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RESUME DE THESE EN FRANÇAIS 
Grâce à leurs propriétés physiques les nanoparticules (NPs) fonctionnalisées sont des outils puissants 

utilisés en tant qu’agent bioimagerie comme agent de contraste et de marquage. Permettant le 

marquage de biomolécules ciblées des nanoparticules sont utilisées pour la détection de protéines, 

d’ADN ou de lipides afin de comprendre les procès biologiques auxquels les composés marqués 

participent et de réaliser des diagnostiques. Les nanoparticules fonctionnalisées peuvent servir au 

ciblage de cellules cancéreuses ainsi permettant la localisation de tissus tumoraux et de métastases[1]. 

Dans la circulation sanguinaire de nanoparticules, fonctionnalisées afin de détecter des anticorps 

spécifiques, sont utilisées pour la diagnostique de maladies auto-immunes comme la sclérose en 

plaques[2]. Des surfaces de nanoparticules peuvent également être ajustées afin de détecter des facteurs 

rhumatoïdes permettant le diagnostique d’arthrites[3] ou être conçues pour la détection de facteurs 

cardiovasculaires[4]. 

Aujourd’hui des techniques d’imagerie multiples sont disponibles afin de visualiser des tissus, des 

cellules ou même des biomolecules en utilisant des nanoparticules fonctionnalisées comme agent de 

contraste ou comme sondes moléculaires. Certaines techniques comme l’imagerie de résonance 

magnétique (IRM), la tomographie d’émission de positrons (TEP), l’échographie, la radiographie ou 

l’imagerie optique dans le proche infrarouge sont adaptées afin d’étudier des systèmes biologiques in 

vivo. D’autres techniques comme la microscopie optique ou la microscopie électronique à transmission 

(MET) sont employées afin d’explorer des processus biologique in vitro. Chaque de ces techniques à 

ses propres avantages ainsi que ses limitations intrinsèques. Pour cette raison, l’utilisation de 

techniques d’imagerie complémentaires. La combinaison d’une technique possédant une grande 

résolution spatiale et d’une deuxième permettant la détection d’une cible avec une grande sensibilité 

facilite la visualisation et diagnostique de la situation biologique à l’endroit ciblé[5],[6]. L’utilisation 

simultanée de différentes techniques d’imagerie peut également permettre d’analyser un phénomène 

biologique à différentes échelles. La visualisation d’une situation biologique de l’échelle tissulaire 

jusqu’à l’échelle cellulaire permet d’analyser un processus biologique plus précisément, qui permettrait 

de mieux le comprendre (FIGURE 0.0-1). 

 
 

FIGURE 0.0-1 Des modalités d’imageries complémentaires permettent de visualiser une pathologie à différentes 

échelles, ce suivi permet de mieux analyser la situation biologique du site ciblé et de diagnostiquer plus précisément 

des anomalies apparentes. 

Ultra structure 
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Afin de synthétiser des nanoparticules multimodales la silice est appropriée comme matrice hôte afin 

d’incorporer des agents d’imagerie différents. Ce matériau n’adsorbe pas de lumière ni dans le spectre 

de l’UV visible ni dans le spectre du proche-infrarouge et s’affiche comme photostable. La matrice 

d’une particule de silice peut être dopée avec des fluorophores et simultanément incorporer des 

particules cœur avec des propriétés magnétiques ou plasmoniques et désormais former un outil de 

marquage multimodal. La taille, la morphologie et la porosité d’une nanoparticule de silice peuvent 

être précisément contrôlées. En outre la silice est une matrice de support pour des modifications de 

surfaces chimiques permettant la fonctionnalisation des nanoparticules multimodales afin de pouvoir 

intervenir comme sonde moléculaire. Des nanoparticules avec un cœur de magnétite et une écorce de 

silice dopé avec de la fluorescéine ont été synthétisées[7] (FIGURE 0.0-2) et peuvent être visualisées par 

IRM, par imagerie optique de fluorescence et par microscopie électronique à transmission. 

           
FIGURE 0.0-2 Illustration de nanoparticules possédant un cœur de magnétite et une écorce de silice dopée avec un 

fluorophore afin de permettre de l’imagerie multimodale A : Une nanoparticule de magnétite (Fe3O4) et de la 

fluorescéine ont été incorporées dans de la silice. Cette nanoparticule multimodale a été modifiée de plus avec un 

agent de couplage silanique (APTES). B : Image MET des nanoparticules magnétite@SiO2 synthétisées [7]. 

Des biomolecules peuvent être fixées à la surface de nanoparticules de différentes manières 

(FIGURE 0.0-3). Le marquage d’une biomolécule peut être acquis par la formation d’une liaison 

covalente ainsi que par des interactions électrostatiques ou des interactions de type van der Waals[8]. 

La nature combine ces interactions selon les besoins stériques des protéines afin de créer des systèmes 

interagissant avec une grande spécificité et affinité comme des couples d’anticorps/antigène ou 

d’enzyme/substrat[9]. On dit que ces interactions suivent le principe serrure/clé. Un exemple pour un 

couple enzyme substrat est le couple streptavidine/biotine, qui possède une constante de dissociation 

de 1015 M-1[10]. Dans le but de marquer des biomolecules, non seulement les propriétés physiques des 

nanoparticules mais également les propriétés physicochimiques de leur surface doivent être contrôlées. 

En effet les propriétés physicochimiques d’une surface colloïdale sont les paramètres clés déterminant 

les interactions, qui auront lieu à l’interface entre la particule et une biomolécule ciblée. La surface agit 

comme interface solide-liquide et constitue la frontière entre le nanomatériau et l’environnement 

biologique[11,12]. Les ligands présents en surface d’une nanoparticule peuvent augmenter la spécificité 

de la particule envers une biomolécule. Le contrôle des caractéristiques de la surface colloïdale comme 

le potentiel de surface, la fonctionnalité de la surface, la densité des ligands ainsi que la balance 

hydrophile/hydrophobe est un des objectifs majeurs afin de contrôler les futures interactions avec des 

biomolécules, qui auront lieu.  

A B 
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FIGURE 0.0-3 Cette illustration montre les différentes possibilités d’attacher une biomolécule à la surface d’une 

nanoparticule : la biomolécule peut être attachée par une liaison covalente par une molécule bifonctionnel ou être 

adsorbée à la surface grâce aux interactions électrostatiques, van der Waals et la balance hydrophile/ hydrophobe. 

Egalement des biomolécules peuvent interagir avec des protéines greffées en surface en combinant ces interactions 

par le principe clé/serrure. 

Une étude antérieure à cette thèse[13] essayait d’employer des nanoparticules multimodales afin de 

suivre la transfection de l’ADN par des agents de transfection lipidiques à l’échelle cellulaire. 

L’objectif était de déterminer les mécanismes de transfection d’ADN par des lipides cationiques. 

Dépendant de la composition des lipides les mécanismes d’internalisation de l’ADN dans une cellule 

changent considérablement. En analysant et comprenant les étapes critiques de la transfection d’ADN 

on espère pouvoir améliorer l’efficacité des agents transfectant lipidiques. Pourtant le suivi de l’ADN 

marqué par des nanoparticules aminées n’a pas pu être effectué jusqu’au nucleus, dû au fait que 

l’ADN se dissociait des nanoparticules modifiées dans le cytosol[13]. En conséquence de cette étude 

nous voudrons synthétiser des nanoparticules nous permettant de suivre la transfection d’ADN par des 

agents de transfection lipidiques jusqu’à l’internalisation de l’ADN dans le nucleus. Afin d’atteindre ce 

but, nous souhaitons de développer une fonctionnalisation de surface, qui permet de lier l’ADN en 

surface des nanomarqueurs plus fortement afin de pouvoir suivre le processus complet de la 

transfection d’ADN. 

L’attache d’ADN à des nanoparticules d’or fonctionnalisées avec des groupements d’ammonium 

quaternaire est montrée d’être forte et suffisante afin d’inhiber la transcription d’ADN adsorbés en 

surface des nanoparticules[14]. Goodman[15] et collaborateurs ont montré que des groupements 

d’ammonium quaternaire lient l’ADN non seulement par des interactions électrostatiques mais 

également par des interactions hydrophobes renforçant ainsi la liaison. L’implémentation des 

groupements d’ammonium quaternaires sur des surfaces de silice de nanoparticules multimodales est 

désormais notre objectif principal dans le but final de synthétiser une nanoparticule permettant le suivi 

d’ADN pendant toutes les étapes de la transfection. Idéalement de l’ADN étant complexé par des 

agents de transfection lipidiques sous forme de lipoplexe se trouvait marqué par des nanoparticules de 

silice multimodales et en même temps par des nanoparticules d’or afin de suivre de l’ADN même au 

cas où il dissocierait d’une des composantes marquantes (FIGURE 0.0-4). 

Interactions électrostatiques 

Balance hydrophile/hydrophobe 
Interactions van der Waals 

Principe clé/serrure 

Lien covalent  

NP 
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FIGURE 0.0-4 L’illustration montre le nano-objet idéal d’un lipoplexe contenant de l’ADN marqué par des 

nanoparticules multimodales de silice et d’or fonctionnalisées avec des groupements d’ammonium quaternaires.  

La fonctionnalisation d’une nanoparticule est soumise à plusieurs contraintes. Il est important que les 

particules modifiées soient colloïdalement stable pendant le processus de modification chimique ainsi 

que dans leur milieu d’application en présence de sels et selon le pH des milieux physiologiques. Afin 

de synthétiser des nanoparticules de silice portant des groupements d’ammonium quaternaire en 

surface nous avons exploré une stratégie de modification de surface d’une nanoparticule de silice avec 

un agent de couplage silanique organofonctionnel contenant un groupement d’ammonium 

quaternaire. Nous avons étudié la silanisation des colloïdes de silice en utilisant les agents de couplage 

silanique comme le chlorure de N-trimethoxysilylpropyl-N,N,N-trimethylammonium (TMAPS) ou le 

chlorure de N-trimethoxysilylpropyl-N,N,N-tributylammonium (TBAPS) (FIGURE 0.0-5).  

O
Si

O
O

N

Cl

O
Si

O
O

N

Cl

 
FIGURE 0.0-5 Structure des agents de couplage silaniques TMAPS : chlorure de N-trimethoxysilylpropyl-N,N,N-

trimethylammonium (TMAPS) et TBAPS : chlorure de N-trimethoxysilylpropyl-N,N,N-tributylammonium. 

La silanisation est réalisée par des réactions d’hydrolyse des agents de couplage et de condensation des 

silanes aux surfaces de silice. Nous avons pu montrer que la densité de greffage du silane employé 

augmente avec la quantité d’agent de couplage ajoutée dans le milieu réactionnel. Au delà une 

concentration de 60 μmol de TMAPS dans le milieu réactionnel la densité de greffage vaut 

7.91 μmol/m2 ce qui constitue un maximum de greffage : il ne peut plus être augmenté en modifiant 

des surfaces des nanoparticules de silice en utilisant des concentrations de TMAPS supérieures. Ceci 

est dû à une saturation de la surface des nanoparticules modifiée à partir du moment où l’agent de 

couplage est disponible en quantité suffisante afin d’adsorber à la totalité de la surface développée des 

nanoparticules. En conséquence de ce résultat, la concentration des silanes utilisés pendant un 

processus de modification a été fixée à 100 μmol/m2 de surface développée par des nanoparticules de 

silice destinées à être chimiquement modifiées par silanisation. En changeant des paramètres clés des 

processus de modification comme le catalyseur, le pH, la durée et la température nous avons pu 

optimiser la modification de surface par silanisation avec des agents de couplage silaniques 

organofonctionnels contenant un groupement d’ammonium quaternaire. Nous obtenons des 

Lipoplex marqué Nanoparticule 
multifonctionnelle 
 
ADN 
 
Nanoparticule d’or 
 
Lipide cationique 

Surface modifiée 
 
 
 

                       Ecorce de 
        silice fluorescente 
 
 
 

NP cœur magnétique 
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nanoparticules modifiées avec du TMAPS possédant un potentiel de surface de 25 mV à pH 7,4 et un 

point isoélectrique à pH 8,4 (FIGURE 0.0-6).  
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FIGURE 0.0-6  Ce graph montre les potentiels zeta de nanoparticules modifiées avec du TMAPS sous différentes 

conditions (conditions 006,009-012, voir TABLE 03, annexe 2, chapitre II). 

Néanmoins le potentiel de surfaces des nanoparticules fonctionnalisées par cette voie de modification 

de surface n’est pas suffisamment haut à pH 7,4 afin de pouvoir garantir la stabilisation des colloïdes 

par répulsion électrostatique en milieu physiologique. La zone de floculation des nanoparticules 

fonctionnalisées avec du TMAPS se situe entre pH 6,5 et pH 10. Quand les nanoparticules sont sous 

forme d’agglomérats, il est possible de mesurer la densité optique du sol, car en effet le signal mesurer 

en spectrométrie est d’autant important que la taille des agrégats est grande (FIGURE 0.0-7). Des 

résultats semblables ont pu être observés pour des nanoparticules modifiées avec TBAPS.  
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FIGURE 0.0-7 La zone de floculation (encadré rouge) de nanoparticules de silice modifiées avec du TMAPS a été 

déterminée en mesurant la densité optique d’un sol de particules modifiées à différents pHs. Les nanoparticules 

forment des agglomérats, qui plus qu’elles sont grandes plus elles diffusent de la lumière comme on a pu mesurer par 

spectrométrie à 800 nm.  
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Nous avons identifié la tendance des groupements d’ammonium quaternaire à interagir avec des 

silanolates demeurant à la surface des nanoparticules de silice modifiées en quantité suffisante afin 

d’influencer le point isoélectrique des nanoparticules fonctionnalisées comme problématique 

principale handicapant l’implémentation de groupements d’ammonium quaternaires en surface de 

colloïdes de silice par silanisation directe avec du TMAPS ou alors du TBAPS.  

Par conséquent nous avons changé notre stratégie de modification de surface. Au lieu de passer par 

une silanisation directe d’une surface de silice avec un agent de couplage silanique comme le TMAPS 

ou TBAPS afin d’implémenter des groupements d’ammonium quaternaire en surface de particules de 

silice, nous avons accompli une étape de fonctionnalisation des nanoparticules de silice avec un 

aminosilane comme le N-[3-(Trimethoxysilyl)propyl]ethylenediamine (EDPS) suivi par une alkylation 

chimique des amines en surface des particules modifiées menant à la présence d’ammoniums 

quaternaires. Nous avons réussi à développer un protocole de quaternisation d’amines par la réaction 

de Mentschutkin, qui nous permet de garder une bonne stabilisation colloïdale de particules aminées 

pendant le processus de modification. Nous sommes capables de synthétiser des nanoparticules de 

silice portant environ 3.7 μmol d’ammonium quaternaire par m2 de surface développé et possédant un 

potentiel de 36 mV à pH 7.4 et un point isoélectrique à pH 10.5 (FIGURE 0.0-8). La zone de floculation 

de ces nanoparticules se situe entre pH 9 et pH 11.5, ce qui garantit leur stabilisation colloïdale même 

en milieu physiologique.  

FIGURE 0.0-8 A: Comparaison des profils de potentiel zeta des nanoparticules modifiées avec de l’EDPS avant et après 

la quaternisation des fonctions d’amines. B: Les encadrés rouge et orange marquent les zones de floculations de 

nanoparticules modifiées avec de l’EDPS avant et après la quaternisation des fonctions d’amines déterminées par la 

mesure des densités optiques des sols de nanoparticules modifiées à différents pH.  

Après l’obtention de ces nanoparticules, qui sont colloïdalement stables dans un milieu physiologique, 

nous avons commencé à explorer les interactions de ces nanoparticules avec des biomolécules comme 

des lipides et de l’ADN afin d’estimer leur potentiel afin d’être incorporées dans des lipoplexes en 

marquant de l’ADN. Nous montrons que pour complexer la même quantité d’ADN à pH 9 nous 

avons besoin d’une quantité de nanoparticules quaternisées qui correspond à seulement de  de la 

quantité de nanoparticules aminées utilisées (FIGURE 0.0-9). 
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FIGURE 0.0-9 Quantité de nanoparticules dont on a besoin afin de complexer 50 % de l’ADN mis à disposition pendant 

des essais de cosédimentation (r50) en fonction du pH. 

Des mesures de QCM-D ont également pu montrer qu’en présence de sel des surfaces de silice 

quaternisées sont en mesure d’adsorber une quantité d’ADN plus importante que des surfaces 

aminées. Sous des conditions d’assemblages favorisant les interactions électrostatiques nous avons pu 

constater que des surfaces quaternisées adsorbent de l’ADN dans une conformation plus rigide que des 

surfaces aminées. Ces résultats montrent que des surfaces de silice portant des ammoniums 

quaternaires réussissent à mieux condenser l’ADN que des surfaces modifiées seulement avec des 

amines primaires et secondaires. Nous avons réussi à former de multicouches d’ADN et des bicouches 

lipidiques en conséquence du fait que les couches d’ADN adsorbées étaient suffisamment rigides afin 

d’agir comme support d’une bicouche de lipides cationiques (FIGURE 0.0-10). 

    
FIGURE 0.0-10 En absence de sel des multicouches ADN/DOTAP forment sur des surfaces de silice quaternisées à pH 

7.4. Le signal de la fréquence résonante est affiché en bleu alors que la dissipation est représentée par la ligne orange. 

Les injections d’ADN sont signalées par des flèches violettes, les injections de lipides cationiques par des flèches 

jaunes.  

L’accomplissement de tests d’assemblages supramoléculaires d’ADN, de lipides cationiques et de 

nanoparticules de silices portant des groupements d’ammoniums quaternaires à leur surface 

montraient que les nanoparticules quaternisées sont appropriées pour marquer de l’ADN incorporé 
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dans des lipoplexes grâce à des interactions électrostatiques. La formation de complexes tripartites 

nanoparticules quaternisées/ADN/lipides a même été possible en présence de 150 mM de sel à pH 

8.6 alors que sous les mêmes conditions des nanoparticules aminées ne sont plus intégrées dans des 

structures de lipoplexes mais interagissent uniquement avec des lipides cationiques, qui forment une 

bicouche supportée à leur surface dû à des interactions van der Waals (FIGURE 0.0-11).  

         
FIGURE 0.0-11 A : Image Cryo-MET d’une agglomération NP/lipoplex assemblées en utilisant des nanoparticules 

quaternisées, de l’ADN et BGTC/DOPE liposomes à 150 mM NaCl dans un tampon borate (10 mM, pH 8.6). B : En 

réalisant l’assemblage supramoléculaire sous les mêmes conditions mais en utilisant des nanoparticules aminées nous 

n’obtenons pas de complexes tripartites mais des nanoparticules supportant des bicouches lipidiques. 

Pendant cette étude, nous avons été capables d’installer des groupements d’ammoniums quaternaires 

en surface des nanoparticules de silice. Nous avons montré que les surfaces de silice quaternisées 

adsorbent de l’ADN de manière plus efficace que des nanoparticules aminées même en présence de sel 

et à des pHs basiques. En conséquence de notre étude, nous sommes maintenant capables de 

fonctionnaliser des nanoparticules de silice multimodales afin de marquer de l’ADN. Nous espérons 

pouvoir effectuer des études de suivi de la transfection d’ADN par des agents de transfection lipidiques 

in vitro et in vivo dans un futur proche. 

  

A B 
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LIST OF ABBREVIATIONS 

AcAc Acetic acid 

AcCheE Acetylcholine esterase 

ANTA Amino-nitrilotriacetic acid 

APES (3-Aminopropyl)triethoxysilane 

APS (3-Aminopropyl)trimethoxysilane 

APTES (3-Aminopropyl)triethoxysilane 

BET Brunauer-Emmett-Teller 

BGTC (Bis(guanidinium)-trencholesterol) 

-OG N-octyl-β-D-glucoside 

bp DNA base pair 

BSA Bovine serum albumin 

CBMN Chimie et Biologie des membranes et des nanoobjets 

CCD Charge coupled device 

CHI Chitosan 

CRPP Centre de Recherche Paul Pascal 

CytC Cytochrome C 

CTAB Cetyl trimethylammonium bromide 

DLS Dynamic light scattering 

DMF Dimethylformamid 

DMSO Dimethylsulfoxid 

DNA Deoxyribonucleic acid 

DNTB 5,5'-Dithiobis-(2-nitrobenzoic acid) (Ellman’s reagent) 

DOPA Di-n-octylphosphinic acid 

DOPC 1,2-dioleyl-sn-glycero-3-phosphocholine 

DOPE 1,2-dioleoyl-sn-glycero-3-phosphocholine 

DOPG 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) 

DOPS 1,2-dioleoyl-sn-glycero-3-phospho-L-serine 

DOTAP 1,2-dioleoyl-3-trimethylammonium-propane 

DRIFT Diffuse reflectance infrared fourier transform 

EDBE 2,2-(ethylenedixoy)bis(ethylamine) 

EDC 1-ethyl-3-(3-dimethylamino)-propyl)carbodiimide 

EDPS N-[3-(Trimethoxysilyl)propyl]ethylenediamine 

FITC Fluorescein isothiocyanate 

FRET Förster resonance enery transfer 

GFP Green fluorescing protein 

HA Hyaluronic acid 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HPA Hexyl phosphonic acid 
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ICP Inductive coupled plasma 

ICMCB Institut de Chimie de la Matière Condensée de Bordeaux 

IR Infrared 

LDL Low density lipoprotein 

LUV Large unilamellar vesicles 

MeEDPS N-[3-(Trimethoxysilyl)propyl]dimethylammonium ethyltrimethylammonium iodide 

MES 2-(N-morpholino)ethanesulfonic acid 

MLV Multilamellar vesicles 

MOPA Mono-N-octyl-phosphinic acid 

MRI Magnetic resonance imaging 

MS Mass spectrometry 

MUTAB (11-mercaptoundecyl)-N,N,N-trimethylammonium bromide 

m/v Mass per volume; weight percent 

NHS N-hydroxy succininmde 

NIR Near infrared 

NMR Nuclear magnetic resonance 

NTA Nitrilotriacetic acid 

NP Nanoparticle  

NQ Quaternary ammonium ion 

OI Optical imaging 

PAMAM Polyamidoamine 

PDI Polydispersity index 

PEG Polyethylene glycol  

PEI Polyethyleneimine 

PEM Polyelectrolyte multilayer 

PET Positron emission tomography 

PMIDA N-phosphonomethyl imidodiacetic acid phosphonate 

PVP Polyvinylpyrrolidone 

QCM-D Quartz crystal microbalance with dissipation monitoring 

QD Quantum dot 

RhB Rhodamine B 

RNA Ribonucleic acid 

SAM Self assembled monolayer 

SDS Sodium dodecylsulfate 

SEF Surface enhanced fluorescence 

SERS Surface enhanced raman scattering 

SLB Supported lipid bilayer 

SPDP N-succinimidyl-3-[2-pyridyldithio]-proprionate 

SPIO Small iron oxide particle 

SUV Small unilamelar vesicle 
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TBAPS N-trimethoxysilylpropyl-N,N,N-tributylammonium chloride 

TEM Transmission electron microscopy 

TEOS Tetraethylorthosilicate 

TG Thermogravimetry 

TGA Thermogravimetric analysis 

THF Tetrahydrofuran 

TMAPS N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride 

TMAP Organic part (C5H15N) of the silane coupling agent TMAPS  

TOPO Trioctylphosphine oxide 

UV-VIS Ultraviolet-visible 

USPIO Ultrasmall iron oxide particle 

VdW Van der Waals 

v/v Volume per volume; volume percent 
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LIST OF REAGENTS 

Manufacturer Product 

Sigma-Aldrich (St. Louis, USA) 

(Lyon, France) 

Acetic acid (glacial), ReagentPlus®, ≥99%  

Atlanticlabo-ics (Bruges, France) Hydrochloric acid (37 % w/v) 

Atlanticlabo-ics (Bruges, France) Phosphoric acid (85 % w/v) 

Atlanticlabo-ics (Bruges, France) Nitric Acid (69 % w/v) 

Atlanticlabo-ics (Bruges, France) Perchloric acid (70 % w/v) 

Atlanticlabo-ics (Bruges, France) Hydrofluoric acid (40 % w/v) 

Aldrich (3-Aminopropyl)triethoxysilane (99 % w/v) 

Aldrich (3-Aminopropyl)trimethoxysilane (97 % w/v) 

  

Synthesized at CBMN (O. Lambert) (Bis(guanidinium)-trencholesterol) 

Sigma-Aldrich N-octyl-β-D-glucoside ≥98% (GC)  

Sigma-Aldrich Citric acid (99 % w/v) 

Sigma N,N-Dimethylformamide for molecular biology, ≥99%  

Sigma Dimethyl sulfoxide BioReagent, ≥99.9%  

Sigma Deoxyribonucleic acid from herring sperm 

  

Avanti Polar Lipids, Inc. / Coger 

(Alabaster, USA) / (Paris, France) 

1,2-dioleoyl-sn-glycero-3-phosphocholine 

Avanti Polar Lipids, Inc. 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) 

Avanti Polar Lipids, Inc. 1,2-dioleoyl-sn-glycero-3-phospho-L-serine 

Avanti Polar Lipids, Inc. 1,2-dioleoyl-3-trimethylammonium-propane 

Aldrich N-[3-(Trimethoxysilyl)propyl]ethylenediamine (97 % w/v) 

Thermo Scientific/ Pierce Protein 

Biology products  

(Rockford, USA) 

Fluorescein isothiocyanate 

Aldrich (11-mercaptoundecyl)-N,N,N-trimethylammonium 

bromide 95 % (w/v) 

Sigma Rhodamine B isothiocyanate mixed isomers, BioReagent, 

suitable for protein labeling  

Sigma-Aldrich Sodium dodecylsulfate BioXtra, ≥99.0% (GC)  

abcr GmbH & Co. KG 

(Karlsruhe, Allemagne) 

N-trimethoxysilylpropyl-N,N,N-tributylammonium 

chloride 

Aldrich Tetraethylorthosilicate ≥99.0% (GC)  

abcr GmbH & Co. KG 

(Karlsruhe, Allemagne) 

N-trimethoxysilylpropyl-N,N,N-trimethylammonium 

chloride 

Sigma-Aldrich Iron(III) chloride hexahydrate puriss. p.a., Reag. Ph. 
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Eur., ≥99%  

Sigma-Aldrich Iron(II) chloride tetrahydrate puriss. p.a., ≥99.0% (RT) 

Sigma-Aldrich Silver nitrate ACS reagent, ≥99.0% 

Sigma-Aldrich Sodium chloride BioXtra, ≥99.5% (AT) 

Sigma 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

Sigma 2-(N-morpholino)ethanesulfonic acid BioReagent, ≥99.5%  

Sigma-Aldrich Sodium tetraborate decahydrate BioXtra, ≥99.5%  

Atlanticlabo Inc. Ammonium hydroxide (28-30 % w/v) 

Sigma-Aldrich Sodium hydroxide reagent grade, ≥98%, pellets 

(anhydrous) 

Sigma-Aldrich Sodium dihydrogen phosphate BioXtra, ≥99.0%  

Fluka Phosphotungstic acid hydrate for microscopy 

Fluka Uranyl acetate puriss. p.a., ACS reagent, ≥98.0% (T) 

Thermo Scientific Gene rulerTM 1kb DNA ladder 

Invitrogen / Life Technologies SAS 

(St. Aubin, France) 

SYBR® green I nucleic acid gel stain 

Sigma-Aldrich Iodomethane, ReagentPlus®, 99%  

Atlanticlabo-ics (Bruges, France) Ethanol 

Fluka Ethanol puriss. p.a., ACS reagent, absolute alcohol, 

without additive, A15 o1, ≥99.8%  

Atlanticlabo-ics (Bruges, France) Acetone 

Fluka Potassium dichromate for 1L standard solution, 1/60 M 

K2Cr2O7 (0.1N)  

Aldrich Iron(III) nitrate nonahydrate ≥99.999% trace metals basis 

Fluka Chlorotrimethylsilane puriss., ≥99.0% (GC) 

Aldrich Glycidol 96% 

Sigma-Aldrich Triethylamine ≥99%  

Sigma-Aldrich Chloroform anhydrous, ≥99% 

Atlanticlabo Diethyl ether Anhydrous , J.T.Baker® Stabilized 

Sigma-Aldrich Tetrahydrofuran anhydrous, ≥99.9% 

Sigma-Aldrich Hexane anhydrous, 95%  

Sigma-Aldrich Acetonitrile anhydrous, 99.8%  

Sigma-Aldrich Potassium carbonate ACS reagent, ≥99.0% 

Sigma Tin(II) chloride ReagentPlus®, ≥99%  

Sigma-Aldrich Mercury(II) chloride ACS reagent, ≥99.5%  

Sigma-Aldrich Potassium bromide FT-IR grade, ≥99% trace metals basis 

Sigma-Aldrich Bromphenol blue ACS reagent  

Sigma Xylene cyanol for molecular biology, BioReagent 

Sigma Ficoll® 400 BioXtra, Type 400-DL 

Sigma Dextran sulfate sodium salt from Leuconostoc spp. for 
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molecular biology, average Mw >500,000 

Sigma-Aldrich Polyvinylpyrrolidone average mol wt 55,000  

Sigma 5,5'-dithiobis-2-nitrobenzoic acid≥98% (TLC), BioReagent 

Sigma-Aldrich Hydrogen peroxide solution 30 wt. % in H2O, ACS 

reagent 

Sigma L-Ascorbic acid BioXtra, ≥99.0%, crystalline 

Sigma-Aldrich Glycerol ≥99.5% 

  

  

 

 

  



24 
 

 

  



25 
 

INTRODUCTION 
Nanoparticles or colloids are defined as being of sizes in the range from 1 nm to 1 μm in at least one 

dimension and existing dispersed in a surrounding medium[1]. They can consist of different materials 

as metals, metal oxides, semiconductors or silica and possess unique physical properties leading to a 

wide range of applications in material science, biotechnology and biology. Depending on their 

composition nanoparticles show specific optical properties, fluorescence or magnetic behavior. The 

utility of nanoparticles in biology arises from their properties as well as their size, which is similar to 

the size of biomolecules as proteins or DNA. They find application in the fields of drug and gene 

delivery, biosensing and bioimaging[2]. 

The labeling of biomolecules as proteins, DNA or lipids is of increasing interest for biologists 

interested in the exploration of biological processes. Multimodal nanoparticles allow the following of 

biomolecules and biological actions at different scales on the tissue, cellular and subcellular level. 

Subsequently the development of multifunctional and multimodal nanoparticles serving as bioimaging 

tools is a hot spot of actual science.  

To improve the efficiency of gene transfer by lipidic transfection agents biologists aspire after the 

understanding the pathway of DNA-transfection via lipoplexes[3]. The present study examines the 

synthesis and surface modification of silica nanoparticles, which are used as markers for DNA. Silica 

matrixes provide a good platform for the creation of multimodal nanoparticles due to the fact that they 

don’t absorb light in the near-infrared (NIR), visible, and ultraviolet regions neither interfere with 

magnetic fields and permits the inclusion of different markers and nanoobjects[4]. 

In the first chapter we present the state of the art concerning the use and the synthesis of multimodal 

nanoparticles and their possibilities to interact with or to be conjugated to biomolecules of interest. 

The second chapter explores the surface modification of silica nanoparticles via silane coupling agents 

and chemical modifications. The surface modification of a nanoobject is the key step permitting to 

control its surface properties, which guide the interactions between the biomolecule of interest and the 

nanoparticle. Inspired from modification protocols in literature we explore different ways to install 

quaternary ammonium groups on the surface of silica nanoparticles using different silane coupling 

agents and chemical modification processes.  

Quaternary ammonium groups are supposed to interact electrostatically with negatively charged DNA 

strands. In the third chapter we investigate their capacity to bind to DNA in comparison to 

nanoparticles modified with grafts containing primary and secondary amine groups. We also discuss 

results of self assembly experiments leading to the formation of nanoparticle-labeled cationic 

lipoplexes and analyze the adsorption of DNA and cationic lipids on modified silica surfaces by quartz 

crystal microbalance with dissipation monitoring (QCM-D). 

INTRODUCTION  
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CHAPTER I – STATE OF THE ART 

CHAPTER I – STATE OF THE ART 
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This first chapter permits to get an overview of the research context within which the present study is 

situated. In the following paragraphs we will first introduce several imaging techniques which allow 

the use of nanoparticles as biomarkers. Secondly we will exemplify several nanomaterials which are 

suitable for acting as markers. Thirdly we will focus on the colloidal surface of these nanoparticles, 

which defines the solid liquid interface that permits interaction with biomolecules and therefore the 

labeling of bio-entities. In the last section we will highlight a problem, relating to the objectives of the 

present study, which consists in the elaboration of a multimodal nanoparticle suitable for the labeling 

of DNA; furthermore we will pinpoint the goal of the study. 

1. IMAGING MODALITIES CURRENTLY USED FOR 

BIOMEDICAL APPLICATIONS 

Functionalized nanoparticles (NPs) are interesting tools for bioimaging, because their physical 

properties allow their use as contrast and labeling agents. Their small size, similar to that of biological 

entities, enables the labeling of biomolecules of interest. The labeling of biomolecules such as proteins, 

DNA or lipids is of increasing interest for biologists longing to understand biological processes. They 

are also used for diagnostic applications. Nanoparticles functionalized to target tumor cells permit the 

localization of tumoral tissues and metastases[1]. Functionalized nanoparticles detecting specific 

antibodies in the blood circulation can be used to diagnose autoimmune diseases like multiple 

sclerosis[2] and can also be functionalized to detect rheumatoid factors, which make the diagnosis of 

rheumatoid arthritis[3] possible, or vascular growth factors to explore cardiovascular diseases[4]. 

Multiple techniques are used today to visualize tissues, cells or biomolecules of interest with the 

assistance of functionalized nanoparticles acting as contrast agents or molecular probes. Some 

techniques such as magnetic resonance imaging (MRI), positron emission tomography (PET), single 

photon emission computed tomography (SPECT), optoacoustic imaging using ultrasound signals 

(US), X-ray computed tomography (CT) or near-infrared (NIR) imaging are most valuable for 

exploring a biosystem in vivo. Other techniques such as optical microscopy and electronic microscopy 

are suitable for exploring biosystems in vitro. Each of these techniques has its advantages but also 

limitations (see FIGURE 1.0-1).  

A complementary use of imaging modalities with high sensitivity and imaging modalities with high 

spatial resolution can facilitate the visualization of an abnormal state of the body and in the same time 

the biological situation of the target site[5]. The exploitation of different imaging techniques applied for 

diagnosis of one target permits a more precise diagnosis of a disease. Multifunctional nanoparticles 

which are multimodally applicable are therefore biomarkers of considerable interest. They make it 

possible to regard a target of interest combining for example the high sensitivity of PET imaging for 

the exploration of biochemical processes of interest with the possibility of magnetic resonance imaging 

to provide 3D images of affected tissues[6]. 
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FIGURE 1.0-1 The illustration gives an overview of the characteristics of some imaging modalities currently used for 

biomedical applications[5]. 

The different imaging techniques enable the following of biomolecules on different scales. The 

visualization of a biologic situation from the tissue down to the cellular scale allows a complete view 

of the phenomenon in question and enables a precise diagnosis and understanding of the observed 

pathology. In the following section we will present some of the imaging techniques mentioned, which 

provide information about a problem of interest on different scales (see FIGURE 1.0-2). We focus on 

imaging modalities requiring the use of nanoparticles as signal-enhancing agents. For imaging on the 

tissue scale we will introduce two complementary techniques the magnetic resonance imaging (MRI) 

and the positron emission tomography (PET). We will discuss optical fluorescence imaging (OI) 

focalizing on its potential to visualize the special distribution of labeled biomolecules at the cellular 

scale and subsequently introduce transmission electron microscopy (TEM) as an imaging modality 

enabling us to follow labeled biomolecules on the scale of the cellular ultrastructure. 

 
 

FIGURE 1.0-2 Different imaging modalities permit the visualization of an abnormal state of the body at different scales, 

which allows a better understanding of the biological situation of the target site. 
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a) Magnetic resonance imaging 

Magnetic resonance imaging (MRI) is an imaging technique, which permits in vivo imaging on the 

tissue scale of animals such as rats, cats, dogs and humans. It provides images of soft tissue and 

enables a distinction between liquids, fats and different tissues such as brain, muscle, healthy or 

pathological tissue in comparison to each other. MRI shows a spatial resolution of 3.5 mm3 to 

0.5 mm3 and a penetration depth of several millimeters[7]. 

It is based on the principle of NMR spectroscopy and exploits the fact that all these tissues contain 

large quantities of water molecules. By the application of an electromagnetic field the magnetic 

moments of H2O protons align to the magnetic field. If radiofrequency impulses of the resonance 

frequencies of the protons in different tissues are applied, the spins of the H2O protons are deflected. 

After the radiofrequency pulse the deflected proton spins return in their original spin states and realign 

through the magnetic field[8]. This relaxation of deflected spins of hydrogen atoms situated in the living 

tissues is traceable due to an emitted radiofrequency signal and displayed. 

The spin relaxation is reciprocal to relaxation time and split up to a spin-lattice longitudinal relaxation 

time T1 and a transverse relaxation time T2. These relaxation times depend on the nature of the 

examined tissue. They influence the imaging signal which can be collected from examined tissue as 

well as the hydrogen spin density[9], viscosity and temperature of the examined tissues. This leads to a 

contrast between different tissues such as pathological and healthy tissue. To enhance the contrast 

between tissues of interest and other tissue the spin relaxation times T1 and T2 can be artificially 

manipulated by the use of contrast agents.  

Superparamagnetic materials such as ultrasmall iron oxide nanoparticles act as T2 contrast agents. 

Due to their instantaneous appearing magnetization in a magnetic field they create non-uniformities in 

the field around them. Water molecules diffusing through these regions suffer from accelerated spin 

phase shifts, which lead to a decreased T2 relaxation time. By diminishing the T2 relaxation time they 

enhance the negative contrast of the MRI image and enable the biodistribution and agglomeration of 

the marked biomolecules to be followed[10,11].  

Paramagnetic materials like metallic ions as Fe3+, Mg2+, Co2+, Mn2+, Cu2+, Gd3+, La3+ or Eu3+ facilitate 

the T1 relaxation. Unlike superparamagnetic contrast agents they need direct contact with the water 

molecules to influence their relaxitivity by a dipolar interaction between their magnetic moment and 

the magnetic moment of a water molecule. They permit positive contrast enhancement. Mn2+, Co2+, 

Gd3+, La3+ or Eu3+ ions need to be applied in a chelate complexed form to shield their toxicity and may 

be encapsulated to nanoparticles[12,13].  

In FIGURE 1.0-3 examples for T2 and T1 weighted TEM micrographs are shown to illustrate the utility 

of negative and positive contrast enhancements. 
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FIGURE 1.0-3 A: T2 weighted MRI images of a liver affected by metastases. 1: Natural contrast 2: Injected iron oxide 

nanoparticles accumulate in the healthy parts of the liver and provide a negative contrast enhancement, which 

enables pathological tissue to be identified[14]. B: T1 weighted MRI images of a mouse brain. 1: day 0, 2: day 7, and 3: 

day 14 after the injection of gadolinium chelate containing nanoparticles to the midline of high brain stem (indicated 

by white arrows) providing a positive contrast enhancement [15]. 
 

b) Positron emission tomography 

Positron emission tomography (PET) is an in vivo imaging technique, which permits the following of 

radiolabeled biomolecules on the tissue scale, providing images with a resolution of 3.6 mm to 

5 mm[16]. Radiopharmaceutical agents are used to specifically label a biomolecule of interest. Often the 

targeted biomolecule has a known biochemical function. Its radiolabeling permits the precise and 

quantitative measuring of specific physiological quantities of the labeled target. PET can therefore be 

used to display physiologic functions such as blood flow, glucose metabolism or receptor binding 

characteristics[17]. 

A radiolabeled biomolecule is detected by the emission of positron, due to a beta decay of the labeling 

radioisotope. This positron annihilates with an electron, which leads to the emission of two high 

energy gamma photons (511keV). These photons are detected within a short timing window (10 ns). 

The emitted photons pass a collimator, which aligns them along parallel paths, a crystal scintillator, 

which converts the photons to visible light and a photomultiplier. Summing up the detected photon 

signals gives information about the radioisotope distribution; the detected signals are converted to an 

image by a CCD camera[16].  
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Radionucleides used in PET imaging usually have short half times such as 11C, 13N, 15O, 18F, 82Rb or 
124I. Due to their short life time (<20 min) 11C, 13N and 15O are used less frequently for clinical 

applications than 18F, which possesses a half time of 110 minutes. The most frequently used 

fluorine-tagged radiopharmaceutical is fluorodeoxyglucose, which is used to detect cancer cells due to 

their increased metabolism[18]. Normandin et al.[19] used 18F-fluoropropyl-dihydrotetrabenazine to 

show the dysfunction of -cells in diabetes I patients. They showed that the tracer-specific binding per 

unit volume of pancreas tissue was reduced by 40 % in patients with a diabetes I pathology compared 

to healthy individuals. The repartition of the radiotracer is shown in FIGURE 1.0-4. 

 
FIGURE 1.0-4 Representative 18F-FP-(+)-DTBZ PET images. A: Image acquired for healthy control subject showed high 

uptake of tracer in pancreas. B: Pancreas uptake was reduced in type 1 diabetes patient. Both images represent PET 

data summed from 0 to 90 min after injection and are displayed on a common scale (0–20 SUV that is, radioactivity 

normalized by injected dose and body weight). GI = gastrointestinal tract; K = kidney; L = liver; M = myocardium; 

PB =  pancreas body; PH = pancreas head; PT = pancreas tail; S = spleen; V = vertebrae[19]. 
 

c) Optical fluorescence microscopy 

Optical fluorescence imaging permits the localization of fluorescent probes on the scale of the cellular 

structure. It has a spatial resolution of several micrometers; the depth resolution of optical imaging in 

the UV-VIS range is limited to 1-2 mm. This limit can be overcome by the employing of fluorescent 

probes usable at NIR wavelengths (650-950 nm) allowing a deeper anatomical penetration[6]. The 

labeling of biomolecules with fluorescent or luminescent markers allows their detection by confocal 

microscopy from the cellular up to the tissue level in small animals such as mice or rats[20,21]. 

Optical fluorescence microscopy usually starts by the exciting of a fluorescent probe by the supply of 

monochromatic filtered light corresponding to the absorption wavelength of the fluorescent material. 

A second filter is employed to ensure that only the light emitted due to fluorescence is observed. The 

emitted light is then imaged by an optical microscope, which is connected to a CCD camera. To 

increase the optical resolution of the recorded micrographs confocal microscopy is used. In contrast to 

classical optical microscopy, where the whole sample is illuminated, confocal microscopy uses point 

illumination. The illumination of a small part of the sample and the collection of light through a 
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pinhole in an optically conjugate plane in front of the detector makes it possible to eliminate the 

detection of optical signals out of the focal plane.  

An advantage of optical imaging is its ability to follow the spatial distribution of differently labeled 

organelles as shown in FIGURE 1.0-5. 

 

                      Gd-dye@MSN(FITC)                                        Lyso tracker red                                           Merge image 

FIGURE 1.0-5 Confocal microscopy images of differently labeled compounds enabling tracking of their spatial 

distribution: human mesenchymal stem cells treated with different fluochromes. The cellular distribution of A: green 

fluorescent Gd-Dye@silica nanoparticles and B: Lyso Tracker Red-labeled organelles (late endosomes/lysosomes) 

were analyzed. C: Co-localization of green fluorescent Gd-Dye@silica NPs with late endosomes/lysosomes[15].  

Confocal fluorescence microscopy has been used to analyze biological events in single cells such as 

enzyme activity, protein dynamics and interactions. Biomolecules of interest may be labeled by 

different types of fluorescent molecules such as fluorescent proteins, synthetic organic dyes or 

fluorescent nanoparticles. Organic fluorophores coupled to oligonucleotide sequences have been used 

to localize the production of specific RNA fragments[22,23].  

Fluorescent proteins like GFP (238 bp, 26.9 kDa) from the jelly fish Aequorea Victoria[24] and its 

mutants provide proteins, which fluoresce in a spectral emission range from 505 nm to 525 nm[25]. 

There are blue fluorescent proteins such as mTagBFP[26] as well as proteins which emit fluorescence in 

the near-infrared range, as the protein Katushka or eqFP650[27] with a maximal emission wavelength 

at 635 nm. They may be fused to proteins of interest like kinase proteins to follow their enzymatic 

activity by FRET[28].  

Labeling two different biomolecules separately enables the dissociation of a marked bio entity from 

nanoparticles to be followed by observing the Förster resonance energy transfer (FRET) (see 

FIGURE 1.0-6). The observed fluorescence signal depends on the distance between the two fluorescent 

compounds. If the distance between them is smaller than the so called Förster distance the observed 

fluorescence changes. This phenomenon is caused by energy transfer between two chromophores 

which takes place when the emission and absorption spectra of the different fluorophores overlap[29,30]. 

This phenomenon can be used to display protein interactions[31]. 

A B C 
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FIGURE 1.0-6 Schematic illustration of the FRET effect. A: The FRET effect takes place while two biomolecules (red bulk 

and yellow bulk) are interacting[31]. Fluorophore 1 acts as a donor, fluorophore 2 acts as acceptor. B: Jablonski 

diagram illustrating the Förster resonance energy transfer (FRET). One electron of the first fluorophore has been 

excited by blue light from the basic state to its first electronically excited state. It emits green light. The second 

fluorophore is excited by a Förster Resonance Energy Transfer absorbing the green light, which has been emitted 

before. 
 

d) Transmission electron microscopy 

Transmission electron microscopy offers the necessary precision for the display of intracellular actions 

at the level of the cellular ultra-structure. Due to the small de Broglie wavelength of electrons it shows 

a spatial resolution in the nanometer scale and permits the clear distinction of different cell 

compartments of eukaryotic cells as cell membranes, cytosol, endoplasmatic reticulum, golgi 

apparatus, intracellular vesicles and nucleus. 

On the top of the microscope an electron source like a tungsten filament connected to a high voltage 

source delivers an electron beam, which travels through a vacuum column and is focused by 

electromagnetic quadrupole or hexapole lenses before it reaches the sample[32]. The high voltage 

electron beam is transmitted through a thin sample, which depending on the electron density of the 

material, either lets pass or scatters the beamed electrons[33]. The detection of the electron beam 

transmitted at different intensities and the conversion of the signal to an image are accomplished by a 

screen-coupled CCD camera. Different materials can be observed by transmission electron 

microscopy. Inorganic materials are relatively electron dense and provide a good contrast during the 

microscopy observations[34]. Due to their lower electron density organic materials, of which the cell is 

composed, can’t be observed as distinct as inorganic materials.  

In general the specimen is prepared by depositing a thin film of the sample which needs to be observed 

on a copper grid which has previously been covered with a carbon film. This is generally achieved by 

the desiccation of a solvent droplet containing observable objects of interest. To obtain a sharp image 

of organic cell compartments they are negatively stained with solutions of dilute osmium tetraoxide,  

phosphotungstate or uranyl acetate during the sample preparation[35].  

To observe organic cell compartments in their native environment without desiccation[36] a sample, 

deposited as a thin liquid film on a holey carbonated copper grid, is frozen in liquid nitrogen or liquid 

ethane before the observation. Cryo-TEM makes it possible to observe the cellular ultra structure 

without the need for coloration. To prevent water crystallization and rearrangement of material, 
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which can occur during the warming of a cryo-sample, the frozen samples are kept under liquid 

cryogen until they are examined[37] or embedded and frozen in gel like media such as polyethylene 

glycol, polyvinyl alcohol or an epoxy resin and sliced to sections of 60 nm[38]. 

In FIGURE 1.0-7 two TEM pictures are shown, providing an example of the high resolution which can 

be obtained. The cellular ultra-structure of sections of eukaryotic Kupfer cells as well as internalized 

nanoparticles can be clearly distinguished. The electron dense nanoparticles give a darker signal than 

the cell compartments, due to higher electron scattering. 

      

 
FIGURE 1.0-7 TE microscopy is used to show the cellular ultrastructure of eucariotic cells on the nanoscale. 

A, B: Images of sections of Kupfer cells after injection of gold nanoparticles at different magnifications[38]. 

Nanoparticles are entrapped to a lysosome. 

The design of multifunctional nanoparticles permitting the combination of imaging modalities 

underlies rational constraints. Although the use of multimodal imaging probes enables a more precise 

and detailed diagnosis than it could be provided from a single imaging technique, the combination of 

the modalities which can be employed by the use of a multimodal imaging tool need to complement 

their advantages and to compensate their drawbacks. The sensitivity of the combined modalities 

should be taken into account to maximize synergistic effects and to guarantee the successful 

employment of multifunctional nanoparticles as imaging probes.  

2. MULTIFUNCTIONAL NANOPARTICLES APPLICABLE FOR 

MULTIMODAL IMAGING IN VIVO OR IN VITRO 2.1 Different architectures and utilities of multimodal hybrid 

nanoparticles 

After dealing with a few imaging modalities we will now show a selection of multifunctional 

nanoparticles used as multimodal imaging agents. Hybrid nanoparticles combining different materials 

have been developed to serve as multimodal imaging agents. Their architectures differ from each other 

and the possibilities for combining several imaging agents in one particle system are various. With the 
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help of such particle systems it is possible to explore biological systems by locating nanoparticle 

labeled biomolecules from the ultracellular up to the tissue level. Furthermore the development of 

platforms serving as diagnostic and therapeutic agents at the same time is of remarkable interest. 

