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Radiofrequency Ablation Planning for Cardiac Arrhythmia
Treatment using Modeling and Machine Learning Approaches

Abstract:
Cardiac arrhythmias are heart rhythm disruptions which can lead to sudden car-

diac death. They require a deeper understanding for appropriate treatment plan-
ning.

In this thesis, we integrate personalized structural and functional data into a
3D tetrahedral mesh of the biventricular myocardium. Next, the Mitchell-Schaeffer
(MS) simplified biophysical model is used to study the spatial heterogeneity of elec-
trophysiological (EP) tissue properties and their role in arrhythmogenesis.

Radiofrequency ablation (RFA) with the elimination of local abnormal ventric-
ular activities (LAVA) has recently arisen as a potentially curative treatment for
ventricular tachycardia but the EP studies required to locate LAVA are lengthy and
invasive.

LAVA are commonly found within the heterogeneous scar, which can be imaged
non-invasively with 3D delayed enhanced magnetic resonance imaging (DE-MRI).
We evaluate the use of advanced image features in a random forest machine learning
framework to identify areas of LAVA-inducing tissue. Furthermore, we detail the
dataset’s inherent error sources and their formal integration in the training process.

Finally, we construct MRI-based structural patient-specific heart models
and couple them with the MS model. We model a recording catheter using a
dipole approach and generate distinct normal and LAVA-like electrograms at
locations where they have been found in clinics. This enriches our predictions
of the locations of LAVA-inducing tissue obtained through image-based learning.
Confidence maps can be generated and analyzed prior to RFA to guide the in-
tervention. These contributions have led to promising results and proofs of concepts.

Keywords: Cardiac electrophysiology modeling, intracardiac electrogram
modeling, machine learning, radiofrequency ablation planning, electroanatomical
mapping, local abnormal ventricular activities (LAVA)





Planification de l’ablation radiofréquence des arythmies cardiaques
en combinant modélisation et apprentissage automatique

Résumé:
Les arythmies sont des perturbations du rythme cardiaque qui peuvent entrainer

la mort subite et requièrent une meilleure compréhension pour planifier leur traite-
ment.

Dans cette thèse, nous intégrons des données structurelles et fonctionnelles à
un maillage 3D tétraédrique biventriculaire. Le modèle biophysique simplifié de
Mitchell-Schaeffer (MS) est utilisé pour étudier l’hétérogénéité des propriétés élec-
trophysiologiques (EP) du tissu et leur rôle sur l’arythmogénèse.

L’ablation par radiofréquence (ARF) en éliminant les activités ventriculaires
anormales locales (LAVA) est un traitement potentiellement curatif pour la tachy-
cardie ventriculaire, mais les études EP requises pour localiser les LAVA sont longues
et invasives.

Les LAVA se trouvent autour de cicatrices hétérogènes qui peuvent être imagées
de façon non-invasive par IRM à rehaussement tardif. Nous utilisons des carac-
téristiques d’image dans un contexte d’apprentissage automatique avec des forêts
aléatoires pour identifier des aires de tissu qui induisent des LAVA. Nous détaillons
les sources d’erreur inhérentes aux données et leur intégration dans le processus
d’apprentissage.

Finalement, nous couplons le modèle MS avec des géométries du cœur spéci-
fiques aux patients et nous modélisons le cathéter avec une approche par un dipôle
pour générer des électrogrammes normaux et des LAVA aux endroits où ils ont été
localisés en clinique. Cela améliore la prédiction de localisation du tissu induisant
des LAVA obtenue par apprentissage sur l’image. Des cartes de confiance sont
générées et peuvent êtres utilisées avant une ARF pour guider l’intervention. Les
contributions de cette thèse ont conduit à des résultats et des preuves de concepts
prometteurs.

Mots clés: modélisation de l’électrophysiologie cardiaque, modélisa-
tion d’électrogrammes intracardiaques, apprentissage automatique, planification
d’ablation par radiofréquence, activités ventriculaires anormales locales (LAVA)





To achieve great things, two things are needed:

a plan and not quite enough time.

LEONARD BERNSTEIN
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Introduction
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1.3 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Clinical Context

Cardiovascular diseases (CVD) refer to the conditions that affect the heart and
the circulatory system. To date, they remain the leading cause of death in the
western world. According to the Global Burden of Disease, CVD were responsible
for more than 29% of deaths in the world in 2013 (> 15,616 million deaths), twice the
amount of deaths caused by cancer in the same year [Nichols 2014]. In the European
continent alone, despite the recent decrease in CVD deaths, these diseases claim over
4 million victims per year. Figure 1.1 shows the proportion of non-accidental deaths
in Europe in 2013.

Cardiac arrhythmias are a subset of CVD grouping abnormalities in the heart
rhythm. A dangerous consequence of these rhythm perturbations includes a com-
promise of the heart’s effectiveness to pump blood. Sudden cardiac death (SCD)
occurs if the condition is not treated within a short delay. Early detection and accu-
rate prediction of disease progression of CVD remain an important need to reduce
their mortality. Furthermore, improvements in therapy planning and guidance are
of vital importance to reduce the mortality of these diseases.

Depending on the nature of the arrhythmia, either implantable cardioverter-
defibrillator (ICD) or radiofrequency ablation (RFA) treatment can be recom-
mended. An ICD is a device that continuously monitors the electrical activity
in the heart and delivers electrical shocks to control life-threatening arrhythmias.
Nonetheless, their effectiveness in reducing mortality is still unclear [Nattel 2014].
Besides, this therapy is a non-curative option and is commonly paired with phar-
maceutical treatment. A potentially curative alternative is RFA treatment, where
thermal lesions are generated in the heart to interrupt abnormal re-entry circuits
that cause arrhythmias. The greatest challenge in this therapy is ablation target
identification. Currently, this can be achieved using electrophysiological (EP) sub-
strate mapping. Recently, [Jaïs 2012] showed that the elimination of local abnormal
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ventricular activities (LAVA) was an effective endpoint for substrate-based ventric-
ular tachycardia.

Figure 1.1: Proportion of all deaths due to major causes in Europe (Top) among
men and (Bottom) among women. Courtesy of [Nichols 2014]

The main questions we aim to answer in this thesis are:

- Can personalized structural and functional data help us understand the
patient-specific arrhythmogenesis?

- Can appropriate imaging data provide us with information to characterize and
identify RFA targets?

- Are we able to use non-invasive image-based models and in silico simulation
to generate intracardiac electrograms with LAVA-like patterns at the locations
where they have been found in clinics?

- Can these simulated electrograms enrich the predictions of RFA targets ob-
tained through image-based learning?
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1.2 Manuscript Organization

This thesis is based on our published and submitted work, Figure 1.2 exemplifies
the manuscript organization.

Figure 1.2: Manuscript Organization.

In Chapter 2, we introduce the relevant clinical concepts for understanding this
work and review the state of the art of electrophysiology modeling and the use of
machine learning schemes in the medical domain.

In Chapter 3, based on [Cabrera-Lozoya 2015c], we make use of integrated
personalized structural and functional data to study the spatial heterogeneity of
electrophysiological tissue properties and their role in arrhythmogenesis.

In Chapter 4, based on [Cabrera-Lozoya 2014] and on [Cabrera-Lozoya 2015d],
we evaluate the predictive power of locally computed intensity and texture-based
MRI features to identify radiofrequency ablation targets using a machine learning
framework, including a detailed analysis of the dataset’s inherent error sources and
their integration in the training process.

In Chapter 5, based on [Cabrera-Lozoya 2015a], we test the feasibility of us-
ing delayed enhanced MR image-based models to reproduce LAVA-like patterns in
simulations of catheter recordings of intracardiac electrograms.
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In Chapter 6, based on [Cabrera-Lozoya 2015b], we present a proof of con-
cept where in silico simulated electrograms enhance the predictions of RFA targets
obtained through MR image-based learning.

Finally, in Chapter 7, we conclude this thesis by describing our main contribu-
tions and perspectives.

In the appendices, we present additional fruitful collaborations carried out during
the time of the PhD but which go beyond the scope of this thesis.

1.3 Acknowledgment

Part of this work was funded by the European Research Council through the ERC
Advanced Grant MedYMA 2011-291080 (on Biophysical Modeling and Analysis of
Dynamic Medical Images).
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Clinical and Technical Context
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In this thesis, we use mathematical modeling and machine learning techniques
alongside with patient-specific clinical data to guide radiofrequency ablation therapy
for the treatment of cardiac arrhythmias. In this chapter, we review the essentials
and basics of the clinical aspects and mathematical techniques.

2.1 The Heart: Generalities

2.1.1 Cardiac Anatomy

The heart is the muscular organ responsible for pumping blood through the car-
diovascular system, providing the body with oxygen and nutrients while removing
metabolic waste. It is enclosed in a protective sac called the pericardium, which
prevents overfilling of the heart and helps it anchor to the surrounding structures
in the mediastinum in the chest.
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Figure 2.1: a) Heart anatomy and chambers. b) Layers of the heart wall. From
en.wikipedia.org/wiki/Heart.

The heart is composed of four chambers: the left and right atria (upper, blood-
receiving chambers) and the left and right ventricles (lower, blood-discharging cham-
bers) as shown in Figure 2.1a. Blood from systemic circulation flows through the
superior and inferior vena cavae into the right atrium, across the tricuspid valve and
into the right ventricle. Then, the blood crosses the pulmonary valve and passes
into the pulmonary circulation in direction of the lungs. Once metabolic wastes
are removed from the blood and oxygen is added, it will return to the left atrium,
through the mitral valve and into the left ventricle before being discharged again to
the systemic circulation through the aorta.

The heart wall is divided in three layers shown in Figure 2.1b, the outer-most
layer is called the epicardium, the middle one composed mainly of cardiac muscle
responsible for heart contraction is referred to as the myocardium and the inner
layer, the endocardium, is in direct contact with the blood. Heart muscle cells,
myocytes, are arranged in fibers whose direction varies across the myocardium.
The fiber orientation can be described by an elevation angle corresponding to its
obliquity with respect to the plane of the section. The value of this angle varies from
approximately +70◦ on the endocardium, 0◦ in mid-myocardium to −70◦ in the
epicardium (Figure 2.2). This swirled organization optimizes the pumping function
of the heart.

2.1.2 Cardiac Electrophysiology in the Healthy Heart

An adult human heart at rest contracts with a stable rhythm of approximately 60-
100 beats per minute (bpm). This sinus rhythm is managed by the automaticity of
the heart’s natural pacemaker, the sinoatrial (SA) node, which is a group of cells
capable of spontaneously generating electrical signals that propagate through the
heart muscle. The electrical wave travels first through the atrial fibers (the pathway
propagating the electrical impulse to the left atrium is known as the Bachmann’s

en.wikipedia.org/wiki/Heart
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Figure 2.2: Human ventricular fibers from in vivo Diffusion Tensor Imaging (DTI).
Fibers are color-coded with the local helix angle α. Courtesy of team.inria.fr/
asclepios.

bundle) and to the atrioventricular (AV) node. Here, a delay allowing an appropriate
filling of the ventricles during the atrial contraction takes place. Thereafter, the
electrical stimulus travels through the His bundle into the left and right bundle
branches. Finally, the Purkinje network allows the activation of the cardiac myocytes
in the ventricles. A schematic of the heart’s conduction system is found in Figure
2.3.

Figure 2.3: Heart’s conduction system. From en.wikipedia.org/wiki/Heart.

In non-pathological conditions, a cardiac cell has a resting polarized state, mean-
ing that there exists an electrical potential difference, typically of -90mV, across the
cell membrane separating the intracellular and extracelluar mediums. When the cell
receives an electrical stimulus (like the wave arising from the SA node), its trans-
membrane potential evolves in accordance with the gradient of ionic concentrations
inside and outside the cell. The temporal evolution of the transmembrane potential

team.inria.fr/asclepios
team.inria.fr/asclepios
en.wikipedia.org/wiki/Heart
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is known as an action potential and it consists of three main phases (Figure 2.4):

1. Depolarisation: Fast Na+ channels open and sodium ions can enter the cell,
rapidly rendering its inside positive with respect to the extracellular medium.

2. Plateau: K+ and Na+ channels are slowly de-activated and Ca2+ ones are
opened, momentarily stabilizing the transmembrane potential.

3. Repolarisation: The K+ channels gradually re-activate and there is a de-
crease in the calcium influx, re-establishing the ionic rest state of the cell.

Figure 2.4: (Left) Simplified schematic of ionic flow through the cell membrane.
(Center) Evolution of ionic conductances. (Right) Action potential (mV). Courtesy
of [Talbot 2014]

2.1.3 The Pathological Heart

Myocardial Infarctions

In pathological cases, an interruption of the blood supply to the cardiac tissue
can occur. The main cause of this phenomenon is the occlusion of one of the
blood vessels irrigating the heart, known as the coronary arteries. If left untreated,
oxygen-deprived cells can suffer from irreversible damage or even death (myocardial
infarction, MI). Areas adjacent to the necrotic core are referred to as the border
zone, where surviving myocytes are surrounded by dense fibrosis, as seen in Figure
2.5. These areas present decreased lateral connection between the myocardial cells,
which undergo changes in the transmembrane ion channel expression leading to
differences in their electrophysiological behaviors [Rutherford 2012]. These disrup-
tions can potentially cause abnormal heart beating patterns (cardiac arrhythmias)
or even a complete stopping of the heartbeat, a condition known as cardiac arrest.

Cardiac Arrhythmias

A cardiac arrhythmia is a broad classification of the conditions that perturb the
normal cardiac rhythm, rendering it either irregular, too slow or too fast. Of
particular interest for this thesis are ventricular tachycardias, which are character-
ized by an abnormally fast (from 120 up to 280 bpm) heart rhythm originating
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Figure 2.5: Three-dimensional reconstruction of infarct border zone. (Left) Short-
axis slice cut 4mm of the left ventricular apex. Collagen is indicated in white/yellow
and myocytes by red/brown. (Right) Reconstructed infarct border zone. The dimen-
sions of the image volume are 2.99×2.68×0.70mm3. Courtesy of [Rutherford 2012]

in the ventricles. They can degenerate into ventricular fibrillation and cause an
uncoordinated contraction of the cardiac muscle, compromising heart function and
potentially leading to sudden death.

Scar-related ventricular tachycardia (VT) or arrhythmia

The presence of scar in the myocardial tissue can lead to abnormal electrical cir-
cuit generations, often referred to as scar-related reentry [Aliot 2009]. Although the
main cause for scar formation reported is myocardial infarction [Stevenson 1993],
other conditions can result in damaged myocardial tissue, including arrhythmogenic
right ventricular cardiomyopathy (ARVC) [Belhassen 1984], dilated cardiomyopathy
[Hsia 2002] or surgery [Eckart 2007]. Myocardial scar can be identified due to its
electrophysiological characteristics, which include low-voltage regions or fraction-
ated electrograms, or through imaging studies. According to [Aliot 2009], substrate
promoting scar-related re-entry can have the following characteristics:

- Regions of slow conduction.

- Unidirectional conduction block at some point in the re-entry path that allows
initiation of re-entry.

- Areas of conduction block that often define parts of the re-entry path.
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According to animal [El-Sherif 1981] [El-Sherif 1983] and human
[De Bakker 1988] studies, the phenomenon of re-entry is due to the existence
of surviving myocyte bundles and the increased presence of collagen and connective
tissue affecting their coupling with the rest of the myocardium. This perturbation
of normal myocardial architecture promotes abnormal patterns of activation and
conduction velocity [Peters 1998].

2.2 Imaging the Heart

In patients with suspected scar-related VT, imaging studies can be used to assess
the viability of the myocardial tissue, as well as to obtain important aspects of tissue
heterogeneity, scar extent and location. Delayed-enhanced (DE) magnetic resonance
imaging (MRI), which has the advantage of being a non-ionizing imaging technique,
is used in conjunction with gadolinium (Gd) as a contrast agent to improve scar vi-
sualization. Nonetheless, DE-MRI is often prohibited in VT-prone patients because
many of them have implanted pacemakers or ICDs. Also, the presence of these
devices can lead to important artifacts and deteriorate image quality. The use of
DE multi-detector computed tomography (MDCT) has been investigated in these
cases, but its reproducibility is still debated [Aliot 2009].

To date, DE-MRI remains the gold standard for myocardial size and mor-
phology evaluation, it is also used to assess the heterogeneity of the border zone
[Schuleri 2009]. Figure 2.6 exemplifies the use of DE-MDCT and DE-MRI in an-
imal subjects for visualizing the scar and border zone (also known as peri-infarct
zone) and their correlation with histological cuts.

2.3 Electro-anatomical mapping

Electroanatomical mapping (EAM) is a minimally-invasive technique used to record
in-vivo cardiac electrical activity at specific locations inside the heart. The method
of entry is chosen according to the cardiac chamber to be studied. When the cavity
of study is the right part of the heart, then the mapping catheter is introduced
through the femoral vein. Alternatively, when studying the left heart, the femoral
artery is chosen. When the catheter either comes in contact with the tissue of
interest or is located within its vicinity, both the electrical activity of the tissue
and the coordinates of the catheter’s position in space are retrieved. These systems
integrate three main functions [Aliot 2009]:

- Non-fluoroscopic localization of the ablation catheter within the heart

- Display of electrogram characteristics (i.e. activation time or voltage) w.r.t.
anatomic position

- Integration of electroanatomic information with 3D images of the heart ob-
tained from computed tomography (CT), magnetic resonance imaging (MRI)
or other imaging technique.
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Figure 2.6: Example of matching histological data in chronic infarcts against DE-
MDCT (A and B) and DE-MRI (D and E). The peri-infarct zone (PIZ) is visualized
between tow black arrows by intermediate signal intensity (white circle) in DE-
MDCT images. In D and E, DE infarct scar (white arrows) and the PIZ (white
circle) show different signal intensity in DE-MRI. (C and F) Masson trichrome stain
depicts viable myocardium in red (∗) from non-viable tissue in blue. At higher
magnification (F) the islands of viable myocytes (red) within the scar tissue are
visualized, showing the heterogeneity of the PIZ. Image from [Schuleri 2009].

Despite the capability of locating the catheter in 3D space and therefore re-
constructing the heart chamber that is being mapped, geometries provided by EAM
systems tend to be rough estimates of the actual cardiac anatomy. Catheter position
is highly affected by cardiac or respiratory motion, and anatomic reconstruction al-
gorithms may vary between systems [Aliot 2009]. These limitations can compromise
the integration of EAM information with anatomical information from traditional
imaging systems. Often, multiple mapping catheters are used in order to improve
spatial sampling.

2.3.1 Mapping Systems

Two main types of mapping systems currently exist in the clinical market: contact
mapping and non-contact mapping.

Contact Mapping: An example of this type of mapping system is the CARTO
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Figure 2.7: CARTO navigation system with (Left) fluoroscopic images, (Center)
CARTO contact mapping catheters and (Right) the electroanatomical mapping.
(Images from CHU, Bordeaux)

EP Contact Navigation System (Biosense Webster Inc.), shown in Figure 2.7.
As the name implies, this mapping technique requires direct contact between
the recording catheter and the cardiac tissue. The catheter is moved along the
endocardial or epicardial wall to capture electrical signals. It is preferred for the
study of local phenomena. The three-dimensional location of the catheter in this
particular system is achieved through the placement of three coils beneath the
patient producing low-level electromagnetic fields which are measured by a sensor
located at the tip of the mapping catheter, which have reported a magnitude of
location errors from the catheters of ∼ 1mm [Gepstein 1997]. In some applications
throughout this thesis, the contact mappping system was used in conjunction
with a multi-spline recording catheter (PentaRay, Biosense Webster) having a
five-branched star design which allows for high-density mapping, it is shown in
Figure 2.8.

Figure 2.8: PentaRay multi-spline recording catheter. (Image from BioSense Web-
ster Inc.)
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Non-contact Mapping: The EnSite Velocity System (St. Jude Medical Inc.),
shown in Figure 2.9, is part of the non-contact mapping systems. In this approach,
the recording device consists of a catheter with a multi-electrode array of 64 unipo-
lar electrodes over an inflatable balloon, each of which can remotely measure the
potential generated by far-field electrograms [Aliot 2009]. Because the electrical ac-
tivity does not correspond to the potentials at the endocardial surface but in the
blood pool, an inverse problem must be solved. Virtual unipolar electrograms at the
endocardium are accurately reconstructed and in agreement with contact mapping
recordings if the surface of interest is within 4 cm of the center of the MEA balloon
[Gornick 1999] [Schilling 1998] [Sivagangabalan 2008]. Because of these character-
istics, the system is preferred for activation mapping. It also has the advantage of
being applicable in patients who cannot tolerate arrhythmia or when an arrhythmia
cannot be reproduced during the EP study.

Figure 2.9: EnSite navigation system with (Left) fluoroscopic images, (Center) the
deflated and inflated balloon and (Right) the electroanatomical mapping. (Images
from KCL, London)

2.3.2 Electrogram Interpretation

Aside from the mapping system chosen for a given procedure, it is of vital impor-
tance for the clinical electrophysiologist to be able to recognize complex patterns in
recordings inherent to the nature of the electrograms (EGM), in order to accurately
diagnose and locate arrhythmias [Stevenson 2005].

Cardiac electrograms are the voltage differences between two recording elec-
trodes (a positive lead, known as the anode, and a negative lead, referred to as the
cathode) at a given point in the cardiac cycle [Stevenson 2005]. There exist two
main kinds of electrograms recorded during EAM: unipolar and bipolar.

Unipolar electrograms: When recording unipolar electrograms, the anode is
in contact with the myocardial tissue of interest and the cathode is placed at a
distant point from the heart, such that its influence in the cardiac measurements
is negligible. Although theoretically the cathode should be placed at an infinite
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distance from the heart to obtain a truly unipolar recording, in practice, it is located
in the inferior vena cava [Stevenson 2005]. Following this convention of electrode
placements, a depolarization wavefront moving towards the electrode in the cardiac
chamber will result in a positive deflection in the EGM, whereas a receding one
will yield a steep negative deflection. The point of maximum negative slope
(−dV/dt) corresponds to a wavefront directly underneath the recording electrode
[Stevenson 2005]. This characteristic renders unipolar electrograms valuable for
the generation of activation maps and to identify the site of earliest activation in
focal tachycardias. One major limitation of unipolar electrograms is the effect of
far-field signals from depolarising myocardial tissue at the distance [Aliot 2009],
this is particularly hindering in scar regions where the local low-voltage potentials
can be overshadowed by far-field effects. Sample unipolar electrograms are shown
in the top and middle rows of Figure 2.10.

Figure 2.10: Sample unipolar (top and middle) and bipolar (bottom) intracardiac
electrograms obtained from the CARTO navigation system.

Bipolar electrograms: Bipolar EGMs (shown in the bottom row of Figure 2.10)
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are generated by computing the difference in the potential recorded between two
closely-spaced electrodes. Local activation is identified by the initial signal peak,
but this measure is less reliable than with unipolar electrograms if the signals are
fractionated or have multiple components. The far-field signals in the two electrodes
is considered equivalent, therefore bipolar EGMs are useful to evaluate local signals
[Stevenson 2005], even those with low-amplitude potentials, making them ideal for
mapping scar-related arrhythmias [Aliot 2009].

Most catheters are equipped with four electrodes numbered from 1 to 4 from
the distal-most to the proximal-most. Comparisons between the bipolar signals
generated by neighboring electrodes indicate wavefront direction, but the amplitude
of the signals can be severely compromised if the wavefront is moving perpendicular
to the axis of the recording dipole.

In order to better exploit the strengths of both types of electrograms, EP studies
usually obtain both unipolar and bipolar recordings simultaneously.

2.3.3 Mapping Approaches

Different mapping approaches can be used to study a particular type of arrhythmia
in a given patient, though they are often complementary. This section describes
the most commonly used ones:

Activation Mapping: Consists in the recording of the electrical activation
sequence of the chamber of interest. It is necessary to establish both a location and
timing reference, as well as a timing window. Although in theory either intracardiac
EGMs or surface ECG leads can be used to chose a timing reference, intracardiac
EGMs are preferred [Bhakta 2008].

Pace Mapping: During this approach, a site of interest is paced during the
absence of VT and the resulting activation sequence and surface ECG morphology
are assessed. If the pacing of a particular site reproduces the same ECG morphology
as the one seen during clinical VT, then the location is suspected to be either the
origin of a focal VT or the exit of a scar-related re-entry [Brunckhorst 2004].

Entrainment Mapping: Is performed by delivering a train of stimuli at a rate
just higher than the one present during VT [Stevenson 1993]. It serves to identify
re-entry circuits sites, e.g. surface ECG morphology during entrainment will
determine if the pacing site is within an isthmus or not [Aliot 2009].

Substrate Mapping: Refers to the characterization of a region of interest,
particularly those suspected to promote re-entry due to their anatomical or elec-
trophysiological characteristics. Scarred tissue is frequently the target of substrate
mapping and its correlation with low-voltage areas has been found in animal
models [Callans 1999]. Regions with particularly low-voltage (<0.5mV) have been
referred to as dense scar but can still participate in re-entry circuits as they can
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contain varying amounts of viable myocytes [Soejima 2002]. Furthermore, targeting
the border zone for ablation, which consists of regions with voltage ranging from
0.5 to 1.5 mV, has gained interest in the recent years [Marchlinski 2000] [Aliot 2009].

2.4 Radiofrequency Catheter Ablation

Radiofrequency ablation (RFA) is a technique in which a tissue region is
subjected to extreme heat resulting from a high-frequency alternating current
[Townsend Jr 2012]. In cardiology, it is used to destroy electrical pathways respon-
sible for cardiac arrhythmias. The extent of the RFA lesion created is dependent of
operator-controlled characteristics, such as RF power and duration (which should
be at least 35 to 45 seconds to approach steady state [Haines 1993]), but also on
operator-independent phenomena, including electrode-tissue contact and the cool-
ing effect by the circulating blood [Haines 1993]. Temperature monitoring is very
important in order to ensure a proper ablation of the target site while minimizing
the risk of serious complications such as of thromboembolism, although these are
infrequent [Matsudaira 2003].

RFA is considered the sole treatment option for patients suffering from recurrent
ventricular tachycardias (VT) without structural heart disease [Aliot 2009]. Pa-
tients with scar-related VTs are also referred for RFA therapy in conjunction with
implantable-cardioverter defibrillators (ICDs) and/or anti-arrhythmic drug therapy
[Aliot 2009]. RFA ablation is a complex intervention reserved to patients with ad-
vanced heart disease [Aliot 2009]. The percentage of significant complications (re-
quiring prolonged hospitalization, additional interventions or death) reported in
[Reddy 2007] was of < 5% on patients undergoing prophylactic catheter ablation of
post-infarction VT in a randomized, multi-center study.

2.4.1 Ablation Target Identification Up Until Now

Though RFA has proven to be an effective therapy in patients suffering from ventric-
ular tachycardia (VT) whose ICD triggers frequent defibrillation shocks [Aliot 2009],
to date, there exists no universal consensus on the optimal ablation strategy.

A number of techniques are found in the literature to treat either unmappable or
hemodynamically intolerable VT. Studies such as [Marchlinski 2000] reported the
use of linear endocardial RFA lesions going from the regions of dense scar to those
of normal myocardium to control unmappable VT. [Kottkamp 2003] described how
80% of the 28 patients in their study were rendered non-inducible after the placement
of line lesions that transected all potential isthmuses. The study in [Soejima 2001]
also used lines of RF lesions to treat unstable VT and suggested that less ablation
is needed when a reentry circuit isthmus is identified.

Furthermore, reentry isthmuses can be identified in a number of ways. In
[Soejima 2002], these were located by identifying electrically unexcitable scar within
low-voltage infarct regions. Other strategies include the assessment of pace maps,
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where an abrupt change in paced QRS morphology is hypothesized to be an index of
a successful ablation target in patients with well-tolerated post-infarct endocardial
re-entrant VT [De Chillou 2014] or through pace-mapping within the scar tissue
with the aim of identifying electrogram characteristics that are helpful for isthmus
identification during sinus rhythm, as done in [Bogun 2006]. The authors explained
how good pace maps at the sites of isolated potentials within the scar identify parts
of the critical isthmuses in post-infarction VT patients.

Voltage maps and local electrogram voltage characteristics have also been stud-
ied in the identification of slow conduction channels responsible for re-entrant cir-
cuits. The study in [Hsia 2006] defined a conducting channel as a path of multiple
activated sites within the VT circuit that demonstrated an electrogram amplitude
higher than that of surrounding areas and concluded that most entrance and isth-
mus sites of hemodynamically stable VT are located in dense scar, whereas exits are
located in the border zone. Nonetheless, these approaches require a careful voltage
threshold adjustment. In [Arenal 2004], the effect of different levels of voltage scar
definition in the identification of conducting channels inside the scar was studied
in a patient cohort with chronic myocardial infarction referred for VT ablation.
Although most of the conducting channels were identified by defining the voltage
scar with a threshold of ≤ 0.2mV and RFA supressed the inducibility in 88% of the
tachycardias, they concluded that a tiered decreasing-voltage definition of the scar
is critical for channel identification. [Di Biase 2012] suggested an aggressive scar
homogenization technique in which all abnormal electrograms were targeted, with
successful results in endo-epicardial applications. Others, like [Tilz 2014] described
how the use of linear ablations encircling the scar would yield its electrical isolation
and had promising results in VT treatment.

2.4.2 Endpoints for RFA Therapy

Traditionally, VT non-inducibility is still considered the endpoint in RFA treatment.
According to [Aliot 2009], three general endpoints to catheter ablation have been
evaluated:

1. Non-inducibility of clinical VT

2. Modification of induced VT cycle length (elimination of all VTs with cycle
lengths ≥ spontaneously documented or targeted VT)

3. Non-inducibility of any VT (excluding ventricular flutter and fibrillation)

Nonetheless, these are not guaranteed to be the optimal RF ablation endpoints
and debate still exists in their use for assessing ablation lesion creation [Aliot 2009].

Alternative Endpoints to RFA Therapy: In recent years, new endpoint strate-
gies have been proposed. For the treatment of VT in 18 patients with arrhythmo-
genic right ventricular cardiomyopathy (ARVC), [Nogami 2008] evaluated the mod-
ification of RFA therapy endpoint to the change in isolated delayed components
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(IDC). They concluded both that IDCs that appear in sinus rhythm are related to
clinical VT and can therefore be used as ablation targets and that a change in IDC
was a possible endpoint to the therapy due to the siginficantly lower VT recurrence
in patients who presented it with respect to those with no IDC or unchanged IDC.

A recent study with a larger cohort of 70 patients suffering from VT and struc-
turally abnormal ventricles proposes the elimination of local abnormal ventricular
activities (LAVA) as an endpoint for RFA therapy [Jaïs 2012]. The clinicians ablated
LAVA found through the use of a high-density mapping catheter during both sinus
rhythm or ventricular pacing and concluded that their elimination was associated
with a reduction in recurrent VT or death during long-term follow-up [Jaïs 2012].
Table 2.1 presents a non-exhaustive review of proposed strategies for substrate-
guided VT ablation.

2.5 Cardiac Electrophysiology Simulation

There exist several models for computing cardiac electrophysiology ranging from
highly complex to fairly simple. They can be broadly classified into three groups:
biophysical models, phenomenological models and Eikonal models.

- Biophysical models deal with a highly complex modelling of the differ-
ent ionic concentrations and channel dynamics at a cellular level and can
include over 50 variables; an example of them is the ten Tusscher model
[K. ten Tusscher 2004].

- Phenomenological models often appear as simplifications of the biophysi-
cal models, with a consequent reduction in the number of involved variables.
Nonetheless, they are still able to capture the shape of the action poten-
tial and are useful to model the propagation at the organ scale. The Aliev-
Panfilov [Aliev 1996], Fenton-Karma [Fenton 1998], FitzHugh [FitzHugh 1961]
and Mitchell-Schaeffer [Mitchell 2003] models belong to this group. These
models can be further classified into bi-domain or mono-domain. Bi-domain
models consider an intracellular and an extracellular domain separated by the
cell membrane but which remain overlapping and continuous. It models the
evolution of the potentials in both domains separately. Mono-domain models,
on the contrary, assume the extracellular potential is grounded. Therefore,
the intracellular potential is equal to that of the membrane.

- Eikonal models [Keener 1991] correspond to static non-linear partial differ-
ential equations of the depolarisation time derived from the previously men-
tioned models. They are not able to account for complex physiological states.

