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Résumé 
Cette thèse aborde deux problèmes relatifs à l’analyse et au traitement des données 

biologiques à haut débit: le premier touche l’analyse bioinformatique des génomes à 

grande échelle, le deuxième est consacré au développement d’algorithmes pour le 

problème de la recherche d’un classement consensus de plusieurs classements. 

L’épissage des ARN est un processus cellulaire qui modifie un ARN pré-messager 

en en supprimant les introns et en raboutant les exons. L’hétérodimère U2AF a été très 

étudié pour son rôle dans processus d’épissage lorsqu’il se fixe sur des sites d’épissage 

fonctionnels. Cependant beaucoup de problèmes critiques restent en suspens, 

notamment l’impact fonctionnel des mutations de ces sites associées à des cancers. Par 

une analyse des interactions U2AF-ARN à l’échelle génomique, nous avons déterminé 

qu’U2AF a la capacité de reconnaître environ 88% des sites d’épissage fonctionnels 

dans le génome humain. Cependant on trouve de très nombreux autres sites de fixation 

d’U2AF dans le génome. Nos analyses suggèrent que certains de ces sites sont 

impliqués dans un processus de régulation de l’épissage alternatif. En utilisant une 

approche d’apprentissage automatique, nous avons développé une méthode de 

prédiction des sites de fixation d’UA2F, dont les résultats sont en accord avec notre 

modèle de régulation. Ces résultats permettent de mieux comprendre la fonction 

d’U2AF et les mécanismes de régulation dans lesquels elle intervient. 

Le classement des données biologiques est une nécessité cruciale. Nous nous 

sommes intéressés au problème du calcul d’un classement consensus de plusieurs 

classements de données, dans lesquels des égalités (ex-aequo) peuvent être présentes. 

Plus précisément, il s’agit de trouver un classement dont la somme des distances aux 

classements donnés en entrée est minimale. La mesure de distance utilisée le plus 

fréquemment  pour ce problème est la distance de Kendall-tau généralisée. Or, il a été 

montré que, pour cette distance, le problème du consensus est NP-difficile dès lors qu’il 

y a plus de quatre classements en entrée. Nous proposons pour le résoudre une 

heuristique qui est une nouvelle variante d’algorithme à pivot. Cette heuristique, 
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appelée Consistent-pivot, s’avère à la fois plus précise et plus rapide que les algorithmes 

à pivot qui avaient été proposés auparavant.  
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Abstract 

It is thought to be more and more important to solve biological questions using 

Bioinformatics approaches in the post-genomic ear. This thesis focuses on the 

Bioinformatics analysis and algorithms development of consensus ranking for 

biological high throughput data.  

In molecular biology and genetics, RNA splicing is a modification of the nascent 

pre-messenger RNA (pre-mRNA) transcript in which introns are removed and exons 

are joined. The U2AF heterodimer has been well studied for its role in defining 

functional 3’ splice sites in pre-mRNA splicing, but multiple critical problems are still 

outstanding, including the functional impact of their cancer-associated mutations. 

Through genome-wide analysis of U2AF-RNA interactions, we report that U2AF has 

the capacity to define ~88% of functional 3’ splice sites in the human genome.   

Numerous U2AF binding events also occur in other genomic locations and metagene 

and minigene analysis suggests that upstream intronic binding events interfere with the 

immediate downstream 3’ splice site associated with either the alternative exon to cause 

exon skipping or competing constitutive exon to induce inclusion of the alternative 

exon. We further build up a U2AF65 scoring scheme for prediction its target sites base 

on the high throughput sequencing data using a Maximum Entropy machine learning 

method, and the scores on the up and down regulated cases are consistent with our 

regulation model. These findings reveal the genomic function and regulatory 

mechanism of U2AF, which facilitates us understanding those associated diseases. 

Ranking biological data is a crucial need. Instead of developing new ranking 

methods, Cohen-Boulakia and her colleagues proposed to generate a consensus ranking 

to highlight the common points of a set of rankings while minimizing their 

disagreements to combat the noise and error for biological data. However, it is a NP-

hard question even for only four rankings based on the Kendall-tau distance. In this 

thesis, we propose a new variant of pivot algorithms named as Consistent-Pivot. It uses 

a new strategy of pivot selection and other elements assignment, which performs better 



VI 

both on computation time and accuracy than previous pivot algorithms. 

Key words: Bioinformatics analysis; High throughput sequencing; U2AF; RNA 

splicing; Algorithm; Consensus ranking; 
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Chapter 1: Introduction 

 

 
As said by Eric Green who is the director of American National Human Genome 

Research Institute, “Generating the data is not the bottleneck…… The bottleneck is 

analyzing the data”, it is thought to be more and more important to solve biological 

questions using Bioinformatics approaches in the post-genomic ear. Bioinformatics is 

an interdisciplinary scientific field of computer and biology sciences. It uses computer 

to better understand biology, especially important in this biological big data era (see 

Figure 1.1). 

 

Figure 1.1. The amount of base pairs and users in GenBank database in twenty three years. Many 

important events are also indicated.  Figure from (http://www.nlm.nih.gov/about/2014CJ.html). 

Bioinformatics starts from sequencing alignment and annotation, while it appears 

in every aspect in biological research now (see Figure 1.2), as shown in below: 
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Figure 1.2. Overview of various of subfields of bioinformatics 

1. Sequence analysis: Genome annotation to predict unknown genes; 

comparative genomics to understand gene function and evolution; genome 

wide associate study (GWAS) to find disease genes or mutation sites. 

2. High throughput sequencing analysis: Data analysis of ChIP-seq, CLIP-seq, 

RNA-seq, Ribo-Seq and so on, to reveal the gene and protein expression 

profiles, protein and DNA/RNA interaction and regulation. 

3. Structure prediction: Structures of RNAs and proteins are always related 

with their functions. Structure prediction helps to understand the function, 

and then guides drug design 

4. Network and systems biology: Attempts to integrate many different data 

types, to understand biology process in a network view. 

5. Software and tools: Rang from simple tools to design PCR primer, to 

complex platform or web-server for searching various types of data. 
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6. Algorithms development: Big data means a large amount of calculation. It 

cannot be accepted, if it should run for a long time. Developing an effective 

algorithm to correctly solve problem in a short time, is also a big challenge. 

7. Databases: It is very important for biological research, because it is mainly 

based on a large amount of knowledge. Storing in database facilitate 

searching, modification and utilization. 

Bioinformatics has become an important part of many areas of biology. In 

experimental molecular biology, bioinformatics techniques such as image and signal 

processing allow extraction of useful results from large amounts of raw data. In the field 

of genetics and genomics, it aids in sequencing and annotating genomes and their 

observed mutations. It plays a role in the text mining of biological literature and the 

development of biological and gene ontologies to organize and query biological data. 

It also plays a role in the analysis of gene and protein expression and regulation. 

Bioinformatics tools aid in the comparison of genetic and genomic data and more 

generally in the understanding of evolutionary aspects of molecular biology. At a more 

integrative level, it helps analyze and catalogue the biological pathways and networks 

that are an important part of systems biology. In structural biology, it aids in the 

simulation and modeling of DNA, RNA, and protein structures as well as molecular 

interactions. 

This thesis focuses on the Bioinformatics data analysis in Chapter 2 and algorithms 

development of consensus ranking for biological high throughput data in Chapter 3, to 

to solve biological questions. 

In molecular biology and genetics, RNA splicing is a modification of the nascent 

pre-messenger RNA (pre-mRNA) transcript in which introns are removed and exons 

are joined. The U2AF heterodimer has been well studied for its role in defining 

functional 3’ splice sites in pre-mRNA splicing, but multiple critical problems are still 

outstanding, including the functional impact of their cancer-associated mutations. In 

Chapter 2, we aim to find out the function of U2AF65 to define 3’ splice sites and 
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regulate alternative splicing using high throughput sequencing data, to facilitate the 

research of related disease. 

Ranking biological data is a crucial need. For example, in the research of RNA 

alternative splicing regulation, we always want to know which splice site is weaker or 

stranger. There have been many tools for scoring the splice sites signal strength. But 

the rankings of these tools are always very different. Instead of developing new ranking 

methods, Cohen-Boulakia and her colleagues proposed to generate a consensus ranking 

to highlight the common points of a set of rankings while minimizing their 

disagreements to combat the noise and error for biological data. However, it is a NP-

hard question even for only four rankings based on the Kendall-tau distance. In Chapter 

3, we propose a new variant of pivot algorithms named as Consistent-Pivot. It uses a 

new strategy of pivot selection and other elements assignment, which performs better 

both on computation time and accuracy than previous pivot algorithms. 
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Chapter 2: Genome-wide Analysis of U2AF 
Functions in pre-mRNA Splicing 

 

 

2.1 Introduction 

The genetic information is stored in DNA, which is transferred from one generation 

to the next generation. During the life of a cell, the DNA information is transferred as 

RNA, and then the RNA is translated as protein. This is the central dogma of molecular 

biology, describing the flow of genetic information within a biological system (Crick, 

1970). However, RNA does not simply copy the genetic information, as the primary 

RNA transcript generated from DNA should undergo processing. 

2.1.1 RNA splicing 

As we know, the DNA coding sequence of a protein-coding gene is a series of three-

nucleotide codons, which specifies the linear sequence of amino acids in its polypeptide 

product. In the vast majority of cases in bacteria and their phages, the coding sequence 

is contiguous: the codon for one amino acid is immediately adjacent to the codon for 

the next amino acid in the polypeptide chain. But it is rarely so for eukaryotic genes. In 

those cases, the coding sequence is periodically interrupted by stretches of non-coding 

sequence. 

Most eukaryotic genes are thus mosaics, consisting of blocks of coding sequences 

separated from each other by blocks of non-coding sequences. The coding sequences 

are called exons, and the intervening sequences are called introns. Once DNA is 

transcribed into an RNA transcript, the introns must be removed and the exons are 

joined together to create the messenger RNA (mRNA) for that gene, which is then 

exported into the cytoplasm. So the term exon technically names for exported regions, 
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and applies to any region retained in a mature RNA, whether or not it is coding. Non-

coding exons include the 5’ and 3’ untranslated regions of an mRNA. 

 

Figure 2.1.1. A typical eukaryotic gene. The depicted gene contains four coding exons separated by 

three introns. Transcription from the promoter generates a pre-mRNA, shown in the middle line, 

which contains all of the exons and introns. Splicing removes the introns and fuses the exons to 

generate the mature mRNA. Technically, the 5’ and 3’ untranslated regions are also exons because 

they are retained in the mature mRNA. They are shown here in light purple to indicate their status 

as non-coding exons. 

Figure 2.1.1 shows a typical eukaryotic gene in which the coding region is 

interrupted by three introns, splitting it into four exons. The number of introns found 

within a gene varies enormously, from one in the case of most intron-containing yeast 

genes (and a few human genes), to as many as 363 in the case of the Titin gene of 

humans. Figure 2.1.2 shows the average number of introns per gene for a range of 

organisms. Interestingly, the average number increases as one looks from simple single-

celled eukaryotes, such as yeast, through higher organisms such as worms and flies, all 

the way up to humans (Roy and Gilbert, 2006). 
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Figure 2.1.2. Number of introns per gene in various eukaryotic species. The average number of 

introns per gene is shown for a selection of eukaryotic species. The names in red are those of the 

common model organisms. Figure revised from (Roy and Gilbert 2006). 

The primary transcripts of intron-containing genes must have their introns removed 

before they can be translated into proteins. The process of introns removal, called RNA 

splicing, converts the pre-mRNA into mature mRNA. It must occur with great precision 

to avoid the loss, or addition, of even a single nucleotide at the sites at which the exons 

are joined, because the triplet-nucleotide codons of mRNA are translated in a fixed 

reading frame that is set by the first codon in the protein-coding sequence (Dietz and 

Kendzior, 1994). Lack of precision in splicing, would throw the reading frames of exons 

out of frame: downstream codons would be incorrectly selected and the wrong amino 

acids incorporated into proteins. 

So, how are the introns and exons distinguished from each other? How are introns 

removed? How are exons joined with high precision?  

2.1.1.1 Consensus splicing signals 

The borders between introns and exons are marked by specific nucleotide 

sequences within the pre-mRNAs. These sequences delineate where splicing will occur. 
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Thus, as shown in Figure 2.1.3, the exon-intron boundary, which is the boundary at the 

5’ end of the intron, is marked by a sequence called the 5’ splice site. The intron-exon 

boundary at the 3’ end of the intron is marked by the 3’ splice site. The figure shows a 

third sequence necessary for splicing. This is called the branch point site (or branch 

point sequence, BPS). It is found entirely within the intron, usually close to its 3’ end, 

and is followed by a polypyrimidine tract (Py tract) (Will and Lührmann, 2011). 

 

Figure 2.1.3. Sequences at intron-exon boundaries. The consensus sequences for both the 5’ and 3’ 

splice sites, and also the conserved A at the branch site. Figure revised from (Will and Lührmann, 

2011). 

The consensus sequence for each of these elements is shown in Figure 2.1.3. The 

most highly conserved sequences are the GU in the 5’ splice site, the AG in the 3’ splice 

site, and the A at the branch site. These highly conserved nucleotides are all found 

within the intron itself. Indeed the sequence of most exons, in contrast to the introns, is 

constrained by the need to encode the specific amino acids of the protein product. 

As consensus sequences related with splicing are also a type of crucial features for 

eukaryotic gene prediction, series of splicing sites and branch site prediction tools have 

been developed recently: GeneSplicer (Pertea et al., 2001), MaxEntScan (Yeo and 

Burge, 2004), Human Splicing Finder (HSF) (Desmet et al., 2009), NetGene2 (Brunak 

et al., 1991), NNSplice (Reese et al., 1997), based on high throughput data, comparative 

genomics or mutation analysis. 

Most introns have the GT-AG termini, so they are also called GT-AG introns. It is 

worth noting that in higher eukaryotes, there are also a few AT-AC introns, which 

contain AU at the 5’ splice site and AC at the 3’ splice site. The two types of introns are 

spliced by different spliceosomes (see below). GT-AG introns use the major splicing 

machinery, called U2-dependent spliceosome. While AT-AC introns are spliced by an 
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alternative, low-abundance spliceosome, called U12-dependent spliceosome (Levine 

and Durbin, 2001). 

2.1.1.2 Spliceosome 

An intron is removed through two successive transesterification reactions in which 

phosphodiester linkages within the pre-mRNA are broken and new ones are formed. 

 

Figure 2.1.4. Schematic representation of the two-step mechanism of pre-mRNA splicing. Boxes 

and solid lines represent the exons (E1, E2) and the intron, respectively. The branch site adenosine 

is indicated by the letter A and the phosphate groups (p) at the 5′ and 3′ splice sites, which are 

conserved in the splicing products, are also shown. Figure from (Will and Lührmann, 2011) 

 The transesterification reactions are mediated by a huge molecular machine called 

the spliceosome. This complex comprises about 150 proteins and five RNAs. The five 

RNAs (U1, U2, U4, U5, and U6) are collectively called small nuclear RNAs (snRNAs). 

