
HAL Id: tel-01208352
https://theses.hal.science/tel-01208352

Submitted on 2 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Autonomous management of quality of service in virtual
networks

Thanh Son Pham

To cite this version:
Thanh Son Pham. Autonomous management of quality of service in virtual networks. Other. Uni-
versité de Technologie de Compiègne, 2014. English. �NNT : 2014COMP2147�. �tel-01208352�

https://theses.hal.science/tel-01208352
https://hal.archives-ouvertes.fr

Par Thanh Son PHAM

Thèse présentée
pour l’obtention du grade
de Docteur de l’UTC

Autonomous management of quality of service in
virtual networks

Soutenue le 26 novembre 2014
Spécialité : Technologies de l’Information et des Systèmes

D2147

Autonomous management of quality

of service in virtual networks

By Thanh Son PHAM

Thesis defence: November 26th, 2014

Jury Committee:

BUI Marc, Professor, EPHE Sorbonne, Laboratory LAISC, Paris
CARLIER Jacques, Professor, University of Technology of Compiègne, Laboratory Heudiasyc
JOUGLET Antoine, Maître de Conférences, University of Technology of Compiègne, Laboratory
Heudiasyc
LUTTON Jean-Luc, Ingénieur de Recherche, Orange Lab, Issy-Les-Moulineaux
MYOUPO Jean-Frédéric, Professor, University of Picardie Jules Verne, Amiens
NACE Dritan, Professor, University of Technology of Compiègne, Laboratory Heudiasyc

Guest : Joël LATTMANN, Research Engineer, Orange Lab, Issy-Les-Moulineaux

Autonomous management of quality of service in

virtual networks

University of Technology of Compiegne

PHAM Thanh Son

Abstract

This thesis presents a fully distributed resilient routing scheme for switch-based net-

works. A failure is treated locally, so other nodes in the network do not need to under-

take special actions. In contrast to conventional IP routing schemes, each node routes

the traffic on the basis of the entering arc and of the destination. The resulting con-

straint is that two flows to the same destination entering in a node by a common arc

have to merge after this arc. We show that this is sufficient for dealing with all single

link failure situations, assuming that the network is symmetric and two-link connected.

We model the dimensioning problem with an Integer Linear Program which can be

solved exactly for small networks. We also propose several heuristics for larger net-

works. Our method generalizes the methods of Xi et Chao and Li and of Nelakuditi

et al. who have proposed similar schemes in the context of IP. Our methods are more

efficient than previous ones. We have also studied the existence of a resilient routing

scheme for single node failure situation in switch-based network. We study also the

case of multi-link failure situations and show that requiring the network to be con-

nected after any failure does not guarantee the existence of a resilent routing scheme

as described above.

1

Acknowledgements

First I want to express my appreciation and my thanks to my two supervisors, Dritan

and Jacques. It is for the knowledge that they have taught me as well as the tremendous

help they have brought me over the years. I know I have a lot of shortcomings in the

work, in behaviour. Still, they have taught me carefully. I have done a lot of mistakes

when writing documents and reports in English and French, especially when writing

this thesis. I know that it is hard to help me to correct my mistakes. I am grateful to

them a lot but do not know how to express it in words. Maybe because I am so touched,

may be my limit in expression language. But I still want to tell them that: "Thank you

very much, my professors".

Next I would like to thank my enterprise supervisors who have guided me when I

worked at Orange Lab in Issy-Les-Moulineaux. First of all I want to thank Joel, who

shared the same office with me during the second half of the thesis. Joel spent a lot

of time in guidance, exchange, and in answering my questions. There are many times

when I was stopped by hard problems, Joel was with me to explore and to resolve these

issues. Joel also gave me a lot of useful advice for work and life. I have just completed

a small part of them, if I could achieve them all, maybe I would have better results.

The second one I would like to thank is Jean-Luc. I’m grateful for several discussion

and for the idea he has given when I created the mathematical model as well as the

2

assessment of my work. These assessments helped me to understand the issues better

and to improve my Phd thesis. Next I would like to thank Laurent for his help when

I came to the laboratory. His answers to informatics and programming questions help

me to adapt myself more quickly.

Besides my supervisors, I would like to thank the rest of my thesis committee:

Jean-Fréderic MYOUPO, Marc BUI and Antoine JOUGLET for their insightful com-

ments and questions.

Also, I want to thank the other members of the group RIV for their warm welcome

as well as their help to resolve administrative issues.

Next, I would like to thank my Vietnamese friends. Learning and staying away

from home caused me much trouble. I want to thank you for having given me warm

and fun moments after the periods of work stress, as well as the help when I get stuck.

Thank you very much, my friends.

Last but not least, I want to thank my family, my parents as well as my sister. My

family gives me more confidence, more power to accomplish this work. Although of

the far distance, my parents frequently contact me in order to improve my motivation.

Their advice has always been helpful and efficient. They help me in my daily work as

well as in health issues. Thank you very much, my family.

3

Contents

1 Introduction 7

2 Working environment and related works 10

2.1 Working environment . 11

2.1.1 Virtual machine and virtualization 11

2.1.2 Definition of network virtualization 13

2.1.3 Interests of network virtualization 17

2.1.4 Properties of the network virtualization 19

2.1.5 Emerging Solutions SDN . 24

2.1.6 OpenFlow . 27

2.2 Related works: . 32

2.2.1 Works concerning network virtualization 32

2.2.2 Works concerning failure resilience 36

3 Existence theorem and mathematical model 42

3.1 A free-conflict restoration scheme for switch-based networks 43

3.1.1 An example . 44

3.1.2 Existence of a restoration scheme 46

3.2 Mathematical model . 51

4

3.3 Numerical results . 59

4 Approximate methods 63

4.1 Rerouting schemes . 64

4.1.1 Algorithm 1 . 64

4.1.2 Algorithm 2 . 67

4.1.3 Remark . 72

4.2 Heuristics . 75

4.2.1 Heuristic 1 . 76

4.2.2 Heuristic 2 . 78

4.2.3 Amelioration of heuristic 2 79

4.2.4 Numerical results . 81

4.3 Application to network virtualization 84

5 Enhancing the theoretical study 86

5.1 Node failure . 87

5.1.1 Theorem of the existence of a restoration scheme in cases of

node failure . 89

5.1.2 Remark about single node failure problem 93

5.1.3 Multiple link failure situations 95

5.2 Update routing table . 98

6 Conclusion 101

A Technologies permitting networking virtualization 110

A.1 Techniques for transfer plan virtualization 111

A.1.1 Ethernet VLAN technology. 111

5

A.1.2 MPLS technologies . 111

A.2 Techniques to run multiple control plans 117

A.2.1 Logic sharing . 117

A.2.2 Physical sharing: The “logical routers” 118

6

Chapter 1

Introduction

The Internet has been hugely successful in spreading its services all over the world.

But the more firmly it becomes implanted, the harder it becomes to introduce new

developments. This is the phenomenon of Internet ossification. A number of works

have attempted to rethink the architecture of the Internet. Network virtualization ap-

proaches [1] have proved their effectiveness in dealing with current limitations of the

Internet and supporting new requirements. The principle of network virtualization is

to implement multiple virtual node equipments on the same physical machine and to

interconnect them through a physical network architecture. Establishing several virtual

networks on a physical network infrastructure involves a superposition of different log-

ical topologies with virtual node equipments. Each of the virtual networks behaves like

a network in its own, on which it is possible to implement different routing protocols

and services. We can suppose that we have two virtual networks on the same physical

network infrastructure. One of these networks is used for a special service which re-

quires quality guarantee, while the other one does not. These two networks are called

respectively network with priority and "best-effort" network. Our work concerns the

7

quality of service on the network with priority, which means we have to guarantee a

minimum loss of packets in case of failure for this network. Our work can be applied

in the context of SDN and OpenFLow. Software Defined Networking (SDN) is a tech-

nology whose major application is network virtualization. OpenFlow, the part of SDN

in data plane, permits to transfer a packet to its destination following a certain crite-

rion. These criteria could be different, because whole networks support different types

of services. This is the relation between OpenFlow and network virtualization. In the

context of OpenFlow, switches are used to route the flow. But because the switches in

the network do not have a direct exchange protocol between them, they could only for-

ward the received packets following their routing table; so when there is a failed node

or a failed link in the network, packets could be lost. Our aim is to propose restoration

schemes for network based on switches ensuring that whenever a link or a node fails

the traffic can always be rerouted to the destination by an alternative route. A route is a

path of traffic between two nodes in the network. It could be the nominal routing path

or a rerouting path in case of failure. The politics of the routing protocol in switches

based network allows to determine the next hop of the traffic when the switch knows

the incoming port/arc and the destination. Consequently, it is forbidden that two routes

having the same incoming arc and destination have different outgoing arcs, which is

called a conflict. So, our restoration scheme should be without conflict, that is when-

ever two routes have an arc in common for a same destination, they are identical after

this arc.

After this introduction, chapter 2 presents the context of our working environment

and related works. In fact, we will explain network virtualization, its interests and also

its features. We present also the literature about SDN and OpenFlow which are our

working environment. At the end of this chapter, we report the main lines of the works

8

done in both academic and industrial world in relation with our research. In chapter

3, we illustrate with an example how the restoration scheme works and demonstrate

that there exists a free-conflict restoration scheme. Following this proof of existence,

we present a mathematical model that allows to calculate a free-conflict restoration

scheme and allows to optimize the dimensioning of the network at the same time.

In chapter 4, we present two heuristics that permit to calculate a rerouting scheme

without conflict while optimizing the dimensioning of the network. In chapter 5, we

extend our study to the node failure problem and to the multi-link failure problem.

In this chapter, we also demonstrate that a rerouting scheme without conflict for the

node failure problem exists and we report a cons-example to show that constructing a

rerouting scheme without conflict for multi-link failure problem is impossible. Finally,

chapter 6 concludes the thesis.

9

Chapter 2

Working environment and related

works

In this chapter, we present the definition of virtualization, its interest and its features.

Next, we describe what are Software Defined Networking(SDN) and OpenFlow. In

this context, we present the motivation of our work. At the end of the chapter, we

present the main related works in the academic and industrial worlds.

10

2.1 Working environment

In this section, we will introduce the general context of our problem. This session in-

cludes a lot of technical knowledge about network and virtualisation which are mainly

taken from [38] and [39].

2.1.1 Virtual machine and virtualization

In this section, we will describe the relation between virtual machine and virtualiza-

tion. Before defining the notion of virtualization, we have to know exactly what a

virtual machine is. Popek and Goldberg have considered it as an efficient, isolated

duplicate of a real machine [40]. To have a better definition of a virtual machine, they

have introduced the notion of a Virtual Machine Monitor (VMM) which is a piece of

software having three essential characteristics. First one is equivalence. A VMM pro-

vides an environment for programming; this environment has to be essentially identical

to the original machines. The second one is efficiency. Instructions of the virtual pro-

cessors must be executed directly by the real processor without any intervention from

the VMM. And last, the VMM must have a complete control of system resources.

With these characteristics, we should can have a clear image of what a VMM is. Then,

Popek and Goldberg define a virtual machine as the environment created by the virtual

machine monitor.

Popek and Goldberg also show in [40] that a third generation computer has to sat-

isfy some constraints to be able to construct a virtual machine monitor. To understand

this work, we have to know what is a third generation computer. In fact, it is dis-

tinguished from a simple calculator (first and second generation) by the possibility of

offering language instruction, management of hardware and software, support for multi

11

processing and for multi-users. The functionality of this type of machine is managed

by a software layer called “operating system”. This operating system contains two sets

of execution instructions: user set and privileged set. The constraint cited by Popek

and Goldberg applies only to this type of machine.

To define the constraint for existence of a VMM, Popek and Goldberg classify the

instructions of machines into three groups:

Privileged instructions: These instructions are executed only when the processor

is on the privileged mode.

Control sensitive instructions: These instructions concern the modification of the

configuration of resources in the system.

Behaviour sensitive instructions: The behaviour of these instructions depend on

the context of execution.

With this, Popek and Goldberg express their theorem which gives sufficient condi-

tion for existence of a VMM.

Theorem 1: For any conventional third-generation computer, an effective VMM

may be constructed if the set of sensitive instructions for that computer is a subset of

the set of privileged instructions.

This theorem shows that we will be able to construct a virtual machine monitor

if all sensitive instructions that can affect the functioning of the VMM can always be

executed.

To compare with the theories of Popek and Goldberg, we will show what happens

and what is applied in reality. In fact, nowadays, creating a virtual machine is to sim-

ulate, by software, the operation of a physical machine in a real machine. Once the

physical machine emulated, you can load an "operating system" (Windows, Linux, So-

laris ...) as easy as in a real machine. Once the system is launched, the virtual machine

12

behaves like a machine in itself and allows to run software supported by the system.

The "classic" use of virtualization is to juxtapose multiple virtual machines and sys-

tems on a single physical machine. We call this physical machine a host machine.

These machines see the host machine as an independent machine. They support

different types of operating systems and communicate with each other and to the out-

side through an internal network more or less efficient (software, hardware ...). They

are driven by the virtualization manager from the host machine (Xen, VMware, UML

...). There are different modes of virtualization adapted to different uses: models, sim-

ulation, operational processes (servers, routers, etc...).

2.1.2 Definition of network virtualization

In this section, we will give a complete definition of network virtualization. What is

called "network virtualization" in this chapter is the extension of the above principles to

network node equipments (switches or routers) implemented in the virtual computing

architectures. This name comes from the academic terminology “network virtualiza-

tion”. Its principle is to implement on the same physical machine multiple virtual node

equipment which are interconnected through the same physical network architecture.

In this case, the physical network, also called physical substrate or physical infrastruc-

ture, consists of nodes and links that are shared among multiple logical networks or

virtual networks (Virtual Network: VN). The establishment of a virtual network on a

physical network infrastructure includes a superposition of different logical topologies

between virtual node equipments.

Each virtual network behaves like a network of its own:

- It is isolated from the others: the choice of engineering, addressing, configuration...

done in a VN does not impact other VN. Events taking place in a VN do not impact

13

Figure 2.1: virtualized network with different type of services

other VN.

- It has all its own features: control plane, management plane and transfer plane.

- This is a full-fledged network. It is not differentiable to a conventional network by its

customers and by its administrator.

Each virtual network behaves as a full network on which it is possible to imple-

ment routing protocols and services. Depending on the types of services which are

supported, each virtual network must meet specific constraints of quality of service on

transit time, availability etc... On such a structure, different overlay networks can be

assigned to each service. Virtual networks realize the interconnection between sites

that either provide services or are users of these services. The sites are connected

via service accesses or clients accesses to the physical network nodes. Because of

the functional equivalence between virtual node equipments and physical node equip-

14

ment, such a network service may have either virtual node equipments or physical node

equipments.

The implementation of differentiated services supported by virtual networks over a

physical infrastructure can be described by the simplified diagram above (Figure 2.1).

Networks are either made of physical node equipments or of virtual node equipments.

The links between the physical node equipment can be physical (e.g. fiber) or logical

(for example MPLS tunnels). Flows to multiple virtual networks that borrow common

links must obviously be multiplexed (for example VLAN 802.1Q Ethernet).

Moreover, the control plane of a VN, on a physical network can be centralized

or distributed. A plane for centralized control allows a global view, optimizations

and complex schedules with a plane of distributed control. The downside is the risk

in return for the loss of connectivity between data planes and the control plane. A

distributed control plane provides better resilience because each network element has

visibility across all network elements and how to reach them, by implementation and

configuration of demons.

The implementation of full network virtualization consists in creating virtual net-

work devices interconnected with virtual links. Elements of a virtual network are ded-

icated to network functions in a broad sense: routing, switching, proxy, firewall, DPI,

load balancing, access point, cache accelerator application, etc... A virtual network

topology is a partial graph of the graph of the physical infrastructure which meets the

needs of the services provided by the layer. The data exchanged between these virtual

machines are multiplexed and sent on the links of the physical sub-strate.

We can find in this implementation the preoccupations which are induced from the

works of Popek and Goldberg [40] on virtual processors. If we extend these concepts

to network virtualization, we have to consider the virtualization manager as a group

15

of hypervisors that individually support the virtualization of network equipment. A

prerequisite for network virtualization functions is that virtual machines are supported

by IT equipment to comply with the rules and theorems for creating a virtual machine.

However, it is a necessary but not a sufficient condition; the function of a network

based on switches or based on routers is not limited to data processing of the control

plane but mainly concern the ability to commutate packets.

The criteria that define a virtualizable network are found not only in the ability to

virtualize the control plane but also in communication capabilities of the equipments

which support network virtualization.

Equivalence: It indicates the identity of network behavior whether it is real or

virtual. A virtual network must behave like a full-fledged network, independently

manageable.

Effectiveness: In performing physical facilities, the transfer plane is managed di-

rectly by the hardware. Packets are switched without going through the system that

manages the control plane.

Control of network resources: A virtual network manager must have full control

on the physical network resources. This implies that each virtualized machine in the

network must have access to the physical network resources without explicitly taking

into account the activities of other networks that share the same resource. The mon-

itor of each machine is responsible of managing and scheduling accesses to physical

resources. This principle characterizes the notion of isolation between networks.