These models have been used for numerous applications [Trayanova 2011]
varying from the study of the normal wave propagation in the ventricles
[Simelius 2001] and the effect of repolarization parameter heterogeneity across the
heart [Franzone 2008] to the understanding of the organization of human ventricular
fibrillation to identify potential therapeutic targets [Ten Tusscher 2009].
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2.5.1 The Mitchell-Schaeffer Model

Throughout this thesis, the Mitchell-Schaeffer (MS) model was used to model car-
diac electrophysiology. It is a simplified biophysical model derived from the Fenton-
Karma ionic model [Mitchell 2003] [Fenton 1998]. It has found applications in
patient-specific personalisation for VT simulation [Relan 2011a] and interactive sim-
ulator generation of patient-specific electrophysiology [Talbot 2014].

It models the transmembrane potential as the sum of a passive diffusive cur-
rent and several active reactive currents including a combination of all inward and
outward phenomenological ionic currents. This is described in the MS model by a
system of partial differential equations:















∂tu = div(D∇u) + zu2(1−u)
τin

− u
τout

+ Jstim(t)

∂tz =

{

(1−z)
τopen

if u < ugate
−z

τclose
if u > ugate

(2.1)

Where:

u is a normalized transmembrane potential variable

z is a gating variable which depicts the depolarization and repolarization
phases by opening and closing the currents gate

zu2(1−u)
τin

represents the inward currents, Jin, which raise the action potential
voltage (primarily Na+ and Ca2+)

u
τout

represents the outward currents, Jout, that decrease the action potential
voltage (mainly K+), describing repolarization

Jstim is the stimulation current at the pacing location

τin, τout, τopen, τclose have units of seconds

D is a diffusion tensor that controls the diffusion term in the model

This model incorporates both action potential duration (APD) and conduction
velocity (CV) restitution effects, and the restitution curves can be written in an
analytical formulation.

APD restitution. It is an electrophysiological property of the cardiac tissue and
defines the adaptation of APD as a function of the heart rate. Its slope has a
heterogeneous spatial distribution. The APD restitution curve (APD-RC) defines
the relationship between the diastolic interval (DI) of one cardiac cycle and the
APD of the subsequent cardiac cycle. The slope of these RCs is controlled by a
model parameter τopen of the MS model and depicts the APD heterogeneity present
at multiple heart rates. APD-RC for MS model is explicitly derived as:
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APDn+1 = f(DIn) = τcloseln(
1− (1− hmin)e

−DIn
τopen

hmin
) (2.2)

where hmin = 4(τin/τout) and n is the cycle number. The maximum value of
APD is also explicitly derived as:

APDmax = τcloseln(
1

hmin
) (2.3)

CV restitution. This formulation is also present in the MS model. Its mathe-
matical formulation is described in the following equation, with g(DI) = CV as the
next cycle CV:
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2.6 Machine Learning in Medical Imaging

Deriving realistic mathematical models to explain complex physiological phenomena
can sometimes prove to be a difficult task. Machine learning is a branch of artificial
intelligence whose aim is the generation of algorithms capable of learning from ob-
servations in order to make predictions about future ones. It has found applications
in fields as varied as language processing [Collobert 2008] [Daelemans 2003], com-
puter vision [Taigman 2014] [Huang 2008] or stock market analysis [Huang 2005]
[Schumaker 2009]. Its increased use by the medical imaging community is due to
the processing of high volumes of multi-dimensional data, including uncertainty and
noise, coming from multi-modal sources that exist in this domain. Nonetheless, one
of the main challenges is the generation of ground truth, as it requires the annota-
tion of large volumes of data by a set of medical experts. Therefore, large efforts
are continuously being made to provide clinicians with user-friendly and efficient
annotation tools.

Among the various applications of machine learning techniques in the medi-
cal field are detection or segmentation of anatomical structures [Criminisi 2011a]
[Geremia 2013], registration [Muenzing 2012] [Aljabar 2012] and image recognition
[Margeta 2015].

Classification tasks are among the functions that machine learning techniques
are used for and many of such algorithms exist in the literature. One of the most
widely used is the support vector machines (SVM) classifier because it guaran-
tees maximum-margin separation in binary classification tasks. Boosting also ranks
among the most popular techniques and works by building a strong classifier as a
linear combination of many weak ones. Random forests have emerged as a machine
learning technique that can simply and effectively combine randomly trained classi-
fication trees and has been shown to be easily extendable to multiple class problems
[Criminisi 2011a].
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Figure 2.11: Classification: Training data and tree training. a) Input data
points. The ground truth label of training points is denoted with different colors.
Grey circles indicate unlabeled, previously unseen test data. b) A binary classifica-
tion tree. During training a set of labeled training points {v} is used to optimize the
parameters of the tree. In a classification tree the entropy of the class distributions
associated with different nodes decreases (the confidence increases) when going from
the root towards the leaves. Courtesy of [Criminisi 2011a]

2.6.1 Random Forests for Classification

Random forests are discriminative classifiers that generate a hierarchical represen-
tation of the training data which is optimized for testing. They have been chosen
as the machine algorithm framework of this thesis because, unlike state-of-the-art
classifiers such as SVMs, they are created in an intuitive and easily understandable
structure. Moreover, they also provide informative uncertainty measures on the clas-
sification results [Criminisi 2011a], which would only be possible with probabilistic
SVM implementations such as the relevance vector machine at the expense of com-
putational efficiency. They also possess maximum-margin properties, the hallmark
of SVMs, implicitly incorporate the notion of bagging into their framework and
compare to boosting techniques by building strong classifiers from a large number
of weaker ones. This framework has already successfully found multiple applica-
tions in the medical image processing community, such as brain lesion segmentation
[Geremia 2013], myocardium delineation in 3D echocardiography [Lempitsky 2009],
segmentation of the left atrium in 3D MRI [Margeta 2014b] and organ localization
in CT volumes [Criminisi 2011a].

The goal in classification is to automatically associate an input data point
v with a discrete class c ∈ {ck}. Machine learning algorithms have proven to
be powerful tools to discover the relevant correlations within a dataset and to
design a classification method based on the most discriminant features. The
training data consists of a set of labeled observations T = vk, Y (vk) where the
label Y (vk) is most commonly given by an expert clinician in the medical imaging
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domain. When asked to classify a new input observation, the classifier aims to
assign it a label y(v). The process of classification can be divided into an of-
fline training phase and an online testing phase, both of which will be described next.

Training phase

During training, exemplified in Figure 2.11, the algorithm optimizes the param-
eters of the weak learner at each split node (j):

θ∗j = argmax Ij
θj∈τj

(2.5)

where the objective function Ij is the information gain for discrete distributions:

Ij = H(Sj)− Σ
i∈L,R

| Si
j |

| Sj |
H(Si

j) (2.6)

with i ∈ L,R representing the left and right child nodes. The term H(S) corre-
sponds to the Shannon entropy:

H(S) = − Σ
c∈C

p(c) log p(c) (2.7)

and p(c) is calculated as the normalized empirical histogram of labels correspond-
ing to the training points in S. It can be seen in Figure 2.11 that the maximization
of the information gain in the trees produces entropy of the class distributions that
decrease, and therefore the prediction confidence increases, as you move towards the
leaves.

A degree of randomness is injected to the trees during this phase by random
training data set sampling (bagging), which corresponds to providing the tree with
only a partition of the training data as input [Criminisi 2011a]. It is important to
note that the generation of the random subset τj can be done on the fly.

The choice of parameters in the generation of the forest has an impact in
the model predictions, particularly that of the forest size and the tree depth
[Criminisi 2011a]. Their effects can be briefly summarized as following:

- Forest Size. The forest has T components with t indexing each tree. Single
trees produce over-confident predictions, which are likely to yield erroneous
classifications when presented to test data. With an increase of the number of
trees and the averaging of their posteriors, forests improve their generalization
behavior by producing smoother posteriors, as showin in Figure 2.12.

- Tree Depth. This parameter controls the amount of overfitting. Forests built
with trees that are too shallow produce low-confidence posteriors, whereas
increasing the depth of the forests can lead to overfitting.

Testing phase

Once the trees are fixed during the training phase, the testing phase (depicted
in Figure 2.13) is completely deterministic. When applied to a new test signal
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Figure 2.12: Effect of forest size in classification. Increasing the forest size T
produces smoother class posteriors. Courtesy of [Criminisi 2011a]

Ttest = ~vk, it is propagated through all the trees by successive application of the
relevant binary tests. When the final leaf node, lt is reached in all trees, t ∈ [1..T ],
the posteriors plt(Y (~v) = b) are gathered to compute the final posterior probability
defined as the mean over all the trees in the forest:

p(y(~v) = b) =
1

T

T
∑

t=1

plt(Y (~v) = b) (2.8)

It is important to highlight that, as shown by the previous equation, classification
forests produce a probabilistic output by returning not only a single class point
prediction but an entire class distribution [Criminisi 2011a].

Figure 2.13: Classification forest testing. During testing the same unlabeled
input data v is pushed through each component tree. At each internal node a test
is applied and the data point sent to the appropriate child. The process is repeated
until a leaf is reached. At the leaf the stored posterior pt(c|v) is read off. The
forest class posterior p(c|v) is simply the average of all tree posteriors. Courtesy of
[Criminisi 2011a]



2.7. Conclusion 25

2.7 Conclusion

In this chapter, we presented a background of cardiac anatomy and electrophysiol-
ogy, in both the healthy heart and the pathological arrhythmia scenario. We also
described the technologies being used to date in clinics to map cardiac electrophys-
iology in a minimally invasive manner. Radio frequency ablation as a potentially
curative treatment was presented as well as the challenges it presents. On the tech-
nical side, a description of the types of mathematical models being used in cardiac
eletrophysiology research was included. Lastly, we briefly introduced the growing
field of machine learning in the medical domain.
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tachycardia inducibility and circuit morphology: A combined clinical validation
and modelling approach to guide potential ablation". Submitted to JACC EP in
2015.

3.1 Introduction

Current risk stratification in patients who are at risk of potentially fatal ventricular
arrhythmias but without a prior history of sustained arrhythmia relies on deter-
mination of left ventricular (LV) function, the presence of myocardial scar and ar-
rhythmia inducibility during electrophysiological testing [Moss 1996] [Nat 2006]. In
patients with ventricular arrhythmias, especially those with ischaemic cardiomyopa-
thy (ICM), radiofrequency ablation (RFA) is increasingly used to treat ventricular
tachycardia (VT) in order to reduce implantable cardioverter defibrillator (ICD)
discharges, improve patient quality of life and reduce mortality as ICD shocks are
a cause of substantial morbidity. The current risk stratification strategy is imper-
fect with not all high-risk patients receiving an ICD and those receiving one never
experiencing appropriate therapies. Similarly, ablation of VT is technically chal-
lenging with a recurrence rate of up to 40% with a lack of clinical consensus on the
optimal ablation strategy [Aliot 2009]. Better risk stratification and higher abla-
tion success rates would potentially improve patient outcomes. There is therefore
a need to identify individuals at high risk of developing ventricular arrhythmia and
the arrhythmia substrate amenable to RFA in order to guide the optimal ablation
strategy [Stevenson 1993].

Computational modelling of cardiac arrhythmogenesis and arrhythmia mainte-
nance have made a significant contribution to the understanding of the underlying
mechanisms of arrhythmia [Courtemanche 1991] [Watanabe 2001] [Panfilov 1995]
[Jalife 1996] [Cherry 2004] [Clancy 1999]. Studies have identified multiple factors
involved in the onset of arrhythmia, including wave fragmentation, spiral wave
breakups, heterogeneity of repolarization, action potential duration (APD) resti-
tution and conduction velocity (CV) [Trayanova 2009] [Killeen 2008] [Pueyo 2011]
[Yue 2005] [Arevalo 2007] [Banville 2002]. In particular, the heterogeneity in APD
restitution, the adaptation of APD as a function of the cardiac cycle length, has a
crucial role in arrhythmogenesis [Cherry 2004] [Nash 2006] [Clayton 2011]. Image-
based computational models have incorporated cardiac structural information into
such simulations [Relan 2011a] [Ashikaga 2013]. However the integration of both
personalized structural and functional data has not previously been performed.

We hypothesized that using electrophysiological mapping data and structural
anatomical data acquired respectively from invasive electrophysiology studies and
high-resolution cardiac magnetic resonance imaging (MRI), we could develop a
patient-specific biophysical model to evaluate how these properties were involved in
the induction of VT. In a subgroup of the patients, we also compared in silico VT
stimulation studies against clinical VT stimulation studies conducted in the cardiac
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catheterization laboratory to predict both VT inducibility and the characteristics
of the induced VT circuits.

3.2 Methods

3.2.1 Patients

All patients were prospectively invited to participate in the study following local
research ethics committee approval and all patients gave written consent prior to
study inclusion. We studied 7 patients, 5 with ischaemic cardiomyopathy (ICM) and
2 with non-ischaemic dilated cardiomyopathy (NICM) defined in accordance with
the criteria of the World Health Organisation/International Society and Federation
of Cardiology [Richardson 1996]. All patients were being considered for ICD implant
for primary prevention on the basis of their LV function. All patients underwent MRI
with delayed enhancement (DE) for scar assessment prior to their electrophysiology
study to acquire cardiac anatomical and functional information. Three patients
underwent a clinically indicated VT stimulation study.

3.2.2 MRI Acquisition and Image Processing

All 7 patients completed MRI morphological and volumetric assessment as well
as scar characterization by DE-MRI. Imaging was performed on a Philips Achieva
1.5T scanner using a 32 channel cardiac coil. A high-resolution three-dimensional
(3D) whole heart balanced steady-state free precession (B-SSFP) free-breathing
scan with (acquired) isotropic resolution of 1.8 mm3 was performed using respi-
ratory navigator motion correction for the purpose of cardiac structure segmenta-
tion. LV volumetric assessment was performed using a standard stack of short-axis
B-SSFP slices. High-resolution scar imaging was acquired using a free-breathing
respiratory navigated inversion-recovery sequence 20 minutes post intravenous in-
jection of a gadolinium contrast agent (Gadobutrol 0.2mmol/kg), with an acquired
voxel size 1.3×1.3×2.6mm3, field of view approximately 300×300×100mm, repeti-
tion time/echo time of 5.4/2.6ms and flip angle 25 degrees. Patient-specific inversion
time for the sequences was selected individually based on a preceding Look-Locker
scan to ensure the optimal nulling of the myocardium.

LV volume and ejection fraction were calculated from the short-axis B-SSFP
images using a ViewForum Workstation (Philips Healthcare, Netherlands). The 3D
B-SSFP structure images were processed to obtain a structural model of the four
chambers of the heart using software developed within an open source frame-work
GIMIAS [Peters 2007] [Larrabide 2009]. The LV myocardial scar distribution was
segmented using signal intensity (SI) based analysis from the high-resolution DE-
MR images. Using the full width-half-maximum (FWHM) method, all voxels with
SI values above the half of the maximum SI were automatically characterized as
scar core. The standard deviation of a manually selected remote region of presumed
non-infarct myocardium was computed. Pixels with SI higher than twice this stan-
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dard deviation (2SD) but lower than that identified as scar core were automatically
assigned as gray zone (an admixture of scar and healthy myocardium scar, often in
the region of scar border zone) [Kim 2009]. Finally, a personalized 3D model of the
ventricles was derived from the MRI images: a tetrahedral mesh was generated from
the binary mask of the ventricles using the CGAL software (http://www.cgal.org).
Each element of the mesh was labelled (healthy / scar core / gray zone) according
to the segmentation of the myocardium performed in the previous step.

3.2.3 Electroanatomical Mapping and Signal Processing

LV non-contact electroanatomic mapping (EAM) was performed using a multi-
electrode array catheter (EnSite Velocity System, St Jude Medical, MN, USA)
passed via the femoral artery retrogradely across the aortic valve into the LV cav-
ity in all seven patients. The EnSite system uses the inverse solution method to
reconstruct endocardial electrical potentials within the LV cavity [Schilling 1998].
The chamber geometry was reconstructed using locator signals from a steerable
electrophysiological catheter. Three patients (Patients 1-3) with ICM underwent a
simultaneous VT stimulation study according to the Wellens protocol with pacing
from the RV apex during the mapping study [Wellens 1985] as part of the clinical
work-up for risk stratification to determine if an ICD should be implanted as per
National guidelines [Nat 2006].

Unipolar electrograms (UEG) derived from non-contact mapping were filtered
from an electrophysiology recorder (EnSite Velocity System) with a band-pass filter.
In order to optimize QRS complex and T wave detections, the high-pass and low-pass
filter cut-off frequencies were set respectively at 10Hz/300Hz and 0.5Hz/30Hz. The
data were then exported for offline analysis. The depolarization times were detected
within the QRS window and derived from the zero crossings of the laplacian of the
measured UEGs [Coronel 2000]. The repolarization times were detected within the
ST window for the signals and derived using the alternative method [Yue 2004]. The
alternative method has repolarization times derived from −dV/dtmax for the nega-
tive T-wave, at the dV/dtmin for the positive T-wave, and the mean time between
−dV/dtmax and dV/dtmin for the biphasic T-waves.

The relationship between the diastolic interval (DI) of one cardiac cycle and
the APD of the subsequent cardiac cycle is described by the APD restitution curve
(APD-RC). The difference between the depolarization time and repolarization time
was used to estimate the activation recovery time (ARI), which is a surrogate marker
for APD. The APD-RC was estimated during steady state RV pacing (600ms, 500ms
and 400ms) with sensed extras at different coupling intervals. The APD-RC was rep-
resented by a non-linear equation using a least-squares fit to the mono-exponential
function as previously detailed on experimental and clinical data [Relan 2011a]
[Relan 2011b]: a single APD-RC was fitted for each measured point from the EAM
and the maximum APD was estimated as the asymptotic APD of the APD-RC,
when the DI tends to infinity.

http://www.cgal.org
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3.2.4 Cardiac Electrophysiology Models

The present study used a coupled personalization framework that was previously
evaluated in details [Relan 2011a] [Relan 2011b]. It combines the benefits of two
different kinds of mathematical models while keeping the computational complexity
tractable. The Eikonal (EK) model was used to estimate the conductivity parame-
ters over the ventricle derived from non-contact mapping of the ventricular endocar-
dial surface potential, which were then used to set the parameters for the Mitchell-
Schaeffer (MS) model. Additionally, the MS model is able to hold the memory of one
preceding cycle and has restitution properties, thus is able to simulate arrhythmias
macroscopically. Both models are computed on the whole 3D myocardium. This
personalization framework has already been detailed in a previous publication and
the predictive power of such personalized model was evaluated on experimental data
[Relan 2011a] [Relan 2011b]. The process of building the models from the MRI and
EAM data is illustrated in Figure 3.1 and a summary on the used models and their
personalization are included in the following sections.

Figure 3.1: Personalized computer modelling process. Upper panel: (A) high-
resolution contrast-enhanced MRI scar images; (B) whole heart model segmented
from 3D steady-state free precession (SSFP) MRI with scar (core and gray zone)
in violet; (C) low voltage areas from electroanatomical mapping. Lower panel: (D)
model personalization and in silico VT stimulation study procedure workflow.
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Eikonal (EK) Model The EK model simulates the propagation of the depolariza-
tion wave in cardiac tissue by computing the local activation time. It is governed by
the Eikonal-diffusion equation and solved using the fast marching method. It can
be written as:

co
√

dEK(
√

∇T (x)tM∇T (x)−∇ · (dEKM∇T (x))) = τ(x) (3.1)

Where :

co is a dimensionless constant (=2.5)

τ(x) is the cell membrane time constant (=0.003s)

dEK is the square of the tissue space constant along the fiber and is related to
the specific conductivity of the tissue in the fiber direction, it has units of m2

M = diag(1, ρ, ρ) is a diffusion tensor that incorporates the tissue anisotropy
into the model

ρ =1 /2.52 is the anisotropy ratio between longitudinal and transverse diffusion.
This value is given to have a conduction velocity (CV) 2.5 times faster in the
fiber direction

Details for solving the previous non-linear equation are explained in a prior
publication [Sermesant 2005].

Mitchell Schaeffer (MS) Model The MS model is a simplified biophysical model
derived from the Fenton Karma ionic model [Mitchell 2003] [Fenton 1998]. It models
the transmembrane potential as the sum of a passive diffusive current and several ac-
tive reactive currents including combination of all inward and outward phenomeno-
logical ionic currents. This is described in the MS model by a system of partial
differential equations:















∂tu = div(D∇u) + zu2(1−u)
τin

− u
τout

+ Jstim(t)

∂tz =

{

(1−z)
τopen

if u < ugate
−z

τclose
if u > ugate

(3.2)

Where:

u is a normalized transmembrane potential variable

z is a gating variable which depicts the depolarization and repolarization
phases by opening and closing the currents gate

Jin = zu2(1−u)
τin

represents the inward currents (primarily Na+ and Ca2+)
which raise the action potential voltage

Jout =
u

τout
represents the outward currents that decrease the action potential

voltage (mainly K+), describing repolarization
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Jstim is the stimulation current at the pacing location

τin, τout, τopen, τclose have units of seconds

M is a diffusion tensor that controls the diffusion term in the model

This model incorporates both APD and CV restitution effects, and the resti-
tution curves can be written in an analytical formulation, which can be used to
estimate restitution parameters.

3.2.5 Model Personalization

Apparent Conductivity Parameter Estimation. The apparent conductivity
(AC) of tissue can be measured by the parameter dEK in the EK model. It is initially
estimated on the endocardial surface as a global value using a bisection method that
matches the average conduction velocity of the measured depolarization time (DT)
isochrones to the simulated ones. It is used as an initial estimate in an adaptive
multi-level domain decomposition algorithm, which minimizes the mean-squared
difference of the simulated and measured DT isochrones [Chinchapatnam 2008].
One particular aim of this step is to estimate areas with high conduction velocity,
which can represent parts of the Purkinje network.

Extrapolation of myocardial volumetric parameters from endocardial

data, imaging and body surface ECG In order to propagate the estimated
parameters to the whole myocardium, the present approach uses a diffusion-like
process that smoothly extrapolates the estimated endocardial parameters. This
estimation is based on the model using the anatomical 3D information from the
MRI scar images and the global electrical information (ECG). The transmural AC
value is estimated in order to fit the measured QRS duration, by a one-dimensional
minimization of the following cost function: (mean-squared difference of simulated
and measured isochrones at endocardium + squared difference of simulated and
measured QRS duration). The simulated QRS duration is calculated as the
difference between the maximum and the minimum depolarization times in the
biventricular mesh and the measured QRS duration is estimated from the surface
ECG. The AC values for RV endocardium and RV myocardial mass are set at
5 mm2 and 0.64 mm2 as previously described [Keener 2010]. Such estimation
method has been validated by experimental data [Relan 2011b]. Due to the absence
of transmural electrical propagation information, no variation is assumed across
the healthy left ventricular myocardium, excluding the LV endocardium which was
personalized as described in the previous paragraphs and the scar personalized
from imaging, see below.

Coupling of EK and MS Model Parameters The AC parameter for dEK model
is a scale for the diffusion speed of the depolarization wave front in the tissue. In
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3D, the model Conduction Velocity (CV) is related to dEK as :

cEK = αEK

√

dEK + βEK (3.3)

where the constants αEK and βEK are introduced to take into account the
discretization errors (in particular of the curvature) in 3D.

The corresponding conductivity parameter for MS model, dMS is also a scale
for the wave diffusion speed in the tissue. The model CV here is related to dMS as:

cMS = αMS

√

dMS + βMS (3.4)

where the constants αMS and βMS are introduced for the same reasons as of EK
model, while τin is kept as a constant. The estimated AC parameter dEK can then
be used to estimate the parameter dMS as previously described [Relan 2011a].

To represent the volumetric heterogeneity of the border zone, the intensity
values derived from the 3D DE-MRI images were used to modulate the spatial
variation in the AC values of scar border zone (the higher the signal intensity seen
on DE-MRI images, the lower the tissue conductivity). AC values were assigned to
zero in the scar core, to reflect the paucity of viable cardiac myocytes.

APD Restitution Curves. APD restitution is an electrophysiological property of
the cardiac tissue and defines the adaptation of APD as a function of the heart rate.
Its slope has a heterogeneous spatial distribution. The APD restitution curve (APD-
RC) defines the relationship between the diastolic interval (DI) of one cardiac cycle
and the APD of the subsequent cardiac cycle. The slope of these RCs is controlled
by a model parameter τopen of the MS model and depicts the APD heterogeneity
present at multiple heart rates. APD-RC for MS model is explicitly derived as:

APDn+1 = f(DIn) = τcloseln(
1− (1− hmin)e

−DIn
τopen

hmin
) (3.5)

where hmin = 4(τin/τout) and n is the cycle number. The maximum value of
APD is also explicitly derived as APDmax = τcloseln(1/hmin).

CV Restitution Curves. In the current study, a greater emphasis is placed on
the impact of APD restitution, as in our experience CV restitution has a greater im-
pact on propagation at a much higher pacing frequencies than our sampling pacing
range. If deemed relevant, CV restitution can also be personalized, as the param-
eters to adjust CV restitution are also present in the Mitchell-Schaeffer model. Its
mathematical formulation is described in the following equation: with g(DI) = CV

as the next cycle CV.

g(DI) = (
1

4
(1 +

√

1−
hmin

h(DI)
)−

1

2
(1−

√

1−
hmin

h(DI)
)

√

2dh(DI)

τin
) (3.6)
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However, these parameters also impact the APD restitution formula, so a slightly
more complex model like the Fenton-Karma model may be better suited in such
application [Fenton 1998].

3.2.6 In silico VT Stimulation Study

In 3 patients with ICM, clinical VT stimulation studies were carried out at the same
time as EAM. In these patients, the personalized model was used to simulate a clini-
cal VT stimulation study in silico in order to predict the initiation and maintenance
of ventricular arrhythmia. The simulated study was performed in accordance with
the clinical study protocols that were carried out in these patients: the pacing stim-
uli were applied from the RV apex following the Wellens protocol. If a sustained
VT was initiated in silico, the VT cycle isochrones were computed to locate the
site of the earliest activation corresponding to the exit point of the re-entrant VT
circuit. These results were compared with the observed results from the clinical VT
stimulation studies. Each stage for the VT stimulation in silico was simulated in
parallel on a cluster of computers. The personalization plus VT simulation study
for a mesh of >230,000 tetrahedra runs in approximately 12 hours.

In order to test in silico the inducibility of VT from other pacing sites, the
VT stimulation study was also simulated from alternate pacing sites in the RV
and LV that encompassed the basal and apical freewall/lateral/septum/anterior
and inferior walls. This allowed identification of all the potential VT circuits and
exit points of induced sustained monomorphic VT from the simulated study. The
exit points identified during the clinical VT stimulation studies as well as the exit
points identified during the in silico simulations were characterized in terms of the
spatial heterogeneities of the AC, APD restitution properties, scar and gray zone
at their locations.

VT simulation with solely image-based personalized parameters. A sensi-
tivity analysis where the performance of a model constructed using non-personalized
empirical electrical parameters was compared to that using personalized patient-
specific electrical data. For all cases, patient anatomy and scar geometry was pre-
served. The VT simulation procedure was performed as described in the previous
sections.

The personalized mesh was divided into three different types of tissue, guided
by the delayed enhanced MR imaging information: healthy myocardium, grey zone
and scar core. Nodes within the scar core tissue were set to have zero apparent con-
ductivity values. Conduction and restitution parameters in the healthy myocardium
tissue were set to the average value computed from the personalized models across
patients. This yielded values of 4 m2s2 for the apparent conductivity and τclose =
180ms, τin = 0.3ms, τout = 6ms, τopen = 160 ms for the restitution model parameters.

According to the described values of conduction velocity and restitution pa-
rameters in the literature, model parameters were modified in the grey zone areas
[Yao 2003] [Decker 2010]. Conduction velocity parameters were reduced by 90%
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with respect to those in the healthy myocardium. Restitution parameter values in
the grey zone regions were set to have a 25% longer action potential duration (in-
crease in τclose parameter) and a 31% smaller upstroke velocity (increase in the τin
parameter) than those in the healthy myocardium.

3.3 Statistical Analysis

The electrical parameters consisted of multiple data points, each corresponding to a
different location within the LV of the individual patients. The data were expressed
by median and inter-quartile range (IQR) or mean and standard deviation. Contin-
uous variables were compared using Median test. A p value < 0.05 was considered
to be statistically significant. All statistics were performed using computer software
SPSS Statistics, version 21, SPSS Inc., IBM, USA.

3.4 Results

Table 3.1 summarizes patient characteristics and MRI findings. During the clinical
VT stimulation studies, patients 1 and 2 developed sustained monomorphic VT,
while patient 3 was non-inducible. All seven patients were implanted with an ICD
for primary prevention based on guidelines following clinical assessment. During
a median follow-up period of 22 months, IQR 9 months, Patient 2 and Patient 4
received appropriate ICD therapy for sustained VT.

3.4.1 Spatial Heterogeneities in AC and APD Restitution Proper-
ties

The spatial heterogeneities of the LV myocardium in terms of apparent conductivity
and APD restitution properties were characterized for each patient. The estimated
APD restitution properties and tissue conductivity across the LV endocardium are
depicted in Figure 3.2. The range of AC across the LV was comparable across
the 7 patients. The median APD-RC slopes and maximum asymptotic APD for
NICM patients was lower than that for ICM patients (p<0.01). Amongst the three
patients who underwent a clinical VT stimulation study, Patients 1 and 2 with
positive clinical VT stimulation studies had APD-RC slopes IQRs of 1.50 and 1.02
and maximum APD IQRs of 123ms and 66ms respectively. The range of APD-RC
slopes and maximum asymptotic APDs were greater than that of Patient 3 with
a negative clinical VT stimulation study who had an APD RC slope IQR of 0.48
and a maximum APD IQR of 36ms. Patient 4 with appropriate ICD therapy on
follow-up had a greater APD RC slope IQR than Patients 5-7 with no appropriate
ICD therapy on follow-up.

The APD-RC properties and ACs are illustrated on LV polar plots in Figure 3.3
to provide a qualitative assessment of the spatial heterogeneity of these parameters
across different regions of the LV. There appeared to be a broad spatial heterogeneity
in AC in all the study patients including the two patients with NICM who also had
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Table 3.1: Baseline patient characteristics and MRI findings.

Patient 1 2 3 4 5 6 7

Condition ICM ICM ICM ICM ICM NICM NICM
Gender M M M M F M M
Age 73 69 64 60 65 75 81
Co-morbidities HTN None HTN, AF DM None AF PAF
B-blocker Yes Yes Yes Yes Yes Yes Yes
ACE-I/ARB Yes Yes Yes Yes Yes Yes Yes
Statins Yes Yes Yes Yes Yes No Yes
LVEF, % 27 35 35 25 31 36 17
LVEDV, ml 199 292 245 304 185 196 285
LV mass, g 129 172 147 182 118 89 206
Scar on MRI Yes Yes Yes Yes Yes Yes Yes
Scar core, g 8 22 20 12 16 7 12
Gray zone, g 12 26 4 19 7 8 5

ACE-I indicates angiotensin converting enzyme inhibitor; AF, atrial fibrillation;
ARB, angiotensin receptor blocker; MRI, magnetic resonance imaging; EDV, end-
diastolic volume; EF, ejection fraction; ICM, ischaemic cardiomyopathy; LV, left
ventricle/ventricular; NICM, non-ischaemic dilated cardiomyopathy, PAF, paroxys-
mal atrial fibrillation.
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Figure 3.2: Box-whiskers plots of spatial heterogeneity of apparent conductivity (A);
maximum APD-RC slope (B); and maximum APD (C) for each of the patients. Box
= median and quartile ranges; whiskers = total range. Data range values for each
of the boxplots are shown at the bottom of each box-plot. Colour coding shows the
range varies from the largest (darker brown) and the smallest (lighter brown) for
each parameter.

regions of low AC in areas without DE seen on MR scar images. However, there
was a wide variation in the spatial heterogeneity of APD-RC properties across the
cohort, with patients 1 and 2 showing the most heterogeneity. The VT exit points
that were observed during the clinical VT stimulation studies in Patients 1 and 2
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appear to be at the region with the steepest gradients in heterogeneity of APD-
RC properties and AC. In addition, these VT exit points were in the scar border
zone/gray zone as determined by the DE-MRI scans.

