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Introduction

“L’immense majorité des gens ne sont pas obligés de regarder leur dîner droit
dans les yeux avant de l’attaquer.”

– Tristan Egolf, Le seigneur des porcheries

This thesis focuses on the generation of triple photons by a third-order optical nonlinear
parametric interaction in solid-state matter.

A triple photon, also called photon triplet, triplet as a shortcut or even triphoton, is a
photonic three-particle highly correlated state. The most direct way of generating such a state
comes from third-order nonlinear optics, i.e. the coupling between four electromagnetic waves.
The corpuscular vision of light gives a fairly simple picture of it: a photon splits into three
photons of lower energy, namely the triplet, during its interaction with a nonlinear medium. The
energy conservation is then fulfilled. The coupling between light and matter occurs thanks to the
third-order electric suspectibility of this medium. This medium is traditionnally a crystal, as it
allows the fulfillment of the momentum conservation, also called the phase-matching condition
in the ondulatory point of view. The strong coherence of this generated state comes from the
fact that the three photons arise from the same origin.

This phenomenon is then very similar to the one producing twin photons by a second-order
nonlinear interaction. The apparition of twin photons in the 1970s has been at the heart of many
developments in the fields of quantum optics, as in the demonstration of the violation of Bell
inequalities [1]. Today they are fundamental elementary blocks of quantum information. Triplet
photons might potentially also be involved in this story. They could for instance be used in an
heralded pair protocol [2]: one of the three photons could herald the two others, forming a pair.
But the motivations for generating such states with the peculiar property of entanglement are
above all fundamental: their non-classicality is different from that of twins and their generation
is an experimental challenge [3–14].

The first experimental demonstration of triplet photon generation (TPG) was performed
in our group in Grenoble in 2004, in a configuration slightly different from the above descrip-
tion [13]. Two other beams were indeed stimulating the process, and therefore increasing the
probability of generating triplets. The direct spontaneous generation, i.e. without any seeding
which is called the third-order parametric fluorescence, has not been demonstrated so far. It is
imputed to the extreme weakness of the conversion efficiency in bulk crystals because the waves
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are not tightly confined, albeit the very large incoming intensities, of the order of 100 GWcm−2

[15]. Nonetheless, it has been shown that the important amount of stimulated photons hides
the triplet correlations [16].

It is thus important to find a configuration that would enable the generation of triple photons
with less seeding photons, or even none, in order to keep the coherence. The goal of this work
is precisely to investigate two strategies so as to meet this need, from both experimental and
theoretical points of view. The first strategy deals with TPG in bulk crystals, with the aim
to place these crystals into a cavity in order to artificially increase the interaction length. The
second one focuses on TPG in optical fibers, so that the interaction length can also be very long,
and in addition the electromagnetic field can be much more confined, therefore involving larger
intensities. A last advantage of isotropic fibers is that any second-order process that would
pollute the TPG process is forbidden.

Chapter 1 gives the theory toolbox useful for the understanding of this work. The subject is
approached with some general classical parametric optics, using polychromatic electromagnetic
fields. These general considerations are then adapted to the specific cases of crystal optics on the
one hand, and of fiber optics on the other hand. Finally, as the states we are studying cannot
be fully understood through classical physics, basic quantum optics on nonlinear interactions
are given.

Chapter 2 develops the motivations for studying triphoton states. It also gives a state of
the art on the generation and the correlations studies of triple photons, before reminding our
strategies.

Chapter 3 is devoted to the study of two oxide bulk crystals: KTP and rutile TiO2. An
experimental energetic and spectral study of bi-stimulated TPG in KTP is performed. Then,
linear and nonlinear properties of titanium dioxide are investigated experimentally through
third-harmonic generation (THG), which is the exact reverse process of frequency degenerated
TPG: three photons merge into one photon of higher energy. However, TPG in rutile TiO2

is not possible to achieve due to a likely lack of phase matching. Finally, the potential of
employing these crystals in an synchronously pumped optical parametric oscillator (OPO) is
studied theoretically.

Chapter 4 deals with TPG in optical fibers. Because THG has a higher conversion efficiency
than TPG, and these two processes fulfill the same phase-matching condition, THG is at first
considered for designing at best TPG. A full experimental characterization is performed in
germanium-doped silica fibers by studying their spectral, energetic, modal and polarization
properties. A preparation of the TPG experiment in the same fibers is also done through a
modal preparation of the beams and the investigation of the filtering stage. However, quantum
calculations show that the generation rate is still too low for the present configuration. To
overcome these difficulties, orientations are given on the basis of quantum calculations.

Lastly, the phase-matching properties for TPG in chalcogenide photonic-crystal fibers (PCF)
are studied. These materials have giant nonlinearities, three order of magnitudes higher than
oxides, which imply therefore higher conversion efficiencies.
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Chapter 1
Elements of theory

"Il faut bien que je supporte deux ou trois chenilles si je veux connaître les
papillons."

– Antoine de Saint-Exupéry, Le petit prince
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In this first chapter, we introduce some theory elements helpful for the understanding of this
work. We first give some generalities on propagation of electromagnetic waves in a dielectric
medium by reminding both linear and nonlinear properties of interactions between light and
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matter. We then adapt them to our two experimental cases of crystal and fiber optics. We
finally introduce some useful quantum optics, as the states generated through those interactions
cannot be fully understood classically.

1.1 Classical parametric optics

1.1.1 Characteristics of electromagnetic waves in a dielectric medium

The triplet state of light that will be studied is generated from a nonlinear interaction between a
laser light and a transparent solid-state medium. This light is considered as an electromagnetic
wave propagating without loss in a homogeneous, dielectric and not magnetic medium. It is
described in the laboratory cartesian frame with unit vectors (~uX , ~uY , ~uZ) through its electric
~E and magnetic ~H fields. The light is taken to be progressive with a velocity c in the vacuum,
unidirectional along ~uZ , linearly polarized along ~e, and polychromatic with a peak centered at

the circular frequency ω0 =
2πc
λ0

in the visible or near infrared range. It can be regarded at
first as a plane wave, although this point is discussed in the next subsection 1.1.2. We adopt a
classical description in this section.

Electric field As the temporal periodicity T of this field is much larger than the period 2π/ω0

in the slowly varying envelope approximation, we decompose this plane wave in the Fourier space
as follows [17]:

~E (~r, t) =
ˆ
R

dω

2π
~E (~r, t, ω) (1.1)

=
ˆ
R

dω

2π
~E (~r, ω) e−iωt

=
ˆ
R

dω

2πE (~r, ω) ei(k(~r,ω)Z−ωt)~e,

where ~r stands for (X,Y, Z). E=|E| eiφ is the complex amplitude of the electric field, in Vm−1;
|E| and φ its real amplitude and initial phase respectively. We justify in Section 1.1.2 that the
amplitude of the wave vector ~k takes the form:

k(~r, ω) =
n(~r, ω)ω

c
, (1.2)

n being the optical index of the medium that the light passes through.
The field at negative frequencies stands for its complex conjuguate:

E (~r,−ω) = E∗ (~r, ω) . (1.3)

Polarization The propagation of this oscillating electric field in a dielectric medium results
in small valence electrons displacements around their equilibrium positions, these charges being
strongly bounded together. As a result, electric dipole moments arise, leading to an induced
macroscopic electronic polarization. Likewise, other polarization origins are possible even though
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1.1 Classical parametric optics

they are not occuring in the experimental situations described in this manuscript. First, dis-
placements of atoms or ions lead to an atomic or ionic polarization. Second, in the case of polar
molecules, the reorientation of the dipole moments under the action of the electric field brings
an orientation polarization [18].

Optical nonlinearity In the limit where the amplitude of the excitating optical field at a
given frequency ω remains small enough compared to the interatomic field, typically 1010 Vm−1

or equivalently 100 kWcm−2 in power density [19], the electrons motion remains confined in
the bottom of the potential well, so that the resulting polarization evolves linearly with the
field amplitude and thus oscillates at the same frequency ω: this is the linear polarization.
However, this is not true anymore with intense electric fields, typically produced by lasers. In
such a nonlinear regime, the induced dipole moments radiate not only at ω but also at other
frequencies arising from a nonlinear polarization. As different spectral components are involved
in the process, it is referred to as parametric optics.

Such effects have been first observed in 1961 by Franken et al. [20], very shortly after the
laser invention, and theorized a year later by Armstrong et al. [21], opening the field of nonlinear
optics.

For input power intensities below 100 GWcm−2, the induced nonlinear polarization stays
small and may be considered as a perturbation of the linear polarization. It is therefore modeled
by expanding it in a Taylor series of the applied electric field ~E. Then in the Fourier frequential
domain, the total electronic polarization can be written [22]:

−→
P (~r, ω) =

+∞∑
n=0

−→
P (n) (~r, ω) = −→P (0) (~r) + ε0

+∞∑
n=1

[
χ

(n) (ω) :
(⊗

n

−→
E (~r, ω)

)]
(1.4)

= −→
P (0) (~r) + ε0

[
χ

(1) (ω) .−→E (~r, ω) + χ
(2) (ω = ω1 + ω2) :

(−→
E (~r, ω1)⊗−→E (~r, ω2)

)
+χ(3) (ω = ω1 + ω2 + ω3)

...
(−→
E (~r, ω1)⊗−→E (~r, ω2)⊗−→E (~r, ω3)

)
+ ...

]
,

where ε0 is the vacuum permittivity, ⊗ the tensorial product, and : and
... are the contracted

products. The expansion coefficient χ(n) is called the nth order electric susceptibility tensor
that is a rank n+ 1 tensor, which amplitude decreases with n. Typically, non-zero elements of
χ

(2) tensors equal 10−12 mV−1, while non-zero elements of χ(3) tensors reach 10−21 m2V−2. The
tensor elements take real values in the case of a lossless medium, which corresponds to the present
study where the propagation occurs in the transparency range of the materials we considered.
The linear polarization is written −→P (1), while the nonlinearities of order n are indicated as −→P (n).
−→
P (0) is the static polarization. It is important to notice that the induced polarization at a given
frequency radiates an electric field at the same frequency. Therefore, incident and induced fields
have to be considered together, as the different contributions cannot be separated.

It is also possible to give the temporal development of the polarization [19]:
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−→
P (~r, t) = −→

P (0) (~r) + ε0

+∞∑
n=1

[˙ +∞

−∞
dτ1...dτnR

(n)
(~r, t− τ1, ..., t− τn) :

(
n⊗
i=1

−→
E (~r, τi)

)]
(1.5)

= −→
P (0) (~r) + ε0

 +∞ˆ

−∞

dτR
(1)

(~r, t− τ) .−→E (~r, τ)

+
+∞¨

−∞

dτ1dτ2R
(2)

(~r, t− τ1, t− τ2) :
(−→
E (~r, τ1)⊗−→E (~r, τ2)

)

+
+∞̊

−∞

dτ1dτ2dτ3R
(3)

(~r, t− τ1, t− τ2, t− τ3)
...
(−→
E (~r, τ1)⊗−→E (~r, τ2)⊗−→E (~r, τ3)

)
+ ...

 ,
where R

(n)
are the temporal Fourier transforms of the susceptibility χ(n). From now on, we will

work under the assumption that there is no static polarization, in conformity with the materials
we will consider.

Constitutive equations It is suitable to describe the propagation of light in terms of the
displacement vector ~D (Cm−2), conveying both the incident electric field and the induced po-
larization [23]:

~D (~r, t) = ε0 ~E (~r, t) + ~P (~r, t) . (1.6)

As light propagates in non-magnetic media, there is no induced magnetization ~M . The mag-
netic field ~H (Am−1) is then directly proportional to the magnetic induction vector ~B (T), the
magnetic equivalent of ~D [23]:

~B (~r, t) = µ0 ~H (~r, t) , (1.7)

µ0 being the vacuum permeability.

Maxwell equations Then, the evolution of light in a dielectric (i.e. electrical insulator) and
non-magnetic medium is described through the following Maxwell equations [23]:

~∇ ·
−→
D (~r, t) = 0, (1.8)

~∇ ·
−→
B (~r, t) = 0, (1.9)

~∇×
−→
E (~r, t) = −

∂
−→
B (~r, t)
∂t

, (1.10)

~∇×
−→
B (~r, t) = µ0

∂
−→
D (~r, t)
∂t

. (1.11)

For the considered plane wave propagating along Z, Equations (1.1) and (1.10) allow us to write
the magnetic induction as a function of the Fourier components of the electric field:
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~B (~r, t) =
ˆ
R

dω

2π
~B (~r, t, ω) (1.12)

=
ˆ
R

dω

2π
n (~r, ω)

c
~uz × ~E (~r, ω) e−iωt

=
ˆ
R

dω

2π
n (~r, ω)

c
E (~r, ω) ei(k(ω)Z−ωt) ~uZ × ~e.

Propagation equation Combining the constitutive and Mawell equations (1.6), (1.10), and
(1.11) together leads to the spatial and temporal evolution equation for the electromagnetic
wave, namely the propagation equation:

~∇×
(
~∇× ~E (~r, t)

)
+

1
c2
∂2 ~E (~r, t)

∂t2
= −µ0

∂2 ~P (~r, t)
∂t2

. (1.13)

The wave propagating along the Z-axis, one can rewrite (1.13) in the Fourier domain for each
frequency ω:

∂2 ~E (~r, ω)
∂Z2 +

ω
c

2

~E (~r, ω) = −µ0ω
2 ~P (~r, ω) . (1.14)

The right-hand side of Equations (1.13) and (1.14) is called the source term, composed of a
linear and a nonlinear contributions.

While Section 1.1.2 focuses on the linear component of the polarization, Section 1.1.3 gives
details on the nonlinear polarization.

Energetic considerations, conservation law Before going further into the resolution of
Equation (1.14), it is important to have a look at the energetic properties of light, so as to
define quantities that are actually directly usable for practical situations. These properties can
be described by the Poynting vector ~π (Wm−2) [17]:

~π (~r, t) = 1
µ0

[
~E (~r, t)× ~B (~r, t)

]
. (1.15)

It is also relevant to consider the electromagnetic energy density:

w (~r, t) = 1
2
~E (~r, t) · ~D (~r, t) + 1

2
~H (~r, t) · ~B (~r, t) . (1.16)

~π and w are linked by the following energy conservation law [24]:

dw (~r, t)
dt

+ ~∇ · ~π (~r, t) = 0. (1.17)

From an experimental point of view, we then define three measurable quantities: the power
density, the power and the energy.

– The mean value over the temporal period T of the Poynting vector defines the power
density I (Wm−2), usually called intensity by misnomer. This is the radiated power per
unit area [17]:
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I (~r) = 〈‖~π (~r, t)‖〉T =
1
T

ˆ
T
~π (~r, t) · ~uZdt = 1

2µ0

〈
Re
∥∥∥ ~E (~r, t)× ~B∗ (~r, t)

∥∥∥〉
T
. (1.18)

In the limit where T �
2π
ω0

and for polychromatic planes waves, the power density takes
the form:

I (~r) =
ε0c

2T

ˆ
R

dω

2πn(~r, ω) |E (~r, ω)|2 . (1.19)

– Taking the flux of the Poynting vector by integrating over the transverse space defines the
electromagnetic power P (W) going through a surface S:

P (Z, t) =
¨
S
dSI (~r, t) . (1.20)

– Lastly, one can define the energy E (J) by integrating the instaneous power over time:

E (Z) =
ˆ
R
dtP (Z, t) . (1.21)

1.1.2 Linear optics

We now come back to the propagation equation by considering at first the polarization through
its linear component only. This polarization ~P (1) (~r, t), or ~P (1) (~r, ω) in the Fourier space, can
be written [17]:

~P (1) (~r, t) =
ˆ
R

dω

2π
~P (1) (~r, ω) e−iωt (1.22)

= ε0

ˆ
R

dω

2πχ
(1) (ω) .−→E (~r, ω) e−iωt.

Linear susceptibility From Equations (1.6) and (1.22) up to the first order, we come up
with:

~D (~r, t) = ε0

ˆ
R

dω

2π
[
1 + χ

(1) (ω)
]
· ~E (~r, ω) e−iωt, (1.23)

where χ(1) is the linear electric susceptibility, a rank 2 tensor (3 × 3 matrix), whose elements
are dimensionless.

Eigenvalues in the dielectric frame: principal indices As real (transparent medium)
and symetric (non-magnetic medium), the χ(1) tensor is diagonalizable in a so-called optical
or dielectric frame [23], denoted (O, x, y, z). This can be shown using the conservation equa-
tion (1.17) along with definitions (1.15) and (1.16), and Maxwell equations (1.10) and (1.11).
Therefore:
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1.1 Classical parametric optics

χ
(1)(ω) =


χ

(1)
xx (ω) 0 0

0 χ
(1)
yy (ω) 0

0 0 χ
(1)
zz (ω)

 . (1.24)

Such a frame makes calculation easier, and will be used mostly next. The x, y and z-axes are
called the principal axes of the dielectric frame. The linear susceptibility χ(1) is related to the
relative permittivity εr through the relationship:

εr(ω) = 1 + χ
(1)(ω). (1.25)

Propagation equation Equation (1.14) then becomes:

∂2 ~E (~r, ω)
∂Z2 +

ω
c

2 (
1 + χ

(1) (ω)
)
· ~E (~r, ω) = 0. (1.26)

The first order susceptibility is linked to the refractive index n introduced in Equation (1.2) by
the equation: [

1 + χ
(1) (ω)

]
· ~E (~r, ω) = n(~r, ω)

[
~E (~r, ω)−

(
~e · ~E (~r, ω)

)
~e
]
. (1.27)

n is a scalar quantity. In the general case, it varies as a function of the direction of propagation
~r. We will see later on that it is expressed as a function of the principal refractive indices nx,
ny and nz that are defined as:

ni(ω) =
√

1 + χ
(1)
ii (ω), i ∈ {x, y, z} . (1.28)

Equations (1.23) and (1.24) show that ~E and ~D vectors are not collinear in the general case:
they make an angle ρ called the double refraction angle. It will also be discussed in Section
1.2.1.

This dielectric frame differs from the orthogonal laboratory frame (O,X, Y, Z) already men-
tionned. In the case of a propagation in a crystal, it also differs from the crystallographic
frame (O, a, b, c) related to the primitive cell [25]. It can be noted that the latter frame is not
necessarily orthogonal.

The wave propagation direction, along the wave vector ~k, is located using the spherical angles
(θ, ϕ) as depicted in figure 1.1.

Linear solutions

– Plane wave solution A first solution of the linear equation (1.26) is the progressive plane
wave, which justifies the assumption already made. In the temporal domain, and for a
given frequency (see Equation (1.1)):

~E (~r, t, ω) = E (~r, ω) ei(k(~r,ω)Z−ωt+φ)~e. (1.29)

– Gaussian solution The Gaussian form in space and time for the electric field is also
a solution of this linear equation. It is moreover a better description as far as laser
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Figure 1.1 – Wave vector ~k in the dielectric frame (O, x, y, z).

experiments are concerned. Here, for a temporal pulsed beam, and at a given frequency,
the modulus and phase of the electric field are:

∣∣∣ ~E (~r, t, ω)
∣∣∣ = E0

W0

W (Z)e
−
(
X2+Y 2
W2(Z)

)
e
−
(

t
τ/2

)2
, (1.30)

arg
(
~E (~r, t, ω)

)
= k (~r, ω)

Z +
X2 + Y 2

2R (Z)

− Φ (Z)− ωt+ φ, (1.31)

where W0 is the minimum value of the beam transverse extension, called the beam waist
radius; τ the pulse duration; W the radius of the beam, taken at 1/e2 of its maximum; R
the radius of curvature; and Φ the Gouy phase. These three last quantities are expressed
as a function of the Rayleigh parameter ZR as [26]:

W (Z) = W0

√√√√√1 +

 Z

ZR

2

, (1.32)

R (Z) = Z

1 +

ZR
Z

2
 , (1.33)

Φ (Z) = arctan

 Z

zR

 , (1.34)

and

ZR (~r, ω) =
πn (~r, ω)W 2

0
M2λ

. (1.35)

M2 is the quality factor [27]. M2 = 1 for an ideal gaussian beam, and M2 > 1 in most
actual situations. The beam position is defined here at the waist, i.e. Z = 0. ZR defines
the longitudinal length where the beam can actually be considered as a plane wave, as
shown in Figure 1.2.
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Figure 1.2 – Spatial evolution of a gaussian beam.

Dispersion of the refractive index, Sellmeier equation The principal refractive indices
are frequency dependent: this phenomenon is called dispersion. Indeed, atoms in the matter
can be interpreted as harmonic oscillators in a potential well perturbated by an electromagnetic
field. The polarization induced by the oscillators depends on the excitating wavelength. This
Lorentz theory for oscillators leads to the so-called Sellmeier equation [28]:

ni (λ) =

√√√√√Ci,1 +
m∑
k=2

Ci,k

1− Pi,kλ−qi,k
, i ∈ {x, y, z} . (1.36)

The P coefficients are the poles and define the resonance wavelengths of the absorbers. The C
coefficients define the poles strengths. The powers q are usually taken to 2. (m− 1) corresponds
to the number of oscillators. All those coefficients are empirical and depend on the medium. In
most cases, between two absorbers (i.e. in the transparency range considered), the dispersion
law is monotonically increasing and said to be “normal”, as opposed to “anormal” in the other
case.

Propagation losses We work in non-absorptive spectral ranges as much as possible, i.e. far
from resonant transitions. Nevertheless, absorption will be significant in some cases and the
intensity will follow a Beer-Lambert law:

I (Z, ω) = I (0, ω) e−α(ω)Z , (1.37)

with α the attenuation constant, linked to the imaginary part of the first-order susceptibility.
In the case of propagation in optical fibers developped in Section 1.3, several other effects
are also responsible for losses: Rayleigh scattering at lower wavelenghs

(
α (λ) ∝ λ−4) because

of inhomogeneities arising during the fabrication process [29], scattering at the core-cladding
interface, fiber macroscopic and microscopic bends, and absorption by impurities such as OH−

ions introduced during the manufacture [30].

1.1.3 Nonlinear optics

There is no threshold for nonlinear terms to appear: they are always present, but only detectable
for high enough excitation intensities, typically larger than 1MW/cm2. Still, some frequency,
momentum and symmetry compatibilities are required, and are the purpose of this section.
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Among all the nonlinear contributions, the third-order nonlinear term is the one that is going to
interest us. It is obvious that second-order nonlinear effects are more efficient than third-order
ones, as part of the Taylor expansion (1.4), and also have to catch our attention.

Propagation equation with a nonlinear polarization We now develop the polarization
up to the third order in Equation (1.14):

∂2 ~E (~r, ω)
∂Z2 +

n (~r, ω)ω
c

2

~E (~r, ω) = −µ0ω
2
[
~P (2) (~r, ω) + ~P (3) (~r, ω)

]
. (1.38)

~P (2) (~r, ω) and ~P (3) (~r, ω), given in Equations (1.39) and (1.40), are the spectral second- and
third-order nonlinear polarizations respectively, Fourier transforms of the temporal polarizations
~P (2) (~r, t) and ~P (3) (~r, t):

~P (2) (~r, t) =
ˆ
R

dω0

2π
~P (2) (~r, ω0) e−iω0t (1.39)

= ε0

¨
R2

dω0

2π
dω1

2π χ
(2) (ω0 = ω1 + ω2) :

[−→
E (~r, ω1)⊗−→E (~r, ω0 − ω1 = ω2)

]
e−iω0t,

~P (3) (~r, t) =
ˆ
R

dω0

2π
~P (3) (~r, ω0) e−iω0t (1.40)

= ε0

˚
R3

dω0

2π
dω1

2π
dω2

2π χ
(3) (ω0 = ω1 + ω2 + ω3)

...
[−→
E (~r, ω1)⊗−→E (~r, ω2)⊗−→E (~r, ω0 − ω1 − ω2 = ω3)

]
e−iω0t,

where ω0, ω1, ω2 and ω3 are the frequencies of the interacting waves.
The ~P (2) and ~P (3) polarizations involve the second- and third-order nonlinear susceptibilities

χ
(2) and χ(3) respectively. In the most general case, the χ(2) tensor is composed of 27 indepen-

dent elements: χ(2)
ijk, with {i, j, k} ∈ {x, y, z}

3; the χ(3) tensor of 81 independent elements: χ(2)
ijkl,

with {i, j, k, l} ∈ {x, y, z}4. Some symmetry considerations and approximations allow to reduce
the number of independant elements. First, the orientation symmetry of the material can be
considered in the light of the Neumann principle [25]. Note in particular that any centrosym-
metric medium cannot allow three waves coupling to occur, since the tensor χ(2) is zero. In
addition, under the assumption of propagation without absorption, the Kleinman principle [31]
states that the χ tensors are symmetric through permutation of the cartesian indices. Finally,
under the same assumption, causality and time invariance, the ABDP symmetry [21] links the
χ elements at different frequencies through permutation of pulsations and cartesian indices.

Three-wave coupling, energy conservation The ~P (2) (~r, ω0) component of Equation (1.39)
is induced from the coupling of the electric field at the two frequencies ω1 and ω2. It itself radiates
a field at the frequency ω0 = ω1±ω2. Therefore, such a process couples three wave components.
It is referred to as a quadratic interaction, since it is quadratic in incident electric field.

From the previous comment, we will from now on speak about three different fields ~E0, ~E1
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and ~E2, respectively centered at frequencies ωc0, ω
c

1 and ω
c

2. Those fields coupled through a
quadratic interaction obey the energy conservation law:

~ω0 = ~ω1 + ~ω2, (1.41)

where (ω1, ω2) < ω0, and ~ is the Planck constant. Thus, let us shift a little from the classical
frame as a corpuscular vision is here obvious [32] and allows us to draw up a list of the possible
quadratic processes.

– The parametric fluorescence, or spontaneous parametric down-conversion (SPDC),
is equivalent to a spontaneous scission of a photon of higher energy into two photons of
lower energies: ~ω0 → ~ω1 + ~ω2.

– The sum-frequency generation (SFG) is the reverse process: two photons merge into
a photon of higher energy: ~ω1 + ~ω2 → ~ω0. The degenerate case of the SFG interaction

is called second-harmonic generation (SHG):
~ω0

2 +
~ω0

2 → ~ω0. When a static field
is involved in the process, an electro-optic interaction called Pockels effect can occur:
~ω + 0→ ~ω.

– The difference-frequency generation (DFG) is a stimulated scission: ~ω0−~ω1 → ~ω2.
The optical rectification is its degenerate case, leading to the creation of a static field:
~ω − ~ω → 0.

These three parametric interactions are depicted in Figure 1.3. In the energy diagrams, the
dotted lines are virtual energy levels that do not correspond to existing energy levels in matter,
excitated out of resonance. The solid lines are ground states.

Four-wave coupling, energy conservation In the same fashion as previously, the ~P (3) (~r, ω0)
component of Equation (1.40) is induced from the coupling of the three electric field frequencies
ω1, ω2 and ω3, so that it is called the cubic nonlinear polarization. It radiates at a new frequency
ω0 = ω1 ± ω2 ± ω3. This process couples four wave components.

We will also refer to these wave packets as four different fields ~E0, ~E1, ~E2, and ~E3, respectively
centered at frequencies ωc0, ω

c

1, ω
c

2 and ωc3. Their energies can be linked through two different
energy conservation relationships [33]:

(A) ~ω0 = ~ω1 + ~ω2 + ~ω3, (1.42)

(B) ~ω0 + ~ω1 = ~ω2 + ~ω3. (1.43)

The nonlinear cubic processes of type A are listed below.

– The parametric fluorescence, or spontaneous parametric down-conversion (SPDC),
is the spontaneous scission of a photon of higher energy into three photons of lower energies:
~ω0 → ~ω1 + ~ω2 + ~ω3.

– The sum-frequency generation (SFG) is the fusion reverse process: three photons
merge into a photon of higher energy, ~ω1 + ~ω2 + ~ω3 → ~ω0. Its degenerate case is the
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Figure 1.3 – Energy diagrams for the second-order parametric interactions.

third-harmonic generation (THG):
~ω0

3 +
~ω0

3 +
~ω0

3 → ~ω0. Alike in quadratic interactions,
when static fields are involved, electro-optic effects can occur: for instance ~ω+0+0→ ~ω.

– The difference-frequency generation (DFG) is a stimulated scission. It can be monos-
timulated: ~ω0 − ~ω1 → ~ω2 + ~ω3, or bistimulated: ~ω0 − ~ω1 − ~ω2 → ~ω3 .

The nonlinear cubic processes of type B are given below.

– The four wave-mixing1 (FWM) corresponds to the merging of two photons that splits
into two photons of different energies: ~ω0 + ~ω1 → ~ω2 + ~ω3. Its totally degenerate case
is called the Kerr effect, or self-phase modulation (SPM): ~ω+ ~ω → ~ω+ ~ω. The cross-
phase modulation (XPM) is the partially degenerated process: ~ω0 + ~ω1 → ~ω0 + ~ω1.
When working outside the transparency range, two photons at the same frequency can be
absorbed resonantly

(
Im
(
χ

(3)
)
6= 0

)
: this is the two-photon absorption.

– The Raman and Brillouin effects follow the same photonic schemes, but include a
phononic transition between to real energy levels in matter. It will be discussed further in
Section 4.1.3.4.

The different cubic interactions are schemed in Figure 1.4. We can already note that type A
1Note that this term can be misleading since all those processes are about mixing four waves.
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1.1 Classical parametric optics

cubic interactions are of particular interest for us as they will be involved in the production of
photon triplets.

Figure 1.4 – Energy diagrams for the third-order parametric interactions.

Coupled amplitude equations We remind that the plane wave described in Equation (1.1)
evolves spatially as:

E (~r, ω) = E (~r, ω) eik(~r,ω)Z , (1.44)

and that ~r stands for (X,Y, Z).
We make the assumption that this spatial evolution is small compared to the wavelength:

this slowly varying envelope hypothesis can be written for the first derivative as [34]:∣∣∣∣∣∣∂
2E (~r, ω)
∂Z2

∣∣∣∣∣∣� k (~r, ω)

∣∣∣∣∣∣∂E (~r, ω)
∂Z

∣∣∣∣∣∣ . (1.45)

Now putting the electric field (1.44) together with (1.45) in the propagation equation (1.38)
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gives:

∂ ~E (~r, ω)
∂Z

= i
µ0ω2

2k (~r, ω)
[
~P (2) (~r, ω) + ~P (3) (~r, ω)

]
e−ik(~r,ω)Z . (1.46)

This equation clearly shows that the source terms ~P (2) (~r, ω) and ~P (3) (~r, ω), responsible for
the quadratic and cubic processes already discussed, are two competitive effects. For clarity,
we are going to set them apart alternately in the previous equation. We also assume that the
interacting waves are collinear, which will be the case of the experiments in the next chapters.

– Quadratic evolution equations With the second-order term only, and using Equation
(1.39), we come up with the complex amplitude equation [22]:

∂E (~r, ω)
∂Z

= iκ (~r, ω)
ˆ
R

dω̃

2πχ
(2)
eff (~r, ω, ω̃)E (~r, ω̃)E (~r, ω − ω̃) , (1.47)

with
κ (~r, ω) =

ω

2cn (~r, ω) cos2 (ρ (ω)), (1.48)

and χ(2)
eff the second-order effective susceptibility coefficient defined by [19]:

χ
(2)
eff (~r, ω, ω̃) = −→e (~r, ω) · χ(2) (ω = ω̃ + (ω − ω̃)) : [−→e (~r, ω̃)⊗−→e (~r, ω − ω̃)] . (1.49)

The −→e vectors are unitary electric field vectors.

Equation (1.47) has to be fulfilled for the infinity of frequencies constituting the total electric
field. Put together, they form a set of coupled equations.

At this point, it is important to make some comments:
- The field at negative frequencies can be replaced by its hermitian conjuguate at opposite

frequency, as stated in (1.3).
- The integral has to be restricted to the transparency range of the material.
- The k vectors in the argument of E that sum together will also reduce the spectrum to

three wave packets around three different frequencies (ω0, ω1 and ω2). This is why we will
equivalently rewrite the coupled equations (1.47) in a more familiar way using the three fields
E0, E1 and E2 complex amplitudes:

∂E0 (~r, ω0)
∂Z

= iκ (~r, ω0)
ˆ
R

dω1

2π χ
(2)
eff (~r, ω0, ω1)E1 (~r, ω1)E2 (~r, ω0 − ω1) e−i∆k(2)(~r,ω0,ω1)Z

∂E1 (~r, ω1)
∂Z

= iκ (~r, ω1)
ˆ
R

dω0

2π χ
(2)
eff (~r, ω0, ω1)E0 (~r, ω0)E∗2 (~r, ω0 − ω1) e+i∆k(2)(~r,ω0,ω1)Z

∂E2 (~r, ω2)
∂Z

= iκ (~r, ω2)
ˆ
R

dω0

2π χ
(2)
eff (~r, ω0, ω1)E0 (~r, ω0)E∗1 (~r, ω0 − ω2) e+i∆k(2)(~r,ω0,ω2)Z ,

(1.50)
where ∆k(2) is the phase mismatch between the wave vectors of the radiated polarization and
the incoming fields:

∆k(2)(~r, ω0, ω1) = ∆k(2)(~r, ω0, ω1, ω0 − ω1) = k (~r, ω0)− k (~r, ω1)− k (~r, ω0 − ω1) . (1.51)
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1.1 Classical parametric optics

– Cubic evolution equations From (1.40) and (1.46) with the third-order source term only,
we can also write similar equations for the cubic interactions of type A (to be adapted for
type B) [33]:

∂E0 (~r, ω0)
∂Z

= iκ (~r, ω0)
¨
R2

dω1

2π
dω2

2π χ
(3)
eff (~r, ω0, ω1, ω2)E1 (~r, ω1)E2 (~r, ω2)

×E3 (~r, ω0 − ω1 − ω2) e−i∆k(3)(~r,ω0,ω1,ω2)Z

∂E1 (~r, ω1)
∂Z

= iκ (~r, ω1)
¨
R2

dω0

2π
dω2

2π χ
(3)
eff (~r, ω0, ω1, ω2)E0 (~r, ω0)E∗2 (~r, ω2)

×E∗3 (~r, ω0 − ω1 − ω2) e+i∆k(3)(~r,ω0,ω1,ω2)Z

∂E2 (~r, ω2)
∂Z

= iκ (~r, ω2)
¨
R2

dω0

2π
dω1

2π χ
(3)
eff (~r, ω0, ω1, ω2)E0 (~r, ω0)E∗1 (~r, ω1)

×E∗3 (~r, ω0 − ω1 − ω2) e+i∆k(3)(~r,ω0,ω1,ω2)Z

∂E3 (~r, ω3)
∂Z

= iκ (~r, ω3)
¨
R2

dω0

2π
dω1

2π χ
(3)
eff (~r, ω0, ω1, ω2)E0 (~r, ω0)E∗1 (~r, ω1) ,

×E∗2 (~r, ω0 − ω1 − ω3) e+i∆k(3)(~r,ω0,ω1,ω3)Z

(1.52)

where χ(3)
eff is the third-order effective susceptibility coefficient, defined by:

χ
(3)
eff (~r, ω0, ω1, ω2) = −→e0 (~r, ω0) · χ(3) (ω0 = ω1 + ω2 + (ω0 − ω1 − ω2)) (1.53)

... [−→e1 (~r, ω1)⊗−→e2 (~r, ω2)⊗−→e3 (~r, ω0 − ω1 − ω2)] ,

and ∆k(3) the phase mismatch between the four wave vectors:

∆k(3) (~r, ω0, ω1, ω2) = ∆k(3) (~r, ω0, ω1, ω2, ω0 − ω1 − ω2) (1.54)

= k (~r, ω0)− k (~r, ω1)− k (~r, ω2)− k (~r, ω0 − ω1 − ω2) .

Manley-Rowe equations One can derive power density equations from the coupled ampli-
tude equations defined above. They are Manley-Rowe equations [35], accounting for electromag-
netic energy exchange in a non-dissipative medium, and can be gathered into:

∂Itot (~r)
∂Z

= 0, (1.55)

where Itot is the sum of all field intensities. Nonlinear processes conserve the total intensity,

and therefore do not conserve the total photon current N =
ˆ
dωn (ω) =

ˆ
dω
I (ω)
~ω

, which was
already suggested by the corpuscular schematics in Figures 1.3 and 1.4.

Parameters of interest ∆k and χeff are two parameters of interest and some comments arise.
The phase mismatch only depends on the linear properties, while the effective susceptibility
depends on both the linear and nonlinear properties.

– Phase mismatch Because the incoming waves and the resulting polarization propagate
at different frequencies, their phase velocities are different, the indices dispersion being not
flat. Consequently, the dephasing between these waves implies constructive and destructive
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interferences in turns along the propagation [22]. The spatial periodicity of this energy
transfert is called coherence length Lc and is defined as:

Lc (~r, {ωi}) =
π

∆k (~r, {ωi})
. (1.56)

When the phase mismatch of a given interaction is zero, we speak of a phase-matched
interaction. Only the spectral components of the polychromatic interacting waves that
are very close to fulfill the phase-matching condition propagate efficiently, the nonlinear
polarization at the Fourier component ωi and the field it radiates at the same frequency
constructively interfering all the way through the propagation. This phase-matching con-
dition writes as:

∆k (~r, {ωi}) = 0. (1.57)

We develop in Sections 1.2.2 and 1.3.3 two ways of achieving the phase-matching condi-
tion: birefringent phase matching in anisotropic crystals, and intermodal phase matching
in isotropic optical fibers. Note that the phase-matching condition is equivalent to the
momentum conservation relationship.

We point out that parametric fluorescence, as well as SFG or DFG involving the same
photon frequencies, necessarily fulfill the same phase-matching condition.

At perfect phase matching, taking the argument of the complex amplitude E=|E| eiφ in the
coupled quadratic (1.50) or cubic of type A (1.52) equations gives a relationship between
the initial phases [21]:

φ0 −
(

N∑
i=1

φi

)
= ±π/2, (1.58)

with + sign in the case of a scission of photon 0 into photons i, and − sign in the opposite
case. N = 2 or 3 for a quadratic and cubic interactions respectively.

– Effective susceptibility We emphasize here that it is not only important to choose a
direction of propagation and polarizations that are close to conserve the momentum, but
also that exhibit a high effective susceptibility coefficient.

Spatial and temporal walk-off When different input beams are involved in a nonlinear
interaction, one has to care about the spatial and temporal overlaps between these beams since
they can reduce the conversion efficiencies of the process. We already mentionned the double
refraction angle that separates beams of different polarizations. This phenomenon is referred to
as spatial walk-off.

In the case of short pulses, the group velocities at different wavelengths differ because of the
chromatic dispersion: this is the temporal walk-off. For instance, it reachs 4.5 mm for 15 ps
pulses around the wavelengths 1470 and 1660 nm.

Solutions of the coupled equations Giving general analytical solutions for the coupled
equations (1.50) and (1.52) is not an easy task. The general solutions that are given in terms
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1.1 Classical parametric optics

of Jacobi elliptical functions are relevant when the initial values of the fields are not zero.
Otherwise, one has to make a resolution with quantum fields (see Section 1.4). The resolution
will be adapted in our experimental cases when needed later in this manuscript.

Summary In order to achieve a nonlinear interaction, the energy conservation relationship has
to be fulfilled. For it to be efficient, it is important to ensure the linear momentum conservation.
In addition, the effective susceptibility has to be non-zero and the highest possible. Finally, it is
important to maximize the spatial and temporal overlaps of the interacting waves. In particular,
the double refraction angle is prefered to be the lowest possible, zero at best.

∆E = 0 ⇒
N∑
i=0
± ωi = 0

~∆k = 0 ⇒
N∑
i=0
± n (~r, ωi) .ωi = 0

χ
(n)−→e0 ·

⊗n
i=1
−→ei 6= 0 ,

(1.59)

with + sign for ingoing waves, and − sign for outgoing waves; N ∈ {2, 3}.
Note lastly that in the case of a cubic interaction, any quadratic effect would be parasitic

and has to be avoided.
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1.2 Classical parametric crystal optics

We consider in this work optically anisotropic crystals, so that their refractive indices vary as a
function of the direction of propagation. This section aims to present basics on crystal optics.

1.2.1 Linear crystal optics

Refractive index, Fresnel equation From Equation (1.27) expressed in the dielectric frame,
one can get an analytic equation for the refractive index in any propagation direction [23], namely
the Fresnel equation:

sin2 (θ) cos2 (ϕ)
n−2 (ω, θ, ϕ)− n−2

x (ω)
+

sin2 (θ) sin2 (ϕ)
n−2 (ω, θ, ϕ)− n−2

y (ω)
+

cos2 (θ)
n−2 (ω, θ, ϕ)− n−2

z (ω)
= 0. (1.60)

Since this equation generally leads to two different solutions, the refractive index can take two
different values in any particular direction of propagation of the optical wave. Therefore, this
phenomenon has taken the name of birefringence.

These solutions, denoted n(+) et n(−), map a surface in the three-dimensional space called
the indices surface. Their mathematical form is the following [36]:

n(±) (ω, θ, ϕ) =

√√√√ 2
α∓ (α2 − 4β)1/2, (1.61)

with n(−) ≤ n(+), and where:

α (ω, θ, ϕ) = sin2 (θ) cos2 (ϕ)
(
n−2
y (ω) + n−2

z (ω)
)

+ sin2 (θ) sin2 (ϕ)
(
n−2
x (ω) + n−2

z (ω)
)

+ cos2 (θ)
(
n−2
x (ω) + n−2

y (ω)
)
,

(1.62)

β (ω, θ, ϕ) = sin2 (θ) cos2 (ϕ)n−2
y (ω)n−2

z (ω) + sin2 (θ) sin2 (ϕ)n−2
x (ω)n−2

z (ω)
+ cos2 (θ)n−2

x (ω)n−2
y (ω) .

(1.63)

The quantitity ∆n (ω, θ, ϕ) = n(+) (ω, θ, ϕ)− n(−) (ω, θ, ϕ) is also called birefringence.

Optical classes Depending on whether the principal indices nx, ny and nz differ from each
other or not, three classes of medium arise. Whether one material belongs to one class or another
depends on its orientation symmetry [25].

– The isotropic class is defined when the three principal refractive indices are equal: nx =
ny = nz. The refractive index is therefore unique, and the indices surface is a one-layer
sphere, as depicted in Figure 1.5 (a). In this work, the optical fibers can be considered
isotropic at first glance, as any glass without deformation would be.

– In the case of the uniaxial class, two of the three eigenvalues are equal and are called the
ordinary indices no, while the third one is the extraordinary index ne. This class exhibits
two indices surfaces: a sphere of radius no, and an ellipsoid of revolution with minor and
major semi-axes no and ne respectively. The major axis of the ellipsoid is the z axis, called
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1.2 Classical parametric crystal optics

the optical axis. The optical axis of a material is by definition the direction where the
optical indices are degenerated. There is only one such axis for this class of crystal, which
justifies indeed the term uniaxial.

The two surfaces n(+) and n(−) are conventionally named n(o) and n(e) in this case. Equa-
tion (1.61) can then be further simplified:



n(o) (ω, θ, ϕ) = n(o) (ω) = no (ω)

n(e) (ω, θ, ϕ) = n(e) (ω, θ) =
1√√√√√

 cos (θ)
no (ω)

2

+

 sin (θ)
ne (ω)

2
. (1.64)

The rutile TiO2 crystal presented later in this work belongs to the uniaxial class, since
it is of orientation symmetry 4

mmm. It is said to be uniaxial positive because no < ne,
the opposite case being uniaxial negative. Figure 1.5 (b) shows the indices surfaces for an
uniaxial positive crystal.

– The third category is the biaxial class, gathering together all crystals with three different
principal indices. The indices layers are here more complicated, being tangled. They do
not exhibit a revolution axis anymore, as shown in Figure 1.5 (c) in the usual convention:
nx < ny < nz. This convention is not restrictive at all as the choice for naming the axes of
the dielectric frame is not unique. However, note that in the litterature, this choice is often
referred to as “positive biaxial”, as opposed to “negative uniaxial” when nz < ny < nx.
In the principal planes of the dielectric frame, the prints are still circles and ellipses. Two
optical axes, hence the name biaxial, characterize this class: each of them are symmetrical
from the z-axis in the (x0z) plane and makes an angle V from this z-axis [19]:

V = asin


√√√√n−2

y (ω)− n−2
x (ω)

n−2
z (ω)− n−2

x (ω)

 . (1.65)

The KTP crystal, a shortcut for KTiOPO4, also presented in this work is a biaxial crystal,
since of orientation symmetry mm2.

Eigenmodes of polarization, vectorial configurations For a given propagation direction,
the two optical indices n(+) and n(−) are associated to two linearly polarized electric fields ~E(+)

and ~E(−), solutions of the propagation equation (1.26) [19]. Consequently, two sets of vectors(
~E(+), ~D(+), ~B(+),~k(+), ~π(+)

)
and

(
~E(−), ~D(−), ~B(−),~k(−), ~π(−)

)
are related to these two optical

indices.
The displacement vectors ~D(+) and ~D(−) are orthogonal to each other, and thus define two or-

thogonal polarization planes: Π(+) spanned by
(
~D(+),~k(+)

)
and Π(−) spanned by

(
~D(−),~k(−)

)
,

~k(+) and ~k(−) being collinear. The electric fields ~E(±) lie in the Π(±) planes, while being
not orthogonal in the general case [37]. More generally, while all the vectors of the first set
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Figure 1.5 – Prints of the indices surface in the principal planes of the dielectric frame in one
eighth of the three-dimensional space, for the three optical classes: (a) isotropic, (b) uniaxial
(positive), (c) biaxial (positive).

(
~E(+), ~D(+), ~B(+),~k(+), ~π(+)

)
are coplanar in Π(+), the vectors of the second set(

~E(−), ~D(−), ~B(−),~k(−), ~π(−)
)
lie in Π(−) [17]. See Figure 1.6 for a geometrical representation.

One can note that the vectors ~D and ~E are not colinear in general, as well as ~k and ~π. They
are separated by the same angle, the double refraction angle ρ already mentionned above [23]:

ρ(±) = ̂(
~D(±), ~E(±)

)
= ̂(

~k(±), ~π(±)
)

= acos
(
~D(±) · ~E(±)

)
. (1.66)

Figure 1.6 – Vectorial configuration for the two sets of vectors
(
~E(±), ~D(±), ~B(±),~k(±), ~π(±)

)
When the sollicitated indices sheet is a sphere, the double refraction angle is zero. In the other

cases, such an angle exists, and makes the (+) and (−) waves go appart from each other through
the propagation. When achieving nonlinear interactions with waves at different polarizations in
the experiments further, we will favour directions that reduce as much as possible the ρ angle
to maximize the spatial overlap. This overlap is schemed in shading on Figure 1.7 in the case
where ρ(−) is zero, which will be one of our experimental case further.

Below are the expressions of the unitary electric field vectors ~e in the unixial and biaxial
crystals, for the propagation direction along ~k(ω, θ, ϕ) [19], also represented in Figure 1.8.
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π(+)
 

k(-)
 

E(+)  

E(-)
 E 

π(-)
 k(+)

 
ρ(+)

 

Figure 1.7 – Spatial overlap between ordinary and extraordinary waves in the case where
ρ(−) = 0.

– Uniaxial class


e

(o)
x = − sin (ϕ)

e
(o)
y = cos (ϕ)

e
(o)
z = 0

and


e

(e)
x = − cos (θ ∓ ρ± (θ, ω)) cos (ϕ)

e
(e)
y = − cos (θ ∓ ρ± (θ, ω)) sin (ϕ)

e
(e)
z = sin (θ ∓ ρ± (θ, ω))

, (1.67)

where

ρ± (θ, ω) = acos

 n−2
o (ω) cos2 (θ) + n−2

e (ω) sin2 (θ)√
n−4
o (ω) cos2 (θ) + n−4

e (ω) sin2 (θ)

 . (1.68)

The + and − signs are for the negative and positive uniaxial cases respectively. The double
refraction angle is only zero in the sagittal plane (x0y) and along the optical axis z.

– Biaxial class For the present study, it is enough to restrict the expressions of the unitary
electric fields to the principal planes (xOy) and (xOz) [19].

In the (xOy) plane:


e

(−)
x = − sin (ϕ∓ ρ± (ϕ, ω))

e
(−)
y = cos (ϕ∓ ρ± (ϕ, ω))

e
(−)
z = 0

and


e

(+)
x = 0

e
(+)
y = 0

e
(+)
z = 1

, (1.69)

where

ρ± (ϕ, ω) = ∓acos

 n−2
y (ω) cos2 (ϕ) + n−2

x (ω) sin2 (ϕ)√
n−4
y (ω) cos2 (ϕ) + n−4

x (ω) sin2 (ϕ)

 . (1.70)

In the (xOz) plane, the existence of the optical axis creates a discontinuity in the two
indices sheets, leading to a discontinuity of the sign of the electric field. From the x-axis
to the optical axis:


e

(−)
x = 0

e
(−)
y = 1

e
(−)
z = 0

and


e

(+)
x = − cos (θ ∓ ρ± (θ, ω))

e
(+)
y = 0

e
(+)
z = sin (θ ∓ ρ± (θ, ω))

. (1.71)
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And from the optical axis to the z-axis:


e

(−)
x = 0

e
(−)
y = −1

e
(−)
z = 0

and


e

(+)
x = − cos (θ ± ρ± (θ, ω))

e
(+)
y = 0

e
(+)
z = sin (θ ± ρ± (θ, ω))

, (1.72)

where

ρ± (θ, ω) = acos

 n−2
x (ω) cos2 (θ) + n−2

z (ω) sin2 (θ)√
n−4
x (ω) cos2 (θ) + n−4

z (ω) sin2 (θ)

 . (1.73)

Figure 1.8 – Indices surfaces for (a) a positive uniaxial crystal in the (xOz) plane, (b) a biaxial
crystal in the (xOy) plane and (c) a biaxial crystal in the (xOz) plane.

1.2.2 Nonlinear crystal optics

Phase matching by birefringence The best way to achieve phase matching in anisotropic
media is to compensate the wavelength dispersion of the refractive index with the birefringence.
The choice of the polarizations e(−) or e(+) of the waves make possible the sollicitation of the
internal n(−) or external n(+) indices sheet.

– For quadratic processes, there are two types of possible combinations of the optical
indices that allow to energy and momentum conservation in Equations (1.59). Those two
types give the three combinations [38, 39]:

I n(−) (ω0, θ, ϕ)ω0 − n(+) (ω1, θ, ϕ)ω1 − n(+) (ω2, θ, ϕ)ω2 = 0

IIa n(−) (ω0, θ, ϕ)ω0 − n(+) (ω1, θ, ϕ)ω1 − n(−) (ω2, θ, ϕ)ω2 = 0

IIb n(−) (ω0, θ, ϕ)ω0 − n(−) (ω1, θ, ϕ)ω1 − n(+) (ω2, θ, ϕ)ω2 = 0

(1.74)

– For cubic interactions, three types are possible leading to seven possible combinations
[40]:
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

I n(−) (ω0, θ, ϕ)ω0 − n(+) (ω1, θ, ϕ)ω1 − n(+) (ω2, θ, ϕ)ω2 − n(+) (ω3, θ, ϕ)ω3 = 0

IIa n(−) (ω0, θ, ϕ)ω0 − n(+) (ω1, θ, ϕ)ω1 − n(+) (ω2, θ, ϕ)ω2 − n(−) (ω3, θ, ϕ)ω3 = 0

IIb n(−) (ω0, θ, ϕ)ω0 − n(+) (ω1, θ, ϕ)ω1 − n(−) (ω2, θ, ϕ)ω2 − n(+) (ω3, θ, ϕ)ω3 = 0

IIc n(−) (ω0, θ, ϕ)ω0 − n(−) (ω1, θ, ϕ)ω1 − n(+) (ω2, θ, ϕ)ω2 − n(+) (ω3, θ, ϕ)ω3 = 0

IIIa n(−) (ω0, θ, ϕ)ω0 − n(+) (ω1, θ, ϕ)ω1 − n(−) (ω2, θ, ϕ)ω2 − n(−) (ω3, θ, ϕ)ω3 = 0

IIIb n(−) (ω0, θ, ϕ)ω0 − n(−) (ω1, θ, ϕ)ω1 − n(+) (ω2, θ, ϕ)ω2 − n(−) (ω3, θ, ϕ)ω3 = 0

IIIc n(−) (ω0, θ, ϕ)ω0 − n(−) (ω1, θ, ϕ)ω1 − n(−) (ω2, θ, ϕ)ω2 − n(+) (ω3, θ, ϕ)ω3 = 0

(1.75)

The refractive indices depending on the propagation direction, the phase-matching condition is
only reached in a particular direction, called the phase-matching direction.
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1.3 Classical parametric fiber optics

This work also involves nonlinear interactions in optical fibers. This part is therefore dedicated
to some basic knowledge about fiber optics, transverse mode, longitudinal propagation within
fiber and about how to achieve a nonlinear conversion in isotropic fibers.

