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Abstract

This thesis is a reflection of the interaction between Berkovich geometry and
model theory. Using the results of Hrushovski and Loeser [HL], we show that
several interesting topological phenomena that concern the analytifications of
varieties are governed by certain finite simplicial complexes embedded in them.
Our work consists of the following two sets of results.

Let k be an algebraically closed non-Archimedean non trivially real valued
field which is complete with respect to its valuation.

1. Let φ : C ′ → C be a finite morphism between smooth projective irre-
ducible k-curves. The morphism φ induces a morphism φan : C ′an → Can

between the Berkovich analytifications of the curves. We construct a pair
of deformation retractions of C ′an and Can which are compatible with
the morphism φan and whose images ΥC′an , ΥCan are closed subspaces of
C ′an, Can that are homeomorphic to finite metric graphs. We refer to
such closed subspaces as skeleta. In addition, the subspaces ΥC′an and
ΥCan are such that their complements in their respective analytifications
decompose into the disjoint union of isomorphic copies of Berkovich open
balls. The skeleta can be seen as the union of vertices and edges, thus
allowing us to define their genus. The genus of a skeleton in a curve C is
in fact an invariant of the curve which we call gan(C). The pair of com-
patible deformation retractions forces the morphism φan to restrict to a
map ΥC′an → ΥCan . We study how the genus of ΥC′an can be calculated
using the morphism φan|ΥC′an

and invariants defined on ΥCan .

2. Let φ be a finite endomorphism of P1
k. Given a closed point x ∈ P1

k, we are
interested in the radius f(x) of the largest Berkovich open ball centered
at x over which the morphism φan is a topological fibration. Interestingly,
the function f : P1

k(k)→ R≥0 admits a strong tameness property in that it

is controlled by a non-empty finite graph contained in P1,an
k . We show that

this result can be generalized to the case of finite morphisms φ : V ′ → V
between integral projective k-varieties where V is normal.



Abstract

Cette thèse s’appuie sur et reflète l’interaction entre la théorie des modèles et
la géométrie de Berkovich. En utilisant les méthodes de Hrushovski et Loeser
[HL], nous montrerons que plusieurs phénomènes topologiques concernant des
analytifications de variétés sont contrôlés par certains complexes simpliciaux
contenus dans les analytifications. Ce travail comporte les résultats suivants.

Soit k un corps algébriquement clos et complet pour une valuation non-
archimédienne non-triviale à valeurs réelles.

1. Soit φ : C ′ → C un morphisme fini entre deux courbes projectives, lisses
et irréductibles. Le morphisme φ induit un morphisme φan : C ′an → Can

entre les deux analytifications. Nous construisons une paire de rétractions
par déformations qui sont compatible pour le morphisme φan. Les images
des déformations ΥC′an , ΥCan sont des sous-espaces fermés de C ′an and
Can et homéomorphes à des graphes finis. Ce type de sous-espace est
appelé squelette. En outre, les espaces analytiques C ′an rΥC′an et Can r
ΥCan se décomposent en une union disjointe de copies de disques unités
de Berkovich. Un squelette Υ ⊂ Can peut-être décomposé en un ensemble
des sommets et un ensemble d’arêtes et on peut définir son genre g(Υ).
Nous montrons que g(Υ) est un invariant bien défini de la courbe C. On
appelle cet invariant gan(C). Le morphisme φan induira un morphisme
ΥC′an → ΥCan entre les deux squelettes. Nous montrons que le genre du
squelette ΥC′an peut être calculé en utilisant certains invariants associés
aux points de ΥCan .

2. Soit φ un endomorphisme fini de P1
k. Soit x ∈ P1

k(k) et f(x) le rayon de la
plus grande boule de Berkovich de centre x, sur laquelle le morphisme φan

est une fibration topologique. Nous voyons que la fonction f : P1
k(k) →

R≥0 est contrôlée par un graphe fini et non-vide contenu dans P1,an
k . Nous

montrons que ce résultat peut être généralisé au cas d’un morphisme fini
φ : V ′ → V entre deux variétés intégrales, projectives avec V normale.
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Chapter 1

Introduction

Non-Archimedean fields were discovered at the turn of the twentieth century
when K. Hensel defined the field of p-adic numbers Qp. Ever since, there have
been attempts, each with its merits, to develop a theory of geometry over such
fields analogous to the theory of complex geometry. However, it was only in the
early nineties that Vladmir Berkovich developed a theory of non-Archimedean
geometry which provided analytic spaces endowed with reasonable topologi-
cal properties. In the framework of this geometry, a variety defined over a
non-Archimedean field defines an associated Berkovich analytic space called its
analytification. Even though such varieties when endowed with the topology
induced by the valuation of the ground field are totally disconnected, their an-
alytifications are Hausdorff, locally compact and have a finite number of path
connected components. It is hence natural to investigate the homotopy type of
the analytification of such algebraic varieties.

In 2010, Hrushovski and Loeser using techniques from Model theory studied
the homotopy type of the analytification of an algebraic variety defined over
a non trivially valued non-Archimedean real valued field. They showed that
these homotopy types are determined completely by finite simplicial complexes
embedded in the analytification by constructing deformation retractions of the
analytifications onto such complexes. In [HL], Hrushovski and Loeser define a
model theoretic analogue of the Berkovich analytification of a variety. One of the
advantages of this viewpoint is that it provides a framework within which we
can discuss model theoretic notions such as definability and employ powerful
methods such as compactness. This thesis is a reflection of this interaction
between Berkovich geometry and model theory. We show that several interesting
topological phenomena that concern the analytifications of varieties are governed
by certain finite simplicial complexes embedded in them.

1.1 A Riemann-Hurwitz formula for the ana-

lytic genus

Let k be an algebraically closed, complete non-Archimedean non trivially real
valued field. Let C be a k-curve. By k-curve, we mean a one dimensional
connected reduced separated scheme of finite type over the field k. It is well
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known that there exists a deformation retraction of Can onto a closed subspace
Υ which is homeomorphic to a finite metric graph [[B], Chapter 4], [[HL], Section
7]. We call such subspaces skeleta. The skeleton Υ can be decomposed into a set
of vertices V (Υ) and a set of edges E(Υ). We define the genus of the skeleton
Υ as follows.

g(Υ) = 1− V (Υ) + E(Υ).

In Proposition 7.1.24, we show that g(Υ) is a well defined invariant of the
curve and does not depend on the retract Υ. Let gan(C) := g(Υ) for any such
Υ. We study how gan varies for a finite morphism using a compatible pair of
deformation retractions.

Let C ′, C be smooth projective irreducible k-curves and φ : C ′ → C be a
finite morphism. The morphism φ induces a morphism between the respective
analytifications which we denote φan. Hence we have

φan : C ′an → Can.

In Theorem 7.2.1, we prove that there exists a pair of compatible deformation
retractions. The exact statement is as follows.

Theorem 7.2.1 Let C and C ′ be smooth projective irreducible k-curves and
φ : C ′ → C be a finite morphism. There exists a pair of deformation retractions

ψ : [0, 1]× Can → Can

and

ψ′ : [0, 1]× C ′an → C ′an

with the following properties.

1. The images ΥC′an := ψ′(1, C ′an) and ΥCan := ψ(1, Can) are closed sub-
spaces of C ′an and Can respectively, each with the structure of a connected,
finite metric graph. Furthermore, we have that ΥC′an = (φan)−1(ΥCan).

2. The analytic spaces C ′an r ΥC′an and Can r ΥCan decompose into the
disjoint union of isomorphic copies of Berkovich open disks i.e. there
exist weak semistable vertex sets (cf. Definition 7.1.18) A ⊂ Can and
A′ ⊂ C ′an such that ΥCan = Σ(Can,A) and ΥC′an = Σ(C ′an,A′).

3. The deformation retractions ψ and ψ′ are compatible i.e. the following
diagram is commutative.

[0, 1]× Can Can

[0, 1]× C ′an C ′an

? ?

-

-

ψ

ψ′

id× φan φan.
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In Sections 7.3 and 7.4, we study how gan(C ′) and gan(C) relate to each
other under the added assumption that φ : C ′ → C is a finite morphism be-
tween smooth projective irreducible curves. The necessary notation to make
sense of the following result - Corollary 7.3.9 can be found in Section 7.3.1 and
Definitions 7.3.6 and 7.3.8.

Corollary 7.3.9 Let φ : C ′ → C be a finite separable morphism between
smooth projective irreducible curves over the field k. Let gan(C ′), gan(C) be as
in Definition 7.1.25. We have the following equation.

2gan(C ′)− 2 = deg(φ)(2gan(C)− 2) + Σp∈Can2i(p)gp +R− Σp∈CanR1
p.

In Section 7.4, we present another method to calculate the invariant gan(C ′)
using the existence of a pair of compatible deformation retractions ψ and ψ′ on
Can and C ′an whose images are skeleta ΥCan and ΥC′an . We assume in addition
that the morphism φ : C ′ → C is such that the induced extension of function
fields k(C) ↪→ k(C ′) is Galois. By construction of ψ′ and ψ, φan restricts to
a morphism between the two skeleta. We show that the genus of the skeleton
ΥC′an can be calculated using invariants associated to the points of ΥCan . In
order to do so we define a divisor w on ΥCan whose degree is 2g(ΥC′an)− 2. A
divisor on a finite metric graph is an element of the free abelian group generated
by the points on the graph.

We define w as follows. For a point p ∈ ΥCan , let w(p) denote the order of
the divisor at p. We set

w(p) := (
∑

ep∈Ep,p′∈(φan)−1(p)

l(ep, p
′))− 2np.

The terms in this expression are defined as follows. Let Tp denote the tangent
space at the point p (cf. 7.1.3, 7.1.6).

1. Let Ep ⊂ Tp be those elements for which there exists a representative
starting from p and contained completely in ΥCan .

2. Let p′ ∈ C ′an such that φan(p′) = p. The morphism φan induces a map
dφp′ between the tangent spaces Tp′ and Tp (cf. 7.1.3, 7.1.6). Let ep ∈ Ep.
We define L(ep, p

′) ⊂ Tp′ to be the preimages of ep for the map dφp′ . As
ΥC′an = (φan)−1(ΥCan), any element of L(ep, p

′) can be represented by
a geodesic segment that is contained completely in ΥC′an . Let l(ep, p

′)
denote the cardinality of the set L(ep, p

′).

3. We define np to be the cardinality of the set of preimages of the point p
i.e. np := card{(φan)−1(p)}.

In Proposition 7.4.4, we show that w is indeed a well defined divisor whose
degree is equal to 2g(ΥC′an) − 2. We then study the values np and l(ep, p

′)
described above. These results are sketched below.

We study the value np for p ∈ ΥCan in terms of two invariants - ram(p) and
c1(p) which are defined as follows.

Let p ∈ ΥCan .

8



1. If p is a point of type I then we set ram(p) to be the ramification degree
ram(p′/p) for any p′ ∈ C ′an such that φan(p′) = p. As the morphism φ is
Galois, ram(p) is well defined. If p is not of type I then we set ram(p) := 1.

2. In order to define the invariant c1, we introduce an equivalence relation
on C ′(k). For y1, y2 ∈ C ′(k), we set y1 ∼c(1) y2 if φ(y1) = φ(y2) and
ψ′(1, y1) = ψ′(1, y2). Let c1(y) denote the cardinality of the equivalence
class that contains y. In Lemma 7.4.8, we show that the function c1 :
C(k) → Z≥0 defined by setting c1(x) = c1(y) for any y ∈ φ−1(x) is well
defined. We proceed to show that if x ∈ C(k) then c1(x) depends only on
the point ψ(1, x) ∈ ΥCan . This defines c1 : ΥCan → Z≥0.

The values c1(p) and ram(p) can be used to calculate np by the following relation
(Proposition 7.4.10).

np = [k(C ′) : k(C)]/(c1(p)ram(p)).

We simplify the term l(ep, p
′) which appears in the expression defining w.

Let p ∈ ΥCan and ep ∈ Ep. In Lemma 7.4.12 we show that l(ep, p
′) remains

constant as p′ varies through the set of preimages p′ ∈ (φan)−1(p). We set

l(ep) := l(ep, p
′). We introduce the invariants - ˜ram(ep) and r̃am(p) to study

l(ep).

1. Let p ∈ ΥCan . By definition ep is an element of the tangent space Tp
at p (cf. Sections 7.1.3, 7.1.6). As p is of type II, it corresponds to a

discrete valuation of the k̃-function field H̃(p). For any p′ ∈ (φan)−1(p),

the extension of fields H̃(p) ↪→ H̃(p′) can be decomposed into the com-
posite of a purely inseparable extension and a Galois extension. Hence
the ramification degree ram(e′/ep) is constant as e

′ varies through the set

of preimages of ep at Tp′ for the map dφalgp′ : Tp′ → Tp (cf. 7.1.6). Let
r̃am(ep) be this number. When p is of type I, we set r̃am(ep) = ram(p)
and when p is of type III, we set r̃am(ep) = c1(p).

2. For p ∈ ΥCan , we define r̃am(p) := Σep∈Ep
1/r̃am(ep).

In Proposition 7.4.15, we show that if p ∈ ΥCan and ep ∈ Ep then

l(ep) = [k(C ′) : k(C)]/(npr̃am(ep)).

The results of Section 7.4 are compiled so that the value 2gan(C ′) − 2 can
be computed in terms of the invariants c1, r̃am and ram.

Theorem 7.4.17 Let φ : C ′ → C be a finite morphism between smooth projec-
tive irreducible k-curves such that the extension of function fields k(C) ↪→ k(C ′)
induced by φ is Galois. Let gan(C ′) be as in Definition 7.1.25. We have that

2gan(C ′)− 2 = deg(φ)Σp∈ΥCan [r̃am(p)− 2/(c1(p)ram(p))].
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The results of chapter 7 form the content of the article ”A Riemann-Hurwitz
formula for skeleta in non-Archimedean geometry”. Immediately following this
work and related to it, were two papers ([ABBR1], [ABBR2]) by Amini, Baker,
Brugallé and Rabinoff wherein the authors study the extent to which morphisms
between algebraic k-curves are determined by skeleta. Amongst the striking
results of these papers, is the study of obstructions to the lifting of a harmonic
morphism between metric graphs to a corresponding morphism of k-curves such
that the graphs can be realized as skeleta of these curves. Also, a similar proof
of Theorem 7.2.1 can be found in [ABBR1] (cf. Theorem A).

Recently, in [TEM2] and [TEM3], Michael Temkin, Adina Cohen and Dmitri
Trushin have obtained results on wild ramification for finite morphisms between
quasi-smooth Berkovich curves which bear some resemblance to results consid-
ered in this paper. In [TEM3], Temkin considers a morphism f : Y → X be-
tween connected separated quasi-smooth strictly k-analytic curves. The curves
Y and X possess a natural metric and the morphism f is piecewise monomial
on an interval I ⊂ Y with respect to this metric. The author is interested in
the set Nf,≥d ⊂ Y of points y ∈ Y such that the multiplicity nf (y) of f at y is
at least d. The topologically tame case does not present a challenge as the set
Nf,≥2 is contained in a finite graph and it is the topologically wild case which
is of greater interest. In [TEM2], the authors study the set Nf,≥p by using the
different. They show that the different function δf : Y → [0, 1] is piece-wise
monomial, relates the genus of Y and X and in addition completely controls
the set Nf,p for morphisms of degree p. In [TEM3], Temkin goes on to prove
that the set Nf,≥d is radial with respect to a large enough skeleton of f (a
compatible choice of skeleta Υ′ ⊂ Y and Υ ⊂ X) and that their Υ′-radii are
piece-wise |k∗|-monomial functions on Υ′. The author then relates the radii of
Nf,≥d to classical ramification invariants.

1.2 Finite morphisms and skeleta

Our second set of results concerns finite surjective morphisms between irre-
ducible projective varieties over non-Archimedean real valued fields. We study
such morphisms in terms of the morphisms they induce between the analytifica-
tions of the varieties. The theorem we prove implies that the induced morphism
when viewed as a continuous map between topological spaces admits a certain
uniform behaviour. Before stating the theorem in full generality, we provide its
motivation by considering the case of a finite endomorphism of the projective
line.

Let k be an algebraically closed, complete non-Archimedean real valued field
whose value group |k∗| contains at least two elements and is a sub group of
(R>0,×). Let P1,an

k be the Berkovich analytification of the projective line P1
k.

The analytification P1,an
k allows us to use the valuative topology provided by

the field to study an algebraic endomorphism. For a point x ∈ P1
k(k) ⊂ P1,an

k ,
we have the notion of a Berkovich closed disk or Berkovich open ball centred at
x within the space P1,an

k which contains the naive closed or open disk around x.
By the naive closed (open) disk around x ∈ k of radius r ∈ R>0, we mean the set
{y ∈ k||y−x| ≤ r} ({y ∈ k||y−x| < r}). As opposed to their naive counterparts,
the Berkovich open and closed disks are locally compact and contractible.
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Let φ : P1
k → P1

k be a finite morphism. For a complete non-Archimedean
real valued algebraically closed field extension L/k, let φL denote the morphism

φ× idL : P1
k ×k Spec(L)→ P1

k ×k Spec(L).

The analytification of a k-variety of finite type (cf. Section 5.6) is functorial
and hence endomorphisms of the projective line will induce endomorphisms of
its analytification. That is, the morphism φ induces a morphism

φan : P1,an
k → P1,an

k .

The morphism φanL is similarly defined and it is to be noted that φanL = φan×idanL .
Our reason for introducing the morphism φL for a complete non-Archimedean

real valued algebraically closed field extension L/k is to deal with all points of the
analytification of the projective line over k and not just those points for which
H(x) = k (cf. 5.6.2). When discussing the points of the analytification of a k-
variety, we make use of the description outlined in Section 5.6. Let x ∈ P1,an

k (L)
i.e. x ∈ P1,an and there exists an embedding of valued fields H(x) ↪→ L. The
image of x ∈ P1,an

k (L) for the morphism π : P1,an
k → P1

k (cf. 5.6) is an L-point of
P1
k i.e. an element of the set P1

k(L). We abuse notation and refer to this point
as x as well. The pair x : Spec(L) → P1

k and idL : Spec(L) → Spec(L) defines
a closed point of the variety P1

k ×k Spec(L) which we denote xL. The following
remark generalizes this construction.

Remark 1.2.1. Let V be a k-variety and let x ∈ V an. The field H(x) is the
non-Archimedean geometry analogue of the residue field of a point in algebraic
geometry and is defined in 5.6. Let L be a complete non-Archimedean real valued
algebraically closed field extension of k. The notation x ∈ V an(L) will be used
to mean that x ∈ V an and in addition there exists an embedding of valued fields
H(x) ↪→ L. It follows that the image of the point x for the morphism V an → V
which is defined in Section 5.6 is an L-point i.e. an element of the set V (L). We
abuse notation and refer to this point as x as well. The pair x : Spec(L) → V
and idL : Spec(L)→ Spec(L) defines a closed point of the variety V ×k Spec(L)
which we denote xL. This construction will be referred to frequently in what
follows.

We now introduce the theorem concerning finite endomorphisms of the pro-
jective line over k.

Theorem 1.2.2. Let φ : P1
k → P1

k be a finite morphism. Let x ∈ P1,an
k and L/k

be any complete non-Archimedean real valued algebraically closed field extension
of k such that x ∈ P1,an

k (L). Let f(x) be the minimum of 1 and the radius of

the largest Berkovich open ball B ⊂ P1,an
L around xL ∈ P1

L(L) ⊂ P1,an
L whose

preimage under φanL is the disjoint union of homeomorphic copies of B via φanL .

The function f : P1,an
k → R≥0 is not identically zero and well defined. There

exists a finite simplicial complex Υ ⊂ P1,an
k , a generalised real interval I := [i, e]

and a deformation retraction

ψ : I × P1,an
k → P1,an

k

such that ψ(e,P1,an
k ) = Υ and the function f is constant on the fibres of this

retraction i.e. for every x ∈ P1,an
k we have that f(x) = f(ψ(e, x)). Furthermore,

the function logc|f | is piecewise linear when restricted to Υ where 0 < c < 1 is
a real number.

11



Remark 1.2.3. We fix the real number c which appears in the portion of the
theorem above concerning piecewise linearity and hence forth write log(|f |) in
place of logc(|f |).

The notion of a generalised interval is discussed in Section 3.9 [HL]. We
now provide an example which illustrates the behaviour of the function f in
Theorem 1.2.2 clearly.

Example 1.2.4. Let k be an algebraically closed complete non-trivially val-
ued non-Archimedean field which is of characteristic p. Consider the morphism
φ : P1

k → P1
k given by z 7→ zp − z. Let L/k be a non-Archimedean real valued

field extension. The morphism φL is étale over every point other than ∞. Fur-
thermore it can be shown that f(x) = 1 if x 6=∞ and 0 at ∞. Let Υ be a finite
graph containing the point ∞ and which contains at least one other point. Since
there is a deformation retraction of P1,an

k onto any non - empty finite sub-graph,
it follows that there exists a deformation retraction

ψ : I × P1,an
k → P1,an

k

such that the function f is constant along the fibres of the retraction.

Our first goal is to generalize Theorem 1.2.2 to the case of finite surjective
morphisms between irreducible, projective varieties. A problem standing in the
way of any attempt at a generalisation is that there is no intrinsic notion of an
open disk in V an if V is a projective k-variety of finite type. However, as V is
projective there exists a closed immersion V ↪→ Pnk for some n ∈ N. We identify
V with its image under the closed immersion. The space Pn,ank can be equipped
with a finite formal cover [[B], Section 4.3] such that each element of this cover
is isomorphic to the n-dimensional Berkovich closed disk M(k{T1, . . . , Tn}).
Let {Ai}i denote this cover. The intersection of the elements of the formal
cover with the image of the immersion V an ↪→ Pn,ank defines a formal cover of
the space V an, namely {Ai ∩ V

an}i. Furthermore, for a non-Archimedean real
valued algebraically closed field extension L/k the construction extends to the
analytic space (VL)

an := (V ×k L)
an. The n - dimensional Berkovich open balls

contained in Pn,anL allow us to generalise Theorem 1.2.2. We now provide a
sketch of the details of this construction.

Let L/k be a non-Archimedean real valued algebraically closed field exten-
sion and x ∈ Pn,anL (L) (Remark 1.1). Let i be such that xL ∈ Ai,L. Associated
to the point xL is a collection of open neighbourhoods in Pn,anL (L), namely the
Berkovich open balls around xL contained in Ai,L. We denote this family of
open neighbourhoods OxL

. Let G ∈ OxL
. For every j such that xL belongs

to Aj,L, it can be checked that G is a Berkovich open ball in Aj,L as well.
This implies that the family OxL

is independent of the element of the affinoid
chart which contains xL and is hence well defined. We now define a poly ra-
dius associated to the elements of OxL

. Let xL have homogenous coordinates
[x1,L : . . . : xn+1,L] and let W ∈ OxL

. We can associate an (n + 1)2-tuple
denoted hL(W ) to the open neighbourhood W as follows. If for an index t,
xL ∈ At,L then let rt = (r1, . . . , rn+1) be such that rt = 1 and the Berkovich
open ball BW,t is defined by the equations |(Tj/Tt−xj,L/xt,L)(p)| < rj for j 6= t.
If on the other hand xL does not belong to At,L then let rt = (1, . . . , 1). We
define hL(W ) := (rt)t. Let OL :=

⋃
x∈P

n,an

k
(L)OxL

. We can extend the above

12



construction to define a function hL : OL → R(n+1)2

≥0 . Note that the sets OxL

depend on the affine chart chosen for Pn. In the case of P1
k with x ∈ P1,an

k (L),
the set OxL

associated to the construction above is discussed in Section 8.1. In
what follows we explain how the family OL can be ordered.

Remark 1.2.5. We introduce a collection S of functions from R(n+1)2

>0 to R>0.

The set S consists of those functions g : R(n+1)2

>0 → R>0 which satisfy the
following properties.

1. The function g is continuous.

2. If (ri,j)i,j and (si,j)i,j are (n + 1)2-tuples such that ri,j ≤ si,j for all i, j
then g((ri,j)i,j) ≤ g((si,j)i,j).

3. g is a definable function (in the model theoretic sense) in the language of
Ordered Abelian groups.

Let g ∈ S. The function g defines a total ordering on the set R(n+1)2

>0 as

follows. Let r, s ∈ R(n+1)2

>0 . We set r ≤g s if g(r) ≤ g(s). Observe that the total

ordering ≤g on R(n+1)2

>0 extends the partial ordering given by : (ri,j)i,j ≤ (si,j)i,j

if ri,j ≤ si,j for all i, j, where (ri,j)i,j and (si,j)i,j are R(n+1)2

>0 tuples.

We can extend g to a function g̃ : R(n+1)2

≥0 → R≥0 as follows. For r ∈

R(n+1)2

>0 , we set g̃(r) := g(r) and if r ∈ R(n+1)2

≥0 rR(n+1)2

>0 then g̃(r) := 0. As for

g, the function g̃ defines a total ordering on R(n+1)2

≥0 which extends the partial
ordering given by : (ri,j)i,j ≤ (si,j)i,j if ri,j ≤ si,j for all i, j, where (ri,j)i,j and

(si,j)i,j are R(n+1)2

≥0 tuples. Henceforth, we abuse notation and write g for the
extension g̃.

Let g ∈ S. By Lemma 8.1.2, the function g◦hL : OL → R≥0 has the following
property. If O1, O2 ∈ OL such that O1 ⊆ O2 then (g ◦ hL)(O1) ≤ (g ◦ hL)(O2).
The functions g ∈ S hence allow us to quantify the size of elements belonging
to OL.

We now provide an equivalent form of Theorem 1.2.2 which we generalize.
We begin by motivating the reformulation. The goal of Theorem 1.2.2 is to
prove the existence of a finite simplicial complex Υ contained in P1,an

k such that
the function f is constant along the fibres of the retraction morphism ψ(e, ).
Let us assume that Theorem 1.2.2 is true. We define a function M : Υ → R≥0

as follows. Let γ ∈ Υ and x ∈ P1,an
k be any point for which ψ(e, x) = γ.

We set M(γ) := f(x). Let L/k be any complete non-Archimedean real valued
algebraically closed field extension such that x ∈ P1,an

k (L). By definition M(γ)

is the minimum of 1 and the radius of the largest Berkovich open ball in P1,an
L

around xL whose preimage is the disjoint union of homeomorphic copies of
itself for the morphism φanL . The function M is well defined since we assumed
Theorem 1.2.2 is true. Hence a suitable restatement of 1.2.2 is the following
theorem.

Theorem 1.2.6. Let φ : P1
k → P1

k be a finite morphism. There exists a gener-
alised real interval I := [i, e] and a deformation retraction

ψ : I × P1,an
k → P1,an

k

13



which satisfies the following properties.

1. The image ψ(e,P1,an
k ) of the deformation retraction ψ is a finite simplicial

complex. Let Υ denote this finite simplicial complex.

2. There exists a well defined function M : Υ → [0, 1] which satisfies the
following conditions. The function M is not identically zero and log(M)
is piecewise linear. Let γ ∈ Υ such that M(γ) > 0 and x ∈ ψ(e, )−1(γ).
Let L/k be any complete non-Archimedean real valued algebraically closed
field extension such that x ∈ P1,an

k (L). Then the following are true.

(a) The preimage under the morphism φanL of the Berkovich open ball

B(xL,M(γ)) ⊂ P1,an
L around xL of radius M(γ) decomposes into

the disjoint union of Berkovich open balls each homeomorphic to
B(xL,M(γ)) via the morphism φanL .

(b) Let O be any other Berkovich open ball around xL whose radius is
less than or equal to 1 such that its preimage under the morphism
φanL decomposes into the disjoint union of Berkovich open balls each
homeomorphic to O via φanL . Then the radius of O must be less than
or equal to M(γ).

We will show that Theorems 1.2.2 and 1.2.6 are equivalent in Section 8.2.1.
We now state a theorem which in Section 8.5 we will show to be a general-
isation of Theorem 1.2.2. Let φ : V ′ → V be a finite surjective morphism
between irreducible, projective varieties of finite type over k. For a complete
non-Archimedean real valued algebraically closed field extension L/k, let φL
denote the morphism

φ× idL : V ×k L→ V ×k L.

As in the case of P1
k, we write φan : V ′an → V an for the induced morphism

between the respective analytifications. The morphism φanL is similarly defined
and it is to be noted that φanL = φan × idanL . We fix an embedding V ↪→ Pnk and
an affine chart of Pn. The theorem will be stated in terms of the sets OxL

and
the functions hL and g described above.

Theorem 8.4.3. Let φ : V ′ → V be a finite surjective morphism between
irreducible, projective varieties with V normal. Let g ∈ S. There exists a
generalized real interval I := [i, e] and a deformation retraction

ψ : I × V an → V an

which satisfies the following properties.

1. The image ψ(e, V an) of the deformation retraction ψ is a finite simplicial
complex which we denote Υg.

2. There exists a well defined function Mg : Υg → R≥0 which satisfies the
following conditions. The function Mg is not identically zero. Let γ ∈
Υg be a point on the finite simplicial complex for which Mg(γ) 6= 0 and
x ∈ ψ(e, )−1(γ). Let L/k be any complete non-Archimedean real valued
algebraically closed field extension such that x ∈ V an(L). There exists
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W ∈ (g ◦hL)
−1(Mg(γ))∩OxL

such that the open set (φanL )−1(W ∩V an
L ) ⊂

V ′an
L decomposes into the disjoint union of open sets, each homeomorphic

to W ∩ V an
L via φanL . Furthermore, let O ∈ OxL

be such that the preimage
of O ∩ V an

L under φanL decomposes into the disjoint union of open sets in
V ′an
L , each homeomorphic to O via the morphism φanL . Then (g◦hL)(O) ≤
Mg(γ). Lastly, the function log(Mg) is piecewise linear on Υg.

Remark 1.2.7. The second property we require the function Mg to satisfy in-
volves choosing a point xL over x which is an L-point of V an

L and then requiring
that Mg fulfill a condition concerning xL. It may hence seem that the function
is dependent on the field L chosen. However, showing that the function Mg is
well defined implies in particular that the valueMg(x) for x ∈ V

an is determined
entirely by x.

It is worth mentioning that the result stated above when applied to smooth
Berkovich analytic curves over a field of characteristic zero bears some similarity
with theorems proved in [PP] and [Bal]. In [Bal], the author - F. Baldassarri
studies a system of differential equations defined over an analytic domain of the
affine line over a non-Archimedean real valued field of characteristic zero. More
precisely, let k be a non-Archimedean field of characteristic zero and X be a
relatively compact analytic domain of the affine line A1,an

k . Let

Σ : dy/dT = Gy

be a system of linear differential equations whereG is a µ×µmatrix of k-analytic
functions on X. If x ∈ X is a k-rational point, let R(x) = R(x,Σ) denote the
radius of the maximal open disk in X with center at x on which all solutions
of Σ converge. The author shows that the function R is continuous. Also, he
illustrates how when X = A1,an

k there exists a finite graph Γ ⊂ A1,an
k which

controls the behaviour of the function R. Since A1,an
k retracts to any of its finite

subgraphs, this means that the function R is constant along the fibres of the
retraction on Γ. In the paper the control by a finite graph is illustrated by an
example. If one preserves the restrictions on the field k and considers the case
of a system of differential equations defined instead over a smooth Berkovich
curve then a similar result holds true. In [PP], the authors - Poineau and
Pulita prove that associated to a system of differential equations over a smooth
Berkovich curve, there exists a locally finite graph contained in the curve and
a retraction of the curve onto it such that the radius of convergence function is
constant along the fibres of the retraction. The results we prove and the results
of Poineau-Pulita and Baldassari show that the behaviour of certain functions
of interest are controlled by finite simplicial complexes associated to them.

Notation : To prove the main theorems that follow, we require techniques from
Model theory where it is standard to write the value group of a non-Archimedean
valued field additively. However, when discussing objects from Berkovich geom-
etry such as affinoid algebras and the reduction morphism it is standard to
endow the value group with a multiplicative structure as it aids in intuition.
Instead of resolving this dichotomy in notation, we preserve both notation and
eliminate ambiguity by specifying at every instance the structure of the value
group, i.e. whether we look at it additively or multiplicatively.
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Chapter 2

Introduction en français

Les corps non-archimédiens ont été découverts au début du vingtième siècle,
lorsque K. Hensel a défini le corps des nombres p-adique. Dans les années
qui suivirent, on observa plusieurs tentatives, chacune ayant ses mérites, de
développement d’une théorie géométrique sur ces corps comparable a celle développée
sur le corps des nombres complexes. Cependant, ce n’est qu’au début des
années 90 que Vladimir Berkovich introduit une théorie de la géométrie non-
archimédienne qui nous fourni des espaces analytiques possédant les bonnes
propriétés topologiques. Dans le cadre de cette théorie, on peut associer un
espace analytique au sens de Berkovich à une variété définie sur un corps non-
archimédien. On appelle cet espace analytique l’analytification de la variété.
Même si une variété sur un corps non-archimédien est totalement discontinue
pour la topologie induite par la valuation du corps, son analytification est Haus-
dorff, localement compacte avec un nombre fini de composantes connexes par
arcs. Ainsi, il semble naturel d’étudier le type d’homotopie de l’analytification
de telles variétés.

En 2010, Hrushovski et Loeser ont utilisé la théorie des modèles pour étudier
le type d’homotopie de l’analytification d’une variété sur un corps non-archimédien
non-trivialement valué. Ils ont montré que les types d’homotopie sont com-
pletement déterminé par certains complexes simpliciaux contenus dans les an-
alytifications. Plus précisément, étant donné une variété sur un corps non-
archimédien, ils ont construit une rétraction par déformation de l’analytification
de la variété sur un complexe simplicial contenu dans l’analytification. Dans
[HL], Hrushovski et Loeser ont introduit l’espace chapeauté associé à une variété
qui est la version analogue dans la théorie des modèles de l’analytification. Un
des avantages de ce point de vu est le fait qu’on peut parler des notions de
définissabilité et également utiliser les méthodes puissantes comme compacité.
Cette thèse reflète et s’appuie sur cette interaction entre la théorie des modèles
et la géométrie de Berkovich. Nous montrerons que plusieurs phénomènes
topologiques concernant des analytifications de variétés sont contrôlés par cer-
tains complexes simpliciaux contenus dans les analytifications.
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2.1 Une formule de Riemann-Hurwitz pour le

genre analytique

Soit k un corps algébriquement clos et complet pour une valuation non-archimédienne
à valeurs réelles et non-triviale. Soit C une courbe sur k. Par une courbe sur
k, on veut dire un k-schéma réduit, connexe et séparé de dimension 1. Il est
bien connu qu’il existe une rétraction par déformation de l’analytification Can

de C sur un sous-ensemble fermé Υ qui est homéomorphe à un graphe fini [[B],
Chapter 4], [[HL], Section 7]. Ces types des sous-espaces sont appelés squelettes.
Le squelette Υ peut-être décomposé en un ensemble des sommets V (Υ) et un
ensemble d’arêtes E(Υ). On définit le genre du graphe Υ par l’équation suivante.

g(Υ) = 1− V (Υ) + E(Υ).

Dans la Proposition 7.1.24, nous montrons que g(Υ) est un invariant bien
défini de la courbe. Soit gan(C) := g(Υ) pour un tel squelette Υ. Nous étudions
le comportement de l’invariant gan pour un morphisme fini en utilisant une paire
de rétractions compatibles.

Soit φ : C ′ → C un morphisme fini entre deux courbes projectives, lisses et
irréductibles. Le morphisme φ va induire un morphisme φan : C ′an → Can entre
les deux analytifications. Nous démontrons qu’il existe une paire compatible de
rétractions par déformations

ψ : [0, 1]× Can → Can

et

ψ′ : [0, 1]× C ′an → C ′an

avec les propriétés suivantes:

1. Les ensembles ΥC′an := ψ′(1, C ′an) et ΥCan := ψ(1, Can) sont des sous-
espaces fermés de C ′an et Can. Ils sont homéomorphes à des graphes finis.
De plus, on a l’égalité ΥC′an = (φan)−1(ΥCan).

2. Les espaces analytiques C ′an r ΥC′an et Can r ΥCan se décomposent en
une union disjointe de copies de disques unités de Berkovich i.e. il existe
deux ensembles de sommets faiblement semi-stables (cf. Definition 7.1.18)
A ⊂ Can et A′ ⊂ C ′an tel que ΥCan = Σ(Can,A) et ΥC′an = Σ(C ′an,A′).

3. Les rétractions par déformations ψ and ψ′ sont compatibles, cela veut
dire que le diagramme suivant est commutatif.
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[0, 1]× Can Can

[0, 1]× C ′an C ′an

? ?

-

-

ψ

ψ′

id× φan φan

Les notations utilisées pour le résultat suivant sont explicitées dans la Sec-
tion 7.3.1 et les définitions 7.3.6 et 7.3.8.

Corollaire 7.3.9 Soit φ : C ′ → C un morphisms séparable fini entre deux
courbes lisses et projectives sur le corps k. Soit gan(C ′), gan(C) les invariants
définis dans la Definition 7.1.25. On a l’équation suivante.

2gan(C ′)− 2 = deg(φ)(2gan(C)− 2) + Σp∈Can2i(p)gp +R− Σp∈CanR1
p.

Dans la Section 7.4, on propose une autre méthode pour calculer l’invariant
gan(C ′) en utilisant l’existence de la paire de rétractions par déformations ψ
et ψ′ sur Can et C ′an dont les images sont des squelettes ΥCan et ΥC′an . On
suppose également que le morphisme φ : C ′ → C est tel que l’extension du
corps des fonctions k(C) ↪→ k(C ′) est Galois. Par construction de ψ′ et ψ, φan

induira un morphisme entre les deux squelettes. Nous montrons que le genre
du squelette ΥC′an peut être calculé en utilisant certains invariants associés aux
points de ΥCan . On définit un diviseur w sur ΥCan de degré 2g(ΥC′an)− 2. Un
diviseur sur un graphe fini est un élément du groupe abélien libre engendré par
les points du graphe.

Le diviseur w est défini comme suit. Pour un point p ∈ ΥCan , soit w(p)
l’ordre du diviseur au point p. Soit

w(p) := (
∑

ep∈Ep,p′∈(φan)−1(p)

l(ep, p
′))− 2np.

Les termes dans cette expression sont définis comme suit. Soit Tp l’espace
tangent au point p (cf. 7.1.3, 7.1.6).

1. Soit Ep ⊂ Tp l’ensemble des éléments pour lesquels il existe un représentant
à partir de p contenu dans ΥCan .

2. Soit p′ ∈ C ′an tel que φan(p′) = p. Le morphisme φan induit un morphisme
dφp′ entre les espaces tangents Tp′ et Tp (cf. 7.1.3, 7.1.6). Soit ep ∈ Ep.
On désigne par L(ep, p

′) ⊂ Tp′ l’ensemble des préimages de ep pour le
morphisme dφp′ . Comme ΥC′an = (φan)−1(ΥCan), un élément de L(ep, p

′)
peut être représenté par un segment géodésique contenu dans ΥC′an . Soit
l(ep, p

′) la cardinalité de l’ensemble L(ep, p
′).
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3. On désigne par np la cardinalité de l’ensemble des préimages du point p
i.e. np := card{(φan)−1(p)}.

Dans la Proposition 7.4.4, nous montrons que w est un diviseur bien défini
de degré 2g(ΥC′an) − 2. Puis, nous étudions les invariants np et l(ep, p

′) de la
maniére suivante.

On étudie l’invariant np pour p ∈ ΥCan en termes de deux invariants - ram(p)
et c1(p) qui sont définis comme suit.

Soit p ∈ ΥCan .

1. Si p est un point de type I, on désigne par ram(p) le degré de ramification
ram(p′/p) pour tout p′ ∈ C ′an tel que φan(p′) = p. Comme le morphisme
φ est Galois, ram(p) est bien défini. Si p n’est pas de type I, on définit
ram(p) := 1.

2. Afin de définir l’invariant c1, nous introduisons une relation d’équivalence
sur C ′(k). Soient y1, y2 ∈ C

′(k). Nous définissons y1 ∼c(1) y2 si φ(y1) =
φ(y2) et ψ′(1, y1) = ψ′(1, y2). On désigne par c1(y) la cardinalité de la
classe d’équivalence qui contient y. Dans le Lemme 7.4.8, nous montrons
que la fonction c1 : C(k) → Z≥0 donnée par c1(x) = c1(y) pour tout
y ∈ φ−1(x) est bien définie. Nous montrons que c1(x) pour x ∈ C(k) ne
dépend que du point ψ(1, x) ∈ ΥCan . Ceci définit c1 : ΥCan → Z≥0.

Les valeurs c1(p) et (p) peuvent être utilisées pour calculer np via l’équation
suivante (Proposition 7.4.10).

np = [k(C ′) : k(C)]/(c1(p)ram(p)).

Nous simplifions le terme l(ep, p
′). Soit p ∈ ΥCan and ep ∈ Ep. Dans

le Lemme 7.4.12, nous montrons que l(ep, p
′) est constant pour tout p′ ∈

(φan)−1(p). On définit l(ep) := l(ep, p
′). Nous introduisons les invariants -

˜ram(ep) et r̃am(p) pour étudier l(ep).

1. Soit p ∈ ΥCan . Par définition, ep est un élément de l’éspace tangent Tp à p
(cf. Sections 7.1.3, 7.1.6). Comme p est de type II, ça correspond à une val-

uation discrète du k̃-corps des fonctions H̃(p). Pour tout p′ ∈ (φan)−1(p),

l’extension de corps H̃(p) ↪→ H̃(p′) peut être décomposée en une extension
inséparable et une extension Galoisienne.
Ainsi, le degré de ramification ram(e′/ep) est constant pour tous les préimages

de ep pour le morphisme dφalgp′ : Tp′ → Tp (cf. 7.1.6). On désigne par
r̃am(ep) ce degré de ramification. Si p est un point de type I, on définit
r̃am(ep) := ram(p) et si p est de type III, on définit r̃am(ep) = c1(p).

2. Pour tout p ∈ ΥCan , on définit r̃am(p) := Σep∈Ep
1/r̃am(ep).

Soit p ∈ ΥCan et ep ∈ Ep. Dans la Proposition 7.4.15, nous montrons que

l(ep) = [k(C ′) : k(C)]/(npr̃am(ep)).
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On peut résumer l’ensemble des résultats de la Section 7.4 par le résultat
suivant où on calcule la valeur 2gan(C ′)− 2 en termes des invariants c1, r̃am et
ram.

Theoreme 7.4.17 Soit φ : C ′ → C un morphisme fini entre deux courbes lisses
projectives et irréductibles tels que l’extension du corps des fonctions k(C) ↪→
k(C ′) induite par φ est Galoisienne. Soit gan(C ′) le genre analytique de la
Definition 7.1.25. On a l’équation suivante.

2gan(C ′)− 2 = deg(φ)Σp∈ΥCan [r̃am(p)− 2/(c1(p)ram(p))].

2.2 Morphismes finis et squelettes

La deuxième série de résultats dans cette thèse concerne les morphismes finis sur-
jectifs entre des variétés projectives irréductibles sur un corps non archimédien.
On étudie un tel morphisme en termes du morphisme induit entre les analytifi-
cations. Le théorème principal (Theorem 8.4.3) implique que le comportement
de ce morphisme entre les analytifications est modéré. Avant de le préciser,
nous donnons la motivation en considérant le cas d’un endomorphisme de la
droite projective.

Soit k un corps algébriquement clos complet pour une valuation non triv-
iale à valeurs réelles. Soit φ : P1,an

k → P1,an
k un morphisme fini. Comme

l’analytification dans le sens de Berkovich d’un morphisme est une construc-
tion fonctorielle, le morphisme φ induit un morphisme φan : P1,an

k → P1,an
k entre

les deux analytifications. Pour un point x ∈ P1
k(k) ⊂ P1,an

k , on a la notion de
boule fermée de Berkovich ou de boule ouverte de centre x et contenue dans
l’éspace P1,an

k . Une boule fermé (ouverte) de Berkovich de centre x contient
la boule fermée (ouverte) näıve de centre x. On désigne par la boule fermée
(ouverte) näıve de centre x et rayon r, l’ensemble des points {y ∈ k||y−x| ≤ r}
({y ∈ k||y − x| < r}). Les boules de Berkovich sont localement compactes et
contractiles.

Pour une extension L/k non archimédienne algébriquement close complète,
on désigne par φL le morphisme

φ× idL : P1
k ×k Spec(L)→ P1

k ×k Spec(L).

Le morphisme φanL est défini comme avant et il faut noter que φanL = φan× idanL .
Les morphismes φL nous permettent de traiter tous les points de l’analytification
de la droite projective et pas seulement les points pour lesquels H(x) = k (cf.
5.6.2). Lorsque l’on parle des points de l’analytification d’une variété sur k, on
utilise la description de Section 5.6. Soit x ∈ P1,an

k (L) i.e. x ∈ P1,an et il existe

une immersion de corps valués H(x) ↪→ L. L’image du point x ∈ P1,an
k (L) pour

le morphisme π : P1,an
k → P1

k (cf. 5.6) est un L-point de P1
k i.e. un élément

de l’ensemble P1
k(L) que l’on désigne aussi par x. La paire x : Spec(L) → P1

k

et idL : Spec(L) → Spec(L) définit un point fermé de la variété P1
k ×k Spec(L)

20



désigné par xL. La remarque suivante généralise cette construction.

Remark 1.1. Soit V une variété sur k et soit x ∈ V an. Le corps H(x) (cf.
Section 5.6) est la version non archimédienne du corps résiduel d’un point en
géométrie algébrique. Soit L une extension non archimédienne complète de k.
La notation x ∈ V an(L) veut dire que x ∈ V an et qu’il existe une immersion de
corps valués H(x) ↪→ L. On peut en déduire que l’image du point x pour le mor-
phisme V an → V qui est défini dans Section 5.6 est un L-point i.e. un élément
de l’ensemble V (L) que l’on désigne aussi par x. La paire x : Spec(L) → V
et idL : Spec(L) → Spec(L) définit un point fermé de la variété V ×k Spec(L)
qu’on désigne par xL. On utilisera cette construction dans la Section 8.

Nous introduisons maintenant le théorème concernant un endomorphisme
fini de la droite projective sur k.

Theorem 1.2.2. Soit φ : P1
k → P1

k un morphisme fini. Soit x ∈ P1,an
k et L/k

une extension algébriquement close non archimédienne valuée et complète telle
que x ∈ P1,an

k (L). Soit f(x) le minimum de 1 et du rayon de la plus grande boule

ouverte de Berkovich de centre xL ∈ P1
L(L) ⊂ P1,an

L dont l’image réciproque pour
le morphisme φanL est union disjointe de copies homéomorphes de B via φanL . La

fonction f : P1,an
k → R≥0 n’est pas identiquement 0 et elle est bien définie.

Il existe un complexe simplicial fini Υ ⊂ P1,an
k , un intervalle réel généralisé

I := [i, e] et une rétraction par déformation

ψ : I × P1,an
k → P1,an

k

tels que ψ(e,P1,an
k ) = Υ et la fonction f soit constante le long des fibres de la

rétraction i.e. pour tout x ∈ P1,an
k , f(x) = f(ψ(e, x)). De plus, la restriction sur

Υ de la fonction logc|f | est linéaire par morceaux où 0 < c < 1 est un nombre
réel.

Remark 1.3. Nous fixons le nombre réel c qui apparâıt dans le Théorème
1.2.2 et désignons par log(|f |) la fonction logc(|f |).

La notion d’intervalle réel généralisé est défini dans la Section 3.9 de [HL].
Nous donnons maintenant un exemple pour comprendre le comportement de la
fonction f du Théorème 1.2.2.

Example 1.3. Soit k un corps algébriquement clos complet et non archimédien
de caractéristique p. Considèrons le morphisme φ : P1

k → P1
k défini par z 7→

zp−z. Soit L/k une extension non archimédienne valuée. Le morphisme φL est
étale au-dessus tous les points sauf ∞. On peut vérifier que f(x) = 1 si x 6=∞
et f(∞) = 0. Soit Υ un graphe fini qui contient le point ∞ et au moins un
autre point de P1,an

k . Comme il existe une rétraction par déformation de P1,an
k

sur tout sous-graphe fini et non-vide, on en déduit l’existence d’une rétraction
par déformation

ψ : I × P1,an
k → P1,an

k

telle que la fonction f soit constante le long des fibres de la rétraction.
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Notre but premier est de généraliser le Théorème 1.2.2 au cas d’un mor-
phisme fini surjectif entre des variétés irréductibles et projectives. Un des ob-
stacles à une telle généralisation est le fait qu’il n’y a pas de notion intrinsèque de
boule ouverte dans V an si V est une variété projective sur k de type fini. Cepen-
dant, comme V est projective, il existe une immersion fermée V ↪→ Pnk où n ∈ N.
Nous identifions V avec son image sous cette immersion fermée. On peut im-
poser sur Pn,ank un recouvrement formel [[B], Section 4.3] tel que chaque élément
dans ce recouvrement soit isomorphe à la boule fermée de Berkovich de dimen-
sion n,M(k{T1, . . . , Tn}). On désigne par {Ai} ce recouvrement. L’intersection
des éléments de ce recouvrement avec l’image de l’immersion V an ↪→ Pn,ank

définit un recouvrement formel de l’espace V an, notamment {Ai ∩ V
an}i. En

outre, pour une extension non archimédienne valuée et algébriquement close
L/k, la construction s’étend à l’espace analytique (VL)

an := (V ×k L)
an. Les

boules de Berkovich de dimension n contenues dans Pn,anL nous permettent de
généraliser le Théorème 1.2.2. Voici les détails de cette construction.

Soit L/k une extension de corps algébriquement close et non archimédienne.
Soit x ∈ Pn,anL (L) (Remark 1.1). Soit i ∈ {1, . . . , n + 1} tel que xL ∈ Ai,L.
La famille des boules ouvertes de Berkovich de centre xL et contenues dans
Ai,L, définit une collection de voisinages ouverts de xL dans Pn,anL (L). On
désigne par OxL

cette famille des voisinages. Soit G ∈ OxL
. Pour chaque j

tel que xL ∈ Aj,L, on peut vérifier que G est une boule de Berkovich contenue
dans Aj,L. Cela implique que la famille OxL

ne dépend pas de l’élément de
récouvrement formel qui contient xL et on déduit que OxL

est bien défini. Nous
définissons le polyrayon d’un élément de la famille OxL

. Supposons que le point
xL a pour cordonnées homogènes [x1,L : . . . : xn+1,L] et W ∈ OxL

. On peut

lui associer un élément hL(W ) de Rn+12 à W comme suit. Si xL ∈ At,L pour
t ∈ {1, . . . , n + 1}, on définit rt := (r1, . . . , rn+1) où rt = 1 et la boule ouverte
de Berkovich BW,t est définie par les équations |(Tj/Tt − xj,L/xt,L)(p)| < rj
pour j 6= t. Si xL /∈ At,L, on définit rt := (1, . . . , 1). Soit hL(W ) := (rt)t et
OL :=

⋃
x∈P

n,an

k
(L)OxL

. On peut étendre cette construction pour obtenir une

fonction hL : OL → R(n+1)2

≥0 . Il faut noter que la famille OxL
dépend de la carte

affine de Pn qu’on avait choisi. Dans le cas de P1
k avec x ∈ P1,an

k (L), la famille
OxL

obtenue par cette construction est analysée dans la Section 8.1. Dans ce
qui suit, nous expliquons comment imposer un ordre sur la famille OL.

Remark 1.5.
Nous introduisons une famille S des fonctions de R(n+1)2

>0 à R>0. L’ensemble

S se compose des fonctions g : R(n+1)2

>0 → R>0 qui satisfont les propriétés
suivantes.

1. La fonction g est continue.

2. Si (ri,j)i,j , (si,j)i,j ∈ Rn+12 sont tels que ri,j ≤ si,j pour tout i, j, on a
l’inégalité g((ri,j)i,j) ≤ g((si,j)i,j).

3. La fonction g est définissable dans le langage des groupes Abéliennes or-
donnés.

Soit g ∈ S. La fonction définit un ordre total sur l’ensemble R(n+1)2

>0 comme
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suit. Soit r, s ∈ R(n+1)2

>0 . Nous définissons r ≤g s si g(r) ≤ g(s). Il faut noter

que l’ordre total ≤g sur R(n+1)2

>0 est donné par (ri,j)i,j ≤ (si,j)i,j si ri,j ≤ si,j

pour tout i, j où (ri,j)i,j , (si,j)i,j ∈ R(n+1)2

>0 .