Figure 3.3: LV polar plot representation of the spatial distribution of the maximum
slope for APD-RCs, maximum asymptotic APD and AC. Scars identified by DE-
MRI with its border zone (highlighted by gray contours) and clinically observed exit
points (highlighted by white contours, fang-shaped due to unfolding of 3D volume
surface to 2D polar plot) during re-entrant VT are overlaid to the polar plots.
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As local spatial heterogeneity of electrical properties can play an important role
in arrhythmogenesis, the differences in AC, APD and ARD-RC between neighbour-
ing regions in the LV (each region ≈ 3mm3) were calculated by evaluating the
gradient of the parameters in polar coordinates (as presented on bull’s eye plots).
The gradient amplitude reflects how smooth or abrupt the transition is between
values in the spatial domain. Using a definition of "high gradient" being greater
than the 90th percentile of the gradient range, the proportion of LV regions with
high gradients was analysed for each patient. There were no statistically significant
differences in the number of elements with high gradients (≥ 90 percentile) between
patients. However if we look at a combined heterogeneity of both AC and APD-RC
in patients, those with inducible VT (P1 and P2) have combined higher values and
can then be separated in this representation, see Figure 3.4.

3.4.2 VT Induction and Clinically Observed Exit Points

Patient 1 had induced sustained monomorphic VT with a cycle length (CL) of 275ms
at Stage 11 of the Wellens protocol (S1 500ms, with S2, S3 and S4 at 250ms, 240
and 360ms respectively). Patient 2 had induced SMVT with a cycle length of 245ms
at Stage 4 of the Wellens protocol (S1 600ms, with S2 at 400 and S3 at 360ms). In
Patient 1, the endocardial activation recorded from EAM showed the re-entrant VT
circuit initiating from the LV lateral wall, spreading anteriorly and then posteriorly
before returning to the lateral wall. In Patient 2, the re-entrant VT circuit exited
from the LV infero-lateral wall, spreading antero-laterally and then towards the
septum, before returning to the infero-lateral wall. The patterns of activation for
both re-entrant VT circuits are illustrated in Figure 3.5.

Analysis of the UEG recording from the EAM showed a higher percentage of
maximum APD-RC slope that is 2SD above the mean LV APD-RC slope at the
observed exit points (32%) compared to the scar (4%) and non-scar regions (0.2%).
The absolute values in APD and tissue conductivity between the three areas were
not as distinct although the exit point values (APD: median 319ms, IQR 45ms; AC:
median 3.4m2/s2, IQR 2.5m2/s2) appeared to lie between those of the scar (APD:
median 385ms, IQR 136ms; AC: median 0.4m2/s2, IQR 2.1m2/s2) and non-scar
regions (APD: median 305 IQR 49ms; AC: median 4.7m2/s2, IQR 2.4m2/s2). It is
possible that it is the heterogeneity in regional tissue electrical properties distribu-
tions rather than the absolute mean or median that may allow us to identify the exit
points from other regions of the myocardium. However, this observation is based on
just two subjects with induced VT during clinical VT simulation study.

3.4.3 Model-Predicted vs. Clinically-Observed Induced VT

The VT stimulation studies performed on Patients 1-3 were simulated in silico using
the personalized computer model. Sustained monomorphic VT was induced at Stage
7 of the virtual Wellens protocol for Patient 1 (drive-train S1 at 400ms, first coupled
extra stimulus S2 at 220ms) and stage 5 for Patient 2 (drive-train S1 at 500ms, and
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Figure 3.4: Percentages of LV spatial domain with high gradient (≥ 90 percentile
differences between neighbouring regions) in terms of AC, maximum asymptotic
APD and APD-RC slope for each patient.

coupled S2 at 220ms). LV polar plots of the clinical and virtual VT isochrones are
illustrated in Figure 3.6 for comparison. Sustained VT was not inducible in silico
for Patient 3.

The personalized model of patient 1 predicted a sustained re-entrant VT (in-
duced with drive-train S1 at 400ms, S2 at 200ms and S3 at 200ms) circuit with a
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Figure 3.5: Isochrones mapping during re-entrant VT. (A) Patient 1 with VT cycle
length 275ms and (B) Patient 2 with VT cycle length 245ms. In Patient 1, the
sustained VT self terminated after attempts of pace termination given due to pa-
tient’s favorable hemodynamic response. In Patient 2, the sustained VT required
DC-cardioversion due to patient’s unfavorable hemodynamic response. The 3D VT
isochrones with exit points (red) in relation with scar core (white) and gray zone
(gray) are shown in the left panels. Unipolar electrograms recording during VT
are shown in the middle panels. LV polar plots of VT isochrones illustrating the
direction of activation pattern are shown in the right panels.

cycle length of 260ms compared with the clinically observed cycle length of 275ms
with a macroscopically similar activation pattern and a predicted exit point that
matched with the observed clinical one. The personalized model of Patient 2 also
predicted a positive VT (induced with drive-train S1 at 500ms, S2 at 200ms) stim-
ulation study with a cycle length of 250ms compared with 245ms for the clinical
VT. The induced VT was sustained and the re-entrant pathway stable. Notably the
direction of the activation pattern during the predicted re-entrant VT was reversed
from that observed clinically; however, the predicted exit point correlated with the
clinically observed one. We performed additional quantitative analysis on the pa-
tients’ 3D anatomies to make a comparison of clinically observed and predicted
exits points in terms of anatomic location. We defined the exit region compassing
anatomical points with an activation time within 10ms of the earliest activation.
The distance between the clinically observed and simulated exit points was defined
as the 3D Euclidean distance between the centres of both exit regions. A difference
of 7mm and 8mm were found, respectively, for patients 1 and 2. The personalized
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Figure 3.6: VT isochrones of induced re-entrant VT during clinical VT stimulation
study (left panel) and during in silico VT stimulation study (right panel). The
arrows point towards the directions of propagation. Scars (core and gray zone) are
superimposed to the LV shell shown in darkened regions.

model of Patient 3 could not induce VT using the virtual Wellens protocol, but
induced frequent monomorphic ventricular ectopic in agreement with the clinical
study.

3.4.4 Simulated VT Stimulation from Additional Sites

VT stimulation study was also performed in silico by pacing from other sites than
the RV apex used during the clinical study for Patients 1 and 2. Different VT
circuits with three additional exit points were observed in both patients. The exit
points were located on the boundary of scar in the region of the gray zones from the
DE-MRI images. Similar to the clinically observed exit points, they were mostly in
the region of maximum APD-RC slope. The composite of different exit points are
plotted in Figure 3.7 in terms of their APD restitution properties and AC.

3.4.5 Three-Dimensional VT Circuit Visualization

The computer model enabled the prediction of a 3D VT circuit, as opposed to the 2D
VT activation pattern observed by the non-contact EAM, by taking into account
the 3D geometric information from MRI including the transmurality of scar core
and gray zone across the LV wall. This allowed additional insights on the wave
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Figure 3.7: Correlation of predicted exits points with structural heterogeneity and
functional heterogeneity. A = Patient 1. B = Patient 2. The left panel shows the
isochrones for the three predicted VT circuits with fangs of white lines denoting
the exit points. The middle panel demonstrates the LV scar distribution with black
region denoting healthy myocardium, white region denoting the scar core and the
gray region denoting the gray zone/scar boarder zone with overlying composite exit
points (fanged green lines). The right panel demonstrates the electrical properties
with overlying composite exit points (fanged green lines).

propagation within the myocardium through computer simulation. For Patient 2,
the main VT circuit in the myocardium computed from the geodesic path of the
predicted VT isochrones is shown in red in Figure 3.8. Between the entry (the latest
activated region) and the exit (the earliest activated region) points, the activation
wave front of the re-entrant VT propagates in the region of the gray zone. The
estimated wave front path surrounds the scar core and lies within the scar border
zone, entering from the endocardial surface, meandering within the ventricular wall,
and exiting via the epicardial surface.

3.4.6 Results for solely image-based personalized parameters.

We performed additional sensitivity analysis using solely image-based personalized
electrical parameters instead of personalized patient-specific electrical data in the
two patients with positive clinical VT stimulation studies and found that using com-
bined personalized electrical and image data can potentially improve the accuracy
of VT inducibility and predictions regarding the location of exit zones predictions.
Using non-personalised empirical electrical parameters VT was not inducible in Pa-
tient 1. It also induced a different macroscopic VT circuit morphology from the one
seen during the clinical study in Patient 2. The Euclidean distance between the
centre of the clinical exit region and that predicted using non-personalized electri-
cal parameters was 37mm, and with using personalized electrical parameters it was
8mm.
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Figure 3.8: Estimation of the intra-myocardial path between the entry and exit
points during re-entrant VT. Estimated endocardial 2D geodesic path between the
entry and exit points from electroanatomical study during clinical VT stimula-
tion study is demonstrated by the isochrones map. Estimated intra-myocardial
3D geodesic path (red line) takes into account of the scar heterogeneity from the
high-resolution MR images. The entry and exit points are illustrated by the graded
colours on the 3D path with blue denoting late activation and red denoting early
activation. The activation wave path is shown traveling within the region of scar
border zone (purple wire mesh), between the scar core and the gray zone.

3.5 Discussion

The present study provides new insights into the prediction of VT circuits using a
computerized biophysical model. The principal findings of our study are as follows:

1. The location of scar border zone (gray zone) on high resolution DE-MRI corre-
lates with areas of abnormal measured and model derived electrical properties.

2. The model provided mechanistic insights into the underlying electrophysio-
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logical substrate of the VT circuits showing that the VT exit points have a
substantially higher percentage of tissue with steep APD-RC slopes compared
to surrounding tissues.

3. In silico VT stimulation studies were able to predict inducibility of VT in
patients at risk of ventricular arrhythmia.

4. The characteristics of the modeled VT circuits correlated well with the clini-
cally observed circuits in terms of cycle length, macroscopic activation patterns
and VT exit sites.

3.5.1 Co-location of Tissue and EP Properties Heterogeneity

We found a correlation between the spatial heterogeneity in APD, APD-RC slopes
and AC and the location of gray zone detected on high-resolution DE-MRI. This
suggests that an admixture of scar and myocardium alters the regional restitution
properties and provides potential substrate for arrhythmia. In the two ICM pa-
tients who developed sustained VT, the VT exit points had 32% of tissue with steep
restitution slope amidst areas of tissue with shallow slopes. These two patients
also had substantially greater overall spatial heterogeneity in APD and APC-RC
slopes. These results suggest that VT exit points are co-located with heterogeneous
APD-RC slopes. Ciaccio et al. has demonstrated potential mechanisms using a ge-
ometric model that could account for this co-location [Ciaccio 2007]. Furthermore,
the presence of clumps of fibroblasts, although electrically non-excitable, results in
a slowing of the electrical wave front propagation in the myocardial tissue in which
they are embedded. These fibroblasts can modulate cellular ion channel remodelling
and therefore tissue electrical properties through a variety of mechanisms includ-
ing mechano-electrical feedback via stretch-activated ion channels, close coupling of
nearby cardiac myocytes via connexin, and by altering the orientation of surround-
ing myocardial fibres. Some of these mechanisms have been shown in vitro, but re-
mains speculative in vivo studies. However, collectively, these effects may provide a
substrate for ventricular arrhythmia [Mitchell 2003] [Fenton 1998] [Camelliti 2005].
Thus, the suggested relationship between the degree of heterogeneity and propensity
for sustained ventricular arrhythmia may not be linear, as the absolute differences
in electrical parameters expressed as gradients between neighbouring domains in LV
did not distinctively identify those patients at risk of sustained ventricular arrhyth-
mia in the present study.

The present study results support recent animal and human clinical studies that
have shown potential target sites for successful ablation for VT lie in areas of hetero-
geneous zones of scar and healthy myocardium identified on DE-MRI [Estner 2011]
[Perez-David 2011] [Dickfeld 2011]. These findings are also in keeping with previ-
ous studies that showed spatial heterogeneity in APD and APD-RC slope within
the LV [Yue 2005] [Nash 2006]. These studies did not have the benefit of high res-
olution MRI scar information, and so could not explain the anatomical cause of
this heterogeneity in electrical properties. Nash et al. speculated that regional
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stretch strain pattern resulting from ischemia might have led to electrical remod-
elling through mechano-electrical feedback. As in the two patients they presented
in detail, the regions with the greatest spatial heterogeneity corresponded to the
territories of the diseased coronary arteries. It may well have been that these re-
gions had areas of gray zone. The mean APD and APD-RC slope values were
greater in our cohort, compared to the other studies which showed a skew towards
lower APD-RC slope values [Yue 2005] [Nash 2006]. One explanation is that our
study cohort had advanced cardiomyopathy with adverse remodelling, illustrated
by the severely impaired LVEF. Computation modelling and experimental stud-
ies have demonstrated that theoretically APD-RC slope >1 is needed to result in
electrical instability and initiate ventricular fibrillation [Nolasco 1968] [Karma 1994]
[Gilmour 1999] [Garfinkel 2000]. Others have demonstrated that it is the hetero-
geneity in APD-RC slopes that is needed for initiation and stability of the re-entry
mechanism [Nash 2006] [Clayton 2002]. These data lend support to our observed
functional heterogeneity in myocardial tissue restitution properties at the VT exit
points.

3.6 In silico VT stimulation studies in patients

Encouragingly, the personalized cardiac models encompassing both anatomical and
electrical properties in the present study were able to predict not only the inducibil-
ity of re-entrant VT, but also the re-entrant VT circuit properties and anatomical
locations of the substrate. Whilst cardiac modelling has been an active research area
for decades, personalized cardiac modelling using patient-specific clinical data is in
its infancy. Recently, Ashikaga et al. presented a retrospective study that compared
the actual target VT ablation sites with that predicted from an image based cardiac
model and found a good correlation between the predicted ablation sites located
mostly at the scar border zone and the actual ablation sites [Ashikaga 2013]. In
keeping with our data, they highlighted an advantage of incorporating 3D geometric
information gained from MRI, which allowed the prediction of the potential critical
isthmus on the epicardial surface. This is important, as conventional mapping tech-
niques used during ablative therapy are limited especially when the substrate of the
VT circuit lies on the opposite side of the mapping surface. Our study is unique
in that as well as anatomical and scar information, we incorporated functional data
including APD-RC properties and tissue conductivity and their spatial heterogene-
ity into our patient-specific models. Previously, Arevalo H et al. suggested that
VT dynamics were primarily governed by the geometric parameters of the scar-
core and border zone using image-based computational VT modeling work with
scar data acquired from high-resolution MRI of ex vivo canine heart (reconstructed
voxel size 200µm3) and empirical ionic cell parameters [Arevalo 2013]. Whilst we
realize that contrast-enhanced MRI provides important scar geometry that governs
the substrate of re-entrant VT, we also recognize that the resolution of the current
standard clinical MR imaging technique is limited (common voxel size 2×2×8 mm3)
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in providing the level of spatial geometry details that we would like to see at the
border zone. Thus the term "gray zone" reflecting the spectrum of intermediate
signal intensity seen on MRI scar images at the scar border zone was originated.
We believe that additional knowledge and understanding of patient-specific hetero-
geneity in local electrical parameters would assist in predicting the likely culprit
conduction channels/isthmus, and not the bystanders, that is critical to the clinical
VT. This by confirmed by the results of our simulations on the solely image-based
personalization of the electrical parameters in the model. We found that using com-
bined personalized electrical and image data can potentially improve the accuracy
of VT inducibility and predictions regarding the location of exit zones predictions.

3.7 Clinical application

Potential for Circuit Prediction using Personalized Computer Models to

Guide Ablation. Successful VT termination through ablation may be achieved
when the critical isthmus is successfully interrupted with ablation lesions. Predicted
VT exit points could be potential targets for ablation. In silico personalized models
may offer significant clinical benefit in predicting the risk of ventricular arrhythmia
in patients and guiding treatments including ICD implantation and VT ablation. If
VT exit points can be predicted with biophysical models then this information may
be used to guide ablation in patients. Such models also offer additional flexibility
as the model can simulate any combination of paced stimuli from different locations
with varying pacing cycle lengths, which may not be feasible in clinical practice.
We have indeed demonstrated that additional potential exit points, which still lay
at the scar border zone/gray zone, can be induced from in silico VT stimulation
studies.

3.8 Study Limitations

The study is limited by the small number of patients included, with only a subset
of patients undergoing a VT stimulation procedure. However the invasive nature of
the study precludes analysis of a large number of patients. The electro-anatomical
data are derived from non-contact mapping with the inherent limitations of this
type of mapping [Schilling 1998]. Approximately 13% of the EGM recording from
each non-contact mapping with indiscernible T waves were not suitable for analysis.
We used the "alternative method" as oppose to the "Wyatt method" for estima-
tion of APD because we found it was more suited for the virtual unipolar EGM
derived from non-contact array mapping as others have found [Yue 2004]. Though
there are additional data in support of validity of the Wyatt method [Wyatt 1981].
Non-contact mapping was chosen for its ability to provide ’beat-to-beat’ mapping
in the setting of rapid and unstable VT circuits, which could not be mapped with
contact mapping techniques. Non-invasive body surface mapping may be incor-
porated to routine simple electrophysiology study to gain such personalized whole
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heart electroanatomic data in order to facilitate the translation of the biophysical
cardiac model processing pipeline to clinical practice [Rudy 2013] [Zettinig 2014].
In addition, estimation of APD-RC properties from single pacing and from multiple
recording sites with varying distances has a degree of limitation as the measurement
from the distal site has some attenuations due to the premature stimuli at varying
short coupling intervals impacting on conduction velocity restitution. However, this
confers smooth systematic influences across the LV myocardium which is similar in
all patients studied. The model required high-resolution MRI data. In patients with
pre-existing ICDs such imaging may not always be feasible. The cardiac model also
made several simplifications in particular for the Purkinje network and pathological
changes of cardiac fibre orientations. Though lacking detailed representation of such
microscopic parameters, the model exhibited the main macroscopic properties of the
tissue such as conductivity, APD and APD restitution. As with any personalization
of computational physiology model, there is a degree of uncertainty due to the lim-
itations in acquired temporal and spatial resolution clinical data, as well as in the
model. Computational methods were developed to incorporate a simpler model in
an efficient Bayesian inference method that can take into account the uncertainties
on the data and model parameters in the personalization [Konukoglu 2011]. Extend-
ing such methods to the model used in the study could account the uncertainties in
the application of the model.

3.9 Conclusion

Patient-specific spatial heterogeneity of restitution properties were the distinguish-
ing features of ventricular arrhythmogeneicity, with re-entrant VT exit points
present in regions of higher maximum APD-RC slopes compared with the surround-
ing tissue. These regions were within the gray zone identified by DE-MRI. Our
personalized biophysical model was able to predict macroscopic VT circuits and
exit point locations in agreement with clinically observed datasets. Our results sug-
gest that patient-specific cardiac models may offer incremental clinical benefit in
terms of ventricular arrhythmia risk stratification and in the planning and delivery
of ablation strategies for re-entrant ventricular arrhythmias.
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4.1 Introduction

Sudden cardiac arrest (SCA) is a leading cause of death in the world, with 350,000
deaths per year in the USA, and similarly in Europe. Its main cause is cardiac
arrhythmia with RFA increasingly being used to treat it but with an unsatisfying
success rate due to the difficulty to find the ablation targets. There is therefore
a need to identify the arrhythmia substrates and the optimal ablation strategy to
substantially improve its success rate.

Animal myocardial infarction models have been used to explore the poor coupling
of surviving cells within fibrotic scar to the rest of the myocardium [Reddy 2003].
They are known to generate regions with critically slow conduction properties and
to promote electrical circuit re-entry. Similarly, in humans, inhomogeneous scars
and/or heterogeneous necrosis seen in ischemic and dilated cardiomyopathy provide
an ideal substrate for ventricular tachycardia (VT) [Jaïs 2012]. These bundles of
surviving tissue can be identified using electrophysiological (EP) mapping, a lengthy
and invasive method that records cardiac electrical signals through intra-cardiac
catheters.

Currently, clinicians rely in the identification of a re-entry circuit through acti-
vation and entrainment mapping to ablate critical isthmus. Nonetheless, a consid-
erable amount of patients is non-inducible or have poor hemodynamic tolerance for
VT mapping. The clinical study in [Jaïs 2012] describes a distinct approach where
the isolation or dissociation of electrically surviving myocardial fibers within scar
regions is performed through the ablation of local abnormal ventricular activities
(LAVA) recorded during sinus rhythm. LAVA were defined as sharp fractionated
bipolar potentials occurring during or after the far-field electrogram and which arise
from pathological tissue. Its complete elimination through RFA has been associated
with a superior clinical outcome [Jaïs 2012].

Delayed-enhanced magnetic resonance imaging (DE-MRI) enables a non-invasive
3D assessment of scar topology and heterogeneity with millimetric spatial resolution.
It has been hypothesised that areas of intermediate signal intensity in LE-MRI, re-
ferred to as the grey zone, are likely to host both scarred and surviving myocardium
related to arrhythmia in ischemic populations [Jaïs 2012] [Perez-David 2011]. Some
studies [Fernández-Armenta 2013] have focused on the detection and characteriza-
tion (length, orientation, etc.) of grey zone channels with surviving fibers that
are surrounded by scar core with the use of high-resolution DE-MRI. The study
in [Sasaki 2013] sought to quantify the association of scar on LE-MRI with local
electrograms and vetricular tachycardia circuit sites in patients with non-ischemic
cardiomyopathy. Image features such as scar transmurality and intramural scar type
were associated with electrogram characteristics, including amplitude and number
of deflections. However, these feature sets fail to account for complex texture pat-
terns that can can arise due to the intertwining of healthy and scarred tissue than
can be responsible for these electrophysiological pheonomena.

Machine learning techniques have successfully found applications in medical im-
age processing and have since played an essential role in the field [Criminisi 2011a]
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[Lempitsky 2009]. In this work, they will aid in relating imaging features to LAVA
occurrences with direct clinical applications to pre-emptively define mapping and
ablation targets, to increase the success rate and to decrease the duration of such
procedures (currently>6h).

Specifically, we evaluated the predictive power of locally computed intensity and
texture-based MRI features to identify RFA targets. On the methodological side, we
used random forests with advanced image features and classifier parameter estima-
tion using nested cross-validation. However, using machine learning approaches on
such complex multimodal data can prove difficult due to the inherent errors in the
training set. We present a detailed analysis of these error sources, due in particular
to catheter motion and the data fusion process, their formal integration in the train-
ing process, which is rarely done in machine learning approaches, and demonstrate
an improved algorithm performance.

4.2 Clinical Data

Three patients referred for cardiac ablation for post-infarction in ventricular tachy-
cardia were included in this study. They underwent cardiac MRI prior to high-
density EP contact mapping of the endocardium (Patients 1 and 2) and epicardium
(Patient 3).

4.2.1 Electrophysiological (EP) Data

EP Mapping. The CARTO mapping system (Biosense Webster) enables the 3D
localization of the catheter tip and provides the distribution of electrophysiolog-
ical signals on cardiac surfaces. Contact mapping was achieved in sinus rhythm
on the endocardium (trans-septal approach) and the epicardium (sub-xiphoid ap-
proach) with a multi-spline catheter (PentaRay, Biosense Webster), screenshots of
the resulting study are shown in Figure 4.1.

Figure 4.1: Screenshots of electroanatomical mapping data for Patients 1 (left), 2
(center) and 3 (right). The mesh’s colormap indicates local activation times (LAT)
values, crosses and spheres represent electroanatomical points.

Signals were categorised as normal or LAVA by an experienced electrophys-
iologist following the definition of LAVA signals detailed in [Jaïs 2012] and
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[Sacher 2014]. Figure 4.2 shows characteristic electrical readings from two elec-
troanatomical points (EAP) depicting healthy and a LAVA electrograms. Our in-
home software facilitated the visualization of all electrode readings from the CARTO
study and allowed the electrophysiologist to review the signal labeling and correct
for any inaccuracies. In these images, the top row depicts the bipolar signal obtained
from the difference of the two distal-most electrodes in the catheter (M1-M2) and
it is the one commonly used for the identification of LAVAs. Nonetheless, unipolar
signals and other bipolar measurements can be chosen to be displayed complement
electrical behaviour understanding and to clarify difficult cases for labeling.

Figure 4.2: Electrical readings from two electroanatomical points depicting a healthy
signal (blue) and a LAVA (red). Signals correspond to: (top) the bipolar signal
obtained from the two distal most electrodes in the catheter, (middle) the unipolar
potential from the distal most electrode and (bottom) the bipolar signal obtained
from the difference of the two most proximal electrodes in the catheter.

Figure 4.3: Spherical representation of the catheter’s hearing range (blue) for a given
location. Scar regions are shown in black.
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The volume of tissue that influences the recording at a particular EAP is referred
to as the catheter’s sensing range and in this study it is represented by a sphere of
10mm radius, illustrated in Figure 4.3. Because of this phenomenon, two sufficiently
close electrical readings would be influenced by roughly the same tissue section in
the myocardium. Additionally, because of uncertainties which will be detailed in
Section III, a spatial filtering of the EP study was made. Under these hypotheses, if
two spatially contiguous (less than the catheter’s sensing range) EAPs were found
to have different labels (LAVA and healthy), the EAP assigned the healthy label
would be removed from the study. This would be justified in a clinical scenario as the
objective in a LAVA driven ablation procedure is to identify and ablate the totality
of regions presenting LAVA characteristics. Table 4.1 summarizes the characteristics
of the electrophysiological datasets for each of the patients in this study.

Table 4.1: Patient Electrophysiological Mapping Dataset Characteristics.

# Points # Points # Points Map Source # Healthy # LAVA
Original Post-Filtering On Scar On Scar On Scar

P1 175 100 91 endocardium 54 37
P2 700 522 83 endocardium 50 33
P3 322 293 124 epicardium 113 11

4.2.2 Imaging Data

Image Acquisition: The scar was imaged on a 1.5 Tesla clinical device (Avanto,
Siemens Medical Systems) 15 minutes after the injection of a gadolinium contrast
agent. A whole heart image was acquired using an inversion-recovery prepared,
ECG-gated, respiratory-navigated, 3D gradient-echo pulse sequence with fat-
saturation (1.25×1.25×2.5mm3).

Segmentation: The myocardium was manually segmented on reformatted images
of isotropic voxel size (0.625mm3). Abnormal myocardium (dense scar and grey zone
areas) was segmented using adaptive thresholding of the histogram, with a cut-off
at 35% of maximal signal intensity. Segmentations were reviewed by an experienced
radiologist, with the option of manual correction.

4.3 Sources of Uncertainty

We aim to identify differences in regional image characteristics between LAVA-
inducing and healthy tissue. Nevertheless, despite the integrated catheter localisa-
tion and previous registration with anatomical data, two main sources of uncertainty
between the electrophysiological measurements and the imaging data remain: data
fusion and temporal displacement.
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4.3.1 Data Fusion

Meshes generated by EP mapping systems are a rough approximation of the shape
of the ventricular cavity, as seen in Figures 4.4 and 4.5. Therefore, a registration
is needed between the EP recording locations and the image segmentation. Some
works, like [Reddy 2004], use iterative closest point to register the EP recording
locations to the endocardial surface and surface to the aorta to resolve amiguities
in rotation of the left ventricle. In our case, the aortic readings were not available.
Therefore, this is done manually by using landmarks and matching between low
voltage areas and scars. Then the EAPs are projected on the image-based mesh by
finding the closest cell, and an evaluation of the registration uncertainty is present
in the resulting projection distance (PD), which is given by the Euclidean distance
between the EAP and its closest cell center. An illustration of the projection distance
maps is shown in on the top panel of Figure 4.6.

Figure 4.4: [left] Anatomical model and electro-anatomical points (blue: healthy,
red: LAVA) in scar regions (black). [right] CARTO reconstruction of the endocardial
cavity, with activation times.

4.3.2 Temporal Displacement

Due to breathing and cardiac motions, the recording catheter is displaced through-
out the 2.5 seconds of recording time. Magnitudes varying significantly among
electro-anatomical points (EAPs) as is shown in Figure 4.5, where the red ellipsoids
describe the catheter’s temporal position variation. A map of the distribution of
the magnitudes of these displacements projected on the endocardial surface can be
found in the bottom panel of Figure 4.6.

4.4 Image Feature Computation

The previously described properties allow us to define the scale at which the image
features will be looked at and how to quantify the errors.
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Figure 4.5: Location of two EAPs and temporal position variation described by a
red ellipsoid (above: low displacement, below: high displacement).

Figure 4.6: Posterior endocardial maps for uncertainty attributes [mm] (Left: pro-
jection distance, Right: major ellipsoid axes).

4.4.1 Intensity-based Features

The work in [Perez-David 2011] showed that MR image intensities can be used to
discriminate the heterogeneous substrate. Voxels contained inside the sensing range
were used to compute intensity-based features, including minimal, maximal, mean
and standard deviation values. Another feature, defined as the standard deviation
over the average intensity in the region, was included. Myocardium thickness was
calculated and the scar transmurality was defined as the extent of scar through the
entire myocardium thickness.
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4.4.2 Texture-based Features

Texture from medical images provide us with information inherent to the underlying
tissue. This information can later be used in applications as cardiac image indexing
and retrieval [Glatard 2004], or to predict vascular events [van Engelen 2014].

Grey level co-occurence matrices (GLCM) are matrices of the joint probability
of occurrence of a pair of grey values separated by a displacement d = (dx, dy, dz).
Haralick features are statistics computed on GLCM that emphasize specific texture
properties and have been extensively used in medical image analysis [Tesar 2007].
In our study, the GLCM were computed around the center of the myocardium
were the EAP had been projected using a ROI of window size of 11×11×11 pixels
(∼9.4×9.4×9.4mm). Three distances from the central pixel (1, 2 and 4 pixels),
13 directions and 12 Haralick features were considered, resulting in a 468 element
texture feature vector per EAP analyzed.

Concatenation of the intensity and texture features yielded a final image-based
feature vector of 475 dimensions which was used for classification.

4.5 Confidence-based Learning Framework

4.5.1 Random Forests Classifier

Random forests are discriminative classifiers created in an intuitive and easily un-
derstandable structure that also provide informative uncertainty measures on the
classification results [Criminisi 2011a]. They have successfully found multiple appli-
cations in medical image processing [Criminisi 2011a] [Lempitsky 2009] [Zikic 2013].
We used the Python implementation from the scikit-learn library [Pedregosa 2011].

4.5.2 Nested Cross-validation

Cross-validation has been shown to be among the best ways to estimate performance
[Kohavi 1995]. It predicts the fit of a model to a hypothetical validation set when an
explicit one is not available. Also, because all observations are used for both training
and validation (though never within the same fold), and each observation is used
for validation exactly once, this method exploits to the fullest the information in a
set with a low risk of overfitting, particularly important in small datasets like ours.
We used stratified cross-validation and optimized the classifier for precision perfor-
mance. The use of nested cross-validation, with a parameter-tuning inner loop and
an outer loop for performance estimation, avoided an optimistic bias introduction
into generalization estimate [Ruschhaupt 2004].

4.5.3 Feature Selection

Due to the high dimensionality of our feature vector, the effect of feature space
reduction was next assessed. Univariate t-Test statistics were used to assess feature
significance [Guyon 2003]. Three reduced datasets were created, including the 50%,



4.5. Confidence-based Learning Framework 59

25% and the 10 most relevant features (MRF). Additionally, a feature subset was
generated containing only the intensity-based features.

4.5.4 Uncertainty Assessment

Uncertainty assessment has become a crucial aspect in our field, particularly to
account for the impact of noisy or inaccurate ground truth when being fed into
learning algorithms. It arises in the form of weights assigned to the contribution
of multiple sources to perform anatomical segmentations [van Opbroek 2015] to the
impact of the uncertainty in these segmentations on the estimation of physiological
parameters [Sankaran 2014].

