

no solution if not. (B.44)

06/2015 Pawit Pharpatara

B.4. CS PATHS 155

B.3.2 Determination of intermediate length si

θ1 and θ2 are substituted in equation (B.9). Thus,

s1 = u
θ1 − θ0

|c0|max
, (B.45)

s12 = −uθ2 − θ1

|c1|max
, (B.46)

s2f = u
θf − θ2

|c2|max
. (B.47)

Thus,

s2 = s1 + s12 = u(|c0|max(θ1 − θ0)− |c1|max(θ2 − θ1)), (B.48)

sf = s2 + s2f = u(|c0|max(θ1 − θ0)− |c1|max(θ2 − θ1) + |c2|max(θf − θ2)). (B.49)

B.4 CS paths

B.4.1 Determination of θ1

All the required conditions are the same as the calculation of the CSC paths except that

λ3(θf) = 0 because there is no change of θ after the second phase (linear movement). Thus,

we can simplify the equation (B.19) as

−u0(1− cos(θ1 − θ0)) + |c0|max(sin(θ1)∆x− cos(θ1)∆z) = 0. (B.50)

Suppose that

A =
√
A2

1 +A2
2, (B.51)

A1 = u0 cos(θ0)− |c0|max∆z = A cos(α), (B.52)

A2 = u0 sin(θ0) + |c0|max∆x = A sin(α). (B.53)

Then,

α = arctan

(
A2

A1

)
ifA1 6= 0, (B.54)

α =
π

2
or

3π

2
if not. (B.55)

Equation (B.50) can also be written as

u0 = A1 cos(θ1) +A2 sin(θ1). (B.56)

06/2015 Pawit Pharpatara

156 B.4. CS PATHS

Thus, θ1 can be deduced as

θ1 = α+ arccos
(u0

A

)
if
∣∣∣u0

A

∣∣∣ < 1 andA 6= 0, (B.57)

no movement ifA = 0, (B.58)

no solution if
∣∣∣u0

A

∣∣∣ > 1. (B.59)

The justification for the equation (B.58) is that, if A = 0→ A1 = A2 = 0, then u0 = 0

according to the equation (B.56) and ∆z = ∆x = 0 after the equations (B.52) and (B.53).

There is no movement as a consequence.

B.4.2 Determination of intermediate length si

θ1 is substituted in (B.9). Thus,

s1 = u0
θ1 − θ0

|c0|max
, (B.60)

where s1 is a length between of curvature of the first and only circular movement. Since we

know the length of the circular movement (C), the length of the linear movement (S) can

be calculated by the following equations.

x12 = ∆x− u0

|c0|max
(sin(θ1)− sin(θ0)), (B.61)

z12 = ∆z − u0

|c0|max
(cos(θ0)− cos(θ1)). (B.62)

Thus,

s12 =
z12

sin(θ1)
if cos(θ1)→ 0, (B.63)

s12 =
x12

cos(θ1)
if not. (B.64)

and

s2 = s1 + s12. (B.65)

where s2 is a total length of the trajectory.

06/2015 Pawit Pharpatara

C Usage of APF as a

preprocessing method of

exploration space

Artificial potential field is one of the interesting path planning algorithms. It is a reactive

method that guides the vehicle toward the destination while avoiding obstacles. By assum-

ing that the APF can find trajectories to a destination. Here, author explain the usage of

the APF as a preprocessing method of exploration space and how to calculate the artificial

potential functions adapted to the vehicle system.

C.1 Brief description of APF

The idea of the APF is taken from nature. For instance, a charged particle navigating a

magnetic field, or a small ball rolling in a hill. The idea is that depending on the strength

of the field, or the slope of the hill, the particle, or the ball can arrive to the source of the

field, the magnet, or the valley. Based on this idea, the APF is first introduced [Kha85].

In APF approach, the same effect as in nature can be simulated by creating an APF

that will attract the vehicle to the goal. This field is called an attractive filed ϕgoal(x).

The potential field is defined across the entire free space Xfree, and in each time step, the

potential field is simulated at the vehicle position, and the induced force by this field is

calculated. Then, the vehicle moves according to this force.

In environment cluttered by obstacles, another behavior can also be defined. The sim-

plest way to avoid the obstacles is to generated a repulsive field ϕobs(x) around it. Then,

if the vehicle approaches the obstacle, a repulsive force will act on it. This results in the

vehicle is pushed away from the obstacle. Moreover, the initial position of the vehicle can

157

158 C.2. PREPROCESSING OF EXPLORATION SPACE USING THE APF

act as an obstacle since the vehicle has to move away from it. Thus, a potential field ϕinit(x)

is created.

These two behaviors, seeking and avoiding specific locations, can be combined. An

particular artificial potential field ϕart(x) can be obtained as

ϕart(x) = ϕgoal(x) + Σϕobs(x). (C.1)

In case of no obstacle, we obtain

ϕart(x) = ϕgoal(x) + ϕinit(x). (C.2)

In the next section, the preprocessing of exploration space using the APF based on the

equation (C.2) is presented.

C.2 Preprocessing of exploration space using the APF

The main problem of this method is how to choose and define a type and a nature of

an artificial potential field while respecting the system dynamics and constraints. In this

section, some mathematical forms of the APF are analyzed.

C.2.1 APF in quadratic form ϕi = Kir
n
i

This form of potential field is mostly used in mobile robotics. It is often used for both

attractive field and repulsive field around a point (ex: destination, etc.) or round object

(ex: obstacle).

Suppose that the relation between ri and (xi, zi) can be written as

x− xi = ri cos θi

z − zi = ri sin θi
(C.3)

where θi is the angle between the axis x and ri. Thus, we have

ϕx =
∂

∂x
ϕ = nKi cos θir

n−1
i

ϕz =
∂

∂z
ϕ = nKi sin θir

n−1
i

(C.4)

If the equation (C.2) is considered, then, we have the ratio between the gain of the

attractive field K2 and the gain of the repulsive field K1 as

β =
K2

K1
=
rfκ0

2

1

sin(θ0 + θf)
. (C.5)

This form of potential field can be divided into 3 cases:

06/2015 Pawit Pharpatara

C.2. PREPROCESSING OF EXPLORATION SPACE USING THE APF 159

1. n = 0: it leads to no force due to the potential field at all ie. ∂
∂xi
ϕ = 0. Thus, this

case is not interested here.

2. n > 0: we can clearly see that the equations ((C.4)) depends on rn−1
i . The force due

to the potential field is constant if n = 1 and increases with respect to ri if n > 1.

