
HAL Id: tel-01208083
https://theses.hal.science/tel-01208083

Submitted on 1 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Traceability of Concerns and Observer-Based
Verification for Railway Safety-Critical Software

Marc Sango

To cite this version:
Marc Sango. Traceability of Concerns and Observer-Based Verification for Railway Safety-Critical
Software. Software Engineering [cs.SE]. Université de Lille 1, 2015. English. �NNT : �. �tel-01208083�

https://theses.hal.science/tel-01208083
https://hal.archives-ouvertes.fr

Département de formation doctorale en informatique École doctorale SPI Lille

UFR IEEA

Traceability of Concerns and

Observer-Based Verification for

Railway Safety-Critical Software

THÈSE

présentée et soutenue publiquement le 18 September 2015

pour l’obtention du

Doctorat de l’Université Lille I

(spécialité informatique)

par

Marc Sango

Composition du jury

Rapporteurs : Pr. Jean-Charles Fabre, INP-ENSEEIHT - France

Pr. Philippe Dhaussy, ENSTA-Bretagne - France

Examinateurs : Pr. Franck Barbier, Université de Pau - France

DR. Simon Collart-Dutilleul, IFSTTAR/COSYS/ESTAS - France

Invité : Dr. Yannick Moy, AdaCore - France

Directeurs : Pr. Laurence Duchien, Université Lille 1 - France

CR. Christophe Gransart, IFSTTAR/COSYS/LEOST - France

IFSTTAR - COSYS - LEOST CRIStAL UMR CNRS 9189 - Inria Lille - Nord Europe

Mis en page avec la classe thloria.

Acknowledgement

Foremost, I would like to express my gratitude to my supervisors, Prof. Laurence Duchien,
and Dr. Christophe Gransart, for their continuous support during my Ph.D. study. Their ad-
vices, knowledge and support have been invaluable on both academic and personal levels.

Next, I would like to thank the members of my thesis committee. A special thanks to
Prof. Jean-Charles Fabre and Prof. Philippe Dhaussy for having accepted to review my
manuscript. They gave me valuable comments, and I really appreciated their feedback.

Besides my advisors, I would like to thank Dr. Charles Tatkeu and Prof. Lionel Seinturier
for welcoming me in the IFSTTAR/COSYS/LEOST and INRIA/SPIRAL teams, and for their
continuous advices throughout my thesis years.

In addition, I thank all my colleagues at the both research teams, and my colleagues at
IUT’A and at University Lille 1, for the inspiring discussions about research, teaching and
the life of every day. A big thank for my friends for their help and tips during my years in
Lille and before Lille.

My biggest gratitude goes to all my family, for their enduring support and understand-
ing. This thesis would not have been possible without your encouragements.

Finally, as we say in my native tongue, Bissa1, one word can often replace a long speech.
So BARKA, which merely means thanks in Bissa.

1https://fr.wikipedia.org/wiki/Bissa_(langue)

i

ii

Abstract

In recent years, the development of critical systems demands more and more software.
This growth has generated many strategic and organizational impacts among critical soft-
ware development and verification actors. In order to reduce their costs of development and
verification, actors in critical domains, such as avionics and automotive domains, are mov-
ing more and more towards model-driven engineering. In contrast, in the railway domain,
for strategic and organizational reasons, actors remain faithful to traditional methods that
allow them to take advantage of their knowledge. At the same time, they use ad-hoc reuse
approaches for capitalizing on the reuse of their accumulated software achievements. How-
ever, these conventional approaches supplemented by ad-hoc reuse techniques suffer from a
lack of abstraction and do not provide an automated and formal support for reasoning about
rules related to the reuse of software components. On the other hand, railway software is
designed to be sustainable. The lifetime of a train and, thus, its software is over thirty years.
It is therefore necessary to design software in order to be able to evolve it in time and space.

To address these shortcomings, we present in this thesis a systematic approach based
on model driven engineering and basic models of components, in order to better manage
software complexity and traceability of functional and non-functional requirements. In this
dissertation, we provide in particular three major contributions. First, we provide an inte-
grated set of meta-models for describing the concerns of software requirements, software
components, and traceability between the concerns and software components. By providing
an abstract model, we are independent of any implementation and thus allow existing ap-
proaches relying on that model to expand their support. With the second contribution, we
propose a formal support of our model to allow formal verification. We focus on temporal
property verification. For this, our design model is translated into timed automata for which
we can apply a timed model checker. Instead of using temporal logic, which is difficult to
handle by formal verification non-experts, we use patterns of temporal properties. For each
pattern identified in the railway case studies, we propose timed automata that can be applied
directly into a timed model checking tool. These timed automata are seen as observers or
watch dogs that check the system under observation. Finally, with the last contribution, we
propose a software component-based development and verification approach, called SARA,
and included in V-lifecycle widely used in the railway domain.

Experiments we conducted to validate our approach through a few case studies of the
new European train control system ERTMS/ETCS, show that by using component model
that explicitly include requirement traceability, we are able to provide a practical, scalable
and reliable approach. Empirical experiments also show that this approach can reduce the
development cost for the users who are looking at reusability for long-term benefits, even in
the presence of initial overhead cost introduced by component-based development.

Résumé

Ces dernières années, le monde des systèmes critiques a connu un véritable essor en matière
de demande de logiciels. Cet essor a généré de très nombreux impacts stratégiques et organ-
isationnels chez les acteurs de développement du logiciel critique. Dans une optique ma-
jeure de réduction des coûts de développement et de réutilisation de leur réalisations accu-
mulées, les grands acteurs du monde critique comme ceux de l’avionique et de l’automobile
s’orientent de plus en plus vers l’ingénierie dirigée par les modèles. Par contre les acteurs
du domaine ferroviaire, pour des raisons stratégiques et organisationnelles restent encore
fidèles à des méthodes conventionnelles qui leur permettent de tirer au maximum profit
de leurs compétences. Dans le même temps, ils utilisent des approches ad-hoc qui perme-
ttent de capitaliser sur la réutilisation de leurs réalisations logicielles. Cependant, ces ap-
proches conventionnelles complétées par des techniques ad-hoc de réutilisation souffrent
d’un manque d’abstraction et ne fournissent pas un support automatisé et formel pour
raisonner sur des règles liées à la réutilisation de composants logiciels. D’autre part, les logi-
ciels du ferroviaire ont pour vocation à être pérennes. La durée de vie d’un train et, donc,
de son logiciel est de plus de trente ans. Il est donc nécessaire de concevoir ces logiciels de
manière à pouvoir les faire évoluer dans le temps et dans l’espace.

Pour faire face à ces limitations, nous présentons dans cette thèse une approche systé-
matique basée sur l’ingénierie dirigée par les modèles et les modèles à base de composants,
de façon à maîtriser au mieux la complexité des logiciels et la traçabilité des exigences fonc-
tionnelles et non-fonctionnelles. Pour atteindre cet objectif de traçabilité des exigences, nous
nous fondons également sur un des principes fondamentaux de l’ingénierie logicielle qui
est la séparation des préoccupations. Dans cette dissertation, nous proposons notamment
trois contributions essentielles. En premier lieu, nous fournissons un ensemble uniformisé
de méta-modèles permettant de décrire les préoccupations des exigences logicielles, les
composants logiciels, et la traçabilité entre les préoccupations et ces composants logiciels.
L’avantage de cette traçabilité est de permettre une traçabilité explicite des préoccupations à
l’intérieur ou entre les différents niveaux d’abstraction du modèle et, ceci, indépendamment
de tout mécanisme de transformation de modèles. En fournissant un modèle abstrait, nous
sommes donc indépendants de toute implémentation et permettons ainsi aux approches
existantes de s’appuyer sur ce modèle pour étendre leur support. Avec la deuxième con-
tribution, nous proposons un support formel de notre modèle pour en permettre la véri-
fication formelle. Le modèle est défini afin de faciliter la vérification mixte des propriétés
fonctionnelles et non-fonctionnelles. Ainsi les propriétés fonctionnelles d’entrée/sorties des
composants peuvent être vérifiées par les outils de preuve formelle. Pour les propriétés
temporelles, le modèle est traduit en automates temporisés sur lesquels on peut appliquer
les outils de « model checking » temporisé. Au lieu d’utiliser la logique temporelle, diffi-
cile à manipuler par des non-experts, nous utilisons des motifs de propriétés temporelles.

Pour quelques motifs identifiés dans le domaine ferroviaire, nous proposons des automates
temporisés qui peuvent être appliqués directement dans un outil de « model checking » tem-
porisé. Ces automates temporisés sont vus comme des observateurs ou des chiens de garde
du système vérifié. Cette technique de « model checking » est appelée la vérification par ob-
servateurs. Finalement, la dernière contribution propose une approche de développement
et de vérification à base de composants logiciels, nommée SARA pour « SAfety-critical RAil-
way control applications », qui s’intègre dans le cycle de développement en V très largement
utilisé dans le domaine ferroviaire.

Les expérimentations conduites pour évaluer notre approche à partir de quelques cas
d’études du nouveau système européen de contrôle de train ERTMS/ETCS, montrent qu’en
utilisant des modèles à base de composants qui intégrent explicitement la traçabilité des
exigences, nous sommes capables de fournir une approche pratique, extensible et fiable.
Les expérimentations empiriques montrent aussi que cette approche peut réduire le coût
de développement pour l’utilisateur qui se penche sur la réutilisation des composants à
long terme, et ce même en présence du surcoût initial introduit par le développement, la
vérification et le stockage d’un nouveau composant avec ses liens de traçabilité ou de la
recherche et l’adaptation d’un composant existant pour un nouveau projet.

Contents

List of Tables xiii

Part I Motivation and Context 1

Chapter 1 Introduction 3

1.1 Problem Statements . 5

1.2 Research Goals . 6

1.3 Contributions . 7

1.4 Dissertation Roadmap . 8

1.5 Publications . 10

Part II State of the Art 13

Chapter 2 Component-Based Modeling and Observer-Based Verification 15

2.1 Introduction . 15

2.2 CBSE Background . 16

2.3 Focus on CBSE for Embedded System Design 22

2.4 V&V Background . 24

2.5 Focus on Observer-Based Verification . 30

2.6 Comparative Analysis and Discussion . 33

2.7 Summary . 37

vii

Contents

Chapter 3 Traceability of Concerns 39

3.1 Introduction . 39

3.2 Traceability Background . 40

3.3 Traceability Approaches in MDE . 46

3.4 Comparative Analysis and Discussion . 48

3.5 Summary . 56

Part III Contribution 59

Chapter 4 Component-Based Modeling with Traceability of Concerns 61

4.1 Introduction . 61

4.2 Motivation and Challenges . 63

4.3 SARA Meta-Model . 66

4.4 Process to Use the Meta-Model . 73

4.5 Challenges Revisited and Lessons Learned 78

4.6 Summary . 81

Chapter 5 Observer-Based Verification with Patterns of Properties 83

5.1 Introduction . 83

5.2 Motivation and Challenges . 84

5.3 SARA to TAIO Formal Model . 88

5.4 A 3-Layer Approach for OBV . 108

5.5 Challenges Revisited and Lessons Learned 112

5.6 Summary . 114

viii

Part IV Validation 115

Chapter 6 Validation Through Railway Safety-Critical Software 117

6.1 Introduction . 118

6.2 Overview of SARA Process . 118

6.3 A Brief Presentation of ERTMS/ETCS . 120

6.4 Rail-Road Level Crossing Case Study . 122

6.5 RBC Handover Case Study . 130

6.6 Metrics for Model Transformation and Component Reuse 137

6.7 Threats to Validity and Discussion . 145

6.8 Summary . 147

Part V Conclusion 149

Chapter 7 Conclusion and Perspectives 151

7.1 Summary of the Dissertation . 151

7.2 Review of Research Questions . 152

7.3 Perspectives . 154

Appendices 157

Appendix A SARA Model Implementation in Ada Language 159

Bibliography 163

ix

Contents

x

List of Figures

2.1 Components and component Composition in UML 17

2.2 An idealized component life cycle . 20

2.3 Idealised component and system life cycles . 21

2.4 Different levels of control in a train control system 23

2.5 Verification and validation in software development 25

2.6 Observer of time-bounded response pattern . 32

3.1 Backward and forward traceability . 41

3.2 Pre-RS and Post-RS traceability . 42

3.3 Inter and extra-requirement traceability . 43

3.4 Traceability of concerns . 44

4.1 An example of model driven view . 64

4.2 Concern meta-model . 67

4.3 Component meta-model . 69

4.4 Traceability meta-model . 71

4.5 A process to apply the metamodel and tracing concerns 74

5.1 LC-APS motivating example . 85

5.2 An execution trace of Ada implementation for LC-APS 87

5.3 Component instance purposes : (1) deployment and (2) binding 91

xi

List of Figures

5.4 Example of black-box component: a buffer component which implements
connection type DC_1 of Figure 5.1 . 95

5.5 Examples of passive composition: (a) plugging composition, (b) hiding after
plugging, (c) feedback, (d) hiding after feedback 99

5.6 Examples of active composition: (c) coordination of two one-place buffers to
define a three-place buffer, (d) coordination of two one-place buffers to define
a two-place buffer . 99

5.7 (a) Gate component UML SM, (b) The corresponding UPPAAL TAIO 104

5.8 Example of TAIO connections for Figure 5.1 105

5.9 UPPAAL model declaration of Figure 5.1 . 106

5.10 The overview of our OBV approach . 109

5.11 (a) Absence before observer, (b) Response max delay observer 110

6.1 SARA component-based development and verification process included in
CENELEC prescribed V-Lifecycle . 119

6.2 System architecture of the ERTMS/ETCS and its interfaces 120

6.3 3-Layer Temporal QoS Ontology for ERTMS/ETCS 122

6.4 A level crossing topography . 123

6.5 UPPAAL TAIO model of LC-APS components 126

6.6 The forward trace query definition . 129

6.7 A result of trace query . 130

6.8 A RBC-RBC handover topography . 131

6.9 RBC-RBC handover scenario . 133

6.10 UPPAAL TAIO model of RBC handover . 134

6.11 Composition of RBC TAIO model with response delay observer 135

6.12 RBC handover simulation with ERSA Simulator 136

6.13 Effect of increasing the size of input model in model transformation 138

6.14 Effect of increasing the complexity of input model in model transformation . 139

6.15 Cost benefit analysis with C&P approach . 142

6.16 Cost benefit analysis with CBD approach . 143

6.17 Component by component cost saving in both C&P and CBD approaches . . 144

6.18 C&P versus CBD cost benefit analysis . 145

6.19 Use cases and its actors . 146

6.20 Exploration time . 146

xii

List of Tables

2.1 The main industrial needs and the concerns they impact on 23

2.2 Synthesis of comparison for some CBD-V approaches 35

3.1 Summary of some traceability approaches. 48

3.2 Comparison of some traceability approaches 50

3.3 Synthesis of comparison for some traceability approaches 57

4.1 Synthesis of comparison for some traceability approaches including ours . . . 79

5.1 Synthesis of comparison for some CBD-V approaches including ours 113

6.1 Validation results of requirements identified in Section 6.4.1 128

6.2 Unacceptable output observed . 135

6.3 Cost estimation for LC-APS V1 development with reuse C&P approach 142

xiii

Part I

Motivation and Context

1

Chapter 1
Introduction

Contents
1.1 Problem Statements . 5

1.2 Research Goals . 6

1.3 Contributions . 7

1.4 Dissertation Roadmap . 8

1.5 Publications . 10

Software in safety-critical embedded systems, particularly safety-critical transportation
systems, such as aeronautic, railway and automotive unmanned or control systems, is be-
coming more and more complex, requiring increasing functional and dependability require-
ments. This growth has generated many strategic and organizational impacts among critical
software development and verification actors. In order to reduce their costs of develop-
ment and verification, actors in avionics and automotive domains, are moving more and
more towards model-driven engineering [Peleska, 2013]. For example, the new avionic stan-
dard DO-178C, for software considerations in airborne systems, is complemented by several
supplements, such as DO-331 for model-based development and verification supplement
[DO-331, 2011]. In the same way, in automotive standard ISO 26262, Appendix B of Part 6
is dedicated to model-based development [ISO-26262, 2009]. In contrast, in the new version
of railway standard [EN-50128, 2011] for safety-critical software of control and protection
systems, the model-based development is not particularly discussed. For example, the word
“model-driven" is used only once in the informative Annex D.

In addition to these standard observations, in practice, for strategic and organizational
reasons, software actors in railway domain remain faithful to traditional methods that allow
them to take advantage of their knowledge. At the same time, they use ad-hoc reusabil-
ity approaches for capitalizing on the reuse of their accumulated software achievements

3

Chapter 1. Introduction

[Riaz, 2012]. However, these conventional approaches supplemented by ad-hoc reuse tech-
niques suffer from a lack of abstraction and do not provide an automated and formal support
for reasoning about rules related to the reuse of software components. On the other hand,
railway software is designed to be sustainable. The lifetime of a train and, thus, its software
is over thirty years. It is therefore necessary to design software in order to be able to evolve
it in time and space.

From standards and practice observations, we can say that software engineering for
safety-critical systems, such as railway control and protection systems, is facing three major
challenges: (1) the increasing complexity of systems to be developed, (2) the assurance of
maintenance, and (3) the higher demand of quality in terms of Safety Integrity Level (SIL)
[EN-50128, 2011]. One effective means to handle the complexity challenge is the separation of
concerns, which is one of the fundamental principles of computer science, first advocated by
[Dijkstra, 1982b]. On the other hand, the assurance of maintenance and high-integrity can
be enhanced by the application of traceability of concerns and formal modeling and verification at
each stage of the software life-cycle in order to ensure that requirements have been properly
implemented.

Informally, the separation of concerns is to divide and conquer. At any stage of the devel-
opment of a system, the system is divided according to the system concerns, which include
functional concerns and non-functional concerns, such as safety, security, concurrency and
so on. These concerns are thus modeled separately and their integration forms a model of
the whole system. However, experience shows that it is not easy to practice the separation
of concerns if we do not have a rigorous unified semantic theory and development process
to separately define and process relations among different concerns [Chen et al., 2007b].

Nevertheless, there exist some rigorous unified semantic theories, such as a theory
of contracts with separation of concerns [He et al., 2006, Chen et al., 2009]. On the other
hand, there exist also some unified development approaches, such as a component-based
process with separation of concerns [Panunzio and Vardanega, 2014], based on the correct-
ness by construction principle [Chapman, 2006], and Model-Driven Engineering (MDE)
[Schmidt, 2006].

At the same time, in safety-critical domains in general and particularly in rail-
way control systems, which has lagged behind in the adoption of MDE approaches
[Favaro and Sartori, 2014], compared to other safety-critical domains, such as aeronautical
and automotive domains, there is a strong need to link methods and theories that highlight
separation of concerns. This bridge can help to deal with the other two challenges: traceabil-
ity of concerns and formal modeling and verification.

In this context, a unified meta-model, which includes a traceability of concerns in its
high-level language, and an underlining formal model, which establishes the semantics of
model rules for formal verification, is one of the bridge solutions. However, in this solu-
tion case, one issue is the transformation of the high-level model into a low-level model for
which a formal verification can be realized. Another issue is to provide an intuitive way for

4

1.1. Problem Statements

non-experts of formal theory to annotate its model with properties to be verified without
requiring a significant knowledge of higher order logic and theorem proving.

As a solution to these issues, we thus explore in this dissertation a component-based
software engineering with traceability of concerns and observer-based verification with pat-
terns of properties.

The remainder of this introductory chapter is organized as follows. In Section 1.1, we
identify the problems that motivate this research. Next, in Section 1.2, we present our re-
search goals. Then, we summarize the contributions of our thesis in Section 1.3. In Sec-
tion 1.4, we give a brief introduction to each of the chapters of the document.

1.1 Problem Statements

In this dissertation, we deal with component-based modeling with traceability of concerns
and observer-based verification with patterns of properties. Existing Component-Based De-
velopment and Verification (CBD-V) approaches aiming at achieving the same objectives are
subject to a number of open problems or limitations hampering the efforts for building a
well-suited approach in a specific domain, such as the railway domain. In particular, we
have identified that those approaches are confronted to the following issues.

Lack of Explicit Traceability of Concerns in CBD-V. Numerous component models or
frameworks are available. The first problem faced by developers in a specific domain, such
as the railway domain, is an effective reusability of components. For example, the train con-
trol domain is a new domain and there are not enough software components available in the
market. So it is still not guaranteed to be able to purchase trusted and certified Commercial
Off The Shelf (COTS) components and build software from them. As a consequence, two op-
tions are available: whether components should be developed from scratch or identify the
reusable software components from existing previous projects. Identifying and modifying
reusable software component from existing projects seems to be one of the more promising
ways to obtain reusable assets. In this context, the new project specific requirements are a big
challenge to cope with, because changing requirements will force us to move on a new ver-
sion of components. This will raise further problem such as traceability of concerns, including
intra- and extra-requirement traceability.

This problem statement raises the following research question:

Research Question 1. What is a suitable component model to build safety-critical control
software, specially railway control and protection software, with traceability of concerns?

Lack of Safety Interoperability Guarantee. The second problem faced by component-
based developers in a specific domain, such as the railway domain, is an effective interop-
erability of components. The sinew of war in current component models is Black-box com-
posability, substitutability and reusability, i.e., there is no need to know the design and the

5

Chapter 1. Introduction

implementation when composing a component with other parts of the system, substituting
a component with another one or reusing it in another application. However, this is not suf-
ficient in a specific domain, where domain knowledge, such as data format and protocol of
communication, is required for an effective interoperability. In addition, formal modeling of
interfaces that enables such interoperability is necessary to reason and predict the applica-
tion of composition, substitution and reusability mechanisms. For example, since the Euro-
pean Commission’s decision to establish international standardisation of ATC systems with
ERTMS/ETCS, interoperability between ATC components has became the key challenge in
railway domain.

This problem statement raises the following research question:

Research Question 2. How can safety-critical control software, specially railway control and
protection software, be built in an efficient way by using CBD-V rules, such as interoperabil-
ity and model verification?

Concrete Applications in Railway domain. Another important characteristic of CBD-V
is the separation of the development process for individual components, named component
life cycle, from the development process for the overall system, named system life cycle. In the
literature, there is an idealized component life cycle entailed in an idealized system lifecy-
cle. However, due to the structure of domain market and established development process,
it is difficult to develop the complete train control applications by using idealized compo-
nent lifecycle without integrating the traditional development lifecycle, such as V-Lifecycle
prescribed in the CENELEC standard [EN-50128, 2011] of railway safety-critical software for
control and protection systems.

This problem statement raises the following set of research questions:

Research Question 3. Will CBD-V processes replace the need for traditional software de-
velopment and verification processes? Particularly, what is the suitable development and
verification process for railway control and protection software?

1.2 Research Goals

As explained in the previous Section 1.1, building safety-critical control software in an ef-
ficient way by using a CBD-V approach implies considering several issues related to trace-
ability of concerns, interoperability and a concrete application by considering the domain
concerns. The main objective of this dissertation is thus to provide a solution facing these
issues. With such an approach, we want to introduce a unified high-level abstraction of com-
ponent model, as well as underlining low-level formal model, for which we can use property
specification patterns for formal verification. To achieve this, we decompose this objective
in the following goals.

6

1.3. Contributions

Define requirements, components and traceability of concerns meta-models. First of
all, our approach has to provide a unified means to describe different levels of software
artifacts, i.e., requirement concerns, component concerns and traceability links among these
concerns, by using the same formalism, i.e., a set of meta-models. Thus, a unified representa-
tion with separation of concerns would be used among all a CBD-V process, to facilitate the
traceability of concerns, whatever the functional or non-functional requirement concerns.

Define an underlining formal model of CBD-V rules, such as interoperability. Our
approach for modeling software concerns has to provide a means to describe CBD-V, rules,
such as interoperability of component interfaces, which provides a baseline for other rules,
such as component composition. Thus, we can reason about the application of composition
rules. This formal model would be used in the model transformation into a verification
model for which we can use formal verification tool.

Moving towards CBD-V in railway safety-critical applications. Another goal is to pro-
vide an approach relying on simplicity, flexibility, applicability and reusability in railway
safety-critical applications. Regarding simplicity, it must be simple for any developer in-
cluding V-based developers, to handle and apply. Regarding flexibility, the approach must
provide a means to be extended and maintained over time without difficulties. The XML-
based implementation of the model helps us in those purposes. Regarding applicability,
the approach must be applied in railway concrete case studies. Regarding reusability, the
approach must provide cost benefit compared to other software reuse strategies. The cost
estimation of the development and verification of our case studies through our systematic
approach and the ad-hoc copy paste approach helps us to analyze the cost benefit of our
approach.

1.3 Contributions

In this section, we present an overview of the contributions described in this dissertation. As
stated before in Section 1.2, the goal of our research is to provide our approach conceptual
meta-model, an underlining formal model, and it application facilities. As a consequence,
the main contributions of our work are summarized in three parts:

A Component-Based Modeling with Traceability of Concerns. Our first contribution
is an integrated meta-model for requirement concerns, component concerns and traceability
of concerns. The benefit of concern meta-model is the representation of functional and non-
functional requirements as scenarios with nominal and degraded modes in order to deal
with specific dysfunctions affecting temporal and safety concerns. The benefit of component
meta-model is that it supports the integration of non-functional concerns, specially temporal
safety concerns coming from a system concern modeling. The model elements are clearly
presented with separation of concerns in order to facilitate the traceability of concerns. The
benefit of traceability meta-model is to enable traceability of concerns within or across model

7

Chapter 1. Introduction

abstraction levels independently of any model transformation mechanism. By providing
abstract meta-models, we are thus implementation-independent.

An Observer-based Verification with Patterns of Concerns. As a second contribution,
we provide a formal support for our conceptual meta-model. The model is defined to handle
mix formal verification, i.e., formal proof of functional input and output constraints and model
checking of non-functional real-time constraints in order to take advantage of both formal
methods. The formal model is thus translated into the timed automata model for which we
use a timed model checker tool to verify temporal requirements. The behavioral equivalence
of each source model and its corresponding generated model is guaranteed by bisimulation
relation with respect to reachability. Instead of using temporal logic specifications, which are
difficult to handle by non-experts, we use pattern-based specifications, which propose user-
friendly syntax. For each pattern, observer automata, which can be applied directly in a timed
automata model checker, are constructed. We call this model checking technique observer-
based verification with patterns of concerns. We thus demonstrate that the defined observers
have no impact on the behavior of the system under observation, meaning that any trace of
the observed system is preserved in the composition of the system and the observers.

An Evaluation Process. Finally, besides the theoretical framework, we provide a con-
crete evaluation of our approach, named SARA, dedicated to SAfety-critical RAilway con-
trol applications. We have included our SARA process in railway CENELEC prescribed
V-Lifecycle. The evaluation is realized through different railway case studies derived from
ERTMS/ETCS specification for which we have provided an ontology. We have implemented
our meta-model in the XML-based tool and use XQuery queries to infer trace information.
Then, we translated XML-language into the Ada programming language for which we use
the SPARK annotation tool for formal proof of component functional input and output con-
straints i.e., classical pre- and post-conditions. However, this tool does not currently sup-
port real-time constraints, such as bounded interval time inherent in our case studies. For
this, we have translated the model into the TAIO model for which we use UPPAAL model
checker to verify real-time constraints. The XML-based implementation helps us for sim-
plicity and rapid prototype development for our case studies. It is flexible for extension and
maintenance. For reusability evaluation of our component-based approach, we realize the
reuse cost estimation of components developed in order to analyze the cost benefit of our
approach compared to ad-hoc reuse copy paste strategy used in certain railway companies.

1.4 Dissertation Roadmap

The dissertation is divided into five parts. While this introductory chapter is part of the first
part, the second one encloses the State of Art. The third part presents the contribution of this
dissertation, and the fourth one the validation of our proposal. Finally, the last part includes
the conclusions and perspectives of this dissertation. Below, we present an overview of the
chapters that compose the different parts.

8

1.4. Dissertation Roadmap

Part II: State of the Art

Chapter 2: Component-Based Modeling and Observer-Based Verification. In this chap-
ter, we give a brief introduction to the component-based development and verification. Since
it is used throughout the dissertation, the idea of the chapter is to provide a better under-
standing of this background in which our work takes place, as well as the terminology and
concepts presented in the later chapters.

Chapter 3: Traceability of Concerns. In this chapter, we list and describe some of the most
relevant works related to traceability of concerns. We compare these related works using
different criteria and highlight the benefits for component based modeling.

Part III: Contribution

Chapter 4: Component-Based Modeling with Traceability of Concerns. In this chapter,
we present our approach for component-based modeling with traceability of concerns. In
particular, we describe our approach meta-model, which is composed of a concern meta-
model, a component meta-model and a traceability meta-model. We also propose a generic
application process which can be used to instantiate the defined meta-models to assess
change impact analysis.

Chapter 5: Observer-Based Verification with Patterns of Properties. In this chapter, we
introduce a formal model of our component meta-model. In particular, we define component
interface interoperability by using the theory of component contract. This formal model also
facilitates the transformation into the timed automata model, for which we can use a timed
model checker to apply observer-based verification, where property specification patterns
are presented as observer automata. Finally, by using the composition theory of the timed
input-output labeled transition system, we demonstrate that the defined observers have no
impact on the behavior of the system under observation.

Part IV: Validation

Chapter 6: Validation. In this chapter, we describe the application details of our SARA
approach through railway safety-critical use cases. We also report on some experiments we
conducted to evaluate the case studies. This evaluation investigates in particular the sound-
ness, the scalability and the practicality of our approach when dealing with component-
based modeling and verification. Overall, as our cost empirical evaluation shows, we
observe that SARA is well-suited to handle the modeling with traceability concerns and
observer-based verification, while saving the cost for users who are looking at reusability
for long term benefits.

9

Chapter 1. Introduction

Part V: Conclusion and Perspectives

Chapter 7: Conclusion and Perspectives. This chapter concludes the work presented in
this dissertation. We summarize the overall approach and discuss some limitations that
motivate new ideas and future directions as short-term and long-term perspectives.

1.5 Publications

We present below the list of research publications related to the work done while developing
the approach described in this dissertation.

International Journal

• Marc Sango, Olimpia Hoinaru, Christophe Gransart, and Laurence Duchien. A Tem-
poral QoS Ontology for ERTMS/ETCS. In International Journal of Computer, Control,
Quantum and Information Engineering, 9(1):95 - 101, 2015.

Under Submission

• Marc Sango, Laurence Duchien, and Christophe Gransart. Component-Based Modeling
and Observer-Based Verification for Railway Safety-Critical Applications. Extended version
of FACS 2014 conference paper submitted to the special issue of FACS 2014, to be re-
viewed in Elsevier’s Science of Computer Programming Journal. Submission: February
2015.

• Marc Sango, Christophe Gransart, and Laurence Duchien. A Traceability Model Based
on a Component-Based Model-Driven Approach: Application to Railway Real-Time Control
Systems. Major Revised version of article, submitted to the Journal of Systems and
Software. Revised version submission: April 2015.

International Conferences

• Marc Sango, Laurence Duchien, and Christophe Gransart. Component-Based Modeling
and Observer-Based Verification for Railway Safety-Critical Applications. In 11th Interna-
tional Symposium on Formal Aspects of Component Software (FACS’2014), pages 248-
266, Bertinoro, Italy, September 2014.

• Marc Sango, Christophe Gransart, and Laurence Duchien. Safety Component-Based Ap-
proach and its Application to ERTMS/ETCS On-Board Train Control Systems. In Transport
Research Arena (TRA’2014), pages 648-653, Paris, France, April 2014.

10

1.5. Publications

• Marc Sango, Olimpia Hoinaru, Christophe Gransart, and Laurence Duchien. A Tem-
poral QoS Ontology for ERTMS/ETCS. In International Conference on Knowledge Engi-
neering and Ontological Engineering (ICKEOE’2015), London, United Kingdom, Jan-
uary 2015.

Presentations and other Publications

• Marc Sango. A Component-Based Model-Driven Approach with Traceability of Concerns:
Railway RBC Handover Case Study. In Young Transport Researchers Seminar (YRS’2015),
Rome, Italy, June 2015. Paper and presentation are online on the European Conference of
Transport Research Institutes (ECTRI) website: http://www.ectri.org/YRS15/Papers15.htm.

• Marc Sango, Laurence Duchien, and Christophe Gransart. SARA Component Approach
for the Development of Railway Safety-Critical Applications. In 17th International ACM
Sigsoft Symposium on Component-Based Software Engineering (CBSE’2014) Lille,
France, July 2014, June 2014. Poster presentation.

• Marc Sango. Application of SARA Approach to ERTMS/ETCS On-Board Train Speed Con-
trol Software. December 2014, Technical Report, IFSTTAR.

• Marc Sango, Laurence Duchien, and Christophe Gransart. Modèle de Défaillance lié à la
Sûreté pour des Applications Ferroviaires Critiques - Développement à Base de Composants.
Journée GDR GPL, April 2013. Poster presentation.

11

Part II

State of the Art

13

Chapter 2
Component-Based Modeling and
Observer-Based Verification

Contents
2.1 Introduction . 15

2.2 CBSE Background . 16

2.2.1 CBSE Definitions . 16

2.2.2 CBSE Key Concepts . 17

2.3 Focus on CBSE for Embedded System Design 22

2.3.1 Embedded System characteristics 22

2.3.2 Focus on Railway Embedded Real-Time Control Systems 23

2.4 V&V Background . 24

2.4.1 V&V Definitions . 25

2.4.2 V&V Applicability . 25

2.5 Focus on Observer-Based Verification 30

2.5.1 Property specification patterns 30

2.5.2 Railway domain-specific property specification patterns 32

2.6 Comparative Analysis and Discussion 33

2.6.1 Comparative Analysis . 33

2.6.2 Discussion . 35

2.7 Summary . 37

2.1 Introduction

In this chapter, we give a brief introduction to the component-based modeling and verifica-
tion. The objective of this chapter is not to present an in-depth description of all the existing

15

Chapter 2. Component-Based Modeling and Observer-Based Verification

concepts, approaches and technologies surrounding the Component-Based Software Engi-
neering (CBSE), but to give a brief background in which our work takes place. Particular
importance is given to the survey of CBSE approaches in the design of Embedded Safety-
Critical Software (ESCS), specially railway ESCS, and to the observer-based verification of
software model.

The chapter is structured as follows. Section 2.2 introduces the CBSE background. In
Section 2.3, we focus on CBSE approaches for the design ESCS. Section 2.4 introduce the
V&V background. In Section 2.5, we focus on a background of observer based verification.
Section 2.6 describes the comparative analysis and discussion of state of the art work. Finally,
Section 2.7 summarizes the ideas presented in this chapter.

2.2 CBSE Background

In software engineering, the CBSE [Bachmann et al., 2000, Heineman and Councill, 2001,
Szyperski et al., 2002] is an important emerged topic. The CBSE primary aim is to com-
pose systems from pre-built software units or components. Such an approach is a systematic
approach that enables software reuse throughout the software development and manage-
ment process with the ultimate aim, reduce production cost. To realize these aims, it is
crucial to have software component model, which is the cornerstone of any CBSE approach
[Lau and Wang, 2007]. Before comparing in Section 2.6 the approach category in which our
work takes place, let introduce some definitions and concepts that are essential to under-
stand the CBSE terminology.

2.2.1 CBSE Definitions

In the literature, there are several terminologies related to the CBSE. Here, we give the widely
accepted definitions.

- Szyperski et al. Definition: “A software component is a unit of composition with con-
tractually specified interfaces and explicit context dependencies only. A software compo-
nent can be deployed independently and is subject to composition by third parties."
[Szyperski et al., 2002].

The definition of Szyperski et al. is a widely accepted definition. It introduces the key
concepts of software component, such as interface, composition and context depen-
dencies defined in Section 2.2.2. However, this definition do not include a component
model as in the definition of Heineman and Councill [Heineman and Councill, 2001].

- Heineman and Councill Definition: “A component is a software element that con-
forms to a component model and can be independently deployed and composed without
modification according to a composition standard." [Heineman and Councill, 2001].

Lau and Wang defines the software component model as follow:

16

2.2. CBSE Background

- Software Component Model Definition: “A software component model is a definition
of (i) the semantics of components, that is, what components are meant to be, (ii) the
syntax of components, that is, how they are defined, constructed, and represented,
and (iii) the composition of components, that is, how they are composed or assembled."
[Lau and Wang, 2007].

It is important to distinguish component model from component framework. They are quite
often confused because the same name is used for both. For example, Fractal is some
time used for component model and for its framework built in java or C language
[Bruneton et al., 2006].

- Component Framework Definition: A framework, specially component-oriented
framework, can be viewed as a generic structure and sometimes a standard that
will cater a skeleton for developing software in a certain application domain
[Pop et al., 2014].

For example, as the name AUTOSAR (AUTomotive Open System Architecture) in-
dicates, AUTOSAR is an open and standardized automotive software architecture
[AUTOSAR, 2006]. The AUTOSAR standard enables the use of a component based soft-
ware design model for the design of a vehicular software. The design model uses appli-
cation software components which are linked through an abstract component, named
the virtual function bus. This virtual function bus, which is the conceptualization of all
hardware and system services offered by the vehicular system, makes it possible for
the designers to focus on the application instead of the infrastructure software.

2.2.2 CBSE Key Concepts

As emphasized in Section 2.2.1, the key concepts related to CBSE are component, interface,
connector and composition. To illustrate graphically the definitions of these concepts, we use
the UML2.0 component specification [UML2.0, 2005], which is a well-known graphical rep-
resentation among the other graphical component representations synthesized in the Ap-
pendix of [Lau and Wang, 2007]. The key argument over the use of UML specification is the
universality of this specification.

Figure 2.1: Components and component Composition in UML

17

Chapter 2. Component-Based Modeling and Observer-Based Verification

Component

As shown in Section 2.2.1, a generally accepted definition of a software component is that it
is a modular and reusable software unit (of a software system) that encapsulates implemen-
tation and exposes a set of provided services and required services. The provided services are
services performed by a component. The required services are services needed by a compo-
nent to produce its provided services. As illustrated in Figure 2.1, a component specifies its
behavior by one or more required services, represented by sockets (e.g., RI_11) and provided
services represented by lollipops (e.g., PI_21).

Current component models fall into two main categories [Lau and Wang, 2007]: (1)
models where components are collections of objects, as in Object-Oriented Programming
(OOP) and (ii) models where components are architectural units, as in software Architectures
Description Language (ADL). A standard example of OOP category is Enterprise JavaBeans
(EJB) [Rubinger and Burke, 2010], while a standard example of ADL category is CORBA
Component Model (CCM) [CCM, 2006].

In current component models where components are objects in the sense of OOP,
the operations of these objects are the provided services. Since they cannot specify
their required services, these objects are usually hosted in a container, which handles
interactions between components. A recent example is a component model used in
[Panunzio and Vardanega, 2014]. As a result, the semantics of these components is an en-
hanced version of that of the corresponding objects. In particular, they can interact with one
another via mechanisms provided by the container.

In current component models where components are architectural units, services can
also be specified as ports, represented by square in Figure 2.1 (e.g., P_1). The port of one
unit represents not only the provided service of that unit but also the required service of
the other unit and vice versa. In some models, for example UML2.0 and CCM, ports for
provided services are distinguished from those for required services.

Interface

An interface, either an operation-based or a port-based interface [Crnkovic et al., 2011], pro-
vides a syntactic information for an interaction point of a component [Chen et al., 2009]. In
this way, an interface I implements its required and provided services. It consists of two
parts: the data declaration section, I.D, that introduces a set of variables with their types,
and the method declaration section, I.M , that defines a set of method signatures. Each sig-
nature is of the form M(T1 in;T2 out), e.g., Put(T1 : in) and Put(T2 : out), where T1 and
T2 are type names, in stands for an input parameter, and out stands for an output parameter.

This syntactic type information is obviously not enough for rigorous verification
and validation. For this, some component models, such as rCOS component model
[Liu et al., 2009], define the notion of contracts of interfaces. A contract of an interface is a

18

2.2. CBSE Background

specification of the semantic for the interface. For example, if the component is to be used in
a real-time application, the contract of its interface must specify real-time constraints, such
as the lower and upper bounds of the execution time of a method.

Connector

A connector specifies a relationship that enables communication between two or more com-
ponents. In most of component model, connectors are used for the composition of compo-
nent at design time, where components have to be constructed, composed, cataloged, and
stored in a repository. For example, in UML 2.0 component model [UML2.0, 2005], there are
two kinds of connectors: (1) An assembly connector (lollipop in socket, see Figure 2.1) is used
to connect the required interface of a component to the provided interface of another com-
ponent; and a delegation connector (arrow, see Figure 2.1) is used to forward requested and
provided services from the inside of a composite component to the outside. In Fractal com-
ponent model [Bruneton et al., 2006], a connector is a binding component, i.e., a component
dedicated to the communication between other components.

Composition

Composition is a fundamental issue in component-based development since components
are supposed to be used as building blocks from a repository and assembled or plugged
together into larger blocks or systems. Theoretically, composition can take place during three
stages of the life cycle of components [Crnkovic, 2002]: design phase, deployment phase and
runtime phase. Figure 2.2 shows an idealized component life cycle with composition operators
[Lau and Wang, 2007].

However, in practice, composition should be possible in both the design and the
deployment phases of the component life cycle while the system is being constructed
[Lau and Wang, 2007]. In the design phase, components have to be constructed, composed
by using composition operators, and stored in a repository. In the deployment phase, com-
ponents have to be retrieved from the repository and compiled to binary code, and then
assemble them into a system by using composition operators.

Current component models have two kinds of composition mechanisms: endogenous
composition and exogenous composition [Crnkovic et al., 2011]. The use of intermediary con-
nectors corresponds to the concept of exogenous composition because the interaction be-
tween components is handled outside of the components themselves. In contrast to exoge-
nous composition, endogenous composition refers to a binding without any intermediary
connector. In this case, the handling of binding and interaction protocols is part of the com-
ponents themselves, including its interfaces.

One important requirement for the application of composition in safety-critical system
is to provide the ability to reason about composition. For this we need a composition the-
ory as discussed in [Crnkovic et al., 2003]. However, as explained in [Lau and Wang, 2007],

19

Chapter 2. Component-Based Modeling and Observer-Based Verification

Figure 2.2: An idealized component life cycle

current component models tend not to have composition theories, even those with
a composition language, such as ADL composition language [Allen and Garlan, 1997],
Lumpe et al. composition language [Lumpe et al., 2003] and CoCo composition language
[Tansalarak and Claypool, 2005]. One work with composition theory is the contract compo-
sition theory for reactive components [He et al., 2006]. Such a theory allows us to calculate
and, thus, predict the result of applying a composition operator to our components.

