

Etude expérimentale et modélisation de l'oxydation de composés organiques à des fins de sécurité industrielle : cinétique d'oxydation des butènes (1-, cis-2-, trans-2- et

iso-)

Yann Fenard

▶ To cite this version:

Yann Fenard. Etude expérimentale et modélisation de l'oxydation de composés organiques à des fins de sécurité industrielle : cinétique d'oxydation des butènes (1-, cis-2-, trans-2- et iso-). Alimentation et Nutrition. Université d'Orléans, 2014. Français. NNT : 2014ORLE2059 . tel-01207210

HAL Id: tel-01207210 https://theses.hal.science/tel-01207210

Submitted on 26 Apr 2016 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ÉCOLE DOCTORALE ENERGIE, MATERIAUX, SCIENCES DE LA TERRE ET DE L'UNIVERS

Institut de Combustion, Aérothermique, Réactivité et Environnement

THÈSE présentée par :

Yann FENARD

soutenue le : 18 Décembre 2014

pour obtenir le grade de : **Docteur de l'Université d'Orléans** Discipline/ Spécialité : Chimie-Physique

Etude expérimentale et modélisation de l'oxydation de composés organiques à des fins de sécurité industrielle. Cinétique d'oxydation des butènes (1-, *cis*-2-, *trans*-2- et *iso*-)

THÈSE dirigée par : P. DAGAUT	Directeur de recherche au CNRS d'Orléans
RAPPORTEURS : L. GASNOT PA. GLAUDE	Professeur à l'Université de Lille I Directeur de recherche LRGP de Nancy
JURY :	
L. GASNOT	Professeur à l'Université de Lille I
PA. GLAUDE	Directeur de recherche au LRGP de Nancy
P. DAGAUT	Directeur de recherche au CNRS d'Orléans
G. DAYMA	Professeur à l'Université d'Orléans
V. DIAS	Docteur, Research Associate à l'Université Catholique de Louvain
Z. SERINYEL	Maître de conférences à l'Université d'Orléans

Sommaire

I. Co	. Contexte de l'étude9		
I.1.	Présentation du projet DISPATMO	9	
I.2.	Objectif du projet	9	
I.3.	Distribution des tâches		
I.4.	Tâche « combustion »		
I.5.	Objectif de la thèse		

II. Etude bibliographique17

II.1.	0x	ydation des butènes	17
II.1	.1.	Le 1-butène	18
II.1	.2.	Le <i>trans</i> -2-butène	19
II.1	.3.	Le <i>cis</i> -2-butène	19
II.1	.4.	L'iso-butène	20
II.1	.5.	Les isomères du butène	
II.2.	0x	ydation de l'éthanol	45
II.3.	0x	ydation de la 2-butanone (Méthyléthylcétone)	50
II.4.	0x	ydation du toluène	54
II.5.	Со	nclusion générale	58

III. Dispositifs expérimentaux......77

III.1. Co	ombustible	77
III.2. Ch	nambre de combustion sphérique	78
III.2.1.	Vitesse de combustion d'une flamme en expansion	
III.2.2.	Vitesse de combustion laminaire étirée	
III.2.3.	Vitesse de combustion laminaire non-étirée	
III.2.4.	Description du dispositif expérimental	
III.2.5.	Caractéristiques de l'enceinte	
III.2.6.	Préparation du mélange	
III.2.7.	Visualisation du front de flamme par ombroscopie	
III.3. Le	e réacteur auto-agité par jets gazeux	

III.3.1. Car	actéristiques du réacteur auto-agité	85
III.3.1.a.	Dispositif pour l'étude de gaz (isomères du butène)	85
III.3.1.b.	Dispositif pour l'étude de liquides (TIFLEX)	88
III.3.2. Cal	cul des débits gazeux	
III.3.3. Mét	thodes d'analyse	90
III.3.3.a.	Spectrométrie d'absorption infrarouge à transformée de Fourrier	90
III.3.3.b.	Analyse des gaz par chromatographie en phase gazeuse	94
III.3.4. Est	imation de l'incertitude sur les résultats	
III.4. Conclu	sion	99

IV.1. 0	utils	de calcul	103
IV.1.1.	CHI	EMKIN	
IV.1.2.	Mé	canisme réactionnel (<i>chem.inp</i>)	
IV.1	.2.a.	Réactions dépendant de la pression :	
IV.1	.2.b.	Théorie de Lindemann (1922) [Lindemann, 1922]	
IV.1	.2.c.	Formalisme de Troe [Troe, 1983]	
IV.1.3.	Dor	nnées thermodynamiques (<i>therm.dat</i>)	
IV.1.4.	Cod	le PSR	
IV.1	.4.a.	Equations du réacteur auto-agité par jets gazeux	
IV.1	.4.b.	Résolution du système d'équation	
IV.1	.4.c.	Analyse de voies réactionnelles	
IV.1	.4.d.	Analyses de sensibilité	
IV.1.5.	Cod	le PREMIX	
IV.1.6.	Dor	nées de transport des espèces	115
IV.2. D	évelo	ppement du modèle cinétique	116
IV.2.1.	Dér	narche générale	
IV.2.2.	Des	cription de la base C0-C7	
IV.2	.2.a.	Base C ₀ :	
IV.2	.2.b.	Base C ₁ -C ₂ :	
IV.2	.2.c.	Base C ₃	
IV.2	.2.d.	Sous-mécanismes en C4 :	
IV.2	.2.e.	Sous mécanismes en C5-C7 :	
IV.3. Co	onclu	sion	150

V.	7. Résultats expérimentaux et modélisation de l'oxydation des			
	isom	ères	du butène	166
V	7.1. 0	xyda	tion du 1-butène	166
	V.1.1.	Gé	néralités sur le 1-butène	166
	V.1.2.	Мо	délisation des résultats expérimentaux obtenus en réacteur auto-	
		agi	té	169
	V.1.	2.a.	Conditions expérimentales	169
	V.1.	2.b.	Résultats expérimentaux et modélisation	169
	V.1.	2.c.	Analyse de voies réactionnelles	177
	V.1.	2.d.	Analyse de sensibilité	178
	V.1.3.	Мо	délisation des résultats expérimentaux de vitesse de flamme en	
		bo	mbe sphérique	
	V.1.	3.a.	Conditions expérimentales	180
	V.1.	3.b.	Résultats expérimentaux et modélisation	181
	V.1.	3.c.	Analyses de sensibilité	183
	V.1.4.	Мо	délisation de délais d'auto-inflammation en tube à choc	
	V.1.	4.a.	Conditions expérimentales	186
	V.1.	4.b.	Confrontation du modèle avec les résultats expérimentaux	186
	V.1.5.	Fla	mme stabilisée sur brûleur	
	V.1.	5.a.	Conditions expérimentales	188
	V.1.	5.b.	Confrontation du modèle avec les résultats expérimentaux	188
	V.1.	5.c.	Analyse de vitesse	190
	V.1.6.	Co	nclusion	192
V	7.2. O	xyda	tion du <i>trans</i> -2-butène	193
	V.2.1.	Gé	néralités sur le <i>trans</i> -2-butène	
	V 2 2	Мо	délisation des résultats expérimentaux obtenus en réacteur auto-	
	,	agi	té	194
	V.2.	2.a.	Conditions expérimentales	194
	V.2.	2.b.	Résultats expérimentaux et modélisation	195
	V.2.	2.c.	Analyse de voies réactionnelles	201
	V.2.	2.d.	Analyses de sensibilité	202
	V.2.3.	Мо	délisation des résultats expérimentaux de vitesse de flamme en	
		bo	mbe sphérique	204
	V.2.	3.a.	Conditions expérimentales	204
	V.2.	3.b.	Résultats expérimentaux et modélisation	204
	V.2.4.	Fla	mme stabilisée sur brûleur	206

V.2.4	ł.a.	Conditions expérimentales	206
V.2.4.b.		Confrontation du modèle avec les résultats expérimentaux	207
V.2.5.	Con	clusion	209
V.3. Ox	ydat	ion du <i>cis</i> -2-butène	209
V.3.1.	Gér	léralités sur le <i>cis</i> -2-butène	209
V.3.2.	Мо	délisation des résultats expérimentaux obtenus en réacteur auto-	
	agit	é	211
V.3.2	2.a.	Conditions expérimentales	211
V.3.2	2.b.	Résultats expérimentaux et modélisation	211
V.3.2	2.c.	Analyse de voies réactionnelles	217
V.3.3.	Mo	délisation des résultats expérimentaux de vitesse de flamme en	
	bon	nbe sphérique	218
V.3.3	3.a.	Conditions expérimentales	218
V.3.3	3.b.	Résultats expérimentaux et modélisation	219
V.3.4.	Con	clusion	220
V.4. Ox	xydat	ion de l' <i>iso</i> -butène	221
V.4.1.	Gér	léralités sur l' <i>iso</i> -butène	221
V.4.2.	Мо	délisation des résultats expérimentaux obtenus en réacteur auto-	
	agit	é	222
V.4.2	2.a.	Conditions expérimentales	222
V.4.2	2.b.	Résultats expérimentaux et modélisation	223
V.4.2	2.c.	Analyse de voies réactionnelles	230
V.4.2	2.d.	Analyse de sensibilité	231
V.4.3.	Mo	délisation des résultats expérimentaux de vitesse de flamme en	
	bon	nbe sphérique	233
V.4.3	3.a.	Conditions expérimentales	233
V.4.3	3.b.	Résultats expérimentaux et modélisation	233
V.4.4.	Fla	nme stabilisée sur brûleur	235
V.4.4	ł.a.	Conditions expérimentales	235
V.4.4	ł.b.	Confrontation du modèle avec les résultats expérimentaux	236
V.4.4	ł.c.	Analyse de vitesse	237
V.4.5.	Dél	ais d'auto-inflammation en tube à choc et spéciation	241
V.4.5	5.a.	Délais d'auto-inflammation	241
V.4.5	5.b.	Spéciation	244
V.4.6.	Con	clusion	251

VI. Modélisation de l'oxydation des solvants du projet DISPATMO.. 257

VI.1. Etl	VI.1. Ethanol			
VI.1.1.	Réacteur auto-agité	257		
VI.1.2.	Flamme laminaire prémélangée	262		
VI.2. 2-ł	butanone			
VI.3. To	luène			
VI.3.1.	Réacteur auto-agité	264		
VI.3.2.	Flamme laminaire prémélangée	266		
VI.4. Co	onclusion			

VII.Etude expérimentale de l'oxydation du solvant TIFLEX...... 271

VII.1. Introduction	271
VII.2. Détermination expérimentale de la composition du solvant TIFLEX	273
VII.3. Résultats expérimentaux de l'oxydation du solvant TIFLEX	275
VII.3.1. Conditions expérimentales	275
VII.3.2. Résultats expérimentaux	275
VII.4. Conclusion	287
VIII. Conclusion générale et perspectives	. 290
IX. Annexe : Mécanisme cinétique	. 295

Chapitre I

Contexte de l'étude

I. Co	1. Contexte de l'étude9			
I.1.	Présentation du projet DISPATMO	9		
I.2.	Objectif du projet	9		
I.3.	Distribution des tâches			
I.4.	Tâche « combustion »			
I.5.	Objectif de la thèse			

I. Contexte de l'étude

I.1. Présentation du projet DISPATMO

Lancé en juillet 2011, le projet DISPATMO (Etude de la prévision des risques de pollution liés à la DISPersion ATMOsphérique de produit chimiques) bénéficie de fonds FEDER (Fonds Européens de Développement des Régions). Il s'agit d'une coopération entre plusieurs entités autour d'un effort de recherche commun. Nous pourrons citer des laboratoires tels que le Pôle National des Risques Industriels (PNRI-Bourges), l'institut Pluridisciplinaire de Recherche en Ingénierie des Systèmes, Mécanique et Energétique (PRISME), le Centre National de la recherche Scientifique au travers de l'Institut de Combustion Aérothermique Réactivité et Environnement (ICARE) et des entreprises comme Nexter-Munitions, la sucrerie de Toury et AB-PROD. Le projet initialement prévu pour durer 36 mois se terminera durant l'année 2014.

I.2. Objectif du projet

La dispersion de produits chimiques sous forme solide ou gazeuse lors d'accidents dans les dépôts de stockage de produits chimiques (oxydant, réducteur, engrais, ...) au sein d'industries en particulier classées SEVESO peut entraîner des risques pour l'environnement. Les conséquences au niveau impact environnemental pour la population des alentours seront fonction de la nature des produits émis mais surtout de leurs concentrations et toxicité. Aujourd'hui les études de risques réalisées dans ces entreprises prennent en compte l'origine du risque (nature et quantité des produits dangereux) et estiment des zones au niveau des risques liés aux explosions ou incendies (effet de souffle, propagation incendie,...). Il en résulte des zones de danger spécifiques à ces risques. Pour les critères environnementaux, il n'existe pas aujourd'hui d'outils spécifiques adaptés au besoin des entreprises possédant des stocks importants et variés de produits chimiques.

L'objectif de ce projet est de développer et de valider des outils de prévision numérique permettant de déterminer les zones de danger pour la population et l'environnement lors d'incendie ou d'explosion au niveau des centres de stockage de produits chimiques. Le but est de mettre en place une gestion des risques au travers notamment d'un plan d'opération interne (POI) informatique dynamique d'une entreprise, impactant si besoin de plan particulier d'intervention (PPI) de la préfecture concernée. A terme, cet outil permettra à un industriel, pour chacun de ses sites, d'avoir ses propres scénarii liés à la combustion et la dispersion des produits chimiques qui lui sont propres.

I.3. Distribution des tâches

Afin de d'organiser le travail selon les compétences de chaque partenaire, 9 tâches ont été créées, permettant au passage la création d'un calendrier.

Tâche 1 : Coordination du projet

Partenaires : PNRI

Objectif : coordonner au niveau scientifique, technique et administratif le projet afin de garantir le bon déroulement et la réalisation des différentes tâches du projet.

Tâche 2 : Numérisation des sites industriels et de leur environnement

Partenaires : PRISME - MCDS, NEXTER Munitions, Sucrerie de TOURY, ABProd

Objectif : numériser les deux sites industriels et leur environnement externe (dans un périmètre d'une dizaine de kilomètres. La distance sera affinée selon les résultats du modèle obtenu), afin de pouvoir réaliser la cartographie de polluants suite à l'évaluation de la dispersion.

Tâche 3 : Combustion - inventaire chimique

Partenaires : ICARE - CNRS, NEXTER Munitions, Sucrerie de TOURY

Objectifs : déterminer la base de travail pour l'évaluation du risque chimique pour certains produits chimiques stockés chez les deux industriels.

- 1) recensement des produits chimiques stockés sur le site de chaque industriel de façon exhaustive.
- 2) sélection des produits qui pourront servir de base à l'étude en fonction de la nature chimique, des quantités et de leur emplacement sur le site.

Tâche 4 : Combustion - caractérisation des espèces chimiques Partenaires : ICARE - CNRS, NEXTER Munitions Objectif : déterminer les produits de combustion des 4 produits chimiques sélectionnés : les espèces primaires émises directement par combustion, et les espèces secondaires, issues de la réaction dans le temps des espèces primaires formées.

Tâche 5 : Combustion - impact environnemental

Durée : T0+6 à T0+30

Partenaires : ICARE - CNRS, NEXTER Munitions

Objectif : déterminer pour les produits de combustion des 4 produits chimiques sélectionnés, les données de toxicité des différentes molécules. Ces données seront issues de la littérature.

Tâche 6 : Dispersion

Partenaires : ICARE - CNRS, NEXTER Munitions, Sucrerie de TOURY

Objectifs : Réaliser une prédiction numérique, pour chaque produit stocké sélectionné, de la dispersion sur le site et son environnement externe (concentration des polluants issus de la combustion et zone de dispersion), en fonction des scénarii d'émission (origine de la dispersion, lieu de stockage, manière dont les molécules sont libérées) et des conditions environnementales. Les résultats du calcul permettraient de voir si les lieux de stockages sont bien positionnés sur le site ou s'il faut les déplacer.

Tâche 7 : Cartographie de la dispersion du nuage sur les sites et leur environnement

Partenaires : PRISME - MCDS, NEXTER Munitions, Sucrerie de TOURY

Objectifs : réaliser la cartographie des polluants (nature et concentration) aux alentours des deux sites industriels afin d'évaluer l'impact chimique d'un accident industriel sur son environnement. Cette cartographie permettra de faciliter les décisions d'intervention en interne sur les sites et des pouvoirs publics en externe. Elle prendra forme d'un POI Dynamique.

Tâche 8 : Outil Simplifié d'aide à la décision

Partenaires : PRISME - MCDS, NEXTER Munitions, Sucrerie de TOURYObjectifs : Obtenir, à partir du logiciel réalisé, un outil rapide et simple d'utilisationconduisant à un POI dynamique. Il permettra de réagir en temps quasi réel face à un incident.

Tâche 9 : Synthèse Partenaires : PNRI, PRISME – MCDS, ICARE – CNRS, NEXTER Munitions, Sucrerie de TOURY, ABProd

Objectif : réaliser la synthèse de l'ensemble des travaux de l'étude.

I.4. Tâche « combustion »

Le laboratoire ICARE-CNRS est impliqué au travers de l'aspect « combustion », dans les tâches 3 et 4, c'est à dire l'inventaire chimique et la caractérisation des espèces chimiques.

Dans un premier temps, les deux industriels tests que sont Nexter-Munition et la sucrerie de Toury, ont pour objectif de recenser les produits chimiques stockés sur leur site, de façon exhaustive. Ils devront communiquer la nature du produit chimique, sa toxicologie, son emplacement ainsi que sa quantité. Puis, parmi ces produits, deux seront retenus par site (pour un total de quatre) pour servir de base à l'étude de combustion.

Les critères de sélection sont la quantité stockée et la toxicologie du produit. Pour être étudiable à l'ICARE-CNRS, le produit chimique doit être un hydrocarbure liquide et inflammable.

Les produits chimiques sélectionnés sont :

Pour Nexter-Munition :

- le toluène
- le solvant naphta aromatique léger TIFLEX

Pour la sucrerie de Toury :

- l'éthanol
- la 2-butanone, aussi appelée méthyléthylcétone

Intervient ensuite l'ICARE-CNRS pour la caractérisation des espèces chimiques. Le but est de déterminer les produits de combustion des 4 produits sélectionnés précédemment, ainsi que d'estimer leur concentration. Il faudra distinguer les espèces chimiques primaires, émise directement par combustion, des espèces chimiques secondaires, issues de la réaction dans le temps des espèces primaires formées. Deux équipes de l'ICARE-CNRS sont concernées : l'équipe OH (Oxydation des Hydrocarbures) pour la détermination des espèces primaires et l'équipe RA (Réactions Atmosphériques) pour la partie espèces secondaires.

I.5. Objectif de la thèse

La nature et la concentration des produits de combustion d'une espèce dépendent de nombreux paramètres, tels que la nature du combustible, la richesse du milieu, la température, la pression... Pour représenter tous les scénarii d'incendie ou d'explosion d'un produit chimique stocké sur un site industriel, il est nécessaire de connaître le comportement de ce produit dans les conditions fixées. Pour cela deux possibilités s'offrent à nous : une étude expérimentale dans toutes les conditions sélectionnées ou une simulation informatique des scénarii. Dans le cas d'incendies ou explosions à grande échelle, l'étude expérimentale est inenvisageable.

Il est donc nécessaire de prévoir les espèces chimiques formées par combustion ainsi que leur concentration. Il faut alors utiliser un modèle cinétique suffisamment détaillé permettant de prédire la combustion d'un carburant dans les conditions fixées.

Nous nous proposons donc au travers de cette thèse d'élaborer un mécanisme cinétique détaillé pour les espèces sélectionnées pour l'étude, à savoir l'éthanol, la butan-2-one et le toluène. Pour cela nous utiliserons un mécanisme existant que nous actualiserons et validerons. La fiabilité et la robustesse du mécanisme ainsi actualisé sera testé au travers d'une étude complète (expérimentale et modélisation) d'espèces du cœur du mécanisme : des composés comprenant 4 atomes de carbone. Notre choix s'est arrêté sur les isomères du butène, importants intermédiaires de l'oxydation de carburants aussi bien conventionnels que synthétiques pour lesquels relativement peu d'études de la cinétique de combustion ont été publiées. La validation du mécanisme cinétique détaillé s'appuiera sur une étude expérimentale en réacteur auto-agité dans une large gamme de richesses et températures. Une étude expérimentale de mesure de vitesse laminaire de flamme en bombe sphérique viendra compléter la validation. Ensuite, le modèle sera confronté aux données expérimentales issues de la littérature sur la combustion des isomères du butène avec différents moyens expérimentaux (tube à choc, brûleur à flamme plate). Ce modèle sera enfin confronté aux données expérimentales issues de la littérature pour l'éthanol, la butan-2-one et le toluène afin de répondre aux attentes du projet DISPATMO. Nous mentionnerons qu'une étude expérimentale en réacteur auto-agité a été menée, dans le but d'identifier les produits de combustion de ce mélange complexe que représente le solvant naphta aromatique TIFLEX. Cette étude permet d'estimer également les quantités de produits de combustion du solvant.

Chapitre II

Etude Bibliographique

II. Etude bibliographiq	Jue	
II.1. Oxydation des butè	ènes	
II.1.1. Le 1-butène		
II.1.2. Le <i>trans</i> -2-butèn	10	
II.1.3. Le cis-2-butène		
II.1.4. L' <i>iso</i> -butène		
II.1.5. Les isomères du	butène	
II.2. Oxydation de l'étha	anol	
II.3. Oxydation de la 2-b	butanone (Méthyléthylcétone	e)50
II.4. Oxydation du toluè	ène	54
II.5. Conclusion général	le	

II. Etude bibliographique

Afin de pouvoir répondre aux problématiques de la combustion de solvants industriels dans le contexte du projet DISPATMO, il est nécessaire de pouvoir prédire la nature des espèces chimiques issues de leur combustion ainsi que leur concentration. Cette maîtrise passe par une connaissance approfondie de l'oxydation des hydrocarbures et dérivés oxygénés, à haute température.

Ce chapitre présente donc une revue bibliographique de l'oxydation des composés purs sélectionnés pour le projet DISPATMO, c'est-à-dire l'éthanol, la 2-butanone et le toluène. Les composés chimiques étudiés ont tendance à former, dans des quantités non-négligeables, des espèces insaturées, principalement dans les conditions de haute température et richesse élevée qui peuvent se rencontrer dans des feux de nappe. Les alcanes et les alcools, par exemple, sont connus pour leur propension à former des composés insaturés tels que les alcènes. De plus, dans les conditions de température et de richesse des flammes, les chaînes carbonées des produits de la combustion ont tendance à s'accroître. L'étude cinétique des composés insaturés est un sujet d'actualité, avec de nombreuses études très récentes [Zhang, 2011] [Schenk, 2012] [Zhao, 2014]. Ces problématiques ont ainsi motivé des études cinétiques d'oxydation de composés insaturés de petite taille de formule brute C₄H₈ : les butènes. C_4H_8 présente également l'avantage d'avoir des isomères, paramètre intéressant lors de l'étude cinétique de son oxydation. Les résultats obtenus lors de l'oxydation des isomères du butène peuvent être par la suite étendus sur d'autres oléfines présentant des isomères. L'étude cinétique de l'oxydation des butènes permet une actualisation du cœur du modèle cinétique détaillé, la partie C_0 - C_4 .

II.1. Oxydation des butènes

Les études sur le butène, pour des raisons pratiques, et pour éviter les répétitions, ont été divisées en deux parties : une première partie concerne des études portant sur un seul isomère du butène alors qu'une seconde partie répertorie des études réalisées sur plusieurs isomères du butène. Ces dernières études sont généralement plus récentes.

II.1.1.Le 1-butène

Chakir et al. [*Chakir, 1989*] ont étudié l'oxydation du 1-butène en réacteur auto-agité. Les expériences ont été menées à des températures de 900-1200 K, à des pressions de 1 atm et 10 atm et des richesses de 0,15 à 4. Le temps de passage des espèces dans le réacteur évolue de 0,02s à 2s. Les concentrations initiales d'oxygène sont comprises dans la gamme 0,1-0,2 %. Les gaz réactifs introduits (1-butène et oxygène) sont très largement dilués dans l'azote.

La concentration des espèces prélevées au sein du réacteur ont été mesurées à l'aide de plusieurs détecteurs après avoir été séparés par chromatographie en phase gazeuse en utilisant différentes colonnes :

- Détecteur à conductivité thermique Colonne avec tamis moléculaire et Porapak : O₂, CO, CO₂
- Détecteur à ionisation de flamme Colonne Porapak ou PLOT Al₂O₃: hydrocarbures et aldéhydes : CH₄, C₂H₂, C₂H₄, C₂H₆, C₃H₆, 1,3-butadiène, allène, propyne, cis-2butène, *trans*-2-butène, iso-butène et acétaldéhyde.

L'auteur précise que d'autres espèces ont été mesurées à l'état de traces comme les pentènes, le pentadiène, le vinylacétylène et le benzène.

Le mécanisme C₄ publié par Chakir et al. s'appuie sur les mécanismes de Warnatz et al. [*Warnatz, 1984*] de Pitz et al. [*Pitz, 1984*] [*Pitz, 1986*], et à part quelques constantes de vitesses issues de la littérature de l'époque, peu de changements ont été opérés sur ces mécanismes. Le méacanisme comprend au final 56 espèces et 360 réactions. La partie C₀-C₃ issue des travaux de Dagaut et al. sur l'éthylène [*Dagaut, 1988a*], sur le propène [*Dagaut, 1988b*] et le propane [*Dagaut, 1987*] est utilisée et seules les vitesses de réaction concernant les espèces C₃ intermédiaires C₃H₄ et C₃H₅ ont été revues.

L'oxydation de petits alcènes à hautes températures a été étudiée par Heyberger et al. [*Heyberger, 2002*]. Dans une première partie, les auteurs présentent une étude de l'oxydation du propène, le mécanisme étant généré par le logiciel EXGAS, système de génération automatique de mécanismes cinétiques détaillés. Le mécanisme pour l'oxydation du propène a été validé sur des résultats expérimentaux obtenus en réacteur auto-agité publiés précédemment [*Heyberger, 2001*]. Lors de cette étude, la validation est étendue aux résultats expérimentaux obtenus en tube à choc par Burcat et al [*Burcat, 1985*] et Qin et al. [*Qin, 2001*]. Les conditions sont des températures entre 1270 et 1840 K, des pressions entre 0,95 et

7,1 atm et des richesses comprises dans la gamme 0,5-2. Le mécanisme du propène issu de cette étude comprend 262 espèces et 1295 réactions.

Toutefois, le but principal de ce travail est l'étude de l'oxydation du 1-butène, et l'élaboration d'un mécanisme cinétique détaillé, généré par EXGAS. La validation du mécanisme s'appuie sur les résultats expérimentaux issus des travaux de Chakir et al. [*Chakir, 1989*] en réacteur auto-agité décrits précédemment, ainsi que sur de nouveaux résultats expérimentaux de délais d'auto-inflammation du 1-butène en tube à choc, entre 1200 et 1670 K, 6,7 et 8,9 atm et des richesses de 0,5, 1 et 2, correspondant respectivement aux mélanges argon/1-butène /oxygène : 87:1:12 ; 93:1:6 ; 96:1:3 et 86:2:12 (en pourcentages molaires). Les délais observés sont entre 20 et 1900 µs.

Le mécanisme cinétique utilisé dans l'étude comprend 180 espèces et 377 réactions. La partie basse température (en dessous de 900 K) a été négligée, le 1-butène ne réagissant pas à basse température. Les analyses du mécanisme montrent le rôle déterminant, sur les délais d'auto-inflammation, des réactions d'initiation (réactions uni-moléculaires de décomposition du 1-butène), de terminaison (recombinaison des radicaux allyles) et de propagation (réactions de propagation entre H et O_2). L'accent est mis sur le rôle joué par les radicaux propényles (C_3H_5) stabilisés par résonance.

II.1.2.Le trans-2-butène

Dans le cadre de cette thèse, les travaux portant sur l'oxydation du *trans*-2-butène ont pu être publiées [*Fenard*, 2014]. Il s'agit de l'étude expérimentale et de la modélisation de l'oxydation du *trans*-2-butène en réacteur auto-agité et en bombe sphérique. Les résultats sont détaillés dans le « Chapitre V : Résultats expérimentaux et modélisation de l'oxydation des isomères du butène. »

II.1.3.Le cis-2-butène

Peu d'études sur la cinétique de réaction du *cis*-2-butène existent. A notre connaissance, l'étude cinétique de la dégradation de cette molécule à fait l'objet d'une seule publication. Richard et al. [*Richard, 1976*] ont travaillé sur l'étude de « la réaction thermique, vers 500°C, du butène-2 cis pur ou en présence d'éthanal ». Le dispositif expérimental consiste en un montage statique à volume constant en 483 et 546°C, à des pressions initiales comprises entre

20 et 100 torr et dans des réacteurs en pyrex conditionnés à la fois par le *cis*-2-butène et l'éthanal. Les composés initiaux sont sous atmosphère inerte d'azote, sans O_2 . La durée d'observation des espèces dans le réacteur est de 30 min.

Le *cis*-2-butène réagit vers 510°C pour donner primairement par ordre décroissant d'importance : *trans*-2-butène > 1,3-butadiène > H_2 > CH_4 > C_3H_6 > 1-butène et des traces de C_2H_4 et C_2H_6 . Les conclusions de l'étude apportent des précisions sur les processus d'isomérisation *cis*-2-butène/*trans*-2-butène (principalement moléculaire) et sur les voies de formation du 1,3-butadiène. Les constantes de vitesses sont estimées comme suit :

$$\begin{aligned} C2C_4H_8 &\stackrel{k_m}{\leftrightarrow} T2C_4H_8 \\ k_m &= 10^{13,6} exp(-62000 \ cal. mol^{-1}/RT) \ (s^{-1}) \\ C2C_4H_8 &\stackrel{k_{m'}}{\leftrightarrow} H_2 + 1,3 - C_4H_6 \\ k_{m'} &= 10^{13} exp(-65500 \ cal. mol^{-1}/RT) \ (s^{-1}) \end{aligned}$$

II.1.4.L'iso-butène

Bradley et al. [*Bradley, 1976*] ont réalisé des expériences de pyrolyse de l'iso-butène en tube à choc permettant la quantification de certaines espèces intermédiaires, parmi lesquelles le méthane, l'éthylène, l'éthane, l'acétylène, le propène, le propyne, l'allène, le n-butane et le pentène. Les expériences ont été menées à des températures de 1055-1325 K, des pressions de 3-4 atm, des dilutions en iso-butène de 0,1-0,5 % dans l'argon et les temps de réaction varient entre 0,8 et 1,6 ms. Un schéma simplifié du dispositif expérimental [*Glick, 1955*] est présenté en figure II.1 et consiste en une tube à choc « classique » auquel est connecté du côté du « driver » une cellule d'expansion, séparée du « driver » par un diaphragme. Ce dispositif permet d'éviter la réflexion des ondes sur la paroi du côté du « driver » qui perturbe les mesures en se propageant dans les gaz choqués. Ce dispositif a pour conséquence directe une augmentation du temps de réaction et d'observation.

Figure II.1 : Schéma simplifié d'un tube à choc "single-pulse"

Les données expérimentales ont été utilisées pour valider un mécanisme cinétique détaillé basé sur un mécanisme construit pour la pyrolyse des alcanes, généralisé aux alcènes. La principale avancée de cette étude est la généralisation du mécanisme de pyrolyse des alcanes à la pyrolyse des alcènes en apportant deux modifications :

- Une diminution de l'énergie des liaisons C-H adjacentes à la double liaison amène à une modification des étapes d'initiation.
- La stabilisation par résonance des radicaux allyles, et donc leur temps de vie, leur permet de participer à des réactions radical-molécule.

Il en résulte un sous-mécanisme de 28 réactions. Les réactions ainsi que leurs constantes utilisées initialement sont données en figure II.2.

reaction		1/dm2 mol~3 s~5	Σ/);J mo)-1
$C_4H_8 \rightarrow C_3H_5 + CH_3$	(1)	6.3×10^{16}	367
$C_4H_8 \rightarrow C_4H_7 + H_7$	(2)	5.0×10^{13}	318
$CH_3 + C_4H_8 \rightarrow CH_4 + C_4H_7$	(3)	7.9×10^{7}	30.5
$H + C_4H_8 \rightarrow H_2 + C_4H_7$	(4)	5.0×10 ¹⁰	20.9
$CH_3 + C_4H_8 \rightarrow C_5H_{11}$	(5)	3.1×10^{10}	6.3
$H+C_4H_8 \rightarrow C_4H_9$	(6)	3.2×10 ¹⁰	6.3
$C_4H_7 \rightarrow C_3H_4 + CH_3$	(8)	1.0×10^{14}	203
$C_3H_3 \rightarrow C_3H_4 + H$	(10)	3.2×1013	201
$C_4H_9 \rightarrow C_4H_8 + H$	(12)	4.0×10^{13}	180
$C_4H_9 \rightarrow C_3H_6 + CH_3$	(13)	1.6×10^{14}	137
$C_4H_9 \rightarrow C_2H_4 + C_2H_5$	(14)	2.2×10^{10}	44.9
$C_3H_7 \rightarrow C_3H_0 + H$	(15)	2.0×1014	173
$C_3H_7 \rightarrow C_2H_4 + CH_3$	(16)	4.0×10^{13}	138
$C_2H_5 \rightarrow C_2H_4 + H$	(17)	3.0×10^{13}	170
$C_3H_5 + C_4H_8 \rightarrow C_3H_6 + C_4H_7$	(18)	7.9×10^{7}	30.5
$H+C_3H_6 \rightarrow C_3H_7$	(19)	$7.2 \times 10^{\circ}$	5.0
$H + C_2 H_4 \rightarrow C_2 H_5$	(20)	9.3×10 rd	11.7
$C_2H_6 \rightleftharpoons CH_3 + CH_3$	(21, 22)	5.0×10^{16}	370
$CH_3 + C_2H_6 \rightarrow CH_4 + C_2H_3$	(23)	5.0 × 1011	\$9.9
$H+C_2H_6 \rightarrow H_2+C_2H_8$	(24)	1.0×10^{11}	. 38.5
$CH_3 + C_3H_6 \rightarrow CH_8 + C_2H_5$	(25)	6.3×10^{10}	32.2
$H+C_3H_6 \rightarrow H_2+C_3H_8$	(26)	5.0×10^{10}	20.9
$C_2H_5 + C_4H_5 \rightarrow C_2H_6 + C_4H_7$	(27)	7.9×10^{7}	30.5
$C_3H_7 + CH_3 \rightarrow C_4H_{10}$	(28)	1.0×10^{10}	0

Figure II.2 : Résumé des réactions et constantes de vitesse associées utilisées dans la simulation initiale.

Les constantes de vitesses calculées dans cette étude sont présentées en figure II.3.

 $\begin{array}{l} k_1 = 3.02 \times 10^{15} \exp(-338 \ \mathrm{kJ \ mol^{-1}}/RT) \ \mathrm{s^{-1}} \\ k_2 \simeq 1.7 \times 10^{10} \exp(-254 \ \mathrm{kJ \ mol^{-1}}/RT) \ \mathrm{s^{-1}} \\ k_3 = 6.76 \times 10^{10} \exp(-81.5 \ \mathrm{kJ \ mol^{-1}}/RT) \ \mathrm{dm^3 \ mol^{-1} \ \mathrm{s^{-1}}} \\ k_4 / k_6 = 6.76 \times 10^{-2} \exp(19.8 \ \mathrm{kJ \ mol^{-1}}/RT) \\ k_{10} / k_{13} = 5.7 \times 10^2 \exp(-117 \ \mathrm{kJ \ mol^{-1}}/RT) \ \mathrm{mol \ dm^{-3}} \\ k_{13} / k_{14} = 1.27 \times 10^{-2} \exp(48.6 \ \mathrm{kJ \ mol^{-1}}/RT) \\ k_{23} = 3.24 \times 10^{10} \exp(-75.3 \ \mathrm{kJ \ mol^{-1}}/RT) \ \mathrm{dm^3 \ mol^{-1} \ \mathrm{s^{-1}}} \end{array}$

Figure II.3 : Constantes de vitesse obtenues pour simulation information.

Dans ce travail, aucune optimisation de la simulation des petites quantités d'*iso*butane, de pentène et d'acétylène n'a été réalisée. Bradley et al. déduisent des simulations qu'à des températures supérieures à 1200 K, la décomposition du radical allyle prédomine sur les réactions radical-molécule et les deux réactions d'initiation :

$$C_4 H_8 \rightleftharpoons C_3 H_5 + C H_3 (1)$$
$$C_4 H_8 \rightleftharpoons C_4 H_7 + H (2)$$

amènent au même résultats puisque dans leur mécanisme, les produits C3H5 et C4H7 donnent :

$$C_3H_5 \rightleftharpoons C_3H_4 + H (3)$$
$$C_4H_7 \rightleftharpoons C_3H_4 + CH_3 (4)$$

Selon le mécanisme présenté, les deux isomères C_3H_4 (allène et propyne) peuvent être formés à partir du radical butényle ou du radical allyle. Cependant, la source majeure de C_3H_4 est C_4H_7 entre 1100 et 1300 K.

Les carburants ne sont pas constitués d'un seul composé, mais sont des mélanges complexes. Cependant, l'indice d'octane standard est fondé sur un mélange binaire *n*-heptane/*iso*-octane. Le carburant de référence *n*-heptane/*iso*-octane aide à l'évaluation du phénomène de cliquetis, mais ne permet pas de saisir les interactions entre les composants du carburant. Ainsi, avant d'étudier des mélanges complexes, la première nécessité est d'étudier l'oxydation de composés purs. Dans cette optique, Brezinsky et al. [*Brezinsky*, *1986*] se sont intéressé à l'oxydation de l'iso-butène et de mélanges iso-butène/n-octane en réacteur à écoulement. En effet, l'iso-butène est un intermédiaire abondant de l'oxydation de plusieurs carburants ou additifs, tels que l'*iso*-octane, le MTBE (méthylterbutylether) ou le TBA (*ter*-butylalcool). L'oxydation du n-octane avait été étudiée précédemment par Dryer et al. [*Dryer*, *1985*]. Le but de l'étude est donc de fournir des résultats expérimentaux de l'oxydation de l'*iso*-butène comme seul carburant en réacteur à écoulement, mais aussi en mélange avec le n-octane. Les résultats pourront alors servir de base pour la compréhension des effets synergiques de la combustion de mélanges de carburants.

Les auteurs considèrent que le dispositif consiste en un environnement libre de complications dues au transport, adapté à l'étude de la chimie à hautes températures. Les conditions initiales pour l'étude de l'*iso*-butène sont répertoriées dans le tableau II.1 :

 Débit iC₄H₈ [mol.s-1]
 Débit O₂ [mol.s-1]
 Débit N₂ [mol.s-1]
 φ
 Température [K]

 0,00094
 0,012
 0,66
 0.47
 1085

Tableau II-1: Conditions initiales pour l'étude de l'iso-butène en réacteur à écoulement turbulent [Brezinsky, 1986]

Les conditions initiales pour l'étude du mélange iso-butène/n-octane sont résumées dans le tableau II.2 :

Tableau II-2 : Conditions initiales pour l'étude du mélange iso-butène/n-octane en réacteur à écoulement turbulent [Brezinsky, 1986]

Débit iC_4H_8 [mol.s ⁻¹]	Débit nC_8H_{18} [mol.s ⁻¹]	Débit O ₂ [mol.s ⁻¹]	Débit N ₂ [mol.s ⁻¹]	φ	Température [K]
0,00092	0,00097	0,012	0,66	0,97	1081

Les résultats expérimentaux présentés en figure II.4 montrent que dans les conditions choisies, l'*iso*-butène réagit lentement (10 % du carburant consommé en 120 ms). De faibles

quantités d'intermédiaires et produits finals de la combusiton sont observables : CH_4 , C_3H_4 , C_2H_6 , C_3H_6 et CO et CO₂.

La figure II.5 montre un fort effet inhibiteur de l'iso-butène sur la réactivité du *n*-octane. En comparant les profils de concentration du CO de la figure II.5 avec les profils de la figure II.6, nous constatons que l'oxydation du *n*-octane pur est plus avancée lorsque seul carburant qu'en mélange avec l'iso-butène. De plus, sur la figure 6, le n-octane est entièrement converti à 75 ms, alors que sur la figure II.5 il est présent encore à 95 ms.

Figure II.4 : Espèces obtenues pour l'oxydation de Dryer et al. expliquent cette baisse de la l'iso-butène en réacteur à écoulement

réactivité du *n*-octane et des intermédiaires d'oxydation en présence de l'iso-butène par l'inhibition des réactions de ces espèces avec les radicaux OH, O et H.

Les quantités importantes de méthane et d'allène proviennent de réactions d'arrachement de H (des 6 H allyliques de l'*iso*-butène) suivies d'une *bêta*-scission selon le schéma suivant :

$$C_{4}H_{8} + \begin{cases} 0\\ 0H\\ H \end{cases} \rightleftharpoons C_{4}H_{7} + \begin{cases} 0H\\ H_{2}O\\ H_{2} \end{cases}$$
$$C_{4}H_{7} \rightleftharpoons C_{3}H_{4} + CH_{3}$$

Le radical méthyle est ensuite converti en méthane, pendant, entre autre, le processus d'échantillonnage par sonde de prélèvement.

La présence d'*iso*-butène durant l'oxydation du n-octane augmente apparemment la production de CH_3 et d'allène au dépend de OH et H, et probablement O. OH et H sont immédiatement convertis en espèces moins réactives (H₂O et H₂). Comme Fi conclusion de leur étude, Dryer et al.

Figure II.5 : Espèces obtenues pour l'oxydation du *n*-octane en réacteur à écoulement

Figure II.6 : Espèces obtenues pour l'oxydation de l'isobutène en réacteur à écoulement

mettent l'accent sur le caractère inhibiteur de l'iso-butène sur le processus d'oxydation du n-octane. L'iso-butène semble interférer sur la production de radicaux primaires comme OH et H en les consommant. Les espèces avec de plus faibles réactivités sont produites en retour : H₂O, CH₃, C₃H₄ et H₂. Le délai d'autoinflammation, qui est une mesure du temps auquel CO est converti en CO₂, est augmenté par ajout d'iso-butène. L'isobutène pourrait alors jouer un rôle positif dans les phénomènes de cliquetis en moteurs.

Curran et al. [*Curran, 1992*] ont étudié les délais d'auto-inflammation de l'éthanol, de l'*iso*-butène et du MTBE (MéthylTerButylEther) en tube à choc. Les expériences ont été conduites en tube à choc en aluminium. Les mélanges utilisés contiennent entre 0,3 et 2,5 % de combustible, dilué dans l'oxygène nécessaire pour atteindre la richesse souhaitée, entre 0,1 et 4, complété à l'Argon. Les pressions enregistrées derrière l'onde de choc sont comprises entre 2 et 4,5 atm et les températures entre 1100 et 1900 K. Les délais d'auto-inflammation observés pour ces trois espèces au cours des expériences peuvent être exprimés selon les trois équations :

$$\tau = 10^{-14,0} exp(15500/T) [C_2H_5OH]^{-0,315} [O_2]^{-0,78} [Ar]^{+0,259}$$

$$\tau = 10^{-12,4} exp(14140/T) [MTBE]^{+0,097} [O_2]^{-1,036} [Ar]^{+0,188}$$

$$\tau = 10^{-17,5} exp(18860/T) [iC_4H_8]^{+0,116} [O_2]^{-0,87} [Ar]^{-0,906}$$

Le mécanisme utilisé pour simuler ces expériences est fondé sur un mécanisme C₁-C₄ [*Westbrook, 1984*] avec quelques révisions. La partie H₂/O₂ (C₀) est empruntée à Vajda et al. [*Vajda, 1990*]. Le sous-mécanisme du méthanol de Norton et al. a été incorporé [*Norton, 1991*]. Enfin, les ajustements de Dagaut et al. [*Dagaut, 1987*] [*Dagaut, 1990*] sur les isomères C₃H₄ et C₃H₅ ont été ajoutés. En ce qui concerne l'*iso*-butène, produit qui nous intéresse, le sous-mécanisme a été développé principalement pour des études pour des moteurs à combustion interne [*Wilk, 1990*] [*Pitz, 1991*]. Dans cette étude, les vitesses de réaction d'arrachement de H allyliques de l'*iso*-butène ont été supposées égales à celles proposées pour les H allyliques du propène par Tsang et al. [*Tsang, 1991*].

Globalement, les résultats expérimentaux sont en bon accord avec les modélisations, comme l'illustre la figure II.7.

Figure II.7 : Délais d'auto-inflammation de mélanges $iC_4H_8/O_2/Ar$ obtenus en tube à choc pour différentes richesse. Symboles : points expérimentaux – lignes : simulation.

Les réactions les plus sensibles sur les délais d'auto-inflammation sont généralement les réactions de H₂/O₂. La réaction la plus sensible est la réaction de branchement $H + O_2 \rightleftharpoons O + OH$, principale réaction de création de radicaux. D'autres réactions sensibles sont celles produisant H, qui conduisent au final à la réaction $H + O_2 \rightleftharpoons O + OH$, augmentant ainsi la réactivité. A l'inverse, les réactions produisant CH₃, radical moins réactif que O, OH et H, seront moins sensibles pour la simulation des délais. Les réactions montrant une sensibilité particulière dans le modèle sont les réactions consommant l'*iso*-butène, le méthane, l'éthane, et les radicaux éthyles et vinyles :

$$CH_4 \rightleftharpoons CH_3 + H (1)$$

$$C_2H_6 \rightleftharpoons CH_3 + CH_3 (2)$$

$$C_2H_5 \rightleftharpoons C_2H_4 + H (3)$$

$$C_2H_3 \rightleftharpoons C_2H_2 + H (4)$$

$$iC_4H_8 \rightleftharpoons iC_4H_7 + H (5)$$

Les réactions (1) et (2) se produisent en sens inverse et sont des réactions de terminaison, augmentant les délais. Les réactions (3) et (4) produisent le radical H, diminuant les délais. La réaction (5) entraîne la formation du radical stabilisé iC_4H_7 qui se décompose en espèces peu réactives : CH₃ et C₃H₄.

Bauge et al. [*Bauge, 1997*] ont mené une étude expérimentale et une simulation de l'oxydation de l'iso-butène. Deux dispositifs expérimentaux ont été utilisés. Un réacteur autoagité a permis l'acquisition de profils de concentration d'espèces stables issues de l'oxydation de l'iso-butène, pour des températures allant de 833 à 913 K, à pression atmosphérique, des richesses comprises entre 3 et 6, des temps de passage de 1 à 10 s et des taux de conversion de l'iso-butène de 1 à 50 %. L'analyse des gaz est réalisée par chromatographie en phase gazeuse. O₂ et CO sont séparés par une colonne à charbon activé et CO₂ est séparé par une colonne Porapak Q. La quantification est assurée par un détecteur à conductivité thermique. CH₄, C₂H₆, C₂H₂ et C₂H₄ sont séparés par une colonne Carbosieve et les hydrocarbures plus lourds sont séparés par colonne Chromosorb P. La quantification est réalisée par un détecteur à ionisation de flamme. Les délais d'auto-inflammation sont mesurés à l'aide d'un tube à choc. La pression derrière l'onde de choc réfléchie est mesurée par un capteur piézoélectrique. Le temps d'auto-inflammation est détecté par l'acquisition des émissions OH (306 nm). Le délai d'auto-inflammation est défini comme étant le temps entre la montée de pression due au passage de l'onde de choc réfléchie et l'émission des radicaux OH. Les dilutions en iso-butène varient entre 0,5 et 3,65 %. Les richesses varient entre 1 et 3. Les températures obtenues derrière l'onde de choc réfléchie sont comprises entre 1230 et 1930 K et la pression entre 9,5 et 10,5 atm.

Le mécanisme utilisé est basé sur un mécanisme cinétique détaillé C_0 - C_3 [*Barbé*, 1995] de 835 réactions. Le sous-mécanisme de l'oxydation de l'iso-butène a été généré automatiquement par le logiciel EXGAS [*Côme*, 1996]. Les données thermodynamiques nécessaires à la modélisation sont issues des tabulations de Benson [*Benson*, 1976] ou calculées par le logiciel THERGAS [*Muller*, 1995].

Les profils de concentration des espèces mesurés en réacteur auto-agité sont tracés en fonction du temps de passage. Le mécanisme simule assez bien les profils, même si les quantités de méthane, éthylène, allène, méthacroléine et *iso*butyraldéhyde sont surestimées par le modèle. Les délais d'auto-inflammation sont bien prédits par le modèle. L'accord avec l'expérience se dégrade légèrement pour les plus faibles richesses et dilutions élevées ($\phi = 3$, $iC_4H_8 = 0.5$ %).

En JSR, dans ces conditions, l'*iso*-butène réagit principalement par métathèse avec OH, H, CH₃ et HO₂. Les métathèses représentent un flux de consommation de 63 % de l'*iso*butène à 620°C, $\tau = 10$ s et $\varphi = 6$. Ainsi les auteurs observent que les radicaux *iso*-butényles créés par ces métathèses ont tendance à se combiner avec d'autres radicaux tels que CH₃ (formant du 2-méthyl-1-butène et du 2-méthyl-2-butène) et HO₂ (formant de l'*iso*butéraldéhyde). Les radicaux *iso*-butényles se décomposent également en allène. En tube à choc, les températures sont plus élevées, mettant en jeu d'autres réactions. La réaction bimoléculaire $iC_4H_8 + O_2 \rightleftharpoons iC_4H_7 + HO_2$ gagne en important pour la création de radicaux iC_4H_7 . Cependant, pour des températures supérieures à 1500 K, ce sont les réactions d'initiation unimoléculaire qui deviennent prépondérantes dans la consommation de l'isobutène :

$$iC_4H_8 \rightleftharpoons iC_4H_7 + H$$

 $iC_4H_8 \rightleftharpoons C_3H_5 + CH_3$

Les radicaux *iso*-butényles réagissent principalement par bêta-scission pour donner CH₃ et allène.

Dagaut et al. [*Dagaut, 1998*] ont mené une étude sur l'oxydation de l'*iso*-butène en réacteur auto-agité afin d'améliorer la compréhension des voies de réaction et permettre une validation du modèle cinétique détaillé qu'ils proposent. La validation est complétée par comparaison avec des délais d'auto-inflammation issus de la littérature.

Le réacteur auto-agité [*Dagaut, 1986*] opère à pression atmosphérique et à 5 et 10 atm. Le degré de dilution est de 0,15-0,3 % d'*iso*-butène, avec la proportion nécessaire d'oxygène afin d'obtenir des richesses entre 0,2 et 2, le mélange étant complété avec de l'azote. Les températures sont comprises entre 800 et 1250 K. Les conditions expérimentales en réacteur auto-agité sont répertoriées dans le tableau II.3.

Iso-butène (%)	φ	τ (s)	p (atm)	T (K)
0,15	0,2	0,15	1	1010-1240
0,15	0,5	0,15	1	1010-1240
0,15	1	0,15	1	1010-1240
0,3	1	0,15	1	1010-1240
0,3	2	0,15	1	1010-1240
0,15	0,5	0,06-0,22	1	1177
0,15	1	0,75	5	890-1150
0,15	0,2	1,5	10	790-1000
0,15	0,5	1,5	10	800-1000
0,15	1	1,5	10	800-1100
0,15	2	1,5	10	800-1080
0,15	1	0,4-2,4	10	900

 Tableau II-3 : Conditions expérimentales [Dagaut, 1998]

Pour l'analyse des espèces, plusieurs chromatographes en phase gazeuse sont utilisés pour la séparation des espèces, avec plusieurs colonnes selon l'affinité des espèces (Poraplot U, Tamis moléculaire zéolitique 5A, DB5 ms, Plot Al₂O₃/KCl et Carboplot). La quantification est obtenue à l'aide de plusieurs détecteurs (FID et TCD).

La base du mécanisme proposé est un mécanisme hiérarchisé développé pour l'oxydation du méthane, de l'éthane, de l'éthylène, du propane et du propène étendu ensuite à l'oxydation de l'acétylène et du gaz naturel [*Tan, 1994a,b,c*] [*Tan, 1995*]. A ces sous-mécanismes s'ajoutent les sous-mécanismes d'oxydation de l'acétaldéhyde, de l'oxyde

d'éthylène, du diméthyléther, de l'allène et du propyne [*Dagaut, 1996a,b*] [*Curran, 1996*]. Le sous-mécanisme de l'*iso*-butène comprends deux réactions de décomposition thermique formant t-C₃H₅ + CH₃ et iC₄H₇ + H ainsi qu'une réaction avec l'oxygène moléculaire conduisant à iC₄H₇ + HO₂. Les réactions d'arrachement de H par des radicaux et atomes sont inclus. Les réactions suivantes d'addition sur la double liaison ont été ajoutées :

$$iC_4H_8 + OH \rightleftharpoons iC_4H_8OH$$
$$iC_4H_8 + O \rightleftharpoons C_4H_8O$$
$$iC_4H_8 + HO_2 (\rightleftharpoons iC_4H_8OOH) \rightleftharpoons C_4H_8O + OH$$

Les décompositions des produits suivant les réactions ci-dessus conduisent à la formation d'espèces intermédiaires oxygénées stables comme l'acétone, la méthacroléine et le 2-méthylpropanal. La formation d'acétone se déroule selon le mécanisme de Waddington :

$$iC_4H_8OH + O_2 \rightleftharpoons O_2C_4H_9O$$

 $O_2C_4H_9O \rightarrow Ac\acute{e}tone + CH_2O + OH$

La formation de méthacroléine suit la séquence suivante :

$$iC_4H_7 + HO_2 \rightleftharpoons C_4H_7O + OH$$

 $C_4H_7O \rightleftharpoons C_3H_5CHO + H$

Le 2-méthylpropanal est le résultat de l'isomérisation de C₄H₈O :

$$C_4H_80 \rightleftharpoons 2 - m\acute{e}thylpropanal$$

Les profils de concentration ont été mesurés pour O_2 , H_2 , CO, CO_2 , CH_2O , CH_3OH , CH_4 , C_2H_6 , C_2H_4 , C_2H_2 , C_3H_4 (allène et propyne), C_3H_6 , acétone, acroléine, méthacoléine, 1- C_4H_8 , 1,3- C_4H_6 , 1-butyne, isoprène, 2-méthyl-1-butène, 2-méthyl-2-butène et benzène. Nous noterons que de 2,5-diméthyl-1-5-hexadiène, produit de recombinaison des radicaux *i*C₄H₇, n'a pas été détecté et a donc été négligé dans le mécanisme. L'observation des résultats montre qu'à pression atmosphérique, l'oxydation de l'iso-butène présente une période d'induction pendant laquelle une faible quantité de CH_2O , CO, H_2 , C_3H_6 , CH_4 et allène apparaissent. Cette induction est suivie par une consommation rapide de l'*iso*-butène. Parmi les profils de fractions molaires présentés à pression atmosphérique, les profils de 2-méthyl-1butène, 2-méthyl-2-butène et isoprène sont sous-estimés et le mécanisme de formation et consommation de ces espèces nécessite une amélioration. A plus haute pression, les profils d'acroléine sont sous-estimés, surtout en milieu riche. Les analyses de sensibilité montrent que les réactions de décomposition thermique

$$iC_4H_8 \rightleftharpoons tC_3H_5 + CH_3$$

 $iC_4H_8 \rightleftharpoons iC_4H_7 + H$

sont sensibles ainsi que les réactions avec H, O et CH₃ :

$$iC_4H_8 + 0 \rightleftharpoons iC_3H_7 + HCO$$
$$iC_4H_8 + H \rightleftharpoons iC_4H_7 + H_2$$
$$iC_4H_8 + H \rightleftharpoons C_3H_6 + CH_3$$
$$iC_4H_8 + CH_2 \rightleftharpoons iC_4H_7 + CH_4$$

Le radical *iso*-butényle se décompose majoritairement en allène et radical méthyle. Les principales voies réactionnelles mises en jeu sont présentées dans la figure II.8.

Figure II.8 : Voies réactionnelles primaires pour l'oxydation de l'*iso*-butène en JSR à pression atmosphérique (a et b : 0,15% *i*C4H8, $\tau = 0,15$ s et $\varphi = 1$) et 10 atmosphères (c et d : 0,15% *i*C4H8, $\tau = 1,5$ s et $\varphi = 1$).

Les délais d'auto-inflammation mesurés derrière l'onde de choc réfléchie [*Curran, 1994*] ont été utilisés pour la validation du modèle cinétique de l'oxydation de l'iso-butène. Les conditions sont les suivantes : des pressions entre 2 et 4,6 bar, des températures entre 1200 et 2000 K et des richesses entre 0,2 et 4. Les concentrations en iso-butène sont comprises entre 0,3 et 1,2 %.

Dans ces conditions, l'étude du mécanisme indique que les réactions sensibles lors de l'oxydation de l'iso-butène sont principalement des réactions de branchement :

$$0 + H_2 \rightleftharpoons OH + 0$$

Ainsi que des réactions de décomposition thermique :

$$iC_4H_8 \rightleftharpoons tC_3H_5 + CH_3$$

 $iC_4H_8 \rightleftharpoons iC_4H_7 + H$

et les réactions de l'iso-butène avec H :

$$iC_4H_8 + H \rightleftharpoons iC_4H_7 + H_2$$

 $iC_4H_8 + H \rightleftharpoons C_3H_6 + CH_3$

Les conditions de l'étude ont permis un approfondissement sur les voies de formation du benzène, connu pour sa tendance à former des suies. Le benzène est majoritairement formé par :

$$aC_3H_4 + C_3H_3 \rightleftharpoons C_6H_6 + H_6$$

Cette voie est complétée par une seconde voie, qui, à température élevée tend à avoir la même importance que la voie impliquant l'allène :

$$C_{3}H_{3} + C_{3}H_{3} \rightleftharpoons 1,5 - C_{6}H_{6}$$

$$1,5 - C_{6}H_{6} \rightleftharpoons 1,2,4,5 - C_{6}H_{6}$$

$$1,2,4,5 - C_{6}H_{6} \rightleftharpoons 1,2 - diméthylène - 3 - cyclobutène$$

$$1,2 - diméthylène - 3 - cyclobutène \rightleftharpoons C_{6}H_{6}$$

Une étude de la pyrolyse de l'*iso*-butène a été menée par Santhanam et al. [*Santhanam, 2003*] en tube à choc. Les dissociations, relaxations vibrationnelles et incubation unimoléculaires ont été observés derrière des ondes de choc par la technique laser-Schlieren. Les expériences couvrent une large gamme de conditions : les températures sont comprises entre 900 et 2300 K, les pressions avant l'onde de choc réfléchie sont comprises entre 7 et 400 Torr, avec les concentrations en iso-butène de 2, 5 et 10 % dans du krypton.

La base du mécanisme de pyrolyse de l'iso-butène est empruntée à Ideka et al [*Ikeda, 2000*]. Les résultats des expériences ont permis l'adaptation du mécanisme cinétique. Une autre voie de dissociation de la molécule d'iso-butène est proposée :

$iC_4H_8 \rightleftharpoons tC_3H_5 + CH_3$

La première étape est définie par Bradley et al. [*Bradley, 1976*] comme étape prédominante, mais l'énergie de liaison mise en jeu est supérieure de 17 kcal/mol à l'énergie de liaison C-H ce qui favorise donc la réaction $iC_4H_8 \rightleftharpoons iC_4H_7 + H$. L'étude de la réaction d'addition de H, $iC_4H_8 + H \rightleftharpoons ter - butyl \rightleftharpoons iso - butyl \rightleftharpoons C_3H_6 + CH_3$ montre que, le propène étant l'un des produits de pyrolyse les plus abondants pour l'iso-butène, cette réaction est importante. Une valeur de la constante de vitesse k_∞ est proposée entre 1600-2400 K :

$$\log k_{\infty}(s^{-1}) = 19,187 - 0,865 \log T - 87,337 (kcal/mol)/RT$$

Une étude en tube à choc (expérience et modélisation) de l'oxydation et la pyrolyse de l'*iso*-butène a été menée par Yasunaga et al. [*Yasunaga, 2009*]. L'étude expérimentale comprend deux parties. Une première partie consiste à mesurer les délais d'auto-inflammation de l'iso-butène derrière une onde de choc réfléchie. La seconde partie consiste à prélever les gaz brûlés derrière l'onde de choc afin de pouvoir quantifier les produits de combustion de l'iso-butène. Ces deux expériences ont permis la validation d'un mécanisme cinétique détaillé.

Pour déterminer le délai d'auto-inflammation, la concentration de CO₂ dans le système est suivie par absorption dans l'infra-rouge à une longueur d'onde de 4,24 μ m, au travers d'une fenêtre CaF₂, à l'aide d'un détecteur InSb. Les auteurs précisent que l'absorption IR ne provient pas seulement de CO₂, mais également de CO et CH₂CO dans les conditions de l'étude. Les conditions de l'étude sont : des températures entre 1000 et 1800 K, des pressions entre 1,0 et 2,7 atm, des richesses de 0,125 à 2 et des dilutions en *iso*-butène de 0,1 à 1 %.

Yasunaga et al. [*Yasunaga, 2009*] ont réalisé des prélèvements de produits de pyrolyse et d'oxydation de l'iso-butène dans un tube à choc. Les produits prélevés ont été séparés par chromatographie en phase gazeuse et quantifiés à l'aide d'un détecteur à conductivité thermique. Un temps de chauffe des gaz à dû être déterminé pour connaître le temps auquel le prélèvement a été réalisé pour pouvoir ensuite être modélisé. Ce temps de chauffe correspond au temps entre le point d'arrivée de l'onde de choc réfléchie et le point à 80 % de la chute de la pression. Deux séries de prélèvements ont été réalisées : la première dans des conditions de pyrolyse de l'iso-butène avec un mélange 1,0 % iC₄H₈ / 99,0 % Ar et une seconde dans des conditions d'oxydation de l'iso-butène avec un mélange 1,0 % iC₄H₈ / 3,0 % O₂ / 96,0 % Ar, donc à une richesse $\varphi = 2$.

Le mécanisme cinétique pour l'oxydation et la pyrolyse de l'*iso*-butène est construit sur la base de sous mécanismes d'hydrocarbures C_1 - C_3 , du formaldéhyde et du cétène [*Hidaka, 1993*] [*Hidaka, 1996a*] [*Hidaka, 1996b*] [*Hidaka, 1999*]. Des mises à jour ont été réalisées surtout pour les hydrocarbures insaturés C_2 - C_3 [*Hidaka, 1996b*] [*Hidaka, 1999*] [*Hidaka, 2005*]. Le mécanisme final compte 304 réactions pour 72 espèces. Les réactions d'initiation possibles sont des réactions de rupture de liaison C-H ou C-C. Or, pour rompre la liaison C-H la plus faible (H allylique), l'énergie est de 10 kcal/mol plus faible que celle nécessaire pour rompre la liaison C-C la plus faible (liaisons σ de la molécule d'*iso*butène). Par rapport aux réactions :

$$iC_4H_8 \rightleftharpoons iC_4H_7 + H (1)$$
$$iC_4H_8 \rightleftharpoons tC_3H_5 + CH_3 (2)$$

La réaction (1) est considérée comme une étape d'initiation dominante par rapport à (2). Les profils de concentration des produits de pyrolyse de l'*iso*-butène sont présentés en figures II.9 et II.10.

Figure II.9 : Comparaison des profils de concentration des principaux produits de pyrolyse de l'*iso*-butène en tube à choc.

Figure II.10 : Comparaison des profils de concentration des principaux produits d'oxydation de l'*iso*butène en tube à choc.
Les réactions les plus sensibles sur la concentration d'*iso*-butène sont les réactions (1) et (2) aussi bien en pyrolyse qu'en oxydation. Les expressions des constantes de vitesse des réactions (1) et (2) ont été déduites des résultats expérimentaux :

$$\begin{aligned} k_1 &= 1,5.10^{15} exp(-83000 \ cal. \ mol^{-1} \ / \ RT) \ (s^{-1}) \\ k_{m\prime} &= 1,5.10^{16} exp(-93000 \ cal. \ mol^{-1} \ / \ RT) \ (s^{-1}) \end{aligned}$$

De manière générale, Yasunaga et al. ont réévalué les constantes de vitesse de réaction de métathèse de l'*iso*-butène avec les radicaux H, OH, CH₃, O et HO₂. Les réactions de l'*iso*-butène avec ces radicaux conduisent à deux radicaux *iso*-butényles différents : le 2-méthyl-1-butén-3-yle (a) et le 2-méthyl-1-butén-1-yle :

Les réactions de consommation du radical 2-méthyl-1-butén-1yle (*iso*-1-C₄H₇ dans le mécanisme de Yasunaga et al.) ont également été ajoutées. Ce radical peut se décomposer en propyne et radical méthyle, ou s'isomériser en 2-méthyl-1-butén-3-yle.

Dias et al. [*Dias, 2010a*] ont réalisé une étude expérimentale et la modélisation de flammes pauvres et prémélangées d'*iso*-butène/hydrogène/oxygène/argon. Le mélange (2,7 % mol $iC_4H_8 / 4,5$ % mol $H_2 / 83,0$ % mol $O_2 / 9,8$ % Ar) donne une richesse $\varphi = 0,225$. La présence d'hydrogène permet la stabilisation de la flamme et facilite la combustion de l'*iso*-butène dans ces conditions, pour lesquelles l'iso-butène à un faible débit de sortie de gaz. De plus, l'hydrogène promeut les réactions des radicaux avec l'*iso*-butène. Le dispositif fonctionne à une faible pression (40 mbar). La vitesse initiale des gaz en sortie du brûleur est de 53,4 cm/s pour un débit de 6,44 l/min. Un spectromètre de masse à faisceau moléculaire est utilisé pour l'identification des produits, ainsi que pour leur quantification. Cet appareil permet une quantification des radicaux échantillonnés dans la flamme. Le profil de température dans la flamme, fonction de la distance au brûleur est fourni.

La base C_0 du mécanisme utilisé dans cette étude est celle de Westbrook et al. [*Westbrook, 1983*]. La partie C_1 - C_2 est un assemblage du mécanisme de Miller et al. [*Miller, 1992*], du GRI-Mech 1.2 [*GRI-Mech 1.2, 1995*] et du mécanisme de Warnatz et al. [*Warnatz, 1984*]. La partie C_3 - C_4 est issue des travaux de Davis et al. [*Davis, 1999*] qui ont décrit la pyrolyse du propène, basée sur l'oxydation du propyne et de l'allène. Leur données cinétiques ont été obtenues par calcul *ab initio* et analyses RRKM. Le mécanisme cinétique comprend également une partie C_5 - C_{10} ainsi que le sous-mécanisme du diméthoxyméthane (C_3H_8O) [*Dias*, 2010b]. Le mécanisme proposé prend en compte la formation et la consommation des espèces propres à la combustion de l'iso-butène : iC_4H_8 (iso-butène), iC_4H_7 (radical 2-méthylallyle), C_4H_6O (2-méthyl-1-propén-1-one), C_4H_8O (2-méthyl-1-propén-1-ol), mC_4H_8O (2-méthylpropanal), iC_4H_9 (radical iso-butyle), tC_4H_8 (radical ter-butyle), C_3H_6O (acétone) et C_3H_5O (radical propan-2-on-1-yle). Le mécanisme compte 99 espèces impliquées dans 520 réactions.

Les espèces stables et radicalaires détectées et quantifiées expérimentalement en milieu pauvre pour l'oxydation de l'*iso*-butène en brûleur à flamme plate à basse pression sont les suivantes : H_2 , CH_3 , O, OH, H_2O , C_2H_2 , CO, C_2H_4 , CH_2O , O_2 , HO_2 , Ar, C_3H_6 , CO_2 , CH_3CHO , C_4H_6 , iC_4H_8 , C_3H_6O , C_4H_6O et C_4H_8O .

La voie de consommation de l'*iso*-butène, dans ces conditions pauvres, passe par la métathèse de l'*iso*butène par OH, donnant de l'iso-butényle. iC_4H_7 réagit avec H pour former l'allène et le méthane. L'allène conduit à la formation de propargyle, puis C_3H_2 par l'action des radicaux OH. Finalement, par réaction avec l'oxygène, HCCO et CO sont produits (figure II.11).

Figure II.11 : Voies de réaction de formation des intermédiaires important pour une flamme pauvre en *iso*-butène.

Une seconde voie passe par l'addition de H sur la double liaison, conduisant à la formation du

radical ter-butyle, qui s'isomérise en radical iso-butyle. Ce dernier radical se décompose en propène et radical méthyle. Dans cette voie, une grande partie du propène formé provient de la réaction ipso qui combine l'addition de H sur la double liaison et la dissociation de l'agrégat : $iC_4H_8 + H \rightleftharpoons C_3H_6 + CH_3$. Le propène est lui-même consommé par la réaction $C_3H_6 + 0 \rightleftharpoons CH_2CO + CH_3 + H$. Le radical HO₂ est responsable de la production d'acétone par $tC_4H_9 + HO_2 \rightleftharpoons C_3H_6O + CH_3 +$ 0Н. Le radical hydroperoxyle est principalement formé par la réaction O_2 +

Figure II.12 : Voies de réaction de formation des intermédiaires oxygénés pour une flamme pauvre en *iso*-butène.

HCO \rightleftharpoons *CO* + *HO*₂ et non par la réaction d'initiation bimoléculaire $iC_4H_8 + O_2 \rightleftharpoons iC_4H_8 + HO_2$. Contrairement à O et OH, qui se trouvent dans la zone de postcombustion, le radical HO₂ est produit et consommé dans le front de flamme. La figure 12 présente les voies de formation et consommation des principales espèces oxygénées observées lors de l'oxydation de l'iso-butène dans cette étude. $iC_4H_8 + O \rightleftharpoons pC_4H_8O$ permet la formation de pC₄H₈O ((CH₃)₂CCHOH) qui s'isomérise en mC₄H₈O ((CH₃)₂CHCHO). Ces deux isomères se décomposent en iC₃H₇ et HCO. Formé à partir de *i*C4H8 directement, *i*C₄H₇ régit avec un atome d'oxygène par donner C₄H₆O + $O \rightleftharpoons C_3H_6O + O \rightleftharpoons C_3H_6O + O \rightleftharpoons C_3H_6O + O \rightleftharpoons C_3H_5O + OH$. Finalement, *i*C₃H₇ régit avec O pour former C₃H₆O (figure II.12).

II.1.5.Les isomères du butène

Lors de leur étude sur la détermination des effets de la structure des combustibles (hydrocarbures C_1 - C_8) sur les vitesses de flammes laminaires, Davis et al. [*Davis, 1998*] ont mesuré les vitesses de flammes laminaires de deux isomères du butène : le 1-butène et l'*iso*-butène.

L'acquisition des vitesses de flammes laminaires est réalisée par un dispositif de brûleurs à jets opposés. Des combustibles gazeux et liquides peuvent être étudiés. Une enveloppe étanche entoure les brûleurs et la zone de réaction, permettant des variations de pression pour les études. Les combustibles étudiés dans des mélanges avec l'air sont : le propène, le *n*-butane, l'*iso*-

Figure II.13 : Vitesses de flammes laminaires mesurées expérimentalement pour des alcanes C₁-C₄.

butane, le 1-butène, l'*iso*-butène, le 1,3-butadiène, le *n*-pentane, le cyclopentane, le *n*-hexane, le cyclohexane, le n-heptane, l'*iso*-octane, le benzène et le toluène. Les vitesses de flammes ont été obtenues à température ambiante (298 K) pour des richesses de 0,7 à 1,7. Pour obtenir une vitesse de flamme à étirement nul, deux méthodes ont été testées, avec une différence sur les vitesses de flammes de l'ordre de 2-3 cm/s. Une méthode d'extrapolation linéaire, et une

méthode d'extrapolation non-linéaire sont comparées et le choix des auteurs s'arrête sur la méthode d'extrapolation linéaire.

Les expériences sont menées afin d'étudier l'effet de la structure des combustibles sur la vitesse de flamme laminaire. Plusieurs effets sont observés : la longueur de la chaine carbonée, l'effet de la ramification, le degré de saturations et le fait d'avoir une espèce cyclique.

Figure 11.14 : Vitesses de flammes laminaires mesurées expérimentalement pour plusieurs C₄ montrant l'influence de la ramification et de l'insaturation.

Les résultats expérimentaux pour les alcanes (figure II.13) montrent que la vitesse de flamme laminaire est constante pour les chaines linéaires à partir de l'éthane (2 carbones). La présence d'une ramification, en revanche, impacte fortement la vitesse de flamme. Le maximum de vitesse de flamme (à $\varphi = 1,05$) est, par exemple, de 41 cm/s pour le n-butane,

alors que ce maximum est de 36 cm/s pour l'*iso*-butane. Ce phénomène s'illustre également dans la figure II.14, où les vitesses de flamme du 1-butène et de l'iso-butène sont tracées. Une vitesse de flamme de 46 cm/s à $\varphi = 1,1$ pour le 1-butène est mesurée alors qu'elle n'est que de 40 cm/s pour l'iso-butène. Il est possible d'évaluer l'impact de la présence d'une insaturation (*n*-butane/1-butène) ou de plusieurs (1-butène/1,3-butadiène) sur les vitesses de flamme. La figure II.14 montre l'influence de la double liaison. Les vitesses de flamme augmentent avec le degré d'insaturation : 1,3-butadiène > 1-butène > *n*-butane.

Davis et al. concluent que la vitesse de flamme des alcanes linéaires est sensiblement la même, excepté pour le méthane. Les ramifications ont pour effet de diminuer les vitesses de flamme, pour les alcanes, comme pour les alcènes. Enfin, pour un nombre d'atomes de carbone donné, la vitesse de flamme augmente avec le degré d'insaturation : alcyne > alcène > alcane.

Zhang et al. [*Zhang*, 2011] ont effectué une étude expérimentale de la pyrolyse de trois isomères du butène (1-butène, 2-butène et *iso*-butène) à basse pression. Les résultats de cette étude expérimentale ont permis la validation d'un modèle cinétique détaillé.

Le *trans*-2-butène et le *cis*-2-butène sont assimilés dans le modèle cinétique, alors que les expériences sont réalisées avec du *trans*-2-butène uniquement. Le dispositif expérimental utilisé consiste en un réacteur à écoulement. Le réacteur est un tube en alumine de 34 cm avec un diamètre intérieur de 0,6 cm, chauffé sur 5 cm dans un four haute température. La fraction molaire de butène passant dans le tube est de 4 %, dilué dans l'argon. La détection des espèces (radicaux et molécules, dont isomères) est réalisée à l'aide d'un spectromètre de masse à photoionisation UV par synchrotron (Synchrotron Vacuum Ultraviolet Photoionization Mass Spectrometer - SVUV-PIMS).

Le mécanisme cinétique a été proposé par les auteurs sur la base du mécanisme USC Mech-II [*USC Mech-II*, 2007], mécanisme validé pour la combustion de plusieurs carburants C_0 - C_4 . Les vitesses de réaction de plusieurs réactions ont été modifiées avec des vitesses de réactions plus récentes issues de la littérature. En ce qui concerne les constantes de vitesse du sous-mécanisme des butènes, les modifications par rapport au mécanisme USC Mech-II sont détaillées.

1	1		
	$_{-}h$	utana	•
1	-υ	utune	

1	$aC_{3}H_{5} + CH_{3} (+M) = 1 - C_{4}H_{8} (+M)$	1.00×10^{14}	-0.32	-262.3
	Low pressure limit	3.91×10^{60}	-12.81	6250
	Troe parameters: 0.104 1606 60,000 6118.4			
2	$C_2H_3 + C_2H_5(+M) = 1 - C_4H_8(+M)$	1.50×10^{13}	0.0	0.0
	Low pressure limit	1.55×10^{56}	-11.79	8984.5
	Troe parameters: 0.198 2278 60,000 5723.2			
3	$saxC_4H_7 + H = 1 - C_4H_8$	5.00×10^{13}	0.0	5000
4	$C_4H_7 + H (+M) = 1 - C_4H_8 (+M)$	3.60×10^{13}	0.0	0.0
	Low pressure limit	3.01×10^{48}	-9.32	5833.6
	Troe parameters: 0.498 1314 1314 50,000			
5	$1 - C_4 H_8 + H = sax C_4 H_7 + H_2$	1.30×10^{6}	2.4	4470
6	$1 - C_4 H_8 + H = C_4 H_7 + H_2$	1.30×10^{6}	2.4	4470
7	$1 - C_4 H_8 + H = C_3 H_6 + C H_3$	3.20×10^{22}	-2.39	11,180
8	$1 - C_4 H_8 + H = C_2 H_4 + C_2 H_5$	8.80×10^{16}	-1.05	6461
9	$1-C_4H_8 + CH_3 = saxC_4H_7 + CH_4$	2.82×10^{0}	3.60	7153
10	$saxC_4H_7$ (+M) = C_4H_6 + H (+M)	4.70×10^{8}	1.32	44,698
	Low pressure limit	4.60×10^{-37}	15.37	-603
11	$C_4H_7(+M) = C_4H_6 + H(+M)$	3.16×10^{13}	0.0	17,160
	Low pressure limit	1.47×10^{28}	-3.683	13,890
	Troe parameters: 0.81 50 1150 50,000			
12	$C_4H_7(+M) = C_2H_4 + C_2H_3(+M)$	1.78×10^{14}	0.0	18,590
	Low pressure limit	4.20×10^{37}	-6.262	18,970
	Troe parameters: 0.81 50 1670 50,000			
13	C_4H_7 (+M) = sax C_4H_7 (+M)	5.75×10^{12}	0.0	30,400
	Low pressure limit	1.17×10^{15}	0.0	8170
	Troe parameters: 0.31 50 100.000 50.000			

Les réactions 1 et 2 sont adaptées du travail de Tsang et al. [*Tsang, 1991*] sur le propène. La vitesse de réaction de 5 provient du mécanisme Jet Surf [*Jet Surf 2.0, 2010*]. La réaction 6 est adaptée du travail de Kiefer et al. [*Kiefer, 2009*] sur la pyrolyse du 1-hexène. Les réactions 11, 12 et 13 sont empruntées aux travaux de Miyoshi et al. [*Miyoshi, 2010*] qui ont mené des calculs *ab initiaux* concernant le radical C₄H₇.

Figure II.15 : Analyse de voies réactionnelles pour la pyrolyse du 1-butène à 1800 K.

La figure II.15 montre les principales voies de réaction en pyrolyse, à 1800 K du 1butène. 68 % de la consommation du 1-butène va vers la réaction de β -C-C scission (réaction 1) menant au radical allyle et au radical méthyle. Les réactions de β -C-H scission et métathèse (réactions 3 et 5) produisant le radical *sax*C₄H₇ (radical butén-3-yle) joue également un rôle important dans la consommation du 1-butène. Ce radical donne principalement du 1,3butadiène, qui se décompose majoritairement en C₂H₄ (46 %) et C₂H₃. Le propène est produit en quantités par recombinaison de l'allyle avec H (56 %) et par réaction ipso $1 - C_4H_8 +$ $H \rightleftharpoons C_3H_6 + CH_3$ (41 %). Le radical allyle forme une part importante de l'allène, qui s'isomérise en propyne (66 %).

2_1	hutàna	•
2-1	Juiche	٠

14	$CH_3CHCH + CH_3 (+M) = 2-C_4H_8 (+M)$ Low pressure limit	$\begin{array}{c} 5.00 \times 10^{13} \\ 8.54 \times 10^{58} \end{array}$	0.0 -11.94	0.0 9770
15	$2-C_4H_8 = aC_3H_5 + CH_3$	7.50×10^{66}	-15.6	97,300
16	$2-C_4H_8 = saxC_4H_7 + H$	1.06×10^{85}	-20.03	132,787
17	$2 - C_4 H_8 + H = sax C_4 H_7 + H_2$	3.16×10^{6}	2.5	6756
18	$2-C_4H_8 + H = C_3H_6 + CH_3$	3.46×10^{17}	-1.05	6461
19	$2-C_4H_8 + H = CH_3CCHCH_3 + H_2$	1.32×10^{6}	2.53	12,240
20	$2-C_4H_8 + CH_3 = saxC_4H_7 + CH_4$	$4.40 imes 10^{0}$	3.50	5675

La proportion d'allène obtenue a nécessité l'ajout de la réaction 15, en plus de la réaction 14, pour expliquer la rupture de la liaison C-C. Les réactions 17, 18 et 19 pour la pyrolyse du 2-butène sont des adaptations du sous-mécanisme du propène dans le mécanisme USC Mech-II, où les vitesses de réaction sont doublées pour tenir compte des deux groupements méthyles du 2-butène comparé au propène.

Figure II.16 : Analyse de voies réactionnelles pour la pyrolyse du 2-butène à 1800 K

L'amorçage unimoléculaire et la métathèse avec H du 2-butène conduisant à la formation de *sax*C₄H₇ sont responsables de 51 % de sa conversion (Figure II.16). Cela implique une production important de 1,3-butadiène, en accord avec les points expérimentaux (trois fois supérieure aux quantités observées dans ces conditions avec le 1-butène). Seuls 13 % du 2-butène se décompose en radicaux allyles et méthyles. Mais cette quantité de aC₃H₅ (CH₂CHCH₂) stabilisé par résonnance reste importante dans le système et justifie l'ajout de la réaction 15, sans laquelle la concentration simulée de aC₃H₅ serait 10 fois inférieure. La réaction formant aC₃H₅ par arrachement de H sur le propène ne permet pas d'expliquer la formation de aC₃H₅. Le radical sC₃H₅ (CH₃CHCH) se décompose quant à lui rapidement en C₂H₂ et CH₃.

•	1		`		
	h	111	01	nn	٠
			C .		
v	v	u	U		•

21	iC_4H_8 (+M) = CH ₃ CCH ₂ + CH ₃ (+M)	2.50×10^{13}	0.0	0.0
	Low pressure limit	4.27×10^{58}	-11.94	9770
	Troe parameters: 0.175 1341 60,000 10,140			
22	$iC_4H_7 + H (+M) = iC_4H_8 (+M)$	2.00×10^{14}	0.0	0.0
	Low pressure limit	1.33×10^{60}	-12.0	5968
	Troe parameters: 0.02 1097 1097 6859			
23	$iC_4H_8 + H = iC_4H_7 + H_2$	1.72×10^{14}	0.0	8000
24	$iC_4H_8 + H = C_3H_6 + CH_3$	8.80×10^{16}	-1.05	6461
25	$iC_4H_8 + H = iC_4H_7 - 1 + H_2$	1.20×10^{14}	0.0	13,000
26	$iC_4H_8 + CH_3 = iC_4H_7 + CH_4$	4.40×10^{0}	3.50	5675
27	$iC_4H_7-1 = pC_3H_4 + CH_3$	1.20×10^{13}	0.0	37,000
28	$iC_4H_7 = aC_3H_4 + CH_3$	5.00×10^{11}	0.0	51,000
29	$iC_4H_7 = saxC_4H_7$	6.00×10^{13}	0.0	70,000

Les réactions 21 et 22 pour les réactions d'amorçage unimoléculaire sont issues du mécanisme de Dagaut et al. [*Dagaut, 1998*]. Les réactions 23, 25, 27 et 28 sont celles présentées par Yasunaga et al. [*Yasunaga, 2009*]. La réaction d'isomérisation 29 est ajoutée au mécanisme afin de prévoir la formation importante de 1,3-butadiène $(iC_4H_8 \rightarrow iC_4H_7 \rightarrow saxC_4H_7 \rightarrow C_4H_6)$.

Figure II.17 : Analyse de voies réactionnelles pour la pyrolyse du i-butène à 1800 K

La figure II.17 montre les voies réactionnelles majeures de pyrolyse de l'iso-butène à 1800 K. L'analyse des voies réactionnelles met en évidence l'importance des réactions de β -C-H scission et des réactions 22 et 23 formant *i*C₄H₇, qui se converti en CH₃CCH₂ par coupure C-C scission. Cependant, la principale voie de consommation de *i*C₄H₇ est la réaction de β scission C-H menant à la formation de l'allène et de méthyle. 90 % de l'allène est formé par cette voie à 1800 K. Le principal problème rencontré par les auteurs est l'incapacité du modèle à prévoir les concentrations élevées de 1,3-butadiène. Pour pallier à sous-estimation de 1,3-butadiène, Zhang et al. proposent une isomérisation de *i*C₄H₇ en *sax*C₄H₇, qui se consomme en produisant une grande quantité de 1,3-C₄H₆.

Schenk et al. [*Schenk, 2013*] ont étudié des flammes stabilisées sur brûleur d'isomères du butène, dont le 1-butène, le *trans*-2-butène et l'*iso*-butène. La composition des flammes laminaires est : 16,5 % mol de butène, 58,5 % mol d'oxygène et 25 % mol d'argon. La richesse de 1,7 est ainsi obtenue. Le dispositif fonctionne à une faible pression (40 mbar). Les gaz frais sont à une température de 300 K à la sortie du brûleur et une vitesse de 65,6 cm/s. Un spectromètre de masse avec faisceau moléculaire est utilisé pour l'identification et la quantification des produits. Cet appareil permet une quantification des radicaux échantillonnés dans la flamme. Les profils de température dans la flamme sont mesurés en fonction de la distance au brûleur.

Le modèle cinétique détaillé utilisé dans cette étude est basé sur le mécanisme proposé par Hoyermann et al. [*Hoyermann, 2006*]. Il a été conçu pour prévoir l'oxydation de composé hydrocarbonés C_1 - C_4 , étendu au *n*-heptane (haute et basse température), au toluène et aux deux isomères du butane [*O* β *wald*, 2011]. Le sous-mécanisme d'oxydation des C₄ ramifiés à haute température est issu du modèle du LLNL [*Curran*, 2002]. Dans le mécanisme, les isomères du radical butényle sont différenciés : C₄H₇-P (H₂C=CH-CH₂-CH₂) et C₄H₇-S (H₂C=CH-CH-CH₃).

Des analyses de voies réactionnelles intégrées (globalisées) ont été réalisées avec le mécanisme. La consommation du 1-butène est dominée par l'arrachement de H en position allylique ou sur le groupement méthyle, conduisant à la formation de C₄H₇-P ou C₄H₇-S. Par β -scission de la liaison C-H, avec l'un ou l'autre des radicaux C₄H₇, nous obtenons du 1,3-butadiène. Le 1,3-butadiène marque le départ d'une séquence de déshydrogénation de la chaine C₄. La réaction ipso d'addition de H sur 1-C₄H₈ et menant à la formation de propène et du radical méthyle est donnée comme seconde voie de conversion du 1-butène. Cette réaction est la contribution majoritaire à la destruction du 1-butène par la voie des C₃. Une contribution mineure est trouvée pour l'amorçage unimoléculaire donnant les radicaux allyle et méthyle.

La voie de conversion majeure du 2-butène est $2 - C_4H_8 + H \rightleftharpoons C_3H_6 + CH_3$, alimentant la voie de destruction du 2-butène par la voie des C₃. La voie de consommation par les C₄H₇ et par le 1,3-butadiène est en compétition avec la voie en C₃, mais d'importance plus faible.

L'iso-butène forme préférentiellement le radical iC_4H_7 par arrachement de H. Le radical iC_4H_7 se consomme en formant de l'allène et du méthyle. Une voie mineure, à partir de l'iso-butène, qui, par rupture d'une liaison C-C, forme de radical C_3H_5 -T ($CH_2=C-CH_3$) qui conduit à la formation de propyne. La présence de 1,3-butadiène est expliquée via la formation d'une espèce en C₅, le 2-méthyl-1-butène, depuis le radical iC_4H_7 . Par arrachement sur le groupement méthyle de la ramification, le radical C_4H_7 -S est obtenu ; il donne le 1,3-butadiène. Enfin, une voie importante de consommation de l'iso-butène est l'addition de H donnant iC_4H_9 . iC_4H_9 se décompose ensuite en propène.

Zhao et al. [*Zhao, 2014*] ont mesuré des vitesses de flammes laminaires et des températures d'inflammations pour les isomères du butène. Ces paramètres ont également été simulés à l'aide d'un modèle cinétique détaillé. Deux dispositifs expérimentaux ont été utilisés pour ces mesures. Pour la mesure de vitesses de flammes laminaires, une bombe sphérique a été utilisée. Afin de mesurer les températures d'auto-inflammation des butènes, un système de brûleurs à contre-courants a été utilisé. La flamme obtenue n'est pas

prémélangée (flamme de diffusion) car un des brûleurs apporte le combustible, chauffé et dilué dans l'azote si nécessaire et le second apporte l'oxygène et l'azote, chauffés si nécessaire. La température d'auto-inflammation est mesurée par thermocouple et est ensuite corrigée à cause des échanges radiatifs et de convection.

Le modèle cinétique a été développé à partir du modèle cinétique de Cai et al. [*Cai,* 2013], modèle utilisé pour modéliser l'oxydation des isomères du butanol. Les butènes sont des intermédiaires important de l'oxydation des isomères du butanol. Le mécanisme résultant comprend 101 espèces liées à 732 réactions.

Zhao et al. ont réalisés expérimentalement des mesures de vitesses de flammes laminaires et de températures d'auto-inflammation pour des flammes non-prémélangées, de la pression atmosphérique à des pressions plus élevées (10 atm pour les vitesses de flammes et 5 atm pour les températures d'auto-inflammation). Il en résulte que les vitesses de flamme du 1-butènes sont supérieures aux vitesses de flamme des 2-butènes (le cis-2-butène et le trans-2-butène ont des vitesses de flammes semblables) et l'*iso*-butène présente des vitesses de flammes inférieures aux 2-butènes.

Nous avons montré dans ce chapitre que de nombreuses études ont été menées sur la combustion et pyrolyse des butènes. Mais, peu d'études portent sur tous les isomères du butène. Les différentes études sur le sujet sont récapitulées dans le tableau II.4.

Référence	Espèces étudiées	Dispositif expérimental	Propriétés mesurées	Τ, p et φ
Bradley, 1976	Iso-butène	Pyrolyse, tube à choc	Délai d'auto- inflammation	1055-1325 K, 3- 4 atm
Brezinsky, 1986	Iso-butène	Réacteur à écoulement	Profils d'espèces	1081 et 1085 K, 1 atm, $\phi = 0,47$ et 0,97
Chakir, 1989	1-butène	Réacteur auto- agité	Profils d'espèces	900-1200 K, 1 et 10 atm, $\phi =$ 0,15-4
Curran, 1992	Iso-butène	Tube à choc	Délai d'auto- inflammation	1100-1900 K, 2- 4,5 atm, φ = 0,1- 4.
Bauge, 1997	Iso-butène	Tube à choc, réacteur auto- agité	Délais d'auto- inflammation, profils d'espèces	1230-1930 et 833-913 K, 9,5- 10,5 atm et 1 atm, φ = 1-3/3-6

Tableau II-4 : Récapitulatif des études sur la pyrolyse et l'oxydation des butènes.

Référence	Espèces étudiées	Dispositif expérimental	Propriétés mesurées	T, p et ø
Dagaut, 1998	Iso-butène	Tube à choc, réacteur auto- agité	Délais d'auto- inflammation, profils d'espèces	1200-2000 et 800-1250 K, 2- 4,6 bar et 1, 5 et 10 atm, $\phi = 0,2-4$ et 0,2-2
Davis, 1998	1-butène, iso-butène	Brûleur à jets opposés	Vitesse laminaire de flamme	$\begin{array}{l} 298 \text{ K} (\text{initiale}), \\ 1 \text{ atm (initiale)}, \\ = 0,7-1,7 \end{array}$
Heyberger, 2002	1-butène	Tube à choc, réacteur auto- agité	Délais d'auto- inflammation, profils d'espèces	1270-1840 et 900-1200 K, 0,95-7,1 atm et 1 et 10 atm, $\phi =$ 0,5-2 et $0,15-4$
Santhanam, 2003	Iso-butène	Pyrolyse, tube à choc	dissociations, relaxations vibrationnelles et incubation unimoléculaires	900-2300 K, 7- 400 torr
Yasunaga, 2009	Iso-butène	Tube à choc	Délai d'auto- inflammation, profils d'espèces	1000-1800 K, 1,0-2,7 atm, $\phi =$ 0,125-2
Dias, 2010a	Iso-butène	Flammes plates laminaires de prémélange	Profils d'espèces	Température de la flamme, 40 mbar, $\phi = 0,225$
Zhang, 2011	1-butène, trans-2- butène, iso- butène	Réacteur à écoulement, pyrolyse	Profils d'espèces	Profil de température, 10 Torr
Schenk, 2012	1-butène, trans-2- butène, iso- butène	Flammes plates laminaires de prémélange	Profils d'espèces	Température de la flamme, 40 mbar, $\phi = 1,7$
Zhao, 2014	1-butène, trans-2- butène, cis- 2-butène, iso-butène	Bombe sphérique, brûleurs à jets opposés	Vitesse laminaire de flamme, température d'auto-inflammation	298 (initiale) et 1000-1400 K, 1- 10 atm (initiale) et 1-5 atm, φ = 0,5-1,8
Fenard, 2014	Trans-2- butène	Réacteur auto- agité, bombe sphérique	Profils d'espèces, vitesse laminaire de flamme	900-1440 et 298 K (initiale), 1 atm (pour 2 dispositifs), $\phi =$ 0,25-2 et 0,8-1,4.

Conclusion :

Les études de la pyrolyse ou de l'oxydation des butènes sont nombreuses et variées. Cependant, des disparités demeurent entre les isomères. En effet, l'*iso*-butène et le 1-butène ont fait l'objet de nombreux travaux, aussi bien expérimentalement, avec des mesures de délais d'auto-inflammation, des mesures de profils d'espèces avec plusieurs dispositifs (réacteur auto-agité, réacteur à écoulement, tube à choc, flammes prémélangées) et des mesures de vitesse de flammes laminaires. En revanche, moins d'études concernent la cinétique d'oxydation des deux isomères du 2-butène. Récemment, des travaux ont été menés avec des dispositifs expérimentaux tels que le réacteur à écoulement, la bombe sphérique et les flammes prémélangées permettant des validations de modèles cinétiques détaillés. Les deux isomères ne sont pas toujours étudiés séparément et le plus souvent, seul le trans-2butène est étudié.

II.2. Oxydation de l'éthanol

Avec la volonté de trouver des carburants alternatifs aux carburants fossiles, lors du demisiècle écoulé, de nombreuses études ont concerné la combustion de l'éthanol. C'est un carburant facilement produit à partir de fermentation de la biomasse. L'éthanol, comparé aux carburants fossiles, apporte des bénéfices, notamment en termes environnementaux [*Leplat*, 2011]. Les études menées sont nombreuses et mettent en jeu des dispositifs expérimentaux variés utilisés dans de larges conditions opératoires. Le résumé des publications sur la combustion de l'éthanol, ainsi que des dispositifs utilisés pour l'étude de l'éthanol, les techniques de mesure et les conditions, a été publié récemment par Sarathy et al. [*Sarathy,* 2014]. Le tableau II.5 répertorie ces études.

Tableau II-5 :	Etudes sur	l'éthanol.
----------------	------------	------------

Référence	Espèces étudiées	Dispositif expérimental	Propriétés mesurées	Techniques de mesure	Τ, p et φ
Cooke, 1971	Ethanol, méthanol	Tube à choc	Délai d'auto- inflammation	Emission de OH, CH, C ₂ et CO ₂	1570–1870 K, 0.267– 0.400 bar, $\phi = 1$

Référence	Espèces étudiées	Dispositif expérimental	Propriétés mesurées	Techniques de mesure	T, p et ϕ
Gülder, 1982	Méthanol, éthanol, <i>iso</i> - octane	Bombe à volume constant	Vitesse laminaire de flamme	Sonde à ionisation	\sim 300–600 K, 1–8 bar, $\phi = 0.7-1.4$
Rotzoll, 1985	Ethanol	Tube à écoulement Pyrolyse	Profils d'espèces (T)	MS (C ₂ H ₅ OH, C ₂ H ₄ , CH ₃ CHO, H ₂ , CH ₄)	~1000–1300K 1.3 bar
Norton, 1991	Méthanol, éthanol, <i>n-</i> , <i>iso-</i> propanol, <i>tert-</i> butanol, MTBE	Flow reactor	Profils d'espèces (x, t)	GC	1020–1120 K (initiale), 1 bar, $\phi = 1.18$
Dunphy, 1991	Ethanol	Tube à choc	Délai d'auto- inflammation	Capteur de pression et émission de CO + O et OH	1060–1660 K, 1.8–4.6 bar, $\phi = 0.25-2$
Curran, 1992	Ethanol, <i>iso</i> - butène and MTBE	Tube à choc	Délai d'auto- inflammation	Capteur de pression et émission de OH or CO ₂	1100–1900 K, 2–4.6 bar, $\phi = 0.25-1.5$
Dagaut, 1992	Ethanol	Jet stirred reactor	Profils d'espèces (T)	GC (CO, CO ₂ , CH ₄ , C ₂ H ₄ , C ₂ H ₆ , CH ₃ CHO, C ₂ H ₅ OH)	~1000 K, 1 bar, $\phi = 0.2 - 2$
Egolfopoulos, 1992	Ethanol	Counterflow premixed flame	Vitesse laminaire de flamme	LDV	Temperature de flamme, 1 bar, $\phi = 0.6-1.8$
Norton, 1992	Ethanol	Tube à écoulement turbulent	Profils d'espèces (x, t)	GC	~1100 K (initial), 1 bar, $\phi = 0.61 - 1.24$
Lee 1993	Méthanol,	Machine à	Délai d'auto-	Pression	750–1000 K,
Lee, 1995	éthanol, MTBE	rapide	inflammation	110351011	$\begin{array}{c} 20 - 40 \text{ bar}, \\ \phi = 1 \end{array}$
Li, 2001	éthanol, MTBE Ethanol	rapide Tube à écoulement Pyrolyse	inflammation Profils d'espèces (x, t)	FTIR et GC	$\phi = 1$ 1045–1080 K, 1.7–3.0 bar
Li, 2001 Alzueta, 2002	éthanol, MTBE Ethanol Ethanol, NO	rapide Tube à écoulement Pyrolyse Tube à écoulement	inflammation Profils d'espèces (x, t) Profils d'espèces (T)	FTIR et GC Analyses FTIR/NO	$\phi = 1$ 1045–1080 K, 1.7–3.0 bar 700–1500 K, 1 bar, $\phi = 0.1-2.70$
Li, 2001 Alzueta, 2002 Benvenutti, 2004	éthanol, MTBE Ethanol Ethanol, NO Ethanol	rapide Tube à écoulement Pyrolyse Tube à écoulement Low-pressure flame	inflammation Profils d'espèces (x, t) Profils d'espèces (T) Profils d'espèces temporels	FTIR et GC Analyses FTIR/NO Emission de OH, HCO, CH ₂ O, CH and C ₂	$\phi = 1$ 1045–1080 K, 1.7–3.0 bar 700–1500 K, 1 bar, $\phi = 0.1-2.70$ Température de flamme, 0.355 bar, $\phi = 1$
Li, 2001 Alzueta, 2002 Benvenutti, 2004 Hidaka, 2005	éthanol, MTBE Ethanol Ethanol, NO Ethanol Ethanol	rapide Tube à écoulement Pyrolyse Tube à écoulement Low-pressure flame Tube à choc Pyrolyse	inflammation Profils d'espèces (x, t) Profils d'espèces (T) Profils d'espèces temporels Profils d'espèces	FTIR et GC Analyses FTIR/NO Emission de OH, HCO, CH ₂ O, CH and C ₂ GC + absorption IR	$\phi = 1$ 1045–1080 K, 1.7–3.0 bar 700–1500 K, 1 bar, $\phi = 0.1-2.70$ Température de flamme, 0.355 bar, $\phi = 1$ 1000–1700 K, 1.4–3.6 bar
Li, 2001 Alzueta, 2002 Benvenutti, 2004 Hidaka, 2005 Ergut, 2006	éthanol, MTBE Ethanol Ethanol, NO Ethanol Ethanol Ethanol, éthylbenzène	rapide Tube à écoulement Pyrolyse Tube à écoulement Low-pressure flame Tube à choc Pyrolyse Flamme prémélangée	inflammation Profils d'espèces (x, t) Profils d'espèces (T) Profils d'espèces temporels Profils d'espèces Profils d'espèces, PAH, suies (x)	FTIR et GC Analyses FTIR/NO Emission de OH, HCO, CH ₂ O, CH and C ₂ GC + absorption IR HAP/absoption des suies; GC (MS, FID, TCD),	$\phi = 1$ 1045–1080 K, 1.7–3.0 bar 700–1500 K, 1 bar, $\phi = 0.1-2.70$ Température de flamme, 0.355 bar, $\phi = 1$ 1000–1700 K, 1.4–3.6 bar ~1800 K, 1 bar, $\phi = 2.5$

Référence	Espèces étudiées	Dispositif expérimental	Propriétés mesurées	Techniques de mesure	T, p et ϕ
Liao, 2007	Ethanol	Bombe à volume constant	Vitesse laminaire de flamme	Capteur CCD rapide	358-480 K; 1- 10 bar, $\phi = 0.7-1.4$
Saxena, 2007	Ethanol	Flammes prémélangée et partiellement mélangée	Profils d'espèces (x)	GC	~300–2000 K, 1 bar
Dagaut, 2008	Ethanol, E85 surrogate	Réacteur auto- agité	Profils d'espèces (T)	GC (FID), FTIR	800–1100 K, 10 bar, $\phi = 0.6-2$
Leplat, 2008	Ethanol	Flamme prémélangée basse pression	Profils d'espèces (x)	EI-MBMS	\sim 600–2000 K, 0.05 bar, $\phi = 1.00$
Wang, 2008	Ethanol, DME, propène	Flamme laminaire prémélangée	Profils d'espèces (x)	MBMS (PI, EI),	\sim 500–2200 K, 0.04 bar, $\phi = 2$
Bradley, 2009	Ethanol	Bombe à volume constant	Vitesse laminaire de flamme	Photographie Schlieren rapide	300-393 K, 1- 14 bar, $\phi = 0.7-1.5$
Cancino, 2010	Ethanol	Tube à choc	Délai d'auto- inflammation	Emission CH	650-1220 K, 10, 30, et 50 bar, $\phi = 0.3$
Noorani, 2010	Méthanol, éthanol, <i>n</i> - propanol, <i>n</i> - butanol	Tube à choc	Délai d'auto- inflammation	Emission CH	1070–1760 K, 2–12 bar, $\phi = 0.75$ aet 1.8
Veloo, 2010	<i>n</i> -Butanol, méthanol, éthanol	Flamme prémélangée à jets opposés	Vitesse laminaire de flamme et taux d'étirement à l'exctinction	PIV	343 K, 1 bar, $\phi = 0.7-1.5$
Heufer, 2010	Ethanol	Tube à choc	Délai d'auto- inflammation	Pression	800 K, 13–40 bar, $\phi = 1.0$
Eisazadeh- Far, 2011	Ethanol	Bombe sphérique et cylindrique	Vitesse laminaire de flamme	Ombroscophie	300–650 K, 1– 5 bar, $\phi = 0.8$ – 1.1
Konnov, 2011	Ethanol	Brûleur à flamme plate	Vitesse laminaire de flamme	Méthode à flux de chaleur	Température de flamme, 1 bar, $\phi = 0.7-1.5$

Référence	Espèces étudiées	Dispositif expérimental	Propriétés mesurées	Techniques de mesure	Τ, p et φ
Leplat, 2011	Ethanol	Flamme prémélangée basse pression et réacteur auto-agité	Profils d'espèces (x)	EI-MBMS, GC	\sim 500–1800 K, 0.05 bar, $\phi = 0.75$, 1, et 1.25; 890– 1250 K, 1 bar, $\phi = 0.25$, 0.5, 1, and 2
van Lipzig, 2011	Ethanol, <i>n</i> - heptane, <i>iso</i> - octane	Brûleur à flamme plate	Vitesse laminaire de flamme	Thermocouples	298–338 K, 1 bar, $\phi = 0.6-$ 1.5
Xu, 2011	Ethanol, DME	Flamme prémélangée basse pression	Profils d'espèces (x)	PI-MBMS	\sim 500–2000 K, 0.04 bar, $\phi = 1.00$
Broustail, 2011	Ethanol, butanol <i>iso</i> - octane	Bombe à volume constant	Vitesse laminaire de flamme	Ombroscopie rapide	393 K, 1 bar, $\phi = 0.8-1.4$
Lee, 2012	Ethanol	Tube à choc and machine à compression rapide	Délai d'auto- inflammation	Pression, émission CH, Schlieren	775–1300 K, ∼80 bar
Varea, 2012	Ethanol	Réacteur à volume constant	Vitesse laminaire de flamme	Tomographie rapide par laser	373 K, 1–5 bar, $\phi = 0.7-1.5$
Broustail, 2013	Ethanol, butanol <i>iso</i> - octane	Bombe à volume constant	Vitesse laminaire de flamme	Ombroscopie rapide	423 K, 10 bar, $\phi = 0.8-1.4$
Tran, 2013	Ethanol, methane	Flamme basse pression	Profils d'espèces (x)	Microsonde-GC (FID + TCD + MS)	\sim 300–2100 K, 0.066 bar, $\phi = 0.7-1.3$
Varea, 2013	Mélanges éthanol et <i>iso</i> - octane	Réacteur à volume constant	Vitesse laminaire de flamme	Dispersion de Mie	373 K, 1– 10 bar, $\phi = 0.7-1.5$
Beeckmann, 2014	Méthanol, éthanol, <i>n</i> - propanol, <i>n</i> - butanol	Bombe à volume constant	Vitesse laminaire de flamme	Photographie Schlieren rapide	373 K, 10 bar, $\phi = 0.7-1.3$
Herrmann, 2014	Ethanol, DME	Tube à écoulement	Profils d'espèces (T)	TOF-MS (EI)	400-1200 K, 1 bar, $\phi = 0.8-$ 1.2
Mittal, 2014	Ethanol	Machine à compression rapide	Délai d'auto- inflammation	Pression	10–50 bar, 825–985 K, $\phi = 0.3-1.0$
Knorsch, 2014	Ethanol, <i>n</i> -, <i>iso</i> -butanol, <i>iso</i> -octane, <i>n</i> - heptane	Brûleur à flux de chaleur	Vitesse laminaire de flamme	Méthodes de flux de chaleur	373–423 K, 1 bar, $\phi = 0.5 - 1.5$

Des délais d'auto-inflammation pour l'éthanol ont été réalisés jusqu'à 1900 K et 80 bar dans la gamme de richesse $\varphi = 0,25$ -2. Les études à haute température datent des années 1990 [*Dunphy*, 1992] et apportent une grande base de données sur les délais d'auto-inflammation, entre 1000 et 1700 K, 2-4,6 bar et $\varphi = 0,5$ -2. Des études plus récentes [*Cancino et al., 2010*] [*Lee, 2012*] sur le sujet ciblent plus spécifiquement les plus basses températures, avec des résultats obtenus en machine à compression rapide [*Lee, 1993*] [*Lee, 2012*].

Les vitesses de flammes laminaires pour les alcools constitués de 1 à 3 atomes de carbone ont été mesurées dans la gamme de richesse 0,7-1,5 et pour des pressions initiales atteignant 10 bar. Les mesures les plus récentes utilisent des chambres de combustion à volume constant, avec une mesure de la vitesse de flamme laminaire par méthode Schlieren [*Bradley, 2009*] [*Beeckmann, 2014*] ou ombroscopie [*Broustail, 2011*] [*Broustail, 2013*] [*Eisazadeh-Far, 2011*], ou des brûleurs à flux de chaleur [*Knorsch, 2014*] [*Konnov, 2011*] ou encore des brûleurs à jets opposés avec mesure par PIV (Particule Imaging Velocity) [*Veloo, 2010*].

Les déterminations de profils de produits d'oxydation et de pyrolyse de l'éthanol ont été menées expérimentalement jusqu'à des températures de 2400 K et des pressions jusqu'à 10 bar. Les techniques de mesure, telles que la spectrométrie de masse et faisceau moléculaire (MBMS) [*Kasper, 2007*] [*Leplat, 2008*] [*Leplat, 2008*] [*Xu, 2011*] [*Wang 2008*] ou l'échantillonnage par sonde dans la flamme [*Ergut, 2006*] [*Saxena, 2007*] [*Tran, 2013*], apportent des informations sur la cinétique de combustion de l'éthanol à hautes températures. D'autres dispositifs expérimentaux permettent des analyses sur des gammes de températures plus modérées avec des réacteurs à écoulement [*Norton, 1991*] [*Li, 2001*] [*Alzueta, 2002*] [*Herrmann, 2014*] ou auto-agités [*Leplat, 2011*] [*Dagaut, 2008*] [Dagaut, 1992].

Conclusion

Cette étude bibliographique sur la combustion de l'éthanol, a montré que depuis une quarantaine d'années, l'éthanol a été l'objet de nombreux travaux, couvrant une gamme étendue de conditions opératoires et utilisant de nombreux dispositifs expérimentaux. Des nombreux mécanismes ont été proposés pour décrire la pyrolyse et l'oxydation de ce composé. Ces dix dernières années ont vu leur nombre s'accroître, principalement en raison du regain d'intérêt pour les biocarburants.

II.3. Oxydation de la 2-butanone (Méthyléthylcétone)

Les cétones sont des biocarburants potentiels. Ils sont également produits comme intermédiaires lors de l'oxydation d'hydrocarbures ou de dérivés oxygénés, tels que les alcools et les esters [*Badra*, 2014]. De plus, la 2-butanone est un composé organique volatil, un polluant, qui peut être choisi comme représentant de cette famille de composés [*Decottignies*, 2002].

Tranter et al. [*Tranter, 2001*] ont étudié les vitesses de réactions de radicaux H et OH avec plusieurs cétones, dont la propanone, la butanone, et pentan-3-one. L'étude se fait à 753 K, et porte également sur la chimie de l'oxydation des radicaux formés. Les réactions élémentaires sont initiées en faisant réagir lentement O_2 et H_2 à 753 K. Les résultats montrent que les réactions (1) et (2) sont la clé de la consommation des cétones.

$$0H + ketone \rightarrow H_2O + ketonyl (1)$$
$$H + ketone \rightarrow H_2 + ketonyl (2)$$

La constante de vitesse k_1 décroît de 30-40 % par rapport aux constantes de vitesses obtenues dans les mêmes conditions avec les alcanes correspondants (propane, butane et pentane), alors que k_2 augmente de 10-15 %. En conséquence, une réaction d'addition de H sur la propanone est proposée pour les hautes températures :

$$H + CH_3COCH_3 \rightarrow CH_3C(OH)CH_3$$

Enfin, une constante de vitesse est déduite pour la réaction de transfert d'hydrogène pour les radicaux CH₃COCH₂O₂ :

$$CH_3COCH_2O_2 \rightarrow CH_2COCH_2O_2H$$

Decottignies et al. [*Decottignies*, 2002] ont élaboré un mécanisme cinétique pour l'oxydation de la 2-butanone (MEK). Expérimentalement, des mesures de profils d'espèces ont été réalisées dans des flammes laminaires plates prémélangées, à basse pression (5263 Pa). Les flammes CH₄/MEK/O₂/N₂ sont à la stœchiométrie et le pourcentage de MEK dans le mélange atteint 3 %. L'échantillonnage dans la flamme est réalisé par une microsonde couplée à un chromatographe en phase gazeuse – spectromètre de masse (GC/MS) pour l'analyse.

Le mécanisme détaillé comprend 29 espèces oxygénées impliqués dans 140 réactions. Le mécanisme permet de rendre compte, en autres, de l'oxydation de la méthyléthylcétone, de l'acétone, du méthanol, de l'éthanol, de l'acétaldéhyde et du propanal. L'analyse de vitesse globale a permis de proposer un diagramme d'oxydation de la butanone dans les conditions de l'étude (figure II.18).

Figure II.18 : Analyse de voies réactionnelles lors de l'oxydation du mélange CH₄/2% MEK/O₂/N₂

Des délais d'auto-inflammation ont été mesurés en tube à choc pour de la 2-butanone (MEK) par Serinyel et al. [*Serinyel, 2010*]. Les mesures sont faites derrière l'onde de choc réfléchie à pression atmosphérique, pour des températures de 1250-1850 K, des richesses de 0,5-2 et des dilutions de MEK de 1,0 %, 1,5 % et 2,0 % dilué dans l'argon.

Un mécanisme cinétique détaillé permettant de prévoir les délais d'auto-inflammation de la butanone dans les conditions des expériences a été dérivé d'un mécanisme C₄ existant. Le mécanisme proposé compte 234 espèces impliquées dans 1369 réactions.

Le modèle est en bon accord avec les données expérimentales .Pour compléter l'étude, de la butanone a été mélangée à du n-heptane. Les délais d'auto-inflammation du n-heptane ne sont

pas affectés par la présence de butanone. Ainsi, la MEK peut être utilisée sans conséquences comme carburant traceur (Fluorescence induite par laser).

Zhou et al. [*Zhou*, 2011] ont mené une étude cinétique de la réaction de cétones avec le radical OH pour des températures comprises entre 500 et 2000 K. Cette étude est complétée par des calculs *ab initio* sur ces réactions avec OH. Les cétones concernées par cette étude théorique sont la diméthylcétone (DMK, acétone), la méthyléthylcétone (MEK, 2-butanone) et l'iso-propylméthylcétone (iPMK).

Lors des calculs, toutes les voies d'arrachement ont été modélisées. Les réactifs et produits de l'étude sont répertoriés dans le tableau II.6.

Tableau II-6 : Réactifs et produits.

$CH_3C(O)CH_3 + \dot{O}H$	\rightarrow CH ₂ C(O)CH ₃ + H ₂ O \rightarrow CH ₃ C(C)(OH)CH ₃ \rightarrow CH ₃ C(O)OH + CH ₃
CH ₃ C(O)CH ₂ CH ₃ + OH	\rightarrow CH ₃ CO + CH ₃ OH \rightarrow CH ₂ C(O)CH ₂ CH ₃ + H ₂ O \rightarrow CH ₃ C(O)CHCH ₃ + H ₂ O
$CH_3C(O)CH(CH_3)_2 + \dot{C}H$	$\rightarrow CH_3C(0)CH_2\dot{C}H_2 + H_2O$ $\rightarrow \dot{C}H_2C(0)CH(CH_3)_2 + H_2O$ $\rightarrow CH_3C(0)\dot{C}(CH_3)_2 + H_2O$ $\rightarrow CH_3C(0)\dot{C}(CH_3)_2 + H_2O$

Les résultats montrent que pour la butanone $CH_3C(0)CH_2CH_3 + \dot{O}H \rightarrow CH_3C(0)\dot{C}HCH_3 + H_2O$ est la voie dominante dans la gamme de températures considérée.

Cependant, la voie d'arrachement d'un H du groupement CH₃ en position β du groupement carboxyle par la réaction $CH_3C(0)CH_2CH_3 + \dot{O}H \rightarrow CH_3C(0)CH_2\dot{C}H_2 + H_2O$ devient aussi importante que la première voie à haute température.

Lam et al. [*Lam*, 2012] ont mesuré, à haute température, les constantes de vitesse des réactions de OH avec plusieurs cétones : l'acétone, la 2-butanone, la 3-pentanone et la 2-pentanone. Les constantes de vitesse des réactions de OH avec ces cétones ont été étudiées derrière une onde de choc réfléchie en tube à choc, entre 870 et 1360 K et 1-2 atm.

Les radicaux OH sont produits par décomposition thermique rapide du ter-butyl hydroperoxyde (TBHP) et sont mesurés par absorption (306,69 nm). Les mesures ont été comparées aux simulations obtenues à l'aide des modèles de Pichon et al. [*Pichon, 2009*] pour l'acétone et Serinyel [*Serinyel, 2010*] pour la 2-butanone. La vitesse de réaction de 2-butanone + OH obtenue est en accord avec les calculs de Zhou et al. [*Zhou, 2011*].

Badra et al. [*Badra, 2014*] ont publié des délais d'auto-inflammation de cétones mesurés en tube à choc ainsi que des vitesses de réaction de OH avec les mêmes cétones (2-butanone et 3-butèn-2-one). Les délais d'auto-inflammation ont été acquis pour des températures allant de 1100 à 1400 K, des pressions de 3-6,5 atm et des richesses de 0,5 et 1. Les vitesses de réaction de OH avec les deux cétones ont été mesurées pour des températures comprises entre 950 et 1400 K et pour des pressions de l'ordre de 1,5 atm.

Les délais d'auto-inflammation de la 3-butèn-2-one sont plus longs que ceux de la 2-butanone dans les mêmes conditions à la stœchiométrie, alors que le comportement inverse est observé pour la richesse de 0,5. Les résultats expérimentaux ont été simulés à l'aide du mécanisme de Serinyel et al. [*Seninyel, 2010*], qui surestime les délais. Le mécanisme a donc été mis à jour avec des données récentes issues de la littérature. Un mécanisme cinétique a également été développé afin de prédire les délais d'auto-inflammation de la 3-butèn-2-one.

Les différentes études portant sur la combustion de la 2-butanone sont reportées dans le tableau II.7.