Moreover, for n ∈ (0, 1), the force decreases with respect to ri.

3. n < 0: in this case, the force due to the potential field decreases with respect to ri.

By considering the nature of vehicle movements, case 3 is the most interesting since

the forces are strong near the center of potential fields and weak far from it. Thus, the

potential field in the exploration space can be expressed as

ϕ = K1r
n
0 −K2r

n
f , for n < 0 (C.6)

where r0 is the distance from the initial origin (x0, z0) and rf is the distance from the goal

origin (xf , zf).

C.2.1.1 Calculation of the ratio n = K2/K1

By using equation (C.6) and (C.3), the partial derivatives of ϕ can be express as

ϕx =
∂

∂x
ϕ = nK1 cos θ0r

n−1
0 − nK2 cos θfr

n−1
f , (C.7)

ϕz =
∂

∂z
ϕ = nK1 sin θ0r

n−1
0 − nK2 sin θfr

n−1
f , (C.8)

ϕxx =
∂

∂x
ϕx = nK1r

n−2
0 (1 + (n− 2) cos2 θ0)− nK2r

n−2
f (1 + (n− 2) cos2 θf), (C.9)

ϕzz =
∂

∂z
ϕz = nK1r

n−2
0 (1 + (n− 2) sin2 θ0)− nK2r

n−2
f (1 + (n− 2) sin2 θf), (C.10)

ϕxz =
∂

∂x
ϕz = n(n− 2)K1 cos θ0 sin θ0r

n−2
0 − n(n− 2)K2 cos θf sin θfr

n−2
f = ϕzx. (C.11)

The stream line curvature of this potential function can be found by using the formu-

lation

κ =
(ϕ2

x − ϕ2
z)ϕxz + ϕxϕz(ϕzz − ϕxx)

(ϕ2
x + ϕ2

z)
3/2

. (C.12)

Thus,

κ =
Ar2n−3

0 rn−1
f +Br2n−2

0 rn−2
f + C2rn−2

0 r2n−2
f +Drn−1

0 r2n−3
f

n3(K2
1r

2n−2
0 − 2K1K2 cos(θ0 + θf)rn−1

0 rn−1
f +K2

2r
2n−2
f)3/2

, (C.13)

with
A = n3(n− 2)K2

1K2(cos(2θ0) sin(θ0 + θf)− sin(2θ0) cos(θ0 − θf)),

B =
n3(n− 2)K2

1K2

2
sin(2(θ0 − θf)),

C =
n3(n− 2)K1K

2
2

2
sin(2(θ0 − θf)),

D = n3(n− 2)K1K
2
2 (sin(2θf) cos(θ0 − θf)− cos(2θf) sin(θ0 + θf)).

06/2015 Pawit Pharpatara

160 C.2. PREPROCESSING OF EXPLORATION SPACE USING THE APF

With equation (C.13), we can deduce that κ = 0 if r0 = 0 or rf = 0. Its means that the

value of β cannot be reduced at the center of potential fields. Thus, this type of potential

field is not adaptable to our problem where the curvature is definitely known at r0 = 0 and

rf = 0. An APF in another mathematical form is then proposed.

C.2.2 APF in logarithm form ϕi = Ki ln ri

C.2.2.1 Calculation of the ratio β = K2/K1

A potential field in the exploration space can be expressed by

ϕ = K1 ln r0 −K2 ln rf , (C.14)

where K1, K2 are gains of potential fields, r0 is the distance from the origin (x0, z0) and rf

is the distance from the origin (xf , zf).

By using equation (C.14) the partial derivatives of ϕ can be express as

ϕx =
∂

∂x
ϕ =

K1 cos θ0

r0
−
K2 cos θf

rf
(C.15)

ϕz =
∂

∂z
ϕ =

K1 sin θ0

r0
−
K2 sin θf

rf
(C.16)

ϕxx =
∂

∂x
ϕx =

K1

r2
0

(1− 2 cos2 θ0)− K2

r2
f

(1− 2 cos2 θf) (C.17)

ϕzz =
∂

∂z
ϕz =

K1

r2
0

(1− 2 sin2 θ0)− K2

r2
f

(1− 2 sin2 θf) (C.18)

ϕxz =
∂

∂x
ϕz = −K1 sin(2θ0)

r2
0

+
K2 sin(2θf)

r2
f

= ϕzx (C.19)

By using equation (C.12), the stream line curvature of this potential function is

κ =
Ar−1

f r−3
0 +Br−2

f r−2
0 + Cr−3

f r−1
0

(K12r−2
0 − 2K1K2 cos(θ0 − θf)r−1

f r−1
0 +K2

2r
−2
f)3/2

, (C.20)

with

A = 2K2
1K2 sin(θ0 − θf),

B = K1K2(K1 +K2) sin(2θf − 2θ0),

C = 2K1K
2
2 sin(θ0 − θf).

The path curvature is known at the origin (xf , zf), κ = κf ,where rf = 0, θ0 ≈
arctan((zf − zi)/(xf − xi)) and θf is the decided angle of attack at (xf , zf). Therefore,

(C.20) can be rewritten as

κf =
A

K3
2

=
2K1

r0K2
sin(θ0 − θf). (C.21)

06/2015 Pawit Pharpatara

C.2. PREPROCESSING OF EXPLORATION SPACE USING THE APF 161

-10 000 0 10 000 20 000 30 000
0

10 000

20 000

30 000

40 000

x

y

Figure C.1: Potential field respecting the decided curvature κf at (xf , zf)

Thus, the ratio β = K2/K1 can be found as

β =
K2

K1
=

2

r0κf
sin(θ0 − θf). (C.22)

Figure C.1 shows the potential field which respects the decided curvature κf = 4.4742×
10−5 at (xf , zf) = (12000, 25000). The numerical value of n given by (C.20) is equal to

1.862.

The same calculation can be applied at the other origin (x0, z0), where r0 = 0, θ0 ≈
arctan((zi − zf)/(xi − xf)) and θ0 is the angle of attack at (x0, z0). We have

κ0 =
C

K3
1

=
2K2

rfK1
sin(θ0 − θf). (C.23)

Thus,

β =
K2

K1
=
rfκ0

2

1

sin(θ0 + θf)
(C.24)

Figure C.2 shows the potential field which respects the decided curvature κ0 = 3.1225×
10−4 at (x0, z0) = (0, 12705). The numerical value of n given by (C.20) is equal to 2.3627.

