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Résumé

La prolifération des architectures multi-coeurs est source d’une
pression importante pour les developpeurs, qui doivent chercher
à paralléliser leurs applications de manière à profiter au mieux de
ces plateformes. Malheureusement, les modèles de programmation
de bas niveau amplifient les difficultés inhérentes à la conception
d’applications complexes et parallèles. Il existe donc une attente
pour des modèles de programmation de plus haut niveau, qui
puissent simplifier la vie des programmeurs de manière significative,
tout en proposant des abstractions suffisantes pour absorber
l’hétérogénéité des architectures matérielles.

Contrairement à une multitude de modèles de programmation paral-
lèle qui introduisent de nouveaux langages, annotations ou étendent
des langages existants et requièrent donc des compilateurs spé-
cialisés, nous exploitons ici le potentiel du language C++ standard
et traditionnel. En particulier nous avons recours à ses capacités
en terme de meta-programmation, afin de fournir au programmeur
une interface de programmation parallèle simple et directe. Cette
interface autorise le programmeur à exprimer le parallélisme
de son application au prix d’une altération négligeable du code
séquentiel initial. Un runtime intelligent se charge d’extraire toute
information relative aux dépendances de données entre tâches,
ainsi que celles relatives à l’ordonnancement. Nous montrons
comment ce runtime est à même d’exploiter ces informations dans
le but de détecter et protéger les données partagées, puis réaliser
un ordonnancement prenant en compte les particularités des caches.

L’implémentation initiale de notre modèle de programmation est une
librairie C++ pure appelée XPU. XPU est conÃğue dans le but de
faciliter l’explicitation, par le programmeur, du parallélisme applicatif.
Une seconde réalisation appelée FATMA doit être considérée comme
une extension d’XPU qui permet une détection automatique des
dépendances dans une séquence de tâches : il s’agit donc de par-
allélisation automatique, sans recours à quelque outil que se soit,
excepté un compilateur C++ standard. Afin de démontrer le potentiel
de notre approche, nous utilisons ces deux outils –XPU et FATMA–
pour paralléliser des problèmes populaires, ainsi que des applica-
tions industrielles réelles. Nous montrons qu’en dépit de leur ab-
straction élevée, nos modèles de programmation présentent des per-
formances comparables à des modèles de programmation de bas-
niveau, et offrent un meilleur compromis productivité-performance.

Abstract

The continuous proliferation of multicore architectures has placed
developers under great pressure to parallelize their applications
accordingly with what such platforms can offer. Unfortunately,
traditional low-level programming models exacerbate the difficulties
of building large and complex parallel applications. High-level parallel
programming models are in high-demand as they reduce the burdens
on programmers significantly and provide enough abstraction to
accommodate hardware heterogeneity. In this thesis, we propose
a flexible parallelization methodology, and we introduce a new
task-based parallel programming model designed to provide high
productivity and expressiveness without sacrificing performance.
Our programming model aims to ease expression of both sequential
execution and several types of parallelism including task, data and
pipeline parallelism at different granularity levels to form a structured
homogeneous programming model.

Contrary to many parallel programming models which introduce
new languages, compiler annotations or extend existing languages
and thus require specialized compilers, extra-hardware or virtual
machines..., we exploit the potential of the traditional standard
C++ language and particularly its meta-programming capabilities to
provide a light-weight and smart parallel programming interface. This
programming interface enable programmer to express parallelism
at the cost of a little amount of extra-code while reuse its legacy
sequential code almost without any alteration. An intelligent run-time
system is able to extract transparently many information on task-data
dependencies and ordering. We show how the run-time system can
exploit these valuable information to detect and protect shared data
automatically and perform cache-aware scheduling.

The initial implementation of our programming model is a pure C++
library named "XPU" and is designed for explicit parallelism specifi-
cation. A second implementation named "FATMA" extends XPU and
exploits the transparent task dependencies extraction feature to pro-
vide automatic parallelization of a given sequence of tasks without
need to any specific tool apart a standard C++ compiler. In order to
demonstrate the potential of our approach, we use both of the ex-
plicit and automatic parallel programming models to parallelize pop-
ular problems as well as real industrial applications. We show that
despite its high abstraction, our programming models provide com-
parable performances to lower-level programming models and offers
a better productivity-performance tradeoff.
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1
Introduction

1.1 Context

For decades, parallel computers were synonymous of large and expensive supercomput-
ers built by companies like IBM or CRAY. These machines were a�ordable only to large
corporations and government laboratories. Only expert programmers with deep paral-
lel computing knowledge were able to e�ectively use these systems. Low level parallel
programming models were used to express parallelism and build parallel programs.

In the 1990s, three parallel programming standards grew to dominate the paral-
lel computing landscape: the POSIX Threads (PThreads) [NBF96], the Open Mul-
tiprocessing (OpenMP) [DM98] and the Message Passing Interface (MPI) [SOW+95].
PThreads speci�ed a set of thread and memory management primitives to build multi-
threaded applications. MPI and OpenMP aimed to simplify development of parallel
applications by promoting portable, open standards over multiple proprietary technolo-
gies. Nevertheless, these programming models still required an indepth understanding
of parallel computing.

With the rise of the Chip Multicore Processor (CMP), parallel computing hardware
is becoming widely prevalent on many scales: from personal computers to embedded
systems to high performance supercomputers...[BDM09] [KAG+09] [Wol09]. Unfortu-
nately, experience and knowledge in parallel programming have not kept pace with the
trend towards parallel hardware. While parallel programming is still distant from the
average sequential programmers, this proliferation of multicore architectures has placed
mainstream developers under a great pressure to parallelize their applications as much
as possible to take advantage of these platforms.

Parallel programming using the traditional low-level thread-and-lock programming
model remains a di�cult task for most of the programmers since it is time consuming,
error prone and requires deep knowledge and skills. Consequently, mainstream pro-
grammers are facing a complex productivity-performance trade-o� where they should
extract enough parallelism to justify the use of a dedicated parallel programming library
or system. Moreover, parallel hardware is becoming increasingly heterogeneous: a mod-
ern workstation may include two or more multicore processors with several manycore
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GPUs. In order to target such architectures, a programmer must have a deep under-
standing of the target hardware and should often use several disparate programming
models making parallel programming even harder and resulting in poor productivity.
Exploiting software parallelism on these emerging multicore architectures has become a
great design challenge which outlines the need for new technologies to make multicore
processors more accessible to a larger community of developers [KB09]. This need was
particularly observed by the Thales Airborne Systems company which supported this
thesis and allowed us to experiment our research results on real industrial applications.

1.2 Structured Parallel Programming

Due to this technological context, two major needs have emerged: on one hand, a high
hardware abstraction to hide details of the underlying platform providing portability ,
scalability and accommodating its heterogeneity. On the other hand, programmability
improvement is in high-demand as it increases productivity and minimizes programming
complexity. These two requirements should be satis�ed without sacri�cing performance
and forward scalability.

Programmability is achieved by minimizing/reducing parallel development costs in
term of time, complexity and required tools in order to remain as close as possible to tra-
ditional sequential development. Parallel development overheads are mainly generated
by programming paradigm-related routines such as synchronization, communication,
shared memory management, and workload scheduling. These routines introduce a
signi�cant amount of extra-code related to parallel programming paradigms and not
to the user application itself. Additional e�ects such as hard debugging and di�cult
performance tuning are also induced.

Skeleton-based programming, often referred to as "structured parallel programming"
[Col91] [Col04], is a promising high-level approach which satis�es most of these require-
ments and attempts to replace the traditional low-level thread lock model with better
abstraction and an easier way to express parallelism through a collection of recurrent
parallel patterns [MWHL06] [AD07]. It aims mainly to provide a good trade-o� between
programmability, portability, reusability and performance enhancement in order to im-
prove programmer productivity by letting him focus on algorithms instead of hardware
architectures.

In this thesis, we addressed the productivity issue by designing two task-based pro-
gramming models which aims to exploit the potential of standard C++ language to
ease parallelism expression without sacri�cing performances. The �rst programming
model is named XPU and is designed to ease explicit parallelism expression while the
second one is named FATMA (FAsT Multicore Application) and is designed to provide
automatic parallelization of a large sequence of tasks with complex dependencies.
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XPU provides a collection of hierarchical parallel constructs to enable the program-
mers to express several types of parallelism including task parallelism, data parallelism
and pipeline parallelism at di�erent levels of granularity inside a single homogeneous
and structured programming model. While easing parallelism expression and improv-
ing programmer productivity in many application domains, XPU may be less suited to
some applications exacerbating complex dependencies between large number of tasks
making explicit parallelism expression very hard. For instance, many tiled linear algebra
algorithms may generate thousands of tasks which exacerbate extremely complex de-
pendencies. FATMA addresses this issue by extending XPU and providing automatic
parallelization capabilities and allowing the programmer to:

1. Parallelize transparently a large sequence of tasks by generating the corresponding
task dependency graph.

2. Scheduling asynchronously the parallel tasks on the available processors without
violating their dependencies.

While many parallel programming models introduce new programming languages
or extends existing languages and hence require specialized compilers and tools, both
FATMA and XPU exploit exclusively the potential of standard C++ language and its
metaprogramming capabilities to provide high programmability and better productiv-
ity. They provide an intuitive and light-weight programming interface which promotes
the reuse of sequential code almost without any alteration and requires a little amount
of extra-code to express parallelism. Consequently, programs using our FATMA and
XPU require nothing more than a standard C++ compiler.

C++ language was selected as the most adapted language to implement our pro-
gramming models not only for performance considerations but also for its powerful
metaprogramming features which provide great �exibility and expressiveness and con-
tribute signi�cantly to simplify the exposed programming interface while improving per-
formances through compile-time optimizations. For instance, programming languages
o�er di�erent programmability-performance trade-o�: for example, C language is de-
signed to o�er high performances at the cost of poor and verbose programming inter-
face while higher level interpreted programming languages such as Python o�er better
programmability thanks to their friendly and powerful programming interface at the
expense of lower performances. In our case, C++ was the ideal candidate since it o�ers
the best expressiveness-performance tradeo� to implement e�ciently our programming
models and enabled us to provide both good programmability and performance to XPU
and FATMA users.
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1.3 Research Questions

XPU and FATMA treated di�erent research questions which are axed around easing
the parallelization of sequential applications (parallelism expression and parallelism ex-
traction) :

1. Easing parallelism expression.

2. Flexibility of the parallelization methodolgy.

3. Programmability and productivity-performance tradeo�.

4. Uni�cation of di�erent parallel programming models : use of di�erent types of
parallelism at di�erent levels of granularity in a single homogeneous and structured
parallel programming model.

5. Automatic parallelism extraction and tasks parallelization at run-time.

1.4 Contributions of this Thesis

The contributions of this thesis can be summarizing as following:

1. Proposing a �exible and progressive parallelization methodology (MHPM) 1 that
represents a program as an hierarchical task graph and allows the expression of
several types of parallelism (task parallelism, data parallelism and pipeline paral-
lelism) at di�erent levels of granularity. XPU implements the MHPM program-
ming model using the C++ programming language.

2. XPU exploits a traditional and popular programming language (standard C++)
to provide high parallelism expressiveness without introducing any language ex-
tension or specialized compilers or tools.

3. XPU exploits C++ metaprogramming techniques to promote the reuse of legacy
functions, object methods and lambda expressions as tasks without any alteration.

4. XPU uses standard C++ metaprogramming techniques to extract transparently
tasks data dependencies and consumer-producer relationship between tasks.

5. XPU uses the tasks data dependencies information to automate several paral-
lel programming routines such as shared data detection and protection against
con�ictual concurrent accesses (race condition).

6. XPU exploits the information on tasks data dependencies to perform spatial and
temporal cache-aware task scheduling.

1
Publication : Nader Khammassi, Jean-Christophe Le Lann, Jean-Philippe Diguet and Alexandre

Skrzyniarz, "MHPM: Multi-Scale Hybrid Programming Model: A Flexible Parallelization

Methodology", Proceedings of the 2012 IEEE 14th International Conference on High Performance
Computing and Communication, HPCC'12, Liverpool, UK
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7. Design and implementation of a Cache-Hierarchy-Aware Task Scheduling (CHATS)
algorithm 2 for parallel Loops on modern multicore architectures.

8. FATMA exploits the available information on tasks data dependencies to build
automatically the task dependency graph (DAG) which speci�es the consumer-
producer relationships between tasks.

9. FATMA uses a DAG-driven scheduler which perform asynchronous task schedul-
ing in a super-scalar fashion.

1.5 Outline of the Dissertation

The dissertation is organized in as follows:

Chapter 2 introduces the historical background of structured parallel programming
with deterministic patterns, presents most recurrent parallel and sequential patterns,
gives and overview of several skeleton frameworks and programming models which are
relevant and discusses recent researches.

The Part 2 of this thesis is dedicated to explicit parallelism expression using XPU.

Chapter 3 gives an overview of the XPU parallelization methodology, present an
abstract intermediate representation of parallel programs and gives an overview of the
XPU framework architecture.

Chapter 4 de�nes the task object which is the fundamental component of our
programming model and explains how the C++ language and its metaprogramming
techniques are exploited to allow easy and direct reuse of legacy sequential code as
task. The internal design of the task object is described and the transparent task-data
dependency feature is discussed in this chapter.

Chapter 5, 6 and 7 discuss explicit parallelism expression using XPU and present
a set of hierarchical parallel execution patterns that allow speci�cation of task, data and
pipeline parallelism. The XPU programming interface is described and the internal de-
sign and implementation of each of the di�erent execution patterns are detailed. Finally,
in each of these chapters, practical applications are presented and used to evaluate our
approach.

Part 3 The third part of the thesis is dedicated to automatic parallelization using
the FATMA framework.

2
Publication : Nader Khammassi and Jean-Christophe Le Lann, "Design and Implementa-

tion Of A Cache Hierarchy-Aware Task Scheduling For Parallel Loops On Multicore Ar-

chitectures", Third International Conference on Parallel, Distributed Computing Technologies and
Applications, PDCTA 2014, Sydney, Australia
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Chapter 8 introduces the FATMA programming model and its automatic paral-
lelization capability. This chapter explains how the transparent data dependency ex-
traction feature of the task object can be used to build automatically and dynamically
the task dependency graph. Finally, we show how we can use this task graph to drive
the asynchronous execution of the parallel tasks in a superscalar fashion.

Part 4 The last part of the thesis is dedicated to practical industrial applications.

Chapter 9 and 10 presents two high performance real-time signal processing ap-
plications. These applications are two industrial case studies where XPU has been used
to parallelize the sequential code. The progressive parallelization process is described
and the achieved performance are discussed.

Chapter 11 concludes this thesis by summarizing the contributions of this thesis
and their limitations and providing future research perspectives.

1.6 Terminology

In this section we de�ne the some ambiguous terms which are used in the literature to
express di�erent meanings depending on the context:

1. "Hybrid": In the parallel programming context, this term is used in the literature
to describe parallel programing models for several di�erent meanings depending
on the context: for example this term can be used to indicate the ability of a
programming model to express parallelism at both the distributed memory and
shared memory levels (use of OpenMP and MPI for example) while the same
term is used to describe a programming model which is able to exploit hetero-
geneous Multicore architectures such as Multicore CPU and GPU. In our case
this term is used to indicate the ability of our programming model to express
sequential execution and several type of parallelism in a single homogeneous and
structured/hierarchical programming model.

2. "Skeleton","Parallel Construct", "Parallel Pattern": we use interchangeably "par-
allel pattern", "parallel construct" or "algorithmic skeleton" to indicate a structure
storing a set of tasks and specifying their execution con�guration.
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2
State of The Art

For decades, parallel hardware was synonym of distributed multiprocessing systems
that were a�ordable only to large laboratories and corporations and thus only expert
parallel programmers were able to use such platforms using a limited set of parallel
software and tools. Today, multicore systems are accepted in all industry segments.
The quick spreading of multicore and manycore architectures has placed programmers
under great pressure to parallelize their software to be able to exploit modern parallel
hardware e�ciently and consequently outlined the need for new parallel software tech-
nologies. Hence, translating traditional sequential code to parallel code has become a
great design challenge for software designers who attempted to ideally automate the
whole parallelization process.

2.1 Compiler-Based Parallelization

2.1.1 Automatic Parallelization Compilers and Tools

Despite decades of researches and development of parallelizing compilers, automatic
parallelization of sequential code using a compiler is standing as the holy grail of par-
allel computing and has had a limited success [SL02]. Great advances has been made
in automatic parallelism extraction at the instruction level, however, in order to ex-
ploit e�ciently modern multicore platforms, compilers need to capture parallelism also
at thread level which is a very challenging task. There are a number of Automatic
Parallelization tools :

Par4All : Par4All [ACE+12] [VSG+12] is an automatic parallelizing source-to-
source compiler for C and Fortran sequential codes. It generates parallel source
code based on the input sequential code. It targets various parallel hardware
such as multicore and manycore systems (CPUs and GPUs [VCJC+13]) and HPC
systems.

Cetus : Cetus [DBM+09] is another source-to-source compiler developed at the
Purdue University. The compiler infrastructure is written in Java and can be used
to design automatic parallelization compilers and tools. Currently, Cetus exploits
several basic parallelization techniques such as reduction variables recognition,
privatization and induction variable substitution. A new graphic interface has
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been introduced recently to display some information such as graph representation
and speedup calculations. A Cetus client-server system has been developed to
allow users to parallelize C code through the server. Since May 2013, users can
run Cetus through a web browser.

Parallware : Parallware [App20] is a source-to-source compiler developped by
Appentra. Parallware analyzes the input sequential code to capture parallelism
and generates a parallel code which use compiler directives to express parallelism.
Parallware targets multicore and manycore HPC systems.

PLUTO : PLUTO [BRS07b] [BDF+06] is a parallelization tool. It is based on
the polyhedral model which is an intermediate program representation used to
help performing high-level transformations such as loop parallelization and opti-
mizations [BRS07a] [BBK+08]. PLUTO can transform C source code to capture
coarse-grain parallelism and data locality. A�ne transformations are captured
by the core transformation framework which use them to perform e�cient tiling
and fusion. Finally, PLUTO is able to generate automatically parallel code that
use OpenMP directives from sequential portions of C code. More recently, GPU
support has been made available through CUDA code generation.

Polaris Compiler: Polaris [BEF+95] is a Fortran source-to-source compiler that
transforms sequential Fortran77 programs into parallel programs. The output
source code can use di�erent parallel FORTRAN dialects. Polaris parallelize the
input source code through several compilation passes using various parallelization
techniques such as data dependency testing, array privatization, induction variable
recognition, inter-procedural analysis and symbolic program analysis.

Intel C++ Compiler : The Intel C++ Compiler provides an automatic paral-
lelization feature [Inta] which allow thread-level parallelization of sequential por-
tion of the input code. Targeted sections include loops that exhibit good work
sharing. In order to make the threaded parallel program semantically equivalent
to the sequential input program, the Intel Compiler performs a data-�ow analysis
to ensure correct parallel execution and data partition as needed with OpenMP
directive. The resulting program is intended to provide performance gains on
shared memory multicore systems.

iPat/OMP : iPat/OMP [IHS06] is a tools that aims to assist user in OpenMP
parallelization of serial programs. This tool consist in a set functions ion the
Emacs editor. User can select a target portion of his program and invoke the as-
sistance command of the tool using Emacs command to get assistance information
on parallelization of the selected portion of the code.

Vienna Fortran compiler(VFC) : VFC [Ben99] is a new source-to-source com-
piler based on HPF+ (optimized version of HPF parallelization system). It ad-
dresses the special requirements of irregular applications.
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2.1.2 Limitations and Workaround

Automatic parallelization using compilers or tools su�ers from inherent di�culties
[BE92] [DRVV00] such as:

� Complexity of dependence analysis especially when the code uses indirect address-
ing through pointers, recursion or indirect function calls.

� Di�culty of global resources access management which requires coordination of
concurrent accesses to resources (memory allocation, In/Out, shared data...)

� Unknown iterations count in loops.

� Irregular algorithms using input-dependent control can make compile-time anal-
ysis and optimization very di�cult.

The inherent complexity in the automatic parallelization process using compilers
outlined the need for higher level programming models which allow programmers to
"help" compilers by introducing "hints" in their program in order to assist and guide
the compilation process. These hints can be more-or-less explicit and can take several
di�erent forms:

� Compiler Directives such as those speci�ed by OpenMP [DM98] or OpenHMPP
[Hir12]

� Programming Language Extensions such as Cilk Plus [Rob13]

� New Parallel Programming Languages such as Chapel [CCZ07a] or X10 [CGS+05]

� Libraries Based On Traditional Programming Languages such as Intel Threading
Building Blocks [Phe08]

2.2 Language-Based Parallelization

2.2.1 Low-Level Parallel Programming Models Limitations

Parallel programming using low-level thread/lock programming models such as the
POSIX Threads is a hard task for most of programmers since it is time-consuming,
error-prone and requires deep knowledge and skills. Parallel programming is challeng-
ing at many levels:

- Design of the parallel algorithm: In addition to the challenges exposed by
traditional serial algorithm design, parallelization may require deep restructur-
ing of the sequential algorithm which may involve computation decomposition,
complex dependencies analysis and data partitioning and distribution...
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- Implementation of the parallel algorithm: Implementation of the designed
parallel algorithm may introduces additional burdens to the programmer such as
shared memory management, communication and synchronization of concurrent
computations. Programmer should manage shared memory to avoid con�ictual
concurrent accesses to shared memories often referred as "race condition". While
using carefully mutual exclusion mechanisms to prevent "race condition", pro-
grammer should avoid deadlock which may be caused by these tools.

- Testing and Debugging: Due to the non-deterministic execution of parallel
computation, debugging and testing of the parallel programs can be a very hard
task which exacerbates the di�culty of localizing potential bugs within large num-
ber of parallel computations and the di�culty of reproducing concurrent execution
behaviors.

- Performance tuning: Performance and execution e�ciency is the primary de-
sign goal of parallel algorithms. When an application is parallelized successfully,
programmer tunes the performance of his program through e�cient computation
scheduling, good load balancing and e�ective cache use while avoiding poten-
tial memory contention and bottlenecks... This process is often challenging since
it requires not only good programming knowledge and skills but also deep un-
derstanding of the underlying architecture. The fact that parallel hardware is
becoming increasing heterogeneous is making this task even harder.

- Portability and forward scalability: A parallel application should exhibit
enough hardware abstraction to hide low-level hardware architecture details, ac-
commodate hardware heterogeneity and provide good software portability across
di�erent parallel hardware. While displaying good portability, a parallel applica-
tion should also be able to adapt to new underlying architectures to maintain ex-
ecution e�ciency and provide forward scalability: migration of parallel programs
to new parallel hardware requires often substantial rewriting of signi�cant parts
of the application which implies the reiteration of previously described process of
design, implementation, testing and performance tuning.

As we can see in these di�erent stages of the parallelization process, most of the
parallel programming overhead is generated by the parallel-paradigm related routines
such as shared memory management, synchronization, communication and workload
scheduling. These routines introduce a signi�cant amount of extra-code related the
parallel programming paradigms and not the programmer application itself. Thus, a
signi�cant part of the parallel programming complexity came from the merging between
the application computation which constitutes the payload of the application and the
coordination, interaction and communication between these computations.

This complexity outlines the need for high-level programming models which abstract
the low-level parallel paradigms-related details. High level programming approaches de-
couples the programmer algorithm from both the parallel programming-related routines
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and the underlying hardware. Structured parallel programming with deterministic pat-
terns often called algorithmic skeletons is a promising high level approach which aims
to o�er this abstraction and reduce programmer burdens.

2.2.2 Structured Parallel Programming with Patterns

Skeleton-based programming, often referred as structured parallel programming [Col04]
[Col91] o�ers a clear separation between these two complementary entities: computa-
tion, which performs the calculations in a procedural fashion, and coordination, which
abstracts the communication and interactions between these computations.[GVL10]

Structured parallel programming is a promising high-level approach which attempts
to replace the traditional low-level thread lock model with better abstraction and an
easier way to express parallelism through a collection of recurrent parallel patterns
[McC10] [AD07]. By abstracting commonly used patterns of both parallel computa-
tion, interaction, and communication, algorithmic skeletons allow programmers to code
algorithms by composing and parametrizing these skeletons. This allows the program-
mer to provide an abstract structured description of his program without specifying any
platform-dependent primitives.

By decoupling the structure of a parallel program from its behaviour, a structured
parallel program bene�ts from any improvements in the underlying parallel system
infrastructure. Therefore, thanks to its high abstraction, the structured parallel pro-
gramming model appear to be a viable and promising approach which o�er not only
programmability and reusability but also portability and forward scalability across a
wide variety of hardware. Therefore, this approach can improve signi�cantly the pro-
grammer productivity by letting him focus on algorithms instead of hardware architec-
tures.

In the following section we give an overview of the background of skeleton-based
programming then we expose a set of common sequential and parallel patterns. The
two last sections describe a series of representative algorithmic skeletons framework and
discusses a set of related approaches.

2.2.2.1 Background

The concept of "algorithmic skeleton" was introduced by Cole [Col91] [Col04] and
elaborated by Skillicorn [ST98] [McC10]. While speci�c to computation con�guration,
this concept is similar to the concept of design pattern [MSM04]. Therefore, we use the
term "skeleton" and "parallel pattern" interchangeably to indicate a recurrent execu-
tion con�guration which speci�es a speci�c pattern of computation, coordination and
data access.

23

High-level structured programming models for explicit and automatic parallelization on multicore architectures Nader Khammassi 2014



A set of characteristics workloads was identi�ed in the View from Berkeley [ABD+09]
as "motifs" or "dwarves". These "motifs" consist of a set of di�erent types of execu-
tion patterns [McC10] which exposed a set of common sequential and parallel patterns.
While the di�erent types of patterns were presented separately, in most applications,
a variety of patterns are composed linearly or hierarchically to describe a structured
algorithm [BMA+02] [TSS+03] [SG02].

In the early 1970s,it was noted that composing control �ow of serial program using
a small set of control �ow patterns (sequence, selection, iteration and recursion) could
make them easier to understand. This structured programming approach resulted into
the elimination of "goto" from most programs despite a lot of controversy [Dij79]. In
the last decades, structured control �ow has been so widely accepted that "goto" is
either deprecated or disappeared from most modern languages [McC10] [MRR12].

Analogously, structured parallel programming with parallel pattern is a promising
approach which can hide the low level threading and synchronization details while dis-
playing an understandable structured representation of parallel programs. Threads are
similar to "goto" in their lack of �exibility and structure [Lee06]. Similarly to "goto",
use of concurrent threads with random access to data make program di�cult to de-
compose into di�erent parts which form a structured program where di�erent parts are
clearly isolated and do not interfere with each others.

Functional programming can be seen as an alternative. However most modern main-
stream programming languages are not functional. Moreover, many algorithms such as
graph problems can be di�cult to express using pure functional languages. However,
functional programming can be considered as a speci�c case of structured parallel pro-
gramming where only a subset of the parallel patterns is used.

Collective languages is another class of languages which allows explicit expression
of parallel operations over large collections of data. Collective languages can be im-
plemented using either functional or imperative languages. Mainstream languages are
often used to implement collective operations as libraries which o�er a set of built-in
operations. For example, NESL [BHC+93] [Ble96] is a collective functional language
while FORTRAN 2003 is an imperative language which o�er a set of built-in collective
operations. Ct and RapidMind [MWHL06] are imperative languages which are based
on collective operations.

Structured parallel programming with patterns can be implemented by designing
new languages, by extending existing mainstream languages, by designing code gener-
ators [Her03] or by using the traditional mainstream languages to provide libraries of
parallel patterns.
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2.2.2.2 Sequential Patterns

While addressing parallel patterns, it is important to discuss sequential patterns since
sequential computations constitute the major part of most programs and also because
parallel programs are derived from sequential ones and some parallel patterns are analo-
gously derived from sequential patterns: for example, parallel loops are directly derived
from sequential ones. In the following, we describe a set of common sequential patterns
which can be seen as the building block patterns of serial programming models such as
imperative programming and functional programming.

A Sequential Control Flow Patterns

In structured programming approach, the control �ow of a program can be speci�ed
through a small set of composable and parametrizable control �ow patterns. We note
that the four following patterns (sequence, selection, iteration and function and/or re-
cursion) are not all needed to specify generic computations. Only a subset of them leads
the classes of functional and imperative languages [MRR12].

Figure 2.1: Sequence Figure 2.2: Selection Figure 2.3: Iteration

Sequence A sequence is a list of tasks that are executed in a speci�c order. The
sequence pattern is used to specify dependencies between consecutive tasks so that one
task cannot start before another is �nished (serial execution).

Selection In the selection pattern, a boolean condition is evaluated to select which
task from two tasks should be executed. The evaluation of the later condition constitutes
a third task which is executed before the selection.

Iteration In the iteration pattern a task, which constitutes a loop body, is exe-
cuted repeatably until a variable condition become false. The di�erent iteration of the
task are executed in sequence. The condition is evaluated at each iteration before task
execution.
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Function and Recursion Recursion is a form of dynamic nesting which a allows
functions to call themselves recursively. Recursion is a common pattern which is used
in many popular algorithms such as Fibonacci or Quick Sort.

B Sequential Data Management Patterns

Data management patterns abstract data accesses at di�erent level: the random read
and write accesses are the lowest level abstraction which maps directly to the low-level
hardware mechanisms. Heap and Stack allocation are other patterns which o�er a
higher abstraction.

Random Read and Write Random Read or Write consists in accessing the
memory at a given index to respectively retrieve or modify the associated value to that
index. Arrays and vectors are some of the simplest abstraction of randomly accessible
memory. We note that more sophisticated data structures can be constructed on top of
them.

Stack Allocation Stack Allocation is last-in-�rst-out (LIFO) allocation model
which is often used to handle nested function calls and local states storage. Stack Allo-
cation displays an excellent temporal and spatial data locality properties. This pattern
can be parallelized by associating a stack to each thread of control to preserve locality.
For instance, the Cilk Plus [Rob13] is using a calling convention which generalize stack
allocation in the context of function calls in order to preserve the locality properties of
stack allocation.

Heap Allocation When Stack Allocation model is not suitable, data can be dy-
namically allocated from memory pool commonly called the heap. Heap or Dynamic
Memory Allocation is a more general memory allocation model that consist in allocating
fresh memory dynamically when requested. Heap allocation is signi�cantly slower and
more complex than the stack allocation. It can result in fragmented allocation over
the memory. These scattered allocations can result into poor data locality and reduce
considerably memory access e�ciency [WJNB95].

Parallel programs using heap allocation can su�er from scalability problems since
data structure used to manage the memory is shared among all threads. Often, paral-
lelized heap allocators are used to reduce the concurrent memory allocation overhead.
These custom allocators use often a pre-allocated memory pool to avoid calling con-
stantly the native memory allocator which use a global lock to preserve memory co-
herency. The jemalloc [Eva], tcmalloc [GM], ptmalloc, concur, hoard [BMBW00] and
the TBB allocator [Phe08] are the most popular parallel heap allocators.

Data Abstraction and Collection Data management may require more so-
phisticated data structure than a simple one dimension array. Example of such data
abstraction often referred as Collections are nested arrays, graphs and tree. Collections
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can use auxiliary data structures to operate more e�ciently on data. Partitioning,
searching, ordering... are examples of such operations.

For example, HashMap is and abstract collection which may use auxiliary data
structures to store hashes and search, and retrieve data e�ciently. List is another type
of dynamic collection which may be implemented using an auxiliary "linked nodes"
structure to store data and manipulate it...

We note that Collections can be nested inside each others to compose multi-dimensional
data. Many high-level abstract collections are recurrent patterns and are implemented
as library in mainstream languages. The C++ Standard Template Library (STL) [SL94]
o�er a set of abstract Collections or "Containers" which aims to provide a tool for ef-
�ciently storing and operating on data. Vector, Set, List, Map ... are example of the
implemented Collections in the STL library.

C Sequential Programming Model

The previously enumerated patterns can be used to describe the two most common
sequential programming models which are imperative and functional programming.

Functional Programming The functional programming model is based on hier-
archical nesting of functions which produce hierarchical graphs of function calls. Pure
functional languages requires only the selection and recursion patterns to specify the
control �ow of a program. In term of data management, the random read pattern is
used to describe data accesses. Pure functional language are universal despite their
simplicity. However, algorithm depending on incremental in-place modi�cation of data
exacerbate the di�culty of implementation in pure functional languages. One of the
major advantage of functional languages is the inherent parallelism which is "implic-
itly" speci�ed by the program structure since the data dependencies which constrain
task ordering is naturally expressed. This make programs written in pure functional
languages good candidates for parallelization.

Imperative Programming In the imperative programming model, computa-
tions ordering is explicitly speci�ed by the programmer. In order to be universal, at least
the sequence, selection and the iteration control-�ow patterns need to be supported by
the sequential imperative programming model. In term of data accesses patterns, the
random-write and random-read need to be implemented. Imperative programming is
the most prevalent sequential programming model today. From a parallelization point
of view, the over-speci�cation of computation ordering is one of the major inconvenient
of the imperative programming model: all dependent or non-dependent computations
are explicitly ordered making di�cult to determine which ordering speci�cation are es-
sential for the correct execution of the program and which speci�cation ordering are
not.
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2.2.2.3 Parallel Patterns

Parallel patterns can be classi�ed as either Computational Patterns or Data Manage-
ment Patterns. Computational patterns operate on data values while data access pat-
terns organize access to the data without operating on its values. Computational Pat-
terns can in turn be classi�ed into Data Parallel Patterns and Task Parallel Patterns.
The �rst class, e.g. data parallel pattern, abstracts collection-oriented parallel com-
putations. In data parallel patterns, the same task is usually "replicated" to operate
concurrently on the elements of a given collection. Task parallel patterns do not operate
necessary on data collections. Task patterns specify the execution con�guration of a set
of tasks which may operate on collections, stream of data or other data structures.

A Data Parallel Patterns

Map The Map pattern performs the same computation on all the elements of a
collection. This can be done by replicating a task over all element within a partition of
the target collection. Typically, Map pattern can replace loops in serial programs when
loop iterations are independent and their number known. In this case, each iteration can
be used as the index of element being processed. The elemental function must execute
without any side-e�ect, i.e. should not modify the data on which other iterations are
dependent to guarantee the determinism of this pattern. Since elements of the target
collection are processed independently, the Map pattern can specify a large amount of
parallelism while achieving deterministic results.

Figure 2.4: The Map Pattern Figure 2.5: The 2D Stensil Pattern

The Map pattern can be used in many applications such as in image processing for
example : thresholding, color space conversion, gamma correction... In these algorithms,
each pixel is processed without interfering with the other pixels so the image can be
seen as "collection" or array of pixels which can be processed concurrently using the
map pattern.

Stencil The Stencil pattern can be seen as a generalization of the Map pattern:
the elemental function in the Map pattern consumes one elements to produce another,
while in the Stencil pattern, it can consume several elements to produce one element.
Figure 2.5 shows an example of a Stencil pattern producing one element using an input
elements and its neighboring elements.
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Stencil pattern is used in many applications such as convolution in image �ltering,
motion estimation in video encoding. Additionnally, Stencil is a recurrent pattern in
partial di�erential equation (PDE) solvers such as in �uid �ow solvers.

Zip The Zip pattern is a generalization of the Map pattern. Instead of using
a single collection as data input like in the Map pattern, the Zip pattern use two
collections. These two input collection are used to produce one single output collection.

Reduction The Reduction pattern reduces the elements of a collection to a single
element by combining the element of the collection using a pairwise associative oper-
ation. Typical operations are Minimum, Maximum, Sum... etc. These operations are
often called the combiner functions. The Reduction pattern can be parallelized using a
tree structure which applies the combiner function to the di�erent partitions of the input
collection to produce an intermediate smaller collection, then reiterates this operation
until reducing the last and smallest intermediate collection to a single element.

Figure 2.6: Reduction Pattern

The computation of the sum of array elements is an example of cases where reduction
can be used. The array can be split into a set of "sub-array" or array partition. The
sum of elements of these sub-arrays is computed to form new and smaller arrays. The
same computation is reiterated to �nally sum the elements of the smaller sub-array.

Permute The Permute pattern is used to permute elements of a collection. Given
the index of the input element, a function produce the destination index of that element.
A parallel implementation of the Permute pattern may involve communication since
operation on each element is likely to interfere with the other element. Consequently
communication may be needed to ensure ordering of operation and determinism of the
results.

Shift The Shift pattern is a specialization of the Permute pattern which limits
data displacement to left or right. In this case, only the boundaries elements, e.g.
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at the far right and left of the collection, requires communication between concurrent
permutation functions.

Scan The Scan pattern performs partial reduction depending of the output ele-
ment index or the position in the output collection. For every output index, a partial
reduction is performed on input starting from the �rst element up to that output index.
The Scan pattern can be considered as a specialization of a serial pattern called fold. In
the fold pattern, a function called the successor function is used to generate the current
state based on the previous state plus an additional input. When the successor function
is not associative, it is generally not possible to parallelize the fold due to direct depen-
dencies between successive computation steps. however, when the successor function is
associative, operations can be reordered to allow for parallelization. The associativity
of the successor function is the particularity which make the distinction between the
scan as a particular case from the fold as the general one.

Figure 2.7: Serial Scan Pattern

While it can be possible to parallelize a scan at the cost of more work, it is not
possible to achieve a linear speedup. This may lead to poor scalability. Hence alter-
native algorithm implementation should be considered. Integration, sequential decision
simulation and random number generation are popular examples of algorithms which
can use the scan pattern [MRR12].

Recurrence The Map pattern can be seen as a parallel specialization of the It-
eration pattern since it can be seen as the result of parallelization of a loop where
all iterations are independent. Analogously, the Reccurence pattern can be seen as a
specialization of the Iteration pattern, however, contrary to the Map pattern, the Rec-
curence pattern can be seen as the result of a loop parallelization where loop iterations
can be dependent on each others. In other words, in the Recurrence pattern, one output
is the result of a function in terms of prior outputs. In a serial code, Recurrences occur
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due to loop-carried dependencies, however, in many cases these dependencies can be
accommodated and recurrences can be parallelized. In the case of one dimension con-
�guration, when the dependency between iterations is associative, recurrences can be
parallelized into logarithmic time. This implementation is often called a scan [Ble90].
In multi-dimensional con�guration with a nesting depth of N, recurrences can be paral-
lelized over N-1 dimensions, even if the operator is not associative, using the Lamport's
hyperplane theorem [Lam74].

