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Abstract

In this thesis a new pseudo-genetic method to model the heterogeneity of sandy gravel
braided-river aquifers is proposed. It is tested and compared with other modeling approaches
on a case study of contaminant transport. Indeed, in Switzerland or in mountainous regions,
braided-river aquifers represent an important water resource that need to be preserved. In
order to manage this resource, a good understanding of groundwater flow and transport
in braided-river aquifers is necessary. As the complex heterogeneity of such sedimentary
deposits strongly influences the groundwater flow and transport, groundwater behavior pre-
dictions need to rely on a wide spectrum of geological model realizations.

To achieve realistic sedimentary deposits modeling of braided river aquifers, the proposed
pseudo-genetic algorithm combines the use of analogue data with Multiple-Point Statistics
and process-imitating methods. The integration of analogue data is a key feature to provide
additional, complementary and necessary information in the modeling process. Assuredly,
hydrogeologist are often subject to field data scarcity because of budget, time and field
constraints. Multiple-Points Statistics recent algorithms, on one hand, allow to produce
realistic stochastic realizations from training set with complex structures and at the same
time allow to honor easily conditioning data. On the other hand, process-imitating methods
allow to generate realistic patterns by mimicking physical processes.

The proposed pseudo-genetic algorithm consists of two main steps. The first step is to
build main geological units by stacking successive topography realizations one above the
other. So, it mimics the successive large flood events contributing to the formation of the
sedimentary deposits. The successive topographies are Multiple-Point Statistics realizations
from a training set composed of Digital Elevation Models of an analogue braided-river at
different time steps. Each topography is generated conditionally to the previous one. The
second step is to generate fine scale heterogeneity within the main geological units. This
is performed for each geological unit by iterative deformations of the unit bottom surface,
imitating so the process of scour filling. With three main parameters, the aggradation rate,
the number of successive iterations and the intensity of the deformations, the algorithm
allows to produce a wide range of realistic cross-stratified sedimentary deposits.

The method is tested in a contaminant transport example, using as reference Tritium
tracer experiment concentration data from the MAcro Dispersion Experiment (MADE) site,
Columbus, Mississippi, USA. In this test case, an assumption of data scarcity is made.
Analogue data are integrated in the geological modeling process to determine the input
parameters required – characteristic dimensions and conductivity statistical properties – for
two variants of the proposed pseudo-genetic algorithm as well as for multi-gaussian simulation
and object based methods. For each conceptual model, flow and transport simulations are
run over 200 geological model realizations to cover a part of the uncertainty due to the
input parameters. A comparison of the plume behavior prediction is performed between the
different conceptual models.

The results show that geological structures strongly influence the plume behavior, there-
fore the choice or the restriction to specific conceptual models will impact the prediction
uncertainty. Though little information are available for the modeler, it is possible to achieve
reasonable predictions by using analogue data. Of course, with limited information, it is im-
possible to make an accurate prediction to match the reference, and none of each conceptual
model produces better predictions but all are useful to cover the uncertainty range. The
results also underline the need to consider a wide exploration of the input parameters for
the various conceptual models in order to recover the uncertainty.
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Résumé

Cette thèse propose une nouvelle méthode de modélisation de l’hétérogénéité des aquifères
sablo-graveleux de rivières en tresse. la méthode est ensuite testée sur un cas de transport de
contaminant et comparée d’autres méthodes de modélisation. De tels dépôts sédimentaires
sont communs en Suisse ou dans les régions montagneuses et sont les réserves d’une part
importante de l’eau consommée. Pour préserver et gérer au mieux la ressource, une bonne
compréhension des phénomènes d’écoulement et de transport dans ces milieux est requise.
De plus, ces écoulements étant fortement influencés par l’hétérogénéité et les structures
complexes de ces dépôts, la prédiction de l’incertitude liée l’évolution d’un panache nécessite
un éventail large et varié de modèles géologiques.

Afin d’obtenir des structures sédimentaires réalistes pour ces milieux générés par les
rivières en tresses, l’algorithme pseudo-génétique proposé intègre l’utilisation de données
analogue combinée avec des techniques basées sur les statistiques multi-point et l’imitation
des processus. L’intégration de données analogues dans la modélisation est un élément clé
pour palier au manque données de terrain auquel les hydrogéologues sont souvent confrontés.
D’autre part, les récents algorithmes multi-point permettent de généré des réalisations stochas-
tiques réalistes partir de données d’entrainement contenant des structures complexes. De
plus, les méthodes basées sur l’imitation des processus permettent également de générer des
motifs réalistes en tenant compte des phénomènes physiques observés.

L’algorithme pseudo-génétique est composé de deux étapes. La première consiste con-
struire les unités géologiques importantes l’échelle du domaine modelisé. Cette étape est
réalisée par l’empilement de topographies sucessives, ce qui revient imiter la sucession de
grandes crues survenant dans les rivières en tresse et contribuant au dépôt des sédiments.
Les topographies successives sont générées par simulation multi-point, partir de données
d’entrainement composées de modèles numériques de terrain différentes dates d’une rivière
en tresses analogue. La deuxième étape consiste générere l’hétérogénéité petite échelle,
l’intérieur des unités géologiques principales. Pour cela, la surface de fond de chaque
unité géologique est déformée itérativement, imitant ainsi le processus de remplissage des
auges. Ainsi, avec trois paramètres essentiels, le taux d’aggradation, le nombre d’itération
et l’intensité des déformation, il est possible de générer une grande varietés de structures
sédimentaires entrecroisées réalistes.

Les modèles géologiques obtenus sont ensuite testés dans un exercice de prédiction
d’évolution d’un plume contaminé, utilisant comme référence les données de concentration
de l’expérience de traage au Tritium du site expérimental de Macro Dispersion (MADE),
Columbus, Mississippi, USA. Pour rendre le contexte de modélisation réaliste l’hypothèse
est faite que peu de données sont diponibles. Des données d’analogues sont intégérées aux
processus de modélisation pour déterminer les paramètres d’entrée requis – comme les di-
mensions charactéristiques ou les propriétés statistiques des champs de conductivité – pour
deux variantes de l’algorithme pseudo-génétique proposé et également pour une méthode
basée sur les simulations de champs multi-gaussien et pour une méthode de modélisation par
objets. Pour chaque concept, 200 modèles géologiques différents sont générés pour couvrir
en partie l’incertitude liée aux paramètres des modèles. Les prédictions du comportement
des panaches sont ensuite comparées entre les différents modèles.

Les résultats montrent que les différentes structures géologiques influencent fortement le
comportement des panaches. Conséquemment, le choix des modèles conceptuels a donc une
incidence sur l’incertitude des prédictions. Même si peu de données sont disponibles, il est
tout fait possible d’obtenir des prédictions raisonables en utilisant des données d’analogues.
Bien évidemment, avec des données limitées, il n’est pas étonnant de ne pas avoir une
seule prédiction reproduisant la référence. Bien qu’aucune méthode en particulier ne pro-
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duise de meilleures prédictions que les autres, toutes sont utiles pour couvrir la portée de
l’incertitude. Cela souligne également la nécessité d’explorer l’espace des paramètres pour
différents modèles conceptuels, afin de ne pas sous-estimer l’incertitude des prédictions.
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Introduction





Motivations 3

1.1 Motivations

In alpine regions, braided river aquifers constitute a major resource tapped to produce drink-
ing water and to support agricultural or industrial activities (FOEN, 2009). In a context
of climate change (Middelkoop et al., 2001; Moeck, 2014), of intensive use of the resource
and under urbanization constraints, the management of the resource becomes a challenge
especially to preserve water quality, to protect groundwater dependent ecosystems and to
contain flooding risks. This awareness is illustrated by river restoration projects all around
the worlds (Sear, 1994; Caruso, 2006; Tockner et al., 2009; Glenz, 2013). But investigating
surface groundwater interactions or quantifying the uncertainty of contaminant migration in
these complex geological media (Renard, 2007; Brunner et al., 2009) require reliable aquifer
heterogeneity models at the inundation plain scale.