C.2.2.2 Trajectory calculation

Since all the unknown variables of the potential function are found. Equations (C.15) and

(C.16) can be rewritten in (x, z) coordinate as:

06/2015 Pawit Pharpatara

162 C.2. PREPROCESSING OF EXPLORATION SPACE USING THE APF

-10 000 0 10 000 20 000 30 000
0

10 000

20 000

30 000

40 000

x

y

Figure C.2: Potential field respecting the decided curvature κ0 at (x0, z0)

ϕx =
2K1(x− x0)

(x− x0)2 + (z − z0)2
−

2nK1(x− xf)

(x− xf)2 + (z − zf)2
, (C.25)

ϕz =
2K1(z − z0)

(x− x0)2 + (z − z0)2
−

2nK1(z − zf)

(x− xf)2 + (z − zf)2
, (C.26)

where (ϕx, ϕz) represents the potential forces in (x, z) axis due to the potential function ϕ.

Thus, we have

dy

dx
=
ϕz
ϕx

=
(z − z0)((x− xf)2 + (z − zf)2)− n(z − zf)((x− x0)2 + (z − z0)2)

(x− x0)((x− xf)2 + (z − zf)2)− n(x− xf)((x− x0)2 + (z − z0)2)
. (C.27)

By solving (C.27), we have

n arctan((z − zf)/(x− xf)) + arctan((x− x0)/(z − z0)) = Constant = C1. (C.28)

C1 can be found by replacing (x, z) by a point where we want to find a pass-by-point

trajectory.

C.2.2.3 Idea for implementation

The potential fields found in the previous section respect only the path curvature at one

origin of the potential field (either (x0, z0) or (xf , zf). In order to respect the curvatures at

06/2015 Pawit Pharpatara

C.2. PREPROCESSING OF EXPLORATION SPACE USING THE APF 163

both origins, the inverse distance weighting is used. Thus, the total APF can be obtained

as

ϕ(x, z) =
ϕ0(r0)rf + ϕf (rf)r0

r0 + rf
,

where ri is the distance between (x, z) and (xi, zi), ϕi(r) is the potential field which respects

the curvature at the origin (xi, zi) at distance r.

Note that this method requires a lot of parameter tuning. Moreover, there is no proof

that the trajectory obtained by using this method respect all the path curvature along the

trajectory since it is only proved that the path curvature at the origins are respected.

06/2015 Pawit Pharpatara

D Dubins’ curves in a

heterogeneous environment

The Dubins’ curves are originally calculated by supposing that the curvature is constant

along the curve; however, that is not the case of the missile who flies in the 2D vertical

plane. The system considered is the same as the Dubins’ car except that the curvature

decreases exponentially with altitude. This is due to the fact that the air density decreases

exponentially with altitude. In [HP13], it was shown that, analogously to Dubins’ paths

[Dub57][BCL91], shortest paths are a combination of curves of maximum curvature C and

straight lines S, i.e. CSC or CCC path. In [SL01], it is proven that CSC path and not CCC

path is the shortest path if two states are sufficiently far from each other. Thus, only CSC

paths are considered, here, under the assumption that two vehicle states are sufficiently far

from each other. This appendix is a theoretical recall of [HP13].

D.1 Dubins-like model

The calculation of the Dubins’ paths is based on the simplified dynamics of aerial vehicles.

It is modeled as:

x′ =
dx

ds
= cos θ,

z′ =
dz

ds
= sin θ,

θ′ =
dθ

ds
= c(z)u where u ∈ [−1, 1],

(D.1)

where θ is the orientation of the vehicle, c(z) is the maximum path curvature depending on

altitude z, and u is the control input.

165

166 D.2. COMPUTATION OF THE CURVE C IN A PLANE

Assuming that the vehicle velocity v is high enough in order to neglect the gravitational

force during the flight. Considering a non-propulsive stage of the vehicle, the lift force fL

is the only aerodynamic force who contributes to maneuver the missile. It can be written

as follow:

fL =
1

2
ρ(z)SCLv

2

where ρ(z) is the air density depending on the current altitude z, S is the area of reference

and CL is the lift coefficient depending on the angle of attack. The maximum path curvature

is characterized by lift force, i.e. c(z) = 1
2mρ(z)SCLmax . The air density can be expressed

by:

ρ(z) = ρ0e
−z/zr . (D.2)

where ρ0 is the air density at the standard atmosphere at sea level and zr is the reference

altitude. Then, the maximum path curvature can be expressed as:

c(z) = c0e
−z/zr . (D.3)

where c0 is the maximum path curvature at the standard atmosphere at sea level.

D.2 Computation of the curve C in a plane

In order to derive curves of maximum curvature, the magnitude of the control input u in

system (D.1) is set to a constant 1 or -1. By differentiating θ′ with respect to s, we obtain

θ′′ = −cosφ

zr
θ′ sin θ. (D.4)

Define ζ = tan
(
θ
2

)
. After some straightforward trigonometry, we have

cos2 θ =
1− ζ2

1 + ζ2
, (D.5)

θ′ = 2
ζ ′

1 + ζ2
. (D.6)

By integrating equation (D.4) and applying some trigonometric techniques, we have

θ′ =
cosφ

zr

(
zr

cosφ
θ′0 − cos θ0 + 1− 2 cos2

(
θ

2

))
. (D.7)

With equations (D.5), (D.6) and (D.7), we obtain

ζ ′ = A+Bζ2,

A =
cosφ

2zr

(
zr

cosφ
θ′0 − cos θ0 + 1

)
,

B = A− cosφ

zr
.

(D.8)

06/2015 Pawit Pharpatara

D.2. COMPUTATION OF THE CURVE C IN A PLANE 167

−20 −15 −10 −5 0 5 10 15 20
0

5

10

15

20

25

30

35

40

xp (km)

z p
(k
m
)

C1

C2

Figure D.1: Examples of arcs of maximum curvature

According to system (D.8), there are four types of curves depending on the values of A

and B:

� C1 curve if AB > 0,

ζ1(s) =

√
A

B
tan

[
A

√
B

A
s+ arctan

(√
B

A
ζ0

)]
. (D.9)

The C1 curve is illustrated in figure D.1.

� C2 curve if AB < 0,

ζ2(s) =

√∣∣∣∣AB
∣∣∣∣ tanh

[
A

√∣∣∣∣BA
∣∣∣∣s+ arctanh

(√∣∣∣∣BA
∣∣∣∣ζ0

)]
. (D.10)

The C2 curve is also illustrated in figure D.1. This curve has oblique asymptotes, i.e.