B Parallel Data Management Patterns

Parallel Data Management Patterns (PDMP) are used to organize access to data while
preserving coherency, e.g. avoiding con�ictual concurrent access such as race conditions.
Managing concurrent access to shared data is particularly critical in the case of some
access patterns such as the Scatter pattern. In many other patterns, coherency can be
preserved by structuring access to data. PDMP are also responsible of improving data
access e�ciency through improving spatial and temporal data locality. In the following
lines, we give an overview of most used PDMP.

Pack Given a data Collection, the Pack pattern can be used to reduce its size by
eliminating unused space. This can be done by associating a Boolean marker to each
element of the collection. The Pack pattern is then responsible for discarding elements
which are marked "False". The other elements, e.g. marked "True", are placed in the
output data Collection as a contiguous sequence. Figure 2.8 gives an overview of the
pack pattern.

Figure 2.8: Pack Pattern

The Pack pattern is particularly useful when coupled with other computing patterns
such as the Map pattern to reduce the size of its output by eliminating unnecessary
elements from the computation results. The Pack pattern can be used to emulate SIMD
machines with good performances [MRR12] [LLM08] [HLJH09]. Basic data compression
algorithms and collision detection are examples of application of the Pack pattern.

Gather The Gather pattern generates an output data Collection using an index-
able data Collection and a Collection of indices as inputs: a Gather reads the elements
from the input data Collection at the positions speci�ed by the Collection of indices
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then write these elements in output Collection. Since it does not display dependencies
between its elementary operations, the Gather pattern can be easily parallelized.

Scatter Contrary to Gather, the Scatter pattern use the Collection of indices to
write the elements of the indexable collection at the positions speci�ed by these indices.
The Scatter pattern may involve multiple concurrent writing at the same position usu-
ally called Collisions. This make the parallel implementation of Scatter more complex.
Several specializations of this pattern aims to resolve this problem using di�erent poli-
cies: The Priority Scatter is an implementation of the Scatter pattern that resolve the
multiple concurrent write at the same position using deterministic write priority rules.
The Atomic Scatter is another implementation which is however non-deterministic: it
does not guarantee operation ordering, however, it ensures that correct results are safely
written to a given position when concurrent write happen. There is other types of the
Scatter pattern sucha as the Permutation Scatter or the Merge Scatter which are not
discussed here and which are detailed in [MRR12].

C Task Parallel Patterns

Fork-Join Pattern The Fork-Join pattern enable the control �ow to fork into
several parallel execution �ows that can rejoin on a common synchronization point
Figure 2.9. The parallel �ows can result from the replication of a same �ow or from a
set of di�erent �ows.

Figure 2.9: Fork-Join Pattern

For example, the OpenMP programming model [DM98] supports both of these ex-
ecution modes: the "parallel" directive can execute the same statement in di�erent
threads or execute several di�erent statements (speci�ed as "sections") concurrently.
The Cilk Plus programming model [Rob13] implements this pattern using the two key-
words "spawn" and "sync". The "spawn" keyword is used to execute a function in a
concurrent thread instead of calling it int the current one. Several functions can be
spawned the same way. The "sync" keyword allows the synchronization of the spawned
functions at a given point. Nesting multiple fork-join patterns in a structured fashion
generates an hierarchical task graph. Task parallelism in a program can be speci�ed at
all levels of granularity through using such structured task graph.
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Pipeline Pattern Similarly to a production assembly line, the Pipeline pattern
speci�es a consumer-producer relationship between multiple tasks. The Pipeline con-
sists in a set of simultaneously active tasks called "stages" that communicate following
a producer-consumer relationship: each stage is responsible of both consuming and pro-
ducing item of data. Therefore, each pair of adjacent stages forms a producer-consumer
pair. At the opposite of the sequence pattern where completely dependent tasks are
executed serially, pipeline stages are activated at the same time. However, in order
to recover data coherency, sequentially dependent activities or "folds" are serialized,
parallelism is exploited only on independent activities.

Super Scalar Task Graph Pattern The Super Scalar Task Graph (SSTG) can
be seen as a generalization of the Pipeline pattern and also as a composition of both
the pipeline pattern and the fork-join pattern. While the pipeline pattern speci�es
a linear consumer-producer relationship between each pair of stages where each sin-
gle consumer depends on a single producer, the STTG can specify more generalized
consumer-producer relationship where multiple consumers can depend on a single pro-
ducer or the opposite con�guration where a single consumer can depend on multiple
producers.

Figure 2.10: Super Scalar Task Graph Pattern

As depicted in Figure 2.10, the task dependency speci�cation in the SSTG pattern
can be represented through a directed acyclic graph (DAG). The DAG is composed of
nodes and directed edges. The nodes of the graph represent the tasks while the directed
edges specify the dependency between the consumers and the producers. The edge is
directed from the producer to the consumer.

2.2.2.4 Skeleton Libraries and Languages

Algorithmic skeleton concept are widely accepted as an e�cient mean for describing the
common control structures of parallel programs in computational science. The skeletal
approach has guided the design and development of many languages, frameworks and
tools. In the following paragraphs we present a set of the most prominent skeleton
frameworks. Despite being structured parallel programming models that are based on
deterministic patterns or parallel constructs corresponding to common skeletons, many
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popular libraries such as Threading Building Blocks (TBB) from Intel [Phe08], Task
Parallel Library (TPL) from Microsoft [Micb] or MapReduce from Google are often not
presented in the literature as pure skeleton frameworks but as "related approaches" such
as in [GVL10]. Yet, being widely used, these frameworks have bring skeletal program-
ming to mainstream practice and applications. Since we consider the line separating
parallel skeletons and these parallel patterns too blur to make clear distinction between
them, these libraries will be presented as skeleton or pattern libraries along with the
others.

A Skeleton Frameworks Classi�cation

Before presenting the skeleton frameworks, a functional classi�cation of them can be use-
ful to distinguish the common approaches used for implementing algorithmic skeletons.
Skeleton frameworks can be classi�ed according to the used programming paradigms
such as in [GVL10] where four approaches are clearly identi�ed: Coordination, Func-
tional, Object-Oriented, Imperative. The later classi�cation is mainly based on the
language of implementation of skeleton frameworks which is a judicious criterion of
classi�cation. In order to make this language aspect of the classi�cation even clearer,
we propose the following classi�cations:

� New Languages : This class of frameworks advocates the introduction of new
high-level coordination languages that allows programmer to describe the pro-
gram structure through algorithmic skeletons. The coordination language is then
translated into a host language or the execution language responsible of interact-
ing with execution infrastructure. The Structured Coordination Language (SCL)
[DT95], the Pisa Parallel Programming Language (P3L) [BK96], the llc language
[DGRDS03] and Single Assignment C language (SCL) [Gre05] are examples of
programming models that introduces new coordination languages to describe al-
gorithmic skeletons at high level. Source-to-source compilers are often used to
translate the skeletal description into host language that can be compiled into
executable code using traditional compilers. This approach su�ers from a major
disadvantage which is the need to learn new language and the use of dedicated
compiler and tools that may requires long development time to reach the maturity
and performance of traditional compilers.

� Language Extension : Instead of introducing new skeletal languages, this ap-
proach relies on syntax extension of existing languages to widen their capabilities
with a parallel programming extension. Eden [LOmPnm05] and the Higher-Order
Divide-and-Conquer language (HDC) [HL00] follow this approach by extending
the Haskell language with parallel extension to allow skeletal programming. HDC
translates the target program into C program with the MPI environment while
Eden uses the Glasgow Haskell Compiler. Similarly to the previous approach, lan-
guage extension-based approach exposes the need to learn the syntax extensions
and relies on intermediate compilers or translators to generate the host language
code that can be compiled into executable machine code.
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� Traditional Language : In order to avoid introducing new languages or ex-
tending existing one, this approach tries to exploit traditional language to expose
a friendly programming interface that aims to easing skeleton description and
composition. Such skeleton framework are often designed as libraries for popular
language. Depending on the target language, the programming interface can be
designed using object-oriented paradigms or imperative paradigms.

� Object-Oriented : In Object-oriented languages, skeletons are often en-
capsulated into classes and exploit the abstraction of the object paradigms.
C++ and Java are the most used host language since they are very popular.
We note that auxiliary libraries and environment such as POSIX Threads
and MPI may be used to support the execution infrastructure. The Munster
Skeleton library (Museli) [CPK09], the Skeleton in Tokyo SkeTO [MIEH06]
and the Malaga-La Lagune-Barcelona (Mallba) library [AAB+02] are ex-
amples of C++/MPI skeletons that implement respectively task-parallel,
data-parallel and resolution skeletons. The Java Skeleton (JaSkel) [FSP06],
Calcium [CL07], muskel [ADD07], Lithium [ADT03] and Skandium [LP10]
provide a set of skeletons as Java classes.

� Imperative : Procedural programming language can also be used to design
skeletal programming interfaces. The Skeleton-based Integrated Environ-
ment SKIE [BDPV99], ASSIST [Van02], the Pisa Skeleton Library (SKELib)
[DS00] and the Edinburgh Skeleton library (eSkel) [BCGH05] are examples
of skeletal libraries that exploit traditional procedural languages to describe
skeleton structures. While implemented on top of C++, ASSIST and SkIE
are classi�ed as imperative because they exploit mainly the C capabilities of
C++ language. While delivering higher performances than the other higher
level approaches, Skeleton frameworks that are based on low-level procedural
languages such as C su�er from weak programmability due to their verbose
programming interface. content...

B Skeleton Frameworks Description

In this paragraph, skeleton frameworks are brie�y presented then their individual fea-
tures are described:

ASSIST: ASSIST is a programming environment for parallel and distributed pro-
grams. It is based on a structured coordination language that use the parallel skeleton
model. ASSIST represents parallel programs as a graph of software modules [Van02].
The graph itself is a software module that speci�es the interactions between a set of
modules composing the application. The interacting modules can be parallel or sequen-
tial. Sequential modules can be written in C, C++ or Fortran while parallel modules
are programmed using a dedicated ASSIST parallel module named "" [GVL10]. In
order to decouple the compiler and run time layer from the actual grid infrastructure,
ASSIST exposes a Grid Abstract Machine (GAM) layer. Programming in ASSIST can
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be peculiar since skeletons are not pre-de�ned, and the programmer is responsible of
specifying them by specializing the generic parmod construct.

Calcium and Skandium : Calcium [CL07] provides a set of task and data parallel
skeletons in a Java library. Skeletons are nestable and are instantiated using parametric
objects. Calcium supports skeleton execution on di�erent shared and distributed in-
frastructures such as symmetric multiprocessing platforms and cluster platforms. Cal-
cium provides a performance tuning model which helps programmer to locate bugs
and performance bottlenecks in his code. Additionally, Calcium provides a transparent
algorithmic skeleton �le access model for data intensive applications [CL08]. More re-
cent researches of this group has centered on a complete re-implementation of Calcium
named Skandium. The new implementation is focused on easing parallel programming
on multicore architectures [LP10] [GVL10].

OSL : The Orléans Skeleton Library (OSL) is a C++ skeleton library which is
based on the Bulk Synchronous Parallel (BSP) model of parallel computation. OSL
provides a collection of data parallel skeletons. OSL is implemented on top of MPI and
uses meta-programming techniques to o�er a good e�ciency. OSL aims to provide an
easy-to-use library which allows simple reasoning about parallel performances based on
a simple and portable cost model [JL09].

Eden : Eden [LOmPnm05] extends the Haskell functional language by providing
support of parallel shared and distributed memory environment. In Eden, parallel pro-
grams are organized as set of processes explicitly de�ned by the programmer. These
processes communicates with each other implicitly [BLMP97] through unidirectional
single-writer-single-reader channels. The programmer is responsible of de�ning data
dependencies of each process. Eden de�nes a process model that allows process gran-
ularity control, data distribution control and communication topology de�nition. The
concept of the implementation skeleton that describe the parallel implementation of a
skeleton independently from the underlying architecture has been introduced by Eden
[KLPR01]. Eden supports task and data parallelism through a set of skeletons that are
de�ned on top the process abstraction layer.

eSkel: The Edinburgh Skeleton Library (eSkel) [BCGH05] is deployed in C and uses
the MPI environment. Skeletons in eSkel can be used in two distinct modes: nesting and
interaction. The �rst mode can be persistent or transient, persistent nesting speci�es
that nested skeletons are instantiated once and remain reusable through the applica-
tion while the transient mode speci�es that the skeletons are constantly created and
destroyed each time they are invoked in the application. In term of performance pre-
diction, eSkel employed di�erent performance model including empirical methods and
process algebra through Amoget [GVL10]. More recent researches from the Edinburgh
group have addressed the adaptability in structured parallel programming [GVC07] in
general and more particularly the adaptation of the pipe skeleton [GVC08] and the farm
skeleton [GV06].
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HDC: The Higher-order Divide-and-Conquer language (HDC) [HL00] extends the
Haskell functional language and widen its scope with parallel extensions that specify
skeletal behavior. HDC presents functional program as a set of polymorphic higher-
order functions. These function are compiled into C code with MPI environment then
linked to skeleton implementations. HDC focus mainly on the divide and conquer
paradigm and provide e�cient implementation of speci�c cases of this pattern such as
constant recursion degree, �xed recursion depth or multiple block recursion... The HDC
programming model uses a performance model that guide the division of the problem
into sub-problems according to the available processing unit count.

Jaskel : The Java Skeleton (JaSkel) [FSP06] provides a set of skeletons such as
pipe and farm. Skeletons can be specialized using inheritance. When using each of
these skeletons, programmer is responsible of implementing the used skeleton interface
to encapsulate his application-speci�c code. Skeleton nesting can be done through basic
Java class system. JaSkel skeletons are provided in three versions: sequential, parallel
in shared and distributed memory versions such as OCamlP31 [CMV+06]. We note
that distributed computations are supported in JaSkel through aspect-oriented pro-
gramming, more precisely using AspectJ.

Alt and HOC : Alt have proposed a series of skeleton frameworks for distributed
memory systems and grids [AG03]. Alt provides a set of skeletons in form of services
that are accessible through Java Remote Method Invocation [AG05]. A client program
can �nd these services and call them remotely through an invoke API. Data between
program and services is exchanged through special container objects. Alt skeletons are
not nestable, hence, control �ow between skeletons should be explicitly speci�ed in the
client application. The Higher Order Component (HOC) attempted to conceptualize
the Alt approach by combining skeletons, components and services to enable the remote
client to access to distant services that implement parallel constructs [DG04]. The ex-
ecution �ow between di�erent skeleton services is regulated by a dedicated description
language.

Lithium and Muskel : Lithium [ADT03] and its successor Muskel [ADD07] are
two skeltons frameworks developed at University di Pisa. They provides a set of nestable
task-parallel and data-parallel skeletons as a Java library and a set formal semantics
[GVL10]. A performance model based on skeleton rewriting techniques, task look-ahead,
and server-to-server lazy binding [ADT03] is used to optimized performances of the tar-
get program. In term of implementation, Lithium exploits macro-data �ow to capture
parallelism. Muskel provides a set of features oriented toward performance and fault
tolerance such as quality of service [Dan05], security between task pool and interpreter
[AD07] and resource discovery, load balancing and fault tolerance when interfaced with
Java JNI Technology. More recent researches from the Pisa group has addressed au-
tonomic components [ADK09], skeletal extendability, and behavioral skeletons [GVL10].
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FastFlow : The FastFlow framework [ADKT12] is another algorithmic skeleton
programming framework developed at the Departments of Computer Science of the Uni-
versities of Pisa and Torino. FastFlow aims to promote high level parallel programming
and provides a collection of skeletons and patterns to express stream-parallelism, data-
parallelism and data-�ow parallelism by providing a collection of skeletons. FastFlow of-
fers a set of high-level parallel patterns such as "parallel_for" and "parallel_forReduce".
In recent researches, GPGPU support has been introduced in later versions of FastFlow.

llc : The llc language [DGRDS03] uses OpenMP-like syntax to implement skeletal
algorithms. C language and MPI are used as a host language. For a given set of skele-
tons, the MPI code is generated automatically [RDAS09]. llc has been successfully used
to implements many irregular linear algebra problems [DBQODS07].

P3L : P3L is a skeleton based coordination language [BDO+95]. P3L furnishes a set
of skeletons to coordinate the sequential parallel execution of C code. A P3L dedicated
compiler uses a set of implementation templates to compile P3L code for a speci�c tar-
get architecture. Hence, each skeleton has a set of di�erent implementations that are
optimized for di�erent architectures. The templates that implement a skeletons provide
a performance model that can optimize program performance through guided program
transformations [BCD+97]. P3L provides a set of modules that correspond to a set of
skeleton constructs with input and output streams. Data parallel skeleton can be nested
inside task parallel skeletons. When the programmer speci�es the type of the input and
output data streams, a type veri�cation is performed at the data �ow level [GVL10].

SkIE : Similarly to P3L, the Skeleton-based Integrated Environment SKIE [BDPV99]
is a coordination language. SKIE provides a graphical user interface and a set of debug-
ging and performance analysis tools. Hence, the programmer interacts with a graphical
tool to compose parallel modules which are based on skeletons.

SAC : The Single Assignment C language (SAC) is an imperative language dedi-
cated to array computing. It supports data parallelism through multi-threaded oper-
ations on vectors and parallel loops. SAC uses a HPF-like syntax and is implemented
on a top of a host language, it relies on Pthreads for multi-threading primitives [Gre99]
and supports many multi-core architectures [GJP10].

SCL : The Structured Coordination Language (SCL) [BK96] is one of the �rst skele-
tal programming language. SCL is designed to act as a base language which can be
integrated with a host language such as Fortran. The SCL is based on three types of
skeletons: computation, elementary and con�guration. The computation skeletons are
task parallel skeletons that speci�es the computation control �ow. Elementary skeletons
are a set of data parallel skeletons such as scan, map and fold. Finally, the con�gura-
tion skeletons o�er an abstraction of commonly used data structures such as parallel or
distributed array namely ParArray. While SCL skeletons are instantiated in Fortran,
SCL primitives cannot be invoked directly from Fortran [DGTY95].
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SKElib : SKELib [DS00] inherits the contributions of both P3L and SkIE among
others. However, SKELib does not use any coordination language. Instead, a collection
of skeletons is provided through a C library. The achieved performances are comparable
to those of P3L.

Intel Thread Building Blocks Threading Building Blocks (TBB) [Phe08] is a
parallel programming C++ template library developed by Intel. The library aims to
o�er an expressive way of exploiting recent multicore systems. TBB can be consid-
ered as a skeleton library since it o�ers a set of concurrent data structures and algo-
rithms which abstract low-level threading details. For instance, data structures include
"concurrent queue", "concurrent map", and "concurrent vector". Parallel algorithms
include parallel loop implementations such as "parallel for", "parallel while" or "par-
allel do". Algorithms collection includes also several other parallel skeletons such as
"parallel pipeline", "parallel sort" or "parallel scan". TBB provides also a set of useful
classes such as scalable memory allocators, mutual exclusion mechanisms or thread-safe
container. In TBB, computations are encapsulated in "tasks" to abstracts the access
to the processors. The TBB run-time system is responsible of scheduling dynamically
these tasks on the available processors while trying to use CPU caches e�ciently.

Parallel Patterns Library (PPL) The Parallel Patterns Library (PPL) [CM11] is a
C++ library developed by Microsoft. It was �rst integrated in Visual Studio 2010. PPL
is based on an imperative programming model that aims to o�er scalability and ease of
use. In order to abstract low-level threading details, the library uses the Concurrency
Runtime which is responsible of task scheduling and resource management. Similarly
to TBB, the PPL o�ers a collection of concurrent containers and parallel algorithms.
PPL support task parallelism and provide a set of data parallel algorithms that act
concurrently on collections of data.

2.2.2.5 Comparison of Structured Parallel Programming Frameworks

Table 2.1 is an updated version of the comparative skeleton framework table from
[GVL10]. It gives a comparison between the di�erent skeleton libraries and languages
presented in the previous section in term of :

� Programming Language

� Execution Language

� Distribution Library

� Type Safety

� Skeleton Nesting (Composition)

� Supported Skeleton Set
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Programming Execution Distribution Type Skeleton Skeleton Set
Language Language Library Safe Nesting

Alt Java Java Java Yes No Map, Zip, Apply, Scan,
RMI Sort, Reduce, Replicate

ASSIST Custom Control C++ TCP/IP Yes No Seq, Parmod
Language SSH/SCP

Calcium Java Java ProActive Yes Yes Seq, Pipe, Farm, For
While, Map, D/C, Fork

Eden Haskell C PVM Yes Yes Map, D/C, Pipe,
Extension MPI IterUntil, Torus, Ring

eSkel C C MPI No Yes Pipe, Farm, Deal,
Butter�y, HallowSwap

HDC Haskell C MPI Yes Yes Map, Red, Scan, Filter,
(Subset) dcA, dcB, dcD, dcE, dcF

HOC Java Java Globus No No Farm, Pipe, Wavefront

JaSkel Java Java RMI No Yes Farm, Pipe, Heartbeat

Lithium Java Java RMI No Yes Farm, Pipe, Map, Reduce

Mallba C++ C++ NetStream Yes No Exact, Heuristic, Hybrid
MPI

Muesli C++ C++ MPI Yes Limited Array, Matrix, Farm
OpenMP Pipe, Parallel Comp.

Muskel Java Java RMI No Yes Farm, Pipe, Seq,
Custom

P3L Custom Control C MPI Yes Limited Map, Reduce, Seq, Comp
Language Pipe, Farm, Scan, Loop

QUAFF C++ C MPI Yes Yes Seq, Pipe, Farm
Scm, ParDo

SAC Custom C-like Threads No No GenArray, ModArray, Fold

SCL Custom Control Fortran Ad-hoc Yes Limited Map, Scan, Farm, Fold,
Language Tools SPMD, IterateUntil

Skandium Java Java Threads Yes Yes Seq, Pipe, Farm, For,
While, Map, D/C, Fork

SKELib C C MPI No No Pipe, Farm

SkeTo C++ C++ MPI Yes No List, Matrix, Tree

SkeIE GUI / Custom C++ MPI Yes Limited Pipe, Farm, Map,
Control Language Reduce, Loop

Skil C C - Yes No ParData, Map, Fold
Subset

SkiPPER CALM C SynDex Yes Limited Scm, Df, Tf,
InterMem

TBB C++ C++ - Yes No For, While, Reduce,
Scan, Sort, Pipeline

XPU C++ C++ - Yes Limited sequential, parallel, pipeline ,
parallel_for, parallel_vector

Table 2.1: Comparative table of the algorithmic skeleton frameworks.
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2.3 Discussion

High level parallel programming with skeleton and patterns address many limitations of
the traditional low-level thread-lock parallel programming model. In the later program-
ming model, parallel paradigm-related code is merged with the code of the application.
Skeleton programming decouples the parallelism speci�cation from the application-
speci�c code: common parallel computation patterns are identi�ed and provided as
a set of abstract and reusable parallel programming patterns. Naturally, this approach
can o�er many advantages in terms of programmability, �exibility and hardware adap-
tivity. Yet, the skeleton frameworks presented in this chapter expose di�erent trade-o�
between them and focus mainly on one of these aspects.

2.3.1 Programmability

One of the major advantage of the skeleton approach is its high programmability that
improves the programmer productivity by relieving him from managing low-level multi-
threading details and routines such as thread creation, communication and synchro-
nization.

One of the major obstacle for achieving high programmability is the poor paral-
lelism expressiveness of traditional sequential programming languages: parallelism ex-
pression using traditional languages is often too verbose, error-prone and requires deep
restructuring of the sequential code. For this reason, many of the enumerated paral-
lel skeletons frameworks either introduced new parallel programming languages such as
P3L or extended the existing programming language with custom syntax extensions and
compilation directives to o�er better parallelism expressiveness... Consequently, these
frameworks introduced custom compilers and tools designed to handle these parallel
extensions at the cost of limited portability. Despite the exposed parallel programming
interfaces of these frameworks are often less verbose than the traditional low level par-
allel programming model, the programmers are often reluctant to learn new languages,
extensions and paradigms. This is one of the reason that prevented many skeleton
frameworks from �nding their path to the industry and mainstream programming. In
our professional experience within the Thales Airborne Systems corporation, we
observed that the programmers who developed applications using popular and mature
programming languages are reluctant to learn new languages or use "young" specialized
compilers and tools because of productivity, reliability and portability considerations.

2.3.2 Flexibility

Many programming models focus on a speci�c type of parallelism and o�er a set of
skeletons that target that type of parallels, for instance SkePU [EK10] furnishes mainly
data parallel skeletons and their implementations on various multicore and manycore
architectures, and do not o�er skeletons for pipeline or task parallelism. In such case,
the applications that do dot expose massive data parallelism cannot take advantage of
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such library. Consequently the target application should exhibit enough data paral-
lelism to justify the use of this skeleton library. Moreover, other applications that may
contain data parallelism in addition to other types of parallelism cannot be parallelized
using exclusively SkePU and requires other ones to handle task or pipeline parallelism.
This lack of �exibility limit the spectrum of the targeted applications and dissuade
mainstream programmers from using such skeleton libraries.

2.3.3 Performance and Hardware Adaptivity

The "manual" performance tuning for speci�c architecture is one of the major drawbacks
of low level parallel programming models such as POSIX Threads [NBF96]. Program-
mer tunes the application performance for the target platform by adjusting the threads
count to the available processor count and mapping threads to speci�c processors to im-
prove cache e�ciency and data locality. When switching another platform with di�erent
processor count and cache topology, the same performance tuning process is reproduced.

Higher level programming models including skeleton frameworks o�ers enough ab-
straction to hide the underlying shared memory architecture details and thus allow
dynamic performance tuning and relieve the programmer from adapting his application
to di�erent parallel hardware. Nevertheless, many of these programming models use
performance tuning mechanisms that are limited to extracting the processor count and
adjusting the thread count to improve dynamically the forward scalability. Other as-
pects such as adapting the task-processor mapping to the underlying processor cache
topology to improve spatial and temporal data locality are critical for performance as
we will demonstrate in the task parallelism chapter. Yet, the later cache-aware schedul-
ing aspect is often either neglected or addressed with simplistic approaches by most
of skeleton frameworks. These approaches are discussed in data and task parallelism
chapters.

2.4 Motivation

Parallel programming using low-level programming model is still a hard task for the av-
erage sequential programmer. High-level structured parallel programming are in high-
demand since they address many limitations of the traditional parallel programming
models. The industrial context (Thales Airborne Systems) in which our researches
took place con�rmed this observation and outlined the need for a high-level parallel
programming model which improves programmer productivity while delivering reason-
able performances. This formulated the main motivation of our research work which
is "easing parallel programming without sacri�cing performances". The goal was to de-
sign a structured parallel programming model which o�er a high programmability while
delivering comparable performances to lower level approach. Design goals included:

1. Using a traditional programming language (C++) without any extension to pro-
vide good portability: many parallel programming models introduce new pro-
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gramming languages, extends existing languages or de�ne compiler directives and
thus requires specialized compiler and tools, this can limit their portability. More-
over, the low technological maturity of such new compilers can make questionable
their use in critical industrial applications.

2. Easing the parallelization of existing sequential application by reusing the legacy
code with the minimum possible alteration: when parallelizing sequential appli-
cation, many parallel programming models requires deep restructuring of legacy
sequential code.

3. Easing parallelism expression by o�ering an intuitive and compact parallel pro-
gramming interface: parallel programming models which use traditional program-
ming languages su�er often from poor parallelism expressiveness and expose a
verbose programming interface.

4. Designing a �exible parallelization methodology which allows parallelization of
general-purpose application which may expose di�erent types of parallelism at
di�erent levels of granularity. Many parallel programming models introduces
parallel paradigms that target speci�c application domains and focus on spe-
ci�c type of parallelism or target only popular parallel problems. Consequently
such paradigms are hardly applicable to general-purpose applications, therefore
the programmer faces a complex productivity-performance trade-o� where they
should extract enough parallelism to justify the use of a dedicated parallel library.

In this next chapters we present two C++ parallel programming frameworks namely
XPU and FATMA which have been designed based on the previously enumerated design
goals to address the limitations of many state of the art parallel programming models
in term of programmability and performance. Both XPU and FATMA exploit exclu-
sively the potential of standard C++ programming language and its metaprogramming
capabilities to ease parallelism expression while delivering performances which are com-
parable to low-level programming models.
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Part II

Explicit Parallelism Expression :

XPU
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3
XPU Methodology and Architecture

3.1 Parallelization Methodology

XPU proposes a task-based parallelization methodology that consists in decomposing
the target sequential program into a set of tasks then specifying parallelism of these
tasks. XPU allows the programmer to specify di�erent types of parallelisms at di�erent
granularity levels to form a structured parallel program. The next two paragraphs
describe the task decomposition and the parallelization process.

3.1.1 Task Decomposition

Task-based programming is based on the decomposition of a program into a set of tasks
that cooperate with each others to perform the main work of the application program.
Task granularity can be controlled and speci�ed by the programmer: a program is
basically the main task which is split into several coarse-grain tasks which may be split,
in turn, into �ner-grain tasks, and so on... until we reach the �nest-grain allowed by
the host programming language (Fig. 3.1).

Figure 3.1: Program can be decomposed into a set of tasks at di�erent granularity levels
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Depending on the used programming language, these tasks can correspond to dif-
ferent pieces of code of various granularities such as C/C++ function, C++ object
method, C++0x lambda expression or simply a set of machine instructions.

3.1.2 Parallelization

Each task of the application program performs a piece of work in which it may consume
or produce data, i.e., read or write private or shared data. In order to speedup program
execution on parallel computing architectures, we have to extract the maximum amount
of parallelism. The ideal case is the one in which all tasks, at the �nest possible gran-
ularity level, do not display any data or control dependencies, so they can be executed
simultaneously (Fig. 3.2).

Figure 3.2: In ideal parallel program, �nest grain tasks can be executed simultaneously.

Unfortunately, real world programs are "more-or-less" parallelizable depending on
their natures: while many scienti�c simulations exhibit massive data parallelism and
thus are highly parallelizable, many other general-purpose applications, which represent
the vast majority of the softwares, are much less parallelizable due to data and control
dependencies and explicit task ordering. Indeed, these algorithmic constraints introduce
the need for synchronization and ordering to preserve memory coherency and algorith-
mic consistency. Consequently, each subset of the tasks composing the program can be
executed either in parallel or sequentially depending on these constraints which de�ne
thus the parallel-sequential code ratio or the available parallelism in the target program.

At the end of the parallelization process, we obtain a hybrid execution graph con-
taining both sequential and parallel sections (cf. Figure 3.3). The available parallelism
varies depending on the nature of application, but the model remains usable for either
highly or weakly parallelizable programs and even for those which are fully sequential.
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Figure 3.3: Realistic parallel program contains both parallel and sequential tasks at
di�erent granularity level due to the potential dependencies between some tasks.

Parallel programs can exhibit di�erent types of parallelism that speci�es speci�c
parallel execution con�gurations such as:

� Task Parallelism where di�erent tasks of the program can be executed simul-
taneously while other are executed sequentially, task parallelism is often speci�ed
through task graphs.

� Data Parallelism where a same task can be executed on di�erent chunks or
partitions of large data. Data parallelism can be implemented at thread level
using a coarse grained task or at instruction level using vectorization (SIMD).

� Pipeline Parallelism where di�erent tasks are executed asynchronously as pipeline
stages, the pipeline speci�es a consumer-producer relation between its di�erent
stages.

3.1.3 XPU Program Representation

Based on the previous observations, the XPU programming model represents the par-
allel program as a set of tasks, these tasks are organized within "task groups". XPU
propose di�erent implementations of "task groups", each one implement a speci�c par-
allel or sequential execution con�guration. In addition to sequential execution, many
of these task groups can specify di�erent types of parallelism including task, data and
pipeline parallelism as shown in the Figure below. We note that these task group im-
plementations can be easily extended to support more parallel execution con�guration.
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Figure 3.4: Sequential Execution Figure 3.5: Parallel Execution

Figure 3.6: Data Parallel Execution Figure 3.7: Pipeline Execution

In order to be able to express di�erent kinds of parallelism at di�erent levels of
granularity, task groups can be composed hierarchically. Figure 3.8 depicts and exam-
ple of hierarchical task group composition that allows programmer to specify task, data
and pipeline parallelism simultaneously. Based on this relatively simple intermediate
program representation, XPU aims to provide a programming interface which can ex-
press the di�erent types of parallelism and to compose them hierarchically at the cost of
the littlest possible amount of extra-code while reusing legacy sequential code without
alteration.

Figure 3.8: Parallel program combining several types of parallelism at di�erent granu-
larity levels.
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3.2 XPU Architecture

Figure 3.9: Overview of the XPU Architecture

Figure 3.9 gives an overview of the architecture of XPU. It is mainly composed of three
layers. Each layer has speci�c design goals which are presented brie�y in the following
four paragraphs.

3.2.1 Execution Patterns API

The top layer of the XPU is composed of a set of light-weight API which allows the
programmer to express di�erent types of parallelism and compose them hierarchically
in their program. The primary design goal of this API is providing high �exibility and
expressiveness to improve programmer productivity.

The API is compact and can be composed of �ve keywords: "task", "sequential",
"parallel", "parallel_for" and "pipeline". The �rst keyword allows the programmer
to de�ne a tasks by reusing his legacy sequential code. The remaining keywords are
di�erent implementations of task groups: "sequential" speci�es sequential execution of
a set tasks or task groups, "parallel" speci�es parallel execution of a set of tasks or task
groups, "pipeline" allows the use of tasks as stages of a pipeline execution con�guration.
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The "parallel_for" is another task group that specify the parallel execution of the same
tasks on di�erent partition of a large data.

3.2.2 Intelligent Run-Time System (IRS)

The IRS is the intermediate layer which is responsible of extracting information about
parallelism speci�cation and task-data dependencies from the top layer (API) and the
information about parallel hardware from the bottom layer (HAL) to exploit them to
achieve e�cient execution. For instance, the IRS exploits information on processor
cache topology to perform e�cient cache-aware scheduling such as in our XPU CHATS
algorithm that will be detailed in the chapter 5 (Data Parallelism). Also, the IRS
uses information on available processing unit count to perform e�cient dynamic data
partitioning in order to achieve good scalability over a wide variety of architectures.

3.2.3 Hardware Abstraction Layer (HAL)

The HAL is the bottom layer which is responsible of exploring dynamically the underly-
ing parallel hardware in order to extract hardware information such as processor count,
cache topology and vectorization capabilities (cf. Chapter 4 and 5 : "Task Parallelism"
and "Data Parallelism"). Hardware description is then made available to the IRS to
optimize the execution according to that description.

3.2.4 Standard Multi-Threading Primitives

Standard Multi-Threading Primitives is a part of the bottom layer and is responsible of
the abstraction of the low level multi-threading routines (thread creation, synchroniza-
tion mechanisms, mutual exclusion...etc) provided by modern multiprocessing-capable
operating systems. This layer is designed mainly to ensure portability of XPU to other
systems.

We note that the current implementation has been developed on UNIX-like sys-
tems, however, due to limited libraries dependencies (POSIX Threads (PThreads) and
optionally OpenCL for GPU computing support), XPU is easily portable to most of
modern systems since multi-threading libraries are available on most platforms.

3.3 The Hierarchical Task Group Graph

In order to accommodate heterogeneity of the di�erent execution patterns, so that they
can �t into a single homogeneous structure representing the program, we de�ne a com-
mon abstract construct named "task_group". All our execution patterns implement
this common interface: for example "sequential_tasks" is a group of tasks scheduled
to run sequentially while "parallel_tasks" is a group of tasks scheduled to be executed
simultaneously (a basic fork and join pattern) and "pipeline" is a group of communi-
cating tasks running as a chain of overlapping processing stages... etc. We note that
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"Task" is also, by design, a "task_group" containing a single task.

Figure 3.10 gives an overview of the di�erent implementations of the abstract task
group interface. The �exible HTGG design allows the extension of the task group im-
plementations to express more execution patterns and meet speci�c programmer needs
in various application domains.

task_group

Common Absract

Inteface

+run()

parallel_tasks

Task parallelism

+run()

sequential_tasks

+run()

1

1..*

pipeline

Temporal 

Parallelism

+run()

parallel_for

Data Parallelism

+run()

   ...   

More Execution

Patterns

+run()

task

Single Task

+run()

Figure 3.10: Di�erent implementations of the Hierarchical Task Group Graph

Thanks to the �exible design of the HTGG (cf. Figure 3.10), most of the provided
constructs are nestable and can be composed hierarchically inside each other. By ex-
pressing parallelism at several levels of granularity using these patterns, we obtain a
hierarchical structure composed from task groups of "task_group" which we named
HTGG. Task ordering is speci�ed inside each construct, so when a task group is called,
it executes its sub-task groups following the speci�ed execution pattern and each of
these sub-task groups will, in turn, do the same with their sub-task group ...etc.

In the next chapters, we detail the di�erent components of our programming model
starting from its elementary and atomic component which is the task up to the di�erent
parallel patterns which specify the execution of a group of tasks and implement the
abstract task group interface. Use of these patterns is illustrated through examples of
programs in each chapter. The use of these patterns and their composition is demon-
strated through practical applications such as radar signal processing, polyphase �lter
bank implementation, blackscholes algorithm and �uid hydrodynamic simulation...
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3.4 Overview of the XPU Programming Model

In this section, we present a set of �gures which summarize the XPU parallelization
stages from parallelism expression to actual tasks execution on the parallel hardware.
Each of these illustrations is dedicated to a speci�c type of parallelism. Supported
parallelism types are task parallelism, data parallelism and pipeline parallelism. Each
of these kind of parallelism will discussed in detail in a dedicated chapter.

3.4.1 Task Parallelism

3.4.1.1 Sequential Execution

Figure 5.11 shows how sequential execution can be speci�ed using the XPU API "se-
quential" and how the run-time executes the tasks on the target platform.