Solute transport problems are essentially controlled by the geological heterogeneity and
the resulting petrophysical properties (De Marsily et al., 2005; Eaton, 2006). Various model-
ing tools exist and propose different representations of geological heterogeneity. But none of
them is known to be right or more appropriate to represent braided river deposits. Indeed, as
far as we know, no full 3D detailed characterization of the internal heterogeneity of a braided
aquifer exists at the inundation plain scale. One of the most detailed 3D characterizations
of a braided river deposit was achieved by sedimentological observations on a series of seven
cross-sections at the Herten site (Bayer et al., 2011), but on a rather small area (16m× 7m
vertical sections along a 10 m profile). Consequently, when considering the quantification
and propagation of uncertainty, several conceptual models shall be considered.

Thanks to their mathematical properties and computing ease, multi-gaussian based geo-
statistical models (Felletti et al., 2006; Salamon et al., 2007; Glenz, 2013) have flourished.
They have been tested on groundwater flow and transport problems. But by nature, multi-
gaussian simulations favor the connectivity of the mean values and do not allow for reproduc-
tion of realistic geological patterns (Guardiano and Srivastava, 1993), therefore even if these
models are well calibrated, accurate plume evolution prediction might be hard to achieve
(Zinn and Harvey, 2003).

New object based algorithms have been developed recently to model braided river aquifers
(Ramanathan et al., 2010; Huber et al., 2015). These approaches present a simplified rep-
resentation of the expected geological structures. They allow to produce geological realiza-
tions presenting simplified structures compatible with field observations such as outcrops or
Ground Penetrating Radar profiles. The inputs required are relatively simple and limited to
length scale characteristics as well as hydrogeological property distributions for each kind of
objects. An advantage of this method is that these algorithms are fast. However conditioning
to field data can be difficult.

Introduced by Guardiano and Srivastava (1993), Multiple-Point Statistics (MPS) algo-
rithms allow realistic simulations of complex patterns from a training data set. First practical
implementations such as SNESIM (Strebelle, 2002) are apt for the simulation of categorical
variables. More recent algorithms such as the direct sampling (DS) proposed by Mariethoz
et al. (2010), bring more flexibility and can deal with joint simulations of multiple categori-
cal and continuous variables. Using MPS (Straubhaar et al., 2011), Comunian et al. (2011)
proposed an innovative way to model a three dimensional braided river deposit from the
detailed characterization work at the Herten site (Bayer et al., 2011). This method proved
the ability of MPS to reproduce complex fine scale geological structures and to honor con-
ditioning data, but on a rather small area (16m× 10m× 7m). However, to our knowledge,
no three dimensional training data set covers a large domain. More generally, the lack of
training data set, especially in a three dimensional space is one of the difficulties in using
MPS (Comunian et al., 2012).
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Process-imitating methods also called pseudo-genetic algorithm might offer more realistic
geological patterns in accordance with field and outcrop observations but are CPU expensive
and not straightforward to condition to field data. So far, few such methods have been
developed to model braided river aquifer heterogeneous deposits (Webb, 1994; Teles et al.,
2004). The algorithm of Webb (1995) produces first successive topographies of the braided
river by random walk simulations. Then, the topographies are stacked one over the other,
which creates volumes that are assigned to a facies according to the local flow velocity given
by an approximation of the Froude number. Note that aside from channels width and depth,
all surfaces between channels are considered as flat. Furthermore, the facies assignment does
not account for the geometry of the volumes.

An aspect that is important to account for when modeling braided river aquifer deposits
at a specific site is that information quantity might be severely restricted. Indeed, the field
data budget is always limited, and technical difficulties might prevent accurate and exhaus-
tive data acquisition. In an active system, one might not be sure to retrieve piezometers or
other equipments after a big flood event. In inactive systems, one is limited by vegetation
or restrictions introduced to preserve the local ecosystems. In addition, quarries or outcrops
might not be accessible close to the site of interest. Then the availability and the use of
analogue site data may prove useful and necessary.

1.2 Objectives

This thesis pursues two main objectives.
The first aim is to propose a new modeling method, able to integrate analog data, to

produce realistic geological models of gravel braided river deposits while combining the ad-
vantages of MPS and process-imitating methods. MPS tools allow to generate realistic
structures, facilitate data conditioning and offer the possibility to integrate secondary in-
formation. By mimicking processes, pseudo-genetic methods produce realistic realizations
that have a physical meaning in addition to their statistical meaning. The proposed pseudo-
genetic algorithm revisits the method of Webb (1994) and uses MPS to generate realistic
successive topographies from large scale and high resolution digital elevation models acquired
by LIDAR (Lane et al., 2003).

The second goal is to assess in a contaminant transport example if analogue data inte-
gration allows to make 1) reasonable plume evolution predictions and 2) relevant uncertainty
analysis. The proposed pseudo-genetic algorithm and methods based on other concepts of
geological heterogeneity for braided river aquifer are then tested on a flow and transport
problem. For this purpose, the very dense data set of the MADE II tracer experiment
(Columbus, Mississippi, USA) has been used. It offers the possibility to compare predictions
with actual solute concentrations on a large number of sample points.

1.3 Methodology

The thesis is organized in four main chapters following a common thread. Nevertheless, each
chapter may be read independently.

Chapter 2 provides a detailed sensitivity analysis of the DS algorithm. The quality
of two-dimensional and three-dimensional realizations is assessed as a function of the main
parameters of the DS algorithm. It also provides an illustration of post-processing and
conditioning options as well as multivariate simulations. This is an important preliminary
step since this technique is used intensively in chapter 3 and 4 as an internal mechanism for
the pseudo-genetic simulation of braided river aquifers.
This chapter was published in Computers & Geosciences (2013) as ”A practical guide to
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performing multiple-point statistical simulations with the Direct Sampling algorithm” by E.
Meerschman, G. Pirot, G. Mariethoz, J. Straubhaar, M. Van Meirvenne and P. Renard.

Chapter 3 presents a method to simulate successive braided river topographies with
MPS. It uses the DS algorithm on a large scale Digital Elevation Model dataset, derived
from high resolution LIDAR data acquired at different time steps over the Waimakariri
River, New Zealand (Lane et al., 2003). An assessment of the resulting simulations is per-
formed through a connectivity analysis.
This chapter was published in Geomorphology (2014) as ”Simulation of braided river ele-
vation model time series with multiple-point statistics” by G. Pirot, J. Straubhaar and P.
Renard.

Chapter 4 proposes a new process-imitating method to produce realistic realizations of
geological heterogeneity for braided river aquifer deposits. The algorithm is based on the
vertical stacking of successive braided river topographies, obtained by applying the method
developed in chapter 3. It produces the main geological structures. Their inner structure
heterogeneity is then assigned according to a scheme mimicking the trough filling process
occurring during braided river floods.
This chapter will be submitted to Water Resources Research as ”A pseudo genetic model of
coarse braided-river deposit” by G. Pirot, J. Straubhaar and P. Renard.

Chapter 5 is a plume prediction exercise to test the resulting models proposed in chapter
4 with other conceptual models such as multi-gaussian simulations and object based models.
It is performed by assuming a situation where limited field information is available and the
use of analogue data is required. The MADE 2 Tritium tracer experiment is used as a
reference in this test case.
This chapter will be submitted to a Special Issue of Journal of Hydrology as ”Influence of
conceptual model choice on contaminant transport uncertainty forecasting in braided river
aquifers” by G. Pirot, P. Renard, E. Huber, J. Straubhaar and P. Huggenberger.