Component and System Life Cycle

Another important characteristic of CBSE is the separation of the development processes
of individual components, named component life cycle, from the development process of the
overall system system life cycle [Crnkovic et al., 2006]. As illustrated in Figure 2.3, an ideal-
ized component life cycle entails an idealized system life cycle and should be separate from
system life cycle [Lau et al., 2011].

One of popular system life cycles is the V Model, such as V-Lifecycle prescribed
in the CENELEC standard of railway safety-critical software for control and protection
systems [EN-50128, 2011]. V-Lifecycle has been adapted for component-based develop-
ment, such as W-Lifecycle [Lau et al., 2011], Y-Lifecycle [Capretz, 2005], and X-Lifecycle
[Tomar and Gill, 2010].

20

2.2. CBSE Background

Figure 2.3: Idealised component and system life cycles

All of them have some strengths and drawbacks. For example, most of them consider
that the complete system should be constructed with component based development. As a
consequence, they still propose an idealized CBD lifecycle. They do not discussed in detail
domain specific requirement issues. For example, due to train control application market
structure (many manufacturers and vendors), it is very difficult to build the complete system
by only using these idealized CBD lifecycles. Indeed, there are always some requirements
that are customer specific and vary from customer to customer, and still developed with
traditional software development process. As a consequence hybrid development process
is required to support both component based software development as well as traditional
software development.

What is incontestable in this domain is that applications still developed with V-model,
but there are more and more focus on reusing existing software artifacts.

One of reusing existing software artifacts is the Rational unified process (RUP)
[Kaur and Singh, 2010], which focus on reuse of existing classes on object oriented de-
velopment. Another one is the component-based model-driven development (CBMDD)
[Chen et al., 2009], which concentrates on the integration of CBD into a Model-Driven De-
velopment (MDD) [Thomas and Barry, 2003]. The advent of model-driven development,
whose principles are to use models systematically at different phases of system develop-
ment process and to increase the level of automation, provides a new landscape for dealing
with some longstanding software development challenges, such as traceability management
[Santiago et al., 2012].

21

Chapter 2. Component-Based Modeling and Observer-Based Verification

2.3 Focus on CBSE for Embedded System Design

This section contains the brief information about the embedded safety-critical control soft-
ware. Particular focus is given to train control systems. All these concepts are essential to
understand the focus on domain-specific component-based approaches.

2.3.1 Embedded System characteristics

Embedded systems is everywhere in almost every domain of everyday modern life such as
automobile, avionic and railway control system, mobile phones or small sensor/actuator
controllers in industrial process and health sector, and much more [Marwedel, 2011]. The
percentage of all computer systems belong to embedded systems today can be estimated at
98 % [ARTIST, 2004, Crnkovic, 2005]. In the following list, the general definition of embed-
ded systems, research roadmap or challenges of embedded system design and the industrial
needs are introduced.

- IEEE Definition. “An Embedded Computer System is a computer system that is part of a
larger system and performs some of the requirements of that system; for example, a computer
system used in an aircraft or rapid transit system. (IEEE, 1992)".

- Research Roadmaps. The embedded systems usually must meet stringent spec-
ifications for safety, reliability, availability and other attributes of dependability
[ARTIST, 2004]. As explained in the roadmaps for embedded systems design research
[ARTIST, 2004] and CBSE for embedded systems [Crnkovic, 2005], most of such em-
bedded systems are also characterized as real-time systems, which means that the real-
time properties such as response time, worse case execution time, etc., are important
design concerns. In addition, the increased complexity of embedded real-time sys-
tems leads to increasing demands with respect to requirement specification engineer-
ing, high-level design, early error detection, productivity, integration, verification and
maintenance [Crnkovic, 2005].

- Industrial needs. Although the general characteristics is almost the same in dif-
ferent embedded domains, the adoption of CBSE approaches for embedded sys-
tems in a specific embedded industry will depend on the industrial needs, its
methodology, its process, its technology and its market structures. For example,
Table 2.1 summarises the main industrial needs and the concerns they impact on
[Panunzio and Vardanega, 2010].

This table was derived from European Space Agency (ESA) initiatives to harmonized
the methodology, process and technology concerns of software reference architecture around
the agency missions. No relative priority was set on these industrial needs. It is just given
to illustrated that the adoption of any software development approach, specially CBSE ap-
proaches in an industrial domain will depend on the special industrial needs. In the follow-
ing we will specially focus on the railway domain.

22

2.3. Focus on CBSE for Embedded System Design

Industrial needs Impacts on
Reduced development schedule Methodology
Product quality Methodology, process, technology
Increased cost-effectiveness of software development Methodology, process, technology
Reduced effort intensiveness of Verification and Validation Methodology, process
Multi-team development and product policy Process, technology, market structure

Table 2.1: The main industrial needs and the concerns they impact on

2.3.2 Focus on Railway Embedded Real-Time Control Systems

One of our concerns in this work is the application of CBD in the railway control systems,
which belong to embedded systems family discussed in above Section 2.3.1. Train control
systems have various characteristics, such reliability, availability, safety, maintainability, effi-
ciency, and real time constraints, that are possessed by other transport control systems, such
as aircraft or car control systems. However, train control system has some difference with
other vehicle control as follows:

- Many Control levels. One of difference between train and car is that train control
have many levels of control than car control. Most of time train consists of a number of
wagons, so it is more complex in terms of controlling the communication, controlling
the doors and brakes, and so on. Figure 2.4 illustrate some high-level of controls, such
as traffic control, wayside control and train control [Johansson, 2001].

Figure 2.4: Different levels of control in a train control system

Traffic control system has the responsibility for route planning, navigation, signalling,
surveillance and safety. It keeps track of all trains that might interact, their current po-
sition and destination. Wayside control is a set of systems, such as Radio Block Center
(RBC) and interlocking, intended for surveillance, control and wireless communica-
tion. Train control, also known as train command and control or Automatic Train Con-
trol (ATC), is responsible for navigation, surveillance and safety. It is also responsible
for the control and synchronizes all the computer based system in the car. The ATC re-
sponsibilities are to control and supervise the traction and auxiliary equipment, brake
system and the driver’s desk operation.

These different levels of a train control have different types of requirements, such

23

Chapter 2. Component-Based Modeling and Observer-Based Verification

as functional, timing and dependability requirements. But at the same time de-
pendability requirements can be similar to both, there could be large differences in
functional as well as timing requirements and this makes the system more complex
[Johansson, 2001]. In addition, the different parts of train are most of time built by dif-
ferent vendors and they have different requirements. All these factors make the train
control system more complex to build and to inter-operate.

- Interoperability. Interoperability of the rail system within Europe is a key chal-
lenge to enable railway industries to capture the variety of rail market seg-
ments and to strengthen the competitiveness of rail products and operations
[Collart-Dutilleul et al., 2014]. In the past, a number of different Automatic Train Con-
trol (ATC) systems has evolved in different countries at different times. As a con-
sequence, when a train crosses a border, it needs to change its on-board signalling
system for example. This generates an important financial cost. In order to establish
international standardisation of ATC systems, the System Requirement Specification
(SRS) of the European Rail Traffic Management System/European Train Control Sys-
tem (ERTMS/ETCS) is introduced [ERTMS/ETCS, 2014]. However, the management
of railway signalling in ERTMS is based on local rules pertaining to each country and
not on global rules. This makes it difficult to evaluate the system in terms of safety and
then for certification.

- Certification. Railway or other transportation vehicles are an international matter. For
example trains and cars cross borders daily and a single car may be shifted among
different trains during its journey to the destination. This is an area where international
agreements, standards and certifications are needed : e.g., [EN-50128, 2011] for railway,
and [ISO-26262, 2009] for automotive.

Meeting the strict safety requirements in critical software development is today crucial
for the safety-related industrial environment, especially railways. To be able to prove
that all safety properties are captured in the system requirements and software speci-
fications, as well as that the final software product satisfies all specifications, a formal
verification and validation is the most convenient and recommended.

2.4 V&V Background

Verification and Validation (V&V) are at the heart of the process of developing software
for applications that require high dependability, such as the railway safety-critical control
applications, discussed in Section 2.3.2. In this section, we give the background on general
Verification and Validation (V&V) approaches and we focus on Observer-Based Verification
(OBV) in which our approach work takes place.

24

2.4. V&V Background

2.4.1 V&V Definitions

Software V&V are independent activities that are used together for checking that a software
system or a software component meets requirements and specifications and that it fulfills its
intended purpose. Although the two activities are not the same thing, they are quite often
confused. IEEE Standard Glossary of Software Engineering Terminology provides following
definitions.

- Verification: Software verification is the process of evaluating software or software
component to determine whether the products of a given development phase satisfy
the conditions imposed at the start of that phase. [IEEE-Std-610, 1990].

- Validation: Software validation is the process of evaluating a software or software
component during or at the end of the development process to determine whether it
satisfies specified requirements. [IEEE-Std-610, 1990]

Figure 2.5: Verification and validation in software development

Figure 2.5 illustrates the basic relationships involved in V&V in software development
process [Knight, 2012]. In other words, software verification is applied most commonly to
show that an implementation implements a specification correctly, while its validation en-
sures that the software actually meets the customer requirements, and that the requirement
specification was correct in the first place. Note that a specification is generally the result of
requirements elicitation process in a domain [Pinheiro, 2004].

2.4.2 V&V Applicability

For software V&V activities, there are numerous techniques and tools that may be used in
isolation or in combination with each other. However, with an effort of classification, V&V
techniques can be classified in five broad groups [Collofello and Institute, 1988]:

25

Chapter 2. Component-Based Modeling and Observer-Based Verification

Software Technical Reviews

The software technical review process includes techniques such as inspections, walk-
throughs and audits. Software technical reviews can be used to examine all the products
of the software development and evolution process. In particular, they are especially ap-
plicable and necessary for those products not yet in computer processable form, such as
requirements or specifications written in natural language and in proper documentation
[Schneider et al., 1992].

Such documents need to be properly structured, in order to ease the proper understand-
ing of requirements, which shall satisfy two main quality attributes: (i) requirements re-
latedness: each requirement is conceptually connected with the requirements in the same
section; (ii) sections independence: each section is conceptually separated from the others
[Ferrari et al., 2013]. As a consequence, the utilization of these techniques as V&V activities
requires an additional level of V&V activities, such as requirement tracing.

Requirement Tracing

Requirement tracing is a technique for insuring that the product, as well as the testing of the
product, addresses each of its requirements. There are several ways in which requirement
tracing can be performed, as discussed in detailed in Chapter 3. The usual approach to
performing requirement tracing uses traceability matrix, which can be classified in three
types.

The first type of traceability matrix maps requirements to software modules. Such con-
struction and analysis of this matrix can help insure that all requirements are properly ad-
dressed by the product and that the product does not have any superfluous capabilities.
The second type of traceability matrix maps requirements to test cases or verified proper-
ties. Such construction and analysis of this matrix can help insure that all requirements are
properly tested or verified. A third type of matrix maps requirements to their evaluation
approach. The evaluation approaches may consist of review, simulation, testing and proof
of correctness. This analysis shows that the requirement and evaluation tracing insures that
all requirements will undergo some other form of V&V activities.

Simulation and Prototyping

Simulation and prototyping are techniques for analyzing the expected behavior of a prod-
uct. There are many approaches for constructing simulations and prototypes that are docu-
mented in the literature [Emmelmann, 2003, Huang et al., 2011].

For V&V purposes, simulations and prototypes are normally used to analyze require-
ments and specifications to insure that they reflect the user’s needs. Simulations and proto-
types can also be used to analyze predicted product performance, especially for candidate

26

2.4. V&V Background

product designs, to insure that they conform to the requirements. It is important to note
that the utilization of simulation and prototyping as V&V techniques requires that the sim-
ulations and prototypes themselves be correct. As a consequence, the utilization of these
techniques requires an additional level of V&V activities, such as software testing or formal
verification.

Software Testing

Software testing is the process of exercising a product to verify that it satisfies specified
requirements or to identify differences between expected and actual results. There are sev-
eral ways to test software because testing depends on the levels of testing, such as module
testing, integration testing, system testing and regression testing [Myers and Sandler, 2004].
For all levels of testing, there are different techniques of testing, such as functional
testing, structural testing, error-oriented testing and so on, which can be applicable
[Myers and Sandler, 2004].

It is important to note that the utilization of software testing depends also on software
development. For example in component-based software testing [Groß, 2005], testing refers
to all activities that are related to component testing and application testing in the scope of
a component-based development project because ideal software component is supposed to
be reused in different context.

Software testing is one of software engineering disciplines used as a widespread vali-
dation approach in industry. For example earlier studies , such as [Beizer, 1990, NIST, 2002]
estimated that testing can consume fifty percent, or even more, of the development costs.
However, a recent detailed survey in software testing research points out some open chal-
lenges, such as compositional testing and some longstanding dreams, such as 100% auto-
matic testing [Bertolino, 2007].

Proof of Correctness

Contrary to previous categories, the proof of correctness is a collection of techniques that ap-
ply mathematical rigor to help establish a variety of properties. This category of techniques
is also often referred to as formal methods [Knight, 2012]. When applied carefully, formal
methods are powerful because they can help us establish properties such as freedom from
certain classes of faults. However, using the formal method is nether a panacea that solves all
problems nor a curiosity that provides no value [Knight, 2012]. In this sens formal methods
can always be supplemented with various other V&V techniques discussed above.

A formal method is an application of mathematics, usually discrete mathematics, in
software engineering. As such, a formal method provides the software engineer (i) a formal
languages, such as Z or Alloy language [Jackson, 2006], to replace much of the use of nat-
ural language in software artifacts, such as requirements, specifications and designs; and

27

Chapter 2. Component-Based Modeling and Observer-Based Verification

(ii) a formal verification techniques to analysis software artifacts produced during software
development. Formal verification brings the rigor of formal methods to the challenge of ver-
ification [Knight, 2012]. There are several formal verification techniques. In particular, we
rely on two categories:

1. Correctness by construction. The Correctness by construction principle is first advocated
by Dijkstra in [Dijkstra, 1972]: “Argument three is based on the constructive approach
to the problem of program correctness", where program construction should follow
the construction of a solid proof of correctness. Many decades later, the approaches
to correctness by construction is promoted in different approaches. The three main
approaches are:

- Refinement approaches. In construction of software using refinement, software is
built by developing a series of transformations or refinements from the high-level
abstract specification to a low-level concrete implementation [Knight, 2012]. Each
refinement makes the initial formal specification more concrete, and transforma-
tion is continued until an executable implementation has been produced. The key
of fault avoidance is that transformations are selected and applied carefully, and
proofs are constructed to show that the properties of the input are maintained by
the output.

The B Method [Abrial, 1996] is the most complete and most comprehensive in-
stantiation of refinement approach category. Several powerful tools, such as Ate-
lier B tools, have been developed to support the B Method. For instance, in France,
the functional requirements of the SACEM system present in RER Line A in Paris
were formally constructed in the B language [Guiho and Hennebert, 1990] as well
as for the automatic train system of the metro line 14 which was the first driverless
metro line in Paris [Behm et al., 1998].

- Analysis. In the construction of software using analysis, the software is built by
developing a series of program increments using a fairly conventional manual
development approach [Knight, 2012]. Design using procedural abstraction can
be used to develop the necessary procedures and functions, data structures can
be designed in manner that provides the semantics for the application, and so on.
The key to the use of analysis is the availability of a mechanism to verify each of
the increments that is applied during development.

The Correctness by Construction manifesto of Praxis High Integrity Systems
[Hall and Chapman, 2002, Chapman, 2006] is the most complete practice of anal-
ysis approach category. The most extensive use of this static analysis approach is
with SPARK language and toolset, such as [SPARK, 2014]. This original approach
is a code source-based development, contrary to the following synthesis category
approaches based on high-level language

- Synthesis approaches. In the construction of software using synthesis, the imple-
mentation in a high-level language is actually built automatically by an application

28

2.4. V&V Background

generator [Knight, 2012]. The application generator reads a formal specification
and generates the application software automatically. In some application gen-
erators, the synthesis process is guided by humans, and in others synthesis is
completely automatic.
One particular technique that has been developed is a model-based development,
specially component-based model development. The concept is to develop a
specification using a formal notation, and to have an application generator tool
to translate that specification into an executable program, much as a compiler
translates a high-level-language program into an executable program. Most of-
ten the specification language is a domain-specific language, designed to be used
by domain experts and software engineers in a particular application domain.
Many synthesis application are available, including Mathworks [Simulink, nd]
and [SCADE, nd].

2. Model Checking. Model checking is an important formal techniques that is quite dif-
ferent from the other formal methods, which have been discussed above. At the heart
of model checking is the idea that analysis can be carried out on a model of an arti-
fact rather than the artifact itself, hence the name model checking. The most common
application to software is in concurrent software. Concurrent software is difficult for
humans to reason about and to analyze using formal analysis verification because of
the non determinism that is inherent in concurrent programs [Knight, 2012]. Regarding
the specification of real time properties, two categories of works have been proposed
to specify properties.

- Temporal Logics specification. The first category is based on temporal logic. It
provides most of the theoretically well-founded body of works, such as complex-
ity results for different fragments of realtime temporal logics [Henzinger, 1998]:
Temporal logic with clock constraints (TPTL); Metric Temporal Logic (MTL,
MITL); Event Clock Logic; etc. The algebraic nature of logic-based approaches
make them expressive and enable an accurate formal semantics. However, it may
be impossible to express all the necessary requirements inside the same logic frag-
ment if we ask for an efficient model-checking algorithm (with polynomial time
complexity). For example, Uppaal [Larsen et al., 1997] choose a restricted frag-
ment of TCTL with clock variables, while Kronos [Yovine, 1997] provides a more
expressive framework, but at the cost of a much higher complexity. As a conse-
quence, this category requires different model-checkers for each interesting frag-
ment of these logics, and a way to choose the right tool for every requirement
which may be impractical. However, this is not an issue limiting the large adop-
tion. An important issue limiting the large adoption of model checking technolo-
gies by the industry is the difficulty, for non-experts, to express their requirements
using the formal specification languages supported by the verification tools.

- Pattern-Based Specification. The second category is based on specification pat-
terns. Patterns propose a user-friendly syntax which facilitates their adoption by

29

Chapter 2. Component-Based Modeling and Observer-Based Verification

non-experts. In the seminal work of [Dwyer et al., 1998], property specification
patterns are defined with temporal logics, such as LTL and CTL. “Globally, Q re-
sponds to P" is expressed as AG(P ⇒ AF (Q)) in CTL or �(P ⇒ ♦Q) in LTL.
In this case, there is no need to provide a verification approach because efficient
model-checkers are available for these logics. This work on patterns has been ex-
tended for the real-time constraints. For example, [Konrad and Cheng, 2005] ex-
tends the patterns language with time constraints and give a mapping from timed
pattern to TCTL and MTL. Another related work is [Gruhn and Laue, 2006],
where the authors define observer automata (observers) based on Timed Automata
for each pattern. For each pattern, observer automata, which can be applied di-
rectly in a timed model checking tool, are constructed. We call this approach an
Observer-Based Verification. However, these primary works lack a formal frame-
work for proving the correctness or innocuousness of their observers and they
have not integrated their approach inside a model-checking tool chain. But, veri-
fication by means of observers has been experimented in different works, such as
[Aceto et al., 2003, Bayse et al., 2005, Abid et al., 2014]

Summary

The V&V categories presented in this section are not meant to provide a partitioning, since
there are some approaches that span categories. We give, a practical view of V&V ap-
proaches shown in the literature in order to focus in observer-based verification in which
our work take place.

2.5 Focus on Observer-Based Verification

As shown in the of previous Section 2.4, V&V are at the heart of the process of developing
software for applications that require high dependability, such as the railway safety-critical
control application. However, one of important issue limiting the adoption of formal ver-
ification technologies by the industry is the difficulty, for non-experts, to express their re-
quirements using the formal specification languages supported by the verification tools. As
a consequence, we focus on pattern-based specification for which our approached is related.

2.5.1 Property specification patterns

Dwyer et al. [Dwyer et al., 1998, Dwyer et al., 1999] introduced several patterns applica-
ble to software property specifications written in different formalisms, such as Linear-
time Temporal Logic (LTL) [Manna and Pnueli, 1992], Computational Tree Logic (CTL)
[Clarke et al., 1986] or Graphical Interval Logic (GIL) [Ramakrishna et al., 1996]. These prop-
erty specification patterns consist of a set of patterns and a set of scopes. Patterns specify what

30

2.5. Focus on Observer-Based Verification

must occur and scopes specify when patterns must hold. More precisely, a scope indicates
the portions of system execution in which a pattern should hold. Let P and Q represent a
state or event, the five basic kinds of scopes can be defined as follows:

- Global: the pattern must hold during the complete system execution;

- Before P: the pattern must hold up to the first occurrence of a given P;

- After P: the pattern must hold after the first occurrence of a given P;

- Between P And Q: the pattern must hold from an occurrence of a given P to an occur-
rence of a given Q;

- After P Until Q: the same as “Between P And Q", but the pattern must hold even if Q
never occurs.

Patterns are classified into occurrence patterns and order patterns. Details of these pat-
terns can be found in [Dwyer, nd]. Occurrence patterns are used to express requirements
related to the existence or lack of existence of some states or events during system execution.
Order patterns are used to express requirements related to pairs of states or events during
system execution. The important patterns can be briefly described as follows:

- Absence: P does not occur within a scope;

- Universality: P may occur throughout a scope;

- Existence: P must occur within a scope;

- Bounded Existence: P must occur at least, exactly or at most k times within a scope;

- Precedence: P must always be preceded by Q within a scope;

- Response: P must always be followed by Q within a scope, as illustrated in the untimed
response Example 1.

Example 1. “It is always the case that if P{x = 0;} holds, then Q{y = 1;} eventually holds."

These original specification patterns are not adapted for the specification
of real-time properties, since they do not support quantitative reasoning about
real-time [Konrad and Cheng, 2005]. As a consequence, Konrad and Cheng
[Konrad and Cheng, 2005] refer to these patterns as qualitative specification patterns
and include a set of quantitative patterns for real-time specification. Their collection of
patterns was classified into three broad categories of real-time properties. The duration
category describes properties that can be used to place bounds on the duration of an
occurrence. The periodic category describes properties that address periodic occurrences.
The real-time order category describes properties that place time bounds on the order of two

31

Chapter 2. Component-Based Modeling and Observer-Based Verification

occurrences. They also offer a structured English grammar to support both qualitative and
real-time specification patterns, as illustrated in the time-bounded response pattern Example
2, which is a real-time order category of above untimed response Example 1. Following the
observer representation of [Gruhn and Laue, 2006], the observe automata of Example 2 is
shown in Figure 2.6

Example 2. “It is always the case that if P{x = 0;} holds, then Q{y = 1;} holds after at most k
time units."

Figure 2.6: Observer of time-bounded response pattern

They are many other real-time extensions of the Dwyer et al. classification, such as
[Chechik and Paun, 1999, Yu et al., 2006, Mekki et al., 2011, Abid et al., 2014] and other real-
time specifications which are not directly based on the Dwyer et al. classification, such as
[Bitsch, 2001, Sadani et al., 2005]. For example, [Bitsch, 2001] presents a classification com-
parable to the Dwyer et al. classification, but it is restricted only to safety patterns occurring
in the specification of industrial automation systems. Recent studies realized by Bianculli et
al. [Bianculli et al., 2012] and Abid et al. [Abid et al., 2014] have shown that Dywer’s pat-
terns with data-awareness and time delay-awareness patterns, as in Example 3, are the most
used in practice in academia and industry.

Example 3. “Message m’ must occur before a max delay of k time units after the first
occurrence of message m."

In this example, instead of directly considering states of processes as in Example 1 and
2, the requirements are expressed using two messages: the first message m represents the
input of the process and the second m′ its output. The delay between the two messages is
constrained to be in the time limit. Our objective is to verify these real-time patterns in the
railway safety-critical domain.

2.5.2 Railway domain-specific property specification patterns

We particularly focus on domain-specific rail-road temporal safety specifications. For in-
stance, Example 4 shows a safety requirement specification of rail-road level crossing sys-
tems.

32

2.6. Comparative Analysis and Discussion

Example 4. “The gates must not be opened before the train has passed the rail-road crossing.
The gates must be in the closed state for 6 seconds before the rail-road crossing has the status
safeguarded. The safeguard of a level crossing is only permitted to be terminated, strictly
after the rail-road level crossing has been completely vacated." (Taken from [Bitsch, 2001]).

The specification of Example 4 explicits time duration before the safeguard of rail-road
Level Crossing (LC). But, it does not consider the speed of trains that may cross the LC.
Indeed, in most European countries, railway traffic has absolute priority over road traffic.
So, the gate is opened to road traffic and then closed as soon as another train is detected.
In this way, when another train is coming very shortly, the gate will be closed promptly
after being opened. Consequently, car drivers in the crossing section may become stressed
and make wrong decisions. The first sentence of Example 5 is stated to avoid this short
opening duration between successive closure cycles. Conversely, it is also important to avoid
keeping the gate closed for an unnecessarily long time when the train has passed. The second
sentence of Example 5 constrains the closure duration.

Example 5. “When the gate is opened to road traffic, it must stay open at least Tmin time
units. Once closed and when there is no train approaching, the gate must be kept closed at
least Tbegin and at most Tend, where Tbegin and Tend are the time interval limits prescribed."
(Taken from [Mekki et al., 2012]).

Remark 1. Note that, generally, these complex requirement specifications match more than
one of patterns mentioned above. For example, the first sentence of Example 5 matches the
after duration (stay open at least Tmin) pattern and its second sentence matches time-interval
(at least Tbegin and at most Tend) pattern.

2.6 Comparative Analysis and Discussion

We have already introduced some related component-based approaches in previous sec-
tions. However, they have not yet been compared and discussed. In this section, we give a
comparative analysis of some related work in Section 2.6.1. From this comparative analysis,
we discuss in particular in Section 2.6.2 four requirements that are the heart of the develop-
ment process of software that require high dependability, such as that railway safety-critical
control software.

2.6.1 Comparative Analysis

Many software component models and frameworks have been proposed and compared over
the last few years [Crnkovic et al., 2011, Pop et al., 2014]. The results of these evaluations
show that there is no single winner: each of evaluated approaches has a strengths and limi-
tations. As a consequence, they provide recommendations that can provide a guide in select-
ing a suitable component technology based on the specific requirements and target domain

33

Chapter 2. Component-Based Modeling and Observer-Based Verification

of a considered application. According to this, two categories of component models have
been distinguished: the general-purpose and the specialized-purpose. In addition, as shown in
Section 2.2.2, current component models fall into two main categories [Lau and Wang, 2007]:
(1) models where components are collections of objects, as in Object-Oriented Programming
(OOP) and (ii) models where components are architectural units, as in software Architec-
tures Description Language (ADL).

- Examples of genera-purpose OOP-based approaches:

- EJB: Entreprise JavaBeans [Rubinger and Burke, 2010]

- Fractal: Fractal component model [Bruneton et al., 2006]

- Examples of genera-purpose ADL-based approaches:

- AADL: Architecture Analysis and Design Language [Feiler and Gluch, 2012]

- Pin: Pin Component Technology [Hissam et al., 2005]

- Examples of specialized-purpose OOP-based approaches:

- Think: Fractal model C-implementation [Fassino et al., 2002]

- Chess: Chess project Component Model [Panunzio and Vardanega, 2010]

- Examples of specialized-purpose ADL-based approaches:

- ProCom: Progress Component Model [Sentilles et al., 2008]

- IEC-61499: IEC-61499 function blocks [IEC-61499, 2005]

- AUTOSAR: AUTomotive Open System Architecture [AUTOSAR, 2006]

The specialized-purpose models for embedded and potentially also for real-time sys-
tems are sometimes related to domain-specific models. However, as discussed in Section 2.3.1,
the domain of embedded real-time systems is relatively broad. They are ranging from small
computational units to complex distributed control systems as in automotive, railway and
airspace industry. Therefore, it is rather difficult to state universal criteria for comparison of
component frameworks supporting development of such systems. Taking this into account,
we do not focus on specific criteria that are important for component-based development
in general, rather we focus on those that are necessary to meet the dependability require-
ments in component-based development for domain-specific embedded real-time systems.
We particularly focus on traceability, interoperability, V&V and Certification criteria.

Table 2.2 shows a comparative table of approaches evaluated. We use a check mark
Xif the approach proposes solutions or deals with the criteria, while a check mark between
parenthesis (X) indicates that the approach does not fully handle the criteria. Each of criteria
is discussed in following Section 2.6.2.

34

2.6. Comparative Analysis and Discussion

Categories Sub-categories Approaches Comparison criteria

Traceability Interoperability V&V Certification

General- OOP-Based EJB (X) (X)

Purpose Fractal (X) (X)

ADL-Based AADL (X) (X) X (X)

Pin (X) X (X)

Specialized- OOP-Based Think (X) (X)

Purpose CHESS (X) (X)

ProCom (X) (X)

ADL-Based IEC-61499 (X) X (X)

AUTOSAR (X) X X (X)

Table 2.2: Synthesis of comparison for some CBD-V approaches

2.6.2 Discussion

The above comparative analysis shows that with some exceptions, almost all of the discussed
component models or frameworks have some support for interoperability and V&V but
not all of them provide necessary tools to exploit this support completely. In contrast, the
traceability and certification support is generally weaker in academic component models or
frameworks mostly due to extensive costs to deal with this requirements.

R1. Traceability. Traceability of concerns is one of problems faced by developers dur-
ing the development of components in safety-critical domains. However, as shown
in Table 2.2, academic component models or frameworks evaluated do not explicity
representing and reasoning with traceability in their model. This is some time inten-
tional. For example, for CHESS, [Panunzio and Vardanega, 2014] argue that traceabil-
ity of model entities (inter-faces, components, etc.) to requirements shall also be man-
aged externally (without embedding any information in the component model itself).
As the others, they do not explicitly handle this concerns, may be due to extensive cost
and time to deal with this requirement.

However, recent empirical research [Mader and Egyed, 2012] shows that system de-
velopment practice with traceability is progressing, and it can be cost benefit in long
term if it is adapted to the project-specific needs [Dömges and Pohl, 1998]. Contrary to
the CBSE, the traceability of concerns has intensively studied in the MDE. As a con-
sequence, in Chapter 3 we discussed the most relevant work related to traceability of
concerns and highlight the benefits for component-based model driving development.

R2. Interoperability. The interoperability of components is a fundamental design desider-
ata of component-based development. With some exceptions, all of the approaches

35

Chapter 2. Component-Based Modeling and Observer-Based Verification

discussed provide a partial interoperability, in terms of composability, substitutability
and reusability i.e., there is no need to know the design and the implementation when
composing a component with other parts of the system, substituting a component with
another one or reusing it in another application.

However, this is not sufficient in a specific domain, where domain knowledge, such as
data format an protocol of communication, is required for an effective interoperability.
In addition, formal modeling of interfaces that enables such interoperability is neces-
sary to reason and predict the application of composition, substitution and reusability
mechanisms.

R3. V&V. The V&V requirement is centered around the possibility of ensuring functional
correctness as well as dependability properties e.g., RAMS properties, i.e., Reliability,
Availability, Maintenability and Safety, by using one of mix V&V techniques shown in
Section 2.4. Most of the discussed frameworks offer a formal execution model, e.g.,:

- Wright for EJB [Sousa and Garlan, 1999];

- Alloy for Fractal and Think [Merle and Stefani, 2008];

- Timed or Colored Petri Nets for AADL [Renault et al., 2009];

- UML state-charts for Pin [Hissam et al., 2005];

- Correctness by Construction for CHESS [Panunzio and Vardanega, 2014];

- Priced Timed Automata for ProCom [Bures et al., 2008].

- UPPAAL timed automata for IEC-61499 [Soliman et al., 2012];

- Simulink formalism for AUTOSAR [AUTOSAR-Simulink, nd];

Consequently, tools for the particular formalism can be used.

However, this does not imply that these tools can be used without substantial addi-
tional effort to integrate them into the development process of the particular frame-
work. For example, for Think, Alloy can also be used to check integrity constraints on
finite architectures, but it is not directly integrated into ready-to-be-used V&V tools
such as the Topcased IDE for ADL [Berthomieu et al., 2009].

R4. Certification. This requirement facilitates certification of systems developed with
the particular component model or framework (e.g., IEC-61499 function blocks, AU-
TOSAR) according to corresponding safety standards (e.g., IEC 61508 for general elec-
tronic devices, ISO 26262 for automotive systems). This is typically done by providing
safety cases of the framework or process for certifying in a system using the component
model or framework.

The certification support is generally weaker in academic component models or frame-
works mostly due to extensive cost and the need for clear industrial application. Out of
the frameworks considered, some certification support exists in case of AADL. AADL
seems to be used mostly in avionics and space industry, accompanied by additional

36

2.7. Summary

development methodology which is compliant with DO-178B for safety of airborne
systems. For Pin, there exist an approach [Chaki et al., 2007] for certification of com-
ponents based on proof-carrying-code and certifying model checking.

2.7 Summary

In this chapter, we have briefly introduced a background of CBSE and V&V that states some
principles and basic concepts we will use throughout the dissertation. Giving a short expla-
nation of each one of them in Section 2.2 and Section 2.4, respectively, we have focused on
CBSE for EDS in Section 2.3 and pattern observer based verification in Section 2.5. Then,
the comparative analysis of some selected approaches is given in Section 2.6, by focusing
particularly on traceability, interoperability, V&V and Certification criteria.

With some exceptions, all of the approaches discussed provide a partial support , in
terms of interoperability, V&V. The traceability and certification support is generally weaker
in academic component models or frameworks, mostly due to extensive costs and the need
for clear industrial application. Regarding the traceability of concern, contrary to the CBSE,
it has been intensively studied in the MDE.

As a consequence, in Chapter 3, we will discuss the most relevant work related to trace-
ability of concerns and highlight the benefits for component-based model driving develop-
ment.

37

Chapter 3
Traceability of Concerns

Contents
3.1 Introduction . 39
3.2 Traceability Background . 40

3.2.1 Traceability Definitions . 40
3.2.2 Traceability Modes . 40
3.2.3 Traceability of Concerns . 42
3.2.4 Traceability of Functional and Non-Functional Concerns 44

3.3 Traceability Approaches in MDE . 46
3.3.1 Description of Traceability Approaches 47
3.3.2 Summary of Traceability Approaches 48

3.4 Comparative Analysis and Discussion 48
3.4.1 Comparative Analysis . 49
3.4.2 Discussion . 54

3.5 Summary . 56

3.1 Introduction

In this chapter, we give a brief introduction to the Traceability of Concerns (ToC). The objec-
tive of this chapter is to give a brief background in which ToC can take place in component-
based development discussed in Chapter 2. Particular importance is given to the survey
of ToC approaches in Model-Driven Engineering (MDE) in which component-based model
driven development takes place.

The chapter is structured as follows. Section 3.2 introduces the traceability background.
In Section 3.3, we review the survey of traceability approaches in MDE. Section 3.4 describes
the comparative analysis and discussion. Finally, Section 3.5 summarizes the ideas presented
in this chapter.

39

Chapter 3. Traceability of Concerns

3.2 Traceability Background

The traceability is one of key activities in the development process of software systems.
This is particularly important in safety-critical, such as railway control and protection soft-
ware, because these systems emphasize high qualities in terms of Safety Integrity Level (SIL)
[EN-50128, 2011]. The traceability has been defined and discussed in various domains.

3.2.1 Traceability Definitions

Several attempts have been done both from academic and industrial domains to define the
main characteristics of traceability. We give below the most commonly used definitions.

- IEEE definition“Traceability is the degree to which a relationship can be established between
two or more products of the development process, especially products having a predecessor-
successor or master-subordinate relationship to one another". [IEEE-Std-610, 1990].

This definition is adopted in many standards of safety critical system, such the railway
standard of software for railway control and protection systems [EN-50128, 2011].

- Gotel and Finkelstein’s definition “Requirement traceability refers to the ability to de-
scribe and follow the life of a requirement, in both a forward and backward direction (i.e.,
from its origins, through its development and specification, to its subsequent deployment and
use, and through all periods of on-going refinement and iteration in any of these phases.)"
[Gotel and Finkelstein, 1994].

Gotel and Finkelstein’s definition has become the common definition of requirement
traceability. They make explicit that in order to follow (i.e., to trace) the life of a re-
quirement you have to describe it.

- Pinheiro’s definition “Requirement traceability refers to the ability to define, capture, and
follow the traces left by requirements on other elements of the software development environ-
ment and the traces left by those elements on requirements." [Pinheiro, 2004].

Pinheiro uses two important aspects of requirement traceability to extend Gotel and
Finkelstein’s definition. The first one is the ability to capture the traces we want to
follow, and the second one is the ability to follow afterwards traces which should be
viewed as natural occurrences.

3.2.2 Traceability Modes

There are several ways in which requirement tracing can be performed. As regards the
direction of tracing, a requirement may be traced in a forward or backward direction; as
regards requirements evolution, a requirement may be traced to aspects occurring before
or after its inclusion in the requirement specification; and as regards the type of the objects
involved, we may have inter or extrarequirements traceability [Pinheiro, 2004].

40

3.2. Traceability Background

Backward and Forward Traceability

The definitions of forward and backward traceability have given in the literature as follow:

- Forward traceability is the ability to trace a requirement to components of a design or
implementation. [Wieringa, 1995].

- Backward traceability is the ability to trace a requirement to its source, i.e. to a person,
institution, law, argument, etc. [Wieringa, 1995].

Figure 3.1: Backward and forward traceability

The concept of forward and backward traceability is intuively illustrated in Figure 3.1
[Pinheiro, 2004]. For example, a requirement is traced forward when the requirement is
changed and we want to investigate the impact of the change. On the other hand, a require-
ment is traced backward, for example, when there is a change and we want to understand
it, investigating the information used to elicit the changed requirement.

Pre- and Post-Requirement Specification Traceability

We consider that a requirement is different to a requirement specification. Indeed, a require-
ment specification is the result of the elicitation process [Pinheiro, 2004]. The tracing of a
requirement can be (1) a Pre-Requirement Specification (Pre-RS) traceability to get informa-
tion related to the process of elicitation, prior to its inclusion in the requirement specification
or a Post-Requirement Specification (Post-RS) traceability to get information related to its
use, after the requirement has been elicited and included in the requirement specification.

- Pre-RS traceability refers to those aspects of a requirement’s life prior to its inclusion
in the requirement specification. [Gotel and Finkelstein, 1994].

- Post-RS traceability refers to those aspects of a requirement’s life that result from in-
clusion in the requirement specification. [Gotel and Finkelstein, 1994].

41

Chapter 3. Traceability of Concerns

Figure 3.2: Pre-RS and Post-RS traceability

Figure 3.2 illustrates the definition of Pre-RS traceability and Post-RS traceability
[Pinheiro, 2004]. For example, the Pre-RS traceability is useful when there is a change to
a requirement and we want to get the requirement’s sources or the people supporting it
to validate the change. On the other hand, Post-RS traceability is useful to get the design
module to which a requirement was allocated or the test procedures created to verify the
requirement.

Inter and Extra-Requirement Traceability

The ability to trace the links between requirements is called inter-requirement traceability.
The links between requirements and other artefacts are captured by extra-requirement trace-
ability.

- Inter-requirement traceability refers to the relationships between requirements.
[Pinheiro, 2004].

- Extra-requirement traceability refers to the relationships between requirements and
other artifacts, such as specifications, diagrams and code [Pinheiro, 2004].

Figure 3.3 illustrates the definition of Pre-RS traceability and Post-RS traceability. For
example, inter-requirement traceability is important for requirement analysis and to deal
with requirement change and evolution. On the other hand, extra-requirement traceability
is important for requirement refinement into design artifacts and artifact analysis in order to
define new design artifacts or to change existing artifacts.

3.2.3 Traceability of Concerns

The traceability definitions given in Section 3.2.1 and traceability modes given in Sec-
tion 3.2.2 should be relaxed to closely reflect the modes we want to trace in the chosen
development process.

42

3.2. Traceability Background

Figure 3.3: Inter and extra-requirement traceability

Firstly, the definition of traceability modes were defined as starting in a requirement.
This is inappropriate since in many occasions the starting point of tracing is not a require-
ment. For example, the backward and forward traceability modes were defined as starting
in a requirement and going backward or forward to other objects. For instance, if we get an
unexpected result in a test procedure it may be necessary to trace the test procedure back to
its related requirements or models in order to understand the results. The same happens if
we have a change in some intermediate models, we may want to get all requirements already
elicited from these sources to see if they remain valid.

For this reason, we prefer the use the term Traceability of Concerns where the definition
of traceability modes were defined as starting in a concern, which is a particular set of infor-
mation that has an effect on requirement or other development artifacts.

Secondly, the scope of traceability modes should overlap. For example, backward and
forward tracing may happen at the same time as Pre-RS tracing or Post-RS tracing. When
tracing a requirement forward to the code built to meet the requirement we do post-RS and
forward tracing. In the same way, we do post-RS and backward tracing when we investigate
an error, tracing a component back to the requirement it was intended to satisfy.

For this reason, we consider that the traceability of concerns includes inter-requirement
and extra-requirement traceability which can be overlap with the three other traceability
modes shown in Section 3.2.2.

Finally, the scope of traceability modes can depend on the development paradigm, e.g.,
Aspect-Oriented Software Development (AOSD) [Kassab and Ormandjieva, 2006], Model-
Driven Development (MDD) [Galvao and Goknil, 2007] and Software Product Line Devel-
opment(SPLD) [Anquetil et al., 2010]. For example considering the MDD the traceability of
concerns can be illustrated by Figure 3.4

43

Chapter 3. Traceability of Concerns

Figure 3.4: Traceability of concerns

To summarize, we focus on software development artifacts and define the traceability of
concerns as following:

Definition 1. TRACEABILITY OF CONCERNS

Traceability of concerns refers to the ability to define, capture, and follow the traces from
requirements concerns to the others concerns of the chosen software development artifacts,
and the traces within or across those concerns.

3.2.4 Traceability of Functional and Non-Functional Concerns

We focus on the traceability of software functional and non-functional concerns. As illus-
trated in Figure 3.4, the functional tracing, such as function trace, state and data trace, is
related to the functional concerns of software development, while, the non-functional trac-
ing, such as error trace and performance trace, is related to the tracing of non-functional
concerns of software development.