Figure 3.11: Sequential task execution details.
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3.4.1.2 Parallel Execution

Analogously to the sequential execution, Figure 5.12 shows how parallel execution can
be speci�ed using the XPU API "parallel" and how the run-time executes the tasks
concurrently on the underlying multicore architecture.

Figure 3.12: Parallel task execution details.

3.4.2 Data Parallelism

Figure 3.13 describes data parallelism expression using the XPU parallel loop imple-
mentation, namely "parallel_for" and details how the main workload is distributed
across the available processors. We note that a smart task scheduling is performed by
the IRS to exploit e�ciently the processor caches. More details about this cache-aware
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scheduling technique are provided in the description of the XPU CHATS algorithm in
the "Data Parallelism" Chapter.

Figure 3.13: Parallel loop execution details.

3.4.3 Pipeline Parallelism

Finally, Figure 3.14 shows the pipeline parallelism speci�cation in the XPU program-
ming model and shows how the di�erent pipeline stages are executed on the underlying
multicore platform by the XPU runtime system.
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Figure 3.14: Pipeline execution details.

In the next chapters, we see how we reuse legacy code to de�ne XPU tasks then how
we can specify the parallelism of these tasks using the di�erent XPU skeletons. Several
applications are used to illustrate the use of XPU and to evaluate its performances and
programmability in comparison to concurrent approaches.
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4
Task De�nition

Decomposing a program into a set of pieces of code is the �rst step in the parallelization
process in most parallel programming models. In low-level thread-lock programming
model, these pieces of code are called "callbacks" while in higher level task-based pro-
gramming models these pieces of code are encapsulated in "tasks".

4.1 Task De�nition and Programmabitlity

Task de�nition mechanism is critical for both programmability and performance. In
order to de�ne a task or a callback using an existing piece of code many low and high
level parallel programming models require considerable amount of extra-code and a
signi�cant alteration of the legacy code. These two key considerations have a direct
impact on programmability and developers productivity. In order to improve XPU
programmability, two aspects have been considered as design key in both task de�nition
and parallelism expression:

� Reducing the amount of the required extra-code to de�ne a task.

� Promoting reuse of the sequential code with the lowest possible alteration.

In order to outline the programmability of our programming model, we compared
it to the lower level parallel programming model PThreads [NBF96] then to a high-
level task-based programming model named Intel Threading Building Blocks (TBB)
[Phe08]).

4.2 PThreads Callbacks

In the traditional low-level PThreads programming model, the "callbacks" play the role
of "tasks" in the task-based programming models. "Callbacks" corresponds to functions
that are executed by the concurrent threads of multithreaded applications. When trying
to reuse a legacy function as a PThreads callback, the original sequential code is often
greatly altered since the targeted piece of code has to meet the native callback proto-
type "void * function(void *)" which imposes many restrictions on the programmer
when parallelizing applications or reusing sequential code : only "static" functions can
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be used as callbacks, the C++ object methods cannot be used directly. In addition, the
set of data which is consumed or produced by the callback must be stored in a common
intermediate opaque structure (void * ) then extracted and restored to their original
type through type casting.

Listening 4.1 shows a simpli�ed example of how a callback can be de�ned and how
a thread is created in the POSIX Threads programming model. The intermediate steps
of packing required arguments into a custom structure "args" in the main function and
unpacking these arguments inside the callback function are not detailed in the given
code.

The lack of �exibility of the PThreads programming model leads to many modi�-
cations of the legacy code when parallelizing a sequential code. Moreover, usually a lot
of programming paradigm-related extra-code is introduced and make the code verbose,
less readable and error-prone. This poor programmability ampli�es the burdens on the
programmer dramatically and makes the reuse of sequential code di�cult.

1

2 void * callback(void * args)

3 {

4 // unpack arguments then

5 // call the original code

6 }

7

8 void main()

9 {

10 int arg1, arg2;

11 float arg3;

12 pthread_t id;

13 pthread_attr_t attr;

14 struct custom_struct args; // custom structure to pack all arguments

15 // pack arguments

16 args.first = arg1;

17 args.second = arg2;

18 args.third = arg3;

19

20

21 pthread_create(&thread, &attr, callback, (void *)&args);

22

23 // ...

24 }

Listing 4.1: Callback de�nition and thread creation in POSIX Threads programming
model

60

High-level structured programming models for explicit and automatic parallelization on multicore architectures Nader Khammassi 2014



4.3 Threading Building Blocks Task

Intel Threading Building Blocks (TBB) [Phe08] is a high level programming model
which provides more abstraction than PThreads and allows the reuse of sequential code
in a less restrictive way. However, signi�cant modi�cation to sequential code is still
required: task code and its consumed or produced data should be encapsulated in a
speci�c task class respectively as object attributes and object methods. Consequently,
sequential code cannot be reused directly and has to be signi�cantly transformed. This
leads to verbose code which is hard to read and which requires signi�cant programming
e�ort.

1 class task_1 : public tbb::task

2 {

3 public:

4 task_1(double * data_1, int data_2) : m_data_1(data_1), m_data_2(data_2)

5 {

6 // initialization

7 }

8

9 tbb::task * execute()

10 {

11 // ... function code ...

12 return 0;

13 }

14

15 private:

16

17 double * m_data_1;

18 int m_data_2;

19 };

Listing 4.2: Task de�nition mechanism in Intel Threading Building Block.

4.4 XPU Task

Since promoting the reuse of sequential code is one of the primary design goals of
XPU, we tried to overcome the previously enumerated limitations of PThreads or TBB
through a more �exible task design. In XPU, a task is basically an abstract callable
piece of code which can be executed. This piece of code may consume or produce data.
Data is passed in the form of arguments to each task.
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4.4.1 Using Legacy Functions

The programmer can encapsulate easily a legacy C/C++ function in an XPU task.
Listing 4.3 shows how a C/C++ function can be reused as a task. Contrary to the
POSIX Threads programming model which does not allow reusing functions which do
not meet the callback prototype "void * function(void*)", XPU task can be de�ned by
reusing any legacy function without introducing any constraints on its signature, e.g.
its argument count or types and its return type.

Since XPU is implemented using an object-oriented language C++, XPU task is
implemented internally as a C++ object which encapsulates the target piece of code,
however, it does not requires that programmer write a class which implement a speci�c
task interface such as in the TBB programming model and most of the parallel pro-
gramming models which are implemented using object oriented languages such as C++
and Java.

As shown in Listing 4.3, the �rst parameter of the task is a pointer to the target
function. The remaining parameters are the arguments which should be passed to the
function when executing the task. Based on our personal experience, the easy reuse
of functions as XPU tasks makes C programs good candidates for relatively fast paral-
lelization since they are often well structured as modular functions.

1 // simple functions with different arguments count and types

2 int read(const char * file, int * stream)

3 {

4 // code...

5 }

6 int sort(int * data, int size)

7 {

8 // code...

9 }

10

11 int main()

12 {

13 int size

14 int * data;

15

16 // tasks definition

17 task read_t(read, "file.dat", data); // unnamed task

18 task sort_t(sort, data, size); // task with different argument types

19 task named_sort_t("sort", sort, data, size); // named task

20

21 // running the task

22 read_t.run();

23 }

Listing 4.3: Task de�nition using legacy functions.
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In order to ease application debugging, execution monitoring and performance tun-
ing, the �rst parameter of task can be optionally a string which speci�es the task name.
Line 19 in Listening 4.3 shows an example of the de�nition of a task named "sort".

Task names can be used in the output traces of an XPU application when the
monitoring mode is activated. The output traces tell the programmer when each task
started and ended and gives the programmer an overview of the execution time of each
de�ned task. By giving names to tasks, the programmer can identify more easily running
tasks, can monitor their execution and can detect potential bugs or bottlenecks.

4.4.2 Using Object Methods

C++ Programmers organize often their programs in C++ classes and encapsulate their
functions code in their classes as object methods. These object methods cannot be used
easily as callbacks or tasks without restructuring the code. Particularly, the PThreads
programming model and its derivatives do not support using object methods as callbacks
else they are de�ned as public static methods. This implies that the target callback do
not have direct access to the private object attributes.

Analogously to C/C++ functions, XPU allows the use of legacy C++ object meth-
ods as tasks. Listing 4.4 shows how a task can be de�ned by reusing an object method.
The �rst parameter of the task is a pointer to the class instance, the second parameter
is a pointer to the class method and �nally the remaining parameters are the arguments
which should be passed to the object method when executed.

1 class image

2 {

3 public:

4

5 int sharpen(int val)

6 {

7 }

8

9 int blur(int x, int y)

10 {

11 }

12 };

13

14 int main( )

15 {

16 image img("img.jpg"); // object instantiation

17 task sharpen_t(&img, &image::sharpen, 10);

18 task blur_t("blur", &img, &image::blur, 4, 16);

19 }

Listing 4.4: Task de�nition using an object method.
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4.4.3 Using Lambda Expression

Lambda expressions has been introduced in the later versions of C++ (C++0x and
later). XPU allows the programmer to use lambda expressions as tasks. Listing 4.5
shows how a lambda expression can be used as XPU task.

1 int main( )

2 {

3 float * data;

4

5 task filter([](float * samples, float freq) { /* code */ }, data, 16000.0f);

6

7 filter.run( );

8

9 }

Listing 4.5: Task de�nition from a class method.

4.5 Design and Implementation Of The XPU Task

Using traditional and standard programming languages such as C or C++ o�ers ex-
cellent code portability over di�erent compilers and systems and takes advantages of
language maturity and sophisticated compilation and optimization techniques which
have been developed during decades and are still constantly improved.

Many high level parallel programming models such as Intel TBB [Phe08] which uses
the C++ programming language tried to exploit these traditional languages to provide a
friendly parallel programming interface which can ease parallelism expression and hide
low-level parallel programming-related details. Unfortunately, while displaying good
portability and achieving high performances and good scalability, most of these high-
level programming models su�er from verbose programming interface which introduces
often a signi�cant parallel paradigm-related extra-code and require signi�cant alteration
of the legacy sequential code.

Many other parallel programming models tried to accommodate the "lack of par-
allelism expressiveness" of traditional programming languages such C and C++ and
proposed either new parallel programming languages or extended these traditional lan-
guages with compiler annotations or extra keywords to ease parallelism expression and
guide compiler when parallelizing code, for instance Intel Cilk Plus [Rob13] which ex-
tended C++ syntax with custom keywords is an example of such programming models.
This approach su�ers from limited portability over di�erent compilers and platforms in
addition to learning curve steepness: programmers prefer using well-known and mature
traditional programming language rather than learning new languages or new paradigms
introduced by various language extensions without any guarantee on achievable perfor-
mances.
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In our works, we tried to use exclusively standard C++ without any extension to
provide a parallel programming interface with high programmability. Traditional C++
language is a rich programming language witch can provides enough expressiveness to
allow easy parallelism speci�cation at the cost of few extra-lines of code. We exploited
the potential of C++ language and more particularly its meta-programming capabilities
(see Annex A) to provide a friendly programming interface. The XPU API allows simple
and fast de�nition of tasks at the cost of a single line of code. Moreover, it allows reusing
legacy code without alteration and therefore improves programmers productivity. By
using C++ template metaprogramming we take advantage of compile-time compiler
optimization to produce e�cient code.

4.5.1 Internal Task Design

Figure 4.1: Task design allows reusing di�erent pieces of code through an extendable
set of implementations

Figure 4.1 gives an overview of the internal design of the XPU Task. In order to support
multiple implementations, the Task object uses an abstract interface named Callable.
Several implementations of this interface are provided to support di�erent pieces of
code. For instance, the StaticCallback implementation allows the reuse of classic C or
C++ function as a task while the DynamicCallback implementation allows the reuse
of C++ class methods etc... These implementations are responsible of allowing the
main Task object to call or execute the encapsulated piece of code with the appropriate
arguments. Each Task stores mainly a pointer to the target code and all the required
data to call that code such as the arguments or parameters which are passed to the
encapsulated function or object method when called. We note that auxiliary data may
be stored to handle more complex implementations such as computing task or remote
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task call.

In addition to calling the encapsulated code, the various task implementations are
responsible of extracting the data dependencies of that code and should be able to run
the code within a critical section de�ned by one or more "locks". The later functionality
is required by several parallel patterns to provide the ability to protect data against con-
�ictual concurrent accesses (race conditions) in certain cases. This feature is detailed
in the chapter.

Finally, we note that arguments which are used when executing the encapsulated
code can be modi�ed before execution to meet the requirement of some parallel patterns
such as the "parallel_for" and the "pipeline" patterns. The later patterns operate
on indexable collection of data and may require a task to update the index of the
data being processed before executing the processing function: when iterating through
that indexable collection of data, the index passed to the function as an argument is
constantly modi�ed.

4.5.2 Task Implementation

4.5.2.1 Promoting Reuse Of The Legacy Code

Sequential C and C++ programs may includes several functions with various signature,
i.e. functions with various return types and arguments count and types. When paral-
lelizing these programs and trying to reuse these functions as tasks, the programmer
is confronted to the lack of �exibility of many low and high level programming model
as we have seen in the case of POSIX Threads or TBB. In both cases, programmers
are constrained to rewrite a signi�cant portion of their legacy functions in addition to
writing paradigm-related extra-code. This ampli�es the burdens of the programmer
and reduce his productivity.

In order to address this problem, the task de�nition mechanism must adapt to dif-
ferent pieces of code including functions with di�erent prototypes to relieve programmer
from that burdens and allowing him to reuse his legacy sequential code ideally without
any alteration and at the cost the less possible extra-code. More speci�cally, in the case
of C++ functions and object methods, three issues should be addressed:

1. Argument type variability.

2. Argument count variability.

3. Return type variability.

In XPU, these issues are addressed using C++ template metaprogramming tech-
niques (See Annex A) in the di�erent task implementations. C++ template program-
ming is used to address the argument type variability issue. C++ template special-
ization is exploited to address the second issue while the last issue is accommodated
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through the use of C++ template classes. More information about C++ template
programming and the various C++ metaprogramming techniques can be found in the
Annex A at the end of this manuscript.

4.5.3 Transparent Task-Data Dependencies Extraction

4.5.3.1 Task Data Dependency Information and Its Use

Task data dependency is a valuable information that can be used for multiple pur-
poses including improving execution e�ciency through cache-aware scheduling. For
instance, as we will see in the next chapter, task data dependency can be used to per-
form smart task-processor mapping to improve temporal and spacial data locality in
processor caches, tasks using the same data can be scheduled to run on the same core
to promote data reuse and reduce communication overhead.

Moreover, task data dependency can be used to automate shared data management
routines to reduce programmer burdens and improve his productivity. Ultimately, as we
will see in the second part of this thesis which is dedicated to automatic task paralleliza-
tion with the FATMA framework, the information on task data dependency can be used
for transparent parallelization of a large sequence of tasks: knowing the task accesses
to data, an intelligent runtime system performs advanced task dependency analysis to
build a "superscalar task graph" that speci�es parallelism.

4.5.3.2 Task Data Dependency Extraction

A The algorithm

In XPU, task data dependency extraction is performed by analyzing the arguments that
are passed to the task. When de�ning an XPU task, data access is speci�ed implicitly
or explicitly through the passed arguments: arguments which are passed by value are
considered as local read access data while arguments which are passed by pointer are
considered as true dependencies. Arguments passed by value are local copies of the
arguments provided by the caller of the task, thus they do not interfere with other tasks
and do not introduce any potential dependency implying other tasks and can be sim-
ply ignored. However, pointer arguments are the addresses of shared memory that can
introduce potentially dependencies between tasks. Consequently, di�erentiating values
from pointers is a primordial step for data dependency extraction.

The task de�nition mechanism of XPU exploits C++ meta-programming techniques
[Kos] to detect pointers in the task arguments list by performing Compile-Time Type
Identi�cation (CTTI) [Sin04]. The later technique is described in the next paragraph.

The detected pointer arguments indicate that task accesses the data but do not
precise how the data is accessed, e.g in read or write mode. In order to extract the
later information, XPU use the same CTTI technique to determine whether the pointer
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are constant. XPU considers constant pointers as "read only" data while non-constant
pointers are considered as "read-write" data. We note that the task de�nition API
of XPU provides a macro, namely "__read_only(x)", that allows the programmer to
specify explicitly that the data is accessed in "read only" mode when he de�ne a task.
In addition to value and pointer, in the C++ language, an argument can be a reference.
The XPU do not handle reference arguments yet. Our �rst experimentation exposed
a value/reference ambiguity issue with some compilers. Thus, the support of reference
arguments has been omitted from the current XPU framework.

Figure 4.2: Task data dependencies detection

Figure 4.2 gives an overview of the XPU task data dependency detection algorithm.
Thanks to the use of CTTI in the implementation of the algorithm, a signi�cant part
of the algorithm is executed transparently at compile-time, thus the algorithm do not
introduce any signi�cant execution overhead at runtime. Moreover, the task data de-
pendency analysis is performed at the task de�nition stage, so before any task execution
("o�ine"), therefore in all cases, any execution overhead would not impact the actual
task execution.

B Data Type Identi�cation

In C++ programs, data type can be identi�ed at run-time or at compile-time. Data
type identi�cation at run-time is known as Run-Time Type Identi�cation (RTTI) and
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is based on the typeinfo class of the standard C++ library. The typeinfo class can be
used to retrieve information identifying a type. Its typeid method can be applied to any
expression that has a type. It returns a null-terminated character string that describe
the type of that variable or expression.

Our very early version of XPU used the RTTI technique to distinguish various data
types and more particularly to separate pointers from values. Unfortunately, the RTTI
approach su�ers from two major drawbacks. The �rst is that RTTI introduce an ex-
ecution overhead since it identi�es types at execution time, the second disadvantage
is the weak portability of programs using RTTI over di�erent C/C++ compilers. For
instance, we observed that di�erent compilers return di�erent character strings to de-
scribe the same type. For this reason we used the Compile-Time Type Identi�cation
(CTTI) which overcomes the RTTI limitations and o�ers many advantages despite its
implementation complexity.

The CTTI technique relies on C++ metaprogramming techniques including tem-
plate programming and functions polymorphism [Kos] to distinguish between pointer,
constant pointers and values. Polymorphism is a programming feature that allows a code
(function or class...) to behave di�erently in di�erent contexts. The C++ programming
language o�ers di�erent means to exploits the polymorphism capability with functions
or object methods. Function polymorphism in C++ is called function overloading and
allows the compiler to select one function among a set of overloaded functions depend-
ing on the type and/or the count of the given arguments. The function is selected at
compile-time and several optimizations can be performed by the compiler to produce
an e�cient code.

We combined function overloading with template programming to implement e�-
ciently a smart CTTI mechanism able to recognize whether an argument is a pointer
of a value independently of its type. Listing 4.6 shows a basic example of CTTI imple-
mentation. The function "is_pointer" has a �rst implementation which take a pointer
as argument (line 4). A second implementation overalod the �rst one and take a value
as argument (line 12). Consequently, the compiler will select automatically the �rst
implementation when the function is called with a pointer parameter such as in line 23,
otherwise it will select the overloaded implementation such as in line 24.

One of the major advantage of the CTTI approach is its nearly null execution
overhead: the type identi�cation is performed by the compiler at compile time so no
execution is introduced at run-time. Moreover, the compiler can perform many opti-
mization at compile-time to produce an e�cient code. Consequently, the CTTI-based
implementation of our Task Data Dependency extraction algorithm displays a near null
execution overhead and o�ers a good portability over various C++ compilers including
the GNU C++ Compiler (g++) and the Intel Compiler ICC.
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1

2 // first implementation

3 template<typename T>

4 bool is_pointer(T * x)

5 {

6 printf("the parameter is a pointer.");

7 return true;

8 }

9

10 // overloaded implementation

11 template<typename T>

12 bool is_pointer(T x)

13 {

14 printf("the parameter is a value.");

15 return false;

16 }

17

18 int main( )

19 {

20 float * a;

21 float b;

22

23 is_pointer(a); /* displays "the parameter is a pointer." */

24 is_pointer(b); /* displays "the parameter is not a pointer." */

25

26 return 0;

27 }

Listing 4.6: A simple example of how to use C++ Compile-Time Type Identi�cation
to separate "values" expression from "pointers" expressions.

4.5.4 Extending Task Implementations

The task design provides a high abstraction and allows us to extend its implementa-
tions to support di�erent types of codes. "Remote Task" and "Computing Task" are
two implementations which has been proposed as a "proof-of-concept" to demonstrate
the potential and the �exibility of XPU task design. These two experimental implemen-
tations has been developed for demonstrative purposes and their development has not
been pushed farther since their are designed respectively for distributed systems sup-
port and code vectorization using just-in-time compilation which are out of the scope
of our research works. Until now, our works focused mainly on parallel programming
on shared memory multicore systems using standard C++ language without the use
of any compilation technique or special execution environment. However, these imple-
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mentations appeared to be promising and may be developed and discussed in depth in
future works.

4.5.4.1 Remote Tasks

In order to support distributed memory systems such as clusters or grids, the XPU Re-
mote Task implementation allows the execution of an XPU task on a peer machine or a
remote cluster "node". The main XPU program is executed on the master node while a
set of services are executed on the slave nodes. The main program can execute a remote
task on a slave node using the remote service. Each service is capable of executing a
limited set of tasks. We note that tasks are identi�ed by their names.

When executing a remote task, the main program sends a request to the peer service
and blocks waiting for its response. The request contains the task name and the data
or the parameters of the task. The task is executed then the result is sent back to the
master node.

1 int main( )

2 {

3 double * data;

4 int size;

5

6 xpu::data d(data,size); // encapsulate data to allow data exchange between nodes.

7

8 xpu::init(); // init xpu and wait for services to register

9

10 task t("sort", d);

11

12 t.run(); // run on remote computing node: find a node capable of executing "add",

13 // call it (send input) then get the result.

14

15 }

Listing 4.7: This example shows how XPU Remote Task can be used on a master node.

Listing 4.7 shows how an XPU Remote Task can be de�ned on a master node and
how the task can be executed by a remote service. Listing 4.8 shows how the task is
de�ned and implemented in th remote service side. We note that the XPU runtime
system determines on which node the task is executed depending on the available nodes
and the execution capabilities of their services.

1 int sort(xpu::data d)

2 {

3 // ... code ...

4 }

5

6 int main( )
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7 {

8 xpu::init(); // init xpu and wait for services to register

9

10 xpu::data d; // define a new data object

11 d.allocate(size); // allocate memory to receive the data from the master node.

12

13 xpu::task t("sort", d); // task definition

14 xpu::service s; // create a new service

15 s.register(&t); // register the task

16 s.start(); // start the service

17 }

Listing 4.8: XPU Remote Task implementation on a slave node.

Figure 4.3 gives an overview of the distributed service architecture. This service-
based architecture can support static and dynamic distributed memory systems. Static
distributed systems are constituted by a �xed number of nodes while dynamic dis-
tributed systems are composed of number of nodes that can vary dynamically at run
time: new nodes can join or leave the distributed computing system dynamically.

Figure 4.3: Service-Based Infrastructure For Executing Remote Tasks on Dynamic Dis-
tributed Systems

When a new node joins the distributed system, its associated service connect to the
master node and register itself as an available service. Registration includes all required
information such as address, execution capabilities, and names of the tasks that are
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available on the slave node. These information can be extended with other useful de-
tails to improve execution e�ciency.

When the main program need to execute a task with a given name, it checks the
list of the registered services and �nd an available peer service which is capable of ex-
ecuting the task. Once the service selected, the task is submitted to the peer node
to be executed. Our experimental implementation does not de�nes particular criterion
for service selection. However criterion such as available processing units or commu-
nication latency can be a good selection criterions that can improve execution e�ciency.

In the experimental implementation of the remote task, we introduced a registration
daemon in the XPU run-time. The communication between the di�erent nodes is based
on the standard BSD socket environment and is thus portable to many systems. The
POSIX Threads API is used for multithreading primitives.

4.5.4.2 Computing Tasks

Computing tasks is another experimental implementation of the XPU task interface.
This implementation enables the programmer to create a task simply by specifying a
computing kernel as a character string. The computation kernel operates on a large vec-
tor of data (simple or double precision �oat). Vectors are named and their names are
used inside the kernel to resolve data addresses. This task implementation is designed
mainly to implement data parallelism in a simpler way than verbose programming mod-
els such as OpenCL. While exposing a compact programming interface, the computing
task do not allow yet the implementation of complex computing kernels such as in
OpenCL or CUDA: the current kernel syntax is limited to simple math expression with
basic mathematical operations.

The computing task implementation uses Just-In-Time (JIT) Compilation technique
to generate the executable code that correspond to the speci�ed computing kernel (the
math expression). The generated code exploits the vectorization capabilities of x86 pro-
cessor and use the SIMD instruction extension (x86 SSE). The JIT compiler generates an
executable function that can be called when running the task. Being at the early stage
of development, the current computing task implementation supports only instruction
level parallelism (ILP) through the x86 SSE (version 2 or later) streaming instruction
extension. Multithreading support will be introduced in later implementations. The
current implementation uses a custom parser to handle basic math expressions and re-
lies on the AsmJIT library [Kob] for just-in time compilation.

1 int main( )

2 {

3 int size = 1024000; // vector size

4 float * x = new float[size]; // vectors

5 float * y = new float[size]; // ...
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6 float * z = new float[size];

7

8 xpu::computing_task t(size);

9

10 t.add_var("x",x,size); // adding variable names and addresses

11 t.add_var("y",y,size); // to enable the JIT compiler to resolve

12 t.add_var("z",z,size); // variable names in the kernel

13

14 t.set_kernel("x=y+x;"); // kernel setting and JIT compilation

15 t.run(); // execute the kernel

16 }

Listing 4.9: Computing task allows the de�nition a computing kernel as a simple math
expression. An internal JIT compiler is responsible of generating a vectorized executable
code.

Figure 4.4: Implementation details of the XPU Computing Task

Listing 4.9 shows how a computing task is de�ned and executed. Figure 4.4 illus-
trates the implementation details of the computing task API. After allocating memory
for the vectors (lines 6,7 and 8) on which the kernel will operates, the task is de�ned and
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the vector length is speci�ed (line 10). An association of the vector names and their
memory addresses is given (lines 12,13 and 14) to allow the JIT compiler to resolve
the variable names when parsing the kernel code. Finally, when setting the kernel or
the math expression (line 16), the JIT Compiler compiles the kernel and generates the
executable code. The generated code can be executed simply by invoking the "run"
method of the task (line 18).

In the next three chapters, we see how we can speci�es the execution con�guration
of a set of de�ned XPU tasks using the available XPU constructs. These parallel
constructs allow the programmer to express di�erent types of parallelism, namely "Task
Parallelism", "Data Parallelism" and "Pipeline Parallelism". Each chapter is dedicated
to a speci�c type of parallelism and presents the corresponding XPU skeletons. Several
applications are used to evaluate the di�erent skeletons in term of programmability and
performances.
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5
Task Parallelism

Task parallelism is a common execution pattern in parallel applications where tasks
are organized as a task graph. The task graph speci�es both parallel and sequential
execution. As we have seen in Chapter 3, the HTGG allows �exible speci�cation of
task parallelism at all levels of granularity. As the number of tasks and the task graph
complexity grow, parallelism expression become a hard and error-prone task: program-
mer is responsible of determining the task graph and handling tasks synchronization
and communications at the di�erent levels of the graph hierarchy. In this chapter, we
discuss task parallelism expression and we describe the XPU API that allows explicit
task parallelism speci�cation. We show how we can improve programmer productivity
through a light weight and intuitive API formed with only two keywords ("parallel" and
"sequential") and designed for high programmability. We describe the execution infras-
tructure and we show how we can improve the execution e�ciency of task graphs through
cache-aware and load-balanced scheduling. We compare our programming model with
the Intel TBB in term or programmability and performance.

5.1 Task Graph Representation

The parallelization process of a program starts with its decomposition into a set tasks.
Dependencies between these tasks are then analyzed to extract task parallelism. A
program may contain parallel and sequential regions: dependent tasks are executed
serially while independent tasks can be executed simultaneously. At the end of this
tasks dependencies analysis, we obtain a task graph that speci�es parallelism at di�er-
ent granularity levels. Such task graph can be represented either as a superscalar task
graph or as an hierarchical task graph. Both of these representations are introduced
in the Chapter 2 of this dissertation. Figure 5.1 gives an overview of the di�erence
between the two representations.

As illustrated in Figure 5.1, the hierarchical task graph is composed of hierarchical
fork-join building blocks that use barriers to synchronize tasks at join points. Barriers
can introduce idle times at the execution time, thus the later representation exposes
poor execution e�ciency in comparison with the superscalar representation that spec-
i�es peer-to-peer synchronization between tasks. However, "manual" parallelism spec-
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Figure 5.1: Unlike the superscalar task graph representation (at the right), the hier-
archical task graph representation (at the left) introduces join points (barriers) where
parallel tasks are synchronized. This can introduce unnecessary idle times at the exe-
cution time.

i�cation using superscalar task graphs can be a very hard task since it may require
complex task dependencies analysis. For this reason, superscalar task graph construc-
tion is often automated using specialized parallelization runtimes, tools or compilers.
For instance, we use this representation internally in our FATMA framework to perform
automatic parallelization. Implementation details of FATMA are discussed in the third
part of the thesis wish is dedicated to automatic parallelization.

The hierarchical task graph representation is more suited to "manual" or explicit
parallelism expression: the task graph is hierarchical and is composed mainly of basic
fork-join constructs at the di�erent levels of its hierarchy, thus it is more adapted to
highly structured parallel programming models. Since our primary goal is to ease ex-
plicit task parallelism expression, we use the hierarchical representation and we show
how it can map to a very simple and light-weight API.

5.2 Parallelism Expression

As we have seen in our task graph example, parallel regions are composed of two or
more parallel tasks that are executed simultaneously before synchronizing on a common
join point. Specifying such parallelism between two tasks using low-level thread-based
parallel programming models such as PThreads or Java Threading API translates into
the creation of a thread for each task then the synchronization of these parallel threads
on a common join point using barriers or thread join API. These operations can corre-
sponds to dozens of lines of parallelism-related extra-code and the amount of extra-code
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can grow quickly as the tasks number grows. Moreover, when addressing more complex
cases where numerous parallel and sequential tasks are speci�ed at various granularity
levels, parallelism expression became even harder.

Directive-based structured parallel programming models such as OpenMP [DM98]
can o�er a simple mean for expressing parallelism in the simple case where parallelism
between few tasks is speci�ed: parallelism of few tasks can be speci�ed using parallel
OpenMP sections through a couple of lines of compilation directives or "pragma". How-
ever, in more complex cases implying hierarchical task graphs or nested parallelism, the
corresponding OpenMP code can become much verbose and hard to read and maintain.
Skeleton-based programming models can o�er a good alternative through providing a
set of nestable skeletons that hide parallelism speci�cation and synchronization details
behind a compact API. Yet, many popular skeleton-based programming models such
as Intel TBB do not take advantage of this opportunity and expose a relatively verbose
API as we will see in our experimental section.

We tried to address this programmability issue when designing the XPU program-
ming interface through providing a particularly "compact" and intuitive API that allows
the programmer to specify parallelism at the cost of negligible amount of extra-code
while reusing his legacy code without any signi�cant alteration.

If we observe the hierarchical task graph representation, we can notice that tasks are
executed either sequentially or in parallel. By furnishing two skeletons that implements
these two execution patterns we can be able to express both the execution modes. If
in addition we can make these two skeletons nestable or composable we can be able to
express parallelism of any hierarchical task graph.

We designed two skeletons named simply "parallel" and "sequential" that speci-
�es respectively parallel and sequential execution. These two keywords can be combined
to specify an hierarchical task graph where both parallel and sequential regions can be
nested inside each other at di�erent granularity levels. The three following paragraphs
details the two skeletons and how they can be composed.

5.2.1 The Sequential Skeleton

The sequential skeleton speci�es ordered execution of a set of tasks. It can be instan-
tiated using the keyword "sequential", the resulting construct is an XPU task_group
that can be nested in other parallel and sequential skeletons. Execution of the sequen-
tial skeleton corresponds to executing tasks in the speci�ed order. Figure 5.2 shows the
sequential skeleton and its corresponding XPU code. After the creation of the XPU
tasks (line 8) using the three functions "f1", "f2" and "f3", the sequential skeleton is
created (line 11). Once created, the skeleton is executed by calling the "run" method
(line 13). When executing the skeleton, the tasks are executed in the speci�ed order
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1 // functions

2 int f1(char * data);

3 int f2(void);

4 int f3(void);

5

6 void main() {

7 /* task definition */

8 task t1(f1, data_1), t2(f2), t3(f3);

9 /* task graph construction */

10 task_group * program;

11 program = sequential(&t1, &t2, &t3);

12 /* task graph execution */

13 program->run();

14 }

Figure 5.2: "sequential" speci�es the sequential execution of a set of tasks.

and the construct wait until all tasks terminate before getting back to main execution
�ow.

When used alone, the sequential skeleton does not o�er any advantage over serial
function calls. This skeleton is designed to be used in combination with the other
parallel skeletons. In particular, composing "parallel" and "sequential" skeleton allows
the construction of task graph containing both parallel and sequential sections.

5.2.2 The Parallel Skeleton

The parallel construct speci�es the simultaneous execution of a set of tasks. While
parallelism is speci�ed, tasks can be executed simultaneously or sequentially depending
on the available processing units. In particular, when the number of parallel tasks is
greater than the processor count, a subset of the tasks are executed sequentially while
the other are executed simultaneously.

Figure 5.3 shows how the parallel skeleton can be constructed and executed using
XPU. Firstly, XPU tasks are created from functions, then the "parallel" keyword is
used to construct the skeleton. Once constructed, the parallel tasks can be executed
by invoking the "run" method (line 13). The construct spawns the parallel tasks then
block until all of them are terminated before the caller code can proceed.

In addition to specifying parallelism, under certain circumstances, the parallel skele-
ton is able to detect and protect transparently the data that is shared between parallel
tasks to avoid race condition and to relieve the programmer from managing shared data
"by hand". This feature is detailed in the next section.
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1 // functions

2 int f1(char * data);

3 int f2(void);

4 int f3(void);

5

6 void main() {

7 /* task definition */

8 task t1(f1, data_1), t2(f2), t3(f3);

9 /* task graph construction */

10 task_group * program;

11 program = parallel(&t1, &t2, &t3);

12 /* task graph execution */

13 program->run();

14 }

Figure 5.3: The "parallel" construct speci�es the simultaneous execution of a set of
tasks.

5.2.3 Task Graph : Skeleton Composition

By design, the parallel and sequential skeletons are composable and can be nested within
each others. This allows the programmer to specify parallel and sequential execution of
a program as an hierarchical task graph. The nesting depth is not limited and enables
parallelism speci�cation at all levels of granularity. Figure 5.4 shows and example of
an hierarchical task graph and the corresponding XPU code. After de�ning tasks (line
9), the task graph is created by alternating the use of the "parallel" and the "sequen-
tial" skeleton as shown in line 12. Each skeleton corresponds to parallel or sequential
sections. The graph can be executed simply by invoking the "run" method of the root
skeleton (line 19).

The resulting execution grantee the respect of the speci�ed parallelism in the task
graph but does not guarantee the execution order of parallel tasks. The platform pro-
cessors are used to exploit the available parallelism.

5.3 Automatic Shared Data Detection and Protection

In the Chapter 5, we presented the Transparent Task Data Dependency detection
(TTDDD) feature of the XPU task. This functionality allows the XPU runtime to
extract the dependencies of each task and more precisely the accesses ("read-only" or
"read-write") of the task to the data. TTDDD can be useful to improve execution
e�ciency through cache-aware scheduling or to improve programmer productivity by
automating shared memory management.

In the particular context of the implementation of the "parallel" skeleton, we ex-
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1 // functions

2 int f1(char * data);

3 int f2(void);

4 int f3(void);

5 // ...

6

7 void main() {

8 /* task definition */

9 task t1(f1, data_1), t2(f2), t3(f3); // ...

10 /* task graph construction */

11 task_group * program;

12 program = parallel(sequential(&t1,

13 parallel(&t3,&t4),

14 &t6),

15 sequential(&t2,

16 &t5,

17 &t7));

18 /* task graph execution */

19 program->run();

20 }

Figure 5.4: Task graph with both parallel and sequential regions can be speci�ed by
combining "parallel" and "sequential".

ploited the TTDDD feature of the XPU task to automate the detection and the protec-
tion os shared data against potential "race condition". The race condition phenomenon
occurs when concurrent tasks accesses simultaneously to shared data and that one or
more of these tasks modify the value of the shared data. This phenomenon is know as
"race condition" and can compromise the execution integrity of a program by corrupt-
ing shared data. Moreover, race condition can be di�cult to detect when debugging
an application due to the non deterministic execution of parallel tasks. Traditionally,
programmer is responsible of handling shared data management and "race condition"
avoidance: the programmer detects potential "race condition" then using mutual ex-
clusion mechanisms that guarantee atomic accesses to data at a time and eliminate the
risk of "race condition". The process of detecting race condition and eliminating them
constitute one of the burdens of parallel programmers that limits their productivity. As
we will see in this section, this burden can be avoided by automating shared memory
management under certain circumstances. We implemented a mechanism named Au-
tomatic Shared Data Detection and Protection (ASDDP) in XPU. It consists in the
detection of shared data and potential con�ictual concurrent accesses to the data then
the protection of that data using mutual exclusion mechanism when required.
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5.4 Shared Data Detection

Assuming we have a "parallel" construct that speci�es parallelism between N tasks,
shared data can be detected by following the next steps:

1. Interrogate each of the N tasks about its data accesses. The result is a set of
pointers to data with "read-only" or "read-write" access �ag.

2. Compare the returned pointers of all tasks with each others to extract the shared
data by applying the following rule: if two or more tasks accesses a data, the data
is considered as shared.

3. Distinguish the two types of shared data:

The �rst type of shared data is accessed by concurrent tasks exclusively in
"read only" mode. Consequently no mutual exclusion or protection is required.

The second type of shared data is the one accessed in "write" mode by at
least one task of the concurrent tasks. Such shared data introduce potential "race
condition" and requires protection with mutual exclusion mechanism.

