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Université Pierre et Marie Curie
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Computational and Mathematical Methods for Data Analysis

in Biology and Finance

Julien Riposo
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Je dédicace tout mon travail à ma mère, ma sœur, et ma femme.



4



Contents

I Methods for Data Analysis in Biology and Finance 11

1 The Mathematical Tools 13

1.1 Backgrounds on matrix algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Background on graph theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Random matrices and sampled matrices . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 The assortativity of a matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5 The asymptotic behavior of Λ1[M ] and V1[M ] . . . . . . . . . . . . . . . . . . . . 23

2 Adjacency Matrix: Principal and Degree Vectors 27

2.1 Estimating the difference between the principal eigenvector and the degree vector 27

2.2 An upper bound for m̃ depending on the matrix elements . . . . . . . . . . . . . 32

2.3 On diagonalizable eventually non-negative matrices . . . . . . . . . . . . . . . . . 37

2.4 On not diagonalizable matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 An algebraic equation for Λ1[M ] . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6 The assortativity of M when |Λ2[M ]| is close to Λ1[M ] . . . . . . . . . . . . . . . 40

2.7 Applications to known graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.8 Applications to biology and finance . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.9 A critical analysis on the pertinent literature . . . . . . . . . . . . . . . . . . . . 44

2.9.1 Mieghem et al. results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.9.2 Recht et al. results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.9.3 Abueida et al. results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 HiC Data Analysis 53

3.1 Introduction to HiC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 The spectrum of a checkerboard matrix . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Compartments identification in human Embryonic Stem Cell (hESC) . . . . . . . 60

3.3.1 Why V2 and V3 are good candidates for the clustering study . . . . . . . . 60

3.3.2 The optimal number of compartments is found by informational criteria,
based on kmeans-clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.3 Results on large experimental HiC contact map, and comparisons with
biological features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Compartments identification in human Fibroblast . . . . . . . . . . . . . . . . . . 71

3.5 3D Reconstruction of genome from HiC contact map . . . . . . . . . . . . . . . . 72

3.5.1 The Fast-Floyd algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5.2 The DNA 3D-structure of chromosome 1 and the compartments . . . . . 76

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5



II Development and Analysis of Models in Biology 81

4 A Delayed Mathematical Model for the Acute Inflammatory Response 83
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2 The delayed pathogen equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.1 Steady states and stability analysis . . . . . . . . . . . . . . . . . . . . . . 85
4.2.2 On the Hopf bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3 The delayed model with the immune system response . . . . . . . . . . . . . . . 87
4.3.1 Steady states and stability analysis . . . . . . . . . . . . . . . . . . . . . . 88
4.3.2 Numerical investigations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4 Conclusions and future perspective . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5 Mimic Therapeutic Actions against Keloid by thermostated Kinetic Theory
Methods 95
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 The underlying thermostated kinetic framework . . . . . . . . . . . . . . . . . . . 97

5.2.1 Complexity, functional subsystems decomposition and representation . . . 97
5.2.2 The homogeneous thermostated kinetic framework . . . . . . . . . . . . . 98

5.3 A thermostated kinetic model for keloid with therapy . . . . . . . . . . . . . . . 100
5.3.1 Functional Subsystems and their Activity Variable . . . . . . . . . . . . . 100
5.3.2 The Microscopic Interaction Terms . . . . . . . . . . . . . . . . . . . . . . 101

5.4 Computational analysis: Mimic therapeutic actions . . . . . . . . . . . . . . . . . 106
5.4.1 Simulating the effects of a vaccine for the virus . . . . . . . . . . . . . . . 107
5.4.2 Simulating the effects of a therapy for the keloid . . . . . . . . . . . . . . 109
5.4.3 Simulating the effects of a vaccine for the cancer . . . . . . . . . . . . . . 110

5.5 Conclusions and research perspectives . . . . . . . . . . . . . . . . . . . . . . . . 111



Introduction

Since the last century, the properties of the adjacency matrix M of a graph G (matrix whose
element Mij is 1 if the nodes i and j are connected, and 0 otherwise) and the degree vector of the
graph (vector whose element i is the number of connections of the node i with the other nodes of
the graph) have been analyzed. Specifically the relationship between the principal eigenvector
of M (the eigenvector related to the highest eigenvalue) and the degree vector of G has been
investigated in, see among others, papers [1, 2, 3] and constitutes one of the main interest of the
theory of graph spectra [4, 5, 6]. In particular, it has been shown that it is possible to construct
the original adjacency matrix from the principal eigenvector [7].

The relation between the degree vector of a graph G and the principal eigenvector of the related
adjacency matrix M has been also proven to be of great interest in other research fields such
as biology and finance. Indeed the spectrum of the adjacency matrix performs an important
task considering the important role that has been shown recently in the dynamic of different
phenomena occuring on biological and social systems, e.g. virus spread [8], vehicular traffic [9],
social communication [10]. Specifically the vertices of the graph represent the individuals or the
organizations and the edges of the graph mimic the interactions among them. In particular the
principal eigenvector related to the largest eigenvalue (the spectral radius of the graph G) of the
adjacency matrix of G characterizes dynamics process on networks. Indeed the ith-component of
the principal eigenvector tends to be large if the ith-node has a large degree or if the components
corresponding to its neighbors are large. Even if the topological meaning of the spectral radius
is far from being well understood, it is nowadays recognized that the best strategy to minimize
the spectral radius by links/nodes removal is based on the principal eigenvector [11]. Further
applications refer to the componentwise-sorted principal eigenvector which contains information
on the cluster topology and the 3D geometry of proteins [12].

Bearing all above in mind, looking at the relation between the principal eigenvector and the
degree vector can be an approach for analyzing the data in biology and finance. This is the aim
of the first part of the present thesis.

A different approach for the treatment of data furnished by the financial or biological field is
the time series analysis. In order to perform a good treatment of this data, different time-
discrete models (difference equations) have been proposed. The most famous time-discrete
model dates back to Robert Engle who has introduced in [13] the AutoRegressive Conditional
Heteroskedasticity (ARCH) process for the study of various economic and financial data series
of many countries. In this model the conditional variance (squared volatility) is not constant
over time and shows autoregressive structure. Subsequently Bollerslev has proposed in [14]
the Generalized ARCH (GARCH) process which provides a parsimonious parametrization for
the conditional variance. Recently, an attempt to the definition of the corresponding time-
continuous limit for ARCH and GARCH has been proposed in [15, 16, 17] and this constitutes
another interest of the thesis.

The analysis of biological and financial systems can be also pursued by employing mathematical
modeling by means of theoretical physics tools. The most famous approach is the ordinary
differential equation-based model, in brief, ODE-based model. This approach assumes that the
system (composed by human cells, molecules) is homogeneous thus ignoring the spatial structure
of the system at the microscopic scale. In particular, ODE-based models have been employed to
model cell growth, cell proliferation and the competition with the immune system, see the review
[18] and the reference therein. Moreover, in order to take into account that some processes are
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not instantaneous but take a finite time to occur, a delay (or time-lag) can be considered, see
[19] and therein references. Usually finding the analytical solution is difficult, then the analysis
of the system refers to the existence of steady states and the related stability conditions [20].
The modeling of a biological or financial system can be also described by means of suitable
partial differential equations for the macroscopic variables (typically mass, momentum and en-
ergy). These equations are usually derived by following the guidelines oriented by continuum
mechanics approach and specifically by employing mass, momentum, and energy conservation
equations properly closed by phenomenological models corresponding to the material behavior
of the system, see books [21, 22], the review paper [23] and the references cited therein.

Recently, a new modeling approach has been proposed for the modeling of complex systems
based on a generalized kinetic approach, called the thermostated kinetic theory [24]. According
to this approach the overall system is composed of particles, called active particles, whose micro-
scopic state includes a scalar variable (activity) which models the function/strategy expressed
by the particles. The particles expressing the same function/strategy are collected into subsys-
tems, called functional subsystems. The description of each functional subsystem is based on a
statistical approach by employing distribution functions on the particle microscopic state. Dif-
ferent types of interaction which have, as a result, activity transition, proliferation, destruction,
and mutation, are responsible for the evolution of the system. This approach has been already
employed for the modeling of biological systems, economic systems, social systems, politics and
conflicts, see the reference section of the book [25]. The modeling of a possible therapy for keloid
formation by employing this approach is also treated in this thesis.

This thesis is divided into two parts. The first part is concerned with a rigorous analysis on
the relationship between the principal eigenvector and the degree vector of a matrix (positive,
symmetric and irreducible) and its applications to the biological and financial fields. The second
part is devoted to the derivation and analysis of mathematical models for wound healing diseases
by means of methods from theoretical physics. Moreover the derivation of some properties for
the continuous limit of the discrete stochastic processes (ARCH and GARCH) has also been
collected in this part.

Specifically the contents of this thesis are organized as follows.

The chapter 1 collects the basic definitions and the main results on the matrix theory and the
graph theory with the aim to be an introductory chapter for the reader. Specifically, the Perron-
Frobenius theorem, the Sylvester’s Inertia Law, the Gerschgoring theorem, the Semi-circle and
the Markovitz-Pastur laws have been reviewed in this chapter. Moreover, the assortativity (a
measure of the connections between high-degree nodes) is also introduced in this chapter. Fi-
nally the reader is led to the main problem of the thesis which consists of investigations of the
behavior of the principal eigenvector. It is worth stressing that this chapter does not contain
new results and the presentation does not aim at being exhaustive from the mathematical point
of view. The interested reader in a more deeper understanding of the contents of this chapter
will be referred to the pertinent literature.

The chapter 2 is mainly concerned with the derivation of a new upper bound for the error vec-
tor, which is the difference between the principal eigenvector of a matrix M (positive, symmetric
and irreducible) and the degree vector of M (vector whose element i is the sum of the elements
of the ith column of the matrix M). Moreover a sufficient and necessary condition under which
the principal eigenvector of M is proportional to the degree vector of M , is established. The
previous analysis is generalized to the case of eventually non-negative matrices. Moreover, with
the aim of depicting the analytical results, this chapter also contains some numerical simulations
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on different known graphs: the Erdos-Reyni graph (uniformly connected node) [26], the Scale-
free graph (power law degree distribution) [27], the Bipartite graph (the vertices set is divided
into two subsets S1 and S2 with the property that there are no connections among the nodes
of S1 and among the nodes of S2). A novel graph is defined in this chapter: the cherckerboard
graph (a graph where the adjacency matrix is a checkerboard where the black boards are mainly
composed of 1’s and the white boards are mainly composed of 0’s). Some applications to the
field of biology, with genomic contact maps, and finance, with an autocorrelation matrix, are
also shown in this chapter. The main results of this chapter have been collected in the papers
[28] and [29].

The chapter 3 deals with the statistical analysis of HiC matrices M , which are genomic contact
maps where the element Mij is 1 if the ith and jth locus are in physical contact in the nucleus,
and 0 otherwise. The aim of the statistical investigation is to find the nuclear compartments,
an idea firstly introduced into the paper [30]. The chapter is organized as follows: first we
introduce the HiC concept and focus on the outlines of the experimentation procedure, from the
viewpoint the paper [30]. Secondly we give a sketch of ideas why the highest eigenvalue is high
for HiC matrices, and then we focus on the statistical analysis of specific HiC matrices: one
obtained from the human Embryonic Stem Cell (hESC) and the other one from the fibroblast.
The statistical methods employed in this chapter are the kmeans on the 2D space of the second
and third eigenvectors, with informational criteria. The repartition of biological features, as the
Transcription Factors (TFs) or the histone marks, over the compartments is also analyzed. The
main results of this chapter have been collected into the paper [31].

The chapter 4 deals with further developments on a mathematical model recently proposed in
[32] for the modeling of the acute inflammatory response to infection or trauma. In particular
in order to take into account that some interactions have not an immediate effect, we introduce
time delays. Specifically the chapter deals with the existence of steady states, determining the
parameter regimes where the equilibrium points are stable, and the onset of Hopf bifurcation
appears. Numerical simulations are performed with the main aim of supporting the analytical
results and investigate further dynamics. It is worth pointing out that this chapter is an exten-
sion of paper [33].

The chapter 5 deals with the modeling of a wound healing disease under a therapeutic ac-
tion by employing the methods of the thermostated kinetic theory for active particles [34]. In
particular, in order to test a therapeutic action for the keloid formation and the possible de-
velopment of a cancer, an external force field coupled to a Gaussian thermostat is introduced
into a mathematical model recently proposed in the paper [35]. Specifically the model depicts
the competition of the immune system cells with a virus, the mutated fibroblast cells, and the
cancer cells. Employing a computational analysis, the effect of three different external force
fields mimic therapeutic actions is analyzed: A vaccine for the virus, the PUVA therapy for the
keloid and a vaccine for the cancer. The results are in agreement with the evidence that the
sole action of the immune system is not sufficient to obtain a total depletion of keloid. Further
refinements and developments are also discussed into the chapter. The contents of this chapter
can be found in the paper [36].
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Chapter 1

The Mathematical Tools

This chapter deals with the main definitions and results on matrix theory and graph theory, and
specifically on the random matrix, sampled matrix and the assortativity. The presentation does
not aim at being exhaustive from the mathematical point of view. Indeed the definitions are
limited to the contents of the present thesis. The interested reader in a deeper understanding
on contents of this chapter will be referred to the pertinent literature.

1.1 Backgrounds on matrix algebra

Let K be a scalar field, n,m ∈ N∗ = {a ∈ N, a > 0}, Mn,m(K) the vector space of the matrices
M = (Mij)16i6n,16j6m of dimension n×m whose elements are such that Mij ∈ K, and Mn(K)
the vectorial space of the square matrices of dimension n2.

Definition 1.1.1 A matrix M ∈Mn(R) is said
• Nonnegative, or positive, if Mij > 0, ∀i, j ∈ {1, 2, . . . , n};
• Reducible if there exists a permutation matrix P such that

PM tP =

(
A11 A12

0 A22

)
,

where A11 ∈Mr(R), M22 ∈Mn−r(R), and A12 ∈Mr,n−r(R), with 0 < r < n.
A matrix M is said to be irreducible if it is not reducible. �

In what follows, we denote by SIRn(K) the set of symmetric and irreducible matrices, whose
elements are such that Mij ∈ K, ∀i, j ∈ {1, 2, . . . , n}, by R+ = {a ∈ R, a > 0}, R∗+ = {a ∈ R, a >
0}, tM the transpose of M , and te = (1, 1, . . . , 1) ∈ Rn. Note that Me ∈ Rn is the vector whose
generic element (Me)(i) is the sum of the elements belonging to the ith-row of M , namely

(Me)(i) =

n∑
j=1

Mij .

Let M ∈ SIRn(R+). Since M is a real symmetric matrix, by the spectral theorem [37], there
exists an orthonormal basis BM = {V1[M ], V2[M ], . . . , Vn[M ]} of eigenvectors of M , related to
the real eigenvalues {Λ1[M ],Λ2[M ], . . . ,Λn[M ]}. In particular, we assume that

|Λ1[M ]| > |Λ2[M ]| > · · · > |Λn[M ]|. (1.1)

In what follows, we denote by λi[M ], for i ∈ {1, 2, . . . , n}, the eigenvalues of the matrix M
arranged as follows:

λ1[M ] > λ2[M ] > · · · > λn[M ]. (1.2)

13



14 CHAPTER 1. THE MATHEMATICAL TOOLS

The basis BM = {V1[M ], V2[M ], . . . , Vn[M ]} is thus such that

< Vi[M ], Vj [M ] >=

{
1 if i = j
0 if i 6= j

(1.3)

where < · , · > denotes the canonical inner product in Rn. In particular

Vi[M ] = (V
(1)
i [M ], V

(2)
i [M ], . . . , V

(n)
i [M ])

is such that

< Vi[M ], Vi[M ] >=

n∑
j=1

(V
(j)
i [M ])2 = 1. (1.4)

Note that

< Vi[M ], e >=
n∑
j=1

V
(j)
i [M ].

The following result fulfills an important role in the present thesis.

Theorem 1.1.1 (Perron-Frobenius [38], [39]) Let M ∈ SIRn(R+) and ρ(M) the spectral
radius of M given by

ρ(M) = max(|Λ| : Λ ∈ {Λ1[M ], ...,Λ2[M ]}). (1.5)

Then

• ρ(M) > 0 is the largest eigenvalue of M , i.e. ρ(M) = λ1[M ] > 0;

• The algebraic multiplicity of ρ(M) is 1;

• The components of the eigenvector associated with ρ(M) are strictly positive;

• The only eigenvector of M that has strictly positive components is the eigenvector associ-
ated with ρ(M).

It is worth noting that λ1[M ] = |Λ1[M ]|.

Bearing all above in mind and since M ∈ SIRn(R+), by the Perron-Frobenius theorem 1.1.1 we
have

Λ1[M ] > 0, V
(j)

1 [M ] > 0, ∀j ∈ {1, 2, . . . , n}. (1.6)

In particular the algebraic dimension of Λ1[M ] is 1. Accordingly Eq (1.1) now reads:

Λ1[M ] > |Λ2[M ]| > · · · > |Λn[M ]|, (1.7)

and Eq (1.2) now reads:

λ1[M ] > λ2[M ] > · · · > λn[M ]. (1.8)

Remark 1.1.1 The algebraic multiplicity of Λ1[M ] is 1. Therefore Λ1[M ] = |Λ2[M ]| implies
Λ2[M ] = −Λ1[M ] < 0 and then by Eq (1.8) one has λn[M ] = Λ2[M ].
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It is well-known that (see for instance [40])

min
i∈{1,2,...,n}

(Me)(i) 6 ρ(M) 6 max
i∈{1,2,...,n}

(Me)(i). (1.9)

Definition 1.1.2 Let M ∈ SIRn(R+). We define

α =

max
i∈{1,2,...,n}

(Me)(i)

n
, (1.10)

1

β
=

min
i∈{1,2,...,n}

(Me)(i)

n
. (1.11)

Remark 1.1.2 Since M is irreducible, the numbers α and β are in R∗+. Moreover

n

β
6 (Me)(i) 6 αn, ∀i ∈ {1, 2, . . . , n}.

Remark 1.1.3 If αβ = 1 then max
i∈{1,2,...,n}

(Me)(i) = min
i∈{1,2,...,n}

(Me)(i) (M is called regular).

Example 1.1.1 The following matrix M ∈M2(R)

M =

(
0 1
1 1

)
is a non-negative and symmetric matrix. It is also irreducible, indeed the only permutation
matrices are

P1 =

(
1 0
0 1

)
= Id and P2 =

(
0 1
1 0

)
and

P1M
tP1 = M, P2M

tP2 =

(
1 1
1 0

)
.

Moreover min
i∈{1,2}

(Me)(i) = 1 and max
i∈{1,2}

(Me)(i) = 2. Then α = 1 and β = 2, and

1 6 (Me)(i) 6 2 ∀i ∈ {1, 2}.

Definition 1.1.3 Let M ∈ SIRn(R+). We define

m̃ =
1

αβ

|Λ2[M ]|
Λ1[M ]

, (1.12)

where α and β are given by Eq (1.10) and Eq (1.11), respectively.

Theorem 1.1.2 (Sylvester’s Inertia Law [41]) Let A,P ∈Mn(R) with P invertible. Then
the matrix A has the same numbers of positive, negative and zero eigenvalues as tPAP .
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Under the assumption of the theorem 1.1.2, if P is also a symmetric matrix then tPAP =
PAP = P−1(P 2A)P . In particular the matrices P 2A and P−1(P 2A)P have the same eigenval-
ues. Moreover the matrices P 2A and PAP have the same eigenvalues. Then the matrices A
and P 2A have the same number of positive, negative, and zero eigenvalues.

Let M ∈ SIRn(R+) and D ∈Mn(R+) the following diagonal matrix whose elements are

Dij =


n∑
k=1

Mik if i = j

0 if i 6= j

(1.13)

Obviously D is a symmetric invertible matrix and the eigenvalues of D read:

λi[D] =
n∑
k=1

Mik > 0, ∀i ∈ {1, 2, . . . , n}.

Proposition 1.1.1 Let M ∈ SIRn(R+). Then
1) D is a positive-definite matrix;
2) The matrix

M ′ = D−1M, (1.14)

where

D−1
ij =


1

n∑
k=1

Mik

if i = j

0 if i 6= j

(1.15)

is well-defined. In particular M ′ is such that

M ′ij =
Mij

(Me)(i)
=

Mij
n∑
k=1

Mik

, (1.16)

and then 0 6M ′ij 6 1,

n∑
k=1

M ′ik = 1 (M is called stochastic matrix).

3) The ith-eigenvalue of D−1 reads:

λi[D
−1] =

1
n∑
j=1

Mij

, ∀i ∈ {1, 2, . . . , n}.

4) The characteristic polynomial of the matrix D1/2M ′D−1/2 is the same of the matrix M ′,
where

D
− 1

2
ij =



1√√√√√ n∑
k=1

Mik

if i = j

0 if i 6= j

(1.17)

5) The matrices M and M ′ have the same number of positive, negative and zero eigenvalues.
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Proposition 1.1.2 Let M ∈ SIRn(R+) and M ′ = D−1M the matrix defined in (1.14). Then
M ′ is irreducible.

Proof Suppose that M ′ is a reducible matrix, then there exists a permutation matrix P such
that

PM ′ tP =

(
A′11 A′12

0 A′22

)
,

where A′11 ∈ Mr,r(R), A′22 ∈ Mn−r,n−r(R), and A′12 ∈ Mr,n−r(R), with 0 < r < n. The null
matrix has dimension (n− r)× r.
Since M = DM ′ we have Mij = DiiM

′
ij , ∀i, j ∈ {1, 2, . . . , n}. It turns out that we also have

PM tP =

(
A11 A12

0 A22

)
,

where A11 ∈ Mr,r(R), A22 ∈ Mn−r,n−r(R), and A12 ∈ Mr,n−r(R), with 0 < r < n. Then M is
reducible. �

Theorem 1.1.3 (Courant-Fischer or Min-Max, [42]) Let M ∈ Mn(R) be a symmetric
matrix and S ⊂ Rn a proper subspace of Rn. Then

λi[M ] = max
dim(S)=i

min
x 6=0
x∈S

< Mx, x >

< x, x >
, ∀i ∈ {1, 2, . . . , n}.

In particular

λ1[M ] = max
x 6=0

< Mx, x >

< x, x >
and λn[M ] = min

x 6=0

< Mx, x >

< x, x >
.

Theorem 1.1.4 (Gerschgorin [43]) Let M ∈Mn(C). Then for any eigenvalue λ ∈ C of M ,
there exists i(λ) ∈ {1, 2, . . . , n} such that

|λ−Mi(λ)i(λ)| 6
n∑

j=1,j 6=i(λ)

|Mi(λ)j |. (1.18)

Remark 1.1.4 By the triangular inequality, the Eq (1.18) reads:

|λ| − |Mi(λ)i(λ)| 6 |λ−Mi(λ)i(λ)| 6
n∑

j=1,j 6=i(λ)

|Mi(λ)j |,

and then

|λ| 6
n∑
j=1

|Mi(λ)j |.

1.2 Background on graph theory

This section is devoted to the main definitions and properties about graph theory. The following
result holds.

Proposition 1.2.1 (Irreducible matrix) A matrix M ∈ Mn(R+) is reducible if and only if
there exists a partition of the set {1, 2, . . . , n} into two subsets:

I = {i1, i2, . . . , is}, J = {j1, j2, . . . , jt}, s+ t = n, ∀s, t > 1,

such that, ∀(i, j) ∈ I × J , Mij = 0. A matrix M is irreducible if it is not reducible.
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Proof Assume that there exists a partition of the set {1, 2, . . . , n} into two subsets:

I = {i1, i2, . . . , is}, J = {j1, j2, . . . , jt}, s+ t = n, ∀s, t > 1,

such that, ∀(i, j) ∈ I×J , Mij = 0. Let tP be the permutation matrix which orders the columns
of M in the order (j1, . . . , jt, i1, . . . , is):

M =

 M11 · · · M1n
...

. . .
...

Mn1 · · · Mnn

 ,

then

M tP =

 M1j1 · · · M1jt M1i1 · · · M1is
...

. . .
...

...
. . .

...
M1j1 · · · M1jt M1i1 · · · M1is

 .

In order to apply the same permutation on the rows of the matrix M , we multiply on the left
of M tP by P :

PM tP =



Mj1j1 · · · Mj1jt Mj1i1 · · · Mj1is
...

. . .
...

...
. . .

...
Mjtj1 · · · Mjtjt M1i1 · · · Mjtis

Mi1j1 · · · Mi1jt Mi1i1 · · · Mi1is
...

. . .
...

...
. . .

...
Misj1 · · · Misjt Misi1 · · · Misis



PM tP =



Mj1j1 · · · Mj1jt Mj1i1 · · · Mj1is
...

. . .
...

...
. . .

...
Mjtj1 · · · Mjtjt M1i1 · · · Mjtis

0 · · · 0 Mi1i1 · · · Mi1is
...

. . .
...

...
. . .

...
0 · · · 0 Misi1 · · · Misis


.

This last matrix has the seeked shape. Conversely, there exists a permutation matrix P such
that

PM tP =

(
A11 A12

0 A22

)
,

where A11 ∈ Ms(R), A22 ∈ Mt(R), and A12 ∈ Ms,t(R), with s, t ∈ {1, 2, . . . , n}. Then tP is
the matrix of the permutation

σ : (1, . . . , n)→ (j1, . . . , jt, i1, . . . , is)

such that Mij = 0, ∀i ∈ {i1, i2, . . . , is} and j ∈ {j1, j2, . . . , jt}. �

Remark 1.2.1 A matrix M with one null row or column is reducible. A matrix is reducible if
and only if its transpose matrix is reducible.

Definition 1.2.1 (Graph) A graph G is a pair (V, E) such that V is a finite non-empty set
and E ⊆ V × V is a non-binary relation among the elements of V. V is said the set of vertices
(or nodes) and its elements are denoted by letters or natural numbers; E is said the set of
edges (or arches) and its elements are denoted by couples of vertices in V. The order of G is
n = Card(V) ∈ N∗ and its size is Card(E) ∈ N, where Card is the cardinality of E.
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1

2

3

4

Figure 1.1: Graph G = (V, E) with vertices V = {1, 2, 3, 4} and edges E =
{(1, 2), (1, 3), (1, 4), (2, 4)}. The degrees of the vertices are d(1) = 3, d(2) = d(4) = 2 and
d(3) = 1.

If u, v ∈ V are such that (u, v) ∈ E , then u and v are said to be connected.

Definition 1.2.2 (Degree) Let G = (V, E) be a graph and v ∈ V. The degree d(v) of v is the
number of edges which contain v. We define the maximal and minimal degrees of G as

dmax = max
v∈V

d(v), dmin = min
v∈V

d(v). (1.19)

Definition 1.2.3 (Path) Let G = (V, E) be a graph and u, e1, e2, . . . , el, v ∈ V, where l ∈ N. A
path from u to v is a sequence of the form u, e1, e2, . . . , el, v such that

(u, e1), (e1, e2), . . . , (en−1, en), (en, v) ∈ E .