1.3.1 Generalities on step-index fibers

Geometry An optical fiber is a dielectric waveguide that confines the electromagnetic field in a
cylindrical geometry. For the light to propagate, an optical fiber takes advantage of the physical
phenomenon of total internal reflection [41]. We consider here the fibers we used experimentally,
step-index fibers, made of two concentric cylinders of isotropic glasses: the inner one is the core,
of radius a, and the outer one is the cladding of radius b (b > a). Their respective refractive
indices are ncl and nco, ncl < nco, as shown in the sketch 1.9. The index difference is denoted
as ∆n (ω) = nco (ω)− ncl (ω).

2a 

2b 
nco 

ncl 

Figure 1.9 – Transverse geometry of a step-index fiber.

The application of the total internal reflection condition defines an angular cone of acceptance
for an incoming beam to be guided in the fiber. This cone is identified by an angle θ0 from the
revolution axis of the fiber. It is a function of the indices ncl and nco, and leads to the definition
of the so-called numerical aperture NA [42]:

NA (ω) = sin (θ0 (ω)) =
√
n2

co (ω)− n2
cl (ω). (1.76)

Microstructured fibers, also called photonic-crystal fibers (PCF), have also been considered
in this work and will be studied in Section 4.2. An example of microstructured fiber with a
hexagonal geometry is pictured Figure 1.10. For numerical calculation, we will see in Chapter
4 that such fibers can be replaced by equivalent step-index fibers [43, 44], which justify the
approach we give here.

Fabrication process The fabrication process of a step-index fiber is the following. A bulk
glass is synthetized and purified to obtain a so-called preform. This preform is then stretched
into a thin optical fiber through an homothetic transformation.
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1.3 Classical parametric fiber optics

Figure 1.10 – Microstructured fiber of hexagonal geometry, approximated by a step-index fiber.

Effective index of a wave The wavenumber of a wave propagating in a fiber cannot be
expressed as in Equation (1.2) where the refractive index of the material n is only a property of
the material, linked to the first-order susceptibility. It also has to reflect the guiding structure
[42, 44]. The combination of those two requirements together defines a so-called effective index
for the wave, neff , i.e. the index actually experienced by the propagating wave. It takes the
form of the Sellmeier equations of Section 1.1.2. In step-index fibers, neff is isotropic in the core.
The wavenumber is then defined as the isotropic quantity:

β(ω) =
neff(ω)ω

c
. (1.77)

It is useful to define a normalized propagation constant [42]:

b (ω) =
β2 (ω)− k2

cl (ω)
k2

co (ω)− k2
cl (ω) =

n2
eff(ω)− n2

cl(ω)
n2

co(ω)− n2
cl(ω), (1.78)

with kcl = k0ncl, kco = k0nco and k0 =
ω

c
the vacuum propagation constant.

When ∆n (ω) ' 0, i.e. in weak guidance cases, then b (ω) '
neff(ω)− ncl(ω)
nco(ω)− ncl(ω). Consequently,

it comes:
neff (ω) = ncl (ω) + ∆n (ω) .b (ω) (1.79)

= nM (ω) + nW (ω) ,

where the medium contribution nM is distinguished from that of the guiding nW as in [45]. At
this point, the normalized propagation constant b needs to be known to infer the effective index
neff from Equation (1.79). This is the aim of the next Subsection 1.3.2.

Guiding condition Total internal reflection is achieved when [46]:

ncl(ω) ≤ neff(ω) ≤ nco(ω), (1.80)

or equivalently kcl (ω) ≤ β(ω) ≤ kco (ω). In terms of the normalized propagation constant, the
guiding condition becomes:

0 ≤ b(ω) ≤ 1. (1.81)

1.3.2 Transverse propagating modes

Modes The propagation equation (1.14) still applies. But the geometry of the fiber have to be
taken into account: according to the boundary conditions, the electric field has to be continuous
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at the core-cladding interface and has to be zero at the cladding boundary [47]. Several solutions
can arise from these considerations, called transverse modes of propagation. Each mode has its
own effective index, and consequently its own guiding condition.

Eigenvalue equation From evident geometrical considerations, it is convenient to use the
cylindrical coordinates (r, θ, Z). Then, the linear spectral wave equation (1.26) becomes:

∂2 ~E (~r, ω)
∂r2 +

1
r

∂ ~E (~r, ω)
∂r

+
1
r2
∂2 ~E (~r, ω)

∂θ2 +
∂2 ~E (~r, ω)
∂Z2 + k2(ω) ~E (~r, ω) = 0, (1.82)

where k(ω) ∈ {kcl(ω), kco (ω)} for a step-index fiber. When
∆n (ω)
nco (ω) � 1, which is the case of

the fibers we used in the present study, the propagation will mostly occur along the fiber axis.

The limit angle for total internal reflexion is indeed given by θlim (ω) = asin

nco (ω)
ncl (ω)

. It is

therefore possible to adopt a scalar approach for the resolution of (1.82): the electric field will
be mainly polarized in the transverse plane, and can be taken as linearly polarized along ~e ⊥ ~uz
[48].

Equation (1.82) can be solved by separating the variables of the electric field as E (~r, ω) =
R (r, ω) Θ (θ, ω)A (Z, ω). For a wave propagating along +Z, it comes:Θ (θ) = α1 cos (nθ) + α2 sin (nθ)

A (Z) = eiβ(ω)Z ,
(1.83)

where {α1, α2} ∈ R2 and n ∈ N. And R can be found by solving the following Bessel equation:

∂2
rR (r, ω) +

1
r
∂rR (r, ω) +

k2(ω)− β2(ω)−

n
r

2
R (r, ω) = 0. (1.84)

It is useful to define the three following parameters [49]:
u (ω) = a

√
(k0 (ω)nco (ω))2 − β2 (ω)

v (ω) = ak0 (ω)
√
n2
co (ω)− n2

cl (ω) = ak0 (ω) NA (ω)

w (ω) = a
√
β2 (ω)− (k0 (ω)ncl (ω))2

, (1.85)

linked by the relationship:
v2 = u2 + w2. (1.86)

Equation (1.84) becomes:

∂2
rR (r, ω) +

1
r
∂rR (r, ω) +


u(ω)

a

2

−

n
r

2
R (r, ω) = 0 for r ≤ a (core)

∂2
rR (r, ω) +

1
r
∂rR (r, ω) +


n
r

2

−

w(ω)
a

2
R (r, ω) = 0 for r ≥ a (cladding),

(1.87)

Eliminating diverging solutions, it is solved using Bessel functions [50, 51]:
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1.3 Classical parametric fiber optics


R (r, ω) = C1Jn

u (ω) r
a

 for r ≤ a

R (r, ω) = C2Kn

w (ω) r
a

 for r ≥ a,
(1.88)

{C1, C2} ∈ R2. Jn are Bessel functions of first kind, oscillating functions around zero whose
amplitudes decrease with r. The higher u, the more R oscillates in the core. Kn are modified
Bessel functions of first kind, monotically decreasing. The higher w, the faster R decreases in
the cladding.

Normalized frequency The v parameter is of particular importance as it controles the num-
ber of modes propagating in the fiber. It is referred to as the reduced or normalized frequency.
A mode guided in the fiber necessary fulfills the following equations equivalent to (1.80):

u ≤ v, w ≤ v. (1.89)

Continuity conditions

– Global solution. The radial component has to be continuous at the core-cladding inter-
face. Therefore, the total solutions for the transverse distributions, or modes are :

E (~r, ω) = CJn

u (ω) r
a

 ∣∣∣∣∣∣ cos (nθ)

sin (nθ)
eiβ(ω)z for r ≤ a

E (~r, ω) = C
Jn (u (ω))
Kn (w (ω))Kn

w (ω) r
a

 ∣∣∣∣∣∣ cos (nθ)

sin (nθ)
eiβ(ω)z for r ≥ a,

(1.90)

C ∈ R.

– Characteristic equation. A second continuity relationship applies for the normal deriva-
tive of E. In this scalar approach [46, 50]:

u (ω)
J
′
n (u (ω))
Jn (u (ω)) = w (ω)

K
′
n (w (ω))

Kn (w (ω)) (1.91)

⇔ u (ω)
Jn±1 (u (ω))
Jn (u (ω)) = ±w (ω)

Kn±1 (w (ω))
Kn (w (ω)) .

The equivalence comes from identities on Bessel functions.

Weak guiding, LP modes The relationship (1.91) links u to w, or equivalently the reduced
frequency v to the normalized propagation constant b by using

b (ω) = 1−

u (ω)
v (ω)

2

=

w (ω)
v (ω)

2

, (1.92)

derived from Equations (1.78), (1.85) and (1.86).
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For each n, there exists m solutions in b (v) as shown in Figure 1.11. Therefore, the modes
are defined by the two parameters n and m: n for the definition of the Bessel functions; and
for each n, m for the number of possible propagating constants b. b consequently becomes bnm.
These modes are classified in LPnm transverse distributions, LP standing for linearly polarized
[42]: n is called order and is the number of nodal lignes in the transverse plane; m is called
degree and is half the number of extrema in the radial directions. Some modes are shown in
Figure 1.12.

Each modal distribution LPnm, with n 6= 0, is degenerated: taking cos(nθ) in Equation
(1.90) gives even modes, while considering sin(nθ) leads to odd modes.
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Figure 1.11 – b(v) chart for the first order and degree transverse LP modes.

Notes

– When the approximation of weak guiding does not stand, exact solutions are transverse
electric TE (EZ = 0), transverse magnetic TM (BZ = 0), and hybrid HE and EH (EZ 6= 0
and HZ 6= 0) modes. See for example [50, 52]. LP modes can be considered as degenerate
situations of transverse and/or hybrid modes.

– For graded-index optical fibers with a parabolic index shape, the transverse modes can be
written in terms of the generalized Laguerre functions L(l)

n , and are called Laguerre-Gauss
modes [53]:

R (r, ω) =

√√√√ 2vn!
(n+ l)!

(
vr2
)l/2

e−(v/2)r2
L(l)
n

(
vr2
)
. (1.93)

The mode is here more likely to be guided by a lens focusing effect than by the internal
total reflexion. Note that the Bessel functions previously mentioned can be expressed in
terms of the generalized Laguerre polynomials.
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(a) LP01, Vc = 0 (b) LP02, Vc = 3.832 (c) LP03, Vc = 7.016 (d) LP04, Vc = 10.174

(e) LP11, Vc = 2.405 (f) LP12, Vc = 5.520 (g) LP13, Vc = 8.654 (h) LP14, Vc = 11.79

(i) LP21, Vc = 3.832 (j) LP22, Vc = 7.016 (k) LP23, Vc = 10.17 (l) LP24, Vc = 13.32

(m) LP31, Vc = 5.136 (n) LP32, Vc = 8.417 (o) LP33, Vc = 11.62 (p) LP34, Vc = 14.80

Figure 1.12 – Transverses modes of the first orders n and degrees m together with their normal-
ized cut-off frequencies. For each modal distribution LPnm, the picture on the left-hand side is
for the even modes, and on the right-hand side for odd modes. There is no odd LP0m modes.

Normalized cut-off frequency The condition bnm (ω) = 0 is fulfilled at the normalized
cut-off frequency Vc,nm [47]. It corresponds to the zeros of the Bessel function. The first zero
occurs for Vc,nm ' 2.405: below this number, the fundamental mode is the only one that can
propagate, and the fiber is said to be monomode. When not monomode, the fiber is multimode.
It obviously depends on the considered wavelength. As a consequence, the cut-off wavelength is
expressed through:

λc,nm =
2πa

√
n2

co − n2
cl

Vc,nm
. (1.94)

The normalized cut-off frequencies for the first orders and degrees modes are given in Figure
1.12.

Analytical expressions for u (v) Differenciating the characteristics equation (1.91) with
respect to v and using (1.86), one can get:

du

dv
=
u

v

1−
K2
n (w)

Kn−1 (w)Kn+1 (w)

 . (1.95)

It can be solved analytically with some hypotheses given by Gloge [46]. Then, the fundamental
LP01 mode can be expressed as :

31



Elements of theory

u01 (v, ω) =

(
1 +
√

2
)
v (ω)

1 + (4 + v4 (ω))1/4. (1.96)

And for any other mode, we have:

unm (v, ω) = Vc,nm exp

 1
snm

asin

 snm

Vc,nm

− asin

 snm

v (ω)

 , (1.97)

with snm =
√
V 2
c,nm − n2 − 1.

With Equations (1.96) or (1.97) for unm and (1.92) for b , it is now possible to get an
analytical expression for the effective dispersion nnmeff of Equation (1.79):

nnmeff (ω) = ncl (ω) + ∆n (ω)

1−

unm (v, ω)
v (ω)

2
 . (1.98)

Effective mode area For a given LPnm mode, it is relevant to define an effective mode area,
Anmeff , that is different from the core surface [42]:

Anmeff (ω) =
1

fnm (ω) =

〈
|Fnm|

2
〉2〈

|Fnm|
4
〉 =

[˜
R2 dS |Fnm(ω, r, θ)|2

]2
˜
R2 dS |Fnm(ω, r, θ)|4

, (1.99)

with dS = rdrdθ in polar coordinates. It therefore depends of the geometrical parameters of
the fiber. Aeff (ω) = πW 2 (ω) , with W the beam size radius, in the case of a Gaussian beam.

1.3.3 Nonlinear optics in a fiber geometry

The general nonlinear coupled equations (1.50) for quadratic interactions, and (1.52) for cubic
interactions still apply for light propagation in a guided geometry. Still, few comments arise
from the fiber situation and are developped in this section. They are related to isotropy, overlap
areas and effective momenta.

Isotropy, modal phase matching Optical fibers without induced birefringence are isotropic
media, and consequently no quadratic interaction can occur because of the existence of the
inversion center. This is the reason why we only care about cubic interactions in this section.

In addition, as already mentionned in Subsection 1.2.2, because of the absence of birefringence,
it is impossible to fulfill the phase-matching condition in fibers for all fields into the same modal
transverse distribution. However, nothing forbids interactions between fields of different modal
distribution as long as the modes overlap, and the phase-matching condition ∆k = 0 is fulfilled.
We highlight those two points below.

Overlap integral, effective interaction area When different modes are involved in a non-
linear interaction, the overlap area has to be calculated and should obviously not be zero for the
process to occur. Therefore, an important parameter to consider is the overlap integral. The
normalized overlap integral fnimi between the transverse modes LPnimi , i ∈ J0, 3K is written as
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the inverse of the effective interaction area Seff . For type A cubic interactions, it is given by
[54, 55]:

f
nimi

(ωi)
∣∣∣∣∣
i∈J0,3K

=
〈
Fn0m0

F ∗n1m1
F ∗n2m2

F ∗n3m3

〉√〈∣∣Fn0m0

∣∣2〉〈∣∣Fn1m1

∣∣2〉〈∣∣Fn2m2

∣∣2〉〈∣∣Fn3m3

∣∣2〉 (1.100)

=
˜

R2 dSFn0m0(ω0, r, θ)F ∗n1m1
(ω1, r, θ)F ∗n2m2

(ω2, r, θ)F ∗n3m3
(ω3, r, θ)√˜

R2 dS |Fn0m0(ω0, r, θ)|2 .
˜

R2 dS |Fn1m1(ω1, r, θ)|2 .
˜

R2 dS |Fn2m2(ω2, r, θ)|2 .
˜

R2 dS |Fn3m3(ω3, r, θ)|2

≡ f0123 (ω0,1,2,3) =
1

Seff (ω0,1,2,3),

where F ∗ is F complex conjuguate. Note that since signed amplitudes are involved in this
equation, this overlap integral is reduced to zero if the products Fn0m0F

∗
n1m1F

∗
n2m2F

∗
n3m3 com-

pensate each other when summed over the transverse plane due to the different symmetries of
the modal distributions involved.

Nonlinear effective momenta The contributions of the material and waveguide in Equation
(1.79) directly affect the phase mismatch, called effective phase mismatch from now on. In
addition to these “linear” contributions, it is necessary to take into account a “nonlinear” part
coming from self-phase modulation (SPM, or Kerr effect) and cross-phase modulation (XPM)
between the waves [45]. Those cubic effects have already been schemed previously: ωi + ωi →
ωi + ωi for SPM at the spectral component ωi; ωi + ωj → ωi + ωj for XPM between spectral
components ωi and ωj . The “nonlinear” part of the effective index ∆kNL is often taken as arising
from the SPM of the pump and XPM between the pump and the down-converted fields. For a
TPG interaction, we demonstrate in Appendix D that it takes the form [12]:

∆kNL (ω0, ω1, ω2) = [γ0 − 2 (γ01 + γ02 + γ03)]P, (1.101)

where P is the total incident power, and γ0 and γ0j are the SPM and XPM coefficients respec-
tively defined as:

γ0 (ω0) =
ω0χ

(3)
eff

2ε0c2n2
eff (ω0)Aeff (ω0), (1.102)

and

γ0j (ω0, ωj) =
ωjχ

(3)
eff

2ε0c2neff (ω0)neff (ωj)SXPM
eff (ω0, ωj)

. (1.103)

Aeff is defined in Equation (1.99); and SXPM
eff is given by:

SXPM
eff (ω0, ωj) =

〈∣∣Fn0m0

∣∣2〉〈∣∣Fn1m1

∣∣2〉〈∣∣Fn0m0

∣∣2 ∣∣Fn1m1

∣∣2〉 . (1.104)

The effective phase mismatch now becomes:
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∆k(3)
eff (ω0, ω1, ω2) = ∆kM (ω0, ω1, ω2) + ∆kW (ω0, ω1, ω2) + ∆kNL(ω0, ω1, ω2)

=
1
c

[nco (ω0) + ∆n (ω0) bn0m0 (ω0)]ω0

−
3∑
j=1

1
c

[
nco (ωj) + ∆n (ωj) bnjmj (ωj)

]
ωj (1.105)

+

γ0 (ω0)− 2
3∑
j=1

γ0j (ωj)

P.
Coupled equations We still decompose the longitudinal (Z) and transverse (r, θ) variations
of the electric field, i.e.: E (~r, ω) = F (r, θ, ω)A (Z, ω). From the previous considerations on the
effective index neff , the effective phase-mismatch ∆keff and the overlap integral f , the system of
coupled equations (1.52) for the longitudinal evolution of a cubic interaction of type A integrated
over the transverse plane becomes:



∂A0 (Z, ω0)
∂Z

= iκeff (ω0)
¨

R2

dω1

2π
dω2

2π χ
(3)
eff (ω0, ω1, ω2)A1 (Z, ω1)A2 (Z, ω2)A3 (Z, ω0 − ω1 − ω2)

×f0123 (ω0, ω1, ω2)F1 (ω1)F2 (ω2)F3 (ω0 − ω1 − ω2) [F0 (ω0)]−1
e−i∆k

(3)
eff (~r,ω0,ω1,ω2)Z

∂A1 (Z, ω1)
∂Z

= iκeff (ω1)
¨

R2

dω0

2π
dω2

2π χ
(3)
eff (ω0, ω1, ω2)A0 (Z, ω0)A∗2 (Z, ω2)A∗3 (Z, ω0 − ω1 − ω2)

×f0123 (ω0, ω1, ω2)F0 (ω0)F2 (ω2)F3 (ω0 − ω1 − ω2) [F1 (ω1)]−1
e+i∆k(3)

eff (~r,ω0,ω1,ω2)Z

∂A2 (Z, ω2)
∂Z

= iκeff (ω2)
¨

R2

dω0

2π
dω1

2π χ
(3)
eff (ω0, ω1, ω2)A0 (Z, ω0)A∗1 (Z, ω1)A∗3 (Z, ω0 − ω1 − ω2)

×f0123 (ω0, ω1, ω2)F0 (ω0)F1 (ω1)F3 (ω0 − ω1 − ω2) [F2 (ω2)]−1
e+i∆k(3)

eff (~r,ω0,ω1,ω2)Z

∂A3 (Z, ω3)
∂Z

= iκeff (ω3)
¨

R2

dω0

2π
dω1

2π χ
(3)
eff (ω0, ω1, ω3)A0 (Z, ω0)A∗1 (Z, ω1)A∗2 (Z, ω0 − ω1 − ω3)

×f0123 (ω0, ω1, ω2)F0 (ω0)F1 (ω1)F2 (ω0 − ω1 − ω3) [F3 (ω3)]−1
e+i∆k(3)

eff (~r,ω0,ω1,ω3)Z .

(1.106)
A is the longitudinal spectral electric field expressed in Vm−1srad−1; κeff is expressed as:

κeff (ω) =
ω

2neff (ω) c. (1.107)

The effective susceptibility is often taken as χ(3)
eff =

3
4Re

(
χ

(3)
xxxx

)
[30]. f0123 is the overlap

integral of Equation (1.100) between the four modal distributions LPnimi . Fi comes from the
normalization of the transverse component of the electric field, which magnitude is already
reported in A. It takes the form:

Fi (ω) =
√〈∣∣Fnimi (r, θ, ω)

∣∣2〉. (1.108)

Note that it is possible to make the Fi coefficient disappear in the previous coupled equations,
but A no longer expresses as a spectral electric field2. This ends the presentation of the useful
basic elements on linear and nonlinear properties in optical fibers.

2In the fiber optics community, it is common practice to work with powers, or their square root [30].
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1.4 Quantum nonlinear optics

The classical treatement already reported gives most of the understanding of the nonlinear
optical effects that are relevant for the present study. Nonetheless, the quantization of the fields
makes new features appear. In particular, the triplet photon state generated through third-
order parametric fluorescence, which is a spontaneous emission, require a quantized treatement
as strong correlations between down-converted photons arise. Therefore, this section aims to
give some useful tools on quantum optics.

1.4.1 Generators for quantum fields evolution

Quantum operators, Heisenberg picture and evolution equation We associate quan-
tum operators ~̂E, ~̂D, ~̂B, ~̂P with each classical field ~E, ~D, ~B, ~P , so that as their expectation
values match with their classical version.

We adopt here the Heisenberg representation, where only operators evolve through time and
space. We can describe the time evolution of any physical operator Ô by the energy operator
Ĥ, or Hamiltonien, through the evolution equation [56]:

∂Ô (~r, t)
∂t

= 1
i~

[
Ô (~r, t) , Ĥ (t)

]
. (1.109)

Time and energy are indeed conjuguate variables in quantum mechanics. Similarly, as space
and momentum are another pair of conjuguate variables, the spatial evolution can be described
with the momentum operator Ĝ . The evolution equation can be written [56, 57]:

∂Ô (~r, t)
∂Z

= − 1
i~

[
Ô (~r, t) , Ĝ (Z)

]
. (1.110)

As in the previous section with classical equations, we still choose to describe the spatial evolu-
tion, here with its momentum operator, rather than the temporal evolution.

1.4.2 Propagation of the quantized electromagnetic field in a linear medium

Let us first have a look at the propagation in a linear dielectric medium. Constitutive and
Maxwell equations (1.6) to (1.11) are linear and hermitian, and are thus still valid with quantum
operators. We can therefore derive a linear quantum propagation equation for the electric field
~̂E, in the same way as we did classically in Section 1.1.2 [58].

Electric field operator The quantized linearly polarized electric field ~̂E can still be decom-
posed on a plane wave basis, as in (1.1), in terms of space-dependent operators â (~r, ω). They are
indeed more convenient than the time-dependent operators â

(
~k, t
)
that depend on the medium

through the wavevector ~k. This makes one additional reason why the evolution equation (1.110)
will be prefered to (1.109). Therefore, time periodicity will be required, instead of the usual
spatial periodicity [56]. We consider the decomposition in a continuous basis, hence with con-
tinuous variables, by taking the temporal periodicity to infinity, as it is much larger than any
other relevant time. Such a continuous description seems to be more appropriate in experiments
without a cavity [59]. Then, the quantized electric field operator takes the form [59, 60]:
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~̂E (~r, t) = i

ˆ
R

dω

2π

√√√√ ~ω
2ε0cSn (~r, ω)â (~r, ω) e−iωt~e (1.111)

= i

ˆ
R+

dω

2π

√√√√ ~ω
2ε0cSn (~r, ω)

[
â (~r, ω) e−iωt + h.c.

]
~e

= ~̂E(+) (~r, t) + ~̂E(−) (~r, t) ,

where h.c. stands for hermitian conjuguate; â and its hermitian conjuguate â†, which are the
creation and annihilation operators respectively, form a complete set of operators; note that
â (~r,−ω) = â† (~r, ω); S is the field transverse area. The operator Ê is hermitian contrarily to

its spectral components ~̂E (~r, ω) =

√√√√ ~ω
4πε0cSn (~r, ω)â (~r, ω). ~̂E(+) and ~̂E(−) are convenient to

separate the contributions of the annihilation and creation operators.

Commutators, Heisenberg inequality The creation and annihilation operators follow the
non-commutation relationships for bosonic continuous fields [59]:[

â (~ri, ωi) , â† (~rj , ωj)
]

= δ (~ri − ~rj) δ (ωi − ωj) , (1.112)

[â (~ri, ωi) , â (~rj , ωj)] =
[
â† (~ri, ωi) , â† (~rj , ωj)

]
= 0, (1.113)

with δ the Dirac function and [ , ] the commutator.
Such a non-commutation relation for any conjuguate variables X and Y , of standard devia-

tions ∆X and ∆Y respectively, leads to the Heisenberg inequality:

∆X∆Y ≥
|〈[X,Y ]〉|

2 . (1.114)

In other words, it is impossible to know the accurate values of the X and Y parameters simul-
taneously.

~̂B, ~̂P (1) and ~̂DL operators The quantum operators for the magnetic induction, linear polar-
ization and electric displacement are given below. Their derivation follows the classical devel-
oppement given in Equations (1.12), (1.22) and (1.23) respectively.

~̂B (~r, t) = i

ˆ
R

dω

2π

√√√√~ωn (~r, ω)
2ε0c3S

â (~r, ω) e−iωt ~uZ × ~e (1.115)

= ~̂B(+) (~r, t) + ~̂B(−) (~r, t) ,

~̂P (1) (~r, t) = i

ˆ
R

dω

2π.

√√√√ ~ωε0

2cSn (~r, ω)
(
n2 (~r, ω)− 1

)
â (~r, ω) e−iωt~e (1.116)

= ~̂P (1+) (~r, t) + ~̂P (1−) (~r, t) ,
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~̂DL (~r, t) = ε0 ~̂E (~r, t) + ~̂P (1) (~r, t) (1.117)

= i

ˆ
R

dω

2π

√√√√~ωε0n3 (~r, ω)
2cS â (~r, ω) e−iωt~e

= ~̂D
(+)
L (~r, t) + ~̂D

(−)
L (~r, t) .

~̂E, ~̂B, ~̂P (1) and ~̂DL are hermitian operators.

Hamiltonian The Hamiltonian is defined in terms of the power density π̂, or Poynting vec-
tor operator. It does not depend on the medium, unlike the energy density as shown by the
Equations (1.15) and (1.16) [56].

π̂ (~r, t) =
1
µ0

[
~̂E(−) (~r, t)× ~̂B(+) (~r, t) + ~̂B(−) (~r, t)× ~̂E(+) (~r, t)

]
· ~uZ (1.118)

=
¨
R2+

dω

2π
dω′

2π
~

2S

√√√√ωω′n (~r, ω′)
n (~r, ω)

[
â† (~r, ω) â

(
~r, ω′

)
ei(ω−ω

′)t + h.c.
]
.

Then for the Hamiltonian Ĥ to be an energy, an integration of the flux over the temporal period

T �
2π
ω

is needed:

Ĥ (~r) = S

ˆ t0+T

t0

dtπ̂ (~r, t) (1.119)

=
ˆ
R+

dω

2π~ωâ
† (~r, ω) â (~r, ω) .

Note that it is not necessary to take the limit T → +∞ as long as all frequencies are multiples

of
2π
T
.

Linear momentum As emphasized before, we now need to define the momentum operator
Ĝ in order to derive fields from the spatial evolution equation (1.110). The linear momentum
density is expressed by ĝL [56]:

ĝL (~r, t) =
[
~̂D

(−)
L (~r, t)× ~̂B(+) (~r, t) + ~̂B(−) (~r, t)× ~̂D

(+)
L (~r, t)

]
· ~uZ . (1.120)

It can be simplified in the case of the propagation in a dielectric medium as:

ĝL (~r, t) = D̂
(−)
L (~r, t) Ê(+) (~r, t) + Ê(−) (~r, t) D̂(+)

L (~r, t) (1.121)

=
¨
R2+

dω

2π
dω
′

2π
~

2cS

√√√√ωω′n3 (~r, ω′)
n (~r, ω)

[
â† (~r, ω) â

(
~r, ω′

)
ei(ω−ω

′)t + h.c.
]
.

Finally, the linear momentum operator ĜL writes as:
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ĜL (~r) = S

ˆ t0+T

t0

dtĝL (~r, t) (1.122)

=
ˆ
R+

dω

2π~k (ω) â† (~r, ω) â (~r, ω) .

As the Hamiltonian stands for the total energy of the field, the linear momentum operator
represents the total linear momentum of the field.

Linear solution for propagation This momentum operator together with the evolution
equation (1.110) and the bosonic commutation relationships (1.112) and (1.113) lead to a plane
wave longitudinal evolution for â, as it was the case in the classical approach, i.e.:

â (~r, ω) = â (~rt, 0, ω) eik(~r,ω)Z , (1.123)

with ~rt for the transverse coordinates (X,Y ).

1.4.3 Propagation of the quantized electromagnetic field in a nonlinear medium

Nonlinear momentum We have to introduce the nonlinear momentum operator ĜNL in
order to be able to describe the spatial evolution of the fields in the nonlinear medium. The
approach is the same as previously, and we begin by expressing the nonlinear polarization ~̂PNL

that now takes part of the displacement vector, and the nonlinear momentum density ĝNL.
The Hamiltonian, not affected by the nonlinearity, stays unchanged. We still work under the
assumption of the slowly varying envelope, which is justified considering that our experiments
are performed with nanosecond or picosecond pulse durations. In that case, the plane wave
envelope is modulating as: â (~r, ω) = â (~r, ω) eik(~r,ω)Z .

The nonlinear polarization operator up to the third-order is given by:

~PNL (~r, t) (1.124)

= ε0

ˆ
R

dω0

2π

ˆ
R

dω1

2π χ
(2) (ω0 = ω1 + ω2) :

[−→
E (~r, ω1)⊗−→E (~r, ω0 − ω1)

]

+
¨
R2

dω1

2π
dω2

2π χ
(3) (ω0 = ω1 + ω2 + ω3)

...
[−→
E (~r, ω1)⊗−→E (~r, ω2)⊗−→E (~r, ω0 − ω1 − ω2)

] e−iω0t

= ~̂P
(+)
NL (~r, t) + ~̂P

(−)
NL (~r, t) .

Note that the third-order nonlinear term only takes into account the type A interactions of
Section 1.1.3, TPG being part of them.

The nonlinear momentum density operator is then expressed by:
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ĝNL (~r, t) (1.125)

=P̂ (−)
NL (~r, t) Ê(+) (~r, t) + Ê(−) (~r, t) P̂ (+)

NL (~r, t)

=ε0

i( ~
2ε0cS

)3/2˚
R3+

dω0

2π
dω1

2π
dω′

2π χ
(2)
eff (~r, ω0, ω1)

√√√√ ω′ω1 (ω0 − ω1)
n (~r, ω′)n (~r, ω1)n (~r, ω0 − ω1)

×â (~r, ω1) â (~r, ω0 − ω1) â† (~r, ω′) ei(ω
′−ω0)te−i∆k

(2)(ω′,ω1,ω0−ω1)Z + h.c.

−

(
~

2ε0cS

)2˘
R4+

dω0

2π
dω1

2π
dω2

2π
dω′

2π χ
(3)
eff (~r, ω0, ω1, ω2)

√√√√ ω′ω1ω2 (ω0 − ω1 − ω2)
n (~r, ω′)n (~r, ω1)n (~r, ω2)n (~r, ω0 − ω1 − ω2)

×â (~r, ω1) â (~r, ω2) â (~r, ω0 − ω1 − ω2) â† (~r, ω′) ei(ω
′−ω0)te−i∆k

(3)(ω′,ω1,ω2,ω0−ω1−ω2)Z + h.c.
]
,

with ∆k(2) and ∆k(3) already given in Equations (1.51) and (1.54), and χ(2)
eff and χ(3)

eff from (1.49)
and (1.53).

The temporal integration gives the nonlinear momentum operator:

ĜNL (~r) (1.126)

= S

ˆ t0+T

t0

dtĝNL (~r, t)

=

i¨
R2+

dω0

2π
dω1

2π ~β (~r, ω0, ω1) â (~r, ω1) â (~r, ω0 − ω1) â† (~r, ω0) e−i∆k(2)(ω0,ω1,ω0−ω1)Z + h.c.

−
˚

R3+

dω0

2π
dω1

2π
dω2

2π ~Γ (~r, ω0, ω1, ω2)

×â (~r, ω1) â (~r, ω2) â (~r, ω0 − ω1 − ω2) â† (~r, ω0) e−i∆k(3)(ω0,ω1,ω2,ω0−ω1−ω2)Z + h.c.
]
,

with

β (~r, ω0, ω1) =

√√√√ ~
8ε0c3S

√√√√ ω0ω1 (ω0 − ω1)
n (~r, ω0)n (~r, ω1)n (~r, ω0 − ω1)χ

(2)
eff (~r, ω0, ω1) , (1.127)

and
Γ (~r, ω0, ω1, ω2) =

~
4ε0c2S

√√√√ ω0ω1ω2 (ω0 − ω1 − ω2)
n (~r, ω0)n (~r, ω1)n (~r, ω2)n (~r, ω0 − ω1 − ω2)χ

(3)
eff (~r, ω0, ω1, ω2) .

(1.128)

Nonlinear solution for propagation The evolution equation with the total momentum
operator defined previously is:

∂â (~r, t)
∂Z

= − 1
i~

[
â (~r, t) , ĜL (~r) + ĜNL (~r)

]
. (1.129)

It becomes:

∂â (~r, ω)
∂Z

= − 1
i~

[
â (~r, ω) , ĜNL (~r)

]
. (1.130)

39



Elements of theory

We can consider the strong pump as a classical field, labeled 0, so that we have: â0 (~r, ω) =
a0 (~r, ω).

In the case of a quadratic parametric fluorescence, we can deduce the evolution equation of
down-converted indistinguishable photons (field s) with the use of the commutation equalities
(1.112) and (1.113):

∂âs (~r, ω)
∂Z

=
ˆ
R+

dω̃

2πβ (~r, ω, ω̃) a0 (~r, ω + ω̃) â†s (~r, ω̃) e−i∆k(2)(ω+ω̃,ω̃,ω)Z . (1.131)

Note that the values of ∆k(2) reduces the integral interval. In the case of a monochromatic
pump, only one couple of down-converted photons remains. This is easily understood as the
energy and momentum equations fix the two unknown frequency quanta.

For a type A cubic parametric fluorescence, the evolution equation of the indistinguishable
photons leads us to the following differential equation:

∂âs (~r, ω)
∂Z

= −i
¨

R2+

dω̂

2π
dω̃

2πΓ (~r, ω, ω̂, ω̃) a0 (~r, ω̂) â†s (~r, ω̂ − ω − ω̃) â†s (~r, ω̃) e−i∆k
(3)(ω̂,ω,ω̃,ω̂−ω−ω̃)Z . (1.132)

The same comments as before apply for the restriction of the integral intervals. But here, the
two energy and momentum equations are not sufficient to determine an unique couple of triple
photons, which dilute them spectrally.

1.4.4 Quantum states of light

Spectral density We define the photon number operator as the quantum equivalent of the
classical modulus squared amplitude. It is given at any frequency ω by:

n̂ (ω) = â† (ω) â (ω) . (1.133)

Its expectation value defines the spectral photon density:

n (ω) = 〈ψ| n̂ (ω) |ψ〉 , (1.134)

where |ψ〉 is the quantum state of the system at the entrance of the propagation medium, in
compliance with the Heisenberg picture where the evolution is imputed in the operators. We
now need to discuss about vacuum and coherent states before giving the form for this quantum
state.

Vacuum state The vacuum state |0〉 is the ground state, with the lowest energy possible. No
photon fills it. Still, because of the Heisenberg inequality ∆E∆t ≥ ~, its energy is not zero for
a finite time. The variance of the transverse electric field, 〈0| ~̂E2

t |0〉, is not zero either, bringing
about the so-called vacuum quantum fluctuations that well explains the spontaneous emission
phenomenon. At any frequency, the vacuum state fulfills the following equation:

â (ω) |0〉 = 0. (1.135)
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Coherent state An ideal classical laser light has well-defined amplitude and phase. This
cannot be the case for its quantum counterpart as the Heisenberg inequality applies. Therefore,
fluctuations are associated with these amplitude and phase variables. The laser light is described
by a state for which these uncertainties equal each other, and minimize the uncertainty principle

∆q∆p =
~
2, where q is the position and p the momentum [61]. Such states are quasi-classical

states since they look like classical states as much as allowed by quantum mechanics. They are
called coherent state, referred to as |α〉 and are eigenstates of the annihilation operator â [62]:

â (ω) |α (ω)〉 = α (ω) |α (ω)〉 . (1.136)

The operator â being non hermitian, the eigenvalue α is complex.

The beams we consider are spectrally gaussian. Thus the spectral density can be written:

n (ω) = 〈n̂ (ω)〉 = n
(
ω
c
)
e
−
(
ω−ω

c

∆ω

)2

, (1.137)

for ω ∈ R+; ωc the central frequency of the field. Therefore, the eigenvalue α takes the form:

α (ω) =
√
n (ωc)e

− 1
2

(
ω−ω

c

∆ω

)2
+iϕ

, (1.138)

where ϕ is a phase term. The photon number and phase fluctuations can be written as:

∆N2 = ∆ϕ−2 = |α|2 .

Quantum state of the system The quantum state |ψ〉 of the system is described by the
tensorial product of the different fields at the entrance of the system, except for the pump
field described classically. For cubic interactions of type A, three modes remain, denoted with
subscripts 1, 2 and 3:

|ψ〉 = |ψ〉1 ⊗ |ψ〉2 ⊗ |ψ〉3 ≡ |ψ1, ψ2, ψ3〉 . (1.139)

When vacuum quantum fluctuations are involved, i.e. for spontaneous parametric generation,
the state is written with vacuum states:

|ψ〉 = |01, 02, 03〉 . (1.140)

If the generation is stimulated, the stimulation field is taken to be a coherent state, written as
follows in the case of a stimulation by field 3 for example:

|ψ〉 = |01, 02, α3〉 . (1.141)

1.4.5 Coherence of down-converted modes through parametric processes

Correlations, entanglement From the evolution equations (1.131) and (1.132), we see that
the mode operators are linearly dependent in the case of quadratic interactions, while they are
not for cubic interactions. On the basis of this mere observation, we can expect that quantum
properties of triplets will differ from those of twin photons. But it will be seen thereafter that
it is not the only argument for this statement.

41



Elements of theory

A triplet state generated from parametric fluorescence is created from the involvement of
the quantum vacuum fluctuations. It indeed exhibits quantum properties: its three constituting
photons have special links, correlations. Those photons are said to be entangled as the quantum
state characterizing the triplet state is non-separable, in other words cannot be written as
products of single particle states [63]. Those states are indeed entangled in frequency and
wavenumber because of the energy and linear momentum conservation laws; and can also be in
polarization depending on the interaction configuration [64].

In the case of a generation of triplets through DFG, it will be seen in Section 2.3.1 that the
stimulation influences the correlation properties of the triplet state, which then depends on the
number of stimulating photons.

To probe the nature of the correlations, several options are possible: direct experiments on
quantum fluctuations, quatum tomography through Wigner function reconstruction, or recom-
bination through SFG for instance, as described in the next sections.

Quantum fluctuations Direct estimation of the quantum intensity fluctuations can be made
through intensity correlation measurement based on a Hanbury Brown and Twiss interferometer
[65]. This experiment measures the coincidences between two intensities I1 and I2, and allows
us to infer the second-order normalized intensity correlation function:

g(2)(τ) =
I1 (t) I2 (t+ τ)
I1 (t) I2 (t)

. (1.142)

Three-photon correlations can be estimated through the third-order normalized intensity corre-
lation function [58], function of the three intensities I1,I2 and I3, i.e.:

g(3)(τ1, τ2) =
I1 (t) I2 (t+ τ1) I3 (t+ τ2)

I1 (t) I2 (t) I3 (t)
. (1.143)

The corresponding block diagram of the measurement is given in Figure 1.13. To get the phase
fluctuations, experiments based on homodyne detection can be used [66].

I1(t) 

I2(t+τ1) g(3)(τ1,τ2) 
τ1 

τ2 
I3(t+τ2) 

Figure 1.13 – Third-order intensity correlation measurement.

Quantum state tomography, Wigner function When working with continuous variables,
it is relevant to describe the quantum state in the phase space by the Wigner function, instead
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of the density matrix ρ̂, the eigenstate basis being continous and of infinite dimension. For a
pure state with a density matrix ρ̂ = |ψ〉 〈ψ|, this function can be written [67]:

W (q, p) =
1

2π

ˆ
R
dxejpx

〈
q −

x

2

∣∣∣∣∣∣ ρ̂
∣∣∣∣∣∣q +

x

2

〉
,

with q and p the quadratures of the electric field, that is to say quantities that represent the
real and imaginary parts of the complex amplitude of the annihilation and creation operators
[58]. This Wigner function extends the notion of probability distribution in the phase space
{q, p}, with the probability of finding the electric field at (q, p) within dqdp expressed as d2P =
W (q, p) dqdp just like in statistical physics. But as the uncertainty principle can lead to negative
values, it is referred to as a quasi-probability distribution [68]. Hence these negativities sign the
non-classicality of a state.

The projection of the Wigner distribution along a direction θ gives a marginal probability
distribution Pθ, expressed as [68]:

Pθ (q) = 〈q| ρ̂ |q〉 =
ˆ
R
dpW (q cos θ − p sin θ, q sin θ + p cos θ) .

The marginal probability distributions can be experimentally accessible through homodyne de-
tection, and together reconstruct the Wigner function. This is quantum state tomography [69].

Recombination The best alternative for experiments involving a large number of photons is
to consider a SFG experiment between triple photons, which corresponds to the photon fusion
of the triple state (see Figure 1.14) [16]. It follows works performed on photon pairs generated
by χ(2) SPDC [60, 70]. The only difference between classical and quantum analyses of such an
experiment lies in the expression of the electric field, quantum operator or classical vector, that
experiences or not the non-commutation relationship (1.112). If the experimental SFG and the
classical analysis give the same intensity spectrum or equivalently the same temporal autocorre-
lation, the three photons would be non-correlated, or incoherent for quantum mechanics, which
corresponds to the classical case.

χ(3) 

Parametric 
fluorescence 

χ(3) 

 

SFG 

Figure 1.14 – Recombination protocol.

But if they are different, some quantum coherence is preserved. The amplitude and phase
relationships link in a quantum way the correlated triple photons together. It is thus important to
preserve the quantum coherence if we intend to use triplets as new tools for quantum information
and its potential future protocols.
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1.5 Conclusion

This first chapter has dealt with basic elements for the understanding of this work. It has been
shown that a nonlinear interaction has to fulfill the phase-matching condition to be efficient,
in addition to the energy conservation relationship. A careful attention has to be brought to
maximizing the effective coefficient, as well as the temporal and spatial overlaps.

In anisotropic crystals and isotropic optical fibers, two different kinds of phase matching
can be achieved: birefringent phase matching in the first case, and modal phase matching in
the second. Next chapters will make direct use of these theoretical results: THG and TPG in
anisotropic crystals in Chapter 3; THG and TPG in optical fibers in Chapter 4.

Lastly, the quantum analysis that is necessary for the calculation of spontaneous TPG and
for the understanding of the non-classicality of this new state of light can follow the derivation
made in the present chapter.
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Chapter 2
State of the art and motivations

“Je me félicitais que notre passé fût assez long pour nous servir d’exemples,
et pas assez lourd pour nous en écraser.”

– Marguerite Yourcenar, Mémoires d’Hadrien
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The most direct way to generate photon triplets is to take advantage of the third-order
parametric fluorescence, depicted in Figure 1.4. In the present chapter, we first give our moti-
vations for studying such photonic states, in the light of twin photons, the quadratic equivalent
to triplets. We then give a state of the art of the generation of triple photons, whether it is
direct through a cubic interaction or indirect through quadratic cascading processes. We also
summarize what has been reported in the literature on the correlations among those states.
Finally, we give the orientation of this thesis in this context.
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2.1 Motivations in the framework of nonlinear quantum optics

2.1.1 Twin photons

Our motivations are first deeply fundamental. To apprehend this, let us go first into a quick
review over some recent history of quantum physics.

Entanglement Twin photons are the quadratic equivalent of triple photons: they can for
example be generated through second-order nonlinear optical interactions. They are one example
of two-particle systems that are said to bear perfect correlations, or in Erwin Schrödinger’s words,
to be entangled [63]. Before any measurement in any basis, the state of the two photons can be
known but not the individual state of either of them: the twins share a single wave function.
But when a measurement is performed so that the state of one photon is known, the outcome
for the other photon is also known with certainty, no matter the distance separating them.

EPR debate Entanglement is a fascinating quantum phenomenon that went on the rise with
the debate pointed out by Albert Einstein, Boris Podolsky and Nathan Rosen in their famous
paper dating from 1935 [71]. With a causal point of view, they made some propositions about
the completeness, reality and locality of a theory.

– Completeness: “Every element of the physical reality must have its physical
counterpart in the physical theory.”

– Reality: “If without in any way disturbing a system, we can predict with cer-
tainty (i.e. with a probability equal to unity) the value of a physical quantity,
then there exists an element of physical reality corresponding to this physical
quantity.”

– Locality: “Since at the time of measurement, the two systems no longer in-
teract, no real change can take place in the second system in consequence of
anything that can be done in the first system.”

They showed that these propositions are in contradiction with the quantum description of two
perfectly correlated spin-half particles. They concluded that quantum mechanics has thus to
be incomplete. This constituted the EPR paradox. Therefore, no local realism can describe
independently the two particles constituting the entangled state. These contradictions have
been reformulated many years later by John Bell into quantitative criteria based on a theory of
local hidden variables, the well-known Bell inequalities [72].

Non-locality Some of the experimental tests performed violated Bell inequalities. The first
convincing demonstrations were led by Alain Aspect in the early eighties [1, 73, 74]: twin photons
were emitted from a radiative cascade in calcium atoms (atomic jet), excited at resonance by
a krypton laser and a tunable laser. Many other experimental demonstrations have followed,
always in favour of quantum mechanics, rejecting therefore the local realism and the local hidden
variable scenarii. The experiments of Aspect have been reproduced over kilometers with the
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same result [75]. This opened the door to the field of quantum information, with quantum
cryptography, quantum computing or quantum teleportation.

2.1.2 Photonic states with N ≥ 3 particles

Triplet state Quantum optics has been deeply influenced by twin photons. One can think
that N -particle highly correlated systems can play an important role in this story as well.
Among them, a step ahead to the twins would be the three-particle systems. Regarding the
generation of such states through optical techniques, we will enter into details in Section 2.2.
Nevertheless, we can already note that, following the work on twin photons, the most natural
way to generate three-photon states is offered by cubic nonlinear optics. This has not been
the only technique investigated by the community because of the weakness of magnitude of
third-order nonlinearities. All these triple states of light exhibit anyway strong correlations.

GHZ, W states It has been shown that three-particle systems can be entangled into two
inequivalent ways [76, 77], Greenberger-Horne-Zeilinger (GHZ) and W states, i.e. that it is
not possible to obtain one state from the other by means of local operations and classical
communication. On one hand, GHZ states [8, 78] are three-particle maximally entangled states.
They are fragile in the sense that entanglement is hold as long as none of the three particles is
traced out. On the other hand, W [9, 10] states are maximally robust entangled states, as two
over three particles can remain entangled under the projection of the state of one particle. For
polarization entanglement, those states can for instance be written as:

|GHZ〉 =
1
√

2
(|HHH〉+ |VVV〉) , (2.1)

|W〉 =
1
√

3
(|HHV〉+ |HVH〉+ |VHH〉) , (2.2)

where |H〉 and |V〉 stand for horizontal and vertical polarization respectively. As far as we are
concerned, our experiments presented in the next section do not generate such polarization-
entangled states but continuous-variable correlated states analogous to them [11], here with
energy (or time) and momentum (or position) correlations. They are similar to the continous-
variable twin photons [79–81]. This is indeed a consequence of the energy and momentum
conservations of phase-matched parametric interactions. Some references in the literature also
discuss hyper-entangled states [82].

In 2009, Wen and Rubin considered three- and two-mode triphoton states entangled in time
and space [83]. Specifically, three-mode states are given by:

|ψ〉 =
˚

dω1

2π
dω2

2π
dω3

2π

˚
d~α1d~α2d~α3F

(
L,∆~k {ω}1,2,3 , {~α}1,2,3

) ∣∣∣1~k1
, 1~k2

, 1~k3

〉
, (2.3)

where F is a function depending on several parameters: the circular frequency ωi, the transverse
wave vectors ~αi of photons in mode ~ki, the interaction length L, and the phase-mismatch ∆~k.
With the same notations and considering the appropriate function F ′, two-mode states account
for a degeneracy between two photons. They take the form:
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|ψ〉 =
¨

dω1

2π
dω2

2π

¨
d~α1d~α2F

′
(
L,∆~k {ω}1,2 , {~α}1,2

) ∣∣∣2~k1
, 1~k2

〉
. (2.4)

By looking at the second-order coherence function in the temporal and spatial domains (see
Equation (1.142)) they showed that three-mode states are similar to W states whereas two-mode
states are analogous to GHZ states concerning their robustness to one photon measurement.

2.1.3 Motivation for triplet photon generation

From the previous section, we see that investigating tri-photon states of light would enable the
exploration of fundamental questions about quantum mechanics. As twin photons influenced
the practical applications of quantum optics, tri-photon states may also potentially be part of
the story in the future and open new routes in quantum information.

More particularly, one of the three photons of the triplet could herald the presence of the
two others, forming a pair. A protocol of heralded generation in the case of entangled photon
pairs can be found in [84], and experimental demonstrations in [85, 86].

Triplet states could also allow the elaboration of quantum cryptography protocols using a
third part. For instance, two photons of confidence could be used instead of one when consid-
ering twin photons. A quantum key distribution scheme with entangled twins that uses Bell’s
inequality to establish security has been proposed by Artur Ekert in [87] and demonstrated in
[88, 89]. Another scheme based on Wigner’s inequality for the security test has been demon-
strated the same year [90]. Entanglement-based quantum key distribution with photon pairs,
has been realized over kilometric distances [91].

In addition, three-particle entanglement could be used for quantum teleportation of a state
to either one of two locations [92]. Only one of these two receivers can indeed reconstruct the
state, in accordance with the no-cloning theorem [93]. Three-particle entangled state is also
used in the paper from Bruβ et al. [94] in their proposal to realize the quantum cloning machine
of Bužek-Hillery [95].

Lastly, the direct generation of photon triplets is also challenging in the field of nonlinear
optics as the third-order susceptibilities involved in the process, therefore the conversion ef-
ficiencies, are very low. It might as well impact the development of new optical parametric
sources.
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2.2 Experiments and theory of triplet photon generation

A first subsection is dedicated to the direct generation of photon triplets from cubic optical
nonlinear interactions, while a second one reports on more indirect proposals and experimental
demonstrations.

2.2.1 Triplet photon generation through cubic nonlinear processes

2.2.1.1 Classical understanding of triple photons

Triple photon generation (TPG) takes part in the general framework of nonlinear optics given
in Section 1.1.3, whose first theoretical understanding came from Armstrong and co-workers in
[21]. More specifically, the direct TPG interaction belongs to the type A cubic scheme:

λ0 → λ1 + λ2 + λ3. (2.5)

Its classical theory has been led by the team in Grenoble, through derivation of solutions to the
coupled equations in the form of Jacobi elliptic functions [33]. These derivations are made in
the case of three or four incoming beams in free space propagation, or in an injection-seeded
optical parametric oscillator (OPO). Hypotheses of a phase-matched interaction far from the
medium resonances, along with monochromatic fields were made. This theory has been compared
successfully to the first experiment described in the following section.

2.2.1.2 Pioneer experiment

The first generation of photon triplets was carried out in 2004 in Grenoble by Julien Douady
and Benoît Boulanger, through a bistimulated DFG configuration [13, 96]. The experimental
setup is depicted in Figure 2.1.

Figure 2.1 – Schematics of the 2004 experiment, adapted from [96].

As cubic nonlinearities are weak, it was necessary to work in the sub-nanosecond regime. A
beam at 532nm from a Nd:YAG laser (22ps, 10Hz) frequency-doubled in a KTP crystal, together
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with two beams orthogonally polarized at 1665 nm generated by a BBO optical parametric
generator (OPG) gave rise to photon triplets at

λ
c

1 = 1474 nm

λ
c

2 = 1665 nm

λ
c

3 = 1665 nm ,

(2.6)

using a birefringence phase-matched cubic nonlinear interaction in a KTP crystal along the (Ox)
axis of the dielectric frame. The corresponding configuration of polarization in terms of (−) and
(+) modes was the following:

532(−) − 1665(+) − 1665(−) → 1474(+). (2.7)

The temporal coincidence of the beams is set with the use of a delay line, composed of a prism.
The generated state was obviously a mixture between down-converted triplets and stimulation
beams, as shown in Figure 2.2. Still, the detection of photons at λ1 was a clear piece of evidence
of the generation of {λ1, λ2, λ3} triplets.

