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This work addresses the problem of multiple sound source localization for both deterministic and random signals measured by an array of microphones. The problem is solved in a statistical framework via maximum likelihood. The pressure measured by a microphone is interpreted as a mixture of latent signals emitted by the sources; then, both the sound source locations and strengths can be estimated using an expectation-maximization (EM) algorithm. In this thesis, two kinds of uncertainties are also considered: on the microphone locations and on the wavenumber. These uncertainties are transposed to the data in the belief functions framework. Then, the source locations and strengths can be estimated using a variant of the EM algorithm, known as Evidential EM (E2M) algorithm.

The f rst part of this work begins with the deterministic signal model without consideration of uncertainty. The EM algorithm is then used to estimate the source locations and strengths: the update equations for the model parameters are provided. Furthermore, experimental results are presented and compared with the beamforming and the statistically optimized near-f eld holography (SONAH), which demonstrate the advantage of the EM algorithm.

The second part raises the issue of model uncertainty and shows how the uncertainties on microphone locations and wavenumber can be taken into account at the data level. In this case, the notion of the likelihood is extended to the uncertain data. Then, the E2M algorithm is used to solve the sound source estimation problem. In both the simulation and real experiment, the E2M algorithm proves to be more robust in the presence of model and data uncertainty.

The third part of this work considers the case of random signals, in which the amplitude is modeled by a Gaussian random variable. Both the certain and uncertain cases are investigated. In the former case, the EM algorithm is employed to estimate the sound sources. In the latter case, microphone location and wavenumber uncertainties are quantif ed similarly to the second part of the thesis. Finally, the source locations and the variance of the random amplitudes are estimated using the E2M algorithm.

statistical inference from imprecise data, belief functions, Evidential EM algorithm.

Résumé

Ce travail de thèse se penche sur le problème de la localisation de sources acoustiques à partir de signaux déterministes et aléatoires mesurés par un réseau de microphones. Le problème est résolu dans un cadre statistique, par estimation via la méthode du maximum de vraisemblance. La pression mesurée par un microphone est interprétée comme étant un mélange de signaux latents émis par les sources. Les positions et les amplitudes des sources acoustiques sont estimées en utilisant l'algorithme espérance-maximisation (EM). Dans cette thèse, deux types d'incertitude sont également pris en compte: les positions des microphones et le nombre d'onde sont supposés mal connus. Ces incertitudes sont transposées aux données dans le cadre théorique des fonctions de croyance. Ensuite, les positions et les amplitudes des sources acoustiques peuvent être estimées en utilisant l'algorithme E2M, qui est une variante de l'algorithme EM pour les données incertaines.

La première partie des travaux considère le modèle de signal déterministe sans prise en compte de l'incertitude. L'algorithme EM est utilisé pour estimer les positions et les amplitudes des sources. En outre, les résultats expérimentaux sont présentés et comparés avec le beamforming et la holographie optimisée statistiquement en champ proche (SONAH), ce qui démontre l'avantage de l'algorithme EM.

La deuxième partie considère le problème de l'incertitude du modèle et montre comment les incertitudes sur les positions des microphones et le nombre d'onde peuvent être quantif ées sur les données. Dans ce cas, la fonction de vraisemblance est étendue aux données incertaines. Ensuite, l'algorithme E2M est utilisé pour estimer les sources acoustiques.

Finalement, les expériences réalisées sur les données réelles et simulées montrent que les algorithmes EM et E2M donnent des résultats similaires lorsque les données sont certaines, mais que ce dernier est plus robuste en présence d'incertitudes sur les paramètres du modèle.

La troisième partie des travaux présente le cas de signaux aléatoires, dont l'amplitude est considérée comme une variable aléatoire gaussienne. Dans le modèle sans incertitude, l'algorithme EM est utilisé pour estimer les sources acoustiques. Dans le modèle incertain, les incertitudes sur les positions des microphones et le nombre d'onde sont transposées aux données comme dans la deuxième partie. Enf n, les positions et les variances des amplitudes aléatoires des sources acoustiques sont estimées en utilisant l'algorithme E2M. Les résultats montrent ici encore l'avantage d'utiliser un modèle statistique pour estimer les sources en présence, et l'intérêt de prendre en compte l'incertitude sur les paramètres du modèle.

