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Cette thèse aborde deux problèmes relatifs à l'analyse et au traitement des données biologiques à haut débit: le premier touche l'analyse bioinformatique des génomes à grande échelle, le deuxième est consacré au développement d'algorithmes pour le problème de la recherche d'un classement consensus de plusieurs classements. L'épissage des ARN est un processus cellulaire qui modifie un ARN pré-messager en en supprimant les introns et en raboutant les exons. L'hétérodimère U2AF a été très étudié pour son rôle dans processus d'épissage lorsqu'il se fixe sur des sites d'épissage fonctionnels. Cependant beaucoup de problèmes critiques restent en suspens, notamment l'impact fonctionnel des mutations de ces sites associées à des cancers. Par une analyse des interactions U2AF-ARN à l'échelle génomique, nous avons déterminé qu'U2AF a la capacité de reconnaître environ 88% des sites d'épissage fonctionnels dans le génome humain. Cependant on trouve de très nombreux autres sites de fixation d'U2AF dans le génome. Nos analyses suggèrent que certains de ces sites sont impliqués dans un processus de régulation de l'épissage alternatif. En utilisant une approche d'apprentissage automatique, nous avons développé une méthode de prédiction des sites de fixation d'UA2F, dont les résultats sont en accord avec notre modèle de régulation. Ces résultats permettent de mieux comprendre la fonction d'U2AF et les mécanismes de régulation dans lesquels elle intervient. Le classement des données biologiques est une nécessité cruciale. Nous nous sommes intéressés au problème du calcul d'un classement consensus de plusieurs classements de données, dans lesquels des égalités (ex-aequo) peuvent être présentes. Plus précisément, il s'agit de trouver un classement dont la somme des distances aux classements donnés en entrée est minimale. La mesure de distance utilisée le plus fréquemment pour ce problème est la distance de Kendall-tau généralisée. Or, il a été montré que, pour cette distance, le problème du consensus est NP-difficile dès lors qu'il y a plus de quatre classements en entrée. Nous proposons pour le résoudre une heuristique qui est une nouvelle variante d'algorithme à pivot. Cette heuristique, IV appelée Consistent-pivot, s'avère à la fois plus précise et plus rapide que les algorithmes à pivot qui avaient été proposés auparavant.
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Chapter 1: Introduction

As said by Eric Green who is the director of American National Human Genome Research Institute, "Generating the data is not the bottleneck…… The bottleneck is analyzing the data", it is thought to be more and more important to solve biological questions using Bioinformatics approaches in the post-genomic ear. Bioinformatics is an interdisciplinary scientific field of computer and biology sciences. It uses computer to better understand biology, especially important in this biological big data era (see Bioinformatics starts from sequencing alignment and annotation, while it appears in every aspect in biological research now (see Figure 1.2), as shown in below: Sequence analysis: Genome annotation to predict unknown genes; comparative genomics to understand gene function and evolution; genome wide associate study (GWAS) to find disease genes or mutation sites.

2.

High throughput sequencing analysis: Data analysis of ChIP-seq, CLIP-seq, RNA-seq, Ribo-Seq and so on, to reveal the gene and protein expression profiles, protein and DNA/RNA interaction and regulation.

3.

Structure prediction: Structures of RNAs and proteins are always related with their functions. Structure prediction helps to understand the function, and then guides drug design 4.

Network and systems biology: Attempts to integrate many different data types, to understand biology process in a network view.

5.

Software and tools: Rang from simple tools to design PCR primer, to complex platform or web-server for searching various types of data. It also plays a role in the analysis of gene and protein expression and regulation.

Bioinformatics tools aid in the comparison of genetic and genomic data and more generally in the understanding of evolutionary aspects of molecular biology. At a more integrative level, it helps analyze and catalogue the biological pathways and networks that are an important part of systems biology. In structural biology, it aids in the simulation and modeling of DNA, RNA, and protein structures as well as molecular interactions.

This thesis focuses on the Bioinformatics data analysis in Chapter 2 and algorithms development of consensus ranking for biological high throughput data in Chapter 3, to to solve biological questions.

In molecular biology and genetics, RNA splicing is a modification of the nascent pre-messenger RNA (pre-mRNA) transcript in which introns are removed and exons are joined. The U2AF heterodimer has been well studied for its role in defining functional 3' splice sites in pre-mRNA splicing, but multiple critical problems are still outstanding, including the functional impact of their cancer-associated mutations. In

Chapter 2, we aim to find out the function of U2AF65 to define 3' splice sites and regulate alternative splicing using high throughput sequencing data, to facilitate the research of related disease.

Ranking biological data is a crucial need. For example, in the research of RNA alternative splicing regulation, we always want to know which splice site is weaker or stranger. There have been many tools for scoring the splice sites signal strength. But the rankings of these tools are always very different. Instead of developing new ranking methods, Cohen-Boulakia and her colleagues proposed to generate a consensus ranking to highlight the common points of a set of rankings while minimizing their disagreements to combat the noise and error for biological data. However, it is a NPhard question even for only four rankings based on the Kendall-tau distance. In Chapter 3, we propose a new variant of pivot algorithms named as Consistent-Pivot. It uses a new strategy of pivot selection and other elements assignment, which performs better both on computation time and accuracy than previous pivot algorithms.

Chapter 2: Genome-wide Analysis of U2AF Functions in pre-mRNA Splicing

Introduction

The genetic information is stored in DNA, which is transferred from one generation to the next generation. During the life of a cell, the DNA information is transferred as RNA, and then the RNA is translated as protein. This is the central dogma of molecular biology, describing the flow of genetic information within a biological system [START_REF] Crick | Central dogma of molecular biology[END_REF]. However, RNA does not simply copy the genetic information, as the primary RNA transcript generated from DNA should undergo processing.

RNA splicing

As we know, the DNA coding sequence of a protein-coding gene is a series of threenucleotide codons, which specifies the linear sequence of amino acids in its polypeptide product. In the vast majority of cases in bacteria and their phages, the coding sequence is contiguous: the codon for one amino acid is immediately adjacent to the codon for the next amino acid in the polypeptide chain. But it is rarely so for eukaryotic genes. In those cases, the coding sequence is periodically interrupted by stretches of non-coding sequence.

Most eukaryotic genes are thus mosaics, consisting of blocks of coding sequences separated from each other by blocks of non-coding sequences. The coding sequences are called exons, and the intervening sequences are called introns. Once DNA is transcribed into an RNA transcript, the introns must be removed and the exons are joined together to create the messenger RNA (mRNA) for that gene, which is then exported into the cytoplasm. So the term exon technically names for exported regions, and applies to any region retained in a mature RNA, whether or not it is coding. Noncoding exons include the 5' and 3' untranslated regions of an mRNA. within a gene varies enormously, from one in the case of most intron-containing yeast genes (and a few human genes), to as many as 363 in the case of the Titin gene of humans. Figure 2.1.2 shows the average number of introns per gene for a range of organisms. Interestingly, the average number increases as one looks from simple singlecelled eukaryotes, such as yeast, through higher organisms such as worms and flies, all the way up to humans [START_REF] Roy | The evolution of spliceosomal introns: patterns, puzzles and progress[END_REF]. The primary transcripts of intron-containing genes must have their introns removed before they can be translated into proteins. The process of introns removal, called RNA splicing, converts the pre-mRNA into mature mRNA. It must occur with great precision to avoid the loss, or addition, of even a single nucleotide at the sites at which the exons are joined, because the triplet-nucleotide codons of mRNA are translated in a fixed reading frame that is set by the first codon in the protein-coding sequence [START_REF] Dietz | Maintenance of an open reading frame as an additional level of scrutiny during splice site selection[END_REF]. Lack of precision in splicing, would throw the reading frames of exons out of frame: downstream codons would be incorrectly selected and the wrong amino acids incorporated into proteins.

So, how are the introns and exons distinguished from each other? How are introns removed? How are exons joined with high precision?

Consensus splicing signals

The borders between introns and exons are marked by specific nucleotide sequences within the pre-mRNAs. These sequences delineate where splicing will occur.

Thus, as shown in Figure 2.1.3, the exon-intron boundary, which is the boundary at the 5' end of the intron, is marked by a sequence called the 5' splice site. The intron-exon boundary at the 3' end of the intron is marked by the 3' splice site. The figure shows a third sequence necessary for splicing. This is called the branch point site (or branch point sequence, BPS). It is found entirely within the intron, usually close to its 3' end,

and is followed by a polypyrimidine tract (Py tract) (Will and Lührmann, 2011). The consensus sequence for each of these elements is shown in Figure 2.1.3. The most highly conserved sequences are the GU in the 5' splice site, the AG in the 3' splice site, and the A at the branch site. These highly conserved nucleotides are all found within the intron itself. Indeed the sequence of most exons, in contrast to the introns, is constrained by the need to encode the specific amino acids of the protein product.

As consensus sequences related with splicing are also a type of crucial features for eukaryotic gene prediction, series of splicing sites and branch site prediction tools have 

Spliceosome

An intron is removed through two successive transesterification reactions in which phosphodiester linkages within the pre-mRNA are broken and new ones are formed. The transesterification reactions are mediated by a huge molecular machine called the spliceosome. This complex comprises about 150 proteins and five RNAs. The five RNAs (U1, U2, U4, U5, and U6) are collectively called small nuclear RNAs (snRNAs).

Each of these RNAs is between 100 and 300 nucleotides long in most eukaryotes and is complexed with several proteins. These RNA-protein complexes are called small nuclear ribonuclear proteins (snRNPs). The spliceosome is the large complex made up of these snRNPs and also many other proteins, but the exact makeup differs at different stages of the splicing reaction: different snRNPs come and go at different times, each performing particular functions in the reaction. As shown in Figure 2.1.5, initially the 5' splice site is recognized by the U1 snRNP, using base pairing between its snRNA and the pre-mRNA. U2AF is made up of two subunits, the larger of which, called U2AF65, binds to the Py tract and the smaller, called U2AF35, binds to the 3' splice site. The former subunit interacts with BBP (SF1)

and helps that protein bind to the branch site. This arrangement of proteins and RNA is called the early (E) complex. U2 snRNP then binds to the branch site, aided by U2AF and displacing BBP (SF1). This arrangement is called the A complex. Binding of the U4/U6-U5 tri-snRNP then forms the B complex. Several structural rearrangements in the B complex lead to loss of the U1 and U4 snRNPs, resulting in the C complex. Here the U6 snRNA is base-paired to the 5'splice site, and the base-pairing between the U4/U6 snRNAs is replaced with a U2-U6 snRNA interaction. This creates the active conformation of the spliceosome, and the two-transesterification reactions of splicing occur in it (Will and Lührmann, 2011).

Alternative splicing

Most pre-mRNAs in higher eukaryotes can be spliced in more than one way. Thus, mRNAs containing different selections of exons can be generated from a given pre-mRNA. Called alternative splicing (AS), this strategy enables a gene to give rise to more than one polypeptide product. These alternative products are called isoforms.

There are several different types of alternative splicing events, which can be classified into four main subgroups. The first type is exon skipping, in which a type of exon known as a cassette exon is spliced out of the transcript together with its flanking introns (see the Figure 2.1.6, Cassette exon). Exon skipping accounts for nearly 40% of alternative splicing events in higher eukaryotes [START_REF] Alekseyenko | Global analysis of exon creation versus loss and the role of alternative splicing in 17 vertebrate genomes[END_REF][START_REF] Sugnet | Transcriptome and genome conservation of alternative splicing events in humans and mice[END_REF], but is extremely rare in lower eukaryotes. The second and third types are alternative 3' splice site (3' SS) and 5' SS selection. These types of AS events occur when two or more splice sites are recognized at one end of an exon. Alternative 3' SS and 5' SS selection account for 18.4% and 7.9% of all AS events in higher eukaryotes, respectively. The fourth type is intron retention, in which an intron remains in the mature mRNA transcript. This is the rarest AS event in vertebrates and invertebrates, accounting for less than 5% of known events [START_REF] Alekseyenko | Global analysis of exon creation versus loss and the role of alternative splicing in 17 vertebrate genomes[END_REF][START_REF] Kim | Alternative splicing: current perspectives[END_REF][START_REF] Sugnet | Transcriptome and genome conservation of alternative splicing events in humans and mice[END_REF]. By contrast, intron retention is the most prevalent type of AS in plants, fungi and protozoa [START_REF] Kim | Alternative splicing: current perspectives[END_REF]. Less frequent, complex events that give rise to alternative transcript variants include mutually exclusive exons, alternative promoter usage and alternative polyadenylation [START_REF] Black | Mechanisms of alternative pre-messenger RNA splicing[END_REF]. Alternative splicing is a major cellular mechanism in metazoans for generating proteomic diversity [START_REF] Nilsen | Expansion of the eukaryotic proteome by alternative splicing[END_REF]. A large proportion of protein-coding genes in multicellular organisms undergo alternative splicing, and in humans, it has been estimated that nearly 90 % of protein-coding genes-much larger than expected-are subject to alternative splicing [START_REF] Black | Mechanisms of alternative pre-messenger RNA splicing[END_REF][START_REF] Pan | Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing[END_REF][START_REF] Chen | Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches[END_REF].