5.4.1 Simple Con�guration

Figure 5.5 shows two simple con�gurations where data is accessed concurrently by par-
allel tasks. In the �rst con�guration, the shared data "Data 3" is accessed in "read
only" mode and thus it does not introduce any risk of "race condition", however, in the
second con�guration, the shared data is accessed in "write" mode simultaneously by
two concurrent tasks introducing a potential "race condition". In the later case, shared
data is protected using mutual exclusion or critical section mechanism as we will see in
the next paragraphs.

Figure 5.5: Race condition does not occur in the �rst con�guration since the shared
data (data 3) is accessed concurrently in read only mode. However, race condition can
happen in the second con�guration where concurrent writes are operated on the shared
data.

83

High-level structured programming models for explicit and automatic parallelization on multicore architectures Nader Khammassi 2014



5.4.2 Generalization to Hierarchical Task Graph

Similarly to the XPU "task", "parallel" and "sequential" constructs are di�erent imple-
mentations of the common "task_group" interface. Therefore, as XPU "task_groups",
they are able to return their dependencies similarly to any "task" simply by returning
all the dependencies of their encapsulated tasks. Consequently, if we replace the task
T1, T2 or T3 in the previous example by any other task_group such as "parallel" or
"sequential", the shared data detection mechanism can still work correctly. Moreover,
if we replace the later constructs by a composite one in which many di�erent constructs
are nested hierarchically, the mechanism can still work recursively at the di�erent levels
of the hierarchy by applying the same algorithm each time a "parallel" construct is
encountered. This will guarantee the detection of shared data at any granularity level
of an hierarchical task graph.

Figure 5.6 illustrate an example of an hierarchical task graph where "sequential"
and "parallel" construct are composed. The example contains two parallel region at
two di�erent granularity levels. The detection algorithm will be applied in the �rst
parallel region (red), then in the second parallel region (blue). When processing the
�rst parallel region, the data accessed by the tasks T2, T5 and T7 will be compared
with the data used by T1,T3,T4 and T6 to extract their intersection, e.g. shared data.
In the next stage, the same algorithm is applied to the second parallel region: the data
accessed by T3 will be compared with the one accessed by T4.

Figure 5.6: The shared data detection algorithm can be applied to all hierarchy levels
of and hierarchical task graph.
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5.5 Shared Data Protection with Critical Sections

5.5.1 Mutual Exclusion with XPU Lockables

Once shared data detected, in order to protect it against unsafe concurrent accesses, the
run-time guarantees exclusive or atomic access of the tasks to that shared data. Each
data is identi�ed by its memory address (pointer), when the data is �agged as shared
and accessed in write mode, the run-time associates a unique "lockable" to that data if
no "lockable" is already associated to it.

XPU uses a central "lockable" factory that grantee that a unique lock is associated
to each data. The "lockable" object is an abstraction of mutual exclusion mechanisms
such as POSIX "mutex" or "spinlocks" that displays a common interface. Figure 5.7
shows the design of the XPU Lockable interface and its various implementations. It
shows also the central LockableFactory that delivers unique "lockable" for each data.

Figure 5.7: Design of the Lockable interface and its implementations. The Lockable
Factory guarantee that a unique Lockable is associated to each data identi�ed by its
memory address.

Similarly to a POSIX "mutex" or a "spinlock", when a task A attempts to lock a
"lockable" L which is already locked by another task B, the task A is blocked until the
task B unlock L.

5.5.2 Critical Section

The XPU runtime protects data by executing the tasks accessing concurrently to the
shared data inside critical sections relatively to that shared data. Running a task in-
side a critical section guarantees the atomic or exclusive access to the shared data and
eliminates the risk of "race condition".

The conventional task execution corresponds to calling the encapsulated code(function
or object method...). In order to transform the task into a critical section relatively to
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a shared data, the task locks the shared data before executing its code, once the code
execution terminated, it unlocks the data. Thus, once entred the critical section, the
task has an exclusive access to the shared data. Figure 5.8 illustrates the use of critical
sections to protect shared data against concurrent accesses within an hierarchical task
graph. We note that a task can lock multiple shared data when needed. However,
potential deadlocks can occur if the "locking" of the di�erent shared data is not ordered
properly. The XPU runtime system can resolve potential deadlocks simply by ordering
the locking of the various shared data.

Figure 5.8: Task accessing concurrently to shared data are executed inside critical
sections: the shared resource is locked before the task execution then unlocked when
execution terminate.

5.6 Programmability Comparison with Intel TBB

In [KLLDS12], we tried to evaluate XPU programmability in comparison with TBB.
A traditional approach for quantifying programmablity or required programming e�ort
is to compare the parallel program to its sequential version in terms of the number
of lines of code [TTTn+09]. We consider a simple sequential application in which we
call successively 7 functions, this application can be parallelized as shown in our �rst
example in 5.9. We associate a task to each function and we note that "Data_4" is
shared between the parallel tasks T4 and T5.

We tried to express task parallelism as speci�ed in the task graph using XPU and
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TBB then we counted the required parallelism-related extra-code lines and the reused
sequential code lines. We used "CLOC" [Sol] to count lines of code in each version,
we removed all blank lines and comments, then we used the classic "comm" string
comparison tool, available in most UNIX systems, to compare the parallel and sequential
code. The comparison allows us to determine the number of lines of reused sequential
legacy code and required extra-code in the parallel version.

Figure 5.9: Example of a task graph that speci�es parallelism and data dependencies.

In the TBB version we de�ne 6 task classes: 3 tasks to encapsulate Function 1,2
and 3, one intermediate task to hold these 3 tasks, another intermediate task to call
successively Function 2 and 5 and �nally we de�ne the root task that spawns these
intermediate tasks. We use TBB task parallelism primitives: allocating, spawning and
waiting for root and child tasks. A TBB mutex is used to protect shared data "Data_4"
from race condition [Phe08].

XPU version requires a single line to de�ne a task for each function in the parallel
section and another 2 lines to build the task graph and execute it. The sequential
code of functions does not require any modi�cation. The shared data are detected and
protected automatically by the run-time system. As shown in Figure 5.10, while XPU
version reuses 80 lines out of the 86 lines of sequential legacy code and requires only 10
extra-lines for parallelization, the TBB version reuses only 42 lines of legacy code and
requires more than 140 lines of parallelism-related extra-code.
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Figure 5.10: Comparison between XPU and TBB in term of required programming
e�ort: required extra-code and reuse of sequential code.

5.7 Execution Infrastructure

When parallelizing an application, the programmer selects the appropriate skeleton to
specify parallelism and uses the XPU API to express it. Once parallelism speci�ed,
the XPU runtime is responsible of the e�cient execution of the tasks according to the
speci�ed parallelism. The XPU execution infrastructure is composed mainly of a per-
sistent thread pool or a "generic worker" pool. The "generic worker" is called generic
because it can execute di�erent types of tasks coming from di�erent skeletons. In order
to execute tasks, the tasks are submitted to the workers through the worker's "task
queue". The "task queue" is a First-In-First-Out (FIFO) queue that support one-to-
one communication pattern and thus can be e�ciently implemented as a lock-free queue
with very low communication overhead. The current implementation of XPU does not
use lock-free queue but still provide decent performances in comparison with state of
the art programming models such as GNU implementation of OpenMP or TBB. The
use of lock-free queue in future versions can improve the performances of the task queue.

The execution infrastructure is based on a master-slave architecture where the mas-
ter thread which is responsible of executing the skeleton submits the tasks to slaves that
are responsible of their execution. When executing skeletons, the tasks are submitted
in their speci�ed order sequentially to the same worker or simultaneously (parallel)
to concurrent workers depending on the used skeleton. The task is submitted as an
abstract "work" which provides a common interface that allows the "generic worker"
(slave) to execute it and the master thread to block waiting for the "work" to terminate.

The "generic worker" are mapped or "pined" to the available processors or cores.
The XPU runtime can assign the execution of a task to a speci�c core by submitting
that task to the worker running on the target processor or core. This design o�ers to us
a great �exibility to prototype di�erent schedulers with various scheduling strategies.
For instance, if we want to perform e�cient processor cache use through improving
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data locality, we can schedule tasks that are using the same data on the same core to
promote data reuse and reduce communication overhead and "cache pollution".

5.7.1 Sequential Execution

In order to illustrate the execution of skeleton, we consider the example of the "sequen-
tial" skeleton that execute serially a set of tasks. As illustrated in Figure 5.11, the
programmer instantiates the skeleton using the "sequential" API of XPU. When the
"run" method of the skeleton is invoked, the runtime execute it: the tasks are submit-
ted in their sequential order to one "worker" through its "task queue", the "worker"
pops the tasks from its FIFO and executes them one after the other. After submitting
the tasks, the master thread blocks and waits until all the tasks are executed. When
tasks terminate, the master thread is unblocked and continue its execution.

Figure 5.11: Execution details of the "sequential" skeleton.
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5.7.2 Parallel Execution

The execution of the "parallel" skeleton is similar to that of the "sequential" construct,
however, contrary to the "sequential" skeleton execution where tasks are submitted in
their sequential order to the same worker, the tasks of the "parallel" skeleton are submit-
ted to di�erent workers running concurrently on di�erent processors. After scheduling
tasks for execution, the skeleton wait for them to terminate. Once all tasks �nish their
execution, the master thread is unblocked and continue its execution.

Figure 5.12: Execution details of the "parallel" skeleton.

5.8 Conclusion

Task parallelism using the hierarchical task graph o�ers a �exible parallelization method-
ology which allows extracting parallelism from sequential programs even when they ex-
pose a little amount parallelism. Task parallelism can be a great parallelism multiplier
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provided that the program's tasks have reasonable granularities. However task paral-
lelism using static task graphs exposes some limitations such as its weak scalability.
Task parallelism can be coupled with data parallelism to extract more parallelism and
scalability. Generally, data parallelism o�ers much more parallelism than task paral-
lelism and displays often an excellent scalability provided that the application do not
exposes dependencies between its data items so they can be processed concurrently.
In the next chapter, we show how XPU can ease data parallelism expression and we
present the parallel for skeleton and the vectorization capabilities of XPU.
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6
Data Parallelism

In this chapter we show how XPU can facilitate the design of applications where data
parallelism is crucial. We introduce the XPU parallel_for pattern which allows loop
parallelization and we describe the details of its implementation. In a second part, we
present the XPU CHATS algorithm 1 which allows the parallel loop construct to perform
e�cient cache-aware scheduling. In a third part, we focus on vectorization capabilities
of XPU. Finally, we show how we can use most of the aforementioned techniques to par-
allelize two popular applications from the PARSEC Benchmark Suite [BKSL08] which
are the Blackscholes and the Fluid Simulation applications, then we compare them to
other parallel implementations which use several state-of-the-art parallel programming
models such as Intel TBB, OpenMP or PThreads.

Data parallelism refers to scenarios in which the same operation is performed con-
currently on elements of a data container [Micb]. Data parallelism can be speci�ed at
di�erent levels of granularity and can be implemented at thread level (Thread Level
Parallelism (TLP)) or at the instruction level (Instruction Level Parallelism (ILP)).

In data parallel operations, data are partitioned so multiple threads can operate on
di�erent data partitions concurrently. Figure 6.1 shows an example of data parallelism
implementation in an image processing application: contrary to sequential image pro-
cessing where image pixels are processed one after the other, TLP is implemented by
partitioning the image into four partitions which are processed simultaneously by four
threads running on the four processor cores. Moreover, in order to increase throughput,
ILP can be used to process several pixels simultaneously within each partition. Depend-
ing on the available vectorization technology and the used data type to represent a pixel.
Thanks to vectorized instruction set, up to 64 pixels can be processed simultaneously.

1
Publication: Nader Khammassi and Jean-Christophe Le Lann, "Design and Implementa-

tion Of A Cache Hierarchy-Aware Task Scheduling For Parallel Loops On Multicore Ar-

chitectures", Third International Conference on Parallel, Distributed Computing Technologies and
Applications, PDCTA 2014, Sydney, Australia
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Figure 6.1: Example of data parallelism implementation in an image processing appli-
cation

XPU enables the programmer to express data parallelism at thread level (TLP)
through parallelized for loop, at instruction level (ILP) through a set of vectorized data
types (SIMD) and at both of them through the XPU "parallel vector" interface.

6.1 Parallel Loop

Parallel loop is one of the most used execution pattern since it can act as a great par-
allelism multiplier in data parallel applications while achieving an excellent scalability.
It targets often "for loops" when processing large number of data items. "Parallel for"
execution pattern is implemented in most of the popular parallel programming models
such as OpenMP [DM98], Intel TBB [Phe08] or Cilk++ [Lei09]...

Parallelizing "for loop" is performed mainly in two steps: partitioning data element
set to split the main workload into a set of small workloads then scheduling these
workloads on the available processing units. Figure 6.2 shows a basic partitioning
scheme where the main data array is divided into four chunks. These chunks can then
be processed simultaneously on four di�erent processing units. The main array size may
not be divisible by the number of processing units. In this case, quasi-fair partitioning
algorithms can be used to provide the fairest possible partitioning to avoid potential
load unbalance between the processing units. Data partitioning and partition count do
not depend only on the available processing units count: the used scheduling strategy
plays a central role in the choice of the workload granularity and partition size and
count.
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Figure 6.2: Basic partitioning of a data array.

In the next paragraphs, the term "range" is used to indicate a data set de�ned by
its start index and its end index. "range" is often used to refer to the main data set.
"sub-range", "partition" or "chunk" can be used interchangeably to refer to a part of a
main data set.

In XPU, the "parallel_for" pattern is a task group implementation specifying the
parallelization of for loop. When de�ning a parallel loop (see Listing 6.1), its main range
will be partitioned transparently into several sub-ranges using a pseudo-fair partitioning
algorithm depending on the available processing units. Partitioning is performed in an
o�ine fashion at the pattern construction stage, i.e. before its execution.

O�ine partitioning contributes to minimize execution overheads and allowing us to
implement various data partitioning schemes without caring about algorithmic com-
plexity: for instance, we experimented several workload distribution techniques and
data partitioning algorithms without modifying the "parallel_for" front-end due to its
high abstraction of implementation details.

6.1.1 Parallel For Loop Programming Interface

1 // main task of the parallel loop

2 int process(int from, int to, int step, image* images)

3 {

4 for (int i=from; i<to; i+=step)

5 images[i]->filter();

6 }

7

8 void main()

9 {

10 image * images = new image[N];
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11 task process_t(process, 0,0,0, images);

12 task_group * pf;

13 pf = new parallel_for(0, image_count, 1, &process_t);

14 pf->run();

15 }

Listing 6.1: Use of the XPU parallel for loop.

6.1.2 Cache-Hierarchy Aware Scheduling (CHATS)

6.1.2.1 Chip Multicore Processor and Cache Hierarchy

Chip Multiprocessor (CMP) architectures are becoming widely available on many scales:
from personal computers to embedded systems to high performance supercomputers...[KB09]
[KAG+09]. CMP cores count is growing continuously and their cache topologies are be-
coming increasingly hierarchical and deeper. Cache-aware scheduling has become a
great design challenge in parallel programming for recent multicore architectures.

Chip Multiprocessor (CMP) may exhibit di�erent cache topologies with varying
numbers of hierarchical shared and private caches at di�erent levels. An e�ective task
scheduling policy must take into account cache sharing not only at the SMT (Simulta-
neous Multi-Threading), CMP and SMP (Symetric Multi-Processor) levels but also at
the di�erent cache levels of a same chip.

6.1.2.2 Task Scheduling

Task scheduling is critical for execution e�ciency especially in the case of parallel loops
which are often a great performance multiplier. An e�cient cache-aware scheduling
policy for recent CMP should take into consideration three major parameters: spatial
and temporal data locality in caches, communication and load-balancing. Hierarchical
cache topology determines communication latencies between cores at the di�erent levels
of cache and thus, has a direct impact or these three critical scheduling factors.

In the following paragraphs, we describe a cache hierarchy-aware task scheduling
(CHATS) policy which target to provide e�cient hierarchical cache utilization without
neglecting load-balancing in parallel loop implementation.

CHATS consider spatial and temporal data locality (data reuse and communication)
and load-balancing as the most critical parameters for delivering high performance and
execution e�ciency. We implemented this scheduling algorithm in the parallel loop con-
struct "parallel_for" of the XPU framework and we compared it to parallel program-
ming frameworks using di�erent scheduling techniques. We used both synthetic work-
loads and real application from the PARSEC and Intel RMS Benchmarks [BKSL08].
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6.1.2.3 Related Works

Traditional scheduling techniques such as dynamic scheduling [ACD+09] or task-stealing
[CKK+08] [FLR98] [Lei09] make di�erent trade-o�s between data locality and load-
balancing but does not take into consideration cache hierarchy and communication
latencies. Some prior works target to design cache-aware scheduling policies which tar-
get to improve cache-utilization by focusing on one or more cache-related considerations:

� Processor-Cache A�nity Scheduling [SL93] focused on temporal data local-
ity and data reuse between threads.

� Thread Clustering Scheduler [TAS07] detect sharing patterns between threads
online using monitoring techniques and attempts to reduce cache-coherence over-
head by clustering threads sharing same data onto close cores.

� CAB [CGH13] aims to improve task stealing on hybrid SMP-CMP by reducing
memory footprint and cache misses, It focus mainly on data sharing at the SMP
level and try to reduce inter-socket communication.

� Constructive Cache Sharing [CGK+07] aims to reduce the memory footprint
through exploiting potential overlap of shared data among co-scheduled threads.

� CATS [YLY10] target to improve cache performance by considering data reuse,
memory footprint and coherency misses. None of these prior works take into
consideration the cache hierarchy of CMPs.

6.1.2.4 Uni�ed CMP Architecture Model

Multicore processor employs a cache structure to simulate a fast common memory.
This cache structure may display di�erent cache sharing degrees at di�erent levels. It
is mainly composed of hierarchical private and shared caches.

Figure 6.3, 6.4 and 6.5 shows a set of CMP architectures from di�erent vendors
with varying cache con�gurations. For example, while the Intel Nehalem architecture
associates a private L1 cache for each core, a private L2 cache and a shared L3 cache
between all cores, Intel Dunnington architecture is uniformly hierarchical: a private L1
cache is associated to each core, an L2 cache is shared between each 2 cores and �nally
an common L3 cache is shared between all cores. The Sun UltraSPARC T2 Processor
uses a private L1 cache for each core and a shared L2 caches between all cores.
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Figure 6.3: Simpli�ed Architecture Overview of the Intel Dunnington Processor

Figure 6.4: Simpli�ed Architecture Overview of the Intel Hapertown Processor

Figure 6.5: Simpli�ed Architecture Overview of the Intel Nehalem Processor

Cache level count and cache sharing degrees at each level are key information for our
scheduling policy. The variation of sharing degree at di�erent levels force programmer
to make explicit and architecture-speci�c program optimization in order to get e�cient
execution.

In order to be provide an e�cient execution on various possible underlying archi-
tectures with di�erent cache topology, a cache-aware scheduling algorithm should be
dynamically adaptable to the target architecture. Consequently, such scheduling algo-
rithm should have a detailed description of the cache topology of the underlying CMP.
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This description can be established through dynamic exploration of the target platform
at the initialization of the run-time system. Modern operating systems provide means
to obtains cache hierarchy details at high level either through system �les such as in
the Linux OS or through native API such as Windows [Mica].

Variation of the cache level count and cache sharing degrees raise the need to unify
them under a single abstract description. The Uni�ed Multicore Architecture Model
(UMAM) [SZ08] that can be used to provide a uni�ed description for di�erent CMP
architectures.

Memory hierarchy including cache levels and main shared memory can be described
using UMAM as shown in Tab. 6.1 which gives an example of three di�erent platforms.
The two �rst columns gives the cache-levels and cores count, the next columns gives
the count of cores sharing Li caches or Mi memory (i ∈ [1..n] ; n : memory hierarchy
levels count).

Architectures Parameters

Cache Levels Core L1 L2 L3 Memory

Intel Nehalem Core i7 Q920M 4 8 2 2 8 8

SMP (2 x Intel Nehalem Xeon E5620) 4 16 2 2 8 16

Intel Dunnington Xeon X7460 4 6 1 2 6 6

Table 6.1: UNAM

6.1.2.5 Cache Hierarchy-Aware Task Scheduling (CHATS)

The design and implementation of CHATS rely a several basic building blocks which
allows partitioning of the main work of a parallel loop into a set a little works which
can be executed concurrently by several threads. We start by de�ning the components
of our run-time system.

A The Run-Time System

The run-time system is based on a worker (thread) pool able to execute tasks. Each
worker have a FIFO (First-In-First-Out) work (task) queue. A scheduler can submit
tasks to the workers through this work-queue. A worker remains idle until a task is
pushed into its work queue so it wake up and execute its task. Submitting a task fol-
lows a one-to-one communication scheme between the main thread holding the scheduler
and each worker to reduce communication overhead. Figure 6.6 gives and overview of
the run-time system.
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Figure 6.6: Worker Pool-Based Run-Time System With Private Work-Queue

B Work Unit

A work unit is a task which should be executed on a range of iteration then a range of
shared iterations. In XPU "parallel_for" loop, a work unit is composed of:

� Range : Speci�es a range of iterations to process (min, max, progression step)

� Shared Range : As "Range", it specify a range of iteration, however, it allows
"stealing" of iterations by concurrent threads.

� Task : The code which will process each iteration of a given range and/or shared
range(s).

C Data Partitioning

Data partitioning is a primordial step in parallelization of a loop. In our case we use ba-
sic a quasi-fair partitioning algorithm which decompose a "Range" into N "Range" and
M "Shared Range". The algorithm ensure that the generated partitions are quasi-equals.

D Parallel For Loop : Data Partitioning and Cache Topology

Let's consider a "for loop" F de�ned by : i = [0..n] by 1, where F corresponds to a
"Range" which can be partitioned into N "Range" and M "Shared Range". Determining
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M and N depends directly on the underlying architecture:

� N = Workers count Cores count

� M = Number of shared caches at all levels (consecutive cache levels shared by the
same cores are considered as one)

� P = N+M : Total partitions count

Let's consider a Nehalem Intel Core i7 Q720 with 8 Hardware Threads and 4 Phys-
ical Cores (Figure 6.7). Data partitioning is described in Figure 5, so P is equal to 13
in this case. Green ranges are private "Range" so a worker doesn't share them with
other workers. Orange box correspond to "Shared Ranges" which are shared among
two co-scheduled SMT workers (threads) sharing L1/L2 caches. Finally, red box is a
"Shared Range" from which all workers can steal iterations, it corresponds to the L3
cache.

Figure 6.8 shows the data partitioning scheme for an SMP platform containing two
Intel Nehalem Processors having eight hardware threads (4 Physical cores with Hyper-
Threading enabled).

Figure 6.7: CHATS Data Partitioning on an 8 Hardware Threads Intel Nehalem Pro-
cessor
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Figure 6.8: CHATS Data Partitioning on an on hybrid SMT-CMP-SMP platform with
16 Hardware threads (2 x Intel Xeon E5620 at 2.4 GHz)

E Workload Scheduling

Once data partitioned into "Ranges" and "Shared Ranges", we can submit works to our
workers running on the di�erent cores. Submitted work will specify a Task, a Range
and one ore more Shared Ranges. If we take the partitioning pattern of the Figure 5.
"Worker 0" running on "Core 0" will get a work containing:

� One "Range" : [0 .. n/p[

� Tow "Shared Ranges" : [ 2n/p .. 3n/p[ and [ 12n/p .. n[

Analogously, the other workers will gets their three ranges of iterations.

F Execution Semantic

"Worker 0" will execute the task code on each iteration of its private range without
any communication with the other threads. Once �nished, it will try to steal iterations
from the shared ranges if available. Iteration stealing requires communication (locking)
between threads working on the same shared range. This communication overhead is
reduced by the fact that threads communicates through shared caches. So, the com-
munication introduced buy concurrent accesses to "Shared Range" [12n/p .. n[ is more
costly than the one introduced by concurrent accesses to [2n/p .. 3n/p[ . However, we
note that low level caches-associated "Shared Range" are fewer than those associated
to high level caches (1 associated to L3 and 4 associated to L1/L2).

We outline that "Shared Ranges" aims to provide good load-balancing at the lower
possible cost in term of communication overhead : when worker �nish their work on
private works, they does not remain idle, instead, they steal works from shared ranges
or more precisely the "closed" shared range to their high level caches.
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6.1.3 Performance Evaluation

We compare our CHATS implementation to several popular programming models im-
plementing static scheduling, dynamic scheduling and task stealing which we present
brie�y.

6.1.3.1 Common Scheduling Policies

A Static scheduling

Static scheduling is the most straightforward scheduling technique: data is statically
partitioned into N equal or pseudo-equal chunks, these chunks are then processed re-
spectively by N parallel threads. This scheduling scheme avoid communication between
threads, o�er good data reuse when the parallel loop is executed several time. However,
this method may result in load unbalancing, especially in the case of heavy workload,
since faster threads remains idle, waiting for other threads until �nishing their work.

Figure 6.9: Static Scheduling In Theory

Figure 6.10: Static Scheduling In Practice
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B Dynamic scheduling

Dynamic scheduling provide better load balancing since threads does not remains idle
as long as chunks are available in the common work queue. Unfortunately, while im-
proving workload distribution, this technique may introduces a costly communication
between threads accessing concurrently to the common work queue (Many-To-Many
Communication). This may results into ine�ective uses of processor caches. Also, this
technique provide poor data reuse since a same chunks may be processed by di�erent
threads on di�erent cores when the parallel loop is executed multiple time. Bad data
reuse may amplify consequently cache-miss rate.

Figure 6.11: Dynamic Scheduling In Theory

Figure 6.12: Dynamic Scheduling In Practice

C Task Stealing

Task-stealing is a popular scheduling algorithm which is introduced in Cilk [FLR98].
Task-stealing attempts to combines advantages of the two previous scheduling policies
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by making another trade-o� between e�cient cache utilization and load-balancing, In
task stealing, each thread (worker) has a task pool in which its tasks are stored. When-
ever a worker �nishes its current task, the worker try to get another task from its task
pool. If there's no more works to perform (its task pool is empty), the worker select
randomly a "victim" worker and try to steal a work from its task pool. If succeeded, it
execute the stolen task, otherwise, it try to steal a task from another randomly-chosen
worker [CGH13].

Figure 6.13: Task Stealing Scheduling In Theory

Figure 6.14: Task Stealing Scheduling In Practice

Task-stealing performs good load-balancing since no thread (worker) remains idle
as long as there is available "works", i.e. ,available tasks in the task pools of work-
ers. However, task-stealing may introduce signi�cant communication overhead since
"victim" threads are chosen randomly without considering cache-hierarchy or commu-
nication latencies.

Deep cache hierarchies introduce non-uniform communications between cores, con-
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sequently, the choice of the "victim" thread becomes critical for performance: stealing
a task from a "close" thread (sharing high-level cache with the stealer) is much cheaper
than stealing a task from a "far" thread (running on a core which does not share any
cache with the stealer).

6.1.3.2 Experiment : Parallel For On Synthetic Workloads

In order to evaluate the performances of our approach we designed an experiment which
aims to evaluate cache utilization e�ciency and global performances of a con�gurable
target application. We generate a synthetic work load witch allow us to control unit
workload and global workload and simulate data reuse. Thus, in order to achieve e�-
cient execution, a scheduling strategy should provides good spatial and temporal data
locality and an e�cient load balancing.

The used unit workload is a sequential function performing a "quicksort" on a small
vector. We control the unit workload by varying the size of this small vector. So, our
input data is a set of small vector, our program perform a "quicksort" in each of these
small vector. "quicksort" sort a vector performing multiple compare and swap so in-
tensive read/write accesses to data. This make it good candidate to evaluate e�cient
cache utilization.

In this experiment we try to evaluate the e�ciency of our scheduling policy CHATS
to: static scheduling, dynamic scheduling and task stealing. We run our synthetic work-
loads on an hybrid SMT-CMP-SMP platform with 16 Hardware threads (2 x Intel Xeon
E5620 at 2.4 GHz) and we measure average execution time for di�erent workload as
well as cache-misses for each of the scheduling policies.

6.1.3.3 Results

As shown in Figure 6.15, results shows that XPU processes the heaviest workload about
20% faster than the second fastest candidate. We notes also that XPU become more
e�cient as the workload is bigger.
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Figure 6.15: Average processing time of di�erent workload sizes.

Figure 6.16 shows that XPU generates a low cache-miss rate in comparison to the
other candidates. XPU cache-miss rate remains close to the static scheduling-based
candidate. Static scheduling is known to o�er very good data locality and does not
introduce communication overheads.

Figure 6.16: Cache-miss rate for di�erent problem sizes.
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6.2 Vectorization

6.2.1 SIMD Technologies

Most recent multicore and manycore processors implements thus ILP (Instruction Level
Parallelism) by providing a set of SIMD (Single Instruction Multiple Data) instruction
set. Figure 6.17 illustrates the di�erence between a traditional scalar operation on
a single data pair to produce a single result and an SIMD operation which allows
simultaneous additions of four pair of data to produce four results at once. SIMD
operations can increase signi�cantly computation throughput an improve processor use
e�ciency.

Figure 6.17: Traditional scalar operation on single data versus simultaneous SIMD
operation on multiple data

ILP implementations are available in most recent monocore, multicore and many-
core processors. Recent Intel and AMD processors implements the Streaming SIMD
Extension (SSE) [RPK00] [Cor01] and MMX instruction set [PW96] which are a SIMD
instruction set extension to the x86 architecture. SSE operates on 128 bits-wide register
and allows simultaneous SIMD operations on eight chars, four integers, four simple pre-
cision �oats or two double precision �oats. Advanced Vector Extensions (AVX) [Cor14]
[HTHW14] is an advanced version of SSE which can operate on wider registers 256 bits.

A more recent version of AVX named AVX-512 implements SIMD operations using
512 bits-wide registers [Cor14] [HTHW14]. Many others SIMD intrinsics are available
on a variety of parallel hardware: FMA (Fused Multiply Add) [Cor14] [AMD09] in-
struction set has been introduced as and extension of the x86 architecture instruction
set and is supported by recent AMD (starting with Bulldozer architecture) and Intel
processors (starting with Haswell processors). XOP (eXtended OPerations) [AMD09]
is another extension to the 128 bits SSE intrinsics and has been introduced in AMD
Bulldozer processor core.

Figure 6.18 shows how SSE SIMD operations are performed on single precision and
double precision �oats using the 128 bits-wide XMM register. A single XMM register
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can hold either two double precision �oats (64 bits-wide each), four single precision �oat
(32 bits-wide each), four integer (32 bits-wide each) or 16 char (8 bits-wide each).

Figure 6.18: SIMD Operations using 128 bits-wide XMM register in single precision
and double precision �oat con�gurations

Various SIMD operations types are implemented in the di�erent SIMD instruction
sets. Supported operations include arithmetic operations, logical operation, memory
load/store operations, comparison intrinsics and conversion intrinsics. More recently,
application-related instructions have been introduced: instructions performing rounds
of the AES (Advanced Encryption Standard) and CRC (Cyclic Redundancy Check)
algorithms are examples of such specialized instruction sets.

Despite their ability to provide signi�cant accelerations, SIMD instruction sets are
often di�cult to use e�ciently by non-expert programmers. In addition, they exacer-
bate potentially fragile cross-compiler portability. Recently, a C++ template library
named Boost.SIMD [EGFL12] [EGF+12] attempted to address these problems through
o�ering a high abstraction of the low level SIMD instructions. The later library aims
to simplify the "SIMDization" while maintaining a good cross-compiler portability.
Boost.SIMD inherits several paradigms of the Standard Template Library [SL94] such
as the iterators and the algorithms which encapsulate several recurrent kernels. While
easing vectorization of STL-based applications, �ne-grain vectorization of existing code
which do not use the STL primitives may require verbose restructuring of the target
application algorithm.

6.2.2 XPU Vectorization Support

We tried to exploit widely available SIMD intrinsics and more speci�cally SSE instruc-
tion set to make vectorization more accessible to the average programmer. XPU provides
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a vectorized built-in types which act like a regular scalar type and support traditional
scalar operation while performing transparently SSE-related routines such as load/store
operations and memory alignment requirements. These routines are handled internally
and thus are transparent to the programmer. Basic operations such as addition, sub-
straction, division or multiplication... are vectorized and implemented using the SSE2
instruction set. C++ operator overloading is used to hide this SIMD implementation
behind a simple interface.

Figure 6.19: Vectorization can improve substantially �oating operation throughput in
comparison with traditional operations

Figure 6.20: Functions vectorization o�ers signi�cant �oating operation throughput
improvement in comparison with standard C math library functions implementations
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6.3 Abstract Parallel Vector Interface

The vector data structure is a popular homogeneous data container which can contain
a signi�cant amount of data. This structure is particularly suited for massively parallel
operations on di�erent partitions of the target vector. Providing an abstract parallel
vector interface allows the parallel processing of its element using di�erent algorithms
and on various multicore and many-core platforms: for instance Thrust [HB] is a parallel
algorithms library which o�ers a C++ standard template library-like vector interface
and inter-operates internally with CUDA, TBB or OpenMP to run on multicore and
many-core architectures including CPU and GPU. PVL [KB09], PVTOL [KRS+08] and
VSIPL++ [LKHR05] uses high-level vector, matrix and tensor data structures in con-
junction with task maps and data maps to parallelize data processing and distributes
the workloads across available processors [KB09].

OpenCL is established as a standard for heterogeneous computing [AM11] and was
explicitly designed with abstractions that are low-level, high performance and porta-
bility [KB09]. The OpenCL programming interface requires explicit management of
memory, kernels compilation and workload scheduling resulting in verbose code and
requiring deep understanding of all software and hardware components.

In our programming model we de�ned an abstract parallel vector interface in top
of OpenCL enabling the programmer to perform massively parallel operations on het-
erogeneous multicore architecture. Our vector interface uses the operator overriding
feature of the C++ language to translate transparently basic operations (such as addi-
tion or subtraction...etc) into corresponding OpenCL kernel at run-time then manage
transparently memory transfers and workload scheduling. Listing 6.2 shows how simple
computation can be performed using the XPU vector container.

1 #define size 1000000

2 int main()

3 {

4 xpu::vector<float> A(size), B(size), C(size);

5 // Transparent operations on GPU/CPU/...

6 A = B + C; // for i in [0..size[ do A[i] = B[i] + C[i]

7 C = A.sin(); // C[i] = sin(A[i])

8 B = C - A; // B[i] = C[i] - A[i])

9 }

Listing 6.2: Parallel vector interface: OpenCL kernel is generated transparently and
memory transfers are managed automatically.
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6.4 Data Parallel Applications

In order to evaluate the performances of the XPU data parallel constructs, we use its
"parallel_for" loop and its vectorization capabilities to parallelize two popular applica-
tions from the PARSEC benchmark suite [BKSL08], and we compare the XPU-based
implementations with those provided in the PARSEC Benchmark. The provided par-
allel implementations use various parallel programming models such as OpenMP, Intel
TBB or Pthreads. The �rst application is the "Fluid Animation" application which
implements incompressible �uid dynamics and the second application is the "Black-
Scholes" options pricing application.

6.4.1 Fluid Animation

The "�uidanimate" application is a part of the PARSEC Benchmark and the Intel RMS
Benchmark [BKSL08]. It uses an extension of the Smoothed Particle Hydrodynamics
(SPH) method and the Navier-Stokes equation to simulate an incompressible �uid for
real-time animation purposes [MCG03]. The kernels of the "�uidanimate" application
are specially designed to increase speed and stability. The output of this application
can be visualized by rendering the surface of the �uid.

Figure 6.21: Example of incompressible �uid simulation based on the Navier-Stokes
equation. We note that this simulation has been implemented using XPU and is based
on an algorithm for real-time �uid animation which is described in [Sta03].
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Figure 6.21 gives an overview of the output of an incompressible �uid simulation
rendering. The simulation frames shown in the �gure are taken from an XPU appli-
cation that implements a real-time �uid dynamics simulator proposed by [Sta03] and
based on a solver for the Navier-Stokes equations. The rendering of the output of the
PARSEC "�uidanimate" application is similar to the Figure 6.21.

The "�uidanimate" application uses a generally accepted representation of �uids
which is based on a set of PDEs called the Navier-Stokes equations. Figure 6.22 shows
the simpli�ed Navier-Stokes equation for a Newtonian incompressible �uid [PG92] which
formulates the conservation of momentum.

Figure 6.22: The Navier-Stokes equation for a Newtonian incompressible �uid which
formulates the conservation of momentum.

The Naviers-Stokes equation can be solved using the SPH method. SPH was origi-
nally designed for astrophysics simulations, but has been applied to various continuous
domains such as elastic solids and �uids. In the SPH, continuous quantities are rep-
resented as discrete particles which have a limited area of in�uence. These particles
are not represented as point masses, instead they are fuzzy quantities which fade with
distance. Figure 6.23 shows how smoothed particles are represented graphically and
mathematically as a smoothing function.

Figure 6.23: Smoothed particle fade with distance.

The smoothing function is a kernel W(r,h) that computes a quantity which is at-
tenuated with distance from the particle position r within a core radius h. Smoothing
kernels are used to improve the accuracy and the stability of the SPH method. As
shown in Figure 6.24, the SPH method de�nes a scalar quantity A at each location r
as a weighted sum of all the particles: the index j iterates over all the particles which
are de�ned by their respective positions rj , their masses mj , the densities ρj at their
locations and their respective �eld quantities Aj . Each particle holds various properties
like density, velocity, acceleration and can hold custom quantity such as temperature.
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Figure 6.24: The SPH algorithm derives a scalar quantity A at location r by computing
a weighted sum of all particles.

Similarly to solving point mass particle systems, the Navier-Stokes equation can be
solved using the smoothed particle system by computing the pressure and the viscosity
forces at each particles position (cf. Figure 6.25. The math behind each equation is
not the purpose of this chapter and will not be detailed. For more information about
Navier-Stokes equation solving, you can refer to [MCG03] and [PG92].

Figure 6.25: The SPH algorithm derives a scalar quantity A at location r by a weighted
sum of all particles.