On peut étendre g pour obtenir une fonction g̃ : R(n+1)2

≥0 → R≥0 comme

suit. Pour tout r ∈ R(n+1)2

>0 , on définit g̃(r) := g(r) et si r ∈ R(n+1)2

≥0 r R(n+1)2

>0

on suppose g̃(r) := 0. Comme pour la fonction g, g̃ définit un ordre total sur

R(n+1)2

≥0 qui étend l’ordre partiel donné par (ri,j)i,j ≤ (si,j)i,j si ri,j ≤ si,j pour

tout i, j où (ri,j)i,j , (si,j)i,j ∈ R(n+1)2

≥0 . Dans ce qui suit, on utilise g à la place
de l’extension g̃.

Soit g ∈ S. Par Lemme 8.1.2, la fonction g ◦ hL : OL → R≥0 a la propriété
suivante. Si O1, O2 ∈ OL tel que O1 ⊆ O2, on a (g◦hL)(O1) ≤ (g◦hL)(O2). Les
fonctions g ∈ S nous permettent de quantifier la taille des éléments dans OL.
Nous donnons, maintenant, une version équivalente du Théorème 1.2.2 que nous
pouvons généraliser. Le but du Théorème 1.2.2 est de démontrer l’éxistence d’un
complexe simplicial fini Υ contenu dans P1,an

k tel que la fonction f soit constante
le long des fibres de la rétraction ψ(e, ). Supposons que le Théorème 1.2.2 est
vrai. Nous définissons une fonction M : Υ → R≥0 comme suit. Soit γ ∈ Υ et

un point x ∈ P1,an
k tel que ψ(e, x) = γ. Nous fixons M(γ) := f(x). Soit L/k

une extension non archimédienne et algébriquement close telle que x ∈ P1,an
k (L).

Par définition,M(γ) est le minimum de 1 et du rayon de la plus grande boule de
Berkovich contenue dans P1,an

L de centre xL dont l’image réciproque est union
disjointe de copies homéomorphes de lui-même pour le morphisme φanL . Par hy-
pothèse, la fonction M est bien définie. En conséquence, une autre formulation
du Théorème 1.2.2 est la suivante.

Theorem 1.2.6. Soit φ : P1
k → P1

k un morphisme fini. Il existe un intervalle
réel généralisé I := [i, e] et une rétraction par déformation

ψ : I × P1,an
k → P1,an

k

qui satisfasse les propriétés suivantes.

1. L’image ψ(e,P1,an
k ) de la rétraction par déformation ψ est un complexe

simplicial. Soit Υ ce complexe fini.

2. Il existe une fonctionM : Υ→ [0, 1] avec les propriétés suivantes. La fonc-
tion M n’est pas identiquement zéro et log(M) est linéaire par morceaux.
Soit γ ∈ Υ tel que M(γ) > 0 et x ∈ ψ(e, )−1(γ). Soit L/k une extension
non archimédienne et algébriquement close telle que x ∈ P1,an

k (L).

(a) L’image réciproque par le morphisme φanL de la boule ouverte de

Berkovich B(xL,M(γ)) ⊂ P1,an
L centrée à xL de rayon M(γ) se de-

compose comme union disjointe de boules ouvertes de Berkovich, cha-
cune homéomorphe à B(xL,M(γ)) via le morphisme φanL .

(b) Soit O une boule ouverte de Berkovich de centre xL dont le rayon est
inférieur ou égal à 1, telle que son image réciproque par le morphisme
φanL se decompose comme union disjointe de boules de Berkovich cha-
cune homéomorphe à O via φanL . Le rayon O doit être inférieur ou
égal à M(γ).
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Dans la Section 8.5, nous montrons que les Théorèmes 1.2.2 et 1.2.6 sont
équivalents. Nous introduisons, maintenant, une généralisation du Théorème
1.2.2. Soit φ : V ′ → V un morphisme fini et surjectif entre deux variétés
irréductibles, projectives de type finis sur k. Pour une extension L/k non
archimédienne complète et algébriquement close, on désigne par φL le mor-
phisme

φ× idL : V ×k L→ V ×k L.

Comme avant, nous écrivons φan : V ′an → V an pour le morphisme induit entre
les deux analytifications. Le morphisme φanL est défini de manière similaire et
il faut noter que φanL = φan × idanL . Nous fixons une immersion V ↪→ Pnk et une
carte affine de Pn. On utilisera les familles OxL

et les fonctions g et hL dans
l’énoncé suivant.

Theorem 8.4.3. Soit φ : V ′ → V un morphisme fini surjectif entre deux
variétés irréductibles, projectives avec V normale. Soit g ∈ S. Il existe un
intervalle réel généralisé I := [i, e] et une rétraction par déformation

ψ : I × V an → V an

qui satisfasse les propriétés suivantes.

1. L’image ψ(e, V an) de la rétraction par déformation ψ est un complexe
simplicial fini qu’on désigne par Υg.

2. Il existe une fonction Mg : Υg → R≥0 qui satisfasse les propriétés suiv-
antes. La fonction Mg n’est pas identiquement zéro. Soit γ ∈ Υg un point
du complexe fini simplicial pour lequel Mg(γ) 6= 0 et x ∈ ψ(e, )−1(γ).
Soit L/k une extension non archimédienne et algébriquement close telle
que x ∈ V an(L). Il existe W ∈ (g ◦hL)

−1(Mg(γ))∩OxL
tel que l’ensemble

ouvert (φanL )−1(W ∩ V an
L ) ⊂ V ′an

L se décompose comme union disjointe
d’ensembles ouverts, chacun homéomorphe à W ∩ V an

L via φanL . De plus,
soit O ∈ OxL

telle que l’image réciproque de O ∩ V an
L pour φanL se de-

compose comme union disjointe d’ensembles ouverts contenus dans V ′an
L ,

chacun homéomorphe à O via φanL . On a l’inégalité (g ◦ hL)(O) ≤Mg(γ).
Enfin, la fonction log(Mg) est linéaire par morceaux sur Υg.

Remark 1.7. Soit x un point défini sur L. Dans la démonstration de 8.4.3, on
montrera que la fonction Mg est bien définie. Cela impliquera, en particulier,
que la valeur Mg(x) ne dépend que du point x.

Il faut mentionner qu’il y a une similarité entre ce résultat dans le cas des
courbes lisses analytiques de Berkovich sur un corps de caractéristique zéro et
les théorèmes de [PP] et [Bal]. Dans [Bal], F. Baldassarri a étudié un système
d’équations différentielles défini sur un domaine analytique de la droite affine
sur un corps non archimédien de caractéristique zéro. Plus précisément, soit k
un corps non archimédien de caractéristique zéro et X un domaine relativement
compact de la droite affine A1,an

k . Soit

Σ : dy/dT = Gy
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un système d’équations différentielles où G est une matrice µ×µ de fonctions k-
analytiques sur X. Si x ∈ X est un point rationnel, soit R(x) = R(x,Σ) le rayon
du disque ouvert dans X de centre x sur lequel toutes les solutions de Σ con-
vergent. L’auteur montre que la fonction R est continue. En outre, il démontre
que dans le cas X = A1,an

k , le comportement de la fonction R est contrôlé par

un graphe fini Γ ⊂ A1,an
k . Comme il existe une rétraction de A1,an

k sur tout
sous-graphe fini, la fonction R est constante le long des fibres de la rétraction
sur Γ. Si on garde les restrictions sur le corps k et que l’on considère le cas d’un
système d’équations différentielles défini sur une courbe lisse de Berkovich, on
a un résultat similaire. Dans [PP], les auteurs - Poineau et Pulita - démontrent
qu’il existe un graphe localement fini contenu dans la courbe qui est l’image
d’une rétraction de la courbe telle que la fonction du rayon de convergence soit
constante le long des fibres de la rétraction. Nos résultats et les résultats de
Poineau-Pulita et Baldassari montrent que le comportement de certaines fonc-
tions intéressantes est contrôlé par les complexes simplicaux associés.
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Chapter 3

Model Theory

The goal of Model theory is to study mathematical structures. The field of
real numbers is an example of a mathematical structure. Naively speaking, the
field R is a set with distinguished elements - 0 and 1, distinguished functions
+ : R×R→ R and × : R2 → R and a binary relation <. This collection Lor :=
{0, 1,+,−,×, <} of constants, functions and relations allows us to describe many
properties of the real numbers. For instance, the fact that every real number has
a multiplicative inverse can be expressed in the statement ∀x ∈ R ∃y ∈ R x×y =
1. The collection Lor is an example of a language and such collections are the
basic tools with which we describe objects of interest.

Definition 3.0.1. A language L is given by specifying the following data.

1. A set of function symbols F and positive integers nf for each f ∈ F.

2. A set of relation symbols R and positive integers nr for each r ∈ R.

3. A set of constant symbols C.

The numbers nf and nr tell us that f is a function of nf variables and r is
an nr-ary relation.

A language L = (F,R,C) can be used to describe the properties of sets in
which the functions in F, the relations in R and the constants in C can be
interpreted. Such sets are called the structures associated to L.

Definition 3.0.2. An L-structureM consists of a non-empty set M which we
call the domain of M, distinguished elements {cM} for every c ∈ C, functions
fM :Mnf →M for every f ∈ F and relations rM ⊆Mnr for every r ∈ R.

When there is no ambiguity about the given structure, we simplify notation
and write f in place of fM for f ∈ L. Likewise, for the constants cM and the
relations rM. We will assume that every language L includes a 2-ary relation
= which is to be interpreted as equality of elements in any of its structures.

Definition 3.0.3. An isomorphism of L-structures M and N is a bijective
map ψ :M → N such that

1. For every c ∈ C, ψ(cM) = cN .
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2. For every f ∈ F and ā := (a1, . . . , anf
) ∈ Mnf , ψ(fM(ā)) = fN (ψ(ā)).

where ψ(ā) := (ψ(a1), . . . , ψ(anf
)).

3. For every r ∈ R and ā := (a1, . . . , anr
) ∈ Mnr , ā ∈ rM if and only if

ψ(ā) ∈ rN .

In the above definition if the map ψ were only injective then we say that it
is an embedding.

Example 3.0.4.

1. The language Lor = {0, 1,+,−,×, <} is the language of ordered rings.
The fields R and Q are Lor structures. Clearly, not every Lor-structure
need be a field. The integers Z for instance is an Lor-structure.

2. The language of rings Lr is given by {0, 1,−,+,×}. The field of complex
numbers C is an Lr-structure. Any Lor-structure is also an Lr-structure.

3. Consider the language Ls = ∅. The structures of Ls are sets.

Let L be a language and M be an L-structure. The properties of M can
be described by strings of symbols built using the symbols of the language
L, variable symbols, equality - ’=’, Boolean connectives ∧, ∨ and ¬ and the
quantifiers ∀ and ∃. We call such strings formulae. In order to provide a precise
definition of a formula in a given language, we introduce the notion of a term.

Definition 3.0.5. Let L = (F,R,C) be a language. The set of L-terms T is
the smallest set such that

1. For every constant symbol c ∈ C, c ∈ T .

2. Each variable symbol belongs to T .

3. If f ∈ F and t1, . . . , tnf
∈ T then f(t1, . . . , tnf

) ∈ T .

Consider as an example, the expression t := ×(+(v1, v2),+(v3, 1)) in the
language Lr. This is an Lr term. When given a ring R, this terms defines a
function t : R3 → R by sending (x, y, z) ∈ R to (x+ y)(z + 1). This is in fact a
specific case of a more general phenomenon.

Lemma 3.0.6. Let L be a language and M be an L-structure. Let t be an
Lr-term built using the variables (v1, . . . , vn). Then t can be interpreted as a
function tM :Mn →M .

Proof. Let s be a sub - term of t. Let ā := (a1, . . . , an) ∈ Mn. We define
sM(ā) inductively. This defines the function tM :Mn →M .

Suppose s is a constant symbol c ∈ C. We interpret sM to be the constant
symbol cM. Let s be a variable symbol vi. We set sM(ā) to be ai. Lastly, if
s = f(tj1 , . . . , tjs) where f ∈ F and the tjo are sub terms of t for which tMjo (ā)

is well defined then we set sM(ā) to be fM(tMj1 (ā), . . . , t
M
js
(ā)).

The formulae associated to a language L can be built up using L-terms and
the relation symbols r ∈ R.

Definition 3.0.7. The set of atomic L-formulae is the smallest set such that
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1. If t1, t2 are L-terms then the expression t1 = t2 is an atomic L-formula.

2. If r ∈ R is an n-ary relation and t1, . . . , tn are L-terms then r(t1, . . . , tn)
is an atomic L-formula.

The setW of L-formulae is the smallest set containing the atomic L-formulae
such that

1. If φ ∈ W then ¬φ ∈ W.

2. If φ, ψ ∈ W then φ ∧ ψ ∈ W and φ ∨ ψ ∈ W.

3. If φ ∈ W and the variable w occurs in φ then ∃w φ ∈ W and ∀w φ ∈ W.

Let φ be an L-formula. A variable in φ that is not bounded by a quantifier is
called a free variable of φ. For example, consider the formula φ := ∃y x = y2 in
the language Lr. The variable x is not bounded by a quantifier and is hence free.
If the free variables occuring in the formula φ are {v1, . . . , vn} then we write
φ(v1, . . . , vn) in place of φ. A formula which does not have any free variables
is called a sentence. The Lr-formula given by ∀x ∃y y2 = x is an example of a
sentence.

An L-sentence φ expresses a property that might or might not be true for a
given L-structureM. When φ holds forM, we writeM |= φ. We now provide
a precise definition.

Definition 3.0.8. Let φ(v1, . . . , vn) be a formula and M be an L-structure.
Let ā := (a1, . . . , an) ∈ M

n. We define inductively what it means to say M |=
φ(a1, . . . , an).

1. Suppose φ were of the form t1 = t2 where the ti are L-terms. ThenM |= φ
if tM1 (ā) = tM2 (ā).

2. Suppose φ = r(t1, . . . , tn) where r ∈ R and the ti are L-terms. Then
M |= φ(ā) if (tM1 (ā), . . . , tMn (ā)) ∈ rM.

3. We say thatM |= ¬φ(ā) if M 6|= φ(ā).

4. If φ = ψ ∧ ψ′ then M |= φ if M |= ψ(ā) and M |= ψ′(ā). Likewise, if
φ = ψ ∨ ψ′ thenM |= φ ifM |= ψ(ā) orM |= ψ′(ā).

5. If φ(v̄) is of the form ∃w ψ(w, v̄) then M |= φ(ā) if for some b ∈ M ,
M |= ψ(b, ā). Similarly, if φ(v̄) is of the form ∀w ψ(w, v̄) thenM |= φ(ā)
if for all b ∈M ,M |= ψ(b, ā).

Remark 3.0.9. We make use of certain abbreviations which are commonly
used. For example, given sentences φ and ψ in some language, we write φ→ ψ
in place of the sentence ¬φ∨ψ which means that ψ if φ holds. Likewise, φ↔ ψ
is a restatement of the sentence (¬φ ∨ ψ) ∧ (¬ψ ∨ φ).
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3.1 Theories

A given language can be used to study a multitude of mathematical structures.
The language of rings Lr, for example, can be used to describe the structures
Z, Q and C. However, there exists sentences in Lr which hold for the complex
numbers but do not hold for the rationals. Similarly, the sentence which asserts
the existence of a multiplicative inverse for every element holds in the rationals
but fails to do so in the integers. To understand a structure, it is hence natural
to understand the sentences in the language which hold true in that structure
and the other structures of that language which also satisfy this collection of
sentences. In the case of the complex numbers for example, we find that any
Lr-structure which satisfies every Lr-sentence that holds true in C must be an
algebraically closed field of characteristic zero. Conversely, any algebraically
closed field of characteristic zero satisfies every Lr-sentence that holds true in
C.

Definition 3.1.1. Let L be a language. An L-theory T is a collection of L-
sentences. We say that a theory is satisfiable if there exists an L-structure M
such that M |= φ for every φ ∈ T. The structureM is then called a model of T
and we write T |=M.

Example 3.1.2. In what follows, we refer to theories of a certain class of math-
ematical structures. For example, the Lr-theory ACF of algebraically closed
fields. What we mean in such instances is that a structure of the underlying
language is a model for that theory if and only if it belongs to that class of
mathematical structures. An Lr-structure is a model for ACF if and only if it
is an algebraically closed field.

1. Let Lg := {0,+} be the language of groups. The theory Tag of abelian
groups consists of the sentences which form the commutative group ax-
ioms. For example, the sentence ∀x ∃y x + y = 0 which asserts the exis-
tence of an additive inverse for every element in a model of Tag.

2. Let Lr = {0, 1,×,+,−} denote the language of rings. The theory of
rings Tr consists of the sentences which form the commutative group ax-
ioms with respect to the operation +, the axioms which assert that ×
is a commutative operation and the fact that × distributes over + i.e.
∀x, y, z x × (y + z) = x × y + x × z. The theory Tf of fields includes
the sentences of the theory Tr and in addition contains the axioms which
assert that a model of Tr must be an abelian group with respect to the
operation ×. The theory of algebraically closed fields ACF contains the
sentences of the theory Tf and in addition every sentence of the form
∀y1, . . . , yn ∃x x

n + yn × xn−1 + . . . + y0 = 0 where n ∈ N. Let p be
a prime. By adding the sentence tp := p = 0 to ACF we get ACFp the
theory of algebraically closed fields of characteristic p. By p in the formula
tp, we mean the iterated value of 1 + 1 + . . . + 1, p - times. The theory
ACF0 of algebraically closed fields of characteristic zero can be obtained
by adding the set of sentences {¬tp}p to ACF.

3. Let Ls = ∅ be the theory of sets. If Ts := ∅ then the models of Ts are sets.
If Tis is the set of sentences of the form ∃x ∀y1, . . . , yn x 6= y1∧ . . . x 6= yn
then any model of Tis is an infinite set.
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Definition 3.1.3. Let L be a language and T be an L-theory. An L-sentence
φ is said to be a logical consequence of the theory T ifM |= φ for every model
M of T. In this case, we write T |= φ.

A great deal of mathematics is concerned with showing that a certain sen-
tence φ is a logical consequence of a given theory T. The method by which this
is accomplished is to provide a proof of the sentence. In model theoretic terms,
a proof is a sequence of sentences ψ1, . . . , ψn such that ψn = φ and ψi either
belongs to T or follows from ψi1 by some simple logical rule. An example of a
simple logical rule is ”if φ and ψ then conclude φ∧ψ”. If there exists a proof for
the sentence φ then we write T ` φ. Although there are several proof systems
and we do not concern ourselves with discussing any of them here, they share
certain salient features, namely :

1. All proofs are finite.

2. All proofs are sound i.e. if T ` φ then T |= φ.

3. There exists an algorithm to check whether or not a given sequence of
sentences is indeed a proof.

The following result of Godel is one of the most well known theorems in
mathematical logic and effectively says that the notions of logical consequence
and that of giving a proof are equivalent.

Theorem 3.1.4. Let L be a language, T be an L-theory and φ be an L-
sentence. Then T |= φ if and only if T ` φ.

Definition 3.1.5. An L-theory T is said to be inconsistent if there exists an
L-sentence φ for which T ` φ and T ` ¬φ. The theory T is consistent if and
only if it is not inconsistent.

An easy consequence of the completeness theorem is the following.

Corollary 3.1.6. An L-theory T is consistent if and only if it is satisfiable.

Proof. Suppose T is satisfiable andM is a model of T. Let φ be a sentence such
that T ` φ and T ` ¬φ. It follows from the soundness of a proof system, that
M |= φ ∧ ¬φ. This is not possible and implies that T is consistent.

Conversely, suppose that T is consistent and unsatisfiable. It follows that for
every modelM of T and every L-sentence φ,M |= φ∧¬φ. By the completeness
theorem, this implies that for any L-sentence φ, T ` φ ∧ ¬φ and in turn that T
is inconsistent. It follows that T is indeed satisfiable.

The completeness theorem can be used to prove the following proposition
which we refer to as the compactness proposition. It asserts that a theory is
satisfiable if and only if it is finitely satisfiable. It will be of great use to us in
subsequent chapters.

Proposition 3.1.7. Let T be an L-theory. Suppose that for every finite set of
sentences ∆ ⊂ T, there exists an L-structure M such that ∆ |=M. Then the
theory T is satisfiable.
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Proof. Let us suppose that the theory T is not satisfiable. It follows that for
any L-sentence φ, T |= φ ∧ ¬φ. By the completeness theorem, we must have
that T ` φ∧¬φ. As all proofs are finite, there exists a finite set ∆ of sentences
in T such that ∆ ` φ∧¬φ. The hypothesis of the proposition implies that ∆ is
satisfiable. The corollary to the completeness theorem however implies that ∆
cannot be satisfiable. Hence, we must have that T is satisfiable.

Amongst the several applications of the above proposition, we state the
following striking consequence.

Theorem 3.1.8. ( Lowenheim - Skolem) Suppose there exists an infinite model
M of a given L-theory T. Then there exists models of T of every infinite cardi-
nality κ where κ ≥ |L|.

3.1.1 Complete Theories

Let L be a language and T be an L-theory. A way to classify different L-
structures would be to try and understand which L-sentences hold in different
structures i.e. the various theories for which these structures are models. Given
an L-structureM, the theory Th(M) is the collection of all L-sentences φ such
thatM |= φ. This theory has the property that if φ is an L - sentence then either
Th(M) |= φ or Th(M) |= ¬φ. In practice however, listing out the sentences
which hold in a given structure might be untenable. It is often simpler to find
a theory T for which the structureM is a model and which has the additional
property that if φ is an L - sentence then either T |= φ or T |= ¬φ. Such a
theory would then be equivalent to Th(M) i.e. every model of Th(M) is a
model of T and conversely, every model of T would be a model of Th(M). The
theory T , in this case, is said to be complete.

Definition 3.1.9. An L-theory T is said to be complete if for every L-sentence
φ either T |= φ or T |= ¬φ.

Observe that if the theory T is complete and satisfiable then for any L-
sentence either it or its negation must be a logical consequence of T but not
both. The property of being complete can be restated using the notion of
elementary equivalence.

Definition 3.1.10. Let M,N be models of an L-theory T . We say M is
elementarily equivalent to N if for every L-sentence φ,M |= φ↔ N |= φ. We
then writeM≡ N .

Proposition 3.1.11. Let L be a language and T be an L-theory. The following
statements are equivalent.

1. The theory T is complete.

2. IfM,N are two models of T thenM≡ N .

Vaught’s test provides us with a necessary condition for a theory to be
complete. However in order to state it, we must first introduce the notion of
categoricity.
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Definition 3.1.12. Let L be a language and T be an L-theory. Let κ be a
cardinal. The theory T is said to be κ-categorical if any two models of T of
cardinality κ are elementarily equivalent.

Example 3.1.13. 1. Let Ls be the language of sets and Ts be the theory
of sets. The theory Ts is κ-categorical for every cardinal κ.

2. Let Lg be the language of groups and TFDAG be the theory of torsion
free divisible abelian groups. Every model of TFDAG can be seen as a
Q-vector space. Conversely, every Q-vector space is a model of TFDAG.
Furthermore, if V1 and V2 are Q-vector spaces and f : V1 → V2 is an
isomorphism of vector spaces then it can be checked that f is in fact an
isomorphism of Lg-structures, implying that V1 ≡ V2. We claim that
the theory TFDAG is κ-categorical when κ is any uncountable cardinal.
Indeed, let V1 and V2 be Q-vector spaces of cardinality κ where κ is an
uncountable cardinal. If B1 and B2 are bases of V1 and V2 respectively
then we must have that the Bi are of cardinality κ as well. It follows that
there exists a set theoretic bijection between B1 and B2. But any such
bijection implies a linear isomorphism between the vector spaces V1 and
V2.

3. Let Lr denote the language of rings and ACFp denote the theory of
algebraically closed fields of characteristic p where p is either 0 or prime.
We claim that ACFp is κ-categorical when κ is an uncountable cardinal.
Indeed, two algebraically closed fields are isomorphic if and only if they
have the same characteristic and the same transcendence degree. If F is
a model of ACFp then |F | = tr.deg(F ) + |N|. It follows that if |F | is
uncountable of cardinality κ then its transcendence degree must also be
κ.

Proposition 3.1.14. (Vaught’s Test) Let L be a language and T be an L-
theory. Suppose that the theory T is κ-categorical where κ is some infinite
cardinal and in addition that each of its models is infinite. Then T is complete.

Corollary 3.1.15. The following theories are complete.

1. The theory ACFp, where p is either 0 or prime.

2. The theory TFDAG of torsion free divisible abelian groups.

3. The theory Tis of infinite sets.

We end our discussion on completeness with the following application of the
corollary and the completeness theorem.

Proposition 3.1.16. Let Lr be the theory of rings and φ be an Lr-sentence.
The following statements are equivalent.

1. The sentence φ is a logical consequence of the theory of algebraically closed
fields of characteristic zero i.e. ACF0 |= φ.

2. There exists a model F of ACF0 such that F |= φ.

3. The sentence φ holds for the complex numbers i.e. C |= φ.
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4. For arbitrary large primes p, we have that ACFp |= φ.

5. For arbitrary large primes p, there exists a model Fp of ACFp such that
Fp |= φ.

Proof. The equivalence of (1), (2) and (3) follows from the completeness of
ACF0. Likewise, (4) and (5) are equivalent because of the completeness of
ACFp. It suffices hence to show that (1) is equivalent to (4).

Suppose (1) holds. Then by the Completeness theorem, there exists a finite
set of sentences ∆ ⊂ ACF0 such that ∆ ` φ. As the set of sentences tp := p 6= 0
is infinite, we may assume that there exists a p0 such that for every p > p0,
tp /∈ ∆. It follows that for such p > p0, ∆ ⊂ ACFp and hence ACFp ` φ. By
the completeness theorem, this implies that ACFp |= φ.

Suppose (4) holds. Let assume that (1) does not hold. As ACF0 is a complete
theory, we must have that ACF0 |= ¬φ. It follows from our arguments above
that for arbitrary large primes p, ACFp |= ¬φ. However, as ACFp is satisfiable,
this is not possible. Hence (1) must hold.

3.2 Quantifier Elimination

In the previous section, we introduced the notion of a complete theory and
stated without proof that a theory is complete if and only if any two of its
models are elementarily equivalent. A weaker notion related to completeness is
model completeness.

Definition 3.2.1. Let L be a language and T be an L-theory. The theory T

is said to be model complete if wheneverM,N are two models of T such that
M ⊂ N then N is an elementary extension ofM i.e. any L-sentence holds in
M if and only if it holds in N .

The definition above can be restated as follows. A theory is model complete
if and only if every embedding of a model of the theory into another model is
elementary.

Example 3.2.2. Consider the following example of a theory that is not model
complete. Let Lg be the language of groups and T be the theory of 2-torsion
abelian groups. It can be checked that every model of T is a vector space over
F2-the field of two elements and conversely, every vector space over F2 is a
model of T . The model F4-the field of order 4, is one in which the sentence that
asserts the existence of at least three different elements holds true. However
this sentence is not true in the sub field F2 which is also a model of T .

Let T be an L-theory that is not necessarily model complete. Let M1 and
M2 be models of T such that M1 ⊆ M2. Let φ be an L-sentence. Our
discussion above implies that φ might not hold in one of theMi even if it holds
in the other. However, if φ does not have quantifiers thenM1 |= φ if and only
ifM2 |= φ (Proposition 3.28). In general, a formula is said to be quantifier free
if it does not contain quantifiers.

Proposition 3.2.3. Let L be a language and M1 ⊂ M2 be two L-structures.
Let v̄ := (v1, . . . , vn) and φ(v̄) be a quantifier free formula in the variables vi.
Then for any ā := (a1, . . . , an) ∈M

n
1 ,M1 |= φ(ā) if and only ifM2 |= φ(ā).
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Definition 3.2.4. An L-theory is said to have quantifier elimination if for
every formula φ(v̄), there exists a quantifier free formula ψ(v̄) such that T |=
∀v̄ (φ(v̄)↔ ψ(v̄)).

We now provide a necessary and sufficient condition for a theory to possess
quantifier elimination.

Proposition 3.2.5. Let L be a language with at least one constant and T be
an L-theory. Let v̄ = (v1, . . . , vn) and φ(v̄) be an L-formula. The following
statements are then equivalent.

1. There exists a quantifier free formula ψ(v̄) such that T |= ∀v̄ (φ(v̄) ↔
ψ(v̄)).

2. IfM,N are models of T and A is any sub structure contained inM∩N
then for any ā := (a1, . . . , an),M |= φ(ā) if and only if N |= φ(ā).

The proposition above can be used to prove the following corollary.

Corollary 3.2.6. The theory of algebraically closed fields has quantifier elimi-
nation.

It can be shown that the property of having quantifier elimination is stronger
than being model complete.

Proposition 3.2.7. Let L be a language and T be an L-theory that has quan-
tifier elimination. The theory T is then model complete.

Proof. LetM ⊂ N and φ be an L - sentence. As T has quantifier elimination,
there exists an L - sentence ψ such that T |= (φ ↔ ψ). By Proposition 3.28,
N |= ψ if and only if M |= ψ. It follows that M |= φ if and only if N |= φ.
As φ was an arbitrarily chosen L-sentence, we must have that M ⊂ N is an
elementary embedding.

3.3 Definable sets

The notion of a definable set is central to Model theory. In fact, one of the
principal results from Section 8 reduces to showing that the graph of a certain
function is a definable set. Further on, we provide an equivalent description
of definable sets which is the framework within which Hrushovski and Loeser’s
results from [HL] are presented. The following definition is phrased in a manner
concurrent to the material presented up to this point.

Definition 3.3.1. Let L be a language and M be an L-structure. A set
X ⊂ Mn is said to be definable if there exists an L-formula φ(x̄, ȳ) where
x̄ := (x1, . . . , xn) and ȳ := (y1, . . . , ym) and an element b̄ := (b1, . . . , bm) ∈Mm

such that X = {ā = (a1, . . . , an) ∈M
n|M |= φ(ā, b̄)}.

34



In the definition above, if A ⊂ M contains the bi then we say that X
is an A-definable set. The set A is often referred to as the parameters with
which X is defined. When the set A is empty, we say that X is ∅-definable.
Equivalently, we can extend the language L by adding constant symbols for
each a ∈ A and let LA denote the extended language. The formula φ(x̄, b̄) is
an LA-formula and for every LA-structure M we can define a set X(M) =
{ā = (a1, . . . , an) ∈ M

n|M |= φ(ā, b̄)}. In this way, we have realized X as
a functor from the category whose objects are LA-structures and morphisms
are elementary embeddings to the category of sets. We will elaborate on this
shortly, before which we suggest the following examples.

Example 3.3.2.

1. Let Lr denote the language of rings and K be a model of the Lr-theory
ACF. Let n ∈ N>0. The following lemma provides a complete description
of the definable subsets of Kn.

Lemma 3.3.3. Let X ⊂ Kn be a K-definable set. Then X is a Boolean
combination of Zariski closed subsets of Kn.

Proof. Let x̄ = (x1, . . . , xn) and ȳ = (y1, . . . , ym). We claim that X is
defined by an atomic Lr-formula φ(x̄, ȳ) if and only if it is the zero set of
a polynomial p ∈ K[X̄].

Let φ(x̄, ȳ) be an atomic Lr-formula and ā ∈ Km. There exists a polyno-
mial q(x̄, ȳ) ∈ Z[X̄, Ȳ ] such that φ(x̄, ā) is equivalent to q(x̄, ā) = 0. As
q(x̄, ā) ∈ K[X̄], we conclude the forward implication of the claim.

Conversely, let q ∈ K[X̄] and X = {x ∈ Kn|q(x) = 0}. There exists
p ∈ Z[X̄, Ȳ ] and ā ∈ Km such that q = p(X̄, ā). It follows that X can be
defined by an atomic L-formula.

We deduce from the claim that X ⊂ Kn is defined using a quantifier
free formula if and only if it is the Boolean combination of Zariski closed
subsets of Kn. The lemma now follows as the theory ACF has quantifier
elimination.

Corollary 3.3.4. Let K |= ACF and X ⊂ K be a definable set. Then
either X or K rX is finite.

The theory ACF is an example of a strongly minimal theory. A theory
T is strongly minimal if for every model M |= T and every definable
subset X ⊂M, either X or M rX is finite.

2. Let Log be the language of ordered groups and DOAG be the Log-theory
of divisible ordered abelian groups. The theory DOAG has quantifier
elimination. As a consequence of this fact it can be shown that if G |=
DOAG then a subset D ⊂ G is definable if and only if it is the union of a
finite set and finitely many intervals. These intervals may be unbounded
on one side in which case we say that their end points are either +∞ or
−∞. The theory DOAG is an example of an o-minimal theory.
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Definition 3.3.5. LetM := (M,<, ..) be an infinite structure. We say
that M is o-minimal if every definable subset X ⊂ M is the union of a
finite set and a finite set of intervals with end points in M ∪ {+∞,−∞}.
A theory T is o-minimal if all of its models are o-minimal structures.

Definable sets of a given theory are often the primary objects of study in
certain branches of mathematics. For instance in the theory of ACF, the defin-
able sets are algebraic varieties. It is hence useful to introduce the notion of a
morphism between definable sets.

Definition 3.3.6. Let L be a language andM be an L-structure. LetX ⊂Mn

and Y ⊂ Mm be definable sets. A map φ : X → Y is definable if the graph of
φ defined by {(x, y)|φ(x) = y} is a definable subset of Mn+m.

A morphism φ : X → Y between definable sets is an isomorphism if there
exists a morphism φ′ : Y → X such that φ ◦ φ′ and φ′ ◦ φ are idY and idX
respectively.

The following proposition can be used to determine whether or not a given
subset of a structure is definable.

Proposition 3.3.7. Let L be a language andM be an L-structure. Let A ⊂M
and X ⊂ Mn be an A-definable set. If σ is an automorphism of M that fixes
the elements of the set A then σ restricts to an automorphism of X.

Proof. Let x̄ = (x1, . . . , xn). There exists an L-formula φ(x̄, ȳ) where ȳ =
(y1, . . . , ym) such that for some (b1, . . . , bm) ∈ Mm, X = {(a1, . . . , an)|M |=
φ(ā, b̄)}. It suffices to show that if ā ∈ X then σ(ā) ∈ X to conclude that σ
induces an automorphism of X as the same will then be true for σ−1.

Let ā ∈ X. Then M |= φ(ā, b̄). As σ is an autmorphism this is equivalent
to saying that M |= φ(σ(ā), σ(b̄)). The hypothesis implies that σ fixes the bi
and hence we must have thatM |= φ(σ(ā), b̄) which is equivalent to saying that
σ(ā) ∈ X.

An application of the proposition is the following corollary which we state
without proof.

Corollary 3.3.8. The set of real numbers R is not definable in the complex
numbers C.

3.4 Types

Given a certain structure, the space of types allows us to understand the
first order properties of elements in elementary extensions of that structure.
Later in this section we will make this statement more precise. We follow the
presentation in David Marker’s text [DM]. Let L be a language and M be an
L-structure. Let A ⊂ M . We may extend the language L by adding constant
symbols for every element in A. Let LA denote this extended language. We
can viewM as an LA-structure by interpreting the additional constants in an
obvious manner. Let ThA(M) be the set of LA - sentences which hold inM.
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Definition 3.4.1. An n-type p is a collection of formulae in n-free variables
(v1, . . . , vn) such that p ∪ ThA(M) is satisfiable. We say that the type p is
complete if for every LA-formula φ in n-free variables either φ ∈ p or ¬φ ∈ p.
The space of complete n-types is denoted SM

n (A).

We often write p(v1, . . . , vn) to emphasize the fact that p is an n-type. By
compactness, a collection p of formulae in n-free variables (v1, . . . , vn) is a type
if and only if p ∪ ThA(M) is finitely satisfiable.

Example 3.4.2. Consider the structure (Q, <) and let Z ⊂ Q be the set of
parameters.

1. The set of formulae {v > n|n ∈ Z} defines a 1-type. Indeed, every finite
sub collection of formulae in p ∪ ThZ(Q) is satisfiable in Q.

2. Let c ∈ Q. Then the set of LZ-formulae φ in one variable for which
Q |= φ(c) defines a complete 1-type.

The example above can be generalized to generate complete n-types in any
structure.

Definition 3.4.3. LetM be an LA-structure. A complete n-type p ∈ SM
n (A)

is said to be realized in M if there exists ā := (a1, . . . , an) ∈ Mn such that
p := {φ(v1, . . . , vn) ∈ LA|M |= φ(ā)}. If p is not realized in M then we say
thatM omits p.

In general, given an L-structure M with A ⊂ M and ā ∈ Mn, we use
tpM(ā/A) to denote the complete n-type defined by {φ(v1, . . . , vn) ∈ LA|M |=
φ(ā)}.

Proposition 3.4.4 ([DM], Proposition 4.1.3). Let p ∈ SM
n (A). There exists

an elementary extension N of M such that p is realized in N i.e. there exists
ā ∈ Nn such that N |= φ(ā) for every φ(v̄) ∈ p.

Observe that if N is an LA-structure which is an elementary extension of
M then for every n ∈ N, SN

n (A) = SM
n (A).

The following propositions should clarify the aforementioned fact that given
a structure, the space of types allows us to study the first order properties in
elementary extensions of that structure.

Proposition 3.4.5 ([DM], Corollary 4.1.4). Let M be an L-structure. The
following statements are equivalent

1. p ∈ SM
n (A).

2. There exists an elementary extension N of M and ā ∈ Nn such that
p = tpN (ā/A).

Proposition 3.4.6 ([DM], Corollary 4.1.6). Let M be an L-structure. Let
ā, b̄ ∈ Mn for some n ∈ N. If tpM(ā/A) = tpM(b̄/A) then there exists an
elementary extension N of M and an automorphism α of N such that α fixes
every element of A and α(ā) = b̄.
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LetM be an L structure and A ⊂M . The stone space SM
n (A) of complete

n-types can be endowed with a natural topology which we refer to as the stone
topology.

Let φ(v1, . . . , vn) be an LA formula in n-free variables. Let [φ] := {p ∈
SM
n (A)|φ ∈ p}. The family {[φ(v1, . . . , vn)]|φ ∈ LA} of subsets of SM

n (A) will
be the basic open sets of the stone topology. It can be checked that if φ and ψ
are LA formulae in n-free variables then [φ∧ψ] = [φ]∩ [ψ] and [φ∨ψ] = [φ]∪ [ψ].
Observe that as the types in SM

n (A) are satisfiable, we must have that [φ] =
SM
n (A)r [¬φ]. It follows that the basic open sets [φ] are in fact both closed and

open for the stone topology.

Proposition 3.4.7 ([DM], Lemma 4.1.8). The stone space SM
n (A) is compact

and totally disconnected.

We end our discussion on types by providing a complete description of the
space SM

n (A) when the structureM is a model of ACF.

Example 3.4.8. Let Lr denote the language of rings and let K be an alge-
braically closed field. Let A ⊂ K and k denote the sub field of K generated by
the set A. Given a complete n-type p ∈ SKn (k), we define its restriction p|A to
be the sub collection of LA-formulae. This defines an element of SKn (A). The
following lemma allows us to reduce to studying the space SKn (k) in order to
describe SKn (A).

Lemma 3.4.9 ([DM], Example 4.1.14). The restriction map described above
from SKn (k)→ SKn (A) is a bijection.

Let p ∈ SKn (k). Let Ip := {φ ∈ k[X̄]|(φ = 0) ∈ p}. We claim that Ip is
a prime ideal of k[X̄]. Firstly, if f, g ∈ Ip then as (f(v̄) = 0 ∧ g(v̄) = 0) →
(f + g)(v̄) = 0 we must have that f + g ∈ Ip. Likewise, if f, g ∈ k[X̄] such that
f ∈ Ip then fg ∈ Ip. It follows that Ip is an ideal. To prove the claim we need
only show that Ip is a prime ideal. Let f, g ∈ k[X̄] such that (fg = 0) ∈ Ip.
As K |= ∀v̄(f(v̄)g(v̄) = 0 → f(v̄) = 0 ∨ g(v̄) = 0), we must have that either
(f = 0) ∈ Ip or (g = 0) ∈ Ip. The following proposition describes the space
SKn (k).

Proposition 3.4.10 ([DM], Proposition 4.1.16). The map p 7→ Ip defines a con-
tinuous bijection from SKn (k) onto Spec(k[X1, . . . , Xn]) where Spec(K[X1, . . . , Xn])
is endowed with the Zariski topology

3.5 Multi-sorted languages and structures

The focus of this thesis is contained in the study of geometric objects over non-
Archimedean valued fields. A non-Archimedean valued field consists of a field
K provided with a group homomorphism v : K∗ → Γ(K) where (Γ(K),+, <, 0)
is an ordered abelian group. In addition, we require that if x, y ∈ K∗ and
x+y 6= 0 then v(x+y) ≥ min{v(x), v(y)}. The morphism v is called a valuation.
The valuation v permits us to define a residue field k(K) := K0/K00 where
K0 := {x ∈ K|x = 0 ∨ v(x) ≥ 0} and K00 := {x ∈ K|x = 0 ∨ v(x) > 0}.
We can study a non-Archimedean field using the language of rings for the fields
K and k(K) and the language of ordered abelian groups for Γ(K). However,
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another view point is to broaden our existing notions of a language so as to
permit structures with several domains. A multi-sorted language accomplishes
this and the different domains of a structure in such a language are referred to
as its sorts.

Definition 3.5.1. (Multi-sorted languages) A multi-sorted language L is given
by specifying the following set of data.

1. A set S of sorts.

2. A set F of function symbols and a function arity : F → N such that
for every f ∈ F there exists a unique (arity(f) + 1)-tuple of sorts <
S1, . . . , Sarity(f), Sarity(f)+1 >. We call this tuple sort(f). The intention
here is that sort(f) defines the domain and range of the function f i.e.
Si is the sort in which the i-th entry of the argument takes its values and
Sarity(f)+1 is the sort in which the image of f lies.

3. A set R of relation symbols and a function arity : R→ N such that for ev-
eryR ∈ R there exists a unique arity(R)-tuple of sorts< S1, . . . , Sarity(R) >.
We call this tuple sort(R). The intention here is that R(x1, . . . , xarity(R))
can hold only if each of the xi belong to the sort Si.

4. A set C of constant symbols such that for each c ∈ C there exists a unique
sort which we call sort(c).

As before, a structure for a multi-sorted language L is a set in which the
various elements of the language can be interpreted.

Definition 3.5.2. (Multi-sorted structures) Let L be a multi-sorted language
as in the previous definition. A structure M for the language L consists of the
following.

1. A non-empty set |M| which is called the universe ofM and for every sort
Si, we have SM

i ⊂ |M| which is said to be the set of members of M of
sort Si. The universe ofM is the union of its sorts i.e. |M| =

⋃
S∈S S

M.

2. The structureM interprets the the function, relation and constant sym-
bols appropriately. Precisely,

(a) If R ∈ R and sort(R) =< S1, . . . , Sarity(R) > then RM ⊂ SM
1 ×

. . .× SM
arityR.

(b) If f ∈ F and sort(f) =< S1, ..., Sarity(f), Sarity(f)+1 > then fM :
SM
1 × . . .× S

M
arity(f) → SM

arity(f)+1 is a well defined function.

(c) If c ∈ C and sort(c) = S then cM ∈ S.

Definition 3.5.3. (Isomorphisms) Let L =< S,F,R,C, arity, sort > be a
multi-sorted language. Let M1 and M2 be two L-structures. A function f :
|M1| → |M2| from the universe ofM1 to the universe ofM2 is an isomorphism
if the following conditions are satisfied

1. The function f is one-one and onto.

2. If S ∈ S then m ∈ SM1 if and only if f(m) ∈ SM2 .
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3. LetR ∈ R be an n-ary relation symbol. Then for any m̄ := (m1, . . . ,mn) ∈
|M1|

n, m̄ ∈ RM1 if and only if f(m̄) ∈ RM2 .

4. If F ∈ F and arity(F ) = n then for any m̄ := (m1, . . . ,mn) ∈ |M1|
n we

have that f(FM1(m̄)) = FM2(f(m̄)).

Example 3.5.4. We introduce a multi-sorted language LkΓ in which value
fields can be realized as structures. The sorts of LkΓ are the value field sort VF,
the value group sort Γ and the residue field sort k. Associated to each sort, we
add certain constants, relations and functions. For the value field and residue
field sort, we add the constants, functions and relations of the language of rings
and for the value group sort, we add the functions, relations and constants of the
language of ordered Abelian groups. In addition to these, we add a symbol for
the valuation which is a function v : V F ∗ → Γ and a function Res : V F 2 → k
sending (x, y) to the residue of xy−1 if v(x) ≥ v(y) and y 6= 0 and to 0 otherwise.

3.5.1 Elimination of Imaginaries

Definition 3.5.5. Let L be a multi-sorted language and T be an L-theory.
We say that the theory T has elimination of imaginaries if for every model
T |=M and every ∅-definable equivalence relation E on SM

1 × . . .× S
M
n where

the Si are sorts of L, there exists a ∅-definable function f : SM
1 × . . . × S

M
n to

a finite product of sorts ofM such that f(a) = f(b) if and only if (a, b) ∈ E.

If T is a complete theory that does not have elimination of imaginaries
then one can extend the language L to a language Leq such that the theory T
extends to a complete Leq theory T eq which eliminates imaginaries. This can
be done as follows. For every ∅ - equivalence relation E on a finite product of
sorts S1 × . . . × Sn, we add a sort (S1 × . . . × Sn)/E and a function symbol
f : S1 × . . .× Sn → (S1 × . . .× Sn)/E to the language L to define the language
Leq. The L-structureM extends in a natural way to an Leq - structure which
we denoteMeq. Similarly, the theory T can be extended to an Leq - theory by
setting T eq := Th(Meq). The theory T eq has elimination of imaginaries and is
complete. The sorts of T eq are called imaginary sorts and the elements of these
sorts are referred to as imaginaries.

The theory ACF of algebraically closed fields is an example of a theory that
eliminates imaginaries.

3.6 Ind and pro-definable sets

We begin with a description of definable sets which is equivalent to the one given
earlier. This is the perspective employed by Hrushovski and Loeser in [HL].

Let L be a multi-sorted language and T be a complete L-theory. If S is a
sort of L and A is an L-structure then we use S(A) to denote the part of A
that belongs to S. Given a set of parameters C ⊂ A, we use LC to denote the
the language obtained from L by adding constant symbols for every c ∈ C. If x
denotes a finite set of sort specific variables {x1, . . . , xn} then let Sx(C) denote
the stone space of complete types in the variables x defined with parameters in
C. Hence, an element p ∈ Sx(C) is a collection of formulae in the variables x
up to equivalence in the theory T such that every finite sub collection of p is
satisfiable in some LC model of T .
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We work within a large saturated model U of T . By this we mean the
following. Let κ be a large uncountable cardinal and U be a model of cardinality
κ such that if A ⊂ U is of cardinality strictly less than κ and p ∈ Sx(A) then p
has a realization in U. Any model of interest will be an elementary sub structure
of U of cardinality < κ and and likewise, any set of parameters A ⊂ U will be
a small subset of U i.e. a subset of cardinality < κ.

Let C ⊂ U be a parameter set. Let φ be an LC-formula. The formula φ can
be used to define a functor Zφ from the category whose objects are LC-models
of T and morphisms are elementary embeddings to the category of sets. Let
{xS1,1, . . . , xS1,nS1

, . . . , xSm,1 . . . , xSm,nSm
} be the set of variables which occur

in φ where the variable xSi,j takes values in the sort Si. Given an LC-modelM
of T , we set

Zφ(M) = {ā ∈ S1(M)nS1 × . . . Sm(M)nSm |M |= φ(ā)}.

Clearly, Zφ is well defined.

Definition 3.6.1. A C-definable set Z is a functor from the category whose
objects are LC-models of T and morphisms are elementary embeddings to the
category of sets such that there exists an LC-formula φ and Z = Zφ.

A definable set X is completely determined by X(U) - its values in the
universe U. The set X(U) is definable in the sense of Definition 3.3.1. The
C-definable sets form a category which we denote DefC . A morphism between
objects D1, D2 ∈ DefC is a map from f : D1(U) → D2(U) such that its graph
is a C-definable subset of D1(U)×D2(U) in the sense of Definition 3.3.1.

Definable sets satisfy the following version of compactness.

Proposition 3.6.2. Let X be a C-definable set. Let I be a small index set
i.e. of cardinality < κ and for every i ∈ I, let Xi be a C-definable subset of
X. Suppose X =

⋃
i∈I Xi. Then there exists a finite subset A of I such that

X(U) =
⋃
i∈AXi(U).

Given a set C contained in a model M of the theory T , its definable and
algebraic closure approximate the smallest structure and model that contain C
contained in M .

Definition 3.6.3. ( Definable closure and Algebraic closure) LetM be a model
of the theory T and C ⊆ |M|. The definable closure of C denoted dcl(C) is the
set of all c ∈ |M| such that there exists an LC-formula φ in one free variable
and Zφ(M) = {c}. The algebraic closure of C denoted acl(C) is the set of all
c ∈ |M| such that there exists an LC-formula φ in one free variable and Zφ(M)
is a finite set which contains c.

Although the definition of definable sets given above is seemingly more com-
plicated than that of 3.3.1, it is a more natural perspective when applying model
theory to study problems in algebraic geometry.

The application of model theory to non-Archimedean geometry will require
that we enlarge the category DefC to the category ProDefC consisting of pro-
objects of the category DefC indexed by a small directed partially ordered set.

Let I be a small directed partially ordered index set. For every i ∈ I, let
Xi ∈ DefC and if i ≤ j, let φji : Xj → Xi be a morphism of C-definable sets
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such that the family {φji}i,j satisfies the obvious compatibility properties. This
data defines a functor lim

←−i∈I
Xi from the category of LC-models of the theory

T whose morphisms are elementary embeddings to the category of sets. Indeed,
given an LC-modelM of T , we define

(lim
←−
i∈I

Xi)(M) := lim
←−
i∈I

(Xi(M)).

Definition 3.6.4. (The category ProDefC) An object X of the category
ProDefC is of the form lim

←−i∈I
Xi where I is a small directed partially ordered

set and for every i ∈ I, Xi is a C-definable set. Let X,Y ∈ ProDefC such that
X = lim

←−i∈I
Xi and Y = lim

←−j∈J
Yj where I, J are suitable index sets and for

every i ∈ I, j ∈ J , Xi and Yj are C-definable sets. We define

HomProDefC (X,Y ) := lim
←−
j∈J

lim
−→
i∈I

HomDefC (Xi, Yj).

If X is a pro-definable set then it is completely determined by its values in U
i.e. the functor of taking U-points induces an equivalence between the category
ProDefC and the sub category of sets whose objects are inverse limits over a
small directed partially ordered index set of U-points of C-definable sets. The
object X is strict pro-definable if for every i, j ∈ I such that i < j, the transition
morphism Xj → Xi is surjective.

In a similar manner, we can define the category - IndDefC of ind-definable
sets over C whose objects are of the form lim

−→i∈I
Xi where I is a small directed

partially ordered index set, if i ∈ I then Xi is a C-definable set and if i ≤ j then
φij : Xi → Xj is a C-definable morphism such that the family {φij} satisfies
the obvious compatibility properties. The object X is strict ind-definable if for
every i, j ∈ I where i < j, the induced transition morphisms Xi(U) → Xj(U)
is injective. Let X = lim

←−i∈I
Xi be an object of ProDefC and Y = lim

−→j∈J
Yj

an object of IndDefC . A morphism from Y to X is a compatible family of
morphisms Yi → Xj for every i ∈ I and j ∈ J . A morphism from X to Y can
be defined by a morphism from Xi → Yj for some i ∈ I and j ∈ J .

There are certain classes of sub sets of a pro-definable set which will be of
interest to us later on.

Definition 3.6.5. ([HL], Definition 2.2.2) Let Y = lim
←−i∈I

Yi be pro-definable.

Assume given, for each i, Xi ⊂ Yi such that for j < i the transition maps
Yi → Yj restrict to maps Xi → Xj . Let X := lim

←−i∈I
Xi.

1. If each Xi is definable and for some i0, the maps Xi → Xi′ for all
i ≥ i′ ≥ i0 are bijections, we say that X is iso-definable

2. An ∞-definable set over C is of the form
⋂
j∈J Zj where J is a small

index set and the Zj are C-definable. If each Xi is ∞-definable and for
some i0, the maps Xi → Xi′ are bijections for all i ≥ i′ ≥ i0, we say X is
iso-∞-definable.