We derived a principled analysis of confidence impact on classification. Inspired
by cost-sensitive learning, we formulate the problem as samples (x, y, c) drawn from
a distribution D on a domain X × Y × C with X being the input feature space, Y
corresponding to the binary output class and C to the confidence associated with
each sample. We aim to learn a classifier h : X → Y which minimizes the new
expected classification error:

E(x, y, c ∼ D)[cI(h(x) 6= y)] (4.1)

Using the Translation Theorem 2.1 in [Zadrozny 2003] we can compute and draw
samples from a distribution D′ such that the optimal error rate classifiers for D′ are
optimal cost minimizers for data drawn from D. We derive how this modifies the
training using weights to simulate the expectation of finite data E(x, y ∼ D)[f(x, y)]

as:

E(x, y ∼ D)[f(x, y)] =
1

∑

c

∑

cf(x, y) (4.2)

equivalent to importance sampling for D′ using distribution D, so the modified
expectation is an unbiased Monte Carlo estimate of the expectation with respect to
D′ [Zadrozny 2003]. In random forests, the node split criterion is information gain:

IG = H(S)−
∑

i=1,2

|Si|

|S|
H(Si) (4.3)

with |S| being the number of samples in a node before split, |Si| being the number
of samples of each children node and H(S) the Shannon entropy:

H(S) = −
∑

c∈C

p(c)log(p(c)) (4.4)

where p(c) is calculated as normalized empirical histogram of labels corresponding

to the training points in S, p(c) = |Si|
|S| . Using weighted instances, p(c) is replaced

by pw(c), which has the following formulation:

piw(c) =

∑

Weights of samples of class c in node i
∑

Weights of samples in node i
(4.5)
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piw(c) =

∑

Sc
W i

∑

S W i
(4.6)

This yields a sample weighted formulation of the information gain that can be
written as:

IG = H(W )−
∑

i=1,2

∑

S W i

∑

S W
H(W i) (4.7)

where W are sample weights at the parent node and W i are sample weights that
have been passed to each child node. H(W ) is given by:

H(W ) = −
∑

c∈C

pw(c)log(pw(c)) (4.8)

To our knowledge, it is the first time such formulation is derived in this context
and we believe it strengthens our approach’s methodological ground.

We analysed the influence of two factors affecting the certainty in EAPs and
imaging data correspondences by weighting our training samples according to the
confidence we have on their image features.

Projection Distance. More confidence is assigned to the imaging features
computed from EAPs with low PD with respect to those with high values. It is
defined as the Euclidean distance between the EAP and the center of the cell in
the mesh closest to the given point:

PD = ‖CellCenter − EAP‖ (4.9)

Temporal Displacement. The covariance of the position matrix is obtained and
an ellipsoid with radii 2

√

diag(D) is generated, where D is the matrix containing
the eigenvalues along the main diagonal. The major ellipsoid radius defines the
temporal displacement, as following:

TD = max(2
√

diag(D)) (4.10)

Intuitively, image features from EAPs with smaller major ellipsoid radius are
more reliable as they are less affected by movement.

Each EAP is assigned a confidence value by linearly scaling either the PD or
the temporal displacement to a weight parameter with range of [0.5, 1] where 0.5
corresponds to the lowest confidence and 1 to the highest. Additionally, a combined

uncertainty weight is defined as the product of both uncertainty sources. We explore
the uncertainty inherently introduced to our dataset due to these factors with three
extra experiments by using the previously described sample weighting schemes.
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4.5.5 Evaluation Metrics

The results for the classification results will be assessed using precision-recall (PR)
and receiver operating characteristic (ROC) curves. A PR curve illustrates the
trade-off between the proportion of positively labelled examples that are truly pos-
itive (precision) as a function of the proportion of correctly classified positives (re-
call). A good performance line lies in the upper-right portion of the graph and has
a high area under the curve (AUC) value.

A ROC curve depicts relative trade-offs between benefits (true positives) and
costs (false positives). Any deviation from the diagonal (representing random guess
and with 0.5 AUC) into the plot’s upper triangle represents a better performance
than chance. Classifiers with higher ROC AUC values are said to have a better
average performance.

4.6 Results and Discussion

The results of classification using the full feature set for each patient are shown in
Figure 4.7 and their mean AUC values are summarized in Table 4.2. The AUC PR
ranges from 0.75 in Patient 3 to 0.88 in Patient 2. For the AUC ROC metric, values
range from 0.80 in Patient 1 to 0.92 in Patient 3. We can therefore argue that an
overall good performance was achieved throughout the patients.

Patient 1 Patient 2 Patient 3
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Figure 4.7: Precision-recall and ROC curves for patients 1-3 after nested cross-
validation with precision optimisation. Line colors represent each fold (curves with
AUC = 1 are aligned with axes) and the dotted line represents the average curve
for all folds.

By closely looking at the PR curves, we can conclude that the classifier is able
to retrieve approximately more than half of the LAVA instances without having a
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considerable drop in the precision. It is when the totality of the LAVA instances are
recovered that precision is compromised. This might correspond to areas in which
the LAVA regions are spatially close to healthy ones, therefore finer descriptors of
the adjacent areas should be explored. Nonetheless, for our approach some precision
can be compromised as the ablation procedure might not be able to distinguish
between closely spaced cardiac regions. Plots for Patient 3 show that it presents
great variability between folds. Some have perfect scores, probably representing the
typical LAVA image signatures, while others perform poorly, possibly due to outlier
LAVA present in the testing phase. This can also be due to the patient having an
epicardial study compared to the endocardial mapping of Patients 1 and 2.

Table 4.2: Area under the curves for Precision-Recall and ROC.

PR AUC

Patient 1 Patient 2 Patient 3

Full Features 0.79 0.88 0.75
50% MRF 0.72 0.86 0.72
25% MRF 0.73 0.91 0.81
10 MRF 0.69 0.80 0.66
Intensity Features 0.78 0.75 0.31

ROC AUC

Patient 1 Patient 2 Patient 3

Full Features 0.80 0.89 0.92
50% MRF 0.76 0.86 0.91
25% MRF 0.73 0.91 0.91
10 MRF 0.73 0.81 0.88
Intensity Features 0.73 0.78 0.63

4.6.1 Results Using Subsets of MRF

The classification results obtained using only 50%, 25% and the top 10 MRF in each
dataset are summarized in Table 4.2. The purpose of this task was to investigate
the redundancy in the feature set. In general, the use of 50% of MRF resulted
only in a small drop in AUC PR and AUC ROC scores, suggesting some feature
redundancy. Nonetheless, while Patient 2 and 3 had a slight increase in performance
when using its 25% MRF, all patients suffered a considerable drop in score when
using 10 MRF. Due to the characteristics of our current feature selection scheme
(univariate filtering method), it failed to assess groups of features that work together
to better discriminate between classes.
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The results for the assessment of intensity feature importance w.r.t. the full set
of features are included in Table 4.2. Using only intensity features for classification
led to a large drop in overall classification performance. This shows that advanced
texture patterns are required to describe the complex intertwining of myocardial
fibres in scarred and grey zone areas responsible of LAVA generation.

4.6.2 Uncertainty Impact on the Prediction

Results of classification with the full feature set and weighted samples are shown in
Table 4.3 and Figure 4.9.

Table 4.3: Classification performance scores using sample uncertainty weights.

Confidence-based Training. Area Under the PR Curves

Patient 1 Patient 2 Patient 3

No Confidence Weighting 0.79 0.88 0.75
Projection Distance Weighting 0.85 0.94 0.96
Temporal Displacement Weighting 0.86 0.95 0.95
Combined Uncertainty Weighting 0.84 0.94 0.94

Confidence-based Training. Area Under the ROC Curves

Patient 1 Patient 2 Patient 3

No Confidence Weighting 0.80 0.89 0.92
Projection Distance Weighting 0.85 0.94 0.99
Temporal Displacement Weighting 0.87 0.95 0.99
Combined Uncertainty Weighting 0.87 0.94 0.99

A general increase in performance is observed when weighting samples according
to their proximity to the location of image feature computation and their temporal
position stability. This confirms our hypothesis that a lower confidence should be as-
signed during training to EAPs with large PD or temporal displacements. Weighting
samples with a combination of both uncertainties results in a similar improvement in
the classification performance as when the elements were used independently. Cur-
rently, this combined uncertainty is a naive product of both elements. A different
fusion should be explored to better exploit both uncertainty sources and construct
a more reliable estimate of the confidence of a given EAP.

The optimal random forests construction parameters found during nested cross
validation with precision optimization and and temporal displacement weighting are
included in Table 4.4. More detailed results for this classification scheme are shown
in Figure 4.8 and Table 4.5. A visual results interpretation and their comparison to
ground truth are shown in Figure 4.10. The central image is a preliminary output
to be used in a clinical environment. The endocardial or epicardial map shows
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Figure 4.8: Precision-recall and ROC curves for patients 1-3 after nested cross-
validation with precision optimisation and temporal displacement weighting. Line
colors represent each fold (curves with AUC = 1 are aligned with axes) and the
dotted line represents the average curve for all folds.

Figure 4.9: Bar plots for classification performance scores using sample uncertainty
weights

regions classified as being in risk of presenting LAVA and that should be ablation
targets. The rightmost image shows that prediction errors are primarily present
in regions with low classification confidence. It is in our interest to have a lower
number of false negatives within our predictions. While the number of false negatives
EAPs might seem considerable from the results on Table 4.5, when depicted as false
negative regions as in Figure 4.10 the numbers dropped to 4, 2 and 3, for each of
the patients.
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Table 4.4: Random forests construction parameters when performing nested cross
validation with precision optimization and temporal displacement weighting.

Random Forest Construction Parameters

PR Score Trees No. Features No. Inner Folds

Patient 1 0.86 25 60 5
Patient 2 0.95 25 60 5
Patient 3 0.95 10 20 5

Table 4.5: Confusion Matrix For nested cross-validation with precision optimization
and temporal displacement weighting.

Patient TN (healthy) TP (lava) FN FP

Patient 1 43 27 10 11
Patient 2 46 26 7 4
Patient 3 112 5 6 1

4.7 Conclusion

We presented the use of a machine learning framework, using intensity and texture-
based local imaging features in the vicinity of myocardial scar and grey zones towards
the prediction of RFA target localisation. Additionally, we detailed the uncertainty
in the data and explored its impact on the classification results. For both PR AUC
and ROC AUC, we scored above 0.75 and an extra 0.05 was gained when using
uncertainty evaluation to weight the training data. Finally, a preliminary output
with visual interpretation and potential use in a clinical environment was presented.

The aim of the current work was to analyse the feasibility of classification using
solely image-based features on complex multi-modal data. So far, the choice of
features produced encouraging results. We are aware that an increase in the size
of the patient database is required in order to aim for inter-patient analysis, but
this work serves as a proof of concept with results good and encouraging enough
to warrant further investigation and open up possibilities for non-invasive cardiac
arrhythmia ablation planning.
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Figure 4.10: [left] LAVA regions from ground truth. [center] LAVA regions from
predictions. [right] Prediction errors. (Color coding by classification confidence)

4.8 Extension to other pathologies

A similar learning algorithm was applied in the collaboration mentioned in
Appendix A to differentiate between rabbits presenting LQT2, E4031 or LMC
conditions based on image-based mechanical data.
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5.1 Introduction

Invasive measures of cardiac activity obtained during an electrophysiology (EP)
study provide insightful information about the electrical characteristics of the anal-
ysed myocardium. Under pathological conditions, these extracellular recordings
deviate from the basic (healthy) signal shape and present multiple deflections and
fractionation episodes.

More than a decade ago, fractionated electrograms (EGMs) were thought to be
caused mainly by artifacts related to the electronics of the acquisiton system. Al-
though artifacts indeed may cause complex electrograms, most of the complex and
fractionated electrograms are caused by the peculiar behaviour of activation fronts,
due to structural and electric complexity of the underlying tissue [de Bakker 2010].
Previous studies have used synthetically generated EGMs to explore different patho-
logical phenomena. The authors in [Ciaccio 2014] describe the generation of electro-
gram fractionation from changes in activation wavefront curvature in experimental
canine infarction. In [Álvarez 2012], the modelling of intracardiac recordings was
used to aid in the reconstruction of cardiac ischemia. [Keller 2013] studied the in-
fluence of different catheter angles, locations and filter settings on the morphology
of simulated intracardiac electrograms and compared them to clinical signals.

On structurally diseased hearts with fibrotic scar, bundles of surviving tissue
promote electrical circuit re-entry and are a cause of arrhythmias. Local abnormal
ventricular activities (LAVA), sharp fractionated bipolar potentials occurring during
or after the far-field electrogram, have been shown to indicate surviving fibres within
the scar and have been successfully used as targets for radio-frequency ablation
[Jaïs 2012].

In this work, we test the feasibility of using DE-MRI image-based simulation to
reproduce LAVA-like patterns in catheter recordings of intracardiac electrograms.
Through this work, we aim to shine some light on the understanding of the mecha-
nisms underlying electrogram fractionation in the grey zone.

5.2 Clinical Data

Five patients referred for cardiac ablation for post-infarction in ventricular
tachycardia were included in this study. They underwent cardiac MRI prior to
high-density EP contact mapping of the endocardium.

5.2.1 Electrophysiological Data

The CARTO mapping system (Biosense Webster) enables the 3D localization of
the catheter tip and provides the distribution of EP signals on cardiac surfaces.
Contact mapping was achieved in sinus rhythm on the endocardium (trans-septal
approach) with a multi-spline catheter (PentaRay, Biosense Webster). Signals were
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categorised as normal or LAVA by an experienced electrophysiologist.

5.2.2 Imaging Data

The scar tissue was imaged on a 1.5 Tesla clinical device (Avanto, Siemens
Medical Systems) 15 minutes after the injection of a gadolinium contrast agent.
A whole heart image was acquired using an inversion-recovery prepared, ECG-
gated, respiratory-navigated, 3D gradient-echo pulse sequence with fat-saturation
(1.25×1.25×2.5mm3).

The myocardium was manually segmented on reformatted images of isotropic
voxel size (0.625mm3). Abnormal myocardium (dense scar and grey zone areas)
was segmented using adaptive thresholding of the histogram, with a cut-off at 35%
of maximal signal intensity. Segmentations were reviewed by an experienced radi-
ologist, with the option of manual correction.

5.3 Cardiac Electrophysiology (EP) Simulation

As described in Section 2.5, the cardiac electrophysiology modeling field proposes
several mathematical tools to represent the electrical activity in the heart. For
the purposes of this study, we chose a model that was able to represent complex
cardiac electrical phenomena while keeping the number and variation of the involved
variables tractable. We therefore chose the Mitchell-Schaeffer [Mitchell 2003] model
for EP simulation. Its main advantages include: (1) its simplicity, as it only includes
two differential equations; (2) the relation between its parameters and physiological
behaviour make it easier to understand and interpret; (3) its ability to simulate
arrhythmia macroscopically due to its restitution parameters.

The chosen model has two variables: u, the transmembrane potential and z, a
secondary variable in charge of controlling the repolarisation phase. The model is
governed by the following two equations:















∂tu = div(D∇u) + zu2(1−u)
τin

− u
τout

+ Jstim(t)

∂tz =

{

(1−z)
τopen

if u < ugate
−z

τclose
if u > ugate

(5.1)

Where D = d · diag(1, r, r) is an anisotropic diffusion tensor that enables the
conduction velocity in the fiber direction to be 2.5 times greater than in the trans-
verse plane R = 1

2.52
. The parameters τin and τout define the repolarisation phase

whereas τopen and τclose are responsible for the gate opening or closing depending
on the change-over voltage ugate. Jstim is the stimulation current at the pacing
location.

The SOFA public framework has a GPU implementation of the Mitchell-
Schaeffer EP model and it was chosen as the simulation framework for this
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work. Technical details on the implementation are more thoroughly described in
[Talbot 2013].

5.3.1 Pseudo-personalisation: Zone-specific EP Properties

The electrophysiological properties of the infarcted and border zone tissue are known
to differ from those of the healthy myocardium. For the construction of our per-
sonalized model, DE-MRI was used to asses the viability of the cardiac tissue and
to identify tissue as either healthy myocardium, scar or grey zone. Segmentations
were done by an experienced radiologist. The derived volumetric ventricular model
incorporating this information is shown in Figure 5.1.

Figure 5.1: Heart mesh depicting healthy myocardium (yellow), scar (black) and
greyzone (grey) tissues derived from DE-MRI segmentation.

Conductivity in the grey zone was decreased by 90% with respect to its value in
the healthy myocardium (0.1× dhealthy) [Arevalo 2013]. Studies in infarcted hearts
[Pu 1997] [Dun 2004] [Jiang 2000] [Decker 2010] have reported variations in ionic
currents in the border zone tissue generating action potentials that differ from the
healthy myocardium in the following aspects:

• 32% lower peak action potential amplitudes

• 31% smaller upstroke velocity

• 25% longer action potential duration (APD)

In order to achieve the following effects in our model, the term Jin = zu2(1−u)
τin

in Equation 5.1 was modified to zu2(a−u)
τin

, where variable a controls the peak ampli-
tude for the action potential. Also, to obtain a smaller upstroke velocity, the time
constant in the grey zone was set to be τinGZ

= 1.31× τinhealthy
.

The analytical expression for the APD for the Mitchell-Schaeffer model is given
by:

APD = τcloseln

(

τout
4τin

)

(5.2)
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Implying a linear relationship between parameter τclose and the APD, therefore
the values for this parameter in the grey zone were increased by 25%. Finally,
because τin had been modified to account for a smaller upstroke velocity, τout was
modified in the same proportion to keep the ratio τout/τin constant.

Scar tissue was modeled as having a null reaction component on the Mitchell-
Schaeffer model by setting much higher values of parameters τin and τout with respect
those of the healthy myocardium. Nonetheless, the diffusion component was left with
the values of the grey zone as has been previously described.

Healthy myocardial values were set to the default values appearing in
[Mitchell 2003]. Table 5.1 shows the resulting set of parameters used for our per-
sonalized simulations.

Table 5.1: Simulation Parameter Values

Parameter Healthy Tissue Grey Zone Scar Tissue

τin [ms] 0.3 0.42 10×103

τout [ms] 6 8.4 10×103

τclose [ms] 150 187.5 187.5
τopen [ms] 120 120 120
ugate 0.13 0.13 0.13
Action Potential Peak Amplitude 1.0 0.7 0.7
Conductivity 4.0 0.4 0.4

5.3.2 Sinus Rhythm Computation from Surface ECGs

The QRS window was detected using all six surface electrocardiograms (ECGs):
limb leads I, II and III and the augmented limb leads aVL, aVR and aVF, the
process is shown in Figure 5.2. A third order bandpass digital Butterworth filter
with a bandpass frequency range of 0.5 to 45 Hz was applied to all signals to filter
out noise. This filter was chosen because it has a flat frequency response in the
passband, the reason for which it is also referred to as a maximally flat magnitude
filter.

Next, the gradient for each of the surface ECGs was computed. For each in-
dividual lead, a candidate QRS window segment was detected where the absolute
gradient value was above the 90th percentile of the absolute gradient throughout
the entire signal. Because maximum and minimum peak values in the electrocardio-
gram would correspond to zero crossings in the gradient signal, and that these could
pertain to QRS peaks that should be included in the detection of candidate QRS
windows, a gap filling process followed. In healthy subjects, a normal QRS segment
varies from 70 to 100ms in duration. To group successive peaks within a single QRS
complex together, a maximum value of gap width of 10ms was allowed. Finally,
candidate QRS window segments with a width of less than 20ms were filtered out.

Because a QRS segment appears at the same time in all surface ECGs, a majority
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Figure 5.2: QRS window detection in six surface ECGs (left column: limb leads I,
II, III. right column: augmented limb leads: aVL, aVR, aVF). Raw signals (blue),
filtered signals (red), candidate QRS windows (green) and final QRS windows ob-
tained through majority voting (black). QRS windows have been given an offset for
better visualisation.

voting scheme was introduced to detect the final QRS window segments and to filter
out undesirable detections due noise or artifacts in individual leads. All six surface
leads had an equal weight and only time points where at least three surface leads
agreed in the presence of a QRS window segment were finally labeled as such.

Figure 5.2 shows the process of QRS window detection from surface ECGs. The
sinus rhythm was extracted by analyzing the number of QRS window segments
detected during the 2.5 seconds of recording time and computing the average period
between them. For the patient shown in 5.2, the mean heart period was calculated
to be 0.83 seconds, corresponding to a sinus rhythm of 72 bpm.

5.4 Intracardiac EGM Simulation

Extracellular electrograms arise due to trans-membrane currents occurring from
differences in the axial voltage gradient at the interface between activated and inac-
tivated myocardial cells [de Bakker 2010], as is shown in Figure 5.3. In this example,
an activation wave front is traveling from left to right throughout the myocardium.
At the boundary of the propagation front, the depolarised cell has an intracellu-
lar potential of +20mV whereas that of the cell in resting state remains at -90mV,
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therefore creating a current flow from the activated to the inactivated myocyte. To
comply with the preservation of charge, the back of the activation front will present
a current flow from the extracellular space into the intracellular space, whereas the
current flow direction will be reversed in the regions ahead of the activation front,
i.e. a current flow from the intracellular space, through the membrane and into the
extracellular space. This flow of current in the extracellular space will generate an
extracellular voltage difference and therefore a potential dipole.

Figure 5.3: Schematic showing the generated dipole in the extracellular space as a
result of the potential gradients in the intracellular space located at the depolarisa-
tion wave front. Consequently, the potential field is positive ahead of the activation
front and negative at the back.

5.4.1 The Dipole Approach

The notion of resulting dipoles at the depolarisation wave front can be used in
order to compute the resulting potential at a given coordinate in the extracellular
space. This approach had already been used by [Berenfeld 1998] to compute pseudo
pre-cordial and limb-lead ECGs from a Purkinje muscle model. In this study, we
introduce a similar approach to simulate unipolar and bipolar intracardiac EGMs
at a given position representing the catheter location.

The monodomain formulation considers that the extracellular potential is
grounded and thus the intracellular potential is equal to the membrane potential
[Clayton 2004]. It is governed by:

Cm
∂v

∂t
+ Iion = ∇ · σ∇v (5.3)

where v represents the transmembrane potential, Cm is the membrane capaci-
tance, σ corresponds to the local conductivity and Iion is the current through the
cell membrane per unit of area. We define the equivalent current density jeq as:
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jeq = −σi∇v (5.4)

−jeq behaves like a flow source density, and it can also be seen as a dipole
moment per unit of volume:

p =

∫

jeqdV (5.5)

According to the volume conductor theory [Malmivuo 1995], the electric poten-
tial registered at a distance R in a homogeneous volume conductor of conductivity
σelectrode outside the region occupied by the volume source V is :

Ψ(R) =
1

4πσelectrode

∫

V

jeq · ∇(
1

R
)dV (5.6)

In our case, we model the moving propagation front as a local dipole (Figure
5.3). We first assume that the dipole momentum pX at a position X is spatially
invariant over a single tetrahedron H :

∀X ∈ H, pX = pH (5.7)

Second, we assume that we can take into account all the myocardial regions, the
ones being activated, the ones depolarised and the ones at rest. The regions that
are not activated give almost null dipole momentums and it simplifies the overall
calculation.

We discretize Equation (5.5) in space (H tetrahedra of the myocardial mesh)
and get the following formulation of the dipole moment of the charge in the volume
VH of tetrahedron H :

pH = VH j t
eq,H = VH σH∇vH (5.8)

The gradient of the electric potential ∇v(XH,center) at the tetrahedron center
XH,center is estimated using the node positions XH,i and the shape vectors Di of
the tetrahedron H defined as:

Di =
s

VH

((XH,i⊕2 −XH,i⊕1) ∧ (XH,i⊕3 −XH,i⊕1) (5.9)

where s = 1 for i = 2, 4, else s = −1 (Figure 5.4). These shape vectors are useful
for evaluating spatial derivatives [Sermesant 2003]. The gradient of the electric
potential writes as:

∇vH = ∇v(XH,center) =
4

∑

i=1

v(XH,i)Di (5.10)

From Equation 5.6, the contribution ΨH(Xelectrode) of the tetrahedron H to
the potential field calculated at a point Xelectrode is estimated by :
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Figure 5.4: Schematic showing tetrahedron H, its center XH,center and its nodes
XH,i.

ΨH(Xelectrode) =
1

4πσelectrode

(VH σi,H∇vH) · (Xelectrode −XH,center)

‖Xelectrode −XH,center‖3
(5.11)

Finally, we sum over the whole mesh to get the potential field at Xelectrode:

Ψ(Xelectrode) =

Nb tetra
∑

H=1

ΨH(Xelectrode) (5.12)

5.4.2 Unipolar and Bipolar EGM Computations

Unipolar electrograms are obtained by positioning the exploring electrode in the
heart and the second electrode (the indifferent electrode) away from the heart such
that it has little or no cardiac signal [Stevenson 2005].

Figure 5.5: (Left) Points depicting the 1472 electrode locations used for electrogram
recording during the EP study of Patient 1. (Right) Electrode locations where the
potentials were computed. M1 (blue), M2 (green), M3 (yellow), M4 (red).
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Bipolar electrograms, on the other side, correspond to the difference in potential
between two unipolar measurements. This type of electrograms are useful to study
the local activities. The far-field signal is assumed to be similar for both unipolar
recordings, therefore, it is largely filtered out [Stevenson 2005].

The recording catheter used in the clinical environment has four electrodes
named M1, M2, M3 and M4 from the distal to the proximal. Two bipolar recordings
are generated from these unipolar measurements: M1-M2 and M3-M4. The posi-
tion of the four electrodes of the catheter at recording time is given by the CARTO
system and its spatial coordinates were used in order to generate our computational
measurements, as shown in Figure 5.5. Simulations took an average of 6 hours to run
on a computer including Intel Core i5 CPU and a NVIDIA GT218M(NVS 3100M).
Details for each of the five patients are shown in Table 5.2.

Table 5.2: Structural Mesh Information and Electrode Locations per Patient

P1 P2 P3 P4 P5

# of Electrode Locations 1472 4804 1956 856 2800
# of Tetrahedra in Mesh 112,308 96,260 150,480 96,288 29,586
# of Nodes 23,355 20,306 31,100 21,231 6,742

Figure 5.6 provides further insight in the distribution of the clinical annotations
of the electrode locations. It can also be seen that LAVA annotated signals have a
higher tendency to remain close to the border zone, nonetheless, healthy signals can
also be found in these regions.

Figure 5.6: (Left) Image-driven personalized model and location of LAVA (red) and
non-LAVA (blue) annotated signals on Patient 1. (Right) Boxplots representing the
distance of the annotated signals to the border zone. The same relation of distance
to border zone and electrogram annotation were found for the other four patients.
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5.5 Signal Analysis

In addition to a qualitative assessment of signal morphology, a quantitative eval-
uation of the simulated signals was performed. The following characteristics were
extracted from both simulated EGMs and the clinical CARTO recordings:

- Signal Range: Obtained as difference between the maximum and minimum
amplitude signal values.

- Number of Inflection Points: Number of points where the signal changes
concavity.

- Signal Energy: Calculated using Teager’s energy operator [Nguyen 2010].

- Dominant Frequency: Obtained by a fast Fourier transform.

- Mean Slope: Computed as the mean absolute value of dV/dt.

- Fractionation Index: Number of deflections with an amplitude >0.2mV
from the signal baseline.

- Minimum Signal Value.

- Maximum Signal Value.

The distributions of the values of each of these characteristics in the LAVA and
non-LAVA group were assessed using the non-parametric Kolmogorov-Smirnov (KS)
test. A value of p < 0.05 was considered as statistically significant.

5.6 Results and Discussion

Catheter measurements were simulated using the image-driven personalized heart
model at sinus rhythm. The resulting EGMs were qualitatively compared to their
clinical counterparts and features between non-LAVA and LAVA groups were as-
sessed.

5.6.1 CARTO Signal Characterization

Results of the KS test on the signal characteristics of the clinical CARTO recordings
are shown in Table 5.4 at the end of this chapter. With the exception of the dominant
frequency in Patients 1 and 4, a statistically significant difference between the signal
characteristics of non-LAVA and LAVA distributions was found. As expected, LAVA
signals present a higher fractionation index and a greater mean slope than their
non-LAVA counterpart. The number of inflection points and signal peaks were also
higher. A similar difference is expected to be found in the simulated signals.
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Figure 5.7: Simulated and clinical non-LAVA EGM with electrode locations in the
healthy myocardium

5.6.2 Qualitative Assessment of Simulated EGMs

Figures 5.7, 5.8, 5.9 and 5.10 show sample EGM simulation signals (unipolar M1
and M2 signals and the corresponding M1-M2 bipolar signal), the location of the
electrodes with respect to the cardiac geometry and the clinical CARTO signals read
at these locations. Blue bipolar signals correspond to those with non-LAVA clinical
tags, whereas the red ones correspond to LAVA.
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Figure 5.8: Simulated and clinical non-LAVA EGM with electrode locations in the
healthy myocardium

A first qualitative assessment shows that the simulated signals are less prone
to noise when compared to the CARTO signals. This is expected as the simulated
signals are not affected by catheter movement, breathing or cardiac motion, among
other factors. Nevertheless, if desired, noise could be added to get more realistic
signals.
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Figure 5.9: Simulated and clinical LAVA EGM with electrode locations in the scar
and grey zone

For the non-LAVA simulated signals, we observe a normal ventricular depolar-
ization in the form of a steep negative slope, without any fragmentation inside the
EGM signal. The unipolar EGM does not show fragmentation at all. For the LAVA
signals, fractionation is seen as a small component with max negative slope. This
fractionation could be seen anywhere during the QRS complex of the bipolar EGM.
Interestingly, we could also easily detect this fractionation on the unipolar EGM
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signals. The difference with clinical LAVA is meanly the amount of fractionation
and the fact that we find larger LAVA in the real world than in the simulated EGMs.

Figure 5.10: Simulated and clinical LAVA EGM with electrode locations in the scar
and grey zone
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5.6.3 Simulated EGM Characterization

Results of the KS test for the simulated signals are included in Table 5.3 and a
graphic representation is shown in 5.11. The distributions of mean slope, number of
inflection points and maximum signal value differed significantly among simulated
non-LAVA and LAVA signal populations, as can be seen by the low p value obtained
after the KS test. Figures 5.12 and 5.13 show the boxplots of the distributions for
two of the features which had the best separation in simulated signals.

Table 5.3: KS test Results on Simulated Signals

Feature Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

Signal Range 0.009 <0.0001 0.02 0.002 0.01
# Inflection Points <0.0001 0.0003 <0.0001 <0.0001 <0.0001
Signal Energy 0.04 - <0.0001 - <0.0001
Dominant Frequency 0.01 <0.0001 0.005 - -
Mean Slope <0.0001 0.002 <0.0001 0.0003 0.0005
Fractionation Index <0.0001 <0.0001 - - -
Minimum Signal Value - 0.0002 0.02 - 0.004
Maximum Signal Value 0.004 <0.0001 0.0005 <0.0001 0.009

Figure 5.11: KS test Results on Simulated Signals.
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Figure 5.12: Boxplots showing the distribution of the number of inflection points of
the LAVA (red) and non-LAVA (blue) class in simulated EGMs for the five patients.
KS tests demonstrated significant difference between distributions.

5.7 Conclusion

We presented the use of a personalized DE-MRI image-based model for the simula-
tion of intracardiac electrograms with LAVA-like characteristics. The phenomeno-
logical Mitchell-Schaeffer model was used with literature parameters for the healthy
myocardium and appropriate modifications were done in the scar and grey zone to
account for the physiological characteristics of these tissues. A dipole approach to
intracardiac EGM simulation was also implemented.