ζ2 ∈
[
−
√∣∣A

B

∣∣,√∣∣AB ∣∣]. This condition must be verified for both ζ0 and ζ2(s).

� C3 curve if A = 0,
1

ζ3(s)
=

1

ζ0
−Bs. (D.11)

� C4 curve if B = 0,

ζ4(s) = ζ0 +As. (D.12)

06/2015 Pawit Pharpatara

168 D.3. CSC PATH GENERATION

−20 −15 −10 −5 0 5 10 15
10

12

14

16

18

20

22

24

26

28

x (km)

al
ti
tu
d
e
(k
m
)

x0

xf

ℓ

Figure D.2: Dubins’ path in a heterogeneous environment

Remark 8 C3 and C4 curves are the extremal cases of the first two curves. They are rarely

obtained in reality. Thus, no illustration of these curves is presented in this paper.

θ, x, and z can be derived as functions of ζ(s) as follows:
θp(ζ) = 2 arctan ζ + k(s)π,

x(ζ) =
zr

cosφ
(θ(ζ)− θ0)− zr

cosφ
(A+B)s,

z(ζ) = − zr
cosφ

ln

(
1 + ζ2

0

A+Bζ2
0

A+Bζ2

1 + ζ2

)
,

(D.13)

where k(s) is an integer depending on the distance s. For C1 curve, k(s) is calculated as

k(s) =

⌊
sA

√
B

A
/

(
u
π

2
− arctan

(√
B

A
ζ0

))⌋
, u = ±1 (D.14)

where b�c is a floor division. Otherwise, k(s) = 0 for C2 curve. However, for the optimal

solution k(s) value is never greater than 1, i.e. k(s) > 1 means that the vehicle starts to

turn in loop.

D.3 CSC path generation

Once two curves have been found, a solver is used to find a line segment ` connecting both

curves (see figure D.2) by verifying the objective function F (`) = `− (ξ2 − ξ1) = 0.

06/2015 Pawit Pharpatara

D.3. CSC PATH GENERATION 169

Remark 9 With this methodology, the conditions `×v1 = 0 and `×v2 = 0 are automat-

ically verified.

There can exist four types of CSC paths where u = ±1 for both circular arcs. Figure

D.2 shows the case that there exists only one of the four CSC paths. The solution can be

found in the same way as the demonstration.

06/2015 Pawit Pharpatara

E Estimation of attacking

velocity

Here, velocity estimation along the Dubins’ paths is described. The Dubins’ paths are

combination of arcs of circle (C) and line segments (S). The velocity will be estimated step

by step according to path type, i.e. C or S.

The dynamic model along the principal axis of the movement ev
1 is described below

v̇ =
T cosα

m(t)
− 1

2m(t)
ρ(z)SCD(α)v2 (E.1)

vγ̇ =
T sinα

m(t)
+

1

2m(t)
ρ(z)SCL(α)v2 (E.2)

where T = ||fthrust|| is the thrust force, v is the vehicle speed, m(t) = m0 − qt is the

time-varying mass with the initial mass m0 and the mass flow q, ρ is the air density which

depends on the altitude h, S is the area of reference, and CD and CL are the aerodynamic

coefficients which depend on the angle of attack α.

The estimation of the attacking velocity is done while neglecting the gravity. Since the

vehicle can activate the propulsion or deactivate the propulsion, the estimation is calculated

separately according to its propulsion stage for each type of trajectories.

171

172 E.1. ESTIMATION OF A LINEAR TRAJECTORY

E.1 Estimation of a linear trajectory

E.1.1 Non-propulsive stage

Since there is no propulsive force, the vehicle mass is constant. The, equation (E.1) can be

rewritten as

v̇ = − 1

2m
ρ(z)SCD(α)v2. (E.3)

Then, the estimation of the velocity is calculated based on the following hypothesis:

Hypothesis 3 The drag coefficient CD = CD(α0) is constant along the linear trajectory

with α = α0 = 0 because there is no control input.

Moreover, the simplified environment model is used:

ρ(z) = ρ0e
−z/zr , (E.4)

where ρ0 is the air density at the sea level and zr is the reference altitude.

By developing equation (E.3), we have

−
∫ vf

v0

1

v
dv =

∫ tf

t0

1

2m
ρ0e
−z/zrSvCDvdt,

=

∫ sf

s0

1

2m
ρ0e
−z/zrSvCDds,

(E.5)

where ds = vdt is a curvature length, in this case, a linear curvature. Thus, the relation

between h and s can be written as follow:

sin θds = dz, (E.6)

where θ is the pitch angle.

By substituting (E.6) in (E.5), we have

−
∫ vf

v0

1

v
dv =

1

2m sin θ
SvCD

∫ zf

z0

ρ0e
−z/zrdz. (E.7)

Thus,

vf = v0e
A(z), (E.8)

where A(z) = zrρ0SCD
2m sin θ (e−z0/zr − e−zf/zr) for sin θ 6= 0. If sin θ = 0, the equation (E.5) is

integrated directly with ρ = ρcst = ρ0e
hi/H = constant. Thus,

vf = v0e
− 1

2m
ρcstSCD∆s if sin θ = 0 (E.9)

where ∆s is a length of curvature.

06/2015 Pawit Pharpatara

E.2. ESTIMATION OF A CIRCULAR TRAJECTORY 173

E.1.2 Propulsion phase

In this case, the dynamics of the velocity is expressed as

v̇ =
T

m(t)
− 1

2m(t)
ρ(z)SCDv

2. (E.10)

By substituting ρ(z) = ρav =
∫ zf
z0

ρ(z)dz

zf−z0 into equation (E.10) and solving it, we have

v(t) =

√
2T

ρavSCD
tanh

(√
0.5TρavSCD

(
A− ln(m0 − qt0)

q

))
. (E.11)

For the boundary condition v(t = 0) = v0, the constant A can be found:

A =

ln

(
1+v0
√
ρavSCD/2T

1−v0
√
ρavSCD/2T

)
√

2TρavSCD
+

ln(m0 − qtf)

q
. (E.12)

By substituting (E.12) in (E.11), we have

v(t) =

√
2T

ρavSCD
tanh

1

2
ln

(
1 + v0

√
ρavSCD/2T

1− v0

√
ρavSCD/2T

)
+

√
TρavSCD

2

ln
(
m0−qtf
m0−qt0

)
q

 ,

=

√
2T

ρavSCD

√
1+v0
√
ρavSCD/2T

1−v0
√
ρavSCD/2T

(
m0−qtf
m0−qt0

)√0.5TρavSCD/q
− 1√

1+v0
√
ρavSCD/2T

1−v0
√
ρavSCD/2T

(
m0−qtf
m0−qt0

)√0.5TρavSCD/q
+ 1

.