Chapter 6 summarizes the main results of the thesis and presents further perspectives.
Appendix A describes a method to explore model space parameters at reasonable cost,

when approximate physical models are available to surrogate costly full physics models. This
appendix was published in Advances in Water Resources as ”Distance-based kriging relying
on proxy simulations for inverse conditioning” by D. Ginsbourger, B. Rosspopoff, G. Pirot,
N. Durrande and P. Renard.

Appendix B presents a methodology to condition MPS simulations using geophysical to-
mography data. This appendix was published in Mathematical Geosciences as ”Conditioning
of Multiple-Point Statistics Facies Simulations to Tomographic Images” by T. Lochbühler,
G. Pirot, J. Straubhaar and N. Linde.
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A sensitivity analysis of the Direct
Sampling algorithm
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Remark

This chapter was written jointly with Eef Meershman, the first author of the corresponding
paper. The contribution was equally shared between the first two authors. The first author,
at the origin of the paper was a bit more involved in the writing while the second author
was more involved in the generation of the simulations and in the design and computing of
quality indicators. Both were strongly implied in the interpretation of their results.

Abstract

The Direct Sampling (DS) algorithm is a recently developed multiple-point statistical simu-
lation technique. It directly scans the training image (TI) for a given data event instead of
storing the training probability values in a catalog prior to simulation. By using distances
between the given data events and the TI patterns, DS allows to simulate categorical, contin-
uous and multivariate problems. Benefiting from the wide spectrum of potential applications
of DS, requires understanding of the user-defined input parameters. Therefore, we list the
most important parameters and assess their impact on the generated simulations. Real case
TIs are used, including an image of ice-wedge polygons, a marble slice and snow crystals, all
three as continuous and categorical images. We also use a 3D categorical TI representing
a block of concrete to demonstrate the capacity of DS to generate 3D simulations. First, a
quantitative sensitivity analysis is conducted on the three parameters balancing simulation
quality and CPU time: the acceptance threshold t, the fraction of TI to scan f and the
number of neighbors n. Next to a visual inspection of the generated simulations, the per-
formance is analyzed in terms of speed of calculation and quality of pattern reproduction.
Whereas decreasing the CPU time by influencing t and n is at the expense of simulation
quality, reducing the scanned fraction of the TI allows substantial computational gains with-
out degrading the quality as long as the TI contains enough reproducible patterns. We also
illustrate the quality improvement resulting from post-processing and the potential of DS to
simulate bi-variate problems and to honor conditioning data. We report a comprehensive
guide to performing multiple-point statistical simulations with the DS algorithm and provide
recommendations on how to set the input parameters appropriately.

2.1 Introduction

Multiple-point statistics (MPS) covers an ensemble of sequential simulation algorithms us-
ing a training image (TI) as input data for the spatial structure of a process instead of a
two-point variogram (Guardiano and Srivastava, 1993; Strebelle and Journel, 2000). A TI
is a conceptual image of the expected spatial structure and is often built based on prior in-
formation. Using a TI allows extracting multiple-point statistics and hence describing more
complex patterns; this is especially important when spatial connectivity plays a key role in
the model application (Bianchi et al., 2011; Gómez-Hernández and Wen, 1998; Renard et al.,
2013; Zinn and Harvey, 2003).

As is characteristic for sequential simulations, the unknown locations x of the simulation
grid are visited according to a predefined (random or regular) path. For each x the simulated
value is drawn from a cumulative distribution function F conditioned to a local data event
dn:

F (z,x,dn) = Prob {Z(x) ≤ z|dn} . (2.1)

This data event comprises the values of the known neighboring grid nodes xi, i.e. the
conditioning data and the already simulated grid nodes, and their relative positions. F is
built based on the central nodes of TI patterns equal or similar to dn.



10 A sensitivity analysis of the Direct Sampling algorithm

The Direct Sampling (DS) algorithm is a recent MPS algorithm (Mariethoz et al., 2010)1.
The particularities of DS consist in skipping the explicit modeling of F by directly sampling
the TI during simulation, and in using dissimilarity distances between dn and the TI pat-
terns. As soon as a TI pattern is found that matches dn exactly or as soon as the distance
between the TI pattern and dn is lower than a given threshold, the value at the central node
of the TI pattern is directly pasted to x. Since the TI is scanned randomly, this strategy
is equal to drawing a random value from F , but increases simulation speed. Other MPS
algorithms, like the widely used snesim (Strebelle, 2002) and IMPALA (Straubhaar et al.,
2011) algorithm, scan the TI beforehand for all possible dn ’s and store the TI probabilities
in a catalogue. Therefore, they are restricted to the simulation of categorical variables and
need to use a predefined template for dn. Due to its unique strategy, DS allows to simulate
both categorical and continuous variables, and to handle multivariate cases, only by selecting
the appropriate distance measures.

Since DS is a promising simulation technique for a wide range of applications, it is
important to understand precisely its capacities and its sensitivity to the user-defined input
parameters. DS is implemented in the ANSI C language and all input and output files are
in an ASCII SGeMS compatible format (Remy et al., 2009). Detailed algorithm steps and
further implementation details of DS can be found in Mariethoz et al. (2010) and the user
manual of DS.

Using DS requires the user to define some parameters: among them, the acceptance
threshold t, the maximum fraction of TI to scan f and the maximum number of points
in the neighborhood n are the most important since they are balancing simulation quality
and CPU time (section 2.2.1). For these three parameters, a detailed sensitivity analysis
was reported by generating non-conditional simulations for the entire 3D parameter space.
Next to a visual inspection of the resulting simulations, we quantified the similarity between
the simulations and the TI by means of simulation quality indicators (CASE 1). The same
quality indicators were calculated for a 3D example (CASE 2). We also illustrated the
potential of the post-processing option (CASE 3), the multivariate simulation option (CASE
4) and the data conditioning option (CASE 5) and discussed the corresponding user-defined
input parameters. Tab. 2.1 summarizes the values of the parameter that we kept fixed and
the range of values of the parameters that we varied.

Since Mariethoz et al. (2010) already showed good performance of DS with as much as
54 processors, the parallelization option is not discussed here. For more information about
the option to use transform-invariant distances we refer to Mariethoz and Kelly (2011).

Many previous studies have used only one TI with sinuous channels. In contrast, we
included a greater variety of patterns by performing sensitivity analyses on seven TIs: an
image of ice-wedge polygons (Plug and Werner, 2002), a microscopic view of a thin marble
slice, an image of snow crystals, all three as categorical and continuous images, and a cate-
gorical 3D image of concrete (Fig. 2.1). The continuous 2D TIs are grayscale photographs
with pixel values between 0 and 255; the categorical 2D TIs were derived from these by
classifying them into three categories. The 3D TI was generated by sequentially simulat-
ing 2D slices constrained by conditioning data computed at the previous simulation steps
(Comunian et al., 2012). The figures shown in this paper are the results for the categorical
ice-wedge TI, the continuous marble TI and the 3D concrete TI. They are presented with
the same color scale as the TIs in Fig. 2.1. The results for the other TIs can be found as
supplementary electronic material available online.

1It is the object of an international patent application (PCT/EP2008/009819). The code is available on
demand for academic and research purposes. Requests should be sent to Philippe Renard, Grégoire Mariethoz
or Julien Straubhaar.
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Table 2.1: Fixed parameters with their default values chosen for this study (sorted according
to their appearance in the parameter file) and parameters that were varied with their default
values and range over which they were varied (sorted according to the case number in which
they were studied).