In conclusion, a network is virtualizable if each of its equipment supports virtual-

ization as introduced by Popek and Goldberg [40] in their theorem.

16

2.1.3 Interests of network virtualization

In this section, we will talk about the interest of network virtualization. What is the

need for network virtualization? Firstly it is necessary to improve the network man-

agement, because it is currently insufficiently automated and it does not effectively

meet the needs of new ecosystems as that of cloud computing (dynamicity, flexibility,

insulation ...).

The concept of network virtualization can help the implementation of an opera-

tional model close to what was developed in the field of IP network. That is to say, an

operational model for the network with effective and highly automated management,

simplifying the use and offering new virtual network services on demand.

As in the field of Internet, the network virtualization provides the ability to instan-

tiate multiple virtual networks on a shared physical infrastructure in order to optimize

their use. Another advantage is that it becomes possible to instantiate networks, spe-

cific to the needs of the applications / services supported, in terms of performance,

control, management, QoS , flexibility ...

Under the criterion of equivalence, each virtual network has its own control plane,

management plane and transfer plane, its own QoS policy and is independent from

those deployed in other virtual networks sharing the same physical infrastructure. With

this approach, a configuration error in a virtual layer does not affect the other virtual

layers. An important consequence: the introduction of a new service configuration

is limited to the configuration of a virtual plane, which simplifies and accelerates the

introduction of a new service. In addition, management of the physical network itself

is simplified since it becomes limited to the management of different virtual planes

independently of supported services.

Virtualization has strong interests for both the operator of the physical network (de-

17

velopment of its infrastructure and lower operating costs) and the application providers

(on-demand deployment and better adaptation to the demand from end customers).

Some examples are given below:

• the creation of a virtual network for telemedicine service with strict bandwidth

requirements and network protection,

• cloud computing such as the implementation of a virtual network for the spe-

cific needs of multi- data center (eg real - time migration of VMs between data

centers) communications,

• the creation of a virtual network for a game community with strong time con-

straints and important dynamicity needs to be related to the arrivals and depar-

tures of players,

• the sharing of physical infrastructure between multiple virtual operators in the

mobile network. Each virtual operator must operate its virtual network indepen-

dently (control level, management, QoS),

• ability to optimize the energy demand of a network of nodes by moving virtual

nodes to concentrate virtual resources on a minimum of physical nodes,

• experimenting new technologies in an isolated virtual network of operating vir-

tual networks. For example, the introduction and testing of new protocols (

including the transfer plane, if the material is flexible enough to accept new

functions),

• possibility for a virtual network to have different topologies according to a pro-

grammable schedule daily / weekly,

18

• the operation of multiple networks on a single physical infrastructure. That is to

say that each network has its monitoring plane providing specific functions and

has its own characteristics. For example:

- 1 classic IPv4 network

- 1 MPLS network to provide business services

- 1 IPV6 network

- 1 controlled OpenFlow network

- 1 network dedicated to the multicast

- 1 Network Information Centric Networking (ICN)

- 1 CDN

- ...

Although the concept of network virtualization is quite old and has not had much suc-

cess in the past, it now attracts attention as a model for the achievements of the future

data networks. The model of virtual network, beyond the response to environmental

issues and sharing resources it offers, could impose itself as the preferred carrier ser-

vice networks within or between ASs (Autonomous Systems), capable of providing a

consistent view of services networks including access and mobility.

2.1.4 Properties of the network virtualization

In this section, we will describe the properties that a network virtualization must guar-

antee.

19

Isolation

The physical network must ensure isolation between virtual networks. The isolation

between virtual networks is related to several aspects.

The first aspect is the secret. It allows any virtual network to make addressing and

control independently of the other virtual networks and of the physical layer. The se-

cret must be guaranteed within each network element. For this, a discriminator must be

transported in each frame. This discriminator uniquely identifies each frame belonging

to a virtual network. To ensure the complete isolation and without constraint between

virtual networks, this discriminator must be explicit. Each network element support-

ing virtualization ensures that the frames to a virtual network will never be issued to

another virtual network. In the network elements that do not support virtualization,

virtual networks frames are transmitted in the physical plane and its VN identifier will

not be used.

The second aspect concerns the monitoring of resources used by each virtual net-

work (CPU, RAM, bandwidth . . .). That is to say, in all circumstances a virtual net-

work should not impact the other virtual networks with which it shares the physical

infrastructure. This aspect is closely related to issues of QoS treated in the sub-section

below. A virtual network must no longer need to worry about the other virtual networks

in order to use the resources that have been allocated to it.

Simplifying network management

The virtualization of the network must guarantee the simplification and automation of

network operations.

The introduction of a separation between the physical layer and the supporting

services (itself divided into several virtual planes services) naturally brings a simplifi-

20

cation. Overall management is simplified because each virtual plane has a dedicated

manager. Configuring a virtual plane is totally dedicated to a service. It cannot have

any impact on other planes. Therefore this is an important simplification since the

complexity of the configuration is reduced to a layer. It also reduces the risk of errors

due to the simplification of configurations (the effects of a configuration error is limited

to the layer on which the error occurred).

The physical plane can be simplified since it no longer has to implement the control

layer in its totality.

Transparency

The virtualization of the network must guarantee transparency for the applications /

services.

That is to say, the client applications that use a virtual network are not aware of this

virtualization. Therefore, the network virtualization is immediately usable by existing

applications (no change to be made).

In addition, the virtualization layer should not make any assumption about the for-

mat of client frames to have the ability to transport them, which are not necessarily

based on a given protocol: IP for example.

Scalability

Full virtualization of the network must guarantee the scaling according to two dimen-

sions:

- the number of elements in the physical network: that is to say, by increasing in

proportion the number of elements in the physical network when the number of states

to keep in each element of the physical layer increases,

21

- the number of virtual layers that is to say the implementation of a virtual layer

affects only the physical network elements supporting it. Only those elements of the

physical network that the virtual layer used have a state to maintain. The number of

installable virtual networks depends only on available resources in the physical infras-

tructure. There is no particular complexity associated with a large number of virtual

networks.

Control of resources and their allocation

The virtualization of the network must control the resource allocation.

A resource must be shared among multiple virtual networks dedicated to applica-

tions with specific network needs both in terms of transfer but also in the control plane.

In order to provision for these virtual networks on demand, network virtualization has

to offer means for performing an inventory of available resources in the physical layer

(CPU, transfer table, memory, bandwidth ...). It should also allow allocating / deallo-

cating resources to virtual networks. Finally, it must control its use.

Performance

The virtualization of the network must allow building virtual networks providing per-

formance required by applications / services in terms of time, bandwidth ... to meet

their needs perfectly.

QoS (inter and intra virtual networks)

The virtualization of the network must provide two levels of QoS management:

• A QoS management among virtual layers is provided, for instance: prioritization

between the layers in the network elements and links. This QoS management

22

must ensure that the virtual network with a higher priority will have priority on

virtual networks of lower priority in case of congestion on the physical network.

• A QoS management within each virtual layer can implement traditional mech-

anisms or be based on other criteria. With this QoS management, we have to

implement a mechanism that assures the traffic can be transferred correctly in

case of failure. Studying such mechanism , which is the main objective of the

thesis, will be described in more details in chapter 3 and we can see it used

throughout the thesis. Sharing policies between virtual layers are not addressed

here.

Orchestration and adaptation to Cloud Computing

Orchestration describes the automated arrangement and management of complex com-

puter system and services. The network virtualization must enable provisioning, change,

delete, copy, inspect, move ... automatically and / or at the request of the elements of

virtual network operators optionally supported by several physical networks. For this,

the network must provide a virtualization layer orchestration. Mobility elements of

a virtual network must be available without requiring modification to the virtual net-

work level. This property is a consequence of insulating properties, transparency and

simplification of management aspects.

Network virtualization has to permit to take into account rapidly and frequently

the migration of a VM. These issues are developed in two documents "NaaS4Cloud

Opportunity of a Network -as- a-Service Layer for Cloud services" [23] and "Network

for Clouds, a key differentiator Telco" [24]. The virtual network must be adapted to

the mobility needs of VM. If a VM is moved in a new area, the virtual network must

be able to extend the orchestrator network in this area.

23

Security

The virtualization of the network must guarantee the safety inter-layers.

2.1.5 Emerging Solutions SDN

Although, there were many works in both academic [13] [14] [15] and industrial [17]

[18] [19] [21] world about network virtualization, it has become a hot topic only re-

cently. Network virtualization is currently attracting much attention because it is pre-

sented as a case of major use of SDN. This is a new notion that has to be well under-

stood in our context.

Software Defined Networking (SDN) is a new paradigm of network architecture

where the control plane is completely decoupled from the data plane. To recall, control

plane is a part of network which permits to calculate the network topology or to ex-

change routing information while data plane or forwarding plane is a part of network

where the packets are commutated. This decoupling allows to deploy a monitoring

plane on standard servers with flexible computing capabilities compared to conven-

tional switches. And it opens the opportunity to design an efficient centralized control

plane. In addition, the creation of a standardized API (Application Programming Inter-

face) between the control plane and the data plane allows developing network services.

The control plane is capable of injecting states in the network elements.

According to what is described above, SDN has the ability to control or program

the data plane from one or many independent control planes, these planes are possibly

centralized. Because of the reduction of control part in the data plane, it doest not only

simplify the data plane but also reduce the cost. SDN allows the control plane to have

a global view.

24

As we have presented in the previous paragraph, the major use of SDN is network

virtualization. We will try to analyze here in detail how SDN can help to achieve a

complete solution for network virtualization. As seen in the previous paragraph, the

principle of SDN is to control the data plane of a network from a centralized organ

through an interface that allows the creation of flows based on more or less complex

criteria which are then manageable by the supervisor. It is then possible to consider

an "abstract" network virtualization dedicating routes and treatment to groups of flows

characterized by certain criteria. These criteria can be the type of application or are

based on a local or remote destination (inter-AS) etc... Thus, all determined paths

in the network for a given set of criteria construct a topology, suited to the desired

characteristics, extracted from the network graph. This is one of the idea which leads

to the use of tree topology in our work.

The paths defined in the topology are not necessarily uniform in the assembly of

their components: for example a path in a given topology may be comprised of a subset

of edges defined by the criteria of destination address and another subset defined by an

application test. However, the resulting topology generally associated with a service

or a set of services can be like a "virtual plane" implemented on the network. The

question that arises is whether the constraints defined by Popek and Goldberg [40] are

applicable to this form of virtualization. For this, we must redefine, by analogy, the

basic elements developed in [40] detailing the role of the different elements involved

in virtualization.

The following diagram (Figure 2.2) reflects the paradigm SDN stated above:

In this diagram (Figure 2.2), physical substrate, virtual plane, network OS, appli-

cations are similar in functional structure to processor, hypervisor, system, user space

encountered in the field of IT. We must transpose the three criteria that define a vir-

25

Figure 2.2: SDN paradigm

tualizable machine defined by Popek and Goldberg [40] in this virtualization driven

networks.

Equivalence: A virtual plane piloted should behave as a set of fully-fledged net-

work, regardless of other manageable planes, and especially be able to support the

implementation of management protocols that provide a usable image recursively vir-

tual network.

Efficiency: As for the field of IT , the measure of effectiveness involves determining

the ability of virtual planes to allow direct execution of OS functions on the physical

substrate network object.

Resources Control: The protocol stack supported by the virtual plane must have

total control of the physical network resources. This implies that each network OS

26

needs access to physical network resources without explicitly taking into account the

activities of other virtual planes that share the same resource. This is the battery access

protocols that it is to manage and "schedule" the use of material resources. This prin-

ciple is related to the principles defined above and characterizes the notion of isolation

between the virtual planes.

2.1.6 OpenFlow

OpenFlow is the communication protocol between a logically centralized control plane

and transfer plane, which is the most advanced in an SDN architecture. Indeed, it is

implemented by many manufacturers such as NEC, HP, CISCO, Juniper...The section

below briefly describes the principle, the advantages and disadvantages of the Open-

Flow use in a network.

OpenFlow in its current version includes a protocol for controlling network devices

and a toolbox for piloting Ethernet switches. The control of switches is done via a

centralized controller which dialogues with each switch. The controller supervises and

coordinates all switches in a network. Apart from the various services supported such

as input and control counters, its main role is to manage the routing tables.

We call Tij a table entry which defines a flow by:

- An input port i and an output port j

- A filter Fij characterizing incoming packets on port i to be transmitted to the port j

- Actions to be performed on the packets (transfer, marking , destruction, transmission

to the controller ...)

In a network node, the main role of the switch is to determine the flows which

incoming packets belong by marking value Pi port that are in the filter Fij and directing

them to the output port Pj . Network equipment that meets the OpenFlow protocol

27

Figure 2.3: Filter Field

must be able to filter and switch packets between Ethernet ports on criteria values of

different fields up to level 4 (see figure 2.3). The filtering criteria and characterization

of Ethernet frames are given in fields described in the table below:

Unrecognized packets are transmitted to the controller for analysis and definition

of actions to be taken (e.g. characterize a new stream).

Interests

In this section, we will present the reason why we should use OpenFlow.

A first interesting point in the implementation of OpenFlow is the standardization

and centralization of programming commands equipment that meets the standard.

A second point is related to the centralized management mode. The flow switching

criteria can be selected and dynamically run on the equipments. This eliminates the

implementation of complex "stacks" machines on the network and therefore problems

of compatibility version between different manufacturers. Among other use cases, we

can find:

• Implementation of differentiated treatment of packets input or during travel on

the network depending on the type of flow they belong (i.e. split between several

28

virtual planes).

• The ability to manage data caches closer to the users in extracting, processing

and storing individual flows. This type of treatment can be applied to content

distribution, or maintaining databases within the "cloud computing".

• The marking of the packets for QoS management or for particular treatments.

Furthermore, the switching a priori is less expensive to implement than traditional

routers.

Disadvantages

The obligation to centralize control makes the whole network vulnerable to failures

and attacks. For large networks, the workload of the controller may become too large.

Motivation

The context of our study is the total or partial replacement of a network by switches.

Networks based on switches controlled by an external controller may represent an

interesting alternative to conventional router networks. Nevertheless, the absence of a

direct exchange protocol between hardware nodes in our network might be problematic

in cases of failure. Our aim is to propose a rerouting strategy for a network based

on switches that ensures that whenever a link or node fails the traffic can always be

rerouted to the destination by an alternative route. We now briefly explain this strategy

in more detail.

We assume that each switch is programmed with filters that can determine the next

hop for the incoming flow. We will recall here how a switch functions. For each

embedded virtual network there is a specific filter. The controller sets the flow path

29

by programming the switches in the form of triples of type (I,N, J)F , where I is

the source port (node), N the current node, J the output port (node), and F the filter

which indicates the destination. Clearly, for an incoming flow from a neighbour and

a given destination, the scheme will give an output port. In the case of failure, for

a given destination, only one of the two outermost nodes of the failed link needs to

react by deviating the disturbed traffic towards one of its neighbours. The traffic is

then routed according to the filters programmed in each node of the network. The

proposed scheme therefore requires a local reaction only, making its implementation

particularly easy in a distributed environment. This local reaction helps the network

to operate normally and it can solve the problem of transient failures. We recall that a

transient failure is a failure of short duration, while a persistent failure is longer. When

it has been determined that a failure is persistent, the controller can recalculate the

routing table for all the nodes in the network. In order to prevent the rerouted traffic

(following a failure) causing disturbances in another part of the network, additional

capacities are assigned to all the arcs in the network. We introduce a mathematical

model that can not only calculate the rerouting paths in the network, but also optimize

the total sum of additional capacity. Before explaining the model, we also present a

proof of an existence theorem, ensuring that we can find a valid rerouting scheme for a

network based on switches. Also, we have proposed approximate methods to solve this

problem for network with larger size. We will present these elements in more detail in

the following chapters.

When using Openflow, a virtual network can be defined by a filter. In fact, if we

want to create virtual networks that implement different services, the filter can be the

field type of service (Tos) in figure 2.3. This way, we will have different layers that

have different services. In a virtual network, we will define another filter, which will be

30

Figure 2.4: Tree topology in a virtual plane

used to route the traffic. The filter can be one of the fields mentioned in above sessions.

The traffic that has this filter as destination will create a tree which has this filter as its

root (Figure 10). We will use this tree as the base element in our theoretical studies in

the later chapters. Our solution method will be applied for all the trees in this layer.

With the above definition, we have to apply the same method for all virtual net-

works.

Besides that we can also use one filter to define all virtual networks by using the

notion of tree. As described before, one filter can define a tree. When two trees have

their roots falling in the same physical node, they are then in different virtual layers.

Thus, our resolution method, which is mentioned above and is described in more detail

in next chapters, can be applied one time for all virtual networks.

31

In our study, for the moment, we suppose that there are two layers: one layer treated

with priority and one layer best-effort. For the first layer, we will assure the quality of

service in case of failure by applying our method. For the second one, the quality of

service will not be treated.

2.2 Related works:

This study is about the treatment of failure for the network using Openflow in context

of network virtualization. With that objective, we will study in this chapter the related

works that concern network virtualization, Open-flow and failure resilience.