Genomic analyses of alternative splicing have illuminated its universal role in shaping the evolution of genomes, in the control of developmental processes, and in the dynamic regulation of the transcriptome to influence phenotype. Disruption of the splicing machinery has been found to drive pathophysiology, and indeed reprogramming of aberrant splicing can provide novel approaches to the development of molecular therapy.

Splicing regulation

Splicing is regulated by trans-acting proteins (repressors and activators) and corresponding cis-acting regulatory sites (silencers and enhancers) on the pre-mRNA.

However, as part of the complexity of alternative splicing, it is noted that the effects of a splicing factor are frequently position-dependent. It means that a splicing factor that serves as splicing activator when bound to an intronic enhancer element may serve as a repressor when bound to its splicing element in the context of an exon, and vice versa (Lim et al., 2011). There are two major types of cis-acting RNA sequence elements present in pre-mRNAs and they have corresponding trans-acting RNA-binding proteins (see Figure 2.1.7). Splicing silencers are sites to which splicing repressor proteins bind, reducing the probability that a nearby site will be used as a splice junction. These can be located in the intron (intronic splicing silencers, ISS) or in a neighboring exon (exonic splicing auxiliary factor (U2AF), U2AF65, bind the branch point sequence (BPS) and its downstream polypyrimidine tract, respectively. The smaller subunit of U2AF (U2AF35) binds to the AG dinucleotide of the 3' SS, interacting with both U2AF65 and a SR protein, such as SRSF2, through its UHM and RS domain, comprising the earliest splicing complex (E complex). ZRSR2 also interacts with U2AF and SR proteins to perform essential functions in RNA splicing. After the recognition of the 3' SS, U2 snRNP, together with SF3A1 and SF3B1, is recruited to the 3' SS to generate the splicing complex A. The mutated components in myelodysplasia are indicated by arrows. Figure from (Yoshida et al., 2011).

Single-nucleotide alterations in splice sites or cis-acting splicing regulatory sites may lead to differences in splicing of a single gene, while changes in the RNA processing machinery may lead to mis-splicing of multiple transcripts. Yoshida and his colleagues report whole-exome sequencing of 29 myelodysplasia specimens, which unexpectedly revealed novel pathway mutations involving multiple components of the RNA splicing machinery, including U2AF35, ZRSR2, SRSF2 and SF3B1. In a large series analysis, these splicing pathway mutations were frequent (~45 to 85%), and highly specific to myeloid neoplasms showing features of myelodysplasia (see Figure 2.1.9). Conspicuously, most of the mutations affect genes involved in the 3' splice site recognition during pre-mRNA processing, which may induce abnormal RNA splicing and compromised haematopoiesis (Yoshida et al., 2011).

Motivation

Pre-mRNA splicing takes place in the multi-component RNA machinery known as the spliceosome, which is assembled in a step-wise fashion through the sequential addition of U1, U2, and U4/U6/U5 small nuclear ribonucleoprotein particles to the pre-mRNA [START_REF] Wahl | The spliceosome: design principles of a dynamic RNP machine[END_REF]. U1 defines the functional 5' splice site largely through basepairing interactions, whereas U2 recognizes the functional 3' splice site, which also involves base pairing with the branch point sequence. Because the BPS (branch point site) is quite degenerate in higher eukaryotic cells (see Figure 2.1.3), the addition of U2 snRNP requires multiple auxiliary factors, the most important one being the U2AF heterodimer consisting of a 65kD and 35kD subunit [START_REF] Zamore | Cloning and domain structure of the mammalian splicing factor U2AF[END_REF][START_REF] Zhang | Cloning and intracellular localization of the U2 small nuclear ribonucleoprotein auxiliary factor small subunit[END_REF]. Numerous biochemical experiments on model pre-mRNAs have established sequence-specific binding of U2AF65 to the polypyrimidine tract (Py-tract) immediate downstream of the BPS and direct contact of U2AF35 with the AG dinucleotide, which together defines functional 3' splice sites [START_REF] Singh | Distinct binding specificities and functions of higher eukaryotic polypyrimidine tract-binding proteins[END_REF][START_REF] Valcárcel | Interaction of U2AF65 RS region with pre-mRNA of branch point and promotion base pairing with U2 snRNA[END_REF].

Upon definition of the functional 5' and 3' splice sites by U1 and U2 snRNPs and following a series of ATP-dependent steps, the U4/U6/U5 tri-snRNP complex joins the initial pre-spliceosome to convert it into the mature spliceosome [START_REF] Wahl | The spliceosome: design principles of a dynamic RNP machine[END_REF].

While the vital role of the U2AF heterodimer in defining 3' splice sites has widely been appreciated, it has been unclear whether it is required for the recognition of all Secondly, the RNA binding specificity of U2AF65 has been well characterized at the biochemical levels. Introns that contain a strong Py-tract are able to support spliceosome assembly in an AG-independent manner [START_REF] Reed | The organization of 3'splice-site sequences in mammalian introns[END_REF], and U2AF65

appears to be sufficient to support splicing of such AG-independent introns, at least in vitro [START_REF] Zamore | Biochemical characterization of U2 snRNP auxiliary factor: an essential pre-mRNA splicing factor with a novel intranuclear distribution[END_REF]. However, the U2AF35 subunit is responsible for directly contacting the AG dinucleotide on typical functional 3' splice sites and this partnership is enforced by U2AF65-dependent stability control of U2AF35 [START_REF] Pacheco | In vivo requirement of the small subunit of U2AF for recognition of a weak 3′ splice site[END_REF]. Functioning as a heterodimer, U2AF65/35 is thought to provide strong discrimination against pyrimidine-rich exonic as well as intronic sequences that are not part of the functional 3' splice sites in mammalian genomes. Specific RNA binding proteins, such as DEK and hnRNP A1, have been implicated in improving the RNA binding specificity in mammalian genomes [START_REF] Soares | Intron removal requires proofreading of U2AF/3'splice site recognition by DEK[END_REF][START_REF] Tavanez | hnRNP A1 proofreads 3′ splice site recognition by U2AF[END_REF].

However, it remains to be directly demonstrated whether the U2AF heterodimer indeed binds preferentially to the Py-tract followed by the AG dinucleotide from genome-wide analysis.

Thirdly, besides the critical role of U2AF in constitutive splicing, both U2AF65 and U2AF35 have been implicated in regulated splicing [START_REF] Park | Identification of alternative splicing regulators by RNA interference in Drosophila[END_REF] Given such a long range of mechanistic issues that remain to be addressed, we have embarked on genome-wide analysis of U2AF-RNA interactions in the human genome.

By defining the genomic landscape of U2AF binding and the functional requirement for both U2AF65 and U2AF35 in regulated splicing, we provide a series of mechanistic insights into the function of U2AF in normal and disease states.

Methods

To reveal the target site of U2AF, my colleagues use UV radiation to link the protein to RNA molecules in vivo. U2AF65 is then precipitated by using a specific antibody. With the protein, target RNA attached to the protein is isolated and high throughput sequenced.

On the other hand, RNA-seq or RASL-seq could give us the insights into all the alternative splicing change regulated by knockdown the trans-acting splicing regulatory protein.

I then developed serials of bioinformatics analysis pipelines to parse the rules coding in the high throughput sequencing data. These technologies can be applied in a variety of medically relevant settings, including uncovering regulatory mechanisms and expression profiles that distinguish normal and cancer cells, and identifying disease biomarkers, particularly regulatory variants that fall outside of protein coding regions. Together, these methods can be used for integrated personal omics profiling to map all regulatory and functional elements in an individual. Using this basal profile, dynamics of the various components can be studied in the context of disease, infection, treatment options, and so on. Such studies will be the cornerstone of personalized and predictive medicine (see Figure 2.2.5).

High throughput sequencing

Bioinformatics analysis

To examine the function of U2AF in pre-mRNA splicing, my colleagues get a high quality library of the protein-RNA interaction by CLIP-seq, and two RNA-seq data for Hela cells with or without U2AF65 knockdown. In addition, several RASL-seq experiments were done to reveal the cooperative relationship. All these high throughput data are analyzed as below.

The scripts for the analysis were mainly written in Perl or R. All the analysis was done under Linux Ubuntu 10.04.

FastQ format
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So, if the error ratio is 0.001, the quality score would be 30. In common, only sequences with an average Phred quality score of 20 or above could be used.

Sequencing quality control

Before analyzing the high throughput sequencing data, we always should check the quality of it to make sure there are no problems or biases in data which may affect the way we use it. We use a tool named FastQC [START_REF] Andrews | FastQC: A quality control tool for high throughput sequence data[END_REF]. The report of it include a lot of summary information of all the sequences: sequence base quality at each position, average quality distribution for all the sequences, nucleotide frequency at each position, and over presented sequence (see Figure 2.2.9). It can be run in a non-interactive mode.

So it would be suitable for integrating into a larger analysis pipeline for the systematic processing of large numbers of files.

Mapping

Finding the best alignment of two sequences is an ancient problem. And almost all the books about algorithm would introduce it, because it is a classical application of the algorithm of dynamic programming. Setting reasonable scoring parameters, algorithm of dynamic programming could map the sequencing reads to the genome very well.

However, it is still much too slow for mapping, especially for millions of short reads. As for UV crosslinking would induce deletion in the reads (Zhang and Darnell, 2011), we use Bowtie2 to map our reads to the genome.

For RNA-seq data, we firstly make an index of mRNA, but not genome sequence.

After mapping the pair-end reads separately, we join them together and recalculate the coordinate in the genome.

Peak calling

Biological experiments cannot avoid inducing noise. High throughput sequencing also would read out some noisy signals for non-specific binding or sequencing error.

So we should find out the real binding site out of the background, called peak calling. The other one is proposed by Darnell group (Chi et al., 2008). It is based on the shape value that real peaks always like a mountain that has a bigger kurtosis value.

After using cubic spline interpolation, all the potential peaks could be seek out base on derivative value, and then the excess kurtosis could be computed and the threshold kurtosis value for peaks could be find out with a pre-set FDR (see Figure 2.2.12).

In this study, we code and try both the two methods, and find that each method have advantages and disadvantages. Height based method is more reliable, but it can not be used in regions without any annotation gene. Kurtosis based method could be used anywhere, but it perform not well in regions with lots of continuous peaks. Here, Motif finding was implemented using RSA tools oligo analysis algorithm (http://rsat.ulb.ac.be/) with input U2AF65 peaks (van Helden et al., 1998).

Visualization

Pictures contain more information than a serial of numbers, and they are more intuitionist than numbers. People also always like to look at picture but not pure numbers. It is the same for biological data. Many platforms are developed for storing and visualization the high throughput data. Two of those are widely used. The other one is UCSC genome browser. It is an interactive web server build by University of California, Santa Cruz (UCSC), offering access to genome sequence data from a variety of vertebrate and invertebrate species and major model organisms.

Above all, there are a large collection of aligned annotations integrated in the database, and all could be easily used (see Figure 2.2.14).

Regulation pattern analysis

Plotting the RNA-map on up-and down-regulated cases is a common way to dig the regulation pattern. However, it is very tricky because of the normalization. Different types of data should be normalized in a commensurate level, and cases in a same type also should be normalized. If not, the final result would be dominant by only few cases.

Machine learning and prediction of U2AF65 binding sites

Motif finding only state a general intuition of U2AF65 binding preference, because it just finds out the most frequency k-mer sequence. The base frequency at each position, the neighboring and nonneighboring dependencies of the pattern are all crucial, and should be taken into account for prediction binding site.