Figure 2.2 – Bi-injected generation of photon triplets.

This set of wavelengths is one of the many that would be generated if the experiment had
been performed without stimulation. It is actually impossible to fix the values of three unknown
quanta using the two energy and momentum conservation relationships. Fixing only one wave-
length of the triplet would have been sufficient to counterbalance the spectral broadening. But
a stimulation by two fields was chosen in order to overcome the extreme weakness of the cubic
nonlinearity. The spectral set was choosen so that the stimulation fields were degenerated in
wavelength, i.e. λ2 = λ3: consequently, only one stimulation beam and a half-wave plate were
actually needed, instead of two physical stimulation beams. The IIa (equivalent here to IIb)
phase-matching polarization configuration from Section 1.2.2 was chosen as the one minimizing
the χ(2) cascading schemes, with a rate of 0.5% [97]. It was also a requirement that the spectral
components lied in the telecom range, and were compatible with usual detectors.

KTP, a positive biaxial crystal, was chosen for its high optical damage threshold, around
100GWcm−2 [98], its wide transparency range, its well known linear and second-order nonlinear
properties, and its rather high third-order electric susceptibility, although not centrosymetric
and consequently enabling quadratic interactions to occur. Along the (0x) propagation axis, the
effective cubic susceptibility χ(3)

eff = χ
(3)
24 = 1.46× 10−21 m2V−2 is maximum [99], and the double
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refraction angle zero, which allows the spatial overlap between incoming beams to be optimal.
Due to the typical unaccuracy of the Sellmeier equations, it was important to be able to

tune the wavelength of the injection beam so that perfect phase-matching could be achieved.
For comparison to the experimental wavelengths given in (2.6), the theoretical ones along (Ox)
are indeed λth

1 = 1449.4 nm, λth
2 = λth

3 = 1681.0 nm. In this experiment, the BBO OPG was
tunable in the range 420− 2300 nm.

From incident intensities I (λ0, Z = 0) = 350 GWcm−2 and I (λ2, Z = 0) = I (λ3, Z = 0) =
50 GWcm−2, they were able to generate I (λ1, Z = 25mm) = 11 GWcm−2. Afterwards, the
group of Grenoble performed a systematic study that validated the theoretical classical model
by examining the generated energy as a function of the pump and stimulated energies, as well
as the crystal length [100, 101]. A Kerr effect was also identified during the parametric process
[102].

2.2.1.3 Alternative nonlinear media for the direct cubic interaction

Other materials have been investigating for photon triplet generation. THG schemes have been
considered in order to evaluate their capability regarding the realization of cubic nonlinear
interactions. Compared to TPG, THG presents the advantages of bringing about higher con-
version efficiencies and requiring only one incident beam, while exhibiting exactly the same
phase-matching condition as frequency-degenerated TPG.

Chalcogenides The highest cubic optical nonlinear coefficients can be found in chalcogenide
glasses: they are on the order of 10−19 to 10−18 m2V−2, three orders of magnitude higher than
that of oxides [103–105]. As glasses, they are isotropic and achieving a birefringent phase-
matching is therefore impossible, unless it is induced. GeSe4, GeAsSe3 and AsSe4 have been
considered with applied anisotropic mechanical constraints, inducing a birefringence by elasto-
optic effect [96, 97]. Unfortunately, the weak mechanical resistance did not enable to reach
sufficient birefringences to perform a phase-matched experiment. The performed THG was thus
non-phase-matched so that weak conversion efficiencies were reached.

Periodically poled crystals A shrewd idea to get rid of the quadratic cascades that can
pollute the cubic interaction is to use a periodically poled crystal as ppKTP. The alternate
orientations of regularly spaced ferroelectric domains can be used such that the second-order
processes become inefficient by choosing suitable spacing period [96, 106]. Unfortunately again,
the optical damage threshold of the ppKTP crystal, smaller than that of KTP due to inhomo-
geneities, led in the end to smaller conversion efficiencies.

Rutile TiO2 Alternative nonlinear media are birefringent centrosymmetric crystals, as they
cannot give rise to quadratic interactions due to symmetry considerations. Among them, TiO2

in its rutile phase is a promising crystal, with a high cubic nonlinearity:
χ

(3)
eff

∣∣∣
TiO2

χ
(3)
eff

∣∣∣
KTP

' 5.3 for

a type II THG at λω = 613.2 nm [101, 107, 108]. A part of Chapter 3 will be devoted to the
continuation of this study.
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Nonlinear confined media Triplets generation through third-order nonlinear conversion in
thin optical fibers has also been investigated in a theoretical point of view [12, 109], but never
demonstrated experimentally so far. However, as THG is governed by the same phase-matching
condition as degenerate TPG, and has advantages over it as already stressed above (higher
efficiency, only one physical beam needed), a first experimental step towards triplets was reported
by Kamel Bencheikh et al. by generating THG in 2012 in [110]. It follows the first experimental
observation of THG in fibers made by Gabriagues in 1983 [111], and other demonstrations that
came after in strong index difference microstructured fibers [112, 113], or in monomode fibers
out of phase matching for instance [114].

Optical fibers indeed present two key advantages for increasing the conversion efficiency
compared to bulk crystals: the length of interaction combined with the strong confinement of
the electromagnetic field. In the experimental studies mentioned above, the fiber cores are made
of silica. As a consequence, although third-order nonlinearities are not so high, the transmission
range of such fibers is highly compatible with telecom wavelengths and the optical damage
threshold is high. Phase matching can be achieved if different transverse modes are considered
for the different interacting waves so that wavelength dispersion can be compensated, exactly
as birefringence acts in the case of crystals [113, 115, 116]. Note that it is quite important
to use low-order transverse modes so that the overlap between them, therefore the conversion
efficiency, can be high [117]. Another solution based on quasi-phase matching in fibers using
refractive-index gratings has also been proposed [118].

2.2.1.4 Quantum treatment

The classical model for TPG only holds when injection beams seed the generation, i.e. when
there are non-zero fields as initial conditions for the resolution of the system of coupled equations
(1.52). If it is not the case, as for spontaneous TPG, then a quantum treatment is required.
Resolutions using the Fermi golden rule and the formalism introduced in Chapter 1 are presented
in this section.

Semi-classical model Before going into a fully quantum approach, an attempt of semi-
classical resolution has been done for spontaneous down-conversion in the undepleted pump
approximation [119]. In this calculation, each triple photon spectral density is taken to 1photon
per mode, due to vacuum fluctuations. The numerical application leads to a generation of
0.2 photons per second in a 1 m-long silica fiber of core radius a = 1.85 µm, and for 1 W of
average pump power, i.e. a power density of about 10 MWcm−2. Nevertheless, this resolution
ought not to be taken too seriously as the set of coupled equations was there taken as decoupled
with three invariant fields, which seems to be quite extreme.

Fermi golden rule A calculation based on the Fermi golden rule has been performed in [15]
in order to determine the transition rateW from the state

∣∣∣~01,~02,~03
〉
to the continuum of triplet

states
∣∣∣~k1,~k2,~k3

〉
. It writes as:

W =
2π
~

∣∣∣〈~k3,~k2,~k1
∣∣∣ Ĥ ∣∣∣~01,~02,~03

〉∣∣∣2 ρ, (2.8)
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where ρ is the density of final states, and Ĥ the perturbative Hamiltonian describing the third-
order nonlinear interaction.

A degenerate phase-matched configuration at λ = λ1 = λ2 = λ3 = 1665 nm in a 25 mm-long
KTP crystal

(
χ(3) = 10−21 m2V−2

)
has been considered. A generated power P ' 3× 10−17 W

was found when using a pump intensity of 350 GWcm−2 at 532 nm (22 ps laser pulses at 10Hz)
in a detection spectral and angular bandwidth dλ = 50 nm and dΩ = 10−5 str respectively: it
corresponds to less than 0.01 triplets per day! For comparison, the degenerate quadratic scheme
of spontaneous down-conversion at 532nm would lead to 106 twins per day, i.e. about 100 twins
per second

(
χ(2) = 10−12 mV−1

)
.

Quantum resolution Following the continuous variable formalism presented in the first chap-
ter and previously adopted in the case of twin photon generation [60], a complete quantum
treatement in the approximation of a weak interaction has been performed in 2012 during the
PhD thesis of Audrey Dot in the group of Benoît Boulanger in Grenoble [16, 120]. It describes
not only the parametric fluorescence but also seeding schemes with one or two injection beams
by resolving the coupled equations, given by (1.132) in the case of indistinguishable photons,
and by considering the appropriate incoming state: |ψ〉 = |01, 02, 03〉, |01, α2, 03〉, |01, 02, α3〉 or
|01, α2, α3〉. We sum up the main results here. The spectral density n1 of the mode 1 in the
general case where two seeding beams can stimulate the process can be written as:

n1 (ω1, Z) = T1 + T2 + T3 + T4, (2.9)

with 

T1 =

∣∣∣∣∣∣
ˆ
dω2

2π Φ
(
ω
c

0, ω1, ω2, Z
)
A0
(
ω
c

0, 0
)√

n2 (ω2, 0)n3 (ωc0 − ω1 − ω2, 0)

∣∣∣∣∣∣
2

T2 =
ˆ
dω2

2π
∣∣A0

(
ω
c

0, 0
)

Φ
(
ω
c

0, ω1, ω2, Z
)∣∣2 n2 (ω2, 0)

T3 =
ˆ
dω2

2π
∣∣Ap (ωc0, 0)Φ

(
ω
c

0, ω1, ω2Z
)∣∣2 n3

(
ω
c

0 − ω1 − ω2, 0
)

T4 =
ˆ
dω2

2π
∣∣Ap (ωc0, 0)Φ

(
ω
c

0, ω1, ω2, Z
)∣∣2 δ (ω1 − ω1) .

(2.10)

A0 is the pump field taken as monochromatic at ωc0 and defined as A0
(
ω
c

0
)

=
ˆ
dω

2πa0 (ω); n2 and
n3 are the two spectral densities related to the stimulation modes; the parameter Φ is defined
by :

Φ
(
ω
c

0, ω1, ω2, Z
)

= Γ
(
ω
c

0, ω1, ω2, Z
)
Zsinc

(
∆k(3) (ωc0, ω1, ω2

)
Z

2

)
e−i

∆k(3)
(
ω
c

0 ,ω1,ω2
)
Z

2 , (2.11)

where ∆k(3) and Γ are given in Equations (1.53) and (1.128) of the first chapter. Note that in
the case of one or none seeding beam, this expression still holds and reduces by taking n2 = 0
and/or n3 = 0. We see that the term T1 of Equation (2.10) holds in a strong bi-stimulated case,
while the last term T4 is predominant in a case where stimulations are very low, or inexistant.
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The Dirac function δ is a characteristic time that does not have any spectral restrictive role

here [120]. It may seem wise to take it as the caracteristic time of the cavity τ =
L

c
, L being

the total length of the cavity. Nevertheless, it had been chosen not to take it into account by
comparison of the numerical resolution to both the Fermi golden rule and a different definition

of the spectral density for polychromatic fields: ni (ω,Z) =
ˆ
dω̄

2π 〈ψ| â
†
i (ω,Z) âi (ω̄, Z) |ψ〉 [60].

The numerical applications are performed in the case of a generation occuring in a 1 cm-long
KTP crystal, allowing to compare with the experiments done at that time. The pump beam at
532 nm is composed of 4.1013 photons per pulse, i.e. an energy of 14.6 µJ, with a 15 ps pulse
duration and a 10Hz repetition rate: a number of 0.255 photons per pulse are generated in each
of the down-converted fields in the parametric fluorescence regime.

We now turn to the stimulation cases, with stimulation beams centered at λc2,3 = 1665 nm
and with full width at half maximum of 10nm. In the case of a mono-stimulation by the mode 3,
the terms T1 and T2 are zero. The terms T3 and T4 equal each other when n3

(
λ
c

3
)

= 1, at the
center of the injection spectrum. This corresponds to 7.3×1012 photons per pulse. In that case,
0.0011 photons in the mode 1 per pulse are generated through T2, in addition to the spontaneous
emission contribution of 0.255 photons per pulse. When a stimulation by mode 2 is considered,
and for n2

(
λ
c

2
)

= 1, then 0.0453 photons per pulse are generated through amplification by
the stimulation. The phase-matching conditions are responsible for the asymmetric situation
between the two mono-injected results. Note that the previous numbers do not correspond to
an equal number of mode 1 photons generated through parametric fluorescence or amplification,
as their spectral range are very different, wider in the first case. However, they do for a seeding
of 4.1 × 1013 and 1.7 × 1015 photons per pulse, for a mono-stimulation by the beams 2 and 3
respectively. These numbers can be regarded as the lower limit of an efficient mono-stimulated
regime. Although they are not presented here, calculations of spectral densities had also been
done for fields 2 and 3 [16, 120]. When the process is seeded with high enough intensities,
the number of triple photons in each field is not the same whether the photons belong to the
stimulation beam or not. This indicates that a too strong level of seeding photons may mask
the correlation between triplets.

Lastly, in the bi-stimulated case, the terms T1 and T4 are always predominant, respectively
when strong and weak seedings are considered. They equal each other at the central injection
frequency, i.e. for n2

(
λ
c

2
)

= n3
(
λ
c

3
)

= 1, when 9.7× 106 photons per pulse seed the process on
each of the injection fields. The number of photons in field 1 generated through spontaneous
down-conversion and amplification are equal for 1.3 × 108 seeding photons per pulse on each
field.

The signature of the correlations between the photons of a triplet will be discussed in Section
2.3 in the light of all these numbers of generated photons.

2.2.2 Alternatives to the direct generation of triplets

The direct third-order optical nonlinear scheme is not the only way to generate triplets. In the
following, we chronologically outline other approaches reported in the literature.
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High energy electron-positron collisions The first proposal takes place in the framework
of quantum electrodynamics. It has been reported that annihilations between electrons and
positrons produce multi-photon states at very high energies. This non-optical scheme has been
summarized by Suraj Gupta in [121] in 1954.

“Quantum eraser” In 1997, Anton Zeilinger and coworkers proposed a three-particle GHZ
entanglement scheme based on two entangled pairs from independent emitters [122]. In this
proposal, depicted in Figure 2.3a, each detection of one of the four generated photons is made
so that it is not possible to know from which source this photon came from, entangling the three
other photons, i.e. coherently superposing them. No possiblity to identify the incoming twins
should remain: polarization, energy and time correlations are unexploited for indistinguisable
polarizations and energies, and simultaneous production and detection. Narrow bandwidth
filters are used so that the coherence time of the photons is much larger than that of the pump
laser. The three-particle interferometer shown in Figure 2.3b can give an estimation of the
“erasure” of the source information.

(a) Three-particle beam-entanglement source. (b) Three-particle beam-entanglement inter-
ferometer.

Figure 2.3 – Triplet generation based on the concept of quantum erasure. Illustrations from
[122].

Finally, [122] also proposes a three-particle polarization-entanglement source reproduced
in Figure 2.4. Its experimental demonstration was reported two years later in [6], and an
experimental test of nonlocality can be found in [7]. Note that the major drawback of this
proposal is that the creation of the GHZ three-particle entanglement rests upon a destructive
measurement.

In a similar spirit, Eibl and coworkers experimentally realized a polarization three-photon
W entanglement [123].

Photon pair and weak coherent state Another approach to generate photon triplets is
to create an approximate product state of an entangled pair of photons and a coherent state
[124]. This coherent state has to be weak enough to fulfill the approximation. In this paper,
two proposals are made for polarization or momentum entanglement; and in this case too, it is
a postselection protocole.
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Figure 2.4 – Three-particle polarization-entanglement source, from [6].

Triexcitonic decay in quantum dots Emission of triple photons from the decay cascade
of a tri-exciton through an exciton and a bi-exciton recombination in a InP quantum dot has
been demonstrated in 2004 by Persson and coworkers [125]. Time-correlation measurements
have been performed using a Hanbury-Brown and Twiss interferometer.

Entanglement by amplification in a cavity In 2005, Mikami et al. realized a three-
photon polarization-entangled W state by using the process of second-order optical parametric
amplification (OPA) in a BBO nonlinear crystal [126]: two degenerate beams are generated
through quadratic down-conversion, the process being seeded by another beam at the same
frequency. The output polarization state becomes a tripartite W state.

Combination or cascades of quadratic interactions Indirect TPG using cascaded photon
pair sources has been performed in the team of Thomas Jennewein in 2010 [14]. In this exper-
iment, a first pair is generated through second-order parametric fluorescence in a first crystal,
then follows a second pair in a second crystal from the down-conversion of one of the two photons
of the first pair, as depicted in Figure 2.5a. The three outgoing photons form a photon triplet
state, as long as the temporal coherence is preserved. This group also demonstrated energy-time
entanglement of their generated triplets [127].

Antonosyan et al. proposed in 2011 a cascaded configuration involving periodically poled
crystals in free space as well as in an OPO cavity for the production of GHZ entangled states
in polarization [129]. They also investigated the correlations properties of the down-converted
states. Their work is based on previous cascaded quadratic OPO proposals [130, 131] and
experimental realization [132]. Other experiments through quadratic parametric processes in
cascade have also been performed in an aperiodically poled crystal [133].

In the same spirit, Keller and coworkers proposed in 1998 a theoretical proposal for triplet
generation through the combination of three simultanous quadratic interactions: two down-
conversions and an up-conversion between two of the four down-generated photons [128], as
represented in Figure 2.5b. On the basis of this experiment, Wen et al. theoretically investi-
gated the transverse correlations of the outgoing triple photon state [134]. For other theoretical
proposals of interlinked quadratic interactions, see also [135, 136].
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(a) Experiment schematics from [14]. (b) Theoretical proposal from [128].

Figure 2.5 – Triplet photon generation from second-order interactions in cascade.

Triplets generation through four-wave mixing in a cold atomic medium In 2010,
Wen and coworkers proposed an experiment based on two four-wave mixing processes, i.e. a
third-order interaction of scheme B as explained in Chapter 1, in a cold atomic medium in
order to generate triplet W states [137]. The experiment is depicted in Figure 2.6. Using its
notations, it can be summarized with the energy relationships: ωp + ωc1 → ωs1 + ωas1 and
ωs1 + ωc2 → ωs2 + ωas2 , the triplet state being the couple {ωas1 , ωs1 , ωas2}. The specificity of
such a protocol is that it enables the generation of spectrally narrowband triplets since real
phononic energy levels are involved in the processes.

Figure 2.6 – Generation of triple photons by two four-wave mixing processes, from [137].

Atomic and photonic entanglement in cavity quantum electrodynamics We finish
this section by noting a theoretical proposition dating from 1993 fromWόdkiewicz and coworkers
for three-particles entanglement between atomic states and photon states in a cavity [138]. Two
photons are trapped into a cavity through a two-photon cascade spontaneous emission, with non-
degenerate frequencies corresponding to the longitudinal modes of the cavity. By interacting
with an atom in the cavity, they can induce transitions between two degenerate sublevels of the
ground state of this atom. The desired GHZ state arises from the knowledge of the dynamical
evolution in the cavity. For other experiments of atoms and photons entanglement in a cavity,
see for example [139]. This is a mere remark here as the output state is not purely photonic as
sought.
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2.3 Correlation studies

As triple photons might be used in the future for quantum information, we have to care very much
about quantum correlations among these states. This part concentrates on different strategies,
theoretical proposals or experimental demonstrations, for this purpose.

2.3.1 Photon recombination

As already emphasized in Section 1.4.5, the quantum coherence can be measured by accessing
the correlations between the quantum fluctuations of the fields associated with the photons.
Such measurements are not possible with the experiments performed in our group up to now
as not compatible with the sensitivity of our current detectors. The optical fluxes involved to
efficiently generate detectable triplets are indeed too strong.

Therefore, inspired by the pioneering work of Izo Abram et al. on the analysis of the twin
photons coherence through second-order sum frequency generation [70], we developped a similar
study on photon triplets [16, 120]. This recombination protocol has already been discussed in
Section 1.4.5 and depicted in Figure 1.14. In the twin photons case, it has been showed that a
clear signature of the non-classical behaviour of the correlations arises from the spectrum of the
recombination in a second crystal under phase-matching conditions. The down-converted twin
photons, whose spectra are very broad when generated from parametric fluorescence, recombine
together to give a summed field identical to the incoming pump beam exhibiting a narrow
spectrum [140–142]. Note that the recombined spectrum through classical optics would be the
convolution of the two twin photons spectra. The up-converted sum field is also characterized by
a high temporal resolution as the twins recombine together within their coherence time [141, 143].
Spectral as well as temporal coherence are therefore highlighted in such an experiment. An
exhaustive theoretical study of down-conversion and then up-conversion has been performed by
Barak Dayan in 2007 [60].

As far as we are concerned with triple photons, two choices arise for the recombination: the
three generated photons can either merge all together in a third-order sum frequency genera-
tion (TOSFG) scheme, or by combination of two in a second-order sum frequency generation
(SOSFG) scheme.

TOSFG For the case of TOSFG, following the energy conservation ω1 + ω2 + ω3 → Ω, the
calculation has been done in the general case, whether the generation is done with or without
stimulation beam(s). The photon density of the recombined field is composed of many terms.
Two of them remain predominant in the cases of bi-stimulation (T′1) or parametric fluorescence
(T′2) [16]:

nΩ (Ω, Z) ' T′1 + T′2, (2.12)

with
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Φ is given by Equation (2.11), and

Ψ (Ω, ω, ω̃, Z) = Φ∗ (Ω, ω, ω̃, Z) = Γ (Ω, ω, ω̃, Z)Zsinc
(

∆k(3) (Ω, ω, ω̃)Z
2

)
e+i∆k(3)(Ω,ω,ω̃)Z

2 ,

(2.14)
where ∆k(3) and Γ are given by Equations (1.54) and (1.128) respectively.

From this, it was shown that the quantum coherence between three photons from a triplet
always exists: when they recombine, they form the exact spectrum of the pump, i.e. a Dirac
peak in the monochromatic case that had been considered, no matter the spectral extension of
the photons generated from the TPG. This is the sense of the term T′2. It signs a preferential
recombination of the photons arising from a same triplet together. However, the stronger the
injection level, the more this quantum coherence is hidden as another term (T′1) gets stronger. T′1
is equivalent to its classical counterpart: a Gaussian function corresponding to the convolution
of the incoming fields, that reflects random sum frequency between unrelated triplets or seeding
photons and that only leaves classical coherence. Figure 2.7 shows recombination spectra for
different bi-injection levels. In the experiments that had been carried out in Grenoble so far,
the seeding levels did not allow to probe any quantum signature.
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(b) N2,3 = 5× 107photons/pulse
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(c) N2,3 = 2 ×
108photons/pulse

Figure 2.7 – Recombination spectra for different seeding levels, in a bi-stimulation regime for
TPG. Two KTP crystals cut along the x-axis are used for generation as well as the recombination,
with lengths equal to 10 and 0.1 mm respectively. The monochromatic pump power density is
25 GWcm−2 (4× 1013 photon/pulse

)
at 532 nm. Adapted from [120].

In the case of an efficient mono-stimulation regime, i.e. N2 ≥ 4.1× 1013 or N3 ≥ 1.7× 1015

photons per pulse for N0 = 4× 1013 photon/pulse as said in Section 2.2.1.4, the peak, signature
of quantum coherence, can still be visible. It disappears around N2 ' 6× 1015 or N3 ' 7× 1016

photons per pulse. Moreover, in any injection regime, the recombination spectrum and its
classical counterpart have different amplitudes and extensions. For these reasons, recombination
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after a mono-injected generation may be interessant to reveal non-classical correlations.

SOSFG The two-photon recombination of fields 1 and 3 in a bi-stimulation regime has also
been considered. The spectral density of the summed field can be approximated as:

nΩ (Ω, Z) ' T′′1 + T′′2 , (2.15)

with 
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The function Φ is given by Equation (2.11) and ξ by:

ξ (Ω, ω, Z) = β (Ω, ω, Z)Zsinc
(

∆k(2) (Ω, ω)Z
2

)
e+i∆k(2)(Ω,ω)Z

2 , (2.17)

with ∆k(2) and β from Equations (1.51) and (1.127).
The same kind of comments as previously can be made here: the term T′′2 exists alone for

spontaneous down-conversion and stays predominant in the low injection regime, whereas T′′1 is
the strongest in the case of a strong bi-injection. The non-classical behaviour of the tri-photons
is revealed as long as T′′1 dominates, since it differs from T′′2 which is actually the classical
contribution. This is true for N2 = N3 ≤ 105 photons per pulse, still for a pump power of
N0 = 4 × 1013 photon/pulse in a KTP crystal. This number is actually below the effective
injection regime, that starts from 107 photons per pulse as already mentionned in Subsection
2.2.1.4.

In addition, in the case where T′′1 stays stronger, the photon-sum spectrum has the same
spectral extension than the spectrum of the photons that has not been recombined. This can
be easily understood when looking at the energy conservations ω1 + ω2 + ω3 = ωp on one hand,
and ω1 + ω3 = Ω on the other hand. Therefore in the case of a monochromatic pump, one has
δω2 = −δΩ, in terms of the spectral distance from the central frequencies. Again, this feature
highlights the preferential recombination of photons belonging to the same triplet. Figure 2.8
illustrates this property: the recombination spectrum of fields 1 and 3 is shown together with
its classical counterpart, and the generated spectrum of the non-recombined field, i.e. field 2.
The generation in the first crystal has been carried out from spontanous down-conversion.

Everything that has been said on the recombination of the modes 1 and 3 stays true for the
combinations of modes 1 and 2 (also recombination of one injected mode and one non-injected
mode), as well as 2 and 3 (recombination of the two injected modes).

The same kind of conclusions arises for the SOSFG than for TOSFG, from a mono-injection
scheme: although the photons do not exhibit the same kind of correlations as in the case of
parametric fluorescence, the summed field is expressed differently than its classical equivalent
with incoherent fields, which signs quantum coherence.
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Figure 2.8 – Comparison between the spectrum of the field 2 generated from spontaneous down-
conversion (a), the SOSFG recombination spectrum of fields 1 and 3 also generated from spon-
taneous down-conversion (b), and its classical equivalent (c). Generation and recombination
crystals are 0.1 mm-long KTP crystals cut along the x-axis for the generation, and in the di-
rection (θ = 34°,ϕ = 30°) for the recombination. The interaction lengths have been taken very
small in order to avoid any spectral limitation due to the spectral acceptance. Adapted from
[120].

2.3.2 Theoretical quantum tomography

Wigner function reconstruction Quantum coherence can also be proben though quantum
tomography and reconstruction of the Wigner function presented in Section 1.4.5. The Wigner
function for a triplet state degenerated in pulsation and polarization has been computed and
reported by Konrad Banaszek et al. in the case of spontaneous down-conversion [3] (see Figure
2.9), as well as by Timo Felbinger et al. in a doubly resonant OPO [4]. In the phase space, it has
the shape of a star with three branches. It exhibits an interference pattern that takes negative
values and therefore signs the non-classicality of the state, even in the case of generation in
an optical cavity. This non-classicality is stronger than in the case of twins where the Wigner
function, although squeezed, stays positive [144]. Wigner functions for cascading generation
schemes have also been computed and give the same kind of behaviour [129, 145].

Figure 2.9 – Wigner distribution of a triplet state degenerated in frequency and polarization.
(a) is a three-dimensional representation in the electric field quadratures space while (b) is a
top view. From [3].

Calculations corresponding to the experiment of double stimulation presented in Section
2.2.1.2 has also been done in by Kamel Bencheikh et al. [15]. As triple photons are distinguisable
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in wavelength and polarization (ordinary / extraordinary), the authors gave an estimation of
the quantum correlations of the ordinary and extraordinary modes through joint probability
distributions. Their cross-shaped behaviour shown in Figure 2.10 reveals quantum correlations
between these modes, even more clearly that the conversion efficiency is high.

(a) (b)

Figure 2.10 – Joint probability distributions of the ordinary and extraordinary triple photons.
Three-dimensional and top views in (a) and (b) respectively. From [15].

Density matrix reconstruction Quantum state tomography has been performed in the
group of Anton Zeilinger via density matrix reconstruction of the triple state generated in the
framework of their experiments presented in Section 2.2.2 [5]. They showed clear polarization
GHZ entanglement of their state. Density matrix reconstruction has also been used to check W
entanglement in other teams [126]. Note that the density matrix or the Wigner function give
the same information as they are Wigner transformed from each other.

2.3.3 Coincidence measurements

Coincidence measurements stand finally for a natural way to probe triple photon entanglement
in low fluxes experiments. In the Zeilinger experiment previously discussed, GHZ entanglement
in polarization was also shown with a fourfold coincidence experimental setup [6, 7]. Simi-
lar experiments measuring threefold coincidences have been carried out in the team of Harald
Weinfurter with the aim to show three-photon polarization W entanglement [10, 123].

In the group of Thomas Jennewein, temporal correlations of the triplet state have been
demonstrated experimentally through triple coincidence measurements with their experiment
based on cascaded photon pairs exposed in Section 2.2.2 [14]. In [127], they demonstrated
energy-time entanglement of their triplet state by violating uncertainty inequalitites.

To finish this part on correlations of tri-photon states, note that Coelho et al. demonstrated
in 2009 tripartite entanglement for pump, signal and idler photons at different wavelengths by
performing a quadratic down-conversion in an OPO [146].
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2.4 Conclusion and experimental strategies

We have seen in this chapter that the generation of triple photons is an actual challenge of
nonlinear optics that is motivated by the exploration of quantum optics, and the potential new
possibilities and insights for quantum information. Such a photonic state is highly correlated,
and can belong to the GHZ or the W entanglement class. Its coherence properties therefore
differ from those of twin photons. Its non-classicality has been investigated theoretically and/or
experimentally through coincidence measurements, nonlinear photon recombination or quantum
tomography. In particular, its Wigner function exhibits an interference pattern and negativies.

Different experimental demonstrations or theoretical proposals have been reported as for the
generation of these triplet states. The most direct method, i.e. a cubic nonlinear interaction of
type A, has been achieved experimentally in Grenoble with fields seeding the process so as to
increase the conversion efficiency. However, this stimulation hid the correlations as their level was
too high. Indirect TPGs have also been performed: cascades of quadratic nonlinear interactions
in Waterloo and coherent superposition of two entangled pairs in Vienna for instance. We have
also seen that various materials (oxides, chalcogenides) in a bulk or fiber geometry can be of
prime interest if phase matching can be achieved.

This thesis follows the work previously done in Grenoble and therefore concentrates on the
direct generation of triplet states. It is important to lower as much as possible the seeding beams
as they can mask correlations. For that purpose, two experimental strategies are adopted, and
described in Chapters 3 and 4.

The first one focuses on the generation in bulk crystals, more specifically KTP and rutile
TiO2. Here, injection beams are still needed to achieve detectable triplet signals. For TiO2,
a characterization of the phase-matching properties is done by the way of THG experiments.
The study of crystals is indeed interesting for our purpose of achieving TPG with lower seeding
levels because these materials can be used in a cavity (an optical parametric oscillator) so as to
artificially increase the interaction length.

The second strategy concentrates on generation of triplets in GeO2 : SiO2 and chalcogenides
optical fibers. Optical fibers indeed enable a strong confinement of the electromagnetic field over
long interaction lengths. Moreover, because of their centrosymmetry, no quadratic process can
pollute the TPG. As for bulk crystals, silica fibers are characterized through THG experiments
that will enable to perform TPG through parametric fluorescence, i.e. without stimulation.
Chalcogenide fibers are investigated from the theoretical side, by looking at the phase-matching
properties. These materials are of particular interest for their giant nonlinearities.
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Chapter 3
Third-harmonic generation and
triple photon generation in bulk
crystals: KTP and rutile TiO2

“Cette rampe a été supprimée depuis, pour la symétrie ; les chevaux crèvent
la soif, mais l’oeil est flatté.”

– Victor Hugo, Les misérables
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This chapter is devoted to TPG in bulk crystals. A first part goes into the study of bi-
injected TPG in KTP. In a second part, another oxide, TiO2 in its rutile phase, is considered as
the nonlinear medium. Finally, the last section gives a theoretical inverstigation on TPG in a
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cavity, i.e. a third-order optical parametric oscillator, so as to artifically increase the length of
the interacting medium.

3.1 Bi-injected TPG in KTP

In this section, we show TPG in a KTP crystal in a bi-stimulated regime. The idea of the
experiment follows previous works performed in the group as described in Section 2.2.1.2. We
study here the spectral and energetic properties of the generated fields and model the Kerr effect
that comes to attenuate the TPG efficiency.

3.1.1 Description of the experiment

A doubly stimulated TPG is performed along the x-axis of a 13 mm-long bulk KTP crystal in
order to achieve type IIa = IIb phase-matching at the calculated wavelengths: λth

0 = 532 nm
for the pump, λth

2,3 = 1681.0 nm with orthogonal polarizations for the stimulation fields, and

λth
1 =

 1
λth

0
−

2
λth

2,3

−1

= 1449.4 nm for the generated field. We emphasized again that the

stimulated splitting of the pump photon leads to a generated optical state that contains a
mixture of triple photons and stimulation photons. Thus, each photon detected at λ1 reveals
the generation of a single triplet since it is not present at the entrance of the nonlinear crystal. As
the spectral components of the beams are taken into account, these theoretical phase-matching
wavelengths are the central wavelengths of polychromatic fields labeled as 0, 1, 2, 3 thereafter.

The experimental setup is depicted in Figure 3.1. The pump beam 0 is generated through
second-harmonic generation in a 1.6 mm-long KTP crystal

(
χ(2)

)
along the direction (θ = 90°,

ϕ = 23°) pumped by a 10 Hz Leopard Continuum Nd:YAG laser with a full width at half
maximum (FWHM) pulse duration τ = 15 ps. Its polarization is taken collinear with the y-axis
of the KTP crystal

(
χ(3)

)
. Two spherical lenses L0 and L′0 of focal length f0 = f

′
0 = 150mm are

put on either side of the crystal so as to optimize the SHG conversion efficiency while keeping
the collimation of the beam inside the crystal.

The stimulation beam 2 = 3 is emitted by a Topas Light Conversion parametric generator
that is tunable to achieve a perfect phase-matching. A half-wave plate is used for orienting the
polarization of the stimulation beam at 45◦ of the y-axis and z-axis of the KTP crystal

(
χ(3)

)
according to the chosen phase-matching condition.

In order to increase the spatial overlap between the pump and stimulation beams, it was
necessary to enlarged the size of the latter by a factor three with the use of a magnifying telescope
made of two spherical lenses Li and L

′
i of focal lengths fi = 250mm and f ′i = 75mm respectively.

The pump and stimulation beams are spatially overlapped at the recombination plate M2,
a dichroic mirror, and temporally overlapped thanks to a delay line made of a prism P and
a translation stage T on the pump beam path. This last point is indeed critical as the 15 ps
pulses have to match within their 4.5 mm spatial extension for a propagation in the air. The
energies of the pump and injection beams are adjusted continuously thanks to half-wave plates
(λ/2) associated with Glan-Taylor prisms (GTP).
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These two beams are focused in the KTP crystal with an uncoated spherical lens Lfoc of
focal length ffoc = 750mm. Their waist radii at 1/e2 have been measured with a Spiricon silicon-
based camera and are equal to W0 = 50 ± 6 µm and W2,3 = 90 ± 11 µm for the pump and
stimulation beams respectively. In the case of infrared wavelengths, the beams are still visible
using a CCD camera thanks to the phenomenon of two-photon absorption. The corresponding
Rayleigh length defined in Equation (1.35) is about 27 mm from either side of the waist position
inside the crystal for the two incident beams, which ensures a quasi parallel beam geometry over
the full length of KTP. In order to focalize the two incident beams in the same plane even though
they have different wavelengths, an adjustement has to be done on the relative position of the
lenses forming the telescope placed on the path of the stimulation beam. The crystal is put on
translation and rotation stages to adjust its position and orientation thanks to autocollimation.

A lens with a focal length of 100 mm is placed behind the crystal in order to collect the
emergent beams. The generated beam 1 is polarized along the z-axis according to the phase-
matching type. It can be separated from the other beams thanks to several proper filters (F).
The powers of the different beams are measured using DET110 Si or DET 410 InGaAs Thorlabs
photodiodes, calibrated with an Ophir PE10 power meter. The spectra are measured using a
Chromex 250 SM monochromator.
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Figure 3.1 – Experimental setup of the bi-injected TPG in KTP. GTP stands for Glan-Taylor
prism, λ/2 for half-wave plate. M are mirrors, L lenses, T a translation stage, P a prism and F
filters.
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3.1.2 Spectral properties

3.1.2.1 Experimental data

The spectra of the incident pump and stimulation beams can be considered as Gaussian with a
FWHM ∆λ0 = 0.5 nm and ∆λ2,3 = 3.4 nm respectively, as shown in Figure 3.2. The black dots
are experimental data and the blue curves are the related Gaussian fits. The central wavelengths
slightly differ from the calculated phase-matching wavelengths: λc0 = 532 nm, λc2,3 = 1662 nm
and λc1 = 1478 nm. This stresses the fact that it is particularly important to employ a tunable
source.
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Figure 3.2 – (a) Normalized spectra of the pump beam (field 0) and (b) stimulation beams (fields
2 and 3) used for the TPG experiment.

The normalized experimental data obtained for the generated field 1 is represented by the
squares in Figure 3.3. The measured spectral width is 4.7nm at half maximum. The calculation
performed using the model previously developed (cf. Equation 2.9) under the monochromatic
pump approximation leads to a significantly smaller value of the width of 2.8 nm, as indicated
by the red dashed curve.

The Sellmeier equations used for principal indices of KTP are:

ni (λ) =

√√√√
Ai +

Bi

λ2 − Ci
−Diλ2, (3.1)

with λ expressed in micrometers, i ∈ {x, y, z} and the coefficients given in Table 3.1 [147].

i Ai Bi Ci Di

x 3.0065 0.03901 0.04251 0.01327

y 3.0333 0.04159 0.04547 0.01408

z 3.3134 0.05694 0.05658 0.01682

Table 3.1 – Sellmeier coefficients of KTP.
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Figure 3.3 – Spectrum of the generated beam (field 1) by a bi-stimulated TPG in a KTP
crystal. The incident pump energy is E0 = 52 µJ and the incident total stimulation energy is
E2 + E3 = 60 µJ.

3.1.2.2 Classical theory

We refined this model by taking into account the spectral linewidth of all incident beams,
considered as classical. For a propagation along the x-axis, the coupled field Equations (1.132)
then become:

∂A0 (ω0, x)
∂x

=
∂A2 (ω2, x)

∂x
=
∂A3 (ω3, x)

∂x
= 0

∂A1 (ω1, x)
∂x

= i

¨
R2+

dω0

2π
dω2

2π Γ (ω0, ω1, ω2)

×A0 (ω0, x)A∗2 (ω2, x)A∗3 (ω0 − ω1 − ω2, x) e−i∆k(3)(ω0,ω1,ω2)x,

(3.2)

where Γ is defined as in (1.128). The fields are related to the spectral densities through
ni (ωi, x) = |Ai (ωi, x)|2, i ∈ J0, 3K, and the spectral energies Ei at the Fourier component ωi
are:

Ei (ωi, x) = ~ωini (ωi, x) . (3.3)

As the incoming beams are Gaussian, it comes:

Ei (ωi, x) = ~ωini
(
ω°
i , x
)
e
−
(
ωi−ω

°
i

∆ωi

)2

, (3.4)

with ω°
i the central frequency and ∆ωi the spectral linewidth at 1/e2, i ∈ {0, 2, 3}.

The resolution of the coupled equations (3.2) gives the following expressions for the spectral
energies:
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
Ei (ωi, L) = Ei (ωi, 0) , i ∈ {0, 2, 3}

E1 (ω1, L) =

∣∣∣∣∣∣∣
¨

dω0

2π
dω2

2π Φ̃ (ω0, ω1, ω2, L)

√√√√E0 (ω0, 0) E2 (ω2, 0) E3 (ω0 − ω1 − ω2, 0)
nz (ω0)ny (ω2)nz (ω0 − ω1 − ω2)

∣∣∣∣∣∣∣
2

,
(3.5)

with

Φ̃ (ω0, ω1, ω2, L) =
χ

(3)
24 (ω1)
4ε0c2

ω1√
nz (ω1)

ˆ L

0
dx
ei∆k

(3)(ω0,ω1,ω2)x

W 2 (x) , (3.6)

and

∆k(3) (ω0, ω1, ω2) =
1
c

[ω0ny (ω0)− ω1nz (ω1)− ω2ny (ω2)− (ω0 − ω1 − ω2)nz (ω0 − ω1 − ω2)] .
(3.7)

L is the crystal length; ny and nz are the principal refractive indices involved in the process;
χ

(3)
24 = χ

(3)
eff = 1.46×10−21 m2V−2 is the excited third-order nonlinear coefficient of KTP accord-

ing to the polarization configuration and the wavelengths involved [99]. By not integrating the
integral of Equation (3.6), we let us the possibility to consider a waist radius that varies in the
longitudinal direction x.

The spectrum calculated using Equations (3.5) to (3.7) leads to the blue solid curve shown
in Figure 3.3: it is significantly in a better agreement with the experimental data, since the
consideration of spectral width of the pump leads to a FWHM of 4.9 nm. Note that here the
beam radius is taken equal to that of the pump W0 (x) = 50 µm, since it is smaller than that
of the injection beam, and independent on the longitudinal coordinate x, the Rayleigh length
(ZR = 27 mm) being longer than the crystal length (L = 13 mm) as mentioned above.

3.1.3 Energetic properties, Kerr effect

3.1.3.1 Experimental data

The total energy E1 corresponding to the full spectrum of field 1 was measured as a function
of the energies of the stimulation and pump beams independently. The corresponding data are
shown in Figures 3.4 and 3.5 respectively. Calculations were also performed by integrating over
the previous spectra:

Ei (L) =
ˆ
R
dωiEi (ωi, L) , i ∈ J0, 4K. (3.8)

In both cases, the experimental data do not agree with these calculations shown in green dashed
lines and a refinement of our model is then needed.

The maximal intensities considered in these experiments are 39 GW/cm2 for the pump (0)
and 99 GW/cm2 for the stimulation (2 + 3) in Figure 3.4. They are 267 GW/cm2 for the pump
and 52 GW/cm2 for the stimulation in Figure 3.5. These are the highest values ever reported
in KTP without any optical damage [148].
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Figure 3.4 – Generated energy in the field 1 as a function of the energy of the stimulation fields 2
and 3. The incident pump energy is fixed at E0 = 14.5 µJ. The fitting parameters are v = 0.375
and µ = 0.6.

3.1.3.2 Refinement of the model

We carefully checked from energy measurements that the discrepancy between experiments and
calculations was not due to the depletion of the incident beams. The occurrence of gray-tracking
of KTP under the 532 nm irradiation could also be suspected [149], but we did not identify any
evidence of this optical damage. Actually, another sensible reason can be found in the onset of
a Kerr nonlinear response, as the incident intensities are increased.

Kerr effect The Kerr effect is the degenerate case of the third-order nonlinear four-wave
mixing (see scheme B of Figure 1.4, Section 1.1.3) and fulfills the energy relationship ω + ω →
ω + ω. This process is always phase-matched since the frequencies of all the interacting waves
are equal. It is therefore always present when light interacts with matter, but only observable
when large enough intensites are reached. It comes out as a modification of the linear index n
with the interacting total intensity Itot [22]:

neff (ω, x) = n (ω) + nKerr (ω) Itot (x) , (3.9)

where nKerr is the nonlinear Kerr index expressed as:

nKerr (ω) =
χ

(3)
eff

ε0cn (ω)2. (3.10)

Two consequences arise from this index change. First, the phase-mismatch ∆k(3) is progres-
sively modified as the total intensity gradually increases, which prevents from fulfilling perfectly
the phase-matching condition for each value of the incoming intensity. In the calculation, the
consideration of this effect is straightforward as each refractive index in Equations (3.5) to (3.7)
needs to be replaced by the corresponding effective index given by Equation (3.9). Secondly,
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Figure 3.5 – Generated energy in the field 1 as a function of the energy of the pump field 0. The
incident stimulation energy is fixed at E2 + E3 = 63 µJ. The fitting parameters are v = 0.388
and µ = 0.6.

the nonlinear medium behaves like a graded-index lens due to a transverse gradient of refractive
index induced by the transverse Gaussian profile of intensity of the beams: it is maximum at
the center of the beam and decreases towards the edges. The following section is devoted to the
modelling of the corresponding focal length, fKerr, called the Kerr lens.

Beam size and Kerr lens A Spiricon camera placed L′ = 17 cm away from the KTP exit
allowed to clearly evidence the Kerr lens effect through a decrease of about 65% of the 532 nm
pump beam radius when its energy varied from 20 to 160 µJ. This behaviour is shown as black
squares in Figure 3.6. The two transverse Gaussian beam radii Wy and Wz are averaged, and
normalized by the values corresponding to a propagation without the KTP crystal.

We can impute this beam size change to the effective focal length fKerr using a simplified
model based on the ABCD ray matrix method [150]. We consider our beams as Gaussian
characterized by the complex beam parameter q at any point x of the propagation, x = 0 being
the entrance of the crystal. It is defined as:

1
q (x, λ) =

1
R (x)− i

λ

πn (λ)W 2 (x). (3.11)

R is the radius of curvature of the beam and W the beam radius at 1/e2 of the intensity given
by Equations (1.33) and (1.32) respectively. When going through different optical elements, the
beam parameter q can be calculated in the ABCD formalism: each optical element is described

by a 2× 2 transfert matrix
(
A B

C D

)
, and the incoming qi parameter becomes qf according to

[150]:

qf (x) =
Aqi (x) +B

Cqi (x) +D
. (3.12)
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Figure 3.6 – Experimental normalized beam size at x = L′ = 17cm (in black squares); calculated
focal length (in blue) as a function of the energy of the pump beam at 532 nm. In the inset,
capture with a Spiricon camera of the pump beam with an energy of 97 µJ.

Especially, the propagation through a thin lens of focal length f is described using

Mlens (f) =
(

1 0
−1/f 1

)
, (3.13)

and the propagation over a distance x in a medium of optical index n by

Mprop (x, n) =
(

1 x/n

0 1

)
. (3.14)

In the case of the propagation in a Kerr medium with parabolic spatial variations of its refractive
index, we have [151, 152]:

MKerr (ω, x) =

 cos (γx)
sin (γx)
neffγ

−neffγ sin (γx) cos (γx)

 , (3.15)

where

γ (ω, x) =

√√√√4nKerr (ω) Itot (x)
neff (ω, x)

1
W (x). (3.16)

With a Taylor expansion of the trigonometric functions up to the second order, which stands
when γx� 1, Equation (3.15) can be written as:

MKerr (ω,L) '

 1
L

2neff
0 1

( 1 0
−neffγ

2L 1

) 1
L

2neff
0 1

+ o
(
(γL)3

)

= Mprop

L
2 , neff

Mlens (fKerr)Mprop

L
2 , neff

+ o
(
(γL)3

)
. (3.17)

Through identification of the matrices (3.14), (3.13) and (3.17), this simple model shows that
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the Kerr medium indeed acts like a lens of focal length fKerr put in between two plates of length
L

2 and optical index neff , with the following magnitude:

fKerr (ω,L) =
1

neffγ sin (γL). (3.18)

For Gaussian beams, the beam size W (x) in the longitudinal direction follows Equation (1.32)
that is written again with the current notations:

W 2 (x) = W 2
Kerr

1 +

x− fKerr

zR

2
 , (3.19)

whereWKerr represents the waist radius, placed at x = fKerr, and zR the Rayleigh length defined
in Equation (1.35).

From Equations (3.18) and (3.19), combined with the measurements of the beam radius
values outside the KTP crystal (x = L′) presented in Figure 3.6 and at the entrance of the
crystal (x = 0), Winc = 50 µm, it is possible to infer the two quantities fKerr and WKerr, that
are dependent on the total intensity Itot. The Kerr focal length leads to the blue dots shown
on Figure 3.6. Their extrapolation with respect to the total intensity is the blue solid line and
follows: fKerr [mm] = 536 × (Etot [µJ])−0.923. It varies between 2 to 20 mm from the entrance
face, WKerr varying from 11 to 18 µm over the considered energy range.

By introducing two parameters ν and µ in Equation (3.19), the beam radius at any position
x can be written as:

W 2 (x, Itot) =
[
ν2
(
W 2

inc −W 2
Kerr

)] x− µfKerr

µfKerr

2

+ ν2W 2
Kerr. (3.20)

These two fitting quantities have physical meanings. ν is introduced for taking into account
the mis-overlap between the pump and stimulation beams: it is clear from Equations (3.5) and
(3.6) that it therefore reduces the incident energies to the amount that actually takes part in the
process. µ accounts for the deviation from our simplified Kerr effect model. We found the best
convergence for ν = 0.375 and µ = 0.6 when the generated energy E1 is measured as a function
of the stimulation energy E2+3, as shown in Figure 3.4; and ν = 0.388 and µ = 0.6 when the
pump energy E0 varies as shown in Figure 3.5.

The agreement between the experimental data and our refined model is quite satisfactory,
especially since the values of the fitting parameters that are found are very close to each other
in the two experiments.

Note that the calculations with and without the Kerr effect match for small values of the
intensity. This cannot be seen on Figures 3.4 and 3.5 as significant intensities, on the order of
10 GWcm−2, are involved.

Note also that the consideration of the Kerr effect does not affect the spectrum of field 1 in
the polychromatic model and barely in the case of the monochromatic approximation as shown
in Figure 3.3. We indeed understand from Figure 3.5 that the incident energies involved to get
the spectrum 3.3 (E0 = 52 µJ, E2 + E3 = 60 µJ) are hardly sufficient to highlight a Kerr effect.
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3.1.4 Conclusion

In conclusion, we performed a complete experimental and theoretical study of the spectral and
energy properties of triple photons generated by a third-order down-conversion parametric pro-
cess in a bulk KTP crystal pumped at 532 nm and stimulated around 1662 nm in the picosecond
regime. Our model takes into account the spectral linewidths of the beams and a parasitic Kerr
effect modifying the phase-mismatch and the beam geometries. This Kerr effect consequently
attenuates the TPG conversion efficiency for large intensities. Table 3.2 summarizes the re-
sults by giving the energy characteristics for maximum triplet generation. It corresponds to a

conversion efficiency in energy, defined as ηE =
E1

E0 + E2 + E3
, that equals 3.5%.

pump (0) seeding (2+3) generation (1)

Photon number
(
×1013/pulse

)
12 53 2.8

Energy (µJ/pulse) 45 63 3.8

Intensity
(
GWcm−2) 120 43 10

Table 3.2 – Energy characteristics of the bi-stimulated TPG in KTP.

Total intensities as high as 300 GWcm−2 were focused in KTP without inducing any optical
damage.
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3.2 Towards TPG in rutile TiO2

TiO2 in its rutile phase has been presented in Section 2.2.1.3 of the second chapter as a promising
crystal for triple photon generation [107, 108]. This section deals with its study in detail.

3.2.1 TiO2 characterization through a THG experiment in a cylindrical ge-
ometry

We perform at first a THG experiment that allows to determine the optical indices of rutile
TiO2. Their precise knowledge is needed so as to infer accurate phase-matching conditions for
the TPG experiment. Typically, a phase-matching direction is known with an uncertainty of 1◦

if the indices are precise to 10−4. The THG experiment also gives access to the two susceptibility
tensor elements involved in the process and their relative sign.

3.2.1.1 Rutile TiO2 in the literature

Crystalline properties Rutile TiO2 belongs to the tetragonal crystal class
4
m
mm with lattice

parameters a = 4.5937 Å and c = 2.9581 Å [153]. It is centrosymmetric so that no cascading
quadratic process can pollute the TPG.

Linear properties Its optical class is positive uniaxial, which means that no < ne with no

and ne the ordinary and extraordinary linear indices respectively. It is transparent from 430 nm
to 5800 nm, as shown in Figure 3.7 [154].

Figure 3.7 – External transmittance of a 7 mm-long rutile TiO2 sample, from [154].

The refractive indices are greater than 2, which leads to strong Fresnel reflexion coefficients,
around 20%. Furthermore, its birefringence is high, with a magnitude of about 0.25 [107, 154–
157], which is not necessarily an advantage for achieving phase matching.

It is thus of particular importance to know with a good accuracy the linear optical indices
in order to infer precisely the phase-matching conditions of a nonlinear interaction.

Nonlinear properties Among the 81 elements of the third-order nonlinear susceptibility

tensor χ(3), four are non-zero and independent elements in the
4
m
mm class, under the Kleinman
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symmetry approximation: χ11, χ16, χ18 and χ33 [19]. The contracted notations are explicited
in Table 3.3.

Contracted Equalitites between coefficients
notation χij under the Kleinman assumption

χ11 χxxxx = χyyyy

χ16 χxxzz = χxzxz = χxzzx = χyyzz = χyzyz = χyzzy
= χzyyz = χzyzy = χzzyy = χzxxz = χzxzx = χzzxx

χ18 χxxyy = χxyxy = χxyyx = χyxxy = χyxyx = χyyxx

χ33 χzzzz

Table 3.3 – Non-zero χ(3) coefficients under the Kleinman symmetry assumption in the 4
mmm.