3. If there exists a definable setW and a pro-definable morphism g :W → Y
such that for each i, the composition of g and the projection Y → Yi has
image Xi, we say X is definably parameterized.
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4. If there exists a strict ind-definable set Z and an injective morphism g :
Z → Y with image X, we say by abuse of language that X is strict
ind-definable.

5. If there exists i0 ∈ I such that Xi0 is a definable set, for every i > i0,
Xi is the pull back of Xi0 by the transition morphism Yi → Yi0 and
X = lim

←−i∈I,i≥i0
Xi then we say that X is relatively definable.

It is not clear whether a subset of a pro-definable that is definably parametrized
is iso-definable. However, we have the following characterization of iso-definable
sets.

Proposition 3.6.6. ([HL], Corollary 2.2.4) Let Y be pro-definable and let X ⊆
Y be a pro-definable subset. Then X is iso-definable if and only if X is in (pro-
definable) bijection with a definable set.

Iso-definable sets are stable when taking quotients for the action of a finite
group.

Proposition 3.6.7. Let Y be pro-definable, X an iso-definable subset. Let G
be a finite group acting on Y , and leaving X invariant. Let f : Y → Y ′ be a
map of pro-definable sets, whose fibers are exactly the orbits of G. Then f(X)
is iso-definable.

3.7 Definable types

We fix a multi-sorted language L, a complete L-theory T and a universe U
as in 3.6. Before discussing definable types, we make the following remarks
concerning types. We make use of the notation introduced above.

Remark 3.7.1. Let A ⊂ U be a set of parameters. Let p ∈ Sx(A) for some
finite set of sort specific variables x. Let LAx denote the set of formulae in the
variables x with parameters in A up to equivalence in the theory T . As the type
p is complete, given a formula φ ∈ LAx, either φ ∈ p or ¬φ ∈ p. Hence the type
p defines a Boolean retraction from LAx to the two element Boolean algebra.
The type p is said to concentrate on an A-definable set V if the formula φ which
defines V belongs to p. This is equivalent to saying that if ā is a realization
of p in some LA-model M of T then ā ∈ V (M). Suppose V is an A-definable
set on which p concentrates. Let LV denote the A-definable subsets of V . The
type p can then be realized as a Boolean retraction from the space LV to the
two element Boolean algebra.

Definition 3.7.2. Let x = (x1, . . . , xn) be a set of variables and A ⊂ U
be a finite set of parameters. A definable type p(x) is a Boolean retraction
dpx : LAx,y1,...,yr → LAy1,..,yr . Here the (yi)i are variables running through all
finite products of sorts and r varies along N. Equivalently, for an A-definable set
V , let LV denote the Boolean algebra of A-definable subsets of V . A definable
type on V is a compatible family of elements of HomW (LV×W , LW ), where
HomW denotes the set of Boolean homomorphisms h such that h(V ×X) = X
for X ⊂W .
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Let p be an A-definable type where A ⊂ U is a set of parameters. For
every LA-model M of T , we can define a type p|M as follows. Let p|M :=
{φ(x, b̄) :M |= dpx(φ)(b̄)}. The definable type p is completely determined by
its restriction p|U. If X is an A-definable set then we say that p concentrates on
X if the type p|U concentrates on X(U). The space of A-definable types which
concentrate on an A-definable set X is denoted Sdef,X .

Let X,Y be A-definable sets and f : X → Y be a definable morphism from
X to Y . We define a morphism f∗ : Sdef,X → Sdef,Y as follows. If p ∈ Sdef,X
then we define df∗(p)z(φ(z, y)) := dpx(φ(f(x), y) for every φ ∈ Lz,y. Here z, x
and y denote a finite set of sort specific variables.

It is possible also to construct the product of types. If p(x) and q(y) are C
- types then there exists a type p(x)⊗ q(y) such that (a, b) |= p(x)⊗ q(y) if and
only if a |= p and b |= q|C(a). In general, the product ⊗ is associative but not
symmetric.
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Chapter 4

The theory ACVF

We recall the definition of a non-Archimedean valued field.

Definition 4.0.3. A non-Archimedean valued field consists of a field K and a
group homomorphism v : K∗ → Γ(K) where Γ(K) is an ordered Abelian group.
In addition, for every x, y ∈ K∗ such that x + y 6= 0, the morphism v satisfies
the inequality v(x + y) ≥ min{v(x), v(y)}. The homomorphism v is called the
valuation and the group Γ(K) is called the value group.

We enlarge the group Γ(K) so that the valuation v extends to K. More
precisely, we add a symbol∞ to the value group Γ(K) with the convention that
for every x ∈ Γ(K), x <∞ and x+∞ =∞. Let v(0) :=∞. We can associate
to the value field K, a field k(K) which we call the residue field of K as follows.
The valuation ring R(K) is defined by {x ∈ K|v(x) ≥ 0} and its maximal ideal
M(K) := {x ∈ K|v(x) > 0}. Let k(K) := R(K)/M(K). When the field K is
algebraically closed, its value group Γ(K) is divisible and its residue field k(K)
is algebraically closed as well.

In Example 3.5.4, we introduced the 3-sorted language LkΓ in which a valued
field can be realized as a structure. A classical result of A. Robinson states
that the LkΓ-theory of algebraically closed non-Archimedean valued fields of
a given characteristic and residue field characteristic is complete. The LkΓ-
theory ACVF of algebraically closed valued fields admits quantifier elimination.
However, it does not allow for elimination of imaginaries.

In what follows we use the extended language LG to describe ACVF wherein
we have elimination of imaginaries. The language LG is defined as follows. Let
Sn denote the space of free R-modules in Kn. For each element of Sn, we
add an imaginary element or code to the language LkΓ. Let S :=

⋃
n∈N

Sn.
If s ∈ Sn is a code and if λ(s) denotes the free R-module associated to s, let
red(s) := λ(s)/M(λ(s)). This is ∅-definably isomorphic to a k-vector space of
rank n. Let Tn be the set of codes of elements in

⋃
s∈Sn

red(s). Hence, an
element of Tn is the code of a coset of the space λ(s) modulo M(λ(s)). By
[HHM], the theory ACVF admits elimination of imaginaries in the extended
language LG . When discussing the sorts of the language LG , we might at times
refer to them as ∅-definable sets.

The fact that the theory ACVF has quantifier elimination can be used to
show the following.

Proposition 4.0.4. ([HHM], Proposition 2.1.3)

45



1. The definable set Γ is o-minimal in the sense that every definable subset
of Γ is a finite union of intervals.

2. Any K-definable subset of k is finite or co-finite i.e. k is strongly minimal.

3. The definable set Γ is stably embedded (cf. Definition 4.0.5).

4. If A ⊂ K then acl(A)∩K is equal to the field algebraic closure of A in K.

5. If S ⊆ k and α ∈ k belongs to acl(S) in the Keq sense, then α belongs to
the field algebraic closure of S.

6. The definable set k is stably embedded. In fact, Γ is endowed with the
structure of a pure divisible ordered abelian group and k with the structure
of a pure algebraically closed field.

Definition 4.0.5. A C-definable set D is stably embedded if for any definable
set E and any r > 0, the set E ∩Dr is a C ∪D definable subset of Dr.

4.0.1 k-internal sets

We introduce k-internal sets and the lemma that follows states equivalent char-
acterizations of such objects.

Definition 4.0.6. A C-definable set D is called k-internal if there exists a
finite F ⊂ U such that D ⊂ dcl(k ∪ F ).

Lemma 4.0.7. ([HHM], Lemma 2.6.2). Let D be a C-definable set. The fol-
lowing conditions are equivalent:

1. D is k-internal.

2. For any m ≥ 1, there is no surjective definable map from Dm onto an
infinite interval in Γ.

3. D is finite or, up to permutation of coordinates, is contained in a finite
union of sets of the form red(s1)× . . .× red(sm)×F , where s1, ..., sm are
acl(C)-definable elements of S :=

⋃
n∈N

Sn and F is a C-definable finite
set of tuples from G.

4.0.2 Γ-internal sets

We introduce the notion of Γ-internal definable sets and present characteriza-
tions of such sets. Such objects play a central role in the Hrushovski-Loeser
theory of non-Archimedean geometry. We will later dwell briefly on how they
occur naturally in the spaces V̂ which are analogues of the Berkovich analyti-
fication of quasi-projective varieties and how they completely determine the
homotopy type of such spaces.

Definition 4.0.8. Let D be an F -definable set. We say that D is Γ-internal if
there exists F ′ ⊇ F , a definable subset D′ ⊂ Γn for some n ∈ N and a bijective
F ′-definable morphism f : D′ → D. If F ′ = F then we say that X is directly
Γ-internal.
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The following proposition describes equivalent characterizations of Γ-internal
sets.

Proposition 4.0.9. ([HL], Lemma 2.8.1) Let X be an F -definable set. The
following conditions are equivalent:

1. X is Γ-internal.

2. X is internal to some o-minimal definable linearly ordered set.

3. X admits a definable linear ordering.

4. Every stably dominated type on X (over any base set) is constant (i.e.
contains a formula x = a).

5. There exists an acl(F ) - definable injective h : X → Γ∗, where Γ∗ means
Γn for some n.

It will also be of interest to study a relative version of Γ-internality.

Definition 4.0.10. Let V and U be C-definable sets and f : U → V a C-
definable function. The morphism f is a Γ-internal cover if for every v ∈ V ,
the fibre f−1(v) ⊂ U is Γ-internal. We say that f is a directly Γ-internal set if
the fibres are directly Γ-internal sets.

Proposition 4.0.11. ([HL], Lemma 2.8.2) Let V be a definable set in ACVF.
Then any Γ-internal cover f : U → V is isomorphic over V to a finite disjoint
union of sets which are a fiber product over V of a finite cover and a directly
Γ-internal cover.

4.1 The space V̂

4.1.1 Stably dominated types

We begin by presenting the notion of a stably dominated type, using which the
spaces V̂ are defined. The definition presented below in terms of orthogonality
to the sort Γ is not the general definition of a stably dominated type and instead
a characterization particular to the theory ACVF.

In the definition that follows and for the rest of this text we use the following
convention. If A ⊂ U and a ∈ U then by A(a) we mean the sub-structure
generated by A ∪ a i.e. dcl(A ∪ a). By Γ(A) we mean the part of A belonging
to the sort Γ i.e. dcl(A) ∩ Γ.

Definition 4.1.1. Let A ⊂ U and p = tp(a/A) be an A-type. We say that p
is almost orthogonal to Γ if Γ(A(a)) = Γ(A). An A-definable type q is stably
dominated if for any sub-structure B containing A the B-type q|B is almost
Γ-orthogonal.

Example 4.1.2. Let a ∈ V F (U) and α ∈ Γ∞(U). The generic type associated
to the definable set B(a;α) := {x ∈ V F |v(x − a) ≥ α} is an {a, α}-stably
dominated type.

The following theorem provides us further examples of stably dominated
types.
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Theorem 4.1.3. ([HHM2], Theorem 12.1.8)

1. Suppose that C ⊆ L are non-Archimedean valued fields such that C is
maximally complete, k(L) is a regular extension of k(C) and Γ(L)/Γ(C)
is torsion free. Let a be a sequence in U such that a ∈ dcl(L). Then
tp(a/C ∪ Γ(C(a))) is stably dominated.

2. Let C be a maximally complete algebraically closed non-Archimedean val-
ued field and a be a sequence in U. Then tp(acl(Ca)/C ∪Γ(Ca)) is stably
dominated.

Over course of this text, we will treat quasi-projective varieties over a non-
Archimedean valued field as definable sets. This can be accomplished by adding
sorts corresponding to Pn for every n ∈ N.

Example 4.1.4. The space A1 is ∅-definable. If b ⊆ A1 is a closed ball then

its generic type denoted pb is an element of the space Â1 (cf. Example 4.1.2).

By [[HHM], 2.3.6, 2.3.8, 2.5.5], Â1 is the set of generic types of closed balls

contained in A1. It can be checked that the space P̂1 is the union of Â1 and the
point ∞.

Let f : U → V be a definable map between definable sets. In section 3.7,
we defined a map f∗ : Sdef,U → Sdef,V from the set of definable types which
concentrate on U to the definable types which concentrate on V . It can be
checked that the map f∗ restricts to a map Û → V̂ which we denote by f̂ .

Definition 4.1.5. Let V be a C-definable set. We define V̂ to be a functor from
the category whose objects are models of ACVF that contain C and morphisms
are elementary embeddings to the category of sets such that if M is a model
that contains C then V̂ (M) is the set of M -definable stably dominated types.

Although V̂ is almost always not definable, it is pro-definable.

Theorem 4.1.6. ([HL], Theorem 3.1.1) Let V be a C-definable set. Then
there exists a canonical pro-C-definable set E and a canonical identification
V̂ (F ) = E(F ) for any F ⊇ C. Moreover, E is strict pro-definable.

4.1.2 The topology of V̂

We begin by introducing the notion of an A-definable topology where A ⊂ U
is a set of parameters. In what follows, if X is definable or pro-definable then
we mean X(U) when we refer to the set X and by a topology on X, we mean

a topology on the set X(U). For instance, when we define a topology on V̂ , we

mean a topology on V̂ (U).

Definition 4.1.7. Let V be an A-pro-definable set. A topology J on V is
A-definable if the following conditions are satisfied.

1. Let Jd denote the sub collection of elements of J which are relatively
definable. The topology J is generated by Jd.

2. Let W := {Wu|u ∈ U} be an A-definable family of relatively definable
sets. The family W ∩J is an ind-definable family over A.
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Equivalently, the topology J is A-definable if it is generated by an ind-
definable family over A of relatively definable subsets of V .

Let V be an A-definable set endowed with a definable topology. We suppose
in addition that there exists an ind-definable sheaf O of definable functions into
Γ∞. Let Jb denote the family of subsets of V̂ of the form {p ∈ Ô|f∗(p) ∈ U}
where O is an open subset of V , f ∈ O(O) and U is an open subset of Γ∞(U)
for the order topology. Let J be the topology generated by the elements of the
family Jb. Let M be a model of ACVF. The topology on V̂ (M) is generated by

the M -definable open subsets of V̂ (U). Note that we do not define the topology

on V̂ (M) by viewing it as a subset of V̂ (U) as doing so would result in the
discrete topology.

Remark 4.1.8. When V is contained in an algebraic variety, we use the
topology induced by the Zariski topology to define a topology on V̂ and the ind-
definable sheaf to be the sheaf of regular functions composed with the valuation
val : V F → Γ∞.

Example 4.1.9. Let X be a definable subset contained in An for some n ∈ N
and Y denote its Zariski closure. Let Fnr(X,Γ∞) be the set of functions from
X to Γ∞ of the form val(F ) where F is a regular function on Y . Let J ′ be the

topology on X̂ whose pre basis consists of sets of the form {p ∈ X̂|f∗(p) < g∗(p)}
where f, g ∈ Fnr(X,Γ∞). The topology J ′ is the same topology defined above
using the topology on X induced by the Zariski topology and the ind sheaf of
regular functions composed with the valuation. Infact, the topology on X̂ is the
weakest topology such that the functions f∗ : X̂ → Γ∞ are continuous when
f ∈ Fnr(X,Γ∞) and Γ∞ is provided with the order topology. The topology J ′

is definable in the sense of Definition 4.16 ([HL], 3.3). The construction above
can be generalized to when X is contained in projective variety V by defining a
topology on each of the affine pieces and then glueing these together. It can be
shown that the topology so obtained is the restriction of the topology defined
on V̂ using the Zariski topology on V and the ind-definable sheaf of regular
functions composed with val.

Observe that Remark 4.1.8 and Example 4.1.9 define topologies on spaces of
the form V̂ where V is a definable subset of an algebraic variety. When defining
homotopies and at several other instances, we will work with definable objects
of the value group sort and hence we enlarge the class of spaces for which we
have introduced an explicit topology. If X ⊂ Γn∞ is a definable set then as every

stably dominated type on X concentrates at a point, we have that X̂ = X holds
canonically. This is true in slightly greater generality.

Lemma 4.1.10. If X is a definable subset of Γn∞ then X = X̂ canonically.
More generally if U is a definable subset of VFn or a definable subset of an
algebraic variety over VF and W is a definable subset of Γm∞, then the canonical

map Û ×W → Û ×W is a bijection.

Definition 4.1.11. (Topology on Γn∞) The ∅-definable function val : VF→ Γ∞

defines maps valn : An → Γn∞ for every n ∈ N. These in turn induce maps

v̂aln : Ân → Γn∞. Let U be a definable subset of an algebraic variety over VF.

We endow Û × Γn∞ ' Û × Γn∞ with the weakest topology such that id × v̂aln :

Û × An → Û × Γn∞ is continuous.
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The following lemmas imply in particular that the topology defined above on
Γ∞ coincides with the order topology while the topology on Γn∞ is the product
topology.

For γ := (γ1, . . . , γn) ∈ Γn∞, let b(γ) := {(x1, . . . , xn) ∈ An|val(xi) ≥ γi}.

Let pγ = pb(γ) ∈ Ân denote the generic type associated to the n - dimensional
closed ball b(γ).

Lemma 4.1.12. ([HL], Lemma 3.5.2) The map j : An × Γn∞ → An+1 given

by (q, γ) 7→ q ⊗ pγ is continuous for the product topology of Ân with the order
topology on Γn∞.

Lemma 4.1.13. ([HL], Lemma 3.5.3) If U is a definable subset of An × Γn∞
and W is a definable subset of Γm∞ provided with the order topology, the induced

topology on Û ×W = Û ×W coincides with the product topology.

4.2 Simple points

Let V be an A-definable set. For x ∈ V , the definable type tp(x/U) which
concentrates on the point x is stably dominated. It follows that tp(x/U) is an

element of V̂ (U). We can thus view V as a subset of V̂ . This subset of points

in V̂ is called the set of simple points.

Lemma 4.2.1. ([HL], Lemma 3.6.1) Let X be a definable subset of V Fn.

1. The set of simple points of X̂ (which we identify with X) is an iso-definable

and relatively definable dense subset of X̂. If M is a model of ACVF then
X(M) is dense in X̂(M).

2. The induced topology on X agrees with the valuation topology on X.

4.3 Canonical Extensions

Let V be an A-definable set where A ⊂ U is a small set of parameters. Let
W be a definable subset of Pm × Γn∞ for some n ∈ N and f : V → Ŵ be an

A-definable map. We define a map f̂ : V̂ → Ŵ which we call the canonical
extension of f .

Let p ∈ V̂ (M) and c |= p|M . Let d |= f(c)|M(c). By ([HL], Proposition
2.6.5), the type tp(cd|M) is stably dominated. It follows that tp(d|M) is stably

dominated as well. We set f̂(p) := tp(d|M). The map f̂ is well defined and
pro-A-definable. We now provide conditions on the map f which imply that its
canonical extension is well defined.

Definition 4.3.1. (v and g - open sets) Let V be an algebraic variety de-
fined over a non-Archimedean valued field F . A set U ⊂ V is v-open if it is
open for the valuation topology on V . A set G is g-open if it is a positive
Boolean combination of Zariski closed and open subsets and sets of the form
{u : val(f)(u) < val(g)(u)} where f, g are regular functions on some Zariski
open set. More generally, if U is a definable subset of the variety V then a set
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W ⊂ U is v-open (g-open) if it is of the form U ∩O where O is v-open (g-open).
If X ⊂ V × Γn∞ is a definable set then X is v-open (g-open) if its pull back to
V × An is v-open (g-open).

Remark 4.3.2. The v-topology restricted to Γ is discrete while the neighbor-
hoods of∞ are the same as those defined by the order topology. The g-topology
when restricted to Γ coincides with the order topology while the point∞ is iso-
lated. It follows that the v + g topology which is the topology generated by
the class of sets which are both v and g-open, induces the order topology on
Γ∞. In general the v,g and v + g-open sets are definable. Observe that in the
case of a variety V over a non-Archimedean valued field F , for a given model
of ACVF, the collection of v-open sets definable in that model generate the
valuation topology on V . The g-topology however does not necessarily generate
a topology.

Definition 4.3.3. (v-continuity and g-continuity) Let V be an algebraic variety
over a non-Archimedean valued field F or a definable subset of such a variety.
A definable function h : V → Γ∞ is called v-continuous (resp. g-continuous)
if the pullback of any v-open (resp. g-open) set is v-open (resp. g-open). A
function h : V → W with W an affine F -variety is called v-continuous (resp.
g-continuous) if, for any regular function f :W → A1 , val◦f ◦h is v-continuous
(resp. g-continuous).

The following lemmas provide necessary conditions for a map f in order that
its canonical extension be continuous.

Lemma 4.3.4. ([HL], Lemma 3.8.1) Let K be a non-Archimedean valued field
and V be an algebraic variety over K. Let X be a K-definable subset of V and
let f : X → Ŵ be a pro-K-definable function with W a K-definable subset of
Pn×Γm∞. Assume that f is v + g-continuous i.e. f−1(G) is g-open whenever G is
open, and f−1(G) is v-open at x whenever G is open, for any x ∈ f−1(G). Then

f extends uniquely to a continuous pro-K-definable morphism F : X̂ → Ŵ .

Lemma 4.3.5. ([HL], Lemma 3.8.2) Let K be a non-Archimedean valued field

and V be an algebraic variety over K. Let f : I × V → V̂ be a g-continuous
K-definable function where I = [a, b] is a closed interval. Let iI denote one of
a or b and eI denote the remaining point. Let X be a K-definable subset of
V . Assume f restricts to a definable function g : I × X → X̂ and that f is
v-continuous at every point of x ∈ X. Then g extends uniquely to a continuous
pro-K-definable morphism G : I × X̂ → X̂. If moreover, for every v ∈ X,
g(iI , v) = v and g(eI , v) ∈ Z, with Z a Γ-internal subset then G(iI , x) = x and
G(eI , x) ∈ Z.

4.4 Paths and homotopies

We introduce conventions and certain fundamental notions which we require
in order to state the main results that follow. We begin with the notion of a
generalized interval.

Up to this point, when referring to an interval, we meant a sub-interval of
Γ∞. This notion is fairly restrictive as the homotopies we construct later come
about by glueing other homotopies together. To define what we mean by a
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glueing of intervals, we compactify Γ∞ by adding a point −∞ with the obvious
conventions. In practice, any function defined on −∞∪Γ∞ will be constant on
a sub interval of the form {x|x < a} for some a ∈ Γ∞. If J = −∞ ∪ Γ∞ then
there exists two possible orders on J , namely the natural order or its reverse.
The choice of one of these is called an orientation of J .

Definition 4.4.1. A generalized interval is a sub-interval of a union of a finite
collection of oriented copies I1, . . . , In of −∞ ∪ Γ∞ glued end to end so that
the orientation on each copy is respected. If I := I1 ∪ . . . ∪ In and I ′ ⊂ I is a
sub-interval then we use eI′ to denote the largest element of the interval I ′ and
iI′ to denote its smallest element. A function f : I ′ × V →W can be extended
to a function f̃ : I × V → W by setting f(t, x) = f(iI′ , x) for every t < iI′ and
f(t, x) = f(eI′ , x) for every t > eI′ . We say that the function f̃ is continuous
(v + g-continuous / definable) if the function f is continuous (v + g-continuous
/ definable). Similarly, if f : J × V → W is a function where J is obtained by
glueing intervals J1, . . . , Jn then we say that f is continuous (v + g-continuous
/ definable) if the restriction of f to each of the Ji × V is continuous (v + g
continuous / definable).

Definition 4.4.2. Let V be an algebraic variety and X ⊂ V̂ × Γn∞ be a pro-
definable subset. A homotopy is a continuous pro-definable map h : I×X → X
where I is a generalized closed interval. In this case, the maps h|(iI , ) and h|(eI , )
are said to be homotopic.

If W is a definable subset of V × Γ∞ then a pro-definable v + g-continuous
map h : I ×W → Ŵ is also called a homotopy. By Lemma 4.3.5, such a map
extends to a continuous pro-definable map ĥ : I × Ŵ → Ŵ .

Definition 4.4.3. Let X ⊂ V̂ × Γn∞ be a pro-definable set and Z ⊂ X. A
deformation retraction of X to Z is a homotopy h : I ×X → X such that

1. For every x ∈ X, h(iI , x) = x and h(eI , x) ∈ Z.

2. For every z ∈ Z and t ∈ I, h(t, z) = z.

The deformation retraction h is said to have the * property if for every x ∈ X
and t ∈ I, h(eI , (h(t, x))) = h(eI , x).

Let h : I ×X → X be a deformation retraction. Let ρ : X → X be defined
by ρ(x) := h(eI , x). The pair (ρ, ρ(X)) is called a deformation retract.

Definition 4.4.4. (Glueing homotopies) Let h1 : I1×X → X and h2 : I2×X →
X be two homotopies. Suppose that h2(iI2 , h1(eI1 , x)) = h1(eI1 , x) for every
x ∈ X. The glueing of h1 and h2 is a homotopy h2◦h1 : I2+I1×X → X defined
by setting h2 ◦ h1(t, x) = h1(t, x) for t ∈ I1 and h2 ◦ h1(t, x) := h2(t, h1(eI1 , x))
for t ∈ I2.

4.5 The space Ân

In what follows, we provide an explicit description of Ân as a pro-definable
space. In order to do so we introduce the space of semi-lattices L(V ) associated
to a vector space and provide equivalent realizations of it.
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Let K be a model of ACVF and V be a K-vector space. Let O denote the
valuation ring of the non-Archimedean valued field K andM its maximal ideal.
A lattice in V is a free O-sub module of rank dim(V ). A semi-lattice u of V is
an O-sub module of V such that there exists a K-sub space U contained in u
and u/U is a lattice in V/U . Let L(V ) denote the set of semi-lattices. It is a
K-definable set.

The set L(V ) can be given a topology as follows. A subset of L(V ) is a
pre-basic open set if it is of the form {u ∈ L(V )|h /∈ u} or {u ∈ L(V )|h ∈Mu}
where h ∈ V . This topology on L(V ) is referred to as the linear topology.

An equivalent description of the space L(V ) is possible using linear semi-
norms. A linear semi-norm on V is a definable map w : V → Γ∞ such that
w(x + y) ≥ min(w(x), w(y)) and w(cx) = val(c) + w(x) for every x, y ∈ V
and c ∈ K. We endow the set of linear semi-norms on V with the weakest
topology such that for every f ∈ V , the map on the set of semi-norms defined
by w → w(f) is continuous.

Let w be a linear semi-norm. The set L(w) := {x ∈ V |w(x) ≥ 0} is a semi-
lattice on V . It can be checked that the map which sends a linear semi-norm w
to L(w) defines a homeomorphism between the space of linear semi-norms and
the space L(V ).

We relate the pro-definable space Ân to the space L(V ). Let Hd(K) de-
note the finite dimensional K-vector space of polynomials of degree at most
d and L(Hd(K)) the associated space of semi-lattices or linear semi-norms.

The sets Hd and L(Hd) are both ∅-definable. Let p ∈ V̂ and Jd(p) := {f ∈
Hd|val(f)∗(p) ≥ 0}. Since f 7→ val(f)∗(p) is a linear seminorm, the set Jd(p) is
a semi-lattice in Hd and hence defines an element of L(Hd) i.e. we have a map

Jd : Ân → L(Hd). The spaces L(Hd) define a projective system indexed by N
in which the transition morphisms are induced by the inclusions Hd1 ⊂ Hd2 .

Lemma 4.5.1. ([HL], Theorem 5.1.4) The system (Jd)d=1,2,... induces a con-

tinuous morphism of pro-definable sets J : Ân → lim
←−d

L(Hd). The morphism J

is injective and induces a homeomorphism between Ân and its image.

4.6 The space P̂n

Analogous to the discussion provided above concerning the space Ân, we obtain
in what follows an explicit description of the pro-definable space P̂n.

We begin by introducing the tropical projective space Trop(Pn).

Definition 4.6.1. The tropical projective space Trop(Pn) is defined to be the
quotient space (Γn+1

∞ r∞n+1)/Γ where Γ acts by translation.

We have a map τ : Pn → Trop(Pn) defined by sending an element [x0 : . . . :
xn] ∈ Pn to [val(x0) : . . . : val(xn)]. Observe that the space Trop(Pn) embeds
into Γn+1

∞ with image {(a0, . . . , an) ∈ Γn+1
∞ |min(ai) = 0}.

Let Hd denote the definable set of homogenous polynomials in n+1 variables
and Hd,m := Hm+1

d . Given h := (h0, . . . , hm) ∈ Hd,m where hi ∈ Hd and
x ∈ Pn, we define c(x, h) := [h0(x) : . . . , hm(x)]. This defines a morphism
c : Pn × Hd,m → Pm. Composing the morphism c with the map τ : Pm →
Trop(Pm) defines a map τ : Pn ×Hd,m → Trop(Pm). This map factors through
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a morphism τ : Pn×P(Hd,m)→ Trop(Pm) where P(Hd,m) is the projectivization
of the finite dimensional vector space Hd,m. Let h ∈ P(Hd,m) and let τh denote
the morphism Pn → Trop(Pm) defined by sending x ∈ Pn to τ(x, h). This

induces a map τ̂h : P̂n → Trop(Pm). Let Td,m denote the set of functions

P(Hd,m) → Trop(Pm) of the form h 7→ τ̂h(x) for some x ∈ P̂n. Note that Td,m
is a definable set.

Proposition 4.6.2. ([HL],Proposition 5.2.1) The space P̂n may be identified

via the canonical mappings P̂n → Td,m with the projective limit of the spaces
Td,m. If one endows Td,m with the topology induced from the Tychonoff topology,
this identification is a homeomorphism.

4.7 Γ-internal spaces

In this section we continue our previous discussion on Γ-internal sets in a more
general setting. We begin by defining what we mean by a Γ-internal subset of
a space V̂ where V is a definable set.

Definition 4.7.1. Let V be a definable set. A subset X ⊂ V̂ is Γ-parametrized
if there exists a definable set Y ⊂ Γn∞ and pro-definable map Y → V̂ with image
X. The set X is Γ-internal if it is Γ-parametrized and if there exists a canonical
projection π : V̂ → H with H definable such that the restriction of π to X is
injective.

When discussing Γ-internal subsets, we can suppose that the ambient space
is affine.

Lemma 4.7.2. ([HL], Lemma 6.2.1) Let V be a quasi-projective variety over

an infinite non-Archimedean valued field F , and let f : Γn → V̂ be F -definable.
There exists an affine open V ′ ⊆ V with f(Γn) ⊆ V̂ ′. If V = Pn, there exists a

linear hyperplane H such that f(Γn) ∩ Ĥ = ∅.

Over a model F of ACVF, we have a description of the injective map from

an F -iso-definable subset of Ân which is Γ-internal to Γm∞ for some m ∈ N.

Proposition 4.7.3. ([HL], Corollary 6.2.5) Let X ⊆ ÂN be iso-definable and
Γ-internal over an algebraically closed non-Archimedean valued field F . Then
for some d and finitely many polynomials hi of degree ≤ d, the map p 7→
(p∗(val(hi)))i is injective on X.

Observe that in the proposition stated above, we required that the set of
parameters be a model of ACVF. We discuss certain points of importance if
one were to relax this hypothesis.

Let F be a non-Archimedean valued field and ACVFF be the theory of
algebraically closed fields in the language of ACVF with constant symbols cor-
responding to the elements of F . The sort (k,Γ∞), where k is the residue field
sort and Γ the value group sort, eliminates imaginaries. However, it does not
eliminate imaginaries topologically. This means for instance that if X ⊂ Γn∞
is a definable set and E is a closed equivalence relation on X then though the
quotient space X/E exists as a definable subset of Γm∞ for some m ∈ N, the quo-
tient topology does not necessarily coincide with linear topology. One reason
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for this is the fact that there exists non-trivial quotient spaces with a Galois
action on cohomology while connected definable spaces contained in Γm have a
trivial Galois action on cohomology. As a result, the proposition above must be
suitably modified when working over a field that is not algebraically closed.

Proposition 4.7.4. ([HL], Proposition 6.2.8) Let A be a base structure consist-
ing of a field F and a set S of elements of Γ. Let V be a projective variety over
F , X a Γ-internal, A-definable subset of V̂ . Then there exists an A-definable
continuous injective map φ : X → [0,∞]w for some finite A-definable set w. If
X is closed then φ is a topological embedding.

4.8 The homotopy type of V̂

We state two of the principal results in Hrushovski and Loeser’s paper [HL]
which we apply later. These statements can be adapted to the setting of
Berkovich spaces and it is the goal of the subsequent sections to introduce these
analogues.

Theorem 4.8.1. ([HL], Theorem 11.1.1) Let V be a quasi-projective variety,
X a definable subset of V × Γl∞ over some base set A ⊂ V F ∪ Γ. Then there

exists an A-definable deformation retraction h : I × X̂ → X̂ to a pro-definable
subset Υ definably homeomorphic to a definable subset of Γw∞, for some finite A-
definable set w. One can furthermore require the following additional properties
for h.

1. Given finitely many A-definable functions ξi : V → Γ∞, one can choose
h to respect the ξi, i.e. ξi(h(t, x)) = ξi(x) for all t. In particular, finitely
many subvarieties or more generally definable subsets U of X can be pre-
served, in the sense that the homotopy restricts to one of Û .

2. Assume given, in addition, a finite algebraic group action on V . Then the
retraction h can be chosen to be equivariant.

3. Assume l = 0. The homotopy h is Zariski - generalizing, i.e. for any
Zariski open subset U of V , Û ∩X is invariant under h.

4. The homotopy h satisfies condition (*) of 4.4.3, i.e. h(eI , h(t, x)) =
h(eI , x) for every t and x.

5. The homotopy h restricts to h# : I × X# → X# [[HL], Definition 2.6.8
and §8.1].

6. One has h(eI , X) = Υ, i.e. Υ is the image of the simple points. Hence by
(5) it consists of strongly stably dominated points.

7. Assume l = 0 and X = V . Given a finite number of closed irreducible sub
varieties Wi of V , one can assume Υ ∩Wi has pure dimension dim(Wi).

We state a relative version of Theorem 4.8.1. However, before doing so we
introduce the following notion.
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Definition 4.8.2. Let T be a definable set and X,Y be pro-definable sets. Let
f : X → T and g : Y → T be a pair of pro-definable maps. For every t ∈ T ,
suppose there exists a pro-definable map φt : Xt → Yt where Xt := f−1(t) and
Yt := g−1(t). The family of maps {φt}t is said to be uniformly pro-definable if
there exists a map φ : X → Y such that g ◦ φ = f and φt = φ|Xt

.

Let T be a definable set. Suppose that {(Xt, Vt)}, with Xt ⊂ Vt, Xt a
definable set and Vt a quasi-projective variety, is a family that varies uniformly
in the parameter t ∈ T . By this we mean that there exists definable sets X,V
with X ⊂ V and a definable map φ : V → T such that for every t ∈ T ,
Vt = φ−1(t) and Xt = X ∩ Vt. For every t ∈ T , Theorem 4.8.1 implies the

existence of a deformation retraction ht : It × X̂t → X̂t such that the image
h(eIt , X̂t) is definably homeomorphic to a definable subset of Γn∞ for some n ∈ N.
This family of deformation retractions indexed by t ∈ T can be taken uniformly
in the parameter t ∈ T .

Proposition 4.8.3. ([HL], Proposition 11.7.1) Let Vt be a quasi-projective va-
riety, Xt a definable subset of Vt × Γl∞, definable uniformly in t ∈ T over some

base set A. Then there exists a uniformly pro-definable family h : I× X̂ → X̂, a
finite set w(t), a definable set Wt ⊆ Γw(t) and j :Wt → h(eI , X̂t), pro-definable
uniformly in t ∈ T , such that for each t ∈ T , h is a deformation retraction,
and j : W → h(eI , X̂) is a pro-definable homeomorphism. Moreover, (1), (2)
of Theorem 11.1.1 can be made to hold if the ξi and the group action are given
uniformly, as can (4), (5), (6) and (7).

56



Chapter 5

Berkovich Spaces

Non-Archimedean valued fields were discovered at the turn of the twentieth
century when K. Hensel introduced the field of p-adic numbers Qp and ever
since, there have been attempts to develop a theory of geometry over such fields
analogous to the theory of complex geometry. However, complete algebraically
closed non-Archimedean fields display certain anomalies that make them fun-
damentally different from the complex numbers.

When discussing non-Archimedean fields we will assume that they are com-
plete unless otherwise stated. It is in fact standard to define a non-Archimedean
valued field to be a field which is complete with respect to a non-Archimedean
valuation. However when studying such fields from a model theoretic perspec-
tive, this convention becomes slightly restrictive and it is for this reason that
we do not insist on completeness.

The Gelfand-Mazur theorem asserts that every commutative Banach field
over C coincides with C. The theorem does not generalize for algebraically
closed non-Archimedean fields. For instance there exists complete models K, k
of ACVF such that k ⊂ K and K strictly contains k. As a result, if α ∈ K and
does not belong to k then the map x 7→ αx defines a k-linear operator T on
the k-vector space K whose spectrum, as defined in the classical situation, is
empty. Indeed, there does not exist λ ∈ k such that (T − λI) is not invertible.

The topology induced on a non-Archimedean valued field K by its valuation
presents several obstacles towards developing a good theory of analytic func-
tions. The set of open balls contained in K form an open basis for the valuation
topology. It can be verified that the non-Archimedean nature of the valuation
causes every such open ball to be closed as well. It follows that the field K
is totally disconnected. In addition if the field K is algebraically closed, we
find that it is not locally compact. If one were to define an analytic function
f : K → K as in the complex case, by insisting that for every x ∈ K, there
must exist an r ∈ R such that the restriction of f to the closed ball of radius
r is a convergent power series of the form Σi∈Z≥0

aiT
i then as the topology on

K is totally disconnected, the resulting class of analytic functions would be far
too large. The local properties of such analytic functions would not determine
their global properties.

Beginning with M. Krasner in the 1940’s, the challenge of developing a
good theory of analytic functions has been undertaken from several perspec-
tives and resulted in a plethora of famous results. In the 1960’s, John Tate
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discovered a uniformization theorem for elliptic curves over Qp with bad re-
duction. He showed that for an elliptic curve E over Qp there exists an iso-
morphism C∗

p/p
Z ' E(Cp) where Cp is the completion of the algebraic closure

of Qp. It is said that even experts such as Grothendieck believed such an iso-
morphism was only a brute force manipulation and not evidence of a deeper
phenomenon. Tate suspected that the isomorphism must result from a global
theory of analytic spaces and developed the theory of rigid analytic spaces in
order to make the morphism rigorous. In his theory, Tate introduced algebras
of the form A := k{T1, . . . , Tn} which model the set of convergent power series
on the n-dimensional closed disk defined over a non-Archimedean valued field
k and called such objects, Tate algebras. He also introduced a class of open
sets on their maximal spectrum X := Specmax(A) and families of coverings
of such open sets, to get a Grothendieck topology. He then defined structure
sheaves OX on such spaces and general analytic spaces to be spaces equipped
with a Grothendieck topology and a structure sheaf that are locally isomorphic
to affinoid spaces. The resulting theory of coherent sheaves is well developed
and analogous to the theory for complex analytic spaces. However, topological
notions such as local compactness and arc wise connectedness cannot be dis-
cussed in the rigid analytic framework and it is here that Berkovich’s theory of
non-Archimedean geometry is particularly satisfying.

We describe briefly the Berkovich theory of non-Archimedean geometry in
terms of the most obvious example - the closed ball of unit radius. Let k be a
non-Archimedean field and B ⊂ k denote the closed ball of unit radius. Let us
assume that k{T} - the commutative k-algebra of power series Σi∈NaiT

i such
that ai → 0 as i→∞ represents the set of analytic functions on B. The algebra
k{T} is equipped with a norm - the Gauss norm and is complete with respect
to it. To overcome the disconnectedness of the valuation topology, we enlarge
the space B. LetM(k{T}) denote the set of multiplicative semi-norms on the
space k{T} which are bounded with respect to the Gauss norm. The space
B embeds into M(k{T}) and furthermore, M(k{T}) is Hausdorff, compact
and contractible. This construction can be generalized to a class of k-Banach
algebras which contain the class of Tate algebras. In this chapter, we describe
this construction and highlight the topological properties the resulting spaces
enjoy.

5.0.1 Notation

Over the course of this section, we will adopt the convention of writing the
group structure of the value group multiplicatively. This is standard practice
when discussing results in Berkovich geometry. However, when quoting results
from the Hrushovski-Loeser theory of non-Archimedean geometry we adopt their
convention and write the value group additively.

5.1 Real valued fields

Definition 5.1.1. A real valuation on a field k is a function |.| : k → R≥0

which satisfies the following properties.

1. If a ∈ k and |a| = 0 then a = 0.
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2. For every a, b ∈ k, |ab| ≤ |a||b|.

3. For every a, b ∈ k, |a+ b| ≤ |a|+ |b|.

We abbreviate notation and use R+ instead of R≥0. A real valuation |.| :
k → R+ induces a metric on the field k, by sending (x, y) to the value |x−y|. A
field k equipped with a real valuation is said to be complete if it is complete with
respect to the metric induced by its valuation. A valuation is non-Archimedean
if in place of property (3) of the above definition we insist on the stronger
condition |a+ b| ≤ max{|a|, |b|}.

Example 5.1.2.

1. The fields R and C are complete with respect to the standard Archimedean
valuation |.|∞. More generally, given a real number 0 < ε < 1, it can be
verified that x 7→ |x|ε∞ defines an equivalent Archimedean valuation and
that R and C are complete with respect to |.|ε∞. By equivalent, we mean
that the topology generated by the metric induced by |.|ε∞ coincides with
the topology defined by the valuation |.|∞.

2. The p-adic integers Qp are defined using the p-adic valuation defined on
the field Q as follows. Let p be a prime number. If x ∈ Q then x can
be written uniquely as pr(a/b) where r ∈ Z and a, b ∈ N. We define
|x|p := p−r. It can be checked that |.|p is a well defined non-Archimedean
valuation on the field Q. The completion of Q for the valuation |.|p is a
field Qp which we call the field of p-adic numbers. Given a real number
0 < ε < 1, we can define an equivalent p-adic valuation |.|εp as we did in
the case of an Archimedean valuation.

3. Let k be a field. The field of Laurent series which is the set of power series
of the form f := Σi∈ZaiT

i where ai ∈ k for all i and there exists i0 ∈ Z
such that ai = 0 for i ≤ i0. Let 0 < ε < 1 be a real number. We define
a valuation on the field of Laurent series by setting |f | := εn where n is
smallest integer such that an 6= 0. It can be checked that the valuation so
defined is non-Archimedean.

4. Any field k is complete with respect to the trivial valuation |.|0 defined by
|x|0 := 1 if x 6= 0 and |0| = 0.

As outlined in the introduction, the class of fields which are complete with
respect to a non-Archimedean valuation present certain anomalies when com-
pared to their Archimedean counterparts. The following theorems show that
there are many more complete fields with a non-Archimedean valuation than
there are fields which are complete for an Archimedean valuation.

Theorem 5.1.3. ( Ostrowski’s Thorem) Any valuation on the field of rational
numbers Q is either |.|ε∞ for 0 < ε ≤ 1 or |.|εp for a prime p and 0 < ε < 1,or
|.|0.

Theorem 5.1.4. Any field k which is complete with respect to a valuation is
either Archimedean (i.e., it is R or C provided with |.|ε∞ for 0 < ε ≤ 1), or
non-Archimedean (i.e. its valuation is non- Archimedean).
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The next lemma introduces a class of valuations which play an important
role in what follows.

Lemma 5.1.5. (Gauss Lemma). Let k be a non-Archimedean field, i.e. a field
which is complete with respect to a non-Archimedean valuation |.|. Given a
real number r > 0, we define a real valued function |.|r on the field of rational
functions k(T ) as follows. Let |Σni=0aiT

i|r := max0≤i≤n|ai|r
i and |f/g|r =

|f |r/|g|r for f ∈ k[T ] and g ∈ k[T ]r {0}.

1. The function |.|r is a well defined non-Archimedean valuation.

2. The field k(T ) is complete with respect to |.|r if and only if the valuation
on k is trivial and r ≥ 1.

5.2 Commutative Banach rings and their spec-

trum

Definition 5.2.1. Let M be an Abelian group.

1. A semi-norm onM is a function |.| :M → R+ which satisfies the following
properties.

(a) |0| = 0.

(b) For every f, g ∈M , |f − g| ≤ max{|f |, |g|}.

The semi-norm |.| is a norm if the set {m ∈M ||m| = 0} does not contain
an element different from 0.

2. Let |.|, |.|′ be semi-norms defined on M . We say that |.| and |.|′ are
equivalent if there exists C,C ′ > 0 such that C|f | < |f |′ < C ′|f |.

3. Let N ⊂M be a sub-group. The residue semi-norm on the quotientM/N
is defined as follows. Let x ∈ M/N . We set |x|M/N := infy∈π−1(x){|y|M}
where |.|M denotes the semi-norm onM and π :M →M/N is the quotient
map.

4. Let N be an Abelian group equipped with a semi-norm |.|N . A group
homomorphism f : M → N is said to be bounded if for every m ∈ M ,
we have that |f(m)|N ≤ |m|M where |.|M denotes the semi-norm on M .
The morphism f is admissible if the residue semi-norm on M/Ker(f) is
equivalent to the restriction of the semi-norm on N to Im(f).

Remark 5.2.2. 1. Let M be an Abelian group equipped with a semi-norm
|.|M . The semi-norm |.|M induces a topology on M which is Hausdorff if
and only if |.|M is a norm.

2. Let N ⊂M be a sub group and |.|M a norm onM . The residue semi-norm
is a norm if and only if the sub group N is closed in the topology induced
by |.|M .

The notions introduced above can be adapted to the case of commutative
rings. The rings we discuss henceforth will be commutative with unity.
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Definition 5.2.3. Let M be a ring. A semi-norm on M is a function |.| :
M → R+ which satisfies the following properties.

1. |0| = 0.

2. For every a, b ∈M , |ab| ≤ |a||b|.

3. For every a, b ∈M , |a+ b| ≤ |a|+ |b|.

The semi-norm |.| is a norm if the set {x ∈ M ||x| = 0} does not contain an
element different from 0. The norm induces a metric on M and we say that the
ring is a Banach ring if it is complete with respect to this metric. A semi-norm
is multiplicative if instead of property (2), we have that for every a, b ∈ M ,
|ab| = |a||b|. It is power multiplicative if for every m ∈ M and n ∈ Z+, we
have that |mn| = |m|n. If the ring M is endowed with a norm ||.|| then we
say that a semi norm |.| is bounded with respect to ||.|| if there exists C > 0
such that for every a ∈ M , |a| ≤ C||a||. A bounded morphism f : X → Y of
semi-normed rings is a ring homomorphism between the underlying rings for
which there exists C > 0 such that for every x ∈ X, |f(x)|Y ≤ C|x|X where
|.|X and |.|Y denote the semi-norms on X and Y respectively.

Example 5.2.4. 1. The ring of integers Z can be equipped with the restric-
tion of the standard Archimedean valuation |.|∞. The topology induced
by this norm is the discrete topology. As a result (Z, |.|∞) is an example
of a Banach ring.

2. Let r := (r1, . . . , rn) ∈ Rn+. We define the ring k{r−1
1 T1, . . . , r

−1
n Tn} (ab-

breviated k{r−1T}) to be the set of all formal power series f = Σv∈Zn
+
avT

v

such that |av|r
v → 0 as |v| := v1 + ...+ vn →∞. Then k{r−1T} is a com-

mutative Banach ring with respect to the Banach norm |f | = max{|av|r
v}.

Definition 5.2.5. (Normed and semi-normed modules) Let (A, |.|A) be a normed
ring. A semi-normed A-module is an A-module M equipped with a semi-norm
|.|M for which there exists C > 0 such that for every a ∈ A and m ∈ M, we
have that |am|M ≤ C|a|A|m|M. A normed A-module is a semi-normed module
whose semi-norm |.|M is a norm. A Banach A-module is a complete normed
A-module.

Remark 5.2.6. Let (A, |.|A) be a normed ring and (M, |.|M ) be a semi-normed
A-module. There exists a semi-norm |.|′M onM which is equivalent to |.|M such
that for every a ∈ A and m ∈M , |am|′M ≤ |a|A|m|

′
M .

Given a semi-normed ring A, we will often denote its semi-norm by |.|A.
Likewise, for semi-normed groups or modules.

Definition 5.2.7. (Complete tensor products) Let A be a normed ring. Let M
and N be semi-normed A-modules. We define a semi-norm on the tensor prod-
uctM⊗AN as follows. Let x ∈M⊗AN . We set |x|M⊗AN := inf{Σi|mi|M |ni|N}
where the infimum is taken over all representations x = Σimi⊗ni. The comple-
tion of M ⊗AN with respect to this semi-norm is denoted M⊗̂AN and referred
to as the complete tensor product.

The notions of semi-normed modules over a normed ring and the complete
tensor product can be adapted to algebras over a normed ring.
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Definition 5.2.8. (Normed algebras) Let A be a normed ring. A semi-normed
A-algebra B is an A-algebra equipped with a function |.| : B → R+ such that
(B, |.|) is a semi-normed ring as well as a semi-normed A-module.

Analogous to the construction of the complete tensor product in the case of
semi-normed modules, the complete tensor product of normed A-algebras can
be realized as a normed A-algebra.

Let B1, B2 be normed A-algebras and B1⊗̂AB2 denote the complete tensor
product defined by regarding the Bi as A-modules. By 3.1.1 in [BGR], B1⊗̂AB2

is a normed A-algebra as well with a unique multiplication such that for b1, b
′
1 ∈

B1 and b2, b
′
2 ∈ B2, we have that

(b1⊗̂b2)(b
′
1⊗̂b

′
2) = b1b

′
1⊗̂b2b

′
2.

Definition 5.2.9. (Spectrum of a Banach ring) Let (A, |.|) be a Banach ring.
The spectrum associated to A is the set of multiplicative semi-norms bounded
with respect to the norm |.|. We useM(A) to denote the spectrum of (A, |.|).
The spectrumM(A) is given the weakest topology such that, for every f ∈ A
the function M(A) → R+ defined by x 7→ |f(x)| is continuous. Here |f(x)|
denotes the image in R+ of the element f for the semi-norm x.

Definition 5.2.10. (Spectral radius) Let (A, |.|) be a Banach ring and f ∈
A. The spectral radius of f is the real number ρ(f) := limn→∞(|fn|)1/n =
infn∈Z{|f

n|1/n}. It can be shown that ρ(f) = maxx∈M(A){|f(x)|} and that the
function A → R+ given by f 7→ ρ(f) defines a power multiplicative semi-norm
bounded with respect to |.|.

We now introduce the notion of the residue field of a point in the non-
Archimedean sense.

Definition 5.2.11. Let A be a Banach ring. Let x ∈ M(A). Let |.|x denote
the semi-norm defined by the point x. Let Ker(|.|x) := {f ∈ A||f |x = 0}. It can
be verified that Ker(|.|x) is a prime ideal of A. It follows that A/Ker(|.|x) is
an integral domain and the semi-norm |.|x defines a norm on the quotient field
Q(A/Ker(|.|x)). Let H(x) denote the completion of this field with respect to
the norm induced by x. If we abuse notation and use |.|x to denote the norm
on H(x) then we have a bounded character A → H(x) defined by mapping an
element f ∈ A to its class in the quotient A/Ker(|.|x) ⊂ H(x).

Theorem 5.2.12. Let A be a Banach ring. The spectrum M(A) is a non
empty, compact Hausdorff space.

5.3 Affinoid spaces

Let k be a non-Archimedean field. Let (X, |.|) be a Banach space over k and
Y ⊂ X be a closed sub space. A Banach space over k is a particular instance of
Definition 5.2.5. Nonetheless, we provide a definition. A Banach space over k
is a k-vector space endowed with a function |.| : X → R+ called its norm, which
satisfies the following properties.

1. |x| = 0 if and only if x = 0,
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2. For x, y ∈ X, |x+ y| ≤ |x|+ |y|.

3. For x ∈ X and c ∈ k, |cx| = |c|k|x| where |.|k denotes the valuation on the
field k .

Let x ∈ X and [x] denote its image in X/Y . We set |[x]| := infy∈[x]{|y|}. It
can be checked that this defines a norm on the space X/Y which we call the
quotient norm. A morphism f : X → Y of k-Banach spaces is bounded if there
exists a real number C > 0 such that for every x ∈ X, |f(x)|Y ≤ C|x|X where
|.|X and |.|Y denote the norms on X and Y respectively.