Particles providing imaging and therapeutic facilities are called “theragnostic”, which is a term that 

relies on the combination of diagnostic and therapeutic features. In the following section we will 

present some examples of multimodal and multifunctional nanoparticles and their architecture. 

MRI active dextran coated magnetite nanoparticles can interact with PET active complexes (see 

FIGURE 2.1-1). These nanoparticles are dual imaging agents and have in addition a therapeutic function 

because the magnetic cores are used to exterminate cancer cells by hyperthermia. 

 
FIGURE 2.1-1 Iron oxide nanoparticle functionalized on its surface to bind a second imaging agent. A: Schematic 

illustration of an iron oxide particle, which is interacting with a copper complex to form a multimodal PET-MRI imaging 

tool. B: T-2 weighted MR images before (left) and after (right) footpad injection of [64Cu-(DTCBP)2]-Endorem. C: PET 

images from coronal (top), short-axis (bottom). D: Whole body PET-CT image[39]. 

Often silica is used as a host matrix permitting loading with imaging agents. One main strategy is the 

synthesis of core shell nanoparticles. The encapsulation of biosensing nanoparticles in a silica shell is 

one type of approach. Magnetic (see FIGURE 2.1-2) or plasmonic cores can be encapsulated in 

fluorophore-doped silica shells, which allow further functionalization with organosilanes on their 

surface. 

     
FIGURE 2.1-2 Nanoparticles with magnetic metal oxide cores and fluorescent silica shell allow dual imaging: 

A: Magnetite nanoparticles and fluorescein are encapsulated into the silica shell. The nanoparticle is further modified 

by the grafting of an aminosilane on its surface. B: TEM picture of the MRI-OI active magnetite@SiO2 nanoparticles[40]. 

C: Multicore-shell nanoparticle containing Mn-doped ferrite nanoparticles as core and a near-infrared dye 

incorporated into the silica shell[41]. 

Other particle architectures exist, such as for instance a fluorochrome doped silica core surrounded by 

a plasmonic shell (see FIGURE 2.1-3). Such particles are detectable by optical imaging (OI) due to 
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surface enhanced fluorescence (SEF) and are suitable for surface enhanced raman scattering (SERS) 

imaging. Plasmonic metal coated silica nanoparticles can also provide NIR absorption; the plasmonic 

absorption wavelength can be tuned by variation of the shell thickness. At moderate intensity NIR 

irradiation these nanoparticles show a photothermal effect. Heating up they thus induce the apoptosis 

of cancer cells located near to them. 

 
FIGURE 2.1-3 Schematic illustration of multimodal nanoparticles with silica core and metal shell. A: Geometries of 

monometallic and bimetallic shells with the Ru(bpy)3
2+(red point)-doped silica spheres as the cores; monometallic 

shells include the silver and gold shells, and bimetallic shells include the homogeneous bimetallic alloy shells and 

heterogeneous bimetallic shells[42]. B: Representative transmission electron micrographs (TEM) of fluorescent silica 

particles with a gold shell grown by step-wise synthesis[20]. 

Ma et al.[43] have elaborated the synthesis of ellipsoidal Fe3O4@SiO2@Au nanoparticles (see FIGURE 

2.1-4). These nanoparticles are functionalized internally as well as on their surface; they are 

multimodal and multifunctional. Using a mesoporous silica matrix as shell, which encloses an 

ellipsoidal magnetite core, these particles allow the incorporation of therapeutic drugs such as 

doxorubicin as well as the therapy of cancerous cells by photothermic and magnetically induced 

hyperthermia treatments.  

 
FIGURE 2.1-4 A multimodal and multifunctional nanoparticle possesses a sophisticated architecture. A: Schematic 

illustration of an ellipsoid Fe3O4@SiO2@Au nanoparticle. The inner grey compartment corresponds to the Fe3O4 core, 

the blue compartment indicates the mesoporous SiO2 shell, the red dots illustrate encapsulated doxorubicin and the 

outer grey rods signify attached gold nanoparticles.  B and C: TEM pictures of the synthesized ellipsoids, the different 

magnifications permit the identification of each constituent[43]. 
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The ellipsoidal Fe3O4@SiO2@Au nanoparticles have been tested in vivo as drug delivery agents. Due to 

their magnetic core, injected particles reach their target by “magnetofection”, which means that their 

migration and biodistribution is controlled by the application of an external magnetic field[44]. The 

nanoparticles can be used for therapeutic and diagnostic applications at the same time. It has proved 

possible to localize them on different scales, from the ultra-cellular up to the tissue level (see FIGURE 

2.1-5)[43]. TEM measurements made it possible to follow the cellular uptake and the localization of the 

particles in the cell. Optical microscopy allowed following the release and repartition of the red 

fluorescent doxorubicin in the cytosol. MRI permitted the detection of the cancerous tissues and made 

it possible to control the success of the cell targeting. The migration of the nanoparticles and the 

delivery of internalized drugs have been followed in detail.45] 

 
FIGURE 2.1-5 The internalization, uptake and biodistribution of a multimodal nanoparticle can, as well as the release of 

a fluorescent drug, be followed by bioimaging techniques. A: TEM image of Fe3O4@SiO2@Au nanoparticles 

internalized to breast cancer MCF 7 cells. B: Release of doxorubicin in the cytosol after incubation of MCF 7 cells with 

the ellipsoid nanoparticles for 4h imaged by confocal microscopy. C: Tumor location by MRI, before (on the left) and 

after (on the right) magnetic attraction of injected particles to the tumor tissue[43]. 

The previous examples showed that the combination of chemically different materials with singular 

physical properties in the same nanoobject renders it multimodal and multifunctional.  2.2 Nanomaterials suitable for multimodal imaging and their physical 

properties 

The physical properties of different materials allow their use as markers during imaging processes. 

Properties like magnetism, fluorescence, plasmonic resonance and electron density determine for 

which imaging technique a material is suitable. In the following section the properties and syntheses of 

superparamagnetic iron oxide, plasmonic and fluorescent nanoparticles will be discussed to 

understand why they can be combined in order to synthesize multimodal nanoparticles. 

a) Superparamagnetic iron oxide nanoparticles   

Superparamagnetic iron oxide nanoparticles can be used as contrast agents for MRI. They are applied 

in biomedicine and are used for experiments aimed at magnetic extraction[46], the formulation of drug 

carriers such as magnetoliposomes[47], the magnetofection of labeled compounds[44] or hyperthermia[48]. 
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These nanoparticles consist of inversed spinel ordered ferrimagnetic iron oxide materials as magnetite 

(Fe3O4) or maghemite ( -Fe2O3). Depending on their size they are divided into superparamagnetic iron 

oxide (SPIO) nanoparticles existing in the size range of 20-100 nm and ultrasmall superparamagnetic 

iron oxide (USPIO) nanoparticles which are smaller iron oxide clusters possessing sizes in the range 

from 2 nm to 20 nm[49]. 

Superparamagnetism is a form of magnetism, which occurs in ferromagnetic or ferrimagnetic 

nanomaterials. SPIO nanoparticles consist of several Weiss domains, each of them keeping spins 

oriented in a different direction. Under application of a magnetic field the spin states of the iron atoms 

are directed through the field. After the magnetic field is switched off the magnetization of the material 

persists as the spin relaxation takes place very slowly due to its high anisotropy K. This relaxation is 

called Néel relaxation, the time required for it to take place is expressed by the equation: 

 

EQUATION 2.2-1 Expression of Néel relaxation time 

For a ferromagnetic material the anisotropic energy Ea = KV (K anisotropy constant, V domain 

volume) is higher than the thermic energy kT (k Boltzmann constant, T temperature).  

As we can see, the anisotropic energy depends directly on the volume of the magnetic domain: 

chemical composition, crystallographic structure and shape therefore influence the anisotropy of a 

nanoparticle. At ambient temperature the anisotropic energy of small iron oxide nanoparticles 

(<50 nm) becomes smaller than the thermic energy kT, which results in a fast spin relaxation after an 

external magnetic field is switched off[50]. The difference between ferromagnetic and 

superparamagnetic compounds can be illustrated by the fact that in contrast to ferromagnetic 

nanoparticles superparamagnetic colloids don’t show a hysteresis loop (see FIGURE 2.2-1), due to the 

fast and complete relaxation of their spin orientations.  

      

FIGURE 2.2-1 Comparison of the magnetic behavior of a ferromagnetic and a superparamagnetic material at room 

temperature. A: Hysteresis loop obtained by the application of an external magnetic field on a ferromagnetic 

compound. The ferromagnetic material keeps its magnetization even after the external field is switched off. 

B: Superparamagnetic compounds show magnetic behavior exclusively under the application of an external magnetic 

field. At each moment spins will orient themselves exactly on the applied field, while after switch-off no 

magnetization remains. 
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The magnetization of superparamagnetic nanoparticles follows the Langevin equation. The transverse 

relaxation time T2 of such superparamagnetic iron oxide nanoparticles is extremely short, which 

permits their use as negative contrast agents in MRI[51]. 

SPIO or USPIO nanoparticles can be synthesized in multiple ways. One way is the alkaline 

co-precipitation of magnetic nanoparticles using FeCl3 and FeCl2 in a stoechiometric ratio[52]. The 

main advantages of this synthesis are its conducting under moderate temperatures in aqueous media, 

its rapidity, cost effectiveness and applicability to create large quantities of SPIOs or USPIOs. A 

second way to form iron oxide nanoparticles, leading to highly monodisperse USPIO particles, is their 

formation in protein cages[53] or reverse micelles. Nanoparticles can be formed in inverse water in oil 

micro-emulsions with the use of ionic or unionic surfactants. One example is the synthesis of 7 nm 

sized iron oxide nanoparticles in sodium bis(2-ethylhexylsulfosuccinate micelles in toluene[54]. The 

synthesis of iron oxide nanoparticles by high temperature reactions is based on the reaction of organic 

iron precursors such as Fe(CO)5 or Fe(acac)3 in the presence of organic surfactants. In the presence of 

octyl ether and oleic acid iron oleate can be formed from a Fe(CO)5 precursor. Refluxing of the iron 

oleic complex at 300 °C finally leads to the formation of iron oxide nanoparticles[55]. A further 

possibility of synthesis is the creation of iron oxide nanoparticles by hydrothermal procedures[56] in 

aqueous media. They take place in reactors or autoclaves, where the pressure can be up to 7000 bar 

and the temperature up to 650 °C. The formation of -Fe2O3 nanoparticles from a sol-gel process can 

also be implemented by heating a three-dimensional iron oxide wet gel at high temperature[50]. A 

special form of sol-gel synthesis is the formation of nanoparticles in polyols such as ethyleneglycol and 

polyethyleneglycols, which act as solvents, reducing agents and particle stabilizing compounds. An 

iron precursor such as Fe(acac)3 becomes solubilized in a polyol mixture and forms an intermediate, 

which is reduced to form metal nuclei leading to nanoparticle growth at high reaction temperatures[57]. 

The morphology of the synthesized iron oxide nanoparticles depends on the method of their synthesis. 

Nanoparticles synthesized by thermolysis are monodisperse and may have different morphologies. 

Nanoparticles synthesized by coprecipitation are spherical but less regular as shown in FIGURE 2.2-2. 

  
FIGURE 2.2-2 Differently synthesized iron oxide nanoparticles and an exemplary illustration of magnetically induced 

aggregation are shown. A: TEM picture of polydisperse USPIOs prepared by coprecipitation[58]. B: TEM picture of 

monodisperse hexagonal assembled USPIOs prepared by thermolysis[55]. C: When dispersed magnetic particles (a) are 

exposed to an external magnetic, field their magnetic moments will align (b). With time, the particles form aggregates 

(c), which disperse again due to thermal motion (a) and loss of magnetisation (d) if the magnetic field is removed[59]. 
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In general SPIOs need to be protected from aggregation, which can occur under physiological 

conditions, pH values around the isoelectric point, high salt concentration or their magnetization. To 

prevent the aggregation of iron oxide nanoparticles they are most often coated with aminosilanes, 

dextranes or PEG moieties. The stabilization is achieved either by electrostatic or steric repulsion of 

the nanoparticles among each other. In the case of superparamagnetic nanoparticles magnetically 

induced aggregation is reversible. If an external magnetic field is applied to a ferrofluid the 

nanoparticles are magnetized; they move and align in relation to the applied magnetic field. A 

schematic of magnetically induced nanoparticle aggregation is shown in FIGURE 2.2-2. The rotation of 

entire particles in a global magnetic field is characterized as the Brownian component of the 

phenomenon of superparamagnetism. It contributes to the relaxation time of the particle 

magnetization and is expressed by the Brownian relaxation time equation:  

 
 

 – Brownian relaxation time 

V – volume of the nanoparticle 

 – viscosity of the nanoparticle dispersing solvent 

 

EQUATION 2.2-2 Equation characterizes the extrinsic superparamagnetism according to Brown. 

 
b) Plasmonic nanoparticles 

Plasmonic nanoparticles may consist of metals, alloys or semiconductors if the materials possess a 

negative real and small positive imaginary dielectric constant such as for example Al, Cu or noble 

metallic materials like Au and Ag. Their physical properties enable them to support surface plasmon 

resonance, which is defined as a coherent oscillation of the surface conduction electrons. The 

collective oscillation of the electrons, which are situated in the conduction band, leads to the 

appearance of an electric field located on the metallic surface (see FIGURE 2.2-3).  

 

 

 
 

FIGURE 2.2-3 Representation of the surface plasmon of a spherical metal nanoparticle and UV-VIS spectrum illustrating 

the size dependence of the plasmon absorption band. A: Electrons of the conducting band have been excited to 

oscillation at the resonance frequency of the adsorbed wavelength. While the electron cloud oscillates on the metallic 

surface, it creates an electric field which follows its oscillation[60]. B: UV-VIS spectrum of spherical gold nanoparticles 

of different sizes. It can be seen that with increasing particle size the plasmon absorption band shifts to higher 

wavelength. 
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The oscillation of the conducting electrons is initiated by electromagnetic fields commonly light. The 

excited electrons oscillate at the resonance frequency of the absorbed excitation wavelength 

(electromagnetic field). The resonance frequency of the surface plasmon resonance of a metallic 

nanoparticle is highly dependent on its material, size and shape which influence the mode of 

oscillation. 

For bioimaging Au and Ag nanoparticles are used due to the fact, that their surface plasmon 

absorption bands are situated in the UV-VIS and near-infrared (NIR) spectral regions[61] (see FIGURE 

2.2-3). Such plasmonic nanoparticles can be used for sensing applications using UV-VIS or 

near-infrared spectroscopy to follow labeled compounds. Gold nanoparticles are applied as contrast 

agents in X-ray measurements permitting in vivo detection of labeled biomolecules[62]. Plasmonic 

resonators are alsoused as contrast agents during photoacustic computed tomography measurements.  

One technique frequently applied in vitro and in vivo for the detection of biomolecules is the surface 

enhanced raman scattering (SERS). This technique is based on the observation that molecule adsorbed 

or close to the surface to a plasmonic materials will have their Raman signal enhanced. The electric 

field located on the plasmonic surface (see FIGURE 2.2-3)[63] induces the excitation of the Raman modes 

and magnifies the signal.  

Plasmonic nanoparticles can be used for optical imaging, due to the possibility of the surface plasmon 

created electric field to induce an enhancement of the brightness and photo stability of fluorescent 

organic dyes. This phenomenon is called surface enhanced fluorescence (SEF)[61]. The increased 

density of photonic states in the proximity of metallic colloids leads to excitation and subsequently a 

shortening of the spontaneous emission time of the organic dye, which increases the number of 

absorption-emission cycles and accordingly to an enhanced fluorescence signal. 

Both the plasmonic enhancement of the fluorescence and the Raman signal enhancement are 

phenomena taking place on the nanoscale. The excitation of a fluorophore or a Raman detectable 

species can only occur when the molecule in question is at an extremely close distance (5 - 30 nm)[61] 

to the plasmonic metal.  

The use of metallic nanoparticles such as gold or silver colloids for biosensing applications can be 

synthesized at extremely small sizes permitting a labeling of biomolecules without having an extensive 

impact on the investigated biosystem. The synthesis of gold or silver nanoparticles can be performed 

by templating, electrochemical and chemical seeded growth methods[64]. Seeded growth methods 

induce the growth of metallic nanoparticles by reducing metal ions using reductive agents. For 

example methods to synthesize spherical gold nanoparticles use the reduction of Au3+ ions, which are 

provided from the dissolved salt HAuCl4, with hydroxylamine, sodium citrate, ascorbic acid or NaBH4 

to form Au clusters serving as seeds.  

The growth process consists of adding a precise quantity of seeds into a growth aqueous solution 

containing metallic salt. Particles with diameters from 5 to 100 nm can be synthesized during the 

growth process. To control growth and avoid secondary nucleation the addition rate of the metal seeds 
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to the reducing agent and the metal salt solution need to be controlled. In addition pH, temperature 

and the reduction potential of the reducing reagent influence the kinetics of the particle growth[64]. 

By controlling the growth conditions it is possible to control the morphology of the synthesized 

particles. The use of weak reducing agents such as ascorbic acid is advantageous to obtain a 

homogenous growth of monodisperse nanoparticles. The addition of AgNO3 to the reaction 

environment, the control of pH, the use of sodium borohydride reduced by citrate moieties as well as 

the presence of CTAB can lead to the growth of gold nanorods[65–67]. The mechanism by which Ag+ 

ions modify the Au nanoparticle shape is matter of debate. Nikoobakht and El-Sayed[65] suggest that 

silver ions form AgBr, which caps CTAB surfactant molecules leading to a decreased charge density in 

these, hence to decreased steric repulsion and the subsequent elongation of the soft CTAB template. In 

contrast Murphy et al.[66,67] consider a rigid structure of CTAB monomers and proclaim that AgBr 

adsorbs differentially to the facets of gold nanoparticles and hence restricts the particle growth to a 

rod-like shape. 

Further morphologies such as branched spheres, octaedric and triangle-shaped particles can be 

obtained by the application of different growth conditions and the use of various surfactants during the 

synthesis (see FIGURE 2.2-4). 

 
FIGURE 2.2-4 TEM pictures of gold nanoparticles with different shapes show A: spheres, B: rods, C: triangles, D: 

branched spheres, E: octahedra[68]. 

 

c) Fluorescent and luminescent nanoparticles 

Light-emitting nanoparticles can be used in optical imaging. Depending on their emission wavelength 

they are suitable for different bioimaging purposes (see FIGURE 2.2-5). Nanoparticles emitting light in 

the UV-VIS range of the electromagnetic spectrum are used for cellular and assay labeling or as 

marker during microbiology experiments. Fluorescence is used to create a FRET effect (see 

FIGURE 1.0-6), which makes it possible to observe the interactions and spatial distances between 

labeled objects. Nanoparticles emitting in the near-infrared range are predestined as labels for in vivo 

imaging. There are different kinds of light emitting nanoparticles suitable for the use in bioimaging 

tasks. 

One species of luminescent nanocrystals is called quantum dots. Quantum dots are semiconducting 

materials, which show a bright stable luminescence across a broad range of frequencies, due to the 

electronic characteristics related to their size and shape. Quantum dots are stable to photobleaching 

and have narrow emission spectra. 
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Fluorescent nanoparticles consist of nanoparticles bonding to classical fluorophores. Either they can 

bind fluorophores like fluorescein or rhodamine on their surface or incorporate them into their matrix. 

In contrast to the steadily fluorescent quantum dots organic dyes suffer from photobleaching, 

self-quenching and broad emission spectra, but they are less toxic than quantum dots and therefore 

advantageous for biomedical use[20,69].  

 
FIGURE 2.2-5 Bioimaging applications use fluorescence at different wavelengths: Optical bioimaging applications of 

interest require multiple nanocompounds emitting at different wavelengths. The majority of them depend on the 

existence of fluorescence with an emission range from visible UV to near-infrared[70]. 

In the following section we will discuss the two types of particles – luminescent quantum dots and 

fluorescent silica nanoparticles.  

i) Luminescent quantum dot nanocrystals 

Quantum dots can consist of semiconducting materials. Compositions of atoms from the periodic 

groups II-VI and III-V of elements such as ZnS, ZnSe, CdS, CdSe, PbS, PbSe and others build up this 

kind of material. The size, shape and composition of quantum dot nanoparticles define their 

photoelectronic properties. For example, CdSe nanocrystals are most interesting for optical imaging in 

the UV-VIS range, whereas PbS nanocrystals are functional imaging tools in the near-infrared range 

(see FIGURE 2.2-6). Particles of the same composition change their emission peak depending on their 

size (see FIGURE 2.2-8). 

 
FIGURE 2.2-6 The fluorescence of different QDs covers a large range of the electromagnetic spectrum: Partially core 

materials determine the emission wavelength of a quantum dot and define their field of action in bioimaging. Dots of 

the same material vary their emission spectra in depending on their size and shape[70]. 
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Quantum dots of various compositions are synthesized in hot organic solvents (250 °C - 300 °C) in the 

presence of surfactants such as trioctylphosphine oxide (TOPO) and a phosphine like tributyl- or 

trioctylphosphine. Furthermore the mixtures of stabilizing surfactants can contain alkyl amines such 

as oleylamines, phosphonic or carboxylic acids such as hexyl phosphonic acid (HPA), 

di-N-octylphosphinic acid (DOPA), mono-N-octylphosphinic acid (MOPA) and oleic acid[71].  

To form CdSe quantum dots the adding of atomic species precursors like e.g. phosphine complexed 

Se, organic acid complexed Cd2+ or dimethyl cadmium is implemented at high temperature, where the 

precursors decompose and release Cd ans Se atoms. Cd and Se species bind rapidly to each other and 

form huge aggregates in the absence of surfactants. The present surfactants bind to facets of the 

nanocrystals via their polar electron donating headgroup and can be seen as Lewis bases[72]. The 

nature and quantity of surfactants determine the size and shape of the growing nanoparticles, because 

of their ability to complex the semiconductor ions in solution and to bind on specific facets of the 

surface of the growing nanocrystals, which permits them to regulate the particle growth.  

Both particle size and particle shape can be regulated making it possible to synthesize CdSe 

nanocrystals with spherical, rod and teardrop morphologies (see FIGURE 2.2-7 ). 

  
FIGURE 2.2-7 QDs can show different morphologies: TEM pictures of CdSe nanocrystals with A: spherical, B: rod, C: 

teardrop morphologies and D: a typical tetrapod-shaped CdSe nanocrystal, looking down the [001] direction of one 

arm providing from syntheses under the same reaction conditions but different TOPO/HPA ratios[73] (HPA - hexyl 

phosphonic acid). 

Quantum dots have the advantage that they can be synthesized at relatively small sizes. They show a 

bright, photostable luminescence with a wide absorption range and narrow emission peaks. These 

properties are due to the physical properties causing their luminescence. The bright luminescence of 

quantum dots is due to an energetic gap between the valence band and the conduction band of the 

semiconducting core materials. The energy an electron needs to pass through the gap depends on the 

size of the quantum dot and is due to quantum confinement effects; hence the gap energy is inversely 

proportional to the size of the nanoparticles[74]. The dot absorbs all photons with energy higher than its 

band gap energy. This leads to the excitation of an electron of the valence band to pass through the 

gap and leaves behind a positively-charged electron hole. When the electron relapses into its original 

state the electron and hole recombine emitting energy as light.  

At the surface of a semiconductor nanocrystal reconstructions in the atomic positions of Cd2+ and Se2- 

atoms are possible and hence surface defects occur, which are able to energetically trap electrons or 
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holes within energetically forbidden states[74]. Subsequent this fluorescence quantum yield is decreased 

at about 10 %. Under continuous excitation quantum dots also suffer from photoblinking, which has 

been explained by Auger ionization[70]. However, for bioimaging their main inconvenience is the fact, 

that they are mostly composed of heavy metals and therefore highly toxic. Because of their high 

toxicity quantum dots are often included in host matrixes such as SiO2 or ZnS, shielding the biologic 

environment from its toxic core, which considerably increases their size[63,75,76]. Encapsulation into a 

ZnS matrix (see FIGURE 2.2-8) has instead the further advantage that the encapsulation of a core 

material to a semiconducting material with a larger band gap passivates the surface of the core by 

protecting it from oxidation or chemical degradation and by reducing surface defects, which leads to 

an increase in the photoluminescence yield[70]. 

 

 

 

FIGURE 2.2-8 Illustration of the frequency shift, which the fluorescence undergoes with increasing QD size: 

A: Absorption and emission spectra of CdSe quantum dots of different sizes (13.5, 14.5, 17.5, 19, 21.5, 24 nm from left 

to right)[70]. The emission spectra are narrow and symmetric. B: Schematic illustration of a ZnS shell shielding the 

environment from a toxic QD core and passivating its surface[8]. 

ii) Fluorophore labeled silica nanoparticles 

Fluorescent silica-nanoparticles are used as markers for biomolecules to follow their movements in 

vitro or in vivo. Depending on the incorporated fluorophores they can be applied as fluorescent 

ratiometric nanosensors. Different fluorophores can be encapsulated at the same time, either equally 

distributed in the silica matrix or in different matrix compartments leading to a core-shell architecture, 

which permits sensing applications using one fluorophore as a reference and the second one as a 

sensing dye. Fluorophores can act not only as a pH indicator[77–79] or O2 indicator[80,81], but also as an 

indicator for cations as Pb2+,Zn2+, Mg2+ and K+[82]. Furthermore they can serve as an indicator for 

temperature fluctuations[83,84]. 

Silica (SiO2) consists of a three-dimensional framework of SiO4 entities. In crystalline silicate 

structures Si atoms show tetrahedral coordination with four oxygen atoms. In a silicate network the 

tetrahedrons are vertex linked so that their oxygen atoms are shared between Si atoms of the silica 

network leading to the net formula of SiO2. The material itself doesn’t absorb light neither in the 

UV-VIS range nor in the near-infrared spectrum. It is photophysicaly stable. The size, morphology and 
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porosity of silica nanoparticles can be precisely tuned. A silica nanoparticle can be doped with or 

surface bound to many different kinds of organic fluorophores. As a result nanoparticles fluorescent at 

a required wavelength have been produced.  

To enclose fluorophores in a silica matrix they are usually covalently attached to a silane coupling 

agent, which co-condenses with TEOS during the formation of the silica matrix[85]. This synthesis 

process has the advantage that it permits different NP architectures, where the fluorophore can be 

located inside the silica matrix or on the particle surface. Different fluorescent chromophores such as 

fluorescein, tetramethylrhodamine, rhodamineB, Alexa Fluor, near-infrared dyes as purchasable from 

the Cy dye and the DY dye series or coumarin dyes can - via a functionalization as isothiocyanate or a 

succinimidyl ester - be coupled to the amine-function of a silane coupling agent such as 

(3-Aminopropyl)triethoxysilane APTES[86,87]. Functionalized with a maleimide-group they can be 

conjugated to mercaptopropyltriakloxysilanes[88].  

Different methods exist for synthesizing spherical monodisperse silica nanoparticles. One method is 

the so called Stöber process. This synthesis is accomplished under basic catalysis of ammonia in a 

hydro-alcoholic reaction medium[89]. The most frequently used precursor is tetraethylorthosilicate 

(TEOS), which polymerizes in the presence of water. The polymerization is achieved by a 

hydrolysis/condensation mechanism[90]. First a hydrolysis of the ethoxy group takes place; ethanol is 

freed and in its former position a silanol group is obtained. At one moment the solution is saturated of 

the emerging silicic acid. When the saturation limit is exceeded the solution is called supersaturated. It 

is in this supersaturated state that a nucleation of silica clusters begins. The polymerization of TEOS 

can be accelerated by an acidic or basic catalysis. In both cases the catalyzed hydrolysis follows an SN2 

mechanism (see FIGURE 2.2-9).  
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FIGURE 2.2-9  Basic and acidic catalysis of the hydrolysis of TEOS.  R – ethylchain.  

The production of the hydrolyzed monomer silicic acid is rate limiting during the growth process. The 

concentration and the ratio of ammonia and water determine the ionic strength of the reaction 

medium and the ratio of hydrolysis as well as the condensation processes taking place in the same 

time. The nucleating silica clusters grow to nanoparticles - while low concentrations of ammonia in 

the reaction medium lead to a fast colloidal stabilization of small particles, high concentrations of 

ammonia conduct the growth of nanoparticles to higher diameters[91]. 
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A second possibility for synthesizing spherical silica NPs is to conduct the formation of silica 

nanoparticles in a reverse micro-emulsion. Aqueous micelles form small spherical reactors 

determining particle size[92,93]. Bagwe et al.[94] synthesized dye doped silica nanoparticles in a reverse 

micro-emulsion which they composed of adequate amounts of surfactant, co-surfactant and organic 

solvent, aqueous solution of dye, water and aqueous ammonia. As surfactants they used Triton X-100, 

sodium dodecyl sulfate (SDS), dioctyl sulfosuccinate (Aerosol-OT) and Igepal CO-520 or 

polyoxyethylene nonylphenol ether (NP-5). 

On the other hand the accomplishment of sol-gel procedures in oil-in-water emulsion has been 

performed to obtain silica-materials possessing a regular hexagonal pore distribution[95,96] (see 

FIGURE 2.2-10). These syntheses use surfactants such as the ammonium salt cetyltrimethyl ammonium 

bromide (CTAB) as a structure directing agent in alkaline media to condense TEOS around formed 

micelles, which leads to silica nanoparticles with mesopores in the dimension of three to four 

nanometers[97]. 

 
FIGURE 2.2-10 Silica nanoparticles synthesized by different methods: A TEM picture of colloidal silica spheres 

synthesized by the Stöber method[98]. B TEM picture of mesoporous nanoparticles with cubic symmetry synthesized 

by a sol-gel process in a CTAB microemulsion[97]. C High resolution TEM picture of a mesoporous nanoparticle with 

pores of a diameter of 4 nm[96]. 

Even if organic fluorophores encapsulated to silica matrixes suffer from photo induced chemical 

destruction upon exposure to fluorescence exciting light known as photobleaching[99], fluorophore 

doped silica nanoparticles have the advantage that compared to quantum dots their synthesis is cost 

effective and undergone at ambient temperature. Silica nanoparticles have the further advantage that 

they can incorporate metal or metal oxide nanoparticles into their matrix. As well they permit the 

deposition of metal layers on their surface. Silica is therefore an ideal host matrix for the construction 

of a multifunctional nanoparticle serving as multimodal imaging tool. 
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3. COLLOIDAL SURFACES AS FRONTIERS BETWEEN 

INORGANIC AND BIOLOGIC MATTER 

With the goal of labeling biomolecules not only the chemical and physical properties but also the 

physicochemical characteristics of the nanoparticles must be taken in account. In fact their 

physicochemical properties mainly govern all interactions with targeted biomolecules. They take place 

on the colloidal surface acting as solid-liquid and at the same time as a nano-bio interface[100,101]. 

Moreover grafted ligands present on the particle surface may enhance the specificity of an inorganic 

nanomaterial towards biological systems. Scientists tend to control surface properties such as surface 

potential, surface functionality, the density of grafted residues and the hydrophilic hydrophobic 

balance (see FIGURE 3.0-1) of nanoparticles. These parameters are the key parameters, which control 

the interactions happening at the nanoparticle surface. 

 

 

FIGURE 3.0-1 Parameters to be considered when designing nanoparticle surfaces intended to interact with 

biomolecules: Surface potential, functionality and density of the grafted organic residues as well as the hydrophilic 

and hydrophobic balance. 

The functionalization of the surface of inorganic nanoparticles underlies some constraints. During the 

modification process the colloidal stability of the nanoparticles has to be maintained. Nanoparticles 

able to proceed a successful self-assembly with other colloidal entities, as which biomolecules can also 

be described due to their similar size, need to perpetuate their colloidal stability under physiological 

conditions at 37 °C in an aqueous medium where the pH is 7.4 and the ionic strength is equivalent to 

150mM NaCl. The colloidal stability of functionalized nanoparticles can be provided by electrostatic 

or steric repulsion. 

a) Colloidal stability by electrostatic repulsion 

The interactions between colloidal particles which determine their colloidal stability depend on the 

attractive van der Waals (vdWs) forces and on the repulsive forces appearing between equally charged 

particles. Introduced by Derjaguin, Landau, Verwey and Overbeek the resulting potential energy U 

between two equally charged particles is described as the sum of the potential of attractive vdW forces 

UA and the potential of electrostatic repulsive forces UR: 

Hydrophilic/ Hydrophobic 
Balance 

Modified surface 
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EQUATION 3.0-1 Potential energy between two charged nanoparticles. 

Attractive interactions are usually caused by van der Waals forces. These forces appear due to 

electromagnetic fluctuations, which create positive and negative charges within atoms, molecules or 

bulk materials. The originated dipoles interact, whereas the magnitude of such interactions can be 

sufficiently high to cause undesired aggregation. Van der Waals interactions are divided into three 

kinds of interactions first Keesom interactions (dipole-dipole interactions), second Debye interactions 

(dipole-induced dipole interactions) and third the London interactions (induced dipole-induced dipole 

interactions) of polarizable materials[102]. The potential energy of the attractive forces UA between two 

spheres can be expressed as:   

 
 

A – Hamaker constant 

r – particle radius 

d – interparticle distance 

 

EQUATION 3.0-2 Potential of attractive forces appearing between two colloidal spheres. 

The Hamaker coefficient A appears according to the Hamaker integral approximation. It depends on 

the material of colloidal particles as well as on their surrounding medium and is described as: 

 
 

CvdW – constant characterizing the interacting species in surrounding medium 

vi – molar volume of the material i 

 

EQUATION 3.0-3 The Hamaker coefficient depends on intrinsic caracteristics of the material and their surrounding 

medium. 

Electrostatic interactions between charged particles can be either repulsive or attractive. Like charged 

particles will show repulsive behavior whereas oppositely charged particles will attract each other. The 

surface charge of colloidal particles is mostly procured by the ionization of functional groups on the 

particle surface. The functionalization with chemical functions such as quaternary ammonium groups, 

amine groups and carboxylate groups leads to charged nanoparticles, which are prevented from 

coagulation by electrostatic repulsion. However, in order to achieve electrostatic stabilization of 

functionalized colloids in a solvent, the pH sensitivity of the charges provided by amine or carboxylate 

groups needs to be considered as well as the density of the charges present on the particles surface and 

the dielectric constant of the solvent: all these factors may cause particle coagulation.  

Furthermore charges which stabilize the particles may be screened by counterions surrounding the 

nanoparticle surface. The counterions adsorbing on a charged surface significantly influence its 

electrostatic potential . The screening strength of the particle surrounding counterions depends on 

their size, valence and concentration in the medium.  
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The surrounding of nanoparticles by counterions has been described by the concept of an electric 

double layer of counterions on a charged surface (see FIGURE 3.0-2). Stern describes the presence of an 

inner ion layer, fixed on the charged surface as proclaimed by Helmholtz, which is called the Stern 

plane and a diffuse outer layer in which the concentration of the counterions diminishes with 

increasing distance to the colloidal surface as described by Gouy and Chapman[103]. The plane between 

the first adsorbed and the second diffuse layer is called the shear plane, the electric potential shear at 

this plane is denominated as the  potential. It is experimentally determinable and can approximately 

be taken as the electric potential on the particle surfaces[104].  

 

 

 

 

 

FIGURE 3.0-2 The Stern model of the ionic double layer and the corresponding surface potential. 

b) Colloidal stability induced by steric repulsion 

In the context of nanoscaled colloidal self-assembly attractive vdWs forces no longer act when the 

separation between the particle surfaces exceeds 10 nm[104]. This fact renders the colloidal stabilization 

by steric repulsion possible. By coating nanoparticles with long molecules, which separate them over a 

longer distance, their coagulation due to van der Waals forces is prevented. The advantage of steric 

stabilization of nanoparticles is the fact that it is insensitive to pH and salt concentration in a medium.  

However, intending to functionalize a nanoparticle with a macromolecule to achieve its stabilization 

by steric repulsion, we may choose a macromolecule in relation to the solvent in which the 

nanoparticles are to be dispersed to stabilize them. To achieve the steric stabilization of coated 

nanoparticles in nonprotic apolar solvents hydrophobic coating agents need to be employed. To 

achieve dispersion of macromolecule coated nanoparticles in aqueous media hydrophilic 

macromolecules such as dextran or polyethylene glycol are first-choice coating agents[8]. The grafting 

of such polymers actually enhances the lifetime of the nanocompounds in a physiological environment 

by protecting them from recognition and elimination by biologic clearance mechanisms. The grafting 

of the polysaccharide dextran[105] can already be seen as a first level of biofunctionalization and has 

been effected by an amination reduction reaction (see FIGURE 3.0-3) on the surface of various 

amino-modified nanoparticles. 

Diffuse ionic layer Stern layer  

Outer Helmholtz plane 
shear plane 

Inner Helmholtz plane 
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FIGURE 3.0-3 Grafting of dextran pre-oxidized with NaIO4 to an amine function via reduction with NaBH4

[105]. 

Electrodynamic, electrostatic and steric interactions play a key role in providing controlled 

self-assembly processes between colloids and in governing their interactions with biomolecules[106]. In 

the next paragraph we will show some ways to functionalize nanoparticles designed to interact with 

biomolecules.  3.1 The chemical functionalization of nanoparticle surfaces 

The surface chemistry of different nanoparticles depends on the properties of the material present on 

the surface of a multifunctional nanoobject. The applied modification strategies subsequently vary for 

different nanoparticles. We will discuss the possibilities to chemically modify the surfaces of metal 

oxide and metal nanoparticles to give an overview about the chemical modification reactions, which 

may be executed on the surface of multimodal nanoparticles. 

a) Functionalization of metal oxide nanoparticles by silanization  

There is a wide range of metal oxide nanoparticles, which have been synthesized in the past as Al2O3, 

TiO2, SiO2, Fe3O4, -Fe2O3 or ZnO nanoparticles. Metal oxide surfaces carry free hydroxyl groups, 

which end their crystal lattice at the solid liquid interface. The hydroxyl groups are present due to the 

chemisorptions of water on the metal oxide surface. By the formation of hydrogen bonds further water 

molecules physisorb to the hydroxylated surface and organize themselves into several layers around 

the nanoparticle[105]. Properties such as polarity and the charge density of the metal oxide surface 

determine the thickness of the hydration layer. 

Through the hydroxyl groups on their surface metal oxides can react with various reagents such as 

carboxylic, sulfonic and phosphonic acid as well as silane coupling agents and provide a good 

platform for various modifications[8]. However, the surface reactivity of a metal oxide nanoparticle 

depends on the reaction environment as well as on the reactivity of the metal cation, its degree of 

oxidation and its coordination number. The modification of metal oxide nanoparticle surfaces with 

silane coupling agents as organo-functionalized trialkoxysilanes has been widely applied. These 

organo-functional silane coupling agents consist of three organic groups R bonded to the oxygen 

Oxidation with sodium periodate 
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atoms of a tetrahedral orthosilicate ion, whereas the fourth oxygen atom of the originated orthosilicate 

ion has been replaced by a carbon which connects an organic entity R’ to the Si atom[90].  

Silanization reactions are surface modifications, which can be achieved under aqueous reaction 

conditions as well as in organic solvents. The modification is obtained by a hydrolysis/condensation 

reaction between the OH groups present on the surface of the modified nanoparticles and the 

alkoxy groups of a chosen silane coupling agent. A wide range of silane coupling agents is 

commercially available. The large choice of functional groups (see FIGURE 3.1-1)[50] facilitates the 

further modification by chemical reactions as well as the conjugation to biomolecules.  

 
FIGURE 3.1-1 Silanization permits the implementation of various functional groups on hydroxylated surfaces: overview 

of organofunctional silane coupling agents (R – alkoxy group) with different organic residues[50]. 

The mechanism of the silanization of hydroxylated metal oxide nanoparticles is well known and is 

illustrated for the chemical modification of a silica surface in FIGURE 3.1-2[107]. In the presence of water 

first the silane monomers will undergo the hydrolysis of their three alkoxy functions, alcohol is freed 

and three silanol groups arise. Secondly an intermolecular condensation process takes place. In an 

equilibrium reaction the hydrolyzed monomers will condense to form oligomer chains.  

The third step is the adsorption of such a chain to the nanoparticle surface. While they are dispersed in 

a medium containing silanic oligomer chains, the chains encounter the hydroxyl group bearing 

nanoparticle surfaces. Between the silanol groups of the silane oligomers and the nanoparticle surface 

hydrogen bonds form, after which the oligomer chains are adsorbed to the metal oxide surface.  

The last step of the modification is composed of the formation of covalent bonds between the 

hydrogen-bonded silane and the metal oxide substrate. Under the supply of heat further condensation 

reactions take place leading to the formation of covalent M-O-Si bonds between the former 

hydroxylated nanoparticle surface and the silane chains[107].  
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The mechanism occurring in an aqueous 

medium differs significantly from the 

hydrolysis/condensation sequence, which has 

been observed in organic solvents[108]. Whereas 

in an aqueous medium the formation of chains, 

which adsorb to the metal oxide surface has 

been observed, in an organic reaction 

environment no formation of silane oligomers 

takes place, due to the fact that the silane 

monomers can’t hydrolyze in the solvent, but 

only on the surface of the dispersed particles, 

where traces of physi- and chemisorbed water 

are present[105]. Thus in an organic solvent the 

cycle of hydrolysis and condensation occur 

exclusively on the surface of the modified 

particles.  

Depending on the organic function of the silane 

chosen for the modification a catalyst may or 

may not be needed. Aminosilanes are 

self-catalyzing due to their ability to act as a 

base. The choice of the silane coupling agent 

also determines the hydrophilic/hydrophobic 

balance and the surface charge of the modified 

nanoparticles.  

 

 

b) Functionalization of metal nanoparticles by self-assembled monolayers (SAMs) 

Metal nanoparticles display different chemical and physical properties than individual metal atoms, 

complexes or bulk metals. They owe their chemical and physical properties to their size, which causes 

them to have a high quantity of low coordinated metal atoms at their surface compared to the number 

of fully coordinated atoms in the interior of the particle. In comparison to their properties in the bulk 

state their chemical reactivity can be significantly enhanced, in that the low coordinated surface atoms 

undergo redox reactions rather than bulk atoms. Due to their size quantum confinement significantly 

influences their physical properties, leading to electronic structures different from bulk metals, which 

permit the occurrence of phenomena such as localized surface plasmons or the photoluminescence of 

semiconductor quantum dots[8,109].  
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FIGURE 3.1-2 Mechanism of the modification of 

hydroxylized silica surfaces with organo trialkoxysilanes 

under aqueous conditions: 1) Hydrolysis of the three 

alkoxy groups: alcohol is freed, silanol groups arise 2) 

Intermolecular condensation reaction 3) Adsorption of 

condensed oligomers to a metal oxide surface by the 

formation of hydrogen-bonds 4) A condensation reaction 

leads to the formation of covalent bonds between the 

silane coupling agent and the metal oxide surface. 
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Metallic nanoparticles like gold, silver and copper nanoparticles as well as QDs are platforms for 

reactions with functional thio alkanes, which permit the formation of dense, consistent monolayers 

(see FIGURE 3.1-3)[110] on the particle surfaces. The supramolecular assemblies are generally held 

together by the formation of metal-S bonds and the increase of entropy obtained by the 

self-organization of the hydrophobic chains of the used thiol ligands. Thiol groups are believed to 

show high binding affinity towards noble metal surfaces. On gold the formation of a nearly covalent 

Au-S bond with a binding energy of 200 kJ/mol[111] occurs via the reaction 

RS-H + Au  RS-Au + H+ +e-
. 

EQUATION 3.1-1 Reaction equation of the adsorption of thioalkanes on a gold surface[112]. R – long alkyl chain. 

The freed electrons remain on the gold surfaces rendering it negatively charged during the adsorption 

of further thioalkanes[112]. Despite many investigations the knowledge of the chemistry of the 

alkanethiolate-Au bond is still incomplete[113], even though it is the most investigated bond underlying 

the formation of self-assembled monoleyers (SAMs).  

HS

HS N+

HS
O-

O

                      
FIGURE 3.1-3 Functionalized ligands form self-assembled monolayers on metallic surfaces: A Thiol ligands possessing a 

hydrophobic chain, which can be unfunctionalized and completely hydrophobic as well as bifunctional bearing 

terminal functional groups of cationic or anionic nature. B Schematic illustration of an n-dodecanethiolate monolayer 

self-assembled on an atomically flat gold substrate[110]. 

Using compounds with electron-rich head groups containing e.g. oxygen or nitrogen atoms attached 

to an n-alkyl tail[110] supramolecular self-assembly processes occur, leading to the formation of M-OR 

or M-NR bonds on the metallic nanosurfaces. Depending on the affinity between the used compound 

and metal the formation of polar covalent or ionic bonds can be observed. The different affinities 

between adjacent molecules and the surface can lead to competition between different ligands 

permitting a ligand exchange[114]. Murray and co-workers[115] have shown that ligand exchange 

reactions are place-exchange reactions, which aim at the establishment of an equilibrium between 

different ligands on the particle surfaces and in solution. The ligand exchange process reaches its 

equilibrium at long reaction times. If the ligands are similarly structured the equilibrium constant is 

close to 1[114]. The mechanism of ligand exchange is quite complex and difficult to predict and can be 

achieved by the exchange of bound ligands with a large excess of free ligands in solution as well as by 

exchange with ligands bound on other nanoparticles. 

The formation of a well-organized SAM on a nanoparticle surface is difficult to achieve. Even if the 

SAM is illustrated as perfectly ordered in most schematics, this image is far from reality[110]. The 
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molecular shape and the nature of its terminal head group influence the molecular orientation of a 

functional thioalkane on a metal surface. Different binding affinities to terraces, edges or vertexes of 

the nanocrystals decrease the SAM ordering. The radius of curvature[115] of metallic nanoparticles can 

also lead to decreased ligand packing densities. The supramolecular assembly of thiol ligands opens a 

wide range of potential applications in that the modified surfaces may work as protein selective 

biosensors[116,117] or bacteria repellent surfaces[118]. The ligand forming a SAM on nanoparticles is 

responsible for the stabilization of the modified particle in a corresponding solvent. Hydrophobic 

chains stabilize the nanoparticles in non-protic apolar solvents. Charged nanoparticles can be 

dispersed in polar solvents such as water.  3.2 Biofunctionalization of colloidal surfaces 

When the surface of nanoparticles is brought in contact with biomolecules, they bind on or interact 

with the functional groups present on the particle. On the colloidal surface, acting as a frontier 

between inorganic, organic and biological materials, different types of interactions or binding[106] can 

take place (see FIGURE 3.2-1). The labeling of biomolecules can be implemented by the creation of 

noncovalent interactions between the nanoparticle and its target as well as by a covalent attachment of 

biomolecules to colloidal surfaces. Covalent binding of a biomolecule can be achieved by the use of a 

bifunctional linker. This type of linkage can be applied to bind many different kinds of biomolecules as 

DNA or proteins. Non-covalent binding of biomolecules by physicochemical interactions such as 

electrostatic and van der Waals interactions is equally efficient. Van der Waals interactions take place 

on a short distance of several nanometers. They are less strong than electrostatic interactions, which 

can take place at a distance of about 100 nm[106]. Nature combines these physicochemical interactions 

as well as steric requirements of proteins to create non-covalently interacting systems like 

antibody/antigen or enzyme/substrate couples like the streptavidin/biotin couple. The interaction of 

these compounds follows the so-called “key/lock principle”[72]. It is highly specific and very affine due 

to avidity between the key and its lock. 

 
FIGURE 3.2-1 Schematic illustration of the possibilities for attaching a biomolecule to an inorganic surface: a 

biomolecule can be covalently attached by hetero-bifunctional linkage. The attachment can also occur by 

non-covalent binding via electrostatic, hydrophilic or hydrophobic interactions and via a key/lock principle. 
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a) Covalent linkage of biomolecules to nanoparticles 

Biofunctionalization of a nanoparticle by the covalent attachment of a bioactive molecule is often 

achieved by the use of a bifunctional linker (see FIGURE 3.2-2). A distinction can be made between a 

homo-bifunctional and hetero-bifunctional linker molecules. Pardo-Yissar et al.[119] used glutaric 

dialdehyde as homo-bifunctional linker to conjugate the enzyme acetylcholine esterase (AcChE) to 

CdS nanoparticles, which have been previously aminated with cysteamine. They employed the 

AcChE/CdS nanoparticle as a photoelectrochemical sensing system of enzyme inhibitors. Pierrat et 

al.[120] used homo-bifunctional PEG-bis-thiol to conjugate the functionalized biotin 

N-[6-(Biotinamido)hexyl]-3'-(2'-pyridyldithio)propionamide to gold nanorods, permitting the 

immobilization of streptavidin labeled colloids on their surface. They claim that the biotinylated gold 

nanorods are well suited for the self-assembly of nanostructures and single-molecule labeling. In a 

two-step reaction Das et al.[121] conjugate folic acid to iron oxide nanoparticles. First they conjugate 

folic acid to the linker 2,2-(ethylenedioxy)ethylenediamine in anhydrous DMSO with pyridine and 

dicyclohexyl carbodiimide  and subsequently link the functionalized folic acid to a carboxylated 

nanoparticle with the use of 1-ethyl-3-(3-dimethylamino)-propyl)carbodiimide (EDC) and N-hydroxy 

succinimide (NHS). The functionalization of a nanoparticle with a folate group permits the binding of 

these particles to cancerous cells[122], which are over-expressing folate receptors situated in their 

cellular membranes. 
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FIGURE 3.2-2 Bioactive molecules are conjugated to different nanoparticles by the use of homo-bifunctional linkers. 