(E.13)

E.2 Estimation of a circular trajectory

E.2.1 Non-propulsive phase

With constant mass, equation (E.2) can be rewritten as

γ̇ =
1

2m
ρ(z)SCL(α)v, (E.14)

where CL is the lift coefficient.

We obtain an estimated final velocity by solving (E.3) and (E.14):

γ̇ = −CL(α)

CD(α)

v̇

v
= −f v̇

v
, (E.15)

where f is called the lift-to-drag ratio.

By integrating equation (E.15), we obtain

vf = v0e
−(γf−γ0)/f , (E.16)

where γ0 is the initial flight path angle and γf is the final flight path angle.

06/2015 Pawit Pharpatara

174 E.2. ESTIMATION OF A CIRCULAR TRAJECTORY

E.2.2 Propulsive phase

In this case we suppose that the propulsion effect only the dynamics of the velocity. Thus,

the dynamic model can be rewritten as

v̇ =
T

m(t)
− 1

2m(t)
ρ(z)Sv2CD(α), (E.17)

γ̇ =
1

2m(t)
ρ(z)SCL(α)v. (E.18)

By solving equations (E.17) and (E.18), we have

v̇ = − γ̇
f
v +

T

m0 − qt
. (E.19)

Integrate equation (E.19) by supposing that γ̇ = γ̇av = constant, we obtain

vf = v0 −
γ̇av∆s

f
+
T

q
ln

(
m0 − qtf
m0 − qt0

)
. (E.20)

06/2015 Pawit Pharpatara

Bibliography

[ABSJM07] M. Abedi, H. Bolandi, F. F. Saberi, and M. R. Jahed-Motlagh. An adaptive

rbf neural guidance law surface to air missile considering target and control

loop uncertainties. In Proceedings of the IEEE International Symposium on

Industrial Electronics, pages 257–262, 2007.

[AH83] J. R. Andrews and N. Hogan. Impedance control as a framework for implement-

ing obstacle avoidance in a manipulator. Control of Manufacturing Processes

and Robotic Systems, pages 243–251, 1983.

[AKH90] S. Akishita, S. Kawamura, and K. Hayashi. New navigation function utilizing

hydrodynamic potential for mobile robot. In Proceedings of the IEEE Inter-

national Workshop on Intelligent Motion Control, 2:413–417, 1990.

[BBT07] H. Bouadi, M. Bouchoucha, and M. Tadjine. Sliding mode control based on

backstepping approach for an uav type-quadrotor. International Journal of

Mechanical, Aerospace, Industial and Mechatronics Engineering, 1(2):60–65,

2007.

[BCL91] J. D. Boissonnat, A. Cérézo, and J. Leblond. Shortest paths of bounded cur-

vature in the plane. Technical report, Institut National de Recherche en Infor-

matique et en Automatique, 1991.

[Bec90] K. Becker. Closed-form solution of pure proportional navigation. IEEE trans-

action on aerospace and electronic systems, 26:526–533, 1990.

175

176 BIBLIOGRAPHY

[Bel54] R. Bellman. The theory of dynamic programming. Bulletin of the American

Mathematical Society, 60(6):503–515, 1954.

[Ben75] J. L. Bentley. Multidimensional binary search trees used for associative search-

ing. Communications of the ACM, 18(9):509–517, 1975.

[Bet98] J. T. Betts. Survey of numerical methods for trajectory optimization. Journal

of Guidance, Control, and Dynamics, 21(2):193–207, 1998.

[BHPL06] S. Bertrand, T. Hamel, and H. Piet-Lahanier. Performance improvement of

an adaptive controller using model predictive control : Application to an uav

model. In Proceedings of the 4th IFAC Symposium Mechatronic Systems, 2006.

[BL90] J. Barraquand and J.-C. Latombe. A monte-carlo algorithm for path plan-

ning with many degrees of freedom. In Proceedings of the IEEE International

Conference on Robotics and Automation, 3:1712–1717, 1990.

[BL91] J. Barraquand and J.-C. Latombe. Robot motion planning : A distributed rep-

resentation approach. International Journal of Robotics Research, 10(6):628–

649, 1991.

[BNS04] S. Bouabdallah, A. Noth, and R. Siegwart. Pid vs. lq control techniques applied

to an indoor micro quadrotor. Intelligent Robots and Systems, 2004.

[Cox92] E. Cox. Fuzzy fundamentals. IEEE Spectrum, pages 58–61, 1992.

[CP05] S. Carprin and G. Pillonetto. Merging the adaptive random walks planner with

the randomized potential field planner. In Proceedings of the 5th International

Workshop on Robot Motion and Control, pages 151–156, 2005.

[CSW98] P. A. Creaser, B. A. Stacey, and B. A. White. Evolutionary generation of

fuzzy guidance laws. UKACC international conference on control ’98, 2:883–

888, 1998.

[DDG04] G. M. Dimirovski, S. M. Deskovski, and Z. M. Gacovski. Classical and fuzzy-

system guidance laws in homing missiles systems. In Proceedings of the IEEE

Aerospace Conference, 5:3032–3047, 2004.

[Dic12] S. Dicheva. Planification de mission pour un système de lancement aéroporté

autonome. PhD thesis, Université d’Évry-Val-d’Essonne, 2012.

[Dij59] E. W. Dijkstra. A note on two problems in connection with graphs, chapter 1,

pages 269–271. 1959.

06/2015 Pawit Pharpatara

BIBLIOGRAPHY 177

[Dij65] E. W. Dijkstra. Solution of a problem in concurrent programming control,

volume 8, chapter 8(9), page 569. Comm. ACM, 1965.

[DJ10] T. Dierks and S. Jagannathan. Output feedback control of a quadrotor uav

using neural networks. IEEE Transactions on Neural Networks, 21(1):50–66,

2010.

[DNKF10] K. Daniel, A. Nash, S. Koenig, and A. Felner. Theta*: Any-angle path planning

on grids. Journal of Artificial Intelligence Research, 39:533–579, 2010.