Each of these RNAs is between 100 and 300 nucleotides long in most eukaryotes and 

is complexed with several proteins. These RNA-protein complexes are called small 

nuclear ribonuclear proteins (snRNPs). The spliceosome is the large complex made up 

of these snRNPs and also many other proteins, but the exact makeup differs at different 

stages of the splicing reaction: different snRNPs come and go at different times, each 

performing particular functions in the reaction.  
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Figure 2.1.5. Canonical cross-intron assembly and disassembly pathway of the U2-dependent 

spliceosome. For simplicity, the ordered interactions of the snRNPs (indicated by circles) are shown, 

but not those of non-snRNP proteins. The various spliceosomal complexes are named according to 

the metazoan nomenclature. Exon and intron sequences are indicated by boxes and lines, 

respectively. The stages at which the evolutionarily conserved DExH/D-box RNA 

ATPases/helicases Prp5, Sub2/UAP56, Prp28, Brr2, Prp2, Prp16, Prp22 and Prp43, or the GTPase 

Snu114, act to facilitate conformational changes are indicated. Figure from (Will and Lührmann, 

2011) 

As shown in Figure 2.1.5, initially the 5’ splice site is recognized by the U1 snRNP, 

using base pairing between its snRNA and the pre-mRNA. U2AF is made up of two 

subunits, the larger of which, called U2AF65, binds to the Py tract and the smaller, 

called U2AF35, binds to the 3’ splice site. The former subunit interacts with BBP (SF1) 

and helps that protein bind to the branch site. This arrangement of proteins and RNA is 

called the early (E) complex. U2 snRNP then binds to the branch site, aided by U2AF 

and displacing BBP (SF1). This arrangement is called the A complex. Binding of the 

U4/U6-U5 tri-snRNP then forms the B complex. Several structural rearrangements in 

the B complex lead to loss of the U1 and U4 snRNPs, resulting in the C complex. Here 
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the U6 snRNA is base-paired to the 5’splice site, and the base-pairing between the 

U4/U6 snRNAs is replaced with a U2-U6 snRNA interaction. This creates the active 

conformation of the spliceosome, and the two-transesterification reactions of splicing 

occur in it (Will and Lührmann, 2011). 

2.1.2 Alternative splicing 

Most pre-mRNAs in higher eukaryotes can be spliced in more than one way. Thus, 

mRNAs containing different selections of exons can be generated from a given pre-

mRNA. Called alternative splicing (AS), this strategy enables a gene to give rise to 

more than one polypeptide product. These alternative products are called isoforms. 

There are several different types of alternative splicing events, which can be 

classified into four main subgroups. The first type is exon skipping, in which a type of 

exon known as a cassette exon is spliced out of the transcript together with its flanking 

introns (see the Figure 2.1.6, Cassette exon). Exon skipping accounts for nearly 40% of 

alternative splicing events in higher eukaryotes (Alekseyenko et al., 2007 and Sugnet 

et al., 2004), but is extremely rare in lower eukaryotes. The second and third types are 

alternative 3’ splice site (3’ SS) and 5’ SS selection. These types of AS events occur 

when two or more splice sites are recognized at one end of an exon. Alternative 3’ SS 

and 5’ SS selection account for 18.4% and 7.9% of all AS events in higher eukaryotes, 

respectively. The fourth type is intron retention, in which an intron remains in the 

mature mRNA transcript. This is the rarest AS event in vertebrates and invertebrates, 

accounting for less than 5% of known events (Alekseyenko et al., 2007; Kim et al., 

2008; and Sugnet et al., 2004). By contrast, intron retention is the most prevalent type 

of AS in plants, fungi and protozoa (Kim et al., 2008). Less frequent, complex events 

that give rise to alternative transcript variants include mutually exclusive exons, 

alternative promoter usage and alternative polyadenylation (Black, 2003). 
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Figure 2.1.6. Types of alternative splicing events. Constitutive exons are shown in yellow and 

alternatively spliced regions in red or blue. Introns are represented by solid lines, and dashed lines 

indicate splicing options. Figure revised from (Keren, Lev-Maor and Ast, 2010). 

Alternative splicing is a major cellular mechanism in metazoans for generating 

proteomic diversity (Nilsen and Graveley, 2010). A large proportion of protein-coding 

genes in multicellular organisms undergo alternative splicing, and in humans, it has 

been estimated that nearly 90 % of protein-coding genes-much larger than expected-are 

subject to alternative splicing (Black, 2003; Pan et al., 2008; Chen and Manley, 2009). 

Genomic analyses of alternative splicing have illuminated its universal role in shaping 

the evolution of genomes, in the control of developmental processes, and in the dynamic 

regulation of the transcriptome to influence phenotype. Disruption of the splicing 

machinery has been found to drive pathophysiology, and indeed reprogramming of 

aberrant splicing can provide novel approaches to the development of molecular therapy. 
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2.1.3 Splicing regulation 

Splicing is regulated by trans-acting proteins (repressors and activators) and 

corresponding cis-acting regulatory sites (silencers and enhancers) on the pre-mRNA. 

However, as part of the complexity of alternative splicing, it is noted that the effects of 

a splicing factor are frequently position-dependent. It means that a splicing factor that 

serves as splicing activator when bound to an intronic enhancer element may serve as 

a repressor when bound to its splicing element in the context of an exon, and vice versa 

(Lim et al., 2011).  

 

Figure 2.1.7. Schematic representation of core spliceosomal components that bind to the canonical 

splicing signals (5’ splice site, branch point, polypyrimidine tract, and 3’ splice site). Additional cis-

acting elements in exons and introns that control splice site recognition are also shown. Although 

the diagram depicts positive and negative acting roles for SR and hnRNP proteins, respectively, 

depending on the location of the binding sites of these factors, they can also act in the opposite 

manner. Similarly, various tissue-dependent splicing factors can either promote or repress splice 

site selection depending on the location of their binding sites with respect to splicing signals. ISE, 

intronic splicing enhancer; ISS, intronic splicing silencer; ESE, exonic splicing enhancer; ESS, 

exonic splicing silencer; SR, Ser/Arg-repeat containing protein; hnRNP, heterogeneous 

ribonucleoprotein (hnRNP); and U2AF, U2 snRNP auxiliary factor. Figure from (Irimia and 
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Blencowe, 2012). 

There are two major types of cis-acting RNA sequence elements present in pre-

mRNAs and they have corresponding trans-acting RNA-binding proteins (see Figure 

2.1.7). Splicing silencers are sites to which splicing repressor proteins bind, reducing 

the probability that a nearby site will be used as a splice junction. These can be located 

in the intron (intronic splicing silencers, ISS) or in a neighboring exon (exonic splicing 

silencers, ESS). They vary in sequence, as well as in the types of proteins that bind to 

them. The majority of splicing repressors are heterogeneous nuclear ribonucleoproteins 

(hnRNPs) such as hnRNPA1 and polypyrimidine tract binding protein (PTB) (Matlin, 

Clark and Smith, 2005; Wang and Burge, 2008).  

Splicing enhancers are sites to which splicing activator proteins bind, increasing 

the probability that a nearby site will be used as a splice junction. These also may locate 

in the intron (intronic splicing enhancers, ISE) or exon (exonic splicing enhancers, 

ESE). Most of the activator proteins that bind to ISEs and ESEs are members of the SR 

protein family. Such proteins contain RNA recognition motifs and arginine and serine-

rich (RS) domains (Matlin, Clark and Smith, 2005; Wang and Burge, 2008).

The secondary structure of the pre-mRNA transcript also plays a role in regulating 

splicing, such as by bringing together splicing elements or by masking a sequence that 

would otherwise serve as a binding element for a splicing factor (Warf and Berglund, 

2010; Reid et al., 2009).  

Mechanisms of alternative splicing are highly variable, and new examples are 

constantly being found, particularly through the use of high-throughput techniques. 

Researchers hope to fully elucidate the regulatory systems involved in splicing, so that 

alternative splicing products from a given gene under particular conditions could be 

predicted by a “splicing code” (Matlin, Clark and Smith, 2005; David and Manley, 

2008). 
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Figure 2.1.8. Graphical depiction of the splicing code. The region-specific activity of each feature 
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in increased exon inclusion (red bar) or exclusion (blue bar) is shown for CNS (C), muscle (M), 

embryo (E) and digestive (D) tissues, plus a tissue-independent mixture (I). A bar with/without a 

black hat indicates activity due to feature depletion/enrichment. Bar size conveys enrichment P-

value < 0.005 in all cases. Potential feature binding proteins are shown in parentheses. Figure from 

(Barash et al. 2010) 

Barash and colleagues tried to describe the assembly of splicing code, which uses 

method of association analysis between hundreds of RNA features (including structural 

features) and alternative splicing outcome in 3665 exons from microarray data in 27 

tissues (Barash et al. 2010). As shown in Figure 2.1.8, most splicing codes locate in the 

local regions around the alternative splicing exons with a distance of 300 nucleotides. 

2.1.4 Splicing and disease 

Abnormal variations in splicing are also implicated in disease. A large proportion 

of human genetic disorders result from splicing variants. A study in 2005 involving 

probabilistic analyses indicated that more than 60% of human disease-

causing mutations affect splicing rather than directly affecting coding sequences 

(López-Bigas et al., 2005). A more recent study indicates that one-third of all hereditary 

diseases are likely to have a splicing component (Lim et al., 2011). Regardless of exact 

percentage, a number of splicing-related diseases do exist (Ward and Cooper, 2010). As 

described below, a prominent example of splicing-related diseases is cancer.  

One example of a specific splicing variant associated with cancers is in one of the 

human DNMT genes. Three DNMT genes encode enzymes that add methyl groups to 

DNA, a modification that often has regulatory effects. Several abnormally spliced 

DNMT3B mRNAs are found in tumors and cancer cell lines. In two separate studies, 

expression of two of these abnormally spliced mRNAs in mammalian cells caused 

changes in the DNA methylation patterns in those cells. Cells with one of the abnormal 

mRNAs also grew twice as fast as control cells, indicating a direct contribution to tumor 

development by this product (Fackenthal and Godley, 2008). 
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Figure 2.1.9. Components of the splicing E/A complex mutated in myelodysplasia. RNA splicing 

is initiated by the recruitment of U1 snRNP to the 5’ SS. SF1 and the larger subunit of the U2 

auxiliary factor (U2AF), U2AF65, bind the branch point sequence (BPS) and its downstream 

polypyrimidine tract, respectively. The smaller subunit of U2AF (U2AF35) binds to the AG 

dinucleotide of the 3’ SS, interacting with both U2AF65 and a SR protein, such as SRSF2, through 

its UHM and RS domain, comprising the earliest splicing complex (E complex). ZRSR2 also 

interacts with U2AF and SR proteins to perform essential functions in RNA splicing. After the 

recognition of the 3’ SS, U2 snRNP, together with SF3A1 and SF3B1, is recruited to the 3’ SS to 

generate the splicing complex A. The mutated components in myelodysplasia are indicated by 

arrows. Figure from (Yoshida et al., 2011). 

Single-nucleotide alterations in splice sites or cis-acting splicing regulatory sites 

may lead to differences in splicing of a single gene, while changes in the RNA 

processing machinery may lead to mis-splicing of multiple transcripts. Yoshida and his 

colleagues report whole-exome sequencing of 29 myelodysplasia specimens, which 

unexpectedly revealed novel pathway mutations involving multiple components of the 

RNA splicing machinery, including U2AF35, ZRSR2, SRSF2 and SF3B1. In a large 

series analysis, these splicing pathway mutations were frequent (~45 to 85%), and 

highly specific to myeloid neoplasms showing features of myelodysplasia (see Figure 

2.1.9). Conspicuously, most of the mutations affect genes involved in the 3’ splice site 

recognition during pre-mRNA processing, which may induce abnormal RNA splicing 
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and compromised haematopoiesis (Yoshida et al., 2011). 

2.1.5 Motivation 

Pre-mRNA splicing takes place in the multi-component RNA machinery known as 

the spliceosome, which is assembled in a step-wise fashion through the sequential 

addition of U1, U2, and U4/U6/U5 small nuclear ribonucleoprotein particles to the pre-

mRNA (Wahl et al., 2009). U1 defines the functional 5’ splice site largely through base-

pairing interactions, whereas U2 recognizes the functional 3’ splice site, which also 

involves base pairing with the branch point sequence. Because the BPS (branch point 

site) is quite degenerate in higher eukaryotic cells (see Figure 2.1.3), the addition of U2 

snRNP requires multiple auxiliary factors, the most important one being the U2AF 

heterodimer consisting of a 65kD and 35kD subunit (Zamore et al., 1992; Zhang et al., 

1992). Numerous biochemical experiments on model pre-mRNAs have established 

sequence-specific binding of U2AF65 to the polypyrimidine tract (Py-tract) immediate 

downstream of the BPS and direct contact of U2AF35 with the AG dinucleotide, which 

together defines functional 3’ splice sites (Singh et al., 1995; Valcárcel et al., 1996). 

Upon definition of the functional 5’ and 3’ splice sites by U1 and U2 snRNPs and 

following a series of ATP-dependent steps, the U4/U6/U5 tri-snRNP complex joins the 

initial pre-spliceosome to convert it into the mature spliceosome (Wahl et al., 2009). 

While the vital role of the U2AF heterodimer in defining 3’ splice sites has widely 

been appreciated, it has been unclear whether it is required for the recognition of all 

functional 3’ splice sites, especially in mammalian cells. In budding yeast, Mud2 has 

been characterized as the U2AF65 ortholog, but Mud2 is a non-essential gene, likely 

because of highly invariant BPS in this lower eukaryotic organism (Abovich et al., 1994; 

Abovich et al., 1997). Similarly, in fission yeast, a significant fraction of intron-

containing genes seem to lack typical Py-tract, and indeed, multiple U2AF-independent 

introns have been reported (Sridharan et al., 2011; Sridharan and Singh, 2007). In 

mammals, the presence of high levels of splicing enhancer factors, such as SR proteins, 

appears to be capable of bypassing the requirement for U2AF to initiate spliceosome 
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assembly (MacMillan et al., 1997). In addition, mammalian genomes also encode for 

multiple genes with related functions to both U2AF65 (Imai et al., 1993; Hastings et 

al., 2007; Page-McCaw et al., 1999) and U2AF35 (Tronchre et al., 1997; Shepard et al., 

2002; Mollet et al., 2006). Therefore, the functional requirement for U2AF may be 

bypassed by multiple mechanisms, raising a general question with respect to the degree 

of the involvement of the U2AF65/35 heterodimer in 3’ splice site definition in 

mammalian genomes. This fundamental question has remained unaddressed despite the 

availability of genome-wide U2AF65-RNA interaction data (Zarnack et al., 2013). 

Secondly, the RNA binding specificity of U2AF65 has been well characterized at 

the biochemical levels. Introns that contain a strong Py-tract are able to support 

spliceosome assembly in an AG-independent manner (Reed, 1989), and U2AF65 

appears to be sufficient to support splicing of such AG-independent introns, at least in 

vitro (Zamore and Green, 1991). However, the U2AF35 subunit is responsible for 

directly contacting the AG dinucleotide on typical functional 3’ splice sites and this 

partnership is enforced by U2AF65-dependent stability control of U2AF35 (Pacheco et 

al., 2006). Functioning as a heterodimer, U2AF65/35 is thought to provide strong 

discrimination against pyrimidine-rich exonic as well as intronic sequences that are not 

part of the functional 3’ splice sites in mammalian genomes. Specific RNA binding 

proteins, such as DEK and hnRNP A1, have been implicated in improving the RNA 

binding specificity in mammalian genomes (Soares et al., 2006; Tavanez et al., 2012). 

However, it remains to be directly demonstrated whether the U2AF heterodimer indeed 

binds preferentially to the Py-tract followed by the AG dinucleotide from genome-wide 

analysis. 

Thirdly, besides the critical role of U2AF in constitutive splicing, both U2AF65 

and U2AF35 have been implicated in regulated splicing (Park et al., 2004; Moore et al., 

2010). In theory, alternative splice sites are weak in general, and as a result, suboptimal 

binding may render them particularly sensitive to levels of U2AF, which may be further 

subjected to such PTB, TIA-1/TIAR, and more recently, hnRNP C (Zarnack et al., 2013; 

Le Guiner et al., 2001; Xue et al., 2009; Wang et al., 2010). While these mechanisms 
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appear to readily explain U2AF-dependent exon inclusion, it has been largely unknown 

why and how depletion of U2AF could also induce a large number of exon inclusion 

events in vivo (Park et al., 2004). Engineered U2AF binding on exon was recently 

shown to inhibit the inclusion of the exon (Lim et al., 2011), but it has been unclear 

how widely this mechanism is used to regulate alternative splicing of endogenous genes.  