Indices x, y and z refer to the dielectric frame.

Only two of these elements have been determined prior to the present work: |χ16 (613.2 nm)| =
5.0× 10−21 m2V−2 from THG [107] and |χ11 (532 nm)| = 6.15× 10−20 m2V−2 from coherent Ra-
man ellipsometry [158]. Other results previously published that are based on nonlinear index
n2 measurements do not specify which coefficients were involved so that they only give es-
timates of the magnitude of

∣∣∣χ(3)
∣∣∣: 2.05 × 10−21 m2V−2 at 1064 nm from nearly degenerate

four-wave mixing experiments [159]; and 5.6 × 10−20 m2V−2 or 3.08 × 10−19 m2V−2 at 800 nm
from non-phase-matched THG in thin films [160, 161]. Note also that calculations using the
bond-orbital theory at a wavelength of 1µm give a magnitude

∣∣∣χ(3)
∣∣∣ ranging between 3.4×10−21

and 6.8× 10−20 m2V−2 [162].

This part is devoted to phase-matched THG experiments. They allow determining accurate
Sellmeier equations, the magnitude of χ18, as well as the relative sign between χ16 and χ18.

3.2.1.2 Theory on THG for TiO2

Phase-matching condition There are three possible polarization schemes enabling birefrin-
gent phase-matching for THG, in accordance with (1.75). In rutile TiO2, one of the best situation
to achieve a maximal conversion efficiency is that the beams propagate in the (x0z) plane of the
dielectric frame (x, y, z) with a type II configuration of polarization:

ω(o) + ω(e) + ω(e) → 3ω(o), (3.21)

where ω(o) and ω(e) are the circular frequencies of the ordinary and extraordinary polarized
waves respectively. The corresponding phase-matching relationship is then:

∆k(3) (θPM, ω) =
ω

c

[
3n(o) (θPM, 3ω)− n(o) (θPM, ω)− 2n(e) (θPM, ω)

]
= 0, (3.22)

where n(o) and n(e) are the ordinary and extraordinary refractive indices at the considered phase-
matching polarization angle θPM, which is the angle of spherical coordinates between the z-axis
and the considered phase-matching direction. Equation (3.22) can be expressed in terms of the
principal indices no et ne with the use of (1.64). It leads to the expression of θPM:
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θPM (ω) = arccos



√√√√√√√√√√√√√√√√

 no (ω)
ne (3ω)

2
43−
no (ω)
no (3ω)

2 −

no (ω)
ne (ω)

2

1−

no (ω)
ne (ω)

2


. (3.23)

Note that Equations (3.22) and (3.23) are valid at any azimuthal ϕ angle since TiO2 belongs to
the uniaxial optical class.

Effective coefficient The corresponding effective coefficient χ(3)
eff is calculated from Equation

(1.53) [40]:

χ
(3)
eff (θPM, ω) =

∑
ijkl

χ
(3)
ijkl (3ω = ω + ω + ω) e(o)

i (θPM, 3ω)·e(e)
j (θPM, ω)·e(e)

k (θPM, ω)·e(o)
l (θPM, ω) ,

(3.24)
where {i, j, k, l} ∈ {x, y, z} and e(o/e) are the ordinary and extraordinary unitary electric field
vectors. They can be expressed in the cartesian coordinates as in Equations (1.67). The type II
effective coefficient in the (x0z) plane then becomes:

χ
(3)
eff (θPM, ω) = sin2

(
θPM − ρ+ (θPM, ω)

)
χ16 (3ω) + cos2

(
θPM − ρ+ (θPM, ω)

)
χ18 (3ω) , (3.25)

where ρ+ is the double refraction angle, defined in Equation (1.68)
According to our experiments, the THG energy conversion efficiency in the considered phase-

matching direction η can be calculated in the undepleted pump approximation with Gaussian
beams, which gives [163]:

η =
E3ω(L)
Eω(L) =

128µ0

3πε0

χ(3)
eff (θPM, 3ω)L

λω

2
T (o) (ω)

(
T (e) (ω)

)2
T (o) (3ω)

n(o) (ω)
(
n(e) (ω)

)2
n(o) (3ω)

τ3ω

τ3
ω

W 2
3ω

W 6
ω

G (β) [Eω(L)]2 ,

(3.26)
with

G (β) =

√√√√ 6
π

ˆ
R
duF 2 (u, β) , (3.27)

and

F (u, β) =
e−u

2

β

ˆ β

0
dσe−2(u+σ)2

. (3.28)

ε0 and µ0 are the vacuum permittivity and permeability, Eω and E3ω the incident fundamental
and generated third-harmonic energies respectively, L the interaction length, λω the fundamental
wavelength, and χ

(3)
eff is defined by Equation (3.25). The Fresnel transmission coefficients are

expressed by:
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T (o,e) (ω) =
4n(o,e) (ω)(

1 + n(o,e) (ω)
)2. (3.29)

For Gaussian beams, the pulse durations τi and beam sizes Wi, i ∈ {ω, 3ω}, fulfill:
W3ω =

1
√

3
Wω

τ3ω =
1
√

3
τω .

(3.30)

Finally, β =
vL

τω
and v =

∣∣∣∣∣∣ 1

v
(o)
g,3ω
−

1

v
(o)
g,ω

∣∣∣∣∣∣ is the inverse group velocities.

3.2.1.3 Description of the experiment

Cylinder method The most standard method to determine the refractive indices of solid
materials is the technique of minimum of deviation in a prism. But its major drawback is that
many centimetric pieces of matter are needed if an accuracy ∆n/n better than 10−4 is targetted,
which is the case for the purpose of phase matching. An alternative method that consists of
measuring the phase-matching properties in a cylindrical or spherical sample with a typical
precision of 0.5◦ has been developed in our group since 1989 [164, 165]. The relative values
of the principal indices no/ne can then be inferred from the evolution of the phase-matching
directions with respect to the wavelength. Note that their absolute values can be obtained by
choosing a principal index known at a particular wavelength. The strength of this method is
that any direction perpendicular to the revolution axis of a cylinder, or any direction of a sphere,
can be accessed while keeping the input laser beam at normal incidence. The refraction inside
the crystal remains normal to the surface, which is indeed more suited than the slab geometry.
Due to this infinite angular clearance, a large number of phase-matching conditions can then be
proben in the directions where the effective coefficient is not zero, so that a huge wavelength
range can be considered.

As the rutile is an uniaxial crystal, its indices surface exhibit a revolution symmetry around
its (Oz) axis as stated in Section 1.2.1 and pictured in Figure 1.5 (b). Therefore, only one degree
of freedom orthogonal to (Oz) is sufficient to describe the whole phase-matching properties. It
has been chosen to cut a TiO2 cylinder of revolution axis (Oy), allowing us to describe the (x0z)
plane.

The machining method of realization of oriented crystal cylinder polished on the side has
been proposed and developped in the group [166]. In the case of rutile TiO2, the cutting is made
easier as it is non hygroscopic and its hardness is important, of about 6.5 in the Mohs scale.
The fabrication process is pictured in Figure 3.8.

The cylinder has been cut by Jérôme Debray and Bertrand Ménaert from a slab sample of
dimensions 10× 5× 10 mm3 bought to the MTI Corporation company. The face orthogonal to
the (Oy) revolution axis, which orientation is controled by X-rays with an accuracy of about
0.1°, is stuck on an arm connected to an oscillating axis. The slab sample, turning around its
(Oy) axis, is put in contact with a turning plate receiving abrasives of various grain sizes so that
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Figure 3.8 – Sketch of the processing of a cylindrical sample. Adapted from [166].

it is gradually polished until it reaches a cylindrical form. The stop screw controles the sample
descent. The polishing is optimized by progressively reducing the size of the abrasives. As the
first attempts led to an ellipsoid of axes (0x) and (0z) that may have resulted in all likelihood
from the hardness anisotropy, the TiO2 crystal has been put in between two glass plates so as
to impose an isotropic wear.

The resulting TiO2 sample is a cylinder with a radius of 4 mm, a thickness of 5 mm, a
tolerance to the cylindricity less than 0.5% and a polishing of the order of λ/10. It was then
stuck on a goniometric head as depicted in Figure 3.9.

8mm 

Figure 3.9 – Picture of the oriented 4-mm radius TiO2 cylinder with the y-axis as the rotation
axis.

The cylinder is placed at the center of a rotation stage supplied with a vernier of angular
resolution of 0.5◦. Using this experimental setup and rotating the cylinder around the y-axis
make possible the direct access to any direction of propagation over the whole (x0z) plane of
TiO2 while keeping the perpendicular incidence [107, 167]. The phase-matching direction cor-
responding to a given fundamental wavelength is detected when the associated THG conversion
efficiency is maximal. An angular accuracy of about ±0.3◦ is accessible by measuring the four
symmetrical phase-matching directions in the plane of the cylinder.
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3.2 Towards TPG in rutile TiO2

Experimental setup The experimental setup is depicted schematically in Figure 3.10. The
fundamental beam is generated using two tunable parametric sources. A first device emits a
beam tunable from 400 nm up to 2500 nm from a Topas Light Conversion optical parametric
generator (OPG) pumped by the third-harmonic of a 10 Hz Leopard Continuum Nd:YAG laser
of 15 ps pulse duration (FWHM). The second source is a DFG Light Conversion generator that
mixes by non-collinear difference frequency generation the idler beam of the previous OPG and
the Nd:YAG beam at 1064 nm in order to generate between 2 µm and 12 µm. These parametric
sources are schemed in Figure 3.11. Different half-wave plates (HWP) suitable for the considered
spectral range are placed just before the rutile crystal to adjust the polarization of the incident
tunable fundamental beam at 30◦ of the z-axis so as to achieve the type II phase-matching
configuration of polarization. We used focalizing and collecting spherical lenses of 75 mm focal
length (L1 and L2) from each sides of the crystal. The position of the focalizing lens L1 is of
particular importance and is discussed further. It has to be placed so that it focuses at the focal
plane of the first half of the cylinder, allowing a parallel propagation of the fundamental beam
within the crystal [168].

L1 L2 

Nd:YAG laser 

and tunable 

source 

Third-harmonic 

energy 

measurement 

HWP 

y-axis 

ω 3ω 

F 

Fundamental 

energy 

measurement 

Figure 3.10 – Schematic top view of the THG experimental setup where ω and 3ω are the
fundamental and third-harmonic circular frequencies. HWP stands for half-wave plate.
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1.064 
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Figure 3.11 – Representation of the parametric source.

Two important requirements have to be fulfilled when working with a cylinder. The rotation
axis of the goniometric head holding the cylinder has to be the revolution axis of the cylinder:
adjustement can be made on this head with an HeNe laser of small diameter. In addition, to
make sure the beam goes exactly through a diameter of the cylinder, the position of the latter
is adjusted with a translation stage, still using an ordinary polarized HeNe laser, i.e. without
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any spatial walk-off.
The residual fundamental beam at the exit of the crystal is removed using filters. The

incoming fundamental beam power is measured using an Ophir PE10 energy-meter, while the
third-harmonic is detected using a silicium Hamamatsu C2719 photodiode calibrated in energy
prior to the experiments.

Orientation of the dielectric frame The (Ox) and (Oz) axes are identified easily as the
directions of collinearity of the ordinary and extraordinary Poynting vectors. Then, these two
axes are distinguished from each other by observing the orientation of the deviation of the
extraordinary polarized wave when the sample is rotated in the (x0z) plane.

Focusing conditions A crystal cut as a cylinder behaves as a cylindrical lens of focal length
fc defined as [23]:

fc (ω) =
n (ω)R

2 (n (ω)− 1), (3.31)

with n the optical index and R the cylinder radius. For the rutile TiO2 crystal, n (ω) > 2.
As a consequence, fc < R for an incident collimated propagation, and thus the focal point lies
inside the cylinder. This has to be avoided for two reasons: the strong intensity due to the
focusing may be prejudicial for the medium in terms of optical damage; and most importantly,
the resulting divergence may distort the measurement of the phase-matching angles.

Therefore, it is necessary to properly focus the incident beam. We consider our beams as
Gaussian and perform calculations using the ABCD formalism presented in Section 3.1.3.2.
The matrix for the propagation in a medium is given by Equation (3.14), and the one for the
refraction at a single surface of radius of curvature R between two media of indices n1 and n2

by [150]:

Mdioptre =

 1 0
n2 − n1

R
1

 , (3.32)

with R > 0 (resp. < 0) for a convexe (resp. concave) interface.
In the case of our experiment, a modelling of the propagation is performed so as to find

the optimal distance between the lens L1 and the entrance of the cylinder at any incoming
wavelength to achieve a parallel propagation within the cylinder. This distance dfoc is shown in
Figure 3.12 with respect to the wavelength. Figure 3.13 gives the calculated beam propagation
in the optimal case. The optical indices for rutile are taken in [107], and for the f = 75 mm
BK7 lenses in [169].

The fundamental beam waist radius within the TiO2 crystal has been measured with a
calibrated CCD camera equal to Wω = 120± 11 µm, which leads to a Rayleigh length zR (ω) =
πn (ω)W 2

ω

λω
equal to 30±9mm for the ordinary polarization (along the y-axis), and to 33±9mm for

the extraordinary polarization. This ensures us that the beams remain parallel in the cylinder,
its diameter of 8 mm being smaller than the Rayleigh length. This is a crucial point to perform
accurate measurements of phase-matching angles.
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Figure 3.12 – Distance from the focalizing lens L1 to the entrance of the crystal as a function of
the wavelength for the ordinary and extraordinary waves.
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Figure 3.13 – Propagation in the plane (x0z) at λ = 1.8 µm. In black, propagation in the air; in
green, propagation in a lens; in red, propagation in the crystal. Solid and dashed lines stand for
the ordinary and extraordinaty waves respectively. Zoom in the crystal region in the top inset.
In the bottom right-hand inset, down-converted transverse mode at 695 nm captured with the
Spiricon camera 15.5 cm after the collecting lens.

3.2.1.4 Phase-matching properties and Sellmeier equations

Phase-matching measurements The protocol of THG phase-matching measurements is the
following: for any angle of the cylinder, the OPG wavelength λω is tuned until the signal at the
third-harmonic wavelength λ3ω reaches the peak value of the sinc2 function. In the (x0z) plane
of interest, each phase-matching angle θPM has three equivalent angles: π − θPM, π + θPM and
2π − θPM. We can benefit from this to increase the accuracy of our measurement. Figure 3.14
gives the phase-matching angles measured in the TiO2 cylinder. It appears that rutile can be
phase-matched for fundamental wavelengths ranging between 1836 nm and 4449 nm.

For comparison, Figure 3.14 also exhibits in dashed lines phase-matching curves calculated
from the dispersion equations of the refractive indices of TiO2 previously published [107, 154–
156]. It clearly appears that the discrepancy between these calculated curves and the experi-
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Figure 3.14 – Type II THG phase-matching curve of rutile TiO2. Black squares are experimen-
tal data from the cylinder experiment, and the solid red line corresponds to their numerical
interpolation. Color dashed lines are phase-matching curves calculated from data of references
[107] (a), [154] (b), [155] (c) and [156] (d).

mental data increases as a function of wavelength, leading to strong divergences above 2000nm.
This feature can be well understood knowing that these curves were calculated from refractive
indices that had been measured only over the visible and near infrared range up to 1500 nm. It
shows that it was indeed important to carry out these measurements as the chemical composition
fluctuates from one sample to another in terms of stoichiometry.

Determination of Sellmeier equations At this point, it is possible to refine the TiO2

Sellmeier equations by interpolating the phase-matching angles we obtained experimentally since
they are widely distributed over the whole transparency range of the crystal. The corresponding
interpolating curve is the solid red line in Figure 3.14. It is based on Equation (3.23) and a
Sellmeier form [28] for the expressions of the principal refractive indices no and ne expressed as
following where the wavelength is expressed in nanometers:

no (λ) =

√√√√3.2089 +
3.4000× 10−5

1.2270× 10−5 − λ−2 − 3.2545× 10−8λ2, (3.33)

ne (λ) =

√√√√2.9713 +
5.1891× 10−5

1.2280× 10−5 − λ−2 − 4.2950× 10−8λ2. (3.34)

The numerical convergence of the fit is obtained by refining the eight Sellmeier coefficients
through an iterative algorithm that minimizes the sum of the l2 norm of the distance from the
experimental data to the fit. The wavelength validity domain of these equations corresponds to
the experimental measurement range, i.e. from 612 nm to 4449 nm.

Equations (3.33) and (3.34) are plotted in Figure 3.15. They are compared with previous
works that include measurements on prisms [154–157] and calculations [156]. Note that Sellmeier
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Figure 3.15 – Ordinary no and extraordinary ne principal refractive indices of TiO2 as a function
of the wavelength from present work in solid lines; and from [154] (b), [155] (c), [156] (d) and
[157] (e) in symbols (experiments) and dashed lines (calculations).

equations (3.33) and (3.34) are in perfect agreement with the refractive index measurements pre-
viously published, which is an additional validation of our equations. We can also see the strong
discrepancy between the curves of the present work and those previously published. Figure 3.15
gives an example, from reference [156], where a splitting between the curves clearly appears
above 1500 nm, this wavelength corresponding to the upper value of the range of measurement
of the refractive indices in [156].

Uncertainty on the refractive indices The experimental accuracy on the angle measure-
ment is of the order of ±0.3◦. This induces an uncertainty on the phase-matching wavelength for
each angle of propagation, as pictured in Figure 3.16a. This uncertainty goes to zero towards the
horizontal tangents of Figure 3.19 (θ = 90°) and increases up to about 200nm for the fondamen-
tal wavelengths towards the vertical tangent (θ = 55.4°), 70 nm for the generated wavelengths.
Relative uncertainties on the ordinary and extraordinary refractive indices ∆no,e/no,e are then
calculated using the Sellmeier equations (3.33) and (3.34). They range between 0 and 5× 10−3,
as pictured on Figure 3.16b.

3.2.1.5 Third-order nonlinear coefficients

The energy conversion efficiency of type II THG in the TiO2 cylinder is measured at different
phase-matching angles for two different values of the energy of the incident fundamental beam,
1.9 µJ and 16 µJ, as shown in Figure 3.17. They correspond to 7.4 MWcm−2 and 0.9 MWcm−2

respectively. The experimental setup is the same than the one used for the phase-matching
measurements. The incident energy is changed by using calibrated neutral density filters. The
experimental data corresponding to these two sets of measurements are consistent to each other,
which attests to the good reproducibility.

The conversion efficiency can reach 1.3% which is the higher value ever reported in this
crystal. From these experimental data, we were able to determine the magnitude of χ18 and
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Figure 3.16 – (a) Uncertainty on the λω fundamental and λ3ω generated wavelengths as a function
of the phase-matching angle θPM; in the insets, close-ups of the phase-matching curve 3.19. (b)
Uncertainty on the ordinary and extraordinary refractive indices no and ne as a function of the
wavelength.

its relative sign with χ16 since these two coefficients are involved in the effective coefficient
according to Equations (3.25). We took as a reference the absolute value |χ16 (613.2 nm)| =
5.0× 10−21 m2V−2 previously determined by type II phase-matched THG experiments in a slab
sample at θ = 90◦ where this coefficient is the only one to be involved [100, 108]. Numerical
computation of the conversion efficiencies using Equations (3.25) to (3.28) and the absolute value
of χ16 are done in the two hypotheses of identical and opposite signs for χ16 and χ18. The two
corresponding curves relative to the effective coefficient are shown in Figure 3.18 together with
calculations arising from the conversion efficiency measurements in the two relative sign cases.
It clearly appears that χ16 and χ18 are of opposite signs, which fixes the absolute value χ18 at
the different wavelengths that are considered. The corresponding Miller coefficient is [170]:
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Figure 3.17 – Type II THG conversion efficiency of rutile TiO2 as a function of the phase-
matching angle for fundamental energies Eω = 16 µJ (black dots; y-axis on the left-hand side)
and 1.9 µJ (blue triangles; y-axis on the right-hand side).

∆18 =
|χ18 (3ω)|

(n2
e (ω)− 1)2 (n2

o (ω)− 1) (n2
o (3ω)− 1)

= 9.1× 10−23 m2V−2, (3.35)

where no and ne are the principal indices given by Equations (3.33) and (3.34) respectively.
As an example, Equation (3.35) leads to |χ18 (616.7 nm)| = 9.7× 10−20 m2V−2, that is close

to the absolute magnitude of χ11 [158], and significantly larger than χ16 [107].

3.2.2 TPG in rutile TiO2

In the previous section, we performed an exhaustive study of THG phase-matching properties
of rutile TiO2. These results can be directly used for a TPG experiment, stimulated with one
or two beams.

3.2.2.1 TPG phase-matching conditions

In this section are presented the TPG phase-matching conditions. We intend to use a Nd:YAG
laser that can be doubled in frequency for the pump beam, i.e. λ0 = 1064 nm or 532 nm.
Because a bi-stimulated TPG provides higher conversion efficiencies, it is wiser to carry out
the experiment with two stimulation beams at first in order to confirm the phase-matching
wavelengths that are going to be calculated here. The same scheme with a unique stimulation
beam can be considered afterwards. Consequently, frequency degeneracy on two triplet fields
is required (λ2 = λ3) so as to use only one beam for the stimulation, coming from a quadratic
OPG.

The phase-matching conditions are then calculated from the relationship:
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Figure 3.18 – Magnitude of the effective coefficient χ(3)
eff as a function of the phase-matching

angle. The black squares correspond to the values determined from the conversion efficiencies
experimental data and Equation (3.26). The dashed red and solid blue lines are calculations
considering χ16 and χ18 with same and opposite signs respectively.

∆k(3) (θPM, ω0, ω1, ω2) = 0 (3.36)

=
1
c

[
ω0n

(o) (θPM, ω0)− ω1n
(p1) (θPM, ω1)− ω2n

(p2) (θPM, ω2)− ω2n
(p3) (θPM, ω2)

]
,

where the refractive indices are taken from the previous THGmeasurements, and the polarization
p of the waves 1, 2 and 3 can be o or e according to the seven polarization configurations from
the system (1.75).

All these possible configurations are discussed in Appendix B. Among all them, only one
remains interesting as we want to be able to detect the down-converted photons with available
detectors, i.e. up to 5.5 µm with an InSb-based photodiode, and more particularly close to the
telecom wavelengths, and to generate the stimulation photons with the available OPG. This
last requirement imposes a stimulation wavelength below 2.4 µm, as shown in the schematics
of the sources on Figure 3.11. In that case, the DFG stage also pictured on the same figure
cannot indeed be used easily as we want to keep available the pump beamline. Therefore, we
understand from the energy conservation relationship that a pump at 1064 nm would lead to
down-converted tri-photons and seedings in the mid-IR, which is not possible with the present
experimental setup. We will then work with a pump beam at 532 nm. The only configuration
that remains when the previous requirements are considered is the type I (see the classification
given in (1.75)), i.e.:

λ
(o)
0 → λ

(e)
1 + λ

(e)
2 + λ

(e)
2 . (3.37)

The corresponding phase-matching curves λ1 (θPM) and λ2 (θPM) are presented on Figures
3.19.
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Figure 3.19 – Type I phase-matching curves with a pump at 532 nm.

A close-up around the spectral range of interest is shown in Figures 3.20a and 3.20b. The
blue and green colours indicate the way to read the couples of phase-matching wavelengths λ1

and λ2 corresponding to each other: blue with blue, and green with green. Figure 3.20c shows
the associated effective third-order nonlinear coefficient.

It has been chosen to work at θ = 72°, so that the wavelengths are easily generated and
detected on one hand, and it is not too close from the point of vertical tangent above which no
solution is left on the other hand. The two couples of solutions, identified by the blue and green
dots on the previous figures, are:

(A)

λ
(e)
1 = 1920.7 nm

λ
(e)
2,3 = 1471.6 nm,

(3.38)

and
(B)

λ
(e)
1 = 1379.4 nm

λ
(e)
2,3 = 1732.0 nm.

(3.39)

3.2.2.2 Theoretical conversion efficiency

We compare in this section the conversion efficiencies in energy of rutile TiO2 and KTP. For
rutile, we consider here the previous scheme (B), while for KTP it is the one from Section 3.1,
i.e. with the wavelengths in nanometers:TiO2 : λ0 (532)→ λ1 (1379) + λ2 (1732) + λ2 (1732) , at θ = 72°.

KTP : λ
′
0 (532)→ λ

′
1 (1478) + λ

′
2 (1662) + λ

′
2 (1662) , along (0x) .

(3.40)

For equivalent crystal lengths, beam transverse geometry and incoming energies, the ratio be-
tween the efficiencies η can be written as a function of quantities that only depend on the
intrinsic properties of the materials, as shown in Equation (3.26): the effective susceptibilities
χ

(3)
eff , the refractive indices n, and the Fresnel transmission coefficients in energy T . It comes:
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Figure 3.20 – (a) and (b) Phase-matching conditions for TPG in rutile TiO2: λ(o)
0 → λ

(e)
1 +

λ
(e)
2 + λ

(e)
2 . (c) Corresponding absolute value of the effective cubic nonlinear coefficient.

ηTiO2

ηKTP
=

 χ
(3)
eff (λ0,1,2,3)

∣∣∣
TiO2

χ
(3)
eff

(
λ
′
0,1,2,3

)∣∣∣
KTP


2

3∏
i=0

nKTP
(
λ
′
i

)
3∏
i=0

nTiO2 (λi)

3∏
i=0

TTiO2 (λi)

3∏
i=0

TKTP
(
λ
′
i

), (3.41)

with 

3∏
i=0

nKTP
(
λ
′
i

)
= n(−)

(
λ
′
0
)
n(+)

(
λ
′
1
)
n(−)

(
λ
′
2
)
n(+)

(
λ
′
2
)

3∏
i=0

nTiO2 (λi) = n(o) (λ0)n(e) (λ1)
[
n(e) (λ2)

]2
,

(3.42)
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and 

3∏
i=0

TKTP
(
λ
′
i

)
= T (−)

(
λ
′
0
)
T (+)

(
λ
′
1
)
T (−)

(
λ
′
2
)
T (+)

(
λ
′
23
)

3∏
i=0

TTiO2 (λi) = T (o) (λ0)T (e) (λ1)
[
T (e) (λ2)

]2
.

(3.43)

Using the new Sellmeier equations and third-order susceptibility tensor elements for TiO2, and
the Sellmeier equations and effective susceptibility of Section 3.1 for KTP, the numerical appli-
cation gives:

ηTiO2

ηKTP
= 4.36. (3.44)

This makes rutile TiO2 indeed an interesting generating medium, despite its high refractive
indices and consequently its high Fresnel reflection coefficients. Its optical damage threshold is
close to that of KTP, which justify such a direct comparison with equivalent incoming energies.

3.2.2.3 Experimental attempt

A TiO2 sample coming from the same provider as the cylinder has been cut as a slab along
θ = 72° by Jérôme Debray. It is placed in the experimental setup already used for KTP and
described in Section 3.1.1, with the bi-stimulation beam here at 1732 nm (resp. 1472 nm),
extraordinary polarized.

No signal around 1379 nm (resp. 1921 nm) has been detected, even though the injection
frequency has been widely tuned. The cylinder has been put back into the setup instead of
the slab sample to have a supplementary degree of freedom. A particular care has been put on
the focusing configuration so that the beams remain parallel in the sample as already explained
in Section 3.2.1.3. Still, a significant difference arises here: the wavelengths of the two beams
coming into the cylinder are different. Thus, these beams do not focus at the same point after
the injection lens, if collimated before it. The positions of the lenses forming the telescope on
the injection line are then adjusted to make the pump and injection focal points as close as
possible to each other. Note that having a parallel propagation in the crystal is here less critical
than during the THG measurement that led to the establishement of the refractive indices.

The angle of the cylinder have been widely tuned too without any success for finding any
down-converted signal.

The only explanation we have found for this failure is that the dispersion equations of the
refractive indices are not accurate enough at the working wavelengths. Actually, our THG
experiments from which we determined these equations involved ordinary polarized beams at
frequencies ranging between 610 nm and 1487 nm, and ordinary and extraordinary beams at
frequencies ranging between 1830 nm and 4461 nm. Thus, because our TPG calculation is
performed using an ordinary pump wavelength at 532 nm, we can suspect a lack of accuracy
for its corresponding refractive index. Likewise for the extraordinary index at 1732 nm, the
stimulating wavelength of the scheme (B). However, the extraordinary index at 1472 nm, the
stimulating wavelength of the scheme (A), has been sollicitated and should then be more reliable.

An underestimation of this index no (532 nm) of more than 10−3, or an overestimation of
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more than 0.16 which seems more unlikely, leads to the disappearance of any phase-matching.

To reach the refractive indices that have not been sollicitated during the THG experiment,
a SFG (i.e. “non-degenerated THG”) could be considered. Such an experiment could involve
as a starting point the set of wavelengths (A) from Equation (3.38). Nevertheless, this method
requires the use of two tunable OPOs, which are not available at the lab.

3.2.2.4 Calculations out of phase-matching
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Figure 3.21 – THG angular spectrum. Calculations with monochromatic incoming fields at
λPM
ω (θ = 90°) = 1830 nm (a) and λω = 1596 nm = λPM

ω − 240 nm (b). The inset is a close-up
view.

One idea to infer the value of no (532 nm) is to come back to a THG experiment, but here out
of matching

(
∆k(3) 6= 0

)
. The angular distribution obtained can be fitted by a

sinc2

∆k(3) (λ3ω, λω, λω)L
2

 function, where the phase mismatch ∆k(3) depends on no (532 nm).

Figure 3.21 shows a calculation at phase-matching for a monochromatic fundamental beam at
λPM
ω = 1830 nm, i.e. θPM = 90° (a), and at λω = 1596 nm = λPM

ω − 240 nm (b) with a close-up
view on the oscillations in the inset.

Nonetheless, it is obvious that a first limitation comes from the weakness of such a process,
seven order of magnitudes below the phase-matched one as shown in Figure 3.21. We may not
be able to capture it with the available detectors. A second limitation comes from the fact that
the period of oscillations is of the order of 0.2°, which is below the precision of our goniometric
setup. It will then be impossible to determine no (532 nm) from a fit of Figure 3.21 (b). In
addition, the beam coming from our OPG is polychromatic, with a FWHM in energy of 3.4 nm
at 1662nm as demonstrated in Figure 3.5. The linewidth at 1596nm should not be very far from
that at 1662nm. Therefore, polychromatic calculations have been performed with that linewidth
value and are shown in Figure 3.22, at λPM

ω (θ = 90°) = 1830 nm (a), and λω = 1596 nm (b). We
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see that the observation of oscillations out of phase-matching needs the use of narrow linewidth,
which is not the case of our OPG source.
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Figure 3.22 – THG angular spectrum. Calculations with polychromatic incoming fieldsof in-
tensity FWHM 3.4 nm, at λPM

ω (θ = 90°) = 1830 nm (a) and λ = 1596 nm = λPM
ω − 240 nm

(b).

3.2.3 Conclusion

We performed an exhaustive study of THG phase-matching properties of rutile titanium dioxide.
We showed that this crystal enables THG phase matching for fundamental wavelengths ranging
from 1836 nm to 4449 nm with an energy conversion efficiency that can reach more than 1%.
The Sellmeier equations have been refined. The absolute magnitude of the χ18 coefficient has
been determined, as well as its sign, opposite to that of χ16.

Regarding the TPG, our last attempts suggest that our dispersion equations are not suffi-
ciently accurate in the visible range close to ultraviolet, because this spectral range has not been
sollicitated by the previous THG measurement. Figure 3.23 reminds indeed the wavelengths
sollicitated during the TPG and THG experiments in red (below) and blue (above) respectively.
For future experiments, no (532 nm) needs to be estimated by other means if the phase-matching
conditions are intended to be calculated again. Alternatively, the experiment should be carried
out with higher wavelengths, with suitable source and detection systems.

610 1487 1830 4461 

λ(nm) 532 1921 1472 

Figure 3.23 – Wavelengths sollicitated during the THG experiment above the arrow in blue; and
during the TPG experiment (A) from Equation (3.38) below in red.
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3.3 Prospective for resonant TPG from a synchronously pumped
third-order optical parametric oscillator

3.3.1 Synchronously pumped OPO

A good way to increase the TPG conversion efficiency is to place the nonlinear crystal into a
cavity in order to artificially increase the interaction length. Such a setup is called an optical
parametric oscillator (OPO), which is widely used for the generation of pairs of photons from
a second-order down-conversion process [171]. Our idea is then to use this concept for a third-
order interaction. It will then be necessary to work in the picosecond regime so as to compensate
the weakness of the third-order nonlinearity. But this imposes a synchronous pumping scheme
of the OPO, where the pump repetition rate has to perfectly match the round-trip frequency of
the OPO resonator as it is done in the case of quadratic OPOs [172] (see Figure 3.24). In this
configuration, the resonating waves are amplified by the successive pump pulses. Note that the
case of nanosecond OPOs is different since the amplification over the different round-trips of the
resonating waves is performed by the same pump pulse.

TPG 

MC MD 

MA MB 

(a) time t1

MC MD 

MB MA 

TPG 

(b) time t2 > t1

Figure 3.24 – Schematics of a synchronously pumped OPO at two different times t1 and t2. The
pump beam is depicted in solid line, and the down-converted beam in dashed line. MA,B are
dichroic mirrors that have different transmissions at the pump and down-converted wavelengths;
MC,D are standard metallic mirrors.

Temporal synchronicity The group velocity defined below is the crucial parameter for defin-
ing the matching between the cavity length and the repetition rate of the incident beams. It is
given by:

vg (ωi, ~r) =
c

n (ωi, ~r) + ωi
∂n (ω,~r)
∂ω

∣∣∣∣∣∣
ωi

. (3.45)

If vg (ωr) is the group velocity of the resonating wave, then the repetition rate f of the incident
beam and the cavity length Lcav have to verify:

1
f

=
L

vg (ωr, ~r)
+

(Lcav − L)
c

, (3.46)
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where L is the crystal length. Due to the typical values of the group velocity, and because
Lcav cannot reasonably exceed few meters, the value of f is typically around 100 MHz, which
corresponds to several laser sources commercially avalaible.

Note that the first path in the crystal set the phases of the down-converted waves under
phase matching. And if a mode-locked pump is used, there exists a relationship between the
initial phases of the different pump pulses so that the phases of the resonating signal and idler
remain suited for phase matching over the different round trips.

Threshold The optical parametric oscillation can actually occur when the parametric gain
compensates the losses over a round-trip in the cavity: this is a threshold process, which thresh-
old condition will be calculated in the different experimental situations.

Coherence As for twins, the cavity losses may decorrelate the triplet beams due to partial
transmission of light through the cavity mirrors. This results in a loss of coherence of the
triplet state. In the literature, theoretical works reported correlations for the triple state in
a dissipative cavity, strong below threshold and decreasing above threshold [129]. Felbinger
et al. calculated the Wigner functions below and above threshold for the triplet state: the
three-branches behaviour still exists, but the negativities disappear in the second case [4]. For
twin photons, it has been demonstrated that tripartite entanglement (between pump, signal and
idler) exists above threshold [146, 173]. Even though we will not investigate these correlation
issues here, we have to stay aware about it.

The present section is a theoretical proposal of such a third-order OPO that has never been
done previously. We have two targets: the mono-injected TPG, and the spontaneous TPG. In
both cases, the numerical applications are done with KTP and the corresponding data from
Section 3.1.

3.3.2 TPG configurations in OPO

Two different situations are considered with respect to the waves resonant in the cavity:

– 1. TPG pumped at λ0 and injected at λ1, the two resonating waves being at λ2 and λ3,
which corresponds to a doubly resonant OPO (DROPO);

– 2. TPG pumped at λ0, the three generated waves at λ1, λ2 and λ3 being resonant, which
corresponds to a triply resonant OPO (TROPO). We will consider two cases with respect
to the injection: injection of the three modes on the one hand, and no injection, i.e. a
spontaneous TPG, on the other hand.

3.3.2.1 DROPO

1. Partial degeneracy in wavelength and polarization The first case can be performed
in a KTP crystal, along the x direction for λ(−)

0 = 532 nm, λ(+)
1 = 1478 nm and λ(−)

2 = λ
(+)
3 =

1662nm, as used in the travelling wave regime described in Section 3.1. Figure 3.25 is a schematic
of the experimental configuration. It is a DROPO mono-injected at λ1, with resonant waves at
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λ2 = λ3, the energy at λ0 and λ1 being fully extracted from the mirror MB. With the notations
of Figure 3.25, we then have TA,B (λ0,1) = 100%, RB,C,D (λ2,3) = 100% , and TA (λ2,3) is a finite
value close to zero. Consequently,MA andMB are dichroic mirrors, whileMC andMD standard
metallic mirrors .

TPG 

MA MB 

MC MD 

λ1 

λ2,3 

λ0 λ0 

λ1 

Figure 3.25 – Schematic of the partially degenerated (λ(−)
2 = λ

(+)
3 6= λ

(+)
1 ) mono-injected third-

order DROPO.

Crystal length At this point, it is necessary to take care of the temporal walk-off, which
corresponds to the separation of the pulses at different group velocities. We therefore define
a critical length, Lc, that corresponds to the value over which the temporal pulses are distant
by more than their FWHM, as shown in Figure 3.26. In the case we are interested in, the
biggest temporal walk-off in KTP occurs between the two waves at λ(+)

1 and λ(−)
2 , which leads

to Lc = 54 mm for 15 ps pulses according to the refractives indices that are involved.

t

τ p

Figure 3.26 – Sketch of two temporal pulses distant from each other by their FWHM τp. Inter-
action can occur only in the shaded overlap area.

Consequently, all numerical calculations will be given for a crystal length of L = 30mm < Lc.

Cavity length Because of the birefringence of the KTP crystal, the group velocities
vg
(
λ

(+)
2

)
and vg

(
λ

(−)
3

)
take two different values. The repetition rate f of the laser source

being fixed, Equation (3.46) implies that the cavity length Lcav also has to take two different
values for the two waves at λ(+)

2 and λ(−)
3 . In particular, with a 30 mm-long KTP crystal and a

f = 80MHz laser source, Lcav
(
λ

(−)
2

)
= 3.711m and Lcav

(
λ

(+)
3

)
= 3.707m. This 4mm difference

for the two resonating waves needs to be compensated so that it does not increase at each cavity
round-trip. For this purpose, we can think for instance of adding a delay line that would act on
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the λ(−)
2 wave only thanks to two Glan-Taylor prisms and a prism (see Figure 3.27); or of using

another crystal such that n
(
λ

(−)
2

)
> n

(
λ

(+)
3

)
so as to slow down the λ(−)

2 wave.

GTP1 

MC MD 

GTP2 λ3 

+ 

λ2 

- 

λ2, λ3 

- + 

P 

Figure 3.27 – Compensation of the group velocity difference between the resonating waves at
λ

(−)
2 and λ(+)

3 (not to scale).

Temporal field evolution The evolution of the fields in the cavity can be calculated by
taking into account the nonlinear evolution given by the set of Equations (1.52) and a damping
term linked to the photon lifetime in the cavity, as it is done in the case of quadratic OPOs
[174, 175]. In the classical framework, at perfect phase-matching and for monochromatic fields,
the temporal field evolutions write as:

τcav
∂E0 (ω0)

∂t
= jκ (ω0)χ(3)

eff (ω0, ω1, ω2)LcavE1 (ω1)E2 (ω2)E3 (ω3)

τcav
∂E1 (ω1)

∂t
= jκ (ω1)χ(3)

eff (ω0, ω1, ω2)LcavE0 (ω0)E∗2 (ω2)E∗3 (ω3)

τcav
∂E2 (ω2)

∂t
= −T (ω2)E2 (ω2) + jκ (ω2)χ(3)

eff (ω0, ω1, ω2)LcavE0 (ω0)E∗1 (ω1)E∗3 (ω3)

τcav
∂E3 (ω3)

∂t
= −T (ω3)E3 (ω3) + jκ (ω3)χ(3)

eff (ω0, ω1, ω2)LcavE0 (ω0)E∗1 (ω1)E∗2 (ω2) ,
(3.47)

with κ, χ(3)
eff and ∆k(3) from Equations (1.48), (1.53) and (1.54) respectively. T is the product

of the transmission coefficients in amplitude of the mirror A, B, C and D; τcav the duration of
a round-trip, i.e. the inverse of the laser repetition rate f ; and Lcav the length of the cavity,
given by using Equation (3.46).

Threshold intensities The threshold condition is relative to the incoming intensities of
the two incoming beams: Ith

1 (ω1) and Ith
1 (ω0). The detail of this calculation can be found in

Appendix C. It leads to:

Ith
0 (ω0, 0) Ith

1 (ω1, 0) =
ε2

0c
2

4
n (ω0)n (ω1)[

χ
(3)
eff

]2 ×

∣∣∣∣∣∣
τcav ln p (ω2,3)

(
κ
(
ω+

2

)
+ κ

(
ω−3

))
2τLLcavκ

(
ω+

2

)
κ
(
ω−3

) (3.48)

−

√√√√√√
τcav ln p (ω2,3)

(
κ
(
ω+

2

)
− κ

(
ω−3

))
2τLLcavκ

(
ω+

2

)
κ
(
ω−3

)
2

+
1

κ
(
ω+

2

)
κ
(
ω−3

)
T (ω2,3)

Lcav

2
∣∣∣∣∣∣∣∣
2

.
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τL is the travelling time in the crystal. Note that the crystal length comes into this equation
through τL according to Equation (3.46). p stands for the losses expressed as :

p (ωi) =
√

(TF (ωi))4RA (ωi)RB (ωi)RC (ωi)RD (ωi) =
√

(TF (ωi))4RA (ωi), i ∈ {2, 3} , (3.49)

with TF the Fresnel transmission coefficient in energy, given by Equation (3.29), equal to unity
in the case of an anti-reflecting (AR) coated crystal; and Ri the reflection coefficients in energy of
the different mirrors. As we propose to use dichroic mirrors and AR coatings, RA (ω2) = RA (ω3)
and TF = 1, and then p (ω2) = p (ω3), which has indeed been considered for the derivation of
the expression (3.48). We note that the threshold intensities Ith

0 and Ith
1 are equivalently intra-

or extra-cavity expressions as TA,B (λ0,1) = 1.
In our case, it is reasonable to assume that κ2 = κ3 because the birefringence n(+)− n(−) at

λ2 = λ3 is small. Then, Equation (3.48) reduces to:

Ith
0 (ω0, 0) Ith

1 (ω1, 0) =
ε2

0c
2

4π2n (ω0)n (ω1) [n2,3 (ω2,3)λ2,3]2
1[

χ
(3)
eff Lcav

]2
×

∣∣∣∣∣∣τcav ln p (ω2,3)
τL

− T (ω2,3)

∣∣∣∣∣∣
2

. (3.50)

In the numerical calculation presented in Figure 3.28, very low transmission coefficients are
considered, i.e. TA (λ2,3) = 1or2%, because of the low incoming intensities. We note that setting
the damping term [−T (ωi)Ei (ωi)] to zero leads to threshold intensities different from less than
one order of magnitude, which is not surprising according to the values of the transmission
coefficients.
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Figure 3.28 – TPG threshold intensities in the case of a DROPO monoinjected at λ1based on
a 30 mm-long KTP crystal. Dots a, b, c and d correspond to different situations that will be
considered later on in Figures 3.29 and 3.30.
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OPO efficiency The calculation of the triplets number generated through this process is
derived from the coupled equations (3.47). The solutions are obtained by solving an integral
form that requires that more than three initial fields are non-zero to be convergent [33]. If so,
the solutions are expressed in terms of Jacobi elliptical functions, but this is not the case here.

A numerical resolution becomes then obvious, iterated for each cavity round-trip. We propose
to proceed in two steps. The first one is motivated by the fact that the coupled equations
cannot start from zero photon fields. Only a quantum approach can describe the starting of
the down-conversion as it takes into consideration the solicitation of the vacuum point energy.
Therefore, Equations (2.9) derived from our quantum resolution and adapted to the case of
a mono-stimulated configuration are processed numerically as long as the undepleted pump
approximation still stands, as it has been the framework of our quantum derivation. In a second
step, the computation of the classical equations (3.47) takes over. The field evolution in the
crystal is calculated proceeding small slice by small slice, with a temporal step of 0.1 ps, so as
the convergence is ensured.

The energies E2,3 corresponding to the triple photons in the modes 2 and 3 that can be
generated in a 30 mm KTP crystal above threshold are calculated for different running points
regarding the threshold intensities

{
Ith

0 , I
th
1
}
in the case of a transmission coefficient TA(λ2,3) =

1%. In that case, the photon lifetime in the cavity is 125 ns, which corresponds to 100 return
trips.

Due to optical damage threshold considerations, high repetition rate laser sources supply
small powers, typically 40 W in average power, equivalently 500 nJ in energy for a 80 MHz
repetition rate. We intend to use that kind of laser source for the TPG DROPO pump at λ0,
and also for pumping a quadratic OPO that will be devoted to the generation at λ1. Due to the
typical efficiency of quadratic OPOs, we can expect no more than 100 nJ for the injection beam
at λ1.

The energetical curves are given in Figures 3.29 and 3.30 in the energy range targeted, with
respect to the injection energy E1 or the pump energy E0 respectively, and for different pump
(resp. injection) levels. They indicate that tens of nJ can be generated for hundreds of nJ of
pump and tens of nJ of injection photons. For example, an energy of E2,3 = 40 nJ per pulse and
per field is generated for E0 = 0.3 µJ and E1 = 30 nJ per pulse. This is significantly greater than
in the case of a mono-injected travelling wave TPG in KTP, where typically 4.1× 10−6 triplets
per pulse (equivalently 5.0× 10−25 J) arise for the same number of incident photons, according
to the quantum model.

Figure 3.29 shows that the generated energy decreases above a given injection energy. It is
especially clear on the curve (d), where the maximum of generation, i.e. E2,3 = 19.7 nJ, occurs
for E1 = 22 nJ. Above this maximum, the pump field starts to be depeleted, and consequently
triplet photons are converted back into photons in the field 0. The pump depletion can indeed
be clearly seen on Figure 3.31 that pictures the mode 0 energy as the function of the injection
energy.
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Figure 3.29 – Generated triplet energy as a function of the injection energy for a DROPO based
on a 30 mm-long KTP crystal, and TA = 1%. The four curves a, b, c and d refer to four
particular initial pump energies: (a) 7.8 nJ , (b) 11.1 nJ, (c) 25.8 nJ and (d) 77.6 nJ. The same
letter code has been adopted for the threshold values shown in Figure 3.28.
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Figure 3.30 – Generated triplet energy as a function of the pump energy for a DROPO based on
a 30 mm-long KTP crystal, and TA = 1%. The four curves a, b, c and d refer to four particular
initial stimulation energies: (a) 100 nJ , (b) 70 nJ, (c) 30 nJ and (d) 10 nJ. The same letter code
has been adopted for the threshold values shown in Figure 3.28.

The same kind of comment follows when looking at Figure 3.30.
Note that the maximum of generation does not necessarily occur for a maximum of pump

and stimulation photons because it also depends on the transmission coefficient TA. Figure 3.32
presents the generated energy E2,3 as a function of the stimulation energy E1 for different trans-
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mission coefficients TA, and for a pump energy E0 = 26 nJ. When working with small incident
energies, one has to consider a weak transmission coefficient TA to maximize the generation or
even go beyond the threshold. If larger energies are accessible, it then becomes interesting to
increase TA.
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Figure 3.31 – Energy at λ0 as a function of the injection energy for a DROPO based on a
30 mm-long KTP crystal, and TA = 1%. The four curves a, b, c and d refer to four particular
initial pump energies: (a) 7.8 nJ , (b) 11.1 nJ, (c) 25.8 nJ and (d) 77.6 nJ.
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Figure 3.32 – Generated triplet energy as a function of the injection energy for a DROPO based
on 30 mm-long KTP crystal, and different transmission coefficients TA for the coupling mirror
MA. The pump energy is E0 = 26 nJ.
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2. Total degeneracy in frequency, partial in polarization The set of wavelengths λ(−)
0 =

532nm, and λ(+)
1,3 = λ

(−)
2 = 1596nm, phase-matched in a KTP crystal for θ = 90° and ϕ = 24.5°,

can be used as well for a DROPO configuration. In that case, the cavity geometry has to be
modified as sketched in Figure 3.33: mirrors MA and MB have to be replaced by Glan-Taylor
prisms GTPA and GTPB, with TA,B(−) = 100% = 1−TA,B(+); and the mirrorMD are partially
reflecting with TD(λ(−)

0,2 ) = 1 or 2 %. The OPO is still mono-injected, here at λ(−)
2 , and resonant

at λ(+)
1 and λ(+)

3 . Its performance and threshold intensites are very close to the ones discussed
previously, the only modifications arising from the optical indices and the effective coefficient.
The crystal critical length due to the group velocities dispersion is Lc = 56 mm.

λ2 

- 

λ0 

- λ0 

- 
TPG 

GTPA 

MC MD 

λ2 

- 

λ1,3 

+ 

GTPB 

Figure 3.33 – Schematic of a frequency degenerated mono-injected third-order DROPO.

Rutile TiO2 can also be quite interesting for that configuration. According to Section 3.2,
it is for instance phase-matched at λ(−)

0 = 612 nm and λ(+)
1,3 = λ

(−)
2 = 1836 nm along the x-axis

of the crystal, i.e. without any spatial walk-off. In that case, the temporal walk-off leads to a
critical length of Lc = 19 mm. The nonlinear susceptibility is however bigger than that of KTP.
For comparison, an energy of E2,3 = 43 nJ per pulse and per field could be generated in rutile
for L = 19 mm < Lc and TA = 1% when E0 = 0.3 µJ and E1 = 30 nJ per pulse.

3.3.2.2 TROPO

TPG 

MA MB 

MC MD 

λs 

λ0 λ0 

Figure 3.34 – Schematic of a fully degenerated third-order TROPO.

1. Total degeneracy in frequency and polarization The case where all the triplet photon
frequencies and polarizations are identical, i.e. λ(−)

0 = 532nm, λ(+)
s = λ

(+)
1,2,3 = 1596nm for KTP,

and where there is injection at λs corresponds to a TPG injected on the three modes of the triplet
(see Figure 3.34). We mention it here briefly because it is not particularly interesting for two
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3.3 Prospective for resonant TPG from a synchronously pumped third-order OPO

main reasons. First, the effective susceptibility is low for KTP as well as for TiO2. In addition,
the threshold intensities are quite high, as we show straight after.

The threshold condition relative to the intracavity intensities derived in Appendix C is
written:

Ith
0 (ω0, 0) Ith

s (ωs, 0) =
1

4π2ε
2
0c

2n (ω0)n3 (ωs)

 λs

χ
(3)
eff (ω0, ωs, ωs)L

2

(3.51)

×
(

1− (TF (ωs))2
√

(1− TA (ωs)) (1− TB (ωs))
)2
,

with the same notations as previously. This derivation does not take into account the damping
term which makes the calculation tricky in that case. But we expect its influence to be weak
since the transmission coefficient TA considered is very small. Following Equation (3.51), the
extra-cavity threshold condition is:

[
Ith

0 (ω0, 0) Ith
s (ωs, 0)

]
extra

=
1

TA (ωs)
[
Ith

0 (ω0, 0) Ith
s (ωs, 0)

]
intra

, (3.52)

as TA (ω0) = 1. The numerical application for these extra-cavity threshold intensities is shown
in Figure 3.35 for TA(ωs) = 0.1 and 0.5%. We note that the intra-cavity intensities are in-
deed smaller than in the DROPO case, whereas extra-cavity threshold intensities happen to be
actually higher.
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Figure 3.35 – Extra-cavity threshold intensities in the case of a frequency degenerated TROPO
in a 30 mm-long KTP crystal for TA(ωs) = 0.1 and 0.5%.

Very low transmission coefficients for the mirror A have been considered in order to obtain
sensible threshold intensities that are still quite high compared to what a commercial source
can provide. This configuration is then ruled out, in favour of either the previous scheme with
polarization partial degeneracy and frequency total degeneracy or the next proposal.
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THG and TPG in bulk crystals

2. Total degeneracy in frequency, partial in polarization: triggered configuration
The previous phase-matching wavelengths λ(−)

0 = 532 nm, and λs = λ
(+)
1,3 = λ

(−)
2 = 1596 nm in a

KTP crystal (θ = 90°, ϕ = 24.5°) can again be used for another kind of TROPO configuration.
It constitutes the last proposal of this section. The spirit of the present configuration is different
from the previous ones, the goal being to work without any injection, i.e. to perform a spon-
taneous TPG. Due to the extreme weakness of this process in a bulk medium, as mentionned
previously in Section 2.2.1.4, we propose here to take benefit of a cavity without loss for the
three resonating waves at λs. However, the mirrors A and B are still taken as fully transparent
to the pump, so that it is not recycled. Our idea is to accumulate triple photons generated at
each round trip until the energy reaches an amount that is considered as sufficient for measure-
ments. It is therefore a configuration of pulse extraction at the desired time. The extraction can
for instance be triggered by an acousto-optic modulator in Bragg condition [34], as it is used
in the case of mode-locked or Q-switched lasers. Briefly, an acoustic wave is created from the
electric excitation of a piezoelectric oscillator stuck on one side of the modulator. Thanks to
the photoelastic effect, this acoustic wave creates a periodic modulation of the refractive index
that acts as a diffraction grating. The incident optical signal is then put into Bragg diffraction
condition by adjusting the acoustic wavelength. At the first order of diffraction, it fulfills:

2Λ sin θB = λs, (3.53)

where Λ is the grating period, i.e. the acoustic wavelength. The triplet signal is then diffracted
and escapes the cavity as it is shown Figure 3.36.