[DSF00] E. Devaud, H. Siguerdidjane, and S. Font. Some control strategies for a high-

angle-of-attack missile autopilot. Control Engineering Practice, 8(8):885–892,

2000.

[Dub57] L. E. Dubins. On curves of minimal length with a constraint on average curva-

ture and with prescribed initial and terminal position and tangents. American

Journal of Mathematics, 79:497–516, 1957.

[DVTK04] L. Doitsidis, K. P. Valavanis, N. C. Tsouveloudis, and M. Kontitsis. A frame-

work for fuzzy logic based uav navigation and control. In Proceedings of the

IEEE International Conference on Robotics and Automation, pages 4041–4046,

2004.

[Efe11] M. O. Efe. Neural network assisted computationally simple pi λ dµ control of

a quadrotor uav. IEEE Transactions on Industrial Informatics, 7(2):354–361,

2011.

[EKR95] G. Elnagar, M. Kazemi, and M. Razzaghi. The pseudospectral legendre method

for discretizing optimal control problems. IEEE transactions on Automatic

Control, 40(10):1793–1796, 1995.

[ER98] G. Elnagar and M. Razzaghi. A collocation-type method for linear

quadratic optimal control problems. Optimal control applications and methods,

18(3):227–235, 1998.

[Fal14] Paul Falstad. http://www.falstad.com/vector3d/directions.html, February

2014.

[FGQ12] L. De Filippis, G. Guglieri, and F. Quagliotti. Path planning strategies for uavs

in 3d environments. Journal of Intelligent & Robotic Sytems, 65(1-4):247–264,

2012.

06/2015 Pawit Pharpatara

178 BIBLIOGRAPHY

[FK11] I. F. Filippidis and K. J. Kyriakopoulos. Adjustable navigation functions for

unknown sphere worlds. IEEE Conference on Decision and Control and Eu-

ropean Control Conference, pages 4276–4281, 2011.

[FK12] I. F. Filippidis and K. J. Kyriakopoulos. Navigation functions for everywhere

partially sufficiently curves worlds. IEEE International Conference on Robotics

and Automation, pages 2115–2120, 2012.

[FKA12] I. F. Filippidis, K. J. Kyriakopoulos, and P. K. Artemiadis. Navigation func-

tions learning from experiments: application to anthropomorphic grasping.

IEEE International Conference on Robotics and Automation, pages 570–575,

May 14-18 2012.

[GC95] P. G. Gonsalves and A. K. Caglayan. Fuzzy logic pid controller for missile

terminal guidance. In Proceedings of the IEEE Iinternational Symposium on

Intelligent Control, pages 377–382, 1995.

[GHM08] N. Guenard, T. Hamel, and R. MAhony. A practical visual servo control for

an unmanned aerial vehicle. IEEE Transactions on Robotics, 24(2):331–340,

2008.

[God19] R. H. Goddard. A method of reaching extreme altitudes. In Smithsonain

miscellaneous collections, volume 11. The smithsonain institution, 1919.

[GPM89] C. E. Garćıa, D. M. Prett, and M. Morari. Model predictive control: theory

and practice - a survey. Automatica, 25(3):335–348, 1989.

[Gue76] M. Guelman. The closed-form solution of true proportional navigation. IEEE

Transactions on Aerospace and Electronic Systems, AES-12:472–482, 1976.

[Hea52] E. Heap. Methodology of research into command-line-of-sight and homing

guidance. AGARD Lecture series no. 52 on guidance of tactical missiles, May

1952.

[Hel11] T. Hellstrom. Robot navigation with potential fields. Technical report, De-

partment of computing science Umea University, December 2011.

[HG10] S. Hota and D. Ghose. Optimal path planning for an aerial vehicle in 3d

space. In Proceedings of the IEEE Conference on Decision and Control, pages

4902–4907, 2010.

06/2015 Pawit Pharpatara

BIBLIOGRAPHY 179

[HLM97] D. Hsu, J.-C. Latombe, and R. Motwani. Path planning in expansive configura-

tion spaces. In Proceedings of the IEEE International Conference on Robotics

and Automation, 3:2719–2726, 1997.

[HNR68] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic

determination of minimum cost paths. IEEE Transactions on Systems Science

and Cybernetics, ssc-4:100–107, 1968.

[HP13] B. Hérissé and R. Pepy. Shortest paths for the dubins’ vehicle in heterogeneous

environments. In Proceedings of the IEEE Conference on Decision and Control,

pages 4504–4509, 2013.

[HV13] C. Hajiyev and S. Y. Vural. Lqr controller with kalman estimator applied to

uav longitudinal dynamics. Positioning, 4(1), 2013.

[JT08] D. Jung and P. Tsiotras. Bank-to-turn control for a small uav using back-

stepping and parameter adaptation. International Federation of Automatic

Control, pages 4406–4411, 2008.

[Kel76] H. B. Keller. Numerical solution of two point boundary value problems. SIAM,

1976.

[KF10] S. Karaman and E. Frazzoli. Optimal kinodynamic motion planning using

incremental sampling-based methods. In Proceedings of the IEEE Conference

on Decision and Control, pages 7681–7687, 2010.

[KF11] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion

planning. International Journal of Robotics Research, 30:846–894, 2011.

[KG11] B. Kada and Y. Ghazzawi. Robust pid controller design for an uav flight control

system. In Proceedings of the World Congress on Engineering and Computor

Science, 2, 2011.

[Kha85] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots.

In Proceedings of the IEEE International Conference on Robotics and Automa-

tion, pages 500–505, 1985.

[KL00] J. J. Kuffner and S. M. LaValle. Rrt-connect : An efficient approach to single-

query path planning. In Proceedings of the IEEE International Conference on

Robotics and Automation, pages 995–1001, 2000.

[KL02] S. Koenig and M. Likhachev. D* lite. American Association for Artificial

Intelligence, pages 476–483, 2002.

06/2015 Pawit Pharpatara

180 BIBLIOGRAPHY

[Kok81] P. V. Kokotović. Subsystems, time scales and multimodeling. Automatica,

17(6):789–795, 1981.

[Kok92] P. V. Kokotović. The joy of feedback: nonlinear and adaptive. IEEE Control

Systems Magazine, 12:7–17, 1992.

[Kor85] R. E. Korf. Depth-first iterative-deepening: An optimal admissible tree search.

Artificial Intelligence, 27:97–109, 1985.

