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Modeling of linkage disequilibrium in" whole genome genetic association studies

Motivation: Mapping by admixture linkage disequilibrium (MALD) is a powerful whole genome gene mapping method that uses LD from extended blocks of ancestry inherited from parental populations among admixed individuals to map associations for diseases varying in prevalence among human populations. The extended LD queried for marker association with ancestry results in a greatly reduced number of comparisons compared to standard genome wide association studies (GWAS). As ancestral population LD tends to confound the analysis of admixture LD, the earliest algorithms for MALD required marker sets sufficiently sparse to lack significant ancestral LD between markers. However current genotyping technologies routinely provide data more dense than this, which convey more information than sparse sets, if they can be efficiently used. Several algorithms for MALD with dense data have been presented; we here present an R package, ALDsuite, which accounts for local LD using principal components of haplotypes from surrogate ancestral population data, and includes tools for quality control of data, MALD and downstream analysis of results. Results: There are currently no software solutions which both offer analysis of dense marker data from more than two admixing populations and disease association statistics. ALDsuite offers a fast, accurate estimation of global and local ancestry and comes bundled with the tools needed for MALD, from data quality control through mapping of and visualization of disease genes.
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Modélisation du déséquilibre de liaison dans les études d'association genome entier 1. Introduction La découverte de la liaison génétique par Thomas Morgan il y a un siècle a eu d'immenses conséquences théoriques et pratiques. Gregor Mendel avait observé que différents traits étaient hérités séparément ; Morgan observa que certains traits avaient tendance à être hérités ensemble. L'observation de Morgan conduisit au concept de gènes agencés sur un génome linéaire, qui subit des recombinaisons au cours de la méiose lors de générations successives.

En pratique, la liaison génétique permet l'identification de variants génétiques sous-tendants des maladies humaines : une forte association entre une maladie et un variant génétique suggère que la variation causant la maladie est proche du locus observé. Ce concept général conduit à de nombreuses stratégies spécifiques pour l'identification de facteurs génétiques causant la maladie, les questions statistiques étant cruciales pour toutes. D'une façon générale, les stratégies peuvent être divisées en études familiales et études d'association genome entier (GWAS). La cartographie par étude du déséquilibre de liaison dans des populations mixtes (MALD) représente une approche hybride entre les deux, où les populations ancestrales d'une population mixte jouent le rôle des parents dans une étude familiale. Cette thèse aborde les questions statistiques des GWAS et des MALD, démontrant spécifiquement la capacité de l'analyse en composantes principales (ACP) à gérer les questions découlant de la complexité de la liaison génétique.

Le déséquilibre de liaison (DL) correspond à l'association non aléatoire d'allèles de loci proches. L'apparition de nouvelles mutations, la dérive génétique et la sélection sont les processus à l'origine de cette association entre allèles, tandis que les évènements de recombinaison romptent l'association. En raison de l'échelle temps/longueur de ! 5

recombinaison (~1 recombinaison pour 100 générations par mégabase), les loci distants sont non corrélés dans une population stable, mais les corrélations statistiquement utiles entre les facteurs pathologiques et les polymorphismes sur des longueurs de 1-100 kb abondent (International HapMap Consortium et al., 2007).

Les études familiales furent la première application du DL pour l'identification de gènes pathologiques. Les premiers gènes pathologiques cartographiés furent pour les troubles fonctionnels liés à l'X qui affectaient les porteurs masculins mais pas les porteurs féminins (par ex. facteur de déficience VIII, la cause de l'hémophilie (Toole et al., 1984)). La cartographie du gène autosomique responsable de la mucoviscidose a été complétée en 1989 (Riordan et al., 1989;Rommens et al., 1989). Depuis lors, la majorité des maladies mendéliennes avec une pénétrance moyenne ou élevée ont été cartographiées par le biais d'études familiales multiplexes ou de grands arbres généalogiques. Ces études emploient des polymorphismes mononucléotidiques (SNPs) ou des marqueurs microsatellites pour tester la liaison statistique entre les phénotypes et les marqueurs. La supposition sous-jacente est que le variant causal se situera sur le segment chromosomique hérité par tous les descendants affectés. On utilise alors le clonage positionnel pour identifier le gène responsable. Les études familiales ont connu un large succès pour les phénotypes hautement pénétrants avec héritage monogénique, mais elles ne peuvent pas être appliquées aux les maladies complexes où tous les membres de la famille ne recoivent pas nécessairement la même exposition environnementale ou génétique, ou lorsque la pénétrance est faible.

Les études d'association pangénomique (GWAS) exploitent aussi le DL: le génotypage d'un ensemble suffisamment dense de variants génétiques distribués sur l'ensemble du génome rend vraisemblable le fait qu'un variant pathologique soit en DL suffisant avec un ou plusieurs marqueurs typés pour créer une association statistiquement significative entre le marqueur et la maladie. L'approche GWAS permet l'utilisation de données cas-contrôles pour les maladies communes avec des causes complexes, par opposition aux maladies mendéliennes causées par la variation d'un gène unique.
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Bien que plus générales en applicabilité, les études d'association génétique cas-contrôles sont moins puissantes que les études familiales, nécessitant des échantillons beaucoup plus grands pour de nombreuses raisons : pénétrance, tests multiples, faible effet des variants les plus communs, mais également parce qu'il leur manque les grands blocs identiques par ascendance des membres d'une famille (Lander & Schork, 1994). Un autre inconvénient des études d'association génétique cas-contrôles est la fiabilité de la population contrôle (dans les études familiales, les membres non affectés de la famille offrent un contrôle interne) ; le groupe de contrôle approprié peut ne pas être évident ou difficile à recruter [START_REF] Blackwell | Design for the Control of Selection Bias[END_REF]. Cependant, les études cas-contrôles sont capables de modéliser une association entre une maladie non mendélienne complexe et des variants communs en DL avec des variants causaux. La liaison incomplète, le faible effet des variants à basse fréquence et les tests multiples limitent la puissance à détecter l'association génotype-phénotype (Lander & Schork, 1994). La plus problématique de ces questions reste la comparaison multiple : la comparaison pour association à ~10 6 marqueurs nécessite la correction d'un nombre semblable de comparaisons ; La correction précise à apporter est encore débattue et est l'un des thèmes abordés dans cette thèse, mais dans cette problématique créée de sérieuses questions de puissance pour les GWAS (Hoggart, Clark, De Iorio, Whittaker, & Balding, 2008).

Avec le développement de la liaison, l'effet de récents brassages sur les schémas de liaison a été reconnu comme une source potentielle d'informations pour cartographier les gènes associés à des phénotypes dont la prévalence diffère entre deux populations ancestrales. Les populations brassées conservent des haplotypes étendus intacts des populations fondatrices pendant de nombreuses générations, créant un déséquilibre de liaison dans les populations mixtes (ALD) qui peut être utilisé pour déduire l'ascendance génétique d'un locus (Gabriel et al., 2002;McKeigue, 1997). Dans les études de maladies avec une prévalence substantiellement différente entre les deux populations parentales, on peut déduire que les loci avec une association entre la maladie et l'ascendance locale abritent les gènes pathologiques.

Comme ces haplotypes intacts sont beaucoup plus longs que l'étendue du DL au sein de la population, la cartographie ALD réduit substantiellement le nombre de comparaisons par ! 7 rapport aux GWAS, et peut donc substantiellement accroître la capacité à détecter les associations avec une maladie lorsqu'elle est applicable (McKeigue, 1997). Un problème technique cependant est que le DL de la population qui constitue la base des GWAS est un facteur perturbant dans l'identification de blocs chromosomiques hérités de populations ancestrales.

Cette thèse aborde le problème de la puissance dans les études d'association pangénomique (GWAS) au travers de l'étude du déséquilibre de liaison existant entre les marqueurs. La complexité du DL perturbe en effet les estimations simples du nombre de comparaisons dans une GWAS, ainsi que les tentatives simples de correction pour le DL d'une population dans une MALD. Dans cette thèse, je prends en considération ces questions et estime que l'ACP offre peut-être une solution optimale. Cela forme la base de mes deux objectifs, le premier étant de soigneusement passer en revue et tester les méthodes de seuil de significativité pour les GWAS pour tenter de trouver le seuil de significativité le plus précis pour un taux d'erreur de type I souhaité dans une étude. Sur les sept méthodes testées, la correction de Bonferroni pour les comparaisons multiples est à la fois la méthode la plus conservatrice et la plus communément utilisée. D'autres méthodes testées utilisent soit diverses mesures de DL entre les marqueurs pour estimer le nombre réel de comparaisons indépendantes faites, ou elles utilisent un système de test par permutation optimisé pour estimer le seuil de significativité pour le taux d'erreur de type I désiré à l'échelle de l'étude (Browning, 2008;Duggal, Gillanders, Holmes, & Bailey-Wilson, 2008;Gao, Starmer, & Martin, 2008;Han, Kang, & Eskin, 2009). L'assouplissement de ce seuil de significativité, même de façon modérée, peut avoir un impact conséquent sur la puissance statistique, mais peut aussi augmenter le taux d'erreur de type I de l'étude au-delà du niveau souhaité.

Le second objectif est de tirer parti des informations glanées à partir du déséquilibre de liaison dans des populations mixtes (ALD) dans les études de populations brassées. Les premiers algorithmes à effectuer une telle analyse ont été développés avant l'avènement des puces SNP couvrant des centaines de milliers ou des millions de marqueurs, et par conséquent ne permettent pas l'analyse de telles données (Falush, Stephens, & Pritchard, 2003;Hoggart, ! 8

Shriver, Kittles, Clayton, & McKeigue, 2004;Patterson et al., 2004). Les solutions actuelles d'analyse des puces à marqueurs denses ont tendance à être soit inefficace d'un point de vue informatique, soit à simplifier excessivement la modélisation du DL (Seldin, Pasaniuc, & Price, 2011). Un raffinement efficace sur le plan informatique des algorithmes de marqueurs peu abondants modélisant le DL local via l'utilisation les composantes principales est proposé ici. La mise en oeuvre logicielle pour utiliser l'ALD pour cartographier les gènes pathologiques est également décrite.

Liaison génétique ou déséquilibre de liaison

La liaison génétique est fondamentale pour permettre aux études d'association génétique de réduire la recherche de variants causaux en identifiant une région chromosomique associée à la maladie. Dans de rares cas tels que celui de la découverte de l'association d'ACE avec l'infarctus du myocarde, ou de la découverte de l'homozygosité CCR5 ∆32 bloquant l'infection du VIH, une connaissance claire de l'association biologique du gène avec la maladie a conduit directement à la découverte de la variation génétique responsable. Lorsque deux marqueurs sont physiquement proches l'un de l'autre sur un chromosome, il est plus vraisemblable qu'ils soient hérités ensemble car il y a une chance plus faible de recombinaison entre les deux chromosomes au cours de la méiose. La source initiale de DL est la mutation, en ce qu'un nouvel allèle provenant d'un locus par mutation se produit nécessairement sur un chromosome unique et est ainsi associé à tous les allèles portés par ce chromosome spécifique [START_REF] Bateson | Experimental studies in the physiology of heredity[END_REF]Morgan, 1910;1911). Au cours des générations successives, la recombinaison casse ce chromosome d'origine, mais même après 5000 générations -environ l'âge des humains modernes -, les segments de chromosome d'une longueur moyenne de 20 kb seront hérités ensemble (Matise et al., 2007). La dérive aléatoire de fréquences des allèles et la sélection d'allèles avantageux par rapport aux allèles délétères contribuent aussi à ce procédé, dans un schéma complexe et largement étudié (Keightley & Otto, 2006;Ohta, 1982;Palaisa, Morgante, Tingey, & Rafalski, 2004;Sober, 1993). Au fur et à mesure du vieillissement, les populations acquièrent plus de variants et ont plus d'occasions de se recombiner, ce qui résulte en blocs (ou haplotypes) plus courts de DL, tandis que les populations plus jeunes ont tendance à avoir des blocs de DL plus longs et ! 9 moins de variants communs (International HapMap Consortium et al., 2007). Les populations qui sont géographiquement séparées ou reproductivement isolées pour d'autres raisons acquerront des schémas de DL différents au fil du temps, formant des sous-populations génétiquement distinctes avec des caractéristiques phénotypiques distinctes. Cette sousstructure de population est évidente dans les génomes des Européens par exemple, avec des individus issus de régions géographiques différentes présentant des schémas de DL légèrement différents (P. Price, James, Fernandez, & Frencha, 2004).

La structure du DL entre les variants pathogènes et les loci proches permet aux chercheurs de déduire la présence du variant causal en vertu de sa liaison avec un marqueur proche. Ce postulat clé de la génétique est au coeur de mon travail dans diverses études d'association génétique (Freedman et al., 2011;Hendrickson et al., 2008;Kopp et al., 2011;Nelson et al., 2010). Cela forme aussi la base de la GWAS, ce qui permet l'interrogation du génome humain entier en utilisant seulement un sous-ensemble de marqueurs. Lorsque l'on trouve une association significative entre un marqueur génétique et le phénotype étudié, une interférence peut venir du fait que l'un ou plusieurs variants causaux en DL avec le marqueur génétique aient un effet fonctionnel sur le phénotype.

Liaison génétique dans des populations mixtes

Des populations récemment brassées ont des blocs de DL étendus beaucoup plus longs qui forment une mosaïque des populations ancestrales (par ex. les Afro-américains descendent principalement des Africains occidentaux avec un mélange européen de l'ordre de 20 %) (Parra et al., 1998). Les haplotypes étendus descendent de chaque population ancestrale et sont lentement cassés avec la recombinaison au cours de la méiose de chaque génération suivante. Les blocs haplotypiques consistent en un chromosome entier hérité de chaque population ancestrale dans la génération brassée initiale. La longueur de ces blocs, qui décline au fur et à mesure à chaque génération, est fonction de la distance génétique, mesurée en centimorgans (cM). Après une génération par exemple, chaque bloc haplotypique étendu variera, mais la taille de bloc moyenne sera d'environ 100 cM ou à peu près cent millions de bases. On parle de déséquilibre de liaison dans les populations mixtes (ALD) pour faire ! 10 référence à la corrélation de marqueurs à l'intérieur de ces blocs haplotypiques étendus. À l'intérieur de ces blocs haplotypiques étendus cependant, l'ALD est perturbé par le DL local subsistant des populations ancestrales car chaque haplotype étendu descend d'une population ancestrale (Sundquist, Fratkin, Do, & Batzoglou, 2008;Tang, Coram, Wang, Zhu, & Risch, 2006). Une structure de corrélation complexe émerge de l'ALD et du DL local, où la connaissance de l'allèle sur un locus peut fournir des informations significatives sur les loci voisins, et la connaissance des allèles dans un bloc haplotypique peut fournir des informations significatives sur l'ascendance de ce locus.

L'ALD peut aussi ajouter des informations intéressantes à l'analyse des études d'association en utilisant des populations brassées. Au lieu de faire une étude d'association cherchant les associations entre les marqueurs et un phénotype, on peut chercher la liaison entre un bloc haplotypique étendu dérivé d'une ou de l'autre population ancestrale avec un trait ou phénotype qui diffère en fréquence entre les deux populations parentales ancestrales. En d'autres termes, nous anticipons que le variant causal est plus susceptible d'être porté sur le même chromosome ancestral que la population ancestrale montrant une prévalence plus élevée de la maladie (J. C. Stephens, Briscoe, & O'Brien, 1994). Ceci est analogue aux études familiales qui utilisent de longs blocs de liaison pour identifier des mutations pathologiques dans les familles affectées ségrégant un gène pathologique (McKeigue, 1997).

Modélisation du DL par composantes principales

La sous-structure de la population due à des différences d'ascendance parmi les cas et les contrôles est une source courante de biais pouvant résulter en des associations de faux positifs si on ne la corrige pas [START_REF] Campbell | Demonstrating stratification in a European American population[END_REF]. Cette source de biais peut aisément être modélisée avec une analyse en composantes principales (ACP) des données génétiques (A. L. Price et al., 2006). Dans une GWAS, l'ACP démarre avec la caractérisation complète de la covariance des profils génétiques entre chaque paire d'individus de l'étude, suivie par le calcul de valeurs propres et de vecteurs propres de la matrice de covariance. Le premier vecteur propre définit une transformation des génotypes d'un individu qui explique autant que possible la variation génétique de l'échantillon. Chaque vecteur propre successif explique, de ! 11 même, autant que possible la variation restante. Chaque transformation du vecteur propre résume la relation dans la donnée et peut être utilisée pour expliquer les tendances générales de l'échantillon : on peut penser aux valeurs propres comme à la quantité de variation représentée par chaque vecteur propre. Les premières composantes principales d'une ACP de GWAS sont une bonne approximation de la sous-structure de la population, et son utilisation en tant que covariable fait partie intégrante de l'analyse classique des GWAS (A. L. Price et al., 2006).

Dans la GWAS, la convention consiste à établir le seuil de significativité pangénomique acceptable entre p < 1x10 -8 et p < 5x10 -8 (Hoggart et al., 2008;International HapMap Consortium, 2005;McCarthy et al., 2008;Risch & Merikangas, 1996). En raison du taux accru d'erreur de type II associé à la réduction de la probabilité d'erreurs de type I utilisant ce seuil, beaucoup estiment qu'il est trop conservateur (Duggal et al., 2008;Gao et al., 2008;Gu, 2007;Nicodemus, Liu, Chase, Tsai, & Fallin, 2005). L'ACP peut être appliquée à une GWAS en utilisant un algorithme simpleM pour estimer le nombre de comparaisons multiples indépendantes effectuées (Gao, Becker, Becker, Starmer, & Province, 2010). Ceci est l'une des méthodes utilisées dans mon premier objectif. Une autre application que j'utilise dans cette thèse est le résumé des covariables corrélées dans un modèle statistique (Hawkins, 1973). La stabilité des coefficients de régression linéaire souffre lorsqu'une combinaison de variables explicatives approche un état de collinéarité. Cette corrélation entre variables explicatives peut être éliminée en analysant à la place les composantes principales (CP) obtenues dans une ACP. 

Résultats

Résumé"

Alors que nous entrons dans une ère où tester des millions de SNPs en une seule étude d'association génétique va devenir la norme, l'examen de comparaisons multiples est une partie essentielle de la détermination de l'importance statistique (Risch & Merikangas, 1996).

Les ajustements Bonferroni peuvent être effectués, mais ils sont conservateurs en raison de la prépondérance du déséquilibre de liaison (DL) entre les marqueurs génétiques (Duggal et al., 2008), et le test par permutation n'est pas toujours une option viable. Trois grandes classes de corrections ont été proposées pour corriger la nature dépendante des données génétiques dans les ajustements Bonferroni : les tests par permutation et les alternatives apparentées (Browning, 2008), l'analyse en composantes principales (ACP) (Gao et al., 2008), et l'analyse de blocs de DL sur l'ensemble du génome (Duggal et al., 2008). Nous considérons sept applications de ces méthodes communément utilisées à l'aide de données provenant de 1 514 participants américains européens génotypés pour 700 078 SNPs dans une GWAS pour le SIDA.

Une correction de Bonferroni utilisant le nombre de blocs de DL par les trois algorithmes implémentés par Haploview a résulté en un seuil insuffisamment conservateur, correspondant à un niveau de significativité pangénomique de α = 0.15 -0.20. Nous avons observé une augmentation modérée en puissance avec l'utilisation de PRESTO, SLIDE et simpleM par rapport aux méthodes de Bonferroni traditionnelles pour des données de population génotypées sur la plate-forme Affymetrix 6.0 des Américains européens (α = 0.05 seuils entre 1 × 10 -7 et 7 × 10 -8 ).

La correction du nombre de blocs de DL a résulté en un ajustement Bonferroni anti- elles ne peuvent être différenciées de résultats faux positifs dans l'étude (Neyman & Pearson, 1967).

La façon la plus fondamentale de combattre cette baisse de puissance statistique est d'échantillonner plus d'individus, tirant par-là parti du théorème central limite de statistique -! 14

l'agrégation d'un plus large échantillon diminuera le bruit statistique et résultera en des statistiques plus précises (Pólya, 1920). En moyenne, cette précision accrue de statistiques résultera en une significativité statistique accrue pour les « vraies » hypothèses alternatives, permettant ainsi au chercheur de différencier entre les associations statistiques significatives et le bruit statistique. Ceci peut être facilement accompli lorsque le financement et les cas sont disponibles, certaines études comprenant des dizaines de milliers de cas et jusqu'à 100 000 contrôles (Monda et al., 2013;Morris et al., 2012) [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF]Misawa et al., 2008;Skol, Scott, Abecasis, & Boehnke, 2006;Storey & Tibshirani, 2003). Certains ont cherché à tirer particulièrement avantage des SNPs localisés dans les blocs haplotypiques avec un niveau élevé de liaison (Duggal et al., 2008 (Johnson et al., 2010). En dépit d'un consensus général établissant le seuil de significativité standard à 5x10 -8 pour les GWAS, beaucoup demeurent insatisfaits des taux d'erreur de type II et cherchent une justification pour accepter davantage de résultats (Zaykin, Kuo, & Vsevolozhskaya, 2013). Bien que ce ne soit pas une mauvaise approche si l'on obtient la réplication indépendante des résultats, la puissance statistique est plus grande lorsque tous les échantillons sont compris ensemble, plutôt que d'organiser une validation indépendante (Skol et al., 2006).

Un passage en revue de tous les résultats GWAS publiés sur http://www.genome.gov a révélé que 75% des résultats qui ne passent pas le seuil significatif p < 5x10 -8 n'ont pas été validés dans les études de réplication suivantes. Par comparaison, seulement 28% des résultats GWAS dépassant ce seuil conservateur n'ont pas été répliqués (Hindorff et al., n.d.). Le rapport de résultats significatifs limites est clairement l'une des causes principales du manque de reproductibilité dans les résultats GWAS à ce jour. Étant donné le coût des erreurs de type I en matière de temps et d'argent dépensés par les autres laboratoires pour répliquer les résultats, beaucoup questionnent la valeur de ces études, surtout lorsque l'importance des conséquences est prise en considération [START_REF] Crow | The missing genes: what happened to the heritability of psychiatric disorders?[END_REF]Goldstein, 2009;McClellan & King, 2010). D'autres, cependant, ont noté que la découverte de gènes de GWAS a conduit à de nouvelles cibles médicamenteuses, a identifié des chemins pathologiques insoupçonnés auparavant et a apporté de nouveaux traitements.

La régulation des seuils de significativité dans les études de cas-contrôles demeurera importante, spécialement alors que nous entrons dans l'ère de l'analyse de séquence du [START_REF] Chakraborty | Frequencies of complex diseases in hybrid populations[END_REF]. Notamment, les variants APOL1 affectant profondément les maladies rénales sont uniquement trouvés chez les Africains et des ! 17

populations mixtes avec une ascendance africaine récente (Freedman et al., 2011;[START_REF] Murray | Distributed Markov chain Monte Carlo[END_REF]Genovese et al., 2010;Kopp et al., 2011). On a trouvé depuis que ce gène est associé à d'autres maladies rénales y compris des maladies rénales de phase terminale non diabétiques, mais cette association n'a pas été trouvée par de précédentes études GWAS enrôlant beaucoup plus de monde parce que les variants causaux n'étaient pas couverts par les marqueurs de ces GWAS [START_REF] Bostrom | Candidate genes for non-diabetic ESRD in African Americans: a genome-wide association study using pooled DNA[END_REF]Genovese et al., 2010;McDonough et al., 2011). Nous avons pu identifier le locus parce qu'il montrait un excès d'ascendance africaine comparé au reste du génome ou comparé au groupe contrôle de ce locus. L'absence de couverture complète de la diversité génétique dans les populations non européennes a commencé à être traitées par le projet 1000 Génomes, mais le séquençage d'individus dans chaque étude est le meilleur moyen de capturer la véritable portée de la diversité génétique humaine (Manry & Quintana-Murci, 2013).

Plusieurs très bonnes méthodes existent pour l'analyse de marqueurs d'information ancestrale (AIM) peu abondants et sont toujours très utilisées pour la découverte de gènes (McKeigue, Carpenter, Parra, & Shriver, 2000;Patterson et al., 2004;Pritchard, Stephens, & Donnelly, 2000). D'autres algorithmes sont capables d'analyser des ensembles de marqueurs denses avec des DL locaux, mais soit partagent les données de marqueurs en blocs haplotypiques discrets pour éviter la complexité informatique de modélisation des DL d'ordre supérieur, soit ils sont informatiquement inefficaces lorsqu'ils sont augmentés proportionnellement pour analyser de grands ensembles de données (Seldin et al., 2011). The discovery of genetic linkage by Thomas Morgan a century ago had immense theoretical and practical consequences. Gregor Mendel had observed that different traits are inherited separately; Morgan observed that certain traits tend to be inherited together. Morgan's observation led to the concept of genes arranged along a linear genome, which undergoes recombination during meiosis in successive generations. Practically, genetic linkage allows identification of genetic variation underpinning human diseases: strong association of disease with variation at any genomic locus suggests that the disease-causing variation is close to the observed locus. This general concept leads to many specific strategies for identifying genetic factors causing disease, and in all of them statistical issues are critical. Broadly, the strategies may be divided into family studies and GWAS. Mapping by admixture linkage disequilibrium (MALD) represents a hybrid approach between the two, with the ancestral populations of an admixed population playing the role of parents in a family study. This dissertation addresses statistical issues of GWAS and MALD, specifically demonstrating the ability of principal components analysis (PCA) to deal with issues arising from the complexity of genetic linkage. "

Family studies were the first and most basic application of LD to disease gene identification.

Family studies have been remarkably successful in assigning genes to chromosomal regions.