Traceability of Functional Concerns

Functional traces are those related to well established mappings between components or
objects [Pinheiro, 2004]. Thus, it occurs naturally when well-defined models and notations

44

3.2. Traceability Background

are used to describe components or objects. Indeed, the traces are derived from the syn-
tactic and semantic connections or mappings prescribed by the models or notations used.
Some examples in object-oriented models are the relationships between UML diagrams,
classes, attributes and method. Note that traceability inside a model is sometimes called
vertical traceability and between different models is sometimes called horizontal traceability
[Lindvall and Sandahl, 1996].

Definition 2. SUFFICIENT CONDITION FOR FUNCTIONAL TRACING

Given a model, we can functionally trace an element represented in that model by following
its syntactically and semantically defined relationships. The sufficient condition to function-
ally trace an element to another is that there is a mapping between the two elements.

For example, functional tracing properly answers questions like “what are the test cases
assigned to this requirement". In these cases it is sufficient to trace the requirement following
its syntactically defined relations to test cases. On the other hand, if we are trying to answer
the question “what are the tests which test this requirement", this can be done in a functional
way only if the semantics of the relationship is sufficient to guarantee that every test associ-
ated to a requirement is indeed a test for the requirement. Otherwise, we are dealing with
non-functional traces and we have to resort to interpretation and analysis of the contents of
the related components or objects.

Traceability of Non-Functional Concerns

Non-functional tracing is related to the tracing of non-functional concerns of soft-
ware development. They are usually related to quality aspects and result from rela-
tionships to non-tangible concepts such as the definition of the reason, the purpose,
the context or technical non-functional concerns, such as error or performance tracing.
Regarding the number of non-functional concerns [Mylopoulos et al., 1992, Glinz, 2007,
Chung and do Prado Leite, 2009], it is important to clearly identify the non-functional con-
cerns we want to trace. As illustrated in Figure 3.4, we focus on error and performance
tracing for temporal safety concerns.

Contrary to the sufficient condition for functional tracing shown in Definition 2, we can-
not derive a sufficient condition for non-functional tracing. The first reason is that non-
functional concerns cannot directly related to mapping between components as in func-
tional concerns. Although, the translation of non-functional concerns into functional cor-
responding can help to automatically perform non-functional tracing, not all aspects of non-
functional traces can be captured in a functional way [Pinheiro, 2004]. Moreover, it is not
convincing that this is a complete solution because the complexity of the model may impair
the tracing process. The second reason is that it is very difficult to decide, in fine-grained,
which component carries traces of a non-functional requirement. For example, for a perfor-
mance requirement, this amounts to ask which component is responsible for achieving the

45

Chapter 3. Traceability of Concerns

required level of performance. There may be no definite answer in terms of single compo-
nents. Non-functional requirements tend to be satisfiable only by an entire system and this
satisfaction cannot be traced to a particular set of design elements[Mylopoulos et al., 1992]

One solution to facilitate traceability of non-functional concerns, even if it coarse-
grained traces, is the efficient production and separation of functional and non-functional
concerns during software modeling. Indeed, the production of traces and their capture for
trace perception are as important as the traces themselves [Pinheiro, 2004]. Otherwise a trace
model may be just too complex to be efficiently used.

As illustrated in Figure 3.4, in this dissertation, we rely on model driven engineering for
dealing with traceability of functional and non-functional concerns. In the next section, we
study the state of the art approaches for traceability in MDE.

3.3 Traceability Approaches in MDE

In this section, we survey different traceability approaches related to requirement and model
driven engineering in order to observes the main techniques used for representing trace-
ability information. Under this perspective, we selected in particular twelve traceability
approaches encountered in the research literature:

1. Event Based Traceability (EBT) [Cleland-Huang et al., 2003]

2. Event Based Traceability with Design Patterns (EBT-DP) [Cleland-Huang and Schmelzer, 2003]

3. Reference Models for Requirements Traceability (RMRT) [Ramesh and Jarke, 2001]

4. Morphological Schema of Traceability (MST) [Konigs et al., 2012]

5. Behavior Tree Traceability (BTT) [Wen and Dromey, 2004]

6. Behavior Tree Traceability with Tree Merging (BTT-TM) [Wen et al., 2014]

7. Scenario Driven approach to Trace Dependency Analysis (SDTDA) [Egyed, 2003]

8. Precise Transformation Traceability Metadata (PTTM) [Vanhooff and Berbers, 2005]

9. On Demand Merging of Traceability (ODMT) [Kolovos et al., 2006]

10. Traceability Framework for Model Transforma- tions (TFMT) [Falleri et al., 2006]

11. Model-Driven Traceability Approach for Software Product Lines (MDTA-SPL) [Anquetil et al., 2008]

12. Model-Driven Traceability Framework for Software Product Lines (MDTF-SPL) [Anquetil et al., 2010]

46

3.3. Traceability Approaches in MDE

3.3.1 Description of Traceability Approaches

The traceability approaches that we have studied are listed in above Section 3.3. All the
evaluated approaches have the capability to represent traceability information, but they used
different techniques to represent traces or traceability links. Here, we summarize the main
representation techniques used to represent traceability links:

• Cross-References. The cross-reference links are embedded as pointers in a text which
may be an informal natural language text, a formal or a graphical specification. Links
between diagrams can be viewed as cross-references. The use of cross-references is
simple to understand. For example, a requirement specification is generally a docu-
ment with many cross-references among parts of the document. Existing packages like
LaTeX contain cross-referencing facilities as hyperlinks.

Cross-referencing is useful for written specifications but not for a concise represen-
tation of links, which can be done with traceability matrix [Wieringa, 1995]. Cross-
references are often binary links, i.e., 1-to-1 links. In this case links of higher arity links,
i.e., m-to-n links, cannot be easily represented.

• Matrix. A simple way to represent links between elements is a two-dimensional grid
or matrix in which the horizontal and vertical dimensions list the elements that can be
linked. The entries in the matrix represent links between these elements. The elements
in both dimensions may or may not be the same.

An advantage of the matrix representation is that it is easy to understand. It provides
a format that can be discussed by stakeholders with different backgrounds. However,
in two-dimensional traceability matrix, only finite 1-to-1 links, between elements can
be represented. However, some links may be m-to-n links.

• Tree-Based. Beyond 1-to-1 traceability links, a tree or a graph provides a means to
represent m-to-n links. Indeed, trace information forms a tree where links may relate
more than two vertices. Although a tree-based representation is a very natural and
intuitive graphical representation, it is more challenging than a matrix presentation.

However, contrary to 1-to-1 traceability links, m-to-n links can help to reduce the num-
ber of required links and therefore simplify the adaptation.

• Meta-Model. Links between elements can also be represented by entity-relation mod-
els. An abstraction of these entity-relations models is called meta-model. In this case,
the linked elements are entities and the links are relationship instances.

The advantage is that links with arity higher can be represented. Moreover an meta-
model of links can be implemented using any database or XML technology. The use
of database or XML technology has the advantage that ad-hoc query and reporting
facilities are easily available.

47

Chapter 3. Traceability of Concerns

• Event-Based. Contrary to traceability meta-model where traceable elements are di-
rectly linked by entity-relations, in traceability event-based subscription traceable el-
ements are no longer directly related, but linked through publish-subscribe relation-
ships. Instead of establishing direct and tight coupled links between elements, links
are established through an event service, through an event-based server

The advantage is that generation and maintenance of traceability link is automatic.
However, when the project grows, the most difficult problem is to maintain a good
performance of the event-based server.

3.3.2 Summary of Traceability Approaches

Table 3.1 summarizes the traceability approaches evaluated. The first row contains the
traceability approaches under study, listed in Section 3.3. The first column contains the
traceability representation techniques derived in Section 3.3.1. We use a check mark Xif the
approach proposes solutions or deals with the different representation techniques.

Traceability
Representation
Techniques

Traceability Approaches

EB
T

EB
T-

D
P

R
M

R
T

M
ST

B
T

T

B
T

T-
T

M

SD
T

D
A

PT
T

M

O
D

M
T

T
FM

T

M
D

TA
-S

PL

M
D

T
F-

SP
L

Cross-Reference X X

Matrix X X

Tree-Based X X X X X X X

Meta-Model X X X X X

Event-Based X X

Table 3.1: Summary of some traceability approaches.

3.4 Comparative Analysis and Discussion

We have already introduced some traceability approaches in Section 3.3. Then, we have sum-
marized in Table 3.2 the evaluated approaches by focusing on the main representation tech-
niques used to represent traceability links. However, they have not yet been compared and
discussed. In this section, we give a comparative analysis of these traceability related works

48

3.4. Comparative Analysis and Discussion

in Section 3.4.1. From this comparative analysis, we discuss in particular in Section 3.4.2
four open issue traceability requirements that we found to be important for flexibility and
adaptability of traceability to project-specific needs.

3.4.1 Comparative Analysis

In [Galvao and Goknil, 2007, Konigs et al., 2012, Anquetil et al., 2010], interesting related
works are presented where the authors review the most recent advances on technolo-
gies to automate traceability and discuss the potential role that Model Driven Develop-
ment (MDD) can play in this field. For example, in [Galvao and Goknil, 2007], a survey
on traceability approaches in MDD and the elaboration of a traceability taxonomy is pre-
sented. Based on this survey and recent related works [Wen et al., 2014, Konigs et al., 2012,
Anquetil et al., 2010], we compare the evaluated approaches listed in Section 3.3. There are
several criteria that could be used to evaluate traceability approaches in software engineer-
ing [Knethen and Paech, 2002, Winkler and Pilgrim, 2010]. As our proposal is based on the
CBMDD, which is a particular component-based MDD approach, here, we present a com-
parative analysis of selected approaches with respect to the common comparison criteria
of Galvao et al. [Galvao and Goknil, 2007]: representation, mapping, scalability, change impact
analysis, and tool support.

The representation criterion compares the approach’s capability to represent traceability
information. The mapping criterion analyzes whether the approach is capable of generating
traces among the models at different levels of abstraction. The scalability criterion analyses
whether the approach can be efficiently applied to large-scale systems. The change impact
analysis criterion evaluates whether the approach provides support for determining the im-
pact of changes on the artifacts across the software development lifecycle. Finally, the tool
support criterion evaluates whether the approach provides any tool support for facilitating
traceability.

Table 3.2 shows a comparative table of approaches evaluated. We use a check mark
Xif the approach proposes solutions or deals with the scalability, change and tool support
criteria, while a check mark between parenthesis (X) indicates that the approach does not
fully handle the criteria. In particular, regarding representation criterion, the approaches
are distributed into two categories. Regarding mapping criterion, we observe, in particular,
the support to intra-level relationships (traces among artifacts of the same abstraction level),
inter-level relationships (traces among artifacts of different abstraction levels), or both intra
& inter-level relationships. Each of criteria is discussed in following paragraphs.

Representation Criterion

For representation criterion, all the evaluated approaches have the capability to
represent traceability information, but in different abstraction levels. For this

49

Chapter 3. Traceability of Concerns

Categories Sub-categories Approaches Comparison criteria

Mapping Scalability Change Tool

Requirement-Driven Event-based EBT inter X X

EBT-DP intra & inter X (X)

Reference-based RMRT intra & inter X X X

MST intra & inter (X) X X

Behavior tree-based BBT intra & inter (X) X (X)

BBT-TM intra & inter X X X

Model-Driven Model-based SDTDA intra & inter X (X) (X)

PTTM intra & inter (X) X

Transformation-based ODMT inter (X) X

TFMT intra & inter X

Product-based MDTA-SPL intra & inter (X)

MDTF-SPL intra & inter X X X

Table 3.2: Comparison of some traceability approaches

reason, the evaluated approaches are distributed into two categories, see Ta-
ble 3.2. The first category, the requirement-driven approaches use requirement mod-
els as abstractions to represent traceability information and to guide their trace-
ability methods. In this category, we consider three sub-categories: the event-
based (e.g., [Cleland-Huang et al., 2003, Cleland-Huang and Schmelzer, 2003]), reference-
based (e.g., [Ramesh and Jarke, 2001, Konigs et al., 2012]) and behavior tree-based (e.g.,
[Wen and Dromey, 2004, Wen et al., 2014]). The second category, the model-driven ap-
proaches, according to the MDE paradigm, are interested in how meta-models, models and
transformation frameworks are involved in traceability of any concerns, including inter and
extra requirement traceability. This category is classified in two sub-categories the model-
based (e.g., [Vanhooff and Berbers, 2005] and our approach) and the transformation-based (e.g.,
[Kolovos et al., 2006, Falleri et al., 2006]), which uses model transformation mechanisms for
generating trace information.

Mapping Criterion

As already defined, the mapping criterion evaluates whether the approach supports trace-
ability of model elements at different levels of abstraction. A comparison of the evaluated
approaches from the perspective of intra or inter relationships is presented in the “mapping
column" of Table 3.2.

Both event-based traceability approaches [Cleland-Huang et al., 2003] and
[Cleland-Huang and Schmelzer, 2003] use event-based mechanisms to support the in-

50

3.4. Comparative Analysis and Discussion

direct mapping from requirements to other artifacts. This indirect mapping is the inter-level
relationship. Indeed, in this method, requirements and other traceable artifacts, such
as design models, are no longer directly related, but linked through publish-subscribe
relationships. Based on design patterns, [Cleland-Huang and Schmelzer, 2003] approach
also supports intra-level traceability between various non-functional requirements. In the
reference-based traceability approach [Ramesh and Jarke, 2001], the proposed low and high
meta-models support intra-level and inter-level traceability provides mappings between
requirements and many other elements (system objectives, system components, functions,
etc). In [Konigs et al., 2012], a morphological schema of traceability is proposed for systems
engineering practice in the automotive industry. The application of the schema focuses
on intra or inter trace links among system-oriented line and product-oriented line. The
behavior-based traceability approaches [Wen and Dromey, 2004, Wen et al., 2014] support
intra and inter-level traceability. In fact, they distinguish between two kinds of traceability:
horizontal traceability and vertical traceability. The horizontal traceability is the traceability
between different software artifacts within the same version of software, while the vertical
traceability is the traceability in the same design artifact in different versions of software
in order to enable evolutionary changes from one version to the next version. While the
behavior-based traceability approach is designed specifically for the behavior engineering
[Dromey, 2003], the approach can be supported in other software engineering approaches,
such as model-based approaches. For example, Kim et al. propose a transformation from
Behavior Tree models to UML state machines as a formal path from natural language
requirements to an executable model of the system [Kim et al., 2012].

In the model-based traceability approach [Vanhooff and Berbers, 2005], Vanhooff and
Berbers define UML profiles based on a meta-model that gives support to the model trans-
formation between source and target model elements. As the proposed transformation trace-
ability meta-model is mapped to UML profiles, links among various UML model elements
can be traced. In our approach, intra-level and inter-level links are explicitly defined within
or across the different levels of component model abstraction independently of any model
transformation mechanisms. In the transformation-based approach [Kolovos et al., 2006],
traceability information is stored in separate trace models which can be merged with a cor-
responding primary model from which annotated models with traceability information are
generated. This approach uses external traceability links, i.e., inter traceability links, and
adopts EML trace meta-model as a merging language for the generation of annotated mod-
els. In [Falleri et al., 2006], the trace meta-model and the transformation framework are pro-
posed to enable the automatic tracing of model transformation in the form of transformation
chains. Depending on the definition of source and target models, the approach allows intra-
level and inter-level traceability links. However, there is no evidence of scalability, as dis-
cussed in the following paragraph. In the product-based approach [Anquetil et al., 2008], the
authors have looked at the interaction of Traceability, Model Driven development and Soft-
ware Product Line. Then, in [Anquetil et al., 2010] a Model-Driven Traceability Framework
for Software Product Lines is proposed. The framework is based on traceability meta-model
which defines traceable artifacts and trace links between these artifacts.

51

Chapter 3. Traceability of Concerns

Scalability Criterion

Since real software projects are naturally larger during their development or become larger
during their evolution, scalability is an important criterion to be considered when evaluat-
ing the usage of traceability approaches. The “scalability column" of Table 3.2 shows if the
evaluated approaches totallyXsupport, partially (X) support or do not support scalability.

As the event-based traceability approaches [Cleland-Huang et al., 2003,
Cleland-Huang and Schmelzer, 2003] are based on an event server, which manages
some links between the requirement and its dependent artifacts, the most difficult problem
when the project grows, is to maintain a performance of the event server. However, this
performance has not been discussed in these papers. In this way, the scalability of these
approaches is questionable. In [Cleland-Huang and Schmelzer, 2003], there is no evidence
that the method can be applied with success to support more complex design patterns of
non-functional requirements. The reference models described in the reference-based approach
[Ramesh and Jarke, 2001] may be scalable due to possible use for traceability activities in
different complexity levels. Indeed, Ramesh and Jarke [Ramesh and Jarke, 2001] follow an
empirical approach and focus interviews conducted in software organizations to study a
wide range of traceability practices. As a result of this work, the authors constitute reference
models that include the most important kinds of traceability links for various software
development elements. In the behavior-based approach [Wen et al., 2014], two case studies
are introduced to illustrate the concept and the scalability of the traceability model. The
process to merge different Design Behavior Trees (DBTs) and generate an Evolutionary
Design Behavior Tree (EvDBT), is a core part of the traceability model. They have proven
that there is a way to compute the versioned tree merging algorithm in O(n log n) time. This
result is important because it shows that the tree merge algorithm is at least theoretically
scalable.

In the model-based traceability approach [Vanhooff and Berbers, 2005], the authors do not
present a practical application of their approach. Therefore, it may be scalable because it is
associated with the UML largely accepted and used. In our approach, we investigate the
scalability issue in two directions. First, our approach has been shown scalable in different
case studies due to its possible use of traceability activities in different component-based ab-
straction levels to deal with different complexity levels. Second, we have studied the empir-
ical scalability of our approach for large-scale systems by increasing the complexity of each
case study. We have concluded that the environment context awareness is one of the promis-
ing approaches to deal with scalability for large scale systems. In the transformation-based ap-
proach [Kolovos et al., 2006], the on-demand merging of traceability links with models may
be a scalable approach due to the fact that the traceability information is maintained in a sep-
arate model and a generic trace meta-model is used for flexibility reasons. Contrary to our
approach, in [Falleri et al., 2006], the authors implementation of trace generating code is tan-
gled with the transformation code. This makes the traceability mapping table less reusable.
In addition, in this paper, there is no evidence of scalability of this approach with relation

52

3.4. Comparative Analysis and Discussion

to larger projects with longer transformation trace chains. Despite that, the defined meta-
model may be extendable and scalable. In the product-based approach [Anquetil et al., 2010],
the relational database option is used to deal with scalability contrary to several approaches
including ours where scalability is based on whether XML scales up nicely or not.

Change Impact Analysis Criterion

With the change impact analysis criterion, we want to evaluate if an approach provides sup-
port for determining the effect of change on the entire system or on the artifacts across the
software development lifecycle. The “change column" of Table 3.2 shows if the evaluated
approaches totallyXsupport, partially (X) support or do not support scalability.

The event-based traceability approaches [Cleland-Huang et al., 2003,
Cleland-Huang and Schmelzer, 2003] support change impact analysis. In the first ap-
proach, the event server manages some links between the requirement and its dependent
artifacts by using some information retrieval algorithms. The second approach supports
the identification of critical elements that should remain in the system in order to keep
the integrity of a traceable non-functional requirement. The reference-based approach
described by Ramesh and Jarke [Ramesh and Jarke, 2001] provides a means to analyze
change impacts according to the description of the rationale submodel. The behavior-based
approach [Wen et al., 2014] offers a new approach to software change impact analysis at
the architecture levels. It differs from other change impact analysis methods, such as
[Zhao et al., 2002], in the way that the traceability model handle vertical traceability by
merging multiple versions of a software system and by tracing the design evolution back to
the requirement evolution.

Contrary to our approach, the other evaluated model-based approach
[Vanhooff and Berbers, 2005] and the transformation-based approaches [Falleri et al., 2006,
Kolovos et al., 2006] do not provide any mechanisms for performing change impact anal-
ysis. In our approach, we have implemented a set of intentional trace queries that can
trace requirement concerns to component elements and vice versa. To assess the impact of
change, we use forward tracing queries, which trace the architectural elements starting from
a given set of concerns. Backward queries are also used to inspect the set of concerns that
an architectural element is related to. In the product-based approach [Anquetil et al., 2010],
a trace query instance provides means to perform specific queries on a set of trace links
and artifacts. It uses the framework basic query capabilities to execute more complex and
powerful queries such as feature interaction detection and change impact analysis.

Tool Support Criterion

Tool support is fundamental for a good application of a traceability method, not only for
visualization and management of generated traces among software artifacts, but also for the
proper support for reasoning on this information. The evaluated approaches are compared

53

Chapter 3. Traceability of Concerns

from the perspective of the provisioning of any (hypertext or graphical editors) tool support
in the “tool column" of Table 3.2.

The components of the event-based traceability approach [Cleland-Huang et al., 2003]
were implemented as client-server architecture based on observer design patterns. The
event trigger was implemented on top of the DOORS requirements management sys-
tem to manually capture change events as they occurred. Cleland-Huang and Schmelzer
[Cleland-Huang and Schmelzer, 2003] support the static and dynamic generation of trace-
ability links across the development phases, although only a few characteristics of their ap-
proach are fully implemented. The reference meta-models described in the reference-based ap-
proach [Ramesh and Jarke, 2001] were encoded in a knowledge-based meta database man-
agement system called ConceptBase [Jarke et al., 1995]. The efficiency of the tools which
have implemented these metamodels was not evaluated. However, they were adopted later
in several commercial traceability tools, such as SLATE and Tracenet. In the behavior-based
approach [Wen et al., 2014], the case studies are investigated using a software environment
called Integrare [Wen et al., 2007]. “Integrare" integrates a number of different software tools
to support the BE approach.

In their model transformation-based approach, Kolovos et al. use Epsilon Merg-
ing Language (EML) [Kolovos et al., 2006] to implement the merging of models with
traceability links. From a tool-support perspective, the execution engine of EML sup-
ports the Eclipse Modeling Framework (EMF) and Meta-Object Facility (MOF) mod-
els, as well as XML documents. In [Falleri et al., 2006], Falleri et al. have imple-
mented the transformation chain trace meta-model in a model-oriented language com-
patible with EMF called Kermeta [Triskel project (IRISA), nd]. The product-based approach
[Anquetil et al., 2010] has also adopted the EMF model-driven framework to implement
their traceability framework for software product lines. In the model-based traceability ap-
proach [Vanhooff and Berbers, 2005], the authors do not relate the existence of a tool that
gives support to their approach. In contrast, our approach has a partial tool support. In-
deed, we have implemented concern traceability meta-model in the XML-based tool for the
representation of the models and we use XQuery queries for the inference of tracing infor-
mation. This renders our approach practical for models created with any modeling tool that
has XML exporting capabilities. However, our approach does not yet support a graphical
user interface. We are therefore working on enhancing the XML-based tool with a more
visual representation of the results to the user.

3.4.2 Discussion

From above Section 3.4.1 comparative analysis, where the regular traceability requirements
(representation, mapping, scalability, change and tool) are discussed, here we discuss four
main requirements (the separation of concerns [Hursch and Lopes, 1995], the adaptability of
software artifacts to projects specific needs [Dömges and Pohl, 1998] , the uncertainty on
software development [Aizenbud-Reshef et al., 2006] and the abstraction of design decisions

54

3.4. Comparative Analysis and Discussion

[Anquetil et al., 2008]) that we found to be important to facilitate the maintenance of trace-
ability for flexibility and adaptability of traceability to project-specific needs, such as the
impact of uncertainty on safety-critical project.

R5. Separation. The separation of concerns is a fundamental design principle for separat-
ing a particular set of information, named concerns. Since Dijkstra [Dijkstra, 1982a],
it is a long known best principle of software development, but sometimes much ne-
glected in practice. It consists in separating different software concerns through soft-
ware development activities in order to enable separate reasoning for each of focused
specification. The extent of separation has obvious benefit for traceability of concerns
and the reuse of the same functional concerns under different non-functional concerns.

However, experience shows that this benefit is much more difficult to achieve than
it may seem [Panunzio and Vardanega, 2014]. Indeed, it requires substantial effort to
arrive at common and stable specifications, clean interface design and effective consol-
idation of functional and non-functional part of system components.

R6. Adaptability. Adapting traceability environments to project-specific needs is a
fundamental requirement of any traceability framework when considering project
cost and time [Dömges and Pohl, 1998]. A few of evaluated approaches, such as
[Konigs et al., 2012] adapt traceability to automotive project specific needs. Recent
empirical research [Mader and Egyed, 2012] shows that system management practice
with traceability is progressing.

However, the same studies also point out that full capture of all conceivable traces ac-
cording to these advanced models is neither desirable nor feasible when considering
project cost and time. In this sense, if requirement traceability is not customized it
can lead to an unwieldy mass of unstructured and unusable data that will hardly ever
be used. The adaptation of trace capture and usage to project-specific needs is a pre-
requisite for successfully establishing traceability within a project and for achieving a
positive cost-benefit ratio [Dömges and Pohl, 1998].

R7. Uncertainty. Uncertainty plays a role in any system that needs to evolve continuously
to meet the specified or implicit goals of the real world [Lehman and Ramil, 2002]. In
safety-critical systems, the impact of uncertainty on software development can be even
more sever than traditional software systems. It is for this reason, in development pro-
cess of safety-critical systems, the Safety Integrity Level (SIL) is required. For example,
the railway standard [EN-50128, 2011] address five Safety Integrity Levels (SIL), where
0 defines the lowest and 4 the highest one. The value of SIL defines the acceptable prob-
ability of Tolerable Hazard Rate (THR), which means a dangerous failure per hour in
continuous operation. A system with safety function must keep THR between 10−5f/h

and 10−9f/h.

Under this perspective, traceability of design decisions in safety-critical software de-
velopment is an important and relevant issue, as these are key points where uncer-
tainty influences the design process. For performing traceability in the presence of

55

Chapter 3. Traceability of Concerns

uncertainty, the focus of attaching additional information to traceability links, such as
the rational for its creation and the confidence we have in this rationale, should be one
of the solutions to resolve design decisions [Anquetil et al., 2008].

R8. Abstraction. To deal with the complexity of traceability, it is essential to specify a
certain level of abstraction, which is the essence of simple and effective software de-
sign [Jackson, 2006]. This fundamental principle is accessible in most of evaluated
approaches at different abstraction layers. Some approaches, provide a low-level
programming interface to address such an abstraction layer. The advantage of this
low-level programming interface is to bring flexibility to the approach, as it is thus
not tied to a specific implementation language. Other approaches rely on a model-
based abstraction to describe a domain or Domain-Specific Modeling Language (DSL
or DSML).

However, although model-based approaches are well suited to provide an abstraction
layer, the main issue that may arise is the granularity level considered in those models.
Indeed, a model could be either too coarse-grained or fine-grained, thus not enabling the
modeling of low level functionalities or, on the contrary, being too specific. However, the
proposed approaches deal with such issues since models can be refined in the model-driven
engineering. For example, a general DSL is implemented to fit a certain level of abstrac-
tion, and a specific DSL of component-based approaches rely on the principles of component
and composite, which can contain several components to define in addition several levels of
granularity.

3.5 Summary

In this chapter, we reviewed the state-of-the-art approaches for traceability of concerns. In
this survey, we have briefly introduced some principles and basic concepts derived from
traceability background in Section 3.2. From the traceability approaches selected in Sec-
tion 3.3, the comparative analysis of approaches has been given in Section 3.4. From this
comparative analysis where the regular traceability requirements (representation, mapping,
scalability, change and tool) are discussed, we particularly discussed four main requirements
(separation of concerns, the adaptability of software artifacts to projects specific needs, the
fexibility of software processes and the uncertainty of design decisions) that we found to be
important to facilitate the maintenance of traceability for flexibility and adaptability of trace-
ability to project-specific needs, such as the impact of uncertainty on safety-critical project.

As shown by the summarized Table 3.3, there exists no evaluated approach which, at
the same time,

• provides a coarse-grained and fine-grained separation of concerns to facilitate the weak
coupling between models and model elements,

56

3.5. Summary

Categories Sub-categories Approaches Discussion criteria

Separation Adaptability Uncertainty Abstraction

Requirement Event-Based EBT (X)

EBT-DP (X) (X)

Reference RMRT X (X) X

MST X X X

Behavior-Tree BBT (X) X

BBT-TM (X) X

Model-Driven Model-based SDTDA (X)

PTTM (X) (X) X

Transformation ODMT X

TFMT X

Product-Based MDTA-SPL (X) (X) (X)

MDTF-SPL X (X) X

Table 3.3: Synthesis of comparison for some traceability approaches

• is flexible enough to adapt traceability environments to project specific-needs,

• attaches additional uncertain information to traceability links to analyse the influences
of uncertainty in the design rationale,

• provides a correct granularity and abstraction levels to enable the compromise between
the coarse-grained and fine-grained modeling, and the high-level and low-level ab-
straction.

In this dissertation, we claim that a component-Based modeling with traceability of con-
cerns is one possible way to deal with the challenges raised. As a consequence, considering
the approaches and concepts discussed in this chapter, we describe in the next part of the
dissertation our contribution for component-based modeling with traceability of concerns.
We propose in particular a meta-model bringing together CBSE principles that addresses the
first research question and goal we discussed in Chapter 1.

57

Part III

Contribution

59

Chapter 4
Component-Based Modeling with
Traceability of Concerns

Contents
4.1 Introduction . 61

4.2 Motivation and Challenges . 63

4.2.1 Motivating Example . 63

4.2.2 Challenges . 65

4.3 SARA Meta-Model . 66

4.3.1 Concern Meta-Model . 66

4.3.2 Component Meta-Model . 68

4.3.3 Traceability Meta-Model . 71

4.4 Process to Use the Meta-Model . 73

4.4.1 Actor Roles . 74

4.4.2 Implementation Phase . 75

4.4.3 Modeling Phase . 77

4.4.4 Tracing Phase . 77

4.5 Challenges Revisited and Lessons Learned 78

4.5.1 Challenges Revisited . 78

4.5.2 Lessons Learned . 79

4.6 Summary . 81

4.1 Introduction

As shown in Chapter 2, the Component-Based Model Driven Development (CBMDD)
[Chen et al., 2009] is based on Model Driven Engineering (MDE) [Schmidt, 2006] and

61

Chapter 4. Component-Based Modeling with Traceability of Concerns

Component-Based Software Engineering (CBSE) [Szyperski et al., 2002]. The idea promoted
by the CBMDD is to use the software component model [Lau and Wang, 2007] systematically
at different phases of systems development process. As shown in Section 2.6.1, many soft-
ware component models and frameworks have been proposed and compared over the last
few years [Crnkovic et al., 2011, Pop et al., 2014]. However, CBSE still is a new technology
and there is much space for research in this field. For example, as CBSE spreads to specific
critical domains, such as aeronautical, automotive and railway real-time control systems
[CHESS, 2012], a novel component-based process with separation of functional and non-
functional concerns is introduced in [Panunzio and Vardanega, 2014] for the development
of embedded real-time software systems. However, as discussed in Section 2.6.2, although
these various approaches make useful contributions to the discipline, few of them provide
an efficient method to handle explicitly traceability of concerns, may be due to extensive cost
and time to deal with the traceability management.

In addition, although the take-up of CBMDD has been particularly evident in the
automotive and aeronautical engineering domains [AUTOSAR, 2006, CHESS, 2012], the
railway sector has lagged behind, partly due to outdated standards and lack of aware-
ness [Favaro and Sartori, 2014]. But the situation is now changing rapidly, and the envi-
ronment in recent works, e.g., [openETCS, 2012] is representative of a European aware-
ness and push toward implementation of model-based approaches in railway engineer-
ing [Favaro and Sartori, 2014]. For these reasons, we highlight the main advantages of
CBMDD, i.e., requirement refinement, domain abstraction and separation of concerns in
our railway domain-specific component-based model, named SARA [Sango et al., 2014a,
Sango et al., 2014b], in order to facilitate the maintenance of traceability links consistently
in SARA model when software artifacts are evolving.

One clear benefit of referring to component-based development for traceability is a dis-
tinction between high-end and low-end representation of traceability. Indeed, in our com-
ponent model, we distinguish between two granularity layers for software specification: (i)
a high layer, where software is modeled as a set of components communicating through
message passing (ii) and a low layer, where their internal behavior is specified. With this
separation of concerns we can refer to distinct low-end and high-end traceability represen-
tation for a wide range of traceability links, such as intra-level and inter-level traceability
links.

This chapter thus covers the complete phase of concern modeling, component modeling
and trace modeling. The chapter is structured as follows: Section 4.2 describes a motivating
example (Section 4.2.1) by highlighting the need for traceability of concerns and discusses
the related challenges (Section 4.2.2). Section 4.3 presents the SARA meta-model composed
of a concern meta-model (Section 4.3.1), a component meta-model (Section 4.3.2) and a trace-
ability meta-model (Section 4.3.3). Section 4.4 proposes a generic process, which can be used
to instantiate the meta-models for change impact analysis in the case of software evolution.
Finally, Section 4.5 discusses several aspects regarding our approach, while Section 4.6 con-
cludes the chapter.

62

4.2. Motivation and Challenges

4.2 Motivation and Challenges

This section introduces a motivating example for component-based modeling with trace-
ability of concerns. It illustrates the need for separation and traceability of concerns when
using component models and, a change in one model must be propagated through the other
models. Based on this example, we then summarize challenges related to modeling a critical
software in an component-based architectural fashion with traceability of concerns.

4.2.1 Motivating Example

To motivate our approach, let us consider an example of a System Requirement Specifica-
tion (SyRS): the SyRS of European Rail Traffic Management System/European Train Control
Sub-system [ERTMS/ETCS, 2014]. This system is specified to replace the many incompati-
ble different Automatic Train Control (ATC) systems used in different countries at different
times. Note that a SyRS is generally the result of requirement elicitation process in a domain
[Pinheiro, 2004]. We focus on Software Requirements Specification (SoRS), which is derived
from SyRS.

Assumption 1. SOFTWARE REQUIREMENTS SPECIFICATION TRACEABILITY

We assume that the SoRS is traceable if (i) the origin of each of its requirements is clearly
related to the SyRS ones and if (ii) it facilitates the referencing of each requirement in the
future software development or evolution artifacts.

This assumption requires a change impact analysis in case of change in the SyRS or
SoRS for diverse evolution reasons. For example, the SyRS of ERTMS/ETCS is not yet stable
as illustrated in the different versions of the ERMS/ETCS documents [ERTMS/ETCS, 2006,
ERTMS/ETCS, 2014]. For instance, the last version [ERTMS/ETCS, 2014] defines some ad-
ditional functionalities, such as the procedure to supervise the level crossing section or a set
of procedures that specify the driver indications related to the specific track-conditions. As
depicted by Figure 4.1, the ideal response to a change in the SoRS is that we can quickly
determine in various model abstraction levels introduced by any model transformation (1)
where to make the change (2) how the change affects the architecture of the existing software
(3) which components of software, including their interfaces and behaviors, are affected by
the change. Intuitively, the concept of requirement tracing is quite simple: it consists to
follow relationships or links.

However, one major challenge when developing large systems is to remember all links
that were made to connect system elements. Some traceability models are based on the defi-
nition of very rich sets of traces and traceable objects, in an attempt to devise all conceivable
(or at least reasonable) traces [Pinheiro, 2004]. This is not a complete solution because the
complexity of a model may impair the tracing process. It may even be impossible to know
that such links exist in a multi-team development, such as a three-tier party development

63

Chapter 4. Component-Based Modeling with Traceability of Concerns

Figure 4.1: An example of model driven view

promoted by CBSE if the different teams do not use the same model to explicitly define
traceability links.

Moreover, the matter is complicated when dealing with non-functional tracing beyond
functional tracing [Pinheiro, 2004]. Indeed, as illustrated in Figure 4.1, the functional tracing,
such as function trace, state and data trace, is related to the functional concerns of software
development, while, the non-functional tracing, such as error trace and performance trace, is
related to the tracing of non-functional concerns of software development. Functional traces
are those related to well established mappings between objects. Thus, it occurs naturally
when well-defined models and notations are used to describe objects. On the other hand,
non-functional traces are usually related to quality aspects and result from relationships
to non-tangible concepts such as goals, contexts, decision and responsibilities, or technical
non-functional requirements, such as safety and temporal concerns. This is much like non-
functional requirements are usually translated to functional corresponding in order to be
traced and verified [Pinheiro, 2004].

However, the solution where non-functional requirements, particularly temporal re-
quirements, have to be re-expressed in terms of functional ones may not be the complete
answer because the perception of critical traces and their capture are as important as the
traces themselves. Let take an example. In our example of Figure 4.1, suppose that a com-
ponent supports a safety temporal requirement but, for some reasons, such as invisibility
reason, traceability managers do not perceive that connection and fail to register the trace
between the component and the requirement. In this situation the trace still exists, because
the component still supports the requirement, but this critical trace will be unavailable in-
side the traceability matrix. As a consequence, certification agencies will fail to get this trace

64

4.2. Motivation and Challenges

information and will ask to software designers and developers to provide accurate traceabil-
ity information to guarantee that this critical requirement is properly designed and imple-
mented. This will be a loss of time. In this context, should non-functional concerns be part
of the component external interface specification in the form of annotations?

4.2.2 Challenges

The example previously discussed shows that when relying on component-based model-
ing with traceability of concerns, the model must refer to the ability to represent, perceive,
and follow the traces from requirement concerns to software component concerns, and vice
versa. To achieve this ability, we identify three main challenges that we face in this chapter:

C1. Selection and separation of concerns. Modeling of concerns with traceability of con-
cerns implies to select what we want to trace with separation of concerns, whatever
functional or non-functional concerns. Indeed, if the traceability of concerns is not cus-
tomized it can lead to an unwieldy mass of unstructured and unusable data that will
never ever be used. The first challenge is thus to identify clearly the concerns to be
modeled.

C2. Integration of dependability concerns in component-based modeling. Our goal is
not to provide a new component model, but to put together existing component model
concepts in order to provide a lightweight component meta-model with the integration
of temporal safety concerns. Temporal concerns are behavioral concerns that change
over time. Temporal safety concerns are class of temporal concerns that state that
"something bad does not happen". The second challenge is thus to provide an ab-
stract component meta-model to describe component models that can be used to model
safety-critical software with traceability of concerns.

C3. Tracing of concerns throughout component model abstraction levels. In addition to
inter-requirement traceability, which refers to the relationships between requirements,
our goal is to provide extra-requirement traceability, which refers to the relationships
between requirement concerns and other design concerns and vice versa. In this way,
one must be able to model explicitly trace between the focused concerns and other
concerns independently from model transformation mechanism. The third challenge
is thus to enable traceability of concerns within or across model abstraction levels in-
troduced by any model transformation mechanism.

65

Chapter 4. Component-Based Modeling with Traceability of Concerns

4.3 SARA Meta-Model

This section describes in details the meta-model of our SARA approach. It is composed of a
concern meta-model for modeling system scenario concerns which are themselves related to
system requirement and architecture concerns (Section 4.3.1), a component meta-model for
modeling component elements with separation of concerns (Section 4.3.2) and a trace meta-
model for modeling traceability links among requirement concerns and component elements
(Section 4.3.3). Here, meta-models and their constraints are represented with UML class
diagrams [OMG, 2005] and Object Constraint Language (OCL) [OMG, 2003], respectively.

4.3.1 Concern Meta-Model

Several concerns, such as requirement, functional architecture, physical architecture, sce-
nario, context, etc, are involving in System Engineering. For example, based on the litera-
ture review of functional architecture patterns, Pfister et al. propose a system concern meta-
model for formalizing system engineering knowledge [Pfister et al., 2012]. Indeed, leverag-
ing patterns on three main system engineering activities, i.e., requirement engineering, func-
tional architecture design and physical architecture allocation, they argue that functional
architecture patterns are key elements for knowledge reuse in system engineering.

Beyond pattern knowledge, designers of complex domain specific systems, such as
safety-critical software systems, have to focus on specific concerns for particular industrial
domains and engineering needs, such as safety-critical requirement engineering and soft-
ware engineering. Therefore, our purpose with the concern meta-model is not to provide an
entirely new concern meta-model, but a simple concern meta-model with a clear separation
of concerns in order to facilitate traceability of concerns during safety-critical software de-
velopment. As a consequence, we gather the literature existing concepts and reuse them to
obtain what we define as the concern meta-model, depicted by Figure 4.2.

In our concern meta-model, we focus on RequirementConcern,
ArchitectureConcern and ScenarioConcern. Here, a scenario is one way the
system is envisaged to be used in operational life cycle. An interaction of architecture
components in order to satisfy the specification of requirements determine a scenario.
The key idea is that if a scenario, derived from requirements and related to architecture
components, is changed, its model elements can be repeatedly tracked whenever there is a
change.

Our requirement-based taxonomy is based on Glinz’s concern-based taxonomy of re-
quirements [Glinz, 2007] and the use of non-functional requirements in the software devel-
opment process [Chung and do Prado Leite, 2009]. As a consequence, requirements are ei-
ther FunctionalRequirement or NonFunctionalRequirement. Functional require-
ments are performed by Functions to which they are allocated. Functions compose
the functional architecture, which is separated from physical architecture.

66

4.3. SARA Meta-Model

Figure 4.2: Concern meta-model

Here, we focus on functional architecture regardless of physical architecture. Indeed, in
[Cloutier and Verma, 2007], a system architecture taxonomy is proposed. Based on this tax-
onomy, Pfisted et al. [Pfister et al., 2012] argue that functional architecture patterns are key
elements for knowledge reuse in system engineering, because they capture how the system
does what it does by using control loops, algorithms, etc. In this way, a designer has the
ability to specify executing conditions of the functions, either by the use of control structures
(ControlFlow), or by triggering data (DataFlow), or a combination of the two semantics.

Since non-functional concerns cover considerable characteristics, such as reliability,
availability, maintainability, safety, security, usability, flexibility, interoperability and per-
formance, which include time/space bounds, response time, speed, throughput and so on
[Glinz, 2007, Chung and do Prado Leite, 2009], we focus on safety requirements subjected
to real-time constraints, named TSRequirement, which are separated from other non-
functional requirements , named ONFunctional in Figure 4.2. Each requirement is identi-
fied by a unique name (name) and can be described (description) in different ways (nat-
ural language, mathematical expression, etc.). Requirements can contain other properties,
such as the document type, the author and the verification type, that characterize them.
For example, for verification activities, we characterize each requirement with attributes
verifType, validStatus. The verification type (verifType) is a string characteristic
used to indicate whether the verification used is model or code verification, a test or a formal
proof, while, the validation status (validStatus) is an enumeration that characterizes the
status (pass, fail or unchecked) of the verification results for a specific scenario.