Fixed parameters

Name Default

Simulation method MPS
Number of realizations 10
Max search distance 125 125 0 ( 1

2
size simulation grid)

Anisotropy ratios in the search window (x, y, z) 1 1 1
Transformations 0 (no transformations)
Path type 0 (random path)
Type of variable 0 for categorical, 1 for continuous
Exponent of the distance function in the template 0
Syn-processing parameters (4) 0 0 0 0 (no syn-processing)
Initial seed 1350
Parameters reduction 1 (no parameters reduction)
Parallelization 1 (serial code, no parallelization)

Varied parameters

Name Default Range Case

Threshold position t 0.05
0.01-0.02-0.04-0.06-0.08-0.1-0.12

1
0.14-0.16-0.18-0.2-0.25-0.5-0.75-0.99

Max fraction of TI to scan f 0.5 0.05-0.1-0.15-0.2-0.3-0.4-0.5-0.6-0.75-1 1
Max number of points in neighborhood n 50 1-5-10-15-20-30-50-80 1
Number of post-processing steps (p) 0 0-1-2 2
Post-processing factor (pf) 0 0-1-3 2
Number of variables to simulate jointly 1 1-2 3
Relative weight of each variable 1 0.1 0.9-0.25 0.75-0.5 0.5-0.75 0.25-0.9 3
Weight of conditioning data (δ) 1 0-1-5 4
Data conditioning No No-yes 4

2.2 CASE 1: parameters balancing simulation quality and
CPU time: t, f and n

2.2.1 Parameters t, f and n

An acceptance threshold t needs to be defined because a TI pattern matching dn exactly
is often not found, especially for continuous variables. When the distance between the TI
pattern and dn is smaller than t, the central node of the TI pattern is pasted at location
x. The default distances used in this paper are based on the fraction of non-matching nodes
for categorical simulations and the mean squared errors for continuous simulations. The
‘exponent to the distance function in the template’ was set to 0, meaning that the distances
are calculated without weighting the nodes in the TI pattern and the central node according
to their proximity to the central node. All distances are normalized ensuring their minimum
to be zero (exact match) and their maximum to be 1 (no match) (Mariethoz et al., 2010).

The maximum fraction of TI to scan f limits the number of TI patterns that are scanned
for their similarity with dn: f ranges from 0 (no scan) to 1 (scan full TI if necessary). If the
maximum fraction of the TI f is scanned and still no TI pattern with a distance smaller than
t is found, the central node of the TI pattern with the lowest distance is pasted at location
x.

The neighborhood dn is defined as the n grid nodes that are closest to x within the
defined search area. This search area can be defined by setting the parameters ‘maximum
search distance’, i.e. the radius in the x-, y- and z- direction of a rectangular search area.
Generally, it is advised to use a large search area by setting the radii to half the size of the
simulation grid, corresponding to the maximum neighborhood size, except when considering
non-stationary variables (Mariethoz et al., 2010), or if patching occurs (discussed below).
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Figure 2.1: The six training images (TIs) that were used for the sensitivity analyses: (a)
continuous (photograph: Plug and Werner (2002)) and (b) categorical ( k = 3) TI of ice-
wedge polygons; (c) continuous and (d) categorical ( k = 3) TI of a thin marble slice; (d)
continuous and (e) categorical ( k = 3) TI of snow crystals. The x- and y-axes represent the
number of pixels. The results of the sensitivity analyses for TIs (a) to (b) are illustrated in
this paper; the results for TIs (c) to (f) can be found in the App. C, Fig. C.1 to C.4.

The definition of n results in dn ’s covering a large part of the search area when the first
unknown grid nodes are simulated, and a progressive decrease of the size of the area covered
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by dn when the number of already simulated nodes increases. Consequently, DS ensures
that structures of all sizes are present in the simulation, which is also the purpose of the
multi-grid approach in snesim (Strebelle, 2002).

Fig. 2.2 gives an overview of the DS workflow and its three main input parameters.

Figure 2.2: Workflow of DS explaining the three main input parameters: the acceptance
threshold t, the maximum fraction of TI to scan f and the maximum of neighbors n.

It is clear that the larger n and the closer t to 0 and f to 1, the better the simulation
quality will be. However, these settings will be very expensive in terms of CPU time. For
all six TIs, we simulated 10 unconditional realizations for each parameter combination of 15
t values, 10 f values and 8 n values (Tab. 2.1), resulting in 12,000 realizations for each TI.

2.2.2 CPU time

Fig. 2.3 shows the CPU time needed to simulate one unconditional simulation for the
categorical and the continuous case. First the influence of t and n is shown for f = 0.5 after
which the influence of f is shown for different combinations of t and n.

Besides the fact that generating simulations based on the continuous TI generally takes
longer, the results for the categorical and the continuous case show a similar behavior.
Simulations with small t and large n require a long simulation time and decreasing f strongly
reduces CPU time. Modifying one of the parameters t, f or n increases or decreases the CPU
exponentially. The combined effect of relaxing all three parameters only slightly, can reduce
CPU time significantly. For instance, generating one simulation for the categorical case with
default parameters ( t = 0.05, f = 0.5, n = 50) took 163 s. Relaxing t to 0.1 only took 44
s, relaxing all three parameters to t = 0.1, f = 0.3 and n = 30 only took 13 s.

This behavior is related to the scanning algorithm. When t is close to 0, f close to 1
and n high, the algorithm scans the entire TI for a very good match with complex data
events (large neighborhoods). This takes a lot of time. In the opposite case, the algorithm
finds very quickly a TI pattern that matches the criteria and the algorithm is fast. What is
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Figure 2.3: Influence of t and n (for f = 0.5) (top) and f (bottom) on the CPU time
required to run one unconditional simulation.

striking in Fig. 2.3is that the evolution between these two cases is rather abrupt for some
parameter values. When the parameter values are behind such an abrupt boundary, DS is
very fast whatever the parameter values, below this boundary CPU time increases.

2.2.3 Visual quality inspection

Fig. 2.4 shows the first out of 10 simulations for some combinations of t, f and n using the
categorical ice-wedge TI and Fig. 2.5 using the continuous marble TI. The results for the
other TIs can be found as supplementary material. Similar as for Fig. 2.3, first a sensitivity
analysis on t and n was performed (for f = 0.5), after which the effect of f was illustrated
for some combinations of t and n. We selected simulations with different quality levels in
order to illustrate the evolution of the simulation quality. As the quality steps depend on
the TI, simulations with different t and n values were illustrated for each case.

For the categorical case, running DS with t > 0.5 or n ≤ 5 resulted in noisy images.
This is not surprising since then the sampling is not selective enough: many TI pattern can
be accepted even if it is far away from dn. This corresponds to situations in which the
algorithm is very fast. For t ≤ 0.5 and n > 5, the ice-wedge pattern was reasonably well
reconstructed. For t ≤ 0.2 and n ≥ 30, the simulation quality was very good. Not only
the pattern reconstruction, but also the appearance of noise and the fuzziness of the edges
between different categories were influenced by t and n (CASE 3). For the categorical marble
TI (Fig. 2.5d) similar thresholds were found (App. C, Fig. C.2). For the categorical snow
crystals TI (Fig. 2.1f) the simulation quality was good for t ≤ 0.1 and n ≥ 50 (App. C,
Fig. C.3). In contrast to the effect of t and n, f had a much smaller effect on the simulation
quality. Scanning a smaller part of the TI hardly resulted in a quality decrease (Fig. 2.4b).
The same conclusion can be drawn from the simulations using the other categorical TIs .