2.2.1 Works concerning network virtualization

Both in the academic and industrial world, studies are undertaken and lead to the pro-

posal of making network virtualization. In particular, a number of studies and experi-

ments that focus on architectures and methods of managing virtual networks are being

conducted by university teams together more or less closely with industry.

Princeton University and the laboratories of AT & T (AT & T Labs), conduct aca-

demic studies on various topics:

• The reliability and resource allocation [13]

• Architectures virtual network service supported by network operators [14]

• Management and dynamic reconfiguration of virtual networks, based on ability

to transfer virtual machines [15]

The University of Quebec at Montreal (UQAM) worked with the University Paris 6

(LIP6) on modelling solutions and allocation of resources for virtual networks [16].

32

The European AGAVE project brings together industry, universities and operators

including France Telecom. It defines the notion of planes of virtual networks providing

QoS that allow the interconnection of different service providers and operators to create

networks of extended services.

Projects achieving infrastructure -based network virtualization has started, first in

the U.S. then in Europe and Japan. It is a first step of experimental networks to operate

large-scale networks virtual routers.

• Planetlab [17]

This is the first major test networks with more than 1000 machines and 500 lo-

cations in over 30 countries. The machines support virtual routing nodes that are

networked to form barrier layers of open routers. The goal is to make available

to researchers a platform for realistic test in terms of users, traffic and measures,

allowing them to deploy and evaluate theoretical models.

• GENI: Global Environment for Network Innovations [18]

It is a set of initiatives to promote environmental testing large-scale network.

The guiding concepts are inspired by “PlanetLab” which GENI incorporates the

principles. It also advocates, functional enhancements and administration which

offers, among other things, the possibility for a given change in time or to in-

terface with the internet virtual network. The VINI project [19] implemented

by Princeton University and built on the GENI model is based on the PlanetLab

architecture.

• FIRE: Future Internet Research and Experimentation [20]:

This is a European network scale intended for academic and industrial experi-

mentation. It allows the interconnection of existing architectures such as Planet-

33

Lab tested with new architectures.

• CABO: Concurrent Architectures are Better than One.

It started with "AT & T Labs-Research" and taken over by the "Georgia Institute

of Technology" project and Princeton University. It offers a virtualized archi-

tecture solution from start to finish in a context of separation of roles between

the operators responsible for management of network infrastructure and service

providers.

• The Japanese AKARI project [21].

Supposed to lay the foundation for overlays of new generation networks by pro-

viding new network architectures and services, this project aims to integrate the

most advanced technologies such as optical switching or new concepts for net-

work virtualization.

• NEC solution

The system in this solution consists of a network of OpenFlow switches and a

controller. It is suitable for Data Center internal network. Indeed, it allows you

to configure and control a set of virtual networks in a multi-tenant environment.

• RouteFlow [28]

This solution allows controlling an OpenFlow physical infrastructure by a clas-

sical control plane without having to rewrite the control part

• Juniper solution: JunOSV App Engine [29]

This solution allows virtualizing networking functions currently supported by

boxes arranged either at customer or in our network. .

34

• Cisco OnePK(Cisco Open Network Environment Platform Kit)

This solution makes Cisco equipment programmable and allows its integration

with orchestration tools.

• European FEDERICA project [30]

FEDERICA is part of FIRE (Future Internet Research) pan- European projects.

This solution seems to be a case of complete network virtualization.

• European project SAIL

SAIL aims to define a network architecture capable of connecting rapidly and

automatically users and applications while optimizing the use of available re-

sources.

• European project OFELIA (OpenFlow in Europe: Linking Infrastructure and

Applications) [31]

Its purpose is to create the first European experimental network based on Open-

Flow technology. It permits to create automatically virtual networks

• FlowVisor [32]

It is a solution that only makes sense in the case of OpenFlow network. A large

number of virtual networks seem difficult to maintain with this method. The

definitions of implicit layers seem hard to manage.

• Virtual routers

So far, two manufacturers (Cisco and Juniper) propose solutions “full virtualiza-

tion” implementable in the core network:

- Proposal to introduce virtual Cisco routers in the networks of operators dedi-

cating routing planes for differentiated services (data, VoIP etc...) " Router Vir-

35

tualization in Service Providers " [33]

- After the offer of the Cisco Nexus 1000V virtual switch designed to facili-

tate the integration of internal communication services to Data Centers , offering

CSR 1000V is designed to enable a customer to implement virtual routers in the

Cloud, and the ” interface with its own network [34].

- Juniper Firefly is an alternative virtual routers which can be deployed in servers

in the data center. These solutions are considered in the data center.

2.2.2 Works concerning failure resilience

The problem of failure resilience has been widely investigated in literature. Many

works have been presented devoted to multi-protocol label switching (MPLS) [25] and

real-time systems [27]. Nevertheless, when dealing with switch based networks the

literature is less abundant. Our restoration scheme is pre-calculated, while other pro-

tocols in network virtualization [26] are pro-active. As a result of its pre-calculated

scheme, our protocol does not need any communication time between network nodes,

which guarantees the recovery time is mostly the failure detection time. We will

present principal works studying similar problems for IP networks and switches based

networks.

Rerouting in IP networks

Xi and Chao [11] propose a method for calculating back-up paths which permits to

reroute the traffic in case of link failure. The proposed scheme, called IPFRR (IP Fast

Reroute), uses two types of port, primary and back-up ports. Normally, the node uses

the primary port to switch the sorting traffic. When there is a failure on the primary

port, the node will use the back-up port to reroute the traffic. Also, when the traffic

36

comes from the primary port, the back-up port will be used to switch the traffic. This

packet forwarding policy makes the traffic follow the reverse routing path starting from

the upper node of the failure link until a node where it can jump to another node and

use its primary port. We will see that this method is similar to the one we present

in next chapter. They propose also an Integer Linear Programming (ILP) model to

minimize the number of backup ports. However the model does not take into account

the conflict problem, neither minimizes the capacity added to the network.

Another similar method is presented in Wang and Nelakuditi [8]. It determines the

next hop for traffic when the destination and entering interface of traffic are provided.

On the other hand, it calculates the rerouting path using shortest paths with the metrics

stored in each node. Because the graph is symmetric, this method becomes identical

to the method of Xi and Chao [11].

A number of methods have been proposed for IP fast rerouting, in order to solve

the problem of transient failure. These methods nevertheless have certain limitations:

• With loop-free alternate mechanism based methods [2], there is no guarantee

that traffic can be rerouted for all destinations. These methods can only help to

reduce the number of lost packets in an IP network.

• Not-via addressing [3] and tunneling [4] mechanisms require the encapsulation

and decapsulation of packets, while in multiple routing configurations mecha-

nism [5], the packets need to carry configuration information. With the appear-

ance of optical networks these methods that modify the packets are not recom-

mended.

Finally, some works dealing with multicast trees can be useful in treating IP transient

failures. At first, a method is proposed in [9]to create simultaneously two routing trees,

37

Figure 2.5: Two routing tree 1

which are named B (Blue) and R (Red). This proposed method is used for the case

of multicast. In this method, after eliminating any vertex or any edge in the graph, the

source s remains connected to all vertices throughB and/orR. We notice that reversing

the solution of [9] can provide a free-conflict routing scheme as defined above. We can

see an example of this method in the figure 2.5. The two routing trees are described by

the bold arcs and the bold dotted arcs. However, this doesn’t work when the routing

tree is fixed, which is the case for our problem. We can see clearly the reason in the

figure 2.6. When the nominal routing tree covers all the directed arcs to destination d,

we cannot construct the two routing trees by using [9].

Another work is presented in [10] that proposes fast reroute solution for multimedia

IP backbone design. The proposed method creates two multicast trees which are a

shared tree and a shortest path tree. This method uses the same principle as [9], but in

38

Figure 2.6: Two routing tree 2

addition it uses link’s weights to create shortest path routing tree. Again, in this case,

the method cannot be used for a given routing tree.

From above we can state that two main points need to be addressed: propos-

ing a generic free-conflict routing scheme that allows dealing with any given routing

scheme; ensuring more flexibility in the choice of alternative routing paths. We will

answer to the first point in chapter 3, and in chapter 4 we address the second one.

Rerouting in switches based networks

In this section, we present several works about failure resilience that are applied in

switches based networks. [35] proposes an OpenFlow-based segment protection (OSP)

scheme which enables fast recovery in network composed of OpenFlow-based Ethernet

switches. This scheme does not calculate back-up paths. Indeed, it supposes that we

39

have in our hand a rerouting scheme, it shows us how to use this scheme in context of

OpenFlow network. This proposed method avoids the intervention of controller upon

failure, thus assures a fast recovery time.

[36] demonstrates their proposed bootstrapping and failure recovery mechanisms

for an in-band OpenFlow network. With this protection mechanism, failure recovery

happens before the controller detects the failure. Indeed, the traffic is redirected from

the working path to the restoration path without the need to inform controller.

[37] shows that OpenFlow can be deployed in carrier-grade networks in certain

conditions. In fact, carrier-grade networks must have a strict requirement: they should

recover from a failure within 50 ms interval. This paper only considers the link failures

in the data plane.

[12] pre-calculates the back-up routes in case of failure using Openflow for the IP

network, but it pleads for the modification of the header of package, which as said

above are not recommended in practice.

In [41], Sharma proposes a restoration scheme for OpenFlow networks. When a

failure appears, the node will contact the controller via packet-in message. We re-

call that packet-in messages are messages that are sent from a switch to controller

while packet-out messages are messages that are sent from the controller to the switch.

Controller will calculate the new path and then resends this new path to the node via

packet-out message. This method is pro-active. Although, it may help to reroute the

traffic before the time limit of the packet is expired but it is slower than our method

when the rerouting paths are pre-calculated.

In order to have an autonomous restoration system in switches based network, we

need to propose a method which is pre-calculated and which does not need to modify

the packets. Our methods presented in next chapter satisfy the above conditions. It

40

helps to reroute the traffic without intervention from the controller. The methods [11]

and [8] can also be applied for switches based networks. However they does not help

to solve the dimensioning problem. We will compare the results obtained by their

methods and our methods in chapter 4.

41

Chapter 3

Existence theorem and mathematical

model

In this chapter, we illustrate the proposed restoration scheme through an example and

prove formally the existence of a free-conflict restoration scheme. Next, we propose

a mathematical model that permits to calculate a free-conflict restoration scheme that

optimizes the dimensioning of the network for a given routing scheme.

42

3.1 A free-conflict restoration scheme for switch-based

networks

In this section we detail our scheme for routing and rerouting in cases of link failure.

The considered network is modelled using a graph G = (V , E), directed and symmetric

(i.e., each link includes the two opposite arcs), composed of a set of n nodes V and a set

of m links E . For any destination in the network the traffic is routed to the destination

through a tree, called nominal routing tree. This tree is constructed using specific

criteria; for instance, it might be the shortest path tree. In our study we assume that the

routing is given. In the case of failure of an arc or link (both arcs composing the link

are then concerned), the upstream extremity node will deviate the disturbed traffic to

one of its neighbours. From this moment, any node traversed by the disturbed traffic

will route it according to a free-conflict routing scheme. In figure 3.1, we report a

free-conflict scheme. It can be noticed that all alternative paths to the same destination

that are not in conflict (see above), can be embedded in a free-conflict scheme. Hence,

there exist two free-conflict paths to destinationG coming from A. Then, this situation

can be represented at node A by two different inputs for destination G, as shown in the

figure: one comes from input 1 and goes through output 2 and the other comes from

4 and continues through 3. Then, given a precomputed failure resilient free-conflict

routing scheme, a rerouting procedure works as follows:

• In case of a (link) failure the upstream node initiates the rerouting procedure by

deviating the traffic to some destinations to one of its neighbours. Such infor-

mation relevant to failures of links is assumed known from each corresponding

upstream node for any destination in the network.

43

Figure 3.1: A free conflict routing scheme

• Other nodes in the network don’t need to take any specific action. They will

forward the traffic according to their routing tables. For any couple (input, des-

tination) it finds the appropriate output and sends the traffic through it.

3.1.1 An example

In this section we present a complete example of the proposed restoration scheme

(Figure 3.2). The original graph is shown in Figure 3.2(a). If we apply to all the nodes

of the graph a filter with respect to a destination D, the traffic flow that corresponds

to this filter uses a directed tree which converges to destination D (Figure 3.2(b)).

When the link (S,D) fails, the routing tree will be divided into two parts: the red part

(the filled nodes), and the blue part, whose nodes are unfilled (Figure 3.2(c)). All the

44

(a) Original graph (b) Nominal routing tree

(c) Failure situation (d) Rerouting scheme

Figure 3.2: Small example of the restoration scheme.

traffic to destination D that transits via node S can no longer use the link (S,D), and

will instead be rerouted by the path (S, T, U, V,K,D) that was pre-calculated by our

restoration scheme (Figure 3.2(d)). This alternative path connects the red part to the

blue part and it will not interfere with the nominal routing. In this scheme, in case

of failure of the link (S,D), node S is advertised of the failure and it will take the

necessary action to restore the traffic through an alternative rerouting path while the

other nodes will operate normally as programmed. We can see that the traffic towards

45

destination D over the arc (T, S) is rerouted over the arc (S, T), but this will not cause

any looping problem because of the configuration of filters. When the node T receives

traffic coming from U and knows that the destination is D, T will transfer the traffic

to node S. In the case of (S,D) link failure, node S will send back the traffic through

the reverse routing path (the network is assumed directed with arcs in both directions

for each link) to T . Knowing that traffic is coming from S and is heading towards

D, T will transfer this traffic to U , which in its turn will transfer it to V . Then, the

traffic will be transferred from V to K and on to destination D following the nominal

routing tree for destination D. Therefore, there is no looping problem and the traffic

is rerouted without causing any conflict. Nevertheless, the problem of existence of a

valid routing/rerouting scheme, i.e. without conflict, for all possible non-simultaneous

link failures is not straightforward.

3.1.2 Existence of a restoration scheme

In this section we study the question of whether there exists a rerouting solution that

gives rise to no conflicts. We shall make the following assumptions:

• the graph is assumed to be directed with arcs in both directions for each link of

the network;

• there exist at least two disjoint-arc paths between any two nodes of the graph;

• for each destination the nominal routing scheme follows a fixed tree;

• only one link failure can occur at a time.

Our goal is to achieve a full free-conflict scheme handling both nominal and failure

situations. This full routing scheme is composed of a nominal routing scheme realized

46

by a routing tree for each destination (which is given for all destination) merged with

the restoration scheme in such a way that there is no conflict with respect to filters.

One can notice that routing for both nominal and failure situations is done with respect

to a given destination l and there is no interaction between routing schemes for distinct

destinations. This suggests restricting the proof of existence of free-conflict scheme to

the case of a fixed destination without loss of generality. The same can be reproduced

for any other destination and merging them leads to a free-conflict scheme as well.

Theorem 1. For single link failures perturbing the nominal routing tree there exists a

rerouting plan without conflict for any destination l.

Proof. Let A be the routing tree to the destination l. l is therefore the sink of A. Let

(p1, q1) be an arc of A subject to failure. We assume that this arc fails and we must find

a rerouting scheme without conflict. We remark that (q1, p1) does not belong toA. This

is clear as for a given destination only one of arcs (directions) can be part of the routing

tree. Hence, this means that both link and arc failures have the same impact on traffic

lost for a given destination and we can restrict ourselves to arc failures. Without loss

of generality, we consider in this proof the problem of the failure of the arc (p1, q1). p1

is the sink of a sub-tree A1 whose nodes are colored in red. The other vertices in the

tree are colored in blue. Without loss of generality we assume that all vertices are part

of the tree A (|A| = n) and this is true for any destination l.

We know that there are at least two disjoint paths in the initial graph going from p1

to l. Given the assumption of two-link connectivity the upper part that includes p1, but

does not include the vertex l, must contain at least two outgoing arcs. Therefore there

are at least two arcs going out of A1 (Figure 3.3). Since one of these arcs is (p1, q1),

there exists a path µ from p1 that visits the vertices of A1, and connects a vertex of A1,

which is red, to a blue vertex. So there is at least one arc (i, j) (called also a bridge) of

47

Figure 3.3: Proof

µ connecting the red vertices to the blue vertices (Figure 3.3). We associate with this

arc a rerouting path for the failed arc. Let k be a red vertex of A1 which is affected by

the failure. Traffic to destination l and coming from k goes first to p1, then it follows

the the reverse path on the nominal routing tree (it is assumed above that arcs in oposite

directions are present for each link) from p1 to i. It uses bridge (i, j), then from j to

destination l follows the nominal routing tree. According to the above choice of the

rerouting path, traffic coming from different sources in A to destination l associated

with the breakdown of (p1, q1) necessarily follows rerouting paths without conflict.