Last, but not least, multiple mutations in both U2AF65 and U2AF35 have been 

reported to associate with myelodysplasia (MDS) and related blood disorders (Yoshida 

et al., 2011; Thol et al., 2012; Cazzola et al., 2013). However, it is unclear how such 

mutations might affect the normal function of U2AF in regulated splicing, which further 

underscores the importance in mechanistic understanding of the regulatory role of 

U2AF in mammalian cells. 

Given such a long range of mechanistic issues that remain to be addressed, we have 

embarked on genome-wide analysis of U2AF-RNA interactions in the human genome. 

By defining the genomic landscape of U2AF binding and the functional requirement 

for both U2AF65 and U2AF35 in regulated splicing, we provide a series of mechanistic 

insights into the function of U2AF in normal and disease states. 
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2.2 Methods 

To reveal the target site of U2AF, my colleagues use UV radiation to link the 

protein to RNA molecules in vivo. U2AF65 is then precipitated by using a specific 

antibody. With the protein, target RNA attached to the protein is isolated and high 

throughput sequenced.  

 On the other hand, RNA-seq or RASL-seq could give us the insights into all the 

alternative splicing change regulated by knockdown the trans-acting splicing regulatory 

protein. 

 I then developed serials of bioinformatics analysis pipelines to parse the rules 

coding in the high throughput sequencing data.  

2.2.1 High throughput sequencing 

“It could be argued that the greatest transformative aspect of the Human Genome 

Project has been not the sequencing of the genome itself, but the resultant development 

of new technologies”, just as said by Kahvejian in 2008, high throughput sequencing 

has dramatically changed the way of life sciences research (Kahvejian et al., 2008). 

 

Figure 2.2.1. The number of publications with keywords for nucleic acid detection and sequencing 

technologies. PubMed (http://www.ncbi.nlm.nih.gov/sites/entrez) was searched in two-year 

increments for key words and the number of hits plotted over time. Figure from (Kahvejian et al., 

2008). 
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 As shown in Figure 2.2.1, traditional biological nucleic acid detection methods are 

used less and less, while high throughput sequencing starts to be widely used from 2008. 

Consistent with it, the amount of genetic sequencing data stored at the European 

Bioinformatics Institute takes less than a year to double in size (Marx, 2013) (see Figure 

2.2.2). 

 

Figure 2.2.2. Data explosion. The amount of genetic sequencing data stored at the European 

Bioinformatics Institute takes less than a year to double in size. Figure from (Marx, 2013) 

In the other hand, the high demand for sequencing has driven the development of 

several types of efficient high throughput sequencers. There are four platforms 

dominating the high throughput sequencing field now: 454, illumina, Ion Torrent and 

PacBio (Quiñones-Mateu et al., 2014). All those four sequencers could generate high 

quality sequence information, while they each have their own advantages and 

disadvantages (see Figure 2.2.3). 
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Figure 2.2.3. Principal characteristics of the four most used deep sequencing platforms now: 454 

(GS Junior and GS FLX+ systems), Illumina (MiSeq v2 and HiSeq 2500 systems), Ion Torrent (Ion 

Personal Genome Machine, 318 v2 chip and Ion Proton), and Pacific Biosciences (PacBio RS II 

SMRT). Figure from (Quiñones-Mateu et al., 2014) 

 Along with the remarkable improvements in DNA sequencing technologies, the 

cost of sequencing is decreasing (see Figure 2.2.4). White line in the figure reflects 

Moore's Law, which describes a long-term trend in the computer hardware industry that 

involves the doubling of compute power every two years. As shown in the figure, the 

cost of sequencing a human genome is consistent with the Moore’s Law before 2008, 

while the trend of cost decreasing surpasses the Moore’s Law later. Now it only cost 

4000 dollars to sequencing a genome. 
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Figure 2.2.4. Total cost of sequencing a human genome over time as calculated by the National 

Human Genome Research Institute (NHGRI). Figure from 

(http://www.genome.gov/sequencingcosts/). 

Biological scientists develop a lot of types of methods base on high throughput 

sequencing technologies, to get insights of biological molecular’ expression and 

regulation in a large scale. Various high throughput sequencing methods can precisely 

map and quantify chromatin features, DNA modifications and several specific steps in 

the cascade of information from transcription to translation (see Figure 2.2.5 and Table 

2.2.1). 
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Feature Method Description Refernce 

Transcripts, 
small RNA and 
transcribed 
regions 

RNA-seq Isolate RNA followed by HT sequencing (Waern et al, 2011) 

CAGE HT sequencing of 5’-methylated RNA (Kodzius et al, 2006) 

RNA-PET CAGE combined with HT sequencing of poly-A tail (Fullwood et al, 2009c) 

ChIRP-Seq Antibody-based pull down of DNA bound to lncRNAs followed by HT sequencing (Chu et al, 2011) 

GRO-Seq 
HT sequencing of bromouridinated RNA to identify transcriptionally engaged Pol II 
and determine direction of transcription 

(Core et al, 2008) 

NET-Seq 
Deep sequencing of 3’ ends of nascent transcripts associated with RNA polymerase, 
to monitor transcription at nucleotide resolution 

(Churchman and 
Weissman, 2011) 

Ribo-Seq Quantification of ribosome-bound regions revealed uORFs and non-ATG codons (Ingolia et al,2009) 

Transcriptional 
machinery and 
protein-DNA 
interactions 

ChIP-seq Antibody-based pull down of DNA bound to protein followed by HT sequencing (Robertson et al, 2007) 

DNAse footprinting HT sequencing of regions protected from DNAsel by presence of proteins on the DNA 
(Hesselberth et al, 
2009) 

DNAse-seq HT sequencing of hypersensitive non-methylated regions cut by DNAsel (Crawford et al, 2006) 

FAIRE Open regions of chromatin that is sensitive to formaldehyde is isolated and sequenced (Giresi et al, 2007) 

Histone 
modification 

ChIP-seq to identify various methylation marks (Wang et al, 2009a) 

DNA 
methylation 

RRBS Bisulfite treatment creates C to U modification that is a marker for methylation (Smith et al, 2009) 

Chromosome-
interacting sites 

5C HT sequencing of ligated chromosomal regions (Dostie et al. 2006) 

ChIA-PET 
Chromatin-IP of formaldehyde cross-linked chromosomal regions, followed by HT 
sequencing 

(Fullwood et al, 2009a) 

Table 2.2.1. The various high throughput sequencing assays. Table from (Soon et al., 2013). 
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Figure 2.2.5. Sequencing technologies and their uses. Figure from (Soon et al., 2013) 

These technologies can be applied in a variety of medically relevant settings, 

including uncovering regulatory mechanisms and expression profiles that distinguish 

normal and cancer cells, and identifying disease biomarkers, particularly regulatory 

variants that fall outside of protein coding regions. Together, these methods can be used 

for integrated personal omics profiling to map all regulatory and functional elements in 

an individual. Using this basal profile, dynamics of the various components can be 

studied in the context of disease, infection, treatment options, and so on. Such studies 
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will be the cornerstone of personalized and predictive medicine (see Figure 2.2.5). 

2.2.2 Bioinformatics analysis 

To examine the function of U2AF in pre-mRNA splicing, my colleagues get a high 

quality library of the protein-RNA interaction by CLIP-seq, and two RNA-seq data for 

Hela cells with or without U2AF65 knockdown. In addition, several RASL-seq 

experiments were done to reveal the cooperative relationship. All these high throughput 

data are analyzed as below. 

The scripts for the analysis were mainly written in Perl or R. All the analysis was 

done under Linux Ubuntu 10.04. 

2.2.2.1 FastQ format 

 Height throughput sequencing result are mostly storied in a text-based format. It is 

proposed by the Welcome Trust Sanger Institute. The format includes both the 

biological sequence and sequencing quality which is encoded as a single American 

Standard Code for Information Interchange (ASCII) character (Cock et al., 2010). 

 It uses four lines for one sequence: line 1 and line 3 usually are the identifier of the 

sequence, which line 1 must begin with a character “@” and line 2 should begin with a 

character “+”; Only line 2 and line 4 are useful information that line 2 is the raw 

sequence letters and line 4 is the Phred quality score which is encoded with a ASCII 

letter (see Figure 2.2.8). 

 

Figure 2.2.6. An example of a sequence data in FastQ format out of high throughput sequencers. 

The Phred quality score Q  is used to measure the sequencing accurate of each 

nucleotide base of a sequence. It is defined as property which is logarithmically related 

to the base-calling error probabilities P  (Li et al., 2008). 
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1010(log )Q P   

So, if the error ratio is 0.001, the quality score would be 30. In common, only 

sequences with an average Phred quality score of 20 or above could be used.  

2.2.2.2 Sequencing quality control 

Before analyzing the high throughput sequencing data, we always should check the 

quality of it to make sure there are no problems or biases in data which may affect the 

way we use it. 

 

Figure 2.2.7. An interface of the FastQC. It could find out that the quality in the end of the data is 

bad, mainly because of the sequencing procedure. Figure from 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) 

We use a tool named FastQC (Andrews, 2010). The report of it include a lot of 

summary information of all the sequences: sequence base quality at each position, 

average quality distribution for all the sequences, nucleotide frequency at each position, 

and over presented sequence (see Figure 2.2.9). It can be run in a non-interactive mode. 

So it would be suitable for integrating into a larger analysis pipeline for the systematic 
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processing of large numbers of files. 

2.2.2.3 Mapping 

 Finding the best alignment of two sequences is an ancient problem. And almost all 

the books about algorithm would introduce it, because it is a classical application of the 

algorithm of dynamic programming. Setting reasonable scoring parameters, algorithm 

of dynamic programming could map the sequencing reads to the genome very well. 

However, it is still much too slow for mapping, especially for millions of short reads. 

 

Figure 2.2.8. Burrows-Wheeler transform. (a) The Burrows-Wheeler matrix and transformation for 

'acaacg'. (b) Steps taken by EXACTMATCH to identify the range of rows, and thus the set of 

reference suffixes, prefixed by 'aac'. (c) UNPERMUTE repeatedly applies the last first (LF) 

mapping to recover the original text (in red on the top line) from the Burrows-Wheeler transform 

(in black in the rightmost column). Figure from (Langmead et al., 2009) 

 There are two mostly used for short-reads sequence alignment: Bowtie (Langmead 

et al., 2009) and BWA (Li and Durbin, 2009). They are both based on a algorithms 

called Burrows-Wheeler transform to create a compressed, reusable index (table) form 

genome sequence first (see Figure 2.2.10). Then a new version of Bowtie named 

Bowtie2 was developed. It allows indels in alignment (Langmead and Salzberg, 2012). 

As for UV crosslinking would induce deletion in the reads (Zhang and Darnell, 2011), 

we use Bowtie2 to map our reads to the genome. 

 For RNA-seq data, we firstly make an index of mRNA, but not genome sequence. 
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After mapping the pair-end reads separately, we join them together and recalculate the 

coordinate in the genome. 

2.2.2.4 Peak calling 

 Biological experiments cannot avoid inducing noise. High throughput sequencing 

also would read out some noisy signals for non-specific binding or sequencing error. 

So we should find out the real binding site out of the background, called peak calling.  

 

Figure 2.2.9. The double peak pattern in Watson strand and Crick strand around protein binding site 

from ChIP-Seq data. Figure from (Zhang et al., 2008). 

 A famous peak calling algorithm for ChIP-seq data is developed by Liu group 

(Zhang et al., 2008). It is based on a pattern that reads of ChIP-seq are always forming 

a separate peak in each strand around the binding site with a reasonable distance (see 

Figure 2.2.11). The center of the peaks is accurately the binding site of proteins. While 

RNA is single strand, the signal cannot appear a two-peak mode. So it is more difficult 

to peak calling for the CLIP-seq data. There are mainly two types of methods.  

One is developed by Yeo and colleagues (Yeo et al., 2009; Xue et al., 2009). It is 

based on an intuition that real peaks would have a significant higher height than noise 

in each gene region. The background frequency of the height for overlapped reads at 
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every nucleotide was computed by randomly placing the same number of reads within 

the gene. Based on the sampling background, a threshold peak height could be found 

out with a pre-set FDR. 

 

Figure 2.2.10. An example of peak calling base on kurtosis. The black line is the real signal of high 

throughput sequencing. After cubic spline interpolation, we get a smooth and derivative line (red 

line). 

The other one is proposed by Darnell group (Chi et al., 2008). It is based on the 

shape value that real peaks always like a mountain that has a bigger kurtosis value. 

After using cubic spline interpolation, all the potential peaks could be seek out base on 

derivative value, and then the excess kurtosis could be computed and the threshold 

kurtosis value for peaks could be find out with a pre-set FDR (see Figure 2.2.12). 

In this study, we code and try both the two methods, and find that each method 

have advantages and disadvantages. Height based method is more reliable, but it can 

not be used in regions without any annotation gene. Kurtosis based method could be 

used anywhere, but it perform not well in regions with lots of continuous peaks. 
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2.2.2.5 Annotation and plotting distribution 

Annotation and plotting distribution could directly release a lot of information,

including data quality, binding pattern and function. Beside the well-known genes, there 

are a lot of genes are predicted by varies of algorithms. Corresponding to it, there are 

several annotation data from different groups for using. The widely used are: UCSC 

genes (Hsu et al., 2006), RefSeq genes (Pruitt et al., 2007), Ensemble genes (Hubbard 

et al., 2002), GENCODE genes (Harrow et al., 2006), Genscan genes (Burge and Karlin, 

1997) and so on. 

2.2.2.6 Motif finding 

All of the reads sequences from CLIP experiment were supposed to bind with the 

protein in vivo, although there may exist some non-specific tags. Motif finding is to 

identify the RNA sequence pattern which is bound with the protein. In short, it tries to 

find out the overrepresented sequence. It usually calculates the k-mer (like 2-mer, 3-

mer, 4-mer, 5-mer) frequency, and find out the most enriched sequence than 

background.  

Here, Motif finding was implemented using RSA tools oligo analysis algorithm 

(http://rsat.ulb.ac.be/) with input U2AF65 peaks (van Helden et al., 1998). 

2.2.2.7 Visualization 

 Pictures contain more information than a serial of numbers, and they are more 

intuitionist than numbers. People also always like to look at picture but not pure 

numbers. It is the same for biological data. Many platforms are developed for storing 

and visualization the high throughput data. Two of those are widely used. 
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Figure 2.2.11. The interface of Integrative Genomics Viewer. 1: tool bar; 2 and 3: chromosome is 

displayed; 4: data displays in horizontal rows called tracks; 5: annotation features also display, such 

as genes, in tracks; 6: track names; 7: attribute names. Figure from 

(https://www.broadinstitute.org/software/igv/MainWindow) 

The Integrative Genomics Viewer (IGV) is a high-performance visualization tool 

for interactive exploration of large, integrated genomic datasets (see Figure 2.2.13). It 

supports a wide variety of data types, including array-based and next-generation 

sequence data, and genomic annotations. 

 

Figure 2.2.12. The interface of UCSC genome browser. The track names are on the right site. 

Chromosome and genes structure are showed on the up side. Data track could be showed in four 
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types of ways. Figure from (https://genome.ucsc.edu/cgi-bin/hgGateway). 

The other one is UCSC genome browser. It is an interactive web server build by

University of California, Santa Cruz (UCSC), offering access to genome sequence data 

from a variety of vertebrate and invertebrate species and major model organisms. 

Above all, there are a large collection of aligned annotations integrated in the database, 

and all could be easily used (see Figure 2.2.14). 

2.2.2.8 Regulation pattern analysis 

 Plotting the RNA-map on up- and down-regulated cases is a common way to dig 

the regulation pattern. However, it is very tricky because of the normalization. Different 

types of data should be normalized in a commensurate level, and cases in a same type 

also should be normalized. If not, the final result would be dominant by only few cases. 