Fig. 2.5 shows that generating continuous simulations generally requires stricter param-
eters (lower t, higher n and f). Running DS with t ≥ 0.2 resulted in noisy images. The
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Figure 2.4: First out of 10 unconditional simulations illustrating the effect of parameters
t and n with f = 0.5 and (b) first out of 10 unconditional simulations illustrating the effect
of f for constant t and n based on the categorical ice-wedge TI (Fig. 2.1b).

simulation quality was good for t ≤ 0.1 and n ≥ 30. Simulations using the continuous ice-
wedge TI (Fig. 2.1a) showed important changes in visual quality for the same values of t
and n (App. C, Fig. C.1). The quality of the simulations using the continuous snow crystal
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Figure 2.5: First out of 10 unconditional simulations illustrating the effect of parameters
t and n with f = 0.5 and (b) first out of 10 unconditional simulations illustrating the effect
of f for constant t and n based on the continuous marble TI (Fig. 2.1c).

TI (Fig. 2.1e) was generally less good: only for t ≤ 0.1 and n ≥ 50 the simulation quality
was moderate (Supplementary material - Fig. d). For the continuous cases, it was observed
that variations in f did not affect much on the simulation quality.
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Especially for the continuous cases, it can be seen that some simulations are almost exact
copies of parts of the TI. This phenomenon is called ‘patching’. It is caused by copying each
time the central node of the same best matching pattern. The issue of patching will be
discussed further in sec. 2.2.5.

2.2.4 Simulation quality indicators

For each unconditional simulation we calculated several quality indicators by comparing
the histogram, variogram and connectivity function of the TI and the simulations. The
connectivity function τ(h) for a category s is defined as the probability that two points are
connected by a continuous path of adjacent cells all belonging to s, conditioned to the fact
that the two points belong to s (Boisvert et al., 2007; Emery and Ortiz, 2011; Renard et al.,
2011, 2013):

τ(h) = Prob {x ↔ x+ h| s(x) = s, s(x+ h) = s} . (2.2)

Fig. 2.6 compares the histogram, variogram and connectivity function of the categorical
ice-wedge TI (Fig. 2.1b) with these of a good simulation ( t = 0.01, f = 0.5, n = 80)
and a bad simulation ( t = 0.5, f = 0.5, n = 15 for categorical and t = 0.2, f = 0.5,
n = 5 for continuous). Both the indicator variogram values γk(h) and the connectivity
function τk(h) for each category k were calculated for 20 lag classes h with a lag width of 5.
The histograms (proportions of the three categories) are represented for both simulations.
The indicator variograms and the connectivity functions are only reproduced for the good
simulation, except for the intermediate material (grey), where the bad simulation could
partially reproduce the TI statistics.

Fig. 2.7 illustrates the same for the continuous case. Here the standard variogram γ(h)
was calculated instead of the indicator variogram. To calculate the connectivity functions,
the TI and the simulations were first divided into three categories based on two thresholds
representing connectivity jumps in the TI (Renard et al., 2013). Similarly to Fig. 2.6,
the histograms (represented as the cdf) are represented for both the good and the bad
simulation, whereas the variogram and the connectivity functions are only reproduced by
the good simulation.

To quantify the dissimilarity between the simulations’ statistics and those of the TI, we
calculated three error indices for each simulation: a histogram error εhist, variogram error
εvar and connectivity error εconn. For the categorical simulations, εkhist was defined as the
absolute value of the difference between the proportion of k in the simulation grid fk

sim and
in the TI fk

TI
. For the continuous simulations, εhist was calculated as the Kullback–Leibler

divergence DKL (Kullback and Leibler, 1951)

εhist = DKL(P‖Q) =
∑

i

P (i) log
P (i)

Q(i)
(2.3)

with P defined as the probability distribution in the TI and Q the probability distribution
in the simulations.

The variogram error εvar for the continuous simulations was based on the weighted
average difference between the variogram values of the simulations γsim(h) and the TI γTI(h)
for 20 lag classes hd, and was calculated as

εvar =

20∑
d=1

1
hd

|γsim(hd)−γTI (hd)|
varsim

20∑
d=1

1
hd

(2.4)
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Figure 2.6: Reproduction of (a) the categorical ice-wedge TI statistics of (b) a good (
t = 0.01, f = 0.5, n = 80) and a bad simulation ( t = 0.5, f = 0.5, n = 15) with the
reproduction of (c) the histogram, (d) the indicator variograms (the dotted lines represent
the TI indicator variance) and (e) the connectivity functions.

with varsim the simulation variance used to standardize the absolute errors, so they range
between 0 and 1. The term 1

hd
is included to give larger weights to errors corresponding to
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Figure 2.7: Reproduction of (a) the continuous marble TI statistics of (b) a good ( t = 0.01,
f = 0.5, n = 80) and a bad simulation ( t = 0.2, f = 0.5, n = 5) with the reproduction of
(c) the histogram, (d) the variogram (the dotted line represents the TI variance) and (e) the
connectivity functions.

small variogram lags.
The variogram error εkvar for the categorical case was calculated similarly using the indi-

cator variogram values.
The connectivity error εconn was calculated as

εconn =

20∑
d=1

∣∣τksim(hd)− τkTI(hd)
∣∣

20
(2.5)

and also ranges between 0 and 1.

2.2.5 Results and discussion

Fig. 2.8 and 2.9 show the results of the simulation quality indicators for the categorical and
the continuous case. The first part of the figures illustrates the effect of t and n, the second
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part the effect of f .

Figure 2.8: Influence of (a) t and n (for f = 0.5) and (b) f on the quality indicators based
on the categorical ice-wedge TI (Fig. 2.1b).

As was already concluded from Fig. 2.6 and 2.7 εhist behaves differently than εvar
and εconn. The histogram was generally well reproduced for all simulations. Noisy images
reproduced the histogram the best, which is especially clear for the continuous case. This
can be explained by considering the extreme case of t = 1. With such a setting, the DS
randomly samples values from the TI, resulting in a perfect reproduction of the marginal
distribution ( εhist ≈ 0), but no reproduction of spatial continuity (very large εvar and εconn).
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Figure 2.9: Influence of (a) t and n (for f = 0.5) and (b) f on the quality indicators based
on the continuous marble TI (Fig. 2.1c).

For intermediate combinations of t and n, εhist is generally larger. In the areas with good
simulation quality ( t ≤ 0.2 and n ≥ 30) εhist behaves differently for the categorical and the
continuous case. For the categorical case, low t and high n guarantee both low εhist and
good simulation quality (Fig. 2.4, App. C, Fig. C.6 and C.7). For the continuous case, the
high quality simulations ( t ≤ 0.2 and n ≥ 30) have higher εhist. This counter-intuitive result
can be explained as follows: with low t and high n, the simulation has to honor very strong
spatial constraints. When the structures are made of objects that are large with respect
to the domain size, respecting such spatial constraints means to respect the connectivity of
facies and the objects size even if it contradicts the target pdf. Because of a slight non-
stationarity in the TI, the simulation can then follow the pdf of one specific part of the TI
that is different than the rest. This can result in significant variability in the pdfs of the
simulations. This is the opposite as the case of t = 0, where the TI distribution is honored
because there is no constraint on the spatial continuity.

For the continuous ice-wedge TI (Fig. 2.1a) and the snow crystal TI (Fig. 2.1e), the
histogram was well reproduced in the high quality simulations (App. C, Fig. C.5 and C.8).
Since certain applications require the histogram to be reproduced, this issue could be further
addressed by the DS developers. In contrast εvar and εconn increase for larger t and smaller
n, which is a more intuitive behavior. Both errors show similar quality jumps as were derived
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from the visual inspection and therefore behave as sTab. simulation quality indicators.