As already mentioned, a ScenarioConcern consists of one or more Function,
which are themselves related to functional RequirementConcern. For example, sev-
eral procedures, such as start of mission, RBC/RBC Handover, passing a level crossing
procedure, are defined in chapter 5 of system requirement specification of the ERTM-

67

Chapter 4. Component-Based Modeling with Traceability of Concerns

S/ETCS system [ERTMS/ETCS, 2014]. Note that in these kinds of safety-critical sys-
tems, degraded situations are generally defined to deal with the fault cases. For this
reason, a ScenarioConcern can have different ScenarioMode, which can be either
NominalSMode or DegradedSMode, which deals with fault or exception situations. The
current mode can be updated by a method as defined by the OCL method setMode shown
in Listing 4.1.

1 context ScenarioConcern : : setMode (M: Mode)
2 pre : s e l f . Mode −> inc ludes (M)
3 post : s e l f . currentMode = M

Listing 4.1: A method to update the current mode of a scenario

The main contribution of this meta-model is to represent functional and non-functional
requirements as scenarios with nominal and degraded modes in order to deal with specific
dysfunctions affecting temporal and safety concerns. With this concern meta-model, users
can use the same uniform formalism to define their software scenario from system require-
ment specification. The concern modeling provides the foundation for our component-based
modeling by elucidating functional and non-functional concerns we want to trace.

4.3.2 Component Meta-Model

Figure 4.3 presents our component meta-model. It expresses that a model is composed of
an organized set of ComponentUnit and performs an organized set of Functions, which
compose a ScenarioMode shown in the concern meta-model, see Figure 4.2. In the concern
meta-model, we have seen that a scenario can have a nominal mode and different degraded
modes. Characterizing a mode consists in instantiating the two links component-mode
and mode-function shown in Figure 4.3. Indeed, these links allow us to specify in a static
manner (staticAllocation) which component units must be used and which functions
must be performed for each mode.

A ComponentUnit refers to an artifact in the software life cycle. As a con-
sequence, a ComponentUnit can by viewed in different ModelAbstractionLevel

throughout the software model life cycle (e.g., model design level, model analysis level
and model implementation level). To refer to component units for traceability pro-
cess, ComponentUnit includes the name and level attributes. A ComponentUnit

consists of one or more ComponentElement, which can be a ComponentEntity,
ComponentConnection and ComponentOperation. A ComponentEntity is either a
BasicComponent or a CompositeComponent. A BasicComponent directly encapsu-
lates behavior, whereas a CompositeComponent is built from basics components by us-
ing CompositionConnector, which can be for example a sequencing, branching or loop-
ing connector. Both basic or composite component could be either ActiveComponent or
PassiveComponent. An ActiveComponent has its own dedicated thread of execution,

68

4.3. SARA Meta-Model

Figure 4.3: Component meta-model

while a PassiveComponent is only executed when invoked or triggered by an external
execution thread. Each component has a set of ComponentOperation that describes its
behavior in accordance with functions or a scenario mode that it performs. Each operation
has a signature including its name and a set of ordered parameters. The name identifies this
operation. Each parameter-passing mode could be in, out or in-out. The parameter is typed
by an already defined data types, such as basic types of any programming language (e.g.,
integer) or composite types (e.g., record). By keeping the separation of concerns in mind,
each operation is annotated by non-functional concerns (pre and postcondition).

Moreover, the component model represented in Figure 4.3 shows the evolution model
of the component in the form of a state transition system specified by the isInit attribute
and setState method in ComponentOperation. The formal definition of our component
state transition model is detailed in Section 5.3.1. Here we give an intuitive presentation.
First, an initial state of a component and its uniqueness must be defined as illustrated by the
OCL constraint of Listing 4.2. Then, a current state of a component can be updated by the
method setState defined in the OCL constraint of Listing 4.3.

As illustrated in Figure 4.3, the link between the classes ScenarioMode

and OperationMode allows the designer to specify the nominal operation mode
(nominalMode) of a component among the different operation modes. We assume the

69

Chapter 4. Component-Based Modeling with Traceability of Concerns

1 context Component inv :
2 s e l f . OperationMode −> one (om: OperationMode | om. i s I n i t = True)

Listing 4.2: Every component must have one unique initial state

1 context Component : : s e t S t a t e (S : ComponentState)
2 pre : s e l f . OperationMode . ComponentState −> inc ludes (S)
3 post : s e l f . c u r r e n t S t a t e = S

Listing 4.3: The current state of a component can be updated by the operation setState

existence and the uniqueness of a nominal operation mode of each component involved in
the application. This is ensured by the OCL constraint of Listing 4.4.

1 context ScenarioMode inv :
2 s e l f . Component . OperationMode −> one (om: OperationMode | om = s e l f

. nominalMode)

Listing 4.4: Every component must have one nominal operation mode.

As we focus on safety-critical systems, each component can have different
OperationMode and DegradedMode. An OperationMode represents functional prop-
erties of the component, while a DegradedMode represents dysfunctional properties of the
component to deal with fault situations. Indeed, in adaptive safety-critical systems, par-
ticularly in railway control software systems, due to the duality between availability and
safety, systems should be able to degrade their functionality as long as failure and repair
rates permit it [EN-50128, 2011]. In the case where failure and repair rates do not permit
further degradation or recovery, the system applies the fail-safe actions (e.g., stop the train)
for safety reasons. As a consequence, in addition to the nominal operation mode stated in
OCL constraint Listing 4.4, we also define the fail safe mode failureMode related to the
degraded mode and the capability to fail and repair. The failure rate (failureRate) and
repair rate (repairRate) are presented as attributes in the component state, see Figure 4.3.
In this way, every component must have at least one operational mode (nominal mode or
degraded modes) and one fail-safe mode, as ensured by OCL constraint in Listing 4.5.

The benefit of our component-based meta-model compared to other component-based
meta-models, such as [Rychly, 2011, Becker et al., 2009], is that it supports the integration of
dependability concerns coming from a system concern modeling into a software component-
based modeling. The benefit for traceability is that model elements are clearly designed with
separation of concerns in order to facilitate the traceability of concerns.

70

4.3. SARA Meta-Model

1 context Component inv :
2 s e l f . OperationMode −> e x i s t s (om: OperationMode | om. name = "POM")
3 and s e l f . DegradedMode −> one (dm: DegradedMode | dm. name = "FSM")

Listing 4.5: Every component must have at least one Passive Operation Mode named POM
and one Fail Safe Mode named FSM

4.3.3 Traceability Meta-Model

In the concern meta-model shown in Figure 4.2, we focused on RequirementConcern,
ArchitectureConcern and ScenarioConcern. In Figure 4.3, we present a component
meta-model that provides a support to represent with separation of concerns software sce-
narios as an organized set of components. The idea was that if a scenario derived from
requirement specification is changed for diverse evolution reasons, the component elements
can be easily tracked, re-designed and re-tested. In this section, we introduce the traceability
model to facilitate the traceability of concerns. Figure 4.4 shows our traceability meta-model.

Figure 4.4: Traceability meta-model

A TraceableElement is either a ComponentElement through a ComponentUnit

and RequirementConcern through a ScenarioConcern. Trace elements are represented
explicitly by Trace, which links one or more source elements to one or more target

elements. As we focus on tracking model elements, within or across the different abstraction
levels, a Trace link is either an IntraViewTraceLink or an InterViewTraceLink. In
an IntraViewTraceLink, traces are generated by the model construction relation, such as

71

Chapter 4. Component-Based Modeling with Traceability of Concerns

CompositionRelation or DependencyRelation, while, in an IntraViewTraceLink,
traces are generated by the process of model transformation as it is specified in the standard
of Meta Object Facility (MOF) 2.0 Query/View/ Transformation Specification [OMG, 2011].

Many transformation languages, e.g., ATL [Jouault, 2005, Yie and Wagelaar, 2009], and
meta-programming environment, e.g., Kermeta [Falleri et al., 2006], include the definition
of a traceability meta-model. Generally, these traceability models are often depended
to the transformation model. Moreover, as we focus on concern change impact in dif-
ferent model abstraction levels, there are different techniques to calculate the difference
or union between models. Most of them are based on the use of a persistent identifier
[Alanen and Porres, 2003]. However, if we add an identifier to each element from the input
model and then we apply a no independent transformation model, there is no guarantee of
finding these identifiers in the output model. This is particularly true when the transforma-
tion is used as a black box. For this reason, we propose to identify each TraceableElement
by an identifier and to forbid its modification by transformation models. Precisely, we pro-
pose an annotation mechanism, which plays the role of an identifier (AnnotatedID) in
the TraceableElement, allowing the traceability of elements after the execution of the
transformation. Thus, each element’s name in the model should conform to the minimal
AnnotatedID BNF syntax, shown in Listing 4.6. The mark describes the string used to
separate the different information. The choice of the mark is left to the designer who has
a minimal knowledge of the transformation language. For example, we use an annotation
mark "@" related to our transformation rules [Sango et al., 2014a] used to translate the SARA
model into the timed automata model for time-related property verification.

1<annotatedId > : : = <mark><name><mark><parent ><mark><metaclass ><mark><type ><mark>
2<mark> : : = @[S t r i n g] /∗ t h e mark t o s e p a r a t e t h e d i f f e r e n t i n f o r m a t i o n ∗ /
3<name> : : = S t r i n g /∗ t h e name o f t h e c u r r e n t e l e m e n t ∗ /
4<parent > : : = S t r i n g /∗ t h e name o f t h e d i r e c t p a r e n t o f e a c h e l e m e n t ∗ /
5<metaclass > : : = A t t r i b u t e | Operation | Class | Package /∗ t h e meta c l a s s ∗ /
6<type > : : = S t r i n g | I n t e g e r | Boolean | Class /∗ t h e t y p e o f t h e c u r r e n t e l e m e n t ∗ /

Listing 4.6: An annotation mechanism to maintain traceability links

In the traceability meta-model shown in Figure 4.4, a Trace can be stored and managed
in TraceMatrix. Then, an explicit TraceQuery is defined in order to query or deduce impact
analysis information. Several representations (matrix, cross-references, or graph-based rep-
resentations) can be found in the literature [Wieringa, 1995]. We use a simple mapping table
to represent the traces, i.e., to keep the traceability link between source elements and target
ones. To build a matrix table, we use a simple algorithm shown in Listing 4.7, which an-
alyzes the annotated source and target model to retrieve information about their elements.
This basic mapping table is a two dimension matrix (SourceElements, TargetElements). It is
intended to simplify the visualization and representation of any traces between source and
target elements.

72

4.4. Process to Use the Meta-Model

1 input : Model @sourceModel , @targetModel ; /∗ a n n o t a t e d mode l s ∗ /
2 output : TraceMatrix mappingTable ;
3 /∗ f o r w a r d mapping ∗ /
4 foreach (@source in @sourceModel) do
5 /∗ a n a l y s i s o f t h e a n n o t a t e d t a r g e t model t o f i n d
6 one or more e l e m e n t s t h a t i n f o r m a t i o n matches s o u r c e e l e m e n t ∗ /
7 i f @source e x i s t s in @targetModel then
8 i n s e r t−i n t o mappingTable @source as source element
9 /∗ V e r i f i c a t i o n o f c o r r e s p o n d i n g @ t a r g e t e l e m e n t in @targe tMode l ∗ /

10 i f @source = @target then
11 i n s e r t−i n t o mappingTable @target as unchanged t a r g e t element ;
12 e lse
13 i n s e r t−i n t o mappingTable @target as changed t a r g e t element ;
14 e lse
15 i n s e r t−i n t o mappingTable @source as source element ;
16 i n s e r t−i n t o mappingTable null as t a r g e t element ;
17 /∗ backward mapping ∗ /
18 foreach (@target in @targetModel) do
19 i f @target i s not a s s o c i a t e d with an element in @sourceModel then
20 i n s e r t−i n t o mappingTable @target as t a r g e t element ;
21 i n s e r t−i n t o mappingTable null as source element ;
22 return mappingTable ;

Listing 4.7: Building of traceability matrix by using a simple mapping table

The difference in our approach compared to other approaches, such as
[Falleri et al., 2006], is that our approach is independent of particular transformation
mechanism, because in Listing 4.7, we consider the transformation from @sourceModel to
@targetModel as a black box. In [Falleri et al., 2006], the trace generating code is tangled
with the transformation code on the definition of a tracing operation. In addition, our
meta-models are defined as generic as possible. Thus, it can be specialized and integrated
in a meta-programming environment, such as Kermeta framework [Falleri et al., 2006], in
order to cover traceability of concerns beyond the traceability for model transformation.
However, we do not claim that our meta-models to be exhaustive. We can just fairly argue
that this is enough to support component-based modeling with traceability of concerns in
most of our use cases, as shown in Chapter 6. In Section 4.4, we propose a process, which
can be used to instantiate or extend the defined meta-models for a change impact analysis.

4.4 Process to Use the Meta-Model

The conceptual meta-models of our approach are defined in the previous Section 4.3. The
meta-models are defined to be quite general, but like any meta-model they can be first ex-
tended, if necessary, and then used. In this section, we propose a generic process shown

73

Chapter 4. Component-Based Modeling with Traceability of Concerns

in Figure 4.5, which can be used to instantiate the meta-models for change impact analy-
sis in the case of software evolution. This process can be summarized in three phases: (1)
the implementation phase, which consists in implementing the meta-model with a chosen pro-
gramming language, (2) the modeling phase, which consists in modeling identified concerns,
architecture elements and trace-links and (3) the tracing phase, which consists in tracing ele-
ments within or across model abstraction levels. Figure 4.5 is a UML activity diagram with
three UML vertical swimlanes (columns) for the three phases. It also depicts the roles of
actors: architect, project engineer and application engineer.

Figure 4.5: A process to apply the metamodel and tracing concerns

4.4.1 Actor Roles

Our approach distinguishes between three roles of actors, architect, project engineer and appli-
cation engineer.

- Architect. An architect is an expert in the particular domain targeted by software
component-based modeling with traceability of concerns. He/She is responsible for
defining or extending both the meta-model and its implementation in order to facili-
tate the tasks of project engineers. For example, he/she can customize the meta-model
to fit with project-specific needs.

- Project engineer. A project engineer has all the information about a particular project,
and thus defines the related scenarios, which are different ways the software is envis-
aged to be used in operational lifecycle. A scenario is thus an interaction of software

74

4.4. Process to Use the Meta-Model

components in order to satisfy requirement specification. He/She uses the meta-model
to model scenario with traceability of concerns. We recall that models are used sys-
tematically at different phases of the software development process, including design
phase, implementation phase and verification phase.

- Application engineer. The application engineer is the final user. Based on scenario
models that include traceability links, application engineers can determine the impact
of changes on the software concerns during the software development process. For
this, he/she uses predefined or customized trace queries to infer traceability informa-
tion within or between different models.

4.4.2 Implementation Phase

The implementation phase is shown in the left-hand column of Figure 4.5. Our meta-models
like any meta-models can be first extended, if necessary, and then implemented. Here, the
syntactic and semantics of our meta-model elements are described in the Document Type
Definitions (DTD) of XML language.

1<?xml version=" 1 . 0 " encoding="UTF−8" ?>
2< !−− Thi s DTD d e f i n e s t h e component meta−model e l e m e n t s . −−>
3< !ELEMENT ModelAbstractionLevel (CompView) +>
4< ! ATTLIST ModelAbstractionLevel
5 id CDATA #REQUIRED
6 r e f CDATA #IMPLIED
7 name CDATA #REQUIRED
8 type CDATA " Component model ">
9< !ELEMENT CompView ((CompView) ∗ , (CompElement) ∗)>

10< !ELEMENT CompElement (CompEntity | CompOperation | CompConnection) ∗>
11< !ELEMENT CompEntity (CompEntity | CompConnection) ∗>
12< !ELEMENT CompOperation ((CompOperation) ∗ , (Parameter) ∗)>
13< !ELEMENT CompConnection ((Parameter) +)>
14< !ELEMENT Parameter (out | in) +>
15< !ELEMENT in (CompEntity) +>
16< !ELEMENT out (CompEntity) +>

Listing 4.8: Implementation of component meta-model with DTD

Listing 4.8 illustrates the DTD for component modeling in accordance with the meta-
model shown in Figure 4.3. The most important to notice here, is that each component
model consists of one or more ModelAbstractionLevel, see line 3 of Listing 4.8. Each
level includes the attributes id, ref, name and type. A component view in a level consists
of subviews and contains component elements, which are component entities, component
operations and component connections. By keeping in mind the separation of concerns,
the different views of model abstraction are separately referenced in the XML instance as
illustrated in the modeling phase, Section 4.4.3, Listing 4.11.

75

Chapter 4. Component-Based Modeling with Traceability of Concerns

1<?xml version=" 1 . 0 " encoding="UTF−8" ?>
2< !−− Thi s DTD d e f i n e s c o n c e r n meta−model e l e m e n t s . −−>
3< !ELEMENT ConcernModel (ConcernGroup + , TraceableEltBetweenView + ,ComponentModel+)>
4< !ELEMENT ConcernGroup (ReqConcern +)>
5< ! ATTLIST ConcernGroup name CDATA #REQUIRED>
6< !ELEMENT ReqConcern (Descr ipt ion) >
7< !ELEMENT Descr ipt ion (#PCDATA) >
8< !ELEMENT ComponentModel (CompUnit+)>
9< ! ATTLIST ComponentModel name CDATA #REQUIRED>

10< !ELEMENT CompUnit (CompUnit∗)>
11< !ELEMENT TraceableEltBetweenView EMPTY>
12< ! ATTLIST TraceableEltBetweenView
13 HighModelElement IDREF #IMPLIED
14 LowModelElement IDREF #IMPLIED>

Listing 4.9: Implementation of concern meta-model with DTD

As in component model, Listing 4.9 presents the concern model. The concern model also
follows its corresponding meta-model shown in Figure 4.2. It provides an explicit definition
of the traceable elements between two (high and low) model abstraction levels (see lines
12-14 of Listing 4.9).

1<?xml version=" 1 . 0 " encoding="UTF−8" ?>
2< !−− Thi s DTD d e f i n e s t h e t r a c e a b i l i t y meta−model e l e m e n t s . −−>
3< !ELEMENT Trace (IntraViewTraceLink | TraceQuery | InterViewTraceLink) +>
4< !ELEMENT IntraViewTraceLink ((Source | SourceQuery) , (Target | TargetQuery)) >
5< !ELEMENT InterViewTraceLink ((Source | SourceQuery) , (Target | TargetQuery)) >
6< !ELEMENT TraceQuery (ForwardTraceQuery , BackwardTraceQuery) >
7< !ELEMENT ForwardTraceQuery (SourceQuery , TargetQuery) >
8< !ELEMENT BackwardTraceQuery (SourceQuery , TargetQuery) >
9< !ELEMENT Source (t r a c e a b l e−element) +>

10< !ELEMENT Target (t r a c e a b l e−element) +>
11< !ELEMENT SourceQuery (#PCDATA) >
12< !ELEMENT TargetQuery (#PCDATA) >
13< !ELEMENT t r a c e a b l e−element EMPTY>
14< ! ATTLIST t r a c e a b l e−element id CDATA #REQUIRED type CDATA #REQUIRED>

Listing 4.10: Implementation of traceability meta-model with DTD

Finally, as in component and concern models, Listing 4.10 presents the traceability
model. It is also defined in accordance with its meta-model shown in Figure 4.4. A trace
consists of explicit intra and inter view trace links, and intentional trace queries. Basically,
tracing concerns within or across views can support several goals, such as change impact
assessment, regression testing and software maintenance. Here, we focus on the impact
analysis of concern evolution. As a consequence, in the trace model, forward and backward
tracing queries are intentionally defined (see line 6 of Listing 4.10). Forward tracing queries

76

4.4. Process to Use the Meta-Model

are intentionally defined to inspect component model elements from a given set of require-
ment concerns, and backward tracing queries are intentionally defined to inspect the set of
concerns that model entities are related to.

4.4.3 Modeling Phase

The modeling phase of concerns and architecture elements is shown in the middle column
of Figure 4.5. It consists in identifying concerns and system architecture from the software
requirement specification. Once the concerns and the architecture elements are identified,
the concern and architecture component models are explicitly described in XML language
in accordance with the DTDs presented in Section 4.4.2.

1<?xml version=" 1 . 0 " encoding="UTF−8" ?>
2< !DOCTYPE ModelAbstractionLevel PUBLIC " ModelAbstractionLevel " " component−model .

dtd ">
3<ModelAbstractionLevel id=" Use_case " r e f =" " name=" Use case model ">
4 <CompView id=" Sara_View_ID " r e f =" Sara . xml " type=" design view "></CompView>
5 <CompView id=" Verif_View_ID " r e f =" V e r i f . xml " type=" v e r i f view "></CompView>
6 <CompView id=" Impl_View_ID " r e f =" Impl . xml " type=" impl view "></CompView>
7</ModelAbstractionLevel>

Listing 4.11: XML instance of component model DTD

For example, in Listing 4.11, we focus on three views of model abstraction: SARA com-
ponent modeling view for the model design level (see line 4 of Listing 4.11), its analysis view
for the model verification level (see line 5 of Listing 4.11) and its programming language im-
plementation view for the model implementation level (see line 6 of Listing 4.11). Indeed,
after the implementation of meta-models, we need to provide their instances for specific case
studies, as illustrated in Section 6.4.2.

4.4.4 Tracing Phase

The tracing phase of elements is shown in the right-hand column of Figure 4.5. As already
mentioned, the traceability of concerns can be used in different activities, such as change
impact assessment, regression testing and software maintenance. Here, we focus on the
impact analysis of concern evolution. After explicit modeling of concerns and architecture
elements, we define the trace-links among the concerns and the architecture elements within
or across views. This is again done by instantiating XML from the meta-model DTD that
represents the trace model, shown in Listing 4.10. In the trace model, relationships between
a source and a target are either explicit intra or inter view links , or intentional trace queries.
To query elements in an XML representation, we have implemented a set of XQuery queries.
These queries are grouped by two types of queries:

77

Chapter 4. Component-Based Modeling with Traceability of Concerns

1. ForwardTraceQuery (views, concernID) which matches component elements for a given
set of concerns.

2. BackwardTraceQuery (views, ElementID) which determines concerns for a given set of
component elements.

1 (: Dec lara t ion of forward t r a c e query :)
2 declare function oxy : ForwardTraceQuery ($oxy : view as xs : s t r i n g , $oxy : query as xs :

s t r i n g) {
3 l e t $ l i n k := $TargetQuery ($oxy : query)
4 return
5 i f (empty ($ l i n k)) then $oxy : query
6 e lse $oxy : query union oxy : ForwardTraceQuery ($view , $SourceQuery) } ;

Listing 4.12: Implementation of of forward trace query

For example, the implementation of forward trace query is illustrated in Listing 4.12. Its
use for a specific case study is presented in Section 6.4.2.

4.5 Challenges Revisited and Lessons Learned

4.5.1 Challenges Revisited

We have presented in this chapter the conceptual meta-models of our component-based
modeling with traceability of concerns. Let us now revisit the challenges identified in Sec-
tion 4.2.2 and discuss how our approach faces them.

C1. Selection and separation of concerns. To face this challenge, we have defined a con-
cern meta-model, which identify clearly the concerns we want to trace. The main
contribution of this meta-model is to represent functional and non-functional require-
ments as scenarios with nominal and degraded modes in order to deal with specific
dysfunctions affecting temporal and safety concerns.

C2. Integration of dependability concerns in component-based modeling. To face this
challenge, we have provided a component meta-model that abstracts the component
model and component state evolution model. We rely on existing concepts found in the
literature of component models, gathered in our component meta-model. In addition,
our component meta-model supports the integration of dependability concerns, pre-
cisely temporal safety concerns, coming from a system concern modeling. The benefit
for traceability is that model elements are clearly designed with separation of concerns
in order to facilitate the traceability of concerns, whatever functional or non-functional
concerns.

78

4.5. Challenges Revisited and Lessons Learned

C3. Tracing of concerns throughout component model abstraction levels. To face this
challenge, we have described how requirement concerns in concern meta-model and
component elements in component meta-model can be traced by using explicit intra
and inter view trace links and intentional trace queries. Our approach is independent
of particular transformation mechanism, because in our traceability matrix construc-
tion, we consider the transformation from a source model to a target model as a black
box.

4.5.2 Lessons Learned

In above Section 4.5.1, we have discussed the specific challenges that we have faced in this
chapter. In Section 3.4, general challenges of traceability are discussed and comparative analy-
sis of the state of the art approaches are presented in Table 3.2 around four main traceability
requirements: separation (R5), adaptability (R6), uncertainty (R7) and abstraction (R8). Here,
we summarize in Table 5.1 the learning we got, the contribution and limitations of our SARA
approach relative of these general requirements.

Categories Sub-categories Approaches Discussion criteria

Separation Adaptability Uncertainty Abstraction

Requirement Event-Based EBT (X)

EBT-DP (X) (X)

Reference RMRT X (X) X

MST X X X

Behavior-Tree BBT (X) X

BBT-TM (X) X

Model-Driven Model-based SDTDA (X)

SARA 3 (3) (3) 3

PTTM (X) X

Transformation ODMT X

TFMT X

Product-Based MDTA-SPL (X) (X) (X)

MDTF-SPL X (X) X

Table 4.1: Synthesis of comparison for some traceability approaches including ours

R5. Separation. It is clear for every software practitioners that the separation of concerns
is one of fundamental design principle of software development. However, experience
shows that this benefit is much more difficult to achieve than it may seem. Indeed, it
requires substantial effort to arrive at common and stable specifications, clean inter-

79

Chapter 4. Component-Based Modeling with Traceability of Concerns

face design and effective consolidation of functional and non-functional part of system
components.

To face this challenge, our concern meta-model comes with the coarse-grained separa-
tion of requirement concerns and our component meta-model comes with fine-grained
separation of component elements in order to facilitate traceability of concerns. We
also observed that the representation of external traceability links, stored in separate
models that can be combined with the system primary models, can facilitate the weak
coupling between models and traceability information.

R6. Adaptability. If requirement traceability is not customized it can lead to an unwieldy
mass of unstructured and unusable data that will never ever be used. The adaptation
of trace capture and usage to project-specific needs is a prerequisite for successfully
establishing traceability within a project and for achieving a positive cost-benefit ratio.
Adaptable traceability environment depends on several factors: (i) pre-definition of
trace, (ii) definition of project-specific trace, and (iii) experience based improvement
[Mader and Egyed, 2012].

To face this challenge, our concern meta-model comes with an uniform traceability
meta-model, which can be used by (1) a traceability architect to improve the prede-
fined traces based on its experience, (2) by a project engineer to define a project-specfic
traces, and (3) by an application engineer, which uses predefined or customized trace
query to infer traceability information within or between different models. At techni-
cal level, although m-to-n links are more difficult to represent graphically, compared
to 1-to-1 traceability links, they can help to reduce the number of required links and
therefore simplify the adaptation. For example, when we want to adapt a traceability
to a project-specific requirement, representing the causality between this requirement
and several design artifacts is important to know all the design artifacts that relate
jointly to the same requirement.

R7. Uncertainty. Uncertainty plays a role in any system that needs to evolve continuously
to meet the specified or implicit goals of the real world. In safety-critical systems,
the impact of uncertainty on software development can be even more sever than tra-
ditional software systems. Traceability of design decisions in safety-critical software
development is an important and relevant issue, as these are key points where uncer-
tainty influences the design process.

For performing traceability in the presence of uncertainty in our model, one can attach
rational information, such as the safety integrity level which gives the confidence we
have in the creation of traceability links between components. However, in safety-
critical systems, it is crucial to establish to what extent individual components can be
trusted and depended on, as well as developing a solid understanding of the impact
from individual components on the overall dependability of the global system.

R8. Abstraction. Abstraction is another fundamental principle of software development.
To deal with the complexity of traceability, it is essential to specify a certain level of ab-

80

4.6. Summary

straction, as well as to use the suitable model granularity in each abstraction level. For
example, model could be either too coarse-grained or fine-grained, thus not enabling
the modeling of low level functionalities or, on the contrary, being too specific.

Our proposed approach deals with such issue since models can be refined in the
model-driven engineering, particularly the component-based model driven develop-
ment. First, the meta-model can be implemented with Domain Modeling Language
to fit a certain level of abstraction. For simplicity, our meta-model is implemented
with the DTD/XML language. Second, we particularly focus on the component-based
modeling language which rely on the principles of component and composite, which can
contain several components to define several levels of granularity.

4.6 Summary

In this chapter, we have presented meta-models for component-based modeling with trace-
ability of concerns. We have first illustrated our approach with an example of railway system
requirement specification in Section 4.2.1. Then, we derived three main challenges that we
have faced in Section 4.2.2. Relying on the defined meta-models in Section 4.3, one can define
the complete phase of concern modeling, component modeling and trace modeling. We also
proposed a generic process in Section 4.4, which can be used to instantiate the meta-models
for change impact analysis in the case of software evolution.

Although we do not claim that our meta-models to be exhaustive, we can fairly argue
that this is enough to support component-based modeling with traceability of concerns in
most use cases. For example, we use the generic process proposed to evaluate our approach
in railway case studies, as presented in Chapter 6.

In our approach, explicit intra- and inter-view links and intentional trace queries are
defined in order to trace information within or across the different abstraction levels in-
dependently of any transformation mechanisms. However, since we focus on safety-critical
systems, it is important to present an efficient transformation approach to translate our high-
level design model to the low-level analysis level, for which we can verify temporal safety
concerns that we are focused on. As a consequence, in Chapter 5 of this dissertation, we
formalize our high-level component-based model and present a transformation mechanism
into low-level model for observer-based verification.

81

Chapter 5
Observer-Based Verification with
Patterns of Properties

Contents
5.1 Introduction . 83

5.2 Motivation and Challenges . 84

5.2.1 Motivating Example . 85

5.2.2 Challenges . 87

5.3 SARA to TAIO Formal Model . 88

5.3.1 SARA Formal Definition . 88

5.3.2 TAIO formal definition . 100

5.3.3 From SARA model to TAIO Model 103

5.4 A 3-Layer Approach for OBV . 108

5.4.1 Upper layer . 108

5.4.2 Middle layer . 110

5.4.3 Lower layer . 110

5.5 Challenges Revisited and Lessons Learned 112

5.5.1 Challenges Revisited . 112

5.5.2 Lessons Learned . 112

5.6 Summary . 114

5.1 Introduction

Verification and Validation (V&V) are at the heart of the development process of software
that require high dependability, such as the train control software, as discussed in Chapter 2,

83

Chapter 5. Observer-Based Verification with Patterns of Properties

Section 2.4. However, one of the important issues limiting the large adoption of formal
verification technologies is the difficulty, for non-experts, to express their requirements using
the formal specification languages supported by verification tools. For this reason, some
approaches, based on specification patterns, are proposed. Patterns propose a user-friendly
syntax which facilitates their adoption by non-experts.

As shown in Section 2.5, Observer-Based Verification (OBV) is one these techniques. It
is a model checking technique where patterns of properties to be verified are defined as
observer automata, which can be applied directly in timed model checking tool. Indeed,
OBV consists in writing a system properly as an observer, i.e., an Input and Output (IO) ma-
chine that synchronously listens to the IO operations of a system to detect an execution trace
that violates a system property. Several formal verification methods have been applied over
OBV: [Bhatti et al., 2011, Soliman et al., 2012, Mekki et al., 2012]. However, unlike the timed
temporal logic approaches [Henzinger, 1998], most of pattern-based approaches are lacking
in well-founded theory or use inappropriate definitions. One of our goals is to contribute
toward reversing this situation by using the well-founded theory of time traces of the Timed
Input-Output Labeled Transition System (TIOLTS) [Krichen and Tripakis, 2009]

In this chapter, we introduce a formal model of our SARA meta-model presented in
Chapter 4. The first reason is to provide a formal definition of the SARA model including
formal definition of component interoperability by using the theory of component contract
[He et al., 2006]. The second is to facilitate the transformation of this formal model into timed
automata model, for which we can use a timed model checking tool to apply OBV. Finally,
by using the composition theory of TIOLTS, we demonstrate that the defined observers have
no impact on the behavior of the system under observation, meaning that any trace of the
observed system is preserved in the composition of the system and the observers.

This chapter thus covers the formal concerns of our approach. The chapter is struc-
tured as follows: Section 5.2 describes a motivating example by highlighting the need for
the transformation of high-level design language into low-level language for verification. It
also discusses the related challenges. Section 5.3 presents SARA to TAIO formal models. Sec-
tion 5.4 presents the overview of our OBV approach by highlighting its soundness. Finally,
Section 5.5 discusses several aspects regarding our approach, while Section 5.6 summarizes
the chapter.

5.2 Motivation and Challenges

This section introduces a motivating example for observer-based verification with patterns
of temporal safety properties. It illustrates the need for transformation of our design model
into a formal model for which we can use a timed model checking tool for formal verification
of properties. Based on this example, we then summarize challenges related to verifying a
component model with patterns of properties.

84

5.2. Motivation and Challenges

5.2.1 Motivating Example

To motivate our approach, let us consider the well-known rail-road Level Crossing Auto-
matic Protection System (LC-APS). The detailed background of LC-APS is presented in Sec-
tion 6.4.1. Here, we focus on an abstract example of software component-based architecture,
for which we can deride challenges discussed in this chapter. The abstract example is shown
in Figure 5.1.

Figure 5.1: LC-APS motivating example

The top level component, named LC-APS component, contains three components: Sen-
sor, Controller and Gate. In this level, components communicate through the port (e.g., ip1
and op1) by message passing (e.g., train position train_pos and track occupancy t_occ). Com-
ponents have run-time behavior. For instance, the component instance Controller_Inst_1 of
component type Controller is the component that defines the main control loop with the
non-functional real-time attribut min_interval_time = 125s. It uses the approaching appr and
exiting exit information of trains in the monitored intersection, and acts as mediator between
the Sensor and the Gate components. Indeed, the Sensor receives information from physical
sensors of the track in order to detect trains that approach and exit in the monitored intersec-
tion. This information is translated into a appr event or exit event depending on the position
of train train_pos from the LC. Based on the input messages, the Controller determines the
output messages (open or close events) for the supervision of the gate. The Gate responds to
events by moving barriers up or down.

85

Chapter 5. Observer-Based Verification with Patterns of Properties

Although Figure 5.1 presents the global concepts of CBSE shown in Section 2.2.2,
like components, port-based interfaces, composition through ports, it does not provide
component-based implementation techniques heavily related on object-oriented techniques.
For example, Listing 5.1 shows an object-oriented specification with the Ada programming
language for the LC-APS component-based architecture. Here, we focus on sensor compo-
nent, which specification is given in lines 20-34 of Listing 5.1.

1 with Sensor ; with C o n t r o l l e r ; with Gate ;
2 with Ada . Calendar ; −−with Ada . Real_Time ;
3 Procedure LC_APS i s
4 −− Input p a r a m e t e r s :
5 Train_X_Coord : F l o a t := 0 . 0 ; Gate_Down : Boolean := Fa l se ;
6 −− Component i n s t a n c e s e x t e n d s Sara . ComponentTask d e f i n e d in Annex L i s t i n g A. 5
7 package Sensor_Ins t_1 i s new Sara . ComponentTask
8 (Comp_Type => Sensor . CompType , Comp_Inst => Sensor . CompInst ,
9 Queue_Size => 1 , MIAT => 10 , Operation => Sensor .Op) ;

10 package C o n t r o l l e r _ I n s t _ 1 i s new . . . ; package Gate_Inst_1 i s new . . . ;
11 −−Top− l e v e l component r e s o u r c e s :
12 use Sensor_Ins t_1 ; use C o n t r o l l e r _ I n s t _ 1 ; use Gate_Inst_1 ;
13 use Ada . Calendar ; −− or Ada . Real_Time
14 S t a r t , F in i sh : Time ;
15 begin
16 S t a r t := Clock ; −− g e t sys t em s t a r t t ime
17 . . .
18 end LC_APS ;
19
20 package Sensor i s
21 −− Component t y p e e x t e n d s Sara . Component d e f i n e d in Annex L i s t i n g A. 4
22 type CompType i s new Sara . Component . Comp_Type with record
23 Time_Var : I n t e g e r ;
24 Train_Pos : F l o a t ;
25 end record ;
26 −− o t h e r d a t a :
27 Tmax : constant I n t e g e r := 1 5 ;
28 −− o p e r a t i o n s :
29 Procedure Op (C : in out CompType)
30 −− o p e r a t i o n a n n o t a t i o n s :
31 with
32 pre => (C. Time_Var = 0) ,
33 Post => (C. Time_Var <= Tmax and then C. Train_Pos = 1 0 . 0) ;
34 end Sensor ;

Listing 5.1: Component specification with Ada programming language

When relying on component-based implementation with contracts, one of chal-
lenges is to adapt contracts to the applications needs for component interoperability
[Chen et al., 2007a]. Indeed, different usages of the component in different applications have
different needs. For example, an interface contract for a component in a sequential system is

86

5.2. Motivation and Challenges

obviously different from one in a communicating concurrent system. The former only needs
to specify the functionality of the methods, e.g., in terms of their pre- and post-conditions as
illustrated in lines 32-33 of Listing 5.1, whereas the latter should include a description of the
communication protocol, e.g., in terms of interaction traces or real-time constraints.

Another challenge is to ensure both the global refinement and the local refinement
[He et al., 2006]. Indeed, global refinement or black-box specification is usually defined as
a set containment of system behaviours, and can be verified deductively within a theorem
prover. Local refinement or white-box specification is generally based on specification of
individual operations, and can be established by simulation techniques or model checking
techniques. Let us explain this challenge by considering a simple execution trace of our
implementation example.

Figure 5.2 shows the sample runtime execution trace, which checks if the annotations of
operations are respected or not. We use the formal proof tool of the Ada language annota-
tions [SPARK, 2014]. However, tasks and synchronization are not currently supported in this
tool to check real-time constraints, such as min_interval_time stated in the component-based
architecture shown in Figure 5.1. For example, when we replace the statement Ada.Calendar
with the statement Ada.Real_Time in line 13 of Listing 5.1 the proof fails.

Figure 5.2: An execution trace of Ada implementation for LC-APS

This example clearly illustrates the need for mix verification. Indeed it is challenging
to target both large modeling expressiveness and broad verification accuracy with the same
language. Either the language is explicitly wide to include the expressiveness and cover a
large number of properties that will be hardly supported by the formal proof tools, either
the language is restricted and explicitly excludes some complex properties.

5.2.2 Challenges

The example previously discussed shows that when relying on formal component-based
modeling and verification, the model must refer to the ability (i) to separate clearly com-
ponent interface contracts, (ii) to integrate black-box and white-box specifications for both
external and internal contracts, and (iii) to guarantee the model transformation chain for mix
verification. To achieve these abilities, we summarize the three main challenges that we face
in this chapter.

87

Chapter 5. Observer-Based Verification with Patterns of Properties

C4. Separation of component interface contracts. An interface is a syntactic and seman-
tics specification of a component. A syntactic information provides the access point
of a component, while a semantics information provides the behavioral contract of a
component. However, different usages of a component in different applications have
different needs. For example, if a component is to be used in a domain-specific real-
time applications, such as railway real-time control system, the contract of its interface
must also specify real-time constraints, such as the lower and upper bounds of the
execution time of a control method. The first challenge is thus to define clearly the
interface contracts by separating the functional and non-functional concerns.

C5. Grey-box specification. The challenge of gray box specification is to find a compro-
mise between black-box specification and white-box specification for external and in-
ternal contracts of interfaces. In most of component model dedicated for embedded
systems, the event-based model is used for black-box specification in support of com-
ponent composition, and the state-based model is used for white-box specification in
support of component internal design. By following this method, the second challenge
is to provide high-level domain specific language that facilitates both the event-based
simulation and the state-based refinement.

C6. Assurance of model transformation. Domain specific modeling languages greatly
simplify the task of system modeling because they present a higher level of abstrac-
tion that is easy to work with. Since it is difficult to have the same high-level language
suitable for both modeling and verification as broadly as possible, intermediate or low-
level languages are frequently introduced to generate verification models that may be
used to verify specific properties by using appropriate verification tools, such as the-
orem provers or model checkers. The third challenge is thus to prove the semantics
preservation of the model transformation.

5.3 SARA to TAIO Formal Model

This section describes in details the formal aspect of our component-based modeling and
observer-based verification approach. In Section 5.3.1, we present the formal definition of
the SARA domain-specific component model. In Section 5.3.2, we introduce the formal
definition of Timed Automata model over Input and Output actions (TAIO). Then, in Sec-
tion 5.3.3, we presents the transformation rules developed to translate SARA application
models to TAIO models and prove the semantics preservation of the model transformation
by bisimulation.

5.3.1 SARA Formal Definition

The SARA meta-model has been introduced with the aim of traceability of concerns in Chap-
ter 4. In this section, the SARA component model is formally introduced in order to provide

88

5.3. SARA to TAIO Formal Model

the formal foundation of model elements and to facilitate its transformation into Timed Au-
tomata over Input and Output actions (TAIO), for which we can use a timed model checking
tool for verification task. Formally, the SARA component model is defined as follows.

Definition 3. SARAMODEL

A SARA model is defined as a tuple SARAModel = (ModelName, DataModel, ComponentModel,
CompositionModel), where:

- ModelName is the name of the model, which is defined by its designer. Notice that
the name of SARA model corresponds to the top level component name, e.g., LC-APS
in Figure 5.1.

- DataModel is used to describe the data types of variables exchanged between different
model elements (see Definition 4).

- ComponentModel defines component elements and their relations (see Definition 5).

- CompositionModel defines the composition relations between model components
(see Definition 8).

Definition 4. DATAMODEL

A DataModel is used for the description of variables of data types, which are the basic en-
tities in our approach. The designer can define a set of data types such as primitive types,
enumerations, ranged or constrained types, arrays or composite types. We assume that a set
of variables is divided into two disjoint sets: observable variables and unobservable vari-
ables. Observable variables are in turn divided into input and output messages, which can
be sent or received periodically, sporadically or aperiodically. Unobservable variables or lo-
cal variables are hidden in the component refinement level considered. As a consequence
variables that shall be typed with data types are defined as DataModel={IV, OV, LV, TV},
where:

- IV is a set of observable input variables of SARAModel; e.g., IV = {dist, t_occ} in Fig-
ure 5.1.

- OV is a set of observable output variables of SARAModel; e.g., OV = {up, down} in
Figure 5.1.

- LV is a set of local variables or unobservable variables of SARAModel. For technical
reasons of transformation, we assume that all the local variables of model components
occur somewhere in the top level component model structure. The disjointness of vari-
ables is ensured by attaching suffixes to the type of connection for which variables
transit; e.g., LV = {DC_1.appr,DC_2.exit, etc.} in Figure 5.1.