As we known, a weight matrix could present the likes and dislikes for nucleotides at each position, and the product of all the probability at each position could be used as a criterion for prediction. More complicated, the first-or higher-order Markov model could reflect the dependencies between neighboring bases in a positional or nonpositional way. All the possibility model cannot contain all the potential patterns, and the nonneighboring dependencies are much more complex [START_REF] Durbin | Biological sequence analysis: probabilistic models of proteins and nucleic acids[END_REF]. 
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is not smaller than a threshold which achieved based on a setting FDR, it would be predicted as a true target site.

How to learn the distribution of training data? We begin with a uniform possibility distribution for all the sequences X .
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In this study, we set the length of predicted binding sequences as 12 nucleotides based on the results of motif finding (see below). And then the technique of iterative scaling is used to learn the positive or negative training data with a set of constraints circularly one by one, to reach a convergence which simultaneously satisfy all the list of constrains as far as possible.

In detail, represent each member of the ordered list of constraints as i Q , where i is the order in the list. The sequences relevant to the constraint at the j th step of iteration have the form ( ) ( )
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 is the probability of the sequence at the ( 1 j  )th step in the iteration.

1 j i Q  is
the sum of probabilities of the sequences accord with constraint i Q determined from the distribution at the ( 1 j  )th step. For example, when calculate a nonadjacent constraint
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at the j th step, for all the sequences satisfy the constrains:
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While all the sequences not matching ANA are iterated as follows:
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As the iterations proceed, the entropy H for all the sequences X decreases. For our purposes, we say the entropy has converged when the scope of decreases between iterations becomes very small ( 7 | H| 10   

). We use a total of 169604 real U2AF65 binding sites with crosslink induced deletion sites, taking 3 nucleotides (nt) before, 8 nt after the deletion site and the deletion site itself (12 nt in total) as the target sites. 300000 false binding sites are randomly selected from intronic regions without any U2AF65 binding reads in the genes having U2AF65

binding peaks (see Table 2.2.2).

Results

Genome-wide mapping of U2AF-RNA interactions

To map the interaction of U2AF65 with RNA in the human genome, my colleagues initially employed the standard CLIP-seq procedure to construct the library (Xue et al.,

2009

). While we could not efficiently ligate the 3' RNA linker to IPed RNA on the We included a randomized barcode in our libraries to help remove PCR products during library amplification. Out of a total of 19.5 million sequenced tags, 12.1 million could be mapped and 9.3 million could be uniquely mapped to the human genome (see After peak calling, we find out that U2AF65 binding was mostly detected in intronic regions of pre-mRNA (80.74%) with an additional fraction (13.24%) corresponding to exon-intron boundaries, which together accounts for 94% of mapped U2AF65 binding events in the human genome (see Figure 2.3.4). We also detected These data demonstrated high fidelity mapping results for U2AF65-RNA interactions in the human genome. 
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). However, we noted that this simple counting method is likely to miss many U2AF-dependent 3' splice sties, especially among genes that are expressed at modest to low levels in the cell.

We therefore developed a maximal neighborhood approach to estimate the percentage of 3' splice sites that could be bound directly by U2AF65. We first sorted expressed genes according to the average tag density per annotated 3' splice site in each gene and then divided these genes into consecutive groups, each consisting of 50 genes.

This allowed us to calculate the coverage of annotated 3' splice sites by U2AF65 with standard deviation in all groups. We next determined the percentage of coverage of the 3' splice sites when the tag density per 3' splice site is progressively increased. As

shown in Figure 2.3.12 (blue dots), we observed that the coverage reached saturation at ~88% with increasing levels of U2AF65 binding at annotated 3' splice sites, indicating the existence of ~12% U2AF65-independent introns in the human genome. We next asked whether those U2AF65 unbound 3' splice sites are drifted from U2AF65 binding consensus. For this purpose, we similarly sorted expressed genes according to the average tag density per 3' splice site and then group those splice sites without U2AF65 peak into consecutive groups, each consisting of a total of 50 introns.

We next calculated the averaged 3' splice site score of U2AF65 unbound 3' splice sites in each group according to Yeo and Burge36. As shown in Figure 2.3.12 (orange dots),

we detected progressive decease in the averaged 3' splice site score with U2AF65 unbound introns. These data indicate that, among genes that show less efficient U2AF binding in general, the lack of U2AF binding in unoccupied introns is likely due to limited expression, but among genes that show extensive U2AF binding, the lack of U2AF binding in the remaining introns likely results from poor consensus in their 3' splice sites. Therefore, coupled with the maximal neighborhood analysis, our data suggest that a significant fraction (~12%) of functional 3' splice sites may indeed represent U2AF-independent ones.

Additional U2AF binding events beyond functional 3' splice sites

The Because U2AF65 functions as a heterodimer with U2AF35 based on their tight interactions in co-IP experiments, it is likely that the mapped genomic U2AF65 binding events largely reflect the action of the U2AF65/35 heterodimer in vivo, which now affords us to directly test whether the U2AF heterodimer indeed prefer for Py tracts each followed by an AG dinucleotide in the human genome. These data suggest that, despite the presence of other specificity enhancing factors to prevent U2AF65 from binding to other pyrimidine-rich sequences, a significant fraction of U2AF65 is still able to bind other locations in pre-mRNA besides functional These data demonstrate that U2AF65 is extensively involved in the regulation of alternative splicing. Importantly, while 2/3 of induced events by U2AF65 RNAi showed increased exon skipping, the remaining 1/3 exhibited increased exon inclusion, raising an important mechanistic question on the positive and negative effects of this essential splicing factor on splice site selection.

Multiple mechanisms underlying U2AF-regulated alternative splicing

Because numerous genes were down regulated in U2AF65-depeleted cells, many induced changes in alternative splicing might result from indirect effects of reduced expression of either positive or negative splicing regulators, which is expected to cause exon inclusion and skipping in about equal frequencies. However, our data clearly showed more induced exon skipping events than exon inclusion events in U2AF65-53 depleted cells (Figure 2.3.15), indicating that at least a fraction of U2AF65 depletioninduced exon skipping events may result from the direct effect of U2AF65. This is consistent with levels of U2AF65 binding that are generally proportional to the levels of exon inclusion (see Figure 2.3.18), suggesting that the 3' splice site of the alternative exons is weaker in general than that of the flanking competing exons, and when U2AF65 is reduced in RNAi-treated cells, the alternative exons may be preferentially affected. It is real that the difference in U2AF65 binding in Figure 2. 3.20 are modest. This is because the size of introns varies greatly. As we displayed U2AF65 intronic binding events in a lineage fashion, the figure misses many intronic binding events that are beyond the adjacent regions from 5' and 3' splice sites. It is significant that, among down-regulated exons, the ratio is evenly distributed between 0 and 1, indicating that the dominant regulatory mode for these events is selective weakening of U2AF binding at the alternative 3' splice site relative to the downstream 3' splice site. In contrast, we observe that most ratios are >0.5 among upregulated exons, indicating that prevalent upstream intronic binding events interfere with the function of U2AF65 at the 3' splice site of the alternative exon, and as a result, removal of such interference induces the inclusion of the alternative exon. This is next validated by mutational analysis in the following panels, which additionally show that the same regulatory principle also holds for some strong downstream intronic binding events where they interfere with the function of U2AF65 at the 3' splice site of the We next dissected the EIF4A2 minigene where U2AF65 binds extensively on both up-and downstream introns and U2AF65 depletion induced the net increase in the inclusion of the alternative exon. In this case, instead of constructing simple deletion mutants (because deletion of the U2AF binding sequence would remove most of the upstream or downstream intron), we replaced the U2AF65 binding sequences with a non-U2AF65 binding sequence of similar length. Interestingly, we detected enhanced exon inclusion when the upstream U2AF65 binding site was substituted, but enhanced exon skipping when the downstream U2AF65 binding site was replaced (see Figure

2.3.25).

Considered together, the simplest interpretation of the above results is that U2AF65 binding in intronic regions interferes with the recognition of the immediate downstream functional 3' splice site. In the case of TPD52L2, release of such inhibition increases the competitiveness of the flanking 3' splice site, thereby suppressing the selection of the upstream 3' splice site associated with the alternative exon. This is also the case with U2AF65 binding in the downstream intron of the EIF4A2 gene. On the other hand, the removal of U2AF65 competition from the upstream intron in both Drosha and EIF4A2 genes likely increases the competitiveness of the 3' splice site of the alternative exon, allowing it to be included more efficiently in each case. When both competing events are operating in the same alternative splicing unit, a strong one would win, as in the case the EIF4A2 gene, thus generating a net effect of exon inclusion in U2AF65-depleted cells. Based on these findings, we propose a polar mechanism for intronic U2AF65

binding to interfere with the recognition of the downstream 3' splice site (see Figure 2.3.26). Using this oligonucleotide ligation-based approach, which was designed to specifically interrogate a large set of annotated splicing events (~5,000), we detected 1892 alternative splicing events in control RNAi-treated HeLa cells, among which 271 and 334 events showed significant changes (p<0.001) in response to U2AF65 and U2AF35 depletion, and U2AF65 depletion respectively, which were extensively validated (see Figure 2 These data demonstrated that U2AF35 largely functions in conjunction with U2AF65 in the regulation of alternative splicing in mammalian cells.

Coordinated action of U2AF65 and U2AF35 in regulated splicing

U2AF65 binding scores

Using sequences of 12 nucleotides, we should iterate 12 4 16777216  times for all the sequences in a loop for a specific constrain, and there are 48 constrains even for the simplest type of pattern. Being limited of our computers' performance, we have only tried three kinds of patterns now. Latter, we could try to break the long target sequences into smaller ones to predict, and then join them together. In this way, we could test more complex pattern and mixed pattern of them.

The three patterns just present the weight matrix model (me1s0), the first-order Markov model (me2s0) and a simplest nonadjacent dependence model (me2s1) (see Figure 2.3.31). As shown in Figure 2.3.31, there are not too much difference among them, indicating that the adjacent and nonadjacent dependencies between nucleotides maybe not be used so much by U2AF65 to recognize it target sites. And all the patterns do not perform very well. We think that there are two reasons at least: There are many assistant factors (U2AF35, hnRNPA1) could help U2AF65 to recognize target sites, as described previously; RNA structures in the intronic regions may also affect U2AF65 binding on the target patterns. While the first-order Markov model (me2s0) perform a little better than the others, we take the log-likelihood ratio of this model as the U2AF65 binding scores. Base on this score, we could try to predict the possibility that if the U2AF65 likes of dislikes binding on a specific sequence. Comparing the upstream and downstream intronic region, U2AF65 binding score appears a little higher along the upstream intronic region of the alternative cassette exons for up-regulated cassette exons than down-regulated cases, but not for the downstream region.

Discussion

Our current genome-wide study demonstrates that U2AF65 plays a predominant role in functional definition of 3' splice sites and is required for efficient expression of most intron-containing genes in the human genome. Interestingly, however, our data also suggest the existence of ~12% U2AF65-independent introns because they lack evidence for U2AF65 binding and their Py tracts are considerably degenerate from the pyrimidine-rich consensus. It is important to point out that the functional requirement for U2AF is not strictly determined by the consensus, as many poor 3' splice sites could be aided in by other intronic splicing enhancer factors, such as YB1 [START_REF] Shen | The U2AF35-related protein Urp contacts the 3′ splice site to promote U12-type intron splicing and the second step of U2-type intron splicing[END_REF].

However, the existence of a fraction of U2AF-independent introns is fully consistent with the observations made in fission yeast (Sridharan et However, our genome-wide binding data clearly show that U2AF65 can also bind to various locations that are not part of annotated 3' splice sites and these binding events do not seem to depend on a downstream AG dinucleotide. This is consistent with the proposed function of U2AF65 in promoting nuclear export of intronless transcripts in Drosophila (Gama-Carvalho et al., 2006) and with binding of U2AF65 on some spliced mRNAs (Xiao et al., 2012). A more recent study showed that hnRNP C is able to prevent U2AF65 from binding to many Alu-containing transcripts to suppress exonization of those Alu elements [START_REF] Zarnack | Direct competition between hnrnp c and u2af65 protects the transcriptome from the exonization of Alu elements[END_REF]. Therefore, U2AF binding appears to be a highly regulated process in mammalian genomes.

Besides its role in constitutive splicing, U2AF has been implicated in the regulation of alternative splicing. Our metagene analysis indicates that U2AF binding on the 3' splice site of alternative exons generally tracks the level of exon inclusion. This has been generally perceived as a predominant mechanism for U2AF-regulated splicing. However, we also found that U2AF65 exhibits other modes of binding in the human genome, one corresponding to its binding to exonic regions to interfere with the selection of nearby 3' splice site, which has been demonstrated on engineered minigenes (Lim et al., 2011). A more widespread mode of U2AF65 binding appears to occur in various intronic locations.