We now consider the n− 1 failures of arcs of the tree and choose the different arcs

(i, j). We number the arcs of the tree by decreasing order as we approach the sink l,

48

and consequently choose the arcs subject to failure in successive order of increasing

numbers. Let (pr, qr) be one of the arcs subject to failure under consideration, and

let us suppose that we have chosen arcs (i1, j1), (i2, j2) . . . (ir−1, jr−1) as bridges for

constructing the rerouting paths with respect to previously examined failures. pr is the

root of tree Ar. We consider two cases. The first case is when we have chosen for

an arc (ps, qs), with s strictly smaller than r, a bridge (is, js) whose extremity is is in

the tree Ar and the other extremity js outside the tree As. Clearly at this case the tree

Ar is contained within As (Figure 3.4). Please note that or any s < r we have either

Ar ⊂ As (the path from pr to destination l goes through ps) either Ar ∩ As = ∅. We

therefore choose arc (is, js) as bridge for the tree Ar. Note that there exists at most one

bridge with this property. This can be deduced from the inclusion property of trees.

Indeed, having two such arcs (is, js) and (it, jt), with respect to failures (ps, qs) and

(pt, qt) with s < t < r (case t < s < r can be solved in a similar way), means that (is,

js) is also a bridge for At and it should have been chosen instead of (it, jt). In the case

when As ∩Ar = ∅, there is no rerouting arc with the above property. Then, we choose

any arc (ir, jr) (Figure 3.5) that connects Ar to its complement.

We need to show that the rerouting has no conflict. We demonstrate this by recur-

rence on the number of rerouted arcs. We consider that we have already rerouted r− 1

arcs in the tree. By the recurrence hypothesis, we assume that there is no conflict for

the first r − 1 reroutings. We verify that the r-th rerouting built as above also has no

conflict with the first r − 1 reroutings. Regarding the rerouting in the outside part of

the tree Ar, that is to say the part that is in common with the nominal routing, there is

no conflict by construction. Even if it uses the same arc with some previous rerouting

path, in this part it will follow the same rerouting path as far as destination l, and so

it is without conflict. We must also check that there is no conflict for the part where it

49

Figure 3.4: Recurrence Hypothesis

Figure 3.5: Recurrence Hypothesis 2

goes in the opposite direction in the routing tree, which means verifying that there is

no conflict in the two cases considered above. In the first case, where an arc (is, js) has

been chosen in the tree Ar, clearly no conflict is present in that part of the tree because

50

Ar will use the same arcs until is and continue with the same bridge (is, js) between

its red part and its blue part. In the second case, the part that ascends the tree can have

nothing in common with the other rerouting arcs, since this would imply the existence

of (is, js)! Therefore, there is no conflict in this case either. We can conclude that the

property remains true to the order r, and we have therefore demonstrated by recurrence

the absence of conflict.

3.2 Mathematical model

The routing/rerouting scheme proposed in this study requires the single path routing of

traffic demands both in the nominal situation and in situations of failure. An additional

difficulty for this strategy comes from the conflict avoidance constraint. All this makes

modelling and solving using an arc-path flow formulation extremely hard. We have

therefore opted for an adapted variant of the arc-node formulation that is better suited

to expressing these type of constraints. At this stage, the mathematical formulation

concerns only the spare-capacity assignment problem, (that is computing the optimal

capacities to be added for recovery needs, the routing being given). Furthermore, we

assume that in cases of failure all disturbed traffic demands will be rerouted along the

same single path. The model given below deals with link failure situations, but node

failure situations can be handled in a similar way. We first list the notation used in the

mathematical model.

Parameters:

• Arc: all arcs of the graph.

• E: set of links.

51

• V: set of nodes.

• Triple: all triples (i, k, j), where i, k, j are nodes of the graph and (i, k) and (k, j)

are two adjacent arcs, i being different from j.

• Al: set of arcs of the routing tree to the destination l.

• redlv: sub-tree of tree Al with sink v. Recall that in the case of failure the tree is

divided into two parts: the isolated part, i.e. the red part, and the blue part. The

alternative path will reroute traffic from the red part to the blue part.

• bluelv: Al − redlv.

• 0: a fictitious node used to divert traffic in case of failure. We introduce the

fictitious node 0 that will be used for all failures. For a given failure (v, l), the

traffic to l will be rerouted along a single path from 0 to l and starting with the

arc (0, v).

• T lv: total traffic for l that passes through the node v, v being the node that detects

the failure. In fact, the failure is characterized by a source v and a destination

l. This is because the nominal routing is done through a tree, and we need to

reroute only the nominal traffic passing via this tree. Hence, for a destination l,

each node in the tree is concerned with only one (failure) arc in the tree, and this

node is necessarily the origin of the failed arc.

• αlvab: a binary coefficient equal to 1 if the arc (a, b) belongs to the nominal routing

path from v to l excluding the failed arc.

Decision variables:

52

• ylvikj: this binary variable indicates whether the alternative path to destination l

and for a given failure contains arcs (i, k) and (k, j), the node v being the node

that detects the failure.

• xlikj: this binary variable indicates the rerouting scheme to the destination l. It

takes the value 1 if there exists a failure whose alternative path to destination l

contains arcs (i, k) and (k, j). In other words, this variable takes the value 1 if

there exists v that ylvikj is equal to 1.

• rab: additional capacity assigned to the arc (a, b).

We will explain the mathematical model in detail in the below paragraphs.

Firstly, we have to introduce the objective function

min
∑

(a,b)∈Arc
rab (3.1)

Recall that the objective is to minimize the sum of additional capacity allocated to

each arc. This objective function (3.1) will allow us to evaluate the ratio between the

additional capacity and the installed capacity.

Flow constraints and rerouting. The constraints in this paragraph are the con-

straints of rerouting. They will be able to construct a rerouting path from the node

fictive 0 to destination l (Figure 3.6).

∑
vj 6∈Al, j∈neighbor of v

ylv0vj = 1, v ∈ V, l ∈ V (3.2)

53

Figure 3.6: Model illustration

Constraint (3.2) implies that there exists exactly one arc coming out of v for the dis-

turbed traffic from v to l. As we describe above, all the traffic will be rerouted by only

one path. This path begins by the node fictive 0, then it uses the node v which is the

node that detects the failure and has to reroute the traffic(Figure 3.6). This constraint

allows to control the number of outgoing arc from the node v. Because the rerouting

path must not pass by the failed arc,(v, j) must not be the failed arc.

To avoid the problems of looping and conflict, the alternative path should not con-

tain any arc of nominal routing in the red part of the network.

ylvikj = 0, l ∈ V, v ∈ V, i ∈ redlv, (i, k) ∈ Al, (i, k, j) ∈ Triple (3.3)

54

Figure 3.7: Cycle in rerouting path

(3.3) ensures that this condition holds. Indeed, when the rerouting path uses one arc

of the nominal routing tree, it has to continue to use the arcs of the nominal routing

tree until it reaches the destination l. If this arc is in the red part of the network, the

rerouting path will follow the nominal routing tree to the failed arc. This will cause the

looping problem and the traffic will not be rerouted to the destination.

While testing our mathematical model, we find that there could be a case when there is

a circle in our rerouting path (Figure 3.7). Therefore, we add the following constraint

to avoid this problem:

∑
i∈V,j∈V |(i,k,j)∈Triple

ylvikj ≤ 1, l ∈ V, v ∈ V, k ∈ V (3.4)

Constraint (3.4) ensures that there will be no looping in the network, since the alterna-

tive path can transit once at the most via any given node. This constraint also ensures

that the alternative path from v to l is elementary.

55

We will introduce then the flow constraints that ensure the continuity of the alter-

native path.

∑
i1∈neighbour of i

ylvi1ik =
∑

j∈neighbor of k
ylvikj, l ∈ V,

(i, k) ∈ Arc, i 6= 0 , i 6= v, k ∈ V \{l}
(3.5)

∑
j∈neighbor of k

ylvvkj = ylv0vk, l ∈ V, v ∈ V, (v, k) ∈ Arc (3.6)

ylvkjj1 − y
lv
ikj ≥ 0, j ∈ bluelv\{l},

(j, j1) ∈ Al, (k, j) ∈ Al, ∀l ∈ V, ∀(i, k, j) ∈ Triple
(3.7)

(3.5) is the constraint of flow conservation. As illustrated by Figure 3.6, the total

amount of traffic entering i equals the total traffic leaving k. Because there exists only

one alternative path for a failure and a destination, there is only one incoming stream

and one outgoing stream. This type of flow conservation does not hold for the node v

that detects the failure; we therefore have a constraint of flow (3.6) for this case. In the

blue part, if the path uses an arc of the initial routing, it must continue to destination l,

and we thus have (3.7).

Next, it will be the constraint when the rerouting path reaches destination l.

∑
(i, k, l)∈Triple

ylvikl = 1, l ∈ V, v ∈ V (3.8)

Constraint (3.8) ensures that the alternative path will reach the destination l and it

will be the only one. This constraint consequently ensures the single path routing

requirement.

Given the complexity of the above LP formulation, we think that it will be useful to

56

briefly discuss the validity of the model. We recall first that the traffic to be rerouted is

characterized by the couple (l, v). We list below all the requirements that a rerouting

path from v to l must satisfy:

1. The path does not use the nominal routing when it goes through the red sub-tree

of the network.

2. If the path uses an arc of the nominal routing when it is in the blue sub-tree

of the network, it must continue to use the nominal routing until it reaches the

destination l.

3. It is an elementary path.

Clearly, constraint (3.3) ensures the first requirement and constraint (3.7) ensures the

second. The third requirement comes first from constraints (3.2) and (3.8) specifying

constraints for the origin (v) and the destination (l), secondly from constraint (3.4) that

ensures the elementarity of the path, and finally from the Kirchoff constraints.

Avoiding conflict constraints. After the construction of the rerouting paths, we have

to assure that theses rerouting path have no conflict between them.

∑
v∈V

ylvikj ≥ xlikj ≥
∑
v∈V y

lv
ikj

cardinal(V)
, (i, k, j) ∈ Triple, l ∈ V (3.9)

∑
j∈neighbor of k

xlikj ≤ 1, (i, k) ∈ Arc, l ∈ V (3.10)

xlikj ∈ {0, 1},∀(i, k, j) ∈ Triple, ∀l ∈ V (3.11)

ylvikj ∈ {0, 1},∀(i, k, j) ∈ Triple, ∀l ∈ V, ∀v ∈ V (3.12)

57

(3.9), (3.10), (3.11), (3.12) ensure the absence of conflict. We have at first the con-

straints (3.11),(3.12) express the value of the variables xlikj and ylvikj is 0 or 1. Then,

constraint (3.9) expresses the fact that xlikj = 1 ⇔ ∃v : ylvikj = 1. Indeed, if xlikj = 1,

it is obvious that there exists a v such that yikj = 1, because
∑
v y

lv
ikj ≥ xlikj . And vice-

versa, if ∃v : ylvikj = 1, then
∑
v y

lv
ikj ≥ 1 and consequently

∑
v
ylvikj

cardinal(V)
≥ 1

cardinal(V)
. We

can deduce that xlikj ≥ 1
cardinal(V)

. Because xlikj ∈ {0, 1}, we have xlikj = 1.

Therefore, the constraint of absence of conflict can be expressed by (3.10):∑
j∈neighbour of k x

l
ikj ≤ 1, because if we use arc (i, k) for the alternative path, we need

only use at most one arc (k, j) (Figure 3.6). Indeed, when two rerouting paths use the

same entering arc (i, k), the constraint ensures that it could use at most one outgoing

arc (k, j), which means there is no conflict.

Capacity constraints. In this paragraph, we present the constraints that concern the

capacity added to the arc.

∑
l∈V |(v,w)∈Al

∑
i∈neighbor of k, i6=j

ylvikj.T
l
v+

∑
l∈V |(w,v)∈Al

∑
i∈neighbor of k, i6=j

ylwikj.T
l
w ≤ rkj +

∑
l∈V |(v,w)∈Al

αlvkj.T
l
v

+
∑

l∈V |(w,v)∈Al

αlwkj .T
l
w, (k, j) ∈ Arc, k 6= v, k 6= w, (v, w) ∈ E

(3.13)

∑
l∈V |(v,w)∈Al

ylv0vj.T
l
v ≤ rvj +

∑
l∈V |(v,w)∈Al

αlvvj.T
l
v,

(v, j) ∈ Arc, j 6= w, (v, w) ∈ E
(3.14)

∑
l∈V |(w,v)∈Al

ylw0wj.T
l
w ≤ rwj +

∑
l∈V |(w,v)∈Al

αlwwj.T
l
w,

(w, j) ∈ Arc, j 6= v, (v, w) ∈ E
(3.15)

58

For each failure of link (v, w) (Figure 3.6), constraint (3.13) consider rerouted paths

for both arcs (v, w) and (w, v), and only trees that contain the arc failure are involved.

They also take into account the released bandwidth on the initial routing paths. In-

deed, the first term of the left part of the constraint (13) signifies the capacity of traffic

rerouted by the failure of arc (v, w) that passes by arc (k, j) and the second one sig-

nifies the capacity of traffic rerouted by the failure of arc (w, v). In addition, the first

term of the right part of the constraint (3.13) signifies the capacity added to arc (k, j)

while the second one and third one signifies the capacity released for arc (k, j) if this

arc is on the nominal routing paths for the failure of arc (v, w) and (w, v) correspond-

ingly. In brief, this constraint gives us the bound of the capacity added to arc (k, j).

(3.14) and (3.15) are special cases of (13) for the nodes that detect failures v and w.

3.3 Numerical results

We ran our program on IBM ILOG OPL IDEA using IBM ILOG CPLEX 12.1.0. The

calculations were performed on a virtual computer with the following configuration:

Quad Core 1.8GHz, 8.00 Go RAM, 12Mb cache.

We applied our model to four networks, namely one test network (7 nodes, 9 links)

and three real networks: Polska (12 nodes, 15 links: Figure 3.8(a)), Atlanta (15 nodes,

22 links: Figure 3.8(b)), Nobel-Germany (17 nodes, 26 links: Figure 3.8(c)). A de-

scription of these networks is given in Table 3.1. There are 5 columns: the network

instances, number of nodes, number of links, number of constraints and finally the

number of variables in the model. We notice that the number of constraints and vari-

ables becomes very large, even for medium size meshed networks.

Table 3.2 has 4 columns: the network instance, the ratio capacity of exact method

59

without "free-conflict constraints", the ratio capacity of our mathematical model and

the ratio capacity calculated for the strategy of end-to-end rerouting with stub release

(WR). The ratio capacity column describes the ratio between the added capacity and

the installed routing capacity. The tests were run on the above networks and the rout-

ing was considered to be fixed except for WR. Notice that for WR, the calculation is

done not for a fixed routing tree. The program computes both routing and rerouting,

which partially explains why WR performs so good. We used the shortest paths to fix

nominal routing for our method. Before discussing the numerical results let us recall

briefly what is meant by the strategy of end-to-end rerouting with stub release. In case

of a failure state, the failing nominal flows are rerouted through possibly several paths,

while the unaffected nominal flows are maintained. The failing flows release the capac-

ity on the links unaffected by a failure and the released capacity is used for rerouting

needs: this is known as stub release. WR is known to be very efficient in terms of cost-

effectiveness compared to other rerouting strategies. Comparing WR to our strategy,

we notice that ours applies stub release as well. However there are huge differences

between the two strategies. The biggest difference is that our strategy reroutes over a

single path from the node near the failure to the destination, while WR allows multi-

path rerouting from the origin to destination of any affected traffic demand. Another

significant difference is in the requirement to merge the (re)routing paths for different

demands with the same destination when they share an arc. All this explains the sig-

nificant difference to be seen in Table 3.2. Nevertheless, our proposed strategy leads

to a very simplified rerouting scheme in terms of management cost, which is a primary

objective when dealing with virtual networks. We have also compared the result of our

mathematical model to a mathematical model without free-conflict constraints in order

to evaluate the cost of the free-conflict constraints. We can see from the results that the

60

ratio capacity of this model is close to our mathematical model. This suggests that the

cost of the free-conflict constraints is not expensive to our network dimensioning.

(a) Polska (b) Atlanta

(c) Nobel-germany

Figure 3.8: Network instances.

61

Network Nodes Links Constraints # Variables #
Test 7 9 1951 2419

Polska 12 18 10976 16567
Atlanta 15 22 20371 30781

Nobel-Germany 17 26 57587 49828

Table 3.1: Network instances

Network Instance Exact-method without "free-conflict constraints" Exact method WR
Test 0.83 0.96 0.56

Polska 0.87 0.9 0.49
Atlanta 1.06 1.08 0.86

Nobel-Germany 1.08 1.16 0.73

Table 3.2: Network Cost

62

Chapter 4

Approximate methods

In this chapter, we present two heuristics that permit to calculate a rerouting scheme

without conflict while optimizing the dimensioning of the network. Before that, we

also present two algorithms which are in the origin of our heuristics.

63

4.1 Rerouting schemes

In this section, we present two algorithms that calculate a free-conflict rerouting scheme

for a single link failure problem. Their validity is proved theoretically; the first one

uses Theorem 1 presented in the previous chapter and the presentation of the second

one and its proof follow in section 4.1.2 below.

4.1.1 Algorithm 1

As said above, this algorithm formalizes the method used to build rerouting paths as

shown in Theorem 1 presented in the previous chapter. Let us recall first this result.