The first disease genes mapped were for X-linked loss of function disorders that affected males but not female carriers (e.g. factor VIII deficiency, the cause of hemophilia (Toole et al., 1984)). The mapping of the autosomal gene responsible for cystic fibrosis was completed in 1989 (Riordan et al., 1989;Rommens et al., 1989). Since then the majority of Mendalian disorders with moderate to high penetrance have been mapped using large pedigree or multiplex linkage studies. These studies employ single nucleotide polymorphisms or microsatellite markers to test for statistical linkage between the segregating phenotype and markers. The underlying assumption is that the causal variant will be located on the chromosomal segment inherited by all the affected offspring. Positional cloning is then used to identify the responsible gene. Family studies have been extremely successful at mapping genes for highly penetrant phenotypes with single gene inheritance, but they cannot be used for complex and common diseases where all family members may not have the same genetic or environmental exposures or when penetrance is low. "
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Other methods of disease gene mapping depend on linkage disequilibrium (LD), a nonrandom association between alleles at nearby loci, determined by the balance of the evolutionary processes of mutation, genetic drift, and selection, which create association between alleles, and recombination, which breaks down the association. Because of the time/length scale of recombination (~1 recombination per 100 generations per megabase) distant loci are uncorrelated in a stable population, but statistically useful correlations between disease factors and marker polymorphisms over lengths of 1-100 kb abound (International HapMap Consortium et al., 2007). Genome-wide association studies (GWAS) exploit this correlation:

genotyping of a sufficiently dense set of genetic variants distributed across the genome, makes it likely that a disease variant is in sufficient LD with one or more typed markers to create a statistically significant association between the marker and disease. The GWAS approach allows use of case-control data for common diseases, with complex causes, as opposed to Mendelian disorders caused by variation of a single gene."

While more general in applicability, case-control genetic association studies are less powerful than family studies, requiring much larger sample sizes for numerous reasons-penetrance, multiple tests, small effect size of most common variants, but also because they lack the large, identical-by-descent blocks shared by family members (Lander & Schork, 1994). Another

drawback of case-control genetic association studies is their reliance on a control population sample (in family studies unaffected family members provide an internal control); the appropriate control group may not be obvious or difficult to recruit [START_REF] Blackwell | Design for the Control of Selection Bias[END_REF]. Case-control studies, on the other hand, are able to model complex, non-Mendelian disease association with common variants in LD with causal variants. Incomplete linkage, small effect sizes, low frequency variants, and multiple testing erode power to detect genotype-phenotype association (Lander & Schork, 1994). The most problematic of these issues is multiple testing: testing for association at ~10 6 markers requires correcting for a similar number of comparisons; the precise correction is debated, and is a subject of this dissertation, but in any case multiple comparisons create severe power issues for GWAS (Hoggart, Clark, De Iorio, Whittaker, & Balding, 2008)."
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As understanding of linkage developed, the effect of recent admixture on linkage patterns was recognized as a potential source of information to map genes associated with phenotypes that differ in prevalence between two ancestral populations. Admixed populations retain intact extended haplotypes from founding populations for many generations, creating an admixture linkage disequilibrium (ALD) which can be used to infer the genetic ancestry of a locus (Gabriel et al., 2002;McKeigue, 1997). In studies of disease with substantially different prevalence between the two parental populations, loci with an association between disease and local ancestry can be inferred to harbor disease genes. Since these intact haplotypes are much longer than the extent of population LD, ALD mapping substantially reduces the number of comparisons, as compared to GWAS, and where applicable can substantially increase power to detect disease associations (McKeigue, 1997). A technical problem, however, is that the population LD that provides the basis for GWAS is a confounding factor in identifying chromosomal blocks inherited from the ancestral populations."

This dissertation approaches the problem of power in genome-wide association studies (GWAS) through a study of genetic linkage between markers. A common thread of the difficulties encountered is the complexity of LD. This confounds simple estimates of the number of comparisons in a GWAS, as well as simple attempts to correct for population LD in MALD. In this dissertation I consider these issues and find that PCA offers a possibly optimum solution. This forms the basis of my two objectives, the first of which is to carefully review and test significance threshold methods for GWAS in an attempt to find the most accurate significance threshold for a desired study wide Type I error rate. Of the seven proposed methods tested, the Bonferroni correction for multiple comparisons is both the most conservative and the most commonly used method. Other methods tested either use various measures of linkage disequilibrium (LD) between markers to estimate the true number of independent comparisons being made, or they employ an optimized permutation testing scheme to estimate the significance threshold for the desired study-wide Type I error rate (B. L. Browning, 2008;Duggal, Gillanders, Holmes, & Bailey-Wilson, 2008;Gao, Starmer, & Martin, 2008;Han, Kang, & Eskin, 2009). Relaxing this significance threshold even moderately can have a significant effect on statistical power but can also inflate the study wide Type I error rate beyond the desired level."
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The second objective is to more fully take advantage of information gleaned from admixture linkage disequilibrium (ALD) in studies of admixed populations. The first algorithms to perform such an analysis were developed before the advent of SNP chips with hundreds of thousands to millions of features and consequently do not allow the analysis of dense marker sets (Falush, Stephens, & Pritchard, 2003;Hoggart, Shriver, Kittles, Clayton, & McKeigue, 2004;Patterson et al., 2004). Current dense marker solutions tend to either be computationally inefficient when analyzing today's whole genome data sets, or they oversimplify the modeling of higher order LD (Seldin, Pasaniuc, & Price, 2011). A computationally efficient refinement of sparse marker algorithms, modeling higher order local LD indirectly using principal components, is proposed here, and a software implementation for using ALD to map disease genes is described.
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1. Genetic Linkage"

Genetic linkage is fundamental to genetic association studies as a means to narrowing the search for causal variants, by identifying a chromosomal region associated with disease. In rare cases, such as the discovery of the association of ACE with myocardial infarction, and the discovery of CCR5 ∆32 homozygosity blocking HIV infection, clear knowledge of the biological association of the gene with disease led directly to the discovery of the responsible genetic variation. When two markers are physically near each other on a chromosome, they are more likely to be inherited together, because there is a smaller chance of a crossover between the two during meiosis. The initial source of LD is mutation, in that a new allele arising at a locus by mutation necessarily occurs on a single chromosome, and is thus associated with all alleles carried on that specific chromosome [START_REF] Bateson | Experimental studies in the physiology of heredity[END_REF]Morgan, 1910;1911). In successive generations recombination breaks up this original chromosome, but even after 5000 generations-roughly the age of fully modern humanschromosome segments of an average length of 20 kb will be inherited unbroken with probability less than 0.0001 (Matise et al., 2007). Random drift of allele frequencies, and selection for advantageous alleles against deleterious alleles contribute to this process, in a complex and extensively studied pattern (Keightley & Otto, 2006;Ohta, 1982;Palaisa, Morgante, Tingey, & Rafalski, 2004;Sober, 1993) Price, James, Fernandez, & Frencha, 2004)."

LD structure between disease causing variants and nearby loci allows the researcher to infer the presence of the causal variant by virtue of its linkage to a nearby marker. This key ! 36 postulate of genetics is at the core of my work in various genetic association studies (B. I. Freedman et al., 2011;Hendrickson et al., 2008;[START_REF] Kopp | APOL1 Genetic Variants in Focal Segmental Glomerulosclerosis and HIV-! 134 Associated Nephropathy[END_REF]Nelson et al., 2010). This also forms the basis for GWAS, which permits interrogation of the entire human genome using only a subset of markers. When a significant association is found between a genetic marker and the phenotype under study, an inference can be made that one or more causal variants in LD with the genetic marker have a functional effect on phenotype. "

1.1. From the birth of genetics to personalized genomics"

1.1.1. Birth of Genetics"

In 1903, Walter Sutton postulated that chromosomes, known to segregate in a Mendelian fashion, contain hereditary units or genes [START_REF] Sutton | The chromosomes in heredity[END_REF]. Thomas Morgan greatly expanded upon this work using the fruit fly, Drosophila melanogaster, as a model and discovered the white-eyed mutant, a sex-linked, heritable trait. Because the trait was sex-linked, he hypothesized that the white gene was located on the sex chromosome and inferred that other genes are probably located on chromosomes as well (Morgan, 1910).

As Morgan's team began finding more mutants and comparing them together, they noticed that the miniature wing mutation was also sex-linked, but was not always inherited with the white mutation. This not only lead to the idea of genetic linkage and crossing over of chromosomes, but he recognized that by measuring the amount of crossing over between the two genes, a measure of the distance between the two could be obtained (Morgan, 1911). This was closely followed by the first genetic map in 1913 [START_REF] Sturtevant | The linear arrangement of six sex-linked factors in drosophila, as shown by their mode of association[END_REF].

DNA was first discovered by Johann Friedrich Miescher in 1869, just a few years after Mendel's experiments concluded. He was able to identify the elemental makeup of DNA and recognized that DNA was a prime candidate for furthering understanding about heredity [START_REF] Dahm | The first discovery of DNA[END_REF]. The significance of Miescher's discovery of DNA went unrecognized for some 75 years until, in 1933, Jean Brachet was able to show that DNA was present in chromosomes [START_REF] Sapp | Jean Brachet, l"hérédité générale et les origines de l"embryologie moléculaire[END_REF], and nine years later Edward Tatum and George Beadle showed that proteins ! 37

were coded by genes. It wasn't until Oswald T. Avery, Colin MacLeod and Maclyn McCarty proved that DNA carries genetic information, however, that its full importance began to be realized [START_REF] Avery | Studies on the chemical nature of the substance inducing transformation of pneumococcal types: Introduction of transformation by a deoxyribonucleic acid fraction isolated from pneumococcus type III[END_REF]. Over the following decade, transposons were discovered, and the relationship between adenine/thymine and cytosine/guanine pairs was discovered [START_REF] Chargaff | Composition of human desoxypentose nucleic acid[END_REF][START_REF] Mcclintock | The origin and behavior of mutable loci in maize[END_REF]. A few years later, Alfred Hershey and Martha Chase confirmed that DNA was the molecule responsible for heritability [START_REF] Hershey | Independent functions of viral protein and nucleic acid in growth of bacteriophage[END_REF]. Many others were working on the problem at this time, including Rosalind Franklin and Maurice Wilkins, who had gathered X-ray data on the structure of DNA. Building on this work, James Watson and Francis Crick published their famous paper on the structure of DNA in 1953 (J. [START_REF] Watson | Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid[END_REF].

Modern genetics"

Continued work in the field of genetics lead to the discovery of restriction enzymes by Danna and Nathans over the decades following the publication on the structure of DNA. This new tool enabled scientists to cut and paste DNA for the first time, facilitating both the rapid growth of the field of genetics as well as the rise of the biotech industry [START_REF] Roberts | How restriction enzymes became the workhorses of molecular biology[END_REF].

A year later the sequence of the first gene, the bacteriophage MS2 coat protein, was fully characterized [START_REF] Jou | Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein[END_REF], and five years later the sequence of the first genome was published [START_REF] Sanger | Nucleotide sequence of bacteriophage phi X174 DNA[END_REF]. Sequencing and genotyping was extremely slow and labor intensive at the time, but in the mid 1980's the polymerase chain reaction (PCR) was developed, making the process much easier and paving the way for the current explosion of data generating technologies [START_REF] Mullis | Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction[END_REF][START_REF] Saiki | Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia[END_REF].

This helped facilitate the discovery of locus causing cystic fibrosis (CF), the first disease causing gene to be identified using genetics (Riordan et al., 1989;Rommens et al., 1989). CF has been shown to be caused by defects in the CFTR gene on chromosome 7, and over 1500 CF causing mutations have been identified since then [START_REF] Bobadilla | Cystic fibrosis: a worldwide analysis of CFTR mutations--correlation with incidence data and application to screening[END_REF]. The penetrance is nearly perfect, that is, inheritance of a mutation from each parent ! 38

absolutely causes disease, because it is a recessive Mendelian disease. This made the CFTR gene a relatively easy gene to find.

The first locus associated with cancer, BRCA1, was described a year later [START_REF] Hall | Linkage of early-onset familial breast cancer to chromosome 17q21[END_REF].

It took a little more time to identify BRCA1 because of its dominant effect and intermediate penetrance. BRCA1 acts dominantly on breast cancer incidence, but has a more intermediate penetrance than the CFTR gene. There have been over 50 disease causing BRCA1 mutations discovered since the first causal mutations were reported in 1994 [START_REF] Miki | A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1[END_REF].

Personal genomics"

The decade since the completion of the human genome project has seen the development of microarray technologies for gene expression, single nucleotide polymorphism (SNP) and copy number polymorphism (CNV) genotyping, and genome sequencing. The amount of available information continues to mount as genotyping technologies and statistical methodologies continue to progress, and the ability to locate disease genes has increased dramatically. These technologies are covered in more detail in Section 1.4.

The identification of disease causing variants has progressed from the relative ease of high penetrance Mendelian diseases, to the arduous identification of low penetrance genetic affects identified using GWAS, and now the field of personalized medicine is rapidly expanding. One obvious application is in personalized oncology. Many current treatments are available for specific mutations, both in the germ cell and somatic cell lines involved. Currently, an individual may be tested for the most common known mutations, but these next generation sequencing technologies will provide an opportunity to investigate the entire genome for a much broader range of mutations for less cost [START_REF] Cronin | Comprehensive next-generation cancer genome sequencing in the era of targeted therapy and personalized oncology[END_REF].

Gene therapy is another field of application in personal genomics. While early attempts have resulted in some successes, there have also been some adverse outcomes including cancers induced by the virus used to deliver the modified genes and the death of one individual ! 39 [START_REF] Sibbald | Death but one unintended consequence of gene-therapy trial[END_REF][START_REF] Weiss | Boy's cancer prompts FDA to halt gene therapy[END_REF]. This remains an active area of research with active clinical trials in the treatment of cystic fibrosis and HIV infection [START_REF] Alton | A randomised, double-blind, placebo-controlled phase IIB clinical trial of repeated application of gene therapy in patients with cystic fibrosis[END_REF][START_REF] Didigu | Simultaneous zinc-finger nuclease editing of the HIV coreceptors ccr5 and cxcr4 protects CD4+ T cells from HIV-1 infection[END_REF]. There has also been significant progress in treating chromosome 21 trisomy in vitro using the XIST gene to silence the third chromosome [START_REF] Jiang | Translating dosage compensation to trisomy 21[END_REF]. It is conceivable that scientific advances in the next few decades will make identification of very rare or personal variants with clinically actionable effects on disease for each individual an economically reasonable prospect.

Family Linkage Studies"

The locus containing the CFTR gene discussed in Section 1.1.2 was discovered using family linkage studies [START_REF] Knowlton | A polymorphic DNA marker linked to cystic fibrosis is located on chromosome 7[END_REF][START_REF] Wainwright | Localization of cystic fibrosis locus to human chromosome 7cen-q22[END_REF][START_REF] White | A closely linked genetic marker for cystic fibrosis[END_REF]. The most appealing aspects of family linkage studies have to do with the sample size required to achieve good statistical power. This statistical power comes from the large regions of identical by descent (IBD) haplotypes shared by closely related individuals, by virtue of their shared inheritance. Loci in a region containing a disease gene like CFTR or BRCA1 with a strong effect on disease outcome will also be associated to disease outcome because of their IBD linkage with the disease gene.

The most common way to test for an association between a locus and disease in family linkage studies, is to calculate the odds of recombination between sampled genetic markers and the disease gene being searched for. Given a genetic marker, A, and a disease gene, D, the log odds (LOD) of the two being linked is

(1) ! "
where N is the number of offspring with both A and D, R is the number of offspring with A or D but not both, and θ is the recombination fraction, which can be estimated as R / N + R. The LOD = log 10 P pedigree linkage ( )

P pedigree no linkage ( ) ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ = log 10 1-θ ( ) N θ R 0.5 N +R ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ! 40
marker with the highest LOD score is taken to be the marker most closely linked to D, and the magnitude of the LOD score gives a measure of statistical significance [START_REF] Morton | Sequential tests for the detection of linkage[END_REF].

One assumption this statistic makes is that presence of the disease gene is perfectly associated with manifestation of disease. As is often the case, however, the disease gene does not cause disease in every individual. This is referred to as incomplete penetrance of the disease phenotype. Other relevant factors, including disease prevalence, mode of inheritance (i.e.

dominant, recessive, etc...) and nearby genetic markers are also important to consider when modeling family linkage. A number of software packages exist to calculate LOD scores across the genome, which take these factors into account [START_REF] Abecasis | Merlin--rapid analysis of dense genetic maps using sparse gene flow trees[END_REF][START_REF] Cottingham | Faster sequential genetic linkage computations[END_REF][START_REF] Fishelson | Exact genetic linkage computations for general pedigrees[END_REF][START_REF] Gudbjartsson | Allegro version 2[END_REF][START_REF] Kruglyak | Parametric and nonparametric linkage analysis: a unified multipoint approach[END_REF][START_REF] Lange | Programs for Pedigree Analysis: MENDEL, FISHER, and dGENE[END_REF][START_REF] Lathrop | Multilocus linkage analysis in humans: detection of linkage and estimation of recombination[END_REF][START_REF] O'connell | Rapid multipoint linkage analysis via inheritance vectors in the Elston-Stewart algorithm[END_REF][START_REF] Ott | Estimation of the recombination fraction in human pedigrees: efficient computation of the likelihood for human linkage studies[END_REF], most using the Lander-Green algorithm, the Elston-Stewart algorithm or some combination of the two [START_REF] Elston | A general model for the genetic analysis of pedigree data[END_REF][START_REF] Lander | Construction of multilocus genetic linkage maps in humans[END_REF].

There has also been renewed interest in this problem in recent years as the amount of information available in whole-genome sequencing studies is not computationally practical to analyze with any of the earlier software solutions [START_REF] Silberstein | A system for exact and approximate genetic linkage analysis of SNP data in large pedigrees[END_REF].

Another computationally friendly algorithm, the transmission disequilibrium test (TDT), is also prevalent in family studies. The TDT relies on Mendel's law of segregation, stating that each individual possesses two alleles of each chromosome and that one will be passed on to offspring with equal probability. The TDT was first formally described by Spielman et. al.

when a problem arose with some observed associations between Insulin-dependent Diabetes Mellitus (IDDM) and a 5ʹ flanking polymorphism adjacent to an insulin gene on chromosome 11 [START_REF] Spielman | Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM)[END_REF].

Transmitted non-Transmitted Allele

! 41 Given n children there are 2n parents. Each is assigned according to which allele is transmitted and which allele is not."

The simplest way to cary out a TDT is with family trios, consisting of an affected child and their unaffected parents. For linkage of a disease, D, at a given locus with alleles A1 (risk allele) and A2 (normal allele), a 2×2 table is set up as shown in Table 2, and the χ 2 statistic for association is

(2) ! "
McNemar's test incorporates a continuity correction, but is otherwise similar:

(3) ! "

There are a few important assumptions and implications for this test. Firstly, because a homozygous parent will both transmit and not transmit the same allele, that parent will be uninformative in the test. Secondly, it is assumed that the parents will pass each allele randomly to their child, and the only significant associations observed will be due to the risk allele or something in linkage disequilibrium with the risk allele. This observation also allows us to devise an exact test for the TDT. The two sided exact TDT p-value will follow the binomial distribution, B(b + c, 0.5), and will be equal to:

Transmitted Allele A A Total A a b a + b A c d c + d Total a + b b + d n T= b -c ( ) 2 b + c ∼ χ 1 2 . T M = b -c -0.5 ( ) 2 b + c ∼ χ 1 2 .
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There has also been some work to extend the TDT to families with multiple infected children.

A parametric test can rapidly become complicated, as demonstrated by Martin et. al., but such tests are possible [START_REF] Martin | Tests for linkage and association in nuclear families[END_REF]. Another option is to use an MCMC approach [START_REF] Cleves | Exact transmission-disequilibrium tests with multiallelic markers[END_REF].

Case / Control studies"

While the extended linkage blocks add power to family linkage studies, they are limited to the study of Mendelian traits. Case -control studies, on the other hand, can be used to search for genetic variants involved in complex traits but rely only on local LD for linkage. This reliance on local LD comes with the requirement that many more markers must be tested in order to fully interrogate the entire human genome. Because of this and the relative high cost of genotyping, genome-wide association studies (GWAS) were not practical until SNP genotyping chips became prevalent. Prior to this, candidate genes were identified and a minimal set of SNPs in and around the gene of interest were carefully chosen. Post GWAS analysis has moved from testing candidate gene hypotheses to hypothesis generation, with followup studies of regions containing significant GWAS results to verify findings and identify the cause of the observed association.

Candidate gene association studies"

Identification of linkage between genes and disease is much less straightforward in diseases with lower penetrance, usually because of the complex nature of these diseases. Most have environmental components that affect disease outcome and are impacted by multiple biological systems and pathways. When a candidate gene is identified, a careful analysis of

p = 2 b + c i ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ 0.5 b + c i =b b + c ∑ , b > c 2 b + c i ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ 0.5 b + c i = 0 b ∑ , b < c 1 , b = c ⎧ ⎨ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ! 43 Table!2.
Example haplotype block definitions.! the genetic variants in the region is undertaken in cases and controls to identify possible modifiers of disease outcome.

Prior to the current sequencing technologies, great care was taken to minimize the number of markers to be genotyped. Haplotypes, defined as a haploid, multi-locus genotype, are often used to help optimize this minimal marker set. Haplotype blocks can be defined in a number of ways, but the unifying principle that they have a low inter-block recombination rate (see Table 2). As such, they have strong LD across the block and can be represented by very few genetic markers, referred to as haplotype tagging SNPs. Haplotype tagging is used both to increase power and decrease genotyping costs in candidate gene studies (Zhao, Pfeiffer, & Gail, 2003). These haplotype blocks can also be very useful in inference of population history [START_REF] Tishkoff | Global patterns of linkage disequilibrium at the CD4 locus and modern human origins[END_REF].

Data from the International HapMap Project can be useful when identifying haplotype tagging SNPs (International HapMap Consortium, 2005), but may not be sufficient in populations where good population data is lacking. Many populations in Africa, for example, retain a good deal of variability that has been lost by populations migrating out to Europe, requiring information not found in HapMap. In these populations, investigators can infer haplotype

Definition Reference

A contiguous set of markers with a minimum D′ between each marker pair. [START_REF] Reich | Linkage disequilibrium in the human genome[END_REF] A block of markers where a small subset of haplotypes account for nearly all the observed variation. [START_REF] Patil | Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21[END_REF][START_REF] Zhang | Improving genome assemblies by sequencing PCR products with PacBio[END_REF] A region with low levels of haplotype diversity. (Zhao et al., 2003) A region with both limited diversity and strong LD, with the possible exception of a few rare variants. [START_REF] Dawson | A first-generation linkage disequilibrium map of human chromosome 22[END_REF] A region with no historical evidence of recombination between any markers.

(N. Wang, Akey, Zhang, Chakraborty, & Jin, 2002) ! 44

blocks from sequence of a subset of the sample. Once haplotype blocks are identified, rather than genotyping the entire cohort using the full set of all identified SNPs, the smallest subset of SNPs uniquely identifying all haplotypes is chosen to represent the region [START_REF] Martin | SNPing away at complex diseases: analysis of single-nucleotide polymorphisms around APOE in Alzheimer disease[END_REF]. This allows the researcher to sample a larger group of individuals, reduce the number of multiple comparisons, and save time in narrowing down the search for disease causing variants. The HapMap project increased the efficiency of this method significantly by providing the LD profiles of various populations across the genome, and current bioinformatics tools exploiting these data can deliver good haplotype tagging SNPs for most regions with relatively minimal effort.

These studies are still performed when trying to identify the disease causing variant associated with a GWAS finding, but haplotype tagging as a means of minimizing the number of markers genotyped is becoming less common with the increased economy of targeted sequencing and increased availability of whole-genome sequence. The dense mapping of MYH9 and APOL1 (Jeffrey B Kopp et al., 2011;Nelson et al., 2010), for example, were follow up studies we performed after our observed association of that region with focal segmental glomerular sclerosis (Jeffery B Kopp et al., 2008).

Genome wide association studies (GWAS)"

As previously discussed, genome wide studies have been carried out for decades in family ( [START_REF] Klein | Complement factor H polymorphism in age-related macular degeneration[END_REF]. As of November, 2013 there had been 1726 peer reviewed GWAS studies, with 14,767 findings reported (See Figure 1 for all SNPs reaching genome-wide significance) (Hindorff et al., n.d.).

! 45

Mapping disease genes by admixture linkage disequilibrium is another GWAS method which uses long-range linkage extant in recently admixed populations. The linkage blocks are ! Figure!1. Significant GWAS results. Graphical representation of published SNPs reaching genome-wide significance (Hindorff et al., n.d.).! smaller than in family studies, but significantly larger than the local LD blocks found in nonadmixed populations typically studied in case-control studies, resulting in a significant power advantage [START_REF] Charkraborty | Admixture as a tool for finding linked genes and detecting that difference from allelic association between loci[END_REF]. In this section we will focus on traditional GWAS and treat this specialized study design in Section 2 after a more rigorous definition of admixture disequilibrium.

Quality control of GWAS"

Batch effects! A batch of individuals in a GWAS consists of a group of samples which share some attribute of the genotyping process (e.g. day of the week they were processed, person who did the sample processing, machine they were run on, month they were genotyped, etc...). A batch effect arises when samples in one group end up with a systematic difference in their genotyping data. Because no two sets of samples can possibly be run under exactly the same ! Figure!2. False association by batch effect. False positive associations induced when batch is associated with disease outcome."

circumstances, batch effects are common and can be associated with something as simple as the scanner or lot of reagents used. While batch effects are not desirable, a truly detrimental situation arises when the batch is associated with the disease outcome [START_REF] Laurie | Quality control and quality assurance in genotypic data for genome-wide association studies[END_REF].

This can occur when the order samples are genotyped is dependent in some way on disease status. In this case, true associations may be minimized and any SNP that is randomly associated with the batch, will also be associated with disease outcome (see Figure 2).

The best way to avoid this scenario is to randomize samples as much as possible in the genotyping phase of the study. Randomization effectively breaks the association between disease and batch, also breaking induced associations. In the worst case, statistical models should be conditioned on known batch effects.