2.2.2.9 Machine learning and prediction of U2AF65 binding sites 

 Motif finding only state a general intuition of U2AF65 binding preference, because 

it just finds out the most frequency k-mer sequence. The base frequency at each position, 

the neighboring and nonneighboring dependencies of the pattern are all crucial, and 

should be taken into account for prediction binding site. 

 As we known, a weight matrix could present the likes and dislikes for nucleotides 

at each position, and the product of all the probability at each position could be used as 

a criterion for prediction. More complicated, the first- or higher-order Markov model 

could reflect the dependencies between neighboring bases in a positional or 

nonpositional way. All the possibility model cannot contain all the potential patterns, 

and the nonneighboring dependencies are much more complex (Durbin, 1998). 

 Yeo and Burge proposed a framework for modeling sequence patterns based on the 

maximum entropy principle (MEP), which could consider all constraints together, and 

give insight into the relative importance of different dependencies at different positions 

(Yeo and Burge, 2004). The Shannon entropy, H , is given by the expression 

2( ) ( ) log ( ( ))H p p x p x  . 
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Where the sum is taken over all possible sequences, x . It is a measure of the average 

uncertainty in the random variable X . For example, a rolling of an unbiased dice 

would get every number from 1 to 6 in a probability 1/ 6 . So the uncertainty for this 

thing would be 2log 6 . 

The principle of maximum entropy states that, the probability distribution which 

best represents the current state of knowledge is the one with largest entropy. People 

always automatically use this principle. When we have no prior information of a dice, 

we would think that every side would appear in a same probability 1/ 6 , but not other 

possible. Interestingly, this is just the maximum entropy state in this situation. 

The maximum entropy model (MEM) aim to learn two distributions for all kinds 

of sequences X  (the number is 4n , if the length of target sites is n ). They are a signal 

model ( ( )P X
) learning from positive training data and a negative probability 

distribution ( ( )P X
) learning from negative training data. Given a new sequence, the 

MEM could be used to judge if it is a real binding site based on the likelihood ratio, 

L  

( )
( )

( )
P X x

L X x
P X x






 


 

 If ( )L X x  is not smaller than a threshold which achieved based on a setting 

FDR, it would be predicted as a true target site. 

How to learn the distribution of training data? We begin with a uniform possibility 

distribution for all the sequences X . 

( ) 4 np x   

In this study, we set the length of predicted binding sequences as 12 nucleotides 

based on the results of motif finding (see below). And then the technique of iterative 

scaling is used to learn the positive or negative training data with a set of constraints 

circularly one by one, to reach a convergence which simultaneously satisfy all the list 
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of constrains as far as possible.  

In detail, represent each member of the ordered list of constraints as iQ , where i  

is the order in the list. The sequences relevant to the constraint at the j th step of 

iteration have the form 

1
1( ) ( )j j i

j
i

Q
P X x P X x

Q


    

Where 
1( )jP X x   is the probability of the sequence at the ( 1j  )th step in the 

iteration. 1j
iQ   is the sum of probabilities of the sequences accord with constraint iQ  

determined from the distribution at the ( 1j  )th step. For example, when calculate a 

nonadjacent constraint ( )iQ X ANA  at the j th step, for all the sequences satisfy the 

constrains: 

1
1( ) ( )j j i

j
i

Q
P X ANA P X ANA

Q


   , { , , , }N A C G T . 

1 1

{ , , , }

( )j j
i

N A C G T

Q P X ANA 



  . 

While all the sequences not matching ANA  are iterated as follows: 

1
1

1
( ) ( )

1
j j i

j
i

Q
P X ANA P X ANA

Q





  


, { , , , }N A C G T . 

As the iterations proceed, the entropy H  for all the sequences X  decreases. For our 

purposes, we say the entropy has converged when the scope of decreases between 

iterations becomes very small (
7| H| 10  ). 

  True binding sites False binding sites 

Train 113090 198946 

Test 56514 99955 

Total 169604 300000 
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Table 2.2.2. Number of sequences in training and test sets. 

We use a total of 169604 real U2AF65 binding sites with crosslink induced deletion 

sites, taking 3 nucleotides (nt) before, 8 nt after the deletion site and the deletion site 

itself (12 nt in total) as the target sites. 300000 false binding sites are randomly selected 

from intronic regions without any U2AF65 binding reads in the genes having U2AF65 

binding peaks (see Table 2.2.2). 
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2.3 Results 

2.3.1 Genome-wide mapping of U2AF-RNA interactions  

 To map the interaction of U2AF65 with RNA in the human genome, my colleagues 

initially employed the standard CLIP-seq procedure to construct the library (Xue et al., 

2009). While we could not efficiently ligate the 3’ RNA linker to IPed RNA on the 

U2AF complex, resulted in a useless high throughput sequencing data full of non-

specific PCR product. Reasoning that the U2AF35 subunit might had caused steric 

hindrance for enzymatic reactions at the 3’ end of nuclease-trimmed RNA under our 

conditions, we modified the CLIP procedure by first ligating the 5’ linker to 32P-labeled 

RNA on the complex (see Figure 2.3.1).  
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Figure 2.3.1. Schematic illustration of U2AF65 CLIP-seq. U2AF65 was immunoprecipitated with 

MC3 mAb before Micrococcal Nuclease (MNase) treatment on beads. The associated RNA were 

dephosphorylated and 5’-labeled with 32P by T4 kinase. Because the 3’ end of RNA appears to be 

protected by U2AF35, we first ligated the RNA linker to the 5’ RNA. After SDS-PAGE followed 

by transfer to nitrocellulose, the isolated U2AF-RNA complexes were deproteinized, and recovered 

RNA was ligated to the 3’ RNA linker, reverse transcribed, amplified by PCR, and analyzed by deep 

sequencing. 

This resulted in U2AF65-RNA complexes that were readily detectable by 

autoradiography (see Figure 2.3.2). Recovered RNA was next ligated to the 3’ linker 

followed by reverse transcription, PCR amplification, and deep sequencing. This 

modified CLIP procedure effectively prevented primer dimer formation because both 

5’ and 3’ linkers contain the 5’-OH group. 

 

Figure 2.3.2. The U2AF65-RNA complexes trimmed by two different concentration of MNase 

(1:2,000,000 or 1:10,000 dilution) was detected by autoradiography. The positions of U2AF65 and 

U2AF35 were determined by Western blotting. * indicates the IgG heavy chain. Bracketed RNA-

protein adducts were recovered for CLIP library construction. 

We included a randomized barcode in our libraries to help remove PCR products 

during library amplification. Out of a total of 19.5 million sequenced tags, 12.1 million 

could be mapped and 9.3 million could be uniquely mapped to the human genome (see 

Table 2.3.1). 
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U2AF65 CLIP-Seq data 

total reads 19513772 

mapped reads 12088822 

mapped ratio 61.95% 

uniquely mapped reads 9329565 

uniquely mapped ratio 77.18% 

crosslink reads 1482140 

Table 2.3.1. Mapping result of U2AF65 CLIP-Seq data. Cross-linked reads are reads with deletion 

site which induced by UV crosslinking. 

 

Figure 2.3.3. A reads number correlation of two separate CLIP-seq data. Reads number was counted 

in windows by 5000 nt length. 

Since another iCILP-seq of U2AF65 work was reported in a recent study (Zarnack 

et al., 2013), We should examine the overlap of read tags between two works to see 

whether these two dataset are consistent to each other. It is revealing that R=0.58, p-

value<2.2e-16 (see Figure 2.3.3). In consideration of the difference of the experiment 

methods (iCLIP and CLIP) and sequencing depth, the data show a highly reasonable 

correlation. 
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After peak calling, we find out that U2AF65 binding was mostly detected in 

intronic regions of pre-mRNA (80.74%) with an additional fraction (13.24%) 

corresponding to exon-intron boundaries, which together accounts for 94% of mapped 

U2AF65 binding events in the human genome (see Figure 2.3.4). We also detected 

U2AF65 binding to exons (2.3%) and 3’UTRs (2.7%), consistent with the negative 

impact of exon-bound U2AF65 on splicing (Lim et al., 2011) and with the positive role 

of U2AF65 in 3’ end formation (Danckwardt et al., 2007). 

 

Figure 2.3.4. Genomic distribution of U2AF65 CLIP-seq peaks, the majority of which are located 

in introns or at exon-intron boundaries.  

Chi and his colleagues developed a useful methods to calculate the footprint of a 

RNA binding protein using CLIP-seq data in 2009 (Chi et al., 2009). We made a similar 

estimate on the footprint of the U2AF heterodimer. By compiling a set of frequent 

U2AF65 binding events (8111 tags on 200 top clusters), we estimated the average 

U2AF65 footprint to be ~36nt (see Figure 2.3.5).  
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Figure 2.3.5. U2AF65 footprint on RNA. A set of high-density clusters (clusters=200; tags=8111) 

was used to derive the footprint. The peaks of top 200 robust clusters (peak height > 30, with single 

peaks) were determined, and the position of tags (brown graph) and width of individual clusters 

(colour lines and fraction plotted as green graph) are shown relative to the peaks (Chi et al., 2009). 

The minimum region of overlap of all clusters (100%) was within -18 and +18 nucleotides of cluster 

peaks, suggesting that the U2AF footprint on mRNA spans stringently 36 nucleotides. 

Based on crosslinking-induced mutation sites (CIMS), as described earlier (Zhang 

et al., 2011), which displays characteristic distribution of base deletions, but not 

insertions or substitutions with uridine (U) being the most frequently deleted base 

within U2AF65 bound regions (see Figure 2.3.6). 
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Figure 2.3.6. Preferential deletion mutation on uridine residues in CIMS. 

Meta-gene analysis demonstrated prevalent U2AF65 binding at the 3’ splice site 

of a composite pre-mRNA (see Figure 2.3.7), which is also illustrated on the SNRPA1 

gene based on both mapped tags and identified CIMS (see Figure 2.3.8).  

 

Figure 2.3.7. Meta-gene analysis of U2AF65-RNA interactions on a composite pre-mRNA. 

 

Figure 2.3.8. U2AF65 binding on a gene example (SNRPA1), showing raw tags, peaks and 

identified Crosslinking-induced Mutation Sites (CIMS). 

These data demonstrated high fidelity mapping results for U2AF65-RNA 

interactions in the human genome. 
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2.3.2 U2AF recognition of ~88% functional 3’ splice sites in the human 

genome 

Consistent with the biochemically defined binding specificity of U2AF (Singh et 

al., 1995), motif analysis showed highly pyrimidine-enriched sequences on mapped 

U2AF65 binding sites (see Figure 2.3.9 ).  

 

Figure 2.3.9. Enriched motifs for U2AF65 binding. Top 3 motifs were shown and top 50 motifs 

were used to deduce the consensus in the insert. 

 

Figure 2.3.10. Percentage of U2AF65 binding sites that contain one or more top 50 motifs (red), 

compared with randomly selected 50 hexamers (blue). 
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Top 50 hexamers alone, which all consist of pyrimidines, account for 80% of all 

mapped U2AF65 binding sites, whereas randomly selected 50 hexamers only cover ~20% 

potential U2AF65 binding sites (See Figure 2.3.10). Alignment of the mapped U2AF65 

binding sites according to the center of CIMS in individual tags generated a Py-tract 

like sequence, typical of those associated with functional 3’ splice sites (see Figure 

2.3.11). This high quality dataset allowed us to address two critical rules deduced from 

previous in vitro studies.  

 

Figure 2.3.11. Nucleotide frequency centered on identified CIMS. 

The first concerns the degree by which U2AF is involved in defining the functional 

3’ splice sites in mammalian genomes. From 12 million iCLIP tags, U2AF65 was 

previously found to bind 58% actively used 3’ splice sites in HeLa cells (Zarnack et al., 

2013). However, we noted that this simple counting method is likely to miss many 

U2AF-dependent 3’ splice sties, especially among genes that are expressed at modest 

to low levels in the cell.  

We therefore developed a maximal neighborhood approach to estimate the 

percentage of 3’ splice sites that could be bound directly by U2AF65. We first sorted 

expressed genes according to the average tag density per annotated 3’ splice site in each

gene and then divided these genes into consecutive groups, each consisting of 50 genes. 

This allowed us to calculate the coverage of annotated 3’ splice sites by U2AF65 with 

standard deviation in all groups. We next determined the percentage of coverage of the 

3’ splice sites when the tag density per 3’ splice site is progressively increased. As 

shown in Figure 2.3.12 (blue dots), we observed that the coverage reached saturation at 
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~88% with increasing levels of U2AF65 binding at annotated 3’ splice sites, indicating 

the existence of ~12% U2AF65-independent introns in the human genome. 

 

Figure 2.3.12. U2AF65 has the capacity to bind ~88% of annotated 3’ splice sites in the human 

genome based on the maximal neighborhood analysis. Each blue dot represents averaged occupancy 

of group of 50 genes, which were sorted according to the averaged tag density at 3’ splice sites; each 

orange dot shows the average of 3’ splice site score among those in each group of 100 genes that 

exhibited no U2AF65 binding peaks.

We next asked whether those U2AF65 unbound 3’ splice sites are drifted from 

U2AF65 binding consensus. For this purpose, we similarly sorted expressed genes 

according to the average tag density per 3’ splice site and then group those splice sites 

without U2AF65 peak into consecutive groups, each consisting of a total of 50 introns. 

We next calculated the averaged 3’ splice site score of U2AF65 unbound 3’ splice sites 

in each group according to Yeo and Burge36. As shown in Figure 2.3.12 (orange dots), 

we detected progressive decease in the averaged 3’ splice site score with U2AF65 

unbound introns. These data indicate that, among genes that show less efficient U2AF 

binding in general, the lack of U2AF binding in unoccupied introns is likely due to 

limited expression, but among genes that show extensive U2AF binding, the lack of 
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U2AF binding in the remaining introns likely results from poor consensus in their 3’ 

splice sites. Therefore, coupled with the maximal neighborhood analysis, our data 

suggest that a significant fraction (~12%) of functional 3’ splice sites may indeed 

represent U2AF-independent ones. 

2.3.3 Additional U2AF binding events beyond functional 3’ splice sites 

The second rule concerns the ability of the U2AF heterodimer to discriminate Py-

tracts with or without a flanking AG dinucleotide in mammalian genomes. In vitro 

binding studies suggest that U2AF efficiently binds Py-tracts followed by AG, but 

much less to Py-tracts without ending with an AG dinucleotide (Wu et al., 1999; 

Merendino et al., 1999), and such specificity appears to be enhanced by additional RNA 

binding factors, such as DEK and hnRNP A1 (Soares et al., 2006; Tavanez et al., 2012). 

Because U2AF65 functions as a heterodimer with U2AF35 based on their tight 

interactions in co-IP experiments, it is likely that the mapped genomic U2AF65 binding 

events largely reflect the action of the U2AF65/35 heterodimer in vivo, which now 

affords us to directly test whether the U2AF heterodimer indeed prefer for Py tracts 

each followed by an AG dinucleotide in the human genome. 

 



48 

Figure 2.3.13. S65 scores of U2AF65 binding sites in 3’splice sites and non-3’splice sites. 

Comparing between U2AF65 binding events on canonical 3’ spice sites and other

regions, we found that both U2AF65-bound 3’ splice sites and non-3' splice sites 

exhibited a similar profile of the S65 score, a measure of U2AF65 binding affinity based 

on SELEX experiments (Murray et al., 2008) (see Figure 2.3.13). We next segregated 

U2AF65 binding events on non-3’ splice sites into two classes. The first contains 

potential decoy exons (those with flanking sequences that resemble a 3’ or 5’ splice site) 

or pseudo exons (those with flanking potential 3’ and 5’ splice sites separated by a 

sequence up to 250nt) (Danckwardt et al., 2007), and the other has no obvious evidence 

for any splicing signals. We found that U2AF65 binding at functional 3’ splice sites are 

strongly associated with a downstream AG dinucleotide; its binding near decoy and 

pseudo exons shows less, but still significant, link to a downstream AG; and the 

remaining U2AF65 binding events in other intronic locations exhibit no selective 

enrichment with a downstream AG dinucleotide (see Figure 2.3.14).  