Theorem 1 For single link failure situations there exists for any destination l a free-

conflict rerouting scheme.

Let recall briefly the hypotheses and the principle of the method. The main hypotheses

are the following: the network is bidirected, symmetric and two-link connected; the

routing tree (n nodes) is given for any destination l. We assume that all nodes are

involved in the routing tree to destination l. Then, the free-conflict routing scheme is

built by adding sequentially the rerouting paths. Each rerouting path is composed of

three parts: it follows the inverse path from the upstream end node of the failed arc,

borrows a bridge, and follows the nominal routing path to the destination. Embed-

ding all these paths in the routing scheme yields free-conflict routing as shown in the

previous chapter. This idea is extended to single node failures presented in chapter 5.

Finally, we have shown that extending the existence of a such free-conflict scheme for

a set of predefined failure situations is not always possible and a counterexample is

given. This algorithm is depicted below:

64

Algorithm 1:
Input: a directed, symmetric two-link connected network; a routing tree A,

|A| = n, destination l which is the sink of the reverse tree A;
Output: a free-conflict routing scheme;

1 Number the arcs of the routing tree such that their number decreases in value as
we approach the sink l: r ∈ {1...n− 1}. Failures are considered in this order;

2 for (r = 1 to n− 1) do
3 Let (pr, qr) be an arc of the tree and Ar the subtree of sink pr;
4 Compute a bridge (i, j) of Ar where Ar is the subtree of sink pr. This

bridge connects Ar to A− Ar. This bridge is chosen so that there is no
conflict with µ1, µ2, . . . , µr−1;

5 Compute the path µ1
k from pr to i, following the inverse path of the nominal

routing tree;
6 Set the rerouting path of (pr, qr) as : µr = µ1

r + (i, j) + µ3
r where µ3

r is the
path of the routing tree going from j to l;

We have to choose the bridge appropriately because if the bridge is chosen accord-

ing a fixed criteria, it can give us problem.

We prove in this example (Figure 4.1) that if the rerouting paths take only the

bridge with the largest index node to reroute traffic, it can cause a problem of conflict.

Indeed, we have a routing tree A → B → C → D → E to destination E (Figure

4.1(a)). The node is indexed so that the number decreases when the node approaches

the node E. For failure link (D, E) (Figure 4.1(b)), the largest index is B therefore

the rerouting path for this failure is (D, C, B, E). For failure link (C, D), A has

the largest index therefore the rerouting path is (C, B, A, D, E). We see that these two

rerouting paths has a conflict at node B. As we describe in our theorem presented in

the previous chapter, the bridge is chosen appropriately with the bridge chosen before,

which means in order to avoid the conflict between rerouting paths. When there is

no possible conflict between the rerouting path and other rerouting paths calculated

previously, the bridge can be chosen randomly. In this example (Figure 4.1), we have

65

(a) Nominal routing tree (b) Failure link DE

(c) Failure link CD

Figure 4.1: Selection of bridges with biggest index

to choose the bridge for failure of link (C, D) to avoid the conflict with the rerouting

path for failure of link (D, E). The bridge should be (B, E) and the rerouting path is

(C, B, E) in this case.

66

4.1.2 Algorithm 2

The main drawback of the above algorithm is its lack of flexibility. Given the rerouting

path, the only degree of freedom that it can offer is the choice of the bridge. Further-

more, the free-conflict constraint doesn’t permit any alternative for the third part of the

path. Hence, the only possible variation is in its first part. We show that under some

assumption it is always possible to build the first part of the path in a more general

way (not only following the inverse path of the nominal routing path). Nevertheless,

the free-conflict constraint reduces at a certain point this choice as shown in the algo-

rithm 2 and the proof of validity reported in Theorem 2. In algorithm 2, we initialise

a rerouting path which traverses only the nodes in the red part of the routing tree and

does not use any arc in the red part of the routing tree. Then, this path follows the nom-

inal routing tree in the blue part. Next, we look if this rerouting path has any conflict

with other rerouting ones. In case of conflict, we modify this rerouting path by using

the conflicted one. At the end of this algorithm, we remove some directed cycle in the

rerouting path to ensure the elementarity of this path.

Theorem

We have stated and demonstrated a theorem to validate this algorithm. We shall make

the following assumptions: the graph is assumed to be oriented symmetric; there are at

least two disjoint-arc paths between any two nodes of the graph; only one link failure

can occur at a time.

Theorem 2. The rerouting paths computed sequentially by algorithm 2 are elementary

and without conflict.

Proof. Let A be the routing tree to the destination l. l is therefore the sink of A. Let

67

Algorithm 2:
Input: a bidirected, symmetric two-link connected network; a routing tree A,

|A| = n, destination l which is the sink of the reverse tree A;
Output: a free-conflict routing scheme;

1 Number the arcs of the routing tree such that their number decreases in value as
we approach the sink l: r ∈ {1...n− 1}. Failures are considered in this order;

2 for (r = 1 to n− 1) do
3 Let (pr, qr) an arc of the tree and Ar the subtree of sink pr;
4 Compute a bridge (i, j) of Ar where Ar the subtree of sink pr;
5 Compute a path µ1

k from pr to i, traversing only nodes of Ar and not
borrowing arcs of Ar;

6 Set the rerouting path of (pr, qr) as : µr = µ1
r + (i, j) + µ3

r where µ3
r is the

path of the routing tree going from j to l;
7 Conflict avoidance:
8 if µr is in conflict with one of µ1, µ2, . . . , µr−1 then
9 Denote µk the first rerouting path in conflict with µr;

10 Let (a, b) be the first arc in common;
11 Set µ4

r as the sub-path of µr from pr to b and µ5
k the sub-path of µk from

b to l;
12 Set the rerouting path µr = µ4

r + µ5
k;

13 Ensuring path elementarity:
14 if (µr is not elementary) then
15 Remove the cycle included in µr;

(pk, qk) be an arc of A. At first, we will explain how to build a rerouting path for

the failure of arc (pk, qk). Next, we will modify this rerouting path appropriately in

an iterative scheme. We assume that the link corresponding to this arc fails and we

must find a rerouting scheme without conflict. pk is the sink of a sub-tree Ak whose

nodes are colored in red. The other nodes in the tree are colored in blue. Without loss

of generality we assume that all nodes belong to the tree A and this is true for any

destination l. We will also show in this proof that the constructed rerouting path is

elementary.

We know that there are at least two disjoint paths in the initial graph going from pk

68

Figure 4.2: Path initialization

to l. Given the assumption of two-link connectivity, the upper part that includes pk, and

does not include the vertex l must contain at least two outgoing arcs. Therefore there

are at least two arcs going out of Ak (Figure 4.2). Since one of these arcs is (pk, qk),

there exists a path µk from pk that visits the vertices of Ak, and connects a vertex of

Ak, which is red, to a blue vertex. So there is at least one arc (i, j) of µ connecting

the Red vertices to the Blue vertices (Figure 4.2). We call this arc a bridge of Ak. We

associate with this arc an elementary rerouting path for the failed arc. Let v be a red

vertex of Ak which is affected by the failure. Traffic to destination l and coming from

v goes first to pk, then it follows a rerouting path to destination l. This rerouting path

is composed by 3 parts: a path µ1
k from pk to vertex i, a path µ2

k that contains only

69

Figure 4.3: Conflict avoidance

the bridge (i, j) and a path µ3
k from j to destination l follows the original routing tree.

There exists a path from pk to vertex i that uses no arc of the original routing tree; it

suffices to backtrack in the routing tree and join node i. We will describe a general rule

of construction of these paths in the following paragraph.

We will explain now how to build the rerouting paths. We number the arcs of the

tree so that their numbers decrease in value as we approach the sink l, and consequently

choose the rerouting paths in successive order of increasing numbers. For the first

failed arc (p1, q1), we construct the rerouting path µ1 like above, so µ1 is elementary

by construction. We consider that we have already computed the rerouting paths for

the first r−1 arcs in the tree (r ≥ 2). By the recurrence hypothesis, there is no conflict

for the first r − 1 reroutings and these paths are elementary. We construct now the

r-th rerouting. We verify that the rth rerouting also has no conflict with the first r − 1

reroutings and that it is elementary. Let (pr, qr) be the arc under consideration. pr is

70

the root of tree Ar. Now we initialize µr that starts with pr then goes through other

vertices of Ar (µ1
r) and connects a vertex of Ar, which is red, to a blue vertex (µ2

r:

this is a bridge), then starting from this blue vertex follows the original routing tree to

destination l (µ3
r). There are two cases to be considered with this new path. In the first

case, µr has no conflict with the paths µ1, µ2 . . . µr−1 chosen before. We have nothing

to do with µr in this case. In the second case, there is a conflict, so there is an existing

rerouting path that has an arc in common with µr. Let (a, b) be the first arc in common

between µr and the other rerouting paths and µk, (k < r) be the first rerouting path

among them having this property.

Notice first that there are only two possibilities for subtrees Ak and Ar; either

Ar ⊂ Ak (the arc (pk, qk) is included in the nominal routing path from pr to l), either

Ar and Ak are disjoint. In the last case (a, b) is included in µ3
k and µ3

r and the rerouting

paths are necessarily without conflict. In fact, the two rerouting paths will follow the

original routing tree to destination l so there will be no conflict between them and the

path is elementary. Consider now the caseAr ⊂ Ak. If (a, b) doesn’t belong to µ1
k, then

the same reasoning as above applies and the rerouting path is elementary and without

conflict.

Let consider the case when (a, b) belongs to µ1
k.This implies that (a, b) doesn’t

belong to µ3
r . We define then µ4

r the part of µr from pr to arc (a, b) and µ5
r the rest of

µr from b to destination l. In the same way, we define µ4
k and µ5

k. If there is no vertex

in common between µ4
r and µ5

k, we reconstruct then the new path µ′r by concatenating

µ4
r and µ5

k. We use this new path to reroute the traffic for the failure (pr, qr) (Figure

4.3). This path is without conflict from definition of (a, b) as the first arc in common

with other rerouting paths. This path does not borrow the failed arc (pr, qr) because

Ar ∈ Ak and the path uk supposed not to borrow any arc of Ak. In case when there

71

is a vertex in common in µ4
r and µ5

k, let m be the first one for example, we construct

a new path µ′r that uses µ4
r from pr to m and uses µ5

k starting from the vertex m to

destination l. Clearly, there is no vertex in common between the part of µ4
r and µ5

k

used by the new path µ′r. So, µ′r is elementary. We notice that this rerouting path uses

the bridge of rerouting path µk. We can show also that this contraction will yield no

conflict. In fact, we only need to consider if there is a conflict for the arc of this new

path µr which has m as the end vertex, we suppose this arc is (n,m). Let suppose,

by absurdity, that µr has conflict with another rerouting path at this arc (n,m), which

means (n,m) is the arc in common between µr and another rerouting path. This is

in contradiction with the hypothesis that (a, b) is the first arc in common with other

rerouting paths. Then, we can conclude that this contraction of µr is without conflict.

We have therefore demonstrated by recurrence the absence of conflict and the property

of elementary of the rerouting paths. Finally, the path does not borrow the failed arc

(qr, pr) because it is elementary.

4.1.3 Remark

If someone wants to give more freedom degree by modifying the rerouting path in

the blue part of the rerouting tree, we can show that it is impossible. Indeed, if the

rerouting path does not use the arcs of the nominal routing tree in the blue part of the

routing tree, it could give us an unsolvable conflict in the rerouting scheme. A solvable

conflict is a conflict that we can avoid by fusioning the rerouting paths as we did in

the above algorithm. So, an unsolvable conflict is a conflict that cannot be avoided by

fusioning the rerouting paths. We will present in the example below (Figure 4.4) this

type of conflict.

We have in this example a rerouting tree to destination D (Figure 4.4(a)). In this

72

(a) Nominal routing tree (b) Failure link SD

(c) Failure link RD

Figure 4.4: Unsolvable Conflict

figure, the arcs in the nominal routing tree are the straight arcs while the dotted arcs

are the arcs in the graph that could be used by the rerouting path. When link RD fails

(Figure 4.4(b)), the path (R, T, U, V, S, D) is chosen as the rerouting path. When link

73

SD fails (Figure 4.4(c)), the path (S, T, U, R, D) is chosen as the rerouting path for this

failure. We can see that this path uses the arc (T, U) which is not an arc of the nominal

routing in the blue part of the routing tree. When we compare these two rerouting

paths, we can see that they have the arc (U, T) in common but they separate after this

arc. So there is a conflict between these two paths. Now, we try to solve the conflict

like in the above algorithm by fusioning two rerouting paths. If the failure of link (R,

D) is treated before the failure of link (S, D), we keep the rerouting path of link (R,

D) and the rerouting path of link (S, D) becomes (S, T, U, V, S, D). This is impossible

because the link (S, D) fails. So, it will make a loop (S, T, U, V, S) and the packets can

not be rerouted to destination. This conflict is unsolvable. For another case, when the

failure of link (S, D) is treated before the failure of link (R, D); we can see the same

result. The rerouting path of link (R, D) becomes (R, T, U, R, D). Because link (S, D)

fails, it will make a loop (R, T, U, R) and the traffic cannot be routed to destination.

In the above example (Figure 4.4), we see that not using the arcs of nominal routing

tree in the blue part of the routing tree could give us an unsolvable conflict. However,

it is true only for the step of initialization of the rerouting path. We can see that after

the step conflict suppression, the rerouting path could use the arcs which are not the

arcs of the nominal routing tree in the blue part of the routing tree and it will not give

us any problem. We can see it in the example below (Figure 4.5).

We have a rerouting tree to the destination D. In this example, because of the nu-

meration of links, the failure of link (P, D) is treated before the failure of link (S, P).

When link (P, D) fails (Figure 4.5(a)), the path (P, S, T, U, V, D) is chosen as the rerout-

ing path. When link (S, P) fails (Figure 4.5(b)), after the step conflict suppression, the

rerouting path of this failure fusions with the rerouting path of link (P, D) and it be-

comes (S, T, U, V, D). We can see that this rerouting path uses the arc (T,U) and (U,V)

74

(a) Rerouting path for failure link PD (b) Rerouting path for failure link SP

Figure 4.5: Rerouting path after modification

which are not arcs of the nominal routing tree in the blue part of the routing tree. And

this rerouting path will not give us problem.

In brief, in the step of initialization of the rerouting path, the rerouting path can go

with more liberty in the red part of the rerouting tree but it must use only the arc of the

nominal routing tree in the blue part of the routing tree.

4.2 Heuristics

Although an exact compact mathematical model is proposed in the previous chapter,

it produces a large-scale ILP not scalable and often intractable even for moderate size

networks. This justifies the need for heuristic solution methods. Before detailing the

heuristics, let recall the main assumptions. The graph is assumed to be directed, sym-

metric, and two arc-connected. There is only one link failure at a time and the routing

75

tree is given. The proposed approaches, like the mathematical model given in pre-

vious chapter, are intended to solve the corresponding dimensioning problem, that is

minimizing the amount of additional capacities put in the network while ensuring full

restoration through free-conflict routing for all single link failures. We present below

two polynomial heuristic approaches which make use of the two algorithms given in

the previous section.

4.2.1 Heuristic 1

The main idea behind Heuristic 1 is using the rerouting path constructed by Algorithm

1. The heuristic goes through two loops. The external loop iterates over destinations

and the internal loop over link failures. For a given destination l and failure p, the

heuristic constructs the rerouting path as proposed in Algorithm 1. The choice of

the rerouting path is exclusively determined by the choice of the bridge. In practice,

several bridges may exist. Then, the choice is done with respect to the cost in terms

of the amount of added capacities necessary to realize the traffic rerouting through the

corresponding path. Hence, we need to take into account added capacities in each arc

and for each failure situation. The final added capacity is given by the maximum of

added capacities over the set of failures.

We will describe in detail here the data structures and functions used in our heuris-

tic. Let G = (V , E , C) be the symmetric graph, drawn from the network. We want

to determine the capacities added to the arcs to ensure the rerouting in case of single

failure. We suppose that the nominal routing is given and the graph has the minimum

necessary capacity to route the traffic in the absence of failure. For each destination

node arcs are numbered such that arcs in the same path to the destination have decreas-

ing numbers as approaching to destination.

76

We use the matrix M [p][a] to keep the additional capacity needed on the arc a

if the failure of arc p occurs. The matrix M will be determined and updated during

the execution of the heuristic. The array of constants T [d][p] contains the amount of

traffic to reroute to destination d for the failure of arc p. We use the table R, where

R(a) indicates the additional capacity on the arc a. R(a) must be sufficient to ensure

rerouting associated with each failure p, that is R(a) = maxpM [p][a]. We define the

function δ(a, b) which is equal to b − a if b ≥ a and to 0 otherwise. We define A[d]

the set of rerouting paths chosen during algorithm for destination d. A[d][p] indicates

the rerouting path to the destination d in the algorithm for failure p. A situation can be

identified by the pair (p, d) where p is the failure of the arc p and the destination d.

When an arc fails, the capacity of arcs between this failure and the destination is

assumed as released which is taken in account in the computation. Indeed, we take this

in consideration in the function CalculRecuperation(p).