Checking genotyping quality! Genotyping quality scores are automatically calculated for each called genotype in most genotype calling software. Any SNP with a low call rate should be excluded from the analysis, as should any individual with low call rates, because they will likely introduce additional noise and bias to the data. Typical thresholds for call rates are between 3% and 5%

! 47 [START_REF] Laurie | Quality control and quality assurance in genotypic data for genome-wide association studies[END_REF]. Low call rates among SNPs is indicative of a problem with the assay and low call rates among individuals is indicative of poor sample quality.

Checking Hardy-Weinberg Equilibrium (HWE) assumptions is another test which can identify genotyping errors. Some SNPs will not fall within HWE expectations simply as a natural result of frequency deviations, but research indicates that most of these deviations are due to genotyping error [START_REF] Laurie | Quality control and quality assurance in genotypic data for genome-wide association studies[END_REF].

Chromosomal abnormalities!

Chromosomal abnormalities result in genotype data that does not adhere to the assumed distribution, which should be dropped from the data set. It is also possible for chromosome abnormalities to cause all data for an individual to be flagged for omission during the quality control of genotyping results, when a closer look would identify a single chromosome omission to be sufficient.

An analysis of the intensity scores for each SNP has been shown to provide both an excellent measure to automatically identify potential anomalies and graphical tools to identify the nature of the anomaly. Two measures can be obtained from the intensity scores after calling the genotypes: the BAllele Frequency (BAF) and the log R Ratio (LRR). These two statistics ! 48

Peiffer et al.

Cold Spring Harbor Laboratory Press on September 6, 2011 -Published by genome.cshlp.org Downloaded from ! Figure!3. B-allele-frequency and log R ratio plots. Plots for a normal male and a normal female are shown in panels A and B, respectively, and plots for a female with three and four X chromosomes are shown in panels C and D. Chromosome 10 is placed beside the X chromosome for comparison purposes [START_REF] Peiffer | High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping[END_REF].! calculated by transforming the probe intensities, x and y, into polar coordinates and normalizing as described below [START_REF] Peiffer | High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping[END_REF]. A change in the local median or the local variance of the BAF or LRR, defined as the median or variance of all statistics within 500 kb of a marker, can signal a chromosome aberration (see Figure 3).

Sample contamination!

The B allele frequency (BAF), a measure of allelic imbalances, and the log R ratio (LRR) statistics described by Peiffer et. al. can also be used to identify sample contamination [START_REF] Peiffer | High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping[END_REF]. The BAF is a measure of the mean allele frequency of a population of cells from a single sample, and has an easily recognizable distribution under normal circumstances with bands at 0, 0.5 and 1. The LRR is a measure of the relative allele intensity from the raw genotype calling data, and should be consistent across the genome of each sample. Figure 3 illustrates how the amount of contamination can be identified using BAF and LRR statistics.

Normal individuals and individuals with an extra X chromosomes are shown here, but patterns similar to those observed will emerge when a contaminations exist [START_REF] Peiffer | High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping[END_REF]. This also highlights the potential use of analysis of the BAF and LRR to identify large chromosomal abnormalities [START_REF] Laurie | Quality control and quality assurance in genotypic data for genome-wide association studies[END_REF].

Population substructure! Population substructure is a common source of bias. This source of bias can be easily controlled for with a principal components analysis (PCA) of the genetic data. A PCA starts with the full characterization of the covariance of the genetic profiles between each pair of individuals in the study, followed by the calculation of eigenvalues and eigenvectors of the covariance matrix (A. L. Price et al., 2006). Eigenvalues can be thought of as a measure of the amount of variation accounted for in the data by the associated eigenvector, and each ! 49

eigenvector can be used to summarize relationships in the data (see Section 3.2 for more details).

!

Race and gender check! Race and gender are probably the two most common covariates in the statistical analysis of biological data due to major genetic and epidemiological differences between populations.

Clinical data on are not always reliable and can introduce unnecessary bias into an analysis.

One of the easiest ways to use the genetic data available in a GWAS to check an individual's race, is through a PCA of the genetic data. Misidentified individuals will be readily identifiable when graphically examining population substructure. Gender misclassification is generally less common, but clerical mistakes and some types of chromosomal abnormalities can lead to the introduction of bias. Checking for excess X heterozygosity in males and loss of X heterozygosity in females, in addition to verifying the presence or absence of Y markers, is a simple way to check these assumptions [START_REF] Laurie | Quality control and quality assurance in genotypic data for genome-wide association studies[END_REF].

Checking for duplicate / related individuals! Duplicate individuals add nothing to a study, and related individuals can add significant bias unless analyzed with appropriate methods. Identification of duplicates is a simple process of comparing the genotypes from each pair of individuals, looking for any pairs that are near perfect matches to each other. Identification of parent-offspring relationships, full siblings, half siblings, and cousins can be accomplished through an analysis of identity by descent [START_REF] Laurie | Quality control and quality assurance in genotypic data for genome-wide association studies[END_REF].

GWAS Analysis"

Statistical modeling in a GWAS is very similar to case-control studies of smaller scale. The main differences that arise are a direct result of testing millions of hypotheses. The three most important considerations to make are how to appropriately power the study, identify ! 50

deviations from modeling assumptions and ascertain statistical significance. Also discussed here are considerations for optimizing power and the cost of genotyping when under budgetary constraints.

! Power considerations!

As with the analysis of GWAS data, power calculations are similar to the power calculations of any other study, with a few important caveats. The first and foremost thing to consider is how significance will be assessed (see Assessing Significance below). Other important considerations are the sample size, the number of statistical tests, the statistic to be tested, the expected effect size, the frequency of the associated allele, and the distribution of the outcome data. Since most of these variables are not modifiable in the design of a study, the main emphasis is usually placed on gathering an adequate sample.

SNP imputation can be used to increase the power of a GWAS. Several options exist for imputing genotypes, including IMPUTE, fastPHASE and BEAGLE (S. R. [START_REF] Browning | Multilocus association mapping using variable-length Markov chains[END_REF][START_REF] Howie | A flexible and accurate genotype imputation method for the next generation of genome-wide association studies[END_REF][START_REF] Scheet | A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase[END_REF]. Analysis of imputed genotypes needs to include the uncertainty of each genotype call, which can readily be accomplished in a frequentist setting by weighting each genotype by the corresponding posterior probability. Bayes factors can also readily accommodate this uncertainty [START_REF] Marchini | Genotype imputation for genome-wide association studies[END_REF].

In some cases, particularly when the budget is limited, it may be useful to take a tiered approach to a GWAS. In a tiered approach, a subset of the cohort is fully genotyped and any significant SNPs are subsequently genotyped in the remainder of the cohort. This approach can provide significant cost savings, but will cause a decrease in statistical power. Skol et. al.

developed a software package, CaTS, to minimize this loss of power while maximizing the benefit of limited budget funds (Skol, Scott, Abecasis, & Boehnke, 2006).
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Visualization -Manhattan plots and QQ-plots! Careful thought should always be used in developing a statistical model for a particular analysis. Potential confounding effects in the population should be appropriately accounted for, and care should be taken to test the hypothesis best able to answer the question of interest.

In a GWAS setting, individual attention cannot be paid to each test, so visual tools have been developed to help identify discrepancies.

Manhattan plots are a common way to visualize all test results across the genome, making significant results easily to identify. Significance is plotted in terms of -log10 p-value, as a function of genomic position. Because variants associated with a true cause of morbidity will be linked with other variants, causing a peak to rise from the background, single variants with high significance and no other linked significant variants can usually be flagged as false positives. Other anomalies may also appear that can be recognized using a Manhattan plot (see Figure 4). distribution. This is an indication that the results are more significant than expected under the null hypothesis, and without this it is difficult to assert relevance of the results (See Figure 5).

Assessing significance -Significance thresholds, False Discovery Rates, and Bayes Factors!

The most common method of significance assessment in a GWAS is to use a Bonferroni threshold. Many have advocated for a uniform standard threshold of approximately 5×10 -8 for ! 52

a study wide error rate of α = 0.05. This comes from a number of careful analyses of commonvariation that have concluded there on the order of one million tests performed in a GWAS, which has gradually lead to the acceptance of this significance threshold for GWAS studies (Hoggart et al., 2008;International HapMap Consortium, 2005;Risch & Merikangas, 1996). narrowly missing this threshold. Inclusion of 95% confidence intervals has helped put some perspective on the interpretation of a test result, but these confidence intervals still rely on an arbitrary α = 0.05 rule [START_REF] Sterne | Sifting the evidence-what's wrong with significance tests[END_REF].

Another serious problem is the focus of these significance thresholds on Type I errors, falsely rejecting the null hypothesis, while ignoring Type II errors, falsely accepting the null hypothesis. This has led to the use of false discovery rates (FDR) by many and refined to include the Type II error rate in the false positive report probability (FPRP) [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF][START_REF] Wacholder | Assessing the probability that a positive report is false: an approach for molecular epidemiology studies[END_REF]. Given the ! 54

Type I and Type II error rates, α and β, and the proportion of expected true associations, π, an intuitive estimation of the FDR and FPRP can be calculated using Table 3 as a reference (see Equations 5 and 6). A statistic could be derived from the FPRP to include the respective cost of false positive and false negative results by weighting the Type I and Type II errors. 

! "

The q-value is another refinement to the FDR and is similar to a p-value, except instead of measuring significance in terms of the Type I error rate, it measures significance in terms of the FDR. Thus, a frequentist interpretation of the q-value could be the probability of a statistical test, as or more significant than the current test, being a false discovery. The distinction between the two is that the FDR relies on the practitioner supplied value, π, while the algorithm for generation of q-values estimates this proportion based on the distribution of test results above the α = 0.5 level, assuming that all such tests are truly null (Storey & Tibshirani, 2003).

Outcome of the statistical test

Truth of H Reject H Accept H Totals

H (1 -β) π βπ π H α (1 -π) (1 -α) (1 -π) 1-π Totals (1 -β) π + α (1 -π) βπ + (1 -α) (1 -π) 1 FDR = α 1 -π ( ) FPRP = α 1 -π ( ) + βπ ! 55
Another approach to this problem, the use of Bayes Factors (BF), takes both error rates into account in a Bayesian decision theory approach, which can also include the cost of Type I and Type II errors. A Bayes Factor is the ratio of the probability of the data under the null and alternative hypotheses:

(7) ! ."
The calculation of a Bayes factor requires the specification of a prior distribution, which can be difficult in some instances. An asymptotic Bayes factor (ABF), requiring only the specification of the prior distribution of the test statistic, has been proposed as well [START_REF] Wakefield | A Bayesian measure of the probability of false discovery in genetic epidemiology studies[END_REF]. Given a logistic regression maximum likelihood estimator (MLE), ) with a prior distribution N(0,W) and variance, V,

(8) ! ,"
where ) is the usual Wald statistic. The main difference between the ABF and a

Wald statistic is that the ABF relies on both the test statistic, z, and on the power of the test, via V.

The reliance of Bayes factors on the power of the test has a few consequences that need to be considered. The major advantage is that V not only relies on the sample size, as the FPRP does, but also implicitly relies on the minor allele frequency for each individual test. Bayes factors also do not have a one to one relationship with p-values, unless the appropriate prior is chosen [START_REF] Marchini | Genotype imputation for genome-wide association studies[END_REF].

Perhaps the best method of assessing significance is to use both frequentist and Bayesian measures. This approach includes the consideration of p-values in accordance with standard practice, but also reduces the FPRP through the use of q-values and Bayes factors [START_REF] Wakefield | Reporting and interpretation in genome-wide association studies[END_REF].

BF = P y | H 0 ( ) P y | H 1 ( ) θ, ABF = V + W V exp -z 2 2 W V + W ( ) ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ z 2 = θ 2 / V ! 56
Replication and validation! While initial results from GWAS were exciting, it quickly became evident that with the massive number of tests being performed, more needed to be done to control the number of false positive findings. Stringent significance levels are demanded by many journals, and some sort of replication or biological evidence is required before publishing results. In deed, a common practice is to include both independent replication results from similar cohort(s) and some function biological evidence validating the inference [START_REF] Limou | Genomewide association study of an AIDS-nonprogression cohort emphasizes the role played by HLA genes (ANRS Genomewide Association Study 02)[END_REF]Troyer et al., 2011). Sanger sequencing was first introduced in the 1970's and with the exception of the automation of the process, has changed little [START_REF] Sanger | A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase[END_REF]. The first step of Sanger sequencing is amplification of the DNA. This is done using DNA primers to ensure the correct portion of the genome is amplified. Trace amounts of fluorescently labeled dideoxynucleotides are added to the four basic nucleotides, each base fluorescing with distinct color. These dideoxynucleotides, when added to the elongating strand of replicating DNA, cause polymerase to disassociate and stop the reaction. These copies of the DNA are terminated at every possible base pair location along the length of the region to be sequenced.
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The second step requires passing the DNA fragments through a gel or capillary array. This sorts the DNA fragments by length, and the fluorescence can be read as the DNA passes through a computer operated laser (see Figure 6). This process is limited to about 1 kb of DNA sequence per run.

In order to sequence long stretches of DNA, libraries of bacterial artificial chromosome (BAC) clones containing 100 -300 kb of contiguous human DNA would be generated at great cost. DNA from these BAC clones would then be sequenced via the primer walking method [START_REF] Stone | Construction of a 750-kb bacterial clone contig and restriction map in the region of human chromosome 21 containing the progressive myoclonus epilepsy gene[END_REF]. Primer walking is used to sequence a contiguous stretch of DNA, which is longer than the 1 kb of DNA that can be sequenced at one time using Sanger sequencing.

When primer walking, the initial kb of DNA is sequenced in the normal fashion, and a new primer is chosen from near the end of the known DNA sequence. This primer is used to sequence the next kb of the region and the process is repeated until the end of the desired region is reached. This does not require the individual sequences to be reassembled after sequencing, but is significantly more labor intensive. This method is now abandoned in favor of newer technologies discussed in Section 1.4.7 which use modern computer algorithms and hardware to reassemble an entire genome's worth of reads at one time, decreasing the time and cost [START_REF] Voelkerding | Next-generation sequencing: from basic research to diagnostics[END_REF].

PCR"

The polymerase chain reaction (PCR) is a process used to quickly make multiple copies of the selected region of DNA, that became available in the mid 1980s [START_REF] Mullis | Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction[END_REF][START_REF] Saiki | Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia[END_REF]. The PCR reaction is a three step cycle using a thermo-stable DNA polymerase, typically Taq polymerase from the bacterium Thermus aquaticus (see Figure 7). The cycle begins with heating the desired DNA sequence to 94º-96º C to denature it. Cooling to 50º-65º

C allows the primers to anneal to the DNA. Heating the reaction to an optimal temperature, typically 72º for Taq polymerase, provides the conditions needed for DNA polymerase to elongate each DNA strand.
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The amount of PCR product is doubled by the end of each cycle when it is carried out under the proper circumstances, and therefore, increases exponentially with each cycle. When the amount of reagents or enzyme is insufficient for the desired number of cycles, however, the reaction will slow to a linear or log-linear pattern of growth as the reaction consumes reagents, and will eventually plateau when the reagents or enzyme are completely exhausted. 

Microsatellites and RFLP"

A microsatellite, or a short tandem repeat (STR), consists of a 2-6 base pair DNA sequence that is repeated as many as 100 times or more. They occur frequently in most genomes and are highly polymorphic because they are prone to higher than average rates of mutation, usually because of slipped strand mis-pairing during DNA replication. They can be very good for identifying relationships between individuals and alleles of genetic markers. The process now used to identify microsatellites involves excision using restriction enzymes, amplification by PCR, and running through a gel electrophoresis. Microsatellites of varying sizes will result in differentiable bands on the gel.

Denaturation Elongation Annealing

a) b) c) ! 59
Restriction fragment length polymorphism (RFLP) is another technique used to identify genetic variance between individuals. The general technique involves the use of restriction enzymes to fragment the DNA at loci where a specific sequence occurs. Because DNA is negatively charged, the resulting DNA fragments can be passed through an agarose gel using an electrical current in a process called gel electrophoresis (see Figure 8). In 1991, researchers at Cetus Corporation reported a novel method of PCR which allowed genotyping of SNPs in real time [START_REF] Holland | Detection of specific polymerase chain reaction product by utilizing the 5"----3" exonuclease activity of Thermus aquaticus DNA polymerase[END_REF]. Two a generic primer is used to amplify the adaptor-ligated fragments using a PCR protocol that has been optimized to preferentially amplify fragments ranging between 200 and 1,100 bp in size. The PCR product is then purified using activated beads, after which the amplified DNA is labeled and hybridized to the gene chip. After hybridization, the gene chip is run through the GeneChip Scanner to optically read probe intensities in preparation for genotype calling.

Illumina also has a number of SNP arrays, some of which are extensively customizable. Each

HumanOmni2.5S bead chip, for example, genotypes 2,015,318 standard markers for each individual and up to 500,000 custom markers. The markers are spaced an average of 1.45 kb apart along the genome (median spacing of 0.79). Each marker is associated with a 3-micron silica bead which has been manufactured with an oligo unique to a specific marker. Beads are uniformly, randomly spaced about 5.7 microns apart on the chip, and each bead type is present an average of about 30 times on the chip, providing ample replication of each marker.

After random self assembly, the beads are quality checked and the locations are decoded.

Highly specific, dye-labeled oligonucleotides, complementary to the bead sequences, are added in a series of hybridizations. Each bead type has a unique sequence of dyes and is able to be uniquely identified at the end of the last stage of decoding hybridizations [START_REF] Gunderson | Decoding randomly ordered DNA arrays[END_REF].

! 62 1.4.7. Next-generation sequencing"

The Human Genome Project began an unparalleled journey to fully characterize the human genome in the early 1990's. In a report filed in 1989, it was estimated that it would cost $200 million annually and was expected to take 15 years [START_REF] Barnhart | DOE human genome program[END_REF]. The project officially started the following year, and after a few years was already behind schedule and over budget.

In 1998, after some heated disagreements between several leading genome researchers over sequencing techniques, Celera, lead by Craig Ventor, began a private genome project to compete with the public Human Genome Project.

The major differences of Ventor's private venture was the use of shotgun sequencing in place of BAC library development [START_REF] Venter | A new strategy for genome sequencing[END_REF]. The shotgun sequencing process begins with randomly breaking the genome into small fragments, which are then amplified and individually sequenced. At the completion of sequencing, however, the fragments need to be pieced together using a computer. Many leading researchers in the public effort were skeptical of the feasibility of shotgun sequencing, citing primarily the lack of computing power to reassemble all of the sequence reads once the sequencing was complete [START_REF] Weber | Human whole-genome shotgun sequencing[END_REF]. As proof of principle, Celera started by sequencing the first multicellular eukaryote, Caenorhabditis elegans (C elegans Sequencing Consortium, 1998). A few years later the rough draft of the human genome was released in 2001, followed by its completion in 2003 [START_REF] Lander | Initial sequencing and analysis of the human genome[END_REF][START_REF] Venter | The sequence of the human genome[END_REF]. Shotgun sequencing has replaced primer walking and the use of BACs as the preferred method for genome wide sequencing, due to its significant time and cost savings.

As sequences are aligned, large overlapping regions, called contigs, begin to become clear, but the association of these contigs with each other can be difficult to ascertain. One refinement that was made early in the development of shotgun sequencing, is the sequencing of larger fragments, termed the scaffold. The ends of these DNA fragments are sequenced and included in the alignment. Because the distances between the paired ends can be measured, this provides a framework that can be used to paste otherwise disparate contigs together.
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The current generation of sequencing methodologies has focused mainly on automation and parallelization of sequencing reactions. The first commercially viable massively parallel sequencing method was described by scientists at 454 Life Sciences Corp. in 2005 incorporating approximately 1.6 million simultaneous reactions in picoliter wells of a slide [START_REF] Margulies | Genome sequencing in microfabricated high-density picolitre reactors[END_REF]. Since then, several other companies have marketed massively parallel sequencing technologies, including ABI's SOLiD platform, Illumina sequencing and Ion Torrent sequencing.

Sequencing an entire genome, while much more cost effective than just a few years ago, is still quite expensive to perform on each individual. By using exome capture arrays, significant savings can be realized. DNA samples are randomly fragmented into small fragments and hybridized to a microarray with as many as 200,000 exome probes. In this manner, DNA fragments containing known exome regions are captured and the rest of the DNA can be discarded [START_REF] Choi | Genetic diagnosis by whole exome capture and massively parallel DNA sequencing[END_REF][START_REF] Ng | Exome sequencing identifies the cause of a mendelian disorder[END_REF]2009). The captured exome is amplified, and the rest of the sequencing process proceeds using the same protocol as for a whole genome.

Because of the significantly smaller size of the exome, a much greater read depth can be accomplished with a similar amount of starting material.

Alternatively, by sequencing RNA where the introns have been excised, the results give gene expression data as well as the expression of non-translated RNA sequences. The technology known as RNA-Seq gives an over-arching picture of what is going on within the cell by considering the different RNA sequences that are present and that are both time and tissue sensitive [START_REF] Chu | RNA sequencing: platform selection, experimental design, and data interpretation[END_REF]. This can be especially useful to see how the cellular pathways are affected by the progression of a particular infection like West Nile Virus or diseases such as lung cancer [START_REF] Beane | Characterizing the impact of smoking and lung cancer on the airway transcriptome u s i n g R N A -S e q . C a n c e r P r e v e n t i o n R e s e a r c h[END_REF][START_REF] Qian | Identification of genes critical for resistance to infection by West Nile virus using RNA-Seq analysis[END_REF].

ChIP-Seq is another new generation sequencing approach that identifies protein-DNA interactions to understand the cellular interactions that are regulating changes in both normal or disease states (D. S. [START_REF] Johnson | Genome-wide mapping of in vivo protein-DNA interactions[END_REF]. A panel of known DNA
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probes are used to capture the desired DNA-interacting fragments for amplification and sequencing. A whole map of these binding sites can be produced identifying a set of proteins that interact directly with the DNA for regulatory purposes and possible gene-therapy target sites [START_REF] Marban | Genomewide binding map of the HIV-1 Tat protein to the human genome[END_REF].

A contemporary approach using sequencing to determine DNA methylation sites is receiving more attention as the importance of methylation in disease progression is becoming more fully recognized. Gene regulation is changed as a methyl group is added to the carbon-5 position of cytosine. As methylation patterns change over time, corresponding changes have been observed in gene expression of the genes in affected regions. In colon cancer, 10 genes were found to be hypermethylated in 100 percent of cases and many more genes were frequently changed [START_REF] Schnekenburger | Epigenetics Offer New Horizons for Colorectal Cancer Prevention[END_REF]. By treating DNA with bisulfide, cytosine is converted to uracil when a methyl group is not present. This allows the identification or a map of epigenetic markers for the DNA region of choice. Further studies looking at methyl changes over nearly the entire human genome have used a methylation assay with a chip containing possible methylation sites spread over 14,495 genes to identify changes in methylation patterns [START_REF] Weisenberger | Comprehensive DNA methylation analysis on the Illumina Infinium assay platform[END_REF].

These technologies and new variations are allowing new disease models to be developed, and some longitudinal trait changes, some of which appear to be heritable, can now be better explained. For example, Soubry et al. found that obesity was associated with lower methylation levels at some genes while the newborns of obese parents had altered methylation patterns at multiple imprint regulatory regions [START_REF] Soubry | Newborns of obese parents have altered DNA methylation patterns at imprinted genes[END_REF].

The next generation of sequencing technologies currently being developed focus mainly on the sequencing of single molecules and increasing the length of accurate reads (M. [START_REF] Xu | Perspectives and challenges of emerging single-molecule DNA sequencing technologies[END_REF]. Very long sequencing reads from PacBio, while error prone, have already been effectively employed to improve genome assemblies, and increases in length and accuracy are regularly being made (Xiaojing [START_REF] Zhang | Improving genome assemblies by sequencing PCR products with PacBio[END_REF]. Oxford Nanopore has also reported some success with a micro sequencing platform that could fit on a USB stick and plugged directly into a laptop for sequencing [START_REF] Eisenstein | Oxford Nanopore announcement sets sequencing sector abuzz[END_REF]. These technologies will ! 65 likely result in cheaper, longer read lengths, providing solutions to current problems like the sequencing of highly structured regions. The Y chromosome, for example, has been very difficult to sequence in its entirety because it contains many palindromic regions and repeats [START_REF] Francalacci | Low-pass DNA sequencing of 1200 Sardinians reconstructs European Ychromosome phylogeny[END_REF].
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2. Admixture Linkage"

Recently admixed populations have much longer, extended LD blocks that form a mosaic of the ancestral populations (e.g. African Americans are primarily descended from West Africans with about 20% European admixture) (Parra et al., 1998). Extended haplotypes descend from each ancestral population and are slowly broken up through recombination during meiosis in each subsequent generation. Haplotype blocks consist of an entire chromosome inherited from each ancestral population in the initial admixed generation. The length of these blocks as they decay with each generation is a function of genetic distance, measured in centimorgans (cM).

After one generation, for example, each extended haplotype block will vary, but the average block size will be approximately 100 cM or roughly one hundred million bases. The correlation of markers within these extended haplotype blocks is referred to as admixture linkage disequilibrium (ALD). Within these extended haplotype blocks, however, ALD is confounded by extant local LD retained from ancestral populations, because each extended haplotype is descended from one ancestral population (Sundquist, Fratkin, Do, & Batzoglou, 2008;Tang, Coram, Wang, Zhu, & Risch, 2006). A complex correlation structure arises from ALD and local LD, in which knowing the allele at one locus can give significant information about alleles of neighboring loci, and knowing the alleles in one haplotype block can give significant information about the ancestry of that locus."

ALD can also add meaningful information to the analysis of association studies using admixed populations. Instead of doing an association study looking for association between markers and a phenotype, one can look for linkage between an extended haplotype block derived from one or the other ancestral populations with a trait or phenotype that differs in frequency between the two ancestral parental populations. In other words, we anticipate that the causal variant is more likely to be harbored on the same ancestral chromosome as the ancestral population showing the higher disease prevalence (J. C. Stephens, Briscoe, & O'Brien, 1994). This is analogous to family studies that use long linkage blocks to identify disease mutations in affected families segregating a disease gene (McKeigue, 1997)."
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2.1. Admixture Linkage Disequilibrium"

Linkage disequilibrium (LD) is the non-random association of the alleles from a group of loci, due to shared inheritance of the alleles over many generations, while admixture linkage disequilibrium (ALD) discussed above is the non-random association of alleles from each ancestral population over a few generations following admixture. Regions of high LD, often referred to as LD blocks, are not generally recombined during meiosis and are inherited together. This is most often due to the loci in the LD block being in close physical proximity.