By mutational analysis, we found that those intronic U2AF65 binding events appear to selectively interfere with the recognition of the immediate downstream 3' splice site, and thus, the competition between the alternative and flanking constitutive splice sites dictates the splicing outcome. This splice site competition model provides a universal mechanism for the regulation of alternative splicing by both sequencespecific RNA binding proteins and core components of the splicing machinery [START_REF] Zhou | The Akt-SRPK-SR axis constitutes a major pathway in transducing EGF signaling to regulate alternative splicing in the nucleus[END_REF]. The observed polar effect may underlie the positional effect of many other splicing regulators whose binding on the upstream intron may inhibit the inclusion of the alternative exon, whereas their interaction with the downstream intron may induce the skipping of the alternative exon [START_REF] Przychodzen | Patterns of missplicing due to somatic U2AF1 mutations in myeloid neoplasms[END_REF].

One of the most important advances in the field is the identification of specific mutations in multiple splicing factors, including U2AF65 and U2AF35, in specific types of myeloid leukemia. Because of the prevalence of those mutations in the disease, they are generally considered driver mutations, which actually remain to be functionally defined.

Therefore, although our current study was not carried out in a disease-relevant cell type, our findings provide critical insights into the nature of specific mutations in the splicing regulators. The challenge ahead is to link specific molecular defects in right cell types, likely hemopoietic stem cells, to the etiology of the disease. From the biological Big Data, vast amounts of genes lists of expression, regulation, interaction, correlation could be extracted from the data mining results, such as cell expressed microRNAs, gene regulated genes, protein-protein interaction, disease related genes, or just gene association from text mining [START_REF] Metzker | Sequencing technologies-the next generation[END_REF]. Facing these kinds of lists, it is very difficult to exploit them if they are not ranked. However, rankings of biological data on a same query are always very different between different processing methods, algorithms or datasets, especially for biological data mostly with noise, fuzziness, biases and errors (Brusic et al., 1998). Based on all these issues, how to get a convincible ranking result from biological data becomes an important task in post-genome era.

Instead of developing new ranking methods, Cohen-Boulakia and her colleagues proposed to generate a consensus ranking to highlight the common points of a set of rankings while minimizing their disagreements to combat the noise and error for biological data [START_REF] Brusic | Knowledge sharing across biological and medical knowledge based systems: Papers from the[END_REF]. This idea had already been used for combining results of microarray data (DeConde et al., 2006), microRNA targets prediction algorithms [START_REF] Sengupta | Reformulated Kemeny Optimal Aggregation with Application in Consensus Ranking of microRNA Targets[END_REF], Comparison ligand-binding site prediction methods [START_REF] Gao | Comparison of different ranking methods in protein-ligand binding site prediction[END_REF], and so on.

There has been also a lot of interest in this problem in the computer science community in recent years which arises when building meta-search engines for Web search, where one wants to combine the rankings obtained by different algorithms into a representative ranking. For example, Dwork combines the rankings of individual search engines to get more robust rankings that are not sensitive to the various shortcomings and biases of individual search engines (for instance, "paid placement" and "paid inclusion" among search engines) [START_REF] Dwork | Efficient similarity search and classification via rank aggregation[END_REF].

The process of generating a consensus ranking is based on the concept of ranking aggregation, originating in social choice theory, machine learning, and theoretical computer science [START_REF] Ali | Experiments with Kemeny ranking: What works when?[END_REF], defined on rankings: Given m rankings of n elements and a distance function, the ranking aggregation problem is to find a ranking of all the elements that is the closest of the m given rankings.

It could be easily thought of a kind of a ranking aggregation method, where the order of each element is determined by taking simple average of positions of it from different rankings. This method was firstly proposed by Borda as a voting system for elections in the late eighteenth century [START_REF] Young | An axiomatization of Borda's rule[END_REF]. Condorcet proposed a more reasonable method of pairwise majority voting known as Condorcet's criterion, which permits A to be ranked higher than B if the majority vote for A over B in pairwise comparison, even if the average of positions of A is after B (De [START_REF] Grazia | Mathematical derivation of an election system[END_REF].

Obeying to extended Condorcet criterion, Kemeny proposed the Kemeny optimal aggregation for determining the best aggregate ranking based on the Kendall-tau distance which counts the number of pairwise disagreements between orderings of elements (Kemeny et al., 1962). However, Kemeny optimal aggregation is unfortunately a computational challenge, because the problem is NP-hard even for only four rankings [START_REF] Dwork | Efficient similarity search and classification via rank aggregation[END_REF][START_REF] Blin | Medians of an odd number of permutations[END_REF]. Since the problem is important across a variety of fields, many researchers across these fields have converged on finding good, practical algorithms for its solution.

There are formulations that lead to exact algorithms, of course without polynomial running time guarantees. There are also a large number of heuristic and approximation algorithms.

Among these, a group of algorithms are thought to be very prospective, named pivot algorithms [START_REF] Ailon | Aggregating inconsistent information: ranking and clustering[END_REF][START_REF] Van Zuylen | Deterministic pivoting algorithms for constrained ranking and clustering problems[END_REF]. In common, they recursively generate a solution by choosing an elements as pivot and ordering all the other elements with respect to the pivot according to some criterion. It divides the problem into smaller ones and conquers separately, and uses the transitive property (see below) which is right in most situations, especially for the rankings with high agreement.

So the pivot algorithms are always fast in time and not bad in accuracy.

In this chapter, we propose a new variant of pivot algorithms named as Consistent-Pivot. It uses a new strategy of pivot selection and other elements assignment which performs much better both on computation time and accuracy than previous pivot algorithms.

Notations

In this section, we introduce the definition of ranking and the distance used to compare two rankings, then we provide the general statement of the problem of Kemeny optimal aggregation with ties under generalized Kendall-tau distance.

Ranking with ties

Following the definition of Fagin and his colleagues, given a universe set U , a ranking with ties ( or bucket order) of a subset S U  , r is a transitive binary relation represented as set of non-empty buckets 1 ,..., k B B that form a disjoint partition of the elements of S , such that x y if and only if there are i , j with i j  such that i x B  and j y B  [START_REF] Fagin | Comparing and aggregating rankings with ties[END_REF]. We may assume without loss of generality that a ranking with ties on [ ] n is defined as

, and let ( )

r x i  if i x B 
which denotes the rank of x .

If r contains all the elements in U , then it is said to be a full ranking. There are situations where full rankings are not possible. For instance, the ranking result of target genes of a miRNA from a prediction tool usually cannot include all the targets. Such rankings that rank only some of the elements in U are called partial rankings.

Unifying a set of partial rankings

Aiming to penalize the fact that one element is considered in a ranking but not in another one, Cohen-Boulakia and her colleagues present a unifying preprocess for sets of partial rankings to append the set of elements belonging to the other rankings to the end in a same bucket.

Example 1 For instance, let us consider three different ranking methods which outputs are the following: This is a normalized method to facilitate the comparison between the rankings and the consensus ranking, especially for comparing the performance of the different ranking methods. In the remainder of this chapter, the unifying preprocess is applied before running the ranking aggregation algorithm.

Distance measures

How do we define a distance between two full rankings with respect to a set S ?

In the last century, this problem has been studied and defined from a mathematical perspective (Kendall, 1938).

The Spearman footrule distance

For all elements i S  , the Spearman footrule distance is the sum of the absolute difference between the rank level of i according to the two rankings. Formally, given two full rankings 1 r and 2 r , the distance is given by: 

Kendall-tau distance

A good dissimilarity measure for comparing two rankings without ties is the Kendall-tau distance which counts the number of pairwise disagreements between positions of elements in these rankings [START_REF] Dwork | Efficient similarity search and classification via rank aggregation[END_REF]. The larger the distance, the more dissimilar the two rankings are. Kendall-tau distance is also called bubble-sort distance since it is equivalent to the number of swaps that the bubble sort algorithm would make to place one ranking in the same order as the other ranking.

A strict ranking without ties, or permutation, r is a bijection of K r r i j i j r i r j r i r j r i r j r i r j

     
where [ ] r i denotes the position of integer i in permutation r and # S the cardinality of set S . For example, if

1 [{1},{2},{3},{4}] r  , 2 [{2},{3},{1},{4}] r  , then 1 2 
( , ) 2 K r r  since elements 1 and 2 appear in different orders in the two rankings as do elements 1 and 3, but not others. p K r r i j i j r i r j r i r j r i r j r i r j p i j i j r i r j r

Generalized Kendall-tau distance for rankings with ties

          2 1 1 2 2 [ ] [ ]) or ( [ ] [ ] and [ ] [ ])]} i r j r i r j r i r j   
In other words, the generalized Kendall-tau distance considers the number of disagreements between two rankings with ties: a disagreement can be either two elements that are in different buckets in each ranking, where the order of the buckets disagree, and each such disagreement counts for 1 in the distance; or two elements that are in the same bucket in one ranking and in different buckets in the other, and each such disagreement counts for p , 0

1 p   . For example, if 1 [{1},{2,3,4}] r  2 [{2,3},{1,4}] r  , then 1 2 ( , ) 2 3 K r r p  
since two pairs of elements 1 and 2, 1 and 3 appear in different orders in the two rankings, and three pair of elements 1 and 4, 2 and 4, 3 and 4 appear in different buckets in one ranking while in a same bucket in the other ranking.

Kemeny optimal aggregations

Based on the definition of Kendall-tau distance, Kemeny proposed a precise criterion for determining the "best" aggregate ranking (Kemeny and James, 1962).

Given n elements and m rankings of the elements, a Kemeny optimal ranking of the elements is a ranking * r that minimizes the sum of distances, 

Previous algorithms

As for the Kemeny optimal aggregation problem, Conitzer et al have provided a integer linear programming scheme for treating strict rankings [START_REF] Conitzer | Improved bounds for computing Kemeny rankings[END_REF] and Blin expands it generally for rankings with ties (Brancotte et al., in preparation).

However, of course solving the integer linear programming problem is also NP-hard.

Another exact algorithm was proposed by Meila et al. It is a branch and bound algorithm (B&B). Each node in the search tree corresponds to a prefix 1 2

[ , , , ]

j x x x   of *
r , so that level j in the tree contains all possible prefixes of length j ; branching is on the item to be added in rank So, many heuristic and approximate algorithms were developed.

Some heuristics and approximation algorithms

Heuristics and approximation algorithms are techniques designed for solving a problem more quickly when classic methods are too slow, or when classic methods fail to find any exact solution, especially for NP-hard problems. However, more than heuristics algorithms, approximation algorithms want provable solution quality and provable run-time bounds. For example, a  -approximation algorithm A is defined to be an algorithm for which it is proven that the result of the approximation algorithm ( ) A x will not be more (or less, depending on the situation) than a factor  times the optimum solution ( OPT ).

( ) , if

( ) , if 1;

OPT A x OPT OPT A x OPT             
The factor  is called the constant ratio approximation factor.

Borda count

As described before, Borda count comes from the social choice theory. It is "positional" method, which sorts items in descending order according to their average position across all the input rankings (Borda, 1781).

It aims at finding the winner of a pole by taking into consideration the preferences between candidates each voter has by letting them rank all the candidates, which form R a set of rankings. The principle of the algorithm is simple it assigns to each element Obviously, this is a heuristic algorithm, which is not developed for solving the median problem. However, it could give a good solution very quickly.

MEDRank

MEDRank was designed for a database environment where, in order to quickly provide an answer, one needs to have as few accesses as possible to each record of each ranking [START_REF] Dwork | Efficient similarity search and classification via rank aggregation[END_REF].

In order to build the consensus, all rankings of R are read in parallel, element by element. Having m rankings and a threshold tr , 0 1 tr   , as soon as an element has been read in tr m  rankings, it is added at the end of the consensus in a new bucket.

Obviously, the algorithm runs also in ( ) O nm .

In the study of Fagin and colleagues' , the default threshold considered by the authors is 0.5 tr  . In this way, the algorithm is just sorting the median value of the set of positions of every element in the rankings. As described above, so this is just the optimal solution based on the Spearman footrule distance. It is known that:

1 2 1 2 1 2 ( , ) ( , ) 2 ( , ) K r r F r r K r r  
So it is proven that it is a 2-approximation algorithm [START_REF] Dwork | Efficient similarity search and classification via rank aggregation[END_REF].