Definition 1.2.4 (Connected graph) A graph G = (V, E) is said connected if ∀u, v ∈ V,
there exists a path from u to v in G.

Definition 1.2.5 (Adjacency matrix M of a graph) Let G = (V, E) be a graph of order n.
The adjacency matrix of G is the n× n symmetric matrix M = (Mij)16i,j6n with entries

Mij =

{
1 vivj ∈ E
0 vivj /∈ E

Proposition 1.2.2 A graph G = (V, E) is connected if and only if its adjacency matrix M ∈
SIRn(R+).

Proof First we show that if M is reducible then G is not connected. Suppose M reducible.
Then there exists a permutation matrix P ∈Mn(R) such that:

PM tP =

(
A11 A12

0 A22

)
,

where A11 ∈ Ms(R), A22 ∈ Mt(R), and A12 ∈ Ms,t(R), with s, t ∈ {1, 2, . . . , n} (especially the
elements of the matrix A12 are zeros). For i ∈ {t + 1, t + 2, . . . , n} and j ∈ {1, 2, . . . , t}, there
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is no edge between i and j in the graph whose adjacency matrix is PM tP . Then this graph is
not connected, and G is not connected as well.
Conversely, Suppose that G is not connected. {1, 2, . . . , n} ∈ V is the set of vertices of G. There
exists at least one couple (i1, in) /∈ E such that there exists no path from i1 to in. Let

V1 = {i1, i2, . . . , it}

be the set of vertices of G such that there exists no path from in to any of the elements of V1.
The other vertices are grouped in the set

V2 = {it+1, it+2, . . . , in−1}.

By construction, one has: ∀(i, j) ∈ V1 × V2, Mij = 0. Let P be the permutation matrix
corresponding to

σ : (1, 2, . . . , n)→ (i1, i2, . . . , it, it+1, . . . , in).

Then PM tP is given by:

PM tP =

(
A11 A12

0 A22

)
,

where A11 ∈ Ms(R), A22 ∈ Mt(R), and A12 ∈ Ms,t(R), with s, t ∈ {1, 2, . . . , n}. Hence M
reducible. �

Example 1.2.1 The graph in Figure 1.1 is connected. The adjacency matrix of the graph is

M =


0 1 1 1
1 0 0 1
1 0 0 0
1 1 0 0

 .

In particular M is irreducible.

Remark 1.2.2 The adjacency matrix M of a connected graph is such that M ∈ SIRn(R+). In
particular we have (see definition 1.1.2)

dmax = αn, dmin =
n

β
. (1.20)

1.3 Random matrices and sampled matrices

The reader interested in the proof of the results of this section is referred to [44]. Let (Ω,P) be
a probability space.

Definition 1.3.1 A random variable X : Ω → K is a measurable function from the set of
possible outcomes Ω to the scalar field K. The set of random variables from Ω to K is denoted
KΩ.

Definition 1.3.2 A random matrix X = (Xij)16i6n,16j6m, where n,m ∈ N∗, is a matrix whose
elements are the random variables Xij ∈ KΩ. The set of random matrices of dimension n ×m
is denoted by Mn,m(KΩ).

Definition 1.3.3 The subset GOEn ⊂ Mn(KΩ) of symmetric matrices which elements are
Gaussian random variables is called Gaussian Orthogonal Ensemble. Moreover, if X ∈ GOEn,
then the distributions of the elements of X is invariant under orthogonal conjugation, that is,
if X ∈ GOEn, O ∈ Mn(KΩ) such that tOO = Idn, where Idn is the identity matrix of size n,
then the distribution of the elements of X and of tOXO are the same.
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Remark 1.3.1 Let BR be the sigma-algebra of the Borelians of R. For K = R, the eigenvalues
of X have their values in a Borelian B ∈ BR (the set of Borelians of R is engendered by the
intervals of the form ]a,+∞[, where a ∈ R).

Definition 1.3.4 Let X ∈ GOEn. The normalized counting measure Nn associated to X is the
number

Nn(B) =
1

n
card{l ∈ {1, 2, . . . , n}, λl[X ] ∈ B} ∀B ∈ BR. (1.21)

In what follows we denote by E[Xij ] the mathematical expectation of the random variable Xij :

E[Xij ] =

∫
Ω
Xij(ω)dP(ω). (1.22)

Definition 1.3.5 Let X = (Xij)16i6n,16j6m ∈Mn,m(KΩ) such that

E [Xij ] = 0, ∀i ∈ {1, 2, . . . , n}, ∀j ∈ {1, 2, . . . ,m}. (1.23)

The covariance matrix C of X is the following n× n matrix:

C =
1

n
X tX . (1.24)

Theorem 1.3.1 (Semi-circle law) Let X = (Xij)16i,j6n ∈ GOEn be such that

E [Xij ] = 0, E
[
X2
ij

]
= (1 + δij)w

2, ∀i, j ∈ {1, 2, . . . , n}, (1.25)

where w > 0 and δij is the delta of Kronecker. If Nn is the normalized counting measure
associated to X/

√
n, then there exists a probability measure P such that (the convergence refers

to n→ +∞)

Nn(B)
P−a.s.−→

∫
B

∆(λ)dλ ∀B ∈ BR, (1.26)

where

∆(λ) =


√

4w2 − λ2

2πw2
if |λ| 6 2w

0 otherwise

(1.27)

The distribution given by Eq (1.27) has the shape of a semi-circle, hence the name.

Theorem 1.3.2 (Marchenco-Pastur law) Let X = (Xij)16i6n,16j6m ∈ Mn,m(KΩ) be such
that

E [Xij ] = 0, E
[
X2
ij

]
= w2, ∀i ∈ {1, 2, . . . , n}, ∀j ∈ {1, 2, . . . ,m}, (1.28)

where w > 0. Let Q = n/m, Nn be the counting measure associated to C and

λ± = w2

(
1 +

1

Q
± 2

√
1

Q

)
.

If Nn is the normalized counting measure associated to C, then there exists a probability measure
P such that

Nn(B)
P−a.s.−→

∫
B

∆(λ)dλ ∀B ∈ BR, (1.29)

where ∆(λ) is the following Wishart distribution:

∆(λ) =


max

(
1− 1

Q
, 0

)
δ(λ) +

Q

2πλw2

√
(λ+ − λ)(λ− λ−) if λ− 6 λ 6 λ+

0 otherwise

(1.30)

where δ(λ) is the Dirac mass at 0.



22 CHAPTER 1. THE MATHEMATICAL TOOLS

The convergence is related to n→ +∞ and m→ +∞, but with Q ∈ Q+.

Remark 1.3.2 If X ∈Mn(KΩ) then Q = 1 and

∆(λ) =


1

2πw2

√
4w2 − λ

λ
if 0 6 λ 6 4w

0 otherwise

(1.31)

The functions defined in (1.27) and (1.30), called density of eigenvalues, represent the probabil-
ity density that an eigenvalue of X is λ.

Bearing all of this in mind, we can define the sampled matrix associated to a random matrix.

Definition 1.3.6 Let X = (Xij)16i6n,16j6m ∈ Mn,m(KΩ) and ω ∈ Ω. The sampled matrix
X s = (Xs

ij)16i6n,16j6m ∈Mn,m(K) related to ω is the matrix such that Xs
ij = Xij(ω). We write

X s = X (ω).

Remark 1.3.3 From the n × n sampled matrix Xs, we can define the empirical density of
eigenvalues ∆s(λ). This is actually the histogram of eigenvalues associated to the matrix Xs.

Remark 1.3.4 Any matrix M ∈Mn,m(K) can be associated to a random matrix X ∈Mn,m(KΩ)
with an existing ω ∈ Ω such that M = X (ω).

In the following we will denote by M , instead of X s, a sampled matrix when there will be not
ambiguity.

1.4 The assortativity of a matrix

Definition 1.4.1 Let X ∈ SIRn(RΩ
+). The quantity aD((X e)(i), (X e)(j)) (D refers to ‘Degree’)

related to the degrees (X e)(i) and (X e)(j), ∀i, j ∈ {1, 2, . . . , n} is the correlation coefficient
Cor[(X e)(i), (X e)(j)] between (X e)(i) and (X e)(j):

aD((X e)(i), (X e)(j)) := Cor[(X e)(i), (X e)(j)] =
E[(X e)(i)(X e)(j)]−E[(X e)(i)]E[(X e)(j)]√

Var[(X e)(i)]
√

Var[(X e)(j)]
,

(1.32)
where Var[(X e)(i)] = E[((X e)(i))2]−(E[(X e)(i)])2 is the variance of the random variable (X e)(i).

aD is called local assortativity if the probability measure P takes into account the probability
law of the graph connectedness. An estimator of the correlation coefficient Cor[(X e)(i), (X e)(j)]
is the empirical correlation coefficient Cor[(Me)(i), (Me)(j)], whose empirical expectation must
take into account the connectedness of the network.

Definition 1.4.2 ([45]) Let X ∈ SIRn(RΩ
+), ω ∈ Ω and M = X (ω) ∈ SIRn(R+). The global

assortativity AD(M) of M is defined by

AD(M) = Cor[(Me)(i), (Me)(j)] =
E[(Me)(i)(Me)(j)]− (E[(Me)(i)])2

E[((Me)(i))2]− (E[(Me)(i)])2
(1.33)
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In particular we have

E[(Me)(i)] =

n∑
i=1

n∑
j=1

(Me)(i)Mij

n∑
i=1

n∑
j=1

Mij

=
< M2e, e >

< Me, e >
,

E[(Me)(i)(Me)(j)] =

n∑
i=1

n∑
j=1

(Me)(i)(Me)(j)Mij

n∑
i=1

n∑
j=1

Mij

=
< M3e, e >

< Me, e >
,

E[((Me)(i))2] =

n∑
i=1

n∑
j=1

((Me)(i))2Mij

n∑
i=1

n∑
j=1

Mij

=

n∑
i=1

((Me)(i))3

< Me, e >
.

The terms in the mean are weighted by the elements Mij , in order to take into account the
connectivity of the graph. Replacing the above relations into Eq (1.33) yields

AD(M) =
A(M)

(< Me, e >)
n∑
i=1

((Me)(i))3 − (< M2e, e >)2

, (1.34)

where

A(M) = (< Me, e >)(< M3e, e >)− (< M2e, e >)2. (1.35)

Since the denominator ofAD(M) is associated to a variance one has< Me, e >
∑n

i=1((Me)(i))3−
(< M2e, e >)2 > 0. In particular the equality holds if M is a regular matrix. When the denom-
inator is not zero, the sign of AD(M) only depends on the sign of A, which will be the object
of further investigations.

From the graph theory viewpoint when the assortativity is high then high-degree nodes are
mainly connected with high-degree nodes [45] [46].

1.5 The asymptotic behavior of Λ1[M ] and V1[M ]

In this section we show some properties on sampled matrices introduced in the previous section:
the semi-circle law Eq (1.27) and the Wishart law (Eq 1.30). The main aim is to introduce the
reader to the main problem that will be debated in the first part of this thesis.

In particular we will consider matrices whose size n ∈ {10, 50, 100, 150, 500, 1000} and whose el-
ements are realizations of Gaussian random variables with expectation 0 and variance 1. Specif-
ically we plot the empirical histogram of the related eigenvalues. According to Eq (1.27), Figure
1.2 shows that when n increases, the density curve (in red) approches a semi-circle. A possible
explanation of these behaviors remains on the fact that when n increases the sampling is larger
and the density approaches to the true value (this is in agreement with the central limit theorem
for the density of the eigenvalues).
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Figure 1.2: Distributions of the eigenvalues associated to matrices with order n =
{10, 50, 100, 150, 500, 1000}, with iid Gaussian elements of mean 0 and standard deviation 2
in the diagonal, 1 otherwise. The red curves are related to Eq (1.27). According to Eq (1.27),
the semi-circle law is an asymptotical behavior.

Figure 1.3 shows the density of the eigenvalues related to the covariance matrix, obtained
from each of the previous defined matrices. As Figure 1.3 shows, when n increases the density
of the eigenvalues approaches to the Wishart distribution.

Now we consider matrices whose size n ∈ {150, 500, 1000} and whose elements are realizations
of Gaussian random variables with expectation 10 and variance 1. As Figure 1.4 shows, the
magnitude of the eigenvalue Λ1[M ] increases and the difference between Λ1[M ] and Λ2[M ]
increases when n increases. This is in agreement with the following lower and upper bounds
[40]:

min
i∈{1,2,...,n}

 n∑
j=1

Mij

 6 Λ1[M ] 6 max
i∈{1,2,...,n}

 n∑
j=1

Mij

 . (1.36)

The aim of this part of the thesis is to obtain a new and more suitable relation between Λ1[M ]
and the degree vector Me. Roughly speaking we decompose e = t(1, 1, . . . , 1) on the basis
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Figure 1.3: Distributions of the eigenvalues associated to covariance matrices with order n =
{10, 50, 100, 150, 500, 1000}, m = n, with iid Gaussian elements of mean 0 and standard deviation
1. The red curves are related to Eq (1.31). According to Eq (1.31), the Wishart distribution is
an asymptotical behavior.

BM = (V1[M ], V2[M ], . . . , Vn[M ]) as follows:

e =
n∑
i=1

ciVi[M ], where ci =< Vi[M ], e >=
n∑
j=1

V
(j)
i [M ],

then we should obtain the following relation:

Me ' c1Λ1[M ]V1[M ]. (1.37)

From Eq (1.37) we have

< Me,Me >' (c1Λ1[M ])2 < V1[M ], V1[M ] >= (c1Λ1[M ])2,

and then

c1Λ1[M ] '
√
< Me,Me >.
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Figure 1.4: Matrices with order n = {150, 500, 1000}. Each element is a realization of a Gaussian
random variable with mean 10 and standard deviation 2 in the diagonal, 1 otherwise. The value
of Λ1/Λ2 are ∼ 60 if n = 150, ∼ 110 if n = 500, and ∼ 160 if n = 1000. When n increases the
difference between Λ1[M ] and Λ2[M ] increases.

Bearing all above in mind, we have

V1[M ] ' 1√
< Me,Me >

Me. (1.38)

According to the equation (1.38), the highest eigenvector V1[M ] is proportional to the degree
vector Me, where the proportionality factor is 1/

√
< Me,Me >. We have seen in Figure 1.4

that when the mean of the elements is not zero but 10, Eq (1.37) holds true. In chapter 2, we
will attempt to find a rigorous condition where Eq (1.38) is satisfied.



Chapter 2

Adjacency Matrix: Principal and
Degree Vectors

This chapter is concerned with the analysis of the difference between the principal eigenvector
V1[M ] and the degree vector Me, where M ∈ SIRn(R+) or M ∈Mn(R+). Specifically we derive
upper bounds for some matrix norms. Moreover we state a sufficient and necessary condition
under which Eq (1.38) holds true. Finally some numerical simulations are performed on different
known graphs, and applications to the field of biology and finance are shown. It is worth pointing
out that this chapter is an extension of papers [28] and [29].

2.1 Estimating the difference between the principal eigenvector
and the degree vector

Definition 2.1.1 Let v = (v(1), v(2), . . . , v(n)) be a vector of Rn. The pth-order moment of v is
defined as follows:

Ep(v) =
1

n

n∑
j=1

(v(j))p. (2.1)

In particular, we are interested in the 1st-order and 2nd-order moments.
Bearing chapter 1 in mind and in order analytically estimate the commited error made by
identfying the degree vector with the principal eigenvector, we consider the components of the
vector e with respect to the orthonormal basis BM = {V1[M ], V2[M ], . . . , Vn[M ]}. Accordingly
we have

e =

n∑
i=1

ciVi[M ] = (c1, c2, . . . , cn)BM . (2.2)

In particular we have

n =< e, e >=<

n∑
i=1

ciVi[M ],

n∑
i=1

ciVi[M ] >=

n∑
i=1

c2
i . (2.3)

Moreover

Me =
n∑
i=1

ciMVi[M ] =
n∑
i=1

ciΛi[M ]Vi[M ]. (2.4)

Note that Eq (1.4) implies 0 < V
(j)

1 [M ] < 1, ∀j ∈ {1, 2, . . . , n}, then

27
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< V1[M ], e >=
n∑
j=1

V
(j)

1 [M ] >
n∑
j=1

(V
(j)

1 [M ])2 = 1. (2.5)

Since

n∑
j=1

V
(j)
i [M ] =< Vi[M ], e >=< Vi[M ],

n∑
j=1

cjVj [M ] >= ci, ∀i ∈ {1, 2, . . . , n}. (2.6)

In particular we have c1 > 1. Then from Eq (2.4) we have

c1Λ1[M ]V1[M ] = Me−
n∑
i=2

ciΛi[M ]Vi[M ],

and since Λ1[M ] > 0 and c1 > 1 > 0, we have

1

c1Λ1[M ]

n∑
i=2

ciΛi[M ]Vi[M ] =
Me

c1Λ1[M ]
− V1[M ]. (2.7)

Definition 2.1.2 We define the error vector E as follows:

E =
1

c1Λ1[M ]

n∑
i=2

ciΛi[M ]Vi[M ]. (2.8)

The following result holds true.

Theorem 2.1.1 Let M ∈ SIRn(R+), α and β defined by Eq (1.10) and Eq (1.11), and m̃
defined by Eq (1.12). If m̃(αβ)2 < 1 then

|E1(E)| 6 m̃√
n

(αβ − 1)

√
αβ

(1− m̃(αβ)2)(1− m̃αβ)√
E2(E) 6

m̃√
n
αβ

√
αβ − 1

1− m̃(αβ)2

(2.9)

Proof Since

|Λi[M ]|
Λ1[M ]

6
|Λ2[M ]|
Λ1[M ]

, ∀i ∈ {2, 3, . . . , n}, (2.10)

and ci =< Vi[M ], e >=

n∑
j=1

V
(j)
i [M ], ∀i ∈ {1, 2, . . . , n}, one has
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|E1(E)| =

∣∣∣∣∣∣ 1n 1

c1Λ1[M ]

n∑
j=1

n∑
i=2

ciΛi[M ]V
(j)
i [M ]

∣∣∣∣∣∣
=

1

c1n

∣∣∣∣∣∣∣∣∣∣∣
n∑
i=2

ci
Λi[M ]

Λ1[M ]

 n∑
j=1

V
(j)
i [M ]


︸ ︷︷ ︸

ci

∣∣∣∣∣∣∣∣∣∣∣
=

1

c1n

∣∣∣∣∣
n∑
i=2

c2
i

Λi[M ]

Λ1[M ]

∣∣∣∣∣
6

1

c1n

(
n∑
i=2

c2
i

∣∣∣∣Λi[M ]

Λ1[M ]

∣∣∣∣
)

(2.10)

6
1

c1n

(
n∑
i=2

c2
i

)∣∣∣∣Λ2[M ]

Λ1[M ]

∣∣∣∣
(2.3)
=

1

c1n
(n− c2

1)

∣∣∣∣Λ2[M ]

Λ1[M ]

∣∣∣∣ .

Then

|E1(E)| 6
1− c21

n

c1

∣∣∣∣Λ2[M ]

Λ1[M ]

∣∣∣∣ . (2.11)

By the same arguments we obtain

√
E2(E) 6

√
1− c21

n

c1

∣∣∣∣Λ2[M ]

Λ1[M ]

∣∣∣∣ . (2.12)

Since m̃(αβ)2 < 1, we have

m̃αβ <
1

αβ
< 1.

In particular ∣∣∣∣Λ2[M ]

Λ1[M ]

∣∣∣∣ =
|Λ2[M ]|
Λ1[M ]

= m̃αβ <
1

αβ
.
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Then

n min
i∈{1,2,...,n}

(Me)(i) 6
n∑
j=1

(Me)(j)

=

n∑
j=1

n∑
i=1

ciΛi[M ]V
(j)
i [M ]

=
n∑
i=1

ciΛi[M ]

 n∑
j=1

V
(j)
i [M ]

 =
n∑
i=1

c2
iΛi[M ]

6
n∑
i=1

|c2
iΛi[M ]| =

n∑
i=1

c2
i |Λi[M ]|

=c2
1Λ1[M ] + c2

2|Λ2[M ]|+
n∑
i=3

c2
i |Λi[M ]|

6c2
1Λ1[M ] + c2

2|Λ2[M ]|+ |Λ2[M ]|
n∑
i=3

c2
i

=Λ1[M ]

(
c2

1 +
|Λ2[M ]|
Λ1[M ]

n∑
i=2

c2
i

)

6Λ1[M ]

(
c2

1 + m̃αβ
n∑
i=2

c2
i

)
=Λ1[M ]

(
c2

1 + m̃αβ(n− c2
1)
)
.

Therefore

min
i∈{1,2,...,n}

(Me)(i) 6Λ1[M ]

(
c2

1

n
+ m̃αβ

(
1− c2

1

n

))
.

From Eq (1.9) we have

1

αβ
=

min
i∈{1,2,...,n}

(Me)(i)

max
i∈{1,2,...,n}

(Me)(i)
6
c2

1

n
+

(
1− c2

1

n

)
m̃αβ,

and then

1

c1
6

√
αβ

n

√
1− m̃αβ

1− m̃(αβ)2
.

Moreover

1− c2
1

n
6 1− 1

αβ

1− m̃(αβ)2

1− m̃αβ
⇐⇒ 1− c2

1

n
6

αβ − 1

αβ(1− m̃αβ)
. (2.13)

Bearing all above in mind, the inequalities (2.11) and (2.12) now reads:

|E1(E)| 6
√
αβ

n

√
1− m̃αβ

1− m̃(αβ)2

αβ − 1

αβ(1− m̃αβ)
m̃αβ =

m̃√
n

(αβ − 1)

√
αβ

(1− m̃(αβ)2)(1− m̃αβ)
,

√
E2(E) 6

√
αβ

n

√
1− m̃αβ

1− m̃(αβ)2

√
αβ − 1

αβ(1− m̃αβ)
m̃αβ =

m̃√
n
αβ

√
αβ − 1

1− m̃(αβ)2
.

The proof is now concluded. �
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Remark 2.1.1 Under the assumption m̃(αβ)2 < 1, it also holds

|Λ2[M ]|
Λ1[M ]

<

min
i∈{1,2,...,n}

(Me)(i)

max
i∈{1,2,...,n}

(Me)(i)
.

We now analyze the error (2.8) componentwise. From Eq (2.7), one has

V
(j)

1 [M ] =
(Me)(j)

c1Λ1[M ]

(
1− 1

(Me)(j)

n∑
i=2

ciΛi[M ]V
(j)
i [M ]

)
, ∀j ∈ {1, 2, . . . , n},

then

1

(Me)(j)

n∑
i=2

ciΛi[M ]V
(j)
i [M ] = 1− c1Λ1[M ]

V
(j)

1 [M ]

(Me)(j)
, ∀j ∈ {1, 2, . . . , n}.

Definition 2.1.3 We define the error vector Ẽ as follows:

Ẽ(j) =
1

(Me)(j)

n∑
i=2

ciΛi[M ]V
(j)
i [M ], ∀j ∈ {1, 2, . . . , n}. (2.14)

It is worth stressing that

|Ẽ(j)| 6

∣∣∣∣∣βn
n∑
i=2

ciΛi[M ]V
(j)
i [M ]

∣∣∣∣∣ , ∀j ∈ {1, 2, . . . , n}.

Theorem 2.1.2 Let M ∈ SIRn(R+), α and β defined by Eq (1.10) and Eq (1.11), and m̃
defined by Eq (1.12). If m̃(αβ)2 < 1, then

|E1(Ẽ)| 6 αβ − 1

1− m̃αβ
m̃αβ√

E2(Ẽ) 6

√
αβ(αβ − 1)

1− m̃αβ
m̃αβ

(2.15)

Proof By using the same arguments of the proof of theorem 2.1.1, we have

|E1(Ẽ)| 6

∣∣∣∣∣∣ 1n βn
n∑
j=1

n∑
i=2

ciΛi[M ]V
(j)
i [M ]

∣∣∣∣∣∣
=
β

n

∣∣∣∣∣
n∑
i=2

c2
i

Λi[M ]

n

∣∣∣∣∣
6
β|Λ2[M ]|

n

(
1− c2

1

n

)
.

One also has √
E2(Ẽ) 6

β|Λ2[M ]|
n

√
1− c2

1

n
.

Since Λ1[M ] 6 max
i∈{1,2,...,n}

(Me)(i) = αn then |Λ2[M ]| = Λ1[M ]m̃αβ 6 nm̃α2β, and

|E1(Ẽ)| 6 m̃(αβ)2

(
1− c2

1

n

)
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E2(Ẽ) 6 m̃(αβ)2

√
1− c2

1

n
(2.16)

Since m̃(αβ)2 < 1 then 1− c21
n 6

αβ−1
αβ(1−m̃αβ) . Finally we have

|E1(Ẽ)| 6 m̃(αβ)2 αβ − 1

αβ(1− m̃αβ)
,√

E2(Ẽ) 6 m̃(αβ)2 αβ − 1

αβ(1− m̃αβ)
,

and then

|E1(Ẽ)| 6 αβ − 1

1− m̃αβ
m̃αβ,

√
E2(Ẽ) 6

√
αβ(αβ − 1)

1− m̃αβ
m̃αβ. (2.17)

The proof is now concluded. �

It is worth stressing that our mathematical analysis has been limited to the case m̃(αβ)2 < 1
because our numerical analysis has shown that the eigenvector V1[M ] and the degree vector Me
are not likely to be close to each other when m̃(αβ)2 > 1 .

2.2 An upper bound for m̃ depending on the matrix elements

This section is concerned with the derivation of an upper bound for m̃. The advantage is that
the upper bound of the error vectors (2.8) and (2.14) depends only on the elements of M . In
order to obtain the main result of this section, we need some preliminary results.

Proposition 2.2.1 Let M1,M2 ∈Mn(R) be two symmetric matrices of size n. Then

λi[M1] + λn[M2] 6 λi[M1 +M2] 6 λi[M1] + λ1[M2], ∀i ∈ {1, 2, . . . , n} (2.18)

Proof The proof is based on paper [47]. Since M2 is a real symmetric matrix, then there
exists an orthonormal base BM2 = {W1,W2, . . . ,Wn} of eigenvectors of M2 whose spectrum is
{λ1[M2], λ2[M2], . . . , λn[M2]}. If v ∈ Rn, then

v =
n∑
j=1

c̃jWj = (c̃1, c̃2, ..., c̃n)BM2
.

Therefore

M2v =

n∑
j=1

c̃jλj [M2]Wj ,

and

< M2v, v >=

n∑
j=1

(c̃j)
2λj [M2].

Since λj [M2] 6 λ1[M2], ∀j ∈ {1, 2, . . . , n}, we have

< M2v, v > 6 λ1[M2]

n∑
j=1

(c̃j)
2 = λ1[M2]||v||22. (2.19)
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We can assume that ||v||22 = 1 without loss of generality. We have

< (M1 +M2)v, v >=< M1v, v > + < M2v, v >
(2.19)

6 < M1v, v > +λ1[M2].