The aim of the current work was to explore the feasibility of using in sil-

ico models constructed with patient-specific non-invasive data to simulate distin-
guishable LAVA and non-LAVA intracardiac EGMs. Their resemblance to clinical
CARTO signals was qualitatively assessed. Furthermore, feature extraction was per-
formed on both the simulated and clinical signals. Characteristics such as the mean
slope and number of inflection points presented significantly different distributions
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Figure 5.13: Boxplots showing the distribution of the mean slope of the LAVA
(red) and non-LAVA (blue) class in simulated EGMs for the five patients. KS tests
demonstrated significant difference between distributions.

when assessed through the use of a Kolmogorov-Smirnov test in both the simulated
(p<0.002) and clinical signals (p<0.0001).
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Table 5.4: EGM Characteristics of Clinical CARTO Signals

Feature Patient non-LAVA LAVA p Value

(µ± σ) (µ± σ) (CARTO)

Signal Range P1 5.31 ± 15.18 2.36 ± 1.73 <0.0001

P2 1.40 ± 5.79 0.73 ± 0.42 <0.0001

P3 3.84 ± 2.99 0.75 ± 0.42 <0.0001

P4 2.09 ± 2.26 0.63 ± 0.54 <0.0001

P5 3.79 ± 15.02 2.57 ± 0.48 0.001

# Inflection Points P1 66.97 ± 73.24 139.43 ± 104.456 <0.0001

P2 315.47 ± 281.07 1085.6 ± 140.59 <0.0001

P3 73.02 ± 102.99 246.02 ± 134.83 <0.0001

P4 29.66 ± 90.22 258.22 ± 191.92 <0.0001

P5 31.9 ± 43.97 51.74 ± 66.44 <0.0001

Signal Energy P1 (6.12 ± 4.39) ×10−4 (6.68 ± 3.56) ×10−4 0.02

P2 (2.38 ± 5.14) ×10−5 (8.90 ± 5.22) ×10−4 <0.0001

P3 (5.04 ± 3.59) ×10−4 (6.67 ± 3.06) ×10−4 <0.0001

P4 (8.53 ± 4.48) ×10−4 (6.65 ± 3.95) ×10−4 0.002

P5 (9.02 ± 2.50) ×10−4 (9.27 ± 1.29) ×10−4 <0.0001

Dominant Frequency P1 17.09 ± 3.59 16.77 ± 3.61 -

P2 20.46 ± 3.55 16.48 ± 3.65 <0.0001

P3 16.73 ± 3.51 13.98 ± 4.12 <0.0001

P4 17.04 ± 3.71 15.58 ± 4.6 -

P5 17.65 ± 2.98 20.13 ± 2.87 <0.0001

Mean Slope P1 (4.19 ± 1.99) ×10−3 (6.53 ± 2.88) ×10−3 <0.0001

P2 (1.21 ± 1.27) ×10−2 (4.96 ± 0.74) ×10−2 <0.0001

P3 (3.92 ± 2.82) ×10−3 (7.32 ± 2.44) ×10−3 <0.0001

P4 (4.80 ± 2.70) ×10−3 (8.73 ± 3.80) ×10−3 <0.0001

P5 (3.44 ± 0.99) ×10−3 (4.12 ± 1.75) ×10−3 <0.0001

Fractionation Index P1 10.28 ± 6.42 16.21 ± 9.28 <0.0001

P2 20.54 ± 14.18 24.07 ± 4.44 <0.0001

P3 7.93 ± 5.39 16.46 ± 10.84 <0.0001

P4 10.27 ± 6.76 13.84 ± 6.84 0.009

P5 6.54 ± 2.53 8.54 ± 6.58 0.0003

Minimum Value P1 -2.82 ± 8.09 -1.06 ± 0.68 <0.0001

P2 -0.68 ± 2.89 -0.38 ± 0.27 <0.0001

P3 -1.65 ± 1.47 -0.36 ± 0.21 <0.0001

P4 -1.08 ± 1.30 -0.34 ± 0.33 <0.0001

P5 -1.67 ± 7.52 -1.07 ± 0.21 <0.0001

Maximum Value P1 2.49 ± 7.18 1.30 ± 1.18 0.01

P2 0.72 ± 2.90 0.35 ± 0.25 <0.0001

P3 2.18 ± 1.87 0.38 ± 0.26 <0.0001

P4 1.01 ± 1.12 0.29 ± 0.24 <0.0001

P5 2.11 ± 7.49 1.50 ± 0.28 0.007
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6.1 Introduction

Radio-frequency ablation (RFA) target identification for the treatment of life-
threatening cardiac arrhythmias remains an open challenge. The complete elimi-
nation through ablation of local abnormal ventricular activities (LAVA) has been
associated with a superior clinical outcome [Jaïs 2012]. The generation of this abnor-
mal electrical activities have been related to regions with the presence of surviving
myocardial fibers within scar tissue.

Scar topology and tissue heterogeneity can be assessed using non-invasive imag-
ing measures such as delayed-enhanced magnetic resonance imaging (DE-MRI). In
previous works [Cabrera-Lozoya 2014], we demonstrated the feasibility in the iden-
tification of RFA targets using solely DE-MR image-based features in a machine
learning framework while integrating the influence of the inherent error sources of
the complex multi-modal data in the training set. Furthermore, we presented in
Chapter 5 that the simulation from DE-MR images of distinguishable healthy and
LAVA-like intracardiac electrograms.

The aim of this work is to develop an enhanced learning scheme using real and
synthetic data to guide RFA therapy by improving the identification of ablation
targets, which are defined by the presence of LAVA. First, the performance of the
classification is assessed when using solely real or synthetic data. Then, three differ-
ent approaches merging both data sources are evaluated. The highest performance
was obtained when using a fused-learning algorithm. The results derived from this
study open up possibilities for non-invasive cardiac arrhythmia ablation planning.

6.2 Clinical Data

Five patients referred for cardiac ablation for post-infarction in ventricular tachy-
cardia were included in this study. The patients underwent cardiac MRI prior to
high-density EP contact mapping of the endocardium.

Electrophysiological Data. The CARTO mapping system (Biosense Webster)
enables the 3D localization of the catheter tip and provides the distribution of EP
signals on cardiac surfaces. Contact mapping was achieved in sinus rhythm on
the endocardium (trans-septal approach) with a multi-spline catheter (PentaRay,
Biosense Webster). Signals were categorised as normal or LAVA by an experienced
electrophysiologist.

Imaging Data. The scar tissue was imaged on a 1.5 Tesla clinical device (Avanto,
Siemens Medical Systems) 15 minutes after the injection of a gadolinium con-
trast agent. A whole heart image was acquired using an inversion-recovery pre-
pared, ECG-gated, respiratory-navigated, 3D gradient-echo pulse sequence with
fat-saturation (1.25×1.25×2.5mm3). The myocardium was manually segmented
on reformatted images of isotropic voxel size (0.625mm3). Abnormal myocardium
(dense scar and grey zone areas) was segmented using adaptive thresholding of the
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histogram, with a cut-off at 35% of maximal signal intensity. Segmentations were
reviewed by an experienced radiologist, with the option of manual correction.

6.3 Methods

6.3.1 Learning from Image Features

Image based features included intensity and texture features. Intensity features in-
cluded minimal, maximal, mean and standard deviation intensity values of voxels
contained within the catheter’s sensing range. Myocardium thickness, scar trans-
murality and standard deviation over the average intensity in the region were also
considered. Haralick features [Tesar 2007] of the myocardial tissue neighboring the
site of the electro-anatomical point (EAP) projection onto the endocardium were
used to describe the tissue texture within the region of interest. Concatenation of
the intensity and texture features yielded a final image-based feature vector of 475
dimensions which was used for classification.

We used a random forest [Criminisi 2011a] classification framework with a nested
cross-validation scheme [Ruschhaupt 2004] and optimized the classifier for precision
performance using the scikit-learn library [Pedregosa 2011]. Furthermore, we as-
signed a confidence weighting value to the samples during the training phase based
on their temporal displacement during EGM recording. This way, image features
from EAPs which were less affected by movement were considered more reliable
for the forest construction. The methods have been more thoroughly described in
Chapter 4.

6.3.2 Learning from Simulated Intracardiac EGM

Imaging data was used to construct a personalized bi-ventricular model, including
distributions of scarred and grey zone regions. The GPU implementation of the
Mitchell-Schaeffer model in the SOFA public framework was used along with tissue-
specific characteristics to simulate cardiac electrophysiology.

A dipole approach was used for unipolar electrogram simulation at locations
where clinical recordings were performed, these spatial coordinates were obtained
from the CARTO system. Bipolar electrograms were later computed as the differ-
ence between the unipolar measurements of two consecutively placed electrodes.

Feature extraction was performed on the distal-most bipolar simulated EGMs.
The feature vector was composed of eight elements: signal range, number of in-
flection points, signal energy, dominant frequency, mean slope, fractionation index
and minimum and maximum signal values. Details concerning the simulation of
intracardiac electrograms and EGM feature extraction were discussed in Chapter 5.

The same random forests classification framework with a nested cross-validation
scheme as the one described for image-based learning was used. Similarly, the
classifier was optimized for precision performance. Nonetheless, no sample weighting
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due to temporal displacement was included as the precise locations of the catheter
electrodes are known during simulation.

6.3.3 Fused-Learning Schemes

Three fusion schemes were proposed to combine the MR image-based and simulated
EGM-based learning frameworks:

- Maximum Confidence Fusion. Classification results were obtained inde-
pendently using image-based or simulated EGM-based features and the confi-
dence in their predictions were analyzed. The final label assigned to the EAP
was that of the learning scheme with the highest prediction confidence.

- Image-based, Simulation-Enhanced Fusion. This learning fusion scheme
gives greater importance to the classifications performed through image-based
learning with temporal displacement weighting. Classification results obtained
through simulated EGM-based learning were used solely in the instances where
the image prediction had a confidence level below 0.75. In this case, the
simulated EGM-based prediction was analyzed. If it was in disagreement with
that of the image-based classification and had a higher confidence label, the
prediction was modified to that given by the simulated EGM-based classifier.
Else, the image-base classification was left intact.

- Feature Set Fusion. A new feature set was created using both the image-
based and the simulated EGM-based features that have been described in the
previous section. This combined feature set was fed to the random forest
classification framework using temporal displacement weighting.

6.4 Evaluation Metrics

The results of the classification algorithms were projected onto an endocardial sur-
face mesh to create confidence maps for potential RF ablation targets. The study in
[Ilg 2010] reports an average endocardial area of 3.5cm2 for RFA lesions. Therefore,
the endocardial surface was divided into regions of area 1.7cm2, two times smaller
than the average RFA lesions. Figure 6.1 shows a sample endocardial surface mesh
partition.

EAP were projected to their closest endocardial surface region along with their
prediction and confidence results. Also, a region was considered LAVA if at least
one of the EAP projected onto it was labeled as such. The justification behind
this is given by the physical constraints of RFA: the ablation of a LAVA site will
affect neighboring tissue within the extension of the RFA lesion size, even if they
are considered non-LAVA inducing.

After projection of the classification results onto the regions in the surface mesh
and its comparison with the ground truth, a confusion matrix was generated and
the following statistics were computed:
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Figure 6.1: (Left) Anterior and (Right) posterior resulting regions for classification
result display after endocardial surface division.

- Accuracy represents the fraction of correct predictions. Its formulation is
given by ACC = (TP + TN)/(TP + FP + TN + FN)

- Sensitivity, also known as true positive rate, measures the proportion of
positives which are correctly identified as such. TPR = TP/P = TP/(TP +

FN)

- Specificity, or true negative rate, measures the proportion of negatives which
are correctly identified as such. TNR = TN/N = TN/(FP + TN)

- Precision, or positive predictive value, is intuitively the ability of the classifier
not to label as positive a sample that is negative and is computed as PPV =

TP/(TP + FP )

where TP, TN, FP, FN correspond to the true positive, true negative, false pos-
itive and false negative values of the confusion matrix, respectively.

6.5 Results and Discussion

This section presents the results from the previously described learning schemes and
ablation target maps from Patient 1 are used to illustrate the algorithm’s perfor-
mance. Further statistics on the classification results are shown in Table 6.1 and
Figure 6.7.

6.5.1 Results from Image-based Learning

Classification maps for Patient 1 with their respective confidence values for the
LAVA region predictions obtained through MR image-based features are shown in
Figure 6.2 for illustrative purposes. As can be seen from Table 6.1, the algorithm
has an overall accuracy of 92.9% across the five patients, with a LAVA-specificity
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of 99.4% and a LAVA-precision of 96.4%. This means that when a region is
classified as LAVA, in general, the algorithm is quite confident. Nonetheless, there
is a severe compromise on the LAVA-sensitivity, which has an overall score of 33.2%.

Figure 6.2: Image-based Learning. (Left) LAVA regions from ground truth.
(Center) Predicted LAVA regions with confidence level color-coding. (Right) Pre-
diction errors with confidence level color-coding.

6.5.2 Results from Simulated EGM-based Learning

Figure 6.3: Simulation-based Learning. (Left) LAVA regions from ground truth.
(Center) Predicted LAVA regions with confidence level color-coding. (Right) Pre-
diction errors with confidence level color-coding.

Classification maps for Patient 1 with their respective confidence values for the
LAVA region predictions obtained through the classification of simulated intracar-
diac electrograms are shown in Figure 6.3. Although the results for this prediction
scheme are slightly lower in terms of LAVA-specificity (97.8%) and LAVA-precision
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(89.4%) than those obtained through MR image-based features, they remain high.
The overall accuracy of the algorithm across the five patients is of 94.4%, but more
importantly, the LAVA-sensitivity presents a considerable increase, with a value of
73.2%.

6.5.3 Results from Maximum Confidence Fusion

Figure 6.4 show the merged results for image and simulation features by selecting
the predictions with the highest confidence for Patient 1. The maximum confidence

fusion scheme had overall high scores across patients. A slight increase in the clas-
sification accuracy (95.0%), LAVA-specificity (99.2%) and LAVA-precision (95.4%)
is obtained with respect to the results yielded by the simulation-based classification.
This happens at the expense of LAVA-sensitivity (63.0%). Nevertheless, the value
is still considerably higher than that obtained by image-based classification alone.

Figure 6.4: Maximum Confidence Fusion. (Left) LAVA regions from ground
truth. (Center) Predicted LAVA regions with confidence level color-coding. (Right)
Prediction errors with confidence level color-coding.

6.5.4 Results from Image-based, Simulation-Enhanced Fusion

Results for the confidence maps of Patient 1 are presented in Figure 6.5. Although
the accuracy achieved is the same as with the maximum confidence fusion scheme
and there are slightly higher scores for LAVA-specificity (99.8%) and LAVA-precision
(98.8%), there is a drop in LAVA-sensitivity (57.4%).

6.5.5 Results from Feature Set Fusion

The graphical results for this fusion scheme on Patient 1 are shown in Figure 6.6.
This method obtained both the top accuracy (97.2%) and LAVA-sensitivity (82.4%)
scores while yielding high values for LAVA-specificity (99.2%) and LAVA-precision
(95.0%) across the five patients. Therefore, it can be said that this scheme
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Figure 6.5: Image-based, Simulation-Enhanced. (Left) LAVA regions from
ground truth. (Center) Predicted LAVA regions with confidence level color-coding.
(Right) Prediction errors with confidence level color-coding.

outperformed the classification frameworks when using solely image-based or
simulation-based features and the two other fusion methodologies.

Figure 6.6: Feature Set Fusion. (Left) LAVA regions from ground truth. (Center)
Predicted LAVA regions with confidence level color-coding. (Right) Prediction errors
with confidence level color-coding.

6.5.6 Classification Results Summary

Table 6.1 and Figure 6.7 summarize the statistics on the results of the different
classification schemes across the five patients. Forest construction parameters are
detailed in Table 6.2.
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Table 6.1: Classification Statistics On Five Patients

Accuracy Sensitivity Specificity Precision

Image-based P1 94.0 73.3 98.5 91.6
P2 92.6 33.3 100 100
P3 91.8 39.0 99.0 90.0
P4 93.7 11.0 100 100
P5 92.5 10.0 100 100

Mean 92.9 33.2 99.4 96.4

Simulated EGM-based P1 89.2 73.3 92.7 68.7
P2 95.4 66.6 98.0 88.0
P3 92.6 78.0 98.0 90.0
P4 99.2 89.0 100 100
P5 95.7 60.0 100 100

Mean 94.4 73.2 97.8 89.4

Maximum Confidence P1 91.6 66.7 97.1 83.3
Fusion P2 92.6 33.0 100 100

P3 96.7 78.0 99.0 94.0
P4 97.6 67.0 100 100
P5 96.8 70.0 100 100

Mean 95.0 63.0 99.2 95.4

Image-based, P1 95.2 73.3 100 100
Simulation-Enhanced P2 92.6 33.3 100 100

P3 96.2 74.0 99.0 94.0
P4 97.6 67.0 100 100
P5 93.6 40.0 100 100

Mean 95.0 57.4 99.8 98.8

Feature Set Fusion P1 95.2 80.0 98.5 92.3
P2 96.3 66.6 100 100
P3 96.2 87.0 98.0 83.0
P4 99.2 89.0 100 100
P5 98.9 90.0 100 100

Mean 97.2 82.4 99.2 95.0

6.5.7 Ground Truth Re-evaluation

For illustrative purposes, misclassified regions in Patient 1 after the fused-learning
schemes were further analyzed. Because most of them correspond to false negatives
areas (true LAVA which were classified as non-LAVA), we first assess the LAVAness

of the CARTO clinical signals in these regions which were categorized as LAVA
by an experienced electrophysiologist. The characteristics these electrograms were
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Figure 6.7: Classification Statistics Summary On Five Patients.

Table 6.2: Forest Construction Parameters

Method Patient # Trees # Features # Inner Folds

Image-based P1 60 80 5
P2 80 50 5
P3 60 10 5
P4 20 30 5
P5 20 50 5

Simulation-based P1 45 2 5
P2 45 2 5
P3 20 2 5
P4 15 2 5
P5 50 4 5

Feature Set Fusion P1 20 70 5
P2 140 200 5
P3 50 3 5
P4 140 125 5
P5 20 9 5

compared to the patient’s feature distributions of LAVA and non-LAVA clinical
signals.

Figure 6.8 shows the mean slope value for these signals. They lie between the 25th

and 75th percentiles values expected for a LAVA signal, dissipating the suspicions
of these signals having non-typical or outlier LAVA signatures.

6.5.8 False Positives Evaluation

In Patient 1, from Figure 6.6 it can be seen that one endocardial region was ini-
tially misclassified by the classification algorithm as a false positive and presented a
low confidence level (0.65).By analyzing the characteristics of the electroanatomical
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Figure 6.8: Verifying ground truth

point, it was found that the considered sample was one where the catheter presented
a high degree of temporal displacement. Its normalized weight was of 0.54, where
the weights range from 0.5 for the EAP with the highest degree of movement and 1
for those with most stable positions. So far, sample weighting has been incorporated
into our learning scheme in the training phase, but not during the testing phase.
This exemplifies the need to consider sample weighting during testing phases of our
classification algorithm.

6.6 Conclusion

We presented the use of a machine learning framework using real and synthetic
data towards the prediction of RFA target identification, defined by the presence of
LAVA. The real data was obtained from delayed-enhanced MR imaging while the
synthetic was produced using a personalized image-based model for the simulation of
intracardiac electrograms. First, the performance of image-based versus simulation-
based learning algorithms was compared. Next, several fused-learning frameworks
were assessed. The highest performance scores were obtained when both feature
sets were merged into a single dataset, the feature set fusion scheme, yielding a
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mean 97.2% accuracy and 82.4% LAVA-sensitivity scores across five patients. Error
regions were characterized by containing EAP with high temporal displacement
values. The results derived from this study open up possibilities for non-invasive
cardiac arrhythmia ablation planning.
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In this thesis, we presented structurally and functionally personalized models to
study the spatial heterogeneity of electrophysiological tissue properties and their role
in arrhythmogenesis. Then, we demonstrated that it was possible to use delayed-
enhanced MR image features to accurately predict potential cardiac ablation targets,
based on the presence of LAVA signals. Additionally, we presented a framework for
the simulation of intracardiac electrograms using a personalized image-based model.
This led to the generation of EGMs with distinguishable LAVA and non-LAVA
class characteristics. In the previous chapter, we developed a combined approach
to enhance the prediction of RFA targets, using both personalized simulated EGMs
and real MRI patient data. In this chapter, we summarize the contributions of each
chapter presented in this thesis and propose future directions of research.

7.1 Contributions

VT Inducibility Prediction: A combined modeling and clinical approach

The work in Chapter 3 integrated personalized structural and functional data for
the study of spatial tissue heterogeneity of electrophysiological (EP) properties
using the Mitchell-Schaeffer simplified biophysical model. We showed that patients
with highly heterogeneous EP properties were at higher risk of presenting VT.
More precisely, cardiac regions with high heterogeneity of restitution properties,
such as apparent conductivity and APD-RC slope, were found at the locations
of VT exit points. Additionally, we validated the importance of the use of
personalized parameters for an accurate in silico VT stimulation procedure by
using literature-based parameter values, which either did not induce VT or induced
a different macroscopic VT circuit morphology from that observed in clinics. This
work was submitted as [Cabrera-Lozoya 2015c].
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Image-based Prediction of Cardiac Ablation Targets

The work in Chapter 4 presented a machine learning framework, using intensity
and texture-based local imaging features in the vicinity of myocardial scar and grey
zones towards the prediction of RFA target localisation. Additionally, we detailed
the uncertainty in the data and explored its impact on the classification results.

We proved the feasibility of classification using solely image-based features on
complex multi-modal data using three patients. Furthermore, we demonstrated
that results were improved when using uncertainty evaluation to weight the training
data. Finally, visual interpretation of our results in the form of confidence maps in
an anatomical (endocardial or epicardial) surface was presented which has potential
use in a clinical environment. This work was published in [Cabrera-Lozoya 2014]
and in [Cabrera-Lozoya 2015d].

Image-based Simulation of LAVA Intracardiac Electrograms

In Chapter 5, the use of a personalized DE-MR image-based model for the simulation
of intracardiac electrograms with LAVA-like characteristics was presented. The
phenomenological Mitchell-Schaeffer model was used with literature parameters for
the healthy myocardium and appropriate modifications were done in the scar and
grey zone to account for the physiological characteristics of these tissues. A dipole
approach to intracardiac electrograms (EGM) simulation was also implemented.

We succeeded in using in silico models constructed with patient-specific non-
invasive data to simulate distinguishable LAVA and non-LAVA intracardiac EGMs.
Signal features such as mean slope and number of inflection points presented signifi-
cant differences between the LAVA and non-LAVA distributions for both the clinical
and simulated signals. This work will be submitted as [Cabrera-Lozoya 2015a].

Additionally, a Python-based graphical user interface (GUI) was developed
in order to obtain a better understanding of the relationshop between the LAVA
electrograms and the involved tissue. With this GUI, it is possible to simultaneously
visualize the position of the recording electrodes, the image patch associated to this
location and to compare the corresponding clinical and simulated electrograms. A
screenshot with superposed labels of the functionality of the GUI windows is shown
in Figure 7.1.

RFA Target Prediction: Combining Imaging Data and Biophysical

Modeling

In Chapter 6, the MR image-based machine learning framework described in
[Cabrera-Lozoya 2014] was combined with the personalized intracardiac EGM
simulation scheme in [Cabrera-Lozoya 2015a] to enhance the prediction of RFA
target identification. We described how the inclusion of simulation data improved
the performance of cardiac ablation target identification obtained from image-
based learning. The results derived from this study open up possibilities for
non-invasive cardiac arrhythmia ablation planning. This work will be submitted as
[Cabrera-Lozoya 2015b].
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Figure 7.1: Python-based graphical user interface.

7.2 Methodological and Clinical Perspectives

7.2.1 Methodological Perspectives

Throughout this thesis, cardiac electrophysiology simulation was performed using
the mono-domain Mitchell-Schaeffer [Mitchell 2003] model. Nevertheless, the bi-
domain model is known to be more accurate in mathematically describing cardiac
electrical activity, with a major drawback of being extremely computationally ex-
pensive. The work in [Keller 2012] studied the differences in intracardiac signals
when using mono and bidomain models and found that bidomain simulations better
represent in-vivo data when investigating small-scale changes in intracardiac elec-
trograms. [Coudiere 2014] has developed a computationally efficient and accurate
approximation of the bi-domain model that allows for extracellular stimulation and
accounts for unequal anisotropy ratios between intra-and extra-cellular media. This
opens the possibility of exploring the use of a more refined electrophysiology model
in our work while keeping computation times and loads to an acceptable level. Fur-
thermore, in the current state, the EGM simulation implementation could highly
benefit from a parallelization setting in a GPU framework, like the one developed
in [Talbot 2014] for EP simulations. This would achieve shorter computation times
than the ones reported in Chapter 5 and which could be acceptable to use in a
clinical environment.

One of the main contributions of this work was the consideration of sample un-
certainty during the training phase when electro-anatomical points were weighted
according to their degree of temporal movement. Nonetheless, an aspect that was
not explored during this work was the role of uncertainty in the test samples. An ex-
tension of this work can include the knowledge of uncertainty into the testing phase.
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Classification labels of EAP with high temporal displacement can be complemented
by additional EGM simulations and image feature computation in locations of the
displacement trajectory of the EAP. This would yield a higher number of descriptors
that would better characterize the underlying tissue region swept by the recording
catheter and could help increase the classification performance by considering the
density of classified labels of these supplementary points.

In this work, per-patient analysis were performed for the prediction of cardiac
ablation targets. In order to evolve from per-patient analysis into an inter-patient
learning framework, a large database should be constructed in order to allow for a
varied and diverse training pool. Nonetheless, because clinical data is sometimes
hard to obtain, the database size can be increased by the incorporation of synthetic
but realistic cases as was done in the work that will appear in [Duchateau 2015].
These samples could include realistic myocardial infarctions with different grey zone
to scar core ratios, sizes, shapes and locations and intracardiac electrograms could
be computed from them. It is only after considerably increasing the size of our
database (with both real and synthetic samples) that we might be able to consider
more sophisticated learning algorithms, such as deep learning, which has recently
been used in other computer vision applications [Taigman 2014].

The use of new image and signal-based features can be explored. Examples of
families of image features that have not been investigated in this work are wavelets
or steerable filters. Also, the use of image features with rotation invariant properties
would be of great use in an inter-patient study. For the EGM-based counterpart,
time-frequency domain features can be incorporated. Other methods have been
proposed for the analysis of EGM signals, including those with wavelet decomposi-
tion approaches. The study in [Alcaine 2014] proposes the wavelet decomposition
on the signal envelope of EGMs for the automatic generation of activation maps.
Perhaps the use of signal features in different wavelet scales can help improve the
classification of simulated intracardiac electrograms.

Nonetheless, we think that this work would greatly benefit from the use of prin-
cipal component analysis (PCA) or linear discriminant analysis (LDA) for dimen-
sionality reduction. Retrieving a reduced subset of features without compromising
classification performance would render the classifier more robust against overfitting
and would also help to speed up the feature extraction phase, particularly the image-
based. A further reduction in computation time can be obtained by computing only
the required image features on the fly at each stage of the testing phase.

7.2.2 Clinical Perspectives

A considerable amount of clinical data during this thesis was obtained through the
use of a PentaRay catheter, which is not the standard used in clinics. This multi-
spline recording catheter allows for a higher-density mapping in a shorter time lapse.
While our framework would not change if a multi-spline catheter is not used, this
would considerably increase the clinical procedure time, as the catheter would need
to be swept across a larger number of positions in order to obtain a high-density
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electrical map. In this scenario, previously simulated intracardiac electrograms from
image-based patient-specific models could be of great help, by generating maps
containing the regions which are more likely to present LAVA electrograms.

In the last years, electrocardiographic imaging systems have been presented as
a method for mapping the electrical activity of the heart [Rudy 2013]. While this
technique might be useful when studying large scale activation patterns and it could
possibly find applications in the study of ventricular tachycardia, it still lacks the
properties to study local phenomena, like LAVA.

Image normalization and image quality assessment are issues that should be
managed. Indeed, image quality can play a very important role in the image-feature
extraction phase. For example, using training image features from high quality
MR images will not perform as expected on a test image with low resolution, and
viceversa. Therefore, a means of evaluating image quality should be derived and
appropriate classifiers should be developed for each scenario. Furthermore, the
usefulness of medical imaging alternatives, such as computed tomography (CT),
should also be assessed of our particular clinical problem. In the pre-clinical study
described in [Schuleri 2009], the authors compared the characterization of the border
zone when using delayed-enhanced multi-detector CT to the more widely used DE-
MR imaging techniques. They claimed that DE-MDCT provided a more detailed
assessment of the border zone and was less susceptible to partial volume effects
than MRI. Therefore, it would be interesting to evaluate the performance of the
algorithms proposed in this thesis when using CT imaging as an input.

As a long-term perspective and after further validation of the proposed tech-
niques on a larger patient cohort, we can think of a fully coupled learning and
clinical ablation target identification approach as shown in Figure 7.2. The pa-
tient will be firstly referred to an MR imaging study from which a patient-specific
image-based model could be derived. A preliminary ablation target map would
be generated using the developed techniques with an an offline classification stage.
Then, during the clinical study, real catheter recordings and the clinician’s expertise
can be incorporated to complement and update the target map in real time. Because
random forests are efficient algorithms that can easily benefit from parallelism, they
become ideal candidates for an online learning framework. The simplest approach
requires to push newly obtained training data through all the trees to update the
leaf distributions, keeping the learned parameters and the forest structure fixed, as
has been described in [Criminisi 2011a].

Furthermore, ablated regions can be incorporated in the image-based model and
changes in cardiac electrophysiological behavior can be assessed. This would lead
to a fully integrated RFA planning scheme for therapy guidance.

In this PhD, we explored how the close integration of mathematics, computer sci-
ence and medicine can leverage on important progress made in computer simulation
and machine learning to improve cardiac intervention planning.
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Figure 7.2: Perspectives on Clinical Workflow.
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A.1 Introduction

The inherited long-QT syndrome (LQTS) is an arrhythmogenic disease character-
ized by impaired cardiac repolarization that clinically manifests with QT prolon-
gation, polymorphic ventricular tachycardia (pVT), syncopes, and sudden cardiac
death (SCD) [Roden 2008]. A spatially heterogeneous prolongation of repolarization
leading to an enhanced dispersion of action potential duration (APD) is considered
a major contributor to LQT-related arrhythmias [Antzelevitch 2007]. As a result
of their prolonged repolarization, patients with LQTS have globally prolonged car-
diac contraction duration with transmural differences [Haugaa 2009], [Haugaa 2010].
However, the spatial relationship between electrical and mechanical (dys)function
remains to be elucidated.

Phase contrast magnetic resonance imaging (MRI) has been successfully used
to determine regional differences in myocardial contraction and relaxation velocities
in human patients [Jung 2006]. Healthy women, who physiologically have longer
repolarization than men, have altered peak velocities and different regional patterns
of relaxation than men [Föll 2010], suggesting that it may be possible to determine
changes and spatial differences in mechanical function in LQTS using this technique.

Rabbits exhibit pronounced similarities in the expression and function of voltage-
gated K+ channels [Nerbonne 2000] and Ca2+ cycling proteins [Bers 2002] as hu-
mans, suggesting that rabbits can fairly appropriately mimic the human phenotype
of cardiac diseases with electrical and/or mechanical impairment. Indeed, several
transgenic rabbit models of human diseases such as LQTS and hypertrophic car-
diomyopathy have demonstrated pronounced similarities with the human phenotype
[Brunner 2008], [Ripplinger 2007]. Transgenic LQT2 rabbits mimic human LQTS
with QT prolongation, pVT, SCD, and an increased APD dispersion as major ar-
rhythmogenic mechanism [Brunner 2008]. Moreover, despite some species differ-
ences in myocardial motion between humans and small animals, we could recently
show similarities between humans and rabbits also in regional contractile behaviour
with a similar rotational motion [Jung 2012], indicating that LQT2 rabbits may be
a useful tool to assess mechanical function in LQTS.

Using in vivo phase contrast MRI, ex vivo monophasic action potential (MAP)
measurements and machine learning approaches, we aimed at elucidating the spatial
relationship between regional electrical and mechanical cardiac function and their
spatial dispersion in transgenic and drug-induced LQT2 rabbits.

A.2 Methods

A more detailed method description can be found in the online supplement in http:

//dx.doi.org/10.1016/j.hrthm.2013.07.038..

http://dx.doi.org/10.1016/j.hrthm.2013.07.038.
http://dx.doi.org/10.1016/j.hrthm.2013.07.038.
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A.2.1 Rabbits

Adult female transgenic LQT2 (HERG-G628S, 4.1±0.6 months, 2.4±0.3 kg) and
wildtype littermate control (LMC) rabbits (without drugs, 6.3±1.0 months, 3.8±0.6
kg; with E4031, 4.0±0.2 months, 2.9±0.3 kg) were subjected to MRI followed by
MAP measurements.

A.2.2 Phase contrast MRI

To assess myocardial velocities, transgenic LQT2 (n=11) and LMC rabbits
(n=9 without drugs, n=10 with E4031, bolus 10µg/kg and infusion 1µg/kg/min
[Michael 2007]) were subjected to phase contrast MRI at 1.5 T (Avanto, Siemens,
Germany) [Jung 2012]. Animals were anesthetized with s-ketamine/xylazine
(12.5/3.75 mg/kg IM, followed by 1-2.5 ml/kg/h IV), which does not affect car-
diac repolarization [Odening 2008], and positioned in a 12-channel head coil.

Experiments were performed with a black blood prepared gradient echo sequence
with prospective ECG-gating and high temporal (7.6 ms) and spatial resolution
(1.0×1.2×4 mm) [Jung 2012]. For data post-processing, customized Matlab soft-
ware was used. For regional analysis, LV was partitioned into 16 segments in base,
mid, and apex (AHA model [Cerqueira 2002]). Mean radial (Vr) and long-axis (Vz)
systolic and diastolic peak and time to peak (TTP) velocities were determined. Stan-
dard deviation (SD) of TTP velocities from 16 segments was calculated as measure
for mechanical dispersion. Heart rate corrected diastolic TTP were computed as
percentage of RR.