- TV is a set of temporal variables that are used to describe the real-time constraints.
For instance, real-time non-functional attributes that may be attached to the provided

89

Chapter 5. Observer-Based Verification with Patterns of Properties

operation of a component include period, deadline, bounded interval and finite queue
size buffer; e.g., OV = {queue_size,min_interval_time, delay} in Figure 5.1.

For convenience of examples, we introduce some basic notions of traces. Given a prim-
itive type T , a sequence type Seq(T), and a sequence declaration s : Seq(T), we use |s|,
tail(s), and head(s) to denote the length, tail, and head of s, respectively. s1 • s2 denotes
the concatenation of the sequences s1 and s2. In the declarations “x1 : in T , x2 : out T and
x3 : in out T “, {x1, x2, x3}, in, out, and in out stand for a set of variables, an input, output,
and input/output parameters, respectively.

Definition 5. COMPONENTMODEL

A component model is defined as a tuple ComponentModel = (CompName, CompType, Com-
pImpl, CompInst, CompInstBinding), where:

- CompName is the name of the component type, e.g., Sensor in Figure 5.1.

- CompType is the design entity that is specified in isolation, with no relationship with
other components. The component type therefore specifies provided interfaces and re-
quired interfaces by referencing already-defined interfaces. It thus forms the basis for
a reusable software artifact. For example, the root component type of SARA model is
provided by Sara.Component.Comp_Type as presented in our SARA model implementa-
tion in Ada language (see Appendix A, Line 5 of Listing A.4).

We distinguish component type from component implementation. A component type may
in fact have distinct implementations.

- CompImpl is an implementation of component type. It fulfils two roles. First, it is
a concrete realization of a component type as illustrated by Sensor.CompType (see line
22 of Listing 5.1). Second, it is the subcontracting unit that must implement all the
functional operations of its type. For example, the Sensor component implementation
includes the procedure op(C : in out CompType), see line 29 of Listing 5.1.

In addition to the realization of functional operation in the form of sequential code, a
component implementation may set of functional input and output constraints as illus-
trated in lines 32-33 of Listing 5.1 or a set of specific non-functional real-time constraints
in real-time context. For example, a train Sensor operation may work correctly only
if a train position train_pos is executed at a certain time interval e.g., [0, Tmax], which
is related to concurrency and real-time concerns, such a periodic or sporadic release
pattern, as stated in CompInst.

- CompInst is a component instance. It is a design unit instantiated from a com-
ponent implementation. It is defined by a name and its behavior, i.e., CompInst =
(CompInstNamei, Priority, BehaviorModel), where BehaviorModel is defined in Defini-
tion 7.

90

5.3. SARA to TAIO Formal Model

CompInstNamei is a component instance name of a component type, where i ∈
{1, .., n} because a component type implementation can have different instances. Prior-
ity is an integer that defines the execution order of CompInstNamei. For instance, the
execution order of Figure 5.1 is is: “Gate_Inst_1 < Controller_Inst_1 < Sensor_Inst_1",
Where “<" is the execution order operator.

At this level, non-functional attributes are given to be compatible with the non-functional
constraints required at implementation level. For example, for temporal constraints of
Sensor component, the temporal attributes include a sporadic release pattern, which
includes its Minimum Inter-Arrival Time (MIAT) and finite buffer Queue_Size for the
incoming requests, as illustrated in lines 8-9 of Listing 5.1.

A component instance serves mainly on two purposes: (1) component deployment and
(2) component binding [Crnkovic et al., 2011], as illustrated in Figure 5.3

Figure 5.3: Component instance purposes : (1) deployment and (2) binding

Remark 2. Component deployment enables component integration into an execu-
tion platform, while component binding enables component interaction at application
level. In our work, we focus on application level. As a consequence, we concentrate
only on the component binding.

- CompInstBinding. A component instance binding is a design unit between one input
port, denoted ipj ∈ IP , and one output port opi ∈ OP , where IP = {ip1, ip2, ..., ipn}
and OP = {op1, op2, ..., opn} are respectively a set of input and output ports of com-
ponents. A component instance binding is defined as a tuple CompInstBinding =
(CompInstNamei, CompConnect). CompConnect is defined as a set of three types of
connection, CompConnect = {IC, DC, OC}, where:

– IC is a set of connections that send input variables ivj ∈ IV of SARAModel to an
input port ipl ∈ IP of kth component instance. It is defined as:

∗ ICn: ModelName.ivj → CompInstNamek.ipl,
e.g., IC1 : LCAPS.dist→ Sensor_Inst_1.ip1 in Figure 5.1;

– DC is a set of direct connections between IP and OP of component instances. It is
defined as:

91

Chapter 5. Observer-Based Verification with Patterns of Properties

∗ DCn : CompInstNamei.opj → CompInstNamek.ipl,
e.g., DC1 : Sensor_Inst_1.op1 → Controller_Inst_1.ip1 in Figure 5.1;

– OC is a set of output connections between opi ∈ OP of the kth component instance
and output variables ovj ∈ OV of SARAModel. It is defined as:

∗ OCn : CompInstNamek.opi →ModelName.ovj ,
e.g.: OC1 : Gate_Inst_1.op1 → LCAPS.up in Figure 5.1.

Remark 3. When bindings have been set, other non-functional attributes can be specified
in addition to those given in component instance level. For example, for end-to-end temporal
constraints, the temporal attributes include end-to-end deadlines on a call chains across com-
ponents, and queuing protocols. The set of component binding in SARAModel, including
the semantics of components, defines a component configuration as defined in Definition 6.

Definition 6. COMPONENTCONFIGURATION

A component configuration is a set of component instance bindings including the semantics
of components.

First, we define the semantics of a basic components, i.e., a component
instance that directly encapsulates its behavior, by using state-transition systems
[Manna and Pnueli, 1995]. A local state s of a basic component is defined as variable as-
signment s : IV ∪ OV ∪ LV ∪ TV → V al, where V al denote a set of variable values. A

local transition between two local states s and s′ is defined as s
Pre,Post,Prot−−−−−−−−−→ s′ under the be-

haviour pre-condition (Pre), post-condition (Post) and protocole condition (Prot) defined
in behavior model (see Definition 7).

Second, based on the semantics of basic components, we define the semantics of a
composite component, i.e., a component built from basic components, by using a global
state-transition system defined in [Adler et al., 2011]. A global state σ of a composite compo-
nent C consists of local state {s1, ..., sm} of basic components, where si is the state of ci ∈ C,
and an evaluation of variables. That is σ = s1 ∪ ... ∪ sm ∪ ((IV ∪ OV ∪ LV ∪ TV) → V al).

Two global states σ and σ′ perform a global transtion denoted σ
Pre,Post,Prot−−−−−−−−−−−→

CompInstBinding
σ′ under

the component instance bindings defined in component model (see Definition 5) and the
behaviour conditions defined in behavior model (see Definition 7).

Given a set of inputs IV ′ ⊆ IV , a SARA model S is said to be input-enable with re-
spect to IV ′ if it can accept any input in IV ′ at a global state σ. Let CS denotes a com-

ponent configuration of S, then ∀σ ∈ CS and ∀iv′ ∈ IV ′ implies ∃σ′ : σ
iv′−→ σ′. Let

a CompInstBinding = (CompInstName_k, CompConnect = {IC,DC,OC}) of CS , if
∃ ip ∈ IP such that ModelName.iv′ → CompInstNamek.ip ∈ IC, or if ∃ ov ∈ OV such
that CompInstNamek.op → ModelName.ov ∈ OC then CS is called a reachable configura-
tion denoted Reach(CS) with respect to IV ′.

92

5.3. SARA to TAIO Formal Model

Definition 7. BEHAVIORMODEL

A behavior model is defined as BehaviorModel={BehaviorSpec, TAnnotation, BehaviorBody},
where:

- BehaviorSpec specifies the component behavior. This specification is given by
component interface contract. A contract Ctr of interface Itf is a tuple Ctr =

〈Itf, Init, Spec, Prot〉, where:

- Itf is the interface for which the contract is attached. It consists of two parts:
the data declaration section, Itf.D, that introduces a set of variables xi with their
types Tj , and the method declaration section, Itf.M , that defines a set of method
signatures. Each signature is of the form m(x1 : in T1; x2 : out T2; x3 : in out T3).
A contract Ctr of interface Itf is denoted Ctr.Itf = 〈Itf.D, Itf.M〉.

- Init is the set of initial states of variables of interface declaration Itf.D. In other
words, it is the allowable initial states depending on the initial condition Q over
the variables of Itf.D. It is denoted Ctr.Init = 〈q0, ..., qn〉. For example q0 can be
x1 = 0. The empty condition is denoted Ctr.Itf = 〈〉.

- Spec is the functional specification of the contract. It assigns each method m ∈
Itf.M a static functionality specification as pair of pre- and post-conditions of the
form Pre(x, Itf.D) ` Post(x, Itf.D, y′, Itf.D′), where non-primed and primed
variables represent the values of the variables in the pre and post state of the
execution of the method, respectively. If the precondition Pre(x, Itf.D) is true,
the pair will be abbreviated as ` Post(x, Itf.D, y′, Itf.D′)
The static functional specifications of operations are used to ensure that the user
(the other components) provides correct inputs and the component returns with
correct outputs. However, it does not force the order on the use of interface meth-
ods. In other words, it does not provide a protocol to coordinate the interactions
between a component and its environment, which is specially important in real-
time system.

- Prot is the interaction protocol between the component with its environment.
It is a set of sequences of operation requests, where a sequence is written in
?op1(x1), ..., ?opk(xk) form, where ?opi(xi) is a call to operation opi ∈ Itf.M with
the input value xi.

In contrast to Spec, the protocols in the contracts are used to ensure non-functional
requirements, such as time to avoid deadlock when putting components together.

Notice that the semantics of a protocol can be expressed by regular expression, a
temporal logic or a trace logic formula. Here, we use the A Trace Logic for Local
Security Properties [Corin et al., 2005]. According to this logic an event is a pair
< A : M ./ B > where A, B are variables or constants , ./∈ {/, .}, and M is a
message, built from variables or constants. The event < A : M . B > should be
read as “component portA sends messageM with intended destination component

93

Chapter 5. Observer-Based Verification with Patterns of Properties

port B". On the other hand, < B : M / A > stands for “B receives message M
apparently from B"

Let e, e1, and e2 be events, F1 and F2 the pre-built and well-formed trace logic
formulas and m be a message, a trace logic formula F is generated according to
the following grammar:

F ::= true|false|F1 ∧ F2|F1 → F2|∀e : F |∃e : F |¬F |m|e1 = e2|e1 6= e2

- TAnnotation is a specific annotation language defined to express non-functional tem-
poral constraints of Prot. They are built from common temporal requirement patterns
shown in Section 2.5.1. Let t be the time that will hold between two events e1 and e2.
Let Tbegin and Tend be the time interval limits, and D, Dmin and Dmax be respectively
the exact, minimum and maximum delay, we consider the following annotations:

- @after(Tbegin) i.e., t ≥ Tbegin;

- @before(Tend) i.e., t ≤ Tend;

- @mindelay(Dmin), i.e., t ≥ Dmin;

- @maxdelay(Dmax), i.e., t ≤ Dmax;

- @delay(D), i.e., t = D.

- BehaviorBody is an implementation of a contract of its interface Intf exposed in Be-
haviorSpec (see BehaviorSpec). The behavior body is hidden from the component en-
vironment, only the interface contracts of BehaviorSpec is visible from the component
environment. To implement such a contract, the component may use operations pro-
vided by other components. These operations are called required operations and are
specified as a contract of an interface that is called the required interface, denoted RI .

A BehaviorBody has the same structure as the interface contract, except a function
Code that maps each method m of Ctr.Itf =< Itf.D, Itf.M > to its code. The Behav-
ior Body can also have private method declarations denoted PriMDec and its corre-
sponding private function codes denoted PriMCode. As a consequence the structure
of component body as BehaviorBody = (Itf, Init, Code, PriMDec, PriMCode, RI).

The code and PriMCode of BehaviorBody is mapped to the underlining programming
language or to a guarded design. In fact according to result of [Hoare and He, 1998] any
program can be abstracted as a guarded command, and further to a guarded design
according to [He et al., 2006]. A guarded design is a pair of a guard g and a design
D, denoted by g&D and defined by D / g . idle2. The guard g is used to describe
the availability of the operation, i.e., the operation can be invoked only when g holds
initially. The design D specifies the behaviors of execution for the operation once it
is activated successfully. Without loss of generality, we always assume that the two
functions code and PriMCode map each method to a guarded command.

2This is the shorthand of if g then D else Idle

94

5.3. SARA to TAIO Formal Model

Remark 4. It is important to note that our behavior model allows to distinguish black-box
component from gray-box component. Black-box component only defines its BehaviorSpec,
while gray-box component defines both BehaviorSpec and BehaviorBody. The white-box
component is obtained when the code of BehaviorBody is mapped to the underlining pro-
gramming language.

Example 6. Let consider that the connection type DC1 shown in Figure 5.1, from which the
data variable appr transit, is implemented by a basic buffer of integer. Figure 5.4 shows
this basic buffer component with its syntactic interfaces : Itf = 〈b : Seq(int), put(item :

in int), get(appr : out int)〉. However, it does not provide the semantics information in the
way the interface can be used. For example, it does not say that the buffer is a one-place
buffer or not.

Figure 5.4: Example of black-box component: a buffer component which implements con-
nection type DC_1 of Figure 5.1

Now, let suppose that a component is a one-place buffer, i.e., only a single data value may
held in the buffer at any one time. By using Definition 5, user can annotated it component
instance with the non-functional constraint, e.g., Queue_Size=1. Then, it can use the interface
contract specification from Definition 7 to specify the semantics of buffer interface. We denote
this interface contract by B_Ctr = 〈Itf, Init, Spec, Prot〉, where :

B_Ctr =



B_Ctr.Itf
df
= 〈b : Seq(int), put(item : in int), get(appr : out int)〉

B_Ctr.Init
df
= |b| = 0

B_Ctr.Spec(put)
df
= (` b′ = 〈item〉 • b)

B_Ctr.Spec(get)
df
= (` b′ = tail(b) ∧ appr = head(b))

B_Ctr.Prot
df
= {ei is ?put(x) if i is odd and ?get(y) otherwise}

(5.1)

Notice that at this stage a component is a black-box component with a syntactic and se-
mantics interface sufficient for the component interaction with its environment. However, at
this stage the component does not provide the semantics of composition, which is necessary
to reason about composition in order to predict of applying the composition mechanism.

Definition 8. COMPOSITIONMODEL

As shown in the introduction of composition background (see Section 2.2), in order to rea-
son about composition, we need a composition theory. Such a theory allows us to predict

95

Chapter 5. Observer-Based Verification with Patterns of Properties

the result of applying a composition mechanism to components. We have also shown that
there are two kinds of composition mechanisms: endogenous composition and exogenous com-
position. In an endogenous composition mechanism, the handling of interaction between
components is part of the components themselves, including ports and interfaces. Examples
includes plugging, Hiding and feedback compositions. On the other hand, in an exogenous
composition mechanism, the handling of interaction between components is realized with
external coordinator.

As a consequence our composition model is defined as set of composition operators.
Currently, the composition model is defined as a set CompositionModel = {PluggingCompos,
HiddingCompos, FeedBackCompos, CoordinationCompos}.

Let Ci = (PI〈D,M〉, Init, Body〈Code, PriMDec, PriMCode〉, RI) = with i ∈ {1, 2} be
two gray-box components, where

- PI is an interface listing all the provided operations of Ci, including its declaration part
and method specification.

- Init is an initial condition that sets the initial value of the variables,

- Code is a function that maps each method m of Ctr.Itf = 〈Itf.D, Itf.M〉 to its code,
i.e., underlining guarded command.

- PriMDec is a set of method declarations that are internal to the component.

- PriMCode is a function that maps each private method m′ ∈ PriMDec to its code.

- RI is an interface listing all the required operations of Ci .

we have the following definitions:

- PluggingCompos ofC1 andC2 is denotedC1 � C2. IfC1 andC2 have disjoint variable
declarations, and none of the provided or private methods of C2 appears in C1 then
C1 � C2 is a composite component that connects a provided operation of C1 to a
required operation of C2. It is defined by:

(C1 � C2) =



(C1 � C2).P I.D
df
= C1.P I.D ∪ C2.P I.D

(C1 � C2).P I.M
df
= C1.P I.M ∪ C2.P I.M

(C1 � C2).Init
df
= C1.Init ∧ C2.Init

(C1 � C2).Code
df
= C1.Code ∪ C2.Code

(C1 � C2).P riMDec
df
= C1.P riMDec ∪ C2.P riMDec

(C1 � C2).P riMCode
df
= C1.P riMCode ∪ C2.P riMCode

(C1 � C2).RI.M
df
= (C2.RI.M\C1.P I.M) ∪ C1.RI.M

(5.2)

96

5.3. SARA to TAIO Formal Model

An example of plugging composition is shown in Figure 5.5(a). After plugging, some
methods can be hiding by the hiding operator.

- HiddingCompos of C with the regard of method m ∈ C.Intf.M is denoted C\m.
It represents the composite component after removal of method m from it provided
methods.

An example of hidding composition is shown in Figure 5.5(b). After hiding, it is pos-
sible that a component feedbacks some of its provided methods to some of its required
methods.

- Feedback of C with the regard of method m ∈ C.Intf.M and n ∈ C.RI.M is denoted
C[m ↪→ n]. It represents the composite component which feeds back its provided
operation m to the required operation n.

An example of feedback composition is shown in Figure 5.5(c). Obviously, feedbacking
C1 � C2 consists to hide some of its provided and required methods. The above three
composition operators can be successively applied as illustrated in Figure 5.5(d).

- ParallelCompos of C1 and C2 is denoted C1 ⊗ C2. If C1.P I.D ∩ C2.P I.D = ∅, and
C1 and C2 do not share methods then C1 ⊗ C2 is a composite component which has
the provided operations of C1 and C2 as its provided operations, and the required
operations of C1 and C2 as its required operations.

An example of disjoint parallel composition is shown in Figure 5.6(a). Plugging com-
position C1 � C2 is the same as disjoint parallel composition C1 ⊗ C2 when the pro-
vided method of C1 are disjoint from the required method of C2. The components we
have studied until now are only passive components, i.e., the component starts to exe-
cute when a provided method is called, and during the execution it may call operations
of other components, and so on. In other words, passive basic or composite compo-
nents provide a number of methods, but do not themselves activate the functionality
specified in the contracts.

In general, specially in real-time systems, a component may be active as a task, i.e., it has
its own control and once it is started it can execute its internal actions, call operations
of other components, and wait to be called by other components. As a consequence,
we need the active composite components that implement a desired functionality by
coordinating sequences of method calls.

- CoordinationCompos of disjoint union for a number of disjoint components C2 =

Ci⊗Cj , i, j = 3...k, by a coordinator C1 is denoted by C1 ‖M C2. In fact, a coordination
for C2 is a component C1 that calls a set of provided methods M of C2.

A coordinator interface C1.Itf has the same structure as an interface Itf =

〈Itf.D, Itf.M〉 shown in Definition 7, except that the semantics of Method Itf.M is
a set of method invocation signatures. Each of them is of the form !m(x1 : in T1; x2 :

out T2). In the same way, the contract of its interface as the same structure of compo-
nent contract Ctr = 〈Itf, Init, Spec, Prot〉.

97

Chapter 5. Observer-Based Verification with Patterns of Properties

Examples of composition coordination are shown in Figure 5.6. In Figure 5.6(a), C1 and
C2 are two one-place buffers. In Figure 5.6(b), Cooordinator is a task that keeps getting
the item from C1 and putting it to C2. It forms thus a three-place buffer in Figure 5.6(c).
In Figure 5.6(d), the get of C1 and the put of C2 are synchronized into an atomic step by
component C4. It forms thus a two-place buffer.

Remark 5. Notice that inspired by the work of Woodcock and Morgan
[Woodcock and Morgan, 1990], Cheng. et al. have proven that C1 ‖M C2 is a com-
ponent, and studied the algebraic laws of this composition [He et al., 2006]. The
composition is defined similarly to the alphabetized parallel composition in CSP
[Roscoe et al., 1997] with interleaving of events.

Example 7. In Example 6, we have shown a black-box component for a buffer simulation.
Here, we review this buffer component as a gray-box, necessary to reason about composition
semantics. Let consider the formal definition of two gray-box buffer components C1 and C2

as follows.

C1 =



C1.Itf.D
df
= {b1 : Seq(int)}

C1.Itf.M
df
= {put(x : in int), get1(x : out int)}

C1.Body.Code(put)
df
= (b1 := 〈x〉) / (b1 = 〈〉) . (put1(head(b1)); b1 := 〈x〉)

C1.Body.Code(get1)
df
= (b1 6= 〈〉) −→ (y := head(b1)); b1 = 〈〉)

C1.Body.MDec
df
= {put1(x : in int)}

C2 =



C2.Itf.D
df
= {b2 : Seq(int)}

C2.Itf.M
df
= {put1(x : in int), get(x : out int)}

C2.Body.Code(get)
df
= (y := head(b2)); b2 := 〈x〉) / (b2 6= 〈〉) . (b2 := get1(y))

C2.Body.Code(get1)
df
= (b2 6= 〈〉) −→ (b2 6= 〈x〉)

C2.Body.MDec
df
= {get1(y : in int)}

Then, the plugging composite component C1 � C2 is shown in Figure 5.5(a). By hiding the
method get1 in C1 � C2, the hiding composite i.e., C1 � C2\get1 is shown in Figure 5.5(b)
and so on.

Remark 6. The formal model of component contract Ctr introduced here can be represented
by UML diagrams. Graphically, the interaction protocol of the contract Ctr.Prot can be rep-
resented as a UML sequence diagram, while the flow of method invocations and synchroniza-
tion in the behabior body of a component can be modeled by a UML state diagram. The
static functionality of interface methods, i.e., Ctr.Spec is given in terms of their pre- and

98

5.3. SARA to TAIO Formal Model

Figure 5.5: Examples of passive composition: (a) plugging composition, (b) hiding after
plugging, (c) feedback, (d) hiding after feedback

Figure 5.6: Examples of active composition: (c) coordination of two one-place buffers to
define a three-place buffer, (d) coordination of two one-place buffers to define a two-place
buffer

post-conditions, while the dynamic functionality of interface protocol i.e., Ctr.Prot is given
in terms of specific time annotations. Indeed, as we will see in the transformation phase,
Section 5.3.3, the UML state machine is extended with the predefined annotations, named
TAnnotation in Definition 7.

99

Chapter 5. Observer-Based Verification with Patterns of Properties

Proposition 1. SEPARATION OF CONCERNS AND MIX VERIFICATION

Formally speaking, the separation of Ctr.Spec and Ctr.Prot requires that the traces of the
sequence diagram are accepted by the state machine defined by the state diagram.

Informally, the consistency of separately specified behavior in the sequence diagram and
the state diagram must ensure that whenever the components follow the interaction protocol
defined by the sequence diagram, the interactions will not be blocked by the system.

Proof.

First, static consistency between methods in the diagrams and the functional specification
must be checked. This step is usually done by tools like a compiler.

Second, dynamic consistency ensures that the separately specified behavior in the sequence
diagram and the state diagram are consistent:

- Formal deductive proof techniques, such as [SPARK, 2014], aided by a theorem prover
can be used to prove some functional properties, i.e., pre- and post-conditions of the
methods. Verification of the functional properties, particularly its completeness, is a
difficult issue. Some times it must be completed by inner invariants, such as the loop
invariants, as proposed in [Aponte et al., 2012].

- Model checking techniques is used to check that the state machine defined by the state
diagram accepts the time trace of protocol properties. In OBV context, we translated
both the sequence diagram and the state diagram into TAIO model (see Section 5.3.3).
Then, we used the UPPAAL TAIO model checker tool to check that the TAIO model
for the state diagram is trace equivalent to the TAIO model for the sequence diagram.

5.3.2 TAIO formal definition

Timed Automata (TA) is one of the most popular models adapted to real-time systems
[Alur and Dill, 1994]. First, the TA model is well adapted for the verification of real-time
properties because it defines a timed labeled transition system (TLTS). Second, a num-
ber of methods based on variants of the TA model, such as TA over Input and Output
actions (TAIO) [Krichen and Tripakis, 2009], or other similar models, such as timed Petri
nets [Merlin and Farber, 1976] have been proposed. Finally, a number of automatic model
checker tools for TA have been efficiently developed, e.g., Kronos [Yovine, 1997] and UP-
PAAL [Larsen et al., 1997]. For example, UPPAAL uses an extended version of TA, called
UPPAAL TA, to specify a system as a network of TA models and to globally declare all vari-
ables in the declaration part for the synchronization of TA models. UPPAAL TRON is an
extension of UPPAAL for conformance testing of real-time systems by using relative timed
input/output conformance relation [Larsen et al., 2005]. We translate our SARA model into

100

5.3. SARA to TAIO Formal Model

the TAIO model based on UPPAAL TA, and use the UPPAAL TRON tool for verification
tasks.

Definition 9. TASYS

A TA verification system can be defined as a tuple TASys = (TAModel, TADeclaration),
where:

- TAModel is a set of all the TA models used in the global system model. Every TA
model is defined according to the specific TAIO (see Definition 10);.

- TADeclaration is the declaration part that contains all the variables of the system mod-
els (see Definition 15).

Definition 10. TAIOMODEL

A TAIO model is defined as a tuple TAIOModel = (TAIOName, TAIOSyntax, TAIOSeman-
tic), where:

- TAIOName is the name of the TAIO model, which appears in the system declaration
part and can be used to arrange priorities on TAModels;

- TAIOSyntax is the syntax of TAIO (see Definition 11);

- TAIOSemantic is the semantics of TAIO (see Definition 12).

Definition 11. TAIOSYNTAX

A TAIO A over input and output action Act is a tuple A = (L, l0, X, Inv,Act, E), where:

- L is a finite set of locations;

- l0 ∈ L is the initial location;

- X is a finite set of non-negative real valued clocks, {x1, x2, ..., xn};

- Inv is a function over clock valuation RX+ that assigns an invariant to each location;

- Act =Act×{!, ?} is a set of the partitionned set of observable actionsAct = Actin∪Actout.
Input actions are denoted a?, b?, etc, and output actions are denoted a!, b!, etc;

- E is a finite set of edges for transitions.

Each edge E is a tuple (l, g, r, d, a, l′), where:

- l, l′ ∈ L are respectively the source and destination locations;

- g is a set of time constraints of the form x ∗ c, where x ∈ X is a clock variable, c is an
integer constant and ∗ ∈ {<,≤,=,≥, >};

101

Chapter 5. Observer-Based Verification with Patterns of Properties

- r ∈ X is a set of clocks to reset to zero, (r := 0);

- d ∈ {delayable, eager, lazy} is the deadline which can be assigned to E.

- a ∈ Act is the action.

Definition 12. TAIOSEMANTIC

A TAIO A = (L, l0, X,Act, E) defines a Timed Input-Output Labeled Transition System
(TIOLTS) [Krichen and Tripakis, 2009]. A TIOLTS is a tuple (SA, s0, Act, Td, Tt), where:

- SA = L×RX+ is a set of time states associated to locations of A. A timed stated is a pair
s = (l, v), where l ∈ L and v : X → R+ is a positive real clock valuation;

- s0 = (l0,~0) is the initial state, where ~0 is the valuation assigning 0 to every clock of A;

- Td is a set of discrete transitions of the form (s, a, s′) = (s′, v)
a−→ (s′, v′), where a ∈ Act

and there is an edge E = (l, g, r, d, a, l′), such that v satisfies g and v′ is obtained by
resetting to zero all clocks in r and leaving the others unchanged;

- Tt is a set of timed transitions of the form (s, t, s′) = (s′, v)
t−→ (s′, v + t), where t ∈ R∗+.

Tt must satisfy the following conditions:

- (s, t, s′) ∈ Tt ∧ (s, t, s′′) ∈ Tt ⇒ s′ = s′′,

- (s, t, s′) ∈ Tt ∧ (s′, t′, s′′) ∈ Tt ⇒ (s, t′ + t, s′′) ∈ Tt,

- (s, t, s′) ∈ Tt ⇒ ∀t′ < t,∃(s, t′, s′′) ∈ Tt.

As mentioned in the TAIOSyntax, Act = Actin ∪ Actout are observable actions. We
assume there is an unobservable action τ 6∈ Act. For (s0, v0), (s, v), (s′, v′) ∈ SA, ai ∈ Act∪R+

and τa ∈ τ a sequence of the form (s0, v0)
a1=a−−−→ (s, v)

x1=2−−−→ ...
τa−→ ...

a2=b−−−→ (s′, v′) is called

a run of SA. The time trace TTrace of this run is TTrace(SA) = a2τab. In general, TTrace is
the real-time sequence over set (Act ∪ R+ ∪ τ)∗.

Definition 13. OBSERVABLE TIME TRACE

Given a time trace γ ∈ TTrace(SA), there exists an observable time trace σ ∈ ObsTTrace

such that σ is the projection of γ to Act ∪ R+, i.e., obtained by erasing from γ all actions not
in Act ∪ R+. Clearly, if γ = τ j1ai1 ...τ

jNaiN then σ = ai1 ...aiN . For example, the ObsTTrace
of above TTrace(SA) is σ = a2b. The time spent in a sequence, denoted time(σ) is the sum
of all delays in σ. For example time(a2b) = 2.

Definition 14. REACHABILITY STATE

A state s ∈ SA is reachable if there exists a time trace γ ∈ TTrace(SA) such that s0
γ−→ s. The

set of reachable states of SA is denoted Reach(SA). A maximal set of reachable states that
the system can be active is denoted a state configuration Reach(CSA)

102

5.3. SARA to TAIO Formal Model

Definition 15. TADECLARATION

A TADeclaration is defined as a set of three parts, TADeclaration = {GlobalDecl, ModelDecl,
SysDecl}, where:

• GlobalDecl contains global integer variables, clocks, synchronization channels and
constants for TASys.

• ModelDecl defines local variables, channels and constants for each TAIO model.

• SysDecl defines the execution order by assigning priority to TAIO models.

5.3.3 From SARA model to TAIO Model

This section presents the transformation rules developed to translate a SARA model into a
TAIO model, for which we can use UPPAAL model checker tool for formal verification of
real-time properties. They are based on the above SARA and TAIO formal model definitions.
We first present the transformation rules. Then, we present the semantics preservation of
model transformation.

Transformation rules

There are approaches, such as [Varró, 2002, Mekki, 2012], that transform UML State Ma-
chine (UML SM) into Extended Hierarchical Automaton (EHA) and Timed Automa (TA).
Although the behavior model of our SARA model is based on the UML SM with temporal
annotations (see Remark 6), the transformation of UML SM into TA is not sufficient for our
component model transformation. Based on these approaches and with some extensions, we
develop the following transformation rules to translate a SARA model into a TAIO model.

Rule 1. (mapping of component instances). The objective of this rule is to transform
a behaviour of a SARA component instance into a TAIO Model. For each CompInst =
(CompInstNamei, Priority, BehaviorModel):

• Rule 1.1 Based on the bi-simulation relation between UML SM and TAIO model
[Mekki, 2012], we encode a corresponding TAIOModel of BehaviorModel defined with
UML State Machine (UML SM). For example, Figure 5.7(a) shows the UML SM dia-
gram for the Gate component of Figure 5.1. In addition, the state machine is extended
with predefined annotations, shown in Definition 7. For instance, the state annotations
@maxdelay(4s) and @maxdelay(6s) in the states Signaling and Closing specified that
the Gate responds to down signal by moving down and takes at most 10s to be com-
pletely closed. Indeed, with transition annotations @delay(4s) and @delay(6s), it takes
4s to activate the light warning when a vehicle approaches the gate, and 6s to close
the gate. Conversely, it responds to the up signal by moving up and it takes 6s to be
completely opened. The corresponding UPPAAL TAIO model is shown Figure 5.7(b).

103

Chapter 5. Observer-Based Verification with Patterns of Properties

• Rule 1.2 Each annotation is translated into an integer expression. For example,
@after(Tbegin), @before(Tend), @mindelay(Dmin), @maxdelay(Dmax), @delay(D), are
respectively translated into x ≥ Tbegin, x ≤ Tend, x ≥ Dmin, x ≤ Dmax, x = D, as
illustrated in Figure 5.7(b).

Figure 5.7: (a) Gate component UML SM, (b) The corresponding UPPAAL TAIO

Example 8. Figure 5.7 illustrates the transformation Rule 1.

Rule 2. (mapping of bindings). The objective of this rule is to transform component instance
bindings. For each CompInstBinding = (CompInstNamei, Priority, CompConnect), where
CompConnect = (IC, DC, OC), a TAIOModel is inserted in TASys by respecting the following
rule parts:

• Rule 2.1 For each ICn : ModelName.ivj → CompInstNamek.ipl, insert a TA-
Model (L, l0, V, Act, Clock, Inv, T) with name DCn, where T = {(q, g, r, a, q′)}, with
g = {ivj XOR ipl}, and a = {ipl := ivj}. XOR represents the inequality function be-
tween ivj and ipl to avoid modification during the transition. This leads to update ipl
and achieves the connection, as illustrated in IC1 of Figure 5.8;

• Rule 2.2 For each DCn : CompInstNamei.opj → CompInstNamek.ipl, insert a TA-
Model with name DCn, where g = {opj XOR ipl} and a = {ipl := opj}, as illustrated
in DC1 of Figure 5.8;

• Rule 2.3 For each OCn : CompInstNamek.opi → ModelName.ovj , insert a TAModel
with name OCn, where g = {opi XOR ovj}, and a = {ovj := opi}, as illustrated in OC1

of Figure 5.8.

Example 9. Figure 5.8 illustrates the transformation Rule 2 and Rule 3

104

5.3. SARA to TAIO Formal Model

Figure 5.8: Example of TAIO connections for Figure 5.1

Rule 3. (Mapping of initial input and adapter). The objective of this rule is to initialize
the model in order to check it with a TASys tool, such as the UPPAAL-TRON tool. The
adapter in UPPAAL-TRON is a driver which interprets the testing input for the system under
observation, and in turn translates the output for TRON [Larsen et al., 2005]. For each ipj ∈
IP in SARAModel, insert TAIOModel with name INITn and the action to update is a =

{ipj := ipj?}, as illustrated in INIT1 of Figure 5.8. For each input ipj?, an input/output
adapter stub can be generated. For example, ADAPT1 in Figure 5.8 shows the delay adapter
between the input port and the output port.

Rule 4. (mapping of declarations). The objective of this rule is to transform the declarations
of a SARAModel into a TADeclaration = (GlobalDecl, ModelDecl, SysDecl). It is defined as
follows:

- Rule 4.1 For DataModel={IV, OV, LV, TV} in SARAModel, insert iv ∈ IV , ov ∈ OV and
tv ∈ TV in GlobalDecl.

- Rule 4.2 As mentioned in Definition 4, for technical reasons, we assume that all the lo-
cal variables of model components occur somewhere in the top level component struc-
ture. The distinction of each component variable is ensured by prefixing each local
variable of each component with the name of component. For each lv ∈ LV with a
prefix insert lv in ModelDecl.

- Rule 4.3 For each declaration of CompInst = (CompInstNamei, Priority, Behavior-
Model) insert in SysDecl the TAIOName = CompInstNamei. Based on the priorities
of different component instances, arrange priorities on different TAIOName of TAIO
models. This define the execution order between the different TAIO models. The ex-
ecution path begins at input ports and ends at output ports by following the priority
order of component instances. For example, the execution order of Figure 5.1 is: OC_i
< Gate_Inst_1 < DC_i < Controller_Inst_1 < DC_j < Sensor_Inst_1 < ICi, where“<"
is the execution order operator. This means that Sensor_Inst_1 has a highest priority
than Controller_Inst_1 and Controller_Inst_1 has a highest priority than Gate_Inst_1.

Example 10. Figure 5.9 illustrates the transformation Rule 4 for the declaration part of LC-
APS model of Figure 5.1.

105

Chapter 5. Observer-Based Verification with Patterns of Properties

Figure 5.9: UPPAAL model declaration of Figure 5.1

Remark 7. Technically, it is important to note that the transformation links are maintained,
such as Relational Database Management System, in order to use these links to trace the
equivalence relations for the semantics preservation during model transformation.

Semantics preservation of model transformation

Many approaches for semantics preservation of model transformations exist
[Giese et al., 2006]. Either specific correctness conditions are checked for both the
original source model and its transformation model [Varró and Pataricza, 2003] or the
semantics equivalence between both models is guaranteed by a bisimulation check
[Narayanan and Karsai, 2008]. The former approach verifies if a transformation preserves
certain dynamic consistency properties by model checking the source and target models
for properties P and Q, where property P in the source language is transformed into
property Q in the target language. This transformation requires validation by a human
expert. The latter approach checks if the models are equivalent with respect to a particular
property about the source model. Then, verifying the target model for the property will be
equivalent to verifying the source model for this property. As our target model is used for
observer-based verification, we study the second approach that provides a way to check if
a bisimulation equivalence relation exists between an instance of the SARA model and an
instance of the TAIO model.

106

5.3. SARA to TAIO Formal Model

Bisimilarity

Two systems can be said to be bisimilar if one system simulates the other and vice-versa. A
bisimulation relation can be defined formally as follows.

Definition 16. GENERAL DEFINITION OF BISIMILARITY

Given a labeled state transition system (S,Λ,→), a bisimulation relation is defined as an equiv-
alence relationR over S, such that for all p, q ∈ S, if (p, q) is inR, and for all p′ ∈ S and α ∈ Λ,
p→α p′ implies that there exists a q′ ∈ S such that q →α q′ and (p′, q′) is inR, and conversely,
for all q′ ∈ S and q →α q′ implies p→α p′ and (p′, q′) is in R.

This definition is given in terms of a single global set S. We can easily think of its equiv-
alence for two transition systems where a global set contains both the source states and the
target states. Based on Definition 6 and Definition 14, we provide its following equivalence
definition for the bisimulation relation between the SARA source model and the TAIO target
model.

Definition 17. ADAPTED DEFINITION OF BISIMILARITY

Given an equivalence relation R that matches a component configuration CS in the SARA
model and creates its equivalent state configuration CT in the TAIO model, the equivalence
is a bisimulation relation if for each transition t from CS to C ′S in the SARA, there exists an
equivalent transition t′ in the TAIO from CT to C ′T , and C ′T is equivalent to C ′S , and vice
versa.

In this way, if there is a bisimulation relation between a SARA model and its corre-
sponding TAIO model, then verifying the TAIO model for reachability will be equivalent to
verifying the SARA source model for reachability. If the check fails, it means that there was
an error in the transformation and the generated TAIO model does not truly represent the
SARA source model.

Here, we check the behavioral equivalence of the SARA model and the TAIO model
with respect to reachability. It should be noted that the proposition described below is not
an attempt to prove the correctness of the transformation rules in general. This is a method
to verify if a specific transformation from an instance of the SARA model into an instance of
the TAIO model is valid. It must be executed for each transformation individually.

Proposition 2. CHECKING BISIMILARITY WITH RESPECT TO REACHABILITY

If a transformation relation R, which matches a component configuration CS in the SARA
model and creates its equivalent state configuration CT in the TAIO model is a bisimulation,
then verifying the TAIO model for reachability will be equivalent to verifying the SARA
model for reachability.

Proof. The proof is realized by construction. Indeed, most of the TAIO model checking tools
provide a means to check the reachability of a state configuration according to Definition

107

Chapter 5. Observer-Based Verification with Patterns of Properties

14. Alternatively, a claim can be made in the tool to say that the state SA of TAIO A is
not reachable. If it is indeed reachable, the model checker refutes this claim and presents a
counter-example, as a time trace γ ∈ TTrace(SA). This trace represents a valid series of tran-
sitions s0

γ−→ s in the TAIO that leads to a state configuration CT . Let s1
γi−→ s′1 be a transition

in a series of transitions s0
γ−→ s, such that s1 ∈ CT and s′1 ∈ C ′T . For each transition s1

γi−→ s′1

in a series of transitions s0
γ−→ s, we search the equivalent transition in the SARA model

configurations CS and C ′S for bisimulation according to Definition 17. By construction, the
transformation links created during the transformation are used to reproduce this trace in
the SARA model. Rather than checking for all possible states in the SARA model, Definition
6 for input enabled and reachable configuration are used. In this way, verifying the TAIO
model for reachability will be equivalent to verify the SARA model for reachability.

Remark 8. The complexity of the transformation is not increased significantly by this
method, as shown in the metrics of model transformation in Section 6.6. Indeed, as the
transformation links are created every time the objects of the output model are created from
the input model, the complexity of the transformation checking is proportional to the size of
the input model and to the transformation engine.

5.4 A 3-Layer Approach for OBV

Figure 5.10 shows the overview of our component-based modeling and observer-based veri-
fication approach with separation of concerns. It is a 3-layer approach where the upper layer,
the middle layer and the lower layer represent the requirement model, the solution model and
the verification model, respectively.

5.4.1 Upper layer

The upper layer represents software requirement specification, where functional require-
ments are separated from non-functional requirements, such as safety requirements sub-
jected to real-time constraints, called here temporal safety requirements. Our approach is
based on common temporal requirement patterns shown in Section 2.5.1. However, the
justification of pattern selection is a major challenge of pattern-based approach because gen-
erally, complex requirement specifications match more than one of patterns mentioned, as
stated in Remark 1. For that purpose, we state the following assumption for our approach.

Assumption 2. DECOMPOSITION OF COMPLEX REQUIREMENTS

Complex requirements to be verified have to be decomposed into less complex requirements,
which can be easily assigned to common pattern specifications.

We justify this assumption, by the fact that the assignment of requirements in the cor-
rect patterns is a first difficulty in the adoption of formal pattern-based approaches by non-

108

5.4. A 3-Layer Approach for OBV

Figure 5.10: The overview of our OBV approach

experts. This assignment can be addressed by domain experts by using requirement dia-
grams, such as SysML requirement diagram [SysML, 2012]. With these methods, it is possi-
ble to simplify complex requirements in a greater number of less complex requirements. The
simplified requirements, in turn, can be easily assigned to common pattern specifications or
new pattern specifications. The consideration here is focused on the second difficulty, which
consists in supporting formal verification non-experts with expert knowledge and experi-
ences in the verification of pattern specifications. The main advantage of our approach in
comparison to other approaches is that supporting non-experts with pattern specifications
transfers expert knowledge. Therefore, it is an answer to the recurrent statement, common
software engineers are not experts in logic. Once requirements to be verified have been
assigned to the correct property specification patterns, our integrated approach can be pro-
cessed as follows.