 

Figure 2.3.14. The frequency of the AG dinucleotide from the mapped U2AF65 binding sites on 
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annotated 3’ splice sites (red), deduced decoy and pseudo exons (blue), or other intronic regions 

(green). 

These data suggest that, despite the presence of other specificity enhancing factors 

to prevent U2AF65 from binding to other pyrimidine-rich sequences, a significant 

fraction of U2AF65 is still able to bind other locations in pre-mRNA besides functional 

3’ splice sties. These U2AF65 binding events may interfere with functional definition 

of adjacent bone fide 3’ splice sites as a mechanism to modulate alternative splice site 

selection (see below) and/or reflect a role of U2AF65 in other RNA metabolism steps, 

such as mRNA export (Gama-Carvalho et al., 2006; Xiao et al., 2012).  

2.3.4 Critical roles of U2AF in regulated splicing 

U2AF65 has been implicated as a regulator of alternative splicing besides its role 

in constitutive splicing (Hastings et al., 2007; Pacheco et al., 2006), but it has been 

unclear how extensively U2AF65 is involved in regulated splicing in mammalian cells. 

To determine this question, we performed RNA-seq, generating 14.1 and 16.8 million 

uniquely mapped tags before and after knockdown of U2AF65 in HeLa cells, 

respectively (see Table 2.3.2). 

Table 2.3.2. Summary information of RNA-seq data. 

RNA-Seq data 

 Ctrl Knock down U2AF65 

total reads 28228751 25595461 

mapped reads 14384722 17183922 

mapped ratio 50.96% 67.14% 

uniquely mapped reads 14119360 16834141 

uniquely mapped ratio 91.16% 97.96% 
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Figure 2.3.15. Altered alternative splicing events determined by RNA-seq, showing significantly 

induced (blue) or repressed (red) splicing events in U2AF65 knockdown cells. 

We analyze the RNA-seq data to deduce altered splicing events in an unbiased 

manner. Taking advantage of 75nt sequences from both ends of our libraries, we 

generated sequence contigs that cover alternative splice junctions, which permitted 

calculation of the splicing ratio (Percentage of Splice In or PSI) of individual annotated 

cassette exons, as described (Zhou et al., 2012). The data revealed 102 and 343 (out of 

a total of 6915) cassette exons that showed significantly increased and decreased 

inclusion, respectively, in response to U2AF65 depletion (see Figure 2.3.15).  
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Figure 2.3.16. Splicing of two representative genes in response to U2AF65 knockdown. RNA-seq 

data were validated by RT-PCR in HeLa cells treated with two independent U2AF65 RNAi. 

Most identified alternative splicing events are evident even from RNA-seq tags 

mapped on the alternative and flanking exons (see examples in Figure 2.3.16). We 

validated 70 randomly selected alternative splicing events by semi-quantitative RT-

PCR and found that the induced exon inclusion or skipping events detected by RNA-

seq were well correlated with the RT-PCR results (R2=0.65, p-value<2.2e-16, see 

Figure 2.3.17). 
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Figure 2.3.17. Comparison between the alternative splicing events detected by RNA-seq and those 

validated by semi-quantitative RT-PCR. 

These data demonstrate that U2AF65 is extensively involved in the regulation of 

alternative splicing. Importantly, while 2/3 of induced events by U2AF65 RNAi showed 

increased exon skipping, the remaining 1/3 exhibited increased exon inclusion, raising 

an important mechanistic question on the positive and negative effects of this essential 

splicing factor on splice site selection. 

2.3.5 Multiple mechanisms underlying U2AF-regulated alternative 

splicing 

Because numerous genes were down regulated in U2AF65-depeleted cells, many 

induced changes in alternative splicing might result from indirect effects of reduced 

expression of either positive or negative splicing regulators, which is expected to cause 

exon inclusion and skipping in about equal frequencies. However, our data clearly 

showed more induced exon skipping events than exon inclusion events in U2AF65-
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depleted cells (Figure 2.3.15), indicating that at least a fraction of U2AF65 depletion-

induced exon skipping events may result from the direct effect of U2AF65. This is 

consistent with levels of U2AF65 binding that are generally proportional to the levels 

of exon inclusion (see Figure 2.3.18), suggesting that the 3’ splice site of the alternative 

exons is weaker in general than that of the flanking competing exons, and when 

U2AF65 is reduced in RNAi-treated cells, the alternative exons may be preferentially 

affected. 

 

Figure 2.3.18. U2AF65 binding levels proportional to levels of exon inclusion. 

While U2AF65 RNAi-induced exon skipping events could be comprehended, it 

remains to be determined whether some U2AF65 RNAi-induced exon inclusion events 

might also result from the direct effect of U2AF65. We noted many examples in which 

U2AF65 binds on exons, as illustrated on the GANAB gene (See Figure 2.3.19). This 

is actually consistent with a report showing the existence of many U2AF65 binding 

consensus in exonic regions and the inhibitory effect of exon-bound U2AF65 on exon 

inclusion (MacMillan et al., 1997). 

 

Figure 2.3.19. U2AF65 binds on exon in GANAB to repress exon inclusion. 
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The mechanism for the inhibitory role of U2AF65 via direct binding on the 

alternative exon, however, could not explain numerous other U2AF65 RNAi-induced 

exon inclusion events. To aid in mechanistic dissection, we constructed the U2AF65 

RNA map based on detected exon inclusion or skipping events in response to U2AF65 

RNAi (see Figure 2.3.20).  

 

Figure 2.3.20. Normalized U2AF65 binding events on unaffected cassette exons (black), up-

regulated (blue) or down-regulated (red) cassette exons in U2AF65 knockdown cells. U2AF65 

binding appears higher upstream of the alternative cassette exons that were up regulated in response 

to U2AF65 knockdown. 

However, we could not see any obvious trend for U2AF65-dependent exon 

inclusion or skipping, except some additional intronic binding events upstream of 

functional 3’ splice sites associated with U2AF65-repressed alternative exons (blue line 

in Figure 2.3.20), comparing with the upstream of functional 3’ splice site associated 

with the downstream exons. 

It is real that the difference in U2AF65 binding in Figure 2. 3.20 are modest. This 

is because the size of introns varies greatly. As we displayed U2AF65 intronic binding 

events in a lineage fashion, the figure misses many intronic binding events that are 

beyond the adjacent regions from 5’ and 3’ splice sites.  
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Figure 2.3.21. Ratio of upstream and downstream intronic binding events on down- and up-

regulated exons 

To solve this problem, we choose to keep the original Figure 2.3.20 to illustrate 

our points. One of the key features of U2AF-regulated alternative splicing events is 

elevated binding of U2AF65 in the upstream intronic region in many up-regulated cases, 

which is not evident with down-regulated ones. To further emphasize this point, we 

display the ratio of upstream and downstream intronic binding events on down- and up-

regulated exons (see Figure 2.3.21). 

It is significant that, among down-regulated exons, the ratio is evenly distributed 

between 0 and 1, indicating that the dominant regulatory mode for these events is 

selective weakening of U2AF binding at the alternative 3’ splice site relative to the 

downstream 3’ splice site. In contrast, we observe that most ratios are >0.5 among up-

regulated exons, indicating that prevalent upstream intronic binding events interfere 

with the function of U2AF65 at the 3’ splice site of the alternative exon, and as a result, 

removal of such interference induces the inclusion of the alternative exon. This is next 

validated by mutational analysis in the following panels, which additionally show that 

the same regulatory principle also holds for some strong downstream intronic binding 

events where they interfere with the function of U2AF65 at the 3’ splice site of the 
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downstream exon, thus producing the opposite functional consequence. 

 

Figure 2.3.22. CU content levels proportional to levels of exon inclusion. 

This is highly consistent with levels of CU content (U2AF65 binding sequence) in 

the upstream region of 3’ splice site of cassette exon (the bigger box regions in Figure 

2.3.22) that are generally inversely proportional to the levels of exon inclusion (see 

Figure 2.3.22), suggesting that the more CU content, or the more U2AF65 binds in the 

upstream region of functional 3’ splice site, the less cassette exons included.  

This finding raises an intriguing possibility that these additional U2AF65 binding 

events may interfere with normal recognition of adjacent functional 3’ splice sites. 

2.3.6 Polar effect of U2AF65 binding on downstream 3’ splice site 

recognition 

We chose three representative genes to perform mutational analysis on their 

minigenes, which could avoid potential indirect effects of U2AF65 depletion, and to 

compare between the effect of deletion mutations and response to U2AF RNAi.  
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Figure 2.3.23. U2AF65 RNAi induced alternative splicing of TPD52L2. U2AF65 binds within 

intronic regions downstream of the alternative exon. The splicing response of these genes to 

U2AF65 RNAi was each analyzed by RT-PCR on the bottom. 

On the TPD52L2 gene, U2AF65 binding predominantly occurred within the 

downstream intron, and depletion of U2AF65 caused skipping of the upstream 

alternative exon. Deletion of the major U2AF65 binding site near the 5’ splice site of 

the alternative exon induced exon skipping in the same way as in U2AF65-depleted 

cells (see Figure 2.3.23).  

 

Figure 2.3.24. U2AF65 RNAi induced alternative splicing of Drosha. U2AF65 binds within 

intronic regions upstream of the alternative exon. The splicing response of these genes to U2AF65 

RNAi was each analyzed by RT-PCR on the bottom. 

On the Drosha gene, CLIP-seq detected a major U2AF65 binding event upstream 
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of the 3’ splice site of the alternative exon and deletion of the U2AF65 binding site 

triggered the inclusion of the alternative exon, again similar to the U2AF65 RNAi effect 

(see Figure 2.3.24).  

 

Figure 2.3.25. U2AF65 RNAi induced alternative splicing of EIF4A2. U2AF65 binds within both 

introns flanking the alternative exon. The splicing response of these genes to U2AF65 RNAi was 

each analyzed by RT-PCR on the bottom. 

We next dissected the EIF4A2 minigene where U2AF65 binds extensively on both 

up- and downstream introns and U2AF65 depletion induced the net increase in the 

inclusion of the alternative exon. In this case, instead of constructing simple deletion 

mutants (because deletion of the U2AF binding sequence would remove most of the 

upstream or downstream intron), we replaced the U2AF65 binding sequences with a 

non-U2AF65 binding sequence of similar length. Interestingly, we detected enhanced 

exon inclusion when the upstream U2AF65 binding site was substituted, but enhanced 

exon skipping when the downstream U2AF65 binding site was replaced (see Figure

2.3.25). 

Considered together, the simplest interpretation of the above results is that 

U2AF65 binding in intronic regions interferes with the recognition of the immediate 

downstream functional 3’ splice site. In the case of TPD52L2, release of such inhibition 
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increases the competitiveness of the flanking 3’ splice site, thereby suppressing the 

selection of the upstream 3’ splice site associated with the alternative exon. This is also 

the case with U2AF65 binding in the downstream intron of the EIF4A2 gene. On the 

other hand, the removal of U2AF65 competition from the upstream intron in both 

Drosha and EIF4A2 genes likely increases the competitiveness of the 3’ splice site of 

the alternative exon, allowing it to be included more efficiently in each case. When both 

competing events are operating in the same alternative splicing unit, a strong one would 

win, as in the case the EIF4A2 gene, thus generating a net effect of exon inclusion in 

U2AF65-depleted cells.  

 

Figure 2.3.26. Proposed polar effect model for the effect of intronically bound U2AF65 to interfere 

with the recognition of the immediate downstream 3’ splice site in regulated splicing. 

Based on these findings, we propose a polar mechanism for intronic U2AF65 

binding to interfere with the recognition of the downstream 3’ splice site (see Figure 

2.3.26). 

2.3.7 Coordinated action of U2AF65 and U2AF35 in regulated splicing 

It has been unclear thus far whether U2AF65 predominantly acts alone or in 

conjunction with U2AF35 or with other U2AF35-related molecules in the regulation of 

alternative splicing. Because the vast majority of U2AF65 appears to exist as the 

heterodimer with U2AF35 in the cell, it is likely that the U2AF65/35 heterodimer may 

play a dominant role in both constitutive and regulated splicing. To directly test this 

hypothesis, we used alternative splicing as a functional readout to compare the cellular 

response to U2AF65 and U2AF35 RNAi. As previously reported (Pacheco et al., 2006), 

U2AF35 RNAi only reduced the expression of U2AF35 while U2AF65 RNAi reduced 

the levels of both subunits of the U2AF heterodimer (see Figure 2.3.27).  
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Figure 2.3.27. Western blotting analysis of RNAi-mediated U2AF65 and U2AF35 knockdown. 

Note reduced U2AF35 in U2AF65 RNAi-treated cells. 

To determine how the reduction of U2AF35 alone or the U2AF65/35 heterodimer 

might affect alternative splicing from a global prospective, we employed the RASL-seq 

based technology we recently developed (Wei et al., 2012) to conduct a cost-effective 

survey of alternative splicing events in U2AF65 and U2AF35 RNAi-treated HeLa cells.  
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Figure 2.3.28. Splicing response of representative genes in response to RNAi against U2AF65 or 

U2AF35. 

Using this oligonucleotide ligation-based approach, which was designed to 

specifically interrogate a large set of annotated splicing events (~5,000), we detected 

1892 alternative splicing events in control RNAi-treated HeLa cells, among which 271 

and 334 events showed significant changes (p<0.001) in response to U2AF65 and 

U2AF35 depletion, and U2AF65 depletion respectively, which were extensively 

validated (see Figure 2.3.28). Significantly, nearly identical sets of alternative splicing 

events were induced (see Figure 2.3.29, Table 2.3.3). 

RASL-Seq data 

 Knock down U2AF35 Knock down U2AF65 

total detectable events 1892 

significantly changed events 334 271 

co-changed events 208 

Co-changed events with 
same direction 

206 

ratio 99% 

Table 2.3.3. Summary result of RASL-Seq data.  



62 

 

Figure 2.3.29. Global concordance of U2AF65 and U2AF35 dependent splicing revealed by RASL-

seq. 

While since depletion of U2AF65 also decreases the levels of U2AF35 (see Figure 

2.3.27), it cannot be concluded that U2AF35 largely functions in conjunction with 

U2AF65 in the regulation of AS in mammalian cells. It could be that the effects seen in 

both experiments are due to a decreased level of U2AF35. So we should overexpress 

U2AF35 in cells that are subject to siRNA against U2AF65. If then, U2AF35 reach 

levels similar to the control, then they will be able to control effects of depleting 

U2AF35 and U2AF65.  
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Figure 2.3.30. Heatmap of inclusion ratio of changed cassette exon induce by knocking down 

U2AF65 with or without exogenously expressed U2AF35. 

We performed the RASL-seq experiments by knocking down U2AF65 with or 

without exogenously expressed U2AF35. The data show that the exogenous U2AF35 

has little impact on U2AF65 depletion-induced splicing events, indicating that U2AF35 

has to function in conjunction with U2AF65 in regulated splicing (see Figure 2.3.30).  

These data demonstrated that U2AF35 largely functions in conjunction with 

U2AF65 in the regulation of alternative splicing in mammalian cells. 

2.3.8 U2AF65 binding scores 

Using sequences of 12 nucleotides, we should iterate 
124 16777216  times for 

all the sequences in a loop for a specific constrain, and there are 48 constrains even for 
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the simplest type of pattern. Being limited of our computers’ performance, we have 

only tried three kinds of patterns now. Latter, we could try to break the long target 

sequences into smaller ones to predict, and then join them together. In this way, we 

could test more complex pattern and mixed pattern of them. 