Let i ∈ {1, 2, . . . , n} and S ⊂ Rn. Then

max
dim(S)=i

min
x 6=0
x∈S

< (M1 +M2)v, v > 6 max
dim(S)=i

min
x 6=0
x∈S

(< M1v, v >) + λ1[M2].

Since M1 and M1 +M2 are symmetric matrices, by the Min-Max theorem 1.1.3, we have

λi[M1 +M2] 6 λi[M1] + λ1[M2].

By applying the previous inequality to M ′1 = M1 +M2 −M2, we have

λi[M
′
1] = λi[M1 +M2 −M2] 6 λi[M1 +M2] + λ1[−M2] = λi[M1 +M2]− λn[M2],

therefore the proof. �

Remark 2.2.1 Let di(M1,M2) = λi[M1 +M2]− λi[M1]. The proposition 2.2.1 states that

λn[M2] 6 di(M1,M2) 6 λ1[M2]. (2.20)

Lemma 2.2.1 Let M ∈ SIRn(R+), α and β defined by Eq (1.10) and (1.11), respectively. Let
M ′ = D−1M be the matrix be defined in (1.14). Then

|λi(M)|
αn

6 |λi(M ′)| 6 β
|λi(M)|

n
, ∀i ∈ {1, 2, . . . , n}. (2.21)

Proof We first observe that the matrix

M̃i = M − λi[M ]Id, ∀i ∈ {1, 2, . . . , n},

has at least a zero eigenvalue. Indeed, the eigenvalues of M̃i are roots of the characteristic
polynomial of M̃i

χM̃i
(λ) = det(M − λi[M ]Id− λId),

which admits λ = 0 as solution because λi[M ] is an eigenvalue of M . Accordingly, the spectrum
of M̃i can decomposed as follows:

Spec(M̃i) = Spec+(M̃i)
⋃

Spec−(M̃i)
⋃

Spec0(M̃i),

where

Spec+(M̃i) ={λ > 0, χM̃i
(λ) = 0},

Spec−(M̃i) ={λ < 0, χM̃i
(λ) = 0},

Spec0(M̃i) ={λ = 0, χM̃i
(λ) = 0} 6= ∅.

We assume that the cardinality of the sets Spec+(M̃i), Spec−(M̃i), and Spec0(M̃i) is s, t, and
n− s− t, respectively. In particular ∃k̃ ∈ {1, 2, . . . , n} such that

λ1[M̃i] > · · · > λk̃[M̃i] = 0 > · · · > λn[M̃i].

We can assume that k̃ = i. Indeed, if V is the matrix whose columns are
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V = (V1[M ] | V2[M ] | . . . | Vn[M ]),

then

V−1M̃iV =V−1(M − λi[M ]Id)V
=V−1MV − V−1λi[M ]V

=


λ1[M ] 0

. . .

λi[M ]
. . .

0 λn[M ]

−

λi[M ] 0

. . .

λi[M ]
. . .

0 λi[M ]



=


λ1[M ]− λi[M ] 0

. . .

0
. . .

0 λn[M ]− λi[M ]

 .

Since λj [M ] − λi[M ] > 0, ∀j ∈ {1, 2, . . . , i − 1} and λj [M ] − λi[M ] 6 0, ∀j ∈ {i + 1, . . . , n},
hence k̃ = i.

According to the Sylvester theorem 1.1.2, D−1/2M̃iD
−1/2 has s strictly positive eigenvalues, t

strictly negative eigenvalues, and n− s− t zero eigenvalues. In particular, we have:

λi[D
−1/2M̃iD

−1/2] = 0.

Setting D̃ = D−1/2M̃iD
−1/2, we have

D̃ = D−1/2M̃iD
−1/2 = D−1/2(M − λi[M ]Id)D−1/2 = D−1/2MD−1/2 − λi[M ]D−1,

D̃
(1.14)

= D1/2M ′D−1/2 − λi[M ]D−1.

By proposition 2.2.1 with M1 = D1/2M ′D−1/2, M2 = −λi[M ]D−1, we have

λi[M1 +M2] = λi[D̃] = 0.

Then from Eq (2.20) we have

λn[−λi[M ]D−1] 6 −λi[D1/2M ′D−1/2] 6 λ1[−λi[M ]D−1]. (2.22)

• Suppose λi[M ] > 0.

Then λ1[−λi[M ]D−1] = −λi[M ]λn[D−1] = − λi[M ]

max
j∈{1,2,...,n}

(Me)(j) = −λi(M)
αn . We also have

λn[−λi[M ]D−1] = −βλi[M ]
n . Hence, by (2.22), we have

−βλi[M ]

n
6 −λi[D1/2M ′D−1/2] 6 −λi[M ]

αn
.

Since λi[D
1/2M ′D−1/2] = λi[M

′], and

−βλi[M ]

n
6 −λi[M ′] 6 −

λi[M ]

αn
< 0,
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we have
|λi[M ]|
αn

6 |λi[M ′]| 6 β
|λi[M ]|
n

. (2.23)

• Suppose λi[M ] = 0.

Then λi[D
1/2M ′D−1/2] = λi[M

′] = 0 (from (2.22) for the first equality), one has

λi[M ]

αn
= λi[M

′] = β
λi[M ]

n
= 0. (2.24)

• Suppose λi[M ] < 0.

Then λ1[−λi[M ]D−1] = −βλi[M ]
n . We also have λn[−λi[M ]D−1] = −λi[M ]

nα . Then from (2.22)
we have

0 < −λi[M ]

αn
6 −λi(M ′) 6 −β

λi[M ]

n
,

with λi[M
′] < 0. Hence

|λi[M ]|
αn

6 |λi[M ′]| 6 β
|λi[M ]|
n

. (2.25)

Then the proof is conluded. �

Lemma 2.2.2 Let M ∈ SIRn(R+), α and β defined by Eq (1.10) and Eq (1.11), and m̃ defined
by Eq (1.12). Let M ′ = D−1M be the matrix defined in (1.14). Then

|λi[M ′]| 6 m̄, ∀i ∈ {2, 3, . . . , n} (2.26)

where

m̄ = min

(
1,

n∑
k=1

max
j∈{1,2,...,n}

M ′jk − 1, 1−
n∑
k=1

min
j∈{1,2,...,n}

M ′jk

)
. (2.27)

Proof LetN = (tM ′) be the transpose matrix ofM ′. ThenN andM ′ have the same eigenvalues.
In particular by Eq (1.16) we have

n∑
i=1

Nij =

n∑
j=1

Mij = 1, ∀i ∈ {1, 2, . . . , n}.

It is easy to prove that the number 1 is an eigenvalue of M ′ whose eigenvector is e (in particular
teN = te). Moreover, the number 1 is the highest eigenvalue.
Let BN = {V1[N ], V2[N ], . . . , Vn[N ]} be the set of the eigenvectors of N related to the eigenvalues

{λ1[N ], λ2[N ], . . . , λn[N ]}. Let V
(r)
i [N ] = max

j∈{1,2,...,n}
|V (j)
i |, for i ∈ {1, 2, . . . , n}, then

|λi[N ]V
(r)
i [N ]| =

∣∣∣∣∣∣
n∑
j=1

NrjV
(j)
i [N ]

∣∣∣∣∣∣ 6
∣∣∣∣∣∣
n∑
j=1

Nrj

∣∣∣∣∣∣ |V (r)
i | = |V

(r)
i |,

hence λi[N ] 6 1.

According to proposition 2 the matrix M ′ is irreducible. Since M ′ is non-negative, the Perron-
Frobenius theorem implies that λ1[N ] = 1 > |λi[N ]|, ∀i = {2, 3, . . . , n} (i.e. e is the unique
eigenvector associated with 1). From teN = te, one has

teNVi[N ] = teVi[N ]⇐⇒ (1− λi[N ])teVi[N ] = 0, ∀i ∈ {2, 3, . . . , n}.
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Hence
teVi[N ] = 0, ∀i ∈ {2, 3, . . . , n}. (2.28)

Let R be the column vector whose k-component reads:

Rk = min
j∈{1,2,...,n}

Nkj = min
j∈{1,2,...,n}

M ′jk, k ∈ {1, 2, . . . , n}. (2.29)

R can be a null vector. We have NVi[N ] = λi[N ]Vi[N ]. Hence

NVi[N ]− 0 = λi[N ]Vi[N ]⇐⇒ (N −Rte)Vi[N ] = λi[N ]Vi[N ].

It means that λi[N ] is an eigenvalue of N −Rte with eigenvector Vi[N ], for all i > 2. Moreover

(N −Rte)kj = Nkj −Rk = Nkj − min
j∈{1,2,...,n}

Nkj > 0, ∀k ∈ {1, 2, . . . , n}.

The Gerschgorin theorem 1.1.4 and the remark 1.1.4 imply that there exists j ∈ {1, 2, . . . , n}
such that

|λj [N ]| 6
n∑
k=1

|(N −Rte)kj | =
n∑
k=1

|Nkj −Rk| =
n∑
k=1

(Nkj −Rk)

6
n∑
k=1

Nkj −
n∑
k=1

Rk

6 1−
n∑
k=1

min
l∈{1,2,...,n}

M ′lk.

Let Q be the column vector whose k component reads:

Qk = max
j∈{1,2,...,n}

Nkj = max
j∈{1,2,...,n}

M ′jk > 0, k ∈ {1, 2, . . . , n}.

One has

(Qte−N)Vi[N ] = λi[N ]Vi[N ].

It means that λi[N ] is the eigenvalue of Qte−N for the eigenvector Vi[N ]. Note that Qk > Nkq,
∀q ∈ {1, 2, . . . , n}. The Gerschgorin theorem 1.1.4 and the remark 1.1.4 imply that there exists
j ∈ {1, 2, . . . , n} such that

|λj [N ]| 6
n∑
k=1

|(Qte−N)kj | =
n∑
k=1

|Qk −Nkj | =
n∑
k=1

(Qk −Nkj)

6
n∑
k=1

Qk −
n∑
k=1

Nkj

6
n∑
k=1

max
l∈{1,2,...,n}

M ′lk − 1. �

Theorem 2.2.1 Let M ∈ SIRn(R+), α and β defined by Eq (1.10) and Eq (1.11), and m̃
defined by Eq (1.12). Let M ′ = D−1M be the matrix defined in (1.14). Then

m̃ 6 m̄ (2.30)

where m̄ is defined by Eq (2.27).
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Proof The lemma 2.2.1 and the lemma 2.2.2 imply that

|λi(M)| 6 αn|λi(M ′)| 6 αnm̄, ∀i ∈ {2, 3, . . . , n} (2.31)

Moreover there exists j ∈ {2, 3, . . . , n} such that |Λ2(M)| = |λj(M)| 6 αnm̄. Hence

m̃ =
1

aα

|Λ2(M)|
Λ1(M)

6
1

aα

a|Λ2(M)|
n

=
1

aα

a|λj(M)|
n

6
1

aα

aαnm̄

n
= m̄. �

2.3 On diagonalizable eventually non-negative matrices

This section deals with an extension of theorems 2.1.1, 2.1.2 and 2.2.1 for diagonalizable matrices,
which can have some negative elements.

Definition 2.3.1 A matrix M ∈ Mn(R) is said to be eventually non− negative if there exists
k0 ∈ N such that Mk ∈ Mn(R+), ∀k > k0. We denote by ENn(R) the set of eventually non-
negative matrices.

It is straightforward that SIRn(R+) ⊂ ENn(R).

Theorem 2.3.1 ([48]) Let M ∈ ENn(R). Then M possesses the Perron-Frobenius property,
namely:
• Λ1[M ] > 0;

• V (q)
1 [M ] > 0, ∀q ∈ {1, 2, . . . , n}.

Bearing all above in mind, our result (Eqs (2.9) and (2.15)) can be generalized as follows.

Theorem 2.3.2 Let M ∈ ENn(R) be a diagonalizable matrix, α, β and m̃ defined by Eq (1.10),
Eq (1.11), and Eq (1.12), respectively. If |αβ| > 1 and |m̃|(αβ)2 < 1 then

|E1(E)| 6 |m̃|√
n

(|αβ| − 1)

√
|αβ|

(1− |m̃|(αβ)2)(1− |m̃αβ|)√
E2(E) 6

|m̃|√
n
|αβ|

√
|αβ| − 1

1− |m̃|(αβ)2

(2.32)

and

|E1(Ẽ)| 6 |αβ| − 1

1− |m̃αβ|
|m̃αβ|

√
E2(Ẽ) 6

√
|αβ|(|αβ| − 1)

1− |m̃αβ|
|m̃αβ|

(2.33)

where E and Ẽ are defined by Eq (2.8) and Eq (2.14), respectively.

2.4 On not diagonalizable matrix

Let M ∈ SIRn(R+). It is easy to prove that [49]

lim
k→+∞

Mke

ρ(M)k
= c1V1[M ]. (2.34)
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Indeed

Mke =
n∑
i=1

ci(Λi[M ])kVi[M ], ∀k ∈ N∗.

then

Mke = (Λ1[M ])k

(
c1V1[M ] +

n∑
i=2

ci

(
Λi[M ]

Λ1[M ]

)k
Vi[M ]

)
.

Since Λ1[M ] is simple and Λ1[M ] > 0 then Λ1[M ] > Λi[M ], ∀i ∈ {2, 3, . . . , n}, therefore

lim
k→+∞

Mke

ρ(M)k
= c1V1[M ].

The aim of this section is to generalize the above result by supposing that M is not a diagonal-
izable matrix, namely M ∈Mn(R+). Our results follows.

Lemma 2.4.1 Let M ∈ Mn(R+). Assume that there exists p 6 n distinct eigenvalues ordered
as follows Γ1[M ] > ... > Γp[M ] and let mi be the algebraic multiplicity of Γi[M ], for i ∈
{1, 2, . . . , p}, such that

∑p
i=1mi = n. Then for all k > 1, the following formula holds true:

Mk =

p∑
i=1

mi−1∑
j=0

CjkΓi[M ]k−j(M − Γi[M ]Idn)jΠi[M ], (2.35)

where Cjk = k!
j!(k−j)! and Πi[M ] is the spectral projector on the ith-eigenspace related to Γi[M ],

∀i ∈ {1, 2, . . . , p}.

Proof As known, the projector Πi[M ] satisfies the following properties [49]:

p∑
i=1

Πi = Idn and Π2
i = Πi, ∀i ∈ {1, 2, . . . , p}.

Since

M = M Idn = M

p∑
i=1

Πi[M ],

one has

M =

p∑
i=1

[Γi[M ]Πi[M ] + (M − Γi[M ]Idn)Πi[M ]] =

p∑
i=1

[Γi[M ]Idn + (M − Γi[M ]Idn)] Πi[M ],

and consequently

Mk =

p∑
i=1

(Γi[M ]Idn + (M − Γi[M ]Idn))k Πi[M ].

By using the Newton binomial formula, we have

(Γi[M ]Id+ (M − Γi[M ]Id))k =

mi−1∑
j=0

CjkΓi[M ]k−j(M − Γi[M ]Idn)j

 Id,

where we have used the property that the matrix M − Γi[M ]Idn, for i ∈ {1, 2, ..., p}, is mi-
nilpotent [49]. �

The main result of this section follows.
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Theorem 2.4.1 Let M ∈Mn(R+). Assume that there exists p 6 n distinct eigenvalues ordered
as follows Γ1[M ] > ... > Γp[M ], and the algebraic multiplicity of Γ1[M ] is m1 = 1. Then

lim
k→+∞

(
M

Γ1[M ]

)k
= Π1[M ], (2.36)

where Π1[M ] is the spectral projector on the eigenspace related to Γ1[M ].

Proof By using Stirling formula [49] the following limit holds true:

lim
k→+∞

Cjk

(
Γi[M ]

Γ1[M ]

)k
= 0, ∀j ∈ {0, 1, . . . ,mi − 1}, ∀i ∈ {2, 3, . . . , p}. (2.37)

From Eq (2.35), we have(
M

Γ1[M ]

)k
=

p∑
i=1

mi−1∑
j=0

Cjk

(
Γi[M ]

Γ1[M ]

)k ( M

Γi[M ]
− Idn

)j
Πi[M ]. (2.38)

From Eq (2.37) and since m1 = 1 the only non-zero term, when k → +∞, of the previous
equation is the one for i = 1. �

2.5 An algebraic equation for Λ1[M ]

This section deals with the derivation of an algebraic equation for Λ1[M ].

Theorem 2.5.1 Let M ∈ SIRn(R+). Then the highest eigenvalue Λ1[M ] is solution of the
following polynomial equation:

xk+2+ < MkE , E > x2 − < Mk+2e, e >

c2
1

= 0, ∀k ∈ N∗. (2.39)

Proof From Eq (2.4) one has immediately that

< Mk+2e, e >= c2
1Λ1[M ]k+2 +

n∑
i=2

c2
iΛi[M ]k+2, ∀k ∈ N∗. (2.40)

Moreover it is straightforward that

n∑
i=2

c2
iΛi[M ]k+2 = (c1Λ1[M ])2 < MkE , E >, ∀k ∈ N∗, (2.41)

and then the proof. �

It is worth noting that for k = 1, Eq (2.39) reads:

(Λ1[M ])3 + < ME , E > (Λ1[M ])2 − < M3e, e >

c2
1

= 0. (2.42)

The last equation allows us to say that when < ME , E >< 0 and if | < ME , E > | � <M3e,e>
c21

then Λ1[M ] tends to − < ME , E >, which has a meaningful sense if E is seen as a vector which
components are error parameters.
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2.6 The assortativity of M when |Λ2[M ]| is close to Λ1[M ]

This section deals with the analysis of the assortativity AD defined by Eq (1.34) when |Λ2[M ]|
is close to Λ1[M ]. Specifically we will analyse the numerator A defined by Eq (1.35) and we
will set some conditions under which the principal eigenvector is close to the degree vector
componentwise.

Theorem 2.6.1 Let M ∈ SIRn(R+) and A(M) defined by Eq (1.35). Assume that
(i) ∃ε > 0: Λ2[M ] = Λ1[M ]− ε;
(ii) Λ3[M ] = Λ4[M ] = · · · = Λn[M ] = Λ with Λ ∈ R∗.
Then A(M) = 0 if and only if c1 =

√
n and c2 = c3 = · · · = cn = 0, where ci, ∀i ∈ {1, 2, . . . , n},

is defined by Eq (2.6).

Proof First we prove that c1 =
√
n and c2 = c3 = · · · = cn = 0 imply A(M) = 0. According to

Eqs (2.2) and (2.4), we have e = c1V1 and Me = c1Λ1V1. Then

A = (< Me, e >)(< M3e, e >)− (< M2e, e >)2 = (c1Λ1)4(c1 × c3
1 − (c2

1)2) = 0.

Vice versa. From Eq (2.4) and the assumptions (i) and (ii) one has

Me = c1Λ1V1 + c2(Λ1 − ε)V2 + Λ
n∑
i=3

ciVi,

and then (up to the first order in ε)

< Me, e > = c2
1Λ1 + (n− c2

1)Λ + c2
2(Λ1 − Λ)− εc2

2,

< M2e, e > = c2
1Λ2

1 + (n− c2
1)Λ2 + c2

2(Λ2
1 − Λ2)− 2Λ1εc

2
2 + o(ε),

< M3e, e > = c2
1Λ3

1 + (n− c2
1)Λ3 + c2

2(Λ3
1 − Λ3)− 3Λ2

1εc
2
2 + o(ε).

(2.43)

Bearing all above in mind, the function A reads:

A = A0 +A1ε+A2ε
2 + o(ε2), (2.44)

where

(1) A0 = c4
1Λ4

1 + (n− c2
1)c2

1Λ1Λ3 + c2
1c

2
2Λ1(Λ3

1 − Λ3)

+ (n− c2
1)c2

1Λ3
1Λ + (n− c2

1)2Λ4 + (n− c2
1)c2

2Λ(Λ3
1 − Λ3)

+ c2
1c

2
2Λ3

1(Λ1 − Λ) + (n− c2
1)Λ3(Λ1 − Λ)c2

2 + c4
2(Λ1 − Λ)(Λ3

1 − Λ3)

− c4
1Λ4

1 − (n− c2
1)c2

1Λ2
1Λ2 − c2

1c
2
2Λ2

1(Λ2
1 − Λ2)

− (n− c2
1)c2

1Λ2
1Λ2 − (n− c2

1)2Λ4 − (n− c2
1)c2

2Λ2(Λ2
1 − Λ2)

− c2
1c

2
2Λ2

1(Λ2
1 − Λ2)− (n− c2

1)c2
2Λ2(Λ2

1 − Λ2)− c4
2(Λ2

1 − Λ2)2

= (n− c2
1)
(
c2

1(Λ1Λ3 + Λ3
1Λ− 2Λ2

1Λ2) + c2
2(ΛΛ3

1 − Λ4 + Λ3Λ1 − Λ4 − 2Λ2Λ2
1 + 2Λ4)

)
+ c2

1c
2
2

(
Λ4

1 − Λ1Λ3 + Λ4
1 − Λ3

1Λ− 2Λ4
1 + 2Λ2

1Λ2
)

+ c4
2

(
Λ4

1 − Λ1Λ3 − ΛΛ3
1 + Λ4 − Λ4

1 − Λ4 + 2Λ2
1Λ2
)

= (n− c2
1)Λ1Λ(c2

1 + c2
2)(Λ1 − Λ)2 − c2

1c
2
2Λ1Λ(Λ1 − Λ)2 − c4

2(Λ1 − Λ)2Λ1Λ

= Λ1Λ(Λ1 − Λ)2
(

(n− c2
1)(c2

1 + c2
2)− c2

1c
2
2 − c4

2

)
,

= Λ1Λ(Λ1 − Λ)2(c2
1 + c2

2)

n∑
i=3

c2
i .
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Since 0 6= Λ1 > Λ 6= 0 and c2
1 > c1 > 1 > 0, then

A0 = 0⇐⇒ n = c2
1 + c2

2. (2.45)

(2) A1 = −c2
2

(
c2

1Λ3
1 + (n− c2

1)Λ3 + c2
2(Λ3 − Λ3)

)
− 3Λ2

1c
2
2

(
c2

1Λ1 + (n− c2
1)Λ + c2

2(Λ1 − Λ)
)

+ 4Λ1c
2
2

(
c2

1Λ2
1 + (n− c2

1)Λ2 + c2
2(Λ2

1 − Λ2)
)

= −c2
1c

2
2Λ3

1 − (n− c2
1)c2

2Λ3 − c4
2(Λ3

1 − Λ3)− 3c2
1c

2
2Λ3

1 − 3(n− c2
1)Λ2

1Λc2
2 − 3c4

2Λ5
12(Λ1 − Λ)

+ 4Λ3
1c

2
1c

2
2 + 4Λ1Λ2c2

2(n− c2
1) + 4Λ1c

4
2(Λ2

1 − Λ2)

= c2
2Λ(4Λ1Λ− Λ2 − 3Λ2

1)(n− c2
1 − c2

2)

Since 4Λ1Λ− Λ2 − 3Λ2
1 6= 0 then we have

A1 = 0⇐⇒ n = c2
1 + c2

2. (2.46)

(3) A2 = 3(n− c2
1)2Λ2

1 + 3(n− c2
1)nΛ2

1 −
(

4(n− c2
1)2Λ2

1 + 2n(n− c2
1)Λ2

1

)
− (n− c2

1)2Λ2
1

+ (n− c2
1)nΛ2

1

= c2
1Λ2

1(n− c2
1),

where we have used n = c2
1 + c2

2 and

teMke =c2
1Λk1 + (n− c2

1)Λk1

(
1− ε

Λ1

)k
, ∀k ∈ {1, 2, 3},

teMke =nΛk1 − k(n− c1)Λk−1
1 ε+

k(k − 1)

2
(n− c1)Λk−2

1 ε2 + o(ε2), ∀k ∈ {1, 2, 3},

and

< Me, e > = nΛ1 − (n− c2
1)ε,

< M2e, e > = nΛ2
1 − 2(n− c2

1)Λ1ε+ (n− c2
1)ε2,

< M3e, e > = nΛ3
1 − 3(n− c2

1)Λ2
1ε+ 3(n− c2

1)Λ1ε
2 + o(ε2).

(2.47)

Then immediately
A2 = 0⇐⇒ n = c2

1. (2.48)

Bearing all above in mind we have c2 = c3 = · · · = cn = 0. �

Remark 2.6.1 The condition c2 = c3 = · · · = cn = 0 implies that E = 0Rn, which means that
(see Eqs (2.7) and (1.38))

V1[M ] =
Me√

< Me,Me >
.

Remark 2.6.2 If the hypothesis (i) and (ii) are replaced by the following one:
Λ1[M ] > Λ2[M ] = Λ3[M ] = Λ4[M ] = · · · = Λn[M ] = Λ with Λ ∈ R.
Moreover, some straightforward numerical simulations allow to see that the theorem remains
true if
(i) ∃ε > 0: Λ2[M ] = Λ1[M ]− ε;
(ii’) Λ3[M ] ∼ Λ4[M ] ∼ · · · ∼ Λn[M ],
where ‘∼’ means that the eigenvalues are not too far from each other, or if (i) and (ii’) are
replaced by the following one:
Λ1[M ]� Λ2[M ] ∼ Λ3[M ] ∼ Λ4[M ] ∼ · · · ∼ Λn[M ],
where ‘�’ means ‘is much larger than’ (the higher it is, the more the theorem is satisfied).
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It is worth stressing that Eq (2.42) allows to obtain another proof of the fact that A(M) = 0 if
the error E = 0Rn (see Eq (2.8)). Indeed, from Eq (1.35) and Eq (2.42) one obtains

A(M) = (Λ1[M ])3c2
1(< Me, e >)− (< M2e, e >)2 + (c1Λ1[M ])2(< Me, e >)(tEME). (2.49)

If E = 0Rn Eq (2.4) implies that Λ1[M ] =
< Me, e >

c2
1

and then

A(M) = (Λ1[M ])3c2
1(< Me, e >)− (< M2e, e >)2 = c2

1Λ3
1(< Me, e > −c2

1M) = 0. (2.50)

2.7 Applications to known graphs

This section is devoted to numerical simulations with the aim to investigate the role of αβ in the
distance between the degree vector and the principal eigenvector. Specifically we will consider
four different types of graph (see the first column of Figure 2.1) and their related adjacency
matrices (second column), where we also depict the empirical histogram of the degree vector
(third column), and we plot the degree vector versus the principal eigenvector (forth column).
In particular we will consider the following four graph types:

• Erdos-Reyni (ER) graph [26]. This graph is obtained as follow. Starting with n uncon-
nected distinct nodes, each pair of nodes is connected with probability p ∈ [0, 1]. When
n is high, the average degree fluctuates around p, with standard deviation

√
p(1− p)/n.

According to the central limit theorem, the histogram of the degrees approaches to a
Gaussian. Thus when n increases the fluctuations of the components of the degree vector
decreases, and then the distance between the degree vector and the principal eigenvector
decreases.