109

Chapter 5. Observer-Based Verification with Patterns of Properties

5.4.2 Middle layer

The middle layer describes the design model. Functional requirements are modeled accord-
ing to the SARA model, which meta-model and formal model are introduced in Section 4.3
and Section 5.3.1, respectively. For time annotation properties to be verified, we select the ap-
propriate observer patterns from the generic repository patterns presented in Section 2.5.1.
For example, Figure 5.11 shows two observers. Figure 5.11(a) represents the absence before
observer. The forbidden after observer can be easily derived from it. Figure 5.11(b) repre-
sents the response max delay pattern. In the same way, the response min delay can be easily
derived from it.

Figure 5.11: (a) Absence before observer, (b) Response max delay observer

Once identified, the patterns are instantiated with the appropriate parameters. For ex-
ample, for requirement specification “when the gate is opened to road traffic, it must stay
open at least Tmin time units before closing", from Example 5, the absence before observer in
Figure 5.11 (a) is instantiated with states opened instead of s0, and with transition down? and
up? instead of a? and init?, respectively. Here, the different types of observers are mainly
informative, since nothing prohibits the mix of different types of observers. What we want
really is to show that any execution trace of the observed system is preserved in the compo-
sition of the system and its observer. For this, we show that the well-defined observer does
not obstruct a behavior of the system.

5.4.3 Lower layer

The lower layer represents the verification model, where the SARA design models are trans-
formed into TAIO models (see Section 5.3). The pattern instance is also represented into
observer TAIO model. The two TAIO are synchronized both on time and on their shared
common actions according to the parallel composition of TAIO models.

110

5.4. A 3-Layer Approach for OBV

We show that, from any trace of the composition system and its observer S ‖ O, we
can obtain a trace of S by erasing the events from the well-defined observer O. This means
that the well-defined observer does not add new behaviors to the observed system S. Let
two traces σ1 and σ2 in ObsTTrace(S) and ObsTTrace(O), respectively. They are said to be
synchronizable in S ‖ O if there exists a run λ (see Definition 12) of S ‖ O from which the two
traces can be extracted. In other words, it can be stated in the following proposition.

Proposition 3. SOUNDNESS OF OBV
if σ1 ∈ ObsTTrace(S) and σ2 ∈ ObsTTrace(O) are the traces extracted from a run λ of S ‖ O,
where σ ∈ ObsTTrace(S ‖ O) then σ1 and σ2 are synchronizable in two composition of
TIOLTS S′ ‖ O′ with the same sets of input and output as S and O, and σ ∈ ObsTTrace(S′ ‖
O′).

Proof. Let S’ have the same sets of inputs ActSin and outputs ActSout as S and let O’ have the
same sets of inputs ActOin and outputs ActOout as O. Moreover, let S’ and O’ synchronize on the
same set of actions ActSsyn and ActOsyn, respectively. Let ActS = ActSin ∪ ActSout ∪ ActSsyn and
ActO = ActOin ∪ ActOout ∪ ActOsyn. With no loss of generality, we also assume that the four
TIOLTS have the same unobservable action τ .

Since σ1 ∈ ObsTTrace(S), according to Definition 13 there exists γ1 ∈ TTrace(S) such
that σ1 is the projection of γ1 to ActS , i.e., obtained by erasing from γ1 all actions not in
ActS . Thus, there exist [i1, ..., iN] and [j1, ..., jN] such that γ1 = τ j1ai1 ...τ

jNaiN . Clearly,
σ1 = ai1 ...aiN .

In the same way, since σ2 ∈ ObsTTrace(O), there exists γ2 ∈ TTrace(O) such that σ1
is the projection of γ2 to ActO. Thus, there exist [k1, ..., kN] and [l1, ..., lN] such that γ2 =

τ l1ak1 ...τ
lNakN . Clearly, σ2 = ak1 ...akN .

Since σ1 and σ2 are extracted from λ, it is possible to synchronize the traces γ1 and γ2 in
S ‖ O by considering the trace β = τ r1a1...τ

rNan ∈ ObsTTrace(S ‖ O), where (1) a1...an = γ

obtained by erasing from λ all actions not in ActS ∪ActO, (2) for p = 1, ..., n, if ap = ais = akt
appears in both γ1 and γ2 then rp = js + lt; if ap = ais appears only in γ1 then rp = js; and if
ap = akt appears only in γ2 then then rp = jt.

Then in the same way, it is possible to synchronize γ′1 and γ′2 in S′ ‖ O′ by considering the
trace β′ = τ r

′
1a1...τ

r′Nan ∈ ObsTTrace(S′ ‖ O′), where r′p is defined similarly to r′p. Hence,
we are done.

At the end, from the composition of observed system and its observers, we use an ap-
propriate verification tool, such as the UPPAAL model checker for the verification tasks. The
verification tasks are reduced to a reachability search of error or no-error states (KO or OK
states) on the TAIO models, as illustrated in our case studies in Chapter 6.

111

Chapter 5. Observer-Based Verification with Patterns of Properties

5.5 Challenges Revisited and Lessons Learned

5.5.1 Challenges Revisited

We have presented in this chapter an observer-based verification approach for component-
based models. Let us now revisit the specific challenges identified in Section 5.2.2 and dis-
cuss how our approach faces them.

C4. Separation of component interface contracts. To face this challenge, we have distin-
guished the input and output contracts of component interface methods, expressed
as pre- and post-conditions, from the real-time constraints of component interaction
with its environment, expressed as interface contract protocol. The idea of pre- and
postcondition is widely used in a variety of software techniques, such as design by
contract [Meyer, 1997], and Uml 2.0 OCL specification [OMG, 2003]. The novel fea-
tures of our approach is the definition of temporal annotation language for interaction
protocol that imposes the order of the use of interface methods. This annotation lan-
guage are built from real-time extensions of the Dwyer et al. classification shown in
Section 2.5.1.

C5. Gray-box specification. To face this challenge, the specification of SARA component is
defined as a gray-box view, i.e., a component is specified as an architecture that imple-
ments a behavior specification. Black-box component only defines its behavior speci-
fication, while gray-box component defines both Behavior specification and behavior
body. The knowledge of behavior body is important to reason about component com-
position, i.e., to predict the result of applying a composition mechanism.

C6. Assurance of model transformation. To face this challenge, we have formally defined
the SARA model and the TAIO model in such a way it facilitate it transformation
process. Based on these formal definitions, we define a simple transformation rules
that map SARA elements to TAIO elements. Then, we check a bisimularity relation
between the two models with respect to the reachability property. If there is a bisimu-
lation relation between a SARA model and its corresponding TAIO model, then veri-
fying the TAIO model for reachability will be equivalent to verifying the SARA source
model for reachability. If the check fails, it means that there was an error in the trans-
formation and the generated TAIO model does not truly represent the SARA source
model.

5.5.2 Lessons Learned

In above Section 5.5.1, we have discussed the specific challenges that we have faced in this
chapter. In Section 2.6, general challenges of CBD are discussed and comparative analysis of
the state of the art approaches are presented in Table 2.2 around four general requirements:
traceability (R1), interoperability (R2), V&V (R3) and certification (R4).

112

5.5. Challenges Revisited and Lessons Learned

In this section, we summarize in Table 5.1 the learning we got, the contributions and
limitations of our SARA approach relative of these general requirements.

Categories Sub-categories Approaches Discussion criteria

Traceability Interoperability V&V Certification

General- OOP-Based EJB (X) (X)

Purpose Fractal (X) (X)

ADL-Based AADL (X) (X) X (X)

Pin (X) X (X)

Specialized- OOP-Based Think (X) (X)

Purpose CHESS (X) (X)

ProCom (X) (X)

ADL-Based IEC-61499 (X) X (X)

SARA 3 3 3

AUTOSAR (X) X X (X)

Table 5.1: Synthesis of comparison for some CBD-V approaches including ours

R1. Traceability. The traceability support is generally weaker in academic component
models or frameworks mostly due to extensive cost and time to deal with this require-
ment. Following some researches [Mader and Egyed, 2012, Dömges and Pohl, 1998]
that show that system development practice with traceability can be cost benefit in
long term if it is adapted to the project-specific needs, we have defined a lightweight
traceability meta-model for domain component-based development. We have gath-
ered the most relevant work related to traceability of concerns in MDE, and highlight
their benefits for component-based model driving development.

R2. Interoperability. The interoperability of components is a fundamental design desider-
ata of component-based development. As a consequence, with some exceptions, all
of the CBD approaches provide a partial support interoperability. However, they do
not focus on domain-specific knowledge, where a protocol of communication, is re-
quired for an effective interoperability. For this, in addition of two levels of inter-
operability, generally defined by common models i.e., (i) syntatic level that covers the
static aspects of component interoperation and (ii) the semantic level that covers the be-
havioral aspects of component interoperation, we have followed a theory of contract
[He et al., 2006] and defined an additional level, i.e., (iii) the protocol level to deal with
the order in which a component expects its methods to be called.

R3. V&V. are at the heart of the development process of system that require high depend-
ability. As a consequence, most of component models dedicated to these systems offer
a formal execution model. However, this does not imply that these formal models
can be used without substantial additional effort to integrate them into a tool and a

113

Chapter 5. Observer-Based Verification with Patterns of Properties

development process. For this purpose, we have tried to used different several tools
for verification tasks. However, an integrated tool-chain demonstrator is required for
real-world development process.

R4. Certification. As the traceability, certification support is generally weaker in academic
component models or frameworks mostly due to extensive cost and time to deal with
these requirement without industrial implication. CBSE is now an established software
engineering research area. However, as it spread to safety-critical domains, it is crucial
to establish to what extent individual components can be trusted and depended on, as
well as developing a solid understanding of the impact from individual components
on the overall dependability of the system for certification reason.

5.6 Summary

In this chapter, we have presented the formal aspects of our component-based modeling
and observer-based verification. We have formalized our domain-specific SARA model and
translated it into the TAIO model for which we can use a time model checker tool for verifica-
tion tasks. Common real-time extensions of Dwyer et al. patterns are intuitively represented
as observers that react to the input and the output operations of the observed system model.
This provides an intuitive way of expressing common real-time properties without requir-
ing a significant knowledge of higher order logic and theorem proving. The correctness of
a SARA model transformation into a TAIO model is realized by applying the bisimulation
relation based on transformation links. The correctness of our observer-based verification
shows that any trace of the observed system is preserved in the composition of the system
under observation and the observers.

In Chapter 6 of this dissertation, we evaluate the applicability of our approach through
concrete case studies of railway safety-critical software.

114

Part IV

Validation

115

Chapter 6
Validation Through Railway
Safety-Critical Software

Contents
6.1 Introduction . 118

6.2 Overview of SARA Process . 118

6.3 A Brief Presentation of ERTMS/ETCS 120

6.3.1 A Structural presentation of ERTMS/ETCS 120

6.3.2 A Temporal QoS Ontology For ERTMS/ETCS 121

6.4 Rail-Road Level Crossing Case Study 122

6.4.1 The Case Study Motivation . 122

6.4.2 Modeling, Verification and Tracing 124

6.5 RBC Handover Case Study . 130

6.5.1 The Case Study Motivation . 131

6.5.2 Modeling, Verification and Tracing 132

6.6 Metrics for Model Transformation and Component Reuse 137

6.6.1 Metrics for ATL and QVT Model Transformation 137

6.6.2 Metrics for Component Reuse Cost 138

6.7 Threats to Validity and Discussion . 145

6.7.1 Scalability Concern . 145

6.7.2 Safety Risk Assessment . 147

6.8 Summary . 147

117

Chapter 6. Validation Through Railway Safety-Critical Software

6.1 Introduction

In this chapter, we evaluate the applicability of our approach, which is presented in contribu-
tion Part III, through some concrete case studies of railway safety-critical software. The case
studies are derived from the System Requirement Specification (SRS) of ERTMS/ETCS. The
aim of the case studies is to identify requirement concerns and architecture elements from
which we can apply our traceability process shown in Figure 4.5 and our observer-based
verification process shown in Figure 5.10.

The chapter is structured as follows. In Section 6.2, we give an overview of our ap-
proach. Section 6.3 briefly presents the ERTMS/ETCS. Section 6.4 and Section 6.5 describe
the first and the second case studies, respectively. Section 6.6 shows some metrics related to
experiments we conducted to evaluate our approach. Section 6.7 discusses the advantages
and limitations of our approach. Finally, Section 6.8 summarizes and concludes the chapter.

6.2 Overview of SARA Process

As shown in Section 2.2, there are many component-based software development lifecy-
cles. Most of them consider that the complete system should be completly constructed with
component-based development. As a consequence, in the requirement analysis phase, the
focus is put on component properties rather than user requirements. In this way, these life-
cycles do not discussed in detail domain specific requirement issues.

However, as already discussed in Section 1.1, due to the railway control application
market structure (many manufacturers and vendors), it is very difficult to build the com-
plete system by only using these idealized CBD lifecycles. Indeed, there are always some
requirements that are customer specific and vary from customer to customer, and still de-
veloped with traditional software development processes. One possible way to solve the
user requirement problem is to develop reusable software components that meet the user
requirements, and that can also be used in future projects. In this way, a hybrid develop-
ment process is required to support both component-based software development as well as
conventional software development process, such as V-Lifecycle.

Figure 6.1 shows an overview of our component-based model-driven development
process named SARA development process, included in the V-Lifecycle prescribed by the
CENELEC standard of railway safety-critical software for control and protection systems
[EN-50128, 2011]. The entry point of the SARA development process is the Software Re-
quirement Specification (SoRS), which provides the foundation for system comprehension,
design, testing and maintenance. The SoRS is derived from the System Requirement Speci-
fication (SyRS). As already mentioned in Assumption 1, we assume that the SoRS is traceable
if (i) the origin of each of its requirements is clearly related to the SyRS ones and if (ii) it facil-
itates the referencing of each requirement in future software development or enhancement
artifacts.

118

6.2. Overview of SARA Process

Figure 6.1: SARA component-based development and verification process included in CEN-
ELEC prescribed V-Lifecycle

The key idea is that if scenario concerns are changed, model elements can be repeatedly
and easily tracked in order to assess the change impact analysis whenever there is a change.
As illustrated in the surrounded part of Figure 6.1, the SARA process includes two activities:

1. The software component-based design activities (the left branch of the surrounded
part). From the phase of software requirement specifications, we want to separate func-
tional requirements from safety and temporal requirements in software component-
based architecture in order to facilitate the traceability of requirement concerns.

2. The verification activities performed at the model level (the right branch of the sur-
rounded part). These verification activities performed at the model level are separated
from other verification activities performed at the source code and the system level.
They include both a test of individual components and their impact on the overall
composite system. With these activities, we want to link back verification results (“ok"
or “ko") to initial requirements or intermediate models to ensure that specifications are
properly implemented.

The SARA process is based on core meta-models, which have been presented in Chap-
ter 4. These meta-models are used for modeling software requirement concerns, component

119

Chapter 6. Validation Through Railway Safety-Critical Software

elements and the traceability links among elements in different abstraction levels, from de-
sign level to implementation level and verification level. We have applied this process to
evaluate our approach through some case studies of railway safety-critical software, derived
from ERTMS/ETCS.

6.3 A Brief Presentation of ERTMS/ETCS

6.3.1 A Structural presentation of ERTMS/ETCS

The ERTMS is the European Rail Traffic Management System and the ETCS is the European
Train Control Sub-system. Figure 6.2 shows the system architecture of ERTMS/ETCS and its
interfaces with the Global System for Mobile communications - Railway (GSM-R) and other
signaling systems, such as specific national systems, interlocking and centralized control
center.

Figure 6.2: System architecture of the ERTMS/ETCS and its interfaces

The ETCS consists of two parts: the On-board part and the Trackside part. The detail
of each part and components can be found in the specification [ERTMS/ETCS, 2014]. As
shown in Figure 6.2, two types of interface specifications have been identified. The first cate-
gory is the harmonized interfaces, such the interface between the Eurobalise and Eurobalise
reader, which is called the Balise Transmission Module (BTM). This category ensures that

120

6.3. A Brief Presentation of ERTMS/ETCS

systems from different suppliers, which meet this specification, can work together without
any further precautions. The second category is the non-harmonized interfaces, such as the
interface between Radio Block Centre (RBC) and interlocking. This category will depend on
the type of interlocking or national systems to be used on an ERTMS project or experimen-
tation. For our experimentation, we add a virtual Computer-Based Interlocking (CBI), as
shown in Figure 6.2, which communicates with interlocking, RBC, Eurobalise and Euroloop
to provide the track occupancy information for the RBC handover case study. In addition,
based on the new general architecture of rail-road Level Crossing Automatic Protection Sys-
tem (LC-APS) [Khoudour et al., 2009], we add a computer-based Local Control Centre (LCC)
for the LC-APS case study.

6.3.2 A Temporal QoS Ontology For ERTMS/ETCS

Ontologies offer a means for representing and sharing information in many complex do-
mains. For example, it can be used for representing and sharing information of System
Requirement Specification (SRS) of complex systems like the SRS of ERTMS/ETCS writ-
ten in natural language. Since this system is a real-time and critical system, generic on-
tologies, such as OWL [W3C, 2004] and generic ERTMS ontologies [Hoinaru et al., 2013,
Hoinaru et al., 2014] provide minimal support for modeling temporal information om-
nipresent in these SRS documents.

To address this challenge, we have proposed a lightweight 3-layer temporal Quality of
Service (QoS) ontology [Sango et al., 2015a, Sango et al., 2015b] for representing, reasoning
and querying over temporal and non-temporal information in a complex domain ontology.
Figure 6.3 shows our 3-layer temporal QoS ontology for ERTMS.

The upper layer shows the generic ERTMS ontology that represents the main elements of
ERTMS/ETCS SRS. The intermediate layer describes the generic QoS characteristics of these
components. The lower layer represents the specific temporal QoS characteristics layer. The
separation of the intermediate QoS layer from the lower QoS layer allows us to focus on
specific QoS Characteristics, such as temporal or integrity characteristics. Here, we focus on
temporal information that can be used to predict system run-time operation. In the generic
ontology, the most significant component that can extend over time is the Procedures class. In
the ERTMS/ETCS SRS documents, it is described by flowchart [ERTMS/ETCS, 2014], which
is represented in our ontology by states, conditions and transitions. This class can be special-
ized in sub-classes, such as the Start of Mission, the Rail-Road level crossing, the RBC-RBC
handover procedures and so on. To evaluate our approach presented in Chapter 4 and Chap-
ter 5, the proposed domain ontology is instantiated and evaluated for the domain-specific
Rail-Road level crossing and RBC-RBC handover case studies.

121

Chapter 6. Validation Through Railway Safety-Critical Software

Figure 6.3: 3-Layer Temporal QoS Ontology for ERTMS/ETCS

6.4 Rail-Road Level Crossing Case Study

The aim of this case study description is to identify requirement concerns, from which we can
evaluate our component-based modeling with traceability of concerns, presented in Chap-
ter 4. We mainly identify requirement concerns, which could be changed, in order to inves-
tigate the impact of changes on software artifacts during the modeling, implementation and
verification phases.

6.4.1 The Case Study Motivation

The safety of rail-road Level Crossing Automatic Protection System (LC-APS) has one
of major concerns for railway and road stakeholders. Consequently, it has been used
as a benchmark in several research vulgarization works, such as [El-Koursi et al., 2009,
Khoudour et al., 2009, Bhatti et al., 2011, Mekki et al., 2012]. However, every year, more than
400 people continue to die in over 1,200 accidents involving road vehicles at rail-road LCs in
the European Union [Eurostat, 2012]. Recently, the Coordination Action for the Sixth Frame-
work Programme "Safer European Level Crossing Appraisal and Technology" (SELCAT) has

122

6.4. Rail-Road Level Crossing Case Study

provided recommendations for further actions intended to improve safety at Level Crossings
[El-Koursi et al., 2009]. However, there is no harmonized LC specification. In the recent ver-
sion of ERTMS/ETCS specification [ERTMS/ETCS, 2014], a set of LC requirement concerns
is specified. This specification is generic because it is not related to a specific LC topography
or architecture view. To be more general and pragmatic, we use the architecture view of
double-track railway lines proposed in [Mekki et al., 2012].

The Case study Architecture View

Figure 6.4 shows the LC topography considered. It is composed of the following features:
(1) double-track railway lines (UpLine and DownLine); (2) roads with traffic in both direc-
tions; (3) traffic lights to manage the road traffic in the LC zone; (4) sound alarms to signal
train arrival; (5) two half-barriers used to prevent road users from crossing while trains are
passing; (6) three train sensors Ani, Api and Exi in both track lines.

Figure 6.4: A level crossing topography

For example, inDownLine, theAn2 is the anticipation sensor, which allows the detection
of the speed of an approaching train, necessary to alert road users with sound alarm and
road lights. The approaching sensor Ap2 is used to detect the arrival of trains in the LC
zone and the exit sensor Ex2 is used to announce the departure of trains after exiting the
LC zone. Since several trains with different speeds (passenger or freight trains) can circulate
on railway lines, the required durations between sensors are expressed with intervals, as
shown in Figure 6.4. For example, d1 = [57, 104] second (s) is a required interval of durations
between Ani and Api. These interval requirements have to be respected by different trains
circulating in these railway track lines.

123

Chapter 6. Validation Through Railway Safety-Critical Software

Identification of Requirement Concerns

Here, we identify some requirements related to above LC-APS described architecture. We
assume that requirement concerns, such as data and temporal parameters, can be changed
for evolution reasons.

Functional requirement with a possible change of data format “Calculation of a dy-
namic speed profile taking into account the train running / braking characteristics which
are known on-board and the track description data" (from paragraph §2.6.6.2.4 of
[ERTMS/ETCS, 2014] and identified by FC_REQ_1).

Functional requirement with a possible change of MRSP “In the start location (Dstart)
of the LC, ETCS on-board system shall immediately include the LC speed restriction in the
Most Restrictive Speed Restrictions (MRSP). The end of the LC speed restriction shall be the
LC end location (Dend)" (from §5.16.3 of [ERTMS/ETCS, 2014] and identified by FC_REQ_2).

Since the LC supervision involves train-passengers and road users safety, these func-
tional requirements are enhanced with non-functional requirements in order to deal with
the critical risky situations. In the following, we consider two non-functional requirements
related to time constraints.

Non-Functional requirement with a possible change of minimum desired period of time
“when the gate is open to road traffic, it must stay open at least Tmin time units, where Tmin
represents the minimum desired period of time separating two successive closing cycles of
gate" (adapted from [Mekki et al., 2012] and identified by NFC_REQ_1).

Non-Functional requirement with a possible change of time interval constraints “once
closed and when there is no train approaching, the gate must be kept closed at least (Tbegin)
and at most (Tend), where Tbegin and Tend are the time limits prescribed" (adapted from
[Mekki et al., 2012] and identified by NFC_REQ_2).

Our objective is to trace these requirement concerns within or across these different ab-
straction levels. We focus on three main levels: the model design level, the model analysis
level and the model implementation level.

6.4.2 Modeling, Verification and Tracing

IModeling Phase:

As presented in the proposed process to apply the defined meta-models (see Figure 4.5),
the modeling phase consists in modeling requirement concerns and architecture compo-
nents. Listing 6.1 shows the model of requirement concerns and architecture components

124

6.4. Rail-Road Level Crossing Case Study

identified in the previous section. It is a valid XML format in accordance with the concern
meta-model DTD shown in Listing 4.9. The example shows only one functional require-
ment concern (id=FC_REQ_1, see line 5 of Listing 6.1) and one non-functional requirement
concern (id=NFC_REQ_1, see line 8 of Listing 6.1).

1<?xml version=" 1 . 0 " encoding="UTF−8" ?>
2< !DOCTYPE ConcernModel PUBLIC " ConcernModel " " concern−model . dtd ">
3<ConcernModel>
4 <ConcernGroup name=" Rai l−road Level Crossing (LC) a p p l i c a t i o n requirements ">
5 <ReqConcern id="FC_REQ_1" name="LC−sensing−c a l c u l a t i n g−a c t u a t i n g " type="

FR">
6 <Descr ipt ion></Descr ipt ion>
7 </ReqConcern>
8 <ReqConcern id="NFC_REQ_1" name="LC−time−c o n t r o l l i n g " type="NFR">
9 <Descr ipt ion></Descr ipt ion>

10 </ReqConcern>
11 </ConcernGroup>
12 <TraceableEltBetweenView/>
13 <ComponentModel name=" Rai l−road Level Crossing (LC) a p p l i c a t i o n component ">
14 <CompUnit id="COMP_UNIT_1" r e f ="LC−model−views . xml " type=" component−model

"></CompUnit>
15 </ComponentModel>
16</ConcernModel>

Listing 6.1: The LC-APS use case’s concern modeling

By always keeping in mind the separation of concerns, we use a separated file
LC-model-views.xml referenced in line 14 of Listing 6.1 to specify the component model
of LC-APS component unit identified by COMP_UNIT_1.

The LC-model-views.xml file is shown in Listing 6.2, which represents the model ab-
straction levels of our LC-APS use case. We only focus on three model abstraction levels in
Listing 6.2: SARA component modeling view for the model design level, its UPPAAL analy-
sis view for the model analysis level and its ADA implementation view for the model imple-
mentation level. These three views are referenced respectively by identifier Sara_View_ID,
Uppaal_View_ID, Ada_View_ID, shown respectively in the line 4, 5 and 6 of Listing 6.2.
Each of them are separately defined in a file, as described bellow for SARA model.

LC-APS Modeling with SARA Model

The SARA model of LC-APS is the high level abstraction view among the three abstraction
views of LC-APS, as referenced in line 4 of Listing 6.2.

Listing 6.3 shows the XML implementation of this component-based modeling. It is a
valid XML format in accordance with the component-model DTD shown in Listing 4.8. In
Listing 6.3, we only focus on one connection link, theDC_1 links between Sensor component

125

Chapter 6. Validation Through Railway Safety-Critical Software

1<?xml version=" 1 . 0 " encoding="UTF−8" ?>
2< !DOCTYPE ModelAbstractionLevel PUBLIC " ModelAbstractionLevel " " component−model .

dtd ">
3<ModelAbstractionLevel id="LC_USE_1" r e f =" " name="LC use case model ">
4 <CompView id=" Sara_View_ID " r e f ="LC−Sara−model−view . xml " type=" model design

view "></CompView>
5 <CompView id=" Uppaal_View_ID " r e f ="LC−Uppaal−v e r i f i c a t i o n −view . xml " type="

model a n a l y s i s view "></CompView>
6 <CompView id=" Ada_View_ID " r e f ="LC−Ada−implementation−view . xml " type=" model

implementation view "></CompView>
7</ModelAbstractionLevel>

Listing 6.2: The LC-APS use case’s 3-layer abstraction levels: SARA component modeling
view for the model design level, its UPPAAL analysis view for the model analysis level and
its ADA implementation view for the model implementation level

and Controller as shown in Figure 5.1. The XML type attribute of this connection is identified
by DC_1 in line 16 of Listing 6.3. It includes the in and out attributes to denote the direction
of variables that are exchanged. The other connection types are described in the same ways.

I Verification Phase:

The verificationg phase consists in translating the SARA design model into TAIO models
(see Section 5.3). The pattern of specification to be verified is also translated into observer
TAIO model (see Figure 5.10). Then, we use UPPAAL model checker for verification tasks.

Transformation into TAIO Model

Figure 6.5: UPPAAL TAIO model of LC-APS components

126

6.4. Rail-Road Level Crossing Case Study

1<?xml version=" 1 . 0 " encoding="UTF−8" ?>
2< !DOCTYPE CompView PUBLIC " ModelAbstractionLevel " " component−model . dtd ">
3<CompView id=" Sara_View_ID " name="LC−ccv " type=" component and port view ">
4 <CompElement id=" Sara_CP_ID " name="LC−cce " type=" component and port element ">
5 <CompEntity id=" Sensor_Ins t_1 " name=" sensor " type=" component ">
6 <CompEntity id=" Sensor_Ins t_1 . op1 " name=" sensor−port " type=" port "></

CompEntity>
7 <CompConnection id=" Sensor_Ins t_1 . LC_1 " name=" set−sensing " type="

l o c a l connect ion ">
8 <Parameter id=" appr " name=" out−var_1 " type=" output parameter

v a r i a b l e ">
9 <out>

10 <CompEntity id=" Sensor_Ins t_1 . op1 . appr " name=" out−param_1
" type=" output parameter "></CompEntity>

11 </out>
12 </Parameter>
13 </CompConnection>
14 </CompEntity>
15 <CompConnection id="DC_1" name=" t r a i n−approaching " type=" d i r e c t connect ion ">
16 <Parameter id=" appr " name=" var_1 " type=" t r a n s i t parameter ">
17 <out>
18 <CompEntity id=" Sensor_Ins t_1 . op1 . appr " name=" out−param_1 "

type=" output parameter "></CompEntity>
19 </out>
20 <in>
21 <CompEntity id=" C o n t r o l l e r _ I n s t _ 1 . ip1 . appr " name=" in−param_1 "
22 type=" input parameter "></CompEntity>
23 </in>
24 </Parameter>
25 </CompConnection>
26 . . .
27 </CompElement>
28</CompView>

Listing 6.3: The XML implementation of SARA model for the LC-APS

Based on our transformation approach presented in Section 5.3.3, the SARA model of
LC-APS is translated into the TAIO model. Figure 6.5 shows the UPPAAL TAIO model
generated for LC-APS.

Verifications tasks

The generated TAIO model, is used for verification task with the UPPAAL tool. Here, we
focus on the linking of verification results to TAIO target model elements. We also focus on
the manual linking of requirements to the SARA source elements. Then, based on Listing 4.7
that builds the traceability matrix, the SARA source elements is automatically link to the
TAIO target elements in the traceability matrix. Table 6.1 shows an example of a traceability

127

Chapter 6. Validation Through Railway Safety-Critical Software

matrix for our use case. Before the requirement validation, each line contains requirement
concern ID and user parameters (e.g., upper or lower limit). After performing the verifi-
cation, the verification results with requirement validation status passed, failed, unchecked
are manually inserted for each requirement.

<> A B C D E F G H I J

1 Requirement and Design Concerns Verification and Validation Concerns

2 Req ID Red
DES

Lower
Limit

Upper
Limit

SARA
Elts

TAIO
Elts

Valid
Status

Verif
Type

Detect
Min

Detect
Max

3 FC_-
REQ_1

See Sec.
6.4.1

#S#C#G
#opC()#C
#opS()#S
#opG()#G
#null#

#S#C#G
#opC()#C
#opC()#C
#null#
#opG()#G

Unchecked

4 FC_-
REQ_2

See Sec.
6.4.1

Dstart =
5 km

Dend=
7.5 km
MRSP=
70km/h

#S#C#G
#opS()#S
#opC()#C
#opG()#G
#mrsp#

#S#C#G
#opS()#S
#opC()#C
#opG()#G
#mrsp#

Passed by sim-
ulation

32
km/h

34
km/h

5 NFC_-
REQ_1

See Sec.
6.4.1

Tmin=
70 s

#S#C#G
#opS()#S
#opC()#C
#opG()#G
#open#G#

#S#C#G
#opS()#S
#opC()#C
#opG()#G
#open#delay#G#

Failed by UP-
PAAL

66 s

6 NFC_-
REQ_1

See Sec.
6.4.1

Tmin=
57 s

#S#C#G
#opS()#S
#opC()#C
#opG()#G
#open#G#

#S#C#G
#opS()#S
#opC()#C
#opG()#G
#open#delay#G#

Passed by UP-
PAAL

66 s

7 NFC_-
REQ_2

See Sec.
6.4.1

Tbegin=
29 s

Tend=
55 s

#S#C#G
#opS()#S
#opC()#C
#close#G#

#S#C#G
#opS()#S
#opC()#C
#close#G#

Passed by UP-
PAAL

32 s 32 s

Table 6.1: Validation results of requirements identified in Section 6.4.1

The mapping between the SARA source model elements and TAIO target model ele-
ments is automatically realized by Listing 4.7. If information is unchanged during the trans-
formation of the source elements into the target elements, the SARA source model and the
TAIO target model contain the same information. For instance in line 3 and column E and F
of Listing 4.7, the mark #S#C#G in both columns mean that the source and the target mod-
els contain the same Sensor (S), the Controller (C) and the Gate (G) elements. If there are
elements in the source model without corresponding ones in the target model (marked as
#null#), then we can deduce that the element has been removed or renamed by the transfor-
mation. If there are elements in the target model without corresponding ones in the source
model (marked as #null#), this implies the target element has been created or renamed by the
transformation. If the relation between the source and target elements differs (e.g., #open#G
and #open#delay#G), then the relationship should be re-tested. In this case, the designer
have to make a decision. For example, in our use case, we modified the time parameters

128

6.4. Rail-Road Level Crossing Case Study

(Tmin) of requirement NFC_REQ_1 during subsequent experiments and the failure was no
longer occurred, as illustrated in line 6 of Table 6.1.

I Tracing Phase:

As presented in the proposed process to apply the defined meta-models shown in Figure 4.5,
the tracing phase consists in tracking concerns within or across model abstraction levels.
Indeed, once the models and the mappings are defined, as illustrated in modeling phase, we
can trace concerns within or across model abstraction levels. For this purpose, we can reuse
either predefined reusable XQuery queries presented in Section 4.4.4, or write customized
queries for tracing concerns.

For example, to identify the component elements that are impacted when the require-
ment concerns identified by NFC_REQ_1 is changed, we use the predefined function For-
wardTraceQuery(“.*", NFC_REQ_1). This function is defined in line 24-30 of Figure 6.6 and
the corresponding query statement is shown in lines 32-34.

Figure 6.6: The forward trace query definition

However, it is not always possible to directly trace the concerns by providing generic
concern like the LC requirement identified by NFC_REQ_1. In this situation, we apply the
domain knowledge to characterize the requirement concerns. For example, for Forward-
TraceQuery(“.*", NFC_REQ_1) query, we need to identify all the concerns that use sensing,
controlling and actuating concerns of this LC requirement. Accordingly, the union set of the
predefined queries (here oxy:getElementFromViews) is defined, as illustrated in line 33-35 of
the top view of Figure 6.7. This union of queries determines elements in intra or inter views.
The only difference between intra and inter view is that we have to refer to more than one
view in the queries for inter view.

The result of the query is also an XML file, as shown in the bottom view of Figure 6.7.
Of course the XML file can be transformed for human best visualization. We are mainly con-
centrated on providing minimal support in XML-based representations and XQuery queries
to provide a quick feedback about the current research state. An effective tool support for a
real development environment and graphical visualization is one of our perspectives.

129

Chapter 6. Validation Through Railway Safety-Critical Software

Figure 6.7: A result of trace query

Summary

With the LC-APS case study, we have evaluated our component-based modeling with trace-
ability of concerns. We have shown that by using the meta-model with traceability of con-
cerns, we are able to model, implement and verify a concrete safety-critical scenario, in such
a way as to facilitate a change impact analysis by using a query mechanism.

6.5 RBC Handover Case Study

In addition to the evaluation of the LC-APS case study presented in Section 6.4, with the
second case study, we want to show that our approach is applicable in several case studies.
Here, we focus on the evaluation of observer-based verification presented in Chapter 5.

130

6.5. RBC Handover Case Study

6.5.1 The Case Study Motivation

The RBC (Radio Block Center) handover is an important part of modern train control sys-
tems, such as the European Train Control System (ETCS) [Liu et al., 2011] and the Chinese
Train Control System (CTCS) [Yang et al., 2014]. The RBC handover procedure is called in
order to transfer the communication from the Handing Over RBC (HO RBC for short) to an
Accepting RBC (AC RBC for short) and to avoid communication termination when the train
gets outside the range of the HO RBC, as illustrated in Figure 6.8.

Figure 6.8: A RBC-RBC handover topography

In the specification, which can be found in paragraph §5.15 of [ERTMS/ETCS, 2014],
there are two kinds of communication methods when the handover is announced: (i) two
communication sessions can be handled simultaneously between the train and both the HO
RBC and AC RBC, and (ii) only one communication session can be handled between the
train and the HO RBC or the AC RBC, exclusively. Here, we consider the second method.
Figure 6.8 shows the main functional steps needed to run from one RBC area to another one:
(1) pre-announcement of the transition by the HO RBC; (2) HO RBC requests track informa-
tion from AC RBC; (3) generation of Movement Authorization (MA) including the border
information and track information from both HO RBC and AC RBC; (4) announcement of
the transition (5) transfer of train supervision to the AC RBC; and (6) termination of the
session with HO RBC when HO RBC receives position report from on-board train.

Focus on non-deterministic time delay requirements

We focus on non-deterministic time delay performance. For this, we report in Figure 6.8 the
delay scheme to deliver the track occupancy information. In the view of HO RBC, the mini-

131

Chapter 6. Validation Through Railway Safety-Critical Software

mum delivering time delay is dmin = AC−CBI2−Trans−Gen−CBI1−HO, see the dashed
arrows in Figure 6.8. The maximum delivering time delay is dmax = dmin+3∗dposition_report.
In fact, “in case a communication session is established and no request to terminate the ses-
sion is received from the HO RBC within a fixed waiting time after sending the position
report, the position report shall be repeated with the fixed waiting time after each repeti-
tion" (§5.15.4 [ERTMS/ETCS, 2014]). For our evaluation, we allow 3 possible repetitions of
position report and each position report takes 60 s, as illustrated in Figure 6.8. This non-
deterministic time delay from dmin to dmax is what we focused on, and we want to check
whether the response of the designed system can meet the time limit of the handover pro-
cess at any time. We consider the following handover scenario requirements.

R1: If an RBC receives track occupancy information within the boundary of the current
Movement Authority (MA), it must send to the on-board system a Conditional EMer-
gency stop (CEM) message immediately, and it does not need acknowledge;

R2: If an RBC receives track occupancy information of the first section outside the bound-
ary of the MA, the RBC determines within a certain time delay dwait if the train (EVC)
is a local vehicule or not. If not, RBC will send Shorten MA (SMA) message. This
message needs to be answered by train in the delay dack;

R3: If an RBC receives a track occupancy information of another section (except the first
section) outside the boundary of the MA, the RBC will send SMA to the train and this
message needs to be answered in dack;

R4: In addition, if an RBC has not received the SMA response message ACK, but receives
another track occupancy state information, it will no longer send CEM order to the
train, but it will send an upgrade order Unconditional EMergency stop (UEM).

6.5.2 Modeling, Verification and Tracing

IModeling Phase:

Based on the general ERTMS architecture, shown in Figure 6.2, including the RBC compo-
nent, and the RBC handover scenario specified in above Section 6.5.1, the SARA model of
this scenario contains three main components: CBI, EVC and RBC. As shown in Definition 4,
the observable messages of each component is partitioned into periodic/aperiodic and in-
put/output messages:

• RBC(periodic_message{train_pos?, req_MA?, MA!, Ack?},
aperiodic_message{TOcc?, SMA!, CEM!, UEM!, Ack?})

• EVC(periodic_message{pos_report!, Req_MA!, Ack!}
aperiodic_message{Ack!})

132

6.5. RBC Handover Case Study

• CBI(aperiodic_message{TOcc!,T1Occ!})

Figure 6.9 shows the interaction between components through these messages. It is in
accordance with handover scenario requirements (R1, R2 and R3) shown in Section 6.5.1.

Figure 6.9: RBC-RBC handover scenario

I Verification Phase:

Transformation into TAIO Model

Based on the transformation process of Section 5.3.3, the TAIO models are generated from
the SARA models. Figure 6.10 shows the generated TAIO models for RBC handover. Here,
we consider the RBC component as the component under observation and the CBI and train
EVC components as its environment part. As a consequence, in the following, we will focus
on observer-based verification of the RBC component.

Verifications tasks

Based on the observer-based verification process (see Figure 5.10), the generated RBC TAIO
model of Figure 6.10 is composed with the observer of requirement to be verified. Here,

133

Chapter 6. Validation Through Railway Safety-Critical Software

Figure 6.10: UPPAAL TAIO model of RBC handover

we focus on requirement R2 of Section 6.5.1. This requirement specification corresponds
to a response max delay pattern, whose generic observer is given in Figure 5.11(b). This
generic observer is instantiated and composed with the RBC TAIO model. One part of the
composition result is given in Figure 6.11, where we focus on the states S0, S1 and S2 of
RBC TAIO of Figure 6.10(c).

We realize 10 independent tests with the UPPAAL-TRON framework. Indeed, TRON
supports all UPPAAL modeling features including non-determinism time delay, what we
focus in Requirement R2. At each testing, we specified the four common delay strate-
gies for track occupancy information (TOcc): proceeding delay (PDelay_Of_TOcc), queu-
ing delay (QDelay_Of_TOcc), transmission delay (TDelay_Of_TOcc) and propagation de-
lay(PPDelay_Of_TOcc). But during all the process, the maximum time unit for track occu-
pancy information is set at 200 seconds (T_Delay_Max@200) in order to observe the influ-

134

6.5. RBC Handover Case Study

Figure 6.11: Composition of RBC TAIO model with response delay observer

ence of trans-boundary interlocking message delay. The verification fails for the description
shown in Table 6.2. This means that with input action during the time window (148;171),
the expected state is OK with the output action ACK, but we get a KO state with unexpected
output UEM for Unconditional EMergency stop.

Table 6.2: Unacceptable output observed

RBC final state: IDLE.
Observable actions:

input : T1Occ_Out_MA@(148;171)
output : ACK

Internal actions annotations:
PDelay_Of_TOcc@(145;148)
QDelay_Of_TOcc@(146;150)
TDelay_Of_TOcc@(165;169)
PPDelay_Of_TOcc@(166;172)

Delay requirement: T_Delay_Max@200
Expected output: ACK@(165;172)

Got unacceptable output: UEM@(145;146)

Analysis of this result

The causes of failure may be various in different aspects. For example, in the logical func-
tion aspect, one of the components can receive exception message or an empty message. In

135

Chapter 6. Validation Through Railway Safety-Critical Software

the real-time aspect, one of the components, for example the interlocking can transfer track
occupancy information with a delay so long that it exceeds the time limit allowed in the
specification. Based on the analysis of the last good states and the message delivering time
sequence set before the failure, we conclude in Figure 6.11 the following failure path :

T1Occ_Out_MA! T_Wait.SMA? T_Ack.TOcc_In_MA! UEM?

Figure 6.12: RBC handover simulation with ERSA Simulator

This failure path illustrated that the RBC receives a first track occupancy information of
the first section outside the current MA, and sends an SMA order to the on-board equipment
and needs to wait for an answer to this SMA order from the on-board equipment. However,
the RBC received another second track occupancy information during this waiting time, thus
leading the system logic to run into an exception state and to send out a UEM order.