A.2.3 MAP measurements in Langendorff-perfused rabbit hearts

To correlate electrical and mechanical function, MAPs were acquired in the same
LQT2 (n=10) and LMC rabbits (n=9 without drugs, n=10 with E4031, 0.1µM
[D’Alonzo 1999]). Rabbits were anesthetized with s-ketamine/xylazine (12.5/3.75
mg/kg) IM, and received 1000 IU heparin IV. Following euthanasia with thiopental-
sodium (40 mg/kg) IV, hearts were rapidly excised and mounted on Langendorff-
perfusion set-up (IH5, Hugo Sachs Electronic-Harvard Apparatus, Hugstetten, Ger-
many). Hearts were retrogradely perfused with modified Krebs-Henseleit solution
[Bentzen 2011]. ECG, MAP, coronary flow and pressures were continuously recorded
with Isoheart software (Hugo Sachs Electronic, Version 1.1.1.218(32)).

After mechanical atrioventricular node ablation, hearts were stimulated with 2,
3, and 4 Hz − to obtain APD at heart rates comparable to MRI (130-189 beats/min).
Four MAP electrodes were repetitively positioned on all different LV segments −

except for the septal segments (Figure A.2). APDs at 75% of repolarization (APD75)
and standard deviations (SD) of APD75 within all LV segments were calculated as
measure for electrical dispersion.
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A.2.4 Machine learning for image-based classification

Multivariate data analyses were performed using random forest machine learning
algorithms to explore the possibility to differentiate between LQT2, E4031, and
LMC based on MRI. Image-based features included peak velocities, time-to-peak
velocities, regional velocity statistics and correlations to normal velocity curves (over
700 features/rabbit). Feature space dimension reduction was performed through chi-
squared test. Only top-relevant features were considered. Cross-validation was used
to obtain an estimate of classifier accuracy [Menze 2009].

Since heart-rate corrected QT (QTc) duration [Sauer 2007] and QT dispersion
[Priori 1994] are known arrhythmogenic risk factors in LQTS, and since we observed
correlations between APD and diastolic dysfunction in LQT2 rabbits, we secondly
tested whether MRI can provide sufficient information to discern differences in the
extent of APD prolongation using random forest algorithms. LQT2 rabbits were di-
vided in two groups: 1) rabbits with "very long" APD and "pronounced" dispersion
(longest APD > 155 ms, SD_APD > 12 ms) and 2) rabbits with "long" APD and
"moderate" dispersion (longest APD > 140 ms and < 155 ms, SD_APD < 12 ms)
(Table 1 suppl.).

A.2.5 Statistical Analysis

For normally distributed values, we used unpaired Student’s t-test for comparisons
and Pearson’s test for correlations. For values not normally distributed, we used
Mann-Whitney test for comparisons and Spearman’s test for correlations. Corre-
lations were visualized using linear least square fit calculated based on all LQT2
rabbits’ data. Analyses were performed with Prism 4.03 (Graphpad, San Diego,
USA).

A.3 Results

A.3.1 Dispersion of Cardiac Repolarization in Transgenic and
Drug-induced LQT2 Rabbits

As shown in representative MAPs of LV base of individual transgenic LQT2 and
LMC rabbits (Figure A.1B) and in averaged bull’s eye plots of APD75 in all LV
regions (Figure A.1C), LQT2 and E4031-treated rabbits had significantly longer
APDs than LMC. Moreover, spatial dispersion of APD was significantly greater
in LQT2 and E4031 than in LMC (Figure A.1D). A similar difference observed in
surface ECG with significantly longer QT intervals in LQT2 and E4031 than in
LMC (Figure A.1E).

During faster stimulation, APD shortened in all groups (LQT2, p<0.0001,
E4031, p=0.002, LMC, p=0.002). Despite this rate-dependent APD shortening,
however, APD remained significantly longer in LQT2 and E4031 than in LMC at 3
Hz (3Hz, base, ms, LQT2, 132±8.5, p=0.02, E4031, 121±3.6, p=0.04, LMC, 113±1;
4 Hz, LQT2, 105±9.7, E4031, 97±7.6, LMC, 89±0.5). Moreover, APD dispersion
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remained more pronounced in LQT2 and E4031 than in LMC at 3 and 4 Hz (Figure
A.1D).

A.3.2 Mechanical Function in Transgenic and Drug-induced LQT2
Rabbits

Global peak systolic radial velocities (Vr) were significantly reduced in LQT2 and
E4031 compared to LMC in LV base (LQT2, p=0.01; E4031, p=0.0004) and mid
(LQT2, p=0.002; E4031, p=0.0009), and tended to be reduced in apex (LQT2,
p=0.07) − due to regionally reduced velocities in anterior and anteroseptal segments
(Figure A.2A). Global peak systolic longitudinal velocities (Vz) did not differ. Re-
gional systolic Vz, however, were reduced only in LQT2 in anteroseptal segments
(Figure A.2B). Ejection fractions were normal in all groups (Figure A.2C). LV end
diastolic and end systolic volumina (LVEDV, LVESV) were lower in the smaller
LQT2 rabbits (Figure A.2D). After body weight-correction, however, no differences
were found between groups (Figure A.2D).

Global and regional peak diastolic Vr were significantly reduced in LQT2 and
E4031 in LV base (LQT2, p=0.002; E4031, p<0.0001), mid (LQT2, p=0.002; E4031,
p<0.0001), and apex (LQT2, p=0.01; E4031, p=0.006; Figure A.3A, B) − indicating
an impaired diastolic function in LQT2. Global peak diastolic Vz did not differ be-
tween LQT2 and LMC, but were reduced in E4031 (base, p<0.0001; mid, p=0.0002;
apex, p=0.02). Regional diastolic Vz were reduced in LQT2 in anterior segments,
while in E4031, diastolic Vz were reduced in inferior and lateral regions (Figure
A.3D).

Global and segmental time-to-diastolic peak Vr (TTP_dia_Vr) were signifi-
cantly longer in LQT2 and E4031 than in LMC (LQT2, base, p=0.0002; mid,
p=0.04; E4031, base, p<0.0001; mid, p<0.0001, Figure A.4A) − indicating a delayed
relaxation due to prolonged contraction duration. After heart-rate correction, differ-
ences between LQT2 and LMC were even more pronounced (TTP_dia_Vr_base%,
LQT2, 65.2%±0.8, LMC, 58.8%±0.6, p<0.0001; Figure A.4B). In contrast, global
and segmental heart-rate corrected TTP_dia_Vz were similar in all groups.

A.3.3 Correlation of electrical and mechanical dysfunction

In LQT2 rabbits, APD correlated moderately with regional reduction of diastolic
Vr and Vz in LV base (Vr_dia, CC 0.38, p=0.02; Vz_dia, CC 0.47, p=0.002; Fig-
ure A.3C). Moreover, SD of APD and peak diastolic Vr − as markers of electri-
cal/mechanical dispersion − correlated strongly in LV mid (CC 0.75, p=0.03). In
addition, TTP_dia_Vr − as marker of contraction duration − correlated moder-
ately with APD in LV base (TTP_dia_Vr, CC 0.47, p=0.001; TTP_dia_Vr%, CC
0.43, p=0.001, Figure A.4D). As for systolic function, APD correlated moderately
with systolic Vz in LV mid (CC 0.37, p=0.03). In E4031-treated rabbits, APD cor-
related with diastolic Vr (CC 0.42, p=0.04), while in LMC, no correlations were
observed.
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A.3.4 Machine learning approaches for MRI-based classification

Based on the observed differences in mechanical function, we first explored the pos-
sibility to differentiate between groups solely based on "mechanical" phase contrast
MRI. Using random forest algorithms with only most relevant features (Table 2
suppl.), we could differentiate between LQT2 and LMC with an accuracy of 95
%. All LQT2 rabbits were correctly classified, while one LMC with relatively low
Vr_dia was misclassified (Table 3 suppl.). Most relevant features were regional
diastolic Vr, TTP_dia_Vr, and their SD (Table 2 suppl.), while systolic features
were only of minor importance. As indicated in the cumulative region relevance
plot, important features were mainly located in base (Figure A.5A). Moreover, we
could differentiate between E4031 and LMC with an accuracy of 100% (Table 3
suppl.). Most of the relevant features for classification were regional diastolic Vr
and Vz, TTP_dia_Vr, and SD of Vr_dia, TTP_dia_Vr, and TTP_dia_Vz (Table
2 suppl.), mainly located in base inferior and mid regions (Figure A.5B).

Based on the correlations between electrical and mechanical features in LQT2,
we secondly tested whether MRI could provide sufficient information to discern
even slight differences in the extent of APD prolongation (LQT2 "very long" APD,
164±7.6 ms; LQT2 "long" APD, 144±2.8 ms, p<0.001, Table 1 suppl.). Using
only the 17 most relevant features (Table 2 suppl.), it was possible to differentiate
between"very long" vs. a "long" APD groups with a classification accuracy of 100
% (Table 3 suppl.). Most relevant features were diastolic Vr and Vz and TTP_dia-
TTP_sys (Table 2 suppl.), primarily located in mid (Figure A.5C).

A.4 Discussion

Using phase contrast MRI, MAP, and multivariate random forests machine learning
algorithms, this study provides a comprehensive assessment of regional dispersion
of repolarization and mechanical function in LQT2 rabbits. We revealed that a
genetically-induced or IKr-blocker-induced prolongation of APD led to a globally
and regionally impaired diastolic function and, importantly, that regional differences
in APD correlated with regional differences in diastolic dysfunction. These observa-
tions indicate that inherited and drug-induced LQTS are not purely electrical but
rather electromechanical disorders. Moreover, we demonstrated the possibility to a)
differentiate between LQT2 and normal rabbits, and b) discern differences in the ex-
tent of APD prolongation in transgenic LQT2 rabbits solely based on phase contrast
MRI, indicating a potential future use of MRI for risk stratification in LQTS.

A.4.1 Dispersion of Repolarization in LQT2 Rabbits

A spatially heterogeneous prolongation of repolarization leading to an enhanced
APD dispersion is considered a major contributor to LQT-related arrhythmias
[Antzelevitch 2007]. LQTS patients have a more pronounced QT and Tpeak-
end dispersion indirectly reflecting regional and transmural APD heterogeneities



A.4. Discussion 111

[Priori 1994], [Lubinski 1998]. Spatial and transmural heterogeneities in IKr, IKs,
and ICa,L underlie these pronounced APD heterogeneities in LQTS [Cheng 1999],
[Pham 2002]. To directly assess dispersion of repolarization in LQTS patients, in-
vasive electrophysiological studies (EPS) are necessary and this assessment is lim-
ited to regions easily accessible during EPS [Bhandari 1985]. Taking advantage of
transgenic LQT2 rabbits, we have previously demonstrated a pronounced disper-
sion of repolarization on RV endocardium [Odening 2010] and LV anterior surface
[Brunner 2008] using in vivo EPS and ex vivo optical mapping. We here comple-
mented these data by systematically assessing APD in anterior, anterolateral, infer-
olateral, and inferior regions of LV base, mid, and apex and demonstrated a more
pronounced APD dispersion within each level and global LV. Moreover, we demon-
strated that this increased APD dispersion was not altered by faster stimulation
despite a rate-dependent APD shortening.

A.4.2 Dispersion of Contractile and Diastolic Function in LQT2
Rabbits

For the first time, we systematically assessed global and regional systolic and dias-
tolic function in LQTS and demonstrated that APD prolongation a) was associated
with delayed cardiac relaxation and b) had an impact on radial systolic velocities
and − particularly − on radial and longitudinal diastolic velocities, indicating an
impaired mechanical function in LQT2.

Heart size (LV volumes, ventricular mass, and wall thickness) may impact on
systolic − and less pronouncedly on diastolic − velocities [Föll 2010]. The observed
pronounced differences in systolic and diastolic velocities in LQT2 and E4031 rabbits
compared to LMC, however, cannot (solely) be explained by differences in LV vol-
umes since E4031-treated rabbits were bigger than LQT2 but had similarly reduced
diastolic velocities. Furthermore, differences in heart size cannot explain regional
correlations between APD and diastolic velocities in transgenic and drug-induced
LQT2 rabbits as heart size did not vary much within these groups.

Since electrical and mechanical cardiac functions are coupled and influence each
other [ter Keurs 2011], LQTS patients have not only prolonged repolarization but
also have similarly altered ventricular contraction patterns with slow contraction in
the late wall thickening phase [Nador 1991], longer isovolumetric relaxation times
[Savoye 2003], and globally prolonged contraction duration with transmural differ-
ences [Haugaa 2009], [Haugaa 2010] as demonstrated by M-mode and tissue Doppler
echocardiography. Moreover, in a case report of an infant with a particularly long
QT, the onset of pVTs was preceded by a globally impaired systolic and diastolic
function [Vyas 2008]. Two small studies demonstrated that mechanical abnormal-
ities in LQTS patients were associated with arrhythmogenic events [Nador 1991]:
the alteration of myocardial velocities was more sensitive and more specific for the
prediction of cardiac events than QTc duration [Haugaa 2009], indicating a possible
prognostic value of regional velocity imaging in LQTS patients.

The tissue Doppler imaging technique, however, is limited by low reproducibil-
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ity, angle dependency of measurements, and does not permit the evaluation of all
myocardial segments and all velocity directions [Thibault 2008]. Phase contrast
MRI overcomes these limitations and allows assessing all velocities in all segments
[Jung 2006]. Using this technique, we revealed that not only global peak veloci-
ties are reduced and global time-to-diastolic peak velocities are prolonged in LQT2,
but rather that reduction of diastolic velocities and prolongation of contraction
duration are regionally heterogeneous, indicating a mechanical dispersion. Interest-
ingly, in transgenic LQT2 rabbits, radial velocities were particularly reduced and
radial time-to-diastolic peak were particularly prolonged. In line with our find-
ings, in LQTS patients a very slow late contraction was observed in radial direction
[Nador 1991]. Moreover, dispersion parameters and contraction duration in radial
velocities demonstrated the highest correlations to APD. These observations stress
the particular importance of evaluating regional radial motion in LQTS, which can-
not be assessed in all LV segments using standard echocardiography.

A.4.3 Correlation of electrical and mechanical dysfunction and
MRI-based differentiation of electrical phenotype

Although it has previously been shown that LQTS patients have a pronounced
dispersion of both, cardiac repolarization and (transmural) contraction duration
[Haugaa 2010], thus far, no study has investigated a potential spatial relationship
between electrical and mechanical dispersion in LQTS. Taking advantage of trans-
genic LQT2 rabbits [Brunner 2008], in which mechanical and electrical function can
be assessed systematically in similar segments, we revealed for the first time a spa-
tial correlation between APD and the extent of diastolic dysfunction, contraction
duration, and mechanical dispersion, indicating a close coupling of spatially hetero-
geneous electrical and mechanical dysfunction in LQTS. Due to electro-mechanical
coupling in cardiomyocytes, one might expect an even stronger statistical correlation
than the one observed in our study. However, regional differences in fiber orienta-
tion and heart geometry at different segments may additionally affect amplitude and
timing of radial, longitudinal and rotational velocities thus modulating the direct
impact of APD on relaxation characteristics. Nevertheless, this observed association
between electrical and mechanical changes in LQT2 rabbits was pronounced enough
to discern even moderate differences in the extent of APD prolongation solely based
on phase contrast MRI.

How this altered electro-mechanical function in LQTS may impact on arrhyth-
mogenesis − e.g. via reverse excitation-contraction coupling [ter Keurs 2011], via
activation of stretch-sensible ion channels [Wang 2009b], or via reduced coronary
perfusion due to prolonged cardiac contraction and impaired diastolic relaxation
− remains to be elucidated. APD prolongation results in increased Ca2+ influx
via ICa,L and increased Ca2+-induced Ca2+-release from the sarcoplasmic reticu-
lum, thus increasing cytoplasmic Ca2+ concentration [Ca2+]i [Bassani 2006]. Since
physical properties of (resting) sarcomeres are related to [Ca2+]i [Stuyvers 2000], an
increased [Ca2+]i may result in an impaired diastolic relaxation. Moreover, the in-
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creased [Ca2+]i should additionally increase systolic function31. However, our data
suggest that systolic function in LQT2 hearts is decreased, indicative of a complex
remodeling of Ca2+ handling systems like an adaptive decrease in ICa,L density ob-
served in transgenic LQT2 rabbits [Liu 2012]. Further studies are necessary to fully
characterize molecular mechanisms responsible for adaptive changes contributing to
systolic and diastolic dysfunction in LQT2.

A.4.4 Clinical implications

To date, LQTS is mainly considered an "electrical" disorder, in which QTc dura-
tion [Sauer 2007] and QT dispersion [Priori 1994] are known arrhythmogenic risk
predictors. The fact that a) regional differences in APD correlate with regional
differences in diastolic dysfunction and that b) it is possible to discern differences
in the extent of APD prolongation using phase contrast MRI might open new ap-
proaches for risk stratification and treatment decisions of LQTS patients. In the
future, it might be possible to use phase contrast MRI to assess the arrhythmogenic
risk in LQTS patients non-invasively by deducing electrical dispersion from segmen-
tal mechanical function and dispersion. Transgenic LQT2 rabbits overexpress the
dominant-negative loss-of-function mutation HERG-G628S that leads to a complete
loss of IKr. Many missense mutations in HERG in LQT2 patients, however, lead
to a substantial decrease rather than a complete loss of IKr. The findings of pro-
nounced diastolic dysfunction in transgenic LQT2 rabbits thus likely recapitulate
findings in human patients with a (complete) loss of functional IKr. The fact that
IKr-blocker E4031, which only reduces IKr, also induces diastolic abnormalities,
however, indicates that LQT2 patients with a substantial decrease of IKr may have
similar diastolic dysfunction. To validate the potential use of phase contrast MRI
for risk stratification, further studies investigating its potential to predict the de-
velopment of pVTs and clinical pilot studies investigating the extent of mechanical
(dys)function and its spatial dispersion in LQTS patients with different mutations,
different QTc, and different arrhythmia incidences are certainly warranted.

A.4.5 Limitations

Regional mechanical and electrical data were acquired in different experimental set-
tings, e.g. in vivo MRI and ex vivo MAP in Langendorff-perfused hearts. Ideally,
both should be assessed simultaneously in the same in vivo setting to perfectly cor-
relate regional mechanical and electrical function. However, to date, detailed seg-
mental MAP measurements are not feasible in an in vivo setting and it is still very
challenging to obtain any − let alone detailed − regional electrical data during MRI.
The "diastolic dysfunction", e.g. abnormal cardiac relaxation, observed in LQT2
rabbits, must be differentiated from "diastolic heart failure". Clinically, none of the
LQT2 rabbits showed any signs of diastolic heart failure − similarly as in LQTS pa-
tients, in whom no clinical signs of heart failure were reported, even in older patients
or in patients with particularly prolonged QT [Goldenberg 2008]. Moreover, so far,
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none of the clinical manifestations of LQTS has been directly, patho-physiologically
linked to the presence of severe mechanical dysfunction. Importantly, however,
we could demonstrate that mechanical cardiac function was sufficiently altered in
LQT2 to allow a differentiation between LQT2 and normal hearts solely based on
phase contrast MRI. These data indicate that LQTS should probably not only be
considered an electrical but rather an electromechanical disorder.

A.5 Conclusions

Prolongation and increased dispersion of cardiac repolarization led to globally and
regionally impaired diastolic and systolic mechanical function and increased me-
chanical dispersion in transgenic and drug-induced LQT2 rabbits. Moreover, in
transgenic LQT2 rabbits, regional differences in APD correlated with the extent
of reduction of regional diastolic peak velocities and regional time-to-diastolic peak
velocities − as marker of impaired diastolic function, indicating that LQTS is not
purely an electrical but rather an electromechanical disorder. Finally, due to this
association of electrical and mechanical functions, it was possible to (1) differentiate
between LQT2 and normal LMC rabbits’ hearts, and to (2) discern differences in the
extent of APD prolongation and APD dispersion in LQT2 rabbits solely based on
MRI data, indicating potential new approaches for risk stratification and treatment
decisions of LQTS patients.

A.6 Supplementary data

Supplementary data associated with this article can be found in the online version
at http://dx.doi.org/10.1016/j.hrthm.2013.07.038.

http://dx.doi.org/10.1016/j.hrthm.2013.07.038.
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Figure A.1: Spatial Differences in Action Potential Duration. A.
Langendorff-perfusion set-up for MAP measurements. B. Representative MAP trac-
ings of individual LQT2 (red) and wildtype (LMC, black) rabbits. C. Bull’s eye plots
of average APD75 (ms). Circles represent (from outside to inside) LV base, mid, and
apex. APDs are color-coded as indicated. Septal APDs were not assessed. D. APD-
Dispersion (SD of APD) in base, mid, apex, and global LV at 2, 3, and 4 Hz. E.
ECG parameters in LQT2, LMC, and E4031-treated (1µg/kg/min) rabbits. n=10
LQT2, n=9 LMC, and n=10 E4031 rabbits; ∗ p<0.05, ∗∗ p<0.01, ∗ ∗ ∗ p<0.001 vs.
LMC



116
Appendix A. Spatial Correlation of APD and Diastolic Dysfunction in

Transgenic and Drug-induced LQT2 Rabbits

Figure A.2: Spatial Differences in Systolic Velocities. A. Phase contrast MRI
in LV base during early systole and diastole in representative LMC rabbit. Upper
row: zoomed vector field plot with yellow arrows indicating summation vectors.
Middle row: magnitude images. Square indicates region magnified in upper row.
Lower row: phase difference images containing longitudinal velocity information
(Vz). B. Bull’s eye plots of peak systolic radial velocities (Vr, cm/s). Vr are color-
coded as indicated. C. Bull’s eye plots of peak systolic longitudinal velocities (Vz,
cm/s). D. Ejection fraction (EF), left ventricular end-diastolic and end-systolic vol-
umes (LVEDV, LVESV). Bodyweight-corrected volumes were calculated for better
comparison. n=10 LQT2, n=9 LMC, and n=10 E4031 rabbits; ∗ p<0.05, ∗∗ p<0.01,
∗ ∗ ∗ p<0.001 vs. LMC. ↑ p<0.05, ↑↑ p<0.01, ↑↑↑ p<0.001 vs. LQT2.
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Figure A.3: Spatial Differences in Diastolic Velocities. A. Graphs of averaged
radial velocities (Vr, cm/s) during cardiac cycle (systole: positive values; diastole:
negative values) in LV base in LQT2 (top) and LMC (bottom). B. Bull’s eye plots
of peak diastolic radial velocities (Vr, cm/s). Vr are color-coded as indicated. C.
Correlations between APD and reduction of diastolic Vr (top, correlation coefficient
CC 0.38, p=0.02) or diastolic Vz in base (bottom, CC 0.47, p<0.01) in LQT2. D.
Bull’s eye plots of peak diastolic longitudinal velocities (Vz, cm/s). n=10 LQT2,
n=9 LMC, and n=10 E4031 rabbits; ∗ p<0.05, ∗∗ p<0.01, ∗ ∗ ∗ p<0.001 vs. LMC.
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Figure A.4: Differences in Time-to-Diastolic Peak Velocities. A. Bull’s eye
plots of time-to-diastolic peak radial velocities (TTP_dia_vr, ms). TTP are color-
coded as indicated. B. Bull’s eye plots of heart-rate corrected TTP_diastolic_% in
Vr. C. Correlation between APD and time-to-diastolic peak Vr in base (correlation
coefficient CC 0.47, p=0.001) in LQT2. n=10 LQT2, n=9 LMC, and n=10 E4031
rabbits; ∗ p<0.05, ∗∗ p<0.01 vs. LMC; # p<0.05, ## p<0.01 vs. LQT2.

Figure A.5: Classification based on Phase Contrast MRI. A. Bull’s eyes
plot of cumulative region relevance for LQT2 vs. LMC classification. Chi-square
attribute values of most relevant features were added within each region, normalized,
and color-coded as indicated. None of the relevant features were located in white
regions. B. Bull’s eyes plot of cumulative region relevance for E4031 vs. LMC
classification. C. Bull’s eyes plot of cumulative region relevance for "very long" vs.
"long" APD classification.
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Based on a collaboration with another PhD student in the Asclepios Research
Team, where I performed the electrophysiology personalization. This work was
accepted in the Medical Image Analysis Journal.

Marchesseau, Stéphanie, et al. "Personalization of a cardiac electromechani-
cal model using reduced order unscented Kalman filtering from regional volumes."
Medical image analysis 17.7 (2013): 816-829.
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B.1 Abstract

Patient-specific cardiac modelling can help in understanding pathophysiology and
therapy planning. However it requires to combine functional and anatomical data in
order to build accurate models and to personalize the model geometry, kinematics,
electrophysiology and mechanics. Personalizing the electromechanical coupling
from medical images is a challenging task. We use the Bestel-Clément-Sorine (BCS)
electromechanical model of the heart, which provides reasonable accuracy with a
reasonable number of parameters (14 for each ventricle) compared to the available
clinical data at the organ level. We propose a personalization strategy from cine
MRI data in two steps. We first estimate global parameters with an automatic
calibration algorithm based on the Unscented Transform which allows to initialize
the parameters while matching the volume and pressure curves. In a second step
we locally personalize the contractilities of all AHA (American Heart Association)
zones of the left ventricle using the Reduced Order Unscented Kalman Filtering on
Regional Volumes. This personalization strategy was validated synthetically and
tested successfully on eight healthy and three pathological cases.

B.2 Introduction

Understanding pathologies, planning a therapy, training for a surgery or selecting
suitable patients for a treatment are challenges that cardiologists face everyday. For
instance, Cardiac Resynchronization Therapy (CRT), which releases heart failure
with a pacemaker, is still difficult to predict in spite of many advances [Chung 2008,
Cazeau 2001], and fails in 30% of the treated cases. To ease their tasks, a significant
amount of image data is now available. One goal of computational cardiology is
to use cardiac imaging data to build patient-specific electromechanical models of
the heart that can then be used to better analyze and simulate cardiac function
[Smith 2011, Sermesant 2012].

In order to reach such a goal, several components are mandatory. Firstly, an
accurate anatomical model has to be extracted from the image data to represent
the heart geometry. Recently, various approaches have been proposed to automat-
ically segment cardiac images from different modalities, such as echocardiography
[Butakoff 2011, Zhu 2010], computed tomography (CT) [Ecabert 2011, Zheng 2008]
and magnetic resonance imaging (MRI) [Petitjean 2011, Schaerer 2010]. In par-
ticular, MRI has the advantage of providing a good image quality noninvasively
and without radiation. In this paper, we extract personalized geometrical models
from MRI by using a 3D Active Shape Model approach by [Tobon-Gomez 2012].
The estimated motion of the myocardium is also needed to build patient-specific
simulations. This motion can be estimated from sequences of MRI data using var-
ious algorithms [McLeod 2012, Mansi 2011, De Craene 2012a]. Then, an electro-
physiological model has to be considered in order to simulate the electrical wave
propagation within the myocardium which leads afterwards to the contraction of
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the muscle cells. Since [Hodgkin 1952], several approaches have been developed to
describe the electrophysiology, from biophysical models that simulate ionic inter-
action [Noble 1962], to phenomenological models based on reaction-diffusion equa-
tions [FitzHugh 1961] [Aliev 1996] and recent adaptations of those [Clayton 2011]
[Pashaei 2011] [Relan 2011a]. They differ in the scale they use and their complexity
in terms of computation times and number of parameters. These models have to be
personalized from endocardial mappings and electrocardiograms [?] before serving
as input to the mechanical simulation.

Finally, the electromechanical coupling itself has a high impact on the re-
sulting simulation. For the past 20 years, the creation of such models has
been the focus of many research teams and various models have been proposed
[Humphrey 1990, Hunter 1997, Nash 1998, Bestel 2001, Sachse 2004]. In this pa-
per, the Bestel-Clément-Sorine cardiac model [Bestel 2001], further improved by
[Chapelle 2012b] is used. It shows a good compromise between complexity and
accuracy [Marchesseau 2012b], and a good predictive power for CRT under differ-
ent pacing conditions [Sermesant 2012]. The personalization of such mechanical
models has been tackled by different approaches. Variational assimilation meth-
ods [Delingette 2012, Sainte-Marie 2006] were used to locally estimate the active
parameters (contractility, contraction and relaxation rates), Sequential Quadratic
Programming [Wang 2009a] to estimate the passive material stiffness, while Re-
duced Order Unscented Kalman Filtering was aimed at estimating the contractility
parameters [Chabiniok 2011, Moireau 2011].

These methods have already led to promising results to estimate some model pa-
rameters from heart motion and therefore open the possibility to help cardiologists
in planning their therapy. In this paper we chose to tackle this issue in a different
way. We propose to estimate the regional contractilities of the left ventricle based on
measured Regional Volumes. Using regional volumes has the advantage of filtering
registration errors by only considering displacements orthogonal to the surface thus
accounting for the aperture problem. Moreover, automatic estimation of regional
volumes is already available in commercial software which may help to streamline
the personalization process. We apply this strategy on a database consisting of
eight healthy subjects and three heart failure patients. To this end, we first cal-
ibrate the mechanical model using the Unscented Transform method proposed in
[Marchesseau 2012a] from the left volume curve that we extract from the motion reg-
istered from cine MRI data. Then we apply the Reduced Order Unscented Kalman
Filtering [Moireau 2011] - using the Verdandi library1- on the regional volumes mea-
sured on the LV endocardium. This strategy was successfully tested synthetically
for contractility estimation and scar tissue detection, and on real cases. Therefore,
the use of regional volumes to personalize the regional contractilities proved to be
efficient and robust and testing the full pipeline on 8 healthy and 3 pathological
cases enabled to draw preliminary conclusions on parameter specificity. In this re-

1Verdandi is an opensource data assimilation library available at

http://verdandi.gforge.inria.fr/. [Chapelle 2012a]
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spect and to the best of our knowledge, this study exhibits the largest cohort of
healthy and pathological cases for personalized cardiac models to date.

B.3 Materials and Methods

B.3.1 Data Acquisition

The proposed study was performed on 3 pathological and 8 healthy cases. Data
were acquired either at INSERM (Institut National de la Santé et de la Recherche
Médicale, Université de Rennes 1, France), or at the Division of Imaging Sciences
& Biomedical Engineering at King’s College London, UK, as part of studies that
were ethically approved. Written informed consent was obtained from all human
subjects and the studies were performed with all appropriate institutional human
subjects approvals. All datasets consist of sequences of cine SSFP MRI with a spatial
resolution of 1.5x1.5x7 mm3 for the healthy subjects and 1.25x1.25x10.8 mm3 for the
pathological cases. Moreover, an intra-operative electrophysiological study (EnSite)
was performed on all pathological cases.

B.3.1.1 Real cases study

All heart failure patients were selected for Cardiac Resynchronization Therapy based
on criteria from the New York Heart Association (NYHA) class III-IV. Patients had
a small ejection fraction (EF) < 35% and a prolonged QRS on electrocardiogram
> 120ms.

This study also includes extensive multi-modality imaging of volunteers from
which 8 healthy cases were used. Volunteers were aged 28 5 years, without clinical
history of cardiac diseases. This database was made available to the research com-
munity for 1st Cardiac Motion Analysis (cMAC) challenge held at STACOM’2011,
see [Tobon-Gomez 2013] for details regarding the data acquisition of this study.

B.3.1.2 Clinical Data Pre-Processing

Three different steps are needed before any mechanical personalization can be
performed: extraction of the myocardium geometry, estimation of the patient’s
cardiac motion and personalization of the electrophysiological propagation.

Geometry Personalization

We first extract a biventricular anatomy from SSFP MRI datasets using the seg-
mentation algorithm implemented in [Tobon-Gomez 2012]. This semi-automatic
segmentation technique is based on a deformable model and allows manual defor-
mations if final corrections are needed. We generate a volumetric binary image from
this biventricular surface (see Fig. B.1) after interpolation and resampling on the z-
axis for a higher resolution mesh. The Marching Cubes algorithm [Lorensen 1987] is
then used to extract a polygonal surface. ReMesh [Attene 2006] enables to smooth
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Figure B.1: Modeling the anatomy of patient Case #1 (from left to right): extracting

geometry from MR datasets, generating volumetric meshes.

and ensure a manifold triangular mesh while Tetgen2 and Netgen3 generate the
tetrahedral meshes (see Fig. B.1) with approximately 14 000 nodes. The sensitivity
of the mesh resolution on the resulting motion was studied and enabled to conclude
that this resolution is a good trade-off between computation times and accuracy
with respect to the available data.