Definition 5.3.1. A bounded k-linear map f : X → Y between k-Banach
spaces is admissible if the induced map X/Ker(f) → Im(f) is an isomorphism
of Banach spaces when X/Ker(f) is provided with the quotient norm and Im(f)
is endowed with the restriction of the norm on Y .

Definition 5.3.2. A Banach k-algebra A is an affinoid algebra if for some non -
negative integer n, there exists an admissible epimorphism φ : k{r−1

1 T1, . . . , r
−1
n Tn} →

A. If such an epimorphism exists with r1 = . . . = rn = 1 then we say that A is
strictly affinoid.

Proposition 5.3.3. 1. Any k-affinoid algebra is Noetherian and all of its
ideals are closed.

2. The k-affinoid algebra k{r−1
1 T, ..., r−1

n T} is strictly k-affinoid if and only

if ri ∈
√
|k∗| := {α ∈ R>0|∃n ∈ Z≥1 such that αn ∈ |k∗|}.

Recall that in Definition 5.2.10, we introduced the notion of the spectral
radius of an element of a Banach ring and hence defined the spectral norm. The
following proposition implies in particular that for a reduced affinoid algebra,
the spectral norm is equivalent to the given norm.

Proposition 5.3.4. 1. Let A be a k-affinoid algebra and f ∈ A. There
exists C > 0 and N ∈ N such that |fn|A ≤ Cρ(f)n for every n ∈ N and
n ≥ N . In particular, if f ∈ A is quasi-nilpotent (i.e. ρ(f) = 0) then f is
nilpotent.

2. If A is reduced then there exists C > 0 such that |f |A ≤ Cρ(f) for every
f ∈ A.

Definition 5.3.5. (Affinoid spaces) The category of k-affinoid spaces denoted k
- Aff is the category dual to the category whose objects are k-affinoid algebras
and morphisms are bounded homomorphisms.

5.3.1 Dimension of an affinoid space

Proposition 5.3.6. Let A be a k-affinoid algebra and k′, k′′ be non-Archimedean
fields which contain k and such that the algebras A⊗̂kk

′,A⊗̂kk
′′ are strictly k′

and k′′-affinoid respectively. The Krull dimension of A⊗̂kk
′ is the same as the

Krull dimension of A⊗̂kk
′′.

Definition 5.3.7. The dimension dim(X) of a k-affinoid space X =M(A) is
the Krull dimension of the algebra A⊗̂kk

′ for some non-Archimedean field k′

over k such that A⊗̂k′ is strictly k′-affinoid.

63



Proposition 5.3.8. 1. For any finite affinoid covering {Xi}i∈I of X, one
has dim(X) = max{dim(Xi)}.

2. For any point x ∈ X, one has cdl(H(x)) ≤ cdl(k) + dim(X). Here l is a
prime integer and cdl(k) is the l-cohomological dimension of k, i.e. the
minimal integer n (or ∞) such that Hi(Gk, A) = 0 for all i > n and all
l-torsion discrete Gk-modules A, where Gk is the absolute Galois group of
k.

Let A be a k-affinoid algebra. The notion of a k-affinoid algebra can be
generalized as follows.

Definition 5.3.9.

1. Let r := (r1, . . . , rn) ∈ Rn>0. The algebra A{r−1
1 T1, . . . , r

−1
n Tn} (ab-

breviated A{r−1T}) is the set of formal power series of the form f :=
Σv∈Zn

≥0
avT

v such that avr
v → 0 as |v| → ∞. It can be verified that we

define a norm |.| on A{r−1T} by setting |f | to be max{avr
v}.

2. An A-algebra B is A-affinoid if there exists an admissible epimorphism
A{r−1

1 T1, . . . , r
−1
n Tn} → B for some (r1, . . . , rn) ∈ Rn>0.

5.3.2 Modules over an affinoid algebra

By a finite A-module M , we mean an A-module M such that for some n ∈ N
there exists an epimorphism of A-modules An →M (i.e. the standard notion of
a finite module over a ring). Let Modh denote the category of finite A-modules.

Definition 5.3.10. A finite Banach A-module is a normed A-module B such
that for some n ∈ N there exists an admissible epimorphism An → B of normed
A-modules. The category of finite Banach A-modules is denoted Modhb .

Proposition 5.3.11. 1. The forgetful functor θ : Modhb → Modh is an
equivalence of categories.

2. Any A-linear map between finite Banach A-modules is admissible.

3. Given M,N ∈ Modhb (A) and an A-affinoid algebra B, one has M⊗AN '
M⊗̂AN ∈ Modhb and M ⊗A B 'M⊗̂AB ∈ Modhb (B).

5.3.3 Affinoid domains

Let A be a k-affinoid algebra and X :=M(A).

Definition 5.3.12. (Affinoid domain) A subset V ⊂ X is an affinoid domain
if there exists an affinoid algebra AV and a morphism of k-affinoid spaces φ :
Y → X where Y :=M(AV ) such that the following conditions are satisfied.

1. Im(φ) = V .

2. For every morphism of affinoid spaces ψ : Z → X with Im(ψ) ⊂ V , there
exists a morphism of affinoid spaces φ′ : Z → Y such that ψ = φ ◦ φ′.
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Example 5.3.13. We introduce three classes of affinoid domains contained in
the affinoid space X =M(A).

1. Let f := (f1, . . . , fn) and g = (g1, . . . , gm) be tuples of elements of A and
r = (r1, . . . , rn) ∈ Rn>0, s = (s1, . . . , sm) ∈ Rm>0. Let X(r−1f, sg−1) denote
the sub space {x ∈ X| ∧i,j (|fi(x)| ≤ ri and |gj(x)| ≥ sj)} endowed with
the topology induced by the topology on X. The sub space X(r−1f, sg−1)
is an affinoid domain with respect to the bounded homomorphism

A → AX(r−1f,sg−1) = A{r
−1
1 T1, . . . , r

−1
n Tn, s1S1, . . . , smSm}/(Ti − fi, gjSj − 1)i,j .

The space X(r−1f, sg−1) is an affinoid domain and sub spaces of X of this
form are called Laurent domains. Those affinoid domains of X which are
of the form X(r−1f) for some f ∈ An and r ∈ Rn+ are called Weierstrass
domains.

2. Let {f1, . . . , fn, g} be a set of elements in A which do not have common
zeros in X and r = (r1, . . . , rn) ∈ Rn>0. Let X(r−1f/g) denote the sub
space {x ∈ X| ∧i (fi(x) ≤ rig(x))} endowed with the topology induced
by the topology on X. The space X(r−1f/g) is an affinoid domain with
respect to the following bounded homomorphism of affinoid algebras.

A → AX(r−1f/g) = A{r
−1
1 T1, . . . , r

−1
n Tn}/(gTi − fi)i.

Such an affinoid domain is called a rational domain.

Remark 5.3.14. The intersection of two affinoid domains of X of the same
type (Laurent, Weierstrass or rational) is again an affinoid domain of that type
and every point of X possesses a fundamental system of neighborhoods which
are Laurent domains.

Proposition 5.3.15. Let V be an affinoid domain in X.

1. M(AV )→̃V .

2. AV is a flat A-algebra.

3. For any point x ∈ V , one has H(x)→̃HV (x).

4. V is a Weierstrass (resp. rational) domain if and only if the image of A
(resp. AV ) is dense in AV , where AV is the localization of A with respect
to the elements that do not vanish at any point of V .

Theorem 5.3.16. (Gerritzen - Grauert) Let X =M(A) be an affinoid space.
Every domain of X is the union of a finite number of rational domains.

Theorem 5.3.17. Let A be an affinoid algebra and X :=M(A). Let {Vi}i∈I
be a finite covering of X by affinoid domains.

1. (Tate’s acyclicity theorem) For any finite Banach A-module M , the Čech
complex

0→M →
∏

i

MVi
→

∏

i,j

MVi∩Vj
→ . . .

is exact and admissible.
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2. (Kiehl’s theorem). Suppose we are given, for each i ∈ I, a finite AVi
-

module Mi and for each pair i, j ∈ I, an isomorphism of finite AVi∩Vj
-

modules αi,j : Mi ⊗AVi
AVi∩Vj

→̃Mj ⊗AVj
AVi∩Vj

such that (αi,l)|W =

(αi,j)|W ◦ (αj,l)|W , W = Vi ∩ Vj ∩ Vl , for all i, j, l ∈ I. Then there
exists a finite A-module M that gives rise to the AVi

-modules Mi and the
isomorphisms αi,j.

Recall that we defined the category of k-affinoid spaces k-Aff to be the
category dual to the category whose objects are affinoid algebras and morphisms
bounded k-algebra homomorphisms. In the construction of Analytic spaces that
follows we will require a sub category of k-Aff .

Definition 5.3.18. Let X,Y be k-affinoid spaces. A morphism φ : Y → X
is an affinoid domain embedding if it induces an isomorphism between Y and
an affinoid domain of X i.e. φ is a homeomorphism from Y to φ(Y ) and if
ψ : Z → X is a morphism of affinoid spaces for which ψ(Z) ⊂ φ(Y ) then there
exists a morphism f : Z → Y such that ψ = φ ◦ f . The category k − fAffad

is the category whose objects are k-affinoid spaces and morphisms are affinoid
domain embeddings.

5.4 Analytic spaces

A scheme is a locally ringed space such that every point has an open neigh-
borhood isomorphic to an affine scheme. A similar attempt to define analytic
spaces using affinoid spaces meets an immediate obstacle - affinoid spaces are
compact. In what follows, we present a brief summary of Berkovich’s construc-
tion of analytic spaces. The results we state later in this text concern themselves
with a smaller class of k-analytic spaces - those arising from algebraic varieties
via the analytification functor and we discuss such spaces subsequently.

5.4.1 Nets and Quasi-nets

Let X be a topological space. The notions that follow do not require that X be
Hausdorff and so we do not insist on it being so.

Definition 5.4.1. (Quasi-net) A family τ of subsets of X is a quasi-net if
for every x ∈ X there exists V1, . . . , Vn ∈ τ such that x ∈ ∩iVi and ∪iVi is a
neighborhood of x.

Given a quasi-net τ on a space X, we regard the elements of τ as sub spaces
of X whose topologies are induced by the topology on X.

Remark 5.4.2 ([B2], Lemma 1.1.1). Let τ be a quasi-net on X.

1. A subset U ⊂ X is open if and only if for every V ∈ τ , U ∩ V is open in
V .

2. Suppose that every element of τ is compact and Hausdorff. The space X
is Hausdorff if and only if for every V1, V2 ∈ τ , V1 ∩ V2 is compact.

3. If the space X is equipped with a quasi-net composed entirely of compact
sub spaces then it is locally compact.
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Definition 5.4.3. A family of subsets τ of X is a net if it is a quasi-net and
in addition, for every U, V ∈ τ , the restriction τ|U∩V is a quasi-net on the space
U ∩ V .

Let τ be a net on X. Then τ defines in a natural way a category whose
objects are the elements of τ and whose morphisms are the inclusions between
elements of the net. Let T op denote the category of topological spaces and
T : τ → T op denote the functor which maps an element of τ to its underlying
topological space. Recall that we introduced the category k − Affad whose
objects are k-affinoid spaces and morphisms are affinoid domain embeddings.
Let T a : k −Affad → T op denote the functor that maps a k-affinoid space to
its underlying topological space.

Definition 5.4.4. Let the space X be locally Hausdorff and τ be a net of
compact sets on X. A k-affinoid atlas A on X with net τ consists of a functor
A : τ → k −Affad and an isomorphism of functors T a ◦A→̃T .

An atlas A on a space X with net τ implies that for every V ∈ τ , there exists
a k-affinoid algebra AV and a homeomorphism M(AV ) → V . In addition,
if U ⊂ V are elements of τ then the map M(AU ) → M(AV ) obtained by
functoriality of A is an affinoid domain embedding.

5.4.2 k-Analytic spaces

Definition 5.4.5. A k-analytic space consists of a triple (X,A, τ) where X is
a locally Hausdorff topological space, τ is a net of compact sets on X and A is
a k-affinoid atlas on X with net τ .

Proposition 5.4.6. Let (X,A, τ) be a k-analytic space.

1. Let V ∈ τ . If W ⊂ V is an affinoid domain in V then it is an affinoid
domain in any V ′ ∈ τ such that W ⊂ V ′.

2. Let τ̄ be the collection of subspaces W of X such that there exists V ∈ τ
which contains W and W is an affinoid domain in V . The family τ̄ is a
net on X and there is a unique k-affinoid atlas Ā which extends A such
that the triple (X, Ā, τ̄) is a k-analytic space.

In order to define the category of k-analytic spaces, we must define what we
mean by a morphism of k-analytic spaces. We begin by introducing the notion
of a strong morphism of k-analytic spaces.

Definition 5.4.7. Let (X ′,A′, τ ′) and (X,A, τ) be a pair of k-analytic spaces.
A strong morphism φ : (X ′,A′, τ ′) → (X,A, τ) of k-analytic spaces consists of
the following data.

1. A continuous map φ : X ′ → X such that for every V ′ ∈ τ ′ there exists
V ∈ τ with φ(V ′) ⊆ V .

2. A system of compatible morphisms of k-affinoid spaces φV ′/V : (V ′,A′
V ′)→

(V,AV ) for every pair V ′ ∈ τ ′ and V ∈ τ such that φ(V ′) ⊂ V .

Lemma 5.4.8. 1. A strong morphism φ : (X ′,A′, τ ′) → (X,A, τ) of k-
analytic spaces extends uniquely to a strong morphism φ̄ : (X ′,A′, τ) →
(X,A, τ).
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2. Given a pair of strong morphisms φ : (X ′,A′, τ ′) → (X,A, τ) and ψ :
(X ′′,A′′, τ ′′)→ (X ′,A′, τ ′) between k-analytic spaces, the composition φ◦
ψ : (X ′′,A′′, τ ′′) → (X,A, τ) is a well defined strong morphism of k-
analytic spaces.

Let k − Ãn denote the category whose objects are k-analytic spaces and
morphisms are strong morphisms of k-analytic spaces.

Definition 5.4.9. A strong morphism φ : (X ′,A′, τ ′)→ (X,A, τ) of k-analytic
spaces is a quasi-isomorphism if it induces a homeomorphism φ : X ′ → X
and for every V ′ ∈ τ ′ and V ∈ τ such that φ(V ′) ⊆ V the induced morphism
φV ′/V : V ′ → V is an affinoid domain embedding.

Lemma 5.4.10. The system of quasi-isomorphisms in k−Ãn admits a calculus
of right fractions i.e. it satisfies the following properties.

1. The composition of two quasi-isomorphisms is again a quasi-isomorphism.
The identity map is a quasi-isomorphism.

2. Let f : (X ′,A′, τ ′)→ (X,A, τ) be a strong morphism of k-analytic spaces
and s : (X̃, Ã, τ̃) → (X,A, τ) be a quasi-isomorphism. There there exists

a k-analytic space (X̃ ′, Ã′, τ̃ ′) and strong morphisms f̃ : (X̃ ′, Ã′, τ̃ ′) →

(X̃, Ã, τ̃) and s̃ : (X̃ ′, Ã′, τ̃ ′)→ (X ′,A′, τ ′) such that the following diagram
commutes.

(X ′,A′, τ ′) (X,A, τ)

(X̃ ′, Ã′, τ̃ ′) (X̃, Ã, τ̃)

? ?

-

-

f

f̃

s̃ s

.

3. Let f, g : (X ′,A′, τ ′) → (X,A, τ) be a pair of strong morphisms be-
tween k-analytic spaces and suppose there exists a quasi-isomorphism s :
(X,A, τ) → (X̃, Ã, τ̃) such s ◦ f = s ◦ g. Then there exists a quasi-

isomorphism s̃ : (X̃ ′, Ã′, τ̃ ′)→ (X ′,A′, τ ′) such that f ◦ s̃ = g ◦ s̃.

Definition 5.4.11. The category k − An is the localization of the category
k − Ãn for the system of quasi-isomorphisms.

We now provide a description of the set of morphisms in the category k−An
between two k-analytic spaces.

Proposition 5.4.12. Let (X,A, τ) and (X ′,A′, τ ′) be k-analytic spaces. Given
a net σ on X, we write σ ≤ τ if σ ⊂ τ̄ . If σ ≤ τ then let Aσ denote the
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restriction of Ā to σ. The system of nets {σ|σ ≤ τ} is filtered and we have the
following equality.

Homk−An((X,A, τ), (X,A
′, τ ′)) = lim

−→
σ≤τ

Hom
k−Ãn((X,Aσ, σ), (X

′,A′, τ ′)).

Example 5.4.13. 1. Every k-affinoid space can be realized as a k-analytic
space. Let A be a k-affinoid algebra and X = M(A) be the associated
affinoid space. The triple (X,A, {X}) defines a k-analytic space. Clearly,
this defines a functor k − Aff → k − An and it can be shown that this
functor is fully faithful.

2. Let n ∈ N. We define An,an to be the set of mulitplicative bounded semi-
norms on k[T1, . . . , Tn] which restrict to the valuation on k. A polynomial
f ∈ k[T1, . . . , Tn] defines a function on An,an to R≥0 by mapping a semi-
norm x to the value |f(x)| of f evaluated at x. We endow An,an with
the weakest topology such that for every f ∈ k[T1, . . . , Tn], the function
f : An,an → R≥0 is continuous.

We endow the space An,an with the structure of a k-analytic space as
follows. Let r = (r1, . . . , rn) ∈ Rn>0. We define E(0, r) := {x ∈ An,an| ∧i
(|Ti(x)| ≤ ri)}. Clearly, An,an =

⋃
r∈Rn

>0
E(0, r) and it can be checked that

τ := {E(0, r)}r defines a net on An,an. Let Ar := k{r−1
1 T1, . . . , r

−1
n Tn}

where k{r−1T} was defined in Example 5.2.4 (2). Let Xr := M(Ar).
Observe that k[T1, . . . , Tn] ⊂ Ar for any r ∈ Rn>0 and is in fact a dense
subset of Ar. It follows that we have a well defined injective continuous
map φr : Xr → E(0, r) defined by restricting a bounded multiplicative
semi-norm on Ar to the polynomial algebra k[T1, . . . , Tn]. It can be shown
that the map φr is surjective and bi - continuous which implies that the
affinoid space Xr is homeomorphic to E(0, r) via φr. This defines a k-
affinoid atlas A on An,an with the net τ . Hence (An,an,A, τ) is a k-analytic
space.

5.5 Analytic domains

Let (X,A, τ) be a k-analytic space. Let U ⊂ X be an open subset. We regard
U as a topological space with the topology induced by the topology on X. Let
τ̄|U (cf. Proposition 5.4.6 (2)) denote the collection of those elements of the
net τ̄ that are contained in U and Ā|U be the restriction of the atlas Ā to the
family τ̄|U . The family τ̄|U of subsets of U is a net and the triple (U, Ā|U , τ̄|U )
is a k-analytic space. The open set U is an example of an analytic domain.

Definition 5.5.1. A subspace Y ⊂ X is an analytic domain if for every y ∈ Y ,
there exists V1, . . . , Vn ∈ τ̄ such that the following hold.

1. For every i, Vi ⊆ Y .

2. The set
⋃
i Vi is an open neighborhood in Y of y.

3. y ∈
⋂
i Vi.

The definition above is equivalent to saying that the family τ̄|Y of subsets of
Y is a quasi-net.
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Proposition 5.5.2. Let Y ⊂ X be an analytic domain.

1. The canonical morphism Y → X possesses the following property. Any
morphism of k-analytic spaces φ : Z → X with φ(Z) ⊆ Y factors through
a unique morphism Z → Y .

2. The intersection of two analytic domains is an analytic domain and the
preimage of an analytic domain with respect to a morphism of k-analytic
spaces is an analytic domain.

3. If {Xi}i∈I is a family of analytic domains in X which forms a quasi-net,
then for any k-analytic space X ′ the following sequence of maps is exact.

Hom(X,X ′)→
∏

i

Hom(Xi, X
′)→

∏

i,j

Hom(Xi ∩Xj , X
′).

Definition 5.5.3. An analytic domain in X is an affinoid domain if it is
isomorphic to an affinoid space.

The following proposition provides necessary and sufficient conditions for a
subset Y of X to be an affinoid domain.

Proposition 5.5.4. A subset Y of X is an affinoid domain if and only if the
following conditions hold.

1. There exists V1, . . . , Vn ∈ τ̄|Y such that Y =
⋃
i Vi and for every i, j, Vi∩Vj

is an element of τ̄ and the induced morphism AVi
⊗̂AVj

→ AVi∩Vj
is an

admissible epimorphism.

2. The Banach k-algebra AY := Ker(
∏
iAVi

→
∏
i,j AVi∩Vj

) is k-affinoid
and V →̃M(AY ).

Definition 5.5.5. Let τ̂ denote the family of subsets of X which are affinoid
domains. It can be verified that τ̂ is a well defined net on X and that the
k-affinoid atlas A on X with net τ extends to an atlas Â on X with net τ̂ . The
k-affinoid atlas Â is called the maximal atlas on X.

Henceforth, when discussing an analytic space, we will assume that it is
endowed with the maximal atlas. Recall that in Definition 5.2.11, we introduced
the non-Archimedean version of the residue field H(x) of a point x of an affinoid
space. This notion extends in a natural way to a point x of the analytic space
X.

Let V denote the family of affinoid domains which contain the point x. We
set H(x) := lim

−→V ∈V
HV (x) where for V ∈ V, HV (x) is as in Definition 5.2.11.

The inductive system {HV (x)}V ∈V is filtered and the transition morphisms can
be checked to be isomorphisms.

5.5.1 The G-topology on an analytic space

In order to discuss a theory of coherent sheaves on the analytic space X, we
introduce a Grothendieck topology. The family of analytic domains of X forms
a category whose objects are analytic domains and morphisms are inclusions of
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analytic domains. This category can be endowed with a Grothendieck topology
generated by the pre-topology wherein the set of coverings of an analytic domain
Y ⊂ X is given by a family a of analytic domains of X contained in Y such
that a is a quasi-net of Y . We refer to this topology as the G-topology on X.

We define the structure sheaf on X with its G-topology analogous to the
construction of the structure sheaf on a scheme. Recall that in Example 5.4.13
(2), we introduced the k-analytic space A1,an.

Proposition 5.5.6. 1. Let Z =M(A) be an affinoid space. We have that
Hom(Z,A1,an)→̃A.

2. The functor k − An → Set defined by mapping a k-analytic space Y to
Hom(Y,A1,an) defines a sheaf of rings on the analytic space X equipped
with the G-topology.

Definition 5.5.7. The sheaf defined on X for the G-topology is denoted OXG

and referred to as the structure sheaf on X.

Let Z =M(A) be an affinoid space and M be an A-module. Let V be an
affinoid domain in Z. It can be shown that the association V 7→ AV ⊗A M
defines a sheaf of OZG

-modules on Z, which we call OZG
(M).

Definition 5.5.8. A sheaf F of OXG
-modules is coherent if there exists a family

τ ′ of affinoid domains in X such that τ ′ is a quasi-net on X and for every V ∈ τ ′,
the restriction of F to V with its G-topology is isomorphic to a sheaf of the form
OVG

(M) where M is a finite AV -module.

The structure sheaf OXG
restricts to the open sets of X to define a sheaf

OX on the topological space X and it can be shown that the pair (X,OX) is a
locally ringed space. We introduce a class of k-analytic spaces whose structures
as locally ringed spaces determine their analytic structure.

Definition 5.5.9. A k-analytic space X is good if for every x ∈ X there exists
a neighborhood of x that is an affinoid domain.

Proposition 5.5.10. Suppose that the valuation on k is nontrivial. Then the
functor X 7→ (X,OX) from the full subcategory of good k-analytic spaces to that
of locally ringed spaces is fully faithful.

5.6 Analytification of an algebraic variety

Let X be a scheme which is locally of finite type over k. Let k − An denote
the category of k-analytic spaces, Set denote the category of sets and Schlft/k
denote the category of schemes which are locally of finite type over k. We define
a functor

F : k −An→ Set

Y 7→ Hom(Y,X)

where Hom(Y,X) is the set of morphisms of k-ringed spaces. The following
theorem defines the space Xan.
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Theorem 5.6.1 ([B], 1.2.4). The functor F is representable by a k-analytic
space Xan and a morphism π : Xan → X. For any non-Archimedean com-
plete real valued field K extending k, there is a bijection Xan(K) → X(K).
Furthermore, the map π is surjective.

The associated k-analytic space Xan is good. Theorem 5.6.1 implies the
existence of a well defined functor

()an :Schlft/k → good k − an

X 7→ Xan.

As a set Xan is the collection of pairs {(x, η)} where x is a scheme theoretic
point of X and η is a rank one valuation on the residue field k(x) which extends
the valuation on the field k. We endow this set with a topology as follows. A
pre-basic open set is a set of the form {(x, η) ∈ Uan||f(η)| ∈ W}, where U is
an open subvariety of X with f ∈ OX(U), W is an open subspace of R≥0 and
|f(η)| is the image of f in the residue field k(x) evaluated at η. A basic open
set is any set which is equal to the intersection of a finite number of pre-basic
open sets.

Definition 5.6.2. (The field H(x) for x ∈ Xan) Let x := (x, η) be an element
of Xan. We define H(x) to be the completion of the field k(x) with respect the
valuation η.

Let L be an algebraically closed non-Archimedean real valued field that
contains k. As in Remark 1.1, we say that x ∈ Xan(L) if there exists an
embedding H(x) ↪→ L. It follows that we have an embedding k(x) ↪→ L and
hence x ∈ X(L). The mapping x = (x, η) 7→ x is an explicit description of the
map Xan(L)→ X(L) of Theorem 5.6.1.

Example 5.6.3. If V = Ank then V an is the k-analytic space An,an (cf. Example
5.4.13 (2)). Similarly, the analytification of a Zariski closed subset Z of Ank whose
ring of regular functions is k[T1, . . . , Tn]/I, is the collection of multiplicative
seminorms on k[T1, . . . , Tn]/I which restrict to the given valuation on k and
endowed with the weakest topology such that every function f ∈ k[T1, . . . , Tn]/I
is continuous on Zan.

We now discuss the notion of the reduction map associated to a k-affinoid
space. The reduction map and the k̃-scheme associated to an affinoid space will
be of use when discussing formal covers in the following subsection.

5.7 The Reduction Morphism

Let A be a Banach ring. We recall the definition of the field H(x) associated
to a point x ∈ M(A). It can be checked that Ker(x) := {f ∈ A||f(x)| = 0}
is a prime ideal. Let H(x) denote the completion of the field of fractions of
A/(Ker(x)) with respect to the norm induced on this quotient by x.

Recall the definition of the spectral norm from Definition 5.2.10. The set
A◦ := {x ∈ A|ρ(x) ≤ 1} is a complete sub ring of A in which A◦◦ := {x ∈
A|ρ(x) < 1} is an ideal. We will set Ã := A◦/A◦◦. A bounded homomorphism
of Banach rings A → B induces a morphism Ã → B̃. Note that if A is a field
then Ã is a field as well.
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For every x ∈ M(A), we have the map A → A/(Ker(x)) which is bounded
and hence induces a bounded homomorphism of Banach rings A → H(x). This

in turn defines a morphism Ã→ H̃(x). We have in fact defined a mapM(A)→
Spec(Ã) which we call the reduction map and denote it by π. Explicitly stated,

π :M(A)→ Spec(Ã)

x 7→ Ker(Ã → H̃(x)).

For a k-affinoid space X :=M(B) where B is a k-affinoid algebra, we will
use X̃ to denote the k̃-scheme Spec(B̃). Concerning the reduction map in the
case of strict k-affinoid algebras [[B], 2.1] we have the following proposition.

Proposition 5.7.1. [[B], 2.4.4] [[B3], 2.3.6]. Let A be a strict k-affinoid alge-
bra. Set X :=M(A), X̃ := Spec(Ã), and let X̃gen be the set of generic points of

the irreducible components of the scheme X̃. With this notation, the following
statements are true.

1. The reduction map π : X → X̃ is surjective.

2. For any x̃ ∈ X̃gen, there exists a unique point x ∈ X with π(x) = x̃. If

ρ(A) = |k| then there is an isomorphism k̃(x̃) ' H̃(x).

3. The set π−1(X̃gen) is the Shilov boundary of X.

4. The pre-image of an open (resp. closed) subset of X̃ is closed (resp. open)
under the morphism π.

5.7.1 Formal Covers

In this section we define for any projective k-variety V , the k̃-scheme Ṽ and
the reduction map V an → Ṽ . One way of doing so would be to use an affinoid
covering of the space V an and glue the k̃-schemes arising from each element
of the covering. However in order for the gluing to make sense, we must be
restrictive in our choice of covering. It is to this end that we introduce the
notion of a formal cover of a separated k-analytic space.

Definition 5.7.2 ([B], Section 4.3). A formal domain W in a k-affinoid space
X is either the empty set or an affinoid domain such that the induced morphism
W̃ → X̃ is an open immersion.

The definition that follows is stated for a separated k-analytic space. The
analytification of a k-variety is an example of a separated k-analytic space. We
will be interested only in this case.

Definition 5.7.3. Let X be a separated k-analytic space. An affinoid covering
{Wi} is formal if theWi are strict k-affinoid spaces and for anyWi,Wj belonging
to the cover, Wi ∩Wj is a formal domain of both Wi and Wj .

Let X be a separated k-analytic space provided with a formal cover W :=
{Wi}. Gluing the W̃i defines a k̃-scheme X̃W which is reduced and locally of
finite type. Furthermore, the reduction map π : Wi → W̃i for each element of
the covering extends to a map π : X → X̃W.
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Our notation X̃W was to specify the importance of the choice of cover in-
volved in defining the scheme X̃. In what follows we will suppress the sub script
and simply write X̃.

The following proposition ensures that if X is a projective k-variety of finite
type then it always admits a formal cover. We first prove the theorem when
X = Pn,ank for some n. The result in this case is obtained by exploiting the
standard chart associated to Pnk .

Proposition 5.7.4. Let V be a projective k-variety. For every complete non-
Archimedean real valued field extension L/k there exists a finite formal cover
WL of V an

L such that the collection {WL}L has the following property. Let L1/k
and L2/k be complete non-Archimedean real valued field extensions such that L1

embeds into L2. If WL1
= {Di}i then WL2

= {Di×L1
L2}i.

Proof. We provide a brief sketch of the proof which we then expand upon in
detail. We first construct the formal cover Wk. In the case V = P1

k, the
construction is straightforward. After choosing coordinates, we identify P1

k with

Spec(k[T ])∪{∞}. The space P1,an
k can be realized as the union of two Berkovich

closed disks of unit radius i.e. P1,an = A1 ∪A2 where A1 := {x ∈ P1,an||T (x)| ≤
1} and A2 := {x ∈ P1,an||T (x)| 6= 0 ∧ |(1/T )(x)| ≤ 1}. The affinoid spaces A1

and A2 are glued together along the annulus A1 ∩A2 = {x ∈ P1,an
k ||T (x)| = 1}.

It can be shown that {A1, A2} is a formal cover of P1,an
k . This construction

can be generalized to when V = Pnk . After choosing coordinates, Pn,ank can be
seen as the union of n+1, n - dimensional Berkovich polydisks {A1, . . . , An+1}
each of poly radius (1, . . . , 1). We show that {A1, . . . , An+1} is a formal cover
of Pn,ank . When V is a general projective variety, after choosing an embedding
V ↪→ Pnk for some n ∈ N, we identify V an with a closed subspace of Pn,ank and
show that {A1∩V

an, . . . , An+1∩V
an} is a formal cover of V an. Finally, it can be

verified that if L/k is a complete non-Archimedean real valued field extension
then extending scalars for each element of the cover Wk by L defines a formal
cover WL.

Let n ∈ N and V = Pnk . The analytification of the projective space Pn,ank can
be described in a fashion reminiscent of the `Proj´construction in the theory of
schemes [[L], 2.3.3].

Consider the k-algebra k[T1, . . . , Tn+1]. Let S denote the set of all multi-
plicative seminorms on this algebra which restrict to the valuation of the field k
such that if x ∈ S then |Ti(x)| 6= 0 for some i. We define an equivalence relation
∼ on S as follows.

x ∼ y ⇐⇒ There exists c ∈ R>0 such that for any homogenous

f ∈ k[T1, ..Tn+1], |f(x)| = cdeg(f)|f(y)|.

The set S/ ∼ can be endowed with a topology in a natural fashion [[Ba], 2.2]
so that it becomes a compact, Hausdorff topological space. We proceed further
and give S/ ∼ the structure of a k-analytic space. Let

Aj := {x ∈ S||Tr(x)| ≤ |Tj(x)| for every 1 ≤ r ≤ n+ 1}.

Observe that if a ∈ Aj and a ∼ b then b ∈ Aj . We will abuse notation and
denote Aj/ ∼ by Aj as well. It follows that S/ ∼= ∪jAj . Furthermore, for
any 1 ≤ j ≤ n + 1, Aj is in bijection with the set of multiplicative seminorms
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on k[T1/Tj , ., Tn+1/Tj ] which when evaluated at (Ti/Tj) for any possible choice
of i is less than or equal to 1. But this is exactly the set of all multiplicative
seminorms on the affinoid algebra Bj := k{T1/Tj , ., Tn+1/Tj} which restrict to
the given valuation on k. In fact we have a homeomorphism

δj : Aj →M(Bj).

Consequently, the collection {∩r∈QAr}Q∈P where P is the set of all subsets of
the set {1, . . . , n+1}, forms a net [[B2], 1.1] of compact sets on the space S/ ∼.
If i 6= j then δj restricts to an isomorphism between Aj ∩ Ai and the affinoid
domain

M(Bji) := k{T1/Tj , ..Ti/Tj , (Ti/Tj)
−1, ., Tn+1/Tj}.

We use δij to denote this isomorphism. Note that Bji = Bij and the isomor-
phisms δij and δji are the same.

Similarly let Q ∈ P. The space ∩r∈Q∪{i}Ar is homeomorphic to the affinoid
space

M(BiQ) :=M(k{Tj/Ti, (Ts/Ti)
−1})s∈Q,j∈{1,..,n+1}

via the restriction of any δs where s ∈ Q∪ {i}. For any s ∈ Q∪ {i}, BiQ = BsQ
and the restrictions δs are the same for all such s.

The triple (S/ ∼, (BiQ)i∈1,..,n+1,Q∈P,∩r∈Q∪iAr) is hence a k-analytic space
[[B2], pg 17] and is isomorphic as an analytic space to Pn,ank .

This description of Pn,ank enables us to see it as the union of n + 1 affinoid
domains, each isomorphic to the n-dimensional Berkovich closed polydisc of
poly radius (1, . . . , 1). We claim that {Aj} is a formal cover of Pn,ank .

Since

B̃ji = k̃[T1/Tj , ..Ti/Tj , (Ti/Tj)
−1, ..Tn+1/Tj ],

the k̃-algebra B̃ji corresponds to an open affine sub scheme of M̃(Bj) and

Ãj ∩Ai is an open affine subset of Ãj . We conclude that our claim is veri-
fied, thus proving the proposition for the case V = Pn,ank .

In the general case we make use of the fact that V is projective and hence
can be seen as a closed subset of Pnk for some n. Furthermore for every j, δj
restricts to an isomorphism

δj : V
an ∩Aj →M(k{T1/Tj , ..Ti/Tj , ..Tn+1/Tj}/Ij)

where Ij is an ideal determined by the embedding of V into Pnk . The generators
of Ij can be chosen to be polynomials {f1, . . . , fu} belonging to k[T1/Tj , ..Tn+1/Tj ]
such that if ρ denotes the Gauss norm (or spectral norm) of the affinoid algebra
k{T1/Tj , ..Ti/Tj , ., Tn+1/Tj} then ρ(fi) ≤ 1. The justification for this follows
from [[B], (2) Page 64].

We claim that the cover {V an ∩Ai}i is a formal cover of V an. Let 1 ≤ i, j ≤
n + 1 with i 6= j. We need only show that the affinoid space V an ∩ Ai ∩ Aj
is a formal domain in V an ∩ Ai. We may assume that V an ∩ Ai ∩ Aj is not
empty, since otherwise it is trivially a formal domain. Observe that we have the
following equality.

(V an ∩Ai) ∩Aj = {x ∈ V
an ∩Ai||Tj/Ti(x)| = 1}.
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By assumption, there exists an x ∈ V an∩Ai such that |Tj/Ti(x)| = 1. It follows
that if ρ denotes the spectral norm of the strict affinoid algebra corresponding to
V an ∩Ai then ρ(Tj/Ti) = 1. The above equality and [[B], (ii) pg.28] imply that
the affinoid algebra corresponding to the space (V an∩Ai)∩Aj is (Bi/Ii){Ti/Tj}.
Applying [[BGR], Proposition 7.2.6/3] will give the result.

Let L be a complete non-Archimedean real valued field extension of k. We
check that WL := {(V an ∩Aj)×kL)}j is a formal cover of V an

L . The topological
subspace Aj ⊂ Pn,ank is endowed with the structure of a k-affinoid space via
the homeomorphism δj . Hence we refer to it in future as an affinoid domain
in Pn,ank and identify it with the strict affinoid space M(Bj). Let L/k be a
complete non-Archimedean real valued field extension. For every j, we have
that Aj×kL =M(Bj,L) where Bj,L := Bj⊗̂kL = L{T1/Tj , ., Tn+1/Tj}. Clearly,
Pn,anL =

⋃
j Aj×kL. Identical arguments as those used above imply that {Aj×k

L}j is a formal cover of Pn,anL . Likewise, it can be shown that {V an
L ∩(Aj×kL)}j

is a formal cover of V an
L . The equality V an

L ∩ (Aj ×k L) = (V an ∩ Aj) ×k L
completes the proof.
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Chapter 6

An application of Model

theory to Berkovich

geometry

The purpose of this chapter is to describe briefly how the results of Hrushovski
and Loeser from Chapter 2 imply powerful tameness properties of certain Berkovich
spaces. These results are amongst the goals of the paper [HL] and form a part of

the motivation behind defining the spaces V̂ . Our presentation follows Section
14 of [HL].

6.1 The Berkovich space BF(X)

We begin by providing a model theoretic reinterpretation of the Berkovich space
discussed previously, one for which a connection with the space of stably domi-
nated types can be easily made.

Let F be a non-Archimedean real valued field. Let R∞ := R ∪ {∞}. In this
chapter, we adopt the convention of writing the group structure on the value
group sort additively. Let F denote the structure defined by the pair (F,R∞).
Let V be a quasi-projective F -variety. As a set, the Berkovich space BF(V ) is

defined as follows. It can be given a topology similar to the spaces V̂ and V an.

Definition 6.1.1. Let X be an F-definable subset of V ×Γl∞ for some l ∈ N.
Let BF(X) be the set of almost orthogonal F-types which concentrate on X

Observe that if f : X → Γ∞ is an F-definable function and p ∈ BF(X) such
that a |= p then f(a) ∈ R∞ depends only on the type p i.e. if a1 |= p and a2 |= p
then f(a1) = f(a2). We set f(p) := f(a). Thus we have a well defined function
f : BF(X) → R∞. The set BF(X) is endowed with the topology generated by
pre - basic open sets of the form {q ∈ BF(X ∩U)|val(f)(q) ∈W} where U ⊂ V
is an open affine subspace, f is a regular function on U and W ⊂ R∞ is an open
interval.

Lemma 6.1.2. The spaces V an and BF(V ) are canonically homeomorphic.
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Proof. Recall that as a set V an can be realized as the set of pairs {(x, vx)}
where x is a scheme theoretic point of the variety V and vx : F (x) → R∞ is
a non-Archimedean valuation of the residue field F (x) which restricts to the
valuation on F . The pair x : F (x) → V and id : F (x) → F (x) define a closed
point of the variety V ×F F (x). We can regard the variety V as an F -definable
set. The set of F (x)-points of V ×F F (x) in the scheme theoretic sense is the
set V (F (x)) in the model theoretic sense, where the latter is not to be confused
with the scheme theoretic notion HomF (Spec(F (x), V ). Thus the pair (x, vx)
determines an F (x)-point x of the definable set V . Let p(x,vx) := tp(x/F). It
can be checked that p(x,vx) belongs to BF(V ). We have thus defined a function
φ : V an → BF(V ) and it can be checked that this function is continuous.

Let p ∈ BF(V ). Let U be an affine open subset of V on which the type p
concentrates. Let Ip denote the ideal {f ∈ OV (U)|val(f)(p) = ∞}. It can be
checked that Ip defines a prime ideal of the ring of regular functions OV (U)
on U and consequently a scheme theoretic point xp of the variety V . The map
OV (U) → R∞ defined by f 7→ val(f)(p) factors through a map OV (U)/Ip →
R∞ that extends to define a non-Archimedean valuation vp on the residue field
k(xp) = Q(OV (U)/Ip). Here Q(OV (U)/Ip) denotes the field of fractions of the
domain OV (U)/Ip. We thus have a map ψ : BF(V )→ V an that is well defined
and it can be verified that it is continuous. Furthermore, it can be checked that
the map ψ is the inverse of the map φ.

We relate the space BF(V ) to the space V̂ . Let K be a non-Archimedean
algebraically closed, spherically complete real valued field whose residue field is
the algebraic closure of the residue field k(F ) of F and value group Γ(K) is R.
Such a field is unique up to isomorphism over the structure F. We fix one such
copy and call it Fmax.

Lemma 6.1.3. There exists a surjective continuous function π : V̂ (Fmax) →

BF(V ) such that if X is an F-definable subset of V then π−1(BF(X)) = X̂(Fmax).

Proof. Let p be a stably dominated type defined over Fmax that concentrates
on V . Then p|Fmax is an Fmax-type. Let π(p) denote the F-type defined by
those formulae with parameters in F that are contained in p. Let a |= π(p). We
must have that Γ(F(a)) ⊆ Γ(Fmax(a)) = Γ(Fmax) = Γ(F). It follows that π is
a well defined function. It can be checked that it is continuous as well.

We show that π is surjective. Let p ∈ BF(V ) and a be a realization of p.
We choose an embedding F ↪→ F (a) which induces an embedding Fmax ↪→
F (a)max. By Theorem 4.1.3, the type tp(a|Fmax) extends to an Fmax-stably

dominated type which concentrates on V , thus defining an element of V̂ (Fmax).

The equality X̂(Fmax) = π−1(BF(X)) follows from the construction of the
function π.

We make use of the following lemmas in Sections 6 and 8.

Lemma 6.1.4. Let F be a non-Archimedean complete non trivially real valued
field. Let φ : V → W be a finite surjective morphism between irreducible F -
varieties with W normal. The induced morphism φan : V an → W an is an open
morphism.
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Proof. We apply Lemma 3.2.4 in [B] to prove the lemma. Clearly, we need only
show that if W is normal then W an is locally irreducible. By 3.4.3 in loc.cit,
W an is a normal F -analytic space. Let x ∈W an and U ⊂W an be an F -analytic
neighborhood of x. Let U ′ ⊂ U be the connected component that contains
x. The space U ′ is a normal F -analytic space. By 3.1.8 in loc.cit, it must be
irreducible. This completes the proof.

Lemma 6.1.5. Let k be a non-Archimedean real valued algebraically closed
complete field. Let V be an irreducible k-variety of finite type. Let U ⊂ V be a
Zariski open subset of V . Let M be a real valued model of ACVF which contains
k and is complete. The subspace U(M) is dense in V̂ (M). In fact, the stronger

statement - the set U is dense in V̂ , is also true.

Proof. LetW be anM -definable basic open set of V̂ . By our description of basic
open sets, W = Ô where O is an M -definable subset of V . Recall that we have

a map, π : ̂V ×kMmax(Mmax)→ (V ×kM
max)an which is a homeomorphism.

As ̂V ×kMmax = V̂ , we can write π : V̂ (Mmax) → (V ×k M
max)an. By

[[H], 3.15], the scheme V ×k L is irreducible for any field extension L of k.
In particular, V ×k M

max is irreducible. The dimension of the open analytic
domain π(W (Mmax)) ⊂ (V ×k M

max)an is dim(V ×k M
max) = dim(V ) (cf.

Lemma 6.1.6).
To conclude a proof of the first part of the lemma, we must show that

U(M)∩W (M) is non-empty. Suppose, U(M)∩W (M) was empty. In particular,
we must have that U(M) ∩ O(M) is empty. As M embeds elementarily into
any model of ACVF that contains it, we must have that U ∩ O is empty and
consequently Û ∩ Ô is empty. Let Z := V r U . By assumption, W ⊂ Ẑ.
It follows that π(W (Mmax)) ⊂ (Z ×Mmax)an and hence the dimension of the
open analytic domain π(W (Mmax)) must be less than or equal to dim(Z). As V
is irreducible, dim(Z) < dim(V ). Hence we have a contradiction, thus showing
that W (M) ∩ U(M) is non-empty.

We now show that U is dense in V̂ . Observe that the first part of the lemma
implies that U(M) ⊂ V̂ (M) is dense when M is a model of ACVF containing k

that is real valued and complete. The topology on V̂ is generated by sets each
of which are of the form Ô where O ⊂ V is a definable subset with parameters
in a model of ACVF that is not necessarily real valued. It is for this reason that
an additional argument is required to show part 2 of the lemma.

Let {Ai}i be a finite affine cover of V . Suppose that for every i, U ∩ Ai
is dense in Âi. It can then be verified that U is dense in V̂ . Hence, we may
suppose that V is affine and V embeds into An for some n ∈ N. We identify V
with its image for this embedding. LetW be an open subset of V̂ . By definition
of the topology on V̂ , there exists a model M of ACVF which contains k such
thatW = Ô where O ⊂ V isM -definable. Furthermore there exists m ∈ N such
that O must be of the form ∩1≤i≤mOi where Oi := {x ∈ V |val(fi)(x) ∈ (αi, βi)}
for an M -definable function fi which is regular on V and αi < βi elements of
the value group Γ∞(M). Let r ∈ N be such that for every 1 ≤ i ≤ m, fi is a
polynomial in M [T1, . . . , Tn] of degree at most r. Let D denote the 0-definable
set of polynomials in n-variables of degree less than or equal to r. Let S denote
the sentence : For every (g1, . . . , gm) ∈ Dm and (a1, . . . , am, b1, . . . , bm) ∈ Γ2m

∞

with ai < bi, there exists x ∈ U such that for every i, val(gi)(x) ∈ (ai, bi). The
first part of the lemma implies that k |= S. As k embeds elementarily into
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any model of ACVF that contains it, we must have M |= S. It follows that
U(M)∩O(M) is non-empty and hence that U(M)∩W (M) is non-empty. Thus

U is dense in V̂ .

Lemma 6.1.6. Let F be a real valued complete model of ACVF. Let V be an
irreducible variety over F . Let W ⊂ V an be an open subset. Then dim(W ) =
dim(V ).

Proof. Let A ⊂ V be an affine open subset of V such that Aan ∩ W is non-
empty. As V can be covered by affine open subsets, such an affine open subset
exists. Since V is irreducible, we must have that dim(A) = dim(V ) and hence
it suffices to prove the lemma for the open set W ∩Aan. We assume henceforth
that W ⊂ Aan.

By Noetherian normalization, there exists a finite morphism f : A → An

where n = dim(A). By Lemma 6.1.4, the morphism fan : Aan → An,an is open.
Let U ′ := fan(W ). As the morphism fan is finite, dim(U ′) = dim(W ). The
set of Zariski closed points of An,an are dense. Let x be a Zariski closed point
contained in U ′. As the Berkovich open balls in An,an and centered at x form a
fundamental system of neighborhoods of the point x, there exists a Berkovich
open ball B such that B ⊂ U ′. As dim(B) = n, it follows that dim(U ′) = n
which in turn implies that dim(W ) = dim(V ).

Several topological properties of the Berkovich space can be deduced using
the map π defined above. We state the following lemma from [HL] as a prelim-
inary to the deeper results concerning the homotopy type of Berkovich spaces
deduced from analogous results in the Hrushovski-Loeser setting.

Proposition 6.1.7. ([HL], Proposition 14.1.2) Let X be an F -definable subset

of an algebraic variety V over F . Let π : V̂ (Fmax) → BF(V ) be the natural

map. Then π−1(BF(X)) = X̂(Fmax) and π : X̂(Fmax) → BF(X) is a closed
map. Moreover, the following conditions are equivalent:

1. X̂ is definably compact.

2. X is bounded and v + g-closed.

3. X̂(Fmax) is compact.

4. BF(X) is compact.

5. BF(X) is closed in BF(V
′),where V ′ is any complete F -variety containing

V

The natural map BF′(X)→ BF(X) is also closed, if F ≤ F ′ and Γ(F ′) ≤ R.
In particular, BF(X) is closed in BF(V ) if and only if BF′(X) is closed in
BF′(V ).

As seen in Chapter 2, the construction of the Hrushovski-Loeser space asso-
ciated to a variety V is functorial. The Berkovich space associated to a definable
subset of a variety possesses similar properties.

Proposition 6.1.8. ([HL], Proposition 14.1.3) Assume X andW are F -definable
subsets of some algebraic variety over F .
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1. Let h0 : X → Ŵ be an F -definable function. Then h0 induces functorially
a function h : BF(X) → BF(W ) such that πW ◦ h0 = h ◦ πX ◦ i with

i : X → X̂ the canonical inclusion.

2. Any continuous F -definable function h : X̂ → Ŵ induces a continuous
function h : BF(X)→ BF(W ) such that πW ◦ h = h ◦ πX .

3. The same applies if either X or W is a definable subset of Γn∞ and we
read BF(X) = X(F), respectively BF(W ) =W (F).

The theorems concerning the existence of deformation retractions of the
spaces V̂ induce similar results on the associated Berkovich spaces. The precise
statements are as follows.

Corollary 6.1.9. ([HL], Corollary 14.1.6)

1. Let X be an F-definable subset of some algebraic variety over F. Let
ĥ : I × X̂ → X̂ be an F-definable deformation retraction with image
h(eI , X) = Z. Let I = I(R∞) and Z := π(Z(Fmax)). Then h induces a
deformation retraction h : I×BF(X)→ BF(X) with image Z.

2. Let X → Y be an F -definable morphism between F -definable subsets of

some algebraic variety over F . Let h : I× X̂/Y → X̂/Y be an F -definable
deformation retraction satisfying (*), with fibers hy having image Zy. Let
q ∈ BF(Y ). Then h induces a deformation retraction hq : I× BF(X)q →
BF(X)q with image Zq.

3. Assume in addition there exists a definable Υ ⊆ Γn∞ and definable home-
omorphisms αy : Zy → Υ, given uniformly in y. Then Zq ' Υ(R∞).
More generally if Υ ⊆ Γw∞ with w a finite, Galois invariant subset of a
finite field extension F ′ of F , αy : Zy → Y then Zq ' Υ(R∞)/G where
G = Gal(F ′/F ) acting naturally on w.

6.2 Tame topological properties of Berkovich spaces

Let F be a valued field and V be an F -variety. The homotopy type of the space
V̂ is determined by a definable Γ-internal subset of V̂ . The corollary above
implies that the homotopy type of the Berkovich space is determined by a finite
simplicial complex. Before making this statement precise we discuss the role of
the parameter space in determining the homotopy type.

Let S be an F-definable Γ-internal subset of the space V̂ . By Proposition
6.2.8 in [HL], there exists an F-definable embedding f : S → Γw∞ where w is a
finite F-definable set. It follows that there exists a finite Galois extension F ′ of
F such that Gal(F alg/F ′) fixes every element of the set w. In this case, we say
that S splits over F ′. We then have an F′-definable embedding f ′ : S → Γn∞
where n = |w|. It follows that if F ′′ is any real valued field extension of F ′

then S(F′′) = S(F′). Hence, S(Fmax) = S(F′) and if SF denotes the image of
S(Fmax) in BF(V ) then SF = S(F′)/Gal(F ′/F ). Observe that as a result the
homotopy type of BF(V ) and BF′(V ) are not necessarily the same (Example
14.2.2, [HL]).

A Q - tropical structure on a topological space X is a homeomorphism
g : X → Y where Y is a subspace of [0,∞]n for some n ∈ N and is defined by
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a Boolean combination of equalities or inequalities between expressions of the
form Σiαixi + c where αi ∈ Q≥0 and c ∈ R. As Y is definable in (R,+, .), it is
a simplicial complex.