The cause could be that the interlocking device delivered the first track occupancy in-
formation a little late. This could lead to the RBC for sending with a delay SMA order
to on-board equipment and need to wait for an answer to this SMA order from on-board
equipment. However, RBC received early another track occupancy information during this
waiting time. Thus the system logic ran into exception state and sent out undesirable UEM
order. This experiment showed that the time delay parameters in our initial RBC handover
scenario specification were inconsistent with actual designed equipment.

136

6.6. Metrics for Model Transformation and Component Reuse

In the subsequent experiments, we modified the time parameters in the requirement
specification by widening the upper and lower limit value of the delay, and the failure no
longer occurred. With the widening of the corresponding time interval, we limit the number
of trains that can travel on the track section considered. But, the most important, here, is that
it guarantees the robustness of the designed model. Indeed, as illustrated in Figure 6.12, to
validate this robustness, we replayed the same scenario with the same time parameters on
the ERTMS/ETCS Traffic Simulator developed by [ERSA, nd]. This Simulator is a real-time
simulation demonstrating how trains can be run on tracks under ERTMS/ETCS supervision.
The demonstration of our designed scenario with this real-time simulation confirms the ro-
bustness and is very encouraging for automating our software component-based modeling
and observer-based verification approach.

Summary

With the RBC handover case study, we have evaluated our observer-based verification
(OBV) with patterns of properties. We have shown that the OBV is robust by replaying
with real-time ERTMS/ETCS simulator the same scenario validated with the OBV.

6.6 Metrics for Model Transformation and Component Reuse

Software metrics have been extensively studied in the last decades
[Fenton and Pfleeger, 1998]. Metrics can be used to get quick insights or performance
into the specific characteristics of a software artifact, among others. For example, in
Section 6.6.1, we use metrics to get performance insights into our transformation rules
implemented in two transformation languages. On the other hand, in Section 6.6.2, we also
use metrics to analyze the reuse cost benefits of our component-based approach compared
to an ad-hoc reuse strategy.

6.6.1 Metrics for ATL and QVT Model Transformation

Model transformations are increasingly being integrated in software development processes,
as realized in our approach. However, when systems grow in size and complexity, the per-
formance of the transformations tends to degrade. In this section, we investigate the factors
that have an impact on our transformation rules defined in Section 5.3.3.

For this we have implemented our transformation rules with two languages: the AT-
LAS Transformation Language (ATL) [Jouault et al., 2006] and Query/View/Transforma-
tions Operational Mappings (QVT) [OMG, 2011]. The objective is to study the effect of differ-
ent language constructs on the performance of the transformation. The two transformations
are executed on the same plateform: the Java Virtual Machine version 1.7.0_51, running on

137

Chapter 6. Validation Through Railway Safety-Critical Software

Linux 64-bit version. The metrics have been extracted by using the metrics collection tool
described in [van Amstel et al., 2011].

Figure 6.13 and Figure 6.14 show the time results of executing the transformation of LC-
APS SARA model into TAIO model. The results on Figure 6.13 show the effects of increasing
the size of the input model, while the results on Figure 6.14 show the effect of increasing
the complexity of the input model. Our assumption is that a model is more complex if
it has more attributes, because attributes of components making the model elements more
interconnected.

Figure 6.13: Effect of increasing the size of input model in model transformation

The comparison of ATL and QVT in both case, show that the ATL tool implementation
is the fastest than the QVT implementation. However, when altering the size of the input
models, the relative difference in performance of the transformations remains the same in
Figure 6.13 and Figure 6.14

This shows that the complexity of the transformation is proportional to the size of and
the complexity of the input model, and to the transformation engine. As a consequence,
metrics can be used by the developers of transformation rules when estimating the expected
performance of a transformation.

6.6.2 Metrics for Component Reuse Cost

The important point of component based software development is the reuse of existing soft-
ware components. These reusable software components can arise from a variety of goals,

138

6.6. Metrics for Model Transformation and Component Reuse

Figure 6.14: Effect of increasing the complexity of input model in model transformation

such as (i) Commercial Off The Shelf COTS, i.e., components available in market just pur-
chase them from third party, or (ii) identify the reusable software components from existing
system [Gill, 2003]. Its main focus is to achieve the considerable software reuse and instead
of building systems in-house from the scratch. For our best knowledge, there are not enough
software COTS components available in the market that provide train control management
functionality. So two options are available: whether components should be developed from
the scratch or identify the reusable software components from existing systems. Identifying
and modifying reusable software component from existing systems seems to be one of the
more promising ways to obtain reusable assets.

As a consequence, we compare two software reuse strategy : (1) ad-hoc reuse strategy
and (2) systematic reuse strategy [Rothenberger and Nazareth, 2002]. One approach of ad-
hoc reuse strategy is a Copy and Paste method (C&P) used in the railway industries, such
as Bombardier Transportation, as discussed in [Riaz, 2012]. One well-known approach of
systematic reuse strategy is a Component-Based Development (CBD). The CBD is a systematic
way to achieve software reuse, as discussed in Section 2.2.

139

Chapter 6. Validation Through Railway Safety-Critical Software

Reuse Cost Estimation for C&P approach

To analyze the cost benefits in C&P approach, we use Equation 6.1 derived from [Gill, 2003,
Jasmine and Vasantha, 2008, Riaz, 2012]

C&P-COSTSAVING = FScost − (Scost +Acost +Dcost +Qcost) (6.1)

- FScost is the cost of component when it will be developed from scratch without keep-
ing reuse in mind.

- Scost is the search cost that will have to perform for searching reusable component from
old system. Search cost always will incur even in C&P because first similar component
or code will have to search from existing system, and after searching it will be copy and
paste.

- Acost is the adaptation cost or modification cost because in real environment there must
be some adaptation cost of component even though it is similar. There must be some
changes and modifications that have to be performed in order to match the new re-
quirements.

- Dcost is the documentation cost because new documentation will be required. Docu-
ments can be requirement specification, design specification, test specification, etc.

- Qcost is the quality cost because V&V activities have to perform from scratch so there
must also be quality cost in the case of copy paste technique. This quality include also
testing cost because copy paste code must be retest again with new component. So
testing will have to perform from scratch in the case of copy paste.

Reuse Cost Estimation for CBD approach

To analyze the cost benefits in CBD approach we use Equation 6.2.

CBD-COSTSAVING = FScost − (Scost +Rcost +GDcost + Tcost +Acost +Dcost +Qcost) (6.2)

In addition to Scost, Acost, Tcost, Dcost, and Qcost, shown in C&P Equation 6.1, one addi-
tional cost Rcost have been added in [Riaz, 2012] for CBD. Rcost refers to repository cost or
library cost because in CBD, components will be stored in a repository. As a consequence,
there must be some cost associated with it to manage repository or library of components.

In addition to this, we have also added two more cost GDcost and Tcost for general
or domain-specific component-based development with traceability of concerns. Indeed, Tcost
refers to the cost of traceability management, while, GDcost refers to the cost of generic or
domain-specific component choice. It is accepted that more effort is required to make com-
ponent generic or specific so there must be an addition of generic or specialized cost to make
component generic or specific.

140

6.6. Metrics for Model Transformation and Component Reuse

Cost Benefit Analysis for our Case Studies

Equation 6.1 and Equation 6.2 are applied to perform cost benefit analysis of each component
of our case studies shown in Section 6.4 and Section 6.5. They are applied in C&P and CBD
software reuse approaches respectively in order to compare the two approaches.

1. Cost Benefit Analysis with C&P approach. By using Equation 6.1, the cost benefit
analysis process is applied in different steps :

- In step 1, we select components on which the analysis is to be performed. For our first
case study (LC-APS), we do not have component available for reusability: all the com-
ponents are developed from scratch without keeping reuse and traceability in mind.

- In step 2, we estimate the hours stand for implementing, documenting and testing.
The total cost of components developed from scratch, i.e., FScost, is the sum of three
costs of implementation, documentation and testing. For example, the FScost of Sensor
component of LC-APS is evaluated to FScost(Sensor) = 4 + 2 + 0, 8 (hours) .

- In step 3, the overhead cost, i.e., (Scost+Acost+Dcost+Qcost) of Equation 6.1 is included
according to reusability goal, i.e., version evolution or new project:

- In step 3.1, during the first version of LC-APS development:

Scost represents the number of hours required to search a component. Here, this cost
does not matter because the component is not being searched from library, nor in mar-
ket. It is our in house building from scratch during the initial development version.

Acost represents the number of hours spend to adapt a component during the first
version. In the copy paste case this adaptation is also incurred. For example,
Acost(Sensor) = 0.25 (hours).

Dcost represents the number of hours spends on the documentation when copy and
paste method will be applied. When component code is copied from one version to
another then documentation is also changed. We have taken the documentation cost
20% of adaptation cost.

Qcost represents the number of hours spends on the quality activities such as V&V,
which is estimated to 50% of from scratch cost, FScost.

Table 6.3 shows the original developing cost (FScost) of LC-APS components with the
overhead costs for the first version development.

- In step 3.2, during the second version of LC-APS development, the overhead costs are
relaxed because we have knowledge of components. For example the adaptation cost
is now Acost(Sensor) = 0.125 (hours).

- In step 4, we apply Equation 6.1, once the total effort of determining the different costs
in previous step are done. Figure 6.15(a) shows the C&P reuse saving hours for all the
LC-APS components in the version 1 and 2. It shows that we have saved a number
hours in second version by using C&P reuse strategy. The partial conclusion at this

141

Chapter 6. Validation Through Railway Safety-Critical Software

Table 6.3: Cost estimation for LC-APS V1 development with reuse C&P approach

LC-APS
Comps

Impl Test Doc FScost Scost Acost Dcost Qcost Total
C&P

Sensor 4 2 0,8 6,8 0 0,25 0,05 3,4 3,1
Controller 6 4 1,2 11,2 0 0,5 0,1 5,6 5
Gate 4 2 0,8 6,8 0 0,25 0,05 3,4 3,1
IC1 2 1 0,4 3,4 0 0,125 0,025 1,7 1,55
IC2 1 1 0,2 2,2 0 0,05 0,01 1,1 1,04
DC1 2 1 0,4 3,4 0 0,125 0,025 1,7 1,55
DC1 1 1 0,2 2,2 0 0,05 0,01 1,1 1,04
DC2 1 1 0,2 2,2 0 0,05 0,01 1,1 1,04
DC3 1 1 0,2 2,2 0 0,05 0,01 1,1 1,04
DC4 1 1 0,2 2,2 0 0,05 0,01 1,1 1,04
DC5 1 1 0,2 2,2 0 0,05 0,01 1,1 1,04
DC6 1 1 0,2 2,2 0 0,05 0,01 1,1 1,04
0C1 2 1 0,4 3,4 0 0,125 0,025 1,7 1,55
OC2 1 1 0,2 2,2 0 0,05 0,01 1,1 1,04

step is that C&P reuse strategy is not totally bad because it saves a number of hours
from evolution of versions in the same project.

Figure 6.15: Cost benefit analysis with C&P approach

- In step 5, we repeat the above steps to evaluate the reuse of components in RBC case
study, which is considered as a new project different from LC-APS project. The dif-
ference here is that we have to include Scost and Acost that represents the number of
hours required to search components in the LC-APS project and to adapt them for
RBC project. In this search only the buffer component has been reused between the

142

6.6. Metrics for Model Transformation and Component Reuse

two project. Figure 6.15(b) shows the C&P reuse saving hours for the RBC handover
case study.

Important thing that should be noticed here is that two components number 4 and 5 in
Figure 6.15(b) have not reuse saving. It is because there are a lot of overhead costs, such
as seaching, adaptation, re-documentation, re-testing, involved to reuse these compo-
nents. A major disadvantage of C&P approach is that all activities (searching, adapta-
tion, documentation and testing and so on) still have to be performed from the scratch
to ensure that components will work in a new environment and have enough quality
to meet the specified requirements.

2. Cost Benefit Analysis with CBD approach. Now we discuss the cost benefit analysis
process for CBD on our two case study components and evaluate how much effort
can be saved by using CBD. The same process is followed in CBD as that has been
described above for C&P reuse strategy. The only difference is that here we use Equa-
tion 6.2. This equation has some more overhead costs: Rcost for repository cost, Tcost
for traceability management and GDcost for generic or domain-specific component de-
velopment.

Figure 6.16(a) and Figure 6.16(b) shows the CBD reuse saving hours for the LC-APS
and RBC handover case studies, respectively.

Figure 6.16: Cost benefit analysis with CBD approach

These histograms show that CBD reuse strategy while not delivering a benefit in sav-
ing hours for the initial application of CBD, see Figure 6.16(a), the CB_cost of LC-
APS V1. This is not surprising because it is widely accepted that making components
generic for reuse will require additional development time, while not delivering a ben-
efit in savings for the initial projects. In contrast, here in domain specific component
language with traceability, such as our SARA approach, this requires a first initialisa-
tion for the domain language and the traceability link definition in the model. How-
ever, as shown in Figure 6.16, when components have been reused in the second ver-

143

Chapter 6. Validation Through Railway Safety-Critical Software

sion of the same project, i.e., CB_cost of LC-APS V2 in Figure 6.16(a), or in another
project i.e., Figure 6.16(b), they recover their costs as well as they provide potential
benefits.

3. Comparison between C&P and CBD reuse approaches. From the above analysis one
can notice that the C&P reuse strategy is better than CBD in first version of our case
studies. This is illustrated in Figure 6.17 by comparing C&P with CBD cost in the first
version development of LC-APS case study.

Figure 6.17: Component by component cost saving in both C&P and CBD approaches

Figure 6.17 shows that the C&P is an attractive ad-hoc reuse strategy for the users who
are looking at reusability for rapid benefits. It can be a good short term option for
those organizations that do not have enough resources to move on a systematic reuse
strategy. However, it has no long term benefits associated with this technique. For
example, Figure 6.18 shows the total saving hours curve in both approaches when all
components have used in three versions of LC-APS project.

Generally, this result is not surprising because CBD is a systematic approach that re-
duces the cost of development, as discussed in the state-of-the art in Section 2.2.

Particularly, this show also that our approach with traceability of concerns and verifi-
cation of patterns can be benefit, although it requires initial cost to define traceability
links between components and property patterns or requirement specifications. In-
deed, Figure 6.18 shows that our CBD approach saves 26, 83 = −3, 40 + 30, 23 hours

when all components of LC-APS component will be used in the second version, while
C&P strategy still save 25, 75 = 24 + 1, 75 hours because same overhead costs (search-
ing adaptation, documentation and testing without predicted traceability link) will

144

6.7. Threats to Validity and Discussion

Figure 6.18: C&P versus CBD cost benefit analysis

keep on every time. In third time version, CBD save 35 = 28, 83 + 6, 17 hours because
verification and validation costs is reduced with pattern-based approaches.

6.7 Threats to Validity and Discussion

In this section, we present and discuss several aspects of our evaluation that may form
threats to its validity.

6.7.1 Scalability Concern

In previous sections, we have evaluated the applicability of our approach through a rail-
road level crossing automatic protection system (LC-APS) (see Section 6.4), and RBC-RBC
handover case study (see Section 6.5). Although our approach is also applied in other case
studies, such as the On-board ETCS Speed monitoring case study [Sango, 2013], the scala-
bility of our approach is required to demonstrate it can be efficiently applied to large-scale
safety-critical systems. This is the first threat to the validity of our approach. Indeed, in the
large-scale ERTMS/ETCS system, we consider different use cases, such as the LC-APS and
the RBC handover use cases, separately. However, in a real deployment, the LC-APS case
study can depend on other use cases or other actors, such as the DMI actor, as illustrated in
Figure 6.19.

For this reason, we have studied the empirical scalability of our approach by increas-
ing the complexity of each case study and by raising the actors of each case study. As

145

Chapter 6. Validation Through Railway Safety-Critical Software

Figure 6.19: Use cases and its actors Figure 6.20: Exploration time

shown in Figure 6.20, without a context splitting of use case environment, for over five
actors, the state explosion starts due to the memory limit of the computer that we used:
Linux 32 bits - 2 G0 RAM. To reduce the state explosion, we adopt the environment con-
text splitting approach [Dhaussy et al., 2012]. The main idea of this approach is to unroll the
environment context into several scenarios and successively compose each scenario with
the system under verification and verify the resulting composition. This approach was
applied to several embedded applications in the avionic or electronic industrial domains
[Dhaussy et al., 2012, Dhaussy and Teodorov, 2014]. It is based on the Context Description
Language (CDL) and the Observer Based Prover (OBP) [Dhaussy, 2014]. For our case stud-
ies, we constructed several CDL models of our use case model with different complexities
depending on the number of actors. The tests are successively performed on each CDL
model composed with our use case model. We reported the results of OBP for these experi-
ments and compared to our regular UPPAAL verification approach without context splitting
[Sango et al., 2014a]. As illustrated in the histogram of Figure 6.20, with context splitting, the
exploration is not limited but the time of exploration increases. Since the verification is re-
alized offline, we can conclude that environment context awareness is one of the promising
ways to deal with scalability in our modeling and verification approach.

However, during our experimentation of this approach, the major difficulty we faced
was the identification of complete and coherent description of different interactions between
the system under observation and its environment in the ERTMS/ETCS requirement docu-
ments, while the effective application of the context partitioning approach requires a strong
assumption that consists in identifying all the possible interactions with the environment
[Dhaussy et al., 2012]. This strong assumption is justified, particularly in the context of an
embedded system, by the fact that the designer of a software component needs to know
precisely and completely the perimeter (constraints, conditions) of its system in order to
develop it properly. In addition, system designers can only take counter-measures for the
errors that can be anticipated at specification and design time, i.e., errors encountered at de-

146

6.8. Summary

velopment and verification time. However, in large and complex software, it is impossible
to predict all error cases that will happen in real-world environments. As a consequence, to
estimate the railway system’s availability at runtime, the probability of influence brought by
such uncertainties should also be taken into account. One area of improvement is software
uncertainty analysis [Lehman and Ramil, 2002, Qiu et al., 2014].

6.7.2 Safety Risk Assessment

The second threat of validity is the safety risk assessment in requirement change. In-
deed, when dealing with the traceability management and the requirement change impact,
a rigorous safety risk assessment is required to meet the high Safety Integrity Level (SIL)
[Beugin et al., 2007]. For example, in France, when railway functionality is replaced, modi-
fied or updated, the well-known safety principle, named GAME for “Globalement Au Moins
Equivalent" in French, meaning “globally at least as good", has to be fulfilled.

6.8 Summary

In this chapter, we have presented a validation for our SARA component-based modeling
with traceability of concerns and the observer-based verification with patterns of properties.
We presented the implementation details of various concerns of our approach throught two
concrete case studies of ERTMS/ETCS specification, and then evaluated the traceability and
observer-based verification concerns.

Evaluation of transformation rule implementation between the SARA model and the
TAIO model shows that the transformation rules defined do not increase significantly the
complexity of the transformation. Moreover, as our cost empirical evaluation shows, we
observe that development our SARA approach is well-suited to handle the modeling with
traceability concerns while saving the cost for users who are looking at reusability for long
term benefits. For larger-scale systems, an evaluation of an approach, which splits the en-
vironment context of the system under study, shows that context awareness is one of the
promising ways to deal with scalability in our modeling and verification approach.

Globally, the major difficulties we faced during our evaluation are: (i) the identification
of complete and coherent description of different interactions between the system or com-
ponent under verification and its environment, and (ii) the anticipation of errors at design
time, i.e., errors encountered at development and verification time, because it is impossible
to predict all error cases that with happen in real-world operation environment. One area
to estimate such uncertainties in component development is to specify a target level of risk
reduction, known as Safety integrity level (SIL).

This chapter concludes the third part of this document, which was dedicated to the val-
idation of our approach. In the following chapter, we summarize the main contributions of
this dissertation, present the conclusions of the research work, and define a set of perspec-
tives for future work.

147

Part V

Conclusion

149

Chapter 7
Conclusion and Perspectives

Contents
7.1 Summary of the Dissertation . 151

7.2 Review of Research Questions . 152

7.3 Perspectives . 154

7.3.1 Short-term Perspectives . 154

7.3.2 Long-term Perspectives . 155

In this chapter, we summarize in Section 7.1 our thesis dissertation by discussing the
challenges and goals addressed. Then, we outline our contributions in Section 7.2, regarding
the research questions stated in Chapter 1. Finally, we discuss in Section 7.3 our short-term
and long-term perspectives related to the work presented in this dissertation.

7.1 Summary of the Dissertation

Component-based software engineering is a systematic way to achieve software reuse. Sev-
eral component based development approaches have been discussed and proposed in the
literature and some of them have been discussed in this thesis. This is an evidence or a wit-
ness of a subject domain richness with technical and scientific challenges, and considerable
potential. Unfortunately, however, the reported level of adoption has been comparatively
low in industrial domains, particularly in safety-critical industrial domains.

The major difference between the traditional software development processes and
Component-Based Development (CBD) processes is a separation of system development
from component development in CBD. The goal of the CBD system development is to specify
an ideal life cycle process model according to the fundamental CBD rules, such as reusability,
composition, interoperability and so on.

151

Chapter 7. Conclusion and Perspectives

But in the real industrial scenario, it is very rare to use CBD idealized lifecycle models
as described in the literature. Most of the domains are still using traditional software devel-
opment approaches by just adding to them some additional activities related to component
based software development. Because these domains have been coupled with traditional
software development for several reasons, it is very difficult to achieve the goals by using
only component based software development.

Due to this, idealized approaches need adjustments. Mostly CBD will be successful
in these critical domains compared to traditional software development if CDB decreases
the cost of V&V activities, which is a sinew of war in these domains. Under this current
situation, it is further needed to plan sequence of experiments, in which relative costs and
benefits of choosing a component based software development can be weighed against the
choice of a traditional software development.

It is in this context that we have described in this thesis a possible approach to merge
component-based modeling with traceability of concerns and observer-based verification
with patterns of properties, with the aim of providing a solution towards an efficient devel-
opment of embedded safety-critical software, particularly in railway control software.

The solution we proposed is based on well-accepted and defined technologies and stan-
dards. In particular, our approach, called SARA, relies on the principles of CBSE. We bring
together these principles from different CBD approaches to provide a simple and yet realistic
CBD that can be applicable in train control applications.

7.2 Review of Research Questions

In this section, we outline and discuss our contributions regarding the research questions
stated in Section 1.1:

Research Question 1. What is a suitable component model to build safety-critical control
software, specially railway control and protection software, with traceability of concerns?

There are a lot of component models or framework available in the literature. Some of
them have been discussed in Chapter 2. However, few of them explicitly introduced trace-
ability of concerns in their underlining meta-model. Thus, we have studied in Chapter 3
some of the most relevant work related to traceability of concerns by highlighting the bene-
fits for component based modeling. Our contribution for component-based modeling with
traceablity of concerns is presented in Chapter 4 as a set of meta-models. The component
meta-model reifies relevant concepts and elements from existing component models with
and an extension for traceability of concerns.

In railway control applications, it is still not guaranteed to be able to purchase trusted
and certified Commercial Off The Shelf (COTS) components and build software from them.
As a consequence it is difficult to apply an idealized component-based software develop-
ment. For this we think that a suitable component model for railway control software,

152

7.2. Review of Research Questions

should be a hybrid model to support both component based software development with
component concerns as well as traditional software development with requirement con-
cerns.

Research Question 2. How can safety-critical control software, specially railway control and
protection software, be built in an efficient way by using CBD-V rules, such as interoperabil-
ity and model verification?

A CBD-V cannot be completely put to use if the development and verification organi-
zations have not adopted all its fundamental rules, such as interoperability, composition,
reusability and model verification. In addition, the CBD-V is successful if the interopera-
ble, reusable and certified components are available for component based software develop-
ment, and if V&V activities are decreased in the CBD-V compared to traditional software
development. As a consequence, formal modeling of interfaces that enables interoperability
is necessary to reason and predict the effective application of component composition and
substitution.

Three main levels of interoperability have been distinguished in the contracts of compo-
nent interfaces: (i) the signature level covers the static aspects of component interoperation;
(ii) the semantic level covers the behavioral aspects of component interoperation; and (iii) the
protocol level deals with the order in which a component expects its methods to be called.
Particularly, for the protocol level, we translated our formal model into a timed automata
model, for which we can verify real-time constraints.

Research Question 3. Will CBD-V processes replace the need for traditional software de-
velopment and verification processes? Particularly, what is the suitable development and
verification process for railway control and protection software?

As already discussed in Section 2.3, the adoption of any new development process, par-
ticularly a CBD-V process, in a specific embedded industry, will depend on the industrial
needs, its process, its technology and its market structures. In complex applications, such as
railway control and protection applications, there are a lot of stakeholders, such as manufac-
turers and vendors. For example, various components developed by manufacturers can be
supplied by different vendors, so the requirements are not stable. Since requirements change
from customer to customer and are still implemented using traditional software develop-
ment, it is very difficult to build the complete software by using only generic components.
As a consequence, it is very difficult to replace the traditional life cycle completely with the
CBD-V because there are always some requirements that are project specific or customer
specific.

One possible way to avoid the mismatch is to negotiate the requirements and modify
them to be able to use the existing components, but it is not always easy because customers
may insist on some requirements and may not be ready to negotiate them. Another pos-
sible way to solve this problem is to develop new reusable software components or adapt
existing reusable software components that meet the user requirements, and which can be
used in future projects. This is the solution we adopt in this thesis. But this adoption raises

153

Chapter 7. Conclusion and Perspectives

further challenges, such as version management and re-verification. As a consequence, we
believe that the suitable development process for safety-critical software is the reusable de-
velopement process, such as component-based development with traceability of concerns
and observer-based verification with pattern of concerns, which should reduce the cost of
V&V activities compared to traditional software development.

7.3 Perspectives

Although the work presented in this dissertation covers the needs of our research goal stated
in Section 1.2, there is still some work that could be done to improve our research. In this sec-
tion, we thus discuss some short-term and long-term perspectives that should be considered
in the continuation of this work.

7.3.1 Short-term Perspectives

Integrated Tool-Chain Demonstrator

As explained in Chapter 6, to evaluate our approach we have used several tools. For meta-
models, we mainly concentrated on providing minimal support in XML-based representa-
tions and XQuery queries to provide a quick feedback about the current state of our ap-
proach. For the formal model transformation we have implemented our transformation
rules with two ATL and QVT transformation languages. The objective was to study the
effect of different language constructs on the performance of the transformation. For verifi-
cation tasks, we have used the SPARK tool for formal proof of functional input and output
constraints and the UPPAAL tool for non-functional real-time constraints.

Although these different tools are powerful in their domain, their use separately does
not provide an integrated tool-chain demonstrator. In this direction, one essential challenge
when dealing with model transformation is to take advantage of feedback obtained in the
verification low-level model to lead to the design high-level model. As a consequence, one
short term direction is to take advantage of component-based model-driven techniques and
traceability of concerns in tooling in order to have validation feedback on design models
automatically.

Improve Scalability and Applicability

Although our approach has been shown to be scalable and applicable in several ERTM-
S/ETCS case studies, our approach can be enhanced in different directions.

On the scalability side, currently, our approach is applied on each use case separately.
However, as explained in Section 6.7, in a real scenario deployment, one use case can depend

154

7.3. Perspectives

on other use cases or other actors, which we consider as the environment of the system
under study. To face this problem, we investigated the environment context partitioning
approach, which consists in unrolling the environment context into several scenarios and
successively composing each scenario with the use case under verification and verifying the
resulting composition. The first results are encouraging, but this approach requires a domain
knowledge in order to identify all the possible interactions with the use case environment.
As a consequence, it requires more investigation to demonstrate an efficient scalability to
large-scale railway control and protection systems.

On the pattern-based applicability side, experiments show that part of requirements
found in the ERTMS/ETCS documents cannot be directly translated into real-time exten-
sions of Dwyer et al. patterns used in our approach. One direction to face this problem
is to extend current patterns and another is to define other patterns. In this direction, one
theoretical issues is the use theorem proving techniques to support the formal validation of
observers defined for railway requirement specification patterns. In addition, observers of
patterns are actually manually defined and selected. A need to define an improved method
to select best observers is another direction.

7.3.2 Long-term Perspectives

Mixed-Critical Components

The presumption of our approach is that if a lower critical component is running on the same
secure compute platform with a higher critical component, it must be treated as the higher
critical component. This presumption is set for the actual certification process. For example,
the railway certification requirements require to produce the evidence and to demonstrate
the required Safety Integrity Level (SIL), ranging from SIL 1 to SIL 4, which is the most
dependable. However, this presumption, increases the Verification and Validation (V&V)
effort. In fact, it requires to provide the same V&V effort for safety-critical, mission-critical
and non-critical components when a single and secure compute platform is used. Another
solution is the safety-bag approach, where the lower critical components and the higher crit-
ical components must be separately allocated to distinct processors or replicated processors.
However, this absolute physical separation is sometimes too expensive to be applied. As a
consequence, an efficient mixed-critical solution is required for the next generation of mixed-
critical software, i.e., mixed safety-critical, mission-critical, and non-critical components.

Towards Component-based Domain Engineering

Regarding Software Product Line (SPL) Processes, in this thesis we have dealt with
component-based application engineering. Indeed SPL engineering is divided into two com-
plementary processes: Domain Engineering and Application Engineering. The former usually
refers to the development for reuse, while the latter is the development with reuse. In other

155

Chapter 7. Conclusion and Perspectives

words, the domain engineering process is responsible for creating reusable assets, named ref-
erence architectures [Kang et al., 1998], while application engineering is the process of reusing
those assets to build individual but similar software products.

In space and automotive software control domains, there are well-defined methods for
constructing software reference architectures, such as [Panunzio and Vardanega, 2013] and
[AUTOSAR, 2006], respectively. In the railway domain, [openETCS, 2012] project is recently
driven by a European consortium in order to provide an Open Proofs Methodology for the
European Train Control Onboard System. The purpose of the openETCS project is to develop
an integrated modelling, development, validation and testing framework for leveraging the
cost-efficient and reliable implementation of ETCS.

However, to the best of our knowledge, there are no well-defined methods for construct-
ing software reference architectures in the railway control and protection systems. To go to-
ward component-based domain engineering, i.e., building a software reference architecture,
one challenge is to allow explicit representation of variation points in the reference archi-
tecture, as defined in the feature model [Kang et al., 1998], where different features may be
selected for a specific product. One research question which can be raised is: how to extend
existing component-based meta-models, such as our defined meta-model, to allow explicit
representation of variation points for a reference architecture?

156

Appendices

157

Appendix A
SARA Model Implementation in Ada
Language

In this appendix, we report the minimal code archetypes written in Ada programming lan-
guage to evaluate the SARA model.

1−− Thi s p a c k a g e i s an i m p l e m e n t a t i o n o f SARA component model f o r Ada .
2−− I t i s t h e r o o t p a c k a g e o f a l l p a k a g e s o f Sara component e n t i t i e s .
3 package Sara i s
4 pragma Pure ;
5 end Sara ;

Listing A.1: Specification of SARA component model

1−− Package Sara . Types_Root d e f i n e s a minimal n o t i o n o f t y p e
2−− t h a t a l l t y p e s sys t em s h o u l d implement .
3 package Sara . Typeroot i s
4 type Root i s I n t e r f a c e ;
5 type Root_Ptr i s access a l l Root ’ Class ;
6 function Is_Subtype_Of_Root (Atype : Root) return Boolean i s a b s t r a c t ;
7 −− t e s t i f Atype i s a s u b t y p e o f Root
8 end Sara . Typeroot ;

Listing A.2: A minimal notion of type

159

Appendix A. SARA Model Implementation in Ada Language

1−− Package Sara . I n t e r f a c e s d e f i n e s SARA component i n t e r f a c e s c o n c e p t
2 with Sara . Typeroot ;
3 package Sara . I n t e r f a c e s i s
4 type I t f_Type i s I n t e r f a c e and Sara . Typeroot . Root ;
5 type I t f _ Typ e_ Ptr i s access a l l I t f_Type ’ Class ;
6
7 Procedure Basic_Operat ion (This : in out I t f_Type) i s a b s t r a c t ;
8 function Itf_Operations_Number (This : I t f_Type) return Natural i s a b s t r a c t ;
9 function I s _ P r o v i d e d _ I t f (This : I t f_Type) return Boolean i s a b s t r a c t ;

10 function G e t _ I t f _ S i g n a t u r e (This : I t f_Type) return S t r i n g i s a b s t r a c t ;
11 end Sara . I n t e r f a c e s ;

Listing A.3: Specification of SARA component interfaces

1−− Package Sara . Component d e f i n e s Sara Component t h a t l i s t s
2−− i n t e r f a c e s o f a component .
3 with Sara . I n t e r f a c e s ; use Sara . I n t e r f a c e s ;
4 package Sara . Component i s
5 type Comp_Type i s a b s t r a c t new Sara . I n t e r f a c e s . I t f_Type with
6 record
7 B a s i c _ R e q u i r e d _ I t f : I t f _T ype _P tr ;
8 end record ;
9 type Comp_Type_Ptr i s access a l l Comp_Type ’ Class ;

10 type Comp_Array i s array (Natural range <>) of Comp_Type_Ptr ;
11
12 function Is_Basic_Component (This : in Comp_Type) return boolean i s a b s t r a c t ;
13 −− t h e component i s b a s i c o r h i e r a r c h i c a l component
14 function Get_Itf_Owner (This : I t f_Type) return Comp_Array i s a b s t r a c t ;
15 −− i n t r o s p e c t i o n t h a t p r o v i d e s o r not t h e i n n e r components
16 function Get_It f_Type (This : I t f_Type) return I t f_Type ’ Class i s a b s t r a c t ;
17 −− i n t r o p s p e c t i o n t h a t p r o v i d e s t h e i n t e r f a c e s t y p e
18 end Sara . Component ;

Listing A.4: Specification of SARA basic component

160

1 pragma P r o f i l e (Ravenscar) ;
2 with System ;
3 with Ada . Real_Time ;
4 with Sara . Errors ;
5 generic
6 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 −− Mapping o f component e l e m e n t −−
8 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9 type Component_Type i s pr ivate ;

10 Component : in Component_Type ;
11
12 −−−−−−−−−−−−−−−−−−−−−
13 −− Task p a r a m e t e r s −−
14 −−−−−−−−−−−−−−−−−−−−−
15 Task_Period : in Ada . Real_Time . Time_Span ;
16 −− Task minimal i n t e r −a r r i v a l t ime o f e v e n t s
17 Task_Deadline : in Ada . Real_Time . Time_Span ;
18 −− Task d e a d l i n e
19 T a s k _ P r i o r i t y : in System . Any_Priori ty ;
20 −− Task p r i o r i t y
21
22 −−−−−−−−−−−−−−−
23 −− Task J o b s −−
24 −−−−−−−−−−−−−−−
25 with procedure Wait (Component : Component_Type) ;
26 −− B l o c k s t h e nex t t r i g g e r i n g o f t h e t h r e a d
27 with procedure Job (Component : in out Component_Type ;
28 Error : out Sara . Errors . Error_Kind) ;
29 −− P r o c e d u r e t o c a l l a t e a c h d i s p a t c h o f t h e s p o r a d i c t h r e a d
30 with procedure Recover_Job ;
31 −− I f g iven , t h e t a s k runs R e c o v e r _ E n t r y p o i n t when an e r r o r i s
32 −− d e t e c t e d .
33 package Sara . ComponentTask i s
34 task Sporadic_Task i s
35 pragma P r i o r i t y (T a s k _ P r i o r i t y) ;
36 end Sporadic_Task ;
37
38 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
39 −− r e t u r n Task J o b s r e s u l t −−
40 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
41 function Return_Job_Result return Sara . Errors . Error_Kind ;
42 end Sara . ComponentTask ;

Listing A.5: Specification of SARA component tasks

161

Bibliography

[Abid et al., 2014] Abid, N., Zilio, S. D., and Botlan, D. L. (2014). A formal framework to
specify and verify real-time properties on critical systems. Int. J. Crit. Comput.-Based Syst.,
5(1/2):4–30. 30, 32

[Abrial, 1996] Abrial, J.-R. (1996). The B-book: Assigning Programs to Meanings. Cambridge
University Press, New York, NY, USA. 28

[Aceto et al., 2003] Aceto, L., Bouyer, P., Burgueno, A., and Larsen, K. G. (2003). The power
of reachability testing for timed automata. Theoretical Computer Science, 300(1-3):411–475.
30

[Adler et al., 2011] Adler, R., Schaefer, I., Trapp, M., and Poetzsch-Heffter, A. (2011).
Component-based modeling and verification of dynamic adaptation in safety-critical em-
bedded systems. ACM Trans. Embed. Comput. Syst., 10(2):20:1–20:39. 92

[Aizenbud-Reshef et al., 2006] Aizenbud-Reshef, N., Nolan, B. T., Rubin, J., and Shaham-
Gafni, Y. (2006). Model traceability. IBM Syst. J., 45(3):515–526. 54

[Alanen and Porres, 2003] Alanen, M. and Porres, I. (2003). Difference and union of models.
In Stevens, P., Whittle, J., and Booch, G., editors, The Unified Modeling Language. Modeling
Languages and Applications, volume 2863 of Lecture Notes in Computer Science, pages 2–17.
Springer. 72

[Allen and Garlan, 1997] Allen, R. and Garlan, D. (1997). A formal basis for architectural
connection. ACM Trans. Softw. Eng. Methodol., 6(3):213–249. 20

[Alur and Dill, 1994] Alur, R. and Dill, D. L. (1994). A theory of timed automata. Theor.
Comput. Sci., 126(2):183–235. 100

[Anquetil et al., 2008] Anquetil, N., Grammel, B., Galvao Lourenco da Silva, I., Noppen, J.,
Shakil Khan, S., Arboleda, H., Rashid, A., and Garcia, A. (2008). Traceability for model
driven, software product line engineering. In ECMDA Traceability Workshop Proceedings,
pages 77–86, Norway. SINTEF. 46, 51, 55, 56

163

Bibliography

[Anquetil et al., 2010] Anquetil, N., Kulesza, U., Mitschke, R., Moreira, A., Royer, J.-C.,
Rummler, A., and Sousa, A. (2010). A model-driven traceability framework for software
product lines. Softw. Syst. Model., 9(4):427–451. 43, 46, 49, 51, 53, 54

[Aponte et al., 2012] Aponte, M., Courtieu, P., Moy, Y., and Sango, M. (2012). Maximal and
compositional pattern-based loop invariants. In FM 2012: Formal Methods - 18th Interna-
tional Symposium, Paris, France, August 27-31, 2012. Proceedings, pages 37–51. 100

[ARTIST, 2004] ARTIST (2004). Selected topics in Embedded Systems Design: Roadmaps
for Research. Technical report, From EU IST ARTIST project. 22

[AUTOSAR, 2006] AUTOSAR (2006). Automotive open system architecture. Official web-
site of the AUTOSAR Partnership: www.autosar.org. 17, 34, 62, 156

[AUTOSAR-Simulink, nd] AUTOSAR-Simulink (n.d.). Generating
code for autosar software components using embedded coder.
http://www.mathworks.com/automotive/standards/autosar.html. 36

[Bachmann et al., 2000] Bachmann, F., Bass, L., Buhman, C., Dorda, S. C., Long, F., Robert,
J., Seacord, R., and Wallnau, K. (2000). Volume II: Technical Concepts of Component-
Based Software Engineering, 2nd Edition. Technical report, CMU/SEI - Carnegie Mellon
University/Software Engineering Institute. 16

[Bayse et al., 2005] Bayse, E., Cavalli, A., Nunez, M., and Zaidi, F. (2005). A passive testing
approach based on invariants: application to the {WAP}. Computer Networks, 48(2):247–
266. 30

[Becker et al., 2009] Becker, S., Koziolek, H., and Reussner, R. (2009). The palladio compo-
nent model for model-driven performance prediction. J. Syst. Softw., 82(1):3–22. 70

[Behm et al., 1998] Behm, P., Desforges, P., and Meynadier, J.-M. (1998). METEOR: An In-
dustrial Success in Formal Development. In Proceedings of the Second International B Con-
ference on Recent Advances in the Development and Use of the B Method, B ’98, pages 26–,
London, UK, UK. Springer-Verlag. 28

[Beizer, 1990] Beizer, B. (1990). Software Testing Techniques (2Nd Ed.). Van Nostrand Reinhold
Co., New York, NY, USA. 27

[Berthomieu et al., 2009] Berthomieu, B., Bodeveix, J.-P., Chaudet, C., Zilio, S., Filali, M., and
Vernadat, F. (2009). Formal verification of aadl specifications in the topcased environment.
In Proceedings of the 14th Ada-Europe International Conference on Reliable Software Technolo-
gies, Ada-Europe’09, pages 207–221, Berlin, Heidelberg. Springer-Verlag. 36

[Bertolino, 2007] Bertolino, A. (2007). Software testing research: Achievements, challenges,
dreams. In 2007 Future of Software Engineering, FOSE ’07, pages 85–103, Washington, DC,
USA. IEEE Computer Society. 27

164

[Beugin et al., 2007] Beugin, J., Renaux, D., and Cauffriez, L. (2007). A SIL quantification
approach based on an operating situation model for safety evaluation in complex guided
transportation systems. Reliability Engineering and System Safety, 92(12):1686 – 1700. 147

[Bhatti et al., 2011] Bhatti, Z., Sinha, R., and Roop, P. (2011). Observer based verification of
IEC 61499 function blocks. In Industrial Informatics, pages 609–614. 84, 122

[Bianculli et al., 2012] Bianculli, D., Ghezzi, C., Pautasso, C., and Senti, P. (2012). Specifica-
tion patterns from research to industry: A case study in service-based applications. In
ICSE’12, pages 968–976. IEEE Press. 32

[Bitsch, 2001] Bitsch, F. (2001). Safety patterns - the key to formal specification of safety re-
quirements. In Proceedings of the 20th International Conference on Computer Safety, Reliability
and Security, pages 176–189, London, UK. 32, 33

[Bruneton et al., 2006] Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., and Stefani, J.-B.
(2006). The fractal component model and its support in java: Experiences with auto-
adaptive and reconfigurable systems. Softw. Pract. Exper., 36(11-12):1257–1284. 17, 19, 34

[Bures et al., 2008] Bures, T., Carlson, J., Crnkovic, I., Sentilles, S., and Vulgarakis, A. (2008).
Progress Component Model Reference Manual-version 1.0. Technical report, Malardalen
University. 36

[Capretz, 2005] Capretz, L. F. (2005). Y: A new component-based software life cycle model.
Journal of Computer Science, 1(1):76–82. 20

[CCM, 2006] CCM (2006). Corba component model, version 4.0.
http://www.omg.org/spec/CCM/4.0/. 18