These regions vary somewhat in size between populations, manly due to the size of the founding population and the number of generations since the population's founding. Africans, for example, have an overall lower level of LD than Europeans.

When there is admixture between two populations, individuals of the initially admixed generation (Generation 0) inherit one entire chromosome from each parent and thus inherit one entire chromosome from each ancestral population. The LD structure across each of these chromosomes can be quite different, making them easily distinguishable from each other. In the first generation after admixture (Generation 1) the contiguous chromosomal segments from each ancestral population are 100 cM long on average, which is quite large in comparison to the background identical by descent (IBD) segments originating from each of the ancestral populations. These chromosomal segments form extended haplotypes that are unique to each ancestral population, which can be described by local LD patterns specific to each ancestral population, resulting in considerable ALD in addition to the local LD present in the ancestral populations. Through succeeding generations, the IBD chromosomal segments resulting from admixture will become smaller by the process of genetic recombination (see Figure 10), but ALD continues to be significant and measurable for many generations [START_REF] Lautenberger | Significant Admixture Linkage Disequilibrium across 30 cM around the FY Locus in African Americans[END_REF]Patterson et al., 2012).

! 68 parameters. This is used iteratively in conjunction with an MCMC algorithm to estimate the likelihood distribution of each individual's true ancestry profile (Falush et al., 2003;[START_REF] Hoggart | Control of confounding of genetic associations in stratified populations[END_REF]Patterson et al., 2004). A general outline of these algorithms follows in Sections 2.2.1 -4. These algorithms do not model local LD from ancestral populations, but focus instead only on modeling of admixture LD. Because of this, they are only appropriate for analysis of sparse marker sets that are unlinked in ancestral populations. The general outline of these sparse marker algorithms is followed by a discussion of dense marker strategies in Section 2.2.5. In setting up the algorithm, individual parameters for global ancestry, A, and mean number of generations since admixture, λ, are either estimated using maximum likelihood or randomly sampled from a non-informative or minimally-informative prior distribution describing the admixed population. Global admixture proportions are modeled using a beta distribution in the case of two-way admixture or dirichlet distribution, and the mean number of generations since admixture is modeled using a gamma distribution (see Table 4).

Step 1"

The workhorse of these algorithms is the HMM described in Figure 11. The hidden ancestral state of each parent, represented by γ, is inferred using the observed genotypes at each sampled locus, conditional on genetic distance between markers (d), individual parameters defined in Table 4 and population parameters defined in Table 5. Markers with large allele frequency differences in ancestral populations are typically chosen to maximize the power to differentiate between the two (A. L. [START_REF] Price | A genomewide admixture map for Latino populations[END_REF]M. W. Smith et al., 2004). Two Markov chains are propagated from each end of the chromosome, in which the probability of each allele having originated from a given ancestral population is calculated is conditional on previous markers in the chain. The two chains, one in the forward and one in the reverse direction, are then multiplied and normalized to obtain the final ancestral state probabilities (Patterson et al., 2004;Pritchard, Stephens, & Donnelly, 2000). The iterative portion of the algorithm starts with the evaluation of the HMM to obtain ancestral state probabilities, conditional on the unobserved parameters. A theoretical distribution of the ancestral state probabilities, γ, that is the probability of each chromosomal segment originating in a specific ancestral population, k, can be generated, conditional on the previously sampled parameters, A and λ, as well as the observed genotype, a, and ancestral states, γprev, of the surrounding markers. This follows from an application of Bayes Rule:

(9) ! ," (10) 
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(12) ! ."
! Equation 10 is a function of pk, the allele frequency in chromosomes descended from population k. The ancestral state probability, unconditional on genotype (Equation 11), is a function of the distance to the previous marker in cM, d, and the mean number of generations since admixture in that individual, λ. If there is a recombination with the previous locus, the probability of observing a chromosome from population k is simply the global proportion of chromosomes from population k in that individual's ancestors, Ak. If there is no recombination, then the probability is the same as that of the previous locus.

To start with, the ancestral state probability of the first marker on the chromosome, γ1F, is calculated, conditional only on the individual's global ancestry, A, and the observed genotype at that locus, essentially setting the probability of recombination to 1 in Equation 11. The ancestral state probability, γjF, of subsequent markers on the chromosome can then be

γ = P g = k a = x ( ) = P a = x g = k ( ) P g = k
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calculated, conditional on the ancestral state probability at the previous locus, γj-1F, as well as the individual's observed genotype and global parameters A and λ. The same process is repeated starting with the marker at the opposite end of the chromosome and moving in the reverse direction to calculate γR. The final ancestral state probability at each locus is proportional to the product of γF and γR, which can be normalized to sum to 1:

(13) ! ." 2.2.3. Step 2"
In the second step of this iterative process, each individual's ancestral state at each locus is sampled conditional on γ, and each individual's parameters are updated by a Metropolis

Hastings update, conditional on the sampled ancestral state and the hyperparameters describing their distributions in the admixed population (see Table 6). Each parameter is sampled from the posterior distribution, defined by each individual's sampled ancestral state at each locus and is kept with probability Updated values in the Gibbs sampler are kept conditional upon the updated parameters from Table 6. "

This is followed by a Metropolis Hastings update of the population parameters and a Gibbs sample of the hyperparameters that describe the prior distributions used above (see Table 7).

In this sample, each hyperparameter is sampled from the non-informative prior distribution and kept as a function of the prior likelihoods of the new parameters, similar to Equation 14.

This is repeated enough times to reasonably explore the hyperparameter space, and a representative value is chosen for the new hyperparameters.

Inference of ancestry"

Steps 1 and 2 are repeated hundreds or thousands of times in an MCMC chain until the likelihood distribution of individual ancestry is sufficiently characterized and each individual's ancestry is summarized by the mean of the sampled distribution. Other measures can also be summarized, including disease association statistics as discussed in Section 2.3.1.
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Dense marker strategies"

The algorithm above depends on a marker set where individual markers are unlinked in the ancestral population. Linked markers will introduce bias unless local LD is correctly modeled accounted for by a sufficiently accurate model [START_REF] Wall | Haplotype blocks and linkage disequilibrium in the human genome[END_REF]. SABER implements the first algorithm allowing dense marker sets by incorporating first order local LD estimates into the model (Tang et al., 2006). There have been problems reported using this method, however, indicating higher order LD can play an important roll in in some cases (A. L. Price et al., 2008;[START_REF] Tang | Recent genetic selection in the ancestral admixture of Puerto Ricans[END_REF]. An example of where this could get one into trouble is when two very old, and thus unlinked, markers are sampled between two fairly recent mutations (see Figure 12).

LAMP infers ancestry over windows of unlinked SNPs and uses a ranking system to merge inferences over multiple windows, and a more recent update, LAMP-LD, includes unlinked haplotype blocks (Baran et al., 2012;Sankararaman, Sridhar, & Kimmel, 2008). A recently published method, RFMix, takes a similar approach, but models the unlinked haplotypes and infers ancestry using a random forest approach (Maples, Gravel, Kenny, & Bustamante, 2013). These both allow local modeling of LD on a manageable scale, while increasing power
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with a greater number of genotype information. Another recently published fully frequentist approach, EILA, models the odds of a set of SNPs coming from a given parental population as a function of the observed genotypes in the admixed individual (James J Yang, Li, Buu, & Williams, 2013). While computationally friendly, this approach is likely to suffer when the proxy ancestral populations are at all divergent from the ancestral populations they are chosen to represent.

HAPAA and HAPMIX use a HMM similar to that used in imputation of genotypes to model local LD (A. L. Price et al., 2009;Sundquist et al., 2008). HAPMIX differs from HAPAA mainly in that it allows for rare miscopy events resulting in differences between admixed and ancestral haplotypes. These fully Bayesian algorithms, while accurate, are computationally intensive and do not scale well as the marker set increases in size (Baran et al., 2012;Seldin et al., 2011).

The extent of European admixture in African Americans has been studied extensively, and admixture inference algorithms are quite accurate in assigning ancestry proportions for twoway admixed populations (Seldin et al., 2011). However, many populations have multiple populations contributing recent admixture. In Latinos, for example, there is 3-way admixture between Europe, Africa and indigenous populations. Accurate and efficient admixture in these populations is more complex, and evidence exists that many algorithms for this application are not sufficiently developed (Pasaniuc, Sankararaman, Kimmel, & Halperin, 2009;[START_REF] Tian | A genomewide single-nucleotide-polymorphism panel for Mexican American admixture mapping[END_REF]. Europeans and many African populations have been well characterized, but getting a good prior for Native Americans is more problematic [START_REF] Bryc | Genome-wide patterns of population structure and admixture among Hispanic/ Latino populations[END_REF][START_REF] Tian | A genomewide single-nucleotide-polymorphism panel for Mexican American admixture mapping[END_REF].

To add to this problem, there is evidence that Native American chromosomes are more often falsely inferred to be European than African. This added bias can affect disease association statistics in unexpected ways [START_REF] Adler | Mexican-American admixture mapping analyses for diabetic nephropathy in type 2 diabetes mellitus[END_REF][START_REF] Yang | Ancestry and pharmacogenomics of relapse in acute lymphoblastic leukemia[END_REF].

Mapping by Admixture Linkage Disequilibrium" ! 76

Ancestry plays a critical role in our genetic makeup and affects distinct phenotypic traits in various racial groups. As discussed in Section 1.3.3, this can negatively impact genetic studies through unrecognized substructure, but it can also be exploited to map genes under the right circumstances. For several decades admixed populations have been recognized for their potential to elucidate genetic causes of observed phenotypic differences or disease disparities between racial groups (MacLean & Workman, 1973;Thoday, 1969), but it was not until relatively recently that genotyping and computing technologies have evolved sufficiently to truly harness the capabilities of this method.

The basic premise of Mapping by Admixture Linkage Disequilibrium (MALD) is to infer the location of disease genes by way of association between local ancestry and phenotype [START_REF] Mckeigue | Mapping Genes that Underlie Ethnic Differences in Disease Risk: Methods for Detecting Linkage in Admixed Populations, by Conditioning on Parental Admixture[END_REF]. Power to observe statistically significant associations between ancestry and phenotype increases as a function of the magnitude of the incidence rate ratio of disease between the ancestral populations, but even in populations with a large difference in incidence rates a genetic cause is not guaranteed. In many instances, an environmental factor can be responsible for some or all of the observed difference in incidence rates [START_REF] Risch | Categorization of humans in biomedical research: genes, race and disease[END_REF]. entire sample and compared with the genome-wide ancestry proportion (black vertical line). Loci with an unusually high average risk population ancestry are inferred to harbor disease genes (highlighted with the blue box). "

Ancestry at each sampled locus in the genome is typically inferred using one of the methods discussed in Section 2.2. When the local ancestry at a locus under study is significantly different than in controls, or when it is significantly different from global ancestry in a case only study design, it can be inferred that a variant specific to that ancestral population is nearby, and that this variant is responsible for a change in prevalence or character of the phenotype of interest (see Figure 13). Statistical power is greatly increased when dense marker sets are used to infer local ancestry, primarily due to the increased accuracy of inferred local ancestry, but care must be taken to correctly account for local LD. The two most common consequence of failing to appropriately handle local LD is that the model will tend to overestimate the divergence of the admixing populations and it will tend to infer significant admixture in unadmixed individuals (Falush et al., 2003). An ongoing area of research is how best to efficiently and accurately model local LD to make use of this increase in power (Seldin et al., 2011).

Disease association statistics"

The first test proposed for MALD was a Transmission Disequilibrium Test (TDT, see Section 3.1) utilizing parent/child trios (McKeigue, 1997). The TDT is a powerful method, but requires additional resources to sample both parents of each case. Testing unrelated individuals avoids this problem and is also a valid test for linkage when done properly [START_REF] Mckeigue | Mapping Genes that Underlie Ethnic Differences in Disease Risk: Methods for Detecting Linkage in Admixed Populations, by Conditioning on Parental Admixture[END_REF].

One option in admixture mapping is a case-only test. This is not normally an option in traditional genetic association studies, but in MALD studies the genome of each case can be effectively used as a substitute for a more traditional control population. [START_REF] Montana | Statistical tests for admixture mapping with casecontrol and cases-only data[END_REF]Patterson et al., 2004).

Given the i th individual's global ancestry proportion of the risk population: Ai, the estimated probability of the number of chromosomes from the risk population at the locus being tested, γi0 = P(0 chromosomes), γi1 = P(1 chromosome) and γi2 = P(2 chromosomes); and the prior risk increase associated with one or two risk chromosomes, ψ1 and ψ2, the Bayes factor testing association of the locus and disease is defined in Equation 10( Patterson et al., 2004).

(15) ! "

Alternately, the non-parametric test statistic defined in Equation 11is defined in terms of the sample averages for local ancestry at the locus of interest, ) , and global ancestry, [START_REF] Montana | Statistical tests for admixture mapping with casecontrol and cases-only data[END_REF]) .

(16) ! "

Case / control statistics are typically explored independently of case-only statistics. Pasaniuc et al, however, have proposed a χ 2 test, merging both case / control GWAS results and case only admixture mapping results [START_REF] Pasaniuc | Enhanced statistical tests for GWAS in admixed populations: assessment using African Americans from CARe and a Breast Cancer Consortium[END_REF].

Accounting for confounding variables and testing for associations with continuous traits has also been modeled using generalized linear regression techniques [START_REF] Hoggart | Control of confounding of genetic associations in stratified populations[END_REF].

Linear models typically take the form of

(17) ! ,"
where f() is the link function, ) is the global ancestry of the risk population, g() is a function of the local ancestry probabilities (e.g. under an additive model g(γ) = γ1 + 2γ2) and X is a
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vector of environmental and/or confounding variables. There have also been concerns that differences in admixture between chromosomes inherited from each parent can also introduce bias in disease association. It has been shown that the product of each parent's global ancestry proportion, ) , is sufficient to account for this potential bias (Redden et al., 2006):

(18) ! ."

MALD applications"

Phenotypes with large differences in incidence between ancestral populations that make up an admixed population provide the greatest power in MALD studies. Given the genetic diversity that exists between continental populations, it is not surprising that a number of diseases are more common in one or another population. Figure 14 illustrates an analysis of the SEER database tracking cancer in the United States over a five year period, for example, identified 13 cancers with higher incidence in those with African ancestry and 14 cancers with higher incidence in those with European ancestry [START_REF] Winkler | Admixture mapping comes of age[END_REF].

! Figure!14. Cancer Incidence Rate Ratios. Cancer incidence among African Americans (xaxis) is plotted against incidence rate ratios comparing African American and European American rates (y-axis) for the incidence of various cancers between 2000 and 2005 as reported in the SEER database. Red points indicate cancers with 
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Figure 9

Relative frequencies of cancers in African Americans and European Americans. Cancers with significant differences in frequency (red or green) are potential targets for admixture mapping. Data were extracted using SEER software using U.S. cancer incidence from 2000-2005, age adjusted using 2000 census results as the standard. Incidence rates were calculated separately for European (EA) and American Americans (AA) for the number of cases per 100,000 person years.
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The authors are listed as inventors on a patent application for the use of MYH9 genetic variation as a predictor of propensity for kidney disease. ! 80 significantly elevated incidence in African Americans, and green points indicate cancers with significantly elevated incidence in European Americans. Blue points do not reach statistical significance [START_REF] Winkler | Admixture mapping comes of age[END_REF].! Prostate cancer, the most prevalent of the cancers identified in Figure 14, was the first MALD study published (M. L. [START_REF] Freedman | Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men[END_REF]. Many reports of disease causing variants have been made over the ensuing seven years in diseases as diverse as renal disease, asthma and neutrophil count (Jeffery B Kopp et al., 2008;[START_REF] Nalls | Admixture mapping of white cell count: genetic locus responsible for lower white blood cell count in the Health ABC and Jackson Heart studies[END_REF][START_REF] Torgerson | Case-control admixture mapping in Latino populations enriches for known asthma-associated genes[END_REF].

MALD has not only been applied to the study of human populations, but also to organisms of agricultural importance and in ecological modeling [START_REF] Mezaka | Genetic Diversity in Latvian Spring Barley Association Mapping Population[END_REF][START_REF] Rogers | Mapping the genomic architecture of ecological speciation in the wild: does linkage disequilibrium hold the key?[END_REF].

Only recently admixed populations have reliably distinguishable contiguous chromosome segments from identifiable ancestral populations (Hoggart et al., 2004). With newer methods, however, this condition is being relaxed and characterizations of anciently admixed populations are also shedding light on the history of human migration (Patterson et al., 2012; A. L. Price et al., 2009). Admixture mapping is also being used to refine the human reference sequence with information from admixed populations (Genovese, Handsaker, Li, Kenny, & McCarroll, 2013). Even with recent advances, more work is needed, particularly in populations with more complicated admixture patterns (e.g. Latinos and Southern Africa Cape Coloreds (James J Yang et al., 2013)).
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PCA Modeling of LD"

As noted in Section 1.3.3, Population substructure due to differences in ancestry among cases and controls is a common source of bias and may result in inflation of false positive associations if left uncorrected [START_REF] Campbell | Demonstrating stratification in a European American population[END_REF]. This source of bias can be easily modeled with a principal components analysis (PCA) of the genetic data (A. L. Price et al., 2006). A PCA in a GWAS starts with the full characterization of the covariance of the genetic profiles between each pair of individuals in the study, followed by the calculation of eigenvalues and eigenvectors of the covariance matrix. The first eigenvector defines a transformation of an individual's genotypes that explains as much of the genetic variation in the sample as possible. Each successive eigenvector likewise explains as much of the remaining variation as possible. Each eigenvector transformation summarizes relationships in the data and can be used to explain general trends in the sample, and eigenvalues can be thought of as a measure of the amount of variation accounted for by each eigenvector. The first few principal components of a GWAS PCA are a good proxy for population substructure and their use as confounding covariates is a standard part GWAS analysis (A. L. Price et al., 2006)."

In GWAS, the convention is to set the acceptable threshold for genome wide significance between p < 1x10 -8 and p < 5x10 -8 (Hoggart et al., 2008;International HapMap Consortium, 2005;McCarthy et al., 2008;Risch & Merikangas, 1996). Because of the increased Type II error rate associated with reducing the probability of Type I errors using this threshold, many believe it is too conservative (Duggal et al., 2008;Gao et al., 2008;Gu, 2007;Nicodemus, Liu, Chase, Tsai, & Fallin, 2005). PCA can be applied to a GWAS using the simpleM algorithm to estimate the number of independent multiple comparisons performed (Gao, Becker, Becker, Starmer, & Province, 2010). This is one of the methods used in my first objective. Another application I use in this dissertation is the summarization of correlated covariates in a statistical model (Hawkins, 1973). Stability of linear regression coefficients suffers when a combination of predictor variables approaches a state of collinearity. This ! 82 correlation between predictor variables can be eliminated by instead analyzing the principal components (PCs) obtained in a PCA.

Principal Components Analysis"

PCA is a linear transformation of observations of a series of variables, ) , into a series of principal components (PCs), )

, where m ≤ n [START_REF] Hotelling | Analysis of a complex of statistical variables into principal components[END_REF][START_REF] Pearson | On lines and planes of closest fit to systems of points in space[END_REF]. The choice of these PCs results two unique properties that can be very useful in practice: 1. Each PC is orthogonal to all other PCs, and 2. Each PC accounts for as much variance in ) that is unexplained by previous PCs, conditional on its orthogonality to previous PCs. As mentioned above, each PC is associated with an eigenvector of the variance covariance matrix of ) . The variance of a PC is dependent on how the original variables are scaled, so they are rescaled to have unit sample variance, and the eigenvalue associated with that PC is directly proportional to the amount of the total sample variance it accounts for. This process can also be conceptualized as a rotation in ) resulting in n uncorrelated variables when n = m or the projection of ) most closely fitting the full data set, resulting in m uncorrelated variables when n > m.

For example, if we have two correlated variables, X1 and X2 shown in Figure 15, PC1 will be associated with the green-dashed least squares line and PC2 will be associated with the bluedashed line, perpendicular to it. As such, PC1 will contain information with regard to the linear relationship between X1 and X2, while PC2 will contain information about the spread of X1 and X2 about the least squares line. An analysis of PC1 alone would have a slight modeling advantage, since we only have one variable to consider. Two variables are easily visualized, and interactions between the two are easily modeled. In higher dimensions, however (e.g.

with hundreds of thousands of genetic markers), visualizing and modeling all variables can be problematic, especially when many highly correlated variables are present. Since the amount of variation captured by each successive PC usually rapidly diminishes, the first few PCs can be sufficient to statistically model extremely complex systems.
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Figure! 15. PCA example in two dimensions.

The upper left panel shows the original variables, X1 and X2, with a least squares line (dashed-green) and another line orthogonal to the least squares line (dashed-blue). These will be the axes of the transformed principal components (PCs). The upper right panel shows where each point ends up in the transformation, and the lower left panel shows the transformed PCs.! !

Use of PCA in Bioinformatics"

PCA is a classical method with many uses in bioinformatics [START_REF] Ma | Principal component analysis based methods in bioinformatics studies[END_REF][START_REF] Ramsay | Principal components analysis for functional data[END_REF]. There are at least three primary applications of PCA in bioinformatics: 1) exploratory analysis and data visualization, 2) cluster analysis and 3) regression analysis. The primary benefit in all of these groups of applications is in the consideration of only a few summarizing PCs, greatly reduction of the number of variables in the model.
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In many settings it is impossible to visualize all possible variables in a data set, for example when looking for gene / gene interactions in a gene expression analysis. PCA methods can be used in these situations to summarize the many variables into a small enough number of PCs to visualize. This can be useful, for example, when exploring how different classes of genes cluster in cases and controls [START_REF] Hibbs | Visualization methods for statistical analysis of microarray clusters[END_REF]. In other exploratory analyses, a graphical representation of PCs can provide insight into how variable are related to one another. An example is given in my preliminary analysis of clinical factors important in the development and progression of end stage renal disease (ESRD). In Figure 16 ! 85
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the first PC associates most strongly with mean arterial blood pressure (MAP) and can conclude that MAP may be the most important factor of those sampled, followed by baseline glomerular filtration rate (GFR), age and body mass index (BMI). It is also interesting to note that both the second and third principal components associate with baseline GFR and age, probably due to the natural decline in GFR with age, but also indicating some other interaction between the two with regard to ESRD.

When the first few PCs are used to summarize a large number of variables, the remaining, unused PCs are generally considered only to capture residual noise in the data. Clustering algorithms can use PCs to combine important variables and minimize residual noise, increasing both the power and computational efficiency of these algorithms [START_REF] Yeung | Principal component analysis for clustering gene expression data[END_REF]. PCs can be used in a similar way in regression analyses, including many variables in one or two covariates (Hawkins, 1973). Stability of linear regression coefficients suffers when a combination of predictor variables approaches a state of collinearity. This correlation between predictor variables can be eliminated by instead analyzing the PCs obtained in a

PCA. An example of this is the analysis of gene expression and gene-gene interactions [START_REF] Sharov | A web-based tool for principal component and significance analysis of microarray data[END_REF]. Some gene combinations may have a different effect on disease outcome than any individual genes would have by themselves. By combining genes with a PCA, combined changes in gene expression data can be more concisely modeled and compared, and by analyzing how the PCs are clustered, important interactions may be recognized that otherwise would have been missed in the crowd of multiple comparisons.

Another application in GWAS is to identify the number of independent genetic markers sampled. The convention in setting a significance threshold is to divide the desired study-wide significance threshold by the number of independent tests performed and use this threshold, called a Bonferroni threshold, as the standard for each individual test. The easiest way to do this is to simply count up the total number of markers sampled, but this will be a conservative estimate, since the markers are not independent due to the presence of local LD. Because of the increased Type II error rate associated with reducing the probability of Type I errors using this threshold, many believe it is too conservative. PCA can be applied to a GWAS using the ! 86

simpleM algorithm to estimate the number of independent multiple comparisons performed (Gao et al., 2010). This is one of the methods used in my first objective. When applying the simpleM algorithm, the same basic steps of a PCA are followed, but the covariance matrix is calculated comparing pairs of markers, rather than pairs of individuals. This could result in a very large covariance matrix, so chromosomal segments or even entire chromosomes are analyzed to ease the computational burden. Breaking chromosomes up into smaller segments will have the effect of inflating the final estimate, since this essentially makes the assumption that markers in different segments are unlinked, but this effect is very slight in practice.

Because each eigenvalue is directly proportional to the amount of variation it represents in the data, the number of summed, normalized eigenvalues it takes to reach 0.995, or 99.5% of the variation accounted for, is used for the estimate. All other PCs are inferred to provide no further independent information.

Measurement of Population Substructure"

The presence of population substructure in the sample is particularly problematic in GWAS.

Population substructure results when an apparently homogeneous population is genetically heterogeneous. This can lead to multiple false positive findings. The association normally sought after is that of genotype causing disease, but false associations can be induced by population substructure in several ways (see Figure 17).

Figure 17a illustrates a real association between the subpopulation and disease. In such a case, the subpopulation confounds the relationship between any structured SNPs and the disease, inducing false associations with structured SNPs. In Figure 17b the chance of a false association is not necessarily increased, but any random association between subpopulations and disease status will result in an increase in false positive results. In both cases, false associations will rise with significantly increased probability in regions that are structured.
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The to false associations due to population substructure. LCT has been more under the influence of selection in some regions than others and is also associated with ancestry. Even though no statistically significant population substructure was detected in the sample under study, when ancestry was taken into account, the observed association between LCT and height disappeared [START_REF] Campbell | Demonstrating stratification in a European American population[END_REF].