The possibility of covalent linking of a biomolecule to an inorganic surface by the use of a hetero-

bifunctional linker is particularly attractive due to the fact that a hetero-bifunctional linker may be 
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reacted chemoselectively with amines on the first molecule and then conjugated to a thiol containing 

second molecule in a highly controlled manner. It was first executed by Chan et al.[123], who linked a 

protein to a ZnS-coated QD by the use of mercaptoacetic acid as hetero-bifunctional linker. The 

grafting of folic acid on a nanoparticle via the reaction of its succinic anhydride N-hydroxysuccinimid 

folate with an amine function on the surface of a magnetite nanoparticle using 2-aminoethyl 

phosphonic acid as a linker is a further example. The phosphonic acid group reacts on the iron oxide 

surface, whereas the amine function conjugates to the folate NHS ester[121]. However, with regard to 

conjugating antibodies on nanoparticle surfaces Bieniarz et al.[124] showed that the use of long linking 

molecules as the 30-atom long linker 4-[(2,5-Dihydro-2,5-dioxo-1H-pyrrol-1-yl) methyl]-N-[6-[[6-[[6-

[(2,5-dioxo-1-pyrrolidinyl) oxy]-6-oxohexyl] amino]-6-oxohexyl] amino]-6-oxohexyl] cyclohexane 

carboxamide leads to an increased activity of conjugated antibodies in comparison to antibodies 

covalently bound to a microparticle by the use of a short linker (9 atoms) (see FIGURE 3.2-3). 

 
FIGURE 3.2-3 Nanoparticles were conjugated to a mIgG antibody with an hetero-bifunctional linker for binding through 

active ester carbonyl-amine and maleimide-thiol bonds. Depending on the spacer the linker can vary in its length from 

9 to 30 atoms[124]. 

Mirkin et al.[125] functionalized gold nanoparticles with thiolated single stranded DNA permitting them 

to assemble the gold nanoparticles via their functionalizing DNA strands using complementary 

oligonucleotide sequences, which hybridize to the DNA strands and serve as linkers (see FIGURE 

3.2-4). This technique permits them to obtain crystalline 3D assemblies of the modified gold 

nanoparticles. 

           
FIGURE 3.2-4 DNA strands function as a linker hybridizing with single strand DNA, which is covalently bound to 

nanoparticles[126]. 
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b) Adsorption of biomolecules by physicochemical interactions 

Proteins, peptides and other biomolecules can adhere on colloidal surfaces due to physicochemical 

interactions. Electrostatic interactions, hydrophilic/hydrophobic balance effects as well as van der 

Waals forces and the formation of hydrogen bonds can attach a biomolecule to a nanoparticle surface. 

The interactions taking place depend on the physicochemical properties of the nanoparticle surface as 

well as on the composition of the biomolecule. Puddu et al.[127] showed that at pH 7 three peptide 

sequences adsorb to silica surfaces due to the action of different forces (see FIGURE 3.2-5). The 

positively charged sequence P1 adsorbs due to electrostatic forces on negatively charged silica 

surfaces. The adsorption is entropically driven by the release of Na+ counterions and water molecules 

from the silica surface. Sequence P2 (AFILPTG) has a pI of 6 and is mainly constituted by nonpolar 

amino acids resulting in an overall hydrophobic character. Its adsorption is due to vdW interactions, 

pH independent and driven by the dehydration of hydrophobic areas on the silica, which interact with 

the hydrophobic peptide sites. Adsorption of the negatively charged peptide 3 must originate from 

hydrophobic interactions and hydrogen bonding. These non electrostatic forces need to overcome 

electrostatic repulsion, which has been observed at high peptide concentrations. Peptide P1 binding to 

silica via electrostatic interactions is released at pH 2.1, while the silica binders P2 and P3 interacting 

via non-electrostatic interactions stay on the surface. 

 

 

        

KLPGWSG   AFILPTG     LDHSLHS    adsorb on silica at pH 7  

FIGURE 3.2-5 The adsorption of peptides with different sequences and properties to a same silica surface is due to 

different physicochemical interactions[127]. 

Electrostatic interactions also govern the adsorption of polyelectrolyte multilayers (PEMs) on a 

substrate as well as the formation of supported lipidic bilayers on such polymer cushions. Mulligan et 

al.[128] elaborated PEM films of alternating layers of chitosan (CHI) and hyaluronic acid (HA) on a 

silicon substrate. Subsequently they formed a supported lipidic bilayer of the lipids 1,2-dioleoyl-sn-

glycero-3-phosphocholine (DOPC), egg sphingomyelin, cholesterol and 1,2-dipalmitoyl-sn-glycero-3-

phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (PEGDPPE) via non electrostatic 

VdW interactions in the presence of high salt concentration on the polyelectrolyte multilayers (see 

FIGURE 3.2-6). 
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FIGURE 3.2-6 A Schematic illustration of a supported lipid bilayer formed on a multilayer of polyelectrolytes. 

B Structural example of an amphiphilic phospholipid; it can be divided into a hydrophilic head and a hydrophobic tail 

group. 

Lipid bilayers are made of two layers of amphiphilic phospholipids, in which the hydrophobic parts 

are oriented inwards [98]. Such SLBs therefore form solely on hydrophilic surfaces[129]. Depending on 

their lipidic composition artificial SLBs can mimic different membrane compartments and act as a 

platform for the incorporation of membrane proteins[130] or further modifications of the surface. In 

addition, the assembly of a SLB on a multimodal nanoparticle not only makes it possible to render a 

biomaterial biocompatible but also the labeling and tracking of lipophilic bioentities. A 

nanoparticle-supported lipid bilayer is usually formed by the interaction of small unilamellar vesicles 

(SUV) with nanoparticles of interest[131] (see FIGURE 3.2-7).  

The assembly process takes place in aqueous conditions. The mechanism of the SLB formation 

occurring has been described by Richter and co-workers[132]. It has been shown that, due to 

electrostatic interactions, the rupture of cationic SUV consisting of 1,2-dioleoyl-3-

trimethylammonium-propane (DOTAP) occurs spontaneously, when they come in contact with a 

hydrophilic, negatively charged silica surface[132]. It has been shown that under conditions which 

promote van der Waals forces the vesicles adsorb first on the silica surface and that the rupture leading 

to the formation of a solid supported lipid bilayer occurs only if critical coverage of the silica surface 

by adsorbed vesicles is obtained[129].  

    
FIGURE 3.2-7 Supported lipid bilayers form on hydrophilic surfaces as silica surfaces. A: Schematic illustration of the 

formation of a supported lipidic bilayer on a silica nanoparticle. B Cryo-TEM picture of a supported lipid bilayer on a 

silica nanoparticle[98]. 

Handley et al.[133] used physicochemical interactions to adsorb low density lipoproteins (LDL) on gold 

nanoparticles. Around a 19 nm sized gold sphere they observed the adsorption of approximately eight 
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LDL proteins. They used the colloidal gold-LDL conjugate as a probe to investigate lipoprotein 

receptor dynamics. Furthermore it was observed that in physiological media such as serum or other 

body fluids material surfaces are generally covered by proteins of the physiological environment, 

which form a protein corona around the particle and influence their further interactions with cell 

material[134]. It has been shown that the adsorption of bovine serum albumin (BSA), myoglobin (Mb) 

and cytochrome c (CytC) on gold nanoparticles leads to the formation of protein adsorption layers 

consisting of an irreversibly adsorbed fraction and a reversibly adsorbed fraction depending on the 

equilibrium binding constants of the proteins to the surface[134]. The exchange between proteins in 

physiological media and proteins adsorbed to a nanoparticle depends on a complex function of the 

protein affinity for the surface, curvature effects from the surface and changes in the surrounding 

medium. 

c) Specific non-covalent binding of biomolecules following the key lock principle 

To achieve a more specific interaction between a nanoparticle and a biomolecule Ling et al.[135,136] used 

the formation of complex bonds, which are stronger than ionic bonds resulting from electrostatic 

interactions, between ferrocene or adamant and -cyclodextrin to precisely assemble a supramolecular 

3D nanostructure. Abad et al.[137] functionalized gold nanoparticles to bear a 

amino-nitrilotriacetic-Co(II) complex (ANTA-Co2+) on their surface which specifically interacts with 

the histidine tag, which is often used to tag a protein of interest. The strong interaction between His 

tag fused proteins and nanoparticles modified with Ni2+-NTA (nitrilotriacetic acid) can be used to 

achieve self-assembled protein nanoparticle structures as observed by Hu and co-workers[138], who 

assembled His tag fused Ad12 knob proteins around gold nanoparticles of different sizes (see FIGURE 

3.2-8). 

    
FIGURE 3.2-8 Nanoparticle protein assemblies held by Ni2+-NTA-histidine complexes. A: The Ni2+-NTA-histidine complex 

links a gold nanoparticle to a His6 tag labeled protein. B: Protein structure of the His6 tag labeled Ad12knob protein 

C: The His6 tag labeled Ad12knob protein is assembled around Ni-NTA complexes bearing gold nanoparticles. 

Depending on the nanoparticle size a different number of proteins assemble around the gold spheres[138]. 

A surface-bound protein can continue to interact. Such binding is non-covalent and obtained by 

electrostatic, van der Waals interactions and hydrogen bonding of different protein domains. 
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Protein-protein interactions such as antibody-antigen interactions are also used for directed 

self-assembly of labeled nanoparticles. Antibody-antigen interactions have the advantage of being 

highly specific and guaranteeing a strong binding as they possess binding constants from 

108 to 1011 M-1. Chen et al. show that directed self-assembly can be used to fabricate molecular 

junctions in which an antibody molecule (Ig G) binds to two gold nanoparticles[139].  

Proteins may interact with a substrate, which specifically binds to a binding pocket of a nanoparticle 

attached protein. Protein domains are organized in a tertiary native structure due to hydrogen bonding 

and van der Waals interactions between their composing amino acids leading to the formation of 

hydrophilic or hydrophobic regions in the domain. The tertiary protein structure influences the way of 

interaction with another molecule by the addition of a steric factor. An enzyme domain might form a 

binding pocket for a substrate for which it shows specificity not only due to electrostatic and 

electrodynamic interactions but also due to its conformation which promotes interactions only with a 

substrate molecule which fits perfectly into the offered binding pocket. The non-covalent binding of 

biotin to the 60 kDa protein streptavidin is the strongest non-covalent interaction known in nature 

with a dissociation constant Kd of 1014 to 1015 M-1[140].  

The protein streptavidin is sub-divided into four equal domains, which are each able to bind a biotine 

molecule. It may be used to create a specific interaction between a nanoparticle and its target by the 

attachment of streptavidin to the particle and biotin to the target (see FIGURE 3.2-9). This system has 

been applied to bind CdSe QDs on a DNA origami scaffold[141], to assemble biotinylated golds 

nanorods with avidin coupled gold spheres[120], or to bind streptavidinylated alkaline phosphatase on 

biotinylated magnetoliposomes[142]. 

 

 
FIGURE 3.2-9 Structure and use of the streptavidin biotin couple. A: Protein structure of the native streptavidin 

tetramer[143] B Protein structure of the streptavin monomer interacting with a biotin molecule[140]. C: Scheme of 

magnetoliposomes functionalized  with biotin, which interact with an enzyme fused streptavidin domain[142]. 
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A further protein couple which interacts with high avidity consists of the two proteins barnase (12 kD) 

and barstar (10 kD) from Bacillus amyloliquefaciens. They interact strongly and specifically, possess a 

binding constant of 1014 M-1 and are, in contrast to the biotin/streptavidin couple, not naturally present 

in the blood and tissue of mammals. Their small sizes are equally advantageous for use as fusion 

proteins as done by Nikitin and co-workers[144], who fused antibody 4D5scFv fragments to the N- and 

C-terminus of barnase by gene engineering methods. The labeling of magnetic nanoparticles with 

barnase and Qdot® 605 quantum dots with bastar permitted them to create protein-directed 

assemblies of the labeled nanoparticles and biofunctionalizing scFv antibody fragments (see FIGURE 

3.2-10), which are useful as targeting moieties in selective delivery applications. 

                  

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 3.2-10 The proteins barnase and bastar can be used to assemble fused proteins and protein labeled 

nanoparticles. A: Protein structure of the interacting barnase (yellow)/bastar (blue) couple[145] B: Schematic of 

barnase labeled antibody short chains and magnetic nanoparticles (MNP) which assemble on bastar-labeled quantum 

dots (QD) C: Protein structure of the barnase (red) fused 4D5scFv antibody fragments (blue)[144].  

Mazzucchelli et al.[146] used a similar strategy to preserve the activity of an IgG antibody presented on 

a nanoparticle surface. They covalently bound the protein A possessing a binding specifity for IgG 

antibodies to a nanoparticle surface via the trifunctional linker synthesized out of N-phosphonomethyl 

iminodiacetic acid phosphonate (PMIDA), the bifunctional diaminolinker 

2,2-(ethylenedioxy)bis(ethylamine) (EDBE) and N-succinimidyl-3-[2-pyridyldithio]-propionate 

(SPDP) via N-hydroxysuccinimidyl ester (NHS) activation. The antibody then bound via its Fc 

fragment to the thiol-engineered recombinant protein A variant spaBC3 (see FIGURE 3.2-11). 

         
 

FIGURE 3.2-11 A trifunctional linker is used to synthesize pegylated iron oxide NPs, which bear a protein A variant 

destined to bind IgG antibodies[146]. 
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Depending on the natures of a particle and of its biological target various actions can be implemented 

to yield the biofunctionalization of an inorganic colloid. Different particles, surface modifications and 

interactions can be chosen and applied to create biofunctional nanosystems.  3.3 The biological fate of nanoparticles destined for theragnostic 

applications  

A nanoparticle introduced to a living biologic system such as cells, tissue or whole organisms needs to 

be biocompatible and biostable. Biocompatibility means that the nanoparticle interacts with the 

biological system without showing harmful behavior such as causing oxidative stress and various 

toxicities including cardiac and hepatic toxicity. The intrinsic toxicity of a nanoparticle is determined 

by multiple factors such as its size, surface coatings, administered particle dose and the toxicity of its 

biodegradation metabolites. In consideration of its future application it needs to be determined for 

each nanoparticle system[147]. Nanoparticles can be administered by different ways as oral 

administration, injection to tissues or to the blood circuit. They need to be protected from biological 

clearing mechanisms.  

Nanoparticles injected into the blood circuit are eliminated by the mononuclear phagocyte system, 

equally known as the reticuloendothelial system, which is destined to eliminate foreign bodies from 

circulation. To enhance their lifetime in the blood compartment a nanoparticle should hide from 

recognition by the different types of phagocytes as monocytes circulating in the blood, the Kupfer cells 

located in the liver and macrophages located in spleen or lung alveoli. These cells particularly capture 

objects adsorbed to opsonin proteins recognizing them via receptors on their surface[8].  

Opsonins preferably adsorb to hydrophobic surfaces with low curvature. The adsorption of an opsonin 

to a nanoparticle and the resulting facilitation of its uptake to phagocytes is called opsonization and 

can be prevented by the chemical modification of the particle surface[147]. Several surface coatings have 

been implemented to obtain particles possessing a so-called “stealth shielding”, which means that the 

compound grafted to the colloidal surface protects the nanoparticles from opsonin adsorption and 

subsequent fast recognition by a biosystem to enhance their lifetime. Surface modification with 

polysaccharides, poly(acrylamide), poly(vinyl alcohol)and with PEG or PEG co-polymers show this 

usefulness[8,148,149].  These polymers form dense, hydrophilic clouds of long flexible chains on the 

surface of colloidal particles and prevent the adsorption of opsonins on the particle surfaces (see 

FIGURE 3.3-1) and subsequently their uptake by monocytes or macrophages[148]. 
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FIGURE 3.3-1 PEGylated nanoparticles are protected from biorecognition and digestion. A: Nanoparticles are adsorbed 

to opsonin proteins, hence recognized and captured by macrophages for transit to the liver. B: Nanoparticles coated 

with PEG coating are prevented from opsonization, resulting in decreased macrophage uptake and following 

accumulation in the liver. The coating increased the availability of the NP for imaging or therapy[148]. 

A second strategy for obtaining biocompatible surfaces is the modification of their surface, following 

the aim to render it similar to naturally existing biosurfaces. The design of the colloidal surface 

imitating natural surfaces is called biomimetic[150]. To render a surface similar to a biologic system it is 

possible to achieve the coverage of a biomaterial with biomolecules. It can be obtained by the 

formation of solid supported lipid bilayers (SLB)[131] composed of phospholipids, which are one 

constituent of natural membranes.  

4. THE CONTEXT OF THE STUDY  

As we have already mentioned in the previous sections, there are many possibilities for employing 

multifunctional nanoparticles to localize and follow biomolecules such as e.g. proteins, lipids or DNA 

in vivo and in vitro. In the following we will discuss one problem, which is interesting to investigate by 

multimodal imaging – the following of the internalization of therapeutic DNA into living cells. 4.1 The exploration of the transfection of therapeutic DNA into living 

cells 

The internalization of therapeutic DNA to living cells can lead to therapies for cancer, cardiovascular 

or monogenic inherited diseases[151]. A first challenge is the incorporation of high amounts of DNA 

into the cell nucleus. This is considered to be necessary, because the delivered DNA can be lost or 

damaged during the transfection process. The increase of the transfected DNA amount is intended to 

enhance the chance that intact DNA is internalized to the cell nucleus, where it can be translated, 

transcripted and gene products expressed. Too little expression of the transcripted genes can be 

responsible for the non efficiency of a gene therapy. The transfection efficiency depends on the 

transfecting agent serving as a vector for the therapeutic DNA construct and on the mechanism of the 

internalization and transfection process[100]. To visualize and understand these mechanisms 

multimodal bioimaging tools can be applied. 
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FIGURE 4.1-1  Schematic pathway of DNA-transfection by endocytosis: 1) Endosomal uptake of vector bound DNA; 2) 

Endosomal escape of vector and DNA; 3) Migration through the cytosol, DNA release from the vector; 4) Nuclear 

uptake of DNA and gene expression inside the nucleus. 

The cellular uptake of transfected DNA is commonly accomplished by endocytosis (see FIGURE 4.1-1). 

Carriers are internalized to cationic lipid vesicles, which are formed out of the lipidic cell membrane. 

They are called endosomes and transport the foreign vectors through the cell until the end of their life 

cycle, when they fuse with lysosomes[152]. Lysosomes are vesicles produced in the golgi apparatus, they 

have a lower acidic pH in their interior and are mainly responsible for the digestion and degradation of 

no longer required compounds. For this purpose carrier systems need to escape the endosome before 

its fusion with a lysosome to avoid degradation. Several strategies have been developed to induce the 

rupture of endosomes. The introduction of vector materials causing a so-called proton-sponge effect, 

which induces that a vesicle rupture occurs due to an osmotic pressure caused by buffering carrier 

materials such as PEI, is one example[153]. Released to the cytosol a vector system needs to approach 

the cell nucleus, which is the destination of the therapeutic gene. The viscosity of the cytoplasm is so 

high that diffusion through the cytosol is effected four times slower than the diffusion of water. 

Crossing the cytosol the vector system should be prevented from aggregation with proteins. 

One of the most critical and least understood steps of a successful transfection of therapeutic DNA is 

the last one – the internalization of the DNA into the nucleus. Different ways of internalization seem 

to be possible depending on the type and size of the vector system[154]. First molecules or particles 

smaller than 9 nm may diffuse through pores in the nucleus. Secondly systems up to 25 nm may be 

internalized by the formation of nuclear pore complexes. Thirdly DNA transported by bigger vector 

systems may be enclosed in the nucleus during the period of cell division.  

The uptake of DNA is a complex and complicated process: all steps have to be successful to guarantee 

the transcription of the DNA and the final expression of a therapeutic gene product. We suppose that 

the more DNA is introduced, the more likely it is that the expression of genes and subsequently the 

gene therapy of a patient will succeed. To advance the transfection efficiency of non-viral vector 

systems we need to understand at which step the DNA transfection by a vector fails. We need a total 

understanding of the transfection pathway and the occurring internalization mechanisms of DNA to 

Nucleus 
Cytosol 

Vector 

Endosome 

Cell membrane 

DNA 
Gene expression 

1) 

2) 

3) 

4) 



67 
 

the cell and to the nucleus to improve the vector’s capacity to pass them. As a matter of course the 

internalization mechanism is highly dependent on the vector composition. 4.2 Condensation of DNA to functionalized nanoparticles 

DNA is a semi-rigid, negatively charged macromolecule. It is a stiff strand which is built up by a 

negatively charged deoxyribose-phosphate backbone. The nucleobases adenine, thymine, guanine and 

cytosine are attached to the backbone via the deoxyribose entities. They form hydrogen-bonded base 

pairs which keep two DNA strands together in a helical conformation. One helical turn contains 

10 base pairs and turns over a pitch of 3.4 nm[155]. The charged phosphate groups in the 

DNA-backbone are 0.17 nm distant from each other and repulse themselves. This electrostatic 

repulsion contributes significantly to the stiffness of a DNA-double-helix. Equalizing the charges 

makes it possible to render a DNA strand more elastic, so that it can be stored in a compact form[156] 

(see FIGURE 4.2-1). The compact charge neutralized form of DNA is referred to as “condensed” 

DNA[157]. The condensation of DNA induced by small cationic ligands is called Manning 

Condensation with reference to Gerald Manning, who described the physicochemical characteristics 

of ion clouds surrounding charged cylindrical structures[158]. 
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FIGURE 4.2-1 The scheme illustrates the condensation of DNA by small cationic molecules. A: Structural element of the 

deoxyribose phosphate backbone illustrating the presence of negative charges in the DNA backbone, which render 

the DNA macromolecule stiff and keep it in a linear form. B: The negatively charged DNA strand (1) is stretched due to 

repulsive charges. Small cationic ligands (2) may induce DNA condensation (3) in vitro. This process is used to model 

DNA compaction [157]. 

Ghosh and co-workers[159] assembled DNA and monolayer-protected gold nanoparticles bearing 

positively charged head groups to form DNA nanoparticle complexes with sizes smaller than 100 nm. 

The naturally occurring polyamines spermine and spermidine are often employed to artificially 

condense DNA[157]. In the presence of such condensation agents double-stranded DNA plasmids 

condense in sophisticated structures like rods or toroids[160] (see FIGURE 4.2-2). Cationic phospholipids 

also condense DNA to such small particles. Cationic lipids like 1,2-dioleoyl-3-trimethylammonium-

propane (DOTAP) are used to complex DNA by the formation of lipoplexes. These structures are 

formed via the self-assembly of DNA and cationic liposomes[161]. Their size varies from 200 nm to 

1 μm. The structure of these complexes has been described as a higher-ordered multilamellar lipidic 
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structure with rod-shaped DNA sandwiched between cationic lipid bilayers. The cationic lipids 

forming these DNA-lipid complexes act as transfection agents for therapeutic DNA[152]. 

      
FIGURE 4.2-2 DNA can be condensed by different condensation agents and shows various morphologies. A: AFM 

picture of uncondensed plasmid DNA[160]. B: AFM picture of plasmid DNA condensed to rods or toroids by the use of a 

polylysine[160]. C: DNA condensed to lipoplexes by cationic lipids - the DNA is condensed to rods with intercalate 

between lipid sheets[162,163]. D: DNA condenses around positively charged gold nanoparticles to form nanoplexes of 

about 100 nm size[159]. 

The DNA transfection efficiency of a lipoplex is strongly dependent of its lipidic composition, which 

influences its formation and structuring of the lipoplex and equally the mechanism of cell entry. The 

endocytosis pathway taking place during the internalization of lipoplexes depends mainly on their 

shape, lipidic formulation and the cell type[163]. The release of lipoplexes from endosomes also depends 

on the composition of the lipoplex. The mechanisms of DNA transfection by cationic lipids are still 

indistinct. Particularly the transition of lipoplexes through the cytosol and the nuclear uptake of DNA 

are not fully described.  

A study carried out by the collaborating group of O. Lambert employed amine groups bearing 

nanoparticles synthesized in our group to follow the intracellular path of DNA to the nucleus. They 

observed a dissociation of the DNA from the nanoparticles in the cytosol, probably due to the 

competition with polyanions and polycations in the cytosol concerning electrostatic interactions and a 

subsequent internalization of the DNA to the nucleus[164].  4.3 Strategies to functionalize nanoparticles destined for DNA labeling  

The labeling of DNA by a nanoparticle needs to be done by a non-covalent DNA binding, which 

allows the release and the expression of DNA in the nucleus. To modify the surface of a nanoparticle 

to make it attractive to DNA the choice of a functionalization reagent, which once grafted renders the 

particle surface positively charged, is necessary. To follow all the steps of the DNA transfection to the 
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cell nucleus it is necessary to modify the surfaces of multimodal nanoparticles in a way which allows 

the strong binding of DNA to the labeling colloids. Only strongly bound DNA can be followed to the 

nucleus without desorption from the labeling nanoparticles in the cytosol. 

For modifying nanoparticles to attract DNA, the challenge to fix as many positive charges as 

necessary for the condensation of DNA on a particle surface has been addressed by several strategies. 

The functionalization reagents, which are chosen most often, are implementing amines, polyamines or 

quaternary ammonium groups on the particle surfaces. An alternative to these compounds are 

phosphonium groups containing macromolecules[165].  

Amine-modified particles interact with DNA. Their efficiency as DNA delivery agents has been 

tested[166] and it has been shown that the adsorption of the DNA on the nanoparticles prevents it from 

enzymatic cleavage in vitro and in cellular environment[167,168]. Magnetic aminosilane modified 

particles have been used for DNA purification assays[169]. The amine functionalized particles can be 

further modified, e.g. through methylation of the amine groups[170]. Covalent conjugation of single 

DNA strands has been done by del Campo et al.[171], who used such modified Fe3O4@SiO2 particles 

for separation assays. Fluorophore-doped silica NPs have been modified with aminosilanes to follow 

DNA-transfection and release by a FRET effect between the fluorescent nanoparticles and a dye 

intercalated into the adsorbed DNA[172]. Using aminated nanoparticles to follow the DNA transfection 

in living cells, it has been shown that the DNA cannot be marked until it migrates to the inside of the 

nucleus and that it is probably released in the cytosol, where the nanoparticles have been located[36]. 

Considering that compounds with high density of cationic charges are beneficial to future applications 

as a gene transfection agent, several groups have started to use polyelectrolytes or dendrimers for 

DNA condensation. Imitating the composition of histone proteins, which naturally condense DNA in 

the nucleus, arginine grafted polymers are popular agents for nanoparticle functionalization. 

Poly(L-lysine) or poly(D-arginine) derivatives have been tested as efficient coatings for nanoparticles 

aiming at DNA condensation on their surface. Arginine has been grafted on poly(amidoamines), 

poly(propylene imines) or poly(disulfideamines)[173,174]; cholesteryl-oligo-D-arginine and arginine 

modified chitosan have been synthesized and all these compounds show an enhanced affinity to DNA 

due to guanidinium groups possessing a pKa of 12.1[175]. Their positive charges make it possible to 

adsorb DNA efficiently under physiological conditions[174]. Amine-terminated PEG-enrobed -Fe2O3 

nanoparticles have been grafted with poly(Lysine), poly(Arginine) or poly(ethylene-imine) to interact 

with RNA or DNA[175] (see FIGURE 4.3-1).  
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FIGURE 4.3-1 Schematic illustration of the modification of aminated nanoparticles with polyamines as pLys, pArg or 

PEI[175]. The modified nanoparticles will interact with DNA after protonation. 

Polymeric compounds like e.g. chitosan and trimethyl-chitosan carrying poly( -caprolactones) have 

been designed with the aim of building polymers accumulating a high number of positive charges. The 

lipophilicity of such polymeric compounds is welcome, because it facilitates the cellular internalization 

process[176]. Several groups employ polyamidoamine dendrons (PAMAM) to bind DNA or RNA. 

Their capacity to bind DNA depends on the dendron generation and grows with an increasing 

arborization of the dendrimers, due to the multiplication of amine or ammonium groups containing 

residues[177]. One of the most used polymeric compounds to bind DNA electrostatically is the cationic 

polyethyleneimine (PEI). It is advantageous because of its capacity to form DNA-polymer-complexes 

which even offer the possibility of achieving further modifications. Unfortunately an ascending 

cytotoxicity with increasing length of its polymer chain from a weight of 10 to 25 kDa needs to be 

controlled to achieve a beneficial outcome[178]. 

To obtain cationic gold nanoparticles capable of interacting with DNA strands, a common strategy is 

their modification with thiol ligands bearing a trialkylammonium group by a ligand exchange 

reaction. Particles modified with a mixture of octanethiol and trialkylammonium-undecanethiol (see 

FIGURE 4.3-2)[179] have been shown to be eight times as effective for transporting DNA as 

poly(ethyleneimine). In contrast to amine functions positive charges obtained from quaternary 

ammonium groups are pH independent.  

FIGURE 4.3-2 Gold nanoparticles bearing SAMs with quaternary ammonium functions designed to bind DNA: 

Fabrication and functionalization of gold nanoparticles has been achieved  via the Brust and Murray reactions[179]. 

 

: 
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Goodman et al.[180] have shown that the length of the alkyl substituents of the trialkylammoniumions 

on the surface is important for their interacting with DNA. A comparative study of trialkylammonium 

ions substituted with methyl-, butyl- or hexyl-chains showed that the DNA adherence to these 

different compounds varies. Long chains like hexyl-chains seem to be too large to intercalate into the 

DNA-strands, whereas small residues such as the methyl-chains appear to be too short to benefit from 

hydrophobic interactions. It has been shown that combinations of long and short chains such as 

Me2Hex or MeBu2 interact the most with DNA strands[180]. The ratio between hydrophobic and 

charged entities as well as their organization on the modified surfaces is decisive for the efficiency of 

the cell internalization and transfection[181,182]. 

If they are sufficiently small particles modified with quaternary ammonium groups can intercalate in 

the DNA grooves to form an assembly resembling pearls on a string[183] (see FIGURE 4.3-3). The 

formation of less linearly organized DNA-gold nanoparticle complexes is also possible[159].  

 
FIGURE 4.3-3 Supramolecular self-assembly of DNA and small gold nanoparticles modified with quaternary ammonium 

groups: A TEM micrograph of a branching portion of a nanoparticle/DNA assembly. It shows a representative example 

of a branched assembly; the nanoparticles assemble like pearls on a string. B A series of ultraviolet-visible spectra 

collected to monitor the interaction between the functionalized gold nanoparticles and the λ-DNA. The nanoparticles 

and λ-DNA cross-link to form a dark precipitate which accounts for the decrease in the absorbances of the two 

species. Spectra were collected every 10 min on a sample with a relative concentration of 7:1 nanoparticle:DNA[183]. 

DNA binding on nanoparticles modified with quaternary ammonium groups has been described as 

sufficiently strong to inhibit the transcription of the complexed DNA[179]. Goodman et al. have shown 

that quaternary ammonium groups provide not only a possibility to bind DNA via electrostatic 

interactions but as well hydrophobic interactions due to the intercalation of alkyl groups into DNA 

strands. Furthermore quaternary ammonium groups have the advantage that their charge isn’t 

depending on the pH as it is the case for amine groups which need to be protonated to be positively 

charged. This fact might improve the adherence of DNA on nanoparticle surfaces in the cytosol, 

where the labeled DNA is exposed to a milieu containing various proteins and a relatively high salt 

concentration at pH 7.4. In such an environment the charges provided by aminated nanoparticles may 

be almost totally screened by present anions leading to the release of DNA in the cytosol. 

Subsequently the following of DNA until the nucleus is impeded. On the contrary nanoparticles 
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bearing quaternary ammonium groups which possess pH independent charged may be higher charged 

at pH 7.4 and therefore keep more positive charges on their surface even in a salty environment such 

as the cytosol. The generation of quaternary ammonium groups on a multifunctional nanoparticle 

might therefore solve the problem that lipoplex transfected DNA actually couldn’t be labeled until its 

internalization into the cell nucleus[164]. Ideally a labeled lipoplex would contain DNA adsorbed to a 

multimodal nanoparticle and secondly marked by small groove intercalating quaternary ammonium 

group bearing gold nanoparticles (see FIGURE 4.3-4).  

 
FIGURE 4.3-4 The schematic illustration shows an ideally labeled lipoplex. DNA should be in interaction with quaternary 

ammonium group bearing multifunctional nanoparticles and equally functionalized gold nanoparticles to assure that it 

can be followed until is transfection into the cell nucleus. 

The labeling nanoparticles should be sufficiently small to enter the nucleus. Furthermore the 

simultaneously labeling of DNA with multifunctional silica nanoparticles and gold nanoparticles 

permit to detect DNA as well in the case that it might dissociate of one of the labeling agents. Our goal 

is in the following to develop a chemical surface modification which permits the syntheses of 

multimodal silica nanoparticles bearing quaternary ammonium groups on their surface for labeling 

DNA in lipoplexes more efficiently. The disposition of a surface modification process permitting to 

implement quaternary ammonium groups on silica will enable us to create a multifunctional 

nanoparticle allowing the visualization of the transfection of DNA by complementary imaging 

modalities on different scales.  
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For the purpose of synthesizing multifunctional nanoparticles to label DNA we aim to modify the 

surface of multimodal silica nanoparticles with quaternary ammonium ions. We have chosen this 

functional group because of the strong affinity of quaternary ammonium ions to the negatively 

charged phosphate entities in the DNA backbone and the pH independence of their positive charge. 

The purpose is to optimize the chemical surface modification of silica nanoparticles to obtain surfaces 

with high zeta potentials under physiological conditions and an isoelectric point at a basic pH. We will 

effectuate the chemical surface modifications tested in our study on basic silica nanoparticles taking 

into consideration the fact that silica is an excellent material for the buildup of different multimodal 

nanoparticles serving as bioimaging tools, which, in spite of the different materials they may include, 

possess the same silica surface serving as a platform for chemical surface modifications. 

1. SYNTHESIS AND CHARACTERIZATION OF EXEMPLARY 

SILICA NANOPARTICLES SERVING AS BODY MATERIAL FOR 

CHEMICAL MODIFICATIONS 

To develop a reliable protocol of chemical surface modification of silica nanoparticles with the 

objective of affixing quaternary ammonium groups on their surface, we synthesize silica nanoparticles 

serving us as body material during the study. The establishment of a chemical surface modification 

protocol relies on the presence of stocks of reproducible, basic silica nanoparticles on which different 

chemical surface modifications can be conducted. The particles need to be sufficiently big and heavy 

to facilitate the observation of their colloidal stability as well as their handling during the washing and 

centrifuging stages of the modification protocols. On the other hand they need to be sufficiently small 

to possess a high surface/weight ratio to facilitate the characterization of the modified surfaces. They 

also need to be small enough to permit the testing of their incorporation to lipoplexes and determine 

their potential for bioimaging applications. We therefore choose to synthesize silica nanoparticles with 

a diameter of 50 nm on which we carry out different chemical surface modifications during our study. 

Their size in the range of tenth of nanometers permits easy handling during the testing of chemical 

surface modifications, furnishes a surface area sufficiently large to permit the characterization of the 

modified surfaces and allows the investigation of their interactions with DNA in lipoplexes.  

The synthesis is of silica nanoparticles is accomplished in a hydro-alcoholic reaction medium under 

alkaline catalysis of ammonia, which originates from the synthesis protocol studied by Stöber, Fink 

and Bohn in 1968[1]. By this method we synthesize small silica nanoparticles, which serve us as seeds 

for further particle growth up to the desired nanoparticle diameter of 50 nm.  

The mechanism of nucleation of silica particles is still controversial. Whereas some authors have 

proposed a nucleation based on the idea of a monomer addition model[2], where monomers react on 

the surface of silica nuclei, which arise in supersaturated solutions of silicic acid provided from the 

hydrolysis of tetraethylorthosilicate (TEOS), in contrast Bogush and Zukovski[3] developed an 
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aggregative growth model in which the formation of nanoparticles is attributed to the coagulation of 

silica clusters.  

Both the growth of the particles and their final size is influenced by multiple parameters such as 

solvents, temperature and the ionic strength of the reaction media. Van Helden et al. used the so-called 

“Stöber process” to synthesize uniform, monodisperse silica nanoparticles, which they stabilized in 

organic media[4]. Whereas Tan et al.[5] studied temperature effects, others like van Blaaderen et al.[6] 

investigated the influence of the ionic strength of the reaction medium on the particle synthesis. They 

determined the production of the hydrolyzed monomer silicic acid as rate limiting during the growth 

process. They showed that concentrations of ammonia and water determine the ionic strength of the 

reaction medium and the ratio of hydrolysis and condensation processes taking place at the same time. 

The nucleating silica clusters coagulate to nanoparticles until their colloidal stability is reached. The 

number of positively charged ammonium ions in the reaction medium determines the particle size at 

which the colloidal stability of the negatively charged silica spheres is obtained. Low concentrations of 

ammonia lead to a fast colloidal stabilization of small particles. High concentrations of ammonia 

result in the growth of nanoparticles which achieve their colloidal stability at higher diameters. Based 

on the Stöber synthesis a reaction protocol has been optimized in our group to obtain small silica 

nanoparticles, which we use as seeds for further growth. 

PROTOCOL 1.0-1  Condition for the synthesis of small silica nanoparticles 

Silica seeds were synthesized by a Stöber process[1]. 2.85 mL H2O (18.2 MΩ) and 28.95 mL NH4OH 

(28-30% w/v) were added to 270 mL EtOH. Under continuous stirring 6 mL TEOS in 270 mL of 

ethanol were rapidly added. The reaction was completed after two hours of stirring at room 

temperature. Silica nanoparticles with diameters of about 11.4 nm were obtained and used as 

seeds to synthesize silica nanoparticles of controlled size. The final reaction volume needed to be 

composed of the ingredients following the partition (% v/v): 93.46% EtOH, 0.49% H2O, 

5.01% NH4OH, and 1.04% TEOS (equivalent to a final concentration of 0.047 mol/L). The size of 

the seeds was determined by TEM for each preparation to permit an exact calculation of the 

volume of TEOS needed for subsequent particle growth. The concentration of silica NPs/L was 

determined by inductively coupled plasma (ICP) (see Annex 1). 

 
The silica particles synthesized by PROTOCOL 1.0-1 have a mean diameter of 11.4 ± 2.8 nm, which is 

determined by transmission electron microscopy (see FIGURE 1.0-1). The transmission electron 

micrographs are analyzed with the help of the program imageJ. The computation of histograms of the 

particle size distribution is based on the sizes counted of over 2000 nanoparticles. We implemented 

dynamic light scattering (DLS) measurements to determine the hydrodynamic mean diameter at and 

also the polydispersity index (PDI) using the cumulants method. According to the cumulants method 

the polydispersity index is a measure for the broadness of the size distribution. Particles with a PDI < 

0.05 are regarded as highly monodisperse, while particles with a PDI between 0.1 and 0.2 possess a 

narrow distribution and are still considered as monodisperse, whereas nanoparticles possessing a PDI 

from 0.2 to 0.5 show intermediate distribution broadness. With a PDI > 0.5 we consider the 
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synthesized nanoparticles as polydisperse; if they have a PDI > 1 we judge them as highly 

polydisperse. For silica seeds a hydrodynamic diameter of 22.33 nm and a polydispersity index of 

0.235 is determined by DLS measurements. This hydrodynamic diameter shown by a size distribution 

by intensity is determined as double-sized compared to the diameter measured by TEM. This is due to 

the fact that the scattering intensities of larger nanoparticles are higher than the scattering intensities of 

smaller nanoparticles, leading to an overestimation of the population of the larger nanoparticles. To 

solve this problem the size of the particles can be determined by showing the size distribution by 

volume, which determines a hydrodynamic diameter of 11.43 nm for the same DLS measurement (see 

FIGURE 1.0-1). Equally it is possible to correct the overestimation of population of larger nanoparticles 

by the application of the Mie theory, which allows the calculation of the size of spherical particles in 

dilute solutions if their refractive index in the surrounding medium is known. 
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FIGURE 1.0-1 A: TEM picture of synthesized silica-seeds obtained in a Stöber reaction environment. B: Size distribution 

of the diameter of silica seeds determined by TEM measurements. C: Size distribution by intensity determined by DLS 

shows the hydrodynamic diameters of the synthesized seeds. D: Size distribution by volume determined by DLS. 

We use these small silica particles, synthesized in a Stöber reaction medium, as seeds, which under 

growth supporting reaction conditions are grown to spherical particles of a chosen size. The ratio of 

ethanol, water and ammonia, chosen to avoid nucleation and to promote the growth of a steady 

number of silica-particles, is determined in a way that the growth of the silica seeds depends solely on 

the quantity of TEOS which is added in the reaction medium. This approach is valid because the 

quantity of TEOS, slowly added to the chosen growth-supporting reaction medium, hydrolyses and 

condenses completely on the provided silica-seeds, without occurrence of secondary nucleation. The 

volume of TEOS needed to undergo particle growth from particles with the diameter d up to a desired 
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particle size with the diameter D can easily be calculated. First we calculate the mass of silica which 

we add to the spherical particles during the growth process: 

 

 

density 

NNP – number of nanoparticles 

 

EQUATION 1.0-1 Calculation of the mass of TEOS needed to grow a silica shell with a predetermined thickness. 

Due to the fact that the amount of TEOS used is equal to the amount of SiO2 formed, the volume of 

TEOS to add is then calculated by the following formula: 

 
 

M – molar mass 

 

EQUATION 1.0-2 Calculation of the volume of TEOS needed to grow a silica shell with a predetermined thickness. 

The particles formed by this process are relatively monodisperse spheres. They consist of a porous, 

amorphous silica matrix and have a rough, silanol group bearing surface. Their point of zero charge is 

achieved at pH 2.5, while at lower pHs the silica-particles are positively charged and with increasing 

pH their surface potential becomes more negative and attains values of about -50 mV to -60 mV above 

pH 6 (see FIGURE 1.0-3).  

PROTOCOL 1.0-2 Condition for the growth of silica nanoparticles 

200 mL of the freshly prepared seed containing solution were introduced to a reaction 

environment consisting of 729 mL EtOH, 279 mL H2O (18.2 MΩ) and 13.5 mL NH4OH (28-30 % 

w/v). The final partitions (% v/v) of EtOH, H2O and NH4OH need to be 75.2 % EtOH, 22.9 % H2O 

and 1.9% NH4OH. A volume of TEOS, depending on the final particle size chosen (Equation ), was 

added constantly during 4 hours under continuous stirring at room temperature. The reaction 

finished after 2 hours of stirring at room temperature and led to monodisperse spherical silica 

nanoparticles of the desired size. After the synthesis, ammonia and ethanol were removed from 

the medium by evaporation at 40°C. The size of the grown nanoparticles was determined by TEM, 

the concentration of silica NPs/L by ICP. 

 
In the following silica nanoparticles of 50 nm diameter are shown (see FIGURE 1.0-2). Their 

polydispersity index is determined by DLS. We obtain a polydispersity index of 0.329 for the NPs 

grown to a target diameter of 50 nm. The spherical form of nanoparticles becomes more even as they 

become larger. The mean size of silica nanoparticles evaluated by statistical analysis of transmission 

electron micrographs is 51.8 nm. 
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FIGURE 1.0-2 Silica nanoparticles of different sizes (50 nm) obtained by growth of the seeds. A: TEM picture 

nanoparticles grown to 50 nm B: Size distribution of the synthesized nanoparticles determined by statistics based on 

the evaluation of TEM pictures. 

The synthesized silica nanoparticles consist of an amorphous, porous silica matrix. The density of 

colloidal silica synthesized by the Stöber method has been determined in literature as between 1.8 and 

2.2 g/m2[6–8] depending on their size and the synthesis method. According to van Blaaderen and 

coworkers[6] we suppose our 50 nm sized silica particles to possess a density of 2.0 g/m2. Subsequently 

the mass of one particle mNP is calculated as 1.3089•10-16 g via the equation: 

 
 

r – nanoparticle radius (cm) 

  – density (g/cm3) 

 

EQUATION 1.0-3 Calculation of the mass of one silica nanoparticle. 

Considering the particles as dense, perfect spheres the developed surface area SD of one silica 

nanoparticle is determined as 7.854•10-15 m2 by the following equation: 

   

EQUATION 1.0-4 Calculation of the surface area area of one silica nanoparticle. 

Based on the two equations the surface per gram of 50 nm sized nanoparticles is calculated as 

60 m2/g. The surface of silica nanoparticles of the same size synthesized by the “Stöber” method has 

been determined as 102 m2/g by BET measurements[8] and the high difference of these two values has 

been explained by the natural porosity of the amorphous silica nanoparticles. 

Silica nanoparticles are covered with non condensed silanol groups, which transform to silanolate 

groups above pH 2.5. This behavior influences their zeta potential. Silica nanoparticles dispersed in an 

aqueous solution at pHs above pH 2.5 possess progressively deprotonated silanolate groups on their 

surface and show an decreasing negative zeta potential. Below pH 2.5 the silanol groups are 

increasingly protonated and the zeta potential of the silica nanoparticles becomes positive. At pH 2.5, 

where solely silanol groups are present on the particle surface it is supposed to be zero. This point is 

known as the point of zero charge of silica nanoparticles. It is determined by the measurement of the 

zeta potential in relation to the pH (see FIGURE 1.0-3). In reality it corresponds more to what is known 

B 

200 nm 
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to be an isoelectric point, because of the fact that the point where solely uncharged silanol groups 

cover the surfaces can’t be determined and the zeta potential is also monitored as zero, when the 

charges of protonated and deprotonated silanol groups equilibrate each other. Considering that silica 

nanoparticles are stabilized by electrostatic repulsion we note that the pH and their zeta potential 

determine their colloidal stability. The silica colloids start to coagulate below pH 4 at pHs near to their 

isoelectric point. 

 

FIGURE 1.0-3 The surface potential of colloidal silica is depending on the pH. A potential of zero charge is observable at 

pH 2.5 reliant on the pKa of 3.54 of the silanol groups on the particle surface. The circles show the effect that the use 

of a catalyst has on the zeta potential of the particles to be modified. 

It has been shown[9–12] that the surface of amorphous silica synthesized by a Stöber process bears four 

to six silanol groups per nm2. By thermogravimetric analysis (TGA) measurements we can follow the 

mass loss of silica nanoparticles depending on the temperature (see FIGURE 1.0-4 A).  
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FIGURE 1.0-4 A: TGA diagrams of 50 nm sized silica nanoparticles B: Differentiated TGA diagram of silica nanoparticles 

synthesized by the “Stöber” method. 

We can clearly distinguish the loss of physisorbed and chemisorbed compounds by the visualization of 

the differentiation of the thermogravimetric diagram (see FIGURE 1.0-4 B). A first intense mass loss 

observed at about 100 °C can be attributed to the loss of water molecules physically adsorbed to the 
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silica surface. A second mass loss can be observed between 160 °C and 600 °C. It can be attributed to 

the loss of chemically adsorbed molecules. Regarding the aspect of this mass loss we can differentiate 

a plateau at a temperature of about 300 °C and at a peak about 400 °C. This observation can be 

explained by the fact that molecules chemically adsorbed to the surface of the nanoparticles leave the 

particles at lower temperatures than molecules chemically adsorbed in the inside of the porous silica 

matrix[13]. The second mass loss is partly due to the condensation of uncondensed silanol groups and 

the loss of chemisorbed water. Perro and co-workers[8] have shown that the mass loss observed 

between 160 °C and 600 °C is too important to be attributed solely to the loss of water. It is equally 

caused by the departure of C2H5 fragments remaining in the silica matrix due to an incomplete 

hydrolyzation of the TEOS precursor during the synthesis of the amorphous colloidal silica. 

We analyzed the silica nanoparticles by diffuse reflectance infrared fourier transform spectroscopy 

(DRIFT). The infrared spectrum of colloidal silica is well known and has already been published in 

literature[14–17]. FIGURE 1.0-5 shows the DRIFT spectrum of colloidal silica. In the spectrum we 

distinguish the vibration bands from 400-1200 cm-1 characterized as Si-O-Si vibration, the bands 

between 1600-2000 cm-1, the two bands in the range of 2900 to 3000 cm-1 attributed to vibrations of 

alkyl chains of unreacted TEOS and the broad band at in the range from 3400 to 3700 cm-1 due to the 

H and OH vibrations. 
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FIGURE 1.0-5 Infrared spectrum of colloidal silica synthesized by a Stöber reaction process recorded by DRIFT 

spectrometry (see Annex 1). 