TPG 

MA MB 

MC MD 

λ0 λ0 

AOM 

λs 

+/- 

(a)

Λ 

θB 

λs λs 

(b)

Figure 3.36 – (a) Schematic of the triggered configuration for the third-order TROPO. AOM
stands for acousto-optic modulator. (b) Close-up representation of the Bragg diffraction.

There is no threshold in this configuration, since the cavity is lossless, excepted when the
acousto-optic cell is activated1. The number of photons generated over time can be calculated
in the same fashion as the one described in Section 3.3.2.1: a quantum step in the undepleted
pump regime for the initialization, then a classical step when the pump starts to be depleted.
The result is presented in Figure 3.37. More than 106 round-trips are needed to build a µJ pulse
using a 30 mm-long KTP crystal and a 1 µJ initial pump energy. It means that 30 km of crystal

1This is true in a first approximation only, since losses arise from absorption in the nonlinear medium (typically
1/1000 per centimeter) and AOM, from experimental reflexions on mirrors that do not strictly reach one, and
from diffusion on the mirrors. These losses direclty impact the coherence of the triplet fields generated.
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3.3 Prospective for resonant TPG from a synchronously pumped third-order OPO

length have been necessary! Note that here the photon lifetime is infinite before the trigger of
the AOM. With a repetition rate of 80 MHz, about 13 ms are needed before the trigger of the
acousto-optic modulator.

This configuration is experimentally more convenient in that it only requires a pump beam
at λ0 = 532 nm, which is available from a standard doubled Nd:YAG laser. Thereafter, it does
not require the building of a quadratic OPO. This constitutes the reason why the energy of the
pump considered here is slightly higher than in the previous calculations, since saved from one
conversion stage.
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Figure 3.37 – Generated triplet energy as a function of time (or number of round-trips), for a
propagation in a 30 mm-long KTP TROPO and an initial pump energy E0 = 1 µJ .

Note that rutile TiO2 is again a good candidate for such a configuration, with λ(−)
0 = 612nm

and λ(+)
1,3 = λ

(−)
2 = 1836 nm for instance.

3.3.3 Conclusion

To conlude this section, theoretical proposals of OPOs, synchronously pumped by a high rep-
etition rate laser, have been studied with the aim of achieving direct TPG. Among them, two
configurations stand out. The first one is doubly resonant and mono-injected: about E2,3 = 40nJ
can be generated for E0 = 300 nJ of pump and E1 = 30 nJ of injection (TA = 1%). The second
proposal is a triply resonant OPO that does not involve any injection. The cavity is truly lossless,
until the pulse is extracted at the desired time by the operator: about 106 cavity round-trips
enable to generate a µJ triplet pulse.

As for lasers and quadratic OPOs, the stability and resonance criteria are key points [27]
that will have to be kept in mind for a potential future realization of an OPO considered for
the experiments. This is also the case of the coherence properties of the triplet fields. These
aspects have not been studied here.
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THG and TPG in bulk crystals

Note finally that the Kerr effect has not been considered in this study of generation in a
cavity either. Because of the large pump intensities involved, this effect is likely to occur and
could be taken into account in the coupled equations. However, since on the one hand the pump
intensity remains constant and on the other hand the increasing but weak triplet intensity do not
contribute to this effect, the level of Kerr effect stays identical after each round trip in the cavity.
Consequently, a shift of the pump wavelength can enable the experimentalist to compensate the
deviation to the phase matching induced by this effect.
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Chapter 4
Third-harmonic generation and
triple photon generation in optical
fibers

“Quand les mystères sont très malins, ils se cachent dans la lumière.”

– Jean Giono, Ennemonde et autres caractères
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In this chapter, we expose third-harmonic and triple photon generations in optical fibers. In
such media, one can take advantage of the interaction length as well as of a strong confinement
of the electromagnetic field, without any pollution by quadratic processes since the fibers are
glasses, hence centrosymmetric. The first part focuses on germanium-doped silica fibers, while
the second part is dedicated to chalcogenide fibers.
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THG and TPG in optical fibers

4.1 THG and TPG in GeO2 : SiO2 optical fibers

We aim at realizing a TPG interaction fully degenerated in energy, i.e. 3ω → ω+ω+ω. For the
experimental demonstration of such a process, we can benefit from a good understanding of what
occurs in the fiber during a THG interaction, ω + ω + ω → 3ω. Indeed, THG being TPG exact
reverse process, the phase-maching conditions remain unchanged. But the conversion efficiency
of THG is much larger than that of TPG, so that it is relevant to consider THG experiments in
the first place.

4.1.1 Fiber properties

Geometry We use two multimode GeO2-doped SiO2 fibers, whose core rods have been fab-
ricated by plasma chemical vapor deposition by the Draka Comteq company. Their core radii
are a = 2.19 µm and a = 2.30 µm, their cladding radius b = 125 µm, and their maximum GeO2

molar doping concentration cGeO2 = 37 % at the center of the fiber. The effective molar doping
concentration in the core is ceff

GeO2 = 28.2 %, inferred from averaging the parabolic index profile
of the preform given in Figure 4.1 at λ = 632 nm.

Figure 4.1 – Profile of the refraction index as a function of the radius of the preform, from [110].

Efective indices of the waves The effective Sellmeier dispersion equations have been extrap-
olated from effective indices measurements in two modal configurations LP01 around 1500 nm,
and LP03 around 500nm, in five specific cases where the core size equals a = 2.20 +k× 0.05 µm,
with k ∈ J0, 4K. The approximation of the weakly guiding fiber is accurate, and allows us to
consider the LP transverse modes developped in Chapter 1. The corresponding Sellmeier coeffi-
cients A, B, C and D are given in Table 4.1 for the following mathematical form of the effective
indices neff :

n2
eff (λ) = A+

B

λ2 − C
+Dλ2, (4.1)

where λ is expressed in micrometers.
The consideration of the LP01 and LP03 modes is justified below, in Section 4.1.2.

Cladding optical index The refractive index for the silica cladding ncl follows a Sellmeier
equation given by [176, 177]:
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core radius A B C D

a = 2.20 µm 2.18122
2.06945

0.19313
0.0519

−1.68851
−0.08842

−0.01715
−0.10619

a = 2.25 µm 2.18551
2.09472

0.18227
0.04429

−1.64933
−0.07288

−0.01725
−0.12773

a = 2.30 µm 2.18973
1.99386

0.17126
0.09019

−1.60328
−0.16707

−0.01735
−0.0266

a = 2.35 µm 2.19359
2.12877

0.16149
0.0351

−1.56118
−0.05165

−0.01743
−0.15316

a = 2.40 µm 2.19727
2.14082

0.15213
0.03216

−1.51719
−0.04412

−0.01749
−0.16042

Table 4.1 – Sellmeier coefficients A, B, C and D from Equation (4.1) for different core sizes and
the two modal distributions LP01 (upper value, in black) and LP03 (lower value, in blue). λ
needs to be expressed in micrometers in Equation (4.1).

coefficient value

A1 0.6961663

l1 0.06840430

A2 0.4079426

l2 0.1162414

A3 0.8974794

l3 9.896161

Table 4.2 – Sellmeier coefficients of silica [176, 177]. The wavelength is expressed in micrometers
in Equation (4.2).

n2
cl (λ) = 1 +

3∑
i=1

Aiλ
2

λ2 − l2i
, (4.2)

with Ai and li the coefficients given in Table 4.2, and λ expressed in micrometers.

The maximum index difference between the cladding and the core is approximately ∆n '
0.06 in the visible/near IR spectral range. The numerical aperture defined in Equation (1.76)
therefore equals 0.32 for the fundamental wavelength, and 0.27 for the generated one, in the
case of a = 2.19 µm.

Nonlinearity The effective nonlinear susceptibility is taken as χ(3)
eff = 1.9 × 10−22 m2V−2 in

the telecom bandwidth in which we aim to work, i.e. around 1550 nm. This approximate value
originates from the phenomenological relationship given in the reference [178]: n2(m2W−1 ×
10−20) = 0.0552× ceff

GeO2 + 2.44 = 2.46. It is consistent with n2 values ranging between 2.20 and
2.73× 10−20 m2W−1 for standard fibers around 1550 nm [30].
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Losses The typical attenuation of silica fibers is around 0.2 dB/km at 1.5 µm, and increases
to a few dB/km in the visible spectral range [30].

4.1.2 Interaction and phase matching

Phase-matching condition As stressed in the first chapter, modal phase-matching is consid-
ered here as fibers exhibit no birefringence in principle. Even when they do, their birefringences
range between 10−4 and 10−6, so that it is difficult to use them to compensate the refractive
index dispersion to achieve a phase matching [30].

The fibers we used are designed to enable modal phase-matching involving LP01 and LP03

transverse modes for THG or degenerated TPG, i.e.:

3ωLP03 ↔ ωLP01 + ωLP01 + ωLP01 . (4.3)

At first, the phase-matching wavelengths are inferred from the following phase-matching con-
dition in the case where the “nonlinear” contribution presented in Section 1.3.3 is neglected,
which is true for small enough input intensities:

n01
eff (ω) = n03

eff (3ω) . (4.4)

Figure 4.2 shows these effective indices, n01
eff (ω) and n03

eff (3ω), as a function of the third-harmonic
wavelength in the case of a fiber core size of a = 2.20 µm. Their intersection gives the phase-
matching wavelength, in compliance with Equation (4.4).
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Figure 4.2 – Phase-matching condition with a SiO2 : GeO2 fiber of core radius a = 2.20 µm .

The same study performed for the four other core radii gives the phase-matching wavelengths
presented as black dots in Figure 4.3. An extrapolation of these data allows to infer the phase-
matching wavelengths for this modal configuration at any value of a, in particular a = 2.19 µm
for our fiber. The interpolated line also shown in Figure 4.3 follows the law:
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Figure 4.3 – Calculated fundamental phase-matching wavelength λω (squares) as a function of
the fiber core radius from experimental measurements of the effective indices in squares. The
interpolation is in solid line.

core radius/
fundamental wavelength τ = 15 ps τ = 10 ns

a = 2.2 µm
λω = 1548.5 µm 9.6 cm 64.1 m

a = 2.3 µm
λω = 1595.7 µm 10.4 cm 69.2 m

Table 4.3 – Critical fiber lengths related to the temporal walk-off for the two available fibers
and sources.

λPM
ω [nm] = 510.232 + 471.972a [µm] . (4.5)

Therefore, λPM
ω (a = 2.19 µm) = 1544 nm and λPM

ω (a = 2.30 µm) = 1596 nm are the funda-
mental phase-matching wavelengths for our two types of fiber.

The core radius uncertainty is estimated by the fiber supplier as ∆a = 6.4 nm, which leads
to an uncertainty of ∆λPM

ω = 3 nm on the predicted phase-matching wavelength according to
Figure 4.3.

Temporal walk-off The temporal walk-off between the fundamental and third-harmonic
beams dictates the choice for the pulse duration of the source. As in the previous chapter,
the corresponding critical length Lc gives the distance at which the temporal pulses are sepa-
rated from each other by their temporal FWHM. It is given by:

Lc =
τ

v−1
g (3ω)− v−1

g (ω)
, (4.6)

where τ is the FWHM pulse duration and vg the group velocities given in Equation (3.45).
Different values of Lc are presented in Table 4.3 for the two fibers at their respective fundamental
wavelengths and for the two pulse durations of the lasers available in the laboratory (τ = 15 ps
and τ = 10 ns).
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It is clear from this table that the 15 ps source is ruled out since we want to use more than
10 cm of fiber to increase the conversion efficiency. On the contrary, the walk-off critical length
is of the order of 65 m for the nanosecond laser, which allows us to use metric fibers without any
limitation from the temporal overlap.

“Nonlinear” contribution to phase-matching We assumed so far that the “nonlinear”
contributions to the phase-matching were small enough to be neglected. In the general case,
self-phase modulations and cross-phase modulations have to be considered jointly to TPG, as
they make the effective indices differ from the ones that have been considered up to now. Hence,
we are coming back to this hypothesis and justify it for the range of pump energies that we
used, up to about 1 µJ for a 10 ns pump duration and a 10 Hz repetition rate.

The effective nonlinear phase mismatch ∆k(3)
eff = ∆k(3)

M+W + ∆k(3)
NL of Equation (1.105) is

computed in the case of TPG1. In that case, only the peak power of the pump is taken into
account in ∆k(3)

NL, the powers of the triplet fields being insignificant. In other words, the phase
modulation effects of the down-converted beams on themselves and of these beams on the pump
can be neglected compared with the phase modulation of the pump on itself. The phase-matching
wavelengths λPM

i from the previous section may be shifted by λshift
i when the “nonlinear” term

is taken under consideration, such that:

∆k(3)
eff

(
λtot

3ω = λPM
3ω ± λshift

3ω , λtot
ω1 = λPM

ω1 ± λ
shift
ω1 , λtot

ω2 = λPM
ω2 ± λ

shift
ω2

)
= 0. (4.7)

Note that the wavelengths λ1, λ2 and λ3 may be different from one another because of the
spectral acceptance of the fiber.

Figures 4.4 give a two-dimensional representation of sinc2

 ∆k(3)
eff

∣∣∣PM
L

2

 as a function of λPM
ω1

and λPM
ω2 for L = 20 cm (a) and L = 1 m (c), and E3ω = 1 µJ. A value of 1 means perfect

phase-matching. We see that although phase-matching is almost exactly fulfilled at the center
of the spectral range in the case (a) , i.e. for λPM

ω1 = λPM
ω2 = λPM

ω3 = λPM
3ω /3, it is obviously not

the case in (c). A calculation of λshift
ω1,2,3 = 3λshift

3ω is therefore performed to achieve a perfect
phase-matching is both cases. It equals λshift

ω1,2,3 = 2.04 pm for (a) and λshift
ω1,2,3 = 11.2 pm for (c).

The graphs (b) and (d) show sinc2

 ∆k(3)
eff

∣∣∣tot
L

2

 as a function of λtot
ω1 and λtot

ω2 in the graphs (b)

and (d) for the same experimental conditions as above.

It is clear that the frequency shifts relative to the triplet beams due to nonlinear phase effects
occuring in the fiber will not be an issue as they are in the spectral bandwidth of our sources
for metric fibers and our maximum pump energies (of the order of 1 µJ). Figure 4.5 gives the
shifted wavelength λshift

ω as a function of the input pump energy for a 50 cm-long fiber.

1In the case of a THG process, the expression of the nonlinear phase mismatch ∆k(3)
NL has to be adapted by

virtue of Equation (D.17), derived in Appendix D. It does not change the main conclusion here.
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(a) L = 20 cm, λPM
3ω = 1549.159 nm.
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(b) L = 20 cm, λtot
3ω = 1549.159 nm + 2.04 pm.
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(c) L = 1 m, λPM
3ω = 1549.159 nm.
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(d) L = 1 m, λtot
3ω = 1549.159 nm + 11.2 pm.

Figure 4.4 – sinc2
(
∆k(3)

eff (λ3ω, λω1 , λω2)L/2
)
as a function of two photon triplet wavelengths

λω1 and λω2 for a core radius a = 2.20 µm. The pump beam is set at the phase-matching
wavelength λ0 = 516.4 µm and its energy equals 1 µJ.
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Figure 4.5 – Wavelength shift on the triplet fields to recover a perfect degenerate phase-matching,
versus incident total energy (L = 50 cm).

4.1.3 Fiber characterization through a THG experiment

In this section, a THG involving the LP01 and LP03 modes is demonstrated experimentally.
In addition, it is shown that other transverse mode configurations are also possible. Finally,
interactions other than THG occuring in the fiber are also reported.

4.1.3.1 Experimental setup

The experimental setup is pictured in Figure 4.6. In the laboratory frame, the propagation axis
is taken as the Z−axis, while the X− and Y− axis are arbitrarily choosen as the horizontal and
vertical axes respectively.

A Nd:YAG laser source delivering 10ns pulses at a 10Hz repetition rate is tripled in frequency
thanks to the combination of second-harmonic generation and sum-frequency generation in two
KDP crystals. The resulting wave at 355nm is used to pump a quadratic BBO (β−BaB2O4) type
I optical parametric oscillator that generates wavelengths from 0.41 and 2.4 µm. The spectral
linewidth of the beam at 1.6 µm has been measured with a Chromex Optilas monochromator:
it equals 4.9 nm (FWHM). Its divergence at 1 µm equals ΘX = 20.9 mrad and ΘY = 32.0 mrad
along the two transverse directions X and Y respectively. A telescope consisting of two spherical
lenses of focal lengths 35 mm and 50 mm is then inserted right after the source to reduce these
divergences.

The tunable beam is focused on the GeO2 : SiO2 fiber using an Olympus microscope objective
of magnification ×40 and numerical aperture 0.65. The fiber is cleaved with a diamond tip
Corning cleaver, perpendicularly to the incident direction as shown in Figure 4.7. This cleaver
has been kindly lent us by the “Nano-Optique et Forces” team at Institut Néel. It is placed on
a Thorlabs Nanomax three-axes stage of step 1 µm. Note that the position of the focusing point
behind the microscope objective according to the entrance of the fiber is very critical.

Because of the astigmatism of the OPO beam, two cylindrical lenses of focal lengths 200 mm
(along X) and 130 mm (along Y ) were used before the objective to improve the transverse
geometry of the beam. It has indeed to match the circular transverse geometry of the fiber in
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 λω 

 λ3ω 

Photodiode Si  

D 

Nd:YAG LASER 
10ns, 10Hz 

x2 
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nm 

532 
nm 

355nm BBO OPO 
0.41-2.4µm 

L1,sph L2,sph 

L3,cyl L4,cyl 

+130mm +200mm 

 λω 

 λω 

O1 
×40, NA=0.65 

O2 
×40, NA=0.65 

+35mm +50mm 

 λ3ω Camera 
detection 

 λω 

 λ3ω 

Photodiode Si / 
 fiber spectrometer 

×10, NA=0.25 

O3 

λ/2 

GTP 

A 

B  λω 

 λ3ω 

C Fiber spectrometer 
350-1000 or 900-1700nm 

ND  
filters 
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F1 

F2 

prism 

×40, NA=0.65 

O2 

Figure 4.6 – Schematics of the experimental setup. ND stands for neutral density, L for lens,
λ/2 for half-wave plate, O for microscope objective, Fi for fiber, F for dichroic filter and GTP for
Glan-Taylor prism. The different units are used for specific measurements: A for mode imaging,
B for polarization measurement, C for spectral properties, and D for conversion efficiency.

Figure 4.7 – Cleaved fiber under an optical microscope.
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(b) a = 2.19 µm

Figure 4.8 – Transverse spatial profile of the fundamental mode at the output of the fibers.

order to achieve a good coupling. Typical optimal coupling efficiencies are of the order of 10−3,
which extreme weak values may be explained by the poor transverse quality of the OPO. A
half-wave plate in the 1100− 2000 nm spectral range can also be inserted before the objective.
Although it might seem useless since a fiber is an isotropic medium, we will show later that it
is not.

The down-converted and residual input beams are collected at the output of the fiber in a
second microscope objective similar to the input one. If needed, dichroic filters can be used to
stop the pump beam. Alternatively, if no filter is needed, the end of the fiber can also be put
very close to the detection system, the detection chip or detection fiber being bigger than the
propagating mode.

The input powers are measured with Ophir PE10 and PE50 powermeters. At the output
of the fiber, the fundamental and third-harmonic powers are measured using Thorlabs photodi-
odes calibrated with neutral density filters and the previous powermeters. These are DET410
InGaAs-based for λ ∈ [700, 1800] nm and DET110 Si-based for λ ∈ [350, 1100] nm. The spec-
tral properties are measured with Ocean Optics spectrometers connected to a multimode fiber:
RedTide USB650 for λ ∈ [350− 1000] nm with a resolution of 2 nm, or HR4000 for a reso-
lution of 0.1 nm but less intensity sensitivity for λ ∈ [200− 1100] nm; and NirQuest512 for
λ ∈ [900, 1700] nm with a 3 nm resolution. These spectrometers can be calibrated in intensity
with the photodiodes at any wavelength of interest. Finally, the imaging of the transverse modes
is done using a basic color webcam, or a more sensitive monochrome Edmund Optics EO-0413M
camera kindly lent us by Eric Mossang from Institut Néel. Figure 4.8 gives the transverse spatial
profile of the beam going out of the two fibers considered, at two different wavelengths.

4.1.3.2 THG involving LP01 and LP03 modes

We report in this section the THG interaction between the LP01 and LP03 transverses modes.
Modal, energetic, spectral and polarization properties are investigated.

1. Modal distribution The modal distribution of the third-harmonic field for the 2.19 µm
core size fiber and the fundamental beam at λω = 1544 nm is observed using the configuration
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Figure 4.9 – Measured (a) and calculated (b) transverse intensity profile of the third-harmonic
beam.

A pictured on the experimental setup of Figure 4.6. A prism separates the pump and generated
beams, and a Microsoft LifeCam CCD camera images the transverse intensity profile as shown
in Figure 4.9 (a). Compared to the LP03 mode depicted in Figure 1.12c of the first chapter, this
profile seems to be somewhat distorted, stretched out in the vertical direction.

In order to explain this behaviour, we intend to have a deeper look at the propagation
equation given in (1.82) with the assumption that the fiber has an elliptic section. Under its
scalar form:

∇2E (~r, t)− 1
c2
∂2E (~r, t)

∂t2
= 0, (4.8)

with ∇2 the laplacian operator. For a plane wave E (~r, t) = E (~r) ei(kZ−ωt), it comes:[
∇2
T + ∂2

∂Z2 + 2ik ∂

∂Z

]
E (~r) = 0, (4.9)

∇2
T being the transverse laplacian operator.

In the paraxial approximation that states that the field varies only gradually along the

Z-axis, i.e.
∣∣∣∣∣∂2E (~r)
∂Z2

∣∣∣∣∣�
∣∣∣∣2k∂E (~r)

∂Z

∣∣∣∣, the equation becomes:(
∇2
T + 2ik ∂

∂Z

)
E(~r) = 0. (4.10)

We now have to consider the transverse components in the elliptical coordinates (ξ, η) shown
in Figure 4.10, with (ξ, η) ∈ R+ × [0, 2π]. They are related to the cartesian coordinates (X,Y )
through the relationships: X = f (Z) cosh (ξ) cos (η)

Y = f (Z) sinh (ξ) sin (η) ,
(4.11)

where f (Z) = f (0)
w (Z)
w (0) is the distance from the origin to a focal point of the ellipse; w the

beam size given by Equation (1.32); and Z = 0 the entrance of the fiber. The ellipticity is

defined as ε =
2f2 (0)
w2 (0) .

The paraxial wave equation is solved with the following variables separation:

E (ξ, η, Z) = Ξ (ξ)N (η) eiζ(Z)ψG (ξ, η, Z) , (4.12)

117



THG and TPG in optical fibers

Figure 4.10 – Elliptic cylindrical coordinates in the (ξ,η) plane.

where ψG (ξ, η, Z) =
w (0)
w (Z) exp

 − r2

w2 (Z) + ikZ +
ikr2

2R (Z)− i arctan

 Z

ZR

 is the lowest order

solution, the Gaussian fondamental mode being given in Equations (1.30) and (1.31). The
curvature radius is given by Equation (1.33), the Rayleigh length by (1.35), and r =

√
X2 + Y 2 =

f (Z)
√

(cosh (ξ) cos (η))2 + (sinh (ξ) sin (η))2.
With two separation constants a and p, Equation (4.10) becomes [179, 180]:

d2Ξ
dξ2 − ε sinh (2ξ) dΞ

dξ
− [a− pε cosh (2ξ)] Ξ = 0

d2N

dη2 − ε sin (2η) dN
dη

+ [a− pε cos (2η)]N = 0

−
(
Z2 + z2

R

zR

)
dζ

dZ
= p.

(4.13)

At this point, a simplification can be made as the Rayleigh distance equals ZR =
πw(0)2

λ3ω
'

24m at the output of our fiber, the beam radius being equal to 4mm at 515 nm. It is therefore
natural to consider Z = 0 everywhere in the fiber, which gives:

E (ξ, η, Z) = E (ξ, η, 0) = Ξ (ξ)N (η) e
−r2
w2(0) . (4.14)

The solutions to the set of Equations (4.13) are written as Cpm and Spm from Ince polynomials
of order p and degree m. They are Ince-Gauss (IG) modes defined [179, 181] as:IGe

pm (ξ, η, ε) = CCpm (iξ, ε)Cpm (η, ε) e−r2/w2(0) even modes

IGo
pm (ξ, η, ε) = SSpm (iξ, ε)Spm (η, ε) e−r2/w2(0) odd modes

(4.15)

The choice for p and m is restricted to 0 ≤ m ≤ p and (−1)m+p = 1, i.e. m and p are both
even (e case) or both odd (o case). The number of hyperbolic nodal lines is given by m, while
the number of elliptical nodal lines by (p−m) /2 + δk,o, where k ∈ {e, o} and δ is the Kronecker
symbol. C and S are normalization constants.

We are now able to give a representation in terms of Ince-Gauss modes of the third-harmonic
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Figure 4.11 – Corresponding modulus (a) and phase (b) transverse profiles. The complex am-
plitude is shown in (c).

distribution that we observed: the calculated mode, IGe
40, is depicted in Figure 4.9 (b), with an

ellipticity of ε = 0.5. This numerical calculation is in very nice agreement with the experimental
mode, pointing out core ellipticity in our fibers. The effective interaction area will then be
affected by this ellipticity.

Figure 4.11 shows calculations for the modulus (a), phase (b) and signed complex amplitude
(c) of the IGe

40 mode.

We end up this section with several remarks.

– First of all, we point out that we get back to Laguerre-Gauss (LG) modes by setting the
ellipticity to zero. We would end up with Hermite-Gauss (HG) modes by setting it to
infinity, which is equivalent to considering a cartesian geometry.ε→ 0 (towards a polar cylindrical geometry) : IG→ LG (Laguerre−Gauss modes)

ε→ +∞ (towards a cartesian geometry) : IG→ HG (Hermite−Gauss modes)

In the case of our fibers with small core-cladding index difference, LG modes are equivalent
to LP modes that we considered previously.

– Mathieu modes and elegant Ince-Gauss modes are also solutions to Equations (4.13) [182,
183]. However, they have not been taken into consideration here for the following reasons.

Considering Mathieu modes is mathematically equivalent to take p→∞ and ε→ 0, such
that p× ε is a finite real number. This leads to an infinite extension of rings for amplitude
and phase, which is not the behaviour observed here.

In addition to ellipticity, order and degree, all the modes mentionned here can be described
by two gaussian complex parameters q0 and q̃0 at Z = 0. The elegant Ince-Gauss modes
are mathematically described by q̃0 → ∞: in amplitude, only one elliptical nodal line is
visible for all modes such that (p−m)/2 + δk,o > 1. This is again not the behaviour of the
third-harmonic mode shown in this section or of any other modes we observed and that
are going to be exposed in Section 4.1.3.3. The spatial evolution of such modes greatly
differs from the evolution of simple Ince-Gauss modes.

– One can define so-called helical Ince-Gauss modes (HIG) that we will use later. They are
vortex modes carrying an azimuthal angular momentum [180], and take the form:
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Figure 4.12 – Third-harmonic energy E3ω as a function of the incident energy Eω in a L = 642mm
and a = 2.19 µm fiber.

HIG±pm(ξ, η, ε) = IGe
pm(ξ, η, ε)± iIGo

pm(ξ, η, ε), m > 0.

2. Energetic properties We now turn next to the energetic properties of THG. Experimental
data of the up-converted energy E3ω are shown in black squares in Figure 4.12 as a function of the
incident fundamental energy Eω, for a propagation in a fiber with L = 642mm and a = 2.19 µm.
The configuration D of the experimental sketch 4.6 is adopted here.

In the approximations of Gaussian beams, undepleted and monochromatic pump, and equal-
ity of the fundamental and third-harmonic group velocities, it can be shown from the system of
coupled equations (1.52) that E3ω as a function of Eω takes the form:

E3ω (L) =
128
3π

µ0

ε0

(
χ

(3)
eff (3ω, ω, ω)L

λω

)2
T 3

01 (ω)T03 (3ω)
(n01

eff (ω))3
n03

eff (3ω)
1
S2

eff

τ3ω

τ3
ω

sinc2

(
∆k(3)

eff (3ω, ω, ω)L
2

)
[Eω (0)]3 ,

(4.16)
where ε0 and µ0 are the vacuum permittivity and permeability respectively, L is the fiber length,
λω the incoming phase-matched wavelength, χ(3)

eff the effective third-order nonlinear susceptibil-
ity, T the Fresnel transmission coefficient in energy, τ the pulse duration, neff the effective
dispersion, Seff the effective mode area, and ∆keff the effective phase-mismatch defined in Sec-
tion 4.1.2.

In our experiment, such assumptions are not correct as we are dealing with non-Gaussian
up-converted beams on the one hand, and the pump cannot be considered as monochromatic
on the other hand. However, the hypothesis of the undepleted pump still holds, and it is fair to
ignore the group velocity dispersion for 10 ns temporal pulses as shown in Section 4.1.2.

We then consider a Gaussian polychromatic pump, centered around ωc , of standard deviation
∆ω (i.e. diameter at 1/e, ∆ω1/e = 2

√
2∆ω). Its field can be expressed as:

120



4.1 THG and TPG in GeO2 : SiO2 optical fibers

Aω
(
ω
c
,∆ω

)
=
ˆ ω

c+∆ω/2

ωc−∆ω/2
dω̄Aω (ω̄) =

ˆ ω
c+∆ω/2

ωc−∆ω/2
dω̄Aω

(
ω
c
)

exp

−1
2

ω − ωc
∆ω

2
 . (4.17)

In our case, the theoretical central wavelength for phase matching is λcth = 1544 nm, and the
experimental one is λc = 1550 nm. The full width at half maximum of the energy spectrum
equals ∆λFWHM

ω = 4.9 nm from measurement using a sub-0.1nm sensitive monochromator,
i.e. ∆λFWHM

ω = 6.9 nm in field amplitude. It is related to ∆ω via the relationship ∆ω =
πc
√

2 ln 2
∆λFWHM

ω

(λc)2 .

In the undepleted pump approximation, the polychromatic nonlinear coupled equations take
the form of the following equation for a propagation along the Z-axis:



∂Aω (ω1,2,3, Z)
∂Z

= 0
∂A3ω (3ω,Z)

∂Z
= i

¨
dω1

2π
dω2

2π κeff (3ω, ω1, ω2)Aω (ω1, Z)Aω (ω2, Z)Aω (3ω − ω1 − ω2, Z)

×f01−03 (3ω, ω1, ω2)Fω (ω1)Fω (ω̃)Fω (3ω − ω1 − ω2) [F3ω (3ω)]−1
e−i∆k

(3)
eff (~r,3ω,ω1,ω2)Z ,

(4.18)
with κeff , F and f01−03 = S−1

eff defined as in Equations (1.107), (1.108) and (1.100) respectively.
The integrals describe the spectrum of the pump beam. Note that the transverse integration
has already been performed in these equations.

After integration, we get the expressions of the spectral fields at the end of the fiber Z = L,
for every point (X,Y ) of the transverse plane and at every time t:

Aω (ω1,2,3, L) = Aω (ω1,2,3, 0)

A3ω (3ω,L) = iL

¨
dω1

2π
dω2

2π κeff (3ω, ω1, ω2)Aω (ω1, 0)Aω (ω2, 0)Aω (3ω − ω1 − ω2, 0)

×S−1
eff (3ω, ω1, ω2)Fω (ω1)Fω (ω2)Fω (3ω − ω1 − ω2) [F3ω (3ω)]−1

×sinc

∆k(3)
eff (3ω, ω1, ω2)L

2

 e−i∆k(3)
eff (3ω,ω1,ω2)L/2.

(4.19)
Considering a Gaussian temporal evolution and the LP03 transverse profile of the third-harmonic
mode, the power defined with the Equations (1.19) and (1.20) is written as:

P3ω (L, t) =
ε0c

2T

ˆ
d (3ω)

2π n03
eff (3ω) |A3ω (3ω,L)|2 e

−2

 t

τ3ω/2

2

, (4.20)

with τ3ω = 1/
√

3τω the total pulse duration of the third-harmonic beam, and T the temporal
periodicity of the field.

Finally, the total up-converted energy can be calculated by integrating over time, as in
Equation (1.21). We make the approximation that the linear and nonlinear parameters neff ,
κeff , χ(3)

eff , and the transverse parameters f01−03 and Fω remain constant over the spectral range,
which is quite reasonable over such a small range, three frequencies being fixed by the initial
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a 2.19 µm

λ
c

ω 1550 nm

∆λFWHM
ω 6.9 nm

L 64.2 cm

Seff 931 µm2

τω 10 ns

χ
(3)
eff 1.9× 10−22 m2V−2

Table 4.4 – Numerical values of the parameters corresponding to the THG experiment.

conditions and the last one by the energy conservation. Then, the third-harmonic energy as a
function of the pump field is the following:

E3ω (L)

=
27π5/2

4
√

2
ε0c

T

τ3ωT
3
01(ωc)T03(3ωc)
n03

eff (3ωc)

χ(3)
eff
(
3ωc

, ω
c

, ω
c)
L

λoωSeff

[
Fω
(
ω

c)]3
F3ω (3ωc)

2

×α
ˆ
dω

2π

∣∣∣∣∣
¨

dω1

2π
dω2

2π Aω (ω1, 0)Aω (ω2, 0)Aω (3ω − ω1 − ω2, 0) sinc
(

∆k(3)
eff (3ω, ω1, ω2)L

2

)
e−i∆k

(3)
eff (3ω,ω1,ω2)L/2

∣∣∣∣∣
2

,

(4.21)
where α is a fitting parameter that accounts for the deviation from the experimental incident
energy values. It also reflects the lack of knowledge of χ(3)

eff , Seff and the dispersion relationships.
Note that the pump being transversally Gaussian: Fω

(
ω
c) = πW 2

ω

(
ω
c) where Wp is the pump

beam size. The Fresnel transmission coefficients, omitted so far, have been taken into account

in this expression (4.21): T0m(ω) =
4n0m

eff (ω)(
1 + n0m

eff (ω)
)2, m ∈ {1, 3}.

In elliptical coordinates, the effective interaction area is defined as:

Seff =

√[¨
R2
|F01(ξ, η)|2 dS

]3¨
R2
|F03(ξ, η)|2 dS

¨
R2

[F ∗01(ξ, η)]3 F03(ξ, η)dS
, (4.22)

with dS = f2
0
(
sinh2(ξ) + sin2(η)

)
dξdη the infinitesimal surface element. For the interaction

between the modes LP01 and LP03, it is equal to Seff = 931µm2. Two comparisons can be made.
Firstly, an interaction between four LP01 waves in a fiber of core radius 17 µm would lead to
such an overlap. Secondly, an interaction involving only LP01 modes in our fiber of core radius

2.19 µm would have led us to Seff = 10.9 µm2. Thus, we have:
Seff |01−03
Seff |01−01

= 1.17%, which is

consistent with the literature [184].

Table 4.4 gathers together the numerical values for the physical parameters. Figure 4.12
shows the calculated third-harmonic energy as a function of the fundamental energy, and its
agreemeent with the experimental data for a fitting parameter set as α = 0.12. The following
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E Ppk =
E
τ

P̄ = E × f I =
Ppk

Seff

Pulse energy Peak power Average power Intensity

ω 0.58 µJ 58.2 W 5.82 µW 6.25 MWcm−2

3ω 43.8 fJ 7.59 µW 438 fW 0.81 Wcm−2

Table 4.5 – Energies, powers and intensities of our THG experiment. The pulse time is 10 ns
and the repetition rate f = 10 Hz.

table sums up the fundamental and third-harmonic energies, powers and intensities correspond-
ing to the point of maximum input energy of Figure 4.12:

This process has an energetic conversion efficiency η =
E3ω

Eω
= 7.6× 10−8.

3. Third-harmonic spectrum A third-harmonic spectrum has been measured at the output
of a fiber of L = 183 mm and a = 2.19 µm using the configuration C of the experimental setup
depicted in Figure 4.6. The energy of the normalized third-harmonic signal E3ω is measured as
the input fundamental wavelength λω is tuned spectrally. Experimental data are presented as
black squares on Figure 4.13a where the third-harmonic energy is plotted as a function of the
fundamental wavelength λω.

A calculation has been done considering the polychromatic Gaussian pump with a full width
at half-maximum of ∆λω = 6.9nm in field amplitude, based on the development of the previous
section. It is still assumed that neff , κeff , χ(3)

eff , f01−03 and Fp remain constant over the spectral
range. Specifically, the third-harmonic field is:

A3ω(3ω,L) ∝
¨

dω1

2π
dω2

2π Aω (ω1, 0)Aω (ω2, 0)Aω (3ω − ω1 − ω2, 0) (4.23)

×sinc

∆k(3)
eff (3ω, ω1, ω2)L

2

 e−i∆k(3)
eff (3ω,ω1,ω2)L/2.

The corresponding curve shown in green in Figures 4.13a and 4.13b (zoom) is very sharp. We
see that the wideness of the peak cannot be explained by considering only the pump spectral
linewidth. Note that the fiber being quite long, the acceptance parameter L.∆λω with this large
pump is very close to what it would be with a monochromatic pump (1.5 nm.cm). ∆λω is here
defined as the FWHM of the spectral third-harmonic peak.

In addition, the fiber core size fluctuations may be considered as not negligible. Taking into
account this effect as an incoherent process, the sum over intensities can be written as:

I3ω(ω,L) ∝
1

∆a

ˆ amax

amin

da
∣∣∣A3ω(ω, ωPM (a) , L)

∣∣∣2 , (4.24)

with ∆a = (amax − amin), which is equivalent to:

I3ω(ω,L) ∝
1

∆ω

ˆ ωPM
max

ωPM
min

dωPM
∣∣∣A3ω(ω, ωPM, L)

∣∣∣2 . (4.25)
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Figure 4.13 – (a) Normalized third-harmonic energy E3ω as a function of λω around 1550 nm, in
a L = 183 mm and a = 2.19 µm fiber. Experimental data are in squares. Calculations taking
into account the spectral width of the pump (green line), and that width as well as the core size
fluctuations (red solid line).
(b) Zoom on the calculation with a core size fixed at 2.19 µm.
(c) Reproduction of Figure 4.3: the blue region gives the spreading of the fundamental wave-
length corresponding core radius fluctuations.
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Because the optical indices neff at the fundamental and third-harmonic wavelengths that govern
the phase mismatch ∆k(3)

eff are not known for each core radius in the interval [amax, amin], the
wavelengths are reseted for the calculation of the phase mismatch so that phase matching can
be achieved for each radius a in compliance with the extrapolation shown in Figure 4.3.

Considering the core size fluctuations together with the width of the pump, the calculation
matches the experimental data for ∆a = 12 nm as shown in red on Figure 4.13a. It represents
0.55% of the core radius. This range of core radii is shown as the blue interval on the horizontal
of Figure 4.13c, which is an expanded reproduction of Figure 4.3. The corresponding phase-
matching wavelengths lie in an interval of wideness ∆λω = 5.7 nm, i.e. within the blue interval
of the vertical of Figure 4.13c.

The actual acceptance L.∆λω can be directly measured on Figure 4.13a. It equals 104nm.cm.
This turns out to be an advantage as it enables to use long fibers.

We finish this section by underlining that the third-harmonic peak is here centered around
1550 nm and not 1544 nm as it is supposed to be. This may signify that the mean value of
the core size is 13.1 nm above the supplier value. With the fluctuations of the core geometry,
the total uncertainty of the phase-matching wavelength is 19 nm, much larger than the 3 nm
expected.

4. Evidence of birefringence and polarization effects inside the fibers We show
in this section that our fibers exhibit an unexpected birefringence, so that THG depends on
the polarization of the incident fundamental beam. Experiments are done in the experimental
configuration B of Figure 4.6. A half-wave plate (HWP) controls the polarization of the incoming
beam. The fundamental and third-harmonic beams are collected in a microscope objective;
they can be considered separately using appropriate filters. Glan-Taylor prisms (GTP) allow
us to analyze their polarization state. The beams are focused with a microscope objective onto
photodetectors.

- Neutral lines The fiber is put between parallel polarizer (HWP) and analyzer (GTP) that
are rotating together. The identification of neutral lines is made where the signal is maximum.
Note that it is more usual to make this experiment between cross polarizers, a neutral line then
corresponding to an extinction. The measurement is not spectrally dependent, and has been
carried out at different wavelengths in a 642 mm-long fiber of core radius a = 2.19 µm. It is
presented here on Figure 4.14 at λ = 1500 nm.

We see a clear evidence of an anisotropic behaviour of the fiber, with the identification of
two orthogonal neutral lines, one at 0° and the other one at 90°. At this point, it is necessary to
consider that the fiber we use is a medium belonging to the uniaxial or biaxial optical classes,
as it is the case for a crystal. We assume first that it is uniaxial, and we will see later on that
this assumption is fully correct.

As explained in Chapter 1, the propagation in an uniaxial medium is described in the dielec-
tric frame, written (x, y, z), where the axis z is the optical axis of the index surface, meaning
that there is isotropy according to the polarization when light propagates in this direction, while
it is anisotropic along the axes x and y. The propagation axis of the fiber being identified as
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Figure 4.14 – Identification of the neutral axes of the fiber at 1500 nm put in between parallel
polarizers. Experimental data are in squares; the blue dashed line is a fit based on subsequent
calculations. Fiber geometry: a = 2.19 µm and L = 642 mm.

exhibiting an anisotropy, it is necessarily an axis perpendiculary to the z-axis. We arbitrarily
call this axis x. Then the cleaving plane of the fiber is the (y0z) plane. In Figure 4.14, the axis
at 0° is taken as the z-axis, while the axis at 90° is the y-axis.

We analyzed the polarization states of both the fundamental and third-harmonic waves at
the exit of the same fiber (a = 2.19 µm and L = 642 mm) for different orientations of the linear
polarization of the fundamental wave. θP and θA are the angles between the polarizer (HWP)
or analyzer (GTP) and the z-axis of the fiber respectively. (−→ex,−→ey ,−→ez ) are the cartesian unit
vectors of the polarization in the dielectric frame. The input fundamental orientation of the
polarization is at θin

ω = 2θP from the z-axis.

z=A.O. 

y 
x 

Eω 

θA 
θP GTP 

HWP 

θω 

 in 

ez 

ey ex 

Figure 4.15 – Angle conventions in the dielectric frame (x, y, z). The incident fundamental
electric field ~Ein

ω makes an angle θin
ω with the z-axis. θP and θA are the angles of the polarizer

(HWP) or analyzer (GTP) with the z-axis respectively.
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Figure 4.16 – Measured (a) and calculated (b) intensities analyzed as a function of the angle θA
of the fundamental beam at λω, at the output of the fiber for different input polarization angles
θin
ω . Fiber geometry: a = 2.19 µm and L = 642 mm.

- Fundamental beam polarization state Firstly, the intensity of the fundamental phase-
matched beam at λω ' 1550 nm is analyzed at the ouput of the fiber for different orientations
of the input polarization. The experimental results are shown in Figure 4.16(a). All angles are
expressed in the dielectric frame. Note that it has been carefully checked that the fiber was not
twisted around its revolution axis. Corresponding analytical calculations are shown in (b), and
explained just below.

Just behind the half-wave plate (HWP), the electric field vector of the fundamental wave is
written:

−→
E1 =

E0 sin
(
θin
ω

)
ei(ωt0−kx0)−→uy

E0 cos
(
θin
ω

)
ei(ωt0−kx0)−→uz,

(4.26)

where x0 and t0 can be taken as zero.
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It is then refracted in the fiber and propagates over a length L, which gives at the exit of
the fiber:

−→
E2 =

E0 sin
(
θin
ω

)
ei(ωt−2πL

λ
ny)−→uy = E0 sin

(
θin
ω

)
ei(ωt+∆ϕ)−→uy

E0 cos
(
θin
ω

)
ei(ωt−2πL

λ
nz)−→uz = E0 cos

(
θin
ω

)
eiωt−→uz,

(4.27)

where ∆ϕ = 2π
L

λ
(nz − ny) = ±2π

L

λ
∆n is the dephasing angle between the two components of

the electric field, and ∆n the birefringence.
Finally, behing the Glan-Taylor polarizor (GTP), the analyzed electric field is:∥∥∥−→E3

∥∥∥ = E0
[
cos

(
θin
ω

)
cos (θA) cos(ωt) + sin

(
θin
ω

)
sin (θA) cos(ωt+ ∆ϕ)

]
= E0

[
cos

(
θin
ω

)
cos (θA) + sin

(
θin
ω

)
sin (θA) cos(∆ϕ)

]
cos(ωt) (4.28)

− E0
[
sin
(
θin
ω

)
sin (θA) sin(∆ϕ)

]
sin(ωt).

We consider the corresponding intensity, I3 ∝
〈∥∥∥−→E3.

−→
E∗3

∥∥∥〉
T
. As

〈
cos2(ωt)

〉
T =

〈
sin2(ωt)

〉
T = 1

2
and 〈sin(ωt) cos(ωt)〉T = 0, it comes:

I3 = I0
[
cos2

(
θin
ω + θA

)
+ sin

(
2θin
ω

)
sin (2θA) cos2 (∆ϕ/2)

]
, (4.29)

with I0 the input intensity.
The expression (4.29) allows us to compute the behaviour in polarization of the beam at λω,

which is in very good agreement with the measurements as shown in Figure 4.16. Nevertheless,
we can notice that the calculated curves go down to zero, contrary to our experiment. This
discrepancy can be explained by a certain degree of inhomogeneity of the fiber leading to paths
where the anisotropy does not apply.

Let us focus on the particular case where the input polarization and analyzer are parallel,
i.e. θin

ω = θA. It comes from Equation (4.29):

I3 = I0
[
1− sin2

(
2θin
ω

)
sin2 (∆ϕ/2)

]
. (4.30)

The dephasing ∆ϕ is used as a fitting parameter that enables us to fit the data of Figure 4.14
as shown in the blue dashed curve. It is set to ∆ϕ ' 75° or 285°± 5° [360°].

Note that the birefringence ∆n is linked to this dephasing through the relationship:

∆ϕ = 2π

 L

λω
∆n+ q

 , q ∈ Z. (4.31)

It is yet impossible to infer it as q cannot be known.

- Third-harmonic beam polarization state We now turn next to the measurement of the
third-harmonic beam intensity at λ3ω = λPM

ω /3 as a function of the angle of the analyzer θA, for
different orientations of the input polarization of the fundamental beam at λω. Experimental
and calculation results are shown in Figure 4.17.

The understanding of this complex behaviour requires to know the relative magnitudes of the
coefficients of the third-order electric susceptibility tensor, which is presented below. It is then
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Figure 4.17 – Measured (a) and calculated (b) intensities of the third-harmonic beam analyzed
at the angle θA for different polarization angles θin

ω of the incoming fundamental beam. Fiber
geometry: a = 2.19 µm and L = 642 mm.
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necessary to know the orientation symmetry class of our uniaxial fiber. We make the assumption
that it belongs to the infinite group {A∞/m,∞m}, the infinite axis A∞ being along the z axis
of the dielectric frame. This symmetry group corresponds to the case of an isotropic medium
under an uniaxial strain [105]. Using the Neumann principle [25] and assuming the Kleinman
approximation, the non-zero nonlinear elements of the third-order susceptibility tensor are:

χxxxx = χyyyy

χzzzz

χxxzz = χxzxz = χzxxz = χzxzx = χzzxx = χxzzx = χyyzz = χyzyz = χzyyz = χzyzy = χzzyy = χyzzy

χxxyy = χxyxy = χyxxy = χyxyx = χyyxx = χxyyx = χxxxx/3.
(4.32)

The first index refers to the wave at 3ω, while the three last indices stand for the waves at ω.
The possible optical nonlinear interactions governed by such a tensor can be sorted into three

categories depending on the polarizations that are solicited for each of the interacting waves.
The corresponding effective third-order nonlinear coefficients defined in Equation (1.53) are
expressed as a function of eωy,z and e3ω

y,z, which are the Cartesian coordinates of the fundamental
and third-harmonic unit electric field projected onto the two neutral lines, i.e. the y and z axes.
It gives for all the possible types, written as a− bcd, the first label standing for the wave at 3ω
and the three others for the fundamental wave, where each label can be o or e (o for ordinary,
e for extraordinary) :

– type A: o− ooo and e− eeeχ
A1
eff = χyyyye

3ω
y

(
eωy

)3
= χyyyye

3ω
y sin3 (θin

ω

)
χA2

eff = χzzzze
3ω
z (eωz )3 = χzzzze

3ω
z cos3 (θin

ω

)
;

(4.33)

– type B: o− eee and e− ooo

χB
eff = 0; (4.34)

– type C: o− oee, o− eoe, o− eeo and e− eoo, e− oeo, e− ooe.χ
C1
eff = 3χyyzze3ω

y eωy (eωz )2 = 3χyyzze3ω
y cos

(
θin
ω

)
sin2 (θin

ω

)
χC2

eff = 3χzzyye3ω
z eωz

(
eωy

)2
= 3χyyzze3ω

z sin
(
θin
ω

)
cos2 (θin

ω

)
.

(4.35)

The intensities measured in the experiment presented in Figure 4.17 are projected on the an-
gle of the analyzer θA. Therefore, by integrating the corresponding coupled equations under the
undepleted pump approximation, we get the total third-harmonic intensity behind the analyzer,
i.e. :

Itot
(
θin
ω , θA

)
∝
[(
χA1

eff
)2

+
(
χC1

eff
)2
]

sin2 (θA) +
[(
χA2

eff
)2

+
(
χC2

eff
)2
]

cos2 (θA) . (4.36)

Note that the sum of the different processes A1, A2, C1 and C2 in Equation (4.36) is relative
to intensities and not to electric fields. Only this incoherent view (as opposed to coherent) can
account for the constancy of the position of the extrema of the output third-harmonic angles θ∗A
for all fundamental input angle θin

ω as observed experimentally in Figure 4.17 (a). Indeed:
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– for an incoherent scheme:
∂Itot

∂θA

∣∣∣∣∣∣
θ∗A

= 0⇒ θ∗A ≡ 0 or
π

2 [π];

– for a coherent scheme:
∂Itot

∂θA

∣∣∣∣∣∣
θ∗A

= 0

⇒ θ∗A ≡ arctan

 sin3 (θin
ω

)
+ 3β cos2 (θin

ω

)
sin
(
θin
ω

)
α cos3 (θin

ω ) + 3β sin2 (θin
ω ) cos (θin

ω )

− a [π], a ∈

0,
π

2

.

Because we cannot access any other direction of propagation than that corresponding to the
fiber axis, i.e. the x-axis of the dielectric frame, it is not possible to determine the absolute
magnitude of the different elements of the third-order electric susceptibility tensor of the fiber,
as it can be done in a bulk crystal [149]. However, from the measured polarization pattern of
Figure 4.17 and Equation (4.36), it is possible to access to the relations of order between the

tensor elements from the following ratii: α =
χyyyy

χzzzz
and β =

χyyzz

χzzzz
.

In order to reduce the uncertainty of the calculation, we work with integrated intensities Itot
int

over the output angles θA, for a particular fundamental orientation of the input polarization θin
ω .

They are:

Itot
int
(
θin
ω

)
∝

1
2π

ˆ 2π

0
dθAI

tot (θin
ω , θA

) (4.37)

⇔ Itot
int
(
θin
ω

)
∝ 1

2

χ2
yyyy sin6

(
θin
ω

)
+ χ2

zzzz cos6
(
θin
ω

)
+

9
4χ

2
yyzz sin2

(
2θin
ω

) . (4.38)

To get rid of the proportionnality constant, we consider the ratio between two integrated in-
tensities corresponding to two different fundamental input polarizations denoted as θin

ω and θ̃in
ω ,

which gives:

Itot
int
(
θin
ω

)
Itot

int

(
θ̃in
ω

) =
α2 sin6 (θin

ω

)
+ cos6 (θin

ω

)
+ 9

4β
2 sin2 (2θin

ω

)
α2 sin6

(
θ̃in
ω

)
+ cos6

(
θ̃in
ω

)
+ 9

4β
2 sin2

(
2θ̃in
ω

) (4.39)

⇔ α2

sin6
(
θin
ω

)
−

 Itot
int
(
θin
ω

)
Itot

int

(
θ̃in
ω

)
 sin6

(
θ̃in
ω

)+

cos6
(
θin
ω

)
−

 Itot
int
(
θin
ω

)
Itot

int

(
θ̃in
ω

)
 cos6

(
θ̃in
ω

)
+ 9

4β
2

sin2
(
2θin
ω

)
−

 Itot
int
(
θin
ω

)
Itot

int

(
θ̃in
ω

)
 sin2

(
2θ̃in
ω

) = 0. (4.40)

From this last equation, two experimental relative integrated intensities jointly with their fun-
damental angles are needed to infer the two unknown coefficients α and β. In other words, three
absolute integrated intensities are needed. Precisely, for θin

ω = 47° and 95°, and for θ̃in
ω = 17°,

we get
Itot

int
(
θin
ω

)
Itot

int

(
θ̃in
ω

) = 0.91 and 1.37 respectively. In the end, we get :α = 1.14

β = 0.50,
(4.41)
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Figure 4.18 – Representation of the orientation of the output polarization of the λω (in blue)
and λ3ω (in red) waves, for four different input linear polarizations of the fundamental beam:
7°, 37°, 67° and 95°.

with uncertainties ∆α ' ∆β ' 0.02. Equation (4.41) implies the following relations of order:

χyyzz < χzzzz < χyyyy. (4.42)

The numerical values (4.41) and analytical expression (4.36) are used to calculate the intensity
curves of the frame (b) of Figure 4.17. They enable a perfect description of the polarization
behavior observed experimentally in the frame (a), which validates our hypothesis of an uniaxial
fiber belonging the infinite group {A∞,∞m}.