An example of a false association being induced even when the population under study is likely not associated with the disease outcome is the finding discussed at the beginning of the Introduction between DARC and HIV acquisition in African Americans [START_REF] He | Duffy Antigen Receptor for Chemokines Mediates trans-Infection of HIV-1 from Red Blood Cells to Target Cells and Affects HIV-AIDS Susceptibility[END_REF]. The comparison of a sample of cases with low amounts of European ancestry relative to the control group led to an overestimation of the association between HIV and alleles more common in Africans. Thus the association statistics for DARC, which nearly perfectly differentiates between African and European ancestry, were more inflated. Several ! 88

independent studies with appropriate samples and population substructure statistics were unable to replicate this finding [START_REF] Walley | The Duffy antigen receptor for chemokines null promoter variant does not influence HIV-1 acquisition or disease progression[END_REF]Winkler, An, Johnson, Nelson, & Kirk, 2009).

Population substructure of can be identified using a PCA, comparing the genetic profiles of each pair of individuals with each other. The PCs in this application summarize genetic information across all markers, and the first few PCs have been shown to correlate well with population substructure (A. L. Price et al., 2006). Figure 18 illustrates how each subpopulation can be clustered using this method. Included in the analysis are 482 markers in Europeans, Indians, Africans, and African Americans from the HapMap project. Given the recent admixture of African Americans, it is not surprising to see some African Americans clustering closer to the Europeans than the Africans. The amount of population information is shown for the first 10 principal components in Figure 19, further illustrating the power of this summary method. The first few eigenvectors are typically sufficient to characterize population substructure, as they are in this example. These first few eigenvectors may be easily added to a linear model to condition on population substructure and remove this source of bias. The first 10 eigenvectors are plotted for a principal components analysis are plotted for Europeans (CEU, green), Yorubans (YRI, magenta), African Americans (ASW, black), and Gujarati Indians living in Texas (GIH, blue). Note that most of the clustering occurs in the first two eigenvectors. 
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Objectives"

The overarching goal of this dissertation is to explore ways to increase power in genome-wide association studies (GWAS) of underrepresented populations through more accurate modeling of genetic linkage.

Objective 1"

Putting restrictions on the Type I error rate (false positive rate) directly influences the Type II error rate (false negative rate). Because Type I errors lead to wasted time and money, Type II errors are generally preferred to Type I errors. Increases in Type II error rates associated with large studies, however, have their own costs stemming from of missed discoveries and opportunities. In order to reevaluate the appropriateness of using strict Bonferroni corrections, which can lead to important results being overlooked, various methods to determine appropriate genome-wide significance levels are explored.

Objective 2"

An indirect modification of Type II error rates can be achieved most simply by decreasing the number of statistical comparisons made in a GWAS. One powerful method for reducing the number of comparisons is to focus on extended haplotype blocks prevalent in recently admixed populations. A typical GWAS study, with a resolution of less than 0.1 cM, while providing a rich marker set, also suffers from a lack of power, especially when studying rare diseases or underrepresented populations. This requires a stringent genome-wide significance threshold to avoid too many Type I errors at the cost of a corresponding increase in Type II errors. Mapping by Admixture Linkage Disequilibrium (MALD), on the other hand, has a resolution of 5 -10 cM, and can be efficiently carried out with fewer genetic markers, a potential difference of several orders of magnitude (M. W. [START_REF] Smith | A high-density admixture map for disease gene ! 142 discovery in African Americans[END_REF].
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Current algorithms to infer local ancestry, needed for MALD, generally have one of three shortcomings: they rely on sparse marker sets with no local LD between them, they partition dense marker sets into discrete haplotype blocks to avoid having to model higher order LD, or they are computationally inefficient. Additionally, some of these software packages were designed with other purposes in mind, and obtaining the required estimates can be difficult. A new software package including inference, hypothesis testing and graphics was developed to streamline the analysis and publication of MALD studies. The algorithm, described in this dissertation, models local LD using principal components regression, allowing both the computational efficiency of windowing approaches and appropriate modeling of higher order LD in regions without well defined haplotype blocks.
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Results
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Published in BMC Genomics, 2010, 11:724.

Summary"

The assessment of statistical significance is one of the key stages in a GWAS, due to the large amount of data and the number of tests performed. Three approaches to assessing statistical significance are controlling the significance threshold by accounting for multiple comparisons, controlling the significance threshold through maintenance of a desired false discovery rate, and by using Bayes Factors (BF). This publication focuses on Bonferroni corrections for multiple comparisons and other alternatives developed to improve upon violated assumptions of Bonferroni corrections. While other methods may be superior in some respects, this focus is primarily due to the preference of this method by so many researchers.

Bonferroni corrections are ideal for their intended purpose in a GWAS setting because there are many comparisons made and there are no well defined hypotheses. One of the key assumptions of a Bonferroni correction, however, is that all tests are independent of one another. This assumption is violated due to the preponderance of LD throughout the genome, and substantial effort has gone into the development of alternate strategies that take this LD into account.
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Four methods are explored and contrasted to a simple Bonferroni correction: 1) Permutation test using PRESTO (B. L. Browning, 2008); 2) PCA of the genetic data to identify the number of independent SNPs using the simpleM method (Gao et al., 2010); 3) Multivariate normal pvalue correction using SLIDE (Han et al., 2009); 4) Counting the number of haplotype blocks using the three haplotype block calling algorithms implemented in Haploveiw (International HapMap Consortium et al., 2007).

Permutation testing is the ideal way to correct p-values, but the compute time is unreasonable for statistical tests that lack optimized permutation algorithms. We therefore used a simple case-control outcome for this publication. 1,255 HIV cases and 259 exposed uninfected controls, were genotyped on the Affy 6.0 platform, and it is assumed the results extend to other statistical tests, populations, and genotyping platforms.

All methods explored had reasonable computational requirements and execution times. The thresholds identified by each method were standardized, using the permutation results from PRESO, and compared with a simple Bonferroni correction using the total number of tests as a correction factor. The α = 0.05 significance thresholds were similar for the simpleM and SLIDE methods (αstandardized = 0.055 and 0.068 respectively), but the significance thresholds obtained by using the number of haplotype blocks were much less conservative (αstandardized between 0.15 and 0.20). These results are tempered by the fact that the simple Bonferroni correction was only very slightly more conservative (αstandardized = 0.045) and that the absolute significance threshold was 8×10 -8 -not far from the uniform standard of 5×10 -8 for this study wide significance level.

The PRESTO, simpleM, and SLIDE methods appear to do equally well in these data, and we recommend using one of them instead of relying on a one-size-fits all uniform standard. Not much difference was noted in this example, but scenarios are discussed where relying on a uniform standard would be unwise.
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Accounting for multiple comparisons in a genome-wide association study (GWAS)
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Abstract

Background: As we enter an era when testing millions of SNPs in a single gene association study will become the standard, consideration of multiple comparisons is an essential part of determining statistical significance. Bonferroni adjustments can be made but are conservative due to the preponderance of linkage disequilibrium (LD) between genetic markers, and permutation testing is not always a viable option. Three major classes of corrections have been proposed to correct the dependent nature of genetic data in Bonferroni adjustments: permutation testing and related alternatives, principal components analysis (PCA), and analysis of blocks of LD across the genome. We consider seven implementations of these commonly used methods using data from 1514 European American participants genotyped for 700,078 SNPs in a GWAS for AIDS. Results: A Bonferroni correction using the number of LD blocks found by the three algorithms implemented by Haploview resulted in an insufficiently conservative threshold, corresponding to a genome-wide significance level of α = 0.15 -0.20. We observed a moderate increase in power when using PRESTO, SLIDE, and simpleℳ when compared with traditional Bonferroni methods for population data genotyped on the Affymetrix 6.0 platform in European Americans (α = 0.05 thresholds between 1 × 10 -7 and 7 × 10 -8 ).

Conclusions: Correcting for the number of LD blocks resulted in an anti-conservative Bonferroni adjustment. SLIDE and simpleℳ are particularly useful when using a statistical test not handled in optimized permutation testing packages, and genome-wide corrected p-values using SLIDE, are much easier to interpret for consumers of GWAS studies.

Background

Since the first successful genome-wide association studies (GWAS) in 2005, over 600 GWAS have been reported [START_REF]A Catalog of Published Genome-Wide Association Studies[END_REF]. Due in large part to rapid advances in genotyping technology and standardized guidelines for reporting statistical evidence, the multitude of comparisons made in a GWAS will result in both false positive (Type 1 errors) and, if the correction for multiple comparisons is overly conservative or power is inadequate, false negative (Type 2 errors) results.

The probability of a Type I error (incorrectly ascribing scientific significance to a statistical test) is generally controlled by setting the significance level, α, for a test, but the probability of making at least one Type I error in a study, P Study-wide Type I error 1 1

( ) = -- ( ) ,
n is a function of n, the number of independent comparisons made, as well as α. The direct application to a GWAS is that, with a significance level typical to small studies and candidate gene studies (e.g. α = 0.05, α = 0.01, α = 0.001), the probability of not committing a GWAS-wide Type I error is very small.

The standard for evidence of significance in GWAS to securely identify a genotypephenotype association in European Americans is generally considered to be p < 5 × 10 -8 or p < 1 × 10 -8 , for α = 0.05 and 0.01, respectively [START_REF] Risch | The future of genetic studies of complex human diseases[END_REF][3][START_REF] Hoggart | Genome-wide significance for dense SNP and resequencing data[END_REF][START_REF] Mccarthy | Genome-wide association studies for complex traits: consensus, uncertainty and challenges[END_REF]. This standard is based on a Bonferroni correction for an assumed million independent variants in the human genome. As a consequence, the avoidance of Type 1 errors may inflate Type 2 errors. This is especially true for analyses with low power, such as rare diseases where patient numbers are limited, low frequency alleles, or genetic factors with small effect sizes. This conundrum can be resolved with extremely large study sizes, but in practice this is not always cost efficient or practical. These issues should be major considerations both for designing GWAS and interpreting GWAS results.

Several methods are commonly used to control the GWAS-wide Type I error rate: p-value adjustments for multiple comparisons have long been used when making multiple comparisons [START_REF] Miller | Simultaneous Statistical Inference[END_REF]; the use of q-values, a measure of the false discovery rate, has been proposed as a way to indirectly measure and control the Type I error rate [START_REF] Storey | Statistical significance for genomewide studies[END_REF]; a two-stage analysis of the data can be used not only to decrease the Type I error rate [START_REF] Zheng | Adaptive Two-Stage Analysis of Genetic Association in Case-Control Designs[END_REF], but also to decrease the genotyping costs incurred [START_REF] Skol | Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies[END_REF]; genotype imputation can result in a net increase in statistical power [START_REF] Marchini | A new multipoint method for genome-wide association studies by imputation of genotypes[END_REF][START_REF] Spencer | Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip[END_REF].

A Bonferroni adjustment fits our problem particularly well because many comparisons are made and a GWAS is considered agnostic, with no prior hypotheses [START_REF] Perneger | What's wrong with Bonferroni adjustments[END_REF]. Several studies have estimated the number of statistical comparisons made in a GWAS [START_REF] Risch | The future of genetic studies of complex human diseases[END_REF][3][START_REF] Hoggart | Genome-wide significance for dense SNP and resequencing data[END_REF][START_REF] Mccarthy | Genome-wide association studies for complex traits: consensus, uncertainty and challenges[END_REF], but the universal application of a one-size-fits-all significance level to GWAS studies is inappropriate. Power to detect associations is determined, in large part, by allele frequencies and their effect sizes; since these variables are constants, only sample size can be adjusted. As the sample size increases, the power to detect low frequency and/or small effect size genetic variants also increases. Newer SNP arrays, designed to more fully capture the range of SNPs in diverse human populations and to include rare SNPs hypothesized to be more likely to have larger effect sizes, will increase the number of independent statistical comparisons [START_REF] Hoggart | Genome-wide significance for dense SNP and resequencing data[END_REF]. Additionally, the dependent nature of genetic data, where SNPs in linkage disequilibrium (LD) are correlated to some degree, may lead to over-correction when using Bonferroni adjustments. One of the key assumptions of a Bonferroni adjustment is that all comparisons are independent. Neighboring SNPs on a chromosome tend to be inherited together in blocks and are not independent [3], making a strict Bonferroni adjustment overly conservative.

One relevant question is then not how many SNPs are being tested, but how many independent statistical comparisons are being made. In the context of a principal components analysis (PCA) of the genotype data, the number of independent comparisons can be defined as the number of principal components accounting for a large portion (99.5% has been suggested) of the variance in the data [START_REF] Gao | A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms[END_REF]. The set of informative SNPs represented by these components could be used to infer the remainder of the data set with a high degree of fidelity, and can be used to make a Bonferroni adjustment with the desired GWAS-wide significance level:

GWAS Informative = n .
What is not clear, however is which SNPs fall into the informative set, so all SNPs are tested. The assumption is then made that the test statistics are distributed similarly to the test statistics from an analysis including only the informative SNPs. Based on the simulations done by Gao et. al. this seems to be a reasonable assumption [START_REF] Gao | A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms[END_REF].

Another relevant question is how to adjust the p-values directly, rather than relying on a significance threshold [START_REF] Han | Rapid and accurate multiple testing correction and power estimation for millions of correlated markers[END_REF]. These corrected p-values, measuring significance on the genome-wide scale, have the added benefit of easier interpretation. For example, comparing two uncorrected p-values, 6.8 × 10 -8 and 4.1 × 10 -10 , becomes much more tractable after a genome-wide correction, resulting in corrected p-values of 0.0291 and 0.0004, respectively.

There have been a number of studies attempting to provide an accurate picture of how SNPs, and/or statistical tests of SNPs, are correlated in genome-wide studies. These fall into three general categories: variations and alternatives to permutation testing [START_REF] Han | Rapid and accurate multiple testing correction and power estimation for millions of correlated markers[END_REF][START_REF] Browning | PRESTO: rapid calculation of order statistic distributions and multiple-testing adjusted P-values via permutation for one and twostage genetic association studies[END_REF], principal components analysis [START_REF] Gao | A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms[END_REF][START_REF] Cheverud | A simple correction for multiple comparisons in interval mapping genome scans[END_REF][START_REF] Nyholt | A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other[END_REF][START_REF] Galwey | A new measure of the effective number of tests, a practical tool for comparing families of non-independent significance tests[END_REF], and analysis of the underlying LD structure in the genome [START_REF] Patterson | Methods for High-Density Admixture Mapping of Disease Genes[END_REF][START_REF] Smith | Mapping by Admixture Linkage Disequilibrium: Advances, Limitations and Guidelines[END_REF][START_REF] Duggal | Establishing an adjusted p-value threshold to control the family-wide type 1 error in genome wide association studies[END_REF].

We have recently genotyped 1514 European Americans for 700,078 SNPs using the Affymetrix 6.0 platform in a GWAS to search for AIDS restriction genes. Here we compare traditional Bonferroni significance thresholds with methods from each of these statistical correction strategies to identify an appropriate measure of significance in our GWAS: 1) PRESTO, an optimized permutation algorithm [START_REF] Browning | PRESTO: rapid calculation of order statistic distributions and multiple-testing adjusted P-values via permutation for one and twostage genetic association studies[END_REF] verified by PERMORY [START_REF] Pahl | PERMORY: an LD-exploiting permutation test algorithm for powerful genome-wide association testing[END_REF]; 2) the Sliding-window method for Locally Inter-correlated markers with asymptotic Distribution Errors corrected (SLIDE) program, an alternative to permutation testing, developed to correct p-values in a GWAS using a multivariate normal distribution-based correction [START_REF] Han | Rapid and accurate multiple testing correction and power estimation for millions of correlated markers[END_REF]23]; 3) the simpleℳ method, specifically developed to calculate the number of informative SNPs being tested in a GWAS using a principal components analysis [START_REF] Gao | A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms[END_REF]; 4) the number of LD blocks found by the Gabriel, Solid Spine of LD, and 4-Gamete algorithms, as implemented in Haploview [24].

Our aim is to identify the most appropriate method for obtaining accurate GWAS-wide significance thresholds ! ! 98 and/or corrected p-values among 700,000 linked SNPs, the best method being one that results in an accurate estimate of the number of comparisons and has reasonable computational requirements.

Methods

GWAS Data

After filtering for a 90% sample call rate, 1,514 European Americans were successfully genotyped on the Affymetrix 6.0 platform. These subjects consisted of 1,255 HIV-infected and 259 HIV-negative individuals at risk of HIV infection; clinical categories were distributed randomly across plates and batch effects were monitored. We chose 700,078 SNPs, after filtering each SNP for >95% call rate, Hardy-Weinberg equilibrium, Mendel errors, and a minor allele frequency below 1%. After re-clustering and filtering bad SNPs, all sample call rates were >95% with an average call rate of 98.9%. Individuals were unrelated, with the exception of 8 CEPH trios used to check for Mendel errors in the genetic data. A principal components analysis of the genetic data using Eigensoft was used to identify population structure. No significant outliers were identified, however, since there is some stratification in European American populations, SNPs that contributed significantly to population structure were tagged in subsequent analyses [25]. Association statistics were not used for the purposes of this paper, except where indicated in the multiple comparisons methods below.

To address the concern that an excess number of cases to controls would lead to less generalizable results, we analyzed a random sample of 259 cases with all 259 controls. Other than the changes in case/control ratio and sample size, all other variables were left unchanged.

Variations and Alternatives to Permutation Testing

PRESTO:

The software package, PRESTO, was used to permute case/control status 10,000 times, and the minimum Mantel trend test p-value for all SNPs in the genome, comparing cases with controls, was recorded for each permuted data set [START_REF] Browning | PRESTO: rapid calculation of order statistic distributions and multiple-testing adjusted P-values via permutation for one and twostage genetic association studies[END_REF]. These minimum p-values were then used to estimate the uncorrected distribution of p-values under the null hypothesis of no true associations in the study. Each p-value was then corrected by finding the corresponding percentile of the distribution of uncorrected p-values, and a significance threshold for a study-wide significance level of α was be obtained by finding the α th percentile of the uncorrected distribution. This distribution was used as the standard by which each method's accuracy is gauged, and corresponding significance levels for all other methods were estimated using this distribution. Results from PRESTO were compared with the results from PERMORY, another optimized permutation testing software package that was recently released [START_REF] Pahl | PERMORY: an LD-exploiting permutation test algorithm for powerful genome-wide association testing[END_REF].

SLIDE: The SLIDE software package was used to implement a multivariate normal distribution-based approximation to a permutation test, using the quantitative trait option, with 10,000 iterations [START_REF] Han | Rapid and accurate multiple testing correction and power estimation for millions of correlated markers[END_REF]23]. For comparisons with the other methods considered, SLIDE corrected p-values were used to estimate the GWASwide significance threshold by finding a corrected p-value equal to the desired study-wide significance. level, α.

Principal Components Analysis

Simpleℳ: The simpleℳ method [START_REF] Gao | A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms[END_REF], based on a principal components analysis of the data, was implemented in R, version 2.9.0 [START_REF]R Development Core Team: R: A language and environment for statistical computing[END_REF], following the example code provided by Gao et al. https://dsgweb.wustl.edu/rgao/ simpleM_Ex.zip. This measure of the number of informative SNPs was then used in a Bonferroni adjustment to estimate the GWAS-wide significance threshold. Each chromosome was broken into regions of approximately 5,000 SNPs due to computational constraints. To choose appropriate regions, with as little LD between adjacent regions as possible, we chose cut points between LD blocks identified by Haploview. A second analysis using the largest regions possible, given the memory available, was also explored to see if results were dependent on the region size.

Analysis of Underlying LD

LD blocks were inferred in our GWAS data using the three methods available in Haploview [24]. The number of LD blocks across the human genome, including interblock SNPs (i.e. singleton SNPs), was used in a Bonferroni adjustment to estimate GWAS-wide significance thresholds [START_REF] Nicodemus | Comparison of type I error for multiple test corrections in large single-nucleotide polymorphism studies using principal components versus haplotype blocking algorithms[END_REF]. Entire chromosomes could not be analyzed, due to memory constraints, so smaller regions were analyzed. All SNPs from the last full LD block of the previous region were included in the analysis of the next region to ensure complete LD blocks.

The Gabriel protocol, the default method for Haploview, was used with an upper D' confidence interval bound of 0.98, a lower D' confidence interval bound of 0.70, and with 5% of informative markers required to be in strong LD [START_REF] Gabriel | The structure of haplotype blocks in the human genome[END_REF]. The Solid Spine of LD algorithm [START_REF] Barrett | Haploview: analysis and visualization of LD and haplotype maps[END_REF] was used with minimum D' value of 0.8, as suggested by Duggal et al. [21]. The 4-Gamete test was run setting the cutoff for frequency of the fourth pairwise haplotype at 1% [START_REF] Hudson | Statistical properties of the number of recombination events in the history of a sample of DNA sequences[END_REF][START_REF] Wang | Distribution of recombination crossovers and the origin of haplotype blocks: the interplay of population history, recombination, and mutation[END_REF].

Results and Discussion

Variations and Alternatives to Permutation Testing PRESTO: The permutation based significance threshold from PRESTO was 7.6 × 10 -8 (see Table 1). By comparison, the PRESTO analysis of the smaller sample had a significance threshold of 1.4 × 10 -7 (see Table 2); this corresponds to an α level of 0.09 when compared to the analysis of the full data set. These results were consistent with an analysis using PERMORY on the same subset and probably reflect the decrease in statistical power associated with the smaller sample size. Permutation tests are the gold standard for identifying appropriate significance thresholds, and are computationally efficient when optimized solutions exist for a particular statistical test. As we see in Table 2, these results are very specific to each study. One drawback of permutation testing is the computational burden that arises when no optimized solutions exist (e.g. when modeling survival or longitudinal data). In such a case, permutation testing can be impractical and one of the other methods considered here would be more appropriate.

Bonferroni: The standard Bonferroni correction, simply using the total number of SNPs tested in the genomewide significance level calculation, was 7.1 × 10 -8 , which corresponded to a genome-wide significance level of α ≈ 0.05 when compared with PRESTO (see Table 1). While a permutation test may not result in a large improvement in the corresponding genome-wide significance level when compared with a standard Bonferroni correction in this SNP set, other, denser SNP sets will result in greater disparities in significance levels.

SLIDE:

The significance threshold identified by SLIDE was 1.1 × 10 -7 , which corresponded to a genome-wide significance level of α = 0.07 when compared with PRE-STO (see Table 1). The significance threshold found in the analysis of the smaller sample was remarkably similar, differing only by 5 × 10 -9 (see Table 2). Over all, these results indicate that SLIDE is an excellent alternative to permutation testing. Additionally, the corrected p-values provide increased ease in interpretation of GWAS results.

Principal Components Analysis

simpleℳ: The significance threshold based on the number of effective SNPs identified by the simpleℳ algorithm was 8.2 × 10 -7 , corresponding to a genome-wide significance level of α ≈ 0.05 when compared with the PRESTO results. As with SLIDE, the analysis of the smaller sample was remarkably similar, differing only by 8 × 10 -10 . These results indicate that simpleℳ is also an excellent alternative to a full permutation test. However, because of the concern of how variations in region size would affect the accuracy of the simpleℳ analysis, regions with as many SNPs as we had computational resources to analyze (some regions included nearly 30,000 SNPs, others consisted of entire chromosomes) were compared to the results in Table 1. The corresponding thresholds differed by less than 6 × 10 -9 . It is important to note, however, that since this is an O(n 2 ) problem, the memory and serial time required to analyze these larger regions increases rapidly with the size of the regions analyzed. Regions containing more than a few thousand SNPs, however, seem to result in very similar significance thresholds in this data set, and the computational resources required are reasonable for regions of a few thousand SNPs (see Figure 1).

The simpleℳ method is currently the fastest way to calculate the effective number of independent tests in a GWAS [START_REF] Gao | Avoiding the high Bonferroni penalty in genome-wide association studies[END_REF], but due to the O(n 2 ) nature of this algorithm the genome needs to be broken up into small regions to maintain this computational speed. This adds complexity to the analysis and requires a significant amount of preanalysis. Considering the many examples of long range LD across the genome, simpleℳ could also lead to a slightly more conservative estimate in some studies [START_REF] Han | Rapid and accurate multiple testing correction and power estimation for millions of correlated markers[END_REF].

Analysis of Underlying LD

The three LD-based methods using Haploview are the least conservative, with significance thresholds between 2.72 × 10 -7 and 3.71 × 10 -7 , corresponding to α levels between 0.15 and 0.20 as compared to permutation testing using PRESTO (see Table 1). Thus, it appears that the use of LD blocks to construct Bonferroni significance thresholds is anti-conservative in this data set. We also explored alternate parameters but did not observe a The significance threshold for each method is shown (α GWAS = 0.05), as well as the corresponding genome-wide α level when compared with the PRESTO method. A strict Bonferroni significance threshold is also given. The difference in significance threshold is given, comparing an analysis of the full data set to a subset of the data with an equal number of cases and controls (1,514 and 518 individuals, respectively).
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sufficient improvement in the corresponding significance level when severely restricting the definition of haplotypes (see Table 3). Nicodemus et al. [START_REF] Nicodemus | Comparison of type I error for multiple test corrections in large single-nucleotide polymorphism studies using principal components versus haplotype blocking algorithms[END_REF] noted that estimates may be more or less conservative under varying levels of LD.

An alternate LD algorithm or parameter constraints could be found that would result in a more accurate estimate [START_REF] Schwartz | Accounting for multiple comparisons in a genome-wide association study (GWAS)[END_REF], but this would vary significantly depending on the sample size, the set of SNPs, and the underlying level of LD structure in the population. This is further illustrated in the large differences found using the Gabriel and Solid Spine of LD algorithms on a subset of the individuals in this study (see Table 2). While LD blocks do provide key information on patterns of LD and how SNPs are correlated, providing invaluable information for interpreting GWAS results and for the planning of follow-up studies, we find the use of significance thresholds derived from LD blocks to be too variable for general application to GWAS data.