• Scale-free (SF) graph [27]. The distribution of the degrees of the nodes follows a power-law
γ. The realization of a SF graph is made by the barabasi game: with an initial connected
network of n0 6 n nodes, n − n0 nodes are added one at a time, and each of these new
nodes are connected to n00 6 n0 initial node(s) with a probability proportional to the
initial degree of the n00 nodes. The choices of n0 and n00 allow to control γ (typically
γ > 1). Differently from the ER graph, the histogram of the degrees is now not a Gaussian.
The difference between the degree vector and the principal eigenvector is higher than that
of ER’s.

• Checkered matrix, or checkerboard (CB) graph. It is a graph splitted into two families.
Each node is mainly connected with nodes of the same family with a probability p as in
the ER graph’s case, but here with rare connexions with the nodes of the other family.
Specifically, both families are independently set up, and then the whole network is rewired
100 times preserving the degrees. The whole graph is then connected. The size of both
families is controled by a parameter k: the number of nodes in one family is n/2 + k (in
the simulations n is even) and n/2− k in the other family.

• Bipartite (BP) graph [50] graph. It is a graph also splitted into two families. Each node of
each family is exclusively linked with all the members of the other family. Then we rewire
100 times the whole network preserving the degrees. We can then control the size of both
families by varying k as for the CB graph’s.

Specifically in this section, we plot the number
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||R|| =
√
nE2(Ẽ) =

√√√√ n∑
j=1

(Ẽ(j))2 =

√√√√ n∑
j=1

1(
(Me)(j)

)2
(

n∑
i=2

ciΛi[M ]V
(j)
i [M ]

)2

.

which is another error. The latter is a composite function of the error E2(Ẽ) that we have con-
sidered in this chapter. In particular we consider now the error ||R|| because it is more sensitive
to the size n of the matrix M .

Figure 2.2 plots another error number ||R|| versus αβ, for the four different types of matrix
shown in the second column of Figure 2.1. The green dots refer to a realized ER graphs (with
values of p from 0.3 to 0.8), the dark (light) blue dots refer to realized CB (BP) graphs (with
k from 1 to n/2 − 1), and the red dots refer to a realized SF graph (with γ from 1 to 8). As
Figure 2.2 shows ||R|| is low (high) for ER (SF) graphs for low values of αβ, and ||R|| increases
when αβ increases. Whatever the values of p and γ, we always find a higher ||R|| for a SF
than for an ER graph. However, the behavior of the CB graph is different: for small values
of k (hence of αβ), the error is greater than the ones for ER graphs. Indeed, the size of both
diagonal squares is almost the same. Since Λ1[M ] corresponds to the first square, and Λ2[M ]
corresponds to the second one, the both eigenvalues are close. Hence for the same values of αβ,
m̄ (see Eq (2.27)) is higher for a CB graph than for an ER graph. Finally, when αβ increases, k
also increases as indicated by the arrows in Figure 2.2, and the size of the first diagonal square
also increases. This means that when k increases, the checkerboard comes close to an ER graph,
and Λ2[M ] decreases to 0 since the size of the second square decreases as well. However, the
behavior of a BP graph is different from the CB graph: when k increases, αβ increases and ||R||
increases as well. Indeed, the non-diagonal upper block has increasing height, and decreasing
width. Moreover, differently from a CB graph, |Λ2[M ]|/Λ1[M ] increases when αβ increases and
then ||R|| increases.
Bearing all above in mind, ER and SF graphs play an antogonist role, whereas CB and BP
graphs play intermediary roles.
In the right panels of Figure 2.3, we show the behavior of the assortativity AD (see Eq (1.34)).
For the CB and BP graphs, perfect networks are represented by the highest and lowest dots
respectively. For each of these dots, the network has been ‘rewired’ preserving the degrees 100
times: one degree-preserving rewire as the following procedure. Randomly take two linked pairs
of nodes, say (a,b) and (c,d). Break the links, and randomly associate a to c or d. Then associate
b to d or c. This has the effect to decrease the absolute value of the assortativity, vertically
moving on the up right plot of figure 2.2.
However, the assortativity is not the only graph parameter which is related to αβ and ||R||.
Looking at the CB graph, we see that the ability of the graph to be divided into modules
changes the value of ||R||. When then to focus on the modularity. The modularity Q(G) of a
graph G is the strength of a division of G into modules, and defined by the following equation:

Q(G) =

n∑
i,j=1

(
Mij

< Me, e >
− (Me)(i)(Me)(j)

(< Me, e >)2

)
δ(i, j), (2.51)

where δ(i, j) = 1 if nodes i and j belongs to the same module. The optimal modules are found
by the algorithm detailled on the papar [51]: a random walk into the optimal modules must
stay in it sufficiently longuely. The left panels of Figure 2.3 show the evolution of ||R|| with the
modularity, and, for the CB and BP graphs, perfect networks are represented by the highest
and lowest dots respectively. The rewire process has also been applied. On the left and right
panels, for ER and SF graphs, the rewiring process makes one move up to down in a vertical line.
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2.8 Applications to biology and finance

Finding the 3D-structure of DNA in the nucleus of cell has become a challenge over the past
ten years. HiC experimental matrices (see chapter 3 for further analysis) are contact maps,
which are adjacency matrices such that the (i, j)-element of the matrix is 1 if there is a physical
contact between the ith and jth genes (the DNA is oriented), 0 otherwise. The left panel of the
first row of Figure 2.4 shows an irreducible HiC matrix, and the center panel plots the principal
eigenvector versus the degree vector. As this figure shows, the degree vector of the genomic
matrix is an almost linear function of the highest eigenvector. As shown in the caption of Figure
2.4, the calculation of αβ and m̃ should have led one to predict this behavior.

To make predictions of stock prices, we calculate the log-returns from the time series representing
them: the log-return, or return, at time t is the logarithm of the price at time t out of the price
at time t − 1. In order to study the variability of a portfolio, one way is to construct the
autocorrelation matrix, whose (i, j)-element is the time scalar product of asset returns ith and
jth for a certain time duration. If the assets are all chosen from the same stock index, they
will necessarily be correlated: the autocorrelation matrix is eventually non-negative. The left
panel of Figure 2.4 shows the matrix returns associated with the stock index CAC 40. The
center panel of Figure 2.4 plots the autocorrelation matrix from the returns. Finally, the right
panel of Figure 2.4 plots the degree vector versus the highest eigenvector, and as this figure
shows, the degree vector of the autocorrelation matrix is an almost linear function of the highest
eigenvector. The reader is referred to the caption of Figure 2.4, to see that the calculation of
αβ and m̃ should have led one to predict this behavior. In a financial viewpoint, this might not
be surprising: the investors trade on the index (here the CAC40), and all the assets composing
the CAC40 are correlated with the CAC40. Then the assets are positively correlated (we say
that they have a positive beta), and of course the matrix is positive. The closeness of the degree
vector and the principal eigenvector is a characteristic of correlation, so as to the explosion of
the highest eigenvalue.

2.9 A critical analysis on the pertinent literature

This section deals with a review with a critical analysis on the existing results on upper bounds
for the error vectors (2.8) and (2.14), and the assortativity (1.34). The main aim is to compare
the results of this chapter with the pertinent literature.

2.9.1 Mieghem et al. results

Let M be an irreducible adjacency matrix. Starting from the following equation

Λ1[M ]V
(j)

1 [M ] =

n∑
q=1

MjqV
(q)

1 [M ], ∀j ∈ {1, 2, . . . , n},

and under the assumptions that

• there exists a node j1 with high degree;

• all the neighbors of j1 have a high degree;

the authors of [1] have proven that the magnitude of V
(j1)

1 [M ] is large. Since

Var[V1[M ]] = E2(V1[M ])− (E1(V1[M ]))2, E2(V1) =
< V1[M ], V1[M ] >

n
=

1

n
and
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E1(V1[M ]) =

√
1

n
−Var[V1[M ]],

it is easy to see that when the variance Var[V1[M ]] increases (namely the assortativity increases)
then the mean E1(V1[M ]) decreases. Moreover the authors of [1] have shown that

Λ1[M ] =
< M2e, e >

< Me, e >
and V1[M ] =

Me√
< Me,Me >

, (2.52)

The numerical simulations performed in [1] show that the difference between the degree vector
Me and the principal eigenvector V1[M ] decreases when the assortativity decreases.
This property seems to be related to the fact that αβ tends to 1. Moreover Eq (2.52) holds
true if and only if (Me)(i) = Λ1[M ], ∀i = {1, 2, . . . , n} (this is another property satisfied by a
regular matrix). Contrary to [1], we have found that when the assortativity decreases towards
negative values the difference between the degree vector and the principal eigenvector increases
(see section 2.7).

2.9.2 Recht et al. results

Let M be an irreducible adjacency matrix and ||V1[M ]||p be the following norm:

||V1[M ]||p =


(

(V
(1)

1 [M ])p + ...+ (V
(n)

1 [M ])p
) 1
p

if 1 6 p < +∞

max
i∈{1,2,...,n}

(V
(i)

1 [M ]) if p = +∞

In [52] the authors have derived the following upper bound for the components of V1[M ]:

V
(j)

1 [M ] 6 max
i∈{1,2,...,n}

(V
(i)

1 [M ]) 6

(
Λ1[M ]p−2

1 + Λ1[M ]p−2

) 1
p

, ∀j ∈ {1, 2, . . . , n}. (2.53)

In particular, for p = 2 the inequality (2.53) reads:

max
i∈{1,2,...,n}

(V
(i)

1 [M ]) 6
1√
2
.

From Eq (2.6), we deduce that c1 6 n/
√

2. From Eq (2.2) we obtain

n =
n∑
i=1

c2
i ,

and then c1 6
√
n. It is easy to see that

n√
2
<
√
n

for n < 2. Therefore our upper bound, c1 6
√
n, appears more suitable.

2.9.3 Abueida et al. results

Let M ∈Mn(R+) be an irreducible matrix and

s(Mm) :=

min
i,j∈{1,2,...,n}

Mm
ij

max
i,j∈{1,2,...,n}

Mm
ij

, m ∈ N∗, (2.54)
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where Mm
ij is the (i, j)-element of the matrix Mm, for all i, j ∈ {1, 2, . . . , n}. The main interest

in s(Mm) is concerned with its limit when m goes to +∞ [53].
The number s(Mm) has been analyzed in the paper [53], when the matrix M is symmetric and
under the assumption that the algebraic multiplicity of Λ1[M ] is 1. Specifically, the authors of
the paper [53] have shown that

lim
m→+∞

s(Mm) =

(
min

16i,j6n

V
(i)

1 [M ]

V
(j)

1 [M ]

)2

∈ R+. (2.55)

In particular, as shown in [53], the above limit is 0 if M is nilpotent.
It is worth noting that s(Mm) is different from (αβ)−1. Indeed, one has

(αβ)−1 def
=

min
i∈{1,2,...,n}

(Me)(i)

max
i∈{1,2,...,n}

(Me)(i)
=

min
i∈{1,2,...,n}

 n∑
j=1

Mij


max

i∈{1,2,...,n}

(
n∑
k=1

Mik

) 6= s(M).

Bearing all above in mind and since the formula (2.9) and (2.15) only depend on αβ, we state that
s(Mm) is not appropriate for measuring the distance between the principal eigenvector V1[M ]
and the degree vector Me considering our upper bounds. Therefore we will not be interested in
further investigations on s(Mm).
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2.10 Conclusion

This chapter deals with the closeness of two vectors associated to a nonnegative, symmetric and
irreducible matrix. The first vector is the sum of each row of the matrix, column by column.
This vector is the degree vector of a graph if the matrix is the adjacency matrix. The second
vector is the eigenvector associated with the highest eigenvalue of the matrix. The idea comes
from the fact that the highest eigenvalue is sometimes far from the others, and this characteristic
can be found in many experimental matrices - especially in biology and finance. This chapter
is a attempt of a rigorous formulation of the error made by considering that both vectors are
equal.
Thus we have seen that the upper bounds of the first and second order moments of the error
vector (being the componentwise substraction or division of both vectors) can only be expressed
by the elements themselves of the matrix. The calculation of these upper bounds can be enough
to predict the closeness of both vectors (and then the value of the highest eigenvalue), and
then diagonalizing - highly time consumming for large data matrices - could be avoided. If
the matrix is only eventually nonnegative, which is a generalization of nonnegative, symmetric
and irreducible matrices, the results are still satisfied. At the same time, a nondiagonalizable
matrix out of its spectral radius to the power of k, tends, when k tends to infinity, to the matrix’s
spectral projection on its highest eigenspace, which is a known result for diagonalizable matrices.
In parallel with these inovative results, the closeness between the two vectors can be observed
in the Erods-Reyni networks. However, the Scale-Free networks play the antagonist role: the
error vector’s components are high. The checkerboard and bipartite networks (and any other
network) play intermediary roles, and for some of them, the both vectors are close.
As there are networks verifying or not the studied mathematical properties, distinct fields can
be considered. On the one hand, in biology, the HiC matrix is nonnegative, symmetric and
irreducible. The result of the present chapter is essential for the following one. On the other
hand, in finance, the autocorrelation matrices are eventually nonnegative, and the developed
theorems might lead to active portfolio management strategies.

Relating this property to more general matrices, even non-square, constitutes further research
perspectives.



48 CHAPTER 2. ADJACENCY MATRIX: PRINCIPAL AND DEGREE VECTORS

C
he

ss
bo

ar
d

E
R

S
−F

40 60 80 100 120

0.
00

0.
02

0.
04

0.
06

histogram of the degrees Me

80 90 100 110 120

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

●

●

●

●

●●

●
●

●

●

●●

●

●

● ●
●

●

● ●●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
● ●●

●
●

●● ●

●

●
●

●

●

●

●●● ●

●

●
●

●

●

●

●

● ●●
●

●●

●

●

● ●●
●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

● ●

●

●

●

●●

●

●

●

●

● ●
●●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●●

●
●●

●

●●

●

●

● ●
●● ●

●
● ●

●● ●
● ●●●

●

●●●●

●
● ●

●
●●

●

●
●

●

●

●
●

●
●

●
●

●●

0.02 0.04 0.06 0.08 0.10

0.
02

0.
04

0.
06

0.
08

0.
10

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.060 0.070 0.080

0.
06

0
0.

07
0

0.
08

0

V1 vs Me/||Me||

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

● ●●

●●

●

●

●

●●

● ●

●●

● ●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

● ●● ●

●

●●

●

●●

●

●● ●● ●

●

●

●●● ● ●●●

● ●

●

● ●●

● ●●●● ●● ●●

●

●●● ●● ●

●

●● ●●●●● ●

●

● ●

●

●

●

●●● ●

●

● ●●

●

● ●●● ●●● ●●●●● ●●●

●

●●●●● ● ●●●

●

●● ●●●● ●●●●●●●● ●●●●● ●●● ● ●● ●● ●●

●

●● ●●●●

0.0 0.1 0.2 0.3 0.4 0.5 0.60.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

B
ip

ar
tit

e

● ●●● ●●●●●● ●●● ●●●● ●●●●● ●●●●●● ●●●● ●●● ● ●●● ●●●●●● ●● ●●● ● ●●●●●● ●●●●●●●●●●●●● ●●●● ●● ●● ●●●● ●● ●●●●●● ●● ●●●●● ●●● ●●● ●●●●●●● ●●●●●●●●● ●●● ●● ●●● ●● ●●● ●●●● ●● ●●●●●●● ●●●●
●

●
●●● ●●● ●●●●● ●● ● ●●● ●●● ●● ●●● ●●●●● ●●●● ●● ●●● ●●● ●●●●●● ●

0.04 0.06 0.08 0.10 0.12

0.
04

0.
06

0.
08

0.
10

0.
12

60 80 100 120 140

0.
00

0.
05

0.
10

0.
15

E
R

S
F

C
B

B
P

histogram of the degrees Me

Me/||Me||

V1 

1

0

1

0

1

0

1

0

q

q

q

q

q

q

q

q q

q q q q

0.5 2.0 3.50
2

4

-γ

k

k

p

graph adjacency matrix degree VS principal vectors

Figure 2.1: Four different simulated 200 × 200-adjacency matrices. First row: the ER graph.
Starting with n unconnected distinct nodes, each pair of nodes is connected with probability
p ∈ [0, 1]. The 1 are uniformly settled in the adjacency matrix, and the empirical histogram of
the degrees approaches a Gaussian. The distance between the degree vector and the principal
eigenvector is low. Second row: the SF graph. With an initial connected network of n0 6 n
nodes, n − n0 nodes are added one at a time, and each of these new nodes are connected to
n00 6 n0 initial node(s) with a probability proportional to the initial degree of the n00 nodes.
The ‘concentration’ of 1’s decreases when we go down right in the adjacency matrix. The
distribution of the degrees of the nodes follows a power-law γ (the loglog histogram is also
shown), and the distance between the degree vector and the principal eigenvector is larger than
that of an ER graph. Third row: the CB graph. It is a graph splitted into two families.
Each node is mainly connected with nodes of the same family with a probability p as in the ER
graph’s case, with rare connexion with the nodes of the other family. We then rewire 100 times
preserving the degrees. The adjacency matrix is a chessboard, and the degree distribution is as
two Gaussians. The distance between the degree vector and the principal eigenvector increases
when the difference of the size of both families increases. Fourth row: The BP graph. It is a
graph also splitted into two families. Each node of each family is exclusively linked with all the
members of the other family. We then rewire 100 times preserving the degrees. The histogram
is far from being Gaussian and the error is large.
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Figure 2.2: Plot of the error ||R|| =
√
nE2(Ẽ) versus αβ, for the four graphs of Figure 2.1.

For ER and SF graph types, the error ||R|| increases when αβ increases. In the CB graph, the
error increases when αβ increases; the error has a maximum value, then decreases when αβ
increases. Specifically when αβ increases from 1, |Λ2|/Λ1 ∼ 1, and the error ||R|| increases to
a maximum value (about 0.375). When αβ overcomes the point of the maximal value of ||R||,
|Λ2|/Λ1 decreases, since the first block size increases. The quantity |Λ2|/Λ1 decreases faster than
αβ inscreases: the error finally decreases towards 0. Contrary to the CB graph, αβ and |Λ2|/Λ1

both increase in a BP graph, and ||R|| increases as well.
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Figure 2.3: Colormap of log10(||R||). Modularity (y-axis on the left panel) and assortativity
(y-axis on the right panel) versus log10(αβ) (x-axis), for the four types of network (up: BP/CB
graphs; middle: ER graph; down: SF graph). The exploration on the map was made by
rewiring the networks, preserving the degrees. First row - BP/CB graphs: The upper
(positive modularity and assortativity) and lower (negative modularity and assortativity) parts
of the plots correspond to the CB and BP graphs, respectively. From perfect CB and BP graphs
(without initial rewiring), the modularity and assortativity come close to 0 when the number of
rewires increases: the graph becomes an ER type. This phenomenon has already been observed
in [46]. Second row - ER graph: When αβ decreases then the empirical variance of Me
decreases, and ||R|| is decreases. When the assortativity increases, ||R|| increases since the ER
graph becomes an CB graph. Third row - SF graph: When αβ increases, γ increases: high
degree nodes are more and more connected with low degree nodes, and the assortativity and
the modularity decrease. When the assortativity decreases towards the negative values then
||R|| increases: the network comes close to the BP’s. However, when the modularity increases
towards the positive values, ||R|| increases: the network comes close to the CB’s.
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Figure 2.4: Aplications to Genomics and Finance. Genomics: this is the 8377 × 8377 HiC
contact map, without the intrachromosomal interactions. The linear regression coefficient as-
sociated with the linear regression of Me/||Me|| versus V1 is 0.97. Moreover Λ2/Λ1 is ∼ 0.61,
with αβ ∼ 1.21). The error ||R|| ∼ 7.82 10−2. Finance: First we gather the CAC 40 stock
asset returns, and calculate the 40 × 40 autocorrelation matrix, whose elements are positive
since the assets are positively correlated (they belong to the same stock index). The linear
regression coefficient associated with the linear regression of Me/||Me|| versus V1 is 0.99. Here
Λ2/Λ1 ∼ 0.090, with αβ ∼ 33.17. The error is ||R|| ∼ 1.19 10−3.
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Chapter 3

HiC Data Analysis

This chapter deals with the statistical analysis of HiC (High Chromosome contacts) matrices,
which are genomic contact maps: the element Mij of the matrix is strictly positive if the ith
and jth loci are in physical contact in the nucleus. The aim of the statistical study is to find
the nuclear compartments from the analysis of a HiC matrix M . In section 3.1 we introduce
the HiC concept. Section 3.2 gives a sketch of ideas why the highest eigenvalue is high for HiC
matrices. Section 3.3 is the statistical analysis of the HiC matrix from human Embryonic Stem
Cell (hESC) and also of the HiC matrix from human fibroblast. Finally section 3.4 deals with
the 3D-reconstruction of DNA from a HiC matrix.

3.1 Introduction to HiC

With the development of DNA sequencing techniques, genomics has been trying to under-
stand living beings by studying their genome. DNA in cell supports the genetic information,
then characterizing each organism.

In multicellular organism, cell differentiation is the set of processes which make a stem cell
being specialized, e.g. fibroblast (connected tissue cell, for instance muscular). Then a natural
interest arising is that the primary DNA structure (consecutive nucleotides sequence) cannot
be responsible for differentiation by itself, because this structure is the same from the stem cell
to the specialized cell. However the information about genome is different since the cell has
changed: there are regions on DNA that are expressed, and others that are not anymore, and
vice versa. But what makes a DNA region be expressed or not? An answer can be the proteins.
Indeed, a group of proteins can be settled on a region of DNA to accelerate or to slow down the
genetic expression. Moreover, proteins can bring different DNA parts in physical contact with
each other, in order (i) to make the regions be expressed or not, and (ii) to strongly compact
DNA in cell nucleus. In human being for instance, one DNA per nucleus of cell is indeed 2-meter
long, whereas nucleus has a diameter of ∼ 1µm.

All of this allows to argue that the 3D-structure of DNA in nucleus of cell depends on the
specialization of the cell. In other words, the 3D-structure of DNA in stem cells must be
different from the one in differentiated cells.

Bearing all above in mind, the 3D-structure of DNA is linked to its biological function, yet our
understanding of higher order genomic structure is rough and incomplete. In the nucleus of
eukaryotic cells, chromosomes occupy distinct territories in the nucleus. Different regions from
these chromosomes are also brought into physical contacts, thus forming nuclear compartments,
and there exists numerous models that have been performed for showing how the chomosomes

53
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occupy the compartments. These models, however, provide only few mechanistic details about
the relationship between higher order chromatin structure and genome function. In genomic
technologies, some experimental revolutions in the study of 3D-structure of DNA have been
employed. In particular, HiC has been introduced as a method for identifying chromatin inter-
actions on the whole genome [30]. It has been proven that analyzing the HiC matrix can lead
to the knowledge of nuclear compartments [30, 54]. See Figure 3.2 for a simple example of the
notion of nuclear compartment.

For example, the two most known compartments for each cell is the one containing the eu-
chromatin (not densed DNA) and the other one containing the heterochromatin (densed DNA)
(chromatin = DNA + proteins), see Figure 3.2. It was largely admitted that euchromatin cor-
responds to expressed regions of DNA, whereas heterochromatin corresponds to not expressed
regions of DNA. Here, there are two compartments: one corresponding to the biological feature
’expressed’, and the other one ’not expressed’.

One HiC experiment allows unbiased identification of chromatin interactions across an entire
genome. Specifically cells are crosslinked with formaldehyde; DNA is digested with a restriction
enzyme that leaves a 5’-overhang; the 5’-overhang is filled, including a biotinylated residue; and
the resulting blunt-end fragments are ligated under dilute conditions that favor ligation events
between the cross-linked DNA fragments. The resulting DNA sample contains ligation products
consisting of fragments that were originally in close spatial proximity in the nucleus, marked
with biotin at the junction. A library is created by shearing the DNA and selecting the biotin-
containing fragments with streptavidin beads. The library is then analyzed using massively
parallel DNA sequencing, producing a catalog of interacting fragments. From this catalog, a
contact map M is produced, from which we can extract the information of the chromosome
territories. The interested reader in a more deeper understanding of the HiC experimental
procedure can refer to the paper [55].

Thus, in this chapter, a HiC matrix is considered to be a n × n symmetric and non-negative
matrix M such that Mij = 1, if the ith DNA-segment and the jth DNA-segment are in physical
contact, 0 otherwise.

To find the compartments from the matrix M , a common and well-known technique is to bin
the matrix M . For example, we usually reduce ten (resp. a hundred, etc.) consecutive segments
into a unique segment which contains all the contact information from the initial segments: the
order of the new matrix is n/10 (resp. n/100, etc.).

The literature proposes plenty of methods allowing to obtain the compartments.

Accordingly, in paper [54], the compartments are found in the intra-chromosomal interaction
map, from the mouse ES cell genome. The process is based on a Hidden Markov Model: the
observed directionality index characterizes the highly biased interaction frequencies at the pe-
riphery of the compartments. The boundary is then the place in the genome where the DI
changes significativly. Each boundary is then identified. The Topological Associated Domains
(TADs) are the domains in the chromosomes delimited by two consecutive boundaries.

The paper [56] explained that there are three systematic biases in HiC experiments. The first is
the restriction fragment length, correlated with contact probabilities. The second is the DNA
GC content: it is shown that GC content is a source of incompatibilty between the replicates.
The third is due to some interactions between non-specific cleavage sites. Taking into account
these biases, a Bayesian model is performed to cluster a trans-contact map, knowing the biases.
Then clustering the resulting matrix (by a k-means [57] procedure directly applied on the matrix)
show three main columns, each of them corresponding to a genomic activity degree. Thus, they
have identified (i) the boundaries, (ii) but also the compartments themself by their clustered
matrix.

The paper [58] assumes that the biases are linear in the sense that the raw matrix element can



3.2. THE SPECTRUM OF A CHECKERBOARD MATRIX 55

be written as Eij = BiBjTij . Here, B represents quantified biases (not necessarily the same as
above, in [56]), calculated by maximum-likelihood estimations, and T is the raw matrix of con-
tact map. We dispose of the biases by making a linear iterative correction using this formula.
The final data matrix is smoother, do not have dashed lines, and is more homogene. After
this correction, a Principal Component Analysis (PCA) [3] is applied on the matrix: it consists
of analysing the statistical scattering of the matrix elements over orthogonal axis. It is well-
known that the direction where the scattering is maximal is the direction of the first component,
which is the direction of the eigenvector associated with the highest eigenvalue of the correlation
matrix. The kmeans is used on the first and second eigenvectors, showing three distinct clusters.

The original first paper based on finding the compartments from HiC matrices is [30]. The au-
thors calculated the empirical correlation matrix of the original HiC matrix: the element (i, j)
of the resulting matrix is the empirical Pearson coefficient between the elements of the ith row
and the elements of the jth column. This last matrix shows a very clear checkered pattern
(exactly as the pattern of the adjacency matrix of a CB graph, see the previous chapter). This
structure then suggests that each chromosome can be decomposed into two sets of loci (called A
and B) such that contacts within each set are enriched and contacts between sets are depleted.
The authors then partitioned each chromosome based on the sign of the eigenvector associated
with the highest eigenvalue of the matrix. Specifically, the corresponding DNA parts having
positive (negative) value of the eigenvector belong to the compartment A (B, respectively).
They then compared the compartments to known genetic and epigenetic features. It is shown
that the compartment A correlates strongly with the presence of genes and accessible chromatin.