More precisely the broad and intense band at 3700 - 3400 cm-1 has to be attributed to the stretching 
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H2O and H-bonded OH vibrations of alcohol. According to Martinez et al.[17] the broadness of this 

band may indicate different local environments for hydroxyl groups located in the silica matrix. The 

weak band at 2989 cm-1 is attributed to asymmetric stretching vibrations of C-H bonds and the second 

weak band at 2903 cm-1 to their symmetric stretching vibrations. The C-H bonds detected belong to 

alkyl chains of only partially hydrolyzed TEOS, which are incorporated to the silica matrix. The bands 

in the range of 1600 to 2000 cm-1 have also been observed[15]. The band at 1872 cm-1 can be identified 

as a typical silica overtone band[18,19]. It has been supposed that the band at 1630 cm-1 is due to H2O 

molecules[17] incorporated in the matrix and has been identified as scissor-bending vibration of matrix 

intercalated molecular water[16]. Bands appearing in the region of 1600 to 1700 cm-1 could also pertain 

to stretching vibrations of ammoniac incorporated in the matrix, which is present during the sol-gel 

synthesis of the silica colloids. In contrast the vibration bands in the range of 400-1200 cm-1 are fully 

attributed to Si-O-Si vibrations. The band at 1108 cm-1 belongs to antisymmetric stretching vibrations, 

possessing a shoulder at 1190 cm-1. This shoulder appears due to a splitting of longitudinal optical and 

transverse optical stretching motions. The band at 938 cm-1 has been attributed to Si-O-Si stretching 

vibrations, the band at 803 cm-1 to Si-O-Si bending and the band at 468 cm-1 to Si-O-Si rocking 

vibrations. The weaker band at 561 cm-1 arises due to cyclic structures in the silica network[14,16].  The 

analyzed vibrations are resumed in Annex 2 TABLE 0-1. The detailed analysis of infrared spectra of 

Stöber silica is important, because we will characterize modified silica colloids by DRIFT and analyze 

bands appearing due to organic residues on the silica surfaces.  

We have now introduced the synthesis of the 50 nm sized silica nanoparticles, which we accomplished 

via a sol-gel process introduced by Stöber and coworkers. This paragraph served to analyze the 

morphological and physico-chemical characteristics of these nanoparticles. We were able to show that 

we can synthesize homogenously sized spherical silica nanoparticles. We calculated their mass and 

their surface area. We commented on their amorphous character, their surface potential and the 

density of silanol groups present on their surface. We were able to prove that synthesized silica 

nanoparticles possess a natural porosity and contain high amounts of chemisorbed water end ethoxy 

residues in their matrix. The fact that colloidal silica synthesized by the Stöber method possesses 

well-known physico-chemical properties is advantageous for their use as a platform for chemical 

surface modifications. In what follows these nanoparticles will serve as body material for the study of 

chemical surface modifications suitable to affix quaternary ammonium groups on silica surfaces. 
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2. SYNTHESIS OF QUATERNARY AMMONIUM GROUP BEARING 

SILICA SURFACES BY CHEMICAL SURFACE MODIFICATION 

WITH AN ORGANOFUNCTIONAL SILANE COUPLING AGENT 

Silica surfaces are - like the surfaces of other metal oxides - an ideal platform for chemical 

modification with organofunctional silane coupling agents (see CHAPTER I, PASSAGE 3.1). The 

silanization of the synthesized silica nanoparticles with an organofunctional silane coupling agent 

wearing an organic graft, which contains a quaternary ammonium group, is one strategy to implement 

these functional groups on a metal oxide surface.  2.1 General information about the silanization process and the choice 

of a quaternary ammonium group bearing silane coupling agent 

It will be remembered that organofunctional silane coupling agents are built up of three alkoxy groups 

bonded to a central Si atom, whereas an organic entity R’ is equally connected to the Si atom. We 

previously explained that the chemical modification of a metal oxide surface is obtained by a 

hydrolysis/condensation reaction between the OH groups present on the surface of the metal oxide 

nanoparticles and the alkoxy groups of a chosen silane coupling agent. The silane monomers undergo 

the hydrolysis of their three alkoxy functions and an intermolecular condensation process takes place. 

In an equilibrium reaction the hydrolyzed monomers will condense to form oligomer chains, which 

adsorb to the metal oxide surfaces. Subsequently covalent M-O-Si bonds form via a condensation 

reaction. 

Hydrolysis and condensation reactions can be catalyzed under alkaline or acidic reaction conditions. 

In both cases the catalyzed hydrolysis follows an SN2 mechanism. An SN2 reaction is a nucleophilic 

substitutions reaction taking place via one transition state as shown in CHAPTER I, FIGURE 2.2-9 for the 

hydrolysis of tetraethylorthosilicate (TEOS). It is a reaction of the second order; therefore its reaction 

rate is defined by the EQUATION 2.1-1: 

 
 

Nu – nucleophil 

X – leaving group 

k – rate constant 

 

EQUATION 2.1-1 Equation determining the reaction rate of a SN2 substitution reaction[20]. 

Because of the fact that alkoxy groups need to be activated before being able to act as a leaving 

group[20] the hydrolysis of organofunctional silane coupling agents solely takes place if it is catalyzed as 

shown by Leyden and coworkers for trimethoxymethylsilane, trimethoxyethylsilane and 

monomethoxytrimethylsilane[21]. Weak Broensted bases are known to be good leaving groups, 

therefore the reaction rates depends on the length of the alkylgroup of the alkoxy leaving group. 
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Subsequently tetramethoxysilanes have been shown to hydrolyse twenty times faster than 

tetraethoxysilanes[22]. The reaction rates of condensation reactions depend mainly on the quantity of 

hydrolyzed silane present in the reaction environment[21], the length of the organic graft and the mode 

of catalysis. Under acidic catalysis it becomes the rate determining step of the silanization reaction due 

to the fact that under these conditions hydrolysis takes place much faster[23].  

Whereas aminofunctionalized silane coupling agents are able to autocatalyze hydrolysis and 

condensation due to the basicity of amine groups and are often used in the presence of a base, most 

silane coupling agents are grafted during acid catalyzed silanization processes. The choice of the 

catalysis mode depends subsequently on the applied silane coupling agent. We decided to operate with 

a common quaternary ammonium bearing silane coupling agent during our study 

N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride (TMAPS) (see FIGURE 2.1-1). It has 

already been utilized to synthesize silica nanomaterials containing quaternary ammonium groups 

under acidic or alkaline catalysis.  

O
Si

O
O

N
Cl-

                                   

FIGURE 2.1-1 Structure of N-Trimethoxysilylpropyl-N,N,N-trimethylammonium chloride (TMAPS), which is used to 

modify silica and iron oxide nanoparticles. The modified nanoparticles bear quaternary ammonium groups on their 

surface. 

TMAPS was first employed for the synthesis of hybrid organo-silica spheres. By cocondensing 

TMAPS and TEOS the synthesis of positively charged silica nanoparticles was achieved in 2000, 

when Markowitz et al.[24] added quaternary ammonium functionalized silane to a reversed 

microemulsion before adding TEOS to form silica colloids. The hybrid nanoparticles obtained showed 

a higher mesoporosity than particles synthesized by co-condensation with the organofunctional silane 

coupling agent (3-Aminopropyl)trimethoxysilane (APS)[24]. Hence this strategy was used to synthesize 

mesoporous silica nanoparticles functionalized with quaternary ammonium groups in the presence of 

surfactants[25–27]. After a thermal treatment at 50 °C for 25 hours the prepared hybrid nanoparticles 

show positive zeta potentials of about 35 mV at acidic pH 5, but an isoelectric point which is situated 

at pH 6.73.  

Also the chemical surface modification of silica-materials with TMAPS has been undergone. Some 

groups added TMAPS directly to the Stöber medium used for the synthesis of colloidal silica without 

the employment of a thermal treatment[28–30] leading to particles with maximal zeta potentials of about 

30 mV. Atchison et al.[31] developed two different modification strategies. They modified silica 

particles once under basic reaction conditions with Lysine as the base, a second time under acidic 

conditions with HCl as the catalyst. After the hydrolysis of TMAPS thermal treatment at 60 °C was 

catalyst 

NP 

Cl- 
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applied for both during 24 hours to improve the condensation process. The obtained silica particles are 

positively charged and possess a maximal zeta potential of 40 mV at pH 4, but the modified particles 

showed an isoelectric point at about pH 7 for lysine catalyzed synthesis and pH 8 for acid catalyzed modification[31]. Chang et al. modified silica particles with TMAPS in EtOH using a basic catalysis for 

6 hours. They obtained particles still positively charged at pH 7.35[32]. By applying thermal treatment 

of 70 °C for 12 hours Chen et al. obtained positively charged particles with an isoelectric point at 

pH 8.4[33]. 
Considering that modifying metal oxide nanoparticles with APS or EDPS already leads to particles 

possessing a point of zero charge at about pH 10[23], it is quite surprising that silica nanoparticles 

modified with quaternary ammonium groups, whose charge is pH independent, up to now showed 

points of zero charge between pH 6 and pH 8. Instead gold nanoparticles bearing quaternary 

ammonium functions on their surface show zeta potentials about 34 mV at pH 7.4[34]. Modification of 

Fe3O4 nanoparticles with TMAPS led to particles with an isoelectric point at nearly pH 11[35–37]. 
These results show the enormous potential of the improvement of the chemical surface modification of 

silica nanoparticles with TMAPS. To use quaternary ammonium functionalized nanoparticles to label 

DNA, we need to achieve modified particles, which possess an isoelectric point at highly basic pH to 

guarantee their colloidal stability under physiological conditions at pH 7.4. 

Nevertheless there are limitations to the chemical surface modification of silica with TMAPS. Apart 

from the fact that when we modify colloids chemically we need to guarantee their stability in the 

surrounding medium during the modification process, we should consider that quaternary ammonium 

groups are sensitive to degradation under the supply of temperature at basic pH. Hofmann elimination 

reactions[38] can occur at basic pH and degrade the quaternary ammonium functions (see FIGURE 

2.1-2 A). 

O
Si

O
O

N + -OH

T

O
Si

O
O

N + H2O+

       

FIGURE 2.1-2 The use of TMAPS as a silane coupling agent is limited by several phenomena. A: Hofmann elimination 

reaction may take place under basic conditions under the supply of heat and leads to the elimination of a tertiary 

amine group under the formation of a C-C double bond.  

We have now noted the reactions taking place during the silanization of a metal oxide surface and 

discussed the potential and limitations of a chemical modification of an silica surface with the 

quaternary ammonium bearing silane coupling agent TMAPS. The next passage shows the reactions 

undergone to chemically modify a silica surface with TMAPS.  

A 
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2.2 Exemplary reaction protocols to undergo chemical surface 

modification of silica nanoparticles with the silane coupling agent 

TMAPS 

For the chemical surface modification of silica nanoparticles with TMAPS we established two 

standard surface modification protocols, on which our study is based. At the beginning of this chapter 

exemplary modification protocols used to conduct the chemical surface modification of silica 

nanoparticles with TMAPS will be introduced together with the standard characterizations used to 

verify that successful silanization has taken place.  

PROTOCOL 2.2-1 Modification of silica nanoparticles with TMAPS under basic catalysis 

To 25 mL of 50 nm sized silica nanoparticles possessing a surface area of 6.4 m2, kept in a Stöber 

reaction environment at pH 11.9, 0.36 mL of TMAPS (50% w/v in methanol) was added. The 

reaction mixture was stirred under room temperature for 12 hours before 15 mL of glycerol was 

added. The particles were transferred to the wetting agent glycerol by evaporation of EtOH, 

NH4OH and H2O. Thermal treatment was undergone for two hours at 100°C under vacuum. The 

modified particles were washed four times in absolute ethanol by centrifuging them at 13000 g 

for 25 minutes and finally dispersed in 10 mL H2O (18.2 MΩ). After the redispersion in water, 

ethanol residues were removed from the medium by evaporation at 40°C. 

 
 

PROTOCOL 2.2-2 Modification of silica nanoparticles with TMAPS under acidic catalysis 

From 50 nm sized silica nanoparticles, synthesized in a Stöber reaction environment, EtOH and 

NH4OH are evaporated using a rotary evaporator and 10 mL of the particles was transferred to 

20 mL of a mixture of EtOH/H2O (1:1). The particle concentration of the sol was determined by 

ICP. Different acids such as acetic acid (glacial), HCl (37 % w/v), HNO3 (69 % w/v) or H3PO4 (85 % 

w/v) were used to adjust the pH of the sol; the pH was adjusted to 4.5 using acetic acid, pH 2 with 

H3PO4 and to pH 1 using HCl or HNO3. To a sol containing nanoparticles with a surface area of 

19.5 m2 1.09 mL of TMAPS (50% w/v in methanol) was added. The reaction mixture was stirred at 

room temperature during 12 hours. Subsequently 15 mL of glycerol was added. The particles were 

transferred to the wetting agent by evaporation of EtOH and H2O. Thermal treatment was 

undergone for two hours at 100°C under vacuum. The modified particles are washed four times in 

absolute ethanol by centrifuging them at 13000 g during 25 minutes and finally dispersed in 

10 mL H2O (18.2 MΩ). After the redispersion in water ethanol residues were removed from the 

medium by rotative evaporation at 40°C. 

 
After each modification process diffuse reflectance infrared fourier transform (DRIFT) spectroscopy 

has been used to identify the organic residues attached to the silica nanoparticles after the 

modification. In FIGURE 2.2-1 we show an exemplary spectrum of TMAPS modified silica. 
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FIGURE 2.2-1 A: Infrared spectra of colloidal silica bearing quaternary ammonium groups after chemical surface 

modification of silica nanoparticles with TMAPS (condition 006, see Annex 2, TABLE 0-3). The green boxes indicate 

regions containing supplementary vibrations detectable after the modification with TMAPS. B: Enlargement of the 

section containing O-H and C-H vibrations. C: Enlargement of the spectrum showing C-N and N-H vibrations, making it 

possible to distinguish quaternary ammonium groups. 

Compared to the spectrum of bare silica shown in FIGURE 1.0-5 we can see an additional band at 

2951 cm-1 in the spectrum, which can be attributed to C-H stretching vibrations of the methyl groups 

attached to a nitrogen atom. In the range from 1500 to 1390 cm-1 we can distinguish two vibration 

bands, which arise after TMAPS modification. The band at 1412 cm-1 is attributed to scissoring C-N 

deformation vibrations. The band of C-H scissoring vibrations arises at a value of 1477 cm-1 in the 

presence of quaternary ammonium groups[39,40]. The analyzed vibrations are resumed in Annex 2 

TABLE 0-1. 

Further proof of successful surface modification of the nanoparticle surfaces can be given by mass 

spectrometry. We will discuss the mass spectrum shown in FIGURE 2.2-2, which we obtained by 

detecting the mass fragments leaving from TMAPS modified nanoparticle surfaces with increasing 

temperature recorded during the thermogravimetric analysis of TMAPS modified nanoparticles. In the 

temperature range from 160 °C to 650 °C solely fragments of the organic part TMAP 

(TMAP = C5H15N) of the TMAPS coupling agent are detectable due to its degradation. The inorganic 

part of the silica particles remains stable. The loss of grafted organic fragments starts when heating up 

the samples above 160°C. Mass losses obtained below this temperature are caused by desorption of 

physically adsorbed water. Later loss of water leads to the volatilization of water molecules, which are 

chemically adsorbed or enclosed to the silica matrix.  
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FIGURE 2.2-2 Mass spectrum of TMAPS modified silica nanoparticles (condition 006, see Annex 2, TABLE 0-3) recorded 

with a TG coupled mass spectrometer (see Annex 1). 

Regarding the mass spectrum of TMAPS we detect a spectral line of m/z 18, which can be attributed 

to water and CH4
+, m/z 19 can be attributed to H3O+ and m/z 17 to OH+ fragments provided from 

water. Contributing to the mass spectrum there may also be fragments such as CO+ and N2
+ (m/z = 

28), NO+ ( m/z = 30, O2 (m/z = 32) and NO2
+ (m/z = 46). The fragments at m/z 35 and 37 are 

provided by Cl+ isotopes, fragment m/z 36 probably from HCl+ fragments.  

The most intense spectral line is that of m/z 44; it can be assigned to different compounds such as 

CO2
+, but also C3H8

+ fragments emerging out of the propyl chain of the graft and C2H6N+ fragments, 

which originate from the quaternary ammonium functions. Related nitrogen-containing fragments 

which we observe are C2H7N+ fragments (m/z = 45), C2H5N+ fragments (m/z = 43), C2H3N+ (m/z = 

41) and CH4N+ (m/z = 30). Further decomposition of the propyl chain leads to the fragments C3H7
+ 

(m/z = 43), C2H6
+ (m/z = 30), C2H5

+ (m/z = 29), C2H4
+ (m/z = 28), C2H3

+ (m/z = 27) and C2H2
+ 

(m/z 26).  

The spectral lines at 15, 14 and 12 m/z correspond to CH3
+, CH2

+ and C+ fragments. It is noticeable 

that the spectral line corresponding to m/z 26 shows a second peak, which does not appear at the line 

of m/z 27, which indicates that in addition to the alkyl fragment C2H2 a second species contributes to 

this mass repartition, which can be identified as CH3Cl2+ and CH2Cl2+ (37Cl). Adjacently the related 

fragments of CH3Cl2+ and CH2Cl2+ (35Cl) appear which are both detectable at m/z 25. These fragments 

are characteristic fragments deriving from quaternary methyl ammonium chlorides[41]. All the 

fragments observed in the presented mass spectrum are shown in Annex 2 TABLE 0-2, which allows an 

overview of the detected fragments.  
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PROTOCOL 2.2-1 and PROTOCOL 2.2-2 are suitable for the chemical surface modification of silica 

nanoparticles with TMAPS. The analysis of chemically modified nanoparticles by DRIFT and mass 

spectrometry shows that the surface modification of the silica nanoparticles with TMAPS takes place. 

Considering the fact that quaternary ammonium silanes don’t autocatalyze the 

hydrolysis/condensation process occurring during this type of modification, we needed to choose a 

catalyst. Therefore we have implemented the chemical surface modification of silica nanoparticles 

with TMAPS using different catalysts at basic and acidic pHs. The formation of silanic layers formed 

by condensation depends in general on the conditions of the modification reaction as the quantity of 

TMAPS added per m2 of silica surface available for silanization or the duration time and temperature 

of the thermal treatment[42].  

By implementing a chemical surface modification we can vary these different parameters to influence 

the silanization process. In what follows we will investigate the influence of the above named 

parameters on the success of the surface modification of colloidal silica with TMAPS. Furthermore we 

will explore the physico-chemical characteristics of the nanoparticles modified under different 

conditions. The conditions used to conduct these experiments are resumed in Annex 2, TABLE 0-3. 2.3 Influence of the amount of TMAPS during the chemical surface 

modification of silica nanoparticles on the final TMAP coverage  

The amount of silane coupling agent added during the chemical surface modification to modify a fixed 

surface of silica generally impacts the surface density of the organic grafts TMAP present on the 

modified silica nanoparticle after the silanization process. Thermogravimetric analysis of the modified 

nanoparticles gives information about the density of the grafts on the particles surface. Observing the 

TG coupled mass spectrum of TMAPS modified nanoparticles we have seen that organic residues 

attached to the silica NPs are detected in the temperature range from 160 to 650°C and that mass 

losses below 160 °C result from the loss of physically adsorbed water. The surface density d of an 

organic graft is therefore calculated by the following equation: 

 
 

d(graft) – surface density of an organic residue leaving between 160 and 650°C 

m160-650°C  – mass loss measured between 160 and 650°C 

m0 (160°C)  – mass of modified silica after the loss of physisorbed water 

M(graft) – molar mass of the organic graft  

               (for TMAPS graft = TMAP+ +Cl-, C5H15NCl = 136.45 g/mol) 

Sspec. – specific surface area of the modified NP 

 

EQUATION 2.3-1 Surface density of organic residues on the modified silica surface. 

The specific surface S of silica colloids depends on their volume and surface area. It has been 

calculated by the following formula: 
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NNP – number of nanoparticles (mT/mNP) 

Sd. – surface area of one nanoparticle  

mT – total mass of nanoparticles in the sample 

SiO2 – density of amorphous silica (g/cm3) 

VNP – volume of one silica nanoparticle (cm3)  

 

EQUATION 2.3-2 Calculation of the specific surface of silica nanoparticles. 

For nanoparticles of 50 nm diameter a specific surface of 60 m2/g is calculated. By determining the 

surface density of the attached organic residues we receive information about the amount of TMAPS 

needed to achieve saturation of the silica surface with the silanes used after the chemical modification 

process. The surface modification of silica with TMAPS has been effected as described in PROTOCOL 

2.2-2 with varying concentrations of TMAPS added (conditions 001-008, see Annex 2, TABLE 0-3) and 

the measured TGA diagrams are shown in FIGURE 2.3-1 A. For weak concentrations of TMAPS 

(2.5 μmol/m2, 5 μmol/m2) the calculated surface densities (see FIGURE 2.3-1 B) may be overestimated 

due to the fact that the coating obtained under these conditions is not supposed to be homogenous and 

the contribution of chemically adsorbed water also leaving in the temperature range between 160 °C 

and 650 °C may be more important than for homogenously coated surfaces. In general we try to avoid 

the falsification of the calculated surface densities due to the loss of water and ethoxy groups 

chemically adsorbed to the silica matrix of nanoparticle by the subtraction of the mass loss measured 

for the unmodified silica in the temperature range from 160 °C to 650 °C. 
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FIGURE 2.3-1 The two plots show the influence of the concentration of TMAPS added per m2 of silica surface on the 

surface density obtained after TMAPS grafting. A: TGA diagrams of 50 nm sized silica nanoparticles chemically 

modified in the presence of different amounts of TMAPS. B: The calculated surface density of TMAP grafts on the 

modified silica colloids is presented in function of the amount of TMAPS added during the modification process. 

Regarding the evolution of the surface densities of the modified nanoparticle as a function of the 

amount of TMAPS (nTMAPS) during the modification process, we can see that upon the addition of 

60 μmol of TMAPS per m2 of silica surface the surface densities of the graft stay constant (see FIGURE 

2.3-1). The surface density of TMAP grafts on the modified silica colloids presented in function of the 

amount of TMAPS added during the modification process show a plateau due to the fact that even by 
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adding higher amounts of TMAPS the surface density of the modified nanoparticles batches stays 

around 7.91 ±0.04 μmol of TMAP grafts per m2 on the modified silica. The finding that with 

increasing concentration of an organofunctional silane coupling agent the surface density of the 

organic grafts increases as well corresponds to similar observations in literature. A similar increase of 

surface density in relation to the silane concentration present during the surface modification 

measured by TGA mass loss has also been observed for the modification with aminosilanes as 

APTES[23]. Aiming to achieve a maximal coverage of silica nanoparticles with TMAPS we will 

implement the chemical surface modifications using an amount of 100 μmol TMAPS per m2 of silica 

surface which we wish to modify.  

The observation that the amount of grafted silane on a nanoparticle can be enhanced by the increase 

of nTMAPS during the chemical surface modification has been indirectly confirmed by the analysis of 

the zeta potential of nanoparticles modified with increasing amounts of TMAPS. An increase in the 

surface density of TMAP grafts should also lead to an increase in the positive charges present on the 

nanoparticle surface and subsequent an increase of the zeta potential of the modified nanoparticle. For 

low amounts of nTMAPS it has been shown that the zeta potential of TMAPS modified particles 

increases with the increase of the initial concentration of TMAPS added to the reaction 

environment[32,43]. It proved possible to increase the zeta potential of TMAPS modified nanoparticles 

from 7.9 mV at pH 7.35 using 0.296 μmol/m2 TMAPS to a potential of 19.0 mV at the same pH by 

the use of 2.18 μmol/m2 TMAPS[32]. The relation of the increase in surface density and the increase in 

the zeta potential as a function of nTMAPS added to the modification reaction may be shown by the 

fact that the increase of surface density as well the increase of the zetapotential in function to the 

added silane amount follow the form of a Langmuir-type isotherm expression[23,43]. 

In summing up all the relevant information this paragraph has enabled us to see that the surface 

density of a TMAPS modified nanoparticle increases with the amount of TMAPS added to the 

chemical surface modification. We saw that the values of surface density reach a plateau as soon as 

nTMAPS exceeds 60 μmol per m2 of silica surface available for modification. Further addition of 

TMAPS apparently can’t increase the grafting density further, because the silica surface becomes 

saturated. 2.4 Investigation of the surface density of TMAPS-coated silica 

nanoparticles obtained by chemical surface modification at 

different pHs 

Intending that the pH on which the chemical surface modification is conducted may influence 

hydrolysis and condensation taking place (see PARAGRAPH 2.1) as well as the adsorption behavior of 

formed polysiloxane chains on the silica nanoparticles, we decided to implement the chemical surface 

modification of silica nanoparticles with TMAPS following PROTOCOL 2.2-1 and PROTOCOL 2.2-2 at 

different pHs (conditions 006,009-011, see Annex 2, TABLE 0-3). Comparing the TGA diagrams of 



97 
 

TMAPS-coated silica (see FIGURE 2.4-1), we can see that the observed mass losses differ from each 

other depending on the pH used during the modification process.  
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FIGURE 2.4-1 A: TGA diagrams of TMAPS-coated nanoparticles resulting from modifications with different catalysts. 

B: Differentiated TGA diagrams of TMAPS-coated nanoparticles resulting from modifications with different catalysts. 

Desorption and degradation of differently adsorbed silane layers can be followed by 

thermogravimetric analysis (TGA). During the heating process for modified nanoparticles physically 

adsorbed compounds such as water molecules stabilized on the modified surface by hydrogen bonds, 

will leave first in the temperature range from 30 °C to 160 °C. The mass spectrum of TMAPS 

(see FIGURE 2.2-2) enabled us to see that organic fragments of the graft leave above temperatures of 

160 °C and that they are completely removed when the maximum temperature of 650 °C is reached. 

Regarding the differentiated TGA diagrams (see FIGURE 2.4-1 B) we can see that at 160 °C a further 

mass loss takes place. The intensities of the observed mass losses increase first in the range from 160 

°C to 360 °C and a second time in the temperature range from 360 °C to 600 °C.  

The mass losses in the temperature range from 160 °C to 360 °C increase due to the departure of 

ionically adsorbed compounds like Cl- ions as observed in the mass spectrum shown in FIGURE 2.2-2. 

The mass losses subsequently decrease when all ionically adsorbed compounds leave the surface at 

about 360 °C. It has been shown that a covalently bound monolayer of an organofunctional silane 

coupling agent on silica starts its decomposition at about 460°C[44,45]. Therefore we presume that in the 

temperature range from 160 °C to 360 °C we detect the departure of organic fragments provided by the 

decomposition of the organic grafts of the outer layer of disordered silane multi layers condensed to 

the particle surface. The second increase of the mass losses observed in the TG diagrams in the 

temperature range from 360 °C to 650 °C may result from the loss of lower covalently bound silane 

layers of the cross-linked silane multilayers. 

Regarding the total mass loss in the range from 160 °C to 650 °C we observe the highest mass loss for 

nanoparticles modified with TMAPS under basic conditions. The modifications implemented at pH 1 

(HCl) and pH 4.5 (acetic acid) show a similar mass loss, whereas nanoparticles modified at pH 2 

(phosphoric acid) show the smallest mass loss. From the mass losses m (mg) observed in the 

temperature range from 160 to 650 °C we subtract the mass loss m (mg) observed on the silica 

control particles in the same temperature range, which permits us to exclude the desorption of 

A B 
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chemically adsorbed water out of the calculations implemented to determine the surface density of 

TMAPS. An exemplary calculation is presented in EQUATION 0-1 (see Annex 3) and the calculated 

surface densities are reproduced in TABLE 2.4-1. 

TABLE 2.4-1 Surface density of TMAPS-modified silica nanoparticles 
obtained by conducting the surface modifications at different pHs  

Catalyst pH m160-650°C  dTMAPS (μmol/m2) Graft/nm2 

NH4OH 11.9 - 11.93 8.08 4.8 

Acetic acid 4.5 - 11.75 7.69 4.6 

H3PO4 2.0 - 8.34 0.80 0.5 

HCl 1.0 - 12.3 8.38 5.0 

 
These values as well as the surface densities shown in FIGURE 2.3-1 B are high compared to maximum 

grafting densities of the structurally similar but sterically less big silane coupling agent APS. On metal 

oxide surfaces a maximum grafting density of 7.5 μmol/m2 has been determined[23]. If we implement a 

modification with TMAPS which bears a sterically large trimethylammonium group we expect a 

grafting density inferior to the maximal grafting density of APS, but similar to the density that is 

observed for the modification of iron oxide with EDPS of 4.9 μmol/m2[23]. However, for the 

modifications effectuated with NH4OH, acetic acid or HCl we can determine grafting densities of 

about 7.69 to 8.38 μmol/m2. Only the TMAPS film obtained by catalysis with phosphoric acid possess 

a surface density of 0.8 μmol/m2, which might indicate the presence of about 0.5 TMAP grafts on one 

nm2 of the modified silica surface.  

It is known that with the increase of the initial concentration of the silane used for the surface 

modification the percentage of doubly and triply bridged silane units increases as well[42]. The 

formation of silane multilayers has been observed for different silanes on different materials[44,46–49]. A 

monolayer of (3-aminopropyl)ethoxy-dimethylsilane possesses a surface density of two amine 

functions per nm2[50]. Aminosilanes as APTES have been shown to form multilayers, which consist of 

4 to 6 layers deposited on a modified surface[51]. The grafting of disordered silane multilayers might be 

the origin of these unexpectedly high surface densities. Moreover the surface densities calculated are 

overestimated due to the fact that in the temperature range from 160-650 °C the TMAPS modified 

silica nanoparticles lose at the same time as water and ethoxy residues, which have been chemically 

adsorbed to the silica matrix. The subtraction of the mass loss measured for the unmodified silica from 

the m values obtained out of the TGA diagrams of modified nanoparticles permits us to avoid this 

falsification as much as possible. Anyhow we can’t fully exclude the possibility that the departure of 

chemically adsorbed water in the silica matrix and ethoxy molecules contribute to the calculated 

surface density.  

In this paragraph we have discussed the surface densities of TMAP grafts on silica nanoparticles, 

which have been modified at different pHs. We noted that the calculated surface densities may be 

overestimated due to a continuous loss of matrix adsorbed water and ethoxy residues of the silica 

nanoparticles. The differences between the surface densities of surface coatings of TMAPS on silica 
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observed between particles modified at unequal pHs may result from a differing “organization” of the 

silane layer conjugated to the colloidal silica. The pH may influence the hydrolysis/condensation rates 

and surface modifications at different pH may follow different adsorption processes of the silane 

oligomers on the metal oxide surface before the condensation of the silane film to the surface leading 

to silane coatings of different morphologies.  2.5 Investigation of the zeta potential of TMAPS-coated silica 

nanoparticles obtained by chemical surface modification at 

different pHs 

The assumption that the pH of the reaction environment influences the chemical surface modification 

of silica with TMAPS can be maintained, considering the fact that the silica surface which is modified 

possesses a differing zeta potential depending on the pH at which the modification has been conducted 

(see FIGURE 1.0-3). Under basic reaction conditions silica has a negatively charged surface. When 

conducting the surface modification of silica with TMAPS in the presence of NH4OH as a base (cond. 

009, Annex 2, TABLE 0-3), the pH of 11.9 of the reaction setting determines a zeta potential of the 

particles of about -55 mV. Using a weak acidic catalyst such as acetic acid (AcAc) with a pKa of 4.75 

we implemented the surface modification on silica particles possessing a zeta potential of about -

30 mV. Using strong acids like H3PO4 (cond. 010), HCl (cond. 011) or HNO3 (cond. 012) as a catalyst 

we adjusted the pH of the reaction at pH 2 to 1 permitting us to conduct the silanization of silica with 

TMAPS on a surface, which possesses positive zeta potential of about 10 mV. These differences may 

have a significant impact on the adsorption behavior of TMAPS on the silica surfaces during the 

silanization process. 

Regarding the zeta potential (see FIGURE 2.5-1) of TMAPS-coated particles obtained by the differently 

catalyzed modification processes (conditions 006,009-012, Annex 2, TABLE 0-3) we see that 

nanoparticles modified at different pHs possess a different isoelectric point.  
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FIGURE 2.5-1 Zeta potential of TMAPS-coated silica nanoparticles chemically modified at different pHs. 
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Catalysis with H3PO4 at pH 2 shows an isoelectric point at pH 7.56, whereas the TMAPS-coated 

particles by modifications implemented at pH 1 with the acids HCl and HNO3 show isoelectric points 

at pH 7.1 and pH 7.3. The nanoparticles modified in the presence of acetic acid as a catalyst show an 

intermediate isoelectric point at about pH 8.44, similar to the particles modified under basic conditions 

possessing an isoelectric point at pH 8.7. Even if the isoelectric point of nanoparticles modified under 

basic conditions is higher than the isoelectric point of nanoparticles modified at pH 4.5, the particles 

modified in the presence of acetic acid show a much faster increase in the zeta potential at pHs below 

8.4. However, the modified nanoparticles start to coagulate in a potential range from 20 mV 

to -20 mV. Subsequently even for the TMAPS modified nanoparticles with the highest obtained 

isoelectric point (cond. 006, 009) we observe a reduced colloidal stability in the pH range from pH 6.5 

up to pH 10, where the optical density of the samples increases due to higher light scattering of 

coagulated particle clusters. The problem of the colloidal stability of the modified nanoparticles is even 

more critical under physiological conditions, because of supplemental salts present in physiological 

media, which screen the positive charges of the modified surface decreasing their repulsion to each 

other.  
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FIGURE 2.5-2 A: Optical density of nanoparticles modified with TMAPS resulting from modifications underwent with 

NH4OH an acetic acid as catalysts is shown in dependence of the pH. It has been measured by UV-VIS spectrometry at 

800 nm. The zone of flocculation is surrounded by a light red box. 

The isoelectric points observed stay in the pH range where isoelectric points of TMAPS modified silica 

nanoparticles have been observed in the literature. Atchison et al.[31] effectuated the modification silica 

nanoparticles with TMAPS at pH 8.9 catalyzed by lysine underwent and obtained TMAPS modified 

silica particles with an isoelectric point at pH 6.8, but they showed that the modification of silica 

colloids with TMAPS in an acidic environment at pH 1.2 leads to TMAPS modified silica NPs, which 

posses an isoelectric point at pH 8.1 and a zeta potential of about 10 mV at pH 7.4. Xiao et al.[43] were 

able to obtain modified TMAPS particles possessing zeta potentials of about 22 mV at pH 6 and an 

isoelectric point at pH 8.3 by the use of HCl as a catalyst undergoing the modification at pH 4, 

whereas Chen et al. [33] obtained positively charged particles with an isoelectric point at pH 8.4. 
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The inability to increase the isoelectric point of TMAPS-coated silica nanoparticles may be explained 

by the presence of uncondensed silanolate groups remaining on the modified surfaces. The TMAPS 

silanes may be grafted in disordered structures, permitting its positively charged organic head groups 

to interact with free silanolate groups on the silica surface (see FIGURE 2.5-3). 

FIGURE 2.5-3 Scheme of possible orientations of TMAPS oligomer chains on negatively charged silica surfaces.  

To know if the slow addition of TMAPS might lead to the adsorption and formation of a less 

disordered TMAPS coating we effectuated an experiment during which we added the amount of 

TMAPS drop-wise for five hours to the silica nanoparticles dispersed in a sol which has been adjusted 

to pH 4.5 with acetic acid. But even the slow addition of the silane TMAPS for five hours (condition 

013, Annex 2, TABLE 0-3) did not seem to improve the outcome of the coating of silica nanoparticles 

with TMAPS (see FIGURE 2.5-4). 
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FIGURE 2.5-4 Zeta potential of nanoparticles modified with TMAPS under slow addition of the silane (condition 013). 

The striving of TMAPS to organize itself with its positively charged quaternary ammonium group 

oriented to a negatively charged surface as shown in FIGURE 2.5-3 A has been demonstrated by Jin et 

al.[52], who exploited this effect to synthesize porous silica matrixes around negatively charged, 

polyphosphate macromolecules. They used electrostatic interactions to assemble TMAPS molecules 

around DNA strands and then condensed silanolate groups at the exterior of this supramolecular 

assembly with TEOS to obtain two dimensional porous silica frameworks. Zheng et al.[25] used the self 

organization of TMAPs around droplets of anionic surfactants such as N-myristoyl-l-glutamic acid to 

synthesize silica materials possessing quaternary ammonium functions bearing pores. Taking 

advantage of the electrostatic interactions of quaternary ammonium headgroups of TMAPS on 

 

+ 
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negatively charged surfactant, they use TMAPS functions as a co-structure-directing agent. Similar 

materials have been obtained by the co-condensation of TMAPS and TEOS around CTAB micelles, 

which permit the organization of TEOS and a subsequent formation of mesoporous silica on their 

quaternary ammonium bearing micellesurface[26,27]. Chen et al.[33] even suppose that during the use of 

such micelles TMAPS might even exchange with CTAB molecules of the micelles, which underlines 

their urge to orient their positive charge towards negatively charged compounds such as hydrolyzed 

TEOS. The tendency of quaternary ammonium bearing silanes to form disorderd networks of 

multilayers on modified surface with the quaternary ammonium headgroups plunged in the interior of 

the silane layer has, as we suggest, been indirectly demonstrated by Marchini et al.[53]. They showed 

that surfaces modified with quaternary ammonium-bearing silanes by spin-coating processes can, after 

previous removal of quaternary ammonium functions on the surface, regenerate their antibacterial 

functions during treatment at 80 °C for 24 hours. They explain this observation by the movement to 

the surface of quaternary ammonium moieties, which had originally been located in the inner of the 

hybrid silane network.  

Nevertheless we would have expected that when modifying silica nanoparticles with TMAPS under 

acidic conditions, we would decrease this behavior due to the fact that the surface of the silica 

nanoparticles, which we wish to modify, is positively charged and therefore electrostatically repulses 

the positively charged quaternary ammonium groups. Although we expected more even silane layers 

on silica surfaces for modifications implemented with strong acids, the nanoparticles obtained under 

these conditions finally show the lowest isoelectric points at about pH 7.  

We might explain these results due to an observation we made on samples modified at pH 2. 

Measuring the zeta potential of silica nanoparticles modified with TMAPS at pH 2 in phosphoric acid 

immediately after the modification process we observed them to possess an isoelectric point at pH 9.8. 

After dialyzing the sample in ultrapure water (18.2 MΩ) for one day the zeta potential of the same 

particles was decreased and the isoelectric point shifted to pH 7.56 (see FIGURE 2.5-5).  
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FIGURE 2.5-5 Zeta potential of NPs modified with TMAPS in the presence of phosphoric acid as a catalyst before and 

after dialysis. 
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Imagine that in the beginning of the silanization reaction the positively charged silica surface is 

surrounded by negatively charged phosphate ions, to which formed polysiloxane oligomers adsorb to 

the surface in a more or less disordered way and are then grafted on the silica surface. We assume that 

at first the remaining silanolate groups are screened by phosphate ions, which stay adsorbed to the 

modified silica surface, so that the quaternary ammonium groups of the coating stay at the surface of 

the silane layer and contribute to the overall charge of the nanoparticle surface (see FIGURE 2.5-6). In 

the following we measure an isoelectric point at pH 9.8. 

 

FIGURE 2.5-6 Scheme representing the surface of nanoparticles modified with TMAPS at pH 2 immediately after the 

silanization process. 

Dialysis of these nanoparticles in ultrapure water will lead to a progressive release of the phosphate 

ions, which were electrostatically attracted to the silica surface, which has been positively charged 

during the execution of the chemical surface modification but becomes negatively charged in water. 

When we measured the pH of a sol containing TMAPS-coated nanoparticles modified at pH 2 in the 

presence of phosphoric acid immediately after the first dispersion of the newly modified nanoparticles 

in ultrapure water (18.2 MΩ, pH 5.8) we detected that the pH of the sol is pH 4, which is an 

observation that might be evidence of the release of phosphate ions taking place.  

After the release of all phosphate ions originally adsorbed to the particle surface during dialysis 

negatively charged silanolate groups emerge on the surface of the modified nanoparticles. 

Subsequently the quaternary ammonium groups will interact with the appearing silanolate groups, so 

that the isoelectric point of the TMAPS-coated nanoparticles shifts to pH 7.56. The fact that the 

isoelectric point shifts to even a pH lower than the pHs observed for nanoparticles coated with 

TMAPS at pH 4.5 and pH 11.9 might be explained by the fact that the initial adsorption of phosphate 

ions to the positively charged silica surface at pH 2 prevented the surface from interaction with the 

TMAPS molecules and hindered the accomplishment of the chemical surface modification. 

To ameliorate the modification process further modification conditions have been tested 

(conditions 014-016, Annex 2, TABLE 2.4-1). To find out whether during thermal treatment a change of 

catalyst and pH before the condensation of the silane layers to the surfaces may affect the quality of 

the coated silane films, the use of different acidic and basic catalysts during the hydrolysis, 

oligomerization and supramolecular assembly of silane oligomers on the silica colloids and during the 

condensation process has been tested. The experiments did not lead to improved results (see FIGURE 
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2.5-7 A, B, C), which shows that once they are adsorbed to the silica surface, polysiloxane films are not 

able to easily reorganize before their condensation to the particle surface.  
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FIGURE 2.5-7 Zeta potential of NPs modified in the presence of different acidic and basic catalysts during the hydrolysis 

in an aqueous medium and during the condensation process in glycerol (A: condition 014, B: condition 015, C: 

condition 016).  

The results presented up to now show the influence of pH on the development of a silanization 

reaction with TMAPS and made it possible to outline a major problem related to the coating of silica 

nanoparticles with the a permanently positively charged head group possessing silane coupling agent 

TMAPS, which is its tendency to interact electrostatically with negatively charged silanolate groups 

on the silica surfaces. This behavior leads to the formation of a disordered silane coating in which the 

quaternary ammonium groups plunge towards silanolate groups remaining on the surface after the 

silanization. If we compare the different conditions tested, the chemical surface modification of silica 

nanoparticles with TMAPS seems to work best at pH 4.5 adjusted with acetic acid. For this condition 

we obtain nanoparticles with an isoelectric point at pH 8.4, but almost more important a zeta potential 

rapidly increasing below pH 8.4 so that they possess a zeta potential of about 25 mV at pH 7.4 (see 

FIGURE 2.5-1). Nevertheless the zeta potential at this pH is too low to guarantee the colloidal stability 

of these TMAPS-coated nanoparticles under physiological conditions. In the following we will try to 

improve these results by varying the temperature and the duration time of the thermal treatment. 

  

B A 
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2.6 Influence of temperature and duration time of the thermal 

treatment on the condensation of TMAPS oligomers on silica NPs 

The importance of thermal treatment to the success of the modification of metal oxide nanoparticles 

with organofunctional silane coupling agents is well known[21,23,33,49]. By refluxing mesoporous silica 

nanoparticles in ethanol at 70 °C in the presence of TMAPS for 12 hours and subsequent heating at 

60 °C for 24 hours of the nanoparticles in acidic ethanol, well-modified nanoparticles possessing an 

isoelectric point at pH 8.4 have been obtained[33]. Xiao et al.[43] showed that an increase in the 

temperature applied during the modification of silica with TEOS from 20 °C to 70 °C makes it 

possible to increase the zeta potential at pH 4.5 of about 4 mV. Furthermore it is known that moderate 

heating liberates amine functions which are deficiently turned towards and captivated in the grafted 

silane layers[49]. This can be explained by the fact that heating under vacuum as accomplished during 

thermal treatment leads to the breaking of the hydrogen bond formed between silanolate groups of the 

silica nanoparticles and the amine groups of the silane[23]. Similar behavior has been shown on surfaces 

modified with quaternary ammonium group bearing silanes by Marchini and co-workers[53], who 

showed that heating at 80 °C for 24 hours permits the regeneration of antibacterial activity of surfaces 

coated with TMAPS. Therefore we would like to investigate if higher temperature or a longer duration 

time of the thermal treatment, which we effectuate to promote the condensation of TMAPS on silica 

nanoparticles, has a beneficial effect on the zeta potential of TMAPS-coated nanoparticles. The 

increase in temperature or duration time of the thermal treatment might help to break the ionic bond 

forming between quaternary ammonium groups and the silanolate groups of silica nanoparticles, and 

lead to an improved grafting.  

Subsequently we effectuated the thermal treatments of the differently catalyzed modifications at 

temperatures of 130 °C and at 150 °C (conditions 017-025, see Annex 2, TABLE 0-3) Thermal 

treatments have been undergone in glycerol serving as a wetting agent at high temperatures for 

modification reactions at pH 1, pH 2, pH 4.5 and pH 11.9, and the zeta potentials were measured 

afterwards. The results are presented in comparison with the zeta potential of nanoparticles modified 

by thermal treatment at 100 °C (see FIGURE 2.6-1).  

Regarding the zeta potentials measured we noted that thermal treatment at high temperature did not 

lead to TMAPS-modified nanoparticles with higher zeta potential nor isoelectric point. The 

modifications implemented with NH4OH or acetic acid led to lower zeta potentials and lower 

isoelectric points of TMAPS-coated particles, which may be caused by an intermolecular condensation 

of silane oligomers and less condensation of silane molecules to the nanoparticle surface. Equally 

nanoparticles obtained from modifications undergone at high temperature at pH 1 in the presence of 

nitric acid do not show an improved zeta potential. We observed that the isoelectric points of modified 

nanoparticles modified at high temperatures in the presence of phosphoric acid increase a little, but 

after dialysis of the samples we noted that their isoelectric points decrease significantly as shown 

before (see FIGURE 2.5-5).  
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FIGURE 2.6-1 Zeta potentials of NPs modified with TMAPS after thermal treatments at different temperatures in the 

presence of A: Acetic acid (cond. 006, 017, 018), B: HNO3 (cond. 012, 019, 020), C: NH4OH (cond. 009, 021, 022) and 

D: H3PO4 (cond. 010, 024, 025) as a catalyst. 

The observation that the isoelectric points of nanoparticles modified with TMAPS at high 

temperatures shift to more acidic pHs may be explained by the fact that physically adsorbed silane 

oligomers may detach from silica surfaces more rapidly under the influence of heat, so that they can 

leave the particle surface without being condensed to the grafted layer. At alkaline pHs heat induces 

degradation processes of the quaternary ammonium groups via Hofmann elimination reactions[54], 

which might be a further reason for the low isoelectric points observed for nanoparticles modified at 

high temperature in the presence of a base. To be sure to avoid such chemical degradations we decided 

to accomplish a surface modification of silica nanoparticles at lower temperature (50 °C) and in the 

presence of acetic acid. At this temperature (50 °C) modifications of iron oxide nanoparticles with 

TMAPS led to isoelectric points at pH 11[35–37]. However in our case the effectuation of thermal 

treatment at 50 °C for two hours as well as the effectuation of a thermal treatment for twelve hours 

(conditions 026, 027, Annex 2, TABLE 0-3) didn’t improve the condensation of TMAPS at the 

nanoparticle surface (see zeta potentials in FIGURE 2.6-2 A and B). The high isoelectric points observed 

for iron oxide nanoparticles, which have been modified with TMAPS are probably due to the 

characteristic surface properties of unmodified iron oxide nanoparticles already possessing an 

isoelectric point at pH 7. 

To investigate the influence of a prolongation of the duration time of the thermal treatment further, 

thermal treatment has been accomplished at 100 °C for twelve hours for the modification of silica 

nanoparticles with TMAPS in the presence of acetic acid or NH4OH (conditions 028, 029, 

B A 

C D 



107 
 

Annex 2, TABLE 0-3). The zeta potentials of the nanoparticles obtained under these conditions are 

presented in FIGURE 2.6-2 C and D. 
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FIGURE 2.6-2 Zeta potentials of silica nanoparticles modified with TMAPS while applicating a thermal treatment at A: A 

temperature 50 °C for two hours in the presence of acetic acid (cond. 026). B: A temperature of 50 °C for twelve hours 

in the presence of acetic acid (cond. 027). C: A temperature of 100 °C for twelve hours in the presence of acetic acid 

(cond. 028). D: A temperature of 100 °C for twelve hours in the presence of NH4OH. 

In recapitulating we can say that the results shown in this paragraph demonstrate that conducting of 

thermal treatment of chemical surface modification process with TMAPS at high temperatures or 

extended duration time is not suitable for improving the TMAPS coating on silica nanoparticles. This 

is probably due to the fact that the application of heat under vacuum is enough to break relatively 

weak physical bonds due to van der Waals interactions and hydrogen bonding but not to abrogate 

ionic bonds forming between quaternary ammonium groups and silanolate groups. Therefore 

polysiloxane chains only physically adsorbed to the silica nanoparticle may, under the influence of 

heat, leave the surface of the modified nanoparticles before being condensed on it, whereas a positive 

effect on the grafting as expected, if the abrogation of ionic bonds would have been successful, was not 

observed. The prolongation of the duration time for ten further hours to twelve hours solely showed a 

beneficial effect for nanoparticles modified by a thermal treatment at 50 °C, which can be explained by 

the fact, that at lower temperatures less condensation reactions per hour take place. A longer duration 

time is needed to condense TMAPS molecules to the silica surface until its saturation. Apart from the 

fact that the isoelectric point of such modified particles did not shift to a higher pH than pH 8.4 shows 

that Hofmann degradation reactions can virtually be excluded as an explanation for the continuous 

obtainment of TMAPS nanoparticles with isoelectric points at about pH 8.4.  
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2.7 The execution of end-capping reactions on TMAPS modified 

nanoparticles 

The remaining silanol groups on the silica surface may transform into silanolate groups above pH 2.5 

and therefore decrease the overall zeta potential of the TMAPS modified particles at alkaline pHs. To 

prevent the zeta potentials of the modified nanoparticles beeing affected by uncondensed silanol 

groups remaining on the surface after silanization, the modified nanoparticles (cond. 006, see Annex 

2, TABLE 0-3) were further allowed to react with chlorotrimethylsilane ClSiMe3 or glycidol. We expect 

that the end-capping of silanolate groups with ClSiMe3 or glycidol might shift the isoelectric point of 

TMAPS modified nanoparticles to higher pHs. 