6.4.1.1 The Algorithm

Figure 6.26: Every simulation step, the algorithm executes �ve kernels.
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As depicted in Figure 6.26, the "�uidanimate" application executes these �ve kernels
every time step :

1. Rebuild spatial index Because the �nite support h of the smoothing kernels
W(r-rj, h), the maximum interaction distance between particles is h. A spatial
indexing structure is used to exploit the proximity information for limiting the
number of particles which need to be evaluated [BKSL08]. This structure is built
by the functions ClearParticles and RebuildGrid to be exploited by the next
steps.

2. Compute densities This kernel computes the �uid density at the position of
each particle. The density is higher in the position where particles are packed to-
gether more closely. This step is performed in three phases which are implemented
in the functions InitDensitiesAndForces, ComputeDensities and Comput-
eDensities2.

3. Compute forces This kernel computes the forces using the densities computed
in the previous step. This kernel is implemented in function ComputeForces.
It computes pressure, viscosity and gravity. We note that in this step, collisions
between particles are handled implicitly.

4. Handle collisions This kernel is implemented in function ProcessCollisions
and is responsible of updating the forces to handle collisions of particles with the
scene geometry.

5. Update Position This kernel uses the computed forces in the previous step
to calculate the accelerations of the particles and their positions. The kernel is
implemented in function AdvanceParticles.

6.4.1.2 Data Structure

The data structure is a three dimensional array that maps to the three dimensions
geometry of the scene. The scene is represented as a box which is divided into cells.
Each cell is associated to a particle of the �uid. Each kernel of the application iterates
over all the cells to perform computations.
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Figure 6.27: The three dimensions scene is represented as a box which is divided in
small cells. These cells can be regrouped into blocks on which concurrent threads can
operate.

Iteration over the cells in each kernel is implemented as a simple "for" loop. When
parallelizing the application, these sequential "for" loops are replaced by parallel loops
that execute computations on di�erent cells or block of cells simultaneously.

6.4.1.3 Parallel Implementations

The parallel implementation of the "�uidanimate" application is based on a decompo-
sition of the scene cube into blocks. Each block is a vertical grid which corresponds
to a plan of cells. The application calls a function named "AdvanceFrame" at each
simulation frame. This function invokes eight other functions which are ClearParti-
clesMT, RebuildGridMT, InitDensitiesAndForcesMT, ComputeDensitiesMT, Compute-
Densities2MT, ComputeForcesMT, ProcessCollisionsMT and AdvanceParticlesMT. These
kernels are executed in their sequential order. However, each of the kernels is executed
simultaneously on di�erent partitions (grids) of the data. Figure 6.28 gives an overview
of the parallel implementation of the "�uidanimate" application.
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Figure 6.28: In the parallel implementation of the "�uidanimate" application, each
kernel is executed simultaneously on multiple data partitions.

A Fluid Animation Applications In The PARSEC Benchmark

The PARSEC benchmark furnishes three parallel implementations of the "�uidanimate"
application, the �rst implementation is based on the PThreads [NBF96] library and the
second uses the Intel TBB [Phe08].

In the PThread version, each of the eight functions is used as a callback. At each
step of the simulation, the application creates as many threads as data partitions using
the corresponding function as a callback. The threads are synchronized on a common
join point before executing the subsequent kernel.

The major drawback of this implementation is that the number of threads created
at each kernel execution is proportional to the number of data partitions, consequently,
large problem size with numerous data partitions can results in the creation of a very
large number of threads. This can introduce a signi�cant execution overhead. More-
over, the frequent creation and destruction of these short-life threads at its simulation
step ampli�es this execution overhead.
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In the TBB version of the application, the eight functions are encapsulated in TBB
task classes. Each of these classes is instantiated as many times as the data partition
count. These tasks are then executed concurrently. At the opposite of the PThread
implementation which create a thread to process each data partition, the TBB runtime
has a persistent pool of threads and can execute multiple tasks by the same thread
depending on the available processors. This reduces the execution overhead that can
be introduced by thread creation and destruction.

B Parallel Implementation Of "�uidanimate" using XPU

The "�uidanimate" application can be parallelized using XPU in two di�erent ways:
using task parallel constructs or data parallel construct.

Task Parallel Implementation The �rst way of parallelizing the "�uidanimate"
application consists in using the task parallelism API of XPU which we have seen in the
previous chapter (parallel and sequential) to build the task graph shown in Figure 6.28.
Listing 6.4 shows how the task graph can be built using the XPU parallel-sequential API.
This implementation is similar to the PThread and TBB implementations provided in
the PARSEC Benchmark. The XPU implementation requires much less parallelism-
related extra-code than TBB and PThreads to express task parallelism. Moreover,
almost all legacy code is reused without any alteration.

While o�ering a good programmability, the XPU task parallel implementation suf-
fers from the same limitation of those provided in the PARSEC benchmark: the static
data partitioning of the data determines the number of the concurrent tasks and thus
limits the available parallelism. Consequently, the application exposes a poor scalability.

1

2 int main()

3 {

4 // task definition

5 task cp0(ClearParticles, 0), cp1(ClearParticles, 1), // ...

6 task rg0(RebuildGrid, 0),rg1(RebuildGrid, 1), // ...

7 task cf0(ComputeForces, 0), cf1(ComputeForces, 1) // ...

8 // ...

9

10 // task graph definition

11 xpu::task_group * simulation = sequential(parallel(&cp0, &cp1, &cp2, &cp3),

12 parallel(&rg0, &rg1,&rg2, &rg3),

13 parallel(&id0, &id1, &id2, &id3),

14 parallel(&cd0, &cd1, &cd2, &cd3),

15 parallel(&cdb0, &cdb1, &cdb2, &cdb3),

16 parallel(&cf0, &cf1, &cf2, &cf3),

17 parallel(&pc0, &pc1, &pc2, &pc3),

18 parallel(&ap0, &ap1, &ap2, &ap3));

19
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20 // run the simulation

21 while (simulation_steps--)

22 simulation->run();

23 }

Listing 6.3: Parallel implementation of the "�uidanimate" application using XPU task
parallelism primitives.

Data Parallel Implementation The data parallel implementation use the data
parallelism capabilities of XPU at both thread level and instruction level. In the se-
quential implementation of the application, at each kernel execution, a simple "for"
loop iterates over the data partitions and applies the kernel to each of them. We uses
the XPU "parallel_for" construct to parallelize each of these eight loops. In addition to
executing simultaneously the kernels on several data chunks, the "parallel_for" skeleton
performs a dynamic data partitioning to achieve a high scalability: the XPU parallel
loop adapts dynamically to the underlying platform and performs di�erent data par-
titioning depending on the available processors to deliver a good forward scalability.
Each of the eight kernels is replaced by a "parallel_for" loop. The eight "parallel_for"
loops are executed successively at each simulation step.

1 int num_grids = 512; // partition count

2

3 /* wrapper function (required by XPU parallel for loop) */

4 ComputeForcesWrapper(int from, int to, int step)

5 {

6 for (int i=from; i<to; i++)

7 ComputeForces(i);

8 }

9

10 int main()

11 {

12 // task definition

13 task cp(ClearParticlesWrapper, 0, 0, 0);

14 task rg(RebuildGridWrapper, 0, 0, 0);

15 task cf(ComputeForcesWrapper, 0, 0, 0);

16 // ...

17

18 // task graph definition

19 xpu::task_group * simulation = sequential(new parallel_for(0, num_grids, 1, &cp),

20 new parallel_for(0, num_grids, 1, &rg),

21 new parallel_for(0, num_grids, 1, &id),

22 new parallel_for(0, num_grids, 1, &cd),

23 new parallel_for(0, num_grids, 1, &cdb),

24 new parallel_for(0, num_grids, 1, &cf),

25 new parallel_for(0, num_grids, 1, &pc),

26 new parallel_for(0, num_grids, 1, &ap));
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27 while (simulation_steps--)

28 simulation->run();

29 }

Listing 6.4: Parallel implementation of the "�uidanimate" application using XPU par-
allel_for construct.

In order to compute the velocities, accelerations and various forces which are applied
to the particles, the "�uidanimate" application uses a structure named "Vec3" which
implements basic operations on 3-d vectors. We substituted the "Vec3" type with the
XPU "vec3f " built-in type to take advantage of the XPU vectorization capabilities. The
XPU "vec3f " implements all the operations which are implemented in "Vec3" using the
x86 SSE2 SIMD Streaming extension. This allows us to speedup the execution of most
of these operations in several regions of the application.

6.4.1.4 Performance Comparison

A Experimental Setup

We compares the average execution time of the three parallel implementations of "�u-
idanimate" on four di�erent platforms. The TBB and PThread applications which are
included in the PARSEC Benchmark are used as they are without any modi�cation.
We use the version 2 of the Intel TBB library. The XPU-based implementation of
the application uses the parallel_for construct and the vectorized "vec3f" built-in type.
We compile the three applications with the Intel Compiler v12.0.5 with SSE4.2 enabled.

We note that the PThread and TBB implementations requires explicit or "manual"
speci�cation of the desired thread number, we choose the number of threads which gives
the better results in each con�guration. The XPU implementation adapt dynamically
to the underlying platform and therefore do not requires explicit speci�cation of the
thread number.

The applications are executed on four di�erent platforms:

1. Multiprocessor platform with two AMD Opteron 252 K8 processors (1 x Core, 1
x Thread, 1 x L1 Cache 64KB, 1 x L2 Cache 1MB, at 2.8 GHz).

2. One Intel Core i7 Q720 Nehalem (8 x Hardware Threads, 4 x Cores at 1.6 GHz, 4
x L1 Cache 32KB, 4 x L2 Cache 256KB, 1 x L3 Cache 6MB), with Turbo Boost
and Hyperthreading technologies enabled.

3. Multiprocessor and multicore platform with two Intel Xeon X5472 processors (4
x Cores, 4 x L1 Cache 32KB, 2 x L2 Cache 6MB, at 3 GHz).

4. Multiprocessor-Multicore platform with two Intel Xeon E5620 processor (8 x
Threads, 4 x Cores at 2.4 GHz, 4 x L1 Cache 128KB, 4 x L2 Cache 1MB, 1
x L3 Cache 12MB), with Turbo Boost and Hyperthreading technologies enabled.
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B Results

Figures 6.29, 6.30, 6.29 and 6.29 show the achieved performances on the various plat-
form. Unexpectedly, the Intel TBB version of the application achieved lower perfor-
mances than all the other version and in almost all the con�gurations. This can be
explained by the limited performance of task stealing in communication-intensive appli-
cations: the "�uidanimate" algorithm uses mutual exclusion mechanisms (mutexes) to
preserve data (particles) from race condition, this introduces an intensive inter-thread
communication and make data locality crucial for performances. As we have shown in
our experiments on scheduling strategies in the beginning of this chapter, task stealing
o�ers theoretically good trade-o� between load balancing and data locality, however our
experiments on several implementations of task stealing including Cilk Plus and TBB
implementations generated relatively high cache-miss rate when used with our synthetic
workloads. The experiment on a real application (�uidanimate) outlined the same issue
on various platforms.

Thanks to the XPU CHATS algorithm, the XPU implementation take advantage
of the cache-aware scheduling to reduce the communication overhead and achieve good
spatial and temporal data locality. In addition, the vectorization of a signi�cant part of
the computations speedups the execution of several kernels of the simulation. The XPU
implementation of "�uidanimate" achieves higher performances than the PThread and
TBB implementations in almost all the tested con�gurations. However, the execution
times of the PThread implementation remains close to those of XPU.

Figure 6.29: Execution time of the "Fluid Animation" application for di�erent problem
sizes on a multiprocessor platform with two AMD Opteron 252 K8 (L1 64 KB, L2 1M,
2.8 GHz).
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Figure 6.30: Execution time of the "Fluid Animation" application for di�erent problem
sizes on hybrid SMT-CMP Nehalem Processor (Intel Core i7 Q720) with 8 Hardware
threads.

Figure 6.31: Execution time of the "Fluid Animation" application for di�erent problem
sizes on a multiprocessor platform with 2 x Core 2 X5472 Processor (4 Cores L1 32KB,
L2 6MB, 3 GHz .
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Figure 6.32: Execution time of the "Fluid Animation" application for di�erent problem
sizes on a multiprocessor platform with 2 x Intel Xeon E5620 processors.

6.4.1.5 Programmability Comparison

Figure 6.33 shows a comparison of the line count of the sequential version and the
di�erent parallel versions of the "Fluid Animation" application. We note that XPU is
vectorized while the PThread and TBB versions are parallelized at thread-level but not
vectorized.

Figure 6.33: Programmability Comparison of the "Fluid Animation" application: Line
count of the sequential version and the parallel versions using XPU, PThreads and TBB.

The result shows that the XPU version requires less parallel code that PThreads
and TBB despite the vectorization-related code included in the XPU version. The
XPU version introduce 95 lines of extra-code while the PThreads and the TBB versions
requires respectively 116 and 727 lines of code. Thus, the TBB requires 6 times more
lines of code than XPU to parallelize the "Fluid Animation" application while delivering
lower performances than XPU on most of the tested platforms.
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6.4.2 BlackScholes

The Black-Scholes model or Black-Scholes-Merton is a mathematical model of a �nan-
cial market containing a set of derivative investment instruments. The Black-Scholes
formula can be deduced from the model and gives the price of European-style options.
The formula led to a boom in options trading and gave a scienti�c legitimacy to the
activities of the Chicago Board Options Exchange and other options markets around
the world [Mac08]. It is widely used by options market participants and many empirical
tests have shown the Black-Scholes price is "fairly close" to the observed prices. When
applied to a large number of options, the Black-Scholes algorithm exhibits massive data
parallelism at both thread level and instruction level. We used this algorithm as another
study case to evaluate our framework (XPU) and compare it to state-of-the-art parallel
models.

6.4.2.1 The PARSEC "blackscholes" Application

The blackscholes application was included in the PARSEC benchmark to represent the
wide �eld of analytic PDE solvers in general and their application in computational
�nance in particular [BKSL08]. The program is limited by the amount of �oating-point
computations that processor can perform. The "blackscholes" stores the options data
in a large array. The parallel implementation of the program divides the data into a
number of work units which corresponds to the number of the concurrentthreads that
processes the options. Each of these threads iterates through all options and calls the
"BlkSchlsEqEuroNoDiv" function to process each of them and compute its price.

Contrary to the "�uidanimate" application in which the data parallelism is limited
by an intensive communication, the "blackscholes" application exhibits massive data
parallelism and do not requires inter-thread communication (the options are processed
independently). This make the parallelization of the "blackscholes" application rela-
tively simple.

The PARSEC benchmark includes �ve parallel implementations of "blackscholes"
in addition to a sequential one which serve as a reference or base code. The �ve ap-
plications are parallelized using respectively OpenMP, TBB, PThreads, OpenMP/SSE
and PThreads/SSE.

6.4.2.2 "Blackscholes" Parallelization Using XPU

Similarly to the "�uidanimate" application, we used XPU to parallelize the popular
"Black-Scholes" problem at thread level using the "parallel_for" construct and at the
instruction level using the vectorization capability provided by XPU through the built-
in vectorized type (vec4f) implemented on top of SSE to support SIMD. We used the
sequential code of the "blackscholes" application as provided in PARSEC Benchmark
Suite [BKSL08].
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The main processing loop was parallelized at the cost of 3 lines of extra-code. Vector-
ization was introduced simply by replacing regular �oat type by the "vec4f" vectorized
type and by setting increment step of "parallel_for" to 4 instead of 1. Listing 6.5
shows the original implementation of the Black-Scholes Cumulative Normal Distribu-
tion Function (CNDF) and Listing 6.6 shows it vectorized equivalent which use the
vectorized XPU "vec4f " type. The codes are very closes since all vectorization details
(often written using SSE assembly) are hidden behind the operators of the "vec4f " type.

1 #define ftype float

2

3 /**

4 * Cumulative Normal Distribution Function

5 */

6 fptype CNDF (fptype InputX )

7 {

8 int sign;

9 fptype OutputX;

10 fptype xInput;

11 fptype xNPrimeofX;

12 fptype expValues;

13 // ...

14

15 xInput = InputX;

16 expValues = exp(-0.5f * InputX * InputX);

17 xNPrimeofX = expValues;

18 xNPrimeofX = xNPrimeofX * inv_sqrt_2xPI;

19

20 xK2 = 0.2316419 * xInput;

21 xK2 = 1.0 + xK2;

22 xK2 = 1.0 / xK2;

23 xK2_2 = xK2 * xK2;

24 xK2_3 = xK2_2 * xK2;

25 xK2_4 = xK2_3 * xK2;

26 xK2_5 = xK2_4 * xK2;

27 xLocal_1 = xK2 * 0.319381530;

28 xLocal_2 = xK2_2 * (-0.356563782);

29 xLocal_3 = xK2_3 * 1.781477937;

30 // ...

31 xLocal = xLocal_1 * xNPrimeofX;

32 xLocal = 1.0 - xLocal;

33

34 OutputX = xLocal;

35 // ...

36 return OutputX;

37 }

Listing 6.5: Original Black-Scholes Cumulative Normal Distribution Function (taken
from the reference sequential application)
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1

2 /**

3 * Cumulative Normal Distribution Function (Vectorized with XPU)

4 */

5 void CNDF(float * OutputX, float * InputX)

6 {

7 // ...

8 xpu::vec4f xInput(InputX);

9 xpu::vec4f xK2;

10 xpu::vec4f xK2_2, xK2_3, xK2_4, xK2_5;

11 xpu::vec4f xLocal, xLocal_1, xLocal_2, xLocal_3;

12 // ...

13

14 xpu::vec4f xNPrimeofX = (xInput * xInput * (-0.5f)).exp() * (inv_sqrt_2xPI);

15

16 xK2 = xpu::vec4f(0.2316419) * xInput;

17 xK2 = xK2 + xpu::vec4f(1.0);

18 xK2 = xpu::vec4f(1.0) / xK2;

19

20 xK2_2 = xK2 * xK2;

21 xK2_3 = xK2_2 * xK2;

22 xK2_4 = xK2_3 * xK2;

23 xK2_5 = xK2_4 * xK2;

24

25 xLocal_1 = xK2 * (0.319381530);

26 xLocal_2 = xK2_2 * (-0.356563782);

27 xLocal_3 = xK2_3 * (1.781477937);

28 xLocal_2 = xLocal_2 + xLocal_3;

29 // ...

30 xLocal = xLocal_1 * xNPrimeofX;

31 xLocal = xpu::vec4f(1.0) - xLocal;

32

33 xLocal >> OutputX;

34 // ...

35 }

Listing 6.6: Vectorized version of Black-Scholes Cumulative Normal Distribution Func-
tion using XPU

Listing 6.7 shows the main function of the XPU implementation. The main "blacksc-
holes" kernel is encapsulated in a task which is used in the de�nition of the XPU
"parallel_for" loop. We note that the progression step of the parallel loop is set to
"vec4f_size" which is equal to 4 and corresponds to the 4 �oats which are stored in the
"vec4f" structure instead of the regular single �oat (line 21).
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1

2 int bs_kernel(int from, int to, int step)

3 {

4 // ...

5 for (int i=from; i<to; i+=step)

6 {

7 BlkSchlsEqEuroNoDiv(price, NCO, &(sptprice[i]), &(strike[i]), &(rate[i]),

8 &(volatility[i]), &(otime[i]), &(otype[i]), 0);

9 for (k=0; k<step; k++)

10 prices[i+k] = price[k];

11 }

12 }

13

14 #define vec4f_size 4

15

16 int main()

17 {

18 xpu::init();

19

20 xpu::task t(bs_kernel,0,0,0); // task definition

21 xpu::parallel_for p(0,numOptions,vec4f_size,&t); // parallel loop definition

22

23 xpu::timer tmr;

24 tmr.start();

25

26 for (int j=0; j<NUM_RUNS; j++)

27 p.run();

28

29 tmr.stop();

30 printf("[+] execution time: %lf \n", tmr.elapsed());

31 xpu::clean();

32 }

Listing 6.7: The XPU main implementation of "blackschole" is based on a parallel_for
loop which uses the processing kernel, namely "BlkSchlsEqEuroNoDiv"
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6.4.2.3 Performances Comparison

A Experimental Setup

We compared the performance achieved by our application to the �ve parallel versions
which are provided in the PARSEC benchmark suite: OpenMP, TBB, Pthreads, Open-
MP/SSE and PThreads/SSE. We used the Intel C++ Compiler v12.0.5 and we executed
our benchmark on several multicore platforms.

In XPU, optimal thread count is determined automatically by the runtime sys-
tem. The XPU scheduler exploits the CHATS algorithm to combines static workload
scheduling and task stealing to exploit e�ectively processor caches and ensure dynamic
load-balancing. For the other programming models, the number of threads is �xed
manually, we choose the thread count giving the best results after several tests on each
platform.

The applications are executed on three di�erent platforms:

1. Intel Core 2 Duo E8600 Processor (2 Cores, 2 Threads, 3.3 GHz, 2 x L1 Cache
32KB, 1 x L2 Cache 6MB).

2. One Intel Core i7 Q720 Nehalem (8 x Hardware Threads, 4 x Cores at 1.6 GHz, 4
x L1 Cache 32KB, 4 x L2 Cache 256KB, 1 x L3 Cache 6MB), with Turbo Boost
and Hyperthreading technologies enabled.

3. Multiprocessor-Multicore platform with two Intel Xeon E5620 processor (8 x
Threads, 4 x Cores at 2.4 GHz, 4 x L1 Cache 128KB, 4 x L2 Cache 1MB, 1
x L3 Cache 12MB), with Turbo Boost and Hyperthreading technologies enabled.

B Results

Figures 6.34, 6.35 and 6.36 shows the measured execution time for each parallel version.
The XPU-based application provides higher performance than the other versions and
execute up to 25 % faster than POSIX Thread/SSE one. It takes advantage of the
ability of the scheduler to provide both load-balancing, e�cient cache utilization and
low communication overhead to outperform the POSIX Thread version which use basic
static scheduling achieving good cache utilization but poor load-balancing. The impact
of this poor load-balancing issue becomes more visible as workload grows.

Additionally, the XPU vectorization is relatively more sophisticated than that used
in the SSE PThread and OpenMP implementations: the XPU "vec4f " vectorizes some
operation such as exponential and logarithm computation which are not available in
the SSE native instruction set but can be implemented using a combination fo the SSE
�oating point primitives. Figure 6.37 gives an overview of the scalability of the di�erent
implementations on version of the application on several platforms ranging from to 2
to 16 hardware threads.
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Figure 6.34: "Blackscholes" execution time on Intel Core 2 Duo E8600 Processor (2
Cores) for di�erent problem size.

Figure 6.35: "Blackscholes" execution time on 8 Threads Intel Core i7 Q720 Processor
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Figure 6.36: "Blackscholes" execution time on a 16 Threads SMP platform with two
Intel Xeon E5620 Processor at 2.4 GHz

Figure 6.37: Black-Scholes Scalability (2 to 16 Hardware Threads).

6.4.2.4 Programmability Comparison

Figure 6.38 shows a comparison of the line count of the sequential version and the
di�erent parallel versions of the Black-Scholes application. We note that XPU is vec-
torized while the OpenMP, PThread and TBB versions are parallelized at thread-level
but not vectorized. The result shows that despite the vectorization-related code, the
XPU version remains very close to both the sequential version and the OpenMP ver-
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sion which introduces the littlest parallelism-related code. The PThreads-based code is
signi�cantly more verbose but still less verbose than the TBB code.

Figure 6.38: Black-Scholes Programmability Comparison: Line count of the sequential
version and the parallel versions using XPU (vectorized), OpenMP, PThreads and TBB.

We reproduce the same experiment with the vectorized versions of OpenMP and
PThreads. Figure 6.39 shows that XPU introduces less than 20 lines of code to paral-
lelize the main loop and vectorize the main Black-Scholes kernel. The OpenMP version
requires about 80 lines to implement the parallel loop and vectorize the code using ex-
plicitly the SSE instruction set. Finally, PThreads version introduces near 90 lines of
code to do the same as OpenMP.

Figure 6.39: Black-Scholes Programmability Comparison: Line count of the sequential
version and the vectorized parallel versions using XPU (Vectorized), OpenMP+SSE,
PThreads+SSE.
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6.5 Conclusion

In this chapter we have shown that data parallelism, which is crucial for todays appli-
cations, can be described easily in XPU provided that the application do not expose
complex data dependencies. We have shown how we can express easily data parallelism
at thread level using the XPU parallel_for construct and at instruction level using the
built-in XPU vectorized types. We outlined the programmability provided by the XPU
programming interface and shown that despite its high abstraction, it can still achieve
comparable performances to lower level programming models. We described the details
of implementation the XPU parallel for loop and its feature including the scalable data
partitioning and cache-aware scheduling. We presented the XPU CHATS algorithm
which allows the XPU parallel "for" loop to adapt dynamically to the underlying plat-
form and its cache hierarchy and to perform e�cient cache-aware scheduling.

The XPU "parallel_for" construct can parallelize only loops with no dependencies
between theirs iterations. Unfortunately, in many applications such as image processing,
loops expose often dependencies between their iterations and requires speci�c transfor-
mations to be parallelized. Since XPU cannot perform code analysis as compilers would
do, the XPU runtime cannot extract these dependencies between iterations else the pro-
grammer provides them. In a future implementation, the programming interface of the
parallel for construct will be extended to allow the programmer to specify dependencies
between iterations. This would enable the XPU runtime to perform advanced trans-
formations before parallelizing the loop. In the second part of this thesis, we see how
such complex data dependencies analysis can be performed transparently when using
the FATMA framework provided that the loop is unrolled.
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7
Pipeline Parallelism

Pipeline execution pattern is a recurrent execution con�guration in many application
domains involving stream processing such as digital signal processing and data com-
pression. Despite its popularity and recurrence in image, signal processing, graphics,
data compression and many application implying real-time stream processing, pipeline
parallelism is still di�cult to express and implement e�ciently on multicore platforms:
low-level parallel programming models exacerbate the di�culties of expressing pipeline
parallelism and require verbose restructuring of the code and complex scheduling tech-
niques to perform e�cient execution on modern multicore architectures.

High-level programming models are in high-demand as they reduce the burdens of
programmers, ease parallelism expression and handle transparently tasks scheduling and
communication. In this chapter 1 we focus on pipeline parallelism expression using XPU,
we present the XPU programming interface which allows pipeline construction. We de-
scribe its internal design and the run-time implementation of the pipeline execution
pattern and �nally we show an example of image processing application implementing
real-time adaptive edge detection algorithm. We reuse an existing sequential implemen-
tation to implement a pipelined version using both XPU and TBB. We compare the
two versions in term of expressiveness and performance. We note that XPU version
performs about 20% faster than TBB on a 16-threads multicore platform and requires
80% less extra-code than TBB to express pipeline parallelism. Our experiments show
that our programming model provides both programmability and execution e�ciency.

7.1 Pipeline Execution Pattern

Pipeline execution pattern follows a consumer/producer scheme similar to a production
assembly line. An assembly line consists of a sequence of stations in which each station
is responsible for assembling a part of a product. Each station may has one or multiple
workers assigned and the output of each station (producer) is consumed by the adjacent
station (consumer).

1
Publication: Nader Khammassi and Jean-Christophe Le Lann, "A High-Level Programming

Model to Ease Pipeline Parallelism Expression On Shared Memory Multicore Architec-

tures", 22nd High Performance Computing Symposium, ACM HPC 2014, Tampa, FL, USA
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Figure 7.1: Pipeline Execution Pattern: Consumer/Producer relationship between
pipeline stages.

Analogously, as depicted in Figure 7.1, a pipeline is set of simultaneously active
tasks called "stages" that communicate following a producer-consumer relationship:
each stage is responsible of both consuming and producing some items of interest.
Thus, each pair of adjacent stages forms a producer-consumer pair.

At the opposite of the serial execution pattern where completely dependent sequence
of tasks are executed serially, pipeline stages are activated at the same time. However,
in order to recover data coherency, sequentially dependent activities or "folds" are se-
rialized and parallelism is exploited only on independent activities [McC10]. Figure

7.2 and 7.3 shows a comparison between serial and two-stage pipeline execution. It
illustrates how a pipeline can exploit available parallelism by serializing only dependent
activities. We note potential improvement of throughput with pipeline parallelism. This
improvement may be proportional to the pipeline depth but is limited by the available
computing resource particularly when the pipeline stages count exceed processors count
[GPB+07]. Therefore, despite their �xed stages count limiting their scalability to large
number of cores, pipelines can still provide a very useful parallelism multiplier in pro-
grams exposing strong serial dependencies between tasks.

Figure 7.2: Serial Execution: Stage 1 and 2 are executed sequentially on the same
processor.
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Figure 7.3: In Pipeline Execution Pattern, only dependent tasks are serialized.

For example, an image processing pipeline composed of a set of �ltering stages will
ensure that �lters will be executed serially on each input image, while it will allows
several images to be processed simultaneously by parallel stages.

7.2 Pipeline Parallelism Expression

Decomposing a program into pieces of code then specifying their execution con�gura-
tion are the two major steps of the parallelization process in most parallel programming
models. In low-level thread-lock programming model such as "PThread", these pieces
of code are called callbacks and require often signi�cant alteration of the targeted piece
of code since it has to conform to a speci�c callback prototype.

In higher level skeleton-based programming model, these pieces of code are called
tasks and their execution con�guration are speci�ed by selecting the appropriate skele-
ton or execution pattern that speci�es parallelism of these tasks. Tasks allow the reuse
of sequential code in less restrictive way: task code and its consumed or produced data
are often encapsulated in a class such as in the Intel TBB library [Phe08] or in the
PTL [LSB09]. XPU does not require to de�ne a class with a speci�c prototype for
each task, instead it enables programmer to de�ne task from a piece of code which may
be a function, object method or lambda expression without particular constraints on
function prototype (return value, arguments count or type). Thus, it allows reuse of
legacy code almost without any alteration at the cost of a single line of code. In the
next few paragraphs we describe how a pipeline can be de�ned in XPU and TBB then
we compare their expressiveness and programmability in our study case.

7.2.1 The Threading Building Blocks Pipeline Pattern

In many high-level programming model task de�nition may require verbose restructur-
ing of code and signi�cant alteration of the original sequential code. For example, in
TBB, task code and its consumed or produced data should be encapsulated in a class
respectively as object attributes and object methods with speci�c prototype. Task class
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has slightly di�erent interfaces depending on the target execution pattern. In the case
of the pipeline execution patterns, a specialized class interface named "�lter" should be
implemented to host the code of each pipeline stage.

In TBB, programmer code should override the "void * operator()(void* token)",
where the token is the item of interest which will be processed by the stage. Each
intermediate �lter takes an input token, process it then produces an output token. The
�rst �lter does not have any input tokens, it only produces tokens. Analogously, the
last �lter processes input tokens but do not produce output ones. Listing 7.1 shows
an example of TBB "�lter" implementation.

1 // original function

2 int blur(char * img, int width, int height);

3 // filter implementation

4 class blur_fltr : public tbb::filter

5 {

6 public:

7

8 blur_fltr(int width, int height) : filter(serial_in_order),

9 m_width(width),

10 m_height(height)

11 {/* ... initialization ... */ }

12

13 private:

14

15 // store required parameters as attributes

16 int m_width;

17 int m_height;

18

19 // overload 'operator()' with the stage code

20 void* operator()(void*img)

21 {

22 image_t * img = (image_t*)img;

23 // call original function to process current datum 'img'

24 blur(img, m_width, m_height);

25 // return produced datum to next stage

26 return (void*)img;

27 }

28

29 };

Listing 7.1: Pipeline �lter implementation using TBB

Once pipeline stages are de�ned as �lters, the pipeline can be built by adding in-
stances of the implemented �lters to a pipeline object as shown in Listing 7.2. Pipeline
can then be executed by invoking the "run" method.
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1 int main()

2 {

3 // ...

4 // create the pipeline

5 tbb::pipeline pipe;

6 // instantiate filters

7 greyscale_fltr stage1(width,height);

8 blur_ftr stage2(...args...);

9 threshold_fltr stage3();

10 // add filters to the pipeline

11 pipe.add_filter(&stage1);

12 pipe.add_filter(&stage2);

13 pipe.add_filter(&stage3);

14 // execute the pipeline

15 pipe.run();

Listing 7.2: Pipeline construction using TBB

7.2.2 The XPU Pipeline Pattern

Since promoting the reuse of sequential code is one of the primary design goals of XPU,
we tried to overcome the previously enumerated limitations such as de�nition of a ded-
icated class for each task through a more �exible task design. In the XPU, by design,
a task is basically an abstract callable piece of code which can be executed. This piece
of code may consume or produce data. Task is de�ned generally through a single line
of code. Data are passed in the form of arguments to each task.

Listing 7.3 shows how a task can be created from a function, a lambda expression
or an object method disregarding its return type or its argument count or type. We
note that in the particular case of the pipeline execution pattern, the �rst argument of
the task has to be an integer. This argument is used to indicate the index of the item
processed by the pipeline stage.

1 // original function

2 int blur(char * img, int width, int height);

3 // stage wrapper ('i' the index of the processed image)

4 int blur_stg(int i, image_t * imgs, int w, int h) {

5 blur(imgs[i],w,h);

6 }

7 // task definition

8 xpu::task blur_t(blur_stg, 0, stream, width, height);

Listing 7.3: XPU Task de�nition using a simple function
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1 int main()

2 {

3 // ...

4 task greyscale_t(greyscl_stg, 0, stream, width, height);

5 task blur_t(blur_stg, 0, stream, width, height);

6 task threshold_t(threshold_stg, 0, stream, width, height);

7 // create the pipeline

8 task_group * process_image = pipeline(n, &greyscale_t, &threshold_t, &blur_t);

9 process_image->run(); // execute the pipeline

10 }

Listing 7.4: An example of a four stages pipeline construction in XPU (Tasks are used
as pipeline stages)

As shown in Listing 7.4, once tasks are de�ned, pipeline can be constructed using
these tasks as stages. Tasks are passed as argument in their sequential execution order.
They will be executed simultaneously in separate threads but will be synchronized to
ensure data coherency. Pipeline can be executed simply by calling its run method.
Stages synchronization is transparently handled by the internal run-time system. First
argument "n" indicate to the pipeline the number of items to be processed before
stopping. For inde�nite datum counts, this argument can be set to zero.

7.3 Internal Design

The TBB pipeline execution model is based on MacDonald's work [MSS04] which re-
thinks pipeline as object-oriented states with transformations. It follows a tasking model
which attempts to perform e�cient execution by providing both good load-balancing
and e�cient memory use. In this section we discuss the internal design of the pipeline
construct in XPU. This design is based on the producer-consumer relationship between
pipeline stages. Pipeline stages communicate with each others to ensure synchroniza-
tion and guarantee that no stage will overlap or interfere with its relative neighbor
stage(s). Each stage communicates with its adjacent stage(s) to perform one of these
two following operations or both of them:

� Wait for data

� Notify its following stage that data is available for processing.

Consequently we can distinguish three di�erent types of stages:

� The head of the pipeline: the head of the pipeline is the �rst stage which only
produces items of interest so it does not wait for any other stage, instead, it pro-
cesses data. Once processing is �nished, it noti�es the next processing stage that
data is available for processing then it continues processing more data following
the same scheme.
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� Intermediate stages: an intermediate stage waits for data to be produced by its
predecessor, when it receives a noti�cation from that stage, it starts processing
the new data. When �nished it noti�es the next stage that data is available.

� The tail of the pipeline: the last stage of the pipeline waits for data from its
predecessor stage then processes it. Since there is no more stages, it doesn't have
to notify any other stage for available data.

As we have seen, pipeline stages in our model need to communicate with each
others to preserve data coherency and enforce stages synchronization. An event-based
mechanism is used to perform the two needed communication actions: "wait" and
"notify".

7.3.1 Event object

An event object has been designed to allow directional asynchronous communication
between two concurrent threads. We note that a common event object can be used
to establish communication between a couple of threads. The event object has two
methods: "wait" and "notify" respectively to wait for an event from a thread or signal
an event to another thread:

� The "wait" method blocks the calling thread until an event is signaled.

� The "notify" method signals an event to a peer thread waiting that same event.
If no thread is waiting in the time of event signaling, signals are not lost, in-
stead, they are accumulated in a FIFO queue so when a thread invoke the "wait"
method later, it does not block if there is available signals in the FIFO: the waiting
thread simply dequeues the FIFO queue then continues without blocking. This
guarantees that an event waiter does not miss any event even when it is busy.

In the XPU framework, event object is implemented using the traditional phread's
condition variables in conjunction with a thread-safe FIFO queue. Events are used
internally to ensure asynchronous communications between threads.

7.3.2 The Pipeline building-blocks

Pipeline is built using three event-based building blocks:

� Event Noti�er : the "event noti�er" is a runnable object which is composed of
a task and an output event. When executed, it runs the task, i.e its encapsulated
code, then activate its event through calling the "notify" method. The �rst stage
of the pipeline is an event noti�er since it produces data without consuming.

� Event Relay : the "event relay" is composed of a task and two events. It waits
for an input event then execute its associated task and �nally signal the output
event. In a pipeline, intermediate stages are event relays since they both consume
and produce data.
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� Event Listener : the "event listener" is the tail of the pipeline. It is composed
from and input event and a task. It waits for an incoming event then execute its
task.

7.3.3 Pipeline Construction

Pipeline is constructed from these three building-blocks. It is composed from an event-
noti�er which is the head of the pipeline, one or several event-relay which are the
intermediate stages and an event-listener which play the role the last stage. Tasks en-
capsulating stages code as de�ned by the programmer are embedded in these building-
blocks, additionally, events are transparently created to link the di�erent stages and
allow them to communicate.

Figure 7.4 describe the execution of a three-stage pipeline that processes a total of
two items of interest (datum). We distinguish three di�erent operations: "run", "wait"
and "notify". An event is introduced between each couple of stages to enable them to
communicate. We note that "stage 1" performs only "run" and "notify" operations
since it is an "Event Noti�er". "stage 2" executes "wait", "run" then "notify" op-
erations while the last stage "stage 3" performs "wait" then "run" operation for each
datum. We note also that the "run" operation is executed once for each datum by
each stage. The index of the datum is passed as an argument to the "run" operation
of the task which will update in turn the �rst argument of the function, object method
or lambda expression before calling them to tell them which data they should process.