Référence Dispositif expérimental		Propriétés mesurées	Techniques de mesure	T, p et ø
Tranter, 2001	<i>Tranter, 2001</i> Réacteur à volume constant		GC-MS	753 K, 500 torrs
Decottignies, 2002	Flamme plates laminaire prémélangées	Profils d'espèces	GC-MS	Température de flamme, 5263 Pa, $\phi = 1$
Serinyel, 2010	Tube à choc	Délai d'auto- inflammation	Emission CH	1250-1850 K, 1 atm, $\phi = 0.5-2$
Zhou, 2011	hou, 2011 Calculs <i>ab initio</i> Vitesse de réaction MEK+OH		-	500-2000 K
Lam, 2012	Tube à choc	Délai d'auto- inflammation, Vitesse de réaction MEK+OH	Pression Absorption OH	870-1360 K, 1- 2 atm
<i>Badra</i> , 2014 Tube à choc		Délai d'auto- inflammation, Vitesse de réaction MEK+OH	Pression Absorption OH	950-1400 K, 2- 6,5 atm, φ = 0,5 et 1

Tableau II-7 : Récapitulatif des études sur la 2-butanone

Conclusion

Les études de la cinétique d'oxydation de la 2-butanone, ou méthyléthylcétone, sont relativement récentes. Quelques études ont été réalisées dans des gammes de température, pression et richesse assez étendues, en flamme prémélangées et tube à choc principalement. Des mécanismes cinétiques ont été proposés. Ce sont principalement les études sur les réactions de la 2-butanone avec OH qui ont motivés les études les plus récentes, avec des calculs *ab initio* et des études expérimentales en tube à choc.

II.4. Oxydation du toluène

Le toluène est un composé présent dans de nombreux dérivés du pétrole utilisés comme carburant dans les transports, comme l'essence et le kérosène [*Tian, 2011*]. La compréhension de la chimie de la combustion du toluène pourrait permettre d'améliorer les performances des moteurs et de diminuer les impacts environnementaux des transports utilisant des carburants liquides contenant du toluène [*Silva, 2007*]. C'est dans l'essence qu'il est le plus abondant. Là, il joue un rôle important en réduisant le phénomène de cliquetis. De plus, la décomposition majoritaire du toluène produit le radical benzyle, connu comme étant un composé clé dans l'augmentation de la formation des hydrocarbures aromatiques polycycliques (HAP) et des suies [Yuan, 2014 a].

De nombreuses études cinétiques de pyrolyse et d'oxydation du toluène ont été menées, alimentant une importante base expérimentale permettant la validation de mécanismes cinétiques. Les profils de concentration d'espèces issues de la combustion du toluène ont ainsi été mesurés en oxydation, pyrolyse et en flammes. Cette étude bibliographique sur la combustion du toluène s'arrêtera sur les études menées expérimentalement sur les dispositifs expérimentaux que sont le réacteur à écoulement, le tube à choc (pour les délais d'auto-inflammation et les profils de concentration d'espèces), le réacteur auto-agité, la machine à compression rapide, les dispositifs permettant la mesure de vitesses de flammes laminaires et les brûleurs à flammes plates.

Des études en tube à choc de la pyrolyse du toluène ont été réalisées entre 1550 et 2200 K et entre 0,2 et 0,5 atm afin de mesurer les fractions molaires de produits en fonction du temps de réaction à l'aide d'un spectromètre de masse (SM) à temps de vol et des technique laser-

Schlieren [*Pamidimukkala, 1987*]. Egalement en tube à choc, la pyrolyse du toluène a été étudiée [*Colket, 1994*] et les produits stables de pyrolyse ont été analysés par chromatographie en phase gazeuse (CG). Les travaux de Sivaramakrishnan et al. [*Sivaramakrishnan, 2004*] ont été menés à 27 et 45 bar à 1200-1900 K. Certains produits de pyrolyse du toluène ont été mesurés à l'aide d'un CPG couplé à un spectromètre de masse. Plus récemment, la pyrolyse du toluène a été étudiée en réacteur à écoulement à 10 Torr [*Zhang, 2009*] et les produits (dont radicaux) quantifiés à l'aide d'un spectromètre de masse couplé à un synchrotron pour la photo-ionisation dans l'ultraviolet (synchrotron vacuum ultraviolet photoionization mass spectrometry - SVUV-PIMS).

De nombreuses études des espèces produites lors de l'oxydation du toluène ont été réalisées dont des études en réacteur à écoulement [*Klotz, 1998*], en tube à choc [*Sivaramakrishnan, 2004*] et en réacteur auto-agité [*Bounaceur, 2005*] [*Dagaut, 2002 b*] [*Yuan, 2014 a*] [*Da Costa, 2003*]. Les conditions expérimentales sont variées et couvrent une large gamme. Les températures sont comprises entre 873 et 1400 K, les pressions entre 1 bar et 550 bar et les richesses entre 0,45 et 5. A ces études s'ajoutent les travaux d'échantillonnage dans des flamme [*Li, 2009*] [*Li, 2011*] [*Detilleux, 2009*] [*Detilleux, 2011*] dans des gammes de température de 500-2200 K, de pression de 30-36 Torr et de richesse de 0,7-1,90.

Les délais d'auto-inflammation du toluène ont été mesurés en tube à choc [*Burcat*, 1986] [*Pengloan, 2001*] [*Vasudevan, 2005*] [*Shen, 2009*] [*Davidson, 2005*] ainsi qu'en machine à compression rapide [*Mittal, 2007*], pour des températures de 920-1950K, des pressions de 1-50 atm et des richesses de 0,25-1,5. Les vitesses de flamme laminaires de mélanges toluène/air on fait l'objet d'études [*Davis, 1998*] [*Hirasawa, 2002*] [*Dames, 2012*] [*Kumar, 2007*] [*Hui, 2012*] [*Sileghem, 2013*] [*Johnston, 2005*], avec des températures de gaz frais de 298 K à 470 K et des richesses entre 0,7 et 1,4.

Cette étude bibliographique s'appuie sur le travail bibliographique de Yuan et al. [*Yuan, 2014 b*]. Le résumé des études sur la combustion du toluène est présenté dans le tableau II.8.

Tableau II-8 : Etudes sur le toluène

Références	Dispositif expérimental	Température	Pression	Richesse	Composition du mélange
Klotz, 1998	Dágatour à ággulament	1173 K	1 atm	0.76	1514 ppm dans O ₂ /N ₂
Yuan, 2014 a et b	Reacteur a ecoulement	1100–1730 K	5– 760 Torr	x	5% mol dans Ar
Pamidimukkala, 1987		1150–2200 K	0.2– 0.5 atm	x	1.8% mol dans Ne
Braun-Unkhoff, 1989	Tube à choc (profils	1300–1800 K	1.5– 7.8 bar	x	2–30 ppm dans Ar
Eng, 2002		1350–1900 K	0.1–2 bar	œ	0.1–5.67 ppm dans Ar
Colket, 1994	u especes)	1200–1850 K	10 atm	∞	1% mol dans Ar
Sivaramakrishnan, 2004	_	1210–1480 K	22– 550 bar	1.0, 5.0	8–85 ppm dans O ₂ /Xe/Ar
Sivaramakrishnan, 2006 a et b		1200–1900 K	27, 45 bar	x	104 ppm dans Ne
Bounaceur, 2005		873–923 K	1 bar	0.45– 0.91	1.4–1.7% dans He
Dagaut, 2002 b	Réacteur auto-agité	1000–1400 K	1 atm	0.5, 1.0, 1.5	0.15% mol dans N ₂
Yuan, 2014 a		950–1200 K	10 atm	0.5, 1.0, 1.5	0.10% mol dans N ₂
Costa, 2003		923 K	1 atm	1.9-3,6	4-4.5% dans N ₂
Li, 2009		500–2200 K	30 Torr	1.90	Toluène/O ₂ /Ar flammes
Li, 2011	Flamme laminaire	500–2200 K	30 Torr	0.75– 1.75	Toluène/O ₂ /Ar flammes
Detilleux, 2009	prémélangée	500–1700 K	36 Torr	2.0	Toluène/O ₂ /Ar flammes
Detilleux, 2011		500–1700 K	36 Torr	0.7, 1.0	Toluène/O ₂ /Ar flammes
Davis, 1998		$T_u = 298 \text{ K}$	1 atm	0.8-1.4	Toluène/air flammes
Hirasawa, 2002		$T_u = 298 \text{ K}$	1 atm	0.8–1.3	Toluène/air flammes
Dames, 2012		$T_u = 353 \text{ K}$	1 atm	0.7–1.4	Toluène/air flammes
Kumar, 2007		$T_u = 400 \text{ K}$	1 atm	0.7–1.4	Toluène/air flammes
Hui, 2012	Vitesse laminaire de	$T_u = 400 \text{ K}$	1 atm	0.7–1.4	Toluène/air flammes
Kumar, 2007	flamme	$T_u = 470 \text{ K}$	1 atm	0.7–1.3	Toluène/air flammes
Hui, 2012		$T_u = 470 \text{ K}$	1 atm	0.7–1.3	Toluène/air flammes
Sileghem, 2013		$T_u = 298 - 358 \text{ K}$	1 atm	0.7–1.3	Toluène/air flammes
Johnston, 2005		$T_u = 450 \text{ K}$	3 atm	0.8–1.4	Toluène/air flammes
Burcat, 1986	Tube à choc (délai d'auto-inflammation)	1330–1820 K	2.27– 6.81 atm	0.33–1.0	0.5–1.5% mol dans O ₂ /Ar

Références	Dispositif expérimental	Température	Pression	Richesse	Composition du mélange
Pengloan, 2001		1430–1950 K	1.1 atm	0.5–1.5	0.4% mol dans O ₂ /Ar
Vasudevan, 2005		1430–1820 K	1 atm	1.0	0.1–1% mol dans O ₂ /Ar
Shen, 2009		1110–1420 K	12–50 atm	0.25–1.0	0.58–2.28% mol dans O ₂ /N ₂
Davidson, 2005		1000–1320 K	50 atm	0.5–1.0	1.15–2.28% mol dans O ₂ /N ₂
Mittal, 2007	Machine à compression rapide	920–1100 K	50 atm	0.5–1.0	0.96% mol dans O ₂ /N ₂ /Ar

Conclusion

En raison de son lien direct avec les carburants et sa capacité à former des suies, le toluène est un composé très bien connu en combustion. Les travaux expérimentaux et de modélisation sont nombreux. Les dispositifs expérimentaux utilisés pour l'étude de l'oxydation et la pyrolyse du toluène sont variés et couvrent des gammes de température, de pression et de richesse étendues. La modélisation de la combustion du toluène a motivé nombre d'études.

II.5. Conclusion générale

Dans ce chapitre, nous avons, dans un premier temps, compilé et détaillé les données issues de la littérature sur l'oxydation des isomères du butène. Il en ressort que l'*iso*-butène a été abondamment étudié au cours des quarante dernières années, car il se trouve être un intermédiaire de l'oxydation de l'*iso*-octane. Les butènes linéaires ont en revanche été moins étudiés, et plusieurs études sont anciennes. Des travaux plus récents proposent des études de l'oxydation de plusieurs isomères du butène. Cependant, nous remarquons que les deux isomères *trans*-2-butène et *cis*-2-butène n'avaient à ce jour pas fait l'objet d'étude en réacteur auto-agité pour l'acquisition des profils de concentration de produits d'oxydation, ni en bombe sphérique pour les mesures de vitesse de flamme. C'est pourquoi nous proposerons, dans la suite de cette thèse, une étude cinétique de d'oxydation des quatre isomères du butène, en réacteur auto-agité et en bombe sphérique.

Cette étude bibliographique a été complétée en répertoriant des études sur la combustion des composés sélectionnés dans le projet DISPATMO : l'éthanol, la 2-butanone et le toluène. Pour ces trois composés cibles, les résultats de la simulation de leur oxydation seront comparés à des données expérimentales issues de la littérature pour validation d'un modèle cinétique détaillé et présentés dans le chapitre VI.

Références bibliographiques

- [*Alzueta*, 2002] M.U. Alzueta, J.M. Hernández, Ethanol oxidation and its interaction with nitric oxide, Energy Fuels, 16 (2002) 166–171.
- [*Badra, 2014*] J. Badra, A. E. Elwardany, F. Khaled, S. S. Vasu, A. Farooq, A shock tube and laser absorption study of ignition delay times and OH reaction rates of ketones: 2-Butanone and 3-buten-2-one, Combustion and Flame, 161 (2014) 725-734.
- [*Barbé, 1995*] P. Barbé, F. Battin-Leclerc, G. M. Côme, Expérimental and modeling study of methane and ethane oxidation between 773 and 1573 K, Journal de Chimie Physique et de Physico-Chimie Biologique, 92 (1995) 1666-1692.
- [*Bauge, 1998*] J. C. Bauge, F. Battin-Leclerc, F. Baronnet, Experimental and modeling study of the oxidaiton of isobutene, International Journal of Chemical Kinetic, 30 (1998) 629-640.
- [Benson, 1976] S. W. Benson, Thermochemical kinetics, 2nd ed., John Wiley, New York (1976).
- [*Benvenutti*, 2004] L.H. Benvenutti, C.S.T. Marques, C.A. Bertran, Chemiluminescent emission data for kinetic modeling of ethanol combustion, Combustion Science and Technology, 177 (2004) 1–26.
- [*Bounaceur, 2005*] R. Bounaceur, I. Da Costa, R. Fournet, F. Billaud, F. Battin-Leclerc, Experimental and modeling study of the oxidation of toluene, International Journal of Chemical Kinetic, 37 (2005) 25–49.
- [*Bradley*, 1976] J. N. Bradley, K. O. West, Single-pulse shock tube studies of hydrocarbon pyrolysis, Journal of the chemical society, Faraday Transactions I, 72 (1976) 558-567.
- [*Bradley, 2009*] D. Bradley, M. Lawes, M.S. Mansour, Explosion bomb measurements of ethanol–air laminar gaseous flame characteristics at pressures up to 1.4 MPa, Combustion and Flame, 156 (2009) 1462–1470.
- [*Braun-Unkhoff, 1989*] M. Braun-Unkhoff, P. Frank, T. Just, A Shock Tube Study on the Thermal Decomposition of Toluene and of the Phenyl Radical at High Temperatures. Proceedings of the Combustion Institute, 22, (1989) 1053–1061.

- [Brezinsky, 1986] K. Brezinsky, F. L. Dryer, A flow reactor study of the oxidation of isobutylene and an iso-butylene/n-octane mixture, Combustion Science and Technology, 45 (1986) 225-232.
- [*Broustail, 2011*] G. Broustail, P. Seers, F. Halter, G. Moréac, C. Mounaim-Rousselle, Experimental determination of laminar burning velocity for butanol and ethanol isooctane blends, Fuel, 90 (2011) 1–6.
- [*Broustail*, 2013] G. Broustail, F. Halter, P. Seers, G. Moréac, Experimental determination of laminar burning velocity for butanol/iso-octane and ethanol/iso-octane blends for different initial pressures, Fuel, 106 (2013) 310–317.
- [*Burcat, 1985*] A. Burcat, K. Radhakrishnan, High temperature oxidation of propene, Combustion and Flame, 60(2) (1985) 157-169.
- [Burcat, 1986] A. Burcat, C. Snyder, T. Brabbs, Ignition Delay Times of Benzene and Toluene with Oxygen in Argon Mixtures, NASA Technical Memorandum 87312, Washington, D.C., May 1986.
- [Cai, 2013] J. H. Cai, W. H. Yuan, L. L. Ye, Z. J. Cheng, Y. Z. Wang, L. D. Zhang, F. Zhang, Y. Y. Li, F. Qi, Experimental and kinetic modeling study of 2-butanol pyrolysis and combustion, Combustion and Flame, 160 (2013) 1939-1957.
- [*Cancino, 2010*] L.R. Cancino, M. Fikri, A.A.M. Oliveira, C. Schulz, Measurement and chemical kinetics modeling of shock-induced ignition of ethanol–air mixtures, Energy Fuels, 24 (2010) 2830–2840.
- [*Chakir*, 1989] A. Chakir, M. Cathonnet, J. C. Boettner, F. Gaillard, Kinetic study of n-butane oxidation, Combustion Science and Technology, 65(4) (1989) 207-230.
- [*Colket, 1994*] M.B. Colket, D.J. Seery, Reaction mechanisms for toluene pyrolysis, Proc. Combust. Inst., 25 (1994) 883–891.
- [Côme, 1996] G.M. Côme, V. Warth, P.A. Glaude, R. Fournet, F. Battin-Leclerc, G. Scacchi, Computer-aided design of gas-phase oxidation mechanisms - Application to the modeling of n-heptane and iso-octane oxidation, Combustion and Flame, 114 (1–2) (1998) 81-102.

- [*Cooke, 1971*] D.F. Cooke, M.G. Dodson, A. Williams, A shock-tube study of the ignition of methanol and ethanol with oxygen, Combustion and Flame, 16 (1971) 233–236.
- [*Costa, 2003*] I.D. Costa, R. Fournet, F. Billaud, F. Battin-Leclerc, Experimental and modeling study of the oxidation of benzene, International Journal of Chemical Kinetic, 35 (2003) 503–524.
- [Curran, 1992] H. J. Curran, M. P. Dunphy, J. M. Simmie, C. K. Westbrook, W. J. Pitz, Shock tube ignition of ethanol, isobutene and MTBE : Experiments and modeling, Proceedings of the Combustion Institute, 34 (1992) 769-776.
- [*Curran, 1994*] H. J. Curran, The combustion of isobutene and related compounds, Ph.D. Thesis, The National University of Ireland.
- [*Curran, 1996*] H. Curran, J. M. Simmie, P. Dagaut, D. Voisin, M. Cathonnet, The ignition and oxidation of allene and propyne: Experiments and kinetic modeling, Symposium (International) on Combustion, 26 (1) (1996) 613-620.
- [Curran, 2002] H. J. Curran, P. Gaffuri, W. J. Pitz, C. K. Westbrook, A comprehensive modeling study of iso-octane oxidation, Combustion and Flame, 129(3) (2002) 253-280.
- [Dagaut, 1986] P. Dagaut, M. Cathonnet, J-P. Rouan, R. Foulatier, A. Quilgars, J-C. Boettner, F. Gaillard and H. James, A Jet-Stirred Reactor for Kinetic-Studies of Homogeneous Gas-Phase Reactions at Pressures up to 10 Atmospheres (~ 1 MPa), Journal of Physics E-Scientific Instruments, 19 (1986) 207-209.
- [*Dagaut, 1987*] P. Dagaut, M. Cathonnet, J.-C. Boettner, F. Gaillard, Kinetic Modeling of Propane Oxidation, Combustion Science and Technology, 56 (1987) 23-63.
- [*Dagaut, 1988a*] P. Dagaut, M. Cathonnet, J. C. Boettner, F. Gaillard, Kinetic Modeling of Ethylene Oxidation, Combustion and Flame, 71 (1988) 295-312.
- [*Dagaut, 1988b*] P. Dagaut , M. Cathonnet , J. C. Boettner, Experimental study and kinetic modeling of propene oxidation in a jet stirred flow reactor, Journal of Physical Chemistry, 92(3) (1988) 661–671.
- [*Dagaut, 1990*] P. Dagaut, M. Cathonnet, J.-C. Boettner, Propyne Oxidation: A Kinetic Modeling Study, Combustion Science and Technology, 71 (1990) 111-128.

- [*Dagaut, 1992*] P. Dagaut, J.C. Boettner, M. Cathonnet, Kinetic modeling of ethanol pyrolysis and combustion, Journal de Chimie Physique et de Physico-Chimie Biologique, 89 (1992) 867–884.
- [*Dagaut, 1996a*] P. Dagaut, D. Voisin, M. Cathonnet, The oxidation of ethylene oxide in a jet-stirred reactor and its ignition in shock waves, Combustion and flame, 106 (1996) 62-68.
- [*Dagaut, 1996b*] P. Dagaut, M. Cathonnet, J. C. Boettner, Chemical kinetic modeling of the supercritical-water oxidation of methanol, The Journal of Supercritical Fluids, 98 (1996) 33-42.
- [*Dagaut, 2002 a*] P. Dagaut, On the kinetics of hydrocarbons oxidation from natural gas to kerosene and diesel fuel, Physical Chemistry Chemical Physics, 4 (2002) 2079-2094.
- [*Dagaut, 2002 b*] P. Dagaut, G. Pengloan, A. Ristori, Oxidation, ignition and combustion of toluene: Experimental and detailed chemical kinetic modeling, Physical Chemistry and Chemical Physics., 4 (2002) 1846–1854.
- [*Dagaut, 2008*] P. Dagaut, C. Togbé, Experimental and modeling study of the kinetics of oxidation of ethanol–gasoline surrogate mixtures (E85 surrogate) in a jet-stirred reactor, Energy Fuels, 22 (2008) 3499–3505.
- [*Dames*, 2012] C.S. Ji, E. Dames, H. Wang, F.N. Egolfopoulos, Propagation and extinction of benzene and alkylated benzene flames, Combustion and Flame, 159 (2012) 1070–1081.
- [*Davidson*, 2005] D.F. Davidson, B.M. Gauthier, R.K. Hanson, Shock tube ignition measurements of iso-octane/air and toluene/air at high pressures, Proceedings of the Combustion Institute, 30 (2005) 1175–1182.
- [*Davis, 1998*] S. G. Davis, C. K. Law, Determination of and fuel structure effects on laminar flame speeds of C₁ to C₈ hydrocarbons, Combustion Science and Technology, 140 (1998) 427-449.
- [*Davis, 1999*] S. G. Davis, C. K. Law, H. Wang, Propene pyrolysis and oxidation kinetics in a flow reactor and laminar flames, Combustion and Flames, 119 (1999) 375-399.

- [*Decottignies*, 2002] V. Decottignies, L. Gasnot, J. F. Pauwels, A Comprehensive Chemical Mechanism for the Oxidation of Methylethylketone in Flame Conditions, Combustion and Flame, 130 (2002) 225–240.
- [*Detilleux*, 2009] V. Detilleux, J. Vandooren, Experimental and kinetic modeling evidences of a C₇H₆ pathway in a rich toluene flame, Journal of Physical Chemistry A, 113 (2009) 10913–10922.
- [*Detilleux*, 2011] V. Detilleux, J. Vandooren, Experimental and kinetic modeling investigation of toluene combustion in premixed, one-dimensional and laminar toluene-oxygen-argon flames, Proceedings of the Combustion Institute, 33 (2011) 217–224.
- [*Dias*, 2010a] V. Dias, J. Vandooren, Experimental and modeling study of a lean premixed iso-butene/hydrogen/oxygen/argon flame, Fuel, 89 (2010) 2633-2639.
- [*Dias*, 2010b] V. Dias, X. Lories, J. Vandooren, Lean and rich premixed dimethoxymethane/oxygen/argon flames : experimental and modeling, Combustion Science and Technology, 182 (2010) 350-364.
- [Dryer, 1985] F. L. Dryer, K. Brezinsky, A flow reactor study of the oxidation of n-octane and iso-octane, 45 (1986) 199.
- [*Dunphy*, 1991] M.P. Dunphy, J.M. Simmie, High-temperature oxidation of ethanol. Part 1. Ignition delays in shock-waves, Journal of the Chemical Society, Faraday Transactions, 87 (1991) 1691–1696.
- [*Egolfopoulos, 1992*] F.N. Egolfopoulos, D.X. Du, C.K. Law, A study on ethanol oxidation kinetics in laminar premixed flames, flow reactors, and shock tubes, Proceedings of the Combustion Institute, 24 (1992) 833–841.
- [*Eisazadeh-Far, 2011*] K. Eisazadeh-Far, A. Moghaddas, J. Al-Mulki, H. Metghalchi, Laminar burning speeds of ethanol/air/diluent mixtures, Proceeding of the Combustion Institute, 33 (2011) 1021–1027.
- [*Ergut*, 2006] A. Ergut, S. Granata, J. Jordan, J. Carlson, J.B. Howard, H. Richter, et al. PAH formation in one-dimensional premixed fuel-rich atmospheric pressure ethylbenzene and ethyl alcohol flames, Combustion and Flame, 144 (2006) 757–772.

- [Eng, 2002] R.A. Eng, A. Gebert, E. Goos, H. Hippler, C. Kachiani, Incubation times, fall-off and branching ratios in the thermal decomposition of toluene: Experiments and theory, Physical Chemistry and Chemical Physics, 4 (2002) 3989–3996.
- [*Fenard*, 2014] Y. Fenard, P. Dagaut, G. Dayma, F. Halter, F. Foucher, Experimental and kinetic modeling study of trans-2-butene oxidation in a jet-stirred reactor and a combustion bomb, Combustion and flame, In press (2014).
- [*Glick, 1955*] S. Glick, W. Squire, A. Hertzberg, A new shock tube technique for the study of high temperature gas phase reactions, Symposium (International) on Combustion, 5(1) (1955) 393-402.
- [GRI-Mech 1.2, 1995] H. Frenklach, H. Wang, M. Goldenberg, G. P. Smith, D. M. Golden, C. T. Bowman, R. K. Hanson, W. C. Gardiner, V. Lissianski, GRI-Mech, An optimized detailed chemical reactionreaction mechanism for methane combustion, Report No. GRI-95/0058 (1995).
- [*Gülder*, 1982] Ö.L. Gülder, Laminar burning velocities of methanol, ethanol and isooctaneair mixtures, Proceedings of the Combustion Institute, 19 (1982) 275–281.
- [*Hermann*, 2014] F. Herrmann, B. Jochim, P. Oßwald, L. Cai, H. Pitsch, K. Kohse-Höinghaus, Experimental and numerical low-temperature oxidation study of ethanol and dimethyl ether, Combustion and Flame, 116 (2014) 384–397.
- [*Heufer*, 2010] K.A. Heufer, H. Olivier, Determination of ignition delay times of different hydrocarbons in a new high pressure shock tube, Shock Waves, 20 (2010) 307–316.
- [*Heyberger, 2001*] B. Heyberger, F. Battin-Leclerc, V. Warth, R. Fournet, G. M. Côme, G. Scacchi, Comprehensive Mechanism for the Gas-Phase Oxidation of Propene, Combustion and Flames, 126 (2001) 1780-1802.
- [*Heyberger, 2002*] B. Heyberger, N. Belekki, V. Conraud, P.-A. Glaude, R. Fournet, F. Battin-Leclerc, Oxidation of small alkenes at high temperature, International Journal of Chemical Kinetics, 34 (2002) 666-677.
- [*Hidaka, 1993*] Y. Hidaka, T. Taniguchi, H. Tanaka, T. Kamesawa, K. Inami, H. Kawano, Shock-Tube Study of CH2O Pyrolysis and Oxidation, Combustion and Flame, 92 (1993) 365-376.

- [*Hidaka, 1996a*] Y. Hidaka, K. Kimura, K. Hatfori, T. Okuno, Shock Tube and Modeling Study of Ketene Oxidation, Combustion and Flame, 106 (1996) 155-167.
- [*Hidaka, 1996b*] Y. Hidaka, K. Hattori, T. Okuno, K. Inami, T. Abe, T. Koike, Shock tube and modeling study of acetylene pyrolysis and oxidation, Combustion and Flame, 107 (1996) 401-417.
- [Hidaka, 1999] Y. Hidaka, T. Nishimori, K. Sato, Y. Henmi, R. Okuda, K. Inami, T. Higashihara, Shock-Tube and Modeling Study of Ethylene Pyrolysis and Oxidation, Combustion and Flame 117 (1999) 755-776.
- [Hidaka, 1999] Y. Hidaka, T. Ohnishi, H. Wakamatsu, Additive effects of hydrocarbons on OH radical production in H₂ oxidation, International Journal of Chemical Kinetic, 37 (2005) 50-55.
- [*Hidaka, 2005*] Y. Hidaka, H. Wakamatsu, M. Moriyama, T. Koike, K. Yasunaga, Shock-tube study of ethanol pyrolysis, Shock Waves, Springer, Berlin Heidelberg (2005) 651–656.
- [Hirasawa, 2002] T. Hirasawa, C.-J. Sung, A. Joshi, Z. Yang, H. Wang, C.K. Law, Determination of laminar flame speeds using digital particle image velocimetry: Binary Fuel blends of ethylene, n-Butane, and toluene, Proceedings of the Combustion Institute, 29 (2002) 1427–1434.
- [Hoyermann, 2006] K. Hoyermann, F. Mauß, T. Zeuch, A detailed chemical reaction mechanism for the oxidation of hydrocarbons and its application to the analysis of benzene formation in fuel-rich premixed laminar acetylene and propene flames, Physical Chemistry and Chemical Physics, 6 (2004) 3824-3835.
- [Hui, 2012] X. Hui, A.K. Das, K. Kumar, C.-J. Sung, S. Dooley, F.L. Dryer, Laminar flame speeds and extinction stretch rates of selected aromatic hydrocarbons, Fuel, 97 (2012) 695–702.
- [*Ikeda*, 2000] E. Ikeda, R.S. Tranter, J.H. Kiefer, R.D. Kern, H.J. Singh, Q. Zhang, The pyrolysis of methylcyclopentadiene: Isomerization and formation of aromatics, Proceedings of the Combustion Institute, 28 (2) (2000) 1725-1732.

- [Jet Surf 2.0, 2010] H. Wang, E. Dames, B. Sirjean, D. A. Sheen, R. Tango, A. Violi, J. Y. W. Lai, F. N. Egolfopoulos, D. F. Davidson, R. K. Hanson, C. T. Bowman, C. K. Law, W. Tsang, N. P. Cernansky, D. L. Miller, R. P. Lindstedt, A high-temperature chemical kinetic model of n-alkane (up to n-dodecane), cyclohexane, and methyl-, ethyl-, n-propyl and n-butyl-cyclohexane oxidation at high temperatures, JetSurF version 2.0, (2010) <u>http://melchior.usc.edu/JetSurF/JetSurF2.0</u>
- [*Johnston*, 2005] R.J. Johnston, J.T. Farrell, Laminar burning velocities and Markstein lengths of aromatics at elevated temperature and pressure, Proceedings of the Combustion Institute, 30 (2005) 217–224.
- [Kasper, 2007] T.S. Kasper, P. Oßwald, M. Kamphus, K. Kohse-Höinghaus, Ethanol flame structure investigated by molecular beam mass spectrometry, Combustion and Flame, 150 (2007), 220–231.
- [Kiefer, 2009] J. H. Kiefer, K. S. Gupte, L. B. Harding, S. J. Klippenstein, Shock tube and theory investigation of cyclohexane and 1-hexene decomposition, The Journal of Physical Chemistry A, 113(48) (2009) 13570-13583.
- [*Klotz, 1998*] S.D. Klotz, K. Brezinsky, I. Glassman, Modeling the combustion of toluenebutane blends, Proceedings of the Combustion Institute, 27 (1998) 337–344.
- [Knorsch, 2014] T. Knorsch, A. Zackel, D. Mamaikin, L. Zigan, M. Wensing, Comparison of different gasoline alternative fuels in terms of laminar burning velocity at increased Gas temperatures and exhaust gas recirculation rates, Energy Fuels, 28 (2014) 1446– 1452.
- [*Konnov*, 2011] A.A. Konnov, R.J. Meuwissen, L.P.H. de Goey, The temperature dependence of the laminar burning velocity of ethanol flames, Proceeding of the Combustion Institute, 33 (2011) 1011–1019.
- [Kumar, 2007] K. Kumar, J.E. Freeh, C.J. Sung, Y. Huang, Laminar flame speeds of preheated iso-octane/O2/N2 and n-heptane/O2/N2 mixtures, J. Propul. Power, 23 (2007), pp. 428–436.
- [Lam, 2012] K. L. Lam, D. F. Davidson, R. K. Hanson, High-Temperature Measurements of the Reactions of OH with a series of Ketones: Acetone, 2-Butanone, 3-Pentanone, and 2-Pentanone, Journal of Physical Chemistry A, 116 (2012) 5549-5559.

- [*Lee, 1993*] D. Lee, S. Hochgreb, J.C. Keck, Autoignition of alcohols and ethers in a rapid compression machine, SAE Technical paper 932755 (1993) 1–8.
- [*Lee*, 2012] C. Lee, S. Vranckx, K.A. Heufer, S.V. Khomik, Y. Uygun, H. Olivier, et al., On the chemical kinetics of ethanol oxidation: shock tube, rapid compression machine and detailed modeling study, Zeitschrift für Physikalische Chemie, 226 (2012) 1–28.
- [*Leplat, 2008*] N. Leplat, A. Seydi, J. Vandooren, An experimental study of the structure of a stoichiometric ethanol/oxygen/argon flame, Combustion Science Technology, 180 (2008) 519–532.
- [*Leplat, 2011*] N. Leplat, P. Dagaut, C. Togbé, J. Vandooren, Numerical and experimental study of ethanol combustion and oxidation in laminar premixed flames and in jet-stirred reactor, Combustion and Flame, 158 (2011) 705–725.
- [*Li*, 2001] J. Li, A. Kazakov, L.F. Dryer, Ethanol pyrolysis experiments in a variable pressure flow reactor, International Journal of Chemical Kinetics, 33 (2001) 859–867.
- [Li, 2009] Y.Y. Li, L.D. Zhang, Z.Y. Tian, T. Yuan, J. Wang, B. Yang, F. Qi, Experimental Study of a Fuel-Rich Premixed Toluene Flame at Low Pressure, Energy Fuels, 23 (2009) 1473–1485.
- [Li, 2011] Y.Y. Li, J.H. Cai, L.D. Zhang, T. Yuan, K.W. Zhang, F. Qi, Investigation on chemical structures of premixed toluene flames at low pressure, Proceedings of the Combustion Institute, 33 (2011) 593–600.
- [Liao, 2007] S.Y. Liao, D.M. Jiang, Z.H. Huang, K. Zeng, Determination of the laminar burning velocities for mixtures of ethanol and air at elevated temperatures, Applied Thermal Engineering, 27 (2007) 374–380.
- [*Lipzig, 2011*] J.P.J. van Lipzig, E.J.K. Nilsson, L.P.H. de Goey, A.A. Konnov, Laminar burning velocities of n-heptane, iso-octane, ethanol and their binary and tertiary mixtures, Fuel, 90 (2011) 2773–2781.
- [*Miller, 1992*] J. A. Miller, C. F. Melius, Kinetic ad thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels, Combustion and Flame, 91 (1992) 21-39.

- [*Mittal, 2007*] G. Mittal, C.-J. Sung, Autoignition of toluene and benzene at elevated pressures in a rapid compression machine, Combustion and Flame, 150 (2007) 355–368.
- [*Mittal, 2014*] G. Mittal, S.M. Burke, V.A. Davies, B. Parajuli, W.K. Metcalfe, H.J. Curran, Autoignition of ethanol in a rapid compression machine, Combustion and Flame, 161 (2014) 1164–1171.
- [*Miyoshi, 2010*] A. Miyoshi, Computational studies on the reactions of 3-butenyl and 3butenylperoxy radicals, International Journal of Chemical kinetics, 42 (2010) 273-288.
- [*Muller, 1995*] C. Muller, V. Michel, G. Scacchi, G. M. Côme, A computer program for the evaluation of thermochemical data of molecules and free radicals in the gas phase, Journal de Chimie Physique et de Physico-Chimie Biologique, 92 (1995) 1154-1178.
- [*Noorani*, 2010] E.K. Noorani, B. Akih-Kumgeh, J.M. Bergthorson, Comparative high temperature shock tube ignition of C_1 – C_4 primary alcohols, Energy Fuels, 24 (2010) 5834–5843.
- [*Norton, 1991*] T.S. Norton, F.L. Dryer, The flow reactor oxidation of C_1 – C_4 alcohols and MTBE, Proceedings of the Combustion Institute, 23 (1991) 179–185.
- [*Norton, 1992*] T.S. Norton, F.L. Dryer, An experimental and modeling study of ethanol oxidation kinetics in an atmospheric pressure flow reactor, International Journal of Chemical Kinetics, 24 (1992) 319–344.
- [Oβwald, 2011] P. Osswald, K. Kohse-Hoinghaus, U. Struckmeier; T. Zeuch, L. Seidel, L. Leon, F. Mauss, Combustion Chemistry of the Butane Isomers in Premixed Low-Pressure Flames, Zeitschrift für Physikalische Chemie, 225 (2011) 1029-1054.
- [*Pamidimukkala, 1987*] K.M. Pamidimukkala, R.D. Kern, M.R. Patel, H.C. Wei, J.H. Kiefer, High-temperature pyrolysis of toluene, Journal Physical Chemistry 91 (1987) 2148–2154.
- [Pengloan, 2001] G. Pengloan, P. Dagaut, N. Djebaili-Chaumeix, C.E. Paillard, M. Cathonnet, Proceedings of the Colloque Combustion Propre, Orleans, France, June 6– 8 2001, pp. 9.

- [Pichon, 2009] S. Pichon, G. Black, N. Chaumeix, M. Yahyaoui, J.M. Simmie, H.J. Curran, R. Donohue, The combustion chemistry of a fuel tracer: Measured flame speeds and ignition delays and a detailed chemical kinetic model for the oxidation of acetone, Combustion and Flame, 156 (2009) 494–504.
- [Pitz, 1984] W. J. Pitz, C. K. Westbrook, W. M. Proscia, F. L. Dryer, A comprehensive chemical kinetic reaction mechanism for the oxidation of n-butane, Twentieth Symposium (International) on Combustion, The Combustion Institute, (1984) 831-843.
- [Pitz, 1986] W. J. Pitz, C. K. Westbrook, Chemical kinetics of the high pressure oxidation of n-butane and its relation to engine knock, Combustion and Flame 63(1–2) (1986), 113-133.
- [Pitz, 1991] W. J. Pitz, C. K. Westbrook, W. R. Leppard, Autoignition Chemistry of C4 Olefins Under Motored Engine Conditions: A Comparison of Experimental and Modeling Results, SAE paper 912315 (1991).
- [*Qin*, 2001] Z. Qin, H. Yang, W. C. Gardiner Jr., Measurement and modeling of shock-tube ignition delay for propene, Combustion and Flame, 124(1–2) (2001) 246-254.
- [*Rotzool, 1985*] G. Rotzoll, High-temperature pyrolysis of ethanol, Journal of Analytical and Applied Pyrolysis, 9 (1985) 43–52.
- [Schenk, 2012] M. Schenk, L. Leon, K. Moshammer, P. Oßwald, T. Zeuch, L. Seidel, F. Mauss, K. Kohse-Höinghaus, Detailed mass spectrometric and modeling study of isomeric butene flames, Combustion and flame, 160(3) (2013) 487-503.
- [*Santhanam*, 2003] S. Santhanam, J. H. Kiefer, R. S. Tranter, N. K. Srinivasan, A shock tube, Laser-Schlieren study of the pyrolysis of isobutene : Relaxation, incubation, and dissociation rates, International Journal of Chemical Kinetic, 35 (2003) 381-390.
- [*Sarathy*, 2014] S. M. Sarathy, P. Oßwald, N. Hansen, K. Kohse-Höinghaus, Alcohol combustion chemistry, Combustion and Flame, 44 (2014) 40–102.
- [*Saxena*, 2007] P. Saxena, F.A. Williams, Numerical and experimental studies of ethanol flames, Proceedings of the Combustion Institute, 31 (2007) 1149–1156.
- [*Serinyel, 2010*] Z. Serinyel, G. Black, H. J. Curran, J. M. Simmie, A shock tube and chemical kinetic modeling study of methyl ethyl ketone oxidation, Combustion Science and Technology, 182 (2010) 574-587.
- [*Shen*, 2009] H.-P.S. Shen, J. Vanderover, M.A. Oehlschlaeger, A shock tube study of the auto-ignition of toluene/air mixtures at high pressures, Proceedings of the Combustion Institute, 32 (2009) 165–172.
- [Sileghem, 2013] L. Sileghem, V.A. Alekseev, J. Vancoillie, K.M. Van Geem, E.J.K. Nilsson,
 S. Verhelst, A.A. Konnov, Laminar burning velocity of gasoline and the gasoline surrogate components iso-octane, n-heptane and toluene, Fuel, 112 (2013) 355–365.
- [*Silva*, 2007] G.D. Silva, C.-C. Chen, J.W. Bozzelli, Toluene combustion: reaction paths, thermochemical properties, and kinetic analysis for the methylphenyl radical + O₂ reaction, Journal of Physical Chemistry A, 111(35) (2007) 8663-8676.
- [*Sivaramakrishnan, 2004*] R. Sivaramakrishnan, R.S. Tranter, K. Brezinsky, High-pressure, high-temperature oxidation of toluene, Combustion and Flame, 139 (2004) 340–350.
- [*Sivaramakrishnan, 2006, a*] R. Sivaramakrishnan, R.S. Tranter, K. Brezinsky, High pressure pyrolysis of toluene. 1. Experiments and modeling of toluene decomposition, Journal of Physical Chemistry A, 110 (2006) 9388–9399.
- [*Sivaramakrishnan, 2006, b*] R. Sivaramakrishnan, R.S. Tranter, K. Brezinsky, High pressure pyrolysis of toluene. 2. Modeling benzyl decomposition and formation of soot precursors, Journal of Physical Chemistry A, 110 (2006) 9400–9404.
- [*Stranic*, 2012] I. Stranic, S.H. Pyun, D.F. Davidson, R.K. Hanson, Multi-species measurements in 1-butanol pyrolysis behind reflected shock waves, Combustion and Flame, 159 (2012) 3242–3250.
- [*Tan, 1994a*] Y. Tan, P. Dagaut, M. Cathonnet, J. C. Boettner, Acetylène oxydation in a JSR from 1 to 10 atm and comprehe,sive kinetic modeling, Combustion science and technology, 102 (1994) 21-55.
- [Tan, 1994b] Y. Tan, P. Dagaut, M. Cathonnet, J. C. Boettner, Oxidation and ignition of methane-propane and methane-ethane-propane mixtures : experiments and modeling, Combustion science and technology, 103 (1994) 133-151.

- [Tan, 1994c] Y. Tan, P. Dagaut, M. Cathonnet, J. C. Boettner, J. S. Bachman, P. Carlier Natural gas and blends oxidation and ignition: Experiments and modeling, Symposium (International) on Combustion, 25 (1) (1994) 1563-1569.
- [*Tan, 1995*] Y. Tan, P. Dagaut, M. Cathonnet, J. C. Boettner, Pyrolysis, oxidation and ignition of C1 and C2 hydrocarbons : experiments and modeling, Journal de Chimie Physique et de Physico-Chimie Biologique, 92 (1995) 726-746.
- [*Tian, 2011*] Z. Tian, W. J. Pitz, R. Fournet, P.-A. Glaude, F. Battin-Leclerc, A detailed kinetic modeling study of toluene oxidation in a premixed laminar flame, Proceedings of the Combustion Institute, 33(1) (2011) 233–241.
- [*Tran, 2013*] L.-S. Tran, P.-A. Glaude, R. Fournet, F. Battin-Leclerc, Experimental and modeling study of premixed laminar flames of ethanol and methane, Energy Fuels, 27 (2013) 2226–2245.
- [*Tranter, 2001*] R. S. Tranter, R. W. Walker, Rate constants for H and OH attack on propanone, butanone and pentan-3-one at 753 K, and the oxidation chemistry of the radicals formed, Physical Chemistry and Chemical Physics, 3 (2001) 1262-1270.
- [*Tsang, 1991*] W. Tsang, Chemical Kinetic Data Base for Combustion Chemistry. Part V, Propene Journal of Physical and Chemical Reference Data, 20(2) (1991) 221-273.
- [USC Mech-II, 2007] H. Wang, X. You, A. V. Joshi, S. G. Davis, A. Laskin, F. Egolfopoulos, C. K. Law, USC Mech Version II. High-Temperature Combustion Reaction Model of H₂/CO/C₁-C₄ Compounds. (2007) <u>http://ignis.usc.edu/USC_Mech_II.htm</u>
- [*Vajda, 1990*] S. Vajda, H. Rabitz, R. A. Yetter, Effects of thermal coupling and diffusion on the mechanism of H₂ oxidation in steady premixed laminar flames, Combustion and Flame, 82(3–4) (1990) 270-297.
- [*Varea, 2012*] E. Varea, V. Modica, A. Vandel, B. Renou, Measurement of laminar burning velocity and Markstein length relative to fresh gases using a new postprocessing procedure: application to laminar spherical flames for methane, ethanol and isooctane/air mixtures, Combustion and Flame, 159 (2012) 577–590.

- [*Varea, 2013*] E. Varea, V. Modica, B. Renou, A.M. Boukhalfa, Pressure effects on laminar burning velocities and Markstein lengths for isooctane–ethanol–air mixtures, Proceeding of the Combustion Institute, 34 (2013) 735–744.
- [*Vasudevan, 2005*] V. Vasudevan, D.F. Davidson, R.K. Hanson, Shock tube measurements of toluene ignition times and OH concentration time histories, Proceedings of the Combustion Institute, 30 (2005) 1155–1163.
- [*Wang, 2008*] J. Wang, B. Yang, T.A. Cool, N. Hansen, T. Kasper, Near-threshold absolute photoionization cross-sections of some reaction intermediates in combustion, International Journal of Mass Spectrometry, 269 (2008) 210–220.
- [*Warnatz, 1984*] J. Warnatz, "Combustion chemistry" (W. C. Jr. Gardiner, Ed.), Springer-Verlag (1984) chap. 5, p. 197.
- [*Westbrook, 1983*] C. K. Westbrook, F. L. Dryer, K. P. Schug, Numerical modeling of ethylene oxidation in laminar flames, Combustion and Flame, 52 (1993) 299-313.
- [*Westbrook, 1984*] C. K. Westbrook, W. J. Pitz, A Comprehensive Chemical Kinetic Reaction Mechanism for Oxidation and Pyrolysis of Propane and Propene, Combustion Science and Technology, 37 (1984) 117-152.
- [Wilk, 1990] R. D. Wilk, R. M. Green, W. J. Pitz, C. K. Westbrook, S. Addagarla, D. L. Miller, N. P. Cernansky, An Experimental and Kinetic Modeling Study of the Combustion of n-Butane and Isobutane in an Internal Combustion Engine, SAE Paper 900028 (1990).
- [Xu, 2011] H. Xu, C. Yao, T. Yuan, K. Zhang, H. Guo, Measurements and modeling study of intermediates in ethanol and dimethyl ether low-pressure premixed flames using synchrotron photoionization, Combustion and Flame, 158 (2011) 1673–1681.
- [Yasunaga, 2009] K. Yasunaga, Y. Kuraguchi, R. Ikeuchi, H. Masaoka, O. Takahashi, T. Koike, Y. Hidaka, Shock tube and modeling study of isobutene pyrolysis and oxidation, Proceedings of the Combustion Institute, 32 (2009) 453–460.
- [*Yuan, 2014 a*] W.H. Yuan, Y.Y. Li, P. Dagaut, J.Z. Yang, F. Qi, Investigation on the pyrolysis and oxidation of toluene over a wide range conditions. I. Flow reactor pyrolysis and jet stirred reactor oxidation, Combustion and Flame (2014) in press.

- [*Yuan, 2014 b*] W.H. Yuan, Y.Y. Li, P. Dagaut, J.Z. Yang, F. Qi, Investigation on the pyrolysis and oxidation of toluene over a wide range conditions. II. A comprehensive kinetic modeling study, Combustion and Flame (2014) in press.
- [Zhang, 2009] T.C. Zhang, L.D. Zhang, X. Hong, K.W. Zhang, F. Qi, C.K. Law, T.H. Ye, P.H. Zhao, Y.L. Chen, An experimental and theoretical study of toluene pyrolysis with tunable synchrotron VUV photoionization and molecular-beam mass spectrometry, Combustion and Flame, 156 (2009) 2071–2083.
- [Zhang, 2012] Y. Zhang, J. Cai, L. Zhao, J. Yang, H. Jin, Z. Cheng, Y. Li, L. Zhang, F. Qi, An experimental and kinetic modeling study of three butene isomers pyrolysis at low pressure, Combustion and Flame, 159(3) (2012) 905-917.
- [Zhao, 2014] P. Zhao, W. Yuan, H. Sun, Y. Li, A. P. Kelley, X. Zheng, C. K. Law, Laminar flame speeds, counterflow ignition, and kinetic modeling of the butene isomers, Proceedings of the Combustion Institute (2014), http://dx.doi.org/10.1016/j.proci.2014.06.021.
- [Zhou, 2011] C. W. Zhou, J. M. Simmie, H. J. Curran, Ab initio and kinetic study of the reaction of ketones with OH for T = 500–2000 K. Part I: hydrogen-abstraction, Physical Chemistry and Chemical Physics, 13 (2011) 11175-11192.

Chapitre III

Dispositifs expérimentaux

III. Dispositifs expérimentaux77				
III.1. Combustible	77			
III.2. Chambre de combustion sphérique	78			
III.2.1. Vitesse de combustion d'une flamme en expansion	78			
III.2.2. Vitesse de combustion laminaire étirée	79			
III.2.3. Vitesse de combustion laminaire non-étirée	79			
III.2.4. Description du dispositif expérimental	80			
III.2.5. Caractéristiques de l'enceinte	81			
III.2.6. Préparation du mélange	82			
III.2.7. Visualisation du front de flamme par ombroscopie	83			
III.3. Le réacteur auto-agité par jets gazeux	85			
III.3.1. Caractéristiques du réacteur auto-agité	85			
III.3.1.a. Dispositif pour l'étude de gaz (isomères du butène)	85			
III.3.1.b. Dispositif pour l'étude de liquides (TIFLEX)	88			
III.3.2. Calcul des débits gazeux	89			
III.3.3. Méthodes d'analyse	90			
III.3.3.a. Spectrométrie d'absorption infrarouge à transformée de Fourrier	90			
III.3.3.b. Analyse des gaz par chromatographie en phase gazeuse	94			
III.3.4. Estimation de l'incertitude sur les résultats	98			
III.4. Conclusion	99			

III. Dispositifs expérimentaux

Il existe de nombreux dispositifs expérimentaux dédiés à l'étude des réactions de pyrolyse et d'oxydation. Chaque dispositif à ses spécificités propres, qui permettent de travailler dans des domaines plus ou moins étendus de température, temps de séjour, pression et donnent accès à différentes grandeurs expérimentales : délais d'auto-inflammation et concentration des produits pour le tube à choc et la machine à compression rapide, concentration des produits pour la réacteur à écoulement ou le réacteur auto-agité, la vitesse de flamme laminaire pour la chambre à combustion.

Ce chapitre a pour but de présenter les deux dispositifs expérimentaux complémentaires utilisés pour l'étude cinétique de combustion des isomères du butène : la chambre de combustion (aussi dénommée bombe sphérique ou chambre de combustion sphérique) et le réacteur auto-agité par jets gazeux.

III.1. Combustible

Les gaz utilisés sont des isomères du butène (1-butène, *trans*-2-butène, *cis*-2-butène et *iso*butène). Air Liquide a fourni un mélange CRYSTAL avec une teneur en butène de 6 % mol dilué dans de l'azote, sous pression d'environ 20 bar. Les compositions des bouteilles fournies sont détaillées dans le tableau III.1.

Tableau III-1 : Composition des bouteilles de combustibles étudiées

Espèce étudiée	Teneur demandée (% molaire)	Résultat	Incertitude (% relatif)
1-butène	6	$(5.99 \pm 0.18)\%$ mol	3
Trans-2-butène	6	$(5.93 \pm 0.18)\%$ mol	3
Cis-2-butène	6	$(6.01 \pm 0.18)\%$ mol	3
Iso-butène	6	$(6.02 \pm 0.18)\%$ mol	3

III.2. Chambre de combustion sphérique

III.2.1. Vitesse de combustion d'une flamme en expansion

Le phénomène de combustion est une succession complexe de réactions chimiques élémentaires où le combustible et comburant (gaz frais), dans les conditions propices, donnent les produits de combustion (gaz brûlés) en dégagent de la chaleur.

Localement, les espèces réactives produites par réaction et la chaleur diffusent vers les gaz frais, amenant ainsi les gaz frais adjacents dans les conditions d'inflammation, induisant une propagation de la flamme de proche en proche. Dans la théorie de Mallard et Le Châtelier (1883), la zone intermédiaire existant entre les gaz frais et brûlés est séparée en deux zones : une zone de préchauffage d'épaisseur δ_p et la zone de réaction d'épaisseur δ_r (figure III.1). Cette mince frontière entre gaz frais et gaz brûlés est le front de flamme.

Figure III.1: Aspect d'une flamme laminaire de prémélange selon Mallard et Le Châtelier

III.2.2. Vitesse de combustion laminaire étirée

Le rayon du front de flamme R_f peut être mesuré par des techniques de diagnostics optiques telles que l'ombroscopie ou la tomographie laser par diffusion de Mie. L'évolution temporelle du rayon du front de flamme permet d'obtenir la vitesse de propagation étirée, V_L :

$$V_L = \frac{dR_f}{dt}$$

La vitesse de combustion laminaire, S_L , s'exprime quant à elle à partir de la vitesse de propagation et du rapport de masses volumiques des gaz brûlés ρ_b et des gaz frais ρ_u selon :

$$S_L = \frac{\rho_b}{\rho_u} V_L$$

III.2.3. Vitesse de combustion laminaire non-étirée

La vitesse de combustion laminaire S_L n'est pas indépendante de la configuration expérimentale. Afin de s'en affranchir, il est nécessaire de corriger la vitesse de propagation étirée obtenue expérimentalement [*Chung*, 1984],[*Candel*, 1990].

L'étirement K que subit une flamme sphérique en expansion à chaque instant t s'écrit :

$$K = \frac{2}{R_f} V_L$$

L'existence d'une telle relation a conduit à l'établissement de la formule linéaire :

$$V_L = V_L^0 - L_b K$$

Où V_L^0 est la vitesse de propagation non-étirée définie pour une flamme plane et L_b est la longueur de Markstein. Cependant cette relation suppose que la flamme est faiblement étirée, induisant un rapport V_L/V_L^0 proche de l'unité et entrainant une surestimation de la longueur de Markstein. L'erreur relative sur la valeur de la vitesse peut atteindre 10% dans certains cas [*Halter, 2010*]. Kelley [*Kelley, 2009*] a proposé une relation non-linéaire :

$$\left(\frac{V_L}{V_L^0}\right)^2 \ln\left(\frac{V_L}{V_L^0}\right) = -\frac{L_b K}{V_L^0}$$

La figure III.2 permet d'avoir une idée des différences induites par l'utilisation de la relation linéaire ou non-linéaire lors de l'extrapolation de la vitesse de propagation laminaire de la flamme [*Galmiche*, 2014].

Figure III.2 : Evolution de la vitesse de propagation laminaire en fonction de l'étirement dans le cas d'une flamme de prémélange trans-2-butène/air à la riche 0.8 et les conditions initiales Pi = 1 bar et Ti = 300 K. Résultats obtenus par Fenard et al. [*Fenard*, 2014]

A pression constante et dans l'hypothèse d'un front de flamme infiniment mince, la vitesse de combustion laminaire S_L^0 peut s'écrire :

$$S_L^0 = \frac{\rho_b^{\acute{e}q}}{\rho_u} V_L^0$$

où $\rho_b^{\acute{eq}}$ est la masse volumique des gaz brûlés supposée uniforme et à l'équilibre. Le rapport $\rho_u / \rho_b^{\acute{eq}}$ correspond au facteur d'expansion thermique.

III.2.4. Description du dispositif expérimental

Le dispositif expérimental utilisé pour la mesure de vitesse de combustion des isomères du butène est celui de l'institut PRISME, précédemment décrit par B. Galmiche [*Galmiche*, 2014]. L'ensemble du dispositif est présenté sur la figure III.3.

Figure III.3 : Dispositif expérimental pour l'étude de la propagation de flammes laminaires de prémélange

III.2.5. Caractéristiques de l'enceinte

L'enceinte est une sphère en acier inoxydable, de diamètre interne de 200 mm pour un volume de 4.2 L (figure III.4). L'enceinte peut être chauffée par résistance filaire jusqu'à une température de 473 K afin d'éviter la dégradation des joints Viton. Son dimensionnement permet de travailler à une pression initiale pouvant aller jusqu'à 10 bar.

Figure III.4 : Représentation de l'enceinte de combustion laminaire.

Une pompe à vide à palette permet de vider l'enceinte avant chaque mesure et permet d'atteindre un vide inférieur à 0,003 bar. L'homogénéité du mélange gazeux injecté est assurée par un agitateur placé dans l'enceinte. Une fois l'enceinte remplie, l'agitateur est arrêté et le mélange reste au repos pendant 50 secondes avant la commande d'allumage.

L'inflammation du mélange est produite par une décharge électrique au centre de l'enceinte entre deux électrodes en tungstène coudées, de 1.5 mm de diamètre, dont les pointes face à face sont espacées de 1 mm. L'impulsion électrique est fournie par un dispositif conventionnel d'allumage automobile.

Quatre hublots en quartz de 70 mm de diamètre et 60 mm d'épaisseur sont montés sur l'enceinte permettant un accès pour les diagnostics optiques.

III.2.6. Préparation du mélange

Les systèmes d'injection et de contrôle des débits sont gérés par des régulateurs numériques de débits massiques. Les débitmètres massiques thermiques Brooks 5850S ont une gamme de débit de 0.5 NL/min pour le mélange butène/azote, 2 NL/min pour l'oxygène et l'azote. Le combustible étant dilué dans une quantité importante d'azote, il est nécessaire d'ajuster les quantités d'oxygène et azote à ajouter pour obtenir la richesse souhaitée. Les calculs sont effectués sur une base d'air composé de 20.9 % O₂ et 79.1 % N₂ en volume. Du fait de cette présence d'azote dans la bouteille de combustible, la riche maximale atteinte est 1.4. La précision relative des débitmètres est de \pm 0.7 %.

Un capteur piézo-électrique permet une lecture de la pression en temps réel à l'intérieur de l'enceinte. La température du mélange gazeux est contrôlée à l'aide d'un thermocouple de type K. Ces capteurs permettent une vérification des conditions de température et pression avant l'allumage. L'écart de pression initiale toléré est de 1 % de la valeur consigne. Les valeurs de température relevées sont comprises dans l'intervalle \pm 2 K par rapport à la consigne.

III.2.7. Visualisation du front de flamme par ombroscopie

La technique d'ombroscopie consiste à observer l'ombre d'un objet sur un écran. Il est possible d'observer des variations locales d'éclairement d'un milieu transparent si celui-ci présente des variations d'indice de réfraction.

Dans le cadre de l'étude de la combustion d'un gaz, l'intérêt de cette méthode est de suivre la propagation du front de flamme. Il s'agit d'utiliser les variations spatiales de l'indice optique comme traceur de la dépendance spatiale du champ de température. En effet, d'après la relation de Gladstone-Dayle (1864), les gradients de température créés par le front de flamme se déplaçant dans les gaz frais de température uniforme, induisent des gradients de densité, et par conséquence, d'indice de réfraction. L'éclairage uniforme de la zone de combustion projette sur l'écran une teinte de couleur uniforme. La propagation du front de flamme, et donc d'un gradient d'indice de réfraction, module l'éclairage de l'écran. Sur la figure III.5 un cercle clair est visible en lieu du front de flamme.

Figure III.5 : Exemple d'image obtenue par ombroscopie

La source lumineuse est une lampe LED (Ligth-Emitting Diode, modèle DLR IL104G, HARDsoft) émettant un faisceau lumineux centré sur la longueur d'onde 528 nm. La source est équipée d'un objectif HSO-PL-360 qui donne un faisceau de diamètre 36 cm à 1 m de distance. Afin d'obtenir des rayons parallèles traversant la chambre de combustion, un iris

de 3 mm de diamètre est placé à la distance focale de l'objectif de la lampe, lui-même installé à 1 m d'une lentille sphérique de 1 m de distance focale (figure III.6).

Figure III.6 : Schématisation du dispositif d'ombroscopie

Les rayons traversant le dispositif sont recueillis sur un écran en papier calque. La propagation du front de flamme, au travers de cet écran est enregistrée à l'aide d'une caméra rapide Photron Fastcam SA5 équipée d'un objectif Nikkor 50 mm. La caméra est synchronisée par rapport à la commande d'allumage et 6000 images/seconde sont acquises pour une résolution de 512×512 pixels².

III.3. Le réacteur auto-agité par jets gazeux

Le réacteur auto-agité un dispositif expérimental bien adapté à l'étude des mécanismes d'oxydation des hydrocarbures puisqu'il est conçu de façon à éviter les problèmes rencontrés dans d'autres réacteurs : un temps de mélange court devant le temps de passage ainsi qu'une bonne homogénéité dans le réacteur. Exemptée de phénomène de diffusion, la vitesse de conversion des réactifs en produits est contrôlée uniquement par les processus chimiques. Il est possible de faire varier les conditions de fonctionnement telles que la température, la pression, la richesse, les concentrations ou encore le temps de passage des gaz dans le réacteur.

III.3.1. Caractéristiques du réacteur auto-agité

Le réacteur auto-agité par jets gazeux est le résultat des travaux de chercheurs de l'Institut National Polytechnique de Lorraine (Matras et Villermaux, 1973 [*Matras, 1973*] et David et Matras, 1975 [*Davis, 1975*]).

Lors de la présente étude, deux systèmes ont été utilisés : un premier pour les réactifs gazeux, un second pour les réactifs liquides, équipé d'un vaporisateur. Ces systèmes ont été mis au point au CRCCHT (Dagaut et al., 1986 [*Dagaut, 1986*]).

III.3.1.a. Dispositif pour l'étude de gaz (isomères du butène)

Le dispositif expérimental est constitué d'un réacteur sphérique de faible volume (27,2 cm³) en silice fondue, matériaux limitant les réactions aux parois (figure III.7). Quatre injecteurs, d'un millimètre de diamètre intérieur, opposés deux à deux, permettent une bonne homogénéisation du volume réactionnel (figure III.8).

Figure III.7 : Photo du réacteur auto-agité en silice fondue

Les orifices de sortie des injecteurs sont situés dans le plan équatorial du volume sphérique intérieur. Cette forme pyramidale particulière permet la mobilité d'une sonde de prélèvement et d'un thermocouple en platine rhodiée (Pt/Pt-Rh 10 % de 0,1 mm de diamètre) le long de l'axe vertical du réacteur. Cette amplitude de mouvement offerte par la géométrie du système permet la vérification de l'homogénéité en concentration ainsi qu'en température durant l'expérience par translation. Une attention particulière a été portée afin de limiter l'apparition de réactions hétérogènes dans l'installation. En effet, le thermocouple est placé dans une gaine faite de silice fondue, et toutes les surfaces métalliques présentes dans le flux gazeux ont été supprimées ou passivées. Les variations de température à l'intérieur du réacteur sont inférieures à 10 K.

Figure III.8 : Schéma du réacteur auto-agité

Le réacteur est placé dans un four, une résistance électrique d'environ 1,5 kW permettant des études cinétiques jusqu'à une température de 1500 K. Les débits de gaz sont contrôlés par des débitmètres massiques (oxygène, azote et combustible gazeux).

Dans le but d'observer l'oxydation des hydrocarbures aux faibles et forts avancements réactionnels, les expériences sont conduites en faisant varier la température et en maintenant le temps de passage constant. Le combustible et l'oxygène sont fortement dilués dans l'azote afin de minimiser les gradients de température. Cette dilution empêche aussi l'apparition de flamme dans le milieu réactionnel.

Les prélèvements se font au cœur du réacteur à l'aide d'une sonde sonique en silice fondue, maintenue sous vide durant l'expérience. Pour effectuer le prélèvement, le pompage de la ligne de prélèvement est stoppé permettant à la pression de monter autour de la valeur choisie de 50 Torr. Cette différence de pression voulue importante, entre le milieu réactionnel et la sonde de prélèvement, permet de figer les réactions. Les produits d'oxydation prélevés peuvent être considérés comme étant dans les mêmes conditions que celles régnant dans le réacteur.

Deux types de prélèvements sont effectués :

- Un prélèvement en ligne, ou direct, au travers une ligne chauffée à environ 200°C (afin d'éviter les condensations) et menant à un spectromètre infrarouge à transformée de Fourrier.
- Un prélèvement d'échantillons gazeux dans des ballons en Pyrex, à température ambiante, et basse pression (50 torr) dont le contenant sera analysé par chromatographie en phase gazeuse (couplé à un spectromètre de masse, ou des détecteurs à ionisation de flamme ou à conductivité thermique).

III.3.1.b. Dispositif pour l'étude de liquides (TIFLEX)

Pour les besoins de l'étude de la cinétique d'oxydation de combustibles liquides (solvants, carburants), un système similaire à celui décrit précédemment a été développé au LCSR.

Deux différences sont notables :

- Les liquides, pour être étudiés dans un réacteur auto-agité doivent se trouver sous forme gazeuse, d'où l'ajout en amont d'un vaporisateur.
- Le réacteur et son four sont placés dans une enceinte pressurisable.
- Le réacteur pressurisable est entouré de 2 éléments chauffant « Thermocoax » utilisable jusqu'à 1270 K. Le tout est isolé thermiquement et compris dans une enceinte pressurisable jusqu'à 10 atm (figure III.9).

Figure III.9 : Schéma du dispositif expérimental du réacteur auto-agité pour hydrocarbures liquides

L'hydrocarbure liquide est acheminé par une pompe HPLC (High Pressure Liquid Chromatography – Shimadzu LC-10AD VP), qui permet de contrôler le débit volumique, jusqu'à un ensemble atomiseur-vaporisateur où le liquide est atomisé grâce à un débit d'azote (N_2 auxiliaire). Le brouillard résultant est ensuite vaporisé dans une chambre chauffée électriquement. Le mélange est introduit par un capillaire dans le réacteur. Le volume du réacteur en quartz est 38 cm³.

III.3.2. Calcul des débits gazeux

Pour un mélange hydrocarbure/ O_2/N_2 à une richesse donnée, le temps de passage est fixé et la température varie. Pour chaque température, les débits gazeux doivent être calculés. Le contrôle des débits gazeux se fait par l'utilisation de débitmètres massiques.

Le débit volumique gazeux total à l'entrée du réacteur :

$$D_t = \frac{V_r}{\tau} \times \frac{T_{amb}}{T} \times \frac{P_{amb}}{P}$$

Cette expression permet de calculer les débits massiques des composés gazeux :

$$D_{O_2} = \rho_{O_2} X_{O_2} D_t = \rho_{O_2} X_{O_2} \frac{V_r}{\tau} \times \frac{T_{amb}}{T} \times \frac{P_{amb}}{P}$$

$$D_{N_2} = \rho_{N_2} X_{N_2} D_t = \rho_{N_2} X_{N_2} \frac{V_r}{\tau} \times \frac{T_{amb}}{T} \times \frac{P_{amb}}{P}$$
$$D_{HC} = \rho_{HC} X_{HC} D_t = \rho_{HC} X_{HC} \frac{V_r}{\tau} \times \frac{T_{amb}}{T} \times \frac{P_{amb}}{P}$$

Dans le cas où l'hydrocarbure est liquide, il est nécessaire de calculer son débit volumique :

$$D_{HC}(l) = \frac{m_{HC}}{\rho_{HC}\tau} = \frac{n_{HC}MX_{HC}D_t}{\rho_{HC}V}$$

Par application de la loi des gaz parfaits :

$$D_{HC}(l) = \frac{P_{amb}MX_{HC}D_t}{R T_{amb} \rho_{HC}}$$

 D_t Débit total à l'entrée du réacteur (m³/s)

 D_i Débit massique du réactif gazeux (g/s) avec i = O_2 , N_2 ou HC

D_{HC}(1) Débit volumique liquide de l'hydrocarbure (ml/s)

X_i Fraction molaire de i

- V_r Volume du réacteur
- τ Temps de passage des gaz dans le réacteur (s)

 ρ_i Masse volumique de i

T Température de travail (K)

T_{amb} Température ambiante (K)

- P Pression de travail (atm)
- P_{amb} Pression ambiante (atm)
- M Masse molaire de l'hydrocarbure (g/mol)

III.3.3. Méthodes d'analyse

III.3.3.a. Spectrométrie d'absorption infrarouge à transformée de Fourrier

• <u>L'absorption infrarouge</u>

Les spectroscopies optiques, en exploitant les interactions entre la matière et la lumière, permettent d'obtenir la composition chimique et de caractériser les propriétés physiques et chimiques d'échantillons. Selon la gamme spectrale utilisée (ou l'énergie des photons utilises), cette interaction sonde les divers types de niveaux d'énergie de la matière. Dans

l'infrarouge, les niveaux vibrationnels et rotationnels sont sondés pour caractériser aussi bien les groupements chimiques constituant l'échantillon que la structure moléculaire.

En pratique, les spectromètres actuels dits à transformée de Fourier possèdent des qualités permettant une large gamme de possibilités d'analyse. L'analyse sera qualitative pour identifier un composé à partir de sa signature spectrale. Outre l'identification, l'analyse sera quantitative permettant le dosage d'une substance, grâce à l'évolution de sa signature spectrale en fonction de la quantité de matière mesurée [*Humbert*, 2012].

L'intensité d'absorption dépend de la variation du moment dipolaire, impliquant une absorption dans l'infrarouge des liaisons polarisées seulement. Ainsi, les molécules diatomiques symétriques telles que H_2 , O_2 ou N_2 sont indétectables par cette technique.

• Principe de l'analyse quantitative

L'intérêt de cette méthode est de pouvoir quantifier une espèce dans un milieu. Ce qui est possible en mesurant l'intensité lumineuse (issue d'une source) absorbée par la substance. L'intensité lumineuse absorbée dépend de la substance et la longueur d'onde du faisceau lumineux et de la concentration de la substance. Pour une espèce donnée, à une longueur d'onde fixée, l'absorption est proportionnelle à la concentration de la substance. Ces propriétés sont traduites par la loi de Beer-Lambert :

$$A_{\lambda} = \varepsilon_{\lambda} \times l \times C$$

- A_{λ} Absorbance à la longueur d'onde λ
- ε_{λ} Coefficient d'extinction molaire à la longueur d'onde λ
- 1 Longueur du chemin optique dans l'échantillon
- C Concentration molaire

• Méthode de dosage en IRTF

La valeur de l'absorbance d'une espèce, mesurée à l'aide d'un spectromètre IRTF, dépend de plusieurs paramètres comme le coefficient d'extinction molaire (intrinsèque à l'espèce), la puissance du faisceau lumineux, sa longueur d'onde... les valeurs de certains de ces paramètres sont inaccessibles et il est donc impossible de connaître la valeur de l'absorbance, à une concentration donnée, d'une espèce. Il est donc impératif d'étalonner l'appareil, pour chaque espèce à quantifier. De plus, il est courant que deux espèces absorbent à la même longueur d'onde. Il est donc impératif de définir judicieusement la longueur d'onde à laquelle une espèce sera dosée (figure III.10).

L'établissement de la méthode d'analyse se déroule en plusieurs étapes décrites ci-dessous :

- Acquisition d'un spectre de référence obtenu à partir d'un étalon pour chacun des composés à analyser (figure III.10)

Figure III.10 : Régions d'absorption des composés purs

- Repérage des bandes d'absorption caractéristique pour chaque composé afin d'éviter un recouvrement des absorbances.
- Identification et signalisation des zones d'interférence entre composés (zone d'absorption communes entre plusieurs composés) (tableau II.2).
- Etablissement d'une courbe d'étalonnage de l'absorbance fonction de la concentration en composé pur pour chaque composé.

Nombre	H ₂ O	H_2O	CO	CO_2	CH ₂ O	Trans-2-	Cis-2-	
d'onde (cm ⁻¹)	< 1000 ppm	> 1000 ppm				butène	butène	
605.50-730.37	INTF	INTF	-	-	-	INTF	+	
943.28-1028.82	INTF	INTF	-	-	-	+	INTF	
1741.91-1747.83	INTF	INTF	-	-	+	-	-	
2146.62-2222.73	-	-	+	-	-	-	-	
2344.51-2393.98	-	-	-	+	-	-	-	
3512.78-3794.39	+	-	-	-	-	-	-	
3577.48-3790.58	-	+	-	-	-	-	-	

Tableau III-2: Matrice représentant les régions d'analyse des composés (+) et leurs interférences (INTF)

La figure III.10 récapitule les spectres d'absorption des composés purs entre 4000 cm⁻¹ et 500 cm⁻¹, fenêtre de mesure de l'appareil Nicolet 6700 FT-IR. La résolution est de l'ordre de 0.5 cm⁻¹. Les paramètres d'acquisition sont détaillés dans le tableau III-3. Grâce à cette analyse préliminaire, il est possible de connaître les régions dans lesquelles les composés absorbent. Pour que cette méthode soit effective, il est nécessaire d'avoir une région par composé pour laquelle le composé est le seul à interagir. Dans le cas contraire, il est alors possible de soustraire les contributions d'absorptions appelées interférences (INTF) d'autres composés. Cependant, par région, il n'est possible d'avoir qu'un seul composé au spectre non-défini, par exemple dans le tableau 2, c'est le cas du formaldéhyde CH₂O subissant les interférences de l'eau. Les espèces que nous avons choisi d'observer par IRTF uniquement sont H₂O, CO, CO₂ et CH₂O. A titre d'information, CH₄, C₂H₂ ou encore les butènes sont observés et quantifiés. Le nombre important d'interférences avec d'autres hydrocarbures (figure III.11) pour ces derniers nous oblige à utiliser un autre moyen d'analyse.

Figure III.11 : Exemple d'interférences entre hydrocarbures (somme des absorbances de C_2H_4 , C_3H_6 , 1- C_4H_8 , 1- C_5H_{10} , 1- C_6H_{12}) en rouge et *trans*-2-butène en bleu.

Pression de prélèvement	200mB
Température de la cellule	150°C
Chemin optique	2 m
Balayage	32 scans
Résolution	0.5 cm^{-1}
Vitesse du miroir	0.6329 cm.s^{-1}
Apodisation	Happ-Genzel
Correction de phase	Mertz
Temps d'acquisition	2 min

Tableau III-3: Paramètres d'acquisition des méthodes IRTF

III.3.3.b. Analyse des gaz par chromatographie en phase gazeuse

Les gaz de combustion prélevés dans des ballons en Pyrex au cours des expériences sont analysés par chromatographie en phase gazeuse. Les chromatographes, couplés à des détecteurs permettent d'identifier et quantifier une large gamme d'espèces. La chromatographie en phase gazeuse est une technique d'analyse qui permet la séparation des espèces chimiques selon leur affinité respective entre la phase mobile (gaz vecteur) et la phase stationnaire (colonne). En fonction de la programmation de température, les molécules parcourent la colonne en un temps caractéristique, appelé temps de rétention. • Principe de la chromatographie phase gazeuse :

Les différentes parties du chromatographe sont présentées en figure III.12. La pièce centrale est la colonne, dans laquelle est enfermé le substrat qui va engendrer le processus de migration différentielle des éléments du mélange à analyser. Ces éléments, appelés solutés, sont obligés de parcourir la colonne par la poussée d'un gaz inerte, appelé gaz vecteur. C'est donc ici que se feront, ou ne se feront pas, les séparations recherchées. Le dispositif est composé d'un injecteur approprié permettant d'introduire le mélange à analyser dans le circuit gazeux, sans rupture de celui-ci. Une boucle d'injection est connectée en amont de l'injecteur de manière à fixer le volume injecté. La pression de l'échantillon gazeux dans cette boucle est mesurée par un capteur de pression piezoélectrique. Un détecteur permet de relier les quantités de solutés séparés à un signal électrique au fur et à mesure de leur sortie de la colonne, celle-ci étant chauffée à l'aide d'un four [*Tranchant, 1996*].

Figure III.12 : Schématisation d'un chromatographe. Le vannes de commutation (#2 et #3 sont en position de 'repos', la vanne #1est en position d'injection.

La figure III.13 montre un exemple de chromatogramme. Les temps de rétention de chaque espèce, dans les conditions fixées, sont caractéristiques d'une espèce. Les pics obtenus

sont intégrés afin d'obtenir leur aire. Cette aire est linéairement proportionnelle à la concentration de l'espèce dans l'échantillon.

Figure III.13 : Chromatogramme (Al₂O₃-FID) de l'oxydation du *cis*-2-butène en JSR à φ = 2, P = 1 atm, T = 1230 K.

Les différents chromatographes utilisés lors de l'étude ont été étalonné en utilisant des étalons commerciaux, de manière à obtenir les temps de rétention et les coefficients de réponse caractéristique des composés à doser. Les espèces pour lesquelles nous ne disposons pas d'étalons, sont quantifiées par ionisation de flamme (FID) en calculant un coefficient de réponse déterminé à partir de la règle du nombre de carbone relatif (ECN) [*Tranchant, 1996*] et les coefficients de réponse de composés de structure chimique voisine. Ceci nous permet ainsi d'identifier et quantifier une large fraction des constituants d'un mélange. Il est à noter que les gaz à analyser, transporté dans les ballons Pyrex à environ 40 torr, sont d'abord

comprimés à l'aide d'un piston chauffé (70°C) en verre jusqu'à 750 torr avant d'être injectés dans les chromatographes. Cette compression permet une meilleure détection des espèces.

• Analyse des composés hydrocarbonés.

L'étude des composés hydrocarbonés est réalisée sur trois chromatographes équipés de détecteurs à Ionisation de Flamme (FID). Le premier chromatographe (N°1), équipé d'une colonne d'alumine saturée au chlorure de potassium (Al₂O₃/KCl) permet la détection d'hydrocarbures légers de moins de 7 atomes de carbone, mais pas des composés oxygénés. Le troisième chromatographe (N°3) est équipé d'une Al₂O₃/KCl ainsi que d'une colonne DB624 permettant l'analyse de composés légers comme lourds, et les composés oxygénés. Ce dernier chromatographe est couplé à un spectromètre de masse permettant une identification des produits de combustion. Le quatrième chromatographe (N°4) utilise une colonne DB624 et est couplé à un spectromètre de masse. Ce chromatographe présente l'avantage d'être « en ligne » avec le réacteur. Ces trois appareils utilisent l'hélium comme gaz vecteur. Le chromatographe (N°2) est équipé d'un détecteur à catharomètre (TDC) et d'une colonne en tamis de carbone alimentée par de l'azote. Il est utilisé pour doser l'oxygène et l'hydrogène. Les caractéristiques des différents chromatographes sont répertoriées dans le tableau III.4.

Chromatographe	Colonnes	Gaz vecteur	Programmation de température	Détecteur	Composés détectés*
N°1 :	CP-Al ₂ O ₃ /KCl	He	$Ti = 70^{\circ}C$	FID	HC <c<sub>7</c<sub>
Varian 3400	L = 50 m	1,5 mL.min ⁻¹	ti = 0 min		
	$D_{int} = 0.32 \text{ mm}$		$v = 10^{\circ}C/min$		
	$D_f = 5 \mu m$		$T_{f} = 200^{\circ}C$		
			$t_f = 10 \min$		
N°2 :	CP-Carboplot	N2	$T = 50^{\circ}C$	TCD	H_2
Varian 3300	P7	15 mL.min ⁻¹	t = 5 min		O_2
	L=25 m		isotherme		
	$D_{int} = 0,53 \text{ mm}$				
	$D_f = 50 \ \mu m$				
N°3 :	DB624	He	$Ti = 32^{\circ}C$	FID	HC oxygénés
Varian CP 3800	L = 30 m	$0,7 \text{ mL.min}^{-1}$	ti = 20 min	+	
	$D_{int} = 0,32 \text{ mm}$		$v_{\rm f} = 20^{\circ} {\rm C/min}$	spectromètre	
	$D_{\rm f} = 1,80 \ \mu m$		$T_f = 150^{\circ}C$	de masse	
			$t_f = 1 \min$	Varian 1200	
	CP-Al ₂ O ₃ /KCl	He	$T_i = 70^{\circ}C$	FID	$HC < C_7$
	L = 50 m	$0,7 \text{ mL.min}^{-1}$	$t_i = 0 \min$	+	
	$D_{int} = 0.32 \text{ mm}$		$v = 10^{\circ}C/min$	Spectromètre	
	$D_f = 5 \ \mu m$		$T_f = 200^{\circ}C$	de masse	
			$t_f = 10 \min$	Varian 1200	

 Tableau III-4: Caractéristiques des différents chromatographe utilisés

Chromatographe	Colonnes	Gaz vecteur	Programmation	Détecteur	Composés
C I			de température		détectés*
N°4 :	DB624	He	$T_i = 40^{\circ}C$	FID	HC oxygénés
Shimadzu	L = 60 m	0,7 mL.min ⁻¹	$t_i = 10 \min$	+	
GC 2010 Plus	$D_{int} = 0,32 \text{ mm}$		$v_1 = 7^{\circ}C/min$	Spectromètre	
	$D_{\rm f} = 1,80 \ \mu m$		$T_1 = 140^{\circ}C$	de masse	
			$t_1 = 12 \min$	Shimadzu	
			$v_2 = 2^{\circ}C/min$	GCMS-QP	
			$T_2 = 200^{\circ}C$	2010 SE	
			$t_2 = 6 \min$		
			$v_3 = 15^{\circ}C/min$		
			$T_f = 250^{\circ}C$		
			$t_f = 1 \min$		

* HC : hydrocarbures

III.3.4. Estimation de l'incertitude sur les résultats

La validation de modèles cinétiques détaillés est tributaire des résultats expérimentaux. Il est donc important d'évaluer l'incertitude associée à ces résultats afin de pouvoir relativiser la précision des modèles. Dans notre cas, les incertitudes peuvent provenir à la fois du dispositif expérimental et du système d'analyse.

Le détail du dispositif expérimental nous amène à nous soucier de la composition réelle du mélange gazeux dans le réacteur. Celui-ci dépend des débits imposés d'azote, oxygène et hydrocarbure. Malgré le soin apporté, au travers de l'étalonnage des débitmètres ou la précision des dispositifs de contrôle, il est difficile d'appliquer de manière très précise les débits théoriques pour obtenir la composition initialement souhaitée. La conversion des débits en tensions de consigne est une source d'incertitude. La variation de la température dans le réacteur est estimée à moins de 10 K

Les systèmes d'analyses sont également source d'erreur. Nous citerons les coefficients de réponse, les étalons, la pression d'injection des gaz, séparation difficile de certains pics. En tenant compte de tous ces paramètres, l'incertitude globale sur les résultats expérimentaux est au maximum de 15 %. Nous soulignerons cependant la bonne répétabilité des résultats.

III.4. Conclusion

Les dispositifs expérimentaux utilisés lors de l'étude, à savoir la chambre de combustion sphérique et le réacteur auto-agité, sont complémentaires. Les grandeurs accessibles caractéristiques de la combustion sont différentes.

Le dispositif de la bombe sphérique permet une détermination des vitesses laminaires de flamme non-étirées dans une large gamme de températures initiales, de richesse ou de pression. Les conditions de température, pression et richesse dans lesquelles est placé l'hydrocarbure lors de la combustion s'approchent des conditions en moteur. La vitesse de flamme laminaire non-étirée est propre à l'hydrocarbure étudié.

Le réacteur auto-agité par jets gazeux s'avère être un outil efficace pour l'étude cinétique chimique de réactions telles que la combustion des hydrocarbures. Pouvant fonctionner dans deux configurations distinctes (température ou temps de passage constant), il permet de travailler dans des conditions dans lesquelles le mélange gazeux est uniforme (en pression, température et composition) et donc de prélever des échantillons représentatifs du milieu réactionnel. La composition de ces échantillons, rendus non-réactifs par abaissement de la pression et de la température, peut être ensuite déterminée à l'aide de différentes techniques analytiques, comme la chromatographie phase gazeuse ou la spectroscopie infra-rouge.

Les voies réactionnelles d'oxydation d'un hydrocarbure mises en jeu dans les deux dispositifs sont différentes et permettent ainsi une validation plus large des mécanismes cinétiques détaillés.

Références bibliographiques

- [*Chung*, 1984] Chung S. H. and Law C. K., An invariant derivation of flame stretch, Combustion and Flame, 55 (1984) 123-125.
- [*Candel, 1990*] S. M. Candel, T. J. Poinsot, Flame Stretch and the Balance Equation for the Flame Area, Combustion Science and Technology, 70 (1990) 1-15.
- [*Halter, 2010*] F. Halter, T. Tahtouh, C. Mounaïm-Rousselle, Nonlinear effects of stretch on the flame front propagation, Combustion and Flame, 157 (2010) 1825-1832.
- [*Kelley, 2009*] A. P. Kelley, C. K. Law, Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames, Combustion and Flame, 156 (2009) 1844-1851.
- [*Fenard*, 2014] Y. Fenard, P. Dagaut, G. Dayma, F. Halter, F. Foucher, Experimental and kinetic modeling study of trans-2-butene oxidation in a jet-stirred reactor and a combustion bomb, Combustion and flame, In press (2014).
- [*Galmiche, 2014*] B. Galmiche, Caractérisation expérimentale des flammes laminaires et turbulentes en expansion, Thèse, Université d'Orléans (2014).
- [Dagaut, 1986] P. Dagaut, M. Cathonnet, J-P. Rouan, R. Foulatier, A. Quilgars, J-C. Boettner, F. Gaillard and H. James, A Jet-Stirred Reactor for Kinetic-Studies of Homogeneous Gas-Phase Reactions at Pressures up to 10-Atmospheres (~ 1 MPa), Journal of Physics E-Scientific Instruments, 19 (1986) 207-209.
- [*Matras*, 1973] D. Matras, J. Villermaux, Un réacteur continu parfaitement agité par jets gazeux pour l'étude de la cinétique de réactions rapides, Chemical Engineering Science, 28 (1973) 129.
- [*Davis, 1975*] R. David, D. Matras, Règles de construction et d'extrapolation des réacteurs auto-agités par jets gazeux Canadian Journal of Chemical Engineering, 53 (1975) 297-300.
- [*Tranchant, 1996*] J. Tranchant, Chromatographie en phase gazeuse, Techniques de l'ingénieur (1996) 1485.
- [*Humbert*, 2012] B. Humbert, J.-Y. Mevellec, J. Grausem, M. Dossot, C. Carteret, Spectrométrie d'absorption dans l'infrarouge, Techniques de l'ingénieur (2012) 2850.

Chapitre IV

Modélisation

V. Modélisa	tion	103
IV.1. Outils	de calcul	103
IV.1.1. CH	EMKIN	
IV.1.2. Mé	canisme réactionnel (<i>chem.inp</i>)	
IV.1.2.a.	Réactions dépendant de la pression :	
IV.1.2.b.	Théorie de Lindemann (1922) [Lindemann, 1922]	
IV.1.2.c.	Formalisme de Troe [Troe, 1983]	
IV.1.3. Do	nnées thermodynamiques (<i>therm.dat</i>)	
IV.1.4. Co	de PSR	
IV.1.4.a.	Equations du réacteur auto-agité par jets gazeux	
IV.1.4.b.	Résolution du système d'équation	
IV.1.4.c.	Analyse de voies réactionnelles	
IV.1.4.d.	Analyses de sensibilité	
IV.1.5. Co	de PREMIX	113
IV.1.6. Do	nnées de transport des espèces	115
IV.2. Dévelo	oppement du modèle cinétique	
IV.2.1. Dé	marche générale	
IV.2.2. De	scription de la base C0-C7	
IV.2.2.a.	Base C ₀ :	
IV.2.2.b.	Base C ₁ -C ₂ :	
IV.2.2.c.	Base C3	
IV.2.2.d.	Sous-mécanismes en C4 :	
IV.2.2.e.	Sous mécanismes en C5-C7 :	
IV.3. Conclu	1sion	

IV. Modélisation

Ce chapitre a pour ambition de décrire les méthodes de simulation utilisées dans cette étude pour l'oxydation des hydrocarbures. Dans une première partie, le logiciel CHEMKIN et ses outils sont présentés. La seconde partie est consacrée aux méthodes d'élaboration d'un mécanisme réactionnel prédictif de l'oxydation d'un hydrocarbure. Le mécanisme décrit est particulièrement adapté à l'oxydation des isomères du butène, mais aussi de l'éthanol, de la 2-butanone et du toluène.

IV.1. Outils de calcul

IV.1.1. CHEMKIN

La simulation des résultats expérimentaux obtenus lors de présente étude a été réalisée à l'aide du logiciel CHEMKIN-II [*Kee, 1989*], logiciel utilisé principalement dans les domaines de la micro-électronique, des procédés chimiques ou encore la combustion. Fruit d'un projet initié dans les années 80 aux Laboratoires Nationaux de Sandia, Chemkin répond au besoin grandissant d'un moyen permettant de solutionner des problèmes de cinétique chimique, devenant ainsi un logiciel reconnu pour la simulation de systèmes chimiques réactifs. CHEMKIN-II est un ensemble de bases de données et de sous-programmes en FORTRAN.

De nombreux problèmes peuvent être résolus grâce aux sous-programmes parmi lesquels :

- 1. La température adiabatique de flamme et les concentrations à l'état d'équilibre thermodynamique pour des mélanges de gaz (EQUIL).
- Les fractions molaires des espèces en fonction du temps, en réacteur piston ou tube à choc (SENKIN)
- La vitesse de flamme, les fractions molaires d'espèces et la température en fonction de la distance au brûleur dans des flammes laminaires de prémélange (PREMIX)
- 4. Les fractions molaires et la température des espèces dans un réacteur auto-agité (PSR)

CHEMKIN-II n'est en fait qu'un programme de résolution d'équations différentielles et algébriques qui permet, à partir d'un mécanisme cinétique développé par l'utilisateur, de résoudre les équations de conservation des espèces et de l'énergie pour les différents types de sous-programmes. Chacun de ces sous-programmes traite le problème associé avec les équations de bilan qui lui sont propres.

Le logiciel utilise le mécanisme élaboré qui se trouve sous la forme de trois fichiers :

- 1. Un fichier appelé *chem.inp* ou sont écrites les réactions chimiques et leurs constantes de vitesse directes, constituant le mécanisme.
- 2. Un fichier *therm.dat* contenant les données thermodynamiques de chaque espèce déclarée dans *chem.inp*.
- 3. Un fichier *tran.dat* contenant les données de transport de chaque espèce déclarée dans *chem.inp*.

En se basant sur ces trois fichiers, l'interpréteur de CHEMKIN lit les données thermodynamiques et de transport pour chaque espèce, ainsi que les réactions chimiques et les paramètres cinétiques. La balance atomique des réactions chimiques est vérifiée. Un fichier de liaison binaire (*chem.bin*) est généré pour être ensuite utilisé par le sous-programme. Celui-ci écrit les résultats dans des fichiers de sortir contenant les informations demandées par l'utilisateur, telles que les fractions molaires des espèces, les vitesses de formation ou consommation des espèces, les résultats d'analyses de sensibilité. La figure I.1 montre les liens entre les fichiers.

Figure IV.1: Architecture du package CHEMKIN

IV.1.2. Mécanisme réactionnel (*chem.inp*)

Le fichier *chem.inp* contient toutes les informations nécessaires à l'interprétation du mécanisme cinétique par CHEMKIN ; il est composé de trois parties distinctes.

Une première partie énumère les éléments chimiques intervenant dans le mécanisme, comme décrit ci-dessous :

ELEMENTS H C O N AR HE END

Dans cet exemple, les espèces considérées dans le mécanisme ne pourront être composées que d'hydrogène, de carbone, d'oxygène et d'azone. Les gaz de dilution seront l'azote, l'argon, et l'hélium.

La deuxième partie est l'énumération de toutes les espèces chimiques utilisées dans le mécanisme, comme le montre l'exemple suivant :

SPECIE	S					
Н2	02	Н	0	OH	HO2	H2O2
AR	N2	HE				
END						

Le nom des espèces est arbitrairement donné par l'utilisateur.

La dernière partie regroupe l'ensemble des réactions décrivant les étapes de transformation des réactifs en produits, comme illustré ci-après avec quelques lignes issues du mécanisme :

REACTIONS			
H+O2<=>O+OH	1.040E+014	0.000	15286.0
O+H2<=>H+OH	5.080E+004	2.670	6292.0
OH+H2<=>H+H2O	4.380E+013	0.000	6990.0
O+H2O<=>OH+OH	2.970E+006	2.020	13400.0
END			

Ces réactions peuvent être prises en compte de manière irréversible (=>) ou réversible (<=> ou =). A la suite d'une réaction sont indiqués trois coefficients, A, n et E représentant respectivement le facteur préexponentiel, le coefficient correctif de variation du facteur préexponentiel avec la température et l'énergie. Chaque coefficient correspond à un paramètre de l'équation d'Arrhénius modifiée :
$$k = A \times T^n \times \exp\left(-\frac{E}{RT}\right)$$

avec : T : température [K]

R : constante des gaz parfaits [cal.K⁻¹.mol⁻¹]

IV.1.2.a. Réactions dépendant de la pression :

Les réactions unimoléculaires, ou de décomposition, et trimoléculaires, ou recombinaison dépendent de la pression. Pour certaines réactions, dans la limite basse pression, un partenaire de collision est nécessaire pour initier la réaction. Alors les caractères +M sont ajouté de part et d'autre de l'équation symbolisant la réaction comme dans l'exemple ci-dessous :

Exemple 1 :

```
H2+M<=>H+H+M 4.577E+019 -1.400 104400.0
H2/ 2.50/ H2O/ 12.00/ CO/ 1.90/ CO2/ 3.80/ HE/ 0.83/
```

La réaction est en limite basse pression et il n'y a pas de limite haute pression. Elles sont parfois accompagnées des coefficients d'efficacité pour différents partenaires de collision symbolisés par la lettre *M*.

Cependant, lorsque la pression et la température sont telles que la réaction est entre la limite basse pression et la limite basse pression, on dit que la réaction est dans la zone de *« fall-off »*.

Pour représenter ce cas, +M est alors entre parenthèses, et les constantes k_{inf} (constante de vitesse à la limite haute de pression) et k_0 (constante de vitesse à la limite basse de pression) sont précisées. Alors, plusieurs méthodes pour représenter la zone de « fall-off » peuvent être utilisées. Deux méthodes sont décrites ci-après : la théorie de Lindemann et le formalisme de Troe.

IV.1.2.b. Théorie de Lindemann (1922) [Lindemann, 1922]

o <u>Réaction trimoléculaire</u>

La théorie de Lindemann permet de rendre compte de la dépendance des constantes de vitesse des réactions de décomposition ou de recombinaison vis-à-vis de la pression. En considérant une réaction de recombinaison $A + B + M \ll$ Produits + M, la théorie du complexe activé de Lindemann décompose cette réaction globale en trois réactions élémentaires :

$A + B \xrightarrow{k_1} AB^*$	activation
$AB^* \xrightarrow{k_2} A + B$	désactivation
$AB^* + M \xrightarrow{k_3} AB + M$	stabilisation du complexe par collision

En appliquant l'approximation de l'état quasi-stationnaire au complexe activé AB*, on obtient l'expression :

$$\frac{d[AB^*]}{dt} = k_1[A][B] - k_2[AB^*] - k_3[AB^*][M] \approx 0$$
$$[AB^*] = \frac{k_1[A][B]}{k_2 + k_3[M]}$$

La vitesse de formation du produit s'écrit alors :

$$\frac{d[AB]}{dt} = k_3[AB^*][M] = \frac{k_1k_3[M]}{k_2 + k_3[M]}[A][B] = k_{apparente}[A][B]$$

Dans le domaine de basse pression, la concentration du troisième corps est très faible. Le produit $k_3[M]$ devient très faible devant k_2 , tandis qu'à haute pression, c'est k_2 qui devient négligeable devant $k_3[M]$. L'expression se simplifie donc de la manière suivante :

- ➢ Basse pression : $k_3[M] \ll k_2$ $k_{apparente} \rightarrow \frac{k_1k_3[M]}{k_2} = k_0[M]$
- ➤ Haute pression : $k_3[M] >> k_2$ $k_{apparente} \rightarrow k_1 = k_{\infty}$

Dans la zone de « fall-off », entre les domaines basse pression et haute pression, la constante de vitesse de la réaction (1) est donnée par la formule de Lindemann :

$$k_{apparente} = \frac{k_1 k_3 [M]}{k_2 + k_3 [M]} = \frac{k_1}{\frac{k_2}{k_3 [M]} + 1} = \frac{1}{\frac{k_2}{k_3 k_1 [M]} + \frac{1}{k_1}} = \frac{1}{\frac{1}{k_0 [M]} + \frac{1}{k_\infty}} = \frac{k_\infty}{\frac{k_\infty}{k_0 [M]} + 1}$$

avec $[M] = \sum_i f_i[M]_i$ et f_i est le coefficient d'efficacité et [M]=P/RT

o <u>Réaction unimoléculaire</u>

Les principales réactions unimoléculaires sont les réactions de décomposition thermique et les réactions d'isomérisation. Elles peuvent s'écrire sous la forme :

$A + M \xrightarrow{k_1} A^* + M$	activation
$A^* + M \xrightarrow{k_2} A + M$	désactivation
$A^* \stackrel{k_3}{\rightarrow} produits$	décomposition/isomérisation

En appliquant la même démarche que précédemment, nous trouvons la relation suivante :

$$\frac{d[A^*]}{dt} = k_1[A][M] - k_2[A^*][M] - k_3[A^*] \approx 0$$
$$[A^*] = \frac{k_1[A][M]}{k_3 + k_2[M]}$$

La vitesse de formation des produits s'écrit alors :

$$\frac{d[produits]}{dt} = k_3[A^*] = \frac{k_1k_3[M]}{k_3 + k_2[M]}[A] = k_{apparente}[A]$$

Basse pression : $k_2[M] \ll k_3$	$k_{apparente} \rightarrow k_1[M] = k_0[M]$
Haute pression : $k_2[M] \gg k_3$	$k_{apparente} \rightarrow \frac{k_1 k_3}{k_2} = k_{\infty}$

Dans le mécanisme utilisé par CHEMKIN, nous retrouvons les coefficients de la constante de vitesse pour la limite haute pression (ligne 1 de l'exemple) et les coefficients de la constante de vitesse pour la limite basse pression (ligne 2).

Exemple 2: C4H713(+M)=C4H6+H(+M) 4.700E+08 1.32 44697.6 LOW / 4.60E-37 15.37 -603.1 / H2/2/ H2O/6/ CH4/2/ CO/1.5/ CO2/2/ C2H6/3/

IV.1.2.c. Formalisme de Troe [Troe, 1983]

Le formalisme de Troe est un traitement plus raffiné des effets de la pression sur une constante de vitesse. Il permet de rendre compte des écarts entre la détermination expérimentale des constantes de vitesse et la théorie de Lindemann. La constante de vitesse de la réaction est corrigée par un facteur d'élargissement F ($k_{Troe}=k_{Lindemann}$.F) qui est calculé à partir du paramétre de centrage F_{cent} . Celui-ci est calculé à partir des coefficients a, b, c et d de la formule de Troe qui donne la dépendance de F_{cent} vis-à-vis de la température :

$$F_{cent} = (1-a)exp\left(\frac{-T}{b}\right) + a.exp\left(\frac{-T}{c}\right) + exp\left(\frac{-d}{T}\right)$$
$$logF = \frac{logF_{cent}}{1 + \left(\frac{logP_r + C}{N - 0.14(logP_r + C)}\right)^2}$$

Où logF est le facteur d'élargissement et $P_r = \frac{k_0[M]}{k_{\infty}}$ la pression réduite. N = 0,75 - 1,27 logF_{cent} et C = - 0,4 - 0,67 logF_{cent}

Dans le mécanisme utilisé par CHEMKIN, et dans le cas où le formalisme utilisé est celui de Troe, les limites basse pression et haute pression sont spécifiées ainsi que les 4 paramètres (a, b, c et d (en ligne 3)) qui permettent de calculer le facteur de « *fall-off* » F. Les réactions sont alors écrites comme présenté dans l'exemple 3 ci-dessous :

Exemple 3

```
      H+O2(+M)<=>HO2(+M)
      4.650E+012
      0.440
      0.0

      LOW/1.737E+019
      -1.230
      0.0/
      0.0/

      TROE/6.700E-001
      1.000E-030
      1.000E+030
      1.000E+030/

      H2/1.30/CO/1.90/CO2/3.80/H2O/10.00/AR/0.00/HE/0.00/
      0.0/
      0.0/
```

IV.1.3. Données thermodynamiques (therm.dat)

Les données thermodynamiques des espèces présentes dans le mécanisme sont fournies sous forme de coefficients de polynômes élaborés par la NASA « Chemical Equilibrium Program » [*Gordon, 1971*]. Le format NASA introduit 2 séries de 7 coefficients qui permettent de calculer les propriétés thermodynamiques dans deux domaines de températures distincts. Un domaine de température basse, généralement entre 300 K et une température

intermédiaire proche de 1000 K, et un domaine de haute température, entre cette même température intermédiaire et une température haute (3000 K ou 5000 K par exemple). Exemple de la forme du fichier *therm.dat* :

 IC4H8
 C
 4H
 80
 0
 0G
 300.000
 5000.000
 1000.000

 0.10155351E+02
 0.18552197E-01
 -0.60001407E-05
 0.92477181E-09
 -0.55685914E-13

 -0.69654160E+04
 -0.30361671E+02
 0.87758577E+00
 0.38321033E-01
 -0.18778475E-04

 0.27076348E-08
 0.43978078E-12
 -0.38574321E+04
 0.19629036E+02

Pour chaque espèce nous retrouvons le nom de l'espèce comme déclarée dans le fichier mécanisme, *chem.inp*, le nombre d'éléments chimiques composant l'espèce, les bornes des deux domaines de température, et les 2 séries de 7 coefficients.

Les propriétés thermodynamiques (capacité calorifique, enthalpie et entropie) sont calculées à partir des équations ci-dessous:

$$\frac{C_{p,k}}{R} = a_{1,k} + a_{2,k}T + a_{3,k}T^2 + a_{4,k}T^3 + a_{5,k}T^4$$

$$\frac{H_k^0}{RT} = a_{1,k} + a_{2,k}\frac{T}{2} + a_{3,k}\frac{T^2}{3} + a_{4,k}\frac{T^3}{4} + a_{5,k}\frac{T^4}{5} + a_{6,k}\frac{1}{T}$$

$$\frac{S_k^0}{R} = a_{1,k}\ln T + a_{2,k}T + a_{3,k}\frac{T^2}{2} + a_{4,k}\frac{T^3}{3} + a_{5,k}\frac{T^4}{4} + a_{7,k}$$

L'équation $G^0 = H^0 - TS^0$ permet le calcul de l'enthalpie libre G^0 . D'où le calcul des constantes d'équilibre des différentes réactions du mécanisme ainsi que les constantes de vitesse des réactions inverses.

$$\Delta G^{0} = G^{0}_{produits} - G^{0}_{réactifs} = -RT \ln(K_{p})$$
$$K_{c} = \frac{K_{dir}}{K_{rev}} = K_{p} \left(\frac{P}{RT}\right)^{\sum v_{produits} - \sum v_{réactifs}}$$

avec

c C_p: capacité calorifique à pression constante

- H: enthalpie
- S: entropie
- v: coefficients stœchiométriques

Le programme informatique THERGAS [*Muller*, 1992] nous a permis de calculer les données thermodynamiques des espèces suivantes présentes en phase gazeuse dans le mécanisme réactionnel :

- Iso-butène (IC_4H_8)
- 2-méthyl-prop-1-èn-1-yle (IC₄H₈V)

• 1,3-butadiène (C₄H₆)

Certains ajouts ou actualisations dans ce fichier proviennent des travaux de Burcat et al. [Goos, 2014].

Ces données ont été par la suite rajoutées dans le fichier thermodynamique therm.dat.

IV.1.4. Code PSR

Le sous-programme PSR de CHEMKIN est utilisé pour la simulation d'un réacteur autoagité. Ce code de calcul a été développé par Glaborg et al. [*Glarborg, 1986*] et permet de résoudre les équations de conservation de matière et d'énergie propres au réacteur auto-agité.

IV.1.4.a. Equations du réacteur auto-agité par jets gazeux

Le réacteur est un volume constant thermiquement isolé où un flux stationnaire d'hydrocarbure et d'oxygène prémélangé est introduit. La forte turbulence du milieu réactionnel induit une homogénéité aussi bien en composition qu'en température. Dans ces conditions, le réacteur est en régime stationnaire. Par conséquent, la vitesse de conversion des réactifs en produits est uniquement contrôlée par les vitesses des réactions chimiques.

Afin de modéliser ce qui se passe au sein du réacteur, quelques hypothèses sont posées. D'abord, les parois sont supposées non-catalytiques. De plus, le flux traversant dans le réacteur est caractérisé par le temps de passage τ est déduit du flux massique \dot{m} , du volume du réacteur V et de la masse volumique ρ :

$$\tau = \frac{\rho V}{\dot{m}}$$

 $\rho = \frac{P\bar{M}}{RT}$ (\bar{M} est la masse molaire moyenne)

La conservation de la masse est exprimée par:

$$\dot{m}(Y_{k,S}-Y_{k,E})-\dot{\omega}M_kV=0$$

La conservation de l'énergie est exprimée par:

$$\dot{m} \sum_{k=1}^{K} (Y_{k,S} h_{k,S} - Y_{k,E} h_{k,E}) + Q = 0$$

avec $Y_{k,E}$: fraction massique de l'espèce k à l'entrée du JSR

 $Y_{k,S}$: fraction massique de l'espèce k à la sortie du JSR

 ω_k : vitesse nette de production de l'espèce k

- M_k : masse molaire de l'espèce k
- Q : perte thermique du JSR
- $h_{k,E}$: enthalpie massique de l'espèce k à l'entrée du JSR
- $h_{k,S}$: enthalpie massique de l'espèce k à la sortie du JSR

Les solutions des équations de conservation de la masse et de l'énergie sont les fractions massiques des espèces présentes dans le mécanisme et la température. Ces équations décrivent un système de K+1 équations algébriques non linéaires.

IV.1.4.b. Résolution du système d'équation

Certains paramètres sont indispensables à la résolution du système à K+1 équations. Ces paramètres sont les concentrations des réactifs en entrée du JSR, le temps de passage, la température et le débit massique. Pour résoudre le système d'équation, la méthode Newton-Raphson nécessite une estimation initiale de la solution (concentration) dans le but de commencer le processus itératif. L'équilibre thermodynamique permet le calcul de la première estimation de la solution à partir d'un programme appelé STANJAN [*Reynolds, 1986*]. La détermination de la composition calculée à pression et température constantes a été obtenue en minimisant l'enthalpie libre.

Cependant, dans certains cas, l'estimation ne permet pas la convergence du système. Dans ces conditions le système est intégré numériquement par des équations différentielles en régime transitoire. La solution obtenue est alors utilisée pour résoudre une nouvelle fois le système avec de la méthode de Newton-Raphson.

IV.1.4.c. Analyse de voies réactionnelles

Cette analyse permet de déterminer les principales voies de consommation et de formation d'une espèce k présent dans le mécanisme réactionnel. Les vitesses globales de formation $V_{f,k}$ et de consommation $V_{c,k}$ de l'espèce k sont calculées par le code de calcul PSR et sont exprimées par:

$$V_{f,k} = \sum_{i=1}^{I} v_{f,k,i}$$
 $V_{c,k} = \sum_{i=1}^{I} v_{c,k,i}$

Les contributions de la réaction i sur la formation $(RP_{f,k})$ et la consommation $(RC_{f,k})$ peuvent être ainsi calculés :

$$RP_{f,k} = \frac{\nu_{f,k,i}}{V_{f,k}} \qquad \qquad RC_{f,k} = \frac{\nu_{c,k,i}}{V_{c,k}}$$

IV.1.4.d. Analyses de sensibilité

Des études de sensibilité sur une espèce k du mécanisme à une richesse et température fixe peuvent être menées. Ces études permettent d'observer l'influence des cinétiques des réactions présentes dans le mécanisme sur la formation et la consommation de l'espèce.

Le coefficient de sensibilité $S_{k,i}$ d'une espèce k pour une réaction i est donné par la relation suivante:

$$S_{k,i} = \frac{\partial \ln Y_k}{\partial \ln k_i} = \frac{k_i}{Y_k} \left(\frac{\partial Y_k}{\partial k_i} \right)$$

Il faut noter que pour un coefficient de sensibilité $S_{k,i}$ positif, la concentration de l'espèce k augmente avec la constante de vitesse k_i. A contrario, pour un coefficient de sensibilité négatif, la concentration de l'espèce k diminue lorsque la vitesse augmente.

IV.1.5. Code PREMIX

Sous-programme élaboré en 1985 par Kee et al. [*Kee, 1985*], PREMIX est utilisé pour la simulation des flammes. Ce code permet de simuler des profils de concentration d'espèces et de température pour des flammes de prémélange, de géométrie 1D et en régime laminaire. Deux types de flamme sont modélisables : des flammes de propagation libre et adiabatique (comme en chambre de combustion sphérique) et de flammes stabilisées sur brûleur. Ce code, pour fonctionner, nécessite un mécanisme réactionnel, les données thermodynamiques et les propriétés de transport des espèces.

Pour la simulation des flammes stabilisées on utilise le mot clé « BURN ». Le débit massique est fourni également. Le plus souvent, ce modèle est utilisé pour obtenir les profils de fraction molaire d'espèces dans une flamme en fonction de la distance par rapport au brûleur.

Le mot clé « FREE » entraînera un calcul dans la configuration de flammes de propagation libres adiabatiques. Ce type de problème donne accès à la vitesse de flamme laminaire non-étirée.

- Equations de conservation :

Les équations gouvernant la propagation d'une flamme isobarique, monodimensionnelle, stationnaire peuvent être écrites :

- Equation de continuité:

$$\dot{M} = \rho u A$$

- Equation de conservation d'énergie:

$$\dot{M}\frac{dT}{dx} - \frac{1}{c_p}\frac{d}{dx}\left(\lambda A \ \frac{dT}{dx}\right) + \frac{A}{c_p}\sum_{k=1}^{K}\rho Y_k V_k c_{pk}\frac{dT}{dx} + \frac{A}{c_p}\sum_{k=1}^{K}\omega_k h_k W_k = 0$$

- Equation de conservation des espèces:

$$\dot{M}\frac{dY_k}{dx} + \frac{d}{dx}(\rho AY_k V_k) - A\dot{\omega_k}W_k = 0$$

- Equation d'état :

$$\rho = \frac{p\overline{M}}{RT}$$

avec

x : coordonnées spatiale (cm)

 \dot{M} : débit massique (g/s)

T : température (K)

 Y_k : fraction molaire de l'espèce k

- p : pression (Pa/cm²)
- u : vitesse du flux (cm/s)
- ρ : masse volumique (g/cm₃)
- W_k : masse molaire de l'espèce k (g/mol)
- \overline{M} : masse molaire moyenne du mélange (g/mol)
- R : constante des gaz parfaits (J/(mol.K))
- λ : conductivité thermique du mélange (J/(cm.K.s))
- c_p : capacité calorifique à pression constante du mélange (J/(g.K))
- c_{pk} : capacité calorifique à pression constante de k (J/(g.K))
- ω_k : vitesse molaire nette de réaction de l'espèce k (mol/(cm².s))
- h_k : enthalpie de l'espèce k (J/g)
- V_k : vitesse de diffusion de l'espèce k (cm/s)
- A : surface de la section de la flamme (cm²)

La vitesse nette de production chimique $\dot{\omega}_k$ de chaque espèce résulte d'une compétition entre toutes les réactions chimiques qui impliquent cette espèce. La constante de la vitesse de réaction s'écrit selon l'équation d'Arrhénius modifiée.

Fonctionnement de PREMIX:

Le sous-programme PREMIX utilise les fichiers de liaison binaires générés par l'interpréteur CHEMKIN et les données de transport des espèces générées par le programme TRANFIT.

Pour le calcul, PREMIX détermine la solution initiale au problème à partir des estimations de valeurs approximatives de fractions molaires d'espèces intermédiaires et de produits définis par l'utilisateur. A partir de ces profils initiaux, PREMIX tente de résoudre les équations différentielles régissant les processus de combustion par la méthode de Newton.

IV.1.6. Données de transport des espèces

Ce fichier est utilisé par CHEMKIN lorsque les données de transport sont nécessaires. Cela dépend donc du problème. PREMIX requiert ce fichier. Il comprend, pour chaque ligne, le nom donné à une espèce, en lien avec le nom déclaré dans le mécanisme. Viennent ensuite les paramètres moléculaires de l'espèce, qui sont, dans l'ordre :

- Un index indiquant si la géométrie de la molécule (0 = simple atome ou radical ; 1 = molécule linéaire ; 2 = molécule non-linéaire).
- Le potentiel de Lennard-Jones.
- Le diamètre de collision de Lennard-Jones.
- Le moment dipolaire.
- La polarisabilité.
- Le nombre de collision entraînant une relaxation rotationnelle.

IV.2. Développement du modèle cinétique

IV.2.1. Démarche générale

La combustion est par définition une réaction chimique globalement et généralement fortement exothermique. Elle nécessite un carburant (un composé oxygéné par exemple) ainsi qu'un comburant (typiquement l'oxygène de l'air). D'une manière générale, la combustion complète d'un composé hydrocarboné produit du dioxyde de carbone, CO₂, et de l'eau :

$$C_x H_y O_z + \left(x + \frac{1}{4}y - \frac{1}{2}z\right)O_2 \to xCO_2 + \frac{y}{2}H_2O$$

Cependant, cette réaction ne présente qu'un bilan global de la combustion. Des espèces intermédiaires sont formées à partir du combustible initial et contribuent à la formation de ces produits (CO₂ et H₂O) ainsi qu'à celle de composés plus lourds lors de combustion incomplète [*Dias*, 2004].

Pour construire un modèle cinétique, toutes les espèces doivent être reportées dans le mécanisme : réactifs, produits finals, sans oublier les intermédiaires (molécules, atomes et radicaux libres). De plus, toutes les réactions possibles thermodynamiquement doivent être ajoutées. L'élaboration se fait donc de façon méthodique, hiérarchique, en ajoutant successivement les réactions des espèces contenant un nombre d'atomes de carbone croissant. Ainsi les modèles cinétiques d'oxydation des hydrocarbures sont constitués de sous-mécanismes ou couches (figure IV.2).

Figure IV.2: Structure schématique d'élaboration d'un modèle cinétique

Comme l'illustre la figure IV.2, le mécanisme cinétique d'oxydation d'un hydrocarbure repose sur un noyau commun à toutes les espèces, qui est fortement ordonné auquel se greffe par la suite une partie spécifique à l'hydrocarbure étudié. Ce noyau commun a une forte influence sur l'oxydation des composés de taille supérieure. Il doit être validé dans un large domaine de pression, de température ou de composition de mélange. Ce principe de hiérarchisation se retrouve dans ce travail d'élaboration de mécanisme cinétique.

IV.2.2. Description de la base C₀-C₇

Pour les besoins de l'étude, le nombre de carbone des espèces dans le mécanisme est limité à 7. Cela permet d'avoir un mécanisme cinétique détaillé de taille modeste représentant cependant convenablement l'oxydation des composés d'intérêt : éthanol (C_2H_6O), les isomères du butène (C_4H_8), la 2-butanone (C_4H_8O) et le toluène (C_7H_8).

IV.2.2.a. Base C_0 :

La base C₀, sous-mécanisme de l'oxydation de l'hydrogène, est issue du mécanisme proposé par Kéromnès et al. [*Kéromnès, 2013*] lors de leurs travaux sur l'oxydation de gaz de synthèse (H₂ et CO). La partie C₀ de ce mécanisme est composée de 8 espèces dont O₂, H₂, H₂O et H₂O₂ pour les molécules, impliquées dans 20 réactions. Le mécanisme proposé a été validé sur plusieurs dispositifs expérimentaux : en tube à choc et machine à compression rapide, de 1 à 70 bar, de 914 à 2220 K, pour des richesses allant de 0.1 à 4 ; en chambre de combustion sphérique pour l'obtention de vitesses de flamme de 5 à 10 atm. Les auteurs précisent que les délais d'auto-inflammation de l'hydrogène à haute pression sont pilotés par $H_2 + HO_2 \rightleftharpoons H + H_2O_2$ suivi de $H_2O_2(+M) \rightleftharpoons OH + OH(+M)$ alors qu'à basse pression et basse température (<1 atm, <1000 K), la réactivité est contrôlée par $H + O_2 \rightleftharpoons O + OH$ et $H + O_2(+M) \rightleftharpoons HO_2(+M)$. Cette dernière réaction tend à limiter la réactivité à richesse faible.

IV.2.2.b. Base C_1 - C_2 :

La partie du mécanisme « C_1 - C_2 » comprend les espèces et réactions nécessaires à l'oxydation des composés suivants : CH₂O (formaldéhyde), CH₃OH (méthanol), CH₄ (méthane), C₂H₆ (éthane), C₂H₄ (éthène), C₂H₂ (éthyne), CH₃CHO (éthanal) et C₂H₅OH (éthanol).

• Formaldéhyde (CH₂O)

Le formaldéhyde est un intermédiaire important lors de l'oxydation des hydrocarbures. Le sous-mécanisme d'oxydation de CH_2O est donc une pièce importante dans la structure hiérarchique du mécanisme de combustion des hydrocarbures. Les réactions d'oxydation du formaldéhyde ajoutées au présent mécanisme sont majoritairement décrites par Le Cong et al. [*Lecong, 2009*]. Globalement, le formaldéhyde est oxydé en HCO, puis CO et enfin CO_2 selon le cheminement [*Hochgreb, 1992*] :

$$CH_2O \rightarrow HCO \rightarrow CO \rightarrow CO_2$$

A température supérieure à 700 K, la réaction $HCO + M \rightleftharpoons CO + H + M$ devient importante, et influence fortement la réactivité des composés de taille supérieure. La constante de vitesse proposée par Timonen et al. [*Timonen, 1978*] a été intégrée. Les métathèses de CH₂O avec O, H et OH ont pour constante de vitesse celles proposées par Tsang et al. [*Tsang, 1986*].