Conclusions

A one-size-fits-all Bonferroni correction, although conservative, may not result in a large Type II error rate with a sample size in the tens of thousands, but as the sample size drops, so does statistical power. In studies where gathering large numbers of cases is prohibitive (e.g. when disease prevalence is low), a Bonferroni correction becomes overly conservative by detrimentally inflating the Type II error rate. The methods considered here can ameliorate this loss of power and make interpretation of study results less enigmatic.

The results from the PRESTO, SLIDE and simpleℳ methods appear to be equally good in population data genotyped on the Affymetrix 6.0 platform in European Americans (α = 0.05 thresholds between 1 × 10 -7 and 8 × 10 -8 ), and each presents a modest gain in power over the strict Bonferroni thresholds advocated by some [START_REF] Risch | The future of genetic studies of complex human diseases[END_REF][3][START_REF] Hoggart | Genome-wide significance for dense SNP and resequencing data[END_REF][START_REF] Mccarthy | Genome-wide association studies for complex traits: consensus, uncertainty and challenges[END_REF]. The SLIDE and simpleℳ methods may be less dependent on the number of individuals in the study, and will be particularly useful when using a statistical test that is not supported by optimized permutation packages (e.g. when modeling survival or longitudinal data) and when the SNPs being tested are sufficiently dense. SLIDE not only has much nicer computational properties when compared to simpleℳ, but the corrected p-values measuring significance on the genomewide scale are easier to interpret. While the idea of an even standard across studies is appealing, the traditional standard of presenting p-values in the context of the study more accurately represents the data. Significance thresholds with corresponding α levels are given for each haplotype calling method with the standard parameters and a set of more restricted parameters. D' U and D' L represent the, upper and lower confidence limits of D', respectively. In preparation for submission to Bioinformatics
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Summary"

Mapping by admixture linkage disequilibrium (MALD) is a powerful whole genome gene mapping method that uses LD from extended blocks of ancestry inherited from parental populations among admixed individuals to map associations for diseases varying in prevalence among human populations. The extended LD queried for marker association with ancestry results in a greatly reduced number of comparisons compared to standard genome wide association studies (GWAS). As ancestral population LD tends to confound the analysis of admixture LD, the earliest algorithms for MALD required marker sets sufficiently sparse to lack significant ancestral LD between markers. However current genotyping technologies routinely provide data more dense than this, which convey more information than sparse sets, if they can be efficiently used. Several algorithms for MALD with dense data have been presented; we here present an R package, ALDsuite, which accounts for local LD using principal components of haplotypes from surrogate ancestral population data, and includes tools for quality control of data, MALD and downstream analysis of results.

There are currently no software solutions which both offer analysis of dense marker data from more than two admixing populations and disease association statistics. ALDsuite offers a fast, ! 102

INTRODUCTION

It is well established that phenotypes differ among human populations. Observed differences between ancestral groups can be attributed to two general causes: a differences in environmental exposures or factors or a difference in underlying genetic variation.

⇤ to whom correspondence should be addressed

It has been recognized for some time that individuals with mixed ancestry could provide a way to map phenotype / genotype associations to specific loci (MacLean and Workman, 1973;Thoday, 1969). When two populations combine to form a new admixed population, large chromosomal segments from each of the ancestral populations remain in circulation for many generations.

The difference in allele and haplotype frequencies between the populations induces an admixture linkage disequilibrium (ALD) that extends over much greater distances than the local LD inherited from ancestral populations. With each new generation chromosomes recombine and the extent of ALD becomes smaller, but with the sequencing of the human genome and the advances in genotyping technology of the last decade, the ancestral origin of chromosomal segments can be inferred with high accuracy for many generations post-admixture (Seldin et al., 2011).

The application of ALD information to association studies, also referred to as Mapping by Admixture Linkage Disequilibrium (MALD), is a statistically powerful method to identify genetic associations with disease in admixed populations when there is a difference in disease risk among ancestral groups (McKeigue, 1997). The key advantage of this approach over the standard genome wide association study (GWAS) approach is that the effective number of statistical comparisons, for associations between markers and disease, is inversely related to the length of LD between markers and the causal disease locus. In African Americans, for example, ALD between loci as distant as 20 cM has been identified, while LD in non-admixed populations rarely extends longer than 0.1 cM (Parra et al., 1998;Smith and O'Brien, 2005). This increases the power over classical GWAS by drawing focus to a specific region of interest with 200-500 fold fewer comparisons that must be corrected using multiple comparisons techniques (Smith and O'Brien, 2005).

As computational power has increased and the cost of genotyping and sequencing has decreased, MALD studies have become more common and successfully applied to identify a number of genetic variants associated with common diseases (Kopp et al., 2008). Several software packages, ADMIXMAP, ANCESTRYMAP and STRUCTURE, provided good estimates of global ancestry as well as statistics for association between phenotype and local ancestry (Hoggart et al., 2004;Patterson et al., 2004;Falush et al., 2003). 
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These early software packages, however, were limited in their ability to analyze dense marker sets, due to their reliance on the lack of local LD among sampled markers. This reliance on sparse marker sets results from the additional complexity involved with the modeling of local LD. An attempt was made in one software package, SABER, to model 2-way LD of a marker with its immediate neighbors, but this was later shown to allow bias into the model from higher order local LD with more distantly linked markers (Tang et al., 2006;Price et al., 2008). The consequences of this bias include a tendency to overestimate the divergence of admixing populations and possible inference of significant admixture in unadmixed individuals (Seldin et al., 2011).

Two recent software packages, HAPAA and HAPMIX, have modeled local LD in a Bayesian framework similar to that of genotype imputation with very good results (Sundquist et al., 2008;Price et al., 2009). These methods, however, are computationally intensive and do not scale well with increasingly dense marker sets (Seldin et al., 2011). Other recent algorithms, including LAMP-LD, MULTIMIX and RFMix, have mainly focused on local ancestry inference using disjoint haplotype blocks (Baran et al., 2012;Churchhouse and Marchini, 2013;Maples et al., 2013). While this approach is much more computationally efficient, many regions do not segregate well into haplotype blocks.

With the R package described here we provide local ancestry estimates using a hidden Markov model (HMM) algorithm similar to that used by existing software (Hoggart et al., 2004;Patterson et al., 2004;Falush et al., 2003), with higher order local LD modeled indirectly using principal components of neighboring markers. Additional features not provided in most admixture software packages include MALD association statistics, quality control measures and data formatting tools. Analysis of phased haplotypes or unphased genotype data is supported and further statistical and graphical analysis using the powerful tool set available in R is readily available.

METHODS

HMM Algorithm

We use an HMM to model the ancestral states of each individual (see Figure 1). In the first step, ancestral states, , are sampled for each individual at each locus in the sample, followed in the second step by an update of the parameters on which is conditioned. This is repeated iteratively, typically with 100 burn in iterations and 200 follow on iterations when good priors are used. A basic overview is given here; complete details are given in the appendix.

Higher order LD information is captured using principal components (PCs) of the surrounding, linked markers, which is included in the Hidden Markov Model (HMM). PCAdmix also uses PCs of nearby markers, but does not include closely linked markers and does not capture information from higher order LD (Brisbin et al., 2012). Additionally, our software includes a number of other distinguishing features including the calculation of MALD statistics for a wide range of disease association models, quality control measures of the supplied data and analysis of both phased and unphased data. In preparing the sample priors for our model, consisting of modern-day surrogates for ancestral populations, a principal component analysis (PCA) of linked markers of each analysis marker is performed using the modern-day surrogates for ancestral populations. This is best done on a phased data set such as that provided by the International HapMap Project (International HapMap Consortium, 2007), which can be found in the accompanying companion package, ALDdata. The markers included in the PCA for a locus are all markers that are significantly linked in the modernday surrogate populations or are within w centimorgans (cM) of the analysis marker (default is 0.1 cM).

All surrogate populations are included in the PCA, and PCs accounting for 80% of the observed variation are chosen to model the likelihood of each ancestral at the current locus. The transformation of the genotype data is illustrated in Equation 1where the principal component matrix for a locus is the matrix multiplication of the genotype or the phased haplotype matrix, A (one row per individual/chromosome, one column per marker in the haplotype) with the eigenvector, v, associated with the PC: PC l (A) = Av l .

(

) 1 
Prior estimates of the regression coefficients for the first K-1 populations, k , are calculated on the modern-day surrogate populations, which are used as starting points for local ancestral probability calculation in the HMM. In the case of two ancestral populations, this simplifies to logistic regression, and a multinomial logistic regression is used to model admixture between more than two populations (see Equation 2). In sparsely sampled regions, where only one marker was sampled, observed alleles are used in the model instead of PCs. Given the ancestral state of the haplotype, k:

log ⇣ P(g=1|A ) P(g=K|A ) ⌘ = 1,0 + 1,1PC1 (A) + • • • . . . (2) log ⇣ 
P(g=K 1|A ) P(g=K|A ) ⌘ = (K 1),0 + (K 1),1 PC1 (A) + • • • P (g = K |A ) = 1 1 + P(g=1|A ) P(g=K|A ) + • • • + P(g=K 1|A ) P(g=K|A )
.

This has been further extended to the analysis of unphased genotypes, where combinations of local ancestry from two possible populations are modeled. The PCA for unphased data is performed on random pairings of 100 surrogate ancestral haplotypes for each possible local ancestral state (e.g. 'YRI/YRI', 'YRI/CEU', 'CEU/CEU'). An example for two admixing populations is given here:

log ⇣ P(g 1 =1\g 2 =1|A ) P(g 1 =2\g 2 =2|A ) ⌘ = 11,0 + 11,1PC1 (A) + • • • = LR1,1 log ⇣ P(g 1 =1\g 2 =2|A ) P(g 1 =2\g 2 =2|A ) ⌘ = 12,0 + 12,1PC1 (A) + • • • (3) = LR1,2 P (g1 = 2 \ g2 = 2 |A ) = 1 1 + e LR 1,1
+ e LR 1,1 . Before sampling ancestral states, ancestral state probabilities are first calculated at each locus for each parent. We calculate these ancestral state probabilities using a forward-backward algorithm similar to other admixture HMMs (Falush et al., 2003;Patterson et al., 2004;Hoggart et al., 2004). The ancestral state probabilities in each Markov chain (i.e. from the forward or backward pass) consist of the ancestral state probabilities defined in Equations 2 and 3, conditioned on the ancestral state probability of the previous marker in the chain and the likelihood of recombination between the two:

1 = P (g1 |A ) (4) j 
= P (g j |A ) ⇤ (P (r j ) G + (1 P (r j )) j 1 ) , where A is the observed genotype or haplotype data and g is the ancestral state, G is the global ancestry and P(r) is the probability of recombination between the current and previous loci. These probabilities further dependent on the number of generations since admixture, , and the genetic distance between loci, d. The product of these two Markov chains, f and r , is normalized (so that they sum to one) to obtain the final ancestral state probabilities for each locus, conditional on admixture linkage disequilibrium with nearby markers,

= f ⇤ r , (5) 
and these ancestral state probabilities are used to sample the local ancestral state for each chromosome. Parameters informing the HMM, particularly those on which is conditioned, are updated at the conclusion of each iteration, using the sampled ancestral states discussed in the preceding paragraphs (see the appendix for more details).

Support for the parallelization of the computation is also included in ALDsuite using a distributed MCMC approach in which a separate analysis, or chain, is run for each parallel process [START_REF] Murray | Distributed Markov chain Monte Carlo[END_REF][START_REF] Wu | Parallel Markov chain Monte Carlo -bridging the gap to high-performance Bayesian computation in animal breeding and genetics[END_REF]. In order to avoid unnecessary duplication of effort during the burn in phase, each chain reports back to the main process after each iteration, where a remote proposal of each parameter is calculated based on the average of all parallel chains. Each chain then updates its own parameter using a weighted sum of the local and remote proposals:

iter n burn ⇤ local proposal + ✓ 1 iter n burn ◆ ⇤ remote proposal , ( 6 
)
where iter is the current iteration and n burn is the total number of burn in iterations. This results in a quicker convergence to the equilibrium distribution while allowing each chain to start sampling at an independent state.

Error Checking

Marker checks Several quality control checks are done on each marker to identify potential genotyping errors, mapping errors, flipped markers and irregular variations in allele frequency:

1. Hardy-Weinberg Equilibrium is tested using the hwexact() function in the hwde package [START_REF] Maindonald | The hwde Package[END_REF].

2. Markers with a missing data rate exceeding a user-defined threshold are screened (default threshold is 5%).

3. Allele frequencies from genotypic data coded as A/C/T/G are compared among populations to identify potential A-T / G-C flips that may have occurred in data originating from different sources. The default is to drop these markers from the analysis set.

4. Allele frequencies in the admixed population are compared with modern-day, ancestral surrogate population allele frequencies to identify potentially irregular loci.

Individual checks Several quality control checks can be performed for individuals to identify potentially bad samples:

1. Individuals with a missing data rate exceeding a user-defined threshold are screened (default threshold is 5%).

2. When sex chromosome data are available, simple gender checks are performed and possible issues are flagged.

3. The sample is screened for potentially related individuals, and matches are flagged.

Statistical Association

Locus-genome statistics The case-only locus-genome statistic from ANCESTRYMAP is also implemented in our software (Patterson et al., 2004). The locus-genome statistic compares the ancestry at each locus, conditional on a prior risk model, to the genome-wide ancestry estimates under the same model. This is calculated as the product of likelihood ratios for each individual across the entire sample at the jth locus:

L(k) j = Q i P(g 1 6 =k\g 2 6 =k)+P(g 1 =k g 2 =k) 1 +P(g 1 =k\g 2 =k) 2 Q i (1 G) 2 +2G(1 G) 1 +A 2 2 (7) 
where the ancestral probabilities are given in Equation ( 7) of the appendix. The risk model is defined by 1, the increased risk associated with one allele from population k, with 2 = 2 1 equal to the increased risk associated with two alleles from population k. We also implement the genome-wide association statistic proposed by Patterson et al. (2004) for this model. This can also be implemented to calculate a chromosome-wide association statistic. Typically LJ is considered moderately significant at L J > 2 and significant at L J > 3.

L J (k) = 1 |J| X j2J L (k) (8) 
In addition to the model implemented in ANCESTRYMAP, we also include a locus-genome statistic for association with alternate risk models. The first alternate risk model allows the user to specify other relationships between 1 and 2. The two logical choices would be to specify a dominant ( 1 = 2) or a recessive ( 1 = 1, 2 6 = 1) model.

Another built in alternate risk model allows for the association of disease with increased ancestry of one population to vary with a continuous variable, c. Similar to Equation 7, this is calculated as the product of likelihood ratios for each individual across the entire population at locus j:

L(k) j = Q i P(g 1 6 =k\g 2 6 =k)+P(g 1 =k g 2 =k)c 1 +P(g 1 =k\g 2 =k)c 2 Q i (1 G) 2 +2G(1 G)c 1 +G 2 c 2 , (9) 
where the default weight of c comparing 1 and 2 is 2 1 = 2. This locus-genome statistic is an undocumented feature of ANCESTRYMAP [START_REF] Cheng | Admixture mapping of 15,280 African Americans identifies obesity susceptibility loci on chromosomes 5 and X[END_REF].

Our software also allows the user to specify their own alternate locusgenome statistic models in the form of an R function. States of the MCMC chain can be saved to allow this process to be handled independently from the MCMC calculations. Locus-genome statistics are calculated for each iteration of the MCMC chain and averaged over all samples from the chain. 

Regression modeling

Y i ⇠ 0 + 1Gi + 2G1iG2i + 3P (g ij1 = k g ij2 = k) + 4P (g ij1 = k \ g ij2 = k) + • • • . ( 10 
)
This modeling framework includes terms for global ancestry for the population of interest, Gi, the product of each parents global ancestry proportion for the population of interest, G 1i ⇤ G 2i , and the probability of one or two alleles from the population of interest at the specified locus, P (g ij1 = k g ij2 = k) and P (g ij1 = k \ g ij2 = k). The model should also be weighted by a measure of the inverse variance of the estimates of, G i , G 1i and G 2i (Redden et al., 2006). were Gamma distributed with a mean of 6 and standard deviation of 2, and values for G were Beta distributed with a mean of 0.82 and standard deviation of 0.1. These parameters were chosen to simulate a typical African American sample. A random chromosome from the YRI and CEU populations of the HapMap was randomly chosen as a function G. Each time a recombination is randomly sampled between two markers, based on individual values for , a new chromosome was chosen in a like manner. In this way, admixed chromosomes were simulated with appropriate admixture linkage patterns across the chromosome. The CEU and YRI populations were also used as surrogate populations, but with the prior estimates for p and randomly modified to simulate imperfect surrogates. This was done by taking a sample from the prior distributions of P and B with ⌧ = 300.

Simulations and Power

A sample of 100 individuals from each simulation above was analyzed using ALDsuite, MULTIMIX and PCAdmix (Brisbin et al., 2012;Churchhouse and Marchini, 2013), and the proportion of correct and incorrect inferences are reported.

Empirical Data

The ASW population from the International HapMap Project were analyzed using YRI and CEU populations as surrogate ancestral populations. These populations were analyzed using ALDsuite as well as MULTIMIX and PCAdmix (Brisbin et al., 2012;Churchhouse and Marchini, 2013), and a representative sample of the results on chromosome 20 are shown.

Additional Tools

Several tools are included in the R package, additional to the local ancestry inference and disease association statistics described above. These include input and output data formatting aids, quality control and analysis of the data, and useful data sets. Formatting functions are available for generating prior parameter estimates for different populations using HapMap populations contained in the ALDdata package, and calculation of genetic distance in humans is performed using one of several maps, including the International HapMap Project and those generated by Matise et. al. (International HapMap Consortium, 2007;Matise et al., 2007;[START_REF] Nato | The Rutgers Map: A third-generation combined linkage-physical map of the human genome[END_REF]. Error checking functions for quality control measures discussed in the Error Checking section are included as well as some basic graphics. Additional downstream statistical analysis and custom generation of graphics using the diverse and powerful toolset provided by R is also directly available (R Development Core Team, 2013).

DISCUSSION

ALDsuite provides accurate inference of local ancestry, while indirectly modeling local, higher order LD remaining from ancestral populations. The analysis of our simulation resulted in 96.3% accuracy of local ancestry inference, compared to the 98.1% accuracy of PCAdmix and the 98.7% accuracy of MULTIMIX, which is on par with other leading analysis software (Price et al., 
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2009; Yang et al., 2013). Comparison of chromosomes from an analysis of the ASW population using ALDsuite, MULTIMIX and PCAdmix also shows a good degree of concordance between the methods used (see Figure 2). Of the seven MALD studies published in 2013 that we were able to identify, four used sparse marker panels for disease gene mapping (Divers et al., 2013;Bensen et al., 2013;Kim-Howard et al., 2013;Molineros et al., 2013), at least one of which explicitly thinned their dense marker data to accommodate the software used (Kim-Howard et al., 2013). An additional 15 GWAS studies we identified from 2013 used various software listed in Table 1 to control for population substructure resulting from admixture, mostly using dense marker strategies (citations not listed here). This trend highlights the need for a dense marker software package that, like most sparse marker software, includes disease association statistics for MALD.

While sparse marker panels are more cost effective and have proven powerful in the detection several important disease risk genes, dense data provide more accurate ancestry inference and a finer resolution of recombination points (Tang et al., 2006). One strategy that has been used is to follow up a MALD study with fine typing around an associated locus (Nelson et al., 2010). One use potential use of ALDsuite is to analyze both sparse and dense marker data in combination, resulting in better global ancestry estimates, while being able to infer local ancestry on a much finer scale in areas of particular interest.

CONCLUSION

Admixture inference software can be categorized using a few different metrics including the number of admixing populations it can simultaneously infer, the way it models local LD when analyzing dense marker data, the number of admixing populations it will simultaneously infer and support of disease gene mapping (see Table 1). There are currently no software solutions which both offer analysis of dense marker data from more than two admixing populations and disease association statistics, requiring the use of several software programs, often with very different input and output data formats. ALDsuite offers a fast, accurate estimation of global and local ancestry with the tools needed from data quality control through mapping of disease genes, along with the rich statistical and graphical utilities provided with R.
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As previously stated, the overarching goal of this dissertation is to increase power in genomewide association studies (GWAS) of underrepresented populations by more fully taking advantage of and more accurately modeling of genetic linkage. Section 5 explores different options for assessing statistical significance in a traditional GWAS, showing that many ideas for setting significance thresholds are anti-conservative, lending credence to a more standard Bonferroni correction between 5x10 -8 to 1x10 -8 . It is important to note, however, that some slight increase in power can be obtained by modeling linkage disequilibrium (LD) with a principal components analysis (PCA) to obtain a more accurate number of independent tests performed in the GWAS (R. C. Johnson et al., 2010). Section 6 describes a new admixture inference software package, ALDsuite, written as a package for use in R (R Development Core Team, n.d.). ALDsuite models local LD more accurately than previous admixture software, using a principal components (PC) regression. This also allows considerable computational savings, even as the density of the marker set increases dramatically (R. C. Johnson, Winkler, & Nelson, n.d.).

As the cost of genotyping and sequencing has increasingly fallen, the flow of genetic information has increased substantially and continues to do so at an ever-increasing pace. This wealth of data greatly increases our ability to understand determinants of disease, but geneticists are also faced with new problems stemming from the number of statistical comparisons needed to fully explore their data. These multiple comparisons result in many more Type I errors (false positive hypothesis tests) when using a traditional significance threshold, α = 0.05. The obvious solution to this problem is to lower the significance threshold to achieve an acceptable study wide Type I error rate, where the likelihood of false positives in the entire study is sufficiently low. This, however, raises the Type II error rate (a measure of false negative hypothesis tests) and with it, the prospect of throwing out potentially important findings because they cannot be differentiated from false positive results in the study (Neyman & Pearson, 1967).

The most fundamental way to combat this decrease in statistical power is to sample more individuals, thereby taking advantage of the unique relationship between the central limit ! 113 theorem (CLT) and the law of large numbers (LLN). Simply put, the CLT states that the distribution of the sample average will be approximately normally distributed (Pólya, 1920), and the LLN implies that the variance of the sample average will decrease with the size of the sample [START_REF] Bernoulli | Ars Conjectandi: Usum & Applicationem Praecedentis Doctrinae in Civilibus, Moralibus & Oeconomicis[END_REF]Tchebichef, 1846). Thus, with an increased sample size, statistical noise of the association statistics will decrease and result in more accurate inferences. The speed of this convergence and the associated reduction in variance is order n -1/2 , so for larger samples a larger increase in sample size is required to achieve the same level of improvement [START_REF] Berry | The accuracy of the Gaussian approximation to the sum of independent variates[END_REF]. For example, with an equal number of cases and controls, a disease associated allele with frequency 0.1 and odds ratio 1.7, and a significance threshold of 5x10 -8 , we would need to increase our sample size by 374 individuals to achieve an increase in statistical power from 50% to 60%. To achieve the same 10% power increase from 70% to 80%, however, we would need to increase the sample size by 514 (see Table 8).

On average, this increased accuracy of statistics will result in higher statistical significance for "true" alternate hypotheses, thus helping the researcher to differentiate between meaningful statistical associations and statistical noise. This can be easily achieved when funding and cases are available, with some studies enrolling tens of thousands of cases and as many as 100,000 controls (Monda et al., 2013;Morris et al., 2012). Due to the large sample sizes required to adequately power a GWAS of a rare condition or under restricted budgetary conditions, recruitment of a cohort to meet minimum standards can be an impossible task. In ! 114 fact, a disease need not be rare to have difficulties recruiting cases. Our genome-wide study of HIV which included nearly all HIV infected individuals enrolled in natural history cohorts in the US, as an example, only enrolled 755 patients with known seroconversion dates-the most informative cases for time to event (survival) analysis (Troyer et al., 2011). Even though HIV prevalence is extremely high in some parts of the world, it is much lower in western societies where a majority of funding and infrastructure are available to support large studies.

Modification of Type I and Type II error rates"

With the recent technological advances and international efforts to identify the spectrum of genetic variation in multiple human populations, SNP arrays have become both denser and contain a wider range of allele frequencies. The denser arrays allow for finer resolution of haplotype structure and the potential for fine mapping for causal variants. Because of the many p values generated in GWAS, dense arrays have exacerbated case-control studies' power disadvantage. In an attempt to increase power over standard Bonferroni corrections required in a hypothesis generating scenario, many alternate significance thresholds and strategies have been recommended [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF]Misawa et al., 2008;Skol et al., 2006;Storey & Tibshirani, 2003). Some have sought to take particular advantage of SNPs in haplotype blocks with high levels of linkage (Duggal et al., 2008). Unless perfectly linked, however, these SNPs retain some level of statistical independence and need to be counted as independent tests, and as demonstrated in Section 5, alternates to the standard significance threshold of 5x10 -8 only offer a modest improvement in power (R. C. Johnson et al., 2010). There is now a general consensus setting the standard 5x10 -8 significance threshold for GWAS, stemming from studies showing the number of independent tests performed in a GWAS of common genetic variants to be on the order of one million [START_REF] Anttila | Genome-wide association study of migraine implicates a common susceptibility variant on 8q22.1[END_REF]Hoggart et al., 2008;[START_REF] Kamatani | Genome-wide association study of hematological and biochemical traits in a Japanese population[END_REF][START_REF] Kathiresan | Six new loci associated with blood low-density lipoprotein cholesterol, highdensity lipoprotein cholesterol or triglycerides in humans[END_REF]. Many still remain unsatisfied with Type II error rates in GWAS and are either seeking other methods to reduce this burden or are advocating a change in the current standard, including false discovery rates and false positive report probabilities, bayes factors and data reduction methods, which are ! 115 covered in more detail in Section 1.3.4. One group is currently advocating the elimination of the use of significance thresholds. Relying on the fact that genetics affects health outcomes, they presume that if enough tests are performed, those associations will be found, and that the most significant test results in a large study with multiple hypotheses, regardless of the observed significance, will likely be true associations (Zaykin, Kuo, & Vsevolozhskaya, 2013). While these approaches are not bad if independent replication of results is obtained and can actually be beneficial in resource limited studies, statistical power is greatest when including all samples together, combining both discovery and replication cohorts, rather than staging for independent validation (Skol et al., 2006).