FaginLarge and FaginSmall

This Fagin et al.'s algorithm is a kind of improvement of the MEDRank, based on the intuition that if two items i and j have very close median ranks, items i and j should be put into the same bucket in the output ranking [START_REF] Fagin | Comparing and aggregating rankings with ties[END_REF]. So it is also called the median aggregation algorithm. It starts from the ordering result of median rank of elements, then groups elements with close median ranks into same bucket to minimize the sum of all the buckets cost based on dynamic programming.

In detail, suppose a bucket B in the final result ranking r , contains items starting from the i -th position to the j -th position in the MEDRank result. Then the bucket cost c associated with this bucket is defined as follows:

( , ) ( ) 2

j l i i j c i j Med l      Where ( )
Med l denotes the median rank of item l and the term ( ) 2 i j  represents the "average position" of the bucket in the output bucket order. It has been proven that this algorithm is a constant factor approximation both full rankings and partial rankings. For full rankings, the median aggregation algorithm gives a near-optimal full ranking, with an approximation factor of two [START_REF] Fagin | Comparing and aggregating rankings with ties[END_REF]. In contrast to the two previous one, this heuristic is an anytime algorithm, as the input ranking is iteratively improved and interrupting the algorithm at any time will return a proper result. This heuristic can be implemented with a time complexity of 3 ( ) O n m . BioConsert is a kind of local search algorithm. At each step, the BioConsert algorithm is only looking for a better neighbor. So it would falls in to a local best solution, which can be the global best one sometimes.

Other algorithms

There are some other algorithms for the ranking aggregation problem. Dwork et al. 

Pivot Algorithms

Previous pivot algorithms are all published for rankings without ties, but they all could be expanded to the rankings with ties. Besides the two relationships for two elements ( i j , i is before j ; i j , i is after j ), rankings with ties allow elements in a same level. So, it is a little more complex for rankings with ties. Here for simple description, we follow the same situations described in the papers before for the previous pivot algorithms.

Transitive property and conflicts

We define the weight that element i is before element j as ij w , which is how many times the element i is before element j in the m rankings. So if ij ji w w  , we would say that the situation where element i is before element j ( i j ) is dominant.

We have stated that sets of rankings usually have transitive property for elements.

It means that if i j and j k are dominant for the set of rankings, we could usually see that i k in most time (or, i j k ), especially for the rankings with high agreement. Let us illustrate this property in an example, for the three rankings below: For convenience, we remove the minor directed edges to only keep the dominant relationship between two elements (see Figure 3.3.2). As shown in Figure 3.3.2, the transitive property is that element 1 is dominantly before element 2 (1 2 ), and element 2 is dominantly before element 3 ( 2 3), so we usually could see that 1 is also dominant before 3 (1 3 or 1 2 3). It is the same for element 1, 3 and 4 (1 3 4 ), element 1, 4 and 2 (1 4 2 ). But it is clear that the transitive property is not true for element 2, 3 and 4 (see and ordering all other elements with respect to the pivot element (see Algorithm 2). In this way, the positional relationship between elements in the sets of both sides of the pivot do not need to be taken into account: all the elements on the left side are before all the element on the right side.

Algorithm 2. KwikSort

The advantage of this algorithm is that it is very fast. The weight table could be calculated with a time complexity of 2 ( ) O n m . We note that the weight table only need to be calculated once and the same table can be used in all recursive calls. And even in the worst situation, it makes 2 ( ) O n comparisons. In addition, the accuracy of this algorithm is not very bad, especially for the rankings with high consistence. It has been proven that this algorithm is a 2-factor approximation algorithm for rankings without ties [START_REF] Ailon | Aggregating inconsistent information: ranking and clustering[END_REF].

In fact, the KwikSort algorithm uses the transitive property which is usually true for elements, but not takes the conflicts in rankings into account. So some more algorithms were developed to try to solve this problem, by changing the assignment method or pivot picking method.

LP-KwikSort

As described above, the integer linear programming (ILP) for ranking aggregation problem is also NP-hard. But as we know, the linear programming (LP) relaxation without integrality constraint can be solved in polynomial time [START_REF] Khachiyan | Polynomial algorithms in linear programming[END_REF].

Based on the pivot and the linear programming scheme, Ailon and colleagues proposed another algorithm, LP-KwikSort (see Algorithm 4).

Here we define the solution of the following linear programming as P , where ij p indicate the probability that element i is before element j .

, \{i} Z= ( )

0 1 . . for , j, k 1 ij ji ji ij i V j V ij ij ji ij jk ki minimize p w p w p s t i p p p p p                   Algorithm 3. LP-KwikSort
The main idea of the algorithm is changing the assignment of the other elements in such a way that, after we choose a pivot j , we should use the LP solution value

( ij p ( , ) ( ) ( , ) ( ) ( ) k k ij i j T G ij i j T G w Pivot k c      .
In this way, the choice of k costs as little as possible, and earns as much as possible.

In addition, this algorithm also improves the method of assignment of all the other elements based on the solution of linear programming without integrality constraint (see Algorithm 5). It also involves comparing of a type of cost-earning ratios of placing the element on the left sides or right sides:

    ( ) | , ( ) ( ) | , k L R L k L R W V V i V Ratio i V C V V i V               ( ) | , ( ) ( ) | , k L R R k L R W V V V i Ratio i V C V V V i           Where   \{ } ( , ) ( ) ( ) | , ( ) | , L R k k L R ki ik ik ki ki ik ij L R i V i V i V k i j T V W V V V w w p w p w w V V                      \{ } ( , ) ( ) ( ) | , | , k k L R ik ij L R i V k i j T V C V V V c c V V             And ( , ) ( ) , { , } \{ } \{ }, \{ }, | , ( ) k L R R L ij L R ij ji ij ij ji jk ij ki ij i j T V j V i V i j V k j V k i V i V k j V w V V w p w p w p w p w                         ( , ) ( ) , { , } \{ } \{ }, \{ }, | , ( ) k L R R L ij L R ij ji ij ij ji jk ij ki ij i j T V j V i V i j V k j V k i V i V k j V c V V c p c p c p c p c                        
In what follows, we define a consistent score for element i as the sum of the costs between the element and all the other elements: \{ } ( ) ( , )

j V i Consistent i cost i j   
This score reflect the positional certainty of the element in the rankings. The element with smaller consistent score is more stable. As a well-known landmark in a city for the other buildings, the positional relationships are clear, the element with the smallest consistent score could also be a marker to position all the other elements.

With the intuition above, we propose that the element with the smallest consistent score should be picked as the pivot.

For example, here are four rankings of 15 elements: In the first recursive cycle, element 7 is picked as the pivot ( (7) 0 Consistent  ). It is worth noting that in the second recursive cycle, element 8 is picked as the pivot ( (8) 1 Consistent  ). Based on the element 8, all the other elements can be easily assigned into the two sides. And in fact, the two groups of elements beside the element 8 really have little interaction between groups, but have complex positional relationship in the groups.

Continuing to use the principle, we assign all the other elements not randomly but in an order of the consistent score from small to large. As for the method of assignment of all the other elements, we do not directly use the positional relationship between the element and the pivot, instead of using a cost function that the position with the smallest cost is chosen (see Algorithm 5).

L S R jk kj j k L S R ji ji i j i j j V j V j V x ji x ji x i j i j j V i ij ji ij ji i j i j j V j V j V
Cost i before cost i j w w w w cost i j w w w w

Cost i same w w w w w w x  are the best positional result for the element in the unassigned set V and the pivot k . Sometimes, there are two or three best ( ) ( , )

                                1 
jk kj j k L S R jk j k ij x ji ij x ji x i j i j j V i ij ij i j i j j V j V j V ij x ij x i j i j j V i
p result

K r R IdealDis Gap IdealDis

 

It is a relative value to the ideal distance. Clearly, the more the gap is, the less the accuracy shows.

Data sets

We firstly test the performance on real biological data [START_REF] Brusic | Knowledge sharing across biological and medical knowledge based systems: Papers from the[END_REF]. It is query results from four ranking methods of rankings for genes known to be possibly associated with some kinds of diseases: Breast cancer, Prostate cancer, Neuroblastoma, Bladder cancer, Retinoblastoma, Attention Deficit Hyperactivity Disorder (ADHD), and Long QT syndrome (LQT) (see Table 3 stepping 100. We generate 500 datasets for each n , which gives a total of 15000 datasets. They were produced by putting n elements randomly into n buckets independently, and then sorting them by the bucket order. 

Results on WebSearch data

To value the performance of the two pivot algorithms based on linear programming, we firstly generate a dataset with less elements for all the 37 queries.

The average number of elements per query is 36.2, with a standard deviation of 4.4 As shown in the It is worth noting that the BioConsert algorithms perform significantly better than the Consistent-Pivot algorithm for this synthetic data, which is not the same as the result from both the real data. However the Consistent-Pivot algorithm perform not too bad, with less than 6% relative distance to the IdealDis even for datasets 1000 n  .

We think it is mainly because of the synthetic datasets which are produced randomly without agreement information between the four rankings. It is not the same as the real data that have much transitive property in the rankings.
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 1 Figure 1.1).

Figure 1 . 1 .

 11 Figure 1.1. The amount of base pairs and users in GenBank database in twenty three years. Many important events are also indicated. Figure from (http://www.nlm.nih.gov/about/2014CJ.html).
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 12 Figure 1.2. Overview of various of subfields of bioinformatics

7 .

 7 Databases: It is very important for biological research, because it is mainly based on a large amount of knowledge. Storing in database facilitate searching, modification and utilization. Bioinformatics has become an important part of many areas of biology. In experimental molecular biology, bioinformatics techniques such as image and signal processing allow extraction of useful results from large amounts of raw data. In the field of genetics and genomics, it aids in sequencing and annotating genomes and their observed mutations. It plays a role in the text mining of biological literature and the development of biological and gene ontologies to organize and query biological data.
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 211 Figure 2.1.1. A typical eukaryotic gene. The depicted gene contains four coding exons separated by three introns. Transcription from the promoter generates a pre-mRNA, shown in the middle line, which contains all of the exons and introns. Splicing removes the introns and fuses the exons to generate the mature mRNA. Technically, the 5' and 3' untranslated regions are also exons because they are retained in the mature mRNA. They are shown here in light purple to indicate their status as non-coding exons.
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 21 Figure 2.1.1 shows a typical eukaryotic gene in which the coding region is interrupted by three introns, splitting it into four exons. The number of introns found

Figure 2 . 1 . 2 .

 212 Figure 2.1.2. Number of introns per gene in various eukaryotic species. The average number of introns per gene is shown for a selection of eukaryotic species. The names in red are those of the common model organisms. Figure revised from (Roy and Gilbert 2006).
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 213 Figure 2.1.3. Sequences at intron-exon boundaries. The consensus sequences for both the 5' and 3' splice sites, and also the conserved A at the branch site. Figure revised from (Will and Lührmann, 2011).

  been developed recently: GeneSplicer[START_REF] Pertea | GeneSplicer: a new computational method for splice site prediction[END_REF], MaxEntScan(Yeo and Burge, 2004), Human Splicing Finder (HSF)[START_REF] Desmet | Human Splicing Finder: an online bioinformatics tool to predict splicing signals[END_REF], NetGene2[START_REF] Brunak | Prediction of human mRNA donor and acceptor sites from the DNA sequence[END_REF], NNSplice[START_REF] Reese | Improved splice site detection in Genie[END_REF], based on high throughput data, comparative genomics or mutation analysis.Most introns have the GT-AG termini, so they are also called GT-AG introns. It is worth noting that in higher eukaryotes, there are also a few AT-AC introns, which contain AU at the 5' splice site and AC at the 3' splice site. The two types of introns are spliced by different spliceosomes (see below). GT-AG introns use the major splicing machinery, called U2-dependent spliceosome. While AT-AC introns are spliced by an alternative, low-abundance spliceosome, called U12-dependent spliceosome[START_REF] Levine | A computational scan for U12-dependent introns in the human genome sequence[END_REF].

Figure 2 . 1 . 4 .

 214 Figure 2.1.4. Schematic representation of the two-step mechanism of pre-mRNA splicing. Boxes and solid lines represent the exons (E1, E2) and the intron, respectively. The branch site adenosine is indicated by the letter A and the phosphate groups (p) at the 5′ and 3′ splice sites, which are conserved in the splicing products, are also shown. Figure from (Will and Lührmann, 2011)

Figure 2 . 1 . 5 .