Theorem 6.2.1. ([HL], Theorem 14.2.1) Let X be an F -definable subset of a
quasi-projective algebraic variety V over a valued field F with val(F ) ⊆ R∞.
There exists a (strong) deformation retraction H : I ×BF(X)→ BF(X) whose

image Z is of the form SF with S an F -definable Γ-internal subset of V̂ . Thus, Z
has a Q-tropical structure, in particular it is homeomorphic to a finite simplicial
complex.

Given a family of definable subsets of algebraic varieties, Proposition 4.8.3
allows us to study how the homotopy type varies along the family.

Theorem 6.2.2. ([HL], Theorem 14.3.1) Let X and Y be F -definable subsets
of algebraic varieties defined over a valued field F . Let f : X → Y be an
F -definable morphism that may be factored through a definable injection of X
in Y × Pm for some m followed by projection to Y .

1. For b ∈ Y , let Xb = f−1(b). Then there are finitely many possibilities for
the homotopy type of BF(b)(Xb), as b runs through Y . More generally, let
U ⊆ X be F-definable. Then as b runs through Y there are finitely many
possibilities for the homotopy type of the pair (BF(b)(Xb), BF(b)(Xb ∩U)).
Similarly for other data, such as definable functions into Γ∞.

2. For any valued field extension F ≤ F ′ with Γ(F ′) ⊆ R and q ∈ BF′(Y ),
let BF′(X)q denote the fibre over q for the canonical map BF′(X) →
BF′(Y ). Then there are only finitely many possibilities for the homotopy
type of BF′(X)q as q runs over BF′(Y ) and F ′ over extensions of F . More
generally, let U ⊂ X be F -definable. Then as q runs over BF′(Y ) and F ′

over extensions of F there are finitely many possibilities for the homotopy
type of the pair (BF′(X)q, BF′(X)q ∩ BF′(U)). Similarly for other data,
such as definable functions into Γ∞.
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Chapter 7

A Riemann-Hurwitz

formula for skeleta

7.1 Semistable vertex sets

Let k be a non-trivially non-Archimedean real valued, algebraically closed com-
plete field. Let |.| denote the valuation on k. By definition, |.| : k∗ → R>0

which we extend to |.| : k → R≥0 by setting |0| := 0. Similarly, we define
val : k∗ → R by setting val = −log(|.|) and extend it to val : k → R ∪ ∞ by
setting val(0) = ∞. We begin with a brief discussion on the analytification of
a k-curve. By curve, we mean a one dimensional connected reduced separated
scheme of finite type over k.

Let C be a k-curve. As outlined in Section 5.6, the set Can is the collection
of pairs {(x, η)} where x is a scheme theoretic point of C and η is a rank one
valuation on the residue field k(x) which extends the valuation on the field k.
We divide the points of Can into four groups using this description. For a point
x := (x, µ) ∈ Can, let H(x) denote the completion of the residue field k(x) for
the valuation η. Let s(x) denote the trancendence degree of the residue field

H̃(x) over k̃ and t(x) the rank of the group |H(x)∗|/|k∗|. Abhyankar’s inequality
implies that s(x) + t(x) ≤ 1. This allows us to classify points. We call x a type
I point if it is a k-point of the curve. In which case, both t(x) = s(x) = 0. If
s(x) = 1 then t(x) = 0 and such a point is said to be of type II. If t(x) = 1
then s(x) = 0 and such a point is considered to be of type III. Lastly, if t(x) =
d(x) = 0 and x is not a k-point of the curve then we call x a point of type IV.

The fact that C is connected and separated implies that the analytification
Can is Hausdorff and pathwise connected. When C is in addition projective,
the analytification Can compact. As an example we describe the analytification
of the projective line P1,an

k .

7.1.1 P1,an

k - The analytification of the projective line over

k

The points of P1,an
k can be classified as follows. The set of type I points are

the k-points P1
k(k) of the projective line. The type II, III and IV points are
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of the form (ζ, µ) where ζ is the generic point of P1
k and µ is a multiplicative

norm on the function field k(P1
k) which extends the valuation on the field k.

The field k(P1
k) can be identified with k(T ) by choosing coordinates. Hence

describing the set of points of P1,an
k \P1

k(k) is equivalent to describing the set of
multiplicative norms on the function field k(T ) which extend the valuation on
k. Let a ∈ P1

k(k) be a k-point and B(a, r) ⊂ k denote the closed disk around
a of radius r contained in P1

k(k). We define a multiplicative norm ηa,r on k(T )
as follows. Let f ∈ k(T ). We set |f(ηa,r)| := supy∈B(a,r){|f(y)|}. It can be
checked that this is a multiplicative norm on the function field. If r belongs
to |k∗| then (ζ, ηa,r) is a type II point. Otherwise (ζ, ηa,r) defines a type III
point. It can be shown that every type II and type III point is of this form.
A type IV point corresponds to a family of nested closed disks with empty
intersection. Let J be a directed index set and for every j ∈ J , B(aj , rj) be
a closed disk around aj ∈ k of radius rj such that

⋂
j∈J B(aj , rj) = ∅. Let

E := {B(aj , rj)|j ∈ J}. We define a multiplicative norm ηE on the function
field as follows. For f ∈ k(T ), let |f(ηE)| := infj∈J{supy∈B(aj ,rj)|f(y)|}. The
set of multiplicative norms on k(T ) defined in this manner corresponds to the
set of type IV points in P1,an

k .
As in Example 5.4.13 (2), it is standard practice to describe the points of

A1,an
k as the collectionM(k[T ]) of multiplicative seminorms on the algebra k[T ]

which extend the valuation of the field k. As a set P1,an
k = A1,an

k ∪ {∞} where
∞ ∈ P1

k(k) is the complement of the affine subspace Spec(k[T ]) ⊂ P1
k.

7.1.2 The standard analytic domains in A1,an.

We follow the treatment in Section 2 of [BPR]. The topological space P1,an
k is

compact, simply connected and Hausdorff. We now describe certain subspaces
of A1,an

k ⊂ P1,an
k . The tropicalization map, trop : M(k[T ]) = A1,an → R ∪ ∞

is defined by p 7→ −log|T (p)|. Using trop, we define certain analytic domains
contained in A1,an.

1. For r ∈ |k∗|, the standard closed ball of radius r, B(r) is the set
trop−1([−log(r),∞]). The space B(r) is the affinoid spaceM(k{r−1T}).

2. For r ∈ |k∗|, the standard open ball of radius r denoted O(r) is the
set trop−1((−log(r),∞]). The space O(r) is an open analytic domain
contained in A1,an.

3. For r1, r2 ∈ |k
∗| with r1 ≤ r2, the standard closed annulus S(r1, r2) of

inner radius r1 and outer radius r2 is the set trop−1([−log(r2),−log(r1)]).
It is the affinoid space M(k{r1T

−1, r−1
2 T}). The (logarithmic) modulus

of S(r1, r2) is defined to be the value log(r2)− log(r1).

4. For r1, r2 ∈ |k
∗| with r1 < r2, the standard open annulus of inner radius r1

and outer radius r2 denoted S(r1, r2)+ is the set trop−1((−log(r2),−log(r1))).
The (logarithmic) modulus of S(r1, r2)+ is defined to be the value log(r2)−
log(r1).

5. Let r ∈ |k∗|. The standard punctured Berkovich open disk of radius r is
the set O(r)r {0} which we denote S(0, r)+.
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We now highlight certain sub spaces of the analytic domains defined above.
The tropicalization map defined above restricts to a map trop : Gan

m → R. We
define a section σ : R → Gan

m of the restriction of the tropicalization map to
Gan
m by mapping r ∈ R to the point η0,−exp(r) (cf. 8.1.1).

Definition 7.1.1. Let A be a standard open annulus, a standard closed annulus
or a standard punctured open disk. The skeleton of A denoted Σ(A) is the set
σ(R) ∩A.

Example 7.1.2. 1. If r1, r2 ∈ |k
∗| with r1 < r2 then the skeleton of the

standard open annulus S(r1, r2)+ is the set σ((−log(r2),−log(r1))).

2. If r1, r2 ∈ |k
∗| with r1 ≤ r2 then the skeleton of the standard closed

annulus S(r1, r2) is the set σ([−log(r2),−log(r1)]).

Following [BPR], we introduce the following definition to distinguish those
properties of the standard analytic domains above and their skeleta which are
invariant under isomorphism.

Definition 7.1.3. A general closed disk (resp. general closed annulus, resp.
general open annulus, resp. general open disk, resp. general punctured Berkovich
open disk) is an analytic space that is isomorphic to a standard closed disk (resp.
standard closed annulus, resp. standard open annulus, resp. standard open disk,
resp. standard punctured open disk).

Proposition 7.1.4 ([BPR], 2.8). Let A,A′ be standard closed annuli or open
annuli or punctured open disks. Let φ : A → A′ be an isomorphism. Then
Σ(A) = φ−1(Σ(A′)).

Definition 7.1.5. Let A be a general open annulus (resp. general closed annu-
lus, resp. general punctured Berkovich open disk). Let A′ be a standard open
annulus (resp. standard closed annulus, resp. standard punctured Berkovich
open disk) such that there exists an isomorphism of analytic spaces φ : A→ A′.
The skeleton Σ(A) of A is the set φ−1(Σ(A′)). The skeleton of A is well defined
by Proposition 7.4.

When A is a general open or closed annulus or general punctured open disk,
the skeleton Σ(A) can be identified with a real interval upto linear transforma-
tions of the form x 7→ x+val(α) for some α ∈ k∗. The skeleton Σ(A) is endowed
with the structure of a metric space.

We introduce the notion of a semistable vertex set of a smooth, projective
curve and then generalize this notion to the case of any curve C over k. As
above, given a semistable vertex set we associate to it a closed subspace called
its skeleton. We then show that the homotopy type of Can is determined by
such skeleta. What follows is inspired by the treatment in [[AB], 4.4], [[HL],
Section 7] and [[BPR], Section 6].

Definition 7.1.6. Let C be a smooth, projective, irreducible curve defined
over the field k and Can be its analytification. A semistable vertex set V for
Can is a finite collection of type II points such that if C denotes the set of
connected components of Can rV then there exists a finite subset S ⊂ C such
that every A ∈ S is isomorphic to a standard open annulus whose inner and
outer radius belong to |k∗| and every A ∈ C r S is isomorphic to the standard
open disk of unit radius O(1). Such a decomposition of the space Can r V is
called a semistable decomposition.
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The existence of semistable vertex sets in Can follows from Section 4 in
[BPR].

Definition 7.1.7. An abstract finite metric graph comprises the following data:
A finite set of vertices W , a set of edges E ⊂ W ×W which is symmetric and
a function l : E → R>0 ∪∞ such that if (x, y) ∈ E then l(x, y) = l(y, x).

The function l is called the length function.

Definition 7.1.8. A finite metric graph G is the geometric realisation of an
abstract finite metric graph (V,E, l) in which every edge e can be identified with
a real interval of length l(e). The genus g(G) of the graph G is defined to be
the number 1− card(V ) + card(E).

It can be verified that if G is a graph which is the geometric realisation of
two abstract finite metric graphs (V,E, l) and (V ′, E′, l′) then 1 − card(V ) +
card(E) = 1− card(V ′) + card(E′).

Definition 7.1.9. Let C be a smooth projective irreducible curve over k. The
skeleton associated to a semistable vertex set V in Can is defined to be the union
of the skeleta of all open annuli which occur in the semistable decomposition
along with the vertex set V. It is denoted Σ(Can,V).

Let C be as in the definition above. The skeleton Σ(Can,V) can be seen as
a graph whose edges correspond to the closures of the skeleta of the generalized
open annuli that occur in the semistable decomposition associated to the set V.
The space Can is pathwise connected. Hence for any two points v1, v2 ∈ V, there
exists a path between them. From the nature of the semistable decomposition,
each such path can be taken to be the union of a finite number of edges of
the skeleton Σ(Can,V). It follows that Σ(Can,V) is pathwise connected. By
Corollary 2.6 in [BPR], the modulus of the skeleton of every open annulus which
occurs in the semistable decomposition defines a length function on the set of
edges of Σ(Can,V). The skeleton Σ(Can,V) is thus a finite, metric graph. Let
x, y ∈ Σ(Can,V) and P be an injective path from x to y. The path P can be
seen as the finite union of injective closed paths

⋃
i Pi such that for every i,

Pi is contained in the closure of the skeleton of a general open annulus which
occurs in the semistable decomposition associated to V. The skeleton of such
an open annulus is a metric space, and its metric extends to its closure in Can.
It follows that the length l(Pi) of the path Pi is well defined. For instance,
if Pi is an injective path from xi to yi then l(Pi) := d(xi, yi) where d is the
metric on the skeleton of the closure of the open annulus that contains xi and
yi. We set l(P ) := Σil(Pi). The graph Σ(Can,V) can be given the structure of
a metric space by defining the distance between two points x, y in Σ(Can,V) to
be minP∈P(x,y){l(P )} where P(x, y) is the set of injective paths between x and
y. This defines a metric on Σ(Can,V).

Let V′ be a semistable vertex set that contains V. By Propositions 3.13 and
5.3 in [BPR], Σ(Can,V) ⊆ Σ(Can,V′) and the inclusion is an isometry. Let
H0(C

an) denote the set of points in Can of type II or III. By Corollary 5.1 in
loc.cit.,

H0(C
an) = lim

−→
V

Σ(Can,V).
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The limit in the above equation is taken over the family of semistable vertex
sets V in Can. As each of the Σ(Can,V) are metric spaces and the inclusions in
the inductive limit are isometries, we have a metric on the space H0(C

an) which
is called its skeletal metric. By Corollary 5.7 in [BPR], this metric extends in a
unique way to the space H(Can) := Can r C(k).

7.1.3 The tangent space at a point on Can

Let C be a smooth projective irreducible k-curve. We begin with the notion of
a geodesic segment in a metric space T .

Definition 7.1.10. A geodesic segment from x to y in a metric space T is the
image of an isometric embedding [a, b]→ T with [a, b] ⊂ R and a 7→ x, b 7→ y.
We often identify a geodesic segment with its image in T and denote it [x, y].

Let p ∈ H(Can). A non trivial geodesic segment starting at p is a geodesic
segment α : [0, a] ↪→ H(Can) such that a > 0 and α(0) = p. We say that two
non trivial geodesic segments starting from p are equivalent at p if they agree
in a neighborhood of zero. If α is a geodesic segment starting at the point p
then we refer to the equivalence class defined by α as its germ. These notions
can be adapted to the case p ∈ C(k) as follows. A non trivial geodesic segment
starting at p is an embedding α : [∞, a] ↪→ Can such that a < ∞, α(∞) = p,
α((∞, a]) ⊂ H(Can) and the restriction α|(∞,a] is an isometry. As before, we
say that two non trivial geodesic segments starting from p are equivalent at p if
they agree in a neighborhood of ∞ and if α is a geodesic segment starting at
the point p then we refer to the equivalence class defined by α as its germ. We
now define the tangent space at a point Can.

Definition 7.1.11. Let x ∈ Can. The tangent space at x denoted Tx is the set
of non trivial geodesic segments starting from x upto equivalence at x.

Let x ∈ Can. The tangent space at x depends solely on a neighborhood of
x. Following Sections 4 and 5 of [BPR], we introduce the concept of a simple
neighborhood U of x and state the result which relates the tangent space Tx to
π0(U r x).

Proposition 7.1.12. ([BPR], Corollary 4.27) Let C be a smooth projective
irreducible k-curve. Let x ∈ Can. There is a fundamental system of open
neighborhoods {Uα} of x of the following form:

1. If x is a type-I or a type-IV point then the Uα are open balls.

2. If x is a type-III point then the Uα are open annuli with x ∈ Σ(Uα).

3. If x is a type-II point then Uα = τ−1(Wα) where Wα is a simply-connected
open neighborhood of x in Σ(Can,V) for some semistable vertex set V of
Can that contains x and τ : Can → Can is defined by x 7→ λΣ(Can,V)(1, x)
(Proposition 7.1.20). Each Uα r {x} is a disjoint union of open balls and
open annuli

Definition 7.1.13 ([BPR], Definition 4.28). Let C be a smooth projective irre-
ducible k-curve. A neighborhood of x ∈ Can of the form described in Proposition
7.1.12 is called a simple neighborhood of x.
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The following proposition is a minor modification of Lemma 5.12 of [BPR]
to include points of type I as well.

Proposition 7.1.14. Let x ∈ Can and let U be a simple neighborhood of x in
Can. Then [x, y] 7→ y establishes a bijection Tx → π0(U r {x}). Moreover,

1. If x is of type I, IV then there is only one tangent direction at x.

2. If x has type III then there are two tangent directions at x.

3. If x has type II then U = red−1(E) for a smooth irreducible component
E of the special fiber of a semistable formal model C of C by (cf. 4.4.1
loc.cit.) and Tx→̃π0(U r {x})→̃E(k̃).

Remark 7.1.15. It should be pointed out that the notation [x, y] was introduced
only when x, y ∈ H(Can). When x ∈ Can is a point of type I and α : [∞, a] ↪→
Can is a geodesic segment starting from x, by [x, α(a)] we mean the image of
the embedding α([∞, a]).

Let ρ : C ′ → C be a finite morphism between smooth projective k-curves.
If x′ ∈ C ′an then the tangent space at x′ maps to the tangent space at ρ(x′)
in an obvious fashion. Suppose x was not of type I. Let λ : [0, 1] → C ′an

be a representative of a point on the tangent space at x′. Let U be a simple
neighborhood (cf. 7.1.13) of the point ρ(x′). We can find a > 0 such that
ρ◦λ((0, a]) lies in a connected component of the space Urρ(x′). This connected
component which contains ρ ◦ λ((0, a]) depends only on the equivalence class of
λ i.e. on the element of the tangent space that is represented by λ. A similar
argument can be used when x′ ∈ C ′(k). By 7.1.14, we have thus defined a map

dρx′ :Tx′ → Tρ(x′)

7.1.4 Weak semistable vertex sets

Let C be a smooth projective irreducible k-curve and let V be a semistable
vertex set in Can. Recall that we defined the skeleton associated to V and
denoted it Σ(Can,V). Observe that by construction, the connected components
of the space Can rΣ(Can,V) are isomorphic to Berkovich open balls. If C was
not smooth or not complete then there does not exist a finite set of type II
points V ⊂ Can such that Can decomposes into the disjoint union of general
open annuli and general open disks. However, we can find a finite set of points
V in Can and as before define a finite graph Σ(Can,V) such that the space
Can rΣ(Can,V) is the disjoint union of general open disks. It is with this goal
in mind that we introduce the notion of weak semistable vertex sets, first for
smooth projective irreducible curves and then for any k-curve.

Definition 7.1.16. Let C be a smooth projective irreducible k-curve. A weak
semistable vertex set W in Can is defined to be a finite collection of points of
type I or II in Can such that if C denotes the set of connected components
of Can r W then there exists a finite subset S ⊂ C such that every A ∈ S is
isomorphic to a standard open annulus or a standard punctured Berkovich open
unit disk and every A ∈ C r S is isomorphic to a standard Berkovich open unit
disk.
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As before, we define the skeleton Σ(Can,W) associated to such a set. Let
Σ(Can,W) be the union of W and the skeleton of every open annulus and
punctured open disk in the decomposition of Can r W. The closed subspace
Σ(Can,W) is homeomorphic to a connected, finite metric graph whose length
function is not necessarily finite by which we mean that there could be edges of
length ∞.

We generalise this notion of weak semistable vertex sets to the case of curves
over k.

Remark 7.1.17. Let C be a k-curve. Let j : C ↪→ C̄ be a dense open immersion
where C̄ is projective over k. The pair (j, C̄) is called a compactification of C/k.
Let F := C̄ r C. We know that F is a finite set of points and Can = C̄an r F .
Let C̄i denote the irreducible components of C̄ and C̄ ′

i denote their respective
normalisations. The canonical morphisms C̄ ′

i → C̄ define a morphism ρC̄ :⋃
i C̄

′
i → C̄.

We make use of the notation introduced in Remark 7.1.17 in the definition
that follows.

Definition 7.1.18. Let C be a k-curve. Let C̄ be a compactification of C. A
weak semistable vertex set W for Can is a finite collection of points of type I or
II in C̄an such that

1. The set W contains the set of singular points of C̄ and the points C̄ rC.

2. ρ−1
C̄

(W) ∩ C̄ ′
i is a weak semistable vertex set of the irreducible smooth

projective curve C̄ ′
i.

As the above definition requires a compactification j : C ↪→ C̄, we should
have said a weak semistable set for the pair (Can, j : C ↪→ C̄). However, we
abbreviate notation and refer to a set W which satisfies the conditions of the
above definition, simply as a weak semistable vertex set for Can.

As before, we define the skeleton associated to a weak semistable vertex set
for Can as follows.

Definition 7.1.19. Let C be a k-curve and C̄ be a compactification of C/k. Let

W be a weak semistable vertex set for Can. Let W′
i := ρ−1

C̄
(W)∩C̄ ′an

i . We define

the skeleton associated to W to be Σ(Can,W) := [
⋃
i ρC̄(Σ(W

′
i, C̄

′an
i ))] ∩ Can.

It can be verified directly from the definition of the skeleta Σ(Can,W) asso-
ciated to W that the space CanrΣ(Can,W) decomposes into the disjoint union
of sets each of which are isomorphic as analytic spaces to the Berkovich open
disk O(0, 1).

Proposition 7.1.20. Let C be a k-curve. Let V ⊂W be weak semistable vertex
sets of Can. There exists a deformation retraction λΣ(Can,V) : [0, 1]×C

an → Can

whose image is the skeleton Σ(Can,V) and a deformation retraction λWΣ(Can,V)

with image Σ(Can,W). (The image of a deformation retraction λ : [0, 1]×Can →
Can is the set λ(1, Can) := {λ(1, p)|p ∈ Can}).

Proof. We begin by constructing a deformation retraction λΣ(Can,V) : [0, 1] ×
Can → Can with image λΣ(Can,V)(1, C

an) = Σ(Can,V).
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Let D denote the set of connected components of the space CanrΣ(Can,V).
By definition, each element D ∈ D is isomorphic to the Berkovich open ball
O(0, 1). We fix isomorphisms ρD : D → O(0, 1) for every D ∈ D.

We define λΣ(Can,V) : [0, 1] × C
an → Can as follows. For p ∈ Σ(Can,V), we

set λΣ(Can,V)(t, p) := p for every t ∈ [0, 1]. Let p ∈ Can r Σ(Can,V). There
exists D ∈ D such that p ∈ D. Suppose, p was not a type IV point. By 7.1.1,
there exists a ∈ k and r ∈ [0, 1) such that ρD(p) = ηa,r. When r = 0, we
maintain that ηa,r is the point a. For t ∈ [0, r], we set λΣ(Can,V)(t, p) := p and

when t ∈ (r, 1), let λΣ(Can,V)(t, p) := ρ−1
D (ηa,t). Lastly, let λΣ(Can,V)(1, p) :=

D̄ ∩ Σ(Can,V) where D̄ is the closure of D in Can. When p is of type IV,
ρD(p) corresponds to the semi-norm associated to a nested sequence of closed
disks {B(xi, ui) ⊂ k}i whose intersection is empty. Let u := limi(ui). For any
t > u, there exists a unique closed disk B(x, t) such that its analytification
B(x, t) contains the point ρD(p). We set λΣ(Can,V)(t, p) := p when t ∈ [0, u] and

λΣ(Can,V)(t, p) := ρ−1
D (ηx,t) for t ∈ (u, 1) where B(x, t) ⊂ O(0, 1) is the unique

Berkovich closed disk of radius t that contains the point ρD(p). As before, let
λΣ(Can,V)(1, p) := D̄ ∩ Σ(Can,V).

The function λΣ(Can,V) : [0, 1] × Can → Can is well defined and the only
points p in Can such that λΣ(Can,V)(t, p) = p for every t ∈ [0, 1] are those points
which belong to Σ(Can,V). Furthermore, λΣ(Can,V)(1, C

an) = Σ(Can,V). We
show that λΣ(Can,V) is continuous when [0, 1]×Can is endowed with the product
topology. LetW ⊂ Can be a connected open set. IfW is disjoint from Σ(Can,V)
then it must be contained in some D ∈ D and λ−1(W ) does not intersect
{1}×Can ⊂ [0, 1]×Can. We show that λ−1

Σ(Can,V)(W ) is open in [0, 1]×Can. As

λΣ(Can,V)([0, 1)×D) ⊆ D, the map λΣ(Can,V)|[0,1)×D
defines a map λ′ : [0, 1)×

O(0, 1)→ O(0, 1) given by λ′(t, x) := ρD(λΣ(Can,V)(t, ρ
−1
D (x))) for t ∈ [0, 1) and

x ∈ O(0, 1). We need only check that (λ′D)
−1(ρD(W )) is open in O(0, 1). This

can be verified using the explicit description of connected open sets in O(0, 1)
provided by Lemma 7.1.31. Let W be a connected open set which intersects
Σ(Can,V) in an open set W ′. Let D′ := {D ∈ D|D̄ ∩ Σ(Can,V) ⊂ W ′}.
The semistable decomposition of Can and the connectedness of W imply that it
must be contained in

⋃
D∈D′ D∪W ′. We can decomposeW as the disjoint union⋃

D∈D′(W ∩D)
⋃
W ′. The set λ−1

Σ(Can,V)(W ∩D) is open in [0, 1]×Can for every

D ∈ D′. By construction λ−1
Σ(Can,V)(W

′) = ([0, 1]×W ′)∪({1}×(
⋃
D∈D′ D)). We

show that every point in λ−1
Σ(Can,V)(W

′) has an open neighbourhood contained

in λ−1
Σ(Can,V)(W ). It can be verified that [0, 1] ×W ⊂ λ−1

Σ(Can,V)(W ). Observe

that the set [0, 1] ×W ⊂ λ−1
Σ(Can,V)(W ) forms an open neighborhood of every

point in [0, 1] ×W ′. It remains to show that every point in {1} × (
⋃
D∈D′ D)

has an open neighbourhood contained in λ−1
Σ(Can,V)(W ). Let x ∈ D for some

D ∈ D′. As W is connected and W is an open neighborhood of D r D, we
must have that W ∩D is connected as well. By Remark 7.30, we can reduce to
the case when W ∩D is the complement in D of the union of a finite number
of Berkovich closed disks and points of types I and IV. It follows that there
exists rD such that (rD, 1]×D ⊂ λ

−1
Σ(Can,V)(W ). The set (rD, 1]×D is an open

neighborhood of (1, x) contained in λ−1
Σ(Can,V)(W ). We have thus proved that

λΣ(Can,V) : [0, 1]×C
an → Can is continuous and hence a deformation retraction.

We now prove the second part of the proposition. We define a deformation

90



retraction λWΣ(Can,V) : [0, 1]×C
an → Can with image Σ(Can,W) as follows. For

p ∈ Can, let sp ∈ [0, 1] be the smallest real number such that λΣ(Can,V)(sp, p) ∈

Σ(Can,W). We define λWΣ(Can,V) as follows. For p ∈ Can, λWΣ(Can,V)(t, p) :=

λΣ(Can,V)(t, p) when t ∈ [0, sp] and λWΣ(Can,V)(t, p) := λΣ(Can,V)(sp, p) when

t ∈ (sp, 1]. Using arguments as before, it can be checked that λWΣ(Can,V) is

indeed a deformation retraction with image Σ(Can,W).

Remark 7.1.21. Recall that if C is a smooth projective k-curve then the
space H(C) := Can r C(k) is a metric space. We can hence define isometries
α : [a, b] ↪→ H(C) where [a, b] ⊂ R. This fact can be generalized to any k-
curve. Let C be a k-curve. By Remark 7.1.17, there exists a finite set of smooth
projective curves {C̄ ′

i} such that
⋃
iH((C̄ ′

i)
an) = H(Can) := Can r C(k). We

say that a continuous function α : [a, b] ↪→ H(Can) is an isometry if α([a, b]) ⊂
H((C̄ ′

i)
an) for some i and α : [a, b] ↪→ H((C̄ ′

i)
an) is an isometry.

Let the notation be as in Proposition 7.1.20. For p ∈ Can, let (λWΣ(Can,V))
p :

[0, 1] → Can be the path defined by t 7→ λWΣ(Can,V)(t, p). Observe that the

deformation retraction λWΣ(Can,V) is such that if a, b ∈ [0, 1] and p ∈ H(Can) then

there exists a1 < b1 ∈ [a, b] such that (λWΣ(Can,V))
p is constant on the segments

[a, a1] and [b1, b] and (λWΣ(Can,V))
p ◦−exp : [−log(a1),−log(b1)]→ H(Can) is an

isometry.

Definition 7.1.22. Let C be a k-curve. Let V ⊂ W be weak semistable
vertex sets. Let λ : [0, 1]× Can → Can be a deformation retraction with image
Σ(Can,V). For p ∈ Can, let sp ∈ [0, 1] be the smallest real number such that
λ(sp, p) ∈ Σ(Can,W). A deformation retraction λ′ : [0, 1] × Can → Can is said
to extend the deformation retraction λ if for p ∈ Can, λ′(t, p) = λ(t, p) when
t ∈ [0, sp] and λ

′(t, p) = λ(sp, p) when t ∈ (sp, 1].

Remark 7.1.23. In the proof of Proposition 7.1.20, we constructed deformation
retractions λΣ(Can,V) and λ

W
Σ(Can,V). Observe that λWΣ(Can,V) is an extension of

λΣ(Can,V) by W.

As outlined in the introduction, we show that given a weak semistable vertex
set W of a complete curve C, the genus of the finite graph Σ(Can,W) is an
invariant of the curve.

Proposition 7.1.24. Let C be a complete k-curve and W be a weak semistable
vertex set in Can. Let Υ ⊂ Can be a closed subset that does not contain any
points of type IV and is a finite graph. Suppose that there exists a deformation
retraction λ : [0, 1]× Can → Can with image λ(1, Can) = Υ. We have that

g(Σ(Can,W)) = g(Υ).

Proof. Let ψ : [0, 1] × Can → Can be the deformation retraction associated to
the set W with image Σ(Can,W) as constructed in Proposition 7.1.20. As the
graph Υ is finite and does not contain any points of type IV, we can find a
weak semistable vertex set W′ such that Σ(Can,W′) contains Υ. We can choose
W′ so that W ⊂ W′. The restriction λ : [0, 1] × Σ(Can,W′) → Can implies
that Σ(Can,W′) and Υ are homotopy equivalent. It follows that Σ(Can,W) is
homotopic to Υ as λΣ(Can,W) : [0, 1]×Σ(C

an,W′)→ Σ(Can,W′) is a deformation
retraction onto Σ(Can,W). Hence g(Σ(Can,W)) = g(Υ).
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Definition 7.1.25. Let C be a k-curve and C̄ be a compactification of C. Let f
denote the cardinality of the finite set of points C̄(k)rC(k). We define gan(C)
to be g(Σ(C̄an,W)) + f where Σ(C̄an,W) is the skeleton associated to a weak
semistable vertex set W for Can.

It can be checked easily that this definition does not depend on the compact-
ification of C chosen. Proposition 7.1.24 implies that gan(C) is a well defined
invariant of the k-curve C. We end this section with the following proposition
concerning finite graphs.

Proposition 7.1.26. Let φ : C ′ → C be a finite morphism of smooth projective
irreducible curves. Let H ⊂ Can be a finite graph which does not contain any
points of type IV. We then have that (φan)−1(H) is a finite graph.

Proof. We may suppose at the outset that the graph H is connected. We show
that we may reduce to the case when the extension of function fields k(C) ↪→
k(C ′) induced by φ is Galois. The extension of function fields k(C) ↪→ k(C ′) de-
composes into a pair of extensions k(C) ↪→ L which is separable and L ↪→ k(C ′)
which is purely inseparable. Let C1 denote the smooth projective irreducible
curve that corresponds to the function field L. The morphisms C ′ → C1 and
C ′an → Can

1 are homeomorphisms. It follows that if the preimage of H for the
morphism Can

1 → Can is a finite graph then (φan)−1(H) is a finite graph as
well. We may hence suppose that k(C) ↪→ k(C ′) is separable. Let L′ denote the
Galois closure of the extension k(C) ↪→ k(C ′) and C ′′ be the smooth projective
irreducible curve that corresponds to the function field L′. We have a sequence
of morphisms C ′′ → C ′ → C. Let ψ : C ′′ → C ′. If the preimage H ′′ of H for the
morphism C ′′an → Can is a finite graph then its image ψan(H ′′) = (φan)−1(H)
for the morphism ψan : C ′′an → C ′an is a finite graph. Indeed, the group
G′ := Gal(k(C ′′)/k(C ′)) acts on H ′′. The graph H ′′ is defined by combinatorial
data i.e. a finite set of vertices W ⊂ C ′′an and a set of edges E ⊂W ×W which
can be realized as subspaces of C ′′an. The group G′ must act on the sets W
and E. It follows that the quotient of H ′′ for the action of the group G′ can
be described in terms of the G′-orbits in W and E. Hence ψan(H ′′) is a finite
graph. We have thus reduced to the case when the morphism φ : C ′ → C is
Galois.

Let W be a semistable vertex set in C ′an. Let V be a weak semistable
vertex set in Can that contains φan(W) and is such that Σ(Can,V) contains
the finite graph H. We may suppose in addition that V was chosen so that
the graph Σ(Can,V) contains no loop edges. It suffices to prove the lemma for
H = Σ(Can,V). We show that there exists a finite graph H ′ ⊂ C ′an such that
φan(H ′) = H. Let C denote the connected components of the space Can r V.
As V is a weak semistable vertex set, there exists a finite set S ⊂ C such that
every A ∈ S is isomorphic to a standard Berkovich punctured open disk of unit
radius or a standard open annulus and if A ∈ C r S then A is isomorphic to
a standard Berkovich open disk. Likewise, let C′ denote the set of connected
components of the space C ′an r W. As W is a semistable vertex set, there
exists a finite set S′ ⊂ C′ such that every A ∈ S′ is isomorphic to a standard
open annulus and if A ∈ C′ r S′ then A is isomorphic to a standard Berkovich
open disk.

Let V′ := (φan)−1(V). The morphism φan is surjective, open and closed
(cf. 6.1.4). It follows that the restriction of φan to C ′an r V′ is a surjective
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clopen morphism onto Can r V. Hence if D′ is a connected component of
the space C ′an r V′ then there exists a connected component D of the space
Can r V such that φan restricts to a surjective morphism from D′ onto D.
Let D be a connected component of the space Can rV which is not a general
Berkovich open ball. We show that if D′ is a connected component of the space
C ′an rV′ such that φan(D′) = D then D′ cannot be a general Berkovich open
ball. Suppose that D′ was a general Berkovich open ball. There exists a point
q ∈ C ′an such that D′ ∪ {q} is compact. It follows that D ∪ φan(q) is compact.
The only elements in C for which this is possible are general Berkovich open
disks which contradicts our assumption.

Let D ∈ C be a punctured open disk or open annulus. Let D′ be a connected
component in C ′anrV′ such that φan(D′) = D. There exists a finite set of points
PD′ such that D′ r PD′ is the disjoint union of general Berkovich open disks
and finitely many general open annuli or punctured Berkovich disks. Let C′D′

denote the connected components of D′ rPD′ . Let O be a Berkovich open disk
in D′rPD′ . The image φan(O) is a connected open subset of D for which there
exists p ∈ D such that φan(O) ∪ {p} is compact. It follows from Lemma 7.1.31
that φan(O) must be a Berkovich open disk D and hence lies in the complement
of the skeleton Σ(D). Let SD′ be the set of open annuli or punctured open
disks in C′D′ . The set SD′ is finite. If A ∈ SD′ then by Proposition 2.5 in [BPR],
we must have that φan(Σ(A)) ⊂ Σ(D). We showed that if O ∈ C′D′ r SD′

then φan(O) ⊂ DrΣ(D). It follows that Σ(D)r
⋃
A∈SD′

φan(Σ(A)) is at most

a finite set of points. Let Σ(D′) :=
⋃
A∈SD′

Σ(A) ∪ PD′ . The set Σ(D′) is

a closed connected subset of D′. As φan restricted to D′ is closed, its image
φan(Σ(D′)) = {φan(p)|p ∈ PD′}∪

⋃
A∈SD′

φan(Σ(A)) is a closed connected subset

of D. Hence {φan(p)|p ∈ PD′} ⊂ Σ(D) and φan(Σ(D′)) = Σ(D).
For every D ∈ S, let D′

D be a connected component of C ′an r V′ such
that φan(D′

D) = D. We showed that there exists Σ(D′
D) ⊂ D′

D such that
φan(Σ(D′

D)) = Σ(D). If H ′
0 :=

⋃
D∈S Σ(D

′
D) then H ′ := H ′

0 ∪ V′ is a finite
graph. We must have that φan(H ′) = H. Let G := Gal(k(C ′)/k(C)). The set⋃
g∈G g(H

′) is a finite graph and since the morphism C ′ → C is Galois, we must

have that (φan)−1(H) =
⋃
g∈G g(H

′).

7.1.5 The Non-Archimedean Poincaré-Lelong Theorem

The non-Archimedean
Poincaré-Lelong theorem is used in Sections 7.3 and 7.4. Our treatment follows
that of [BPR].

Let C be a smooth projective irreducible k-curve. Let x ∈ Can be a point

of type II. The field H̃(x) (cf. 5.7) is an algebraic function field over k̃. Let

C̃x denote the smooth projective k̃-curve that corresponds to the field H̃(x).
Let Prin(C) and Prin(C̃x) denote the group of principal divisors on the curves
C/k and C̃x/k̃ respectively. We define a map Prin(C) → Prin(C̃x) as follows.

Let f ∈ k(C) be a rational function on C and c be any element in k such that
|f(x)| = |c|. This implies that (c−1f) ∈ H(x)0. Let fx denote the image of

c−1f in H̃(x). Although fx ∈ H̃(x) depends on the choice of c ∈ k, the divisor
that fx defines on C̃x is independent of c. Hence we have a well defined map
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Prin(C) → Prin(C̃x). It can be shown that this map is a homomorphism of
groups.

A function F : Can → R is piecewise affine if for any geodesic segment
λ : [a, b] → H(Can), the composition F ◦ λ : [a, b] → R is piecewise affine. The
outgoing slope of a piecewise affine function F at a point x ∈ H(Can) along a
tangent direction v ∈ Tx is defined to be

δvF (x) := Limε→0(F ◦ λ)
′(ε).

where λ : [0, a] ↪→ H(Can) is a representative of the element v. It is evident
from the definition that δvF (x) depends only on the equivalence class of λ i.e.
it depends only on the element v ∈ Tx.

Theorem 7.1.27. (Non-Archimedean Poincaré-Lelong Theorem) Let f ∈ k(C)
be a non-zero rational function on the curve C and S denote the set of zeros
and poles of f . Let W be a weak semistable vertex set whose set of k-points
is the set S. Let Σ(Can,W) be the skeleton associated to W and λΣ(Can,W) :
[0, 1]×Can → Can be the deformation retraction with image Σ(Can,W). We will
use λe to denote the morphism λΣ(Can,W)(1, ) : Can → Can (cf. Proposition
7.1.20). If F := −log|f | : Can r S → R. Then we have that

1. F = F ◦ λe.

2. F is piecewise affine with integer slopes and F is affine on each edge of
Σ(Can,W).

3. If x is a type II point of Can and v is an element of the tangent space
Tx, then ordṽ(fx) := δvF (x) defines a discrete valuation ordṽ on the k̃-
function field k̃(C̃x).

4. If x ∈ Can is of type II or III then
∑
v∈Tx

δvF (x) = 0.

5. Let x ∈ S, c be the ray in Σ(Can,W) whose closure in Can contains x and
y ∈ W the other end point of e. If v ∈ Ty is that element of the tangent
space Ty for which c is a representative then δvF (y) = ordx(f).

7.1.6 An alternate description of the tangent space at a

point x of type II

Let x ∈ Can be a point of type II. We define the algebraic tangent space at a
point of type II and show how this notion reconciles nicely with the definition

we introduced above. Recall that the field H̃(x) is of transcendence degree 1
over k̃ and uniquely associated to this k̃-function field is a smooth, projective
k̃-curve which is denoted C̃x.

Definition 7.1.28. The algebraic tangent space at x denoted T alg
x is the set of

closed points of the curve C̃x.

We now write out a map B : Tx → T alg
x . The closed points of the k̃-curve C̃x

correspond to discrete valuations on the field H̃(x). Given a germ ex ∈ Tx and

f ∈ H̃(x) there exists g ∈ H(x) such that |g(x)| = 1 and g̃ = f . Let B(ex)(f) be
the slope of the function −log|g| along the germ ex directed outwards. By the
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Non-Archimedean Poincaré-Lelong Theorem, B(ex) defines a discrete valuation

on the function field H̃(x) i.e. a closed point of the curve C̃x. The map B is a
well defined bijection.

Let C ′ be a smooth, projective, irreducible curve over the field k and ρ :
C ′ → C a finite morphism. If x′ is a preimage of the point x then it must
be of type II as well. The inclusion of non-Archimedean valued complete fields

H(x) ↪→ H(x′) induces an extension of k̃-function fields H̃(x) ↪→ H̃(x′). This

defines a morphism dρalgx′ : T alg
x′ → T alg

x between the algebraic tangent space at
x′ and the algebraic tangent space at x. Recall that we have in addition a map
dρx′ : Tx′ → Tx. These maps are compatible in the sense that the following
diagram is commutative.

T alg
x′ T alg

x

Tx′ Tx

? ?

-

-

dρalgx′

dρx′

B B

7.1.7 Continuity of lifts

Let φ : C ′ → C be a finite morphism between irreducible smooth projective
curves. In Section 7.2, we construct a pair of deformation retractions λ′ :
[0, 1] × C ′an → C ′an and λ : [0, 1] × Can → Can which are compatible for the
morphism φan. Our method of proof is to first construct a suitable deformation
retraction λ on Can and then lift it to a function λ′ : [0, 1] × C ′an → C ′an

such that for every q ∈ C ′an, the map λ′
q
: [0, 1] → C ′an defined by setting

λ′
q
(t) = λ′(t, q) is continuous. Our goal in this section is to show that given a

deformation retraction λ and a lift λ′ as above, the function λ′ is continuous.

Lemma 7.1.29. Let φ : C ′ → C be a finite morphism between k-curves and
suppose in addition that C is normal. Let V ⊂ Can be a weak semistable
vertex set and suppose V′ is a weak semistable vertex set for C ′an such that
Σ(C ′an,V′) = (φan)−1(Σ(Can,V)). Let D denote the set of connected compo-
nents of the space CanrΣ(Can,V) and likewise, D′ denote the set of connected
components of the space C ′an rΣ(C ′an,V′). If D′ ∈ D′ then there exists D ∈ D
such that φan(D′) = D. Furthermore, the restriction φan|D′ : D′ → D is both
closed and open.

Proof. Let D′ ∈ D′. As D′ is connected and φan is continuous, we must have
that φan(D′) is connected. Furthermore, φan(D′) ⊂ Can r Σ(Can,V) because
Σ(C ′an,V′) = (φan)−1(Σ(Can,V)). The open subspace CanrΣ(Can,V) decom-
poses into the disjoint union

⋃
A∈D A. It follows that there exists D ∈ D such

that φan(D′) ⊂ D.
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Let A′ be a connected component of the space (φan)−1(D) that contains D′.
As A′ ⊂ C ′an rΣ(W, C ′an) and C ′an rΣ(W, C ′an) decomposes into the disjoint
union

⋃
U∈D′ U , we must have that D′ = A′. The morphism φan is a finite

morphism and hence closed. By Lemma 6.1.4, it is open as well. It follows that
φan restricts to a morphism D′ → D which is both open and closed. As D is
connected, we must have that φan(D′) = D.

Remark 7.1.30. Recall that for a ∈ k such that |a| < 1 and r < 1, we used
O(a, r) to denote the Berkovich open disk around a of radius r and B(a, r) to
denote the Berkovich closed disk around a of radius r. By Proposition 1.6 in
[Ba], a basis B for the open sets of O(0, 1) is given by the sets

O(a, r), O(a, r)r
⋃

i∈I

Xi, O(0, 1)r
⋃

i∈I

Xi

where I ranges over finite index sets, a ranges over O(0, 1), where r ∈ (0, 1) and
Xi is either a Berkovich closed sub disk of the form B(ai, ri) with ai ∈ O(0, 1)
and ri ∈ [0, 1) or a point of type I or IV. We classify the elements of this basis
by referring to Berkovich open sub disks as sets of form 1, Berkovich open disks
from which a finite number of closed disks have been removed as sets of form 2
and the complement of the union of a finite number of closed sub disks as sets
of form 3.

Lemma 7.1.31. Let U ⊂ O(0, 1) be a connected open set. Then U is of the
form O(a, r)r

⋃
j∈J Xj where a ∈ O(0, 1), r ∈ (0, 1], J is an index set and the

Xj are Berkovich closed disks or points of type I or IV. In addition, the Xj can
be taken to be disjoint from each other.

Note that we do not claim every set of the form O(a, r)r
⋃
j∈J Xj is open,

as this is false. For instance the set H(O(0, 1)) := O(0, 1)rO(0, 1) is not open
in O(0, 1) as O(0, 1) is dense in O(0, 1).

Lemma 7.1.32. Let f : O(0, 1) → O(0, 1) be a surjective, open and closed
continuous function.

1. If U ∈ B is an open set of form i where i is 1 or 3 then f(U) is of form i
as well. If U ∈ B is of form 2 then f(U) is of form 1 or 2. If we suppose
in addition that f is bijective and U is of form 2 then f(U) is also of form
2.

2. If Y ⊂ O(0, 1) is a Berkovich closed disk then f(Y ) is a Berkovich closed
disk.

Proof. 1. Let U be a Berkovich open sub ball. We show that f(U) is a
Berkovich open ball. The closure U is a compact subspace of O(0, 1).
Observe that UrU is a single point which we denote p. As f is continuous,
f(U) = f(U)∪ {f(p)} must be compact as well. As U is connected, f(U)
must be a connected open set as well. By Lemma 7.1.31, it suffices to
verify which connected open sets in O(0, 1) are such that they can be
compactified by adding a single point of O(0, 1). It can be checked by
hand that the only possibility for f(U) is a Berkovich open ball contained
in O(0, 1).
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Let {D1, . . . , Dm} be a finite number of Berkovich closed disks or points
of types I or IV in O(0, 1) and U := O(0, 1) r (

⋃
iDi). The set U is

of form 3 and we show that f(U) is also of form 3. As U is connected,
the image f(U) is a connected open set as well. By Lemma 7.1.31, f(U)
must be of the form O(a, r) r

⋃
j∈J Xj where a ∈ O(0, 1), r ∈ (0, 1], J

is an index set and the Xj are Berkovich closed disks or points of type
I or IV. In addition, the Xj can be taken to be disjoint. We claim that

r = 1. Suppose r < 1. Then the closure of f(U) in O(0, 1) denoted f(U)
is compact. The Di are Berkovich closed disks or points of types I or
IV and hence compact. As a result, the f(Di) are compact subsets of
O(0, 1). The surjectivity of f implies that O(0, 1) =

⋃
i f(Di) ∪ (f(U))

is compact. This is a contradiction and we must hence have that r = 1.
We claim that the index set J is finite. There exists a finite set of points
S := {p1, . . . , pr} in O(0, 1) such that U ∪ S is closed in O(0, 1). As the
map f is closed, f(U ∪S) is closed in O(0, 1). Uniquely associated to each
j ∈ J is an element xj ∈ O(0, 1) that lies in the closure of f(U). Hence
we must have that the index set J is finite. This implies that f(U) ∈ B
and is of form 3.

Let U ∈ B be an open set of form 2. As U is contained in a Berkovich
open disk U ′, we must have that its image is a connected open set which is
contained in the Berkovich open disk f(U ′) strictly contained in O(0, 1).
Repeating the arguments above, it can be shown that f(U) ∈ B is of
form either 1 or 2. Suppose that f is bijective and let U = U ′ r (

⋃
iDi)

where the Di ⊂ U ′ are Berkovich closed sub disks or points of type I
or IV. It follows that f(U) = f(U ′) r

⋃
i f(Di). As the only connected

open subsets of O(0, 1) which are open balls from which a finite number
of closed subspaces have been removed are of form 2, we conclude that
f(U) is of form 2.

2. Let Y be a closed disk of radius r in O(0, 1). The closed disk Y can be
seen as the union of a family of Berkovich open sub disks in O(0, 1) of
radius r and a point. Hence we can write Y = (

⋃
i∈I Vi) ∪ {q} where I

is an index set, the Vi are Berkovich open disks of radius r and q is the
unique point such that for every i, Vi ∪ {q} is compact. It follows that
f(Vi∪{q}) = f(Vi)∪ f(q) is a compact set. Let Ui := f(Vi) and p = f(q).
By part (1), the Ui are Berkovich open balls contained in O(0, 1). The
point p of O(0, 1) such that Ui∪{p} is compact is uniquely determined by
Ui. Furthermore, this point p determines the radius of the Berkovich open
ball Ui. It follows that the radii of the Berkovich open balls Ui are the
same. Let t be the radius of Berkovich open balls Ui. Let X denote the
Berkovich closed ball corresponding to the point p. The radius of X is t.
The tangent space at p is in bijection with the set of Berkovich open balls
of radius t contained in X and the open annulus O(0, 1) r X. Likewise,
the tangent space at q is the set of Berkovich open balls Vi of radius r
contained in Y and the open annulus O(0, 1) r Y . The tangent space at
q surjects onto the tangent space at p. Furthermore, for every i ∈ I, the
image Ui of the Berkovich open ball Vi is a Berkovich open ball of radius
t contained in X. Hence if U ⊂ X is a Berkovich open disk of radius t
then there exists j ∈ I such that f(Vj) = U . It follows that f(Y ) = X.
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Lemma 7.1.33. Let a ∈ k and r be a positive real number belonging to |k∗|.
Let B(a, r) denote the Berkovich closed disk around a of radius r and let σ :
B(a, r)→ B(a, r) be an automorphism of analytic spaces. Suppose W ⊂ B(a, r)
is a Berkovich open disk of radius 0 < s < r then σ(W ) is a Berkovich open
disk of radius s. Likewise, if W is a Berkovich closed disk of radius 0 ≤ s < r
then σ(W ) is a Berkovich closed disk of radius s.

Proof. As r ∈ |k∗|, we can suppose that r = 1, a = 0. We choose coordinates and
write B(0, 1) =M(k{T}). The automorphism σ induces an automorphism σ′ :
k{T} → k{T} of affinoid algebras. By the Weierstrass preparation theorem, we
must have that σ′(T ) = f(T )u where f(T ) = c(T−a1)(T−ar) is a polynomial in
T with c ∈ k∗ and u is an invertible element in k{T}. As σ′ is an automorphism,
we must have that |c| = 1 and that f(T ) is of degree 1. It follows that f(T ) =
c(T − b) for some b ∈ B(0, 1). We now show that if W is a Berkovich open sub
ball around a point x ∈ B(0, 1) of radius s then σ(W ) is a Berkovich open ball
around σ(x) of radius s. By definition, W = {p ∈ B(0, 1)||(T − x)(p)| < s}. It
follows that σ(W ) = {q ∈ B(0, 1)||(1/(cu)T )− (x− b)| < s}. As |cu| = 1, it can
be checked that the claim has been verified. The proof can be repeated when
W is the closed disk {p ∈ B(0, 1)||(T − x)(p)| ≤ s}.

We make use of the following notation in the statements that follow. Let
φ : C ′ → C be a finite morphism between smooth projective curves. Let
W′,W be weak semistable vertex sets for C ′an and Can respectively such that
Σ(C ′an,W′) = (φan)−1(Σ(Can,W)). Let D′ denote the set of connected compo-
nents of the space C ′an r Σ(C ′an,W′). If D′ ∈ D′ then D′ is isomorphic to the
Berkovich unit ball O(0, 1) and we identify D′ via this isomorphism. Likewise,
let D denote the set of connected components of the space Can r Σ(Can,W).

Lemma 7.1.34. Let φ : C ′ → C be a finite morphism between irreducible
projective smooth k-curves. Let V ⊂ W be weak semistable vertex sets of
Can. Let W′ ⊂ C ′an be a weak semistable vertex set such that Σ(C ′an,W′) =
(φan)−1(Σ(Can,W)). Let λWΣ(Can,V) : [0, 1] × Can → Can be the deformation

retraction constructed in Proposition 7.1.20 whose image is Σ(Can,W). Let
λ′ : [0, 1] × C ′an → C ′an be a function such that for every q ∈ C ′an, the path
λ′
q
: [0, 1]→ C ′an defined by t 7→ λ′(t, q) is continuous and λ′q(1) ∈ Σ(C ′an,W′).