Figure 7.4: Execution of three stage pipeline which process two item of interest.
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The previous sequence diagram shows that each stage execute repetitively two or
three operation for each datum. We note these operations sequence as work unit.
Consequently we identify three di�erent types of works as shown in Figure 7.5. We
de�ne a common interface for them which we name work and implement a "perform"
method which executes the encapsulated operations sequence. This abstraction o�ers a
�exible mean to execute these works using di�erent schedulers implementing di�erent
scheduling strategies and techniques as detailed in the next section. This �exible design
decouples clearly workload partitioning from workload scheduling.

Figure 7.5: Three types of unit work: �rst stage execute event noti�er work, interme-
diate stages execute event relay work and last stage execute event listener work

7.4 Run-Time System

Task scheduling is critical for execution e�ciency. An e�cient scheduling policy should
consider two key parameters : good load-balancing and e�cient cache use. The run-
time system of XPU is responsible of executing the di�erent workloads described in the
previous section. These workload can be executed using di�erent scheduling strategies.
In this section we detail three of them : Thread-based scheduling, Cache-aware schedul-
ing and Load-balanced scheduling.

We note that the programming interface as well as the internal pipeline architec-
ture remains unchanged and common for all the schedulers since scheduling, pipeline
architecture and pipeline parallelism expression are decoupled by design.

7.4.1 Thread-based scheduling

When executed the pipeline has to execute stages in separate asynchronous threads.
Synchronization is performed naturally through event noti�cations between threads.
Each thread hosts either an "Event Noti�er", An "Event Listener" or an "Event
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Relay" that will loop as long as data is available. Figure 7.6 gives an overview of this
scheduling technique: when "pipeline.run()" is invoked, a thread is created for each
stage of the pipeline, for N data, it will execute repetitively N times its workload wile
taking care of updating the data index each time. When done thread simply exits. The
main thread waits for the last stage's thread to exit.

The main advantage of this trivial approach is that it is relatively easy to imple-
ment. This implementation depends strongly on OS-level scheduling which will perform
task-processor mapping. The number of created threads growing proportionally to the
number of pipeline stages is one of the major limitations of this approach. A deep
pipeline with big number of stages may generates too much threads for the available
computing resources.

Figure 7.6: Thread-Based Run-Time System : A thread is created for each pipeline
stage, the main thread wait for these threads to process all available data.

7.4.2 Load-balanced scheduling

As depicted in Figure 7.7, load-balanced scheduling relies on a persistent pool of
threads or "Workers" to execute works. For each N-stage pipeline execution on M

datum, M X N works are generated or more precisely M "Event Noti�er" works,
M "Event Listener" works and (N-2) X M "Event Relay" works. These works
are submitted into a common work queue for all workers. Idle workers pick available
works from this shared queue. Work ordering or serialization of dependent works is
done naturally through the embedded events in each work.
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This implementation provides obviously better load-balancing. This have been con-
�rmed by experiments on the image processing application which we present in the next
section. However, this approach su�ers from poor spatial and temporal data locality in
processor caches resulting in ine�cient reuse of data in addition to potentially costly
one-to many communication and "arbitrary" task-processor mapping.

Figure 7.7: In the load-balanced scheduler implementation, task are submitted to a
pool of workers through shared work queue, idle workers pickup the tasks from the
work queue. Therefore, the load is constantly and dynamically balanced.

7.4.3 Cache-aware scheduling

Figure 7.8 gives an overview of cache-aware scheduling technique. E�cient use of
processor caches is the primary concern in this scheduling techniques. At the opposite
of the previous implementation, each persistent worker has a private work queue. As
explained previously a N-stages pipeline processing M datum generates N x M works.
In this con�guration these works will be distributed to the available work queue quasi-
fairly following a round robin scheme for each stage. This scheduling technique relies
on an implicit task-data dependency information implicitly available in the pipeline
execution pattern: each data will be processed serially by all pipeline stages. In this
implementation we execute all stages works implying datum "i" on the same processor
"p" since datum "i" is potentially available in high-level cache of processor "p". Our
experiments show that this scheduling scheme reduces cache miss rate and improves
data locality in caches.
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This approach performs e�cient use of caches in on hand by improving datum
locality in caches and on the other hand by reducing communication cost through one-
to-one communication when submitting works. However, simple round-robin workload
distribution does not perform good load-balancing especially in the case of highly un-
balanced stages. This may lead to shadow gains of e�cient cache use by poor workload
load-balancing.

Figure 7.8: Worker Pool-based run-time system with private Work Queue.

7.5 Application: Image Processing

7.5.1 Algorithm Description

In this section we describe an edge detection algorithm named "Adaptive Threshold
Edge Detection" that was developed for the OpenIllusionist project [Par07][Parb]
speci�cally to help with detecting �ducials (reference points) in live video [PRZ05].
This algorithm appears to be faster and better suited to perform the task on live video
stream than heavier algorithms such as the Canny Edge Detector [Can87]. The original
algorithm was designed by Prof. John Robinson at the University of York and then
modi�ed and optimized for the OpenIllusionist project. We propose to implement the
algorithm as a pipeline in order to speed up real-time processing of continuous images
stream.

In order to evaluate our approach in terms of programmability (parallelism expres-
siveness) and performance in comparison with TBB, we reuse the original sequential
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implementation of the algorithm, which was implemented as a Gimp plug-in written
in C [Para], to implement two parallel version based on the pipeline execution pattern
of XPU and TBB. Figure 7.9 gives an overview of the edge detection algorithm as
it is implemented in the sequential target program. We note that many algorithms
from many �elds of applications implying stream processing such as signal processing,
multimedia application and data compression can be parallelized the same way.

Figure 7.9: The Adaptive Threshold Edge detection Algorithm.

In the following sections, we try to evaluate our approach through this study case.
Our experiment shows that the XPU-based version provides a signi�cant performance
improvement over the original implementation, performs higher frame rate than the
TBB version at the cost of lesser parallelism-related extra-code, allows the reuse of the
sequential code without signi�cant alteration contrary to the TBB version.

7.5.2 Evaluation Methodology

Tension between performance and programmability are unavoidable in parallel pro-
gramming model design [CCZ07b]: programming model may emphasize expressiveness
and ease of use over performance, and therefore, sacri�ces some execution e�ciency to
gain programmability and improve programmer productivity. In the other side, another
parallel programming model may be designed to deliver high performance at the cost of
signi�cant programmability loss making parallel programming di�cult, time-consuming
and error-prone. Programming models make various performance-programmability
trade-o�.

In order to evaluate our programming model, we consider both of these two as-
pects. Performance can be evaluated by measuring execution time and throughput or
performed frame rate in our study case. However, programmability or productivity are
less easier to evaluate, many evaluation methodologies have been proposed to "quan-
tify" them [TTTn+09]. One of these method relies on measuring the similarities and
the di�erences between sequential and parallel code. Comparing the sequential and
the parallelized version of the same application gives a clear view of, in one hand, the
reused/altered sequential code and in the other hand, the introduced parallelism-related
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extra-code required by the programming model to express parallelism.

In our study case, we consider the existing sequential application implementing
the adaptive edge detection algorithm, we parallelize it using TBB and XPU then we
measure the required amount of parallelism-related extra-code as well as the reused and
altered sequential code. We use the "CLOC" [Sol] tool to count lines of code in each
version ignoring all blank lines and comments. A common formatting tool limits the
in�uence of coding style on lines count by enforcing a common C++ coding format
for all versions. Moreover, to perform �ner measures of similarities and di�erences at
the character-level and not only at the line-level, we use the Levenshtein algorithm
to compute the distance between sequential code string and each of the two parallel
versions.

7.5.3 Programmability

The target image processing algorithm performs its task in thirteen processing step by
applying several �lters and transformations to the image. These operations are imple-
mented as a set of functions. We reuse these functions without any modi�cation or
optimization of their respective code. In the case of XPU, a task is de�ned for each
stage. In the case of TBB, a "�lter" class is implemented for each stage. Pipelines are
created as seen previously. Figure 7.10 shows a comparison between the lines count of
the original sequential implementation (418 Lines) and the needed extra-code for par-
allelization in the XPU (65 additional lines) and TBB parallel version (351 additional
lines). We note that XPU version requires 80% less lines of code to express parallelism
than TBB.

Figure 7.10: Lines count of the original sequential version and the required parallelism-
related extra-code in the XPU and TBB version.
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As depicted in Figure 7.11, by applying the Levenshtein algorithm, the obtained
distance between XPU version and the sequential version is 3.3k while the distance
between TBB version and the same sequential version is 9.6k. Therefore XPU version
is about three time closer to sequential version than TBB version.

Figure 7.11: Levenshtein distance (arbitrary unit) between original sequential version
and respectively XPU and TBB parallelized versions.

7.6 Performance

Figure 7.12: Performed frame rate (fps) by sequential and pipeline processing with
di�erent scheduling techniques on an 8 threads processor (highest best).
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Figure 7.12 shows a comparison between these three scheduler implementation. Load-
balanced and cache aware scheduling achieve slightly better frame rate than the thread-
based implementation, in addition, we note also that the achieved frame rate of the later
su�er from more �uctuation and is less predictable. We compared the load-balanced
version of XPU with the TBB one. Figures 7.13 and 7.14 depict obtained results
respectively on an eight-thread processor and a 16 threads bi-processor platform. We
notice that XPU version performs about 20% faster than TBB and achieves about 5
times speedup of the original sequential version.

Figure 7.13: Average achieved frames rate (frame/sec) on an 8 threads processor (Intel
Core i7 Q720).

Figure 7.14: Average achieved frame rate (frames/sec) on a 16 hardware threads plat-
form (SMP with 2 x Intel Xeon E5620 at 2.4 GHz).
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7.7 Limitations and Future Works

At the time of writing these lines, the current implementation of the XPU pipeline
pattern has a set of limitations which can be addressed in future works.

7.7.1 Skeleton Nesting in Pipeline

The XPU pipeline construct can be nested can be nested as a task group inside the
hierarchical task group graph (HTGG), however it does not allow "direct" nesting of
other patterns as pipeline stages: only simple tasks can be used as pipeline stages. The
various patterns can be nested "indirectly" through using them inside the di�erent tasks
that constitute the stages of the pipeline. Allowing direct nesting would make the API
more elegant and can preserve the "hierarchical" property of the HTGG and allows
deeper nesting of execution patterns.

7.7.2 Data Management

In order to use the XPU pipeline skeleton to process data items, the processed data must
be indexable so the stage (task) can retrieve the data simply by using its index which
is continuously updated by the pipeline runtime at each stage execution. Consequently,
the programmer is responsible of organizing the data into indexable structures such
as arrays or vectors, the XPU pipeline skeleton guarantee only the coherent execution
ordering of the di�erent stage and does not provide any data management container such
as FIFO data queue. Providing such data container can be useful for the programmer
especially when processing dynamic data such as streams in real-time signal processing
applications.

7.7.3 Out-Of-Order Stage Execution

Pipeline stage are often unbalanced in term of workload, as a results, some stages may
execute faster than the others. Consequently multiple data can be accumulated at
the input of slower stages. The XPU pipeline skeleton enforce execution ordering of
the di�erent stages for the same data but also the processing order of di�erent data
inside the same stage. So the parallelism between the di�erent stages is exploited
while the sequential execution is enforced inside the same stage. In some applications,
ordering data processing inside the same stage cannot be required. Allowing out-of-
order processing inside the same stage to exploit more parallelism can be an interesting
feature in these particular cases. This execution mode is available in the Intel TBB
pipeline pattern. It can be easily implemented in the XPU pipeline in future XPU
versions.

7.8 Conclusion

The pipeline execution pattern can be a useful parallelism multiplier in many applica-
tions displaying strong serial dependencies between tasks. However this pattern exposes
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two major challenges: pipeline parallelism expression complexity and pipeline execution
e�ciency. In this paper, we focused on these two aspects and we showed how we can
ease pipeline parallelism expression without sacri�cing execution e�ciency. We used
the traditional C++ programming language without any extension and we presented
the implementation details of the pipeline execution pattern of XPU.

The image processing study case is a typical stream processing application which
outlined both the programmability and performance aspect and showed that despite
its emphasis on programmability, XPU provides good performances in comparison with
TBB programming model. Many algorithms can be parallelized the same way as the
presented study case. For instance, we are working on a pipelined implementation of
another application from the digital signal processing �eld.

The presented pipeline design decouples clearly parallelism speci�cation i.e. pro-
gramming interface from internal pipeline design and task scheduling. This design al-
lowed us to experiment di�erent scheduling strategies without modifying the displayed
programming interface. Good load-balancing and e�cient cache use are critical for
pipeline execution. The basic scheduler implementations presented in this paper fo-
cused on one of these two parameters and not both of them simultaneously. The task
stealing can be investigated to design smarter scheduling policy which provides better
trade-o� between e�cient cache use and good load-balancing.

As we will see in the automatic parallelization chapter, the pipeline pattern can be
seen as a particular case of a more general producer-consumer pattern which is the super
scalar task graph. We show in the next chapter how the building blocks of the pipeline
can be adapted and reused to implement the super-scalar task graph pattern. XPU
provides a set of skeleton to enable programmer to specify parallelism explicitly, in the
next chapter we present the FATMA framewok which allows automatic parallelization
of a sequential program provided that the program is represented as a sequence of tasks.
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Part III

Automatic Parallelization : FATMA
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8
Automatic Parallelization

In the previous chapters, we introduced XPU which is a pure C++ parallel programming
model which aims to ease explicit parallelism expression. XPU provides a collection of
hierarchical parallel constructs to enable the programmers to express several types of
parallelism including task, data and pipeline parallelism at di�erent levels of granularity.

While easing parallelism expression and improving programmer productivity in
many application domains, XPU may be less suited to some applications exacerbating
complex dependencies between very large number of tasks making explicit parallelism
expression very hard even with the simplest programming interface (API). For instance,
many tiled linear algebra algorithms may generate thousands of tasks with extremely
complex dependencies. For example, Figure 8.1 illustrates the complexity of the task
dependency graph (DAG) of the tiled Cholesky factorization algorithm that generates
35 tasks when operating on 5x5 tiles. The number of tasks grows considerably as the
number of tiles become larger: as depicted in Figure 8.2, the algorithm generates 220
tasks when the target matrix is decomposed into 10x10 tiles and 1540 tasks for a 20x20
tiles con�guration... As the number of tasks grows, the complexity of the DAG in-
creases signi�cantly. In such cases, despite the simplicity of the "parallel/sequential"
programming interface provided by XPU, it is very hard to express the parallelism of
such complex task graphs without the help of automatic parallelization or code gener-
ation tools...
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Figure 8.1: The task dependency graph of the tiled Cholesky factorization algorithm
for a 5x5 tiles decomposition.

Figure 8.2: In many tiled linear algebra algorithm, the number of tasks grows as O(n3)
with the number of tiles. While generating 35 tasks for 15 tiles con�guration, the
Cholesky factorization algorithm generates 4960 tasks for 900 tiles decomposition.

In addition to the parallelism extraction complexity, the XPU programming model
expresses hierarchical task parallelism through the fork-join execution model which is
based on spawning tasks and synchronizing them on synchronization points or Barriers.
This execution model does not provide e�cient execution of universal Task Graphs
(DAG) since the used barriers may introduces unnecessary idle times that correspond to
"false dependencies". In order to execute e�ciently such Task Graphs, Tasks should be
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executed in a super-scalar fashion to eliminate these idles times and false dependencies.
Similarly to XPU, programming models such as Cilk Plus [Rob13], TBB [Phe08] or
OpenMP [DM98] use this execution model and thus cannot execute e�ciently such task
graphs.

Figure 8.3: The fork-join execution model used by XPU, TBB, Cilk Plus, OpenMP...
generates unnecessary idles times when executing certain Task Graphs (DAG).

Figure 8.4: The super-scalar execution model used by FATMA, SMPSS or Quark exe-
cutes asynchronously the tasks and use event-based peer-to-peer synchronization model
between dependent task. This allows FATMA to eliminate unnecessary idles times when
executing Task Graphs (DAG).

The Fast Multicore Application (FATMA) framework addresses the limitations of
XPU by extending its capabilities and providing automatic parallelization feature that
allows the programmer to parallelize transparently a large sequence of tasks by gener-
ating the corresponding task dependency graph and scheduling parallel tasks according
to that graph on the available processors. The graph-driven execution is performed in
a super-scalar fashion in order to reduce idle times and maximizing throughput while
preserving data coherency and task dependencies.

Contrary to many programming models such as StarPU [ATNW11] and SMPSs
[BHL+09] that introduce language extensions or compiler directives and require spe-
cialized compilers and tools, FATMA use exclusively pure standard C++ language and
requires nothing more than a C++ compiler to be used. Instead of using compilation
techniques to parallelize task sequences, FATMA relies on an intelligent run-time sys-
tem that parallelize the sequences of task dynamically at run-time.

In this chapter, we present brie�y the FATMA programming model then we describe
examples of practical linear algebra applications and �nally we show that despite its
high abstraction and improved productivity, FATMA is capable to deliver comparable
performances to lower level programming models.
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8.1 Related Works

Several programming models addressed successfully the task-level automatic paralleliza-
tion either at compile-time or at run-time or both of them. For instance, Quark, SMPSs
and StarPU are prominent examples of programming models which provide automatic
task dependency extraction and dynamic scheduling capabilities. FATMA falls in this
category of programming models.

8.1.1 StarPU

StarPU [ATNW11] [Cou13] is being developed by INRIA Bordeau, LaBRI. It was in-
troduced as C library designed to exploit heterogeneous parallel platforms with both
general-purpose processors and specialized processors often referred to as "accelerators".
While addressed run-time task scheduling issue, being a C library, StarPU display a
poor, verbose and error-prone programming interface. In 2011, e�orts has been started
to improve its programmability by introducing new C language constructs and extend-
ing the GCC compiler suite [Cou13].

8.1.2 SMPSs

SMPSs [BHL+09] is a parallel programming framework developed at the Barcelona Su-
percomputer Center. It is based on a dynamic scheduler implementation which aims
to automating exploitation of functional parallelism of a sequential program on multi-
core and symmetric multiprocessor platforms [Cen]. In SMPSs applications, task and
their respective dependencies are speci�ed through OpenMP-like preprocessor directives
which annotate functions.

SMPSs relies on a C99 source-to-source compiler and a driver named "smpss-cc"
which use the speci�ed dependencies to generate a parallel source code. The generated
object �les are then linked to the SMPSs run-time library which implements a dynamic
task scheduler. This scheduler relies on a dynamically generated task-dependency graph
to schedule concurrent tasks.

8.1.3 Quark

Quark [Yar12] is a run-time environment for dynamic scheduling of applications that
consists of precedence-constrained on multicore and multi-socket shared-memory sys-
tems. It is developed at Innovative Computing Lab, University of Tennessee. Quark is
implemented as a C library which o�er a programming interface for de�ning tasks and
their dependencies. A dynamic scheduler is responsible of asynchronous scheduling of
these tasks without violating their dependencies. Quark has been designed to meet the
speci�c needs of PLASMA [KLY+14] which is a tiled linear algebra library.
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8.2 FATMA Contributions

Since it exploits exclusively the traditional C++ language, FATMA does not require
any specialized compiler such as SMPSs and StarPU C extension. Unlike Quark and
StarPU's standard C API which expose a relatively verbose and error-prone program-
ming interface, FATMA o�ers an intuitive and light-weight programming interface de-
signed for high programmability. For instance, in most tiled linear algebra applications,
a negligible modi�cations are required to make the transition between sequential and
parallel code: as illustrated in Figure 8.5 the legacy calls to the basic BLAS and LA-
PACK primitives are simply encapsulated in tasks, the sequence of these tasks forms
the program which is then parallelized by generating the corresponding task depen-
dency graph a.k.a the DAG using one single line of code. Finally, a second line allows
the programmer to execute concurrently the parallel tasks and exploit the available
parallelism.

Sequential Execution FATMA Parallel Code

Figure 8.5: The FATMA code introduce minor parallelism-related extra-code (high-
lighted in red) while preserving the legacy code from any signi�cant alteration.

As we will see in the next sections, performing the same parallelization using Quark
requires much more extra-code. Task creation requires explicit speci�cation of all input
and output data. These parameters are packed then unpacked within a wrapper func-
tion that calls the original function when the task is inserted. At each task insertion,
dependencies of the inserted task are resolved before the execution. This online depen-
dency analysis introduces an execution overhead. In FATMA, task dependency analysis
is performed "o�ine", e.g. before the tasks execution. FATMA dependency analysis
generates synchronization points that are associated to the resolved dependencies. At
the execution stage, FATMA execute asynchronously the tasks and use the synchroniza-
tion points to preserve data coherency and avoid violating tasks dependencies. Thus no
dependency analysis-related overhead is introduced at the execution stage.

8.3 The FATMA Parallelization Process

The FATMA parallelization process consists in three steps which are:

1. Task Sequence Speci�cation: the programmer speci�es a set of tasks in their
natural sequential order. As we have seen in the "Task De�nition" chapter, task
can encapsulate di�erent pieces of code including functions and object methods.
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2. Task Dependency Graph (DAG) Construction: The run-time system ana-
lyzes the data accesses of each task and build the Task Dependency Graph.

3. DAG-Driven Asynchronous Task Execution: The run-time system uses the
DAG to drive the asynchronous execution of the tasks.

Figure 8.6 gives an overview of the FATMA parallelization process. Each of these
steps is represented conceptually as an intermediate program representation and its
associated FATMA code.

Figure 8.6: The automatic parallelization process start from a speci�cation of a sequence
of task to generate transparently the task dependency graph then use it to schedule
asynchronously these tasks.

In the next sections, we present the FATMA programming interface then the imple-
mentation details of the run-time system. In order to illustrate the use of FATMA in a
practical cases, we present the parallelization of the popular tiled Cholesky factorization
algorithm. Analogously to the Cholesky algorithm, the LU and QR factorization and
similar tiled linear algebra algorithms can be parallelized the same way.

8.4 Tiled Cholesky Factorization

In order to illustrate the use of FATMA in a practical cases, we consider the tiled
Cholesky factorization algorithm. The Cholesky factorization (or Cholesky decomposi-
tion) is widely used in many scienti�c applications when resolving numerical solution of
the linear equation Ax = b, where A is positive de�nite and symmetric. The Cholesky
algorithm decomposes a square matrix in the form of "A = L.LT " where L is a lower
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triangular matrix with positive diagonal elements.

The cholesky factorization is implemented in LAPACK [ABB+92] by the xpotrf rou-
tine where the 'x' speci�es the precision arithmetic. In the next paragraphs, for the sake
of simplicity we omit the 'x' from the LAPACK and BLAS routine names. In tiled linear
algebra algorithms, each matrix is partitioned into a set of tiles or blocks as depicted
in Figure 8.7. The tiled version of the Cholesky algorithm operates on the tiles of the
target matrix using basic routines of LAPACK and BLAS which are syrk, potf2, gemm
and trsm.

Figure 8.7: Tiled representation of N x N real matrix, in this example the matrix is
decomposed into 3 x 3 tiles, each tile is a NB x NB submatrix.

Algorithm 1 gives an overview of the tiled Cholesky factorization. In this algorithm
"A(i, j)a" denotes the matrix tile at the position i,j, the a term speci�es the access type
to the tile which can be (r:read) or (rw: read-write).

Algorithm 1 Tiled Cholesky Factorization

for j ← 0 to N − 1 do
for k ← 0 to j − 1 do

for i← 0 to j − 1 do
sgemm(A[i, k]r, A[j, k]r, A[i, j]rw)

end
end
for i← 0 to j − 1 do

ssyrk(A[j, i]r, A[j, j]rw)
end
spotrf(A[j, j]rw)
for i← j + 1 to N − 1 do

strsm(A[j, j]rw, A[i, j]r)
end

end
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8.5 The FATMA Programming Interface

8.5.1 The FATMA Program Structure

The FATMA programming interface is based on a structure named "program" which
hold a list of task or more precisely a sequence of tasks that programmer want to
parallelize. Tasks are added to this structure in their sequential order by invoking the
"program::add(task t)" method. Once the program is �lled with the list of tasks,
the programmer calls the "program::build()" to build the tasks dependency graph
(DAG). After building this task graph, programmer can invoke the "program::run()"
method to execute the parallel program. We note that if the programmer need to add
more tasks, he should recall the "build()" method before executing the new program.
Otherwise, programmer can re-execute the program as many times as he want without
rebuilding it. Listing 8.1 shows a typical FATMA program.

1 program p;

2

3 // task definition

4 task t1(function1, arg1, arg2);

5 task t2(function2, arg1);

6

7 // adding tasks in their sequential order

8 p.add(t1);

9 p.add(t2);

10

11 // building the task dependency graph

12 p.build();

13

14 // executing the parallel program

15 p.run();

Listing 8.1: The FATMA Programming Interface.

8.5.2 Application to Tiled Cholesky Factorization

Lets consider the tiled Cholesky factorization as an example of application to illus-
trate the use of the FATMA programming interface. Listening 8.2 shows the origi-
nal sequential code of the tiled Cholesky factorization. Implementation details of the
"sgemm_tile", "ssyrk_tile", "spotrf_tile" and "strsm_tile" routines are not shown
since they are simply wrappers for the original standard LAPACK and BLAS routines.

1

2 #define A(i,j) A[i*DIM+j] // simplifying access to the tiles

3

4 int cholesky(float * A[DIM][DIM], int NB)

5 {

6 for (int j= 0; j<DIM; j++)
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7 {

8 for (int k= 0; k<j; k++)

9 for (int i = j+1; i < DIM; i++)

10 sgemm_tile( A(i,k), A(j,k), A(i,j), NB);

11 for (int i = 0; i < j; i++)

12 ssyrk_tile( A(j,i), A(j,j), NB);

13 spotrf_tile( A(j,j), NB);

14 for (int i = j+1; i < DIM; i++)

15 strsm_tile( A(j,j), A(i,j), NB);

16 }

17 }

Listing 8.2: Sequential code of the tiled Cholesky factorization.

We note that LAPACK and BLAS routines are implemented in many libraries such
as Intel MKL, GotoBLAS, OpenBLAS , Atlas... etc. These libraries are tuned to of-
fer high performances on multicore and multiprocessor platforms in single-threaded or
multi-threaded mode. We note that we use always the single-threaded implementations
of these routines when using them with FATMA to preserve data locality in caches and
allows FATMA to control the task-processor mapping through cache-aware and load-
balanced scheduling strategies. We note that there is also other implementations on
BLAS that support GPU computing such as cuBLAS. The later implementation use
CUDA from NVIDIA to support GPU whele preserving the standard function proto-
types of the BLAS routines allowing easy switching between CPU or GPU implemen-
tation.

1

2 int cholesky(float * A[DIM][DIM], int NB)

3 {

4 program p; // the structure that will hold the sequence of tasks

5 for (int j= 0; j<DIM; j++)

6 {

7 for (int k= 0; k<j; k++)

8 for (int i = j+1; i < DIM; i++)

9 p.add(sgemm_tile, A(i,k), A(j,k), A(i,j), NB);

10 for (int i = 0; i < j; i++)

11 p.add(ssyrk_tile, A(j,i), A(j,j), NB);

12 p.add(spotrf_tile, A(j,j), NB);

13 for (int i = j+1; i < DIM; i++)

14 p.add(strsm_tile, A(j,j), A(i,j), NB);

15 }

16 p.build(); // build the task dependency graph (DAG)

17 p.run(); // use the DAG to execute asynchronously the tasks

18 }

Listing 8.3: Parallelization of the tiled Cholesky factorization using FATMA.
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8.5.3 Programmability Comparison

In this section, we try to compare FATMA to QUARK and SMPSs in term of pro-
grammability. We present brie�y the programming interfaces of QUARK and SMPSs
then compare them to FATMA by quantifying the required e�ort to make the transi-
tion between a common sequential application to its parallel version using the di�erent
parallel programming models.

We de�nes a set of metrics to quantify this programming e�ort. QUARK and SMPSs
are chosen for this comparison because they represent two di�erent approaches of pro-
gramming interface implementations: QUARK uses standard C language and does not
require any specialized compiler while SMPSs extends C language with OpenMP-like
directives to ease parallelism expression but introduce a dedicated compiler or pre-
processor named "smpss-cc". The �rst versions of StarPU were based on a C library
similarly to QUARK, more recent implementations of StarPU extends the GCC com-
piler suite and thus is compiler-based similarly to SMPSs. Consequently, we have not
included StarPU in our comparison.

8.5.3.1 QUARK

The QUARK programming model de�nes an API for task insertion that allows the pro-
grammer to schedule tasks for execution.The QUARK run-time system is responsible of
analyzing tasks dependencies and resolving data hazard con�icts to determine whether
a task can be executed or should wait for another task to terminate before it can be
executed.

Unlike FATMA, QUARK does not allow direct reuse of functions as Tasks. Instead,
when reusing a function as a task, the programmer needs to write two extra functions
: a wrapper function and a task insertion function that are associated to the actual
target function. In order to illustrate the use of the QUARK task insertion API, lets
consider the "dgemm" BLAS routine that we want to use as a task. The signature of
this routine is shown in Listing 8.4.

1 void cblas_dgemm(const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE TransA,

2 const enum CBLAS_TRANSPOSE TransB, const int M, const int N,

3 const int K, const double alpha, const double *A,

4 const int lda, const double *B, const int ldb,

5 const double beta, double *C, const int ldc);

Listing 8.4: The protoype of the standard CBLAS routine "dgemm" for double percision
matrix multiplication.

A Task Scheduling

In the task insertion function, the programmer is responsible of specifying explicitly the
access type (INPUT, OUTPUT, INOUT or VALUE ) to each parameter of the target
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function. The later information is used by the run-time to analyze dependencies when
the task is inserted. We note that "CORE_dgemm_quark" is a the task wrapper that
encapsulate the target function. The wrapper function is called by the run-time system
when executing the task. We note also that the "QUARK_Insert_Task" invokation is
performed within a separate function for the sake of code clarity and can be invoked
directly inside the main function.

1 // Quark task insertion function

2 void QUARK_CORE_dgemm ( Quark* quark , QuarkTaskFlags * taskflags, int order, int transA, int transB,

3 int m, int n, int k, int nb, double alpha, const double *A, int lda,

4 const double *B , int ldb, double beta, double *C , int ldc)

5 {

6 QUARK_Insert_Task( quark , CORE_dgemm_quark , taskflags ,

7 sizeof ( enum CBLAS_ORDER ), &order

8 sizeof ( enum CBLAS_TRANSPOSE ), &transA, VALUE,

9 sizeof ( enum CBLAS_TRANSPOSE ), &transB, VALUE,

10 sizeof ( int ), &m, VALUE,

11 sizeof ( int ), &n, VALUE,

12 sizeof ( int ), &k ,VALUE,

13 sizeof ( double ), &alpha, VALUE,

14 sizeof ( double )*nb*nb, A, INPUT,

15 sizeof ( int ), &lda, VALUE,

16 sizeof ( double ) *nb*nb, B, INPUT,

17 sizeof ( int ), &ldb , VALUE, sizeof ( double ), &beta, VALUE,

18 sizeof ( double )*nb*nb, C, INOUT ,

19 sizeof ( int ), &ldc, VALUE, 0);

20 }

Listing 8.5: QUARK Task insertion function

B Task Speci�cation

The wrapper function play the role of a proxy that encapsulates the actual target func-
tion. The wrapper is called by the run-time when executing the corresponding task.
This wrapper is required because the run-time cannot call directly the original function
since a preliminary step is required before the call: when specifying access types to the
di�erent parameters of the function, these parameters are packed in a speci�c QUARK
structure and thus parameters should be extracted ("unpacked") from that structure to
be able to pass these parameters as arguments to the original function when calling it.
Listing 8.6 shows a QUARK wrapper for the "dgemm" BLAS function.

1 // wrapper routine for the original C BLAS routine

2 void CORE_dgemm_quark(Quark * quark)

3 {

4 int order, int transA, transB, m, n, k, lda, ldb, ldc;
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5 double alpha, beta;

6 double *A, *B, *C;

7

8 quark_unpack_args14(quark, order, transA, transB, m, n, k, alpha,

9 A, lda, B, ldb, beta, C, ldc);

10 cblas_dgemm(order, transA , transB, m, n, k, (alpha), A, lda, B, ldb,

11 (beta), C, ldc);

12 }

Listing 8.6: Example of QUARK wrapper function that unpack arguments before calling
the actual target function

1 int main()

2 {

3 // set values of parameters: m, n, k, lda . . .

4 QUARK_CORE_dgemm(quark, taskflags, transA, transB, m, n, k, alpha, A,

5 lda, B, ldb, beta, C, ldc);

6 }

Listing 8.7: In order to insert a task in the task queue for execution, the task insertion
function is called.

The QUARK programming interface is less verbose than the PThreads API since
the paradigm of Task insertion relieve the programmer from handling low-level threads
details. Yet, the QUARK API still requires substantial rewriting of the target appli-
cation code by introducing signi�cant amount of extra-code and modifying the legacy
sequential code. This make the QUARK API more verbose than the SMPSs program-
ming interface that o�er more compact programming interface. However, while SMPSS
API relies on a C/C++ language extension with "pragmas" and a custom compiler,
QUARK is implemented using standard C language that o�ers limited expressiveness
and programmability but still o�ers the advantage of portability across a wide variety
of C compilers and systems.

8.5.3.2 SMPSs

The SMPSs programming model address the lack of expressiveness of standard C lan-
guage by extending it with OpenMP-like preprocessor directives. These directives are
used to de�ne tasks and speci�es their data dependencies. SMPSs directive are also
used for tasks scheduling .

A Task Speci�cation

As shown in Listing 8.8, SMPSs tasks are conceived in a form of a function without
return value, i.e. a procedure [Cen11]. Functions are converted into tasks by annotating
its de�nition or declaration with an SMPSs directive (pragma). The programmer
speci�es through this directive the input and the output of the target function.
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1 #pragma css task input(A[NB][NB], B[NB][NB], NB) inout(C[NB][NB])

2 void smpss_dgemm(double *A, double *B, double *C,

3 int NB, double alpha, double beta)

4 {

5 cblas_dgemm(CblasColMajor, CblasNoTrans, CblasTrans,

6 NB, NB, NB, alpha, A, NB, B, NB, beta, C, NB);

7 }

Listing 8.8: Speci�cation of a task and its input/output using SMPSS.

B Task Scheduling

Once tasks have been speci�ed, they can be used in the main program simply by calling
the annotated functions. When a function is called within a block surrounded by the
directives "# pragma css start" and "# pragma css �nish", the corresponding
task is scheduled by the SMPSs runtime. We note that the later block can be used
only once in the program. Listing 8.9 shows how to schedule the previously de�ned
"smpss_sgemm" task in an SMPSs program.

1

2 void main()

3 {

4 #pragma css start

5

6 smpss_dgemm_tile(A1, B1, C1, NB, alpha, beta);

7 smpss_dgemm_tile(A2, B2, C2, NB, alpha, beta);

8

9 #pragma css finish

10 }

Listing 8.9: Task in SMPSS program are scheduled by invoking the corresponding anno-
tated function. The two scheduled tasks in the example do not expose any depdencies
between them and thus will be excuted concurrently by the SMPSs run-time.

8.5.4 Comparison

We compare FATMA, QUARK and SMPSs in term of programmability by determining
the required e�ort to make the transition between a sequential application to its parallel
version. This transition consists mainly in the speci�cation of tasks and their data
dependencies then scheduling them for execution by the di�erent run-time systems.

8.5.4.1 Methodology

Programmability and productivity evaluation is not an easy task, many evaluation
methodologies have been proposed to "quantify" them [TTTn+09]. One of these meth-
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ods relies on measuring the similarities and the di�erences between sequential and paral-
lel code. Comparing the sequential and the parallelized version of the same application
gives a clear view of, in one hand, the reused/altered sequential code and in the other
hand, the introduced parallelism-related extra-code required by the programming model
to express parallelism.

In order to compare FATMA, QUARK and SMPSs, we consider two examples:

� A simple program using a single task (previous "dgemm" task example).

� The tiled cholesky factorization example.

In both case studies, we consider the sequential code and we parallelize it using
FATMA, QUARK and SMPSs then we measure the required amount of parallelism-
related extra-code as well as the reused and altered sequential code. We use the
"CLOC" [Sol] tool to count lines of code in each version ignoring all blank lines and
comments. A common formatting tool limits the in�uence of coding style on lines count
by enforcing a common C++ coding format for all versions.

8.5.4.2 Results

A Simple Program

In the case of the single-task program, we measure the required parallelism-related extra-
code (line count) and the altered/reused legacy sequential code (line count). The fact
that there is a single task to de�ne then execute allows us to measure the programming
overhead relatively to a single task. The used task is the BLAS "dgemm" function that
we have seen in the few previous paragraph. The line length is limited to 100 characters
to avoid carriage return and line splitting interference with our measures. Table 8.1
summarize our measures.

QUARK SMPSs FATMA

Extra-Code (lines) 24 6 3

Altered Code (lines) 1 1 1

Reused Code (lines) N-1 N-1 N-1

Standard C/C++ Compiler Yes No Yes

Table 8.1: Programmability comparison between QUARK, SMPS and FATMA in the case of single
task program: lines count of the required parallelism-related extra-code and altered/reused legacy
sequential code.

In the case of QUARK, about 14 lines of extra-code are introduced by the task in-
sertion routine, 8 lines are introduced by the wrapper de�nition and 2 lines are required
for run-time initialization and stopping. One single line is altered since the original
function call is replaced by a call to the task insertion routine. Te remaining code can
be reused without alteration. Finally, we note that QUARK use standard C language
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and thus can be used with standard C/C++ compilers.

In the case of SMPSs, generally a single line directive is required to specify the task,
but often a function wrapper (3-4 lines) is required since SMPSs requires that the target
function has a void return value which is not usually the case in legacy code, especially
when reusing external library such as the C BLAS library in our case. Another two
extra-lines are required for the start/�nish directive. Altered/reused lines of legacy
code is similar to QUARK. Contrary to QUARK, a specialized compiler is required to
compile SMPSs programs.