Mots clés: localisation de sources acoustiques, holographie, beamforming, imagerie acoustique, inférence statistique à partir de données imprécises, fonctions de croyance, algorithme E2M. 
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Introduction

One of the crucial issues in acoustics engineering is to reduce the noise emitted by complex devices. In the automobile industry, for example, due to the requirements expressed by the users (in terms of acoustic comfort) as well as the legislation set by the European community to limit noise pollution, acoustic quality is now accepted as a decisive criterion to judge the performance of a vehicle, as well as its safeness or its fuel consumption. The f rst step of this task is to understand the acoustic behavior of the device in order to focus the efforts on the main sources and the most annoying frequency bands. However, the noise sources emitted by a machine are multiple and structurally complex. Thus, the need for tools allowing visualization, quantif cation and identif cation of noise sources has become signif cant in acoustics engineering.

In this thesis, we investigate the problem of multiple sound source localization. The sound signals are subdivided into two classes: deterministic and random signals. The former assumes that the amplitude is a constant to be estimated, while in the latter case the amplitude is modeled as a random variable. The task of this work is to estimate the sound source locations and amplitudes for deterministic signals, or the sound source locations and variances of amplitudes for random signals, using sound pressures measured by an array of microphones.

Part I of this thesis studies the sound source localization problem for deterministic signals in a maximum likelihood framework. The sound pressure measured by a microphone is interpreted as a mixture of signals emitted by the sources, and the contributions of this crophone array has to be placed on a vibrating object so that the microphone locations are never precisely measured. Moreover, the sound propagation medium can be uncertain as well. For instance, the sound speed, thus the wavenumber, may vary signif cantly due to changes of temperature. Therefore, in Part II, we take into account these two kinds of uncertainties in the estimation process. The uncertainties are f rst transposed to the data, via f rst-order approximations. The resulting uncertain pressures are then represented using contour functions, which are mathematical tools proposed within the framework of belief functions. Then, parameter estimation can be carried out using the Evidential EM (E2M) algorithm, which is a variant of the EM algorithm to perform maximum likelihood estimation from uncertain data.

Finally, in Part III, the source localization problem for random signals is investigated.

First, under the assumption of certain measurements, the source locations and variances of random amplitudes are estimated using the EM algorithm, as in Part I. Then, the uncertainties of the microphone locations and the wavenumber are considered. The parameters are estimated using the E2M algorithm as in Part II. The simulated and real experiments are presented for both deterministic and random signals. In the certain case, the EM algorithm is compared with beamforming and SONAH, which are popular methods for identifying the sound sources. The results show that the EM algorithm can clearly localize the sources while beamforming and SONAH are restricted to the studied frequency. Moreover, when the data are pervaded with uncertainties, the EM and E2M algorithm are compared to each other. The experimental results show that E2M algorithm performs better than the EM in the sense of estimation error.

Part I

Sound Sources Localization From Certain Measurements
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State of Art