Note finally that if the fundamental analyzed curves from Figure 4.16 do not go down to
zero intensity because of some inhomogeneity in the anisotropy, it should be also the case for the
third-harmonic analyzed curve. However, it is not the case in our experimental data as Figure
4.17 shows.

The results on the fundamental and third-harmonic polarization states at the output of the
fiber can be summarized schematically as in Figure 4.18. The corresponding electric fields Ein

3ω
and Eout

3ω , given for four different fundamental input linear polarizations, describe the blue and
red prints respectively in the plane tranverse to the x-axis. The relative magnitudes of the fields
Ein

3ω (resp. Eout
3ω ) are respected.

To finish on the polarization analysis, we can extract some more information on the graphs
4.16 and 4.17. In Figure 4.19 are shown the output angles for maximum output transmission at
λω and conversion efficiency at λ3ω with respect to the input polarization angles of the beam at
λω together with calculations.

In Figure 4.20, the integrated intensity of the third-harmonic beam I3ω is plotted as a function
of the input angle θin

ω of the fundamental beam, and compared to the analytical calculation. It
is clear that this result is in agreement with the order relation given by Equation (4.42) since
we have: E3ω

(
θin
ω = 45°

)
< E3ω

(
θin
ω = 0°

)
< E3ω

(
θin
ω = 90°

)
.

- Evidence of birefringence Figure 4.21 constitutes a direct proof of a small birefringence in
the fibers. It shows third-harmonic spectra for three different incident polarization configurations
of the fundamental beam, measured at the output of a 258mm-long fiber of core size a = 2.19µm
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Figure 4.19 – Output angles for maximum transmission of the wave at λω (in red) and a maximum
conversion efficiency of the wave at λ3ω (in black) with respect to the input polarization angle
of the fundamental wave at λω. Experimental data in symbols, calculations in solid lines. Fiber
geometry: a = 2.19 µm and L = 642 mm.
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Figure 4.20 – Normalized integrated third-harmonic intensity over the output angles as a function
of the input polarization angle of the fundamental beam. Dots correspond to experimental data
and the solid line to calculation. Fiber geometry: a = 2.19 µm and L = 642 mm.
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Figure 4.21 – Normalized spectra of the generated third-harmonic wave for various orientations
of the fundamental wave polarizations. Fiber geometry: a = 2.19 µm and L = 258 mm.

with a 0.1 nm-sensitive spectrometer. It is clear that the phase-matching wavelength shifts a
bit with respect to this incoming polarization, highlighting a birefingence: at θω = 0°, λ3ω =
516.9 nm, while at θω = 90°, λ3ω = 516.4 nm.

4.1.3.3 THG involving other modes than LP01 and LP03

The THG between the modes IGe
00 and IGe

40 that was previously considered is interesting since
it is phase-matched. But we experimentally identified many other mode configurations enabling
phase-matching. They are described in this section.

1. Third-harmonic spectrum The measurements of the third-harmonic spectrum are per-
formed using the experimental setup depicted in the frame C of Figure 4.6. Figures 4.22 and
4.23 show two spectra corresponding to the two core sizes a = 2.19 µm and a = 2.30 µm respec-
tively. The third-harmonic energy is averaged on time and on several acquisitions so as to reduce
the error due to the temporal fluctuations of the laser, the experiments being quite long. We
will show in the next subsection that the various peaks we can see involve different transverse
distributions for the third-harmonic beam.

The peak expected theoretically for the LP01/LP03 THG is found at a slightly higher wave-
length than the theoretical one, which may be explained by a core size a bit larger than expected
as it was already emphasized before:

– From Figure 4.22 (a = 2.19 µm): λexp = 1550 nm; λth = 1544 nm.

– From Figure 4.23(a = 2.30 µm): λexp = 1602 nm; λth = 1596 nm.

2. Transverse mode analysis We pictured the transverse distributions associated with the
third-harmonic peaks seen in Figure 4.22. The experiment is performed in the 64.2cm-long fiber
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Figure 4.22 – Normalized third-harmonic spectrum in the fiber with a core size a = 2.19 µm and
a length L = 64.2cm. Eω and E3ω are the fundamental and third-harmonic energies respectively.
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Figure 4.23 – Normalized third-harmonic spectrum in the fiber with a core size a = 2.30 µm and
a length L = 9.2 cm. Eω and E3ω are the fundamental and third-harmonic energies respectively.
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Figure 4.24 – Observed (A) and calculated (B) third-harmonic transverse intensity distributions.

with a core radius of 2.19µm using the setup described in frame A of Figure 4.6. Figure 4.24 (A)
exhibits experimental modes, while (B) corresponds to calculations. Those distributions can be
interpreted as Ince-Gauss modes as in Section 4.1.3.2, implying once more ellipticity in the fiber
core.

Table 4.6 gives the names of the modes presented in Figure 4.24: they are labeled as IGk
p,m,ε

where p and m are the order and degree respectively, ε the ellipticity, and k ∈ {o, e} stands for
odd and even; or HIGk

p,m,εwith k ∈ {+,−} in the case of helical beams.

The transverse field and phase distributions corresponding to the intensities shown in Figure

Mode
label a b c d e

Mode
name IGe

4,0,0.5 IGe
5,1,0.5 IGo

5,1,0.5 HIG±5,1,0.75 IGe
6,0,0.25

f g h i j

IGe
6,2,2 IGo

6,2,0.5
IGe

6,0,1
+iIGe

6,2,1
IGo

6,4,2 IGe
8,4,2

Table 4.6 – Designation of the transverse modes, as IGk
p,m,ε: p is the order, m the degree, ε the

ellipticity, and k ∈ {o, e,+,−} in the case of odd, even or helical beams.
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Figure 4.25 – Calculated third-harmonic transverse field (A) and phase (B) distributions.

Peak number 1 2 3 4 5 6 7

λω(nm) 1440 1454.5 1470 1473 1490 1501 1549

λ3ω = λω/3 (nm) 480 484.8 490 491 496.7 500.3 516.3

Transverse distribution c, g, h d, e, f, g c, f, i, j c, i, j b, i not
captured

a

Table 4.7 – Link between the various phase-matching wavelengths and the observed transverse
modes.

4.24 have also been computed. They are shown in Figure 4.25 (frame A for the modulus, frame
B for the phase). On Figure 4.26 are given the three-dimensional representations of these modes
for a better clarity of the signs.

Table 4.7 brings together Figures 4.22 and 4.24: it links the peaks of the third-harmonic
spectrum (labeled with numbers 1 to 7) to the modal distributions that are observed (labeled
with lower case letters a to j).

Lastly, we end this section by having a look at the effective interaction areas for the different
interaction configurations corresponding to Figure 4.22. They are defined in Equation (4.22).

Considering the fundamental Gaussian mode as the fundamental beam, the overlap integral
can be zero due to geometrical considerations [54, 55]. This is the case if the field F3ω changes
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Figure 4.26 – 3-dimensional representation of the calculated third-harmonic transverse field
distributions.

Modes
IG

Modes
LP

λc (µm)

IGe
0,0 LP01 none

IGe
2,0

IGe/o
2,2

LP02
LP21

1.50

IGe
4,0

IGe/o
4,2

LP03
LP22

0.82

IGe
6,0

IGe/o
6,2

LP04
LP23

0.57

Modes
IG

Modes
LP

λc (µm)

IGe/o
1,1 LP11 2.39

IGe/o
3,1 LP12 1.04

IGe/o
5,1 LP13 0.66

IGe/o
7,1 LP14 0.49

Modes
IG

Modes
LP

λc (µm)

IGe/o
3,3 LP31 1.12

IGe/o
5,3 LP32 0.68

IGe/o
7,3 LP33 0.50

Table 4.8 – Link between IG and LP modal distributions and corresponding cut-off frequencies
for a = 2.19 µm.

sign, and if the sum of its positive values equals the sum of its negative ones over the transverse
plane. For instance, the mode IGe

51 (mode b in Figure 4.24) cannot be generated from a funda-
mental Gaussian mode, their overlap integral reducing to zero. We stress that we indeed do not
deal with intensities here. Therefore, the understanding of each third-harmonic mode requires
to consider every transverse mode possible for the fundamental beam. Their existence relies on
the values of the cut-off frequencies that can be calculated for LP modes from Equation (1.94)
and the values of the normalized frequencies shown in Figure 1.12. The corresponding cut-off
wavelengths are listed in Table 4.8, and related to IG modes.

– For λω ≥ 1.5 µm (peak 7, i.e. mode a), only IGe
00 and IGe/o

11 exist.

– For 1.425 µm ≤ λω ≤ 1.5 µm (all other cases, 1 to 5, i.e. modes b to j), modes IGe
20 and

IGe/o
22 exist in addition to the previous ones.

The values of the effective interaction areas are summarized in Table 4.9. The symbol ∞ means
that the effective interaction area is infinite, hence the overlap integral zero.
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Modes at λω
Modes at λ3ω IGe

0,0 IGe
1,1 IGo

1,1 IGe
2,0 IGe

2,2 IGo
2,2

(a) IGe
4,0,0.5 931 ∞ ∞ � � �

(b) IGe
5,1,0.5 ∞ 103 ∞ ∞ ∞ ∞

(c) IGo
5,1,0.5 ∞ ∞ 87.5 ∞ ∞ ∞

(d) HIG±5,1,0.75 ∞ 160 123 ∞ ∞ ∞

(e) IGe
6,0,0.25 1.21× 104 436 ∞ 79.5 ∞ 5.23× 103

(f) IGe
6,2,2 1.24× 104 295 ∞ 191 ∞ 68.5

(g) IGo
6,2,0.5 ∞ ∞ 353 ∞ 71.7 ∞

(h) IGe
6,0,1

+iIGe
6,2,1

1.90× 104 ∞ ∞ 51.0 106 1.7× 103

(i) IGo
6,4,2 ∞ ∞ 304 ∞ 95.4 ∞

(j) IGe
8,4,2 1.78× 105 834 ∞ 5.23× 103 ∞ 871

Table 4.9 – Table of the effective interaction areas (in µm2) of each third-harmonic mode observed
experimentally with respect to the possible fundamental modes. For the fiber of core size
a = 2.19 µm.
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Figure 4.27 – Measured (symbols) and calculated (continuous lines) third-harmonic energies E3ω
as a function of the fundamental energies Eω, rescaled by the factor (λω/L)2, for the two types
of fiber (core sizes a = 2.19µm and a = 2.30µm) and different lengths and input wavelengths. α
is a fitting parameter accounting for misknowledge of some parameters. Calculations take into
account the polychromaticity of the pump beam.
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We see that each third-harmonic modal distribution we observed can be explained by a
fundamental wave that is allowed to propagate in the fiber. However, the fundamental beam
we used is supposed to be Gaussian and then it supports only the IGe

0,0 mode, even though its
transverse “quality” is quite poor as coming out from an OPO. It is also known that a large
number of modes can be excited if the beam size is not properly chosen, or if it is laterally or
angularly misaligned with respect to the fiber [185].

3. Energetic properties An energy graph for different modal configurations in various
fibers is presented on Figure 4.27. The third-harmonic energy E3ω plotted as a function of
the fundamental energy Eω is normalized by the factor

(
λ
c

ω/L
)2, so that all the curves can be

directly compared. The solid lines are analytical calculations with a polychromatic fundamental
beam based on Equation (4.21). The effective interaction area Seff is taken from the previous
calculations (Table 4.9). Reasonable fitting parameters α allow a good agreement with the
experimental data, and still account for a misknowledge of several parameters as the effective
indices, the nonlinear χ(3)

eff coefficient, or the input energy really consumed in the THG processes.

4. Polarization properties This last section gives qualitative behaviours of the polarization
of the waves. Some examples of modal distributions for two incident orientations of the polar-
ization of the fundamental beam

(
θin
ω

)
and two orientations of the analyzer (θA) are presented

in Table 4.10. It appears that the third-harmonic modes are elliptically polarized, sometimes
linearly polarized. In addition, they are not phase-matched for every input polarization. Indeed:

– at λω = 1440nm, the two fundamental input polarizations considered allow different modal
distributions (g or h) to propagate;

– at λω = 1470 nm, the four modes (c, f, i, j) do not exist for every input polarization, some
of them coexisting but being not identically polarized;

– at λω = 1549 nm, the corresponding third-harmonic mode is IGe
40 (a) whatever its input

polarization.

4.1.3.4 Interactions other than THG

THG is not the only nonlinear interaction occuring in our fibers. We give here a brief description
of the other phenomena that we observed.

Infrared spectra The spectrum of Figure 4.28 consists of different peaks. The highest one
corresponds to the incident wave. The others can be the result of a four-wave mixing process
(FWM) or Raman scattering (RS). Theses two interactions have been introduced in Section 1.1.3
of Chapter 1: the first one is radiative only, while the second one has a dissipative phononic
part.

The FWM interaction can be schemed as ωp + ωp → ω1 + ω2, ωp being the pump beam
frequency and ω1 and ω2 the down-converted frequencies, as depicted in Figure 4.29 (d). In
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λω (nm) θin
ω θA = −10° θA = 80°

1440
(#1)

−10◦

80◦

1470
(#3)

-10°

80°

1549
(#7)

-10°

80°

Table 4.10 – Examples of transverse distributions for two incident orientations of the polarization
of the fundamental beam, and two analyzing angles.
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Figure 4.28 – Example of an infrared spectrum for an input wavelength λ = 1549 nm in a fiber
with a core radius a = 2.30 µm (NIRQuest spectrometer).
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Stimulated 
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(a)  (b)       (c)        (d) 

Figure 4.29 – Energetic diagrams of Raman scattering (a to c) and four-wave mixing (d) pro-
cesses. Adapted from [186].

Figure 4.28, λp = 1549 nm, and λ1and λ2 take many values. For instance, λ1 = 1486.5 nm and
λ2 = 1616 nm; or λ1 = 1425 nm and λ2 = 1691 nm; and so on.

The energy conservation relationship is here fulfilled, i.e.:

∆E = 2~ωp − ~ω1 − ~ω2 ' 10−28 J, (4.43)

while the phase-matching relationship in the collinear case is not:

∆k =
1
c

[2neff(ωp)ωp − neff(ω1)ω1 − neff(ω2)ω2] ' 103 to 105 rad.m−1. (4.44)

Those latter calculations have been done for every transverse mode existing at those wavelengths,
with the available dispersion equations. As a consequence, FWM is not very likely to occur here.

Note that the “nonlinear” part of the effective indices, so far neglected, cannot compensate
the “linear” phase mismatch. To do so, a calculation of the total phase mismatch indicates that
a pump mean power higher than 1000 W would be needed.

We turn now to Raman scattering. Spontaneous Raman scattering is a bare non elastic
diffusion phenomena: the optical frequency is reduced via energetic transfert on the vibrational
modes of the medium, the phonons, of frequency Ω. They are optical phonons in the case of
Raman scattering, while they are acoustic phonons in the case of Brillouin scattering, their
energies being shorter as sketched in Figure 4.30. The outgoing photon is called “Stokes”, of
frequency ωS . The energetic relationship of this process goes by ωp → ωS + Ω.

The same process can happen with an “anti-Stokes” photon, of frequency ωAS > ωS , via the
relation ωp + Ω→ ωAS . Nonetheless, its probability is less important than the Stokes one since
that interaction needs the presence of a phonon to occur. Therefore the energies of the Stokes
ES and anti-Stokes EAS contributions obey EAS � ES .

Afterwards, the nonlinear phenomena of stimulated Raman scattering (SRS) can occur,
which can be seen as an amplification of the Stokes photon by coherent stimulation. This
is a χ(3) process, ruled by ωp + ωS → ωS + ωS + Ω. It is then possible to generate anti-
Stokes photons: this is the coherent anti-Stokes Raman scattering (CARS) process. As a result,
ωp+ωp → ωS +ωAS is still ocurring, hence satisfying the energy conservation equation as above.

142



4.1 THG and TPG in GeO2 : SiO2 optical fibers

Frequency ω 

ωp 

Raman 

Stokes anti-Stokes 

ωS ωAS 

Brillouin 
Rayleigh 

In
te

n
si

ty
 

Figure 4.30 – Sketches of Raman and Brillouin scattering spectra.
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Figure 4.31 – Generated wavelengths in the IR range as a function of the input wavelengths,
measured in a a = 2.19 µm fiber with a NirQuest spectrometer.

From our experimental data, the momentum conservation relationship is truly fulfilled if the
Raman momentum shift ranges between 250 cm−1 and 315 cm−1. This Raman shift is defined

as ∆k =
∆λ
λ2 , without the 2π factor as traditionally in spectroscopy. According to the literature

[111, 187, 188], the Raman shift is reported to equal 330 cm−1 to 440 cm−1 in fused silica
fibers. It is then actually highly possible that the many intense peaks experimentally observed
originate from RS processes. In addition, the experimental Stokes peaks are more intense than
the anti-Stokes ones, a particularity of this interaction since CARS only relies on SRS as stated
previously.

Figure 4.31 shows the various experimental generated wavelengths λout in the IR range as
the incoming wavelength λin is tuned. It is easy to check from the linear extrapolation of these
data that the energy conservation law is verified, and that the Raman shift lies around 300cm−1.

Visible spectra We give in Figure 4.32 two examples of spectra in the visible range. The
third-harmonic peak can be clearly seen at λ3ω = 515nm. Besides, an other peak appears as well,
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Figure 4.32 – Two examples of visible spectra, for an input wavelength λ = 1545 nm, in a
a = 2.19 µm fiber, taken with a RedTide spectrometer.
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Figure 4.33 – Generated wavelengths in the visible range as a function of the input wavelengths
(RedTide spectrometer), together with transverse clichés captured with a Edmund Optics cam-
era, in a a = 2.19 µm fiber.

more obviously on the second graph. This is also a THG signature, but arising from another
fundamental beam coming from down-conversion through Raman scattering, as just discussed
previously: λ′3ω = 530 nm = 1590

3 nm.
Finally, a bump around 900nm which origin has not been determined, comes out of the fiber

very wide and intense. Its temporal dynamics follows the one of the THG.

Figure 4.33 shows the experimental generated wavelengths λout and the corresponding trans-
verse distributions in the visible range as a function of the fundamental wavelengths λin. Several
modes are visible. It comes from the fact that the incoming wavelength generates other frequen-
cies in the IR through Raman processes. These frequencies are very likely to give birth to a
third-harmonic signal when positionned at a phase-matching frequency.
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4.1.4 Spontaneous TPG

The previous part devoted to THG allows us to define at best an intermodal spontaneous
degenerated TPG experiment. TPG being the reverse process of THG, the pump beam, at λ3ω =
516.5 nm, will have a LP03 modal distribution, while the triplet beam, at λω = 1549.5 nm, will
exhibit a LP01 distribution. This section gives theoretical estimates on the numbers of generated
triple photons in these conditions. They differ quite a lot from numbers reported elsewhere
[16, 119], but are in good agreement with other calculations [12, 109]. The present calculation
results in an extremely low generation rate, for the present experimental configuration. We
give insights to overcome the smallness of this conversion efficiency. The preparation of the
experiment is also the subject of this section.

4.1.4.1 Conversion efficiencies calculation

The quantum model derived previously in the group and presented in Section 2.2.1.4 allows us
to calculate the number of photons that can be generated in our fibers in the spontaneous TPG
regime. The expression of the spectral density is the term T4 of Equation (2.10), derived in
the case of an undepleted, classical and monochromatic pump. The δ function had not been
taken into account for the reasons mentioned in Section 2.2.1.4. As not spectrally restrictive,
the physical meaning of this characteristic time had been difficult to comprehend. Its absence
leaves the expression incorrectly dimensioned. However, its understanding becomes clear by
performing a full polychromatic calculation, which main ideas are done in the present section.

Analytical integral expression In the weak gain hypothesis, the resolution of the evolution
equation (1.132) of one of the triplet mode gives [16, 120]:

â1 (ω1, L) = â1 (ω1, 0)− i
¨

dω0

2π
dω2

2π Φ (ω0, ω1, ω2, L) â0 (ω0, L) â†2 (ω2, L) â†3 (ω0 − ω1 − ω2, L) ,
(4.45)

where Φ and Γ are defined in Equations (2.11) and (1.128) respectively, and reminded below:
Φ (ω0, ω1, ω2, L) = Γ (ω0, ω1, ω2)Lsinc

(
∆k(3)(ω0,ω1,ω2)L

2

)
e−i

∆k(3)
eff (ω0,ω1,ω2)L

2

Γ (ω0, ω1, ω2) =
~

4ε0c2Seff

√√√√ ω0ω1ω2 (ω0 − ω1 − ω2)
n (ω0)n (ω1)n (ω2)n (ω0 − ω1 − ω2)χ

(3)
eff (ω0, ω1, ω2) .

(4.46)

We consider the pump as classical, â0 → a0, and polychromatic. In the parametric fluorescence
regime, the spectral density of field 1 is written as:

n1 (ω1, L) = 〈01, 02, 03| â†1 (ω1, L) â1 (ω1, L) |01, 02, 03〉

=
˘

dω0

2π
dω2

2π
dω
′
0

2π
dω
′
2

2π Φ∗
(
ω
′
0, ω1, ω

′
2, L

)
Φ (ω0, ω1, ω2, L) |a0 (ω0, L)|2

× 〈01, 02, 03| â3
(
ω
′
0 − ω1 − ω

′
2, L

)
â2
(
ω
′
2, L

)
â†2 (ω2, L) â†3 (ω0 − ω1 − ω2, L) |01, 02, 03〉

⇔ n1 (ω1, L) =
¨

dω0

2π
dω2

2π |Φ (ω0, ω1, ω2, L)|2 n0 (ω0, L) . (4.47)
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The correspondance with the monochromatic pump can be performed by doing A0
(
ω
c

0, L
)

=ˆ
dωa0 (ω,L), i.e. A0

(
ω
c

0, L
)

=
∆ω
2π a0

(
ω
c

0, L
)
. ∆ω is the discretisation interval in frequency: it

is linked to the length of an unidimensional discretisation box, written L′, large in front of all

characteristic lengths of the physical problem, through ∆ω =
2πc
L′

[59]. Its numerical value is
not obvious to assign. Then Equation (4.47) becomes:

n1 (ω1, L) =
ˆ
dω2

2π |Φ (ω0, ω1, ω2, L)A0 (ω0, L)|2
2π
∆ω, (4.48)

with
2π
∆ω playing the role of the Dirac delta function, that cannot be put aside. Albeit Equations

(4.47) and (4.48) are equivalent, the first one is straightforward and does not involve any physical
complication.

Note that other processes can occur simultanously to TPG in the fiber, as it was the case
for THG. Self- and cross-phase modulations will have major contributions since they are always
phase-matched. Their effects are taken into account in the nonlinear part to the effective phase-
mismatch.

Numerical values We consider a GeO2 : SiO2 fiber with a core radius a = 2.19 µm and
a length L = 1 m. Because the spectral acceptance of the fiber is 104 nm.cm due to core size
fluctuations (see Section 4.1.3.2), the whole spectrum of the pump will be involved in the process
if its linewidth is smaller than 1 nm FHWM.

Based on Equation (4.22), the interaction between the modes LP01 and LP03 in this fiber
involves the large effective interaction area Seff = 931 µm2 (see Section 4.1.3.2). The laser pump
source delivers 10 ns pulses at 10 Hz. We consider that an energy E0 (516.4 nm) = 1 µJ enters
the fiber, which is of the order of magnitude of what was injected in the IR range for the THG
experiment described in Section 4.1.3. Finally, the third-order electric susceptibility is set at
2× 10−22 m2V−2 [30].

The application of Equation (4.47) gives the spectra shown in Figure 4.34, in the case of a
monochromatic pump (a) and a polychromatic pump of spectral wideness 1 nm FWHM (b). In
the second case which is more realistic, the spectral broadening is substantial. Naturally, both
cases lead to the same number of generated triplets: 4.70 × 10−8 photons per second. In the
insets are shown the pump spectra.

Note that in the LP description of weak guidance, the effective mode area equals Seff =
251 µm2. This big discrepancy makes the previous number of generated triplets increase by a
factor 13.8.

Comparison to works previously published To evaluate the validity of our calculation, a
comparison can be made with the one performed in the group of Alfred U’Ren [12, 109]. This
group suggests to perform a modal phase matching between a HE12 (LP02 for weak guidance)
mode at 532 nm and HE11 (LP01) modes at 1596 nm in a fused silica fiber with a core radius of

0.395 µm. The corresponding nonlinear parameter equals γ =
χ

(3)
eff ω0

4ε0c2n (ω0)Seff
= 19 (kmW)−1,
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(b) Polychromatic pump

Figure 4.34 – Field 1 spectral density spectrum for L = 1 m and E0 = 1 µJ. Pump spectral
density spectra are in the insets. Both calculations are performed with polychromatic pumps:
(a) ∆λFWHM = 0.01 nm that reduces to monochromaticity; and (b) ∆λFWHM = 1 nm.

which corresponds to Γ = 4.7×10−22 sm−1, from Equation (4.46). For a nonlinear susceptibility
of 2× 10−22 m2V−2, the effective interaction area equals Seff = 8.3 µm2, which is much smaller
than in our case. Their calculation is performed in a 10 cm-long fiber, with a laser of repetition
rate of 100 MHz delivering 2 nJ per pulse of 100 ps. It leads to the generation of 3.8 triplets per
second.

Applying our equation (4.47) to these particular values gives 0.29 triplets per second, i.e. a
discrepancy of one order of magnitude with the calculation of the U’Ren, which may be explained
by the fact that their effective indices are not known and have consequenlty been replaced by
ours.

The semi-classical resolution from S. Richard et al. states that a generation of 0.2 triplets
per second can be achieved in a 1 m-long fiber, with 1 W average power [119]. The modal
configuration is the LP01/LP03 largely discussed so far, in the a = 2.30 µm fiber. Our quantum
resolution leads to 2.61 × 10−3 triplets per second (1 per 6 minutes). Note however that an
average power of 1 W is much too high for our laser source as it would correspond to 0.1 J per
pulse.

Effective interaction area We come back here to the definition of the effective interaction
area Seff . In the case of cross-phase modulations (XPM) between LP01 and LP03 transverse
modes, we remind that SXPM

eff writes as:

SXPM
eff =

¨
R2
|F01 (~rt)|2 dS

¨
R2
|F03 (~rt)|2 dS¨

R2
|F01 (~rt)|2 |F03 (~rt)|2 dS

, (4.49)

with ~rt the transverse coordinate vector. This expression is different from the one involved for
TPG, i.e. from Equation (4.22). We remind that it indeed comes naturally from the coupled
equations in field amplitudes (see Section 1.3.3). Yet, it may seem physically acceptable that
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the overlap between the two modal configurations remains unchanged in the cases of TPG or
XPM as they precisely involve the same modes. This actually corresponds to a vision where the
intensities, and not the fields, are involved in Equation (4.22). In that case, SXPM

eff = 16.6 µm2.
The numerical application of Equation (4.47) with our experimental setup gives 1.47×10−4 triple
photons per second, i.e. 1 triplet every other hour. This number is four orders of magnitude
higher than the one arising from the calculation with Seff from Equation (4.22). It is still low, but
the detection of triplets should be achievable with the avalanche photodiode (APD) presented
afterwards in a subsequent section. Performing the experiment would then be the only way to
solve this question.

Outlook

– The easiest (but more expensive!) idea to generate enough triplets to be detected is to
use a high repetition rate laser. Energies coupled in the fiber will be of the order of the
nJ. With a 100 MHz repetition rate, the pulse duration of the source has to be of less
than the nanosecond. For instance, a number of 4.67× 10−3 triphotons per second can be
generated, i.e. 1 every 3.6 minutes, for 1 nJ of pump with 10 ps pulses at a repetition rate
of 100 MHz injected in a 10 cm-long fiber2.
It is also possible to use a continuous laser source. An equivalent number of triplets can
be generated with a 0.1 W average power in a 10 cm-long fiber. In that case, longer fibers
can be used.

– An alternative is to confine even more the electromagnetic field so that the overlap integral
increases, as in the theoretical proposal of Corona et al. Taking their effective interaction
area of 8.3µm2, with our 10Hz source and a fundamental energy of 1µJ leads to 5.89×10−4

triplets generated per second, i.e. 1 every 28 minutes.

– Increasing the interaction length over several meters would lead to a decrease of the ac-
ceptance as it can be seen in Figures 4.4b and 4.4d. In other words, all the pump photons
would not participate in the process.

– The incoming energy could as well be increased: the coupling efficiency may be improved
with an incoming beam geometry more suitable to the fiber.

– Lastly, materials with higher third-order nonlinear susceptibilities can be considered. This
is the case of the chacogenide family. The last section 4.2 is dedicated to them.

4.1.4.2 Towards the experiment

This section introduces the phase masks necessary for the preparation of the modal distribution
of interest, and the detection stage.

2It is indeed important to adapt the length of the fiber to about 10 cm in the picosecond regime because of
the temporal walk-off between the interacting waves (see Section 4.1.2).
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Figure 4.35 – Design of a phase mask for a conversion between LP01 and LP03 modes.

Phase masks In order to achieve the nonlinear interaction between the LP01 and LP03 modal
distributions, it is important to prepare the Gaussian pump beam generated by the OPO de-
scribed in Section 4.1.3.1 into a LP03 mode. To do so, a phase mask has been fabricated at
the Laboratoire de Photonique et Nanostructure of Marcoussis. It consists of a metallic layer
deposited as a ring on a glass plate as pictured in Figure 4.35.

Its transmission is either 1 (in the blue region) or −1 (in the gray region). The thickness e
of the metallic ring film is calculated so that the dephasing of the wave equals π for λ according
to:

e (λ) =
λ

2 (n (λ)− 1), (4.50)

where n is the refractive index of the deposited material. The mask geometry has been calculated
by Chen [185] by integrating the amplitude of the LP mode of interest over the transverse plane
and taking into account the transmission of the phase mask. The ratio between the inner and
outer radii Rin and Rout is given by:

Rin

Rout
= 0.414. (4.51)

Lastly, the modal interaction is optimized for a given waist of the optical beam Wopt before the
entrance of the fiber (i.e. after the focusing microsope objective), and for given radii Rin and
Rout if the mask is put at the waist position. The optimal values of these quantities are [185]:

Wopt = 2.20Wc

Rin = 0.541Wc

Rout = 1.31Wc,

(4.52)

where Wc is the caracteristic beam radius for our fiber, defined as Wc =

√
2
v
a, v being the

normalized frequency defined in Equation (1.85) and a the fiber core radius. Therefore, for
a fiber with a core radius of 2.19 µm and at λ3ω = 516.5 nm, the previous equations lead to
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Figure 4.36 – Transverse distributions of the LP03 mode generated through the phase mask:
without (a) and with (b) saturation. Calculated and experimental profiles in (c), corresponding
to (a).

Wc = 1.26 µm, Wopt = 2.77 µm, Rin = 0.68 µm and Rout = 1.65 µm. The optimal values before
the microsope objective can then be calculated knowing its magnification. Note also that LP03

is the strongest mode excited for W > 0.62Wc = 0.78 µm [185].
From an experimental point of view, it may be convenient to use a lens on a translation

stage in front of the mask so as to adapt the beam and mask sizes, and therefore find easily the
optimal coupling.

According to the theoretical work of [185], the mode conversion efficiency reaches 76.9% if
there is no transverse misalignement. The remainder is converted into other modes.

We have available phase masks with inner radii ranging from 50 to 500µm, by step of 50µm.
A transverse profile of the beam after propagation through a phase mask is shown on Figure
4.36a. Because the contrast of this picture makes the rings hard to see, Figure 4.36b presents
the same profile with more input power. A unidimensional section of the non-saturating picture
4.36a is presented as blue dots on Figure 4.36c. The calculation for the LP03 mode using
Equations (1.88) and (1.97) is shown in black dashed line. It does not explain that the minima
are not zeroes. Another calculation that takes into account two contributions, 90% of LP03 and
10% of LP01, is then performed because the conversion efficiency of the mask does not equal 1.
The corresponding curve is shown as the green solid line and is in better agreement with the
experimental data. We do not need to consider any other mode. The modal conversion efficiency
of our phase mask is then around 90%, much more than the 77% predicted by the theory. Note
that there is a drift on the left-hand side of the figure that is likely due to external light coming
from the environnement during the capture, and might as well be taken in consideration in the
calculations.
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Figure 4.37 – Experimental setup used for TPG.

Experimental setup The experimental setup is very similar to the one described in Section
4.1.3.1 for THG. The input beam is also generated from the quadratic OPO pumped by the
nanosecond Nd:YAG laser at 10 Hz, but here at λ3ω = 516 nm. The phase mask is inserted
before the focalizing microscope objective O1. At the output of the fiber, the beam is collected
in an aspherical lens L5,asph of focal length 1.45 mm. The fundamental and triplet waves are
spatially separated in a prism. Two filters connected to an avalanche photodiode (APD) are put
on the triplet beamline. The first one is a 6mm thick RG850 filter, AR coated at 1550 nm, that
absorbs any photon at λ < 850 nm that would come from the environment. The second filter
aims to remove frequencies that may perturbate the electronics of the detection. The beam is
then focused on the 2.5 × 3 mm2 chip of an APD with an aspherical lens of focal length 6 mm
put within the detector, so that its size on the chip is 16× 16 µm2. The smaller the focalisation,
the smaller the response time. The APD is put in a cryostat, cooled down with liquid nitrogen,
and put on two translation and a rotation stages. Its presentation is the subject of the next
subsection.

We have seen in Figures 4.32 from Section 4.1.3.4 that non-expected nonlinear processes were
generated, in addition to THG. This would be a serious issue here that parasitic generations
occur if their wavelengths are close enough to λω to be well separated by the prism. We therefore
checked with our usual infrared spectrometer that this is not the case, even though it is not as
sensitive as the APD.

Another filtering stage have been investigated as an alternative to the previous one. It
consists of splicing our fiber to another fiber which is monomode and then does not allow the
fundamental LP03 beam to propagate. This second fiber could be directly connected to the APD
chip. The fiber splicer has been lent us nicely by Olivier Arcizet from Institut Néel. This scheme
is depicted in Figure 4.38. It suffers from two major drawbacks. First, the mode conversion
efficiency through the phase mask does not reach 100%, so that the fundamental beam may
have a LP01 component that can propagate in the second fiber. In addition, some diffusion of
the visible light at the fibers splice has been evidenced by our experimental tests, which may be
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Figure 4.38 – Alternative setup for the filtering stage.

+ - 

n p Depletion layer 

E 

(a)

V 

I 
VBD 

avalanche 

zone 

(b)

Figure 4.39 – Schematic of an avalanche process in an APD (a). Current-voltage characteristics
(b). VBD stands for break-down voltage.

detrimental to our objective of keeping the correlations of the triplet state.

Avalanche photodiode The detector that we intend to use for this experiment is a HgCdTe
APD that has been specially developped by Johan Rothman and collaborators at CEA-LETI,
Grenoble, and mounted inside a cryostat with its electronic stages at Institut Néel by the pôle
Electronique and the pôle Cryogénie within a collaboration that started in 2013. Briefly, an APD
is a p-i-n junction on which is applied a high reverse bias voltage. This depletes of charge carriers
a region close to the junction interface. Then, the absorption of a photon by the material creates
an electron-hole pair. Due to the reverse external applied electric field, the electron (respectively
hole) drifts towards the n-doped (resp. p-doped) side of the junction. And because of the high
magnitude of the applied field, the electron (hole) can collide with an atom of the lattice and
ionize it, which results in a new generation of an electron-hole pair. The process grows in a
chain reaction, and the intensity becomes high enough to be detected [189]. Figure 4.39 gives
schematic representations of the avalanche process, and of the current-voltage characteristics.

In the Grenoble APD, the transit time of the carriers in the depletion layer is in the order
of 10 to 50 ps. The avalanche is stopped through a RC filter evacuation of these carriers. The
photon counting time resolution is then much smaller than the triplet production rate. This
events rate being lower than the repetition rate of our laser, the applied voltage on the p-i-n
junction could also be synchronized with the laser pulse emission so that the avalanche is reset
at each pulse.

This HgCdTe APD has several advantages compared with standard silicon or III-V semi-
conductor APD that we list here. Firstly, the gain increases exponentially without avalanche
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Figure 4.40 – Multiplication gain distributions for 1 and 2 photons events, and for a uniformaly
distributed dark current generation in the multiplication layer from [190].

break-down, which corresponds to exclusive electron multiplication [190]. Then, the excess noise
factor, defined as the ratio of the input / output signal to noise ratios, is close to unity and
enables a proportional photon counting. The number of photons arriving simultaneously at the
depletion layer is then distinguishable, as shown in Figure 4.40. This is the strength of this
APD for our goal of achieving triplet photons detection generated from parametric fluorescence
according to the extreme weakness of their number. In addition, an integration detection mode
is possible.

In addition, a low excess noise factor makes possible to discriminate our photonic events
from the non-amplified dark current. This dark current has no photonic origin but comes from
the generation of electron-hole pairs from the breaking of valence bonds thermally induced by
phononic vibrations. Some standard properties of HgCdTe are interesting as well, as its very
high internal quantum efficiency (collected electronic charges over incident detected photons)
close to unity.

A useless millimetric piece of APD substrate has been used to estimate its transmission
coefficient and optical damage threshold at 532 nm, i.e. around the pump phase-matching
wavelength. The transmission coefficient lies around 10−2 at that wavelength. The sample has
been put in the laser beam of growing energy, up to 33 ± 7 µJ. No damage has been identified
after half an hour.

4.1.5 Conclusion

In this section, THG and TPG in germanium-doped silica fibers were investigated. Although
their third-order nonlinear effective susceptibilities are slightly lower than that of the oxides
previously considered, fibers enable a strong confinement of the electromagnetic field over long
interaction lengths, and without any pollution by quadratic processes.

The fibers that we used are designed to enable a frequency-degenerated modal phase-matching
between the LP01 and LP03 transverse modes for the λω and λ3ω respectively. Because THG and
TPG exhibit the same phase-matching condition, and because TPG efficiency is much weaker
than THG, a full characterization of the fibers through THG is of prime importance for design-
ing at best TPG. The nonlinear contribution to the phase-matching is negligible for the incident
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energy range of the experiment.
Modal, spectral, energetic and polarization properties have been studied in fibers of core

radii a = 2.19 µm and 2.30 µm, in the nanosecond regime. The corresponding phase-matching
wavelengths that were measured are λω = 3λ3ω = 1550 nm and 1602 nm respectively. Due to
core size fluctuations, their spectral acceptance is as high as Lδλω = 104nm.cm. The transverse
distribution of the 3ω wave can be interpreted as a IGe

40 mode rather than LP03, pointing
out core ellipticity. The effective interaction area therefore equals 931 µm2. The experimental
conversion efficiency of the THG is quite low, of the order of 8 × 10−8. Anisotropy has been
highlighted through identification of neutral lines in the fiber and through a spectral shift of the
third-harmonic signal with respect to the incident fundamental polarization. The analysis of the
polarization states of the λω and λ3ω waves at the output of the fiber has enabled to conclude
that the fibers belong to the uniaxial optical class, and to determine the relative magnitude
between the three non-zero elements of the third-order susceptibility tensor.

Many other modal configurations for phase-matched THG have also been identified. The cor-
responding phase-matching wavelengths and interacting modes have been methodically studied.
The experimental energetic properties are in a good agreement with theoretical calculations.

In addition to THG, Raman scattering was also highlighted, leading to the generation of
many intense peaks in the infrared range.

Theoretical calculations for spontaneous TPG have been performed considering quantum
polychromatic fields in the undepleted pump approximation. They imply that 4.7×10−8 triplets
per second can be generated in 1 m-long fiber, in the case of the LP01/LP03 interaction and for
1 µJ/pulse of input fundamental energy (10 ns pulses, 10 Hz repetition rate). To increase this
generation rate, several options are possible: the use of either a high repetition rate or continuous
laser source, of smaller core size fibers or of nonlinear materials with higher nonlinearities.

As these options are not currently available at the lab, methods for producing non-Gaussian
beams and for filtering in preparation for single photon counting have been investigated. Phase
masks, necessary to perform the modal conversion between the modes LP01 and LP03 have been
tested, and their conversion efficiencies reach about 90%.

Nonetheless, several interpretations of the effective interaction area Seff lead to conversion
efficiencies with different from four orders of magnitude. It has not been possible to perform the
experiment in the framework of this thesis.
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4.2 Phase-matching properties of chalcogenide fibers

The last section of this manuscript deals with a theoretical study of THG and TPG in chalco-
genide photonic-crystal fibers (PCF) chosen because of their giant non-linearity. We perform
calculations so as to find couples of phase-matched wavelengths for a possible high efficiency
TPG experiment in the future. To do so, the knowledge of the effective indices for the propagat-
ing modes is required. This task is not as straightforward with PCF as it was with step-index
fibers. But we benefit here from the work done at ONERA-Palaiseau during the PhD of Claire
Alhenc-Gelas and Master’s degree of Laura Di Bianca in the team of Pierre Bourdon and Anne
Durécu. This work is based on fibers fabricated at the Laboratoire des Verres et Céramiques de
Rennes and at Laboratoire Interdisciplinaire Carnot de Bourgogne.

4.2.1 Chalcogenides photonic-crystal fibers

4.2.1.1 Properties of chalcogenides

The very high third-order nonlinear susceptibilities of chalcogenides (elements belonging to group
16 of the periodic table) is typically three orders of magnitude higher than that of oxides, as
already highlighted in Section 2.2.1.3 of Chapter 2. It means that the TPG efficiency can be
increased by six orders of magnitude compared to oxides. Table 4.11 gathers together third-order
nonlinear coefficients χ(3)

eff from nonlinear index n2 measurements reported in the literature. Note
that n2 here is nKerr from Section 3.1.3.2. Its conversion into χ(3)

eff is performed using Equation
(3.10) and the linear optical coefficients are from [44, 105].

However, an important limitation comes from their weak threshold of optical damage. Table
4.12 summarizes some measurements of surface damage thresholds reported in the literature,
with their experimental conditions. In the case of small laser repetition rates, the intensity
damage threshold of a material is inversely proportional to the square root of the pulse duration,
i.e. Ith ∝ 1/

√
τ . This empirical law is valid from nanosecond to picosecond pulse durations.

According to that, we find that the damage threshold of the chalcogenide fibers ranges between
300 and 1300 MWcm−2 in our experimental conditions (10 ns, 10 Hz).

The chalcogenide materials are also widely transparent, from the near infrared to about
20 µm, depending of their compositions. Figure 4.41 shows transmission spectra of millimetric
chalcogenide glasses (sulfide, selenide and telluride) compared to those of silica and fluorides
[199]. The typical attenuation is around 1 dBm−1 at 1.56 µm [191].

4.2.1.2 Photonic-crystal fibers

Geometry Motivated by achieving low-loss fibers for telecommunications, photonic-crystal
fibers, also called holey or microstructured fibers, have been introduced for the first time by P.
Kaiser and coworkers in 1973 [200]. Such fibers have really aroused interest in the community
since the work done by Jonathan Knight and collaborators in the mid-90s [201]. A PCF consists
of a core pure of a given material surrounded by air holes structured with a given symmetry.
The first chalcogenide PCF was reported in 2000 [202].
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Figure 4.41 – Transmission spectra in the IR range of various glasses of few mm thickness, from
[199].
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Figure 4.42 – MEB picture of an hexagonal array As2Se3 photonic fiber of geometric parameters
d = 3.3µm and Λ = 10µm, from [44] (a). Schematic representation and its equivalent step-index
fiber (b).

Figure 4.42a shows a hexagonal array of air holes embedded in As2Se3 [44]. Two relevant
geometrical parameters are pictured in Figure 4.42b: the diameter of the hole diameter d, and
the distance between two successive holes, or pitch of the hexagonal array, Λ.

Propagation We are considering a solid glass surrounded by air holes. In that case, the
guidance occurs through modified total internal reflection similarly to conventional fibers as the
effective index at the center of the fiber is higher than that of the surrounding air-material area
[203]. Note also that another kind of guidance is possible in PCF, for example in hollow core
PCF. In such fibers, the guidance is based on the photonic band gap effect: the light is confined
in the core since the periodic structure of the cladding index gives rise to a photonic band-gap
that forbid propagation in the cladding [204, 205].

Advantages Such fibers offer the possibility of having small core size, which intensify the
nonlinear phenomenon. Furthermore, the choice for the geometrical parameters d and Λ enables
to engineer the index of the cladding, hence the guiding properties, but also the desired phase-
matching conditions.

157



THG and TPG in optical fibers

A B C

As2S3 5.41 0.20 0.14
As2Se3 7.56 1.03 0.12

Table 4.13 – Cauchy coefficients for the As2S3 and As2Se3 glasses [211].

Fabrication process The main steps of fabrication of a PCF are the same as any conventional
step-index fiber. What differs is the realization of the preform. Different fabrication processes
of the preform have been proposed. A regular pattern of holes can be drilled in a chalcogenide
glass rod mechanically [206] or through ultrasonic impact grinding [207]. The pattern can
also be created by extrusion through a microstructured die under high temperature and high
pressure [207]. Lastly, the “Stack and Draw” fabrication technique can be used but leads to
high absorption losses: hollow capillaries are stacked together into a jacket tube, and drawn to
obtain a fiber [201, 202, 208].

4.2.1.3 Modelling of the photonic crystal fiber

As already mentionned before, the effective indices of the propagating modes neff are needed to
perform phase-matching calculations. Most accurate methods to get them are numerical, as the
finite element method (FEM). But because they are very time consuming, the results through
FEM only serve as a reference to improve an approximate method, referred to as effective index
method (EIM). It models the PCF as an equivalent step-index fiber, as pictured in Figure
4.42b. In this approximation, the core is constituted by the chalcogenide material and the
inhomogeneous cladding is replaced by an effective cladding [44, 209, 210]. The core refractive
index nco is therefore the one of the chalcogenide, and the effective cladding index neff

cl becomes
an homogeneous index which magnitude is lower than that of the core because of the presence
of the air holes. This modelling enables to obtain analytically this effective cladding index, as
well as the effective core radius aeff . We will not enter into all the details that constituted the
work done at ONERA, but give the necessary elements for the understanding of the model.

Core index The refractive index of the chalcogenide materials considered take the form of
the following Cauchy equation:

n (λ) =

√√√√
A+

B

λ2 +
C

λ4, (4.53)

with λ expressed in microns and the Cauchy coefficients given in Table 4.13.

Effective cladding index The guiding of a mode in the core of the fiber by total internal
reflection requires that Equation (1.80) is verified, i.e. kcl (ω) < β (ω) < kco (ω). Consequently,
kcl has to be the highest possible, otherwise β could take values that would authorise propagation
in the cladding. The mode corresponding to this cladding wavevector is referred to as the
fundamental space filling mode (FSFM), since it distributes its energy more in the glass than in
the air holes.

158



4.2 Phase-matching properties of chalcogenide fibers

The cladding is then replaced by a single material which refractive index is equal to the
effective index of the FSFM [210]. The FSFM having the same periodicity as the PCF, assumed
of infinite extension, the study of the cladding can then be restricted to an hexagonal cell
centered on an air hole, approximated by a circular cell of diameter Λ/2 [44]. The application
of the boundary conditions on the vectorial propagation equation for the electromagnetic field
on each cell limit (the derivative of the electric field vanishes) and on the air-glass interface
(continuity of the tangential components of the fields) leads to the following eigenvalue equation
[210]: P

′
1 (U)

UP1 (U) +
I
′
1 (W )

WI1 (W )

n2
c

P
′
1 (U)

UP1 (U) + n2
a

I
′
1 (W )

WI1 (W )

 =

 1
U2 +

1
W 2

(nFSFM
cl

)2
, (4.54)

with
P1 (U) = J1 (U)Y1 (u)− J1 (u)Y1 (U) . (4.55)

J and Y are first and second kind Bessel functions respectively; I is the modified Bessel function
of first kind; the prime symbol indicates a differenciation with respect to the argument; nc, na
and nFSFM

cl are the chalcogenide, air and FSFM cladding optical indices respectively; and u, U
and W fulfill: 

U = k0
d

2

√
n2
c −

(
nFSFM

cl
)2

W = k0
d

2

√(
nFSFM

cl
)2 − n2

a

u = k0
Λ
2

√
n2
c −

(
nFSFM

cl
)2
,

(4.56)

where k0 is the vacuum propagation constant.
The effective cladding index nFSFM

cl is deduced from the resolution of the eigenvalue equation
(4.54).

Effective core radius Various empirical formulae for the effective core radius aeff have been
proposed and validated for silica PCF up to 2.5 µm. They are listed below:

aeff = 0.64Λ Birks et al. [203]

aeff =
Λc1

1 + exp


d

Λ− c3

c2


Park and Lee [212]

aeff = Λ
5∑

i = 0

5∑
j = 0
j 6= i

mij

λ
Λ

i d

Λ

j Li et al. [213]

The coefficients ci and mij are optimized from the values reported for silica PCF. The
expression from Birks et al. is a first good approximation, but too simple to be accurate for a
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α1 β1 α2 β2 α3 β3 γ3

As2S3 -0.05113 0.7707 -0.2260 0.6505 -0.04471 0.04223 1.52
As2Se3 -0.03325 0.7603 -0.1383 0.6282 -0.003843 0.03853 1.51

Table 4.14 – Coefficients involved in the effective radius equation, for Λ = 5 µm.

wide variation of the wavelength. The proposition from Park and Lee increases the precision
of the method by taking into account the ratio d/Λ, but still do not describe the spectral
dependence. Lastly, the formula from Li et al. makes the error decrease by two orders of
magnitude and takes into account the spectral variations. However, 36 empirical coefficients
are required. Their optimisation is not very robust as they depend strongly on the material
considered, and m00 does not reduce to 0.64 of the Birks’ model as it is the case for silica PCF.
In addition, the optimized coefficients are not unique for each Λ value [214].

A refinement has been done at ONERA by taking into account a frequency dependence in the
model of Park and Lee, by comparison to the finite element method performed on the software
Comsol Multiphysics [214, 215]. The effective core radius becomes:

aeff =
Λc1 (λ)

1 + exp


d

Λ− c3 (λ)
c2 (λ)


, (4.57)

with 

c1 = α1
d

Λ + β1

c2 = α2
d

Λ + β2

c3 = α3

 d

Λ

2

+ β3
d

Λ + γ3.

(4.58)

The optimized coefficients are given in Table 4.14.

Modal effective indices The microstructured fiber being now replaced by a step-index fiber
of core index nco, cladding index nFSFM

cl and core size aeff , the development given in Section
1.3.2 of the first chapter applies and enables the knowledge of the effective indices neff according
to Equation (1.98).

This development rests on the continuity equation (1.91), obtained through a scalar resolu-
tion for weak guiding. This equation leads to the parameters u expressed as in Equations (1.96)
for the fundamental mode and (1.97) for the higher order modes. A vectorial resolution is also
possible, see e.g. [43, 212].

Validity of the model The whole model with the effective core radius from Equation (4.57)
has been compared by the group at ONERA to the Li and unmodified Park and Lee models
by comparison to the Comsol FEM [214]. The relative error on the fundamental mode effective
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4.2 Phase-matching properties of chalcogenide fibers

Figure 4.43 – Guidance regimes in a PCF, from [216]. (1) Mode spread in the cladding; (2)
confinement of the mode in the core; transition zone in pink.

index is of about 2 × 10−5 in As2S3 for Λ = 5 µm and d/Λ = 0.8, much below the error of the
non-modified Park and Lee model (3 × 10−4) but higher than the Li model (6 × 10−6). It is
however rather satisfactory as the coefficients are more robust than previously from one material
to another, and with the pitch parameter Λ.

It is suitable in this model to consider that the extension of the microstructure is infinite.
FEM calculations have shown that three hole rings are sufficient for the effective index to be
precise to 10−5 [214].

Lastly, Figure 4.43 shows that the wavelength has to be smaller than the pitch of the mi-
crostructure for the mode to be confined in the core and the present step-index fiber model to
be appropriate (see the zone 2) [216]. In addition, it is important for the coming calculations to
notice that d/Λ = 0.4 is the minimum value for achieving a multimode propagation [217].