Heuristic 1 follows the same procedure as algorithm 1, but it takes into account

also the capacity element. In order to optimize the additional capacity, when we

compute the bridge (i, j), we search a path that minimizes the cost S below: S =∑
a∈µ δ(R[a], M [p][a] + T [d][p] +M [p′][a]), with p ’ the symmetric arc of p. In fact,

we have that M [p][a] +M [p′][a] is equal to the additional capacity needed on the arc

a if the link corresponding to arc p and p’ fails. When we add T [d][p] to this sum, we

will have the new additional capacity needed on the arc a if the rerouting path uses this

arc. Then, we compute the function δ to have the difference between this new value

with R[a]. So, this term will calculate the capacity added to arc a when the rerouting

path uses this arc. This value indicates then the sum of capacities added to each arc

of the rerouting path. Indeed, in order to minimize the additional capacity of the net-

work, we try to minimize the additional capacity each time we create a rerouting path.

77

We minimize the cost S and compute the bridge in the function CalculChemin(p, d)

which calculates the path rerouting without conflict for a given failure.

Based on the above functions, our heuristic can be formulated as follows:

Algorithm 3: Heuristic 1
Input: a directed, symmetric two-link connected network; a routing tree A, a

destination list and a set of failures;
Output: a fully free-conflict routing scheme;

1 Initialize M [p][a] to 0 for all p and a.
2 Initialize R[a] to 0 for all a in E.
3 Initialize A[d][p] to empty.
4 forall the failure p in the failure list P do
5 CalculRecuperation(p)

6 forall the destination d in destination list D do
7 forall the failure p in the failure list P do
8 CalculChemin(p, d)

The above algorithm is time-polynomial. This is clear as theCalculRecuperation(p)

and CalculChemin(p, d) are of polynomial time.

4.2.2 Heuristic 2

Heuristic 2 uses the idea behind the Algorithm 2, allowing thus for more flexibility.

The main difference with Heuristic 1 lies in the way the first part of the rerouting

path is constructed. We use here the shortest path (Dijkstra Algorithm) with respect

to an appropriate metric. This metric characterizes the added capacity for each arc.

This metric also assures that the rerouting path respects the imposed constraints. For

example, to make sure that it will not use any nominal arc in the red part of the routing

tree, we initialize their metrics as infinite.

We present below the main lines of Heuristic 2. The above algorithm is clearly

78

Algorithm 4: Heuristic 2
Input: a directed, symmetric two-link connected network; a routing tree A, a

destination list and a set of failures;
Output: a fully free-conflict routing scheme;

1 forall the destination d in destination list D do
2 forall the failure p in the failure list P do
3 Initialize metrics to infinite for nominal arcs in the red tree;
4 Initialize metrics to infinite for non nominal arcs in the blue tree;
5 Initialize metrics to infinite for all inverse arcs in alternative bridges (i.e.

arcs from Blue part to the Red one on the bridge);
6 Initialize metrics for arc a to M [p][a] +M [p′][a] + T [d][p]−R(a) if this

term is positive and initialize metrics to 0 if it is not;
7 Search the shortest path using Dijkstra for this failure p;
8 if (there is a conflict between this path and the paths calculated

previously) then
9 Fusion the two paths in conflict as described in the Algorithm 2 to

have an elementary path without conflict;

10 Using this path as the rerouting path for failure p and destination d;
11 Update R(a),M [p][a];

of polynomial complexity since each iteration uses Dijkstra algorithm to compute the

rerouting path and this is done for |D| ∗ |P | iterations. In addition, it can be easily

established that the fusion procedure is also polynomial while the metric initialization

for each arc is costless.

4.2.3 Amelioration of heuristic 2

The heuristic 2 presented above is still simple. We want to enhance this heuristic to

achieve better results. We have proposed two alternatives to heuristic 2 that we will

present in the following sections.

79

Decreasing order of capacities

The first alternative is based on the decreasing order of lost traffic. Indeed, as we can

see from heuristic 2, the additional capacity for a failure depends on the additional

capacity that we have added for the failures treated before it. So, what happens if

we reroute the failure with larger amount of lost traffic before the failure with small

amount of lost traffic? Maybe we do not need to add much capacity for the second

one. This intuition makes us to come to alternative 1. At first, we need to sequence

in decreasing order the rerouted traffic. We consider the pair (destination, failure) as

a situation of failure. Each failure situation has a traffic that needs to be rerouted.

Then, we organize in decreasing order the rerouted traffic of these failure situations.

We modify the heuristic 2 using this order to have alternative 1.

Algorithm 5: Alternative 1
Input: a directed, symmetric two-link connected network; a routing tree A, a

destination list and a set of failures;
Output: a fully free-conflict routing scheme;

1 Create a list of situation (destination, failure) in decreasing order of rerouted
capacity. forall the situation (d, p) in this list of situation do

2 Initialize metrics to infinite for nominal arcs in the red tree;
3 Initialize metrics to infinite for non nominal arcs in the blue tree;
4 Initialize metrics to infinite for all inverse arcs in alternative bridges (i.e.

arcs from Blue part to the Red one on the bridge);
5 Initialize metrics for arc a to M [p][a] +M [p′][a] + T [d][p]−R(a) if this

term is positive and initialize metrics to 0 if it is not;
6 Search the shortest path using Dijkstra for this failure p;
7 if (there is a conflict between this path and the paths calculated previously)

then
8 Fusion the two paths in conflict as described in the Algorithm 2 to have

an elementary path without conflict;

9 Using this path as the rerouting path for failure p and destination d;
10 Update R(a),M [p][a];

80

Using multi-start with random choice

We want to do a multi-start to enhance heuristic 2. A multi-start means to launch the

heuristic many times and choose the best result. In order to use this method, we need

to add random choice to heuristic 2. We modify heuristic 2 by choosing the destination

randomly to have alternative 2. We present here the main lines of this alternative:

Algorithm 6: Alternative 2
Input: a directed, symmetric two-link connected network; a routing tree A, a

destination list and a set of failures;
Output: a fully free-conflict routing scheme;

1 Create a list of destinations.
2 Shuffle this list of destinations to have a random order.
3 forall the destination d in this shuffled list do
4 forall the failure p in the failure list P do
5 Initialize metrics to infinite for nominal arcs in the red tree;
6 Initialize metrics to infinite for non nominal arcs in the blue tree;
7 Initialize metrics to infinite for all inverse arcs in alternative bridges (i.e.

arcs from Blue part to the Red one on the bridge);
8 Initialize metrics for arc a to M [p][a] +M [p′][a] + T [d][p]−R(a) if this

term is positive and initialize metrics to 0 if it is not;
9 Search the shortest path using Dijkstra for this failure p;

10 if (there is a conflict between this path and the paths calculated
previously) then

11 Fusion the two paths in conflict as described in the Algorithm 2 to
have an elementary path without conflict;

12 Using this path as the rerouting path for failure p and destination d;
13 Update R(a),M [p][a];

4.2.4 Numerical results

In order to evaluate the effectiveness of the above heuristics, we tested them on 8 net-

work instances presented in Table 4.1. Table 4.2 gives the numerical results obtained

with heuristics, the exact model, the mathematical model without "free-conflict" con-

81

Network Nodes Links Demands
Test 7 9 42

Polska 12 18 66
Atlanta 15 22 210

Nobel-Germany 17 26 121
France 25 45 300
India35 35 80 595
Pioro40 40 89 780

Germany50 50 88 662

Table 4.1: Network instances

Network Instance Exact method Heuristic 1 Heuristic 2 Xi and Chao method
Test 62 66 68 69

Polska 19110 21449 21949 25093
Atlanta 308171 333480 343969 330745

Nobel-Germany 1862 1980 1940 2744
France OM 261529 260451 416670
India35 OM 7874 7784 11689
Pioro40 OM 289168 279046 431332

Germany50 OM 7339 7453 9847

Table 4.2: Network cost

Network Instance Alternative1 Alternative2
Test 66 66

Polska 21583 21136
Atlanta 323820 322384

Nobel-Germany 1936 1932
France 267829 251869
India35 8261 7923
Pioro40 277823 284293

Germany50 7285 7311

Table 4.3: Network cost 2

straints and the method of Xi and Chao [11]. Notation OM (Out of Memory) stands for

cases when the program stops without reaching a solution because of memory prob-

lems. We can remark from this table that the results from both heuristics are close to

those of the MIP model given in chapter 3. Indeed, the gap is between 6% and 12%.

82

Furthermore, no heuristic is clearly better than the other. We notice that Heuristic 2

performs generally better than Heuristic 1 for large instances (except for the last one).

Heuristic 1 finally performs quite well given its simplicity. Borrowing arcs of the in-

verse path results to be a good strategy as such arcs will be taken by all rerouting paths

used for failures in the same routing path. We have talked about the similarity of our

method and the method of Xi and Chao [11] in previous chapter, so now we compare

our method with this method. We recall that the rerouting path always chooses the

first bridge in [11] and when two rerouting paths have the same node in common, they

will fusion until they reach the destination. Their method is more restrictive than our

methods and it did not take into account capacity optimization. We can see from the

numerical results that our methods are better than [11] except for Atlanta network,

which is a very simple network.

We notice that the CPU times for both heuristics are very low for the application

in hand. The CPU time for Heuristic 2 solving the largest instance (Germany 50) is

less than 15 seconds. We believe that the proposed heuristics achieve a good trade-off

between the calculation time and the performance in terms of quality of the provided

solutions.

We also evaluate the effectiveness of the above alternatives and we obtain then

numerical results in table 4.3. When we compare with the results in table 4.2, we can

see that the two alternatives achieve better results than the two heuristics. Alternative

2 seems to perform better than alternative 1. The result of these alternatives is close to

the mathematical model presented in the above chapter. The gap is between 4% and

10%.

In order to evaluate the two heuristics and two alternatives when the node degree

of the network increases, we have used the modified version of the network Ta2 taken

83

Network Nodes Links Demands
Ta2 64 107 1869
Ta21 64 112 1869
Ta22 64 121 1869
Ta23 64 141 1869
Ta24 64 161 1869
Ta25 64 176 1869
Ta26 64 269 1869

Table 4.4: Network instances

Network Instance Initial Capacity Heuristic 1 Heuristic 2 Alternative 1 Alternative 2
Ta2 37740 47191 50189 42612 42887
Ta21 37664 46131 4623 40195 44779
Ta22 37087 44889 44239 38099 43486
Ta23 34513 37118 38807 35671 39145
Ta24 31808 30951 30761 30001 29329
Ta25 30842 29269 29464 29772 29317
Ta26 29675 28094 34787 27962 30758

Table 4.5: Network cost

from the library sndlib as network instance and we have increased its node degree.

These networks are described in table 4.4. We apply the two heuristics and two alter-

natives to these networks. We can see from this result that the two alternatives perform

better than the two heuristics.

4.3 Application to network virtualization

As we suppose at the beginning of the thesis, there are two virtual networks in our case.

One virtual network, which will be secured with our method, can react automatically

and assure no loss of traffic in case of single link failure. Another one is best-effort and

there is no guarantee on the quality of service in this network. However, in network

virtualization, there could be more than one virtual network (virtual layer) that should

84

be treated with priority. In that case, we have to modify our method in order to ensure

the quality of service of these virtual networks.

The mathematical model could be modified to be adapted with several virtual net-

works. Indeed, we have to add only a layer index to our variable and modify a little

our capacity constraints for this objective. However, as said before, the exact method

using MILP formulation is not tractable for this case too.

We will present in this paragraph how we can apply our method to network virtu-

alization. Even if there are several virtual layers in our network, there is no conflict

between these layers. Therefore, we can apply our two algorithms to each layer to

find out the rerouting paths for each of them separately. Another way of speaking, we

can apply directly our two heuristics to each layer to find the rerouting path and the

dimensioning for this layer. However, the dimensioning is not optimized in this case

and there is a waste of additional capacity. As we can see, several networks can use

the same additional capacity if this is not for the same failure. For example, we have

two virtual network with priority v1, v2, we add an amount of x capacity to arc a. This

amount x will be used by v1 in case of failure of link p1 and it will be used by v2 in

case of failure of link p2. In this example, arc a is used only by v1 in case of failure of

link p1 and is used only by v2 in case of failure of link p2. In our heuristics presented

in previous section, for the same failure, we sum the additional capacity on an arc

for each destination. Now, for the same failure of physical link, we have to take into

account the sum of additional capacity on an arc for each destination and each layer.

With this small modification, our method can be applied to several virtual networks in

order to find the rerouting paths and to optimize the dimensioning of these networks.

85

Chapter 5

Enhancing the theoretical study

In this chapter, we extend our study to the node failure problem and multi-link failure

problem. Indeed, we have proven that there exists a rerouting scheme without conflict

for the node failure problem and we have found a cons-example to show that we cannot

construct a rerouting scheme for the multi-link failure problem.

86

5.1 Node failure

Another problem that we consider is resilience to node failure. This type of failure is

rarer than link failure. Nevertheless, we need to check that a valid rerouting scheme

can be computed for this case too. We first note that in the case of a node failure

any traffic demand having this node as origin or destination cannot be recovered; only

the transiting traffic needs to be rerouted. In practice, a node failure situation is like

several simultaneous link failures. Figure 5.2 provides a small example of a node

failure situation. In this example, all the traffic is assumed to have the same destination

D. When the node R fails, all the traffic coming from R1, R2 and R3 needs to be

rerouted. In practice this is like the situation where links (R1, R), (R2, R) and (R3, R)

fail at the same time. We have to reroute the traffic so that there is no conflict in the

network. In the next section we provide a formal proof that under some more restrictive

conditions there always exists a rerouting scheme without conflict to recover single

node failure situations.

At the beginning of our study, we wanted to see if the solution we used for the

link failure problem could be applied to the node failure problem. We found out that

it could not be applied. We have an example (Figure 5.1) that shows this fact. In

this example (Figure 5.1), when the node S fails, we can consider that the two links

(A, S) and (F, S) fail at the same time. If we compute the rerouting paths for these

both link failures as described in the previous chapters, we could find out that there is

a problem. Indeed, for the failure of link (A, S), the only possible rerouting path is

(A, C, B, E, D); (F, B, E, D) is the rerouting path for the failure of link (F, S).

We could see that the path (A, C, B, E, D) has a conflict with the nominal routing

path at the node B. When B receives the traffic coming from C, it can not determine

87

Figure 5.1: Node failure example

if it should transfer the traffic to F or to E. From this, we can see that we can not

apply what we have done for the link failure problem to the node failure problem. To

solve this issue, we should program the filter of node B so that when it receives the

traffic coming from C, it would transfer it to F . As we know, F is the node that detects

the failure of link (F, S) and all the traffic coming to F will be rerouted following the

rerouting path of link (F, S) described above. With this, the traffic of the failure of link

(A, S) is rerouted to the destination D. It is not rerouted directly but intermediately

via the rerouting path of link (F, S). We can use this idea and extend it to have the

solution for the node failure problem.

88

5.1.1 Theorem of the existence of a restoration scheme in cases of

node failure

In this section we study the question of existence of a rerouting scheme without conflict

in case of node failure. Let us start by listing the assumptions: the graph is assumed to

have bidirected links; there are at least two disjoint-node paths between any two nodes

of the graph; only one node failure occurs at a time.

Theorem 3. For single node failure situations there exists for any destination l a

rerouting plan without conflict.

Proof. Let A be the nominal routing tree to the destination l. l is therefore the sink of

A. LetR be a node ofA. We shall suppose that this node has failed and that we need to

find a rerouting scheme without conflict. R is the sink of a sub-tree Rsub whose nodes

are colored in red. The other vertices in the tree are colored in blue. Without loss of

generality we assume that all vertices are part of the tree A and this is true for any

destination l. We denote as Rset the set of all red nodes that have a direct connection

with R, Rset = {Ri, 1 ≤ i ≤ m}. These nodes are also the sinks of the nominal routing

sub-trees Rsubi with destination l. Under our hypothesis R is in a state of failure, and

so we shall consider only the sub-trees Rsubi with i ∈ {1..m}. Finding a rerouting

scheme for a failed node R is similar to finding the rerouting paths for the failed links

(Ri, R). The only difference is that these rerouting paths cannot pass through node R.