Silylating end capping reactions of silanol groups with ClSiMe3 can be effectuated in dry solvents at 

room temperature in the presence of a base and are often used to render silica surface 

hydrophobic[55,56]. Deschner et al.[57] showed that the silylation of silica NPs with chlorosilanes and 

NEt3 as a base in mixtures of hexane and toluene or hexane and THF can achieve 90 % yield. The 

reaction was effectuated under different conditions to ensure the elimination of free silanolate groups 

and the zeta potential of the prepared nanoparticles (cond. 006, Annex 2, TABLE 0-3) was measured to 

determine the influence of remaining uncondensed silanolate groups on the isoelectric point of the 

modified samples. 

PROTOCOL 2.7-1 Modification of TMAPS modified silica nanoparticles with 

chlorotrimethylsilane 

To a dispersion of TMAPS modified silica nanoparticles with a surface area of 8.236 m2 in 10 mL of 

absolute EtOH 700 μL of triethylamine and 1 mL chlorotrimethylsilane were added under 

magnetic stirring at room temperature.  Instantaneous crystallization of triethylamine chloride 

was observed and the reaction mixture became dense, hindering further stirring. After 15 minutes 

of incubation the particles were sonicated in a sonication bath for 2 minutes, leading to 

redissolution of the crystals and the redispersion of the treated particles. 1 mL of 

chlorotrimethylsilane was added leading to the same effect of crystallization. Again the reaction 

mixture was sonicated for 2 minutes. The redispersed particles are centrifuged at 13000 g during 

15 min. and washed four times with 20 mL of H2O (18.2 MΩ). 

The same reaction has been implemented in anhydrous toluene, anhydrous hexane and THF to 

which the particles had been transferred by rotary evaporation of EtOH at 40°C. The macroscopic 

observations and proceedings were similar to these described for the reaction in absolute EtOH. 

 
The ring opening of glycidol by reaction with OH or COOH groups is often effectuated in toluene 

under refluxing for several hours[58]. Ring opening can also be effected by the reaction of glycidol with 

amine groups of aminosilanes[59]. The reaction has been employed to cap remaining silanol groups on 

the silica surface by the reaction of glycidol[60], leading to a ring opening of the molecule and the 

development of two alcoholic OH groups instead of one silanol group. It is advantageous to replace 
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silanolate groups by trimethylsilyl or by alcohol groups. Alcohol groups possess a high pKa of 16, 

which will hinder their deprotonation in the pH range of interest. 

PROTOCOL 2.7-2  Modification of TMAPS modified silica nanoparticles with glycidol 

2 mL of a sol of silica nanoparticles modified with TMAPS dispersed in absolute EtOH was added 

to 20 mL of DMF. Ethanol was eliminated out of the reaction mixture by rotary evaporation at 

40 °C. To the solution containing modified nanoparticles with 3.73 m2 of surface area 933 μL of 

glycidol was added. Under magnetic stirring the particles were refluxed at 75°C for 5 hours. 

Subsequently the particles were centrifuged at 13000 g for 15 min and washed four times with 

H2O (18.2 MΩ). The modified nanoparticles were then redispersed in 10 mL H2O (18.2 MΩ). 

Also the reaction has been done using dry toluene as a solvent; but undesired particle coagulation 

occurred then. 

 
FIGURE 2.7-1 shows the zeta potentials of TMAPS modified nanoparticles, which have been 

end-capped with chlorotrimethylsilane or glycidol under different reaction conditions. We observe that 

the modifications of TMAPS-modified nanoparticles implemented with ClSiMe3 and glycidol do not 

induce a shift of the isoelectric point to more basic pHs. 
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FIGURE 2.7-1 A: Zeta potential data of TMAPS modified silica nanoparticles after subsequent modification of the NPs 

with ClSiMe3 in different solvents. B: Zeta potential data of TMAPS modified silica nanoparticles after subsequent 

modification of the NPs with glycidol in different solvents. 

It seems that the silanolate groups, which we would like to react with ClSiMe3 or glycidol are not 

accessible to these two molecules because of the fact that while they interacting with quaternary 

ammonium groups they are sterically protected from further reaction. Control reactions accomplished 

on unmodified silica nanoparticles led to the gneration of hydrophobic silica nanoparticles, which 

after reaction with end-capping reagents could not be dispersed in ultrapure water (18.2 MΩ) 

anymore.  
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2.8 Steric effects on the organization of TMAPS oligomers on silica 

It is generally known that the dimension of the organic part of an organofunctional silane coupling 

agent influences its grafting. Markowitz et al. showed the influence of alkyl chainlength of various 

trimethoxysilylpropyl- trialklylammonium chlorides on the formation of silica xerogels[35]. The length 

of the carbon chains significantly influenced the polycondensation degree of co-condensed 

TEOS-silane networks, leading to variations of both the density and the homogeneity of the material 

porosity. We imagined that the inverse orientation of quaternary ammonium groups bearing silane 

coupling agents on negatively charged silica surfaces may be prevented by steric hindrance. To test this 

hypothesis we carried out surface modifications of silica using 

N-Trimethoxysilylpropyl-N,N,N-tributylammonium chloride (TBAPS), which possesses three 

sterically large butyl chains around the quaternized ammonium group, which might keep apart the 

positively charged nitrogen from negatively charged silanolate groups. TBAPS modifications have 

been effectuated in the same manner as the modification with TMAPS described above in PROTOCOL 

2.2-1 and PROTOCOL 2.2-2, the reaction conditions are detailed in TABLE 0-4 (see Annex 2). Instead of 

TMAPS the silane coupling agent TBAPS is added into the silica nanoparticle suspension.  

FIGURE 2.8-1 shows the TG-coupled mass spectrum of TBAPS modified nanoparticles using 100 μmol 

of TBAPS/m2, acetic acid as a catalyst and thermal treatment of two hours at 100°C (see cond. 031, 

Annex 2, TABLE 0-4). We observe mainly the same fragments as for TMAPS modified silica, but note 

that for better visibility the mass fragments (m/z 35, 37) are not shown and that a spectral line at m/z 

22 appears. Its form resembles to the spectral line observed at m/z 44 and may indicate a higher 

content of species as CO2
+ and C3H8

+ fragments. 

 

FIGURE 2.8-1 Mass spectrum of TBAPS modified silica nanoparticles recorded with a TG coupled mass spectrometer. 
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The results shown in FIGURE 2.8-2 resemble to the observations we have already made modifying the 

silica colloids with TMAPS. Particle modifications catalyzed with strong acids such as HNO3 and 

H3PO4 (cond. 032-033, Annex 2, TABLE 0-4) lead to samples showing an isoelectric point about pH 7, 

whereas the modifications catalyzed with NH4OH and acetic acid (cond. 030-031, Annex 2, TABLE 

0-4) show higher isoelectric points at about pH 8.7. The coagulation of nanoparticles of these batches 

has been observed to start from about pH 7.5 to pH 10. As seen above an increase in the temperature 

(cond. 034-035, Annex 2, TABLE 0-4) with the aim of improving the condensation process does not 

change the surface potential of modified nanoparticles significantly. 
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FIGURE 2.8-2 A: Zeta potential data of TBAPS modified silica nanoparticles resulting from differently catalyzed 

modifications. B: Zeta potential data of TBAPS modified nanoparticles resulting from modifications catalyzed by acetic 

acid and implemented with varying temperatures in the thermal treatment. C: TGA diagram and its differentiation of 

silica nanoparticles modified with TBAPS (condition: 100 μmol, acetic acid, 100°C). 

By exploiting the TGA of TBAPS-modified nanoparticles (cond. 031, Annex 2, TABLE 0-4) we can 

determine a surface density of 3.9 μmol/m2 of TBAPS corresponding to 2.4 grafts/nm2 on the silica 

surface. This is half of the surface density which we observed for TMAPS-coated nanoparticles 

(cond. 006, Annex 2, TABLE 0-3). This may be due to the fact that the TBAPS chains are sterically 

large and cannot be grafted as densely as TMAPS grafts. This observation correlates with studies 

carried out by Markowitz et al.[35], who showed that the longer the alkylchains attached to the 
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ammonium groups are, the lower the yield of the condensation of 

trialkylammonium-propyltrimethoxysilanes to TEOS becomes.  

The fact that we obtain similar zeta potentials as those observed for TMAPS-coated nanoparticles may 

indicate that the organization of the TBAPS monolayer might be more homogenous than the 

organization of TMAPS films on silica. At the same time the differentiated TG measurement does not 

show two distinct peaks as observed above for TMAPS modified particles, which may indicate the 

formation of a more even TBAPS layer. Nevertheless the fact that nanoparticles modified in the 

presence of phosphoric or nitric acid still show isoelectric points of about pH 7 and particles modified 

in the presence of acetic acid or NH4OH show isoelectric points below pH 9 demonstrates that the 

presence of longer butyl chains attached to the quaternized nitrogen does not improve the coating 

sufficiently. Even the TBAPS-modified nanoparticles possessing isoelectric points at pH 8.7 start to 

coagulate in the range from pH 7.5 to pH 10. Hence they are not sufficiently charged to keep their 

stability under physiological conditions at pH 7.4. 2.9 Conclusions 

In this second part of Chapter II we explored the direct surface modification of silica nanoparticles by 

silanization with silane coupling agents bearing quaternary ammonium groups such as TMAPS and 

TBAPS. We have seen that the surface density of a TMAPS-modified nanoparticle increases with the 

amount of TMAPS added to the chemical surface modification as it has also been observed for 

aminosilanes in the literature[23]. As soon as nTMAPS exceeds 60 μmol per m2 of silica surface 

available for modification the surface densities reached a plateau varying around 7.91 μmol/m2, which 

is due to the saturation of the modified silica surfaces with TMAPS. This observation enabled us to fix 

the amount of silane used during the successive modification processes at 100 μmol/m2. Chemical 

surface modification of silica nanoparticles with TMAPS seemed to work best at pH 4.5 adjusted with 

acetic acid leading to the obtainment of modified nanoparticles which possess an isoelectric point at 

pH 8.4 and a zeta potential rapidly increasing below this pH. Although they possess a zeta potential of 

about 25 mV at pH 7.4, the zeta potential at this pH is too low to guarantee the colloidal stability of 

these TMAPS-coated nanoparticles under physiological conditions.  

We could reveal a major problem related to the coating process of silica nanoparticles with the silane 

coupling agent TMAPS, which is the predisposition of its quaternary ammonium group to form an 

ionic bond by interacting electrostatically with negatively charged silanolate groups on silica surfaces. 

The formation of a disordered silane coating in which the quaternary ammonium groups plunge 

towards silanolate groups remaining on the surface after the silanization has been detected. Less dense 

disorganized silane layers facilitate the electrostatic interactions of quaternary ammonium groups and 

silanolate groups. Attempts to improve the condensation of TMAPS on silica colloids by varying of 

temperature and duration time of the thermal treatment did not improve the TMAPS coating on silica 

nanoparticles. This has been explained by the fact that the application of heat under vacuum is 

sufficient to break relatively weak physical bonds due to van der Waals interactions and hydrogen 

bonding but not to abrogate ionic bonds forming between quaternary ammonium groups and 
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silanolate groups. This reasoning enables us to understand why thermal treatment under vacuum is an 

appropriate method for improving the grafting of aminosilanes on metal oxide surface, but is not 

effective when we try to improve the condensation of TMAPS layers on colloidal silica.  

Efforts to decrease the number of ionic bonds formed between quaternary ammonium groups and 

silanolate groups by the end-capping of silanolate groups with ClSiMe3 or glycidol were not successful, 

because of the fact that while they interact with quaternary ammonium groups they are sterically 

protected from further reaction. In addition the application of TBAPS which possesses longer 

alkylchains keeping quaternary ammonium groups and silanolate groups at a longer distance than 

methyl groups was not sufficient to keep the modified nanoparticles electrostatically stabilized under 

physiological conditions at pH 7.4. We therefore decided to change our strategy to circumvent the 

formation of highly disordered silane coatings due to the quaternary ammonium groups striving to 

interact electrostatically with silanolate groups on silica as will be shown in the next part of this 

chapter. 
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3. QUATERNIZATION OF SURFACE-AMINATED SILICA 

NANOPARTICLES 

To obtain modified surfaces with a high number of quaternary ammonium functions on the silica 

surfaces and an isoelectric point at highly basic pHs we changed the modification strategy. Instead of 

the direct grafting of a silane coupling agent which is already functionalized with a quaternary 

ammonium group such as TMAPS or TBAPS on silica colloids we explored a two-step procedure. We 

first modified the silica surfaces with an aminosilane and secondly alkylated the amine groups to 

obtain quaternary ammonium groups on the modified silica particles.  

Aminosilanes have been widely used to functionalize metal oxide nanoparticles by silanization[23,61–64]. 

The use of aminosilanes for the chemical surface modification of silica nanoparticles has several 

advantages. Their organic parts do not possess quaternary ammonium groups, which orient 

themselves on the negatively charged silica surface forming an ionic bond, but solely primary or 

secondary amine groups. These amine groups also interact with negatively charged silica surfaces but 

develop only van der Waals bonds, which can be abrogated by thermal treatment under vacuum 

during the silanization process. The condensation of aminosilanes on metal oxide nanoparticles leads 

to the obtainment of aminated nanoparticles, which possess isoelectric points in the scope of pH 9 to 

pH 11[23]. By modifying the colloidal silica surface with N-[3-(Trimethoxysilyl)propyl]ethylenediamine 

(EDPS) and by an alkylation of its amine groups with iodomethane, we tried to implement a high 

number of quaternary ammonium groups on the silica colloids. EDPS possesses a relatively long graft 

containing one secondary and one primary amine group and therefore permits us to synthesize two 

quaternary ammonium groups per organic graft. The modification of silica nanoparticles with EDPS 

was implemented by the PROTOCOL 3.0-1, which has been optimized in our group for the silanization 

of iron oxide nanoparticles and which can also be applied on silica surfaces [23,62,65]. 

PROTOCOL 3.01 Modification of colloidal silica with aminosilanes 

Under continuous stirring a volume of 3.87 mL of N-[3-(Trimethoxysilyl)propyl]ethylenediamine 

(EDPS) was added to 200 mL EtOH/H2O 1:1 containing silica nanoparticles with a surface area of 

119 m2. The mixture was stirred for 12h at room temperature. Subsequently 200 mL of glycerol 

are added, then ethanol and water are evaporated to transfer the particles in the wetting agent. 

Under vacuum thermal treatment at 100°C is accomplished for two hours. The modified particles 

were washed four times in absolute ethanol by centrifuging them at 13000 g for 25 minutes, 

finally they were dispersed in 100 mL of absolute ethanol or peptized in the presence of HCl in 

100 mL H2O (18.2 MΩ), depending on their subsequent application.  

 
We alkylated the amine groups present on colloidal silica surfaces previously modified with EDPS 

using the well known Mentschutkin reaction[54]. The alkylation of amines with alkyl halides for the 

synthesis of quaternary ammonium compounds is a common reaction in organic chemistry and has 

been extensively studied by Sommer et al., who tested the reaction outcome of alkylating various 

molecules, which contain amine groups under the use of different solvents and bases[66]. The 
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Mentschutkin reaction has already been applied to quaternize ungrafted trialkoxysilanes bearing 

tertiary amine groups with a yield of almost 100 %[67]. It has been used to quaternize amines, chitosan, 

polyethyleneimine or polysaccharide bearing nanoparticles[68–72] and equally to quaternize silica 

nanoparticles bearing tertiary amines on their surface[73].  3.1 Implementation of a reaction protocol to obtain quaternization of 

aminated silica nanoparticles and verification of its achievement 

The alkylation reaction of amine groups with iodomethane can take place in different solvents and can 

be accomplished with different bases[66]. In modifying colloids we can choose not only optimal 

conditions for carrying out the organic reaction but also reaction conditions which allow the 

dispersion of the nanoparticles during the synthesis stages. For this purpose we tested different 

reaction conditions (036-041), which are resumed in TABLE 0-5 (see Annex 2). The alkylation of silica 

nanoparticles bearing amine groups has already been effected in the literature using acetonitrile as a 

solvent and K2CO3 as a base[72], but we observed that EDPS-modified nanoparticles couldn’t be 

dispersed in acetonitrile. Due to this observation we performed the quaternization reaction in 

EtOH/acetonitrile 1:3 (cond. 038,039) and absolute ethanol (cond. 040, 041). The ratio of EtOH and 

acetonitrile has been chosen to permit the dispersion of EDPS-modified nanoparticles at the beginning 

of the reaction due to the presence of ethanol. The dielectric constant of acetonitrile is 37.5 and is 

higher than the dielectric constant of ethanol of 24.3 which means that we might stabilize quaternized 

particles better in a mixture of EtOH and acetonitrile than in absolute alcohol. We also compared the 

use of K2CO3 (cond. 036, 038, 040) and NEt3 (cond. 037, 039, 041) as a base, after which we noted 

that the addition of NEt3 to dispersed SiO2-EDPS nanoparticles led to a slight destabilization of the 

nanoparticles.  

To explore the quality of stabilization of quaternized nanoparticles in water after the alkylation 

reactions have been implemented under different conditions, we as an exception chose to implement 

the modification processes on nanoparticles with a diameter of 120 nm to determine the quality of 

their dispersion after modification because their coagulation was expected to lead to a distinct change 

of the size distribution measured by DLS. For each condition modified nanoparticles were observed to 

coagulate in the end of the reaction, due to the fact that quaternary ammonium groups do not support 

solvation interactions with EtOH molecules. In general quaternized nanoparticles were immediately 

dispersed when they were brought into contact with water without the need of the presence of an acid 

to peptize the particles, as is necessary for nanoparticles with aminated surfaces. This behavior can be 

seen as an indirect proof of the quaternization, because the continuous presence of the 

pH-independent charges of quaternary ammonium groups permits the immediate dispersion and 

stabilization of the modified nanoparticles in ultrapure water. Zeta potential measurements of particles 

modified in the presence of NEt3 in EtOH or EtOH/acetonitrile (1:3) show a similar profile (see 

FIGURE 3.1-1 A). The isoelectric point of the modified nanoparticles is the same for nanoparticles 

modified in both solvents; for nanoparticles modified in the EtOH/acetonitrile mixture as well as for 

nanoparticles modified in absolute EtOH it has been observed at pH 9.5. DRIFT measurements 
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showed that both conditions can be used to alkylate the amine groups of the SiO2-EDPS nanoparticles. 

DLS measurements show that SiO2-EDPS nanoparticles quaternized in the presence of NEt3 in both 

absolute EtOH and EtOH/acetonitrile (1:3) are better dispersed in H2O (18.2 MΩ) than nanoparticles 

quaternized in reaction mixtures containing K2CO3, which stay coagulated. Concerning the two 

reactions undergone EtOH/NEt3 and EtOH/acetonitrile/NEt3 DLS measurements do not show a 

major difference: both curves show the same maximum but the size distribution is larger in the case of 

samples quaternized in the presence of acetonitrile (see FIGURE 3.1-1 B). The larger size distribution 

indicates that these nanoparticles are dispersed less well in water than the nanoparticles quaternized in 

absolute EtOH.  

100
0,0

0,2

0,4

0,6

0,8

1,0

In
te

ns
ity

 (u
.a

.)

log10  size (nm)

 Acetonitrile/EtOH/K2CO3

 Acetonitrile/EtOH/NEt3

 EtOH/K2CO3

 EtOH/NEt3

4 6 8 10 12

-60

-40

-20

0

20

40

60

80  EtOH/Acetonitrile/NEt3

 EtOH/NEt3

ze
ta

 p
ot

en
tia

l (
m

V
)

pH

 

FIGURE 3.1-1 A: DLS graphs show the size distribution of silica particles quaternized under different conditions (cond.  

038-041, see TABLE 0-5, Annex 2) dispersed in H20 (18.2 MΩ). B: Zeta potential of nanoparticles quaternized in EtOH or 

Acetonitrile/EtOH (cond. 039, 041, see TABLE 0-5, Annex 2).  

In the following we chose to effectuate the quaternization reactions in absolute ethanol. The amount 

of MeI needed to alkylate the amine groups on the nanoparticles was calculated from the grafting 

density of EDPS estimated to be of about 5 μmol/m2 on silica according to literature[23,62]. The 

alkylation reactions are undergone following PROTOCOL 3.1-1. 

PROTOCOL 3.1-1 Alkylation of the primary and secondary amines present on silica particles 

previously modified with EDPS by the use of iodomethane 

To a sol of SiO2-EDPS with a surface area 26.4 m2 dispersed in 10 mL absolute EtOH 220 μL of 

NEt3 was added under continuous stirring and subsequent 410 μL of iodomethane was added 

dropwise. The reaction mixture was stirred for 12 hours at room temperature and for 30 min. at 

70 °C in a water bath. The particles were then washed twice with absolute EtOH, once with EtOH 

(50% v/v) and subsequent two times with H2O (18.2 MΩ) by centrifugation during 25 min at 

13000 g. Iodide ions remaining in the solution were either precipitated by the addition of AgNO3 

or removed by ionic exchange in a solution of 1 M NaCl. After recovery of the modified particles 

two additional washing steps are effected in H2O (18.2 MΩ) by centrifuging 25 min at 13000 g. 

   
The modified silica nanoparticles are analyzed by DRIFT. FIGURE 3.1-2 shows the spectra of 

EDPS-modified silica nanoparticles (SiO2-EDPS) before and after the alkylation with iodomethane 

(SiO2-EDPS-Me). 
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FIGURE 3.1-2 A: Infrared spectra of colloidal modified with EDPS before (black line) and after quaternization (blue line). 
The green boxes indicate regions containing supplementary vibrations detectable after the chemical surface 
modification of silica. B:  Enlargement of the section containing O-H and C-H vibrations. C: Enlargement of the 
spectrum showing C-N and N-H vibrations, permitting unalkylated and alkylated quaternary amines to be 
distuinguished. 

Compared to the spectrum of colloidal silica we can see an additional band at 2950 cm-1 in the 

spectrum of alkylated nanoparticles, which can be attributed to C-H stretching vibrations of the methyl 

groups attached to a nitrogen atom. In the range from 1500 to 1390 cm-1 we can distinguish four 

vibration bands. The bands at 1395 cm-1 and 1418 cm-1 are attributed to C-N deformation vibrations; 

the band at 1395 cm-1 shifts to higher wavelengths in the presence of quaternary ammonium ions. In 

the same manner the band of C-H deformation vibrations shifts from a value of 1452 cm-1 if the carbon 

chain is attached to a primary or a secondary amine group, to a value of 1479 cm-1 in the presence of 

quaternary ammonium groups[39,40].   

We also recorded the mass spectra of EDPS and methylated EDPS-modified nanoparticles. The mass 

spectrum of EDPS-modified silica nanoparticles is shown in FIGURE 3.1-3. We detected a spectral line 

of m/z 18, which can be attributed to water and CH4
+ and m/z 17 to OH+ fragments provided from 
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water. The spectral line of m/z 44 assigned to CO2
+, C3H8

+ and C2H6N+ fragments was also observed. 

The only related nitrogen-containing fragments that can be observed may be the C2H7N+ fragment 

(m/z = 45), and CH4N+ (m/z = 30). 

 

FIGURE 3.1-3 Mass spectrum of EDPS-modified silica nanoparticles recorded with a TG coupled mass spectrometer. 

Mass spectra of 3-(2-aminoethylamino)propyltrimethoxysilane, isopropylethylenediamine and 

ethylenediamine usually show a mass fragment with m/z 58, which can be attributed to the fragment 

C2H6N2
+

 (source: Spectral Database for Organic Compounds, SDBS) but cannot be observed in our 

spectrum. Again decomposition of the propyl chain leads to the fragments C2H6 (m/z = 30), C2H5 

(m/z = 29), C2H4
+ (m/z = 28), C2H3

+ (m/z = 27) and C2H2 (m/z 26). Smaller carbon fragments as 

seen in the spectra of TMAPS-modified nanoparticles as CH4
+, CH3

+, CH2
+ or C+ are not detected. 

After methylation of EDPS-modified nanoparticles with iodomethane, which have been washed in 

EtOH and H2O the spectrum recorded during their decomposition (see FIGURE 3.1-4) shows additional 

spectral lines, which are not present in the spectrum of unalkylated particles. We can see the spectral 

line corresponding to remaining I+ ions at m/z 127, which serves as counterion for the synthesized 

and positively charged methylammonium groups. The spectral line of CH3
+ at m/z 15, which was 

present in the spectrum of TMAPS-modified nanoparticles, reappears. We observe the presence of a 

fragment at m/z 47, which might be attributed to CH3I3+ fragments that can evolve out of quaternary 

methyl ammonium iodides. The mass fragment detected at m/z 33 is generally attributed to CH5O+, 

which is produced from the reaction of H2O+ and CH3
+[41]. As well as for TMAPS-modified 

nanoparticles C2H7N+ fragments (m/z = 45), C2H5N+ fragments (m/z = 43), C2H3N+ (m/z = 41) and 

CH4N+ (m/z = 30) can be detected. 
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FIGURE 3.1-4 Mass spectrum of methylated EDPS-modified silica nanoparticles after washing steps with ethanol and 

H2O (18.2 MΩ) recorded with a TG-coupled mass spectrometer. 

All the fragments observed in the presented mass spectra are shown in TABLE 0-2 (see Annex 2), which 

allows an overview of the detected fragments per spectrum. The mass spectra showed that the surface 

modifications aimed at have taken place on the silica nanoparticles. We identified the same 

characteristic fragments of quaternary ammonium groups in the spectra of TMAPS, TBAPS and 

EDPS-Me. We can also identify fragments of the alkyl chains as well as the iodide ions, which are 

located close to the quaternary ammonium groups serving them as counterions. 

To analyze the success of the alkylation of EDPS-modified particles we recorded 1H-NMR spectra of 

colloidal silica (SiO2), EDPS-modified (SiO2-EDPS) and alkylated EDPS-modified nanoparticles 

(SiO2-EDPS-Me). The spectra have been recorded in D2O with a Bruker NMR spectroscope working 

at 9.4 Teslas (400 MHz). In analyzing the spectrum of colloidal silica (see FIGURE 3.1-5) we can 

identify three resulting peaks of the solvent and ethanol which may be incorporated to the silica matrix 

as well as ethoxy groups of uncondensed TEOS molecules.  
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FIGURE 3.1-5 1H-NMR spectrum of colloidal silica. 

Analytical data 1H-NMR, D2O, 400 MHz, (ppm):  

 = 1.200 (s, 3H, H1),  = 3.676 (s, 2H, H2), 

 = 4.810 (s, 2D, D4) 

The identified signals are characteristic for ethanol or ethoxy groups and D2O as reported in many 

NMR spectra and spectroscopy databases such as the spectral database for organic compounds (sdbs). 

The fact that we can’t identify a peak belonging to H3 of ethanol, which we would expect at 2.6 ppm, 

is explained by the fast exchange of OH protons with deuterium of the solvent D2O. The observation 

that the H1 and H2 signals do not split up into a triplet and a quadruplet as we expect indicates that the 

detected signals may be the result of ethoxy groups of molecules enclosed in the silica matrix. 

In the 1H-NMR spectrum of EDPS-modified silica (not shown) the characteristic peak of D2O at 

4.810 ppm and the two peaks at 3.67 ppm and 1.2 ppm resulting from the ethoxy group of ethanol and 

uncondensed TEOS can be seen. FIGURE 3.1-6 shows a zoom in the spectrum between 0.3 ppm and 

4.2 ppm revealing the characteristic peaks of the 3-(2-aminoethylamino)propyl group which are 

present on the modified silica surface: 
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FIGURE 3.1-6 1H-NMR spectrum of EDPS-modified silica. Zoom in the range of 0.3 to 4.2 ppm showing the peaks 

attributed to the grafted 3-(2-aminoethylamino)propyl chain. 

Analytical data 1H-NMR, D2O, 400 MHz, (ppm):  

 = 0.722 (t, 2H, J = 8.4 Hz, H7),  = 1.189 

(t, 3H, J = 6.8 Hz, H1ethanol),  = 1.787 (m, 2H, 

J = 6.8 Hz, H6),  = 3.039 (m, 2H, H5), 

 = 3.225 (s, 4H, H2, H3),  = 3.669 (q, 2H, 

J = 6.8 Hz, H2ethanol) 

The triplet at 0.722 ppm can be attributed to H7. The signal at 1.787 ppm corresponds to H6. It seems 

to be a triplet but due to the fact that the H atoms are coupled with four other H atoms located at 

different C atoms it is assumed to be a less resolved multiplet. The signal at 3.039 ppm is attributed to 

H5: as a signal we would expect the doublet of a triplet, but observe a not well resolved multiplet. The 

chemically and magnetically equivalent protons of H2 and H3 produce a singulet signal at 3.225 ppm.  

The spectrum of alkylated EDPS-modified particles has been recorded on nanoparticles of the same 

batch as those used to record the spectrum shown in FIGURE 3.1-6, but after their alkylation with 

iodomethane described in PROTOCOL 3.1-1. As previously we identified the peak of D2O at 4.810 ppm 

and the two peaks at 3.670 ppm and 1.200 ppm resulting from ethoxy groups (not shown). FIGURE 

3.1-7 shows a part of the spectrum zoomed in the range between 0.0 and 4.2 ppm to show the 

characteristic peaks of the 3-(2-trimethylammonium-ethyldimethylammonium)propyl group present 

on the modified silica surface: 
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FIGURE 3.1-7 1H-NMR spectrum of alkylated EDPS-modified nanoparticles (SiO2-EDPS-Me). 

 

FIGURE 3.1-8 COSY NMR spectrum of alkylated EDPS-modified nanoparticles (SiO2-EDPS-Me). Black lines: Couplings 

within the organic graft. Grey lines: Coupling within ethoxy groups. Dark blue lines: coupling within remaining glycerol 

residues. 
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Analytical data 1H-NMR, D2O, 400 MHz, (ppm):  

 = 0.722 (t, 2H, J = 8 Hz, H7),  = 1.205 (t, 3H, 

J = 7.4 Hz, H1ethanol),  = 1.969 (m, 2H, H6),  = 3.211 

(s, 3H, H4),  = 3.243 (s, 6H, H1),  = 3.257 (s, 9H, 

H1),  = 3.314 (s, 6H, H4),  = 3.471 (m, 2H, H5), 

 = 3.573 (dd, 4H, J1’2’,3’2’ = 12 Hz, J1’ab,3’ab = 6.4 Hz, 

H2,H3),  = 3.668 (q, 2H, J = 6.8 Hz, H2ethanol), 

 = 3.804 (m, 1H, H2’), d = 4.0 (s, 4H, H2,H3) 

The first signal at 0.722 ppm belongs to the H7 next to the Si atom, which is coupled with the two 

protons of H6. The signal at 1.969 ppm can be attributed to H6 protons, which are coupled with H5 and 

H7 in a multiplet structure. The two singulets at 3.211 ppm and 3.243 ppm are attributed to protons H4 

and H1 of CH3 groups attached to tertiary amines, which have not been completely alkylated. This 

observation is in accordance with the results of Sieval et al.[74], who have observed the appearance of 

tertiary side products during quaternization reactions. The singulets appearing at 3.257 and 3.314 ppm 

have been attributed to protons H4 and H1 from CH3 groups attached to positively charged quarternary 

ammonium groups, which are extremely electron withdrawing. The multiplet at 3.471 ppm has been 

attributed to H5. The singulet at 4.0 ppm is due to four protons of H2 and H3 which are both situated 

next to a quaternary ammonium group. The doublet of a doublet with J1’2’,3’2’ of 12 Hz and J1’ab,3’ab of 

6.4 Hz is attributed to protons of H1’ or H3’ of remaining glycerol residues. The splitting of the signal is 

explained by the fact that the two protons at H1’ and H3’ are non equivalent; they are diastereotopic 

and couple with each other. The multiplet at 3.804 ppm is attributed to H2’ of remaining glycerol 

residues. 

In the COSY 2D spectrum shown in FIGURE 3.1-8 we can see that the signals at 0.72 ppm and 

3.47 ppm are both coupled with the signal 1.97 ppm, which confirms their attribution to the protons 

belonging to the propyl chain of the organic graft. The proton signals of H1’,3’ and H2’ at 3.5 ppm and 

3.8 ppm couple with each other which indicates that the measured signals are provided from protons 

located in chains of the same molecule which has been identified as glycerol. 

In the 1H-NMR spectrum shown in FIGURE 3.1-7 the intensity of the two signals attributed to H1 and 

H4 atoms next to quaternary ammonium groups is about nine times higher than the intensity of the 

signals of H1 and H4 atoms next to tertiary amine groups, which indicates that the quaternization of 

amine groups is nearly complete. Integration of the four singulets shows an integral of 12.73 and 7.33 

for the quaternary proton peaks in contrast to integrals of 1.12 and 1.0, which is a repartition of 92 % 

of quaternized ammonium groups to 8 % of tertiary amine groups at position 1 and 88 % of 

quaternized ammonium groups to 12 % of tertiary amine groups at position 4. We do not observe the 

NH peak of H1 and H4, which we would expect at 2.5 ppm, which is also explained by the fast 

exchange of NH protons with deuterium of the solvent D2O. Therefore it is not possible to determine 
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the yield of alkylation of the propyl-ethylenediamine grafts, but the results show that about 90 % of 

alkylated amine groups have been quaternized. 3.2 Attempts to estimate the surface density of quaternary 

ammonium groups on quaternized silica nanoparticles 

The presence of quaternary ammonium groups on alkylated EDPS-modified nanoparticles has been 

proven by DRIFT and NMR spectroscopy. Supposing that each quaternary ammonium group is 

accompanied by one iodide ion serving as a counterion, we tried to estimate the number of quaternary 

ammonium groups indirectly by a conductometric dosage of iodide ions present in the sol of 

quaternized nanoparticles by the addition of AgNO3 solution (0.1 M) and the precipitation of AgI 

(KS 8.52•10-17). When the total amount of iodide reacted, no more precipitation of AgI takes place and, 

by that time, the added Ag+ ions start to contribute to the increase in the conductivity of the 

dispersion. In the same way the amount of EDPS grafts on EDPS-modified silica nanoparticles 

peptized with hydrochloric acid has been dosed by the precipitation of AgCl (KS 1.77•10−10) after two 

washing steps with ultrapure water to eliminate the excess of chloride ions. A detailed protocol of the 

conductometric titrations is described in Annex 1. 

To 2 mL of a sol containing EDPS-modified nanoparticles (36.4 g/L) 295 μL AgNO3 (0.1 M) was 

added to reach the turning point. This corresponds to the presence of 6.8 μmol of chloride ions per m2 

of nanoparticle surface area. Assuming that each EDPS graft is accompanied by one or two Cl- ions 

according to the pH, we can deduce that there are 6.8 μmol of EDPS per m2 of silica (see FIGURE 

3.2-1).  
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FIGURE 3.2-1 Conductometric titration of chloride ions precipitated as AgCl by the addition of AgNO3 solution. 

After estimating of the amount of iodide ions contained in 2 mL of a sol of quaternized nanoparticles 

(47.9 g/L), we firstly observed a slight decrease of the conductivity until a volume of 50 μL of AgNO3 

(0.1 M) was added. Then a marginal increase until the addition of 140 μL of AgNO3 was observed (see 

FIGURE 3.2-2). This observation may be explained by the fact that first weakly adsorbed iodide ions 
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located on the outer part of the ionic double layer are accessible for precipitation and second iodide 

ions adsorbed to the modified surface are precipitated. Above the volume of 140 μL added AgNO3 

corresponding to 1.40•10-5 mol AgNO3, the conductivity measured increases significantly, inducing the 

consumption of all iodide ions present in the sol of quaternized nanoparticles. Subsequently we 

calculated that 5.2 μmol of iodide ions are present per m2 of modified silica, indicating the attendance 

of 5.2 μmol of positively charged amine and quaternary ammonium groups per m2.  
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FIGURE 3.2-2 Conductometric titration of iodide ions precipitated as AgI by the addition of AgNO3 solution. 

The determined values of 6.8 μmol EDPS grafts per m2 of modified silica and of 5.2 μmol of 

quaternary ammonium groups present per m2 on the EDPS grafts may be slightly overestimated 

considering that surface densities of maximal 4.9 μmol EDPS/m2 have been observed to be grafted on 

metal oxide colloids[23]. The number of washing steps in water may influence the amount of iodide 

ions dosed by conductometry, nevertheless the determined amounts of iodide ions per m2 stay in a 

realistic order of magnitude. In determining the presence of quaternary ammonium groups by a 

dosage of iodide counterions we follow the presumption that iodide ions, which do not interact 

electrostatically with charges on the surface of modified nanoparticles have been seized by +NEt3 

present during the reaction at a large excess and removed during washing in EtOH and two further 

washing steps in ultrapure water. It is possible that as observed for TMAPS-modified silica colloids 

quaternary ammonium groups interact with silanolate groups remaining on the surface and that hence 

iodide ions are released and removed during washing steps, which might lead to an inexact estimation 

of the surface density of quaternary ammonium groups. For this reason conductometric titration of 

iodide serving as counterions of quaternary ammonium groups on modified silica has been 

accomplished for quaternized particles, which after washing in absolute EtOH have been redispersed 

and washed twice in ultrapure water adjusted to pH 3 with HNO3. At pH 3 quaternary ammonium 

groups are prevented from interactions with silanolate groups, due to the fact that their pKa silanol 

groups are solely present on the surface of the quaternized silica nanoparticles. To 2 mL of 

quaternized NPs (60.9 g/L) 150 μL of AgNO3 solution (0,1 M) was added until the conductivity 



126 
 

measured increased significantly, signaling the consumption of all iodide ions present (see FIGURE 

3.2-3). 
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FIGURE 3.2-3 Conductometric titration of iodide ions precipitated as AgI by the addition of AgNO3 solution. 

The amount of AgNO3 added until the conductivity increased made it possible to determine the 

presence of 4.3 μmol of iodide ions and correspondingly 4.3 μmol of quaternary ammonium groups 

per m2 surface area of the modified silica colloids. The surface density of iodide counterions of 

4.3 μmol/m2 determined for quaternized nanoparticles dispersed and washed at pH 3 is a less high 

than the 5.2 μmol/m2 determined for a sol of quaternized nanoparticles, which have been dispersed 

and washed in ultrapure water at pH 6.8. 

To estimate the amount of quaternary ammonium groups per m2 surface area of the modified 

nanoparticles we employed further methods. To determine the surface density of EDPS grafts per m2 

of modified silica we carried out the thermogravimetric analysis of EDPS-modified nanoparticles 

before and after the alkylation with iodomethane.  
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FIGURE 3.2-4 Percentual mass loss of silica nanoparticles after different steps of functionalization to obtain 

SiO2-EDPS-Me nanoparticles. Black line: Unmodified colloidal silica Red line: SiO2-EDPS nanoparticles, 

Blue line: SiO2-EDPS-Me nanoparticles after four washing steps with EtOH.  
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When we look at the TGA diagrams of EDPS-modified and alkylated EDPS-modified nanoparticles 

after washing with EtOH and H2O (see FIGURE 3.2-4) we can see that the there is a significant 

difference between the mass loss of quaternized nanoparticles and unalkylated EDPS-modified 

nanoparticles. The difference between the mass loss of quaternized nanoparticles and unalkylated 

EDPS-modified nanoparticles shows a maximum in the temperature range from 160 °C to 360 °C due 

to the presence of ionically adsorbed species such as I- detected in the coupled mass spectrum (see 

FIGURE 3.1-4). The surface densities calculated for EDPS-modified silica nanoparticles before and after 

alkylation are shown in TABLE 3.2-1. Assuming that the surface density of the EDPS grafts on the 

surface did not change we can suppose that the difference in mass loss is due to the methyl groups 

added during alkylation. We subtract the mass loss between 160 °C and 650 °C of EDPS-modified 

nanoparticles from the mass loss of alkylated nanoparticles to calculate the number of fully methylated 

grafts assuming the presence of one iodide counterion per quaternized nitrogen (see exemplary 

calculation in Annex 3, EQUATION 0-2).  

TABLE 3.2-1 Surface density of EDPS-modified silica nanoparticles 
and quaternized EDPS chains after methylation with iodomethane 

Graft M m160-650°C (%) DGRAFT (μmol/m2) Graft/nm2 

EDPS 101 - 9.78 9.19 5.5 

2.5 Me +IΘ -1.5H+ 162.9 - 11.056 2.61 1.57 

 
In the light of these results we presume a full methylation for one EDPS branch per nm2, which 

corresponds to the creation of one quaternary ammonium group on 28 % of the EDPS grafts.  We 

determined that the surface density of EDPS is about 2-6 times higher than observed elsewhere. 

According to the literature the surface coverage of EDPS is nominally 55 Å2/molecule[75], on silica 

surfaces grafting densities of 1.5 μmol/m2 to 3 μmol/m2 have been determined[76,77]. The surface 

density of EDPS of 4.9 μmol/m2 was achieved on iron oxide nanoparticles[23]. The presence of 

2.6 μmol of quaternary ammonium groups per m2 of modified silica would fit in the range to the 

surface densities observed before. The quaternization degree of about 28 % might be explained by the 

fact that the surface density of grafted EDPS films is overestimated due to the loss of water, 

ammoniac, ethoxy residues or glycerol molecules which may be included in the grafted silane layer. 

Furthermore the EDPS film probably does not consist of a well-ordered monolayer, but of 

polymerized silane networks condensed on the silica surface[78], which renders a part of the grafted 

amine groups inaccessible for modification as has been observed for various aminosilanes[23,79,80].  

To calculate a more exact degree of effective methylation we removed iodide ions by a washing step in 

one molar NaCl solution to induce an ionic exchange of iodide and chloride ions. In the TG-coupled 

mass spectrum shown in FIGURE 3.2-5 we can see that an ionic exchange between iodide and chloride 

ions takes place. 
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FIGURE 3.2-5 Mass spectrum of methylated EDPS-modified silica nanoparticles after washing steps with ethanol, H2O 

(18.2 MΩ) and NaCl (1M) recorded with a TG coupled mass spectrometer. 

After the washing step of the methylated EDPS-modified nanoparticles with NaCl, we wer unable to 

detect the release of I+ ions m/z 127 anymore, but two peaks at m/z 35 and 37 belonging to Cl+ 

isotopes reappeared. As proof of a successful methylation reaction we observed the presence of the 

fragments of a tertiary amine group C3H9N+ (m/z = 59) and C3H10N+ (m/z = 60). Furthermore we 

observed mass fragments already identified in previously shown mass spectra (see FIGURE 3.1-3 and 

FIGURE 3.1-4).  

In comparing the TG diagrams of EDPS-modified and alkylated EDPS-modified nanoparticles before 

(EDPS-Me +I-) and after NaCl washing (EDPS-Me +Cl-) we can observe that the mass loss of washed 

nanoparticles is significantly smaller than the mass losses obtained for EDPS-modified and methylated 

EDPS-modified particles before NaCl washing (see FIGURE 3.2-6). When we look at the differentiated 

TG diagrams for EDPS modified nanoparticles we observe a continuous increase in the mass loss with 

a clear peak in the temperature range from 360 °C to 650 °C. After alkylation with idomethane we 

observe a first peak at 200 °C which is attributed to the loss of iodide ions, but also a peak in the 

temperature range from 360 °C to 650 °C. These two peaks nearly disappear in the differentiated 

diagram of salt-washed nanoparticles. The silane layer of the surface modification seems to disappear 

partly during the washing step. 
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FIGURE 3.2-6 A: TGA diagrams of silica nanoparticles after different steps of functionalization to obtain SiO2-EDPS-Me 

nanoparticles. B: Differentiated TGA diagrams of silica nanoparticles after different functionalization steps to obtain 

EDPS-Me modified silica particles. Black line: Unmodified colloidal silica, Red line: Silica modified with EDPS, Blue line: 

SiO2-EDPS nanoparticles methylated with MeI after four washing steps in EtOH, Green line: SiO2-EDPS-Me 

nanoparticles after complete washing in EtOH, NaCl (1M) and H2O (18.2 MΩ). 

Similar effects of washing steps have been observed by Marini et al.[67], who washed polyethylene 

samples coated with quaternary ammonium silanes in physiological media and observed a reduced 

antibacterial activity by the modified polymer surfaces after several washing cycles. The dissolution of 

silica nanoparticles synthesized by the Stöber method in biological media has also been described[81,82]. 

Mahon et al.[82] were able to show that colloidal silica produced by the Stöber process is easily 

dissolvable compared to colloidal silica produced by the arginine method implemented by Hartlen[83] 

and co-workers, because of the lower density of Stöber silica, the porosity of which facilitates 

nucleophilic attacks on the silica matrix. One reason for the loss of silanes on the modified surfaces 

due to washing with electrolyte solutions may be the dissolution of silica in salt solutions. In general 

silica polymorphs implement dissolution by the reaction:  

SiO2 + 2 H2O  H4SiO4 

 

EQUATION 3.2-1 Reaction of the dissolution of silica in aqueous near neutral media. 

in near-neutral media[84], where molecular water acts as a weak nucleophile. In acidic or basic solvents 

H+ or OH- ions attack the silica surface more aggressively. But this dissolution can equally be 

accelerated by the increase in temperature or the addition of dilute solutions of cations to the silica 

surrounding media[85–87]. Dove et al.[86] showed that weak concentrations of 0.001 M Na+ ions already 

increase the dissolution rate of silica and that the increase in the dissolution follows the form of a 

Langmuir-type isotherm expression. Positively charged cations such as Na+ adsorb to the silica 

surfaces as described by the reaction:  

SiOH + Na+  SiONa + H+. 
 

EQUATION 3.2-2 Reaction of the adsorption of sodium cations to silica surfaces. 

As a consequence of the dissolution process NaCl, NaOH, NaSiO(OH)3 and H4SiO4 are formed in 

solution[85]. Further sodium orthosilicate complexes can be detected by fast atom bombardment mass 

A B 
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spectrometry[88]. The dissolution rate increases sharply up to the Na+ concentration needed to cover 

the silica surface completely, the presence of supplementary Na+ ions having no influence on the 

dissolution rate of silica. The dissolution rate in a 0.05 M solution of NaCl is 21 times larger[89] than 

that in deionized water. Comparing different cations Dove et al.[86] demonstrated that the dissolution 

rate is highly dependent on the adsorption strength of a cation, showing that the addition of weaker 

adsorbing ions such as Mg2+ or Ca2+ can even decrease the dissolution rate of silica in a solution of 

different cations. 

In looking for an alternative method to eliminate iodide ions and determine the exact methylation 

degree of the alkylated nanoparticles we precipitated the iodide ions remaining in solution by adding 

200 μL of an AgNO3 solution (0.1M). The resulting extremely fine AgI precipitate was separated from 

the nanoparticles by centrifuging six times at 1000 g for 10 min. The solution obtained shows a 

yellow-brownish color, due to AgI precipitate which cannot be completely separated from the silica 

nanoparticles because of their small size (see FIGURE 3.2-7). This fact renders the determination of 

methylgroups added during quaternization by TGA error-prone. 

 

FIGURE 3.2-7 TEM pictures of methylated EDPS-modified silica nanoparticles after removal of iodide ions with AgNO3. 

AgI precipitate of inhomogeneous size remains in the centrifuged solutions and can be observed on all three TEM 

pictures as indicated by the white arrows. 

To permit a further estimation of iodide ions, serving as counterions for quaternary ammonium groups 

per m2 present on modified silica nanoparticles, the collected AgI precipitate was weighed. For a sol 

containing nanoparticles with a surface area of 25.8 m2 it was possible to precipitate 0.02739 g of AgI 

precipitate corresponding to 1.167•10-4 mol AgI and subsequently to the presence of 4.5 μmol iodide 

ions per m2. This value resembles the surface density of quaternary ammonium groups determined by 

conductometry and seems to be more realistic considering the fact that the surface density of EDPS on 

silica is – according to the literature[23,76,77] – expected to be between about 1.5 μmol and 4.9 μmol 

EDPS per m2 of modified metal oxide surface. Nevertheless it may be overestimated, due to the fact 

that sporadically silica particles retained in the precipitate could contribute to the weighed mass of the 

precipitate. 

The methods we used to determine the amount of quaternary ammonium groups should be regarded 

as complementary. In recapitulating we assume a presence of 2.6 μmol to 4.5 μmol of quaternary 

ammonium groups per m2 surface area of the modified nanoparticles. The value of 4.5 μmol of 

50 nm 50 nm 100 nm 
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quaternary ammonium groups per m2 of the modified colloids determined by weighing AgI precipitate 

may be slightly overestimated, due to the fact that silica particles might be retained in the precipitate 

and contribute to the weighed mass. The values of 5.2 μmol and 4.3 μmol of quaternary ammonium 

groups per m2 of quaternized particles determined by conductometric titration of iodide ions 

remaining in a sol of modified nanoparticles stay in the same order of magnitude. Nevertheless, 

surface densities determined by conductometry are sensitive to the washing process, because of a 

possible ionic interaction between quaternary ammonium groups and silanolate groups present on the 

particle surfaces causing a release of iodide counterions which we dose. The value of 2.6 μmol of 

quaternary ammonium groups per m2 determined by TGA needs to be treated with care due to the fact 

that the decomposition of EDPS grafts and chemisorbed water, ethoxy residues or ammoniac enclosed 

in the porous silica nanoparticles contribute to the mass loss measured in the temperature range from 

160 °C to 650 °C. Furthermore we have seen that the modified nanoparticles need to be prevented 

from exposure to high salt concentrations to prevent the outer silane layer from dissolution. In this 

respect we should notice that depending on their electronegativity cations possess a different 

adsorption strength and dissolution potential. The smaller the cation is, the higher is its 

electronegativity and its potential to adsorb to silica and to initiate dissolution by the polarization of 

the Si-O-Si network.  3.3 Surface potential and colloidal stability of EDPS modified and 

quaternized EDPS modified silica nanoparticles 

The surface potential of quaternized nanoparticles is amongst other factors depending on the quality of 

the EDPS modification of the nanoparticles. If it is well accomplished the EDPS-modified 

nanoparticles can reach a zeta potential of about 33 mV at pH 7.4 and possess an isoelectric point at 

pH 9.0. Zeta potential measurement of the same particles after methylation shows that the 

quaternization of the EDPS-modified nanoparticles leads to a shift of the isoelectric point to pH 10.5 

and that the particles show a zeta potential of about 36 mV at pH 7.4 (see FIGURE 3.3-1 A).  