A visual analysis of replication rates of all GWAS results published on http:// www.genome.gov is shown as a function of replication in Figure 20. A review of these data revealed that 75% of results that do not pass the p < 5x10 ! 116 5x10 -8 . Data were accessed from http://www.genome.gov on October 29, 2013 (Hindorff et al., n.d.). "

passing this conservative threshold have not been replicated (Hindorff et al., n.d.). Reporting of borderline significant results is clearly a major cause for the lack of reproducibility in GWAS findings to date, but there are still clinically relevant results in this range (Panagiotou, Ioannidis, Genome-Wide Significance Project, 2012). Given the cost of Type I errors in the form of time and money spent by other labs to replicate findings or to perform follow-up functional studies, this has lead to some investigators questioning of the worth of these studies, especially when the size of the effects is taken into consideration. One GWAS, for example, identified 20 genetic markers associated with adult height, but estimated that they only accounted for 3% of the population variation [START_REF] Weedon | Genome-wide association analysis identifies 20 loci that influence adult height[END_REF]. A very crude extrapolation based on this estimate concluded that as many as 93,000 further markers would need to be identified in order to explain the genetic heritability of height (Goldstein, 2009).

Other investigators have pointed to common diseases already shown to be caused by rare variants and suggested that association of disease with common variants is a less efficient use of resources (Goldstein, 2009;McClellan & King, 2010). An example of common disease caused by rare variants is breast cancer. Germline mutations in at least ten genes have been shown to increase risk of breast cancer, including thousands of mutations observed in BRCA1 alone [START_REF] Walsh | Ten genes for inherited breast cancer[END_REF]. Others have implicated epigenetic factors in an attempt to explain GWAS' perceived failures [START_REF] Crow | The missing genes: what happened to the heritability of psychiatric disorders?[END_REF].

Other investigators, however, have noted that GWAS gene discovery have led to new drug targets, identified previously unsuspected pathological pathways, and resulted in novel treatments of disease [START_REF] Visscher | Five years of GWAS discovery[END_REF]. Additional examples from GWAS discoveries highlight the roll of balancing selection between common alleles that confer both benefits and increased risks [START_REF] Klein | Successes of genomewide association studies[END_REF].

Examples of these include TCF2 variants that both confer protection against Crohn's disease while increasing risk of type 1 diabetes (K. [START_REF] Wang | Comparative genetic analysis of inflammatory bowel disease and type 1 diabetes implicates multiple loci with opposite effects[END_REF], and the APOL1 variants discussed throughout this dissertation, that both protect against trypanosome infection and ! 117

increases risk of kidney disease (although APOL1 was mapped by admixture linkage rather than a traditional GWAS (Genovese et al., 2010;[START_REF] Kopp | MYH9 is a Major-Effect Risk Gene for Focal Segmental Glomerulosclerosis[END_REF]).

Whether in a GWAS with a few million common variants or a whole-genome sequence data analysis with tens of millions of variants, ascertainment of statistical significance in casecontrol studies remains critically important. In fact, as we enter into the whole-genome sequence analysis era, where the number of independent tests, including rare variants, can be much larger than in a traditional GWAS, this will likely gain in importance. It is widely accepted that the most effective way to reduce publication of false positive associations is the identification of linked functional, causal variant(s); or failing that, replication of results in a collaborative atmosphere prior to publication [START_REF] Gain Collaborative | New models of collaboration in genome-wide association studies: the Genetic Association Information Network[END_REF]. Recognizing the problem of both false positives and false negatives, many groups are forming large international consortia to increase sample number, thereby increasing power to detect low frequency and/or small effect variants that would not reach statistical significance in smaller studies (McLaren et al., 2013;Schork, Greenwood, & Braff, 2007;Wellcome Trust Case Control Consortium, 2007). However, it is fundamental that confirming statistical significance by replication requires accurate methods for estimating significance, in the individual and combined studies. In GWAS and similar studies this requires accurately estimating the true number of independent comparisons.

The simulations presented in this dissertation show that a simple method, employing a principal components analysis of sampled genetic data to assess the number of independent tests provides an estimate of the number of comparisons that is neither under-nor overconservative, while some other published methods may be dangerously under-conservative.

This study, published in BMC Genomics (R. C. Johnson et al., 2010), makes an important contribution to the field, because it provides empirical evidence through simulations that a principal components analysis of sampled data provides a basis for setting genome-wide significance levels for a given study. It also provides objective criteria for investigators to evaluate the noteworthiness of their discoveries and for reviewers and readers to interpret the level of statistical support for reported associations.

! 118 ! 9. Mapping by Admixture Linkage Disequilibrium"

An underused option for increasing power is mapping by admixture linkage disequilibrium (MALD), which combines the power gained from long range ancestry linkage disequilibrium (ALD) similar to that found in family studies with the ability of case-control studies to model complex disease (McKeigue, 1997). It is important to note that MALD assumes the existence of a causal genetic factor, more frequent in one ancestral population compared to the other ancestral population(s) contributing to the admixture. Importantly, computer simulations exploring the effect of the difference in disease allele frequency between ancestral populations indicates that statistical power remains stable with as little as a 20% difference in disease prevalence between populations (J. C. Stephens et al., 1994).

A further benefit of MALD is that the association sought after is not between phenotype and a specific marker in linkage disequilibrium (LD) with the functional genetic variant, but rather an association between phenotype and local ancestry at the locus harboring the functional genetic variant [START_REF] Chakraborty | Frequencies of complex diseases in hybrid populations[END_REF]. Notably, the APOL1 variants profoundly affecting kidney disease where discovered only after an admixture linkage study identifying the C22 q13.1 region with glomerular disease and non-diabetic end stage renal disease. The causal alleles are only found in Africans, were they are under selection by trypanosomes, and in admixed populations with recent African ancestry (B. I. Freedman et al., 2011;[START_REF] Murray | Distributed Markov chain Monte Carlo[END_REF]Genovese et al., 2010;[START_REF] Kopp | APOL1 Genetic Variants in Focal Segmental Glomerulosclerosis and HIV-! 134 Associated Nephropathy[END_REF]. This gene is strongly associated with end stage renal disease (0R=7), focal segmental glomerulosclerosis (OR=17), and HIV-associated nephropathy (OR=29), as well as increased rate of progression to end stage renal disease in persons with chronic kidney disease (Jeffrey B Kopp et al., 2011). This locus, however, was not found by prior GWAS studies for chronic and end stage kidney disease enrolling many more people because the causal variants were not tagged by markers included in the earlier GWAS [START_REF] Bostrom | Candidate genes for non-diabetic ESRD in African Americans: a genome-wide association study using pooled DNA[END_REF]Genovese et al., 2010;McDonough et al., 2011). We were able ! 119 achieve a ~30 fold decrease in run time as compared to HAPMIX, which models local LD in a more continuous fashion (Maples et al., 2013;A. L. Price et al., 2009).

ALDsuite, described in Section 6, also uses a type of windowing to achieve better computational efficiency, but the window sizes and the markers included in each window are less arbitrary than in other software. A preprocessing module is available that picks a set of representative markers that are both minimally spaced with respect to their distance (default is 0.1 cM) and maximally differentiates between the populations under study. In special cases this may be altered to fit specific study designs, such as a MALD study looking specifically for Native American loci associated with disease, in which differentiation between African and European ancestry is less important (A. L. [START_REF] Price | A genomewide admixture map for Latino populations[END_REF]. All markers within a short distance (default is 0.1 cM) and any additional markers that are significantly linked in user provided training data or surrogate ancestral populations in the International HapMap Project are used to infer the likelihood of markers in the analysis set, conditional on each possible local ancestral state, using principal components (PC) regression model for each ancestral popoulation (International HapMap Consortium et al., 2007;[START_REF] Johnson | ALDsuite: Dense marker MALD using principal components of ancestral linkage disequilibrium[END_REF].

Additional information from the 1000 Genomes Project would also be worth adding to the reference database that ALDsuite refers to (1000 Genomes Project Consortium et al., 2010).

The use of PC regression modeling of the ancestry conditioned likelihood of each marker in the analysis set was chosen as an indirect model of local LD for two main reasons: 1) A conditional PC regression captures a measure of the underlying LD while maintaining good statistical properties, and 2) A conditional PC regression has excellent computational properties.

As noted in Section 2.2.5, incorrect modeling of local LD can lead to incorrect inference of the number of generations since admixture [START_REF] Wall | Haplotype blocks and linkage disequilibrium in the human genome[END_REF]. This is the primary reason sparse marker software requires markers to be unlinked in ancestral populations (McKeigue et al., 2000). Including a two-way LD measure in the calculation was attempted in the first dens marker software package, SABER, but was shown to allow long range LD bias into the model (A. L. Price et al., 2008;[START_REF] Tang | Recent genetic selection in the ancestral admixture of Puerto Ricans[END_REF]. Rather than directly modeling ! 122 higher order local LD, which becomes exponentially complex as marker density increases, we posited that modeling higher order LD with a PC regression would both control for extant local LD and provide a computational benefit. Directly modeling every possible haplotype in a window can also be computationally demanding (A. G. [START_REF] Clark | Haplotype structure and population genetic inferences from nucleotidesequence variation in human lipoprotein lipase[END_REF][START_REF] Excoffier | Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population[END_REF], and modeling one representative marker as a function of the other markers in the haplotype can suffer from multicollinearity associated with tightly linked markers. As noted in Section 3.1 principal components analysis (PCA) is an excellent way to extract relevant information from highly correlated variables and avoids statistical instability that otherwise would enter into the model [START_REF] Hotelling | Analysis of a complex of statistical variables into principal components[END_REF][START_REF] Pearson | On lines and planes of closest fit to systems of points in space[END_REF].

The added benefit of using conditional PC regression to model the likelihood of each marker in the analysis set is that it has very good computational properties. As noted in our PCA of GWAS data in Section 5, adding many additional markers to a data set continues to add measurable information (R. C. Johnson et al., 2010). It has also been shown, however, that most of the useable information in a data set can be captured in the first few PCs (Hawkins, 1973). Thus, the number of PCs included in the regression model may be fairly constant, even as the marker density supporting each model grows.

Another possible reason for the observed uses of admixture software in Appendix A is usability. One distinguishing feature of some very successful software packages that have become industry standards and continue to be used years after introduction (e.g. R, STRUCTURE and PLINK), is that they are useable (Falush et al., 2003;Pritchard et al., 2000;[START_REF] Purcell | PLINK: A Toolset for Whole-Genome Association and Population-Based Linkage Analysis[END_REF]R Development Core Team, n.d.). In software engineering, usability heuristics play an important roll in the development lifecycle [START_REF] Seffah | The obstacles and myths of usability and software e n g i n e e r i n g . C o m m u n i c a t i o n s o f t h e A C M[END_REF]. Some heuristics that we have paid especial interest to in the development of ALDsuite include: help and documentation, consistency and standards, user control and freedom, flexibility and efficiency of use, and error prevention [START_REF] Nielsen | Heuristic evaluation[END_REF].
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Many of these usability heuristics are enhanced by making ALDsuite into an R package. All functions are fully documented in R's documentation system, a vignette is available with

worked out examples that users can replicate, graphics generation is consistent with and integrated with R's graphics system, scripting of analyses using ALDsuite will already be familiar to R users, and output can be analyzed using R's powerful statistical functionality.

Functions are also available to read in and format data from various sources. Quality control of input data is performed and reported to the user as described in Section 6, and standard defaults are easily modifiable. Perhaps the most significant feature included in ALDsuite is the function to compare a list of provided rs numbers to a database of samples from the International HapMap Project (International HapMap Consortium et al., 2007), automatically pick a maximally informative set of analysis markers, performs a PCA on HapMap samples from representative modern day populations and returns a properly formatted data object for use in ancestry inference. This is provided by some software packages, where required, but takes considerable time for other packages (see Appendix B).

The ALDsuite package presented in this dissertation provides a local admixture inference option that is not only quick and accurate, but also allows efficient use of the powerful statistical and graphical utilities provided in R (R. C. Johnson et al., n.d.; R Development Core Team, n.d.). Furthermore, quality control measures and tools for the generation of a custom, maximally informative prior based on International HapMap Project data make this a complete package, rather than one step in a complicated pipeline. Additional features will continue to be added including tools to query databases from the 1000 genomes project in support of whole genome sequencing studies, and because of the data reduction qualities of PCA, it is anticipated that analysis of these sequence data will remain computationally reasonable while maintaining maximal information.
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GWAS is an essential tool for genetic contribution to human disease, but has severe problems of statistical power for diseases for which it is impractical to genetically sample tens of thousands of subjects. For diseases in admixed populations, where the disease is substantially inherited from one ancestral population, the analysis of admixture linkage disequilibrium (ALD) is a strategy to achieve power with relatively small numbers. Since most study populations will be routinely typed for a dense marker set, it is both convenient and a source of additional precision to use the full marker set. For full GWAS of modest size, the issue of limited power in the face of ~10 6 comparisons is inescapable. Lack of correction leads to spurious results, as shown by the failure to replicate 75% of GWAS findings that fail to meet the standard significance threshold of p < 5x10 -8 . To minimize both type I and II errors, it is critical to know the proper correction. It has been optimistically suggested that due to LD the number of truly independent comparisons is much less than ~10 6 SNPs tested, but my results do not support this: corrections using the number of haplotype blocks, for example are shown by permutation testing to be substantially under conservative, even considering widely differing criteria for defining haplotype blocks. On the other hand the simpleM method, using principal components analysis (PCA), supplies a correction that permutation testing shows to be accurate; this correction is modest, but still useful.
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The results presented here-a novel, effective correction for local ancestral population LD allowing use of dense markers in MALD, and the demonstration that the simpleM method is effectively optimum for GWAS multiple comparisons correction, reiterate the value of PCA for capturing the essential part of the complexity of high-dimensional systems. PCA is already standard for correcting for population substructure in GWAS; my results point to it's broader applicability as a general strategy for dealing with the high dimensionality of genomic association data.

Linkage is a vital part of genetic association studies, and appropriate modeling of LD is needed to avoid excessive Type I errors and statistical bias. High amounts of LD in the human genome do not preclude the need for a strict, common standard for genome-wide significance.

For a traditional GWAS, the replication or failure to replicate 75% of GWAS findings that don't meet the standard significance threshold of p < 5x10 -8 supports the use of this threshold, but other methods, particularly the simpleM method using principal components analysis (PCA), will likely remain relevant well into the sequencing era. There are sound arguments that other significance thresholds may be appropriate in some cases, but the increase in power is generally quite modest.

One alternate way to increase power, even in the face of increasingly large data sets, is an analysis of admixture linkage disequilibrium (ALD). This form of population substructure can be a source of significant bias, resulting in an increase in the Type I error rate, but can be effectively controlled using a PCA of the genetic data. In fact, rather than being a liability, ALD can be a powerful source of information to identify regions of the genome harboring disease genes. The field has yet to settle on a good algorithm for inferring local ancestry, and ALDsuite fills this need. It models local LD over flexible windows using PCA, rather than in discrete haplotype blocks, allowing the analysis of both sparse and dense marker data. The package is sufficiently computationally efficient, well documented and user friendly, and it provides the tools needed to prepare, analyze and present these complex data.

! 127 Patterson, N., Moorjani, P., Luo, Y., Mallick, S., Rohland, N., Zhan, Y., et al. (2012). Ancient admixture in human history. Genetics,192(3) Analysis of dense marker data, inclusion of disease association statistics, number of supported populations and number of citations listed on GoogleScholar as of August 14, 2014 are listed.
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Résumé!

GWAS est un outil essentiel pour la découverte de gènes de la maladie, mais il a de graves problèmes de puissance statistique quand il est impossible d'échantillonner génétiquement des dizaines de milliers de sujets. Les résultats présentés ici-ALDsuite, un programme en utilisant une correction nouvelle et efficace pour le déséquilibre de liaison (DL) ancestrale de la population locale, en permettant l'utilisation de marqueurs denses dans le MALD, et la démonstration que la méthode simpleM fournit une correction optimale pour les comparaisons multiples dans le GWAS-réaffirment la valeur de l'analyse en composantes principals (APC) pour la capture essentiel de la complexité des systèmes de grande dimension. L'APC est déjà la norme pour corriger la structure de la population dans le GWAS; mes résultats indiquent qu'elle est une stratégie générale pour faire face à la forte dimensionnalité des données génomiques d'association.

mots-clés : GWAS, association génétique, génome-entier, statistiques, correction, Analyse par composantes principales

Résumé en anglais!

GWAS is an essential tool for disease gene discovery, but has severe problems of statistical power when it is impractical to genetically sample tens of thousands of subjects. The results presented here-a novel, effective correction for local ancestral population LD allowing use of dense markers in MALD using the ALDsuite and the demonstration that the simpleM method provides an optimum Bonferroni correction for multiple comparisons in GWAS, reiterate the value of PCA for capturing the essential part of the complexity of highdimensional systems. PCA is already standard for correcting for population substructure in GWAS; my results point to it's broader applicability as a general strategy for dealing with the high dimensionality of genomic association data.

keywords: GWAS, genetic association, genome-wide, statistics, correction, principal components analysis

2. 1 .

 1 Considération des comparaisons multiples dans une étude d'association pangénomique

  du génotypage et de séquençage n'a cessé de chuter, le flux d'informations génétiques a augmenté de façon substantielle et continue à augmenter à un rythme toujours plus soutenu. Cette abondance de données accroît grandement notre capacité à comprendre les facteurs de risque de maladies, mais les généticiens font également face à de nouveaux problèmes émanant du nombre de comparaisons statistiques nécessaires pour totalement explorer leurs données. Ces comparaisons multiples résultent en beaucoup plus d'erreurs de type I (tests d'hypothèse avec faux positifs) lorsque l'on utilise un seuil de significativité traditionnel, α = 0.05. La solution évidente à ce problème est de baisser le seuil de significativité pour arriver à un taux acceptable d'erreur de type I sur l'ensemble de l'étude, où la probabilité de tout faux positif sur l'ensemble de l'étude est suffisamment bas. Ceci augmente cependant le taux d'erreur de type II (une mesure de tests d'hypothèse avec faux négatif) et avec lui, la perspective d'exclure des découvertes potentiellement importantes, car
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  studies of Mendelian diseases with high penetrance. As genotyping technology continued to advance, genotyping chips, discussed briefly in Section 1.4.6, became available with increasing numbers of SNPs. The first SNP chip with genome wide coverage was made available by the mid 2000's, with the first studies to use this technology published in 2005 .

  QQ plots are another common way to visualize test results from the entire genome. SNPs are rank ordered and plotted as a function of the expected significance, based on an assumed random uniform distribution under the null hypothesis of no true associations. The corresponding inflation factor, λ, is the slope of the line fit to all results below the 90 th percentile. These results can safely be assumed to be non-significant and give a good idea of how the statistical model fits the expected distribution under the null hypothesis. Values above 1 indicate anti-conservative results and potential problems with the statistical model or the data. Values below 1 indicate overly conservative results or inadequate statistical power. It is common to observe a dramatic departure from the expected distribution in the tail of the

!Figure! 4 .

 4 Example Manhattan plots. A) Typical Manhattan plot showing a peak on chromosome 2. B) Manhattan plot showing excess of significance. No clear peaks and many singletons, indicate problems with either the data or the model used. C) Manhattan plot showing lack of significance. Possibly due to low power, problems with the data or an inappropriate statistical model (data for these plots was simulated to represent the three scenarios represented)." Example QQ-plots. A) Typical QQ-plot with λ inflation factor. The tail departs from the expected, indicating significance of test results more than expected by random chance. B) QQ-plot showing excess significance. Inflation factor is high, indicating a problem with the data or statistical model. C) QQ-plot showing lack of significance. Inflation factor is normal, but tail drops off, indicating inadequate power. D) QQ-plot adhering to the expected distribution. Inflation factor is very near 1 and no departure from the expected distribution is evident near the tail, indicating results are likely significant merely by chance.!A Bonferroni correction is easy to apply, but there are some noted problems with its application to a GWAS. One philosophical point made by Stern et. al. is that in the effort to increase objectivity, a significance threshold can stifle critical thought and interpretation of test results. Highly statistically significant results clearly indicate more believable results than those just passing the predetermined threshold, which are not substantively better than results

1. 4 .

 4 Genotyping Technologies" This section contains a brief overview of the development of genotyping and sequencing technology, beginning with Sanger sequencing in 1975 and ending with a short discussion of some technologies currently under development. ! Figure!6. Automated Sanger sequencing read. Peaks show the relative fluorescence observed as each band of DNA passes the laser.! 1.4.1. Sanger Sequencing"

!

  Figure!7. The PCR cycle: a) Denaturation, b) Annealing of the primers, c) Elongation of the desired fragment. " PCR is a powerful laboratory technique, but it is also highly sensitive to contamination. If contaminating sequence is introduced during the preparatory phase, it can bias the results under the best circumstances and can lead to the amplification of the wrong sequence under the worst circumstances.

Figure! 8 .

 8 Figure!8. Agarose gel. An agarose gel showing RFLP bands after gel electrophoresis.!

Figure! 9 .

 9 Figure! 9. Allelic discrimination plot. Individuals homozygous for the reference allele are shown in red, heterozygous individuals in green, and individuals homozygous for the alternate allele in blue. Data points marked with a black 'x' indicate individuals for which the assay results were inconsistent.!

!

  Figure!10. IBD chromosomal segments following admixture. Progression of identical by descent (IBD) chromosomal segments resulting from admixture are shown over n generations. Admixed chromosomes typical of individuals in initially admixed (Generation 0) and following generations (1 -n) are depicted. The ancestral population of each IBD segment is identified by color. Average IBD segment size decreases by way of genetic recombination each generation.! 2.2. Ancestry Inference" Most established ancestry inference algorithms use a Hidden Markov Model (HMM) to model ancestry from genotypic data (see Figure 11). The three most established software packages, STRUCTURE / MALDsoft, ANCESTRYMAP and ADMIXMAP, use a similar HMM to model the likelihood of each ancestral state at each locus, conditional on unobserved

4 .

 4 Individual parameters in the HMM. Parameters for individual global ancestry, on both the autosomes and X chromosome, and mean number of generations since admixture are given. Distributions for these parameters are also given as a function of study-wide hyperparameters." ! ! Figure!11. Hidden Markov Model for ancestry inference. An individual's ancestral chromosomal composition is a random process stemming from each parent's ancestral history since admixture. True ancestry of each chromosome segment is designated by color. Markers are chosen with dj cM between the j th and j-1 th markers, and individuals are genotyped. Ancestral state probabilities are calculated conditional on the observed genotype, the ancestral state probability of the previous marker in the chain and other relevant parameters. Conditional probabilities are generated, one starting at each end of the chromosome, and are combined to obtain the overall ancestral state probabilities at each locus, conditional on the ancestral state probabilities of neighboring loci."

! Table! 5 .

 5 Population parameters in the HMM. Population parameters are defined for the allele frequencies in chromosomes descended from each population. Distributions for each population parameter are also defined in terms of study-wide hyperparameters." ! ! 71

6 . 7 .

 67 Individual and population parameter updates. Posterior distributions are given for individual parameter updates, conditional on the sampled ancestral states and number of sampled crossovers. Updates of allele frequencies are also conditional on the sampled ancestral states and observed genotypes.! γ = γ F *γ R Hyperparameter updates. Distributions are given for hyperparameter updates.

!Figure! 12 .

 12 Illustration of problems with relying solely on first order LD. Markers 2 and 3 are very old and unlinked. Markers 1 and 4 are relatively recent, and having occurred on different haplotypes are in nearly complete negative LD. Conditioning only on LD with the previous marker in this case will break the linkage between markers 1 and 4, adding bias to the model. This bias can lead to wildly incorrect inferences (A. L.Price et al., 2008).!

!Figure! 13 .

 13 Disease gene mapping by admixture linkage disequilibrium. Human chromosomes are symbolized above. Chromosomal segments with different ancestry are denoted by change in color. After inferring local ancestry, average ancestry from the blue ancestral population (heavy blue line) is summarized for the ! 77

  we note that ! Figure!16. Illustration of the first five principal components (PCs) in a preliminary analysis of variables confounding end stage renal disease (ESRD) outcomes. Each PC is represented in one dimension, with the first at the top through the fifth at the bottom (labels for each PC are located on the left of the figure

  classical illustration of a population association inducing a false association with a structured SNP is a European study which associated height with the lactase gene, LCT. As height varies widely by geographic location, it is associated with ancestry and therefore prone ! Figure!17. False associations from population substructure. Two ways a false association could arise in the presence of population substructure. Light arrows represent true associations, and heavy, curved arrows represent false associations. A false association can arise via an association with a subset of the population: A) when the disease status is truly associated with that subpopulation, or B) when disease status is merely associated with the study sample of the subpopulation because of poor control selection or some other unrecognized factor.!

18 .

 18 First two eigenvectors of a PCA illustrating population structure. The first two eigenvectors of a principal components analysis of the genetic data include Europeans (CEU, green), Yorubans (YRI, magenta), African Americans (ASW, black), and Gujarati Indians living in Texas (GIH, blue).! ! Figure!19. Parallel coordinates plot of 10 eigenvectors illustrating population structure.

Figure 1

 1 Figure 1 Change in computation time and significance threshold for varying region sizes. The change in serial computation time (solid black line) and significance threshold (dotted blue line) are plotted as a function of the mean number of SNPs in each region in a GWAS-wide analysis using the simpleℳ method.

Fig. 1 .

 1 Fig. 1. Hidden Markov Model for ancestry inference. Each individuals local ancestral state probability, , is modeled as a function of preceding ancestral state probabilities in each Markov chain, genetic distance to neighboring markers, d, individual global ancestry parameters and observed haplotype or genotypes, a, in a region.