Ce mécanisme a été validé en réacteur à écoulement piston [*Hochgreb*, 1992] à pression atmosphérique, T = 945-1095 K, pour diverses richesses. Dans ces conditions, la réaction $CH_2O + HO_2 \rightleftharpoons +HCO + H_2O_2$ influence la consommation de CH₂O. Lors de leurs travaux, Hidaka et al. [*Hidaka*, 1993] en tube à choc, en pyrolyse comme en oxydation, de 1160 K à 1890 K, pour des pressions de 1,4 à 2,5 atm, proposent des constantes pour $CH_2O + O_2 \rightleftharpoons$ $+HCO + HO_2$ et $CH_2O + HO_2 \rightleftharpoons +HCO + H_2O_2$ ajoutées au mécanisme. La validation en flamme stabilisée sur brûleur vient des travaux de Vandooren et al. [*Vandooren, 1986*].

o Méthanol (CH₃OH)

Le méthanol est un neurotoxique et un intermédiaire lié à la combustion du formaldéhyde et du méthane. Le mécanisme proposé par Dagaut et al. [*Dagaut, 2005*] a été actualisé par Le Cong et validé sur des conditions variées : en réacteur auto-agité (700-1100 K, 10 atm [*Dayma, 2007*]), en réacteur à écoulement (750-1100 K, 1-20 atm [*Held, 1994*]), tube à choc (1800-2740 K [*Cribb, 1992*]) et flamme laminaire (1 atm, 298-368K [*Egolfopoulos, 1992*]). D'une manière générale, le méthanol est oxydé selon le schéma suivant :

$$CH_3OH \to CH_2OH \to CH_2O \to HCO \to CO \to CO_2$$
$$\searrow CH_3O \nearrow$$

Le Cong précise dans son manuscrit de thèse [*Le Cong, 2007*] que le mécanisme GRI 3.0 [*GRI, 2000*] échoue à reproduire les vitesses de flamme du méthanol, particulièrement en milieu riche. Lors de l'actualisation du mécanisme pour cette étude, la constante de vitesse de

 $CH_3OH(+M) \rightleftharpoons CH_2OH + H(+M)$ a été remplacée par celle proposée par Held et al. [*Held*, 1998] et $CH_3OH(+M) \rightleftharpoons CH_3 + OH(+M)$ a été ajouté.

o Méthane (CH₄)

Le méthane est le plus simple des hydrocarbures et le constituant principal du gaz naturel. La modélisation de son oxydation a motivé de très nombreuses études. Sa cinétique de combustion est considérée comme bien connue. Le méthane est également un intermédiaire abondant de l'oxydation d'hydrocarbures plus lourds. L'un des mécanismes les plus diffusés est le mécanisme du Gas Research Institute GRI 3.0 incluant l'oxydation de l'éthane, du propane ainsi que les réactions de formation des oxydes d'azote (NOx).

Le mécanisme utilisé dans cette étude pour l'oxydation du méthane a été emprunté une fois encore à Le Cong et al. Ce mécanisme est validé pour une large gamme de dispositifs expérimentaux. En réacteur auto-agité, d'après les études de Dagaut et al. [*Dagaut, 1990, a*], les conditions expérimentales sont : une richesse de 0.3 à 2, dans un mélange O_2/N_2 , à 1-10 atm et 900-1300 K. La validation a été étendue par Le Cong grâce à des données expérimentales obtenues en réacteur auto-agité à 1-10 atm, 900-1450 K, une richesse de 0,1 à 1,5 et des ajouts de H₂O, H₂ et CO. De nombreuses études en tube à choc ont servi à la validation du modèle pour des pressions de 1-79 atm et des températures supérieures à 1778 K [*Chang, 1994*], [*Petersen, 1996*]. Les études d'Hidaka et al. [*Hidaka, 1999*] sur le méthane sont prises en compte. Des vitesses de flamme ont également permis sa validation [*Vagelopoulos, 1994*], [*Egolfopoulos, 1989*].

Le méthane est consommé par les radicaux OH, O, H ou HO_2 ainsi que par O_2 , suivant les réactions :

$$CH_4 + X \rightleftharpoons CH_3 + HX$$
 où $X = OH, H, O$ ou HO_2
 $CH_3 + HO_2 \rightleftharpoons CH_4 + O_2$

Par ailleurs, la constante de vitesse pour cette dernière réaction a été remplacée par celle plus récente proposée par Jasper et al. [*Jasper, 2009*].

A haute température, la décomposition du méthane via $CH_4(+M) \rightleftharpoons CH_3 + H(+M)$ devient non négligeable. Ces radicaux CH₃ formés en grande quantité ont tendance à former, surtout en milieu riche, de l'éthane, par réaction de terminaison :

$$CH_3 + CH_3(+M) \rightleftharpoons C_2H_6(+M)$$

La constante de vitesse de cette réaction, considérée comme importante dans l'oxydation d'hydrocarbures, a été révisée et remplacée par celle préconisée par Baulch et al. [*Baulch*, 2005].

De façon globale, l'oxydation du méthane peut être simplifiée selon le schéma :

$$CH_4 \rightarrow CH_3 \qquad \begin{array}{c} \swarrow \\ & CH_2O/CH_3O \rightarrow HCO \end{array} \qquad \begin{array}{c} \swarrow \\ & \Box \\ &$$

Où deux voies apparaissent, l'une allant directement vers la consommation du méthane en CO/CO_2 , et la seconde passant par des intermédiaires en C_2 , avec la recombinaison des radicaux méthyles. La combustion des espèces en C_1 et C_2 est donc intimement liée à celle du méthane.

• Ethane
$$(C_2H_6)$$
, Ethène (C_2H_4) et Ethyne (C_2H_2)

Le sous-mécanisme des composés en C_2 marche de concert avec celui du méthane. La base ajoutée au mécanisme de la présente étude est issue du travail de Dagaut sur l'oxydation des hydrocarbures allant du gaz naturel au kérosène [*Dagaut, 2002*] et intégrée par Le Cong dans son mécanisme.

Le sous-mécanisme de l'éthane a été proposé à la base par Dagaut et al. [*Dagaut, 1991*] lors de leur étude de l'oxydation de l'éthane. Le mécanisme comprenant des espèces en C₀ à C₄ a pu être validé en reproduisant les profils d'espèces obtenus en réacteur auto-agité (T = 800-1200 K, P = 1-10 atm, richesse de 0,1 à 1,5 et un temps de passage de 0,1 à 2,4 s) ainsi qu'en reproduisant les délais d'auto-inflammation en tube à choc (T = 800-2000 K, P = 1-13 atm, richesse de 0,1 à 2).

Les sous-mécanismes de l'éthène et de l'éthyne inclus dans notre mécanisme sont issus de l'étude cinétique de Dagaut et al. [*Dagaut, 1990, b*] portant sur l'oxydation de l'éthène. Le mécanisme comprenant des espèces en C₀ à C₃ a été validé en reproduisant les profils d'espèces obtenus en réacteur auto-agité (T = 880-1253 K, P = 1-10 atm, richesse de 0,1 à 4) ainsi qu'en reproduisant les délais d'auto-inflammation en tube à choc (T = 1058-2200 K, P = 0,2-12 atm, richesse de 0,125 à 2).

Cependant, des constantes de vitesses ont été modifiées, principalement pour améliorer les vitesses de flamme des butènes en milieu riche. Il s'agit de $C_2H_2 + OH \rightleftharpoons C_2H + H_2O$ dont la

constante de vitesse a été remplacé par celle calculée par Klippenstein et al. [*Klippenstein*, 2005] et de $C_2H_2 + H(+M) \rightleftharpoons C_2H_3(+M)$ [*Klippenstein*, 2004].

o Acétaldéhyde (CH₃CHO)

L'acétaldéhyde est un intermédiaire oxygéné couramment formé lors de la combustion d'hydrocarbures, à basse température et haute température. C'est également un polluant non-réglementé. Le sous-mécanisme d'oxydation de l'acétaldéhyde a été emprunté à l'étude de Dagaut et al. [*Dagaut, 1995*] sur l'étude expérimentale et la modélisation de l'oxydation de l'acétaldéhyde en JSR (T = 900-1300 K, P = 1-10 atm, richesse de 0,1 à 2) et des délais d'auto-inflammation en tube à choc (P = 2-5 atm, richesse de 0,5 à 2). Globalement, l'acétaldéhyde se dégrade selon le cheminement réactionnel suivant :

$$CH_3CHO \rightarrow CH_3CO \rightarrow CO \rightarrow CO_2$$

o Ethanol (C₂H₅OH)

L'éthanol peut être envisagé comme un bon candidat pour pallier le déclin annoncé des carburants fossiles car il est issu de la biomasse. Son importance dans le monde de la combustion a motivé des études récentes, desquelles sont tirées les constantes de vitesse intégrées au mécanisme utilisé dans cette étude. Nous citerons les études de Marinov et al. [*Marinov, 1999*], Park et al. [*Park, 2003*], Z.F. Xu et al. [*Xu, 2004*] et S. Xu et al. [*Xu, 2007*]. Sur la base de ces études, Leplat et al. [*Leplat, 2011*] ont proposé un mécanisme validé sur de nouveaux résultats expérimentaux obtenus en JSR (T = 890-1250 K, P = 1 atm, richesse 0,25-2) et en flammes laminaires stabilisées sur brûleur (P = 50 mbar, richesse 0,75-1,25). Globalement, l'éthanol se dégrade comme suit :

$$C_2H_5OH \to CH_3CHO \to CH_2O \to CO \to CO_2$$
$$\searrow C_2H_4 \to C_2H_2 \to HCCO \nearrow$$

IV.2.2.c. Base C_3

La base C₃ est largement associée aux bases C₀ et C₁-C₂ car résultant en partie des études de combustion du gaz naturel (contenant typiquement quelques pourcents volumiques de propane), comme démontré par les études de Westbrook et al. [*Westbrook, 1984*] ou Frenklach [*Frenklach, 1984*]. C'est cependant le travail de recherche de Dagaut [*Dagaut,*

2002] sur l'oxydation d'hydrocarbure allant du gaz naturel au kérosène et au gazole qui sert de base à la partie C_3 - C_7 du mécanisme de notre étude, base plus générale, actualisée et étendue jusqu'aux composés plus lourds comme le toluène. Le mécanisme publié par Dagaut et al. en 2002 a évolué, en particulier la partie C_4 , cœur de cette étude.

o Propane (C₃H₈)

Le sous-mécanisme de l'oxydation du propane est issu des travaux de Dagaut et al. [*Dagaut, 1987*] du même intitulé. Dagaut et al. ont construit cette base d'après l'étude de Westbrook et Pitz [*Westbrook, 1984*] et les recommandations de Warnatz [*Warnatz, 1984*]. La validation passe par une étude expérimentale en réacteur auto-agité (P = 1-10 atm, T = 920-1200 K, richesse = 0,15-4 et temps de passage de 0,03-2,10 s) et en tube à choc (T = 1250-1600 K, richesse = 0,125-2,0 et P = 2-10 atm). Une seconde étude de l'oxydation (et pyrolyse) du propane de Dagaut et al. [*Dagaut, 1992 a*] a permis une actualisation du mécanisme.

Le propène est un intermédiaire important dans l'oxydation des hydrocarbures. La base utilisée provient de travaux de Dagaut et al. sur l'oxydation du propène [*Dagaut, 1992 b*]. La validation est réalisée au travers de résultats expérimentaux obtenus en réacteur auto-agité (P = 1-8 atm, T = 900-1200 K et richesse = 0,15-4) et des vitesses de flammes (richesse = 0,78-1,37 et P = 1 atm).

• Propyne et allène (C_3H_4 -P et C_3H_4 -A)

La cinétique d'oxydation du propyne présente un grand intérêt car le propyne peut être formé intermédiairement durant d'oxydation du propène, du propane et des hydrocarbures plus lourds. Dagaut et al. [*Dagaut, 1990*] proposent un mécanisme d'oxydation du propyne et de l'allène validé en réacteur auto-agité (P = 1 atm, T = 950-1030 K et richesse = 0,5-2) et en tube à choc (T = 950-2000 K, richesse = 0,5-2 et P = 1-13 atm). La cinétique des réactions des radicaux i- et n- propyles avec O_2 a été actualisée en utilisant les expressions cinétiques de Gulati et Walker [*Gulati, 1988*]. La cinétique de réactions du propène avec les radicaux hydroxyles a été déduite en utilisant la constante globale de Tully et Goldsmith [*Tully, 1985*]. Les constantes de vitesse de réaction du propène avec l'atome d'oxygène ont été actualisées à partir des expressions cinétiques données par Mahmud et Fontijn [*Mahmud, 1988*]. Les constantes de vitesse des radicaux allyle, 2-méthylvinyle et 1-méthylvinyle (C₃H₅-A, C₃H₅-S et C₃H₅-T) issues des travaux de Dagaut et al. sur le propane [*Dagaut, 1992*] ont été

complétées par celles fournies par Schärfe et al. [*Schärfe*, 1985]. L'isomérisation propyne/allène utilise les constantes décrites par Kakumoto et al. [*Kakumoto*, 1987]. Les réactions de décomposition du propène $C_3H_4 - P + M \rightleftharpoons C_3H_3 + H + M$ et $C_3H_4 - P \rightleftharpoons C_2H + CH_3$ utilisent les constantes de Wu et Kern [*Wu*, 1987].

• Propanal (C₂H₅CHO)

La combustion de biomasse et des alcools entraine la formation d'aldéhydes, espèces toxiques, dont de propanal. Veloo et al. [*Veloo, 2013*] ont étudié la cinétique d'oxydation du propanal en réacteur auto-agité (T = 550-1100K, P = 10 atm, richesse = 0,5-2) et en brûleur à jets opposés ($T_i = 343$ K), pour obtenir les vitesses de flamme. Ce sous-mécanisme a été ajouté au mécanisme utilisé dans cette étude.

• Acroléine (C_2H_3CHO)

L'acroléine, ou prop-2-ènal, est toxique comme la majorité des aldéhydes et un intermédiaire de la combustion des hydrocarbures. Peu d'études de l'oxydation de ce composé sont disponibles, et la plupart des sous-mécanismes concernant ce composé résultent d'approximations ou estimations. Les modifications apportées à notre mécanisme proviennent en partie des travaux de Wilk et al. [*Wilk, 1989*] sur l'oxydation du propène à des températures basses et intermédiaires. Les constantes cinétiques ont été estimées par rapport aux réactions similaires de l'acétaldéhyde. Deux réactions ont été cependant ajoutées par Touchard [*Touchard, 2005, a*] : l'addition d'un atome d'hydrogène sur l'un ou l'autre des atomes de carbone de la double liaison, donnant les radicaux propanal-2-yle (CH₃CHCHO) et propanal-3-yle (PC₂H₄CHO).

o Acétone (CH₃COCH₃)

L'acétone est souvent utilisée comme traceur dans les carburants car l'acétone présente l'avantage d'être fluorescente après excitation à 225-320 nm, rendant cette espèce visible en fluorescence induite par laser (Laser Induced Fluorescence LIF), méthode de diagnostic nonintrusif. En plus d'être un intermédiaire courant de la combustion d'hydrocarbures, c'est un polluant non-réglementé. Le sous-mécanisme d'oxydation de l'acétone intégré dans notre mécanisme est celui de Pichon et al. [*Pichon, 2009*], basé sur un mécanisme initialement développé pour l'oxydation du diméthylether. Ce sous-mécanisme est validé en tube à choc (T = 1340-1930 K, P = 1 atm, richesse = 0,5-2) et en chambre de combustion sphérique $(P = 1 \text{ atm, } T_i = 298 \text{ K}$ et richesse = 0,8-1,6). De façon globale, l'oxydation de l'acétone peut être simplifiée selon le schéma suivant :

IV.2.2.d. Sous-mécanismes en C₄:

o Iso-butane

Les constantes de vitesse utilisées pour ce sous-mécanisme d'oxydation de l'*iso*-butane viennent en partie du mécanisme réactionnel généré automatiquement par le logiciel EXGAS, avec les paramètres cinétiques génériques proposés par Touchard dans son manuscrit de thèse [*Touchard*, 2005, *b*].

o 1-butène (C_4H_8 -1)

Le 1-butène est un intermédiaire de combustion des hydrocarbures de rang supérieur. Il est le butène linéaire le plus abondant en tant que produit de combustion, et donc le plus étudié. La base du mécanisme provient du mécanisme publié par P. Dagaut en 2002 [*Dagaut*, 2002]. Le mécanisme actualisé est validé en reproduisant les résultats de l'oxydation du 1-butène dans plusieurs dispositifs expérimentaux :

- En réacteur auto-agité : T = 900-1370K, richesse = 0,25-2, P = 1 atm, temps de passage = 0,07 s.
- Vitesses de flamme en bombe sphérique : $T_i = 300-450$ K, $P_i = 1-5$ atm, richesse = 0,7-1,4.
- Vitesses de flamme en brûleur à jet opposés : P = 1 atm, T = 298 K, richesse = 0,65-1,7 [*Davis*, 1998].
- Flamme stabilisée sur brûleur : P = 40 mbar, $T_i = 300$ K, richesse = 1,7 [*Schenk*, 2012].
- Délais d'auto-inflammation en tube à choc : T = 1200-1670 K, P = 6,6-8,9 atm, richesse = 0,5-2 [*Heyberger*, 2002].

De manière à améliorer le mécanisme déjà existant, principalement en vérifiant que ses prédictions sont aussi proches de l'expérience que possible, des réactions ont dû être modifiées, ajoutées ou supprimées. Ces changements pour le sous-mécanisme du 1-butène sont décrits dans cette partie, et résumés dans le tableau IV.9.

Amorçage unimoléculaire

Pour le 1-butène, 6 réactions d'amorçage unimoléculaire sont envisageable, aux vues de la géométrie de la molécule. Cinq de ces réactions sont écrites dans le mécanisme :

$$C_{3}H_{5} - A + CH_{3}(+M) \rightleftharpoons C_{4}H_{8} - 1(+M) \quad (\text{Réaction 1})$$

$$C_{2}H_{5} + C_{2}H_{3}(+M) \rightleftharpoons C_{4}H_{8} - 1(+M) \quad (\text{Réaction 2})$$

$$C_{4}H_{7}13 + H(+M) \rightleftharpoons C_{4}H_{8} - 1(+M) \quad (\text{Réaction 3})$$

$$C_{4}H_{7}14 + H(+M) \rightleftharpoons C_{4}H_{8} - 1(+M) \quad (\text{Réaction 4})$$

$$C_{4}H_{7}12 + H(+M) \rightleftharpoons C_{4}H_{8} - 1(+M) \quad (\text{Réaction 5})$$

Une des réactions de rupture de liaison C-H, $C_4H_712 + H(+M) \rightleftharpoons C_4H_8 - 1(+M)$, n'a pas été incluse, car l'énergie de liaison (voir chapitre V) est relativement élevée comparée aux énergies des autres liaisons de la molécule.

Les réactions d'amorçage unimoléculaire sont considérées comme dépendantes de la pression. Elles sont écrites dans le formalisme de Troe, et les valeurs des coefficients sont résumées dans le tableau IV.9.

Les constantes de vitesses pour les réactions 1, 2, 4 et 5 sont issues de l'étude de Zhang et al. [*Zhang, 2012*] sur la pyrolyse de isomères du butène. Zhang et al. ont fait, pour ces réactions, des analogies avec le propène. Les constantes de vitesses utilisées pour les réactions 1, 2 et 4 proviennent du mécanisme cinétique USC Mech II de Wang et al. [*Wang, 2007*]. Lors de la pyrolyse du 1-butène, Zhang et al. observent de grandes quantités d'allyle C₃H₅-A, produit direct de la réaction 1. Les radicaux allyles forment majoritairement de l'allène qui s'isomérise en propyne. La réaction 2 voie de formation de l'éthylène, produit également très présent expérimentalement. Les coefficients de la constante de vitesse des réactions 4 et 5 ont été estimés de la même façon. En revanche, Zhang et al. ont estimé les constantes de la réaction 3 de manière à compenser le manque de 1,3-butadiène dans leur mécanisme. De plus

les coefficients proposés pour la constante de vitesse ne dépendent pas de la pression. Nous avons donc préféré utiliser les coefficients proposés par Laskin et al. [*Laskin, 2000*].

Amorçage bimoléculaire

La réaction d'amorçage unimoléculaire de O_2 réagissant avec le 1-butène peut être considérée :

$$C_4 H_8 - 1 + O_2 \rightleftharpoons C_4 H_7 13 + HO_2$$
 (Réaction 6)

La valeur de la constante de vitesse proposée par Pitz et al. [*Pitz*, 2007] est récente et a été intégrée dans le mécanisme.

Réactions de métathèse

Les réactions de métathèse du 1-butène avec les radicaux H, O, OH et CH_3 ont été intégrées dans le mécanisme. Quatre radicaux butényles peuvent être produits, et sont dessinés dans le tableau IV.1, avec leur nom usuel et les dénominations dans le mécanisme :

Tableau IV-1 : radicaux butényles résultants des réactions de métathèse à partir du 1-butène.

		· · ·	
But-1-én-1-yle	But-1-én-2-yle	But-1-én-3-yle	But-1-én-4-yle
C ₄ H ₇ 11	C ₄ H ₇ 12	C ₄ H ₇ 13	C_4H_714

Les réactions de métathèse produisant les radicaux C_4H_711 et C_4H_712 n'apparaissaient pas dans le mécanisme de base. Les réactions suivantes ont donc été ajoutées :

 $C_{4}H_{8} - 1 + H = C_{4}H_{7}12 + H_{2} \quad (\text{Réaction 9})$ $C_{4}H_{8} - 1 + H = C_{4}H_{7}11 + H_{2} \quad (\text{Réaction 10})$ $C_{4}H_{8} - 1 + 0 = C_{4}H_{7}12 + 0H \quad (\text{Réaction 13})$ $C_{4}H_{8} - 1 + 0 = C_{4}H_{7}11 + 0H \quad (\text{Réaction 14})$ $C_{4}H_{8} - 1 + CH_{3} = C_{4}H_{7}12 + CH_{4} \quad (\text{Réaction 23})$

$$C_4H_8 - 1 + CH_3 = C_4H_711 + CH_4$$
 (Réaction 24)

Les constantes de vitesse de ces réactions ont été estimées par Touchard et al. [*Touchard*, 2005 *a*]. Les réactions de métathèses du 1-butène avec OH, donnant les radicaux C_4H_711 et C_4H_712 ont été ajoutées en utilisant les constantes de vitesses proposées par Pitz et al. [*Pitz*, 2007] :

$$C_4H_8 - 1 + OH = C_4H_711 + HO_2$$
 (Réaction 15)
 $C_4H_8 - 1 + OH = C_4H_712 + HO_2$ (Réaction 16)

Les constantes de vitesse des réactions de métathèses du 1-butène avec OH, donnant les radicaux C_4H_711 et C_4H_712 ont été modifiées en utilisant les constantes de vitesses proposées dans les travaux [*Pitz*, 2007].

$$C_4H_8 - 1 + OH = C_4H_713 + HO_2$$
 (Réaction 17)
 $C_4H_8 - 1 + OH = C_4H_714 + HO_2$ (Réaction 18)

Les constantes de vitesse des réactions de métathèse avec O et CH_3 conduisant à la formation des radicaux C_4H_713 et C_4H_714 ont été modifiées suivant les constantes de vitesse proposées par Pitz et al. [*Pitz, 2007*], de même que la constante de vitesse de la métathèse du 1-butène avec H donnant C_4H_714 .

$$C_{4}H_{8} - 1 + 0 = C_{4}H_{7}13 + 0H \text{ (Réaction 11)}$$

$$C_{4}H_{8} - 1 + 0 = C_{4}H_{7}14 + 0H \text{ (Réaction 12)}$$

$$C_{4}H_{8} - 1 + CH_{3} = C_{4}H_{7}13 + CH_{4} \text{ (Réaction 25)}$$

$$C_{4}H_{8} - 1 + CH_{3} = C_{4}H_{7}14 + CH_{4} \text{ (Réaction 26)}$$

$$C_{4}H_{8} - 1 + H = C_{4}H_{7}14 + H_{2} \text{ (Réaction 8)}$$

Enfin, la constante de vitesse de la réaction 8 utilise les coefficients donnés par Wang et al. [*Wang*, 2010] dans le mécanisme Jet Surf 2.0 et discutés par Zhang et al. [*Zhang*, 2012].

$$C_4H_8 - 1 + H = C_4H_713 + H_2$$
 (Réaction 7)

Cette réaction permet la formation de C₄H₇13, espèce donnant majoritairement du 1,3butadiène, espèce produite abondamment lors des expériences, aussi bien en flammes laminaires de prémélange [*Zhang, 2012*][*Schenk, 2013*] qu'en réacteur auto-agité [ce travail, chapitre V]. Le 1,3-butadiène tend à être sous-estimé par le mécanisme. Nous avons donc comparé dans la figure IV.3 la valeur de la constante de vitesse utilisée pour la réaction 7 proposée par Wang et al. et celle présente dans le mécanisme que nous avons utilisé comme base.

Figure IV.3 : Comparaison graphique des valeurs des constantes de vitesse k en fonction de 1000 K/T pour la réaction 7.

La valeur de la constante de vitesse de Wang et al., dans la gamme de température d'intérêt, est supérieure à celle présente initialement dans le mécanisme [*Dagaut 2002*]. Elle est donc intégrée au mécanisme.

Les coefficients des constantes de vitesses comparées sont résumés dans le tableau IV.2.

Tableau IV-2 : Coefficients des constantes de vitesses comparées pour la réaction 7 (unités en cm³, mol, s, cal)

	А	n	E _a
[Wang, 2010]	1.30E+06	2.4	4470
[Dagaut, 2002]	1.95E+13	0	4445

Addition sur la double liaison

Lors de leur étude sur le 1-butène, Zhang et al. ont inclus les réactions d'addition de l'atome d'hydrogène sur la double liaison :

$$C_4H_8 - 1 + H \rightleftharpoons C_2H_4 + C_2H_5$$
 (Réaction 50)

La réaction 50 proposée par Zhang et al. présente une constante de vitesse provenant du mécanisme USC Mech II, estimée par analogie avec la réaction d'addition de H sur le propène conduisant à la formation d'éthylène et du radical méthyle $C_3H_6 + H \rightleftharpoons C_2H_4 + CH_3$. Nous avons choisi d'utiliser plutôt la constante proposée par Miller et Klippenstein [*Miller*, 2013] dans leur étude sur le radical propyle. La valeur fournie par Miller et Klippenstein résulte de calculs *ab initio*. La comparaison de tracés des deux constantes de vitesse pour l'addition de H sur la double liaison du 1-butène est présentée en figure IV.4.

Figure IV.4 : Comparaison graphique des valeurs des constantes de vitesse k en fonction de 1000 K/T pour la réaction 50.

La constante de Miller et al. est moins élevée que celle proposée par Zhang et al. La conversion du 1-butène en éthylène est donc plus faible, restant ainsi cohérente avec les observations expérimentales. De plus, cette voie est en compétition avec les voies de formation du méthylallyle (réactions 17, 11, 25, 7), radical à l'origine de la formation de 1,3-butadiène, espèce mesurée en fortes proportions.

Les coefficients des constantes de vitesses comparées sont résumés dans le tableau IV.3.

Tableau IV-3 : Coefficients des constantes de vitesses comparées pour la réaction 50 (unités en cm³, mol, s, cal)

	А	n	Ea
[Miller, 2013]	2.67E+12	0.47	5431
[Zhang, 2012]	8.80E+16	-1.05	6461

Isomérisations

Nous préciserons que les réactions d'isomérisation $C_4H_8 - 1 \rightleftharpoons T2C_4H_8$ et $C_4H_8 - 1 \rightleftharpoons C2C_4H_8$ présentes dans le mécanisme de Dagaut pour les kérosènes, n'ont pas été incluses dans le mécanisme. Nous proposons que le transfert d'une espèce à l'autre ne s'effectue pas par isomérisation, mais par l'intermédiaire du radical allyle, C_3H_5 -A, par rupture d'une liaison C-C, puis une recombinaison avec un radical méthyle, CH₃.

Réactions des radicaux but-1-én-1-yle et du but-1-én-2-yle

Les radicaux but-1-én-1-yle et but-1-én-2-yle sont des radicaux à la formation peu favorable. Même si ces radicaux sont peu présents, ils doivent avoir des voies d'élimination pour ne pas s'accumuler dans les modélisations. Touchard a proposé des réactions de C₄H₇11 et C₄H₇12 avec O₂ :

$$C_4H_711 + O_2 \rightleftharpoons C_2H_5CHO + HCO \quad (\text{Réaction 92})$$

$$C_4H_712 + O_2 \rightleftharpoons C_2H_5CO + CH_2O \quad (\text{Réaction 89})$$

De plus, Pitz et al. [*Pitz*, 2007] ont proposés une β -scission pour chacun des radicaux butényles :

$$C_4H_711 \rightleftharpoons C_2H_2 + C_2H_5$$
 (Réaction 91)
 $C_4H_712 \rightleftharpoons C_3H_4 - A + CH_3$ (Réaction 90)

o *Trans-2-butène* $(T2C_4H_8)$ et *Cis-2*-butène $(C2C_4H_8)$

Le 2-butène possède deux stéréoisomères : le *cis*-2-butène et le *trans*-2-butène. Tout comme le 1-butène, le 2-butène est un intermédiaire de la combustion de carburants plus lourds, principalement les alcanes et les alcools. La base du mécanisme réactionnel, comme la majorité du sous-mécanisme des composés en C₄ de ce travail, provient du mécanisme développé par Dagaut [*Dagaut*, 2002] pour la combustion du gaz naturel, du kérosène et du gazole. Cependant, ce modèle n'a pas pu être validé pour l'oxydation des 2-butènes faute de données expérimentales. Suite aux études sur le *trans*-2-butène (et *cis*-2-butène) [*Fenard*,

2014] réalisées à l'ICARE, un modèle cinétique a été proposé afin de représenter l'oxydation des 2-butènes. Les validations ont été réalisées en reproduisant :

- Les profils de concentration des espèces produites au sein du réacteur auto-agité (P = 1 atm, T = 900-1370K, temps de passage = 0,07 s et richesse = 0,25-2),
- Les vitesses de flammes obtenues en bombe sphérique (P = 1-5 atm, T = 300 K, richesse = 0,8-1,4) et
- Les profils de concentration des espèces mesurées au-dessus d'un brûleur à flamme plate basse pression (P = 40 mbar, richesse = 1,7, $T_i = 300$ K [*Schenk*, 2012]).

Les structures de ces isomères sont très proches. L'agencement des atomes composant de *trans*-2-butène et le *cis*-2-butène est le même, seul l'alignement de la molécule change. De fait, les constantes de vitesse et les réactions des deux espèces sont, dans le mécanisme, les mêmes. Cependant, la thermodynamique des deux espèces, au travers des polynômes NASA, est différente, ce qui entraine des différences de comportement lors de leur combustion.

Isomérisation

L'isomérisation du *trans*-2-butène au *cis*-2-butène est décrite par Richard et Martin [*Richard*, 1976] suite à leurs travaux sur la pyrolyse du *cis*-2-butène selon la réaction :

$$C2C_4H_8 \rightleftharpoons T2C_4H_8$$
 (Réaction 93)

C'est une réaction très importante dans le mécanisme du 2-butène car elle représente une part importante des flux de réaction et établit un équilibre entre les deux espèces. La forme *trans* est cependant plus stable que la forme *cis*, en raison d'une gêne stérique dans la forme *cis* en forme de « U ».

Ainsi pour récapituler les isomérisations possibles entre les formes linéaires du butène, nous proposons le schéma présenté dans la figure IV.5 :

Figure IV.5: Isomérisations entre le 1-butène, le cis-2-butène et de trans-2-butène

Comme décrit sur la figure IV.5, nous pensons que les isomérisations entre les formes *cis* et *trans* du 2-butène et le 1-butène passent par la formation du radical allyle, C_3H_5 -A, par rupture d'une liaison C-C, puis une recombinaison avec un radical méthyle, CH₃.

Elimination

Richard et Martin [*Richard, 1976*] décrivent dans leurs travaux sur la pyrolyse du *cis*-2butène une élimination concertée de H_2 , permettant d'expliquer la formation importante de 1,3-butadiène à partir du *cis*-2-butène.

$$C2C_4H_8 \rightleftharpoons C_4H_6 + H_2$$
 (Réaction 113)

En réacteur auto-agité, nous avons relevé une quantité très importante de 1,3-butadiène, aussi bien lors de la combustion de la forme *trans*, que de la forme *cis* du 2-butène.

Amorçage unimoléculaire

De la même manière que pour le 1-butène, les amorçages unimoléculaires des 2-butènes sont des voies privilégiées dans nos conditions. Pour les ruptures de liaison C-C, deux voies sont envisageables :

$$T2C_4H_8 \rightleftharpoons C_3H_5 - A + CH_3 \text{ (Réaction 94)}$$
$$C_3H_5 - S + CH_3(+M) \rightleftharpoons T2C_4H_8(+M) \text{(Réaction 95)}$$

La réaction 94 proposée par Zhang et al. [*Zhang, 2012*] a été ajoutée afin de prédire la forte concentration de radicaux allyles qu'ils observent expérimentalement, et qui, dans notre cas, permet une bonne simulation des profils d'allène (C₃H₄-A) et de 1-butène formé via la recombinaison $C_3H_5 - A + CH_3(+M) \rightleftharpoons C_4H_8 - 1(+M)$. De plus, lors de l'oxydation du 1-butène, les profils de *trans*- et *cis*-2-butène sont mieux reproduits avec la constante de vitesse utilisée pour la réaction 94. La constante de vitesse pour cette réaction, estimée par Zhang, a été divisée par 2 :

$$k_2 = 3,75.10^{+66}T^{-15.6}exp(-97300/RT) \text{ (cm}^3.\text{mol}^{-1}.\text{s}^{-1})$$

La cinétique de la réaction 95 a été estimée par analogie avec la réaction $C_2H_3 + CH_3(+M) \rightleftharpoons C_3H_6(+M)$. La constante de vitesse dérive du mécanisme réactionnel USC Mech II.

La réaction d'amorçage par rupture de liaison C-H proposée dans la littérature [*Pitz, 1988*], [*Zhang, 2012*], [*Pitz, 2007*] mène au radical but-1-èn-3-yle :

$$C_4H_713 + H(+M) \rightleftharpoons T2C_4H_8(+M)$$
 (Réaction 96)

Zhang et al. [*Zhang*, 2012], pour cette réaction, font une analogie avec la réaction d'amorçage du propène $C_3H_5 - A + H(+M) \rightleftharpoons C_3H_6(+M)$ issue du mécanisme USC Mech II. La constante de vitesse de la réaction 96 utilise celle proposée par Pitz et al. [*Pitz*, 2007] pour la réaction $C_3H_5 - A + H(+M) \rightleftharpoons C_3H_6(+M)$, incluse dans le mécanisme Aramco [*Metcalfe*, 2013].

Réactions de métathèse

Les réactions de métathèse des 2-butènes conduisant au radical but-2-èn-2-yle (C_4H_722) n'apparaissaient pas dans le mécanisme initial. Dans les conditions du réacteur auto-agité, la formation de ce radical est peu favorable. Cependant, les réactions de métathèses conduisant au but-2-èn-2-yle ont été ajoutées et les constantes estimées d'après les travaux de Touchard [*Touchard*, 2005 *a*].

$$\begin{aligned} T2C_4H_8 + H \rightleftharpoons C_4H_722 + H_2 & (\text{Réaction 103}) \\ T2C_4H_8 + 0 \rightleftharpoons C_4H_722 + 0H & (\text{Réaction 104}) \\ T2C_4H_8 + 0H \rightleftharpoons C_4H_722 + H_20 & (\text{Réaction 105}) \\ T2C_4H_8 + CH_3 \rightleftharpoons C_4H_722 + CH_4 & (\text{Réaction 106}) \end{aligned}$$

Les réactions de métathèse du 2-butène avec les radicaux H, O, OH, CH_3 et HO_2 ont été mises à jour dans le mécanisme. Les constantes de vitesse utilisées par Pitz et al. [*Pitz, 2007*] ont été utilisées.

$$T2C_{4}H_{8} + H = C_{4}H_{7}13 + H_{2} \quad (\text{Réaction 97})$$

$$T2C_{4}H_{8} + OH = C_{4}H_{7}13 + HO_{2} \quad (\text{Réaction 98})$$

$$T2C_{4}H_{8} + CH_{3} = C_{4}H_{7}13 + CH_{4} \quad (\text{Réaction 99})$$

$$T2C_{4}H_{8} + HO_{2} = C_{4}H_{7}13 + CH_{4} \quad (\text{Réaction 100})$$

$$T2C_{4}H_{8} + O = C_{4}H_{7}13 + OH \quad (\text{Réaction 101})$$

Addition de H sur la double liaison

Nous pouvons considérer l'addition de H sur la double liaison, suivi de la décomposition de l'intermédiaire comme une voie possible de consommation des 2-butènes :

$$T2C_4H_8 + H \rightleftharpoons C_3H_6 + CH_3$$
 (Réaction 111)

La démarche est similaire à celle décrite pour l'addition de H sur la double liaison du 1butène. Il s'agit d'utiliser la constante de la réaction analogue $C_3H_6 + H \rightleftharpoons C_2H_4 + CH_3$, issue de la littérature. La différence avec le 2-butène est la symétrie de la molécule. Pour être cohérente, la valeur de la constante de vitesse pour l'addition sur le propène doit être doublée pour le 2-butène.

Zhang et al. [*Zhang*, 2012] utilisent la constante de vitesse de l'USC Mech II pour la réaction $C_3H_6 + H \rightleftharpoons C_2H_4 + CH_3$ et la multiplient par 2. Nous avons préféré la constante calculée pour la même réaction par Miller et Klippenstein [*Miller*, 2013], présentant des valeurs de constante de vitesse un peu supérieures à celle proposées par Zhang et al. (figure IV.6).

Figure IV.6: Comparaison graphique des valeurs des constantes de vitesse k en fonction de 1000 K/T pour la réaction 111

Les coefficients des constantes de vitesses comparées sont résumés dans le tableau IV.4.

Tableau IV-4 : Coefficients de constantes de vitesses comparées pour la réaction 111 (unités en cm³, mol, s, cal)

	А	n	Ea
Ce travail	5.340E+12	0.47	5431.1
[Zhang, 2012]	3.46E+17	-1.05	6461

Réaction du radical but-2-én-2-yle (C₄H₇22)

Le radical C_4H_722 , étant très peu stable thermodynamiquement, la seule réaction envisagée est :

$$C_4H_722 \rightleftharpoons C_3H_4 - P + CH_3$$
 (Réaction 114)

La constante de vitesse choisie pour cette réaction a été empruntée au mécanisme de Pitz et al [*Pitz*, 2007]

\circ *Iso*-butène (IC₄H₈)

La combustion d'alcanes ramifiés produit des quantités importantes d'*iso*-butène. C'est aussi le cas avec le méthylterbutylether (MTBE) ou l'éthylterbutylether (ETBE), des composés utilisés comme rehausseur d'indice d'octane. Dagaut et al. [*Dagaut, 1998, a*] ont étudié l'oxydation de l'*iso*-butène et proposé un mécanisme cinétique détaillé de 110 espèces et 743 réactions. Ce mécanisme est validé dans de nombreuses conditions, reproduisant les profils de fractions molaires obtenus en réacteur auto-agité (T = 800-1250 K, P = 1, 5 et 10 atm, richesse = 0,2-2, temps de passage = 0,06-2,4 s) ainsi que les délais d'auto-inflammation obtenus en tube à choc (P = 2-4,6 atm, T = 1200-2000 K, richesse = 0,2-4).

Une nouvelle étude expérimentale, présentée dans ce manuscrit, a apporté de nouveaux résultats pour l'oxydation de l'*iso*-butène : des profils de concentration des intermédiaires stables en réacteur auto-agité (T = 900-1450 K, temps de passage = 0,07 s, P = 1 atm, richesse

= 0.25-2) et des mesures de vitesses de flammes laminaires en bombe sphérique ($P_i = 1-5$ atm, $T_i = 300-450$ K, richesse = 0,8-1,4). Ces résultats ont permis une actualisation du modèle précédent.

Le mécanisme de l'*iso*-butène ayant déjà été validé par Dagaut il y a une quinzaine d'année, cette partie est principalement une mise à jour. Les modifications apportées au mécanisme antérieur sont principalement des ajouts.

Addition de H

Les réactions suivantes ont été ajoutées ou modifiées, et sont liées à l'addition de H sur la double liaison, conduisant majoritairement à la formation de propène :

 $iC_4H_9 \rightleftharpoons iC_4H_8 + H$ (Réaction 128) $tC_4H_9 \rightleftharpoons iC_4H_8 + H$ (Réaction 129) $iC_4H_9 \rightleftharpoons tC_4H_9$ (Réaction 116) $iC_4H_9 \rightleftharpoons C_3H_6 + CH_3$ (Réaction 117)

Les réactions 128 et 129 d'addition de H sur la double liaison de l'*iso*-butène ont été écrites dans le mécanisme. Les constantes de vitesse utilisées pour ces réactions ont été proposées par Curran et al. [*Curran, 2006*] lors de leurs travaux sur les estimations de décomposition de radicaux insaturés C₁-C₄, dont les radicaux *iso*-butyl (*i*C₄H₉) et *ter*-butyl (*t*C₄H₉). Pour ces deux réactions, les valeurs de constante de vitesse ont été tracés en fonction de la température en figure IV.7. Les constantes de vitesse pour ces réactions présentes dans la base de Dagaut [*Dagaut, 2002*] sur une estimation de Pitz [*Pitz, 1986*] sont également tracées pour comparaison (figure IV.7).

Figure IV.7 : Comparaison graphique des valeurs des constantes de vitesse k en fonction de 1000 K/T pour les réactions 128 et 129.

Dans nos conditions expérimentales en JSR, nous relevons une quantité importante de propène. Les voies d'addition proposées avec les réactions 128, 129, 116 et 117 permettent d'expliquer la formation de propène. Les coefficients des constantes de vitesses des réactions 128 et 129 comparées sont résumés dans le tableau IV.5.

Tableau IV-5 : Constantes de vitesses comparées pour les réactions 128 et 129 (unités en cm³, mol, s, cal)

	А	n	Ea
[Curran, 2006] réaction 128	1.71E+13	0.12	33680
[Dagaut, 2002] réaction 128	1.91E+29	-5.25	39758
[Curran, 2006] réaction 129	5.66E+11	0.7	36570
[Dagaut, 2002] réaction 129	2.90E+51	-11.5	52620

La constante de vitesse de la réaction d'isomérisation 116 utilisée dans le mécanisme est proposée par Matheu et al. [*Matheu*, 2003].

La réaction 117 conduit à la formation de propène à partir de iC_4H_9 . La constante proposée par Curran et al. est comparée à celle de Dagaut en figure IV.8.

Figure IV.8: Comparaison graphique des valeurs des constantes de vitesse k en fonction de 1000 K/T pour la réaction 117.

Dans notre domaine de température, la constante de vitesse de Curran et al. prend des valeurs plus élevées que celle de Dagaut et al., permettant à cette voie d'addition d'avoir une importance accrue. Les coefficients des constantes de vitesses comparées pour la réaction 117 sont présentés dans le tableau IV.6.

Tableau IV-6 : Constantes de vitesses comparées pour la réaction X (unités en cm³, mol, s, cal)

	А	n	Ea
[Curran, 2006]	9.59E+11	0.77	30710
[Dagaut, 2002]	2.00E+13	0	29950

Amorçage unimoléculaire

La réaction d'amorçage unimoléculaire par rupture de la liaison C-C entrainant la formation d'un radical méthyle et d'un radical propényle (CH3-C=CH2) dépendante de la pression est écrite dans le mécanisme (réaction 133).

$$C_3H_5 - T + CH_3(+M) \rightleftharpoons iC_4H_8(+M)$$
 (Réaction 133)

Les constantes de vitesse k_{inf} et k_0 , ainsi que les paramètres de Troe utilisés proviennent des travaux de Zhang et al. [*Zhang*, 2012]. Il s'agit d'une analogie avec la réaction $C_3H_6 + H \rightleftharpoons$

 $C_2H_4 + CH_3$. La constante de vitesse appliquée réfère à celle proposée par Wang et al. [*Wang*, 2010].

Dans leurs travaux sur la pyrolyse et l'oxydation de l'*iso*-butène, Yasunaga et al. [*Yasunaga, 2009*] proposent une valeur pour la constante de vitesse de la réaction 131 plus élevée que celle de Dagaut et al., avec une énergie d'activation inférieure à la constante de vitesse proposée par Dagaut et al. (figure IV.10), pour la rupture de liaison C-H d'un groupement méthyle, permettant une réactivité augmentée.

 $iC_4H_8 \rightleftharpoons iC_4H_7 + H$ (Réaction 131)

Figure IV.9: Comparaison graphique des valeurs des constantes de vitesse k en fonction de 1000 K/T pour la réaction 131.

Les coefficients des constantes de vitesses comparées pour la réaction 131 sont présentés dans le tableau IV.7.

	А	n	Ea
[Yasunaga, 2009]	1.50E+15	0	83000
[Dagaut, 2002]	1.06E+47	-9.3	104551

Tableau IV-7 : Constantes de vitesses comparées pour la réaction 131 (unités en cm³, mol, s, cal)

Dans cette même étude [*Yasunaga, 2009*], Yasunaga et al. proposent une réaction d'amorçage unimoléculaire avec le départ d'un H vinylique. La constante de vitesse de cette réaction est présentée dans le tableau IV.8.

$$iC_4H_8 \rightleftharpoons iC_4H_7\nu + H$$
 (Réaction 132)

Addition de OH

Deux réactions d'addition de OH sur l'*iso*-butène ont été ajoutées au mécanisme. Il s'agit des réactions 134 et 135 :

$$iC_4H_8 + OH \rightleftharpoons CH_2O + iC_3H_7$$
 (Réaction 134)
 $iC_4H_8 + OH \rightleftharpoons CH_3COCH_3 + CH_3$ (Réaction 135)

Les constantes de vitesses de ces réactions sont décrites par Heyberger et al. [*Heyberger*, 2001] dans son travail sur la génération par EXGAS de mécanismes réactionnels prédictifs de l'oxydation du propène.

Réactions de métathèse

Les constantes de vitesse pour les métathèses de l'*iso*-butène vers le 2-méthyl-prop-1-én-1-yle sont issues de l'étude de Yasunaga et al [*Yasunaga, 2009*] sur la pyrolyse et l'oxydation de l'*iso*-butène en tube à choc, avec mesures de délais d'auto-inflammation et prélèvements :

$iC_4H_8 + 0 \rightleftharpoons iC_4H_7v + H_2$	(Réaction 148)
$iC_4H_8 + H \rightleftharpoons iC_4H_7v + H_2$	(Réaction 149)
$iC_4H_8 + OH \rightleftharpoons iC_4H_7v + H_2$	(Réaction 150)
$iC_4H_8 + CH_3 \rightleftharpoons iC_4H_7\nu + CH_4$	(Réaction 151)

Yasunaga décrit cette voie de réaction de l'iso-butène comme minoritaire, mais nonnégligeable.

Réactions du radical 2-méthyl-prop-1-én-3-yle (iC₄H₇)

Dans le mécanisme de Dagaut et al., [*Dagaut, 2002*] la décomposition du radical isobutényle se fait au travers de 3 réactions omettant les réactions conduisant à la formation de allène, espèce privilégiée par rupture C-C puis réarrangement :
$$iC_4H_7 \rightleftharpoons C_3H_4 - A + CH_3$$
 (Réaction 154)
 $iC_4H_7 + H \rightleftharpoons C_3H_4 - A + CH_4$ (Réaction 155)

Dans leur travail sur la pyrolyse de l'*iso*-butène, Zhang et al. proposent également une réaction d'isomérisation du radical iso-butényle en radical but-1-én-3-yle, une des voies de formation du 1,3-butadiène, espèce produite lors de l'oxydation de l'*iso*-butène :

$$iC_4H_7 \rightleftharpoons C_4H_7$$
13 (Réaction 153)

La constante utilisée leur a permis d'expliquer les fortes concentrations de 1,3-butadiène observées expérimentalement.

Réactions du radical 2-méthyl-prop-1-én-1-yle (iC₄H₈v)

Le radical 2-méthyl-prop-1-en-1-yle peut s'isomériser en radical 2-méthyl-prop-1-én-3-yle, comme proposé par Yasunaga et al. :

$$iC_4H_7v \rightleftharpoons iC_4H_7$$
 (Réaction 159)

Une seconde réaction du radical 2-méthyl-prop-1-én-3-yle est proposée par Yasunaga :

$$iC_4H_7v \rightleftharpoons C_3H_4 - p + CH_3$$
 (Réaction 161)

C'est une voie importante de consommation de du radical vinylique dans le mécanisme pour les conditions de l'étude.

	Réactions du 1-butène (c4h8-1)	A	n	Ea
1	c3h5-a+ch3(+M)=c4h8-1(+M)	1.00E+14	-0.32	-262.3
	LOW 3.91E+60 -12.81 6250.0/			
	TROE/0.104 1606.0 6E+4 6118.4/			
2	c2h3+c2h5(+M)=c4h8-1(+M)	1.50E+13	0	0
	LOW/1.55E+56 -11.79 8984.5/			
	TROE/0.198 2278.0 6E+4 5723.2/			
3	c4h713+h(+M)=c4h8-1(+M)	1.00E+14	0	0
	LOW/6.65E+59 -12 5967.8/			
	TROE/2.0e-2 1097 1097 6860/			
4	c4h714+h(+M)=c4h8-1(+M)	3.60E+13	0	0
	LOW/3.01E+48 -9.32 5833.6/			
	TROE/0.498 1314.0 1314.0 5E+4/			
5	c4h712+h=c4h8-1	1.00E+13	0	0
6	c4h8-1+o2=c4h713+ho2	2.00E+13	0	37190
7	c4h8-1+h=c4h713+h2	1.30E+06	2.4	4470
8	c4h8-1+h=c4h714+h2	1.73E+05	2.5	2492
9	c4h8-1+h=c4h712+h2	4.10E+05	2.5	9790
10	c4h8-1+h=c4h711+h2	8.20E+05	2.5	12280
11	c4h8-1+o=c4h713+oh	8.80E+10	0.7	3250
12	c4h8-1+o=c4h714+oh	5.10E+13	0	7850
13	c4h8-1+o=c4h712+oh	6.00E+10	0.7	7630
14	c4h8-1+o=c4h711+oh	1.20E+11	0.7	8960
15	c4h8-1+oh=c4h711+h2o	2.20E+06	2	2780
16	c4h8-1+oh=c4h712+h2o	1.10E+06	2	1450
17	c4h8-1+oh=c4h713+h2o	6.69E+01	3.475	-2802.5
18	c4h8-1+oh=c4h714+h2o	4.28E+01	3.374	-767
19	c4h8-1+ho2=c4h713+h2o2	2.70E+04	0.7	5884
20	c4h8-1+ho2=c4h714+h2o2	2.38E+03	2.55	16490
21	c4h714+hco=c4h8-1+co	6.00E+13	0	0
22	c4h713+ch3o=c4h8-1+ch2o	2.41E+13	0	0
23	c4h8-1+ch3=c4h712+ch4	9.80E-01	3.5	11700
24	c4h8-1+ch3=c4h711+ch4	1.38E+00	3.5	12900
25	c4h8-1+ch3=c4h713+ch4	2.21E+00	3.5	5675
26	c4h8-1+ch3=c4h714+ch4	4.52E-01	3.65	7154
27	c4h8-1+ch3o=c4h713+ch3oh	4.00E+01	2.9	8609
28	c4h8-1+ch3o=c4h714+ch3oh	2.17E+11	0	6458
29	c4h8-1+ch3o2=c4h713+ch3o2h	2.70E+04	0.7	5884
30	c4h8-1+ch3o2=c4h714+ch3o2h	2.38E+03	2.55	16490
31	c4h714+c2h4=c4h8-1+c2h3	1.00E+11	0	15000
32	c4h8-1+c2h3=c4h713+c2h4	7.20E+11	0	5008
33	c4h713+c2h5=c4h8-1+c2h4	2.59E+12	0	-131
34	c4h714+c2h6=c4h8-1+c2h5	3.00E+13	0	12300

Tableau IV-8 : Récapitulatif des réactions et constantes de vitesse pour le sous-mécanisme des isomères du butène. Les unités sont cm³, mol, s, cal.

35	c4h8-1+c2h5o2=c4h713+c2h5o2h	1.40E+12	0	14900
36	c4h713+c3h5-a=c4h8-1+c3h4-a	1.00E+12	0	0
37	c4h8-1+c3h5-a=c4h713+c3h6	8.00E+10	0	12400
38	c4h714+c3h6=c4h8-1+c3h5-a	1.00E+11	0	9800
39	c4h8-1+c3h5-s=c4h713+c3h6	8.00E+10	0	12400
40	c4h8-1+c3h5-t=c4h713+c3h6	8.00E+10	0	12400
41	c4h6+c4h714=nc4h5+c4h8-1	6.32E+02	3.13	20010
42	c4h6+c4h714=ic4h5+c4h8-1	6.32E+02	3.13	18010
43	c4h8-1+c4h6=c4h713+c4h713	2.35E+12	0	46720
44	c4h714+c4h714=c4h6+c4h8-1	3.16E+12	0	0
45	c4h714+c4h8-1=c4h8-1+c4h713	1.00E+11	0	8300
46	c4h8-1+o=c3h6+ch2o	2.51E+12	0	0
47	c4h8-1+o=ch3cho+c2h4	1.25E+13	0	850
48	c4h8-1+oh=c2h5cho+ch3	1.37E+12	0	-1040
49	c4h8-1+oh=nc3h7+ch2o	1.37E+12	0	-1040
50	c4h8-1+h=c2h4+c2h5	2.67E+12	0.47	5431.1
	Réactions du but-1-én-4-yle	А	n	Ea
52	c4h714=c2h4+c2h3	8.77E+12	-0.22	36290
53	c4h714+h=c4h6+h2	1.80E+12	0	0
54	c4h714+o=c4h6+oh	4.00E+13	0	0
55	c4h714+oh=c4h6+h2o	4.00E+13	0	0
56	c4h714+ho2=c4h6+h2o2	1.80E+12	0	0
57	c4h714+ch3=c4h6+ch4	1.10E+13	0	0
58	c4h714+c2h3=c4h6+c2h4	4.00E+12	0	0
59	c4h714+c2h5=c4h6+c2h6	4.00E+12	0	0
60	c4h714+c3h3=c4h6+c3h4-p	4.00E+12	0	0
61	c4h714+c3h3=c4h6+c3h4-a	4.00E+12	0	0
62	c4h714+c3h5-a=c4h6+c3h6	6.30E+12	0	0
63	c4h714+o2=c4h6+ho2	1.02E+12	0	22654
64	c4h714+ho2=>c3h5-a+ch2o+oh	1.00E+12	0	0
65	c4h714+h=ch3+c3h5-a	2.00E+21	-2	11000
	Réactions du but-1-én-3-yle	А	n	Ea
66	c4h713(+M)=c4h6+h(+M)	4.70E+08	1.32	44697.6
67	LOW / 4.60E-37 15.37 -603.1 /			
68	h2/2/ h2o/6/ ch4/2/ co/1.5/ co2/2/ c2h6/3/			
69	c4h713+ho2=c4h6+h2o2	1.00E+12	0	0
70	c4h713+oh=c4h6+h2o	6.00E+12	0	0
71	c4h713+oh=c4h612+h2o	6.00E+12	0	0
72	c4h713+o=c4h6+oh	4.00E+13	0	0
73	c4h713+h=c4h6+h2	3.16E+13	0	0
74	c4h713+h=c4h612+h2	1.80E+13	0	0
75	c4h714+h=c4h713+h	1.00E+13	0	0
76	c4h713+ch3=c4h6+ch4	1.00E+13	0	0
77	c4h713+ch3=c4h612+ch4	1.00E+13	0	0
78	c4h713+c2h3=c4h6+c2h4	3.98E+12	0	0

79	c4h713+c2h3=c4h612+c2h4	1.00E+13	0	0
80	c4h713+c2h5=c4h6+c2h6	4.00E+12	0	0
81	c4h713+c3h3=c4h6+c3h4-p	4.00E+12	0	0
82	c4h713+c3h3=c4h6+c3h4-a	4.00E+12	0	0
83	c4h713+c3h5-a=c4h6+c3h6	6.30E+12	0	0
84	c4h713+o2=c4h6+ho2	1.00E+09	0	0
85	c4h713+ho2=>c2h3cho+ch3+oh	7.00E+12	0	-1000
86	c4h713+ho2=>c2h3+ch3cho+oh	7.00E+12	0	-1000
87	c4h713+ho2=>ch2o+c3h5-s+oh	7.00E+12	0	-1000
88	c4h713+o=c2h3cho+ch3	6.03E+13	0	0
	Réactions du but-1-én-2-yle	A	n	Ea
89	c4h712+o2=>c2h5co+ch2o	4.60E+16	-1.39	1010
90	c4h712=c3h4-a+ch3	9.59E+14	-0.71	31260
	Réactions du but-1-én-1-yle	A	n	Ea
91	c4h711=c2h2+c2h5	1.07E+15	-0.56	30320
92	c4h711+o2=>hco+c2h5cho	4.60E+16	-1.39	1010
	Réactions du trans-2-butène/cis-2-butène (t2c4h8/c2h4h8)	A	n	Ea
93	c2c4h8=t2c4h8	3.98E+13	0	62000
94	t2c4h8=c3h5-a+ch3	3.75E+66	-15.6	97300
95	c3h5-s+ch3(+M)=t2c4h8(+M)	5.00E+13	0	0
	LOW/8.54E+58 -11.94 9769.8/			
	TROE/0.175 1340.6 6E+4 10139.8/			
96	h+c4h713(+M)=t2c4h8(+M)	2.00E+14	0	0
	LOW/1.33E+60 -12 5967.8/			
	TROE/2.0E-2 1097 1097 6.86E+3/			
97	t2c4h8+h=c4h713+h2	4.44E+04	2.81	4414
98	t2c4h8+oh=c4h713+h2o	5.10E+08	1.4	1250
99	t2c4h8+ch3=c4h713+ch4	7.14E+00	3.57	7642
100	t2c4h8+ho2=c4h713+h2o2	5.94E+04	2.57	16140
101	t2c4h8+o=c4h713+oh	2.19E+11	0.81	7550
102	t2c4h8+c4h713=c4h8-1+c4h713	3.98E+13	0	15800
103	t2c4h8+h=c4h722+h2	8.20E+05	2.5	9790
104	t2c4h8+o=c4h722+oh	1.20E+11	0.7	7630
105	t2c4h8+oh=c4h722+h2o	2.20E+06	2	1450
106	t2c4h8+ch3=c4h722+ch4	1.96E+00	3.5	11700
107	t2c4h8+o2=c4h713+ho2	4.00E+13	0	39390
108	t2c4h8+o=ch3co+c2h5	2.17E+05	2.34	-1050
109	t2c4h8+o=ch3chcho+ch3	1.81E+05	2.34	-1050
110	t2c4h8+o=ch3cho+c2h4	3.25E+05	2.34	-1050
111	t2c4h8+h=c3h6+ch3	5.34E+12	0.47	5431.1
112	t2c4h8+oh=c2h5+ch3cho	2.74E+12	0	-1040
	Réaction spécifique au cis-2-butène (c2c4h8)	А	n	Ea
113	c2c4h8=c4h6+h2	1.00E+13	0	65500
	Réaction du but-2-én-2-yle (c4h722)	A	n	Ea
114	c4h722=c3h4-p+ch3	6.33E+10	0.52	30020

	Réactions du 2-méthyl-prop-1-yle (ic4h9)	A	n	Ea
115	ic4h9+h=ic4h8+h2	9.04E+11	0	0
116	ic4h9=tc4h9	3.56E+10	0.88	34600
117	ic4h9=c3h6+ch3	9.59E+11	0.77	30710
118	ic4h9+ho2=>ic3h7cho+h+oh	1.80E+13	0	0
119	ic4h9+o2=ic4h8+ho2	4.50E+11	0	5000
120	ic4h9+ho2=>ic3h7+ch2o+oh	2.41E+13	0	0
	Réactions du 2-méthyl-prop-2-yle (tc4h9)			
121	tc4h9+o2=ic4h8+ho2	2.07E+12	0	5000
122	tc4h9+ho2=>ch3coch3+ch3+oh	1.80E+13	0	0
123	tc4h9+oh=ic4h8+h2o	1.80E+13	0	0
124	tc4h9+h=ic4h8+h2	5.40E+12	0	0
125	tc4h9+o=ic4h8+oh	4.16E+14	0	0
126	tc4h9+o=ch3coch3+ch3	1.04E+14	0	0
127	tc4h9+ch3=ic4h8+ch4	1.26E+13	0	-596
	Réactions de l' <i>iso-</i> butène (ic4h8)	A	n	Ea
128	ic4h8+h=ic4h9	6.25E+11	0.51	2620
129	ic4h8+h=tc4h9	1.06E+12	0.51	1230
130	ic4h8+o=ic4h8o	1.00E+08	1.28	-1079
131	ic4h8=ic4h7+h	1.50E+15	0	83000
132	ic4h7v+h=ic4h8	1.00E+14	0	0
133	c3h5-t+ch3(+M)=ic4h8(+M)	2.50E+13	0	0
	LOW/4.270E+58 -11.940 9769.80/			
	TROE/0.175 1340.6 60000.0 10139.8/			
134	ic4h8+oh=ch2o+ic3h7	1.37E+12	0	-1040
135	ic4h8+oh=ch3coch3+ch3	1.37E+12	0	-1040
136	ic4h8+o=oh+ic4h7	4.50E+13	0	4500
137	ic4h8+h=h2+ic4h7	1.72E+14	0	7990
138	ic4h8+oh=h2o+ic4h7	6.00E+06	2	-298
139	ic4h8+ho2=h2o2+ic4h7	1.92E+04	2.6	13900
140	ic4h8+hco=ch2o+ic4h7	3.30E+11	0	6210
141	ic4h8+ch3=ch4+ic4h7	3.20E+12	0	10000
142	ic4h8+ch3o2=ch3o2h+ic4h7	3.96E+12	0	17050
143	ic4h8+ic4h9=ic4h7+ic4h10	4.44E+00	3.5	6640
144	ic4h8+c3h5-t=ic4h7+c3h6	7.94E+11	0	20500
145	ic4h8+c3h5-s=ic4h7+c3h6	7.94E+11	0	20500
146	ic4h8+c3h5-a=ic4h7+c3h6	7.94E+11	0	20500
147	ic4h8+c2h3=ic4h7+c2h4	1.00E+13	0	13000
148	ic4h8+o=oh+ic4h7v	3.00E+12	0	4500
149	ic4h8+h=h2+ic4h7v	1.20E+14	0	13000
150	ic4h8+oh=h2o+ic4h7v	4.50E+12	0	3060
151	ic4h8+ch3=ch4+ic4h7v	2.00E+12	0	15000
	Réactions du 2-méthyl-prop-1-én-3-yle (ic4h7)	А	n	Ea
152	ic4h7+h=c3h5-a+ch3	2.20E+51	-9.98	37730
153	ic4h7=c4h713	6.00E+13	0	70000

154	ic4h7=c3h4-a+ch3	1.00E+13	0	51000
155	ic4h7+h=c3h4-a+ch4	6.31E+13	0	0
156	ic4h7+ho2=ic4h7o+oh	4.50E+12	0	0
157	ic4h7+ch3=but2mld	7.00E+12	0	0
158	ic4h7+ic4h7=c3h4-a+but2mld	5.00E+10	0	6300
	Réactions du 2-méthyl-prop-1-én-1-yle (ic4h7v)	A	n	Ea
159	ic4h7v=ic4h7	5.00E+12	0	36000
160	ic4h7v+o2=ch3coch3+hco	4.60E+16	-1.39	1010
161	ic4h7v=c3h4-p+ch3	1.30E+14	0	37000
162	ic4h7v+ch3=but2m2d	1.00E+15	-0.8	0

\circ 1,3-butadiène (C₄H₆)

Le 1,3-butadiène est un composé formé lors de la combustion de tous les hydrocarbures. Le mécanisme cinétique de combustion du 1,3-butadiène ajouté au mécanisme actuel provient de l'étude de Dagaut et Cathonnet [*Dagaut, 1998 b*]. Le mécanisme a été validé par comparaison des fractions molaires de produits obtenues en réacteur auto-agité (richesse = 0,25-2, P = 1-10 atm et T = 750-1250 K) et les concentrations de produits prédits par le modèle dans les mêmes conditions.

D'une manière générale, l'étude montre que ce composé réagi selon deux voies privilégiées :

$$iC_{4}H_{5} \rightarrow C_{4}H_{5}O$$

$$C_{4}H_{6} \xrightarrow{7} C_{3}H_{5} - A \rightarrow C_{3}H_{5}O \rightarrow C_{2}H_{3}CHO \rightarrow C_{2}H_{3}CO \rightarrow C_{2}H_{3} \rightarrow CO$$

$$C_{2}H_{3}CHCHO/OC_{4}H_{6}$$

Une première voie, par réaction de métathèse avec les radicaux OH/O, conduit à la formation du radical 1,3-butadién-2-yle (iC₄H₅). Une seconde voie passe par l'addition de O/OH sur une double liaison C=C, pour former C₂H₃CHCHO et OC₄H₆.

De leurs travaux sur le 1,3-butadiène, Dagaut et Cathonnet ont également regroupé et actualisé les constantes de vitesse permettant de décrire l'oxydation des isomères du 1,3-butadiène (C_4H_6). Les constantes cinétiques de l'oxydation du vinylacétylène et du 1,3-butadiyne sont également incluses dans ce mécanisme. Ces composés, fortement insaturés, ont été étudiés par Hidaka et al. [*Hidaka, 1992*], [*Hidaka, 1995, a*], [*Hidaka, 1995, b*], [*Hidaka, 1996*], dont la plupart des constantes de vitesse ont été utilisées pour ce mécanisme. Les composés concernés sont :

- 1-butyne (BUTYNE)
- 2-butyne (BUTYN2)
- 1,2-butadiène (C_4H_612)
- Vinylacétylène (C₄H₄)
- 1,3-butadiyne (C₄H₂)

o n-butanal/iso-butanal

Ces deux aldéhydes ont été étudiés par Veloo et al. [*Veloo, 2013, b*]. Les expériences, menées en réacteur auto-agité (P = 10 atm, T = 500-1200K, temps de passage 0,7 s et richesse = 0,3-2) et en brûleur à jets opposés (richesse = 0,75-1,6, $T_i = 343$ K, P = 1 atm) ont été utilisées pour valider les sous-mécanismes d'oxydation de l'*iso*-butanal et du *n*-butanal, qui ont été intégrés à notre mécanisme.

IV.2.2.e. Sous mécanismes en C_5 - C_7 :

o 2-méthyl-1-butène/2-méthyl-2-butène

Le 2-méthyl-1-butène et 2-méthyl-2-butène sont des produits de combustion de l'*iso*butène. Dagaut et al. [*Dagaut, 1998 a*], lors de l'étude de l'*iso*-butène, ont proposé un sousmécanisme d'oxydation de ces composés insaturés ramifiés.

Dans le cas de l'oxydation de l'*iso*-butène, iC_4H_8 réagit avec CH₃ pour former le radical tC_5H_{11} . tC_5H_{11} se recombine avec H pour donner 2-méthyl-1-butène très majoritairement. Le 2-méthyl-1-butène produit du 2-méthyl-2-butène par isomérisation.

o Isoprène

Les réactions ajoutées au mécanisme proviennent des travaux de Touchard et al. [*Touchard, 2005, b*] sur la modélisation de l'oxydation de composés insaturés. Cependant, les réactions d'addition des radicaux OH sur une double liaison de l'isoprène et leurs constantes de vitesse ont été estimées par analogie avec les travaux de Heyberger et al. [*Heyberger, 2001*].

o Cyclopentène

Les données cinétiques utilisées dans le mécanisme pour l'oxydation du cyclopentène sont issues des travaux de Dagaut et al. [*Dagaut, 2002*]. Certaines constantes ont cependant été actualisées suite aux travaux de Lindstedt et al. [*Lindstedt, 2002*] sur l'oxydation du cyclopentène et du méthylcyclopentadiène :

Réactions du cyclopentène (cyc5h8)	А	n	E_a (cal.mol ⁻¹)
cyc5h8+h=cyc5h7+h2	2.80E+13	0	2.26E+03
cyc5h8+oh=cyc5h7+h2o	3.43E+09	1.18	-4.47E+02
c3h5-a+c2h4=cyc5h8+h	1.20E+10	0	11488
c5h5=lc5h5	3.90E+11	1	7.72E+04
lc5h5=c3h3+c2h2	3.70E+11	0	2.98E+04

Tableau IV-4 : Réactions du cyclopentène de [Lindsted, 2002] ajoutées au mécanisme.

o Cyclopentadiène

Intermédiaire de combustion fréquent, le 1,3-cyclopentadiène a fait l'objet d'études dans les années 90, menées de pair avec des études sur d'autres composés cycliques comme le benzène et le toluène [*Emdee, 1992*]. Les réactions menant au 1,3-cyclopentadiène ainsi que leurs constantes de vitesse incluses dans notre mécanisme proviennent des travaux de Lindstedt et al. [*Lindstedt, 2002*] et de Emdee et al. [*Emdee, 1992*]. Pour la voie de formation $C_3H_5 - A + C_2H_2 \rightleftharpoons CPD + H$, on a suivi les recommandations cinétiques de Tsang [*Tsang, 1991*].

o Benzène

Les voies de formation du benzène à partir de composés C_0 - C_4 ont été discuté dans plusieurs travaux [*Lindstedt, 1994*], [*Dagaut, 1998, c*]. La base utilisée dans ce travail pour représenter l'oxydation du benzène provient de [*Dagaut, 2002*]. La réaction $C_6H_5 +$ $H(+M) \leftrightarrow C_6H_6(+M)$ a été ajoutée suite aux travaux de Wang [*Wang, 1997*].

o Toluène

Les réactions de formation et consommation du toluène proviennent de [Dagaut, 2002].

IV.3. Conclusion

Les outils de simulation utilisés ont été présentés. Il s'agit de modules du logiciel CHEMKIN. Les sous-mécanismes cinétiques utilisés dans cette étude ont été présentés. Les résultats issus des modélisations cinétiques mettant en œuvre cette chimie sont présentés au chapitre V pour l'oxydation des butènes et au chapitre VI pour l'oxydation de l'éthanol, de la 2-butanone et du toluène.

Références bibliographiques

- [*Baldwin*, 1980] R. R. Baldwin, R. W. Walker, R. W. Walker, Addition of 2,2,3-Trimethylbutane to Slowly Reacting Mixtures of Hydrogen and Oxygen at 480 °C, Journal of the Chemical Society, Faraday Transactions 1, 77, (1981) 2157-2173.
- [*Battin-Leclerc*, 2008] F. Battin-Leclerc, Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates, Progress in Energy and Combustion Science, 34 (2008) 440-498.
- [Baulch, 2005] D. L. Baulch, C. T. Bowman, C. J. Cobos, R. A. Cox, Th. Just, J. A. Kerr, M. J. Pilling, D. Stocker, J. Troe, W. Tsang, R. W. Walker, J. Warnatz, Evaluated Kinetic Data for Combustion Modeling: Supplement II, Journal of Physical and Chemical Reference Data, 34 (2005) 757.
- [*Chakir*, 1989] A. Chakir, M. Cathonnet, J. C. Boettner, F. Gaillard, Kinetic study of n-butane oxidation, Combustion Science and Technology, 65(4) (1989) 207-230.
- [Chang, 1994] A. Y. Chang, D. F. Davidson, M. Di Rosa, R. K. Hanson, C. T. Bowman, Shock tube experiments for development and validation of kinetic models of hydrocarbon oxidation, Twenty-fifth Symposium (International) on combustion, The combustion Institute, Pittsburgh, Poster 3-23.
- [Cribb, 1992] P. H. Cribb, J. E. Dove,S. Yamazaki, A Kinetic Study of the Oxidation of Methanol Using Shock Tube and Computer Simulation Techniques, Combustion and Flame, 88 (1992) 186-200.
- [*Dagaut, 1987*] P. Dagaut, M. Cathonnet, J.-C. Boettner, F. Gaillard, Kinetic Modeling of Propane Oxidation, Combustion Science and Technology, 56 (1987) 23-63.
- [*Dagaut, 1990, a*] P. Dagaut, M. Cathonnet, Kinetics of methane oxidation in a high-pressure jet-stirred reactor Experimental results, Journal of Chemical Physics, 87 (1990) 221.
- [*Dagaut, 1990, b*] P. Dagaut, M. Cathonnet, J.-C. Boettner, Ethylene Pyrolysis and Oxidation: A Kinetic Modeling Study, International Journal of Chemical Kinetics, Vol. 22 (1990) 641-664.
- [*Dagaut, 1990, c*] P. Dagaut, M. Cathonnet, J.-C. Boettner, Propyne Oxidation: A Kinetic Modeling Study, Combustion Science and Technology, 71 (1990) 111-128.

- [*Dagaut, 1991*] P. Dagaut, M. Cathonnet, J.-C. Boettner, Kinetics of Ethane Oxidation, International Journal of Chemical Kinetics, 23 (1991) 437-455.
- [*Dagaut, 1992 a*] P. Dagaut, M. Cathonnet, J.-C. Boettner, Kinetic Modeling of Propane Oxidation and Pyrolysis, International Journal of Chemical Kinetics, 24 (1992) 813-837.
- [*Dagaut, 1992 b*] P. Dagaut, M. Cathonnet, J.-C. Boettner, A Kinetic Modeling of Propene Oxydation in a JSR and Flame, Combustion Science and Technology, 84 (1992) 167-185.
- [*Dagaut, 1995*] P. Dagaut, M. Reuillon, D. Voisin, M. Cathonnet, Mc Guinness, J. M. Simmie, Acetaldehyde Oxidation in a JSR and Ignition in Shock Waves: Experimental and Comprehensive Kinetic Modeling, Combustion Science and Technology, 107 (1995) 301-316.
- [*Dagaut, 1998 a*] P. Dagaut, M. Cathonnet, Isobutene Oxidation and Ignition: Experimental and Detailed Kinetic Modeling Study, Combustion Science and Technology, 137(1) (1998) 237-275.
- [*Dagaut, 1998 b*] P. Dagaut, M. Cathonnet, The Oxidation of 1,3-Butadiene: Experimental Results and Kinetic Modeling, Combustion Science and Technology, 140 (1998) 225-257.
- [*Dagaut, 1998, c*] P. Dagaut, M. Cathonnet, A comparative study of the kinetics of benzene formation from unsaturated C_2 to C_4 hydrocabons, Combustion and Flame, 113 (1998) 620-623.
- [*Dagaut, 2002*] P. Dagaut, On the kinetics of hydrocarbons oxidation from natural gas to kerosene and diesel fuel, Physical Chemistry Chemical Physics, 4 (2002) 2079-2094.
- [*Dagaut, 2005*] P. Dagaut, A. Nicolle, Experimental and detailed kinetic modeling study of hydrogen-enriched natural gas blend oxidation over extended temperature and equivalence ratio ranges, Proceedings of the Combustion Institute, 30 (2005) 2631-2638.
- [Davis, 1998] S. G. Davis, C. K. Law, Determination of and Fuel Structure Effects on Laminar Flame Speeds of C1 to C8 Hydrocarbons, Combustion Science and Technology, 140 (1998) 427-449.
- [*Dayma*, 2007] G. Dayma, K. Hadj Ali, P. Dagaut, Experimental and detailed kinetic modeling study of the high pressure oxidation of methanol sensitized by nitric oxide and nitrogen dioxide, Proceedings of the Combustion Institute, 31 (2007) 411-418.

- [*Dias, 2004*] V. Dias, J. Vandooren, Chimie de la combustion Flammes à base d'hydrocarbures, Techniques de l'ingénieur (2004).
- [Egolfopoulos, 1989] F. N. Egolfopoulous, P. Cho, C. K. Law, Laminar flame speeds of methane-air mixtures under reduced and elevated pressures, Combustion and flames, 76 (1989) 375.
- [Egolfopoulos, 1992] F. N. Egolfopoulos, D. X. Du, C. K Law, A Comprehensive Study of Methanol Kinetics in Freely-Propagating and Burner-Stabilized Flames, Flow and Static Reactors, and Shock Tubes, Combustion Science and Technology, 83(1) (1992) 33-75.
- [*Emdee, 1992*] J. L. Emdee, K. Brezinsky, I. Glassman, A kinetic model for the oxidation of toluene near 1200 K, The Journal of Physical Chemistry A, 96 (1992) 2151-2161.
- [*Fenard*, 2014] Y. Fenard, P. Dagaut, G. Dayma, F. Halter, F. Foucher, Experimental and kinetic modeling study of trans-2-butene oxidation in a jet-stirred reactor and a combustion bomb, Combustion and flame, In press (2014).
- [*Frenklach, 1984*] M. Frenklach, D. E. Bornside, Shock-Initiated Ignition in Methane-Propane Mixtures, Combustion and Flames, 56 (1984) 1-27.
- [*Glarborg*, *1986*] P. Glarborg, R. J. Kee, J. F. Grcar and J. A. Miller, PSR: A Fortran program for modelling well-stirred reactors, in SAND86-8209, 1986, Sandia National Laboratories: Livermore, CA.
- [*Goos, 2014*] E. Goos, A. Burcat and B. Ruscic, Extended Third Millenium Ideal Gas Thermochemical Database with updates from Active Thermochemical Tables <u>http://burcat.technion.ac.il/dir</u> (2014).
- [*Gordon, 1971*] S. Gordon and B. J. McBride, Computer program for calculation of complex chemical equilibrium compositions, rocket performance, incident and reflected shocks and Chapman-Jouguet detonations, NASA SP-273, 1971.
- [GRI, 2000] G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. Lissianski, Z. Qin, http://www.me.berkeley.edu/gri_mech/

- [*Gulati, 1988*] S. K. Gulati, R. W. Walker, Arrhenius parameters for the reaction $i-C_3H_7 + O2 \rightarrow C_3H_6 + HO_2$, Journal of the Chemical Society, Faraday Transactions 1, 84 (2) (1988) 401.
- [*Held*, 1994] T. J. Held, F. L. Dryer, An experimental and computational study of methanol oxidation in the intermediate and high temperature regimes, Proceedings of the Combustion Institute, 25 (1994) 901-908.
- [*Held*, 1998] T. J. Held, F. L. Dryer, A Comprehensive Mechanism for Methanol Oxidation, International Journal of Chemical Kinetics, 30 (1998) 805-830.
- [*Heyberger, 2001*] B. Heyberger, F. Battin-Leclerc, V. Warth, R. Fournet, G. M. Côme, G. Scacchi, Comprehensive Mechanism for the Gas-Phase Oxidation of Propene, Combustion and Flames 126 (2001) 1780-1802.
- [Heyberger, 2002] B. Heyberger, N. Belekki, V. Conraud, P.-A. Glaude, R. Fournet, F. Battin-Leclerc, Oxidation of small alkenes at high temperature, International Journal of Chemical Kinetics, 34 (2002) 666-677.
- [Hidaka, 1992] Y. Hidaka, H. Masaoka, H. Oshita, T. Nakamura, K. Tanaka, and H. Kawano, Thermal Decomposition of Vinylacetylene in Shock Waves, International Journal of Chemical Kinetics, 24 (1992) 871-885.
- [Hidaka, 1993] Y. Hidaka, T. Taniguchi, H. Tanaka, T. Kamesawa, K. Inami, H. Kawano, Shock-Tube Study of CH2O Pyrolysis and Oxidation, Combustion and Flame, 92 (1993) 365-376.
- [*Hidaka, 1995, a*] Y. Hidaka, T. Higashiara, N. Ninomiya, T. Oki, H. Kawano, Thermal Isomerization and Decomposition of 1,2-Butadiene in Shock Waves, International Journal of Chemical Kinetics, 27 (1995) 331-341.
- [*Hidaka, 1995, b*] Y. Hidaka, T. Higashiara, T. Oki, H. Kawano, Thermal Decomposition of 1-Butyne in Shock Waves, International Journal of Chemical Kinetics, 27 (1995) 321-330.
- [Hidaka, 1996] Y. Hidaka, T. Higashiara, N. Ninomiya, H. Masaoka, T. Nakamura, and H. Kawano, Shock Tube and Modeling Study of 1,3-Butadiene Pyrolysis, International Journal of Chemical Kinetics, 28 (1996) 137-151.

- [Hidaka, 1999] Y. Hidaka, T. Nishimori, K. Sato, Y. Henmi, R. Okuda, K. Inami, T. Higashihara, Shock-Tube and Modeling Study of Ethylene Pyrolysis and Oxidation, Combustion and Flame 117 (1999) 755-776.
- [*Hochgreb*, 1992] S. Hochgreb and F. L. Dryer, A Comprehensive Study on CH₂O Oxidation Kinetics, Combustion and Flame 91 (1992) 257-284.
- [Jasper, 2009] A. W. Jasper, S. J. Klippenstein, and L. B. Harding, Theoretical Rate Coefficients for the Reaction of Methyl Radical with Hydroperoxyl Radical and for Methylhydroperoxide Decomposition, Proceedings of the Combustion Institute, 32 (1) (2009) 279-286.
- [Kee, 1985] R. J. Kee, J. F. Grcar, M. D. Smooke, J. A. Miller, Premix: A Fortran program for modeling steady laminar one-dimensional premixed flame, Sandia Report No. SAND85-8240, 1985, Sandia National Laboratories, Livermore, CA.
- [Kee, 1989] R. J. Kee, F. M. Rupley and J. A. Miller, CHEMKIN-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics, in SAND89-8009, 1989, Sandia National Laboratories: Livermore, CA.
- [Kéromnès, 2013] A. Kéromnès, W. K. Metcalfe, K. A. Heufer, N. Donohoe, A. K. Das, C.-J. Sung, J. Herzler, C. Naumann, P. Griebel, O. Mathieu, M. C. Krejci, E. L. Petersen, W. J. Pitz, H. J. Curran, An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures, Combustion and Flame 160 (2013) 995-1011.
- [*Klippenstein*, 2004] J. A. Miller and S. J. Klippenstein, The H + C2H2 (+M) ⇒ C2H3 (+M) and H + C2H2 (+M) ⇒ C2H5 (+M) reactions: Electronic structure, variational transitionstate theory, and solutions to a two-dimensional master equation, Physical Chemistry Chemical Physics , 6 (2004) 1192-1202.
- [Klippenstein, 2005] J. P. Senosiain, S. J. Klippenstein and J. A. Miller, The reaction of acetylene with hydroxyl radicals, The Journal of Physical Chemistry A, 109 (27) (2005) 6045-6055.

- [*Laskin*, 2000] A. Laskin, H. Wang, C. K. Law, Detailed kinetic modeling of 1,3-butadiene oxidation at high temperatures, International Journal of Chemical Kinetics, 32(10) (2000) 589-614.
- [*Le Cong*, 2009] T. Le Cong, P. Dagaut, Oxidation of H₂/CO₂ mixtures and effect of hydrogen initial concentration on the combustion of CH₄ and CH₄/CO₂ mixtures: Experiments and modeling, Proceedings of the Combustion Institute 32 (2009) 427-435.
- [*Le Cong, 2007*] T. Le Cong, Etude expérimentale et modélisation de la cinétique de combustion de combustibles gazeux : Méthane, gaz naturel et mélanges contenant de l'hydrogène, du monoxyde de carbone et de l'eau, Thèse, Université d'Orléans (2007).
- [*Leplat, 2011*] N. Leplat, P. Dagaut, C. Togbé, J. Vandooren, Numerical and experimental study of ethanol combustion and oxidation in laminar premixed flames and in jet-stirred reactor, Combustion and Flame 158 (2011) 705-725.
- [Lindemann, 1922] F. A. Lindemann, S. Arrhenius, I. Langmuir, N. R Dhar, J. Perrin, W. C. McC Lewis, Discussion on the radiation theory of chemical action, Transactions of the Faraday Society, 17 (1922) 598-606.
- [*Lindstedt, 1994*] R. P. Lindstedt, G. Skevis, Detailed kinetic modeling of premixed benzene flames, Combustion and Flame, 99 (1994) 551-561.
- [*Lindstedt*, 2002] R. P. Lindstedt, K.-A. Rizos, The formation and oxidation of aromatics in cyclopentene and methyl-cyclopentadiene mixtures, Proceedings of the Combustion Institute, 29 (2002) 2291–2298.
- [*Mahmud*, 1988] K. Mahmud, A. Fontijn, An HTP kinetics study of the reaction of (O₃ P) atoms with propylene over the 300 to 1215 K temperature range. Twenty-second Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, p. 991.
- [*Matheu, 2003*] D. M. Matheu, W. H. Green, J. M. Grenda, Capturing pressure-dependence in automated mechanism generation: Reactions through cycloalkyl intermediates International Journal of Chemical Kinetics, 35(3) (2003) 95-119.
- [*Marinov, 1999*] N. M. Marinov, Kinetic Model for High Temperature Ethanol Oxidation, International Journal of Chemical Kinetics, 31 (1999) 183-220.

- [*Metcalfe, 2013*] W. K. Metcalfe, S. M. Burke, S. S. Ahmed, H. J. Curran, A Hierarchical and Comparative Kinetic Modeling Study of C1-C2 Hydrocarbon and Oxygenated Fuels, International Journal of Chemical Kinetics, 45 (2013) 638-675.
- [*Miller, 2013*] J. A. Miller, S. Klippenstein, Dissociation of propyl radicals, and other reactions on a C₃H₇ potential, The Journal of Physical Chemistry A, 117 (2013) 2718-2727.
- [*Muller, 1995*] C. Muller, V. Michel, G. Scacchi and G. M. Come, THERGAS: A computer program for the evaluation of thermochemical data molecules and free radicals in the gas phase, Journal de Chimie physique et Physico-Chimie Biologique, 92 (1995) 1154-1178
- [*Park*, 2003] J.Park, Z.F.Xu, M.C.Lin, Thermal decomposition of ethanol II : A computational study of the kinetics and mechanism for the H+C₂H₅OH reaction, The Journal of Physical Chemistry A, 118 (2003) 9990-9996.
- [Petersen, 1996] E. L. Petersen, M. Rohrig, D. F. Davidson, R. K. Hanson, C. T. Bowman, High-pressure methane oxidation behind reflected shock waves, Twenty-Sixth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh (1996) 799-806.
- [Pichon, 2009] S. Pichon, G. Black, N. Chaumeix, M. Yahyaoui, J.M. Simmie, H.J. Curran, R. Donohue, The combustion chemistry of a fuel tracer: Measured flame speeds and ignition delays and a detailed chemical kinetic model for the oxidation of acetone, Combustion and Flame, 156 (2009) 494–504.
- [Pitz, 2007] W. J. Pitz, C. V. Naik, T. Ní Mhaoldúin, H. J. Curran, J. P. Orme, J. M. Simmie, C. K. Westbrook, Modelling and Experimental Investigation of Methylcyclohexane Oxidation in a Rapid Compression Machine, Proceedings of the Combustion Institute, 31 (2007) 267–275.
- [*Reynolds, 1986*] C. W. Reynolds, The element potential method for chemical equilibrium analysis: implementation in the interactive program STANJAN, 1986, Departement of Mechanical Engineering: Stanford University.
- [*Richard, 1976*] C. Richard, R. Martin, La reaction thermique, vers 500°C, du butene-2 cis pur ou en présence d'éthanal, Journal de Chimie Physique, 73 (1976) 745-754.

- [*Schärfe, 1985*] M. Schärfe, H. J. Ederer, U. Stabel, and K. H. Elbert, Modelling of n-hexane pyrolysis: Experimental investigations in a flow reactor at normal pressure, German chemical engineering, 8 (1985) 119.
- [Schenk, 2012] M. Schenk, L. Leon, K. Moshammer, P. Oßwald, T. Zeuch, L. Seidel, F. Mauss, K. Kohse-Höinghaus, Detailed mass spectrometric and modeling study of isomeric butene flames, Combustion and flame, 160(3) (2013) 487-503.
- [*Timonen, 1978*] R.S. Timonen, E. Ratajczak, D. Gutmanand, A.F. Wagner (1987) The Addition and Dissociation Reaction H + CO = HCO. Experimental Studies and Comparison with Theory, Journal of Physical Chemistry, 91 (1987) 5325.
- [*Touchard, 2005, a*] S. Touchard, construction et validation de modèles cinétiques détaillés pour la combustion de mélanges modèles des essences, Thèse, Institut National Polytechnique de Lorraine (2005).
- [*Touchard, 2005, b*] S. Touchard, R. Fournet, P.A. Glaude, V. Warth, F. Battin-Leclerc, G. Vanhove, M. Ribaucour, R. Minetti, Modeling of the oxidation of large alkenes at low temperature, Proceedings of the Combustion Institute, 30 (2005) 1073–1081.
- [Troe, 1983] R. G. Gilbert, K. Luther, and J. Troe, Theory of Thermal Unimolecular Reactions in the Fall-off Range. II. Weak Collision Rate Constants, Berichte der Bunsengesellschaft für Physikalische Chemie, 87 (1983) 169-177.
- [Tsang, 1986] W. Tsang, R. F. Hampson, Chemical Kinetic Data Base for Combustion Chemistry. Part I. Methane and Related Compounds, Journal of Physical and Chemical Reference Data, 15(3) (1986) 1087-1279.
- [*Tsang, 1990*] W. Tsang, P. Cui, Homogeneous Gas-phase decyclization of tetralin and benzocyclobutane, Journal of the American chemical society, 112(5) (1990) 166-1671.
- [*Tsang, 1991*] W. Tsang, Chemical Kinetic Data Base for Combustion Chemistry. Part V, Propene Journal of Physical and Chemical Reference Data, 20(2) (1991) 221-273.
- [*Tully*, 1985] F. P. Tully, J. E. M. Goldsmith, Kinetic study of hydroxyl radical-propene reaction, Chemical Physics Letters, 116 (1985) 345.
- [*Vagelopoulos, 1994*] C. M. Vagelopoulos, F. N. Egolfopoulous, Laminar flame speeds and extinction strain rates of mixtures of carbone monoxide with hydrogen, methane, and air,

Twenty-Fifth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh (1994) 1317-1323.

- [*Vandooren, 1986*] J. Vandooren, L. Oldenhove, Guertechin, P. J. Van Tiggelen, Kinetics in a Lean Formaldehyde Flame, Combustion and Flame, 64 (1986) 127-139.
- [Veloo, 2013, a] P.S. Veloo, P. Dagaut, C. Togbe, G. Dayma, S.M. Sarathy, C.K. Westbrook, F.N. Egolfopoulos, Jet-stirred reactor and flame studies of propanal oxidation Proceedings of the Combustion Institute, 34 (2013) 599-606.
- [Veloo, 2013, b] P.S. Veloo, P. Dagaut, C. Togbe, G. Dayma, S.M. Sarathy, C.K. Westbrook, F.N. Egolfopoulos, Jet-stirred reactor and flame studies of propanal oxidation Proceedings of the Combustion Institute, 34 (2013) 599-606.
- [*Wang*, 1997] H Wang, M Frenklach, A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames, Combustion and flame, 110(1) (1997) 173-221.
- [Wang, 2010] H. Wang, E. Dames, B. Sirjean, D. A. Sheen, R. Tango, A. Violi, J. Y. W. Lai, F. N. Egolfopoulos, D. F. Davidson, R. K. Hanson, C. T. Bowman, C. K. Law, W. Tsang, N. P. Cernansky, D. L. Miller, R. P. Lindstedt, A high-temperature chemical kinetic model of n-alkane (up to n-dodecane), cyclohexane, and methyl-, ethyl-, n-propyl and nbutyl-cyclohexane oxidation at high temperatures, JetSurF version 2.0, September 19, 2010 (http://melchior.usc.edu/JetSurF/JetSurF2.0).
- [*Warnatz, 1984*] Warnatz, J., Rate coefficients in the C/H/O system. Combustion Chemistry, p. 197, W. C. Gardiner, Jr. (Ed.). Springer Verlag, New York.
- [*Westbrook, 1984*] C. K. Westbrook, F. Dryer, Chemical kinetic modeling of hydrocarbon combustion, Progress in Energy and Combustion Science, 10 (1984) 1-57.
- [Wilk, 1989] R. D. Wilk, N. P. Cernansky, Propene Oxidation at Low and Intermediate Temperatures: A Detailed Chemical Kinetic Study, Combustion and flame, 77 (1989) 145-170.
- [*Wu, 1987*] C. H. Wu, R. D. Kern, Shock-tube study of allene pyrolysis, The Journal of Physical Chemistry A, 91 (1987) 6291.

- [*Xu*, 2004] Z.F.Xu, J.Park, and M.C.Lin, Thermal decomposition of ethanol. III. A computational study of the kinetics and mechanism for the $CH_3+C_2H_5OH$ reaction, Journal of Chemical Physics, 120 (2004) 6593-6599
- [*Xu*, 2007] S. Xu and M.C. Lin, Theoretical study on the kinetics for OH reactions with CH_3OH and C_2H_5OH , Proceedings of the Combustion Institute, 31 (2007) 159-166.
- [Yasunaga, 2009] K. Yasunaga, Y. Kuraguchi, R. Ikeuchi, H. Masaoka, O. Takahashi, T. Koike, Y. Hidaka, Shock tube and modeling study of isobutene pyrolysis and oxidation, Proceedings of the Combustion Institute, 32 (2009) 453–460.
- [Zhang, 2012] Y. Zhang, J. Cai, L. Zhao, J. Yang, H. Jin, Z. Cheng, Y. Li, L. Zhang, F. Qi, An experimental and kinetic modeling study of three butene isomers pyrolysis at low pressure, Combustion and Flame, 159(3) (2012) 905-917.

Chapitre V

Résultats expérimentaux et modélisation de l'oxydation des isomères du butène

V.	V. Résultats expérimentaux et modélisation de l'oxydation des						
	isomè	eres	du butène	166			
V	7.1. Ox	ydat	tion du 1-butène	166			
	V.1.1.	Gér	néralités sur le 1-butène	166			
	V.1.2.	Мо	délisation des résultats expérimentaux obtenus en réacteur auto-				
		agit	- té	169			
	V.1.2	2.a.	Conditions expérimentales	169			
	V.1.2	2.b.	Résultats expérimentaux et modélisation	169			
	V.1.2	2.c.	Analyse de voies réactionnelles	177			
	V.1.2	2.d.	Analyse de sensibilité	178			
	V.1.3.	Mo	délisation des résultats expérimentaux de vitesse de flamme en				
		bor	nbe sphérique	180			
	V.1.3	s.a.	Conditions expérimentales	180			
	V.1.3	8.b.	Résultats expérimentaux et modélisation	181			
	V.1.3	8.c.	Analyses de sensibilité	183			
	V.1.4.	Mo	délisation de délais d'auto-inflammation en tube à choc	186			
	V.1.4	l.a.	Conditions expérimentales	186			
	V.1.4	l.b.	Confrontation du modèle avec les résultats expérimentaux	186			
	V.1.5.	Fla	mme stabilisée sur brûleur	188			
	V.1.5	i.a.	Conditions expérimentales	188			
	V.1.5	5.b.	Confrontation du modèle avec les résultats expérimentaux	188			
	V.1.5	5.c.	Analyse de vitesse	190			
	V.1.6.	Cor	nclusion	192			
V	7.2. Ox	ydat	tion du <i>trans</i> -2-butène	193			
	V.2.1.	Gér	néralités sur le <i>trans</i> -2-butène	193			
	V 2 2	Mo	délisation des résultats expérimentaux obtenus en réacteur auto-				
	V.2.2.	agit	té	194			
	V.2.2	l a	Conditions expérimentales	194			
	V.2.2	2.b.	Résultats expérimentaux et modélisation	195			
	V.2.2	2.c.	Analyse de voies réactionnelles				
	V.2.2	2.d.	Analyses de sensibilité	202			
	V.2.3.	Мо	délisation des résultats expérimentaux de vitesse de flamme en				
		bor	nbe sphérique	204			
	V.2.3	8.a.	Conditions expérimentales	204			
	V.2.3	8.b.	Résultats expérimentaux et modélisation	204			
	V.2.4.	Fla	mme stabilisée sur brûleur	206			

V.2.4.a.		Conditions expérimentales	206
V.2.4	4.b.	Confrontation du modèle avec les résultats expérimentaux	207
V.2.5.	Con	nclusion	209
V.3. Ox	xydat	tion du <i>cis</i> -2-butène	209
V.3.1.	Gér	iéralités sur le <i>cis</i> -2-butène	209
V.3.2.	Мо	délisation des résultats expérimentaux obtenus en réacteur auto-	
	agit	- -	211
V.3.2	2.a.	Conditions expérimentales	211
V.3.2	2.b.	Résultats expérimentaux et modélisation	211
V.3.2	2.c.	Analyse de voies réactionnelles	217
V.3.3.	Мо	délisation des résultats expérimentaux de vitesse de flamme en	
	bon	nbe sphérique	218
V.3.3	3.a.	Conditions expérimentales	218
V.3.3	3.b.	Résultats expérimentaux et modélisation	219
V.3.4.	Con	nclusion	220
V.4. Ox	xydat	tion de l' <i>iso</i> -butène	221
V.4.1.	Gér	iéralités sur l' <i>iso</i> -butène	221
V.4.2.	Мо	délisation des résultats expérimentaux obtenus en réacteur auto-	
	agit	é	222
V.4.2	2.a.	Conditions expérimentales	222
V.4.2	2.b.	Résultats expérimentaux et modélisation	223
V.4.2	2.c.	Analyse de voies réactionnelles	230
V.4.2	2.d.	Analyse de sensibilité	231
V.4.3.	Mo	délisation des résultats expérimentaux de vitesse de flamme en	
	bon	nbe sphérique	233
V.4.3	3.a.	Conditions expérimentales	233
V.4.3	3.b.	Résultats expérimentaux et modélisation	233
V.4.4.	Fla	mme stabilisée sur brûleur	235
V.4.4	1.a.	Conditions expérimentales	235
V.4.4	4.b.	Confrontation du modèle avec les résultats expérimentaux	236
V.4.4	1.c.	Analyse de vitesse	237
V.4.5.	Dél	ais d'auto-inflammation en tube à choc et spéciation	241
V.4.5	5.a.	Délais d'auto-inflammation	241
V.4.5	5.b.	Spéciation	244
VA6	Cor	nclusion	251

V.Résultats expérimentaux et modélisation de l'oxydation des isomères du butène.

Dans ce chapitre, les résultats expérimentaux obtenus pour chacun des isomères du butène sont présentés. De nouveaux résultats expérimentaux de mesure de produits d'oxydation ont été obtenus en réacteur auto-agité. Les vitesses de flamme des quatre isomères ont été mesurées expérimentalement à l'aide d'un dispositif de bombe sphérique.

Les résultats du modèle cinétique décrit au chapitre précédent sont confrontés aux données expérimentales afin de pouvoir juger de sa validité dans les conditions des expériences.

De manière à pouvoir étendre la validité de ce modèle, des données issues de la littérature ont été comparées aux résultats de simulation.

V.1. Oxydation du 1-butène

V.1.1. Généralités sur le 1-butène

Le 1-butène est un alcène de formule brute C_4H_8 , avec une insaturation. La présence d'une double liaison dans la chaîne carbonée entraîne une réactivité particulière.

Le logiciel Gaussian 09 [*Gaussian, 2003*], logiciel permettant des calculs de mécanique quantique (*ab initio*), peut être utilisé pour obtenir la géométrie de la molécule de 1-butène, et surtout les énergies de liaison qui lie les différents atomes de la molécule. Le calcul de l'énergie de liaison présenté dans ce chapitre est basé sur la méthodologie décrite par Blanksby et Ellison [*Blanksby, 2003*]. Cela revient à calculer l'enthalpie de la réaction qui mène du réactif à deux produits issus de la rupture de la liaison observée. Dans le cas du méthane, par exemple :

$$CH_4 \rightleftharpoons CH_3 + H \quad \Delta_r H^0$$

L'enthalpie de cette réaction est l'énergie de dissociation, EdL, et peut s'écrire :

$$EdL = \Delta_r H^0 = H^0_{CH_3} + H^0_H - H^0_{CH_4}$$

Où H_{CH_4} et H_H représentent les enthalpies électroniques des radicaux CH₃ et H, et H_{CH_4} l'enthalpie électronique du méthane. Pour calculer les enthalpies électroniques des espèces utilisées pour le calcul des énergies de dissociation du 1-butène, plusieurs méthodes sont utilisables. Parmi les méthodes disponibles, G3B3 et CBS-QB3 sont des méthodes sophistiqués qui ont été comparées par Qi et al. [*Qi, 2005*]. Dans leurs travaux, Qi et al. ont comparé les résultats de calcul des deux méthodes au résultats expérimentaux d'environ 200 composés organiques de moins de 8 atomes louds (c'est-à-dire hors atome d'hydrogène). Il en ressort que les deux méthodes donnent des résultats proches, mais que la méthode G3B3 donne une déviation moyenne sur les résultats d'énergie de dissociation de liaison plus faible que la méthode CBS-QB3. Nous avons donc choisi la méthode G3B3, une méthode composite en six étapes, pour laquelle les structures des espèces et les énergies vibrationnelles sont calculées au niveau de théorie B3LYP/6-31G(d).

Pour le 1-butène, la même méthode est appliquée. 6 réactions peuvent être envisagées. 4 réactions de rupture de liaison C-H :

$$CH_2 = CH - CH_2 - CH_3 \rightleftharpoons \dot{C}H = CH - CH_2 - CH_3 + \dot{H} \quad (1)$$

$$CH_2 = CH - CH_2 - CH_3 \rightleftharpoons CH_2 = \dot{C} - CH_2 - CH_3 + \dot{H} \quad (2)$$

$$CH_2 = CH - CH_2 - CH_3 \rightleftharpoons CH_2 = CH - \dot{C}H - CH_3 + \dot{H} \quad (3)$$

$$CH_2 = CH - CH_2 - CH_3 \rightleftharpoons CH_2 = CH - CH_2 - \dot{C}H_2 + \dot{H} \quad (4)$$

2 réactions de rupture C-C :

$$CH_2 = CH - CH_2 - CH_3 \rightleftharpoons \dot{C}H_2 - CH = CH_2 + \dot{C}H_3$$
(5)
$$CH_2 = CH - CH_2 - CH_3 \rightleftharpoons \dot{C}H = CH_2 + \dot{C}H_2 - CH_3$$
(6)

Les énergies de dissociation obtenues, sont présentées dans le tableau V.1, et comparées avec les valeurs expérimentales issues de la littérature [*Luo*, 2002].

Réaction	Energie de dissociation calculée (kcal.mol ⁻¹)	<i>Luo</i> , 2002 (kcal.mol ⁻¹)
(1)	110,69	-
(2)	107,39	-
(3)	84,58	83,8
(4)	100,86	98,1
(5)	74,29	75,9±0,9
(6)	99,00	100,0±1,0

Tableau V-1: Energies de dissociation calculées pour le 1-butène, comparées à la littérature.

Ces valeurs sont reportées sur la figure V.1, représentant la molécule de 1-butène de manière schématique, récapitulant les énergies de liaisons obtenues par calculs *ab initio*.

Figure V.1: Energies de liaison calculées par calculs ab initio pour la molécule de 1-butène.

Même si ces informations sont insuffisantes pour prédire la combustion du 1-butène, l'étude de ces énergies de liaison nous donne une indication quant aux amorçages unimoléculaires possibles et métathèses à prendre en compte en priorité. Ainsi, il en ressort que, parmi les radicaux butényles qui peuvent être formés par amorçage unimoléculaire par rupture de liaison C-H, c'est le but-1-èn-3-yle qui sera favorisé, avec une énergie de la liaison C-H la plus faible (84,58 kcal.mol⁻¹). Cependant, avec une énergie de liaison très inférieure, de 74,29 kcal.mol⁻¹, c'est la rupture C-C qui jouera le plus grand rôle dans l'oxydation du 1-butène à haute température. Avec une énergie de liaison de 107,39 et 110,69 kcal.mol⁻¹, les radicaux but-1-èn-2-yle et but-1-èn-1-yle, respectivement, sont les radicaux les moins probables.

V.1.2. Modélisation des résultats expérimentaux obtenus en réacteur auto-agité

V.1.2.a. Conditions expérimentales

Le dispositif du réacteur auto-agité permet des études d'oxydation sur de larges gammes de température, de richesse ou encore de temps de passage. Pour cette étude, le temps de passage est fixé, à 0,07 secondes, et c'est la température qui est variable. Le 1-butène, en raison de sa nature, ne présente pas de réactivité dans les basses températures, donc ne présente aucune flamme froide. La conversion du 1-butène n'est observable que pour des températures supérieures à 900 K. Le dispositif peut atteindre une température de 1450 K. Les débitmètres permettent d'ajuster les débits, quel que soit la température dans cette gamme de 900-1450 K pour des richesses allant de 0,25 à 2. Le système fonctionne à pression atmosphérique. Les conditions expérimentales pour l'étude de l'oxydation du 1-butène en réacteur auto-agité sont résumées dans le tableau V.2.

Richesse	X _{1-C4H8}	X _{O2}	X _{N2}	Pression	Temps de	Température
	initiale	initiale	initiale	(atm)	passage (s)	(K)
0,25	1,0.10-3	2,4.10-2	0,975	1	0,07	900-1175
0,5	1,0.10-3	1,2.10 ⁻²	0,987	1	0,07	900-1225
1	1,0.10-3	6,0.10 ⁻³	0,993	1	0,07	900-1290
2	1,0.10-3	3,0.10-3	0,996	1	0,07	900-1440

Tableau V-2: Conditions expérimentales pour l'oxydation du 1-butène en réacteur auto-agité

V.1.2.b. Résultats expérimentaux et modélisation

Pour chaque série expérimentale de l'oxydation du 1-butène, c'est-à-dire pour chaque richesse dans ce cas, les profils de fractions molaires de produits mesurés expérimentalement sont présentés en fonction de la température. Sur les graphes, sont présentés également les profils de fractions molaires simulés des espèces correspondantes. Les points expérimentaux sont représentés par des symboles et les simulations sont représentées par des lignes. Le résultat est présenté dans les figures V.3, V.4, V.5 et V.6.

Plusieurs techniques d'analyses ont été utilisées pour l'analyse qualitative et quantitative des gaz de combustion, comme la spectrométrie infrarouge à transformée de Fourier (IRTF) et

la chromatographie en phase gazeuse (CG) couplée à différents détecteurs (TCD, FID, spectromètre de masse). Les espèces mesurées sont reportées dans le tableau V.3.

IRTF				CG-FID			CG-TCD
H ₂ O	CH ₄	(Méthane)	C ₃ H ₄ -A	(Propadiène)	BUTYNE	(1-butyne)	O ₂
СО	C_2H_6	(Ethane)	C ₄ H ₈ -1	(1-butène)	BUTYN2	(2-butyne)	H_2
CO ₂	C_2H_4	(Ethylène)	$T2C_4H_8$	(T2-butène)	C_4H_4	(Vinylacétylène)	
CH ₂ O	C_2H_2	(Acétylène)	$C2C_4H_8$	(C2-butène)	C_4H_2	(Butadiyne)	
	C_3H_8	(Propane)	IC ₄ H ₈	(Iso-butène)	CPD	(1,3-Cyclopentadiène)	
	C_3H_6	(Propène	C_4H_6	(1,3-butadiène)	ISOPRENE	(Isoprène)	
	C ₃ H ₄ -P	(Propyne)	C ₄ H ₆ 12	(1,2-butadiène)	C_6H_6	(Benzène)	

Tableau V-3: Espèces mesurées expérimentalement lors de l'oxydation du 1-butène en JSR

Les résultats sont classés en fonction de la richesse. Dans une première approche, il est possible de comparer la consommation du 1-butène, en JSR, en fonction de la température, pour chacune des richesses. Les points expérimentaux ainsi que les simulations de l'oxydation du 1-butène sont tracés dans la figure V.2.

Figure V.2 : Données expérimentale (symboles) et simulation (lignes) de la consommation du 1-butène en réacteur auto-agité pour les richesses $\varphi = 0.25$; 0.5 ; 1 ; 2. P = 1 atm ; X_{1-butène} = 1000 ppm ; $\tau = 0.07$ s.

On peut constater que la conversion du 1-butène, quelle que soit la richesse, commence à une température proche de 950 K. Pour une richesse de 2, le 1-butène est entièrement consommé vers 1300 K, alors qu'à 1125 K, le carburant est entièrement converti à

 $\varphi = 0,25$. Expérimentalement, nous pouvons constater que les différences de conversions sont plus marquées pour les milieux pauvres ($\varphi = 0,25$ et 0,5) que pour les milieux stœchiométriques et riches ($\varphi = 1$ et 2). En effet, à 1120 K, le 1-butène est converti à presque 50% de sa concentration initiale pour $\varphi = 2$, un peu plus de 50 % pour $\varphi = 1$, alors que pour $\varphi = 0,25$, le 1-butène est complètement converti.

Le modèle reproduit globalement bien la consommation du 1-butène. Pour les richesses 1 et 2, un faible décalage en concentration en observable pour des températures proches de 1200 K.

Les figures V.3 à V.6 présentent les résultats expérimentaux obtenus en JSR pour l'oxydation du 1-butène et les modélisations associées réalisées avec le sous-programme PSR du logiciel CHEMKIN.

Les concentrations des produits finals de combustion, H₂O, CO et CO₂ sont généralement bien reproduites par le modèle. Pour $\varphi = 2$, la quantité d'eau obtenue par modélisation est supérieure à la valeur expérimentale. Pour $\varphi = 0,25$, 0,5 et 1, les profils de H₂O et CO₂ sont croissants sur notre gamme de température, alors que la concentration de monoxyde de carbone CO passe par un maximum avant de décroître. Pour $\varphi = 2$, le maximum de CO n'est pas atteint.

Les concentrations de méthane, CH₄, atteignant les 300 ppm pour le milieu le plus riche, sont bien prédites par le modèle. Les profils de formaldéhyde (CH₂O), éthylène (C₂H₄), éthane (C₂H₆) et propène (C₃H₆) sont bien reproduits par le modèle. Les concentrations d'acétylène sont proches des concentrations obtenues expérimentalement pour les milieux pauvres et stœchiométrique. En revanche, pour $\varphi = 2$, pour des températures dépassant 1300 K, les concentrations prédites par le modèle sont fortement sous-estimées.

Les quantités des isomères de formule brute C_3H_4 , le propadiène et le propyne, sont estimées correctement par notre modèle. Nous signalerons que lors de l'analyse en chromatographie en phase gazeuse (colonne Al₂O₃/KCl et détecteur FID), le 1,2-butadiène et le propyne n'ont pu être séparés et les profils présentés sont donc une somme des concentrations des deux composés. De même, les profils simulés représentent les concentrations cumulées des deux composés. Le propyne est très majoritaire par rapport au 1,2-butadiène. Le 1,3-cyclopentadiène et l'isoprène n'ont pu être séparés. De la même façon, leurs profils sont donc cumulés.

Les deux isomères linéaires du 1-butène, le *trans*-2-butène et le *cis*-2-butène, dont les concentrations sont de l'ordre de la dizaine de ppm sont un peu surestimés par le modèle. Les profils de 1,3-butadiène, avec des concentrations maximales supérieures à 100 ppm, sont bien simulés. Le modèle donne des résultats satisfaisant de concentration de vinylacétylène. Le diacétylène, quantifié en milieu riche, n'est plus estimé correctement par le modèle au-delà de 1300 K, ce qui rappelle le profil d'acétylène. Enfin, la prédiction des concentrations du benzène, observables pour $\varphi = 1$ et 2, est sous-estimée par le modèle.

Figure V.3 : Confrontation modèle (ligne) et expérience (symboles) pour l'oxydation du 1-butène en réacteur auto-agité : P = 1 atm ; φ = 0,25 ; X_{1-butène} = 1000 ppm ; τ = 0,07 s.

 $\label{eq:Figure V.4: Confrontation modèle (ligne) et expérience (symboles) pour l'oxydation du 1-butène en réacteur auto-agité: P = 1 atm ; \phi = 0.5 ; X_{1-butène} = 1000 ppm ; \tau = 0.07 s.$

 $\label{eq:states} \begin{array}{l} Figure \ V.5: \ Confrontation \ modèle \ (ligne) \ et \ expérience \ (symboles) \ pour \ l'oxydation \ du \ 1-butène \ en \ réacteur \ auto-agité: \ P = 1 \ atm \ ; \ \phi = 1 \ ; \ X_{1-butène} = 1000 \ ppm \ ; \ \tau = 0,07 \ s. \end{array}$

Figure V.6: Confrontation modèle (ligne) et expérience (symboles) pour l'oxydation du 1-butène en réacteur auto-agité: P = 1 atm ; ϕ = 2 ; X_{1-butène} = 1000 ppm ; τ = 0,07 s.

V.1.2.c. Analyse de voies réactionnelles

De manière à pouvoir comprendre plus aisément comment le 1-butène réagit, nous pouvons réaliser une analyse de voies réactionnelles. Le but est d'identifier les flux de consommation du carburant, le 1-butène, ainsi que de ses produits, afin d'arriver aux produits de combustion. Dans un souci de clarté, seules les voies réactionnelles majeures sont conservées.

L'analyse de voies réactionnelles a été réalisée à la stœchiométrie, à la température à laquelle 50 % du 1-butène est convertie. Le résultat de cette analyse est présenté en figure V.7.

Figure V.7: Analyse de voies réactionnelles pour l'oxydation du 1-butène en JSR, $\phi = 1$; $\tau = 0,07$ s; P = 1 atm; T = 1100 K.

L'analyse de voies réactionnelles du 1-butène, à la stœchiométrie, T = 1100 K, donne des informations sur les voies privilégiées lors de son l'oxydation. Les espèces radicalaires et les espèces stables apparaissent. La taille des flèches est proportionnelle au flux de consommation des espèces. Trois voies peuvent être identifiées à partir du 1-butène : les additions de H sur la double liaison (en bleu sur la figure V.7), les métathèses, ruptures de
liaison C-H, et élimination de H_2 (en vert sur la figure V.7) et les réactions d'addition, suivies d'une dissociation (en rouge sur la figure V.7).

Cette dernière voie est majoritairement responsable de la consommation du 1-butène, par formation du propène (C_3H_6) et de radicaux méthyles. La voie majoritaire conduit à la formation et à l'accumulation des espèces stables qui se retrouvent dans les résultats expérimentaux : Propyne, propadiène, acétylène, de même que le *trans*-2-butène et *cis*-2-butène ou l'éthylène. Le radical propargyle (C_3H_3) conduit quant à lui à la formation de benzène (C_6H_6) par recombinaison avec un second radical propargyle. C_3H_3 , par une réaction de terminaison avec CH₃ peut produire deux isomères de formule brute C_4H_6 : le 1,2-butadiène et le 1-butyne.

L'analyse de vitesse met en évidence la voie de formation des deux isomères linéaires du 2-butène. Ces deux isomères ne semblent pas être formés directement à partir du 1-butène, mais par l'intermédiaire du radical allyle.

La voie réactionnelle produisant les radicaux butényles, principalement le but-1-én-3-yle et le but-1-én-4-yle, mènent à la formation et l'accumulation du 1,3-butadiène. Une faible proportion de ce diène produit les radicaux butadiényles (C_4H_5) à l'origine du vinylacétylène (C_4H_2).

V.1.2.d. Analyse de sensibilité

L'analyse de sensibilité permet d'analyser un modèle mathématique, ici notre modèle cinétique détaillé, en étudiant l'impact d'une faible variation du facteur d'entrée, sur les variables de sortie.

Dans le cas d'une analyse de sensibilité réalisée dans les conditions du réacteur auto-agité, l'intérêt est de déterminer quelles sont les voies réactionnelles qui ont une influence sur la concentration d'une espèce chimique. Ainsi, nous observons quelles réactions, après une petite variation de leur constante de vitesse, impactent la concentration de l'espèce ciblée. Un coefficient de sensibilité positif signifie qu'une hausse de la constante de vitesse de la réaction entraîne une augmentation de la concentration de l'espèce ciblée. Un coefficient négatif implique une baisse de la concentration de l'espèce cible lorsque la constante de vitesse subit une petite hausse. Plus le coefficient de sensibilité d'une réaction à une valeur absolue élevée, plus cette réaction à un impact important dans la modélisation.

Figure V.8: Analyses de sensibilité sur la concentration de 1-butène (a) et sur le radical allyle (b) lors de l'oxydation du 1-butène en réacteur auto-agité (P = 1 atm ; T = 1100K ; φ = 1)

La figure V.8a montre les résultats d'une analyse de sensibilité comportant sur le 1butène, aux mêmes température, pression et richesse (T = 1100 K ; P = 1 atm ; ϕ = 1) que l'analyse de voies réactionnelles présentée en figure V.7.

Parmi les réactions énumérées en figure V.8a, certaines ont un coefficient de sensibilité positif, dénotant une capacité de ces réactions à promouvoir la concentration du 1-butène, en diminuant sa réactivité. Ainsi, nous pouvons constater que les réactions $C_4H_8 - 1 + H \rightleftharpoons CH_3 + C_3H_6$ et $SC_4H_9 \rightleftharpoons C_4H_8 - 1 + H$ ont un effet inhibiteur de la conversion du 1-butène,

de même que la réaction $C_3H_5 - A + H(+M) \rightleftharpoons C_3H_6(+M)$, réaction de terminaison consommant deux radicaux pour produire une espèce stable. A l'inverse, la réaction de propagation $C_3H_4 - A + H \rightleftharpoons C_3H_5 - A$, s'effectuant dans le sens indirect, accentue la consommation du 1-butène, allant vers la production de propadiène et d'un radical H, qui pourra réagir avec le 1-butène. Nous retrouvons dans cette catégorie les autres réactions de décomposition du 1-butène indiquées en figure V.7, ainsi que la réaction de ramification H + $O_2 \rightleftharpoons O + OH$.