considered, but the propagation operator was taken without attenuation, i.e., the propagation operator from m-th microphone to s-th source was assumed to be G(r s |r ′ m ) = e jk|r s -r ′ m | . Some researchers have investigated different kinds of superimposed signals using the EM algorithm. Cirpan and Cekli [START_REF] Cirpan | Deterministic maximum likelihood approach for localization of near-f eld sources[END_REF][START_REF] Cirpan | Unconditional maximum likelihood approach for localization of near-f eld sources: Algorithm and performance analysis[END_REF] and Kabaoglu et al. [START_REF] Kabaoglu | Deterministic maximum likelihood approach for 3-D near-f eld source localization[END_REF][START_REF] Kabaoglu | EM based stochastic maximum likelihood approach for localization of near-f eld sources in 3-D[END_REF] used a similar EM approach to study the localization of near-f eld sources. Each of these four contributions addresses a specif c case, namely: deterministic signals in 2D space and 3D space, and Gaussian random signals in 2D and 3D space. However, note that the near-f eld was just taken into account with the Fresnel approximation of the source-microphone distance in the time delay (without the 1/r spatial attenuation in Eq. (2.1)), and that even in the deterministic case [START_REF] Cirpan | Deterministic maximum likelihood approach for localization of near-f eld sources[END_REF][START_REF] Kabaoglu | Deterministic maximum likelihood approach for 3-D near-f eld source localization[END_REF] the signal strength depends on the snapshots (unlike in Eq. (2.1), where the strength A is a constant parameter). Lu et al. [START_REF] Lu | Robust expectation-maximization algorithm for multiple wideband acoustic source localization in the presence of nonuniform noise variances[END_REF] and Yan et al. [START_REF] Yan | Robust analysis and new hybrid algorithm of wideband source localization for acoustic sensor networks[END_REF] studied the source localization of wideband signals, in which the basic assumption of the propagation operator is more or less same as in [START_REF] Cirpan | Deterministic maximum likelihood approach for localization of near-f eld sources[END_REF][START_REF] Cirpan | Unconditional maximum likelihood approach for localization of near-f eld sources: Algorithm and performance analysis[END_REF][START_REF] Kabaoglu | Deterministic maximum likelihood approach for 3-D near-f eld source localization[END_REF][START_REF] Kabaoglu | EM based stochastic maximum likelihood approach for localization of near-f eld sources in 3-D[END_REF]. Moreover, [START_REF] Lu | Robust expectation-maximization algorithm for multiple wideband acoustic source localization in the presence of nonuniform noise variances[END_REF] solved the problem with a diagonal but non-identity noise covariance matrix, and [START_REF] Yan | Robust analysis and new hybrid algorithm of wideband source localization for acoustic sensor networks[END_REF] analyzed the computational complexity of the algorithm. Sheng and Hu [START_REF] Sheng | Maximum likelihood multiple-source localization using acoustic energy measurements with wireless sensor networks[END_REF] and Meng and Xiao [START_REF] Meng | An eff cient EM algorithm for energy-based multisource localization in wireless sensor networks[END_REF] investigated the multiple source localization problem via acoustic energy measurement using the EM algorithm. In these two papers, only the strength and the attenuation of the sound (A and 1/r) are considered, but without regard to the phase (the term e jkr in Eq. (2.1)). Frenkel and Feder [START_REF] Frenkel | Recursive expectation-maximization (EM) algorithm for time-varing parameters with applications to multiple target tracking[END_REF] applied the EM algorithm to the multiple target tracking problem. At each time interval, the sonar sends a signal that is ref ected from the moving targets and received by the sensors. The purpose of the algorithm is to estimate the locations and velocities of the multiple moving targets.

In the next chapter, we propose a solution of the multiple sound sources localization problem presented in Section 1.1, using the EM algorithm. The methodology is very similar to that described in Ref. [START_REF] Feder | Parameter estimation of superimposed signals using the EM algorithm[END_REF], but the assumptions underlying our model differ from all the works mentioned above. 
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Experiments

This section illustrates the proposed method by experiments realized on real data. The experimental setup is shown in Figure 3.2 (a). We set 60 microphones on an array (on the plane z = 0, the center of the array being at the origin), the distribution of which is displayed in Figure 3.2 (b). In addition, two sound sources are placed in the half space {z : z > 0} at r 1 = (-0.239m, -0.112m, 0.314m) and r 2 = (0.172m, -0.012m, 0.314m). In this experiment, multi-sine signals with a wide frequency range (100 -6000 Hz) are played during 60 seconds. The signal is divided into 60 segments and then transformed in the frequency domain using a Discrete Fourier Transform, so that 60 snapshots are obtained in the frequency domain.

Note that in this experiment, the loudspeakers are not perfect point sources. Therefore, estimating a model with two point sources may not yield accurate estimates of the pressures emitted by the two vibrating membranes. A higher number of sources could indeed be more eff cient to model these radiating surfaces, for instance by layers of monopole or dipoles.
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We may observe that the quality of the reconstruction increases with the number of sources assumed in the model.