  Global ancestry estimates are reported for each individual and each individuals parents as well as ancestral state probabilities for each individual. With this information the user can also perform any generalized linear regression technique according to the framework proposed byRedden et al. (2006): 

2. 4 . 1

 41 Control populations Random recombination rates, , and ancestral proportions, G, were sampled for parents of 200 individuals. Values for

Fig. 2 .

 2 Fig. 2. Representative chromosomes from one individual in the ASW population. Chromosomal ancestry along chromosome 20 is shown for ALDsuite (top), PCAdmix (middle) and MILTIMIX (bottom). African ancestry confidence is represented by green bars and European ancestry confidence by blue bars with one phased haplotype stacked on top of the second phased haplotype.

  -8 significance threshold have not been validated in subsequent replication studies. By comparison, only 28% of GWAS results ! Figure!20. Replication rates of all GWAS results. An inverse survival curve represents the proportion of replicated GWAS results as a function of the significance of the original finding. The vertical dashed line represents the significance threshold of
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  . Dans des conditions de contraintes budgétaires et pour l'étude de maladies rares, ceci peut être une tâche impossible. En pratique,

une maladie n'a pas besoin d'être rare pour présenter des difficultés de recrutement de cas. Par exemple, notre étude pangénomique du VIH comprenait presque tous les individus infectés par le VIH enrôlés dans les cohortes d'histoire naturelle aux Etats-unis et ne comptait que 755 patients avec des dates connues de séroconversion -les cas les plus riches en informations. Bien que la prévalence du VIH soit extrêmement élevée dans certaines parties du monde, elle est beaucoup plus basse dans les sociétés occidentales où une majorité du financement et des infrastructures sont disponibles. 3.1. Modification des taux d'erreur de type I et de type II Avec les récentes avancées technologiques et les efforts internationaux pour identifier le spectre de variation génétique dans de multiples populations humaines, les puces de SNPs sont devenues à la fois plus denses et contiennent une gamme plus large de fréquence d'allèles. Les puces les plus denses permettent une résolution plus fine de la structure haplotypique et le potentiel pour la cartographie fine des variants causaux. En raison des nombreuses p valeurs générées dans les GWAS, les puces denses ont exacerbé le désavantage de puissance des études cas-contrôles. Dans une tentative d'augmentation de la puissance des corrections de Bonferroni requises dans un scénario générateur d'hypothèses, de nombreux seuils de significativité et stratégies alternatives ont été recommandés

  Research[START_REF] Gain Collaborative | New models of collaboration in genome-wide association studies: the Genetic Association Information Network[END_REF]. Reconnaissant le problème à la fois des faux positifs et des faux négatifs, de nombreux groupes sont en train de former de larges consortiums internationaux

	pour augmenter le nombre d'échantillons, accroissant ainsi la puissance pour détecter les
	variants à basse fréquence et/ou de faible effet qui n'atteindraient pas la significativité
	statistique dans de plus petites études (McLaren et al., 2013; Schork, Greenwood, & Braff,
	2007; Wellcome Trust Case Control Consortium, 2007). Cependant, il est fondamental que la
	confirmation de la significativité statistique par réplication nécessite des méthodes exactes
	pour estimer la significativité dans les études individuelles et combinées. Dans les GWAS et

génome entier, où le nombre de tests indépendants, comprenant des variants rares, peut être beaucoup plus élevé que dans une GWAS traditionnelle. Il est largement accepté que le moyen le plus efficace de réduire la publication d'associations de faux positifs est l'identification de variants causaux fonctionnels apparentés ; ou à défaut, la réplication de résultats dans une atmosphère collaborative avant la publication (GAIN Collaborative ! 16 les études similaires, cela nécessite d'estimer avec précision le nombre véritable de comparaisons indépendantes. Les simulations présentées dans cette thèse montrent que la méthode simple employant une analyse en composantes principales (CP) des données génétiques échantillonnées pour évaluer le nombre de tests indépendants offre une estimation du nombre de comparaisons qui n'est ni trop peu ou trop conservatrice, alors que d'autres méthodes publiées peuvent s'avérer dangereusement trop peu conservatrices. 3.2. Cartographie par déséquilibre de liaison dans des populations mixtes Une option sous-exploitée pour augmenter la puissance est la cartographie par déséquilibre de liaison dans des populations mixtes (MALD), qui combine la puissance tirée du déséquilibre de liaison de l'ascendance à long terme (ALD) semblable à celle trouvée dans les études familiales avec la capacité d'études cas-contrôles pour modéliser la maladie complexe(McKeigue, 1997). Il est important de noter que la MALD présume l'existence d'un facteur génétique causal contribuant au brassage plus fréquent dans une population ancestrale que l'autre. Ceci est un scénario beaucoup plus vraisemblable lorsque le phénotype s'isole significativement dans les populations ancestrales. Cette présomption ajoute à la puissance de la MALD parce que l'association recherchée n'est pas entre le phénotype et un marqueur spécifique dans le déséquilibre de liaison (DL) avec le variant génétique fonctionnel, mais plutôt une association entre le phénotype et l'ascendance locale au niveau du locus abritant le variant génétique fonctionnel

  couvrant deux analyses de données échantillons, depuis le formatage de données et la vérification jusqu'à l'analyse statistique et la préparation de tableaux et de chiffres. pas le seuil de significativité standard de p < 5x10 -8 . Pour minimiser les erreurs de type I et II, il est crucial de connaître la correction adéquate. Il a été suggéré de façon Une façon alternative d'augmenter la puissance, même face à des ensembles de données toujours plus importants, est une analyse du déséquilibre de liaison dans des populations mixtes (ALD). Cette forme de sous-structure de population peut être une source de biais significatif, résultant en une augmentation du taux d'erreur de type I, mais peut être efficacement contrôlée en utilisant une ACP des données génétiques. En fait, plutôt que d'être un inconvénient, l'ALD peut être une puissante source d'information pour identifier les régions du génome abritant les gènes pathogènes. Le milieu doit encore décider d'un bon algorithme pour déduire l'ascendance locale et ALDsuite répond à ce besoin. Il modélise les

	optimiste qu'en raison du DL, le nombre de comparaisons vraiment indépendantes est bien
	4. Conclusion inférieur à ~10 6 SNPs testés, mais mes résultats n'appuient pas cette suggestion : les
	corrections utilisant le nombre de blocs haplotypique, par exemple, sont montrées par le test
	par permutation comme étant substantiellement trop peu conservatrices, même en considérant
	La GWAS est un outil essentiel pour explorer la contribution génétique aux maladies des critères grandement différents pour définir les blocs haplotypiques. D'un autre côté, la
	humaines, mais convoit de graves problèmes de puissance statistique concernant les maladies méthode simpleM, utilisant l'analyse en composantes principales (ACP), apporte une

ALDsuite, décrit dans cette thèse, tente d'éviter ces problèmes en modélisant un DL d'ordre supérieur en utilisant les composantes principales. Ceci permet non seulement un gain d'efficacité informatique grâce au fenêtrage, mais modélise aussi plus correctement les DL d'ordre supérieur qui peuvent s'étendre aux fenêtres voisines lorsqu'aucun bloc haplotypique clair n'existe. Sont également inclus dans ALDsuite la documentation complète d'entrées et de sorties de chaque fonction, les outils pour le contrôle qualité des données de génotypage, les outils pour le formatage de données et la préparation d'a priori requis pour l'analyse, et une ! 18 vignette pour lesquelles il n'est pas pratique d'échantillonner génétiquement des dizaines de milliers de sujets. Pour les maladies affectant les populations mixtes, où la maladie est substantiellement héritée d'une population ancestrale, l'analyse du déséquilibre de liaison dans les populations mixtes (ALD) est une stratégie pour parvenir à la puissance avec des nombres relativement faibles. Comme la plupart des populations d'étude seront typées de façon routinière pour un ensemble dense de marqueurs, l'utilisation d'ensembles complets de marqueurs est à la fois pratique et source de précision supplémentaire. Cependant, les algorithmes d'origine et les plus établis nécessitent un ensemble de marqueurs peu abondants pour éviter la confusion des mesures de déséquilibre des populations mixtes par le DL local. L'utilisation de marqueurs denses nécessite de prendre en compte le DL local mais ceci est difficile en raison de la haute dimensionnalité du DL. ALDsuite, présenté dans cette thèse, aborde ce problème avec l'ACP, corrigeant l'estimation d'ALD par les composantes principales majeures du DL ancestral. Les approches existantes alternatives à l'utilisation de marqueurs denses ont leurs limites, y compris les exigences informatiques qui ne s'adaptent pas facilement aux données très denses et aux plans de fenêtrages qui ne modélisent pas précisément le DL local dans des régions où les blocs haplotypiques discrets n'existent pas. ALDsuite ajoute en plus une nouvelle fonctionnalité en considérant des données d'associations pathologiques plus générales, en particulier les données de survie. Pour des GWAS complètes de taille modeste, on ne peut échapper à la question de la puissance limitée face à ~10 6 comparaisons. L'absence de correction conduit à des résultats erronés, comme le montre l'incapacité à répliquer 75% des résultats issus des GWAS qui ne ! 19 respectent correction que le test par permutation montre comme étant exacte ; cette correction est modeste mais néanmoins utile. Les résultats présentés ici -une correction efficace et nouvelle pour le DL de population ancestral local permettant l'utilisation de marqueurs denses avec le MALD et la démonstration que la méthode simpleM est effectivement optimale pour la correction de comparaisons multiple GWAS, réitère la valeur d'ACP pour capturer la part essentielle de la complexité des systèmes à nombreuses dimensions. L'ACP est déjà standard pour corriger la stratification des populations dans les GWAS, et mes résultats indiquent sa plus grande applicabilité comme stratégie générale pour traiter la haute dimensionnalité des données d'association génomiques. La liaison est une part vitale des études d'association génétique et la modélisation appropriée du DL est nécessaire pour éviter les erreurs excessives de type I et le biais statistique. Une grande quantité de DL dans le génome humain n'exclut pas la nécessité d'une norme commune stricte pour la significativité pangénomique. Pour une GWAS traditionnelle, la réplication ou l'incapacité à répliquer 75% des résultats de la GWAS qui ne respectent pas le seuil de significativité standard de p < 5x10 -8 appuie l'utilisation de ce seuil, mais d'autres méthodes, particulièrement la méthode simpleM utilisant une analyse de composantes principales (ACP) restera vraisemblablement pertinente pendant une bonne partie de l'ère de séquençage. Il y a de bons arguments envers d'autres seuils de significativité qui peuvent être appropriés dans certains cas, mais l'augmentation en puissance est généralement très modeste. ! 20 DL locaux sur des fenêtres flexibles en utilisant l'ACP, plutôt que des blocs haplotypiques discrets, permettant l'analyse de données de marqueurs à la fois denses ou peu abondants. Le logiciel est suffisamment efficace sur le plan informatique, bien documenté, et convivial, et il fournit les outils nécessaires pour préparer, analyser et présenter ces données complexes. mots-clés : GWAS, association génétique, génome-entier, statistiques, correction, Analyse par composantes principales ! 21
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Table ! 1

 ! . Transmission Disequilibrium Test. Table shows how individuals are accounted for in a TDT.!

Table !

 ! 

3. Null and alternative hypothesis probabilities. Joint probabilities of the truth of the null hypothesis and outcome of the statistical test are given. α = Type I error rate, β = Type II error rate, π = proportion of true associations.! ! (5) ! "

African American to European American ratio African Americans (per 100,000 person years)

  

	Winkler	ARI	4 August 2010	16:2
		10			More common in AA (> 1.5) Uterus NOS Oropharynx Myeloma Hypopharynx Prostate Cervix uteri Larynx Descending colon Liver intrahepatic bile duct Small intestine Liver Stomach Splenic flexure
		1		
		0.1			Less common in AA (< 0.67) Lymphocytic leukemia Brain and other nervous system Endocrine system Brain Thyroid Urinary bladder Acute lymphocytic leukemia Ureter Melanoma of the skin Lip Skin, excluding basal squamous Testis Eye orbit Pleura
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  ). Each confounding variable is listed across the top of the figure, including mean arterial blood pressure (MAP), baseline glomerular filtration rate (GFR), age and body mass index (BMI). All PCs are repeated for each confounding variable, but are colored differently. Each line represents a different observation, and individual observations are colored according to the level of the confounding variable. Low MAP levels, for example are colored yellow with high values colored red. PCs with a smooth gradient from yellow to red indicate an association between the PC and the confounding variable.!Principal Component AnalysisIllustration of the first nine principle components of an analysis of confounding variables in a study of genetic effects on the development of end stage renal disease.
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Table 1

 1 Summary of Analysis Results

	Method	Significance Threshold	Corresponding a level
	Bonferroni	0.71 × 10 -7	0.046
	PRESTO	0.76 × 10 -7	0.05
	simpleℳ	0.82 × 10 -7	0.053
	SLIDE	1.09 × 10 -7	0.068
	Gabriel	2.72 × 10 -7	0.151
	4-Gamete	3.06 × 10 -7	0.166
	Solid spine	3.71 × 10 -7	0.195

Table 2

 2 Difference in Significance Threshold in a Subset of the Data

	Method	∆ Significance Threshold
	simpleℳ	-8 × 10 -11
	4-Gamete	-8 × 10 -10
	SLIDE	-5 × 10 -9
	Gabriel	-6 × 10 -8
	PRESTO	7 × 10 -7
	Solid spine	-8 × 10 -7

Table 3

 3 Comparison of a levels when restricting the definition of a haplotype

	Method Parameters	Significance	Corresponding a
			Threshold	level
	Gabriel	D'U > 0.98	2.72 × 10 -7	0.151
		D'L > 0.70		
		D'U > 0.98	2.11 × 10 -7	0.12
		D'L > 0.85		
	4-Gamete Cutoff = 1%	3.06 × 10 -7	0.166
		Cutoff =	2.50 × 10 -7	0.139
		0.5%		
	Solid	D' = 0.80	3.71 × 10 -7	0.195
	spine			
		D' = 0.95	2.79 × 10 -7	0.155

1 , Jean-Francois Zagury 2 and Cheryl A. Winkler 3 ! 1
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 1 Currently available admixture inference software.

		Dense	>2
	Software	Markers MALD Pops Cited Ref
	STRUCTURE	

Table ! 8. GWAS power calculations.

 ! Sample size, n, required to achieve various levels of statistical power in a study design aiming to detect an odds ratio of 1.7 in disease associated alleles of 10% frequency that passes GWAS significance threshold of 5x10-8 . The calculation assumes a 1:1 case-control match. "

	Power	n
	50%	3926
	60%	4300
	70%	4718
	80%	5232

  However the original and most established algorithms require a sparse marker set to prevent confounding of the admixture disequilibrium measures by local LD. Using dense markers requires accounting for local LD, but this is difficult because of the LD's high dimensionality. ALDsuite, presented in this dissertation, addresses this problem with PCA, correcting the ALD estimate by the major principal components of the ancestral LD. Existing alternate approaches to using dense markers have limitations, including computational demands that do not scale well with super dense data and windowing schemes that do not accurately model local LD in regions where discrete haplotype blocks do not exist. ALDsuite further adds new functionality by considering more general disease association data, in particular survival data.

Table ! 9. Review of publications using admixture inference in 2013.

 ! Tang, H.,Coram, M., Wang, P., Zhu, X., & Risch, N. (2006). Reconstructing genetic ancestry blocks in admixed individuals. The American Journal of Human Genetics, 79(1), 1-12. doi:10.1086/504302! Tchebichef, P. (1846). Démonstration élémentaire d'une proposition générale de la théorie des probabilités. Journal für die reine und angewandte Mathematik, (33), 259-267.! ! 143 Zhao, H., Pfeiffer, R., & Gail, M. H. (2003). Haplotype analysis in population genetics and association studies. Pharmacogenomics, 4(2), 171-178. doi:10.1517/phgs. 4.2.171.22636 ! 147 A. Review of admixture publications from 2013"

	Methods Type Review Type B. Currently available admixture software" Dense (Crawford & Nielsen 2013) Software Used Map Citation (Shriner 2013) Software Used Map Citation
	Methods Review	LFMM	Dense (Frichot et al. 2013) (Thompson 2013)
	Type Fine Mapping Methods	Software Used LAMP-LD, HAPMIX, MULTIMIX, RFMIX	Map Dense	Citation (Foster et al. 2013) (Genovese, Handsaker, H. Li, Kenny, et al. 2013b)
	Fine Mapping Fine Mapping Methods	HAPMIX LAMP-LD, HAPMIX, MULTIMIX, RFMIX	Dense	(Kantor et al. 2013) (Ng et al. 2013) (Genovese, Handsaker, H. Li, Altemose, et al. 2013a)
	GWAS Methods	STRUCTURE Hap-seq	Sparse (Chen et al. 2013) Dense (He et al. 2013)
	GWAS Methods	LAMP-LD SEQMIX	Dense (Chimusa et al. 2013) Dense (Hu et al. 2013)
	GWAS Methods	LAMP-LD	Dense (Drake et al. 2013) Dense (Jin et al. 2013)
	GWAS Methods	HAPMIX MaCH-Admix	Dense (Fejerman et al. 2013) Dense (E. Y. Liu et al. 2013a)
	GWAS Methods Methods	ADMIXTURE, EIGENSTRAT, HAPMIX ALDER	Dense (Y. Liu 2013) Dense (Gamazon et al. 2013) Dense (Loh et al. 2013)
	GWAS Methods	LAMP-LD, MULTIMIX HAPMIX	Dense (Lalli et al. 2013) Dense (Mao et al. 2013)
	GWAS Methods	HAPMIX RFMix	Dense (J. Li et al. 2013) Dense (Maples et al. 2013)
	GWAS Methods	HAPMIX, EIGENSOFT MaCH-Admix	Dense (Lopes et al. 2013) Dense (Martin et al. 2014)
	GWAS Methods	STRUCTURE, EIGENSOFT Dense (Maranville et al. 2013) Dense (Morrison 2013)
	GWAS GWAS Methods	HAPMIX LAMP-LD, ALLOY, WINPOP, PCAdmix	Dense (Monda et al. 2013) Dense (Payne 2013) Dense (Pasaniuc et al. 2013)
	GWAS Methods	HAPMIX	Dense (Song et al. 2013) Dense (Paul 2013)
	GWAS Methods	HAPMIX ARGweaver	Dense (Wheeler et al. 2013) Dense (Rasmussen & Siepel 2013)
	GWAS Methods	HAPMIX ALLOY	Dense (Witte et al. 2013) Dense (Rodriguez et al. 2013)
	GWAS Methods	HAPMIX ELIA	Dense (Xie et al. 2013) Dense (Yang et al. 2013)
	MALD Methods	ADMIXMAP DBM-Admix	Sparse (Bensen et al. 2013) Dense (Zhang 2013)
	MALD Other	ADMIXMAP PCA	Sparse (Divers et al. 2013) Sparse (Isobe et al. 2013)
	MALD Population History	ANCESTRYMAP	Sparse (Kim-Howard et al. 2013) Dense (Alcala et al. 2013)
	Population History	STRUCTURE,	Dense (Gourjon 2013)
	MALD Population History	ANCESTRYMAP,	Sparse (Molineros et al. 2013) Dense (Gravel et al. 2013)
	Population History	ADMIXMAP	Dense (Hudjašov 2013)
	MALD Population History HAPMIX SABER+	Dense (Beleza et al. 2013) Dense (Hufford et al. 2013)
	MALD Population History STRUCTURE, EIGENSOFT Dense (McTavish et al. 2013) SABER+ Dense (Coram et al. 2013)
	MALD Population History ADMIXTURE, HAPMIX HAPMIX, LAMP, SABER Dense (Ochs-Balcom et al. 2013) Dense (Moreau et al. 2013)
	Methods Population History	ADMIXMAP	Sparse (McKeigue et al. 2013) Dense (Skoglund 2013)
	Methods Review	STRUCTURE	Sparse (Porras-Hurtado et al. 2013) (Barbujani et al. 2013)
	Methods Review	LOCO-LD	Dense (Baran et al. 2013) (Gompert & Buerkle 2013)
	Methods Review	invertFREGENE	Dense (Seich Al Basatena et al. 2013) (Haralambieva et al. 2013)
	Methods Review	MULTIMIX	Dense (Churchhouse & Marchini 2013) (Y. Liu et al. 2013b)
				! 149 ! 150 ! 151

, 1065-1093. doi:10.1534/ genetics.112.145037! ! 139

Table ! 10. Currently available admixture inference software.

 ! Software title, ability to analyze dense marker data, support for mapping by admixture linkage disequilibrium, number of admixing populations supported, number of citations and references are included.
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Table 1 .

 1 Currently available admixture inference software.

		Dense	>2
	Software	Markers MALD Pops	Cited References
				Pritchard et al. (2000);
	STRUCTURE			12427 Falush et al. (2003)
				McKeigue et al. (2000);
	ADMIXMAP			201 McKeigue et al. (2013)
	ANCESTRYMAP			361 Patterson et al. (2004)
	FRAPPE			255 Tang et al. (2005)
	SABER+			157 Tang et al. (2006)
				Sankararaman et al. (2008a);
	LAMP-LD			131 Baran et al. (2012)
	HAPAA			48 Sundquist et al. (2008)
	SWITCH-MHMM			35 Sankararaman et al. (2008b)
	WINPOP			54 Pasaniuc et al. (2009)
	HAPMIX			210 Price et al. (2009)
	ADMIXTURE			293 Alexander et al. (2009)
	PCAdmix			14 Brisbin et al. (2012)
	MULTIMIX			9 Churchhouse and Marchini (2013)
	SEQMIX			Hu et al. (2013)
	ALDER			20 Loh et al. (2013)
	RFMix			7 Maples et al. (2013)
	ALLOY			1 Rodriguez et al. (2013)
	EILA			2 Yang et al. (2013)
	DBM-Admix			Zhang (2013)
	MaCH-Admix			14 Liu et al. (2013)
	ELAI			2 Guan (2014)
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to identify the locus using MALD because it showed an excess of African ancestry compared to the rest of the genome in cases and when compared to the control group at that locus using under 200 cases (Jeffery B Kopp et al., 2008).

The lack of complete coverage of genetic variation in non-European populations is being remedied by the 1000 Genomes project; but sequencing of each individual in studies is the only way to capture the true spectrum of variants contributing to disease (Manry & Quintana-Murci, 2013). This is particularly important in light of the impact of rare variants on some common diseases, as discussed in Section 8. Although African American admixed populations have been used to map several disease phenotype, there are many potentially informative admixed populations that remain less well genetically characterized. Examples include Latino and Cape Coloured populations. Latino populations are three-way admixed between European and Native American populations with a small but significant African component, and are more heterogeneous than African Americans due to varied Native American input spanning a broad geographical range (A. L. [START_REF] Price | A genomewide admixture map for Latino populations[END_REF].Several atopic hypersensitivity disorders have higher prevalence in Latino populations. Recently, admixture mapping was used to identify genetic variants associated with atophy in Latino children [START_REF] Kumar | Factors associated with degree of atopy in Latino children in a nationwide pediatric sample: the Genes-environments and Admixture in Latino Asthmatics (GALA II) study[END_REF]. The Cape Coloured population, which stems from the interaction of many peoples in the heavily traveled route from Europe to Asia, is composed of admixture between Khoisan and Bantu Africans, Europeans, South Asians and East Asians [START_REF] Tishkoff | The genetic structure and history of Africans and African Americans[END_REF]. While most readily available SNP arrays were developed to capture European genetic diversity, there is enough information in these arrays to easily distinguish ethnic groups (A. L. Price et al., 2006;2007;[START_REF] Tishkoff | The genetic structure and history of Africans and African Americans[END_REF].

Early admixture studies relied entirely on sparse panels of ancestry informative markers (AIMs), many derived from SNP arrays, to map disease genes (M. L. [START_REF] Freedman | Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men[END_REF][START_REF] Kopp | MYH9 is a Major-Effect Risk Gene for Focal Segmental Glomerulosclerosis[END_REF][START_REF] Reich | A Whole-Genome Admixture Scan Finds a Candidate Locus for Multiple Sclerosis Susceptibility[END_REF]. The three software packages for analysis of sparse AIMs panels discussed in Section 2.2 remain valuable and are still in use (McKeigue, Carpenter, Parra, & Shriver, 2000;Patterson et al., 2004;Pritchard et al., 2000). In fact, a review of publications in 2013 revealed some striking trends with respect to the use of ! 120 admixture software (see Appendix A). Of the seven publications that were distinctly identified as MALD studies, four used sparse marker panels, at least one of which had dense marker data available and pruned the set back to meet local LD requirements of the software (Kim-Howard et al., 2013). Of the remaining three MALD studies, all three used SABER+ and one verified the SABER+ results with a combination of several other dense marker softwares (see Appendix A for remaining references).

Other algorithms able to analyze dense marker sets with local LD, including SABER+, HAPMIX, LAMP-LD and HAPAA, seem to be more widely used for control of local ancestry in 14 GWAS, many of which also employed sparse marker strategies to estimate global ancestry as well (see Appendix A for complete list of references). Another common use for dense marker software is in characterizing the genetics in population history studies (see Appendix A). It is possible that these preferences have developed partly as a result of the output offered by these programs. The sparse marker software packages used for MALD in this survey both incorporate disease association statistics in their output, while the more commonly used dense marker software outputs only local ancestry estimates (see Appendix B). Other advantages of sparse marker software are mostly related to the cost of genotyping, which is becoming less of a factor with recent advances in genotyping and sequencing technologies. When dense marker data or sequence data are available, however, dense marker strategies provide more accurate inference of local ancestry and a finer resolution of each recombination point in each individual (Tang et al., 2006).

Accurate modeling of local LD has proven difficult, and research in this area remains active, as evidenced by the fact that nearly 40% of the 65 papers referenced in Appendix A describe new ancestry inference methods. Perhaps the most difficult problem with the modeling of local LD is finding a computationally efficient algorithm (Seldin et al., 2011). The most common solution to this problem is to discretize the sampled markers into windows of predetermined length (see Appendix B). This decreases the complexity of modeling local LD substantially, resulting in more efficient scalable software. A good example of this benefit is the recently described RFMix package. By considering windows of markers it is able to ! 121