Le radical allyle, C₃H₅-A, étant de toutes évidences une espèce centrale dans le mécanise du 1-butène, nous avons réalisé une analyse de sensibilité sur cette espèce, toujours dans les mêmes conditions (T = 1100 K; P = 1 atm; φ = 1). Les réactions avec le plus grand coefficient de sensibilité (figure V.8b), $2CH_3(+M) \rightleftharpoons C_2H_6(+M)$ et $C_3H_5 - A +$ $CH_3(+M) \rightleftharpoons C_4H_8 - 1(+M)$ ont un impact sur la concentration du radical allyle en la promouvant. La première des réactions en retirant les radicaux méthyles du milieu, déplace l'équilibre de la seconde réaction vers la consommation du 1-butène et donc la production de C₃H₅-A. A l'inverse, deux réactions présentent un coefficient de sensibilité fortement négatif, $C_3H_4 - A + H \rightleftharpoons C_3H_5 - A$ et $2C_3H_5 - A \rightleftharpoons C_3H_4 - A + C_3H_6$ conduisant à la destruction de l'allyle en donnant des espèces stables. Enfin les réactions en compétition avec $C_3H_5 A + CH_3(+M) \rightleftharpoons C_4H_8 - 1(+M)$ pour la consommation de C₄H₈-1 ont des coefficients de sensibilité négatifs, car évitant la formation du radical allyle par cette réaction (majoritaire en flux).

V.1.3. Modélisation des résultats expérimentaux de vitesse de flamme en bombe sphérique

V.1.3.a. Conditions expérimentales

Il est possible de faire varier plusieurs paramètres avec le dispositif de la bombe sphérique décrit au chapitre III, parmi lesquels nous citerons la richesse, la température de gaz frais et la pression. Dans un premier temps, nous avons cherché à reproduire les résultats expérimentaux obtenus par Zhao et al. (*Zhao, 2014*), en brûleur à jets opposées, avec une richesse de 0,7 à 1,7, une pression de 1 atm et une température des gaz frais de 298 K et dans l'air.

Pour valider le modèle un peu plus loin, nous avons voulu mesurer les vitesses de flammes laminaires du 1-butène pour des températures des gaz frais jusqu'à 450 K. Afin de

compléter l'étude, nous avons fait des mesures de vitesse de flammes pour des pressions jusqu'à 5 atm, à une richesse fixée à 0,8. Les conditions expérimentales sont résumées dans le tableau V.4. La composition de l'air utilisé dans nos expériences est 20,9% vol de dioxygène pour 79,1% vol de diazote.

Tableau V-4: Conditions expérimentales pour les mesures de vitesses de flammes de mélanges 1butène/air en bombe sphérique.

Richesse	Température (K)	Pression (atm)
0,7-1,4	300-450	1
0,8	300	1-5

V.1.3.b. Résultats expérimentaux et modélisation

Les vitesses laminaires de flamme du 1-butène dans les conditions décrites par Zhang et al. [*Zhang, 2014*] sont comparées aux résultats que nous avons obtenus dans cette étude. Les données expérimentales sont représentées par des symboles. Les résultats de la modélisation de la vitesse de flamme, avec le sous-programme PREMIX et du logiciel CHEMKIN sont représentés par des lignes. Les résultats sont présentés en figure V.9.

Figure V.9: Comparaison entre les vitesses de flammes laminaires expérimentales du 1-butène obtenues lors de cette étude et par Zhao et al. [Zhao, 2014] (symboles) et la simulation (ligne) pour les conditions : $T_i = 300 \text{ K}$; P = 1 atm.

Les résultats expérimentaux obtenus en bombe sphérique donnent une vitesse laminaire de flamme allant de 27 cm/s pour une richesse de 0,7 et croît jusqu'à environ 46 cm/s, son

maximum, à $\varphi = 1,1$. En milieu riche, la vitesse de flamme décroît rapidement avec la richesse augmentant. Les résultats que nous avons obtenus avec la bombe sphérique sont cohérents avec ceux obtenus par Zhao et al. en brûleurs à jets opposés. En milieu pauvre, les résultats expérimentaux sont en accord. En revanche, pour les richesses proches de la stœchiométrie et en milieu riche, Zhao et al. ont mesuré des vitesses de flamme plus faibles que celles obtenues en bombe sphérique. Une différence systématique de 5 cm/s est observable sur les vitesses de flamme. Le modèle prédit des vitesses de flamme en bon accord avec nos résultats expérimentaux.

Les vitesses de flammes laminaires observées en bombe sphérique pour les températures de 300 à 450 K ainsi que la modélisation pour chacune des températures, sont présentées en figure V.10.

Figure V.10: Vitesses de flammes laminaires expérimentales (symboles) et simulées (lignes) pour un mélange 1-butène/air en bombe sphérique à différentes températures de gaz frais à pression atmosphérique.

Les maxima des vitesses de flammes laminaires du mélange 1-butène/air, quelle que soit la température, ce trouvent au voisinage de $\varphi = 1,1$. Cette caractéristique est bien reproduite par le modèle. Globalement, les vitesses de flamme sont bien simulées. Seule la vitesse de flamme pour le point à faible richesse $\varphi = 0,7$ est sous-estimée par le modèle, pour toutes les températures. Nous pouvons constater que l'augmentation de 50 K conduit à une élévation importante de la vitesse de flamme. C'est donc un paramètre important à prendre en compte lors de la modélisation.

Nous avons également réalisé des mesures de vitesses de flammes laminaires pour des pressions de 1, 2, 3 et 5 bar. Les résultats sont reportés dans la figure V.11.

Figure V.11: Vitesses de flammes laminaires expérimentales (symboles) et simulées (lignes) pour un mélange 1-butène/air en bombe sphérique à différentes pressions initiales à T= 300 K et $\varphi = 0.8$.

Expérimentalement, la vitesse de flamme diminue, passant d'une vitesse de flamme de 35 cm/s à pression atmosphérique, à une vitesse de flamme de 26 cm/s. Le modèle ne reproduit pas avec exactitude la vitesse de flamme lorsque la pression augmente. La vitesse de flamme est sous-estimée d'environ 20% dans le cas de plus défavorable, à P = 5 atm.

V.1.3.c. Analyses de sensibilité

Les analyses de sensibilité sont réalisées sur la vitesse de flamme. Les réactions dont les coefficients de sensibilité sont positifs augmentent la vitesse de flammes. En revanche, les réactions présentant un coefficient de sensibilité négatif sont inhibitrices.

Les figures V.12 répertorient les coefficients de sensibilité sur la vitesse de flamme des réactions les plus sensibles, pour trois richesses : $\varphi = 0.8$; $\varphi = 1.1$; $\varphi = 1.4$. Pour toutes les richesses, les réactions de branchement des petits radicaux telles que $H + O_2 \rightleftharpoons O + OH$ ou $HCO + M \rightleftharpoons H + CO + M$ sont très sensibles pour la vitesse de flamme. $CO + OH \rightleftharpoons CO_2 + H$ a un effet accélérateur sur la vitesse de flamme et raison du dégagement de chaleur de cette

réaction très exothermique, qui permet le préchauffage des gaz frais proches du front de flamme. Les réactions de recombinaison des petits radicaux ont un effet inhibiteur de la vitesse de flamme. On peut constater que la vitesse de flamme est peu sensible aux réactions du combustible lui-même.

La réaction $C_2H_2 + OH \rightleftharpoons C_2H + H_2O$ a été l'objet d'une attention particulière. Cette réaction devient sensible pour des conditions riches. La modification de sa constante de vitesse dans le mécanisme a permis de rehausser la vitesse de flamme dans les conditions riches en combustible.

Figure V.12: Analyses de sensibilité sur la vitesse de flamme laminaire de mélanges 1-butène/air avec une température des gaz frais de 300 K, à pression atmosphérique et pour les richesses :
(a) φ = 0,8 / (b) φ = 1,1 / (c) φ = 1,4

V.1.4. Modélisation de délais d'auto-inflammation en tube à choc

V.1.4.a. Conditions expérimentales

Heyberger et al. [*Heyberger*, 2002] ont mesuré les délais d'auto-inflammation de mélanges 1butène/oxygène/argon derrière une onde de choc réfléchie. Les valeurs expérimentales obtenues lors de leurs expériences sont répertoriées dans le tableau V.5.

Tableau V-5: Conditions expérimentales issues de la littérature pour les mesures de délais d'autoinflammation.

Température (K)	Pression (atm)	Fraction molaire d'argon	Fraction molaire de 1-butène	Fraction molaire d'argon	Richesse	Dilution du 1-butène
1200-1670	6,7-8,9	0,87	0,01	0,12	0,5	1
		0,93	0,01	0,06	1	1
		0,96	0,01	0,03	2	1
		0,86	0,02	0,12	1	2

Les délais d'auto-inflammation sont mesurés sur plusieurs richesses et de concentration de 1-butène, dans de larges gammes de températures et pression, avec des délais d'auto-inflammation expérimentaux allant de 20 à 1900 μ s. Ces résultats nous permettent une validation plus étendue de notre mécanisme.

V.1.4.b. Confrontation du modèle avec les résultats expérimentaux

Le sous-programme SENKIN du logiciel CHEMKIN a été utilisé afin de modéliser les délais d'auto-inflammation du 1-butène dans les conditions expérimentales issues du travail de Heyberger et al. décrites précédemment.

Les données de la littérature et les modélisations réalisées avec notre modèle sont présentées dans des graphes où les délais d'auto-inflammation (en μ s) sont en fonction de l'inverse de la température (en K⁻¹). Dans un souci de clarté, nous avons adopté une échelle logarithmique pour les délais d'auto-inflammation en ordonnées, et le rapport 1/T a été multiplié par un facteur 10000. Les résultats sont présentés sur la figure V.13.

Figure V.13: Comparaison des délais d'auto-inflammation mesurés en tube à choc et simulés pour différentes richesses (a) et pour différentes dilution du 1-butène (b)

Sur la figure V.13a, nous pouvons constater que la richesse influence fortement le délai d'auto-inflammation du mélange. A une température donnée, plus le mélange est riche et plus le temps d'induction est élevé. Pour une même richesse, une augmentation de la température entraîne une diminution du temps d'induction. Enfin, comme illustré par la figure V.13b, la dilution à une influence sur le délai d'auto-inflammation. Plus le mélange est concentré en 1-butène et plus le délai d'auto-inflammation est court. En fait, la réactivité du mélange

augmente avec la concentration des réactifs : plus le milieu réactionnel est concentré, plus la réaction d'oxydation est accélérée.

Globalement, le modèle reproduit correctement les délais d'auto-inflammation observés expérimentalement. Cependant, un écart est observable pour les milieux pauvres ($\varphi = 0,5$, figure V.13a) et pour un mélange avec des réactifs plus concentrés (2% de 1-butène, figure V.13b) où le modèle surestime visiblement les délais.

V.1.5.Flamme stabilisée sur brûleur

V.1.5.a. Conditions expérimentales

Schenk et al. [*Schenk*, 2013] ont étudié des flammes stabilisées sur brûleur d'isomères du butène, dont le 1-butène. La composition des gaz frais est : 16,5 % mol de 1-butène, 58,5 % mol d'oxygène et 25 % mol d'argon. La richesse de 1,7 est ainsi obtenue. Le dispositif fonctionne à une faible pression (40 mbar). Les gaz frais sont à une température de 300 K à la sortie du brûleur, à une vitesse de 65,6 cm/s. Un spectromètre de masse à faisceau moléculaire est utilisé pour l'identification des produits, ainsi que pour leur quantification. Cet appareil permet une quantification des radicaux échantillonnés dans la flamme. Le profil de température dans la flamme, fonction de la distance au brûleur est fourni.

V.1.5.b. Confrontation du modèle avec les résultats expérimentaux

Le but est ici de vérifier la validité de notre modèle dans les conditions du dispositif de Schenk et al., en brûleur à flamme plate. Pour la modélisation, nous avons utilisé le sousprogramme PREMIX de CHEMKIN.

Les graphes de la figure V.14 présentent les fractions molaires des réactifs, intermédiaires et produits de l'oxydation du 1-butène en fonction de la distance au brûleur. Les points expérimentaux (symboles) ainsi que les résultats de modélisation (lignes) sont reportés sur les graphes.

Les profils de concentration des réactifs, c'est-à-dire l'oxygène et le 1-butène, sont bien reproduits par le modèle. Pour le 1-butène, la conversion est complète à 0,35 cm du brûleur.

Les produits de combustion finals sont bien estimés par le modèle, leur concentration atteignant un maximum après 0,8 cm au-dessus du brûleur.

Les profils d'intermédiaires présents en quantités importantes sont également tracés en figure V.14. D'une manière générale, la position par rapport au brûleur des maxima est bien estimée par le modèle. La simulation sous-estime les quantités de 1,3-butadiène produites d'un facteur 2, de même que pour la quantité des isomères propadiène et propyne. Les profils de propène, éthylène, acétylène et méthane sont assez bien prédits.

Nous pouvons observer que les profils des espèces radicalaires propènyle (C_3H_5) et propargyle (C_3H_3), identifiées comme ayant un rôle important dans la combustion du 1butène, sont bien reproduits par notre modèle.

Figure V.14 : Profils de concentration expérimentaux (symboles) et simulés (lignes) obtenus lors de l'oxydation du 1-butène en flamme plate (16.5% mol 1-C₄H₈/ 58.5% mol O₂/25% mol Ar) à basse pression (40 mbar).

V.1.5.c. Analyse de vitesse

Une analyse de vitesse (analyse de voies réactionnelles) a été menée dans le cas d'une flamme de 1-butène stabilisée sur brûleur à basse pression. Contrairement au cas présenté en figure V.7, où l'analyse de vitesse est réalisée à une température précise, l'analyse de vitesse dont les résultats sont présentés en figure V.15, est calculée sur toute la gamme en température. Il s'agit d'une analyse de vitesse globale. Pour chaque incrément en température, les vitesses des réactions principales sont calculées. Elles sont ensuite intégrées sur la gamme

de température. Avec cette méthode sont obtenues les voies réactionnelles globales sur tout le domaine de calcul.

Sur la figure V.15, le code de couleur utilisé sur la figure V.7 est conservé : en vert, les réactions menant au 1,3-butadiène par rupture de liaison C-H ou métathèse, en bleu les réactions d'addition de H menant au radical butyle et en rouge les réaction de rupture de liaison C-C et d'addition de H avec une dissociation immédiate de l'intermédiaire formé. De plus, l'épaisseur des flèches est proportionnelle au flux réactionnel calculé.

Figure V.15: Analyse de voies réactionnelles pour l'oxydation du 1-butène en flamme plate (16.5% mol 1-C₄H₈/ 58.5% mol O₂/25% mol Ar) à basse pression (40 mbar).

Nous pouvons voir sur la figure V.15 que les voies principales de consommation mises en évidence dans le schéma réactionnel dans les conditions du réacteur auto-agité se retrouvent dans ce schéma. L'addition de H sur la double liaison avec dissociation avec les réactions $C_4H_8 - 1 + H \rightleftharpoons C_3H_6 + CH_3$ et $C_4H_8 - 1 + H \rightleftharpoons C_2H_4 + C_2H_5$ est la voie privilégiée de conversion du 1-butène. Contrairement au schéma de la figure V.7, le radical allyle a un rôle moindre sur ce schéma. En revanche, le propène est produit en quantités importantes, avant d'être converti en éthylène et acétylène, et enfin CO et CO₂.

Par réactions de métathèses principalement avec H et OH, le 1-butène est converti avec des vitesses similaires en but-1-èn-3-yle (C_4H_713) et en but-1-èn-4-yle (C_4H_714). Ces deux radicaux produisent majoritairement du 1,3-butadiène.

Avec ce point de vue global, nous constatons que le radical allyle à une importance moindre par rapport à ce qui est mis en évidence en figure V.7. Les voies de formation et de consommation du propène sont en revanche mises en avant.

Enfin, les radicaux mis en jeu dans la cinétique d'oxydation du 1-butène sont principalement les radicaux H pour les conditions de la flamme plate basse pression. Les réactifs, dans cette configuration, sont peu dilués, augmentant la densité des radicaux dans la flamme. Les radicaux H, diffusant facilement, vont être plus efficaces pour la conversion du 1-butène et de ses produits de décomposition.

V.1.6. Conclusion

Au cours de cette étude, de nouveaux résultats expérimentaux ont été apportés. L'étude de l'oxydation du 1-butène en réacteur auto-agité avec des études paramétriques sur la richesse et la température, nous ont permis de travailler sur le modèle en vérifiant la cohérence des profils de concentration des produits stables obtenus par modélisation avec le code PSR du logiciel CHEMKIN par rapport aux points expérimentaux. Le modèle donne globalement une bonne prédiction des profils de fraction molaire. Les vitesses de flamme laminaire obtenues expérimentalement en bombe sphérique sont en accord avec les résultats expérimentaux trouvés dans la littérature [*Zhao, 2014*]. Le modèle reproduit bien les vitesses de flamme du 1-butène dans l'air sur nos conditions.

Pour une validation plus étendue, nous avons utilisé notre modèle pour simuler les données expérimentales issues de la littérature sur d'autres moyens expérimentaux. Les délais d'auto-inflammation de l'oxydation du 1-butène dans de l'argon prévus par le modèle sont proches des valeurs relevées en tube à choc par Heyberger et al. [*Heyberger, 2002*]. Les variations de richesses et de dilutions ont été testées. Nous avons comparé les prédictions du modèle aux valeurs expérimentales obtenues par Schenk et al. [*Schenk, 2013*] pour l'oxydation du 1-butène en milieu riche, pour une flamme plate stabilisée sur brûleur à basse pression.

Les moyens de diagnostic à notre disposition, les analyses de sensibilité et les analyses de voies réactionnelles, nous ont permis de mieux comprendre la cinétique d'oxydation du 1butène.

V.2. Oxydation du trans-2-butène

V.2.1. Généralités sur le trans-2-butène

Le 2-butène est un alcène linéaire comprenant 4 carbones. La double liaison est localisée en position 2, au milieu de la molécule. De cette géométrie résulte une stéréo-isomérie. Le 2butène peut avoir une configuration *trans* (ou E) ou alors une configuration *cis* (ou Z). Cette isomérisation rend cette molécule intéressante à étudier car la cinétique d'oxydation associée pourrait être appliquée à des alcènes de taille supérieure présentant cette isomérisation.

Comme pour la molécule de 1-butène, le logiciel Gaussian 09 [*Gaussian, 2003*] a été utilisé pour obtenir la géométrie de la molécule de trans-2-butène, et surtout les énergies de liaison qui lie les différents atomes de la molécule. Le calcul de l'énergie de liaison est basé sur la méthodologie décrite par Blanksby et Ellison [*Blanksby, 2003*], qui revient à calculer l'enthalpie de la réaction qui mène du réactif à deux produits issus de la rupture de la liaison observée. Nous avons donc choisi la méthode G3B3.

Pour le *trans*-2-butène, 3 réactions de dissociation peuvent être envisagées. 2 réactions de rupture de liaison C-H :

$$CH_3 - CH = CH - CH_3 \rightleftharpoons \dot{C}H_2 - CH = CH_2 - CH_3 + \dot{H} (1)$$

$$CH_3 - CH = CH - CH_3 \rightleftharpoons CH_3 - \dot{C} = CH - CH_3 + \dot{H}(2)$$

1 réaction de rupture C-C :

$$CH_3 - CH = CH - CH_3 \rightleftharpoons CH_3 - CH = \dot{C}H + \dot{C}H_3 \quad (3)$$

Les énergies de dissociation obtenues, sont présentées dans le tableau V.6 et comparées avec les valeurs expérimentales issues de la littérature [*Luo*, 2002].

Réaction	Energie de dissociation calculée (kcal.mol ⁻¹)	<i>Luo</i> , 2002 (kcal.mol ⁻¹)
(1)	87,73	85,3
(2)	108,00	-
(3)	100,25	101,6±2,0

Ces valeurs sont reportées sur la figure V.16, représentant la molécule de trans-2-butène de manière schématique, récapitulant les énergies de liaisons obtenues par calculs *ab initio*.

Figure V.16: Energies de liaison calculées par calculs ab initio pour la molécule de trans-2-butène.

La présence de la double liaison au milieu de la molécule influence fortement les énergies de liaison au sein de la molécule. Les énergies de liaisons des hydrogènes des carbones primaires de la molécule ont été estimées à 87,73 kcal.mol⁻¹. Dans une molécule de butane, molécule similaire au butène sans l'insaturation, l'énergie de liaison pour les hydrogènes primaires est estimée à 100,7 kcal.mol⁻¹ [*Luo, 2002*]. En revanche, toujours pour le butane, les hydrogènes liés au carbone secondaire sont estimées à 98,3 kcal.mol⁻¹, alors que la valeur calculée pour les hydrogènes en milieu de chaîne de trans-2-butène est 108,00 kcal.mol⁻¹. La présence de la double liaison modifie également l'énergie des liaisons entre les atomes de carbone de la molécule, comparé à une molécule de butane (EdL = 88,9 kcal.mol⁻¹).

V.2.2. Modélisation des résultats expérimentaux obtenus en réacteur auto-agité

V.2.2.a. Conditions expérimentales

Cette étude en réacteur auto-agité a été menée en faisant varier deux paramètres : la richesse ($\phi = 0,25$ à 2) et la température (900-1440K). Le temps de passage est fixé à 0,07 seconde et la pression est de 1 atm. Les conditions expérimentales pour l'étude de l'oxydation du *trans*-2-butène en réacteur auto-agité sont résumées dans le tableau V.7.

Richesse	X _{T2-C4H8}	X _{O2}	X _{N2}	Pression	Temps de	Température
	initiale	initiale	initiale	(atm)	passage (s)	(K)
0,25	1,0.10 ⁻³	2,4.10 ⁻²	0,975	1	0,07	900-1175
0,5	1,0.10 ⁻³	1,2.10 ⁻²	0,987	1	0,07	900-1225
1	1,0.10 ⁻³	6,0.10 ⁻³	0,993	1	0,07	900-1290
2	1,0.10 ⁻³	3,0.10 ⁻³	0,996	1	0,07	900-1440

Tableau V-7 : Conditions expérimentales pour l'oxydation du trans-2-butène en réacteur auto-agité

V.2.2.b. Résultats expérimentaux et modélisation

Les profils de fractions molaires de produits mesurés expérimentalement sont présentés en fonction de la température. Sur les graphes, sont présentés également les profils de fractions molaires simulés des espèces correspondantes. Les points expérimentaux sont représentés par des symboles et les simulations sont représentées par des lignes. Le résultat est présenté dans les figures V.17, V.18, V.19 et V.20.

Plusieurs techniques d'analyses ont été utilisées pour l'analyse qualitative et quantitative des gaz de combustion, notamment la spectrométrie infrarouge à transformée de Fourier (IRTF) et la chromatographie en phase gazeuse (CG) couplée à différents détecteurs (TCD, FID, spectromètre de masse). Les espèces mesurées sont identiques à celles mesurées pour le 1-butène (tableau V.3).

Expérimentalement, la conversion du *trans*-2-butène débute pour des températures à peine supérieures à 900 K. Le carburant est entièrement converti à 1180 K pour $\phi = 0,25$ et 1300 K pour $\phi = 2$. Pour $\phi = 0,25$, la concentration du fuel présente dans le réacteur est surestimée par le modèle entre 950 K et 1150 K.

Le *cis*-2-butène est produit en grande quantité et montre que, dans nos conditions pour l'oxydation du *trans*-2-butène en réacteur auto-agité, le passage d'une forme à l'autre se produit avec un rendement important, puisqu'on obtient jusqu'à 400 ppm de cis-2-butène avec 1000 ppm de *trans*-2-butène introduit.

Les profils des produits finals de la combustion sont globalement bien reproduits par le modèle. Le 1,3-butadiène est un intermédiaire de l'oxydation du *trans*-2-butène mesuré dans des concentrations importantes, jusqu'à 230 ppm. La prédiction des fractions molaires de ce

produit est en accord avec les données expérimentales. Le formaldéhyde, dosé par IRTF, est en accord avec l'expérience. Cependant, le maximum de la concentration de cette espèce est estimé avec un décalage vers les températures croissantes d'environ 20 K. Le même phénomène est observable pour H_2 dosés par TCD.

La simulation des profils de fractions molaires de l'isomère du *trans*-2-butène, le 1-butène, sous-estime quelque peu les concentrations de cette espèce.

Les profils des intermédiaires de combustion tels que le méthane, l'éthane, l'éthylène, le propène le propyne et le propadiène sont en bon accord avec l'expérience.

Comme pour le 1-butène, les profils d'acétylène sont sous-estimés en milieu riche, pour des températures supérieures à 1300 K.

A la stœchiométrie et pour $\varphi = 2$, il devient possible de quantifier expérimentalement le vinylacétylène (C₄H₄), le 1-butyne et le benzène. Pour ces trois espèces, le modèle prédit avec peu d'erreur les profils de concentration.

Figure V.17: Confrontation modèle (ligne) et expérience (symboles) pour l'oxydation du *trans*-2-butène en réacteur auto-agité: P = 1 atm ; ϕ = 0,25 ; X_{trans-2-butène} = 1000 ppm ; τ = 0,07 s.

Figure V.18: Confrontation modèle (ligne) et expérience (symboles) pour l'oxydation du *trans*-2-butène en réacteur auto-agité: P = 1 atm ; ϕ = 0,5 ; X_{trans}-2-butène = 1000 ppm ; τ = 0,07 s.

Figure V.19: Confrontation modèle (ligne) et expérience (symboles) pour l'oxydation du *trans*-2-butène en réacteur auto-agité: P = 1 atm ; $\varphi = 1$; X_{trans}-2-butène</sub> = 1000 ppm ; $\tau = 0,07$ s.

Figure V.20: Confrontation modèle (ligne) et expérience (symboles) pour l'oxydation du *trans*-2-butène en réacteur auto-agité: P = 1 atm ; $\varphi = 2$; X_{trans}-2-butène</sub> = 1000 ppm ; $\tau = 0,07$ s.

V.2.2.c. Analyse de voies réactionnelles

L'analyse de voies réactionnelles présentée en figure V.21 est réalisée dans les conditions du réacteur auto-agité, pour l'oxydation du *trans*-2-butène à $\varphi = 1$ et une température de 1200 K. A cette température, nous observons un maximum de concentration d'intermédiaires produits.

Figure V.21: Analyse de voies réactionnelles pour l'oxydation du *trans*-2-butène en JSR, $\phi = 1$; $\tau = 0,07$ s; P = 1 atm ; T = 1200 K.

Les voies en rouge montrent l'isomérisation *cis/trans* ainsi que les voies de formation du radical allyle. La réaction $C2C_4H_8 \rightleftharpoons T2C_4H_8$ concentre une grande partie du flux réactionnel du *trans*-2-butène, avec 58% du flux passant par cette voie (6,88. 10⁻⁸ mol.cm⁻³.s⁻¹). Le cis-2-butène, comme le *trans*-2-butène, par une réaction d'amorçage unimoléculaire, conduit à la formation des radicaux allyles et méthyles.

En vert, les voies de production et de décomposition du propène sont représentées. Le propène est majoritairement formé via des réactions d'addition de H sur la double liaison des 2-butènes, suivi d'une dissociation : $2-C_4H_8 + H \rightleftharpoons C_3H_6 + CH_3$. Le propène, par le même type de réaction d'addition/dissociation, conduit à la formation d'éthylène, puis de vinyle.

En bleu foncé, les voies de consommation du radical allyle, qui peut se recombiner avec un radical méthyle pour donner du 1-butène. Mais la principale voie de consommation de l'allyle passe par la formation d'allène. L'allène forme ensuite du propyne, puis de l'acétylène. Les isomères allène et propyne forment une quantité non-négligeable de radicaux propargyles, qui par réaction de terminaison, peuvent conduire à la formation de benzène (avec un autre radical propargyle) ou du 1-butyne (avec un radical méthyle).

Enfin, en bleu clair, les voies conduisant à la formation du 1,3-butadiène sont tracées. Deux voies sont privilégiées pour la formation du 1,3-butadiène. Une première voie passe par le cis-2-butène, qui, via une élimination de H₂, conduit au 1,3-butadiène. Une seconde voie met en jeu des réactions de métathèse des radicaux H, OH et CH₃ sur les espèces trans et cis-2-butène. Le 1,3-butadiène ainsi formé peut s'isomériser en 2-butyne, ou alors, par amorçage unimoléculaire conduire aux radicaux nC_4H_5 et iC_4H_5 , qui produisent en partie le vinylacétylène.

V.2.2.d. Analyses de sensibilité

Les analyses de sensibilité sur la concentration de *trans*-2-butène réalisées sur l'oxydation du *trans*-2-butène en réacteur auto-agité sont présentées à $\varphi = 1$ et à deux températures : 1000 K et 1200 K. A 1000 K, le trans-2-butène est très peu converti. A l'inverse, à 1200 K, une grande partie du *trans*-2-butène est consommé, et les produits de combustion se trouvent dans des concentrations importantes. Le but ici est de comparer, pour les deux conditions, les réactions qui ont une influence sur la conversion du *trans*-2-butène.

Figure V.22: Analyses de sensibilité sur la concentration de *trans*-2-butène à φ = 1 à une température de 1000 K (a) et à une température de 1200 K (b) lors de l'oxydation du *trans*-2-butène en réacteur autoagité.

Sur la figure V.22a, le coefficient de la réaction d'isomérisation $C2C_4H_8 \rightleftharpoons T2C_4H_8$ ressort. Cette réaction a un effet promoteur sur la conversion du trans-2-butène. En effet, l'isomérisation entre les deux formes se retrouve expérimentalement à partir des températures les plus basses de la gamme expérimentale. C'est d'ailleurs une des seules voies réactionnelles avec un flux important à cette température. Des réactions d'amorçage sont également identifiées comme promotrices de la conversion du *trans*-2-butène, notamment celles de rupture de liaison C-C conduisant à la formation des radicaux allyles et méthyles, aussi bien à partir du *trans*-2-butène que du *cis*-2-butène. D'autres réactions d'amorçage, avec la rupture de liaison C-H menant au radical C_4H_713 à partir des deux isomères du 2-butène contribuent à la consommation du trans-2-butène. Des réactions de métathèse produisant C_4H_713 sont aussi sensibles.

Sur la figure V.22b, nous constatons que les réactions sensibles à la conversion du *trans*-2butène à 1200 K sont pour la plupart les mêmes que celles observées à 1000 K. Leur classement de sensibilité est simplement différent. Nous remarquerons que la réaction $T2C_4H_8 \rightleftharpoons C_3H_5 - A + CH_3$ est plus sensible, pour cette température, qu'à 1000 K. La réaction $2CH_3 \rightleftharpoons C_2H_6$ est une réaction de terminaison réduisant la réactivité.

V.2.3.Modélisation des résultats expérimentaux de vitesse de flamme en bombe sphérique

V.2.3.a. Conditions expérimentales

Les vitesses de flammes laminaires du *trans*-2-butène ont peu été étudiées jusqu'à aujourd'hui. A notre connaissance, seuls les travaux de Zhao et al. apportent des données expérimentales sur le sujet. Nous avons donc voulu mesurer les vitesses de flammes laminaires du *trans*-2-butène en bombe sphérique. Afin de pouvoir comparer nos résultats, nous avons choisi les conditions de Zhao et al. pour l'étude : une richesse de 0,8 à 1,4, pour une température de 300 K et une pression de 1 atm. Afin de compléter l'étude, nous avons fait des mesures de vitesse de flammes pour des pressions jusqu'à 5 atm, à une richesse fixée à 0,8. Les conditions expérimentales sont présentées dans le tableau V.8. La composition de l'air utilisé dans nos expériences est 20,9% vol de dioxygène pour 79,1% vol de diazote.

 Tableau V-8 : Conditions expérimentales pour les mesures de vitesses de flammes de mélanges trans-2butène/air en bombe sphérique.

Richesse	Température (K)	Pression (atm)
0,8-1,4	300	1
0,8	300	1-5

V.2.3.b. Résultats expérimentaux et modélisation

Les résultats expérimentaux sont présentés sur la figure V.23. Les vitesses de flammes laminaires de *trans*-2-butène/air obtenues en bombe sphérique sont tracées en fonction de la

richesse. La vitesse laminaire de flamme croît de 31 cm/s pour $\varphi = 0.8$ à 40 cm/s pour $\varphi = 1.1$ son maximum. Puis la vitesse de flamme laminaire décroît jusqu'à une valeur mesurée à 30 cm/s pour $\varphi = 1.4$.

Les résultats expérimentaux que nous obtenons avec le dispositif de la bombe sphérique sont en bon accord avec les résultats de Zhao et al., obtenus en brûleurs à jets opposés. Une faible différence de vitesse de flamme est observable pour les richesses entre 1,2 et 1.4, richesses pour lesquelles nous avons mesuré une vitesse de flamme laminaire supérieure à celle de Zhao et al.

Les vitesses de flammes prédites par notre modèle sont proches des vitesses de flammes mesurées. Le modèle surestime légèrement la vitesse de flamme proche de la stœchiométrie (7 %), et la sous-estime un peu en milieu riche (17 %).

Figure V.23 : Comparaison entre les vitesses de flammes laminaires expérimentales du *trans*-2-butène obtenues lors de cette étude et par Zhao et al. [Zhao, 2014] (symboles) et la simulation (ligne) pour les conditions : $T_i = 300 \text{ K}$; P = 1 atm.

Pour visualiser l'influence de la pression sur la vitesse de flamme laminaire et pour augmenter le domaine de validation du modèle, nous avons fait varier la pression de 1 à 5 atm, à une température de 300 K et une richesse de 0,8. Les résultats de la vitesse de flamme en fonction de la richesse sont tracés sur la figure V.24.

Figure V.24: Vitesses de flammes laminaires expérimentales (symboles) et simulées (lignes) pour un mélange *trans*-2-butène/air en bombe sphérique à différentes pressions initiales à T= 300 K et $\varphi = 0.8$.

Expérimentalement, la vitesse de flamme diminue, passant d'une vitesse de flamme de 29 cm/s à pression atmosphérique, à une vitesse de flamme de 19 cm/s. Le modèle reproduit correctement la vitesse de flamme lorsque la pression augmente.

V.2.4. Flamme stabilisée sur brûleur

V.2.4.a. Conditions expérimentales

Schenk et al. [*Schenk, 2013*] ont étudié des flammes stabilisées sur brûleur de *trans-2*butène, de composition : 16,5 % mol de trans-2-butène, 58,5 % mol d'oxygène et 25 % mol d'argon. La richesse de 1,7 est ainsi obtenue. Le dispositif fonctionne à une faible pression (40 mbar). Les gaz frais sont à une température de 300 K à la sortie du brûleur, à une vitesse de 65,6 cm/s. Un spectromètre de masse à faisceau moléculaire est utilisé pour l'identification des produits, ainsi que pour leur quantification. Cet appareil permet une quantification des radicaux échantillonnés dans la flamme. Le profil de température dans la flamme, fonction de la distance au brûleur est fourni.

V.2.4.b. Confrontation du modèle avec les résultats expérimentaux

Le but est ici de vérifier la validité de notre modèle dans les conditions du dispositif de Schenk et al., en brûleur à flamme plate. Pour la modélisation, nous avons utilisé le sousprogramme PREMIX de CHEMKIN.

Les graphes de la figure V.25 présentent les fractions molaires des réactifs, intermédiaires et produits de l'oxydation du *trans*-2-butène en fonction de la distance au brûleur. Les points expérimentaux (symboles) ainsi que les résultats de modélisation (lignes) sont reportés sur les graphes.

La figure V.25 montre les profils de concentrations aussi bien expérimentaux que simulés, pour les réactifs, intermédiaires stables et produits finals de la combustion. Des profils de fraction molaire sont également présentés pour des radicaux, ce qui peut s'avérer utile pour la compréhension de la cinétique d'oxydation du *trans*-2-butène.

L'estimation de la consommation des réactifs, c'est-à-dire l'oxygène et le *trans*-2-butène, par le modèle donne des bons résultats lorsqu'ils sont comparés avec les points expérimentaux. Pour une distance de 0,3 cm au-dessus du brûleur, le *trans*-2-butène est entièrement converti. Après 0,8 cm, les concentrations d'oxygène mesurées sont nulles.

Les profils simulés des produits finals de la combustion sont en bon accord avec les données expérimentales.

Parmi les profils de concentration d'intermédiaires de la combustion, les profils d'éthane, d'éthylène, de méthane et de propène sont bien simulés. Les concentrations le propyne et d'allène sont également correctement calculées.

Le maximum de concentration de formaldéhyde est prédit à bonne distance du brûleur par le modèle, même si la concentration est sous-estimée.

207

Figure V.25 : Profils de concentration expérimentaux (symboles) et simulés (lignes) obtenus lors de l'oxydation du *trans*-2-butène en flamme plate (16.5% mol T2-C₄H₈/ 58.5% mol O₂/25% mol Ar) à basse pression (40 mbar).

Le profil de concentration de l'acétylène est bien reproduit par le modèle jusqu'à une distance au brûleur de 0,4 cm. Après cette distance, l'acétylène n'est pas consommé assez rapidement pour être en accord avec les points expérimentaux qui prévoient une décroissance de la concentration de cette espèce plus rapide en fonction de la distance.

Les fractions molaires de la somme des isomères de formule brute C_4H_6 , comprenant le 1,3butadiène, le 1,2-butadiène, le 1-butyne et le 2-butyne, en fonction de la distance au brûleur sont sous-estimées fortement par le modèle.

Enfin, les concentrations des radicaux propènyle (C_3H_5) et propargyle (C_3H_3) sont en accord avec les données expérimentales.

V.2.5. Conclusion

De nouveaux résultats expérimentaux pour l'oxydation du *trans*-2-butène ont été apportés. Des profils de concentration des produits de la combustion ont été mesurés en réacteur autoagité pour plusieurs richesses et températures. Les vitesses de flammes laminaires de mélanges *trans*-2-butène/air ont été mesurées en bombe sphérique pour différentes richesses et pressions. Les résultats expérimentaux ont également été comparés à ceux obtenus par Zhao et al. [*Zhao, 2014*] dans les mêmes conditions de pression, richesse et température, en brûleurs à jet opposés.

Ces résultats expérimentaux ont été utilisés afin de vérifier les prédictions de notre modèle et l'améliorer. Des analyses de voies réactionnelles et des analyses de sensibilité nous ont permis de mieux comprendre l'oxydation du *trans*-2-butène.

Le modèle a été confronté aux résultats expérimentaux de Schenk et al. [*Schenk, 2013*] obtenus en flamme plate stabilisée sur brûleur à basse pression.

V.3. Oxydation du cis-2-butène

V.3.1. Généralités sur le cis-2-butène

Le *cis*-2-butène est le stéréo-isomère du *trans*-2-butène dont l'étude de l'oxydation a été présentée au chapitre précédent. Les deux isomères, ayant une structure très proche, donnent des résultats proches, mais pas exactement identiques. Les similitudes des formes *cis* et *trans* rendent inévitables les comparaisons entre les résultats d'oxydation.

Comme décrit pour le *trans*-2-butène, nous avons cherché à connaitre les énergies de liaison liant les atomes de la molécule. La même méthode est utilisée avec le *cis*-2-butène.

Pour le *cis*-2-butène, 3 réactions de dissociation peuvent être envisagées. 2 réactions de rupture de liaison C-H :

$$CH_3 - CH = CH - CH_3 \rightleftharpoons \dot{C}H_2 - CH = CH_2 - CH_3 + \dot{H} (1)$$
$$CH_3 - CH = CH - CH_3 \rightleftharpoons CH_3 - \dot{C} = CH - CH_3 + \dot{H}(2)$$

1 réaction de rupture C-C :

$$CH_3 - CH = CH - CH_3 \rightleftharpoons CH_3 - CH = \dot{C}H + \dot{C}H_3 \quad (3)$$

Les énergies de dissociation obtenues, sont présentées dans le tableau V.9, et comparées avec les valeurs expérimentales issues de la littérature [*Luo*, 2002].

Réaction	Energie de dissociation calculée (kcal.mol ⁻¹)	<i>Luo</i> , 2002 (kcal.mol ⁻¹)	
(1)	86,55	85,0	
(2)	107,51	-	
(3)	98,96	102,6±2,0	

Tableau V-9 : Energies de dissociation calculées pour le cis-2-butène, comparées à la littérature.

Ces valeurs sont reportées sur la figure V.26, représentant la molécule de *cis*-2-butène de manière schématique, récapitulant les énergies de liaisons obtenues par calculs *ab initio*.

Figure V.26 : Energies de liaison obtenues par calculs ab initio pour la molécule de cis-2-butène.

Les énergies de liaison obtenues sont très proches de celle obtenues pour le trans-2-butène. De manière générale, les énergies de liaison pour la forme *cis* sont légèrement plus basses que pour la forme *trans*. Mais ces différences sont trop faibles pour en tirer des conclusions. Cela explique en partie pourquoi les constantes de vitesse utilisées dans le mécanisme réactionnel sont identiques pour les deux molécules. Une seule réaction est différente : l'élimination concertée. Cette perte de H_2 à partir du *cis*-2-butène est possible car les hydrogènes liés aux

carbones primaires, de part et d'autre de la molécule, sont proches. Ce n'est pas le cas pour le *trans*-2-butène, ni pour le 1-butène.

V.3.2. Modélisation des résultats expérimentaux obtenus en réacteur auto-agité

V.3.2.a. Conditions expérimentales

Cette étude en réacteur auto-agité a été menée en faisant varier deux paramètres : la richesse ($\phi = 0,25$ à 2) et la température (900-1440K). Le temps de passage est fixé, à 0,07 seconde et la pression est de 1 atm. Les conditions expérimentales pour l'étude de l'oxydation du *cis*-2-butène en réacteur auto-agité sont résumées dans le tableau V.10.

Tableau V-10 : Conditions expérimentales pour l'oxydation du cis-2-butène en réacteur a	uto-agité
---	-----------

Richesse	X _{C2-C4H8}	X _{O2}	X _{N2}	Pression	Temps de	Température
	initiale	initiale	initiale	(atm)	passage (s)	(K)
0,25	1,0.10 ⁻³	2,4.10 ⁻²	0,975	1	0,07	900-1175
0,5	1,0.10 ⁻³	1,2.10 ⁻²	0,987	1	0,07	900-1225
1	1,0.10 ⁻³	6,0.10 ⁻³	0,993	1	0,07	900-1290
2	1,0.10 ⁻³	3,0.10 ⁻³	0,996	1	0,07	900-1440

V.3.2.b. Résultats expérimentaux et modélisation

Les profils de fractions molaires de produits mesurés expérimentalement sont présentés en fonction de la température. Sur les graphes, sont présentés également les profils de fractions molaires simulés des espèces correspondantes. Les points expérimentaux sont représentés par des symboles et les simulations sont représentées par des lignes. Le résultat est présenté dans les figures V.27, V.28, V.29 et V.30.

Plusieurs techniques d'analyses ont été utilisées pour l'analyse qualitative et quantitative des gaz de combustion, notamment la spectrométrie infrarouge à transformée de Fourier (IRTF) et la chromatographie en phase gazeuse (CG) couplée à différents détecteurs (TCD, FID, spectromètre de masse). Les espèces mesurées sont identiques à celles mesurées pour le 1-butène (tableau V.3).

La conversion du *cis*-2-butène débute pour des températures proches de 950 K. Pour une richesse de 0,25, le *cis*-2-butène est entièrement converti à 1150K. Pour $\varphi = 2$, la conversion du *cis*-2-butène est complète à 1320 K. Le modèle reproduit bien l'expérience.

Comme pour le *trans*-2-butène, l'oxydation du *cis*-2-butène laisse une place importante à la réaction d'isomérisation $C2C_4H_8 \rightleftharpoons T2C_4H_8$. La simulation est confrontée aux résultats expérimentaux et donne des profils de concentration de *trans*-2-butène proches.

La prédiction des profils de fraction molaire des produits finals de combustion, H₂O, CO et CO₂, est globalement bonne.

Le 1,3-butadiène, produit direct du cis-2-butène par l'élimination de H₂ selon la réaction $C2C_4H_8 \rightleftharpoons C_4H_6 + H_2$, présente des profils de concentration bien reproduits par le modèle.

Les profils simulés des intermédiaires stables tels que le méthane, l'éthane, l'éthylène sont en bon accord avec l'expérience. Les profils de concentration du propène, de l'allène et du propyne sont bien reproduits.

Les concentrations d'acétylène prévues par le modèle reproduisent bien l'expérience globalement, mais à $\varphi = 2$ et des températures supérieures à 1300 K, et comme pour les butènes décrits au début du chapitre, nous observons que la concentration d'acétylène est sous-estimée par le modèle.

Les concentrations de formaldéhyde sont bien reproduites par le modèle. L'isomère du *cis*-2-butène, le 1-butène, mesuré à des concentrations de l'ordre de la dizaine de ppm, voit sa concentration correctement estimé par le modèle.

Les profils de concentration de certaines espèces insaturées sont également reportés. Le vinylacétylène est bien simulé, ainsi que le 1-butyne. Le benzène est un peu surestimé en milieu riche.

Par comparaison des profils de concentration avec ceux obtenus lors de l'oxydation du *trans*-2-butène, une différence peut être faite sur la quantité de l'isomère formé : expérimentalement, nous observons que l'oxydation du *cis*-2-butène, à conditions égales, produit plus de *trans*-2-butène que l'oxydation du *trans*-2-butène ne produit de *cis*-2-butène. Cette différence est bien reproduite par le modèle.

212

Figure V.27: Confrontation modèle (ligne) et expérience (symboles) pour l'oxydation du *cis*-2-butène en réacteur auto-agité: p = 1 atm ; $\phi = 0.25$; X_{cis-2-butène} = 1000 ppm ; $\tau = 0.07$ s.

Figure V.28: Confrontation modèle (ligne) et expérience (symboles) pour l'oxydation du *cis*-2-butène en réacteur auto-agité: p = 1 atm ; ϕ = 0,5 ; X_{cis}-2-butène</sub> = 1000 ppm ; τ = 0,07 s.

Figure V.29: Confrontation modèle (ligne) et expérience (symboles) pour l'oxydation du *cis*-2-butène en réacteur auto-agité: p = 1 atm ; $\phi = 1$; X_{cis -2-butène = 1000 ppm ; $\tau = 0,07$ s.

Figure V.30: Confrontation modèle (ligne) et expérience (symboles) pour l'oxydation du *cis*-2-butène en réacteur auto-agité: p = 1 atm ; ϕ = 2 ; X_{*cis*-2-butène} = 1000 ppm ; τ = 0,07 s.

V.3.2.c. Analyse de voies réactionnelles

L'analyse de voies réactionnelles présentée en figure V.31 est réalisée dans les conditions du réacteur auto-agité, pour l'oxydation du *cis*-2-butène à $\varphi = 1$ et une température de 1200 K. A cette température, un peu plus de la moitié du carburant est converti.

Figure V.31: Analyse de voies réactionnelles pour l'oxydation du *cis*-2-butène en JSR, $\phi = 1$; $\tau = 0,07$ s; p = 1 atm; T = 1200 K.

Les voies en rouge montrent l'isomérisation *cis/trans* ainsi que les voies de formation du radical allyle. La réaction $C2C_4H_8 \rightleftharpoons T2C_4H_8$ concentre une grande partie du flux réactionnel du *trans*-2-butène, avec 48% du flux passant par cette voie (5,93. 10⁻⁸ mol.cm⁻³.s⁻¹). Le *cis*-2-butène, comme le *trans*-2-butène, par une réaction d'amorçage unimoléculaire, conduit à la formation des radicaux allyles et méthyles.

En vert, les voies de production et de décomposition du propène sont représentées. Le propène est majoritairement formé via des réactions d'addition de H sur le double liaison des 2-butènes, suivi d'une dissociation : $2-C_4H_8 + H \rightleftharpoons C_3H_6 + CH_3$. Le propène, par le même type de réaction d'addition/dissociation, conduit à la formation d'éthylène, puis d'éthènyle.

En bleu foncé, les voies de consommation du radical allyle, qui peut se recombiner avec un radical méthyle pour donne du 1-butène. Mais la principale voie de consommation de l'allyle passe par la formation d'allène. L'allène forme ensuite du propyne, puis de l'acétylène. Les isomères allène et propyne forment une quantité non-négligeable de radicaux propargyles, qui par réaction de terminaison, peuvent conduire à la formation de benzène (avec un autre radical propargyle) ou du 1-butyne (avec un radical méthyle).

Enfin, en bleu clair, les voies conduisant à la formation du 1,3-butadiène sont tracées. Deux voies sont privilégiées pour la formation du 1,3-butadiène. Une première voie passe par le *cis*-2-butène, qui, via une élimination de H₂, conduit au 1,3-butadiène. Une seconde voie met en jeu des réactions de métathèse des radicaux H, OH et CH₃ sur les espèces *trans* et *cis*-2-butène. Le 1,3-butadiène ainsi formé peut s'isomériser en 2-butyne, ou alors, par amorçage unimoléculaire conduire aux radicaux nC_4H_5 et iC_4H_5 , qui produisent en partie le vinylacétylène.

V.3.3. Modélisation des résultats expérimentaux de vitesse de flamme en bombe sphérique

V.3.3.a. Conditions expérimentales

A notre connaissance, les vitesses de flammes laminaires de mélanges *cis*-2-butène/air n'ont jamais été étudiés. Afin de pouvoir comparer les valeurs de vitesse de flamme laminaires obtenues avec celle du trans-2-butène, théoriquement très proches, nous avons choisi les mêmes conditions expérimentales : une richesse de 0,8 à 1,4, pour une température de 300 K et une pression de 1 atm. Afin de compléter l'étude, nous avons fait des mesures de vitesse de flammes pour des pressions jusqu'à 5 atm, à une richesse fixée à 0,8. Les conditions expérimentales sont présentées dans le tableau V.11. La composition de l'air utilisé dans nos expériences est 20,9% vol de dioxygène pour 79,1% vol de diazote.

Tableau V-11 : Conditions expérimentales pour les mesures de vitesses de flammes de mélanges *cis*-2butène en bombe sphérique.

Richesse	Température (K)	Pression (atm)
0,8-1,4	300	1
0,8	300	1-5

V.3.3.b. Résultats expérimentaux et modélisation

Les résultats expérimentaux sont présentés sur la figure V.32. Les vitesses de flammes laminaires de *cis*-2-butène/air obtenues en bombe sphérique sont tracées en fonction de la richesse. La vitesse laminaire de flamme croît de 31 cm/s pour $\varphi = 0.8$ à 40 cm/s pour $\varphi = 1.1$ son maximum. Puis la vitesse de flamme laminaire décroît jusqu'à une valeur mesurée à 30 cm/s pour $\varphi = 1.4$.

Les résultats expérimentaux que nous obtenons avec le dispositif de la bombe sphérique sont en accord avec les résultats obtenus pour les vitesses de flammes laminaires de mélanges *trans*-2-butène/air.

Les vitesses de flammes prédites par notre modèle sont proches des vitesses de flammes mesurées. Le modèle surestime légèrement la vitesse de flamme proche de la stœchiométrie, et la sous-estime un peu en milieu riche.

Figure V.32 : Vitesses de flammes laminaires expérimentales de mélanges *cis*-2-butène/air obtenues en bombe sphérique (symboles) et simulation (ligne) pour les conditions : T_i = 300 K ; P = 1 atm.

Pour visualiser l'influence de la pression sur la vitesse de flamme laminaire et pour augmenter le domaine de validation du modèle, nous avons fait varier la pression de 1 à 5 atm, à une température de 300 K et une richesse de 0,8. Les résultats de la vitesse de flamme en fonction de la richesse sont tracés sur la figure V.33.

Figure V.33: Vitesses de flammes laminaires expérimentales (symboles) et simulées (lignes) pour un mélange *cis*-2-butène/air en bombe sphérique à différentes pressions initiales à T= 300 K et $\varphi = 0.8$.

Expérimentalement, la vitesse de flamme diminue, passant d'une vitesse de flamme de 29 cm/s à pression atmosphérique, à une vitesse de flamme de 19 cm/s. Le modèle reproduit correctement la vitesse de flamme lorsque la pression augmente.

Les vitesses de flammes laminaires de *cis*-2-butène sont égales, à l'erreur près, aux vitesses de flammes laminaires. La structure du *cis*-2-butène, géométriquement différente du *trans*-2-butène, n'entraine pas d'écart net de la vitesse de flamme.

V.3.4. Conclusion

Au travers de cette étude de l'oxydation du *cis*-2-butène, de nouveaux résultats expérimentaux ont été apportés. Les études récentes de l'oxydation d'isomères du butène avaient négligé l'étude du *cis*-2-butène ([*Zhao, 2014*], [*Schenk, 2013*], [*Zhang, 2012*]).

L'étude des profils de concentration des produits de combustion obtenus en réacteur autoagité montre une différence assez faible sur les voies de consommation du *cis*-2-butène par rapport au *trans*-2-butène. Une différence peut être soulignée cependant : l'élimination concertée de H₂ conduisant au 1,3-butadiène à partir du *cis*-2-butène directement.

Les vitesses de flammes laminaires du mélange *cis*-2-butène/air observées expérimentalement sont égales à celles observées pour le mélange *trans*-2-butène/air.

V.4. Oxydation de l'iso-butène

V.4.1. Généralités sur l'iso-butène

L'*iso*-butène est appelé 2-méthyl-propène selon le système IUPAC. Sa structure, ramifiée, entraîne des différences notables sur sa cinétique de combustion par rapport aux butènes linéaires, qui seront détaillées dans cette partie.

Comme pour la molécule de 1-butène, le logiciel Gaussian 09 [*Gaussian, 2003*], a été utilisé pour obtenir la géométrie de la molécule de trans-2-butène, et surtout les énergies des liaisons qui lient les différents atomes de la molécule. Le calcul de l'énergie de liaison est basé sur la méthodologie décrite par Blanksby et Ellison [*Blanksby, 2003*], qui revient à calculer l'enthalpie de la réaction qui mène du réactif à deux produits issus de la rupture de la liaison observée. Nous avons donc choisi la méthode G3B3.

Pour l'*iso*-butène, la même méthode est appliquée. 3 réactions peuvent être envisagées. 2 réactions de rupture de liaison C-H :

$$CH_2 = C(CH_3) - CH_3 \rightleftharpoons CH_2 = C(CH_3) - \dot{C}H_2 + \dot{H} \quad (1)$$

$$CH_2 = C(CH_3) - CH_3 \rightleftharpoons \dot{C}H = C(CH_3) - CH_3 + \dot{H} \quad (2)$$

1 réaction de rupture C-C :

$$CH_2 = C(CH_3) - CH_3 \rightleftharpoons CH_2 = \dot{C} - CH_3 + \dot{C}H_3 \quad (3)$$

Les énergies de dissociation obtenues, sont présentées dans le tableau V.12, et comparées avec les valeurs expérimentales issues de la littérature [*Luo*, 2002].

Réaction	Energie de dissociation calculée (kcal.mol ⁻¹)	<i>Luo</i> , 2002 (kcal.mol ⁻¹)
(1)	88,38	88,2±0,7
(2)	111,76	111,1
(3)	98,06	-

Tableau V-12 : Energies de dissociation calculées pour l'iso-butène, comparées à la littérature

Ces valeurs sont reportées sur la figure V.34, représentant la molécule d'*iso*-butène de manière schématique, récapitulant les énergies de liaisons obtenues par calculs *ab initio*.

Figure V.34 : Energies de liaison calculées par calculs ab initio pour la molécule d'iso-butène.

L'énergie de liaison la plus basse est pour la liaison C-H liant les hydrogènes aux carbones primaires (-CH₃) avec une valeur de 88,38 kcal.mol⁻¹. La rupture de cette liaison amène à la formation du radical 2-méthyl-propèn-3-yle (iC_4H_7 dans notre mécanisme). A l'inverse, les hydrogènes portés par le carbone secondaire hybridé sp² (=CH₂) sont liés par une énergie plus élevée de 111,76 kcal.mol⁻¹. La rupture de cette liaison conduit à la formation du radical 2-méthyl-propèn-1-yle (iC_4H_7V dans notre mécanisme).

V.4.2. Modélisation des résultats expérimentaux obtenus en réacteur auto-agité

V.4.2.a. Conditions expérimentales

Le dispositif du réacteur auto-agité permet des études d'oxydation sur de larges gammes de température, de richesse ou encore de temps de passage. Pour cette étude, le temps de passage est fixé à 0,07 secondes, et c'est la température qui est variable. L'*iso*-butène, tout comme les autres isomères du butène, ne présente pas de réactivité dans les basses températures, donc aucune flamme froide n'est observée. La conversion de l'*iso*-butène débute pour des températures supérieures à 950 K. Le dispositif peut atteindre une

température de 1450 K. Les débitmètres permettent d'ajuster les débits, quelle que soit la température dans cette gamme de 900-1450 K pour des richesses allant de 0,25 à 2. Le système fonctionne à pression atmosphérique. Les conditions expérimentales pour l'étude de l'oxydation du l'*iso*-butène en réacteur auto-agité sont résumées dans le tableau V.13.

Richesse	X _{1-C4H8}	X _{O2}	X _{N2}	Pression	Temps de	Température
	initiale	initiale	initiale	(atm)	passage (s)	(K)
0,25	1,0.10 ⁻³	2,4.10 ⁻²	0,975	1	0,07	900-1225
0,5	1,0.10 ⁻³	1,2.10 ⁻²	0,987	1	0,07	900-1275
1	1,0.10-3	6,0.10 ⁻³	0,993	1	0,07	900-1350
2	1,0.10 ⁻³	3,0.10 ⁻³	0,996	1	0,07	900-1440

Tableau V-13: Conditions expérimentales pour l'oxydation de l'iso-butène en réacteur auto-agité

V.4.2.b. Résultats expérimentaux et modélisation

Pour chaque série expérimentale de l'oxydation de l'*iso*-butène, c'est-à-dire pour chaque richesse dans ce cas, les profils de fractions molaires de produits mesurés expérimentalement sont présentés en fonction de la température. Sur les graphes, sont présentés également les profils de fractions molaires simulés des espèces correspondantes. Les points expérimentaux sont représentés par des symboles et les simulations sont représentées par des lignes. Le résultat est présenté dans les figures V.36, V.37, V.38 et V.39.

Plusieurs techniques d'analyses ont été utilisées pour l'analyse qualitative et quantitative des gaz de combustion, notamment la spectrométrie infrarouge à transformée de Fourier (IRTF) et la chromatographie en phase gazeuse (CG) couplée à différents détecteurs (TCD, FID, spectromètre de masse). Les espèces mesurées sont répertoriées dans le tableau V.3 avec en plus deux espèces spécifiquement mesurées lors de l'oxydation de l'*iso*-butène : le 2-méthyl-1-butène et le 2-méthyl-2-butène.

Les résultats sont classés en fonction de la richesse. Dans une première approche, il est possible de comparer la consommation de l'*iso*-butène, en JSR, en fonction de la température, pour chacune des richesses. Les points expérimentaux ainsi que les simulations de l'oxydation de l'*iso*-butène sont tracés dans la figure V.35.

Figure V.35 : Données expérimentales (symboles) et simulations (lignes) de la consommation de l'isobutène en réacteur auto-agité pour les richesses $\varphi = 0,25$; 0,5 ; 1 ; 2. p = 1 atm ; X_{iso-butène} = 1000 ppm ; $\tau = 0,07$ s.

D'une manière générale, nous pouvons voir sur le graphe que le modèle prédit correctement la consommation de l'*iso*-butène pour chaque richesse et sur la gamme de température. En considérant les points expérimentaux, nous constatons que plus la richesse augmente, et plus la conversion de l'*iso*-butène est décalée en température. Ainsi, à $\varphi = 0,25$, la conversion de l'*iso*-butène est complète à 1200 K, alors qu'il faut atteindre 1350 K pour observer une consommation complète de l'*iso*-butène à $\varphi = 2$.

Pour les richesses 0,25 et 0,5, le modèle est en excellent accord avec les points expérimentaux. Pour les richesses 1 et 2, le modèle à tendance à surestimer la concentration d'*iso*-butène encore présent.

Les figures V.36 à V.39 présentent les résultats expérimentaux obtenus en JSR pour l'oxydation de l'*iso*-butène et les modélisations associées réalisées avec le sous-programme PSR du logiciel CHEMKIN.

Pour toutes les richesses, les profils de concentrations des produits finals de la combustion, H_2O , CO et CO_2 , sont bien estimés par le modèle.

Les fractions molaires de méthane, CH_4 , atteignant les 500 ppm pour le milieu le plus riche, sont bien prédites par le modèle. Les profils de formaldéhyde (CH_2O), d'éthylène (C_2H_4), d'éthane (C_2H_6), d'acétylène (C_2H_2) et de propène (C_3H_6) sont biens reproduits par le modèle.

Les quantités des isomères de formule brute C_3H_4 , le propadiène et le propyne, sont estimées correctement par notre modèle. Nous signalerons que lors de l'analyse en chromatographie en phase gazeuse (colonne Al_2O_3/KCl et détecteur FID), le 1,2-butadiène et le propyne n'ont pu être séparés et les profiles présentées sont donc une somme des concentrations des deux composés. De même, les profils simulés représentent les concentrations cumulées des deux composés. Le propyne est très majoritaire par rapport au 1,2-butadiène. Le modèle prévoit, par exemple, à $\varphi = 2$ et à 1260 K (maximum de concentration) 1 ppm de 1,2-butadiène et 140 ppm de propyne.

Le benzène peut être mesuré à partir de la richesse 0,5 et le modèle reproduit bien les quantités mesurées expérimentalement. Le vinylacétylène apparaît dans des concentrations exploitables à $\varphi = 2$. Le modèle sous-estime légèrement les quantités attendues.

Deux produits du butène, issus de recombinaisons, sont observables expérimentalement : le 2méthyl-1-butène et le 2-méthyl-2-butène. Leurs profils de concentrations sont correctement estimés. Le 1,3-cyclopentadiène et l'isoprène n'ont pu être séparés. Leurs profils sont donc cumulés.

Jusqu'à 50 ppm de 1,3-butadiène sont observées expérimentalement. Les quantités mesurées sont bien prédites par le modèle, avec une légère sous-estimation en milieu riche.

Figure V.36 : Confrontation modèle (ligne) et expérience (symboles) pour l'oxydation de l'*iso*-butène en réacteur auto-agité : p = 1 atm ; φ = 0,25 ; X_{*iso*-butène} = 1000 ppm ; τ = 0,07 s.

Figure V.37: Confrontation modèle (ligne) et expérience (symboles) pour l'oxydation de l'iso-butène en réacteur auto-agité: p = 1 atm ; φ = 0,5 ; X_{iso-butène} = 1000 ppm ; τ = 0,07 s.

Figure V.38: Confrontation modèle (ligne) et expérience (symboles) pour l'oxydation de l'*iso*-butène en réacteur auto-agité: p = 1 atm ; $\varphi = 1$; X_{*iso*-butène} = 1000 ppm ; $\tau = 0,07$ s.

Figure V.39: Confrontation modèle (ligne) et expérience (symboles) pour l'oxydation de l'*iso*-butène en réacteur auto-agité: p = 1 atm ; $\varphi = 2$; X_{*iso*-butène} = 1000 ppm ; $\tau = 0,07$ s.

V.4.2.c. Analyse de voies réactionnelles

De manière à pouvoir comprendre plus aisément comment le modèle arrive à reproduire les concentrations des espèces issues de l'oxydation de l'*iso*-butène, nous pouvons réaliser une analyse de voies réactionnelles. Le but est d'identifier les flux de consommation du carburant, l'*iso*-butène, ainsi que de ses produits, afin d'arriver aux produits de combustion. Dans un souci de clarté, seules les voies réactionnelles majeures sont conservées.

L'analyse de voies réactionnelles a été réalisée à la stœchiométrie et à la température à laquelle 50 % de l'*iso*-butène est convertie, soit 1200 K. Le résultat de cette analyse est présenté en figure V.40.

Figure V.40: Analyse de voies réactionnelles pour l'oxydation de l'*iso*-butène en JSR, $\phi = 1$; $\tau = 0.07$ s; p = 1 atm; T = 1200 K.

L'analyse de voies réactionnelles de l'*iso*-butène, à la stœchiométrie, T = 1200 K, donne des informations sur les voies privilégiées lors de son l'oxydation. Les espèces radicalaires et

les espèces stables apparaissent. La taille des flèches est proportionnelle au flux de consommation des espèces.

De cette analyse de voies réactionnelles, nous identifierons trois voies principales, repérées avec différentes couleurs sur la figure V.40. En rouge, les voies passant par la formation de radicaux butényles (iC_4H_7 et iC_4H_7V). Les réactions de métathèse, avec les radicaux O, OH et H, contribuent à la formation du radical 2-méthyl-propén-3-yle (iC_4H_7) formant la voie de consommation majoritaire de l'*iso*-butène. Une petite quantité de son isomère, le 2-méthyl-propén-1-yle est également formé, conduisant très majoritairement à la production de propyne. Le radical *i*C₄H₇, forme de l'allène, majoritairement. L'allène conduit à la formation de propyne, puis d'acétylène.

En bleu sont présentées les voies de formation et consommation du radical allyle. Il est formé à partir du radical iC_4H_7 et par réaction de métathèse avec le propène. Le radical allyle peut alors se recombiner avec H pour donner à nouveau du propène, ou par addition d'un atome d'oxygène, conduire à la formation d'acroléine (C₂H₃CHO).

En vert sont décrites les voies réactionnelles de l'addition de H sur la double liaison de l'*iso*-butène, formant principalement le radical iC_4H_9 (2-méthyl-propan-3-yle), son isomère, le tC_4H_9 (2-méthyl-propan-2-yle) étant moins produit. Ces radicaux forment du propène et de l'éthylène.

V.4.2.d. Analyse de sensibilité

Une analyse de sensibilité a été réalisée sur la concentration d'*iso*-butène modélisée pour l'oxydation de l'*iso*-butène à pression atmosphérique, à la stœchiométrie et une température de 1200 K (conditions de l'analyse de voies réactionnelles, figure V.40). Cette analyse de sensibilité nous donne des informations sur les réactions ayant une influence sur la conversion de l'*iso*-butène. Les résultats sont tracés sur la figure V.41.

Figure V.41: Analyse de sensibilité sur la concentration d'*iso*-butène lors de l'oxydation de l'*iso*-butène en réacteur auto-agité (p = 1 atm ; T = 1200K ; φ = 1)

Les réactions $iC_4H_8 \rightleftharpoons iC_4H_7 + H$ et $iC_4H_8 + CH_3 \rightleftharpoons iC_4H_7 + CH_4$ ont un coefficient de sensibilité négatif, indiquant que ces réactions contribuent à la conversion de l'*iso*-butène en donnant le radical iC_4H_7 . De la même manière, $C_3H_5 - T + CH_3(+M) \rightleftharpoons iC_4H_8(+M)$, réaction d'amorçage, contribue directement à la conversion de iC_4H_8 , formant deux radicaux qui augmentent la réactivité.

 $C_3H_3 + CH_3 \rightleftharpoons C_4H_6$ est une réaction de terminaison, qui à l'inverse des réactions précédentes, réduit la réactivité en consommant un radical propargyle et un radical méthyle. La réaction de propagation $C_2H_2 + CH_3 \rightleftharpoons C_3H_4 - P + H$ présente dans ces conditions un équilibre décalé vers la consommation du propyne et donc la formation de l'acétylène. La réaction consomme H, radical contribuant de manière significative à la conversion de l'*iso*butène, soit par réactions de métathèses avec iC_4H_8 ou par addition sur la double liaison (figure V.40), ce qui explique la sensibilité de cette réaction sur la concentration de l'*iso*butène. $2CH_3(+M) \rightleftharpoons C_2H_6(+M)$ est une réaction de terminaison réduisant la réactivité du milieu et de ce fait, inhibant la conversion de iC_4H_8 .

V.4.3. Modélisation des résultats expérimentaux de vitesse de flamme en bombe sphérique

V.4.3.a. Conditions expérimentales

Des mesures de vitesses laminaires de flammes en bombe sphérique de mélanges *iso*butène/air ont été réalisées dans cette étude. Les richesses étudiées vont de 0,8 à 1,4. La pression initiale des gaz frais est comprise entre 1 et 5 atm. La température des gaz frais est de 300 K. Les conditions expérimentales sont résumées dans le tableau V.14.

Tableau V-14 : Conditions expérimentales pour les mesures de vitesses de flammes de mélanges *iso*butène/air en bombe sphérique.

Richesse	Température (K)	Pression (atm)
0,7-1,4	300	1
0,8	300	1-2-3-5

V.4.3.b. Résultats expérimentaux et modélisation

Les vitesses laminaires de flamme de l'*iso*-butène dans les conditions décrites par Zhang et al. [*Zhang*, 2014] et Davis et al. [*Davis*, 1998] sont comparées aux résultats que nous avons obtenus dans cette étude. Les données expérimentales sont représentées par des symboles. Les résultats de la modélisation de la vitesse de flamme, avec le sous-programme PREMIX et du logiciel CHEMKIN sont représentés par des lignes. Les résultats sont présentés en figure V.42.

Figure V.42: Comparaison entre les vitesses de flammes laminaires expérimentales de mélanges *iso*butène/air obtenues lors de cette étude et par Zhao et al. [Zhao, 2014] et Davis et al. [Davis, 1998] (symboles) et la simulation (ligne) pour les conditions : T_i = 300 K ; p = 1 atm.

La vitesse laminaire de flamme pour les mélanges *iso*-butène/air est de 26 cm/s pour une richesse de 0,8 et croît jusqu'à environ 37 cm/s, son maximum, à $\varphi = 1,1$. En milieu riche, la vitesse de flamme décroît rapidement avec la richesse augmentant. Les résultats que nous avons obtenus avec la bombe sphérique sont cohérents avec ceux obtenus par Zhao et al. en brûleurs à jets opposés. En milieu riche, une divergence est observable. Les vitesses de flammes laminaires obtenues lors de notre étude sont supérieures à celles obtenues par Zhao et al., jusqu'à 5 cm/s à $\varphi = 1,4$. Les vitesses laminaires de flammes mesurées par Davis et al. sont supérieures à celle de notre étude, particulièrement autour du maximum à $\varphi = 1,1$, avec un écart d'environ 4 cm/s.

La simulation des vitesses laminaires de flamme de mélanges *iso*-butène/air est globalement en accord avec les données expérimentales. Comparées à nos valeurs expérimentales, les vitesses de flammes simulées sont sous-estimées pour les milieux riches, mais sont en bon accord avec les vitesses de flammes mesurées par Zhao et al.

Nous avons également réalisé des mesures de vitesses de flammes laminaires pour des pressions de 1, 2, 3 et 5 bar. Les résultats sont reportés dans la figure V.43.

Figure V.43: Vitesses de flammes laminaires expérimentales (symboles) et simulées (lignes) pour un mélange *iso*-butène/air en bombe sphérique à différentes pressions initiales à T= 300 K et $\varphi = 0.8$.

Expérimentalement, la vitesse de flamme diminue, passant d'une vitesse de flamme de 27 cm/s à pression atmosphérique, à une vitesse de flamme de 16 cm/s pour une pression de 5 atm. Le modèle reproduit correctement la vitesse de flamme lorsque la pression augmente.

V.4.4. Flamme stabilisée sur brûleur

V.4.4.a. Conditions expérimentales

Schenk et al. [*Schenk*, 2013] ont étudié des flammes stabilisées sur brûleur d'isomères du butène, dont l'*iso*-butène, en milieu riche ($\varphi = 1,7$). La composition des flammes est : 16,5 % mol d'*iso*-butène, 58,5 % mol d'oxygène et 25 % mol d'argon. La richesse de 1,7 est ainsi obtenue. Le dispositif fonctionne à une faible pression (40 mbar). Les gaz frais sont à une température de 300 K à la sortie du brûleur, à une vitesse de 65,6 cm/s. Un spectromètre de masse à faisceau moléculaire est utilisé pour l'identification des produits, ainsi que pour leur quantification. Cet appareil permet une quantification des radicaux échantillonnés dans la flamme. Le profil de température dans la flamme, fonction de la distance au brûleur est fourni.

Dias et al. [*Dias*, 2010] ont étudié, avec un mode opératoire proche, des flammes d'*iso*butène stabilisées sur brûleur, en milieu pauvre ($\varphi = 0,225$). La composition des flammes est : 2,7 % mol *i*-C₄H₈ ; 4,5 % mol H₂ ; 83,0 % mol O₂ ; 9,8 % mol Ar. La présence d'hydrogène permet la stabilisation de la flamme et facilite la combustion de l'*iso*-butène dans ces conditions, pour lesquelles l'*iso*-butène à un faible débit de sortie de gaz. De plus, l'hydrogène promeut les réactions des radicaux avec l'*iso*-butène. Le dispositif fonctionne à une faible pression (40 mbar). La vitesse initiale des gaz en sortie du brûleur est de 53,4 cm/s pour un débit de 6,44 l/min. Un spectromètre de masse à faisceau moléculaire est utilisé pour l'identification des produits, ainsi que pour leur quantification. Cet appareil permet une quantification des radicaux échantillonnés dans la flamme. Le profil de température dans la flamme, fonction de la distance au brûleur est fourni.

V.4.4.b. Confrontation du modèle avec les résultats expérimentaux

• Flammes plates de prémélange en milieu riche ($\phi = 1,7$)

Le but est ici de vérifier la validité de notre modèle dans les conditions du dispositif de Schenk et al. [*Schenk 2013*], en brûleur à flamme plate stabilisée sous basse pression. Pour la modélisation, nous avons utilisé le sous-programme PREMIX de CHEMKIN.

Les graphes de la figure V.44 présentent les fractions molaires des réactifs, intermédiaires et produits de l'oxydation de l'*iso*-butène en fonction de la distance au brûleur. Les points expérimentaux (symboles) ainsi que les résultats de modélisation (lignes) sont reportés sur les graphes.

Le modèle reproduit bien les fractions molaires des réactifs, *iso*-butène et oxygène, en fonction de la distance au brûleur. Nous constaterons qu'à une distance de 0,4 cm du brûleur, l'*iso*-butène est entièrement converti.

Les profils de concentration des produits finals de combustion sont en bon accord avec les points expérimentaux.

Le profil de formaldéhyde ne reproduit pas les points expérimentaux jusqu'à une distance de 0,3 cm. Passée cette distance, le modèle reproduit convenablement les quantités attendues. Cela peut s'expliquer par une perturbation par la sonde de prélèvement sur les concentrations mesurées de certains composés [*Gururajan, 2014*].

Les concentrations de méthane sont bien prédites. Les profils de concentration calculés des deux isomères allène et propyne, du propène, de l'éthane et de l'éthylène, présentent un maximum placé à la distance du brûleur en accord avec les valeurs expérimentales. Cependant, la concentration est surestimée par le modèle.

Les fractions molaires calculées pour le 1,3-butadiène sont sous-estimées par rapport aux quantités mesurées dans la flamme.

Figure V.44 : Profils de concentration expérimentaux (symboles) et simulés (lignes) obtenus lors de l'oxydation de l'*iso*-butène en flamme plate (16.5% mol *i*-C₄H₈/ 58.5% mol O₂/25% mol Ar) à basse pression (40 mbar).

V.4.4.c. Analyse de vitesse

Afin de mieux comprendre les voies de l'oxydation de l'*iso*-butène, une analyse de vitesse a été réalisée dans les conditions décrites par Schenk et al. [*Schenk, 2012*], c'est-à-dire une pression de 40 mbar et une richesse de 1,7 (16,5% mol *i*-C₄H₈/ 58,5% mol $O_2/25\%$ mol

Ar). L'analyse de vitesse est globalisée. Les vitesses de chaque réaction sont calculées pour des distances au brûleur entre 0 et 1 cm puis intégrées sur le domaine de température. Les résultats obtenus sont présentés sur la figure V.45. Dans un souci de clarté, seules les espèces majoritaires sont présentées. L'épaisseur des flèches est proportionnelle au taux de production ou consommation de l'espèce.

Figure V.45: Analyse de voies réactionnelles intégrées sur la distance pour l'oxydation de l'*iso*-butène en flamme plate (16.5% mol *i*-C₄H₈/ 58.5%mol O₂/25%mol Ar) à basse pression (40 mbar).

Plusieurs voies réactionnelles ont été mises en évidence par couleur. En rouge se trouvent la réaction d'amorçage unimoléculaire $iC_4H_8 = iC_4H_7 + H$ (23 % du flux) et les réactions de métathèse avec les radicaux H (59 %), OH (14 %) et CH₃ (4 %) conduisant au radical isobutényle (iC_4H_7). Ce radical se consomme en formant principalement de l'allène, du propyne et de l'acétylène. L'acétylène, avec le biradical oxygène, donne le radical HCCO ou du CO. Le radical 2-méthylbut-1-én-1-yl (iC_4H_7V) apparaît sur la figure V.45 : il est formé par réaction de métathèse $iC_4H_8 + H = iC_4H_7V + H_2$ ainsi que par isomérisation de iC_4H_7 . iC_4H_7V se décompose en propyne et radical méthyle.

En vert, les voies de consommation de l'*iso*-butène par addition de H sur la double liaison sont présentées : $iC_4H_8 + H = iC_4H_9$ et $iC_4H_8 + H = tC_4H_9$. Le radical tC_4H_9 est consommé très majoritairement par isomérisation en iC_4H_9 . Le radical iC_4H_9 se décompose en propène et radical méthyle. Le propène conduit à la formation d'éthylène puis d'acétylène.

En bleu, les voies de formation du radical allyle, par métathèse du propène ou décomposition du radical i C_4H_7 , montrent qu'une partie du propène formé peut conduire à l'allène par l'intermédiaire du radical allyle.

• Flammes plates de prémélange en milieu pauvre ($\varphi = 0,225$)

Nous avons confronté le modèle aux résultats expérimentaux obtenus par Dias et al. [Dias, 2010]. La principale différence avec les données expérimentales de Schenk et al. est la richesse (0,225). De plus, de l'hydrogène est ajouté au prémélange en amont de la flamme, afin de permettre la stabilisation de la flamme.

Les graphes de la figure V.46 présentent les fractions molaires des réactifs, intermédiaires et produits de l'oxydation de l'*iso*-butène en fonction de la distance au brûleur. Les points expérimentaux (symboles) ainsi que les résultats de modélisation (lignes) sont reportés sur les graphes.

Figure V.46 : Profils de concentration expérimentaux (symboles) et simulés (lignes) obtenus lors de l'oxydation de l'*iso*-butène en flamme plate (2,7 %mol *i*-C₄H₈ ; 4,5 %mol H₂ ; 83,0 %mol O₂ ; 9,8 %mol Ar) à basse pression (40 mbar).

La prédiction par le modèle des profils de concentration des réactifs est en accord avec les résultats expérimentaux, en particulier pour l'*iso*-butène et l'oxygène. La concentration de l'hydrogène est un peu sous-estimée jusqu'à une distance au brûleur de 0,8 cm.

Les fractions molaires des produits majoritaires de combustion, CO_2 , CO et H_2O , sont bien estimées par le modèle.

Les concentrations des intermédiaires de combustion de l'*iso*-butène tels que le propène, l'éthylène et l'acétylène sont bien reproduites par le modèle.

Deux aldéhydes sont tracés sur la figure V.46 : le formaldéhyde, dont les concentrations calculées par le modèle sont en accord avec les données expérimentales, et l'acétaldéhyde (CH₃CHO), qui présente un profil de concentration sous-estimé par le modèle d'un facteur 2. Les fractions molaires des radicaux HO₂ et CH₃ sont bien prédites. Les tendances des fractions molaires des radicaux O et OH sont bien reproduites par le modèle. Cependant, la concentration de l'atome d'oxygène est sous-estimée après 0,6 cm au-dessus du brûleur.

V.4.5. Délais d'auto-inflammation en tube à choc et spéciation

Nous souhaitions étendre la validation du mécanisme de l'*iso*-butène sur d'autres conditions. Dans la littérature, il existe plusieurs études en tube à choc pour la mesure de délais d'auto-inflammation. Nous avons choisi de calculer les délais d'auto-inflammation de l'*iso*-butène dans les conditions de Yasunaga et al. [*Yasunaga, 2009*]. En effet, dans leur étude, Yasunaga et al. déterminent les délais d'auto-inflammation pour une large gamme de conditions (T = 1000-1800K, P = 1-2,7 atm, φ = 0,125-2), tout en étudiant l'influence de la dilution en *iso*-butène. De plus, des prélèvements ont été réalisés, en tube à choc, aussi bien dans des conditions de pyrolyse, que d'oxydation.

V.4.5.a. Délais d'auto-inflammation

Les mesures de délais d'auto-inflammation sont réalisées en tube à choc, après le passage de l'onde de choc réfléchie. Pour déterminer le délai d'auto-inflammation, la concentration de CO_2 dans le système est suivie par émission infra-rouge à une longueur d'onde de 4,24 μ m, au travers d'une fenêtre CaF₂, à l'aide d'un détecteur InSb. Les auteurs précisent que l'émission IR ne provient pas seulement de CO₂, mais également de CO et CH₂CO dans les conditions de l'étude.

Les graphes des figure V.47 et V.48 présentent les délais d'auto-inflammation entre 10 et 3162 µs de mélanges d'*iso*-butène/oxygène dilués dans l'argon pour différentes richesses et dilutions, pour des gammes de températures comprises entre 1370 et 1754 K.

De façon à rendre les graphiques plus simples lisibles, les délais d'auto-inflammation en ordonnées sont en microsecondes et en logarithme décimale, tandis que les abscisses représentent l'inverse des températures des gaz chauds derrière l'onde de choc (T_5) multipliée

par un facteur $1,0x10^5$. Grâce à ce format, les courbes obtenues lors de la modélisation sont des droites, la relation reliant le délai d'auto-inflammation à la température étant :

$$\tau = A \exp\left(\frac{E}{RT}\right) [iC_4 H_8]^a [O_2]^b [Ar]^c$$

[X] : Concentration (mol/cm³)

- A : Facteur pré-exponentiel
- E : Energie d'activation apparente (kJ/mol)
- T : Température (K)
- R : Constante des gaz parfaits (8,314 J/(mol.K))
- a, b, c : Constantes déterminées par régression multiple

Les calculs des délais d'auto-inflammation sont réalisés via le sous-programme SENKIN du logiciel CHEMKIN.

Sur les graphes de la figure V.46, nous pouvons constater que pour toutes les courbes, le modèle prédit bien les délais d'auto-inflammation des mélanges $iC_4H_8/O_2/Ar$. Chaque graphe montre une comparaison entre deux mélanges présentant une même dilution en *iso*-butène avec des richesses différentes :

- Graphe 1 : dilution de 0,1% en *iso*-butène ; $\varphi = 0,125$ et 0,5.
- Graphe 1 : dilution de 0,5% en *iso*-butène ; $\varphi = 0,5$ et 2
- Graphe 1 : dilution de 1% en *iso*-butène ; $\varphi = 1$ et 2.

Pour chacun des graphes, le même comportement des délais d'auto-inflammation est observé, autant vis-à-vis de la température que de la richesse : nous observons une diminution exponentielle du délai d'auto-inflammation avec la température, et une diminution du délai avec l'augmentation de la concentration en oxygène (donc diminution de la richesse) car la concentration d'*iso*-butène est constante.

Figure V.47 : Délais d'auto-inflammation de mélanges *i*C₄H₈/O₂/Ar obtenus en tube à choc – Influence de la richesse.

Avec la figure V.47, nous pouvons constater l'influence de la dilution en *iso*-butène. La courbe rouge et la courbe bleue représentent les délais d'auto-inflammation en fonction de l'inverse de la température pour une richesse de 0,5 et la courbe verte et la courbe noire représentent des délais pour une richesse de 2. Nous pouvons constater qu'à richesse donnée, une augmentation de la dilution des réactifs entraine une hausse du délai d'auto-inflammation.

Figure V.48 : Délais d'auto-inflammation de mélanges *i*C₄H₈/O₂/Ar obtenus en tube à choc – Influence de la dilution.

V.4.5.b. Spéciation

Yasunaga et al. [*Yasunaga, 2009*] ont réalisé des prélèvements dans un tube à choc des produits de l'*iso*-butène. Les produits de combustion prélevés ont pu être séparés par chromatographie en phase gazeuse et quantifiés à l'aide d'un détecteur à conductivité thermique. Un temps de chauffe des gaz à dû être déterminé pour connaître le temps auquel le prélèvement a été réalisé pour pouvoir ensuite être modélisé. Ce temps de chauffe correspond au temps entre le point d'arrivée de l'onde de choc réfléchie et le point à 80 % de la retombée de la pression.

Deux séries de prélèvements ont été réalisées : la première dans des conditions de pyrolyse de l'*iso*-butène avec un mélange 1,0 % iC_4H_8 / 99,0 % Ar et une seconde dans des conditions d'oxydation de l'*iso*-butène avec un mélange 1,0 % iC_4H_8 / 3,0 % O₂ / 96,0 % Ar, donc à une richesse $\varphi = 2$.

La figure V.49 présente les profils de fraction molaire des produits de pyrolyse de l'*iso*butène, avec en symboles les points expérimentaux obtenus par Yasunaga et al. et en lignes continues les profils obtenus par simulation avec le sous-programme SENKIN du logiciel CHEMKIN. La fraction molaire des composés observés est en ppm et est fonction de la température en kelvins.

Nous pouvons tout d'abord constater que les profils calculés sont en très bon accord avec les données expérimentales. Dans les conditions de l'étude, la consommation de l'*iso*-butène commence à une température d'environ 1200 K et est entièrement converti à 1600 K. Les intermédiaires observés expérimentalement dont les concentrations ont été modélisées sont le méthane, l'acétylène, l'éthylène, l'éthane, le propène, l'allène, le propyne, le 1,3-butadiène et le benzène. Parmi ces profils de concentration simulés, ceux du propène et du benzène présentent des différences notables avec l'expérience. La concentration de propène est surestimée à son maximum et la quantité de benzène est surestimée sur toute la gamme sur laquelle il est produit. Cependant, les concentrations observées sont assez faibles, de l'ordre de la dizaine de ppm.

En observant la position en température des maxima en concentration des espèces, nous pouvons voir que les espèces insaturées en C_4 et C_3 telles que le 1,3-butadiène, le propyne, l'allène et le propène sont les premiers intermédiaires stables formés.

La figure V.50 présente une analyse de vitesse de la pyrolyse de l'*iso*-butène pour une pression de 1,85 atm et une température de 1418 K, qui correspond à la température des points expérimentaux à laquelle un maximum d'intermédiaires est observé. Dans ces conditions, la réaction d'amorçage unimoléculaire $iC_4H_8 = iC_4H_7 + H$ est prédominante, avec les réactions de métathèse avec H et CH₃ conduisant au radical iC₄H₇. Les réactions d'addition de H sur la double liaison formant le radical tC₄H₉ minoritaire et le radical majoritaire iC₄H₉ présentent un flux non-négligeable. L'*iso*-butène peut aussi, par amorçage unimoléculaire donner C3H5-t (radical prop-1-én-2-yle). Enfin, par métathèse, iC₄H₈ peut amener à la formation de iC₄H₇V.

Le radical iso-butényle se décompose pour donner très majoritairement l'allène, qui conduit au propyne. Allène et propyne, par métathèse avec CH₃ forment le radical propargyle. Le radical propargyle est consommé par deux réactions de terminaison :

$$C_{3}H_{3} + CH_{3} = C_{4}H_{6}$$

$$C_3H_3 + C_3H_3 = C_6H_6$$

Le benzène formé, peut, en petites quantités, former du toluène. Le 1,3-butadiène formé conduit à une formation de vinylacétylène. Le radical C_3H_5 -t, par élimination de H, donne du propyne.

Les radicaux butyles conduisent au propène. Une partie du propène donne l'allène et le radical allyle, qui se décompose en allène. Une grande partie du propène donne l'éthylène, l'éthényle et enfin l'acétylène.

Figure V.49 : Fractions molaires des principaux produits de pyrolyse de l'iso-butène observées expérimentalement en prélèvement en tube à choc (symboles) [*Yasunaga 2009*] et calculées (lignes).

Figure V.50 : Analyse de vitesse de la pyrolyse de l'*iso*-butène (1 % iC₄H₈ / 99 % Ar), en tube à choc, à p = 1,85 atm et T = 1418 K.

Les profils de fraction molaire des produits de l'oxydation de l'*iso*-butène sont présentés sur la figure V.51, avec en symboles les points expérimentaux obtenus par Yasunaga et al. et en lignes continues les profils obtenus par simulation avec le sous-programme SENKIN du logiciel CHEMKIN. La fraction molaire des composés observés est en ppm et est fonction de la température en kelvins.

La comparaison des profils de fraction molaire expérimentaux et des profils simulés nous montre que d'une manière générale le modèle reproduit bien l'expérience. La conversion de l'*iso*-butène apparait pour des températures proches de 1200 K et la conversion est complète pour des températures avoisinant les 1500 K. Les produits finals de la combustion CO et CO₂ apparaissent à des températures supérieures à 1400 K. Les concentrations de CO₂ sont bien estimées. Cependant, pour le CO, le modèle prévoit des concentrations nulles jusqu'à 1480 K, alors que l'expérience montre une production de CO à partir de 1400 K. Le maximum de concentration, atteint pour 1500 K est en revanche bien reproduit.

Les profils de concentration calculés des intermédiaires hydrocarbonés CH_4 , C_2H_2 , C_2H_4 , C_2H_6 , C_3H_4 -P, C_3H_4 -A et C_3H_6 sont en bon accord avec les points expérimentaux. Cependant, le manque de points expérimentaux entre 1340 K et 1400 K, au maximum de concentration calculée pour l'éthane, le propyne et le propène ne nous permet pas de savoir si l'estimation du modèle est en accord avec l'expérience dans cette gamme de température.

La figure V.52 présente une analyse de vitesse de l'oxydation de l'*iso*-butène dans les conditions décrites précédemment, c'est-à-dire à une pression de 1,85 atm et une température de 1365 K, température à laquelle environ 50 % de l'*iso*-butène est consommé.

L'*iso*-butène est majoritairement consommé par des réactions de métathèse avec H, CH₃ et OH, conduisant à la formation du radical *iso*-butényle. Ce radical se décompose principalement en allène, qui s'isomérise en propyne. Le propyne conduit à l'acétylène. Une partie de l'allène et du propyne, par métathèse, donne le radical propargyle. Par réaction de terminaison avec CH₃, le radical propargyle donne de benzène et du 1,3-butadiène. Avec un flux plus faible, l'*iso*-butène, par métathèse avec H et CH₃ forme l'isomère de l'*iso*-butényle : iC_4H_7V (2-méthylbut-1-én-1-yle). Ce radical est aussi produit par isomérisation $iC_4H_7V =$ iC_4H_7V donne très majoritairement du propyne.

Par addition de H sur la double liaison, iC_4H_8 forme les isomères de butyle : iC_4H_9 et tC_4H_9 . iC_4H_9 est privilégié par rapport à tC_4H_9 , qui s'isomérise pour donner exclusivement iC_4H_9 . iC_4H_9 se décompose en propène. Le propène est consommé principalement par la réaction $C_3H_6 + H = C_2H_4 + CH_3$. L'éthylène forme C_2H_3 puis l'acétylène. Une partie du propène conduit à la formation du radical allyle. L'allyle peut former de l'acroléine par l'enchainement des réactions $C_3H_5 - A + HO_2 = C_3H_5O + OH$ et $C_3H_5O = C_2H_3CHO + H$. Finalement, l'acroléine forme C_2H_3+CO .

Figure V.51 : Fractions molaires des principaux produits de l'oxydation de l'*iso*-butène (1% *i*C₄H₈/ 3% O₂ / 96% Ar) observées expérimentalement en prélèvement en tube à choc (symboles) [*Yasunaga*, 2009] et calculés (lignes). $\varphi = 2$

Figure V.52 : Analyse de vitesse de l'oxydation de l'*iso*-butène (1 % *i*C₄H₈ / 3 % O₂ / 99 % Ar), en tube à choc, à p = 1,85 atm, T = 1365 K, $\varphi = 2$.

V.4.6. Conclusion

Au cours de cette étude, nous avons apporté de nouveaux résultats expérimentaux sur l'oxydation de l'*iso*-butène :

- Acquisition de profils de fractions molaires obtenus en réacteur auto-agité, à pression atmosphérique, dans une gamme de températures allant de 900 K à 1440 K, un temps de passage de 70 ms et des richesses de 0,25, 0,5, 1 et 2.
- Mesure de vitesses de flammes laminaires en bombe sphérique, pour des pressions de 1 à 5 atmosphères, à une température des gaz frais de 300 K et des richesses de 0,8 à 1,4.

Le modèle cinétique détaillé actualisé lors de cette étude a été validé à l'aide de ces données expérimentales.

La validation du modèle a été étendue aux données expérimentales disponibles dans la littérature. Les données expérimentales pour les vitesses de flammes laminaires présentées par Davis et al. [*Davis, 1998*] et [*Zhao, 2014*] ont été confrontées à la fois au données expérimentales obtenues lors de cette étude et aux simulations réalisées avec le modèle.

Les profils de concentration des produits d'oxydation de l'*iso*-butène obtenues expérimentalement par Schenk et al. [*Schenk, 2013*] par prélèvements dans une flamme plate stabilisée sur brûleur à basse pression et en milieu riche ont été comparés aux résultats de modélisation à partir du modèle. De la même manière, les données expérimentales obtenues par Dias et al. [*Dias, 2010*] par prélèvements dans une flamme plate stabilisée sur brûleur à basse pression et en milieu riche ont été comparés aux résultats de modélisation à partir du modèle.

Des délais d'auto-inflammation obtenus en tube à choc issus des travaux de Yasunaga et al. [*Yasunaga, 2009*] ont permis une validation plus étendue du modèle. Lors de leurs travaux, Yasunaga et al. ont réalisés des prélèvements en tube à choc derrière l'onde de choc réfléchie des produits de pyrolyse et d'oxydation de l'*iso*-butène. Les profils de concentration obtenus ont été confrontés aux concentrations obtenus par simulation avec le modèle cinétique.

Des modélisations des concentrations des produits d'oxydation de l'*iso*-butène obtenus en réacteur auto-agité, nous avons déduit que les réactions $iC_4H_8 \rightleftharpoons iC_4H_7 + H$, $iC_4H_8 + CH_3 \rightleftharpoons iC_4H_7 + CH_4$ et $C_3H_5 - T + CH_3(+M) \rightleftharpoons iC_4H_8(+M)$, étaient sensibles sur la consommation de l'*iso*-butène. Les voies de consommation principales de l'*iso*-butène passent par la formation du radical iC_4H_7 par rupture d'une liaison C-H ou réaction de métathèse ainsi que par la formation de radicaux butyles par addition de H sur la double liaison. Les produits stables principaux de l'oxydation identifiés et quantifiés sont H₂O, CO, CO₂, CH₂O, CH₄, C₂H₂, C₂H₄, C₂H₆, C₃H₆, C₃H₄-A, C₃H₄-P, 1,3-C₄H₆ et C₆H₆. Ces résultats se retrouvent dans d'autres conditions lors de l'oxydation de l'*iso*-butène en tube à choc. La pyrolyse de l'*iso*-butène, dans les conditions de température et pression de l'étude en tube à choc montre que les produits de pyrolyse principaux sont CH₄, C₂H₂, C₂H₄, C₂H₆, C₃H₆.

Références bibliographiques

- [*Blanksby*, 2003] S. J. Blanksby, G. B. Ellison, Bond dissociation energies of organic molecules, Accounts of Chemical Research, 26 (2003) 255-263.
- [Davis, 1998] S. G. Davis, C. K. Law, Determination of and Fuel Structure Effects on Laminar Flame Speeds of C1 to C8 Hydrocarbons, Combustion Science and Technology, 140 (1998) 427-449.
- [Gaussian, 2009] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, *Gaussian 09*, Revision D.01, Gaussian, Inc., Wallingford CT (2009).
- [*Gururajan, 2014*] V. Gururajan, F. N. Egolfopoulos, K. Kohse-Höinghaus, Direct numerical simulations of probe effects in low-pressure flame sampling, Proceeding of the Combustion Institute, 35 (2014) In press.
- [Heyberger, 2002] B. Heyberger, N. Belekki, V. Conraud, P.-A. Glaude, R. Fournet, F. Battin-Leclerc, Oxidation of small alkenes at high temperature, International Journal of Chemical Kinetics, 34 (2002) 666-677.
- [*Luo*, 2002] Y.-R. Luo, Handbook of bond dissociation energies in organic compounds, CRC Press, Boca Raton, FL (2002).

- [Qi, 2005] X.-J. Qi, Y. Feng, L. Liu, Q.-X. Guo, Assessment of Performance of G3B3 and CBS-QB3 Methods in Calculation of Bond Dissociation Energies, Chinese Journal of Chemistry, 23 (2005) 194-199.
- [Schenk, 2013] M. Schenk, L. Leon, K. Moshammer, P. Oßwald, T. Zeuch, L. Seidel, F. Mauss, K. Kohse-Höinghaus, Detailed mass spectrometric and modeling study of isomeric butene flames, Combustion and flame, 160(3) (2013) 487-503.
- [*Yasunaga, 2009*] K. Yasunaga, Y. Kuraguchi, R. Ikeuchi, H. Masaoka, O. Takahashi, T. Koike, Y. Hidaka, Shock tube and modeling study of isobutene pyrolysis and oxidation, Proceedings of the Combustion Institute, 32 (2009) 453–460.
- [Zhao, 2014] P. Zhao, W. Yuan, H. Sun, Y. Li, A. P. Kelley, X. Zheng, C. K. Law, Laminar flame speeds, counterflow ignition, and kinetic modeling of the butene isomers, Proceedings of the Combustion Institute (2014), http://dx.doi.org/10.1016/j.proci.2014.06.021.

Chapitre VI

Modélisation de l'oxydation des solvants du projet DISPATMO

VI. Modélisation de l'oxydation des solvants du projet DISPATMO.. 257

VI.1. Et	hanol	57
VI.1.1.	Réacteur auto-agité25	57
VI.1.2.	Flamme laminaire prémélangée26	52
VI.2. 2-1	butanone	53
VI.3. To	luène	5 4
VI.3.1.	Réacteur auto-agité26	54
VI.3.2.	Flamme laminaire prémélangée26	56
VI.4. Conclusion		

VI. Modélisation de l'oxydation des solvants du projet DISPATMO

Le mécanisme cinétique C_0 - C_7 développé dans cette étude a pour vocation de servir de modèle prédictif de l'oxydation de l'éthanol, de la butanone et du toluène. Lors du chapitre précédent (chapitre V), la validité du modèle a été démontrée pour les isomères du butène. Dans ce chapitre, quelques exemples de validation seront présentés, en utilisant des données issues de la littérature. Les dispositifs privilégiés sont le réacteur auto-agité et les brûleurs à flamme plate pour l'accès à la spéciation.

VI.1. Ethanol

Composé très étudié expérimentalement, l'éthanol fait encore aujourd'hui l'objet de nombreuses études. Afin de tester notre modèle cinétique, nous avons choisi les données expérimentales de Leplat et al. [*Leplat, 2011*]. Il s'agit de profils expérimentaux d'espèces issues de l'oxydation de l'éthanol en réacteur auto-agité ainsi qu'en flammes plates prémélangées à basse pression.

VI.1.1. Réacteur auto-agité

Pour la validation du modèle, nous avons modélisé l'oxydation de l'éthanol en réacteur auto-agité à l'aide du sous-programme PSR de CHEMKIN. Trois richesses ont été testées : φ = 0,5, φ = 1 et φ = 2. La pression est maintenue à 1 atm et le temps de passage est fixé à 70 ms. La gamme de température est 890-1250 K. La concentration initiale d'éthanol est 2000 ppm. Les résultats de l'oxydation de l'éthanol sont présentés sur les figures VI.1 à VI.3.

Les produits d'oxydation identifiés et quantifiés lors de l'étude en réacteur auto-agité sont H_2O , CO, CO_2 , l'éthanol, le formaldéhyde, l'éthane, d'éthylène, l'acétylène, le méthane, l'hydrogène, l'oxygène et l'acétaldéhyde.

Pour l'ensemble des richesses, la consommation de l'éthanol est bien prédite par le modèle. La conversion de l'éthanol est visible pour des températures supérieures à 900 K et la conversion est complète à 1250 K.

Les produits finals de la combustion sont bien représentés. Pour l'ensemble des richesses, la concentration de formaldéhyde est sous-estimée par le modèle, même si la tendance prédite est en accord avec les points expérimentaux. Pour $\varphi = 0,5$, la fraction molaire d'éthylène est un peu sous-estimée.

Globalement, l'estimation des profils de concentration des produits de l'oxydation de l'éthanol est en très bon accord avec l'expérience.

Figure VI.1 : Oxydation de l'éthanol en réacteur auto-agité. $\phi = 0.5$; $\tau = 70$ ms ; p = 1 atm

Figure VI.2 : Oxydation de l'éthanol en réacteur auto-agité. $\phi = 1$; $\tau = 70$ ms ; p = 1 atm

Figure VI.3 : Oxydation de l'éthanol en réacteur auto-agité. $\phi = 2$; $\tau = 70$ ms ; p = 1 atm

VI.1.2. Flamme laminaire prémélangée

Leplat et al. [*Leplat, 2011*] ont également étudié la structure de flammes d'éthanol dans l'argon ($C_2H_5OH/O_2/Ar$) stabilisées sur brûleur à basse pression (50 mbar). Les profils d'espèces présentes dans la flamme ont pu être obtenus grâce à un spectromètre de masse couplé à ionisation par impact électronique. Les résultats expérimentaux sont présentés pour une richesse de 1,25 dans la figure VI.4. Les simulations ont été obtenues par calcul à l'aide du sous-programme PREMIX de CHEMKIN et sont comparées aux valeurs expérimentales.

Figure VI.4 : Oxydation de l'éthanol en flamme laminaire prémélangée stabilisée sur brûleur. $\phi = 1,25$; p = 50 mbar.

Dans la figure VI.4, nous constatons que les profils de concentration des réactifs, éthanol et oxygène, sont bien estimés par le modèle. La consommation de l'éthanol présente un léger décalage en distance par rapport au brûleur (1mm). Les profils des produits finals de l'oxydation de l'éthanol sont globalement bien prédits. La fraction molaire de CO est en revanche surestimée entre 0,2 et 0,5 cm après le brûleur. La tendance du profil de concentration de l'acétaldéhyde ainsi que la concentration maximale sont bien prédit par le modèle, mais le maximum est prévu 1 mm trop près du brûleur. Les radicaux OH présentent un profil de concentration en accord avec les points expérimentaux.

Enfin, les profils des intermédiaires hydrocarbonés de l'oxydation (CH_4 , C_2H_4 et C_2H_2) sont bien représentés.

VI.2. 2-butanone

Les données expérimentales portant sur l'oxydation de la 2-butanone ne sont pas nombreuses. Afin de confronter notre modèle à l'expérience, nous avons choisi les données expérimentales de Serinyel et al. [*Serinyel, 2010*]. Il s'agit de délais d'auto-inflammation obtenus en tube à choc. Les conditions simulées sont les suivantes : 1% de butanone diluée dans de l'oxygène et de l'argon, des richesses de 0,5, 1 et 2. Les pressions relevées derrière l'onde de choc réfléchie sont de l'ordre de 1 atm. La gamme de température de l'étude est 1250-1850 K. Les délais d'auto-inflammation observés sont compris entre 30 et 1250 µs. Les délais d'auto-inflammation simulés sont confrontés aux points expérimentaux dans la figure VI.5.

Figure VI.5 : Délais d'auto-inflammation de mélangés butanone/O2/Ar obtenus en tube à choc.

La figure VI.5 montre que les délais d'auto-inflammation simulés sont en très bon accord avec les données expérimentales. Nous observerons que les délais d'auto-inflammation, à température égale, pour $\varphi = 0.5$ sont inférieurs aux délais pour $\varphi = 1$, eux même inférieurs aux délais pour $\varphi = 2$. Ainsi, plus le mélange est pauvre en butanone, plus celui-ci est réactif. Enfin, plus la température augmente, plus le mélange devient réactif.

VI.3. Toluène

VI.3.1. Réacteur auto-agité.

Dans leur étude sur l'oxydation du toluène, Dagaut et al. [*Dagaut, 2002*] présentent des profils expérimentaux de produits d'oxydation obtenus en réacteur auto-agité. Afin de valider notre mécanisme cinétique pour l'oxydation du toluène, nous avons simulé, à l'aide du sous-programme PSR de CHEMKIN, les profils de concentration de produits d'oxydation du toluène, dans les conditions de l'expérience de Yuan et al. [*Yuan, 2014*]. Les données expérimentales publiées ainsi que les présentes simulations sont présentées en figure VI.6.

Les expériences ont été menées à pression atmosphériques dans le réacteur auto-agité du CNRS d'Orléans. Le temps de passage est de 70 ms, la fraction molaire de toluène est fixée à $1,5x10^{-3}$ pour une richesse $\varphi = 1,5$. Les températures sont limitées à la gamme 1100-1400 K (limitation supérieure intrinsèque au dispositif).

Les espèces observées et quantifiées présentées dans la figure VI.6 sont le monoxyde de carbone, le dioxyde de carbone, l'hydrogène, le formaldéhyde, le toluène, le benzène, le 1,3butadiène, de vinylacétylène, le propyne, l'allène, l'éthylène, l'acétylène et le méthane.

La conversion du toluène, dans les conditions opératoires, est observée pour des températures de l'ordre de 1150 K. A la température maximale de l'expérience, 1400 K, environ 60 % du toluène est consommé. Les profils de fractions molaires des réactifs, le toluène et l'oxygène, sont bien simulés. La simulation donne également un résultat proche de l'expérience pour CO et CO₂. La concentration prédite de benzène est un peu sous-estimée. Les concentrations des isomères du C_3H_4 , l'allène et le propyne, sont raisonnablement bien prédits, tout comme le formaldéhyde.

Les hydrocarbures sont très bien estimés par le modèle, du méthane au 1,3-butadiène. Seul de vinylacétylène est un peu sous-estimé.

Figure VI.6 : Oxydation du toluène en réacteur auto-agité. $\phi = 1,5$; $\tau = 70$ ms ; p = 1 atm

VI.3.2. Flamme laminaire prémélangée

Li et al. [*Li, 2009*] ont étudié des flammes laminaires prémélangées (toluène/ O_2 /Ar) stabilisées sur brûleur à basse pression (30 Torr). Les profils d'espèces présentes dans la flamme ont pu être obtenus grâce à un spectromètre de masse couplé à photoionisation pour synchroton UV. Les résultats expérimentaux sont présentés pour une richesse de 1,90 dans la figure VI.7. Les simulations ont été obtenues par calcul à l'aide du sous-programme PREMIX de CHEMKIN et sont comparées aux valeurs expérimentales (figure VI.7).

Figure VI.7: Oxydation du toluène en flamme laminaire prémélangée stabilisée sur brûleur. ϕ = 1,90 ; p = 30 Torr.

Dans la figure VI.7, les profils de concentration d'oxygène, de toluène, de CO, CO₂, H₂O, d'acétylène, de benzène, l'allène, de propyne, de cétène (C_2H_2O), de méthane, d'éthylène, de 1,3-butadiène et de vinylacétylène sont présentés en fonction de la distance au brûleur.

Le profil de concentration du toluène est en bon accord avec les points expérimentaux, de même que le profil de l'oxygène. La simulation prédit avec précision les profils des produits finals (CO_2 et H_2O) de l'oxydation du toluène, à savoir l'eau, CO_2 , mais aussi CO. Les concentrations du méthane et de l'acétylène sont bien représentées. Les composés C_4 sont globalement bien estimés en concentration par le modèle. Cependant, comme pour

l'éthylène, le propyne et l'allène, les maxima sont décalés en distance par rapport au brûleur d'environ 2 mm.

De manière générale, les maxima de concentration sont cohérents avec les valeurs expérimentales.

VI.4. Conclusion

Dans ce chapitre, nous avons cherché à valider notre modèle cinétique pour les trois composés sélectionnées pour le projet DISPATMO.

Pour l'éthanol, de nombreuses données expérimentales existent. Nous nous sommes appliqués à confronter la simulation aux profils d'espèces obtenus en réacteur auto-agité et en flamme laminaire prémélangée [*Leplat, 2011*]. Le modèle, pour la 2-butanone, a été confronté aux délais d'auto-inflammation obtenus en tube à choc par Serinyel et al. [*Serinyel, 2010*]. Enfin, pour valider le modèle d'oxydation du toluène, nous avons simulé les profils expérimentaux d'espèces obtenus en réacteur auto-agité [*Dagaut, 2002*] et en flamme laminaire prémélangée [*Li, 2009*].

Nous avons montré que les simulations donnent des résultats cohérents avec les données expérimentales dans les conditions testées.

Références bibliographiques

- [Dagaut, 2002] P. Dagaut, G. Pengloan, A. Ristori, Oxidation, ignition and combustion of toluene: Experimental and detailed chemical kinetic modeling, Physical Chemistry and Chemical Physics., 4 (2002) 1846–1854.
- [*Leplat, 2011*] N. Leplat, P. Dagaut, C. Togbé, J. Vandooren, Numerical and experimental study of ethanol combustion and oxidation in laminar premixed flames and in jet-stirred reactor, Combustion and Flame, 158 (2011) 705–725.
- [*Li*, 2009] Y.Y. Li, L.D. Zhang, Z.Y. Tian, T. Yuan, J. Wang, B. Yang, F. Qi, Experimental Study of a Fuel-Rich Premixed Toluene Flame at Low Pressure, Energy Fuels, 23 (2009) 1473–1485.
- [*Serinyel, 2010*] Z. Serinyel, G. Black, H. J. Curran, J. M. Simmie, A shock tube and chemical kinetic modeling study of methyl ethyl ketone oxidation, Combustion Science and Technology, 182 (2010) 574-587.
- [*Yuan, 2014*] W.H. Yuan, Y.Y. Li, P. Dagaut, J.Z. Yang, F. Qi, Investigation on the pyrolysis and oxidation of toluene over a wide range conditions. I. Flow reactor pyrolysis and jet stirred reactor oxidation, Combustion and Flame (2014) in press.

Chapitre VII

Etude expérimentale de l'oxydation du solvant TIFLEX

II.Etude expérimentale de l'oxydation du solvant TIFLEX	
VII.1. Introduction	
VII.2. Détermination expérimentale de la composition du solvant TIF	FLEX 273
VII.3. Résultats expérimentaux de l'oxydation du solvant TIFLEX	
VII.3.1. Conditions expérimentales	275
VII.3.2. Résultats expérimentaux	275
VII.4. Conclusion	

VII. Etude expérimentale de l'oxydation du solvant TIFLEX

Le but de cette étude expérimentale est d'identifier les produits issus de la combustion du solvant TIFLEX, dans un scénario d'incendie. Le prélèvement des produits directement en flamme dans des conditions réelles étant impossible, nous proposons une approche en réacteur auto-agité, en essayant de se rapprocher des températures de flamme. Les produits identifiés seront ensuite quantifiés.

Ces résultats permettront une prévision des polluants dégagés lors d'un incendie du solvant TIFLEX qui pourraient être dommageables pour l'environnement et les populations.

VII.1. Introduction

Le solvant TIFLEX est un mélange. La fiche détaillée du solvant mentionne les composés détaillés dans le tableau VII-1.

Espèce chimique	Concentration (% massique)
Cumène	<2.5
1,3,5-triméthylbenzène	<2.5
1,3,4-triméthylbenzène	2.5< - <10
1-méthoxy-2-propanol	10<- <25
Solvant naphta aromatique léger (pétrole)	50<- <100
Acétate de 1-méthoxy-2-propyle	10<- <25

Tableau VII-1 : Composition du solvant TIFLEX selon le fournisseur.

Selon le tableau VII.1, le TIFLEX est composé de cumène et de triméthylbenzène, ainsi que de deux hydrocarbures oxygénés (1-méthoxy-2-propanol de l'acétate de 1-méthoxy-2-propyle). Mais le solvant TIFLEX est majoritairement composé de Solvant naphta aromatique léger (pétrole). Cette première approche laisse de larges incertitudes sur les concentrations des constituants du solvant TIFLEX. De plus, la composition du solvant naphta aromatique léger n'est pas définie.

Le solvant naphta (fraction des aromatiques légers) est un mélange complexe d'hydrocarbures obtenus par la distillation de la fraction aromatique (lors du procédé de réformation catalytique du pétrole brut). Il est constitué d'hydrocarbures ayant un nombre d'atomes de carbone majoritairement compris entre 8 et 10 (C_8 et C_{10}) et possédant un point d'ébullition compris approximativement entre 135 °C et 210 °C.

Le mélange a été testé et analysé [*Schreiner*, 1989] par chromatographie en phase gazeuse. Le résultat est donné dans le tableau VII-2 :

Espèce détectée	Concentration (% massique)
ortho-xylène	3,2
cumène	2,74
n-propylbenzène	3,97
éthyl-4 toluène	7,05
éthyl-3 toluène	15,1
éthyl-2 toluène	5,44
triméthyl-1,3,5 benzène	8,37
triméthyl-1,2,4 benzène	40,5
triméthyl-1,2,3 benzène	6,18
hydrocarbures en C_{10} et plus de C_{10}	6,19

Tableau VII-2 : Composition du solvant naphta (fraction des aromatiques légers) mesurée par Schreiner et al.

La publication indique que les proportions des constituants mentionnés varient selon la source d'approvisionnement en produit commercial.

Dans le cadre du projet DISPATMO, le solvant TIFLEX a fait l'objet d'une étude expérimentale en réacteur auto-agité. Le but est, dans un premier temps, d'identifier les espèces chimiques entrant dans la composition de ce solvant, et de les quantifier. La deuxième étape est de définir quels sont les produits de la combustion du TIFLEX et d'estimer leurs concentrations.

VII.2. Détermination expérimentale de la composition du solvant TIFLEX

Le solvant se présente sous forme liquide. La première étape, pour connaitre la composition du solvant, a été de réaliser une analyse élémentaire (Service Central d'Analyse du CNRS). Les résultats, par élément, et en pourcentage massique, sont :

- 75,43 % d'atomes de carbone
- 10,24 % d'atomes d'hydrogène
- 13,05 % d'atomes d'oxygène

Le solvant contient des composés avec 8 à 10 atomes de carbone. Ainsi, nous pouvons faire comme hypothèse que le nombre de carbone moyen des molécules constituant le solvant est 9. En ajustant la quantité d'hydrogène et d'oxygène avec les résultats de l'analyse élémentaire, nous estimons la formule brute à $C_9H_{14,66}O_{1,17}$. Cette valeur nous a ensuite permis d'ajuster les débits d'azote et d'oxygène afin d'oxyder le solvant en réacteur autoagité, à une richesse de 0,3, un temps de passage de 700 ms, une pression de 10 atm et une température de 1150 K. Le but est de convertir complètement le solvant en produits finals de la combustion (H₂O et CO₂). Grâce au bilan de carbone obtenu (avec les concentrations de CO et CO₂) et à l'analyse élémentaire, nous avons pu calculer la formule brute du solvant TIFLEX :

$$C_{8,1}H_{13,2}O_{1,05}$$

La seconde étape de l'estimation de la composition du solvant TIFLEX est la passage du solvant en réacteur auto-agité à basse température (environ 500 K) de façon à pouvoir quantifier les gaz à la sortie du réacteur à l'aide des appareils de mesure en ligne : Un chromatographe en phase gazeuse (colonne DB624 et détecteur FID) couplé à un spectromètre de masse pour faciliter l'identification des produits. Nous avons vérifié qu'à la température de l'expérience (530 K), aucun constituant du TIFLEX n'avait réagi. Les conditions de l'expérience sont : p = 10 atm, T = 530 K, $\tau = 70$ ms et $\varphi = 1$.

Après identification et quantification des produits dans le réacteur, nous avons défini la composition du TIFLEX comme présentée dans le tableau VII-3.

Composé	% molaire	Composé	% molaire
1-méthoxy-2-propanol	26.8	1,3-diéthylbenzène	1.0
1-méthoxy-2-propyl acétate	18.8	1-méthyl-3-propylbenzène	4.5
n-propylbenzène	0.8	1,4-diéthylbenzène	4.6
1-éthyl-3-méthylbenzène	3.3	1,2-diéthylbenzène	0.2
1-éthyl-4-méthylbenzène	1.7	indène	0.1
1,3,5-triméthylbenzène	2.7	1-méthyl-4-propylbenzène	0.7
1-éthyl-2-méthylbenzène	2.7	1-éthyl-3,5-diméthylbenzène	1.3
1,2,4-trimethylbenzene	19.1	2-éthyl-1,4-diméthylbenzène	1.0
(2-méthylpropyl)benzène	0.3	1-éthyl-2,4-diméthylbenzène	1.6
(1-méthylpropyl)benzène	0.4	1-éthyl-2,3-diméthylbenzène	0.2
m-cymène	0.8	1,2,4,5-tétraméthylbenzène	0.2
p-cymène	0.3	1,2,3,5-tétraméthylbenzène	0.3
1,2,3-triméthylbenzène	6.4	1,2,3,4-tétraméthylbenzène	0.3
o-cymène	0.1	Total = 100 %	

Tableau VII-3 : Composition du solvant TIFLEX mesurée dans cette étude

Afin d'avoir une vue d'ensemble des constituants du solvant TIFLEX, nous avons regroupés les isomères ensemble et le résultat est présenté dans la figure VII.1.