These results allow us to derive some rules of thumb. Running DS using a categorical TI
should result in good simulations for t ≤ 0.2 and n ≥ 30. Selecting t ≥ 0.5 and n < 15 should
be avoided. For continuous TI, it is advised to use t ≤ 0.1, n ≥ 30 and to avoid t ≥ 0.2 and
n ≤ 15. The quality of intermediate combinations is hard to predict. It is obvious that the
simulation quality steps strongly depend on the TI. The greater the pattern repeatability in
the TI, the better the simulation quality will be.

Fig. 2.8b and 2.9b lead again to the conclusion that f does not have a strong influence
on the simulation quality. This was confirmed by the other TIs (App. C, Fig. C.5 to
C.8). Only for certain situations, like for f<0.2 in the continuous case (see results for εvar),
the pattern reproduction degraded with lower f since the probability of finding a matching
TI pattern is lower. Note also that using a small f value for TIs that contain insufficient
diversity (Mirowski et al., 2009), might aggravate the statistical scarcity and lead to poor
results. But generally decreasing f results in large computation gains without a substantial
decrease in simulation quality, which is an important conclusion for an efficient use of DS.

It is interesting to juxtapose the CPU time (Fig. 2.3) with the corresponding quality
indicators (Fig. 2.8 and 2.9). This reveals where the interesting boundaries are located in
terms of quality over CPU time ratio. For instance, for the categorical case the quality was
moderate from n ≥ 15 and t ≤ 0.18 ( f = 0.5) (Fig. 2.8a), whereas the CPU time really
increased from n ≥ 30 and t ≤ 0.1 (Fig. 2.3a). In between these boundaries, the simulation
quality was good, as was confirmed by the visual inspection. In case CPU time is a limiting
factor, users are recommended to investigate the quality over CPU time ratio for different
parameter combinations running trial simulations on a small grid.

It is good practice to run DS initially with f = 0.5, t between 0.05 and 0.2 and n
between 20 and 50. From this, the parameters need to be fine-tuned for every particular
situation, knowing that decreasing t and increasing n and f should result in better simulation
quality. However, one should keep in mind that using parameters which guarantee very good
simulations has two drawbacks. First, these configurations will require large CPU times.
Second, there is a risk of generating simulations which are all exact copies of (part of) the
TI (patching effect or verbatim copy). This risk is higher when the TI does not show enough
pattern repeatability (which is more often the case for continuous TIs) and when there are no
conditioning data (CASE 5). Strategies to avoid patching are choosing f <1, thus avoiding
to pick each time the same best matching mode, slightly relaxing t and n, or using a smaller
‘maximum search distance’.

2.3 CASE 2: 3D simulation

Similarly to two dimensions (CASE 1), DS can generate 3D simulations. To demonstrate
this, we performed a limited sensitivity analysis using the 3D concrete TI (Fig. 2.1g). We
generated 10 unconditional simulations for each combination of eight t [0.01−−0.05−−0.1−
−0.15−−0.2−−0.25−−0.3−−0.5] and eight n [1−−5−−8−−16−−32−−64−−125−216]
values, using a fixed value of 0.5 for f . The other parameters were set as indicated in Tab.
2.1, with exception of the maximum search distance that was defined as half of the search
grid in three directions (x, y and z).

The CPU time as a function of t and n (not shown here) behaved very similar as for 2D
(Fig. 2.3). For instance, generating one simulation with t = 0.1 and n = 32 took 194 s, with
t = 0.05 and n = 32 1998 s and with t = 0.05 and n = 64 6804 s.

Fig. 2.10b shows the simulation quality indicators (see 2.2.4) as a function of t and n.
Overall, the results were analogous to those of CASE 1. The simulation quality generally
improved with increasing n and decreasing t with a quality jump for t = 0.2 and n = 32, as
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can be seen from εgreyconn and εblackconn , and the unconditional simulations shown in Fig. 2.10a.
Again, εhist was the smallest for noisy simulations with very small n.

Figure 2.10: 3D example with (a) first out of 10 unconditional simulations illustrating the
effect of parameters t and n with f = 0.5 and (b) influence of t and n (for f = 0.5) on the
quality indicators based on the 3D concrete TI (Fig. 2.1g).

Since the white category represents the background volume, εwhite
conn was very small for



24 A sensitivity analysis of the Direct Sampling algorithm

all parameter combinations and hence not informative. With parameters producing noisy
simulations ( t ≥ 0.3 and n ≤ 8), εgreyvar was again lower. This could be explained by the small
range of the grey indicator variogram, causing εgreyvar to be small for pure nugget variograms
reproducing the sill correctly.

2.4 CASE 3: Post-processing for noise removal

To further improve the simulation quality and more specifically to remove noise, DS includes
a post-processing option. After having simulated all the unknown grid nodes, it is possible
to resimulate each node with an entirely informed neighborhood. Two post-processing pa-
rameters need to be defined: the number of post-processing steps p and the post-processing
factor pf . The latter is the factor by which f and n are divided aiming to save CPU time in
the additional post-processing steps (Mariethoz, 2009). For example, if p = 2 and pf = 3, all
nodes are resimulated two times with parameters f3 and n3 times lower than their original
values. Fig. 2.11 illustrates the noise removal effect of post-processing for increasing t and
varying p and pf for the categorical ice-wedge TI (Fig. 2.1b).

Figure 2.11: Illustration of the noise removal effect of post-processing using the categorical
ice-wedge TI (Fig. 2.1b) for increasing t, and sensitivity analysis for the number of post-
processing steps (p) and the post-processing factor (pf ) showing the lower left corner of the
simulation grid.

The post-processing step proved to be valuable especially for intermediate t values (0.1
and 0.2), since the noise could be considered as entirely removed without substantially in-
creasing CPU time. The simulations obtained with intermediate t after post-processing were
similar to these obtained with small t, except for the boundaries which were less sharp. Fur-
thermore, post-processing allowed for a significant reduction in CPU time. With t = 0.1 and
one post-processing step, one obtained in 58 s realizations similar to when using t = 0.05
without post-processing, which took 163 s. For small t (0.05) the post-processing step was
not necessary since the simulation quality was already good without it. For high t (0.5)
it is insufficient since post-processing only removes noise and does not improve structures
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at larger scale. Repeating the post-processing step did not result in significant quality im-
provements, and whether or not f and n were decreased in the post-processing step neither
decreased the CPU time nor improved the simulation quality.

The effect of a post-processing step was less substantial for the continuous case than
for the categorical case and the CPU cost was much higher (not shown here). Hence, for
continuous cases, the quality loss of selecting a high t, cannot be corrected with one or
more additional post-processing steps. Since p and pf have to be chosen in advance, it can
be considered as good practice to add one additional post-processing step when simulating
categorical variables. When noise appears, it will be reduced and the extra CPU time needed
is relatively low. For pf a value of 1 can be selected, since adjusting pf did not seem to have
an effect. If the simulations still contain noise after post-processing, it is however advised to
decrease t instead of adapting p and pf .

2.5 CASE 4: Multivariate simulation

Among the MPS methods, only DS had demonstrated its potential to simulate m variables
simultaneously based on m TIs. These variables can be continuous, categorical or a mixture
of both since for each a different distance measure can be chosen (distance type parameter
set to 0 for categorical and 1 for continuous). Several implementations have been tested.
The one of Mariethoz et al. (2010) was used in this paper. First, a path is defined that goes
randomly through all the unknown grid nodes for each variable xm. When one variable is
simulated at one location, the other variable at the same location can be simulated later in
the path. For each xm a multivariate dn is built containing the neighboring data for the
m variables, which do not have to be collocated. For each variable the maximum number
of neighbors nm can be defined separately. Based on a weighted average of the m selected
distance measures, the multivariate TI pattern, centered at the same node for each TI, is
chosen that is similar to the multivariate dn. The weights used to define the multivariate
distance measure wm are user-defined. DS automatically normalizes their sum to one. The
value at the central node of this multivariate TI pattern is then pasted at xm. If conditioning
data are given for all or some of the m variables, they will be honored (Mariethoz et al.,
2010) as shown in CASE 5.