4.2.2 Phase-matching condition and fiber design

With the previous model, we are now able to perform the phase-matching calculations for TPG
(or THG because it is the same from that point of view). The phase mismatch of the four
interacting waves, centered at the wavelengths λPM

0,1,2,3, is:

∆k(3)
eff

(
λPM

0 , λPM
1 , λPM

2
)

= 0 (4.59)

= 2π

nn0m0
eff

(
λPM

0
)

λPM
0

−
nn1m1

eff

(
λPM

1
)

λPM
1

−
nn2m2

eff

(
λPM

2
)

λPM
2

−
nn3m3

eff

(
1/λPM

0 − 1/λPM
1 − 1/λPM

2
)

1/λPM
0 − 1/λPM

1 − 1/λPM
2

 .
We neglect here at first the nonlinear term of the phase mismatch: the subsequent development
is then true for small enough incident powers, but we will come back to this approximation
later. The transverse distributions of the four interacting beams nimi, i ∈ {0, 1, 2, 3}, are only
restricted by their cut-off wavelengths. According to the transparency ranges of these materials,
it is reasonable to consider that the minimum value for the pump wavelength λPM

0 is 1.5 µm.
For the calculation, we use the indices data for As2S3 and As2Se3, and we can also play

with the two degrees of freedom Λ and d , with two constraints: λ < Λ on the one hand, and
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LP modes λc (µm)
LP01 none
LP11 6.82 µm

LP02,LP21 3.04 µm
LP03,LP22 0.902 µm

Table 4.15 – Cut-off wavelengths λc with a As2S3 fiber with Λ = 5 µm and d = 0.85Λ.

d/Λ < 0.4 for a monomode interaction or d/Λ > 0.4 for a multimode interaction on the other
hand.

Fundamental monomode interaction No solution arises from the consideration of an in-
teraction involving four LP01 beams, even with the flexibility that authorizes the setting of the
geometrical parameters.

Intermodal phase-matching Table 4.15 gives as an example the cut-off wavelengths in the
particular case where the indices are computed from a As2S3 fiber with Λ = 5µm and d = 0.85Λ.

Two sets of intermodal phase-matching solutions have been identified.

– The first one involves a LP21 pump around 1.96 µm and LP11 triplet beams around 6 µm
and non-degenerated in frequency. The interaction occurs in a As2S3 fiber with Λ = 5 µm
and d = 0.6Λ. However, the effective interaction area defined in Equation (1.100) is zero for
these modal distributions. This phase-matched configuration becomes therefore useless.

– The second set involves a LP02 pump and LP01 triplet beams in a As2S3 fiber with Λ = 5µm
and d = 0.85Λ. The corresponding phase-matching wavelengths are not degenerated either.
Several values are possible, e.g.:

λPM
0 = 1550.5 nm

λPM
1 = 4439 nm

λPM
2 = 4471 nm (A) ;

λPM
3 = 5102 nm


λPM

1 = 4540 nm

λPM
2 = 4530 nm (B) ;

λPM
3 = 4903 nm


λPM

1 = 4766 nm

λPM
2 = 4766 nm (C) .

λPM
3 = 4438 nm

(4.60)
We make sure that the step-index fiber model is appropriate, as λ < Λ, and that a
multimode interaction is possible since d/Λ > 0.4. This situation is interesting because
the effective interaction area is non-zero, and it involves frequencies in the mid-IR.

The phase-matching map is shown in Figure 4.44a: it represents the phase mismatch ∆k(3)
eff

as a function of the the wavelengths λ1 and λ2. The pump wavelength is fixed to λPM
0 =

1.55 µm, and λ3 can be found by applying the energy conservation relationship. ∆k(3)
eff = 0

means perfect phase matching. Note that the frequency-degenerated configuration is not
phased-matched for this set of geometrical parameters, for any pump wavelength.

Figure 4.44b is a close-up of the previous figure around one spectral range of interest. A,
B, and C spot the three previous particular phase-matching sets of wavelengths. A1 and
A2 are equivalent; likewise for dots B, and dots C.
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Figure 4.44 – (a) Phase-matching map: ∆k(3)
eff as a function of λPM

1 and λPM
2 ; λPM

0 = 1551 nm,
Λ = 5 µm and d = 0.85Λ = 4.25 µm. (b) Restricted spectral range. A1 and A2(resp. B1, B2 and
B3;C1,C2 and C3) are equivalent phase-matching sets of wavelengths.
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Figure 4.45 – Upper graphs: sinc2 (∆kL/2) for the pump wavelength fixed at λ0 = 1550.5 nm.
Lower graphs: cross-section at λPM

2 (B) = 4.53 µm.
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Figure 4.46 – Intensity acceptance for L = 10 cm (blue) and 50 cm (red).

The two surfaces of Figure 4.45 show the sinc2
(
∆k(3)

eff L/2
)
function for two fiber lengths:

10 cm (a) and 1 m (b). They represent the wideness of the spectral range of the emitted triple
photons. Below these graphs are plotted cross-sections for λPM

2 = 4.53 µm, part of the set of
phase-matching wavelengths B of Equation (4.60).

In As2Se3 fibers, the phase mismatch is decreasing when Λ decreases and/or d increases.
This is not really satisfactory as the pitch becomes of the order of the wavelength. We then
interrupt the investigation in this material since the model may not be relevant anymore.

Nonlinear contribution in the phase mismatch We have shown in Section 4.1.2 that the
nonlinear contribution to the phase matching ∆kNL in silica fibers was insignificant according
to the incident powers of our experiments. Here, albeit the optical damage threshold demands
to work with smaller powers in chalcogenide fibers, the nonlinear susceptibility is three orders
of magnitude above that of silica. It is therefore important to look at ∆kNL carefully.

The effect of the pump intensity on the total phase mismatch ∆kL +∆kNL can be calculated.
Depending on the materials, Section 4.2.1.1 tells us that the maximum intensity that can be used
ranges between 100 MWcm−2 and 1 GWcm−2. We consider here the interaction B of Equation
(4.46) with the linear phase-matching ∆kL truly fulfilled, i.e. ∆kL = 0. Figure 4.46 shows the
function sinc2 (∆kNLL/2) for L = 10 cm and 50 cm as a function of the pump intensity I0 up to
1 GWcm−2. In order to quantify the effect of the nonlinear term, we define an “acceptance in
intensity”, written LδI0 where δI0 is the full width of the sinc2 peak at 0.405 of the maximum.
It is actually the same definition as for any other acceptance, in terms of wavelength, angle or
temperature. We find LδI0 = 2.45 (GWcm−2)× cm. For instance, the triplet energy is reduced
by half due to the phase mismatch when working with a 50 cm-long fiber and an intensity of
44 MWcm−2.

With a 10ns laser source and the present chalcogenide fibers, the maximum intensities corre-
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spond to maximum energies ranging from Etot = 0.2µJ to 2µJ. By performing the calculation of
the total phase mismatch as in Section 4.1.2, one can recover perfect phase matching by shifting
the previous wavelengths by ∆λ1,2,3 (0.2 µJ) ' 0.48 nm to ∆λ1,2,3 (2 µJ) ' 4.64 nm and ∆λ0 =
∆λ1,2,3/3. The nonlinear effective susceptibility has been taken equal to χ(3)

eff = 10−19 m2V−2.
A tunable incident beam enables to do this.

4.2.3 Conclusion

A family of material with giant nonlinearities, the chacogenides, have been investigated in the
purpose of performing TPG. This prospective work leans on research done at ONERA-Palaiseau.
The fibers are As2S3 and As2Se3 photonic-crystal fibers, characterized geometrically by d, the
diameter of the holes, and Λ, the distance between two successive holes. The propagation
occurs through modified total internal reflection. An intermodal phase-matching between LP01

and LP02 transverse modes has been found in As2S3, for d = 4.25 µm and Λ = 5 µm. Several
non-frequency degenerated phase-matching wavelengths are possible: they range in between 4.5
and 5 µm for the triplet fields and equal 1.5505 µm for the pump. The consideration of the
nonlinear contribution to the phase-mismatch shifts them by a few nanometers.
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“It is not good to want a thing too much. It sometimes drives luck away.
You must want it just enough.”

– John Steinbeck, The pearl

Triple photons are three-particle states of light, strongly correlated, that belong to the GHZ
or W entanglement class. The correlations among these states differ from those of twins and
are truly non-classical, as highlighted for instance by their Wigner function that exhibits an
interference pattern and negativies. This makes them interesting objects of study for exploring
N -particle quantum states, more particularly in quantum optics. As twin photons have opened
up the doors of quantum information, triple photons might also have their own influence on this
field.

Over the recent years, several strategies have been used to generate triplets. The most
attractive is the direct splitting of a single photon of higher energy, through a third-order
optical interaction with a nonlinear media. More indirectly, they can also be created from
two successive second-order nonlinear interactions; or from the “quantum eraser” experiment of
coherent superposition of two twin photons for example.

This thesis deals with the direct generation of photonic triplets from a third-order nonlinear
optical interaction. It follows on from the work that began ten years ago by the experimental
demonstration of triple photon generation (TPG), seeded by two additional beams, in the team
of Benoît Boulanger in Grenoble. Such stimulation beams were actually needed to overcome the
extreme weakness of the conversion efficiency that makes direct TPG a challenge in the field
of nonlinear optics. However, these stimulation beams also concealed the correlations between
triple photons. Our objective was then obvious: enabling to perform an efficient generation
with as little stimulation as possible, ideally none. To do so, two experimental strategies were
adopted in the course of this work. Their goals are summed up as follows:

– 1. TPG in bulk crystals, in an OPO configuration. This would artificially increase the
length of the interaction, and consequently increase the conversion efficiency so as to be
able to to get rid of some stimulation photons;

167



Conclusion

– 2. TPG in optical fibers. Optical fibers present the advantage of confining the elecromag-
netic field in addition to making possible the use of long interaction length; furthermore, no
quadratic process, which conversion efficiencies are much higher than third-order processes,
can remain. Once again, it would therefore allow to get rid of the injection.

The contribution of this work of the two previous points 1. and 2. are summarized below.

1. Two anisotropic bulk crystals, KTP and rutile TiO2, have been investigated in free wave
or cavity configurations. These crystals enable TPG through a birefringent phase matching.

In KTP, spectral and energetic studies have been performed in the picosecond regime, still
with two injection beams. Our model with polychromatic fields successfully explained the exper-
imental results by taking into account a parasitic Kerr effect that modifies the phase-mismatch
and the beam geometries. It consequently comes to attenuate the TPG conversion efficiency
when the intensities are large enough.

For TiO2, a characterization of the phase-matching properties is done by the way of a third-
harmonic generation (THG) experiment for fundamental wavelengths ranging between 1836 nm
and 4449nm. It allows us to refine the dispersion equation of its refractive indices. The absolute
magnitude of the χ18 nonlinear coefficient has been determined; and its sign is opposite to that
of χ16. TPG phase-matching conditions have been calculated, but none of our experimental
attempts enabled us to demonstrate TPG in rutile TiO2, even with two stimulation fields. Some
of the refractive indices involved in the TPG process were actually not sollicitated during THG
experiment. This implies a prejudicial unaccuracy of them. Further work in this crystal should
either get a better estimate of these refractive indices, or perform TPG at higher wavelengths
with a suitable detection stage.

Finally, two proposals of a synchronously pumped OPO were considered theoretically, both
concerning KTP and TiO2. The OPO has to be pumped with a high repetition rate laser in
the picosecond regime. The first proposal is a mono-injected doubly resonant OPO. The second
one is a triply resonant OPO, without any injection: in that case, the cavity is without any loss
before the extraction at a desired time. The coherence properties of photons belonging to the
same triplet have not been studied here. It is an important point to care about, as correlations
are intended to be maintained.

2. Step-index germanium-doped silica optical fibers and chalcogenide PCF have been stud-
ied. An intermodal phase matching has been performed since these materials are isotropic.

The GeO2 : SiO2 fibers that we used, of core radii a = 2.19 µm or 2.30 µm, are designed to
enable a frequency-degenerated modal phase-matching between the LP01 and LP03 transverse
modes for the λω and λ3ω respectively. A full characterization of the fibers through THG has
been performed first for the two following reasons: their two corresponding phase-matching
conditions are strictly the same, and the conversion efficiency of THG is higher than that of
TPG. Their modal, spectral, energetic and polarization properties have been studied in the
nanosecond regime. The experimental phase-matching wavelengths are very close the calculated
ones. We pointed out fluctuations of the core size, ellipticity of the transverse section of the
core and anisotropy. This led respectively to a large spectral acceptance, which constitutes an
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advantage as longer fibers can be used; elliptical Ince-Gauss modal distributions, LP03 becoming
IGe

40, which results in a lower overlap of the incident LP modes; and a conversion efficiency that
can be maximized for a particular input fundamental polarization. The effective interaction area
is 60 times higher than the core surface.

This LP01/LP03 THG configuration is not the only interaction allowed in the fiber: other
modal configurations for phase-matched THG have also been identified and studied; lastly,
Raman scattering has been highlighted.

Quantum theoretical calculations for spontaneous TPG, i.e. the third-order parametric
fluorescence, in the case of the previous LP01/LP03 interaction have been performed and lead
to extremely low conversion efficiencies. For instance, 4.7 × 10−8 triplets/sec can be generated
in 1 m-long fiber, for 1 µJ/pulse of input fundamental energy (10 ns pulses, 10 Hz repetition
rate). This generation rate could be increased by using a high repetition rate or continuous
laser source, smaller core size fibers or of nonlinear materials with higher nonlinearities.

Phase masks enable to generate efficiently the non-Gaussian transverse profile LP03 of the
fundamental beam for TPG. Filtering has also been investigated. If one of the requirements for
increasing the TPG conversion efficiency mentionned above is met, the experimental realization
of TPG should be achievable with an APD that enables proportionnal photon counting with
integration over time. Such a detector will be soon available thanks to a collaboration with
Johan Rothman from CEA-LETI Grenoble.

Finally, the phase-matching properties for TPG in chalcogenides PCF, materials with a giant
nonlinearity, have been investigated. An intermodal phase-matching between LP01 and LP02

transverse modes is possible in As2S3, for a particular set of geometrical parameters of the PCF
(d = 4.25 µm, Λ = 5 µm). It leads to phase-matching wavelengths that equals 1550.5 nm for the
pump field, and that range in between 4.5 and 5µm for the triplet fields. This work is performed
in collaboration with the group of Pierre Bourdon at ONERA Palaiseau. The previous APD,
which transparency range covers the mid-IR, could be used for that configuration too.

Table 4.16 gives a summary of the present work and outlook by comparing the various config-
urations of generation of triple photons from parametric fluorescence that have been investigated
experimentally and/or theoretically.
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“Some” steps are still needed to achieve spontaneous TPG from direct cubic optical nonlinear
interaction. “Some” more steps will then be necessary to make it compatible with quantum
measurements. This is not an easy task, but it will then be possible to probe the coherence of
the triplet state and demonstrate its non-classical properties, for instance through coincidence
measurements or quantum tomography. Our collegues Kamel Bencheikh and Ariel Levenson
at Laboratoire de Photonique et Nanostructures in Marcoussis, and Nicolas Gisin and Hugo
Zbinden at Université de Genève would be happy to help.

One day then, many steps ahead maybe, these states might be part of quantum information
protocols.

Figure 4.47 – From Time magazine.
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Appendix A
Notation table

APD
CARS
CCD
CW
DFG
DROPO
EIM
FEM
FSFM
FWHM
EH
FWM
GHZ
GTP
HE
HIG
HWP
IG
IR
LG
LP
NA
OPA
OPG
OPO
PCF
PM
RS

Avalanche photodiode
Coherent anti-Stokes Raman scattering
Charge-coupled device
Continuous-wave
Difference-frequency generation
Doubly resonant optical parametric oscillator
Effective index method
Finite element method
Fundamental space filling mode
Full width at half maximum
Electric magnetic (hybrid)
Four-wave mixing
Greenberger-Horne-Zeilinger
Glan-Taylor prism
Magnetic electric (hybrid)
Helical Ince-Gauss
Half-wave plate
Ince-Gauss
Infrared
Laguerre-Gauss
Linearly polarized
Numerical aperture
Optical parametric amplificator
Optical parametric generator
Optical parametric oscillator
Photonic-crystal fiber
Phase matching
Raman scattering
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Notation table

SFG
SHG
SOSFG
SPM
SRS
TE
THG
TM
TOSFG
TPG
TROPO
XPM

Sum-frequency generation
Second-harmonic generation
Second-order sum-frequency generation
Self-phase modulation
Stimulated Raman scattering
Transverse electric
Third-harmonic generation
Transverse magnetic
Third-order sum-frequency generation
Triple photon generation
Triply resonant optical parametric oscillator
Cross-phase modulation

174



Appendix B
TPG phase-matching in rutile TiO2

In this appendix are shown the various birefringent phase-matching conditions for TPG in rutile
TiO2. The seven polarization configurations of the system (1.75) are computed. Two of the
three triplets wavelengths are spectrally degenerated so as to perform a bi-stimulation at first:

λ
(o)
0 → λ

(e/o)
1 + λ

(e/o)
2 + λ

(e/o)
2 ; (B.1)

(o) and (e) stand for ordinary and extraordinary polarized waves respectively. The pump wave-
length is taken as λ0 = 532 or 1064 nm, as a Nd:YAG laser that can be frequency-doubled is
intended to be used. These computations require the Sellmeier equations given in Equations
(3.33) and (3.34).

Existing solutions are represented in Figures (B.1) to (B.7), in the transparency range of the
crystal. Note however that the transmittance decreases drastically above 4.5 µm, as shown in
Figure (3.7).
The frames (a), (b) and (c) depict the phase-matching angle θPM with respect to the wavelengths
λ1, λ2 and the absolute value of the effective cubic nonlinear coefficient

∣∣∣χ(3)
eff

∣∣∣ respectively.
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Appendix C
Threshold intensities of the OPO
configuration

This present appendix gives the details of the calculations of the OPO threshold intensities given
in the section 3.3. The resolution is made with monochromatic fields.

C.1 Doubly resonant OPO

We consider the non-degenerate interaction, ω0 → ω1 + ω2 + ω3, mono-injected by the wave at
λ1. The coupled equations (3.47) are:



∂E0 (ω0, t)
∂t

=
∂E1 (ω1, t)

∂t
= 0

τcav
∂E2 (ω2, t)

∂t
= −T (ω2)E2 (ω2, t) + jκ (ω2)χ(3)

eff (ω0, ω1, ω2)LcavE0 (ω0, t)E∗1 (ω1, t)E∗3 (ω3, t)

τcav
∂E3 (ω3, t)

∂t
= −T (ω3)E3 (ω3, t) + jκ (ω3)χ(3)

eff (ω0, ω1, ω2)LcavE0 (ω0, t)E∗1 (ω1, t)E∗2 (ω2, t) ,
(C.1)

where all the notations are given in Section 3.3.2.1. In the undepleted pump approximation,
this system can be simplified into the following:


E0 (ω0, t) = E1 (ω1, t) = 0, ∀t

τcav
∂E2 (ω2, t)

∂t
= −T (ω2)E2 (ω2, t) + jκ (ω2)χ(3)

eff (ω0, ω1, ω2)LcavE0 (ω0, 0)E∗1 (ω1, 0)E∗3 (ω3, t)

τcav
∂E3 (ω3, t)

∂t
= −T (ω3)E3 (ω3, t) + jκ (ω3)χ(3)

eff (ω0, ω1, ω2)LcavE0 (ω0, 0)E∗1 (ω1, 0)E∗2 (ω2, t) .
(C.2)

Performing a derivation with respect to time and injecting the previous equations:

∂2
∣∣E2,3 (ω2, t)

∣∣
∂t2

+ (α2 + α3)
∂
∣∣E2,3 (ω2, t)

∣∣
∂t

+ (α2α3 − β2β3)
∣∣E2,3 (ω2, t)

∣∣ = 0, (C.3)

with the following notations to simplify the expressions:
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Threshold intensities of the OPO configuration


α2 = κ (ω2)χ(3)

eff (ω0, ω1, ω2)Lcav |E0 (ω0, 0)| |E1 (ω1, 0)| /τcav

α3 = κ (ω3)χ(3)
eff (ω0, ω1, ω2)Lcav |E0 (ω0, 0)| |E1 (ω1, 0)| /τcav

β2 = β3 = T (ω2,3) /τcav.

(C.4)

The resolution of (C.3) is straighforward:

∣∣E2,3 (ω2,3, t)
∣∣ =

1
r+ − r−

[
∂
∣∣E2,3 (ω2,3, t)

∣∣
∂t

∣∣∣∣∣
t=0

(
r+er

−t − r−er
+t
)

+
∣∣E2,3 (ω2,3, 0)

∣∣ (er+t − er
−t
)]

,

(C.5)
with

r± = −
1
2 (α2 + α3)±

1
2
√

∆,

and

∆ = (α2 + α3)2 − 4 (α2α3 − β2β3) .

The threshold condition (equality between gain and losses):

∣∣E2,3 (ω2,3, 0)
∣∣
th

= p (ω2,3)
∣∣E2,3 (ω2,3, τL)

∣∣
th
, (C.6)

with p defined in Equation (3.49) and τL the travelling time in the crystal. Therefore:

∣∣E2,3 (ω2,3, 0)
∣∣
th

=
p

r+ − r−

[
∂
∣∣E2,3 (ω2,3, t)

∣∣
th

∂t

∣∣∣∣∣
t=0

(
r+er

−τL − r−er
+τL

)
+
∣∣E2,3 (ω2,3, 0)

∣∣
th

(
er

+τL − er
−τL

)]
.

(C.7)

Combining Equations (C.7) and (C.2), we come up with the following matricial system:

 1−
p

r+ − r−
[(
r+ + α2

)
er
−τL −

(
r− + α2

)
er

+τL

] pβ2

r+ − r−
(
er

+τL − er
−τL

)
pβ3

r+ − r−
(
er

+τL − er
−τL

)
1−

p

r+ − r−
[(
r+ + α3

)
er
−τL −

(
r− + α3

)
er

+τL

]


·

(
|E2 (ω2, 0)|

th

|E3 (ω3, 0)|
th

)
= 0 ,(C.8)

where

[(
r+ + α2,3

)
er
−τL −

(
r− + α2,3

)
er

+τL

]
(C.9)

= e−(α2,3+α3,2)τL/2
[√

∆ cosh
(√

∆τL/2
)

+ (α3,2 − α2,3) sinh
(√

∆τL/2
)]
.

The determinant of the matrix in Equation (??) has to be nil for the solutions to be non-zero.
Then, after long calculations and the use of hyperbolic trigonometry, it comes:

1− 2pe−(α2+α3)τL/2 cosh
(√

∆t/2
)

+ p2e−(α2+α3)τL = 0. (C.10)

This second-order polynomial equations solve easily as:
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p = exp
(
− (α2 + α3) τL/2±

√
(α2 + α3)2 − 4 (α2α3 − β2β3)τL/2

)
. (C.11)

Replacing α2, α3, β2 and β3 of Equations (C.4) into (C.11), and electric fields into intensities

through I (ω,Z) =
1
2ε0cn (ω) |E (ω,Z)|2, we find Equation (3.48):

Ith
0 (ω0, 0) Ith

1 (ω1, 0) =
ε2

0c
2

4
n (ω0)n (ω1)[

χ
(3)
eff

]2 ×

∣∣∣∣∣τcav ln p (ω2,3)
(
κ
(
ω+

2
)

+ κ
(
ω−3
))

2τLLcavκ
(
ω+

2
)
κ
(
ω−3
) (C.12)

−

√√√√(τcav ln p (ω2,3)
(
κ
(
ω+

2
)
− κ

(
ω−3
))

2τLLcavκ
(
ω+

2
)
κ
(
ω−3
) )2

+
1

κ
(
ω+

2
)
κ
(
ω−3
)(T (ω2,3)

Lcav

)2
∣∣∣∣∣∣∣
2

.

C.2 Triply resonant OPO

We consider here the frequency-degenerated cubic nonlinear interaction ω0 → ωs + ωs + ωs

(ω0 = 3ωs) between a pump (0) and a signal (s) waves in the undepleted pump approximation
and at perfect phase-matching. The coupled equations in the spatial coordinates are:

∂E0 (ω0, Z)
∂Z

= 0
∂Es (ωs, Z)

∂Z
= iκ (ωs)χ(3)

eff (ω0, ωs, ωs)E0 (ω0, Z)E∗s (ωs, Z)E∗s (ωs, Z) .
(C.13)

Then: 
E0 (ω0, Z) = E0 (ω0, 0) , ∀Z
∂Es (ωs, Z)
[E∗s (ωs, Z)]2

= iκ (ωs)χ(3)
eff (ω0, ωs, ωs)E0 (ω0, 0) ∂Z.

(C.14)

For a round trip in the crystal of length L:

ˆ Es(ωs,L)

E
s
(ωs,0)

dEs (ωs, Z)
[E∗s (ωs, Z)]2

= iκ (ωs)χ(3)
eff (ω0, ωs, ωs)LE0 (ω0, 0) , (C.15)

which leads to

E∗s (ωs, L) =
1

1
E∗s (ωs, 0)− iκ (ωs)χ(3)

eff (ω0, ωs, ωs)LE0 (ω0, 0)

. (C.16)

The threshold condition for the signal wave can be written as:

Eths (ωs, 0) = Eths (ωs, RT ) , (C.17)

where RT stands for return trip. The losses are brought about by the Fresnel reflexion and the
transmission coefficients of the input and output mirrors:

Eth
s (ωs, RT ) = p (ωs)Eth

s (ωs, L) , (C.18)
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with p (ωs) =
√

(TF (ωs))4RA (ωs)RB (ωs) with the notations of Section 3.3.2.2. The expression
(C.16) together with the threshold condition (C.17) leads to:

Eth∗
s (ωs, 0) =

(TF (ωs))2√
RA (ωs)RB (ωs)

1
Eth∗
s (ωs, 0)

− iκ (ωs)χ(3)
eff (ω0, ωs, ωs)LEth

0 (ω0, 0)

, (C.19)

∣∣∣Eth
s (ωs, 0)Eth

0 (ω0, 0)
∣∣∣ =

1− (TF (ωs))2√
RA (ωs)RB (ωs)

κ (ωs)χ(3)
eff (ω0, ωs, ωs)L

. (C.20)

Then, in intensities:

Ith
p (ω0, 0) Ith

s (ωs, 0) =
1

4π2ε
2
0c

2n (ω0)n3 (ωs)
(

λs

χ
(3)
eff (ω0, ωs, ωs)L

)2

(C.21)

×
(

1− (TF (ωs))2√(1− TA (ωs)) (1− TB (ωs))
)2
.
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Appendix D
Form of the nonlinear component of
the effective phase mismatch

In order to simplify the equations, we assume here that all electric fields are monochromatic with
no loss of generality as for the purpose of this appendix: determining the form of the nonlinear
component of the effective phase mismatch. We also compact the notations by writting the
fields: Ej = Ej (X,Y, Z, ωj) = Aj (Z, ωj)F j (X,Y, ωj), j ∈ {0, 1, 2, 3}.

The coupled equations that rule the evolution of the fields for a cubic interaction of type A,
together with self- and cross-phase modulations are the following:



∂E0
∂Z

= i
Γ0

2 |E0|
2E0 + iΓ0

[
|E1|

2 + |E2|
2 + |E3|

2
]
E0 + iΓ0E1E2E3e

−i∆k(3)
L Z

∂E1
∂Z

= i
Γ1

2 |E1|
2E1 + iΓ1

[
|E0|

2 + |E2|
2 + |E3|

2
]
E1 + iΓ1E0E

∗
2E
∗
3e

+i∆k(3)
L Z

∂E2
∂Z

= i
Γ2

2 |E2|
2E2 + iΓ2

[
|E0|

2 + |E1|
2 + |E3|

2
]
E2 + iΓ2E0E

∗
1E
∗
3e

+i∆k(3)
L Z

∂E3
∂Z

= i
Γ3

2 |E3|
2E3 + iΓ3

[
|E0|

2 + |E1|
2 + |E2|

2
]
E3 + iΓ3E0E

∗
1E
∗
2e

+i∆k(3)
L Z

, (D.1)

where ∆k(3)
L is here the “linear” contribution to the phase-mismatch (see Section 1.3), and

Γj =
ωj

2n (ωj) c
χ

(3)
eff ({ωj,k,l,m}) , (D.2)

with {j, k, l,m} ∈ {0, 1, 2, 3}; n the optical index and χ(3)
eff the effective cubic susceptibility. The

Kerr contribution (or SPM) is in blue, the XPM contribution in green and the TPG one in red.

We decompose the electric fields into their longitudinal and transverse components, and
integrate over the transverse plane. It comes:
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

∂A0
∂Z

= i

 Γ̃0

2 |A0|
2 + Γ̃01 |A1|

2 + Γ̃02 |A2|
2 + Γ̃03 |A3|

2

A0 + iΓ̃0123A1A2A3e
−i∆k(3)

L Z

∂A1
∂Z

= i

 Γ̃1

2 |A1|
2 + Γ̃01 |A0|

2 + Γ̃12 |A2|
2 + Γ̃13 |A3|

2

A1 + iΓ̃1023A0A
∗
2A
∗
3e

+i∆k(3)
L Z

∂A2
∂Z

= i

 Γ̃2

2 |A2|
2 + Γ̃02 |A0|

2 + Γ̃12 |A1|
2 + Γ̃23 |A3|

2

A2 + iΓ̃2013A0A
∗
1A
∗
3e

+i∆k(3)
L Z

∂A3
∂Z

= i

 Γ̃3

2 |A3|
2 + Γ̃03 |A0|

2 + Γ̃13 |A1|
2 + Γ̃23 |A2|

2

A3 + iΓ̃3012A0A
∗
1A
∗
2e

+i∆k(3)
L Z

,

(D.3)
with

Γ̃j = Γj
F2
j

Aeff j
, (D.4)

Γ̃jk = Γj
F2
k

SXPM
eff j,k

,

Γ̃jklm = ΓjfjklmF−1
j FkFlFm,

and Aeff j, SXPM
eff j,k, fjklm and F defined in Equations (1.99), (1.104), (1.100) and (1.108) respec-

tively.

D.1 Triplet photon generation

In the case of triple photon generation, we work under the following hypotheses:
- the pump field is strong so that the undepleted pump approximation holds;
- consequently, the pump field is stronger than the triplet fields.

Therefore:
- for the evolution of the pump field 0: only the SPM contribution is considered;
- for the evolutions of fields 1, 2 and 3: SPM for triplet fields on themselves are neglected,

as well as XPM between one triplet field and another triplet field.
It comes: 

∂A0
∂Z

= i
Γ̃0

2 |A0|
2A0

∂A1
∂Z

= iΓ̃01 |A0|
2A1 + iΓ̃0123A0A

∗
2A
∗
3e

+i∆k(3)
L Z

∂A2
∂Z

= iΓ̃02 |A0|
2A2 + iΓ̃0123A0A

∗
1A
∗
3e

+i∆k(3)
L Z

∂A3
∂Z

= iΓ̃03 |A0|
2A3 + iΓ̃0123A0A

∗
1A
∗
2e

+i∆k(3)
L Z

. (D.5)

It is of prime importance to note that the Kerr effect (SPM) and XPM may change the
phase-matching properties as it has been seen in Section 3.1.3, but do not change the intensity
of each field as the corpuscular schematics make it clear. It is then possible to evaluate their
effect on the phase mismatch by solving the equations without the triplet terms (in red) at first,
and then considering their contribution as a modulation of the triplet part.
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Then, the consideration of the phase modulation term alone in the equations gives:

∂Aj

∂Z
= iΓ̃ |A0|

2Aj , (D.6)

for j ∈ {0, 1, 2, 3}, with Γ̃ ∈

 Γ̃0

2 , Γ̃0j

, which is easily solved as:

Aj(Z) = Aj(0)eiΓ̃|A0|
2
Z . (D.7)

The modulation of the phase of the electric fields induced by the SPM and XPM processes
(hence their names) is included in the full system of Equations (D.5), i.e. the substitution
Aj(Z)→ Aj(Z)eiΓ̃|A0|

2
Z is performed. It gives:

∂A1
∂Z

= iΓ̃0123A0A
∗
2A
∗
3e

+i∆k(3)
totZ

∂A2
∂Z

= iΓ̃0123A0A
∗
1A
∗
3e

+i∆k(3)
totZ

∂A3
∂Z

= iΓ̃0123A0A
∗
1A
∗
2e

+i∆k(3)
totZ

, (D.8)

with
∆k(3)

tot = ∆k(3)
L +

 Γ̃0

2 −
(
Γ̃01 + Γ̃02 + Γ̃03

) |A0|
2 . (D.9)

The pump power is expressed as:

P0 =
1
2nε0c |A0|

2 , (D.10)

as the integral over the transverse plane has already been performed previously. In the end, the
total phase mismatch takes the form already presented in Equation (1.105):

∆k(3)
tot = ∆k(3)

L + ∆k(3)
NL

= ∆k(3)
L + [γ0 − 2 (γ01 + γ02 + γ03)]P0, (D.11)

where

γj =
ωjχ

(3)
eff

2ε0c2n2 (ωj)Aeff j
,

γjk =
ωjχ

(3)
eff

2ε0c2n (ωj)n (ωk)Seff j,k
. (D.12)

D.2 Third-harmonic generation

In the case of third-harmonic generation, the signal (p) and pump (s) fields interact through the
energy law: ωp + ωp + ωp → ωs. The coupled equations are therefore:
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Form of the nonlinear component of the effective phase mismatch



∂As

∂Z
= i

 Γ̃s
2 |As|

2 + Γ̃sp
∣∣∣Ap∣∣∣2

As + iΓ̃sppp
[
Ap

]3
e−i∆k

(3)
L Z

∂Ap

∂Z
= i

 Γ̃p
2
∣∣∣Ap∣∣∣2 + Γ̃ps |As|2

Ap + iΓ̃psppAs
[
A∗p

]2
e+i∆k(3)

L Z

, (D.13)

By comparing the orders of magnitude of the different terms, we see that the Kerr effect of the
signal vanishes on the signal equation, and that only the Kerr component remains in the pump
equation: 

∂As

∂Z
= iΓ̃sp

∣∣∣Ap∣∣∣2As + iΓ̃sppp
[
Ap

]3
e−i∆k

(3)
L Z

∂Ap

∂Z
= i

Γ̃p
2
∣∣∣Ap∣∣∣2Ap

. (D.14)

Then, integrating the pump equation and substituting its solution into the signal one, we have:

∂As

∂Z
= iΓ̃sppp

[
Ap (0)

]3
e−i∆k

(3)
totZ , (D.15)

with

∆k(3)
tot = ∆k(3)

L +

3
Γ̃p
2 − Γ̃sp

 ∣∣∣Ap∣∣∣2 , (D.16)

or equivalently
∆k(3)

tot = ∆k(3)
L + ∆k(3)

NL (D.17)

= ∆k(3)
L + [3γp − 2γsp]Pp.

Besides, the integration of Equation (D.15) is straightforward, and gives:

As(Z) = iΓ̃sppp
[
Ap (0)

]3
Zsinc

(
∆k(3)

totZ/2
)
e−i∆k

(3)
totZ/2 (D.18)
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Appendix E
Résumé en français

Cette thèse porte sur la génération de triplets de photons par interaction paramétrique optique
non linéaire du troisième ordre avec la matière solide.

Un triplet de photon, ou plus simplement triplet, est un état à trois particules fortement
corrélées. La manière la plus directe de générer un tel état est offerte par l’optique non linéaire
du troisième ordre, i.e. par le couplage entre quatre ondes électromagnétiques. La vision
corpusculaire de la lumière en donne une interprétation simple : un photon se sépare en trois
photons d’énergies moindres, un triplet, pendant son interaction avec le milieu non linéaire.
L’énergie est alors conservée. Le couplage entre la lumière et la matière se fait à travers la
susceptibilité électrique du troisième ordre. Le milieu d’interaction est traditionnellement un
cristal, puisqu’il permet de réaliser la conservation du moment linéaire, ou condition d’accord
de phase du point de vue de l’optique ondulatoire. La forte cohérence de l’état ainsi généré
s’explique par le fait que les trois photons sont créés simultanément du même photon “parent”.

Ce phénomène est analogue à celui qui conduit à la génération de photons jumeaux par
interaction non linéaire du second ordre. L’apparition des photons jumeaux dans les années 1970
a été au cœur de nombreux développements dans le domaine de l’optique quantique, comme par
exemple pour la démonstration de la violation des inégalités de Bell [1]. Aujourd’hui, ils sont
des briques de base fondamentales à l’information quantique. Les triplets de photons pourraient
éventuellement également être impliqués dans cette histoire. Ils pourraient par exemple être
utilisés dans des protocoles de paires annoncées [2], dans lequel un des trois photons annonce
les deux autres, formant alors une paire. Mais les motivations pour générer des états avec cette
intriguante propriété d’intrication sont avant tout purement fondamentales : leur caractère
non classique est différent de celui des états jumeaux, et leur génération est un réel challenge
expérimental [3–14].

La première démonstration expérimentale de génération de triplets de photons (TPG, de
l’anglais “triple photon generation”) a été réalisée dans notre groupe à Grenoble en 2004, dans
une configuration légèrement différente de celle qui a été décrite plus haut [13]. Deux autres
faisceaux étaient en effet utilisés pour stimuler le processus, et ainsi augmenter la probabilité de
générer des triplets, comme représenté sur la Figure E.1. La génération spontanée, c’est-à-dire
sans stimulation, est appelée fluorescence paramétrique du troisième ordre et n’a aujourd’hui
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encore jamais été démontrée expérimentalement. Son efficacité de conversion est en effet ex-
trêmement faible dans les cristaux massifs puisque les ondes ne sont pas étroitement confinées,
et cela malgré des intensités incidentes importantes, de l’ordre de 100GWcm−2 [15]. Néanmoins,
il a été démontré que le nombre important de photons de stimulation cache les corrélations entre
triplets [16] (voir Figure E.2).

Etat de l’art de la génération de triplets de photons (1)

Figure E.1 – Génération bi-injectée de triplets de photons.
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(a) N2,3 = 107 ph/pulse
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(b) N2,3 = 5× 107 ph/pulse
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(c) N2,3 = 2× 108 ph/pulse

Figure E.2 – Spectres de recombinaison pour différents niveaux d’injection par les champs 2 et 3,
dans le régime de bi-stimulation. Deux cristaux de KTP usinés selon l’axe x sont utilisés pour la
génération ainsi que la recombinaison, avec des longueurs respectives de 10 et 0.1 mm. La densité de
puissance de la pompe monochromatique à 532 nm est égale à 25GWcm−2 (4×1013 photons/pulse).
Le pic de Dirac, signature quantique des corrélations, est masqué lorsque le niveau d’injection est
trop élevé. Adapté de [120].

Il est donc important de trouver une configuration qui permette de générer des triplets de
photons efficacement, avec peu de photons d’injection, voire aucun, pour conserver la cohérence
de cet état. Le but de ce travail est précisément de répondre à ce besoin en étudiant deux
stratégies des points de vue expérimentaux et théoriques. La première stratégie traite de la TPG
dans des cristaux massifs. Ces cristaux pourraient alors être placés en cavité pour augmenter
artificiellement la longueur d’interaction. La seconde se concentre sur la TPG dans des fibres
optiques, de sorte que non seulement la longueur d’interaction est importante, mais qu’également
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le champ électromagnétique est bien plus confiné, entraînant des intensités générées plus grandes.
Un dernier avantage des fibres isotropes réside dans le fait qu’aucun processus du second ordre
ne peut venir polluer la TPG.

Nous résumons ici par chapitre les travaux exposés dans ce manuscrit.

Le chapitre 1 donne les éléments de théorie nécessaires à la compréhension de ce travail.
Le sujet est introduit par des notions générales d’optique paramétrique classique, en champs
électromagnétiques polychromatiques. Il est montré que toute interaction non linéaire satifait
les conditions de conservation de l’énergie et du moment linéaire (ou accord de phase). Une
attention particulière est portée à la maximisation du coefficient effectif non linéaire et des
recouvrements spatial et temporel.

Ces considérations générales sont ensuite adaptées aux cas spécifiques de l’optique cristalline
d’une part, et de l’optique des fibres d’autre part. Dans ces deux cas, deux types d’accord de
phase différents peuvent être réalisés : un accord de phase par biréfringence dans le premier cas,
et un accord de phase intermodal dans le second.

Enfin, les états étudiés ne pouvant être compris complètement avec une vision classique, des
bases d’optique quantique sur les interactions non linéaires sont données.

Le chapitre 2 donne les motivations quant à l’étude des états triplets de photons. Il fait
également un état de l’art sur la génération et les études de corrélations de tels états, avant de
rappeller une nouvelle fois nos stratégies.

Les triplets de photons sont des états de la lumière à trois particules, étroitement corrélés, qui
appartiennent aux classes d’intrication GHZ [78] ou W [10]. Ces corrélations sont différentes de
celles des photons jumeaux et non classiques, comme en témoignent par example les négativités
et les motifs d’interférences de leur fonction de Wigner représentée Figure E.3. Les triplets
sont donc des objects intéressants pour l’exploration de la mécanique quantiques des états à N -
particules, N > 2, et plus particulièrement pour l’optique quantique. Ils pourraient également
être le support de nouveaux protocoles d’information quantique.

Ces dernières années, différentes stratégies ont été utilisées pour générer des triplets de pho-
tons. La plus attirante, mais la plus difficile expérimentalement, est la génération directe : la scis-
sion spontanée d’un photon en trois photons d’énergies moindres, par interaction paramétrique
optique d’ordre trois avec un milieu non linéaire. Différents matériaux non linéaires ont été
étudiés. Plus indirectement, ces triplets peuvent aussi être créés par deux interactions succes-
sives du deuxième ordre (Figure E.4b) [14] ; ou via l’expérience de “gomme quantique” basée
sur la superposition cohérente de deux paires de photons par exemple (Figure E.4a) [6].

L’état des recherches actuelles sur l’étude des corrélations des états triplets, par recom-
binaison dans un second milieu non linéaire, par tomographie quantique ou par mesures de
coincidences, est enfin donné.
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Etat de l’art de la génération de triplets de photons (2)

Figure E.3 – Distribution de Wigner de l’état triplet dégénéré en fréquence et en polarization, dans
l’espace des quadratures du champ électrique. D’après [3].

(a) Source d’intrication à trois particules, d’après [122]. (b) Génération de triplets de photons par cascades
quadratiques , d’après [14].

Figure E.4 – Protocoles indirects de générations de triplets de photons.

Nous rappelons dans ce chapitre que cette thèse porte sur la génération directe de triplets
de photons par interaction non linéaire optique d’ordre trois. Elle se situe dans la continuité de
travaux qui ont commencé il y a dix ans par la première démonstration expérimentale de TPG,
stimulée par deux faisceaux additionnels, dans l’équipe de Benoît Boulanger à Grenoble. De
tels faisceaux de stimulation étaient en effet nécessaires pour surmonter l’extrême faiblesse du
rendement de conversion qui fait de la TPG directe un défi en optique non linéaire. Cependant,
ces faisceaux de stimulation eurent également pour conséquence de masquer les corrélations
entre photons d’un triplet. Notre objectif est donc évident : permettre une génération efficace
avec aussi peu de photons de stimulation que possible, idéalement aucun. Ainsi, deux stratégies
expérimentales sont adoptées au cours de ces travaux. Leurs objectifs sont résumés ici :

– 1. TPG dans des cristaux massifs, en configuration OPO. La mise en cavité augmente
artificiellement la longueur d’interaction, et donc le rendement de conversion de sorte qu’il
devient possible de diminuer le niveau d’injection.

– 2. TPG dans des fibres optiques. Les fibres optiques présentent l’avantage de confiner
le champ électromagnétique, en plus de rendre possible l’utilisation de grandes longueurs
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d’interaction. De plus, aucune interaction du second ordre, dont les rendements de con-
version sont bien plus importants que ceux des interactions du troisième ordre, ne peut
exister. Cette fois encore, il devient possible de se débarrasser des faisceaux de stimulation.

Le chapitre 3 est dédié à l’étude de deux oxydes cristallins massifs anisotropes : KTP et
TiO2 sous sa forme rutile. Ces cristaux permettent de réaliser la TPG par accord de phase par
biréfringence. Les configurations d’ondes libres et d’ondes en cavité sont étudiées.

Une étude expérimentale des propriétés spectrales et énergétiques de la TPG bi-stimulée
dans KTP est réalisée en régime picoseconde, sur l’expérience à l’état de l’art avec deux fais-
ceaux d’injection : 532(−) → 1478(+) + 1662(−) + 1662(+) nm. Notre modèle impliquant la
polychromaticité des champs en interaction et un effet Kerr explique avec succès les résultats
expérimentaux (Figure E.5). L’effet Kerr modifie le désaccord de phase et la géométrie des fais-
ceaux. Par conséquent, cet effet parasite atténue l’efficacité de conversion de la TPG quand les
intensités sont suffisamment importantes. Le rendement de conversion maximum obtenu avec ce
générateur de triplets est de 3.5 %. Des intensités allant jusqu’à 300 GWcm−2 ont été focalisées
dans le cristal de KTP sans endommagement.

Ensuite, les propriétés linéaires et non linéaires du dioxyde de titane sous sa forme rutile
sont examinées expérimentalement à travers une génération de troisième harmonique (THG)
pour des longueurs d’onde fondamentales situées entre 1836 nm et 4449 nm (Figure E.6a). Son
rendement de conversion atteint environ 1%. La THG est le processus inverse de la TPG
totalement dégénérée en énergie : trois photons fusionnent en un unique photon d’énergie plus
importante. Cette expérience a permis de raffiner les équations de dispersion de ses indices de
réfraction (Figure E.6b). La valeur absolue de l’amplitude du coefficient non linéaire χ18 a été
déterminée ; ainsi que son signe, opposé à χ16.

Les calculs de conditions d’accord de phase pour la TPG ont indiqué l’existence de config-
urations à l’accord de phase. Cependant, aucune de nos tentatives expérimentales ont conduit
à une démonstration de la TPG dans le TiO2 rutile, même avec deux champs de stimulation.
L’onde à 532 nm impliquée dans le processus de TPG n’avait en fait pas pu être sollicité au cours
de l’expérience de THG. Ceci implique une inexactitude préjudiciable de son indice principal
ordinaire, et selon toute vraisemblance un accord de phase inexistant. Les travaux à venir sur ce
cristal devront viser ou bien à l’obtention d’une meilleure estimation de ces indices de réfraction,
ou bien à la réalisation d’une TPG à de plus hautes longueurs d’onde si l’étage de détection le
permet.

Enfin, l’usage des deux cristaux KTP and TiO2 dans un oscillateur paramétrique optique
(OPO) à pompage synchrone est étudié sur le plan théorique, et donne lieu à deux propositions.
L’OPO doit être pompé par un laser à haute fréquence de répétition dans le régime picoseconde.
La première proposition, représentée sur la Figure E.7a, est un OPO mono-injecté et doublement
résonant. Une énergie E2,3 = 40 nJ peut être générée pour E0 = 300 nJ d’énergie de pompe,
E1 = 30 nJ d’injection, et une transmission du miroir MA de TA = 1 % (Figure E.7b). La
seconde proposition, schématisée sur la Figure E.8a, est un OPO triplement résonant, sans
aucun faisceau d’injection : dans ce cas, la cavité est sans perte jusqu’à extraction du signal

191



Résumé en français

généré au temps voulu grâce à une cellule acousto-optique. Environ 106 aller-retours dans la
cavité sont nécessaires pour générer des impulsions triplets de l’ordre du µJ (Figure E.8b). Il
est également possible, en particulier pour des expériences de coincidences ou de tomographie
quantique, d’extraire le signal lorsque seulement quelques triplets de photons sont générés. Les
propriétés de cohérence des photons appartenant aux mêmes triplets n’ont pas été étudiées ici.
C’est cependant un point important qu’il faut garder à l’esprit, puisque les corrélations doivent
être conservées.

Génération de triplets de photons dans des cristaux massifs anisotropes
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Figure E.5 – Energie générée sur le champ 1 en fonction de l’énergie du champ pompe 0. L’énergie
des champs de stimulation est fixée à E2 +E3 = 63µJ. Deux paramètres de fits v = 0.388 et µ = 0.6
sont utilisés dans le modèle.
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(a) Courbe d’accord de phase de THG de type II du
TiO2 rutile. Les données expérimentales de l’expérience
du cylindre sont représentées en carré noirs, et leur in-
terpolation numérique est la courbe rouge. Les courbes
d’accord de phase en pointillés sont calculées à partir de
données bibliographiques.
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(b) Indices principaux ordinaire no et extraordinaire ne de
TiO2 en fonction de la longueur d’onde déterminés par ce
travail en lignes continues ; et par s’autres travaux en sym-
boles (expériences) et lignes pointillées (calculs).

Figure E.6 – Etude d’accord de phase du TiO2 rutile. Références : [107] (a), [154] (b), [155] (c),
[156] (d) et [157] (e).
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Génération de triplets de photons en cavité à pompage synchrone
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(b) Energie de triplets générée en fonction de l’énergie
d’injection pour un DROPO de KTP de longueur 30 mm, et
TA = 1%. Les quatre courbes a, b, c et d font référence aux
quatre énergies incidentes de pompe: (a) 7.8 nJ , (b) 11.1 nJ,
(c) 25.8 nJ and (d) 77.6 nJ.

Figure E.7 – OPO doublement résonant (DROPO) du troisième ordre.
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(b) Energie de triplets générée en fonction du temps (ou
du nombre d’aller-retours), pour une propagation dans un
TROPO de KTP de longueur 30 mm et pour une énergie ini-
tiale de pompe de E0 = 1 µJ .

Figure E.8 – OPO triplement résonant (TROPO) du troisième ordre.

Le chapitre 4 traite de la TPG dans des fibres optiques. Des fibres à saut d’indice en silice
dopées germanium et des fibres à cristaux photoniques (PCF) en chalcogénures sont considérées.
Un accord de phase modal est réalisé, ces matériaux étant isotropes.
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Génération de triplets de photons dans des fibres optiques de silice
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Figure E.9 – Condition d’accord de phase dans une fibre de silice dopée germanium, de rayon de
cœur a = 2.20µm.
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Figure E.10 – Densité spectrale de photons dans le champ 1 pour L = 1 m et E0 = 1 µJ. L’encart
représente la densité spectrale de photons pompe
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Figure E.11 – Profiles transverses calculés et expérimental du mode LP03 généré après propagation
dans le masque de phase.
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Résumé en français

Des fibres de SiO2 dopées par GeO2, de rayons de cœur a = 2.19 µm et 2.30 µm sont
utilisées. Elles ont été conçues pour permettre la réalisation d’un accord de phase modal dégénéré
en fréquence entre les modes transverses LP01 et LP03 pour les longueurs d’onde λω et λ3ω

respectivement (Figure E.9). Le rendement de conversion de la THG étant plus important
que celui de la TPG, et ces deux processus satisfaisant la même condition d’accord de phase,
la THG est considérée en premier lieu pour concevoir au mieux l’expérience de TPG. Une
caractérisation expérimentale complète est réalisée dans ces fibres en régime nanoseconde. Sont
étudiées les propriétés spectrales, énergétiques, modales et de polarisation. Les longueurs d’onde
expérimentales d’accord de phase sont très proches des longueurs d’onde calculées : λω = 3λ3ω =
1550 nm et 1602 nm pour les fibres de rayons de cœur 2.19 µm et 2.30 µm respectivement.
Nous avons mis en évidence des fluctuations de la taille du cœur, une ellipticité de la section
transverse du cœur et de l’anisotropie. Ceci conduit respectivement à une grande acceptance
spectrale, Lδλω = 104 nm.cm, ce qui constitue un avantage puisque des fibres de tailles plus
importantes peuvent être utilisées ; des modes transverses elliptiques sous la forme mathématique
de modes de Ince-Gauss, LP03 devenant IGe

40, ce qui implique un recouvrement moins important
des modes LP incidents ; et un rendement de conversion qui peut être maximisé pour une
orientation particulière de la polarisation fondamentale incidente. Précisément, l’analyse des
états de polarisation des ondes à λω et λ3ω en sortie de fibres nous ont permis de conclure que
ces fibres appartiennent à la classe optique uniaxe, et d’en déduire des valeurs relatives pour
les éléments non nuls du tenseur de susceptibilité du troisième ordre (Figure E.12b). Enfin,
l’aire d’interaction effective est 60 fois plus grande que la surface du cœur de la fibre : Seff =
931 µm2. Pour cette raison et du fait d’intensités incidentes faibles, le rendement de conversion
est extrêmement faible, de l’ordre de 8× 10−8 (Figure E.12a).

Cette configuration de THG entre modes LP01 et LP03 n’est pas l’unique interaction non
linéaire existant dans ces fibres : d’autres configurations modales pour la THG à l’accord de
phase ont été identifiées et étudiées (Figures E.12c et E.12d) ; enfin, de l’effet Raman a été mis
en évidence conduisant à la génération de nombreux pics intenses dans l’infrarouge.