Figure VII.1 : Constituants du solvant TIFLEX

Le solvant TIFLEX est composé à 28,1 % de triméthylbenzène comprenant le 1,2,4triméthylbenzène, le 1,3,5-triméthylbenzène et le 1,2,3-triméthylbenzène, par ordre décroissant d'abondance. Deux composés oxygénés représentent un peu moins de la moitié du mélange : le 1-méthoxy-2-propanol (26,8 %) et le 1-méthoxy-2-propyl acétate (18,7 %). Viennent ensuite des dérivées du benzène : l'éthylméthylbenzene (7,6 %), le diéthylbenzène (5,8 %), le méthyl-propylbenzène (5,2 %), l'éthyldiméthylbenzène (4,2 %), le cymène (1,1 %), le tétraméthylbenzène (0,9 %), le n-propylbenzène (0,8 %), le (méthylpropyl)benzène (0,7 %) et l'indène (0,1 %).

VII.3. Résultats expérimentaux de l'oxydation du solvant TIFLEX

VII.3.1. Conditions expérimentales

L'oxydation du solvant TIFLEX a été réalisée dans le réacteur auto-agité équipé d'un vaporisateur, et opérant à une pression de 1 atm. L'étude a été menée à des températures de 530 K à 1310 K. Mais jusqu'à 740 K, le solvant n'est pas réactif. La température maximale pour la consigne de chauffe est 1310 K. La quantité de solvant injectée est 1000 ppm. Ces conditions expérimentales sont résumées dans le tableau VII.4.

X _{TIFLEX}	X _{O2}	X _{N2}	φ	T (K)	P (atm)	τ (ms)
$1,0x10^{-3}$	$2,175 \times 10^{-2}$	0,97725	0,5	740-1270	1	70
$1,0x10^{-3}$	$1,0875 \times 10^{-2}$	0,988125	1	740-1270	1	70
$1,0x10^{-3}$	$5,438 \times 10^{-3}$	0,993563	2	740-1310	1	70

Tableau VII-4 : Conditions expérimentales pour l'oxydation du solvant TIFLEX.

VII.3.2. Résultats expérimentaux

L'identification des produits de l'oxydation du solvant TIFLEX a été réalisée à l'aide un spectromètre de masse couplé à un chromatographe en phase gazeuse (colonne DB624). La quantification des produits a été effectuée par spectrométrie infra-rouge à transformée de

Fourrier (FTIR) ainsi que par chromatographie en phase gazeuse (colonne DB624) avec un détecteur à ionisation de flamme (FID). Les profils de concentration obtenus pour les richesses $\varphi = 0.5$, 1 et 2 sont présentés dans les figures VII-2 à VII-10. Pour chaque richesse, trois figures sont présentées : une première figure montre l'évolution des concentrations des constituants du solvant en fonction de la température (figures VII-2, VII-5 et VII-8). Une deuxième figure regroupe les fractions molaires des produits finals de la combustion et les produits courants de la combustion (figures VII-3, VII-6 et VII-9). Enfin, une troisième figure présente les profils de concentration des produits d'oxydation oxygénés et des produits de combustion spécifiques aux constituants du solvant (figures VII-4, VII-7 et VII-10).

Les figures VII-2, VII-5 et VII-8 montrent que le constituant du solvant qui s'oxyde à plus basse température est le 1-méthoxy-2-propyle acétate. Sa conversion apparait pour des températures de l'ordre de 800 K et ce composé est entièrement consommé à 1000 K. Les principaux produits de l'oxydation du 1-méthoxy-2-propyl acétate (figures VII-4, VII-7 et VII-10) sont la 2-butanone, le 3-méthoxy-1-propène, le 1-méthoxy-1-propène et l'acide acétique. Les molécules citées sont dessinées ci-dessous.

1-méthoxy-2-propyle acétate

1-méthoxy-1-propène

3-méthoxy-1-propène

Acide acétique

Ces produits sont obtenus par rupture de la liaison C-O qui entraine la séparation du groupement acétate et du groupement méthoxypropyle.

L'oxydation du 1-méthoxy-2-propyle acétate, produisant des espèces réactives, entraine une oxydation des autres composés du solvant, visible particulièrement dans la gamme de température 780-850 K à $\varphi = 0.5$, 800-900 K à $\varphi = 1$ et 2 où une baisse de la concentration des espèces aromatiques substituées est visible.

La seconde espèce s'oxydant, en suivant l'ordre croissant des températures, est le 1méthoxy-2-propanol. Sa conversion est visible pour des températures de l'ordre de 850 K, probablement aidée par la production d'espèces réactives à partir du 1-méthoxy-2-propyle acétate. Le 1-méthoxy-2-propanol est entièrement converti à 1200 K. Son oxydation mène à la formation de produits tels que le propène, l'acétone, l'oxirane et l'acétaldéhyde. Les produits d'oxydation du 1-méthyl-2-propanol influencent visiblement les concentrations d'espèces aromatiques substituées, comme les triméthylbenzènes. Par comparaison avec les travaux de thèse de Gail [*Gail, 2003*] sur l'oxydation de composés aromatiques, dont le 1,2,4-triméthylbenzène, nous pouvons constater que dans le cas du mélange TIFLEX, la conversion du 1,2,4-triméthylbezène apparait pour des température plus basses que celle constatées par Gail. Nous pensons donc que l'oxydation du 1-méthoxy-2-propyle acétate et du 1-méthoxy-2-propanol entraine la conversion d'une partie des hydrocarbures aromatiques.

Le solvant TIFLEX est constitué d'un nombre important de composés aromatiques (tableau 3). Lors de l'identification et la quantification des espèces en réacteur auto-agité, les isomères ont été mesurés séparément. Mais pour faciliter la lecture des figures de l'oxydation du solvant, nous avons regroupé les isomères. Seuls les isomères du triméthylbenzène sont considérés indépendamment, en raison de leur concentration. Dans constituants du solvant, nous noterons que l'indène est l'unique composé à voir sa concentration augmenter avec la température. C'est donc également un produit de l'oxydation du solvant. Sa concentration reste stable jusqu'à une température de 850 K à $\varphi = 0.5$, et 900 K à $\varphi = 1$ et 2. A $\varphi = 0.5$, la concentration d'indène croît jusqu'à 1050 K avec une valeur de l'ordre de la dizaine de ppm, puis décroît fortement avec la température augmentant. A $\phi = 1$, le maximum de concentration de l'indène, 12 ppm, est atteint à 1100 K. Pour une richesse $\varphi = 2$, le maximum de concentration n'est pas atteint à 1310 K et à cette température nous mesurons une quarantaine de ppm d'indène. De manière générale, à $\varphi = 0.5$ et 1, les concentrations des autres constituants du solvant TIFLEX tombent en dessous des limites de détection des appareils (< 1 ppm). A ϕ = 2, des traces de triméthylbenzène, de méthylbenzène, méthyléthylbenzène, diméthyléthylbenzène, cymène sont observables.

Les produits spécifiques de l'oxydation des composés aromatiques du solvant sont le benzène, le toluène, l'éthylbenzène, le p-xylène, le m-xylène, l'éthényléthylbenzène et l'éthénylméthylbenzène. Leurs concentrations atteignent un maximum proche 1100 K pour $\varphi = 0.5$, proche de 1150 K pour $\varphi = 1$ et proche de 1250 K pour $\varphi = 2$. Le benzène est le produit aromatique de l'oxydation du solvant le plus abondant, avec 150 ppm au maximum à $\varphi = 2$, suivi du toluène, avec 120 ppm au maximum à $\varphi = 2$. Le p-xylène et le m-xylène sont également abondant (70 ppm au maximum à $\varphi = 2$).

Figure VII.2 : Oxydation du solvant TIFLEX en réacteur auto-agité : p = 1 atm ; $\tau = 70$ ms ; $X_{TILFLEX} = 1000$ ppm ; $\phi = 0.5$. Fractions molaires des constituants du solvant.

Figure VII.3 : Oxydation du solvant TIFLEX en réacteur auto-agité : p = 1 atm ; $\tau = 70$ ms ; $X_{TILFLEX} = 1000$ ppm ; $\phi = 0.5$. Fractions molaires des produits d'oxydation.

Figure VII.4 : Oxydation du solvant TIFLEX en réacteur auto-agité : p = 1 atm ; $\tau = 70$ ms ; $X_{TILFLEX} = 1000$ ppm ; $\phi = 0.5$. Fractions molaires des produits d'oxydation.

Figure VII.5 : Oxydation du solvant TIFLEX en réacteur auto-agité : p = 1 atm ; $\tau = 70$ ms ; $X_{TILFLEX} = 1000$ ppm ; $\phi = 1$. Fractions molaires des constituants du solvant.

Figure VII.6 : Oxydation du solvant TIFLEX en réacteur auto-agité : p = 1 atm ; $\tau = 70$ ms ; $X_{TILFLEX} = 1000$ ppm ; $\phi = 1$. Fractions molaires des produits d'oxydation.

Figure VII.7 : Oxydation du solvant TIFLEX en réacteur auto-agité : p = 1 atm ; $\tau = 70$ ms ; $X_{TILFLEX} = 1000$ ppm ; $\phi = 1$. Fractions molaires des produits d'oxydation.

Figure VII.8 : Oxydation du solvant TIFLEX en réacteur auto-agité : p = 1 atm ; $\tau = 70$ ms ; $X_{TILFLEX} = 1000$ ppm ; $\phi = 2$. Fractions molaires des constituants du solvant.

Figure VII.9 : Oxydation du solvant TIFLEX en réacteur auto-agité : p = 1 atm ; $\tau = 70$ ms ; $X_{TILFLEX} = 1000$ ppm ; $\phi = 2$. Fractions molaires des produits d'oxydation.

Figure VII.10 : Oxydation du solvant TIFLEX en réacteur auto-agité : p = 1 atm ; $\tau = 70$ ms ; $X_{TILFLEX} = 1000$ ppm ; $\phi = 2$. Fractions molaires des produits d'oxydation.

VII.4. Conclusion

Dans cette étude, la composition du solvant TIFLEX a pu été définie expérimentalement. Pour ce faire, une étude élémentaire a été réalisée (Service Central d'Analyse du CNRS), permettant de connaître les proportions d'atomes de carbone, d'hydrogène et d'oxygène dans le mélange. La formule brute moyenne du solvant a ensuite été mesurée expérimentalement par oxydation du solvant en réacteur auto-agité, à des conditions expérimentales auxquelles le solvant est entièrement converti et les seuls produits d'oxydation sont H₂O, CO et CO₂ (T = 1150 K, P = 10 atm, ϕ = 0,3 et τ = 700 ms). Les concentrations de ces composés ont été mesurées par spectrométrie infra-rouge à transformée de Fourrier. Le bilan carbone obtenu, conjugué à l'analyse élémentaire ont permis de remonter à la formule brute moyenne du solvant, utile pour une étude des produits d'oxydation du solvant TIFLEX en réacteur autoagité.

L'identification et la quantification des produits de l'oxydation du solvant en réacteur auto-agité ont été réalisées pour des températures de 740-1310 K, à pression atmosphérique, à un temps de passage de 70 ms et pour $\varphi = 0.5$, 1 et 2.

Les résultats montrent que le 1-méthoxy-2-propyle acétate s'oxyde le plus facilement à de basses températures (800 K), suivi du 1-méthoxy-2-propanol (900 K). Enfin, les composés aromatiques du mélange s'oxydent à des températures plus élevées (900-1300 K). Les produits de la combustion du solvant ont pu être identifiées et quantifiés. Nous noterons que l'oxydation de ce solvant fourni des quantités importantes de benzène (composé toxique) et acétylène qui peuvent mener à la formation de suies.

Références bibliographiques

- [*Schreiner*, *1989*] C. A. Schreiner, D. A. Edwards, R. H. McKee, M. Swanson, Z. A. Wong, S. Schmitt, P. Beatty, The mutagenic potential of high flash aromatic naphta, Cell Biology and Technology, 5 (2) (1989) 169-188.
- [*Gaïl, 2003*] S. Gaïl, Etude cinétique de l'oxydation de composés aromatiques en relation avec la combustion du gazole et de l'essence : Approche expérimentale et modélisation cinétique détaillée, manuscrit de thèse, Université d'Orléans (2003).

Chapitre VIII

Conclusion générale et perspectives

VIII. Conclusion générale et perspectives

L'étude expérimentale et la modélisation de l'oxydation de composés organiques à des fins de sécurité industrielle est le fil conducteur de cette thèse, menée dans le cadre du projet DISPATMO. Les composés cibles de cette étude sont l'éthanol, la 2-butanone, le toluène, ainsi que le solvant TIFLEX. L'étude de ces composés et associée à l'étude cinétique d'oxydation des isomères du butène, intermédiaire fréquemment rencontré en combustion.

L'objectif est de proposer un mécanisme cinétique prédictif pour l'oxydation de ces composés, afin de pouvoir, à terme, prévoir la formation des polluants lors de leur combustion.

Pour répondre à ce besoin, un mécanisme cinétique détaillé a été développé. Il compte environ 200 espèces, impliquées dans près de 1800 réactions. C'est un mécanisme hiérarchisé basé sur un mécanisme existant développé à ICARE pour l'oxydation des hydrocarbures, du gaz naturel au kérosène [*Dagaut, 2002 a*]. Ce mécanisme a été actualisé au travers d'une étude sur l'oxydation des isomères du butène [*Fenard, 2014*]. Des mises à jour ont été effectuées, en particulier sur les sous-mécanismes d'oxydation de l'éthanol [Leplat, 2011], de la 2-butanone [*Serinyel, 2010*] et du toluène [*Dagaut, 2002 b*].

La simulation des profils de concentration des produits d'oxydation (en réacteur-autoagité, en flammes laminaires prémélangées et en tube à choc), les délais d'auto-inflammation ou des vitesses de flammes laminaires a été réalisée avec les sous-programmes adaptés (PSR, SENKIN, PREMIX) du logiciel CHEMKIN.

Au cours de cette thèse, une étude expérimentale de l'oxydation des isomères du butène (1-butène, *trans*-2-butène, *cis*-2-butène et *iso*-butène) a été réalisée. L'étude a été menée en réacteur auto-agité, pour obtenir les profils de concentration des produits d'oxydation des isomères du butène et en bombe sphérique, pour obtenir les vitesses de flammes laminaires des isomères du butène dans l'air. Les conditions opératoires sont rappelées dans les tableaux 1 et 2.

Richesse	X _{C4H8}	X ₀₂	X _{N2}	Pression	Temps de	Température
	initiale	initiale	initiale	(atm)	passage (s)	(K)
0,25	1,0.10-3	2,4.10 ⁻²	0,975	1	0,07	900-1175
0,5	1,0.10-3	1,2.10 ⁻²	0,987	1	0,07	900-1225
1	1,0.10-3	6,0.10 ⁻³	0,993	1	0,07	900-1290
2	1,0.10-3	3,0.10-3	0,996	1	0,07	900-1440

Tableau VIII-1 : Oxydation des butènes en réacteur auto-agité

Tableau VIII-2 : Combustion des butènes en chambre sphérique

Richesse (butène/air)	Température des gaz frais (K)	Pression initiale (atm)
	1-butène	
0,8	300	1-5
0,7-1,4	300-450	1
	Trans-2-butène	
0,8	300	1-5
0,8-1,4	300	1
	Cis-2-butène	
0,8	300	1-5
0,8-1,4	300	1
	Iso-butène	
0,8	300	1-5
0,8-1,4	300	1

Les résultats expérimentaux ont permis la validation du modèle cinétique. Pour étendre la validation du modèle, des données expérimentales issues de la littérature ont été utilisées et confrontées à la simulation. Elles ont été obtenues dans de larges gammes de pression, température et richesse, au moyen de dispositifs expérimentaux variés (tube à choc [*Heyberger, 2002*][*Yasunaga 2009*], réacteur auto-agité, flammes laminaires prémélangées stabilisées sur brûleur [*Schenk, 2012*][*Dias 2010*], bombe sphérique). De manière générale, le modèle donne des résultats satisfaisants, reproduisant convenablement les résultats expérimentaux.

Pour améliorer la compréhension de la cinétique d'oxydation des butènes, nous avons utilisé des analyses de sensibilité et des analyses de vitesse. Les analyses de sensibilité nous ont permis de mettre en évidence les réactions clés du mécanisme cinétique jouant un rôle important dans la simulation de d'oxydation des butènes. Grâce à ces outils, nous avons pu identifier les réactions les plus efficaces pour la conversion des butènes :

1-butène	Iso-butène
$C_4H_8 - 1 + H \rightleftharpoons CH_3 + C_3H_6$	$iC_4H_8 \rightleftharpoons iC_4H_7 + H$
$C_4H_8 - 1 + H \rightleftharpoons C_2H_4 + C_2H_5$	$iC_4H_8 + X \rightleftharpoons iC_4H_7 + XH$
$C_3H_5 - A + CH_3(+M) \rightleftharpoons C_4H_8 - 1(+M)$	$iC_4H_8 + H = iC_4H_9$
$SC_4H_9 \rightleftharpoons C_4H_8 - 1 + H$	$iC_4H_8 + H = tC_4H_9$

Cis-2butène	Trans-2-butène
$C2C_4H_8 \rightleftharpoons T2C_4H_8$	$C2C_4H_8 \rightleftharpoons T2C_4H_8$
$C2 - C_4 H_8 + H \rightleftharpoons C_3 H_6 + C H_3$	$T2 - C_4 H_8 + H \rightleftharpoons C_3 H_6 + C H_3$
$C2C_4H_8 \rightleftarrows C_3H_5 - A + CH_3$	$T2C_4H_8 \rightleftarrows C_3H_5 - A + CH_3$

Au travers de cette étude, nous avons cherché à valider notre modèle cinétique pour les trois molécules sélectionnées pour le projet DISPATMO.

Pour l'éthanol, de nombreuses données expérimentales existent. Nous nous sommes appliqués à confronter la simulation aux profils d'espèces obtenus en réacteur auto-agité et en flamme laminaire prémélangée [*Leplat, 2011*]. Le modèle, pour la 2-butanone, a été confronté aux délais d'auto-inflammation obtenus en tube à choc par Serinyel et al. [*Serinyel, 2010*]. Enfin, pour valider le modèle pour l'oxydation du toluène, nous avons comparé les profils expérimentaux d'espèces obtenus en réacteur auto-agité [*Dagaut, 2002*] et en flamme laminaire prémélangée [*Li, 2009*]. Au final, les simulations donnent des résultats cohérents avec les données expérimentales dans les conditions testées.

Le solvant TIFLEX fait partie des produits sélectionnés dans le projet DISPATMO. Dans cette étude, nous avons donc défini expérimentalement la composition du solvant TIFLEX. Pour ce faire, une étude élémentaire a été réalisée, permettant de connaître les proportions d'atomes de carbone, d'hydrogène et d'oxygène dans le mélange. La formule brute moyenne du solvant a été mesurée expérimentalement par oxydation du solvant en réacteur auto-agité, à

des conditions expérimentales auxquelles le solvant est entièrement converti en H₂O et CO₂. Le bilan carbone obtenu, conjugué à l'analyse élémentaire a permis de remonter à la formule brute moyenne du solvant, $C_{8,1}H_{13,2}O_{1,05}$, utile pour une étude des produits d'oxydation du solvant TIFLEX en réacteur auto-agité. L'identification et la quantification des produits de l'oxydation du solvant en réacteur auto-agité ont été réalisées pour des températures comprises entre 740 et 1310 K, pour $\varphi = 0,5, 1$ et 2. Les résultats montrent que le 1-méthoxy-2-propyle acétate s'oxyde à relativement basse température (800 K), suivi du 1-méthoxy-2-propanol (900 K). Enfin, les composés aromatiques du mélange s'oxydent pour des températures plus élevées (900-1300 K). Les produits de la combustion du solvant ont été identifiés et quantifiés. La modélisation cinétique de l'oxydation du solvant TIFLEX n'a pas été menée au cours de ce travail mais est envisageable dès qu'un modèle sera disponible pour l'oxydation des constituants oxygénés (1-méthoxy-2-propyle acétate et 1-méthoxy-2-propyle acétate et 1-méth

Au cours de cette étude, un mécanisme cinétique détaillé a été mis au point afin de répondre à la problématique de prévision des produits de combustion de l'éthanol, de la 2butanone et du toluène. La validité de ce mécanisme a été renforcée pour l'étude de l'oxydation des butènes, faisant de ce mécanisme cinétique détaillé un outil prédictif fiable. L'utilisation de mécanismes cinétiques détaillés pour des simulations de flammes, éventuellement en écoulement turbulent, grâces à des calculs CFD (computational fluid dynamic) est envisageable. Cependant, les ressources informatiques mises en œuvre dans ces calculs sont importantes et peuvent nécessiter une réduction des mécanismes cinétiques détaillés. Une évolution du mécanisme proposé dans ce travail pourrait être la réduction du nombre de réactions mises en jeu, en ne conservant que les plus importantes et sensibles, sans diminuer la fiabilité du modèle.

De plus, le mécanisme proposé est une base, comportant un cœur C_0 - C_4 robuste, idéal pour servir de base à des mécanismes capables de représenter la combustion de nombreuses autres espèces (alcanes, alcènes, alcools, aldéhydes ou cétones), par ajout de sous-mécanismes.

Enfin, ce mécanisme a été actualisé avec des constantes récentes issues de la littérature et pourrait être intégré à des mécanismes plus étendus qui permettent la modélisation de la combustion de carburants conventionnels ou alternatifs.

Références bibliographiques

- [*Dagaut, 2002 a*] P. Dagaut, On the kinetics of hydrocarbons oxidation from natural gas to kerosene and diesel fuel, Physical Chemistry Chemical Physics, 4 (2002) 2079-2094.
- [*Dagaut, 2002 b*] P. Dagaut, G. Pengloan, A. Ristori, Oxidation, ignition and combustion of toluene: Experimental and detailed chemical kinetic modeling, Physical Chemistry and Chemical Physics., 4 (2002) 1846–1854.
- [*Dias*, 2010] V. Dias, J. Vandooren, Experimental and modeling study of a lean premixed isobutene/hydrogen/oxygen/argon flame, Fuel, 89 (2010) 2633-2639.
- [*Fenard*, 2014] Y. Fenard, P. Dagaut, G. Dayma, F. Halter, F. Foucher, Experimental and kinetic modeling study of trans-2-butene oxidation in a jet-stirred reactor and a combustion bomb, Proceedings of the Combustion Institute, In press (2014).
- [Heyberger, 2002] B. Heyberger, N. Belekki, V. Conraud, P.-A. Glaude, R. Fournet, F. Battin-Leclerc, Oxidation of small alkenes at high temperature, International Journal of Chemical Kinetics, 34 (2002) 666-677.
- [*Leplat, 2011*] N. Leplat, P. Dagaut, C. Togbé, J. Vandooren, Numerical and experimental study of ethanol combustion and oxidation in laminar premixed flames and in jet-stirred reactor, Combustion and Flame, 158 (2011) 705–725.
- [Schenk, 2012] M. Schenk, L. Leon, K. Moshammer, P. Oßwald, T. Zeuch, L. Seidel, F. Mauss, K. Kohse-Höinghaus, Detailed mass spectrometric and modeling study of isomeric butene flames, Combustion and flame, 160(3) (2013) 487-503.
- [*Serinyel, 2010*] Z. Serinyel, G. Black, H. J. Curran, J. M. Simmie, A shock tube and chemical kinetic modeling study of methyl ethyl ketone oxidation, Combustion Science and Technology, 182 (2010) 574-587.
- [Yasunaga, 2009] K. Yasunaga, Y. Kuraguchi, R. Ikeuchi, H. Masaoka, O. Takahashi, T. Koike, Y. Hidaka, Shock tube and modeling study of isobutene pyrolysis and oxidation, Proceedings of the Combustion Institute, 32 (2009) 453–460.

Annexe : Mécanisme cinétique

ELEMENTS CONSIDERED	ATOMIC WEIGHT	
1. h 2. c 3. o 4. n 5. ar 6. he	1.00797 12.0112 15.9994 14.0067 39.9480 4.00260	

		С										
	P	H										
	A	R										
SPECIES	s	G	MOLECULAR	TEMPER	ATURE	ELEMENT (COUNT					
CONSIDERED	E	Ε	WEIGHT	LOW	HIGH	1	ı	с	0	n	ar	he
1. co	G	0	2.8011E+01	200	6000)	1	1	0	0	0
2. co2	G	0	4.4010E+01	200	6000	(5	1	2	0	0	0
3. h2o	G	0	1.8015E+01	200	6000	-	2	0	1	0	0	0
4. ch2o	G	0	3.0026E+01	200	6000	-	2	1	1	0	0	0
5. 112	G	0	3.1999E+01	300	5000		2	0	2	0	0	0
7. ch4	G	0	1.6043E+01	300	5000		1	1	0	0	0	0
8. c2h6	G	0	3.0070E+01	300	5000	(5	2	0	0	0	0
9. c2h4	G	0	2.8054E+01	200	5000	-	1	2	0	0	0	0
11. c3h6	G	ō	4.2081E+01	200	6000	é	5	3	0	õ	õ	0
12. c2h2	G	0	2.6038E+01	300	5000		2	2	0	0	0	0
13. ic4h10	G	0	5.8124E+01	300	5000	10)	4	0	0	0	0
14. cn3cocn3 15. c3h4=a	G	0	5.8081E+01 4 0065E+01	200	6000		1	3	1	0	0	0
16. t2c4h8	G	0	5.6108E+01	200	6000	1	-	4	0	0	0	0
17. c4h8-1	G	0	5.6108E+01	300	5000	1	3	4	0	0	0	0
18. ic4h8	G	0	5.6108E+01	300	5000	1	3	4	0	0	0	0
19. c2c4n8 20. c4b612	G	0	5.6108E+01	200	6000	1	5	4	0	0	0	0
21. c3h4-p	G	ō	4.0065E+01	200	6000		1	3	0	õ	õ	0
22. c4h6	G	0	5.4092E+01	300	5000		5	4	0	0	0	0
23. cyc5h8	G	0	6.8120E+01	300	4000	1	3	5	0	0	0	0
24. t2c5n10 25. c5b10=1	G	0	7.0135E+01 7.0135E+01	300	5000	10	J	5	0	0	0	0
26. c2c5h10	G	0	7.0135E+01	300	5000	10	5	5	õ	õ	õ	0
27. butyn2	G	0	5.4092E+01	200	6000		5	4	0	0	0	0
28. c4h4	G	0	5.2076E+01	300	4000	-	1	4	0	0	0	0
29. Dutyne 30. cpd	G	0	5.4092E+01 6.6104E+01	200	6000		5	5	0	0	0	0
31. isope	G	ō	6.8120E+01	300	5000	1	3	5	ō	ō	ō	0
32. c4h2	G	0	5.0061E+01	300	3000	1	2	4	0	0	0	0
33. c5h813	G	0	6.8120E+01	300	5000	1	3	5	0	0	0	0
35. ch3cho	G	0	4.4054E+01	200	6000		1	2	1	0	0	0
36. c2h4o1-2	G	0	4.4054E+01	200	6000		1	2	1	0	0	0
37. c2h5cho	G	0	5.8081E+01	200	6000	(5	3	1	0	0	0
38. c2h3cho	G	0	5.6065E+01	200	6000	-	1	3	1	0	0	0
40. ic3h5cho	G	0	7.0092E+01	300	5000		5	4	1	0	0	0
41. ic4h8o	G	0	7.2108E+01	300	5000	8	3	4	1	0	0	0
42. but2m2d	G	0	7.0135E+01	300	4000	10)	5	0	0	0	0
43. but2mld 44 but3mld	G	0	7.0135E+01 7.0135E+01	300	4000	10	J	5	0	0	0	0
45. nc6h14	G	0	8.6178E+01	300	5000	14	1	6	õ	õ	õ	0
46. c6h12-1	G	0	8.4163E+01	300	5000	11	2	6	0	0	0	0
47. c6h12-2	G	0	8.4163E+01	300	5000	11	2	6	0	0	0	0
49. nc3h7cho	G	0	7.2108E+01	300	5000	1	2	4	1	0	0	0
50. ch3oh	G	0	3.2042E+01	300	5000		1	1	1	0	0	0
51. c2h5oh	G	0	4.6070E+01	300	5000		5	2	1	0	0	0
52. c5h814	G	0	6.8120E+01	300	4000	1	3	5	0	0	0	0
54. nc5h12	G	0	7.2151E+01	300	5000	1	2	5	0	0	0	0
55. h2o2	G	0	3.4015E+01	200	6000		2	0	2	0	0	0
56. c3h5-a	G	0	4.1073E+01	300	5000		5	3	0	0	0	0
57. c3h5-s	G	0	4.1073E+01	300	5000		5	3	0	0	0	0
59. c3h3	G	0	3.9057E+01	200	6000		3	3	õ	õ	õ	õ
60. styren	G	0	1.0415E+02	300	5000	1	3	8	0	0	0	0
61. toluen	G	0	9.2142E+01	200	6000	1	3	7	0	0	0	0
o∠. pncn∠on 63 phch2	G	0	1134E+02	200	5000		7	7	1 0	0	0	0
64. phhco	G	0	1.0613E+02	300	5000		5	7	1	õ	õ	õ
65. phco	G	0	1.0512E+02	300	5000	1	5	7	1	0	0	0
66. phch2o	G	0	1.0713E+02	300	3000		7	7	1	0	0	0
68.0	G	0	1.5999E+01	300	5000	-	L)	0	U 1	0	0	0
69. oh	G	0	1.7007E+01	200	6000		l.	0	1	0	0	0
70. ho2	G	0	3.3007E+01	200	5000		1	0	2	0	0	0

71.	hco	G	0	2.9019E+01	300	5000	1	1	1	0	0	(
72.	ch3	G	0	1.5035E+01	300	5000	3	1	0	0	0	Ċ
73	ch3o	Ğ	ñ	3 1034E+01	200	60.00	3	1	1	0	0	ć
75.	-1-	G		1 20102-01	200	5000	1	1	1	0	0	
74.	ch	G	0	1.3019E+01	300	5000	1	1	0	0	0	C
75.	ch2	G	0	1.4027E+01	200	6000	2	1	0	0	0	(
76.	с	G	0	1.2011E+01	300	5000	0	1	0	0	0	(
77	ch3o2	Ġ	n.	4 7034E+01	200	60.00	3	1	2	0	n.	ć
70	ah 2 a 2 h	ä		4 00400.01	200	5000	4	1	2	0	0	2
/0.	0130211	G		4.00425701	500	5000	-	1	2	0	0	
79.	c2h3	G	0	2.7046E+01	200	6000	3	2	0	0	0	(
80.	c2h5	G	0	2.9062E+01	200	6000	5	2	0	0	0	(
81	ch3co	G	0	4 3046E+01	200	60.00	3	2	1	0	0	ſ
	chisco -	~		E 000000.01	200	5000	2	2	-	0	0	
82.	chocho	G	U	5.803/E+01	300	5000	2	2	2	U	U	L. L.
83.	c2o	G	0	4.0022E+01	200	6000	0	2	1	0	0	(
84.	c2h	G	0	2.5030E+01	300	4000	1	2	0	0	0	(
85	ch2oh	G	0	3 10348+01	200	6000	3	1	1	0	0	ſ
0.5.	base	ä	0	4 10202:01	200	6000	1	2	1	0	0	2
86.	песо	G	U	4.10306+01	200	6000	1	2	1	U	U	L. L
87.	pc2h4oh	G	0	4.5062E+01	200	6000	5	2	1	0	0	(
88.	ch2cho	G	0	4.3046E+01	300	5000	3	2	1	0	0	(
89	c2h3o1=2	G	0	4 3046E+01	200	6000	3	2	1	0	0	ſ
	childer 1	~	~	5 50005.01	200	5000	1	2	-	0	0	
90.	cnoco	G	U	5.70296+01	300	5000	+	2	2	U	U	L. L.
91.	ch2(s)	G	0	1.4027E+01	200	6000	2	1	0	0	0	(
92.	ch3choh	G	0	4.5062E+01	200	6000	5	2	1	0	0	(
93.	hccoh	G	0	4.2038E+01	200	6000	2	2	1	0	0	(
0.4	ab 2 ab 2 a	ä		4 E062E-01	200	6000	-	-	-	0	0	2
94.	clisclizo	G	0	4.50625701	200	6000	5	4	1	0	0	
95.	c2	G	0	2.40226+01	200	6000	0	2	0	0	0	C C
96.	h2cc	G	0	2.6038E+01	200	6000	2	2	0	0	0	0
97	c2h5o2	G	0	6 1061E+01	300	5000	5	2	2	0	0	(
00	a 3h E a 3h	ä	ő	6 20602:01	200	5000	6	2	2	0	0	
20.	C21150211	G		0.20095401	500	5000	0	2	2	0	0	
99.	c2h4o2h	G	0	6.1061E+01	300	5000	5	2	2	0	0	0
100.	ch3chco	G	0	5.6065E+01	300	5000	4	3	1	0	0	0
1.01	nc3h7	G	0	4 30898+01	200	6000	7	2	0	0	0	(
101.	al 2 a a b 0	ä	~	5 50535.01	200	6000	÷	2	1			
102.	cn3cocn2	G	U	5.70736+01	200	6000	5	3	+	U	U	
103.	ch3cocho	G	0	7.2064E+01	300	5000	4	3	2	0	0	0
104.	choch2cho	G	0	7.2064E+01	300	5000	4	3	2	0	0	0
105	ig2h7	Ċ	'n	4 20992+01	200	60.00	7	2	0	0	0	
100.	- 01-5	ä	~	5 50535.01	200	6000	÷	2	1			
100.	C205C0	G	U	5./0/35+01	200	6000	5	3	1	U	U	
107.	hccco	G	0	5.3041E+01	300	4000	1	3	1	0	0	0
108.	choch2co	G	0	7.1056E+01	300	5000	3	3	2	0	0	0
109	ch2cco	Ġ	Ó	5 40498+01	300	5000	2	3	1	0	n.	
110	=2h2==	ä		E E0E7D:01	200	6000	2	2	1	0	0	
110.	0211300	G	0	5.505/6+01	200	6000	2	3	1	0	0	
111.	c3h5o	G	0	5.7073E+01	300	5000	5	3	1	0	0	
112.	nc3h7o	G	0	5.9089E+01	300	5000	7	3	1	0	0	C
113	ic3h7o	G	0	5 90892+01	300	5000	7	2	1	0	0	(
114	- 3h 3	ä		3 90408-01	200	5000		2	-	0	0	-
117.		G		5.00455401	500	5000	-	J	0	0	0	
115.	ch2cch2oh	G	0	5.7073E+01	300	5000	5	3	1	0	0	(
116.	ch3coco	G	0	7.1056E+01	300	5000	3	3	2	0	0	0
117.	pc2h4cho	G	0	5.7073E+01	300	40.00	5	3	1	0	0	(
110	ah2ahoaho	č	ň	7 20722+01	200	5000	5	2	2	0	0	-
110.	chischocho	9		5 30725+01	200	5000	5	5	1	0	0	
119.	chischeno	G	U	5./0/3E+01	300	5000	5	3	1	U	U	
120.	sc3h5cho	G	0	7.0092E+01	300	5000	6	4	1	0	0	0
121.	pc4h9	G	0	5.7116E+01	300	5000	9	4	0	0	0	C
122	nc3h7co	G	0	7.1100E+01	200	60.00	7	4	1	0	0	(
1 2 2	a4b722	č	ň	5 5100F+01	200	6000	7	4	-	0	0	-
104	1 - 11-0	ä	~	5.51000.01	200	6000	,					
124.	10409	G	U	5./116E+01	200	6000	9	4	U	U	U	
125.	ic4h7	G	0	5.5100E+01	200	6000	7	4	0	0	0	
126.	tc4h9	G	0	5.7116E+01	200	6000	9	4	0	0	0	C
127	ic3h7co	G	0	7 1100E+01	300	30.00	7	4	1	0	0	(
1 20	=4b711	ä		E E100E:01	200	6000	7	Â	-	0	0	
120.	C411/11	G	0	5.51006+01	200	8000	/	-	0	0	0	
129.	tc3h6cho	G	0	7.1100E+01	300	3000	7	4	1	0	0	
130.	ic3h5co	G	0	6.9084E+01	300	5000	5	4	1	0	0	C
131.	ic4h8oh	G	0	7.3116E+01	300	5000	9	4	1	0	0	(
122	ic4h7o	č	ň	7 11002+01	200	6000	-	4	1	0	0	-
132.	1041170	G		7.11005+01	200	5000	,	-	1	0	0	
133.	1040600	G	U	7.1100E+01	300	5000	/	4	1	U	U	
134.	ic4h7oh	G	0	7.2108E+01	200	6000	8	4	1	0	0	C
135.	h2cccch2	G	0	5.2076E+01	300	5000	4	4	0	0	0	C
136	c4h712	G	ó	5.5100E+01	200	6000	7	4	0	0	0	-
127	a4hFo	č	~	6 000/10:01	200	5000	5	,	1	°,	č	
131.	C-1130	G	U	0.90045701	500	5000	5	*	-	U	U	, c
138.	sc3h5co	G	0	ь.9084E+01	300	5000	5	4	1	0	0	C
139.	ic3h6cho	G	0	7.1100E+01	300	3000	7	4	1	0	0	C
140	c4h714	G	ó	5.5100E+01	200	6000	7	4	0	0	0	-
1 4 1	i a Ab E	ä		E 2004E-01	200	6000	Ē	Â	0	0	0	
141.	10410	G	0	10744000	200	5000	5	*	U	U	U	L L
142.	nc4h5	G	0	5.3084E+01	200	6000	5	4	0	0	0	0
143.	ac3h5co	G	0	6.9084E+01	300	5000	5	4	1	0	0	C
144	c2h3chcho	G	0	6.9084E+01	300	5000	5	4	1	0	0	c
145	ic4h3	č	ñ	5 10602+01	200	6000	3	à	0	0	Ū.	
140.	- 0h 2 -hh 0	9	0	5.1009ETU1	200	5000	2		-	0	0	
146.	czn3choch2	G	0	7.0092E+01	300	5000	6	4	1	U	U	C
147.	c4h5-2	G	0	5.3084E+01	200	6000	5	4	0	0	0	C
148	nc4h3	G	0	5.1069E+01	200	6000	3	4	0	0	0	r
149	h2c4o	Ğ	ň	6 6060E+01	300	5000	2	4	1	0	0	
150	-h 2 h 0	9	0	5.0000ETU1	000	5000	4		-	~	0	
150.	ensecen2	G	0	5.3084E+01	200	0000	5	4	U	U	U	C
151.	c4h713	G	0	5.5100E+01	200	6000	7	4	0	0	0	C
152	ch3chcch	G	0	5.3084E+01	200	6000	5	4	0	0	0	r
153	ic4h7v	Ğ	ň	5 5100R+01	300	5000	7	4	0	0	0	
154	adh	č	0	4 00520-01	200	6000	i	1	0	õ	°.	
104.	0.111	G	0	1.30335TU1	200	5000	1	*	U	U	U	
155.	1c3n6co	G	0	7.0092E+01	300	5000	6	4	1	0	0	C
156.	sc4h9	G	0	5.7116E+01	300	5000	9	4	0	0	0	C
157	ac3h5cho	G	0	7.0092E+01	300	5000	6	4	1	0	0	r
158	c4h6o25	G	Ő	7.0092E+01	200	5000	6	4	1	0	0	-
150	alblo	č	~	6 90767-01	200	6000	4	-	1	0	c c	
109.	C-11140	G	U	0.00/05101	200	0000	**	**	+	U	U	
1.00	haadhe	~	-	7 11005.01	200	E000	7		1	0	c	
100.	hoc4h6	G	0	7.1100E+01	300	5000	7	4	1	0	0	C
161.	hoc4h6 c4h6o23	G G	0	7.1100E+01 7.0092E+01	300 200	5000 5000	7 6	4	1	0	0	0

163.	C5HII-I	G	0	7.1143E+U1	300	5000	11	5	0	0	0	0
164.	c5h11-2	G	0	7.1143E+01	300	5000	11	5	0	0	0	0
165.	c5h11-3	G	0	7.1143E+01	300	5000	11	5	0	0	0	0
166.	c5h913	G	0	6.9127E+01	300	5000	9	5	0	0	0	0
167.	c5h915	G	0	6.9127E+01	300	5000	9	5	0	0	0	0
168.	but2mld3	G	0	6.9127E+01	300	5000	9	5	0	0	0	0
169.	tc5h11	G	0	7.1143E+01	300	5000	11	5	0	0	0	0
170.	c5h924	G	0	6.9127E+01	300	5000	9	5	0	0	0	0
171.	c5h914	G	0	6.9127E+01	300	4000	9	5	0	0	0	0
172.	but3mldt	G	0	6.9127E+01	300	4000	9	5	0	0	0	0
173.	c5h7	G	0	6.7112E+01	300	5000	7	5	0	0	0	0
174.	but3mldp	G	0	6.9127E+01	300	4000	9	5	0	0	0	0
175.	c5h5	G	0	6.5096E+01	200	6000	5	5	Ó	Ó	Ó	0
176.	cvc5h7	G	0	6.7112E+01	300	4000	7	5	Ó	Ó	Ó	0
177.	lc5h5	G	0	6.5096E+01	300	5000	5	5	Ó	Ó	Ó	0
178.	c6h13-1	G	0	8.5171E+01	300	5000	13	6	Ó	Ó	Ó	0
179.	c6h13-2	G	0	8.5171E+01	300	5000	13	6	0	0	0	0
180	c6h13-3	G	ō	8.5171E+01	300	5000	13	6	0	ō	0	0
181	c6h1126	G	ō	8.3155E+01	300	5000	11	6	0	ō	0	0
182	c6h1125	Ğ	ō	8 3155E+01	300	5000	11	6	0	0	0	0
183	c6h1116	Ğ	ñ	8 3155E+01	300	5000	11	6	ő	0	0	0
184	c6h1115	Ğ	ñ	8 3155E+01	300	5000	11	6	ő	0	0	0
185	c6h1114	Ğ	ñ	8 3155E+01	300	5000	11	6	ő	0	0	0
186	c6h1113	G	ñ	8 3155E+01	300	5000	11	6	ő	0	0	0
187	c6h1131	Ğ	ñ	8 3155E+01	300	5000	11	6	ő	0	0	0
100	a6h1012	č	0	9 21/7F+01	200	5000	10	6	0	0	0	0
189	c6h1124	Ğ	ñ	8 3155E+01	300	5000	11	6	ő	0	0	0
100.	icom	c	0	6 7112E+01	200	5000	7	5	0	0	0	0
101	180py	G	0	7.71078.01	200	5000	,	é		0	0	0
102	con5	G	0	7.010222.01	200	5000	5	6	0	0	0	0
102	con/c	G	0	0.3106E.01	200	4000	,	6	1	0	0	0
104	achEab	G	0	9.3100E+01	200	4000	5	é	1	0	0	0
105	UEVIDAE	G	0	7 01155-01	200	4000	6	é	÷	0	0	0
100	IIEA1245	G		7.01155+01	200	6000	6	6		0	0	0
190.	FOLVENE	G	0	7.01156+01	200	5000	6	6	0	0	0	0
197.	MC616	G	0	7.01156+01	200	5000	6	6	0	0	0	0
190.	C011013	G	0	7.81156+01	200	5000	0	0	0	0	1	0
199.	ar	G	0	3.9948E+01	300	5000	0	0	0	0	1	0
200.	n2	G	0	2.8013E+01	300	5000	0	0	0	2	0	0
										-	-	-
		CON	TO T					Δ		1_	3	
	REACTIONS		121	DERED				А		d		
1	. ch3+oh=ch2	oh+	h	.DERED				2.64E	2+19 2+12	-1.8	8068.0 13931.0	
1 2 3	. ch3+oh=ch2 . ch3+oh=ch3 . ch3+oh=ch3	oh+ o+h	h	DERED				2.64E 5.74E	2+19 2+12	-1.8 -0.2	8068.0 13931.0	
1 2 3	ch3+oh=ch2 ch3+oh=ch3 ch3+oh=ch2	oh+ o+h (s)	h 1 +h	120				2.64E 5.74E 8.90E	2+19 2+12 2+18	-1.8 -0.2 -1.8	8068.0 13931.0 8067.0	
1 2 3 4	. ch3+oh=ch20 . ch3+oh=ch30 . ch3+oh=ch20 . ch3+oh=ch20	oh+ o+h (s) o+h	h 1 +h +h	120				2.64E 5.74E 8.90E 3.19E	2+19 2+12 2+18 2+12	-1.8 -0.2 -1.8 -0.5	8068.0 13931.0 8067.0 10810.0	
1 2 3 4 5	 ch3+oh=ch20 ch3+oh=ch30 ch3+oh=ch20 ch3+oh=ch20 c2h3+oh=ch20 	oh+ o+h (s) o+h 2ch	h +h 12	120 •0				2.64E 5.74E 8.90E 3.19E 7.52E	2+19 2+12 2+18 2+12 2+08	D -1.8 -0.2 -1.8 -0.5 1.0	8068.0 13931.0 8067.0 10810.0 -137.0	
1 2 3 4 5 6	<pre>ch3+oh=ch20 ch20 ch20 ch20 ch20 ch20 ch20 ch20</pre>	oh+ o+h (s) o+h 2ch 2o+	-h +h 12 10+	120 .0				2.64E 5.74E 8.90E 3.19E 7.52E 3.13E	2+19 2+12 2+18 2+12 2+08 2+14	D -1.8 -0.2 -1.8 -0.5 1.0 -0.7	8068.0 13931.0 8067.0 10810.0 -137.0 269.0	
1 2 3 4 5 6 7	<pre>. ch3+oh=ch2 . ch3+oh=ch3 . ch3+oh=ch2 . ch3+oh=ch2 . ch3+oh=ch2 . c2h3+o2=ch1 . c2h3+o2=ch1</pre>	oh+ o+h (s) o+h 2ch 2o+	-h +h 12 10+	120 -0 -0				2.64E 5.74E 8.90E 3.19E 7.52E 3.13E 2.19E	2+19 2+12 2+18 2+12 2+08 2+14 2+14	D -1.8 -0.2 -1.8 -0.5 1.0 -0.7	8068.0 13931.0 8067.0 10810.0 -137.0 269.0 269.0	
1 2 3 4 5 6 7	 ch3+oh=ch2i ch3+oh=ch2i ch3+oh=ch2i ch3+oh=ch2i c2h3+o2=ch2i c2h3+o2=ch2i c2h3+o2=ch2i 	oh+ o+h (s) o+h 2ch 2c+ 2o+	h +h 12 10+ hc	120 .0 .0 .20				2.64E 5.74E 8.90E 3.19E 7.52E 3.13E 2.19E	2+19 2+12 2+18 2+12 2+08 2+14 2+14	D -1.8 -0.2 -1.8 -0.5 1.0 -0.7 -0.7	8068.0 13931.0 8067.0 10810.0 -137.0 269.0 269.0	
1 2 3 4 5 6 7 8	<pre>ch3+oh=ch2 ch3+oh=ch2 ch3+oh=ch2 ch3+oh=ch2 c2h3+o2=ch1 c2h3+o2=ch1 c2h3+o2=ch1 c2h3+o2=h+.</pre>	oh+ o+h (s) o+h 2ch 2o+ 2o+ 3h4	·h +h i2 i0+ ·hc ·ch	120 -0 -0 120 +h				2.64E 5.74E 8.90E 3.19E 7.52E 3.13E 2.19E 2.56E	2+19 2+12 2+18 2+12 2+08 2+14 2+14 2+14 2+09	-1.8 -0.2 -1.8 -0.5 1.0 -0.7 -0.7 1.1	- 8068.0 13931.0 8067.0 10810.0 -137.0 269.0 269.0 13644.0	
1 2 3 4 5 6 7 8 9	<pre>ch3+oh=ch2 ch3+oh=ch2 ch3+oh=ch2 ch3+oh=ch2 ch3+oh=ch2 ch3+o2=ch c2h3+o2=ch c2h3+o2=ch c2h3+c2=ch c2h2+ch3=c</pre>	oh+ o+h (s) o+h 2ch 2o+ 2o+ 3h4	·h +h i2 ·hc ·ch -p	120 -0 -0 -0 -20 ++h ++h				2.64E 5.74E 8.90E 3.19E 7.52E 3.13E 2.19E 2.56E 5.14E	2+19 2+12 2+18 2+12 2+08 2+14 2+14 2+14 2+09 2+09	-1.8 -0.2 -1.8 -0.5 1.0 -0.7 -0.7 1.1 0.9	- 8068.0 13931.0 8067.0 10810.0 -137.0 269.0 269.0 13644.0 22153.0	
1 2 3 4 5 6 7 8 9	<pre>ch3+oh=ch2i ch3+oh=ch2i ch3+oh=ch2i ch3+oh=ch2i c2h3+o2=chi c2h3+o2=chi c2h3+o2=chi c2h3+c2=h+i c2h2+ch3=c; c2h2+ch3=c;</pre>	oh+ o+h (s) o+h 2ch 2ch 2o+ 3h4 3h4	h +h 12 10+ hc ch	120 -0 -0 -20 ++h ++h				2.64E 5.74E 8.90E 3.19E 7.52E 3.13E 2.19E 2.56E 5.14E 4.99E	2+19 2+12 2+18 2+12 2+08 2+14 2+14 2+09 2+09 2+22	B -1.8 -0.2 -1.8 -0.5 1.0 -0.7 -0.7 1.1 0.9 -4.4	8068.0 13931.0 8067.0 10810.0 -137.0 269.0 269.0 13644.0 22153.0 18850.0	
1 2 3 4 5 6 7 8 9 10	<pre>ch3+oh=ch2i ch3+oh=ch2i ch3+oh=ch2i ch3+oh=ch2i c2h3+o2=chi c2h3+o2=chi c2h3+o2=chi c2h3+o2=chi c2h2+ch3=c; c</pre>	oh+ o+h (s) o+h 2ch 2c+ 2o+ 3h4 3h4 3h5	h +h 12 10+ ch -p -a	120 20 20 20 220 24 20 24 20				2.64E 5.74E 8.90E 3.19E 2.19E 2.56E 5.14E 4.99E	2+19 2+12 2+18 2+12 2+08 2+14 2+14 2+09 2+09 2+22 2+25	D -1.8 -0.2 -1.8 -0.5 1.0 -0.7 -0.7 1.1 0.9 -4.4 7 8	8068.0 13931.0 8067.0 10810.0 -137.0 269.0 13644.0 22153.0 18850.0	
1 2 3 4 5 6 7 8 9 10 11	<pre>ch3+oh=ch2 ch3+oh=ch2 ch3+oh=ch2 ch3+oh=ch2 c2h3+o2=ch c2h3+o2=ch c2h3+o2=h+ c2h3+o2=h+ c2h2+ch3=c c2h2+ch3=c c2h2+ch3=c</pre>	oh+ o+h (s) o+h 2ch 2c+ 3h4 3h4 3h5 3h5	h +h 2 or -p -t -s	120 -0 -0 -20 -20 ++h ++h 				2.64E 5.74E 8.90E 3.19E 7.52E 3.13E 2.19E 2.56E 5.14E 4.99E 3.20E	2+19 2+12 2+18 2+12 2+08 2+14 2+09 2+09 2+22 2+35	-1.8 -0.2 -1.8 -0.5 1.0 -0.7 -0.7 1.1 0.9 -4.4 -7.8	8068.0 13931.0 8067.0 10810.0 -137.0 269.0 269.0 13644.0 22153.0 18850.0 13300.0	
1 2 3 4 5 6 7 8 9 10 11 12	ch3+oh=ch2: ch3+oh=ch2: ch3+oh=ch2: ch3+oh=ch2: c2h3+o2=ch: c2h3+o2=ch: c2h3+o2=ch: c2h2+ch3=c: c2h2+ch3=c: c2h2+ch3=c: c2h2+ch3=c:	oh+ o+h (s) o+h 2ch 2c+ 2c+ 3h4 3h5 3h5 3h5	h +h 12 +h h 10+ h h c h -p -e -e	120 				2.64E 5.74E 8.90E 3.19E 7.52E 3.13E 2.19E 2.56E 5.14E 4.99E 3.20E 2.68E	2+19 2+12 2+18 2+12 2+08 2+14 2+14 2+09 2+09 2+22 2+35 2+53	D -1.8 -0.2 -1.8 -0.5 1.0 -0.7 -0.7 1.1 0.9 -4.4 -7.8 -12.8	8068.0 13931.0 8067.0 10810.0 -137.0 269.0 13644.0 22153.0 18850.0 13300.0 35730.0	
1 2 3 4 5 6 7 8 9 10 11 12 13	ch3+oh=ch2 ch3+oh=ch2 ch3+oh=ch2 ch3+oh=ch2 ch3+o2=ch c2h3+o2=ch c2h3+o2=ch c2h3+o2=ch c2h2+ch3=c c2h2+ch3=c c2h2+ch3=c c2h2+ch3=c c2h2+ch3=c c3h4-p=c3h	oh+ o+h (s) o+h 2ch 2c+ 3h4 3h5 3h5 3h5 3h5	h +h +h 2 -p 	120 -0 -0 -20 -20 ++h ++h 				2.64E 5.74E 8.90E 3.19E 7.52E 3.13E 2.19E 2.56E 5.14E 4.99E 3.20E 2.68E 5.15E	2+19 2+12 2+18 2+12 2+08 2+14 2+09 2+09 2+22 2+35 2+53 2+60	-1.8 -0.2 -1.8 -0.5 1.0 -0.7 -0.7 1.1 0.9 -4.4 -7.8 -12.8 -13.9	- 8068.0 13931.0 8067.0 10810.0 -137.0 269.0 269.0 22153.0 13644.0 22153.0 13850.0 13300.0 35730.0 91117.0	
1 2 3 4 5 6 7 8 9 10 11 12 13	ch3+oh=ch2 ch3+oh=ch3 ch3+oh=ch3 ch3+oh=ch2 ch3+o2=ch c2h3+o2=ch c2h3+o2=ch c2h2+ch3=c c2h2+ch3=c c2h2+ch3=c c2h2+ch3=c c3h4-p=c3h	oh+ o+h (s) o+h 2ch 2c+ 3h4 3h5 3h5 3h5 3h5 3h5	h +h 12 h ch -ch -s -s	120 -0 :0 :20 ++h :				2.64E 5.74E 8.90E 3.19E 7.52E 3.13E 2.19E 2.56E 5.14E 4.99E 3.20E 2.68E 5.15E 5.40E	2+19 2+12 2+18 2+12 2+08 2+14 2+14 2+09 2+22 2+35 2+53 2+53 2+60	B -1.8 -0.2 -1.8 -0.5 1.0 -0.7 -0.7 1.1 0.9 -4.4 -7.8 -12.8 -13.9 -6 1	8068.0 13931.0 8067.0 10810.0 -137.0 269.0 269.0 13644.0 22153.0 13300.0 35730.0 91117.0 16300.0	
1 2 3 4 5 6 7 8 9 10 11 12 13 14	ch3+oh=ch2 ch3+oh=ch2 ch3+oh=ch2 ch3+oh=ch2 ch3+o2=ch c2h3+o2=ch c2h3+o2=h+ c2h2+ch3=c c2h2+ch3=c c2h2+ch3=c c2h2+ch3=c c2h2+ch3=c c2h2+ch3=c c2h4-a+h=c	oh+ o+h (s) o+h 2ch 2ch 3h4 3h5 3h5 3h5 3h5 3h5 3h5 3h5	h +h +h 12 +h h -p -a -a	120 -0 -0 120 120 ++h 				2.64E 5.74E 8.90E 3.13E 7.52E 3.13E 2.56E 5.14E 4.99E 3.20E 2.68E 5.15E 5.15E 5.40E	2+19 2+12 2+18 2+12 2+08 2+14 2+09 2+22 2+35 2+53 2+60 2+29 2+22 2+22	B -1.8 -0.2 -1.8 -0.5 1.0 -0.7 1.1 0.9 -4.4 -7.8 -12.8 -13.9 -6.1	8068.0 13931.0 8067.0 10810.0 -137.0 269.0 269.0 13644.0 22153.0 18850.0 13300.0 35730.0 91117.0 16300.0	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	ch3+oh=ch2; ch3+oh=ch3; ch3+oh=ch2; ch3+oh=ch2; ch3+oh=ch2; ch3+o2=ch; c2h3+o2=ch; c2h2+ch3=c; c2h2+ch3=c; c2h2+ch3=c; c2h2+ch3=c; c3h4-p=c3h; c3h4-a+h=c; c3h4-a+h=c;	oh+ o+h (s) o+h 2ch 2o+ 3h4 3h5 3h5 3h5 3h5 3h5 3h5	h +h 12 +h h -p -a -a -a -a -a	120 -0 -0 -0 -0 -0 -0 				2.64H 5.74E 8.90E 3.19F 7.52E 3.13E 2.19F 2.56E 5.14E 4.99E 3.20E 5.14E 5.15E 5.40E 9.46E	2+19 2+12 2+18 2+14 2+14 2+09 2+22 2+35 2+53 2+60 2+29 2+42	D -1.8 -0.2 -1.8 -0.5 1.0 -0.7 -0.7 1.1 0.9 -4.4 -7.8 -12.8 -13.9 -6.1 -9.4	- 8068.0 13931.0 8067.0 10810.0 -137.0 269.0 269.0 13644.0 22153.0 18850.0 13300.0 35730.0 91117.0 16300.0 11190.0	
1 2 3 4 5 6 7 7 8 9 100 111 122 133 14 15 16	ch3+oh=ch2 ch3+oh=ch2 ch3+oh=ch2 ch3+oh=ch2 ch3+o2=ch c2h3+o2=ch c2h3+o2=ch c2h2+ch3=c c2h2+ch3=c c2h2+ch3=c c2h2+ch3=c c2h2+ch3=c c3h4+a+h=c c3h4+a+h=c c3h4-a+h=c	oh+ o+h (s) o+h 2ch 2o+ 3h4 3h5 3h5 3h5 3h5 3h5 3h5 3h5	h +h +h +h +h -p -a -a -a -a -a -a -a -a -a -a -a -a -a	120 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0				2.64E 5.74E 8.90E 3.19E 7.52E 3.13E 2.19E 2.56E 5.14E 4.99E 3.20E 2.68E 5.15E 5.15E 5.40E 9.46E 1.52E	+19 +12 +18 +12 +18 +14 +14 +09 +22 +33 +60 +29 +42 +42 +42 +42	D -1.8 -0.2 -1.8 -0.5 1.0 -0.7 -0.7 1.1 0.9 -4.4 -7.8 -12.8 -13.9 -6.1 -9.4 -13.5	8068.0 13931.0 8067.0 -137.0 269.0 13644.0 22153.0 18850.0 13300.0 35730.0 91117.0 16300.0 11190.0 26949.0	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	ch3+oh=ch2: ch3+oh=ch3: ch3+oh=ch2: ch3+oh=ch2: ch3+oh=ch2: ch3+o2=ch: ch2+o2=ch: ch2+ch3=c ch2+ch3=c ch2+ch3=c ch2+ch3=c ch2+ch3=c c3h4-a+h=c c3h4-a+h=c c3h4-a+h=c	oh+ o+h (s) o+h 2ch 2c+ 3h4 3h5 3h5 3h5 3h5 3h5 3h5 3h5	h +h +h +h +h +h -p 	120 -0 -20 120 ++h ++h 				2.64E 5.74E 8.90E 3.19E 7.52E 3.13E 2.19E 2.56E 5.14E 5.15E 5.40E 9.46E 1.52E 6.27E	+19 +12 +18 +12 +14 +14 +14 +14 +14 +19 +22 +35 +60 +22 +42 +42 +42 +45 +42 +45 +42 +45 +45 +17	D -1.8 -0.2 -0.5 1.0 -0.7 1.1 0.9 -4.4 -7.8 -12.8 -13.8 -6.1 -9.4 -13.5 -0.5 -0.7	- 8068.0 13931.0 8067.0 10810.0 -137.0 269.0 269.0 13644.0 22153.0 18850.0 13300.0 35730.0 91117.0 16300.0 11190.0 26949.0	
1 2 3 4 4 5 6 7 8 9 9 100 111 122 133 144 155 166 177 8	ch3+oh=ch2 ch3+oh=ch2 ch3+oh=ch2 ch3+oh=ch2 ch3+o2=ch c2h3+o2=ch c2h3+o2=ch c2h2+ch3=c c2h2+ch3=c c2h2+ch3=c c2h2+ch3=c c3h4-a+h=c c3h4-a+h=c c3h4-a+h=c c3h4-a+h=c	oh+ o+h (s) o+h 2ch 2c+ 3h4 3h5 3h5 3h5 3h5 3h5 3h5 3h5 3h5	h +h +h +h +h +h +h +h -ch -ch -ch -ch -ch -ch -ch -ch -ch -c	120 120 120 120 140 141 141 141 141 141 141 14				2.64E 5.74E 8.90E 3.19E 7.52E 3.13E 2.56E 5.14E 4.99E 2.68E 5.15E 5.40E 9.46E 1.52E 6.27E 1.52E	2+19 2+12 2+18 2+12 2+18 2+14 2+09 2+22 2+35 2+60 2+29 2+429 2+429 2+47	D -1.8 -0.2 -1.8 -0.5 1.0 -0.7 -0.7 1.1 0.9 -4.4 -7.8 -12.8 -13.9 -6.1 -9.4 -13.5 -0.9 -0.4 -0.5 -0.5 -0.5 -0.6 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.7 -0.7 -0.7 -0.7 -0.5 -0.5 -0.5 -0.5 -0.7 -0.7 -0.7 -1.8 -1.3 -1.8 -1.3 -1.3 -1.3 -1.3 -1.5 -0.1 -0.5 -0.7 -0.7 -1.5 -1.5 -0.7 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -0.1 -9 -1.5 -0.1 -9 -1.5 -0.1 -9 -1.5 -0.1 -9 -0.1 -9 -0.1 -9 -0.1 -9 -0.5	8068.0 13931.0 8067.0 -137.0 269.0 13644.0 22153.0 13300.0 35730.0 91117.0 16300.0 11190.0 26949.0 10079.0	
1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 177 18	ch3+oh=ch2: ch3+oh=ch3: ch3+oh=ch2: ch3+oh=ch2: ch3+oh=ch2: ch3+o2=ch: ch2+o2=ch: ch2+ch3=c ch2+ch3=c ch2+ch3=c ch2+ch3=c ch2+ch3=c c3h4-p=c3h: c3h4-a+h=c c3h4-a+h=c c3h4-p+h=c	oh+ o+h (s) o+h 2ch 2c+ 3h4 3h5 3h5 3h5 3h5 3h5 3h5 3h5 3h5 3h5 3h5	h +h +h +h +h +h -ch -ch -ch -ch -ch -ch -ch -ch -ch -c	120 -0 -0 -20 -20 -20 -20 -20 -20				2.64E 5.74E 8.90E 3.19E 7.52E 3.13E 2.56E 5.14E 4.99E 3.20E 2.68E 5.14E 4.99E 5.15E 5.40E 9.46E 1.52E 6.27E 6.27E	2+19 2+12 2+18 2+18 2+14 2+09 2+22 2+35 2+60 2+22 2+35 2+60 2+22 2+59 2+42 2+59 2+17 2+42 2+17 2+42 2+19	D -1.8 -0.2 -0.5 1.0 -0.7 1.1 0.9 -4.4 -7.8 -12.8 -13.9 -6.1 -9.4 -13.5 -0.9 -0.7	- 8068.0 13931.0 8067.0 10810.0 -137.0 269.0 269.0 13644.0 22153.0 18850.0 13300.0 35730.0 91117.0 16300.0 11190.0 26949.0 10079.0 13690.0 10079.0 13690.0 10079.0 13690.0 10079.0 10079.0 10079.0 10070.0	
1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18	ch3+oh=ch2: ch3+oh=ch3: ch3+oh=ch2: ch3+oh=ch2: ch3+oh=ch2: c2h3+o2=ch: c2h3+o2=ch: c2h2+ch3=c: c2h2+ch3=c: c2h2+ch3=c: c3h4+ah=	oh+ o+h (s) o+h 2ch 2c+ 3h4 3h5 3h5 3h5 3h5 3h5 3h5 3h5 3h5 3h5 3h5	h h h h h h h h h h h h h h	120 120 120 120 120 141 141 141 141 141 141 141 14				2.64E 5.74E 8.90E 3.19E 7.52E 3.13E 2.56E 5.14E 4.99E 2.66E 5.15E 5.40E 9.46E 1.52E 6.27E 1.52E 5.50E	+19 +12 +18 +12 +18 +14 +19 +14 +109 +22 +35 +160 +29 +47 +47 +47	D -1.8 -0.2 -1.8 -0.5 1.0 -0.7 -0.7 1.1 0.9 -4.4 -7.8 -12.8 -13.9 -6.1 -9.4 -13.5 -0.9 -0.5 -0.9 -0.5 -0.5 -0.7 -0.7 -0.7 -1.8 -1.8 -0.5 -0.7 -0.7 -0.7 -0.7 -1.8 -1.8 -0.5 -0.7 -0.7 -0.7 -1.8 -1.8 -1.8 -0.5 -0.7 -0.7 -1.8 -1.3 -1.0 -5 -1.8 -1.8 -1.3 -5 -0.7 -5 -1.0 -5 -1.0 -5 -1.0 -5 -1.0 -5 -1.0 -5 -1.0 -5 -1.0 -5 -1.0 -5 -1.0 -5 -5 -0.7 -5 -1.0 -5 -0.7 -5 -0.7 -5 -0.7 -5 -0.7 -5 -0.7 -5 -0.7 -5 -0.7 -5 -0.7 -5 -0.7 -5 -0.9 -5 -0.5 -5 -0.5 -5 -0.5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -	- 8068.0 13931.0 8067.0 -137.0 269.0 13644.0 22153.0 13850.0 13300.0 35730.0 91117.0 16300.0 91117.0 16300.0 1190.0 13690.0 13690.0	
1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20	ch3+oh=ch2: ch3+oh=ch2: ch3+oh=ch2: ch3+oh=ch2: ch3+oh=ch2: ch3+o2=ch: ch3+o2=ch: ch2+ch3=c: ch2+ch3=c: ch2+ch3=c: ch2+ch3=c: ch2+ch3=c: ch2+ch3=c: ch2+ch3=c: ch4+p=c3h: c3h4-a+h=c: c3h4-p+h=c: c3	oh+ oh+ o+h (s) o+h 2ch 2c+ 3h4 3h5 3h5 3h5 3h5 3h5 3h5 3h5 3h5 3h5 3h5	h h h h h h h h h h h h h h	120 -0 -0 -20 -20 -20 -20 -20 -20				2.64E 5.74E 8.90E 3.19E 7.52E 3.13E 2.19E 2.56E 3.20E 3.20E 3.20E 3.20E 5.49E 5.49E 5.40E 9.46E 1.52E 6.27E 1.66E 5.50E 4.91E	2+19 2+12 2+18 2+14 2+09 2+22 2+35 2+59 2+42 2+42 2+42 2+42 2+42 2+42 2+42 2+4	D -1.8 -0.2 -1.8 -0.5 1.0 -0.7 -0.7 1.1 0.9 -4.4 -12.8 -13.6 1.0 9.4 -13.5 -0.5 -0.5 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.7 -0.5 -1.2 -0.5 -1.2 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.5	- 8068.0 13931.0 8067.0 10810.0 -137.0 269.0 269.0 1364.0 22153.0 18850.0 13300.0 35730.0 91117.0 16300.0 11190.0 16949.0 10079.0 13690.0 4300.0 31644.0	
1 2 3 4 4 5 6 7 7 8 9 9 10 11 12 13 14 15 16 17 7 18 19 20 21	ch3+oh=ch2 ch3+oh=ch2 ch3+oh=ch2 ch3+oh=ch2 ch3+oh=ch2 ch3+o2=ch c2h3+o2=ch c2h2+ch3=c c2h2+ch3=c c2h2+ch3=c c2h2+ch3=c c3h4-p=c3h c3h4-a+h=c c3h4-a+h=c c3h4-a+h=c c3h4-p+	oh+ oh+ o+h (s) o+h 2ch 2c+ 3h4 3h5 3h5 3h5 3h5 3h5 3h5 3h5 3h5 3h5 3h5	h h h h h h h h h h h h h h	120 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0				2.64E 5.74E 8.90E 3.19E 7.52E 3.13E 2.56E 5.14E 4.99E 3.20E 5.40E 5.40E 5.40E 5.40E 5.40E 5.50E 4.91E 3.36E	+19 +12 +12 +18 +14 +09 +02 +25 +409 +22 +459 ++22 +47 +28 +47 +28 +405	D -1.8 -0.2 -1.8 -0.5 1.0 -0.7 -0.7 1.1 0.9 -4.4 -7.8 -12.8 -13.9 -6.1 -9.4 -13.5 -0.9 -0.7 -0.7 1.3 -9.4 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -0.5 -0.5 -0.7 -0.7 -1.8 -1.3 -5 -0.7 -1.8 -1.8 -1.8 -1.8 -1.3 -5 -0.7 -1.1 -9.4 -1.3 -5 -0.7 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.1 -1.8 -1.3 -1.3 -1.8 -1.8 -1.3 -1.8 -1.3 -1.8 -1.1 -1.8 -1.8 -1.8 -1.8 -1.8 -1.1 -1.8	- 8068.0 13931.0 8067.0 -137.0 269.0 13644.0 22153.0 13300.0 35730.0 91117.0 16300.0 91117.0 16300.0 1190.0 26949.0 10079.0 13690.0 4300.0 31644.0 9190.0	
1 2 3 4 4 5 6 7 8 9 9 10 111 122 133 14 15 16 17 18 19 20 21 22	ch3+oh=ch2: ch3+oh=ch3: ch3+oh=ch2: ch3+oh=ch2: ch3+oh=ch2: ch3+oh=ch2: ch3+o2=ch: ch2+ch3=c: ch2+ch3=c: ch2+ch3=c: ch2+ch3=c: ch2+ch3=c: ch2+ch3=c: ch4+p=c3h: c3h4-a+h=c: c3h4-a+h=c: c3h4-a+h=c: c3h4-p+h=c:	oh+h (s) o+h 2ch 22ch 3h4 3h5 3h5 3h5 3h5 3h5 3h5 3h5 3h5 3h5 3h5	h +h 2 +h 2 +h -ch -s -s -s -s -s -s -s -s -s -s -s -s -s	120 120 20 120 120 120 14th 1				2.64E 5.74E 8.90E 3.19E 7.52E 3.13E 2.56E 5.14E 4.99E 3.20E 2.66E 5.20E 5.40E 9.46E 1.52E 6.27E 1.66E 5.50E 4.91E 3.36E	2+19 2+12 2+18 2+12 2+08 2+14 2+14 2+14 2+14 2+14 2+29 2+25 2+55 2+55 2+55 2+55 2+55 2+55	D -1.8 -0.2 -1.8 -0.5 1.0 -0.7 -0.7 1.1 0.9 -4.4 -7.8 -12.8 -13.9 -6.1 -9.4 -13.5 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.5 -1.2 -0.9 -4.4 -1.2 -0.5 -0.	- 8068.0 13931.0 8067.0 10810.0 -137.0 269.0 1364.0 22153.0 18850.0 13300.0 35730.0 91117.0 16300.0 11190.0 26949.0 10079.0 13690.0 31644.0 19190.0 31642.0 19190.0 31600.0 31700.0 31600.0 31700.0 31600.0 31700.0 31700.0 31600.0 31700.	
1 2 3 3 4 5 6 7 8 9 9 10 11 122 133 14 15 5 16 17 18 19 20 21 222	ch3+oh=ch2 ch3+oh=ch2 ch3+oh=ch2 ch3+oh=ch2 ch3+oh=ch2 ch3+o2=ch c2h3+o2=ch c2h2+ch3=c c2h2+ch3=c c2h2+ch3=c c3h4-p=c3h c3h4-a+h=c c3h4-a+h=c c3h4-a+h=c c3h4-a+h=c c3h4-p+h=c c3h4-p+h=c c3h4-p+h=c c3h4-p+h=c c3h5-a+o2=c	oh+h (s) o+h 2ch 3h4 3h5 3h5 3h5 3h5 3h5 3h5 3h5 3h5 3h5 3h5	h +h 2+ -h - - - - - - - - - - - - - - - - - -	120 120 120 120 120 120 120 120				2.64E 5.74E 8.90E 3.19E 7.52E 3.13E 2.56E 5.14E 4.99E 3.20E 5.15E 5.40E 9.46E 1.52E 6.27E 1.52E 5.50E 4.91E 3.36E 2.60E	2+19 3+12 3+12 3+14 3+12 3+14 3+14 3+14 3+14 3+14 3+14 3+14 3+14	D -1.8 -0.2 -1.8 -0.5 1.0 -0.7 -0.7 1.1 0.9 -4.4 -7.8 -12.8 -13.9 -6.1 -9.4 -13.5 -0.6 -5.7 -14.8 2.2 2.2 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	8068.0 13931.0 8067.0 10810.0 -137.0 269.0 13644.0 22153.0 18850.0 13300.0 35730.0 91117.0 16300.0 91117.0 16300.0 1190.0 13690.0 4300.0 31644.0 99190.0 17590.0	
1 2 3 4 5 6 7 7 8 9 9 10 11 12 13 14 15 16 177 188 199 200 21 22 23	ch3+oh=ch2: ch3+oh=ch3: ch3+oh=ch2: ch3+oh=ch2: ch3+oh=ch2: ch3+oh=ch2: ch3+o2=ch: ch3+o2=ch: ch2+ch3=c: ch2+ch3=c: ch2+ch3=c: ch2+ch3=c: ch2+ch3=c: ch4+p=c3h: c3h4-a+h=c: c3h4-a+h=c: c3h4-a+h=c: c3h4-p+h=c: c3h4-p+h=c: c3h5-a+o2=:	oh+h (s) o+h 2ch 2c+ 2c+ 3h4 3h5 3h5 3h5 3h5 3h5 3h5 3h5 3h5 3h5 3h5	h +h +2 +h -ch -s -s -s -s -s -s -s -s -s -s -s -s -s	120 -o -o 220 220 240 244 244 255 255 255 255 255 255				2.64E 5.74E 8.90E 3.13E 2.56E 2.56E 2.56E 2.68E 5.14E 4.99E 3.68E 5.40E 9.46E 1.527E 6.27E 6.27E 1.66E 5.50E 4.91E 1.66E 5.30E 2.06E 3.06E	2+19 ++12 ++18 ++12 ++08 ++14 ++14 ++09 ++22 ++35 ++59 ++29 ++29 ++47 ++47 ++47 ++47 ++47 ++47 ++47 ++47 ++48 ++60 ++18 ++18 ++18 ++18 ++18 ++18 ++18 ++18 ++18 ++18 ++18 ++18 ++18 ++19 ++18 ++19 ++18 ++19 ++18 ++19 ++18 ++19 +	D -1.8 -0.5 -0.5 1.0 -0.7 -0.7 1.1 0.9 -4.4 -7.8 -12.8 -13.9 -6.1 -9.4 -13.5 -0.9 -10.6 -5.7 -1.8 -0.5 -0.5 -0.7 -0	- 8068.0 13931.0 8067.0 10810.0 -137.0 269.0 1364.0 22153.0 18850.0 13300.0 35730.0 91117.0 16300.0 11190.0 10079.0 13690.0 4300.0 31644.0 19190.0 1590.0	
1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 5 6 17 18 19 20 21 22 23 24	ch3+oh=ch2 ch3+oh=ch2 ch3+oh=ch2 ch3+oh=ch2 ch3+o2=ch c2h3+o2=ch c2h3+o2=ch c2h2+ch3=c c2h2+ch3=c c2h2+ch3=c c3h4-p=c3h c3h4-p+l=c c3h4-a+h=c c3h4-p+h=c c3h4-p+h=c c3h4-p+h=c c3h4-p+h=c c3h5-a+o2= c	oh+ (s) o+h 2ch 2ch 2c+ 3h4 3h5 3h5 3h5 3h5 3h5 3h5 3h5 3h5 3h5 3h5	h +h +h +h +h -pa -s -s -s -s -s -s -s -s -s -s	120 120 120 120 120 14h 14h 14h 14h 14h 14h 14h 14h				2.64E 5.74E 8.90E 3.19E 7.52E 3.13E 2.56E 5.14E 4.99E 3.20E 5.15E 5.40E 9.46E 1.52E 6.27E 1.52E 5.50E 4.91E 3.36E 2.66E 5.50E 4.91E 3.36E 2.06E 3.36E 2.06E	2+19 +12 +18 +12 +12 +12 +12 +14 +14 +14 +14 +14 +14 +14 +14	D -1.8 -0.2 -1.8 -0.5 1.0 -0.7 -0.7 1.1 0.9 -4.4 -7.8 -12.8 -13.9 -6.1 -9.4 -13.5 -0.9 -6.1 -9.4 -1.8 -1.8 -0.5 1.0 -0.7 -0.7 -1.8 -1.8 -0.5 -0.7 -0.7 -1.8 -1.8 -1.8 -0.5 -0.7 -0.7 -1.8 -1.8 -1.8 -0.5 -0.7 -0.7 -1.8 -1.8 -1.8 -1.8 -0.5 -0.7 -1.8 -1.2 -1.8 -1.3 -0.7 -1.1 -1.8 -1.3 -0.7 -1.1 -1.4 -1.3 -0.5 -0.7 -1.4 -1.3 -0.5 -1.4 -1.3 -1.2 -1.8 -1.3 -1.2 -1.8 -1.3 -1.0 -1.4 -1.3 -1.2 -1.4 -1.4 -1.3 -1.4 -1.4 -1.4 -1.4 -2.8 -1.4 -1.4 -1.4 -1.4 -2.8 -1.4 -1.4 -1.4 -2.8 -1.4 -1.4 -1.4 -2.5 -1.4 -1.4 -2.5 -1.4 -1.4 -2.5 -1.4 -1.4 -2.7 -1.4 -1.4 -2.7 -1.4 -2.7 -2.7 -2.7 -2.7 -1.4 -2.7	- 8068.0 13931.0 8067.0 -137.0 269.0 13644.0 22153.0 13300.0 35730.0 91117.0 16300.0 91117.0 16300.0 13690.0 13690.0 13690.0 13690.0 13690.0 13690.0 1644.0 1990.0 17590.0 16910.0 24980.0	
1 2 3 4 5 6 6 7 8 9 10 11 122 133 144 155 166 177 18 19 200 21 222 33 24 25	ch3+0h=ch2: ch3+0h=ch3: ch3+0h=ch2: ch3+0h=ch2: c2h3+02=ch: c2h3+02=ch: c2h3+02=ch: c2h2+ch3=c: c2h2+ch3=c: c2h2+ch3=c: c2h2+ch3=c: c3h4-a+h=c: c3h4-	oh+ (s) o+h 2ch 2c+ 3h4 3h5 3h5 3h5 3h5 3h5 3h5 3h5 3h5 3h5 3h5		120 -0 -0 -20 -20 -20 -20 -20 -20				2.64 5.74 5.74 3.13 2.59 5.14 4.99 5.14 5.14 5.14 5.14 5.14 5.14 5.14 5.14	2+19 ++12 ++18 ++14 ++14 ++14 ++14 ++14 ++14 ++09 ++22 ++35 ++53 ++59 ++47 ++47 ++47 ++47 ++28 ++08 ++18 ++18 ++18 ++18 ++18 ++18 ++18 ++18 ++18 ++18 ++18 ++18 ++18 ++18 ++18 ++18 ++19 ++18 ++19 +	D -1.8 -0.2 -1.8 -0.5 1.0 -0.7 -0.7 1.1 0.9 -4.4 -7.8 -13.8 -13.9 -6.1 -9.4 -13.6 -0.9 -10.6 -0.9 -1.8 -0.5 -0.5 -0.7 -0.9 -0.5 -0.9 -0.5 -0.9 -14.4 1.8 2.2 0.4 -2.4 -2.7 -0.7 -14.4 -2.4 -2.4 -2.7 -1.4 -2.7 -1.4 -1.4 -2.7 -1.4 -1.4 -1.4 -1.4 -1.4 -1.4 -1.4 -2.7 -1.4 -1.	- 8068.0 13931.0 8067.0 10810.0 -137.0 269.0 1364.0 22153.0 18850.0 13300.0 35730.0 9117.0 16300.0 11190.0 26949.0 10079.0 13644.0 19190.0 21590.0 16910.0 24980.0 2586.0	
1 2 3 4 4 5 6 6 7 7 8 9 10 11 122 13 14 15 16 177 18 19 200 21 22 23 24 25 6	ch3+oh=ch2 ch3+oh=ch3 ch3+oh=ch2 ch3+oh=ch2 ch3+oh=ch2 ch3+o2=ch c2h3+o2=ch c2h2+ch3=c c2h2+ch3=c c2h2+ch3=c c2h2+ch3=c c3h4-p+ch3=c c3h4-a+h=c c3h4-a+h=c c3h4-a+h=c c3h4-p+h=c c3h4-p+h=c c3h4-p+h=c c3h4-p+h=c c3h4-p+h=c c3h5-a+o2= c3h5-a+o2= c3h5-a=c2h	oh+ och (s) och 2c+ 2c+ 2c+ 2c+ 3h45 3h53 3h533 3h533 3h533 3h5533 2c+ c+ c+ c+ c+ c+ c+ c+ c+ c+ c+ c+ c+ c		120 120 120 120 141 141 141 141 141 141 141 14				2.64 5.74 8.90 3.19 7.52 3.13 2.56 5.14 4.99 2.56 5.14 4.99 5.14 5.20 5.40 5.40 5.40 5.50 6.27 1.52 5.50 6.27 1.52 5.50 6.27 1.52 5.50 6.27 1.52 5.40 5.50 6.27 1.52 5.50 5.50 5.50 6.27 5.40 5.50	2+19 ++12 ++18 ++18 ++14 ++14 ++14 ++14 ++14 ++14 ++14 ++14 ++14 ++14 ++14 ++14 ++15 +	D -1.8 -0.2 -1.8 -0.5 1.0 -0.7 -0.7 1.1 0.9 -4.4 -12.8 -12.8 -12.8 -12.8 -12.8 -13.9 -6.1 -9.4 -13.9 -1.2 -0.5 -0.5 -0.7 -0.6 -2.7 -1.1 -1.4 -2.2 -0.2 -0.7 -1.4 -1.4 -2.2 -0.7 -1.4 -1.4 -2.7 -1.4 -1.4 -2.7 -1.4 -1.4 -2.7 -1.4 -1.4 -1.4 -1.4 -2.7 -1.4	8068.0 13931.0 8067.0 10810.0 -137.0 269.0 13644.0 22153.0 18850.0 13300.0 35730.0 91117.0 16300.0 31649.0 10079.0 13690.0 4300.0 31644.0 9190.0 17590.0 16910.0 24980.0 75868.0	
$1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 7 \\ 8 \\ 9 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 3 \\ 24 \\ 25 \\ 26 \\ 6 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	ch3+oh=ch2: ch3+oh=ch3: ch3+oh=ch2: ch3+oh=ch2: ch3+oh=ch2: ch3+o2=ch: ch3+o2=ch: ch3+o2=ch: ch3+o2=ch: ch2+ch3=c: ch2+ch3=c: ch2+ch3=c: ch2+ch3=c: ch4-a+h=c: c3h4-a+h=c: c3h4-a+h=c: c3h4-a+h=c: c3h4-a+h=c: c3h4-a+h=c: c3h4-a+h=c: c3h4-a+h=c: c3h4-a+h=c: c3h4-a+h=c: c3h4-a+h=c: c3h4-a+h=c: c3h5-a+c2=: c	oh+ op+h (s) op+h 2ch+ 2ch+ 3h4 3h5 3h5 3h5 3h5 3h5 3h5 3h5 3h5 3h5 3h5		120 -0 -0 -20 -20 -20 -20 -20 -20				2.64 5.74 8.90 3.13 2.19 5.75 2.19 5.14 4.99 5.14 4.99 5.14 5.14 5.14 5.14 5.14 5.14 5.14 5.14	2+19 2+18 2+18 2+18 2+18 2+14 2+14 2+109 2+22 2+35 2+60 2+42 2+35 2+60 2+42 2+25 2+447 2+260 2+170 2+160 2+160 2+160 2+170 2+160 2+170 2+160 2+170 2+1	D -1.8 -0.2 -1.8 -0.5 1.0 -0.7 -0.7 1.1 0.9 -4.4 -7.8 -13.8 -13.9 -6.1 -9.4 -13.6 -0.5 -0.9 -10.6 -0.9 -1.4 1.8 2.2 0.4 -2.7 -1.4 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -0.5 -0.7 -0.9 -14.4 -1.8 -2.2 0.4 -1.4 -1.8 -1.3 -0.7 -1.4 -1.4 -1.3 -0.7 -1.4 -1.3 -0.7 -1.4 -1.3 -0.7 -1.4 -1.3 -0.7 -1.4 -1.3 -0.7 -1.4 -1.3 -0.7 -1.4 -1.3 -0.7 -1.4 -1.3 -0.7 -1.4 -1.3 -0.7 -1.4 -1.3 -0.7 -1.4 -1.3 -0.7 -1.4 -1.3 -0.7 -1.3 -0.4 -1.3 -0.5 -1.3	8068.0 13931.0 8067.0 10810.0 269.0 13644.0 22153.0 18850.0 13300.0 35730.0 9117.0 16300.0 11190.0 26949.0 10079.0 13644.0 19190.0 16910.0 24980.0 75808.0 73300.0	
$1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 7 \\ 8 \\ 9 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 26 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27$	$ \begin{array}{c} ch3+oh=ch2\\ ch3+oh=ch3\\ ch3+oh=ch2\\ ch3+oh=ch2\\ ch3+oh=ch2\\ ch3+o2=ch\\ c2h3+o2=ch\\ c2h3+o2=ch\\ c2h2+ch3=c\\ c2h2+ch3=c\\ c2h2+ch3=c\\ c2h2+ch3=c\\ c3h4-p=ch\\ c3h4-p=ch\\ c3h4-a+h=c\\ c3h5-a+c2=\\ c3h5-a+c2=\\ c3h5-a+c2=\\ c3h5-a=c3h\\ c$	oh++ o+h (s) o+h 2ch 2c+ 3h 3h 5 3h 5 3h 5 3h 5 3h 5 3h 5 5 - s 5 - s	h h h h h h h h h h h h h h	120 120 120 120 120 120 120 120				2.64E 5.74E 8.90E 3.19E 7.52E 3.13E 2.56E 5.14E 4.99E 3.20E 5.14E 5.14E 5.14E 5.40E 5.40E 5.540E 1.52E 6.27E 1.56E 5.50E 4.91E 3.36E 4.91E 3.36E 4.91E 3.36E 5.50E 4.91E 3.36E 5.50E 4.91E 3.36E 5.50E 4.91E 3.36E 5.50E 4.91E 3.55E 5.50E 4.91E 3.55E 5.50E 4.91E 3.55E 5.50E 4.91E 3.55E 5.55E	2+19 ++12 ++18 ++14 ++109 ++22 ++53 ++14 ++09 ++22 ++55 ++42 ++59 ++147 ++42 ++60 ++29 ++22 ++28 ++16 ++28 ++16 ++17 ++18 ++18 ++18 ++18 ++18 ++18 ++18 ++18 ++18 ++18 ++18 ++18 ++18 ++19 ++12 ++18 ++19 ++12 ++18 ++12 ++18 ++14 ++19 ++12 ++18 ++14 ++19 ++12 ++18 ++14 ++19 ++12 ++18 ++14 ++14 ++19 ++14 ++12 ++28 ++14 ++128 ++14 ++128 ++14 ++28 ++14 ++28 ++14 ++28 ++14 ++28 ++14 ++28	D -1.8 -0.2 -1.8 -0.5 1.0 -0.7 -0.7 1.1 0.9 -4.4 -12.8 -12.8 -13.9 -6.1 -9.4 -13.9 -6.1 -9.4 -13.9 -0.5 1.0 -0.7 -0.6 -2.7 -14.8 2.2 0 -0.2 -2.7 -14.8 -1.3 -0.2 -0.4 -2.7 -1.4 -1.3 -1.3 -1.4 -1.3 -1.5 -1.4 -1.4 -2.2 -1.5 -1.4 -1.4 -2.7 -1.4 -1.3 -1.5 -1.4 -1.4 -1.3 -1.5 -1.4 -1.4 -1.4 -1.5 -1.4	$\begin{array}{c} \\ 8068.0\\ 13931.0\\ 8067.0\\ 10810.0\\ -137.0\\ 269.0\\ 13644.0\\ 22153.0\\ 13850.0\\ 13300.0\\ 35730.0\\ 91117.0\\ 16300.0\\ 91117.0\\ 16300.0\\ 11190.0\\ 126949.0\\ 10079.0\\ 13690.0\\ 4300.0\\ 31644.0\\ 9190.0\\ 17590.0\\ 16910.0\\ 75868.0\\ 73300.0\\ 53900.0\\ \end{array}$	
$1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 9 \\ 100 \\ 111 \\ 122 \\ 133 \\ 144 \\ 155 \\ 166 \\ 177 \\ 18 \\ 19 \\ 200 \\ 212 \\ 223 \\ 244 \\ 255 \\ 266 \\ 277 \\ 28 \\ 267 \\ 28 \\ 28 \\ 276 \\ 28 \\ 28 \\ 28 \\ 28 \\ 28 \\ 28 \\ 28 \\ 2$	ch3+oh=ch2: ch3+oh=ch3: ch3+oh=ch2: ch3+oh=ch2: c2h3+o2=ch: c2h3+o2=ch: c2h3+o2=ch: c2h2+ch3=c: c2h2+ch3=c: c2h2+ch3=c: c2h2+ch3=c: c2h2+ch3=c: c3h4-a+h=c: c3h4-a+h=c: c3h4-a+h=c: c3h4-a+h=c: c3h4-a+h=c: c3h4-a+h=c: c3h4-a+h=c: c3h4-a+h=c: c3h4-a+h=c: c3h4-a+h=c: c3h4-a+h=c: c3h4-a+h=c: c3h4-a+h=c: c3h4-a+h=c: c3h5-a+c2=: c3h5-a+c2=: c3h5-a=c3h: c3h5-	oh+ oh+ (s) o+h 2ch 2ch 2ch 2ch 2ch 33h5 33h5 33h5 33h5 33h5 33h5 33h5 33	h h h h h h h h h h h h h h	120 -0 -0 -20 -20 -20 -20 -20 -20				2.64 5.74 5.74 3.13 2.19 5.14 4.99 5.14 4.99 5.14 5.14 4.99 5.14 5.14 5.14 5.14 5.14 5.14 5.14 5.14	2+19 2+12 2+18 2+12 2+08 2+14 2+09 2+22 2+35 2+60 2+42 2+59 2+42 2+59 2+42 2+59 2+42 2+56 2+60 2+70 2+60 2+70	D -1.8 -0.2 -1.8 -0.5 1.0 -0.7 -0.7 -0.7 1.0 .9 -4.4 -7.8 -12.8 -13.9 -6.1 -9.4 -13.6 -0.5 -0.9 -10.6 -0.9 -1.8 -0.5 -0.7 -0.9 -1.0 -0.5 -0.9 -1.4 -1.3 -0.5 -1.4 -1.3 -0.7 -1.4 -1.3 -0.7 -1.4 -1.3 -0.7 -1.4 -1.3 -0.7 -1.4 -1.3 -0.7 -1.4 -1.3 -0.7 -1.4 -1.3 -0.7 -1.4 -1.3 -0.7 -1.4 -1.3 -0.7 -1.4 -1.3 -0.7 -1.4 -1.3 -0.7 -1.4 -1.3 -0.7 -1.4 -1.3 -0.7 -1.4 -1.3 -0.7 -1.4 -1.3 -0.7 -1.4 -1.3 -0.7 -1.4 -1.3 -0.7 -1.4 -1.3 -0.7 -1.4 -1.3 -0.7 -1.	8068.0 13931.0 8067.0 10810.0 269.0 13644.0 22153.0 18850.0 13300.0 35730.0 91117.0 16300.0 11190.0 26949.0 10079.0 13690.0 31644.0 19190.0 24980.0 75508.0 73300.0 53900.0	
1 2 3 3 4 5 6 7 7 8 9 0 11 12 13 14 5 16 17 18 19 0 21 22 23 24 25 26 27 28	ch3+oh=ch2 ch3+oh=ch2 ch3+oh=ch2 ch3+oh=ch2 ch3+oh=ch2 ch3+o2=ch c2h3+o2=ch c2h2+ch3=c c2h2+ch3=c c2h2+ch3=c c2h2+ch3=c c3h4-p=ch c3h4-p=ch c3h4-a+h=c c3h4-a+h=c c3h4-p+h=c c3h4-p+h=c c3h5-a+o2= c3h5-a+o2= c3h5-a=c3h c3h5-a=c3h c3h5-a=c3h	oh+ o+h (s) o+h 2ch+ 2ch+ 2ch+ 33h5 33h5 33h5 33h5 33h5 33h5 33h5 5-sh ch 2c- ts 5-sh 2c- ts 5-sh		120 120 120 120 120 120 120 120				2.64 5.74 8.90 3.19 7.52 3.13 2.56 5.14 4.99 5.25 5.40 5.40 5.40 5.40 5.540 6.27 1.52 6.27 1.52 6.27 1.52 6.27 1.52 6.27 1.52 5.50 6.20 6.27 1.52 5.50 6.20 6.20 6.20 6.20 6.20 6.20 6.55 5.50 6.20 6.20 6.20 6.55 5.50 6.20 6.20 6.55 5.50 6.20 6.20 6.55 5.50 6.55 5.50 6.20 6.55 5.50 6.20 6.20 6.30 6.55 5.50 6.20 7.00 6.20 7.00 6.20 7.00 6.20 7.00 6.20 7.00 6.20 7.00 6.20 7.00 6.20 7.000 7.0000 7.0000 7.0000 7.0000 7.0000 7.0000 7.00000 7.00000 7.00000000 7.0000000000	1+19 1+12 1+12 1+18 1+12 1+18 1+12 1+14 1+14 1+14 1+14 1+14 1+14 1+14 1+22 1+35 1+55 1+29 1+55 1+29 1+29 1+55 1+29 1	D -1.8 -0.2 -1.8 -0.5 1.0 -0.7 -0.7 1.1 0.9 -4.4 -12.8 -12.8 -13.9 -6.1 -9.4 -13.5 -0.6 -5.7 -14.4 2.2 0.4 -2.7 -14.3 0.4 -2.7 -1.8 -1.8 -2.8 -1.0 -5.7 -1.1 -1.8 -2.7 -1.4 -1.3 -1.8 -1.8 -2.7 -1.4 -1.8 -1.8 -1.8 -2.7 -1.4 -1.8 -1.8 -1.8 -2.7 -1.4 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -2.7 -1.4 -1.8 -1.	8068.0 13931.0 8067.0 10810.0 -137.0 269.0 13644.0 22153.0 18850.0 13300.0 35730.0 91117.0 16300.0 11190.0 13694.0 10079.0 13690.0 4300.0 31644.0 9190.0 17590.0 16910.0 05868.0 73300.0 53900.0 10000.0	
1 2 3 3 4 5 6 7 8 9 9 0 11 12 13 14 15 5 6 17 18 19 200 21 22 23 24 25 5 26 27 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	ch3+oh=ch2 ch3+oh=ch3 ch3+oh=ch2 ch3+oh=ch2 ch3+oh=ch2 c2h3+o2=ch c2h3+o2=ch c2h3+o2=ch c2h2+ch3=c c2h2+ch3=c c2h2+ch3=c c2h2+ch3=c c2h2+ch3=c c2h2+ch3=c c3h4-p+c3 c3h4-a+h=c c3h4-a+h=c c3h4-a+h=c c3h4-p+h=c c3h4-p+h=c c3h4-p+h=c c3h4-p+h=c c3h5-a+o2=r c3	oh+h (s) (s) (s) (s) (s) (s) (s) (s) (s) (s)		120 -0 -0 -0 -20 -20 -20 -20 -20				2.64 5.74 8.90 3.13 2.19 5.25 5.14 4.99 5.14 5.14 5.14 5.14 5.14 5.14 5.14 5.14	++19 ++12 ++12 ++18 ++12 ++14 ++14 ++14 ++14 ++14 ++14 ++14	D -1.8 -0.2 -1.8 -0.5 1.0 -0.7 -0.7 -0.7 -1.1 0.9 -4.4 -7.8 -12.8 -13.9 -6.1 -9.4 -13.5 -0.9 -10.6 -5.7 -14.4 1.8 2.2 0.4 -2.47 -1.4 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -0.5 -0.7 -0.9 -1.4 -1.3 -0.9 -1.4 -1.3 -1.2 -1.4 -1.3 -1.4 -1.3 -1.2 -1.4 -1.3 -1.4 -1.3 -1.4 -1.3 -1.4 -1.3 -1.4 -1.3 -1.4 -1.3 -1.4 -1.3 -1.4 -1.3 -1.4 -1.3 -1.4 -1.3 -1.4 -1.3 -1.4 -1.3 -1.4 -1.3 -1.4 -1.3 -1.4 -1.3 -1.4 -1.4 -1.3 -1.4 -1.3 -1.4 -1.3 -1.4 -1.3 -1.4 -1.3 -1.4 -1.3 -1.4 -1.3 -1.4 -1.3 -1.4 -1.3 -1.4 -1.4 -1.3 -1.4 -1.	8068.0 13931.0 8067.0 10810.0 269.0 13644.0 22153.0 18850.0 13300.0 35730.0 9117.0 16300.0 11190.0 26949.0 10079.0 13690.0 31644.0 19190.0 24980.0 7390.0 16910.0 24980.0 73300.0 5990.0 10600.0 10700.0 10600.0 10600.0 10600.0 10700.0 10600.0 10700.0 10600.0 10700.0 10600.0 10700.0 10600.0 10700.0 10700.0 10700.0 10600.0 10700.0 10600.0 10700.0 10000.0 10700.0 1	
$1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 30 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	$ \begin{array}{c} ch3+oh=ch2\\ ch3+oh=ch3\\ ch3+oh=ch2\\ ch3+oh=ch2\\ ch3+o2=ch\\ c2h3+o2=ch\\ c2h3+o2=ch\\ c2h2+ch3=c\\ c2h2+ch3=c\\ c2h2+ch3=c\\ c2h2+ch3=c\\ c3h4-p=c3h\\ c3h4-p=ch\\ c3h4-a+h=c\\ c3h5-a+o2=\\ c3h5-a+o2=\\ c3h5-a+o2=\\ c3h5-a+o2=\\ c3h5-a+o2=\\ c3h5-a+o2=\\ c3h5-a+o2=\\ c3h5-a+o2=\\ c3h5-a+c3h+c2h2=\\ c3h5-a+c2h2=\\ c2h3+c2h2=\\ c2h3+c2h2=\\ c2h3+c2h2=\\ c3h3+c2h2=\\ c3h3$	oh+h (s)+h (120 120 120 120 120 120 120 120				2.64 5.74 8.90 3.19 7.52 3.13 2.56 5.14 4.90 2.56 5.14 4.92 5.40 9.46 1.52 5.50 6.27 1.66 5.50 4.91 1.52 6.27 1.52 5.50 6.27 1.52 5.50 5.50 6.27 1.52 5.50 6.27 1.52 5.50 6.27 1.52 5.50 6.27 1.52 5.50 6.27 1.52 5.50 6.27 1.52 5.50 6.27 1.52 5.50 6.27 1.52 5.50 6.27 1.52 5.50 6.27 1.52 5.50 6.27 1.52 5.50 6.27 1.52 5.50 6.27 1.52 5.50 6.27 1.52 5.50 6.27 1.52 5.50 6.27 1.52 5.50 6.27 1.52 5.50 6.20 6.20 5.50 6.20 6.20 6.20 6.20 6.20 6.20 6.20 6.20 6.20 6.20 6.20 6.20 6.20 6.20 6.20 6.20 6.50	++19 ++12 ++18 ++12 ++18 ++14 ++14 ++19 ++22 ++35 ++51 ++59 ++22 ++59 ++17 ++47 ++56 ++51 ++51 ++51 ++38 ++18 ++18 ++12 ++12 ++18 ++19 ++122 ++18 ++19 ++19 ++19 ++19 ++19 ++19 ++19	D -1.8 -0.2 -1.8 -0.5 1.0 -0.7 -0.7 1.1 0.9 -4.4 -7.8 -12.8 -13.9 -0.4 -13.5 -0.6 -5.7 -14.6 1.8 2.2 4 -2.7 -14.0 -12.7 -1.8 -1.2 -1.8 -1.9 -1.6 -1.7 -1.7 -1.7 -1.8 -1.2 -1.8 -1.2 -1.8 -1.2 -1.8 -1.2 -1.8 -1.2 -1.8 -1.2 -1.8 -1.2 -1.8 -1.2 -1.8 -1.2	$\begin{array}{c} \\ 8068.0\\ 13931.0\\ 8067.0\\ 10810.0\\ -137.0\\ 269.0\\ 13644.0\\ 22153.0\\ 13645.0\\ 13300.0\\ 35730.0\\ 91117.0\\ 16300.0\\ 91117.0\\ 16300.0\\ 11190.0\\ 26949.0\\ 10079.0\\ 13690.0\\ 4300.0\\ 31644.0\\ 9190.0\\ 17590.0\\ 16910.0\\ 17590.0\\ 16910.0\\ 75868.0\\ 73300.0\\ 53900.0\\ 12000.0\\ 12000.0\\ 12000.0\\ 12000.0\\ 18600.0\\ \end{array}$	
$1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	oh+h (s) (s) (s) (s) (s) (s) (s) (s) (s) (s)		120 -0 -0 -0 -20 -20 -20 -20 -20				2.64 5.74 8.90 3.13 2.19 7.52 3.13 2.56 5.14 4.99 5.14 4.99 5.14 5.14 4.99 5.14 5.14 5.14 5.14 5.40 5.40 5.40 5.40 5.40 5.40 5.40 5.4	++19 ++12 ++18 ++12 ++08 ++14 ++14 ++14 ++14 ++14 ++14 ++22 ++53 ++60 ++29 ++28 ++60 ++28 ++60 ++56 ++56 ++14 ++18 ++12 ++18 ++12 ++18 ++12 ++18 ++12 ++18 ++12 ++18 ++12 ++18 ++12 ++18 ++12 ++18 ++12 ++18 ++12 ++18 ++12 ++18 ++12 ++18 ++12 ++18 ++12 ++18 ++12 ++18 ++12 ++18 ++12 ++14 ++14 ++14 ++12 ++22 ++18 ++12 ++22 ++18 ++12 ++22 ++18 ++12 ++22 ++18 ++12 ++22 ++2	$\begin{array}{c} \mathbf{D} \\ -1.8 \\ -0.2 \\ -1.8 \\ -0.5 \\ 1.6 \\ -0.7 \\ -0.7 \\ -0.7 \\ -0.7 \\ 1.0 \\ -1.8 \\ -13.9 \\ -4.4 \\ -13.5 \\ -0.9 \\ -4.4 \\ -13.5 \\ -0.9 \\ -10.6 \\ -5.7 \\ -14.4 \\ 1.8 \\ 2.2 \\ 0.4 \\ -2.7 \\ -14.7 \\ -13.0 \\ -12.7 \\ -8.8 \\ -11.0 \\ -8.8 \end{array}$	8068.0 13931.0 8067.0 10810.0 269.0 13644.0 22153.0 18850.0 13300.0 35730.0 91117.0 16300.0 11190.0 26949.0 10079.0 13690.0 31644.0 19190.0 31644.0 19190.0 24980.0 73300.0 53900.0 10600.0 12000.0 12000.0	
$1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 7 \\ 7 \\ 8 \\ 9 \\ 9 \\ 10 \\ 112 \\ 133 \\ 144 \\ 155 \\ 17 \\ 188 \\ 199 \\ 212 \\ 223 \\ 244 \\ 255 \\ 266 \\ 277 \\ 288 \\ 299 \\ 300 \\ 312 \\ 288 \\ 299 \\ 300 \\ 312 \\ 288 \\ 299 \\ 300 \\ 312 \\ 288 \\ 299 \\ 300 \\ 312 \\ 288 \\ 299 \\ 300 \\ 312 \\ 288 \\ 299 \\ 300 \\ 312 \\ 288 \\ 299 \\ 300 \\ 312 \\ 288 \\ 299 \\ 300 \\ 312 \\ 288 \\ 299 \\ 300 \\ 312 \\ 288 \\ 299 \\ 300 \\ 312 \\ 288 \\ 299 \\ 300 \\ 312 \\ 288 \\ 299 \\ 300 \\ 312 \\ 288 \\ 299 \\ 300 \\ 312 \\ 328 \\ 312 \\ 328 \\ 312 \\ 328 \\ 312 \\ 328 \\ 312 \\ 328 \\ 312 \\ 328 \\ 328 \\ 312 \\ 328 \\ 328 \\ 328 \\ 328 \\ 338 \\ 328 \\ 338 \\ $	$ \begin{array}{c} ch3+oh=ch2;\\ ch3+oh=ch2;\\ ch3+oh=ch2;\\ ch3+oh=ch2;\\ ch3+o2=ch;\\ c2h3+o2=ch;\\ c2h3+o2=h+;\\ c2h2+ch3=c;\\ c2h2+ch3=c;\\ c2h2+ch3=c;\\ c2h2+ch3=c;\\ c3h2+ch3=c;\\ c3h4-p=c3h;\\ c3h4-p=ch;\\ c3h4-a+h=c;\\ c3h5-a+o2=;\\ c3h5-a+o2=;\\ c3h5-a+o2=;\\ c3h5-a+o2=;\\ c3h5-a+o2=;\\ c3h5-a+o2=;\\ c3h5-a+o2=;\\ c3h5-a+o2=;\\ c3h5-a+c2=;\\ c3h5-a+c2=;\\$	oh+h (s+h (s+h (s+h 2cc++ 2cc++ 33335 3315 3315 3315 3315 3315 3315 3	-h + + 2 +	h h h h h h h h h h h h h h				2.64 5.74 8.90 3.19 7.52 3.13 2.56 5.14 4.99 2.56 5.14 4.99 4.99 5.15 5.40 6.27 5.40 6.27 5.50 4.91 5.50 4.91 5.50 4.91 5.50 5	++19 ++12 ++12 ++12 ++14 ++14 ++09 ++22 ++53 ++60 ++22 ++59 ++22 ++59 ++22 ++59 ++22 ++59 ++22 ++51 ++18 ++18 ++12 ++18 ++12 ++18 ++12 ++18 ++12 ++18 ++12 ++18 ++12 ++18 ++12 ++18 ++12 ++18 ++12 ++18 ++12 ++12	$\begin{array}{c} \text{D} \\ -1.8 \\ -0.2 \\ -1.8 \\ -0.5 \\ 1.0 \\ 0.7 \\ -0.7 \\ 1.1 \\ 0.9 \\ -4.4 \\ -7.8 \\ -12.8 \\ -13.9 \\ -13.5 \\ -0.9 \\ -14.6 \\ -5.7 \\ -14.6 \\ 1.8 \\ 2.2 \\ 0.4 \\ -2.7 \\ -14.1 \\ 1.8 \\ 2.2 \\ 0.4 \\ -2.7 \\ -14.1 \\ 1.8 \\ 2.2 \\ 0.4 \\ -2.7 \\ -14.1 \\ 1.8 \\ 2.2 \\ 0.4 \\ -2.7 \\ -14.1 \\ 1.8 \\ 2.2 \\ 0.4 \\ -2.7 \\ -14.1 \\ 1.8 \\ 2.2 \\ 0.4 \\ -2.7 \\ -14.1 \\ 1.8 \\ -2.4 \\ 0.4 \\ -2.7 \\ -1.8 \\ -1.8 \\ -2.4 \\ 0.4 \\ -2.4 \\ 0.4 \\ -2.4 \\ 0.4 \\ -2.4 \\ 0.4 \\ -2.4 \\ 0.4 \\ -2.4 \\ 0.4 \\ -2.4 \\ 0.4 \\ -2.4 \\ 0.4 \\ -2.4 \\ 0.4 \\ -2.4 \\ 0.4 \\ 0.4 \\ -2.4 \\ 0$	$\begin{array}{c} \\ 8068.0\\ 13931.0\\ 8067.0\\ 10810.0\\ -137.0\\ 269.0\\ 13644.0\\ 22153.0\\ 13644.0\\ 13300.0\\ 35730.0\\ 91117.0\\ 16300.0\\ 91117.0\\ 16300.0\\ 11190.0\\ 26949.0\\ 10079.0\\ 13690.0\\ 4300.0\\ 31644.0\\ 9190.0\\ 17590.0\\ 16910.0\\ 24980.0\\ 73300.0\\ 53900.0\\ 16000.0\\ 12498.0\\ 12483.0\\ 12483.0\\ 13644.0\\ 12483.0\\ 12483.0\\ 13644.0\\ 12483.0\\ 13644.0\\ 12483.0\\ 13644.0\\ 1$	
$1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 7 \\ 7 \\ 8 \\ 9 \\ 10 \\ 111 \\ 122 \\ 13 \\ 14 \\ 155 \\ 16 \\ 177 \\ 18 \\ 199 \\ 200 \\ 212 \\ 223 \\ 245 \\ 226 \\ 277 \\ 288 \\ 299 \\ 300 \\ 311 \\ 322 \\ 333 \\ 322 \\ 333 \\ 322 \\ 333 \\ 332 \\ 333 \\ 3$	<pre>ch3+oh=ch2; ch3+oh=ch3; ch3+oh=ch2; ch3+oh=ch2; c2h3+o2=ch; c2h3+o2=ch; c2h3+o2=ch; c2h2+ch3=c; c2h2+ch3=c; c2h2+ch3=c; c2h2+ch3=c; c3h4+p=c3h; c3h4-a+h=c; c3h4-a+h=c; c3h4-a+h=c; c3h4-a+h=c; c3h4-a+h=c; c3h4-a+h=c; c3h4-a+h=c; c3h4-a+h=c; c3h4-a+h=c; c3h4-a+h=c; c3h4-a+h=c; c3h4-a+h=c; c3h4-a+h=c; c3h5-a+o2=; c3h5-a+o2=; c3h5-a+o2=; c3h5-a+o2=; c3h5-a+o2=; c3h5-a+o2=; c3h5-a+c2=; c3h5-a+c2=; c3h5-a+c2=; c3h5-a+c2=; c3h5-a+c2=; c3h5-a+c2=; c3h5-a+c2=; c2h3+c2h3=; c2h3+c2h3=; c2h3+c2h3=; c3h5+c2=3; c3h3+c2h3=; c3h3+c2h3+; c3h3+c2h3=; c3h3+c2h3+; c3h3+c2h3=; c3h3+c2h3+; c3h3+c3h3+; c3h3+c3h3+; c3h3+c3h3+; c3h3+c3h3+; c3h3+c3h3+; c3h3+c3h3+; c3h3+c3h3+; c3h3+; c3h3+c3h3+; c3h3+; c3h3+; c3h3+; c3h3+; c3h</pre>	oh+h (s+h (s+h 2co+ 33h4555 33h533h4 33h555 33h555 5 5 5 5 5 5 5 5 5 5 5 5 5		h h h h h h h h h h h h h h				2.64 5.74 5.74 8.90 5.75 2.19 5.14 5.14 5.14 5.14 5.14 5.14 5.14 5.14	1+19 1+12 1+12 1+14 1+14 1+14 1+14 1+14 1+14 1+14 1+14 1+14 1+14 1+14 1+14 1+14 1+14 1+14 1+14 1+14 1+14 1+14 1+12 1+22 1+22 1+22 1+53 1+60 1+22 1+53 1+60 1+22 1+53 1+60 1+22 1+53 1+60 1+22 1+53 1+60 1+22 1+53 1+60 1+22 1+53 1+60 1+22 1+53 1+60 1+22 1+53 1+60 1+22 1+53 1+60 1+22 1+53 1+60 1+22 1+53 1+60 1+22 1+53 1+60 1+22 1+53 1+60 1+22 1+53 1+60 1+22 1+53 1+60 1+22 1+53 1+60 1+22 1+53 1+60 1+22 1+55 1+60 1+22 1+55 1+60 1+22 1+55 1+60 1+22 1+55 1+60 1+22 1+55 1+60 1+22 1+55 1+60 1+22 1+55 1+60 1+22 1+55 1+60 1+22 1+55 1+60 1+22 1+55 1+60 1+22 1+55 1+60 1+22 1+55 1+60 1+22 1+55 1+60 1+22 1+55 1+60 1+22 1+55 1+60 1+22 1+55 1+60 1+22 1+55 1+60 1+22 1+55 1+60 1+22 1+55 1+60 1+22 1+22 1+55 1+47 1+22 1+56 1+48 1+24 1+22 1+22 1+22 1+55 1+47 1+22	$ \begin{array}{c} \mathbf{D} \\ -1.8 \\ -0.2 \\ -1.8 \\ -0.5 \\ 1.6 \\ -0.7 \\ -0.7 \\ -0.7 \\ 1.1 \\ 0.9 \\ -4.4 \\ -7.8 \\ -13.9 \\ -6.1 \\ -9.4 \\ -13.5 \\ -0.9 \\ -6.1 \\ -9.4 \\ -13.5 \\ -0.9 \\ -10.6 \\ 1.5 \\ -7 \\ -14.4 \\ 1.3 \\ 0.4 \\ -2.0 \\ -8.8 \\ -2.0 \\ -2.0 \\ \end{array} $	8068.0 13931.0 8067.0 10810.0 269.0 13644.0 22153.0 18850.0 13300.0 35730.0 91117.0 16300.0 1190.0 10079.0 1644.0 19190.0 16910.0 24980.0 73300.0 31644.0 17590.0 16910.0 24980.0 73300.0 10600.0 12483.0 12483.0 12483.0 12654.0 15361.0	
1 2 3 3 4 5 6 6 7 7 8 9 9 100 111 2 13 144 155 26 6 177 189 20 21 222 233 24 25 26 6 27 28 29 300 31 32 332 333	ch3+0h=ch2: ch3+0h=ch2: ch3+0h=ch2: ch3+0h=ch2: ch3+0c2-ch: ch3+02=ch: ch3+02=ch: ch2+ch3=c: ch2+ch3=c: ch2+ch3=c: ch2+ch3=c: ch2+ch3=c: ch2+ch3=c: ch4+p=c3: ch4+p=c3: ch4+p=c3: ch4+p+h=c: ch4+p+h=c: ch4+p+h=c: ch4+p+h=c: ch4+p+h=c: ch4+p+h=c: ch5+a+02=: ch5+	oh+h (s+h (s+h 2o++ 33h555 33h533h533h555 33h5555 5555 55	h + h + 2 + ch pat sa st a at sa st a s	h h h h h h h h h h h h h h				2.64 5.74 8.90 3.19 7.52 3.13 2.56 5.14 4.99 2.56 5.15 5.40 9.46 5.15 5.40 9.46 5.50 4.91 1.52 5.50 4.91 1.50 2.06 5.50 4.91 1.50 1.20 1.50 1.20	++19 ++12 ++12 ++12 ++14 ++14 ++14 ++14 ++14	$ \begin{array}{c} \mathbf{D} \\ -1.8 \\ -0.2 \\ -1.8 \\ -0.5 \\ 1.0 \\ -0.7 \\ -0.7 \\ -0.7 \\ 1.1 \\ 0.9 \\ -4.4 \\ -7.8 \\ -12.8 \\ -13.9 \\ -9.4 \\ -13.5 \\ -0.9 \\ -10.6 \\ -5.7 \\ -14.1 \\ 1.8 \\ 2.2 \\ 0.4 \\ -2.7 \\ -14.1 \\ 1.8 \\ 2.2 \\ 0.4 \\ -2.7 \\ -14.1 \\ 1.8 \\ 2.2 \\ 0.4 \\ -2.7 \\ -14.1 \\ 1.8 \\ 2.2 \\ 0.4 \\ -2.7 \\ -14.1 \\ 1.8 \\ 2.2 \\ 0.4 \\ -2.7 \\ -14.1 \\ 0.8 \\ -11.0 \\ 0.8 \\ -8 \\ -8 \\ -8 \\ -2.4 \\ -2.2 \\ 0 \\ -2.2 \\ 0 \\ -2.2 \\ 0 \\ -8 \\ -2.4 \\ -2.2 \\ 0 \\ -2.2 \\ 0 \\ -2.2 \\ 0 \\ -8 \\ -2.4 \\ -2.2 \\ 0 \\ 0 \\ -2.2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	8068.0 13931.0 8067.0 10810.0 -137.0 269.0 13644.0 22153.0 18850.0 13300.0 35730.0 91117.0 16300.0 11190.0 26949.0 10079.0 13690.0 4300.0 31644.0 91910.0 17590.0 19190.0 17590.0 24980.0 73300.0 53900.0 12000.0 12483.0 12267.2	
1 2 3 3 4 5 6 6 7 7 8 9 9 100 11 12 13 14 15 16 177 18 9 9 100 21 12 23 24 5 26 27 7 28 9 20 21 22 23 24 5 26 6 30 31 33 33 33 34 33 34 33 34 33 34 34 34 34	ch3+0h=ch2 ch3+0h=ch3 ch3+0h=ch2 ch3+0h=ch2 ch3+0h=ch2 c2h3+02=ch c2h3+02=ch c2h3+02=ch c2h2+ch3=c c2h2+ch3=c c2h2+ch3=c c2h2+ch3=c c3h4-p=c3h c3h4-a+h=c c3h4-a+h=c c3h4-a+h=c c3h4-p+h=c c3h4-p+h=c c3h4-p+h=c c3h5-a+02= c3h5-a	oh+h (s+h)(s+h)(s+h)(s+h)(s+h)(s+h)(s+h)(s+h)	-h + + + + + + + + + + + + + + + + + + +	h220 ro i20 i20 i20 i20 i20 i20 i20 i20				2.64 5.74 8.90 3.13 2.19 7.52 3.13 2.56 5.14 4.99 5.14 4.99 5.14 5.14 5.14 5.14 5.14 5.14 5.40 6.27 5.40 6.27 5.40 6.27 6.20 6.27 6.20 6.00	++19 ++12 ++18 ++12 ++14 ++14 ++14 ++14 ++14 ++14 ++14	$ \begin{array}{c} \mathbf{D} \\ -1.8 \\ -0.2 \\ -1.8 \\ -0.5 \\ 1.1 \\ 0.9 \\ -4.4 \\ -7.8 \\ -12.8 \\ -13.9 \\ -6.1 \\ -9.4 \\ -13.5 \\ -0.9 \\ -10.6 \\ -5.7 \\ -14.4 \\ 1.8 \\ 2.2 \\ 0.4 \\ -2.1 \\ 0.4 \\ -14.1 \\ -13.0 \\ -12.7 \\ -1.4 \\ -13.0 \\ -12.7 \\ -1.7 \\ -8.8 \\ -2.4 \\ -2.0 \\ -6.3$	8068.0 13931.0 8067.0 10810.0 137.0 269.0 13644.0 22153.0 13300.0 35730.0 91117.0 16300.0 1117.0 16300.0 1149.0 10679.0 13690.0 106910.0 17590.0 16910.0 17590.0 16910.0 73800.0 73800.0 1990.0 10690.0 10690.0 10690.0 105361.0 12483.0 15361.0 12353.0 12355.0 1	