We know that there are at least two node-disjoint paths in the initial graph for any

pair of nodes. There is therefore at least one arc going from Rsub\R to the set of blue

vertices. Let I denote the set of all red vertices having a direct connection (that is, an

arc) with the blue vertices. Within this set I we need to determine the sub-tree Rsubi to

which these different vertices belong. All sub-trees that contain at least one node from

89

I are called Rdirect
sub . For each of these sub-trees we choose a node ai from I and its

corresponding bi among the blue vertices, and use these nodes to construct a rerouting

path for the corresponding failed link (Ri, R). The rerouted traffic to destination l then

follows the reverse path of the nominal routing tree fromRi to ai. It uses the arc (ai, bi)

and then from bi all the way to the destination l follows the nominal routing tree. For

any sub-tree (i.e. Rsubi) that does not contain any vertices in I , there is necessarily a

path µ from vertex Ri to l that does not pass through R. This path µ will first visit only

red nodes contained in different sub-trees before it reaches a blue vertex. As there are

no vertices of Rsubi in I , two or more sub-trees will necessarily be traversed by this

path. The sub-trees having a direct connection with the Rdirect
sub sub-trees are denoted

Rindirect−first
sub . For each sub-tree inRindirect−first

sub , sayRsubj , we choose one sub-tree in

Rdirect
sub and fix an arc, let us say (aj, bj), connecting them. Similarly, we define the set

Rindirect−second
sub and choose for each sub-tree in this set a corresponding sub-tree in the

set Rindirect−first
sub , together with an arc connecting them, and so on. Then, the traffic

to destination l for one of these sub-trees, let us say Rsubj ∈ R
indirect−first
sub , goes from

sink Rj through the reverse path to the corresponding vertex aj ∈ Rsubj , arc (aj, bj),

continues along the the nominal routing path from bj to the sink of the corresponding

sub-tree, and ends with the rerouting path to l. The latter part of the constructed path

is explained above. Each path is thus composed of alternate sub-paths with nominal

routing parts from some node down to the sink on the one hand, and rerouting sub-

paths from the sink to the next sub-tree or Blue part on the other.

We now show that the rerouting scheme remains without conflict, whichever single

node failure is considered. Without loss of generality we consider in the following

that only Rdirect
sub and Rindirect−first

sub are concerned for each node failure situation. We

consider successively the failures of n − 1 nodes in the nominal routing tree to the

90

Figure 5.2: Node failure

destination l and choose the different arcs (ai, bi) for each situation. We number the

nodes of the tree so that their numbers decrease in value as we approach the sink l. We

then choose the arcs (ai, bi) in increasing order of number of the corresponding node

failure and we place them in a set named Connection − arcs. Let pr(= R) be the

node currently under consideration, and let us assume that we have already examined

the first r − 1 node failures and Connection− arcs = {(a1, b1), (a2, b2) . . . (ak, bk)}.

R is the root of sub-tree Rsub. As above, we consider sub-trees according to whether

they belong to Rdirect
sub or to Rindirect−first

sub . We first consider a sub-tree in Rdirect
sub , say

Rsubi . We find all candidate connection arcs for this sub-tree and check whether any

of them is already in the set Connection − arcs, that is to say whether there exists

ps with s < r and a connecting arc (as, bs) whose extremity as is in the tree Rsubi .

Two cases can be distinguished here. If answer is yes, then the other extremity bs is

91

outside the tree Rsubi , and a fortiori outside the sub-tree Rsub which is included in

the tree with sink pr (this is similar to As in Figure 3.4 that was used to illustrate the

previous demonstration). In this case we choose arc (as, bs) as the connecting arc for

the sub-tree Rsubi . If answer is no, we choose one of the connection arcs at random.

We proceed in a similar way for the sub-trees in Rindirect−first
sub .

We need to show that the rerouting has no conflict, and this can be demonstrated

by recurrence on the number of failed nodes. Let us suppose that we have already

rerouted the traffic for r − 1 nodes in the tree. By the recurrence hypothesis, there is

no conflict for the first r − 1 reroutings. We verify that the r-th rerouting also has no

conflict with the first r− 1 ones. Regarding the rerouting of the outside part of the tree

rsub, that is to say the part in common with the nominal routing, there is no conflict by

construction. Even if it uses the same arc, in this part it will follow the same rerouting

path all the way to the destination l, and so it is without conflict. We also verify that

there is no conflict for the part where it goes in the opposite direction of the tree, which

means verifying that there is no conflict in the two cases above. In the first case, where

an arc (as, bs) ∈ Connection − arcs has been chosen from the tree Rsub, there is

clearly no conflict in that part of the tree, because Rsub will use the same arc (as, bs)

as a bridge between its red and Blue part. In the second case, the part that ascends

the tree can have nothing in common with the other rerouting arcs, since this would

imply the existence of at least one (as, bs). There is therefore no conflict in this case

either. We conclude that the property remains true to the order r. This demonstrates

by recurrence the absence of conflict.

It will be remarked that switching to an alternative path is local to the node that

detects the failure. It is therefore not possible at the level of this node to distinguish

between a link failure and a node failure. Note that the method applied to node failures

92

protects the network against link failures as well as node failures.

5.1.2 Remark about single node failure problem

As we present at the beginning of the thesis and the previous chapters, only the nodes

at extremity of the failures can detect the failure and reroute the traffic to another path.

In fact, only one node in case of single link failure situation and several nodes in case

of single node failure situation could detect the failure, while other nodes transfer the

traffic normally as described in their routing table. Even so, these nodes cannot identify

if it is the link failure or node failure problem. This is the reason why we have to decide

at the beginning if our network secures the link failure problem only or it secures also

the node failure problem. As we see from the theorem above, this solution secures both

link failure and node failure problem, while the solution presented in chapter 4 secures

only link failure problem.

We present in the previous chapter a theorem which gives more liberty degree for

the rerouting path in the Red part of the network in case of link failure problem. We

wanted to know if this idea could be applied for the node failure problem. However,

we found a con-example to show that this is impossible.

In this example (Figure 5.3), we have a tree to destination D. The arcs in the tree

can be identified by the straight downward arrow in Figure 5.3(a). Because the solution

of node failure problem have to solves also the link failure problem, we consider here

the failure of link (S, D) (Figure 5.3(a)). In fact, we can see that the failure of link

(S, D) is equivalent to the failure of a fictive node between S and D, so we have to

take this failure into consideration. When link (S, D) fails, the rerouting path could

be (S, U, V, R1, T, W, R, D). This rerouting path has no conflict with the nominal

routing tree and it has more liberty degree in the red part of the routing tree. Next, we

93

(a) Failure link SD (b) Failure node S

(c) Failure node R case 1 (d) Failure node R case 2

Figure 5.3: Unsolvable Conflict in case of node failure

94

consider the failure of node S (Figure 5.3(b)). In this case the rerouting path is (R, D).

We consider now the failure of node R. We can see there is two solutions possible in

this case. In the first case (Figure 5.3(c)), the rerouting path uses arc (R1, V), then

it has to use the arc of the nominal routing tree until the node R1. In this case, it

causes then the looping problem and the traffic could not be rerouted to destination

D. In the second case (Figure 5.3(d)), the rerouting path uses arc (R1, T). As it uses

the same arc as the rerouting path in case of failure of link (S, D), it has to follow

this rerouting path until it reaches destination D. However, because node R fails, this

rerouting path cannot reach destination D. This conflict is unsolvable. This example

seems strange when we look at it in the tree form (Figure 5.3). However, it is not an

exotic example at all when we transform into graph (Figure 5.4). We have an initial

graph with metrics in the arcs (Figure 5.4(a)). When we calculate the shortest paths

tree with Dijiktra, we have figure 5.4(b). In this figure, the shortest path tree is noted

with the dotted arrow. When link (S, D) fails (Figure 5.4(c)), the rerouting path is

(S, U, V, R1, T, W, R, D) using shortest path. We can see that the nominal routing

tree and the rerouting path are identical with example above (Figure 5.3). In brief, we

cannot apply the idea about rerouting path with more liberty degree to node failure

problem.

5.1.3 Multiple link failure situations

Because a situation of node failure is equivalent to several simultaneous link failures,

it might be assumed that a free-conflict rerouting scheme for any multiple link failure

situation can be constructed, given that the network remains connected. We have,

however, found a counterexample showing that it would be wrong to make such an

assumption (Figure 5.5).

95

(a) Initial graph (b) Routing tree

(c) Failure link SD

Figure 5.4: Unsolvable Conflict in case of node failure in graph form

In this counterexample, we are given a routing tree to destination D and we con-

sider a set composed of two failure situations for which the resident networks remain

connected. We show that it is not possible to build a free-conflict rerouting scheme for

destination D resilient to each of these failures.

The first failure situation is composed of links (A, D) and (C, D). When (A, D)

96

Figure 5.5: Counterexample from the generalized problem.

fails, the only available rerouting path is (A, B, H, G, F, E, C, D) because if we

choose to use the direction (H, G, K) there would be a conflict at G. When (C, D)

is also down, the traffic that comes from the failure (A, D) will stop at C and it will

be rerouted by C. To reroute the traffic from the failure (C, D), C has to transfer the

traffic back to G, there are two possibilities here either take (G, H, B, A, D) as the

rerouting path, or transfer the traffic using (G, K). We can not use (G, H, B, A)

because in that way the traffic will be transferred indeterminately between A and C.

So, we have to use (F, G, K) as the rerouting path in this situation.

Next, we consider the second situation where the two links (E, C) and (I, D) fail

at the same time. When (I, D) fails, using the same reasoning as for the previous case,

97

the only available rerouting path is (I, J, O, K, G, F, E, C, D). As we choose to

use (F, G, K) in the previous case, in order to reroute the traffic of the failure (E, C)

and to assure there is no conflict with the previous case, we must also transfer the traffic

through F, G, K). Because both failures take place at the same time, the traffic will

be transferred indeterminately between C and I , so the traffic can not be rerouted in

this situation! So there is no rerouting scheme without conflict for destination D.

5.2 Update routing table

As we introduce at the beginning of this thesis, the reaction of the switches are auto-

matic when they detect the failure. During this period, the traffic is rerouted following

the precalculated rerouting path. When the network controller finds out that this failure

is persistent, it has to recalculate the topology of the network and update the routing

table of the nodes in the network. Here comes the question: Can we do this without

affecting the routing of traffic in the network? As we know, even though the new rout-

ing path is calculated, we can not modify the routing table immediately. It will cause

the lost of traffic in this case.

Looking at this question in literature, we find a solution which could solve a prob-

lem which is similar to our question. In this work, Lambert [42] has presented a method

that could update the information in the routing table while avoiding the loss of packets

and looping problem. The principle of this work is to update information in the routing

table from the destination to the source. We could use this principle in our context. The

routing table can be updated starting from the destination of the routing tree and going

up until it reaches the node which detects the failure.

We will present here how to update the routing table in order to avoid the data loss

98

and looping problem.

(a) Initial routing tree (b) Rerouting path starting from S

(c) The path recalculated from K

Figure 5.6: Update routing table

In this example, we have a routing tree to destination D (Figure 5.6(a)). In this

figure, the arcs of the routing tree are described by the straight arrow while the link in

the grape are described by the dotted link. When link (S, D) fails (Figure 5.6(b)), the

rerouting path uses the path (S, T, U, K, M) in the red part, the bridge (M, N), then

99

follow the nominal routing tree in the blue part until destination D. We can see that

we do not have to update the routing table in the blue part of the routing tree because

it would be the same as before. In the red part of the routing tree, for each node in the

rerouting path, from an extremity of the bridge M to the node S, we have to calculate

the new path to destination D. Also, updating the routing table for the nodes in these

paths has to follow this order. We will show here an example of updating the path from

K to destination D (Figure 5.6(c)). This path passes by M, Y, W, R. We can see

that if the path for Y, W is not updated, the packets will be transferred to S via the

old routing tree. That is why we have to update the routing table for W, Y, M in this

order. After updating the path for the nodes in the old rerouting path (Figure 5.4(b)),

we update other nodes in the red part whose routing tables have not been updated. We

could do this process for all destination in the network.

100

Chapter 6

Conclusion

The limits of the current Internet and the appearance of new requirements promote

research in network virtualization, for which failure resilience and traffic overload need

to be treated. In this thesis, we mainly study failure resilience in virtual networks.

When we have two virtual networks, the quality of service must be guaranteed in one

virtual network while the other one is "best effort". That is the reason why our research

focuses on one virtual plane only.

In this thesis, we have presented the literature on network virtualization, SDN and

OpenFlow. We have proved that, in the context of OpenFlow networks, there exists a

restoration scheme without conflict which could reroute the traffic to a same destina-

tion in case of single link or single node failure. We have proposed a mathematical

model which permits to optimize the dimensioning of the network while calculating

the rerouting paths. We have also introduced two heuristics which permit to compute a

feasible solution within a short computation time and which could be applied to large

networks. There are some special points that we want to emphasize about our meth-

ods. The main point here is its simplicity. Only the extremity nodes of the failure

101

have to know the failure while other nodes transfer the traffic normally as described

in their routing table. These extremity nodes will reroute autonomously the traffic as

pre-planned in their routing table without informing other nodes. This local reaction

reduces greatly the communication time between network nodes and simplifies the net-

work management. Another important point is that we calculate the rerouting paths for

all failures in the network while the other methods can only guarantee QoS for a part

of the network. This is the reason why the network dimensioning is expensive with our

method. However, this is also the strongest point because we guarantee full restoration

in the network with very little management effort.

There are several possible improvements of our heuristics which could be studied

in future works. The perspectives of our work could also be how the network controller

manages the routing tables as explained at the end of chapter 5.

Our work can also be extended to the overload issue in switches based networks.

When a link is overloaded or a partial failure has occurred, it is possible to deliver part

of traffic on the rerouting path. In consequence, our method can be applied directly

in this case. When there are several layers with different priorities in our network, the

overload issue should be studied deeper. For example, when a link is overloaded and

we have at least three layers with different priorities, each layer can be treated with

different manners. We have to make sure that the one with greatest priority functions

normally. For the second one with less priority, we can reroute the traffic with our

method. A part of the traffic can be probably lost for the "best-effort" one. The fu-

ture works in this direction are also necessary to assure quality of service in virtual

networks.

At the end of chapter 4, we have shown how to apply our method to several virtual

networks. Also, different virtual layers with different priorities can modify the way

102

that our method is applied. More study is also needed in this research direction.

103

Bibliography

[1] Fernandes, N., Moreira, M., Moraes, I., Ferraz, L., Couto, R., Carvalho, H.,

Campista, M., Costa, L., Duarte, O., Virtual networks: isolation, performance,

and trends, Annals of Telecommunications, vol. 66, pp. 339–355, Oct. 2011.

[2] RFC 5286, Basic Specification for IP Fast Reroute: Loop-Free Alternates,

http://tools.ietf.org/html/rfc5286, 2008.

[3] Internet-Draft, IP Fast Reroute Using Not-via Addresses,

https://tools.ietf.org/html/draft-ietf-rtgwg-ipfrr-notvia-addresses-11, 2013.

[4] Ho, K.-H., Wang, N., Pavlou, G., Botsiaris, C., Optimizing Post-Failure Network

Performance for IP Fast Reroute using Tunnels, QShine’08, Proceedings of the

5th International ICST Conference on Heterogeneous Networking for Quality,

Reliability, Security and Robustness, Hong Kong, China, 2008.

[5] Kvalbein, A., Hansen, A., Cicic, T., Gjessing, S., Lysne, O., Fast IP Network

Recovery using Multiple Routing Configurations, INFOCOM 2006, 25th IEEE

International Conference on Computer Communications, pp. 1-15, April, 2006.

[6] Pham, T.S., Carlier, J., Lattmann, J., Lutton, J.-L., Nace, D., Valeyre, L., A

restoration scheme for virtual networks using switches, ICUMT 2012, 4th In-

104

ternational Congress on Ultra Modern Telecommunications and Control Systems

and Workshops, pp. 800-805, Saint Petersburg, Russia, 2012.

[7] Pham, T.S., Carlier, J., Lattmann, J., Lutton, J.-L., Nace, D., Valeyre, L., A fully

distributed resilient routing scheme for switch-based networks, 3PGCIC’2013,

Eighth International Conference on P2P, Parallel, Grid, Cloud and Internet Com-

puting, pp. 92-97, Compiegne, France, Oct, 2013.

[8] Wang, J., Nelakuditi, S., IP Fast Reroute with Failure Inferencing, Proceedings of

the 2007 SIGCOMM workshop on Internet network management, pp. 268-273,

ACM New York, USA, 2007.

[9] Médard, M., Finn, S.G., Barry, R.A., Gallager, R.G., Redundant trees for

preplanned recovery in arbitrary vertex-redundant or edge-redundant graphs,

IEEE/ACM Transactions on Networking, vol. 7, issue 5, pp. 641-652, Oct, 1999.

[10] Doverspike, R., Li, G., Oikonomou, K., Ramakrishnan, K.K., Wang, D., IP Back-

bone Design for Multimedia Distribution: Architecture and Performance, IEEE

INFOCOM 2007, pp. 1523-1531, Anchorage, AK, May, 2007.

[11] Xi, K., Chao, J., IP Fast Rerouting for single-link/node failure recovery, BROAD-

NETS 2007, Fourth International Conference on Broadband Communications,

Networks and Systems, pp. 142-151, Raleigh, NC, USA, Sept, 2007.

[12] Kamamura, S., Shimazaki, D., Hiramatsu, A., Nakazato, H., Autonomous IP

Fast Rerouting with Compressed Backup Flow Entries Using OpenFlow, IEICE

TRANSACTIONS on Information and Systems, Vol.E96-D, No.2, pp.184-192,

February, 2013.

105

[13] He, J., Zhang-shen, R., Li, Y., Lee, C-y., Rexford, J., Chiang, M., DaVinci: Dy-

namically adaptive virtual networks for a customized internet, CoNEXT ’08, Pro-

ceedings of the 2008 ACM CoNEXT Conference, ACM New York, USA, 2008.