 215 Figure 2.1.5. Canonical cross-intron assembly and disassembly pathway of the U2-dependent spliceosome. For simplicity, the ordered interactions of the snRNPs (indicated by circles) are shown, but not those of non-snRNP proteins. The various spliceosomal complexes are named according to the metazoan nomenclature. Exon and intron sequences are indicated by boxes and lines, respectively. The stages at which the evolutionarily conserved DExH/D-box RNA ATPases/helicases Prp5, Sub2/UAP56, Prp28, Brr2, Prp2, Prp16, Prp22 and Prp43, or the GTPase Snu114, act to facilitate conformational changes are indicated. Figure from (Will and Lührmann, 2011)

Figure 2 . 1 . 6 .

 216 Figure 2.1.6. Types of alternative splicing events. Constitutive exons are shown in yellow and alternatively spliced regions in red or blue. Introns are represented by solid lines, and dashed lines indicate splicing options. Figure revised from (Keren, Lev-Maor and Ast, 2010).

Figure 2 . 1 . 7 .

 217 Figure 2.1.7. Schematic representation of core spliceosomal components that bind to the canonical splicing signals (5' splice site, branch point, polypyrimidine tract, and 3' splice site). Additional cisacting elements in exons and introns that control splice site recognition are also shown. Although the diagram depicts positive and negative acting roles for SR and hnRNP proteins, respectively, depending on the location of the binding sites of these factors, they can also act in the opposite manner. Similarly, various tissue-dependent splicing factors can either promote or repress splice site selection depending on the location of their binding sites with respect to splicing signals. ISE, intronic splicing enhancer; ISS, intronic splicing silencer; ESE, exonic splicing enhancer; ESS, exonic splicing silencer; SR, Ser/Arg-repeat containing protein; hnRNP, heterogeneous ribonucleoprotein (hnRNP); and U2AF, U2 snRNP auxiliary factor. Figure from (Irimia and
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 219 Figure 2.1.9. Components of the splicing E/A complex mutated in myelodysplasia. RNA splicing is initiated by the recruitment of U1 snRNP to the 5' SS. SF1 and the larger subunit of the U2

"

  It could be argued that the greatest transformative aspect of the Human Genome Project has been not the sequencing of the genome itself, but the resultant development of new technologies", just as said by Kahvejian in 2008, high throughput sequencing has dramatically changed the way of life sciences research (Kahvejian et al., 2008).
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 221 Figure 2.2.1. The number of publications with keywords for nucleic acid detection and sequencing technologies. PubMed (http://www.ncbi.nlm.nih.gov/sites/entrez) was searched in two-year increments for key words and the number of hits plotted over time. Figure from (Kahvejian et al., 2008).
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 222 Figure 2.2.2. Data explosion. The amount of genetic sequencing data stored at the European Bioinformatics Institute takes less than a year to double in size. Figure from[START_REF] Marx | Biology: The big challenges of big data[END_REF] 
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 223 Figure 2.2.3. Principal characteristics of the four most used deep sequencing platforms now: 454 (GS Junior and GS FLX+ systems), Illumina (MiSeq v2 and HiSeq 2500 systems), Ion Torrent (Ion Personal Genome Machine, 318 v2 chip and Ion Proton), and Pacific Biosciences (PacBio RS II SMRT). Figure from (Quiñones-Mateu et al., 2014)
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 224 Figure 2.2.4. Total cost of sequencing a human genome over time as calculated by the National Human Genome Research Institute (NHGRI).Figure from

  Figure from (http://www.genome.gov/sequencingcosts/). Biological scientists develop a lot of types of methods base on high throughput sequencing technologies, to get insights of biological molecular' expression and regulation in a large scale. Various high throughput sequencing methods can precisely map and quantify chromatin features, DNA modifications and several specific steps in the cascade of information from transcription to translation (see Figure 2.2.5 and
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 225 Figure 2.2.5. Sequencing technologies and their uses.Figure from (Soon et al., 2013)

  throughput sequencing result are mostly storied in a text-based format. It is proposed by the Welcome Trust Sanger Institute. The format includes both the biological sequence and sequencing quality which is encoded as a single American Standard Code for Information Interchange (ASCII) character (Cock et al., 2010). It uses four lines for one sequence: line 1 and line 3 usually are the identifier of the sequence, which line 1 must begin with a character "@" and line 2 should begin with a character "+"; Only line 2 and line 4 are useful information that line 2 is the raw sequence letters and line 4 is the Phred quality score which is encoded with a ASCII letter (see Figure 2.2.8).
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 226 Figure 2.2.6. An example of a sequence data in FastQ format out of high throughput sequencers.
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 227 Figure 2.2.7. An interface of the FastQC. It could find out that the quality in the end of the data is bad, mainly because of the sequencing procedure. Figure from (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/)
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 228 Figure 2.2.8. Burrows-Wheeler transform. (a) The Burrows-Wheeler matrix and transformation for 'acaacg'. (b) Steps taken by EXACTMATCH to identify the range of rows, and thus the set of reference suffixes, prefixed by 'aac'. (c) UNPERMUTE repeatedly applies the last first (LF) mapping to recover the original text (in red on the top line) from the Burrows-Wheeler transform(in black in the rightmost column). Figure from[START_REF] Langmead | Ultrafast and memory-efficient alignment of short DNA sequences to the human genome[END_REF] 
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 229 Figure 2.2.9. The double peak pattern in Watson strand and Crick strand around protein binding site from ChIP-Seq data. Figure from (Zhang et al., 2008).
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 2210 Figure 2.2.10. An example of peak calling base on kurtosis. The black line is the real signal of high throughput sequencing. After cubic spline interpolation, we get a smooth and derivative line (red line).
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 2211 Figure 2.2.11. The interface of Integrative Genomics Viewer. 1: tool bar; 2 and 3: chromosome is displayed; 4: data displays in horizontal rows called tracks; 5: annotation features also display, such as genes, in tracks; 6: track names; 7: attribute names. Figure from (https://www.broadinstitute.org/software/igv/MainWindow)
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 2212 Figure 2.2.12. The interface of UCSC genome browser. The track names are on the right site.Chromosome and genes structure are showed on the up side. Data track could be showed in four

  U2AF complex, resulted in a useless high throughput sequencing data full of nonspecific PCR product. Reasoning that the U2AF35 subunit might had caused steric hindrance for enzymatic reactions at the 3' end of nuclease-trimmed RNA under our conditions, we modified the CLIP procedure by first ligating the 5' linker to 32P-labeled RNA on the complex (see Figure2.3.1).
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 231 Figure 2.3.1. Schematic illustration of U2AF65 CLIP-seq. U2AF65 was immunoprecipitated with MC3 mAb before Micrococcal Nuclease (MNase) treatment on beads. The associated RNA were dephosphorylated and 5'-labeled with 32P by T4 kinase. Because the 3' end of RNA appears to beprotected by U2AF35, we first ligated the RNA linker to the 5' RNA. After SDS-PAGE followed by transfer to nitrocellulose, the isolated U2AF-RNA complexes were deproteinized, and recovered RNA was ligated to the 3' RNA linker, reverse transcribed, amplified by PCR, and analyzed by deep sequencing.
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 232 Figure 2.3.2. The U2AF65-RNA complexes trimmed by two different concentration of MNase (1:2,000,000 or 1:10,000 dilution) was detected by autoradiography. The positions of U2AF65 and U2AF35 were determined by Western blotting. * indicates the IgG heavy chain. Bracketed RNAprotein adducts were recovered for CLIP library construction.
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 233 Figure 2.3.3. A reads number correlation of two separate CLIP-seq data. Reads number was counted in windows by 5000 nt length.

U2AF65 binding to exons ( 2 .

 2 3%) and 3'UTRs (2.7%), consistent with the negative impact of exon-bound U2AF65 on splicing (Lim et al., 2011) and with the positive role of U2AF65 in 3' end formation (Danckwardt et al., 2007).
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 234 Figure 2.3.4. Genomic distribution of U2AF65 CLIP-seq peaks, the majority of which are located in introns or at exon-intron boundaries.
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 235 Figure 2.3.5. U2AF65 footprint on RNA. A set of high-density clusters (clusters=200; tags=8111) was used to derive the footprint. The peaks of top 200 robust clusters (peak height > 30, with single peaks) were determined, and the position of tags (brown graph) and width of individual clusters (colour lines and fraction plotted as green graph) are shown relative to the peaks (Chi et al., 2009).The minimum region of overlap of all clusters (100%) was within -18 and +18 nucleotides of cluster peaks, suggesting that the U2AF footprint on mRNA spans stringently 36 nucleotides.
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 236 Figure 2.3.6. Preferential deletion mutation on uridine residues in CIMS.
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 237 Figure 2.3.7. Meta-gene analysis of U2AF65-RNA interactions on a composite pre-mRNA.
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 238 Figure 2.3.8. U2AF65 binding on a gene example (SNRPA1), showing raw tags, peaks and identified Crosslinking-induced Mutation Sites (CIMS).

2. 3 . 2

 32 U2AF recognition of ~88% functional 3' splice sites in the human genome Consistent with the biochemically defined binding specificity of U2AF (Singh et al., 1995), motif analysis showed highly pyrimidine-enriched sequences on mapped U2AF65 binding sites (see Figure 2.3.9 ).
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 239 Figure 2.3.9. Enriched motifs for U2AF65 binding. Top 3 motifs were shown and top 50 motifs were used to deduce the consensus in the insert.

Figure 2 . 3 . 10 .

 2310 Figure 2.3.10. Percentage of U2AF65 binding sites that contain one or more top 50 motifs (red), compared with randomly selected 50 hexamers (blue).
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 2311 Figure 2.3.11. Nucleotide frequency centered on identified CIMS.
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 2312 Figure 2.3.12. U2AF65 has the capacity to bind ~88% of annotated 3' splice sites in the human genome based on the maximal neighborhood analysis. Each blue dot represents averaged occupancy of group of 50 genes, which were sorted according to the averaged tag density at 3' splice sites; each orange dot shows the average of 3' splice site score among those in each group of 100 genes that exhibited no U2AF65 binding peaks.
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 2313 Figure 2.3.13. S65 scores of U2AF65 binding sites in 3'splice sites and non-3'splice sites.
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 2314 Figure 2.3.14. The frequency of the AG dinucleotide from the mapped U2AF65 binding sites on
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 2315 Figure 2.3.15. Altered alternative splicing events determined by RNA-seq, showing significantly induced (blue) or repressed (red) splicing events in U2AF65 knockdown cells.
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 231623 Figure 2.3.16. Splicing of two representative genes in response to U2AF65 knockdown. RNA-seq data were validated by RT-PCR in HeLa cells treated with two independent U2AF65 RNAi.
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 2317 Figure 2.3.17. Comparison between the alternative splicing events detected by RNA-seq and those validated by semi-quantitative RT-PCR.
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 2318 Figure 2.3.18. U2AF65 binding levels proportional to levels of exon inclusion.
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 2319 Figure 2.3.19. U2AF65 binds on exon in GANAB to repress exon inclusion.
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 2320 Figure 2.3.20. Normalized U2AF65 binding events on unaffected cassette exons (black), upregulated (blue) or down-regulated (red) cassette exons in U2AF65 knockdown cells. U2AF65 binding appears higher upstream of the alternative cassette exons that were up regulated in response to U2AF65 knockdown.
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 2321 Figure 2.3.21. Ratio of upstream and downstream intronic binding events on down-and upregulated exons
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 2323 Figure 2.3.23. U2AF65 RNAi induced alternative splicing of TPD52L2. U2AF65 binds within intronic regions downstream of the alternative exon. The splicing response of these genes to U2AF65 RNAi was each analyzed by RT-PCR on the bottom.
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 2324 Figure 2.3.24. U2AF65 RNAi induced alternative splicing of Drosha. U2AF65 binds within intronic regions upstream of the alternative exon. The splicing response of these genes to U2AF65 RNAi was each analyzed by RT-PCR on the bottom.
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 2325 Figure 2.3.25. U2AF65 RNAi induced alternative splicing of EIF4A2. U2AF65 binds within both introns flanking the alternative exon. The splicing response of these genes to U2AF65 RNAi was each analyzed by RT-PCR on the bottom.
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 2326 Figure 2.3.26. Proposed polar effect model for the effect of intronically bound U2AF65 to interfere with the recognition of the immediate downstream 3' splice site in regulated splicing.