36.	nc4h5+c2h2=c6h6	+h		1.60E+16	-1.3	5400.0
37	c4h4+h=nc4h5			1 30E+51 -	11 9	16500 0
38	c4h4+h=ic4h5			4 908+51 -	.11 9	17700 0
20	$na4h_{2+h=a_{2}h_{2+h_{2}}}$	aa		6 208+25	-2 2	10014 0
40	- 4h2 + h - 2h2 + h2			0.305+23	-3.5	10700 0
40.	104113+11=02112+112	00		2.005-42	-2.5	10780.0
41.	1C4n3+n=C4n4			3.40E+43	-9.0	12120.0
42.	nc4n3+n=c4n4			2.005+47 -	-10.3	13070.0
43.	nc4h3=ic4h3			4.10E+43	-9.5	53000.0
44.	nc4h3+h=ic4h3+h			2.50E+20	-1.7	10800.0
45.	c4h714=c4h6+h			2.48E+53 -	-12.3	52000.0
46.	h+o2<=>o+oh			1.04E+14	0.0	15286.0
47.	o+h2<=>h+oh			5.08E+04	2.7	6292.0
48.	oh+h2<=>h+h2o			4.38E+13	0.0	6990.0
49	a+h2a<=>ah+ah			2 97E+06	2 0	13400 0
50	$h_{2+M} = h_{+}h_{+}M$			4 58F+19	-1 4	104400 0
50.	h2	Enhanced by	2 5005+00	11002.10		10110010
	112 h0-	Emilanced by	1 2000-01			
	1120	Enhanced by	1.200E+01			
	co	Enhanced by	1.900E+00			
	co2	Enhanced by	3.800E+00			
	he	Enhanced by	8.300E-01			
51.	o+o+M<=>o2+M			6.16E+15	-0.5	0.0
	h2	Enhanced by	2.500E+00			
	h2o	Enhanced by	1.200E+01			
	ar	Enhanced by	8.300E-01			
	CO	Enhanced by	1 900E+00			
	co2	Enhanced by	3 800E+00			
	bo	Enhanced by	9 200E 01			
F 0	ne - h Mar a shah	Emilanced by	0.300E-01	4 717.10	1 0	0.0
52.	0+11+M<=>011+M	The last and last	0 5000.00	4./16+18	-1.0	0.0
	112	Ennanced by	2.500E+00			
	h2o	Enhanced by	1.200E+01			
	ar	Enhanced by	7.500E-01			
	co	Enhanced by	1.500E+00			
	co2	Enhanced by	2.000E+00			
	he	Enhanced by	7.500E-01			
53.	h+oh+M<=>h2o+M			3.50E+22	-2.0	0.0
	h2	Enhanced by	7.300E-01			
	h2o	Enhanced by	3.650E+00			
	ar	Enhanced by	3 800E-01			
54	$h + o^2(+M) < - h o^2($	+M)	510001 01	4 65 2+12	0.4	0 0
51.	Low program li	mit 0 17270 .	-20 -0 12200E+01	0.00000000000	1 0.1	0.0
	TOW pressure in	0.17370E	-20 -0.12300E+01	0.10000E+00	0 10	0000 . 21
	IROE Centering.	0.07000	+00 0.10000E-29	0.100006+31	. 0.10	10006+31
	nz	Ennanced by	1.300E+00			
	co	Ennanced by	1.900E+00			
	co2	Enhanced by	3.800E+00			
	h2o	Enhanced by	1.000E+01			
	ar	Enhanced by	0.000E+00			
	he	Enhanced by	0.000E+00			
55.	h+o2(+ar)<=>ho2	(+ar)		4.65E+12	0.4	0.0
	Low pressure li	mit: 0.68100E-	+19 -0.12000E+01	0.00000E+00)	
	TROE centering:	0.70000E+	+00 0.10000E-29	0.10000E+31	L 0.10	0000E+31
56.	h+o2(+he) < = >ho2	(+he)		4.65E+12	0.4	0.0
	Low pressure li	mit: 0.91920E+	+19 -0.12000E+01	0.00000E+00)	
	TROF centering:	0 590005-	+00 0 10000E-29	0 10000E+31	010	0005+31
57	ho2+hc=>oh+oh	0.550001	00 0.100001 25	7 08F+13	0.10	295 0
57.	h2.c2<->b.bc2			F 10E-0E	2.4	E2E02 0
50.	112+02<=>11+1102			3.105703	2.4	55502.0
59.	1102+0<=>0n+02			3.255+13	0.0	0.0
60.	ho2+oh<=>h2o+o2			2.46E+13	0.0	-497.0
61.	ho2+ho2<=>h2o2+	02		1.30E+11	0.0	-1630.0
	Declared duplic	ate reaction				
62.	ho2+ho2<=>h2o2+	o2		3.66E+14	0.0	12000.0
	Declared duplic	ate reaction				
63.	h2o2(+h2o)<=>oh	+oh(+h2o)		2.00E+12	0.9	48749.0
	Low pressure li	mit: 0.18650E-	+26 -0.23000E+01	0.48749E+05	5	
	TROE centering:	0.51000E-	+00 0.10000E-29	0.10000E+31	L	
64.	h2o2(+M)<=>oh+o	h(+M)		2.00E+12	0.9	48749.0
	Low pressure li	mit: 0 24900F-	+25 -0.23000E+01	0.48749E+0	5	
	TROF centering.	0 430000	+00 0 10000F-29	0 1000000+21	-	
	h2o	Enhanced by	0 000F+00	5.1000004-01	-	
		Enhanced by	1 6000+00			
	CU2	minianceu by	T.000F+00			

	n2	Enhanced by	1.500E+00			
	02	Enhanced by	1.200E+00			
	h2o2	Enhanced by	7.700E+00			
	he	Enhanced by	6.500E-01			
	h2	Enhanced by	3.700E+00			
	CO	Enhanced by	2.800E+00			
65.	h2o2+h<=>h2o+oh			2.41E+13	0.0	3970.0
66.	h2o2+h<=>h2+ho2			2.15E+10	1.0	6000.0
67.	h2o2+o<=>oh+ho2	0		9.55E+06	2.0	3970.0
68.	n2o2+on<=>n2o+no	02 		1./4E+12	0.0	318.0
60	bloluphershloup	ate reaction		7 500.12	0 0	7260 0
09.	Dealared duplia	to reaction		7.395+13	0.0	7209.0
70	co+ho2=co2+oh	ate reaction		1 158+05	23	17550 0
71	co+o+m=co2+m			2 83E+13	0 0	-4540 0
/ 1 .	h2o	Enhanced by	1 625E+01	21032123	0.0	1010.0
	h2	Enhanced by	2 500E+00			
	CO	Enhanced by	1.875E+00			
	co2	Enhanced by	3.750E+00			
	ch4	Enhanced by	1.625E+01			
	c2h6	Enhanced by	1.625E+01			
	ar	Enhanced by	7.500E-01			
72.	co+o2=co2+o			2.53E+12	0.0	47700.0
73.	co+oh=co2+h			7.05E+04	2.1	-355.7
	Declared duplica	ate reaction				
74.	co+oh=co2+h			5.76E+12	-0.7	331.8
	Declared duplica	ate reaction				
75.	hco+m=h+co+m			1.85E+17	-1.0	17090.0
	h2o	Enhanced by	1.625E+01			
	h2	Enhanced by	1.900E+00			
	co	Enhanced by	1.875E+00			
	co2	Enhanced by	3.750E+00			
	ch4	Enhanced by	1.625E+01			
	c2h6	Enhanced by	1.625E+01			
	ar	Enhanced by	1.000E+00			
	he	Enhanced by	1.250E+00			
76.	hco+oh=co+h2o			1.00E+14	0.0	0.0
77.	hco+o=co+oh			3.00E+13	0.0	0.0
78.	hco+o=co2+h			3.00E+13	0.0	0.0
79.	hco+h=co+h2			7.22E+13	0.0	0.0
80.	hco+o2=co+ho2			7.58E+12	0.0	410.0
81.	hco+ho2=co2+oh+h	n		3.00E+13	0.0	0.0
82.	hco+hco=ch2o+co			1.81E+13	0.0	0.0
83.	hco+hco=h2+co+co	D		3.00E+12	0.0	0.0
84.	h+hco(+M)<=>ch20	D(+M)		1.09E+12	0.5	-260.0
	Low pressure lin	nit: 0.24700E+2	25 -0.25700E+01	0.42500E+03		
	TROE centering:	0.78240E+0	0 0.27100E+03	0.27550E+04	0.657	00E+04
	h2	Enhanced by	2.000E+00			
	n20	Ennanced by	6.000E+00			
	cn4	Ennanced by	2.000E+00			
	co	Enhanced by	1.500E+00			
	-01-0	Enhanced by	2.000E+00			
	C2110	Enhanced by	3.000E+00			
0 5	ahlouch-haouhlo	Elinanced by	7.000E-01	2 420,00	1 2	447 0
00.	clizo+oli=lico+lizo	- 2		1 10E+06	2.0	12000 0
00.	clizo+iioz=iico+iizo	52		1 010.12	2.0	2000.0
07.	ch2o+b=hco+b1			2 100+09	1 9	3000.0
00. 90	ch20+n2-hao+ho2			1 220+06	2 0	52000.0
90	ch3oh(+m)=ch2oh	+h(+m)		2 69F+16	-0 1	98940 0
20.	Low pressure lir	nit: 0 23400F+4	41 -0 63300F+01	0 10310F+06	0.1	50540.0
	TROE centering:	0 77300F+	10 0 69300E+03	0 53330E+04	0 100	00E-09
91	ch3oh(+m)=ch3+oh	n(+m)	JO 0.09900109	1 90E+16	0 0	91730 0
	Low pressure lin	nit: 0.29500E+4	45 -0.73500E+01	0.95760E+05		
	TROE centering:	0.41400E+0	0 0.27900E+03	0.54590E+04	0.100	00E-09
92.	ch3oh+o2=ch2oh+h	no2		2.05E+13	0.0	44910.0
93.	ch3oh+o2=ch3o+ho	52		2.50E+12	0.0	55000.0
94.	ch3oh+ho2=ch2oh-	+h2o2		1.13E+13	0.0	19360.0
95.	ch3oh+oh=ch2oh+h	n2o		7.10E+06	1.8	-596.0

96.	ch3oh+oh=ch3o+h	20		1.00E+06	2.1	496.7
97.	ch3oh+o=ch2oh+ol	h		1.63E+13	0.0	5030.0
98.	ch3oh+h=ch2oh+h	2		1.44E+13	0.0	6095.0
99.	ch3oh+h=ch3o+h2			3.60E+12	0.0	6095.0
100.	ch3oh+h=ch3+h2o			1.70E+13	0.0	5311.0
101.	ch3oh+ch2o=ch3o	+ch3o		1.55E+12	0.0	79570.0
102.	ch3oh+ch3=ch2oh	+ch4		3.57E+11	0.0	8663.0
103.	ch3oh+ch3=ch3o+	ch4		4.68E+05	2.3	12764.0
104.	cn2on+m=cn2o+n+i	m Tuber and bee	1 0000.00	1.00E+14	0.0	25100.0
	1120	Enhanced by	1.0006+00			
	co	Enhanced by	1.8/5E+00 2.7F0E+00			
	CO2	Enhanced by	3.750E+00			
	112 ab 4	Enhanced by	2.500E+00			
	c114	Enhanced by	1.625E+01			
	C2110	Enhanced by	7 5002-01			
105	at ah2oh+h-ah2o+h2	Emilanced by	7.500E-01	2 0012+12	0 0	0 0
105.	ch2oh+o2=ch2o+h2o+h2o+h2o+h2o+h2oh+o2=ch2o+h2o+h2o+h2o+h2o+h2o+h2o+h2o+h2o+h2o+	02		2 41F+14	0.0	5017 0
100.	Declared duplic	ate reaction		2.110/11	0.0	5017.0
107	ch2oh+o2=ch2o+h	ale reaction		1 518+15	-1 0	0 0
107.	Declared duplic	ate reaction		1.016+10	-1.0	0.0
108	ch2oh+o=ch2o+oh	ace reaction		4 228+13	0 0	0 0
100.	ch2oh+oh=ch2o+h	20		2 41F+13	0.0	0.0
110	ch2oh+ho2=ch2o+l	h2o2		1 20E+13	0.0	0.0
111	ch2oh+hco=ch3oh	+00		1 50E+13	0 0	0.0
112.	ch2oh+ch2o=ch3ol	h+hco		1.29E-01	4.6	6596.0
	Reverse Arrheni	us coefficients	:	9.63E+03	2.9	13110.0
113.	ch2oh+ch3o=ch3ol	h+ch2o		4.00E+12	0.0	0.0
114.	ch2oh+ch2oh=ch2	o+ch3oh		4.00E+12	0.0	0.0
115.	ch3o+m=ch2o+h+m			4.88E+15	0.0	22773.0
	h2o	Enhanced by	1.625E+01			
	co	Enhanced by	1.875E+00			
	co2	Enhanced by	3.750E+00			
	h2	Enhanced by	2.500E+00			
	ch4	Enhanced by	1.625E+01			
	c2h6	Enhanced by	1.625E+01			
	ar	Enhanced by	7.500E-01			
116.	ch3o+ho2=ch2o+h	2o2		3.00E+11	0.0	0.0
117.	ch3o+oh=ch2o+h2o	0		1.00E+13	0.0	0.0
118.	ch3o+o=ch2o+oh			1.30E+13	0.0	0.0
119.	ch3o+h=ch2o+h2			2.00E+13	0.0	0.0
120.	ch3o+o2=ch2o+ho	2		2.35E+10	0.0	1788.0
121.	ch3o+ch2o=ch3oh	+hco		1.15E+11	0.0	1280.0
122.	ch3o+co=ch3+co2			1.57E+13	0.0	11804.0
123.	ch3o+hco=ch3oh+	co		9.00E+13	0.0	0.0
124.	ch3o+c2h5=ch2o+	c2h6		2.41E+13	0.0	0.0
125.	ch3o+c2h3=ch2o+	c2h4		2.41E+13	0.0	0.0
126.	ch3o+c2h4=ch2o+	c2h5		1.20E+11	0.0	7000.0
127.	ch3oh+ch3o=ch3ol	h+ch2oh		3.01E+11	0.0	4070.0
128.	ch3+ho2=ch4+o2			1.19E+05	2.2	-3022.0
129.	ch4(+m)=ch3+h(+n)	m)	10 0 00000 00	2.40E+16	0.0	104913.0
	Low pressure li	mit: 0.45000E+	18 0.00000E+00	0.90800E+05	0 1	1065.05
120	TROE centering:	0.64000E+	00 0.10000E-14	0.31950E+04	0.1	2126E+05
130.	cn4+n=cn3+n2			4.08E+03	3.2	8/60.0
131.	cn4+o=cn3+on			6.92E+08	1.6	8490.0
132.	cn4+on=cn3+n2o			1.60E+06	2.1	2462.0
133.	cn4+cn2=cn3+cn3	-1-2		4.30E+12	0.0	10038.0
134.	CI14+CI12(S)=CI13+0	2		4.00E+12	0.0	0.0
135.	$c_{114+1102} = c_{113+1120}$	2		9.04E+12	0.0	24640.0
127	$c_{113}+o_{11}=c_{112}+i_{120}$	M)		7.23ET13	0.0	2/80.0
137.	Inferiz(+M)=eris(+i	mit: 0 10400E	27 0 276000.01	0.160000.04	0.0	0.0
	TDOE contoring:	mit. 0.10400E+	2/ -U.2/600E+01	0.10000E+04	0 01	E 20E 104
	h2	Futanced by	2 0005+00	J.JUJ00E+04	0.0	5520ETU4
	h2o	Enhanced by	6 000E+00			
	ch4	Enhanced by	2 000E+00			
		Enhanced by	1.500E+00			
	co2	Enhanced by	2.000E+00			
	c2h6	Enhanced by	3.000E+00			

	ar	Enhanced by	7.000E-01			
138	. ch+h2(+M)=ch3(+	-M)		1.97E+12	0.4	-370.0
	Low pressure li	mit: 0.48200E	+26 -0.28000E+01	0.59000E+03		
	TROE centering:	0.57800E	+00 0.12200E+03	0.25350E+04	0.936	50E+04
	h2	Enhanced by	2.000E+00			
	h2o	Enhanced by	6.000E+00			
	ch4	Enhanced by	2.000E+00			
	co.	Enhanced by	1 500E+00			
	co2	Enhanced by	2 000E+00			
	c2b6	Enhanced by	3 000E+00			
	22110	Enhanced by	7 0008-01			
139	ch3+ho2=ch3o+oh		7.0001 01	1 00F+12	03	-687 5
140	ab2+0=ab20+b			4 542+12	0.1	-136 0
141	ab2 o-bao b2			1 00E-12	0.1	126 0
141	ab2+02-ab20+02			1.005713	0.1	20270 0
1/2	ab2+02=ch20+0h			1 200.14	0.0	21200.0
143	- CII3+02=CII30+0			1.326714	0.0	10000 0
144	cli3+Cli3=li+C2li5	6(1m)		4.99E+12 2.61E-12	0.1	10600.0
145	. CH3+CH3(+m)=C2H	10(+11)	40 0 00000000000	3.016+13	0.0	0.0
	Low pressure 11	.mit: 0.12690E-	+42 -0.700008+01	0.2/620E+04	0 100	007.16
	TROE centering:	0.62000E	+00 0.73000E+02	0.11800E+04	0.100	00E+16
	n2	Ennanced by	2.000E+00			
	h2o	Enhanced by	6.000E+00			
	ar	Enhanced by	7.000E-01			
	co	Enhanced by	1.500E+00			
	co2	Enhanced by	2.000E+00			
	ch4	Enhanced by	2.000E+00			
	c2h6	Enhanced by	3.000E+00			
	he	Enhanced by	7.000E-01			
146	. ch3+ch3o=ch4+ch	120		2.41E+13	0.0	0.0
147	. ch3+ch2oh=ch4+c	h2o		2.41E+12	0.0	0.0
148	. ch3+h=ch2+h2			6.03E+13	0.0	15100.0
149	. ch3+hco=co+ch4			2.65E+13	0.0	0.0
150	. ch3+ch2o=hco+ch	14		7.80E-08	6.1	1970.0
151	. ch2+oh=ch+h2o			1.13E+07	2.0	3000.0
152	. ch2+oh=ch2o+h			3.00E+13	0.0	0.0
153	. ch2+o=co+h+h			5.00E+13	0.0	0.0
154	. ch2+o=co+h2			6.00E+13	0.0	0.0
155	. ch2+o2=co2+h2			3.45E+11	0.0	1000.0
156	. ch2+o2=co2+h+h			1.60E+12	0.0	1000.0
157	. ch2+o2=co+h2o			1.87E+10	0.0	-1000.0
158	. ch2+o2=ch2o+o			5.00E+13	0.0	9000.0
159	. ch2+o2=hco+oh			4.30E+10	0.0	-500.0
160	. ch2+o2=co+oh+h			8.64E+10	0.0	-500.0
161	. ch2+co2=ch2o+co)		1.10E+11	0.0	1000.0
162	. ch2+ch2=c2h2+h2	2		3.20E+13	0.0	0.0
163	. ch2+ch2=c2h2+h+	h		4.00E+13	0.0	0.0
164	. ch2+ch3=c2h4+h			4.00E+13	0.0	0.0
165	. ch2+ch=c2h2+h			4.00E+13	0.0	0.0
166	. ch2+c2h2=h+c3h3	1		1.20E+13	0.0	6620.0
167	. ch2+c2h4=c3h6			4.30E+12	0.0	10038.0
168	. ch2(s)+m=ch2+m			1.00E+13	0.0	0.0
	h	Enhanced by	0.000E+00			
	h2o	Enhanced by	0.000E+00			
	co	Enhanced by	1.875E+00			
	co2	Enhanced by	3.750E+00			
	ch4	Enhanced by	1.625E+01			
	c2h6	Enhanced by	1.625E+01			
	h2	Enhanced by	2.500E+00			
	ar	Enhanced by	7.500E-01			
169	. ch2(s)+h=ch2+h			2.00E+14	0.0	0.0
170	. ch2(s)+h2o=ch2+	h2o		3.00E+13	0.0	0.0
171	. ch2(s)+o2=co+oh	ı+h		3.00E+13	0.0	0.0
172	. ch2(s)+h2=ch3+h	1		7.00E+13	0.0	0.0
173	. ch2(s)+h=ch+h2			3.00E+13	0.0	0.0
174	. ch2(s)+o=co+h+h	1		1.50E+13	0.0	0.0
175	. ch2(s)+o=co+b?	-		1.50E+13	0.0	0.0
176	ch2(s)+oh=ch2o+	-h		3 00E+13	0.0	0.0
177	ch2(s)+ho2=ch2o)+0h		3 00E+13	0 0	0.0
178	ch2(s)+h2o2=ch2	lo+oh		3 00E+13	0 0	0.0
						0.0

179.	ch2(s)+h2o(+m)=c	:h3oh(+m)		4.82E+17	-1.2	1145.0
	Low pressure lim	it: 0.18800E+3	39 -0.63600E+01	0.50400E+	04	
	TROE centering:	0.60270E+0	00 0.20800E+03	0.39220E+	04 0.10	180E+05
	h2o	Enhanced by	1.625E+01			
	co	Ennanced by	1.8/5E+UU 2.7F0E-00			
	coz ch/	Enhanced by	3.750E+00 1.625F+01			
	c114	Enhanced by	1 6255+01			
	h2	Enhanced by	2 500E+00			
	ar	Enhanced by	7.500E-01			
180.	ch2(s)+ch2o=ch3+	hco	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.20E+12	0.0	0.0
181.	ch2(s)+hco=ch3+c	:0		1.80E+13	0.0	0.0
182.	ch2(s)+ch3=c2h4+	h		1.80E+13	0.0	0.0
183.	ch2(s)+c2h4=c3h5	-a+h		1.30E+14	0.0	0.0
184.	ch2(s)+c2h2=c3h3	+h		1.80E+14	0.0	0.0
185.	ch2(s)+co2=ch2o+	co		3.00E+12	0.0	0.0
186.	ch2(s)+ch2co=c2h	14+co		1.60E+14	0.0	0.0
187.	ch+oh=hco+h			3.00E+13	0.0	0.0
188.	ch+o=co+h			5.70E+13	0.0	0.0
189.	ch+h=c+h2			1.10E+14	0.0	0.0
101	cn+o2=nco+o			1.00E+13	0.0	0.0
102	cli+02=c0+0ll			2 40E+12	0.0	600.0
193	ch+h2o=ch2o+h			1 71E+13	0.0	-755 0
194	ch+ch4=c2h4+h			6 00E+13	0.0	0.0
195.	ch+ch3=c2h3+h			3.00E+13	0.0	0.0
196.	ch+ch2o=ch2co+h			9.46E+13	0.0	-515.0
197.	c+oh=co+h			5.00E+13	0.0	0.0
198.	c+o2=co+o			5.80E+13	0.0	576.0
199.	ch3o2+ho2=ch3o2h	1+02		2.90E+11	0.0	1552.0
200.	ch3o2+ch2o=hco+c	h3o2h		1.99E+12	0.0	11660.0
201.	ch3o2+ch4=ch3+ch	13o2h		1.81E+11	0.0	18480.0
202.	ch3o2+ch3oh=ch2c	h+ch3o2h		1.80E+12	0.0	13712.0
203.	ch3o2+ho2=ch2o+h	120+02		9.64E+08	0.0	3440.0
204.	ch3o2+ch3o2=ch2c	+ch3oh+o2		1.05E+09	0.0	-3589.0
205.	cn302+cn302=cn30	+CD30+02		4.46E+11 E 06E+12	0.0	1411 0
200.	ch3o2+ch3=ch3o+c	2		5.00E+12 6.02E+12	0.0	-1411.0
207.	ch3o2+b=ch3o+oh	12		9 60F+13	0.0	0.0
209.	ch3o2+h=ch4+o2			2.11E+10	1.0	16600.0
210.	ch3o2+h2o2=ch3o2	h+ho2		2.41E+12	0.0	9936.0
211.	ch3o2+o=ch3o+o2			3.61E+13	0.0	0.0
212.	ch3o2+ch3o=ch3o2	lh+ch2o		3.01E+11	0.0	0.0
213.	ch3o2+ch2oh=ch2c	+ch3o2h		1.21E+13	0.0	0.0
214.	ch3o2+h2=ch3o2h+	h		3.01E+13	0.0	26030.0
215.	ch3o2h(+m)=ch3o+	oh(+m)		4.05E+19	-1.2	44250.0
	Low pressure lim	it: 0.38910E+4	43 -0.75020E+01	0.46756E+	05	
210	TROE centering:	0.83750E+0	00 0.36562E+05	0.49880E+	03 0.99	900E+04
210.	ch3o2h+on=ch3o2+	-1120		1.14E+12 2.00E+12	0.0	-380.0
∠⊥/. 21 g	$ch_{30}^{2h+h=ch_{30}+h_{30}^{2h+h=ch_{30}+h_{30}^{2h+h=ch_{30}+h_{30}^{2h+h}}$	2		2.00E+13 7 30F+10	0.0	1860 0
219	$c_{2h6+02=c_{2h5+h02}}$			1 00E+13	0.0	51000 0
220	c2h6+h=c2h5+h2			5.25E+14	0.0	12800.0
221.	c2h6+o=c2h5+oh			9.99E+08	1.5	5803.0
222.	c2h6+oh=c2h5+h2c)		5.11E+06	2.1	854.0
223.	c2h6+ch3=c2h5+ch	14		5.50E-01	4.0	8290.0
224.	c2h6+ho2=c2h5+h2	02		2.61E+02	3.4	15900.0
225.	c2h6+ch3o2=c2h5+	ch3o2h		1.94E+01	3.6	17100.0
226.	c2h6+c2h5o2=c2h5	+c2h5o2h		8.60E+00	3.8	17200.0
227.	c2h6+ch3o=c2h5+c	sh3oh		3.02E+11	0.0	7000.0
228.	c2n6+nco=cn2o+c2	in5		4./UE+U4	2.7	18235.0
229.	CZHO+CH=CZHO+CHZ	a coefficients		1.10E+14 3.83F+10	0.0	-200.0 440 0
230	c2h6+ch2(s)=ch3+	c2h5		1 20E+14	0.0	0.0
231.	c2h6+ch2=ch3+c2h	15		6.50E+12	0.0	7911.0
232.	c2h5+o2=ch3ch2o+	0		1.10E+13	-0.2	27937.0
233.	c2h5+ho2=ch3ch2c	+oh		1.90E+12	0.0	-1200.0
234.	c2h5+ho2=c2h4+h2	02		1.79E+12	0.0	0.0
235.	c2h5+oh=c2h4+h2c)		2.41E+13	0.0	0.0

236.	c2h5+oh=>ch3+ch	20+h		2.41E+13	0.0	0.0
237.	c2h5+o=ch2o+ch3			4.24E+13	0.0	0.0
238	c2h5+o=ch3cho+h			5 30F+13	0 0	0.0
220.	a2hE+o=a2h4+oh			2 05F±12	0.0	0.0
239.	-22115+0=02114+011			1 050.14	0.0	0.0
240.	C2II5+II=C2II4+II2			1.256+14	0.0	8000.0
241.	c2h5+ch3=c2h4+c	h4		1.14E+12	0.0	0.0
242.	c2h5+c2h3=c2h4+	c2h4		6.46E+00	0.0	0.0
243.	c2h5+c2h5=c2h4+	c2h6		1.40E+12	0.0	0.0
244.	h+c2h5(+m)=c2h6	(+m)		5.21E+17	-1.0	1580.0
	Low pressure li	mit: 0.19900E-	+42 -0.70800E+01	0.66850E+0	4	
	TROE centering:	0.84220E-	+00 0.12500E+03	0.22190E+0	4 0.68	820E+04
	h2	Enhanced by	2.000E+00			
	h2o	Enhanced by	6.000E+00			
	CO	Enhanced by	1 500E+00			
	co2	Enhanced by	2 000E+00			
	cb2	Enhanced by	2 000E+00			
	albé	Enhanced by	2.000E+00			
245	C200	Ennanced by	3.000E+00	1 010.14	0 0	0.0
245.	C2115+11C0=C2116+C	0		1.216+14	0.0	0.0
246.	C2n5+02=C2n502			9.42E+36	-8.0	6098.0
247.	c2h5+o2=ch3cho+	oh		1.94E+12	-0.5	7765.0
248.	c2h5+o2=c2h4+ho	2		2.43E+17	-1.9	4430.0
	Declared duplic	ate reaction				
249.	c2h5+o2=c2h4o2h			8.84E+37	-9.3	10159.0
250.	c2h5+o2=c2h4+ho	2		1.02E+20	-3.0	8639.0
	Declared duplic	ate reaction				
251.	c2h5+o2=c2h4o1-	2+oh		1.93E+20	-3.1	8636.0
252.	c2h5o2=ch3cho+o	h		2.13E+41	-9.8	45919.0
253	c2h5o2=c2h4+ho2			6 46E+30	-6 1	35147 0
200.	Declared duplic	ate reaction		01102.50	0.1	55117.0
254	c2h5o2=c2h4o2h	ace reaction		4 558+51	-13 3	44125 0
251.	a2h5o2=a2h4+bo2			1.355-31	_10 1	44724 0
255.	Dealawed duplia	oto monation		1.1/5/12	-10.1	11/51.0
250	-obf-o -ob4-1 o	ate reaction	•	2 010.42	10 0	44600 0
250.	2211502=0211401-2	+011		3.UIE+42	-10.0	44609.0
257.	c2h4o2h=ch3cho+	on		3.10E+37	-10.1	28588.0
258.	c2h4o2h=c2h4+ho	2		5.65E+41	-10.9	26490.0
	Declared duplic	ate reaction				
259.	c2h4o2h=c2h4+ho	2		6.58E+41	-9.7	23023.0
	Declared duplic	ate reaction				
260.	c2h4o2h=c2h4o1-	2+oh		1.49E+41	-9.5	22589.0
261.	c2h4+h(+M)=c2h5	(+M)		1.37E+09	1.5	1355.0
	Low pressure lin	mit: 0.20260E-	+40 -0.66420E+01	0.57690E+0	4	
	TROE centering:	-0.56900E-	+00 0.29900E+03	-0.91470E+0	4 0.15	240E+03
	h2	Enhanced by	4.000E+00			
	h2o	Enhanced by	1.200E+01			
	CO	Enhanced by	3.500E+00			
	co2	Enhanced by	7.000E+00			
	02	Enhanced by	4 000E+00			
	22h2	Enhanced by	5 000E+00			
262	a2b4+b2-ab2+ab2	Emaneca by	5.0001.00	2 778+12	0 9	94710 0
202.	Deverge Arrhoni	va acofficient		1 000.14	0.0	22000 0
262	-2b4(.M) + b2.		· ·	1.005+14	0.0	06770 0
203.	C2II4(+M)<=>II2+C	ZIIZ(+M)	E2 0 02000E.01	8.00E+12	0.4	86770.0
	Low pressure III	MIC· 0.15800E-	F52 -0.93000E+01	0.9/800E+0	0 5	1000.04
	TRUE centering:	0./3450E-	FUU 0.18000E+03	0.10350E+0	4 0.54	1/0E+04
	nz	Enhanced by	2.000E+00			
	h2o	Enhanced by	6.000E+00			
	ch4	Enhanced by	2.000E+00			
	CO	Enhanced by	1.500E+00			
	co2	Enhanced by	2.000E+00			
	c2h6	Enhanced by	3.000E+00			
264.	h+c2h3(+M)<=>c2	h4(+M)		6.08E+12	0.3	280.0
	Low pressure li	mit: 0.14000E-	+31 -0.38600E+01	0.33200E+0	4	
	TROE centering:	0.78200E-	+00 0.20750E+03	0.26630E+0	4 0.60	950E+04
	h2	Enhanced by	2.000E+00			
	h2o	Enhanced by	6.000E+00			
	ch4	Enhanced by	2.000E+00			
	 CO	Enhanced by	1 500E+00			
	 co2	Enhanced by	2 0005+00			
	c2h6	Enhanced by	3 0005+00			
265	a2h4+oh-a2h2+b2	amanceu by	5.0005+00	1 20 - 01	1 2	-860 0
203.	C2114+011=C2113+II2	0		1.206-01	4.4	-000.0

266.	c2h4+o=ch3+hco			1.20E+08	1.4	530.0
267.	c2h4+o=ch2cho+h	L		2.00E+08	1.4	530.0
268.	c2h4+h=c2h3+h2			1.00E+14	0.0	15009.0
269.	c2h4+o2=c2h3+ho	2		4.00E+13	0.0	61500.0
270.	c2h4+ho2=c2h3+h	1202		4.80E+04	2.5	27622.0
271.	pc2n4on=c2n4+on	l b		6.19E+11 1.00E+12	0.0	23650.0
272.	pc2ll40ll=cll3cll0+	hotho?		1.00E+13	0.0	2500.0
273.	g2h2+bo2=>ch2+c	:110+1102		2 00E+12	0.0	2500.0
275	c2h3+oh=c2h2+h2	0+011		3.00E+13	0.0	0.0
276.	c2h3+h=c2h2+h2			3.00E+13	0.0	0.0
277.	c2h3+o=ch3+co			1.50E+13	0.0	0.0
278.	c2h3+o=ch2co+h			1.50E+13	0.0	0.0
279.	c2h3+ch=ch2+c2h	12		5.00E+13	0.0	0.0
280.	c2h3+ch3=c2h2+c	:h4		3.91E+11	0.0	0.0
281.	c2h3+c2h6=c2h4+	c2h5		1.50E+13	0.0	10000.0
282.	c2h3+c2h=c2h2+c	:2h2		9.64E+11	0.0	0.0
283.	c2h3+hco=c2h4+c	0		9.03E+13	0.0	0.0
284.	c2h3+ch2o=c2h4+	hco		5.42E+03	2.8	5862.0
285.	c2h3+c2h3=c2h2+	c2h4		1.08E+13	0.0	0.0
286.	c2n2+o2=ncco+on	1		2.00E+08	1.5	30100.0
287.	c2n2+o2=c2n+no2	ch		1.21E+13	0.0	74520.0
200.	c2h2+ob=c2h+b2c	.011		2 63E+05	2 1	17060 0
200.	c2h2+oh=ch3+co	,		4 84E-04	4 0	-2000 0
291.	c2h2+oh=ch2co+h	1		2.19E-04	4.5	-1000.0
292.	c2h2+oh=hccoh+h	L		5.06E+05	2.3	13500.0
293.	c2h2+o=ch2+co			1.98E+04	2.6	656.0
294.	c2h2+o=hcco+h			4.62E+04	2.6	656.0
295.	c2h2+o=c2h+oh			4.60E+19	-1.4	28950.0
296.	c2h2+ch3=c2h+ch	14		1.80E+11	0.0	17290.0
297.	c2h2+h(+m)<=>c2	h3(+m)		1.71E+10	1.3	2709.0
	TROE centering: h2 h2o co co2 ch4	0.78800E- Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by	00 -0.10200E+05 2.000E+00 6.000E+00 1.500E+00 2.000E+00 2.000E+00 2.000E+00	0.10000E-29		
	c2h6	Enhanced by	3.000E+00	0.007.14	0 5	
298.	c2h2(+M)=h2cc(+	·m)	16 0 640000.00	8.00E+14	-0.5	50750.0
	Low pressure 11	mit: 0.24500E-	2 000F+00	0.49/008+05		
	h2o	Enhanced by	5 000E+00			
	ch4	Enhanced by	2 000E+00			
	co	Enhanced by	1.500E+00			
	co2	Enhanced by	2.000E+00			
	c2h6	Enhanced by	3.000E+00			
	c2h2	Enhanced by	2.500E+00			
	c2h4	Enhanced by	2.500E+00			
299.	h2cc+h=c2h2+h			1.00E+14	0.0	0.0
300.	h2cc+oh=ch2co+h	L		2.00E+13	0.0	0.0
301.	h2cc+o2=hco+hco)		1.00E+13	0.0	0.0
302.	c2h3+h=h2cc+h2			3.00E+13	0.0	0.0
303.	CZn4+CnZ(S)=nZC	C+CD4			11 11	0.0
504.	$h^{2}aa + a^{2}h^{2}(+m) = a$	(h)(+m)		3.00E+13	2 1	-2400 0
	h2cc+c2h2(+m)=c	:4h4(+m) mit: 0 14000F	-61 -0 125998+02	3.50E+05 0.74170E+04	2.1	-2400.0
	h2cc+c2h2(+m)=c Low pressure li TROE centering:	:4h4(+m) .mit: 0.14000E+ 0.98000E+	-61 -0.12599E+02	3.50E+05 0.74170E+04 0.58000E+03	2.1	-2400.0
	h2cc+c2h2(+m)=c Low pressure li TROE centering: h2	24h4(+m) mit: 0.14000E 0.98000E Enhanced by	-61 -0.12599E+02 -00 0.56000E+02 2.000E+00	3.50E+13 3.50E+05 0.74170E+04 0.58000E+03	2.1 0.416	-2400.0 40E+04
	h2cc+c2h2(+m)=c Low pressure li TROE centering: h2 h2o	e4h4(+m) mit: 0.14000E- 0.98000E- Enhanced by Enhanced by	-61 -0.12599E+02 -00 0.56000E+02 2.000E+00 6.000E+00	3.50E+05 0.74170E+04 0.58000E+03	0.416	-2400.0 40E+04
	h2cc+c2h2(+m)=c Low pressure li TROE centering: h2 h2o ch4	<pre>:4h4(+m) mit: 0.14000E-</pre>	-61 -0.12599E+02 -00 0.56000E+02 2.000E+00 6.000E+00 2.000E+00	3.50E+13 3.50E+05 0.74170E+04 0.58000E+03	0.416	-2400.0 40E+04
	h2cc+c2h2(+m)=c Low pressure li TROE centering: h2 h2o ch4 co	<pre>wh4(+m) mit: 0.14000E-</pre>	61 -0.12599E+02 00 0.56000E+02 2.000E+00 6.000E+00 2.000E+00 1.500E+00	3.50E+13 0.74170E+04 0.58000E+03	0.416	-2400.0 40E+04
	h2ccc2h2(+m)=c Low pressure li TROE centering: h2 ch4 co co2 co2	<pre>what + m) mit: 0.14000E-</pre>	-61 -0.12599E+02 -00 0.56000E+02 2.000E+00 2.000E+00 1.500E+00 2.000E+00 2.000E+00	3.50E+13 0.74170E+04 0.58000E+03	0.416	-2400.0 40E+04
	h2cc+c2h2(+m)=c Low pressure li TROE centering: h2 h20 ch4 co co2 c2h6 c0b2	Ath4(+m) mit: 0.14000E- 0.98000E- Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by	-61 -0.12599E+02 -00 0.56000E+02 2.000E+00 2.000E+00 1.500E+00 2.000E+00 3.000E+00 3.000E+00	3.50E+13 3.50E+05 0.74170E+04 0.58000E+03	0.416	-2400.0 40E+04
	h2cc+c2h2(+m)=c Low pressure li TROE centering: h2 h2 ch4 co co2 c2h6 c2h2 c2h4	<pre>kihit: 0.14000E- 0.98000E- Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by</pre>	-61 -0.12599E+02 -00 0.56000E+02 2.000E+00 6.000E+00 1.500E+00 2.000E+00 3.000E+00 3.000E+00 3.000E+00	3.50E+13 3.50E+05 0.74170E+04 0.58000E+03	0.416	-2400.0 40E+04
305	h2cc+c2h2(+m)=c Low pressure li TROE centering: h2 h2o ch4 co co2 c2h2 c2h2 c2h4 c4h6c2cc+c2h4	444(+m) mit: 0.14000E- 0.98000E- Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by	COL -0.12599E+02 COL -56000E+02 2.000E+00 2.000E+00 1.500E+00 2.000E+00 3.000E+00 3.000E+00 3.000E+00 3.000E+00	1.00E+13	0.416	-2400.0 40E+04
305. 306.	h2cc+c2h2(+m)=c Low pressure li TROE centering: h2 h2o ch4 co co2 c2h6 c2h2 c2h4 c4h6=h2cc+c2h4 c2h+b=c2h2+b	444(+m) mit: 0.14000E Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by	61 -0.12599E+02 00 0.56000E+02 2.000E+00 2.000E+00 1.500E+00 2.000E+00 3.000E+00 3.000E+00 3.000E+00	1.00E+13 4.90E+13	0.416	-2400.0 40E+04 85000.0 560.0
305. 306. 307.	h2cc+c2h2(+m)=c Low pressure li TROE centering: h2 ch4 co co2 c2h6 c2h2 c2h4 c2h4 c2h4c+b2cc+c2h4 c2h+b2=c2h2+h c2h+ba=c2h2+h	4444(+m) mit: 0.14000E- 0.98000E- Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by	<pre>61 -0.12599E+02 00 0.56000E+02 2.000E+00 6.000E+00 1.500E+00 2.000E+00 3.000E+00 3.000E+00 3.000E+00 3.000E+00</pre>	1.00E+13 4.90E+05 2.00E+13	0.0 0.0 0.0 0.0	-2400.0 40E+04 85000.0 560.0 0.0

308.	c2h+o=co+ch	1.00E+13	0.0	0.0
309.	c2h+o2=co+co+h	1.80E+13	0.0	0.0
310.	h+c2h(+m)=c2h2(+m)	1.00E+17	-1.0	0.0
	Low pressure limit: 0.37500E+34 -0.48000E+01	0.19000E+	04	
	TROE centering: 0.64640E+00 0.13200E+03	0.13150E+	04 0.55	5660E+04
	h2 Enhanced by 2.000E+00			
	h20 Enhanced by 6 000E+00			
	able Enhanced by 0.000E+00			
	Ellianced by 2.000E+00			
	co Ennanced by 1.500E+00			
	CO2 Ennanced by 2.000E+00			
	c2h6 Enhanced by 3.000E+00			
311.	c2h4o1-2=ch4+co	1.21E+13	0.0	57200.0
312.	c2h4o1-2+o2=c2h3o1-2+ho2	4.00E+13	0.0	61500.0
313.	c2h4o1-2+h=c2h3+h2o	5.00E+09	0.0	5000.0
314.	c2h4o1-2+h=c2h4+oh	9.51E+10	0.0	5000.0
315.	c2h4o1-2+o=c2h3o1-2+oh	1.91E+12	0.0	5250.0
316.	c2h4o1-2+ch3=ch4+c2h3o1-2	1.07E+12	0.0	11830.0
317.	c2h4o1-2<=>ch3+hco	3.63E+13	0.0	57200.0
	Reverse Arrhenius coefficients:	1 01E+04	1 5	-2750 0
21.0	a2b4o1-2c=>ab3abo	7 /10+12		52800 0
510.	Peverse Arrhenius coefficients:	0 010+10	0.0	90900 0
21.0	-264-1 26	1 700.12	0.2	2010.0
519.	C2II401-2+0II<=>C2II301-2+II20	1.705+13	0.0	3010.0
	Reverse Arrhenius coefficients:	1.35E+10	0.7	24/40.0
320.	c2h4o1-2+h<=>c2h3o1-2+h2	8.00E+13	0.0	9680.0
	Reverse Arrhenius coefficients:	5.71E+09	0.8	15920.0
321.	c2h4o1-2+ho2<=>c2h3o1-2+h2o2	1.13E+13	0.0	30430.0
	Reverse Arrhenius coefficients:	4.67E+11	0.1	20670.0
322.	c2h4o1-2+ch3o=c2h3o1-2+ch3oh	1.20E+11	0.0	6750.0
	Reverse Arrhenius coefficients:	3.61E+09	-0.9	25480.0
323.	c2h4o1-2+ch3o2<=>c2h3o1-2+ch3o2h	1.13E+13	0.0	30430.0
	Reverse Arrhenius coefficients:	9.08E+12	-0.3	19070.0
324.	c2h4o1-2+c2h5o2<=>c2h3o1-2+c2h5o2h	1.13E+13	0.0	30430.0
	Reverse Arrhenius coefficients:	9.09E+12	-0.3	19080.0
325.	$c^{2}h^{5}o^{2}+h^{2}o^{2}=c^{2}h^{5}o^{2}h^{2}+h^{2}o^{2}$	2.41E+12	0.0	9936.0
326	c2h5o2+ch3=ch3ch2o+ch3o	8 17E+12	0 0	-906.0
327	$c^{2h5o2+bo2} = c^{2h5o2h+o2}$	1 75E+10	0.0	-3275 0
527.	Reverse Arrhenius coefficients:	3 76F+13	-0.8	33820 0
328	c2b5o2+cb2o=c2b5o2b+bco	1 995+12	0.0	11660 0
220.	$a^{2}h^{4}+a^{2}h^{5}a^{2}-a^{2}h^{2}+a^{2}h^{5}a^{2}h$	2 225+12	0.0	17100.0
220	chitechiologechictechiologi	1 010.11	0.0	10400.0
221	chi+czii50z-cii5+czii50zii	1 010.10	0.0	12710 0
222	ch301+c21502=ch201+c21502h	7.740.10	0.0	13/10.0
332.	CH302+C2H502=02+CH30+CH3CH20	7.74E+10	0.0	-61.0
333.	C2II502+C2II502=CII3CII20+CII3CII20+O2	7.74E+10	0.0	-61.0
334.	C2n5o2n+o=on+C2n5o2	2.00E+13	0.0	4/50.0
335.	c2h5o2h+oh=c2h5o2+h2o	2.00E+12	0.0	-370.0
336.	c2h5o2h+h=ch3cho+oh+h2	3.20E+13	0.0	7700.0
337.	c2h5o2h+ch3=ch3cho+oh+ch4	5.70E+11	0.0	8700.0
338.	c2h5o2h+c2h5=ch3cho+oh+c2h6	3.40E+11	0.0	11400.0
339.	c2h5o2h+oh=ch3cho+oh+h2o	5.90E+12	0.0	900.0
340.	c2h5o2h+hco=ch3cho+oh+ch2o	1.80E+12	0.0	16700.0
341.	c2h5o2h+ch3o=ch3cho+oh+ch3oh	6.30E+11	0.0	5500.0
342.	c2h5o2h+ho2=ch3cho+oh+h2o2	8.00E+11	0.0	16200.0
343.	c2h5o2h=ch3ch2o+oh	6.31E+14	0.0	42300.0
	Reverse Arrhenius coefficients:	5.66E+08	1.0	-1705.0
344.	ch2cho+o2=ch2co+ho2	1.58E+10	0.0	0.0
345	ch2cho+o2=ch2o+co+oh	2 51E+10	0 0	0 0
346	ch2cho+o2=oh+chocho	2.51E+11	0 0	14640 0
347	ch2cho+o=ch2o+hco	2 00E+13	0.0	4000 0
348	ch2cho+oh=ch2co+h2o	1 00F+12	0.0	2000 0
349	ch2cho+h=ch2co+h2	2 008+12	0.0	4000 0
250	ab2abo+b=ab2ao+b	5 000-10	0.0	1000.0
300.		5.UUE+12	0.0	0.0
351.	chizchothi=chi3thCO	9.UUE+13	0.0	0.0
352.		1.435+15	-0.1	4000LU.U
353.		2.93E+12	0.3	40330.0
354.	CH2CH0=CH3CO	1.UUE+13	0.0	4/100.0
355.	cn2+co(+M)<=>ch2co(+M)	8.10E+11	0.5	4510.0
	Low pressure limit: 0.26900E+34 -0.51100E+01	U.70950E+	04	0505.04
	TRUE centering: 0.59070E+00 0.27500E+03	U.12260E+	04 0.51	L85UE+04
	h2 Enhanced by 2.000E+00			

	h2o	Enhanced by	6.000E+00			
	ch4	Enhanced by	2.000E+00			
	co	Enhanced by	1.500E+00			
	co2	Enhanced by	2.000E+00			
256	c2h6	Enhanced by	3.000E+00	0.005.10	0 0	61500 0
356.	cn2co+o2=cn2o+c	02 . ao. ch		2.00E+13	0.0	61500.0
357.	ch2co+no2=20120	+00+011		1 76F+12	0.0	12/30.0
359	ch2co+o=bcco+ob			1 005+13	0.0	8000 0
360.	ch2co+oh=ch2oh+	co		6.93E+12	0.0	0.0
361.	ch2co+oh=hco+ch	20		2.04E+11	0.0	0.0
362.	ch2co+oh=hcco+h	20		1.02E+11	0.0	0.0
363.	ch2co+oh=ch3+co	2		3.10E+12	0.0	0.0
364.	ch2co+h=ch3+co			1.11E+07	2.0	2000.0
365.	ch2co+h=hcco+h2			1.80E+14	0.0	8600.0
366.	ch2co+ch3=c2h5+	co		2.00E+11	0.0	0.0
367.	ch2co+ch3=hcco+	ch4		7.50E+12	0.0	13000.0
368.	ch2co+ch2=c2h4+	co		1.00E+12	0.0	0.0
369.	ch2co+ch2=hcco+	ch3		3.60E+13	0.0	11000.0
370.	chocho(+m)=ch2o	+CO(+m)	17 0 000000.00	4.27E+12	0.0	50600.0
271	Low pressure II	mit. 0.89100E+	1/ 0.00000E+00	1 07E 14	, , ,	EE100 0
5/1.	Low progrume li	0+112(+111) mit: 0 25700F+	17 0 0000000+00	1.076+14	. 0.0	55100.0
372	chocho+oh=choco	+h20	1/ 0.000001+00	1 00E+13	00	0 0
373.	chocho+o=choco+	oh		7.24E+12	0.0	1970.0
374.	chocho+h=ch2o+h	co		1.00E+12	0.0	0.0
375.	chocho+ho2=choc	o+h2o2		1.70E+12	0.0	10700.0
376.	chocho+ch3=choc	o+ch4		1.74E+12	0.0	8440.0
377.	chocho+o2=hco+c	o+ho2		6.30E+13	0.0	30000.0
378.	hco+hco=chocho			1.00E+13	0.0	0.0
379.	choco=hco+co			2.00E+07	0.0	0.0
380.	choco+o2=co+co+	ho2		3.98E+12	0.0	30000.0
381.	c2h3o1-2=ch2co+	h		4.96E+13	0.0	14860.0
382.	c2h3o1-2=ch3+co			7.31E+12	0.0	14280.0
383.	c2h3ol-2=ch3co			8.51E+14	0.0	14000.0
384.	c2n301-2=cn2cn0			8./4E+31 1.00E+12	-6.9	14990.0
505.	IICCONTIN=CHZCOTH					0.0
296	ab+ao(+M) < = >baa	o(+M)		5 00E+13	0.0	0 0
386.	ch+co(+M)<=>hcc	0(+M) mit: 0 26900F+	29 -0 37400F+01	5.00E+13 0.19360E+04	0.0	0.0
386.	ch+co(+M)<=>hcc Low pressure lin TROE centering:	o(+M) mit: 0.26900E+ 0.57570E+	29 -0.37400E+01 00 0.23700E+03	5.00E+13 0.19360E+04 0.16520E+04	0.0	0.0 0690E+04
386.	ch+co(+M)<=>hcc Low pressure lin TROE centering: h2	o(+M) mit: 0.26900E+ 0.57570E+ Enhanced by	29 -0.37400E+01 00 0.23700E+03 2.000E+00	5.00E+13 0.19360E+04 0.16520E+04	0.0 1 1 0.50	0.0 0690E+04
386.	ch+co(+M)<=>hcc Low pressure lin TROE centering: h2 h2o	o(+M) mit: 0.26900E+ 0.57570E+ Enhanced by Enhanced by	29 -0.37400E+01 00 0.23700E+03 2.000E+00 6.000E+00	5.00E+13 0.19360E+04 0.16520E+04	0.0 1 1 0.50	0.0 0690E+04
386.	ch+co(+M)<=>hcc Low pressure li TROE centering: h2 h2o ch4	o(+M) mit: 0.26900E+ 0.57570E+ Enhanced by Enhanced by Enhanced by	29 -0.37400E+01 00 0.23700E+03 2.000E+00 6.000E+00 2.000E+00	5.00E+13 5.00E+13 0.19360E+04 0.16520E+04	0.0	0.0 0690E+04
386.	ch+co(+M)<=>hcc Low pressure lin TROE centering: h2 h2o ch4 co	o(+M) mit: 0.26900E+ 0.57570E+ Enhanced by Enhanced by Enhanced by	29 -0.37400E+01 00 0.23700E+03 2.000E+00 6.000E+00 2.000E+00 1.500E+00	5.00E+13 0.19360E+04 0.16520E+04	0.0 1 1 0.50	0.0
386.	ch+co(+M)<=>hcc Low pressure li TROE centering: h2 h2o ch4 co co2	o(+M) mit: 0.26900E+ 0.57570E+ Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by	29 -0.37400E+01 00 0.23700E+03 2.000E+00 6.000E+00 2.000E+00 1.500E+00 2.000E+00	5.00E+13 0.19360E+04 0.16520E+04	0.0 1 1 1 0.50	0.0
386.	<pre>ch+co(+M)<=>hcc Low pressure li TROE centering: h2 h2o ch4 co co2 c2h6</pre>	o(+M) mit: 0.26900E+ 0.57570E+ Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by	29 -0.37400E+01 00 0.23700E+03 2.000E+00 6.000E+00 1.500E+00 2.000E+00 3.000E+00	5.00E+13 0.19360E+04 0.16520E+04	0.0	0.0 0690E+04
386.	ch+co(+M)<=>hcc Low pressure lin TROE centering: h2 h2 ch4 co co2 co2 cc2h6 hcco+oh=hco+co+	o(+M) mit: 0.26900E+ 0.57570E+ Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by	29 -0.37400E+01 00 0.23700E+03 2.000E+00 6.000E+00 2.000E+00 1.500E+00 2.000E+00 3.000E+00	1.00E+13 0.19360E+04 0.16520E+04	0.0	0.0 0690E+04 0.0
386. 387. 388.	ch+co(+M)<=>hcc Low pressure li TROE centering: h2 h2o ch4 co co2 c2h6 hcco+oh=hco+co+ hcco+o=co+co+	o(+M) mit: 0.26900E+ 0.57570E+ Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by h	29 -0.37400E+01 00 0.23700E+03 2.000E+00 6.000E+00 2.000E+00 1.500E+00 2.000E+00 3.000E+00	1.00E+13 0.19360E+04 0.16520E+04	0.0 1 0.50 0.0 0.0	0.0 0690E+04 0.0 590.0
386. 387. 388. 389.	<pre>ch+co(+M)<=>hcc Low pressure lin TROE centering: h2 h2o ch4 co co2 c2h6 hcco+b=hco+co+t hcco+b=hco+co+t hcco+b=ch2(s)+cc</pre>	o(+M) mit: 0.26900E+ 0.57570E+ Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by h	29 -0.37400E+01 00 0.23700E+03 2.000E+00 6.000E+00 2.000E+00 1.500E+00 2.000E+00 3.000E+00	1.00E+13 0.19360E+0 0.16520E+04 1.00E+13 1.93E+14 1.50E+14	0.0 1 0.0 0.0 0.0 0.0 0.0	0.0 0690E+04 0.0 590.0 0.0
386. 387. 388. 389. 390.	<pre>ch+co(+M)<=>hcc Low pressure lit TROE centering: h2 h2 ch4 co co2 c2h6 hcco+oh=hcc+co+ hcco+b=hcc+co+ hcco+h=ch2(s)+c hcco+o2=co2+co+ hcco+o2=co2+co+</pre>	o(+M) mit: 0.26900E+ 0.57570E+ Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by h	29 -0.37400E+01 00 0.23700E+03 2.000E+00 6.000E+00 1.500E+00 2.000E+00 3.000E+00	1.00E+13 0.19360E+0- 0.16520E+0- 1.00E+13 1.93E+14 1.50E+14 1.46E+12	0.0 4 0.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0690E+04 0.0 590.0 0.0 2500.0 2000.0
386. 387. 388. 389. 390. 391.	ch+co(+M)<=>hcc Low pressure lit TROE centering: h2 h2o ch4 co co2 c2h6 hcco+oh=hco+co+ hcco+o=co+co+h hcco+b=cc2(s)+cc hcco+ch2=c2h+ch hcco+ch2=c2h+ch	o(+M) mit: 0.26900E+ 0.57570E+ Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by h	29 -0.37400E+01 00 0.23700E+03 2.000E+00 6.000E+00 2.000E+00 1.500E+00 2.000E+00 3.000E+00	1.00E+13 0.19360E+0 0.16520E+0 1.00E+13 1.93B+14 1.40E+12 1.40E+12 3.00E+13	0.0 4 0.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0690E+04 0.0 590.0 0.0 2500.0 2000.0 0 0
386. 387. 388. 389. 390. 391. 392.	<pre>ch+co(+M)<=>hcc Low pressure lin TROE centering: h2 h2o ch4 co co2 c2h6 hcco+oh=hco+co+1 hcco+b=cc+co+1 hcco+co+2=c2h3+c hcco+ch2=c2h3+c hcco+ch2=c2h3+c</pre>	o(+M) mit: 0.26900E+ 0.57570E+ Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by h o h 20 o	29 -0.37400E+01 00 0.23700E+03 2.000E+00 6.000E+00 2.000E+00 1.500E+00 2.000E+00 3.000E+00	1.00E+13 0.19360E+0 0.16520E+0 1.93E+14 1.50E+14 1.46E+12 1.00E+13 3.00E+13	0.0 4 0.50 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 0690E+04 590.0 0.0 2500.0 2000.0 0.0
386. 387. 388. 389. 390. 391. 392. 393. 394.	ch+co(+M)<=>hcc Low pressure lin TROE centering: h2 h2 ch4 co co2 c2h6 hcco+b=hcc+co+t hcco+b=ch2(s)+c hcco+c2=co2+co+t hcco+h=c22(s)+c hcco+c2=c2h3+c hcco+ch=c2h2+co hcco+ch=c2h2+co	o(+M) mit: 0.26900E+ 0.57570E+ Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Chanced by h o h co co	29 -0.37400E+01 00 0.23700E+03 2.000E+00 6.000E+00 1.500E+00 2.000E+00 3.000E+00	1.00E+13 0.19360E+0 0.16520E+0 0.16520E+0 1.93E+14 1.50E+14 1.46E+12 1.00E+13 3.00E+13 5.00E+13	0.0 4 0.50 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 0690E+04 590.0 2500.0 2000.0 0.0 0.0 0.0
386. 387. 388. 389. 390. 391. 392. 394. 394. 395.	ch+co(+M)<=>hcc Low pressure 1in TROE centering: h2 h2 ch4 co co2 c2h6 hcco+oh=hco+co+ hcco+o=co+co+ hcco+co=co+co+ hcco+ch2=c2h+ch hcco+ch2=c2h+ch hcco+ch2=c2h+ch hcco+ch2=c2h+ch hcco+ch2=c2h+ch	o(+M) mit: 0.26900E+ 0.57570E+ Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by h o h 20 o	29 -0.37400E+01 00 0.23700E+03 2.000E+00 6.000E+00 1.500E+00 2.000E+00 3.000E+00 3.000E+00	1.00E+13 0.19360E+0 0.16520E+0 1.50E+13 1.59E+14 1.46E+12 1.00E+13 3.00E+13 1.00E+13 2.95E+13	0.0 1 1 0.5 0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0690E+04 590.0 0.0 2500.0 2000.0 0.0 0.0 0.0 0.0 0.1113.0
386. 387. 388. 389. 390. 391. 392. 394. 394. 395. 396.	ch+co(+M)<=>hcc Low pressure lin TROE centering: h2 h2o ch4 co co2 c2h6 hcco+oh=hco+co+ hcco+o=co+co+h hcco+h=cd2(s)+c hcco+ch2=c2h+ch hcco+ch2=c2h+ch hcco+ch2=c2h+ch hcco+ch2=c2h+ch hcco+ch2=c2h2+ch hcco+ch2=c2h2+ch hcco+b=c2h2+co hcco+b=c2h2+ch hcco+b=c2h2+ch hcco+b=c2h2+ch hcco+b=c2h2+ch	o(+M) mit: 0.26900E+ 0.57570E+ Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Cohanced by Enhanced by Enhanced by Cohanced by Enhanced by Enhanced by Cohanced by Enhanced by Enhanced by Cohanced by Enhanced by	29 -0.37400E+01 00 0.23700E+03 2.000E+00 2.000E+00 1.500E+00 2.000E+00 3.000E+00 3.000E+00	1.00E+13 0.19360E+0 0.16520E+0 1.00E+13 1.93E+14 1.46E+12 1.00E+13 3.00E+13 3.00E+13 2.95E+13 2.95E+13	0.0 1 4 0.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0690E+04 0590.0 0.0 2500.0 2000.0 0.0 0.0 0.0 1113.0 0.0
386. 387. 388. 390. 391. 392. 393. 394. 395. 395. 397.	ch+co(+M)<=>hcc Low pressure lin TROE centering: h2 h2 ch4 co co2 c2h6 hcco+h=hco+co+t hcco+h=ch2(s)+c hcco+co=co+co+h hcco+ch2=c2h3+c hcco+ch2=c2h3+c hcco+ch2=c2h2+co hcco+ch2=c2h2+co hcco+ch2=c2h2+co hcco+ch2=c2h2+co hcco+ch2=c2h2+co hcco+ch2=c2h2+co hcco+ch2=c2h2+co hcco+ch2=c2h2+co hcco+ch2=c2h2+co hcco+ch2=c2h2+co hcco+ch3=c2h2+co	o(+M) mit: 0.26900E+ 0.57570E+ Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by h o h co co+co o	29 -0.37400E+01 00 0.23700E+03 2.000E+00 6.000E+00 1.500E+00 2.000E+00 3.000E+00 3.000E+00	1.00E+13 0.19360E+0 0.16520E+0 0.16520E+0 1.93E+14 1.50E+14 1.50E+14 1.46E+12 1.00E+13 3.00E+13 2.95E+13 2.05E+13 2.45E+16	0.0 1 0.0 1 0.0 0.0 0.0 0.0 0.0	0.0 0690E+04 0.0 590.0 0.0 2500.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
386. 387. 388. 390. 391. 392. 393. 394. 395. 396. 395. 396. 397. 398.	ch+co(+M)<=>hcc Low pressure 1in TROE centering: h2 h2 co4 co2 c2h6 hcco+o=co+co+h hcco+b=hco+co+ hcco+b=ch2(s)+c hcco+ch=c2h2+co hcco+h=c2h2+co hcco+ch=c2h2+co hcco+ch=c2h2+co hcco+ch=c2h4+cc ch3cho=ch3+hco ch2ch+h=ch3cho	o(+M) mit: 0.26900E+ 0.57570E+ Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Cahanced by	29 -0.37400E+01 00 0.23700E+03 2.000E+00 6.000E+00 1.500E+00 2.000E+00 3.000E+00 3.000E+00	1.00E+13 0.19360E+0 0.16520E+0 1.50E+14 1.50E+14 1.46E+12 1.00E+13 1.00E+13 2.00E+13 2.95E+13 2.00E+12 2.45E+16 2.00E+14	0.0 1 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 0690E+04 590.0 2500.0 2500.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
386. 387. 388. 390. 391. 392. 393. 394. 395. 395. 396. 397. 398. 399.	ch+co(+M)<=>hcc Low pressure 1in TROE centering: h2 h2o ch4 co co2 co2 cc2hc6 hcco+oh=hco+co+ hcco+o=co+co+ hcco+o=co2(s)+cc hcco+ch=cc2h+ch hcco+ch=c2h+ch hcco+ch=c2h+ch hcco+ch=c2h2+co hcco+ch=ch=c2h2+co hcco+ch=ch=ch=ch=ch=ch=ch=ch=ch=ch=ch=ch=ch=c	o(+M) mit: 0.26900E+ 0.57570E+ Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by coh co+co o o+h202	29 -0.37400E+01 00 0.23700E+03 2.000E+00 6.000E+00 2.000E+00 1.500E+00 2.000E+00 3.000E+00	1.00E+13 0.19360E+0 0.16520E+0 1.00E+13 1.93E+14 1.50E+14 1.46E+12 1.00E+13 3.00E+13 3.00E+13 2.95E+13 2.00E+12 2.45E+16 2.00E+14 3.10E+12	0.0 1 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0690E+04 0.0 590.0 0.0 2500.0 2000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
386. 387. 388. 390. 391. 392. 394. 395. 394. 395. 396. 397. 398. 399. 400.	ch+co(+M)<=>hcc Low pressure lit TROE centering: h2 h2o ch4 co2 c2h6 hcco+oh=hco+co+t hcco+o=co+co+t hcco+o=co+co+t hcco+o=c2h2+co hcco+ch=c2h3+cc hcco+ch=c2h2+co hcco+ch=c2h2+cc hcco+ch=c2h2+cc hcco+ch=c2h2+cc hcco+ch=c2h2+cc hcco+ch=ch3-cho ch3cho=ch3+hco ch3cho+oh=ch3co	o(+M) mit: 0.26900E+ 0.57570E+ Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by concological co+co o co+co o	29 -0.37400E+01 00 0.23700E+03 2.000E+00 6.000E+00 1.500E+00 2.000E+00 3.000E+00 3.000E+00	1.00E+13 0.19360E+0 0.16520E+0 0.16520E+0 1.93E+14 1.50E+14 1.40E+12 1.00E+13 3.00E+13 3.00E+13 2.00E+13 2.00E+13 2.00E+13 2.00E+12 2.45E+16 2.00E+12 2.65E+12 2.65E+12	0.0 4 0.5 4 0.5 4 0.5 4 0.5 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0690E+04 0590.0 0.0 2500.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
386. 387. 388. 390. 391. 392. 393. 394. 395. 395. 395. 395. 395. 395. 395. 395	ch+co(+M)<=>hcc Low pressure lit TROE centering: h2 h2 ch4 co co2 c2h6 hcco+h=hco+co+ hcco+h=ch2(s)+c hcco+h=ch2(s)+c hcco+h=c2h3+c hcco+ch2=c2h3+c hcco+ch2=c2h3+c hcco+ch2=c2h3+c hcco+ch3=c2h4+c ch3cho=ch3+cb ch3cho+h=ch3cho ch3cho+h=ch3co+	o(+M) mit: 0.26900E+ 0.57570E+ Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by coh co+ co+ co+ co+ co- co- co- co- co- co- co- co- co- co-	29 -0.37400E+01 00 0.23700E+03 2.000E+00 6.000E+00 1.500E+00 2.000E+00 3.000E+00 3.000E+00	1.00E+13 0.19360E+0. 0.16520E+0. 0.16520E+0. 1.93E+14 1.50E+14 1.46E+12 1.00E+13 3.00E+13 1.00E+13 2.95E+13 2.00E+14 3.10E+12 2.45E+16 2.65E+12 5.85E+12 5.85E+12	0.0 4 0.50 4 0.50 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 0690E+04 0690E+04 000 000 000 000 000 000 000
386. 387. 388. 389. 390. 391. 393. 393. 393. 394. 395. 397. 398. 397. 398. 400. 401. 402.	ch+co(+M)<=>hcc Low pressure lin TROE centering: h2 h2o ch4 co co2 c2h6 hcco+oh=hco+co+ hcco+o=co+co+ hcco+o=co+co+ hcco+ch=co2(s)+cc hcco+ch2=c2h+ch hcco+ch2=c2h+ch hcco+ch2=c2h+ch hcco+ch2=c2h+ch hcco+ch2=c2h+ch hcco+ch2=c2h+ch hcco+ch2=c2h+ch hcco+ch2=c2h+ch hcco+ch2=c2h+ch hcco+ch2=c2h+ch hcco+ch2=c2h+ch hcco+ch2=c2h+ch hcco+ch2=c2h+ch hcco+ch2=c2h+ch hcco+ch2=c2h+ch ch3cho+ch2=ch3cc ch3cho+oh=ch3co+ ch3cho+ch3=ch3c+ ch3cho+ch3=ch2c+ hcco+ch3=c2h2+ hcco+ch3=c2h3+ hcco+ch3=c3+ hcco+ch3	o(+M) mit: 0.26900E+ 0.57570E+ Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by cohanced by	29 -0.37400E+01 00 0.23700E+03 2.000E+00 6.000E+00 1.500E+00 2.000E+00 3.000E+00 3.000E+00	1.00E+13 0.19360E+0 0.16520E+0 1.6520E+0 1.6520E+0 1.6520E+0 1.50E+13 1.93E+14 1.46E+12 1.00E+13 1.00E+13 1.00E+13 2.00E+13 2.95E+13 2.00E+14 2.65E+12 2.65E+12 2.65E+12 2.65E+12 2.02E+14	0.0 4 0.50 4 0.50 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 0690E+04 0.0 590.0 0.0 2500.0 2500.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
386. 387. 388. 389. 391. 392. 394. 395. 394. 395. 394. 395. 394. 401. 402. 402. 403.	ch+co(+M)<=>hcc Low pressure lin TROE centering: h2 h2o ch4 co2 c2h6 hcco+oh=hco+co+ hcco+o=co+co+h hcco+o=co+co+h hcco+o=co+co+h hcco+ch=c2h3+c hcco+ch=c2h3+c hcco+ch=c2h2+co hcco+ch=c2h2+co hcco+ch=c2h2+co hcco+ch=c2h2+co hcco+ch=c3+hco ch3cho=ch3+hco ch3cho+ch3co+ ch3ch0+ch3co+ ch3ch0+ch3co+ ch3ch0+ch3co+ ch3ch0+ch3co+ ch3ch0+ ch3c	<pre>o(+M) mit: 0.26900E+ 0.57570E+ Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by chhanced by chhanced by chhanced by chhanced by chhanced by chanced by chanced</pre>	29 -0.37400E+01 00 0.23700E+03 2.000E+00 6.000E+00 1.500E+00 2.000E+00 3.000E+00 3.000E+00	1.00E+13 0.19360E+04 0.16520E+04 1.93E+14 1.50E+14 1.46E+12 1.00E+13 3.00E+13 3.00E+13 2.95E+13 2.00E+12 2.45E+16 2.00E+12 2.45E+16 2.00E+14 3.10E+12 2.65E+12 1.20E+14 3.00E+13 1.20E+14 3.00E+13 1.20E+14 3.00E+13 1.20E+14 3.00E+13 1.20E+14 3.00E+13 1.20E+14 1.20E+14 1.20E+14 1.20E+14 1.20E+14 1.20E+14 1.20E+14 1.20E+14 1.20E+14 1.20E+15 1.20E+16 1.20E+16 1.20E+17 1.20E+	0.0 4 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 0690E+04 0590.0 0.0 2500.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
386. 387. 388. 389. 391. 391. 393. 394. 395. 396. 397. 398. 399. 400. 401. 402. 403. 404. 405.	ch+co(+M)<=>hcc Low pressure lit TROE centering: h2 h2 ch4 co co2 c2h6 hcco+oh=hco+co+ hcco+h=ch2(s)+c hcco+co+co+ hcco+h=ch2(s)+c hcco+ch2=c2h3+c hcco+ch2=c2h3+c hcco+ch2=c2h3+c hcco+ch2=c2h3+c hcco+ch3=c2h4+c ch3cho+ch3=ch3c ch3cho+ch3=ch3c ch3cho+ch2=ch3co ch3cho+ch2=ch3co ch3cho+ch2=ch3co ch3cho+ch2=ch3co	o(+M) mit: 0.26900E+ 0.57570E+ Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by coh co+ co+ co+ co+ co+ co+ co+ co+ co+ co+	29 -0.37400E+01 00 0.23700E+03 2.000E+00 6.000E+00 1.500E+00 2.000E+00 3.000E+00 3.000E+00	1.00E+13 0.19360E+0. 0.16520E+0. 0.16520E+0. 1.50E+14 1.50E+14 1.40E+12 1.00E+13 3.00E+13 3.00E+13 2.95E+13 2.00E+14 3.100E+12 2.45E+16 2.65E+12 5.85E+12 1.20E+14 3.00E+13 1.70E+12	0.0 4 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 0690E+04 0690E+04 000 000 000 000 000 000 01113.0 0.0 011920.0 84128.0 0.0 11920.0 84128.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
386. 387. 388. 390. 391. 393. 394. 395. 394. 395. 397. 398. 397. 400. 401. 402. 403. 404. 403.	ch+co(+M)<=>hcc Low pressure 1in TROE centering: h2 h2 co2 c2h6 hcco+o=co+co+h hcco+co+co+co+ hcco+co+co+co+co+ hcco+ch=co+co+co+ hcco+ch=co+co+co+ hcco+ch=co+co+co+ hcco+ch=co+co+co+ hcco+ch=co+co+co+ hcco+ch=co+co+co+ hcco+ch=co+co+co+ hcco+ch=co+co+co+ hcco+ch=co+co+co+ hcco+co+co+co+co+ hcco+co+co+co+co+ hcco+co+co+co+co+ hcco+co+co+co+co+ hcco+co+co+co+co+ co+co+co+co+co+ hcco+co+co+co+co+co+ hcco+co+co+co+co+co+ hcco+co+co+co+co+co+ hcco+co+co+co+co+ hcco+co+co+co+co+ hcco+co+co+co+co+ hcco+co+co+co+co+ hcco+co+co+co+co+ hcco+co+co+co+co+co+ hcco+co+co+co+co+co+ hcco+co+co+co+co+co+co+ hcco+co+co+co+co+co+ hcco+co+co+co+co+co+ hcco+co+co+co+co+co+ hcco+co+co+co+co+co+ hcco+co+co+co+co+co+ hcco+co+co+co+co+co+ hcco+co+co+co+co+co+ hcco+co+co+co+co+co+ hcco+co+co+co+co+co+co+ hcco+co+co+co+co+co+co+ hcco+co+co+co+co+co+co+ hcco+co+co+co+co+co+co+co+ hcco+co+co+co+co+co+co+co+ hcco+co+co+co+co+co+co+ hcco+co+co+co+co+co+co+ hcco+co+co+co+co+co+co+co+ hcco+co+co+co+co+co+co+co+ hcco+co+co+co+co+co+co+co+co+co+ hcco+co+co+co+co+co+co+co+co+co+co+ hcco+co+co+co+co+co+co+co+co+co+co+co+co+	o(+M) mit: 0.26900E+ 0.57570E+ Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by coh co+ co+ co+ co co+ co co+ co co+ co co+ co co+ co co co+ co co co+ co co co+ co co co co+ co co co co co co co co co co co co co	29 -0.37400E+01 00 0.23700E+03 2.000E+00 6.000E+00 1.500E+00 2.000E+00 3.000E+00 3.000E+00	1.00E+13 0.19360E+0 0.16520E+0 0.16520E+0 1.50E+14 1.50E+14 1.46E+12 1.00E+13 1.00E+13 2.00E+13 2.00E+13 2.00E+12 2.45E+16 2.00E+14 3.10E+12 2.65E+12 2.65E+12 2.65E+12 1.20E+14 3.00E+13 1.70E+12 1.70E+12 1.70E+12		0.0 0690E+04 0690E+04 590.0 0.0 2500.0 2500.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
386. 387. 388. 390. 391. 392. 393. 394. 395. 394. 397. 398. 397. 398. 400. 401. 402. 403. 404. 404. 405. 407.	ch+co(+M)<=>hcc Low pressure lit TROE centering: h2 h2o ch4 co2 c2h6 hcco+oh=hco+co+t hcco+ol=co+co+t hcco+ol=co+co+t hcco+cl=c2h3+c hcco+cl=c2h3+c hcco+ch=c2h2+co hcco+ch=c2h2+co hcco+ch=c2h2+co hcco+ch=c2h3+co ch3ch0=c3+hco2 ch3ch0=ch3+ch3 ch3ch0+0=ch3co3 ch3ch0+0=ch3co3 ch3ch0+c2h3-ch3 ch3ch0+c3h3-ch3 ch3ch0+c3h3 ch3ch0+c3h3-ch3ch0+c3h3 ch3ch0+c	o(+M) mit: 0.26900E+ 0.57570E+ Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Call the second the second th	29 -0.37400E+01 00 0.23700E+03 2.000E+00 6.000E+00 1.500E+00 2.000E+00 3.000E+00 3.000E+00	1.00E+13 0.19360E+0 0.16520E+0 1.6520E+0 1.6520E+0 1.6520E+0 1.46E+12 1.00E+13 1.00E+13 1.00E+13 1.00E+13 2.00E+13 2.00E+13 2.00E+14 3.10E+12 2.65E+12 2.65E+12 1.20E+14 3.00E+13 1.70E+12 1.70E+12 1.70E+12 1.70E+12 3.64E+15		0.0 0690E+04 0690E+04 000 000 000 000 000 000 01132.0 000 01132.0 000 011920.0 -730.0 11920.0 -730.0 11920.0 039150.0 8440.0 8440.0 8440.0 14400.0
386. 387. 388. 389. 391. 392. 393. 394. 395. 395. 397. 395. 397. 400. 401. 401. 404. 405. 406. 407.	ch+co(+M)<=>hcc Low pressure lit TROE centering: h2 h2 och cc2 c2h6 hcco+oh=hcc+co+ hcco+h=ch2(s)+c hcco+o=co+co+h hcco+ch2=c2h3+c hcco+ch2=c2h3+c hcco+ch2=c2h3+c hcco+ch2=c2h3+co hcco+ch2=c2h4+c ch3cho=ch3+hco ch3cho+ch3=ch3+co ch3cho+ch3=ch3co ch3cho+ch3=ch3co ch3cho+ch3=ch3co ch3cho+c2h5=ch3 ch3cho+hc=3ch3co ch3cho+c2h5=ch3 ch3cho+hc=sh3co ch3cho+hc=sh3co ch3cho+c2h5=ch3 ch3co+m=ch3+co+ h2o	o(+M) mit: 0.26900E+ 0.57570E+ Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by context context context h2 context h2 context conte	29 -0.37400E+01 00 0.23700E+03 2.000E+00 6.000E+00 1.500E+00 2.000E+00 3.000E+00 3.000E+00	1.00E+13 0.19360E+0. 0.16520E+0. 0.16520E+0. 1.93E+14 1.50E+14 1.46E+12 1.00E+13 3.00E+13 3.00E+13 2.95E+13 2.00E+14 3.10E+12 2.65E+12 5.85E+12 5.85E+12 1.20E+14 3.00E+13 1.70E+12 7.80E+13 8.64E+15	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0690E+04 0.0 590.0 0.0 2500.0 0.0 0.0 0.0 1113.0 0.0 1113.0 0.0 1113.0 0.0 0.0 0.1 1120.0 11920.0 1920.0 39150.0 8440.0 8440.0 14400.0
386. 387. 388. 389. 390. 391. 394. 395. 394. 397. 398. 397. 398. 400. 401. 402. 400. 404. 405. 406. 407.	ch+co(+M)<=>hcc Low pressure 1in TROE centering: h2 h2 ch4 co co2 c2h6 hcco+oh=hco+co+ hcco+h=ch2(s)+c hcco+h=ch2(s)+c hcco+ch2=c2h3+cc hcco+ch2=c2h3+cc hcco+ch2=c2h3+cc hcco+ch2=c2h3+cc hcco+ch3=c2h4+c ch3cho=ch3+cb ch3cho+hch3=ch3c+ ch3cho+ch3=ch3c+ ch3cho+ch3=ch3c+ ch3cho+ch3=ch3c+ ch3cho+ch3=ch3c+ ch3cho+ch3=ch3c+ ch3cho+ch3=ch3c+ ch3cho+ch3=ch3c+ ch3cho+ch3=ch3c+ ch3cho+ch3=ch3c+ ch3co+m=ch3+co+ h3co+m=ch3+co+m= h	o(+M) mit: 0.26900E+ 0.57570E+ Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by Co+ co+ co+ co+ co+ co+ co- co- co- co- co- co- co- co- co- co-	29 -0.37400E+01 00 0.23700E+03 2.000E+00 2.000E+00 1.500E+00 2.000E+00 3.000E+00 3.000E+00	1.00E+13 0.19360E+0. 0.16520E+0. 0.16520E+0. 1.50E+14 1.50E+14 1.46E+12 1.00E+13 1.00E+13 2.00E+13 2.00E+13 2.00E+14 3.100E+12 2.45E+16 2.45E+12 2.65E+12 5.85E+12 1.20E+14 3.00E+13 1.70E+12 1.70E+12 1.70E+12 1.70E+13 8.64E+15	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0690E+04 0690E+04 000 000 000 000 000 000 000

	CO2 E	Inhanced by	3.750E+00				
	ch4 E	Inhanced by	1.625E+01				
	c2h6 E	Inhanced by	1.625E+01				
	h2 E	Inhanced by	2.500E+00				
408.	ch3co+h=ch2co+h2	-		2.00E+13	0.0	0.0	
	Reverse Arrhenius	coefficients		7.27E+09	0.0	83040.0	
409	ch3co+o=ch2co+oh			2 00E+13	0 0	0 0	
105.	Powerge Arrheniug	acofficienta		7 278+00	0.0	82040 0	
410	-h2		•	F 00D-12	0.0	03040.0	
410.	CII3C0+CII3=CII2C0+C			5.00E+13	0.0	0.0	
	Reverse Arrnenius	coefficients		/.2/E+09	0.0	83040.0	
411.	c2o+o2=co+co+o			2.00E+13	0.0	0.0	
412.	c2o+oh=co+co+h			2.00E+13	0.0	0.0	
413.	c2o+o=co+co			5.00E+13	0.0	0.0	
414.	c2o+h=ch+co			5.00E+13	0.0	0.0	
415.	c2+o2=co+co			5.00E+13	0.0	0.0	
416.	c2+oh=c2o+h			5.00E+13	0.0	0.0	
417.	c2+h2=c2h+h			4.00E+05	2.4	1000.0	
418.	c2h5oh(+M)=ch3+ch	12oh(+M)		5.94E+23	-1.7	91163.0	
	Low pressure limi	+: 0 28800E+	36 -0 18900E+02	0 10991E+0	б. – С.		
	TROE contering:	0 500002+0	0 0 20000000000	0 990002+0	2 0 16	00000+04	
	h2o	nhanged by	5 000E+00	0.09000E+0	5 0.40	00001-04	
	1120 E	Simanced by	3.000E+00				
	112 E	innanced by	2.000E+00				
	CO2 E	Inhanced by	3.000E+00				
	CO E	Inhanced by	2.000E+00				
419.	c2h5oh(+M)=c2h5+o	oh(+M)		1.25E+23	-1.5	96005.0	
	Low pressure limi	t: 0.32520E+8	36 -0.18810E+02	0.11493E+0	б		
	TROE centering:	0.50000E+0	0.30000E+03	0.90000E+0	3 0.50	0000E+04	
	h2o E	Inhanced by	5.000E+00				
	h2 E	Inhanced by	2.000E+00				
	co2 E	nhanced by	3.000E+00				
	CO E	nhanced by	2 000E+00				
420	$c^{2}h^{5}oh(+M) = c^{2}h^{4}+h$	12∩(+M)	210002.00	2 798+13	0 1	66136 0	
120.	Low programs limi	+· 0 25700E	0 1 0 0 E 0 E . 0 0	0.064520.0	c 0.1	00150.0	
	non sestening	0.25700E+0	54 -0.10050E+02	0.004526+0	5 7 0 70	00000.04	
	TRUE Centering.	0.70000E+0	JU 0.35000E+03	0.80000E+0	3 0.30	000E+04	
	n20 E	innanced by	5.000E+00				
421.	c2h5oh(+M)=ch3cho	p+h2(+M)		7.24E+11	0.1	91007.0	
	Low pressure limi	Lt: 0.44600E+8	38 -0.19420E+02	0.11559E+0	6		
	TROE centering:	0.9000E+0	00 0.90000E+03	0.11000E+0	4 0.35	5000E+04	
	h2o E	Inhanced by	5.000E+00				
422.	c2h5oh+o2=pc2h4oh	1+ho2		2.00E+13	0.0	52800.0	
423.	c2h5oh+o2=ch3choh	1+ho2		1.50E+13	0.0	50150.0	
424.	c2h5oh+oh=pc2h4oh	1+h2o		6.20E+03	2.7	-576.0	
425.	c2h5oh+oh=ch3choh	1+h2o		1.31E+05	2.4	-1457.0	
426	c2h5oh+oh=ch3ch2o	+h20		2 81E+02	3 0	-580 0	
427	$c^{2h5oh+h=nc^{2h4oh+}}$	-h2		1 885+03	3 2	7150 0	
127.	a2hEoh+h=ah2ahoh+	.h2		1 705+05	2 5	2420.0	
420.	a2hEab+h-ab2ab2a+	h2		E EEE 00	10 6	4450.0	
429.	015	-112		5.55E=25	10.0	-4459.0	
430.	C2II50II+0=pC2II40II+	-011		9.096+02	3.4	4658.0	
43⊥. 420	c∠ii50ii+0=Ch3Ch0h+	0.0		1 465.05	2 4		
432.		on		1.45E+05	2.4	876.0	
433.	c2h5oh+o=ch3ch2o+	-on -oh		1.45E+05 1.46E-03	2.4 4.7	1727.0	
	c2h5oh+o=ch3ch2o+ c2h5oh+ch3=pc2h4o	-on -oh bh+ch4		1.45E+05 1.46E-03 3.30E+02	2.4 4.7 3.3	1727.0 12291.0	
434.	c2h5oh+o=ch3ch2o+ c2h5oh+ch3=pc2h4o c2h5oh+ch3=ch3cho	-on -oh bh+ch4 bh+ch4		1.45E+05 1.46E-03 3.30E+02 1.99E+01	2.4 4.7 3.3 3.4	1727.0 12291.0 7635.0	
434. 435.	c2h5oh+o=ch3ch2o+ c2h5oh+ch3=pc2h4o c2h5oh+ch3=ch3cho c2h5oh+ch3=ch3ch2	-on -oh oh+ch4 oh+ch4 2o+ch4		1.45E+05 1.46E-03 3.30E+02 1.99E+01 2.04E+00	2.4 4.7 3.3 3.4 3.6	1727.0 12291.0 7635.0 7722.0	
434. 435. 436.	c2h5oh+o=ch3ch2o+ c2h5oh+ch3=pc2h4o c2h5oh+ch3=ch3cho c2h5oh+ch3=ch3ch2 ch3ch2o=ch3cho+h	-on -oh oh+ch4 oh+ch4 2o+ch4		1.45E+05 1.46E-03 3.30E+02 1.99E+01 2.04E+00 5.43E+15	2.4 4.7 3.3 3.4 3.6 -0.7	1727.0 12291.0 7635.0 7722.0 22230.0	
434. 435. 436. 437.	c2h5oh+o=ch3ch2o+ c2h5oh+ch3=pc2h4o c2h5oh+ch3=ch3cho c2h5oh+ch3=ch3cho ch3ch2o=ch3cho+h ch3ch2o=ch3+ch2o	-on -oh oh+ch4 oh+ch4 2o+ch4		1.45E+05 1.46E-03 3.30E+02 1.99E+01 2.04E+00 5.43E+15 1.32E+20	2.4 4.7 3.3 3.4 3.6 -0.7 -2.0	878.0 1727.0 12291.0 7635.0 7722.0 22230.0 20750.0	
434. 435. 436. 437. 438.	c2h5oh+o=ch3ch2o+ c2h5oh+ch3=pc2h4o c2h5oh+ch3=ch3ch0 c2h5oh+ch3=ch3ch2 ch3ch2o=ch3ch0+h ch3ch2o=ch3+ch2o ch3ch2o+o2=ch3cho	on oh oh+ch4 oh+ch4 20+ch4		1.45E+05 1.46E-03 3.30E+02 1.99E+01 2.04E+00 5.43E+15 1.32E+20 4.00E+10	2.4 4.7 3.3 3.4 3.6 -0.7 -2.0 0.0	876.0 1727.0 12291.0 7635.0 7722.0 22230.0 20750.0 1100.0	
434. 435. 436. 437. 438. 439	c2h5oh+o=ch3ch2o+ c2h5oh+ch3=pc2h4o c2h5oh+ch3=ch3cho c2h5oh+ch3=ch3cho ch3ch2o=ch3cho+h ch3ch2o=ch3+ch2o ch3ch2o+h=ch3cho+	-on -oh oh+ch4 oh+ch4 2o+ch4 +ho2 -h2		1.45E+05 1.46E-03 3.30E+02 1.99E+01 2.04E+00 5.43E+15 1.32E+20 4.00E+10 1.00E+13	2.4 4.7 3.3 3.4 3.6 -0.7 -2.0 0.0 0.0	876.0 1727.0 12291.0 7635.0 7722.0 22230.0 20750.0 1100.0 0.0	
434. 435. 436. 437. 438. 439. 440	c2h5oh+o=ch3ch2o+ c2h5oh+ch3=pc2h4o c2h5oh+ch3=ch3cho c2h5oh+ch3=ch3cho ch3ch2o=ch3chch2 ch3ch2o=ch3+ch2o ch3ch2o+ch3cho2+ ch3ch2o+b=ch3cho2+ ch3ch2o+b=ch3cho2+	-on -oh -oh -oh+-ch4 -oh+-ch4 -o+-ch4 -o+-h2 -oh2 -oh2 -oh2		1.45E+05 1.46E-03 3.30E+02 1.99E+01 2.04E+00 5.43E+15 1.32E+20 4.00E+13 1.00E+13	2.4 4.7 3.3 3.4 3.6 -0.7 -2.0 0.0 0.0 0.0	876.0 1727.0 12291.0 7635.0 7722.0 22230.0 20750.0 1100.0 0.0	
434. 435. 436. 437. 438. 439. 440. 441	c2h5oh+och3ech2o+ c2h5oh+ch3=cc2h4o c2h5oh+ch3=ch3ch0 c2h5oh+ch3=ch3ch2 ch3ch2o=ch3cho+h ch3ch2o=ch3+ch2o ch3ch2o+c2=ch3ch0 ch3ch2o+c2=ch3ch0 ch3ch2o+b=ch3ch0 ch3ch2o+b=ch3ch0	-on -oh -ohoh -ohoh		$\begin{array}{c} 1.45\pm05\\ 1.46\pm-03\\ 3.30\pm02\\ 1.99\pm01\\ 2.04\pm00\\ 5.43\pm15\\ 1.32\pm20\\ 4.00\pm10\\ 1.00\pm13\\ 1.00\pm13\\ 4.68\pm02\end{array}$	2.4 4.7 3.3 3.4 3.6 -0.7 -2.0 0.0 0.0 0.0 0.0 3.2	876.0 1727.0 12291.0 7635.0 7722.0 20750.0 1100.0 0.0 5380.0	
434. 435. 436. 437. 438. 439. 440. 441. 442	c2h5oh+o=ch3ch2o+ c2h5oh+ch3=c2h4o c2h5oh+ch3=ch3ch0 c2h5oh+ch3=ch3ch2 ch3ch2o=ch3cho+ ch3ch2o=ch3cho+ ch3ch2o=ch3cho+ ch3ch2o+o=ch3cho ch3ch2o+o=c2h5+c ch3ch2o+o=c2h5+c	-on -oh -oh -ohoh -ohoh		1.45E+05 1.46E-03 3.30E+02 1.99E+01 2.04E+00 5.43E+15 1.32E+20 4.00E+10 1.00E+13 1.00E+13 4.68E+02 1.00E+12	$\begin{array}{c} 2.4 \\ 4.7 \\ 3.3 \\ 3.4 \\ 3.6 \\ -0.7 \\ -2.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 3.2 \\ 0.0 \end{array}$	876.0 1727.0 12291.0 7635.0 7722.0 22230.0 20750.0 1100.0 0.0 5380.0 5564.0	
434. 435. 436. 437. 438. 439. 440. 441. 442.	c2h5oh+occh3ch2o+ c2h5oh+ch3=pc2h4o c2h5oh+ch3=ch3ch0 c2h5oh+ch3=ch3ch2 ch3ch2o=ch3ch0+h ch3ch2o=ch3+ch2o ch3ch2o+o2=ch3ch0 ch3ch2o+o=ch3ch0 ch3ch2o+co=c2h5+c ch3ch2o+co=c2h5+c ch3ch0oh+o2=ch3ch0	-on -oh -oh -oh -oh -oh -oh -oh -oh		$\begin{array}{c} 1.45E+05\\ 1.46E-03\\ 3.30E+02\\ 1.99E+01\\ 2.04E+00\\ 5.43E+15\\ 1.32E+20\\ 4.00E+10\\ 1.00E+13\\ 1.00E+13\\ 4.68E+02\\ 1.00E+13\\ 1.00E+13\\ \end{array}$	2.4 4.7 3.3 3.4 3.6 -0.7 -2.0 0.0 0.0 0.0 0.0 3.2 0.0 0.0	876.0 1727.0 12291.0 7635.0 7722.0 22230.0 20750.0 1100.0 0.0 5380.0 5564.0	
434. 435. 436. 437. 438. 439. 440. 441. 442. 443.	c2h5oh+o=ch3ch2o+ c2h5oh+ch3=cch4o c2h5oh+ch3=cch3ch c2h5oh+ch3=ch3ch2 ch3ch2o=ch3cho+h ch3ch2o=ch3cho+h ch3ch2o=ch3cho+h ch3ch2o+c2=ch3cho ch3ch2o+h=ch3cho ch3ch2o+c=ch3cho ch3ch0+c2=ch3cho ch3choh+o=ch3cho+	-on -oh -oh -ohoh -ohoh		1.45E+05 1.46E-03 3.30E+02 1.99E+01 2.04E+00 5.43E+15 1.32E+20 4.00E+10 1.00E+13 1.00E+13 1.00E+14 1.00E+14 2.00E+14	$\begin{array}{c} 2.4 \\ 4.7 \\ 3.3 \\ 3.4 \\ 3.6 \\ -0.7 \\ -2.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 3.2 \\ 0.0$	876.0 1727.0 12291.0 7635.0 7722.0 22230.0 20750.0 1100.0 0.0 5380.0 5564.0 0.0	
434. 435. 436. 437. 438. 439. 440. 441. 442. 443. 444.	c2h5oh+o=ch3ch2o+ c2h5oh+ch3=c2h4o c2h5oh+ch3=ch3ch0 c2h5oh+ch3=ch3ch2 ch3ch2o=ch3ch0+h ch3ch2o=ch3+ch2o ch3ch2o+c2=ch3ch0 ch3ch2o+c2=ch3ch0 ch3ch2o+o=c2h5+c ch3ch0+to=ch3ch0 ch3ch0+to=ch3ch0 ch3ch0+to=ch3ch0	-on -oh -oh -oh -oh -oh -oh -oh -oh		1.45E+05 1.46E-03 3.30E+02 1.99E+01 2.04E+00 5.43E+15 1.32E+20 4.00E+13 1.00E+13 1.00E+13 1.00E+13 1.00E+14 3.00E+14 3.00E+14	$\begin{array}{c} 2.4 \\ 4.7 \\ 3.3 \\ 3.4 \\ 3.6 \\ -0.7 \\ -2.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 3.2 \\ 0.0$	876.0 1727.0 12291.0 7635.0 7722.0 22230.0 20750.0 1100.0 0.0 5380.0 5564.0 0.0 0.0	
434. 435. 436. 437. 438. 439. 440. 441. 442. 442. 443. 444.	c2h5oh+o=ch3ch2o+ c2h5oh+oh3=cc2h4o c2h5oh+ch3=cb3ch0 c2h5oh+ch3=ch3ch2 ch3ch2o=ch3cho1 ch3ch2o=ch3cho1 ch3ch2o=ch3cho2 ch3ch2o+h=ch3cho2 ch3ch2o+b=ch3cho2 ch3ch2o+co=ch5ch0 ch3ch2o+co=ch5ch0 ch3ch0h+o=ch3cho2 ch3ch0h+o=ch3cho4 ch3ch0h+h=ch3ch02 ch3ch0h+h=ch3ch02	-on -oh -oh -ohoh -oh		1.45E+05 3.30E+02 1.99E+01 2.04E+00 5.43E+15 1.32E+20 4.00E+13 1.00E+13 1.00E+13 1.00E+13 1.00E+13 3.00E+13 3.00E+13	$\begin{array}{c} 2.4 \\ 4.7 \\ 3.3 \\ -0.7 \\ -2.0 \\ 0.0$	876.0 1727.0 12291.0 7635.0 7722.0 22230.0 20750.0 1100.0 0.0 0.0 5380.0 5564.0 0.0 0.0 0.0 0.0	
434. 435. 436. 437. 438. 439. 440. 441. 442. 443. 444. 445. 446.	c2h5oh+o=ch3ch2o+ c2h5oh+ch3=cch4o c2h5oh+ch3=cch4o c2h5oh+ch3=ch3ch2 ch3ch2o=ch3ch2h ch3ch2o=ch3ch2h ch3ch2o=ch3ch2h ch3ch2o+c2=ch3ch0 ch3ch2o+h=ch3ch0 ch3ch2o+h=ch3ch0 ch3ch2o+c2=ch3ch0 ch3ch0h+o2=ch3ch0 ch3ch0h+o=ch3ch2 ch3ch0h+h=ch3+ch2 ch3ch0h+h=ch3ch2	-on -oh -oh -oh -oh -oh -oh -oh -oh		1.45E+05 1.46E-03 3.30E+02 1.99E+01 2.04E+00 5.43E+15 1.32E+20 4.00E+13 1.00E+13 1.00E+13 1.00E+13 1.00E+14 3.00E+13 4.00E+13	$\begin{array}{c} 2.4 \\ 4.7 \\ 3.3 \\ 3.4 \\ -0.7 \\ -2.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 3.2 \\ 0.0$	876.0 1727.0 12291.0 7635.0 7722.0 22750.0 1100.0 0.0 5380.0 5380.0 5564.0 0.0 0.0 0.0 0.0	
434. 435. 436. 437. 438. 439. 440. 441. 442. 443. 444. 445. 446. 447.	c2h5oh+o=ch3ch2o+ c2h5oh+ch3=pc2h4o c2h5oh+ch3=ch3ch2 ch3ch2o=ch3ch2 ch3ch2o=ch3ch2 ch3ch2o=ch3ch2o ch3ch2o=ch3ch2o ch3ch2o+c2=ch3ch0 ch3ch2o+c0=c3h3ch0 ch3ch2o+co=c2h5+c ch3ch2o+o=ch3ch0 ch3ch2o+co=c2h5+c ch3ch0h+o=ch3ch0- ch3ch0h+o=ch3ch0- ch3ch0h+n=ch3+ch2 ch3ch0h+n=c3h3ch0 ch3ch0h+n=ch3ch0 ch3ch0h+n=ch3ch0	-on -oh -oh -oh -oh -oh -oh -oh -oh		$\begin{array}{c} 1.45\pm05\\ 1.46E-03\\ 3.30E+02\\ 1.99E+01\\ 2.04E+00\\ 5.43E+15\\ 1.32E+20\\ 4.00E+10\\ 1.00E+13\\ 1.00E+13\\ 1.00E+13\\ 1.00E+13\\ 3.00E+13\\ 3.00E+13\\ 3.00E+13\\ 5.00E+12 \end{array}$	$\begin{array}{c} 2.4\\ 4.7\\ 3.3\\ 3.6\\ -0.7\\ -2.0\\ 0.0\\ 0.0\\ 0.0\\ 3.2\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	876.0 1727.0 12291.0 7635.0 7722.0 22230.0 20750.0 1100.0 0.0 5380.0 5564.0 0.0 0.0 0.0 0.0 0.0 0.0	
434. 435. 436. 437. 438. 439. 440. 441. 442. 443. 444. 445. 444. 445. 446. 447. 448.	c2h50h+o=ch3ch2o+ c2h50h+ch3=cch3ch0 c2h50h+ch3=cch3ch0 ch3ch2o=ch3ch0+h ch3ch2o=ch3ch0+h ch3ch2o=ch3ch0+h ch3ch2o+c2=ch3ch0 ch3ch20+h=ch3ch0-h ch3ch20+h=ch3ch0-h ch3ch0h+o=ch3ch0-h ch3ch0h+o=ch3ch0-h ch3ch0h+h=c2h3ch0-h ch3ch0h+h=ch3ch0-h ch3ch0h+h0=ch3ch0-h ch3ch0h+h0=ch3ch0-h ch3ch0h+h0=ch3ch0-h ch3ch0h+h0=ch3ch0-h ch3ch0h+h0=ch3ch0-h	-on -oh bh+ch4 kh+ch4 2c+ch4 -h2 -h2 -h2 -h2 -h2 -h2 -h2 -h2		$\begin{array}{c} 1.45 \pm 05\\ 3.30 \pm 02\\ 3.30 \pm 02\\ 1.99 \pm 01\\ 2.04 \pm 100\\ 5.43 \pm 15\\ 1.32 \pm 20\\ 4.00 \pm 10\\ 1.00 \pm 13\\ 1.00 \pm 13\\ 1.00 \pm 13\\ 1.00 \pm 13\\ 3.00 \pm 13\\ 3.00 \pm 13\\ 3.00 \pm 13\\ 1.00 \pm 14\\ \end{array}$	$\begin{array}{c} 2.4\\ 4.7\\ 3.3\\ .4\\ 3.6\\ -0.7\\ -2.0\\ 0.0\\ 0.0\\ 3.2\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	876.0 1727.0 12291.0 7635.0 7722.0 22230.0 20750.0 1100.0 0.0 5380.0 5564.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
434. 435. 436. 437. 438. 439. 440. 441. 442. 4442. 4445. 4445. 4446. 4447. 448. 449.	c2h5oh+o=ch3ch2o+ c2h5oh+ch3=ch3ch2 c2h5oh+ch3=ch3ch2 ch3ch2o=ch3ch2 ch3ch2o=ch3ch2 ch3ch2o=ch3ch2 ch3ch2o+o=ch3ch2 ch3ch2o+o=ch3ch0 ch3ch2o+o=ch5ch0 ch3ch2o+o=c2h5+c ch3ch0h+o=ch3ch0 ch3ch0h+o=ch3ch0 ch3ch0h+o=ch3ch0 ch3ch0h+o=ch3ch0 ch3ch0h+h=ch3ch0 ch3ch0h+h=ch3ch0 ch3ch0h+h=ch3ch0 ch3ch0h+h=ch3ch0 ch3ch0h+h=ch3ch0	-on -oh -oh -oh -oh -oh -oh -oh -oh		$\begin{array}{c} 1.45E+05\\ 1.46E-03\\ 3.30E+02\\ 1.99E+01\\ 2.04E+00\\ 5.43E+15\\ 1.32E+20\\ 4.00E+13\\ 1.00E+13\\ 1.00E+13\\ 1.00E+13\\ 1.00E+13\\ 3.00E+13\\ 3.00E+13\\ 4.00E+13\\ 1.00E+14\\ 2.10E+14\\ 2.19E+12\\ \end{array}$	$\begin{array}{c} 2.4\\ 4.7\\ 3.3\\ 3.4\\ 3.6\\ -0.7\\ -2.0\\ 0.0\\ 0.0\\ 0.0\\ 3.2\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	$\begin{array}{c} 8 7 6 \\ 0 \\ 1727 \\ 0 \\ 12291 \\ 0 \\ 7635 \\ 0 \\ 22230 \\ 0 \\ 22230 \\ 0 \\ 22230 \\ 0 \\ 22230 \\ 0 \\ 0 \\ 22230 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	
434. 435. 436. 437. 438. 439. 440. 441. 442. 444. 444. 445. 445.	c2h50+t0=ch3ch20+ c2h50+t0h3=cp2h40 c2h50+tch3=ch3ch2 ch3ch20=ch3ch0+ th3ch20=ch3ch0+ th3ch20=ch3ch0+ th3ch20+ta=ch3ch0 th3ch20+ta=ch3ch0 th3ch20+ta=ch3ch0 th3ch20+ca=2h3ch0 th3ch0h+02=ch3ch0 th3ch0h+0=ch3ch0+ th3ch0h+h=ch3+tch2 ch3ch0h+h=ch3+tch2 th3ch0h+h=ch3ch0+ ch3ch0h+h=ch3ch0+ ch3ch0h+h=ch3ch0+ ch3ch0h+h=ch3ch0+ ch3ch0h+h=ch3ch0+ ch3ch0h+h=ch3+tch3 th2tch3h=ch3+tc3h	-on -oh -oh -oh -oh -oh -oh -oh -oh		1.45E+05 3.30E+02 1.99E+01 2.04E+00 5.43E+15 1.32E+20 4.00E+10 1.00E+13 1.00E+13 1.00E+13 1.00E+13 3.00E+13 3.00E+13 3.00E+13 5.00E+12 1.00E+14 2.19E+12	$\begin{array}{c} 2.4\\ 4.7\\ 3.3\\ .4\\ 3.6\\ -0.7\\ -2.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ $	876.0 1727.0 12291.0 7635.0 7722.0 22230.0 20750.0 1100.0 0.0 5380.0 5564.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	