[14] Yhu, Y., Zhang-shen, R., Rangarajan, S., Rexford, J., Cabernet: connectivity

architecture for better network services, CoNEXT ’08, ACM New York, USA,

2008.

[15] Wang, Y., Keller, R., Biskerborn, B., Merwe, J., Rexford, J., Virtual routers on

the move: live router migration as a network management primitive, Proceedings

of the ACM SIGCOMM, pp. 231-242, ACM New York, USA, August, 2008.

[16] Cherkaoui, O., Halima, E.,Network virtualization under user control, Interna-

tional Journal of Network Management, vol. 18, issue 2, pp. 147-158, March

2008.

[17] PlanetLab Project, http://www.planet-lab.org

[18] Geni Project, http://www.geni.net

[19] Bavier, A., Feamster, N., Huang, M., Peterson, L., Rexford, J., In VINI Veritas:

Realistic and Controlled Network Experimentation, Proceeding of ACM SIG-

COMM, pp. 3-14, October, 2006.

[20] Fire Projet, http://cordis.europa.eu/fp7/ict/fire

[21] Akari Project, http://www.nict.go.jp/en/photonic_nw/archi/akari/akari-

top_e.html.

106

[22] VXLAN Gateway for Cisco Nexus 1000V Series Switches Deployment Guide,

http://www.cisco.com/en/US/prod/collateral/switches/ps9441/ps9902/guide_c07-

728864.html

[23] Chari, A., Morin, T., NaaS4Cloud Opportunity of a Network-as-a-Service Layer

for Cloud services, Research Paper Orange, 2011.

[24] Chari, A., Houatra, D., Meulle, M., Network for Clouds, a key Telco differentia-

tor, Research Paper Orange, 2010.

[25] Stern, T.E., Bala, K., Multiwavelength Optical Networks: A Layered Approach,

Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1999.

[26] Rahman, M.R., Aib, I., Boutaba, R., Survivable Virtual Network Embedding, in

Proc. NetWORKing 2010, vol. 6091, pp.40-52, May, 2010.

[27] Zheng, Q., Shin, K.G., Fault-tolerant real-time communication in distributed

computing systems, IEEE Trans. Parallel Distrib. Syst, vol. 9, issue 5, pp. 470-

480, May 1998.

[28] Nascimento, M.R., Rothenberg, C.E., Salvador, M.R., Correa, C.A., Lucena,

S.C., Magalhaes, M.F., Virtual Routers as a Service: The RouteFlow Approach

Leveraging Software-Defined Networks, CFI ’11, Proceedings of the 6th Interna-

tional Conference on Future Internet Technologies, pp. 34-37, ACM New York,

USA, 2011.

[29] Juniper, JunosV App Engine,

http://www.juniper.net/techpubs/en_US/release-independent/junosv-app-

engine/.

107

[30] Federica Project, FEDERICA. http://www.fp7-federica.eu/.

[31] Ofelia Project, http://www.fp7-ofelia.eu/.

[32] Sherwood, R., Gibb, G., Yap, K.-K., Appenzeller, G., Casado, M.,

McKeown, N., Parulkar, G., FlowVisor: A Network Virtualization Layer,

2009. http://www.openflow.org/downloads/technicalreports/openflow-tr-2009-1-

flowvisor.pdf.

[33] White paper Cisco,

http://www.cisco.com/en/US/solutions/collateral/ns341/ns524/ns562/ns573/white_paper_c11-

512753.pdf.

[34] Cisco Cloud Services Router 1000V Series,

http://www.cisco.com/c/en/us/products/routers/cloud-services-router-1000v-

series/index.html

[35] Sgambelluri, A., Giorgetti, A., Cugini, F., Paolucci, F., Castoldi, P., OpenFlow-

based segment protection in Ethernet networks, Optical Communications and

Networking, vol.5, no.9, pp. 1066-1075, Sept, 2013.

[36] Sharma, S., Staessens, D., Colle, D., Pickavet, M., Demeester, P., A demonstra-

tion of automatic bootstrapping of resilient OpenFlow networks, Integrated Net-

work Management (IM 2013), pp.1066-1067, Ghent, May 2013.

[37] Sharma, S., Staessens, D., Colle, D., Pickavet, M., Demeester, P., OpenFlow:

Meeting Carrier-Grade Recovery Requirements, Computer Communication, vol.

36, issue 6, pp. 656-665, March, 2013.

108

[38] Simon, J.L., Saint Jalme, C., Sol, D., Lattmann J., Valeyre, L., Technical study

on virtualization WAN, Research paper Orange, 2013.

[39] Lattmann, J., Virtualization, Research Paper Orange, 2008.

[40] Popek, G. J., Goldberg, R. P., Formal requirements for virtualizable third gener-

ation architectures, Communications of the ACM, vol. 17, issue 7, July, 1974.

[41] Sharma, S., Staessens, D., Colle, D., Pickavet, M., Demeester, P., Enabling fast

failure recovery in OpenFlow networks, Design of Reliable Communication Net-

works (DRCN 2011), pp. 164-171, Krakow, Oct, 2011.

[42] Lambert, A., Buob, M.-O., Uhlig, S.,Improving internet-wide routing protocols

convergence with MRPC timers, CoNEXT’09, pp. 325-336, ACM New York,

USA, 2009.

109

Appendix A

Technologies permitting networking

virtualization

In this appendix, we analyze the main network technologies that provide functions for

network virtualization. We distinguish several classes:

- Techniques that offer solutions for transfer plan virtualization. These technologies

partially meet the requirements of virtualization. In general they allow the isolation the

transfer plans but through a common control plan.

- Techniques that offer solutions for multiple control plans allow meeting the re-

quirements of full virtualization of the network with a conventional approach.

- Emerging technologies around Software-Define-Network (SDN) and OpenFlow

are an alternative and contributions to the network virtualization.

110

A.1 Techniques for transfer plan virtualization

A.1.1 Ethernet VLAN technology.

Description

Ethernet VLAN technology allows partitioning an Ethernet switch into several ar-

eas. Each area is associated with a single VLAN (Virtual Local Area Network) number

and can have its own address space and its own broadcast domain. The lookup is per-

formed on a common address table (VLAN, MAC). Therefore the VLAN Ethernet

technology can create end- to-end virtual networks. Isolation is provided by the trans-

fer scheme, the frames are identified by a VLAN number. This solution is not scalable,

because it is limited to a maximum of 4094 VLANs.

A.1.2 MPLS technologies

MPLS [13] which is a traffic routing protocol based on label switching, can be also

used as a protocol for transfer plan. It is based on the use of marking of packets by

labels which permit switching along a predetermined path between a router and a home

end router.

It relies on control plan protocols to distribute the labels. Thus, the LDP (Label

Distribution Protocol) is used to distribute the labels along the shortest path given by

the classical IGP. Several extensions to MPLS can create levels of virtualization in the

data plan and/or control plan. Thus, we describe in this session:

- MPLS -TE and PCE that achieve traffic -engineering and virtualization paths in

the network data plan level.

- MPLS VPN, which allows to create virtual private networks in the data plan to

the control plan virtualization at the end: the VRF

111

MPLS -TE and PCE

Description

MPLS -TE (MPLS Traffic Engineering) [14] [15] is a technology that allows tun-

neling –that is, the traffic is routed explicitly and based on constraints in the network.

MPLS -TE allows routing of network traffic through traffic -engineering techniques.

It is based on a control plan IGP- TE (IGP link state routing with traffic -engineering

extensions) and RSVP -TE (signaling protocol). The transfer plan uses MPLS .

Compared to the conventional IGP routing which follows the shortest path, MPLS

-TE introduces the TED (Traffic Engineering Database), which is a network topology

different from the LSDB (Link State Database). Indeed, IGP- TE adds new link pa-

rameters (bandwidth, TE metric , color, priority service class , ...) and route traffic

based on these additional constraints and those of the user (explicit by specifying one

or more intermediate nodes routing) .

MPLS -TE includes PCE [16] (Path Computation Element) . PCE is a functional

block from architecture MPLS -TE. It is designed to perform path computation in one

or more network elements which can be centralized (on a server) or distributed (on a

router).

To summarize the MPLS -TE enables virtualization paths over a physical network

infrastructure. In this way, it allows a network topology different from that offered by

conventional IGP. However: - Virtualization is limited to virtualization paths - It does

not include the control plan and therefore it offers only a partial network virtualization.

The ability of PCE to retrieve information from the network topology is a brick

useful for network orchestration.

- It is particularly interesting in the centralized mode as it allows deporting some of

the control plan in an external network element. It allows a better coordination between

112

the established TE - tunnels. - It helps to have an interface to another component

designed to provide requests from applications and services. Thus, it could be triggered

as needed, and in this sense it could also be programmable from the underlying network

(reactivity following a change in resources or a change in the network topology).

MPLS -VPN solutions

MPLS VPN technology allows construction of virtual private networks (VPNs)

over a shared network infrastructure. The network elements are implemented in edge

routers (PE) of a core network routers (P) routers and clients (CE).

The only job of P routers ("Provider" or "Label Switch Routers") in the core net-

work is MPLS label switching.

MPLS L3 VPN:

Transfer Plan

Packets transported in this mode between “Provider Edge Routers” are the IP pack-

ets encapsulated in MPLS frames, this is what justifies the name L3. Data transfer

requires two levels of MPLS labels: a level that describes the tunnels between routers

"Provider Edge" and in this tunnel, the IP packets are distinguished between customers

at a second level label. To enable the switch by the PE there is a routing table and a ta-

ble of virtual transfer "Virtual Routing and Forwarding table" (VRF) that connects the

prefixes of customers with a PE destination and a second level label for distinguished

clients. Therefore, plans addressing are separated and can overlap between multiple

clients.

Control plan

Exchanges roads are made by MP-BGP (RFC-4760) which is an extension of BGP

selected for its ability to advertise VPN routes. The extensions consist of adding,

announcements of prefixes customers, namely information labels allocated by the EP,

113

the identifier of the VRF ("Route Distinguisher"), as well as specific BGP communities

through the fields "route target".

Advantages:

Operator side • This is a standard built on IP solution. • The PE routers support

hundreds of client connections , allowing adaptation at all levels ; •MPLS tunnels are

shared on the core (LSP PE to PE) for all customers of a given PE a given output PE

packets , the IGP on the core is shared for all customers (no IGP VPN) • VPN routing

information conveyed by MP-BGP concern only PE and “Route Reflectors”, which is

a network component used by BGP. This information is not maintained on all routers

in the backbone.

Client side • Establishing an MPLS tunnel is independent of the level 2 technology

• It is adaptable to all levels and therefore it is particularly well suited to the needs of

small and medium enterprises solution ; • Transparent routing of IP packets between

sites.

Disadvantages:

Operator side • This solution requires, in addition to the IGP, MPLS and LDP or

RSVP protocols and MP-BGP and requires the installation of "Route Reflectors» to

avoid "full- meshes" MP- MPMO between PE. • When not using «Traffic Engineer-

ing», MPLS tunnels follow the IGP shortest paths. During the fall of a link or IGP

and LDP or RSVP router protocols follow the IGP routing protocol and therefore must

converge to restore connectivity through a IGP step convergence and recovery of a path

LDP or RSVP. The mechanism of «MPLS Fast Reroute» overcomes these difficulties

and ensures continuity of service. However, its implementation requires the provision

and preparation of bypass roads which complicates the administration and engineering

of the core network. • The QoS guarantee is not the default mode when establish-

114

ing a VPN. You have to manage the establishment of links by the RSVP- TE. • It is

not possible to specify that certain client packets must go through other defined paths

through the tunnels established in the heart. • There is no mechanism to isolate the

use of memory resources / CPU customer site (VRF): If a problem occurs on one of

the VRF and that it increases its CPU consumption, lack of resources can affect other

customers.

Client side • Because the MP-BGP protocol takes over the IGP customer network

from the PE router, the client does not have a vision of the topology of the IGP network,

which can cause problems in optimal paths use.

MPLS L2 VPN:

Packages transported in this fashion between the PE packets are level 2 issued by

the EC, encapsulated in MPLS frames.

Transfer Plan

The L2VPN technology comes in two main forms: VPWS and VPLS

• VPWS (Virtual Private Wire Service): This is a technology that allows emulating

point-to- point packet on a network. It provides the ability to connect two nodes regard-

less of the technology used by Level 2. The established tunnels behave towards routers

"Provider Edge" as physical links or "Pseudo Wire" (PW). It is necessary to create a

link PW PE by destination and by client. • VPLS (Virtual Private LAN Service): This

architecture allows the emulation of a traditional local area network (LAN). It offers

the ability to connect multiple remote LAN segments through a common network. The

network acts as a "switch Ethernet». The links between the PE routers are of "Pseudo

Wires» type.

Control Plan

There are two methods of signaling «Pseudo Wires»

115

•A method (called method «Martini ") implemented by all manufacturers, which is

to get a session «Targeted- LDP» PE to PE. This session makes the exchange of MPLS

labels on the way. This method has the disadvantage of requiring the maintenance

of LDP sessions "full mesh" and their contexts. • A standard method (called method

«Kompella ") implemented by Juniper, uses a variant of MP-BGP protocol. This

method is intended to get a MP- BGP PE to PE.

Benefits of L2VPN

• Provider provides only the connection and client traffic is Level 2 • If layer 3 is

used, only the client is master (management protocols, routing policy, and addressing

plan). • Benefit related to VPWS: EP does not handle client MAC address tables, so

there is little chance that a client can exhaust CPU / memory of a PE.

Disadvantages

• The absence of MP-BGP in the method "Martini" which is implemented by the

majority of manufacturers makes the configuration tedious because there is no "self-

discovery" (without the MP-BGP Route Reflectors).

a.2.2.3) Interest for the network virtualization.

Overall, MPLS VPN technologies allow creating isolated logical networks sharing

a common infrastructure. The transfer plan is virtualized with MPLS in the core of the

network and to the periphery through a label for references to independent contexts

VPN (L3 VPN case and E-VPN). However, all these logical networks share the same

level of control in the network core. MPLS VPN technologies thus only partially cover

the full virtualization of the network.

a.3) Overlays over IP solutions

a.3.1) Description

GRE key (19) NVGRE (20) VxLAN (21) STT (22) encapsulation providing tech-

116

niques provide insulation layers in the virtual network Data Center (DC).

Thus, in the highly dynamic DC context, the tendency is to start overlays networks

servers. OpenFlow, through the Open vSwitch (switch Opensource software integrated

into the Linux kernel) is used for the construction of the overlay networks. This meets

the need for automation and simplification of the business model, helping to reduce

operational costs. a.3.2) Interest for the network virtualization.

These techniques can be used to create a large number of isolated virtual networks

only in the context of DC. As MPLS technologies mentioned above, these technologies

do not allow for full network virtualization (control plan shared between all virtual

networks in the core of the network).

A.2 Techniques to run multiple control plans

Here we investigate technologies that have multiple control plans on the same network

element. Several options are available: - The logic sharing control plan by instantiating

several independent process that perform the function of each control plan . - The logic

sharing control plan by independent contexts management through a process which

performs the function of each control plan. - Physical sharing plans control by adding

CPU cards.

A.2.1 Logic sharing

b.1.1) The IS-IS routing multi- topology

The IS-IS routing multi- topology (26) is a mechanism that enables a router to

combine several independent IP topologies within a single IS-IS instance and indepen-

dent decisions of routing packets, depending on the topology in which they are placed

117

.

b.1.2) The IS-IS routing multi-instance

The multi-instance routing is described in (27). This mechanism allows a router to

run multiple routing instances and make routing decisions packets belonging to each

of these instances independently.

.

b.1.3) Interest in relation to model full network virtualization

These technologies allow to implement just enough (minimal extensions of existing

routing protocols) multiple instances and / or multiple routing topologies IS- IS or

OSPF on a network. Used in conjunction with a mechanism of the transfer plan to

identify the packets belonging to different bodies or topologies , these technologies are

a first step towards full virtualization of the network since it allows the execution of

multiple control plans IS- IS.

However, the scalability of these solutions must be analyzed as: - For multi- topol-

ogy the maximum number of topologies is limited to 127. - Reservations concern

CPU and memory resources required for the implementation of multi-instance. But

solutions to deport instances of control plans to servers could be used.

A.2.2 Physical sharing: The “logical routers”

b.2.1) Definitions

A logical router (LR logical router) is a partition of a physical router (Router Phys-

ical PR) who has the same organs and the same functionality as a physical router. This

is a subset of the physical machine which behaves as a full router. This is not a standard

concept. Each manufacturer has different implementation choices. Each LR operates

independently of other LRs in the same physical chassis.

118

A virtual router or a VRF (Virtual Routing and Forwarding instance) is an instance

of simplified routing with a single routing table. A logical router can contain multiple

virtual routers VRF.

b.2.2) Interest for the network virtualization

These solutions are not scalable and do not meet the need for flexibility and provi-

sion on demand. The insulation level transfer plan is provided but is not systematically

a control plan.

119

	PHAM PDT
	Soutenue le 26 novembre 2014

	thesis_Pham_english
	page_garde
	thesis