In the case of FATMA, there is no need for wrappers to encapsulate functions when
using them as tasks, any function, including external library routines such BLAS ones,
can be used as a task. Task de�nition and insertion are performed within a single line
of code. This line is the one that replace the traditional function call in the legacy code.
The remaining code is reused without any alteration. FATMA is a pure C++ library
and does not require any specialized compiler or tools excepting a standard C++ com-
piler.

B The Tiled Cholesky Application

In the previous example, we measured the programming overhead for a single-task
program, in this section, we apply the same methodology for a more realistic application
which is the tiled Cholesky factorization. Many others tiled linear algebra algorithms
such as LU and QR factorization or linear system resolution should give similar results
and proportions.

QUARK SMPSs FATMA

Extra-Code (lines) 86 18 3

Altered Code (lines) 4 4 4

Reused Code (lines) N-4 N-4 N-4

Standard C/C++ Compiler Yes No Yes

Table 8.2: Programmability comparison between QUARK, SMPS and FATMA in the case of the
tiled cholesky factorization program.

8.5.4.3 Conclusion

As we have seen in the previous comparisons, FATMA requires lesser programming
e�ort to specify and schedule tasks than SMPSs and QUARK. SMPSs o�ers higher
programmability than QUARK but requires a custom compiler. Contrary to SMPSs,
FATMA is a based on standard C++ language and does not require any specialized
compiler or tool apart a standard C++ compiler. Therefore, FATMA o�ers a better
programmability-portability tradeo� in comparison to QUARK and SMPSs.
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8.6 Dynamic Task Dependency Graph Construction

In the FATMA programming model, the programmer speci�es a sequence of tasks and
the FATMA run-time is responsible of parallelizing them through constructing the task
dependency graph (DAG) that drive the asynchronous tasks execution. In order to
parallelize a sequence of tasks, dependencies between these task are analyzed to identify
the consumer-producer relationships between the di�erent tasks. Tasks dependencies
analysis at run-time is a complex process that can introduce a signi�cant execution
overhead even when performed "o�ine" (before tasks execution). For instance, task
dependency analysis using the Polyhedral Model [BHRS08] can be too time consuming
to be performed at run-time, therefore, it is often implemented at the compilation stage
within compilation tool chains such as the PLUTO tool [BHRS08]. In order to reduce
as much as possible this potential overhead, we use a custom task dependency analysis
algorithm designed particularly to meet the need of FATMA. Our algorithm exploits
exclusively the task-data dependency information which are extracted transparently by
FATMA at run-time. The algorithm consists mainly in two stages which are:

� Virtual Task Execution Tracing (VTET)

� Task Execution Back-Tracing (TEBT)

In the �rst stage the sequential task execution is simulated while their execution
traces and more particularly their access to data (read/write) are collected. The second
stage exploits the collected traces to build the task dependency graph (DAG). Once the
DAG is fully constructed, it can be used to drive the concurrent execution of tasks. In
the next paragraphs, we describe the VTET and TEBT algorithms.

8.6.1 Virtual Task Execution Tracing

When executed, a task accesses data in read, write or read-write mode. In addition
to these elementary access types, if we consider the sequential execution order of a set
of tasks, we can identify �ve types of data accesses that generate producer-consumer
relationships between the di�erent tasks:

� Initial Read (IR) : the task A read a data which has never been accessed.

� Initial Write (IW) : the task A read a data which has never been accessed.

� Read After Read (RAR) : the task A read a data which was read by a previous
task B. In this case A and B are independent and can be executed simultaneously
without violating of any dependency.

� Read After Write (RAW) : the task read a data which was written by a previous
task. In this case, A is dependent on B and cannot be executed until B execution
is terminated.
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� Write After Write (WAW) : the task write a data which was written by a previous
task. Similarly to the previous case, A is dependent on B and cannot be executed
until B execution is terminated.

FATMA tasks are very similar to XPU tasks and inherit the transparent task data
dependency detection feature that analyzes the arguments of each task to extract its
data dependency including the consumed and produced data. Hence, for each task,
we know which data is accessed by the task, in addition, we know the access type to
that data (Read or Read-Write). This feature is extensively discussed in the Chapter 2
("Task De�nition") of this thesis.

Given a sequence of tasks, the Virtual Task Execution Tracing (VTET) aims to sim-
ulate the execution of a these tasks in their sequential order while recording their traces
including the read and write accesses to data and thus the precedence of theses accesses
(RAR, RAW and WAW). We note that task traces recording does not requires executing
tasks, instead, their execution is just simulated, e.g. data accesses are recorded with-
out executing any computation. Thus, thanks to this abstraction of the task execution
details, the VTET execution overhead depends only on the task count (O(n)) and not
on the workloads of the di�erent tasks.

In order to illustrate the VTET process, lets consider a simple application composed
of a sequence of 6 tasks (namely T1, T2, T3, T4, T5 and T6) that perform basic compu-
tations on a set of data (namely 'a', 'b', 'c', 'd', 'e' and 'f '). The computations consist
in simple additions, each addition takes two data as input and write the result into a
data output. Tasks are implemented as follow:

1. Task T1 : a = b + c

2. Task T2 : d = c + e

3. Task T3 : e = a + b

4. Task T4 : f = c + d

5. Task T5 : c = f + e

6. Task T6 : c = b + b

These FATMA tasks can be created using the function "add" as shown in Listing
8.10. The �rst parameter of the function "add" is the output of the addition (non-
constant pointer) and the two remaining parameters are the inputs (constant pointers).

1 void add(int * res, const int * x, const int * y)

2 {

3 *res = *x + *y;

4 }

5
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6 void main()

7 {

8 int a,b,c,d,e,f;

9 task t1(add, &a, &b, &c); // T1 definition : a = b + c

10 task t2(add, &d, &c, &e); // T2 definition : d = c + e

11 // ...

12 }

Listing 8.10: Task de�nition using the function "add".

If we apply the VTET process to this sequence of tasks, we obtains the traces de-
picted in Figure 8.8. These traces speci�es the precedence of task accesses to data and
allow us to retrieve the dependencies or the consumer-producer relationship between
them. Task dependency extraction is performed in the next step which is Task Execu-
tion Back-Tracing (TEBT).

Figure 8.8: Result of the Application of the Virtual Task Execution Tracing process to
the sequence of tasks.

Figure 8.8 represents the result of the application of the VTET algorithm. The
result is represented as a table of traces. Each column of the table corresponds to a
task and store its accesses to data. Each row of the table correspond to a data and row
contains the successive access traces of the di�erent tasks to that data.

8.6.2 Task Execution Back-Tracing and DAG Construction

In order to be able to construct the task dependency graph, the dependencies between
the di�erent tasks are deduced from the simulated execution traces that we obtained
after the application of the VTET algorithm. The exploitation of these traces is per-
formed using a new algorithm named the Task Execution Back-Tracing (TEBT).

8.6.3 Task Execution Back-Tracing

Task Execution Back-Tracing (TEBT) exploits the recorded traces of the simulated
sequential execution to extract dependencies between tasks. Considering the sequential
execution order of the tasks and the consumed and produced data, dependencies between
tasks are extracted from the traces following the next two rules:
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1. A reader task is dependent on the last writer if the later exists.

2. A writer task is dependent on the last writer and the last reader if the later exists.

Based on these rules, Figure 8.9 shows how the simulated execution traces are ex-
ploited to extract dependencies between tasks in our example. Dependencies between
tasks are represented through the red directed edges between columns that correspond
to the di�erent tasks. We can observe that concurrent read accesses to data does not
introduce dependencies between the readers and thus allows parallel execution of mul-
tiple readers. We note that the IW and IR traces does not introduce any dependencies
on predecessor tasks since the data is accessed for the �rst time.

Figure 8.9: Task Execution Back-Tracing exploits the simulated execution traces to
extract dependencies between tasks represented by the red direct edges.

8.6.4 DAG Construction

Once dependencies are extracted using TEBT, they are stored into a structure named
the task dependency graph. Since such graph is directed and acyclic, it is often referred
in the literature as the Directed Acyclic Graph (DAG). The nodes of the graph repre-
sent the tasks while the directed edges between these nodes represent the dependencies
between tasks. We note the direction of the edges indicates the ordering of dependent
tasks.

Many run-time environment such as QUARK [Yar12] resolve dependencies between
tasks dynamically when tasks are queued and thus the DAG is implicitly de�ned and
never explicitly constructed at run-time [Yar12]. In this dynamic scheduling approach,
dependency analysis is performed "online" when executing tasks and thus introduces
an execution overhead when "inserting" tasks.

In our approach, both tasks dependencies analysis and DAG construction are per-
formed "o�ine" before the actual task execution. This allows us to avoid introducing
any signi�cant execution overhead when executing the task and enable us to perform
many optimizations before the tasks execution such as cache-aware task-processor map-
ping to improve data locality and reduce communication overhead. Also, its possible to
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perform DAG transformations such as node fusion to adjust task granularity.

The FATMA approach allows us to perform static scheduling, dynamic scheduling or
hybrid scheduling since task-processor mapping can be speci�ed explicitly before tasks
execution or dynamically when executing tasks to allow better load balancing.

Figure 8.10: The Directed Acyclic Graph (DAG) corresponding to the example program.

In order to execute the parallelized program without compromising data coherency,
the constructed DAG is used to drive the execution of the tasks. The tasks are executed
in a super-scalar fashion to maximize throughput and reduce idle times.

8.7 Static and Dynamic DAG-Driven Scheduling

8.7.1 Execution Infrastructure

The simplest way to execute a Task within a peer thread is to create a new thread and
setup the target Task as the callback of the that thread. While easy to implement, this
approach became quickly ine�ective as the number of tasks grows. In addition to the
thread creation overhead and the frequent context switching, a signi�cant communica-
tion overhead can be introduced. this approach is also limited by the available physical
resources in term of available threads and memory... Our experiments on the initial im-
plementation of DAG-driven scheduler using threads showed a signi�cant performance
degradation when the tasks number grows.

The Task abstraction allows us to delegate task execution to a set persistent generic
workers (PGW) instead of creating threads. The PGW consist mainly in pool of threads
that are able to execute tasks independently of the execution pattern in with the tasks
running. The PGW is a generic execution infrastructure that provide a good hardware
abstraction. In addition, it o�er a �ner control of data locality since tasks can be
scheduled on a speci�c core or processor without need of low-level thread con�guration
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or pining. We use the PGW infrastructure to execute the tasks or the "nodes" of the
task graphes generated by FATMA.

Figure 8.11: Comparison between the parallel implementation of the tiled linear system
solver (dgesv) using the Thread-based infrastructure and the Intel Core i7

8.7.2 Tasks Synchronization an Coordination

As we detailed in the �rst Chapter of this thesis, the Super Scalar Task Graph (SSTG)
can be seen as a generalization of the Pipeline pattern and also as a composition of
both the pipeline pattern and the fork-join pattern. While the pipeline pattern speci�es
a linear consumer-producer relationship between consecutive pair of stages where each
single consumer depends on a single producer, the STTG can specify more generalized
consumer-producer relationship where multiple consumers can depend on a multiple
producer. For this reason, we reused the building blocks of the XPU Pipeline skeleton
to implement the SSTG construct.

The execution infrastructure of the Pipeline skeleton is based on a worker pool and
thus is similar to the PGW infrastructure which we described in the previous paragraph.
The reader can refer to the "Pipeline Parallelism" chapter to �nd more information
about the implementation of the XPU Pipeline skeleton.

The XPU Pipeline implementation are based on three building blocks which are the
Event Noti�er, the Event Relay and the Event Listener. These three types of "nodes"
corresponds respectively to a pure producer, a consumer/producer and a pure con-
sumer. Each of these "nodes" consist in a structure that encapsulates a task and an
input and/or an output Events. Events corresponds to the dependencies between the
nodes and provide the communication between the nodes. Figure 8.12 gives an overview
of the Event-based implementation of a simple 4-stages Pipeline.
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Figure 8.12: Event-based implementation of the XPU Pipeline skeleton.

In the Pipeline pattern, the "nodes" are linked to each others to form a consumer-
producer chain that starts with a pure producer and terminates with a pure consumer
while all the intermediate nodes are both consumers and producers at the same time.
Thus, consecutive "nodes" are connected by pairs (one-to-one).

Figure 8.13: Event-based implementation of the FATMA super scalar task graph.
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The SSTG has a similar consumer-producer structure except that a "node" can
be connected to more than one node. Therefore, we derived new implementation of
the Event Noti�er, Event Relay and the Event Listener implementation to support
multiple output/input Events and allows a node to connect to multiple nodes to form
a graph instead of a simple chain. This new implementation meet the speci�c needs of
the FATMA run-time and allows the asynchronous execution of the Super Scalar Task
Graph. Figure 8.13 gives an overview of the event-based implementation of the FATMA
Task Graph.

8.8 Application to Tiled Linear Algebra Algorithms

In order to evaluate the performance of the FATMA framework, we use it to parallelize
two algorithms: the �rst is the tiled Cholesky factorization algorithm and the second
is the tiled solver for linear equation systems. While being mainly a "static" scheduler,
the FATMA run-time uses dynamic scheduling techniques to o�er a better tradeo�
between cache use e�ciency and load-balancing. In the �rst application, we compare the
performance of FATMA to two dynamic schedulers which are Quark and SMPSs. In the
second application, we compare the performance of the FATMA-based implementation
to a statically scheduled implementation from the PLASMA library.

8.8.1 Tiled Cholesky Factorization

8.8.1.1 Experimental Setup

We use FATMA, Quark and SMPSs to parallelize the tiled Cholesky factorization. We
use a basic sequential implementation as a common base code. This common imple-
mentation is taken from the program examples which are provided in the SMPSs v2.4
package. The used tile size is 200 for all the con�gurations.

The target cholesky program uses basic LAPACK and BLAS routines and thus re-
quires the LAPACK and the BLAS libraries. We use the Intel MKL library version 10.3
which implement the BLAS and LAPACK routines. We use the Intel Compiler "icc"
version 12.0.5 when compiling each of the three parallel implementations. We note that
we con�gure the SMPSs "smpss-cc" compiler to use the Intel Compiler when compiling
the �nal code.

We execute the three parallel implementations of the Cholesky algorithm on an Intel
Core i7 Q720 (8 hardware threads and 4 physical cores) platform. We note that the
Turbo Boost and Hyperthreading technologies are both enabled.

8.8.1.2 Result

Figure 8.14 shows the achieved performances by the three parallel implementations.
The FATMA framework takes advantage of the low execution overhead of its static
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scheduler to achieve relatively higher performance than QUARK and SMPSs when
the number of task is low. However, as the number of the tasks grows, we notice
a relative performance degradation of the FATMA performances in comparison with
Quark and SMPSs. This can be explained by the domination of static scheduling
in the current FATMA scheduling strategy. Static scheduling improves spatial and
temporal data locality and allows e�ective cache use but su�ers from poor load balancing
due to limited dynamic scheduling decisions. Being dynamic schedulers, Quark and
SMPSs provide more e�cient load-balancing and achieve better performances in the
con�gurations where the task number is relatively large.

Figure 8.14: Comparison between FATMA, QUARK and SMPSs implementations of
the tiled Cholesky factorization on and 8 Threads Intel Core i7 Q720 processor.

8.8.2 Tiled Linear System Solver (DGESV)

The tiled DGESV routine solve the linear system of equations "A.X = B" where A is a
square matrix, the columns of matrix B are individual right-hand sides and the columns
of X are the corresponding solutions. This computations are performed in two steps:
the matrix A is factorized using the LU decomposition with partial pivoting and row
interchanges method, then the factored form of A is used to solve the system.

8.8.2.1 Experimental Setup

We use the same software setup as the �rst application. We implement the tiled DGESV
algorithm using FATMA and we compare our parallel implementation to the PLASMA
implementation of the DGESV kernel. We use the PLASMA v2.0 which uses a static
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scheduler and not the Quark dynamic scheduler). We use the Intel MKL implementation
of BLAS and LAPACK routines for both FATMA and PLASMA implementations. We
execute the two implementations on an SMP platform with two Intel Xeon E5620 at
2.4 GHz (16 hardware threads and 8 physical cores).

8.8.2.2 Discussion and Result

The PLASMA library uses a static scheduler which make static scheduling decisions and
do not perform any task dependency analysis at run-time, instead, the asynchronous
parallel algorithm is implemented "manually". The use of static scheduling techniques
in the PLASMA library eliminates the need for run-time task dependency-analysis and
thus eliminate the execution overhead related to such dynamic analysis. The e�ciency of
static scheduling in PLASMA came at the cost of the implementation complexity which
make its code hard to read and maintain. This increase the di�culty of implementing
new and innovative algorithms and this is one of the major motivation for implementing
dynamic scheduler such as Quark or SMPSs.
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Figure 8.15: LU Factorization
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Figure 8.16: Linear Solver
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Figure 8.17: Merged Algorithms

While allowing e�ective use of processor caches through improving data locality,
PLASMA's static scheduler exposes certain limitations when used in advanced algo-
rithms such as the DGESV algorithm. For instance, the PLASMA implementation
does not allow algorithms merging which can improve the performances in many al-
gorithms that are composed of several parallel sub-problems such as the DGESV. As
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we explained earlier, the DGESV algorithm performs an LU factorization then solves
the linear system. PLASMA executes the parallel implementation of the tiled LU fac-
torization (DGETRF) (cf. Figure 8.15) and wait for it to terminate before executing
the parallel system solving (cf. Figure 8.16). FATMA overcomes this limitation by en-
abling algorithm merging and dynamic scheduling while still allowing static scheduling.
FATMA merges the LU factorization (DGETRF) task graph with the linear solver task
graph to form one single task graph (cf. Figure 8.17) which removes the barrier that
the separate the two stages of DGESV algorithm and allows the extraction of more
parallelism. In term of programmability, the FATMA code is much simpler and easier
to read than the PLASMA code.

Figures 8.18 shows the achieved performances by the PLASMA and the FATMA
implementations of the tiled DGESV algorithm. The PLASMA implementation take
advantage of its static scheduler to achieve relatively better performances for small
number of tasks. However, the FATMA implementation achieve higher performances
for heavy workload with large number of tasks and take advantage of algorithm merging
to extract more parallelism and keep the processors busy during the execution without
any idle time between LU factorization and linear system solving. However, in the
current implementation of FATMA, the scheduler perform very limited cache-aware
scheduling, thus our implementation su�er from poor data locality which reduces the
achieved performances and shadows the gained performances from algorithm merging.
Consequently the performances of the FATMA and PLASMA versions remains relatively
close for large problem sizes.

Figure 8.18: Comparison between FATMA and PLASMA (Static Scheduling) imple-
mentations of the tiled dgesv on an SMP platform with 2 x Intel Xeon E5620 at 2.4
GHz (16 Hardware Threads).
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In the current version of FATMA, the extracted task data dependency information
is exploited to build the task graph. In future versions of FATMA, we will exploit
this information to perform smarter cache-aware scheduling to improve spatial and
temporal data locality. Such scheduling techniques has been implemented successfully
in the Quark dynamic scheduler which allows the programmer to assign "locality �ag"
to data items in order to improve data locality in processor caches [Yar12].

8.9 Conclusion

In this chapter we presented the FATMA framework which allows automatic task par-
allelism extraction under certain conditions. FATMA has been designed to o�er high
programmability and competitive performances. Contrary to many runtime systems
such as SMPSs or StarPU which extended the C programming language and intro-
duced specialized compilers, FATMA exploits exclusively the traditional C++ language
to extract parallelism. Yet it provides an intuitive and light weight programming in-
terface contrary to other libraries such as Quark which uses standard C programming
languages but expose verbose programming interface. Our experiments on the paral-
lelization of tiled linear algebra algorithms have shown that the FATMA programming
interface allows the reuse of the legacy code almost without any alteration.

The FATMA programming model isolates parallelism extraction from task execu-
tion and thus eliminates online task-dependency analysis and allows both static and
dynamic scheduling. The FATMA scheduler is at its very early development stages,
yet it o�ers comparable performances to established state of the art schedulers such as
SMPSs, Quark or StarPU. The FATMA scheduling techniques can be greatly improved
to achieve higher performances.

The PLASMA linear algebra library uses static scheduling techniques which achieve
high performance at the cost of the complexity of implementing new algorithms which
limit its ability to prototype innovative algorithms[Jos13]. The FATMA framework can
o�er a good alternative to the PLASMA static scheduler since it is able to perform
both static and dynamic scheduling while easing algorithm prototyping through its
light-weight programming interface.
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Part IV

Applications
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9
Radar Signal Processing Application

General-purpose shared memory multicore architectures are becoming widely available.
They are likely to stand as attractive alternatives to more specialized processing ar-
chitectures such as FPGA and DSP-based platforms to perform real-time digital signal
processing. In this chapter, we describe a parallel implementation of radar signal pro-
cessing application. This study case shows how we can improve programmer produc-
tivity through easing parallel programming without sacri�cing performances.

9.1 Algorithm Overview

Figure 9.1: Overview of the Radar signal processing algorithm.

The target application is a radar signal processing algorithm which processes a digitized
signal of a phased array radar system. Data volume grows signi�cantly as enabled
channels count grows. As shown in Figure 9.1, the algorithm perform its task in eight
steps. These steps may be summarized in three major stages which are:
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1. Digital Beam Forming (Green )

2. Doppler Filtering ( Blue )

3. Pulse Compression ( Red )

Echos are received as periodic bursts. For each burst, the received signal's samples
feeds the signal processing chain which must perform all required operations before the
next burst is received in order to meet real-time processing.

The �rst task "RCV" is responsible of data reception from the radar simulator and
introduces thus negligible workload. The four following blocks: SEL (Selection), COR
(Correlation), INV (Inversion) and CTR (Control) perform a correlation of the receiver
channels and guide digital beam-forming. The MTI (Moving Target Indication) block
allows the discrimination of moving targets against stationary clutter. DBF (Digital
Beam Forming) forms beams using the processed input channels. Doppler processing
is then performed using these beams by the DOP (Doppler) block and �nally Pulse
compression is completed by the last block PC (Pulse Compression).

Listing 9.1 show the basic sequential C++ implementation of the radar signal pro-
cessing chain. The di�erent blocks of the algorithm are implemented as simple functions
that are called sequentially. This code is used as a reference code and has been paral-
lelized at di�erent granularity levels using several XPU constructs to express di�erent
types of parallelism. The next paragraphs details the progressive parallelization process
and the achieved performance at each step of this process.

1 // functions implementation

2 void rcv(/* args */) { ... }

3 void sel(/* args */) { ... }

4 void cor(/* args */) { ... }

5 void inv(/* args */) { ... }

6 void ctr(/* args */) { ... }

7 void inv(/* args */) { ... }

8 void inv(/* args */) { ... }

9

10 // sequential radar signal

11 // processing algorithm

12

13 int main()

14 {

15 // serial processing of each burst

16 while (burst_available) {

17 rcv(/* args */);

18 sel(/* args */);

19 cor(/* args */);

20 inv(/* args */);

21 ctr(/* args */);
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22 mti(/* args */);

23 dbf(/* args */);

24 dop(/* args */);

25 pc (/* args */);

26 }

27 }

Listing 9.1: Sequential Radar Signal Processing Implementation

The target Radar can be con�gured to use di�erent number of input channels. Input
data volume as well as computing load is proportional to the enabled channels count.
While Figure 9.2 shows the theoretical computing load of each processing block for one
64 channels-burst, Figure 9.3 depicts the generated input/output data volume for/by
each processing block by the same con�guration.

Figure 9.2: Computing load of each processing block for a 64 channels-burst (Floating-
point Operations).
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Figure 9.3: Input/Output Data volume per burst for each processing block in a 64
channels con�guration.

9.2 Experimental Setup

9.2.1 Hardware Setup

In the next sections, we use two di�erent execution platforms with one and two general-
purpose multicore processors:

1. The �rst platform is an Intel Core i7 Q720 1.6 GHz (Max Turbo Frequency: 2.8
GHz), it contains 4 Physical Cores and 8 Threads and has a 45W Maximum TDP
(Thermal Design Power) as speci�ed by the constructor [Intb].

2. The second platform is an SMP platform with two Intel Xeon E5620 2.4 GHz
(Max Turbo Frequency: 2.66 GHz). Each processor has 4 Physical Cores and 8
Threads. Its constructor declares a maximum TDP of 80W per-processor, i.e.,
about 160W for our target platform [Intc].

9.2.2 Software Setup

We consider mainly three radar con�gurations of 64, 32 and 16 channels. Total pro-
cessing time must be equal or lower than 20 ms in the worst case in order to meet
real-time processing requirements without loosing any data. Since "DOP" and "PC"
tasks performs many FFT (Fast Fourrier Transform) in their processing, we use the free
FFTW 3.3 library [FJ05] in the case of the PC task. DOP's FFT is much smaller and
is written by us.
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Serial FFTW is used in the sequential version of PC task and threaded FFTW is
used in the parallel one The GNU compiler v4.6.3 is used to compile the di�erent ver-
sion of the target application. Finally, applications are executed on a Linux Debian OS
with the 3.0 Linux Kernel.

9.3 Serial Execution

The initial basic C++ implementation of our processing chain is fully serial. Figure 9.4
shows the execution time of the entire serial processing chain for di�erent workloads
(16, 32 and 64 Channels-Burst) and depicts the spent execution time by each process-
ing block of our algorithm. As expected, the application's execution-time is dominated
by DBF, PC and COR tasks. Parallelization should target particularly these blocks
in order to reduce the over-all execution time. This basic sequential implementation
takes about 7 seconds to process a 64 channels-burst with a �xed beam count on an
SMP platform with two Intel Xeon E5620 at 2.4 GHz. So, it runs 350 times slower
than the required real-time processing time (20 ms). We outline that the digital beam
forming task "DBF" generates the same beam count disregarding the input channels
count. This explains the near-constant execution time of the two last blocks "DOP"
and "PC" which have a constant workload in all con�gurations.

Figure 9.4: Execution time of the initial serial implementation for 16,32 and 64
Channels-Burst on 2 x Intel Xeon E5620 2.4 GHz (16 Threads / 8 Cores).
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9.4 Parallelization Methodology

In order to parallelize our application we follow a simple parallelization methodology
which we detailed in previous work [KLLDS12]. This parallelization technique pass
through three main steps which are:

1. Decomposing our application into a set of tasks

2. Specifying the parallelism of these tasks.

3. If possible, parallelizing each of these tasks: each task may be decomposed into
�ner grain tasks to express �ner grain parallelism.

4. Finally, instruction-level parallelism (SIMD) may be expressed using vectorized
types or concurrent GPU vectors .

Figure 9.5 gives an overview of our parallelization methodology. We outline that
XPU allows hierarchical expression of several types of parallelism including task par-
allelism, data and temporal parallelism at di�erent level of granularity at both thread
level and instruction level.

Figure 9.5: Application Parallelization Methodology: Application is progressively par-
allelized at di�erent levels of granularity by expressing di�erent types of parallelism.
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9.5 Task Parallelism Extraction

A �rst look to the algorithm enables us to distinguish clearly an inherent parallelism
between the MTI (Moving Target Indication) and the four following blocks: SEL (Se-
lection), COR (Correlation), INV (Inversion) and CTR (Control). Exposed task par-
allelism in our study case is relatively weak since the �ve targeted tasks are not much
time-consuming. Consequently, expected speedup is relatively low but nevertheless im-
portant. We note that task parallelism may be much more available and e�ective in
other study cases.

Assuming we have a function which represents each of these processing blocks, an XPU
task is de�ned for each of these serial functions through a single line of code. Once task
de�ned, their trivial execution con�guration, described in Figure 9.1, can be expressed
at the cost of another single line of code as shown in Listing 9.2.

Since MTI and SEL accesses to a common input (the burst) respectively in write and
read mode, XPU run-time will transform both of them into critical sections in order to
protect the burst data from con�ictual concurrent accesses (also known as "race condi-
tion") to ensure a safe and coherent execution. This may annihilate parallelism in our
case, so, we choose to duplicate input data to preserve parallel execution of MTI and
the other four concurrent blocks.

1 void main() {

2 // task definition

3 task rcv_t(&rcv, burst_count),

4 mti_t(&mti, args), ...;

5 task_group * burst_processing; // task graph

6 burst_processing = sequential(rcv_t,

7 parallel(sequential(sel_t,cor_t,inv_t,ctr_t),mti_t),

8 dbf, dop, pc);

9 while (burst_available)

10 burst_processing->run(); // parallel processing of each burst

11 }

Listing 9.2: Coarse-Grain Task Parallelism Implementation Using XPU

As expected, parallelization of the sequential processing tasks does not provide a
signi�cant speedup since MTI, SEL, COR, INV and CTR are not time-consuming in
comparison with DBF and PC. Nevertheless, this unavoidable parallelization step re-
duces slightly the over-all execution time as shown in Figure 9.6. The gained execution
time grows proportionally to the input data size. In order to make this task-parallelism
speedup signi�cant, COR, DBF and PC execution times must be signi�cantly reduced
to be as closer as possible to the MTI execution time.
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Figure 9.6: Execution time of both the sequential version and the task-parallel version
for 8,16,32 and 64 Channels-Burst on 2 x Intel Xeon E5620 2.4 GHz.

In the next sections, we try to parallelize each block at thread and instruction level
through XPU data parallel execution patterns.

9.6 Data Parallelism

As we stated earlier, this algorithm processes simultaneously all data (signal's samples)
received from several channel of the phased array radar system. Many blocks of the
algorithm performs the same operation on each channel. This can be exploited to
implement data parallelism in each of these stages at instruction-level by using the
vectorization capabilities of XPU and at thread-level through replacing sequential loops
by parallel ones using the "parallel _for" execution pattern available in XPU. COR,
DBF and PC should be particularly targeted by this parallelization.

9.6.1 Vectorization

Vectorization can be implemented by replacing regular simple precision �oat by the
"xpu::vec4f" built-in type which translates transparently simple operations on �oating-
point into SIMD operations on four �oats simultaneously. This instruction-level par-
allelism is implemented on top of x86 SSE streaming intrinsics and may be extended
in future works to support other SIMD extensions such as AVX or Altivec. We note
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that data should be aligned in memory to make vectorization e�cient. This can be per-
formed through the XPU's aligned allocator which is compatible with standard C++
STL containers.

Vectorization has been used in MTI, COR, DBF and PC tasks. Figure 9.7 and
Figure 9.8 show that instruction-level parallelism can be a great parallelism multiplier
for data parallel tasks such as MTI and COR where the same operation is performed on
large vectors of samples. We note that SIMD impact vary depending on the workload
size implying both data size and computing load: the vectorized COR code performs
10 times faster than the original sequential code while the vectorized MTI code achieve
only about 20% execution speedup.

9.6.2 Parallel Loop

Instruction-level parallelism o�ers limited scalability since SIMD may take advantage of
processor frequency increasing but cannot bene�t from processor count increasing with-
out thread-level parallelism. Parallel loop implements data parallelism at thread-level
and provides good scalability on multicore architectures. We use XPU's "parallel_for"
execution pattern in conjunction with vectorization to parallelize several tasks. The
XPU's "parallel_for" construct adapts dynamically to the underlying architecture to
exploit all available processors.

Figure 9.7: Parallelization of the MTI block at instruction and thread level using the
XPU vectorization and the parallel loop.
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Figure 9.8: Parallelization of the COR block at instruction and thread level using the
XPU vectorization and the parallel loop.

Listing 9.3 shows an example of parallel for implementation to perform simulta-
neously several FFT on several pulses (pulse: a set of samples). The "parallel_for"
construct has been used to parallelize MTI, COR, DBF, DOP and PC tasks. The vec-
torized code has been reused in the parallel loops. Figure 9.7 and Figure 9.8 depicts a
signi�cant speedup in comparison with the initial serial version: the parallelized COR
version runs about 48 times faster than the original sequential version and 5 times faster
than the vectorized version on the bi-processor 16 Threads SMP platform.

1 int fft(int from, int to, int step, float ** pulses)

2 {

3 for (int i=from; i<to; i+=step)

4 cplx_fft(pulses[i]);

5 }

6

7 void pc(float ** pulses, int pulse_count)

8 {

9 task fft_t(fft, 0,0,0, pulses);

10 parallel_for p(0, pulse_count, 1, &fft_t);

11 p.run();

12 }

Listing 9.3: A simpli�ed example of parallel for loop use in the PC task. Using XPU

9.6.3 Performances

As shown in Figure 9.9, after parallelizing the most time-consuming blocks of our
processing chain at thread and instruction-level, the over-all processing time of a 64
channels-burst on the dual Intel Xeon E5620 platform dropped from 6.9 seconds (initial
sequential version) to 0.045 second (in the worst case) for the parallel version. The
64 channels con�guration does not satis�es the real-time requirement (20 ms in the
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worst case). However, we are able to process input data in real-time in the 32,16 and 8
channels con�gurations on the same platform.

With a maximum TDP of 160 Watts, the �rst platform may not be embeddable
due to potential energetic constraints. Thus, a platform based on one Core i7 Q720
with a maximum TDP of 45 Watts may be more suitable. We executed our application
on this platform. Figure 9.10 shows that our application run twice as slow as on the
SMP platform. Consequently the 32 channels con�guration does not allow real-time
processing on that platform. However, real-time processing can be performed in the 8
and 16 channels con�gurations.

Figure 9.9: Execution time achieved by the parallelized version for 8,16,32 and 64
channels-burst on 2 x Intel Xeon E5620 2.4 GHz.

As shown in Figure 9.9 and Figure 9.10, the current application displays a good
scalability. We believe that real-time processing in all our four con�gurations may be
achieved on faster platforms with more processing cores and higher clock frequency.

As we have seen, data parallelism can o�er signi�cant execution speedup especially
when coupled with task parallelism. However, available parallelism may be limited
by producer-consumer dependencies between tasks. In this case, temporal parallelism
(a.k.a. pipeline parallelism) can be a very useful parallelism multiplier.
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Figure 9.10: Execution time achieved by the parallelized version for 8,16,32 and 64
Channels-burst on an Intel Core i7 Q720 1.6 GHz

9.7 Pipeline Parallelism

At the opposite of serial execution pattern where all tasks are executed sequentially,
pipeline exploits the available parallelism by executing simultaneously all its processing
stages and serializing only the dependent activities. This allows potential throughput
improvement especially in the case of applications involving real-time continuous stream
processing such as in our case.

Figure 9.11: The radar processing algorithm is split into three balanced stages which
executes concurrently in a pipeline execution pattern. Concurrent pipeline stages works
on di�erent bursts simultaneously.
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In our application, a single burst must be processed by the di�erent tasks in the spec-
i�ed order to preserve data coherency: these tasks are acting as a consumer-producer
chain. However, multiple independent bursts can be processed simultaneously by di�er-
ent processing stages without violating the producer-consumer dependencies as shown
in Figure 9.11. This consumer-producer relationship allows us to use the pipeline exe-
cution pattern to exploit the available parallelism.

We use the "pipeline" execution pattern of XPU to implement a three-stages pipeline
execution con�guration. For more information on the pipeline parallelism and the XPU
pipeline skeleton, reader can refer to chapter 6 of this dissertation. Figure 9.11 illus-
trates how the three stages of the pipeline can process simultaneously three di�erent
bursts without violating producer-consumer dependencies. The di�erent stages may be
executed di�erently depending on the workload of each stage however stage's ordering
is preserved for each received burst. As illustrated in Figure 9.12, we regroup our tasks
into three processing stages:

1. Stage 1 holds MTI, SEL, COR, INV and CTR tasks. We note that the "parallel"
construct speci�es parallelism between MTI and the other four tasks which are
executed sequentially. In addition, we use two "parallel_for" loops in MTI and
COR in conjunction with vectorization.

2. Stage 2 contains the parallel version of DBF : a "parallel_for" loop enables
parallel processing of di�erent channels.

3. Stage 3 is composed of DOP and PC tasks. Both of them uses "parallel_for"
loops to process simultaneously several beams.

Figure 9.12: The �nal parallel application is parallelized using di�erent types of paral-
lelism at di�erent levels of granularity.
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This task regrouping pattern aims to load-balance the pipeline stages since the var-
ious processing blocks have di�erent workloads. Each pipeline stage regroup a set of
processing blocks. The regrouping is guided by the execution time of the blocks to
obtain a pipeline with load-balanced stages.

A FIFO (First In First Out) queue ensure data transfer between the di�erent stages.
The FIFO sizes are limited by the available memory and may have a non-negligible im-
pact on the achieved performances.

As shown in Figure 9.13, pipeline parallelism allows real-time processing in all our
four con�gurations on the 8 threads platform (Intel Core i7 Q720). By observing the
load of the di�erent processor's cores when executing the application as well as the
achieved execution times, we can conclude that the pipeline-based version exploits the
computing resources more e�ciently than the previous parallel version.

Figure 9.13: Worst and best execution time of the parallel version with pipeline paral-
lelism version execution for 8,16,32 and 64 Channels-Burst on the Intel Core i7 Q720
1.6 GHz (8 Threads)

9.8 Conclusion

As we have seen previously, we parallelized our target application progressively by ex-
pressing several parallelism types at di�erent granularity levels starting from coarse
grain tasks to �ner grain ones. Use of both task, temporal and data parallelism allowed
us to extract a signi�cant amount of parallelism and to achieve high performance and
good scalability. Through this application, we outline the programmability of the XPU
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framework which enabled us to easily express various types of parallelism at all levels
of granularity at the cost of a little amount of parallelism related extra-code and in
the same time. Moreover, XPU enabled us to reuse most of the legacy sequential code
without signi�cant alteration. This programmability can improve signi�cantly program-
mer's productivity.

By easing parallelism expression on general purpose multicore architectures such
as the x86 architecture, many real-time digital signal processing applications are likely
to be implemented e�ciently on such architectures making them an attractive alter-
native to expensive specialized processing architectures such as FPGA and DSP based
platforms.
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10
Polyphase Filter Bank Processing Application

In digital signal processing, the Discrete Fourier Transform (DFT) [PM07] is the com-
putational basis of spectral analysis. Particularly, the DFT is a fundamental tool to
analyze the frequency spectrum of a signal. The DFT transforms a signal, represented
by an equally spaced time series or "samples" (in the time domain), into a frequency
spectrum (in the frequency domain) which consists in a set of equally spaced coe�cients
or "bins" which represent the energy of each frequency present in the signal.