[KSLO96] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars. Probabilistic

roadmaps for path planning in high-dimensional configuration spaces. IEEE

Transactions on Robotics and Automation, 12:566–580, 1996.

[LaV98] S. M. LaValle. Rapidly-exploring random trees: A new tool for path planning.

1998.

[LaV06] S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[Lei99] D. J. Leith. Survey of gain-scheduling analysis & design. International Journal

of Control, 73:1001–1025, 1999.

[Lin91] C. F. Lin. Modern Navigation Guidance and Control Processing. Prentice-Hall,

Inc., 1991.

[LK99] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. In Pro-

ceedings of the IEEE International Conference on Robotics and Automation,

(5):473–479, 1999.

[LK01] S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees : Progress

and prospect. Algorithmic and Computational Robotics : New Directions, pages

293–308, 2001.

[LM99] C.-M. Lin and Y.-J. Mon. Fuzzy-logic-based guidance law design for missile

systems. In Proceedings of the IEEE International Conference on Control

Applications, 1:421–426, 1999.

[LY09] S.-Q. Li and L.-Y. Yuan. Design of fuzzy logic missile guidance law with

minimal rule base. In Proceedings of the IEEE Sixth International Conference

on Fuzzy Systems and Knownledge Discovery, pages 176–180, 2009.

[MAB98] E. Mazer, J. M. Ahuactzin, and P. Bessiere. The ariadne’s clew algorithm.

Journal of Artifical Intelligence Research, 9:295–316, 1998.

06/2015 Pawit Pharpatara

BIBLIOGRAPHY 181

[MATB96] E. Mazer, J. M. Ahuactzin, E.-G. Talbi, and P. Bessiere. The ariadne’s clew

algorithm. 1996.

[MBB05] A. Mokhtari, A. Benallegue, and A. Belaidi. Polynomial linear quadratic gaus-

sian and sliding mode observer for a quadrotor unmanned aerial vehicle. Jour-

nal of Robotics and Mechatronics, 17(4):483–495, 2005.

[MC66] S. A. Murtaugh and H. E. Criel. Fundamentals of proportional navigation.

IEEE Spectrum, 3:75–85, 1966.

[MH04] R. Mahony and T. Hamel. Robust trajectory tracking for a scale model au-

tonomous helicopter. International Journal of Robust and Nonlinear Control,

14:1035–1059, 2004.

[MP43] W. S. McCulloch and W. Pitts. A logical calculus of ideas immanent in nervous

activity. Bulletin of mathematical biophysics, 5:115–133, 1943.

[MS10] F. L. L. Medeiros and J. D. S. Da Silva. A dijkstra algorithm for fixed-wing uav

motion planning based on terrain elevation. Advances in Artificial Intelligence,

pages 213–222, 2010.

[NDKF07] A. Nash, K. Daniel, S. Koenig, and A. Felner. Theta*: any-angle path planning

on grids. In Proceedings of the AAAI Conference on Artificial Intelligence,

pages 1177–1183, 2007.

[NKT10] A. Nash, S. Koenig, and C. Tovey. Lazy theta*: any-angle path planning and

path length analysis in 3d. AAAI press, 2010.

[PHB15a] P. Pharpatara, B. Hérissé, and Y. Bestaoui. 3d-shortest paths for a hypersonic

glider in a heterogeneous environment. In Proceedings of the IFAC Work-

shop on Advances Control and Navigation for Autonomous Aerospace Vehicles,

pages 186–191, 2015.

[PHB15b] P. Pharpatara, B. Hérissé, and Y. Bestaoui. 3d trajectory planning of aerial

vehicles using rrt*. IEEE Transaction on Control Systems Technology, page

submitted, 2015.

[PHPB13] P. Pharpatara, B. Hérissé, R. Pepy, and Y. Bestaoui. Samping-based path plan-

ning: a new tool for missile guidance. In Proceedings of the IFAC Symposium

on Automatic Control in Aerospace, pages 131–136, 2013.

06/2015 Pawit Pharpatara

182 BIBLIOGRAPHY

[PLM06] R. Pepy, A. Lambert, and H. Mounier. Reducing navigation errors by planning

with realistic vehicle model. In Proceedings of the IEEE Intelligent Vehicles

Symposium, pages 300–307, 2006.

[Poh69] I. Pohl. Bi-directional and heuristic search in path problems. Technical report,

Stanford linear accelerator center, May 1969.

[PPHB13] P. Pharpatara, R. Pepy, B. Hérissé, and Y. Bestaoui. Missile trajectory shap-

ing using sampling-based path planning. In Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems, pages 2533–2538,

2013.

[PY98] K. M. Passino and S. Yurkovich. Fuzzy Control. Addison-Wesley Longman,

Inc., 1998.

[RA05] W. Ren and E. Atkins. Nonlinear trajectory tracking for fixed wing uavs via

backstepping and parameter adaptation. In Proceedings of the AIAA Guidance,

Navigation and Control Conference and Exhibit, Aug 2005.

[Rac] S. Raczynski. Reachable sets for flight trajectories: an application of differen-

tial inclusions to flight maneuver simulation.

[Rao09] A. V. Rao. A survey of numerical methods for optimal control. Advances in

the Astronautical Sciences, 135:497–528, 2009.

[RBD+10] A. V. Rao, D. A. Benson, C. Darby, C. Francolin M. A. Patterson, I. Sander,

and G. T. Huntington. Algorithm 902: Gpops, a matlab software for solv-

ing multiple-phase optimal control problems using the gauss pseudospectral

method. ACM Transactions on Mathematical Software, 37(2):22:1–22:39, 2010.

[RK91] E. Rimon and D. E. Koditschek. The construction of analytic diffeomorphisms

for exact robot navigation on star worlds. Transactions of the American Math-

ematical Society, 327:71–116, 1991.

[RK92] E. Rimon and D. E. Koditschek. Exact robot navigation using artificial poten-

tial functions. IEEE Transaction on Robotics and Automation, 8(5):501–518,

1992.

[RN09] S. Russell and P. Norvig. Artificial Intelligence A Modern Approach. Upper

Saddle River, New Jersey: Prentice Hall, 2009. Greedy-Best-First pp 92-93 A*

pp 93-99.

06/2015 Pawit Pharpatara

BIBLIOGRAPHY 183

[SB02] J. Stoer and R. Bulirsch. Introduction to numerical analysis. Springer-Verlag,

2002.

[Sey93] H. Seywald. Trajectory optimization based on differential inclusion. Technical

report, NASA, 1993.