Furthermore, if φan(q) = p then λ′q is the unique path starting from q such that
φan ◦ λ′q = (λWΣ(Can,V))

p. Let D′ ∈ D′ and x1, x2 ∈ D
′. There exists r ∈ [0, 1]

such that λ′x1(r), λ′x2(r) ∈ D′ and λ′x1

|[r,1] = λ′x2

|[r,1].

We simplify notation and write λ in place of λWΣ(Can,V).

Proof. Recall that when constructing the deformation retraction λ, we identified
every D ∈ D with the standard Berkovich open unit disk. Let D′ be as in the
statement of the lemma. By Lemma 7.1.29, there exists D ∈ D such that
φan(D′) = D. If D is the closure of D in Can then D r D is a single point
η. By construction of the deformation retraction λ there exists s ∈ [0, 1] such
that for every y ∈ D, λ(s, y) = η and the restriction [0, s) × D → D given
by (t, x) 7→ λ(t, x) is well defined. We must hence have that the restriction
λ′ : [0, s) × D′ → D′ is well defined. If D′ is the closure of D′ in C ′an then
D′ r D′ is a single point η′. Furthermore, for every x ∈ D′, λ′(s, x) = η′.
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If U ′ is a simple neighborhood of the point η′ then the tangent space Tη′ is
in bijection with the connected components of the space U ′ r η′. The set D′

corresponds to a single element of the tangent space at η′. It follows that for
some r ∈ [0, s), λ′x1(r) ∈ D′ ∩ λ′x2([0, s]). Let q := λ′x1(r) and p := φan(q).
By construction of the deformation retraction λ, λ(t, p) = p for every t ∈ [0, r].
Also, the deformation λ satisfies the following property. For every a < b ∈ [0, 1]
and y ∈ Can, λ(b, (λ(a, y)) = λ(b, y). It follows that λ′q|[r,1], λ

′x1

|[r,1] and λ
′x2

|[r,1] are

all lifts of the path λp|[r,1]. As the lift of the path starting from p is unique, we

must have that λ′q[r,1] = λ′x1

[r,1] = λ′x2

[r,1].

Proposition 7.1.35. Let φ : C ′ → C be a finite morphism between irreducible
projective smooth k-curves. Assume in addition that the extension of function
fields k(C) ↪→ k(C ′) is a finite Galois extension and let G := Gal(k(C ′)/k(C)).
Let V ⊂ W be weak semistable vertex sets of Can. Let W′ ⊂ C ′an be a
weak semistable vertex set such that Σ(C ′an,W′) = (φan)−1(Σ(Can,W)). Let
λWΣ(Can,V) : [0, 1] × C

an → Can be the deformation retraction as constructed in

Proposition 7.1.20 whose image is Σ(Can,W). Let λ′ : [0, 1] × C ′an → C ′an be
a function such that for every q ∈ C ′an, the path λ′

q
: [0, 1] → C ′an defined by

t 7→ λ′(t, q) is continuous and also that the following diagram commutes.

[0, 1]× Can Can

[0, 1]× C ′an C ′an

? ?

-

-

λWΣ(V,Can)

λ′

id× φan φan

.
We suppose in addition that for every q ∈ C ′an, the path λ′q is the unique lift

starting from q of the path (λWΣ(V,Can))
φan(q) and also that λ′ is G-invariant i.e.

for every g ∈ G, t ∈ [0, 1] and x ∈ C ′an, g(λ′(t, x)) = λ′(t, g(x)). The following
statements are then true.

1. Let D′ denote the set of connected components of the space C ′anrΣ(C ′an,W′).
If D′ ∈ D′ then D′ is isomorphic to the Berkovich unit ball O(0, 1) and
we identify D′ via this isomorphism. By Lemma 7.1.29, the group G has
a well defined action on the set D′. Let H ⊂ G be the sub group which
fixes D′. Let W be a Berkovich closed or open ball strictly contained in
D′. There exists a Berkovich closed sub ball B(0, r) ⊂ D′ with r ∈ |k∗|
such that H stabilizes B(0, r) and W ⊂ B(0, r).

2. The map λ′ : [0, 1]× C ′an → C ′an is continuous.

Over the course of the proof, we simplify notation and write λ in place of
λWΣ(Can,W). The hypothesis that λ′ is G-invariant is redundant as it can be
deduced from the uniqueness of the lifts.
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Proof. 1. Let D denote the set of connected components of the space Can r
Σ(Can,W). In the proof of Proposition 7.1.20, we constructed the defor-
mation retraction λ by identifying every D ∈ D with Berkovich open unit
disks centered at 0. By Lemma 6.1.4, the morphism φan is open. As φ is
a finite morphism, the morphism φan is closed as well. Let D′ ∈ D′. By
Lemma 7.1.29, there existsD ∈ D such that φan(D′) = D. We also showed
in 7.1.29, that D′ is a connected component of the space (φan)−1(D) and
hence the morphism φan restricts to a closed and open morphism from D′

onto D. We use φanD′ to denote the restriction of φan to D′. Let x ∈ D
and R := (φanD′)−1(x) = {y1, . . . , ym}. Recall that H is the sub group
of G which stabilizes D′. It follows that R = {h(y1)}h∈H . There ex-
ists s ∈ [0, 1] such that for every z ∈ D, λ(t, z) ∈ D for t ∈ [0, s) and
λ(s, z) ∈ D rD. For every i, let pyi denote the path [0, s] → D′ defined
by t 7→ λ′(t, yi). The paths pyi are each lifts of the path λx : [0, s] → D
defined by t 7→ λ(t, x). Observe that pyi(s) = D′ rD′. By Lemma 7.1.34,
there exists r ∈ [0, s) such that for every y, y′ ∈ R, py′ |[r,s) = py |[r,s).

Let r′ ∈ [r, s) be such that λx(r′) = η0,u (cf. 7.1.1) for some u ∈ |k∗|
and B(0, u) contains φanD′(W ). Since pyi(r

′) = pyj (r
′) for every yi, yj ∈ R

and the paths py for y ∈ R are Galois conjugates of each other, we must
have that q := py(r

′) is fixed by H and hence q = (φanD′)−1(λ(r′, x)). We
simplify notation and use X to denote the closed disk B(0, u). The group
H restricts to an action of the space Y := (φanD′)−1(X). We claim that Y
is a Berkovich closed disk in D′. Let Y ′ denote the complement of Y in
D′. The image φan(Y ′) is the complement of X in D as φanD′ is surjective.
Let X ′ := D r X. We claim that the space Y ′ is a connected open set.
Suppose that Y ′ is not connected. The morphism φanD′ is clopen and hence
maps each connected component of Y ′ onto the complement of X in D.
Let Z be a connected component of Y ′. Lemmas 7.1.31 and 7.1.32 can
be used to show that Z must be of the form O(0, 1)r

⋃
j∈J Xj where the

Xj are Berkovich closed disks or points of type I or IV. As the morphism
φan restricts to a finite morphism from Z onto X ′, it can be deduced that
there can be only a finite number of points in Y ′ r Y ′ where Y ′ denotes
the closure of Y ′ in D′. We must hence have that Y ′ ∈ B and is of form
3. As the union of open sets in B of form 3 is connected, we conclude that
Y ′ is a connected open set in B of form 3. It must be the complement of
the union of a finite number of Berkovich closed disks or points of type I
or IV. The complement of Y ′ is the space Y and Y = (φanD′)−1(X). We
showed that there exists a point q ∈ Y which is H-invariant. As φanD′ is
clopen, every connected component of Y must contain the point q and
hence Y is connected. If the union of a finite number of Berkovich closed
disks and points of types I or IV in D′ is connected then that union must
be a Berkovich closed disk as well. Hence Y is a Berkovich closed disk.
The morphism φanD′ restricts to a finite morphism from Y onto X. As k
is algebraically closed, the radius of Y belongs to the group |k∗|. This
proves the first part of the proposition

2. We make use of the notation introduced in the proof of part 1 of the
proposition. Let W ⊂ C ′an be a connected open set. We must show that
λ′−1(W ) is an open subset of [0, 1] × C ′an. We divide the proof into two
cases - when W ∩ Σ(C ′an,W′) is empty and when W ∩ Σ(C ′an,W′) is
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non-empty.

We treat the first case - W ∩ Σ(C ′an,W′) = ∅. As W is connected, there
exists D′ ∈ D′ such that W ⊂ D′. By 7.1.29, there exists D ∈ D such
that φan(D′) = D. We may suppose further that W belongs to B. It must
be of form 1, 2 or 3. Suppose that W is a Berkovich open disk contained
in D′. Let V := φan(W ) ⊂ D. By Lemma 7.1.32, V is a Berkovich open
disk in D. By construction of λ, we must have that there exists s ∈ [0, 1]
such that λ−1(V ) = [0, s)× V . By assumption, λ′ is compatible with λ in
that the following diagram is commutative.

[0, 1]× Can Can

[0, 1]× C ′an C ′an

? ?

-

-

λ

λ′

id× φan φan

.

It follows that λ′−1(W ) ⊂ [0, s) × (φan)−1(V ). Let A1, . . . , Am denote
the connected components of (φan)−1(V ). Observe that (φan)−1(V ) =⋃
σ∈G σ(W ). We suppose without loss of generality that W ⊂ A1. As

A1 is connected, we must have that A1 ⊂ D′. We claim that W = A1.
By 7.1.29, if σ ∈ G then σ(D′) ∈ D′. Let H := {σ ∈ G|σ(D′) = D′}.
We must have that A1 ⊂

⋃
σ∈H σ(W ) and A1 ∩ σ(W ) = ∅ if σ /∈ H. By

part (1) of the proposition and Lemma 7.1.33, if σ ∈ H then σ(W ) is a
Berkovich open ball whose radius is equal to that of W . It follows that
one of the connected components of

⋃
σ∈H σ(W ) is the ball W . Hence

W = A1. Observe that if Ai is a connected component and x ∈ Ai then
for every t ∈ [0, s), we must have that λ′(t, x) ∈ Ai. Indeed, the path
λ′x : [0, s) → C ′an defined by t 7→ λ′(t, x) is contained in (φan)−1(V ). As
{Aj} is the set of connected components of (φan)−1(V ) we must have that
λ′(t, x) ∈ Ai for every t ∈ [0, s). It follows from this observation that
λ′−1(W ) = [0, s)×W .

LetW ⊆ D be a Berkovich open ball and Y1, . . . , Ym be disjoint Berkovich
closed sub disks of W or points of type I or IV. Let Z :=

⋃
1≤i≤n Yi. We

show that λ′−1(W rZ) is an open subset of [0, 1]×C ′an. We have already
shown that there exists s ∈ [0, 1] such that λ′−1(W ) = [0, s)×W . Hence
λ′−1(W r Z) = ([0, s) × W ) r λ′−1(Z). As Z is the disjoint union of
the Yi, we must have that λ′−1(Z) =

⋃
i λ

′−1(Yi). It suffices hence to
show that if Y is a Berkovich closed disk contained in D′ then there exists
t ∈ [0, 1] such that λ′−1(Y ) = [0, t] × Y . By Lemma 7.1.32, the image of
Y for the morphism φanD′ is a Berkovich closed disk or a point of type I or
IV. We can use essentially the same argument above wherein we showed
that the preimage of a Berkovich open disk O in D′ for the function λ′

is an open subset of [0, 1] × C ′an of the form [0, s′) × O to show that
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λ′−1(Y ) = [0, t]× Y .

To conclude the proof, we treat the case when W ⊂ C ′an is a connected
open set that intersects Σ(C ′an,W′). Let S := W ∩ Σ(C ′an,W′) and let
D′
S := {D′ ∈ D|D′ ∩ S 6= ∅}. As W is connected, for every D′ ∈ D′

S ,
W ∩D′ is a non empty connected open neighborhood which is the union
of open sets in B of form 3. It suffices to prove λ′−1(W ) is open under
the assumption that W ∩ D′ for D′ ∈ D′

S belongs to B and is of form
3. We have the equality W =

⋃
D′∈D′

S
(W ∩D′) ∪ (W ∩ Σ(C ′an,W′)). It

follows that λ′−1(W ) =
⋃
D′∈D′

S
λ′−1(W ∩ D′) ∪ λ′−1(Σ(C ′an,W′) ∩W ).

We showed that for every D′ ∈ D′
S , λ

′−1(W ∩ D′) is an open set of
[0, 1]×D′. Furthermore, it can be checked that [0, 1]×W ⊂ λ′−1(W ). By
construction, λ′−1(Σ(C ′an,W′)∩W ) = ([0, 1]×(Σ(C ′an,W′)∩W ))

⋃
({1}×⋃

D′∈D′
S
D′). The set [0, 1] ×W is an open subset of [0, 1] × C ′an that is

contained in λ′−1(W ) and is a neighborhood of every point of [0, 1] ×
(Σ(C ′an,W′) ∩W ). It remains to show that if x ∈ D′ for some D′ ∈ D′

S

then there exists an open subset of [0, 1] × C ′an contained in λ′−1(W )
that is a neighborhood of (1, x). We proceed as follows. As W ∩D′ is a
connected open subset in B of form 3, it can be verified using the arguments
above (case 1) that there exists rW∩D′ ∈ [0, 1) such that (rW∩D′ , 1]×D′ ⊂
λ′−1(W ). As (rW∩D′ , 1]×D′ is an open subset of [0, 1]×C ′an that contains
1×D′ we conclude the claim and the proof.

7.2 Compatible deformation retractions

Our goal in this section is to prove the existence of a pair of compatible defor-
mation retractions in the case of a finite morphism between curves. The precise
statement is the following.

Theorem 7.2.1. Let C and C ′ be smooth projective irreducible k-curves and
φ : C ′ → C be a finite morphism. There exists a pair of deformation retractions

ψ : [0, 1]× Can → Can

and

ψ′ : [0, 1]× C ′an → C ′an

with the following properties.

1. The images ΥC′an := ψ′(1, C ′an) and ΥCan := ψ(1, Can) are closed sub-
spaces of C ′an and Can respectively, each with the structure of a connected,
finite metric graph. Furthermore, we have that ΥC′an = (φan)−1(ΥCan).

2. There exists weak semistable vertex sets A′ ⊂ C ′an and A ⊂ Can such that
ΥC′an = Σ(C ′an,A′) and ΥCan = Σ(Can,A).

3. The deformation retractions ψ and ψ′ are compatible i.e. the following
diagram is commutative.
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[0, 1]× Can Can

[0, 1]× C ′an C ′an

? ?

-

-

ψ

ψ′

id× φan φan.

Remark 7.2.2. In [HL], Hrushovski and Loeser construct compatible defor-
mation retractions in greater generality. Let π : V ′ → V be a finite mor-
phism between quasi-projective varieties V ′ and V over a non-Archimedean
non-trivially real valued field F . There exists a generalised real interval [[HL],
Section 3.9] I and a pair of deformation retractions H : I × V an → V an and
H ′ : I × V ′an → V ′an which are compatible in the sense defined above. This
result follows from Remark 11.1.3 (2) and Corollary 14.1.6 in loc.cit.

The proof of 7.2.1, though involved, is elementary in that our techniques
are essentially those developed in [B]. We do not make use of the results of
Hrushovski-Loeser in this section. Even though verifying the continuity of the
homotopies defined is a painstaking process, it is advantageous that the construc-
tion of the compatible pair is explicit. Our strategy is inspired by the treatment
of deformation retractions for curves in [B] and also Chapter 7 of [HL].

To prove Theorem 7.2.1, we adapt the strategy employed in Section 7 of
[HL]. Our method of proof is as follows. We begin by proving the theorem
for a finite morphism φ : C → P1

k where C is a smooth, projective curve and
the extension of function fields k(P1

k) ↪→ k(C) induced by the morphism φ is
Galois. We then use this result to prove the theorem for a finite morphism
φ : C ′ → C between smooth projective curves. We begin with the following
lemma which provides us compatible weak semistable vertex sets for a finite
morphism between smooth projective irreducible curves.

Lemma 7.2.3. Let φ : C ′ → C be a finite morphism between smooth projec-
tive irreducible curves. Let S ⊂ Can be a finite set of points none of which
are of type IV. There exists a weak semistable vertex set W ⊂ Can such that
Σ(Can,W) contains S, V := (φan)−1(W) is a weak semistable vertex set of C ′an

and Σ(C ′an,V) = (φan)−1(Σ(Can,W)).

Proof. Let W0 be a weak semistable vertex set for Can such that Σ(Can,W0)
contains S. As the morphism φan is finite, the preimage (φan)−1(Σ(Can,W0)) is
a finite graph which does not contain a point of type IV (Proposition 7.1.26). Let
V0 be a weak semistable vertex set such that Σ(C ′an,V0) contains (φ

an)−1(Σ(Can,W0)).
Let W1 be a weak semistable vertex set such that the skeleton Σ(Can,W1) con-
tains φan(Σ(C ′an,V0)). We claim that the preimage A := (φan)−1(Σ(Can,W1))
is connected. Let A1, . . . , Am denote the connected components of A such that
A1 contains Σ(C

′an,V0). The morphism φan is an open and closed morphism (cf.
Lemma 6.1.4). It follows that φan restricts to a surjective map from each of the
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Ai onto Σ(C
an,W1). However since A1 contains the set (φ

an)−1(Σ(Can,W0)) we
must have that A = A1. It follows that A is a connected graph that contains the
skeleton Σ(C ′an,V0), using which it can be checked that C ′anrA is the disjoint
union of sets each of which are isomorphic to Berkovich open balls. We claim
that these open balls have radii belonging to |k∗|. Let D′ be a connected compo-
nent of C ′anrA. As the morphism φan is clopen and A = (φan)−1(Σ(Can,W1)),
there exists a connected component D of Can rΣ(Can,W1) such that the mor-
phism φan restricts to a finite morphism from D′ onto D. As D is isomorphic
to a Berkovich open ball of radius belonging to |k∗|, we must have that D′

is a Berkovich open ball whose radius belongs to |k∗|. It follows that there
exists a weak semistable vertex set V1 in C ′an such that Σ(C ′an,V1) = A.
The set W := W1 ∪ φ

an(V1) is a weak semistable vertex set for Can and
Σ(Can,W) = Σ(Can,W1). Let V := (φan)−1(W). As V contains V1 and is
contained in Σ(C ′an,V), we must have that V is a weak semistable vertex set
and Σ(C ′an,V) = Σ(C ′an,V1). The pair V,W satisfy the claims made in the
lemma.

7.2.1 Lifting paths

Let φ : C ′ → C be a finite morphism between k-curves. A path in Can

is a continuous function u : [a, b] → Can where [a, b] is a real interval. To
construct deformation retractions which are compatible for the morphism φ, we
must understand to what extent certain paths on Can can be lifted. By a lift of
a path, we mean the following.

Definition 7.2.4. Let a < b be real numbers and u : [a, b] → Can be a con-
tinuous function. A lift of the path u is a path u′ : [a, b] → C ′an such that
u = φan ◦ u′.

Lemma 7.2.5. Let φ : C ′ → C be a finite separable morphism between ir-
reducible projective smooth k-curves such that the extension of function fields
induced by φ is separable. Let V ⊂ W be weak semistable vertex sets of Can.
Assume that W contains the set of k-points of C over which the morphism φ is
ramified. Let W′ ⊂ C ′an be a weak semistable vertex set such that Σ(C ′an,W′) =
(φan)−1(Σ(Can,W)). Let λWΣ(Can,V) : [0, 1] × Can → Can be the deforma-

tion retraction constructed in Proposition 7.1.20 whose image is Σ(Can,W).
We simplify notation and write λ in place of λWΣ(Can,V). Let p ∈ Can. Let

λp : [0, 1] → Can be the path defined by t 7→ λ(t, p). Let q ∈ (φan)−1(p). There
exists a unique path u : [0, 1]→ C ′an such that u(0) = q and φan ◦ u = λp.

Proof. We split the proof into two cases.

1. Let p ∈ Can be a point which is not of type IV. We can suppose that
p /∈ Σ(Can,W) since when p ∈ Σ(Can,W), the path λp is constant and
hence can always be lifted. We show firstly that for every t ∈ [0, 1), there
exists ε > 0 such that if z′ ∈ (φan)−1(λp(t)) then λp|[t,t+ε] lifts uniquely to

a path starting from z′.

Suppose z := λp(t) was a point of type I. By construction of λ, we must
have that z = p and t = 0. Our choice of weak semistable vertex sets
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implies that φ is étale over λp(t). It follows from Hensel’s lemma that
there exists neighborhoods Vz′ in C ′an around z′ and Vp around p such
that φan restricts to a homeomorphism from Vz′ onto Vp. We conclude
from this fact that there does indeed exist ε > 0 such that λp|[0,ε] lifts

uniquely to a path starting from z′.

Let z := λp(t) be a point of type II or III. By construction, for every
s ∈ [t, 1], λp(s) = λz(s) where λz : [0, 1] → Can is the path defined by
s 7→ λ(s, z). Furthermore, for every s ∈ [0, t], λz(s) = z. It suffices to
show that there exists ε > 0 such that the path λz|[t,t+ε] lifts uniquely to a

path starting from z′. If there exists ε > 0 such that λz|[t,t+ε] is constant
then our claim is obviously true. Let us hence suppose no such ε exists.

By assumption, z /∈ Σ(Can,W). It follows that z′ ∈ C ′an r Σ(C ′an,W′).
Recall that we used D to denote the set of connected components of the
space CanrΣ(Can,W) and when constructing the deformation λ we iden-
tified each D ∈ D with a Berkovich open ball whose radius belongs to
the value group |k∗|. Likewise, let D′ denote the set of connected compo-
nents of the space C ′an r Σ(C ′an,W′). We identify each D′ ∈ D′ with a
Berkovich open ball of unit radius. Let D ∈ D be such that z ∈ D and
D′ ∈ D′ such that z′ ∈ D′. By Lemma 7.1.29, we have that φan(D′) = D
and in addition φan restricts to an open and closed map on D′. By con-
struction of the deformation retraction λ, there exists β ∈ [0, 1] such that
for every x ∈ D, λ(s, x) ∈ D when s ∈ [0, β) i.e. λ : [0, β)×D → D is well
defined and λ(s, x) = λ(β, x) when s ∈ [β, 1]. Our assumption that there
does not exist ε > 0 such that λz|[t,t+ε] is constant and the construction

of λ imply that the path λz|[t,β] is injective and that λz([t, β]) ⊂ H(Can).

Furthermore, the composition λz ◦ (−exp) : [−log(β),−log(t)] → Can is
an isometry (cf. Remark 7.1.21).

Let r ∈ |k∗| denote the radius of the ball D. The point z must be of
the form ηa,t for some a ∈ D. Likewise, the point z′ ∈ D′ must be
of the form ηb,t′ for some b ∈ D′ and t′ ∈ (0, 1). We may choose b so
that φan(b) = a. We show now that we can reduce to the case when
a = b = 0. The translation automorphism t−a : O(0, r)→ O(0, r) defined
by x 7→ x − a induces an automorphism tan−a : D → D that maps the
point z to η0,t. We have that λ : [0, β) × D → D is well defined and
it can be checked that λ is tan−a invariant i.e. for every s ∈ [0, β) and
x ∈ D, tan−a(λ(s, x)) = λ(s, tan−a(x)). Similarly, let t−b : O(0, 1) → O(0, 1)
denote the translation morphism y 7→ y − b. The map t−b induces an
automorphism tan−b : D

′ → D′ that maps z′ = ηb,t′ to η0,t′ . Let φ
an
D′ denote

the restriction of φan to D′. As tan−a and tan−b are automorphisms, there
exists a morphism f : D′ → D such that the following diagram commutes.
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D D

D′ D′

? ?

-

-

tan−a

tan−b

φanD′ f

Suppose there exists ε > 0 and a unique path u′ : [t, t + ε] starting from
η0,t′ such that f ◦ u′ = λ

η0,t
|[t,t+ε]. The commutativity of the above diagram

and the fact that tan−a and tan−b are automorphisms imply that there exists
a unique path u : [t, t + ε] starting at z′ such that φan ◦ u = λz|[t,t+ε]. We

may hence assume that z = η0,t and z
′ = η0,t′ and that φan(0) = 0.

Let F ⊂ D′ denote the set (φan)−1(0). Let A ⊂ D′ be a finite set of
points of type II with the following property. Let C denote the set of
connected components of D′ r (A ∪ F ). There exists a finite set Υ ⊂ C
such that if A ∈ Υ then A is isomorphic to a standard open annulus
or a standard punctured Berkovich open disk and if A ∈ C r Υ then
A is isomorphic to Berkovich open ball with radius in |k∗|. Let Σ(D′)
be the union of A ∪ F and the skeleton of every element A ∈ Υ. By
assumption, we must have that z′ ∈ Σ(D′). Suppose, z′ is not a vertex
of the finite graph Σ(D′). It follows that there exists a standard open
annulus A′ ∈ Υ that contains z and in particular does not intersect F . The
map φan restricts to a morphism A′ → D r {0}. By [[BPR], Proposition
2.5], φan(A′) ⊂ D r {0} must be a standard open annulus A as well
and φan(Σ(A′)) = Σ(A). By assumption, we have that z ∈ Σ(A) and
for small enough ε > 0, the path λz|[t,t+ε] is contained in Σ(A). Recall

that we defined sections σ : trop(A) → Σ(A) and σ : trop(A′) → Σ(A′)
of the tropicalization maps trop : Σ(A) → trop(A) and trop : Σ(A′) →
trop(A′) (cf. 7.1.2). By definition of the tropicalization map, we must
have that [−log(t),−log(t + ε)] ⊂ trop(A). By construction, λz ◦ −exp :
[−log(t),−log(t + ε)] → Σ(A) coincides with σ|[−log(t),−log(t+ε)]. As σ is
a homeomorphism, the morphism φan|Σ(A′) : Σ(A

′) → Σ(A) induces a map

φtrop : trop(A′)→ trop(A). By loc.cit, there exists a non zero d ∈ Z such
that φtrop is of the form d(.) + −log(|δ|) for some δ ∈ k∗. Let (φtrop)−1

denote the inverse of φtrop. It can be verified that u := σ◦(φtrop)−1◦−log :
[t, t+ ε]→ D′ is a lift of λz|[t,t+ε] starting from z′. In fact, u is the unique

lift of λz|[t,t+ε] starting from z′. Indeed, by Proposition 2.5 in loc.cit., it

can be deduced that φan(A′ r Σ(A′)) ⊂ A r Σ(A) and furthermore, the
map φan restricted to Σ(A′) is a bijection onto Σ(A). As λz|[t,t+ε] is a path

along Σ(A), u must be a lift along Σ(A′) and hence unique.

Suppose z′ = η0,t′ ∈ Σ(D′) is a vertex. We must have that z′ is a type II
point. It follows that there exists a standard open annulus A′ ∈ Υ with
inner radius t′ and outer radius belonging to |k∗|. By [BPR], the image
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φan(A′) is a standard open annulus A ⊂ D and we choose ε > 0 small
enough so that λz|(t,t+ε] is a path contained in Σ(A). We now proceed

as above to obtain a lift u of λz|(t,t+ε] starting from z′ and for reasons

mentioned above it is the unique lift contained in Σ(A). It remains to
show that u is the unique lift in C ′an and this requires an additional
argument for the following reason. Observe that the annulus A contains
exactly one element of the tangent space Tz′ , whereas previously when z′

was in the interior of A, every tangent direction was contained in A. It
follows that although u might be the unique lift in A, it might not be
the only lift in C ′an. However, it is the only possible lift since by Lemma
7.1.32, the Berkovich closed ball B(0, t′) maps onto the closed ball B(0, t)
and the path λz|(t,t+ε] is contained in the complement of the B(0, t). Hence
any lift of the λz|(t,t+ε] must be contained entirely in A. This proves that
the lift u is unique.

Let L denote the set of s ∈ [0, 1] for which there exists a lift of the path
λp|[0,s] starting from q. Let s ∈ L. We claim that there exists a unique

lift of the path λp|[0,s] starting from q. Let u′, u be two lifts of the path

λp|[0,s] starting from q. Let s0 ∈ [0, s] be the largest real number such that

u′|[0,s0] = u|[0,s0]. Let q
′ := u′(s0) = u(s0) and p

′ := φan. By the first part

of the proof, there exists ε > 0 and a unique lift v of the path λp|[s0,s0+ε].

As u′|[s0,s0+ε] and u|[s0,s0+ε] are both lifts of λp|[s0,s0+ε], we must have that

v = u|[s0,s0+ε] = u′|[s0,s0+ε]. This implies that u|[0,s0+ε] = u′|[0,s0+ε] which
contradicts our assumption on s0. We have thus verified our claim. It
can be deduced from this that the set L contains its supremum. Let t be
the largest real number in [0, 1] such that the path λp|[0,t] lifts to a path

u : [0, t] → C ′an starting from q. Suppose t < 1. By the first half of the
proof, there exists a small real number ε such that λp|[t,t+ε] lifts to a path

starting from u′ : [t, t + ε] → C ′an starting from u(t). Glueing u and u′

gives a path u′′ : [0, t + ε] → C ′an which lifts λp|[0,t+ε]. Hence we have

a contradiction to our assumption that t < 1. Therefore there exists a
unique lift of the path λp.

2. Let p be a point of type IV. We must have that p /∈ Σ(Can,W). We
make use of the notation introduced in part (1) of the proof. There exists
D ∈ D such that p ∈ D. The path λp is injective on [a, b]. Let U
be a connected neighborhood in D of the point p such that (φan)−1(U)
decomposes into the disjoint union of connected open sets {U1, . . . , Um}
and each Ui contains exactly one preimage of the point p. We claim that
we can shrink U and choose a < t′1 < b such that λp([0, t′1]) ⊂ U and
for every x ∈ λp([0, t′1]) there exists exactly one preimage of x in each of
the Ui. This can be accomplished as follows. We show that there exists
t′ ∈ (a, b) such that for every element x ∈ λp([a, t′)) the cardinality of
the set (φan)−1(x) is constant. We can then shrink U so that it does
not intersect λp([t′, b]) and choose t′1 ∈ (a, t′) suitably small. Such a U
must satisfy the claim since the morphism φan being closed and open (cf.
Lemma 6.1.4) is surjective from each of the Ui onto U . Observe that if
t1, t2 ∈ (a, s] are such that t1 < t2 then the number of preimages of λp(t1)
is greater than or equal to the number of preimages of λp(t2). This follows
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from the uniqueness of lifts of part (1) and that if P is a lift of the path
λp|[t1,s] then P|[t2,s] is a lift of the path λp|[t2,s]. As the morphism φan is

finite, there exists t′ ∈ (a, b) such that the number of preimages of every
point x ∈ λp((a, t′)) is constant. The preimages in C ′an of the point p are
of type IV and the tangent space at any such point is a single element.
It follows that the number of preimages of every point in λp([a, t′)) is a
constant. Let t′1 ∈ (a, t′) be such that λp(t′) ∈ U . This verifies the claim.
We suppose without loss of generality that q ∈ U1. We show firstly that
the path λp[0,t′

1
] can be lifted to a path in Can starting from q. It suffices

to show that the path λp[a,t′
1
] can be lifted to a path in Can starting from

q. Let I denote the set of real numbers r ∈ [a, t′1] for which there exists
a lift Pr of the path λp|[r,t′

1
] contained in U1. As U1 contains exactly one

preimage of the point λp(r), the uniqueness of lifts from part (1) of the
proposition implies that the set I is closed. Let t0 denote the smallest
element of the set I. Suppose t0 > a. Let a′ ∈ (a, t0) and p

′ := λp(a′). By
construction, p′ is not a point of type IV. Let q′ be the unique preimage

of p′ in U1. By part (1), there exists a lift P ′ of the path λp
′

|[a′,t′
1
] starting

from q′. By construction, λp
′

|[t0,t′1]
coincides with λp|[t0,t′1]

. As the lifts are

unique, we must have that P ′
|[t0,t′1]

= P . This is a contradiction to our

assumption that t0 > a. It follows that there exists a lift of the path λp|[a,t′
1
]

in U1 which in turn implies that there exists a lift of the path λp|[0,t′
1
] in

U1 as λp|[0,a] is constant. We abuse notation and refer to this lift as P ′ as

well. Let p′′ := λp(t′1). By construction, λp
′′

|[t′
1
,1] coincides with the path

λp|[t′
1
,1]. Let q′′ := P ′(t′1). By part (1), there exists a lift P ′′ of the path

λp
′′

|[t′
1
,1] starting from q′′. Glueing the paths P ′ and P ′′ results in a lift of

the path λp starting from q.

7.2.2 Finite morphisms to P1

k

Let C be a smooth projective irreducible k-curve. Let φ : C → P1
k be a fi-

nite morphism such that the extension of function fields k(P1
k) ↪→ k(C) induced

by φ is separable. Let R be the finite set of k-points of P1
k over which the

morphism φ is ramified. Let W be a weak semistable vertex set that con-
tains R such that V := (φan)−1(W) is a weak semistable vertex set for Can

and Σ(Can,V) = (φan)−1(Σ(P1,an
k ,W)). By Proposition 7.1.20, there exists a

deformation retraction

λΣ(P1,an

k
,W) : [0, 1]× P1,an

k → P1,an
k

whose image is the skeleton Σ(P1,an
k ,W). Recall that for a point p ∈ P1,an

k , the

deformation retraction λΣ(P1,an

k
,W) defines a path λp

Σ(P1,an

k
,W)

: [0, 1] → P1,an
k by

t 7→ λΣ(P1,an

k
,W)(t, p). We are now in a position to prove Theorem 7.2.1 for the

morphism φ : C → P1
k. We suppose in addition that the extension of function

fields k(P1
k) ↪→ k(C) induced by φ is Galois.
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Proposition 7.2.6. Let C be a smooth projective irreducible curve and let φ :
C → P1

k be a finite morphism such that the extension of function fields k(P1
k) ↪→

k(C) is Galois. Let W be a weak semistable vertex set for P1,an
k that contains the

closed points over which the morphism is ramified such that V := (φan)−1(W)
is a weak semistable vertex set for Can and Σ(Can,V) = (φan)−1(Σ(P1,an

k ,W)).
There exists a pair of compatible deformation retractions ψ′ : [0, 1]×Can → Can

and ψ : [0, 1] × P1,an
k → P1,an

k whose images are the connected finite graphs

Σ(Can,V) and Σ(P1,an
k ,W) respectively.

Proof. Let ψ := λΣ(P1,an

k
,W). We define the deformation retraction ψ′ : [0, 1] ×

Can → Can as follows. Let q′ ∈ Can and q := φan(q′). By Lemma 7.2.5,
there exists a unique lift ψ′q′ of the path ψq starting at q′. For t ∈ [0, 1] and
q′ ∈ C ′an, we set ψ′(t, q′) := ψ′q′(t). The uniqueness of the lifts ψ′q′ imply that
ψ′ is well defined. Let G = Gal(k(C)/k(P1

k)). The uniqueness of the lift implies

that for every g ∈ G, g ◦ ψ′q′ = ψ′g(q′). It follows that for every t ∈ [0, 1],
g(ψ′(t, q′)) = ψ′(t, g(q′)). The compatibility of ψ′ and ψ implies that ψ′(1, Can)
is equal to (φan)−1(Σ(P1,an

k ,W)) = Σ(Can,V). The continuity of ψ′ follows from
7.1.35.

We show that Theorem 7.2.1 can be deduced from Proposition 7.2.6.

Proof. Let φ : C ′ → C be a finite morphism between smooth projective irre-
ducible k-curves. It suffices to prove the theorem when the extension of func-
tion fields k(C) ↪→ k(C ′) induced by the morphism φ is separable. Indeed, the
extension k(C) ↪→ k(C ′) can be decomposed into a separable field extension
k(C) ↪→ L and a purely inseparable extension L ↪→ k(C ′). Let C ′′ denote
the smooth projective irreducible k-curve that corresponds to the function field
L. The corresponding morphism of curves C ′ → C ′′ and its analytification
C ′an → C ′′an are homeomorphisms. If V′′ is a weak semistable vertex set for
C ′′an then its preimage V′ in C ′an is a weak semistable vertex set as well and a
deformation retraction of C ′′an with image Σ(C ′′an,V′′) lifts to a deformation
retraction on C ′an with image Σ(C ′an,V′).

Let a : C → P1
k be a finite separable morphism and let K be a finite Galois

extension of k(P1
k) that contains k(C

′). Let C ′′ denote the smooth projective ir-
reducible curve corresponding to the function field K. By construction we have
the following sequence of morphisms : C ′′ → C ′ → C → P1

k. Let c : C ′′ → P1
k

denote this composition. Using Lemma 7.38, it can be checked that there exists
a weak semistable vertex set A for P1,an

k that contains the points over which the
morphism c : C ′′ → P1

k is ramified and in addition that (aan)−1(A) is a weak

semistable vertex set of Can, (a ◦ φ)an−1
(A) is a weak semistable vertex set of

C ′an and (can)−1(A) = A′′ is a weak semistable vertex set for C ′′an. Further-

more, Σ(Can, (aan)−1(A)) = (aan)−1(Σ(P1,an
k ,A)), Σ(C ′an, (a ◦ φ)an−1

(A)) =

(a ◦ φ)an−1
(Σ(P1,an

k ,A)) and Σ(C ′′an,A′′) = (can)−1(Σ(P1,an
k ,A)).

The deformation retraction λΣ(P1,an

k
,A) has image Σ(P1,an

k ,A) and lifts to a de-

formation retraction λ′′A
′′

with image Σ(C ′′an,A′′). LetG := Gal(k(C ′′)/k(P1
k)).

The deformation retraction λ′′A
′′

is G-invariant. There exists sub groups HC′ ⊂
G and HC ⊂ G such that C ′′ → C ′ and C ′′ → C are the quotient morphisms
C ′′ → C ′′/HC′ and C ′′ → C ′′/HC . As λ′′A

′′

is HC and HC′ invariant, it must
induce deformations λC and λC′ whose images are (aan)−1(Σ(P1,an

k ,A)) and

((a ◦ φ)an)−1(Σ(P1,an
k ,A)) respectively. This proves the theorem.
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7.3 Calculating the genera gan(C ′) and gan(C)

In the previous sections we showed that given a k-curve, there exists a defor-
mation retraction of the curve onto a closed subspace which is a finite metric
graph. We called such subspaces skeleta. In Definition 7.1.25, we introduced
the genus of a skeleton and by Proposition 7.1.24 it is independent of the weak
semistable vertex sets that define it, implying that it is in fact an invariant of
the curve. In what follows we study how these invariants relate to each other
given a finite morphism between the spaces they are associated to.

The theorem that follows is analogous to the Riemann-Hurwitz formula in
algebraic geometry. We introduce the notation involved in the statement of
7.3.1. Let φ : C ′ → C be a finite separable morphism between smooth projective
curves over the field k.

7.3.1 Notation

We define the genus of a point p ∈ Can as follows. If p ∈ Can is of type II then
let gp denote the genus of the smooth projective curve C̃p which corresponds to

the k̃-function field H̃(p) and if p ∈ Can is not of type II then we set gp = 0.

Let p′ ∈ C ′an which is of type II and let p := φan(p′). The k̃-function

fields H̃(p′), H̃(p) define smooth projective k̃-curves C̃ ′
p′ , C̃p respectively. The

morphism φan induces an injection H̃(p) ↪→ H̃(p′) which implies a morphism

C̃ ′
p′ → C̃p. This morphism is not necessarily separable. The extension H̃(p) ↪→

H̃(p′) can be decomposed so that there exists an intermediate k̃-function field

Ĩ(p′, p) and the extension H̃(p) ↪→ Ĩ(p′, p) is purely inseparable while Ĩ(p′, p) ↪→

H̃(p′) is separable of degree s(p′, p). Such a decomposition exists by [MOU].
Let C̃p′,p denote the smooth projective k̃-curve which corresponds to the field

Ĩ(p′, p). By construction, the genus of the curve C̃p′,p is equal to gp.

The finite separable morphism C̃ ′
p′ → C̃p′,p can be used to relate the genera

of the two curves via the Riemann-Hurwitz formula. As in [[H], IV.2], let

Rp′,p := ΣP∈C̃′
p′
length(ΩC̃′

p′/C̃p′,p
)P .P

and

R := ΣP∈C′ length(ΩC′/C)P .P.

We define invariants on the points of Can which relate the values gan(C ′), gan(C)
from Definition 7.1.25. For p ∈ Can of type II, let

s(p) := Σp′∈(φan)−1(p)s(p
′, p),

R1
p′,p := deg(Rp′,p)− (2s(p′, p)− 2),

R1
p := Σp′∈(φan)−1(p)R

1
p′,p.

When p is not of type II, let s(p) be the cardinality of the fibre (φan)−1(p)
and R1

p := 0.
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7.3.2 A Riemann-Hurwitz formula for the analytic genus

Theorem 7.3.1. Let φ : C ′ → C be a finite separable morphism between smooth
projective curves over the field k. Let gan(C ′), gan(C) be as in Definition 7.1.25.
We have the following equation.

2gan(C ′)− 2 = deg(φ)(2gan(C)− 2) + Σp∈Can2s(p)gp + deg(R)− Σp∈CanR1
p.

Proof. In order to prove Theorem 7.3.1, we make use of the fact that there exists
a pair of deformation retractions ψ′ : [0, 1]×C ′an → C ′an and ψ : [0, 1]×Can →
Can which are compatible with the morphism φan (Theorem 7.2.1). Let ΥC′an

and ΥCan denote the images of the deformation retractions ψ′ and ψ respectively.
We can assume that ΥCan contains the ramification locus of the morphism φ.
Furthermore, there exists weak semistable vertex sets A ⊂ Can and A′ ⊂ C ′an

such that ΥCan = Σ(Can,A) and ΥC′an = Σ(C ′an,A′).
We identify a set of vertices V (ΥCan), V (ΥC′an) for the skeleta ΥCan and

ΥC′an which satisfy the following conditions.

1. V (ΥC′an) = (φan)−1(V (ΥCan)).

2. A ⊂ V (ΥCan) and A′ ⊂ V (ΥC′an).

3. If p (resp. p′) is a point on the skeleton ΥCan (resp. ΥC′an) for which
there exists a sufficiently small open neighbourhood U ⊂ ΥCan (resp.
U ′ ⊂ ΥC′an) such that Ur{p} (resp. U ′r{p′}) has atleast three connected
components then p ∈ V (ΥCan) (resp. p′ ∈ V (ΥC′an)).

It can be verified that a pair (V (ΥCan), V (ΥC′an)) satisfying these properties
does indeed exist. We define the set of edges E(ΥCan) (resp. E(ΥC′an)) for the
skeleton ΥCan (ΥC′an) to be the collection of all paths contained in ΥCan (resp.
ΥC′an) connecting any two vertices. Since ΥCan (resp. ΥC′an) is the skeleton
associated to a weak semistable vertex set, the edges of the skeleton are identified
with real intervals. This defines a length function on the set of edges.

By definition, gan(C) = g(ΥCan) and gan(C ′) = g(ΥC′an) The genus formula
[[AB], 4.5] implies that

g(C) = g(ΥCan) + Σp∈V (ΥCan )gp

and

g(C ′) = g(ΥC′an) + Σp′∈V (ΥC′an )gp′ .

By definition, the spaces C ′anrA and C ′anrA′ decompose into the disjoint
union of Berkovich open balls and open annuli. It follows that if p /∈ A or p′ /∈ A′

then gp = 0 and gp′ = 0. As A ⊂ V (ΥCan) and A′ ⊂ V (ΥC′an), the equations
above can be rewritten as

g(C) = g(ΥCan) + Σp∈Cangp (7.1)

and

g(C ′) = g(ΥC′an) + Σp′∈C′angp′ . (7.2)
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The morphism φ : C ′ → C is a finite separable morphism between smooth,
projective curves. The Riemann-Hurwitz formula [[H], Corollary IV.2.4] enables
us to relate the genera of the curves C ′ and C. Precisely,

2g(C ′)− 2 = deg(φ)(2g(C)− 2) + deg(R) (7.3)

where R is a divisor on the curve C ′ such that if φ is tamely ramified at x′ ∈ C ′

then ordx′(R) = ram(x′, x) − 1. Using the above, we obtain the following
equation relating gan(C ′) and gan(C).

2gan(C ′)− 2 + 2(Σp′∈C′angp′) = deg(φ)(2gan(C)− 2)+

deg(φ)(2Σp∈Cangp) + deg(R).

The only points p′ ∈ C ′an for which gp′ 6= 0 belong to A′ and are of type
II. Let p′ be such a point and p := φan(p′). Applying the Riemann-Hurwitz

formula to the extension Ĩ(p′, p) ↪→ H̃(p′) relates gp′ and gp by the following
equation.

2gp′ − 2 = s(p′, p)(2gp − 2) + deg(Rp′,p).

This equation holds for all points of type II. When p′ and p are not of type
II, we set s(p′, p) := 1 and Rp′,p := 0. These invariants imply the following
equation.

2gan(C ′)− 2 = deg(φ)(2gan(C)− 2)− Σp′∈C′an [s(p′, p)(2gp − 2) + deg(Rp′,p) + 2]+

deg(φ)Σp∈Can(2gp) + deg(R).

Let s(p) := Σp′∈(φan)−1(p)s(p
′, p), R1

p′,p := deg(Rp′,p) − (2s(p′, p) − 2) and

R1
p := Σp′∈(φan)−1(p)R

1
p′,p. These invariants further simplify the equation above

to the following form.

2gan(C ′)− 2 = deg(φ)(2gan(C)− 2)− Σp∈Can2s(p)gp − Σp∈CanR1
p + deg(R).

The rest of this section is dedicated to studying the invariant s(p) arising in
the equation above.

7.3.3 Calculating i(p′) and the defect

Let M be a non-Archimedean valued field with valuation v. Let |M∗| denote
the value group and M̃ denote the residue field. Let M ′ be a finite extension of
the field M such that the valuation v extends uniquely to M ′. By Ostrowski’s
lemma, we have the following equality.

[M ′ :M ] = (|M ′∗| : |M∗|)[M̃ ′ : M̃ ]cr.

Here c is the characteristic of the residue field if it is positive and one oth-
erwise. The value d(M ′,M) := cr is called the defect of the extension. If r = 0
then we call the extension M ′/M defectless.
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We now relate this definition to the situation we are dealing with. Let p be
a point of type II belonging to Can and p′ ∈ (φan)−1(p). Since the field k is
algebraically closed non-Archimedean valued and the points p, p′ are of type II,
the value groups of the fields H(p) and H(p′) remain the same. We have the
following equality

[H(p′) : H(p)] = [H̃(p′) : H̃(p)]d(p′, p)

where d(p′, p) is the defect of the extension H(p′)/H(p).

Lemma 7.3.2. Let p ∈ Can and p′ ∈ (φan)−1(p). The extension H(p) ↪→ H(p′)
is defectless i.e. d(p′, p) = 1.

Proof. We make use of the Poincaré-Lelong theorem and our construction in
Section 7.3 of the pair of compatible deformation retractions ψ and ψ′. Let
r ∈ [0, 1] be the smallest real number such that p ∈ ψ(r, C(k)) = {ψ(r, x)|x ∈
C(k)}. Since the deformation retractions are compatible it follows that if p′ ∈
(φan)−1(p) then p′ ∈ ψ′(r, C ′(k)).

Let x ∈ C(k) be such that ψ(r, x) = p. Observe that our choice of ΥCan

implies that the morphism φ is unramified over x. Let Px denote the path
ψ( , x) : [0, r]→ Can. Given a simple neighborhood [[BPR], Definition 4.28], U
of p, the germ of the path Px at p lies in a connected component of U r {p}
and hence defines an element of the tangent space which we refer to as ex.
Equivalently, for some a > 0, the path (Px)|[a,r] ◦ −exp : [−log(a),−log(r)] →
Can is a geodesic segment and its germ defines the element ex of the tangent
space Tp (cf. Remark 7.1.21). Let tx be a uniformisant of the local ringOC,x such

that |tx(p)| = 1 and t̃x- the image of tx in the residue field H̃(p) is a uniformisant

at the point ex in H̃(p). This can be accomplished by choosing tx so that it
has no zeros or poles at any k-point y for which the path ψ( , y) : [0, r] → Can

coincides with ex in the tangent space and using the Poincaré-Lelong theorem.
Such a choice is possible by the semistable decomposition associated to the
skeleton ΥCan . Let t′x denote the image of tx in the function field k(C ′). Our
choice of tx implies that for every p′ ∈ (φan)−1(p), |t′x(p

′)| = 1.

The inclusionH(p) ↪→ H(p′) induces an inclusion of k̃-function fields H̃(p) ↪→

H̃(p′). As before, let C̃p and C̃
′
p′ denote the smooth projective curves associated

to these function fields. As explained above, the path Px defines a k̃-point ex
of the curve C̃p. Let E(ex, p

′) denote the set of preimages of this point on the

curve C̃ ′
p′ .

Let S := {x′1, ...x
′
k} denote the preimages of the point x and ram(x′i, x)

denote the ramification index of the morphism φ at the point x′i. Since the
skeleton ΥCan contains the set of k-points over which the morphism is ramified,
we have that ram(x′i, x) = 1 for all i. If x′ ∈ S then the path Px′ := ψ′( , x′) :
[0, r] → Can defines an element of the tangent space at ψ′(r, x′). Indeed, if
U ′ is a simple neighborhood of the point ψ′(r, x′) then there exists a ∈ [0, r)
such that Px′ |[a,r) is contained in exactly one connected component of the space
U ′ r ψ′(r, x′).

The set of elements of the tangent spaces Tp′ for p′ ∈ (φan)−1(p) that are
defined by the paths {ψ′( , x′i) : [0, r] → Can} coincides with the set E(ex) :=
∪p′∈(φan)−1(p)E(ex, p

′). Our choice of tx implies that if y′ ∈ C ′(k)r φ−1(x) and
ψ′( , y′) : [0, r]→ C ′an ∈ E(ex) then t

′
x cannot have a zero or pole at y′.
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For p′ ∈ (φan)−1(p) and e′ ∈ E(ex, p
′), let Se′,p′ be the collection of those

x′ ∈ S such that ψ′(r, x′) = p′ and ψ′( , x′) : [0, r] → Can = e′. The non-
Archimedean Poincaré-Lelong theorem implies that

δe′(−|log(t
′
x)|)(p

′) = Σx′∈Se′,p′
ram(x′, x) = card(Se′,p′).

The second equality follows from the fact that ram(x′, x) = 1. Furthermore,

δe′(−|log(t
′
x)|)(p

′) = orde′(t̃
′
x).

Since Σe′∈E(ex,p′)orde′(t̃
′
x) = [H̃(p′) : H̃(p)], we must have that

Σp′∈(φan)−1(p)[H̃(p′) : H̃(p)] = Σx′∈Sram(x′, x) = Σe′,p′card(Se′,p′).

Hence

Σp′∈(φan)−1(p)[H̃(p′) : H̃(p)] = card(S).

As the field k is algebraically closed, the expression on the right is equal to
the degree of the morphism φ and we have that

Σp′∈(φan)−1(p)[H̃(p′) : H̃(p)] = Σp′∈(φan)−1(p)[H(p
′) : H(p)].

This implies that for every p′ ∈ (φan)−1(p) the extension H(p) ↪→ H(p′) is
defectless.

The result above follows from the more general fact that the residue field
H(p) associated to a point p of type II on the analytification Can of a k-curve
C is stable [[TEM], Corollary 6.3.6], [DUC]. Lemma 7.3.2 can in fact be used
to prove this result. Propositions 2 and 4 of Section 3.6 in [BGR] allow us to
give the following definition of a stable field which is complete.

Definition 7.3.3. A complete field K is stable if and only if for every finite
separable field extension L/K the following equality holds

[L : K] = [|L∗| : |K∗|][L̃ : K̃].

Proposition 7.3.4. Let S be a k-curve. Let p ∈ San be a point of type II. The
complete field H(p) is stable.