The three patterns just present the weight matrix model (me1s0), the first-order 

Markov model (me2s0) and a simplest nonadjacent dependence model (me2s1) (see 

Figure 2.3.31). As shown in Figure 2.3.31, there are not too much difference among 

them, indicating that the adjacent and nonadjacent dependencies between nucleotides 

maybe not be used so much by U2AF65 to recognize it target sites. And all the patterns 

do not perform very well. We think that there are two reasons at least: There are many 

assistant factors (U2AF35, hnRNPA1) could help U2AF65 to recognize target sites, as 

described previously; RNA structures in the intronic regions may also affect U2AF65 

binding on the target patterns. 

 

Figure 2.3.31. Receiver operating characteristic (ROC) curve of three type of constrains performing 

on test data sets. ‘me’ stands for maximum entropy model; ‘s’ stands for skipping. For example, 
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‘me2s1’ means the constrains take the nonadjacent dependencies of two nucleotides with one 

random base between them, like ( )ANA . 

While the first-order Markov model (me2s0) perform a little better than the others, 

we take the log-likelihood ratio of this model as the U2AF65 binding scores. Base on 

this score, we could try to predict the possibility that if the U2AF65 likes of dislikes 

binding on a specific sequence.  

 

Figure 2.3.32. Normalized U2AF65 binding scores on up-regulated (blue) or down-regulated (red) 

cassette exons in U2AF65 knockdown cells. U2AF65 binding appears higher upstream of the 

alternative cassette exons that were up regulated in response to U2AF65 knockdown. 

We try to use this scoring scheme to illustrate the difference of the up-regulated 

and down-regulated cassette exons in U2AF65 knockdown cells again. As shown in 

Figure 2.3.32, both the 3’ splice sites have a peak, indicating binding preference. 

Comparing the upstream and downstream intronic region, U2AF65 binding score 

appears a little higher along the upstream intronic region of the alternative cassette 

exons for up-regulated cassette exons than down-regulated cases, but not for the 

downstream region. 
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2.4 Discussion 

Our current genome-wide study demonstrates that U2AF65 plays a predominant 

role in functional definition of 3’ splice sites and is required for efficient expression of 

most intron-containing genes in the human genome. Interestingly, however, our data 

also suggest the existence of ~12% U2AF65-independent introns because they lack 

evidence for U2AF65 binding and their Py tracts are considerably degenerate from the 

pyrimidine-rich consensus. It is important to point out that the functional requirement 

for U2AF is not strictly determined by the consensus, as many poor 3’ splice sites could 

be aided in by other intronic splicing enhancer factors, such as YB1 (Shen et al., 2010). 

However, the existence of a fraction of U2AF-independent introns is fully consistent 

with the observations made in fission yeast (Sridharan et al., 2011; Sridharan et al., 

2007), which begs the question of which specific splicing factors fulfill such role in 

defining various untypical 3’ splice sites. Although several RNA binding splicing 

factors have structures related to U2AF65 or U2AF35 (Mollet et al., 2006), the 

available functional evidence suggests that most of them function in synergy with, 

rather than independently from, U2AF (Page-McCaw et al., 1999; Tronchere et al., 

1997; Shepard et al., 2002; Han et al., 2011b). Therefore, it remains to be understood 

how U2AF-independent introns are recognized in mammalian genomes. 

The preferential binding of U2AF65 to functional 3’ splice sites over other 

pyrimidine-rich sequences in the genome appears to be enforced by the U2AF35 

subunit. Other factors have also been suggested to provide the proofreading function of 

the U2AF heterodimer in the genome (Soares et al., 2006; Tavanez et al., 2012). 

However, our genome-wide binding data clearly show that U2AF65 can also bind to 

various locations that are not part of annotated 3’ splice sites and these binding events

do not seem to depend on a downstream AG dinucleotide. This is consistent with the 

proposed function of U2AF65 in promoting nuclear export of intronless transcripts in 

Drosophila (Gama-Carvalho et al., 2006) and with binding of U2AF65 on some spliced 

mRNAs (Xiao et al., 2012). A more recent study showed that hnRNP C is able to 

prevent U2AF65 from binding to many Alu-containing transcripts to suppress 
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exonization of those Alu elements (Zarnack et al., 2013). Therefore, U2AF binding 

appears to be a highly regulated process in mammalian genomes. 

Besides its role in constitutive splicing, U2AF has been implicated in the 

regulation of alternative splicing. Our metagene analysis indicates that U2AF binding 

on the 3’ splice site of alternative exons generally tracks the level of exon inclusion. 

This has been generally perceived as a predominant mechanism for U2AF-regulated 

splicing. However, we also found that U2AF65 exhibits other modes of binding in the 

human genome, one corresponding to its binding to exonic regions to interfere with the 

selection of nearby 3’ splice site, which has been demonstrated on engineered 

minigenes (Lim et al., 2011). A more widespread mode of U2AF65 binding appears to 

occur in various intronic locations.  

By mutational analysis, we found that those intronic U2AF65 binding events 

appear to selectively interfere with the recognition of the immediate downstream 3’ 

splice site, and thus, the competition between the alternative and flanking constitutive 

splice sites dictates the splicing outcome. This splice site competition model provides 

a universal mechanism for the regulation of alternative splicing by both sequence-

specific RNA binding proteins and core components of the splicing machinery (Zhou 

et al., 2012). The observed polar effect may underlie the positional effect of many other 

splicing regulators whose binding on the upstream intron may inhibit the inclusion of 

the alternative exon, whereas their interaction with the downstream intron may induce 

the skipping of the alternative exon (Przychodzen et al., 2013). 

One of the most important advances in the field is the identification of specific 

mutations in multiple splicing factors, including U2AF65 and U2AF35, in specific 

types of myeloid leukemia. Because of the prevalence of those mutations in the disease,

they are generally considered driver mutations, which actually remain to be functionally 

defined.  

Therefore, although our current study was not carried out in a disease-relevant cell 

type, our findings provide critical insights into the nature of specific mutations in the 
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splicing regulators. The challenge ahead is to link specific molecular defects in right 

cell types, likely hemopoietic stem cells, to the etiology of the disease.  
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Chapter 3: Consistent-Pivot: A New effective Pivot 

Algorithms for Ranking Aggregation Problem 

 

 

3.1 Introduction 

With the increasing development of high throughput technologies, very high 

amounts of data are produced and stored in public databases to make them available to 

the scientific community, for example, Gene Expression Omnibus (GEO) which is a 

public functional high-throughput sequencing genomics data repository (Barrett et al., 

2013) (see Figure 3.1.1). 

Figure 3.1.1. Distribution of the number and types of selected studies released by GEO each year 

since inception. Users can explore and download historical submission numbers using the ‘history’ 

page, as well as constructing GEO DataSet database queries for specific data types and date ranges 

using the ‘DataSet type’ and ‘publication date’ fields. Figure from (Barrett et al., 2013) 



70 

From the biological Big Data, vast amounts of genes lists of expression, regulation, 

interaction, correlation could be extracted from the data mining results, such as cell 

expressed microRNAs, gene regulated genes, protein-protein interaction, disease 

related genes, or just gene association from text mining (Metzker, 2010). Facing these 

kinds of lists, it is very difficult to exploit them if they are not ranked. However, 

rankings of biological data on a same query are always very different between different 

processing methods, algorithms or datasets, especially for biological data mostly with 

noise, fuzziness, biases and errors (Brusic et al., 1998). Based on all these issues, how 

to get a convincible ranking result from biological data becomes an important task 

in post-genome era. 

Instead of developing new ranking methods, Cohen-Boulakia and her colleagues 

proposed to generate a consensus ranking to highlight the common points of a set of 

rankings while minimizing their disagreements to combat the noise and error for 

biological data (Cohen-Boulakia et al., 2011). This idea had already been used for 

combining results of microarray data (DeConde et al., 2006), microRNA targets 

prediction algorithms (Sengupta et al., 2013), Comparison ligand-binding site 

prediction methods (Gao et al., 2012), and so on.  

There has been also a lot of interest in this problem in the computer science 

community in recent years which arises when building meta-search engines for Web 

search, where one wants to combine the rankings obtained by different algorithms into 

a representative ranking. For example, Dwork combines the rankings of individual 

search engines to get more robust rankings that are not sensitive to the various 

shortcomings and biases of individual search engines (for instance, “paid placement” 

and “paid inclusion” among search engines) (Dwork et al., 2001). 

The process of generating a consensus ranking is based on the concept of ranking 

aggregation, originating in social choice theory, machine learning, and theoretical 

computer science (Ali et al., 2012), defined on rankings: Given m  rankings of n  

elements and a distance function, the ranking aggregation problem is to find a ranking 

of all the elements that is the closest of the m  given rankings. 
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It could be easily thought of a kind of a ranking aggregation method, where the 

order of each element is determined by taking simple average of positions of it from 

different rankings. This method was firstly proposed by Borda as a voting system for 

elections in the late eighteenth century (Young, 1974). Condorcet proposed a more 

reasonable method of pairwise majority voting known as Condorcet’s criterion, which 

permits A  to be ranked higher than B  if the majority vote for A  over B  in 

pairwise comparison, even if the average of positions of A  is after B  (De Grazia, 

1953).  

Obeying to extended Condorcet criterion, Kemeny proposed the Kemeny optimal 

aggregation for determining the best aggregate ranking based on the Kendall-tau 

distance which counts the number of pairwise disagreements between orderings of 

elements (Kemeny et al., 1962). 

However, Kemeny optimal aggregation is unfortunately a computational challenge, 

because the problem is NP-hard even for only four rankings (Dwork et al., 2001; Blin 

et al., 2011). Since the problem is important across a variety of fields, many researchers 

across these fields have converged on finding good, practical algorithms for its solution. 

There are formulations that lead to exact algorithms, of course without polynomial 

running time guarantees. There are also a large number of heuristic and approximation 

algorithms. 

Among these, a group of algorithms are thought to be very prospective, named 

pivot algorithms (Ailon et al., 2008; Van Zuylen et al., 2009). In common, they 

recursively generate a solution by choosing an elements as pivot and ordering all the 

other elements with respect to the pivot according to some criterion. It divides the 

problem into smaller ones and conquers separately, and uses the transitive property (see

below) which is right in most situations, especially for the rankings with high agreement. 

So the pivot algorithms are always fast in time and not bad in accuracy. 

In this chapter, we propose a new variant of pivot algorithms named as Consistent-

Pivot. It uses a new strategy of pivot selection and other elements assignment which 
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performs much better both on computation time and accuracy than previous pivot 

algorithms. 
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3.2 Notations 

In this section, we introduce the definition of ranking and the distance used to 

compare two rankings, then we provide the general statement of the problem of 

Kemeny optimal aggregation with ties under generalized Kendall-tau distance. 

3.2.1 Ranking with ties 

Following the definition of Fagin and his colleagues, given a universe set U , a 

ranking with ties ( or bucket order) of a subset S U , r is a transitive binary relation 

 represented as set of non-empty buckets 1,..., kB B  that form a disjoint partition of 

the   elements of S , such that x y  if and only if there are i , j  with i j  such 

that ix B  and jy B  (Fagin, 2004). We may assume without loss of generality that 

a ranking with ties on [ ]n  is defined as 1[ ,..., ]kr B B , and let ( )r x i  if ix B  

which denotes the rank of x .  

If r  contains all the elements in U , then it is said to be a full ranking. There are 

situations where full rankings are not possible. For instance, the ranking result of target 

genes of a miRNA from a prediction tool usually cannot include all the targets. Such 

rankings that rank only some of the elements in U  are called partial rankings. 

3.2.2 Unifying a set of partial rankings 

Aiming to penalize the fact that one element is considered in a ranking but not in 

another one, Cohen-Boulakia and her colleagues present a unifying preprocess for sets 

of partial rankings to append the set of elements belonging to the other rankings to the 

end in a same bucket. 

Example 1 For instance, let us consider three different ranking methods which outputs 

are the following: 
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1

2

3

[{1},{7},{2},{3}]

[{2,4,5},{7},{3}]

[{1,2,3},{4,5},{6,7}]

r

r

r





 

 Here we have {1,2,3, ,7}U  , 1\ {4,5,6}U r  , 2\ {1,6}U r   and 3\U r  . 

The rankings processed using the unifying preprocess are then the followings: 

'
1

'
2

'
3

[{1},{7},{2},{3},{4,5,6}]

[{2,4,5},{7},{3},{1,6}]

[{1,2,3},{4,5},{6,7}]

r

r

r







 

This is a normalized method to facilitate the comparison between the rankings and 

the consensus ranking, especially for comparing the performance of the different 

ranking methods. In the remainder of this chapter, the unifying preprocess is applied 

before running the ranking aggregation algorithm. 

3.2.3 Distance measures 

How do we define a distance between two full rankings with respect to a set S ? 

In the last century, this problem has been studied and defined from a mathematical 

perspective (Kendall, 1938). 

3.2.3.1 The Spearman footrule distance 

 For all elements i S , the Spearman footrule distance is the sum of the absolute 

difference between the rank level of i  according to the two rankings. Formally, given 

two full rankings 1r  and 2r , the distance is given by: 

1 2 1 2
1

( , ) [ ] [ ]
s

i

F r r r i r i


   

So if based on the Spearman footrule distance, the consensus ranking of m  

rankings with smallest distance is just the median value of the set of positions of every 

element in the m  rankings, because only in this way, the footrule distance is the 

smallest (Dwork et al., 2007). 
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3.2.3.2 Kendall-tau distance 

A good dissimilarity measure for comparing two rankings without ties is the

Kendall-tau distance which counts the number of pairwise disagreements between 

positions of elements in these rankings (Kendall, 1938). The larger the distance, the 

more dissimilar the two rankings are. Kendall-tau distance is also called bubble-sort 

distance since it is equivalent to the number of swaps that the bubble sort algorithm 

would make to place one ranking in the same order as the other ranking.  

A strict ranking without ties, or permutation, r  is a bijection of [ ] {1,2..., }n n  

on to itself. It represents a strict total order of the elements of [ ]n . The Kendall-tau 

distance, denoted K , counts the number of pairwise disagreements between two 

permutations. For permutations 1r  and 2r  of [ ]n , it is defined as: 

1 2 1 1 2 2

1 1 2 2

( , ) #{( , ) :  and [( [ ] [ ] and [ ] [ ]) or

                                                 ( [ ] [ ] and [ ] [ ])]}

K r r i j i j r i r j r i r j

r i r j r i r j

   
 

 

where [ ]r i  denotes the position of integer i  in permutation r  and # S  the 

cardinality of set S . For example, if  

1 [{1},{2},{3},{4}]r  , 

2 [{2},{3},{1},{4}]r  , 

then 1 2( , ) 2K r r   since elements 1 and 2 appear in different orders in the two 

rankings as do elements 1 and 3, but not others. 

3.2.3.3 Generalized Kendall-tau distance for rankings with ties 

Following the definition of Fagin et al., the generalized Kendall-tau distance, 

denoted ( )pK  (or simply K , when parameter 1p  ), is defined according to a 

parameter p , 0 1p  : 
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( )
1 2 1 1 2 2

1 1 2 2

1 1 2

( , ) #{( , ) :  and [( [ ] [ ] and [ ] [ ]) or

                                                  ( [ ] [ ] and [ ] [ ])]}

                   #{( , ) :  and [( [ ] [ ] and 

pK r r i j i j r i r j r i r j

r i r j r i r j

p i j i j r i r j r

   
 

    2

1 1 2 2

[ ] [ ]) or

                                                          ( [ ] [ ] and [ ] [ ])]}

i r j

r i r j r i r j


 

 

In other words, the generalized Kendall-tau distance considers the number of 

disagreements between two rankings with ties: a disagreement can be either two 

elements that are in different buckets in each ranking, where the order of the buckets 

disagree, and each such disagreement counts for 1 in the distance; or two elements that 

are in the same bucket in one ranking and in different buckets in the other, and each 

such disagreement counts for p , 0 1p  . For example, if  

1 [{1},{2,3,4}]r   

2 [{2,3},{1,4}]r  , 

then 1 2( , ) 2 3K r r p   since two pairs of elements 1 and 2, 1 and 3 appear in 

different orders in the two rankings, and three pair of elements 1 and 4, 2 and 4, 3 and 

4 appear in different buckets in one ranking while in a same bucket in the other ranking. 