FIGURE 3.3-1 A: Comparison of the zeta potential of alkylated EDPS-modified and simple EDPS-modified nanoparticles. 

The red zone marks the zone of particle coagulation. B: Optical density depending on the pH of samples of alkylated 

EDPS-modified and simple EDPS-modified nanoparticles at various pH. The red line marks the zone of the coagulation 

of EDPS-modified nanoparticles; the orange line marks the zone nanoparticle coagulation of SiO2-EDPS-Me. 
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In contrast to EDPS-modified nanoparticles, which coagulate in the pH range from pH 7.5 to pH 10.5, 

the zone of coagulation is shifted to the pH range from about pH 8.9 to pH 11.6 for quaternized 

particles (see FIGURE 3.3-1 B). This effect can be explained by the pH independence of quaternary 

ammonium groups, which diminishes the compensation of the charges by the addition of a base in 

comparison to charges of protonated amine groups, which are sensitive to deprotonation and are 

revoked in the presence of a base. However, the quaternized nanoparticles show coagulation around 

pH 10, which can be explained by the dissolution of silica and the subsequently appearance of 

silanolate groups at basic pH via the reaction:  

SiO2 + 2 OH-   SiO3
2- + H2O[90]. 

EQUATION 3.3-1 Reaction equation of the dissolution of silica at basic pHs. 

The shift of the zone of coagulation for EDPS-Me modified nanoparticles permits us finally to dispose 

of silica nanoparticles bearing quaternary ammonium groups possessing a sufficient colloidal stability 

at physiological pH to be exploited as labeling agents in physiological media, as is shown by the high 

zeta potential we were able to measure of such quaternized nanoparticles in the presence of salt (see 

FIGURE 3.3-2). 

FIGURE 3.3-2 Zeta potential of quaternized EDPS-modified nanoparticles in the presence of 150 mM NaCl.  

It is interesting that during the preparation of the samples for zetametric measurements a shift in the 

initially adjusted pH of the samples is observed over time (see FIGURE 3.3-3). The observed shifts of the 

pH seem to be most important at basic pHs and might be explained by the fact that due to the addition 

of a base such as NaOH silanolate groups appear continuously on the surface of the modified 

nanoparticles due to the fact that not every silanol group present on the surface of silica has been 

condensed to an EDPS molecule. In what follows the emergence of negatively charged silanolate 

groups causes the attraction of positively charged quaternary ammonium groups. The organic chain of 

the grafted EDPS molecules turns inside the coating silane layer and an ionic bond forms between 

quaternary ammonium groups and surfaced silanolates. At the same time iodide ions previously 

serving as counterions of the quaternary ammonium groups are released as well as the protons of the 

original silanol groups – causing the decrease of the pH over time before the surface stabilizes, forming 

HI. This phenomenon is limited by the number of quaternary ammonium groups on the particle 

surface area and by the pKa of silanol groups determining the availability of silanolate groups. It has 
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also been observed for nanoparticles modified with TMAPS and EDPS (data not shown) in which 

case we notice much larger pH shifts for TMAPS-modified nanoparticles than for quaternized 

nanoparticles probably as a result of the presence of more silanolate groups due to a more irregular 

silane layer on the surface of TMAPS-coated silica colloids.  

FIGURE 3.3-3 Illustration of the shifts of the pH of samples prepared for zetametric measurements for 12 hours. 

By redispersing freshly quaternized nanoparticles (SiO2-EDPS-Me) with a surface area of 14.04 m2 in 

20 mL water at pH 6.61 we can measure an instantaneous shift of the pH to pH 4.64 corresponding to 

the release of 4.52•10-7 mol of H3O+ ions. Supposing that the release of protons is not induced by the 

addition of a base but solely due to the creation of an ionic bond between quaternary ammonium 

groups and silanolate groups we assume that the release of HI is exclusively responsible for the 

decrease in the pH. Subsequently the decrease in the pH gives an idea of the concentration of protons 

released and consequently of the amount of quaternary ammonium groups immersing into the silane 

layer to form ionic bonds with silanolate groups on the surface, which we calculated to be of 0.03 

μmol per m2 surface area of the modified nanoparticles. In contact with air HI will over time undergo 

oxidation according to the following reaction equations: 

4 HI + O2  2 I2 + 2 H2O 

HI + I2  HI3 

EQUATION 3.3-2 Due to the oxidation of hydrogen iodide with oxygen the formation of HI3 becomes possible due to the 

redox potentials of the couples O2/H2O = 1,23, I2/I- = 0,621 et I3-/I- = 0,54. 

This process leads to a decrease in the pH, which we observed for the sample described and which 

increased to pH 5 after 30 minutes and to pH 6.5 after 5 days, while the sample took on a brownish 

color due to the formation of HI3.  
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3.4 Conclusions 

In the third part of this second chapter we showed the development of a protocol for the chemical 

surface modification of silica nanoparticles, which permits the fabrication of highly cationic charged 

nanoparticles bearing quaternary ammonium functions on their surface. We set up a reaction protocol 

permitting us to conduct the Mentschutkin alkylation reaction on EDPS-modified silica nanoparticles 

preserving their colloidal stability during the reaction process. We were able to estimate the amount of 

quaternary ammonium groups present on one m2 surface area of a modified nanoparticle as between 

4.3 μmol and 5.2 μmol. Quaternized nanoparticles have been shown to immediately disperse in 

ultrapure water after washing in EtOH, while shifting the initial pH of the sol to lower pHs due to the 

release of HI occurring when quaternary ammonium groups interact with silanol and silanolate groups 

remaining on the surface of the modified nanoparticles. Shifts of the pH have also been observed 

during the preparation of samples at basic pHs for zetametric measurements, which can be explained 

by the fact that silanol groups are deprotonated when the pH of a sol is raised and subsequently 

quaternary ammonium ions immerse to the silane layer to interact with the occurring silanolate 

groups. Hence the immersion of organic grafts to the coated silane layer may be reversible. It is driven 

by the formation of ionic bonds between the positively charged organic grafts and silanolate groups on 

the surface of the modified nanoparticles which may be abrogated by the addition of a counterion 

competing for the interaction with the negatively charged silanolate. This should result in a ionic 

exchange causing the liberation of quaternary ammonium groups. Nevertheless, we observed that the 

modified nanoparticles do not resist accelerated dissolution at high salt concentrations and need to be 

handled with care. The major gain of the modification strategy to first accomplish the surface 

modification of silica nanoparticles with the aminosilane EDPS and to quaternize the amine groups 

via a second chemical modification step is the achievement of nanoparticles bearing quaternary 

ammonium groups on their surface and possessing an isoelectric point at pH 10.5. The nanoparticles 

obtained are still positively charged and well dispersed under physiological conditions in the presence 

of 150 mM NaCl at pH 7.4. They are suitable for application in biologic environments and for use as 

DNA labeling tool.  

In what follows we will explore the ability of the quaternized nanoparticles to interact with DNA and 

cationic lipids, which are the major constituents of lipoplexes. The high selectivity of quaternary 

ammonium groups for phosphate-containing compounds has been multiply demonstrated by different 

studies. It has been shown that silica materials bearing quaternary ammonium groups selectively 

adsorb different phosphonates such as the neurotransmitter pinacoyl methylphosphonate[22], but that 

the adsorption of bulkier phosphonates[34] is of lower efficiency. To ensure that the quaternized 

nanoparticles, which we synthesized, are suitable for use as a DNA labeling agents we examined the 

interactions between quaternized nanoparticles and DNA as well as phospholipids, as we will show in 

the next chapter. 
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We wish to adapt the surface of multimodal silica nanoparticles to strongly interact with DNA 

transfected through the cell by lipidic transfection agents in the form of lipoplexes. In the last chapter 

we showed that the modification of silica nanoparticles with the amino functionalized silane 

N-(3-(trimethoxysilyl) propyl) ethylenediamine (EDPS) (see FIGURE 0.0-1) and a subsequent 

quaternization of the amine groups with iodomethane permitted us to obtain nanoparticles which 

possess a high colloidal stability under physiological conditions and which show an isoelectric point at 

pH 10.5. Quaternary ammonium groups are known to possess a high attraction to the adsorption of 

phosphate groups containing compounds such as phosphonates[1–3] or DNA[4,5]. Nanoparticles solely 

modified with primary and secondary amine groups showed an isoelectric point at pH 9.5 and 

released labeled DNA in the cytosol[6]. As a result it 

was not possible to display the migration of DNA 

through the cytosol and its internalization to the 

nucleus during Cryo-TEM experiments. However, 

the DNA transfection by cationic lipids could be 

shown to be successful, due to the detection of 

expressed gene product. After synthesizing 

quaternary ammonium group bearing nanoparticles 

destined for the labeling of DNA which is 

incorporated into lipoplexes, we have a strong 

interest in exploring the interactions between the 

nanoparticles and biomolecules such as lipids and 

DNA.  

The exploration of interactions taking places between quaternized silica surfaces, lipids and DNA will 

permit us to estimate if our newly modified nanoparticles are appropriate to be tested as DNA labeling 

tools for the tracing of the migration of lipoplexes in vivo or in vitro. To analyze if the quaternized 

SiO2-EPDS-Me nanoparticles are more appropriate DNA labeling tools than nanoparticles bearing 

primary and secondary amine groups, we regard the interactions taking place between quaternized 

silica surfaces and biomolecules with which they come into contact during the transfection process. 

We will focus on the exploration of interactions between the positively charged quaternized 

nanoparticles and negatively charged phospholipids as present in cell and endosome membranes[7] 

which are crossed by lipoplexes during the transfection process. Subsequently we will investigate the 

interactions of quaternized nanoparticles with DNA. We will explore the influence of pH and salt 

concentration on the labelling of DNA with quaternized nanoparticles to investigate if the new surface 

modification which we have implemented improves the interaction between labeling nanoparticles 

and DNA in a salt-rich environment such as the cytosol. Finally we will explore the potential of 

nanoparticles modified with quaternary ammonium groups for labelling DNA in lipoplex structures. 

The ability of quaternized nanoparticles to be included into lipoplexes while they interact with DNA is 

crucial in terms of allowing us to visualize the transfection of DNA by cationic lipids.  
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FIGURE 0.0-1 Silane N-(3-(trimethoxysilyl) propyl) 

ethylenediamine EDPS before (A) and after 

quaternization (B). 
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1. INVESTIGATING THE ADSORPTION OF LIPOSOMES ON 

BARE, AMINATED OR QUATERNIZED SILICA SURFACES  1.1 The formation of supported lipid bilayers on silica surfaces  

To explore the interactions between phospholipids, which are one group of molecular constituents of 

the cell membrane, and quaternized nanoparticles we will investigate the formation of a supported 

lipid bilayer (SLB) on silica surfaces. The mechanisms of the formation of supported lipid bilayers on 

silica nanoparticles are well documented. Supported lipid bilayers can be formed on silica colloids by 

the interactions of small liposomes with the nanoparticle surface.  

Liposomes are spherical vesicles which, due to their amphiphilic properties[23], organize themselves in 

a bi- or a multilayer. Possessing charged polar phosphatidyl-headgroups linked to apolar, lipophilic 

alkylchains they form small lamellar structures within a solvent depending on its polarity. Within 

water the hydrophilic head groups are on the outside and stay in contact with the solvent while the 

hydrophobic chains are oriented towards the inside of lipid membranes. Several types of liposomes 

can appear in water. First there are multilamellar vesicles (MLV). These consist of multiple lipidic 

layers forming vesicles which are polydisperse in size in the range from 80 nm to 100 μm and in 

morphology. The second liposome type consists of liposomes called giant unilamellar vesicles (GUV), 

which possess sizes up to 50 μm[24] but consist of a single lipid bilayer. Large unilamellar vesicles 

(LUV) are also formed by a single lipidic bilayer. Their size varies between 200 nm and 1 μm. 

Another type of vesicles are small unilamellar vesicles (SUV). They consist of a single lipid bilayer and 

from vesciles in a size range from 20 to 50 nm. Their size distribution is less polydisperse than for the 

other LUVs or MLVs.  

Liposomes can be prepared by different methods[25] such as dialysis, extrusion or sonication. To obtain 

small unilamellar vesicles of the desired lipid composition we used the film hydration method and a 

subsequent sonication process following PROTOCOL 1.1-1: 

PROTOCOL 1.1-1 Formation of small unilamellar lipid vesicles 

400 μL of a lipid stock solution in chloroform (50 mg/mL) was taken with a glass syringe and 

added into a 5 mL round bottom glass flask. The chloroform was evaporated at room temperature 

on a rotary evaporator to form a thin film of lipid layers on the wall of the glass flask. Twice the 

lipid layer is redissolved in 1 mL of diethyl ether and reformed by evaporation of the solvent. The 

film of lipid layers on the glass wall was then dried at room temperature in a desiccator which 

was set under vacuum for 20 minutes. The thin lipid film was then hydrated by the addition of 

2 mL of ultrapure water (18.2 MΩ) and vortexed for one minute. Subsequently the mixture was 

frozen in liquid nitrogen at -72 °C and thawed out in a 37 °C water bath. The freezing-thawing 

cycle was repeated four times; the liquid was then transferred to a pyrex tube placed in an ice 

bath and a sonication tip was introduced to the solution. Sonication pulses of two seconds with 
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20 % amplitude were applied for 30 minutes to form small unilamellar vesicles of the present 

lipids using a tip sonicator (vibra-cell™ 75042 from Bioblock scientific). The volume was 

separated by pipetting of 1 mL vesicle dispersion into two separate 1.5 mL Eppendorf tubes. The 

vesicle dispersion was centrifuged at 13000 rpm to eliminate titanium, which detaches from the 

sonication tip during the sonication process. The supernatant was taken and 2 mL of a dipersion 

of small unilamellar lipid vesicles with a lipid concentration of 10 mg/mL was obtained. The 

concentration of phospholipids can be dosed by a colorimetric dosage of phosphate groups (see 

Annex 1). 

 
During this preparation a film of lipid layers was hydrated leading to the formation of large 

multilamellar vesicles of different sizes. The freezing-thawing cycles permit the homogenization of the 

sizes of these vesicles. Subsequently the sonication process enables the formation of small unilamellar 

vesicles. The introducing of energy during the sonication process permits the fragmentation of the 

vesicles and the formation of small unilamellar vesicles after the sonication pulses (see FIGURE 1.1-1).  

 

FIGURE 1.1-1 Illustration of the formation of small unilamellar vesicles. 1: A thin film of lipidic bilayers is formed on the 

bottom of the glass flask. 2: The hydration of the film and the vortexing of the sample lead to the formation of large 

multilamellar vesicles of inhomogeneous size. 3: Freezing of the sample in liquid nitrogen and subsequent 

decongelation for several times permit the homogenization of the vesicle sizes. 4: Pulsing sonication of the dispersion 

of large multilamellar vesicles leads to the formation of small unilamellar vesicles (5) in water. 

When small unilamellar vesicles (SUV) are brought into contact with nanoparticles they can form 

supported lipid bilayers (SLB) on the nanoparticle surface if an attractive interaction takes place 

between lipids and nanoparticles. SLBs can be visualized by TEM or Cryo-TEM as shown by Mornet 

and coworkers[8] for lipid bilayers of a composition of DOPC/DOPS 4:1 (IUPAC names and 

structures of all lipids mentioned in this chapter are shown in  FIGURE 0-1 in Annex 4) on 100 nm sized 

silica nanoparticles (see FIGURE 1.1-2). 
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FIGURE 1.1-2 Silica nanoparticles have been brought into contact with DOPC/DOPS 4:1 liposomes resulting in the 

formation of a supported lipid bilayer in the presence of salt. Both Cryo-TEM pictures are at the same scale. A: 

Cryo-TEM picture of small unilamellar vesicles. B: A schematic illustration of the Cryo-TEM picture (C) showing the 

supported lipid bilayer on a silica nanoparticle[8]. 

The formation of supported lipid bilayers has been investigated by Cryo-TEM[8], atomic force 

microscopy (AFM) or the use of a quartz crystal microbalance with dissipation monitoring 

(QCM-D)[9]. Furthermore their characteristics such as thickness and hydration state can be studied by 

the implementation of complementary optical mass-sensitive techniques such as dual polarization 

interferometry, ellipsometry, surface plasmon resonance (SPR), optical waveguide lightmode 

spectroscopy or reflectometry[10–12]. In the present study we will use QCM-D measurements to monitor 

the interactions between modified silica surfaces and phospholipids. The principle of a QCM-D 

measurement is based on the piezoelectric properties of quartz crystals. Sandwiched by two gold 

electrodes such crystals are excited to mechanical oscillation by the application of an alternating 

electric field[13]. After cutting off the electric circuit the decaying oscillation of the crystal can be 

monitored by measuring the decaying electric field (see FIGURE 1.1-3 B).  

The decay of the oscillation of the crystal, A, can be fitted over the time t by the EQUATION 1.1-1: 

  

f   – resonance frequency of the crystal 

D – dissipation  

A0 – initial oscillation  

φ – phase shift 

 

EQUATION 1.1-1 Equation fitting the temporal change of the crystal oscillation after cutting off of the driving circuit[14]. 

As is known from classic oscillation phenomena the periodic time of one oscillation corresponds to 

1/f. The dissipation energy is measured by means of the amortization of the oscillation of the crystal 

(see FIGURE 1.1-3 C). 

 

 

 

A B C 

50 nm 
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FIGURE 1.1-3 The diagram illustrates the principle of QCM-D measurement. A: A quartz crystal is excited to oscillation 

by application of an alternating current. B: When the electric circuit is cut off the free oscillation of the crystal can be 

measured. The fit of the decaying oscillation is proportional to exp(- fDt) which permits the extraction of the value of 

its resonance frequency f and dissipation D[14]. C: Illustration of the frequency and dissipation shift due to the 

adsorption of soft matter as a viscoelastic layer[15]. 

Once a mass adsorbs to the surface of the quartz crystal a change in its resonance frequency can be 

observed. The relationship between the difference of adsorbed mass m and the shift of the resonance 

frequency fn has been explained by G. Sauerbrey[16] and is expressed in the EQUATION 1.1-2: 

 
 

m – mass of the adsorbed molecules  

f0 – fundamental resonance frequency of the crystal (5 MHz) 

fn – fundamental resonance with the overtone n 

vq – speed of sound intrinsic to quartz (3340 m/s) 

q – density of the quartz crystal (2.65 g/cm3) 

 

EQUATION 1.1-2 The Sauerbrey equation relates the change in the resonance frequency of a quartz crystal to the mass 

of an adsorbed species on the crystal.  

The resonance frequency  which is measured is normalized to the fundamental resonance frequency 

of a quartz crystal. After the determination of a f it can be introduced to the Sauerbrey equation 

without the need to be divided by the overtone number n. The fundamental resonance frequency as 

well as the speed of sound through the crystal and the crystal density are intrinsic values of a quartz 

sensor and can be merged to the mass sensitivity constant C. For commonly used sensors the constant 

C has the value of 17.7 ng/cm2 Hz[17]. In determining the mass of a species adsorbed to the sensor 

surface, we need to consider that the resolution in frequency is about 0.2 Hz, which permits a mass 

resolution of several ng/cm2. The Sauerbrey equation is only valid if the adsorbed mass is smaller than 

the mass of the crystal and homogenously adsorbed to the surface. The adsorbed species also needs to 

be rather rigid and adsorbed to the crystal surface without having the possibility of gliding on the 

plane[18]. In addition it must be noted that the adsorbed masses measured by the QCM-D technique 

include water, which may be coupled to the adsorbed film or enclosed to adsorbed vesicles[12,19].  

~ ~  
A B 

Rigid 
Soft/viscoelastic 

C 

Rigid adsorbate 
Soft adsorbate 

amortization 
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While adsorbing a mass to a quartz sensor, as reported by Keller and Kasemo[20], not only the 

resonance frequency but equally the dissipation of the crystal shifts. The dissipation D is defined as: 

 
 

Elost – vibrational energy dissipated during one oscillation cycle  

Estored – vibrational energy stored in the oscillator 

 

EQUATION 1.1-3 Dissipation is defined as the loss of vibrational energy divided by the energy stored in the resonating 

quartz crystal. It causes the amortization of the oscillation curve[15]. 

The shift in the dissipation indicates the loss of vibrational energy in the crystal, when a sample 

adsorbs to its surface. This is explained by the fact that the vibrational energy of the crystal is 

dissipated through the whole adsorbed sample. If the sample coupled to a sensor surface behaves like a 

rigid film the dissipation increases only a little. On the contrary, the adsorption of soft matter on the 

sensor leads to a higher dissipation shift. The dissipation shift gives information about the viscosity, 

rigidity and compactness of an adsorbed layer. It can be used to detect phase transitions between 

different adsorption states such as, for example, the rupture of adsorbed lipid vesicles on a fully 

covered surface leading to the formation of a supported lipid bilayer[20] or the rigidification of an 

adsorbed protein layer[21].  

The monitoring of the formation of supported lipid bilayers on silica coated QCM-D crystals gives 

information about the mechanism of the bilayer formation on a surface[9,17]. As an example, 

silica-coated crystals were placed in the sensor modules of the Q-sense E4 QCM-D machine, which 

were connected to a peristaltic pump which regulated the speed of the flow (see FIGURE 1.1-4). The 

flow rates are in the range of 1 μL/min to 650 μL/min. Liquid samples were injected over the center 

of the crystal and left at its periphery, with every sample injection followed by two washing steps. All 

measurements were accomplished at 25 °C. The tubes included a total volume of 1.5 mL. for a 

complete exchange of liquid in the sensor cell 500 μL is required, the liquid volume on the sensor is 

40 μL. The quartz crystals have a diameter of 14 mm and possess an active surface of 0.2 cm2 on 

which the adsorption of injected compounds is monitored. 

                       
FIGURE 1.1-4 The picture shows the buildup of the Qsense E4 QCM-D used for QCM-D measurements. The liquid 

sample flows continuously through the cycle. The flow of the liquid is driven by a peristaltic pump and follows the 

direction indicated by the blue arrows[14]. 
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The QCM-D measurement is accomplished on overtones 1, 3, 5, 7, 9, 11 and 13. In the following we 

show the results measured at the seventh overtone f7 and D7. They provide results corresponding to 

theoretical predictions calculated for a finite circular crystal[22]. Furthermore resonance frequencies at 

high overtones between overtone 5 and overtone 13 are less susceptible to external events. The results 

which we present are already normalized to the fundamental resonance frequency of 5 MHz, therefore 

the Sauerbrey law can be applied for f values measured without the need of dividing by the number 

of the overtone. By injecting a solution of DOPC SUVs with a lipid concentration of 100 μg/mL 

buffered at pH 7.4 with a HEPES buffer (10 mM HEPES, 150 mM NaCl) to an unmodified SiO2 

coated quartz crystal, we could follow the formation of a supported lipid bilayer on the sensor 

(see FIGURE 1.1-5 ). In a first time DOPC vesicles adsorb to the SiO2 surface. They contain large 

amounts of water and are highly viscoelastic leading to high frequency and dissipation shifts 

f = -55 Hz, D = 2.1•10-6. When the surface is saturated with DOPC vesicles and the lipid 

concentration exceeds a critical level they explode and fuse to form a supported lipid bilayer on the 

surface. This phenomenon can be followed by the decrease in frequency and dissipation shifts as 

observed previously in the literature[9]. Typical frequency and dissipation shifts obtained from a 

supported lipid bilayer on a silica coated quartz crystal are a f of -25 Hz and a D of 0.1•10-6. These 

values correspond to the adsorption of a rigidly attached mass of 440 ng, which is equivalent not only 

to the number of DOPC molecules forming the supported lipid bilayer on the silica surface but also to 

water molecules connected to the lipids[19]. In FIGURE 1.1-5 we observe a D of 0.1•10-6 Hz and a f 

of -23.5 Hz after twice rinsing the surface with 500 μL buffer solution, corresponding to an adsorbed 

mass of 416 ng of DOPC bilayer on the silica-coated sensor. 

 

FIGURE 1.1-5 Graph showing the formation of a supported lipid bilayer of DOPC on silica. The evolution of frequency 

(blue line) and dissipation (orange line) is monitored over time. The measurement was accomplished at pH 7.4 in 

HEPES buffer (10 mM) in the presence of salt (150 mM NaCl), all injections were implemented at a flow rate of 

150 μL/min. The yellow arrow indicates the injection of 950 μL sample containing DOPC SUVs (100 μg/mL); the light 

green arrows indicate the injection of 500 μL HEPES buffer. 
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The injection of small unilamellar DOTAP (see IUPAC name and structure in Figure 0-1, Annex 4) 

vesicles leads to a spontaneous rupture of vesicles reaching the silica surface. When the positively 

charged DOTAP liposomes come in contact with the negatively charged silica surface, a supported 

lipid bilayer forms immediately on the bare silica surface (see FIGURE 1.1-6). 

 
FIGURE 1.1-6 The formation of a supported lipid bilayer of DOTAP on silica is monitored by the evolution of frequency 

and dissipation over time. The measurement was accomplished at pH 7.4 in HEPES buffer (10 mM), all injections were 

implemented at a flow rate of 150 μL/min. The yellow arrow indicates the injection of 950 μL sample containing 

DOTAP SUVs (100 μg/mL); the light green arrows indicate the injection of 500 μL HEPES buffer. 

For the adsorption of DOTAP on silica we observe a D of 0.4•10-6 Hz and a f of -19.0 Hz after 

twice rinsing the surface with 500 μL buffer solution, corresponding to an adsorbed mass of 354 ng of 

DOTAP bilayer on the silica-coated sensor (see FIGURE 1.1-6). Although the frequency shift and 

subsequently the adsorbed mass of DOTAP is less than observed for a SLB of DOPC, it corresponds 

to the formation of a lipid bilayer because of the fact that the molar mass of the cationic lipids DOTAP 

is lower than the mass of the phospholipid DOPC. 

The mechanistic difference between the monitored formation of a DOPC and a DOTAP bilayer on 

silica can be explained by taking into account the difference between the zeta potentials of the 

liposomes used and the silica surface on which the SLB formation takes place (see FIGURE 1.1-7). The 

potential difference between negatively charged silica nanoparticles and positively charged DOTAP 

vesicles is about 70 mV and is relatively high, which allows the formation of a supported lipid bilayer 

by strong electrostatic interactions. The strength of these interactions induces a spontaneous rupture of 

vesicles in contact with the silica surface, and enables the rapid formation of a supported lipid bilayer 

of DOTAP on the silica surface. In contrast the potential difference between silica nanoparticles and 

DOPC vesicles is about 10 mV. The formation of a supported lipid bilayer of DOPC on a silica surface 

therefore can not be explained by a reaction mechanism involving electrostatic interactions. In the 

presence of salt which decreases the zeta potential of lipids and silica van der Waals forces promote 

the interaction. The vesicles adsorb to the silica surface where they do not burst spontaneously when 
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coming in contact with silica, but instead fuse to form an SLB when they are in contact with 

neighbouring vesicles. This behavior results in the formation of a supported lipid bilayer if the 

coverage of the silica surfaces with vesicles exceeds a critical concentration[17,19].  

 

FIGURE 1.1-7 Zeta potentials of small unilamellar vesicles of different composition and silica nanoparticles at pH 7.4 at 

150 mM NaCl. 

In the presence of 150 mM NaCl even the formation of a supported lipid bilayer of negatively charged 

phospholipid vesicles of compositions such as DOPC/DOPS 4:1, 3:1 can occur due to van der Waals 

interactions, because the repulsive electrostatic forces are screened by the salt ions which are present 

(see IUPAC name and structure of DOPS in FIGURE 0-1, Annex 4). However, vesicles containing 

higher amounts of the negatively charged phospholipid DOPS do not interact with silica surfaces even 

in the presence of 150 mM NaCl because the repulsive electrostatic forces are not sufficiently screened 

to allow the prevalence of the weaker van der Waals forces. 1.2 Formation of supported lipid bilayers on silica surfaces bearing 

primary and secondary amines or quaternary ammonium groups 

To study the interactions taking place between negatively charged phospholipids and chemically 

modified silica nanoparticles, we investigated the formation of supported lipid bilayers of 1,2-dioleoyl-

sn-glycero-3-phospho-L-serine (DOPS) on EDPS-modified nanoparticles before and after 

quaternization. The supported lipid bilayers are directly formed by electrostatic interactions. We chose 

to use negatively charged DOPS liposomes to maximize the zeta potential difference between the 

modified silica surfaces and vesicles which facilitates the rapid formation of a supported lipid bilayer. 

To accomplish these experiments we needed to prepare small unilamellar DOPS liposomes.  

Supported lipid bilayers form only on hydrophilic surfaces[14]. To initiate the formation of a supported 

lipid bilayer on the modified silica nanoparticles, liposomes of 1,2-dioleoyl-sn-glycero-3-phospho-L-

serine (DOPS) were brought into contact with the modified colloids. The formation of supported lipid 

No attractive interactions – electrostatic repulsion 
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bilayers of negatively charged DOPS molecules on the surface of modified, positively charged silica 

colloids was implemented in HEPES buffer (10 mM) at pH 7.4 in the absence of salt to facilitate the 

formation of a supported lipid bilayer via electrostatic interactions. To put the modified nanoparticles 

in interaction with small unilamellar vesicles a dispersion of nanoparticles was added to a dispersion 

of small unilamellar lipid vesicles under vortex following PROTOCOL 1.2-1. 0.5 mg of DOPS allows the 

formation of 0.125 m2 lipidic bilayer on a surface. The experiments were implemented at different 

ratios of potentially formed lipid bilayer to the surface of the nanoparticles, which are to be covered 

with lipid bilayers (LB).  

PROTOCOL 1.2-1 Formation of a supported lipid bilayer on the surface of silica colloids by 

electrostatic interactions 

After selecting lipids of an adequate composition we chose the ratio of potentially formed 

LB surface to the surface area of nanoparticles on which we wished to implement the SLB 

formation. For a chosen ratio of 4.5 the SLB formation was accomplished as follows: to 110 μL of 

ultrapure water (18.2 MΩ) 15 μL of HEPES (100 mM, pH = 7.4) was added, as well as 25 μL of SUV 

(10 mg/mL). 150 μL of 0.25 mg lipids in HEPES (10 mM) buffered solution was obtained; 

corresponding to a surface of 0.0625 m2 lipid bilayer. To 40.2 μL of water 5 μL of HEPES (100 mM, 

pH 7.4) and 4.8 μL of NPs dispersed in water (46 g/L, diameter 50 nm) were added. The developed 

surface of the nanoparticles in solution amounted to 0.0139 m2. Under vortexing at 1200 rpm the 

prepared nanoparticle dispersion was added to the dispersion of SUVs. The total volume in which 

the assembly took place was 200 μL.  

The formation of a supported lipid bilayer can also be achieved in the presence of salt. For this 

purpose in the total volume 30 μL water is replaced by 30 μL of a solution of NaCl (1M) to adjust 

the final salt concentration at 150 mM NaCl.  

 
The assemblies formed are stable in solution when the lipids are present in excess and the ratio of the 

surface possibly covered by a lipid bilayer and the surface area of nanoparticles (SLB/SNP) exceeds 4, 

whereas they coagulate at surface ratios below 2.5. The supported lipid bilayers, which formed on the 

surface of modified nanoparticles, could be observed by transmission electronic microscopy. The 

specimens were stained by the use of stains such as phosphotungsten acetate or uranyl acetate. In 

FIGURE 1.2-1 exemplary TEM pictures of quaternized nanoparticles supporting a lipid bilayer of DOPS 

on their surface are shown. 
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FIGURE 1.2-1 A, B: TEM pictures of quaternized nanoparticles after interaction with DOPS SUVs stained with 

phosphotungstic acid (2 % w/v) at different magnifications. Supported lipid bilayers are indicated by light grey arrows. 

In the present study we displayed the formation of supported lipid bilayers on differently modified 

silica supports such as quaternized silica supports or silica supports solely modified with EDPS by 

QCM-D. Due to the fact that the sensing capacity of the QCM-D sensor is based solely on the physical 

properties of the quartz crystal, but not on the properties of the surface of the crystal, it can be covered 

with a multitude of materials, which then act as support for adsorbing masses. Crystals coated with 

thin films of Au, Pt, Al2O3, TiO2 or SiO2 are commercially available and can be chemically modified 

without influencing the measurement signal, even when metal foils or mica layers[26] are deposited on 

the crystals, whose thickness exceeds 10 μm[9,27].  

During this study we chemically modified SiO2-coated quartz crystals by the condensation of the 

silane coupling agent EDPS on the silica coating. Subsequently we implemented a quaternization of 

the grafted amine groups. The modifications were accomplished as described in PROTOCOL 1.2-2 and 

PROTOCOL 1.2-3. 

PROTOCOL 1.2-2 Surface modification to implement primary and secondary amine groups on 

silica coated quartz crystals 

The received SiO2 coated quartz crystals (Qsense QSX 303, 50nm SiO2) were immersed in a 

solution of sodium dodecyl sulfate (2 % w/v) for 12 hours, then rinsed with ultrapure water and 

dried under a nitrogen flux. The dry crystals were then placed on a clean glass support. The 

electrode-bearing side lay on the glass support, the support was then cleaned by the application of 

UV radiation on the crystal surface in an UV ozone generator. The clean crystals were immersed in 

water (18.2 MΩ, pH 8) for 30 seconds and then transferred to a mixture of 9.6 mL ethanol and 

400 μL N-(3-(trimethoxysilyl) propyl) ethylenediamine in a 25 mL glass beaker. The crystals 

stayed submerged in the solution for 12 hours, while the glass beaker containing the crystals was 

slightly agitated several times (see FIGURE 1.2-2 step 1, 2). After 12 hours of incubation the 

crystals were transferred to a 25 mL glass beaker containing 15 mL glycerol and placed in an 

oven (see FIGURE 1.2-2 step 3). The oven was set under vacuum and stayed at room temperature 

for 30 minutes; hence the temperature was augmented to 60 °C for 45 min and subsequently to 

A B 

100 nm 50 nm 



151 
 

110 °C for two hours. The crystals were placed in 10 mL of absolute alcohol; they were agitated 

and immerged in EtOH several times to remove glycerol from their surface (see FIGURE 1.2-2 step 

4). If the crystals were to be used directly, they were placed in 10 mL of ultrapure water (see 

FIGURE 1.2-2 step 5).  

 

PROTOCOL 1.2-3 Quaternization of amine groups on previously modified silica coated quartz 

crystals 

To quaternize primary and secondary amine groups present on EDPS modified crystals, instead of 

immersing them in water they were placed in 9.7 mL of absolute ethanol (see FIGURE 1.2-2 step 4). 

100 μL NEt3 and 200 μL MeI were added with a glass syringe (see FIGURE 1.2-2 step 5). The 

crystals stayed immersed in the reaction mixture for 12 hours, while the glass beaker was slightly 

agitated several times. The glass beaker was then placed in a water bath at 70 °C for 30 minutes. 

Subsequently the crystals were washed twice in 10 mL EtOH and were placed in a glass beaker 

containing 10 mL of ultrapure water (see FIGURE 1.2-2 step 6, 7). Throughout all the modification 

steps it is important to ensure that the crystal surfaces do not dry out during the transfer from one 

solution to another. After the modification the crystals were immediately used for QCM-D 

measurements. They were dried under a gentle nitrogen flux before being placed in the QCM-D 

sensor cell. Each modified crystal was used for one measurement to achieve reproducible results. 

 
All the steps of the modification process are summarized and illustrated in FIGURE 1.2-2: 

   

FIGURE 1.2-2 Illustration of the modification process of a SiO2-coated quartz crystal with EDPS and subsequent 

quaternization of the amine groups. 

By the injection of sample solutions which contain DOPS (see IUPAC name and structure in FIGURE 

0-1, Annex 4) SUVs with a lipid concentration of 100 μg/mL in HEPES buffer (10 mM) on differently 

modified crystals we were able to follow the adsorption of DOPS on primary and secondary amines 

bearing or on quaternized sensors. We implemented these injections at different pHs to compare how 

the zeta potential of the surfaces influences their interactions with the DOPS vesicles. 

Negatively charged DOPS liposomes where injected on silica coated QCM-D crystals previously 

modified with EDPS which were hydrated with 10 mM buffer solutions, fixing the pHs at pH 7.4 and 

pH 9 without the presence of further salt. We observed the formation of a supported lipid bilayer of 

DOPS on EDPS modified surfaces at pH 7.4, which led to a frequency shift of -22 Hz and a 

UV ozone 
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dissipation shift of 0.6•10-6 (FIGURE 1.2-3 A). At pH 7.4 the primary and secondary ammonium group 

bearing silica surface has a zeta potential of about 30 mV (see FIGURE 3.3-1 A, chapter II). The 

difference between the zeta potential of negatively charged DOPS vesicles and the positively charged 

EDPS-modified crystal surface is sufficiently high to allow the formation of a supported lipid bilayer 

by electrostatic interactions. The observed frequency and dissipation shifts correspond to data 

observed for the formation of a supported lipid bilayer of 1,2-Dioleyl-sn-glycero-3-phospho-rac-

(1-glycerol) (DOPG) on an EDPS modified QCM-D crystal. In this case a frequency shift of -25 Hz 

and a dissipation shift 0.7•10-6 were measured by QCM-D[19]. Both supported lipid bilayers formed on 

EDPS modified crystals show higher dissipation values than observed for supported lipid bilayers on 

SiO2 coated quartz crystals, which might be explained by the presence of propyl(ethylenediamine) 

grafts forming a kind of viscoelastic surface coating. Water molecules may also be intercalated in 

between the silane layer which can also lead to a higher dissipation shift measured for a bilayer 

obtained on a modified surface in comparison to the dissipation shift of a supported lipid bilayer 

formed on bare silica.  

      

                                                              

FIGURE 1.2-3 Supported lipid bilayers of DOPS formed on chemically modified QCM-D crystals, the graphs display f 

(blue line) and D (orange line). DOPS was injected on an EDPS modified sensor at pH 7.4 (A) or pH 9 (B). The 

measurements were implemented in HEPES buffer (10 mM); all injections were effectuated at a flow rate of 

150 μL/min. The yellow arrow indicates the injection of a 950 μL sample containing DOPS SUVs (100 μg/mL); the light 

green arrows indicate the injection of 500 μL HEPES buffer.  

At pH 9 DOPS vesicles were injected on an EDPS-modified surface. We observe a frequency shift 

of -35.5 Hz and a dissipation shift of 2.5•10-6 (see FIGURE 1.2-3 B). The high dissipation shift indicates 

the adsorption of a viscoelastic layer of lipidic vesicles. The frequency shift of -33.5 Hz is lower than 

the frequency shift of -55 Hz, which we observed in FIGURE 1.1-5 for the adsorption of DOPC vesicles 

on a silica surface. The comparatively low frequency shift of -33.5 Hz indicates that the vesicles which 
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are adsorbed to the primary and secondary amine-bearing silica surface do not exceed the critical 

concentration of vesicles needed on the surface to initiate SLB formation. We do not observe a fusion 

of the adsorbed DOPS vesicles to build a supported lipid bilayer as we observed for DOPC vesicles 

adsorbed on bare silica. This observation can be explained by several reasons. The zeta potential of an 

EDPS modified silica surface at pH 9 is nearly zero (see FIGURE 3.3-1 A, chapter II) and as a 

consequence DOPS vesicles are not attracted by electrostatic forces which would permit their 

spontaneous rupture and the immediate formation of an SLB, but they do adsorb due to van der 

Waals forces. Furthermore fewer vesicles adsorb to the surface because the injection was implemented 

in the absence of salt, and as a consequence the negative zeta potential of DOPS vesicles is not 

screened. The vesicles are still negatively charged and repulse each other. This behavior avoids their 

fusion and the formation of a supported lipid bilayer. 

DOPS vesicles have also been injected on SiO2-coated crystal surfaces bearing quaternary ammonium 

groups on their surface after the quaternization of previously present primary and secondary amines 

with iodomethane. The vesicles have been injected on quaternized surfaces at pH 7.4 and at pH 9 in 

the absence of salt (see FIGURE 1.2-4 A, B). In addition we implemented the injection of DOPS vesicles 

on a quaternized crystal, which subsequent to the quaternization process was exposed to a solution of 

1 M NaCl for 30 seconds (see FIGURE 1.2-4 C).  

When injecting DOPS small unilamellar vesicles on Me-EDPS-modified surfaces at pH 7.4 we 

observed a frequency shift of -18 Hz corresponding solely to an adsorbed mass of 319 ng, but a 

dissipation shift of only 0.3•10-6 (FIGURE 1.2-4 A). Whereas the dissipation shift clearly indicated the 

adsorption of a rigid lipid structure the frequency shift was too low to provide a supported lipid bilayer 

formed on the quaternized surface. Considering the zeta potential of a quaternized surface of about 36 

mV at pH 7.4 we expected that the formation of a supported lipid bilayer would take place 

immediately due to electrostatic interactions between the positively charged surface and DOPS 

vesicles. On the contrary we observed the formation of bilayer patches. Nevertheless the formation of 

supported lipid bilayers of DOPS on quaternized silica nanoparticles has been observed by electron 

transmission microscopy (see FIGURE 1.2-1).  

It may be possible that the presence of the quaternizing methyl groups on the quaternized crystal 

surface renders the sensor less hydrophilic and therefore has a perturbing impact on the formation of a 

lipid layer on a Me-EDPS modified QCM-D crystal leading to unequally covered surfaces which 

support bilayer patches. The low frequency shift may be explained by fewer water molecules 

conjugated in the modifying silane layer. A further explanation of the low frequency shift may be the 

fact that iodide counterions of the quaternary ammonium groups leave the surface when quaternary 

ammonium groups start to interact with DOPS lipids. In view of the presence of 4.3 μmol/m2 of 

iodide on the active surface of 0.2 cm2 of the modified crystal, the release of iodide ions may lead to a 

frequency shift of +0.61 Hz and of about +1.18 Hz when we consider the simultaneous departure of 

water from the iodide salvation layer. The employment of complementary methods such as AFM and 

SPR needs to be accomplished to verify the mentioned hypotheses. 
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When injecting DOPS vesicles on the salt washed quaternized crystal we observed a frequency shift 

of -25.6 Hz and a dissipation shift of 0.95•10-6, which is about nine times higher than the value of 

0.1•10-6 typically observed for a SLB (FIGURE 1.2-4 C). Nevertheless the frequency shift of -25.6 Hz 

corresponds well to the frequency shift which is generally obtained if a complete supported lipid 

bilayer has formed on a QCM-D crystal surface. Knowing that the washing step in a 1 molar salt 

solution degrades the modified surface by acceleration of the dissolution of the modifying silane layer, 

we might have rendered the surface a less more hydrophilic by the removal of quaternary ammonium 

 
 

                                           

 
                  

FIGURE 1.2-4 Supported lipid bilayers of DOPS formed on Me-EDPS modified QCM-D crystals, the graphs display f 

shifts (blue line) and D shifts (orange line). The measurements have been implemented in HEPES buffer (10 mM). 

The yellow arrow indicates the injection of a 950 μL sample containing DOPS SUVs (100 μg/mL); the light green 

arrows indicate the injection of 500 μL buffer.  A: DOPS injected to a quaternized sensor at pH 9. B: DOPS injected on 

a quaternized sensor  at pH 9, C: DOPS injected on a quaternized sensor after washing with NaCl (1 M) at pH 7.4. 
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groups which may facilitate the insertion of water molecules to the silane layer and the formation of 

supported lipid bilayers.   

In FIGURE 1.2-4 B we show the frequency and dissipation shifts monitored subsequent to the injection 

of DOPS vesicles on a quaternized silica surface at pH 9. We observe a frequency shift of -34.6 Hz and 

a dissipation shift of 2.4•10-6. The zeta potential of quaternized silica surfaces at pH 9 is still about 

18 mV (see FIGURE 3.3-1 A, chapter II) and we would therefore expect that the electrostatic attraction 

between the quaternized silica surfaces of the QCM-D crystals and DOPS vesicles is sufficiently strong 

to induce the formation of a supported lipid bilayer. Instead of the formation of a SLB we observe the 

adsorption of DOPS vesicles on the modified crystal surface. The frequency and dissipation shifts 

observed are similar to the results obtained on primary and secondary amine-bearing surfaces (see 

FIGURE 1.2-3 B). 1.3 Conclusions 

In the last section we explored the formation of supported lipid bilayers of DOPS on EDPS- and 

Me-EDPS-modified silica. In recapitulating we can say that we have not observed an improvement of 

interactions between negatively charged DOPS vesicles and quaternized surfaces in comparison to 

SiO2 surfaces solely modified with primary and secondary amine groups. Whereas the formation of a 

supported lipid bilayer of DOPS occurs on SiO2 surfaces bearing primary and secondary amine groups 

(see FIGURE 1.2-3 A) we cannot observe the formation of an equivalent SLB on a quaternized surface 

(see FIGURE 1.2-4 A) under the same operating conditions. Only after the rinsing of quaternized crystals 

in 1 M NaCl solution did we achieve the formation of a supported lipid bilayer of DOPS on a 

quaternized crystal (see FIGURE 1.2-4 B). Even for injections of DOPS at the basic pH 9 the 

implementation of quaternary ammonium groups on the sensor surface did not improve the 

interaction of the modified surface with the injected vesicles. Apparently the increase of the zeta 

potential of about 20 mV compared to a surface bearing primary and secondary amine groups is not 

sufficient to induce the formation of a supported lipid bilayer of DOPS. The implementation of 

quaternary ammonium groups on silica surfaces does not seem to improve their interactions with 

negatively charged phospholipids such as DOPS.  

Evidently we are aware of the fact that these experiments are not sufficient to predict the interactions 

between quaternized nanoparticles and negatively charged cell membranes which contain a multitude 

of different lipids, proteins and further compounds in a physiological environment where they are also 

exposed to salt concentrations which might be able to facilitate van der Waals interactions. 

Furthermore when they are labeling DNA in a lipoplex the nanoparticles should be prevented from 

interactions with the membrane of the cell and as well the membrane of endosomes because they are 

enclosed into the lipoplex structures. Nevertheless, these results may indicate that quaternized 

SiO2-EDPS-Me nanoparticles which label DNA in a lipoplex structure may be less attracted to interact 

with negatively charged phospholipids present in the cell membranes than EDPS modified 

nanoparticles. Subsequently quaternized nanoparticles might be more appropriate to keep adsorbed 

DNA on their surface during the transfection process. 
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2. INVESTIGATING THE ADSORPTION OF DNA ON AMINATED 

OR QUATERNIZED SILICA SURFACES 

In this section we will investigate the interactions between DNA and modified silica surfaces. Surfaces 

bearing quaternary ammonium groups have been described as strongly attracting phosphate group 

containing compounds and especially DNA[1–3,5]. Due to quaternary ammonium groups quaternized 

silica nanoparticles possess pH independent charges and higher zeta potentials than aminated silica 

nanoparticles at pH 7.4 and in the presence of 150 mM NaCl. The presence of quaternary ammonium 

groups might therefore prevent the release of lipoplexe-transfected DNA from a labeling nanoparticle 

and allow its labeling until its internalization into the cell nucleus[6]. In what follows we analyse if 

there are differences between the adsorption of DNA on silica surfaces bearing solely primary and 

secondary amines, and quaternized surfaces in addition bearing quaternary ammonium groups. We 

combine cosedimentation experiments and QCM-D measurements to achieve an insight into the 

interactions occurring between DNA strands and aminated or quaternized silica surfaces. 2.1 The formation of nanoparticle/DNA complexes during 

cosedimentation assays 

For all cosedimentation experiments we used commercially available DNA extracted from herring 

sperm. The DNA has been purified of proteins and salt residues following PROTOCOL 2.1-1: 

PROTOCOL 2.1-1 Purification of herring sperm DNA 

The purification of DNA was accomplished in a 50 mL falcon tube. First 14 mg of herring sperm 

DNA was suspended in 7.5 mL H2O (18.2 MΩ), then 10 mL chloroform was added. The mixture was 

incubated for 5 minutes under agitation and then centrifuged for 15 minutes at 5000 g. Proteins 

were denatured, aggregated and formed a white deposit floating on the chloroform phase, 

whereas DNA stayed in the aqueous supernatant. The aqueous phase of the supernatant was 

taken and 1.5 mL NaCl (3 M) as well as 40 mL absolute EtOH, which has been previously cooled 

at -20 °C, were added to precipitate the DNA. The mixture was then centrifuged for 15 minutes at 

4° C and 11000 g. The supernatant was discarded and the DNA pellet resuspended in 20 mL of 

ethanol (70 % v/v) which had also been cooled down to -20 °C. The DNA suspension was then 

centrifuged again at 11000 g for 10 minutes at 4 °C. This washing step in ethanol (70 % v/v) was 

repeated twice. The supernatant was discarded and the DNA pellet dried at room temperature. 