In this chapter, we perform an analysis based on the two previous chapters of this thesis. Specif-
ically a HiC matrix M , as an inter-chromosomal contact map, has itself the particularity to be
a checkerboard (CB, see the previous chapter) matrix, see Figure 3.1. This property of HiC ma-
trices allows to use clustering algorithms directly on M , not on its empirical covariance matrix.
The eigenvectors show strong trends, and each trend corresponds to a boundary between two
consecutive rectangles of the chessboard.

In the following, two problems will be addressed here:

• identifying compartments at high resolution from a contact map;

• deduce the 3D-structure of the chromosomes from this matrix.

A natural problem is enhanced from the first previous point: we do not know the number of
compartments, which is not necessary 2.
To find this number and bearing the chapters 1 and 2 in mind, we will not use the principal
eigenvector (eigenvector associated with the highest eigenvalue of M). Indeed, this one is re-
dundant in the analysis, since it does not have any other information that the matrix itself.
However, the other eigenvectors are relevant, in particular the second and the third ones. Thus,
the idea is to do a clustering analysis in the 2D-space of these two eigenvectors in order to
identify the distinct compartments.
The previous second point underlines the following question: how can one have the information
of the original DNA 3D-structure from the contact map? To answer this question, we propose a
two-step algorithm, which name is ShRec3D, and which accommodates noisy contact matrices.
The particularity is that this algorithm is much faster than already existing ones.

3.2 The spectrum of a checkerboard matrix
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Figure 3.1: 8000 × 8000 HiC matrix from human Embryonic Stem Cell (hESC), where the
intra-chromosomal interactions have been removed (all the elements are null) (white diagonal
blocks). This matrix is a checkerboard, and is then the object of clustering data analysis, leading
to the identification of the nuclear compartments.

Figure 3.4 shows an example of a checkerboarded matrix. The DNA contained in A highly
interacts with itself, whereas DNA in B lowly does. An ideal case of HiC matrix would be that
there is no any 1 in the AB and BA regions (see Figure 3.5).
Let M be the matrix of Figure 3.5. We would like to compute its determinant, with a′ = a− λ
and b′ = b− λ (which is the characteristic polynomial of a matrix with a′ = a and b′ = b).
Let v1 (resp. v2) be the number of non-zero elements in any row of type A (resp. B), except the
diagonal. v1 and v2 can be interpreted as the number of contact(s) that any part of the DNA
in A (resp. B) has with itself in the same compartment. We immediately have

n = v1 + v2 + 2. (3.1)

(’+2’ we count the diagonal element not included in v1 (resp. v2) in A (resp. B)). To calculate
the determinant, we use the fact that one does not change the determinant of a matrix by
changing a line (resp. a column by symmetry) by making a linear combination of lines (resp. a
column by symmetry).
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Figure 3.2: Example of two nuclear compartments. The euchromatin compartment is the ter-
ritory in the nucleus such that the DNA interaction with itself is low, and the heterochromatin
compartment is the territory in the nucleus such that the DNA interaction with itself is high.
© pixfocus.com

One has

det(M) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a′ a a a a a a a · · ·
a a′ a a a a a a · · ·
a a a′ a a a a a · · ·
a a a a′ a a a a · · ·

b′ b b b b b b · · ·
b b′ b b b b b · · ·
b b b′ b b b b · · ·
b b b b′ b b b · · ·
b b b b b′ b b · · ·

a a a a a′ a a a · · ·
a a a a a a′ a a · · ·

b b b b b b′ b · · ·
b b b b b b b′ · · ·

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

We add to the first column the sum of the others, of the same type A, we factorize by a′ + v1a,
and subtract the A rows with the first A row. One obtains

det(M) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 a a a a a a a · · ·
0 a′ − a 0 0 0 0 a a · · ·
0 0 a′ − a 0 0 0 0 0 · · ·
0 0 0 a′ − a 0 0 0 0 · · ·

b′ b b b b b b · · ·
b b′ b b b b b · · ·
b b b′ b b b b · · ·
b b b b′ b b b · · ·
b b b b b′ b b · · ·

0 0 0 0 a′ − a 0 0 0 · · ·
0 0 0 0 0 a′ − a 0 0 · · ·

b b b b b b′ b · · ·
b b b b b b b′ · · ·

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(a′+v1a).
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Figure 3.3: Sum of each row of the 8000 × 8000 HiC matrix, from hESC, with respect to the
principal eigenvector. The linear regression coefficient is 0.97

Now we do the same with the B type:

det(M) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 a a a a a · · ·
0 a′ − a 0 0 0 0 · · ·
0 a a′ − a 0 0 0 · · ·
0 0 0 a′ − a 0 0 · · ·

b′ − b b b b b · · ·
0 b′ − b 0 0 0 · · ·
0 0 b′ − b b b · · ·
0 0 0 b′ − b b · · ·
0 0 0 0 b′ − b · · ·

0 0 0 0 a′ − a 0 · · ·
0 0 0 0 0 a′ − a · · ·
...

...
...

...
...

...
...

...
...

...
...

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
× (a′ + v1a)(b′ + v2b).

We must calculate the determinant of a triangular matrix, which is easier than before. We
deduce that

det(M) = (a′ + v1a)(b′ + v2b)(a
′ − a)v1(b′ − b)v2 . (3.2)

Remark 3.2.1 Another method is to see that the characteristic polynomial does not change by
permuting the rows and columns of M . In particular, it is possible to find a permutation P which
transforms the matrix M into a blocked diagonal matrix PM tP , composed of two blocks. The
first block is composed of elements a and a′, the second of b and b′. The whole determinant is
the product of the determinant of each block. The first gives (a′+ v1a)(a′−a)v1 while the second
gives (b′ + v2b)(b

′ − b)v2, which is exactly Eq (3.2). Moreover, thanks to the spectral theorem, it
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Figure 3.4: Example of simple checkerboarded matrix, which is a kind of HiC matrix. In
this example, there are two nuclear compartments A and B. The probability of contact in the
compartment A is higher than between the two distinct compartments. An ideal case of HiC
matrix would be that there is no any 1 in the AB and BA regions.

A

A

A A

B

B

B B ...

...

...

Figure 3.5: The considered ideal case of HiC matrix, of dimension n × n. The size of each
rectangle is different. The elements in blue rectangles are all a ∈ R, in green ones b ∈ R, the
diagonal in blue rectangles (red lines) are composed of a′ ∈ R, and in green ones (red dashed
lines) b′ ∈ R. White rectangles are strictly composed of null elements. We are going to compute
the eigenvalues of such a matrix.

is worth stressing that M and PM tP have the same eigenvalues, and the eigenvectors are also
the same, up to a permutation P of their components:

M =
n∑
i=1

Λi[M ] tVi[M ]Vi[M ]⇐⇒ PM tP =
n∑
i=1

Λi[M ] t(PVi[M ])(PVi[M ]). (3.3)

Setting now a′ = a− λ and b′ = b− λ, and a = b = 1 (adjacency matrix), and using (3.1), one



60 CHAPTER 3. HIC DATA ANALYSIS

has

det(M − λId) = (v1 + 1− λ)(n− (v1 + 1)− λ)λn−2 Sp(M) = {v1 + 1, n− (v1 + 1), 0} (3.4)

Thus we immediately see that Λ1(M) = max(v1+1, n−(v1+1)), Λ2(M) = min(v1+1, n−(v1+1)),
and Λ3(M) = · · · = Λn(M) = 0 (see the chapter 2, theorem 2.6.1). If the matrix is irreducible,
some straightforward simulations show that the spectrum is approximatly the one shown by Eq
(3.4).

3.3 Compartments identification in human Embryonic Stem Cell
(hESC)

Finding the number of compartments remains an open question, and we give here one possible
answer. It is possible that the methods are not robust or do not give the same result in another
cell type.

3.3.1 Why V2 and V3 are good candidates for the clustering study

Figures 3.6 and 3.7 plots some simulations of different HiC matrices. We distinguish two types
of HiC matrix.

• The Figure 3.6 shows a checkerboard matrix, with some 0’s in the AA and BB squares,
and some 1’s in the AB and BA squares. The eigenvalues are also perturbed, but Λ1(M) ∼
Λ2(M) and Λ3(M) ∼ · · · ∼ Λn(M) ∼ 0 (see theorem 2.6.1 of chapter 2). Then V1 is near
Me/

√
< Me,Me >, even if there are two distinct clouds of dots in the plot of V1 versus

Me. Actually, these two clouds are each linked to a compartment A or B. In this example
V1 and V2 show unsignificant patterns.

• If K is low, the checkered pattern disappears. In the matrix in Figure 3.7 there are not
enough 1’s in all the squares: this is a typical HiC matrix. The highest eigenvalue is far
from the others and the difference between V1 and Me is again low. One surprise is the
pattern of V2 and V3: it is the same as for the experimental HiC matrix (actually the other
eigenvectors do not have any trend and look noisy).

As a conclusion, V2 and V3 seem to be good candidates for the statistical analysis.

3.3.2 The optimal number of compartments is found by informational crite-
ria, based on kmeans-clustering

Let M be the hESC HiC matrix we want to analyse, and suppose M is sparse enough so that
the checker pattern is not seen at all. We use the spectral decomposition [?] of M :

M =

n∑
i=1

Λi[M ] tVi[M ]Vi[M ].

This equation can be rewritten as:

M =
n∑
i=1

Mi, where Mi = Λi[M ] tVi[M ]Vi[M ].

As already discussed before, V1 is close to the sum of each row of M , which is also noisy. As
already mentioned, we do not analyse it for finding the compartments.
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Figure 3.6: HiC simulations: the matrix is a perturbed checkerboard, with some 1’s in the AB
and BA squares. The two highest eigenvalues are close, and the others tend to 0. Therefore V1

is close to Me. However, there is no clear trend in the eigenvectors.

The idea is that distinct clouds of points might be observed in the (V2,V3) plane. Each cloud is
associated to a compartment, and a kmeans allows to better separate the clouds.
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Figure 3.7: HiC simulations: the matrix is a perturbed checkerboard, with a very low number
of 1’s. The highest eigenvalue is far from the others, and V1 is still close to Me. In this case, V2

and also V3 show interesting trends, and might be analyzed in deeper details to find the checker
pattern.

The kmeans algorithm used here is the one of Hartagan and Wang [57]. It divides the n points
in the 2D-(V2,V3) plane into k clusters, such that the within-cluster sum of squares is minimized.
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The particularity of this algorithm is that no movement of a point from a cluster to another will
reduce the within-cluster sum of squares. However, one must enter the number of cluster(s) k so
that the algorithm runs, whereas this is the parameter we need to know. This found parameter
k must be optimal in a certain sense.

Actually, the optimality is performed by employing informational criterii. The Aikake infor-
mational criterion (AIC), the Bayesian informational criterion (BIC) and the Hannan-Quenn
criterion (HQ) [59, 60] are given by:

AIC(k) = ln (σε(k)) + 2
k

n
,

BIC(k) = ln (σε(k)) + k
ln (n)

n
,

HQ(k) = ln (σε(k)) + 2k
ln (ln (n))

n
.

Here σε(k) is the realized residual variance associated with the within-cluster sum of squares.
A minimum is expected for the three quantities, and the value of k associated to the minimal
values of the above three criterii is the desired optimal number of clusters.

An arising problem is that if M is too much sparse then the trends in the vectors V2 and V3

will remain invisible. Specifically the order of magnitude of the sample sparsity of M is 10−5:
the number of 1’s in the matrix M is one hundred thousand times lower than n2. Such lack of
information makes the analysis impossible. In particular, it is highly likely that there is at least
one row whose elements are all zero, making M be a reducible matrix.

The Enrichment method is a way to increase the sample sparsity of the matrix M by adding
1’s. There are two ways to enrich the matrix M :

• Enrichment 1 : the genomic neighbors of the HiC neighbors of each DNA segment are HiC
neighbors. Some connexions are added in the graph, so that 1’s appear in the matrix M
above, below, on the left and right of all the elements having the value of 1.

• Enrichment 2 : the HiC neighbours of the HiC neighbours of DNA segment are HiC neigh-
bors. This enrichment corresponds to the transformation M 7→M +M2, which in Graph
Theory usually gives the number of paths of length 1 and 2. The zero element Mij is now
equalled to 1 if there is a possible connection of length 2 in the original graph, between
the nodes i and j.

Simulations show that combinaisons of enrichments (in practice 121 is sufficient) allow to find
trends in V2 and V3. Finally, the output of the kmeans algorithm allows to obtain a vector
whose ith element is 1, 2, . . . , k if the ith corresponding DNA-region is in compartment A, B,...,
respectively, for all i ∈ {1, 2, . . . , n}.
Not only do we have the number k of compartments, but also the location of these compartments
on the whole genome.

Figure (3.8) fully sums up all the approach, and Figure (3.9) validates it with three simulated
compartments A, B and C, where the number of clouds in the (V2,V3) 2D space is three. It is
worth noting that the algorithm is capable of finding the small A part between C and B, which
means that the precision is sufficient for finding small sizes of subrectangles among big ones in
the matrix.
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Eigen decomposition

AIC(red) ; BIC(black) ; HQ(blue)

Figure 3.8: Finding the compartments from the HiC matrix : first enrich the data by a compo-
sition of type 1 and 2 (121 was the most revealing for the HiC data). The pattern appears in
M2 = Λ2

tV2V2, whereas it is not clear for M1 since V1 is close to Me, which is noisy. We find
the optimal number of clusters k (here k = 2) thanks to the criteria AIC, BIC and HQ, by doing
successive kmeans in the (V2,V3) space. k is then the number of compartment(s), and we obtain
the location of each DNA fragment in one compartment.

3.3.3 Results on large experimental HiC contact map, and comparisons with
biological features

After having validated our computational approach on simulated data, we determine the ac-
tual compartments in human Embryonic Stem Cell (hESC) using published HiC datasets (the
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Figure 3.9: One example of finding the compartments (with a simulated ABC chequered matrix
(ABCAB)). The aim is to find in which compartment is located each DNA fragment. The
procedure to do it is explained in Figure (3.8). One can see here that the optimal number of
clusters is 3, corresponding to the number of compartments. The location of each DNA fragment
is then found.
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matrix M has size 800, 000× 800, 000, one fragment is ∼ 3, 000 base pairs (bp)) obtained from
Dixon et al. [54]. The associated HiC matrix represents only inter -chromosomal interactions.
The problem with this matrix is that it is highly reducible, since there are plenty of rows and
columns with zero elements. This matrix then can be binned, by aggregating contacts over mul-
tiplier restriction fragments (giving for instance the matrix of the Figure (3.1)). The problem is
that binning the matrix reduces the resolution as the size of the matrix decreases. To keep the
highest resolution of the ∼ 3, 000 bp for one matrix element, one can actually reduce the matrix
by directly removing these rows and columns, but also the rows and columns entirely full of 1’s,
which, bearing the previous chapters 1 and 2 in mind, may constitute a bias for the analysis.
We find that the optimal number of compartments k varies from 4 to 6. The enrichments 121
allows to clarify the true number, which is actually 4 (see the Figure (3.10A)).

Then there are in total five compartments: on the one hand A, B, C and D, and on the other
hand Xinf , corresponding to the eliminated fragments before the analysis (the ones responsible
for rows and columns with zero elements).

We computed the proportion of contacts found between each compartments (see the Figure
(3.10B)). As expected, there are more intra-compartmental contacts than inter-compartmental
contacts, but the contacts in Xinf are not existing: the removed rows and columns have indeed
no 1’s. Moreover the compartment A (resp. C) strongly interacts with the compartment B (resp.
D), and the compartment A interacts more with the compartment D than with the compartment
C.

The loci of the genome occupying the compartments are presented in the Figure (3.10C). Frag-
ments belonging to the compartment Xinf are found at the peri-centromeric regions of each
chromosomes, suggesting that Xinf is a compartment in which several centromers are gathered.
Moreover the fragments belonging to the compartments B and C are found around the peri-
centromeric regions and the fragments belonging to the compartments A and D are found in
centromere distal and telomere proximal regions, and are only found on long chromosome arms.

Looking at the Figure (3.10C), it seems that there are a colocalization of the compartments A
and D on the one hand, and of the compartments B and C on the other hand. Following the
whole genome from the extremity 5’ to the other extremity 3’ fragment by fragment, Figure
3.11 shows a matrix m whose element mij is the proportion of paths from the compartment i
to the compartment j, with i, j ∈ {A, B, C, D, Xinf}. Specifically, the element mij is the ratio
of the number of paths from the compartments i to j, out of the number of paths from the
compartments i to A, i to B, and so forth (the resulted matrix obtained by following the whole
genome from the extremity 3’ to the other extremity 5’ is the transpose of m). We observe
that there are main paths from B, C and D to A, and from A to B. There are more paths
between B and D than between B and C, and C and D. These two results confirm the proximity
of compartments B and D, however compartment A occupies more the whole nucleus than the
others. Indeed, the proportion of the compartments A, B, C, D and Xinf in the whole genome is
0.3318 (highest), 0.2341, 0.1734, 0.2202 and 0.0405 respectively. However, this analysis has the
downside to consider also the very fast changes: if we made a zoom in around exclusively light
blue regions, we would likely find also many dark blue rays, which have been taken into account
in the analysis. This misleading method then gives a result which does not correspond to what
we interpret, looking at Figure (3.10C). We should perform an algorithm ignoring the rays to
lead to the more intuitive colocalization interpretation.

Figure (3.12) depicts the proportions of some biological features (row) over the compartments
A, B, C and D (column). What we call ‘proportion over A’ is the ratio of the number of ’1’ at
the same genomic position for the biological feature and the locations of A in the genome, out
of the number of ’1’ at the same genomic position for the biological feature and the locations
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Figure 3.10: The obtained compartments from the hESC HiC matrix. A The informational
criteria gives that there are 4 nuclear compartments in hESC, named A, B, C and D. B Number
of contacts between the compartments out of the genomic size in the compartments. A and B
mostly interact together, whereas C and D interact with themselves. The fifth compartment
Xinf refers to the filtered sequences, not detectable by the HiC experiment. C Distribution of
the five compartments on the genome.
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Figure 3.11: Matrix m whose element mij is the proportion of paths from the compartment i to
the compartment j obtained by following the whole genome from the extremity 5’ to the other
extremity 3’ fragment by fragment, with i, j ∈ {A, B, C, D, Xinf}. Specifically, the element mij

is the ratio of the number of paths from the compartments i to j, out of the number of paths
from the compartments i to A, i to B, and so forth.
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of A, B, C and D in the genome (sum in a row = 1). We have found no significant proportion
related to the compartment Xinf , so that we do not represent it. All of these features are taken
from the UCSC genome browser website, peak ChiP-seq UCSC server, H1-hESC line cell (hg19).

Figure (3.12A) shows the replication timing and the Lamina Associated Domains (LADs) distri-
butions over the compartments. The lamina protein is known to be linked with the heterochro-
matin (i.e. dense chromatin) and with the nucleus surface. The heterochromatin is dense and
the corresponding DNA regions are not express. It is found that the proportion of the LADs is
higher in the compartments A and B than in the compartments C and D, suggesting that the
compartments A and B are inactive compartments, whereas C and D are active compartments:
the genome loci belonging to the compartments C and D contain expressing genes. Thus, this
characteristic of the compartments C and D (A and B) are to compare with the one of the
compartment A (B) obtained in [30].

The replication timing (early/late type) is a quantification of first to last replicated DNA re-
gions. Accordingly when the replication timing increases then the corresponding DNA loci are
the first in the genome to be replicated. Bearing this information in mind, we found that the
replication timing is higher in the compartments C and D than in the compartments A and B:
the first replicated sequences are in the active areas.

Figure (3.12B) depicts the proportion of binding sites for specific Transcription Factors (TFs)
in each compartment (in a row, the sum is 1). A TF is a protein specifically binding on a DNA
sequence and is responsible for the DNA transcription. Therefore the binding sites correspond
to expressed genes and must be found in the active genomic areas. It is confirmed here that the
majority of the TFs’ binding sites are located in the loci belonging to the compartments C and D.

Another biological feature is the histone, which is a protein responsible for the DNA orga-
nization into structural units, called nucleosomes. Histone modifications are known to affect
chromosome function through at least two distinct mechanisms: (i) altering the electrostatic
charge of the histone resulting in a structural change; (ii) these modifications are binding sites
for protein recognition modules. These characteristics suggest that histone marks (marking
histone modifications on the genome) are interesting to compare with the genomic location of
the compartments. Figure (3.12C) maps the proportion of histone marks in each compartment
(here again, in a row, the sum is 1). A histone is a protein responsible for the DNA organization
into structural units, called nucleosomes. The specific histone marks shown in this picture are
mainly present in the active compartments C and D.

At this stage, there are several open questions because of counter-examples appearing in these
results. There are TFs, including Nanog, which are in the inactive compartment A. The TF
Nanog is responsible for the specialization of stem cell [61], so it might appear natural to find it
in the inactive area in hESC. However it is found in massive active areas in mESC (mouse) [54].
There are two histone marks which stand out from the others. On the one hand, the histone
H2AZ is located in promoter regions [62], however in the mouse the histone H2AZ is merely
absent in undifferentiated cells [63]. Here, we find this last result: the histone H2AZ is found
in inactive chromatin. On the other hand, H3K9me3 is as well in active areas as in inactive
areas, probably referring to specific roles at the embryonic level: especially in mESC, histones
are necessary for silencing a set of genes [64].

Figure (3.13) depicts the proportion of chromatin marks, also called chromatincolors, in each
compartment (in a row, the sum is 1). The promoters, enhancers and insulators are mostly
located in the fragments belonging to the compartments C and D, validating that these fragments
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Figure 3.12: Distribution of some biological features on the compartments. A The timing
replication and Lamina Associated Domains (or LADs, the lamina protein presented on the
nucleus surface, related to inactive DNA) pattern show that A and B are inactive compartments,
whereas C and D are active compartments. B Proportion of Transcription Factors (TFs). C
Proportion of histone marks.
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are active genes. Moreover, the heterochromatin mark is mainly in the compartment A, which
means that this compartment contains densed chromatin. This is in agreement with the fact that
the compartment A occupancy in the genome is higher than the others, which is a characteritics
of heterochromatin. It is worth pointing out that the part of the genome in the compartments
C and D may contain the euchromatine and the part of the genome in the compartments A and
B may contain the heterochromatin. Bearing the results about the TF Nanog and the histones
H2AZ and H3K9me3 in mind, these last features are therefore located in the heterochromatin
in hESC.
In addition, the repetitive DNA segments are significantly contained in the compartment Xinf ,
and they are mainly located in the centromeric regions of chromosomes (these regions are called
satellite DNA, see Figure 3.10).

3.4 Compartments identification in human Fibroblast

In the section of human Embryonic Stem Cell (hESC) analysis, we have identified four main
nuclear compartments, A and B which are inactive, and C and D which are active. The results
about transcription factors (TFs), histone marks and chromatin colors showed actually some
distinctions between A and B.

The discussion of the counter-examples highlight the problematic of cellular development: the
role of each biological feature change with the cellular specialization. A question arises: what
do A, B, C and D become in a specialized cell?

We can answer this question in the special case of the human fibroblat: we have the 800, 000×
800, 000 contact map (Dixon et al, Nature 2012). We repeated the exact same procedure done for
hESC, and the results are summed up in the Figure (3.14). We found two compartements a and
b, which are more uniformly scattered on the genome. At down of this Figure, we represented
the proportion of contacts in a and in b in each compartment A, B, C, D and Xinf . We see that
A and B (resp. C and D) preferentially become a (resp. b), suggesting that the compartment
a (resp. b) is more active (resp. inactive). Analyzing biological feature marks in these data is
part of future research perspective.
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Figure 3.13: Proportions of the chromatin marks in each compartment. The chromatin marks
responsible for the genome expression are mostly located in the fragments from the compart-
ments C and D. The heterochromatin mark is mostly located in the compartment A. Repetitive
sequences are located in the compartment Xinf .

3.5 3D Reconstruction of genome from HiC contact map
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Figure 3.14: Equivalent Figure 3.10 for the human Fibroblast cell. A The informational criteria
gives that there are 2 nuclear compartments in the human fibroblast, named a and b. B
Number of contacts between the compartments out of the genomic size in the compartments.
b strongly interacts with intself whereas a less interacts with intself. C Distribution of the five
compartments on the genome. underneath, the camemberg proportions of each of the hESC
compartiments becoming the Fibroblast compartments.
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3.5.1 The Fast-Floyd algorithm

We have seen that from the HiC contact map, one can extract information about the type
of contact/interaction. We can go further by reconstructing the 3D structure of DNA. Several
methods already exist [65] [66] ..., but the computational time is prohibitive for large data input.

We propose a two-step algorithm allowing to get the 3D structure. It is straightforward to get
all the distances between a set of N points given their 3D coordinates (Fig 3.15 a, step 1). From
this matrix, one can also infer easily the binary contact matrix given a contact threshold ε (Fig
3.15 a, step 2). The goal is to infer the optimal 3D coordinates knowing only the contact matrix.
The mathematical problem of reconstructing a spatial structure from the distances between its
elements is solved by distance geometry [67]. These methods involve the computation of the
first three eigenvectors in intermediary matrix, the Gram matrix (Fig 3.15 a, steps 4 and 5).

An important step in Multi Dimensional Scaling (MDS)-based methods of chromosome re-
construction is therefore the derivation of a complete set of distances from a (possibly sparse)
contact map (Fig 3.15 a, step 6). We introduce a weighted graph whose nodes are the N loci
detected in the experiment. The length of a link is determined as the inverse contact frequency
between its end nodes. We then take for the distance between any two nodes the length of
the shortest path relating them on the graph, computed using the Floyd-Warshall algorithm.
Our method accommodates binary contact maps (for example, single-cell HiC data) [68] by
taking link lengths equal to 1 between contacting points, or else infinite (no link). Although
it is approximate and gives distances in a dimensionless unit, this shortest-path metric assigns
a sound distance (symmetric and satisfying the triangular inequality) to all pairs of points. It
offers a way to achieve the preprocessing step common to all 3C-based techniques of converting
observed contact frequencies into a complete set of distances, independently of the downstream
reconstruction method.

This algorithm, which we call ‘shortest-path reconstruction in 3D’ (ShRec3D), combines this
shortest-path distance with MDS to achieve chromosome reconstruction (Fig 3.15 a, steps 4 and
6). We tested the efficiency of ShRec3D in a controlled in silico case. We generated a yeast
genome 3D structure represented as N = 26, 538 beads (each corresponding to approximately
three nucleosomes) linked by springs accounting for intrachromosomal DNA connectivity. The
16 yeast chromosomes were confined into a nucleus of radius 1.6 µm (Fig 3.15 b). From the bead
coordinates we computed the associated Gram and distance matrices (Fig 3.15 c,d) and a binary
contact map (Fig 3.15 a, steps 1 and 2 and Fig. 1e) and the distance matrix was then obtained
by applying step 6 to this contact map (Fig 3.15 f). The consecutive application of steps 5
and 4 (Fig 3.15 a) reconstructs the coordinates up to a global transformation (some rotation,
dilation and possibly mirror symmetry). To quantitatively assess the original structure recovery,
we compared in a scatter plot the actual (Fig. 1d) and reconstructed (Fig 3.15 g) distances and
computed their Spearman rank correlation (Fig 3.15 h).