In addition, fibre directions were created synthetically as proposed by
Streeter [Streeter 1979]. It is derived from both histological and DTI stud-
ies [Streeter 1979, Hsu 2001] and it has been extensively validated for cardiac
simulation [Bayer 2012]. The elevation angle was varied (with respect to the short
axis plane) across the myocardium wall from -70° on the epicardium to 0° at
mid-wall to +70° on the endocardium. This choice influences the global motion
of the myocardium and was therefore set after a trial and error approach. In the
myocardium, the angle was interpolated using the distance from the selected node
to the closest surface. Alternatively, a way of creating the fibres could be to map a
statistical atlas of human cardiac fibres such as [Lombaert 2011] onto the patient
geometry. This would allow to include real patient data better than with predefined
synthetic angles. However, statistical fibre models have not yet been validated for
cardiac simulation.

Motion Estimation

Motion estimation was performed from cine MRI data using an automatic regis-
tration algorithm: the Time Diffeomorphic Free Form Deformation (TDFFD) al-
gorithm, which has been tested on 3DUS datasets [De Craene 2012a] and 3DTAG
MRI datasets [De Craene 2012b]. The TDFFD algorithm optimizes a 4D velocity
field parametrized by B-Spline spatiotemporal kernels.

With the transformation obtained from the registration, the static volumetric
mesh was deformed and local or regional indices were computed. Due to its temporal
consistency, this technique computes smooth volumetric meshes which is highly
desirable for our application.

Resulting meshes were compared to the images in Fig.B.2 at end-diastolic phase

2http://tetgen.berlios.de
3http://www.hpfem.jku.at/netgen
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(frame used for the segmentation) and end-systolic phase. We noticed from Fig.B.1

Figure B.2: Estimation of the motion of Volunteer #1 (from left to right): end-diastolic

frame, end-systolic frame.

and Fig.B.2 that information on the basal area is very incomplete. Since we cannot
estimate thoroughly the real movement in this area, we ignored the observations
extracted from the registration related to this area when personalizing the model.
This results in smaller regional volume zones (see Section B.3.2.3) but this does
not alter the convergence of the algorithm. Moreover this prevents unrealistic
parameters to be estimated without influencing the motion drastically.

Electrophysiology Personalization

A large number of electrophysiological models for cardiac cell action potential have
been developed, ranging from models at the cellular to those at the sub-cellular
scale. They can be divided into three categories:

• Biophysical models. Are the most complete because they model ionic currents.
Nonetheless, their high complexity, computational cost and lack of observabil-
ity of their parameters make them less suitable for parameter estimation from
clinical data.

• Phenomenological models. Are based on PDEs and present an intermediate
level of complexity and computational cost.

• Generic models. Are the least complex set of models and represent simpli-
fied action potentials or depolarization times. Eikonal models belong to this
category and model the propagation of the time at which a given point is
depolarized.

To simulate the electrophysiological pattern of activity, an Eikonal equation was
used. The model was then solved for the depolarization time Td at each point of
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the mesh:
v
√

∇T t
dD∇Td = 1. (B.1)

The local electrical conduction velocity is v and D is the anisotropic conductivity
tensor defined as

D = (1− r)f ⊗ f + rI (B.2)

where f is the fibre orientation, r the anisotropy ratio and I the identity matrix.
The solution of this electrophysiological model was found using a Multi-Front

Fast Marching Method [Sermesant 2007]. For healthy cases no subject specific elec-
trophysiological data were acquired and therefore standard values were assumed
(conduction velocity of 90cm/s and anisotropic ratio of 0.1). The personalization
of this model requires to specify the onset of the electrical propagation (manually
defined as areas corresponding to the extremities of the Purkinje network, on both
endocardiums close to the apex).

For pathological cases, intracardiac non contact mappings allowed to estimate
the time and localization of the onset of depolarization as well as electrical con-
ductivities (see [Relan 2011a]). For the personalization, the Mitchell-Schaeffer
[Mitchell 2003] biophysical model is used. It simulates the evolution of the trans-
membrane potential as a function of simplified inward and outward currents. An
example of personalized electrophysiology is given in Fig.B.3 for a LBBB case (de-
polarization wave starting on the right ventricle) after registration and interpolation
of the Ensite non contact mapping data available only on the left ventricle.

Figure B.3: Personalized electrophysiology simulation obtained after registration and in-

terpolation of the EnSite Depolarization Time isochrones available on the Left Ventricle.

(For interpretation of the color map in this figure, the reader is referred to the web version

of this article.)

B.3.2 Mechanical Personalization Strategy

In this paper, a SOFA 4 implementation of the Bestel-Clément-Sorine elec-
tromechanical model [Marchesseau 2012a, Marchesseau 2012b], first introduced by
[Bestel 2001], was used (see Appendix B.7 for a description of the model and its
parameters). Using SOFA allows efficient computation, modularity and interac-
tivity which are strong assets for further therapy planning. This model includes

4SOFA is an open source medical simulation software (available at www.sofa-framework.org)
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Figure B.4: Personalization pipeline: combining the electromechanical model and the data

to calibrate then personalize the parameters.

several passive and active terms, as well as some boundary constraints that repre-
sent the fluid flow that circulates inside the ventricles during the four cardiac phases
[Marchesseau 2012a]. This model depends on 14 global parameters that need to be
estimated. To this end, we propose to first assess global values for the parameters
using the Unscented Transform algorithm [Julier 1997] from global observed quan-
tities (endocardial volume and pressure) as described in [Marchesseau 2012b]; and
then to use the ROUKF (Reduced Order Unscented Kalman Filter) personaliza-
tion algorithm [Moireau 2011] implemented in Verdandi [Chapelle 2012a] from local
measurements to assess more precisely the contractility per region (see Fig.C.3 for
a representation of this pipeline).

B.3.2.1 Calibration based on the Unscented Transform

The initialization of the parameters is a crucial prerequisite for the personaliza-
tion algorithm to converge towards a relevant solution. In [Marchesseau 2012a],
we showed that this can be performed in a fast and efficient way using the Un-
scented Transform algorithm to match indices on the volume and pressure curves
(if available) leading therefore to the calibration of 4 to 7 parameters. This algo-
rithm, represented in Fig.B.5, builds a covariance matrix Cov(θ,Z) between the
relevant parameters which are spread around some initial parameter set θ0 and the
observations Z -in our case the minimum of the LV (Left Ventricle) volume and the
minimum and the maximum of its derivative. The new parameters θnew are then
found to minimize the difference between the mean simulated observations Z̄ and
the measured observations Zobs with

(

θnew − θ0
)

= Cov(θ,Z) Cov(Z,Z)−1
(

Zobs − Z̄
)

. (B.3)

In one simulation, this algorithm enables to calibrate the main parameters cho-
sen from a sensitivity analysis on the volume curve (and the pressure curve when
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Figure B.5: Schematic representation of the Unscented Transform algorithm.

available). We adjusted the initial set θ0 after a trial and error approach on a healthy
volunteer and then used the same initialization θ0 for all studied cases (healthy and
heart failure). Using the same θ0 and range of parameter values for all cases makes
the calibration automatic. In this respect, we have already presented consistent
results for healthy controls as well as pathological cases in [Marchesseau 2013].

B.3.2.2 ROUKF Personalization Algorithm

Once initialized, the parameters can be locally (regionally) estimated using a more
advanced algorithm that deals with much larger dimensional systems. We use in
this paper a type of Kalman filter which belongs to the sequential data assimilation
methods.

Data Assimilation Principles

Data assimilation methods intend to estimate state variables of the considered sys-
tem using measurements. State variables usually consist of the trajectory (positions,
velocities ,...) but can in fact include model parameters or other dynamical vari-
ables such as regional strains for instance. A model is therefore represented by a
dynamical system governing the state variable X that includes the parameters of
the model:

{

Ẋ = A(X, t)

X(0) = X0 + ξX
(B.4)

where A is a non-linear operator, X0 the a priori value for initial conditions and
ξX the uncertainties in the initial conditions.
The available measurements are described through a linear observation operator H.
The observations are therefore modeled by the application of this operator:

Z = HX+ χ (B.5)

where χ is the observation noise.
Two types of assimilation methods exist: the sequential and the variational
approaches. In the variational approach, a cost function is iteratively minimized
after gathering measurements over a period of time. In the sequential approach,
a new estimation of the state is performed each time a new measurement is
available through statistical analysis. Both approaches have shown promising
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results in cardiac personalization: [Billet 2010, Delingette 2012, Sainte-Marie 2006]
that use the variational approach to estimate the contractility parameters or
[Xi 2011, Chabiniok 2011] that preferred the sequential approach). We use in this
paper the Unscented Kalman Filter in its reduced form, derived in [Moireau 2011]
since we only estimate the parameters.

Unscented Kalman Filtering

The Unscented Kalman Filter can be seen as an iterative Unscented Transform
described in B.3.2.1. It is based on three steps at each discrete time n, for the
state vector X which consists in the state values (positions, velocities, ...) and the
parameters θ.

• Sampling: Creates the sigma-points (minimal set of sample points around the
mean) given an interpolation rule leading to I, using a state error covariance
matrix P:

X̂(i)+
n = X̂+

n +
√

P+
n I

(i) (B.6)

were X(i) is the ith sigma-points associated with vector X.

• Prediction: Estimates the next state as the mean of the states simulated
with the sigma-points, and the next covariance as the covariance of the states
simulated with the sigma-points:







X̂−
n+1 = Eα
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An+1|n

(

X̂∗+
n

))

P−
n+1 = Covα
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An+1|n

(

X̂∗+
n

)) (B.7)

where the mean Eα and the covariance Covα are calculated with the weights
αi of the sigma-points, and noting X∗ the concatenation of the vectors X(i).

• Correction: Updates the state vector and its covariance given the new sigma-
points and corresponding observations using the new observation operator H

and the covariance of the noise W through the following calculations:
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(B.8)

Reduced Order Unscented Kalman Filtering

We aim, in this paper, at estimating only the p parameters of the model (in our
case the 17 regional contractilities from the 17 AHA zones of the left ventricle).
Therefore, we only generate 2p+1 sigma-points and the covariance P is reduced to
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the parametric space of dimension p. Its rank is therefore p, much smaller that the
dimension of the space d. We suppose that we can manipulate covariance matrices
in the factorized form:

P = LU−1LT (B.9)

where U is an invertible matrix of rank p and represents the main uncertainties of
the system. A new derivation of the algorithm can therefore be performed without
computing the full covariance matrix P, as shown in [Moireau 2011, Moireau 2008].

B.3.2.3 Observation Extraction from the Images

We suppose in this paper that the deformed meshes registered from the cine-MRI
as explained in Sec.B.3.1.2 are the only available measurements. Several types
of observations can then be extracted from these meshes. Since the registration
method focuses only on the visible contours in the image, we cannot expect the
trajectory of all the points in the myocardium to be accurate. We will therefore
only consider the points on the endocardial surfaces. Three types of observations
can be derived directly from this:

Volume curve

First, for the calibration, the volume of the Left Ventricle is computed over
time, giving the three required observations (Vmin, dV/dtmin and dV/dtmax).
These observations are easily computed using the topology of the endocardium as
explained in [Marchesseau 2012a]. However it is not sufficient to recover the motion
of the whole myocardium.

Positions on the Surface

The most complete observation include the positions of all the points on the
endocardial surface. The estimation tries therefore to match the motion point-wise.
The advantage of what we call the Surface-Points Estimation is that the observation
operator H is straightforward, filled with 1 values on each coordinate of the surface
nodes and 0 values otherwise. The main drawback is that there is no guarantee
that the registration tracks displacements of material points, but rather apparent
displacements of the contours, inducing therefore errors on the observations (well
known aperture problem in Computer Vision where several deformations would lead
to the same visible contours). There exist observation operators [Chabiniok 2011]
that filter this aperture issue taking into account distances between the surface
contours. These methods give promising results but are not directly applicable for
clinical context due to their computation times.

Regional Volumes

Alternatively, we suggest to use regional volumes as observations. To this end,
we project the 17 AHA volumetric segments (Fig.B.6) on the LV endocardium
surface, and calculate the volume formed by this surface and the barycenter of the
LV endocardium over time. Not only does this method allow to capture the motion
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of the surface locally without smoothing tracking errors, but it also leads to a small
number of observations to match, decreasing this way the computation time. Note
that a possible drawback could be a loss of observability (or identifiability here) due
to the reduction of the observation space. However, regional volumes are used by
clinicians as a pathological index [Baxley 1971] and therefore may contain sufficient
information on the investigated pathology.
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Figure B.6: (Top) Bull’s eye plots of the AHA 17 segment division (View from the apex).

(Bottom) Example of Regional Volume.

B.3.2.4 Error Measurements

In order to evaluate the errors between the estimated motion from the registration
and the simulated motion, several error measurements are used. First, the result
of the calibration algorithm compares the simulated volume curve V simu(t) to the
registered volume curve V obs(t) using the standard root mean square difference:

ε̄V =

√

∑Nsteps

t=0 (V simu(t)− V obs(t))
2

Nsteps
(B.10)

where Nsteps is the number of images in the MRI sequence. Then, after personal-
izing the model from regional volumes, we compare the simulated regional volumes
V simu
i (t) to the registered ones V obs

i (t) normalized by the area Si of the AHA surface
(for an estimation of the distance between the surfaces) to obtain a mean square
difference for each regional volumes that we average:

ε̄RegV ol =
1

N

N
∑

i=0

1

Si

√

∑Nsteps

t=0

(

V simu
i (t)− V obs

i (t)
)2

Nsteps
. (B.11)

It is also interesting to record the distance error between the regional volumes at
end-systole where it is maximal:

ERegV ol =
1

N

N
∑

i=0

∣

∣V simu
i (Tmax)− V obs

i (Tmax)
∣

∣

Si
. (B.12)
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These errors give a good indication on how well the simulated motion match the
registered one on the left endocardium. For a more global index that takes all the
surfaces into account (including epicardium and right endocardium), we define a
symmetric distance on the contours Ω as:

εC =
1

2

∑Npoints

k=0 dist(Ωsimu −Pobs
k )

Npoints

+
1

2

∑Npoints

k=0 dist(Ωobs −Psimu
k )

Npoints

(B.13)

with a mean value over time noted ε̄C and a value at end-diastole EC .

B.4 Results

B.4.1 Selection of Adequate Observations

In order to select the most appropriate type of observations (surface points vs LV
endocardium regional volumes), we performed a synthetic study. We created a
sequence of deformed meshes with a forward simulation of the model using different
values of the contractility for each of the 6 zones of the left ventricle (combining the
AHA segments as shown in Fig.B.7). We then estimated these 6 contractilities with
the ROUKF personalization algorithm using either the surface points as observations
or the regional volumes.

1

2

3

4

5

6

Figure B.7: Division of the myocardium into 6 regions for the left ventricle and 1 for the

right ventricle, combining the standard AHA zones. (View from apex)

The resulting deformed meshes after personalization are compared with the
ground truth (simulated data) on Fig.B.8 where we can see that both methods
give an excellent match. The resulting estimated parameters are given in Fig.B.9
for the two estimations and compared with the reference value. We can see that
surprisingly the parameters are better estimated with the regional volumes. To un-
derstand why observing regional volumes leads to better parameters in this case
than observing all the points of the surface, we evaluated the errors on these two
types of observations (Surface Point error ε̄C and Regional Volumes error ε̄RegV ol)
while varying the contractility of one zone around its ground truth value. Fig.B.10
gives the resulting mean errors. We can see that the Regional Volumes error ε̄RegV ol
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Figure B.8: Comparison of the personalized motion at end-systole on short axis view from

the base (left) and long axis (right) plane. Grey surfaces represent the ground truth, green

contours the initial simulation, pink the estimated contours using regional volumes and

blue the estimated contours using surface points. Since no clear difference can be made

from the pink and blue contours, we conclude that both techniques give similar results and

manage to match the ground truth. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

Figure B.9: (a) Regional contractility estimation using observations on all the surface

points. (b)(d) Reference values of the contractility. (c) Regional contractility estimation

using observations on the regional volumes in the LV endocardium.

has only one minimum whereas the Surface Points error ε̄C has a non-smooth vari-
ation leading to several local minima in which the estimated parameters may be
"trapped" in the filtering process. Of course, observability is enhanced when us-
ing pointwise displacements, hence we conjecture that a finer tuning of the filtering
method would overcome this difficulty, see [Imperiale 2011].

B.4.2 Detection of Infarcted Tissue

In this section, we tested the ability of a personalized model, using the regional
volumes as observations, to detect regions of low contractility, for instance due to
presence of scars following an infarct. In order to evaluate the detection power of
the proposed personalization based on regional volumes, a set of tests were per-
formed using synthetic data. Forward simulations with varying size of scar tissue
(from 300 tetrahedra to 2000 tetrahedra out of the 65 000 tetrahedra for the full
myocardium) were performed to create the observations. The relative contractility
was set to 0.3 for the scar zone and 1 for the rest of the myocardium. Before using
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Figure B.10: Comparison of the errors using the two types of observations, for various

contractilities.

the personalization algorithm, random noise was added on the regional volumes to
obtain observations closer to what would be observed with real data. Resulting
volumes curves (with 10% noise) compared to synthetic ones (0% noise) are shown
in Fig.B.11. Moreover, to calibrate the ROUKF personalization algorithm, the ex-
pected maximum error must be set. To make this test realistic, an error of 0.5mm
was allowed. This explains why the initial relative contractility of 0.3 cannot be
reached.

The estimated contractilities obtained for the scars zone are presented Fig.B.12

Figure B.11: Regional Volumes simulated with 0% noise (smooth curves) and 10% noise

(non-smooth curves).

for the various sizes and noise amplitudes. We note that the noise does not in-
fluence the estimation of the parameter for scars zone larger than 1300 tetrahedra
(as represented in Fig.B.12). Moreover, since a relative contractility of 1 represents
the normal contractility for the myocardium, an estimated relative contractility too
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close to 1 for the scar zone means that the detection fails (which is the case for the
zones with sizes 300 tetrahedra, 650 tetrahedra and 1300 tetrahedra). On the other
hand, the zone of size 2000 tetrahedra has an estimated relative contractility much
smaller than 1 which means that the detection succeeds. Therefore, the proposed
personalization method based on regional volumes is able to detect zones with lower
contractility as long as these zones are large enough (here 3% of the myocardium).

Figure B.12: (Left) Estimated contractilities on the scars zones for different sizes of the

zones and different noise. (Right) Representation of a scar zone of 1300 tetrahedra.

B.4.3 Real Cases Personalization

Personalizing real cases requires three steps:

• Selecting the region that has the smallest displacement (basal area or apex)
in order to constraint this region as a boundary condition.

• Performing a calibration of 4 parameters (including contractility) for the left
ventricle, based on the volume curve.

• Running the ROUKF personalization algorithm using regional volumes on the
LV endocardium in order to estimate the 17 regional contractilities of the LV.

This pipeline was applied on 3 pathological cases and 8 healthy volunteers and
enabled to draw preliminary conclusions on pathological cases versus healthy
controls. Results of the full personalization strategy are detailed here for the
pathological Case #1, then error measurements and estimated contractilities are
given on all cases. The observation vector Z is of size the number of regional
volumes and X contains all the state variables and the parameters to estimate
(node positions, velocities, ...). The full pipeline takes about 2p + 2 = 36 times
a simulation time on a single CPU (one simulation lasts about 10 minutes for
1 heart beat on a 60 000 tetrahedral mesh) where p is the number of estimated
parameters (here 17 regional contractilities). However, full parallelization can
be done leading to a total computation time of twice a simulation time (20 minutes).
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B.4.3.1 Results for Case #1

First, volume curves resulting from the calibration are given in Fig.B.13. The mean
error on the volume ε̄V decreases from 17mL to 4mL giving therefore a good initial-
ization.
Second, the results of the full personalization are given in Fig.B.14 where we com-

Figure B.13: Case #1: Volume evolution before (green) and after (red) calibration com-

pared with real value extracted from the registration (blue).

pare the deformed mesh to the registered mesh and the images. The distance error
on the contours εC is displayed in Fig.B.15 at end-diastole and shows how close
the model follows the registered motion. The mean distance error on all the sur-
face decreases from 2.8 mm to 2.1 mm which is a reasonable error given the image
resolution (1.25 mm x 1.25 mm) and the fact that we only try to match the left
endocardium.
Registered and simulated regional volume curves are compared in Fig.B.16. The

mean relative error on the regional volumes (normalized by the surface area) de-
creases from ε̄RegV ol = 1.1 mm with initial parameters to ε̄RegV ol = 0.6 mm after
personalization which proves a very good improvement.
Finally, Fig.B.17 gives the estimated relative contractilities along the personaliza-

tion steps and shows that the estimation converges before the end of the personal-
ization.

B.4.3.2 Error Measurements

In order to evaluate the accuracy of the personalized motion, we computed the errors
previously defined on all the tested cases, before and after personalization. Fig.B.18
presents in (a) the resulting errors on the regional volumes ε̄RegV ol which is what
is actually minimized during the personalization, as well as its value at end-systole
(b). Finally, as an indicator of the global motion on all the surfaces, the distance
error on the contours ε̄C is given in (c).
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Figure B.14: Short axis and long axis view of the end-systolic phase. Comparison of direct

model with the initial parameters (green), direct model with the estimated contractilities

on all left ventricle AHA zones using the regional volumes on the LV endocardium (red) and

registered mesh (cyan). (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

Figure B.15: Case #1: Evaluation of the distance error on the contours of the surface at

end-systolic phase (EC). The basal area is cropped since we do not take the corresponding

observations into account. (For interpretation of the color map in this figure, the reader is

referred to the web version of this article.)

Figure B.16: Case #1: (Left) Registered regional volumes on the LV endocardium. (Right)

Estimated regional volumes.
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Figure B.17: Case #1: Evolution of the estimated relative contractilities along the per-

sonalization steps. We note a mean relative contractility of 0.55. Contractility of zone

#17 might be overestimated since it corresponds to the apex which is constrained by our

boundary conditions.

We can see that the personalization decreases the errors in all the cases and that
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Figure B.18: Errors between the simulation and the registration before (in blue) and after

(in pink) personalization.

the mean error on the regional volumes is pretty low (0.7mm) which is smaller than
a pixel size. However, the error on the total surface still needs to be improved
including observations from the right ventricle and the epicardium.

B.4.4 Preliminary Specificity Study

Our database consisting of 8 healthy controls and 3 pathological cases selected for
the Cardiac Resynchronization Therapy (with therefore a small ejection fraction
and a long QRS) allows to draw preliminary conclusions and compare each patho-
logical case to the controls. First, from the global volume curves, a calibration was
performed to initialize 4 parameters. The resulting parameters for the healthy con-
trols (box plots) and each pathological case are presented in Fig.B.19. We can see
from this graph that the Computational Biophysical Model Personalized for case
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1 (CBMP#1) and case 2 (CBMP#2) exhibit a similar behavior with a smaller
global contractility than the healthy controls but normal bulk modulus, viscosity
and peripheral resistance. On the other hand, the Computational Biophysical Model
Personalized for the third case (CBMP#3) exhibits what seems to be a global con-
tractility closer to the normal range, and a very high Bulk Modulus. Therefore, the
model of the myocardium muscle for this case is stiffer than the model describing
the healthy cases but the contractility is equivalent. The small ejection fraction
can therefore be due for CBMP#3 to the high stiffness whereas it can be due for
CBMP#1 and CBMP#2 to a small contractility. This difference could be explained
by the fact that this patient has a different etiology than the first two cases (idio-
pathic cardiomyopathy) and, more importantly, has regurgitation at both the mitral
and aortic valves. Furthermore, this patient presents significant atrial volumes, with
an increased pulmonary artery pressure. This leads to a smaller inflow than outflow
as shown in Fig.B.20.

Figure B.19: Estimated global parameters for the 3 pathological cases compared to the

healthy controls (box plots). σ0 is the global contractility, µ the friction parameter, K the

Bulk modulus related to the stiffness of the passive myocardium and Rp the peripheral

resistance in the aorta.

A comparison of the regional contractilities obtained from the personalization
method that we propose leads to consistent observations (see Fig.B.21). Indeed, the
personalized regional contractilities of the first two cases are much smaller on all
the regions than the controls. Moreover, CBMP#3 exhibits regional contractilities
closer to the contractilities of healthy hearts for most regions. Some of the estimated
contractilities however are extreme (zone 7 has a very small contractility while 17
has a very high contractility) which could indicate local dysfunctions. The study of
the covariance on the parameters showed that our confidence on the contractilities
of zones 1 to 6 and zone 17 is 4 times smaller than on the other zones due to the
boundary constraints on the base and the apex that we set.
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Figure B.20: Registered outward flow curves for the pathological cases compared to the

mean healthy curve, showing that Case 3 only has a smaller inflow than outflow.

AHA zones of the left ventricle
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Figure B.21: Estimated regional contractilities for the 3 pathological cases compared to

the healthy controls (box plots).
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B.5 Discussion

B.5.1 Personalization from Regional Volumes

In this paper we proposed patient-specific modelling of the heart based on regional
volumes. Tests performed on synthetic data proved that this choice of observations
was relevant to estimate regional contractilities and detect scar tissue as long as the
size of the scar zone is not too small. The advantage of such an approach is to smooth
the input observations in order to match the motion of the left endocardium. This
method proved to be robust and can be used at a large scale. Indeed, although the
regional volumes were rather different for pathological cases and healthy volunteers,
we managed to estimate the regional contractilities and have a good final match
on the motion. Finally estimating the regional volumes gives precious indices on
the synchronization of the AHA zones which could be further studied for therapy
planning.

B.5.2 Analysis of Real Case Personalizations

Our database of 3 pathological cases and 8 volunteers allows to draw preliminary
conclusions. First, the personalized computational biophysical models that intend
to characterize these pathological cases exhibit different global contractility and/or
stiffness. Our results on the calibration and on the regional personalization are con-
sistent and show that CBMP#1 and CBMP#2 display a similar behavior (small
estimated global and regional contractilities with normal estimated stiffness), while
CBMP#3 is clearly different. First, CBMP#3 exhibits a reasonable global con-
tractility parameter while showing a high stiffness which seems to explain its small
ejection fraction and its small filling flow. Second, CMBP#3 estimated regional
contractilities are for most of them similar to healthy cases with localized akinetic
regions confirmed by the clinicians. In addition, this case, with a different etiology,
was the one not responding to the CRT. Our personalization pipeline therefore gives
results in agreement with the clinical interpretation of the images.

B.5.3 Limitations of the Personalization Pipeline

The proposed approach includes several processing and computational steps that are
subject to uncertainties. First, we relied on image segmentation and tracking which
are challenging due to the limited intensity contrast of the myocardium, and the
aperture problem. Then, with the calibration, 4 global parameters could be assessed
(contractility, viscosity, bulk modulus and peripheral resistance) and the remaining
10 (including other stiffness parameters, contraction and relaxation rates as well
as other pressure related parameters) were set to their standard values which were
chosen after a trial and error approach on one healthy case, or from the literature (see
Appendix B.7 for the full list and values). This choice of parameters to calibrate
was made from a complete sensitivity analysis [Marchesseau 2012a] which led to
conclusive results on healthy and pathological cases [Marchesseau 2013]. However,
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data on ventricular pressure would help the parameter estimation compared to using
literature values that can be far from the actual patient condition. Second, boundary
conditions play a significant role in the myocardium motion and hemodynamics,
therefore they need to be assessed carefully. Our model includes a pericardium
that constrains the outward radial motion and some elastic constraint that can be
applied on the apex (which is either outside the field of view of the images, or
barely moving) and on the basal area around the valves. However, the pre-load
and the after-load were not personalized in this article which probably impacts the
estimation of the parameters. For instance, modelling the regurgitation observed on
the third pathological case could help in obtaining parameters closer to the actual
intrinsic tissue properties of this patient. Finally, a time registration between the
real data and the simulation is necessary and influences as well the results of the
personalization.

B.5.4 Perspectives

Our method only intends to recover the motion of the left endocardium. To improve
the results of the personalization, or estimate more parameters such as the regional
stiffness for instance, one may include the regional volumes calculated from the
epicardium and intend to recover the thickening and shrinking of the muscle or es-
timate the parameters related to the boundary conditions. Using measurements on
the regurgitation would also improve the personalization since our heamodynamic
model that represents the pressure constraint [Marchesseau 2012a] can include re-
gurgitation by estimating the iso factor Kiso. Alternatively, we could couple this
heamodynamic constraint with a lumped-flow model as used by [Koon 2010]. Also,
since the estimated parameters indicate a highly incompressible behavior, we will
address this incompressible behavior in the future by adopting specific finite element
procedures. Moreover, we could divide the endocardium in different zones than the
standard AHA zones in order to obtain more precise results (for instance taking into
account known scar zone, or dividing the actual AHA zones by 2). Applying this
method on a larger database could also lead to better assessment of the parameters
specificity of the personalized models. Finally, the proposed method could also help
in testing the acute response to pacing by simulating it on the personalized model.

B.6 Conclusion

This paper proposed a personalization strategy made of a global calibration and
the application of the Reduced Order Unscented Kalman Filter to estimate regional
contractilities based on regional volumes using a complete model of the heart. The
personalization of 3 pathological cases and 8 volunteers shows the robustness of this
strategy and opens up possibilities to study the specificity of the estimated physi-
ological parameters to the etiology and the response to CRT. The use of regional
volumes allows to smooth registration errors and to find a good compromise between
the physiological behavior of the model and the accuracy of the personalization.
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B.7 The Bestel-Clément-Sorine electromechanical

model

For the sake of completeness, we provide a brief description of the Bestel-Clément-
Sorine electromechanical model [Bestel 2001] further improved by [Chapelle 2012b]
that we used throughout this paper. This description has already been published
in [Marchesseau 2012b].

The model is composed of a passive isotropic visco-hyperelastic component that
accounts for the elasticity and the friction in the cardiac extracellular matrix sur-
rounding the fibres, described as a MooneyRivlin material. The strain energy for a
MooneyRivlin material is given as:

We = c1(Ī1 − 3) + c2(Ī2 − 3) +
K

2
(J − 1)2

where c1, c2 are material parameters and K is the Bulk modulus. The quantities Ī1
and Ī2 are the isochoric invariants of the Cauchy-deformation tensor C.

In parallel, the stress along the cardiac fibre is composed of an active part (con-
traction in the sarcomere) and a passive part corresponding to the elastic bound
(titin) between sarcomeres and Z-discs, having stress σs = Eses. The contractile
component having stress tensor σc, driven by the control variable u, has a viscous
part to account for the energy dissipated in the sarcomere due to friction. This gives

σc = τc + µėc.

Fig. B.22 shows a rheological representation of this model.

Figure B.22: Full electromechanical model. We is the strain energy of the extracellular

matrix considered here as an isotropic material, associated with a dissipative term η. u is

a control variable which is driven by changes in transmembrane potential. It controls the

contraction stress τc. µ deals with the friction in the sarcomere while Es is a linear spring

to enforce elasticity of the Z-discs (titin).

At the nanoscopic scale, the binding and unbinding process of the actin
and myosin filaments in the sarcomere is described by Huxley’s filament
model [Huxley 1957]. Statistical mechanics allows to describe its behavior at the
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macroscopic scale, resulting in a differential equation that controls the active stress
τc and the sarcomere stiffness kc:

{

k̇c = −(| u | +α | ėc |)kc + n0k0 | u |+
τ̇c = −(| u | +α | ėc |)τc + ėckc + n0σ0 | u |+

where α is a constant related to the cross-bridge release due to a high contraction
rate, k0 and σ0 are respectively the maximum stiffness and contraction. n0 is a
reduction factor that allows to take into account the Starling effect by which the
maximum contraction depends on the fibre strain ec. The control variable u is
derived from the electrical activation model and is a function of the free calcium
concentration only. It is modeled using electrophysiological inputs such as depo-
larization times (Td) and action potential durations (APD) and depends on two
parameters: kATP the rate of the myosin ATPase activity controlling the contrac-
tion rate and kRS the rate of sarcoplasmic reticulum calcium re-uptake controlling
the relaxation rate.

The ventricles are filled with blood coming from the atria and ejected through
the arteries. A valve model gives relationships between the outward flow and
the various pressures (ventricular, arteria and atria). The arteria pressure is
modeled using a four-element Windkessel model [Stergiopulos 1999], that depends
on four parameters: the peripheral resistance Rp, the characteristic time τ , the
characteristic resistance Zc and the total arteria inertance L.