  It has been unclear thus far whether U2AF65 predominantly acts alone or in conjunction with U2AF35 or with other U2AF35-related molecules in the regulation of alternative splicing. Because the vast majority of U2AF65 appears to exist as the heterodimer with U2AF35 in the cell, it is likely that the U2AF65/35 heterodimer may play a dominant role in both constitutive and regulated splicing. To directly test this hypothesis, we used alternative splicing as a functional readout to compare the cellular response to U2AF65 and U2AF35 RNAi. As previously reported[START_REF] Pacheco | In vivo requirement of the small subunit of U2AF for recognition of a weak 3′ splice site[END_REF], U2AF35 RNAi only reduced the expression of U2AF35 while U2AF65 RNAi reduced the levels of both subunits of the U2AF heterodimer (seeFigure 2.3.27).
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 2327 Figure 2.3.27. Western blotting analysis of RNAi-mediated U2AF65 and U2AF35 knockdown. Note reduced U2AF35 in U2AF65 RNAi-treated cells.
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 2328 Figure 2.3.28. Splicing response of representative genes in response to RNAi against U2AF65 or U2AF35.
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 2329 Figure 2.3.29. Global concordance of U2AF65 and U2AF35 dependent splicing revealed by RASLseq.
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 2330 Figure 2.3.30. Heatmap of inclusion ratio of changed cassette exon induce by knocking down U2AF65 with or without exogenously expressed U2AF35.
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 2331 Figure 2.3.31. Receiver operating characteristic (ROC) curve of three type of constrains performing on test data sets. 'me' stands for maximum entropy model; 's' stands for skipping. For example,

Figure 2 .

 2 Figure 2.3.32. Normalized U2AF65 binding scores on up-regulated (blue) or down-regulated (red) cassette exons in U2AF65 knockdown cells. U2AF65 binding appears higher upstream of the alternative cassette exons that were up regulated in response to U2AF65 knockdown.

  al., 2011; Sridharan et al., 2007), which begs the question of which specific splicing factors fulfill such role in defining various untypical 3' splice sites. Although several RNA binding splicing factors have structures related to U2AF65 or U2AF35 (Mollet et al., 2006), the available functional evidence suggests that most of them function in synergy with, rather than independently from, U2AF (Page-McCaw et al., 1999; Tronchere et al., 1997; Shepard et al., 2002; Han et al., 2011b). Therefore, it remains to be understood how U2AF-independent introns are recognized in mammalian genomes. The preferential binding of U2AF65 to functional 3' splice sites over other pyrimidine-rich sequences in the genome appears to be enforced by the U2AF35 subunit. Other factors have also been suggested to provide the proofreading function of the U2AF heterodimer in the genome (Soares et al., 2006; Tavanez et al., 2012).

Chapter 3 :

 3 Consistent-Pivot: A New effective Pivot Algorithms for Ranking Aggregation Problem 3.1 Introduction With the increasing development of high throughput technologies, very high amounts of data are produced and stored in public databases to make them available to the scientific community, for example, Gene Expression Omnibus (GEO) which is a public functional high-throughput sequencing genomics data repository (Barrett et al., 2013) (see Figure 3.1.1).
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 311 Figure 3.1.1. Distribution of the number and types of selected studies released by GEO each year since inception. Users can explore and download historical submission numbers using the 'history'page, as well as constructing GEO DataSet database queries for specific data types and date ranges using the 'DataSet type' and 'publication date' fields. Figure from[START_REF] Barrett | NCBI GEO: archive for functional genomics data sets-update[END_REF] 

3 \

 3 U r   .The rankings processed using the unifying preprocess are then the followings:



  So if based on the Spearman footrule distance, the consensus ranking of m rankings with smallest distance is just the median value of the set of positions of every element in the m rankings, because only in this way, the footrule distance is the smallest[START_REF] Dwork | System and method for aggregating ranking results from various sources to improve the results of web searching[END_REF].

Following

  the definition of Fagin et al., the generalized Kendall-tau distance,

1 (

 1 Kemeny optimal ranking minimizes the number of pairwise disagreements with the given m rankings, corresponding to the geometric median of the inputs (Farah and Vanderpooten, 2007). More formally, let n Rank be the set of all possible rankings with ties over [ ] n . Given any subset n R Rank  and a ranking r , we define

  Borda x and sorts the elements by this score. It runs in time ( ) O nm . The score is computed as follows:as the rank of element x in ranking i r , as defined before.

  At each step of the dynamic programming the solution is built from the best of the sub-solutions. The variant FaginLarge chooses the first best sub-solution encountered while FaginSmall uses the last one. Their names come from that experimentally it was noticed that FaginSmall tends to do smaller bucket than FaginLarge (Brancotte et al., in preparation). They run in time 2 ( ) O nm n  .

3. 3 . 1 . 4 BioConsert

 314 BioConsert was proposed by Cohen-Boulakia and her colleagues. It works by iteratively trying to move a element to another bucket or a new bucket from an input ranking to reduce the sum of Kendall-tau distance which improves the input ranking step by step. If none of the elements are changed from their buckets, then the algorithm terminates (see Algorithm 1) (Cohen-Boulakia et al., 2011). Algorithm 1. BioConsert

  introduced a Markov chain based algorithm[START_REF] Dwork | Efficient similarity search and classification via rank aggregation[END_REF]. Qin and colleagues developed a posibility based algorithm[START_REF] Qin | A new probabilistic model for rank aggregation[END_REF]. In addition, the attempts of combinations of several algorithm to give a better result were also reported[START_REF] Ailon | Aggregating inconsistent information: ranking and clustering[END_REF]; Schalekamp and van Zuylen, 2009; Ali and Marina, 2012). For example, the combination of KwikSort and Pick-A-Perm could get a11 7 -factor approximation algorithm, which is a little better than KwikSort algorithm (2-factor approximation algorithm).
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 331 figure, element 1 is before element 2 in two rankings ( 1 r and 3 r ), so there is a thicker line (weight of 2 in this figure) linking the element 1 to the element 2. At the same time, element 1 is after element 2 in the ranking 2 r , so there is also a thinner line (weight of 1 in this figure) linking the element 2 to the element 1. Here it is the dominant positional relationship between the two elements that element 1 is before element 2 (1 2 )
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 33223 Figure 3.3.2. A weighted directed graph to describe the positional relationship of all the elements with only the dominant relationships. The red lines show the transitive property for elements 1, 2 and 3 (1 2 3).
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 333 Figure 3.3.3. A weighted directed graph to describe the positional relationship of all the elements with only the dominant relationships. The red lines show a conflict for element 2, 3 and 4, forming a directed cycle.

  ,{3, 2},{31, 41, 4, 5, 1},{8},{27, 43},{42},{40},{6},{17}]; =[{7},{31, 41, 4, 5, 1, 3, 2},{8},{6, 17},{27, 40, 42, 43}]; =[{7},{31, 41, 4, 5, 1, 2},{3},{27},{8},{42, 6, 43},{40},{17}]; 2},{31, 41, 4, 5, 1},{8},{6},{17, 27, 40, 43},{42}].
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 351 Figure 3.5.1. Gap and running time on real biological data with ( 1 p  ).
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 352 Figure 3.5.2. Results of gap and running time on real biological data with ( 0.5 p  )
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 353 Figure 3.5.3. Results of gap and running time on the Web Search data with less elements ( 36.2 4.4 n   ).
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 353 the KwikSort algorithm is fast, with bigger gaps than the other algorithms. The LP-KwikSort and DerandLP-Pivot algorithms are very similar in accuracy and running time. It mainly because that both the result and running time of them largely depend on the solving of the linear programming problem. They are better than the KwikSort algorithm in accuracy, but much slower than all the other algorithms, mainly because of the solving of the linear programming problem. The Consistent-Pivot algorithm perform as well as the BioConsert algorithm in accuracy, but it is faster in running time.The conclusions above are the same for a dataset with more elements (see Figure3.5.4). The average number of results per query ( n ) is 73, with a standard deviation of 12.6. The two pivot algorithms based on LP are too slow to finish running out a result for this dataset.
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 354355 Figure 3.5.4. Results of gap and running time on the Web Search data with more elements ( 73 12.6 n   ).

Figure 3 . 5 . 6 .

 356 Figure 3.5.6. Enlarged figure of the result of gap on the synthetic data for the number of elements range from 4 to 40.

  

  

  

  

  

  

  

  

  

  Big data means a large amount of calculation. It cannot be accepted, if it should run for a long time. Developing an effective algorithm to correctly solve problem in a short time, is also a big challenge.

	6.	Algorithms development:	
		Computation	Algorithm Development Software Development Database Construction
			Sequence Analysis	Function Analysis	Structure Analysis
		Application	Sequence Database Searching Sequence Allgnment Genome Comparision Gene & Promoter Prediction	Gene Expression Profiling Metabolic Pathway Modeling Protein Interaction Prediction	Nucleic Acid Structure Prediction Protein Structure Prediction Classification Protein Structure
			Motif Discovery Phylogeny	Protein Subcellular Localization Prediction	Protein Structure Comparision

  silencers, ESS). They vary in sequence, as well as in the types of proteins that bind to them. The majority of splicing repressors are heterogeneous nuclear ribonucleoproteins (hnRNPs) such as hnRNPA1 and polypyrimidine tract binding protein (PTB)(Matlin, 

	in increased exon inclusion (red bar) or exclusion (blue bar) is shown for CNS (C), muscle (M),
	embryo (E) and digestive (D) tissues, plus a tissue-independent mixture (I). A bar with/without a
	black hat indicates activity due to feature depletion/enrichment. Bar size conveys enrichment P-
	value < 0.005 in all cases. Potential feature binding proteins are shown in parentheses. Figure from
	(Barash et al. 2010)
	Barash and colleagues tried to describe the assembly of splicing code, which uses
	method of association analysis between hundreds of RNA features (including structural
	features) and alternative splicing outcome in 3665 exons from microarray data in 27
	tissues (Barash et al. 2010). As shown in Figure 2.1.8, most splicing codes locate in the
	local regions around the alternative splicing exons with a distance of 300 nucleotides.
	2.1.4 Splicing and disease
	Abnormal variations in splicing are also implicated in disease. A large proportion
	of human genetic disorders result from splicing variants. A study in 2005 involving
	probabilistic analyses indicated that more than 60% of human disease-
	causing mutations affect splicing rather than directly affecting coding sequences
	(López-Bigas et al., 2005). A more recent study indicates that one-third of all hereditary
	The secondary structure of the pre-mRNA transcript also plays a role in regulating diseases are likely to have a splicing component (Lim et al., 2011). Regardless of exact
	splicing, such as by bringing together splicing elements or by masking a sequence that percentage, a number of splicing-related diseases do exist (Ward and Cooper, 2010). As
	would otherwise serve as a binding element for a splicing factor (Warf and Berglund, described below, a prominent example of splicing-related diseases is cancer.
	2010; Reid et al., 2009).
	One example of a specific splicing variant associated with cancers is in one of the
	Mechanisms of alternative splicing are highly variable, and new examples are human DNMT genes. Three DNMT genes encode enzymes that add methyl groups to
	constantly being found, particularly through the use of high-throughput techniques. DNA, a modification that often has regulatory effects. Several abnormally spliced
	Researchers hope to fully elucidate the regulatory systems involved in splicing, so that DNMT3B mRNAs are found in tumors and cancer cell lines. In two separate studies,
	alternative splicing products from a given gene under particular conditions could be expression of two of these abnormally spliced mRNAs in mammalian cells caused
	predicted by a "splicing code" (Matlin, Clark and Smith, 2005; David and Manley, changes in the DNA methylation patterns in those cells. Cells with one of the abnormal
	2008). mRNAs also grew twice as fast as control cells, indicating a direct contribution to tumor
	development by this product (Fackenthal and Godley, 2008).

Clark and Smith, 2005; Wang and

[START_REF] Wang | Splicing regulation: from a parts list of regulatory elements to an integrated splicing code[END_REF]

. Splicing enhancers are sites to which splicing activator proteins bind, increasing the probability that a nearby site will be used as a splice junction. These also may locate in the intron (intronic splicing enhancers, ISE) or exon (exonic splicing enhancers, ESE). Most of the activator proteins that bind to ISEs and ESEs are members of the SR protein family. Such proteins contain RNA recognition motifs and arginine and serinerich (RS) domains (Matlin, Clark and Smith, 2005; Wang and Burge, 2008).