	Low pressure limit: (0.68000E+62	-0.13420E+02	0.60000E+	04	
	TROE centering: (0.10000E+01	0.10000E+04	0.14340E+	04 0.53	290E+04
452.	c3h8+o2=nc3h7+ho2			4.00E+13	0.0	50872.0
453.	c3h8+o2=ic3h7+ho2			4.00E+13	0.0	47500.0
454.	c3h8+ho2=nc3h7+h2o2			4.76E+04	2.5	16494.0
455.	c3h8+ho2=ic3h7+h2o2			9.64E+03	2.6	13910.0
456.	c3h8+oh=nc3h7+h2o			3.16E+07	1.8	934.0
457.	c3h8+oh=ic3h7+h2o			7.08E+06	1.9	-159.0
458.	c3h8+o=nc3h7+oh			3.72E+06	2.4	5505.0
459.	c3h8+o=ic3h7+oh			5.50E+05	2.5	3140.0
460.	c3h8+h=nc3h7+h2			1.34E+06	2.5	6756.0
461.	C3n8+n=1C3n/+n2			1.01E+04	2.9	2931.0
462.	c3n8+cn3=nc3n/+cn4			3.00E+12	0.0	10110.0
403.	C3118+C113=1C311/+C114			8.0/E+11 2 16E+11	0.0	10110.0
404.	a2b9+a2b5=ia2b7+a2b6			5.10E+11	0.0	10400.0
465.	a2h9+a2h2-na2h7+a2h4			5.01E+10	2 2	10502 0
467	$c_{3h8+c_{2h3}=ic_{3h7+c_{2h4}}}$			1 00E+03	3 1	8829 0
468	$c_{3h8+ic_{3h7}=nc_{3h7}+c_{3h8}}$			1 00E+11	0.0	12900 0
469.	$c_{3h8+c_{3h5-a=nc_{3h7+c_{3h6}}}$	5		7.94E+11	0.0	20500.0
470.	c3h8+c3h5-a=ic3h7+c3h6	5		7.94E+11	0.0	16200.0
471.	c3h8+ch3o=nc3h7+ch3oh			3.18E+11	0.0	7050.0
472.	c3h8+ch3o=ic3h7+ch3oh			7.20E+10	0.0	4470.0
473.	nc3h7+o2=c3h6+ho2			3.70E+16	-1.6	3420.0
474.	ic3h7+o2=c3h6+ho2			6.70E+20	-3.0	2500.0
475.	nc3h7+h=c2h5+ch3			1.00E+14	0.0	0.0
476.	ic3h7+h=c2h5+ch3			5.00E+13	0.0	0.0
477.	ic3h7+h=c3h6+h2			3.61E+12	0.0	0.0
478.	ic3h7+o=ch3coch3+h			4.82E+13	0.0	0.0
479.	ic3h7+o=ch3cho+ch3			4.82E+13	0.0	0.0
480.	nc3h7+o=ch2o+c2h5			4.82E+13	0.0	0.0
481.	nc3h7+o=c2h5cho+h			4.82E+13	0.0	0.0
482.	ic3h7+oh=c3h6+h2o			2.41E+13	0.0	0.0
400	Reverse Arrhenius coel	ficients:		2.98E+12	0.6	83820.0
483.	cn302+nc3n/=cn30+nc3n	/0		1.90E+12	0.0	-1200.0
484. 405	$nc_{3n}/+no_{2=nc_{3n}/0+on}$	7.0		1.90E+12	0.0	-1200.0
405.	ig2b7+bo2=ig2b7o+ob	/0		1.90E+12	0.0	-1200.0
100.	ng2h7o=g2h5gho+h			1 705+12	0.0	20510 0
488	nc3h7o=c2h5+ch2o			5 89E+13	0.0	13890 0
489.	nc3h7o+o2=c2h5cho+ho2			8.43E+09	0.0	220.0
490.	ic3h7o=ch3coch3+h			1.58E+13	0.0	18310.0
491.	ic3h7o=ch3+ch3cho			9.12E+13	0.0	14360.0
492.	ic3h7o+o2=ch3coch3+ho2	2		8.43E+09	0.0	420.0
493.	c3h6+h=nc3h7			1.00E+00	1.0	0.0
	Rate coefficients at H	P=1.30E-03(a	ıtm)	7.99E+81	-23.6	22239.0
	Rate coefficients at H	P=4.00E−02(a	ıtm)	4.24E+68	-18.4	19665.0
	Rate coefficients at H	P=1.00E+00(a	tm)	1.04E+49	-11.5	15359.0
	Rate coefficients at H	P=1.00E+01(a	ıtm)	6.20E+41	-8.9	14637.0
	Rate coefficients at H	P=1.00E+02(a	ıtm)	*******	-5.9	8177.8
	Declared duplicate rea	action				
494.	c3h6+h=nc3h7			1.00E+00	1.0	0.0
	Rate coefficients at 1	P=1.30E-03(a	itm)	1.85E+26	-5.8	3865.8
	Rate coefficients at i	2=4.00E-02(a	(Cm)	2.82E+30	-6.5	54/0.8
	Rate coefficients at i	P=1.00E+00(a	tcm)	3./8E+28	-5.0	5025.1
	Rate coefficients at I	P=1.00E+01(a	ttm)	1.40E+25	-4.3	5247.8
	Rate coefficients at a	P=1.00E+02(a	(Cffi)	7.248+20	-4.2	6825.0
495	c3h6+b=c2h4+ch3	accion		1 00F+00	1 0	1 0
175.	Rate coefficients at I	⊃=1 30E-03(a	(tm)	1 54E+09	1 4	2542 0
	Rate coefficients at 4	P=4.00E-02(a	(tm)	7.88E+10	0.9	3599.6
	Rate coefficients at 1	P=1.00E+00(a	itm)	2.67E+12	0.5	5431.1
	Rate coefficients at H	P=1.00E+01(a	(tm)	9.25E+22	-2.6	12898.0
	Rate coefficients at H	P=1.00E+02(a	ıtm)	1.32E+23	-2.4	16500.0
	Declared duplicate rea	action				
496.	c3h6+h=c2h4+ch3			1.00E+00	1.0	1.0
	Rate coefficients at H	P=1.00E+01(a	ıtm)	1.24E+05	2.5	3679.1
	Rate coefficients at H	P=1.00E+02(a	utm)	2.51E+03	2.9	3980.9
	Declared duplicate rea	action				

	c3h6+h=1c3h7	1.00E+00	1.0	1.0
	Rate coefficients at P=1.30E-03(atm)	1.35E+44	-10.7	8196.4
	Rate coefficients at P=4.00E-02(atm)	2.11E+57	-14.2	15147.0
	Rate coefficients at P=1 00E+00(atm)	3 26E+61	-14 9	20161 0
	Rate coefficients at P=1.00E+00(atm)	5.20B.01	12 1	20101.0
	Rate coefficients at P=1.00E+01(atm)	5.30E+30	-13.1	20007.0
	Rate coefficients at P=1.00E+02(atm)	1.11E+50	-10.8	20202.0
	Declared duplicate reaction			
498.	c3h6+h=ic3h7	1.00E+00	1.0	1.0
	Rate coefficients at P=1.30E-03(atm)	2.17+130	-32.6	136140.0
	Rate coefficients at P=4.00E-02(atm)	2.25E+29	-5.8	4241.9
	Rate coefficients at P=1 00E+00(atm)	1 06E+30	-5.6	5613 4
	Pate coefficients at D=1 00E+01(atm)	6 11E+26	_4 4	5192 2
	Rate coefficients at F=1.00E+01(atm)	0.115+20	- 1. 1	4507.0
	Rate coefficients at P=1.00E+02(atm)	2./3E+23	-3.3	4597.0
	Declared duplicate reaction			
499.	c2h4+ch3=nc3h7	1.00E+00	1.0	1.0
	Rate coefficients at P=1.30E-03(atm)	8.67E+48	-12.5	18206.0
	Rate coefficients at P=4.00E-02(atm)	1.06E+49	-12.0	20001.0
	Rate coefficients at P=1.00E+00(atm)	7.67E+47	-11.2	22366.0
	Pate coefficients at P=1 00F+01(atm)	1 81F+45	-10 0	23769 0
	Rate coefficients at I=1.00E(01(atm))	2.040.40	10.0	23705.0
	Rate coefficients at P=1.00E+02(atm)	2.04E+40	-8.2	24214.0
	Declared duplicate reaction			
500.	c2h4+ch3=nc3h7	1.00E+00	1.0	1.0
	Rate coefficients at P=1.30E-03(atm)	1.12E+43	-11.3	13080.0
	Rate coefficients at P=4.00E-02(atm)	7.28E+39	-9.9	13164.0
	Rate coefficients at P=1.00E+00(atm)	2.60E+33	-7.5	12416.0
	Rate coefficients at P=1 00E+01(atm)	3.85E+27	-5 4	11455 0
	Pate coefficients at D=1.00E+02(atm)	1 66 2+21	-2.2	10241 0
	Nate coerrectents at P=1.005702(atm)	1.005721	-3.2	10241.0
	Declared duplicate reaction			
501.	c3h6+h=c3h5-a+h2	3.64E+05	2.5	4361.2
502.	c3h6+h=c3h5-t+h2	1.50E+02	3.4	8909.5
503.	c3h6+h=c3h5-s+h2	5.10E+02	3.2	12357.0
	Declared duplicate reaction			
504	$c_{3h6+h=c_{3h5-s+h2}}$	3 97E+02	33	12007 0
501.	Deglared dupligate reagtion	5.578102	5.5	12007.0
	Declared OUDITCALE FEACTION			
E 0 E		0 868.00	0.0	1 - 1 4 0 0
505.	c2h4+ch3=c2h3+ch4	9.76E+02	2.9	15148.0
505.	C2h4+ch3=c2h3+ch4 Declared duplicate reaction	9.76E+02	2.9	15148.0
505. 506.	<pre>c2h4+ch3=c2h3+ch4 Declared duplicate reaction c2h4+ch3=c2h3+ch4</pre>	9.76E+02 8.13E-05	2.9 4.4	15148.0 8835.8
505. 506.	c2h4+ch3=c2h3+ch4 Declared duplicate reaction c2h4+ch3=c2h3+ch4 Declared duplicate reaction	9.76E+02 8.13E-05	2.9 4.4	15148.0 8835.8
505. 506. 507.	<pre>c2h4+ch3=c2h3+ch4 Declared duplicate reaction c2h4+ch3=c2h3+ch4 Declared duplicate reaction c3h5-a+h(+m)<=>c3h6(+m)</pre>	9.76E+02 8.13E-05 1.00E+14	2.9 4.4 0.0	15148.0 8835.8 0.0
505. 506. 507.	<pre>colat+ch3=colat+ch4 Declared duplicate reaction colat+ch3=ch3+ch4 Declared duplicate reaction c3h5-a+h(+m)<=>c3h6(+m) Low pressure limit: 0.66500E+60 -0.12000E+02</pre>	9.76E+02 8.13E-05 1.00E+14 9.59678E	2.9 4.4 0.0	15148.0 8835.8 0.0
505. 506. 507.	<pre>c2h4+ch3=c2h3+ch4 Declared duplicate reaction c2h4+ch3=c2h3+ch4 Declared duplicate reaction c3h5-a+h(+m)<=>c3h6(+m) Low pressure limit: 0.66500E+60 -0.12000E+01 DPDF centering: 0.2000E=01 0.10970E+00</pre>	9.76E+02 8.13E-05 1.00E+14 0.59678E	2.9 4.4 0.0 +04	15148.0 8835.8 0.0 8600F+04
505. 506. 507.	<pre>c2h4+ch3=c2h3+ch4 Declared duplicate reaction c2h4+ch3=c2h3+ch4 Declared duplicate reaction c3h5-a+h(+m)<<>>c3h6+(m) Low pressure limit: 0.66500E+60 -0.12000E+02 TROE centering: 0.2000E-01 0.10970E+04</pre>	9.76E+02 8.13E-05 1.00E+14 0.59678E 0.10970E	2.9 4.4 0.0 +04 0.6	15148.0 8835.8 0.0 8600E+04
505. 506. 507.	<pre>collated applicate reaction collated duplicate reactio</pre>	9.76E+02 8.13E-05 1.00E+14 2.0.59678E 4.0.10970E	2.9 4.4 0.0 +04 +04 0.6	15148.0 8835.8 0.0 8600E+04
505. 506. 507.	c2lA+ch3=c2h3+ch4 Declared duplicate reaction c2h4+ch3=c2h3+ch4 Declared duplicate reaction c3h5-a+h(+m)<=>c3h6(+m) Low pressure limit: 0.66500E+60 -0.12000E+01 TROE centering: 0.2000E-01 0.10970E+04 h2 Enhanced by 2.000E+00 h2 Enhanced by 6.000E+00	9.76E+02 8.13E-05 1.00E+14 0.59678E 0.10970E	2.9 4.4 0.0 +04 +04 0.6	15148.0 8835.8 0.0 8600E+04
505. 506. 507.	$\label{eq:action} \begin{array}{llllllllllllllllllllllllllllllllllll$	9.76E+02 8.13E-05 1.00E+14 0.59678E- 0.10970E-	2.9 4.4 0.0 +04 +04 0.6	15148.0 8835.8 0.0 8600E+04
505. 506. 507.	22h4+ch3=c2h3+ch4 Declared duplicate reaction c2h4+ch3=c2h3+ch4 Declared duplicate reaction c3h5-a+h(+m) Low pressure limit: 0.66500E+60 TROE centering: 0.2000E-01 0.10970E+00 h2 Enhanced by 2.000E+00 ch4 Enhanced by 2.000E+00 co Enhanced by 1.500E+00	9.76E+02 8.13E-05 1.00E+14 0.59678E 0.10970E	2.9 4.4 0.0 +04 +04 0.6	15148.0 8835.8 0.0 8600E+04
505. 506. 507.	$\label{eq:action} \begin{array}{llllllllllllllllllllllllllllllllllll$	9.76E+02 8.13E-05 1.00E+14 2.0.59678E 0.10970E	2.9 4.4 0.0 +04 +04 0.6	15148.0 8835.8 0.0 8600E+04
505. 506. 507.	<pre>collated applicate reaction collated duplicate reactio</pre>	9.76E+02 8.13E-05 1.00E+14 2.0.59678E 4.0.10970E	2.9 4.4 0.0 +04 +04 0.6	15148.0 8835.8 0.0 8600E+04
505. 506. 507.	c2h4+ch3=c2h3+ch4 Declared duplicate reaction c2h4+ch3=c2h3+ch4 Declared duplicate reaction c3h5-a+h(+m) <c>c3h6(+m) Low pressure limit: 0.66500E+60 -0.12000E+02 TROE centering: 0.2000E-01 0.10970E+04 h20 Enhanced by 2.000E+00 ch4 Enhanced by 2.000E+00 co Enhanced by 1.500E+00 co Enhanced by 3.000E+00 c2h6 Enhanced by 3.000E+00 ar Enhanced by 7.000E+01</c>	9.76E+02 8.13E-05 1.00E+14 2.0.59678E 4.0.10970E	2.9 4.4 0.0 +04 +04 0.6	15148.0 8835.8 0.0
505. 506. 507.	$\label{eq:action} \begin{array}{llllllllllllllllllllllllllllllllllll$	9.76E+02 8.13E-05 1.00E+14 0.59678E 0.10970E	2.9 4.4 0.0 +04 +04 0.6	15148.0 8835.8 0.0 8600E+04
505. 506. 507.	c2h4+ch3=c2h3+ch4 Declared duplicate reaction c2h4+ch3=c2h3+ch4 Declared duplicate reaction c3h5-a+h(+m)< Low pressure limit: 0.66500E+60 -0.12000E+02 TROE centering: 0.2000E-01 0.10970E+04 h20 Enhanced by 2.000E+00 ch4 Enhanced by 2.000E+00 co Enhanced by 1.500E+00 co2 Enhanced by 2.000E+00 co2 Enhanced by 3.000E+00 ca16 Enhanced by 3.000E+00 ar Enhanced by 7.000E-01 c3h6<=>c3h5-s+h	9.76E+02 8.13E-05 1.00E+14 2.0.59678E 4.0.10970E	2.9 4.4 0.0 +04 0.6	15148.0 8835.8 0.0 8600E+04
505. 506. 507. 508. 508.	collate-th3=c2h3+ch4 Declared duplicate reaction c2h4+ch3=c2h3+ch4 Declared duplicate reaction c3h5-a+h(+m)<	9.76E+02 8.13E-05 1.00E+14 2.059678E 0.10970E 7.71E+69 5.62E+71	2.9 4.4 0.0 +04 +04 0.6	15148.0 8835.8 0.0 8600E+04 140000.0 139300.0
505. 506. 507. 508. 508. 509. 510.	c2h4+ch3=c2h3+ch4 Declared duplicate reaction c2h4+ch3=c2h3+ch4 Declared duplicate reaction c3h5-a+h(+m)<=>c3h6(+m) Low pressure limit: 0.66500E+60 -0.12000E+02 TROE centering: 0.2000E-01 0.10970E+04 h20 Enhanced by 6.000E+00 ch4 Enhanced by 2.000E+00 co Enhanced by 1.500E+00 co Enhanced by 1.500E+00 co2 Enhanced by 3.000E+00 c2h6 Enhanced by 3.000E+00 ar Enhanced by 7.000E-01 c3h6<=>c3h5-t+h c3h6<=h4+c2h2	9.76E+02 8.13E-05 1.00E+14 2.0.59678E 0.10970E 7.71E+69 5.62E+71 1.00E+12	2.9 4.4 0.0 +04 +04 0.6	15148.0 8835.8 0.0 8600E+04 140000.0 139300.0 69950.0
505. 506. 507. 508. 509. 510. 511.	c2h4+ch3=c2h3+ch4 Declared duplicate reaction c2h4+ch3=c2h3+ch4 Declared duplicate reaction c3h5-a+h(+m) Low pressure limit: 0.66500E+60 -0.12000E+02 TROE centering: 0.20000E-01 0.10970E+04 h2o Enhanced by 2.000E+00 ch4 Enhanced by 2.000E+00 co Enhanced by 1.500E+00 co Enhanced by 3.000E+00 co Enhanced by 3.000E+01 c3h6<<=>c3h5-s+h c3h6<	9.76E+02 8.13E-05 1.00E+14 2.059678E 0.10970E 7.71E+69 5.62E+71 1.00E+12 1.00E+14	2.9 4.4 0.0 +04 +04 0.6 -16.1 -16.6 0.0 0.0	15148.0 8835.8 0.0 8600E+04 140000.0 139300.0 69950.0 80000.0
505. 506. 507. 507. 508. 509. 510. 511. 512.	collated applicate reaction c2h4+ch3=c2h3+ch4 Declared duplicate reaction c3h5-a+h(+m)<=>c3h6(+m) Low pressure limit: 0.66500E+60 -0.12000E+02 TROE centering: 0.2000E-01 0.10970E+04 h2 Enhanced by 2.000E+00 h20 Enhanced by 2.000E+00 co Enhanced by 2.000E+00 co Enhanced by 1.500E+00 co Enhanced by 2.000E+00 co Enhanced by 3.000E+00 co Enhanced by 3.000E+00 coll Enhanced by 3.000E+00 ar Enhanced by 7.000E-01 c3h6<=>c3h5-s+h c3h6=c3h5-s+h c3h6=c3h5-a+ho2	9.76E+02 8.13E-05 1.00E+14 2.0.59678E 2.0.10970E 7.71E+69 5.62E+71 1.00E+12 1.00E+12 1.00E+14	2.9 4.4 0.0 +04 +04 0.6	15148.0 8835.8 0.0 8600E+04 140000.0 139300.0 69950.0 80000.0 39000.0
505. 506. 507. 507. 508. 509. 510. 511. 512. 513.	c2h4+ch3=c2h3+ch4 Declared duplicate reaction c2h4+ch3=c2h3+ch4 Declared duplicate reaction c3h5-a+h(+m) Low pressure limit: 0.66500E+60 -0.12000E+02 TROE centering: 0.2000E-01 0.10970E+04 h2o Enhanced by 2.000E+00 h2o Enhanced by 2.000E+00 co Enhanced by 2.000E+00 co Enhanced by 3.000E+00 co Enhanced by 3.000E+00 co Enhanced by 3.000E+00 co Enhanced by 3.000E+00 ca Enhanced by 7.000E-01 c3h6<=>c3h5-s+h c3h6<=>c3h5-s+h c3h6<=c3h4-c2h2	9.76E+02 8.13E-05 1.00E+14 2.0.59678E 0.10970E 4.0.10970E 5.62E+71 1.00E+12 1.00E+14 1.95E+12 1.40E+13	2.9 4.4 0.0 +04 -16.1 -16.6 0.0 0.0 0.0	15148.0 8835.8 0.0 8600E+04 140000.0 139300.0 69950.0 80000.0 39000.0 60200.0
505. 506. 507. 508. 509. 510. 511. 512. 513.	scherter cplanet between the second	9.76E+02 8.13E-05 1.00E+14 2.059678E 2.010970E 5.62E+71 1.00E+12 1.00E+12 1.95E+12 1.40E+13 7.00E+12	2.9 4.4 0.0 +04 +04 0.6 -16.1 -16.6 0.0 0.0 0.0 0.0	15148.0 8835.8 0.0 8600E+04 140000.0 139300.0 69950.0 80000.0 60200.0 60200.0
505. 506. 507. 507. 509. 510. 511. 512. 513. 514.	c2h4+ch3=c2h3+ch4 Declared duplicate reaction c2h4+ch3=c2h3+ch4 Declared duplicate reaction c3h5-a+h(+m)<=>c3h6(+m) Low pressure limit: 0.66500E+60 -0.12000E+02 TROE centering: 0.2000E-01 0.10970E+04 h2 Enhanced by 2.000E+00 ch4 Enhanced by 2.000E+00 co Enhanced by 2.000E+00 co Enhanced by 2.000E+00 co Enhanced by 3.000E+00 co Enhanced by 3.000E+00 co Enhanced by 3.000E+00 ar Enhanced by 3.000E+00 ar Enhanced by 7.000E-01 c3h6<=>c3h5-s+h c3h6<=>c3h5-s+h c3h6<=>c3h5-a+h02 c3h6+02=c3h5-a+h02 c3h6+02=c3h5-t+h02	9.76E+02 8.13E-05 1.00E+14 2.0.59678E 4.0.10970E 7.71E+69 5.62E+71 1.00E+12 1.00E+14 1.95E+12 1.40E+13 7.00E+12	2.9 4.4 0.0 +04 +04 0.6 -16.1 -16.6 0.0 0.0 0.0 0.0 0.0	15148.0 8835.8 0.0 8600E+04 140000.0 139300.0 80000.0 39000.0 60200.0 60200.0
505. 506. 507. 507. 508. 509. 510. 511. 512. 513. 514. 515.	Schwick Galage Schwic	9.76E+02 8.13E-05 1.00E+14 0.59678E 0.10970E 5.62E+71 1.00E+12 1.00E+14 1.95E+12 1.40E+13 7.00E+12 1.50E+11	2.9 4.4 0.0 +04 +04 0.6 -16.1 -16.6 0.0 0.0 0.0 0.0 0.0 0.0	15148.0 8835.8 0.0 8600E+04 140000.0 139300.0 69950.0 80000.0 39000.0 60200.0 1419.0
505. 506. 507. 508. 509. 510. 511. 512. 513. 514. 515.	<pre>c2h4+ch3=c2h3+ch4 Declared duplicate reaction c3h5-a+h(+m)<<>c3h6+(m) Low pressure limit: 0.66500E+60 -0.12000E+02 TROE centering: 0.2000E-01 0.10970E+04 h2 Enhanced by 2.000E+00 ch4 Enhanced by 2.000E+00 co Enhanced by 2.000E+00 co Enhanced by 2.000E+00 co2 Enhanced by 3.000E+00 co2 Enhanced by 3.000E+00 ca2 Enhanced by 3.000E+00 ca5h6=ch4+c2h2 c3h6<=c3h5-s+h c3h6<=c3h5-s+h c3h6<=c3h5-a+h02 c3h6+o2=c3h5-s+h02 c3h6+o2=c3h5-a+h02 c3h6+h02=c3h5-a+h202 c3h6+h02=c3h5-a+h202 c3h6+h02=c3h5-a+h202</pre>	9.76E+02 8.13E-05 1.00E+14 0.59678E 0.10970E 7.71E+69 5.62E+71 1.00E+12 1.00E+14 1.95E+12 1.40E+13 7.00E+12 1.50E+11 7.50E+09	2.9 4.4 0.0 +04 +04 0.6 -16.1 -16.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	15148.0 8835.8 0.0 8600E+04 140000.0 139300.0 69950.0 80000.0 39000.0 60200.0 14190.0 12570.0
505. 506. 507. 507. 508. 509. 510. 511. 512. 513. 514. 515. 516. 517.	<pre>c2lA+ch3=c2h3+ch4 Declared duplicate reaction c3h5-a+h(+m)<=>c3h6+(m) Low pressure limit: 0.66500E+60 -0.12000E+02 TROE centering: 0.20000E-01 0.10970E+04 h2 Enhanced by 2.000E+00 h20 Enhanced by 2.000E+00 ch4 Enhanced by 2.000E+00 co Enhanced by 1.500E+00 co Enhanced by 3.000E+00 co Enhanced by 3.000E+00 caf6 Enhanced by 3.000E+00 ar Enhanced by 3.000E+00 ar Enhanced by 7.000E-01 c3h6<=>c3h5-s+h c3h6<=>c3h5-s+h c3h6<=2c3h5-a+h02 c3h6+02=c3h5-a+h02 c3h6+h02=c3h5-s+h02 c3h6+</pre>	9.76E+02 8.13E-05 1.00E+14 0.59678E 0.10970E 6.62E+71 1.00E+12 1.00E+12 1.40E+13 7.00E+12 1.50E+11 7.50E+09 3.00E+09	2.9 4.4 0.0 +04 +04 0.6 -16.1 -16.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	15148.0 8835.8 0.0 8600E+04 140000.0 139300.0 69950.0 80000.0 39000.0 60200.0 60200.0 14190.0 12570.0 9330.0
505. 506. 507. 507. 509. 510. 511. 512. 513. 514. 515. 516. 517. 518.	<pre>c2h4+ch3=c2h3+ch4 Declared duplicate reaction c3h5-a+h(+m)<=>c3h6+m) Low pressure limit: 0.66500E+60 -0.12000E+02 TROE centering: 0.2000E-01 0.10970E+04 h20 Enhanced by 2.000E+00 ch4 Enhanced by 2.000E+00 co Enhanced by 2.000E+00 co Enhanced by 2.000E+00 co Enhanced by 3.000E+00 co Enhanced by 3.000E+00 ca Enhanced by 3.000E+00 ar Enhanced by 7.000E-01 c3h6<=>c3h5-s+h c3h6<=>c3h5-s+h c3h6<=2c3h5-s+ho2 c3h6+02=c3h5-s+ho2 c3h6+02=c3h5-s+ho2 c3h6+b2=c3h5-s+ho2 c3h6+h02=c3h5-s+ho2 c3h6+h02=c3h5-s+ho2 c3h6+h02=c3h5-s+ho2 c3h6+h02=c3h5-s+ho2 c3h6+h02=c3h5-s+ho2 c3h6+h02=c3h5-s+ho2 c3h6+h02=c3h5-s+ho2 c3h6+h02=c3h5-s+ho2 c3h6+h02=c3h5-s+ho2 c3h6+h02=c3h5-s+ho2 c3h6+h02=c3h5-s+ho2</pre>	9.76E+02 8.13E-05 1.00E+14 2.0.59678E 4.0.10970E 7.71E+69 5.62E+71 1.00E+14 1.95E+12 1.40E+13 7.00E+11 7.50E+09 3.00E+09 7.70E+05	2.9 4.4 0.0 +04 +04 0.6 -16.1 -16.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	15148.0 8835.8 0.0 8600E+04 140000.0 139300.0 69950.0 80000.0 60200.0 60200.0 60200.0 14190.0 12570.0 9930.0 622.0
505. 506. 507. 507. 509. 510. 511. 512. 513. 514. 515. 516. 517. 518. 519.	<pre>c2h4+ch3=c2h3+ch4 Declared duplicate reaction c3h5-a+h(+m)<=>c3h6+m Low pressure limit: 0.66500E+60 -0.12000E+02 TROE centering: 0.20000E-01 0.10970E+04 h2 Enhanced by 2.000E+00 h2o Enhanced by 2.000E+00 c4 Enhanced by 2.000E+00 c0 Enhanced by 2.000E+00 c2 Enhanced by 3.000E+00 c2 Enhanced by 3.000E+00 c3h6<=>c3h5-s+h c3h6<=>c3h5-s+h c3h6<=>c3h5-s+h c3h6<=>c3h5-s+h c3h6<=2c3h5-s+h c3h6<>2c3h5-s+h c3h6<>2c3h5-s+h c3h6<>2c3h5-s+h c3h6<>2c3h5-s+h c3h6<>2c3h5-s+h c3h6<>2c3h5-s+h c3h6<>2c3h5-s+h c3h6<>2c3h5-s+h c3h6+02=c3h5-s+ho2 c3h6+h02=c3h5-s+h202 c3h6+h02=c3h5-s+</pre>	9.76E+02 8.13E-05 1.00E+14 2.059678E 4.0.59678E 4.0.10970E 4.00E+12 1.00E+12 1.40E+13 7.00E+12 1.50E+11 7.50E+11 7.50E+09 3.00E+09 7.70E+05 4.52E+00	2.9 4.4 0.0 +04 +04 0.6 -16.1 -16.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	15148.0 8835.8 0.0 8600E+04 140000.0 139300.0 6950.0 80000.0 39000.0 60200.0 14190.0 12570.0 9930.0 622.0 -370.0
505. 506. 507. 507. 508. 509. 510. 511. 511. 511. 515. 516. 515. 516. 517.	<pre>c2h4+ch3=c2h3+ch4 Declared duplicate reaction c3h5-a+h(+m)</pre> c3h5-a+h(+m) c3h5-a+h(+m) constraints: 0.2000E+00 -0.12000E+02 TROE centering: 0.2000E+01 0.10970E+04 h20 Enhanced by 6.000E+00 ch4 Enhanced by 2.000E+00 co Enhanced by 1.500E+00 co Enhanced by 1.500E+00 co Enhanced by 2.000E+00 co Enhanced by 3.000E+00 co Enhanced by 3.000E+00 ca Enhanced by 3.000E+00 ar Enhanced by 7.000E-01 c3h6<=>c3h5-a+h c3h6=c3h5-a+h c3h6=c2ah5-a+ho2 c3h6+02=c3h5-a+ho2 c3h6+02=c3h5-a+ho2 c3h6+02=c3h5-a+ho2 c3h6+h02=c3h5-a+ho2 c3h6+h02=c3h5-a+ho2 c3h6+h02=c3h5-a+ho2 c3h6+h02=c3h5-a+ho2 c3h6+h02=c3h5-a+ho2 c3h6+h02=c3h5-a+ho2 c3h6+h02=c3h5-a+ho2 c3h6+h02=c3h5-a+ho2 c3h6+h02=c3h5-a+ho2 c3h6+h0=c3h5-a+ho2 c3h6+h0=c3h5-a+ho2 c3h6+h0=c3h5-a+ho2 c3h6+h0=c3h5-a+ho2	9.76E+02 8.13E-05 1.00E+14 2.059678E 4.059678E 4.010970E 5.62E+71 1.00E+12 1.00E+12 1.40E+13 7.00E+12 1.50E+11 7.50E+09 3.00E+09 3.00E+09 7.70E+05 4.52E+00 6.02E+01 7.70E+05 4.52E+00 6.02E+01 7.70E+05 4.52E+00 6.02E+01 7.70E+05 7.7	2.9 4.4 0.0 +04 +04 0.6 -16.1 -16.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	15148.0 8835.8 0.0 8600E+04 140000.0 139300.0 69950.0 80000.0 60200.0 60200.0 60200.0 14190.0 12570.0 9930.0 622.0 -370.0 0 -1572.0
505. 506. 507. 507. 509. 510. 511. 512. 513. 514. 515. 516. 517. 518. 519. 520. 520.	<pre>c2h4+ch3=c2h3+ch4 Declared duplicate reaction c3h5-a+h(+m)<=>>c3h6+m) Low pressure limit: 0.66500E+60 -0.12000E+02 TROE centering: 0.20000E-01 0.10970E+04 h2 Enhanced by 2.000E+00 h2o Enhanced by 2.000E+00 c0 Enhanced by 1.500E+00 c0 Enhanced by 2.000E+00 c2h6 Enhanced by 3.000E+00 c2h6 Enhanced by 3.000E+00 ar Enhanced by 3.000E+00 ar Enhanced by 7.000E-01 c3h6<=>c3h5-s+h c3h6<=>c3h5-s+h c3h6<=>c3h5-s+h c3h6<=>c3h5-s+h c3h6<=>c3h5-s+h c3h6<=>c3h5-s+h c3h6+02=c3h5-s+ho2 c3h6+02=c3h5-s+ho2 c3h6+02=c3h5-s+ho2 c3h6+h02=c3h5-s+h20 c3h6+h02=c3h5-s+h20 c3h6+h02=c3h5-s+h20 c3h6+h0=c3h5-s+h20 c3</pre>	9.76E+02 8.13E-05 1.00E+14 2.059678E 4.0.59678E 4.0.10970E 4.00E+12 1.00E+12 1.40E+13 7.00E+12 1.50E+01 3.00E+09 7.70E+05 4.52E+00 6.02E+01 4.62E+01 4.62E+02 4.62E+02 5.52E+00 5	2.9 4.4 0.0 +04 +04 0.6 -16.1 -16.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	15148.0 8835.8 0.0 8600E+04 140000.0 139300.0 69950.0 80000.0 39000.0 60200.0 14190.0 02200.0 12570.0 9930.0 622.0 -370.0 -1520.0
505. 506. 507. 507. 509. 510. 511. 512. 513. 515. 515. 517. 518. 519. 520. 521.	<pre>221A+ch3=22h3+ch4 Declared duplicate reaction c3h5-a+h(+m)<=>2h3+ch4 Declared duplicate reaction c3h5-a+h(+m)<=>>2h6(+m) Low pressure limit: 0.66500E+60 -0.12000E+02 TROE centering: 0.2000E-01 0.10970E+04 h20 Enhanced by 2.000E+00 ch4 Enhanced by 2.000E+00 co Enhanced by 2.000E+00 co Enhanced by 3.000E+00 co Enhanced by 3.000E+00 cah6<=>cah5-a+h c3h6<=>c3h5-a+h c3h6<=>c3h5-a+h c3h6<=>c3h5-a+h c3h6<=>c3h5-a+h c3h6<=>c3h5-a+h c3h6<=>c3h5-a+h c3h6<=>c3h5-a+h c3h6<=>c3h5-a+h c3h6+02=c3h5-a+h c3h6+02=c3h5-a+h c3h6+02=c3h5-a+h c3h6+02=c3h5-a+h c3h6+02=c3h5-a+h c3h6+02=c3h5-a+h c3h6+02=c3h5-a+h c3h6+0a=c3h5</pre>	9.76E+02 8.13E-05 1.00E+14 2.059678E 4.059678E 4.010970E 5.62E+71 1.00E+12 1.00E+12 1.40E+13 7.00E+12 1.50E+01 7.50E+09 3.00E+09 7.70E+05 4.52E+00 6.02E+01 4.69E+07	2.9 4.4 0.0 +04 +04 0.6 -16.1 -16.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	15148.0 8835.8 0.0 8600E+04 140000.0 139300.0 69950.0 80000.0 60200.0 60200.0 60200.0 14190.0 12570.0 9930.0 9930.0 622.0 -370.0 0 -1520.0 -520.0 -520.0 -520.0
505. 506. 507. 507. 507. 509. 510. 511. 512. 513. 514. 515. 516. 517. 518. 519. 520. 521. 522.	<pre>c2h4+ch3=c2h3+ch4 Declared duplicate reaction c3h5-a+h(+m)<=>c2h4+ch3=c2h3+ch4 Declared duplicate reaction c3h5-a+h(+m)<=>c2h6+ch4 Low pressure limit: 0.66500E+60 -0.12000E+02 TROE centering: 0.2000E-01 0.10970E+04 h2 Enhanced by 2.000E+00 ch4 Enhanced by 2.000E+00 co Enhanced by 1.500E+00 co Enhanced by 2.000E+00 co Enhanced by 3.000E+00 co Enhanced by 3.000E+00 caf6 Enhanced by 3.000E+00 ar Enhanced by 3.000E+00 ar Enhanced by 7.000E-01 c3h6<=>c3h5-s+h c3h6<=>c3h5-s+h c3h6<=>c3h5-s+h c3h6<=>c3h5-a+h02 c3h6+02=c3h5-s+h02 c3h6+02=c3h5-s+h02 c3h6+h02=c3h5-s+h202 c3h6+h02=c3h5-s+h202 c3h6+h02=c3h5-s+h202 c3h6+h0=c3h5-s+h20 c3h6+oh=c3h5-s+h20</pre>	9.76E+02 8.13E-05 1.00E+14 2.0.59678E 0.10970E 4.0.10970E 7.71E+69 5.62E+71 1.00E+12 1.00E+12 1.50E+11 7.50E+11 7.50E+09 7.70E+05 4.52E+00 6.02E+01 4.69E+07 5.00E+12	2.9 4.4 0.0 +04 +04 0.6 -16.1 -16.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	15148.0 8835.8 0.0 8600E+04 140000.0 139300.0 69950.0 80000.0 39000.0 06200.0 14190.0 0220.0 933.0 622.0 0-370.0 -1520.0 028.0 0597.1
505. 506. 507. 507. 507. 509. 510. 511. 512. 513. 514. 515. 516. 517. 518. 519. 5221. 5221. 5221.	<pre>c2h4+ch3=c2h3+ch4 Declared duplicate reaction c3h5-a+h(+m)<=>c3h6(+m) Low pressure limit: 0.66500E+60 -0.12000E+02 TROE centering: 0.20000E-01 0.10970E+04 h20 Enhanced by 2.000E+00 ch4 Enhanced by 2.000E+00 ch4 Enhanced by 2.000E+00 co Enhanced by 1.500E+00 co Enhanced by 3.000E+00 ca1 Enhanced by 3.000E+00 ar Enhanced by 3.000E+00 ar Enhanced by 3.000E+00 ar Enhanced by 7.000E-01 c3h6<=>c3h5-s+h c3h6<=>c3h5-s+h c3h6<=>c3h5-s+h c3h6<=2c3h5-s+h c3h6<=2c3h5-s+h c3h6+02=c3h5-s+h02 c3h6+02=c3h5-s+h02 c3h6+02=c3h5-s+h02 c3h6+02=c3h5-s+h02 c3h6+02=c3h5-s+h20 c3h6+02=c3h5-s+h20 c3h6+02=c3h5-s+h20 c3h6+02=c3h5-s+h20 c3h6+0=c3h5-s+h20</pre>	9.76E+02 8.13E-05 1.00E+14 0.59678E 0.10970E 0.10970E 1.00E+12 1.00E+12 1.00E+12 1.40E+13 7.00E+12 1.50E+11 7.50E+09 3.00E+12 1.50E+11 7.50E+09 0.02E+01 4.69E+07 5.00E+12 1.75E+11	2.9 4.4 0.0 +04 +04 0.6 -16.1 -16.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	15148.0 8835.8 0.0 8600E+04 140000.0 139300.0 69950.0 8000.0 60200.0 14190.0 12570.0 9930.0 622.0 -370.0 0 587.1 5884.0
505. 506. 507. 507. 509. 510. 512. 513. 514. 515. 514. 515. 514. 517. 512. 512. 512. 512. 512. 512. 522. 522	<pre>c2h4+ch3=c2h3+ch4 Declared duplicate reaction c3h5-a+h(+m)<=>c2h4+ch3=c2h3+ch4 Declared duplicate reaction c3h5-a+h(+m)<=>c2h6+ch4 Declared duplicate reaction c3h5-a+h(+m)<=>c3h6+ch4 Declared duplicate reaction c3h5-a+h(+m)<=>c3h6+ch4 Declared duplicate reaction c3h6=ch4 Enhanced by 2.000E+00 c3h6</pre> Enhanced by 2.000E+00 c3h6 Enhanced by 2.000E+00 c3h6 Enhanced by 2.000E+00 c2b6 Enhanced by 3.000E+00 c2b6 Enhanced by 3.000E+00 c3h6 c3h6 C3h6 Enhanced by 3.000E+00 c3h6 C3h6 C3h6+c3h5-s+h c3h6 C3h6+c3ec3h5-s+h c3h6+c3ec3h5-s+h2 c3h6+c3ec3h5-s+h2 c3h6+c3ec3h5-s+h2 c3h6+c3ec3h5-s+h2 c3h6+c3ec3h5-s+h2 c3h6+c3ec3h5-s+h2 c3h6+c3ec3h5-s+h2 c3h6+c3ec3h5-s+h2 c3h6+c3ec3h5-s+h2 c3h6+c3ec3h5-s+h2 c3h6+c3ec3h5-s+h2 c3h6+c3ec3h5-s+h2 c3h6+c3ec3h5-s+h2 c3h6+c3ec3h5-s+h2 c3h6+c3ec3h5-s+h2 c3h6+c3ec3h5-s+h2 c3h6+c3ec3h5-s+h2 c3h6+c3ec3h5-s+c0 c3h6+c3h5-s+c0 c3h5-s+c3h5-s+c0 c3h5-s+c3h5-s+c0 c3h5-s+c3h5-s+c0 c3h5-	9.76E+02 8.13E-05 1.00E+14 0.59678E 0.10970E 7.71E+69 5.62E+71 1.00E+12 1.60E+14 1.95E+12 1.50E+11 7.50E+01 6.02E+01 6.02E+01 6.02E+01 1.20E+12	2.9 4.4 0.0 +04 +04 0.6 -16.1 -16.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	15148.0 8835.8 0.0 8600E+04 140000.0 139300.0 69950.0 80000.0 60200.0 60200.0 60200.0 14190.0 12570.0 9930.0 622.0 -370.0 -1520.0 597.1 5884.0 8960.0
505. 506. 507. 507. 508. 509. 510. 512. 514. 515. 514. 515. 514. 517. 514. 517. 512. 514. 517. 512. 520. 522. 523. 522. 525.	<pre>c2h4+ch3=c2h3+ch4 Declared duplicate reaction c3h5-a+h(+m)<=>c2h4+ch3=c2h3+ch4 Declared duplicate reaction c3h5-a+h(+m)<=>c3h6(+m) Low pressure limit: 0.66500E+60 -0.12000E+02 TROE centering: 0.20000E-01 0.10970E+04 h20 Enhanced by 2.000E+00 ch4 Enhanced by 2.000E+00 ch4 Enhanced by 2.000E+00 co Enhanced by 1.500E+00 co Enhanced by 3.000E+00 ca16 Enhanced by 3.000E+00 ar Enhanced by 3.000E+00 ar Enhanced by 3.000E+00 ar Enhanced by 7.000E-01 c3h6<=>c3h5-s+h c3h6<=>c3h5-s+h c3h6<=>c3h5-s+h c3h6<=>c3h5-s+h c3h6<=>c3h5-s+ha2 c3h6+02=c3h5-s+ha2 c3h6+02=c3h5-s+ha2 c3h6+h02=c3h5-s+ha2 c3h6+h02=c3h5-s+ha2 c3h6+h02=c3h5-s+ha2 c3h6+h02=c3h5-s+ha2 c3h6+h02=c3h5-s+ha2 c3h6+h0=c3h5-s+ha2 c3h6+h0=c3h5-s+ha2 c3h6+h0=c3h5-s+ha2 c3h6+h0=c3h5-s+ha2 c3h6+h0=c3h5-s+ha2 c3h6+h0=c3h5-s+ha2 c3h6+h0=c3h5-s+ha2 c3h6+h0=c3h5-s+ha3 c</pre>	9.76E+02 8.13E-05 1.00E+14 0.59678E 0.10970E 7.71E+69 5.62E+71 1.00E+12 1.40E+13 7.00E+12 1.50E+11 7.50E+09 3.00E+09 7.52E+00 6.02E+01 4.69E+07 5.00E+12 1.75E+11 1.20E+11 6.02E+10	2.9 4.4 0.0 +04 +04 0.6 -16.1 -16.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	15148.0 8835.8 0.0 8600E+04 140000.0 139300.0 69950.0 80000.0 60200.0 14190.0 12570.0 622.0 -370.0 0 -1520.0 -597.1 5884.0 8960.0 8960.0 7633.0
505. 506. 507. 507. 507. 510. 511. 512. 513. 514. 515. 516. 513. 514. 515. 516. 517. 522. 523. 524. 524. 524. 526.	<pre>c2h4+ch3=c2h3+ch4 Declared duplicate reaction c3h5-a+h(+m)<<>c3h6+m) Low pressure limit: 0.66500E+60 -0.12000E+02 TROE centering: 0.2000E-01 0.10970E+04 h20 Enhanced by 2.000E+00 ch4 Enhanced by 2.000E+00 co Enhanced by 2.000E+00 co Enhanced by 2.000E+00 co Enhanced by 3.000E+00 co Enhanced by 3.000E+00 ca Enhanced by 3.000E+00 ar Enhanced by 7.000E-01 c3h6<=>c3h5-s+h c3h6<=c3h5-s+h c3h6<=c3h5-s+h c3h6<=c3h5-s+h c3h6<=c3h5-s+ho2 c3h6+02=c3h5-s+ho2 c3h6+02=c3h5-s+ho2 c3h6+02=c3h5-s+ho2 c3h6+b2=c3h5-s+ho2 c3h6+b2=c3h5-s+ho2 c3h6+b2=c3h5-s+ho2 c3h6+b2=c3h5-s+ho2 c3h6+b2=c3h5-s+ho2 c3h6+b2=c3h5-s+ho2 c3h6+b=c3h5-s+ho2 c3h6+b=c3h5-s+ho2 c3h6+b=c3h5-s+ho2 c3h6+b=c3h5-s+ho2 c3h6+b=c3h5-s+ho2 c3h6+b=c3h5-s+ho2 c3h6+b=c3h5-s+ho2 c3h6+b=c3h5-s+bo c3h6+b=c3h5-s+bo c3h6+b=c3h5-s+bo c3h6+b=c3h5-s+bo c3h6+b=c3h5-s+bo c3h6+b=c3h5-s+bo c3h6+b=c3h5-s+bo c3h6+b=c3h5-s+bo c3h6+b=c3h5-s+bo c3h6+b=c3h5-s+bo c3h6+b=c3h5-s+bo c3h6+b=c3h5-s+bo</pre>	9.76E+02 8.13E-05 1.00E+14 2.059678E 4.059678E 4.010970E 5.62E+71 1.00E+14 1.95E+12 1.40E+13 7.00E+12 1.50E+09 3.00E+09 3.00E+09 3.00E+02 5.452E+00 6.02E+01 6.02E+01 1.20E+11 6.02E+11 1.20E+11 6.02E+10 1.20E+11 1.	2.9 4.4 0.0 +04 +04 0.6 -16.1 -16.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	15148.0 8835.8 0.0 8600E+04 140000.0 139300.0 69950.0 80000.0 60200.0 60200.0 60200.0 14190.0 12570.0 9930.0 622.0 -370.0 -1520.0 597.1 5884.0 884.0 886.0 806.0 8
505. 506. 507. 507. 510. 510. 511. 512. 516. 516. 516. 516. 517. 518. 520. 522. 523. 524. 525. 525.	$c2h4+ch3=c2h3+ch4 \\ Declared duplicate reaction \\ c2h4+ch3=c2h3+ch4 \\ Declared duplicate reaction \\ c3h5-a+h(+m)<=>c3h6(+m) \\ Low pressure limit: 0.66500E+60 -0.12000E+02 \\ TROE centering: 0.20000E-01 0.10970E+04 \\ h2 Enhanced by 2.000E+00 \\ h2 Enhanced by 2.000E+00 \\ ch4 Enhanced by 2.000E+00 \\ co Enhanced by 1.500E+00 \\ co Enhanced by 3.000E+00 \\ co Enhanced by 3.000E+00 \\ cl6 Enhanced by 4.000E+00 \\ cl6 Enhanced by 5.000E+00 \\ cl6 Enha$	9.76E+02 8.13E-05 1.00E+14 2.059678E 4.059678E 4.010970E 4.00E+12 1.00E+12 1.40E+13 7.00E+12 1.50E+11 1.50E+01 3.00E+02 7.70E+05 4.52E+00 6.02E+01 4.69E+07 5.00E+12 1.75E+11 1.20E+11 1.2	2.9 4.4 0.0 +04 +04 0.6 -16.1 -16.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	15148.0 8835.8 0.0 8600E+04 140000.0 139300.0 69950.0 80000.0 39000.0 60200.0 14190.0 0220.0 622.0 -370.0 -1520.0 -628.0 0597.1 5884.0 8960.0 806.0 10110.0 10100.0 1000.0 100
505. 506. 507. 507. 507. 509. 510. 511. 512. 513. 514. 515. 514. 515. 516. 519. 520. 522. 522. 522. 522. 524. 525. 526. 526.	c2h4+ch3=c2h3+ch4 Declared duplicate reaction c3h5-a+h(+m) c>c3h5-a+h(+m) Low pressure limit: 0.66500E+60 -0.12000E+02 TROE centering: 0.2000E-01 0.10970E+04 h20 Enhanced by 2.000E+00 ch4 Enhanced by 2.000E+00 co Enhanced by 2.000E+00 co Enhanced by 2.000E+00 co Enhanced by 3.000E+00 co Enhanced by 3.000E+00 caf6 Enhanced by 3.000E+00 caf6 <td>9.76E+02 8.13E-05 1.00E+14 2.059678E 4.059678E 4.010970E 5.62E+71 1.00E+14 1.95E+12 1.40E+13 7.00E+12 1.50E+09 3.00E+07 5.62E+01 6.02E+01 1.60E+11 3.00E+11 3.00E+11 3.00E+11 3.0E+11</td> <td>2.9 4.4 0.0 +04 +04 0.6 -16.1 -16.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td> <td>15148.0 8835.8 0.0 8600E+04 140000.0 139300.0 69950.0 80000.0 60200.0 60200.0 60200.0 14190.0 12570.0 9930.0 622.0 -370.0 -1520.0 0 622.0 -370.0 -528.0 587.1 5884.0 8960.0 7633.0 8800.0 1010.0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>	9.76E+02 8.13E-05 1.00E+14 2.059678E 4.059678E 4.010970E 5.62E+71 1.00E+14 1.95E+12 1.40E+13 7.00E+12 1.50E+09 3.00E+07 5.62E+01 6.02E+01 1.60E+11 3.00E+11 3.00E+11 3.00E+11 3.0E+11	2.9 4.4 0.0 +04 +04 0.6 -16.1 -16.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	15148.0 8835.8 0.0 8600E+04 140000.0 139300.0 69950.0 80000.0 60200.0 60200.0 60200.0 14190.0 12570.0 9930.0 622.0 -370.0 -1520.0 0 622.0 -370.0 -528.0 587.1 5884.0 8960.0 7633.0 8800.0 1010.0 0 0 0 0 0 0 0 0 0 0 0 0 0

		01.6				
529.	c3h6+c2h5=c3h5-a	a+c2h6		1.00E+11	0.0	9800.0
530.	c3h6+c2h3=c4h6+c	ch3		7.20E+11	0.0	5008.0
531.	c3h5-s+ch2o=c3h6	5+hco		5.42E+03	2.8	5862.0
532.	c3h6+c2h3=c3h5-a	a+c2h4		2.21E+00	3.5	4682.0
533	c3h6+c2h3=c3h5=t	+c2h4		2 21 E+00	3 5	4682 0
E 2 4	a2h6 a2h2-a2h5			2.210,00	2.5	4602.0
554.	215-215-25115-2	5+C2114		2.216+00	3.5	4002.0
535.	C3N5-a+no2=C3N5C	o+on		4.50E+12	0.0	0.0
536.	c3h5-a+h=c3h4-a+	+h2		1.00E+13	0.0	0.0
537.	c3h5-a+oh=c3h4-a	a+h2o		6.00E+12	0.0	0.0
538.	c2h3+ch3=c3h5-a+	⊦h		1.50E+24	-2.8	18618.0
539	c3h5-a+ch3-c3h4-	a+ch4		1 00F+11	0 0	0 0
E40	a2hE at ah2-a4h6	h		2 000.12	0.0	0.0
540.	C3115-a+C112=C41164			3.006+13	0.0	0.0
541.	c3h5-a+c2h5=c3h4	i-a+c2h6		4.00E+11	0.0	0.0
542.	c3h5-a+c2h3=c3h4	1-a+c2h4		1.00E+12	0.0	0.0
543.	c3h5-a+o=c2h3chc	o+h		6.03E+13	0.0	0.0
544.	c3h5-a+hco=c3h6+	rco		6.03E+13	0.0	0.0
545	c3h5-a+ch2o-c3h6	s+hco		1 26F+08	1 9	18180 0
E16	alle al alle alle alle	- albl		4 900-10	1.0	10100.0
540.	C3115-a+C2115=C3116	0+C2112		4.026+12	0.0	0.0
54/.	C3N5-a+C3N5-a=C3	3n4-a+c3nb		8.435+10	0.0	-260.0
548.	c3h5-a+c2h5=c2h4	1+c3h6		4.00E+11	0.0	0.0
	Reverse Arrheniu	us coefficients	:	6.94E+16	-1.3	52800.0
549.	c3h5-s+o2=ch3chc	o+hco		4.34E+12	0.0	0.0
550	$c_{3h5-g+ho2=>ch2c}$	no+ch3+oh		4 50F+12	0 0	0 0
EE1	a2hE a1h-a2h4 pi	h2		4.000.12	0.0	0.0
551.	csiis-s+ii=csii4-p4	-112 		4.006+13	0.0	0.0
552.	C3h5-s+o=>ch2co+	+ch3		1.81E+14	0.0	0.0
553.	c3h5-s+ch3=c3h4-	-p+ch4		1.00E+11	0.0	0.0
554.	c3h5-s+c2h5=c3h4	1-p+c2h6		1.00E+11	0.0	0.0
555.	c3h5-s+c2h3=c3h4	1-p+c2h4		1.00E+11	0.0	0.0
556	c3h5-t+o2=>ch3cc	+ch2o		4 60E+16	-1 4	1010 0
550.	albe t holes able	no i ch2 i ch		4 505,10	1.1	1010.0
557.	C3115-C+1102=>C112C	20+0113+011		4.506+12	0.0	0.0
558.	c3h5-t+o=>ch2co+	⊦ch3		1.81E+14	0.0	0.0
559.	c3h5-t+hco=>co+c	c3h6		9.00E+13	0.0	0.0
560.	c3h5-t+oh=>ch2cc	o+ch3+h		5.00E+12	0.0	0.0
561.	c3h5-t+h=c3h4-p+	⊦h2		1.00E+13	0.0	0.0
562	c3h5-t+ch3-c3h4-	a+ch4		1 00F+11	0 0	0 0
502.	-225 + 2254			1.000.11	0.0	0.0
503.	C3115-L+C113=C3114-	-p+cn4		1.00E+11	0.0	0.0
564.	c3h5-t+c2h5=c3h4	l-a+c2h6		1.00E+11	0.0	0.0
565.	c3h5-t+c2h3=c3h4	1-a+c2h4		1.00E+11	0.0	0.0
566.	c3h5-t+o2=c3h4-a	a+ho2		1.89E+30	-5.6	15540.0
	Reverse Arrheniu	us coefficients	:	1.57E+31	-5.8	26610.0
567	c3h4-a+o2=c3h3+h	102		4 00E+13	0 0	61500 0
569	a2h4_a+ba2=a2h24			1 90 1 1 2	0 0	19000 0
500.	-2h4 - h-2 h2	n sho sh		I.00E+13	0.0	10000.0
509.	C3II4-a+IIO2=>CII2C	20+CIIZ+OII		5.008+11	0.0	19000.0
570.	c3h4-a+ho2=>c2h3	3cho+oh		5.00E+11	0.0	19000.0
571.	c3h4-a+ho2=>c2h2	2+ch2o+oh		5.00E+11	0.0	19000.0
572.	c3h4-a+oh=c3h3+h	120		2.15E+12	0.0	-200.0
573.	c3h4-a+oh=ch2co+	+ch3		1.00E+12	0.0	-393.0
574	c3h4-a+oh=hco+c3	h4		1.25E+11	0 0	-393 0
575	a2h4_a+oh=a2h5+c	20		1 995+11	0.0	-303.0
575.	C5114-a+011=C2115+C			1.005+11	0.0	-393.0
5/6.	c3n4-a+on=c2n3cr	10+n		3./5E+11	0.0	-393.0
577.	c3h4-a+o=c2h4+cc	2		1.12E-02	4.6	-4243.0
578.	c3h4-a+o=c2h3+hc	20		5.00E-04	4.6	-4243.0
579.	c3h4-a+o=ch2co+c	ch2		1.00E-03	4.6	-4243.0
580	c3h4-a+o=c2h2+ch	120		2 50E-03	4 6	-4243 0
E 0 1	a2h4 a+b-a2h2+b	200		1 00E 12	0.0	1500.0
501.	214 - 12 - 21 - 21 - 21 - 21 - 21 - 21 -			1.005+12	0.0	100.0
582.	C3n4-a+cn3=C3n3+	FCD4		3.00E+12	0.0	//00.0
583.	c3h4-a+c2h=c3h3+	+c2h2		1.00E+13	0.0	0.0
	Reverse Arrheniu	us coefficients	:	1.42E+16	-1.4	53820.0
584.	c3h4-a+c3h4-a=c2	2h4+c4h4		1.00E+15	0.0	48000.0
585.	c3h4-a+ho2=c2h4+	co+oh		1.00E+12	0.0	14000.0
	Reverse Arrhoniu	a coefficients		1 000+00	0 0	0.0
FOC	h - 2h2(- m) - 22 4	- (- m)	•	2.005+00	0.0	0.0
586.	11+C3D3(+m)=C3D4-	-a(+m)		3.UUE+13	0.0	0.0
	Low pressure lin	nıt: 0.14000E+3	3∠ -0.50000E+01	-0.60000E+	υ4	
	TROE centering:	0.50000E+0	0.2000E+04	0.10000E+	02	
	ch4	Enhanced by	2.000E+00			
	c2h6	Enhanced by	3.000E+00			
	co	Enhanced by	1.500E+00			
	co2	Enhanced by	2 000E+00			
	b2	Enhanced by	2 0005+00			

	h2o	Enhanced by	6.000E+00			
	ar	Enhanced by	7.000E-01			
587.	h+c3h3(+m)=c3h4	-p(+m)		3.00E+13	0.0	0.0
	Low pressure li	nit: 0.14000E+	32 -0.50000E+01	-0.60000E+04	1	
	TROE centering:	0.50000E+	00 0.20000E+04	0.10000E+02	2	
	ch4	Enhanced by	2.000E+00			
	C2N6	Enhanced by	3.000E+00			
	CO 202	Enhanced by	2 000E+00			
	602 h2	Enhanced by	2.000E+00			
	h2o	Enhanced by	6.000E+00			
	ar	Enhanced by	7.000E-01			
588.	c3h4-p=c2h+ch3	-		4.20E+16	0.0	100000.0
589.	c3h4-p+o2=c3h3+l	no2		2.50E+12	0.0	51000.0
590.	c3h4-p+o2=>hcco	+oh+ch2		4.00E+07	1.5	30100.0
591.	c3h4-p+ho2=>c2h	4+co+oh		6.09E+09	0.0	7948.0
592.	c3h4-p+ho2=ch3c	o+ch2o		3.00E+12	0.0	16000.0
593.	c3h4-p+ho2=ch3cl	no+hco		4.50E+12	0.0	16000.0
594.	c3h4-p+ho2=c3h3-	+h2o2		5.00E+11	0.0	19000.0
595. 596	$c_{3n4-p+on=c_{3n3+1}}$	120 tab?		1.40E+03 2.00E-04	3.0	_1000_0
590.	$c_{3h4-p+oh=bco+c}$	70115 2h4		2.00E-04 1 00E-04	4.5	-1000.0
598	$c_{3h4-p+oh=ch2o+c}$	~2h3		1 00E-04	4 5	-1000.0
599.	c3h4-p+oh=c2h3cl	no+h		1.00E-04	4.5	-1000.0
600.	c3h4-p+o=ch2co+	ch2		6.40E+12	0.0	2100.0
601.	c3h4-p+o=c2h3+h	20		3.20E+12	0.0	2100.0
602.	c3h4-p+o=hcco+cl	n3		9.18E+12	0.0	2100.0
603.	c3h4-p+o=ch2o+c	2h2		3.20E+11	0.0	2100.0
604.	c3h4-p+o=>hcco+o	ch2+h		3.20E+11	0.0	2010.0
605.	c3h4-p+h=c3h3+h	2		1.00E+12	0.0	1500.0
606.	c3h4-p+ch3=c3h3	+ch4		3.00E+12	0.0	7700.0
607.	c3h4-p+c2h3=c3h.	3+c2h4		1.00E+12	0.0	7700.0
608.	c3n4-p+c2n=c3n3-	+c2n2		4.20E+16	0.0	100000.0
609.	C3II4-p+0=C3II3+0	n ng gooffigionts		7.05E+U8 2 19F+09	1.5	22470 0
610	c2h2+ch2=c3h4=n	us coerricients	•	4 20F+12	1.5	6620 0
611.	c3h3+o2=ch2co+h	20		3.01E+10	0.0	2870.0
612.	c3h3+ho2=c3h2+h	202		2.00E+12	0.0	0.0
613.	c3h3+oh=c3h2+h2d	5		5.00E+12	0.0	0.0
614.	c3h3+oh=hcco+ch	3		5.00E+12	0.0	0.0
615.	c3h3+o=>c2h2+hc	c		1.38E+14	0.0	0.0
616.	c3h3+o=c2h3+co			4.62E+13	0.0	0.0
617.	c3h3+o=c2h+ch2o			4.62E+13	0.0	0.0
618.	c3h3+o=>c2h2+co	+h		4.62E+13	0.0	0.0
619.	c3h3+h=c3h2+h2			5.00E+13	0.0	1000.0
620.	c3h3+ch=1c4h3+h			7.00E+13	0.0	0.0
621.	c3n3+cn=nc4n3+n			7.00E+13	0.0	0.0
622.	c3h3+ch2=c4h4+h			5.00E+13 5.00E+12	0.0	0.0
624	$c_{3h_{3+ch_{3}(+M)=c_{4h_{3}}}$	h612(+M)		1 50E+12	0.0	0.0
021.	Low pressure li	nit: 0.26000E+	58 -0.11940E+02	0.97700E+04	1 0.0	0.0
	TROE centering:	0.17500E+	00 0.13406E+04	0.60000E+05	5 0.97	698E+04
	h2	Enhanced by	2.000E+00			
	h2o	Enhanced by	6.000E+00			
	ch4	Enhanced by	2.000E+00			
	CO	Enhanced by	1.500E+00			
	co2	Enhanced by	2.000E+00			
	c2h6	Enhanced by	3.000E+00			
625	ar	Enhanced by	7.000E-01	0 500.10	0 0	0.0
625.	c3113+ncco=c4h4+0	20		2.5UE+13	0.0	U.U 49720 0
0∠0.	ConstCins=CZR5+C.	un acofficienta		4.50L+1/	-1.1	48/30.0
627	c3h3+c3h4-p=c6h	us coerricients 6+h	•	1.015+13 2 20F+09	0.0	2000 0
628	ch3+c2h=c3h3+h	v · · · ·		2.41E+13	0.0	0.0
629.	c2h2+ch=c3h3			3.00E+13	0.0	0.0
630.	ch+c2h2=c3h2+h			1.00E+14	0.0	0.0
631.	c3h2+o2=hcco+hc	c		3.00E+10	0.0	2870.0
632.	c3h2+oh=c2h2+hc	c		5.00E+13	0.0	0.0
633.	c3h2+ch2=ic4h3+l	n		3.00E+13	0.0	0.0

634.	c3h2+o2=hcco+co+h		5.00E+13	0.0	0.0
	Warningall REV parameters	are zero 0.	000E+00 0.00	0.000E+00	
	this reaction will	be treated as	irreversible		
635.	c3h5o=c2h3cho+h		1.00E+14	0.0	29100.0
636.	c3h5o=c2h3+ch2o		2.03E+12	0.1	23560.0
637.	$c_{3h50+02=c_{2h3ch0+h02}}$		1.00E+12	0.0	6000.0
638	c2h5cho=c2h5co+h		5 00E+15	0 0	85000 0
620	a2h5aho-ab2ahaho+h		5.000+15	0.0	9/990 0
C 4 0			0.0000+15	0.0	94990.0
640.	c2li5clio=pc2li4clio+li		8.00E+15	0.0	98000.0
641.	c2n5cno=c2n5+nco		6.00E+14	0.0	/9100.0
642.	c2h5cho=ch2cho+ch3		1.00E+17	0.0	84650.0
643.	c2h5cho+o2=c2h5co+ho2		3.01E+13	0.0	39150.0
644.	c2h5cho+o2=ch3chcho+ho2		3.97E+13	0.0	47690.0
645.	c2h5cho+o2=pc2h4cho+ho2		1.98E+13	0.0	50870.0
646.	c2h5cho+h=c2h5co+h2		1.20E+14	0.0	7000.0
647.	c2h5cho+h=ch3chcho+h2		1.30E+06	2.4	4471.0
648.	c2h5cho+h=pc2h4cho+h2		9.50E+04	2.8	6280.0
649	c2h5cho+o=c2h5co+oh		5 85E+12	0 0	1808 0
650	a2hEabo+o-ab3ababo+ob		4 775+04	27	2106 0
C 5 1	-2h5-h-+		4.77E+04	2.7	2716 0
051.	c2lisclio+o=pc2li4clio+oli		9.50E+04	2.7	3710.0
052.	C2II5CII0+0II=C2II5C0+II20		2.35E+10	0.7	-1113.0
653.	c2h5cho+oh=ch3chcho+h2o		4.68E+07	1.6	-35.0
654.	c2h5cho+oh=pc2h4cho+h2o		5.25E+09	1.0	1590.0
655.	c2h5cho+ho2=c2h5co+h2o2		3.10E+12	0.0	11920.0
656.	c2h5cho+ho2=ch3chcho+h2o2		5.60E+12	0.0	17690.0
657.	c2h5cho+ho2=pc2h4cho+h2o2		8.50E+12	0.0	20440.0
658.	c2h5cho+ch3=c2h5co+ch4		1.70E+12	0.0	8440.0
659.	c2h5cho+ch3=ch3chcho+ch4		2.70E+04	2.3	7287.0
660.	c2h5cho+ch3=pc2h4cho+ch4		4.50E-02	3.6	7154.0
661	c2h5cho+hco=c2h5co+ch2o		1 70E+12	0 0	8440 0
662	a2hEabo+ab2o=a2hEao+ab2ob		1 150-11	0.0	1290 0
662	a2h5abo+ab2o2-a2h5ao+ab2o2h		1 000+12	0.0	9500.0
665.	-2h5-h-+-2h52h52h6		1.700.12	0.0	9300.0
664.	c2n5cno+c2n5=c2n5co+c2n6		1.70E+12	0.0	8440.0
665.	c2h5cho+c2h3=c2h5co+c2h4		1.70E+12	0.0	8440.0
666.	c2h5co+m=c2h5+co+m		8.64E+15	0.0	14400.0
667.	pc2h4cho=c2h4+hco		8.25E+12	-0.2	21900.0
668.	c2h3cho=c2h4+co		3.90E+14	0.0	69000.0
669.	c2h3cho+o=oh+c2h3co		5.01E+12	0.0	1790.0
670.	c2h3cho+h=h2+c2h3co		4.00E+13	0.0	4200.0
671.	c2h3cho+oh=h2o+c2h3co		4.20E+12	0.0	500.0
672.	c2h3cho+ho2=h2o2+c2h3co		1.00E+12	0.0	10000.0
673	$c^{2h}c^{2$		2 005-06	5 6	2500 0
674	a2h3abo+a2h5=a2h3ao+a2h6		5 01 2+10	0.0	6280.0
675	a2h2aha (a2h2-a2h4 (a2h2aa		1 745,10	0.0	0200.0
675.	-2h2-h		1.200.12	0.0	1560.0
6/6.	c2n3cno+n=cn3cncno		1.32E+13	0.0	1560.0
6//.	c2n3cno+n=pc2n4cno		1.32E+13	0.0	3260.0
678.	c2h3co+m=>c2h3+co+m		8.60E+15	0.0	23000.0
	h2o Enhanced by	1.625E+01			
	co Enhanced by	1.875E+00			
	co2 Enhanced by	3.750E+00			
	ch4 Enhanced by	1.625E+01			
	c2h6 Enhanced by	1.625E+01			
679.	c2h3co+ho2=c2h3+co2+oh		2.00E+13	0.0	0.0
680.	c2h3+ch3co=ch3+c2h3co		1.81E+13	0.0	0.0
681.	c2h3+hco=c2h3cho		1.80E+13	0.0	0.0
682	ch2cch2oh+o2=ch2oh+co+ch2o		4 34E+12	0 0	0 0
002.	Warning all PEV parameters	are gero	00000-000000000	0 00000-00	0.0
	this reaction will	he treated of	iwwwwwaible	0.0005+00	
602	chis reaction will	De liealeu as	TTTEVELSTOIE	0 7	45110 0
003.	CH2CCH2OH=C2H2+Ch2Oh		∠.16E+40	-0.3	45110.0
e o .	keverse Arrnenius coefficient	.s.	1.01E+40	-8.6	40330.0
684.	ch2cch2oh=c3h4-a+oh		6.70E+16	-1.1	42580.0
	Reverse Arrhenius coefficient	is:	8.50E+12	0.0	2000.0
685.	ch3coch3(+M)=ch3co+ch3(+M)		7.11E+21	-1.6	84680.0
	Low pressure limit: 0.70130B	E+90 -0.20380E+	-02 0.10715E+	-06	
	TROE centering: 0.86303B	E+00 0.99995E+	-10 0.41640E+	03 0.3289	99E+10
686.	ch3coch3+o2=ch3coch2+ho2		6.03E+13	0.0	48500.0
687.	ch3coch3+o=ch3coch2+oh		5.13E+11	0.2	4890.0
688.	ch3coch3+h=ch3coch2+h2		9.80E+05	2.4	5160.0
689.	ch3coch3+oh=ch3coch2+h2o		3.44E+05	2.4	815.0
				-	

690.	ch3coch3+ho2=ch3coch2+h2o2	1.70E+13	0.0	20460.0
691.	ch3coch3+ch3=ch3coch2+ch4	3.96E+11	0.0	9784.0
692.	ch3coch3+ch3o=ch3coch2+ch3oh	1.00E+11	0.0	7000.0
	Reverse Arrhenius coefficients:	1.00E+10	0.0	9000.0
693.	ch3coch2=ch2co+ch3	1.00E+13	0.0	28000.0
694.	ch3coco+o2=co2+co2+ch3	3.00E+10	0.0	2870.0
695.	ch3coco+ho2=oh+co2+ch3co	2.00E+13	0.0	0.0
696.	ch3co+hco=ch3cocho	1.00E+13	0.0	0.0
697.	ch3cocho+h=ch3coco+h2	4.00E+13	0.0	4200.0
698.	ch3cocho+oh=ch3coco+h2o	2.69E+10	0.8	-340.0
699	ch3cocho+o=ch3coco+oh	5 00E+12	0 0	1790 0
700	ch3cocho+ch3=ch3coco+ch4	1 70E+12	0.0	8440 0
701	ch3cocho+ho2=ch3coco+h2o2	2 80E+12	0 0	13600 0
702.	ch3co+co-ch3coco	1 500112	0.0	2000.0
702.	chisco+co-chiscoco	9 00E+11	0.0	2000.0
704	ch2ccco+n=c2n5co	2 208+06	2 0	2780 0
701.	ablage the bagge the	2.20E+00	2.0	12200.0
705.	hagan in 2 -> han i go i go	0.20E+05	2.5	1010 0
700.		4.00E+10	-1.4	1010.0
707.		4.00E+13	0.5	42200.0
708.	cnocn2cno+on=cnocn2co+n2o	5.40E+10	0.8	-340.0
709.	cnocn2cno+n=cnocn2co+n2	8.00E+13	0.0	4200.0
/10.	cnocn2cno+o=cnocn2co+on	1.00E+13	0.0	1/90.0
711.	choch2cho+ho2=choch2co+h2o2	5.60E+12	0.0	13600.0
712.	choch2cho+ch3o=choch2co+ch3oh	2.30E+11	0.0	1280.0
713.	choch2cho+ch3o2=choch2co+ch3o2h	2.00E+12	0.0	9500.0
714.	choch2co=>ch2cho+co	1.83E+15	-0.7	12910.0
715.	ch3chco+oh=c2h5+co2	1.73E+12	0.0	-1010.0
	Warningall REV parameters are zero	0.000E+00 0.00	0.000E+0	00
	this reaction will be treated as	s irreversible		
716.	ch3chco+oh=ch3choh+co	2.00E+12	0.0	-1010.0
	Warningall REV parameters are zero	0.000E+00 0.00	0.000E+0	00
	this reaction will be treated as	s irreversible		
717.	ch3chco+h=c2h5+co	4.40E+12	0.0	1459.0
	Warningall REV parameters are zero	0.000E+00 0.00	0.000E+0	00
	this reaction will be treated as	s irreversible		
718.	ch3chco+o=ch3cho+co	s irreversible 3.20E+12	0.0	-437.0
718.	ch3chco+o=ch3cho+co Warningall REV parameters are zero	s irreversible 3.20E+12 0.000E+00 0.00	0.0 0.000E+0	-437.0
718.	this reaction will be treated as ch3chco+o=ch3cho+co Warningall REV parameters are zero this reaction will be treated as	s irreversible 3.20E+12 0.000E+00 0.00 s irreversible	0.0 0.000E+0	-437.0
718. 719.	this reaction will be treated and ch3chcot-och3chot-co Warningall REV parameters are zero (this reaction will be treated and ch3chchoc-ch3chcoth	s irreversible 3.20E+12 0.000E+00 0.00 s irreversible 1.34E+13	0.0 0.000E+0 -0.2	-437.0 00 33460.0
718. 719.	<pre>this reaction will be treated as ch3chco+o=ch3cho+co Warningall REV parameters are zero this reaction will be treated as ch3chcho=ch3chco+h Reverse Arrhenius coefficients:</pre>	s irreversible 3.20E+12 0.000E+00 0.00 s irreversible 1.34E+13 5.00E+12	0.0 0.000E+0 -0.2 0.0	-437.0 00 33460.0 1200.0
718. 719. 720.	<pre>this reaction will be treated as ch3chco+o=ch3cho+co Warningall REV parameters are zero this reaction will be treated as ch3chcho=ch3chco+h Reverse Arrhenius coefficients: ch3chcho+o2=ch3chco+ho2</pre>	s irreversible 3.20E+12 0.000E+00 0.00 s irreversible 1.34E+13 5.00E+12 1.81E+11	0.0 0.000E+0 -0.2 0.0 0.0	-437.0 33460.0 1200.0 1840.0
718. 719. 720.	this reaction will be treated as ch3chcot-och3chot-co Warningall REV parameters are zero (this reaction will be treated as ch3chcho-ch3chcot-h Reverse Arrhenius coefficients: ch3chcho-o2-ch3chcot-ho2 Reverse Arrhenius coefficients:	s irreversible 3.20E+12 0.000E+00 0.00 s irreversible 1.34E+13 5.00E+12 1.81E+11 2.31E+13	0.0 0.000E+0 -0.2 0.0 0.0 -0.5	-437.0 00 33460.0 1200.0 1840.0 19540.0
718. 719. 720. 721.	<pre>this reaction will be treated as ch3chco+o=ch3cho+co Warningall REV parameters are zero f this reaction will be treated as ch3chcho=ch3chco+h Reverse Arrhenius coefficients: ch3chcho+o2=ch3chco+ho2 Reverse Arrhenius coefficients: ch3chcho+o2=ch3cho+ho2</pre>	s irreversible 3.20E+12 0.000E+00 0.00 s irreversible 1.34E+13 5.00E+12 1.81E+11 2.31E+13 2.72E+11	0.0 0.000E+0 -0.2 0.0 0.0 -0.5 0.0	-437.0 33460.0 1200.0 1840.0 19540.0 7240.0
718. 719. 720. 721.	<pre>this reaction will be treated a ch3chcot-oc Warningall REV parameters are zero (</pre>	s irreversible 3.20E+12 0.000E+00 0.00 s irreversible 1.34E+13 5.00E+12 1.81E+11 2.31E+13 2.72E+11 1.46E+14	0.0 0.000E+0 -0.2 0.0 0.0 -0.5 0.0 -0.7	-437.0 33460.0 1200.0 1840.0 19540.0 7240.0 25880.0
 718. 719. 720. 721. 722. 	<pre>this reaction will be treated at ch3chcot-och3chot-co Warningall REV parameters are zero (this reaction will be treated at ch3chcho-ch3chcot-h Reverse Arrhenius coefficients: ch3chcho+02=ch3chot-ho2 Reverse Arrhenius coefficients: ch3chcho+02=c2h3chot-ho2 Reverse Arrhenius coefficients: ch3chcho+02=ch3chot-cot-h</pre>	s irreversible 3.20E+12 0.000E+00 0.00 s irreversible 1.34E+13 5.00E+12 1.81E+11 2.31E+13 2.72E+11 1.46E+14 3.62E+10	0.0 0.000E+0 -0.2 0.0 0.0 -0.5 0.0 -0.7 0.0	-437.0 33460.0 1200.0 1840.0 19540.0 7240.0 2580.0 0.0
 718. 719. 720. 721. 722. 	<pre>this reaction will be treated as ch3chco+o=ch3cho+co Warningall REV parameters are zerof this reaction will be treated as ch3chcho=ch3chco+h Reverse Arrhenius coefficients: ch3chcho+o2=ch3cho+ho2 Reverse Arrhenius coefficients: ch3chcho+o2=ch3cho+co+co Reverse Arrhenius coefficients: ch3chcho+o2=ch3cho+co+co Warningall REV parameters are zero</pre>	<pre>s irreversible</pre>	0.0 0.000E+0 -0.2 0.0 -0.5 0.0 -0.5 0.0 0.0 0.00E+0	-437.0 33460.0 1200.0 1840.0 19540.0 7240.0 25880.0 0.0
 718. 719. 720. 721. 722. 	<pre>this reaction will be treated at ch3chcot-oc-ch3chot-co Warningall REV parameters are zero (this reaction will be treated at ch3chcho-ch3chcoth Reverse Arrhenius coefficients: ch3chcho+02=ch3chcotho2 Reverse Arrhenius coefficients: ch3chcho+02=ch3chotho4 Reverse Arrhenius coefficients: ch3chcho+02=ch3chot+coto Warningall REV parameters are zero</pre>	s irreversible 3.20E+12 0.000E+00 0.00 s irreversible 1.34E+13 5.00E+12 1.81E+11 2.31E+13 2.72E+11 1.46E+14 3.62E+10 0.000E+00 0.00	0.0 0.000E+0 -0.2 0.0 0.0 -0.5 0.0 -0.7 0.0 0.000E+0	-437.0 33460.0 1200.0 1840.0 19540.0 7240.0 25880.0 0.0
 718. 719. 720. 721. 722. 723. 	<pre>this reaction will be treated at ch3chcot-och3chot-co Warningall REV parameters are zero { this reaction will be treated at ch3chcho-ch3chcot-h Reverse Arrhenius coefficients: ch3chcho+02=ch3chcotho2 Reverse Arrhenius coefficients: ch3chcho+02=c2h3chot-coth Warningall REV parameters are zero { this reaction will be treated at ch3chchotho2=ch3chcothob</pre>	s irreversible 3.20E+12 0.000E+00 0.00 s irreversible 1.34E+13 5.00E+12 1.81E+11 2.72E+11 1.46E+14 3.62E+10 0.000E+00 0.00 s irreversible 9.64E+12	0.0 0.000E+0 -0.2 0.0 -0.5 0.0 -0.7 0.0 0.000E+0	-437.0 33460.0 1200.0 1840.0 19540.0 7240.0 25880.0 0.0 0.0
 718. 719. 720. 721. 722. 723. 	<pre>this reaction will be treated as ch3chcot-och3chot-co Warningall REV parameters are zero this reaction will be treated as ch3chcho-ch3chco+h Reverse Arrhenius coefficients: ch3chcho+02=ch3cho+ho2 Reverse Arrhenius coefficients: ch3chcho+02=ch3cho+to2 Reverse Arrhenius coefficients: ch3chcho+02=ch3cho+co+co Warningall REV parameters are zero this reaction will be treated as ch3chcho+ho2=ch3chocho+co Reverse Arrhenius coefficients:</pre>	<pre>s irreversible</pre>	0.0 0.000E+0 -0.2 0.0 0.0 -0.5 0.0 -0.7 0.0 0.000E+0 -0.5 0.0 0.0 -0.5 0.0 0.0 -0.5 0.0 0.0 0.0 -0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-437.0 33460.0 1200.0 1840.0 19540.0 7240.0 25880.0 0.0 0.0 28580.0
 718. 719. 720. 721. 722. 723. 724. 	<pre>this reaction will be treated at ch3chcot-oc-ch3chot-co Warningall REV parameters are zero (</pre>	s irreversible 3.20E+12 0.000E+00 0.00 s irreversible 1.34E+13 5.00E+12 1.81E+11 2.31E+13 2.72E+11 1.46E+14 3.62E+10 0.000E+00 0.00 s irreversible 9.64E+12 1.31E+19 3.98E+13	0.0 0.000E+0 -0.2 0.0 -0.5 0.0 -0.7 0.0 0.000E+0 0.0 -1.5 0.0	-437.0 33460.0 1200.0 1840.0 19540.0 7240.0 2580.0 0.0 0.0 28580.0 9700.0
 718. 719. 720. 721. 722. 723. 724. 	<pre>this reaction will be treated at ch3chcot-och3chot-co Warningall REV parameters are zerof this reaction will be treated at ch3chcho-ch3chcot-h Reverse Arrhenius coefficients: ch3chcho+o2=ch3chcotho2 Reverse Arrhenius coefficients: ch3chcho+o2=ch3chot-coth Warningall REV parameters are zerof this reaction will be treated at ch3chchotho2=ch3chocho0 Reverse Arrhenius coefficients: ch3chchotho2=ch3chocho0 Reverse Arrhenius coefficients: ch3chchotho2=ch3chocho0 Reverse Arrhenius coefficients: ch3chchotho2=ch3chocho0 Reverse Arrhenius coefficients: ch3chchotho2=ch3chocho0 Reverse Arrhenius coefficients: ch3chchotho2=ch3chotho0 Reverse Arrhenius coefficients: ch3chchothocho0 Reverse Arrhenius coefficients: ch3chchothocho0 Reverse</pre>	s irreversible 3.20E+12 0.000E+00 0.00 s irreversible 1.34E+13 2.72E+11 1.46E+14 3.62E+10 0.000E+00 0.00 s irreversible 9.64E+12 1.31E+19 3.98E+13 4.4E+05	$\begin{array}{c} 0.0\\ -0.2\\ 0.0\\ 0.0\\ 0.0\\ -0.5\\ 0.0\\ -0.5\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ $	-437.0 33460.0 1200.0 1840.0 19540.0 7240.0 25880.0 0.0 28580.0 9700.0 8282.0
 718. 719. 720. 721. 722. 723. 724. 725 	<pre>this reaction will be treated a ch3chco+oco Warningall REV parameters are zero this reaction will be treated as ch3chcho-ch3chco+h Reverse Arrhenius coefficients: ch3chcho+02=ch3chco+ho2 Reverse Arrhenius coefficients: ch3chcho+02=ch3cho+ho4 Reverse Arrhenius coefficients: ch3chcho+02=ch3cho+co+oh Warningall REV parameters are zero this reaction will be treated as ch3chcho+ho2=ch3chocho+oh Reverse Arrhenius coefficients: ch3chcho+ho5ch3cho+ho0 Reverse Arrhenius coefficients: ch3chcho+ho5 Reverse Arrhenius coefficients: ch3chcho+ho5</pre>	s irreversible 3.20E+12 0.000E+00 0.00 s irreversible 1.34E+13 5.00E+12 1.81E+11 2.31E+13 2.72E+11 1.46E+14 3.62E+10 0.000E+00 0.00 s irreversible 9.64E+12 1.31E+19 3.98E+13 4.34E+05 3.80E+10	0.0 0.000E+(-0.2 0.0 -0.5 0.0 -0.7 0.0 0.000E+(0.0 -1.5 0.0 1.7 0.7 0.7 0.0 -0.5 0.0 -0.5 0.0 -0.5 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.5 0.0 -0.7 0.0 -0.5 0.0 -0.7 0.0 -0.5 0.0 -0.7 0.0 -0.5 0.0 -0.7 0.0 -0.5 0.0 -0.7 0.0 -0.5 0.0 -0.5 0.0 -0.5 0.0 -0.5 0.0 -0.7 0.0 -0.5 0.0 -1.5 0.0 -7 0.7 0.0 -1.5 0.0 -7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.	-437.0 33460.0 1200.0 1840.0 19540.0 7240.0 25880.0 0.0 0.0 28580.0 9700.0 8282.0 36600 0
 718. 719. 720. 721. 722. 723. 724. 725. 725. 	<pre>this reaction will be treated at ch3chcot-och3chot-co Warningall REV parameters are zero(</pre>	<pre>s irreversible</pre>	0.0 0.000E+(-0.2 0.0 -0.5 0.0 -0.7 0.0 0.000E+(0.0 -1.5 0.0 1.7 0.7	-437.0 33460.0 1200.0 1840.0 19540.0 7240.0 2580.0 0.0 28580.0 9700.0 8282.0 36600.0 29480.0
 718. 719. 720. 721. 722. 723. 724. 725. 726. 727. 	<pre>this reaction will be treated at ch3chcot-och3chot-co Warningall REV parameters are zerof this reaction will be treated at ch3chcho-ch3chcot-h Reverse Arrhenius coefficients: ch3chcho+o2=ch3chcotho2 Reverse Arrhenius coefficients: ch3chcho+o2=ch3chot-coth Warningall REV parameters are zerof this reaction will be treated at ch3chcho+o2=ch3chochoth Reverse Arrhenius coefficients: ch3chcho+ho2=ch3chochoth Reverse Arrhenius coefficients: ch3chcho+ho2=ch3chochoth Reverse Arrhenius coefficients: ch3chcho+ho2=ch3chochoth Reverse Arrhenius coefficients: ch3chcho+ho2=ch3chothotho Reverse Arrhenius coefficients: pc4h9=sc4h9 pc4h9=c2h5+c2h4 pc4h9=c4h8_1+h</pre>	s irreversible 3.20E+12 0.000E+00 0.00 s irreversible 1.34E+13 5.00E+12 1.81E+11 2.31E+13 2.72E+11 1.46E+14 3.62E+10 0.000E+00 0.00 s irreversible 9.64E+12 1.31E+19 3.98E+13 3.80E+10 3.58E+12 2.65E+12	$\begin{array}{c} 0.0\\ -0.2\\ 0.0\\ -0.5\\ 0.0\\ -0.5\\ 0.0\\ -0.7\\ 0.0\\ 0.000E+(0\\ -1.5\\ 0.0\\ 1.7\\ 0.7\\ 0.7\\ 0.5\\ 0.2\\ \end{array}$	-437.0 33460.0 1200.0 1840.0 19540.0 7240.0 25880.0 0.0 28580.0 9700.0 8282.0 36600.0 29480.0 35710 0
 718. 719. 720. 721. 722. 723. 724. 725. 726. 727. 728. 	<pre>this reaction will be treated a ch3chco+oco Warningall REV parameters are zero(</pre>	s irreversible 3.20E+12 0.000E+00 0.00 s irreversible 1.34E+13 5.00E+12 1.81E+11 2.31E+13 2.72E+11 1.46E+14 3.62E+10 0.000E+00 0.00 s irreversible 9.64E+12 1.31E+19 3.98E+13 4.34E+05 3.80E+10 3.58E+12 2.65E+12 2.76E+12 3.70E+16 3.70E+	0.0 0.000E+(-0.2 0.0 0.0 -0.7 0.0 0.000E+(0.0 0.00 -1.5 0.0 1.7 0.7 0.5 0.2 0.2 0.2 0.0 0.0 -0.2 0.0 0.0 -0.2 0.0 0.0 -0.2 0.0 0.0 -0.2 0.0 0.0 -0.2 0.0 0.0 -0.5 0.0 0.0 -0.5 0.0 0.0 -0.5 0.0 0.0 -0.5 0.0 0.0 -0.5 0.0 0.0 -0.5 0.0 0.0 -0.5 0.0 0.0 -0.5 0.0 0.0 -0.5 0.0 0.0 -0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-437.0 33460.0 1200.0 1840.0 7240.0 25880.0 0.0 28580.0 9700.0 8282.0 36600.0 29480.0 35710.0 3420.0
 718. 719. 720. 721. 722. 723. 724. 725. 726. 727. 728. 728. 	<pre>this reaction will be treated a ch3chcot-oc-ch3chot-co Warningall REV parameters are zero(</pre>	<pre>s irreversible</pre>	$\begin{array}{c} 0.0\\ 0.000E+(\\ -0.2\\ 0.0\\ 0.0\\ -0.5\\ 0.0\\ -0.7\\ 0.0\\ 0.000E+(\\ 0.0\\ -1.5\\ 0.0\\ 1.7\\ 0.7\\ 0.5\\ 0.2\\ -1.6\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2$	-437.0 33460.0 1200.0 1840.0 19540.0 7240.0 25880.0 0.0 28580.0 9700.0 8282.0 36600.0 29480.0 35710.0 3420.0 0
 718. 719. 720. 721. 722. 723. 724. 725. 726. 727. 728. 729. 	<pre>this reaction will be treated a ch3chco+oco Warningall REV parameters are zero this reaction will be treated as ch3chcho-ch3chco+h Reverse Arrhenius coefficients: ch3chcho+02=ch3cho+ho2 Reverse Arrhenius coefficients: ch3chcho+02=ch3cho+cho4 Warningall REV parameters are zero this reaction will be treated as ch3chcho+ho2=ch3chocho+oh Reverse Arrhenius coefficients: ch3chcho+ho2=ch3chocho+oh Reverse Arrhenius coefficients: ch3chcho+ch2=ch3chocho-oh Reverse Arrhenius coefficients: ch3chcho+ho2=ch3cho-hoo Reverse Arrhenius coefficients: pcdh9=cch3cho+hoo pcdh9=cch8=l+ho pcdh9=cc4h8=l+ho2 pcdh9=ch2=cdh8=l+ho2 pcdh9=cc4b8=l+ho2</pre>	<pre>s irreversible</pre>	$\begin{array}{c} 0.0\\ 0.000E+(\\ -0.2\\ 0.0\\ 0.0\\ -0.5\\ 0.0\\ -0.7\\ 0.0\\ 0.000E+(\\ 0.0\\ -1.5\\ 0.0\\ 1.7\\ 0.7\\ 0.5\\ 0.2\\ -1.6\\ 0.2\\ 0.2\\ -1.6\\ 0.0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	-437.0 33460.0 1200.0 1840.0 19540.0 7240.0 25880.0 0.0 28580.0 9700.0 8282.0 36600.0 29480.0 35710.0 3420.0 0.0
 718. 719. 720. 721. 722. 723. 724. 724. 725. 726. 727. 727. 729. 730. 731. 	<pre>this reaction will be treated a ch3chco+co Warningall REV parameters are zero (</pre>	s irreversible 3.20E+12 0.000E+00 0.00 s irreversible 1.34E+13 2.72E+11 1.46E+14 3.62E+10 0.000E+00 0.00 s irreversible 9.64E+12 1.31E+19 3.98E+13 4.34E+05 3.80E+10 3.58E+12 2.65E+12 3.70E+16 2.41E+13 2.40E+13 1.20E+12 3.20E+12 3.70E+16 3.40E+13 3.40E+14 3.40E+13 3.40E+13 3.40E+13 3.40E+14 3.40E+	$\begin{array}{c} 0.0\\ 0.000E+(\\ -0.2\\ 0.0\\ 0.0\\ -0.5\\ 0.0\\ -0.7\\ 0.0\\ 0.000E+(\\ 0.0\\ -1.5\\ 0.0\\ 0.0\\ 0.0\\ 1.7\\ 0.7\\ 0.7\\ 0.2\\ -1.6\\ 0.2\\ -1.6\\ 0.0\\ 0.0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	-437.0 33460.0 1200.0 19540.0 7240.0 2580.0 0.0 28580.0 9700.0 8282.0 36600.0 29480.0 35710.0 3420.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 718. 719. 720. 721. 722. 723. 724. 725. 726. 727. 726. 727. 728. 730. 731. 	<pre>this reaction will be treated a ch3chcot-oc-ch3chot-co Warningall REV parameters are zero(</pre>	<pre>s irreversible</pre>	$\begin{array}{c} 0.0\\ 0.000E+(\\ -0.2\\ 0.0\\ 0.0\\ -0.5\\ 0.0\\ -0.7\\ 0.0\\ 0.000E+(\\ 0.0\\ -1.5\\ 0.0\\ 1.7\\ 0.7\\ 0.7\\ 0.2\\ -1.6\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	-437.0 33460.0 1200.0 1840.0 19540.0 7240.0 25880.0 0.0 28580.0 9700.0 8282.0 36600.0 2480.0 35710.0 3420.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 718. 719. 720. 721. 722. 723. 724. 725. 726. 727. 728. 729. 730. 731. 732. 	<pre>this reaction will be treated a ch3chco+oco Warningall REV parameters are zero this reaction will be treated as ch3chcho-ch3chco+h Reverse Arrhenius coefficients: ch3chcho+02=ch3chco+ho2 Reverse Arrhenius coefficients: ch3chcho+02=ch3cho+cho4 Warningall REV parameters are zero this reaction will be treated as ch3chcho+ho2=ch3cho+cho+oh Reverse Arrhenius coefficients: ch3chcho+ho2=ch3cho+cho+oh Reverse Arrhenius coefficients: ch3chcho+ho2=ch3cho+ho0 Reverse Arrhenius coefficients: pc4h9=ch3cho+hco Reverse Arrhenius coefficients: pc4h9=ch5+c2h4 pc4h9=c2cfh8=l+h pc4h9=c2cfh8=l+h20 pc4h9+ho2=c4h8=l+h20 pc4h9+ch8=l+h20 pc4h9+ch8=l+h20 pc4h9+ch8=l+ch4 pc4h9=ch8=l+ch4</pre>	s irreversible 3.20E+12 0.000E+00 0.00 s irreversible 1.34E+13 5.00E+12 1.81E+11 2.31E+13 2.72E+11 1.46E+14 3.62E+10 0.000E+00 0.00 s irreversible 9.64E+12 1.31E+19 3.98E+13 4.34E+05 3.80E+10 3.58E+12 2.65E+12 2.70E+16 2.41E+13 2.40E+13 1.25E+13 2.00E+12 1.60E+	$\begin{array}{c} 0.0\\ 0.000E+(\\ -0.2\\ 0.0\\ 0.0\\ -0.5\\ 0.0\\ -0.7\\ 0.0\\ 0.000E+(\\ 0.0\\ 1.5\\ 0.0\\ 1.7\\ 0.5\\ 0.2\\ -1.6\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	-437.0 33460.0 1200.0 1840.0 7240.0 2580.0 0.0 28580.0 9700.0 8282.0 36600.0 29480.0 35710.0 3420.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 718. 719. 720. 721. 722. 723. 724. 725. 726. 727. 728. 729. 730. 731. 732. 734. 	<pre>this reaction will be treated a ch3chco+oco Warningall REV parameters are zero this reaction will be treated are ch3chcho-ch3chco+h Reverse Arrhenius coefficients: ch3chcho+02=ch3cho+ho2 Reverse Arrhenius coefficients: ch3chcho+02=ch3cho+co+oh Warningall REV parameters are zero this reaction will be treated are ch3chcho+02=ch3cho+co+oh Warningall REV parameters are zero this reaction will be treated are ch3chcho+ho2=ch3cho+co+oh Reverse Arrhenius coefficients: ch3chccho+ho2=ch3chocho+oh Reverse Arrhenius coefficients: pcdh9=scdh9 pcdh9=scdh9 pcdh9=cch8=1+h20 pcdh9+o2=cdh8=1+h20 pcdh9+cb3=cdh8=1+c2h pcdh9+cb3=cdh8=1+c2h pcdh9+cb3=cdh8=1+c2h pcdh9+cb3=cdh8=1+c2h pcdh9=cb3=cdh8=1+c2h pcdh9=b=cdh8=1+c2h6 pcdh9=cb4=cdh8=1+c2h6 pcdb9=cb4=cdh8=1+c2h6 pcdb9=cb4=cdh8=1+c2h6 pcdb9=cdh8=cdh8=1+c2h6 pcdb9=cdh8=cdh8=1+c2h6 pcdb9=cdh8=cdh8=1+c2h6 pcdb9=cdh8=cdh8=1+c2h6 pcdb9=cdh8=cdh8=1+c2h6 pcdb9=cdh8=cdh8=1+c2h6 pcdb9=cdh8=cdh8=1+c2h6 pcdb9=cdh8=cdh8=1+c2h6 pcdb9=cdh8=cdh8=1+c2h6 pcdb9=cdh8=cdh8=1+c2h6 pcdb9=cdh8=cdh8=1+c2h6 pcdb9=cdh8=cdh8=1+c2h6 pcdb9=cdh8=cdh8=1+c2h6 pcdb9=cdh8=cdh8=1+c2h6 pcdb9=cdh8=cdh8=1+c2h6 pcdb9=cdh8=cdh8=1+c2h6 pcdb9=cdh8=cdh8=1+c2h6 pcdb9=cdh8=cdh8=1+c2h6 pcdb9=cdh8=cdh8=1+c2h8 pcd8=cdh8=cdh8=1+c2h8 pcd9=cdh8=cdh8=1+c2h8 pcd8=cdh8=cdh8=1+c2h8 pcd8=cdh8=cdh8=1+c2h8 pcd8=cdh8=cdh8=1+c2h8 pcd8=cdh8=cdh8=1+c2h8 pcd8=cdh8=cdh8=1+c2h8 pcd8=cdh8=cdh8=1+c2h8 pcd8=cdh8=cdh8=cdh8=cdh8=cdh8=cdh8=cdh8=c</pre>	s irreversible 3.20E+12 0.000E+00 0.00 s irreversible 1.34E+13 2.72E+11 1.46E+14 3.62E+10 0.000E+00 0.00 s irreversible 9.64E+12 1.31E+19 3.98E+13 4.34E+05 3.80E+10 3.58E+12 2.65E+12 3.70E+16 2.41E+13 1.25E+13 1.25E+13 2.00E+12 1.60E+	$\begin{array}{c} 0.0\\ 0.000E+(\\ -0.2\\ 0.0\\ 0.0\\ -0.5\\ 0.0\\ 0.000E+(\\ 0.0\\ 0.000E+(\\ 0.0\\ 1.7\\ 0.7\\ 0.7\\ 0.2\\ -1.6\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	-437.0 33460.0 1200.0 1840.0 19540.0 7240.0 2580.0 0.0 28580.0 9700.0 8282.0 36600.0 29480.0 35710.0 3420.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 718. 719. 720. 721. 722. 723. 724. 725. 726. 727. 728. 729. 730. 731. 732. 733. 734. 732. 733. 734. 	<pre>this reaction will be treated at ch3chcot-oc-ch3chot-co Warningall REV parameters are zerof this reaction will be treated at ch3chcho-ch3chcotho2 Reverse Arrhenius coefficients: ch3chcho+o2=ch3chcotho2 Reverse Arrhenius coefficients: ch3chcho+o2=ch3chot-cotoh Warningall REV parameters are zerof this reaction will be treated at ch3chcho+ho2=ch3choch-oh Reverse Arrhenius coefficients: ch3chcho+ho2=ch3chocho-oh Reverse Arrhenius coefficients: ch3chcho+ho2=ch3chocho-oh Reverse Arrhenius coefficients: ch3chchotho+ch2 Reverse Arrhenius coefficients: ch3chchotho=ch3choth-on Reverse Arrhenius coefficients: pc4h9=cc4h8-1+ho pc4h9=cc4h8-1+ho2 pc4h9+cc4h8-1+h2 pc4h9+cc3ch8-1+h20 pc4h9+ch3c-dh8-1+h20 pc4h9+ch3c-dh8-1+ch4 pc4h9+c2h5=c4h8-1+c2h6 pc4h9+c3h5-a=c4h8-1+c2h6 pc4h9+c3h5-a=c4h8-1+c2h6 pc4h9+c3h5-a=c4h8-1+c2h6 pc4h9+c3h5-a=c4h8-1+c2h6</pre>	s irreversible 3.20E+12 0.000E+00 0.00 s irreversible 1.34E+13 2.72E+11 1.46E+14 3.62E+10 0.000E+00 0.00 s irreversible 9.64E+12 1.31E+19 3.98E+13 3.98E+13 3.42E+05 3.80E+10 3.58E+12 2.65E+12 3.70E+16 2.41E+13 1.25E+13 2.00E+12 1.60E+12 1.00E+	$\begin{array}{c} 0.0\\ 0.000E+(\\ -0.2\\ 0.0\\ 0.0\\ -0.5\\ 0.0\\ -0.7\\ 0.0\\ 0.000E+(\\ 0.0\\ -1.5\\ 0.0\\ 1.7\\ 0.7\\ 0.7\\ 0.2\\ -1.6\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	-437.0 33460.0 1200.0 1840.0 19540.0 7240.0 25880.0 9700.0 28580.0 9700.0 8282.0 36600.0 2480.0 35710.0 3420.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 718. 719. 720. 721. 722. 723. 724. 725. 727. 728. 729. 730. 731. 732. 733. 734. 734. 734. 734. 734. 	<pre>this reaction will be treated a ch3chco+oco Warningall REV parameters are zero this reaction will be treated as ch3chcho-ch3chco+h Reverse Arrhenius coefficients: ch3chcho+02=ch3cho+ho2 Reverse Arrhenius coefficients: ch3chcho+02=ch3cho+cho4 Warningall REV parameters are zero this reaction will be treated as ch3chcho+b02=ch3cho+cho4 Reverse Arrhenius coefficients: ch3chcho+b02=ch3cho+cho4 Reverse Arrhenius coefficients: ch3chcho+ho2=ch3cho+cho4 Reverse Arrhenius coefficients: pc4h9=c2h5+c2h4 pc4h9=c2h5+c2h4 pc4h9=c2h5+c1ho2 pc4h9+o2=c4h8-1+ho2 pc4h9+c2=ch8=1+ho2 pc4h9+cb1=c4h8=1+h20 pc4h9+ch8=1+h20 pc4h9+ch8=1+c14 pc4h9+c5=c4h8=1+c2h6 pc4h9+c5=c4h8=1+c2h6 pc4h9+c4h713=c4h8=1+c3h6 pc4h9=c4h2=c4h8=1+c4h8=1 pc4h9=c4h2=c4h8=1+c4h8=1 pc4h9=c4h2=c4h8=1+c4h8=1 pc4h9=c4h2=c4h8=1+c4h8=1 pc4h9=c4h2=c4h8=1+c4h8=1 pc4h9=c4h2=c4h8=1+c4h8=1 pc4h9=c4h2=c4h8=1+c4h8=1 pc4h9=c4h2=c4h8=1+c4h8=1 pc4h9=c4h2=c4h8=1+c4h8=1 pc4h9=c4h2=c4h2=c4h8=1+c4h8=1 pc4h9=c4h2=c4h2=c4h8=1+c4h8=1 pc4h9=c4h2=c4h2=c4h8=1+c4h8=1 pc4h9=c4h2=c4h2=c4h8=1+c4h8=1 pc4h9=c4h2=c4h2=c4h8=1+c4h8=1 pc4h9=c4h2=c4h2=c4h8=1+c4h8=1 pc4h9=c4h2=c4h2=c4h8=1+c4h8=1 pc4h9=c4h2=c4h2=c4h8=1+c4h8=1 pc4h9=c4h2=c4h2=c4h8=1+c4h8=1 pc4h9=c4h2=c4h2=c4h8=1+c4h8=1 pc4h9=c4h2=c4h2=c4h2=c4h8=1+c4h8=1 pc4h9=c4h2=c4h2=c4h8=1+c4h8=1 pc4h9=c4h2=c4h2=c4h8=1+c4h8=1 pc4h9=c4h2=c4h2=c4h8=1+c4h8=1 pc4h9=c4h2=c4h2=c4h2=c4h2=c4h8=1+c4h8=1 pc4h9=c4h2=c4h2=c4h2=c4h2=c4h2=c4h2=c4h2=c4h2</pre>	s irreversible 3.20E+12 0.000E+00 0.00 s irreversible 1.34E+13 5.00E+12 1.81E+11 2.31E+13 2.72E+11 1.46E+14 3.62E+10 0.000E+00 0.00 s irreversible 9.64E+12 1.31E+19 3.98E+13 4.34E+05 3.80E+10 3.58E+12 2.65E+12 2.70E+16 2.41E+13 2.40E+13 1.25E+13 2.00E+12 1.60E+12 1.00E+	$\begin{array}{c} 0.0\\ 0.000E+(\\ -0.2\\ 0.0\\ 0.0\\ -0.5\\ 0.0\\ -0.7\\ 0.0\\ 0.000E+(\\ 0.0\\ 1.7\\ 0.7\\ 0.5\\ 0.2\\ -1.6\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	$\begin{array}{c} -437.0\\ 33460.0\\ 1200.0\\ 1840.0\\ 19540.0\\ 7240.0\\ 2580.0\\ 0.0\\ 0\\ 0\\ 28580.0\\ 9700.0\\ 8282.0\\ 36600.0\\ 29480.0\\ 35710.0\\ 35710.0\\ 3420.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\$
 718. 719. 720. 721. 722. 723. 724. 725. 726. 727. 726. 727. 736. 731. 734. 735. 736. 735. 736. 736. 736. 734. 735. 736. 736. 736. 736. 736. 737. 736. 736.<td><pre>this reaction will be treated a ch3chco+oco Warningall REV parameters are zero this reaction will be treated as ch3chcho-ch3chco+h Reverse Arrhenius coefficients: ch3chcho+02=ch3cho+ho2 Reverse Arrhenius coefficients: ch3chcho+02=ch3cho+co+d Warningall REV parameters are zero this reaction will be treated as ch3chcho+02=ch3cho+co+d Warningall REV parameters are zero this reaction will be treated as ch3chcho+ho2=ch3cho+co+d Reverse Arrhenius coefficients: ch3chcho+ho2=ch3cho+ho Reverse Arrhenius coefficients: ch3chcho+ho2=ch3cho+ho Reverse Arrhenius coefficients: pc4h9=sc4h9 pc4h9=cc4h8-1+ho pc4h9+02=cdh8-1+ho2 pc4h9+ho=cdh8-1+ho2 pc4h9+ch3=cdh8-1+c2h6 pc4h9+c3h5-a=c4h8-1+c2h6 pc4h9+ch3=-c4h8-1+c2h6 pc4h9+ch2h5=a=dh8-1+c3h6 pc4h9+ch2h5=a=dh8-1+c3h6 pc4h9+ch2h5=a=dh8-1+c3h6 pc4h9+ch2h5=a=dh8-1+c3h6 pc4h9+ch2h5=a=dh8-1+c3h6 pc4h9+ch2h5=a=dh8-1+c3h6 pc4h9+ch2h5=a=dh8-1+c3h6 pc4h9+ch2h5=a=dh8-1+c3h6 pc4h9+ch2h5=a=dh8-1+c3h6 pc4h9+ch2h5=a=dh8-1+c3h6 pc4h9+ch2h5=a=dh8-1+c3h6 pc4h9+ch2h5=a=dh8-1+c3h6 pc4h9+c2h2=ch2b+c3h7</pre></td><td>s irreversible 3.20E+12 0.000E+00 0.00 s irreversible 1.34E+13 2.72E+11 1.46E+14 3.62E+10 0.000E+00 0.00 s irreversible 9.64E+12 1.31E+19 3.98E+13 4.34E+05 3.80E+10 3.58E+12 2.65E+12 3.70E+16 2.41E+13 1.25E+13 1.25E+13 1.25E+13 1.25E+12 1.60E+12 1.60E+12 1.00E+12 1.00E+12 4.82E+13 4.72E+13 1.72E+13 1.72E+14 1.72E+</td><td>$\begin{array}{c} 0.0\\ 0.000E+(\\ -0.2\\ 0.0\\ 0.0\\ -0.5\\ 0.0\\ -0.5\\ 0.0\\ 0.000E+(\\ 0.0\\ -1.5\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$</td><td>-437.0 33460.0 1200.0 1840.0 19540.0 7240.0 2580.0 0.0 28580.0 9700.0 8282.0 36600.0 29480.0 35710.0 3420.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>	<pre>this reaction will be treated a ch3chco+oco Warningall REV parameters are zero this reaction will be treated as ch3chcho-ch3chco+h Reverse Arrhenius coefficients: ch3chcho+02=ch3cho+ho2 Reverse Arrhenius coefficients: ch3chcho+02=ch3cho+co+d Warningall REV parameters are zero this reaction will be treated as ch3chcho+02=ch3cho+co+d Warningall REV parameters are zero this reaction will be treated as ch3chcho+ho2=ch3cho+co+d Reverse Arrhenius coefficients: ch3chcho+ho2=ch3cho+ho Reverse Arrhenius coefficients: ch3chcho+ho2=ch3cho+ho Reverse Arrhenius coefficients: pc4h9=sc4h9 pc4h9=cc4h8-1+ho pc4h9+02=cdh8-1+ho2 pc4h9+ho=cdh8-1+ho2 pc4h9+ch3=cdh8-1+c2h6 pc4h9+c3h5-a=c4h8-1+c2h6 pc4h9+ch3=-c4h8-1+c2h6 pc4h9+ch2h5=a=dh8-1+c3h6 pc4h9+ch2h5=a=dh8-1+c3h6 pc4h9+ch2h5=a=dh8-1+c3h6 pc4h9+ch2h5=a=dh8-1+c3h6 pc4h9+ch2h5=a=dh8-1+c3h6 pc4h9+ch2h5=a=dh8-1+c3h6 pc4h9+ch2h5=a=dh8-1+c3h6 pc4h9+ch2h5=a=dh8-1+c3h6 pc4h9+ch2h5=a=dh8-1+c3h6 pc4h9+ch2h5=a=dh8-1+c3h6 pc4h9+ch2h5=a=dh8-1+c3h6 pc4h9+ch2h5=a=dh8-1+c3h6 pc4h9+c2h2=ch2b+c3h7</pre>	s irreversible 3.20E+12 0.000E+00 0.00 s irreversible 1.34E+13 2.72E+11 1.46E+14 3.62E+10 0.000E+00 0.00 s irreversible 9.64E+12 1.31E+19 3.98E+13 4.34E+05 3.80E+10 3.58E+12 2.65E+12 3.70E+16 2.41E+13 1.25E+13 1.25E+13 1.25E+13 1.25E+12 1.60E+12 1.60E+12 1.00E+12 1.00E+12 4.82E+13 4.72E+13 1.72E+13 1.72E+14 1.72E+	$\begin{array}{c} 0.0\\ 0.000E+(\\ -0.2\\ 0.0\\ 0.0\\ -0.5\\ 0.0\\ -0.5\\ 0.0\\ 0.000E+(\\ 0.0\\ -1.5\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	-437.0 33460.0 1200.0 1840.0 19540.0 7240.0 2580.0 0.0 28580.0 9700.0 8282.0 36600.0 29480.0 35710.0 3420.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
718. 719. 720. 721. 722. 723. 724. 725. 726. 727. 728. 730. 731. 732. 733. 734. 735. 736. 737.	<pre>this reaction will be treated a ch3chco+oc Warningall REV parameters are zero this reaction will be treated as ch3chcho-ch3chco+h Reverse Arrhenius coefficients: ch3chcho+02=ch3chco+ho2 Reverse Arrhenius coefficients: ch3chcho+02=ch3cho+cho4 Warningall REV parameters are zero this reaction will be treated as ch3chcho+02=ch3cho-cho+oh Reverse Arrhenius coefficients: ch3chcho+ch2=ch3cho-cho+oh Reverse Arrhenius coefficients: ch3chcho+ch2=ch3cho-cho-oh Reverse Arrhenius coefficients: pc4h9=cc4h8-1+h2 pc4h9=c2c4h8-1+h2 pc4h9=c2c4h8-1+h2 pc4h9+c2c4h8-1+h2 pc4h9+c2c4h8-1+h2 pc4h9+c2h8=c4h8-1+ch4 pc4h9+c3h5=c4h8-1+c3h6 pc4h9+c3h5=a=c4h8-1+c3h6 pc4h9+c3h5-a=c4h8-1+c3h6 pc4h9+c3h5-a=c4h8-1+c3h6 pc4h9+c3h5-a=c4h8-1+c3h6 pc4h9=c3h6+ch3 c4h8=c4h8-1+ch4 c4h8=c4h8=c4h8-1+c3h6 c4h9=c4h8=c4h8=c4h8=c4h8=c4h8=c4h8=c4h8=c4h8</pre>	s irreversible 3.20E+12 0.000E+00 0.00 s irreversible 1.34E+13 5.00E+12 1.81E+11 2.31E+13 2.72E+11 1.46E+14 3.62E+10 0.000E+00 0.00 s irreversible 9.64E+12 1.31E+19 3.98E+13 4.34E+05 3.80E+10 3.58E+12 2.65E+12 2.65E+12 2.65E+13 2.40E+13 1.25E+13 2.00E+12 1.60E+12 1.00E+12 1.00E+12 4.82E+13 4.79E+10 0.00E+12 1.00E+	$\begin{array}{c} 0.0\\ 0.000E+(\\ -0.2\\ 0.0\\ 0.0\\ -0.5\\ 0.0\\ -0.7\\ 0.0\\ 0.000E+(\\ 0.0\\ -1.5\\ 0.0\\ 1.7\\ 0.5\\ 0.2\\ -1.6\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	$\begin{array}{c} -437.0\\ 33460.0\\ 1200.0\\ 1840.0\\ 19540.0\\ 7240.0\\ 2580.0\\ 0.0\\ 0\\ 0\\ 0\\ 28580.0\\ 9700.0\\ 8282.0\\ 36500.0\\ 29480.0\\ 35710.0\\ 36600.0\\ 29480.0\\ 35710.0\\ 3600.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$
 718. 719. 720. 721. 722. 723. 724. 725. 726. 727. 727. 732. 731. 732. 734. 735. 734. 735. 737. 737. 738. 738.<td><pre>this reaction will be treated a ch3chco+co Warningall REV parameters are zero (</pre></td><td>s irreversible 3.20E+12 0.000E+00 0.00 s irreversible 1.34E+13 2.72E+11 1.41E+11 2.31E+13 2.72E+11 1.46E+14 3.62E+10 0.000E+00 0.00 s irreversible 9.64E+12 1.31E+19 3.98E+13 4.34E+05 3.80E+10 3.58E+12 2.65E+12 2.65E+12 2.65E+13 2.40E+13 1.25E+13 2.00E+12 1.00E+</td><td>$\begin{array}{c} 0.0\\ 0.000E+(\\ -0.2\\ 0.0\\ 0.0\\ -0.5\\ 0.0\\ -0.5\\ 0.0\\ 0.000E+(\\ 0.0\\ -1.5\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$</td><td>-437.0 33460.0 1200.0 19540.0 7240.0 25880.0 0.0 28580.0 9700.0 8282.0 36600.0 29480.0 35710.0 3420.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>	<pre>this reaction will be treated a ch3chco+co Warningall REV parameters are zero (</pre>	s irreversible 3.20E+12 0.000E+00 0.00 s irreversible 1.34E+13 2.72E+11 1.41E+11 2.31E+13 2.72E+11 1.46E+14 3.62E+10 0.000E+00 0.00 s irreversible 9.64E+12 1.31E+19 3.98E+13 4.34E+05 3.80E+10 3.58E+12 2.65E+12 2.65E+12 2.65E+13 2.40E+13 1.25E+13 2.00E+12 1.00E+	$\begin{array}{c} 0.0\\ 0.000E+(\\ -0.2\\ 0.0\\ 0.0\\ -0.5\\ 0.0\\ -0.5\\ 0.0\\ 0.000E+(\\ 0.0\\ -1.5\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	-437.0 33460.0 1200.0 19540.0 7240.0 25880.0 0.0 28580.0 9700.0 8282.0 36600.0 29480.0 35710.0 3420.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
718. 719. 720. 721. 722. 723. 724. 725. 726. 727. 728. 729. 730. 731. 732. 733. 734. 735. 736. 737. 738. 738. 738.	<pre>this reaction will be treated a ch3chco+oc>ch3cho+co Warningall REV parameters are zero(this reaction will be treated are ch3chcho-ch3cho+ha Reverse Arrhenius coefficients: ch3chcho+o2=ch3cho+ho2 Reverse Arrhenius coefficients: ch3chcho+o2=ch3cho+co+ha Warningall REV parameters are zero(this reaction will be treated are ch3chcho+lo2=ch3cho+co+ha Warningall REV parameters are zero(this reaction will be treated are ch3chcho+lo2=ch3cho+co+ha Reverse Arrhenius coefficients: ch3chcho+ha2=ch3chocho+ha Reverse Arrhenius coefficients: ch3chcho+ha2=ch3chocho+ha Reverse Arrhenius coefficients: pc4h9=cch3cho+ha0 Reverse Arrhenius coefficients: pc4h9=ch8=l+ha pc4h9=clh8=l+ha2 pc4h9+ha2=c4h8=l+ha2 pc4h9+ch3=c4h8=l+ch4 pc4h9+c13=c4h8=l+ch4 pc4h9+c13=c4h8=l+ch4 pc4h9+c13=c4h8=l+c16 pc4h9=ch5=c4h8=l+c3h6 pc4h9=c3h5=a=c4h8=l+c3h6 pc4h9=c3h6+ch3 sc4h9=c4h8=l+h sc4h9=c2h8=ha</pre>	s irreversible 3.20E+12 0.000E+00 0.00 s irreversible 1.34E+13 2.72E+11 1.46E+14 3.62E+10 0.000E+00 0.00 s irreversible 9.64E+12 1.31E+19 3.98E+13 4.34E+05 3.80E+10 3.58E+12 2.65E+12 3.70E+16 2.41E+13 1.25E+13 2.40E+13 1.25E+13 2.00E+12 1.00E+12 1.00E+12 1.00E+12 1.00E+12 2.85E+11 2.85E+11 2.85E+11 2.85E+11 2.85E+11 2.85E+11 2.85E+11 2.85E+11 2.85E+11 2.85E+11 2.85E+11 2.85E+11 2.85E+11 2.85E+11 3.80E+10 3.80E+	$\begin{array}{c} 0.0\\ 0.000E+(\\ -0.2\\ 0.0\\ 0.0\\ -0.5\\ 0.0\\ 0.000E+(\\ 0.0\\ -1.5\\ 0.0\\ 0.000E+(\\ 0.0\\ -1.5\\ 0.2\\ -1.6\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	-437.0 33460.0 1200.0 1840.0 19540.0 7240.0 25880.0 9700.0 28580.0 9700.0 8282.0 36600.0 29480.0 35710.0 3420.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
718. 719. 720. 721. 722. 723. 724. 725. 724. 725. 727. 728. 727. 728. 730. 731. 731. 732. 734. 735. 734. 735. 736. 737. 738.	<pre>this reaction will be treated a ch3chco+oco Warningall REV parameters are zero this reaction will be treated as ch3chcho-ch3chco+h Reverse Arrhenius coefficients: ch3chcho+02=ch3chco+ho2 Reverse Arrhenius coefficients: ch3chcho+02=ch3cho+cho4 Warningall REV parameters are zero this reaction will be treated as ch3chcho+02=ch3chocho+oh Reverse Arrhenius coefficients: ch3chcho+ch02=ch3chocho+oh Reverse Arrhenius coefficients: ch3chcho+ch02=ch3chocho-oh Reverse Arrhenius coefficients: pc4h9=ch5+c2h4 pc4h9=c2c4h8-l+h2 pc4h9=c2c4h8-l+h20 pc4h9+c2c4h8-l+h20 pc4h9+ch2=c4h8-l+h20 pc4h9+ch3c5+a=c4h8-l+c3h6 pc4h9+c3h5-a=c4h8-l+c3h6 pc4h9+c3h5-a=c4h8-l+c3h6 pc4h9=c3h6+ch3 sc4h9=c3h6+ch3 sc4h9=c3h6+ch3 sc4h9=c2c4h8-h sc4h9=c2c4h8-h sc4h9=c2c4h8-h sc4h9=c2c4h8-h</pre>	s irreversible 3.20E+12 0.000E+00 0.00 s irreversible 1.34E+13 5.00E+12 1.81E+11 2.31E+13 2.72E+11 1.46E+14 3.62E+10 0.000E+00 0.00 s irreversible 9.64E+12 1.31E+19 3.98E+13 4.34E+05 3.80E+10 3.58E+12 2.65E+12 2.00E+12 1.00E+12 1.00E+12 1.00E+12 1.00E+12 4.82E+13 4.79E+10 2.99E+11 2.85E+11 3.85E+	$\begin{array}{c} 0.0\\ 0.000E+(\\ -0.2\\ 0.0\\ 0.0\\ -0.5\\ 0.0\\ 0.000E+(\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$	$\begin{array}{c} -437.0\\ 00\\ 33460.0\\ 1200.0\\ 1840.0\\ 19540.0\\ 7240.0\\ 2580.0\\ 0.0\\ 0\\ 0\\ 28580.0\\ 9700.0\\ 8282.0\\ 36600.0\\ 29480.0\\ 35710.0\\ 35710.0\\ 3420.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\$
718. 719. 720. 721. 722. 723. 724. 724. 726. 727. 728. 726. 727. 730. 731. 732. 733. 734. 735. 736. 737. 738. 737. 738. 739. 740. 741.	<pre>this reaction will be treated a ch3chco+oco Warningall REV parameters are zero this reaction will be treated are ch3chcho-ch3chco+h Reverse Arrhenius coefficients: ch3chcho+02=ch3choc+ho2 Reverse Arrhenius coefficients: ch3chcho+02=ch3choc+och Warningall REV parameters are zero this reaction will be treated are ch3chcho+lo=ch3choc+och Warningall REV parameters are zero this reaction will be treated are ch3chcho+ho2=ch3choc+och Reverse Arrhenius coefficients: ch3chcho+ho2=ch3choc+hoc Reverse Arrhenius coefficients: pc4h9=sc4h9 pc4h9=sc4h9 pc4h9=sc4h8=1+h pc4h9+o2=ch8=1+h20 pc4h9+c2=ch8=1+h20 pc4h9+c3h5=a=ch8=1+c3h6 pc4h9+c3h5=a=c4h8=1+c3h6 pc4h9+c3h5=a=c4h8=1+c3h6 pc4h9+c3h5=a=c4h8=1+c3h6 pc4h9+c3h5=a=c4h8=1+c3h6 pc4h9+c3h5=a=c4h8=1+c3h6 pc4h9+c3h5=a=c4h8=1+c3h6 pc4h9+c3h5=a=c4h8=1+c3h6 pc4h9+c3h5=c4h8=1+c3h6 pc4h9+c3h5=c4h8=1+c3h6 pc4h9+c3h5=c4h8=1+c3h6 pc4h9+c2h6=1+h sc4h9=sc4h8=1+h sc4h9=sc2c4h8+h sc4h9=c2c4h8+h sc4h9=c2c4h8+h</pre>	s irreversible 3.20E+12 0.000E+00 0.00 s irreversible 1.34E+13 2.72E+11 1.41E+11 2.31E+13 2.72E+11 1.46E+14 3.62E+10 0.000E+00 0.00 s irreversible 9.64E+12 1.31E+19 3.98E+13 4.34E+05 3.80E+10 3.58E+12 2.65E+12 3.70E+16 2.41E+13 2.40E+13 1.25E+13 3.4.79E+10 2.99E+11 2.85E+11 3.35E+20 3.35E+20 3.35E+20 3.35E+20 3.35E+20 3.35E+20 3.35E+20 3.35E+20 3.35E+20 3.35E+20 3.35E+20 3.35E+20 3.35E+20 3.35E+20 3.30E+20 3.35E+20 3.30E+20 3.35E+20 3.30E+20 3.35E+20 3.30E+20 3.35E+20 3.00E+12 3.35E+20 3.35E+20 3.35E+20 3.30E+12 3.35E+20 3.55E+11 3.35E+20 3.55E+11 3.55E+11 3.35E+20 3.55E+11 3.55	$\begin{array}{c} 0.0\\ 0.000E+(\\ -0.2\\ 0.0\\ 0.0\\ -0.5\\ 0.0\\ 0.000E+(\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$	$\begin{array}{c} -437.0\\ 00\\ 33460.0\\ 1200.0\\ 1840.0\\ 19540.0\\ 7240.0\\ 2580.0\\ 0.0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$

74	3. sc4h9+o2=c2c4h8+	ho2		1.85E+16	-1.6	3420.0
74	4. sc4h9+ho2=c4h8-1	+h2o2		2.40E+13	0.0	0.0
74	5. sc4h9+ho2=t2c4h8	+h2o2		2.40E+13	0.0	0.0
74	5. sc4h9+ho2=c2c4h8	+h2o2		2.40E+13	0.0	0.0
74	7. sc4h9+oh=c4h8-1+	h2o		2.40E+13	0.0	0.0
74	3. sc4h9+oh=t2c4h8+	h2o		2.40E+13	0.0	0.0
/4	9. sc4n9+on=c2c4n8+	n20		2.40E+13	0.0	0.0
/5	J. sc4n9+n=c4n8-1+n	2		5.00E+13	0.0	0.0
75	2 = 2224119 + 11 = 12224118 + 11	2		5.00E+13	0.0	0.0
75	$2 \cdot sc4119 + 11 = c2c4118 + 11$	2 + ah 4		1 00E+13	0.0	0.0
75	ac4h9+ch3=t2c4h8	+ch4		1 00E+12	0.0	0.0
75	5 sc4h9+ch3=c2c4h8	+ch4		1 00E+12	0.0	0.0
75	$5 \cdot \text{sc4h9+o=ch3cho+c}$	2h5		4.82E+13	0.0	0.0
75	7. $c_{3h5-a+ch3(+M)=c}$	4h8-1(+M)		1.00E+14	-0.3	-262.3
	Low pressure lim	it: 0.39100E-	+61 -0.12810E+02	0.62500E+04		
	TROE centering:	0.10400E-	+00 0.16060E+04	0.60000E+05	0.611	84E+04
	h2 1	Enhanced by	2.000E+00			
	h2o 1	Enhanced by	6.000E+00			
	ch4	Enhanced by	2.000E+00			
	co	Enhanced by	1.500E+00			
	co2	Enhanced by	2.000E+00			
	c2h6	Enhanced by	3.000E+00			
	ar	Enhanced by	7.000E-01			
75	 c2h3+c2h5(+M)=c4 	h8-1(+M)		1.50E+13	0.0	0.0
	Low pressure 11m.	1t: 0.15500E-	+5/ -0.11/90E+02	0.89845E+04	0 570	2011.04
	ho ho	U.198UUE	2 000E+00	0.60000±+05	0.5/2	326+04
	h2o	Enhanced by	2.000E+00 6.000E+00			
	ch4	Enhanced by	2 000E+00			
	C0	Enhanced by	1 500E+00			
	co2	Enhanced by	2.000E+00			
	c2h6	Enhanced by	3.000E+00			
	ar	Enhanced by	7.000E-01			
75	9. c4h713+h(+M)=c4h	8-1(+M)		1.00E+14	0.0	0.0
	Low pressure lim	it: 0.66500E-	+60 -0.12000E+02	0.59678E+04		
	TROE centering:	0.2000E-	-01 0.10970E+04	0.10970E+04	0.686	00E+04
	h2 1	Enhanced by	2.000E+00			
	h2o 1	Enhanced by	6.000E+00			
	ch4	Enhanced by	2.000E+00			
	co .	Ennanced by	1.500E+00			
	c02	Enhanced by	2.000E+00 2.000E+00			
	22110	Enhanced by	7 000E+00			
76	$c_{4h714+h(+M)=c_{4h}}$	8-1(+M)	7.0001 01	3 60E+13	0 0	0 0
	Low pressure lim	it: 0.30100E-	+49 -0.93200E+01	0.58336E+04	0.0	0.0
	TROE centering:	0.49800E-	+00 0.13140E+04	0.13140E+04	0.500	00E+05
	h2	Enhanced by	2.000E+00			
	h2o 1	Enhanced by	6.000E+00			
	ch4	Enhanced by	2.000E+00			
	co	Enhanced by	1.500E+00			
	co2 1	Enhanced by	2.000E+00			
	c2h6	Enhanced by	3.000E+00			
	ar .	Enhanced by	7.000E-01	1 005 10	0 0	
/6	L. C4n/12+n=C4n8-1	L 0		1.006+13	0.0	0.0
70	2. C4H8-1+H=C4H713+	11Z		1.73E+05	2.5	2492.0
76 76	 c4h8-1+h=c4h712+1 	h2		4.10E+05	2.5	9790 0
76	5. c4h8-1+h=c4h711+	h2		8.20E+05	2.5	12280 0
76	5. c4h8-1+o=c4h713+	oh		8.80E+10	0.7	3250.0
76	7. c4h8-1+o=c4h714+	oh		5.10E+13	0.0	7850.0
76	8. c4h8-1+o=c4h712+	oh		6.00E+10	0.7	7630.0
76	9. c4h8-1+o=c4h711+	oh		1.20E+11	0.7	8960.0
77). c4h8-l+oh=c4h7ll	+h2o		9.01E-01	3.9	1637.9
77	l. c4h8-1+oh=c4h712	+h2o		1.43E+01	3.5	478.1
77	2. c4h8-1+oh=c4h713	+h2o		6.69E+01	3.5	-2802.5
77	3. c4h8-1+oh=c4h714	+h2o		4.28E+01	3.4	-767.0
77	4. c4h8-1+ho2=c4h71	3+h2o2		2.70E+04	0.7	5884.0
77	5. c4h8-1+ho2=c4h71	4+h2o2		2.38E+03	2.5	16490.0