The values of the mentioned parameters are given Table.B.1.

Table B.1: Parameter values.

Notation Parameter Name Value

σ0 (MPa) Max Contraction 7

k0 (MPa) Max Stiffness 5

kATP (s−1) Contraction Rate 15

kRS (s−1) Relaxation Rate 35

Es (MPa) Linear Modulus 10

α Cross-bridges Unfasten Rate 0.5

µ (MPa.s) Viscosity 1.3

c1 (kPa) Mooney Rivlin Modulus 10

c2 (kPa) Mooney Rivlin Modulus 10

K (MPa) Bulk Modulus 10

τ (s) Wind. Charact. Time 0.8

Rp (MPa.m−3.s) Wind. Periph. Resistance 100

Zc (MPa.m−3.s) Wind. Charact. Resistance 1

L (kPa.s2.m−3) Wind. Total Art. Inertance 10
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C.1 Abstract

In this paper we propose a convolutional neural network-based method to automat-
ically retrieve missing or noisy cardiac acquisition plane information from magnetic
resonance imaging (MRI) and predict the five most common cardiac views. We
finetune a convolutional neural network (CNN) initially trained on a large natural
image recognition dataset (Imagenet ILSVRC2012) and transfer the learnt feature
representations to cardiac view recognition. We contrast this approach with a previ-
ously introduced method using classification forests and an augmented set of image
miniatures, with prediction using off the shelf CNN features, and with CNNs learnt
from scratch.

We validate this algorithm on two different cardiac studies with 200 patients
and 15 healthy volunteers respectively. We show that there is value in finetuning a
model trained for natural images to transfer it to medical images.

Our approach achieves an average F1 score of 97.66% and significantly improves
the state of the art of image-based cardiac view recognition. This is an important
building block to organise and filter large collections of cardiac data prior to further
analysis. It allows us to merge studies from multiple centers, to perform smarter
image filtering, to select the most appropriate image processing algorithm, and to
enhance visualisation of cardiac datasets in content based image retrieval.

C.2 Introduction

Instead of the commonly used body planes (coronal, axial and sagital), the cardiac
MR images are usually acquired along several oblique directions aligned with the
structures of the heart. Imaging in these standard cardiac planes ensures efficient
coverage of relevant cardiac territories and enables comparisons across modalities,
thus enhancing patient care and cardiovascular research. Optimal cardiac planes
depend on global positioning of the heart in the thorax. This is more vertical in
young individuals and more diaphragmatic in elderly.

Automatic recognition of this metadata is essential to appropriately select im-
age processing algorithms, to group related slices into volumetric image stacks, to
enable filtering of cases for a clinical study based on presence of particular views, to
help with interpretation and visualisation by showing the most relevant acquisition
planes, and in content based image retrieval for automatic description generation.
Although this orientation information is sometimes encoded within two DICOM
image tags: Series Description (0008,103E) and Protocol Name (0018,1030), it is
not standardised, operator errors are frequently present, or this information is com-
pletely missing. Searching through large databases to manually cherrypick relevant
views from the collections is therefore tedious. The main challenge for an image
content-based automated cardiac plane recognition method is the variability of the
thoracic cavity appearance. Different parts of organs can be visible even across the
same acquisition planes between different patients.
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C.2.1 Cardiac acquisition planes

Figure C.1: Examples and mutual positioning of the short and the main left ventric-
ular long axis cardiac MR views used in this paper. See also C.8 which illustrates
inter-subject variability of these views.

An excellent introduction to standard MR cardiac acquisition planes can be
found in [Taylor 2012]. These planes are often categorized into two groups - the
short and the long axis planes. In this paper we learn to predict the five most
commonly used cardiac planes acquired with steady-state free precession (SSFP)
acquisition sequences. These are the short axis, 2-, 3- and 4- chamber and left

ventricular outflow tract views. These five labels are the target of our learning
algorithm. See C.1 for a visual overview.

The left ventricular short axis slices (C.1a) are parallel to the mitral valve
ring. These are acquired regularly spaced from the cardiac base to the apex of
the heart, often as a cine 3D+t stack. These views are excellent for reproducible
volumetric measurements or radial cardiac motion analysis but their use is limited
in atrio-ventricular interplay or valvular disease study.

The long axis acquisition planes include the 2-chamber, 3-chamber, and
4-chamber views (C.1b,C.1c,C.1d). These planes are used to visualize different
regions of the left atrium, mitral valve apparatus, and left ventricle. The 3-chamber
and left ventricular outflow tract (also known as the coronal oblique view)
(C.1e) views provide visualization of the aortic root from two orthogonal planes.
The 4-chamber view enables visualization of the tricuspid valve and right atrium.
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C.2.2 Previous work

The previous work on cardiac view recognition has been concentrated mainly on
real-time recognition of cardiac planes for echography [Otey 2006, Park 2007a,
Park 2007b, Beymer 2008]. There exists some work on magnetic resonance
[Zhou 2012, Margeta 2014a, Shaker 2014]. The common methods are based on
dynamic active shape models [Beymer 2008], require to train part detectors
[Park 2007b] or landmark detectors [Zhou 2012]. Therefore any new view will re-
quire these extra annotations to be made. [Otey 2006] avoid this limitation by
training an ultrasound cardiac view classifier using gradient based image features.
[Margeta 2014a] trained classification forests to predict the cardiac planes directly
from cardiac MR image miniatures. [Shaker 2014] recently proposed a technique
based on autoencoders. They learn image representations in an unsupervised fash-
ion and use this representation to distinguish between two cardiac views. We will
later show that our proposed method reaches a very favourable performance and
surpasses the previously introduced [Margeta 2014a]. We report the results on an
open cardiac dataset which simplifies direct comparison of these different techniques
in the future.

The state of the art in image recognition has been heavily influenced by the sem-
inal works of [Krizhevsky 2012] and [Ciresan 2012] using convolutional neural net-
works (CNNs). [Krizhevsky 2012] trained a large (60 million parameters) CNN on a
massive dataset consisting of 1,2 million images and 1000 classes [Russakovsky 2014].

They employed two major improvements: Rectified linear unit nonlinearity to
improve convergence, and Dropout [Hinton 2012]. The Dropout means that during
the training phase the output of each hidden neuron is dropped out (set to 0) with
a certain probability p. The dropped out neurons do not contribute to the forward
pass and are skipped in the back-propagation. For every training batch a different
set of neurons is dropped out i.e. a different network architecture is sampled. At
test time, however, all neurons are used and their output responses are multiplied
by 1 − p to compensate for the architecture difference. [Hinton 2012] showed that
this strategy helps to reduce complex coadaptations of the neurons (as neurons
learn not to rely on single neuron responses from the preceding layer) and to reduce
overfitting.

Training a large network from scratch without a large number of samples still
remains a challenging problem. A trained CNN can be adapted to a new domain by
reusing already trained hidden layers of the network, though. It has been shown e.g.
by [Razavian 2014] that the classification layer of the neural net can be stripped,
and the hidden layers can serve as excellent image descriptors for a variety of com-
puter vision tasks (such as for photography style recognition by [Karayev 2013]).
Alternatively, the prediction layer model can be replaced by a new one and the
network parameters can be finetuned through backpropagation. In this paper we
consider all of these approaches (training a network from scratch, reusing a hidden
layer features from a network trained on another problem, and finetuning of a pre-
trained network) for using a CNN in cardiac view recognition and compare it with
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with the prior methods based on random forests using pixel intensities from image
miniatures or image plane normal vectors as features.

In this paper we compare the three groups of methods for automatic cardiac
acquisition plane recognition. The first one is based on DICOM meta information,
and the other two completely ignore the DICOM tags and learn to recognize car-
diac views directly from image intensities. In C.3.1 we first present the recognition
method using DICOM-derived features (the image plane orientation vectors). Here,
we train a random forest classifier using these 3-dimensional feature vectors. We re-
call (C.3.2) the previously presented random forest based method [Margeta 2014a].
The newly proposed third path using convolutional neural networks is described in
C.3.3. The later two learn to recognize cardiac views from image content without
using any DICOM meta information. In C.4 we compare these approaches. Finally,
in C.5 we present and discuss our results.

C.2.3 Contributions

The main contribution of our paper is that a good cardiac view recognizer (reaching
state of the art performance) can be efficiently trained end to end without designing
features using a convolutional neural network. This is possible by finetuning param-
eters of a network previously trained for a large scale image recognition problem.

• We achieve state of the art performance in cardiac view recognition by learning
an end to end system from raw image intensities using CNNs

• This is one of the first papers to demonstrate the value of features extracted
from medical images using CNNs trained on a large scale visual object recog-
nition dataset

• We show that finetuning weights of CNN pretrained on an object recognition
dataset is a good strategy that helps to improve performance and speed up
the network training

• We show that the CNNs can be applied to smaller datasets (a common prob-
lem in medical imaging) thanks to careful network initialisation and dataset
augmentation

C.3 Methods

A ground truth target label (2CH, 3CH, 4CH, LVOT or SAX) was assigned to each
image in our training set by an expert in cardiac imaging. We use it only in the
training phase as a target to train and to validate the view recognizers. At the testing
phase we will predict this label from the features. In the paper, we compare two types
of methods. The first one is using 3-dimensional feature vectors (image plane normal
vector) computed from the DICOM orientation tag (C.3.1) and a random forest
classifier which is trained to predict cardiac views using this vector. Algorithms in
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Figure C.2: DICOM plane normals for different cardiac views [Margeta 2014a]. In
our dataset distinct clusters can be observed (best viewed in color). Nevertheless the
separation might not be the case for a more diverse collection of images. Moreover
as we cannot always rely on the presence of this tag, so an image-content based
recognizer is necessary.

the second group learn to predict the target labels from the image content (pixel
intensities) directly without the need for DICOM tags. This group includes the
random forest classifier with image miniatures (C.3.2) and all convolutional neural
network approaches (C.3.3). Apart from the view label linked to each image in the
training set, no other information is necessary to train the classification models. To
increase the number of the training samples (for image content based algorithms)
we augment the dataset with small label preserving transformations such as image
translations, rotations, and scale changes. See C.3.2.2 for more details.

C.3.1 Using DICOM Meta-information: Plane normal + Forest

Both [Zhou 2012] and [Margeta 2014a] showed that where the DICOM orientation

(0020,0037) tag is present we can use it to predict the cardiac image acquisition
plane (See Fig. C.2). This tag is not defined as a cardiac view but as two 3-
dimensional vectors defining orientation of the imaging plane with respect to the
MR scanner coordinate frame. It is straightforward to compute the 3-dimensional
normal vectors of this plane as a cross-product of these two vectors specified in
the tag. We then feed these three-dimensional feature vectors into any classifier, in
our case a classification forest [Breiman 1999]. This method is shown in the results
section as Plane normal + forest.

This method uses feature vectors computed from the DICOM orientation tag
and cannot be used in the absence of this tag. This happens for example after
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DICOM tag removal after an incorrectly configured anonymisation procedure, when
parsing images from clinical journals or using other image formats. In these cases
we have to rely on recognition methods using exclusively the image content. In the
next two sections, we present two such methods. One that is based on previous work
using decision forests and image miniatures [Margeta 2014a] and the other one is a
new approach using convolutional neural networks. We learn to predict the cardiac
views from 2D image slices individually, rather than using 2D + t, 3D or 3D + t

volumes. This decision makes our methods more flexible and applicable also to view
recognition scenarios when only 2D images are present e.g. when parsing clinical
journals or images from the web.

C.3.2 View recognition from image miniatures: Miniatures + for-
est
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Figure C.3: Classification forest pipeline for view recognition from image miniatures
[Margeta 2014a]. Discriminative pixels from image miniatures are chosen from a
random pool as features for a classification forest. The training dataset is augmented
to improve robustness to the differences in the acquisitions without the need for extra
data and labels.

This simple method [Margeta 2014a] was posed as a standard image recognition
framework where features are extracted from the images and are fed to a classifier
(C.3), in this case a classification forest. Classification forest [Breiman 1999] is
an ensemble learning method that constructs a set of randomized binary decision
trees. Its advantage is computational efficiency and automatic selection of relevant
features. At training time the tree structure is optimized by recursively partitioning
the data points into the left or the right branches such that points having the same
label are grouped together and points with different labels are put apart. Each node
of the tree sees only a random subset of the feature set and greedily picks the single
most discriminative feature. This helps to make the trees in the forest different from
each other and leads to better generalization.
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2CH 4CH3CH LVOT SAX

Figure C.4: Averages of the DETERMINE dataset for each cardiac view after crop-
ping the central square. A reasonable alignment of cardiac structures can be ob-
served in the dataset. The cardiac cavities and main thoracic structures can be
seen.

At test time features chosen at the training stage are extracted and the images
are passed through the trees and reach a set of leaves. Class distributions of all
reached leaves are averaged across the forest and the most probable label is selected
as the image view. See [Criminisi 2011b] for a detailed discussion on decision forests.

C.3.2.1 Using image miniatures

The radiological images are mostly acquired with the object of interest in the image
center and some rough alignment of structures can be expected (See C.4). Image
intensity samples at fixed positions (without extra registration) therefore provide
strong cues about the position of different tissues (e.g. dark lungs in the top left
corner or bright cavity in the center).

The central square from each image is extracted, resampled to 128x128 pixels
and linearly rescaled to range between 0 and 255. We subsample the cropped centers
to two fixed sizes (20x20 and 40x40 pixels). In addition we divide the image into
non-overlapping 4x4 tiles and compute intensity minimum and maximum for each of
these tiles (C.5). This creates a set of pooled image miniatures (32x32 pixels each).

The pooling adds some invariance to small image translations and rotations
(whose effect is within the tile size). The pixel values at random positions of these
miniature channels are then used directly as features. At each node of the tree 64
random tile locations across all miniatures are tested and the best threshold on this
value is selected to divide the data points into the left or the right partitions until
not less than 2 points are left in each leaf. We train 160 such trees. This method is
shown in the evaluation as Miniatures + forest.
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128x128 (4x4 tiles)
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Image tiles

Figure C.5: Image miniatures by min- and max-pooling local intensities
[Margeta 2014a].

C.3.2.2 Augmenting the dataset with jittering

While the object of interest is in general placed at the image center, differences
between various imaging centers and positioning of the heart on the image exist.
The proposed miniature features are not fully invariant to these changes. To ac-
count for this the training set was augmented with extra images created by trans-
forming the originals. These were translations (all shifts in x and y between -10
and 10 pixels for a 5x5 grid), but also scale changes (1-1.4 zoom factor with 8
steps while keeping the same image size) and in-plane rotations around the im-
age center (angles between -10 and 10 degrees with 20 steps). The augmented
images were resampled with linear interpolation. Note that the extra expense of
dataset augmentation is present mainly at the training time. The test time re-
mained almost unaffected except that now a deeper forest could be learnt. The
benefit of dataset augmentation is clear, yielding a solid 12.14% gain in the F1 score
(F1 = 2(precision.recall)/(precision + recall)). Results using this augmented
dataset are presented in the evaluation as Augmented miniatures + forest.
Compared to the preliminary study in [Margeta 2014a], we will test this method on
a bigger dataset.

C.3.3 Convolutional neural networks for view recognition

To improve the performance of the forest-based method, we turn to the state of
the art in image recognition - the convolutional neural networks. Their principle
is rather simple - the input image is convolved with a bank of filters (conv) whose
response are fed through a nonlinear function e.g. a Rectified Linear Unit (ReLU)



154
Appendix C. Finetuned Convolutional Neural Nets for Cardiac MRI

Acquisition Plane Recognition

f(x) = max(0, x). The responses are locally aggregated with max-pooling. The
output of the max-pooling creates a new set of image channels which are then fed
through another layer of convolutions and nonlinearities. Finally, the fully connected
layers (fc) are stacked and connected to a multiway soft-max in order to predict the
target label. The role of the max-pooling is similar to the forest based method
i.e. to aggregate local responses and to allow some invariance of the input to small
transformations. The parameters of the network such as weights of the convolutional
filters are optimized through backpropagation. Using the stochastic gradient descent
the average batch prediction loss (soft-max) is decreased.

We use the widely adopted neural network architecture (see C.6) described
by [Krizhevsky 2012] as implemented in the Caffe framework [Jia 2014] under the
bvlc_reference_caffenet acronym (CaffeNet in short). The CaffeNet implementa-
tion differs from Krizhevsky’s AlexNet in the order of local response normalisation
(LRN) and max-pooling operations. Not only AlexNet/CaffeNet is the winning
entry of the ImageNet LSVRC 2012 competition, the weights and definitions of
this network are publicly available thus reducing computational time needed for the
training and improve reproducibility of this work.
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Figure C.6: Our CardioViewNet is based on CaffeNet network structure and is
adapted for cardiac view recognition. We initialized the network weights from a
pretrained CaffeNet. We then replaced the last 1000-dimensional logistic regression
layer (previous fc8) with a 5-dimensional for 5 cardiac views. Then we finetuned the
network with our data. We also extracted features from the last 4096-dimensional
fully connected layer fc7 (in dark gray) from both CaffeNet and our finetuned Car-
dioViewNet and used them with a linear SVM and a decision forest classifier. We
achieve the best performance with our finetuned network directly. ReLU - rectified
linear unit, max - max pooling, LRN - local response normalisation, conv- convolu-
tional layer, fc - fully connected layer.

C.3.3.1 Classifying cardiac views using CNN features optimised for vi-

sual recognition

Similarly to the work of [Karayev 2013] for photography style recognition we use
CNN features from a fully connected layer of a network pretrained on the ImageNet
LSVRC [Russakovsky 2014] dataset. The fully connected layer (in our case fc7 -
see C.6) helps us to describe the cardiac images with 4096-dimensional features.
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Before putting the cardiac images through the network, simple preprocessing is
done. The cardiac images are resized to 256x256 squares regardless of their input
dimensions. Since the CaffeNet takes RGB images as input we simply replicate the
2D cardiac slices into each colour channel. We compute a pixel-wise mean image
for our cardiac view dataset and subtract it from all training and testing images
prior to entering the CNN. This centers image intensities around zero and serves as
a very simple intensity normalisation. As we later found in our case, the average
image is almost uniform and a scalar value could be subtracted instead. The central
(227x227x3) crop of this image is then fed forward through the network. We then
use these CaffeNet fc7 features with a linear SVM classifier to predict the cardiac
views. We ran crossvalidation on the training subset folds to maximise the prediction
precision. This helped us to choose the penalty parameter C of the SVM classifier
from standard set of values [0.1, 1, 10, 100, 1000] as C = 1. We report results of
this method as CaffeNet fc7 + SVM. Similarly, we trained a classification forest
(with 64 features tested per node and 1000 trees) using these features (instead of
image miniatures) and report these results as CaffeNet fc7 + forest.

These features were adapted to a general object recognition task and come from
a CNN that never saw a cardiac MR image to optimise its weights. As we will show
in C.1, this already performs quite well for the cardiac view recognition. In the
following we will show how we can further improve performance by adapting the
CNN weights to the medical imaging domain.

C.3.3.2 CardioViewNet architecture and finetuning the visual recogni-

tion CNN

In practice, many examples are often needed to train a large capacity neural network.
However, by starting from the weights of a pretrained network we can just finetune
the network parameters with new data and adapt it to the new target domain. Here
we use the pretrained CaffeNet [Jia 2014] and replace the last 1000-class multinomial
regression layer with a 5-class one (See C.6). The net is finetuned with stochastic
gradient descent with higher learning rate (10−2) for parameters in the newly added
layer and smaller (10−3) in the rest of the network. We use momentum of 0.9 in
the stochastic gradient descent optimiser, and a small weight decay at each iteration
(10−4). The batch size used in each iteration was 32 and the step size is kept constant
for the whole training. A set of resized 256x256x3 images is used for training. At
each iteration a batch of 32 random (not necessarily central) 227x227x3 crops is
extracted from the resized cardiac slices and is fed forward through the network.
Compared to the implementation of the forest based method where all augmented
images were precomputed, the translations are cheaply generated on the fly at each
iteration. Already after 3000 iterations the prediction error on the validation dataset
reaches a plateau and further improvements are only marginal, see C.7). We stop
the optimization at 8000 iterations and pick this model in our experiments as it
yields the best performance. To reduce overfitting, we use the Dropout strategy
[Hinton 2012] in the fully connected layers fc6 and fc7 with probability of dropping
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output of a neuron to be 0.5.

Figure C.7: Finetuning our CardioViewNet model rapidly converges to its best
performance.

The finetuning is quite efficient and takes approximately 4 hours on a single
NVIDIA Tesla M2050 GPU for 8000 iterations. Results of this method are presented
as CardioViewNet. We also show results for prediction of an SVM classifier
using fc7 features extracted from the finetuned network as CardioViewNet fc7 +

SVM. In other words, we replace the 1000-class multinomial regression layer of the
finetuned network by a linear SVM classifier. Results using a classification forest
instead are listed as CardioViewNet fc7 + forest. The possibility to replace
the final classifier is important to quickly train new classifiers for additional views
without extra finetuning. In addition to the training set augmentation, we perform
oversampling at the test time i.e. average predictions of ten 227x227 image crops:
the central crop and the four 227x227 corner aligned crops and their horizontally
flipped versions (vertically flipped images are rare). We report these results as
CardioViewNet + oversample. We will see that this can improve performance
on an independent dataset.

C.3.3.3 Training the network from scratch

Good initialisation of the network is important and the CaffeNet trained on the
ImageNet dataset helps us to get well started. The initial motivation behind the
finetuning was that there were too few images in our dataset to train the whole
network from scratch. While the number of images is certainly smaller than in the
ImageNet dataset, our target domain is also much simpler. We are predicting only
5 classes whose appearance variability is lower than the one across the ImageNet
classes (e.g. variability of felines in different poses and appearances when they
are all labeled as a cat). To test whether there is any value in the finetuning
instead of learning the network parameters from scratch we train from the ground
up two networks. First, a simpler LeNet-5 network [Lecun 1998] (shown as LeNet-

5 from scratch) as defined by Caffe but with the last layer adapted to a 5 class
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target (similarly to the CardioViewNet). The second network architecture is the
CardioViewNet (CardioViewNet from scratch). We found the choice of the
learning rate (10−3 for CardioViewNet and 10−5 for LeNet-5, both using batch
sizes of 32) and good random initialisation to be crucial to avoid divergence. We
initialise the weights with the procedure described by [He 2015] that is well suited
for networks with the ReLU nonlinearity and choose the learning rate by trial and
error, i.e. reducing the learning rate until the network starts to reduce the loss
without diverging.

C.4 Validation

We trained and validated these methods on a dataset of slices from 200 patients
(2CH: 235, 3CH: 225, 4CH: 280, LVOT: 12, SAX:2516) from a multi-center study
on post myocardial infarction hearts DETERMINE ([Kadish 2009]) from steady
state free precession (SSFP) acquisition sequence. The LVOT views are severely
underrepresented and served us as a test case for learning from very few examples.
They are not taken into the account in the mean scores in the results as it would
make unrealistic variation between the methods based on chance.

2CH

4CH

3CH

LVOT

SAX

Figure C.8: Typical examples of the training images from the DETERMINE dataset
for different views. Note the acquisition and patient differences. In addition, the
short axis slices cover the heart from the apex to the base with quite different
appearances.

We ran a randomized 10-fold cross validation by taking a random subset of 90%
of the patients (rather than image slices) for training and used remaining 10% for
validation. The patient splits guarantee that repeated acquisitions from the same
patient that are occasionally present in the dataset never appear in both the training
and the validation set and do not bias our results. Classification accuracy is not a
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DETERMINE KCL
F1 score precision recall F1 score precision recall

DICOM tag based prediction

Plane normal + forest (C.3.1) 99.14± 1.2399.14± 1.2399.14± 1.23 98.91± 1.1398.91± 1.1398.91± 1.13 99.20± 1.5399.20± 1.5399.20± 1.53 99.08± 0.4699.08± 0.4699.08± 0.46 98.76± 0.7898.76± 0.7898.76± 0.78 99.16± 0.3299.16± 0.3299.16± 0.32

Image content based prediction

Miniatures + forest (C.3.2) 59.33± 4.15 62.13± 5.74 55.61± 3.80 39.36± 1.75 42.71± 4.63 37.98± 4.39

Augmented miniatures + forest (C.3.2.2) 71.46± 2.68 72.33± 2.77 68.01± 2.65 48.87± 2.02 54.74± 2.33 43.77± 1.98

CaffeNet fc7 + forest (C.3.3.1) 75.94± 4.50 94.03± 1.75 69.08± 4.53 88.09± 1.29 92.60± 1.63 86.86± 1.08

CaffeNet fc7 + SVM (C.3.3.1) 91.86± 4.33 92.48± 3.98 91.61± 4.71 86.72± 1.49 86.70± 2.19 87.30± 1.08

CardioViewNet fc7 + forest (C.3.3.2) 97.48± 2.34 98.28± 1.84 96.81± 3.03 93.43± 2.05 95.79± 3.10 91.67± 2.34

CardioViewNet fc7 + SVM (C.3.3.2) 97.39± 2.27 98.37± 1.8898.37± 1.8898.37± 1.88 96.65± 2.77 88.40± 1.84 97.51± 2.0297.51± 2.0297.51± 2.02 88.95± 4.44

CardioViewNet (C.3.3.2) 97.66± 2.0497.66± 2.0497.66± 2.04 97.82± 1.93 97.62± 2.3797.62± 2.3797.62± 2.37 91.01± 3.29 92.23± 3.80 90.57± 3.26

CardioViewNet oversample (C.3.3.2) 97.53± 2.06 97.98± 2.12 97.30± 2.30 93.50± 3.1293.50± 3.1293.50± 3.12 95.31± 5.17 92.62± 2.3092.62± 2.3092.62± 2.30

LeNet-5 from scratch (C.3.3.3) 69.59± 5.12 76.79± 5.40 67.89± 4.26 63.81± 4.88 72.03± 9.67 60.41± 4.53

CardioViewNet from scratch (C.3.3.3) 92.36± 3.51 92.63± 4.44 92.97± 2.79 79.72± 3.65 80.39± 5.39 81.65± 3.64

Table C.1: Evaluation of the algorithms in the two groups of algorithms, we high-
light in bold the best performance from each group. References to relevant sections
in the paper with more details on each algorithm in the parentheses. We computed
average of individual view F1 scores, precisions and recalls for each fold (except
for the underrepresented LVOT) for the two datasets. Here we display means and
standard deviations of these average scores across all 10 folds. The prediction us-
ing classification forests on the DICOM orientation vector is the best performing
method. However from purely image based methods, the finetuned convolutional
network CardioViewNet outperforms the rest.

good measure for imbalanced datasets as performance on the dominant class (i.e.
short axis) can obfuscate the true performance. Therefore in this paper we report
means and standard deviations of average (averaging is done across the classes)
precisions, recalls and F1 scores. In the context of content based retrieval, these
measures can be interpreted as following: The precision (also known as positive
predictive value or false positive rate is defined as TP / (TP + FP)) is the fraction
of relevant images (having the same view as the query view) out of all returned
images. The recall (also known as sensitivity or true positive rate is defined as TP

/ (TP + FN ) ) is the probability of retrieving a relevant image out of all existing
relevant images. Where TP is the number of true positives, FP the number of true
negatives, and FN the number of false negatives. The F1 score is the harmonic
mean of the precision and the recall.

To study the robustness of the presented algorithms against the dataset bias,
we trained recognizer models from different folds trained exclusively on the DE-
TERMINE dataset ([Kadish 2009]) and tested them on a completely independent
dataset - the STACOM motion tracking challenge [Tobon-Gomez 2013] (KCL
in short) containing slices from 15 patients (2CH:15, 4CH:15, SAX:207). The KCL
dataset consists of healthy volunteers and the images are in general of higher and
more uniform quality and with more consistently chosen regions of interest. This
allows us to evaluate performance on the 3 cardiac views present. We invite the
interested readers to look at this open access dataset through the Cardiac Atlas
Project website [Fonseca 2011].
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C.5 Results and discussion

Here we present results for the method using DICOM based prediction and methods
using image content. The mean average F1 scores, precisions and recalls are summa-
rized in C.1 and total confusion matrices for the two best methods from each family
(DICOM based and Image based) can be seen in C.9. We confirm findings from the
previous work that cardiac views can be predicted from image plane normals and
serve as a prior [Zhou 2012] but require presence of the relevant DICOM tag. The
larger DETERMINE dataset turned out to be more challenging for the miniature
based method and it performed significantly worse than in the results published
previously. On the contrary the performance of the CaffeNet features for cardiac
view description is quite remarkable. These were not trained for cardiac MR images
yet they perform better than most methods with handcrafted features. They most
likely encode local texture statistics which helps with the prediction. Adding some
texture channels to the miniature method could therefore improve the performance.

Figure C.9: Sum of the confusion matrices over the 10 folds of our crossvalidation
on the DETERMINE dataset for the best model classifying images using DICOM
normal information and the best image-based predictor (using our finetuned neural
network).

The quality of predictions using the finetuned CardioViewNet is almost on par
with the approach using DICOM derived information and significantly outperforms
the previous forest based method using image miniatures [Margeta 2014a] while
not requiring to train any extra landmark detectors as in [Zhou 2012]. As features
extracted from the CardioViewNet do a good job even when used with external
classifiers, they could be used to learn extra view recognizers without additional
finetuning on these. In C.10 we present examples of some of the least confident
correct predictions using the finetuned CardioViewNet. It is important to note that
the softmax output of the neural network not only returns the label but also some
measure of confidence in the prediction. Similarly, the incorrectly classified images
(C.11) often belong to views more difficult to recognise for a human observer and
the second best prediction is the correct result. When training from scratch, the
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Figure C.10: Examples for some of the least confident correct (the normal pre-
dictions are usually very peaky) predictions using CardioViewNet. Predicted and
true (in parentheses) labels shown under the images. Below them are view-specific
prediction confidences.

performance does not seem to improve beyond 10000 iterations and we pause the
backpropagation there. Although the performance is much lower than for the fine-
tuned networks, the network learns to predict the cardiac views. For the LeNet-5
model trained from scratch, the performance closely follows the CaffeNet fc7 + SVM
model. We did not observe any benefit of using forests (at least when using orthog-
onal splits) over the linear SVM when using features from the convolutional nets
and the forest performs in general worse. The performance of the CardioViewNet
trained from scratch is better than using the fully connected layer features (fc7 )
from CaffeNet but the training takes significantly longer to obtain.

The predictions on the KCL dataset are naturally slightly worse as some dif-
ferences between the studies still exist. We have observed that test time oversam-
pling (averaging predictions of the central and corner patches and their horizontally
flipped versions) improves the scores for this dataset although it does not improve
the DETERMINE dataset predictions. This might indicate that a better thought
oversampling, image normalization or dataset augmentation strategies might further
improve the cross-dataset generalisation.

C.6 Conclusion

Convolutional neural networks and features extracted from them seem to work re-
markably well for medical images. As large datasets to train complex models are
often not available, retargeting the domain of a previously trained model by finetun-
ing can help. This speeds up the learning process and achieves better predictions.
Even models trained for general object recognition might be a great baseline to start.
In our case doing network surgery and finetuning the pretrained model allowed us
to make significant progress in cardiac view recognition from image content without
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Figure C.11: Example misclassifications using CardioViewNet. Predicted and true
label (in parentheses) are indicated under the images and below them are view-
specific prediction confidences. The failures typically happen with less typical ac-
quisitions and truly ambiguous images. The misclassified 2CH image indeed looks
like a 3CH image except that the left atrium is missing and the ventricle is acquired
at a non standard oblique angle. Similarly for the 4CH view, the right atrium is
missing and one can already see parts of the outflow tract branching out of the left
ventricle typical for a 3CH view. The 3CH view is captured with a detailed region of
interest not very common in the dataset. Extra data augmentation could probably
help to fix this case. Finally, the LVOT views are severely under-represented and
can be confused with basal short axis views. Note that for all of these cases, the
correct prediction is in the top 2 most likely views.
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handcrafting the features or training with extra annotations. This also allowed us
to gain performance over models learnt from scratch. However, even the perfor-
mance of models learnt from scratch is very encouraging for further exploration.
Features extracted from our network should be useful as descriptors for new views
and extend our method even to other pathology specific views (such as those used
in congenital heart diseases) and acquisition sequences other than SSFP, and even
to recognize the acquisition sequences themselves. The methods presented in this
paper are important additions to the arsenal of tools for handling noisy metadata
in our datasets and are already helping us to organize collections of cardiac images.
In the future this method will be used for semantic image retrieval and parsing of
medical literature.
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