We compared, for data sets of various sizes, both the reconstruction accuracy and the speed
of ShRec3D and two other methods, BACH [69] and ChromSDE [70]. All gave satisfactory
results in terms of accuracy (Fig 3.16 a); however, on a personal computer, the run time for our
script ranged from tens of seconds for small data sets (∼1,000 points) to 50 h for the largest
one (26, 538 points), several orders of magnitude faster than other methods (Fig 3.16 b). The
limiting step for ShRec3D computation time is the Floyd-Warshall algorithm computing shortest
paths on the contact map, whose worst-case performance scales as O(N3). We also found that
the accuracy of the MDS reconstruction applied directly to inverse-frequency distances was
poor (Fig 3.16 2), demonstrating the importance of using our shortest-path metric before MDS
reconstruction.

We tested and compared ShRec3D to the above-mentioned alternative methods in condi-
tions closer to those of real Hi-C experiments. The robustness of the ShRec3D was tested by
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modifying the original binarycontact map and generated a controlled amount of disorder by
moving randomly a given fraction of positive entries, and it was insured for noise levels lower
than 1% (maximal level in typical Hi-C experiments (Fig 3.16 c), see Online Methods of [31]).
The probabilistic nature of BACH makes it efficient in the presence of high levels of noise;
however, it remains slower than ShRec3D reconstruction by several orders of magnitude and
is thus limited to small-size structures (Fig 3.16 b). We then reproduced the superposition
of single-cell contact maps reflecting the genome fold variations over a cell population that is
characteristic of Hi-C maps; accordingly, one could reach only an average 3D structure. From
a Langevin dynamic simulation [71] of our in silico genome, we extracted a variable number
k of independent structures and computed the average of their contact maps (Online Methods
of [31]). The distances reconstructed with ShRec3D from this simulated average Hi-C contact
map quantitatively matched the average distances in the superposition of structures (Fig 3.16
d). This was also achieved by the alternative methods for a large number of structures; how-
ever, the comparison had to be limited to coarse-grained structures with 480 points, the largest
size manageable in a reasonable time using BACH and ChromSDE. The increase in quality of
MDS applied to inverse-frequency distances with the number of structures was expected, as
the inverse-frequency expression becomes closer to the shortest-path distance when the average
contact map becomes denser.

We implemented ShRec3D on experimental Hi-C data obtained in human embryonic stem
cells [54] and lymphoblastoids [72], exploiting both the very sparse Hi-C data obtained at the
best available genomic resolution (restriction fragments) and coarse-grained data sets (where
loci correspond to many restriction fragments). ShRec3D’s ability to visualize average struc-
tures at different scales is illustrated by reconstructing a 30-Mbp region of chromosome 1 at
3-kb resolution (Fig 3.17 a), the chromosome average structure at 150-kb resolution (Fig 3.17 b)
and the average arrangement of autosomal chromosomes within nuclear space at 3-Mbp resolu-
tion (Fig 3.17 c). The genome connectivity and chromosome partitioning achieved by ShRec3D
(Fig 3.17 d-f) would make it an efficient tool for genome scaffolding from Hi-C data [73] [74].
Alternative methods (BACH, MDS applied to inverse frequency distances and ChromSDE [75])
did not manage to properly reconstruct fine-resolution structures in reasonable amounts of time.
The potential of ShRec3D to devise 3D genome browsers is illustrated with the coloring of a
3D structure of chromosome 1 at resolution 30-kb according to the chromatin partition in two
compartments. Any chemical, structural or functional annotation available on linear genomes
can be similarly overlaid on chromosome 3D structures (for example, two histone H3 modifica-
tions, H3K9Ac and H3K9me3 (GEO GSM409308)). ShRec3D involves no ad hoc constraints or
tunable parameters and is free from convergence issues and misleading transient outcomes. Its
speed makes it applicable to both 3C or carbon-copy 3C (5C) data sets, which typically involve
tens of loci, and high-resolution Hi-C data sets, comprising sparse contacts between hundreds
of thousands of points. Its accurate reconstruction of average distances between genomic loci
and visualization of a consensus structure enable a meaningful use of cell-population Hi-C data,
especially when extended into 3D genome browsers.
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Figure 3.15: Application of ShRec3D to a simulated data set. (a) Algorithm flowchart; steps
1 to 6 are detailed in the text and Online Methods. (b) 3D structure of in silico yeast genome
generated using polymer dynamics for a chain of N = 26,538 beads (each chromosome is shown
in a different color). (c) Gram matrix. (d) Distance matrix (s.u.). (e) Contact map (binary map,
threshold ε = 60 nm). (f) Distance matrix derived from contacts. (g) Distance matrix of the
reconstructed structure (dimensionless). (h) Scatter plot of original and reconstructed distances;
heat map colors indicate the local density of points; Spearman rank correlation coefficient R is
indicated. Inset, reconstructed 3D structure. s.u., simulation unit.

3.5.2 The DNA 3D-structure of chromosome 1 and the compartments

In this conclusive subsection, The Fast-Floyd algorithm and the compartimentation are both tak-
ing into account for the chromomosome 1 of hESC. Specifically we apply the previous Fast-Floyd
algorithm to the hESC intra-chromosomal HiC matrix, with the knowledge of the distribution
of the DNA fragments in the nuclear compartments A, B, C and D obtained from the hESC
inter -chromosomal HiC matrix already studied in this chapter.

Figure 3.18 is a representation of the chromosome 1 in the hESC nucleus. The color code is the
same of that of Figure 3.10C. The big red ball is the centromer (associated to the compartment
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Xinf), and the two black balls delimit the chromosome. We finally observe on this chromosome
that the nuclear compartments in which are located the different parts of the chromosome 1 are
globally well distinct. This is in accordance with the initial idea refered in paper [30] of nuclear
compartimentation.

3.6 Conclusion

This chapter deals with data analysis of related chromosomal conformation for the whole humain
Embryonic Stem Cell (hESC) genome. These data allows to construct frequency matrices at
the resolution of 3k-base pairs, such that the element (i, j) of the matrix is zero if there is no
any read of physical contact between the loci ith and jth of the genome. The interesting point
of such matrices is that they are checkerboard matrices, studied in the previous chapters. The
goal is then to identify nuclear compartments from this noisy matrix, and to give a biological
sens to them.
Differently from the previous litterature, we do not analyze the empirical correlated matrix, but
the matrix itself. Because the matrix is too sparse, we removed the empty rows/columns, then
giving one default compartment Xinf . We found from the resulting irreducible matrix that the
sum of each row, column by column, of the matrix is very close to the eigenvector associated to
the highest eigenvalue. From the previous chapter, and since the matrix - hence the sum of the
rows - is not very informative, the second and third eigenvectors are analyzed. These eigenvectors
have the ability to have trends. Specifically, a kmeans is performed on the scatter plot of the
two lattest eigenvectors, where distinct clouds of dots are revealled - a clear characteristic of
checkerboard matrices. Informational criterii confirmed that there are 4 compartments, A, B,
C and D, and 5 with Xinf .
The interactions are high between A and B and between C and D. Moreover, A and D are
colocalized around the center of the chromosomes whereas B and C are colocalized mainly at
their peripheries. The biological features considered in this thesis allowed to give a sense to these
compartments. Thus, the replication timing and the Lamine Associated Domains (LADs) led
to think that A and B are inactive compartments, whereas C and D are active compartments.
These characteristics are confirmed by the histone marks and the Transcription Factors (TFs),
which are mainly located in C and D. Some of the ways to confirm that C and D are active
might be increased in efficiency.
The compartments can give an idea about the 3D structure of DNA in the nucleus. Specifically,
from a HiC matrix, we performed an algorithm, which allows to give the 3D structure of DNA
in an efficiency running time (decreasing of two magnitude orders in comparison with existing
algorithms). Thus, from the HiC matrix (seen as an adjacency matrix), we estimated the
Euclidean distances between the loci by the Fast-Floyd algorithm. Some numerical simulations
have shown that the recombined DNA 3D structure is very close to the original 3D structure.
We have performed the analysis to the Fibroblast cell, and 2 compartments have been found.
More biological features would lead to the identification of the compartments for each cellular
type. These considerations would aim at a higher global understanding of cellular differentiation.
Moreover, analyzing the HiC matrix associated to tumorous cells would also make us understand
more about cancer.
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Figure 3.16: Quantitative assessment of ShRec3D performance and reliability. (a,b) Comparison
of ShRec3D with BACH, ChromSDE and MDS applied to inverse-frequency distances for simu-
lated data of increasing size N (number of beads) in terms of reconstruction accuracy (Spearman
rank correlation between original and reconstructed distances) (a) and computation time (b).
(c) Robustness to a controlled amount of randomly misplaced contacts mimicking experimental
noise (semilog plot). (d) Comparison of average distances in a population of an increasing num-
ber k of simulated structures (up to k = 500 independent snapshots of a Langevin dynamics of
structure in Fig. 1b coarse-grained to N = 480 points) and distances reconstructed from the
corresponding average contact map.
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Figure 3.17: 3D multiscale visualization of human autosomal chromosomes from Hi-C data. (a-f)
Experimental contact maps (a-c) and corresponding 3D reconstructions (d-f) at genomic reso-
lutions, from the scale of restriction fragments in chromosome 1 (embryonic stem cells (hESCs)
(a) to that of bins containing 50 (b) or 1,000 (c) restriction fragments covering the whole chro-
mosome set. Color gradients in d-f indicate the position along the genome.
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Figure 3.18: 3D-structure of the chromosome 1 in the hESC nucleus, obtained from the Fast-
Floyd algorithm applied to the hESC intra-chromosomal HiC matrix. The compartments (A:
blue; B: light blue; C: green; D: yellow) are the one obtained from the hESC inter -chromosomal
HiC matrix already studied in this chapter. The big red ball is the centromer (associated with
the compartment Xinf), and the two black balls delimit the chromosome. The parts of the
chromosomes associated to a specific compartment are isolated from the others associated with
another distinct compartment.
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Chapter 4

A Delayed Mathematical Model for
the Acute Inflammatory Response

This chapter deals with further developments on a mathematical model recently proposed
for the modeling of the acute inflammatory response to infection or trauma. In particular in
order to take into account that some interactions have not an immediate effect, we introduce
time delays. Specifically the chapter deals with the existence of steady states, determining the
parameter regimes where the equilibrium points are stable, and the onset of Hopf bifurcation
appears. Numerical simulations are performed with the main aim of supporting the analytical
results and investigate further dynamics. It is worth pointing out that the contents of this
chapter constitutes the paper [33].

4.1 Introduction

The problem of abnormal organ repair has gained much attention considering that there
is a significant shortage of organs available for transplantation. In this context the normal
repair process, i.e. wound healing process, assumes an important role. Wound healing is an
complex process by which the skin or organ repairs itself after injury [76, 77]. Specifically wound
healing comprises three sequential, overlapping, phases: the inflammation phase (hemostasis
and the actual inflammation), the proliferation phase, and the maturation (remodeling) phase.
Hemostasis occurs immediately after tissue injury and can be compared with the acute phase
reaction of the innate immune system during infection. The first cells to appear in the wound
area are neutrophils which start with the critical task of phagocytosis in order to destroy and
remove bacteria, foreign particles and damaged tissue. Phagocytotic activity is crucial for the
subsequent processes, because acute wounds that have a bacterial imbalance will not heal. The
macrophage becomes the predominant inflammatory cell type in clean noninfected wounds.
Every phase of the healing process consists of complex interactions between cells and mediators
which tend to regulate the process. Cells participating in wound healing must be activated, i.e.
undergo phenotypic alterations of cellular, biochemical, and functional properties.

During the inflamation phase, the immune system performs a fundamental action, see
[78, 79, 80]. The response of the immune system to an infectious agent is subdivided into
two main categories: Innate (non-specific) immunity response, which is mediated by granulo-
cytes, macrophages, and NK cells [81]; Adaptive (specific, acquired) immune response, which
is mediated by the lymphocytes [82]. The innate immune system is constitutively active and
reacts immediately to infection. The adaptive immune response to an invading organism takes

83
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some time to develop.

Different mathematical models have been proposed for the modeling of immune system
response [83, 84]. Specifically mathematical models based on ordinary differential equations
[85, 86, 87, 88], partial differential equations [89, 90], kinetic theory approach [91, 92] and
continuum mechanics approach [93]. In the pertinent literature computational models have
been also proposed, see [94] and the review paper [95]. However the previous cited models are
based on instantaneous interactions thus avoiding to take into account that various phenomena
occur with some delay. In order to overcome this issue, delayed models have been proposed in
population dynamics [96, 97], in immunology [98, 99], for tumor formation [100, 101, 102], for
economic systems [103, 104, 105, 106] and specifically in the study of the Solow model [107, 108],
of the Dalgaard-Strulik model [109], of the credit risk contagion [110], and in the asset of price
[111]. The introduction of time delay allows to enrich the description of the dynamics of a
system in particular by changing the stability of the steady state and triggering onset of Hopf
bifurcation.

This chapter is concerned with further investigations on a mathematical model recently
proposed in [32] for the modeling of the acute inflammatory response to infection or trauma.
In particular in order to take into account that some interactions have not an immediate effect,
we introduce time delays. Specifically the chapter deals with the existence of steady states,
determining the parameter regimes where the fixed points are stable, and the onset of Hopf
bifurcation appears. As known a steady state belongs to the nullclines of the system and it
is stable if the real part of each eigenvalue associated with the linearized system at that fixed
point is negative. A bifurcation occurs when a change in a parameter alters the number of fixed
points and/or their stability.

The contents of the present chapter are organized as follows. After this introduction, Section
6.2 is devoted to the mathematical analysis (existence of steady states and Hopf bifurcation) of
the delayed pathogen equation, which shares various properties with the delayed model proposed
in Section 3 which consists of a system of two delayed differential equations where the indepen-
dent variables represent the levels of pathogen and the activated phagocytes (e.g. neutrophils);
the model is built up from consideration of direct interactions of fundamental effectors and does
not include components of the adaptive immune response, i.e. T-cells and specific antibodies.
Numerical simulations are also performed within the Section 6.3 with the main aim of support-
ing the analytical results and investigating further nonlinear dynamics. Finally Section 6.4 is
concerned with concluding remarks and further research perspectives.

4.2 The delayed pathogen equation

It is known that when an individual undergoes an injury, at the wound there exists a sentinel
level of immune system cells (local immune response M) able to respond and remove local
infections (pathogens P ). According to [32] we assume that:

• M is inhibited at the rate kmp when it interacts with P at time t;

• P is inhibited at the rate kpm when it interacts with M at time t;

• sm models a source of M ;

• µm models the death of M .

Moreover we introduce a time delay τ ≥ 0 into the equation of P as follows:
.
M = sm − µmM − kmpMP

.
P = −kpmMPτ
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where Pτ = P (t− τ). Bearing [32] in mind thus we have

.
P = kpgP

(
1− P

p∞

)
− kpmsmPτ
µm + kmpP

, (4.1)

where kpg is the pathogen growth rate and p∞ is the carrying capacity of the pathogen popula-
tion.
In what follows, the above parameters will be assumed non-negative.

4.2.1 Steady states and stability analysis

The steady states of Eq. (4.1) are such that the time derivative
.
P vanishes identically. It is

immediate to see that the fixed points of Eq. (4.1) coincide with those for τ = 0. In particular
P∗ = 0 is always a fixed point of Eq. (4.1). The other fixed points P∗ are solution of the following
algebraic equation:

kpg

(
1− P∗

p∞

)
− kpmsm
µm + kmpP∗

= 0,

namely if

kpgkmpP
2
∗ + kpg (µm − kmpp∞)P∗+

p∞ (kpmsm − kpgµm) = 0. (4.2)

The discriminant of Eq. (4.2) reads

∆ = kpg

[
kpg (µm + kmpp∞)2 − 4kmpkpmsmp∞

]
, (4.3)

then Eq. (4.1) also admits the fixed point

P∗ = (kmpp∞ − µm) /2kmp

if

kpg = 4kmpkpmsmp∞/(p∞kmp + µm)2,

and the fixed points P∗ = p1 and P∗ = p2, p1 < p2, with

P∗ =
kpg (kmpp∞ − µm)±

√
∆

2kpgkmp

if kpg > 4kmpkpmsmp∞/(p∞kmp + µm)2.
In [32] Reynolds et al. have shown that P∗ = 0 is stable for kpg < kpmsm/µm, and P∗ = p2 is
stable whenever it exists. Henceforth, in what follows we will deal only with these two stable
fixed points.

Bearing all above in mind, the linearized equation of Eq. (4.1) around one of these two stable
fixed points P∗ is

.
P = a (P − P∗) + b (Pτ − P∗) , (4.4)

where if P∗ = 0 we have

a = kpg and b = −kpmsm
µm

and if P∗ =
kpg (kmpp∞ − µm) +

√
∆

2kpgkmp
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a = kpg

[
1− 2P∗

p∞
+

(
1− P∗

p∞

)2 kmpkpgP∗
kpmsm

]

and b = −kpg
(

1− P∗
p∞

)
The associated characteristic equation of (4.4) reads

λ− a− be−λτ = 0. (4.5)

It is well known that the fixed point P∗ of Eq. (4.1) is locally asymptotically stable if each of
the characteristic roots of Eq. (4.5) has negative real parts. Hence, the marginal stability is
determined by the equations λ = 0 and λ = iω, ω > 0. It is clear that the case λ = 0 cannot
occur because a + b < 0. Let λ = iω be a root of the characteristic equation (4.5) with ω > 0.
Substituting it into (4.5) and separating the real and imaginary parts yields

a = −b cosωτ, ω = −b sinωτ. (4.6)

Squaring each equation in (4.6), taking the sum and employing sin2 ωτ + cos2 ωτ = 1, we have

ω2 = b2 − a2. (4.7)

It is easy to see that Eq. (4.7) has one positive solution

ω0 =
√
b2 − a2

if |b| > |a|. From (4.6), one can obtain the value τ0 corresponding to ω0 as follows:

τ0 =


1

ω0
tan−1

(ω0

a

)
, if a > 0,

1

ω0
tan−1

(ω0

a

)
+ 2π, if a < 0.

One can also see that the purely imaginary root iω0 is simple. If we suppose by contradiction
λ = iω0 to be a repeated root of (4.5), then differentiating (4.5) with respect to λ, inserting
λ = iω0, and using (4.5), leads to ω0 = 0, which gives a contradiction.

4.2.2 On the Hopf bifurcation

The conditions under which a Hopf bifurcation occurs at τ0 are verified except for the transver-
sality condition. Let λ (τ) be the root of (4.5) near τ = τ0 such that Re(λ(τ0)) = 0 and
Im(λ(τ0)) = ω0. Differentiating both sides of Eq. (4.5) with respect to τ, we have(

dλ

dτ

)−1

= − 1

λ(λ− a)
− τ

λ
.

Thus, we obtain

sign

{
d (Reλ)

dτ

∣∣∣∣ τ=τ0
ω=ω0

}
= sign

{
Re

(
dλ

dτ

)−1

τ=τ0
ω=ω0

}

= sign

{
1

ω2
0 + a2

}
. (4.8)
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Since the sign of (4.8) is positive, when λ = iω0, the only crossing of the imaginary axis is
from left to right as τ increases. Consequently, the stability of the steady state P∗ can only be
lost and not regained.

Bearing all the above analysis in mind, we can state the main result of this section.

Theorem 4.2.1 Let ∆ be defined by Eq. (4.3).

1) If kpg < kpmsm/µm, then the steady state P∗ = 0 of Eq. (4.1) is locally asymptotically
stable for τ < τ0 and unstable for τ > τ0, where

τ0 =
1

ω0
tan−1

(
ω0

kpg

)
, ω0 =

√(
kpmsm
µm

)2

− k2
pg.

Furthermore, Eq. (4.1) undergoes a Hopf bifurcation at P∗ = 0 when τ = τ0.

2) If kpg > 4kmpkpmsmp∞/(p∞kmp + µm)2 and

1− P∗
p∞

>

∣∣∣∣∣1− 2P∗
p∞

+

(
1− P∗

p∞

)2 kmpkpgP∗
kpmsm

∣∣∣∣∣ ,
the steady state

P∗ = p2 =
[
kpg (kmpp∞ − µm) +

√
∆
]
/2kpgkmp

of Eq. (4.1) is locally asymptotically stable for τ < τ0 and unstable for τ > τ0, where

τ0 =


1

ω0
tan−1 τ̃0, if α > 0,

1

ω0
tan−1 τ̃0 + 2π, if α < 0,

and
τ̃0 =

ω0

kpg

[
1− 2P∗

p∞
+

(
1− P∗

p∞

)2 kmpkpgP∗
kpmsm

] ,

α = 1− 2P∗
p∞

+

(
1− P∗

p∞

)2 kmpkpgP∗
kpmsm

,

ω0 = kpg

√(
1− P∗

p∞

)2

− α2.

Furthermore, Eq. (4.1) undergoes a Hopf bifurcation at P∗ = p2 when τ = τ0.

4.3 The delayed model with the immune system response

In this section we couple the pathogen equation analyzed in the previous section with the role of
phagocytic immune system cells (neutrophils and macrophages). Bearing paper [32] in mind, we
modify the model proposed in [32] by introducing two time delays τ1 ≥ 0 and τ2 ≥ 0 as follows:

.
P = kpgP

(
1− P

p∞

)
− kpmsmPτ1
µm + kmpP

− kpnN∗P, (4.9)

.

N∗ =
snr
(
knnN

∗
τ2 + knpPτ2

)
µnr + (knnN∗ + knpP )

− µnN∗, (4.10)
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where P and N∗ represent the levels of pathogen and activated phagocytes, respectively and

• kpn is the rate at which N∗ consumes P ;

• snr is the source of resting phagocytes;

• µnr is the decay rate of resting phagocytes;

• knn is the activation of resting phagocytes by previously activated phagocytes and their cy-
tokines;

• µn is the decay rate of activated phagocytes;

• knp is the activation rate of resting phagocytes by pa thogen.

It is worth stressing that with respect to paper [32], the above model is derived by considering

the delayed equations
.
P = −kpmMPτ1 and

.
N∗ = (knnN

∗ + knpP )τ2 NR − µnN∗, where NR is
the population of the resting phagocytes.

4.3.1 Steady states and stability analysis

The steady states of system (4.9)-(4.10) are obtained by setting
.
P =

.
N∗ = 0, Pτ1 = P and

N∗τ2 = N∗ for all t. Therefore, when there is no time delay, i.e. τ1 = τ2 = 0, we recover the
model considered in Section 2.2 of paper [32], and in particular there exists the fixed point
(P,N∗) = (0, 0) (health steady state). It is important to note that the delayed model admits
also a steady state (P,N∗) 6= (0, 0) which represents the inflammation steady state (septic death
state); this state will be analyzed in the next subsection by performing numerical simulations.

Linearization of system (4.9)-(4.10) in the neighborhood of the trivial steady state produces
the system

.
P = kpgP −

kpmsm
µm

Pτ1 ,

.

N∗ = −µnN∗ +
snrknp
µnr

Pτ2 +
snrknn
µnr

N∗τ2 .

So the associated characteristic equation is given by∣∣∣∣∣∣∣∣∣
kpg − λ−

kpmsm
µm

e−λτ1 0

snrknp
µnr

e−λτ2 −µn − λ+
snrknn
µnr

e−λτ2

∣∣∣∣∣∣∣∣∣ = 0,

namely
D(λ, τ1, τ2) ≡ D1(λ, τ1) ·D2(λ, τ2) = 0, (4.11)

where

D1(λ, τ1) = λ− kpg +
kpmsm
µm

e−λτ1 ,

D2(λ, τ2) = λ+ µn −
snrknn
µnr

e−λτ2 .

It is known from [32] that, when τ1 = τ2 = 0, the corresponding eigenvalues of (4.11) are
real and given by λ = (kpgµm − kpmsm) /µm and λ = (snrknn − µnµnr) /µnr.
In what follows we assume that the inequality snrknn < µnµnr holds true. Consequently, in
absence of delays, the steady state (0, 0) of system (4.9)-(4.10) is locally asymptotically stable
if kpg < kpmsm/µm.
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Letting the time delays τ1 and τ2 varied, the trivial fixed point of system (4.9)-(4.10) may
lose its stability. In order to consider the effects of the time delay, we need to investigate the
boundary of the stability region determined by the equations λ = 0 and λ = iω (ω > 0). Letting
λ = 0 in (4.11), one has that D(0, τ1, τ2) 6= 0 having assumed that kpgµm − kpmsm < 0. Thus,
only the case λ = iω (ω > 0) needs to be analyzed.

Case τ1 > 0 and τ2 = 0

Eq. (4.11) becomes D(λ, τ1, 0) ≡ D1(λ, τ1) · D2(λ, 0) = 0. Let λ = iω (ω > 0) be a root of
D(λ, τ1, 0) = 0. SinceD2(iω, 0) 6= 0, λ = iω has to solveD1(λ, τ1) ≡ λ−kpg+(kpmsm/µm) e−λτ1 =
0, i.e. D1(iω, τ1) = 0. Setting a = kpg, b = −kpmsm/µm and τ = τ1, we note that this equation
writes as λ − a − be−λτ = 0, which is Eq. (4.5). According to the analysis performed in the
previous section, the following result holds.

Proposition 4.3.1 Let τ1 > 0, τ2 = 0 and kpg < kpmsm/µm. The steady state (P,N∗) = (0, 0)
of system (4.9)-(4.10) is locally asymptotically stable for τ1 < τ1

0 and unstable for τ1 > τ1
0 , where

τ1
0 =

1

ω0
tan−1

(
ω0

kpg

)
and ω0 =

√(
kpmsm
µm

)2

− k2
pg.

If τ1 = τ1
0 then the system (4.9)-(4.10) undergoes a Hopf bifurcation at (P,N∗) = (0, 0).

Case τ1 = 0 and τ2 > 0

In this case, Eq. (4.11) is D(λ, 0, τ2) ≡ D1(λ, 0) · D2(λ, τ2) = 0. If λ = iω (ω > 0) is a
root of D(λ, 0, τ2) = 0, then, being D1(iω, 0) 6= 0, we conclude that λ = iω is a solution of
D2(λ, τ2) ≡ λ + µn − (snrknn/µnr) e

−λτ2 = 0, i.e. D2(iω, τ2) = 0. Again, we can use Eq. (4.5)
but with a = −µn, b = snrknn/µnr and τ = τ2. Contrary to the previous case, we find that the
condition |b| > |a| is not satisfied. The fact that there is not purely imaginary root satisfying
D(iω, 0, τ2) = 0 leads to the following result.

Proposition 4.3.2 Let τ1 = 0, τ2 > 0. Then the steady state (P,N∗) = (0, 0) of system
(4.9)-(4.10) is locally asymptotically stable.