A potential application is a situation where one variable is (partially) known and the
other(s) are to be simulated (the collocated simulation paradigm). DS becomes especially
interesting when the relationship between the variables is known via the training data set but
not expressed as a simple mathematical relation. Applications can be found in Mariethoz
et al. (2010), Meerschman and Van Meirvenne (2011) and Mariethoz et al. (2012). As
an illustration we show five unconditional bivariate simulations using the categorical and
continuous ice-wedge TI (Fig. 2.1a and 2.1b) as bivariate TI and performed a sensitivity
analysis on the weights given to both variables (Fig. 2.12). For the other parameters we
used the default values as given in Tab. 2.1: both ncat and ncont were 50.

Fig. 2.12 shows that not only the spatial texture of each TI was reproduced, but also
the multiple-point dependence between the TIs. The weights given to each variable strongly
influenced the continuous variable. The larger wcont, the better the quality of the continuous
variable. The quality of the continuous variable decreased for smaller wcont. In such cases, the
bivariate relationship between both TIs was well respected, but the spatial continuity of the
continuous variables was not strongly imposed. The quality of the categorical simulations
was less affected by the choice of the weights. Note that for large wcont the continuous
simulation was almost an exact copy of the continuous TI (Fig. 2.1a), which is again an
example of the patching effect described in CASE 1.

These results and other numerical experiments (not shown here) suggest that it is often
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Figure 2.12: Illustration of the multivariate simulation option: five unconditional bivariate
simulations using Fig. 2.1a and 2.1b as bivariate TI, and sensitivity analysis for the weights
given to the two variables ( wcat and wcont ). The left column represents the categorical
variable for each simulation, and the right column represents the corresponding continuous
variable.

beneficial for the quality of the simulation of continuous variables to co-simulate a categor-
ical variable that helps reproducing the continuity of the structures. This is a generally
accepted technique in image processing in which the categorical variable is called ‘feature
map’ (Lefebvre and Hoppe, 2006; Zhang et al., 2003).
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2.6 CASE 5: Data conditioning

DS always honors conditioning data by assigning them to the closest grid node prior to
simulation. Hence, local accuracy is guaranteed (the pixels at the data locations will have
the correct values) but the simulated structures need to be coherent with the conditioning
data. Therefore, one needs to check whether the fixed grid nodes are included in the spatial
pattern or whether they appear as noise. The parameter that can be used to enforce pattern
consistency in the neighborhood of the conditioning data is the data conditioning weight δ.
This parameter is used in the distance computation to weight differently data event nodes
that correspond to conditioning data. If δ = 1, all the nodes in dn have the same importance.
For δ >1, higher weights are given to the data event nodes that are conditioning data, while
for δ <1 they are given lower weights (Mariethoz et al., 2010; Zhang et al., 2006).

For both the categorical and continuous cases, one of the best unconditional simulations
( t = 0.01, f = 1, n = 80) was used as reference image. To avoid using simulations that were
copies of part of the TI due to patching, we first mirrored both simulations horizontally and
vertically, before sampling 100 conditioning data from each according to a stratified random
sampling scheme (Fig. 2.13 and 2.14). Using the default parameters for t, f and n (Tab. 2.1),
we ran 50 simulations using these conditioning data and the corresponding TI. To remove
noise, one post-processing step was performed with pf = 1 (CASE 3). Conditioning data
nodes are not resimulated during post-processing. For δ = 0, δ = 1 and δ = 5, the first
conditional simulation is shown together with the conditional probabilities for category k in
the categorical case (Fig. 2.13), and the median over the 50 simulations for the continuous
case (Fig. 2.14).

It can be concluded that δ is an important parameter when conditioning data are avail-
able. For δ = 0 the 50 simulations could be considered as unconditional simulations, since
the conditioning data grid nodes were ignored in dn. The simulation patterns were not at
all consistent with the conditioning data and the large variation between the simulations
resulted in non-informative summarizing images. For δ = 1 the simulations showed patterns
that were more or less consistent with the conditioning data. The remaining inconsistencies
disappeared with δ = 5, resulting in summarizing images that closely resembled the reference
images. The better results for δ = 5 are due to the high quality of the conditioning data,
which perfectly represented the reference image without measurement errors. Generally, we
advise to set δ to a value higher than or equal to 1. The lower the expected uncertainty of
the conditioning data, the higher δ can be chosen.

Note that for this example the conditioning data were sampled from a field with a spatial
pattern that was very similar to the TI. When one expects that the underlying spatial pattern
of the conditioning data deviates more from the TI, the use of transform-invariant distances
can be beneficial. This option of DS increases the number of TI patterns by randomly scaling
or rotating the patterns found in the TI (Mariethoz and Kelly, 2011).

2.7 Conclusions

This paper has reported the first comprehensive sensitivity analysis for the DS algorithm,
aiming to encourage users to benefit more efficiently from the potential of DS and its wide
spectrum of applications. Given these results we provide the following general guidelines.

For categorical TIs, choosing t ≤ 0.2 and n ≥ 30 will generally result in high quality
simulations. Smaller t and larger n result in better simulation quality a lower the level of
noise. However, this choice will also depend on the available CPU time. Furthermore, for
small t and large n, the user should check if there is still sufficient variability between the
simulations. For continuous TIs, we advise to select t ≤ 0.1 and n ≥ 30. For continuous



28 A sensitivity analysis of the Direct Sampling algorithm

Figure 2.13: Illustration of data conditioning for the categorical ice-wedge TI (Fig. 2.1b)
based on 100 conditioning data. For δ = 0, δ = 1 and δ = 5 the first simulation is shown
together with the conditional probabilities for each category summarizing 50 simulations.

cases, the selection of t and n is a delicate balance between ensuring good simulation quality
and still guaranteeing sufficient variability between the simulations (avoiding patching). A
good strategy to reduce both CPU time and the risk of patching is setting f < 1, and
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Figure 2.14: Illustration of data conditioning for the continuous marble TI (Fig. 2.1c)
based on 100 conditioning data. For δ = 0, δ = 1 and δ = 5 the first simulation is shown
together with the conditional median for each category summarizing 50 simulations.

reducing the maximum search distance to a third the domain size or less, thus scanning a
different fraction of the TI for each unknown grid node.

For categorical simulations in particular, it is advised to always add one post-processing
step for noise removal. If the final simulations still contain (too much) noise, improvement
should be sought by adapting t and n.

Simulating bivariate images is a very new and promising technique first offered by the DS
algorithm. With the illustrative example in this paper we have shown that the weights given
to each variable clearly affect simulation quality. In case of continuous variable simulation,
it is beneficial to add an auxiliary categorical variable that is co-simulated with a relative
small weight. This generally improves the simulation of the continuous variable.

When conditioning data are available, it is interesting to put the weights given to the
conditioning data (parameter δ) higher than the weights given to the already simulated
nodes. This results in simulated patterns more consistent with the conditioning data.
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Abstract

A new method is proposed to generate successive topographies in a braided river system.
Indeed, braided rivers morphology is a key factor influencing river-aquifer interactions and
having repercussions in ecosystems, flood risk or water management. It is essentially based
on multivariate multiple-point statistics simulations and digital elevation models as training
data sets. On the one hand, airborne photography and LIDAR acquired at successive time
steps have contributed to a better understanding of the geomorphological processes although
the available data are sparse over time and river scales. On the other hand, geostatistics
provide simulation tools for multiple and continuous variables, which allow for exploring the
uncertainty of many assumption scenarios. Illustration of the approach demonstrates the
ability of multiple-point statistics to produce realistic topographies from the information
provided by digital elevation models at two time steps.