Figure 2.1.8. Graphical depiction of the splicing code. The region-specific activity of each feature
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	Feature	Method	Description

.1). Ribo-Seq Quantification of ribosome-bound regions revealed uORFs and non-ATG codons (Ingolia et al,2009) Transcriptional machinery and protein-DNA interactions ChIP-seq Antibody-based pull down of DNA bound to protein followed by HT sequencing (Robertson et al, 2007) DNAse footprinting HT sequencing of regions protected from DNAsel by presence of proteins on the DNA (Hesselberth et al, 2009) DNAse-seq HT sequencing of hypersensitive non-methylated regions cut by DNAsel (Crawford et al, 2006)

FAIRE

Open regions of chromatin that is sensitive to formaldehyde is isolated and sequenced

[START_REF] Giresi | FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin[END_REF] 

Table 2 .

 2 2.1. The various high throughput sequencing assays. Table from (Soon et al., 2013).

  is taken over all possible sequences, x . It is a measure of the average uncertainty in the random variable X . For example, a rolling of an unbiased dice would get every number from 1 to 6 in a probability 1/ 6 . So the uncertainty for this The principle of maximum entropy states that, the probability distribution which best represents the current state of knowledge is the one with largest entropy. People always automatically use this principle. When we have no prior information of a dice, we would think that every side would appear in a same probability 1/ 6 , but not other possible. Interestingly, this is just the maximum entropy state in this situation.

	thing would be	2 log 6 .	
	Yeo and Burge proposed a framework for modeling sequence patterns based on the
	maximum entropy principle (MEP), which could consider all constraints together, and
	give insight into the relative importance of different dependencies at different positions
		( ) H p	  	2 ( ) log ( ( )) p x p x

(Yeo and Burge, 2004

). The Shannon entropy, H , is given by the expression .

Where the sum

The maximum entropy model (MEM) aim to learn two distributions for all kinds of sequences X (the number is 4 n , if the length of target sites is n ). They are a signal model ( ( ) P X



) learning from positive training data and a negative probability distribution ( ( ) P X



) learning from negative training data. Given a new sequence, the MEM could be used to judge if it is a real binding site based on the likelihood ratio,

Table 2 .

 2 2.2. Number of sequences in training and test sets.

		True binding sites	False binding sites
	Train	113090	198946
	Test	56514	99955
	Total	169604	300000

Table 2 .

 2 3.1).

	U2AF65 CLIP-Seq data
	total reads	19513772
	mapped reads	12088822
	mapped ratio	61.95%
	uniquely mapped reads	9329565
	uniquely mapped ratio	77.18%
	crosslink reads	1482140
	40	

Table 2 .

 2 3.1. Mapping result of U2AF65 CLIP-Seq data. Cross-linked reads are reads with deletion site which induced by UV crosslinking.

  second rule concerns the ability of the U2AF heterodimer to discriminate Pytracts with or without a flanking AG dinucleotide in mammalian genomes. In vitro binding studies suggest that U2AF efficiently binds Py-tracts followed by AG, but

much less to Py-tracts without ending with an AG dinucleotide

[START_REF] Wu | Functional recognition of the 3′ splice site AG by the splicing factor U2AF35[END_REF][START_REF] Merendino | Inhibition of msl-2 splicing by Sex-lethal reveals interaction between U2AF35 and the 3′ splice site AG[END_REF]

, and such specificity appears to be enhanced by additional RNA binding factors, such as DEK and hnRNP A1

[START_REF] Soares | Intron removal requires proofreading of U2AF/3'splice site recognition by DEK[END_REF][START_REF] Tavanez | hnRNP A1 proofreads 3′ splice site recognition by U2AF[END_REF]

.
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 2 

		RNA-Seq data	
		Ctrl	Knock down U2AF65
	total reads	28228751	25595461
	mapped reads	14384722	17183922
	mapped ratio	50.96%	67.14%
	uniquely mapped reads	14119360	16834141
	uniquely mapped ratio	91.16%	97.96%
	3.2. Summary information of RNA-seq data.	

Table 2 . 3

 23 .3.28). Significantly, nearly identical sets of alternative splicing events were induced (see Figure 2.3.29, Table 2.3.3).

		RASL-Seq data	
		Knock down U2AF35	Knock down U2AF65
	total detectable events	1892
	significantly changed events	334	271
	co-changed events		208
	Co-changed events with same direction		206
	ratio	99%

.3. Summary result of RASL-Seq data.

1 j

 1  which is one of the other elements. The cost and cost-to-go at a node are computed for bounding. A brute force search tree has ! n paths if there are no ties, while if the lower bound of some nodesA is greater than the upper bound of some other nodes B , branch and bound algorithm could safely discard A from the search, what is called pruning. However in bad cases, as aggregation of strong disagreement rankings, pruning can not always be effective. So, branch and bound algorithm, limiting the available memory leads to a family of approximate algorithms in which memory and runtime can be traded off for accuracy.

  It is worth mentioning that this is just the definition of the minimum feedback arc set problem. And in fact it has been stated that the problem of Kemeny optimal aggregation of rankings can be cast as a special case of the minimum feedback arc set problem[START_REF] Ailon | Aggregating inconsistent information: ranking and clustering[END_REF]. It is easy for this example that we could get three different results by removing any edge in the directed cycle, because they are all same weighted Figure 3.3.4. The three types of answers for the problem are all right.

	Figure 3.3.3). element 2 is before 3 ( 2 3), and element 3 is before 4 ( 3 4 ). While algorithm recursively generates a solution by choosing a random element as "pivot"
	we could not see that element 2 is before element 4, but it is just the opposite that
	element 2 is after element 4. In this way, they form a directed cycle. We also call it a
	conflict in the set of rankings, because it could not simultaneously be satisfied in a
	linear ordering.				Before					
	Ranking aggregation is just aiming to set up a compatible positional relationship
	1 (or a linear ordering) by removing a set of conflicting edges with a sum of smallest 2 3 4 After weight. (see Figure 3.3.4).
		Before				Before				Before		
	1	2	3	4	1	2	3	4	1	2	3	4
		After				After				After		
	1 3 4 2		1	4	2 3		1	2	3 4	
						Before					
	3.3.3.2 KwikSort										
	1 Based on the transitive property of the elements in rankings, Ailon, Charikar and 2 3 4
	Newman developed a 2-factor approximation algorithm for rankings without ties,
	KwikSort. It was named KwikSort, mainly because the algorithm looks like a type of
	After sorting algorithm, Quicksort. It was defined for the feedback arc set problem (Ailon et
	al., 2008). Here we describe it for the ranking aggregation problem without ties.	
	Let	( , ) G V W 									

be a directed graph of a set of rankings, where V indicates all the elements, and W is the weight table between any two elements ( ij w and ji w ). The

Table 3 .

 3 .4.1). 4.1. The real biological data set. The 10 sets of rankings used in the work of Cohen-Boulakia et al. are all listed. The number of elements and IdealDis are shown.We also did the experiment on the WebSearch dataset, which was widely used in comparison of various algorithms for ranking aggregation[START_REF] Dwork | Efficient similarity search and classification via rank aggregation[END_REF][START_REF] Schalekamp | Rank Aggregation: Together We're Strong[END_REF][START_REF] Ali | Experiments with Kemeny ranking: What works when?[END_REF]. It is extracted from search results of queries for 37 keywords from four search engines.To systematically compare the algorithms, we also use a group of synthetic data

	Query	number of elements	IdealDis
	ADHD_reduced	15	48
	LQT	35	350
	Retinoblastoma_reduced	37	653
	ADHD	45	670
	Bladdercancer_reduced	115	3881
	Prostatecancer_reduced	218	26313
	Bladdercancer	308	38159
	Breastcancer_reduced	386	78892
	Retinoblastom	402	75032
	Neuroblastoma_reduced	431	56536
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downstream exon, thus producing the opposite functional consequence. This is highly consistent with levels of CU content (U2AF65 binding sequence) in the upstream region of 3' splice site of cassette exon (the bigger box regions in Figure 2. 3.22) that are generally inversely proportional to the levels of exon inclusion (see Figure 2.3.22), suggesting that the more CU content, or the more U2AF65 binds in the upstream region of functional 3' splice site, the less cassette exons included. This finding raises an intriguing possibility that these additional U2AF65 binding events may interfere with normal recognition of adjacent functional 3' splice sites.

Polar effect of U2AF65 binding on downstream 3' splice site recognition

We chose three representative genes to perform mutational analysis on their minigenes, which could avoid potential indirect effects of U2AF65 depletion, and to compare between the effect of deletion mutations and response to U2AF RNAi. For a pivot k , let ( ) k T G be the set of combination of two elements with conflicts.

. They define a budget for element i and 

Methods

Consistent-Pivot algorithm

Here we propose a new pivot algorithm, called Consistent-Pivot. It is based on a novel method of pivot picking and assignment of all the other elements. We think that this algorithm is more suitable for the transitive property of the data of ranking aggregation problem.

In this part, we introduce this algorithm for rankings with ties. Besides the two positional relationships for two elements ( i j , i is before j ; i j , i is after j ), rankings with ties allow elements in a same level ( i j ). In addition, there are three types of weight between two elements, ij w (for i is before j ), ji w (for i is after j ) and i j w ( i is the same as j ). For ranking aggregation problem, we usually want to choose the positional relationship with highest weight. We define the earning of this kind of choosing as:

( , ) max( , , ) ij ji i j earning i j w w w  And accordingly, the cost of this kind of choosing is , ( )

This is the minimum cost for every two elements without taking the relationships with the other elements into account. This value reflects the consistency of the positional relationship between the two elements in the rankings. The smaller the value is, the more agreement for the two elements in the set rankings shows. If ( , ) 0 cost i j  , it means that the relationships for the two elements in all the rankings are all the same, without disagreement. For a given pivot k , the costs of element i to be placed before, after or the same as the pivot are defined as:

positional relationships between the element and pivot. In this situation, the cost function should take the minimum value among them.

Both the weight table (W ) and best positional relationships table ( X ) between any two elements can be simultaneously calculated in a time of The elements are all sorted with the green one in the front which is selected as the pivot (in red) in the next recursive cycle.

The algorithm is implemented in a ternary tree structure. Figure 3.4.1 shows the structure of the result of the real example given above in this section. The experiments have been conducted on a personal computer with an Intel Core 2 Duo CPU, 2 GB memory and Fedora 11 system. We used the GLPK 4.45 (GNU Linear Programming Kit) package to solve large-scale linear programming problems [START_REF] Makhorin | GLPK (GNU linear programming kit)[END_REF]. All the Algorithms were coded in C.

Experiments on the algorithms

Experiment Settings

To measure the accuracy of the algorithms, we should set a standard. But without the best aggregation result, it is difficult to value a relative accuracy for different data sets. Based on the definition of consistent score, we propose a strict lower bound ( IdealDis ) of the best Kendall-tau distance between the Kemeny optimal ranking * r and the set of rankings R : 1 ( )

is the sum of the consistent scores of all the elements, which is also twice the sum of the minimum cost for every two elements. Results on real biological data with ( 1 p  ). "CP" stands for the Consistent-Pivot algorithm; "BC" stands for BioConsert; "KS" stands for KwikSort; "LK" stands for LP-KwikSort; "DLP" stands for DerandLP-Pivot.

As shown in Table 3.5.1, The Consistent-Pivot algorithm performs as well as the BioConsert algorithm, with two results better than the BioConsert algorithm (in red), and two worse results (in blue). As for the three previous pivot algorithms, the KwikSort algorithm is fast, but it is mostly worse than the Consistent-Pivot algorithm in accuracy; In another way, both the LP-KwikSort algorithm and the DerandLP-Pivot algorithm cannot finish running all the rest 6 datasets ( 100 n  ) in one hour, so we stopped the programs and cannot get the results.

Discussion

In summary, the Consistent-Pivot algorithm is an efficient algorithm for real data both in accuracy and running time. It is much faster than the BioConsert, LP-KwikSort, DerandLP-Pivot algorithms, and performs almost as well as the BioConsert for real data.

However, there is still a lot of work to do for this project. The experiments on the algorithms are not sufficient. We could test them systematically on more real data and synthetic data, to study how the agreement in rankings affects the performance of the Consistent-Pivot algorithm. And we would try to find an improvement of the Consistent-Pivot algorithm to deal with the datasets with not so much agreement in rankings.

All the algorithms have advantages with shortcomings. The thinking of combination of several algorithms to get better performance is a good idea [START_REF] Schalekamp | Rank Aggregation: Together We're Strong[END_REF]. The Consistent-Pivot followed by the better search of the BioConsert algorithm in a local range, maybe a good combined algorithm for the ranking aggregation problem.