[Sha07] M. Shanmugavel. Path planning of multiple autonomous vehicles. PhD thesis,

Cranfield University, 2007.

[Shi08] B. M. Shippey. Trajectory optimization using collocation and evolutionary

programming for constrained nonlinear dynamical systems. Master’s thesis,

The university of Texas at Arlington, 2008.

[SHSS07] D. M. Stipanovic, P. F. Hokayem, M. W. Spong, and D. D. Siljak. Coopera-

tive avoidance control for multiagent systems. Journal of Dynamic Systems,

Measurement, and Control, 129:699–707, 2007.

[Sio04] G. M. Siouris. Missile guidance and control systems. Springer-Verlag New

York, Inc., 2004.

[SJFD08] B. M. Sathyaraj, L. C. Jain, A. Finn, and S. Drake. Multiple uavs path

planning algorithms: a comparative study. Fuzzy Optimization and Decision

Making, 7(3):257–267, 2008.

[SL01] A. M. Shkel and V. Lumelsky. Classification of the dubins set. Robotics and

Autonomous Systems, 34:179–202, 2001.

[SL03] G. Sanchez and J.-C. Latombe. A single-query bi-directional probabilistic

roadmap planner with lazy collision checking. In Robotics Research in Advanced

Robotics, volume 6, pages 403–417. Springer Berlin Heidelberg, 2003.

[SOK84] V. R. Saksena, J. O’Reilly, and P. V. Kokotovic. Singular perturbations

and time-scale methods in control theory: survey 1976-1983. Automatica,

20(3):273–293, 1984.

[ST02] E. J. Song and M. J. Tahk. Three-dimensional midcourse guidance using neural

networks for interception of ballistic targets. IEEE Transactions on Aerospace

and Electronic Systems, 38(2):404 –414, 2002.

[Ste93] A. Stentz. Optimal and efficient path planning for unknown and dynamic

environments. Technical Report CMU-RI-TR-93-20, Robotics Institute, Pitts-

burgh, PA, August 1993.

06/2015 Pawit Pharpatara

184 BIBLIOGRAPHY

[Sub11] S. Subchan. A direct multiple shooting method for missile trajectory optimiza-

tion with the terminal bunt maneuver. The Journal of Technology and Science,

22(3):147–151, 2011.

[Sus95] H. J. Sussmann. Shortest 3-dimensional paths with prescribed curvature

bound. In Proceedings of the IEEE Conference on Decision and Control,

4:3306–3312, 1995.

[Tar72] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal

on Computing, 2:146–160, 1972.

[Tau02] D.-R. Taur. Midcourse trajectory optimization for a sam against high-speed

target. American Institute of Aeronautics and Astronautics, 13:487–493, 2002.

[Tré12] E. Trélat. Optimal control and applications to aerospace: some results and

challenges. Journal of Optimization Theory and Applications, 154(3):713–758,

2012.

[uVP09] D. S̆ĭslák, P. Volf, and M. Pĕchouc̆ek. Accelerated a* trajectory palnning:

grid-based path planning comparison. In Proceedings of the 19th International

Conference on Automated Planning and Scheduling, pages 76–83, 2009.

[Vor07] G. Voronoi. Nouvelles applications des paramètres continus à la théorie des

formes quadratiques. Journal fur die Reine und Angewandte Mathematik,

133:97–178, 1907.

[WAS99] S. A. Wilmarth, N. M. Amato, and P. F. Stiller. Maprm: A probabilistic

roadmap planner with sampling on the medial axis of the free space. In Pro-

ceedings of the IEEE International Conference on Robotics and Automation,

1999.

[Waw02] N. Wawresky. Évaluation et comparaison de lois de guidancge en présence de

manœuvres de la cible. Master’s thesis, École des Mines, 2002.

[WC14] C.-H. Wang and C.-Y. Chen. Intelligent missile guidance by using adaptive re-

current neural networks. In Proceedings of the IEEE International Conference

on Networking, Sensing and Control, pages 559–564, 2014.

[WHD10] Y. Wei, M. Hou, and G.-R. Duan. Adaptive multiple sliding surface control

for integrated missile guidance and autopilot with terminal angular constraint.

In Proceedings of the Chinese Control Conference, pages 2162–2166, 2010.

06/2015 Pawit Pharpatara

BIBLIOGRAPHY 185

[Whi] D. Whitley. A genetic algorithm tutorial.

[WZS07] R. Wang, Z. Zhou, and Y. Shen. Flying-wing uav landing control and sim-

ulation based on mixed h2/h∞. In Proceedings of the IEEE International

Conference on Mechatronics and Automation, pages 1523–1528, 2007.

[XY12] X. Xing and D. Yuan. Quantitative feedback theory and application in uav

flight control. Technical report, Automatic Flight Control Systems - Latest

Developments, Dr. Thomas Lombaerts (Ed.), 2012.

[YA11] I. Younas and A. Aqeel. A genetic algorithm for mid-air target interception.

International journal of computor applications, 14(1):38–42, 2011.

[YC92] P.J. Yuan and J.-S. Chern. Ideal proportional navigation. Journal of Guidance,

Control, and Dynamics, 15(5):1161–1165, 1992.

[YS12] K. Yang and S. Sukkariech. Model predictive unified planning and control of

rotary-wing unmanned aerial vehicle. In Proceedings of the 12th International

Conference on Control, Automation and Systems, page 19741979, 2012.

[YY87] C.D. Yang and F.-B. Yeh. The closed-form solution of generalized proportional

navigation. Journal of Guidance, Control, and Dynamics, 10(2):216–218, 1987.

[Zar94] P. Zarchan. Tactical and Strategic Missile Guidance, volume 157 of Progress

in Astronautics and Aeronautics. America Institute of Aeronautics and Astro-

nautics, Inc. (AIAA), second edition, 1994.

[Zho02] R. Zhou. Design of closed loop optimal guidance law using neural networks.

Chinese journal of aeronautics, 15(2):98–102, 2002.

[Zin90] A. S. I. Zinober. Deterministic control of uncertain systems. Peter Peregrinus,

1990.

[ZZZL11] G. Zhang, M.-B. Zhu, Z.-B. Zhao, and X.-P. Li. Trajectory optimization for

missile-borne sar imaging phase via gauss pseudospectral method. In Pro-

ceedings of the IEEE CIE International Conference on Radar, pages 867–870,

2011.

06/2015 Pawit Pharpatara