3.2.4 Kemeny optimal aggregations  

Based on the definition of Kendall-tau distance, Kemeny proposed a precise 

criterion for determining the “best” aggregate ranking (Kemeny and James, 1962). 

Given n  elements and m  rankings of the elements, a Kemeny optimal ranking of 

the elements is a ranking *r  that minimizes the sum of distances, 
1

( *, )
m

i
i

K r r

 . In 

other words a Kemeny optimal ranking minimizes the number of pairwise

disagreements with the given m  rankings, corresponding to the geometric median of 

the inputs (Farah and Vanderpooten, 2007). 

More formally, let nRank  be the set of all possible rankings with ties over [ ]n . 

Given any subset nR Rank  and a ranking r , we define 
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( ) ( )( , ) ( , )
i

p p
i

r R

K r R K r r


   

A Kemeny optimal ranking of a set of rankings with ties nR Rank  under the 

generalized Kendall-tau distance is a ranking with ties *r  such as 

( ) * ( )( , ) ( , ),  for all p p
nK r R K r R r Rank   

Kemeny optimal aggregations have maximum likelihood interpretation. Suppose 

there is an underlying “correct” ordering *r  of S , and each order, 1r , 2r … ir , is 

obtained from *r  by swapping two elements with some probability less than 1/ 2 . 

Thus, the ( ir )s are “noisy” versions of *r . A Kemeny optimal aggregation of 1r , 2r …

ir , is one that is maximally likely to have produced the ( ir )s, so it is just *r . Viewed in 

this way, Kemeny optimal aggregation has the property of eliminating noise from 

various different ranking schemes (Dwork et al., 2007). 

 However finding a Kemeny optimal ranking is NP-hard and remains NP-hard even 

when there are only four input rankings to aggregate (Dwork et al., 2001; Blin et al., 

2011). This motivates the problem of finding a ranking that approximately minimizes 

the number of disagreements with the given input rankings. 
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3.3 Previous algorithms 

 As for the Kemeny optimal aggregation problem, Conitzer et al have provided a 

integer linear programming scheme for treating strict rankings (Conitzer et al., 2006) 

and Blin expands it generally for rankings with ties (Brancotte et al., in preparation). 

However, of course solving the integer linear programming problem is also NP-hard.  

 Another exact algorithm was proposed by Meila et al. It is a branch and bound 

algorithm (B&B). Each node in the search tree corresponds to a prefix 

1 2[ , , , ]jx x x   of *r , so that level j  in the tree contains all possible prefixes of 

length j ; branching is on the item to be added in rank 1j   which is one of the other 

elements. The cost and cost-to-go at a node are computed for bounding. A brute force 

search tree has !n  paths if there are no ties, while if the lower bound of some nodes 

A  is greater than the upper bound of some other nodes B , branch and bound 

algorithm could safely discard A  from the search, what is called pruning. However 

in bad cases, as aggregation of strong disagreement rankings, pruning can not always 

be effective. So, branch and bound algorithm, limiting the available memory leads to a 

family of approximate algorithms in which memory and runtime can be traded off for 

accuracy. 

 So, many heuristic and approximate algorithms were developed. 

3.3.1 Some heuristics and approximation algorithms 

 Heuristics and approximation algorithms are techniques designed for solving a 

problem more quickly when classic methods are too slow, or when classic methods fail 

to find any exact solution, especially for NP-hard problems. However, more than 

heuristics algorithms, approximation algorithms want provable solution quality and 

provable run-time bounds. For example, a  -approximation algorithm A  is defined 

to be an algorithm for which it is proven that the result of the approximation algorithm 

( )A x  will not be more (or less, depending on the situation) than a factor   times the 
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optimum solution ( OPT ). 

( ) ,     if 1;
( ) ,     if 1;

OPT A x OPT

OPT A x OPT

 
 

  
   

 

The factor   is called the constant ratio approximation factor. 

3.3.1.1 Borda count 

As described before, Borda count comes from the social choice theory. It is 

“positional” method, which sorts items in descending order according to their average 

position across all the input rankings (Borda, 1781).  

It aims at finding the winner of a pole by taking into consideration the preferences 

between candidates each voter has by letting them rank all the candidates, which form 

R  a set of rankings. The principle of the algorithm is simple it assigns to each element 

x  a Borda score ( )Borda x  and sorts the elements by this score. It runs in time 

( )O nm . The score is computed as follows: ( ) ( )
i

i
r R

Borda x r x


    where ( )ir x  denote 

as the rank of element x  in ranking ir , as defined before. 

Obviously, this is a heuristic algorithm, which is not developed for solving the 

median problem. However, it could give a good solution very quickly. 

3.3.1.2 MEDRank 

MEDRank was designed for a database environment where, in order to quickly 

provide an answer, one needs to have as few accesses as possible to each record of each 

ranking (Fagin et al., 2003).  

In order to build the consensus, all rankings of R  are read in parallel, element by 

element. Having m  rankings and a threshold tr , 0 1tr  , as soon as an element 

has been read in tr m  rankings, it is added at the end of the consensus in a new bucket. 

Obviously, the algorithm runs also in ( )O nm . 
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In the study of Fagin and colleagues’ , the default threshold considered by the 

authors is 0.5tr  . In this way, the algorithm is just sorting the median value of the set 

of positions of every element in the rankings. As described above, so this is just the 

optimal solution based on the Spearman footrule distance. It is known that: 

1 2 1 2 1 2( , ) ( , ) 2 ( , )K r r F r r K r r   

So it is proven that it is a 2-approximation algorithm (Fagin et al., 2003). 

3.3.1.3 FaginLarge and FaginSmall 

 This Fagin et al.’s algorithm is a kind of improvement of the MEDRank, based on 

the intuition that if two items i  and j  have very close median ranks, items i  and j  

should be put into the same bucket in the output ranking (Fagin, 2004). So it is also 

called the median aggregation algorithm. It starts from the ordering result of median 

rank of elements, then groups elements with close median ranks into same bucket to 

minimize the sum of all the buckets cost based on dynamic programming. 

In detail, suppose a bucket B  in the final result ranking r , contains items starting 

from the i -th position to the j -th position in the MEDRank result. Then the bucket 

cost c  associated with this bucket is defined as follows: 

( , ) ( )
2

j

l i

i j
c i j Med l




   

Where ( )Med l  denotes the median rank of item l  and the term ( ) 2i j  

represents the “average position” of the bucket in the output bucket order.  

At each step of the dynamic programming the solution is built from the best of the 

sub-solutions. The variant FaginLarge chooses the first best sub-solution encountered 

while FaginSmall uses the last one. Their names come from that experimentally it was 

noticed that FaginSmall tends to do smaller bucket than FaginLarge (Brancotte et al., 

in preparation). They run in time 
2( )O nm n . 
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It has been proven that this algorithm is a constant factor approximation both full 

rankings and partial rankings. For full rankings, the median aggregation algorithm gives 

a near-optimal full ranking, with an approximation factor of two (Fagin, 2004). 

3.3.1.4 BioConsert 

BioConsert was proposed by Cohen-Boulakia and her colleagues. It works by 

iteratively trying to move a element to another bucket or a new bucket from an input 

ranking to reduce the sum of Kendall-tau distance which improves the input ranking 

step by step. If none of the elements are changed from their buckets, then the algorithm 

terminates (see Algorithm 1) (Cohen-Boulakia et al., 2011). 

 

Algorithm 1. BioConsert 

In contrast to the two previous one, this heuristic is an anytime algorithm, as the 
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input ranking is iteratively improved and interrupting the algorithm at any time will 

return a proper result. This heuristic can be implemented with a time complexity of 

3( )O n m . BioConsert is a kind of local search algorithm. At each step, the BioConsert 

algorithm is only looking for a better neighbor. So it would falls in to a local best 

solution, which can be the global best one sometimes. 

3.3.2 Other algorithms 

 There are some other algorithms for the ranking aggregation problem. Dwork et al. 

introduced a Markov chain based algorithm (Dwork et al., 2001). Qin and colleagues 

developed a posibility based algorithm (Qin et al., 2010). In addition, the attempts of 

combinations of several algorithm to give a better result were also reported (Ailon et 

al., 2008; Schalekamp and van Zuylen, 2009; Ali and Marina, 2012). For example, the 

combination of KwikSort and Pick-A-Perm could get a 11
7

-factor approximation 

algorithm, which is a little better than KwikSort algorithm (2-factor approximation 

algorithm). 

3.3.3 Pivot Algorithms 

 Previous pivot algorithms are all published for rankings without ties, but they all 

could be expanded to the rankings with ties. Besides the two relationships for two 

elements ( i j , i  is before j ; i j , i  is after j ), rankings with ties allow elements 

in a same level. So, it is a little more complex for rankings with ties. Here for simple 

description, we follow the same situations described in the papers before for the 

previous pivot algorithms. 

3.3.3.1 Transitive property and conflicts 

We define the weight that element i  is before element j  as ijw , which is how 

many times the element i  is before element j  in the m  rankings. So if ij jiw w , 

we would say that the situation where element i  is before element j  ( i j ) is 
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dominant.  

We have stated that sets of rankings usually have transitive property for elements. 

It means that if i j  and j k are dominant for the set of rankings, we could usually 

see that i k  in most time (or, i j k ), especially for the rankings with high 

agreement. Let us illustrate this property in an example, for the three rankings below: 

1

2

3

[{1},{3},{4},{2}];

[{4},{2},{3},{1}];

[{1},{2},{3},{4}].

r

r

r





 

 Here we try to illustrate the positional relationship of all the elements in a weighted 

directed graph (see Figure 3.3.1). The relationship of “before” is plotted on the upside, 

and “after” is plotted on the underside. In this weighted directed graph, all the thicker 

lines have a weight of 2, while the thinner lines have a weight of 1. As shown in the 

figure, element 1 is before element 2 in two rankings ( 1r  and 3r ), so there is a thicker 

line (weight of 2 in this figure) linking the element 1 to the element 2. At the same time, 

element 1 is after element 2 in the ranking 2r , so there is also a thinner line (weight of 

1 in this figure) linking the element 2 to the element 1. Here it is the dominant positional 

relationship between the two elements that element 1 is before element 2 (1 2 ) 

 

Figure 3.3.1. A weighted digraph to describe the positional relationship of all the elements. The 

relationship of “before” is plotted on the upside, and “after” is plotted on the underside. In this 

weighted digraph, all the thicker lines have a weight of 2, while the thinner lines have a weight of 

1 2 3 4

Before

After
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1. 

For convenience, we remove the minor directed edges to only keep the dominant

relationship between two elements (see Figure 3.3.2). 

 

Figure 3.3.2. A weighted directed graph to describe the positional relationship of all the elements 

with only the dominant relationships. The red lines show the transitive property for elements 1, 2 

and 3 (1 2 3). 

As shown in Figure 3.3.2, the transitive property is that element 1 is dominantly 

before element 2 (1 2 ), and element 2 is dominantly before element 3 ( 2 3), so we 

usually could see that 1 is also dominant before 3 (1 3 or 1 2 3). It is the same 

for element 1, 3 and 4 (1 3 4), element 1, 4 and 2 (1 4 2 ). 

 

Figure 3.3.3. A weighted directed graph to describe the positional relationship of all the elements 

with only the dominant relationships. The red lines show a conflict for element 2, 3 and 4, forming 

a directed cycle. 

 But it is clear that the transitive property is not true for element 2, 3 and 4 (see 

1 2 3 4

Before

After

1 2 3 4

Before

After
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Figure 3.3.3). element 2 is before 3 ( 2 3), and element 3 is before 4 ( 3 4 ). While 

we could not see that element 2 is before element 4, but it is just the opposite that 

element 2 is after element 4. In this way, they form a directed cycle. We also call it a 

conflict in the set of rankings, because it could not simultaneously be satisfied in a 

linear ordering.  

Ranking aggregation is just aiming to set up a compatible positional relationship 

(or a linear ordering) by removing a set of conflicting edges with a sum of smallest 

weight. It is worth mentioning that this is just the definition of the minimum feedback 

arc set problem. And in fact it has been stated that the problem of Kemeny optimal 

aggregation of rankings can be cast as a special case of the minimum feedback arc set 

problem (Ailon et al., 2008). It is easy for this example that we could get three different 

results by removing any edge in the directed cycle, because they are all same weighted 

(see Figure 3.3.4). 

       

        1 3 4    2                   1 4 2       3                   1 2 3        4  

Figure 3.3.4. The three types of answers for the problem are all right.  

3.3.3.2 KwikSort 

 Based on the transitive property of the elements in rankings, Ailon, Charikar and 

Newman developed a 2-factor approximation algorithm for rankings without ties, 

KwikSort. It was named KwikSort, mainly because the algorithm looks like a type of 

sorting algorithm, Quicksort. It was defined for the feedback arc set problem (Ailon et 

al., 2008). Here we describe it for the ranking aggregation problem without ties. 

 Let ( , )G V W  be a directed graph of a set of rankings, where V  indicates all 

the elements, and W  is the weight table between any two elements ( ijw  and jiw ). The 

1 2 3 4

Before

After

1 2 3 4

Before

After

1 2 3 4

Before
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algorithm recursively generates a solution by choosing a random element as “pivot” 

and ordering all other elements with respect to the pivot element (see Algorithm 2). In 

this way, the positional relationship between elements in the sets of both sides of the 

pivot do not need to be taken into account: all the elements on the left side are before 

all the element on the right side. 

 

Algorithm 2. KwikSort 

 The advantage of this algorithm is that it is very fast. The weight table could be 

calculated with a time complexity of 2( )O n m . We note that the weight table only need 

to be calculated once and the same table can be used in all recursive calls. And even in 

the worst situation, it makes 2( )O n  comparisons. In addition, the accuracy of this 

algorithm is not very bad, especially for the rankings with high consistence. It has been 

proven that this algorithm is a 2-factor approximation algorithm for rankings without 

ties (Ailon et al., 2008). 

In fact, the KwikSort algorithm uses the transitive property which is usually true 

for elements, but not takes the conflicts in rankings into account. So some more 

algorithms were developed to try to solve this problem, by changing the assignment 

method or pivot picking method. 
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3.3.3.3 LP-KwikSort 

As described above, the integer linear programming (ILP) for ranking aggregation

problem is also NP-hard. But as we know, the linear programming (LP) relaxation 

without integrality constraint can be solved in polynomial time (Khachiyan, 1980). 

Based on the pivot and the linear programming scheme, Ailon and colleagues proposed 

another algorithm, LP-KwikSort (see Algorithm 4).  

Here we define the solution of the following linear programming as P , where ijp  

indicate the probability that element i  is before element j . 

, \{i}

 Z= ( )

0 1
. .  for , j, k 1

ij ji ji ij
i V j V

ij

ij ji

ij jk ki

minimize p w p w

p

s t i p p

p p p

 

  

  
  
  



 

 

Algorithm 3. LP-KwikSort 

 The main idea of the algorithm is changing the assignment of the other elements in 

such a way that, after we choose a pivot j , we should use the LP solution value ( ijp  
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and jip ) to decide where to put all the other elements, instead of deciding greedily.  

 Ailon and colleagues proved that this algorithm is a 4
3

-approximation algorithm 

for rankings without ties, which is better than KwikSort algorithm (Ailon et al., 2008). 

Based on the same scheme, Ailon introduced a 3
2

-approximation algorithm for partial 

rankings (Ailon, 2010). 

3.3.3.4 DerandLP-Pivot 

 Another modified pivot algorithm called DerandLP-Pivot, was proposed by Van 

Zuylen and colleagues (Van Zuylen et al., 2009). It is a deterministic pivot algorithm, 

instead of randomly picking pivot. And this algorithm directly faces up the conflicts in 

rankings. 

 

Figure 3.3.5. A schematic figure of conflict between elements for picking k  as the pivot.  