Conclusion

In this chapter, we proposed to use the maximum likelihood approach to solve the sound source localization problem for deterministic signals. In the single source case, the MLE is identical to that obtained via beamforming. In the case of multiple sources, beamforming is however not valid anymore. The MLE becomes diff cult to compute due to the complexity of the optimization problem. Then, the iterative EM algorithm makes it possible to simplify the model estimation problem. In this chapter, we also performed a two-source experiment to validate the proposed method. We made a comparison between our own approach, beamforming and SONAH, which clearly showed the advantage of the EM method. problem in an ideal experimental environment. However, different kinds of uncertainties may pervade the sound propagation and measurement process. In order to avoid confusion, we consider randomness and uncertainty to be of different natures: the former stands for irreducible random errors (e.g., measurement noise), while the latter represents systematic errors due to incomplete knowledge of the experimental environment or the measurement process. For example, repeated measurements of the period of a pendulum using a stopwatch may yield different results because it is diff cult to start and stop the stopwatch exactly at the same point in the pendulum's swing. This measurement error is generally considered as a random error and described by a 0-mean random variable. However, if the watch is slow due to mechanical f aws, this will lead to a systematic error. This kind of uncertainty has to be quantif ed and distinguished from random errors. Uncertainty is frequently left aside, being identif ed as one of the causes for randomness. Obviously, this strategy may not be reasonable. The conventional approach, which consists in using a large number of repeated measurements to decrease the random error, may still lead to inaccurate results in presence of uncertainty. Our claim is that uncertainty should be quantif ed and taken into account in the estimation process, rather than left aside.

Two kinds uncertainties have been known for a while in the sources localization problem: imprecise microphones (or sensors) locations [START_REF] Ajdler | Acoustic source localization in distributed sensor network[END_REF][START_REF] Jakoby | Source localization in shallow water in the presence of sensor location uncertainty[END_REF] and uncertain sound propagation environment [START_REF] Dosso | Environmental uncertainty in ocean acoustic source localization[END_REF][START_REF] Finette | Embedding uncertainty into ocean acoustic propagation model[END_REF][START_REF] Finette | A stochastic representation of environmental uncertainty and its coupling to acoustic wave propagation[END_REF][START_REF] Hamson | Environmental and system effects on source localization in shallow water by the matched-f eld processing of a vertical array[END_REF][START_REF] Shorey | Wideband optimal a posteriori probability source localization in an uncertain shallow ocean environment[END_REF][START_REF] Tabrikian | Robust maximum-likelihood source localization in an uncertain shallow-water waveguide[END_REF][START_REF] Tabrikian | Barankin bounds for source localization in an uncertain ocean environment[END_REF]. In Section 4.1.1, these works are introduced to
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Conclusion

In this chapter, we presented how multiple sources can be estimated when their amplitudes are modeled by Gaussian random variables. Then, the EM algorithm may be used to estimate the locations and variances of the strengths of the sound sources. We provided closed forms for the parameter estimates for both the far-f eld and the near-f eld case when the random amplitudes are assumed to be Gaussian. Finally, experiments were conducted on real data, and showed the advantage of using our estimation procedure rather than beamforming or SONAH. 
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Chapter 8 Conclusion and Perspectives

Conclusion

This thesis considers the problem of multiple sound source localization using sound pressures measured by an array of microphones. Part I solves this problem for deterministic signals via maximum likelihood. The pressure measured by a microphone is interpreted as a mixture of latent signals emitted by the sources; then, both the sound source locations and the amplitudes are estimated using the EM algorithm. At each step of the procedure, the latent contributions of the sound sources can be estimated given current model parameter estimation; these new estimates are then used to update the model parameters. These two steps are repeated until a local maximum of the likelihood is attained.