After that it was resuspended in 10 mL ultrapure water (18.2 MΩ). The DNA concentration was 

estimated by UV-VIS spectrophotometry at 260 nm. The absorption of the sample was measured 

at 280 nm as well, in order to determine the DNA/protein ratio of the sample. 1000 μL of the 

sample was pipetted to 1.5 mL Eppendorf tubes, which were stored at -20 °C. It has to be noted 

that the agitation and resupension of DNA has to be done carefully without vortexing, which 

damages the DNA strands. Before its utilization in cosedimentation experiments the DNA was 

sonicated six times for 6 seconds in a sonication bath to homogenize the length of the DNA 



157 
 

strands. 

 
To determine the length of the prepared DNA strands a gel electrophoresis was implemented 

(see PROTOCOL 2.1-2). A DNA ladder, unsonicated and sonicated DNA were pipetted to the chambers 

of an agarose gel which was covered with a running buffer. After application of a voltage DNA 

migrated through the agarose gel according to its length. The running buffer serves as an electrolyte 

and facilitated the migration of DNA during the electrophoresis. The negatively charged DNA 

migrated to the cathode with small DNA fragments crossing the gel network faster than large ones. A 

DNA ladder containing differently sized DNA fragments indicates the running length of the different 

fragments. Generally the DNA is stained with a fluorescent dye such as SYBR® Safe or ethidium 

bromide, and displayed under blue or ultraviolet light.  

PROTOCOL 2.1-2  Agarose gel electrophoresis 

To 60 mL of electrophoresis running buffer (TAE buffer: 40 mM Tris, 20 mM acetic acid, 

1 mM EDTA) 1% w/v agarose was added. The mixture was heated until the added agarose was 

fully dissolved. The clear solution was cooled down to 50 °C and 20 μL of the DNA intercalant dye 

SYBR® Safe was added. The liquid mixture was poured into a gel chamber and a comb was placed 

in the gel to allow well formation. When the gel had cooled down to room temperature it was 

covered with running buffer and the comb was retained. To guarantee that the DNA samples sank 

to the wells they were mixed with a buffer containing Ficoll-400 (15 % w/v). This buffer also 

contained bromophenol blue (0.25 % w/v) and xylene cyanol (0.25 % w/v) which made it possible 

to observe the migration of the samples, due to their color. Then 10 μL of DNA samples and Gene 

rulerTM 1kb DNA ladder (250 – 10000 bp) were pipetted to different wells. A voltage of 130 V was 

applied until the visible marks resulting from bromophenol blue and xylene cyanol reached the 

end of the gel. The DNA fragments were displayed under blue light (497 nm), due to the SYBR Safe, 

which intercalates within DNA strands and then shows a fluorescence signal at 520 nm. 

 
FIGURE 2.1-1 shows a photographed picture of an agarose gel containing  a DNA ladder, unsonicated 

and sonicated herring sperm DNA:  
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FIGURE 2.1-1 The illustration shows the electrophoretic separation of DNA fragments due to their electrophoretic 

migration through a 1 % agarose gel. On the left the DNA ladder used is shown. On the right we display the 

photographic image of the agarose gel where we pipetted in the different wells A: DNA ladder B: Unsonicated herring 

sperm DNA C: DNA strands after sonication. 

The picture of the agarose gel monitors the migration of the DNA ladder, unsonicated and sonicated 

DNA (see FIGURE 2.1-1). In the sample of unsonicated DNA (see FIGURE 2.1-1 B) we detect the 

presence of fragments with lengths from 200 bp up to about 4000 bp. In regarding the sample of 

sonicated DNA fragments (see FIGURE 2.1-1 C) we can see that the length of the DNA fragments 

diminished and that most fragments are smaller than 2000 bp.  

To explore interactions between DNA and modified colloids a cosedimentation assay[6] was 

implemented (see FIGURE 2.1-2). An exact amount of DNA was incubated in the presence of 

surface-modified nanoparticles. After 15 minutes of incubation the sample was centrifuged to pellet 

the modified nanoparticles and particle-adsorbed DNA. The concentration of DNA which remained 

in the supernatant was determined by spectrophotometric analysis. 

  
FIGURE 2.1-2 Scheme of the principle of the implemented cosedimentation experiments. A: DNA (dark blue strands) 

and surface modified nanoparticles (blue spheres) are incubated together. B: After 15 minutes the particles are 

centrifuged, nanoparticles and adsorbed DNA form a pellet. The DNA concentration of the supernatant is determined 

by UV-VIS spectrophotometry. 

In the present study we indicate the ratio of nanoparticles and DNA used during cosedimentation 

experiments by the expression of the disposable surface area of the added nanoparticles (nm2) per base 

pair of DNA. This relationship is of interest because the coverage of a surface by one DNA base pair is 

A B 

A B C 
DNA ladder: 
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situated in the nm range. DNA is a stiff strand[28] built up by a negatively charged 

deoxyribosephosphate backbone. The nucleobases adenine, thymine, guanine and cytosine are 

attached to the backbone via the deoxyribose entities. They form hydrogen-bonded base pairs, which 

hold two DNA strands together in a helical conformation. One helical turn H contains 10 base pairs 

and turns over a pitch of 3.4 nm[29]. The charged phosphate groups in the DNA backbone are 0.17 nm 

distant from each other and repulse each other. This electrostatic repulsion contributes significantly to 

the stiffness of a DNA double helix. Equalizing the charges makes it possible to render a DNA-strand 

more elastic, so that it can be stored in a compact form[28]. For double-stranded DNA one helix 

possesses a diameter D of 2 nm.  

The surface covered by a base pair in a DNA double strand can be calculated by EQUATION 2.1-1: 

 
 

 

D – diameter of double-stranded DNA helix (nm) 

H – length of one helix turn (nm) 

n – number of base pairs in one turn 

 

EQUATION 2.1-1 Calculation of the surface occupied by one base pair of double stranded DNA in nm2. 

The cosedimentation assays were implemented for different ratios of nanoparticle surface area to a 

number of base pairs. They were carried out in 10 mM buffer solutions at different pHs or salt 

concentrations. All cosedimentation experiments were implemented in accordance with PROTOCOL 

2.1-3: 

PROTOCOL 2.1-3 Cosedimentation assay 

60 μL of a diluted dispersion of modified nanoparticles was added to 40 μL of a solution 

containing 5 μg of previously prepared herring sperm DNA. Both solutions were buffered to fix the 

pH and adjusted to a desired salt concentration. Samples adjusted to pH 3.5 and pHs 6 were 

buffered in MES buffer (10 mM), samples at pH 7.4 in HEPES buffer (10mM) and samples at pH 8.6 

and pH 9 in borate buffer (10 mM). A control sample without the presence of nanoparticles in the 

same final volume was prepared under the chosen conditions. After 15 minutes incubation time 

the samples were centrifuged at 21000g for 15 minutes. The DNA concentration in the 

supernatant was determined by a spectrophotometric measurement at 260 nm (NanoDrop1000 

spectrophotometer). The percentage of cosedimented DNA was calculated in accordance with the 

DNA concentration measured in the control sample. 

 
Cosedimentation of DNA with quaternized nanoparticles led to the formation of nanoparticle/DNA 

complexes. Transmission electron microscopy permitted us to examine the nanoparticle/DNA 

complexes by the observation of specimens stained with uranyl acetate. We were able to display the 

DNA strands remaining in the supernatant next to nanoparticles (see FIGURE 2.1-3 B). Furthermore we 

noted that the size of the nanoparticle/DNA complexes increases with the increase of the ratio of 

nanoparticles to DNA (see FIGURE 2.1-3). This observation in agreement with previous observations in 
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the literature[6,30,31] showing that the size of agglomerates of aminated nanoparticles and plasmidic 

DNA  increases in relation to the augmentation of the number of nanoparticles per amount of DNA. 

Furthermore Kneuer[31] and Kumar[30] showed that complexes of aminated nanoparticles and DNA 

possess a higher transfection efficiency than naked DNA, but that the transfection efficiency also 

depends on the size of the tested agglomerates. Lipoplex size has also been shown to influence their 

transfection efficiency. Large lipoplexes have been shown to transfect DNA more efficiently than 

smaller ones[32]. The choice of the ratio of nanoparticles employed in order to complex DNA is 

therefore an important parameter when we label DNA which is destined to be transfected by 

lipoplexes. 

 

FIGURE 2.1-3 TEM micrographs show nanoparticle DNA complexes formed at different nanoparticle/DNA ratios at pH 

7.4 and 150 mM NaCl. The specimens were stained with uranyl acetate solution. A: Nanoparticle/DNA complexes 

assembled at NP/DNA ratio of 0.5 nm2/bp. B: Free DNA strands in the supernatant are recognizable next to the 

assembled nanoparticle DNA complexes (SiO2-EDPS-Me/DNA ratio 0.5 nm2/bp) and are indicated by white arrows. 

C, D: Nanoparticle-DNA complexes assembled at NP/DNA ratio 3 nm2/bp include a higher amount of nanoparticles. 

The complex stability was investigated by a competitive exchange of DNA adsorbed to the 

nanoparticles and dextran sulfate. It is known that dextran sulfate can be used to extract 

histone-depleted chromosome DNA[33,34]. We measured the amount of DNA complexed by 

quaternized nanoparticles with increasing concentrations of dextran sulfate. With the increase of the 

concentration of dextran sulphate more DNA was recovered in the supernatant (see FIGURE 2.1-4). 
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FIGURE 2.1-4 Cosedimentation of DNA by quaternized EDPS-modified silica nanoparticles in relation to an increasing 

dextran sulfate (average Mw > 500000) concentration at pH 7.4 in the presence of 150 mM NaCl. 

The decrease in cosedimented DNA is shown in relation to the ratio of negative charges brought by 

the dextran sulfate to the charges provided by the present amount of DNA. Without the presence of 

dextran sulfate 30 % of DNA strands is complexed by the nanoparticles. At a ratio of charges dextran 

sulfate/DNA of one we would therefore expect cosedimentation of 15 % if the nanoparticles possess 

no specificity for DNA, or of more than 15 % if the quaternized nanoparticles preferably interact with 

DNA rather than with the added dextran sulfate. Instead we observed cosedimentation of only 6.5 % 

of the DNA, which means that the nanoparticles preferably interact with dextran sulfate. The 

preference of the quaternized nanoparticles to interact with the dextran sulfate polymer may be 

explained by its higher flexibility compared to the rather rigid DNA strands. This result shows that if 

quaternized nanoparticles are used the release of DNA from nanoparticles in the presence of a 

polyelectrolyte as observed in the literature for aminated nanoparticles[6] is also possible, because a 

significant part of the interactions between quaternized nanoparticles and DNA is due to electrostatic 

forces. 2.2 The investigation of the pH dependence of DNA adsorption on 

differently modified cationic silica surfaces 

We investigated the influence of the pH on the ability of modified nanoparticles to complex DNA. 

With increasing pH the zeta potential of aminated as well as of quaternized nanoparticles decreases, 

which should have a direct influence on their capacity to interact with DNA. The cosedimentation 

assays were implemented at an electrolyte concentration comparable to the concentration of salts in 

the cytosol. This has the advantage that the salt screens a part of the charges of the 

deoxyribose-phosphate backbone of the DNA, rendering the strands less rigid and more flexible. In 

measuring the DNA concentrations remaining in the supernatant after the centrifugation of 

nanoparticle/DNA complexes at different pHs we observed a diminution of the interactions between 

DNA and quaternized nanoparticles at basic pHs (see FIGURE 2.2-1). 
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FIGURE 2.2-1 Effect of the pH on the capacity of quaternized nanoparticles to complex DNA strands determined by 

cosedimentation assays (150 mM NaCl, 10 mM buffers: pH 3.5, pH 6 = MES; pH 7.4 = HEPES; pH 8.6, pH 9 = borate).   

As we expected, the increase in pH leads to a diminution of the amount of DNA which can be bound 

per nm2 of the nanoparticle surface area. As a consequence the surface area which is needed to bind 

100 % of the disposed DNA increases. At pH 3.5 nanoparticle surface area of 0.7 nm2 is needed to 

complex one DNA base pair, which corresponds to an ideal binding of DNA in view of the fact that 

one base pair requires 0.68 nm2. Whereas at pH 6.5 the cosedimentation of 100 % of DNA is reached 

at a ratio of 0.9 nm2 per base pair, which is near to the ideal case observed at pH 3.5, we observe a 

diminution on the DNA-binding-capacity of quaternized nanoparticles at the physiological pH 7.4, 

where 1.3 nm2 is needed to complex one DNA base pair. The further augmentation of the pH has an 

increasing influence of the DNA-binding-capacity of the nanoparticles due to the more rapid decrease 

of their zeta potential at basic pHs (see FIGURE 3.3-1 A, chapter II).  

To determine the potential of quaternized and aminated nanoparticles to complex DNA we compared 

the amount of nanoparticles necessary to complex 50 % of the DNA present in the sample.  
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FIGURE 2.2-2 Amount of nanoparticles needed to complex 50 % of DNA during a cosedimentation assay (r50). It changes 

in relation to the pH and differs for differently modified nanoparticles. Fewer quaternized nanoparticles than EDPS 

modified nanoparticles are needed to complex the same amount of DNA at basic pHs. 
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We observed that fewer quaternized nanoparticles were needed to complex the same amount of DNA 

at basic pHs 8.6 and 9 (see FIGURE 2.2-2). This observation can be explained by the fact that the 

charges present on the surface of quaternized nanoparticles are independent of the pH although they 

are progressively screened by Si-O- ions, which is the reason why with increasing pH they complex less 

DNA. On the other hand the positive charges on EDPS-modified nanoparticles are pH dependent. 

Their charges are provided by protonated amine groups, which with the increase of the pH 

deprotonate gradually. 

The adsorption of DNA strands to quaternized and EDPS modified silica surfaces were also 

investigated by QCM-D measurements (see FIGURE 2.2-3). Silica-coated quartz crystals were surface 

modified as previously described and 950 μL of DNA solution with a concentration of 100 μg/mL was 

injected. The measurements were implemented under the same conditions as the cosedimentation 

assays: the salt concentration stayed constant at 150 mM whereas the different measurements were 

accomplished at varying pHs.  

When injecting DNA on an aminated silica surface a dissipation shift of 2.8•10-6 and a frequency shift 

of -19.7 Hz were measured, which corresponds to the adsorption of 348.7 ng of DNA on a silica 

surface bearing solely primary and secondary amines (see FIGURE 2.2-3 A, graph on the left). When 

measuring at pH 7.4 on a quaternized surface we observed a frequency shift of -22.6 Hz and a 

dissipation shift of 3.8•10-6 corresponding to 400 ng of DNA which was adsorbed to the surface as a 

soft viscoelastic layer (see FIGURE 2.2-3 A, graph on the right). 

In contrast to quaternized surfaces the ability of EDPS modified surfaces to attract DNA decreases 

significantly with the increase in pH. At pH 8.6 a frequency shift of -9 Hz was observed corresponding 

to the adsorption of 159.3 ng of DNA; the dissipation shift of 2.2•10-6 is relatively high and shows that 

a soft viscoelastic layer of DNA is adsorbed to the quartz crystal (see FIGURE 2.2-3 B, graph on the left). 

For the adsorption of DNA on a quaternized surface at pH 8.6 a frequency shift of -19.9 Hz and 

dissipation shift of 2.6•10-6 were observed corresponding to the adsorption of 354 ng of DNA (see 

FIGURE 2.2-3 B, graph on the right). The values of both graphs indicate the loss of charges of the 

aminated or quaternized surfaces at higher pHs leading to a lower capacity to attract DNA 

electrostatically. In addition we noted that the loss of charges is less important on quaternized surfaces 

on which we adsorb the double DNA amount than on the aminated SiO2 surfaces.  

At pH 9 the aminated surface bearing primary and secondary amines has almost completely lost its 

potential to adsorb DNA. We observed a frequency shift of -1.6 Hz after the injection of DNA on an 

EDPS modified surface, which indicates the adsorption of only 28.3 ng of DNA (see FIGURE 2.2-3 C, 

graph on the left).  In contrast, for the adsorption of DNA on a silica surface bearing quaternary 

ammonium ions at  pH 9 a frequency shift of -19.5 Hz and dissipation shift of 2.8•10-6 were observed 

(see FIGURE 2.2-3 C, graph on the right). According to the Sauerbrey law 345 ng of DNA adsorbed on 

the quaternized surface. The ability of the quaternized surface to interact with DNA seems nearly 

unchanged and decreased by only 55 ng compared to what was adsorbed at pH 7.4.  
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FIGURE 2.2-3 The presented graphs display the adsorption of DNA on EDPS modified (left) and quaternized surfaces 

(right) by QCM-D in the presence of 150 mM salt at different pHs A: pH 7.4 B: pH 8.6 C: pH 9.  The graphs monitor f 

shifts (blue line) and D shifts (orange line). DNA injections are marked by violet arrows; the injection of buffer is 

inidicated by green arrows. 
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The decrease of the DNA binding on EDPS-modified silica surfaces with increasing pH can be 

explained by the fact that the zeta potential of an aminated surface decreases to nearly zero at pH 9. 

Furthermore the electrostatic interactions taking place between the modified surfaces and adsorbed 

DNA are not only decreased due to the increase in the pH, but also screened by the salt ions present. 

The negative charges of DNA are screened by the Na+ ions present. Meanwhile even at pH 9 we 

observed a slight adsorption of DNA on surfaces bearing primary and secondary amines. This 

observation might be explained by the fact that the interactions taking place between the modified 

surfaces and DNA at basic pHs are not only of electrostatic conduct. Most likely van der Waals 

interactions are also taking place and result in the binding of DNA to the aminated silica surfaces at 

basic pHs.  

The advantages of the pH-independence of the charges of quaternary ammonium groups can be 

pointed out when we regard the capacity of quaternary ammonium group bearing gold nanoparticles 

to bind DNA. Quaternary ammonium group bearing gold nanoparticles were employed to bind DNA 

by Rotello and coworkers[5,35–37], who synthesized mixed monolayer-protected gold clusters (MMPCs) 

functionalized with octanethiol and (11-mercaptoundecyl)-N,N,N-trimethylammonium bromide 

(MUTAB) (see FIGURE 2.2-4). To compare the capacity of quaternized silica nanoparticles and gold 

nanoparticles  bearing quaternary ammonium groups gold nanoparticles of 10 nm diameter were 

synthesized[38] and stabilized in ethanol using the macromolecule polyvinylpyrrolidone (PVP) before 

thiolation with MUTAB in accordance with PROTOCOL 2.2-1.  

 

FIGURE 2.2-4 Chemical structure of (11-mercaptoundecyl)-N,N,N-trimethylammonium bromide (MUTAB) 

 

PROTOCOL 2.2-1 Functionalization of gold nanoparticles via the formation of a self assembled 

monolayer of MUTAB 

Previously synthesized gold nanoparticles[38] stabilized in water by adsorbed citrate molecules 

were incubated in a solution of polyvinylpyrrolidone (PVP, 10 g/L) for 12 hours. After the 

completion of the place-exchange reaction of citrate molecules and PVP, released citrate and 

excrescent PVP polymers were eliminated by centrifuging the PVP-coated nanoparticles twice at 

15000 g for 30 minutes in water. The nanoparticles were then redispersed in absolute ethanol. 

6.6•10-4 mol of (11-Mercaptoundecyl)-N,N,N-trimethylammonium bromide was added per m2 of 

the nanoparticle surface area and the mixture was incubated for 12 hours. After completion of the 

ligand exchange reaction the particles coagulated in EtOH and were subsequently decanted. The 

supernatant was withdrawn and the particles were washed twice in absolute EtOH. Subsequently 

the nanoparticles were redispersed in ultrapure water (18.2 MΩ) and the remaining alcohol was 

evaporated at 40 °C.  

 

SH N
+
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The DNA-binding-capacity is more pH independent (see FIGURE 2.2-5) than the binding capacity of 

quaternized silica nanoparticles due to the fact that the zeta potential of modified silica nanoparticles 

is decreased by negatively charged silanolate groups at alkaline pHs remaining on the modified silica.  
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FIGURE 2.2-5 Diagram showing the pH independence of the capacity to bind DNA from gold nanoparticles bearing 

quaternary ammonium groups. 

To estimate the impact that remaining amine and silanolate residues have on the 

DNA-binding-capacity of quaternized silica nanoparticles we implemented DNA cosedimentation 

assays with MUTAB-bearing gold nanoparticles (AuNQ) which do not suffer from the presence of 

such residues. It can be seen that the gold nanoparticles bind DNA more efficiently than the 

quaternized SiO2-EDPS-Me nanoparticles (see FIGURE 3.1-1).  
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FIGURE 2.2-6 Cosedimentation assay comparing the capacity of gold nanoparticles (AuNQ) and silica nanoparticles 

(SiO2-EDPS-Me), both functionalized to bear quaternary ammonium groups on their surface. 

Nevertheless, we are aware of the fact that the number of charges and the number of quaternary 

ammonium groups per m2 present on silica or gold nanoparticles differ. To quantify the MUTAB 

molecules forming the self-assembled monolayer on the surface of gold nanoparticles a colorimetric 

dosage with Ellman’s reagent 5,5'-dithiobis-2-nitrobenzoic acid (DNTB) was implemented at 412 nm 

(see protocol in Annex 1). The colorimetric assay makes it possible to determine the presence of 
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3 μmol MUTAB molecules per m2 of the particle surface. For quaternized silica nanoparticles we 

estimated the presence of 4.3 μmol quaternary ammonium groups per m2 (see SECTION 3.2, chapter II). 

Subsequently the observation that gold nanoparticles adsorb more DNA per nm2 of particle surface 

area at pH 7.4 underlines the importance of electrostatic interactions for binding DNA on quaternary 

ammonium group bearing nanoparticles and the loss of efficiency from which quaternized silica 

nanoparticles must suffer due to the presence of negatively charged silanolate groups, even at 

moderate pHs. 2.3 Salt concentration as a parameter influencing the adsorption of 

DNA to cationic surfaces 

Considering the fact that the salt concentration influences the effective charge of modified silica 

surfaces as well as the rigidity and conformation of a DNA strand, we studied the adsorption of DNA 

on modified silica surfaces in relation to the salt concentration of the medium in which the 

supramolecular assembly of DNA on a cationic nanoparticle takes place (see FIGURE 2.3-1). 

Cosedimentation experiments were implemented at pH 7.4 at salt concentrations of 50 mM, 150 mM, 

300 mM and 1 M NaCl. 
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FIGURE 2.3-1 The cosedimentation of DNA by modified nanoparticles varies in relation to the salt concentration. 

A: Cosedimentation of DNA with EDPS-modified nanoparticles in 10 mM HEPES buffer at pH 7.4 and varying salt 

concentration. B: Zoom in graph A in the range from 0.1 nm2/bp to 1 nm2/bp. 

The cosedimentation experiments showed that with increasing salt concentration fewer nanoparticles 

are needed to complex 100 % of the present DNA. The decrease of DNA rigidity in the presence of 

salt seems to benefit its complexation with nanoparticles. We also investigated the adsorption of DNA 

on modified silica surfaces by QCM-D measurements. The frequency and dissipation shifts measured 

during the adsorption of DNA strands on an EDPS-modified, silica-coated crystal are shown in 

FIGURE 2.3-2. In the absence of salt the observed frequency shift of -6 Hz indicates the adsorption of 

106 ng DNA on the EDPS modified surface of the crystal and a low dissipation shift of 0.2•10-6. With 

increasing salt concentration frequency and dissipation shifts increase. Injections of DNA in the 

presence of 5 mM and 10 mM NaCl lead to adsorption of 173.5 and 180.5 ng of DNA. The adsorbed 
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DNA layers cause a dissipation of 0.95•10-6 and 1.25•10-6, indicating that at these salt concentrations a 

relatively compact layer is formed. An intermediate quantity of DNA is adsorbed in the presence of 

25 mM NaCl. We observed a frequency shift of -14.5 Hz indicating that 256.6 ng of DNA is adsorbed. 

Nevertheless the dissipation of this layer of 2.5•10-6 is double the dissipation observed at 5 mM or 

10 mM and already ten times higher than the dissipation measured for a DNA layer formed in the 

absence of salt. A further increase of the salt concentration to 50 mM, 100 mM or 150 mM leads to an 

adsorption of even higher DNA amounts of about 318.6 ng per layer assembled in the presence of 

50 mM and 100 mM NaCl ( f -18 Hz) and 350.5 ng of DNA in the layer formed at a salt 

concentration of 150 mM ( f -19.8 Hz). QCM-D measurements of all these three layers display a 

dissipation of 2.8•10-6, indicating that the DNA strands building up the layers possess a similar and 

minor rigid conformation. 

 
FIGURE 2.3-2 Adsorption of DNA macromolecules on EDPS-modified quartz crystals at varying salt concentrations from 

0-150 mM NaCl. DNA injections are signaled by violet arrows, buffer injections by green arrows. A: Frequency shifts 

f7 observed during the adsorption of DNA; the amount of DNA adsorbed increases with the increase of the salt 

concentration. B: Dissipation shifts D7 observed during the adsorption of DNA on EDPS; DNA layers assembled 

increasing the salt concentration become less compact and more viscoelastic. 

The frequency and dissipation shifts measured during the adsorption of DNA strands on a quaternized 

silica-coated crystal are shown in FIGURE 2.3-3. In the absence of salt the observed frequency shift 

of -4.5 Hz indicates the adsorption of only 70.8 ng of DNA on the quaternized surface of the crystal 

and no dissipation shift. Less DNA is adsorbed in comparison to the DNA layer on aminated 

nanoparticles, but the layer which is formed is fully rigid and extremely compact. As observed before, 

frequency and dissipation shifts increase with increasing salt concentration. Nevertheless the 

differences between the frequency shifts at different salt concentration are more pronounced. 
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Supramolecular assemblies of DNA formed in the presence of 5 mM and 10 mM NaCl lead to 

frequency shifts of -8.8 Hz and -11 Hz, which corresponds to 155.8 ng and 194.7 ng of adsorbed DNA. 

The adsorbed DNA layers cause a dissipation of 0.9•10-6 and 1.6•10-6, indicating that at a salt 

concentration of 10 mM a less compact layer is formed. At a salt concentration of 25 mM a higher 

quantity of DNA is adsorbed than on EDPS-modified nanoparticles. We observe a frequency shift 

of -16.1 Hz indicating that 295.6 ng of DNA are adsorbed, which is a difference of 39 ng in 

comparison to the DNA adsorption on EDPS modified crystals at the same salt concentration. The 

dissipation shift of the layer increases in relation to the increase of adsorbed mass to 2.9•10-6. A further 

increase in the salt concentration to 50 mM, 100 mM or 150 mM leads to an adsorption of even higher 

DNA amounts of about 323.9 ng DNA adsorbed in the presence 50 mM NaCl ( f -18.3 Hz), 387.6 ng 

of DNA adsorbed at 100mM NaCl ( f -21.9 Hz), and 400 ng of DNA in the layer formed at a salt 

concentration of 150 mM ( f -22.6 Hz). QCM-D measurements of these three layers display a 

dissipation of 2.95•10-6 (50 mM NaCl), 3.7•10-6 (100 mM NaCl) and 3.9•10-6 (150 mM NaCl). 

Subsequently DNA seems to be adsorbed in a coiled, viscoelastic conformation. We observed that 

above a salt concentration of 10 mM the amounts of DNA adsorbed to quaternized surfaces are in 

general slightly higher than the amounts of DNA adsorbed at aminated surfaces under the same 

conditions. 

 
FIGURE 2.3-3 Adsorption of DNA macromolecules on quaternized silica-coated quartz crystals at varying salt 

concentrations from 0 mM to 150 mM NaCl. DNA injections are signaled by violet arrows, buffer injections by green 

arrows. A: Frequency shifts f7 observed during the adsorption of DNA; the amount of DNA adsorbed increases with 

the increase in the salt concentration. B: Dissipation shifts D7 observed during the adsorption of DNA. When the salt 

concentration increases the adsorbed DNA layers become less compact and less rigid. 

It is known that DNA loses its rigidity in the presence of salt due to the fact that the present Na+ ions 

screen the charges of the phosphate groups in the DNA backbone, which subsequently repulse each 
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other less and do not maintain their maximal interdistance any more[28,39]. Therefore DNA strands 

adsorbing to the modified silica surfaces do not exist in the same conformation at varying salt 

concentrations. Whereas DNA strands will be available in a stiff and linear conformation, the addition 

of small amounts of salt to concentrations of 5, 10 or 25 mM already leads to less rigid strands, which 

are more disposed to folding. At high salt concentrations such as 50, 100 or 150 mM of NaCl adsorbed 

DNA exists in more and more coiled conformations (see FIGURE 2.3-4).  

 
FIGURE 2.3-4 DNA strands exist at different conformations depending on the salt concentration present during the 

assembly of the surface of a modified QCM-D crystal. A: In the absence of salt DNA is present as a stiff, linear strand 

forming a thin, rigid layer on a cationic surface. B: At low salt concentrations (5, 10, 25 mM) DNA strands are less rigid 

and more flexible, leading to the assembly of less structured and more viscoelastic layers of DNA on cationic surfaces. 

C: At high salt concentrations (50, 100, 150 mM) DNA strands appear in coiled, raveled conformations. They adsorb on 

cationic surfaces, forming highly viscoelastic layers. 

The adsorption of DNA at different salt concentrations on aminated nanoparticles has been observed 

by Cryo-TEM microscopy[40] (see FIGURE 2.3-5). 

 

FIGURE 2.3-5 Cryo-TEM pictures of plasmidic DNA interacting with aminated -Fe2O3@SiO2 core-shell nanoparticles at 

different concentrations of NaCl[40]. DNA strands exist at different conformations depending on the salt concentration. 

A: In the absence of salt DNA is present as a stiff, linear strand (indicated by black arrows) and interacts partly with 

the nanoparticles surfaces. B: In the presence of 150 mM NaCl the negative charges of the DNA backbone are partly 

screened and DNA strands (indicated by black arrows) have been displayed as assembled around aminated 

nanoparticles in coiled, raveled conformations.  

The strong influence of cationic counterions on the conformation of DNA adsorbing on mica surfaces 

has been demonstrated by Nguyen and coworkers[41,42], who showed that the presence of different 

monovalent or bivalent cations extensively determines the thickness and viscosity of a DNA layer 

adsorbed to a mica-coated QCM-D crystal, as well as the nature and strength of the interactions 
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leading to the DNA assembly. The presence of ions can also influence the hybridization of short DNA 

oligomers as well as their stability as shown by Zhu and coworkers[43] who investigated the damaging 

of adsorbed DNA by heavy metal ions such as cerium. 

Subsequently the increase in the amount of DNA adsorbed with increasing salt concentrations can be 

explained by the fact, that linear rigid DNA strands can cover the crystal surfaces forming a relatively 

uniform layer. At high salt concentrations ravels of DNA adsorb to the modified silica surfaces; due to 

its ability to fold and coil, a DNA strand does not need to be fully adsorbed to a cationic surface. Its 

partial adsorption leads to the existence of a thicker, fluffy DNA cushion, where a part of each strand 

is freely moving in the cushion (see FIGURE 2.3-4). Because of their partly adsorption more DNA 

strands can undergo electrostatic interactions to a cationic surface.  

This behavior of DNA is well known and has also been observed by QCM-D studies of DNA layers of 

short strands adsorbed on polyethyleneimine cushions[44]. Furthermore the screening of the negative 

charges of DNA by Na+ ions penetrating the DNA layers permits the adsorption of loosely bound 

DNA interacting with neighboring strands by van der Waals interactions. Johnston et al.[45] showed 

that DNA layers of short strands (60 bp) adsorbed to a polyethyleneimine layer in the presence of high 

salt concentration (200-700 mM NaCl) lost about 55 % of the adsorbed DNA when the salt 

concentration was lowered to 100 mM and 30 % further below this concentration. 2.4 Conclusions 

In recapitulating the results obtained up to now we noted that under the influence of salt DNA layers 

adsorbed to quaternized or EDPS modified surfaces change their compactness, thickness and 

viscoelasticity. DNA layers formed on quaternized surfaces in the absence of salt are thinner than 

DNA layers formed on aminated surfaces under the same conditions, but are extremely rigid, which 

may indicate that DNA strands are adsorbed to quaternized surfaces more tightly than on 

EDPS-modified surfaces. For both surfaces the increase of the salt concentration leads to the 

adsorption of higher amounts of DNA forming less compact, viscoelastic layers, which contain not 

only DNA but also salt ions and water molecules between the semi-rigid strands. In the process it 

becomes clear that above a concentration of 10 mM NaCl at the same salt concentration higher 

amounts of DNA are adsorbed to the quaternized surfaces than on aminated surfaces. This 

observation is probably due to the fact that quaternized surfaces possess a higher amount of cationic 

charges, so that in spite of the screening of their overall charges by the salt which is present the 

quaternized surfaces possess still sufficient charges to attract negatively charged DNA 

macromolecules.  

Nanoparticles bearing quaternary ammonium groups on their surface may have a further advantage 

which enhances their ability to bind DNA. Goodman et al.[5] demonstrated that gold nanoparticles 

modified with quaternary ammonium groups bearing short hydrophobic alkyl chains such as butyl 

chains interact favorably with DNA compared to less hydrophobic quaternizing chains. The more 

hydrophobic character of quaternized surfaces compared to aminated surfaces is advantageous to their 
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interaction with DNA. This effect is also used for the conception of DNA-intercalating substances 

such as SYBR green possessing quaternary ammonium groups, which intercalate to DNA 

grooves[46,47]. Nevertheless the hydrophobic interactions between quaternary ammonium groups 

bearing three methyl groups and DNA are relatively small[5], but the implementation of longer alkyl 

chains on the quaternized amines might further enhance the ability of quaternized nanoparticles to 

bind DNA.  

Furthermore we noted that the increase in the pH reduces the capacity of quaternized nanoparticles to 

adsorb DNA less than is the case for aminated nanoparticles. EDPS-modified silica surfaces on the 

contrary suffer from the fact that the presence of the cationic charges, due to protonated amine 

functions, is highly dependent on the pH. With increasing pH, aminated surfaces mainly lose all their 

charges. This fact diminishes their potential for binding DNA electrostatically on their surface at 

physiological pH, and may explain why DNA labeled with aminated nanoparticles is released in the 

cytosol, where the presence of salts additionally decreases their surface potential.  

3. TOWARDS THE ASSEMBLY OF NANOPARTICLE LABELED 

LIPOPLEXES. 

The aim of our project is the development of a multimodal nanoparticle for the labeling of DNA in 

lipoplexes. Lipoplexes include condensed and compact, rod-like assembled DNA. Due to their high 

density of positive charges they are able to neutralize the negative charges of the DNA-backbone. 

DNA has been observed as rods organized in the lipidic sheets separated from each other by a specific 

distance resulting in a one-dimensional lattice of DNA chains through one bilayer[48,49]. The distance 

between the different DNA-rods is in general much larger than their diameter. In the sandwiched 

organization of multiple bilayers the DNA-bilayer arrangement forms a two-dimensional smectic 

phase[50] (see FIGURE 3.0-1). Hexagonally organized structures of cylinders consisting of DNA  rods 

coated with a lipid monolayer do also exist[51]. 

 

 

 

FIGURE 3.0-1 Formation of a lipoplex via self assembly: Cationic liposomes and DNA organize to build lipoplexes, which 

show a characteristically ordered structure. Condensed rod-like assembled DNA (blue) is ordered between lipidic 

bilayers (orange). 

Lipoplex architecture 

Liposome 

DNA 



173 
 

When they are interacting negatively charged DNA and cationic liposomes equalize their charges. 

Theoretically lipoplexes are formed until they reach their point of zero charge. In fact over 90 % of the 

charges coming from the DNA backbone are neutralized, which makes it possible to observe the DNA 

in a condensed state[39]. However, it has been observed that charge-neutral lipoplexes are of minor 

stability. Without stabilization by charge-induced repulsive forces the lipoplexes tend to collide and 

stick together due to attractive van der Waals (vdW) forces. To form more stable lipoplexes we need to 

place the assembly conditions either in an excess of DNA to form negatively charged lipoplexes or in 

an excess of liposomes leading to positively charged complexes[48,50].  

The spherical, monodisperse complexes remain stable and usable for about three months. During this 

storing period their transfection efficiency persists on a high level[48]. The lipoplexes formed have the 

considerable advantage that they tend to pass through the membranes of cells of interest easily. The 

DNA-lipid complexes interact with the membranes of tissue cells due to their cationic lipidic 

formulation, which favorizes interaction with the negatively charged lipidic cell membranes.  

The driving force for the supramolecular self assembly of lipoplexes is the partial release of 

counterions surrounding DNA strands (equalizing 76 % of their charge[52]) and the surface of the 

charged liposomes. But the free energy gain pushing the assembly in the described structure is 

achieved not only due to increased entropy but is also caused by the partial counterion release. 

Secondly it is due to a lower electrostatic repulsion of the counterions entering the complex[53]. 

Subsequently the formation of lipoplexes is mainly undergone in the presence of salt at concentrations 

of about 150 mM NaCl, which has the further advantage that the DNA strands are more flexible. 3.1 Following of the adsorption of cationic liposomes on DNA layers 

formed on modified silica surfaces by QCM-D 

In aiming to incorporate silica nanoparticles modified with quaternary ammonium ions into these 

DNA lipid structures we were interested in characterizing the interactions between DNA-covered 

modified silica surfaces with cationic lipids in the expectation of identifying assembly conditions 

which facilitate the inclusion of quaternized multimodal silica nanoparticles in lipoplexes. For this 

purpose we examined the attraction of cationic DOTAP liposomes on the DNA layers formed on 

modified surfaces at different salt concentrations by QCM-D measurements with a pH fixed at 7.4. 

DOTAP liposomes were injected on DNA layers which had previously formed on aminated or 

quaternized surfaces to follow the interactions occurring between DNA adsorbed to the modified 

crystals in different conformations and vesicles of a cationic lipid which can serve as a transfection 

agent[32]. 

The frequency and dissipation shifts measured during the injection of DNA strands and subsequently 

DOTAP on an EDPS-modified silica coated crystal are shown in FIGURE 3.1-1. Whereas the frequency 

and dissipation shifts caused by the adsorption of DNA were discussed in section 2.3 we now survey 

the frequency and dissipation shifts caused by the subsequent adsorption of DOTAP on the previously 
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accumulated DNA layers. In the absence of salt we observed a frequency shift of 31.9 Hz and a 

dissipation shift of 2.3•10-6 after the injection of DOTAP vesicles. At 5mM NaCl concentration we 

observed a frequency shift of 41 Hz and a dissipation shift of 1.7•10-6, a f of 43.3 Hz and a D of 

1.4•10-6 at 10 mM NaCl, a f of 51.3 Hz and a D of 1.65•10-6 at a salt concentration of 25 mM (see 

FIGURE 3.1-1 A, B). 

  

 
FIGURE 3.1-1 Formation of supramolecular assemblies of DNA and DOTAP liposomes on EDPS-modified quartz crystals 

at varying salt concentration from 0-150 mM NaCl. DNA injections are signaled by violet arrows, DOTAP injections by 

yellow arrows. Buffer injections have been accomplished after each sample injection, but aren’t signaled. 

A: Frequency shifts f7 observed during the adsorption of DNA and DOTAP. B, C: Dissipation shifts D7 observed 

during the adsorption of DNA and DOTAP at different scales. 

At higher salt concentrations above 25 mM frequency and dissipation shifts are considerably higher. 

We observed a frequency shift of -189.2 Hz at a concentration of 150 mM NaCl, a frequency shift 

of -170.9 Hz at 100 mM NaCl and a frequency shift of -82.8 Hz for the adsorption of DOTAP on 

DNA in the presence of 50 mM NaCl. We observed high dissipation shifts of 10.4•10-6 at 50 mM 

NaCl, 17.9•10-6 at 100 mM NaCl and 26.5•10-6 at 150 mM NaCl concentration respectively (see 
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FIGURE 3.1-1 B, C). With an increasing amount of DNA we adsorb higher amounts of lipids and form 

agglomerates which are more and more viscoelastic. The extremely high dissipation shifts illustrate the 

formation of huge, soft accumulations of DNA and lipids, but these are so high that the Sauerbrey law 

no longer applies. We obtain qualitative information about the situation of the adsorbed DNA-lipid 

agglomerates rather than quantitative informations about the adsorbed mass. 

We observed the evolution of frequency and dissipation shifts after the injection of DOTAP vesicles 

on DNA layers which previously formed on quaternized surfaces. The frequency and dissipation shifts 

measured during the supramolecular self assembly of DNA strands on a Me-EDPS-modified silica 

coated crystal are shown in FIGURE 3.1-2.  

                 
 

FIGURE 3.1-2 Adsorption of DNA and DOTAP liposomes on quaternized, Me-EDPS-modified quartz crystals at varying 

salt concentration from 0-150 mM NaCl. DNA injections are signaled by violet arrows, DOTAP injections by yellow 

arrows. Buffer injections were implemented after each sample injection, but aren’t signaled. A: Frequency shifts f7 

observed during the adsorption of DNA and DOTAP. B, C: Dissipation shifts D7 observed during the adsorption of 

DNA and DOTAP on two different scales. 

At lower salt concentrations the observed frequency and dissipation shift are more moderate. We 

observed a frequency shift of -21.3 Hz in the absence of salt, -29 Hz at 5 mM NaCl, -34 Hz at 10 mM 

NaCl and -47.5 Hz at a concentration of 25 mM NaCl. The corresponding dissipation shifts are very 
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low in comparison to the shifts observed at higher salt concentrations. At a salt concentration of 

25 mM we observed a dissipation shift of 0.6•10-6, at 10 mM NaCl of 0.4•10-6, at 5 mM NaCl of 

0.9•10-6 and in the absence of salt of 1.2•10-6 (see FIGURE 3.1-2 A, B).  

On quaternized surfaces we observed a frequency shift of -142.5 Hz at 150 mM NaCl, -136.8 Hz at 

100 mM NaCl and of -86 Hz at 50 mM NaCl concentration (see FIGURE 3.1-2 A). We adsorb high 

amounts of liposomes, which can interact with DNA forming DNA-lipid complexes and be adsorbed 

in the form of vesicles, until the surfaces were completely covered with positively charged lipids and 

no further interaction took place. At the same time the dissipation increased at extremely high values. 

We observed dissipation shifts of 13.2•10-6 at 50 mM NaCl, 34.7•10-6 at 100 mM NaCl and 35.8•10-6 at 

the maximal salt concentration of 150 mM (see FIGURE 3.1-2 C). The dissipation values were 6 to 18 

times higher than those previously observed for a monolayer of vesicles adsorbed to a silica surface 

(see FIGURE 1.1-5), indicating that the assemblies formed contain more than one layer of vesicles and 

are certainly affected by the fact that the DNA layers on which the assemblies took place had already 

been adsorbed as a viscoelastic and fluffy layer (see FIGURE 3.1-3).  

 
FIGURE 3.1-3 Schematic illustration of a viscoelastic agglomerate which may form on a modified silica surface in the 

presence of salt.  DNA is present on the surface in a coiled conformation, and a multilayer of lipids and vesicles forms 

due to electrostatic interactions. 

It is interesting to note that the dissipation decreases at the first contact of DNA with lipid vesicles, 

which indicates an interaction of liposomes with the flexibly adsorbed DNA. The decrease in 

dissipation shows that this first interaction leads to a rigidification of the assembled system and might 

correspond to a condensation of DNA strands by the cationic lipids added. We observed this 

particular decrease of dissipation at the first contact of DNA with cationic lipids as soon as we reached 

a concentration of 25 mM NaCl. This type of dissipation decrease is not observed at lower salt 

concentrations, which is probably due to the fact that the DNA layers adsorbed to the surfaces are 

already constituted of DNA strands present in a rigid conformation when they start to interact with 

cationic liposomes. 

The differences in frequency shifts and dissipation shifts between DNA/DOTAP assemblies observed 

on quaternized and EDPS-modified surfaces at low concentrations of salt seem to confirm the 

observations implemented for the formation of DNA layers, which we observed to be very compact 

and rigid on quaternized surfaces. The conformation of the DNA layer seems to particularly influence 

its subsequent interactions with cationic liposomes. The most rigid layer of DNA forms on 

quaternized silica surfaces in the absence of salt. On this layer DOTAP molecules adsorb, inducing a 

frequency shift of -21.3 Hz accompanied by relatively low dissipation shift. In view of the fact that a 
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supported lipid bilayer of DOTAP on silica shows a frequency shift of about -20 Hz[17] the observed 

frequency shift of -21.3 Hz might therefore indicate the formation of a supported lipid bilayer of 

DOTAP on the rigid DNA support. 

It is known that lipid bilayers form on polymer-based cushions. Lipidic bilayers of different 

composition have been formed on layers of polysaccharide polyelectrolytes as chitosan and hyaluronic 

acid[54], cellulose polymer supports[55] or layers consisting of molecules such as poly(ethylene oxide) or 

oligopeptides[56]. By forming a supported lipid bilayer of DOTAP on DNA as we suggested we 

subsequently expect that we will be able to form a DNA/DOTAP multilayer containing DOTAP 

SLBs. Tabaei et al.[57] implemented the formation of a lipid/DNA/lipid multilayer on silica by the use 

of cholesterol conjugated oligonucleotide duplexes (chol-DNA-chol, 27 bp), which are anchored on 

the formed lipid bilayers by their cholesterol groups. Consequentially the formation of an alternating 

DNA/lipid multilayer should be feasible if the DOTAP layer previously formed on the rigid DNA 

support is present as a well-organized, rather rigid supported lipid bilayer. To verify this hypothesis we 

injected further DNA and subsequently further DOTAP liposomes to test if the formation of a 

supplementary DNA a second supported lipid bilayer is possible.  

For this purpose, in the absence of salt we measured the frequency and dissipation shifts during further 

adsorption of DNA strands and subsequently DOTAP on a quaternized silica-coated crystal bearing a 

layer of DNA and lipids which had previously formed, as shown in FIGURE 3.1-4. 

                                                                                         
FIGURE 3.1-4 QCM-D measurement makes it possible to follow the formation of a DNA-DOTAP multilayer which 

consists of rigid DNA layers supporting lipid bilayers. A: The QCM-D graph shows that DNA/DOTAP multilayers are 

formed on quaternized silica surfaces at salt concentrations of 0 mM and at pH 7.4. DNA injections are signaled by 

violet arrows, DOTAP injections by yellow arrows. Buffer injections (HEPES 10 mM, pH = 7.4) were implemented after 

each sample injection, but are not signaled. B: Schematic illustration of the well-organized layers forming on a 

quaternized silica surface in the absence of salt. 
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When injecting an additional sample of DNA on a DNA/DOTAP layer formed in the absence of salt 

we observed the adsorption of DNA to the present lipidic layer indicating that DOTAP molecules 

form an even well organized bilayer. We monitored a frequency shift of 3.2 Hz and a decrease in 

dissipation of -0.1•10-6. The decrease in dissipation shows that the adsorbed DNA is present in a 

completely rigid conformation and is probably condensed to the lipid bilayer. A subsequent injection 

of DOTAP liposomes led to a frequency shift of -17.8 Hz and a dissipation increase of 0.68•10-6. Both 

shifts indicate that the formation of a further DOTAP bilayer on the condensed DNA takes place. 

Frequency shifts 2 and 4 monitored (see FIGURE 3.1-4) after the injection of DOTAP on the DNA 

layers show values of -21 Hz and -18 Hz, which are near to the ideal frequency shift of -20 Hz 

observed for the formation of a supported lipid bilayer, indicating that the formation of a DNA-lipid 

multilayer consisting of rigid DNA layers and supported lipid bilayers occurred. Furthermore it is 

interesting to observe that the injection of DNA on a lipid layer does not lead to an increase in the 

dissipation of the multilayer although it increases its mass. This fact indicates that DNA is condensed 

due to electrostatic interactions with the cationic lipid layer. 

At a salt concentration of 5 mM the adsorption of a DNA layer on the previously formed 

DNA/DOTAP cushion is also possible. But already the first lipid layer adsorbed on DNA induces a 

frequency shift of -28.5 Hz which is too high to correspond to a supported lipid bilayer. Subsequent to 

the injection of DNA a frequency shift of 8.5 Hz accompanied by a dissipation shift of 0.4•10-6 was 

monitored. In contrast to the previous observation a following injection of DOTAP led instead to the 

formation of a lipid layer whose formation we followed by the observation of a frequency shift 

of -27.1 Hz and a simultaneous dissipation shift of 1.4 Hz (see FIGURE 3.1-5). The frequency shift 

of -27.1 Hz was already 1.35 times higher than the shift of -20 Hz corresponding to a supported lipid 

bilayer of DOTAP. It did not correspond to the signal of a supported lipid bilayer. 

  
FIGURE 3.1-5 At a salt concentration of 5 mM NaCl the observed frequency shifts of the lipid layers within the DNA-lipid 

multilayer adsorbed on a quaternized silica surface do not correspond to the signals expected for supported lipid 

bilayers. DNA injections are signaled by violet arrows, DOTAP injections by yellow arrows. Buffer injections (HEPES 

10 mM, pH = 7.4) were implemented after each sample injection but are not signaled.  
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We also implemented the formation of DNA/DOTAP multilayers on an aminated EDPS-modified 

surface to compare the values of the frequency shifts corresponding to the adsorption of DOTAP 

layers within the DNA-lipid layers with those which we observed on quaternized surfaces (see FIGURE 

3.1-6).  