Case τ1 > 0 and τ2 fixed in its stable interval

We now consider Eq. (4.11) with τ2 in its interval of stability, regarding τ1 as a parameter. Let
λ = iω (ω > 0) be a root of (4.11). Then, D1(iω, τ1) ·D2(iω, τ2) = 0. From the previous subsec-
tion, one has that D2(iω, τ2) 6= 0, so that we must have D1(iω, τ1) = 0. It is now straighforward
that previous arguments imply the following result.

Proposition 4.3.3 Let τ1 > 0, τ2 > 0 and kpg < kpmsm/µm. The steady state (P,N∗) = (0, 0)
of system (4.9)-(4.10) is locally asymptotically stable for τ1 < τ1

0 and unstable for τ1 > τ1
0 , where

τ1
0 =

1

ω0
tan−1

(
ω0

kpg

)
and ω0 =

√(
kpmsm
µm

)2

− k2
pg.

If τ1 = τ1
0 then system (4.9)-(4.10) undergoes a Hopf bifurcation at (P,N∗) = (0, 0).
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Case τ1 fixed in its stable interval and τ2 > 0

This case states that τ1 is in its stable interval [0, τ1
0 ) and τ2 is regarded as a parameter. Assume

that Eq. (4.11) has purely imaginary solution of the form λ = iω (ω > 0). Then it can be seen
that D1(iω, τ1) 6= 0 since τ1 ∈ [0, τ1

0 ) and D2(iω, τ2) 6= 0. Consequently, we have the following
result.

Proposition 4.3.4 Let τ1 ∈ [0, τ1
0 ), τ2 > 0 and kpg < kpmsm/µm. Then the steady state

(P,N∗) = (0, 0) of system (4.9)-(4.10) is locally asymptotically stable for τ2 > 0.

Case τ1 = τ2 = τ

Eq. (4.11) becomes D(λ, τ) ≡ D1(λ, τ) ·D2(λ, τ) = 0. Once again, if λ = iω (ω > 0) is such that
D(iω, τ) = 0, we have that D1(iω, τ) = 0. Applying the analysis of previous subsections, we ob-
tain conditions under which a family of periodic solutions bifurcate from the trivial equilibrium.

Proposition 4.3.5 Let kpg < kpmsm/µm. There exists τ0 > 0 given by

τ0 =
1

ω0
tan−1

(
ω0

kpg

)
and ω0 =

√(
kpmsm
µm

)2

− k2
pg.

such that the steady state (P,N∗) = (0, 0) of system (4.9)-(4.10) is locally asymptotically stable
for τ < τ0 and unstable for τ > τ0. Moreover, for τ = τ0, the Hopf bifurcation occurs at
(P,N∗) = (0, 0).

4.3.2 Numerical investigations

This section is devoted to further investigations on the model (4.9)-(4.10). Specifically by em-
ploying numerical solutions we perform the stability analysis and we investigate on the existence
of Hopf bifurcation in the other fixed point (P,N∗) of the model (4.9)-(4.10) where analytical
results have not been reported. Accordingly we perform a sensitivity analysis on the time delays
τ1 and τ2.

The stability analysis is performed by considering a specific model and in order to compare
our model with the model proposed in [32], we set the parameters of the delayed model (4.9)-
(4.10) as follows:

p∞ = 20× 106, kpm = 0.6, sm = 0.005,

µm = 0.002, kmp = 0.01, kpg = 2.95,

snr = 0.08, knn = 0.01, knp = 0.1,

µnr = 0.12, knn = 0.01, knp = 0.1, µn = 0.05.

The first step is to compute the fixed points. As known, the steady states are points where
the nullclines intersect. As Figure 4.1 shows we have two different steady states: the fixed point
E0 = (0, 0) whose stability analysis has been performed in the previous section and the fixed
point E1 = (5 × 105, 1.6). In what follows the numerical investigations focus on the stability
analysis of the fixed point E1.

The first set of simulations refers to the case τ1 = τ2 = τ . Letting τ varying, we have
found that a Hopf bifurcation occurs at τ̄ = 0.83358. Indeed as Figure 4.2 shows, if τ < τ̄
the fixed point E1 is asymptotically stable and if τ > τ̄ the fixed point E1 is unstable (the
numerical solutions has been obtained for a set of initial conditions near the fixed point E1). It
is worth stressing that in the previous section we have proved analytically that the fixed point
E0 undergoes a Hopf bifurcation.
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This set of simulations is susceptible of biological interpretation. Indeed in the equations of
P and N∗ at time t we have introduced also the role of these cells at time t − τ in order to
take into account different stages of activation. Differently from [32], our results show how it
is important during the interactions to take care of the time at which the cells are activated.
According to Figure 4.2, if at time t we have also cells whose activation stage is that at time t−τ ,
with τ < τ̄ , the system will reach the septic death; if at time t we consider cells whose activation
stage is that at time t − τ , with τ > τ̄ , the system can reach the health stage (remember that
in this case also the steady state E0 undergoes a Hopf bifurcation).

The second set of numerical investigations refers to the case τ1 = 0 and τ2 ≥ 0. As Figure
4.3 shows, for a set of initial conditions near the fixed point E1, when τ2 < τ̄ the fixed point E1

is always locally asymptotically stable; for τ2 > τ̄ the fixed point E1 is unstable (in particular
the origin is always asymptotically stable as already proved in the previous section). This set of
results shows again how the time delay influences the asymptotic behavior of the system: health
state or septic death. In the third case, namely when τ1 ≥ 0 and τ2 = 0, our numerical results
show that the fixed point E1 is always asymptotically stable.

The last set of numerical simulations refers to the sensitivity analysis with respect the pa-
rameter kpg and in the case τ1 = τ2 = τ . In the case τ = 0.4, the Figure 4.4 shows that for
kpg = 2.7 the system reaches the steady state E0 and for kpg = 2.95 the system reaches the
steady state E1.

Figure 4.1: In the left panel the nullclines of the pathogen (purple line) and of the activated
phagocytes (black line). Zooming of the regions where there are the steady states: E1 =
(5× 105, 1.6) (center panel) and E0 = (0, 0) (right panel).
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Figure 4.2: Numerical solutions of the delayed model (4.9)-(4.10) in the case τ1 = τ2 = τ and
with initial conditions near the steady state E1 = (5 × 105, 1.6). The first column (a), (b) and
(c) shows the time evolution of P (blue line), the second column (b), (e) and (h) shows the time
evolution of N∗ (green line), the third column (c), (f) and (i) shows the associated phase space
diagram of the delayed N∗/P system (red line).

4.4 Conclusions and future perspective

The present chapter has been devoted to generalize the mathematical model developed in [32]
by inserting two time delays in order to take into account cells with different stage of activation.
The asymptotic analysis has been concerned with the stability analysis of the steady states and
the sufficient conditions under which a Hopf bifurcation occurs. The analysis has shown how
time delays can influence the whole dynamics and in particular the stability of the steady state.

In particular the numerical results and the bifurcation analysis suggest that the magnitude
of the time delay plays several important roles in the restoration of health.

It is worth stressing that the biological relevance of the analysis performed in the present
chapter and the related conclusions are limited by the simplifications present in the proposed
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Figure 4.3: Numerical solutions of the delayed model (4.9)-(4.10) in the case τ1 = 0 and τ2 > 0,
and with initial conditions near the steady state E1 = (50× 106, 1.6). The first column (a) and
(d) shows the time evolution of P (blue line), the second column (b) and (e) shows the time
evolution of N∗ (green line), the third column (c) and (f) shows the associated phase space
diagram of the delayed N∗/P system (red line).

delayed model. Therefore the development of a much larger model that is also able to reproduce
experimental data is object of future investigations.

Research directions include the derivation of an explicit algorithm for determining the direc-
tion of the Hopf bifurcation and the stability of the bifurcating periodic solutions. This step can
be pursued by employing the center manifold theory and the normal form method [112]. Further
research directions include generalizations of the delayed model proposed in the present chapter,
which takes into account tissue damage and anti-inflammatory mediators such as cortisol and
interleukin-10. Moreover the introduction of the adaptive branch of the immune system is object
of further investigations.

Finally the derivation of a mathematical model for the acute inflammatory response to infec-
tion based on the thermostated kinetic theory [113, 114] is part of future research perspective.



94 CHAPTER 4. A DELAYED MATHEMATICAL MODEL

kpg=2.95, τ=0.4kpg=2.7, τ=0.4

Figure 4.4: Phase space diagram of the delayed model (4.9)-(4.10) in the case τ1 = τ2 = τ = 0.4.
For kpg = 2.7 the system reaches the steady state E0 (left panel) and for kpg = 2.95 the system
reaches the steady state E1 (right panel). The pathogen nullclines are in purple line and the
activated phagocytes nullclines are in black line.



Chapter 5

Mimic Therapeutic Actions against
Keloid by thermostated Kinetic
Theory Methods

This chapter deals with the modeling of a wound healing disease under a therapeutic action
by employing the methods of the thermostated kinetic theory for active particles. In particular,
in order to test a therapeutic action for the keloid formation and the possible development of
a cancer, an external force field coupled to a Gaussian thermostat is introduced into a mathe-
matical model recently proposed. Specifically the model depicts the competition of the immune
system cells with a virus, the mutated fibroblast cells, and the cancer cells. Employing a com-
putational analysis, the effect of three different external force fields mimic therapeutic actions is
analyzed: A vaccine for the virus, the PUVA therapy for the keloid and a vaccine for the cancer.
The results are in agreement with the evidence that the sole action of the immune system is not
sufficient to obtain a total depletion of keloid. Further refinements and developments are also
discussed into the chapter. It is worth pointing out that the contents of this chapter constitutes
the paper [36].

5.1 Introduction

As already mentioned in chapter 5, wound healing is a dynamic process consisting of four con-
tinuous, overlapping, and precisely programmed phases: Hemostasis, the inflammation phase,
the proliferation phase, and the remodelling phase, see the review paper [115]. The events of
each phase must happen in a precise and regulated manner. Interruptions, aberrancies, or pro-
longation in the process can lead to delayed wound healing or a non-healing chronic wound,
such as keloid. Keloid is a hyperproliferative response of connective tissue in response to skin
trauma. The causes which trigger this phenomenon are poorly understood and currently no
successful treatment have been developed [116]. In particular the defective control mechanisms
in keloid result in the excessive cell proliferation and extracellular matrix synthesis: keloid-
derived fibroblasts have a greater proliferative capacity than normal derived fibroblasts [117].
Even if fibroblasts have a major role, other cells like keratinocytes and melanocytes can be
involved [116], and the causes can be also the presence of a virus [118] and a generic suscep-
tibility [119]. The possible therapy for keloid strictly depends on the location, size, depth of
the lesion and the age of the patient. Therapeutic treatment includes occlusive dressings, com-
pression therapy, intralesional corticosteroid injections, cryosurgery, excision, radiation therapy,

95
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laser therapy, interferon therapy, 5-fluorouracil, doxorubicin, bleomycin, verapamil, retinoic acid.
Other promising therapies include antiangiogenic factors, including vascular endothelial growth
factor inhibitors, phototherapy, tumor necrosis factor (TNF)-alpha inhibitors, and recombinant
human interleukin, which are directed at decreasing collagen synthesis.

Recently the defective induction of stress-induced premature senescence during wound heal-
ing has been proposed as a possible mechanism of keloid formation [120]. Specifically keloid
fibroblasts undergo senescence at a rate lower than that of normal scar, thus depositing collagen
and other extracellular matrix proteins beyond that expected in normal wound healing. The
proposed mechanism could lead to new treatment possibilities for keloid, e.g. a therapy that
induce senescence could be used to prevent the formation of keloid, and consecutively enable
the formation of a normal scar.

From the modeling point of view, the fibro-proliferative disease has been widely studied at
macroscopic level, but insight at cellular and sub-cellular level scale is still lacking, see the review
paper [121] and references cited therein. Therefore, there is a remarkable need of developing the
necessary modeling approach that can handle the full range of time and length scales required
to model complex biological systems, with emphasis on spatially distributed systems, and apply
this framework to fibrosis disease such as keloid.

The keloid formation has been recently modeled in [35] and further analyzed in [122]. The
model, which refers to the keloid formation triggered by a virus and its possible malignant
effects under the immune system surveillance, is based on the kinetic theory for active particles
[25]. At the basis of the methods there is the decomposition of the whole system into different
functional subsystems composed by particles, called active particles, able to express a function
or strategy. Therefore the microscopic state of the active particles includes, in addition to the
classical geometrical and mechanical variables, also the activity variable. The description of each
functional subsystem is obtained by the definition of a distribution function over the microscopic
state of interacting particles. The evolution of the system is determined by microscopic nonlinear
interactions, which take into account not only mechanical rules but also modifications of the
biological state. It is worth stressing that the kinetic theory for active particles has been also
employed for the modeling of other biological systems, see, among others, papers [123, 124, 125,
126].

This chapter is concerned with a further refinement of the mathematical model proposed in
[35]. Specifically in order to take into account possible therapeutical actions, the model [35] is
generalized by introducing different external force fields, which mimic a therapy at the macro-
scopic scale. The introduction of an external force field moves the system out of equilibrium and
in order to have a steady state a Gaussian thermostat is coupled to the external force field. The
Gaussian thermostat is thus a damping term adjusted to control the energy into the system,
the interested reader in a more deeper understanding of the thermostat and its applications in
molecular dynamics simulations is referred to the book [127] and to the recent review paper
[128]. The resulting framework is thus a thermostated kinetic model where the excess of en-
ergy introduced by the external force field is removed by the thermostat. This new framework
acts as a general paradigm for the derivation of a specific model for keloid. In particular the
thermostated kinetic model proposed in the present chapter is the object of a computational
analysis to test a recent hypothesis of therapeutic action for the keloid formation and the pos-
sible development of a cancer. The model depicts the competition of the immune system cells
with a virus, the mutated fibroblast cells, and the cancer cells by means of the density function
and the distribution function of cells. Three different external forces, mimic therapeutic actions,
are taken into account: a vaccine for the virus, the PUVA therapy for the keloid and a vaccine
for the cancer cells. The results are in agreement with the evidence that the sole action of the
immune system is not sufficient to obtain a total depletion of keloid.

The contents of the present chapter are outlined as follows: After this introduction, Section
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7.2 is concerned with the presentation of the thermostated kinetic theory for active particles and
specifically with the derivation of a mathematical structure that acts as a general paradigm for
the derivation of specific models. The framework includes an external force field coupled with a
Gaussian thermostat that allows the control of the global activation energy. Section 7.3, after
a short phenomenological analysis with the aim of understanding who are the main actors that
are responsible for the keloid formation, is devoted to the derivation of our model for keloid
formation and specifically to the definition of the functional subsystems, the interactions among
the cells and the introduction of the external force fields. Section 7.4 deals with a computational
analysis on a test case obtained by setting a value to the different parameters of the model. The
computational analysis consists of a sensitivity analysis on the magnitude of the external force
fields when the rate of heterogeneity of cells is let vary. Finally Section 7.5 concludes the chapter
by suggesting possible further refinements and developments, to be regarded as future research
directions.

5.2 The underlying thermostated kinetic framework

This section is devoted the derivation of the thermostated kinetic framework that can be pro-
posed for the modelling of most real-world complex systems. The section is presented through
two sequential subsections. First we deal with the complexity problem, the decomposition of
system into subsystems and their statistical representation, and finally with the derivation of
the relative class of evolution equations that act as a general paradigm for the derivation of
specific models.

5.2.1 Complexity, functional subsystems decomposition and representation

Complexity is an intrinsic characteristic of most living systems that makes the modelling of the
system disputable. Indeed not only the large number of elements constituting the system but
also the emergence of behaviour, that arises as result of the whole interactions among the ele-
ments that occur in nonlinear fashion, are key issues of the complexity. The complex behavior is
also due to the fact that the living entities (cells, animals, pedestrians), differently from the inert
matter entities (billard balls, gas particles, electrons), have the ability to perform specific strate-
gies and functions such that small variations in their will, could modify the overall asymptotic
dynamics. Moreover external factors influence their strategies and consequently the occurrence
of their emerging behaviour. Finally the strategy of entities at the lower scale (microscopic or
mesoscopic) determines the behaviors of the system at the upper scale (macroscopic). From the
modelling viewpoint, the onset of complexity indicates the needing to develop tools and methods
which allow to reduce the complexity.

In the biological systems case, several authors suggest the approach of system biology. In
what follows we use the systems approach proposed in [25]. Accordingly the overall system S is
viewed as composed by a large number of elements (particles of the inert matter, animals, cells,
pedestrians) that interact in nonlinear matter and under the effect of macroscopic external force
fields. In this approach the elements of the system are called active particles because in addition
to their possibility to be allocated, at time t, in the position x with velocity v, they also have
an active role in the evolution of the system (the ability to express strategy) modelled by the
scalar variable u ∈ Du. The triplet (x,v, u) is called the microscopic state of the particles. The
active particles are of heterogeneous type and they are selected for the ability they express and
not for their size and shape. Particles having the same ability are grouped into a subsystem,
called functional subsystem. Therefore the overall complex system S is decomposed into different
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functional subsystems Si, for i ∈ {1, 2, . . . , n}, such that:

Si ∩ Sj = ∅, ∀i 6= j, and S =
n⋃
i=1

Si. (5.1)

It is worth precising that the decomposition into functional subsystems is a flexible approach
to be adapted at each system and is related to the activity variable. Finally a functional sub-
system could be itself a complex system and therefore can be decomposed into subsystems.
The evolution of each functional subsystem Si is represented by the statistical mechanics ap-
proach. Accordingly, we assume that the active particle during a time interval [0, T ], or [0,+∞),
is located in x which attains values in a (bounded or unbounded) domain Dx ⊂ Rd (usually
d = 3), with velocity variable v that attains values in a domain Dv ⊂ Rd and activity variable
u which varies in a domain Du ⊂ R. Then the kinetic of the ith functional subsystem, for
i ∈ {1, 2, . . . , n}, is depicted by the evolution of the distribution function fi(t,x,v, u) defined on
[0, T ] × Dx × Dv × Du. For any fixed time t, the quantity fi(t,x,v, u)dx dv du stands for the
density of particles in the volume element dx dv du centered at (x,v, u). Let Ω = Dx×Dv×Du

be the domain of all the possible microscopic states and dΩ = dx dv du the Lebesgue measure
on Ω, then the minimal assumption that one can make on f is that for all t > 0,

fi(t, ·, ·, ·) ∈ L1
loc(Ω, dΩ).

5.2.2 The homogeneous thermostated kinetic framework

This section is concerned with the underlying thermostated kinetic framework which acts as a
general paradigm for the derivation of specific models. Specifically a large number of homoge-
neously distributed cells (active particles) interact in nonlinear matter and macroscopic external
force fields Fi = Fi(u) : Du → R+ extent an action on the system. The microscopic state
of a cell is the variable u, which means that the cell at time t ∈ [0,∞), has activity variable
u ∈ Du ⊂ R. Cells expressing the same function are grouped into a subsystem, called functional
subsystem. The evolution of each functional subsystem is depicted by the distribution function
fi(t, u) : [0,∞)×Du → R+, for i ∈ {1, 2, . . . , n}, and such that, for any fixed time t, the quantity
fi(t, u)du represents the density of cells in the elementary volume du centered at u.

Let f = f(t, u) = (f1(t, u), . . . , fn(t, u)) be the vector whose components are the distribution
functions of the functional subsystems and

f̃(t, u) =

n∑
i=1

fi(t, u). (5.2)

The evolution equation for the ith functional subsystem is obtained by equating the time
derivative of fi to the balance of the inlet and outlet flows in the elementary volume du. Ac-
cordingly we have:

∂tfi + ∂u

(
Fi
(

1− u
∫
Du

u f̃ du

)
fi

)
= Ji[f ], (5.3)

where Ji[f ] = Ji[f ](t, u) is the operator that models the gain-loss of cells due to transitions in
the activity variable (conservative term) and it reads:

Ji[f ] =
n∑
j=1

∫
Du×Du

ηij Aij(u∗, u∗, u)fi(t, u∗) fj(t, u
∗) du∗ du

∗

−fi(t, u)

n∑
j=1

∫
Du

ηij fj(t, u
∗) du∗. (5.4)
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where:
• ηij models the probability that a cell of the ith functional subsystem with activity u∗ interacts

instantaneously with a cell of the jth functional subsystem with activity u∗;
• Aij = Aij(u∗, u∗, u) : Du × Du × Du → R+ is the density function modeling the probability

that cells of the ith functional subsystem, with activity u∗, interacting with cells of the jth
functional subsystem, with activity u∗, reach the activity u. In particular Aij(u∗, u∗, u) satisfies
the following identity: ∫

Du

Aij(u∗, u∗, u) du = 1, ∀u∗, u∗ ∈ Du.

Remark 5.2.1 Since fi(t, u) du denotes the number of cells, at time t, such that u ∈ [u, u+ du]
then

fi(t, u∗) du∗ fj(t, u
∗) du∗ (5.5)

is a non linear product that refers to the interaction, at time t, between the number of candi-
date cells such that u∗ ∈ [u∗, u∗ + du∗] and the number of field cells such that u∗ ∈ [u∗, u∗ +
du∗]; the possibility of this interaction can be measure by introducing the non-negative func-
tion ηij(u∗, u

∗) which represents the interaction rate; the probability that after this interaction
the candidate cell undergoes a change in its microscopic state is measured by the non-negative
function Aij(u∗, u∗, u). Bearing all above in mind, the (infinitesimal) result of the interaction
reads:

Aij(u∗, u∗, u) ηij(u∗, u
∗) fi(t, u∗) du∗ fj(t, u

∗) du∗, (5.6)

and summing up with respect to all the cells with activities u∗ and u∗, we obtain the operator
which models the gain of cells with activity u, see Eq (5.4).

The operator TFi [f ] = TFi [f ](t, u) is the transport term that models the Gaussian thermostat
[129, 130], and it reads:

TFi [f ] := ∂u

(
Fi
(

1− u
∫
Du

u f̃(t, u) du

)
fi(t, u)

)
. (5.7)

In particular (5.7) is a damping operator adjusted to control the global activation energy:

E2[f ](t) =
n∑
i=1

∫
Du

u2 fi(t, u) du.

The framework (5.3) can be further generalized by introducing the role of nonconservative
processes. Specifically, interactions among the cells may generate proliferation/destruction of
other cells (birth-death process). This type of interaction is modeled by the following operator
Ni[f ] = N [f ](t, u):

Ni[f ] = fi(t, u)
n∑
j=1

∫
Du

αij fj(t, u
∗) du∗, (5.8)

where αij = ηij µij , being µij the net proliferative/destructive rate.

Because of DNA corruptions, cells can become cells of another functional subsystem. These
kinds of interactions are modeled by the following operator Mi[f ] = Mi[f ](t, u):

Mi[f ] =

n∑
h=1

n∑
k=1

∫
Du×Du

βihk fh(t, u∗) fk(t, u
∗) du∗ du

∗. (5.9)
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where βihk = ηhk ϕ
i
hk, being ϕihk the net mutative rate into the ith functional subsystem, due

to interactions that occur with rate ηhk between the cells with activity u∗ of the hth functional
subsystem and the cells with activity u∗ of the kth functional subsystem.

Bearing all above in mind, the thermostated kinetic framework with proliferative/destructive
and mutative interactions reads:

∂tfi(t, u) + TFi [f ](t, u) = Ji[f ](t, u) +Ni[f ](t, u) +Mi[f ](t, u). (5.10)

It is worth stressing that the parameters of the model can be function of the activity, namely
αij(u∗, u

∗) = ηij(u∗, u
∗)µij(u∗, u

∗) and βihk(u∗, u
∗) = ηhk(u∗, u

∗)ϕihk(u∗, u
∗). However in order

to simplify our model the parameters αij and βihk will be assumed as constants.

From the mathematical point of view, the Cauchy problem related to the general framework
(5.10) has been analyzed and the existence and uniqueness of the solution has been proved
including the existence of stationary solutions [34]. Therefore we are allowed to develop the
appropriate computational methods to obtain simulations of a specific model.

5.3 A thermostated kinetic model for keloid with therapy

This section, according to the phenomenological description of [35], deals with the derivation,
at the cellular scale, of a model for the keloid formation with therapy in the framework of the
thermostated kinetic theory. According to the general framework (5.10), first we deal with the
characterization of the functional subsystems and their statistical representation, then with the
modelling of the microscopic interactions among the selected functional subsystems, and finally
with the derivation of the relative class of evolution equations.

5.3.1 Functional Subsystems and their Activity Variable

The model is developed assuming that the keloid formation involves four interacting functional
subsystems and these interactions may also generate a subsystem constituted by cancer cells.
Each subsystem is able to express a well–defined biological function represented by the scalar
variable u ∈ Du = [0,∞[. Specifically we distinguish among the following subsystems:

1 - Fibroblast cells (Fc). The activity variable u represents the proliferation ability. A
fibroblast cell may undergo a mutation as consequence of a viral action. This mutation
gives the cells a significant advantage with regard to proliferation, and allows it and its
descendant to quickly advance along the keloid. Thus normal fibroblasts cells may generate
cells in a new subsystem that we call, according to medical terminology, keloid fibroblast
cells.

2 - Viruses (V). The activity variable u is a magnitude of their aggressiveness related to
their proliferation ability. Virus, as known, is an infectious agent that can replicate only
inside the cells which, as consequence of the infections, became viral cells or activated
viruses. Virus infections eventually result in the death of the host cell. When the adaptive
immune system of a vertebrate encounters a virus, it produces specific antibodies that bind
to the virus and render it non-infectious (humoral immunity). The host cell is destroyed
by killer T cells (cells-mediated immunity).

3 - Keloid-Fibroblast cells (KFc). The activity variable u represents the proliferation
ability but these cells are characterized by a relatively greater ability to proliferate with
respect to the normal fibroblast cells (genetic instability). Increasing values of u indicate
an increasing intensity of proliferation.
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4 - Cancer cells (Cc). The activity variable u is a magnitude of their progression ability.
These cells are characterized by a greater and greater genetic instability with respect to
the KFc. Increasing values of u take into account these capabilities.

5 - Immune system cells (ISc). The activity variable u is a magnitude of the activation
and of the response for the immune system to foreign agents. These cells have the ability
to contrast KFc, Cc, and V through recognition and destruction.

In the sequel, when we refer to the subsystems 2, 3, and 4 as a whole, we will call them
non-self cells. In table 5.1 we have summarized the funtional subsystems, the related activity
variables, and the distribution functions of the cells involved in the model.

Functional Subsystems Activity Distribution Function

Fibroblasts cells (Fc) Proliferation f1(t, u)

Viruses (V) Aggressiveness f2(t, u)

Keloid Fibroblasts cells (KFc) Proliferation f3(t, u)

Cancer cells (Cc) Progression f4(t, u)

Immune System cells (ISc) Activation f5(t, u)

Table 5.1: The functional subsystems, the activity variables, and distribution functions of the
cells involved in the model.