In Part II, we consider the issue of uncertain measurements. While randomness is identif ed as the noise inherent to the measurement process, uncertainty is related to parameters of the model, generally assumed to be known, but that can be subject to errors. In particular, we consider two kinds of meta-parameters: the microphone locations and the wavenumber. In this work, the uncertainties on the meta-parameters are transposed to the data, via f rstorder approximations. The resulting uncertain pressures are then represented using contour functions. These mathematical objects, proposed within the framework of belief functions, provide a rich and f exible way of quantifying imprecise and uncertain knowledge of imperfectly observed variables. Eventually, model estimation can be carried out using the E2M algorithm, which was recently proposed to perform maximum likelihood estimation from uncertain data.

Part III considers the case of random signals, in which the parameters to estimate are the source locations and the variances of the amplitudes. As in Part I and Part II, we propose to estimate the parameters via the EM algorithm when the measurements are certain or via the E2M algorithm when uncertainty pervades the model parameters. Explicit equations are provided for both algorithms.

In both the deterministic and random amplitude cases, experiments are realized on synthetic and real data. When the data are certain, the EM algorithm performs better than beamforming and SONAH that it clearly separates the sources and works well over a wide range of frequencies. On the other hand, when the data are pervaded with uncertainties, the E2M estimates display a smaller estimation error than the EM estimates.

Perspectives

Further work may be conducted in several directions. First, in both EM and E2M algorithms, the number of sound sources must be predef ned.

As is shown in Sections 3.4 and 6.3, we may set a large source number before running the EM algorithm and then distinguish the number of sources by eyes. However, we may def ne a criterion to determine the number of sources. For example, we can remove those sources with low estimated strength using regularization methods. Second, the meta-parameter uncertainties are modeled using Gaussian contour functions in Chapters 5 and 7, an assumption which may not always hold. Note that the proposed E2M method makes it possible to use any kind of contour function: simpler distributions, such as uniform or trapezoidal ones, may give better results when few is known about the data.

However, for general contour functions, closed forms for the model parameter estimates may not be obtained, and numerical techniques (such as Monte-Carlo integrals) may have to be considered. 
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 35 Fig. 3.5 Comparison between EM, beamforming and SONAH at f=5025Hz. Black crosses represent the loudspeaker center. Subf gure (a): Estimated source position. Subf gures (b-f): Estimated pressure f eld on the source plane.
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 57 Fig. 5.7 Source location estimates obtained using EM (blue points) and E2M (red crosses), and corresponding 95% conf dence ellipses on the x-y plane. Black crosses represent the actual source locations.
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 58 Fig. 5.8 Source location estimates obtained using EM (left) and E2M (right), and corresponding 95% conf dence ellipsoids in 3D space. Black crosses represent the source locations.
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 1062 Fig. 6.2 Comparison between EM, beamforming and SONAH at f=400Hz. Black crosses represent the loudspeaker center. Subf gure (a): Estimated source position. Subf gures (b-f): Estimated pressure f eld on the source plane.
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 1063 Fig. 6.3 Comparison between EM, beamforming and SONAH at f=1200Hz. Black crosses represent the loudspeaker center. Subf gure (a): Estimated source position. Subf gures (b-f): Estimated pressure f eld on the source plane.
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 1064 Fig. 6.4 Comparison between EM, beamforming and SONAH at f=2200Hz. Black crosses represent the loudspeaker center. Subf gure (a): Estimated source position. Subf gures (b-f): Estimated pressure f eld on the source plane.
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 1065 Fig. 6.5 Comparison between EM, beamforming and SONAH at f=4300Hz. Black crosses represent the loudspeaker center. Subf gure (a): Estimated source position. Subf gures (b-f): Estimated pressure f eld on the source plane.
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 1066106710681069 Fig. 6.6 Sound f eld on the microphone plane using (a) measurement (b) EM estimates, S = 2 (c) EM estimates, S = 6 (d) EM estimates, S = 10. f=400Hz.
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 75 Fig. 7.5 Random amplitude source location estimates obtained using EM (left) and E2M (right), and corresponding 95% conf dence ellipsoids in 3D space. Black crosses represent the source locations.
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