Des calculs quantiques théoriques pour la TPG spontanée, i.e. la fluoresence paramétrique du
troisième ordre, dans le cas de l’interaction précédente entre modes LP01 et LP03 dans ces mêmes
fibres ont été réalisés et conduisent à des rendements de conversion extrêmement faibles dans la
situation expérimentale actuelle. Par exemple, la Figure E.10 montre que 4.7×10−8 triplets/sec
peuvent être générés dans une fibre de 1m, pour une énergie fondamentale incidente de 1µJ/pulse
(10ns de temps de pulses, 10Hz de fréquence de répétition). Ce taux de génération pourrait être
amélioré en utilisant une source laser à fort taux de répétition, des fibres à plus petits cœurs ou
encore des matériaux avec des non-linéarités nettement plus importantes.

La préparation modale du faisceau fondamental de TPG a été réalisée : des masques de phase
permettent de générer avec une efficacité de 90% le profil LP03, non Gaussien (Figure E.11).
L’étage de filtrage a également été étudié. Si l’une des conditions nécessaires à l’augmentation du
taux de production de triplets mentionnée plus haut est satisfaite, la réalisation expérimentale de
la TPG devrait être possible avec une photodiode à avalanche (APD) qui permet le comptage
proportionnel de photons, et l’intégration temporelle. Un tel détecteur sera prochainement
disponible, grâce à une collaboration avec Johan Rothman du CEA-LETI de Grenoble.
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Génération de troisième harmonique dans des fibres optiques de silice
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(a) Energie de troisième harmonique E3ω en fonction de
l’énergie incidente Eω.
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(b) Intensités de expérimentales (a) et calculées (b)
du signal de troisième harmonique analysé à l’angle
θA pour différentes configurations de polarisation du
faisceau incident fondamental.
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(c) Spectre de troisième harmonique normalisé. Eω et E3ω sont les énergies
fondamentales et de troisième harmonique respectivement.

(d) Clichés expérimentaux des distributions transverses d’intensité des ondes de troisième harmonique.

Figure E.12 – Expériences de génération de troisième harmonique (THG) dans une fibre de silice
dopée germanium de rayon de cœur a = 2.19 µm et de longueur L = 642mm.

Enfin, les propriétés d’accord de phase pour la TPG dans des PCF de chalcogénures sont
étudiées dans le cadre d’une collaboration avec le groupe de Pierre Bourdon à l’ONERA de
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Palaiseau. Ces matériaux ont des non-linéarités géantes, trois ordres de grandeur au-dessus
de celles des oxydes. Un accord de phase intermodal entre modes transverses LP01 et LP02 est
possible dans As2S3, pour un jeu particulier de paramètres géométriques de la PCF : d = 4.25µm
le diamètre d’un trou, Λ = 5 µm la distance entre deux trous (Figure E.13). Il conduit à des
longueurs d’onde d’accord de phase de 1550.5 nm pour la pompe, et situées entre 4.5 et 5 µm
pour les triplets (Figure E.14). La prise en compte de la contribution non linéaire au désaccord
de phase déplace ces longueurs d’onde de quelques nanomètres. L’APD dont il était question
précédemment, dont la gamme de transparence couvre le moyen infra-rouge, pourrait être utilisée
dans ce cadre également.

Génération de triplets de photons dans des fibres optiques de chalcogénures

ncl 

eff 

nco 
(chalco) 

d 

Λ 

Figure E.13 – Représentations schématiques d’une fibre à cristal photonique, et sa fibre à saut
d’indice équivalente.
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Figure E.14 – Carte d’accord de phase : ∆k(3)
eff en fonction de λPM

1 et λPM
2 ; λPM

0 = 1551 nm,
Λ = 5 µm and d = 0.85Λ = 4.25 µm. A1 et A2(resp. B1, B2 et B3 ; C1,C2 et C3) sont des jeux de
longueurs d’onde en accord de phase équivalents.
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Quelques pas seront encore nécessaires à la réalisation d’une génération directe et spontanée
de triplets de photons par interaction non linéaire optique du troisième ordre.
Quelques pas supplémentaires veilleront ensuite à rendre cette génération compatible avec des
mesures quantiques. Certainement malaisés, ils permettront alors l’étude des propriétés de
cohérence de ces états triplets et la démonstration de leurs propriétés non classiques, par exemple
à travers des mesures de coïncidence ou de tomographie quantique.
Un jour alors, de nombreux pas plus loins, ces états pourront éventuellement faire partie des
protocoles d’information quantique...
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– A Borne, T Katsura, C Félix, B Doppagne, P Segonds, K Bencheikh, JA Levenson, B
Boulanger, Anisotropy analysis of third-harmonic generation in a germanium-doped silica
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– A Borne, P Segonds, B Boulanger, C Félix, and J Debray, Refractive indices, phase-
matching directions and third-order nonlinear coefficients of rutile TiO2 from third-harmonic
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September 25-28, 2012.
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– A Borne, T Katsura, B Doppagne, B Boulanger, C Félix, P Segonds, K Bencheikh, and
JA Levenson, Intermodal third-harmonic generation in germanium-doped silica optical
fiber, 6th Europhoton, Neuchâtel, Switzerland, 24-29 August 2014.

– A Borne, T Katsura, B Doppagne, B Boulanger, C Félix, P Segonds, K Bencheikh, and JA
Levenson, Anisotropy of phase-matched third-harmonic generation in germanium-doped
silica optical fiber, Advanced Photonics, Barcelona, Spain, 28-31 July 2014.

– A Borne, A Dot, B Boulanger, P Segonds, C Félix, K Bencheikh, and JA Levenson,
Experiments and modeling of energetic and spectral properties of triple photons third-
order down-conversion in KTiOPO4, 5th Europhoton, Stockholm, Sweden, August 26-31,
2012.

– A Borne, A Dot, B Boulanger, K Bencheikh, JA Levenson, P Segonds and C Félix,
Theoretical and experimental analysis of the quantum triplet state of light, Quantum
Malta 2012: fundamental problems in quantum physics, La Valette, Malta, April 24-27,
2012.

– A Dot, A Borne, B Boulanger, K Bencheikh, JA Levenson, P Segonds and C Félix,
Theoretical analysis of the photon triplet state of light, Frontiers of Condensed Matter
Summer School, Les Houches, France, September 5-16, 2011.

F.2.4 Oral communications in national conferences

– A Borne, A Dot, B Boulanger, P Segonds, C Félix, Generation and quantum correlations
of the triplet photon state of light, Annual meeting of the GDR "Information Quantique,
Fondements et Applications", Grenoble, November 28-30, 2012.

200



Bibliography

[1] A. Aspect, P. Grangier, and G. Roger, “Experimental tests of realistic local theories via
Bell’s theorem,” Physical Review Letters, vol. 47, no. 7, p. 460, 1981. 1, 46, 187

[2] A. Cabello and F. Sciarrino, “Loophole-free Bell test based on local precertification of
photon’s presence,” Physical Review X, vol. 2, no. 2, p. 021010, 2012. 1, 187

[3] K. Banaszek and P. L. Knight, “Quantum interference in three-photon down-conversion,”
Physical Review A, vol. 55, no. 3, p. 2368, 1997. 1, 61, 187, 190

[4] T. Felbinger, S. Schiller, and J. Mlynek, “Oscillation and generation of nonclassical states
in three-photon down-conversion,” Physical Review Letters, vol. 80, no. 3, p. 492, 1998.
61, 95

[5] K. J. Resch, P. Walther, and A. Zeilinger, “Full characterization of a three-photon
Greenberger-Horne-Zeilinger state using quantum state tomography,” Physical Review Let-
ters, vol. 94, no. 7, p. 070402, 2005. 62

[6] D. Bouwmeester, J.-W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of
three-photon Greenberger-Horne-Zeilinger entanglement,” Physical Review Letters, vol. 82,
no. 7, p. 1345, 1999. 55, 56, 62, 189

[7] J.-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental
test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement,”
Nature, vol. 403, no. 6769, pp. 515–519, 2000. 55, 62

[8] D. Greenberger, M. Horne, and A. Zeilinger, Bell’s theorem, quantum theory, and concep-
tions of the universe. Edited by M. Kafatos (Kluwer Academic, Dordrecht), 1989, ch.
"Going beyond Bell’s theorem", pp. 73–76. 47

[9] A. Zeilinger, M. Horne, and D. Greenberger, “Nasa conf. publ. no. 3135.” National
Aeronautics and Space Administration, Code NTT, Washington, DC, 1997. 47

[10] N. Kiesel, M. Bourennane, C. Kurtsiefer, H. Weinfurter, D. Kaszlikowski, W. Laskowski,
and M. Zukowski, “Three-photon W-state,” Journal of Modern Optics, vol. 50, no. 6-7,
pp. 1131–1138, 2003. 47, 62, 189

201



Bibliography

[11] P. van Loock and A. Furusawa, “Detecting genuine multipartite continuous-variable en-
tanglement,” Physical Review A, vol. 67, p. 052315, 2003. 47

[12] M. Corona, K. Garay-Palmett, and A. B. U’Ren, “Third-order spontaneous parametric
down-conversion in thin optical fibers as a photon-triplet source,” Physical Review A,
vol. 84, no. 3, p. 033823, 2011. 33, 52, 145, 146

[13] J. Douady and B. Boulanger, “Experimental demonstration of a pure third-order optical
parametric downconversion process,” Optics Letters, vol. 29, no. 23, pp. 2794–2796, 2004.
1, 49, 187

[14] H. Hübel, D. R. Hamel, A. Fedrizzi, S. Ramelow, K. J. Resch, and T. Jennewein, “Direct
generation of photon triplets using cascaded photon-pair sources,” Nature, vol. 466, no.
7306, pp. 601–603, 2010. 1, 56, 57, 62, 187, 189, 190

[15] K. Bencheikh, F. Gravier, J. Douady, A. Levenson, and B. Boulanger, “Triple photons: a
challenge in nonlinear and quantum optics,” Comptes Rendus Physique, vol. 8, no. 2, pp.
206–220, 2007. 2, 52, 61, 62, 188

[16] A. Dot, A. Borne, B. Boulanger, K. Bencheikh, and J. Levenson, “Quantum theory analysis
of triple photons generated by a χ(3) process,” Physical Review A, vol. 85, p. 023809, 2012.
2, 43, 53, 54, 58, 145, 188

[17] A. Yariv and P. Yeh, Optical waves in crystal. New York: Wiley, 2003. 4, 7, 8, 22

[18] J. Pérez, R. Carlos, and R. Fleckinger, Électromagnétisme, Fondements et applications,
2nd ed. Masson, 1996. 5

[19] B. Boulanger and J. Zyss, Nonlinear optical properties. International Union of Crystal-
lography, 2006, ch. 1.7, pp. 178–219. 5, 16, 21, 22, 23, 77

[20] P. Franken, A. Hill, C. Peters, and G. Weinreich, “Generation of optical harmonics,”
Physical Review Letters, vol. 7, pp. 118–119, Aug 1961. 5

[21] J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, “Interactions between Light
Waves in a Nonlinear Dielectric,” Physical Review, vol. 127, no. 6, pp. 1918–1939, 1962.
5, 12, 18, 49

[22] N. Bloembergen, Nonlinear optics. New York: Benjamin, 1965. 5, 16, 18, 71

[23] M. Born and E. Wolf, Principles of Optics, 6th ed. Pergamon Press, 1980. 6, 8, 20, 22,
82

[24] J. Jackson, Classical electrodynamics, 3rd ed. New York: Wiley, 1998. 7

[25] J. Nye, Physical properties of crystals. Clarendon Press, 1957. 9, 12, 20, 130

[26] O. Svelto and D. Hanna, Principles of lasers, 5th ed. Springer, 1976. 10

[27] A. Siegman, Lasers. Mill Valley, CA: University Science Books, 1986. 10, 105

202



Bibliography

[28] A. Hadni, Esentials of modern physics applied to the study of the infrared. Oxford:
Pergamon Press, 1967. 11, 84

[29] I. Jacobs, Optical fiber communication technology and system overview, in Handbook of
Optics. McGraw Hill, 2010, vol. V Atmospheric optics, modulators, fiber optics, X-ray
and neutron optics, ch. 9. 11

[30] G. Agrawal, Nonlinear fiber optics, 5th ed. Academic Press, 2013. 11, 34, 109, 110, 146

[31] D. Kleinman, “Nonlinear dielectric polarization in optical media,” Physical Review, vol.
126, pp. 1977–1979, Jun 1962. 12

[32] G. Grynberg and P. Berman, “Quantized-field approach to parametric mixing and
pressure-induced resonances: Schrödinger picture,” Physical Review A, vol. 43, no. 7,
p. 3994, 1991. 13

[33] J. Fève, B. Boulanger, and J. Douady, “Specific properties of cubic optical parametric
interactions compared to quadratic interactions,” Physical Review A, vol. 66, p. 063817,
Dec 2002. 13, 17, 49, 99

[34] A. Yariv, Introduction to optical electronics. Holt, Rinehart and Winston, Inc., New York,
NY, 1976. 15, 104

[35] G. New, Introduction to Nonlinear Optics. Cambridge University Press, 2011. 17

[36] J. Yao and T. S. Fahlen, “Calculations of optimum phase match parameters for the biaxial
crystal KTiOPO4,” Journal of Applied Physics, vol. 55, no. 1, pp. 65–68, 1984. 20

[37] L. Shuvalov, Modern Crystallography IV: Physical properties of crystals. Springer-Verlag,
1987. 21

[38] B. Boulanger and G. Marnier, “Field factor calculation for the study of the relationships
between all the three-wave nonlinear optical interactions in uniaxial and biaxial crystals,”
Journal of Physics: Condensed Matter, vol. 3, no. 43, p. 8327, 1991. 24

[39] M. Hobden, “Phase-matched second-harmonic generation in biaxial crystals,” Journal of
Applied Physics, vol. 38, no. 11, pp. 4365–4372, 2004. 24

[40] B. Boulanger, J. Fève, and G. Marnier, “Field-factor formalism for the study of the ten-
sorial symmetry of four-wave nonlinear optical parametric interactions in uniaxial and
biaxial crystals,” Physical Review E, vol. 48, pp. 4730–4751, Dec 1993. 24, 78

[41] M. Adams, An introduction to optical waveguides. Wiley, 1981. 26

[42] F. Mitschke, Fiber optics: physics and technology. Springer, 2009. 26, 27, 30, 32

[43] C. Alhenc-Gelas, P. Bourdon, G. Canat, F. Druon, and A. Durecu, “Theoretical and
experimental study of microstructured chalcogenide As2S3 fibers for frequency conversion,”
in Advances in Optical Materials. Optical Society of America, 2011, p. AIThD5. 26, 160

203



Bibliography

[44] C. Alhenc-Gelas, “Etude de la conversion de fréquence par amplification paramétrique
dans les fibres optiques transparentes dans l’infrarouge,” Ph.D. dissertation, Université
Paris-Sud XI, 2012. 26, 27, 155, 157, 158, 159

[45] C. Lin, W. Reed, H.-T. Shang, and A. Pearson, “Phase matching in the minimum-
chromatic-dispersion region of single-mode fibers for stimulated four-photon mixing,” Op-
tics Letters, vol. 6, no. 10, pp. 493–495, 1981. 27, 33

[46] D. Gloge, “Weakly guiding fibers,” Applied Optics, vol. 10, no. 10, pp. 2252–2258, 1971.
27, 29, 31

[47] J. Buck, Fundamentals of optical fibers, chap. 3, 2nd ed. Wiley, 2004. 28, 31

[48] J. M. Jonathan, “Guided and coupled waves: an overview of optical fiber-
sand derived components for optical communications,” Institut d’Optique,
http://paristech.institutoptique.fr/site.php?id=368&fileid=6868, 2013. 28

[49] D. Gloge, “Dispersion in weakly guiding fibers,” Applied Optics, vol. 10, no. 11, pp. 2442–
2445, 1971. 28

[50] A. Snyder and W. Young, “Modes of optical waveguides,” Journal of the Optical Society
of America, vol. 68, no. 3, pp. 297–309, 1978. 28, 29, 30

[51] J. Buck, Nonlinear fiber optics, 3rd ed. Wiley Series in Pure and Applied Optics, 1995.
28

[52] P. Lecoy, Fiber-optic communications. John Wiley & Sons, 2010, vol. 51. 30

[53] P.-A. Belanger, Optical fiber theory: A supplement to applied electromagnetism. World
Scientific, 1993, vol. 5. 30

[54] R. Stolen and J. Bjorkholm, “Parametric amplification and frequency conversion in optical
fibers,” Quantum Electronics, IEEE Journal of, vol. 18, no. 7, pp. 1062–1072, 1982. 33,
137

[55] G. I. Stegeman and R. H. Stolen, “Waveguides and fibers for nonlinear optics,” Journal of
the Optical Society of America B: Optical Physics, vol. 6, no. 4, pp. 652–62, 1989. 33, 137

[56] B. Huttner, S. Serulnik, and Y. Ben-Aryeh, “Quantum analysis of light propagation in a
parametric amplifier,” Physical Review A, vol. 42, pp. 5594–5600, 1990. 35, 37

[57] I. Abram, “Quantum theory of light propagation: Linear medium,” Physical Review A,
vol. 35, no. 11, p. 4661, 1987. 35

[58] L. Mandel and E. Wolf, Optical coherence and quantum optics. Cambridge university
press, 1995. 35, 42, 43

[59] K. Blow, R. Loudon, S. Phoenix, and T. Shepherd, “Continuum fields in quantum optics,”
Physical Review A, vol. 42, no. 7, p. 4102, 1990. 35, 36, 146

204



Bibliography

[60] B. Dayan, “Theory of two-photon interactions with broadband down-converted light and
entangled photons,” Physical Review A, vol. 76, no. 4, p. 043813, 2007. 35, 43, 53, 54, 58

[61] M. Scully and M. Zubairy, Quantum optics, 6th ed. Cambridge University Press, 2008.
41

[62] R. Glauber, “Coherent and incoherent states of the radiation field,” Physical Review, vol.
131, no. 6, p. 2766, 1963. 41

[63] E. Schrödinger, “Die gegenwärtige Situation in der Quantenmechanik,” Naturwis-
senschaften, vol. 23, p. 844, 1935. 42, 46

[64] M. Rubin, D. Klyshko, Y. Shih, and A. Sergienko, “Theory of two-photon entanglement
in type-II optical parametric down-conversion,” Physical Review A, vol. 50, no. 6, pp.
5122–5133, 1994. 42

[65] R. H. Brown and R. Twiss, “Correlation between photons in two coherent beams of light,”
Nature, vol. 177, no. 4497, pp. 27–29, 1956. 42

[66] B. Schumaker, “Noise in homodyne detection,” Optics Letters, vol. 9, no. 5, pp. 189–191,
1984. 42

[67] E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Physical Review,
vol. 40, no. 5, p. 749, 1932. 43

[68] U. Leonhardt, Quantum optics, from quantum measurements to black holes. Cambridge
University Press, 2010. 43

[69] H. Bachor and T. Ralph, A Guide to Experiments in Quantum Optics, 2nd ed. Wiley-
VCH, 2004. 43

[70] I. Abram, R. Raj, J. Oudar, and G. Dolique, “Direct observation of the second-order
coherence of parametrically generated light,” Physical Review Letters, vol. 57, no. 20, p.
2516, 1986. 43, 58

[71] A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical
reality be considered complete?” Physical Review, vol. 47, no. 10, pp. 777–780, 1935. 46

[72] J. S. Bell, “On the Einstein-Podolsky-Rosen paradox.” Physics, vol. 1, no. 3, pp. 195–200,
1964. 46

[73] A. Aspect, J. Dalibard, and G. Roger, “Experimental test of Bell’s inequalities using
time-varying analyzers,” Physical Review Letters, vol. 49, no. 25, p. 1804, 1982. 46

[74] A. Aspect, P. Grangier, G. Roger et al., “Experimental realization of Einstein-Podolsky-
Rosen-Bohm Gedankenexperiment: a new violation of Bell’s inequalities,” Physical Review
Letters, vol. 49, no. 2, pp. 91–94, 1982. 46

[75] W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell inequalities by photons
more than 10 km apart,” Physical Review Letters, vol. 81, no. 17, p. 3563, 1998. 47

205



Bibliography

[76] W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent
ways,” Physical Review A, vol. 62, no. 6, p. 062314, 2000. 47

[77] A. Acin, D. Bruß, M. Lewenstein, and A. Sanpera, “Classification of mixed three-qubit
states,” Physical Review Letters, vol. 87, no. 4, p. 040401, 2001. 47

[78] D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without
inequalities,” American Journal of Physics, vol. 58, no. 12, pp. 1131–1143, 1990. 47, 189

[79] J. Franson, “Bell inequality for position and time,” Physical Review Letters, vol. 62, no. 19,
pp. 2205–2208, 1989. 47

[80] C. Law, I. Walmsley, and J. Eberly, “Continuous frequency entanglement: effective finite
Hilbert space and entropy control,” Physical Review Letters, vol. 84, no. 23, p. 5304, 2000.

[81] J. C. Howell, R. S. Bennink, S. J. Bentley, and R. Boyd, “Realization of the Einstein-
Podolsky-Rosen paradox using momentum-and position-entangled photons from sponta-
neous parametric down conversion,” Physical Review Letters, vol. 92, pp. 210 403–210 403,
2004. 47

[82] P. G. Kwiat, “Hyper-entangled states,” Journal of Modern Optics, vol. 44, no. 11-12, pp.
2173–2184, 1997. 47

[83] J. Wen and M. H. Rubin, “Distinction of tripartite Greenberger-Horne-Zeilinger and W
states entangled in time (or energy) and space,” Physical Review A, vol. 79, no. 2, p.
025802, 2009. 47

[84] C. Śliwa and K. Banaszek, “Conditional preparation of maximal polarization entangle-
ment,” Physical Review A, vol. 67, no. 3, p. 030101, 2003. 48

[85] S. Barz, G. Cronenberg, A. Zeilinger, and P. Walther, “Heralded generation of entangled
photon pairs,” Nature Photonics, vol. 4, no. 8, pp. 553–556, 2010. 48

[86] C. Wagenknecht, C.-M. Li, A. Reingruber, X.-H. Bao, A. Goebel, Y.-A. Chen, Q. Zhang,
K. Chen, and J.-W. Pan, “Experimental demonstration of a heralded entanglement
source,” Nature Photonics, vol. 4, no. 8, pp. 549–552, 2010. 48

[87] A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Physical Review Letters,
vol. 67, no. 6, pp. 661–663, 1991. 48

[88] D. Naik, C. Peterson, A. White, A. Berglund, and P. Kwiat, “Entangled state quantum
cryptography: Eavesdropping on the Ekert protocol,” Physical Review Letters, vol. 84,
no. 20, p. 4733, 2000. 48

[89] W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled
photons in energy-time Bell states,” Physical Review Letters, vol. 84, no. 20, p. 4737, 2000.
48

206



Bibliography

[90] T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptog-
raphy with entangled photons,” Physical Review Letters, vol. 84, no. 20, p. 4729, 2000.
48

[91] R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal,
B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Omer, M. Furst, M. Meyen-
burg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-
based quantum communication over 144 km,” Nature Physics, vol. 3, no. 7, pp. 481–486,
2007. 48

[92] A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entangle-
ment,” Physical Review A, vol. 58, pp. 4394–4400, 1998. 48

[93] W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature, vol. 299,
no. 5886, pp. 802–803, 1982. 48

[94] D. Bruß, D. P. DiVincenzo, A. Ekert, C. A. Fuchs, C. Macchiavello, and J. A. Smolin,
“Optimal universal and state-dependent quantum cloning,” Physical Review A, vol. 57,
no. 4, p. 2368, 1998. 48

[95] V. Bužek and M. Hillery, “Quantum copying: Beyond the no-cloning theorem,” Physical
Review A, vol. 54, no. 3, p. 1844, 1996. 48

[96] J. Douady, “Génération de tierce harmonique et production de triplets de photons pour
l’optique quantique,” Ph.D. dissertation, Université Joseph Fourier, 2004. 49, 51

[97] J. Douady and B. Boulanger, “Calculation of quadratic cascading contributions associ-
ated with a phase-matched cubic frequency difference generation in a KTiOPO4 crystal,”
Journal of Optics A: Pure and Applied Optics, vol. 7, no. 9, p. 467, 2005. 50, 51

[98] B. Stuart, M. Feit, A. Rubenchik, B. Shore, and M. Perry, “Laser-induced damage in
dielectrics with nanosecond to subpicosecond pulses,” Physical Review Letters, vol. 74,
no. 12, p. 2248, 1995. 50

[99] B. Boulanger, I. Rousseau, and G. Marnier, “Cubic optical nonlinearity of KTiOPO4,”
Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 32, no. 2, p. 475, 1999.
50, 70

[100] F. Gravier and B. Boulanger, “Triple-photon generation: comparison between theory and
experiment,” Journal of the Optical Society of America B, vol. 25, no. 1, pp. 98–102, 2008.
51, 86

[101] F. Gravier, “Conception et étude d’un générateur et d’un corrélateur de triplets de photons
basés sur KTiOPO4 et TiO2,” Ph.D. dissertation, Université Joseph Fourier, 2007. 51

[102] A. Dot, A. Borne, B. Boulanger, P. Segonds, C. Félix, K. Bencheikh, and J. A. Levenson,
“Energetic and spectral properties of triple photon downconversion in a phase-matched
KTiOPO4 crystal,” Optics Letters, vol. 37, no. 12, pp. 2334–2336, 2012. 51

207



Bibliography

[103] F. Smektala, C. Quemard, V. Couderc, and A. Barthélémy, “Non-linear optical properties
of chalcogenide glasses measured by Z-scan,” Journal of Non-Crystalline Solids, vol. 274,
no. 1, pp. 232–237, 2000. 51, 156

[104] G. Boudebs, F. Sanchez, J. Troles, and F. Smektala, “Nonlinear optical properties of
chalcogenide glasses: comparison between Mach–Zehnder interferometry and Z-scan tech-
niques,” Optics Communications, vol. 199, no. 5, pp. 425–433, 2001. 156

[105] J. Douady, B. Boulanger, E. Fuchs, F. Smektala, and J. Troles, “Symmetry and phase-
matching properties of third-harmonic generation under the photoelastic effect in Ge-As-
Se chalcogenide glasses,” Journal of the Optical Society of America B, vol. 22, no. 7, pp.
1486–1492, 2005. 51, 130, 155, 156

[106] J. Feve and B. Boulanger, “Suppression of quadratic cascading in four-photon interactions
using periodically poled media,” Physical Review A, vol. 65, no. 6, p. 063814, 2002. 51

[107] F. Gravier and B. Boulanger, “Cubic parametric frequency generation in rutile single
crystal,” Optics Express, vol. 14, no. 24, pp. 11 715–11 720, 2006. 51, 76, 77, 80, 82, 83,
84, 87, 192

[108] F. Gravier and B. Boulanger, “Third-order frequency generation in TiO2 rutile and
KTiOPO4,” Optical Materials, vol. 30, no. 1, pp. 33–36, 2007. 51, 76, 86

[109] M. Corona, K. Garay-Palmett, and A. B. U’Ren, “Experimental proposal for the genera-
tion of entangled photon triplets by third-order spontaneous parametric downconversion
in optical fibers,” Optics Letters, vol. 36, no. 2, pp. 190–192, 2011. 52, 145, 146

[110] K. Bencheikh, S. Richard, G. Mélin, G. Krabshuis, F. Gooijer, and J. Levenson, “Phase-
matched third-harmonic generation in highly germanium-doped fiber,” Optics Letters,
vol. 37, no. 3, pp. 289–291, 2012. 52, 108

[111] J. Gabriagues, “Third-harmonic and three-wave sum-frequency light generation in an
elliptical-core optical fiber,” Optics Letters, vol. 8, no. 3, pp. 183–185, 1983. 52, 143

[112] A. Efimov, A. Taylor, F. Omenetto, J. Knight, W. Wadsworth, and P. Russell, “Phase-
matched third harmonic generation in microstructured fibers,” Optics Express, vol. 11,
no. 20, pp. 2567–2576, 2003. 52

[113] V. Grubsky and J. Feinberg, “Phase-matched third-harmonic UV generation using low-
order modes in a glass micro-fiber,” Optics Communications, vol. 274, no. 2, pp. 447–450,
2007. 52

[114] B. Kibler, R. Fischer, G. Genty, D. N. Neshev, and J. M. Dudley, “Simultaneous fs pulse
spectral broadening and third harmonic generation in highly nonlinear fibre: experiments
and simulations,” Applied Physics B, vol. 91, no. 2, pp. 349–352, 2008. 52

[115] R. Stolen and W. Leibolt, “Optical fiber modes using stimulated four photon mixing,”
Applied Optics, vol. 15, no. 1, pp. 239–243, 1976. 52

208



Bibliography

[116] L. Misoguti, S. Backus, C. Durfee, R. Bartels, M. Murnane, and H. Kapteyn, “Generation
of broadband VUV light using third-order cascaded processes,” Physical Review Letters,
vol. 87, no. 1, p. 013601, 2001. 52

[117] V. Grubsky and A. Savchenko, “Glass micro-fibers for efficient third harmonic generation,”
Optics Express, vol. 13, no. 18, pp. 6798–6806, 2005. 52

[118] K. Tarnowski, B. Kibler, C. Finot, and W. Urbanczyk, “Quasi-phase-matched third har-
monic generation in optical fibers using refractive-index gratings,” IEEE Journal of Quan-
tum Electronics, vol. 47, no. 5, pp. 622–629, 2011. 52

[119] S. Richard, K. Bencheikh, B. Boulanger, and J. Levenson, “Semiclassical model of triple
photons generation in optical fibers,” Optics Letters, vol. 36, no. 15, pp. 3000–3002, 2011.
52, 145, 147

[120] A. Dot, “Etude théorique et expérimentale de la génération et des corrélations quantiques
de photons triplets générés par interaction non linéaire d’ordre trois,” Ph.D. dissertation,
Université de Grenoble, 2011. 53, 54, 58, 59, 61, 145, 188

[121] S. N. Gupta, “Multiple photon production in electron-positron annihilation,” Physical
Review, vol. 96, no. 5, p. 1453, 1954. 55

[122] A. Zeilinger, M. A. Horne, H. Weinfurter, and M. Zukowski, “Three-particle entanglements
from two entangled pairs,” Physical Review Letters, vol. 78, no. 16, pp. 3031–3034, 1997.
55, 190

[123] M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental
realization of a three-qubit entangled W state,” Physical Review Letters, vol. 92, no. 7,
p. 63, 2004. 55, 62

[124] J. Rarity and P. Tapster, “Three-particle entanglement from entangled photon pairs and
a weak coherent state,” Physical Review A, vol. 59, p. 35, 1999. 55

[125] J. Persson, T. Aichele, V. Zwiller, L. Samuelson, and O. Benson, “Three-photon cascade
from single self-assembled InP quantum dots,” Physical Review B, vol. 69, no. 23, p.
233314, 2004. 56

[126] H. Mikami, Y. Li, K. Fukuoka, and T. Kobayashi, “New high-efficiency source of a three-
photon W state and its full characterization using quantum state tomography,” Physical
Review Letters, vol. 95, no. 15, p. 150404, 2005. 56, 62

[127] L. K. Shalm, D. R. Hamel, Z. Yan, C. Simon, K. J. Resch, and T. Jennewein, “Three-
photon energy-time entanglement,” Nature Physics, vol. 9, no. 1, pp. 19–22, 2013. 56,
62

[128] T. E. Keller, M. H. Rubin, Y. Shih, and L.-A. Wu, “Theory of the three-photon entangled
state,” Physical Review A, vol. 57, no. 3, p. 2076, 1998. 56, 57

209



Bibliography

[129] D. A. Antonosyan, T. V. Gevorgyan, and G. Y. Kryuchkyan, “Three-photon states in
nonlinear crystal superlattices,” Physical Review A, vol. 83, no. 4, p. 043807, 2011. 56, 61,
95

[130] J.-J. Zondy, A. Douillet, A. Tallet, E. Ressayre, and M. Le Berre, “Theory of self-phase-
locked optical parametric oscillators,” Physical Review A, vol. 63, no. 2, p. 023814, 2001.
56

[131] G. Y. Kryuchkyan and N. Muradyan, “Toward the multiphoton parametric oscillators,”
Physics Letters A, vol. 286, no. 2, pp. 113–120, 2001. 56

[132] P. V. Gorelik, F. N. Wong, D. Kolker, and J.-J. Zondy, “Cascaded optical parametric
oscillation with a dual-grating periodically poled lithium niobate crystal,” Optics Letters,
vol. 31, no. 13, pp. 2039–2041, 2006. 56

[133] H. Guo, Y. Qin, and S. Tang, “Parametric downconversion via cascaded optical nonlinear-
ities in an aperiodically poled MgO:LiNbO3 superlattice,” Applied Physics Letters, vol. 87,
no. 16, p. 161101, 2005. 56

[134] J. Wen, P. Xu, M. H. Rubin, and Y. Shih, “Transverse correlations in triphoton entan-
glement: Geometrical and physical optics,” Physical Review A, vol. 76, no. 2, p. 023828,
2007. 56

[135] R. Andrews, H. Rabin, and C. Tang, “Coupled parametric downconversion and upconver-
sion with simultaneous phase matching,” Physical Review Letters, vol. 25, no. 13, p. 902,
1970. 56

[136] A. Ferraro, M. G. Paris, M. Bondani, A. Allevi, E. Puddu, and A. Andreoni, “Three-mode
entanglement by interlinked nonlinear interactions in optical χ2 media,” Journal of the
Optical Society of America B, vol. 21, no. 6, pp. 1241–1249, 2004. 56

[137] J. Wen, E. Oh, and S. Du, “Tripartite entanglement generation via four-wave mixings:
narrowband triphoton W state,” Journal of the Optical Society of America B, vol. 27,
no. 6, pp. A11–A20, 2010. 57

[138] K. Wódkiewicz, L. Wang, and J. Eberly, “Perfect correlations of three-particle entangled
states in cavity QED,” Physical Review A, vol. 47, no. 4, p. 3280, 1993. 57

[139] A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J.-M. Raimond, and
S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science, vol. 288, no.
5473, pp. 2024–2028, 2000. 57

[140] B. Dayan, A. Pe’er, A. A. Friesem, and Y. Silberberg, “Two photon absorption and coher-
ent control with broadband down-converted light,” Physical Review Letters, vol. 93, no. 2,
p. 023005, 2004. 58

[141] A. Pe’Er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled
photons,” Physical Review Letters, vol. 94, no. 7, p. 073601, 2005. 58

210



Bibliography

[142] B. Dayan, Y. Bromberg, I. Afek, and Y. Silberberg, “Spectral polarization and spectral
phase control of time-energy entangled photons,” Physical Review A, vol. 75, no. 4, p.
043804, 2007. 58

[143] D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production
of optical photon pairs,” Physical Review Letters, vol. 25, no. 2, p. 84, 1970. 58

[144] V. D’Auria, S. Fornaro, A. Porzio, S. Solimeno, S. Olivares, and M. Paris, “Full charac-
terization of gaussian bipartite entangled states by a single homodyne detector,” Physical
Review Letters, vol. 102, no. 2, p. 020502, 2009. 61

[145] T. Gevorgyan and G. Y. Kryuchkyan, “Pulsed three-photon light,” arXiv preprint
arXiv:1205.3879, 2012. 61

[146] A. Coelho, F. Barbosa, K. Cassemiro, A. Villar, M. Martinelli, and P. Nussenzveig, “Three-
color entanglement,” Science, vol. 326, no. 5954, pp. 823–826, 2009. 62, 95

[147] “http://www.unitedcrystals.com/ktpprop.html.” 68

[148] “http://www.cristal-laser.com/.” 70

[149] B. Boulanger, M. Fejer, R. Blachman, and P. Bordui, “Study of KTiOPO4 gray-tracking
at 1064, 532, and 355 nm,” Applied Physics Letters, vol. 65, no. 19, pp. 2401–2403, 1994.
71, 131

[150] A. Gerrard and J. M. Burch, “Introduction to matrix methods in optics,” 1994. 72, 82

[151] Y. W. Lee, J. H. Yi, Y. H. Cha, Y. J. Rhee, B. C. Lee, and B. D. Yoo, “Numerical analysis
of soft-aperture Kerr-lens mode locking in Ti:Sapphire laser cavities by using nonlinear
ABCD Matrices,” Journal of the Korean Physical Society, vol. 46, no. 5, pp. 1131–1136,
2005. 73

[152] V. Magni, G. Cerullo, and S. De Silvestri, “ABCD matrix analysis of propagation of
Gaussian beams through Kerr media,” Optics Communications, vol. 96, no. 4, pp. 348–
355, 1993. 73

[153] M. Straumanis, T. Ejima, and W. James, “The TiO2 phase explored by the lattice constant
and density method,” Acta Crystallographica, vol. 14, no. 5, pp. 493–497, 1961. 76

[154] “Data from Almaz Optics Inc. www.almazoptics.com/TiO2.htm.” 76, 83, 84, 85, 192

[155] J. R. DeVore, “Refractive indices of rutile and sphalerite,” Journal of the Optical Society
of America, vol. 41, no. 6, pp. 416–417, 1951. 84, 85, 192

[156] J. Rams, A. Tejeda, and J. Cabrera, “Refractive indices of rutile as a function of temper-
ature and wavelength,” Journal of Applied Physics, vol. 82, no. 3, pp. 994–997, 1997. 83,
84, 85, 192

[157] D. C. Cronemeyer, “Electrical and optical properties of rutile single crystals,” Physical
Review, vol. 87, no. 5, p. 876, 1952. 76, 84, 85, 192

211



Bibliography

[158] N. Khadzhiiski and N. Koroteev, “Coherent raman ellipsometry of crystals: determination
of the components and the dispersion of the third-order nonlinear susceptibility tensor of
rutile,” Optics Communications, vol. 42, no. 6, pp. 423–427, 1982. 77, 87

[159] R. Adair, L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,”
Physical Review B, vol. 39, no. 5, p. 3337, 1989. 77

[160] T. Hashimoto, T. Yoko, and S. Sakka, “Sol-gel preparation and third-order nonlinear
optical properties of TiO2 thin films,” Bulletin of the Chemical Society of Japan, vol. 67,
no. 3, pp. 653–660, 1994. 77

[161] H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase
and rutile TiO2 thin films,” Thin Solid Films, vol. 517, no. 19, pp. 5601–5604, 2009. 77

[162] M. Lines, “Influence of d orbitals on the nonlinear optical response of transparent
transition-metal oxides,” Physical Review B, vol. 43, no. 14, p. 11978, 1991. 77

[163] J. Feve, B. Boulanger, and Y. Guillien, “Efficient energy conversion for cubic third-
harmonic generation that is phase matched in KTiOPO4,” Optics Letters, vol. 25, no. 18,
pp. 1373–1375, 2000. 78

[164] G. Marnier and B. Boulanger, “The sphere method: A new technique in linear and non-
linear crystalline optical studies,” Optics Communications, vol. 72, no. 3, pp. 139–143,
1989. 79

[165] B. Boulanger, P. Segonds, J. Fève, O. Pacaud, B. Ménaert, and J. Zaccaro, “Spheres and
cylinders in parametric nonlinear optics,” Optical Materials, vol. 26, no. 4, pp. 459–464,
2004. 79

[166] O. Pacaud, “Oscillateurs paramétriques optiques basés sur des cristaux de géométrie cylin-
drique,” Ph.D. dissertation, Université Joseph Fourier, 2001. 79, 80

[167] O. Pacaud, J. Fève, B. Boulanger, and B. Ménaert, “Cylindrical KTiOPO4 crystal for en-
hanced angular tunability of phase-matched optical parametric oscillators,” Optics Letters,
vol. 25, no. 10, pp. 737–739, 2000. 80

[168] Y. Guillien, B. Ménaert, J. Fève, P. Segonds, J. Douady, B. Boulanger, and O. Pacaud,
“Crystal growth and refined Sellmeier equations over the complete transparency range of
RbTiOPO4,” Optical Materials, vol. 22, no. 2, pp. 155–162, 2003. 81

[169] “Data from http://refractiveindex.info/?shelf=glass&book=BK7&page=SCHOTT.” 82

[170] R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Applied
Physics Letters, vol. 5, no. 1, pp. 17–19, 1964. 86

[171] S. Reynaud, “Generation of twin photon beams by a nondegenerate optical parametric
oscillator,” Europhysics Letters, vol. 4, no. 4, p. 427, 1987. 94

212



Bibliography

[172] M. Ebrahimzadeh, “Mid-infrared ultrafast and continuous-wave optical parametric oscil-
lators,” in Solid-state mid-infrared laser sources. Springer, 2003, pp. 184–224. 94

[173] A. S. Villar, M. Martinelli, C. Fabre, and P. Nussenzveig, “Direct production of tripar-
tite pump-signal-idler entanglement in the above-threshold optical parametric oscillator,”
Physical Review Letters, vol. 97, no. 14, p. 140504, 2006. 95

[174] E. Rosencher and C. Fabre, “Oscillation characteristics of continuous-wave optical para-
metric oscillators: beyond the mean-field approximation,” Journal of the Optical Society
of America B, vol. 19, no. 5, pp. 1107–1116, 2002. 97

[175] A. Godard and E. Rosencher, “Energy yield of pulsed optical parametric oscillators: a rate-
equation analysis,” Quantum Electronics, IEEE Journal of, vol. 40, no. 6, pp. 784–790,
2004. 97

[176] I. Malitson, “Interspecimen comparison of the refractive index of fused silica,” Journal of
the Optical Society of America, vol. 55, no. 10, pp. 1205–1208, 1965. 108, 109

[177] J. W. Fleming, “Dispersion in GeO2 − SiO2 glasses,” Applied Optics, vol. 23, no. 24, pp.
4486–4493, 1984. 108, 109

[178] A. Wada, S. Okude, T. Sakai, and R. Yamauchi, “GeO2 concentration dependence of
nonlinear refractive index coefficients of silica-based optical fibers,” Electronics and Com-
munications in Japan (Part I: Communications), vol. 79, no. 11, pp. 12–19, 1996. 109

[179] M. A. Bandres and J. Gutiérrez-Vega, “Ince-Gaussian beams,” Optics Letters, vol. 29,
no. 2, pp. 144–146, 2004. 118

[180] W. N. Plick, M. Krenn, R. Fickler, S. Ramelow, and A. Zeilinger, “Quantum orbital
angular momentum of elliptically symmetric light,” Physical Review A, vol. 87, no. 3, p.
033806, 2013. 118, 119

[181] M. A. Bandres and J. C. Gutiérrez-Vega, “Ince-Gaussian modes of the paraxial wave
equation and stable resonators,” Journal of the Optical Society of America A, vol. 21,
no. 5, pp. 873–880, 2004. 118

[182] M. A. Bandres, “Elegant ince-gaussian beams,” Optics Letters, vol. 29, no. 15, pp. 1724–
1726, 2004. 119

[183] M. A. Bandres, J. C. Gutiérrez-Vega et al., “Elliptical beams,” Optics Express, vol. 16,
no. 25, pp. 21 087–21 092, 2008. 119

[184] B. Morasse, S. Chatigny, C. Desrosiers, É. Gagnon, M.-A. Lapointe, and J.-P. de Sandro,
“Simple design for singlemode high power CW fiber laser using multimode high NA fiber,”
in SPIE LASE: Lasers and Applications in Science and Engineering. International Society
for Optics and Photonics, 2009, pp. 719 505–719 505. 122

[185] C.-L. Chen, “Excitation of higher order modes in optical fibers with parabolic index pro-
file,” Applied Optics, vol. 27, no. 11, pp. 2353–2356, 1988. 140, 149, 150

213



Bibliography

[186] “http://dariopolli.wordpress.com/coherent-raman/.” 142

[187] D. Nicácio, E. Gouveia, N. M. Borges, and A. Gouveia-Neto, “Third-harmonic generation
in GeO2-doped silica single-mode optical fibers,” Applied Physics Letters, vol. 62, no. 18,
pp. 2179–2181, 1993. 143

[188] R. Stolen and E. Ippen, “Raman gain in glass optical waveguides,” Applied Physics Letters,
vol. 22, no. 6, pp. 276–278, 1973. 143

[189] E. Rosencher and B. Vinter, Optoelectronics. Cambridge University Press, 2002. 152

[190] J. Rothman, E. de Borniol, S. Bisotto, L. Mollard, F. Guellec, F. Pistone, S. Courtas, and
X. Lefoule, “HgCdTe APD-Focal Plane Array development at DEFIR for low flux and
photon-counting applications,” in Quantum of Quasars workshop, 2009. 153

[191] J. Sanghera, C. Florea, L. Shaw, P. Pureza, V. Nguyen, M. Bashkansky, Z. Dutton, and
I. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” Journal of Non-
Crystalline Solids, vol. 354, no. 2, pp. 462–467, 2008. 155, 156

[192] G. Lenz, J. Zimmermann, T. Katsufuji, M. Lines, H. Hwang, S. Spälter, R. Slusher, S.-W.
Cheong, J. Sanghera, and I. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide
glasses,” Optics Letters, vol. 25, no. 4, pp. 254–256, 2000. 156

[193] R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large
Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” Journal
of the Optical Society of America B, vol. 21, no. 6, pp. 1146–1155, 2004. 156

[194] R. Stegeman, G. Stegeman, P. Delfyett, L. Petit, N. Carlie, K. Richardson, and M. Couzi,
“Raman gain measurements and photo-induced transmission effects of germanium-and
arsenic-based chalcogenide glasses,” Optics Express, vol. 14, no. 24, pp. 11 702–11 708,
2006. 156

[195] J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Ren-
versez, F. Smektala, M. El Amraoui, J. Adam, T. Chartier, D. Mechin, and L. Brilland,
“Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm,”
Optics Express, vol. 18, no. 25, pp. 26 647–26 654, 2010. 156

[196] O. P. Kulkarni, C. Xia, D. J. Lee, M. Kumar, A. Kuditcher, M. N. Islam, F. L. Terry, M. J.
Freeman, B. G. Aitken, S. C. Currie, J. E. McCarthy, M. L. Powley, and D. A. Nolan,
“Third order cascaded Raman wavelength shifting in chalcogenide fibers and determination
of Raman gain coefficient,” Optics Express, vol. 14, no. 17, pp. 7924–7930, 2006. 156

[197] J. Sanghera and I. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR
applications: a review,” Journal of Non-Crystalline Solids, vol. 256, pp. 6–16, 1999. 156

[198] R. T. White and T. M. Monro, “Cascaded raman shifting of high-peak-power nanosecond
pulses in As2S3 and As2Se3 optical fibers,” Optics Letters, vol. 36, no. 12, pp. 2351–2353,
2011. 156

214



Bibliography

[199] M. Duhant, “Etude des sources supercontinuum à fibres transparentes dans le moyen
infrarouge,” Ph.D. dissertation, Université de Bourgogne, 2012. 155, 157

[200] P. Kaiser, E. Marcatili, and S. Miller, “A new optical fiber,” Bell System Technical Journal,
vol. 52, no. 2, pp. 265–269, 1973. 155

[201] J. Knight, T. Birks, P. S. J. Russell, and D. Atkin, “All-silica single-mode optical fiber
with photonic crystal cladding,” Optics Letters, vol. 21, no. 19, pp. 1547–1549, 1996. 155,
158

[202] T. M. Monro, Y. D. West, D. W. Hewak, N. G. Broderick, and D. J. Richardson, “Chalco-
genide holey fibres,” Electronics Letters, vol. 36, no. 24, pp. 1998–2000, 2000. 155, 158

[203] T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal
fiber,” Optics Letters, vol. 22, no. 13, pp. 961–963, 1997. 157, 159

[204] P. Russell, “Photonic crystal fibers,” Science, vol. 299, no. 5605, pp. 358–362, 2003. 157

[205] J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal
fiber,” Reviews of Modern Physics, vol. 78, no. 4, p. 1135, 2006. 157

[206] M. El-Amraoui, G. Gadret, J. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev,
Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala,
“Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband
sources,” Optics Express, vol. 18, no. 25, pp. 26 655–26 665, 2010. 158

[207] X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Nonsilica glasses for holey
fibers,” Journal of Lightwave Technology, vol. 23, no. 6, p. 2046, 2005. 158

[208] F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smek-
tala, N. Traynor, and J.-L. Adam, “Small-core chalcogenide microstructured fibers for the
infrared,” Applied Optics, vol. 47, no. 32, pp. 6014–6021, 2008. 158

[209] J. Knight, T. Birks, P. S. J. Russell, and J. De Sandro, “Properties of photonic crystal
fiber and the effective index model,” Journal of the Optical Society of America A, vol. 15,
no. 3, pp. 748–752, 1998. 158

[210] R. Sinha and A. D. Varshney, “Dispersion properties of photonic crystal fiber: comparison
by scalar and fully vectorial effective index methods,” Optical and Quantum Electronics,
vol. 37, no. 8, pp. 711–722, 2005. 158, 159

[211] G. Boudebs, S. Cherukulappurath, M. Guignard, J. Troles, F. Smektala, and F. Sanchez,
“Linear optical characterization of chalcogenide glasses,” Optics Communications, vol. 230,
no. 4, pp. 331–336, 2004. 158

[212] K. N. Park and K. S. Lee, “Improved effective-index method for analysis of photonic
crystal fibers,” Optics Letters, vol. 30, no. 9, pp. 958–960, 2005. 159, 160

215



Bibliography

[213] Y. Li, Y. Yao, M. Hu, L. Chai, and C. Wang, “Improved fully vectorial effective index
method for photonic crystal fibers: evaluation and enhancement,” Applied Optics, vol. 47,
no. 3, pp. 399–406, 2008. 159

[214] L. D. Bianca, “Modélisation de fibres microstructurées en verres de chalcogénures pour
l’amplification paramétrique,” Master’s thesis, Supélec, 2012. 160, 161

[215] P. Bourdon, A. Durécu, C. Alhenc-Gelas, L. Di Bianca, G. Canat, and F. Druon, “Effec-
tive index numerical modelling of microstructured chalcogenide-glass fiber for frequency
conversion to the mid-infrared band,” in SPIE LASE. International Society for Optics
and Photonics, 2013, pp. 86 011L–86 011L. 160

[216] B. Kuhlmey, R. McPhedran, C. de Sterke, P. Robinson, G. Renversez, and D. Maystre,
“Microstructured optical fibers: where’s the edge?” Optics Express, vol. 10, no. 22, pp.
1285–1290, 2002. 161

[217] L. Bigot, P. Roy et al., “Fibres à cristal photonique: 10 ans d’existence et un vaste champ
d’applications,” Images de la physique, pp. 71–80, 2007. 161

216





Résumé – Ce travail porte sur la génération directe de triplets de photons par interaction
optique non linéaire du troisième ordre avec la matière solide. Les trois photons constituant
l’état triplet proviennent de la scission d’un unique photon, et sont donc étroitement corrélés.
Des champs supplémentaires peuvent stimuler le processus, et ainsi augmenter son efficacité
de conversion, mais au détriment de la conservation des corrélations de l’état triplet. Deux
stratégies sont adoptées pour générer efficacement ces triplets tout en conservant leurs propriétés
de cohérence. La première porte sur génération de triplets dans des oxydes massifs cristallins,
rendue possible à travers la réalisation d’accords de phase par biréfringence. Ces cristaux peuvent
être placés en cavité de manière à augmenter artificiellement la longueur d’interaction. Dans ce
contexte, KTP et TiO2 sous sa forme rutile sont étudiés expérimentalement ; la configuration
en cavité fait l’objet d’une étude théorique. La seconde stratégie se concentre sur la génération
de triplets dans des fibres optiques, à travers un accord de phase modal. Leurs longueurs, le
confinement du champ électromagnétique, ainsi que la non-existence de processus quadratiques
pouvant polluer la génération de triplets sont des avantages importants. Des expériences de
génération de troisième harmonique dans des fibres de silice dopées germanium sont réalisées ;
et les propriétés d’accord de phase dans des fibres à cristaux photoniques en chalcogénures sont
calculées.
Mots-clefs : interactions cubiques, optique non linéaire, optique cristalline, optique guidée,
optique quantique.

Abstract – This work concentrates on the direct generation of triple photons through third-
order nonlinear optical interactions with solid-state matter. The three photons constituting the
triplet state arise from the splitting of a single photon, and are therefore highly correlated.
Additional fields can stimulate this process and thus increase its conversion efficiency, but at the
cost of losing the correlations of the triplet states. In order to generate efficiently the triplets
while preserving their coherence properties, two strategies are investigated. In the first one,
the interaction occurs in oxide bulk crystals, thanks to a birefringent phase matching. These
crystals can be put into a cavity so as to artificially increase the interaction length. In this
context, KTP and rutile TiO2 are studied experimentally; the cavity configuration is subjected
to a theoretical work. The second strategy focuses on the generation in optical fibers, through
a modal phase matching. Their length, the confinement of the electromagnetic field, and the
non-existence of polluting second-order nonlinear processes are key advantages. Third-harmonic
generation experiments on germanium-doped silica fibers are performed; and phase-matching
properties in chalcogenide photonic-crystal fibers are calculated.
Keywords: cubic interactions, nonlinear optics, crystal optics, fiber optics, quantum optics.
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