[Chaki et al., 2007] Chaki, S., Ivers, J., Lee, P., Wallnau, K., and Zeilberger, N. (2007). Model-
driven construction of certified binaries. In Engels, G., Opdyke, B., Schmidt, D., and Weil,
F., editors, Model Driven Engineering Languages and Systems, volume 4735 of Lecture Notes
in Computer Science, pages 666–681. Springer Berlin Heidelberg. 37

[Chapman, 2006] Chapman, R. (2006). Correctness by construction: A manifesto for high in-
tegrity software. In Proceedings of the 10th Australian Workshop on Safety Critical Systems and
Software - Volume 55, SCS ’05, pages 43–46, Darlinghurst, Australia, Australia. Australian
Computer Society, Inc. 4, 28

[Chechik and Paun, 1999] Chechik, M. and Paun, D. (1999). Events in property patterns. In
Theoretical and Practical Aspects of SPIN Model Checking, volume 1680 of Lecture Notes in
Computer Science, pages 154–167. Springer Berlin Heidelberg. 32

[Chen et al., 2007a] Chen, X., He, J., Liu, Z., and Zhan, N. (2007a). A model of component-
based programming. In Arbab, F. and Sirjani, M., editors, International Symposium on
Fundamentals of Software Engineering, volume 4767 of Lecture Notes in Computer Science,
pages 191–206. Springer Berlin Heidelberg. 86

165

Bibliography

[Chen et al., 2007b] Chen, X., Liu, Z., and Mencl, V. (2007b). Separation of concerns and con-
sistent integration in requirements modelling. In van Leeuwen, J., Italiano, G., van der
Hoek, W., Meinel, C., Sack, H., and PlÃ¡Å¡il, F., editors, SOFSEM 2007: Theory and Prac-
tice of Computer Science, volume 4362 of Lecture Notes in Computer Science, pages 819–831.
Springer Berlin Heidelberg. 4

[Chen et al., 2009] Chen, Z., Liu, Z., Ravn, A. P., Stolz, V., and Zhan, N. (2009). Refine-
ment and verification in component-based model-driven design. Sci. Comput. Program.,
74(4):168–196. 4, 18, 21, 61

[CHESS, 2012] CHESS (2012). http://www.chess-project.org/. 62

[Chung and do Prado Leite, 2009] Chung, L. and do Prado Leite, J. C. S. (2009). On non-
functional requirements in software engineering. In Conceptual Modeling: Foundations and
Applications, volume 5600 of Lecture Notes in Computer Science, pages 363–379. Springer
Berlin Heidelberg. 45, 66, 67

[Clarke et al., 1986] Clarke, E. M., Emerson, E. A., and Sistla, A. P. (1986). Automatic verifi-
cation of finite-state concurrent systems using temporal logic specifications. ACM Trans.
Program. Lang. Syst., 8(2):244–263. 30

[Cleland-Huang et al., 2003] Cleland-Huang, J., Chang, C., and Christensen, M. (2003).
Event-based traceability for managing evolutionary change. Software Engineering, IEEE
Transactions on, 29(9):796–810. 46, 50, 52, 53, 54

[Cleland-Huang and Schmelzer, 2003] Cleland-Huang, J. and Schmelzer, D. (2003). Dynam-
ically tracing non-functional requirements through design pattern invariants. In Workshop
on Traceability in Emerging Forms of Software Engineering, page 10. 46, 50, 51, 52, 53, 54

[Cloutier and Verma, 2007] Cloutier, R. J. and Verma, D. (2007). Applying the concept of
patterns to systems architecture. Systems Engineering, 10(2):138–154. 67

[Collart-Dutilleul et al., 2014] Collart-Dutilleul, S., Bon, P., El Koursi, E. M., and Lemaire, E.
(2014). Study of the implementation of ERTMS with respect to French national – "non on
board rules" using a collaborative methodology based on formal methods and simulation.
In TRA - Transport Research Arena, page 8p, France. 24

[Collofello and Institute, 1988] Collofello, J. and Institute, C.-M. U. S. E. (1988). Introduction
to Software Verification and Validation. Technical report (Carnegie-Mellon University. Soft-
ware Engineering Institute). Carnegie Mellon University, Software Engineering Institute.
25

[Corin et al., 2005] Corin, R., Etalle, S., Hartel, P., and Durante, A. (2005). A trace logic for
local security properties. Electronic Notes in Theoretical Computer Science, 118(0):129 – 143.
Proceedings of the International Workshop on Software Verification and Validation (SVV
2003) Software Verification and Validation 2003. 93

166

[Crnkovic, 2002] Crnkovic, I. (2002). Building Reliable Component-Based Software Systems.
Artech House, Inc., Norwood, MA, USA. 19

[Crnkovic, 2005] Crnkovic, I. (2005). Component-based software engineering for embedded
systems. In Software Engineering, 2005. ICSE 2005. Proceedings. 27th International Conference
on, pages 712–713. 22

[Crnkovic et al., 2006] Crnkovic, I., Chaudron, M., and Larsson, S. (2006). Component-based
development process and component lifecycle. In Proceedings of the International Conference
on Software Engineering Advances, ICSEA ’06, pages 44–50, Washington, DC, USA. IEEE
Computer Society. 20

[Crnkovic et al., 2003] Crnkovic, I., Schmidt, H., Stafford, J., and Wallnau, K. (2003). 6th icse
workshop on component-based software engineering: Automated reasoning and predic-
tion. In Proceedings of the 25th International Conference on Software Engineering, ICSE ’03,
pages 775–776, Washington, DC, USA. IEEE Computer Society. 19

[Crnkovic et al., 2011] Crnkovic, I., Sentilles, S., Vulgarakis, A., and Chaudron, M. R. V.
(2011). A classification framework for software component models. IEEE Trans. Software
Eng., 37(5):593–615. 18, 19, 33, 62, 91

[Dhaussy, 2014] Dhaussy, P. (access june 2014). A language : Context description language
(cdl) – a toolset : Observer based prover (obp). Technical report, ENSTA-Bretagne, UMR
CNRS 6285. http://www.obpcdl.org. 146

[Dhaussy et al., 2012] Dhaussy, P., Boniol, F., Roger, J.-C., and Leroux, L. (2012). Improving
model checking with context modelling. Adv. Soft. Eng., 2012:9:9–9:9. 146

[Dhaussy and Teodorov, 2014] Dhaussy, P. and Teodorov, C. (2014). Context-aware verifica-
tion of a landing gear system. In ABZ 2014: The Landing Gear Case Study, volume 433 of
Communications in Computer and Information Science, pages 52–65. 146

[Dijkstra, 1982a] Dijkstra, E. (1982a). On the role of scientific thought. In Selected Writings
on Computing: A personal Perspective, Texts and Monographs in Computer Science, pages
60–66. Springer New York. 55

[Dijkstra, 1972] Dijkstra, E. W. (1972). The humble programmer. Commun. ACM, 15(10):859–
866. 28

[Dijkstra, 1982b] Dijkstra, E. W. (1982b). On the role of scientific thought. In Selected Writings
on Computing: A personal Perspective, Texts and Monographs in Computer Science, pages
60–66. Springer New York. 4

[DO-331, 2011] DO-331 (2011). Model-Based Development and Verification Supplement to DO-
178C and DO-278A. RTCA. 3

[Dömges and Pohl, 1998] Dömges, R. and Pohl, K. (1998). Adapting traceability environ-
ments to project-specific needs. Commun. ACM, 41(12):54–62. 35, 54, 55, 113

167

Bibliography

[Dromey, 2003] Dromey, R. (2003). From requirements to design: formalizing the key steps.
In Software Engineering and Formal Methods, 2003.Proceedings. First International Conference
on, pages 2–11. 51

[Dwyer, nd] Dwyer, M. B. (n.d.). Specification patterns web site. http://patterns.

projects.cis.ksu.edu/documentation/patterns.shtml. 31

[Dwyer et al., 1998] Dwyer, M. B., Avrunin, G. S., and Corbett, J. C. (1998). Property specifi-
cation patterns for finite-state verification. In Proceedings of the Second Workshop on Formal
Methods in Software Practice, March 4-5, 1998, Clearwater Beach, Florida, USA, pages 7–15. 30

[Dwyer et al., 1999] Dwyer, M. B., Avrunin, G. S., and Corbett, J. C. (1999). Patterns in prop-
erty specifications for finite-state verification. In Proceedings of ICSE’99, pages 411–420.
30

[Egyed, 2003] Egyed, A. (2003). A scenario-driven approach to trace dependency analysis.
IEEE Trans. Softw. Eng., 29(2):116–132. 46

[El-Koursi et al., 2009] El-Koursi, E.-M., Khoudour, L., Impastato, S., Malavasi, G., and Ricci,
S. (2009). Safer European level crossing appraisal and technology. Collection Actes INRETS.
122, 123

[Emmelmann, 2003] Emmelmann, M. (2003). An integrated prototyping and simulation ar-
chitecture for space specific protocol developments and verifications. In Proceedings of the
1rd NASA Space Internet Workshop, Cleveland, OH, USA. 26

[EN-50128, 2011] EN-50128 (2011). Railway applications - Communication, signalling and pro-
cessing systems - Software for railway control and protection systems. CENELEC, Brussels. 3,
4, 6, 20, 24, 40, 55, 70, 118

[ERSA, nd] ERSA (nd). Ertms/etcs operational simulator. http://www.ersa-france.com/
index.php/en/menu-products. 137

[ERTMS/ETCS, 2006] ERTMS/ETCS (2006). European rail traffic management system/eu-
ropean train control system. System Requirements Specification, Version 2.3.0. http:

//www.era.europa.eu/Document-Register/Pages/UNISIGSUBSET-026.aspx. 63

[ERTMS/ETCS, 2014] ERTMS/ETCS (2014). European rail traffic management
system/european train control system. System Requirements Specification,
Version 3.4.0. http://www.era.europa.eu/Document-Register/Pages/

SystemRequirementsSpecification(Recommendation).aspx. 24, 63, 68, 120,
121, 123, 124, 131, 132

[Eurostat, 2012] Eurostat (access june 2012). Railway safety statistics, available
from. http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/

Railway_safety_statistics. 122

168

http://patterns.projects.cis.ksu.edu/documentation/patterns.shtml
http://patterns.projects.cis.ksu.edu/documentation/patterns.shtml
http://www.ersa-france.com/index.php/en/menu-products
http://www.ersa-france.com/index.php/en/menu-products
http://www.era.europa.eu/Document-Register/Pages/UNISIGSUBSET-026.aspx
http://www.era.europa.eu/Document-Register/Pages/UNISIGSUBSET-026.aspx
http://www.era.europa.eu/Document-Register/Pages/System Requirements Specification (Recommendation).aspx
http://www.era.europa.eu/Document-Register/Pages/System Requirements Specification (Recommendation).aspx
http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Railway_safety_statistics
http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Railway_safety_statistics

[Falleri et al., 2006] Falleri, J.-R., Huchard, M., and Nebut, C. (2006). Towards a Traceability
Framework for Model Transformations in Kermeta. In ECMDA’06 Traceability Workshop,
pages 31–40, Bilbao (Spain). 46, 50, 51, 52, 53, 54, 72, 73

[Fassino et al., 2002] Fassino, J.-P., Stefani, J.-B., Lawall, J. L., and Muller, G. (2002). Think: A
software framework for component-based operating system kernels. In Proceedings of the
General Track of the Annual Conference on USENIX Annual Technical Conference, ATEC ’02,
pages 73–86, Berkeley, CA, USA. USENIX Association. 34

[Favaro and Sartori, 2014] Favaro, J. and Sartori, G. (2014). Model-based software design
in rail - a european perspective. EURAILmag - THE MAGAZINE FOR EUROPEAN RAIL
DECISION MAKERS, 30(2):224–227. 4, 62

[Feiler and Gluch, 2012] Feiler, P. H. and Gluch, D. P. (2012). Model-Based Engineering with
AADL: An Introduction to the SAE Architecture Analysis & Design Language. Addison-Wesley
Professional, 1st edition. 34

[Fenton and Pfleeger, 1998] Fenton, N. E. and Pfleeger, S. L. (1998). Software Metrics: A Rig-
orous and Practical Approach. PWS Publishing Co., Boston, MA, USA, 2nd edition. 137

[Ferrari et al., 2013] Ferrari, A., Gnesi, S., and Tolomei, G. (2013). Using clustering to im-
prove the structure of natural language requirements documents. In Proceedings of the
19th International Conference on Requirements Engineering: Foundation for Software Quality,
REFSQ’13, pages 34–49, Berlin, Heidelberg. Springer-Verlag. 26

[Galvao and Goknil, 2007] Galvao, I. and Goknil, A. (2007). Survey of traceability ap-
proaches in model-driven engineering. In Enterprise Distributed Object Computing Con-
ference, pages 313–313. 43, 49

[Giese et al., 2006] Giese, H., Glesner, S., Leitner, J., Schafer, W., and Wagner, R. (2006). To-
wards verified model transformations. In Workshop associated to MODELS’06, pages 78–93.
106

[Gill, 2003] Gill, N. S. (2003). Reusability issues in component-based development. SIGSOFT
Softw. Eng. Notes, 28(4):4–4. 139, 140

[Glinz, 2007] Glinz, M. (2007). On non-functional requirements. In 15th IEEE International
Requirements Engineering Conference, pages 21–26. 45, 66, 67

[Gotel and Finkelstein, 1994] Gotel, O. C. Z. and Finkelstein, A. C. W. (1994). An analysis of
the requirements traceability problem. In Proceedings of the First IEEE International Confer-
ence on Requirements Engineering, pages 94–101. 40, 41

[Groß, 2005] Groß, H. (2005). Component-based software testing with UML. Springer. 27

[Gruhn and Laue, 2006] Gruhn, V. and Laue, R. (2006). Patterns for timed property specifi-
cations. Electronic Notes in Theoretical Computer Science, 153(2):117–133. 30, 32

169

Bibliography

[Guiho and Hennebert, 1990] Guiho, G. and Hennebert, C. (1990). Sacem software valida-
tion. In Proceedings of the 12th International Conference on Software Engineering, ICSE ’90,
pages 186–191, Los Alamitos, CA, USA. IEEE Computer Society Press. 28

[Hall and Chapman, 2002] Hall, A. and Chapman, R. (2002). Correctness by construction:
developing a commercial secure system. Software, IEEE, 19(1):18–25. 28

[He et al., 2006] He, J., Li, X., and Liu, Z. (2006). A theory of reactive components. Electronic
Notes in Theoretical Computer Science, 160(0):173 – 195. Proceedings of the International
Workshop on Formal Aspects of Component Software (FACS 2005) Proceedings of the
International Workshop on Formal Aspects of Component Software (FACS 2005). 4, 20,
84, 87, 94, 98, 113

[Heineman and Councill, 2001] Heineman, G. T. and Councill, W. T., editors (2001).
Component-based Software Engineering: Putting the Pieces Together. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA. 16

[Henzinger, 1998] Henzinger, T. (1998). It’s about time: Real-time logics reviewed. In Con-
currency Theory, volume 1466 of LNCS, pages 439–454. Springer Berlin Heidelberg. 29,
84

[Hissam et al., 2005] Hissam, S., Ivers, J., Plakosh, D., and Wallnau, K. (2005). Pin compo-
nent technology (v1.0) and its c interface (cmu/sei-2005-tn-00). Technical report, Carnegie
Mellon Software Engineering Institute (SEI). 34, 36

[Hoare and He, 1998] Hoare, C. A. R. and He, J. (1998). Unifying theories of programming.
In Prentice-Hall. 94

[Hoinaru et al., 2014] Hoinaru, O., Gransart, C., Mariano, G., and Lemaire, E. (2014). An
ontology for the ERTMS/ETCS. In Transport Research Arena, page 10p, Paris. 121

[Hoinaru et al., 2013] Hoinaru, O., Mariano, G., and Gransart, C. (2013). Ontology for com-
plex railway systems application to ERTMS/ETCS system. In FM-RAIL-BOK Workshop
in SEFM’2013 11th International Conference on Software Engineering and Formal Methods,
page 6p, Espagne. 121

[Huang et al., 2011] Huang, C.-Y., Yin, Y.-F., Hsu, C.-J., Huang, T., and Chang, T.-M. (2011).
Soc hw/sw verification and validation. In Design Automation Conference (ASP-DAC), 2011
16th Asia and South Pacific, pages 297–300. 26

[Hursch and Lopes, 1995] Hursch, W. L. and Lopes, C. V. (1995). Separation of concerns.
Technical report, Technical report by the College of Computer Science, Northeastern Uni-
versity, Boston, MA 02115, USA. 54

[IEC-61499, 2005] IEC-61499 (2005). IEC 61499 function blocks for industrial-process measure-
ment and control systems. Geneva, Switzerland. 34

170

[IEEE-Std-610, 1990] IEEE-Std-610 (1990). Ieee standard glossary of software engineering
terminology. IEEE Std 610.12-1990, pages 1–84. 25, 40

[ISO-26262, 2009] ISO-26262 (2009). Road vehicles, Functional safety, Part 6: Product develop-
ment: software level. 3, 24

[Jackson, 2006] Jackson, D. (2006). Software Abstractions: Logic, Language, and Analysis. The
MIT Press. 27, 56

[Jarke et al., 1995] Jarke, M., Gallersdörfer, R., Jeusfeld, M. A., Staudt, M., and Eherer, S.
(1995). Conceptbase—a deductive object base for meta data management. J. Intell.
Inf. Syst., 4(2):167–192. 54

[Jasmine and Vasantha, 2008] Jasmine, K. and Vasantha, D. R. (2008). Cost estimation model
for reuse based software products. Proceedings of the International MultiConference of Engi-
neers and Computer Scientists, 1. 140

[Johansson, 2001] Johansson, R. (2001). Dependability characteristics and safety criteria for
an embedded distributed brake control system in railway freight trains. Technical report,
Department of Electrical and Computer Engineering Chalmers Lindholmen University
College. 23, 24

[Jouault, 2005] Jouault, F. (2005). Loosely Coupled Traceability for ATL. In ECMDA’05 Trace-
ability Workshop, pages 29–37. 72

[Jouault et al., 2006] Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., and Valduriez, P. (2006).
Atl: A qvt-like transformation language. In Companion to the 21st ACM SIGPLAN Sym-
posium on Object-oriented Programming Systems, Languages, and Applications, OOPSLA ’06,
pages 719–720, New York, NY, USA. ACM. 137

[Kang et al., 1998] Kang, K. C., Kim, S., Lee, J., Kim, K., Shin, E., and Huh, M. (1998). Form:
A feature-oriented reuse method with domain-specific reference architectures. Ann. Softw.
Eng., 5:143–168. 156

[Kassab and Ormandjieva, 2006] Kassab, M. and Ormandjieva, O. (2006). Towards an as-
pect oriented software development model with tractability mechanism. In Proceedings
of Workshop on Early Aspects: Aspect-Oriented Requirements Engineering and Architecture De-
sign. Bonn, Germany. 43

[Kaur and Singh, 2010] Kaur, K. and Singh, H. (2010). Candidate process models for com-
ponent based software development. ournal of Software Engineering, 4(1):16–29. 21

[Khoudour et al., 2009] Khoudour, L., Ghazel, M., Boukour, F., Heddebaut, M., and El-
Koursi, E.-M. (2009). Towards safer level crossings: existing recommendations, new appli-
cable technologies and a proposed simulation model. European Transport Research Review,
1(1):35–45. 121, 122

171

Bibliography

[Kim et al., 2012] Kim, S.-K., Myers, T., Wendland, M.-F., and Lindsay, P. A. (2012). Execu-
tion of natural language requirements using state machines synthesised from behavior
trees. J. Syst. Softw., 85(11):2652–2664. 51

[Knethen and Paech, 2002] Knethen, A. v. and Paech, B. (2002). A survey on tracing ap-
proaches in practice and research. Technical report, IESE-Report, 095.01/E, Fraunhofer
IESE - an institute of the Fraunhofer Gesellschaft., Boston, MA 02115, USA. 49

[Knight, 2012] Knight, J. (2012). Fundamentals of Dependable Computing for Software Engineers.
Chapman & Hall/CRC, 1st edition. 25, 27, 28, 29

[Kolovos et al., 2006] Kolovos, D. S., Paige, R. F., and Polack, F. A. C. (2006). Merging models
with the epsilon merging language (eml). In MoDELS’06, pages 215–229. 46, 50, 51, 52, 53,
54

[Konigs et al., 2012] Konigs, S. F., Beier, G., Figge, A., and Stark, R. (2012). Traceability in
systems engineering - review of industrial practices, state-of-the-art technologies and new
research solutions. Advanced Eng. Informatics, 26(4):924–940. 46, 49, 50, 51, 55

[Konrad and Cheng, 2005] Konrad, S. and Cheng, B. H. C. (2005). Real-time specification
patterns. In Proceedings of the 27th ICSE, pages 372–381. 30, 31

[Krichen and Tripakis, 2009] Krichen, M. and Tripakis, S. (2009). Conformance testing for
real-time systems. Form. Methods Syst. Des., 34(3):238–304. 84, 100, 102

[Larsen et al., 2005] Larsen, K. G., Mikucionis, M., Nielsen, B., and Skou, A. (2005). Testing
real-time embedded software using uppaal-tron: An industrial case study. In Proceedings
of the 5th ACM International Conference on Embedded Software, pages 299–306. ACM. 100,
105

[Larsen et al., 1997] Larsen, K. G., Pettersson, P., and Yi, W. (1997). Uppaal in a nutshell.
International Journal on Software Tools for Technology Transfer, 1(1-2):134–152. 29, 100

[Lau et al., 2011] Lau, K.-K., Taweel, F., and Tran, C. (2011). The w model for component-
based software development. In Software Engineering and Advanced Applications (SEAA),
2011 37th EUROMICRO Conference on, pages 47–50. 20

[Lau and Wang, 2007] Lau, K.-K. and Wang, Z. (2007). Software component models. Soft-
ware Engineering, IEEE Transactions on, 33(10):709–724. 16, 17, 18, 19, 34, 62

[Lehman and Ramil, 2002] Lehman, M. and Ramil, J. (2002). Software uncertainty. In Bus-
tard, D., Liu, W., and Sterritt, R., editors, Soft-Ware 2002: Computing in an Imperfect World,
volume 2311 of Lecture Notes in Computer Science, pages 174–190. Springer Berlin Heidel-
berg. 55, 147

[Lindvall and Sandahl, 1996] Lindvall, M. and Sandahl, K. (1996). Practical implications of
traceability. Softw. Pract. Exper., 26(10):1161–1180. 45

172

[Liu et al., 2011] Liu, Y., Tang, T., Liu, J., Zhao, L., and Xu, T. (2011). Formal modeling and
verification of RBC handover of ETCS using differential dynamic logic. In Autonomous
Decentralized Systems (ISADS), 2011 10th International Symposium on, pages 67–72. 131

[Liu et al., 2009] Liu, Z., Morisset, C., and Stolz, V. (2009). rCOS: theory and tool for
component-based model driven development. In Proceedings of the Third IPM international
conference on Fundamentals of Software Engineering, FSEN’09, pages 62–80, Berlin, Heidel-
berg. Springer-Verlag. 18

[Lumpe et al., 2003] Lumpe, M., Schneider, J., Schönhage, B., Bauer, M., and Genssler, T.
(2003). Composition languages. In Object-Oriented Technology: ECOOP 2003 Workshop
Reader, ECOOP 2003 Workshops, Darmstadt, Germany, July 21-25, 2003, Final Reports, pages
107–118. 20

[Mader and Egyed, 2012] Mader, P. and Egyed, A. (2012). Assessing the effect of require-
ments traceability for software maintenance. In 28th IEEE International Conference on Soft-
ware Maintenance, pages 171–180. 35, 55, 80, 113

[Manna and Pnueli, 1992] Manna, Z. and Pnueli, A. (1992). The Temporal Logic of Reactive and
Concurrent Systems. Springer-Verlag New York, Inc., New York, NY, USA. 30

[Manna and Pnueli, 1995] Manna, Z. and Pnueli, A. (1995). Temporal Verification of Reactive
Systems: Safety. Springer-Verlag New York, Inc., New York, NY, USA. 92

[Marwedel, 2011] Marwedel, P. (2011). Embedded Systems Design - Embedded Systems Founda-
tions of Cyber-Physical Systems. Springer, 2nd edition. ISBN 978-94-007-0256-1. 22

[Mekki, 2012] Mekki, A. (2012). Contribution for the Specification and the Verification of Temporal
Requirements : Proposal of an extension for the ERTMS-Level 2 specifications. Theses, Ecole
Centrale de Lille. 103

[Mekki et al., 2011] Mekki, A., Ghazel, M., and Toguyeni, A. (2011). Patterns-Based Assis-
tance for Temporal Requirement Specification. In Proceeding of SERP’2011, pages 1–7, Las
Vegas, États-Unis. 32

[Mekki et al., 2012] Mekki, A., Ghazel, M., and Toguyeni, A. (2012). Validation of a new
functional design of automatic protection systems at level crossings with model-checking
techniques. IEEE Trans. on ITS, 13(2):714–723. 33, 84, 122, 123, 124

[Merle and Stefani, 2008] Merle, P. and Stefani, J.-B. (2008). A formal specification of the
Fractal component model in Alloy. Research Report RR-6721, INRIA. 36

[Merlin and Farber, 1976] Merlin, P. and Farber, D. J. (1976). Recoverability of communica-
tion protocols–implications of a theoretical study. Communications, IEEE Transactions on,
24(9):1036–1043. 100

[Meyer, 1997] Meyer, B. (1997). Object-oriented Software Construction (2Nd Ed.). Prentice-Hall,
Inc., Upper Saddle River, NJ, USA. 112

173

Bibliography

[Myers and Sandler, 2004] Myers, G. J. and Sandler, C. (2004). The Art of Software Testing.
John Wiley & Sons. 27

[Mylopoulos et al., 1992] Mylopoulos, J., Chung, L., and Nixon, B. (1992). Representing and
using nonfunctional requirements: a process-oriented approach. Software Engineering,
IEEE Transactions on, 18(6):483–497. 45, 46

[Narayanan and Karsai, 2008] Narayanan, A. and Karsai, G. (2008). Towards verifying
model transformations. Electron. Notes Theor. Comput. Sci., 211:191–200. 106

[NIST, 2002] NIST (2002). The economic impacts of inadequate infrastructure for software
testing. http://www.nist.gov/director/planning/upload/report02-3.pdf. 27

[OMG, 2003] OMG (2003). Uml 2.0 OCL specification. http://www.omg.org/cgi-bin/

doc?ptc/2003-10-14. 66, 112

[OMG, 2005] OMG (2005). Omg unified modeling language specification.
http://www.omg.org/spec/UML/. 66

[OMG, 2011] OMG (2011). Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification. http://www.omg.org/spec/QVT/. 72, 137

[openETCS, 2012] openETCS (2012). Itea2 openetcs consortium. http://openetcs.org.
62, 156

[Panunzio and Vardanega, 2010] Panunzio, M. and Vardanega, T. (2010). A component
model for on-board software applications. In 36th EUROMICRO Conference on Software
Engineering and Advanced Applications, SEAA 2010, Lille, France, September 1-3, 2010, pages
57–64. 22, 34

[Panunzio and Vardanega, 2013] Panunzio, M. and Vardanega, T. (2013). On software refer-
ence architectures and their application to the space domain. In Favaro, J. and Morisio, M.,
editors, Safe and Secure Software Reuse, volume 7925 of Lecture Notes in Computer Science,
pages 144–159. Springer Berlin Heidelberg. 156

[Panunzio and Vardanega, 2014] Panunzio, M. and Vardanega, T. (2014). A component-
based process with separation of concerns for the development of embedded real-time
software systems. Journal of Systems and Software, 96(0):105 – 121. 4, 18, 35, 36, 55, 62

[Peleska, 2013] Peleska, J. (2013). Industrial-strength model-based testing - state of the art
and current challenges. In Proceedings Eighth Workshop on Model-Based Testing, MBT 2013,
Rome, Italy, 17th March 2013., pages 3–28. 3

[Pfister et al., 2012] Pfister, F., Chapurlat, V., Huchard, M., Nebut, C., and Wippler, J.-L.
(2012). A proposed meta-model for formalizing systems engineering knowledge, based
on functional architectural patterns. Syst. Eng., 15(3):321–332. 66, 67

174

http://www.nist.gov/director/planning/upload/report02-3.pdf
http://www.omg.org/cgi-bin/doc?ptc/2003-10-14
http://www.omg.org/cgi-bin/doc?ptc/2003-10-14
http://www.omg.org/spec/QVT/
http://openetcs.org

[Pinheiro, 2004] Pinheiro, F. A. (2004). Requirements traceability. In do Prado Leite, J. and
Doorn, J., editors, Perspectives on Software Requirements, volume 753 of The Springer Inter-
national Series in Engineering and Computer Science, pages 91–113. Springer US. 25, 40, 41,
42, 44, 45, 46, 63, 64

[Pop et al., 2014] Pop, T., Hnetynka, P., Hosek, P., Malohlava, M., and Bureš, T. (2014). Com-
parison of component frameworks for real-time embedded systems. Knowledge and Infor-
mation Systems, 40(1):127–170. 17, 33, 62

[Qiu et al., 2014] Qiu, S., Sallak, M., SchÃ¶n, W., and Cherfi-Boulanger, Z. (2014). Availabil-
ity assessment of railway signalling systems with uncertainty analysis using statecharts.
Simulation Modelling Practice and Theory, 47(0):1 – 18. 147

[Ramakrishna et al., 1996] Ramakrishna, Y., Melliar-Smith, P., Moser, L., Dillon, L., and
Kutty, G. (1996). Interval logics and their decision procedures: Part i: An interval logic.
Theoretical Computer Science, 166(1-2):1–47. 30

[Ramesh and Jarke, 2001] Ramesh, B. and Jarke, M. (2001). Toward reference models for
requirements traceability. IEEE Trans. Softw. Eng., 27(1):58–93. 46, 50, 51, 52, 53, 54

[Renault et al., 2009] Renault, X., Kordon, F., and Hugues, J. (2009). Adapting models to
model checkers, a case study : Analysing aadl using time or colored petri nets. In Rapid
System Prototyping, 2009. IEEE/IFIP International Symposium on, pages 26–33. 36

[Riaz, 2012] Riaz, S. (2012). Moving Towards Component Based Software Engineering in Train
Control Applications. Master thesis, Linkoping University Department of Computer and
Information Science. 4, 139, 140

[Roscoe et al., 1997] Roscoe, A. W., Hoare, C. A. R., and Bird, R. (1997). The Theory and Prac-
tice of Concurrency. Prentice Hall PTR, Upper Saddle River, NJ, USA. 98

[Rothenberger and Nazareth, 2002] Rothenberger, M. A. and Nazareth, D. L. (2002). A cost-
benefit-model for systematic software reuse. In Proceedings of the 10th European Conference
on Information Systems, Information Systems and the Future of the Digital Economy, ECIS 2002,
Gdansk, Poland, June 6-8, 2002, pages 371–378. 139

[Rubinger and Burke, 2010] Rubinger, A. L. and Burke, B. (2010). Enterprise JavaBeans 3.1 -
Developing Enterprise Java Components: Covers JavanBeans 3.1 (6. ed.). O’Reilly. 18, 34

[Rychly, 2011] Rychly, M. (2011). A metamodel for modelling of component-based systems
with mobile architecture. In Pokorny, J., Repa, V., Richta, K., Wojtkowski, W., Linger, H.,
Barry, C., and Lang, M., editors, Information Systems Development, pages 635–646. Springer
New York. 70

[Sadani et al., 2005] Sadani, T., Courtiat, J.-P., and De Saqui-Sannes, P. (2005). From RT-
LOTOS to time petri nets new foundations for a verification platform. In Third IEEE Int.
Conference on Software Engineering and Formal Methods, pages 250–259. 32

175

Bibliography

[Sango, 2013] Sango, M. (2013). Application of sara approach to ertms/etcs on-board train
speed control software. Technical Report, IFSTTAR. http://urls.fr/sara. 145

[Sango et al., 2014a] Sango, M., Duchien, L., and Gransart, C. (2014a). Component-based
modeling and observer-based verification for railway safety-critical applications. In 11th
International Symposium on Formal Aspects of Component Software, pages 248–266, Bertinoro,
Italy. 62, 72, 146

[Sango et al., 2014b] Sango, M., Gransart, C., and Duchien, L. (2014b). Safety component-
based approach and its application to ERTMS/ETCS on-board train control system. In
Transport Research Arena (TRA2014), pages 648–653, Paris, France. 62

[Sango et al., 2015a] Sango, M., Hoinaru, O., Gransart, C., and Duchien, L. (2015a). A tem-
poral qos ontology for ertms/etcs. In ICKEOE 2015: International Conference on Knowledge
Engineering and Ontological Engineering, London, United Kingdom, (Jan 19-20, 2015). 121

[Sango et al., 2015b] Sango, M., Hoinaru, O., Gransart, C., and Duchien, L. (2015b). A tem-
poral qos ontology for ertms/etcs. International Journal of Computer, Control, Quantum and
Information Engineering, 9(1):95 – 101. 121

[Santiago et al., 2012] Santiago, I., JiméNez, A., Vara, J. M., De Castro, V., Bollati, V. A., and
Marcos, E. (2012). Model-driven engineering as a new landscape for traceability manage-
ment: A systematic literature review. Inf. Softw. Tech., 54(12):1340–1356. 21

[SCADE, nd] SCADE (n.d.). Model-based development environment for critical embedded
software. http://www.esterel-technologies.com/products/scade-suite/. 29

[Schmidt, 2006] Schmidt, D. C. (2006). Model-driven engineering. IEEE Computer, 39(2):25–
31. 4, 61

[Schneider et al., 1992] Schneider, G. M., Martin, J., and Tsai, W. T. (1992). An experimen-
tal study of fault detection in user requirements documents. ACM Trans. Softw. Eng.
Methodol., 1(2):188–204. 26

[Sentilles et al., 2008] Sentilles, S., Vulgarakis, A., Bures, T., Carlson, J., and Crnkovic, I.
(2008). A component model for control-intensive distributed embedded systems. In
Component-Based Software Engineering, 11th International Symposium, CBSE 2008, Karlsruhe,
Germany, October 14-17, 2008. Proceedings, pages 310–317. 34

[Simulink, nd] Simulink (n.d.). Simulation et model-based design. http://fr.mathworks.
com/products/simulink/. 29

[Soliman et al., 2012] Soliman, D., Thramboulidis, K., and Frey, G. (2012). Transformation of
function block diagrams to uppaal timed automata for the verification of safety applica-
tions. Annual Reviews in Control, 36(2):338 – 345. 36, 84

176

http://www.esterel-technologies.com/products/scade-suite/
http://fr.mathworks.com/products/simulink/
http://fr.mathworks.com/products/simulink/

[Sousa and Garlan, 1999] Sousa, J. P. and Garlan, D. (1999). Formal modeling of the enter-
prise javabeans component integration framework. In Wing, J., Woodcock, J., and Davies,
J., editors, Formal Methods, volume 1709 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg. 36

[SPARK, 2014] SPARK (2014). Expanding the boundaries of safe and secure programming.
http://www.spark-2014.org/about. 28, 87, 100

[SysML, 2012] SysML (2012). System modeling language specification, version 1.3, 2012.
http://www.omg.org/spec/SysML/1.3. 109

[Szyperski et al., 2002] Szyperski, C., Gruntz, D., and Murer, S. (2002). Component Soft-
ware: Beyond Object-Oriented Programming. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2nd edition. 16, 62

[Tansalarak and Claypool, 2005] Tansalarak, N. and Claypool, K. T. (2005). COCO: compo-
sition model and composition model implementation. In ICEIS 2005, Proceedings of the
Seventh International Conference on Enterprise Information Systems, Miami, USA, May 25-28,
2005, pages 340–345. 20

[Thomas and Barry, 2003] Thomas, D. and Barry, B. M. (2003). Model driven development:
The case for domain oriented programming. In Companion of the 18th Annual ACM SIG-
PLAN Conference on OOPSLA’03, pages 2–7, New York, NY, USA. ACM. 21

[Tomar and Gill, 2010] Tomar, P. and Gill, N. (2010). Verification amp; validation of compo-
nents with new x component-based model. In Software Technology and Engineering (ICSTE),
2010 2nd International Conference on, volume 2, pages V2–365–V2–371. 20

[Triskel project (IRISA), nd] Triskel project (IRISA) (nd). The Metamodeling Language Ker-
meta. http://www.kermeta.org/. 54

[UML2.0, 2005] UML2.0 (2005). Unified modeling language: Superstructure, version 2.0.
http://www.omg.org/cgi-bin/doc?formal/05-07-04. 17, 19

[van Amstel et al., 2011] van Amstel, M., Bosems, S., Kurtev, I., and Pires, L. F. (2011). Perfor-
mance in model transformations: Experiments with ATL and QVT. In Theory and Practice
of Model Transformations - 4th International Conference, ICMT 2011, Zurich, Switzerland, June
27-28, 2011. Proceedings, pages 198–212. 138

[Vanhooff and Berbers, 2005] Vanhooff, B. and Berbers, Y. (2005). Supporting modular trans-
formation units with precise transformation traceability metadata. In ECMDA’06 Trace-
ability Workshop, pages 15–27. 46, 50, 51, 52, 53, 54

[Varró, 2002] Varró, D. (2002). A formal semantics of uml statecharts by model transition
systems. In Graph Transformation, volume 2505 of Lecture Notes in Computer Science, pages
378–392. Springer Berlin Heidelberg. 103

177

http://www.spark-2014.org/about
http://www.omg.org/spec/SysML/1.3
http://www.kermeta.org/

Bibliography

[Varró and Pataricza, 2003] Varró, D. and Pataricza, A. (2003). Automated formal verifica-
tion of model transformations. In Critical Systems Development in UML, page 63–78. 106

[W3C, 2004] W3C (2004). Owl web ontology language overview. 121

[Wen et al., 2007] Wen, L., Colvin, R., Lin, K., Seagrott, J., Yatapanage, N., and Dromey, R. G.
(2007). Integrare, a collaborative environment for behavior-oriented design. In 4th In-
ternational Conference on Cooperative Design, Visualization, and Engineering, pages 122–131.
54

[Wen and Dromey, 2004] Wen, L. and Dromey, R. (2004). From requirements change to de-
sign change: a formal path. In Proceedings of the Second International Conference on Software
Engineering and Formal Methods, 2004. SEFM 2004., pages 104–113. 46, 50, 51

[Wen et al., 2014] Wen, L., Tuffley, D., and Dromey, R. G. (2014). Formalizing the transition
from requirements’ change to design change using an evolutionary traceability model.
ISSE, 10(3):181–202. 46, 49, 50, 51, 52, 53, 54

[Wieringa, 1995] Wieringa, R. (1995). An introduction to requirements traceability. In Faculty
of Mathematics and Computer Science, Vrije Universiteit, Tech. Rep. IR-389, page 24. 41, 47, 72

[Winkler and Pilgrim, 2010] Winkler, S. and Pilgrim, J. (2010). A survey of traceability in
requirements engineering and model-driven development. Softw. Syst. Model., 9(4):529–
565. 49

[Woodcock and Morgan, 1990] Woodcock, J. and Morgan, C. (1990). Refinement of state-
based concurrent systems. In Bjorner, D., Hoare, C., and Langmaack, H., editors, VDM
’90 VDM and Z - Formal Methods in Software Development, volume 428 of Lecture Notes in
Computer Science, pages 340–351. Springer Berlin Heidelberg. 98

[Yang et al., 2014] Yang, K., Duan, Z., and Tian, C. (2014). Modeling and verification of RBC
handover protocol. Electronic Notes in Theoretical Computer Science, 309:51 – 62. 131

[Yie and Wagelaar, 2009] Yie, A. and Wagelaar, D. (2009). Advanced Traceability for ATL. In
Workshop on Model Transformation with ATL, page 10. 72

[Yovine, 1997] Yovine, S. (1997). A verification tool for real-time systems. Springer Interna-
tional Journal of Software Tools for Technology Transfer, 1(1-2):123–133. 29, 100

[Yu et al., 2006] Yu, J., Manh, T., Han, J., Jin, Y., Han, Y., and Wang, J. (2006). Pattern based
property specification and verification for service composition. In Web Information Sys-
tems, volume 4255 of LNCS, pages 156–168. Springer Berlin Heidelberg. 32

[Zhao et al., 2002] Zhao, J., Yang, H., Xiang, L., and Xu, B. (2002). Change impact analysis to
support architectural evolution. Journal of Software Maintenance, 14(5):317–333. 53

178

	Couverture
	Acknowledgement
	Abstract
	Résumé
	Contents
	List of Tables
	Part I Motivation and Context
	Chapter 1 Introduction
	1.1 Problem Statements
	1.2 Research Goals
	1.3 Contributions
	1.4 Dissertation Roadmap
	1.5 Publications

	Part II State of the Art
	Chapter 2 Component-Based Modeling and Observer-Based Verification
	2.1 Introduction
	2.2 CBSE Background
	2.3 Focus on CBSE for Embedded System Design
	2.4 V&V Background
	2.5 Focus on Observer-Based Verification
	2.6 Comparative Analysis and Discussion
	2.7 Summary

	Chapter 3 Traceability of Concerns
	3.1 Introduction
	3.2 Traceability Background
	3.3 Traceability Approaches in MDE
	3.4 Comparative Analysis and Discussion
	3.5 Summary

	Part III Contribution
	Chapter 4 Component-Based Modeling with Traceability of Concerns
	4.1 Introduction
	4.2 Motivation and Challenges
	4.3 SARA Meta-Model
	4.4 Process to Use the Meta-Model
	4.5 Challenges Revisited and Lessons Learned
	4.6 Summary

	Chapter 5 Observer-Based Verification with Patterns of Properties
	5.1 Introduction
	5.2 Motivation and Challenges
	5.3 SARA to TAIO Formal Model
	5.4 A 3-Layer Approach for OBV
	5.5 Challenges Revisited and Lessons Learned
	5.6 Summary

	Part IV Validation
	Chapter 6 Validation Through Railway Safety-Critical Software
	6.1 Introduction
	6.2 Overview of SARA Process
	6.3 A Brief Presentation of ERTMS/ETCS
	6.4 Rail-Road Level Crossing Case Study
	6.5 RBC Handover Case Study
	6.6 Metrics for Model Transformation and Component Reuse
	6.7 Threats to Validity and Discussion
	6.8 Summary

	Part V Conclusion
	Chapter 7 Conclusion and Perspectives
	7.1 Summary of the Dissertation
	7.2 Review of Research Questions
	7.3 Perspectives

	Appendices
	Appendix A SARA Model Implementation in Ada Language

	Bibliography