Proof. Let Si be an irreducible component of S such that p ∈ San
i . Let S′

i

denote the normalisation of Si. There exists a finite set of k-points F ′ and F in
S′
i and Si respectively such that S′an

i r F ′ = San
i r F . It follows that we may

reduce to the case when S is smooth, projective and integral.
Let L be a finite separable extension of H(p). By definition, H(p) is the

completion of the function field of the curve S with respect to the valuation
associated to p. Let L0 denote the integral closure of k(S) in L. By construction,
L0 is a finite separable field extension of k(S). Hence there exists a smooth

projective k-curve S′ such that k(S′) = L0. Let L̂0 denote the completion of

L0 induced by the restriction of the valuation of L. We claim that L̂0 = L. Let
α ∈ L. By construction α is algebraic over L̂0. Let g ∈ L̂0[X] be the minimal

polynomial of α. Suppose that g is not a monomial. As L̂0 is the completion
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of L0, there exists a sequence (fi)i of polynomials of deg(g) in L0[X] which
converge to g with respect to the Gauss norm i.e. the coefficients of the (fi)i
converge to the coefficients of g. Let αi denote a root of fi for each i. By
Corollary 2 of [[BGR], Section 3.4], there exists a sub sequence of (αi)i which
converges to a root α′ of g. As the αi are algebraic over L0 they must be
algebraic over k(S). Furthemore, by Proposition 3 in [[BGR], Section 3.4],
for large enough i we must have that αi ∈ L. Hence by definition of L0,
αi ∈ L0. Hence α

′ ∈ L̂0. This implies a contradiction to our assumption that g
is irreducible and of degree greater than or equal to 2. Consequently, α ∈ L̂0 and
L̂0 = L. Hence there exists a point p′ of type II on S′an such that H(p′) = L.
The proposition follows from Lemma 7.3.2.

We study the invariants s(p) and s(p′, p) of Theorem 7.3.1 using the defor-
mation retractions ψ and ψ′.

Definition 7.3.5. (The equivalence relation ∼i(r)) Let r ∈ [0, 1]. We define an
equivalence relation ∼i(r) on C ′(k) as follows. We set x′1 ∼i(r) x

′
2 if and only

if φ(x′1) = φ(x′2), ψ
′(r, x′1) = ψ′(r, x′2) and the elements of the tangent space

Tψ′(r,x′
1
) = Tψ′(r,x′

2
) defined by the paths ψ′( , x′1) : [0, r] → C ′an, ψ′( , x′2) :

[0, r] → C ′an coincide. For x′ ∈ C ′(k), let card[x′]i(r) be the cardinality of the
equivalence class which contains x′.

Definition 7.3.6. (The real number rp, the set Qp′,p and the invariant i(p′, p))
Let p ∈ Can be a point which is not of type IV and p′ ∈ (φan)−1(p).

1. We define rp ∈ [0, 1] to be the smallest real number for which p ∈
ψ(rp, C(k)) where ψ(rp, C(k)) := {ψ(rp, x)|x ∈ C(k)}.

2. We define Qp′,p := {x
′ ∈ C ′(k)|ψ′(rp, x

′) = p′}.

3. Let i(p′, p) := minx′∈Qp′,p
{card[x′]i(rp)}.

Recall that if p is a point of type II then we used s(p′, p) to denote the

separable degree of the field extension H̃(p) ↪→ H̃(p′) and we set s(p′, p) = 1
otherwise.

Proposition 7.3.7. Let p′ ∈ C ′an, p := φan(p′).

1. When p is of type II, the number i(p′, p) (cf. Definition 7.3.6) is the degree

of inseparability of the extension H̃(p) ↪→ H̃(p′). Hence s(p′, p) = [H(p′) :
H(p)]/i(p′, p).

2. When p is not of type II or IV, s(p) := Σp′∈(φan)−1(p)s(p
′, p) is the num-

ber of ∼i(r(p)) equivalence classes in φ−1(x) for any x ∈ C(k) such that
ψ(rp, x) = p.

Proof. The second assertion can be verified directly and we restrict to proving
the proposition for points of type II. Let C̃p and C̃ ′

p′ denote the smooth pro-

jective curves corresponding to the function fields H̃(p) and H̃(p′) respectively.
For a point e ∈ C̃p, let se denote the uniformisant of the local ring OC̃p,e

.

Let x ∈ C(k) be such that ψ(rp, x) = p. Since ΥCan contains every k-point

over which the morphism φ is ramified, φ is unramified over x. Let ex ∈ C̃p
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correspond to the path ψ( , x) : [0, rp] → Can. Let tx be a uniformisant of x
such that |tx(p)| = 1 and it does not have any zeros or poles at any y for which
the element of the tangent space Tp defined by ψ( , y) : [0, rp]→ Can coincides
with ex.

It follows that the image of tx in the field H̃(p) is a uniformisant at the
point ex. We can hence assume t̃x = se. Let e

′ ∈ C̃ ′
p′ map to ex and y′ ∈ C ′(k)

be such that the element of Tp′ defined by the path ψ′( , y′) : [0, rp] → C ′an

coincides with e′.
By the Non-Archimedean Poincaré-Lelong Theorem, the order of vanishing

of the uniformisant t̃x at e′ is equal to the cardinality of the equivalence class

[y′]i(rp). The inseparable degree of H̃(p
′)/H̃(p) is equal to min{(e′,e)|e′∈C̃′

p′
,e′ 7→e}{orde′(se)}

i.e. min{(e′,e)|e′∈C̃′
p′
,e′ 7→e}{orde′(t̃x)}. Hence i(p

′, p) = minx′∈Qp′,p
{card[x′]i(r(p))}

is the degree of inseparability of the extension H̃(p′)/H̃(p). The equality s(p′, p) =
[H(p′) : H(p)]/i(p′, p) follows from Lemma 7.3.2.

Definition 7.3.8. Let p ∈ Can. We define i(p) := Σp′∈(φan)−1(p)[H(p
′) :

H(p)]/i(p′, p) where i(p′, p) is as in Definition 7.3.6.

Proposition 7.3.7, Theorem 7.3.1 and the fact that gp = 0 when p is not of
type II imply the following corollary.

Corollary 7.3.9. Let φ : C ′ → C be a finite separable morphism between smooth
projective curves over the field k. Let gan(C ′), gan(C) be as in Definition 7.1.25.
We have the following equation.

2gan(C ′)− 2 = deg(φ)(2gan(C)− 2) + Σp∈Can2i(p)gp + degR− Σp∈CanR1
p.

7.4 A second calculation of gan(C ′)

Let φ : C ′ → C be a finite morphism between smooth projective curves over the
field k. Our results in Section 7.4 imply the existence of a pair of deformation
retractions ψ′, ψ on C ′an and Can which are compatible with the morphism
φan. We choose ψ and ψ′ as in the proof of Theorem 7.3.1. Let ΥC′an and ΥCan

denote the images of the retractions ψ′ and ψ respectively. The deformation
retractions ψ,ψ′ can be constructed so that ΥCan contains those points of C(k)
over which the morphism φ is ramified and does not contain any point of type
IV. We have that gan(C ′) = g(ΥC′an) and gan(C) = g(ΥCan).

Definition 7.4.1. A divisor on a finite metric graph is an element of the free
abelian group generated by the points of the graph.

As outlined in the introduction, in this section we introduce a divisor w on
the skeleton ΥCan and relate the degree of this divisor to the genus of the skeleton
ΥC′an . The point of doing so is to study how g(ΥC′an) can be calculated in terms
of g(ΥCan) and the behaviour of the morphism between the sets of vertices.

We preserve our choices of vertex sets and edge sets for the two skeleta from
the proof of Theorem 7.3.1.

Definition 7.4.2. (The invariant np and the sets of tangent directions Ep,
L(ep, p

′).) Let p ∈ ΥCan .
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1. Let np denote the number of preimages of p for the morphism φan.

2. Let Tp denote the tangent space at the point p (cf. 7.1.3, 7.1.6). We define
Ep,ΥCan ⊂ Tp to be those elements for which there exists a representative
starting from p and contained completely in ΥCan . When there is no
ambiguity concerning the graph ΥCan , we simplify notation and write Ep.

3. For any p′ ∈ C ′an such that φan(p′) = p, the morphism φan induces a
map dφp′ between the tangent spaces Tp′ and Tp (cf. 7.1.3, 7.1.6). For
p′ ∈ (φan)−1(p) and ep ∈ Ep, we define L(ep, p

′) ⊂ Tp′ to be the set of
preimages of ep for the map dφp′ and l(ep, p

′) to be the cardinality of the
set L(ep, p

′).

Observe that as ΥC′an = (φan)−1(ΥCan), any element of L(ep, p
′) can be

represented by a geodesic segment that is contained completely in ΥC′an .

Definition 7.4.3. (The divisor w of ΥCan) Let the notation be as in Definition
7.4.2. For a point p ∈ ΥCan , let w(p) := (

∑
ep∈Ep,p′∈(φan)−1(p) l(ep, p

′)) − 2np.

We define w to be the divisor Σp∈ΥCanw(p)p.

Proposition 7.4.4. The degree of the divisor w is equal to 2g(ΥC′an)− 2.

Proof. We begin by stating the following fact concerning connected, finite metric
graphs. Let Σ be a connected, finite metric graph. Let p ∈ Σ. Let U be a simply
connected neighborhood of p in Σ. We define tp to be the cardinality of the set
of connected components of the space U r {p} and DΣ :=

∑
p∈Σ(tp − 2)p. It

can be verified that DΣ is a divisor on the finite graph Σ whose degree is equal
to 2g(Σ)− 2.

The connected, finite graphs ΥC′an and ΥCan are the images of a pair of com-
patible deformation retractions. Hence the morphism φan restricts to a continu-
ous map ΥC′an → ΥCan . This map induces a homomorphism φ∗ : Div(ΥC′an)→
Div(ΥCan) defined as follows. We define φ∗ only on the generators of the group
Div(ΥC′an). If 1.p′ ∈ Div(ΥC′an) then we set φ∗(1.p

′) = 1.φ(p′). Note that for
any divisor D′ ∈ Div(ΥC′an), deg(φ∗(D

′)) = deg(D′).
We will show that w = φ∗(DΥC′an ). By definition,

φ∗(DΥC′an )(p) = (
∑

p′∈(φan)−1(p)

tp′)− 2np.

Let p′ ∈ ΥC′an and p = φan(p′). We must have that the number of distinct
germs of geodesic segments starting from p′ and contained in ΥC′an is tp′ . We
have a map dφp′ : Tp′ → Tp which maps germs of geodesic segments starting at p′

to germs of geodesic segments starting at p. As ΥC′an = (φan)−1(ΥCan), we must
have that the image via dφp′ of a germ for which there exists a representative
contained in ΥC′an and starting from p′ must be a germ starting at p for which
there exists a representative contained in ΥCan . Likewise, if ep is a germ starting
at p which has a representative contained in ΥCan then its preimage for the map
dφp′ is a germ starting at p′ for which there exists a representative contained
in ΥC′an . It follows that

∑
p′∈(φan)−1(p) tp′ =

∑
ep∈Ep,p′∈φ−1(p) l(ep, p

′). Hence

φ∗(DΥCan ) = w.
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7.4.1 Calculating np

We extend the invariant np of Definition 7.4.2 to all points of Can.

Definition 7.4.5. (The invariant np) Let p ∈ Can. Let np denote the number
of preimages of p for the morphism φan.

In this section we study np for p ∈ Can with the added restriction that
the extension of function fields k(C) ↪→ k(C ′) associated to the morphism φ is
Galois.

Definition 7.4.6. (The invariant ram(p) for p ∈ Can) Let p ∈ Can.

1. Let p be a point of type I i.e. p ∈ C(k). Let p′ ∈ C ′(k) such that φ(p′) = p.
Let ram(p′, p) denote the ramification degree associated to the extension
of the discrete valuation rings OC,p ↪→ OC′,p′ . Since the morphism φ is
Galois, for p ∈ C(k), the ramification degree ram(p′, p) is a constant as p′

varies along the set of preimages of the point p. The ramification degree
depends only on the point p ∈ C(k) and we denote it ram(p). As k is
algebraically closed we have that

[k(C ′) : k(C)] = npram(p).

2. When p is not of type I, we define ram(p) := 1.

Let p be a point of Can which is not of type IV. Recall that rp is the small-
est real number in the real interval [0, 1] such that p belongs to ψ(rp, C(k)) =
{ψ(rp, x)|x ∈ C(k)}. Since the pair of deformation retractions ψ′ and ψ are com-
patible with the morphism φan, we must have that (φan)−1(p) ⊂ ψ′(rp, C

′(k)).

Definition 7.4.7. (The equivalence relation ∼c(r) on C(k)) For r ∈ [0, 1], we
define an equivalence relation ∼c(r) on the set of k-points of the curve C ′. Let
x′1, x

′
2 ∈ C

′(k). We set x′1 ∼c(r) x
′
2 if φ(x′1) = φ(x′2) and ψ′(r, x′1) = ψ′(r, x′2).

Observe that each equivalence class is finite. For x′ ∈ C ′(k), let [x′]c(r) denote
that equivalence class containing the point x′.

Lemma 7.4.8. If x′1, x
′
2 ∈ C

′(k) such that φ(x′1) = φ(x′2) then

card[x′1]c(r) = card[x′2]c(r)

for all r ∈ [0, 1].

Proof. The lemma is tautological when x′1 ∼c(r) x
′
2. Let us hence assume that

ψ′(r, x′1) = p′1 and ψ′(r, x′2) = p′2 where p′1 and p′2 are two points on C ′an.
Observe that since ΥC′an and ΥCan are the images of a pair of compatible
deformation retractions, φan(p′1) = φan(p′2). Let p := φan(p′1). The Galois
group G := Gal(k(C ′)/k(C)) acts trasitively on the set of preimages φ−1(p). Let
σ ∈ G be an element of the Galois group such that σ(p′1) = p′2. By construction,
the deformation retraction ψ′ is Galois invariant i.e. if t ∈ [0, 1], q ∈ C ′an and
g ∈ Gal(k(C ′)/k(C)) then ψ′(t, g(q)) = g(ψ′(t, q)). It follows that if a ∼c(r) x

′
1

then σ(a) ∼c(r) x
′
2. As σ is bijective, card[x′1]c(r) ≤ card[x′2]c(r). By symmetry

we conclude that the lemma is true.
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Definition 7.4.9. (The invariant cr(x) for x ∈ C(k)) Let x ∈ C(k) and
x′ ∈ C ′(k) such that φ(x′) = x. We define

cr(x) := card[x′]c(r).

Lemma 7.4.8 implies that cr(x) is well defined.

Proposition 7.4.10. Let p ∈ Can be a point which is not of type IV. We have
the following equality.

np = [k(C ′) : k(C)]/(crp(x)ram(x))

for any x ∈ C(k) such that ψ(rp, x) = p.

Proof. When p ∈ C(k), we must have that if x ∈ C(k) is such that ψ(rp, x) = p
then x = p and rp = 0. Hence crp(p) = 1 and the proposition amounts to
showing that [k(C ′) : k(C)] = npram(p) which is a well known calculation.

Suppose p ∈ Can r C(k). Let x ∈ C(k) be such that ψ(rp, x) = p. As the
deformation retractions ψ and ψ′ are compatible we must have that ψ′(rp, y) ∈
(φan)−1(p) for every y ∈ φ−1(x). Furthermore, given q ∈ C ′an which maps
to p via φan, there exists a y ∈ φ−1(x) such that ψ′(rp, y) = q. This can be
deduced from the Galois invariance of the deformation retraction ψ′. As ψ fixes
the points of C(k) which are ramified, we must have that if x ∈ C(k) such that
ψ(rp, x) = p then nx = [k(C ′) : k(C)] and ram(x) = 1. The proposition can be
deduced from these observations.

Observe that if x ∈ C(k) is such that ψ(rp, x) = p then crp(x) = cs(x) for
any s ∈ [rp, 1]. This observation and Proposition 7.4.10 allow us to define the
following invariant - c1(p) for p ∈ ΥCan .

Definition 7.4.11. (The invariant c1(p) for p ∈ ΥCan) Let p ∈ ΥCan . The
function c1 : C(k)→ Z≥0 factors through ΥCan via the retraction ψ(1, ). Hence
we have c1 : ΥCan → Z≥0. By Proposition 7.4.10,

np = [k(C ′) : k(C)]/(c1(p)ram(p))

where ram(p) is as in Definition 7.4.6.

7.4.2 Calculating l(ep, p
′)

Lemma 7.4.12. Let p ∈ ΥCan and ep ∈ Ep. Then l(ep, p
′) is a constant as p′

varies through the set of preimages of p for the morphism φan.

Proof. Let p′1, p
′
2 ∈ (φan)−1(p). The Galois group Gal(k(C ′)/k(C)) acts tran-

sitively on the set of preimages of the point p. As ΥC′an = (φan)−1(ΥCan),
the elements of the Galois group are homeomorphisms on C ′an which restrict
to homeomorphisms on ΥC′an . It follows that if σ ∈ Gal(k(C ′)/k(C)) is such
that σ(p′1) = p′2 then σ maps the set of germs L(ep, p

′
1) injectively to the set

L(ep, p
′
2). By symmetry, we conclude that our proof is complete.

Definition 7.4.13. (The invariants l(ep) and r̃am(ep) for p ∈ ΥCan and ep ∈
Ep) Let p ∈ ΥCan and ep ∈ Ep (Definition 7.4.2).
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1. We define l(ep) := l(ep, p
′) for any p′ ∈ (φan)−1(p). Lemma 7.4.12 implies

that l(ep) is well defined.

2. (a) By Section 7.1.6, when p is a point of type II, ep corresponds to a dis-

crete valuation of the k̃-function field H̃(p). For any p′ ∈ (φan)−1(p),

the extension of fields H̃(p) ↪→ H̃(p′) can be decomposed into the
composite of a purely inseparable extension and a Galois extension.
Hence the ramification degree ram(e′/ep) is constant as e′ varies

through the set of preimages of ep for the morphism dφalgp′ : Tp′ → Tp
(cf. 7.1.6). Let r̃am(ep) be this number.

(b) When p is of type I, the set Ep contains only one element and we set
r̃am(ep) := ram(p).

(c) When p is of type III, let r̃am(ep) := c1(p).

Applying Propositions 7.4.4 and 7.4.12, the value 2gan(C ′) − 2 can be cal-
culated in terms of l(ep) as follows.

Proposition 7.4.14. Let the notation be as in Definition 7.4.13. We have that

2gan(C ′)− 2 = Σp∈ΥCannp((Σep∈Ep
l(ep))− 2).

Proposition 7.4.15. Let p ∈ ΥCan and ep ∈ Ep. The following equality holds.

l(ep) = [k(C ′) : k(C)]/(npr̃am(ep)).

Proof. When p is a point of type I or III, we must have that l(ep) is 1 and hence
the proposition can be easily verified by applying Proposition 7.4.10. Let us
suppose that p is a point of type II. The morphism φ : C ′ → C corresponds to
an extension of function fields k(C) ↪→ k(C ′) which is Galois. As p ∈ Can is of
type II, it corresponds to a multiplicative norm on the function field k(C). The
set of preimages φ−1(p) corresponds to those multiplicative norms on k(C ′)
which extend the multiplicative norm p on k(C). For every p′ ∈ (φan)−1(p),
H(p′) is the completion of k(C ′) for p′ and is a finite extension of the non-
Archimedean valued complete field H(p). The Galois group Gal(k(C ′)/k(C))
acts transitively on the set (φan)−1(p). It follows that degree of the extension
[H(p′) : H(p)] is a constant as p′ varies through the set (φan)−1(p). We denote
this number f(p). Hence we have that

[k(C ′) : k(C)] = npf(p).

By Lemma 7.3.2, f(p) = [H̃(p′) : H̃(p)]. Uniquely associated to the k̃-function
fields H(p) and H(p′) are smooth, projective k̃-curves denoted C̃p and C̃ ′

p′ .
The germ ep corresponds to a closed point on the former of these curves. The
number l(ep) is the cardinality of the set of preimages of the closed point ep
for the morphism C̃p′ → C̃p induced by φan. The result now follows from [[L],

Theorem 7.2.18] applied to the k̃-function fields H̃(p), H̃(p′) and the divisor
ep.

The results of this section can be compiled so that the value 2gan(C ′)−2 can
be computed in terms of the invariant r̃am introduced below and the invariants
ram and c1 from Definition 7.4.11.
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Definition 7.4.16. (The invariant r̃am(p) for p ∈ ΥCan) Let p ∈ ΥCan . We
define r̃am(p) := Σep∈Ep

(1/r̃am(ep)).

The following theorem can be verified using 7.4.14 and 7.4.10.

Theorem 7.4.17. Let φ : C ′ → C be a finite morphism between smooth projec-
tive irreducible k-curves such that the extension of function fields k(C) ↪→ k(C ′)
induced by φ is Galois. Let gan(C ′) be as in Definition 7.1.25. For p ∈ ΥCan , let
r̃am(p), c1(p) and ram(p) be the invariants introduced in Definition 7.4.6, 7.4.11
and 7.4.16. We have that

2gan(C ′)− 2 = deg(φ)Σp∈ΥCan [r̃am(p)− 2/(c1(p)ram(p))].
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Chapter 8

Finite morphisms and

skeleta

8.1 The class of open sets OL

Let L/k be a complete non-Archimedean real valued algebraically closed field
extension. Let x ∈ Pn,ank (L) be an L-point of the analytification of projective n-
space. As outlined in Remark 1.1, the pair x : Spec(L)→ Pnk , idL : Spec(L)→
Spec(L) defines a closed point of the variety VL = V ×kSpec(L) which we denote
xL. We proceed to define the family OxL,P

n,an

L
of open neighbourhoods of xL

In Proposition 5.7.4 we showed that having chosen an affine chart of Pnk , the
space Pn,ank can be seen to be the union of n+1 n-dimensional Berkovich closed
disks defined over k. We denoted this collection {Ai}i. Likewise P

n,an
L =

⋃
iAi,L

where {Ai,L := Ai×kL}i forms a collection of n + 1 n-dimensional Berkovich
closed disks defined over L. For some j, we must have that xL ∈ Aj,L. Let
OxL,P

n,an

L
be the family of Berkovich open balls containing xL and contained in

Aj,L. Each such Berkovich open ball centered at xL corresponds uniquely to an
n-tuple of positive real numbers less than or equal to 1. We proceed below in
greater detail.

In the proof of Proposition 5.7.4, we introduced the following notation con-
cerning the Aj,L.

Aj,L =M(Bj,L)

where

Bj := k{T1/Tj , ..Ti/Tj , ..Tn+1/Tj}

and Bj,L := Bj⊗̂kL. The affinoid spaceM(Bj,L) is an n-dimensional Berkovich
closed disk over L. The point xL ∈ PnL is a closed point defined over L. Let it
have coordinates [x1,L : . . . : xn+1,L] and i be any index such that |xj,L| ≤ |xi,L|
for every j ∈ {1, .., n + 1}. By definition of the space Ai,L, xL belongs to it.
Using the fact that Ai,L =M(Bi,L) we define a family of open neighbourhoods
of xL, namely the collection of Berkovich open balls defined by the equations
|(Tj/Ti−xj,L/xi,L)(p)| < rj , where j 6= i and rj ≤ 1. If xL ∈ At,L then |xi,L| =
|xt,L| and any such Berkovich open sub ball of Ai,L will also be contained in
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At,L. By this we mean that there exists rt := (r′1, . . . , r
′
n+1) ∈ (0, 1]n+1 such that

r′t = 1 and B = {p ∈ At,L|∧j 6=t [|(Tj/Tt−xj,L/xt,L)(p)| < r′j ]}. It can be shown
that as B varies through all the Berkovich open sub balls of Ai,L which contain
xL, it also varies through all Berkovich open sub balls of As,L which contain xL
i.e. for any s such that |xs,L| = |xi,L|. Hence, we may define the family OxL,P

n,an

L

to be the collection {B(xL, ri)} ⊂ Ai,L for any i such that |xj,L| ≤ |xi,L| for
every j ∈ {1, .., n+1} and where ri := (r1, . . . , ri, . . . , rn+1) is any n+1-tuple for
which ri = 1 and rh ≤ 1 for any other h. Let OL,Pn,an

L
:=

⋃
x∈P

n,an

k
(L)OxL,P

n,an

L
.

To an element W of this family we associate an (n+ 1)2-tuple. That is, we

define a function hL,Pn,an

L
: OL,Pn,an

L
→ R(n+1)2 . If for an index t, |xt,L| = |xi,L|

then let rt = (r1, . . . , rn+1) be such that rt = 1 and the Berkovich open ball W
is defined by the equations |(Tj/Tt − xj,L/xt,L)(p)| < rj for j 6= t. If on the
other hand |xt,L| < |xi,L| for some i ∈ {1, . . . , n + 1} then let rt = (1, . . . , 1).
Let hL,Pn,an

L
(W ) := (ri)i.

If V is an arbitrary projective k-variety then by definition it admits an
embedding V ↪→ Pnk . Let x ∈ V an(L) ⊂ Pn,ank (L). We defined a family of
open neighbourhoods of xL in Pn,anL which we called OxL,P

n,an

L
. Along with this

family of open neighbourhoods, we also defined a function hL,Pn,an

L
which defines

the polyradius of every element in OxL,P
n,an

L
. Restricting every element of the

family OxL,P
n,an

L
to V an

L will define a family OxL,V an
L

of open neighbourhoods of
xL in V an

L . Hence OxL,V an
L

= {W ∩ V an
L |W ∈ OxL,P

n,an

L
}. Let W ∈ OxL,V an

L
.

We define QW to be the collection of W ′ ∈ OxL,P
n,an

L
such that W ′ ∩ V an

L =W .
We set hL,V an

L
(W ∩ V an

L ) := infW ′∈QW
{hL,Pn,an

L
(W ′)}. The infimum here is

taken with respect to the coordinate wise partial ordering defined on R(n+1)2

i.e. (xn)n ≤ (yn)n if and only if xi ≤ yi for every 1 ≤ i ≤ (n+ 1)2. By Lemma
8.1.1, the function hL,V an

L
is well defined.

Lemma 8.1.1. Let xL ∈ V
an
L (L) and W ∈ OxL,V an

L
. The set of (n+ 1)2-tuples

{hL,Pn,an

L
(W ′)|W ′ ∈ QW } ⊂ R(n+1)2 has a well defined infimum with respect to

the coordinate wise partial ordering defined on R(n+1)2 .

(Note : This infimum need not belong to the set {hL,Pn,an

L
(W ′)|W ′ ∈ QW }).

Proof. Let P := {hL,Pn,an

L
(W ′)|W ′ ∈ QW }. Let t ∈ {1, . . . , n+ 1} be such that

xL ∈ At,L. Over the course of this proof, we employ the following convention.

An (n+ 1)2-tuple (x1, . . . , x(n+1)2) belonging to R(n+1)2 is denoted by x.

We are required to show that there exists s ∈ R(n+1)2 such that

1. If y ∈ P then sj ≤ yj for every j.

2. If z ∈ R(n+1)2 is such that for any y ∈ P the inequality zj ≤ yj holds for
every j, then zj ≤ sj for every j.

Let pi denote the i-th projection morphism R(n+1)2 → R. As P ⊂ R(n+1)2

≥0 ,
there exists a unique si ∈ R≥0 which is the infimum of the set {pi(y)|y ∈ P}.
The (n+ 1)2-tuple s can be checked to satisfy property (1).

To show that s satisfies property (2) as well, we exhibit a sequence of elements
in P which converges to s. By definition, for every j ∈ {1, . . . , n + 1} there
exists a sequence of elements (Wj,m)m of QW such that (pj ◦ hL,Pn,an

L
(Wj,m))m

converges to sj . Let Wm :=
⋂
jWj,m. It can be verified that the intersection
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of a finite number of open polydisks contained in At,L and centered at the
same point is again an open polydisk in At,L centered at that same point. It
follows from this fact that Wm belongs to OxL,P

n,an

L
. Furthermore, for every j,

W =Wj,m ∩ V
an
L and hence W = ∩1≤j≤n+1Wj,m ∩ V

an
L . As a result, Wm is an

element of QW . Also, for every j, we have the following inequality.

sj ≤ (pj ◦ hL,Pn,an

L
)(Wm) ≤ (pj ◦ hL,Pn,an

L
)(Wj,m).

By our choice of the sequence (Wj,m)m, we have that for every j, limm→∞(pj◦
hL,Pn,an

L
)(Wj,m) = sj and hence the sequence ((pj ◦ hL,Pn,an

L
)(Wm))m converges

to sj . This is equivalent to saying that (hL,Pn,an

L
(Wm))m converges to s.

In Remark 1.5, we introduced a family of functions R(n+1)2

≥0 → R which we
denoted by S.

Lemma 8.1.2. Let L/k be an algebraically closed complete non-Archimedean
real valued field extension and g ∈ S. Let O1 and O2 belong to OxL,V an

L
such

that O1 ⊂ O2. The following inequality holds true.

(g ◦ hL,V an
L
)(O1) ≤ (g ◦ hL,V an

L
)(O2).

Proof. We first show that we may reduce to the case when V = Pnk and Oi ∈
OxL,P

n,an

L
. Suppose that the lemma is true for Pnk . Given O1 and O2 belonging

to OxL,V an
L

such that O1 ⊂ O2, we show that the following inequality holds true.

(g ◦ hL,V an
L
)(O1) ≤ (g ◦ hL,V an

L
)(O2).

We make use of the notation introduced before Lemma 8.1.1. Let O′
2 ∈ QO2

and O′
1 ∈ QO1

. It can be checked that O′
2 ∩ O

′
1 ∈ QO1

. The inequalities

hL,Pn,an

L
(O′

2 ∩ O
′
1) ≤ hL,Pn,an

L
(O′

2),

hL,V an
L
(O1) ≤ hL,Pn,an

L
(O′

2 ∩ O
′
1)

imply that hL,V an
L
(O1) ≤ hL,Pn,an

L
(O′

2). Observe that our choice of O′
2 in QO2

was arbitrary and hence hL,V an
L
(O1) ≤ hL,V an

L
(O2).

Let us now suppose that V = Pnk . In the course of the proof we will make
use of this fact: Since the field L is algebraically closed and endowed with
a non-trivial valuation, its value group is dense in R≥0. Let hL,Pn,an

L
(O1) :=

(r1, . . . , rn+1) and hL,Pn,an

L
(O2) := (r′1, . . . , r

′
n+1). If rt = (r1,t, . . . , rn+1,t) and

r′t = (r′1,t, . . . , r
′
n+1,t) then we claim that for every i, t, ri,t ≤ r′i,t. We proceed

by assuming the contrary. If for some t there exists an i such that ri,t > r′i,t
then we can find an element yi ∈ L such that r′i,t < |(yi/xt−xi/xt)| < ri,t. The
element [x1 : .. : yi : .. : xn+1] will belong to O1 but not O2. This is not possible
and we must hence have ri ≤ r′i. Our choice of the function g implies that the
inequality (g ◦ hL,Pn,an

L
)(O1) ≤ (g ◦ hL,Pn,an

L
)(O2) holds.

The following lemma implies that the family of open neighbourhoodsOxL,V an
L

for x ∈ V an(L) does not depend on the extension L/k.

Lemma 8.1.3. Let L′/k and L/k be complete non-Archimedean real valued
algebraically closed field extensions such that L embeds into L′. Let x ∈ V an(L).
We have the following equality of sets.

OxL′ ,V an

L′
= {O×LL

′|O ∈ OxL,V an
L
}.

Furthermore, if O ∈ OxL,V an
L

then hL′,V an

L′
(O×LL

′) = hL,V an
L
(O).
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Proof. It can be inferred from the discussion above concerning the familyOxL,V an
L

that it suffices to prove the lemma assuming V = Pnk for some n ∈ N. If x ∈
Pn,ank (L) then there exists exactly one point on the fibre over xL for the projec-
tion morphism PnL×LL

′ → PnL and (xL)L′ = xL′ . We assume without loss of gen-
erality that xL ∈ Ai,L with homogenous coordinates [x1,L : . . . : xn+1,L]. If xL′

has homogenous coordinates [x1,L′ : . . . : xn+1,L′ ] then xj,L/xi,L = xj,L′/xi,L′

for all j.
Let O ∈ OxL,P

n,an

L
. By definition, O must be of the form {p ∈ Ai,L| ∧j

|(Tj/Ti−xj,L/xi,L)(p)| < rj}. It follows that O×LL
′ = {p ∈ Ai,L′ | ∧j |(Tj/Ti−

xj,L′/xi,L′)(p)| < rj} which is an element of OxL′ ,P
n,an

L′
. Hence {O×LL

′|O ∈

OxL,Pn,an} ⊂ OxL′ ,P
n,an

L′
and hL′,Pn,an

L′
(O×LL

′) = hL,Pn,an

L
(O).

Let O ∈ OxL′ ,P
n,an

L′
. By definition, O must be of the form {p ∈ Ai,L′ | ∧j

|(Tj/Ti − xj,L′/xi,L′)(p)| < rj}. Using the equality xj,L/xi,L = xj,L′/xi,L′ , the
image of this open set under the projection morphism Ai,L×LL

′ → Ai,L is of
the form O0 := {p ∈ Ai,L| ∧j |(Tj/Ti − xj,L/xi,L)(p)| < rj}. It follows that
O0×LL

′ = O. Hence OxL′ ,P
n,an

L′
= {O×LL

′|O ∈ OxL,P
n,an

L
}.

Remark 8.1.4. We henceforth make no reference to hL,V an
L

and OxL,V an . We
simplify notation and use OxL

to denote OxL,P
n,an

L
, hL in place of hL,Pn,an

L
and

OL for OL,Pn,an

L
=

⋃
xL∈P

n,an

L
(L)OxL

.

8.1.1 The family OxL
when xL ∈ P1,an

L .

The space P1,an
L admits two descriptions, one of which was outlined in the proof

of Proposition 5.7.4. We briefly describe these constructions.
Let S denote the set of all multiplicative seminorms on the polynomial al-

gebra L[T1, T2] which restrict to the valuation on the field L such that if x ∈ S
then it cannot be that |T1(x)| = |T2(x)| = 0. We define an equivalence relation
∼ on S as follows.

x ∼ y ⇐⇒ There exists c ∈ R>0 such that for any homogenous

f ∈ k[T1, T2], |f(x)| = cdeg(f)|f(y)|.

Let

A2 := {x ∈ S||T1(x)| ≤ |T2(x)|}

and

A1 := {x ∈ S||T2(x)| ≤ |T1(x)|}.

The subspaces A1 and A2 are stable under the equivalence relation. We will
abuse notation and refer to their images in S/ ∼ as A1 and A2 as well.

One can also describe the space P1,an
L in the following manner. Following

Example 5.4.13, the space A1,an
L can be realised as the set of multiplicative

seminorms on the algebra L[T ] which restrict to the norm on L. We endow
this set with the weakest topology such that if f ∈ L[T ] then the function
from A1,an

L to R defined by x 7→ |f(x)| is continuous. Let y ∈ A1,an
L (L). This

means that y corresponds to a morphism L[T ] → L. Such a morphism defines
a seminorm on L[T ] and hence corresponds to a point on A1,an

L . With this
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topology the sets B(y, r) := {p ∈ A1,an
L ||(T − y)(p)| < r} form a family of

open neighbourhoods around the point y. These open sets are precisely the
Berkovich open balls around y of radius r. As a set P1,an

L = A1,an
L ∪ ∞. A

basis of open neighbourhoods around the point ∞ is given by sets of the form
{p ∈ P1,an

L ||T (p)| > r}.

We now identify these two descriptions of P1,an
L in order to relate the family

OxL
as xL varies along the L-points of A1,an

L . We go back to the first description

of P1,an
L . Let S′ ⊂ S denote the sub collection of seminorms such that if p ∈ S′

then |T2(p)| 6= 0. The set S′ is stable for the equivalence relation and set
A′ := S′/ ∼. By definition, the elements of A′ define multiplicative seminorms
on the algebra L[T1/T2]. Hence we have a function from A′ → A1,an

L . With
the induced topology on A′ it can be shown that we have a homeomorphism
H : A′ → A1,an

L .
An L-point of S′/ ∼ can be uniquely described by means of homogenous

coordinates as in the Proj construction. Let xL ∈ S
′/ ∼ then xL can be rep-

resented by homogenous coordinates [a : b] where a, b ∈ L and b 6= 0. By
definition, H([a : b]) = a/b, where by a/b we mean the L-point on A1,an

L defined
by the equation T1/T2 = a/b. For the calculations that follow, we will assume
without loss of generality that xL = [a : 1].

Let B(H(xL), r) be a Berkovich open ball around the point H(xL) of radius
r ≤ 1. By definition B(H(xL), r) ∈ OxL

. We will now write down its associated
4-tuple hL(B(H(xL), r)). We divide the problem into three cases.

(1). If |a| < 1. The point xL does not belong to the closed subspace A1. By
definition of the function hL we have that hL(B(H(xL), r)) = ((1, 1), (r, 1)).

(2). If |a| = 1. The point xL belongs to both A1 and A2. We then have that
hL(B(H(xL), r)) = ((1, r), (r, 1)).

(3). If |a| > 1. The point xL does not belong to the closed space A2. It can
be shown that hL(B(H(xL), r)) = ((1, r/|a|2), (1, 1)).

Similarly, every element of the family OxL
corresponds to a Berkovich open

ball around H(xL). Let O ∈ OxL
and let B(H(xL), s) be the corresponding

Berkovich open ball around xL of radius s. The radius of this ball can be ex-
pressed in terms of the 4-tuple, hL(O) as follows.

(1). If |a| < 1. If hL(O) = ((1, 1), (r, 1)) then the corresponding Berkovich
open ball around xL has radius s = r.

(2). If |a| = 1. If hL(O) = ((1, r), (r, 1)) then s = r.

(3). If |a| > 1 and hL(O) = ((1, r), (1, 1)). If r ≤ 1/|a| then s = r|a|2. If
r > 1/|a| then O is an open neighbourhood of the point ∞. It is a Berkovich
open ball around ∞ but is not a Berkovich open ball contained in A1,an

L .

The calculations above will be made use of in Section 8.5. In future, we will
not refer to the homeomorphism H and use xL itself to denote H(xL).
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8.2 An application of the reduction morphism

Our goal in this section is to prove Proposition 8.2.3 which we will make
use of in the proof of Theorem 8.4.3. We do so using the reduction map
described in Section 5.7. Let L be an algebraically closed, complete, non-
Archimedean real valued field which is non-trivially valued. We will write
the value group multiplicatively in this section. Let A := L[T1, . . . , Tn] and
I be an ideal in this polynomial algebra such that B := L[T1, . . . , Tn]/I is
an integral domain. Let U := Spec(B). Let A := L{r−1

1 T1, . . . , r
−1
n Tn} and

B := L{r−1
1 T1, . . . , r

−1
n Tn}/I be strict L-affinoid algebras with ri ∈ |L

∗|. We
use r to denote the n-tuple (r1, . . . , rn). Let πA and πB denote the reduction

morphismsM(A)→ M̃(A) andM(B)→ M̃(B) respectively. We simplify no-
tation and use X to denote the affinoid spaceM(B). We assume without loss of
generality that the space X contains the point at the origin of Spec(A)an. We
have a closed immersion i :M(B) ↪→M(A). By Section 5.7, the reduction mor-
phism is a functorial construction and we have an associated morphism between

L̃-schemes ĩ : M̃(B) → M̃(A). Note that this morphism is not necessarily a
closed immersion, it is however finite [[BGR], Theorem 6.3.4/2].

Lemma 8.2.1. Let x := (a1, . . . , an) ∈ L
n be an L-point of the affinoid space

X. Let B((a1, . . . , an), r) ⊂ M(A) denote the Berkovich open ball around
(a1, . . . , an) of polyradius r. Let x̃ := πA ◦ i(x). Let ĩ−1(x̃) = {ỹ1, . . . , ỹt}.
We have that

1.

B((a1, . . . , an), r) ∩X =
⋃

i

π−1
B (ỹi).

The connected components of the open set B((a1, . . . , an), r) ∩X are the
π−1
B (ỹi) for all i.

2. There exists a finite set of polynomials F := {F1, . . . , Ft} ⊂ L[T1, . . . , Tn]
such that for any y ∈ X(L), the open set π−1

B (πB(y)) =
⋂
F∈F

DX(F, y)
where DX(F, y) is the open set {p ∈ X||(F − F (y))(p)| < 1}.

Proof. 1. The reduction map X 7→ X̃ is functorial on the category of L-
affinoid spaces. Hence we have the following commutative diagram.

M̃(B) M̃(A)

M(B) M(A)

? ?

-

-

ĩ

i

πB πA

.
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In the diagram, we used i to denote the closed immersionM(B) ↪→M(A)

and ĩ to denote the morphism M̃(B)→ M̃(A). By the commutativity of
the diagram we need only show that π−1

A (πA(x)) = B((a1, . . . , an), r).

Let p ∈M(A). The point p defines a morphism A → H(p) which induces

a morphism Ã → H̃(p). Let hi ∈ L be such that |hi| = r−1
i . It can be

verified directly from the definition of Ã that Ã = L̃
[
T̃1, .., T̃n

]
where T̃i

is the image of hi.Ti for the reduction map A◦ → Ã. The L̃-point πA(x)

is defined by the L̃-morphism Ã → L̃ which maps T̃i 7→ h̃i.ai. It follows
that πA(p) = πA(x) if and only if |(hi.Ti − hi.ai)(p)| < 1. Hence we have
that π−1

A (πA(x)) = B((a1, . . . , an), r). By [[Bos], Kor 6.2] and Proposition
5.7.1, the sets π−1

B (ỹi) are connected and open.

2. By definition, B◦ := {x ∈ B|ρB(x) ≤ 1} where ρB denotes the spectral
norm associated to the affinoid algebra B. The ring B◦ contains the ideal
B◦◦ := {x ∈ B|ρB(x) < 1} and we denote the quotient B̃. By [[BGR],
6.3.4/3], B̃ is a finite type L̃-algebra. Let {F̃1, . . . , F̃t} be a set of gener-
ators of B̃ and let F := {F1, . . . , Ft} be a set of elements in B◦ such that
the image of Fj in B̃ is F̃j . We can choose the Fj so that they are poly-
nomials in L[T1, . . . , Tn]. Let y ∈ X ∩ B((a1, . . . , an), r) be an L-point.
Then ỹ := πB(y) ∈ X̃ is an L̃-point. The point ỹ is uniquely defined by a
morphism ỹ : B̃ → L̃. This morphism is in turn determined by its values

at the generators F̃i. The image of F̃j for the morphism ỹ is F̃j(y) ∈ L̃.

Let p ∈ X. The point πB(p) ∈ X̃ defines a morphism B̃ → H̃(p). It
follows that πB(p) = ỹ if and only if the images of the F̃j for the mor-

phism defined by πB(p) are equal to F̃j(y) i.e. if and only if for every j,
|(Fj − Fj(y))(p)| < 1. This proves (2).

Given a finite set of polynomials F ⊂ L[T1, . . . , Tn] and a point x ∈ X(L), we
define VX(F, x) := ∩F∈FDX(F, x) where DX(F, x) = {p ∈ X||(F −F (x))(p)| <
1}. We now prove the result which we will use in Section 8.4. We make use of the
notation introduced above. Let D be a finite B-algebra which contains B and is
also an integral domain. Hence D = A[S1, . . . , Sm]/〈I, J〉 where J is an ideal in
the polynomial algebra C := L[T1, . . . , Tn, S1, . . . , Sm]. Let U ′ := Spec(D). Let
φ denote the finite surjective morphism U ′ → U . It induces a finite surjective
morphism φan : U ′an → Uan. The strict affinoid space X is an affinoid domain
in Uan. By [[B3], 2.1.8, 2.1.9], the finiteness of the morphism φan implies that
B[S1, ...Sm]/J is a strict affinoid algebra and

(φan)−1(X) =M(B[S1, ...Sm]/J).

Let D denote the affinoid algebra B[S1, ...Sm]/J . After a suitable change of coor-
dinates we can assume thatM(D) contains the point at the origin of (Spec(C))an

and in addition that φmaps the point at the origin ofM(D) to the origin inX =
M(B). We hence assume thatD is of the form L{r−1

1 T1, . . . , r
−1
n Tn, s

−1
1 S1, . . . , s

−1
m Sm}/〈I, J〉

where the si are non negative real numbers. We define Y := M(D) and
C = L{r−1

1 T1, . . . , r
−1
n Tn, s

−1
1 S1, . . . , s

−1
m Sm}.
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Let x be an L-point of X. Let W denote the Berkovich open ball around x
of polyradius l := (l1, . . . , ln) contained inM(A) where the li are positive real
numbers less than or equal to ri which belong to the value group |L∗|.

Remark 8.2.2. Lemma 8.2.1 implies that there exists a finite set of L-points
P ⊂ X and polynomials {F1, . . . , Ft} ⊂ L[T1, . . . , Tn] such that

W ∩X =
⋃

x∈P

VX(F, x). (8.1)

Although this is not the exact version of Lemma 8.2.1, we can derive this for-
mulation as follows. Let B′ := L{l−1

1 T1, . . . , l
−1
n Tn}/I. By Lemma 8.2.1, we

have that

W ∩X =
⋃

x∈P

VM(B′)(F
′, x).

for some finite set of polynomials F′ and a finite set of L-points P . For every li
let ei ∈ L be such that |ei| = l−1

i . Extending the set F′ by adding the polynomials
eiTi will yield equation (2). The set P is chosen so that the right hand side of
(2) is the disjoint union of open sets.

Proposition 8.2.3 below concerns itself with the nature of the preimage
(φan)−1(W ∩X).

Proposition 8.2.3. There exists a finite set of polynomials G := {G1, . . . , Gt′} ⊂
L[T1, . . . , Tn, S1, . . . , Sm] and a finite set of points Q ⊂ Y (L) such that

1. We have the following equality of sets

(φan)−1(W ∩X) =
⋃

y∈Q

VY (G, y).

2. The {VY (G, y)}y∈Q are the connected components of the space (φan)−1(W∩
X).

3. When the restriction of the morphism φan to the open set (φan)−1(W ∩X)
is an open morphism, we can choose Q to be the set φ−1(P ) and for any
y ∈ φ−1(P ), we have that φan(VY (G, y)) = VX(F, φ(y)).

Proof. The Berkovich open ball W ⊂ M(A) has polyradius (l1, . . . , ln) with
li ∈ |L

∗| for every i. We will assume without loss of generality that the point x
has coordinates (0, . . . , 0). Let B′ := L{l−1

1 T1, . . . , l
−1
n Tn}/I. Observe that the

affinoid spaceM(B′) is the intersection of the Berkovich closed disk centred at
x inM(A) of polyradius (l1, .., ln) and (Spec(B))an. Let D′ := B′[S1, .., Sm]/J .
By [[B3], 2.1.8, 2.1.9], D′ is a strict L-affinoid algebra since it is a finite B′-
algebra. By definition D′ contains B′. Furthermore,

(φan)−1(M(B′)) =M(D′).

As with the affinoid algebra D, we can write

D′ = L{l−1
1 T1, . . . , l

−1
n Tn, l

′−1
1 S1, . . . , l

′−1
m Sm}/〈I, J〉
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where the l′i are non negative real numbers belonging to |L∗|.
Consider the following commutative diagram.

M̃(D′) M̃(B′)

M(D′) M(B′)

? ?

-

-

φ̃an

φan

πD′ πB′

The morphism M(D′) → M(B′) is finite. By [[BGR], Theorem 6.3.4/2],

the induced morphism between the associated reductions M̃(D′) → M̃(B′) is
finite as well. For every xi ∈ P , let x̃i be the image of xi for the reduction

morphism πB′ . Let Q̃ := {z̃1, . . . , z̃v} ⊂ M̃(D′) be the set of preimages of the

set {x̃i|xi ∈ P} for the morphism φ̃an. From the commutative diagram above,
we have the following equality

⋃

z̃i∈Q̃

π−1
D′ (z̃i) =

⋃

xj∈P

(φan)−1(π−1
B′ (πB′(xj))). (8.2)

By Proposition 5.7.1 and [[Bos], Kor 6.2], the sets π−1
D′ (z̃i) ⊂ M(D′) are con-

nected and open. From the commutative diagram we can also infer the following
inequality

⋃

yi∈φ−1(P )

π−1
D′ (πD′(yi)) ⊆

⋃

z̃i∈H

π−1
D′ (z̃i). (8.3)

Let Q be a set of L-points of M(D′) which are in bijection with the set
Q̃ via the reduction morphism πD′ . By Remark 8.2.2, Lemma 8.2.1 and equa-
tion (3) there exists a finite set of polynomials F ⊂ L[T1, . . . , Tn] and G0 ⊂
L[T1, . . . , Tn, S1, . . . , Sm] such that

W ∩X =
⋃

x∈P

VM(B′)(F, x) =
⋃

x∈P

VX(F, x)

and

(φan)−1(W ∩X) =
⋃

z∈Q

VM(D′)(G0, z).

To complete the proof of the proposition, we enlarge the set G0 as follows.
Recall that in Remark 8.2.2, we chose ei ∈ L such that |ei| = l−1

i . Likewise let

|e′i| = l′
−1
i . Such elements exist as we had assumed that li and l

′
i belong to |L∗|.

Let T ′
i := eiTi and S

′
i := e′iSi. Let G := G0∪{T

′
i , . . . , T

′
n, S

′
1, . . . , S

′
m}. Observe

that since VM(D′)(G0, y) = π−1
D′ (πD′(y)), by Lemma 8.2.1(1) we must have that

VM(D′)(G0, y) ⊆ B(y, (l1, . . . , ln, l
′
1, . . . , l

′
m)) where B(y, (l1, . . . , ln, l

′
1, . . . , l

′
m))
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is the Berkovich open ball inM(C) around y of polyradius (l1, . . . , ln, l
′
1, . . . , l

′
m).

It follows that

VM(D′)(G0, y) = VY (G, y).

This concludes parts (1) and (2) of the proposition.
We now show that the inequality (4) above which is

⋃

yi∈φ−1(P )

π−1
D′ (πD′(yi)) ⊆

⋃

z̃i∈H

π−1
D′ (z̃i)

is in fact an equality when the restriction φan to (φan)−1(W ∩ X) is an open
morphism. In this case, we claim that if z̃i ∈ Q̃ then there exists xj ∈ P such
that φan restricts to a surjection from π−1

D′ (z̃i) onto π
−1
B′ (πB′(xj)). The morphism

φan restricts to a morphism between π−1
D′ (z̃i) and the disjoint union of open sets

-
⋃
x∈P π

−1
B′ (πB′(x)). The connectedness of π−1

D′ (z̃i) implies that there exists

xj ∈ P such that the image φan((πD′)−1(z̃i)) is contained in π−1
B′ (πB′(xj)).

Also, the restriction φan :M(D′)→M(B′) is closed as it is a finite morphism.
The set π−1

D′ (z̃i) is both open and closed in
⋃
z̃i∈Q̃

π−1
D′ (z̃i). As π−1

B′ (πB′(xj)) is

connected, we must have that φan restricts to a surjection from π−1
D′ (z̃i) onto

π−1
B′ (πB′(xj)). It follows that there exists y ∈ φ−1(P ) such that y ∈ π−1

D′ (z̃i)
from which we get the equality

⋃

yi∈φ−1(P )

π−1
D′ (πD′(yi)) =

⋃

z̃i∈Q̃

π−1
D′ (z̃i).

This proves part (3) of the proposition.

8.3 The theorem for V̂

We now reinterpret Theorem 8.4.3 for the spaces V̂ discussed in Section 4.
Let V ′ and V be integral projective k-varieties such that V is normal and let
φ : V ′ → V be a finite surjective morphism. The morphism φ induces a pro-
definable map φ̂ : V̂ ′ → V̂ . We write the structure of the value group additively
in this section.

As before, we fix an embedding V ↪→ Pnk and an affine chart of Pnk . We will
regard the spaces V ′, V and Pn as k-definable sets in ACVF. As in Section 3,
we fix U - a very large saturated model of ACVF and assume that every model
of interest to us is a small sub structure of U.

One of the advantages of working in the model theoretic setting is that we
need no longer concern ourself with the process of extending scalars. In Section
2.1 of [HL] a brief discussion concerning definable sets is given. We reproduce
a part of that discussion here. Let σ be a formula in ACVF with parameters
contained in a structure C. The formula σ defines a functor from the category of
models which contain C and elementary embeddings of ACVF to the category of
sets i.e. given a model M of ACVF which contains C, the functor Zσ associates
M to the set Zσ(M) := {a ∈ M |M |= σ(a)}. The functor Zσ is completely
determined by the large set Zσ(U). The set of L-points of V ×kL in the algebraic
sense is the set V (L) (in the model theoretic sense) where the latter is not to
be confused with the scheme theoretic notion Homk(Spec(L), V ). The points
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which are not closed in the variety V correspond to k-types which concentrate
on V .

As in Proposition 5.7.4, the definable set Pn can be realised as the union of
n+1 closed disks A0

i which are glued together definably. Each A0
i is a 0-definable

sub set of An and comes equipped with definable functions Tj/Ti : A
0
i → V F for

j ∈ {1, . . . , n + 1} and where V F denotes the value field sort. These functions
define the coordinates of the points of A0

i . In Section 8.1, we used these functions
to define Berkovich open balls around points. We repeat that procedure to
define for every x ∈ Pn, a family of definable sets O0

x which are v + g open
neighbourhoods of x. The notion of a v + g topology was introduced in [[HL],
Section 3.7].