776	. c4h714+hco=c4h8-1+co	6.00E+13	0.0	0.0	
777	. c4h713+ch3o=c4h8-1+ch2o	2.41E+13	0.0	0.0	
778	. c4h8-1+ch3=c4h712+ch4	9.80E-01	3.5	11700.0	
779	. c4h8-1+ch3=c4h711+ch4	1.38E+00	3.5	12900.0	
780	. c4h8-1+ch3=c4h713+ch4	2.21E+00	3.5	5675.0	
781	. c4h8-1+ch3=c4h714+ch4	4.52E-01	3.6	7154.0	
782	. c4h8-1+ch3o=c4h713+ch3oh	4.00E+01	2.9	8609.0	
783	c4h8-1+ch3o=c4h714+ch3oh	2.17E+11	0.0	6458.0	
784	c4h8-1+ch3o2=c4h713+ch3o2h	2 70E+04	0 7	5884 0	
785	c4h8 = 1 + ch3o2 = c4h714 + ch3o2h	2 38F+03	2 5	16490 0	
796	a4b714+a2b4=a4b9=1+a2b3	1 000+11	2.5	15000.0	
700	$a/b_{-1+a}b_{-a/b}7_{+a}b_{-1+a}b_{-$	7 205+11	0.0	5000.0	
700	a4b712+c2b5-c4b9_1+c2b4	7.20E+11	0.0	121 0	
700	- 4h0 12h5 - 4h7122h6	2.39ETIZ	0.0	-131.0	
/89	. C4n8-1+C2n5=C4n/13+C2n6	1.00E+11	0.0	8300.0	
790	. c4n/l4+c2nb=c4n8-l+c2n5	3.00E+13	0.0	12300.0	
791	. c4h8-l+c2h5o2=c4h7l3+c2h5o2h	1.40E+12	0.0	14900.0	
792	. c4h7l3+c3h5-a=c4h8-l+c3h4-a	1.00E+12	0.0	0.0	
793	. c4h8-l+c3h5-a=c4h7l3+c3h6	8.00E+10	0.0	12400.0	
794	. c4h714+c3h6=c4h8-1+c3h5-a	1.00E+11	0.0	9800.0	
795	. c4h8-1+c3h5-s=c4h713+c3h6	8.00E+10	0.0	12400.0	
796	. c4h8-1+c3h5-t=c4h713+c3h6	8.00E+10	0.0	12400.0	
797	. c4h6+c4h714=nc4h5+c4h8-1	6.32E+02	3.1	20010.0	
798	. c4h6+c4h714=ic4h5+c4h8-1	6.32E+02	3.1	18010.0	
799	. c4h8-1+c4h6=c4h713+c4h713	2.35E+12	0.0	46720.0	
800	. c4h7l4+c4h7l4=c4h6+c4h8-1	3.16E+12	0.0	0.0	
801	. c4h714+c4h8-1=c4h8-1+c4h713	1.00E+11	0.0	8300.0	
802	. c4h8-1+o2=c4h713+ho2	2.00E+13	0.0	37190.0	
803	c4h8-1+o=c3h6+ch2o	2 50E+12	0 0	0.0	
804	c4h8-1+o=ch3cho+c2h4	1 25E+13	0.0	850.0	
805	c4h8=1+oh=c2h5cho+ch3	1 378+12	0.0	-1040 0	
205	$a/b_{-1+ch} = a_{2h}^{2h} + a_{2h}^{2h}$	1 270+12	0.0	-1040.0	
907	$a/b_{-1+b-a/b/+a/b}$	1 000+00	1 0	-1040.0	
007	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	1 540.00	1.0	2542.0	
	Rate coefficients at P=1.30E=03(atm)	1.54E+09	1.4	2542.0	
	Rate Coefficients at P=4.00E-02(atm)	7.88E+10	0.9	3599.6	
	Rate Coefficients at P=1.00E+00(atm)	2.6/E+12	0.5	5431.1	
	Rate coefficients at P=1.00E+01(atm)	9.25E+22	-2.6	12898.0	
	Rate coefficients at P=1.00E+02(atm)	1.32E+23	-2.4	16500.0	
	Declared duplicate reaction				
808	. c4h8-1+h=c2h4+c2h5	1.00E+00	1.0	1.0	
	Rate coefficients at P=1.00E+01(atm)	1.24E+05	2.5	3679.1	
	Rate coefficients at P=1.00E+02(atm)	2.51E+03	2.9	3980.9	
	Declared duplicate reaction				
809	. c4h8-1+h=c3h6+ch3	1.00E+00	1.0	1.0	
	Rate coefficients at P=1.30E-03(atm)	1.54E+09	1.4	2542.0	
	Rate coefficients at P=4.00E-02(atm)	7.88E+10	0.9	3599.6	
	Rate coefficients at P=1.00E+00(atm)	2.67E+12	0.5	5431.1	
	Rate coefficients at P=1.00E+01(atm)	9.25E+22	-2.6	12898.0	
	Rate coefficients at P=1 00E+02(atm)	1 32E+23	-2.4	16500 0	
	Declared duplicate reaction				
810	c4h8-1+h=c3h6+ch3	1 00E+00	1 0	1 0	
010	Pate coefficients at D-1 00E+01(atm)	1 2412+05	2 5	2670 1	
	Rate coefficients at P=1.00E+01(atm)	2 5112+03	2.5	2000 0	
	Declared duplicate reaction	2.516+05	2.9	5900.9	
011	-2-4b0 +2-4b0	2 000.12	0.0	C2000 0	
811	. 0.410 215	3.98E+13	0.0	62000.0	
812	. c2c4n8=c3n5-a+cn3	3./5E+66	-15.6	97300.0	
813	$c_{3h5-s+ch3(+m)=c_{2c_{4h8(+m)}}$	5.00E+13	0.0	0.0	
	Low pressure limit: 0.85400E+59 -0.11940E+02	0.97698E+	04		
	TROE centering: 0.17500E+00 0.13406E+04	0.60000E+	05 0.10	0140E+05	
	h2o Enhanced by 6.000E+00				
	co Enhanced by 1.500E+00				
	co2 Enhanced by 2.000E+00				
	ch4 Enhanced by 2.000E+00				
	c2h6 Enhanced by 3.000E+00				
	h2 Enhanced by 2.000E+00				
	c2h2 Enhanced by 3.000E+00				
	c2h4 Enhanced by 3.000E+00				
	ar Enhanced by 7 000E-01				
814	h+c4h713(+m)=c2c4h8(+m)	2 00E+14	0 0	0.0	
011	Low pressure limit: 0 13300F+61 -0 12000F+02	0 596795+	04	0.0	
		0.00000	~ -		

	TROE centering: h2 h2 co ch4 co co2 c2h6 ar	0.20000E- Enhanced by Enhanced by Enhanced by Enhanced by Enhanced by	01 0.10970E+04 2.000E+00 6.000E+00 2.000E+00 1.500E+00 2.000E+00 3.000E+00 7.000E+00	0.10970E+04	0.68	500E+04
815.	c2c4h8+h=c4h713	+h2		4.44E+04	2.8	4414.0
816.	c2c4h8+oh=c4h71	3+h2o		1.26E+14	0.0	3057.0
817.	c2c4h8+ch3=c4h7	13+ch4		7.14E+00	3.6	7642.0
818. 910	$c_{2}c_{4}h_{8+0}=c_{4}h_{71}^{2}$	13+n202		5.94E+04 2 10F+11	2.6	7550 0
820.	c2c4h8+c4h713=c	4h8-1+c4h713		3.98E+13	0.0	15800.0
821.	c2c4h8+c4h713=t	2c4h8+c4h713		3.98E+13	0.0	15800.0
822.	c2c4h8+h=c4h722	+h2		8.20E+05	2.5	9790.0
823.	c2c4h8+o=c4h722	+oh		1.20E+11	0.7	7630.0
824.	c2c4h8+oh=c4h72	2+h2o 22+ab4		2.20E+06	2.0	1450.0
826.	c2c4h8+oh=c2h5+	ch3cho		2.74E+12	0.0	-1040.0
827.	sc4h9+c4h713=c2	c4h8+t2c4h8		4.33E+14	-0.8	-130.0
828.	sc4h9+c4h713=c2	c4h8+c2c4h8		4.33E+14	-0.8	-130.0
829.	c2c4h8+o2=c4h71	3+ho2		4.00E+13	0.0	39390.0
830.	c2c4h8+o=ch3co+	c2h5		2.17E+05	2.3	-1050.0
832.	c2c4h8+o=ch3cho	+c2h4		3.25E+05	2.3	-1050.0
833.	c2c4h8+h=c3h6+cl	h3		1.00E+00	1.0	1.0
	Rate coefficien	ts at P=1.30E-0	3(atm)	3.08E+09	1.4	2542.0
	Rate coefficien	ts at P=4.00E-0	2(atm)	1.58E+11 (0.9	3599.6
	Rate coefficien	ts at P=1.00E+0	U(atm)	5.34E+12 ().5) 6	5431.1 12000 0
	Rate coefficien	ts at P=1.00E+0	2(atm)	2.64E+23 -2	2.0	16500.0
	Declared duplica	ate reaction	,,			
834.	c2c4h8+h=c3h6+c	h3		1.00E+00	1.0	1.0
	Rate coefficien	ts at P=1.00E+0	1(atm)	2.48E+05	2.5	3679.1
	Rate coefficien	ts at P=1.00E+0	2(atm)	4.02E+03	2.9	3980.9
835.	c2c4h8=c4h6+h2	ace reaction		1.00E+13	0.0	65500.0
836.	t2c4h8=c3h5-a+cl	h3		3.75E+66 -	15.6	97300.0
837.	c3h5-s+ch3(+m) =	t2c4h8(+m)		5.00E+13	0.0	0.0
	Low pressure li	mit: 0.85400E+	59 -0.11940E+02	0.97698E+04	0 10	405.05
	TRUE centering: h2	U.1/500E+ Enhanced by	2 000E+00	0.60000E+05	0.10.	1401405
	h2o	Enhanced by	6.000E+00			
	ch4	Enhanced by	2.000E+00			
	co	Enhanced by	1.500E+00			
	CO2	Enhanced by	2.000E+00 2.000E+00			
	ar	Enhanced by	7.000E-01			
	c2h4	Enhanced by	3.000E+00			
838.	h+c4h713(+m)=t2	c4h8(+m)		2.00E+14	0.0	0.0
	Low pressure li	nit: 0.13300E+	61 -0.12000E+02	0.59678E+04	0 6 9 1	500E 04
	h2	Enhanced by	2.000E+00	0.109708+04	0.686	500E+04
	h2o	Enhanced by	6.000E+00			
	ch4	Enhanced by	2.000E+00			
	co	Enhanced by	1.500E+00			
	co2	Enhanced by	2.000E+00			
	c2116 ar	Enhanced by	7.000E+00			
839.	t2c4h8+h=c4h713	+h2		4.44E+04	2.8	4414.0
840.	t2c4h8+oh=c4h71	3+h2o		5.10E+08	1.4	1250.0
841.	t2c4h8+ch3=c4h7	13+ch4		7.14E+00	3.6	7642.0
842. 843	t2c4h8+o=c4h713	13711202 +oh		3.94±+04 2.19E+11	∠.o 0.8	1014U.U 7550 0
844.	sc4h9+c4h713=t2	c4h8+t2c4h8		4.33E+14	-0.8	-130.0
845.	t2c4h8+c4h713=c	4h8-1+c4h713		3.98E+13	0.0	15800.0
846.	t2c4h8+h=c4h722	+h2		8.20E+05	2.5	9790.0
847.	t2c4h8+o=c4h722	+on		1.20E+11	υ.7	7630.0

848.	t2c4h8+oh=c4h722+h2o	2.20E+06	2.0	1450.0
849.	t2c4h8+ch3=c4h722+ch4	1.96E+00	3.5	11700.0
850.	t2c4h8+o2=c4h713+ho2	4.00E+13	0.0	39390.0
851.	t2c4h8+o=ch3co+c2h5	2.17E+05	2.3	-1050.0
852.	t2c4h8+o=ch3chcho+ch3	1.81E+05	2.3	-1050.0
853.	t2c4h8+o=ch3cho+c2h4	3.25E+05	2.3	-1050.0
854.	t2c4h8+h=c3h6+ch3	1.00E+00	1.0	1.0
	Rate coefficients at P=1.30E-03(atm)	3.08E+09	1.4	2542.0
	Rate coefficients at P=4.00E-02(atm)	1.58E+11	0.9	3599.6
	Rate coefficients at P=1.00E+00(atm)	5.34E+12	0.5	5431.1
	Rate coefficients at P=1.00E+01(atm)	1.85E+23	-2.6	12898.0
	Rate coefficients at P=1.00E+02(atm)	2.645+23	-2.4	16500.0
055	Declared duplicate reaction	1 005.00	1 0	1 0
855.	t2c4n8+n=c3n6+cn3	1.00E+00	1.0	1.0
	Rate coefficients at P=1.00E+01(atm)	2.48E+05	2.5	36/9.1
	Rate coefficients at P=1.00E+02(atm)	4.021+03	2.9	3980.9
0 5 6	tarea auplicate reaction	2 745.12	0 0	1040 0
957	a4b714-a2b4+a2b3	2.745+12 9 77F+12	_0.0	26290 0
959	c4H714=c2H4+c2H5	0.77E+12	-0.2	30290.0
859	c4h714+n=c4h6+nb	4 00F+13	0.0	0.0
860	c4h714+oh=c4h6+h2o	4 00E+13	0.0	0.0
861	c4h714+bn2=c4b6+b2n2	1 80F+12	0.0	0.0
862	c4h714+ch3=c4h6+ch4	1 10E+13	0.0	0.0
863	c4h714+c2h3=c4h6+c2h4	4 00E+12	0.0	0.0
864.	c4h714+c2h5=c4h6+c2h6	4.00E+12	0.0	0.0
865.	c4h714+c3h3=c4h6+c3h4-p	4.00E+12	0.0	0.0
866.	c4h714+c3h3=c4h6+c3h4-a	4.00E+12	0.0	0.0
867.	c4h714+c3h5-a=c4h6+c3h6	6.30E+12	0.0	0.0
868.	c4h714+o2=c4h6+ho2	1.02E+12	0.0	22654.0
869.	c4h714+ho2=>c3h5-a+ch2o+oh	1.00E+12	0.0	0.0
870.	c4h714+h=ch3+c3h5-a	2.00E+21	-2.0	11000.0
871.	c4h713(+M)=c4h6+h(+M)	4.70E+08	1.3	44697.6
	Low pressure limit: 0.46000E-36 0.15370E+02	-0.60310E+	03	
	h2 Enhanced by 2.000E+00			
	h2o Enhanced by 6.000E+00			
	ch4 Enhanced by 2.000E+00			
	co Enhanced by 1.500E+00			
	co2 Enhanced by 2.000E+00			
	c2h6 Enhanced by 3.000E+00			
872.	C4n/13+nO2=C4n6+n2O2	1.00E+12	0.0	0.0
8/3.	C4n/13+on=C4nb+n20	6.00E+12	0.0	0.0
8/4.	c411/13+01=c411612+1120	0.00E+12	0.0	0.0
976	c4H712+b=c4H6+b2	2 16F+12	0.0	0.0
877	c4h713+h=c4h612+h2	1 80F+13	0.0	0.0
878	c4h714+h=c4h713+h	1 00E+13	0.0	0.0
879	c4h713+ch3=c4h6+ch4	1 00E+13	0.0	0.0
880.	c4h713+ch3=c4h612+ch4	1.00E+13	0.0	0.0
881.	c4h713+c2h3=c4h6+c2h4	3.98E+12	0.0	0.0
882.	c4h713+c2h3=c4h612+c2h4	1.00E+13	0.0	0.0
883.	c4h713+c2h5=c4h6+c2h6	4.00E+12	0.0	0.0
884.	c4h713+c3h3=c4h6+c3h4-p	4.00E+12	0.0	0.0
885.	c4h713+c3h3=c4h6+c3h4-a	4.00E+12	0.0	0.0
886.	c4h713+c3h5-a=c4h6+c3h6	6.30E+12	0.0	0.0
887.	c4h713+o2=c4h6+ho2	1.00E+09	0.0	0.0
888.	c4h7l3+ho2=>c2h3cho+ch3+oh	7.00E+12	0.0	-1000.0
889.	c4h713+ho2=>c2h3+ch3cho+oh	7.00E+12	0.0	-1000.0
890.	c4h713+ho2=>ch2o+c3h5-s+oh	7.00E+12	0.0	-1000.0
891.	c4h7l3+o=c2h3cho+ch3	6.03E+13	0.0	0.0
892.	c4h7l3+ho2=c4h7o+oh	9.64E+12	0.0	0.0
893.	c4h7l3+ch3o2=c4h7o+ch3o	9.64E+12	0.0	0.0
894.	c4n/13+c2n5o2=c4h7o+ch3ch2o	3.80E+12	0.0	-1200.0
895.	c4h712=butyne+h	4.00E+12	0.0	38000.0
896.	C4II/12+02=>C2D5C0+CD20	4.6UE+16	-1.4	1010.0
897.	C411/12=C3114-A+CD3	9.59E+14	-0.7	31260.0
898. 800	$C_{11}/11 = C_{11}/C_{11}$	1.0/E+15 4.60F+16	-U.6	3U3∠U.U 1010 0
099.			-1.4	1010.0
900	$c_{4h'}/1_{1+ch'}/c_{-c_{4h}}/c_{-1+hco}$	5 4 7 6 + 1 2	, y	5862.0

901.	c4h722=c3h4-p+ch3	6.33E+10	0.5	30020.0
902.	c4h7o=ch3cho+c2h3	7.94E+14	0.0	19000.0
903.	c4h7o=c2h3cho+ch3	7.94E+14	0.0	19000.0
904.	c3h3+ch3=butyne	5.00E+12	0.0	0.0
905.	butyne+ho2=nc4h5+h2o2	5.00E+11	0.0	17000.0
906.	butyne+ho2=ic4h5+h2o2	5.00E+11	0.0	17000.0
907.	butyne+oh=nc4h5+h2o	2.60E+02	3.0	200.0
908	butyne+oh=ic4h5+h2o	2 60E+02	3 0	200 0
900.	butyme+oh=ch2co+c2h5	4 00F=04	4 5	-1000 0
910	butyne+o=c3b6+co	2 00E+13	0 0	1660 0
911	butyme+b=c3b4=a+cb3	1 30E+05	2 5	1000.0
912	$h_{\rm type+h=c2h5+c2h2}$	6 50E+04	2.5	1000.0
913	butyme+b=ic4b5+b2	6 50F+13	0.0	9400 0
01/	butyme+h=ng/h5+h2	6 508+12	0.0	9400.0
915	butyme+ch3=ic4h5+ch4	1 00F+14	0.0	19500.0
016	butyme+ch2=nc4h5+ch4	1 00E+14	0.0	19500.0
017	butyme=c4b612	2 505-12	0.0	£5000.0
917.	butyme=c411012	2.50E+15 1 00E+07	2.0	2000.0
010	butyne+on=cnschccn+nzo	2.00E+07	2.0	2000.0
919.	butym2=c4h612	3.00E+13 2.00E+13	0.0	63000.0
920.	butyn2=c4n612	3.00E+13	0.0	67000.0
921.	buty112+11=C411612+11	2.00E+13	0.0	4000.0
922.	butyn2+n=C4n5-2+n2	3.408+05	2.5	2490.0
923.	butyn2+n=c3n4-p+cn3	2.608+05	2.5	1000.0
924.	butynz=c4n5-z+n	5.008+15	0.0	8/300.0
925.	butyn2+cn3=c4n5-2+cn4	1.40E+14	0.0	18500.0
926.	C4n612=C4n6	2.50E+13	0.0	63000.0
927.	c4h6+o=nc4h5+oh	7.50E+06	1.9	3740.0
928.	c4h6+o=1c4h5+oh	7.50E+06	1.9	3740.0
929.	c4h6+o=sc3h5co+h	1.50E+08	1.4	-860.0
930.	c4h6+o=c2h3chcho+h	4.50E+08	1.4	-860.0
931.	c4h6+oh=nc4h5+h2o	6.20E+06	2.0	3430.0
932.	c4h6+oh=ic4h5+h2o	3.10E+06	2.0	430.0
933.	c4h6+ch3=nc4h5+ch4	4.00E+14	0.0	22800.0
934.	c4h6+ch3=ic4h5+ch4	2.00E+14	0.0	22800.0
935.	c4h6+c2h3=nc4h5+c2h4	5.00E+13	0.0	22800.0
936.	c4h6+c2h3=ic4h5+c2h4	2.50E+13	0.0	19800.0
937.	c4h6+c3h3=nc4h5+c3h4-a	1.00E+13	0.0	22500.0
938.	c4h6+c3h3=ic4h5+c3h4-a	5.00E+12	0.0	19500.0
939.	c4h6+c3h5-a=nc4h5+c3h6	1.00E+13	0.0	22500.0
940.	c4h6+c3h5-a=ic4h5+c3h6	5.00E+12	0.0	19500.0
941.	c4h6+h=c3h4-p+ch3	2.00E+12	0.0	7000.0
942.	c4h6+h=c3h4-a+ch3	2.00E+12	0.0	7000.0
943.	c2h3cho+c2h3=c4h6+hco	2.80E+21	-2.4	14720.0
944.	c4h6=c4h4+h2	2.50E+15	0.0	94700.0
945.	c4h6+c2h3=c6h6+h2+h	5.62E+11	0.0	3240.0
946.	c4h6+oh=hoc4h6	1.84E+12	0.0	-1170.0
	Declared duplicate reaction			
947.	c4h6+oh=hoc4h6	5.70E+12	0.0	-570.0
	Declared duplicate reaction			
948.	hoc4h6=>c2h3choch2+h	5.00E+15	0.0	28000.0
949.	hoc4h6+o2=c2h3cho+ch2o+oh	1.00E+09	0.0	30.0
950.	c4h6+ho2=c4h6o25+oh	1.20E+12	0.0	14000.0
951.	c4h6+ho2=c2h3choch2+oh	4.80E+12	0.0	14000.0
952.	c2h3choch2=c4h6o23	2.00E+14	0.0	50600.0
953.	c4h6o23=sc3h5cho	1.95E+13	0.0	49400.0
954.	c4h6o23=c2h4+ch2co	5.75E+15	0.0	69300.0
955.	c4h6o23=c2h2+c2h4o1-2	1.00E+16	0.0	75800.0
956.	c4h6o25=c4h4o+h2	5.30E+12	0.0	48500.0
957.	c4h4o=co+c3h4-p	1.78E+15	0.0	77500.0
958.	c4h4o=c2h2+ch2co	5.01E+14	0.0	77500.0
959.	c4h6+oh<=>c2h5+ch2co	1.00E+12	0.0	0.0
960.	c4h6+oh<=>ch2o+c3h5-a	1.00E+12	0.0	0.0
961.	c4h6+oh<=>c2h3+ch3cho	1.00E+12	0.0	0.0
962.	c4h6+o<=>c2h4+ch2co	1.00E+12	0.0	0.0
963.	c4h6+o<=>ch2o+c3h4-a	1.00E+12	0.0	0.0
964.	c4h612+h=c3h4-a+ch3	2.00E+13	0.0	2000.0
965.	c4h612+h=c3h4-p+ch3	2.00E+13	0.0	2000.0
966.	c4h612=ic4h5+h	4.20E+15	0.0	92600.0
967.	c4h612+h=c4h6+h	2.00E+13	0.0	4000.0

968.	c4h612+h=ic4h5+h2		1.70E+05	2.5	2490.0	
969.	c4h612+ch3=ic4h5+ch4		7.00E+13	0.0	18500.0	
970.	c4h612+o=ch2co+c2h4		1.20E+08	1.6	327.0	
971.	c4h6l2+o=ic4h5+oh		1.80E+11	0.7	5880.0	
972.	c4h612+oh=ic4h5+h2o		3.10E+06	2.0	-298.0	
973.	c4h612+oh=ch3ccch2+h2o		1.00E+07	2.0	2000.0	
974.	c4h612+oh=ch3chcch+h2o		2.00E+07	2.0	2500.0	
975.	c4h612+h=ch3ccch2+h2		1.50E+07	2.0	6000.0	
976.	c4h612+h=ch3chcch+h2		3.00E+07	2.0	6500.0	
977.	c2h3choch2=>c3h6+co		2.00E+13	0.0	57000.0	
978	c2h3choch2=>c2h4+ch2co		5 00F+14	1 0	78000.0	
979	c2h3choch2+o=>ch2cho+ch2cho		1 20E+08	1 4	530 0	
980	c2h3choch2+oh=>ch2co+c2h3+h2o		2 02F+13	0.0	5955 0	
900.	a2h2ahaah2+ha2=>ah2aha+ah2aha+ah		1 000+12	0.0	14964 0	
001.	a2h2ahaah2+h=>a4h5a+h2		1 1001+12	1 2	2405 0	
002.	a2h2ahaah2+ah=>a4hEa+h2a		1.10E+09	1.2	1112 0	
203.	-2h2-hh2-h-24h5h2-2		2.35ETIU	0.7	10700.0	
984.	C2II3CHOCH2+HO2=>C4H5O+H2O2		1.70E+12	0.0	1000.0	
985.	C2II3CHOCH2+0=>C4II50+0H		5.85E+12	0.0	1808.0	
986.	c2n3cnocn2+cn3=>c4n5o+cn4		1.70E+12	0.0	8440.0	
987.	c2h3choch2+c2h3=>c4h5o+c2h4		1.70E+12	0.0	8440.0	
988.	c2h3choch2+c3h5-a=>c4h5o+c3h6		1.70E+12	0.0	8440.0	
989.	c4h5o+h=>c2h3choch2		5.00E+12	0.0	0.0	
990.	c4h5o+o2=>c2h3cho+co+oh		1.00E+12	0.0	25000.0	
991.	c4h5o=>ch2co+c2h3		1.00E+15	0.0	65000.0	
992.	c4h5o=>co+c2h2+ch3		1.00E+15	0.0	65000.0	
993.	c4h5o=>co+c3h5-a		5.00E+14	0.0	60000.0	
994.	ic4h5+h=c4h4+h2		3.00E+13	0.0	0.0	
995.	ic4h5+h=c3h3+ch3		2.00E+13	0.0	2000.0	
996.	ic4h5+oh=c4h4+h2o		4.00E+12	0.0	0.0	
997.	ic4h5+hco=c4h6+co		5.00E+12	0.0	0.0	
998.	ic4h5+ho2=c4h6+o2		6.00E+11	0.0	0.0	
999.	ic4h5+ho2=ch2co+c2h3+oh		6.60E+12	0.0	0.0	
1000.	ic4h5+h2o2=c4h6+ho2		1.21E+10	0.0	-596.0	
1001.	ic4h5+o2=ch2co+ch2cho		2.16E+10	0.0	2500.0	
1002.	ic4h5+o2=c2h3co+ch2o		2.00E+11	0.0	14000.0	
1003	ic4h5+o=>ch2co+c2h3		1 00E+13	0 0	2000 0	
1004.	ic4h5+ch2o=c4h6+hco		4.00E+12	0.0	8840.0	
1005	nc4h5+o=>c3h5-a+co		1 00E+13	0 0	2000 0	
1006	nc4h5+ch2o=c4h6+hco		4 00F+12	0.0	8840 0	
1007	nc4h5+b=c4h4+b2		1.50E+12	0.0	0.0	
1007.	ng4b5+ob=g4b4+b2o		2 008+12	0.0	0.0	
1000.	nc4h5+bao-a4b6+ao		2.00E+12 E 00E+12	0.0	0.0	
1010	nc4h5+hc2=c4h2+cb2cc+cb		5.00E+12	0.0	0.0	
1010.	11C4115+1102=C2115+C112C0+011		1 01D.10	0.0	0.0 FOC 0	
1011.	1124115+11202=24116+1102		1.216+10	0.0	-596.0	
1012.	11C4115+11O2=C4116+O2		0.00E+11	0.0	11 0	
1013.	nc4n5+o2=c2n3cncno+o		3.00E+11	0.3	11.0	
1014.	nc4n5+o2=c2n3cno+nco		9.20E+16	-1.4	1010.0	
1015.	c4h5-2=1c4h5		1.50E+67	-16.9	59100.0	
1016.	1c4h5+h=c4h5-2+h		3.10E+26	-3.4	17423.0	
1017.	c4h5-2+ho2=oh+c2h2+ch3co		8.00E+11	0.0	0.0	
1018.	c4h5-2+o2=ch3co+ch2co		2.16E+10	0.0	2500.0	
1019.	c4h5-2+c2h2=c6h6+h		5.00E+14	0.0	25000.0	
1020.	c4h5-2+c2h4=cpd+ch3		5.00E+14	0.0	25000.0	
1021.	ch3chcch+h=ch3+c3h3		1.00E+14	0.0	0.0	
1022.	ch3chcch+oh=c4h4+h2o		3.00E+13	0.0	0.0	
1023.	ch3chcch(+M)=c4h4+h(+M)		1.00E+13	0.0	49000.0	
	Low pressure limit: 0.20000E+15	0.00000E+00	0.41000E+0)5		
1024.	ic4h5+h=ch3ccch2+h		3.00E+13	0.0	0.0	
1025.	ch3ccch2+h=ch3+c3h3		1.00E+14	0.0	0.0	
1026.	ch3ccch2+o2=ch3co+ch2co		4.16E+10	0.0	2510.0	
1027.	ch3ccch2+h=h2cccch2+h2		1.00E+14	0.0	8000.0	
1028.	ch3ccch2+oh=h2cccch2+h2o		1.00E+13	0.0	0.0	
1029.	ch3ccch2(+M)=h2cccch2+h(+M)		1.00E+13	0.0	56000.0	
	Low pressure limit: 0.20000E+15	0.00000E+00	0.48000E+0)5		
1030.	c2h+c2h3=c4h4		1.00E+14	0.0	0.0	
1031	c4h4+M=c2h2+c2h2+M		5.60E+19	0.0	84500.0	
1032	c4h4+M=c4h2+h2+M		2.40E+19	0.0	84500.0	
1033	c4h4+o2=nc4h3+ho2		1.00E+13	0.0	63200.0	
1034	c4h4+o2=ic4h3+ho2		1 00E+13	0 0	44640 0	
			2.002.10	0.0		

1035. 1036. 1037. 1038. 1039. 1040. 1041. 1042. 1043. 1044. 1045. 1044. 1045. 1046. 1047. 1048. 1049. 1050.	$\begin{array}{c} c4h4+ho2=nc4h3+l\\ c4h4+ho2=ic4h3+l\\ c4h4+ho2=c3h3+hl\\ c4h4+ho=c3h3+ha2\\ c4h4+h=nc4h3+h2\\ c4h4+h=ic4h3+h2\\ c4h4+h=ic4h3+h2\\ c4h4+o=i3h3+hc\\ c4h4+o=i3h3+hc\\ c2h4+c2h=c4h4+h\\ h2ccch2+h=ic4h3+h2ccch2+h=ic4h3+h2ccch2+h=ic4h3+h2ccch2+h=ic4h3+h2ccch2+h=ic4h3+h2ccch2+h=ic4h3+h2ccch2+h=ic4h3+hc=c3h3+ccc)\\ nc4h3+ok=c3h3+ccc3h2(c2h3+c2k)=c3h3+ccc3h2+cc3h3+ccc3h3+ccc3h3+ccc)\\ ic4h3+ok=c3h3+ccc3h3+c$	h2o2 h2o2 co+oh o 20 20 h3+h2o 3+h2 +h2o +ch2co +h2o 4-a+c2h 4h3		2.00E+11 1.00E+11 3.00E+13 6.65E+05 3.33E+05 3.33E+05 3.10E+07 1.55E+07 6.00E+08 1.20E+13 2.00E+07 3.00E+07 4.00E+12 7.86E+16 2.00E+13	0.0 0.0 0.0 2.5 2.0 2.0 1.4 0.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0	$\begin{array}{c} 12600.0\\ 9920.0\\ 8000.0\\ 1810.0\\ 12240.0\\ 9240.0\\ 3430.0\\ 430.0\\ -860.0\\ 0.0\\ 2000.0\\ 6000.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ $
1052.	h+nc4h3=>c2h2+c2	2h2		2.00E+19 ·	-1.6	2220.0
1053.	c2h2+c2h2=>h+ic	4h3		6.00E+13	0.0	41600.0
1054.	h+ic4h3=>c2h2+c2	2h2		3.00E+19 ·	-1.6	2800.0
1055.	1C4II3+0=II2C40+II			2.00E+13 6.00E+13	0.0	0.0
1057	ic4h3(+M)=c4h2+h2	h (+M)		1 00E+14	0.0	55000 0
1057.	Low pressure li	mit: 0.25000E+1	16 0.00000E+00	0.48000E+05	0.0	55000.0
1058.	nc4h3(+M)=c4h2+h	h(+M)		1.00E+14	0.0	36000.0
	Low pressure lin	mit: 0.10000E+1	L5 0.00000E+00	0.30000E+05		
1059.	$c2h2+c2h(+M)=nc^{4}$	4h3(+M)		8.30E+10	0.9	-363.0
	Low pressure lin	mit: 0.12400E+3	32 -0.47180E+01	0.18710E+04		
	TROE centering:	0.10000E+0	0.10000E+03	0.56130E+04	0.133	87E+05
	h2	Enhanced by	2.000E+00			
	h2o	Enhanced by	6.000E+00			
	ch4	Enhanced by	2.000E+00			
	co	Enhanced by	1.500E+00			
	C02	Enhanced by	2.000E+00 2.000E+00			
	c2h2	Enhanced by	2 500E+00			
	c2h4	Enhanced by	2.500E+00 2.500E+00			
1060.	c2h2+c2h(+M)=ic	4h3(+M)	210002100	8.30E+10	0.9	-363.0
	Low pressure lin	mit: 0.12400E+3	32 -0.47180E+01	0.18710E+04		
	TROE centering:	0.10000E+0	0.10000E+03	0.56130E+04	0.133	87E+05
	h2	Enhanced by	2.000E+00			
	h2o	Enhanced by	6.000E+00			
	ch4	Enhanced by	2.000E+00			
	CO	Enhanced by	1.500E+00			
	co2	Enhanced by	2.000E+00			
	c2h6	Enhanced by	3.000E+00			
	c2n2	Enhanced by	2.500E+00			
1061	b2c4o+ob=cb2co+b	haco	2.5006+00	1 00F+07	2 0	2000 0
1062.	h2c40+b=c2h2+bc0	0		5.00E+13	0.0	3000.0
1063.	o+h2c4o=c2o+ch2o	co		2.00E+07	1.9	200.0
1064.	ch+c3h2=h+c4h2			5.00E+13	0.0	0.0
1065.	c2h+c2h2=h+c4h2			3.00E+14	0.0	0.0
1066.	c4h2+oh=h2c4o+h			6.66E+12	0.0	-410.0
1067.	c4h2+o=c3h2+co			1.20E+12	0.0	0.0
1068.	$h+c4h(+m)=c4h2(\cdot$	+m)		1.00E+17	-1.0	0.0
	Low pressure lin	mit: 0.37500E+3	34 -0.48000E+01	0.19000E+04		
	ch4	U.040UUE+U	2 000E+00	0.131506+04		
	c2h6	Enhanced by	3.000E+00			
	CO	Enhanced by	1.500E+00			
	co2	Enhanced by	2.000E+00			
	h2	Enhanced by	2.000E+00			
	h2o	Enhanced by	6.000E+00			
	ar	Enhanced by	7.000E-01			
1069.	o+c4h=c2h+c2o			5.00E+13	0.0	0.0
1070.	c4h+o2=c2o+hcco			5.00E+13	0.0	1500.0
1071.	c4h+h2=h+c4h2	. 1.		4.90E+05	2.5	560.0
10/2.	nc3n/cno=nc3h7co	11+0		5.008+15	υ.υ	85000.0

1073.	nc3h7cho=>nc3h7+hco	6.00E+14	0.0	79100.0
1074.	nc3h7cho=pc2h4cho+ch3	1.00E+17	0.0	84650.0
1075.	nc3h7cho=c2h5+ch2cho	1.58E+17	0.0	80280.0
1076.	nc3h7cho+o2=nc3h7co+ho2	3.00E+13	0.0	39150.0
1077.	nc3h7cho+h=nc3h7co+h2	4.10E+09	1.2	2405.0
1078.	nc3h7cho+o=nc3h7co+oh	5.85E+12	0.0	1808.0
1079.	nc3h7cho+oh=nc3h7co+h2o	2.35E+10	0.7	-1113.0
1080.	nc3h7cho+ho2=nc3h7co+h2o2	3.10E+12	0.0	11920.0
1081.	nc3h7cho+ch3=nc3h7co+ch4	1.70E+12	0.0	8440.0
1082.	nc3n/cno+nco=nc3n/co+cn2o	1./UE+12	0.0	8440.0
1083.	nc3n/cno+cn3o=nc3n/co+cn3on	1.15E+11 1.00E+12	0.0	1280.0
1004.	ng2h7cho+g2h5=ng2h7co+g2h6	1.70E+12	0.0	9300.0
1005.	ng2h7cho+g2h2=ng2h7co+g2h4	1.70E+12	0.0	8440.0
1087	nc3h7co=ch2co+c2h5	2 74F+09	1 4	35830 0
1088	nc3h7co+m=nc3h7+co+m	8 64F+15	0.0	14400 0
1089	ic3h7cho+ho2=ic3h7co+h2o2	3 00E+12	0.0	11920 0
1005.	Reverse Arrhenius coefficients:	7.71E+12	-0.3	11990.0
1090.	ic3h7cho+ho2=tc3h6cho+h2o2	8.00E+10	0.0	11920.0
	Reverse Arrhenius coefficients:	3.37E+12	-0.4	11050.0
1091.	ic3h7cho+ch3=ic3h7co+ch4	3.98E+12	0.0	8700.0
	Reverse Arrhenius coefficients:	2.32E+13	-0.1	25630.0
1092.	ic3h7cho+o=ic3h7co+oh	7.18E+12	0.0	1389.0
	Reverse Arrhenius coefficients:	7.05E+11	-0.1	15740.0
1093.	ic3h7cho+o2=ic3h7co+ho2	4.00E+13	0.0	37600.0
	Reverse Arrhenius coefficients:	1.62E+11	0.3	-3432.0
1094.	ic3h7cho+oh=ic3h7co+h2o	2.41E+12	0.0	-781.0
	Reverse Arrhenius coefficients:	2.33E+12	-0.1	30820.0
1095.	ic3h7cho+oh=tc3h6cho+h2o	1.68E+12	0.0	-781.0
	Reverse Arrhenius coefficients:	1.19E+13	-0.1	29810.0
1096.	ic3h7cho+h=ic3h7co+h2	2.60E+12	0.0	2600.0
	Reverse Arrhenius coefficients:	1.00E+00	0.0	0.0
1097.	ic3h7cho=ic3h7+hco	1.13E+17	0.0	79760.0
	Reverse Arrhenius coefficients:	1.81E+13	0.0	0.0
1098.	1c3h/cho=tc3h6cho+h	2.30E+18	-0.9	92000.0
1000	Reverse Arrhenius coefficients:	2.00E+14	0.0	0.0
1099.	10311/010+011=10316010+1120	3.126+06	2.0	-298.0
1100	ig2h7ghotho2=ig2h6ghoth2o2	0.396+05	2.0	19130.0
1100.	Powerse Arrhenius coefficients:	2.745+04	2.5	2469 0
1101	ic3h7co=ic3h7+co	1 43F+13	2.2	10950 0
1101.	Reverse Arrhenius coefficients:	1 50F+11	0.0	4810 0
1102.	tc3h6cho=ic3h5cho+h	2.88E+16	-0.6	41280.0
	Reverse Arrhenius coefficients:	1.30E+13	0.0	1200.0
1103.	tc3h6cho=ic3h6co+h	8.88E+16	-0.7	44350.0
	Reverse Arrhenius coefficients:	1.30E+13	0.0	4800.0
1104.	tc3h6cho+h2=ic3h7cho+h	2.16E+05	2.4	18990.0
	Reverse Arrhenius coefficients:	1.32E+05	2.5	3550.0
1105.	tc3h6cho+ch2o=ic3h7cho+hco	2.52E+08	1.9	18190.0
	Reverse Arrhenius coefficients:	1.23E+07	2.0	17420.0
1106.	tc3h6cho+o2=ic3h5cho+ho2	2.72E-19	0.0	7240.0
	Reverse Arrhenius coefficients:	1.39E+11	-0.2	17310.0
1107.	tc3h6cho+o2=ch3coch3+co+oh	3.62E-20	0.0	0.0
	Warningall REV parameters are zero	0.000E+00 0.00	0.000E+0	00
	this reaction will be treated a	as irreversible		
1108.	tc3h6cho+ho2=ic3h7cho+o2	3.68E+12	0.0	1310.0
	Reverse Arrhenius coefficients:	1.24E+14	-0.2	43350.0
1109.	tc3h6cho+ch3=1c3h5cho+ch4	3.01E+12	-0.3	-131.0
1110	Reverse Arrnenius coefficients:	2.215+15	-0.8	6/900.0
1110.	1C3H6C0+OH=1C3H7+CO2	1./36+12	0.0	-1010.0
1111	ia2h6ao, bria2h7, ao	2.58E+14 4 40E+12	-0.4	1450.0
1111.	Marning all PEV parameters are sero	4.406+12	0.0	1459.0
	this reaction will be treated	a irreversible	0.0005+0	
1112	ic3h6co+o=ch3coch3+co	3.20E+12	0.0	-437.0
	Warningall REV parameters are zero	0.000E+00 0.00	0.000E+0	10
	this reaction will be treated a	as irreversible		-
1113.	ic3h6cho=c3h6+hco	1.03E+15	-0.6	23170.0
	Reverse Arrhenius coefficients:	1.00E+11	0.0	7800.0

1114.	ic3h6cho=c2h3cho+ch3	2.42E+13	-0.3	22470.0
	Reverse Arrhenius coefficients:	1.00E+11	0.0	7800.0
1115.	ic3h5cho+oh=ic3h5co+h2o	1.07E+13	0.0	-348.0
	Warningall REV parameters are zero 0	.000E+00 0.00	0.000E+00)
	this reaction will be treated as	irreversible		
1116.	1c3h5cho+ho2=1c3h5co+h2o2	1.00E+12	0.0	11920.0
1117	Reverse Arrhenius coefficients:	3./6E+12 2.00F.12	-0.3	12000.0
111/.	IC3N5CN0+CN3=IC3N5C0+CN4	3.98E+12 1 E2E,12	0.0	8700.0
1110	ig2bEgboto-ig2bEgotob	1.52E+13 7 19F+12	0.0	25570.0
1110.	Reverse Arrhenius coefficients:	4 61F+11	0.0	15680 0
1119.	ic3h5cho+o2=ic3h5co+ho2	2.00E+13	0.0	40700.0
	Reverse Arrhenius coefficients:	5.31E+10	0.3	-394.0
1120.	ic3h5cho+h=ic3h5co+h2	2.60E+12	0.0	2600.0
	Reverse Arrhenius coefficients:	3.80E+11	0.0	18990.0
1121.	ic3h5co=c3h5-t+co	4.78E+12	0.0	27470.0
	Reverse Arrhenius coefficients:	1.51E+11	0.0	4809.0
1122.	sc3h5cho=c3h6+co	3.90E+14	0.0	69000.0
1123.	sc3h5cho+h=c2h3chcho+h2	1.70E+05	2.5	2490.0
1124.	sc3h5cho+h=sc3h5co+h2	1.00E+05	2.5	2490.0
1125.	sc3h5cho+h=ch3+c2h3cho	4.00E+21	-2.4	11180.0
1126.	sc3h5cho+h=c3h6+hco	4.00E+21	-2.4	11180.0
1127.	sc3h5cho+ch3=c2h3chcho+ch4	2.10E+00	3.5	5675.0
1128.	SC3D5CD0+CD3=SC3D5C0+CD4	1.106+00	3.5	5675.0
1129.	sc3n5cno+c2n3=c2n3cncno+c2n4	2.21E+00	3.5	4682.0
1121	sc3h5cho+c2ll3=Sc3h5co+c2ll4	7 195+10	3.5	1200 0
1131.	Reverse Arrhenius coefficients:	1 31F+12	0.0	21570 0
1132	sc3h5cho+o2=sc3h5co+ho2	4 00E+13	0.0	37600 0
	Reverse Arrhenius coefficients:	3.01E+11	0.3	2394.0
1133.	sc3h5co=c3h5-s+co	8.60E+15	0.0	23000.0
	Reverse Arrhenius coefficients:	1.00E+11	0.0	6000.0
1134.	ac3h5cho=c3h5-a+hco	1.81E+19	-1.1	68480.0
	Reverse Arrhenius coefficients:	1.00E+13	0.0	0.0
1135.	ac3h5cho+oh=ac3h5co+h2o	3.37E+12	0.0	616.0
	Reverse Arrhenius coefficients:	2.18E+12	0.0	32150.0
1136.	ac3h5cho+oh=c2h3chcho+h2o	3.12E+06	2.0	-298.0
	Reverse Arrhenius coefficients:	1.25E+08	1.8	34930.0
1137.	ac3h5cho+ho2=ac3h5co+h2o2	3.00E+12	0.0	11920.0
1120	Reverse Arrhenius coefficients.	1.156+13	-0.3	12010 0
1138.	ac3115CH0+H02=C2H3CHCH0+H2O2	9.03E+U3	2.0	17670 0
1139	ac3b5cho+ch3o2=ac3b5co+ch3o2h	1 00F+12	2.1	11920 0
1155.	Reverse Arrhenius coefficients:	1 58E+13	-0.5	11270 0
1140.	$ac_{3h5cho+ch_{3o}2=c_{2h3chcho+ch_{3o}2h}}$	1.99E+12	0.0	17050.0
	Reverse Arrhenius coefficients:	1.94E+15	-0.7	20090.0
1141.	ac3h5co=c3h5-a+co	6.20E+15	-1.1	-330.0
	Reverse Arrhenius coefficients:	1.50E+11	0.0	4810.0
1142.	c2h3chcho+ho2=c2h3cho+hco+oh	8.91E+12	0.0	0.0
	Warningall REV parameters are zero 0	.000E+00 0.00	0.000E+00)
	this reaction will be treated as	irreversible		
1143.	c2h3chcho=c3h5-a+co	1.00E+14	0.0	25000.0
1144.	c2h3chcho+h=ac3h5cho	1.00E+14	0.0	0.0
1145.	1c4h10=1c3h7+ch3	1.10E+26	-2.6	90420.0
1146.	1C4n9+n=1C4n10	1.00E+14	0.0	0.0
114/.	ig4h10.c2=ig4h0.bc2	1.00E+14	0.0	0.0 E0970 0
11/0	ia4b10+02=ta4b9+bo2	4.04E+13 2.07E+12	0.0	43420 0
1150	ic4h10+o=ic4h9+oh	1 53E+14	0.0	7850 0
1151.	ic4h10+o=tc4h9+oh	1.00E+13	0.0	3280.0
1152.	ic4h10+h=ic4h9+h2	8.55E+07	2.0	7700.0
1153.	ic4h10+h=tc4h9+h2	4.20E+06	2.0	2400.0
1154.	ic4h10+oh=ic4h9+h2o	8.01E+06	2.0	450.0
1155.	ic4h10+oh=tc4h9+h2o	1.10E+06	2.0	-1870.0
1156.	ic4h10+ho2=ic4h9+h2o2	1.80E+12	0.0	17000.0
1157.	ic4h10+ho2=tc4h9+h2o2	1.00E+12	0.0	14000.0
1158.	ic4h10+ch3=ic4h9+ch4	9.00E-01	4.0	8200.0
1159.	ic4hl0+ch3=tc4h9+ch4	1.00E+11	0.0	7900.0
1160.	1c4h1U+ch3o2=ic4h9+ch3o2h	1.80E+13	0.0	20000.0

1161.	ic4h10+ch3o2=tc4h9+ch3o2h	1.50E+12	0.0	15000.0	
1162.	ic4h9+h=ic4h8+h2	9.04E+11	0.0	0.0	
1163.	ic4h9=tc4h9	3.56E+10	0.9	34600.0	
1164.	ic4h9=c3h6+ch3	9.59E+11	0.8	30710.0	
1165.	ic4h9+ho2=>ic3h7cho+h+oh	1.80E+13	0.0	0.0	
1166.	ic4h9+o2=ic4h8+ho2	4.50E+11	0.0	5000.0	
1167.	ic4h9+ho2=>ic3h7+ch2o+oh	2.41E+13	0.0	0.0	
1168.	tc4h9+o2=ic4h8+ho2	2.07E+12	0.0	5000.0	
1169.	tc4h9+ho2=>ch3coch3+ch3+oh	1.80E+13	0.0	0.0	
1170.	tc4h9+oh=1c4h8+h2o	1.80E+13	0.0	0.0	
1170	tC4n9+n=1C4n8+n2	5.40E+12	0.0	0.0	
1172	tc4119+0=1C4118+011	4.10E+14	0.0	0.0	
1174	t = 4h9 + 0 = ch3coch3 + ch3	1.046+14	0.0	0.0 EQC 0	
1175	104H9+CH3=104H8+CH4	1.20E+13 6 25F+11	0.0	-596.0	
1176	$i_{c4h8+h=t_{c4h9}}$	1 06F+12	0.5	1230 0	
1177	ic4h8+o=ic4h8o	1 00E+08	1 3	-1079 0	
1178	ic4h8+ch3o2=ic4h8o+ch3o	4 00E+11	0.0	12000 0	
1179.	ic4h8=ic4h7+h	1.50E+15	0.0	83000.0	
1180.	ic4h7v+h=ic4h8	1.00E+14	0.0	0.0	
1181.	$c_{3h5-t+ch3(+m)=ic_{4h8(+m)}}$	2.50E+13	0.0	0.0	
	Low pressure limit: 0.42700E+59 -0.11940E+02	0.97698E+	04		
	TROE centering: 0.17500E+00 0.13406E+04	0.60000E+	05 0.10	0140E+05	
	h2 Enhanced by 2.000E+00				
	h2o Enhanced by 6.000E+00				
	ch4 Enhanced by 2.000E+00				
	co Enhanced by 1.500E+00				
	co2 Enhanced by 2.000E+00				
	c2h6 Enhanced by 3.000E+00				
	ar Enhanced by 7.000E-01				
	c2h2 Enhanced by 3.000E+00				
	c2h4 Enhanced by 3.000E+00				
1182.	1c4h8+oh=ch2o+1c3h7	1.37E+12	0.0	-1040.0	
1104	1C4n8+on=Cn3CoCn3+Cn3	1.3/E+12 1.20E+12	0.0	-1040.0	
1184.	10418+1102=104180+01	1.296+12	0.0	13340.0	
1195	ightersightership	1 668±07	1 9	7500.0	
1186	ic4h8+o2=bo2+ic4b7	2 40E+13	1.0	37800 0	
1187	ic4h8+o2=ho2+ic4h7w	2.10E+13	0.0	43500.0	
1188.	ic4h8+o=oh+ic4h7	4.50E+13	0.0	4500.0	
1189.	ic4h8+h=h2+ic4h7	1.72E+14	0.0	7990.0	
1190.	ic4h8+oh=h2o+ic4h7	6.00E+06	2.0	-298.0	
1191.	ic4h8+ho2=h2o2+ic4h7	1.92E+04	2.6	13900.0	
1192.	ic4h8+hco=ch2o+ic4h7	3.30E+11	0.0	6210.0	
1193.	ic4h8+ch3=ch4+ic4h7	3.20E+12	0.0	10000.0	
1194.	ic4h8+ch3o2=ch3o2h+ic4h7	3.96E+12	0.0	17050.0	
1195.	ic4h8+ic4h9=ic4h7+ic4h10	4.44E+00	3.5	6640.0	
1196.	ic4h8+c3h5-t=ic4h7+c3h6	7.94E+11	0.0	20500.0	
	Reverse Arrhenius coefficients:	5.59E+20	-1.3	80170.0	
1197.	ic4h8+c3h5-s=ic4h7+c3h6	7.94E+11	0.0	20500.0	
	Reverse Arrhenius coefficients:	5.59E+20	-1.3	82170.0	
1198.	1C4n8+C3h5-a=1C4h7+C3h6	7.94E+11	0.0	20500.0	
1100	Reverse Arrhenius coefficients:	4.40E+20	-1.3	60610.0 12000 0	
1200	1C4n8+C2n3=1C4n/+C2n4	1.00E+13	0.0	13000.0	
1200.	1C4118+0=01+1C411/V	3.00E+12	0.0	4500.0	
1201.	ic410+11=112+1C411/V	1.20E+14 4 E0E+12	0.0	2060.0	
1202.	ic4h8+ch3=ch4+ic4h7v	2 005+12	0.0	15000.0	
1205.	ic4b7y=ic4b7	5 00F+12	0.0	36000.0	
1205	ic4h7v+o2=ch3coch3+hco	4.60E+16	-1.4	1010.0	
1206	ic4h7v=c3h4-p+ch3	1.30E+14	0.0	37000.0	
1207.	ic4h7v+ch3=but2m2d	1.00E+15	-0.8	0.0	
1208.	ic4h7+h=c3h5-a+ch3	2.20E+51	-10.0	37730.0	
1209.	ic4h7=c4h713	6.00E+13	0.0	70000.0	
1210.	ic4h7=c3h4-a+ch3	1.00E+13	0.0	51000.0	
1211.	ic4h7+h=c3h4-a+ch4	6.31E+13	0.0	0.0	
1212.	ic4h7+o=ic3h5cho+h	6.03E+13	0.0	0.0	
	Reverse Arrhenius coefficients:	5.01E+15	-0.3	66490.0	
1213.	ic4h7+o2=ic3h5cho+oh	2.47E+13	-0.5	23020.0	

	Reverse Arrhenius coefficients:	1.62E+14	-0.8	73390.0
1214.	ic4h7+ho2=ic4h7o+oh	4.50E+12	0.0	0.0
1215.	ic4h7+ch3=but2m1d	7.00E+12	0.0	0.0
1216.	ic4h7+ic4h7=c3h4-a+but2mld	5.00E+10	0.0	6300.0
1217.	ic4h8oh=ic4h7oh+h	3.71E+14	-0.4	40790.0
	Reverse Arrhenius coefficients:	1.00E+13	0.0	1200.0
1218.	ic4h8oh=ic4h8+oh	9.65E+13	-0.4	28500.0
	Reverse Arrhenius coefficients:	9 93E+11	0 0	-960 0
1219	ic4h8o+oh=>ic3h6cho+h2o	1 25F+12	0.0	0.0
1220	ighter here ighter here	1 250+12	0.0	0.0
1220.	i a 4h 9 a + ha 2 = > i a 2h 6 aha + h 2 a 2	2 500,12	0.0	15000 0
1221.	ig4h8o, gh2o2=>ig2h6gho, gh2o2h	2.50ET12 2.50ET12	0.0	10000.0
1002		2.50E+12	0.0	19000.0
1223.	1C4n80+cn3=>1C3n6cn0+cn4	5.00E+10	0.0	10000.0
1224.	1c4h8o+o=>1c3h6cho+oh	1.25E+12	0.0	0.0
1225.	ic4h8o=ic3h7cho	4.18E+13	0.0	52720.0
	Reverse Arrhenius coefficients:	1.39E+10	0.6	72050.0
1226.	ic4h8o=ic3h7+hco	6.00E+13	0.0	57200.0
1227.	ic4h7oh=ic4h7o+h	5.97E+16	-0.6	105900.0
	Reverse Arrhenius coefficients:	4.00E+13	0.0	0.0
1228.	ic4h7oh=ic4h7+oh	7.31E+16	-0.4	79700.0
	Reverse Arrhenius coefficients:	3.00E+13	0.0	0.0
1229.	ic4h7oh=ic4h6oh+h	4.90E+16	-0.4	89850.0
	Reverse Arrhenius coefficients:	1.00E+14	0.0	0.0
1230.	ic4h7oh+ho2=ic4h6oh+h2o2	7.92E+02	3.0	12300.0
	Reverse Arrhenius coefficients:	7 83E+05	2 0	13580 0
1231	ic4h7o+h2=ic4h7oh+h	9 05F+06	2.0	17830 0
1251.	Reverse Arrhenius coefficients:	7 168+05	2.0	16210 0
1000	ightanightani	F 00E+05	2.1	20100 0
1232.	Developed Developed and find and find	5.00E+13	0.0	29100.0
1000	Reverse Arrhenius coefficients.	3.0/E+II	0.5	16470.0
1233.	1C4n/0+02=1C3n5cn0+n02	3.00E+10	0.0	1649.0
	Reverse Arrhenius coefficients:	6.31E+10	-0.1	38980.0
1234.	ic4h7o+ho2=ic3h5cho+h2o2	3.00E+11	0.0	0.0
	Reverse Arrhenius coefficients:	8.93E+14	-0.8	78500.0
1235.	ic4h7o+ch3=ic3h5cho+ch4	2.40E+13	0.0	0.0
	Reverse Arrhenius coefficients:	7.26E+16	-0.5	95290.0
1236.	ic4h7o+o=ic3h5cho+oh	6.00E+12	0.0	0.0
	Reverse Arrhenius coefficients:	3.05E+14	-0.5	92720.0
1237.	ic4h7o+oh=ic3h5cho+h2o	1.81E+13	0.0	0.0
	Reverse Arrhenius coefficients:	9.08E+15	-0.5	110000.0
1238.	ic4h7o+h=ic3h5cho+h2	1.99E+13	0.0	0.0
	Reverse Arrhenius coefficients:	2.30E+15	-0.5	94810.0
1239	ic4h7o=ic4h6oh	1 39E+11	0 0	15600 0
1000.	Reverse Arrhenius coefficients:	4 23F+11	=0.2	31670 0
1240	ighto-gthE-t+gh2o	1 500+15	0.2	25000 0
1240.	ighter hard a start and a start	2 160.04	2.4	19000.0
1241.	Developer Developering and finite to	2.105+04	2.4	1200 0
	Reverse Arrhenius coefficients.	5.616+02	3.0	1399.0
1242.	1C4n6on+no2=1C4n/on+o2	4.19E+13	-0.3	9.0
	Reverse Arrhenius coefficients:	6.00E+13	0.0	39900.0
1243.	ic4h6oh+ch2o=ic4h7oh+hco	6.30E+08	1.9	18190.0
	Reverse Arrhenius coefficients:	1.31E+06	2.5	15270.0
1244.	ic4h6oh+ic4h8=ic4h7oh+ic4h7	4.70E+02	3.3	19840.0
	Reverse Arrhenius coefficients:	2.81E-01	3.9	6521.0
1245.	ic4h6oh+h2o=ic4h7oh+oh	5.20E+08	1.4	32450.0
	Reverse Arrhenius coefficients:	3.12E+06	2.0	-298.0
1246.	ic4h6oh+ch4=ic4h7oh+ch3	2.22E+03	2.9	23750.0
	Reverse Arrhenius coefficients:	2.21E+00	3.5	5675.0
1247	ic4h6oh+c3h6=ic4h7oh+c3h5-a	4 82E+04	2 5	19230 0
	Reverse Arrhenius coefficients:	5 75E+02	3 1	18670 0
1249	ig/h6oh+gh2gho=ig/h7oh+gh2go	1 205+02	1 4	17440 0
1210.	Reverse Arrhenius coefficients.	5 308+06	2 0	16240 0
1040	Active Allientus Coefficients.	1 707-00	2.0	10240.0
1249.	ICHIOOH=C3H4-a+CH2OH	1.728+22	-2./	54980.0
1050	Reverse Arrhenius coefficients:	1.00E+11	0.0	9200.0
1250.	tc5n11=1c4h8+ch3	2.00E+13	0.0	31000.0
1251.	tc5hil=but2mld+h	1.60E+13	0.0	36000.0
1252.	tc5hl1=but2m2d+h	5.30E+12	0.0	33000.0
1253.	tc5h11+o2=but2m1d+ho2	1.38E+12	0.0	5000.0
1254.	tc5h11+o2=but2m2d+ho2	1.58E+12	0.0	5000.0
1255.	but2mld=but2m2d	3.50E+12	0.0	60000.0
1256.	but2mld=c3h5-t+c2h5	3.30E+21	-1.2	97720.0

1257.	but2m1d=but2m1d3+b	4.08E+18	-1.0	97350.0	1326.	nc5h12=c5h11-1+h	1.58E+16	0.0	97970.0
1258.	but 2m1d+o2=but 2m1d3+bo2	4.00E+12	0.0	40000.0	1327.	nc5h12=c5h11-2+h	1.00E+16	0.0	94990.0
1259	but 2m1d+bo2=but 2m1d3+b2o2	1 00E+11	0.0	17060 0	1328	nc5h12=c5h11=3+h	1 00F+16	0.0	94990.0
1260	but 2m1d+oh=but 2m1d3+h2o	6 28E+06	2 0	-543 0	1329	nc5h12=pc4h9+ch3	1 00E+17	0.0	84650 0
1261	but $2m1d+o=but 2m1d3+ob$	1 30E+12	0 0	4500 0	1330	nc5h12=nc3h7+c2h5	1 58E+17	0 0	80280 0
1262	but 2m1d+b=but 2m1d3+b2	1 95E+13	0 0	4445 0	1331	nc5h12+n2=c5h11-1+ho2	3 97E+13	0 0	50870 0
1263	but $2m1d+ch3=but 2m1d3+ch4$	1 00E+11	0.0	7300 0	1332	nc5h12+o2=c5h11-2+ho2	7 94E+13	0 0	47690 0
1264	but 2m1d3=i sope+h	1 20E+08	2 5	45000 0	1333	nc5h12+o2=c5h11-3+bo2	7 94E+13	0 0	47690 0
1265	but 2m1d3+o2=isope+bo2	1 00E+11	0 0	37000 0	1334	nc5h12+h=c5h11-1+h2	1 88E+05	2.8	6280 0
1266.	but 2m1d3+bo2=isope+b2o2	1.00E+12	0.0	0.0	1335.	nc5h12+h=c5h11-2+h2	2.60E+06	2.4	4471.0
1267	hut 2m1d3+oh=isope+h2o	1 80E+13	0 0	0.0	1336	nc5h12+h=c5h11-3+h2	1 30E+06	2 4	4471 0
1268.	but2m1d3+o=isope+oh	1.80E+13	0.0	0.0	1337.	nc5h12+o=c5h11-1+oh	1.93E+05	2.7	3716.0
1269.	but 2m1d3+b=isope+b2	3.60E+12	0.0	0.0	1338.	nc5h12+o=c5h11-2+oh	9.54E+04	2.7	2106.0
1270.	but2mld3+ch3=isope+ch4	1.00E+13	0.0	0.0	1339.	nc5h12+o=c5h11-3+oh	4.77E+04	2.7	2106.0
1271.	but2mld3+ic4h7=isope+ic4h8	4.00E+13	0.0	0.0	1340.	nc5h12+oh=c5h11-1+h2o	1.05E+10	1.0	1590.0
1272.	but3mld+h=but3mldt+h2	2.50E+04	2.5	-2790.0	1341.	nc5h12+oh=c5h11-2+h2o	9.36E+07	1.6	-35.0
1273.	but3m1d+oh=but3m1dt+h2o	1.30E+06	2.0	-2620.0	1342.	nc5h12+oh=c5h11-3+h2o	4.68E+07	1.6	-35.0
1274.	but3mld+ho2=but3mldt+h2o2	1.60E+04	2.6	10900.0	1343.	nc5h12+ho2=c5h11-1+h2o2	1.68E+13	0.0	20440.0
1275.	but3mld+ch3=but3mldt+ch4	5.00E+10	0.0	5600.0	1344.	nc5h12+ho2=c5h11-2+h2o2	1.12E+13	0.0	17690.0
1276.	but3mldt+o2=isope+ho2	1.38E+12	0.0	15200.0	1345.	nc5h12+ho2=c5h11-3+h2o2	5.60E+12	0.0	17690.0
1277.	isope+h=but3mldt	1.00E+14	0.0	0.0	1346.	nc5h12+hco=c5h11-1+ch2o	2.04E+05	2.5	18500.0
1278.	but3mldt+h=but3mld	1.00E+14	0.0	0.0	1347.	nc5h12+hco=c5h11-2+ch2o	2.16E+07	1.9	17000.0
1279.	but3mldt+h=but2m2d	1.00E+14	0.0	0.0	1348.	nc5h12+hco=c5h11-3+ch2o	1.08E+07	1.9	17000.0
1280.	but3mldt+ho2=>ch3coch3+c2h3+oh	7.00E+12	0.0	-1000.0	1349.	nc5h12+ch3=c5h11-1+ch4	9.04E-01	3.6	7154.0
1281.	but3mld+o=but3mldp+oh	1.93E+05	2.7	3716.0	1350.	nc5h12+ch3=c5h11-2+ch4	5.41E+04	2.3	7287.0
1282.	but3mld+h=but3mldp+h2	1.88E+05	2.8	6280.0	1351.	nc5h12+ch3=c5h11-3+ch4	2.70E+04	2.3	7287.0
1283.	but3mld+oh=but3mldp+h2o	1.05E+10	1.0	1590.0	1352.	nc5h12+ch3o=c5h11-1+ch3oh	2.16E+11	0.0	7000.0
1284.	but3mld+ho2=but3mldp+h2o2	1.68E+13	0.0	20440.0	1353.	nc5h12+ch3o=c5h11-2+ch3oh	2.19E+11	0.0	5000.0
1285.	but3mld+ch3=but3mldp+ch4	9.04E-01	3.6	7154.0	1354.	nc5h12+ch3o=c5h11-3+ch3oh	1.10E+11	0.0	5000.0
1286.	but3mldp=c4h6+ch3	2.00E+13	0.0	31000.0	1355.	nc5h12+ch3o2=c5h11-1+ch3o2h	1.68E+13	0.0	20440.0
1287.	but3mldp=c3h6+c2h3	2.00E+13	0.0	35500.0	1356.	nc5h12+ch3o2=c5h11-2+ch3o2h	1.12E+13	0.0	17690.0
1288.	isope+h=but3m1dp	1.00E+14	0.0	0.0	1357.	nc5h12+ch3o2=c5h11-3+ch3o2h	5.60E+12	0.0	17690.0
1289.	but3mldp+o2=isope+ho2	7.50E+10	0.0	2500.0	1358.	nc5h12+c2h3=c5h11-1+c2h4	1.02E+12	0.0	18000.0
1290.	but3mldp+h=but3mld	1.00E+14	0.0	0.0	1359.	nc5h12+c2h3=c5h11-2+c2h4	8.00E+11	0.0	16800.0
1291.	but3mldt+ho2=isope+h2o2	1.00E+12	0.0	0.0	1360.	nc5h12+c2h3=c5h11-3+c2h4	4.00E+11	0.0	16800.0
1292.	but3mldt+oh=1sope+h2o	1.80E+13	0.0	0.0	1361.	nc5h12+c2h5=c5h11-1+c2h6	1.02E+11	0.0	13400.0
1293.	but3mldt+o=1sope+on	1.80E+13	0.0	0.0	1362.	nc5n12+c2n5=c5n11-2+c2n6	1.005+11	0.0	10400.0
1294.	but3mldt+n=1sope+n2	3.60E+12	0.0	0.0	1363.	nc5n12+c2n5=c5n11-3+c2n6	5.00E+10	0.0	10400.0
1295.	but3mldt+cn3=1Sope+cn4	1.00E+13	0.0	0.0	1304.	c5n11-1=c5n111-2	5.13E+UU 2.00E+12	3.2	10850.0
1207	but 2m2d-but 2m1d2 th	4.00ETIS	0.0	104551 0	1305.	c5111-1-c2114+11c5117	2.00E+13 4.26E+12	0.0	28700.0
1200	but $2m^2d+o^2-but 2m1d^2+bo2$	2.135+47 4 90F+12	-9.5	29520 0	1267	c5h11_1+o2=c5h10_1+bo2	1 592+12	0.0	5000.0
1290.	but 2m2d+02=but 2m1dt+ho2	2 40F+12	0.0	38530.0	1368	c5h11-1+ob=c5h10-1+h2o	2 438+13	0.0	0.0
1300	but 2m 2d + bo 2 = but 2m 1d 3 + b 2o 2	3 00F+11	0.0	14190 0	1369	c5h11=1+o=ch2o+pc4b9	5 00F+14	0.0	0.0
1301	but 2m2d+bo2=but 3m1dt+b2o2	1 50E+11	0.0	14190.0	1370	c5h11 = 1+b=c5h10=1+b2	1 258+13	0.0	0.0
1302	but 2m2d+ob=but 2m1d3+b2o	9 00E+06	2 0	-60.0	1370.	$c_{5h11-2=c_{3h6+c_{2h5}}}$	2 00E+13	0.0	28700 0
1303	but $2m2d+oh=but 3m1dt+h2o$	3 00E+06	2.0	-60.0	1372	c5h11-2=c5h10-1+h	6 30E+12	0.0	40400 0
1304	but 2m2d+oh=ch3cho+ic3h7	2 00E+10	0 0	4000 0	1373	c5h11=2=c2c5h10+h	5 00F+12	0.0	37900 0
1305.	but $2m2d+o=but 2m1d3+ob$	3.50E+11	0.7	5884.0	1374.	c5h11-2=t2c5h10+h	5.00E+12	0.0	37900.0
1306.	but2m2d+o=but3m1dt+oh	1.75E+11	0.7	5884.0	1375.	c5h11-2+o2=c5h10-1+ho2	6.90E+11	0.0	5000.0
1307.	but2m2d+o=ch3cho+c3h6	7.23E+05	2.3	-1050.0	1376.	c5h11-2+o2=t2c5h10+ho2	7.90E+11	0.0	5000.0
1308.	but2m2d+h=but2m1d3+h2	1.29E+13	0.0	4445.0	1377.	c5h11-2+o2=c2c5h10+ho2	7.90E+11	0.0	5000.0
1309.	but2m2d+h=but3m1dt+h2	6.46E+12	0.0	4445.0	1378.	c5h11-2+ho2=c2c5h10+h2o2	2.40E+13	0.0	0.0
1310.	but2m2d+ch3=but2m1d3+ch4	3.20E+11	0.0	8800.0	1379.	c5h11-2+ho2=t2c5h10+h2o2	2.40E+13	0.0	0.0
1311.	but2m2d+ch3=but3m1dt+ch4	1.60E+11	0.0	8800.0	1380.	c5h11-2+ho2=>nc3h7+ch3cho+oh	2.43E+13	0.0	0.0
1312.	c2h3+c3h5-t=isope	5.00E+13	0.0	0.0	1381.	c5h11-2+oh=c5h10-1+h2o	2.40E+13	0.0	0.0
1313.	isope+oh=ch2o+ic4h7	1.37E+12	0.0	-1040.0	1382.	c5h11-2+oh=c2c5h10+h2o	2.40E+13	0.0	0.0
1314.	isope+oh=ch3cho+c3h5-t	1.37E+12	0.0	-1040.0	1383.	c5h11-2+oh=t2c5h10+h2o	2.40E+13	0.0	0.0
1315.	isope+oh=ch3+ic3h5cho	1.37E+12	0.0	-1040.0	1384.	c5h11-2+o=nc3h7+ch3cho	5.00E+14	0.0	0.0
1316.	isope+oh=ch2o+c4h713	1.37E+12	0.0	-1040.0	1385.	c5h11-2+h=c2c5h10+h2	5.00E+13	0.0	0.0
1317.	isope+o=isopy+oh	1.74E+11	0.7	5900.0	1386.	c5h11-2+h=t2c5h10+h2	5.00E+13	0.0	0.0
1318.	isope+h=isopy+h2	1.74E+05	2.5	2510.0	1387.	c5h10-1=ch3+c4h714	5.00E+16	0.0	84650.0
1319.	isope+oh=isopy+h2o	3.00E+06	2.0	-298.0	1388.	c5h10-1=c2h5+c3h5-a	1.00E+16	0.0	70746.0
1320.	isope+ho2=isopy+h2o2	9.60E+03	2.6	13900.0	1389.	c5h10-1=c2h4+c3h6	3.16E+12	0.0	57430.0
1321.	isope+ch3=isopy+ch4	2.22E+00	3.5	5670.0	1390.	c2h3+nc3h7=c5h10-1	9.64E+12	0.0	0.0
1322.	1sopy=c3h4-a+c2h3	2.00E+13	0.0	50000.0	1391.	c5h1U-1+o2=c5h913+ho2	2.70E+13	0.0	37000.0
1323.	1sopy+no2=>ch2o+1c4h5+oh	/.UUE+12	0.0	-1000.0	1392.	C5n1U-1+0=C5h915+0h	4.15E+02	3.5	3092.0
1225	1SOPYTH=1SOPE	1.005+14	0.0	0.0	1393.	c51110-1+0=C511914+011	2.25E+U3 4.000.12	3.3	1000 0
⊥3∠S.	счичтсиз=твору	∠.50些+⊥3	0.0	υ.υ	1394.	CONTA-T+0=CONAT2+0U	4.005+13	0.0	4000.0

1395	c5h10=1+h=c5h913+h2	1 958+13	0 0	4445 0	1464	c5h913+c4h713=c5h813+c4h8=1	3 16F+12	0 0	0 0
1206	aEb10_1 (h=c5h)15 (h2	2.000.07	2.0	7700 0	1465	aEb012.c=a2b2aba.a2bE	6 03E 13	0.0	0.0
1200		2.00E+07	2.0	7700.0	1405.		0.03E+13	0.0	51500.0
1200	C5IIIU-1+II=C5II914+IIZ	9.106+06	0.0	5000.0	1466.		3.UUE+13	0.0	51500.0
1398.	C5n1U-1+on=C5n915+n20	2.6/E+U6	2.0	450.0	1467.	c5n924+o2=cn3cncno+cn3cno	3.40E+09	1.0	26400.0
1399.	c5h10-1+oh=c5h914+h2o	2.60E+06	2.0	-770.0	1468.	c5h924+ho2=>ch3cho+c3h5-s+oh	7.00E+12	0.0	-1000.0
1400.	c5h10-1+oh=c5h913+h2o	3.00E+06	2.0	-1520.0	1469.	c5h924+h=c5h813+h2	3.16E+12	0.0	0.0
1401.	c5h10-1+ho2=c5h915+h2o2	5.60E+12	0.0	19400.0	1470.	c5h924+ch3=c5h813+ch4	1.00E+13	0.0	0.0
1402.	c5h10-1+ho2=c5h914+h2o2	4.00E+11	0.0	15000.0	1471.	c5h924+c2h3=c5h813+c2h4	4.00E+12	0.0	0.0
1403.	c5h10-1+ho2=c5h913+h2o2	6.40E+03	2.6	12400.0	1472.	c5h924+c2h5=c5h813+c2h6	4.00E+12	0.0	0.0
1404.	c5h10-1+ch3=c5h915+ch4	1.47E+12	0.0	11722.0	1473.	c5h924+c3h5-a=c5h813+c3h6	4.00E+12	0.0	0.0
1405.	c5h10-1+ch3=c5h914+ch4	6.60E+11	0.0	10120.0	1474.	c5h924+c4h713=c5h813+c4h8-1	3.16E+12	0.0	0.0
1406.	c5h10-1+ch3=c5h913+ch4	2.00E+11	0.0	6800.0	1475.	c5h924+o=sc3h5cho+ch3	6.03E+13	0.0	0.0
1407	c5h10-1+c2h5=c5h913+c2h6	1 00E+11	0 0	7300 0	1476	nc4h5+ch3=c5h813	2 00E+13	0 0	0 0
1/09	a5h10-1+a2h2-a5h915+a2h4	2 0/E+12	0.0	11722 0	1477	a2h5_a+a2h2=a5h912	5 00E+13	0.0	0.0
1400.	a5h10-1+a2h2-a5h014+a2h4	6 60F+12	0.0	10120.0	1479	a5h912+o2-a2h2abo+ah2abo	2 00E+13	1 5	20200 0
1410	-5h10 1 + 5h2 -5h012 + 5h4	0.00E+12	0.0	10120.0	1470.		2.0000-00	1.5	30200.0
1410.	C5IIIU-1+C2II3=C5II9I3+C2II4	2.00E+11	0.0	1040.0	14/9.	C511813+02=C1120+aC3115C110	2.00E+08	1.5	30200.0
1411.	c5h10-1+oh=ch2o+pc4h9	1.37E+12	0.0	-1040.0	1480.	c5h8l3+ho2=>c2h3cho+c2h4+oh	5.00E+11	0.0	19000.0
1412.	c5h10-1+oh=ch3+nc3h7cho	1.37E+12	0.0	-1040.0	1481.	c5h813+ho2=>c4h6+ch2o+oh	5.00E+11	0.0	19000.0
1413.	c2c5h10=t2c5h10	1.86E+14	0.0	63501.0	1482.	c5h813+oh=ch3cho+c3h5-a	1.37E+12	0.0	-1040.0
1414.	c2c5h10=c4h713+ch3	1.00E+16	0.0	81000.0	1483.	c5h813+oh=c2h5+c2h3cho	1.37E+12	0.0	-1040.0
1415.	c2c5h10+o2=c5h913+ho2	6.00E+13	0.0	40000.0	1484.	c5h813+oh=ch3cho+c3h5-s	1.37E+12	0.0	-1040.0
1416.	c2c5h10+o2=c5h924+ho2	2.70E+13	0.0	37000.0	1485.	c5h813+oh=ch2o+c4h713	1.37E+12	0.0	-1040.0
1417.	c2c5h10+ho2=c5h913+h2o2	1.47E+11	0.0	14962.0	1486.	c5h813+o=c2h3cho+c2h4	4.50E+08	1.4	-858.0
1418.	c2c5h10+ho2=c5h924+h2o2	9.80E+10	0.0	12583.0	1487.	c5h813+o=ch2o+c4h6	4.50E+08	1.4	-858.0
1419.	c2c5h10+ho2=>ch3cho+c3h6+oh	5.01E+11	0.0	12068.0	1488.	c5h813+h=c5h7+h2	7.00E+06	2.0	0.0
1420.	c2c5h10+oh=c5h913+h2o	3.38E+13	0.0	3060.0	1489.	c5h813+h=c3h5-a+c2h4	3.35E+08	1.5	2000.0
1421.	c2c5h10+oh=c5h924+h2o	2.25E+13	0.0	2217.0	1490.	c5h813+oh=c5h7+h2o	3.00E+06	2.0	-1520.0
1422	c2c5h10+o=c5h913+oh	1 44F+13	0 0	2968 0	1491	c5h813+ho2=c5h7+h2o2	2 00E+11	0 0	12600 0
1423	c2c5h10+o=c5h924+oh	9 62E+12	0 0	1968 0	1492	c5h813+ch3=c5h7+ch4	2 00E+14	0.0	22800 0
1/2/	a2a5h10+o=ch2aba+a2b6	1 000+12	0.0	1,000.0	1/02	a5h914+ob=ch2cho+c2b5-c	1 275+12	0.0	-1040 0
1405	c2c5110+0-c115c110+c5110	1.00E+12	0.0	E44E 0	1404	aEb814.ob-ab2o.a4b714	1 275,12	0.0	1040.0
1425.	c2c5110+11=c511913+112	2.92ETI3	0.0	3445.0 444E 0	1494.	c511014+011=C1120+C411/14	2.00E.06	2.0	-1040.0
1420.		1.956+15	0.0	4445.0	1495.		5.00E+00	2.0	-1520.0
1427.	C2C5n1U+Cn3=C5n913+Cn4	1.50E+11	0.0	9800.0	1496.	C5n814+no2=>C2n3Cn0+C2n4+on	5.00E+11	0.0	19000.0
1428.	c2c5h10+ch3=c5h924+ch4	1.00E+11	0.0	8200.0	1497.	c5h814+ho2=>c4h6+ch2o+oh	5.00E+11	0.0	19000.0
1429.	c2c5h10+c2h5=c5h913+c2h6	1.50E+11	0.0	9000.0	1498.	c5h7+ho2=>c2h3cho+c2h3+oh	7.00E+12	0.0	-1000.0
1430.	c2c5h10+c2h5=c5h924+c2h6	1.00E+11	0.0	8000.0	1499.	c5h7+o2=c2h3chcho+ch2o	1.70E+09	1.0	26400.0
1431.	t2c5h10=c4h713+ch3	1.00E+16	0.0	81000.0	1500.	c5h7+o2=ch2cho+c2h3cho	1.70E+09	1.0	26400.0
1432.	t2c5h10+o2=c5h913+ho2	2.70E+13	0.0	37000.0	1501.	c3h5-a+c2h2=c5h7	8.38E+30	-6.2	12824.0
1433.	t2c5h10+o2=c5h924+ho2	2.70E+13	0.0	37000.0	1502.	c3h5-a+c2h3=c5h7+h	1.00E+13	0.0	0.0
1434.	t2c5h10+ho2=c5h913+h2o2	1.47E+11	0.0	14962.0	1503.	c5h7+o=c2h3cho+c2h3	5.00E+13	0.0	0.0
1435.	t2c5h10+ho2=c5h924+h2o2	9.80E+10	0.0	12583.0	1504.	c5h7+oh=c2h3cho+c2h4	2.00E+13	0.0	0.0
1436.	t2c5h10+ho2=>ch3cho+c3h6+oh	5.01E+11	0.0	12068.0	1505.	nc6h14=c6h13-1+h	1.58E+16	0.0	97970.0
1437.	t2c5h10+oh=c5h913+h2o	3.38E+13	0.0	3060.0	1506.	nc6h14=c6h13-2+h	1.00E+16	0.0	94990.0
1438.	t2c5h10+oh=c5h924+h2o	2.25E+13	0.0	2217.0	1507.	nc6h14=c6h13-3+h	1.00E+16	0.0	94990.0
1439.	t2c5h10+o=c5h913+oh	1.44E+13	0.0	2968.0	1508.	nc6h14=ch3+c5h11-1	1.00E+17	0.0	84650.0
1440.	t2c5h10+o=c5h924+oh	9.62E+12	0.0	1968.0	1509.	nc6h14=c2h5+pc4h9	1.58E+17	0.0	80280.0
1 4 4 1	t2c5h10+o=ch3cho+c3h6	1 00F+12	0 0	0.0	1510	nc6h14=nc3h7+nc3h7	7 90 E+16	0 0	80280 0
1442	t2c5h10+b-c5b012+b2	2 025+12	0.0	5445 0	1510.	ng6h14+o2=g6h13=1+bo2	2 975+12	0.0	50970 0
1443	t2c5h10+h=c5h924+h2	1 95E+13	0.0	4445 0	1512	nc6h14+o2=c6h13=2+bo2	7 94F+13	0.0	47690 0
1444	t2c5h10, h=c5h521, h2	1 505.11	0.0	9200 0	1512.	ng6h14.o2-g6h12_2.ho2	7.04E,13	0.0	47600.0
1444.		1.000.11	0.0	8200.0	1513.	G114+02=C0113=3+1102	7.946+13	0.0	47090.0
1445.		1.006+11	0.0	/300.0	1514.	nc6n14+n=c6n13-1+n2	1.88E+05	2.8	6280.0
1446.	t2C5n1U+C2n5=C5n913+C2n6	1.50E+11	0.0	9000.0	1515.	nc6n14+n=c6n13-2+n2	2.60E+06	2.4	44/1.0
1447.	t2c5h10+c2h5=c5h924+c2h6	1.00E+11	0.0	8000.0	1516.	nc6h14+h=c6h13-3+h2	2.60E+06	2.4	4471.0
1448.	c5h913+h=c5h10-1	1.00E+13	0.0	0.0	1517.	nc6h14+o=c6h13-1+oh	1.93E+05	2.7	3716.0
1449.	c5h913+h=c2c5h10	1.00E+13	0.0	0.0	1518.	nc6h14+o=c6h13-2+oh	9.54E+04	2.7	2106.0
1450.	c5h913+h=t2c5h10	1.00E+13	0.0	0.0	1519.	nc6h14+o=c6h13-3+oh	9.54E+04	2.7	2106.0
1451.	c5h924+h=c2c5h10	1.00E+13	0.0	0.0	1520.	nc6h14+oh=c6h13-1+h2o	1.05E+10	1.0	1590.0
1452.	c5h924+h=t2c5h10	1.00E+13	0.0	0.0	1521.	nc6h14+oh=c6h13-2+h2o	9.36E+07	1.6	-35.0
1453.	c5h915=c3h5-a+c2h4	3.30E+13	0.0	22500.0	1522.	nc6h14+oh=c6h13-3+h2o	9.36E+07	1.6	-35.0
1454.	c5h914=c2h3+c3h6	2.00E+13	0.0	35500.0	1523.	nc6h14+ho2=c6h13-1+h2o2	1.68E+13	0.0	20440.0
1455.	c5h913=c4h6+ch3	2.50E+13	0.0	45000.0	1524.	nc6h14+ho2=c6h13-2+h2o2	1.12E+13	0.0	17690.0
1456.	c5h913=c5h813+h	3.00E+13	0.0	50500.0	1525.	nc6h14+ho2=c6h13-3+h2o2	1.12E+13	0.0	17690.0
1457.	c5h913+o2=ch2cho+c2h5cho	1.70E+09	1.0	26400.0	1526.	nc6h14+hco=c6h13-1+ch2o	2.04E+05	2.5	18500.0
1458	c5h913+ho2=>c2h3cho+c2h5+oh	7.00E+12	0.0	-1000.0	1527.	nc6h14+hco=c6h13-2+ch2o	2.16E+07	1.9	17000.0
1459	c5h913+h=c5h813+h2	3.16E+13	0.0	0.0	1528	nc6h14+hco=c6h13-3+ch2o	2.16E+07	1.9	17000.0
1460	c5h913+ch3=c5h813+ch4	1.00E+13	0.0	0 0	1520	nc6h14+ch3=c6h13-1+ch4	9 04E-01	3 6	7154 0
1461	c5h913+c2h3=c5h813+c2h4	4 00E+12	0 0	0.0	1520	nc6h14+ch3=c6h13-2+ch4	5 41F+04	2 2	7287 0
1462	c5h913+c2h5=c5h813+c2h6	4 00E+12	0 0	0.0	1530.	nc6h14+ch3=c6h13-3+ch4	5 41 F+04	2 3	7287 0
1463	c5h913+c3h5-a=c5h813+c3h6	4 00E+12	0 0	0.0	1522	nc6h14+ch30=c6h13-1+ch3oh	2 161+11	0 0	7000 0
T 100.	C2112 12 C2112 (4-C211012) C2110		0.0	0.0	±J32.		2.105-11	0.0	,000.0

1533. nc6h14+ch3o=c6h13-2+ch3oh	2.19E+11	0.0	5000.0	1602.	c6h12-1+ch3=c6h1114+ch4	2.00E+11 0	0.0
1534 nc6h14+ch3o=c6h13-3+ch3oh	2 19E+11	0 0	5000 0	1603	c6h12-1+ch3=c6h1113+ch4	1 00E+11 0	0 0
1535 nc6h14+ch3o2=c6h13=1+ch3o2h	1 68E+13	0 0	20440 0	1604	c6h12=1+c2h3=c6h1116+c2h4	2 94F+12 0	0.0
1536 nc6h14+ch3o2=c6h13=2+ch3o2h	1 128+13	0.0	17690 0	1605	c6h12=1+c2h3=c6h1115+c2h4	6 60F+12 0	0.0
1530. $nc6h14+ch3o2=c6h13-2+ch3o2h$	1 120+12	0.0	17690.0	1605.	c6h12_1+c2h3=c6h1114+c2h4	6 60F+12 0	0.0
1537. $ncon14+cn302-con13-5+cn302n$	1 020-12	0.0	10000.0	1607	a6h12 1 a2h2 a6h1112 a2h4	2.00E+11 0	0.0
1530. $100114+0213-00115-1+0214$	1.02E+12 9.00E+11	0.0	16000.0	1609	con12-1+c2n3-con1113+c2n4	1.00E+11 0	0.0
1539. IICOIII4+C2II5=C0III5=2+C2II4	0.00E+11	0.0	16800.0	1608.		1.00E+11 0	0.0
1540. nc6n14+c2n3=c6n13-3+c2n4	8.00E+11	0.0	16800.0	1609.	1C3N/+C6N12-1=C3N8+C6N1113	2.008+11 0	0.0
1541. nc6h14+c2h5=c6h13-1+c2h6	1.02E+11	0.0	13400.0	1610.	c6h12-1+oh=c5h11-1+ch2o	1.37E+12 U	0.0
1542. nc6h14+c2h5=c6h13-2+c2h6	1.00E+11	0.0	10400.0	1611.	c6h12-2+h=c6h1126+h2	2.80E+07 2	2.0
1543. nc6h14+c2h5=c6h13-3+c2h6	1.00E+11	0.0	10400.0	1612.	c6h12-2+h=c6h1125+h2	9.00E+06 2	2.0
1544. nc6h14+c3h5-a=c6h13-1+c3h6	2.40E+02	3.3	19840.0	1613.	c6h12-2+h=c6h1124+h2	1.95E+13 C	0.0
1545. nc6h14+c3h5-a=c6h13-2+c3h6	1.60E+02	3.3	18170.0	1614.	c6h12-2+h=c6h1113+h2	1.74E+05 2	2.5
1546. nc6h14+c3h5-a=c6h13-3+c3h6	1.60E+02	3.3	18170.0	1615.	c6h12-2+o=c6h1126+oh	4.15E+02 3	3.5
1547. c6h13-1=c6h13-2	2.29E+01	2.8	10760.0	1616.	c6h12-2+o=c6h1125+oh	2.25E+03 3	3.3
1548. c6h13-1=c6h13-3	5.13E+00	3.2	16850.0	1617.	c6h12-2+o=c6h1124+oh	4.00E+13 C	0.0
1549. c6h13-1+o=c5h11-1+ch2o	1.61E+13	0.0	0.0	1618.	c6h12-2+o=c6h1113+oh	1.74E+11 0	0.7
1550. c6h13-1=c2h4+pc4h9	2.00E+13	0.0	28700.0	1619.	c6h12-2+oh=c6h1126+h2o	2.67E+06 2	2.0
1551. c6h13-1+h=c6h12-1+h2	1.81E+12	0.0	0.0	1620.	c6h12-2+oh=c6h1125+h2o	2.60E+06 2	2.0
1552. c6h13-1=c6h12-1+h	1.50E+13	0.0	38000.0	1621.	c6h12-2+oh=c6h1124+h2o	3.00E+06 2	2.0
1553, c6h13-1+o2=c6h12-1+ho2	7.37E+30	-5.5	17900.0	1622.	c6h12-2+oh=c6h1113+h2o	3.00E+06	2.0
1554 c6b13-1+ob-c6b12-1+b2o	2 43F+13	0 0	1,500.0	1623	c6h12=2+ho2=c6h1126+h2o2	5 60E+12 0	0 0
1551. comis 1:on-comiz 1:mzo	1 008+12	0.0	0.0	1624	c6h12_2+ho2=c6h1126+h2o2	4 00E+11 0	0.0
1555. comis-i+cm3-comiz-i+cm4	1 005+12	0.0	0.0	1625	a6h12-2+ho2-a6h1124+h2o2	5 40E+02 2	26
1550. CON13-1+C2N5-CON12-1+C2N6	1.000.12	0.0	0.0	1025.	-Ch12 2+H02-C0H112+H202	0.40±+03 2	2.0
1557. C0H13-1+C2H3=C0H12-1+C2H4	1.00E+12	0.0	0.0	1626.	C6H12-2+H02=C6H1113+H202	9.6004+03 2	2.0
1558. C0H13-1+C3H5-a=C0H12-1+C3H6	1.00E+12	0.0	0.0	1627.	C6112-2+C13=C611126+C14	1.4/E+12 (0.0
1559. C6n13-2+02=>Cn3Cn0+C4n8-1+on	2.106+11	0.0	6858.0	1628.	C6n12-2+Cn3=C6n1125+Cn4	6.60E+11 U	0.0
1560. c6h13-2+ho2=>ch3cho+pc4h9+oh	1.00E+13	0.0	0.0	1629.	c6h12-2+ch3=c6h1124+ch4	2.00E+11 (0.0
1561. c6h13-2+oh=c6h12-1+h2o	3.64E+13	0.0	0.0	1630.	c6h12-2+ch3=c6h1113+ch4	2.20E+00 3	3.5
1562. c6h13-2+o=ch3cho+pc4h9	1.61E+13	0.0	0.0	1631.	c6h12-2+oh=pc4h9+ch3cho	1.37E+12 0	0.0
1563. c6h13-2=c3h6+nc3h7	2.00E+13	0.0	28700.0	1632.	c6h12-2+oh=nc3h7cho+c2h5	1.37E+12 0	0.0
1564. c6h13-2=c6h12-1+h	1.00E+13	0.0	39000.0	1633.	c6h12-3+h=c6h1131+h2	5.60E+07 2	2.0
1565. c6h13-2+o2=c6h12-1+ho2	6.90E+11	0.0	5000.0	1634.	c6h12-3+h=c6h1124+h2	3.90E+13 0	0.0
1566. c6h13-2+o2=c6h12-2+ho2	1.58E+12	0.0	7500.0	1635.	c6h12-3+o=c6h1131+oh	9.30E+02 3	3.5
1567. c6h13-2+ch3=c6h12-1+ch4	1.00E+12	0.0	0.0	1636.	c6h12-3+o=c6h1124+oh	8.00E+13 C	0.0
1568. c6h13-2+c2h5=c6h12-1+c2h6	1.00E+12	0.0	0.0	1637.	c6h12-3+oh=c6h1131+h2o	5.34E+06 2	2.0
1569. c6h13-2+c2h3=c6h12-1+c2h4	1.00E+12	0.0	0.0	1638.	c6h12-3+oh=c6h1124+h2o	6.00E+06 2	2.0
1570. c6h13-2+c3h5-a=c6h12-1+c3h6	1.00E+12	0.0	0.0	1639.	c6h12-3+ho2=c6h1131+h2o2	1.12E+13 0	0.0
1571 c6h13-3=c5h10-1+ch3	2 00E+13	0 0	31000 0	1640	c6h12-3+h02=c6h1124+h202	1 28E+04 2	2 6
1572 c6b13-3=c4b8-1+c2b5	6 00E+13	0 0	29700 0	1641	c6h12-3+ch3=c6h1131+ch4	2 94E+12 (0 0
1573 c6b13-3+o2=c6b12-2+bo2	1 58F+12	0 0	7500.0	1642	c6h12=3+ch3=c6h1124+ch4	4 00F+11 0	0.0
1574 a6b12-2+o2-a6b12-2+bo2	1 595+12	0.0	7500.0	1642	a6h12-3+oh=a2h5abo+na3h7	2 742+12 0	0.0
$1574. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	1.000+12	0.0	70746 0	1644	ach1112 b-ach12 1	1 000.12	0.0
1575. CONTZ-1-NCSN7+CSN5-a	1.000+10	0.0	/0/40.0	1044.	-Ch1112 - Ch12-1	1.000413 0	0.0
1576. C2H3+pC4H9=C6H12-1	1.00E+13	0.0	0.0	1645.	C611113=C2115+C4116	1.30E+13 U	0.0
15//. C6n12-1=C2n5+C4n/14	7.90E+16	0.0	80280.0	1646.	C6n1113+02=C6n1013+n02	1.586+12 (0.0
15/8. Cbn12-1=Cn3+C5n915	5.00E+16	0.0	84650.0	1647.	C6n1113+02=cn2cn0+nc3n/cn0	1.70E+09 1	1.0
1579. c6h12-1=c3h6+c3h6	4.00E+12	0.0	57430.0	1648.	c6h1113+ho2=>c2h3cho+nc3h7+oh	1.00E+12 0	0.0
1580. c6h12-1+o2=c6h1116+ho2	3.97E+13	0.0	50870.0	1649.	c6h1113+o=c2h3cho+nc3h7	2.00E+14 C	0.0
1581. c6h12-1+o2=c6h1115+ho2	3.97E+13	0.0	47690.0	1650.	c6h1114+o2=c6h1013+ho2	2.60E+11 0	0.0
1582. c6h12-1+o2=c6h1114+ho2	3.97E+13	0.0	47690.0	1651.	c6h1114=c2h3+c4h8-1	2.00E+13 0	0.0
1583. c6h12-1+o2=c6h1113+ho2	7.00E+11	0.0	34970.0	1652.	c6h1114=ch3+c5h814	2.00E+13 0	0.0
1584. c6h12-1+h=c6h1116+h2	2.80E+07	2.0	7700.0	1653.	c6h1115=c3h5-a+c3h6	3.30E+13 0	0.0
1585. c6h12-1+h=c6h1115+h2	9.00E+06	2.0	5000.0	1654.	c6h1116=c2h4+c4h714	2.00E+13 0	0.0
1586. c6h12-1+h=c6h1114+h2	9.00E+06	2.0	5000.0	1655.	c6h1126=c2h4+c4h713	3.30E+13 0	0.0
1587. c6h12-1+h=c6h1113+h2	5.40E+04	2.5	-1900.0	1656.	c6h1125=c3h6+c3h5-s	2.00E+13 0	0.0
1588, c6h12-1+o=c6h1116+oh	4.15E+02	3.5	3092.0	1657.	c6h1124=ch3+c5h813	1.00E+13 (0.0
1589 c6h12-1+o=c6h1115+oh	2 25E+03	3 3	1653 0	1658	c6h1131 = c2h4 + c4h711	2 00E+13 0	0 0
1590 c6b12-1+o=c6b1114+ob	2 25E+03	3.3	1653 0	1659	c6h1013 = c2h2 + c4h8 - 1	1 00E+14 0	0.0
1591 c6b12=1+o=c6b1113+ob	4 00F+13	0 0	4000 0	1660	c6h1013+o2=c2h3cho+c2h5cho	2 005+08 1	1 5
1592 c6h12-1+oh=c6h1116+b2o	2 671+06	2 0	450 0	1661	c6h1013+oh=c2h5cho+c3h5-a	6 00F+12 0	0 0
1592. com2 1.on-com110+1120	2.075+00	2.0	-770 0	1660	a6h1012+oh=na2h7+a2h2aha	6 00E+12 0	0.0
1595. CONTZ=ITON=CONTIISTN20	2.005+06	2.0	- / / U . U	1062.	contolston=ncsn/+c2n3cno	0.UUE+12 U	0.0
1554. CON12-1+ON=CON1114+N2O	∠.6UE+U6	2.0	-//0.0	1063.	CONTRACT + CUI=CUI2O+C5D913	6.UUE+12 (0.0
1595. CON12-1+ON=CON1113+N2O	3.005+06	2.0	-1520.0	1664.	-Ch1012	4.5UE+U8 1	1.4
1590. C0N12-1+NO2=C0N1116+h2O2	6.00E+11	0.0	17000.0	1665.	C011U13+0=Cn20+C5h813	4.50E+08 1	1.4
1597. C6h12-1+h02=C6h1115+h2o2	4.00E+11	0.0	15000.0	1666.	coniul3+h=c4h6+c2h5	3.35E+08 1	1.5
1598. c6h12-l+ho2=c6h1114+h2o2	4.00E+11	0.0	15000.0	1667.	c3h3+c3h3=c6h615	1.00E+13 C	υ.Ο
1599. c6h12-1+ho2=c6h1113+h2o2	6.40E+03	2.6	12400.0	1668.	c3h3+c3h3=c6h6	1.00E+13 0	0.0
1600. c6h12-1+ch3=c6h1116+ch4	3.00E-01	4.0	8200.0	1669.	c3h3+c3h3=c6h5+h	2.00E+12 0	0.0
1601 c6b12=1+cb3=c6b1115+cb4	2.00E+11	0.0	9600.0	1670.	c3h4-a+c3h3=c6h6+h	7.00E+11 0	0.0

9600.0 7300.0 11722.0 10120.0 10120.0

0.0 2500.0 35500.0 22500.0 22500.0 22500.0 35500.0 35500.0 35500.0 35500.0 -393.0 -393.0 -858.0

-858.0

0.0 0.0 3000.0 12000.0

1671.	c6h615=HEX1245	5.40E+11	0.0	35804.0
1672.	HEX1245=Mc6h6	5.00E+11	0.0	22081.0
1673.	Mc6h6=FULVENE	4.26E+13	0.0	49282.0
1674.	Mc6h6=c6h6	3.79E+13	0.0	22000.0
1675.	FULVENE=c6h6	7.58E+13	0.0	73923.0
1676.	c2h2+nc4h5(+M)=c6h7c(+M)	4.80E+07	0.3	4700.0
	Low pressure limit: 0.52000E+26 -0.42100E+01	0.40000E+04		
1677.	c6h7c+o2=c6h6+ho2	1.00E+12	0.0	0.0
1678	c6h7c+ho2=c6h6+h2o2	1 00E+12	0 0	0 0
1679	c6h7c+ho2=>cpd+hco+oh	4 50E+12	0 0	0.0
1680	c6h7c+oh=c6h6+h2o	6 02E+12	0 0	0 0
1681	c6h7c+o=c6h6+oh	1 80E+13	0 0	0.0
1682	c6h7c+o=cpd+bco	8 26F+13	0 0	0.0
1692	a6h7a+h=a6h6+h2	2 168+12	0.0	0.0
1694	a6h7a+ah2-a6h6+ah4	1 000+12	0.0	0.0
1605	ach7a a a h2-ach6 a a h4	1.00E+13	0.0	0.0
1606	ach7a a a 2hE - a ch6 a a 2hE	4.00E+12	0.0	0.0
1607	26h7a+a2h5_a=26h6+a2h6	4.00E+12	0.0	0.0
1007.		4.006+12	0.0	0.0
1688.	C611/C+C3115-B=C6116+C3116	4.00E+12	0.0	0.0
1689.	Cbn/C+C3n5-t=Cbnb+C3nb	4.00E+12	0.0	0.0
1690.	C6n/C+nCO=C6n6+Cn2O	4.00E+12	0.0	0.0
1091.	n+c6n5(+m)=c6n6(+m)	1.006+14	0.0	0.0
	Low pressure limit: 0.66000E+76 -0.16300E+02	0.70000E+04		
	TROE centering: 0.10000E+01 0.10000E+00	0.58490E+03		
	ch4 Enhanced by 2.000E+00			
	c2h6 Enhanced by 3.000E+00			
	co Enhanced by 1.500E+00			
	co2 Enhanced by 2.000E+00			
	h2 Enhanced by 2.000E+00			
	h2o Enhanced by 6.000E+00			
	ar Enhanced by 7.000E-01			
1692.	c6h5+o2=c6h5o+o	2.60E+13	0.0	6120.0
1693.	c6h6=c4h4+c2h2	9.00E+15	0.0	107430.0
1694.	c6h6+o2=c6h5+ho2	6.30E+13	0.0	60000.0
1695.	c6h6+ho2=c6h5+h2o2	1.52E+11	0.0	17000.0
1696.	c6h6+ho2=>c6h5o+oh+h	2.52E+12	0.0	14340.0
1697.	c6h6+oh=c6h5+h2o	2.34E+04	2.7	730.0
1698.	c6h6+oh=c6h5oh+h	1.30E+13	0.0	10600.0
1699.	c6h6+o=c6h5o+h	2.20E+13	0.0	4530.0
1700.	c6h6+h=c6h5+h2	1.42E+08	1.8	13060.0
1701.	c6h6+h=c6h7c	4.04E+13	0.0	4312.0
1702.	c6h6+c2h5=c6h5+c2h6	6.31E+11	0.0	14866.0
1703.	c6h6+c5h5=c6h5+cpd	6.31E+11	0.0	14866.0
1704.	c6h6+c6h5o=c6h5+c6h5oh	6.31E+11	0.0	14866.0
1705.	c6h5o=>c5h5+co	7.53E+11	0.0	43900.0
1706.	c6h5o+h=c6h5oh	8.36E+13	0.0	0.0
1707.	c6h5oh+oh=c6h5o+h2o	6.00E+12	0.0	0.0
1708.	c6h5oh+h=c6h5o+h2	1.15E+14	0.0	12400.0
1709.	c6h5oh+o=c6h5o+oh	2.81E+13	0.0	7352.0
1710.	c6h5oh+c2h3=c6h5o+c2h4	6.00E+12	0.0	0.0
1711	c6h5oh+nc4h5=c6h5o+c4h6	6 00E+12	0 0	0 0
1712	cvc5h8+o=cvc5h7+oh	1.76E+11	0.7	3250.0
1713	cvc5h8+h=cvc5h7+h2	2.80E+13	0.0	2260.0
1714	cyc5h8+oh=cyc5h7+h2o	3.43E+09	1.2	-447 0
1715	cyc5h8+ho2=cyc5h7+h2o2	1 28F+04	2 6	12400 0
1716	cyc5h8+ch3=cyc5h7+ch4	2 00F+11	0 0	7300.0
1717	$a_{1}a_{2}b_{1}a_{2}b_{2}a_{2}a_{2}b_{3}a_{2}a_{2}b_{4}a_{4}b_{4}a_{4}b_{4}a_{4}b_{4$	A 00E+11	0.0	16900.0
1710	cyc5no+c2n5=cyc5n7+c2n4	4.005+11	0.0	16900.0
1710	cyconomicano=cycon/mcano	1 400.12	0.0	10000.0
1720	cycsho=cpu+HZ ava5h9+o2=ava5h7+bo2	1 000.11	0.0	25000.0
1721	cyc5no+O2=CyC5n7+nO2	1 152:00	0.0	23000.0
1700	CYCDH8=CDH813	1.155+20	-0.9	92230.0
1722.	C3115-a+C2N4=CYC5N8+N	1.205+10	0.0	11488.0
1704	cyc5ii/+02=c2n3cn0+cn2cn0	3.UIE+IU	0.0	28/0.0
1705	cycon /+no2=cpa+n2o2	2.058+12	0.0	0.0
1725.	cyc5n/+no2=c2h4+c2h3co+oh	4.50E+12	0.0	0.0
1726.	cyc5n/+oh=cpd+h2o	6.U2E+12	0.0	0.0
1727.	cyc5h/+o=cpd+oh	1.80E+13	0.0	0.0
1728.	cyc5h7+h=cpd+h2	3.16E+12	0.0	0.0
1729.	cyc5h7+h=cyc5h8	3.00E+13	0.0	0.0

1730 cyc5h7+o=c4h6+hco	8 26E+13	0 0	0 0
1731 cyc5h7=c5h7	1 00E+12	0.0	35000 0
1732 c5b5=1c5b5	3 90E+11	1 0	77180 0
1733, $1c5h5=c3h3+c2h2$	3.70E+11	0.0	29830.0
1734 cpd+o2=c5h5+ho2	2 00E+13	0.0	25000 0
1735 cpd+bo2=c5b5+b2o2	2 00E+12	0.0	11660 0
1736 cpd+oh=c5h5+h2o	3 43E+09	1 2	-447 0
1737 cpd+h=c5h5+h2	2 19E+08	1 8	3000 0
1738 cpd+o=c5h5+oh	1 81E+13	0.0	3080 0
1739, cpd+c2h3=c5h5+c2h4	6.00E+12	0.0	0.0
1740. cpd+nc4h5=c5h5+c4h6	6.00E+12	0.0	0.0
1741. c3h5-a+c2h2=cpd+h	1.00E+14	0.0	24892.0
1742. c5h5+h=cpd	3.33E+13	0.0	0.0
1743, c5h5+o=nc4h5+co	1.00E+14	0.0	0.0
1744. nc4h5+c3h4-a=toluen+h	2.00E+11	0.0	3700.0
1745. nc4h5+c3h4-p=toluen+h	6.32E+11	0.0	3700.0
1746. toluen=c6h5+ch3	1.40E+16	0.0	99800.0
1747. toluen=phch2+h	3.00E+15	0.0	88194.0
1748. toluen+o2=phch2+ho2	3.00E+14	0.0	43062.0
1749. toluen+ho2=phch2+h2o2	3.00E+14	0.0	22010.0
1750. toluen+oh=phch2+h2o	1.77E+05	2.4	-602.0
1751. toluen+oh=c6h5oh+ch3	7.83E+02	2.9	3221.0
1752. toluen+o=phch2+oh	6.30E+11	0.0	0.0
1753. toluen+h=phch2+h2	1.26E+14	0.0	8364.0
1754. toluen+h=c6h6+ch3	2.40E+13	0.0	5123.0
1755. toluen+ch3=phch2+ch4	8.88E+10	0.0	8754.0
1756. toluen+c2h5=phch2+c2h6	1.01E+11	0.0	9514.0
1757. toluen+c6h5=phch2+c6h6	2.10E+12	0.0	4400.0
1758. toluen+nc4h5=phch2+c4h6	4.00E+12	0.0	7500.0
1759. toluen+c2h3=phch2+c2h4	4.00E+12	0.0	7500.0
1760. phch2=c4h4+c3h3	2.00E+14	0.0	83600.0
1761. phch2=c5h5+c2h2	6.03E+13	0.0	70000.0
1762. phch2+o2=phhco+oh	6.31E+12	0.0	43000.0
1763. phch2+ho2=phch2o+oh	2.00E+13	0.0	0.0
1764. phch2+oh=phch2oh	2.00E+13	0.0	0.0
1765. phch2+o=phhco+h	1.58E+13	0.0	0.0
1766. phch2+o=c6h5+ch2o	1.00E+13	0.0	0.0
1767. phch2+c3h3=toluen+c3h2	1.00E+12	0.0	0.0
1768. phch2+c6h5oh=toluen+c6h5o	1.05E+11	0.0	9500.0
1769. phch2oh+o2=>phhco+ho2+h	2.00E+14	0.0	41400.0
1770. phch2oh+oh=>phhco+h2o+h	8.43E+12	0.0	2583.0
1771. phch2oh+h=c6h6+ch2oh	1.20E+13	0.0	5148.0
1772. phch2oh+phch2=>phhco+toluen+h	2.11E+11	0.0	9500.0
1773. phch2oh+c6h5=>phhco+c6h6+h	1.40E+12	0.0	4400.0
1774. phch2o=phhco+h	1.30E+14	0.0	1100.0
1775. phhco=phco+h	3.98E+15	0.0	83701.0
1776. phhco+o2=phco+ho2	1.02E+13	0.0	39000.0
1777. phhco+ho2=phco+h2o2	2.00E+12	0.0	11665.0
1778. phhco+oh=phco+h2o	1.71E+09	1.2	-447.0
1779. phhco+oh=c6h5oh+hco	1.20E+13	0.0	5123.0
1780. phhco+o=phco+oh	9.04E+12	0.0	3080.0
1781. phhco+h=phco+h2	5.00E+13	0.0	4928.0
1782. phhco+h=c6h6+hco	1.20E+13	0.0	5148.0
1783. phhco+ch3=phco+ch4	2.77E+03	2.8	5773.0
1784. phhco+c6h5=phco+c6h6	7.01E+11	0.0	4400.0
1785. phco=c6h5+co	3.98E+14	0.0	29401.0
1786. phco+o2=c6h5o+co2	3.00E+10	0.0	2870.0
1787. phco+ho2=>c6h5+co2+oh	2.00E+13	0.0	0.0

Yann FENARD

Etude expérimentale et modélisation de l'oxydation de composés organiques à des fins de sécurité industrielle. Cinétique d'oxydation des butènes (1-, *cis*-2-, *trans*-2- et *iso*-)

Dans le cadre du projet DISPATMO (étude de la prévision des risques de pollution liés à la dispersion atmosphérique de produits chimiques), des études de risques liés aux incendies et explosions dus aux produits chimiques stockés sur deux sites tests ont été menées. Le but est d'identifier les produits de combustion de certains composés cibles définis au début du projet, ainsi que d'estimer leur concentration. Les composés tests sont l'éthanol, le 2-butanone, le toluène et le solvant TIFLEX. Ces composés sont susceptibles, surtout à richesse élevées, de former des quantités non-négligeables d'isomères du butène, composés chimiques connus pour être d'importants intermédiaires de la combustion d'hydrocarbures. Après une étude bibliographique sur les isomères du butène, de l'éthanol, de la 2-butanone et du toluène, un mécanisme cinétique détaillé pour simuler l'oxydation de ces composés a été proposé. Une étude expérimentale de l'oxydation de 4 butènes (1-butène, trans-2-butène, cis-2-butène et iso-butène) a été réalisée en réacteur auto-agité (T = 900-1440 K, p = 1 atm, φ = 0,25, 0,5, 1 et 2, τ = 70 ms) et en chambre de combustion sphérique (T_i = 300 K, p_i = 1, 2, 3 et 5 atm, ϕ = 0,8-1,4). Les résultats obtenus ont été confrontés à la simulation. Des données expérimentales issues de la littérature ont été utilisées afin de valider le modèle pour l'oxydation de l'éthanol, de la 2-butanone, du toluène et des isomères du butène. Enfin, une étude expérimentale de l'oxydation du solvant TIFLEX a été menée en réacteur auto-agité (T = 740-1310 K, p = 1 atm, φ = 0,5, 1 et 2) pour en connaître la composition ainsi que pour identifier et quantifier les produits d'oxydation.

Le mécanisme cinétique proposé comporte un cœur C₀-C₄ robuste, en faisant un outil prédictif fiable, pouvant servir de base à des mécanismes plus étendus capables de représenter la combustion de nombreuses autres espèces (alcanes, alcènes, alcools, aldéhydes ou cétones), par ajout de sous-mécanismes.

Mots clés : cinétique, oxydation, butène, éthanol, toluène, 2-butanone, solvant TIFLEX, réacteur auto-agité, chambre de combustion sphérique, combustion, modélisation

Experimental and kinetic modeling study of the oxidation of organic compounds related to industrial safety. Oxidation kinetic of butenes (1-, *cis*-2-, *trans*-2- et *iso*-)

In the context of the DISPATMO project (study of the forecast of the risks of pollution related to the atmospheric dispersal of chemicals), risk studies linked to the fires and the explosions due to chemical storage were conducted. The purpose is to identify the combustion products of certain target compounds defined at the beginning of the project, as well as to estimate their concentration. The target compounds include ethanol, 2-butanone, toluene and the solvent TIFLEX. These compounds lead, especially in fuel-rich conditions, to the formation of high quantities of butene isomers, compounds known as important intermediates of hydrocarbon combustion. After a bibliographical study on butene isomers, ethanol, 2-butanone and toluene, a detailed kinetic mechanism for the simulation of the oxidation of these compounds was proposed. An experimental study of the oxidation of the butene isomers was performed in a jet-stirred reactor (T = 900-1440 K, p = 1 atm, $\varphi = 0.25$, 0.5, 1 and 2, $\tau = 70$ ms) and in a spherical combustion chamber (T_i = 300 K, p_i = 1, 2, 3 and 5 atm, $\varphi = 0.8$ -1.4). Experimental results were compared with their simulations. Experimental data from the literature were used to validate the model for the oxidation of ethanol, 2-butanone, toluene and butene isomers. Finally, an experimental study of the oxidation of ethanol, 2-butanone, toluene and butene isomers. Finally, an experimental study of the oxidation of the oxidation

The proposed kinetic mechanism contains a strong C_0 - C_4 base, resulting in a reliable predictive tool, which can be used as a base in larger mechanisms simulating the combustion other species (alkanes, alkenes, alcohols, aldehydes or ketones), by addition of sub-mechanisms.

Keywords : kinetic, oxidation, butene, ethanol, toluene, 2-butanone, solvent TIFLEX, jet-stirred reactor, spherical combustion chamber, combustion, modeling

Institut de Combustion, Aérothermique, Réactivité et Environnement 1 C, Avenue de la Recherche Scientifique 45071 Orléans Cedex 2