 
FIGURE 3.1-6 In the absence of salt the observed frequency shifts of the lipid layers within the DNA-lipid multilayer 

adsorbed on an aminated surface do not correspond to the signals expected for supported lipid bilayers. DNA 

injections are signaled by violet arrows, DOTAP injections by yellow arrows. Buffer injections (HEPES 10 mM, pH = 7.4) 

were implemented after each sample injection but are not signaled.  

After the injection of DOTAP vesicles on a previously formed DNA layer we observed frequency 

shifts of -32.8 Hz and -24 Hz, which are too high to correspond to the shift of a supported lipid bilayer 

of DOTAP. The fact that we solely observed the formation of supported lipid bilayers of DOTAP on 

DNA layers adsorbed to a quaternized surface in the absence of salt whereas under the same 

conditions we did not observe the formation of supported lipid bilayers on EDPS-supported DNA 

probably results from the adsorption of a more rigid DNA layer on quaternized surfaces. The 

conformation of DNA apparently decides the way in which DOTAP lipids adsorb to the surface. It is 

most likely that DNA strands are better adsorbed and condensed on quaternized surfaces and more 

tightly bound at low concentrations of salt because of the maximization of electrostatic interactions 

under these conditions.  3.2 Investigation of the formation of lipoplexes including nanoparticle 

labeled DNA 

To investigate the ability of quaternized nanoparticles to label DNA included to lipoplexes we 

executed inital trials to assemble DNA and cationic lipids with quaternized or aminated nanoparticles. 

To maximize the difference between quaternized and aminated nanoparticles we carried out all the 

experiments at pH 8.6, where the differently modified nanoparticles possess clearly distinguished zeta 

potentials which will show an impact on their ability to interact with DNA. The formation of 
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lipoplexes was implemented using the cationic transfection agent bis(guanidinium)-tris(2-

aminoethyl)aminecholesterol (BGTC) and the phospholipid 1,2-di-(9Z-octadecenoyl)-sn-glycero-3-

phosphoethanolamine (DOPE). Lipoplexes of this composition have been shown to facilitate the 

transfection of DNA and siRNA with particular efficiency[6,58]. The assemblies of nanoparticle labeled 

lipoplexes were accomplished in line with PROTOCOL 3.2-1: 

PROTOCOL 3.2-1 Formation of lipoplexes containing DNA, cationic lipids and surface modified 

silica nanoparticles at pH 8.6 

To 46.84 μL containing 0.3 μg DNA and 5 μL borate buffer (100 mM, pH 8.6) 1.16 μL of an 

aqueous dispersion of quaternized nanoparticles (1.721017 NPs/L) was added under careful 

agitation. Subsequently 2 μL of lipids of a desired composition (BGTC/DOPE, 2.5 mM) was added. 

The final volume of the mixture was 50 μL. 

 
Lipoplexes have been visualized by transmission electron microscopy with the help of negative stains 

or by Cryo-TEM within the group of O. Lambert at the CBMN research center. To avoid the 

formation of nanoparticle/DNA aggregates before the addition of the cationic lipids, a 

nanoparticle/DNA ratio of 0.5 nm2/bp was fixed during the assembly process. All assembly processes 

were carried out in borate buffer (10 mM) at pH 8.6 and at a salt concentration of 150 mM using 

herring sperm DNA and cationic liposomes, which were added in a considerable excess. During these 

tests liposomes of a lipid composition of BGTC and DOPE were used. FIGURE 3.2-1 shows the TEM 

micrograph of an assembly of DNA, quaternized nanoparticles and BGTC/DOPE liposomes. We 

observed the incorporation of the modified nanoparticles into lipid agglomerations resembling 

lipoplexes. 

                       

FIGURE 3.2-1 TEM image of an NP/lipoplex agglomeration assembled at 150 mM NaCl in borate buffer (10 mM, pH 8.6) 

using  Me-EDPS-modified nanoparticles, herring sperm DNA and BGTC/DOPE liposomes. The specimen is stained with 

uranyl acetate. 
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Comparing Cryo-TEM micrographs of the DNA/NP/lipid agglomerations formed either with 

quaternized nanoparticles (FIGURE 3.2-2 A) or with aminated nanoparticles (FIGURE 3.2-2 B) under the 

same conditions (HEPES 10mM, pH 8.6, 150 mM NaCl), we observed that the quaternized 

nanoparticles are in contact with lipoplex resembling structures probably consisting of DNA and 

BGTC/DOPE. In contrast we detected the formation of supported lipid bilayers on the 

EDPS-modified nanoparticles. We conclude that the basic pH and the high salt concentration prevent 

an efficient adsorption of DNA to aminated nanoparticles and lead to the formation of a cationic SLB 

due to van der Waals forces.  

        
FIGURE 3.2-2 Cryo-TEM image of an NP/lipoplex agglomeration assembled at 150 mM NaCl in borate buffer (10 mM, 

pH 8.6) using  A: Me-EDPS-modified nanoparticles or B: EDPS-modified nanoparticles, herring sperm DNA and 

BGTC/DOPE liposomes. In picture A lipoplex resembling structures are indicated by white arrows. Supported lipid 

bilayers observed on EDPS modified nanoparticles are indicated by black arrows in picture B.  

Although the implementation of the formation of nanoparticle labeled lipoplexes in the presence of 

salt at pH 8.6 was appropriated to display the difference between aminated and quaternized 

nanoparticles it was not considered to be the best condition to form nanoparticle labeled lipoplexes. 

We tested further conditions for the formation of lipoplexes containing nanoparticle-labeled DNA. 

We implemented the formation of lipoplexes in the presence of 150 mM NaCl and also in the absence 

of salt at pH 6.5 in 10 mM MES buffer by mixing herring sperm DNA, quaternized nanoparticles and 

DOTAP vesicles (see PROTOCOL 3.2-2). 

PROTOCOL 3.2-2 Formation of lipoplexes containing DNA, cationic lipids and surface modified 

nanoparticles at pH 6.4 

10 μL of an aqueous dispersion of quaternized silica nanoparticles (varying concentration) was 

added under careful agitation to a volume of 90 μL aqueous solution containing 5 μg DNA and 

10 μL MES buffer (100 mM, pH 6.5, 0mM or 150 mM NaCl) in order to obtain NP/DNA complexes 

at different NP/DNA ratios (nm2/bp). The final volume is 100 μL. Subsequently the volume was 

separated by pipetting 30 μL of the mixture to different wells of a multiwell plate. Then 0.63 μL, 

A B 
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1.26 μL or 1.89 μL of liposome dispersion (DOTAP, 10 mg/mL) was added to obtain mixtures with 

SLB/SNP ratios of 2:1, 4:1 or 6:1. Some assemblies were also undergone using quaternized silica 

nanoparticles and MUTAB-coated gold nanoparticles, which were added to the DNA containing 

solution with a silicaNP/goldNP ratio of 1:10.  

 
FIGURE 3.2-3 shows the different lipoplex preparations which were implemented in a multiwell plate.  

 

 

 
 

FIGURE 3.2-3 Photographed picture of different nanoparticle-labeled lipoplex assemblies implemented in a multiwell 

plate. The wells from 1 to 5 contain lipoplexes formed in the presence of quaternized silica NPs. The wells 8 to 12 

contain lipoplexes labeled with modified silica and gold NPs. Coagulated samples are indicated by a black point. 

Depending on the used ratios the formed NP/DNA/lipid agglomerates stayed dispersed or flocculated 

as indicated by the black points next to the concerned samples. Gold nanoparticles permit a better 

visualization of the flocculated states shown in FIGURE 3.2-3. We observed that the samples coagulate 

in relation to the NP/DNA and the SLB/SNP ratios. The assemblies coagulate with increasing 

NP/DNA ratio and with decreasing SLB/SNP ratio. The samples C3 and F3 were observed by TEM 

and Cryo-TEM (see FIGURE 3.2-4). On Cryo-TEM pictures we observed lipid bilayers less distinct than 

in FIGURE 3.2-2 because the DOTAP molecules do not contain a phosphate groups and are 

subsequently less electron-dense than DOPE containing LBs.  

In the presence of salt we observed the formation of supported lipid bilayers of DOTAP on the 

quaternized nanoparticles (see FIGURE 3.2-4 A, C, E; SLBs are indicated by black arrows). The 

formation of a SLB of DOTAP on a quaternized nanoparticle may be due to the presence of 

negatively charged DNA which allies the two positively charged compounds but may also occur 

without the presence of DNA because the cationic charges of lipids and nanoparticles were screened 

by chloride ions. Subsequently van der Waals interactions promoted the formation of a SLB. We also 

observed the formation of lamellar lipoplexe type structures as indicated by white arrows. On 

Cryo-TEM pictures we could distinct DNA rods enclosed to two concentric lipid bilayers. Such 

lipoplex ultrastructures have been previously observed[6]. They occur independently from the 

quaternized nanoparticles in the saline medium. They were located individually in the medium, 

adsorbed to quaternized nanoparticles or completely surrounding those in a circular form (see FIGURE 

3.2-4 A, C).  
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FIGURE 3.2-4 Cryo-TEM ( A, B, C, D) and uranyl acetate stained TEM (E, F) images of NP/lipoplex agglomerations (ratio 

NP/DNA = 0.53 nm2/bp, ratio NP surface area/lipid surface = 1:6) formed at pH 6.5 in 10 mM MES buffer at 150 mM 

NaCl (A, C, E) or without NaCl (B, D, F). Different assemblies occur: SLBs are inidicated by black arrows, lamellar 

lipoplex structures are indicated by white arrows (circular, concentric structures) and grey arrows (planar structures). 

All Cryo-TEM pictures are at the same scale. See further pictures in Annex 5. 

A 

50 nm 

B 

50 nm 

50 nm 

C D 

E F 

50 nm 
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In the absence of salt we implemented the formation of nanoparticle-labeled lipoplexes in conditions 

which promoted the electrostatic interactions between quaternized nanoparticles, DNA and the 

positively charged DOTAP vesicles. The formation of supported lipid bilayers was not observed 

anymore. This indicates that their formation in the presence of 150 mM NaCl was mainly due to van 

der Waals forces. In contrast to what we observed for liposomes near to quaternized nanoparticles on 

the Cryo-TEM picture in FIGURE 3.2-4 A a liposome near to a quaternized nanoparticles shown in 

FIGURE 3.2-4 B does not even change its curvature, because no interaction took place.  

We could distinct lamellar lipoplex structures of DNA/lipid multilayers adsorbing on quaternized 

nanoparticles or surrounding them completely. These lipoplexes exhibit angular and planar 

morphologies which are indicated by light-grey arrows (see FIGURE 3.2-4 B, C, D). Such lipoplex 

ultrastructures were previously observed[48]. Although lipoplexes formed at 150 mM and those formed 

in the absence of salt consist both of a multilamellar  structures[51] they showed different 

morphologies. The planar lipoplexe layers which were formed in the absence of salt seem to be more 

compact than the circular lipoplexes which we were formed at 150 mM NaCl concentration.  

The fact that DNA layers observed in the circular lipoplexes at 150 mM NaCl (see FIGURE 3.2-4 A) 

seem to require more space then DNA layers inbetween planar lipoplexes (see FIGURE 3.2-4 B) may be 

explained by the fact that the space between DNA rods increases if they are surrounded not only by 

cationic lipids but also by salt counterions. This observation corresponds to what we observed on 

quaternized QCM-D crystals on which we monitored the formation of compact DNA/SLB 

multilayers in the absence of salt and the adsorption of less rigid and less compact DNA/lipid 

multilayers in the presence of salt.  

The results encouraged us to test the assembly of nanoparticle/DNA/lipid complexes using 

quaternized silica nanoparticles and a second kind of nanoparticles at the same time. For the purpose 

of forming lipoplexes containing DNA, which is labeled by two different kinds of nanoparticles as we 

have illustrated in Chapter I FIGURE 4.3-4, we implemented lipoplexe formations in the presence of 

quaternized silica and MUTAB-coated gold nanoparticles. The NP/DNA/lipid assemblies formed in 

sample F8 (see FIGURE 3.2-3) were displayed by TE microscopy (see FIGURE 3.2-5 A) under the use of 

uranyl acetate as a stain. 



185 
 

           
FIGURE 3.2-5 TEM pictures of assemblies implemented at pH 6.5 in the absence of salt but using two different kinds of 

quaternary ammonium group bearing nanoparticles. A: TEM picture of a NP/DNA/lipid agglomeration formed of 

quaternized silica nanoparticles, MUTAB-coated gold nanoparticles, herring sperm DNA and DOTAP vesicles (ratio 

silica NP/DNA = 0.1, ratio silica NP/gold NP 1:10, ratio silica NP surface/lipid surface 1:6). B: TEM picture of a control 

sample containing quaternized silica NPs, MUTAB-coated gold NPs and DOTAP lipids which were mixed in the same 

ratios as described for sample shown in picture A but in the absence of DNA. See further pictures in Annex 5. 

We detected that as we prospected it was possible to form lipoplexes where DNA was labeled by two 

kinds of quaternized nanoparticles (see FIGURE 3.2-5 A). To obtain a control sample quaternized silica 

nanoparticles, MUTAB-coated gold nanoparticles and DOTAP vesicles were mixed under the same 

conditions but in the absence of DNA to demonstrate that the presence of DNA is necessary to form 

the observed assemblies. We observed that the formation of such nanoparticle labeled lipoplexes did 

not take place in the absence of DNA (see FIGURE 3.2-5 B).  

In recapitulating the experiments implemented to form nanoparticle labeled lipoplexes we can see that 

we were able to label DNA in lipoplexes with our newly modified silica nanoparticles. 3.3 Conclusions and prospects 

This third chapter reported the efforts implemented to study the interactions between quaternized 

nanoparticles and DNA or phospholipids in comparison to aminated silica nanoparticles.  

In the first part we showed that we did not observe an improvement in interactions between negatively 

charged DOPS vesicles and quaternized surfaces in comparison to SiO2 surfaces only modified with 

primary and secondary amine groups. Whereas we achieved the formation of a supported lipid bilayer 

of DOPS on SiO2 surfaces bearing primary and secondary amine groups we did not observe the 

formation of a supported lipid bilayer on a quaternized surface under the same operating conditions. 

The quaternized nanoparticles do not seem to be optimized to interact with phospholipids and even at 

basic pHs such as pH 9 the fact that quaternized surfaces keep far more charges than aminated ones 

was not sufficient to induce the rupture of DOPS vesicles. This observation can most likely be 

A B 

50 nm 50 nm 
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explained by the fact that DOPS liposomes are highly negatively charged and strongly repulse each 

other in the absence of salt.  

In contrast quaternized silica surfaces seem to be more suitable for interacting with DNA than 

aminated silica surfaces. At alkaline pHs quaternized nanoparticle surfaces adsorb higher quantities of 

herring sperm DNA than aminated nanoparticle surfaces. We demonstrated that to complex the same 

amount of DNA at pH 9 an amount of quaternized nanoparticles is needed which represents only  of 

the quantity of aminated nanoparticles employed. In addition QCM-D measurements showed that 

quaternized surfaces are more suitable for adsorbing DNA in the presence of 150 mM of salt even at 

alkaline pHs such as pH 8.6 and pH 9.  

Cosedimentation assays showed that with increasing salt concentration the same amount of modified 

nanoparticles are able to complex higher amounts of DNA. QCM-D measurements confirmed these 

observations and demonstrated that this result is due to a change in the DNA conformation. At higher 

salt concentrations DNA strands are more flexible due to a partial screening of the charges of the 

deoxyribosephosphate backbone and adsorb as viscoelastic ravels. DNA adsorbing to quaternized 

surfaces at low salt concentrations has been shown to adsorb in a more rigid conformation than DNA 

which adsorbed on aminated surfaces under the same conditions. Furthermore we achieved the 

formation of supported lipid bilayers of DOTAP on DNA cushions condensed on quaternary 

ammonium bearing silica surfaces under conditions promoting the electrostatic interactions between 

lipids and DNA. DNA-lipid multilayers which formed on aminated surfaces did not contain lipid 

layers in the form of a supported lipid bilayer. This observation indicates an improved condensation of 

DNA on quaternized surfaces. 

We observed the formation of lipoplex structures including DNA-labeling quaternized nanoparticles 

when cationic lipids, DNA and quaternized nanoparticles were brought in contact with each other. 

The formation of nanoparticle/DNA/lipid complexes was possible in the presence of 150 mM salt at 

alkaline pH of 8.6, although this was not possible while using aminated silica nanoparticles. This fact 

demonstrates the different ability of the two surfaces to undergo electrostatic interactions in an 

alkaline environment. The formation of nanoparticle labeled lipoplexes has been shown to be 

successful at pH 6.5. We observed the formation of lipoplexes with different morphologies in the 

presence and in the absence of salt. We aim to continue self assembly experiments to identify the ideal 

conditions for the formation of nanoparticle-labeled cationic lipoplexes.  

The results of this third chapter demonstrate that the adsorption of DNA on the modified 

nanoparticles was mainly caused by electrostatic interactions. Nevertheless the affinity of modified 

nanoparticles with DNA does not only depend on electrostatic interactions. The specificity of 

modified silica surfaces may be enhanced by a further modulation of the hydrophilic-hydrophobic 

balance of quaternized surfaces. The implementation of more hydrophobic butyl or phenyl groups 

replacing a part of quaternizing methyl groups is one strategy to be followed in aiming a further 

improvement of DNA binding. Furthermore the implementation of guanidinium groups on modified 

surfaces might enhance the capacity of functionalized nanoparticles to label DNA. Guanidinium 
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groups possess a pKa of 12.5 and are mainly responsible for interactions existing between DNA and 

arginine rich histone proteins which condense DNA in the chromosomes.  

The implementation of the modification process allowing the quaternization of primary and secondary 

amine groups on EDPS-coated silica nanoparticles was shown to significantly improve the interaction 

of quaternized nanoparticles with DNA compared to nanoparticles which are only aminated. As a 

consequence of this study we are now able to functionalize multimodal silica nanoparticles with 

quaternary ammonium groups for the labeling of DNA. We aim to display DNA labeled by 

quaternized hybrid nanoparticles during their transfection by cationic lipids in vitro and in vivo and 

forward our research in collaboration with biologists. Microscopic studies could reveal if the newly 

modified nanoparticles stay bound to labeled DNA during its migration through the cytosol.  
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OVERALL CONCLUSION 
The literature research presented in chapter I drew up the need of multimodal nanoparticles for the 

labeling of DNA to follow its transfection. A therapeutic gene can be transfected complexed with 

transfection agents such as cationic lipids in the form of lipoplexes. In order to validate the efficiency 

of such transfection agents the DNA transfection has to be followed from the extracellular matrix to 

the nucleus. Several publications outlined the advantages of multimodal silica nanoparticles, in whose 

matrix different materials such as fluorescing dyes, metal, semiconductor or metal oxide nanoparticles 

can be enclosed, to be used as nanomarkers for bioimaging applications. The generation of quaternary 

ammonium groups, which strongly interact with DNA, on silica surfaces seemed to be a fruitful 

strategy to surface-functionalize multimodal silica nanoparticles for the labeling of DNA. Such 

nanoparticles allow the following of the transfection of DNA at different scales for the purpose of 

elucidating the mechanisms of gene transfection.  

The work presented in chapter II dealt with the optimization of the chemical surface functionalization 

of silica nanoparticles with quaternary ammonium groups. Two synthesis strategies have been 

explored: 

a)  A direct modification of silica with the quaternary ammonium group containing organosilane 

derivatives (TMAPS and TBAPS).  

b)  A two step process of silica nanoparticles via a first modification with the primary and secondary 

amine groups containing organosilane derivative (EDPS) and a subsequent quaternization of the 

amine groups via an alkylation with iodomethane. 

The first modification process led to the obtainment of silica nanoparticles bearing quaternary 

ammonium groups, which possess their isoelectric point at pH 8.5, due to the presence of silanolate 

groups remaining on the surface and influencing the overall surface potential. The amount of 

organo-silane, the catalyst, duration and temperature of the thermal treatment of the modification 

process were varied to optimize the density of the coated polysiloxane films. The understanding of the 

influence of the pH on the formation of silane layers on silica surfaces led to the choice of acetic acid 

as optimal catalyst. We demonstrated that this modification strategy is suitable to modify silica 

nanoparticles with quaternary ammonium groups, but we could not achieve a TMAPS- or 

TBAPS-coating sufficiently dense to obtain modified nanoparticles sufficiently charged to act as DNA 

labeling tool in a physiological environment. As a major problem we identified the tendency of 

quaternary ammonium groups to electrostatically interact with silanolate groups present on the surface 

of colloidal silica. The formation of ionic bonds between quaternary ammonium groups and residual 

silanolates before and after the completion of the implemented silanization process diminishes the 

success of the coating process.  

Subsequently we carried out a two-step modification process using the silane coupling agent EDPS for 

silanization, which contains two amine groups. In contrast to ionic bonds forming between quaternary 
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ammonium and silanolates groups van der Waals bonds formed between primary amines and 

silanolate groups can be abrogated during thermal treatment under vacuum. This fact enables the 

surface modification of nanoparticles with aminosilanes to produce nanoparticles possessing their 

isoelectric point above pH 9. The following alkylation of amine groups with iodomethane permitted 

the implementation of quaternary ammonium groups on the aminated silica surfaces. 

The setting up of the second surface modification process permitted to obtain quaternary ammonium 

group bearing nanoparticles possessing a relatively high graft density of the functionalizing silane. The 

determination of the optimal solvent and base used during the quaternizing Mentschutkin reaction 

allowed to maintain colloidal stability of the nanoparticles during the modification process. A 

quaternization process transforming at least 60 % of the overall amine groups into quaternary 

ammonium groups was developed. This process led to the obtainment of silica nanoparticles bearing 

quaternary ammonium groups, which possess their isoelectric point at about pH 10.5. In contrast to 

nanoparticles quaternized by the first modification process their colloidal stability is guaranteed under 

physiological conditions. The second modification process is therefore suitable for the purposes of 

functionalizing multimodal silica nanoparticles with quaternary ammonium groups and of using them 

as DNA-labeling tools. 

The optimization of the surface modification protocols in chapter II permitted the study of the 

interactions between quaternized nanoparticles and DNA in comparison to aminated silica 

nanoparticles and silica surfaces as shown in chapter III. Cosedimentation assays and QCM-D 

measurements showed that quaternized surfaces adsorb higher quantities of DNA than aminated silica 

surfaces at basic pHs. DNA adsorbed to quaternized surfaces at low salt concentrations has been 

shown to exist in a more rigid conformation than DNA adsorbed to aminated surfaces, indicating an 

improved condensation of DNA on quaternized surfaces. The results of the this last part demonstrated 

that the ability of modified nanoparticles to bind DNA depends not only on electrostatic interactions 

but also on the existence of hydrogen-bonding, van der Waals interactions or hydrophobic 

interactions. It may be enhanced by a further modulation of the hydrophilic-hydrophobic balance of 

quaternized surfaces. The alkylation reaction of amine groups on premodified silica may be 

implemented using reagents as iodobutane or iodophenyl to replace a part of quaternizing methyl 

groups by more hydrophobic groups. Furthermore it might be interesting to implement the generation 

of guanidinium groups on the premodified surfaces. They are known to possess a pKa of 12.5 and to 

be responsible of interactions between DNA and arginine-rich histone proteins. Therefore we assume 

that their presence might enhance the capacity of functionalized nanoparticles to label DNA. 

Nonetheless, the implementation of the modification process of the quaternization of EDPS-coated 

nanoparticles is significantly ameliorating the interaction of such nanoparticles with DNA compared 

to nanoparticles which are only aminated. 

We demonstrated that the obtainment of lipoplexes including DNA-labeling quaternized nanoparticles 

in the presence of 150 mM salt is possible even at basic pH of 8.6, although this is not possible when 

using aminated silica nanoparticles. We showed that at the lower pH of 6.5 in the presence of salt the 
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formation of nanoparticle-labeled lipoplexes and also the formation of supported lipid bilayer on 

quaternized nanoparticle surface take place. We identified the formation of circular, lamellar 

lipoplexes which can be in contact with quaternized nanoparticles. By carrying out QCM-D 

measurements we could show the formation of supported lipid bilayers on condensed DNA cushions 

formed on quaternary ammonium modified silica surfaces, which is favorized under conditions 

promoting the supramolecular self assembly of lipids and DNA via electrostatic interactions. This 

observation is in agreement with the display of planar, lamellar lipoplexe structures, which form at pH 

6.5 in the absence of salt, by Cryo-TEM and TEM imaging. We showed that we are also able to form 

dually labeled lipoplexes by the simultaneous use of MUTAB-coated gold and quaternized silica 

nanoparticles.  

Nanoparticles bearing quaternary ammonium groups are highly charged at pH 7.4 and keep more 

positive charges on their surface even in a salty environment such as the cytosol. The generation of 

quaternary ammonium groups on a multifunctional nanoparticle might therefore solve the problem 

that lipoplex transfected DNA labeled by aminated nanoparticles could not be followed until its 

internalization into the cell nucleus. This study allowed us to implement a process of surface 

modificiation on silica nanoparticles in order to enclose them in lipoplexe structures by complexation 

with DNA. Due to the versatility of the silanization this surface modification process can be applied 

on more sophisticated silica nanoparticles, such as multimodal silica nanoparticles containing 

fluorescent dyes, magnetic or plasmonic nanoparticles, and also on other metal oxide surfaces. In the 

near future such bioimaging tools, which could allow displaying the DNA transfection from tissular to 

subcellular scales, will be used to validate the efficiency of transfection agents in in vitro and in vivo 

situations. 
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ANNEX  

Annex 1: Characterization protocols 

Determination of Si Concentration by Inductively Coupled Plasma (ICP) 

To determine the concentration of silica present in a sol, four portions of 500 μL of the sol were dried 

in a weighted aluminum cup. The weight of the dried extract was used to determine an approximate 

concentration of silica in the sol in g/L. Then the sol was diluted to a silicium concentration of 3 g/L, 

and 100 μL were taken and dissolved by the addition of 400 μL of hydrofluoric acid (40% w/v). The 

homogeneous silicium-containing solution was neutralized by adding 9.5 mL of NH4OH (1M). The 

silicium concentration of a prepared sample was dosed by inductively coupled plasma (ICP) and 

converted to the concentration of silica of our sol. The preparation of the samples for ICP was 

undergone in plastic Eppendorf tubes to avoid the falsification of the silica content by the dissolution 

of glass recipients. 

Dynamic light scattering (DLS)  

To 1 mL of a chosen solvent 20 μL of a sol (3.5•1017 NPs/L) was added. 800 μL of the dilute particle 

sol was introduced to the VASCO particle size analyzer from Cordouan Technologies. The laser 

intensity of the 658 nm laser diode was adjusted and the sample was cooled to a temperature of 20 °C. 

The refractive index and viscosity of the solvent as well as the refractive index of the particles in the 

solvent concerned were entered into the software NanoQ, which pilots the further measurements. A 

real time signal was measured; acquisitions were implemented every 30 seconds if the noise of the 

signal did not exceed 1.06 %. 80 measurements were accomplished to determine size distribution and 

the polydispersity index of the nanoparticles by the cumulants method. 

Transmission electron microscopy TEM 

On a carbon-film covered copper grid 5 μL of a diluted particle solution (dilution factor 100 to 1000) 

was deposited. Particles were allowed to adsorb to the grid for two minutes, after which the remaining 

solution was collected by the aid of fine coarse filter paper. A series of TEM micrographs was 

recorded with the Philips CM120 microscope at 120 kV, with the Ultra scan USC1000 2Kx2K 

camera. Particle sizes were analyzed with the help of the ImageJ program, which permits the 

processing (functions used: median filter, enhanced contrast), transformation of the recorded 

micrographs to binary pictures of separated particles (functions used: make binary, threshold, 

watershed) and the analysis of the particles (function used: analyze particles) to determine their Feret 

diameter. 

Diffuse reflectance infrared fourier transform spectroscopy (DRIFT) 

2 mL of a nanoparticle sol was dried at 80 °C under vacuum. 9 mg of the dried sample was added to 

281 mg of equally dried KBr (spectroscopy grade). The mixture was pestled in an agate mortar and the 

powder was deposited on the sample holder. The sample was then introduced to the Bruker IFS 
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Equinox 55 spectrometer and measured in a Selector Graseby Specac reflection cell. Thirty minutes 

after the installation of the sample in the cell an infrared spectrum was recorded by the acquisition of 

128 measurements. 

Nuclear magnetic resonance spectroscopy (NMR) 

1.5 mL of aqueous nanoparticle sols was centrifuged for 10 min. at 13000 ppm in 2 mL Eppendorf 

cups. The supernatant was removed and the particles were dried by the deposition of open Eppendorf 

cups upside down on a filter paper for thirty seconds. The particles were then redispersed in 500 μL 

D2O. The sample should be concentrated and show about 7000 m2 of surface area per liter to permit 

the recording of a 1H NMR spectrum. All spectra were recorded in a Bruker NMR spectroscope at 400 

MHz by the acquisition of 128 measurements. 

Conductometry 

Conductivity measurements were carried out using the Bioblock Scientific conductivity meter 93008. 

A titration solution of AgNO3 (0.1 M) was prepared and stored protected from light. Immediately after 

quaternization 2 mL of a sol containing nanoparticles dispersed in water after the after the 

accomplishment of two washing steps in ultrapure water is prelevated. The conductivity of the sol is 

measured while 10 ± 0.1 μL of the prepared AgNO3 solution is gradually added with an Eppendorf 

micropipette. When all halide ions in the solution have been consumed and precipitated with the 

added Ag+ ions as AgHal, additional Ag+ ions contribute to the conductivity of the solution leading to 

an increase in the gradient of the measured conductivity profile. The change of the gradient marks the 

titration end point, permitting us to calculate the halide concentration of the sol. 

Thermogravimetric analysis (TGA) and coupled mass spectrometry (MS) 

25 mg of nanoparticles previously dried at 80 °C under vacuum was placed in a platine crucible, which 

was positioned on a MTB18 SETARAM thermobalance. TGA measurements were effected under an 

oxygen flux with a temperature increase from 25 °C to 650 °C by increasing heat of 2 °C/min. TGA 

measurements could be coupled to a Pfeiffer Balzer mass spectrometer. The quadrupolar spectrometer 

detects mass fragments of 0 to 300 m/z, which were released during the heating process. 

Zetametric measurements  

50 mL of a dilute aqueous solution of a nanoparticle sol at a concentration of about 3.4•1016 NPs/L 

was prepared. The pH of the solution was adjusted by the addition of HCl (0.01M) or NaOH (0.01M). 

At the desired pH 5 mL of the sample was collected. After pH equilibration of for 12 hours the zeta 

potential of the nanoparticles in the prepared samples was measured using the Malvern Zetasizer 

3000HS. The pHs of the samples were verified after the measurement of the zeta potential. 

Cleaning of QCM-D crystals 

Silica coated QCM-D crystals can be cleaned after surface modification by immersion in 10 mL of a 

mixture of H2O:H2O2:NH3 (5:1:1) heated at 70 °C for 5 minutes. The cleaning protocol has the 
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advantage to be rapid and efficient, but the inconvenient to decrease the thickness of the silica coating 

of the quartz crystal. The so cleaned quartz crystals were therefore of a limited life time and could be 

used for about 5 modification/cleaning cycles. A second cleaning method is the cleaning of the 

modified crystals by 45 min of UV-ozone treatment. The method takes much more time than the first 

one, but has the advantage to be much gentler and allows the use of SiO2 coated QCM-D crystals for 

about 10 modification/cleaning cycles. All SiO2 coated quartz crystals suffer from the dissolution of 

silica in salt containing media and their exposition to capillary flows peeling SiO2 entities of the 

surfaces. 

Spectrophotometric dosage of phosphate molecules 

Concentrations of prepared liposome dispersions containing phospholipids were determined by a 

colorimetric dosage of molybdate complexes of phosphate. 200 μL of phospholipid containing 

solutions (0.5 mg/mL) were prepared and twice 100 μL of the sample were injected into two 

borosilicate tubes. The samples were dried in a destruction block at 180 °C. Then 300 μL of perchloric 

acid (70 % w/v) were added, the tubes were sealed with glass pearls and placed in the destruction 

block at 180 °C for thirty minutes. If the solutions remained colored after this treatment they were 

placed in the destruction block for further 15 minutes heating at 180 °C. Subsequent 1.4 mL of 

ultrapure water (18.2 MΩ) was added to each tube and the mixture is vortexed. In the following 

200 μL of a solution of ammonium molybdate (2.5 % w/v) and 200 μL freshly prepared ascorbic acid 

(10 % w/v) were added under vortexing. The samples were placed in a water bath preheated at 100 °C 

during 5 minutes, then immediately cooled in an ice bath. The absorbance of the samples was 

measured at 797 nm using an UV-VIS spectrometer to determine the concentration of the samples. 

Simultaneously the dosage was implemented for eight borosilicate tubes containing 0, 5, 10, 20, 40, 

60, 80 or 100 nanomoles of NaH2PO4 to obtain a calibration diagram permitting the determination of 

the phosphate concentration of the sample. 

Spectrophotometric determination of the thiol concentration with Ellman’s reagent 

50μl of NaBH4 (2 M) was added to a 50 μl of a sol containing MUTAB-modified gold nanoparticles at 

a concentration of 1.72•1017 nanoparticles per liter. After incubation for 30 minutes the sample was 

centrifuged at 8000 g for 10 minutes. 90 μl of the supernatant were taken, paying attention not to 

withdraw the pellet. 90 μl of HCl (1 M) were added and the sample was incubated for 30 minutes. 

Subsequently the sample was degazed via the application of a vaccuum during sonication for 

30 minutes. 1.77 ml of degazed borate buffer (pH 8.0, 0.2 M) was added to the sample. Then 50 μL of 

Ellman’s reagent (5,5'-dithiobis-(2-nitrobenzoic acid), 10 mM) was added. Thiols react with DNTB, 

cleaving its disulfide bond to give 2-nitro-5-thiobenzoate (NTB-). The presence of one mole of thiol 

leads to the release one mole of NTB (extinction coefficient of 13.800 M−1•cm−1) which is quantified 

using a spectrophotometer. After 15 minutes incubation the absorption was measured at 412 nm and 

the concentration of NTB was calculated via the Lambert-Beer equation. At the same time two control 

samples were prepared one containing Ellman’s reagent and ultrapure water and the second 
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containing Ellmann’s reagent, NaBH4 and HCl and equally dosed by measuring the absorption of the 

control samples at 412 nm.  

Annex 2: Tables 

TABLE 0-1 Schedular presentation of the observed vibration bands on colloidal silica and TMAPS, EDPS and EDPS-Me 

modified nanoparticles.  – stretching vibrations,  – bending vibrations,  – rocking vibrations. 

Vibration band 
(cm-1) 

Colloidal silica TMAPS 
modified NPs 

EDPS 
modified NPs 

EDPS-Me 
modified NPs 

3400 
- 

3700 

(OH) strong, broad         

2989  asym(CHx) medium         

2950 (NCHx) medium        

2903  sym (CHx) medium         

1984  Shoulder, typical silica overtone         

1872  Typical silica overtone         

1688  (H2O) shoulder         

1631  (H2O) weak, enclosed water         

1477
-

1479 

(N+CH) weak, sharp       

1452 (NCH) weak, sharp      

1418 (CN+) weak, sharp       

1395 (CN) weak, sharp      

1190  asym(SiOSi) shoulder         

1108  asym(SiOSi) strong, sharp         

  938 sym(SiOSi) strong         

  803 (SiOSi) strong         

  561 cyclic(SiOSi) medium         

  468 SiOSi) strong, sharp         
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TABLE 0-2 Schedular presentation of the detected mass fragments[41] of differently modified silica nanoparticles. 

Fragment m/z 

z=1 

 

z=2 

 

z=3 

TMAPS 
Mgraft 

101 g/mol 

TBAPS 
Mgraft 
101 

g/mol 

EDPS 
Mgraft 
101 

g/mol 

EDPS-Me 

EtOH/H2O 
Mgraft 

101 g/mol 

EDPS-Me 
EtOH/H2O/NaCl 

Mgraft 
101 g/mol 

C 12 6 4         

CH 13 6.5 4.3        

HH  
CH2 

14 7 4.7       

H

H

H

 

15 7.5 5         

OH 17 11.9 5.7          

H
O

H  
18 9 6          

HH

H

H

 

18 9 6          

HC CH 26 13 8.7          

H2C CH 
27 13.5 9          

N2 28 14 9.3         

CO 28 14 9.3         

H2C CH2 28 14 9.3         

CH3 CH2 
29 14.5 9.7          

H3C CH3 30 15 10        

NO 30 15 10        

O2 32 16 10.7       

35Cl 35 17.5 11.7        

HCl 36 18 12       

37Cl 37 111.9 12.3        

NHCH2C  41 20.5 13.7        

CH2H3C  
42 21 14        

CH2H3C  
43 21.5 14         

CH2

N
H3C  

43 21.5 14         

CH3H3C  
44 22 14.67          

O C O  44 22 14.67          

CH3

N
H3C  

44 22 14.67          

CH3

H
N

H3C  
45 22.5 15          

O
N

O  
46 23 15.3       

 47 23.5 15.7       
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CH3–Cl (35Cl) 50 25 16.7        

CH3–Cl (37Cl) 52 26 17.3        

CH3

N
H3C  

58 29 19.3       

CH3 N

CH3

CH3

 

59 29.5 19.7       

CH3

NH
H3C

CH3

 

60 30 20       

I 127 63.5 42.3       

CH3I 142 71 47.3       

 

TABLE 0-3 Summary of the different surface modifications of silica nanoparticles with TMAPS implemented under 
variety of nTMAPS, catalyst, pH, temperature T and duration t of the thermal treatment. 

Condition nTMAPS 

(μmol/m2) 

Catalyst pH T(thermal treatment) 

(°C) 

t(thermal treatment) 

(hours) 

001 2.5 Acetic acid 4.5 100 2 

002 5 Acetic acid 4.5 100 2 

003 15 Acetic acid 4.5 100 2 

004 30 Acetic acid 4.5 100 2 

005 60 Acetic acid 4.5 100 2 

006 100 Acetic acid 4.5 100 2 

007 120 Acetic acid 4.5 100 2 

008 150 Acetic acid 4.5 100 2 

009 100 NH4OH 11.9 100 2 

010 100 H3PO4 2 100 2 

011 100 HCl 1 100 2 

012 100 HNO3 1 100 2 

013 100 Δ Acetic acid 4.5 100 2 

014 100 1) H3PO4 * 

2) NH4OH ** 

2 

11.9 

100 2 

015 100 1) Acetic acid * 

2) NH4OH ** 

4.5 

11.9 

100 2 

016 100 1) NH4OH * 

2) Acetic acid *** 

11.9 

4.5 

100 2 

017 100 Acetic acid 4.5 130 2 

018 100 Acetic acid 4.5 150 2 

019 100 HNO3 1 130 2 

020 100 HNO3 1 150 2 
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021 100 NH4OH 11.9 130 2 

022 100 NH4OH 11.9 150 2 

024 100 H3PO4 2 130 2 

025 100 H3PO4 2 150 2 

026 100 Acetic acid 4.5 50 2 

027 100 Acetic acid 4.5 50 12 

028 100 Acetic acid 4.5 100 12 

029 100 NH4OH 11.9 100 12 

* during hydrolysis/condensation of TMAPS and the adsorption of polysiloxane oligomers to silica overnight 

**transfer to an alkaline reaction medium just before the thermal treatment in glycerol 

*** transfer to an acidic reaction medium just before the thermal treatment in glycerol 
Δ added drop wise during five hours 
 

TABLE 0-4 Summary of the different surface modifications of silica nanoparticles with TBAPS. 

Condition nTBAPS 

(μmol/m2) 

Catalyst pH T(thermal treatment) 

(°C) 

t(thermal treatment) 

(hours) 

030 100 NH4OH 11.9 100 2 

031 100 Acetic acid 4.5 100 2 

032 100 H3PO4 2 100 2 

033 100 HNO3 1 100 2 

034 100 Acetic acid 4.5 130 2 

035 100 Acetic acid 4.5 150 2 

 

TABLE 0-5 Conditions tested to implement the quaternization of EDPS-modified silica nanoparticles. 

Condition Solvent Base tRT (hours) t70°C (hours) 

036 Acetonitrile K2CO3 12 1 

037 Acetonitrile NEt3 12 1 

038 EtOH/Acetonitrile (1:3) K2CO3 12 1 

039 EtOH/Acetonitrile (1:3) NEt3 12 1 

040 EtOH K2CO3 12 1 

041 EtOH NEt3 12 1 
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Annex 3: Calculations 

 The calculation of the grafting density of the sample using 60 μmol TMAPS to 

modify 50 nm sized silica colloids (cond. 005, see TGA in CHAPTER 2, FIGURE 

2.3-1) provides an example for the calculations implemented to calculate the surface 

densities of TMAPS-coated nanoparticles.  

For the sample examined by TGA we determine: 

 

 

The calculated mass loss includes the loss of water and ethoxy residues enclosed 

into the matrix of the amorphous silica nanoparticles. For this purpose a TGA of 

the used silica colloids was implemented to determine the quantity of mass loss due 

to water and ethoxy residues. For the sample of colloidal silica we determined:  

 

The mass loss per mg of silica is of:

 

For the sample of TMAPS-modified silica the mass loss due to the loss of water 

and ethoxy residues  corresponds approximately to 1.354 mg. To 

calculate the surface density of the organic graft on the modified nanoparticles this 

loss is subtracted from the total mass loss: 

 

In the following the surface density of TMAPS on the modified nanoparticles is 

calculated via EQUATION 2.3-1, CHAPTER 2: 

 

 

EQUATION 0-1 Sample calculation of the surface density of TMAPS grafted silica. 

 To calculate the amount of quaternary ammonium groups, which may be formed 

by the quaternization of the primary or the secondary amine of an EDPS graft, we 

executed a TGA analysis of quaternized nanoparticles (cond. 041, see TGA in 

CHAPTER 2, FIGURE 3.2-4). 

For the sample examined by TGA we determined: 

 

 

 The calculated mass loss includes the loss of water and ethoxy residues and EDPS 
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grafts of the previously modified silica nanoparticles. For this purpose a TGA of 

the used silica colloids was carried out to determine the quantity of mass loss due 

to water, ethoxy residues and grafted EDPS. For the sample of EDPS coated 

colloidal silica we determined:  

 

The mass loss per mg of silica is subsequently of:

 

For the sample of quaternized silica the mass loss due to the loss of water and 

ethoxy residues A  corresponds approximately to 4.8096 mg. To 

calculate the surface density of the organic graft on the modified nanoparticles this 

loss is subtracted from the total mass loss: 

 

We estimate that averaged 2.5 methyl groups are necessary to implement one 

quaternary ammonium group on an EDPS graft (either two methyl groups to 

quaternize a secondary or three methyl groups to quaternize a primary amine), 

which will be accompanied by one iodide counterion. In what follows the surface 

density of quaternary ammonium groups on the modified nanoparticles is 

calculated via EQUATION 2.3-1, CHAPTER 2: 

 

EQUATION 0-2 Calculation of the amount of quaternary ammonium groups present on modified silica 

nanoparticles after the quaternization of EDPS with iodomethane. 

Annex 4: IUPAC names and structures of lipids and cationic 

transfection agents 

DOPC 1,2-dioleoyl-sn-glycero-3-phosphocholine 

C44H84NO8P, exact mass 785.593 

 

DOTAP 1,2-dioleoyl-3-trimethylammonium-propane  

C42H80NO4Cl chloride salt, exact mass 697.578
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DOPS 1,2-dioleoyl-sn-glycero-3-phospho-L-serine  

C42H77NO10PNa sodium salt, exact mass 809.518

 

DOPG 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) 

C42H78O10PNa sodium salt, exact mass 796.523 

 

DOPE 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine 

C41H78NO8P, exact mass 743.547 

 

FIGURE 0-1 Molecular formular, structure and molar weight of lipids used in these chapter.  

 

BGTC bis(guanidinium)-tris(2-aminoethyl)amine cholesterol 

O
N
H

O N

H2N
NH2

NH2

NH2

H

H
H

H

 

FIGURE 0-2 Cationic transfection agent used for the formation of lipoplexes 
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Annex 5: Supplementary Cryo-TEM and TEM pictures 

 

FIGURE 0-1 Cryo-TEM pictures of nanoparticle/DNA/lipid agglomerates formed at pH 6.5 in the presence of 150 mM 

NaCl (sample C3, see chapter 3, FIGURE 3.2-3). We observe the formation of SLBs and concentric, lamellar lipoplex 

structures on quaternized silica NPs. All Cryo-TEM pictures are at the same scale. 

 

FIGURE 0-2 Cryo-TEM pictures of nanoparticle/DNA/lipid agglomerates formed at pH 6.5 in the presence of 0 mM NaCl 

(sample F3, see CHAPTER 3, FIGURE 3.2-3). We observe the formation of planar, lamellar lipoplex structures on 

quaternized silica NPs. All Cryo-TEM pictures are at the same scale. 

 

FIGURE 0-3 TEM pictures of nanoparticle/DNA/lipid agglomerates formed at pH 6.5 in the presence of 0 mM NaCl 

(sample F3, see CHAPTER 3, FIGURE 3.2-3). The specimen was stained with uranyl acetate. We observe the formation of 

planar, lamellar lipoplex structures on quaternized silica NPs as equally observed by Cryo-TEM. All TEM pictures have 

the same scale. 

 

50 nm

50 nm

100 nm

A B C 

A B C 

A B C 
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FIGURE 0-4 Cryo-TEM (A, B) and TEM (C) pictures of nanoparticle/DNA/lipid agglomerates formed at pH 6.5 in the 

presence of 0 mM NaCl (sample F8, see CHAPTER 3, FIGURE 3.2-3).  

 

We observe the formation of lipoplex structures including quaternized silica NPs and MUTAB-coated 

gold nanoparticles. Both Cryo-TEM pictures have the same scale. The specimen observed 

 

FIGURE 0-5 Silica and gold nanoparticles bearing quaternary ammonium groups incubated with DOTAP vesicles in the 

absence of salt (A) and at 150 mM NaCl (B). The nanoparticles are evenly distributed. C: TEM picture of 

nanoparticle/DNA/lipid agglomerates formed at pH 6.5 in the presence of 0 mM NaCl (sample F8, see CHAPTER 3, 

FIGURE 3.2-3). The silica and gold nanoparticles are located at the same place indicating that they interact with DNA 

and are located in lipoplexes. All specimens were stained with uranyl acetate.  
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50 nm 100 nm 200 nm
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CHEMICAL SURFACE MODIFICATION OF SILICA NANOPARTICLES FOR 

THE LABELING OF DNA IN LIPOPLEXES. 

ABSTRACT 

Silica nanoparticles are ideal platforms for the conception of bioimaging tools serving for the 

elucidation of the mechanisms of gene transfection via lipoplex structures. The purpose of the present 

study is the development of a chemical surface modification for the generation of quaternary 

ammonium groups on silica nanoparticles permitting the obtainment of highly positively charged 

silica colloids which strongly attract DNA by electrostatic interactions. Two modification strategies to 

generate quaternary ammonium groups on silica are presented a) a direct silanization using quaternary 

ammonium groups containing silane derivatives and b) a modification of silica nanoparticles via a first 

modification with an amine group containing silane derivative and a subsequent quaternization of the 

amine groups via an alkylation with iodomethane. Different physicochemical methods were employed 

(cosedimentation assays, quartz crystal microbalance with dissipation monitoring measurements, 

TEM and Cryo-TEM imaging) to analyze interactions between quaternized surfaces, DNA and lipids. 

A preliminary study was carried out which shows the capacity of the synthesized nanoparticles to 

label DNA in lipoplexes. 

Key words: silica, nanoparticle, quaternary ammonium group, surface functionalization, silanization, 

DNA-labeling, gene transfer, lipoplex, quartz crystal microbalance with dissipation monitoring 

RESUME 

Les nanoparticules de silice sont des plateformes idéales pour la conception d’outils de bioimagerie 

afin d’étudier les mécanismes de transfert de gènes par des lipoplexes. L’objectif de notre étude est le 

développement d’une modification chimique de surface permettant d’obtenir des colloïdes de silice 

chargés positivement susceptible de lier de l’ADN par des interactions électrostatiques. Deux stratégies 

pour la génération de groupements ammonium quaternaires sur des nanoparticules de silice sont 

présentées a) une silanisation directe par l’utilisation d’un agent de couplage silanique contenant un 

groupement ammonium quaternaire et b) un procédé en deux étapes mettant en jeu une modification 

de surface chimique par des aminosilanes primaires et secondaires suivie d’une alkylation des amines 

par l’iodomethane. Différentes méthodes physico-chimiques (essais de cosédimentation, des 

expériences de microbalance à cristal de quartz avec mesure de dissipation et d’imagerie MET et 

Cryo-MET) ont été utilisées pour mettre en évidence et caractériser les interactions entre les 

biomolécules et les surfaces quaternisées. Des études préliminaires ont montrées les capacités de 

marquage de lipoplexes par de telles nanoparticules. 

Mots clés: silice, nanoparticule, ammonium quaternaire, fonctionnalisation de surface, silanisation, 

marquage d’ADN, transfert de gènes, lipoplexe, microbalance à cristal de quartz avec mesure de 

dissipation 
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