 For a pivot k , let ( )kT G  be the set of combination of two elements with conflicts. 

( ) {( , ) | ,  ,  ,  }kT G i j k j k k i i j  . They define a budget for element i  and 

element j  as min( , )ij ij jic w w . As shown in Figure 3.3.5, for a pivot k  and a 

conflict between i  and j , ijw  is the cost for picking k  as the pivot for this conflict, 

and ijc  is just the earning of picking k  as the pivot for this conflict. 

 So in every recursive call, we choose the pivot k  that minimizes the cost-earning 

ratio: 

j ik

ijw

ij jic w
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( , ) ( )

( , ) ( )

( ) k

k

iji j T G

iji j T G

w
Pivot k

c








. 

In this way, the choice of k  costs as little as possible, and earns as much as possible. 

 In addition, this algorithm also improves the method of assignment of all the other 

elements based on the solution of linear programming without integrality constraint 

(see Algorithm 5). It also involves comparing of a type of cost-earning ratios of placing 

the element on the left sides or right sides: 

 
 
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( )
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L
k L R

W V V i V
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C V V i V

   
  

 

 
 

( ) | ,
( )

( ) | ,
k L R

R
k L R

W V V V i
Ratio i V

C V V V i

   
  

 

Where 

 
\{ } ( , ) ( )

( ) | , ( ) | ,
L R k

k L R ki ik ik ki ki ik ij L R
i V i V i V k i j T V

W V V V w w p w p w w V V
   

 
      

 
     

 
\{ } ( , ) ( )

( ) | , | ,
k

k L R ik ij L R
i V k i j T V

C V V V c c V V
 

 
   

 
   

And 

( , ) ( ) , { , } \{ } \{ }, \{ },

| , ( )
k L R R L

ij L R ij ji ij ij ji jk ij ki ij
i j T V j V i V i j V k j V k i V i V k j V

w V V w p w p w p w p w
       

 
     

 
      

( , ) ( ) , { , } \{ } \{ }, \{ },

| , ( )
k L R R L

ij L R ij ji ij ij ji jk ij ki ij
i j T V j V i V i j V k j V k i V i V k j V

c V V c p c p c p c p c
       

 
     

 
    

 



90 

 

Algorithm 4. DerandLP-Pivot 

 Compared to Ailon et al.’s KwikSort algorithm, the running time of DerandLP-

Pivot is approximately a factor of n  slower, because the pivot picking method should 

be implemented in 3( )O n  time (Van Zuylen et al., 2009). 
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3.4 Methods 

3.4.1 Consistent-Pivot algorithm 

 Here we propose a new pivot algorithm, called Consistent-Pivot. It is based on a 

novel method of pivot picking and assignment of all the other elements. We think that 

this algorithm is more suitable for the transitive property of the data of ranking 

aggregation problem.  

In this part, we introduce this algorithm for rankings with ties. Besides the two 

positional relationships for two elements ( i j , i  is before j ; i j , i  is after j ), 

rankings with ties allow elements in a same level ( i j ). In addition, there are three 

types of weight between two elements, ijw  (for i  is before j )， jiw  (for i  is after 

j ) and i jw ( i  is the same as j ). For ranking aggregation problem, we usually want 

to choose the positional relationship with highest weight. We define the earning of this 

kind of choosing as: 

( , ) max( , , )ij ji i jearning i j w w w  

And accordingly, the cost of this kind of choosing is 

,  (  )

( , ) ,  (  )

,  (  )

ji i j

ij i j

ij ji

w w if i j

cost i j w w if i j

w w if i j

 


 
 

 

This is the minimum cost for every two elements without taking the relationships 

with the other elements into account. This value reflects the consistency of the

positional relationship between the two elements in the rankings. The smaller the value 

is, the more agreement for the two elements in the set rankings shows. If ( , ) 0cost i j  , 

it means that the relationships for the two elements in all the rankings are all the same, 

without disagreement. 
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 In what follows, we define a consistent score for element i  as the sum of the costs 

between the element and all the other elements:  

\{ }

( ) ( , )
j V i

Consistent i cost i j


   

This score reflect the positional certainty of the element in the rankings. The 

element with smaller consistent score is more stable. As a well-known landmark in a 

city for the other buildings, the positional relationships are clear, the element with the 

smallest consistent score could also be a marker to position all the other elements. 

With the intuition above, we propose that the element with the smallest consistent 

score should be picked as the pivot. 

For example, here are four rankings of 15 elements: 

1

2

3

4

=[{7},{3, 2},{31, 41, 4, 5, 1},{8},{27, 43},{42},{40},{6},{17}];

=[{7},{31, 41, 4, 5, 1, 3, 2},{8},{6, 17},{27, 40, 42, 43}];

=[{7},{31, 41, 4, 5, 1, 2},{3},{27},{8},{42, 6, 43},{40},{17}];

=[{7}

r

r

r

r ,{3, 2},{31, 41, 4, 5, 1},{8},{6},{17, 27, 40, 43},{42}].

 

 In the first recursive cycle, element 7 is picked as the pivot ( (7) 0Consistent  ). It 

is worth noting that in the second recursive cycle, element 8 is picked as the pivot 

( (8) 1Consistent  ). Based on the element 8, all the other elements can be easily 

assigned into the two sides. And in fact, the two groups of elements beside the element 

8 really have little interaction between groups, but have complex positional relationship 

in the groups. 

 Continuing to use the principle, we assign all the other elements not randomly but 

in an order of the consistent score from small to large. As for the method of assignment 

of all the other elements, we do not directly use the positional relationship between the 

element and the pivot, instead of using a cost function that the position with the smallest 

cost is chosen (see Algorithm 5). 
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Algorithm 5. Consistent-Pivot 

 For a given pivot k , the costs of element i  to be placed before, after or the same 

as the pivot are defined as: 

1 1 1
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Where 1jkx  , 1kjx   and 1j kx   are the best positional result for the element 

in the unassigned set V  and the pivot k . Sometimes, there are two or three best 
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positional relationships between the element and pivot. In this situation, the cost 

function should take the minimum value among them. 

 Both the weight table (W ) and best positional relationships table ( X ) between any 

two elements can be simultaneously calculated in a time of 
2( )O n m . The processes of 

sorting of the elements, picking a pivot and assignment of all the others are much 

quicker. So the time complexity of this algorithm is 
2( )O n m , the same as KwikSort, 

and faster than DerandLP-Pivot. 

 

Figure 3.4.1. A tree structure of implementation of the Consistent-Pivot algorithm on the example. 

The elements are all sorted with the green one in the front which is selected as the pivot (in red) in 

the next recursive cycle. 

 The algorithm is implemented in a ternary tree structure. Figure 3.4.1 shows the 

structure of the result of the real example given above in this section. 

3.4.2 Experiments on the algorithms 

 In the work of Cohen-Boulakia and colleagues, the BioConsert algorithm performs 

much better than Fagin et al.’s algorithm and the two pivot algorithms of Ailon et al. in 

accuracy (Cohen-Boulakia et al., 2011). In addition, Brancotte et al. shows that the 
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BioConsert algorithm is the best one in most cases (Brancotte et al., in preparation). So, 

in this section, we focus on the comparison of the results of the Consistent-Pivot 

algorithm with all the previous pivot algorithms and the BioConsert algorithm.  

 The experiments have been conducted on a personal computer with an Intel Core 

2 Duo CPU, 2 GB memory and Fedora 11 system. We used the GLPK 4.45 (GNU 

Linear Programming Kit) package to solve large-scale linear programming problems 

(Makhorin, 2008). All the Algorithms were coded in C. 

3.4.2.1 Experiment Settings 

To measure the accuracy of the algorithms, we should set a standard. But without 

the best aggregation result, it is difficult to value a relative accuracy for different data 

sets. Based on the definition of consistent score, we propose a strict lower bound 

( IdealDis ) of the best Kendall-tau distance between the Kemeny optimal ranking *r  

and the set of rankings R : 

1
( )

2 i V

IdealDis Consistent i


   

( ) *( , )pIdealDis K r R  

Where ( )
i V

Consistent i

  is the sum of the consistent scores of all the elements, 

which is also twice the sum of the minimum cost for every two elements.  

The IdealDis  can be calculated easily. It is just the Kemeny distance between the 

Kemeny optimal ranking ( *r ) with the sets of rankings ( R ), if and only if there is no 

conflict (or directed cycles) between elements: 

( ) *( , )pK r R IdealDis  

 Based on the lower bound of the best result, we define a normalized gap function 

to measure the performance in accuracy: 
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( ) ( , )p
resultK r R IdealDis

Gap
IdealDis




 

 It is a relative value to the ideal distance. Clearly, the more the gap is, the less the 

accuracy shows. 

3.4.2.2 Data sets 

 We firstly test the performance on real biological data (Cohen-Boulakia et al., 

2011). It is query results from four ranking methods of rankings for genes known to be 

possibly associated with some kinds of diseases: Breast cancer, Prostate cancer, 

Neuroblastoma, Bladder cancer, Retinoblastoma, Attention Deficit Hyperactivity 

Disorder (ADHD), and Long QT syndrome (LQT) (see Table 3.4.1).  

Query number of elements IdealDis  

ADHD_reduced 15 48 

LQT 35 350 

Retinoblastoma_reduced 37 653 

ADHD 45 670 

Bladdercancer_reduced 115 3881 

Prostatecancer_reduced 218 26313 

Bladdercancer 308 38159 

Breastcancer_reduced 386 78892 

Retinoblastom 402 75032 

Neuroblastoma_reduced 431 56536 

Table 3.4.1. The real biological data set. The 10 sets of rankings used in the work of Cohen-Boulakia 

et al. are all listed. The number of elements and IdealDis  are shown. 

We also did the experiment on the WebSearch dataset, which was widely used in 

comparison of various algorithms for ranking aggregation (Dwork et al., 2001; 

Schalekamp and van Zuylen, 2009; Ali et al., 2012). It is extracted from search results 

of queries for 37 keywords from four search engines.  

To systematically compare the algorithms, we also use a group of synthetic data 
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sets. We generated dataset of 4m  , {4...20}n  and [20;100]n  stepping 10 by 10 

and then [200;1000]n  stepping 100. We generate 500 datasets for each n , which 

gives a total of 15000 datasets. They were produced by putting n  elements randomly 

into n  buckets independently, and then sorting them by the bucket order. 
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3.5 Results 

3.5.1 Results on real biological data 

Query IdealDis  CP BC KS LK DLP 

ADHD_reduced 48 48 48 55 48 48 

LQT 350 352 352 392 352 352 

Retinoblastoma_reduced 653 653 653 653 653 653 

ADHD 670 682 682 747 682 682 

Bladdercancer_reduced 3881 3881 3881 3899 - - 

Prostatecancer_reduced 26313 26388 26386 27676 - - 

Bladdercancer 38159 38159 38159 38245 - - 

Breastcancer_reduced 78892 79023 79057 80089 - - 

Retinoblastom 75032 75456 75073 75111 - - 

Neuroblastoma_reduced 56536 56859 57192 58709 - - 

Table 3.5.1. Results on real biological data with ( 1p  ). “CP” stands for the Consistent-Pivot 

algorithm; “BC” stands for BioConsert; “KS” stands for KwikSort; “LK” stands for LP-KwikSort; 

“DLP” stands for DerandLP-Pivot.  

As shown in Table 3.5.1, The Consistent-Pivot algorithm performs as well as the 

BioConsert algorithm, with two results better than the BioConsert algorithm (in red), 

and two worse results (in blue). As for the three previous pivot algorithms, the 

KwikSort algorithm is fast, but it is mostly worse than the Consistent-Pivot algorithm 

in accuracy; In another way, both the LP-KwikSort algorithm and the DerandLP-Pivot 

algorithm cannot finish running all the rest 6 datasets ( 100n  ) in one hour, so we 

stopped the programs and cannot get the results.  
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Figure 3.5.1. Gap and running time on real biological data with ( 1p  ). 

The normalized gap and running time are also shown in the Figure 3.5.1. Clearly, 

with the similar performance in accuracy, the running time of the Consistent-Pivot 

algorithm is much less than the BioConsert algorithm. The result is nearly the same for 

0.5p  , which gives a less weight of disagreement for two elements that are in the same 

bucket in one ranking and in different buckets in another ranking (see Figure 3.5.2). 
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Figure 3.5.2. Results of gap and running time on real biological data with ( 0.5p  ) 

3.5.2 Results on WebSearch data 

To value the performance of the two pivot algorithms based on linear 

programming, we firstly generate a dataset with less elements for all the 37 queries. 

The average number of elements per query is 36.2, with a standard deviation of 4.4 

( 36.2 4.4n   ). 
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Figure 3.5.3. Results of gap and running time on the Web Search data with less elements 

( 36.2 4.4n   ). 

 As shown in the Figure 3.5.3, the KwikSort algorithm is fast, with bigger gaps than 

the other algorithms. The LP-KwikSort and DerandLP-Pivot algorithms are very 

similar in accuracy and running time. It mainly because that both the result and running 

time of them largely depend on the solving of the linear programming problem. They 

are better than the KwikSort algorithm in accuracy, but much slower than all the other 

algorithms, mainly because of the solving of the linear programming problem. The 

Consistent-Pivot algorithm perform as well as the BioConsert algorithm in accuracy, 

but it is faster in running time. 

 The conclusions above are the same for a dataset with more elements (see Figure 

3.5.4). The average number of results per query ( n ) is 73, with a standard deviation of 

12.6. The two pivot algorithms based on LP are too slow to finish running out a result 

for this dataset. 
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Figure 3.5.4. Results of gap and running time on the Web Search data with more elements 

( 73 12.6n   ). 
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3.5.3 Results on synthetic data 

  

Figure 3.5.5. Result of gap and running time on the synthetic data. 

As shown in Figure 3.5.5, the running time of the LP-KwikSort, DerandLP-Pivot 

and BioConsert algorithm growths rapidly. So we just run the two pivot algorithm based 

on LP for datasets with 40n  , and run the BioConsert algorithm for datasets with 

400n  . Comparatively, the Consistent-Pivot and KwikSort algorithm are much faster, 

and even for 1000n  , they could finish running in 1 second. 
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Figure 3.5.6. Enlarged figure of the result of gap on the synthetic data for the number of elements 

range from 4 to 40. 

As for the accuracy, the DerandLP-Pivot algorithm perform best for the synthetic 

data with elements from 4 to 40 (see the enlarged figure in Figure 3.5.6), followed by 

the LP-KwikSort algorithm. The KwikSort algorithm is much worse than all the other 

algorithms. 

It is worth noting that the BioConsert algorithms perform significantly better than 

the Consistent-Pivot algorithm for this synthetic data, which is not the same as the result 

from both the real data. However the Consistent-Pivot algorithm perform not too bad, 

with less than 6% relative distance to the IdealDis  even for datasets 1000n  . 

We think it is mainly because of the synthetic datasets which are produced randomly 

without agreement information between the four rankings. It is not the same as the real 

data that have much transitive property in the rankings. 
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3.6 Discussion 

 In summary, the Consistent-Pivot algorithm is an efficient algorithm for real data 

both in accuracy and running time. It is much faster than the BioConsert, LP-KwikSort, 

DerandLP-Pivot algorithms, and performs almost as well as the BioConsert for real 

data. 

However, there is still a lot of work to do for this project. The experiments on the 

algorithms are not sufficient. We could test them systematically on more real data and 

synthetic data, to study how the agreement in rankings affects the performance of the 

Consistent-Pivot algorithm. And we would try to find an improvement of the 

Consistent-Pivot algorithm to deal with the datasets with not so much agreement in 

rankings.  

All the algorithms have advantages with shortcomings. The thinking of 

combination of several algorithms to get better performance is a good idea (Schalekamp 

and van Zuylen, 2009). The Consistent-Pivot followed by the better search of the 

BioConsert algorithm in a local range, maybe a good combined algorithm for the 

ranking aggregation problem. 
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