Unfortunately, the straightforward direct application of the DFT on a signal exposes
two signi�cant drawbacks known as energy leakage and scalloping loss. Depending on
the sampling rate and the number of points of the DFT, a strong input tone may appear
in more than one frequency bin and may consequently shadows or "drown out" signals
of interest in the nearby bins, this phenomenon is known as "leakage". Figure 10.1
shows a example of frequency spectrum that illustrates the "leakage" phenomenon that
a�ect the bin of interest and its sidelobes. DFT scalloping loss refer to the �uctuations
which a�ect the overall magnitude response of a DFT due to windowing. The window-
ing shape is visible in Figure 10.1.

Figure 10.1: Non-Windowed FFT exposes poor out-of-band rejection due to "leakage"
phenomenon which a�ect the nearby of the bin of interest.

The Polyphase Filter Bank (PFB) processing alleviates the aforementioned disad-
vantages of the straightforward DFT. As shown in Figure 10.2, the application of the
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PFB before the DFT produces a �at magnitude response across the analyzed frequency
channel and provide e�cient suppression of out-of-band signals.

Figure 10.2: Applying PFB processing before the FFT provides a �at response on the
bin of interest with an excellent out-of-band rejection and alleviates both the "leakage"
and "scalloping loss" phenomenons.

10.1 The Quadrature Polyphase Filter Bank Technique

The Quadrature Mirror Filter Bank (QMFB) [PM07] [Lyo10] is a powerful signal pro-
cessing technique that o�ers a �ne spectral decomposition of a signal : a wide frequency
band signal is decomposed into a set of narrow frequency sub-band. The QMFB is
implemented as a set of band-pass �lters that isolate each of these sub-bands. Several
�lter banks can be used as cascaded �ltering stages to perform hierarchical spectral
decomposition. In this case, the main wide frequency band is decomposed into several
narrow sub-bands, each of these sub-bands is then decomposed in turn into narrower
sub-bands, etc... Figure 10.3 gives an overview of a sub-bands decomposition using a
�lter bank. The QMFB �ltering has many applications such as frequency spectrum
analysis, audio equalization, signal compression or speech recognition.

While improving the magnitude response across the analyzed frequency band, the
PFB implementation is often computationally intensive and consumes more resources
than a simple DFT. Consequently, e�cient implementation of the PFB can be critical
to make its qualities outweigh resources consumption issue especially in real time signal
processing applications.
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Figure 10.3: The frequency response of a Polyphase Filter Bank composed of a set of
overlapping �lters Polyphase Filter Bank Processing.

In addition to signal �ltering within a bank of receivers, �lter bank has many appli-
cations including equalization, re-sampling (up-sampling or down-sampling) and signal
compression. Bank �ltering is also widely used in some applications such as speech
recognition and frequency spectrum analysis.

10.2 Context

In our context, the Electronic Warfare (EW) department of Thales Airborne Systems
designed an application using the PFB technique to analyze signals within a speci�c
frequency band in order to detect particular signal types and analyze their behavior.
The application is required to processes a huge amount of data in real time. Thus, the
application is both computationally intensive and data-intensive.

Traditionally, specialized parallel hardware such as FPGA and DSP boards are in-
stinctively used for such heavy real-time signal processing applications. Such hardware
may o�er high performances but at the cost of poor programmability and consequently
low productivity: programming FPGA or DSP is a heavy process and a hard task
which requires a deep understanding of the target hardware architecture in addition to
strong parallel programming knowledge and skills and requires the use of specialized
compilers, languages and tools... Moreover, such hardware may reduce signi�cantly ap-
plication portability and forward scalability.

Recent general-purpose multicore architectures (GPMA), such as the widely avail-
able x86 architectures, are becoming widely available at a relatively low cost in com-
parison to DSP and FPGA boards. GPMA can o�er an attractive alternative to those
specialized processors since they can achieve acceptable performances at the cost of
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less programming e�ort. Particularly, stringent real time requirements for most digi-
tal signal processing applications seem still beyond reach of today GPMA: these DSP
applications require supplemental dedicated accelerators or even fully dedicated SoC
architectures. However, GPMA show such promises and it is likely that in a near fu-
ture, DSP applications could be modeled appropriately and executed in such GPMA.

Through this Thales EW application, we tried to investigate how we can use XPU
to implement the PFB-based algorithm on a general-purpose multi-core processor. A
sequential C++ version of the application was already available. This was an ideal
occasion to evaluate the both the programmability and the performance of XPU. The
programmability was evaluated in term of reused sequential code and required extra-
code to express di�erent types of parallelism. The application has been progressively
parallelized while measuring the delivered performance and the achieved performances.

10.3 Algorithm Description

Figure 10.4: Overview of the polyphase �lter bank application in its single channel
con�guration.

The target application aims to analyze an arbitrary signal within a speci�c frequency
band using three cascaded polyphase �lter bank stages, namely PFB0, PFB1 and PFB2.
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An intermediate detection of long and short pulses is realized after the second �ltering
stage and a �nal short pulse detection is performed at the last stage.

The application is designed to process one or multiple channels simultaneously. In
the later con�guration, the same �ltering chain is duplicated N times while the detec-
tion blocks are shared between these N �ltering chains. Multi-channel processing is
required to realize digital beam forming and direction �nding. The more the channels,
the better the angular precision of direction �nding. In our case, ideally, a four channels
con�guration is required to achieve a good angular precision.

Figure 10.4 gives an overview of the algorithm for a single channel processing. As
depicted in the �gure, an hierarchical spectral decomposition is performed progressively
at each �ltering stage. The output of each �ltering stage is used as the input of its fol-
lowing stage. The intermediate signal detections exploits the outputs of second �ltering
stage "PFB1", while the last detection use the output of the last PFB stage.

Each channel of the Analog to Digital Converter (ADC) has a throughput of around
8 Gb of raw samples per second and feeds the processing chain continuously. The later
is computationally intensive: in order to meet real-time processing requirement, the
application must perform more than 60 Billions Floating Point Operation (GFLOP)
per second for each channel. The four channels con�guration expose 237 GFLOPS of
computing load. Achieving real-time processing in the later con�guration on a GPMA
platform become challenging.

In the next paragraphs, after exposing the pro�le of the application and identifying
the most time-consuming operations, we try to parallelize progressively the application
at di�erent level of granularity to achieve the best possible speedup over the sequential
version.

10.3.1 Application Pro�le

The sequential version of the application is composed of three �ltering blocks or stages,
namely "PFB0", "PFB1" and "PFB2" and three detection blocks which are "LTI",
"STI1" and "STI2".

At each stage, the �lter bank processing consist in performing �ltering operations
on each sub-band of our signal. The processing of each sub-band is mainly composed
of three operations which are:

� Filtering

� FFT Processing

� Down-Sampling or Decimation (Except for the last PFB stage)
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The FFT are performed on a relatively small number of samples, especially those
which are in the two �rst stages and thus FFT processing is not the most time-consuming
operation. The decimation is simply a selective data copy which pick one sample out
of N samples. Hence, decimation is not a computational operation. Consequently, the
�ltering part dominates the �lter bank processing in term of computation intensity. Fil-
tering consists in traditional convolution of the processed samples with a pre-computed
�lter.

The remaining processing blocks ("LTI", "STI1" and "STI2") perform various oper-
ations on the intermediate outputs of the di�erent processing stages. These operations
includes the detection of short and long pulses, i.e., detection of present signals, their
levels and frequencies. In the multi-channel con�guration, detection blocks performs
additionally the direction �nding through phase shifting and digital beam forming. We
note that in the multi-channel con�guration, the detections blocks are shared between
all channels and only the PFB blocks are duplicated. Thus, the detection blocks intro-
duce less computational load than the PFB blocks.

Figure 10.5: Computing Loads (GFLOP/S) respectively in the 1-Channel and 4-
Channels Con�gurations

Figure 10.5 shows the relative computation loads (GFLOP/S) of the di�erent com-
putation blocks in two con�gurations: the one-channel and the four channels con�gura-
tion. We can see that PFB processing blocks start to dominate the over-all computation
load as the channels count increases. In the single channel con�guration, the PFB pro-
cessing blocks represent more than 90 % of the processing load with 58 GFLOPS out
of 63 GFLOPS. In the four channels con�guration, the PFB processing load raise to
about 98 % with 232 GFLOPS out of 237 GFLOPS while the computing load of the
detection blocs does not raise far from the initial 5 GFLOPS.

10.4 Parallelization

In order to parallelize the target sequential application, we follow the simple paralleliza-
tion process that we have introduced at the �rst chapters of this thesis which can be
summarized as follows:
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1. Decomposing the program into Tasks.

2. Task parallelism extraction (If available).

3. Data parallelism extraction (If available).

4. Pipeline parallelism Extraction (If available).

5. The Previous operations can be reproduced at �ner grain to capture more paral-
lelism when available.

10.4.1 Task De�nition

In the target sequential application, �ltering operations inside PFB0, PFB1 and PFB2
are implemented and encapsulated into separated C++ classes as object methods. XPU
allows us to reuse these object methods as tasks and thus isolate the di�erent processing
blocks of the application before reasoning about the parallelization. You can refer the
"Task De�ntion" chapter to learn more about reusing object methods and functions as
tasks in XPU.

Once the program is decomposed into small tasks. These tasks can be organized
using the di�erent XPU patterns to speci�es the di�erent types of parallelism. Since
�ltering is one of the most time-consuming tasks, we try to parallelize it using data par-
allelism pattern at both task and instruction levels. But before starting to parallelize
each PFB at �ne grain, we can capture pipeline parallelism at coarser grain between
the PFB stages since these stages form a consumer producer chain.

10.4.2 Pipeline Parallelism Extraction

The three PFB stages expose a consumer-producer relation between adjacent stages.
The stream nature of the input data that "�ows" through these three stages allows us
to use the XPU pipeline pattern to make these stage running concurrently while pre-
serving the data coherency. Reader can refer to chapter 7 for more information about
pipeline parallelism and th XPU pipeline skeleton.

Figure 10.6 depicts the �rst pipeline con�guration that include not only the PFB
processing stages but also the detection stages.
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Figure 10.6: Both the �lter bank stages and the detection stages are integrated as
processing stages within a pipeline execution pattern.

We note that the detection blocks ((LTI,STI) and STI2) has been included in the
pipeline as processing stages but can be executed asynchronously out of the pipeline
stages since their dependencies are limited to speci�c PFB stages without generating
dependencies over the adjacent PFB stage. More precisely, the (LTI+STI) detection
block depends on the output of PFB1 stage, however the PFB2 is not dependent on
that detection block, hence a false dependency between them is generated if we simply
include the (LTI+STI) in the pipeline as a stage.

We used this simple pipeline con�guration in our initial implementation for the sake
of simplicity and rapid prototyping, but we switched to a more e�cient con�guration
with four stages pipeline that include the three PFB stages and the last detection
stage (STI2) in the pipeline while making the �rst detection block (LTI+STI) executes
concurrently with the pipeline. The (LTI+STI) block is executed asynchronously and
gets its input data from the second PFB stage when available. The later con�guration
is depicted in Figure 10.7.

Figure 10.7: The �rst detection block (LTI+STI) is executed outside the pipeline in an
asynchronous fashion to avoid false dependency between (LTI+STI) and PFB2.
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In order to evaluate the pipelining e�ect without additional task parallelism between
the pipeline and the (LTI+STI) block, we measured the execution time of the initial-
pipeline only version. As depicted in Figure 10.8, the pipeline con�guration performs
three times faster than the original sequential version.

Figure 10.8: The initial pipeline-only con�guration perform about three times faster
that the original sequential con�guration on an Intel Xeon W3680 with 12 Threads at
3.3 GHz.

While improving considerable the processing time, the pipeline execution pattern
su�er from inherent limited scalability due to limited stage count: the pipeline provide
a good forward scalability until the the number of processing stages. In order to extract
more parallelism, we tried to extract data parallelism using the XPU "parallel_for"
pattern and the vectorization capabilities of XPU.

10.4.3 Data Parallelism Extraction

Data parallelism can be extracted both at task level through parallelizing loops and
at instruction level through using the XPU vectorization capabilities. The following
paragraph details both of them.

10.4.3.1 Vectorization

We used the vectorization capability of XPU to speedup the �ltering process. At each
processing stage (�lter bank), the main �ltering operation implies uniform multiplica-
tion of large number of signal samples by the �lter coe�cients then the accumulation
of their sum (FIR applicationd).

Both signal samples and �lter coe�cients are stored as tables of �oats. Vectorization
can be naturally implemented by processing the regular �oat bu�ers as XPU "vec4f"
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bu�ers. This allows us to process four pairs of �oats at once at each operation instead
of one single pair �oat at a time and thus increasing �ltering throughput.

Figure 10.9: E�ect of vectorization in comparison on the original sequential version on
an Intel Xeon W3680 at 3.3 GHz

As depicted in Figure 10.9, the vectorization acted as a great parallelism multiplier
and o�ered a two time speedup over the original sequential version on a an Intel Xeon
W3680 at 3.3 GHz (2 x 6 Cores) in a single channel con�guration. The vectorization
o�ers a good speedup, however we are still far from real-time processing for a single
channel. Also, we note that vectorization exposes very limited scalability, since it can
only take advantage from increasing processor frequency but not processing unit mul-
tiplication. Thus, vectorization need to be combined with thread level parallelism to
achieve higher speedup and better scalability. This can be done by trying to parallelize
the numerous loops within the di�erent PFB blocks and also detection blocks.

10.4.3.2 Parallel Loop

The application reads a large number of samples before starting the processing. The
size of this input bu�er is con�gured by the user. Each �lter has a �xed length and
operates on a limited set of sample at a time. Thus, several small subsets or partitions
of the main samples bu�er can be �ltered simultaneously.

Parallelization of each �lter at each PFB stage can be easily done using the XPU
parallel_for pattern. Instead of iterating over the samples and performing �ltering se-
quentially on each subset of them, multiple iterations can be executed concurrently. The
number of concurrent �ltering is �xed by the parallel_for dynamically at run-time and
will depends on the available processing units (processors and cores). This guarantee
a good forward scalability when switching from one platform to another with larger
processors count.
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Figure 10.10: Data parallelism in PFB0 is implemented through an XPU parallel for
loop.

The most time-consuming loop in PFB0 has been parallelized using the XPU par-
allel_for loop . This parallel loop is included in the �rst stage of the pipeline as shown
in Figure 10.10. Many other loops inside the di�erent PFB processing stages and the
LTI detection blocks are parallelized the same way.

Figure 10.11: Parallelization of loops in PFB0 stages and LTI reduced execution time
by more than 30% on an Intel Xeon W3680 with 12 Threads at 3.3 GHz.

As shown in Figure 10.11, the parallelization of the for loops in the di�erent PFB
stages and the LTI blocks allowed the application to execute 32.5% faster. We note
that some of parallelized loops appeared to be not "enough" time-consuming and has
been disabled since their sequential version achieved better performances.
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10.4.4 Task Parallelism Extraction

In each PFB stages a set of �lters are applied to the input signal (samples). These
�lters correspond to the adjacent frequency subbands. The �lters are applied to the
same common input: it consumes a common read-only data and write the result into
separate output data. Hence �lters are independent and the di�erent subbands can be
�ltered simultaneously.

Figure 10.12: Both Task and Data parallelism are implemented in PFB1 by specifying
parallelism between �ve �lters and implementing each of these �lters as a parallel for
loop.

Figure 10.12 shows parallelism speci�cation of the �ve �lters of the PFB1 stage.
Analogously, task parallelism can be speci�ed for the twenty �lters of the PFB2 stage.
In addition to task parallelism, data parallelism in each �ltering operation is speci�ed
through parallel loops and vectorization as we have seen in the previous paragraphs. In
addition to concurrency between independent �lters, the (LTI+STI) block can be split
into two parallel blocks LTI and STI since they are independent. As depicted in Figure
10.13, the task parallelism between LTI and STI can be speci�ed inside the LTI+STI
stage.

Figure 10.13: LTI and STI can be executed as parallel independent tasks. Additionally,
data parallelism inside LTI can be speci�ed through an XPU parallel for loop.
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In term of code, a generic �lter kernel is encapsulated in an XPU task for each
subband, the �lter coe�cients corresponding to each subband as well as the input and
output bu�ers are passed as argument to each task. In order to specify parallelism
between the concurrent �lters, we use simply the parallel keyword to parallelize their
execution sa shown in Listing 10.1.

1 // the main filter kernel

2 int filter(const float * input, float * output, float * filter, int length)

3 {

4 // filter kernel ...

5 }

6

7 // PFB0 stage

8 int polyphase_filter_bank_0()

9 {

10 // ...

11 // tasks definition

12 xpu::task filter_1_t(filter, input, output_1, f1, length);

13 xpu::task filter_2_t(filter, input, output_2, f2, length);

14 xpu::task filter_3_t(filter, input, output_3, f3, length);

15 xpu::task filter_4_t(filter, input, output_4, f4, length);

16 xpu::task filter_5_t(filter, input, output_5, f5, length);

17

18 // running parallel filters

19 xpu::parallel(&filter_1_t, &filter_2_t, &filter_3_t, &filter_4_t, &filter_5_t)->run();

20

21 // ...

22 }

Listing 10.1: Parallelism speci�cation of �ve �lters inside PFB0.

Figure 10.14 shows the e�ect of task parallelism implementation on the over-all
execution time. Parallelization of �lters execution allowed the application to run 31%
faster. Hence, to be closer the real-time execution requirement.
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Figure 10.14: Implementation of Task Parallelism through parallelization of �lters exe-
cution at each PFB stage allowed us to achieve a 31% execution speedup on the same
platform (Intel Xeon W3680 with 12 Threads at 3.3 GHz).

10.5 Conclusion

As we have seen along this chapter, the quadrature mirror polyphase �lter bank ap-
plication has been parallelized progressively by expressing several parallelism types at
di�erent granularity levels starting from coarse grain tasks to �ner grain ones. The data
parallelism expression at thread and instruction level allowed us to exploit a signi�cant
amount of parallelism to speedup the execution. Additionally, the stream processing
nature of the target application allowed us to exploit temporal parallelism through the
pipeline execution pattern to achieve signi�cant execution speedup. Finally, task paral-
lelism expression captured even more concurrency to maximize throughput and reduce
idle times in all pipeline stages.

Again, this application outlined the programmability provided by the XPU program-
ming interface since it enabled us to express parallelism at the cost of little amount of
extra-code and allowed us to reuse the legacy sequential code without alteration. This
programmability improved signi�cantly our productivity and reduced the development
time spent on parallelization.

This case study demonstrated that by easing parallelism expression on general pur-
pose multicore architectures such as the x86 architectures, many real-time signal pro-
cessing applications are likely to be implemented e�ciently on such architectures making
them an attractive alternative to expensive specialized processing architectures such as
FPGA and DSP based platforms.
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11
Conclusion

11.1 Summary

The continuous proliferation of multicore processors in all segments of industry has
placed software developers under great pressure to parallelize their program to take
advantage of these platforms. Unfortunately parallel programming using low-level pro-
gramming model is still a hard task for the average sequential programmer. The indus-
trial context (Thales Airborne Systems) in which our researches took place con�rmed
this observation and outlined the need for a high-level parallel programming model
which improves programmer productivity while delivering reasonable performances.
This formulated the main motivation of our research work which is "easing parallel
programming without sacri�cing performances". The goal was to design a structured
parallel programming model which o�er a high programmability while delivering com-
parable performances to lower level approach. Design goals included:

1. Using a traditional programming language (C++) without any extension to pro-
vide good portability.

2. Easing the parallelization of existing sequential application while reusing the
legacy code without alteration.

3. Easing parallelism expression by o�ering an intuitive and compact parallel pro-
gramming interface.

4. Designing a �exible parallelization methodology which allows parallelization of
general-purpose application which may expose di�erent types of parallelism at
di�erent levels of granularity.

In this thesis we presented two C++ parallel programming frameworks namely XPU
and FATMA which have been designed to satisfy the previously enumerated needs and
to address the limitations of many state of the art parallel programming models in term
of programmability and performance. XPU and FATMA exploit exclusively the po-
tential of standard C++ programming language and its metaprogramming capabilities
to ease parallelism expression while delivering performances which are comparable to
low-level programming models.
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XPU has been designed to ease explicit parallelism expression. It proposes a �exi-
ble parallelization methodology and allows the programmer to express several types of
parallelism including task parallelism, data parallelism and pipeline parallelism at dif-
ferent levels of granularity. XPU expose a compact and intuitive programming interface
(API) composed of very few keywords ("task", "parallel", "sequential", "parallel_for"
and "pipeline"). Yet, thanks to extensive use of C++ metaprogramming techniques,
XPU allows the programmer to easily express parallelism at the cost of few lines of code
while reusing his legacy sequential code without almost without any alteration.

In the XPU programming model, the programmer is responsible of extracting par-
allelism before expressing it using the XPU API. In many applications, parallelism
extraction can be a very hard task since the target application can exposes complex
dependencies between a very large number of tasks. Tiled linear algebra algorithms
are examples of such applications. Even when succeeding to extract parallelism using
advanced task dependency analysis tools, explicit parallelism expression can be very
challenging even with the simplest API. FATMA has been designed to address this lim-
itation of XPU by extending its capabilities and providing automatic tasks paralleliza-
tion at run-time. FATMA allows the programmer to parallelize transparently a large
sequence of tasks by generating automatically the corresponding task dependency graph
then using it to schedule the parallel tasks on the available processors. The FATMA
API is even simpler that of XPU, it is composed of few keywords which corresponds
to the three parallelizing phases (program.add(task), program.build() and program.run())

XPU has been used to parallelize several popular applications from the PARSEC
Benchmark [BKSL08]. Our experiments have shown that despite its high abstraction,
XPU can still deliver comparable performances to lower-level programming models.
XPU has been also used to parallelize industrial applications such as a Radar signal
processing application which has been presented in this thesis, int this application XPU
allowed us to achieve real-time execution on a general-pupose multicore platform which
can be used as an alternative to expensive specialized processing architectures such as
FPGA and DSP platforms which are traditionally used in this application �eld.

We used FATMA to parallelize two tiled linear algebra algorithms and compared
our implementation to di�erent state of the art approaches. Despite being at its early
development stages, FATMA achieved performances that are very close to specialized
linear algebra libraries while displaying high programmability.

11.2 Limitations

While easing explicit parallelism expression, XPU exposes several limitations. A subset
of these limitations has been addressed by FATMA. Since it reuses several building
blocks of XPU, FATMA inherits some of the XPU limitations. These limitations can
be summarized as follow:

214

High-level structured programming models for explicit and automatic parallelization on multicore architectures Nader Khammassi 2014



� Limited skeleton nesting: XPU represents a program as a structured hierarchical
task graph, each task of the graph can be replaced in turn by another hierarchical
task graph ("parallel/sequential" skeleton) to express parallelism at �ner grain. It
can be also replaced by a skeleton that implement data parallelism (parallel_for
construct) or a skeleton that implements pipeline parallelism such as the pipeline
skeleton. While the hierarchical task graph allows hierarchical nesting without any
limitation on the hierarchy depth, the two later skeletons do not allow "direct"
nesting of other skeletons inside them.

� Task data dependencies extraction mechanism analyzes the signature (the param-
eters) of the target function or object method to determine its data dependencies.
When the code of the function access to global variable instead of specifying that
data in its arguments, the dependencies can be hidden from the XPU and FATMA
runtime systems. The same problem can happen if the programmer hide a pointer
inside a structure even when passed as an argument: the pointer to the structure
can be seen by the runtime but the pointers hidden inside the structure cannot.

� Task granularity: in both XPU and FATMA programming models, the program-
mer is responsible of decomposing a program into of a set of task. The easiest
way of decomposition is to de�ne task using the existing functions. However these
functions must have a reasonable granularity to be able to extract the available
parallelism. In our experiments, most of C applications which are structured as a
set of functions have often a satisfying granularities. However, in several cases, the
program can exposes a too coarse-grained function. We note that too �ne-grained
functions do not expose the same problem since they can be encapsulated into
tasks then grouped easily to form a coarse grain task-group.

� Static scheduling in FATMA: the current implementation of FATMA uses a static
scheduling technique to schedule the task graphs, this allow FATMA to perform
parallelism extraction "o�ine", e.g. before the execution, and thus to avoid intro-
ducing any task-dependency analysis overhead at the execution of the tasks. This
is the major advantage of "static scheduling" technique. However, this scheduling
mode has a limitation since it requires that no "inline" code is introduced between
tasks, i.e, all code must be encapsulated into task and added to the task list in
their natural sequential order. For example, if an code inline code must introduced
due to data-dependent execution of a given application, the task list should be
split into several sub-lists which can be then parallelized. Dynamic scheduling can
alleviate this limitation but introduce an execution overhead which is related to
"online" data dependency analysis. The late scheduling mode will be introduced
in future version of FATMA.

11.3 Perspectives

The �rst and the last limitations of our frameworks are already technically resolvable
using exclusively the C++ language and thus will be addressed in the future versions

215

High-level structured programming models for explicit and automatic parallelization on multicore architectures Nader Khammassi 2014



of XPU and FATMA. However, addressing the second and the third limitation can be
hard to resolve using exclusively the C++ language without making the API verbose.
In this case, external tools such as syntax analyzer or source-to-source compilers can
be used to perform the tasks that cannot be accomplished using exclusively the C++
language : syntax analysis tool can be used to perform advanced task data dependency
analysis and address the case of "hidden dependencies", task granularity adjustment
can be performed based on pro�ling data (execution time) or syntax analysis metrics
(code length) using source-to-source compiler and custom pro�ling tools. These tools
can address the limitation exposed earlier, and can relieve the programmer from adapt-
ing his code manually especially in the case of complex algorithms and applications.
For instance, a memory access pattern analyzer such as the QUAD tool [OMGB10] can
be used to extract automatically the data dependencies at functional level and track
any "hidden" data dependency. The programmers code can then be completed by the
explicit speci�cation of missing dependencies in XPU or FATMA tasks.

In future works, XPU and FATMA will be merged to form a single programming
model allowing both explicit and automatic parallelization, the resulting framework will
be extended to support static and dynamic distributed memory systems. Our �rst ex-
periments with the "Remote Task" implementation1 appeared to be very promising, a
deeper study of the communication, scheduling and performance models will be studied
deeply. The (CHATS)2 algorithm which we designed to perform cache hierarchy-aware
scheduling on shared memory systems can be extended and generalized to perform mem-
ory hierarchy-aware scheduling (MHATS) on distributed memory systems.

Despite being at its early development stages, FATMA achieved encouraging re-
sults when used with popular tiled linear algebra algorithms. Particularly, FATMA
addressed successfully easing static scheduling of super-scalar task graph on shared
memory systems. Yet the current version of FATMA su�ers from several implemen-
tation bottlenecks which can be �xed in later versions and we expect a signi�cant
performances improvement. FATMA performances can be improved by implementing
advanced scheduling techniques such as cache-aware scheduling or using "sliding win-
dow" to limit the number of scheduled tasks when scheduling large task graph... Many
of these techniques have been used successfully in concurrent approaches and appear to
be very promising.

Finally, XPU has been used to implement industrial application such as the real-time
"Radar Signal Processing" and the "Polyphase Filter Bank Processing" applications
presented in this thesis 3. XPU succeeded to achieve real-time execution in the �rst

1 For more details, see Chapter 4 "Task De�nition"
2 Nader Khammassi and Jean-Christophe Le Lann, "Design and Implementation Of A Cache

Hierarchy-Aware Task Scheduling For Parallel Loops On Multicore Architectures", Third
International Conference on Parallel, Distributed Computing Technologies and Applications, PDCTA
2014, Sydney, Australia

3 For more details, see Part 4 : Chapter 9 and Chapter 10
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application allowing the use of general-purpose multicore processors as an alternative to
FPGA and DSP platforms. However, this kind of applications exposes hard real-time
execution constraints which cannot be guaranteed by XPU, the provided wort-case ex-
ecution time is fully based on experiments. In addition, performances of XPU in other
platforms cannot be predicted easily before experimentation. In future implementa-
tion of XPU, a performance prediction model will be designed to provide a reliable
performance prediction without need to heavy experimentation.
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A
C++ Template Metaprogramming

A.1 C++ Templates

C++ Templates are Meta-Classes or Meta-Functions which constitute an e�cient mean
to handle type and parameter variability when respectively instantiating classes or call-
ing functions that speci�es common operations for di�erent possible types of parameters.
Templates allow the programmer to avoid duplicating a common code for di�erent types
or parameters, instead Templates allows him to specify a common reusable code for dif-
ferent types. When using Templates the compiler adapts transparently the template
code to the selected type. Moreover, the compiler can perform various compile-time
optimizations to produce e�cient code.

A.1.1 Class Templates

Using a Meta-Class consists in de�ning a class which performs a set of operations on
a generic abstract type. The programmer speci�es the type when instantiate the tem-
plate class for a speci�c type. For example, the C++ Standard Template Library (STL)
[SL94] provides a set of containers which are class templates. These classes allow the
programmer to use a container and its associated routines and algorithms disregarding
whether it is a container of integers, of �oats or of any other simple or complex type...
Available containers in the C++ STL includes vector, list, set, map... etc

Listening A.1 shows an example of a generic class named table implemented as a
template class. Thanks to template programming this class can implement a table of
integer, �oats, or other compatible types using a common code and interface.

1

2 /**

3 * generic table

4 */

5 template<class T, int N>

6 class table

7 {

8 T data[N];

9
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10 T max()

11 {

12 T m = data[i];

13 for (int i=1; i<N; ++i)

14 if (data[i]>m)

15 m = data[i];

16 return m;

17 }

18 };

19

20 int main( )

21 {

22 table<float,16> float_table; /* table of ten float */

23 table<char,128> char_table; /* table of 128 characters */

24

25 float f = float_table.max(); /* find the maximum in the float table */

26 char c = char_table.max(); /* find the maximum in the character table */

27

28 return 0;

29 }

Listing A.1: Example of generic "table" implementation using template class allows the
use of a common interface and code for di�erent types of data : �oat, charcter or other
types.

Template Classes do not adapt only to type speci�cation but also to value speci�-
cation. For example the C++ STL library implements a container named bitset which
allows a programmer to de�ne the number of bits in that bit set through an integer
template argument. So, bitset<16> is a bitset containing 16 bits while bitset<32> is
a bitset containing 32 bits etc... Analogously, in our example in Listening A.1, the
second parameter of the "table" template class speci�es explicitly the size of the table.
This allows the compiler to perform many optimization at compile time such as stack
allocation for table data or loop unrolling in the "max" routine.

A.1.2 Function Templates

Similarly to class templates, Meta-Functions are functions which are able to operate
on arguments disregarding their types. As shown in Listening A.2 a common meta-
function which perform an addition between two parameters or arguments is able to
perform this operation whenever the two passed arguments are integers, �oat or double...
The compiler adapts automatically the function according to the arguments passed by
the programmer when calling that function.

1

2 /**

220

High-level structured programming models for explicit and automatic parallelization on multicore architectures Nader Khammassi 2014



3 * generic addition function

4 */

5 template<typename T>

6 T add(T x, T y)

7 {

8 return (x+y);

9 }

10

11 int main( )

12 {

13 float f, xf, yf;

14 int i, xi, yi;

15

16 f = add(xf,yf); /* adding two floats */

17 i = add(xi,yi); /* adding two integers */

18

19 return 0;

20 }

Listing A.2: Template function "add" is able to perform and addition between integers,
�oats or other types.

A.1.3 Template Specialization

In addition to supporting varying types, template classes can be specialized to behave
di�erently for speci�c types or values of the template arguments, i.e., it can be cus-
tomized for speci�c types. Without specialization, the compiler use the same code
for di�erent types. When a template is specialized for speci�c type and that type is
speci�ed by the programmer, the specialized template is used instead of the original
template. The specialized template can be di�erent from the original template in many
ways : a specialized template class can have di�erent attributes or methods.

1 // default template class

2 template <class T>

3 class test

4 {

5 public:

6 test()

7 {

8 std::cout << "default template object \n";

9 }

10 };

11

12 // specialized template for the "int" type

13 template <>

14 class test <int>

15 {
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16 public:

17 Test()

18 {

19 std::cout << "specialized template object\n";

20 }

21 };

22

23

24 int main()

25 {

26

27 test<char> a; // uses the default template class

28 test<int> b; // uses the specialized template class

29 test<float> c; // uses the default template class

30 return 0;

31 }

Listing A.3: An example of template class specialization

A template class can be specialized by �xing one or more of its template arguments
and overloading completely or partially its routines to modify its behavior for the case
of speci�c type. Listening A.3 shows an example of template class specialization. In
this example, the default template class implemented for general types is specialized
for the "int" type. When the "int" type is used as template parameter, the specialized
implementation is used.

A.1.4 C++ Template Metaprogramming

C++ template Meta-Programming is a powerful programming technique which allows
the programmer to perform static programming, i.e. programming the program. In
other words, thanks to templates, programmer can tell the compiler to execute some op-
erations or computation at compile-time when all the parameters of these computations
are known at compile-time. These compile-time evaluations can reduce signi�cantly
many potential execution overheads which can be introduced if these evaluations are
made at run-time.

In addition to producing highly e�cient code, Meta-Programming techniques pro-
vide a great programming �exibility particularly for library designers who design generic
template libraries for a wide variety of users. By using various meta-programming tech-
niques, they make their libraries adapt easily to various context while maintaining a
high execution e�ciency. The provided templates can be considered as reusable skele-
tons which can be easily parametrized through template arguments. The C++ STL
library is a great example of such libraries: for instance, STL containers and algorithms
are widely used and highly e�cient.
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Template Meta-Programming can be used to perform many useful operations at
compile-time such as : partial or complete evaluation (factorial computation), design
meta-control structure (if,then...), compile-time recursive operation (Lanczos, Factorial,
Prime...), loop unrolling ("for" loop unrolling), compile-time type identi�cation (CTTI),
introspection... etc

Listening A.4 shows the static implementation of the factorial computation using
meta-programming techniques including template recursion and template specializa-
tion. The factorial of a given number is evaluated at compile-time by the compiler.
At the opposite of the traditional implementation using a recursive function, this im-
plementation do not introduce any execution overhead at run-time. Thus, this static
implementation is useful when the number that we want to compute its factorial is
known at compile-time.

1 #include <iostream>

2

3 // recursive template

4 template <int N>

5 struct factorial

6 {

7 enum { value = N * factorial<N-1>::value };

8 };

9

10 // template specialization for the terminal state

11 // to stop recursion

12 template <>

13 struct factorial<1>

14 {

15 enum { value = 1 };

16 };

17

18 // example use

19 int main()

20 {

21 const int fact5 = Factorial<5>::value; // factorial of 5 is computed at compile-time

22 std::cout << fact5 << endl;

23 return 0;

24 }

Listing A.4: Static implementation of the "factorial" computation using C++ metapro-
gramming technique: the factorial is evaluated at compile-time by the compiler.

A.1.5 Limitations and Drawbacks

While o�ering great �exibility and execution e�ectiveness, C++ Template Meta-Programming
can lead to unreadable, verbose and error-prone code and may result into poor pro-
grammability. In fact, when not properly used, C++ templates are known to generate
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extremely verbose compilation errors. Moreover, extensive use of templates can make
the exposed programming interface "unnatural": for instance, when using some modules
of the Boost library [Sch11], it can be hard to recognize the resulting code as C++ code.

For these reasons, when using C++ metaprogramming in the implementation li-
braries, the programmer should take care of making the exhibited programming in-
terface elegant and natural to take advantage from C++ Template Metaprogramming
bene�ts without sacri�cing programmability and intuitiveness.
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B
Platforms Used For Testing XPU and FATMA

B.1 Single Multicore Processor

� Intel Core i7 Q720 ( 4x Cores, 8x Threads, 4x L1 Cache 32KB, 4x L2 Cache
256KB, 1x L3 Cache 6MB, 1.6 GHz). This platform is equipped with a GPU
("NVIDIA GeFORCE GT240M" with 48 CUDA Cores and OpenCL support).

B.2 Bi-Processor Platform

� 2 x AMD Opteron 252 K8 (1x Core, 1x Thread, 1x L1 Cache 64KB, 1x L2 Cache
1MB, 2.8 GHz).

� 2 x Intel Xeon X5472 (4x Cores, 4x Threads, 4x L1 Cache 32KB, 2x L2 Cache
6MB, 3 GHz).

� 2 x Intel Nehalem Xeon E5620 (4x Cores, 8x Threads, 4x L1 Cache 128KB, 4x L2
Cache 1MB, 1x L3 Cache 12MB, 2.4 GHz). This platform has two GPUs (2 x ATI
Radeon 6970. Each GPU has 2GB GDDR5 memory and a theoretical compute
power of 2.7 TFLOPS (Simple Precision) and OpenCL Support)

B.3 Quad-Processor Platform

SMP Supermicro station with 4 x CPU AMD Opteron 6274 16-Core 2.2 Ghz 16MB
making a total of 64 Cores. The platform is equipped with a GPU "MSI GTX 280 2
GB GDDR5". The platform has 32 GB of RAM (ECC Registred at 1600 Mhz).

B.4 The CAPARMOR Supercomputer

A part of our test has been performed on the di�erent CAPARMOR nodes. The CA-
PARMOR Supercomputer is an SGI Altix ICE 8200 EX composed of 294 nodes and 5
Racks. Most of the Nodes (256) are bi-processors board with 2 x "Intel Xeon X5560
Quad Core at 2.8 GHz". The remaining 38 Nodes are bi-processors board with 2 x "Intel
Xeon X5677 Quad Core at 3.46 GHz". Therefore the CAPARMOR Supercomputer is
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composed of 1352 Cores and display a theoretical compute power of 27 TFLOPS. CA-
PARMOR Nodes are connected through an In�niband network (4xDDR and 4xQDR ).
Each node has a 24 GB memory, so the global memory size of CAPARMOR is 7 Tera
Bytes.

B.5 The BADIANE Cluster

The Badiane Cluster is composed of 8 Nodes, each Node is a bi-processors board with
two "Intel Xeon Sandy Bridge E5-2670 at 2.6 Ghz" (8 Cores, 20MB L3 Cache). Nodes
are connected through an In�niband network (40 Gb/s).
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