Definition 8.3.1. (The family O0
x) Let x ∈ Pn. Let i ∈ {1, . . . , n + 1} be

such that x ∈ A0
i . The family O0

x is defined to be the collection of definable
sets O ⊂ Pn which are of the form {x ∈ Pn|val(Tj/Ti − Tj/Ti(x)) > rj} where
rj ∈ Γ, rj ≥ 0 and val denotes the valuation V F → Γ∞. It can be checked
that the family O0

x defined in this way is independent of the A0
i chosen i.e. if

x ∈ A0
i ∩ A

0
j and O = {x ∈ Pn|val(Tt/Ti − Tt/Ti(x)) > rt} then there exists

r′t ∈ Γ, r′t ≥ 0 such that O = {x ∈ Pn|val(Tt/Tj − Tt/Tj(x)) > r′t}.

As in Section 8.1, we have a function h : O0
x → [0,∞](n+1)2 which defines

the poly radii of elements of O0
x. Precisely, if x ∈ A0

i and O ∈ O0
x then O is

uniquely defined by its polyradius ri := (r1, . . . , rn+1) where we set ri = 0. If
x /∈ A0

i then we set ri := (0, . . . , 0). We define h(O) := (ri)i. Observe that

if x and h(O) are defined over a model M of ACVF then Ô is an open pro-

M definable subspace of P̂n. By definition the function h extends to a map
h : O0 :=

⋃
x∈Pn O0

x → [0,∞](n+1)2 . Observe that for x ∈ Pn(L) where L is
a non-Archimedean real valued extension of k and O ∈ O0

x(R∞), we have that
h(O) = log(hL(O

an)) (Remark 1.3, Section 8.1).

Definition 8.3.2. (The set RX,e ⊂ Γ
(n+1)2

∞ × V ) Let X be a projective k-

variety and e : X ↪→ Pn be an embedding. We define RX,e ⊂ Γ
(n+1)2

∞ ×X to be

the set of pairs (r, x) where x ∈ X and r ∈ Γ
(n+1)2

∞ is such that there exists an
element O ∈ O0

x for which h(O) = r.

Lemma 8.3.3. The set RX,e is k-definable.

Proof. We write Γ
(n+1)2

∞ = P1 × . . . × Pn+1 where Pi = Γ
(n+1)
∞ . By definition,

we have that RX,e ⊂ (
∏
i Pi) × X. Let RX,e,i ⊂ RX,e be the set of pairs

((rj)j , x) ∈ RX,e with rj ∈ Pj and x ∈ X ∩A
0
i . Let pi : (

∏
j Pj)×X → Pi ×X

denote the projection map. The map pi is definable. Let ((rj)j , x) ∈ RX,e,i. By
assumption, there exists O ∈ O0

x such that h(O) = (rj)j . As x ∈ A0
i , we must

have that h(O) is uniquely determined by the polyradius ri. We deduce from this
that the map pi restricts to a bijection from RX,e,i onto Pi×X. The set Pi×X
is k-definable and as pi is definable, we must have that RX,e,i is k-definable. As
RX,e =

⋃
1≤i≤n+1RX,e,i, we conclude that RX,e is k-definable.

As stated above, the goal of this section is to prove a version of Theorem
8.4.3 in the model theoretic setting. Recall that we are given a finite morphism
φ : V ′ → V between integral projective k-varieties with V normal. We fixed an
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embedding e : V ↪→ Pn for some n ∈ N. For the remainder of this section, we
use R in place RV,e.

Remark 8.3.4. In Remark 1.5, we introduced a collection S of functions from

R(n+1)2

>0 to R>0 an element of which extends to a function R(n+1)2

≥0 → R≥0

naturally. When writing the value group additively, we adapt the family S as
follows. Firstly, log : (R>0,×) → (R,+) (Remark 1.3) is an isomorphism of
abelian groups which reverses the ordering and whose inverse is the function
exp : (R,+)→ (R>0,×) which maps x 7→ cx. If g ∈ S, we define g′ : R(n+1)2 →

R. Let r = (ri,j)i,j ∈ R(n+1)2 . It follows that cr ∈ R(n+1)2

>0 where cr := (cri,j )i,j.
Let g′(r) := log(g(cr)). The properties of the function g ∈ S imply the following.

1. The function g′ is continuous with respect to the topology induced by the
ordering.

2. If (ri,j)i,j and (si,j)i,j are (n + 1)2-tuples in R(n+1)2 such that ri,j ≤ si,j
then g′((ri,j)i,j) ≤ g

′((si,j)i,j).

3. g is a definable function in the language of Ordered Abelian groups.

As in Remark 1.5, we extend the function g′ so that it defines a function

Γ
(n+1)2

∞ → Γ∞.

Let g ∈ S. As in Section 6, given a real valued model F of ACVF, let
F denote the structure defined by the pair (F,R∞). As in Section 8.1, the
function g′ induces an ordering on the set O0(F) :=

⋃
x∈Pn(F )O

0
x(F) where

O0
x(F) are those elements of O0

x which are defined over F. More precisely, as
in Lemma 8.1.2, the function g′ ◦ h : O0(F) → R∞ has the following property.
If O1, O2 ∈ O

0(F) such that O1 ⊆ O2 then (g′ ◦ h)(O1) ≥ (g′ ◦ h)(O2). The
inequality above has been reversed owing to the fact that h(Oi) = log(hF (O

an
i )).

The functions g ∈ S hence allow us to quantify the size of elements belonging to
O0. The following elementary lemma is made use of at several instances later.

Lemma 8.3.5. Let U and U ′ be integral k-varieties and φ : U ′ → U be a finite
surjective morphism between them. There exists integral affine k-varieties W ⊂
U , W ′ ⊂ U ′ and W ′′ along with morphisms φ1 : W ′ → W ′′ and φ2 : W ′′ → W
such that

1. W and W ′ are Zariski open subsets of U and U ′ respectively.

2. φ = φ2 ◦ φ1.

3. The extension of function fields k(W ′′) ↪→ k(W ′) induced by φ1 is purely
inseparable.

4. The extension of function fields k(W ) ↪→ k(W ′′) induced by φ2 is separa-
ble.

Proof. To begin, observe that the morphism φ is flat over a Zariski open subset
of U and that U ′ is birational to its normalization. A flat morphism which is
of finite type is open. It follows that there exists a Zariski open affine subset
W ⊂ U and a Zariski open set W ′ ⊂ U ′ which is normal and in addition the
restriction φ :W ′ →W is flat and surjective.
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The extension of function fields k(W ) ↪→ k(W ′) can be realized as the com-
position of a purely inseparable extension and a separable extension. To be
precise, there exists a field k(W ′′) such that k(W ) ↪→ k(W ′) factorizes into
k(W ) ↪→ k(W ′′) which is separable and k(W ′′) ↪→ k(W ′) which is purely insep-
arable.

Let A and A′ be k-algebras of finite type such that W = Spec(A) and
W ′ = Spec(A′). Let A′′ denote the normalisation of A in k(W ′′) and set W ′′ :=
Spec(A′′). We hence have a separable morphism φ2 : W ′′ → W . Since A′ was
constructed to be integrally closed in k(W ′) and to contain A, we have that the
integral closure of A in k(W ′) must be contained in A′. This implies A′ contains
A′′ and hence we have a purely inseparable morphism φ1 : W ′ → W ′′. This
proves the lemma.

Lemma 8.3.6. Let d denote the separable degree of the finite morphism φ :
V ′ → V . For p ∈ V̂ , the cardinality of the set of preimages φ̂−1(p) is bounded
above by d and the set of simple points (cf. 4.2) x in V for which card(φ−1(x)) =

d is dense in V̂ .

Proof. Let M be a model of ACVF which contains k and x ∈ V (M). The point
x defines a closed point of the variety V ×k M . From algebraic geometry, the
cardinality of fibre φ−1

M (x) is bounded above by d where φM : V ′×kM → V×kM .
From our discussion above on definable sets, we conclude that the cardinality of
φ−1(x) is also bounded above by d when φ is viewed as a definable map between
the definable sets V ′ and V .

Let p ∈ V̂ . By definition, p is a stably dominated type which concentrates
on V . Let us assume that it is defined over a model M of ACVF which contains
k. Let a be a realization of the M - type p|M . Our discussion above implies
that there exists {a′1, . . . , a

′
t} ⊂ V ′ such that φ−1(a) := {a′1, . . . , a

′
t} and t ≤ d.

As the function φ is definable over k, we must have that the preimage of the M
- type p|M extends to at most t M - types which concentrate on V ′ and hence
at most t stably dominated types over M .

We now verify the remainder of the lemma. By Lemma 8.3.5, there exists
affine open sets U ⊂ V , U ′ ⊂ V ′ and an affine scheme U ′′ along with morphisms
φ1 : U ′ → U ′′ purely inseparable and φ2 : U ′′ → U separable of degree d
such that the restriction of the morphism φ to U ′ factors as φ2 ◦ φ1. As k is
algebraically closed, there exists an open sub scheme U0 ⊂ U over which the
morphism φ2 is etale and the cardinality of the set φ−1

2 (y) for any y ∈ U0 is

equal to d. By Lemma 6.1.5, U0 is dense in V̂ . This completes the proof.

For O ∈ O0
x with h(O) = r, let NV (r, x) denote the number of connected

components of the space Ô ∩ V̂ and NV ′(r, x) denote the number of connected

components of the space φ̂−1(Ô ∩ V̂ ).

Lemma 8.3.7. Let d denote the separable degree of the morphism φ : V ′ → V .
Let x ∈ V and O ∈ O0

x. Let r := h(O). The preimage φ̂−1(Ô∩ V̂ ) is the disjoint

union of open sets of V̂ ′ each of which is homeomorphic to Ô ∩ V̂ via φ̂ if and
only if NV ′(r, x) = d.NV (r, x). Furthermore, if φ̂−1(Ô∩ V̂ ) is the disjoint union

of open subsets of V̂ ′ each of which is homeomorphic to Ô ∩ V̂ via φ̂ then the
cardinality of the number of preimages of a point in Ô ∩ V̂ is d.
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Proof. Let (r, x) ∈ R (cf. Definition 8.3.2) and O ∈ O0
x such that h(O) = r. By

11.1.1 in [HL], there exists a continuous deformation retraction H : I×Ô∩ V̂ →

Ô ∩ V̂ such that the image H(e, Ô ∩ V̂ ) is a Γ-internal subset of Ô ∩ V̂ which
is definably homeomorphic to a definable subset Λ in Γm∞ for some m ∈ N.
The connected components of Λ are open and there are only finitely many of
these. It follows that Ô ∩ V̂ is the finite disjoint union of path connected open
sets. Let {C1, . . . , Ct} be the connected components of Ô ∩ V̂ . By a similar

argument, φ̂−1(Ô ∩ V̂ ) is the disjoint union of a finite number of open sets each
of which is path connected. Let {C ′

1, . . . , C
′
t′} denote the connected components

of φ̂−1(Ô ∩ V̂ ). As the variety V is normal, by Corollary 9.7.2 in [HL], the

morphism φ̂ : V̂ ′ → V̂ is open. By Lemma 4.2.25 in loc.cit, the map φ̂ is closed
as well. Hence the morphism φ̂ is clopen when restricted φ̂−1(Ô∩ V̂ ) and we see

that for every j there exists a unique i such that φ̂ maps C ′
j surjectively onto

Ci. A map that is clopen is a homeomorphism if it is in addition a bijection.
Hence the preimage φ̂−1(Ô ∩ V̂ ) is the disjoint union of open sets of V̂ ′ each of

which is homeomorphic to Ô ∩ V̂ via φ̂ if and only if for every j there exists a
unique i such that φ̂ restricts to a bijection from C ′

j onto Ci and the number of

preimages of an element p ∈ Ô ∩ V̂ is constant. By Lemma 8.13, this constant
must be d as the set of elements p ∈ V̂ for which card(φ̂−1(p)) = d is dense

in V̂ . Since by Lemma 8.13, for p ∈ V̂ the set φ̂−1(p) has cardinality bounded

by d it follows that the preimage φ̂−1(Ô ∩ V̂ ) is the disjoint union of V̂ ′ open

sets each of which is homeomorphic to Ô ∩ V̂ via φ̂ if and only if t′ = dt i.e
NV ′(r, x) = dNV (r, x).

The proof above can be adapted to show the following result.

Lemma 8.3.8. Let M be a model of ACVF. Let (r, x) ∈ R(M) (cf. Definition
8.3.2) and O ∈ O0

x such that h(O) = r. Let NM
V ′ (r, x) denote the number of

connected components of the space (φ̂−1)(Ô(M) ∩ V̂ (M)) and NM
V (r, x) be the

number of connected components of the space Ô(M) ∩ V̂ (M). The preimage

φ̂−1(Ô(M) ∩ V̂ (M)) is the disjoint union of open subsets of V̂ ′(M) each of

which is homeomorphic to Ô(M) ∩ V̂ (M) via φ̂(M) if and only if NM
V ′ (r, x) =

d.NM
V (r, x).

We now prove a lemma which is central to the proof of Theorem 8.3.11.
We preserve the notation NM

V ′ (r, x) and NM
V (r, x) introduced in the preceding

lemma.

Lemma 8.3.9. There exists a k-definable subset D of R (cf. Definition 8.3.2)
such that for M a model of ACVF with value group R∞ we have that (r, x) ∈
D(M) if and only if NM

V ′ (r, x) = dNM
V (r, x) where d denotes the separable degree

of the morphism φ.

Proof. Consider the set X ⊂ V ′ × R consisting of tuples (z, r, x) such that
(r, x) ∈ R, z ∈ V ′ and φ(z) ∈ O where O ∈ O0

x and h(O) = r. The set X is
definable (cf. Lemma 8.3.3) and if pr denotes the projectionX → R then for any
(r, x) ∈ R the fibre pr−1(r, x) will be the definable set φ−1(O∩V ) where O ∈ O0

x

such that h(O) = r. For τ = (r, x) ∈ R, we will write Oτ for that element
O ∈ O0

x such that h(O) = r. Given τ ∈ R, we write k(τ) for the definable closure
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of k ∪ {τ}. By Theorem 11.7.1 in [HL] there exists, uniformly in τ ∈ R, a pro-

definable family Hτ : I × φ̂−1(Ôτ ∩ V̂ )→ φ̂−1(Ôτ ∩ V̂ ), a finite k(τ) -definable

set w(τ), a k(τ)- definable set Wτ ⊂ Γ
w(τ)
∞ and jτ :Wτ → Hτ (e, φ̂

−1(Ôτ ∩ V̂ )),
pro-definable uniformly in τ such that for each τ ∈ R, Hτ is a deformation
retraction and jτ : Wτ → Hτ (e, φ̂

−1(Ôτ ∩ V̂ )) is a definable homeomorphism

and e denotes the end point of the interval I. Let Zτ := Hτ (e, φ̂
−1(Ôτ ∩ V̂ ). By

the claim in the proof of Theorem 14.3.1 [HL], there exists uniformly in τ a k(τ) -
definable set Tτ ⊂ Γr∞, a k(τ) - definable setW (τ) and for w ∈W (τ), a definable
homeomorphism ψw : Zτ → Tτ . We have in this manner obtained a family of
definable subsets of Γr∞ parametrized by R. Observe that if M is a model of
ACVF with value group R∞ and τ ∈ R(M) then the image of the deformation

retraction Hτ (M) : I(R∞) × φ̂−1(Ôτ (M) ∩ V̂ (M)) → φ̂−1(Ôτ (M) ∩ V̂ (M)) is
definably homeomorphic to Tτ (R∞).

Let Γ∗ be an expansion of Γ to RCF and ACVF′ denote the extension of
ACVF with the sort Γ∗ in place of Γ.

Lemma 8.3.10. There exists N ∈ N such that the set R (cf. Definition 8.3.2)
can be partitioned into ACVF′ definable sets {E′

1, . . . , E
′
N} such that if M is

a model of ACVF whose value group is R∞ and τ := (r, x) ∈ E′
j(M) then

φ̂−1(Ôτ (M) ∩ V̂ (M)) must have j connected components. In addition, the de-
finable sets E′

j are ACVF′ - definable with parameters in k.

Proof. Our discussion above implies the existence of a definable subset Y ⊂
R × Γr∞ such that for τ ∈ R, the fibre Yτ := pr−1(τ) is the set Tτ where
pr : R × Γr∞ → R is the projection map onto the first coordinate. In addition,

there exists a definable homeomorphism ψw : Hτ (e, φ̂
−1(Ôτ ∩ V̂ )) → Tτ . It

suffices hence to show that R can be partitioned into N ACVF′ definable sets
{E′

1, . . . , E
′
N} such that if M is a model of ACVF whose value group is R∞ and

τ := (r, x) ∈ E′
j(M) then Tτ must have j connected components.

We first show that there exists a uniform triangulation of the definable family
{Yτ |τ ∈ R} by means of which we may reduce to proving the result when Yτ is
a complex in (Γ∗

∞)r. More precisely, we show that there exists a definable map
λ : Y → (Γ∗

∞)r × R such that for every τ ∈ R, the induced map λτ := λ|Yτ
is

a definable homeomorphism onto a complex contained in (Γ∗
∞)r. To prove this

we make use of a compactness argument identical to that employed in 11.7.1
of [HL]. By loc.cit. it suffices to verify that for a ∈ R, the family of definable
maps {λa : Ya → (Γ∗

∞)r} for which λa is a definable homeomorphism onto a
complex contained in (Γ∗

∞)r is an ind-definable family. A complex K in (Γ∗
∞)r

is determined completely by its set of vertices and the subsets of this set which
span simplexes of K (cf. [[LVD], 8.1]). It follows that the family of complexes
contained in (Γ∗

∞)r is an ind-definable family. Hence, the property that the
image of λa is a complex is an ind-definable condition. Let λa : Ya → (Γ∗

∞)r

be a definable map whose image Ca is a complex. The property of λa being
a bijection is definable. The continuity of λa can be expressed by asking that
for every x ∈ Ya, ε > 0 there exists δ > 0 such that {z ∈ Ya|d(z, x) < δ} ⊂
λ−1
a ({y ∈ Ca|d(y, λa(x)) < ε}) where d is a definable metric on (Γ∗

∞)r which
generates the linear topology. Likewise, the continuity of λ−1

a is also a definable
condition. Thus, there exists a definable map λ : Y → (Γ∗

∞)r ×R such that for
every τ ∈ R, the induced map λτ = λ|Yτ

is a definable homeomorphism onto
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a complex Cτ contained in (Γ∗
∞)r. Let C denote the definable subset of (Γ∗

∞)r

which is the image of the map λ.
As said before, a complex K in (Γ∗

∞)r is determined by its set of vertices and
the subsets of this set that span simplexes contained in K. Let V ert(n) ⊂ R
denote the set of τ ∈ R such that the complex Cτ has n vertices. As the family
{Cτ |τ ∈ R} is a uniformly definable family of complexes. The set V ert(n) is a
definable subset of R. Also, R =

⋃
n∈N

V ert(n). By compactness, there exists
m ∈ N such that for any τ ∈ R, the complex Cτ has at most m vertices. Let
a ∈ R, by 8.2.12 in [LVD] there exists a definable homeomorphism γa : Ca → Sa
where Sa is the union of faces of a simplex (e1, . . . , em) and {e1, . . . , em} forms
a 0-definable basis of (Γ∗)m. Let Sm denote the set of objects each of which
is the union of faces of the simplex (e1, . . . , em). The arguments above can be
repeated to show that there exists a definable map γ : C → (Γ∗

∞)m×R such that
for τ ∈ R the induced map γτ is a definable homeomorphism onto an element
Sτ ⊂ (Γ∗

∞)m where Sτ ∈ Sm. Let S denote the image of the map γ. Let
J ∈ Sm. We define DFJ ⊂ R to be the set of τ ∈ R such that Sτ = J . As the
family {Sτ |τ ∈ R} is uniformly definable for τ ∈ R, the set DFJ is definable.
Furthermore, by construction R =

⋃
J∈Sm

DFJ . By construction, as τ varies in
DFJ , the homeomorphism type of Yτ is constant. The first part of the lemma
can be deduced from this and the fact that the set Sm is finite.

We now show that the E′
j are definable with parameters in k. Indeed, the

field kmax which is a maximally complete field extension of k with value group
R∞ and residue field k̃ (Section 5.7) can be extended to a model of ACVF′.
Let g ∈ Aut(kmax/k). Let τ ∈ R(kmax). As R is definable over k and the Tτ
are definable uniformly over k(τ), it follows that Tτ (R∞) and Tg(τ)(R∞) have
the same number of connected components which implies g(τ) ∈ E′

j(k
max). As

E′
j(k

max) is preserved by the action of Aut(kmax/k), we conclude that it is
defined with parameters from k.

We have thus proved Lemma 8.3.10 and now use it to conclude a proof of
8.3.9. In Lemma 8.3.10, if we were to substitute the set X ⊂ V ′ × R with the
k-definable set X ′ ⊂ V × R defined by tuples (z, r, x) such that (r, x) ∈ R,
z ∈ V ∩ O where O ∈ O0

x and h(O) = r, we would obtain a similar partition
of R. That is, there exists N ′ and a collection of ACVF′ k-definable subsets
{F ′

1, . . . , F
′
N ′} which partition R such that if M is a model of ACVF whose

value group is R∞ and τ := (r, x) ∈ F ′
j(M) then Ô(M) ∩ V̂ (M) must have j

connected components.
The two ACVF′ partitions of R can be used to give an ACVF′ definable set

D′ ⊂ R which is defined with parameters from k such that if M is a model
of ACVF whose value group is R∞ and τ := (r, x) ∈ D′(M) then NM

V ′ (r, x) =
dNM

V (r, x). By Beth’s theorem, there exists an ACVF definable set D ⊂ R
defined with parameters in k such that if M is a model of ACVF whose value
group is R∞ thenD(M) = D′(M) i.e. if τ ∈ D(M) thenNM

V ′ (r, x) = dNM
V (r, x).

The following is a version of Theorem 8.4.3 for the spaces V̂ .

Theorem 8.3.11. Let φ : V ′ → V be a finite surjective morphism between
irreducible, projective varieties with V normal. Let g ∈ S. There exists a pro-
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definable deformation retraction

ψ : I × V̂ → V̂

which satisfies the following properties.

1. Let I be a generalised interval of the form [i, e]. The image Tg := ψ(e, V̂ )

of the deformation retraction ψ is a Γ-internal subset of V̂ [[HL],Chapter 6]
and there exists a definable homeomorphism jg : Tg → Υg where Υg ⊂ Γn∞
is a k-definable set.

2. There exists a well defined piecewise linear function Mg : Tg → Γ∞ which
satisfies the following conditions. The function Mg takes values other
than ∞. In fact there exists x ∈ Tg(k) such that Mg(x) 6=∞. Let γ ∈ Tg
be a point for which Mg(γ) 6= 0 and x ∈ ψ(e, )−1(γ) such that there
exists L/k a complete non-Archimedean real valued algebraically closed
field extension for which Γ∞(L) = R∞ and x ∈ V (L). There exists W ∈

(g′◦h)−1(Mg(γ))∩O
0
x such that the open set (φ̂)−1(Ŵ (L)∩V̂ (L)) ⊂ V̂ ′(L)

decomposes into the disjoint union of open subsets of V̂ ′(L), each of which

is homeomorphic to Ŵ (L)∩ V̂ (L) via φ̂. Furthermore, let O ∈ O0
x be such

that h(O) ∈ R(n+1)2

∞ and the preimage of Ô(L)∩ V̂ (L) under φ̂ decomposes

into the disjoint union of open sets in V̂ ′(L), each homeomorphic to Ô(L)

via the morphism φ̂. Then (g′ ◦ h)(O) ≥Mg(γ).

Proof. By Lemmas 8.3.8 and 8.3.9, there exists a k-definable subset D of R
such that if M is a model of ACVF with value group R∞ then D(M) is the set
of tuples (r, x) defined over M such that if W ∈ O0

x(M) and h(W ) = r then

φ̂−1(Ŵ (M)∩V̂ (M)) is the disjoint union of open subsets of V̂ (M) each of which

is homeomorphic to Ŵ (M) ∩ V̂ (M) via the morphism φ̂. The k-definable set

D ⊂ [0,∞](n+1)2 × V comes equipped with a projection map pr : D → V . For
x ∈ V , let Dx := pr−1(x). By definition, Dx is uniformly definable in x with
parameters in k(x). Hence g′ ◦h(Dx) ⊂ Γ∞ is a k(x) - definable set. For x ∈ V ,
let g′inf(x) be the infimum of the definable set g′ ◦ h(Dx)(U) ⊂ Γ∞(U). We set
g′inf(x) =∞ when the set Dx is empty. As Dx is uniformly definable in x with
parameters in k(x), g′inf extends to a k-definable function from V → Γ∞ which

can be extended to a pro-definable function V̂ to Γ∞.
By Theorem 4.8.1, there exists a k-definable Γ-internal subset Tg of V̂ , a

pro-definable deformation retraction H : I × V̂ → V̂ such that H(e, V̂ ) = Tg
where e denotes the end point of the interval I and the function g′inf is constant
along the fibres of the deformation retraction. Let Mg denote the restriction of
g′inf to Tg. It remains to verify part (2) of the statement of the theorem.

Let γ ∈ Tg and x ∈ V such that H(e, x) = γ. Furthermore, we suppose
that L is a model of ACVF over which x is defined and Γ∞(L) = R∞. Let

O ∈ O0
x(L) be such that the preimage of Ô(L)∩ V̂ (L) under φ̂ decomposes into

the disjoint union of open sets in V̂ ′(L), each homeomorphic to Ô(L) via the

morphism φ̂. It follows from Lemma 8.3.8 that h(O) ∈ Dx(L). Hence from the
definition of g′inf(x) we get that (g

′ ◦h)(O) ≥ g′inf(x) =Mg(γ). Furthermore, by
Lemma 8.19 there exists W ∈ O0

x(L) such that g′ ◦h(W ) = g′inf(x). This proves
part (2) of the theorem.
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We now show that the function Mg takes values other than ∞. By Lemma
8.3.5, there exists affine open sets U ⊂ V , U ′ ⊂ V ′ and an affine scheme U ′′ along
with morphisms φ1 : U ′ → U ′′ purely inseparable and φ2 : U ′′ → U separable
of degree d such that the restriction of the morphism φ to U ′ factors as φ2 ◦φ1.

As φ1 is purely inseparable, the induced map φ̂1 is a homeomorphism. There
exists a smooth open sub scheme U0 ⊂ U over which the morphism φ2 is etale.
Let x be a k-point in U0. By Lemma 7.4.1 in [HL], there exists O ∈ O0

x(R∞)
with h(O) ∈ Dx with finite polyradius which implies that g′inf(x) <∞.

Let x ∈ V andM be a model of ACVF which contains k such that x ∈ V (M)
and Γ(M) ⊆ R. In the following lemma, we refer to the definable sets Dx which
were introduced during the course of Theorem 8.3.11.

Lemma 8.3.12. Let x ∈ V and M be a model of ACVF which contains k
such that x ∈ V (M) and Γ(M) ⊆ R. Let M denote the structure defined by
(M,R∞). There exists O ∈ O0

x(M) such that h(O) ∈ Dx(M) and g′ ◦ h(O) =
inf{g′ ◦ h(O′)|O′ ∈ O0

x(M) ∧ h(O′) ∈ Dx(M)} i.e. the set {g′ ◦ h(O′)|O′ ∈
O0
x(M) ∧ h(O′) ∈ Dx(M)} contains its infimum.

Proof. Firstly observe that Dx(M) = Dx(R∞). By definition, the function

g′ : R(n+1)2

∞ → R∞ is continuous with respect to the topology on R∞ in-
duced by its ordering. Hence to prove the lemma it suffices to show that
{h(O′)|O′ ∈ O0

x(M)∧h(O′) ∈ Dx(M)}∪(∞, . . . ,∞) is compact. As {h(O′)|O′ ∈

O0
x(M)∧h(O′) ∈ Dx(M)}∪ (∞, . . . ,∞) ⊆ [0,∞](n+1)2 , we need only show that

it is closed. Let (On)n be a sequence of elements in {O′ ∈ O0
x(M)|h(O′) ∈

Dx(M)} such that (h(On))n converges to r ∈ R(n+1)2

∞ . By definition of the
family O0

x(M), it can be verified that there exists an element W ∈ O0
x(M) such

that h(W ) = r and W is uniquely determined by r and x. We will show that
h(W ) ∈ Dx(M). There exists a subsequence (Omn

)n of (On)n such that the se-
quence of R∞ - tuples ((ri,mn

)i)n := h(Omn
)n is either increasing or decreasing

at each component i.e. for every i the sequence (ri,mn
)n is either increasing or de-

creasing. Observe that if O ∈ {O′ ∈ O0
x(M)|h(O′) ∈ Dx(M)} and O′′ ∈ O0

x(M)
such that h(O′′) ≥ h(O) then O′′ ∈ {O′ ∈ O0

x(M)|h(O′) ∈ Dx(M)}. It follows
that we can assume the sequence (On)n is increasing i.e. that the sequence
(h(O)n)n is decreasing with respect to the point wise ordering. This implies
that W =

⋃
nOn and it can be verified that the ball W must also belong to

{O′ ∈ O0
x(M)|h(W ) ∈ Dx(M)}.

8.4 Proof of the main theorem

In this section we prove Theorem 8.4.3. Let V and V ′ be irreducible, projective
k-varieties with V normal and φ : V ′ → V be a finite surjective morphism. The
morphism φ induces a morphism between the respective analytifications. Hence
we have

φan : V ′an → V an.

Remark 8.4.1. We introduced the collection of functions S (Remark 1.5) for
the following reason. Let x ∈ V an(L) (Remark 1.1). Associated to x is an
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L-point of V an
L which we denoted xL (Section 1.2). In Section 8.1, we de-

fined a collection of open neighbourhoods OxL
of xL along with a function

hL :
⋃
x∈V an(L)OxL

→ R(n+1)2

≥0 . An element g ∈ S allows us to compare el-

ements of the family OxL
. To be precise, the family

⋃
x∈V an(L)OxL

is partially
ordered by the partial ordering defined by set theoretic inclusion. By Lemma
8.1.2, if O1, O2 ∈

⋃
x∈V an(L)OxL

with O1 ⊆ O2 then g ◦ hL(O1) ≤ g ◦ hL(O2).

We could also avoid using the function g and instead do the following. Let S′

denote the collection of 0-definable total orderings of the set (R∞)(n+1)2 which
satisfy the following property. If ≤p∈ S′ then given a pair of (n + 1)2-tuples
(xi)i, (yj)j such that xi ≤ yi for all i, we must have that (xi)i ≤p (yi)i. We ask

in addition that if C is a non empty, compact subspace of (R≥0)
(n+1)2 then it

contains a supremum with respect to the ordering ≤p.
One can prove the following version of the main result:

Theorem 8.4.2. Let φ : V ′ → V be a finite surjective morphism between
irreducible, projective varieties with V normal. Let ≤g∈ S′. There exists a
generalised real interval I := [i, e] and a deformation retraction

ψ : I × V an → V an

which satisfies the following properties.

1. The image ψ(e, V an) of the deformation retraction ψ is a finite simplicial
complex. Let Υg denote this finite simplicial complex.

2. There exists a well defined function Mg : Υg → R≥0 which satisfies the
following conditions. The function Mg is not identically zero and log(Mg)
is piecewise linear. Let γ ∈ Υg be a point on the finite simplicial complex
for which Mg(γ) 6= 0 and x ∈ ψ(e, )−1(γ). Let L/k be any complete
non-Archimedean real valued algebraically closed field extension such that
x ∈ V an(L). There exists WxL

∈ (hL)
−1(Mg(γ)) ∩ OxL

such that the
open set (φanL )−1(WxL

∩ V an
L ) ⊂ V ′an

L decomposes into the disjoint union
of open sets, each homeomorphic to WxL

∩ V an
L via φanL . Furthermore, let

O ∈ OxL
be such that the preimage of O∩V an

L under φanL decomposes into
the disjoint union of open sets in V ′an

L , each homeomorphic to O∩V an
L via

the morphism φanL . Then (g ◦ hL)(O) ≤g Mg(γ).

The proof of the above result is similar to the proof of Theorem 8.4.3. We
now state and prove Theorem 8.4.3. We make use of Theorem 8.3.11 wherein we
viewed the value group additively and used the functions h in place of hL. By
definition, if x ∈ VL(L) where L is a real valued model of ACVF and O ∈ O0

x(L)
then BL(O) ∈ Ox where BL(O) is the Berkovich analytification of O [Section
6]. We have that h(O) = log(hL(BL(O))) where the function log (Remark 1.3)
is applied component wise.

Theorem 8.4.3. Let φ : V ′ → V be a finite surjective morphism between
irreducible, projective varieties with V normal. Let g ∈ S. There exists a
generalised real interval I := [i, e] and a deformation retraction

ψ : I × V an → V an

which satisfies the following properties.
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1. The image ψ(e, V an) ⊂ V an of the deformation retraction ψ is homeo-
morphic to a finite simplicial complex. Let Υg denote this finite simplicial
complex.

2. There exists a well defined function Mg : Υg → R≥0 which satisfies the
following conditions. The function Mg takes values other 0 and log ◦Mg

is piecewise linear (Remark 1.3). Let γ ∈ Υg be a point on the finite sim-
plicial complex for which Mg(γ) 6= 0 and x ∈ ψ(e, )−1(γ). Let L/k be any
complete non-Archimedean real valued algebraically closed field extension
such that x ∈ V an(L). There exists WxL

∈ (g ◦ hL)
−1(Mg(γ)) ∩OxL

such
that (φanL )−1(WxL

∩ V an
L ) ⊂ V ′an

L decomposes into the disjoint union of
open sets, each homeomorphic to WxL

∩ V an
L via φanL . Furthermore, let

O ∈ OxL
be such that the preimage of O∩V an

L under φanL decomposes into
the disjoint union of open sets in V ′an

L , each homeomorphic to O∩V an
L via

the morphism φanL . Then (g ◦ hL)(O) ≤Mg(γ).

Proof. We apply Theorem 8.3.11 to the given data. Hence there exists a pro
k-definable deformation retraction H : I × V̂ → V̂ where I is a generalised
interval defined over k, a k-definable Γ-internal set Z ⊂ V̂ which is k - definably
homeomorphic to a finite simplicial complex Υ′

g and is the image of the defor-

mation retraction H i.e. H(e, V̂ ) = Z. Furthermore, there exists a k-definable
function M ′

g on Z and hence a piecewise linear function on Υ′
g which satisfies

properties (1) and (2) stated in Theorem 8.3.11.
Let k denote the substructure of ACVF defined by the pair (k,R∞). By

Section 6, the space Bk(V ) of weakly orthogonal k - types is canonically home-
omorphic to the Berkovich space V an. We will for the remainder of this proof
use the notation Bk(V ) for the Berkovich space V an.

Given a valued field M whose value group is contained in R∞, there exists
a maximally complete valued field K which contains M and whose residue field
is equal to the algebraic closure of the residue field of M . By Kaplansky’s
theorem this field is unique up to isomorphism over M = (M,R∞) and we
denote it Mmax. By Lemma 14.1.1 and Corollary 14.1.6 in [HL], there exists

a canonical continuous closed surjection V̂ (kmax) → Bk(V ) which induces a
deformation retraction H : I(k) × Bk(V ) → Bk(V ) with image Z(k). As
Z(k) is homeomorphic to Υg(k) we identify it via this homeomorphism and
set Υg := Z(k). Observe that I(k) is a generalised real interval. By Theorem
8.3.11, the functionM ′

g restricted to Υg takes values different from∞. It follows
that Mg := exp ◦M ′

g (Remark 8.3.4) takes values different from 0.
We verify part (2) of the theorem. Let p ∈ Bk(V )(L) where L is a real

valued complete model of ACVF and H(p) embeds into L. This is equivalent to
saying that H(p) ⊆ L. This implies that p when viewed as a weakly orthogonal
k - type on V admits a realisation defined over L. The point xL ∈ V (L) is such
a realisation. Let γ = H(e, xL). By 8.3.11, there exists W ∈ O0

xL
(Lmax) such

that g′ ◦h(W ) =M ′
g(γ) and h(O) ∈ Dx where Dx is as in the proof of Theorem

8.3.11. Since Γ(Lmax) = Γ(L), W is in fact L - definable. Hence we must have
that BL(W ) ∈ OxL

and by Remark 8.3.4, g ◦ hL(BL(W )) = Mg(γ). We have
the following commutative diagram.
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BL(V
′) BL(V )

V̂ ′(Lmax) V̂ (Lmax)

? ?

-

-

φanL

φ̂

πV ′
L

πVL

As h(W ) ∈ Dx, φ̂
−1(Ŵ (Lmax) ∩ V̂ (Lmax)) is the disjoint union of open

sets each of which is homeomorphic to Ŵ (Lmax) ∩ V̂ (Lmax) via the morphism

φ̂. Let d denote the separable degree of the morphism φ. By Lemma 8.3.7,
there exists W ′

1, . . . ,W
′
d ⊂ V̂ ′ such that the W ′

i (L
max) are open in V̂ ′(Lmax),

φ̂−1(Ŵ (Lmax) ∩ V̂ (Lmax)) =
⋃
iW

′
i (L

max) and the morphism φ̂ restricts to a

homeomorphism from each of the W ′
i (L

max) onto Ŵ (Lmax) ∩ V̂ (Lmax). Let

W ′
i
0
denote the subset of simple points (cf. 4.2) of W ′

i . The set W ′
i
0
is an

ind-definable set [[HL],Section 2.2] and as W ′0
i (Lmax) is in bijection with the

definable set W (Lmax) ∩ V (Lmax) via the definable map φ, we deduce by com-
pactness that W ′0

i (Lmax) and hence W ′0
i must be definable as well. Since the

morphism φ is defined over k and W is defined over L = (L,R∞), it follows
that W ′0

i is defined over L. As all models of ACVF which contain Lmax are
equivalent, we deduce that the W ′0

i are disjoint and φ restricts to a bijection

from W ′0
i onto W ∩ V . Also Ŵ ′0

i = W ′
i . It can be deduced from the defini-

tion of the morphism πV ′
L
that it restricts to a morphism from W ′

i (L
max) onto

BL(W
′
i
0
) i.e. πV ′

L
(W ′

i (L
max)) = BL(W

′0
i ). We claim that the BL(W

′0
i ) are

disjoint open subspaces of BL(V
′). That they are disjoint follows from the fact

that the W ′
i (L

max) are disjoint. Indeed, let p be an L - type lying in the inter-
section of BL(W

′0
1 ) and BL(W

′0
2 ) which are distinct. Let c be a realisation of p.

The type tp(c|Lmax) is an Lmax - stably dominated type that belongs to both
W ′

1 and W ′
2 which is not possible. We now show that for every i, BL(W

′0
i ) is

an open subspace of BL(V
′). The morphism πV ′

L
is closed and hence it restricts

to a closed surjection from φ̂−1(Ŵ (Lmax) ∩ V̂ (Lmax)) onto
⋃
iBL(W

′0
i ). For a

fixed j, the set
⋃
i 6=jW

′
i (L

max) is a closed subspace of φ̂−1(Ŵ (Lmax)∩V̂ (Lmax))

whose image via the morphism πV ′
L
is the set

⋃
i 6=j BL(W

′0
i ). Since the BL(W

′0
i )

are disjoint, the set BL(W
′0
j ) is open in

⋃
iBL(W

′0
i ). The commutative diagram

implies that

(φanL )−1(BL(W ) ∩BL(V )) =
⋃

i

BL(W
′0
i ).

Hence the BL(W
′0
i ) are open in BL(V

′).
We claim that φan restricts to a homeomorphism from each of the BL(W

′0
i )

onto BL(W ) ∩ BL(V ). We fix an index j. Since the vertical arrows of the

commutative diagram above are closed and the restriction of φ̂ to W ′
i (L

max)

is a homeomorphism onto Ŵ (Lmax) ∩ V̂ (Lmax) the morphism φanL is a closed

142



surjection from BL(W
′0
j ) onto BL(W ) ∩ BL(V ). We now show that it is also a

bijection. Let p ∈ BL(W ) ∩ BL(V ) and c be a realisation of p. The point c is

simple in Ŵ∩V̂ . By Lemma 8.3.7, there exists exactly d preimages of c in V ′ each
contained in exactly oneW ′0

i . Let {c′1, . . . , c
′
d} denote this set of preimages where

c′i ∈ W
′0
i . The type tp(c′i|L

max) is an Lmax - stably dominated type contained

in W ′
i and its image in Ŵ ∩ V̂ for the morphism φ̂ is the stably dominated

type tp(c|Lmax). As the BL(W
′0
i ) are mutually disjoint and πV ′

L
(W ′

i (L
max)) =

BL(W
′0
i ) it follows that there must be at least d weakly orthogonal types in

BL(V
′) which map to p. However, the cardinality of the fibre over p for the

morphism φanL is bounded above by d. It follows that there exists one unique
element in BL(W

′
i ) which maps to p via φan. This implies that the morphism

φanL restricts to a closed bijection from BL(W
′
i ) onto BL(W ) ∩ BL(V ). It is

hence a homeomorphism.
We now verify the remainder of the theorem. Let O ∈ O0

xL
be such that

(φanL )−1(BL(O) ∩ BL(V )) is the disjoint union of open sets in BL(V
′) each of

which is homeomorphic to BL(O) ∩ BL(V ) via the morphism φanL . From the
definition of the functions h and hL and Remark 8.3.4, g′ ◦ h(O) = log((g ◦
hL)(O)). It can be deduced from the definition of the functions g, g′ and Mg

that to complete the proof we must show that g′ ◦ h(O) ≥ M ′
g(γ). The field L

is algebraically closed and non - trivially valued. Hence its value group Γ(L) is
dense in R∞. This implies that {h(O)|O ∈ O0

xL
(L)} which is the set of elements

definable over L is dense in {h(O)|O ∈ O0
xL

(L)}. As g′(R∞) is a continuous
function, we can assume that O ∈ O0

xL
(L). To show g′ ◦ h(O) ≥ M ′

g(γ) it
suffices to prove that h(O) ∈ DxL

. By assumption, (φanL )−1(BL(O)∩BL(V )) is
the disjoint union of open sets in BL(V

′). By Proposition 8.2.3, there exists d,
L - definable semi-algebraic sets O′

i ⊂ V
′ such that (φanL )−1(BL(O)∩BL(V )) =⋃

iBL(O
′
i) and the morphism φanL restricts to a homeomorphism from BL(O

′
i)

onto BL(O) ∩ BL(V ) for every i. This implies in particular that φ restricts to
a bijection from O′

i(L) onto O(L) for every i. As all models of ACVF which
contain L are equivalent to L, we must have that the morphism φ restricts
to a bijection between O′

i(U) and O(U) ∩ V (U) for every i and in addition
O′
i(U) ∩ O

′
j(U) is empty. Furthermore, for any z ∈ O ∩ V , there exists exactly

d preimages of z in V ′, exactly one in each of the O′
i. We now show that the

morphism φ̂ induces a homeomorphism between Ôi and Ô ∩ V̂ . Firstly, our
description of the sets O′

i from Proposition 8.2.3 was explicit, and it follows

from this description that Ô′
i is an open subset of V̂ ′. Since V̂ is normal, the

morphism φ̂ is open and the restriction of φ̂ to the open set Ô′
i is also an open

map. This restriction is in fact bijective. Indeed, let p ∈ (Ô ∩ V̂ )(Lmax). By
definition p is a stably dominated type. Let a be a realisation of the type p|L.
The arguments above imply that there exists exactly d preimages of a, one in
each of the O′

i. But as O′
i is defined over L there exists at least d preimages

of p. However the cardinality of the set φ̂−1(p) is bounded above by d. Hence

there exists exactly one preimage of p in each of the Ô′
i. It follows that the

restriction of φ̂ to each of the Ô′
i is a bijective open morphism which in turn

implies that the restriction of φ̂ to Ô′
i(L

max) is a bijective open morphism onto

Ô(Lmax) ∩ V̂ (Lmax). Hence h(O) ∈ DxL
.
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8.5 The tying up of loose ends

In the introduction we announced that the goal of this article was to prove a
generalization of Theorem 1.2.2. In the previous section we proved Theorem
8.4.3. We now show that the main theorem implies Theorem 1.2.2. We begin
by showing that Theorem 1.2.2 is equivalent to Theorem 1.2.6. We write the
value group multiplicatively in this section.

Proposition 8.5.1. Let φ : P1
k → P1

k be a finite morphism. Given such a
morphism, theorems 1.2.2 and 1.2.6 are equivalent.

Proof. Let us assume that Theorem 1.2.2 is true. Let x ∈ P1,an
k and L/k be a

complete, algebraically closed, non-Archimedean real valued field extension of k
such that x ∈ P1,an

k (L). By definition, f(x) is the minimum of the radius of the
largest Berkovich open ball around xL whose preimage is the disjoint union of
homeomorphic copies of the ball via the morphism φanL and 1. The assumption
that Theorem 1.2.2 is true implies that there exists a finite simplicial complex
Υ ⊂ P1,an

k and a deformation retraction

ψ : I × P1,an
k → P1,an

k

with image Υ such that the function f is constant on the fibres of this retraction.
We define M : Υ → [0, 1] as follows. Let γ ∈ Υ. Pick any x ∈ P1,an

k which
retracts to γ and set M(γ) := f(x). Since the function f is constant along the
fibres of the retraction, M is well defined. It is also not identically zero and
log(M) is piecewise linear. It can be checked that the existence of the simplicial
complex Υ, the deformation retraction ψ and the function M : Υ→ [0, 1] imply
that Theorem 1.2.6 is true.

We now assume Theorem 1.2.6 and show 1.2.2 is true. By assumption, there
exists a finite, simplicial complex Υ ⊂ P1,an

k , a retraction

ψ : I × P1,an
k → P1,an

k

with image Υ and a function M : Υ→ [0, 1] such that if x ∈ ψ(e, )−1(γ) where
M(γ) > 0 and L/k is a complete, algebraically closed, non-Archimedean real
valued field extension of k such that x ∈ P1,an

k (L) then the Berkovich open ball
around xL of radiusM(γ) decomposes into the disjoint union of Berkovich open
balls each homeomorphic to it. Furthermore, if O is any other Berkovich open
ball around xL whose radius is less than or equal to 1 such that its preimage for
the morphism φanL decomposes into the disjoint union of homeomorphic copies
of the ball then its radius is less than or equal to M(γ). If ψ(e, x) = γ then it
is clear that f(x) = M(γ). Hence the function f is constant along the fibres
of the retraction morphism ψ(e, ). Furthermore, f is not identically zero and
log(f) is piecewise linear on Υ. This proves Theorem 1.2.2.

Proposition 8.5.2. Theorem 8.4.3 implies Theorem 1.2.6.

Proof. To apply Theorem 8.4.3, we need to choose a suitable definable function
g : R4

≥0 → R≥0. Let (r1, .., r4) ∈ R4
≥0. We set g(r1, .., r4) := Πiri. By Theorem

8.4.3, there exists a finite simplicial complex Υ′, a deformation retraction ψ′ :
[i, e] × P1,an

k → P1,an
k with image Υ′ and a function M ′ : Υ′ → R≥0 which

satisfies the following property. Let L/k be a non-Archimedean real valued field
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extension of k and x ∈ P1,an
k (L). Let γ = ψ′(e, xL). There exists O ∈ OxL

such
that (g ◦ hL)(O) = M ′(γ) and the open set (φanL )−1(O) decomposes into the
disjoint union of homeomorphic copies of O via the morphism φanL .

Let xL have homogenous coordinates [a : 1]. By 8.1.1, if |a| ≤ 1 then the
family OxL

is the set of Berkovich open balls around xL whose radius is bounded
by 1. If |a| > 1 then OxL

contains the set of Berkovich open balls around xL.
As sketched in 8.1.1, the radius of these Berkovich open balls can be expressed
in terms of the 4-tuple hL(O).

Using 8.1.1 we see that if O ∈ OxL
is a Berkovich open ball B(xL, r) then

the formula which relates the radius r to the tuple hL(O) varies according to the
value |a|. For this reason we modify the simplicial complex suitably. Let Z0 be
the smallest path-connected closed subspace that contains the set {0,∞} and
Υ be a finite simplicial complex that contains Υ′ ∪ Z0. The space P1,an

k admits
a deformation retraction onto any non-empty finite sub graph. In particular
there exists a deformation retraction ψ : [i, e] × P1,an

k → P1,an
k with image Υ.

The function M ′ extends to a function on Υ as follows. Let p ∈ Υ. We set
M ′′(p) :=M ′(ψ′(e, p)). The function M ′′ : Υ→ R≥0 is well defined.

We now define M : Υ→ R≥0 which will imply Theorem 1.2.6.

M ′′(p) |T1(p)| < |T2(p)|

M(p) :=

{
M ′′(p)1/2 |T1(p)| = |T2(p)|

Min{1,M ′′(p)(|T1(p)|/|T2(p)|)
2} |T1(p)| > |T2(p)|

Using 8.1.1 it can be verified that the function M is bounded above by 1.
It remains to check that the function M defined above satisfies the properties
required by Theorem 1.2.6. Let xL ∈ P1,an

L (L) have homogenous coordinates
[a : 1] and let xL retract to the point p ∈ Υ via the retraction ψ.

Let |a| > 1. By Theorem 8.4.3, there exists O ∈ OxL
such that the preimage

of O is the disjoint union of copies of O for the morphism φanL and also that g◦hL
achieves its maximal value at O amongst all elements of OxL

which satisfy this
property. Let hL(O) = ((1, r), (1, 1)). It follows that that M ′′(p) = r. Observe
that since xL retracts to the point p via the retraction ψ, |(T1/T2)(p)| = |a|.

If M(p) = 1 we must show that the preimage of the Berkovich open ball
B(xL, 1) decomposes into the disjoint union of copies of itself. It follows from
the definition of the function M(p) that r ≥ 1/|a|2. Any O′ ∈ OxL

such
that hL(O

′) = ((1, s), (1, 1)) with s ≤ r must be such that its preimage for
the morphism φanL is the disjoint union of homeomorphic copies of itself. In
particular we may choose O′ for which hL(O

′) = ((1, 1/|a|2), (1, 1)). By 8.1.1
the open neighbourhood O′ is a Berkovich open ball around xL of radius 1.

Let M(p) < 1. By definition of the function M we have that r < 1/|a|2.
Using 8.1.1, we see that the open set O corresponds to the Berkovich open
ball around xL of radius r|a|2. Let B(xL, s) be a Berkovich open ball around
xL such that its preimage decomposes into the disjoint union of homeomorphic
copies of itself via the morphism φanL . By 8.1.1, we have that hL(B(xL, s)) =
((1, s/|a|2), (1, 1)). Theorem 8.4.3 then implies that s ≤ r|a|2.

If |a| ≤ 1 then from our construction of Υ the point xL must retract to p ∈ Υ
such that |T1(p)| ≤ |T2(p)|. As done above, by our choice of g, the calculations
in Section 8.1.1 and Theorem 8.4.3, it can be shown that the preimage of the
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Berkovich open ball B(xL,M(p)) for the morphism φanL decomposes into the
disjoint union of homeomorphic copies of B(xL,M(p)) via the morphism φanL .
Furthermore, if B(xL, s) is a Berkovich open ball such that its preimage splits
into the disjoint union of homeomorphic copies of B(xL, s) via φ

an
L then by 8.1.1,

s ≤M(p).
That the function log(M) is piecewise linear on Υ follows from the fact that

the function log(M ′) is piecewise linear on the finite graph Υ′.
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àºpillay.

[PP] Poineau. J, Pulita. A, Continuity and Finiteness of the Radius of Conver-
gence of a p-adic Differential Equation via Potential Theory, arXiv: 1209
6276v1.

[LVD] Van den Dries. Lou, Tame Topology and O-Minimal Structures, London
Mathematical Society Lecture notes, 248.

[TEM] Temkin. M, Stable modifications of relative curves, Journal of algebraic
geometry (19), 2010.

[TEM2] Temkin. M, Cohen. A, Trushin. D, Morphisms of Berkovich curves and
the different function, arXiv: 1408.2949.

[TEM3] Temkin. M, Metric uniformization of morphisms of Berkovich curves,
arXiv: 1410.6892.

148