5.3.2 The Microscopic Interaction Terms

The derivation of evolution equations for the distribution function of each subsystem needs
the modelling of the microscopic interactions among individuals of the various subsystems.
Interactions which have non trivial outputs, i.e. an effective change (either in the microscopic
state or in the entities number) occurs after the interaction, are not considered. Thus biological
phenomena corresponding to interactions that give trivial outputs will not be taken into account,
as for instance the physiological birth and death of the entities. The microscopic interaction
terms are derived under the following mathematical assumptions:

1 - The overall state of the functional subsystems is described by the distribution functions
f1(t, u) (fibroblast cells), f2(t, u) (viruses), f3(t, u) (keloid fibroblast cells), f4(t, u) (cancer
cells), and f5(t, u) (immune system cells).

2 - The local density and the local activation for each subsystem i ∈ {1, 2, 3, 4, 5} write re-
spectively:

E0[fi](t) =

∫ ∞
0

fi(t, u) du, E1[fi](t) =

∫ ∞
0

ufi(t, u) du . (5.11)
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3 - The system is assumed to be homogeneously distributed in space. According to a mean
field approximation, the encounter rate is assumed to be constant for all interacting pairs;
for simplicity, ηij = 1 for all i, j ∈ {1, 2, 3, 4, 5}.

4 - The term Aij related to the transition probability density is assumed to be defined by a
delta Dirac function (deterministic output mij(u∗, u

∗) of a pair interaction) depending on
the microscopic state of the interacting pairs:

Aij(u∗, u∗, u) = δ(u−mij(u∗, u
∗)), (5.12)

where mij will be defined in the sequel. Under the above assumptions, the modelling of each
term of interaction is obtained as follow.

• Interactions with transition of activity. It is assumed that V, KFc, and Cc are the

only subsystems subject to conservative interactions, therefore J1[f ](t, u) = J5[f ](t, u) = 0. The
conservative terms J2[f ](t, u), J3[f ](t, u), and J4[f ](t, u) are derived under the assumption that
the non-self cells have a tendency to increase their microscopic state with a certain rate, regulated
by the interactions with the Fc and V. The evolution toward higher level of activity is called
heterogeneity-proliferation for KFc and V instead is called heterogeneity-progression
for Cc. Moreover, it is assumed that the heterogeneity-proliferation of KFc is greater than the
heterogeneity-proliferation of V. According to Eq.(5.12), we define

mij(u∗, u
∗) =


u∗ + εα if j = 1 and i = 2,
u∗ + α if j = 2 and i = 3,
u∗ + ε2α if j = 2 and i = 4,
u∗ otherwise,

(5.13)

where α is a positive parameter, which defines the heterogeneity-proliferation rate, toward high
states of activity, for KFc, while ε < 1 is a scale parameter, which takes into account the
difference among the heterogeneity-proliferation and the heterogeneity-progression rates of the
V and Cc with respect to the KFc. Straightforward calculations give the following conservative
terms:

Ji[f ](t, u) =



E0[f1](t) [f2(t, u− ε α)− f2(t, u)] if i = 2,

E0[f2](t) [f3(t, u− α)− f3(t, u)] if i = 3,

E0[f2](t)[f4(t, u− ε2α)− f4(t, u)] if i = 4,

0 otherwise.

(5.14)

• Interactions with proliferation-destruction processes. Each subsystem may proliferate

when it encounters another subsystem. Specifically:

P.1 Fc proliferate when encounter each other;

P.2 V proliferate when encounter Fc and ISc;

P.3 KFc proliferate when encounter Fc and V;

P.4 Cc proliferate when encounter V;

P.5 ISc proliferate when encounter V, KFc, and Cc.
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Moreover, it is assumed that the proliferation rate of KFc cell is greater than the proliferation
rates of Fc, V, and Cc; the proliferation rate of the ISc, when encounter V and Cc, is greater
than the proliferation rate of the ISc when encounter KFc. Accordingly, we define:

µij(u, u
∗) =



ε2β if j = 1 and i = 1,
εβ if j ∈ {1, 5} and i = 2,
β if j ∈ {1, 2} and i = 3,
εβ if j = 2 and i = 4,
βi if j ∈ {2, 4} and i = 5,
ε2βi if j = 3 and i = 5,
0 otherwise,

(5.15)

where β is a positive parameter corresponding to the proliferation rate of KFc; βi is the prolif-
eration rate of the ISc, and ε is the scale parameter. The proliferation terms thus read:

Pi[f ](t, u) =



ε2βf1(t, u)E0[f1](t) if i = 1,

εβf2(t, u) [E0[f1](t) + E0[f5](t)] if i = 2,

βf3(t, u) [E0[f1](t) + E0[f2](t)] if i = 3,

εβf4(t, u)E0[f2](t) if i = 4,

βif5(t, u) [E1[f2](t) + ε2 E1[f3](t) + E1[f4](t)] if i = 5.

(5.16)

The cells of each subsystem may be destroyed when they encounter cells of another subsystem.

Specifically:

D.1 Fc are destroyed by V;

D.2 V and Cc are destroyed by ISc;

D.3 KFc are destroyed by V and ISc;

D.4 ISc are destroyed by V, KFc, and Cc.

Moreover, ISc are able to destroy (with rate δ) V and Cc more efficiently than the KFc; the
latter are destroyed by V less efficiently than Fc. The non-self cells with an high level of activity
have the ability to inhibit or destroy the ISc (immune suppression or immune-subversion) but
the destruction rate of the ISc by KFc is assumed to be less than the destruction rate by Cc and
V. It is worth stressing out that we assume a destruction of the ISc by non-self entities, since
inhibited immune cells do not play a relevant role in the competition and may be equivalently
assumed as eliminated. Accordingly, we define

µij(u, u
∗) =



−εδ if j = 2 and i = 1,
−δ if j = 5 and i ∈ {2, 4},
−ε2δ if j ∈ {2, 5} and i = 3,
−ε2δiu

∗ if j = 3 and i = 5,
−δiu∗ if j ∈ {2, 4} and i = 5,
0 otherwise,

(5.17)
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where δi is a positive parameter which characterizes the destruction of the ISc by V and Cc.
Thus the destructive terms read:

Di[f ](t, u) =



−εδf1(t, u)E0[f2](t) if i = 1,

−δf2(t, u)E0[f5](t) if i = 2,

−ε2δf3(t, u) [E0[f2](t) + E0[f5](t)] if i = 3,

−δf4(t, u)E0[f5](t) if i = 4,

−δif5(t, u) [E1[f2](t) + ε2E1[f3](t) + E1[f4](t)] if i = 5.

(5.18)

In particular Ni[f ](t, u) = Pi[f ](t, u) +Di[f ](t, u).

• Interactions with mutation. It is assumed that may occur cell interactions which result,

due also to genetic mutations, to the birth of a new subsystem. Specifically:

T.1 Fc may mutate in KFc when interact with Fc;

T.2 Fc may mutate in KFc when interact with V;

T.3 KFc may mutate in Cc when interact with V;.

In particular, we assume that is more likely that Fc become KFc when they encounter V. More-
over, the microscopic state of the entities does not change during the transition. Accordingly,
we define

ϕihk(u∗, u
∗, u) =


εγ δ(u− u∗) if h = 1, k = 1, and i = 3,
γ δ(u− u∗) if h = 1, k = 2, and i = 3,
λ δ(u− u∗) if h = 3, k = 2, and i = 4,
0 otherwise,

(5.19)

where γ and λ are the transition (mutation) rates in the KFc subsystem and in the Cc subsystem,
respectively. Thus the transition terms read:

Mi[f ](t, u) =


γf1(t, u) [εE0[f1](t) + E0[f2](t)] if i = 3,

λf3(t, u)E0[f2](t) if i = 4,

0 otherwise.

(5.20)

Finally we assume that a constant external force field Fi, for i = {2, 3, 4}, acts on the ith
functional subsystem and mimics a therapy.

Bearing all above in mind, the model consists in an evolution equation for each distribution
function fi, for i ∈ {1, 2, 3, 4, 5}. Thus yields:
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∂tf1 = ε
(
ε β

∫ ∞
0

f1(t, u) du− δ
∫ ∞

0
f2(t, u) du

)
f1(t, u) ,

∂tf2 + ∂u

(
F2

(
1− u

∫
Du

u f̃(t, u) du

)
fi(t, u)

)
=
(
εβ

∫ ∞
0

[f1(t, u) + f5(t, u)] du

−δ
∫ ∞

0
f5(t, u) du

)
f2(t, u)− f2(t, u)

∫ ∞
0

f1(t, u) du+ f2(t, u− ε α)

∫ ∞
0

f1(t, u) du ,

∂tf3 + ∂u

(
F3

(
1− u

∫
Du

u f̃(t, u) du

)
fi(t, u)

)
=
(
β

∫ ∞
0

f1(t, u) du− (1− β + ε2δ)×

∫ ∞
0

f2(t, u) du
)
f3(t, u)− ε2δ f3(t, u)

∫ ∞
0

f5(t, u) du+ f3(t, u− α)

∫ ∞
0

f2(t, u) du

+γ
(
ε

∫ ∞
0

f1(t, u) du+

∫ ∞
0

f2(t, u) du
)
f1(t, u) ,

∂tf4 + ∂u

(
F4

(
1− u

∫
Du

u f̃(t, u) du

)
fi(t, u)

)
=
(

(εβ − 1)

∫ ∞
0

f2(t, u) du

−δ
∫ ∞

0
f5(t, u) du

)
f4(t, u) + λ f3(t, u)

∫ ∞
0

f2(t, u) du+ f4(t, u− ε2α)

∫ ∞
0

f2(t, u) du ,

∂tf5 = βi

(∫ ∞
0

[f2(t, u) + f4(t, u)] du+ ε2

∫ ∞
0

f3(t, u) du
)
f5(t, u)

−δi
(∫ ∞

0
u [f2(t, u) + f4(t, u)] du+ ε2

∫ ∞
0

u f3(t, u) du
)
f5(t, u).

(5.21)

The model is characterized by 11 parameters having the following biological meaning:

• α is the heterogeneity rate of KFc;

• β is the proliferation rate of KFc;

• βi is the proliferation rate of ISc;

• δ is the destruction rate of V and Cc by ISc;

• δi is the destruction rate of ISc by V and Cc;

• γ is the mutation rate of Fc in KFc;

• λ is mutation rate of KFc in Cc;

• ε is the scale factor.

• Fi, for i = {2, 3, 4}, is an external force field that acts on the ith functional subsystem and
mimics a therapy.

It is worth noting that the α-parameter refers to mass conservative encounters, the β-
parameters refer to encounters which generate proliferative events, the δ-parameters refer to
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destructive interactions, the parameters γ and λ are related to transition encounters, and ε
is a scale parameter, see Table 5.2. The all parameters have to be regarded as positive con-
stants (eventually equal to zero), small with respect to unity, and have to be tuned by suitable
experiments.

Interactions Fc V KFc Cc ISc

Fc
Proliferative ε2β
Destructive −εδ
Mutative εγ γ

V
Conservative εα
Proliferative εβ εβ
Destructive −δ

KFc

Conservative α
Proliferative β β
Destructive −ε2δ −ε2δ
Mutative λ

Cc
Conservative ε2α
Proliferative εβ
Destructive −δ

ISc
Proliferative βi ε2βi βi
Destructive δi −ε2δi δi

Table 5.2: Functional subsystems, interaction terms, and related parameters.

5.4 Computational analysis: Mimic therapeutic actions

This section is concerned with the computational analysis of the model (5.21) and specifically
with the evolution of the different functional subsystems when an external action acts on the
system as a therapeutic action. The main aim is to simulate the prompt response against the
formation and evolution of keloid and the possible onset of cancer. The computational analysis
is thus addressed to analyze the effects of three different therapeutic actions: An action which
mimics a vaccine against the virus, an action which mimics a vaccine against cancer cells, and
an action which can also mimic surgery on keloid. It is important to note that, according to our
model, the onset of cancer cells is a consequence of mutations in the keloid cells because of the
virus, the latter in part also responsible for mutations in the fibroblasts cells which generate the
keloid (remember that according to our assumptions, the genetic susceptibility is also responsible
for keloid formation). Therefore the main role of the external actions should be to act on the
functional subsystems of virus and keloid cells. However in order to have a more global view of
what the model developed in the present chapter is able to reproduce, we will consider also an
external action on the cancer cells.

It is worth stressing that our model is an exploratory model. Thus, at this stage, we are only
interested in the emerging phenomena that the model is able to reproduce and not in the tuning
with an in-vivo or in-vitro experiment or empirical data, which can be considered as subject
of further investigations. Accordingly, the computational analysis focuses on the model (5.21)
when only one external action is applied. The dynamics of the model when the three actions
can act at the same moment will be straightforward. However to think that the three different
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actions may be applied at the same time can not be suitable then we believe that our model
will fit well if a combination of the three different actions will be performed at different times.
Specifically the first step is to act against the virus (F2 6= 0, F3 = F4 = 0); when the virus is
killed, the reached nonequilibrium stationary state will be the initial state for the model (5.21)
with the action of a therapy for keloid (F3 6= 0, F4 = 0); when keloid cells are eliminated, the
new reached nonequilibrium stationary state will be the initial state for the model (5.21) with
the therapeutic action against the cancer cells (F4 6= 0). In particular the intermediate step
can be performed thanks to the introduction of the thermostat that allows the existence of a
nonequilibrium stationary state.

The computational analysis will be addressed by fixing nine of the eleven parameters and
performing a sensitivity analysis on the parameter α and on the therapeutical action Fi, for
i ∈ {2, 3, 4}. In the analysis we will show the evolution of the density, the behavior of the
distribution function and the activation energy. The computational scheme is that of the well-
known generalized collocation method where the variable u is discretized into a suitable set of
collocation points. The integral terms are approximated by means of algebraic weighted sums
in the nodal points of the discretization. The particularization of the evolution equations in
each node and the enforcing of the initial conditions transform the model that is a system of
integro-differential equations into a systems of ordinary differential equations, describing the
evolution of the values of the distribution functions in the node of the collocation, see Section 2
of chapter [122] for the all details.

The choice of the distribution functions at time t = 0 is based on the assumption that, before
the formation of keloid and the related onset of cancer, the virus infects the Fc. Our analysis
starts when the number of Fc in the wound is equal to the number of V and a number of immune
system cells have reached the wound. Accordingly we assume nonzero initial conditions only for
the functional subsystem of Fc, V, and ISc.

The test case is based on the choice of the parameters as follows: γ = 0.4 (the rate of
mutation of Fc into KFc is not negligible), δ = 0.3 (the ability of the immune system cells to
inhibit the non-self cells is quite low), δi = 0.5 (the non-self cells have an intermediate ability
to inhibit the response of the immune system), β = 0.4 (the non-self cells have an intermediate
ability to proliferate), βi = 0.35 (the rate of proliferation of ISc is quite low), λ = 0.5 (the rate
of mutation of KFc into Cc is not negligible) and ε = 0.5.

It is worth stressing that the computational analysis performed in the present chapter do
not cover the whole variety of conceivable dynamics but represents a useful test case.

5.4.1 Simulating the effects of a vaccine for the virus

This subsection deals with the computational analysis for the model (5.21) when a constant
external force, mimic a vaccine for the virus, is introduced. Following the interaction rules
proposed into the model, the onset of keloid is a consequence of the virus, then it is expected
that if the vaccine is able to reduce the action of the virus then keloid formation and cancer
can be prevented. Accordingly we have F2 6= 0, F3 = F4 = 0 and we let the magnitude of
the parameter α vary from low to higher values, namely from low to higher heterogeneity. The
results of the computational analysis are summarized as follows.

Analysis for low values of α. The effect of the external action is evident by comparing the
dynamics depicted by the model (5.21) when F2 = 0 with the dynamics when F2 6= 0.

The dynamics of the model (5.21) for F2 = F3 = F4 = 0 has been widely debated in [35],
therefore the new computational analysis will be focused on the case F2 6= 0 and F3 = F4 = 0,
and more precisely F2 ∈ {0, 0.0005, 0.01}. Looking at the left panel of Figure 5.1, for α = 0.2
(low rate of heterogeneity) the heterogeneity of virus is bounded, then the main effect of the
external force (vaccine for the virus) is to decrease the maximum of the density of V when the
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magnitude of the vaccine increases. Therefore, thanks also to the action of the immune system,
we can see a faster depletion of V and consequently of KFc and Cc. However, as the right
panel of Figure 5.1 shows, the keloid cells start to increase again; this is a consequence of the
genetic susceptibility that thus requires the definition of a therapeutical action for keloid. The
global energy of the system even in the presence of the external action is preserved thanks to
the thermostat.

Analysis for intermediate values of α. Setting α = 0.5, the heterogeneity of the non-self cells
becomes less negligible with respect the previous case. Therefore the role of the external force is
now fundamental for avoiding keloid formation and onset of cancer. The computational analysis
shows that high values of the vaccine are required in order to reduce the number density of
keloid cells with high values of activity. Consequently the number density of Cc is reduced.
The vaccine for the virus has an important role in the proliferation of the immune system cells.
Indeed as Figure 5.2 shows, in absence of a vaccine for the V the immune system is inhibited;
the vaccine helps the immune system cells to proliferate again.

Analysis for high values of α. The heterogeneity of the non-self cells in now very high thus
keloid formation and cancer need to be inspected. As Figure 5.3 shows the vaccine is able to
control the evolution of the virus and the depletion of virus with high levels of aggressiveness
depends on the magnitude of the vaccine. However high values of the vaccine are necessary to
eliminate keloid and cancer, see Figure 5.4, then the definition of a therapeutic action for keloid
and cancer is now necessary.

Figure 5.1: The time evolution of the density of V (left panel) and of the density of KFc (right
panel) for α = 0.2 and F2 = 0 (solid line), F2 = 0.0005 (dashed line), F2 = 0.01 (dot line).

Figure 5.2: The time evolution of the density of ISc for α = 0.5 and F2 = 0 (solid line),
F2 = 0.0005 (dashed line).
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Figure 5.3: Distribution function of V for α = 0.8 and for F2 = 0 (left panel) and for F2 = 0.0005
(right panel).
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Figure 5.4: Distribution function of KFc for α = 0.8 and for F2 = 0 (left panel) and for
F2 = 0.0005 (right panel).

5.4.2 Simulating the effects of a therapy for the keloid

This subsection deals with the computational analysis for the model (5.21) when a constant ex-
ternal force, mimic a therapeutical action for the keloid, is considered. Following [120], a therapy
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that induces senescence could be used to prevent the formation of a normal scar. Specifically the
treatment proposed in [120] is based on photodynamic and PUVA therapy, which are capable of
inducing cell senescence. The therapy, based on a combination of a photosensitizer and a light
source, produces oxidative stress and thus produce higher quantity of senescent cells with the
minor apoptotic and necrotic effect.

Bearing all above in mind, we assume that F3 6= 0, F2 = F4 = 0 and again we let the
magnitude of the parameter α vary from low to higher values. Specifically for low values of
α, the therapy and the immune system are capable of performing a prompt action, see the
left panel of Figure 5.5 where the density of the KFc is depicted for different values of the
external force. Moreover, as the right panel of Figure 5.5 shows, the global activation energy
is controlled by thermostated. The effects of the therapy are visualized in Figure 5.6, where
the distribution function of the KFc is depicted in absence of therapy and in the presence of
the therapy. As Figure 5.6 shows, the therapy allows the depletion of cells at different stages of
mutation and a bounded magnitude of therapy is required in order to have the total depletion
of keloid. Moreover, differently from the case of a vaccine for the virus, in this case the increase
of new keloid cells, after the elimination of keloid, is not observed. For intermediate values of α,
the general effect of the therapy is that of acting homogeneously on the KFc and Cc and thus to
obtain a distribution more uniform with respect to the degree of mutation. In particular the Fc
are able to proliferate again. For high values of α, the rate of mutation allows the onset of keloid
cells with high proliferation rate and of cancer cells with high values of progression. In particular
even if the therapy allows the immune system to have a prompt response (see Figure 5.7) against
the cancer cells (and eventual virus), the immune system cells are not able to prevent tumor
formation at tissue scale. Therefore a high magnitude of the therapy is required. This is the
case where surgery is the only therapy that can work.

Figure 5.5: The time evolution of the density of KFc (left panel) and of the global activation
energy of the system (right panel) for α = 0.2 and F3 = 0 (solid line), F3 = 0.0005 (dashed
line), F3 = 0.01 (dot line).

5.4.3 Simulating the effects of a vaccine for the cancer

This subsection deals with the computational analysis for the model (5.21) when a constant
external force, mimic a therapeutical action for the cancer, acts on the system. The vaccine
for the cancer strictly depends on the type of tumor developed. Therefore the main aim of this
subsection is to show that our model is able to consider the introduction of a vaccine and to
simulate the evolution of the cancer. In particular we will focus on the case of high values of α.
According to our model, the development of cancer is the final result of the keloid formation,
then the vaccine for cancer has a fundamental action only on the Cc and the ISc. As Figure 5.8
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Figure 5.6: Distribution function of the KFc for α = 0.2 and for F3 = 0 (left panel) and for
F3 = 0.01 (right panel).

Figure 5.7: The time evolution of the density of ISc for α = 0.8 and F3 = 0 (solid line) and for
F3 = 0.001 (dashed line).

shows, the vaccine is able to inhibit the formation of a tumor at the macroscopic scale. Moreover
the immune system is able to proliferate again, see the right panel of Figure 5.9. Finally, as the
right panel of Figure 5.9 shows, the action of the therapy allows to maintain bounded the global
activation energy of system (thanks to the introduction of the thermostat).

5.5 Conclusions and research perspectives

The present chapter has been devoted to test the capability of a new thermostated kinetic
framework for the active particles to model a therapy for the keloid formation and the possible
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Figure 5.8: Distribution function of the Cc for α = 0.8 and for F4 = 0 (left panel) and for
F4 = 0.0005 (right panel).

Figure 5.9: The time evolution of the density of ISc (left panel) and of the global activation
energy (right panel) for α = 0.8 and F4 = 0 (solid line), F4 = 0.0005 (dashed line).

development of cancer. By employing different therapies on the different functional subsystems
that compose the system, we have shown that some therapies proposed in the pertinent liter-
ature can be well described by our model. The analysis performed in this chapter has been of
computational kind and has been focused on the reaching of the emerging phenomena that are
typical of keloid formation. The role of the immune system has been taken into account as a
whole system without specifying what are the cells involved in the competition; this assumption
is based on the fact that its action on keloid is limited by the genetic susceptibility that does not
allow to the immune system to recognize these cells as foreign cells and thus acts for a possible
total depletion.
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The model developed and analyzed in the present chapter is based on the introduction of
an external force field, which mimics a therapy, at the macroscopic scale but in the absence of
external interactions at the microscopic scale. The therapy acts directly on the number of foreign
cells without performing an interaction at the microscopic level of the activity variable. The
modeling of external therapy at the microscopic (cellular) scale can be performed by representing
the external therapy as a functional subsystem that have the ability to modify the state u of
the cell by a particular action related to the variable ω ∈ Du. Assuming that the ith inner
functional subsystem interacts with the rth external agent, for r ∈ {1, 2, . . . ,m}, and denoting
by gir = gir(t, ω) : [0,∞) × Du → R+ the related distribution function (known function of its
arguments), the microscopic external actions are modeled by the following operator Qi[f , gi] =
Qi[f , gi](t, u):

Qi[f , gi] =
m∑
r=1

∫
Du×Du

ηeir Bir(u∗, ω∗, u) fi(t, u∗) gir(t, ω
∗) du∗ dω

∗

−fi(t, u)

m∑
r=1

∫
Du

ηeir gir(t, ω
∗) dω∗, (5.22)

where gi = (gi1, . . . , gir) and

• ηeir is the inner-outer encounter rate between the rth external agent, with state ω∗, and
the cell of the ith population, with state u∗.

• Bir(u∗, ω∗, u) is the inner-outer transition probability density which describes the proba-
bility density that a cell of the ith population, with state u∗, falls into the state u after an
interaction with the rth external agent whose state is ω∗.
The density Bir satisfies, for all r ∈ {1, 2, . . . ,m} and i ∈ {1, 2, . . . , n}, the following
condition: ∫

Du

Bir(u∗, ω∗, u) du = 1, ∀u∗, ω∗ ∈ Du. (5.23)

Bearing all above in mind, the thermostated kinetic framework for open systems with prolifer-
ative/destructive and mutative interactions now reads:

∂tfi(t, u) + TFi [f ](t, u) = Ji[f ](t, u) +Ni[f ](t, u) +Mi[f ](t, u) +Qi[f , gi](t, u). (5.24)

It is worth stressing that usually the interaction domain of the cell with state u∗ is not the
whole domain Du but a subset Ωu∗ ⊆ Du, which contains the cells with activity u∗ ∈ Ωu∗ that
are able to interact with the particles with activity u∗. This is a phenomenon that is typical
in tumor dynamics and specifically when the immune system is not capable of interacting with
the all tumor cells (tumor escape), see the review paper [131]. Specifically the immune response
fails to completely eliminate the tumor, and the interact process results in the selection of tumor
cell variants that are able to resist, avoid, or suppress the antitumor immune response, leading
to the escape phase. Accordingly, a positive function ω(u∗, u

∗) can be introduced to weight the
interactions among the cells; this function is assumed normalized with respect to integration
over u∗ and it has a compact support in the domain of influence Ωu∗ ⊆ Du of the interactions.
Moreover: ∫

Du

ω(u∗, u
∗) du∗ =

∫
Ωu∗

ω(u∗, u
∗) du∗ = 1. (5.25)

The development of a model for the therapy for keloid that takes into account the above raised
issues is object of future research directions. Moreover the possibility to perform an asymptotic
analysis that allows the derivation of the dynamics at the tissue scale is a further research
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perspective. The asymptotic analysis can be performed by employing the methods developed in
papers [132, 133]. Moreover the final goal is the identification of the parameters with the aim
to compare the emerging phenomena with the experimental data.



Conclusion

This PhD thesis is concerned with general methods and models which can be applied to
distinct scientific fields, as biology or finance. On the one hand, the scientist observes the data
in distinct fields, and sees that there are analogous underlying characteritics, resulting in similar
mathematical properties.

In the first part, the observed common phenomenon is algebraic: the degree vector and the
principal eigenvector of a matrix are close componentwise, in both biological and financial data.
From this observation, we analytically obtained an upper bound from the error vector, whose
coordinates are the substraction (or division) of the principal eigenvector and the degree vector
componentwise. This result has also been further tested for some known networks and financial
data.

Using some of the mathematical results presented in the first part, we have extracted from
a chromosomal contact map (i) the functional compartments in the human embryonic stem cell
nucleus, and (ii) the 3D-structure of DNA in chromosomes.

In the second part, it has been shown that the acute inflammatory response is related to
a bifurcation when delays are considered. We also mathematically described the mimic of the
effect of a vaccine on a population of viruses.

Taken together, the work described in this thesis holds towards interesting perspectives. On
the financial viewpoint, these perspectives involve trading strategies that will take advantage on
the mathematical properties described in part one. Some further research perspectives would
be to consider the random matrix characteristics linked to the closeness of the degree vector
and the principal eigenvector. Some other research perspective deal with the comparison of the
kinetic theory results with effective data.
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