3.1 Introduction

Braided rivers constitute an important part of alluvial systems in alpine regions such as
Switzerland. Many of these rivers were channelized in the past and are now targeted by
restoration projects (Glenz, 2013) for flood prevention, water management purposes, bio-
diversity preservation, and leisure activities (FOEN, 2009; Peter, 2009), particularly in a
context of climate change (Macklin and Rumsby, 2007). As a result of the erosion and de-
position processes, the morphology of braided rivers is a signature of such active systems.
Morphology is a key parameter, first toward the understanding of the dependant ecosys-
tems (Amoros and Bornette, 2002; Richards et al., 2002; Clarke et al., 2003; van der Nat
et al., 2003; Tockner et al., 2009), and also to better understand the main geological struc-
tures of the resulting aquifers in order to study groundwater flow and transport (Thomas
and Nicholas, 2002; Käser et al., 2014), or surface and subsurface relationships. In a hy-
drogeological context, simulations of successive morphologies could also be used to produce
three-dimensional heterogeneous geological models. These issues are not addressed in this
paper but they justify the need of topography models. The purpose of this work is to present
a new way of modeling braided river topography and its evolution.

Static models of braided river morphology can be achieved by LIDAR data acquisition
followed by image processing (Westaway et al., 2003) and analyses can be derived from de-
scriptive methods characterizing the length scale and the main topographic structures (Rust,
1972; Miall, 1977; Germanoski and Schumm, 1993; Goff and Ashmore, 1994; Warburton and
Davies, 1994; Foufoula-Georgiou and Sapozhnikov, 2001; Hundey and Ashmore, 2009; Lane,
2009). But these approaches are often limited to a single time step (static aspect) and
restrained to the area of acquired data.

Simulations based on process imitating methods such as cellular automata models (Mur-
ray and Paola, 1994; Nicholas et al., 2009) or such as event-based models (Pyrcz et al., 2009),
which can be validated by comparisons to laboratory experiments (Ashmore, 1982), allow
for models of the system over successive time steps. Nevertheless, the conditioning to field
measurements such as borhole data is often very difficult. To overcome this drawback, an
alternative is the use of MPS simulations. These techniques are non parametric and allow
for reproduction of complex spatial features from a conceptual model called training image
(TI), as well as to account for conditioning to field data. To our knowledge, multiple-point
statistics (MPS) has not yet been used to simulate successive braided river morphologies.
MPS has been introduced by Guardiano and Srivastava (1993), and first practical algorithms
such as SNESIM (Strebelle, 2002) were designed for the simulation of categorical variables.
The algorithm proposed by Mariethoz et al. (2010), the direct sampling (DS), is much more
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flexible and can deal with joint simulations of multiple categorical and continuous variables.
Because the DS method can reproduce spatial structures and complex correlations between
several continuous variables (Mariethoz et al., 2012), this algorithm allows for simulations
of successive digital elevation models (DEMs).

Following those ideas, in this paper, the principle of a new method to simulate braided
river topographies at successive time steps is proposed. It combines the advantages of the
DS algorithm, with the large-scale data available from LIDAR topography. The approach
is illustrated with statistical simulations of topography time series. The training datasets
(TIs) are based on successive DEMs of the Waimakariri River, New Zealand (Lane et al.,
2003) aquired with LIDAR at four time steps.

The paper is structured as follows. The DS algorithm is briefly presented in section 3.2.
The simulation of DEM time series with MPS algorithms is not straightforward, mainly
because of large scale heterogeneities and trends in the TIs. Therefore 3.3 describes first a
data analysis of the available TIs. That leads us to propose a methodology making use of
auxiliary variables to enable realistic simulations of successive DEMs, with respect to the
observed non stationarities present in sparse training data sets. The method is detailed
and demonstrated within section 3.4. The paper ends with a statistical validation of the
simulations in section 3.5.

3.2 The direct sampling, an MPS algorithm

Multiple-point statistics (MPS) algorithms allow us to simulate a random function Z on a
domain called the simulation grid. The random function spatial statistics are retrieved from
a conceptual model known as TI. In the TI, Z is known over all its domain (Fig. 3.1).

Each pixel of the simulation grid is simulated sequentially, one after another. A random
path visiting every node in the simulation grid is defined, and each location x in the path
is successively simulated as follows. The data event d(x) is the pattern constituted by the
spatial ensemble of known values Z(x+hi) in the neighbourhood of x (hi being a lag vector),
i.e., the conditioning data and the already simulated points. Then, the value Z(x) to simulate
at location x is drawn from the cumulative distribution function F conditionally to the local
data event d(x): F (z,x,d(x)) = Prob{Z(x) ≤ z|d(x)}. F is derived from similar local data
events present in the TI. F can be dealt with in two ways.

The first efficient MPS approaches — implemented for instance by Strebelle (2002) in
SNESIM or by Straubhaar et al. (2011, 2013) in IMPALA — rely on computing an histogram
of the patterns present in the TI and compatible with the local data event d. These ap-
proaches are limited to categorical variables and with fixed search neighbourhood templates.
The use of successive multigrids simulation allows us, in that case, to capture and reproduce
the structures from the TI at different scales while using small search templates, but may
create some artefacts.

In a more recent approach, the DS algorithm (Mariethoz et al., 2010) skips the patterns
histogram computation. Instead, for the simulation of a value at location x in the simulation
grid, the TI is randomly scanned until a location y with a pattern d(y) compatible with the
data event d(x) is found. Then, the value Z(y) is simply pasted into the location x, and the
simulation continues with the next node x in the random path. The data event retrieved
from the simulation grid is made up, at maximum, of the N closest informed nodes. Then,
the scale covered by the data event is large in the beginning of the simulation, and becomes
smaller at the end, allowing the capture of structures within the TI at different scales.
Specifying a normalized distance D(d(x), d(y)) between patterns, the compatibility of two
patterns is defined as follows: d(x) and d(y) are compatible if and only if D(d(x),d(y)) < t,
where t is a tolerance (or threshold) chosen by the user. Moreover, in order to reduce the
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computational time for the simulation of one node x, a maximal fraction f (chosen by the
user) of the TI is scanned and, if a compatible pattern is not found, the value Z(y) at the
visited location y corresponding to the best match between d(x) and d(y) is assigned to x.
For a categorical variable, the distance D(d(x),d(y)) is usually defined as the proportion of
the nodes in the patterns having a different value. Normalized distances (of type L1 or L2 for
instance) can be used to deal with a continuous variable. The algorithm is straightforwardly
extended to the multivariate case: in a situation with m joint variables, the simulation
proceeds by comparing m pair of data events. Fig. 3.1 illustrates the basic principles of
DS. Further details about the DS algorithm can be found in Mariethoz et al. (2010) and

Figure 3.1: Workflow of DS, courtesy of Meerschman et al. (2013).

additional examples of DS simulations are available in the papers of Mariethoz and Kelly
(2011) and Meerschman et al. (2013).

3.3 Topography data analysis and description with auxiliary
variables

In this section, we focus on the LIDAR data analysis, showing why it cannot be used directly
as a TI, and how to overcome this issue.

3.3.1 DEM as training image

The DEM data used in this study were provided by Lane et al. (2003). This data set from
the Waimakariri River was acquired between February 1999 and May 2000 at four different
time steps as shown in Fig. 3.2. Originally, the data had a resolution of 1 m/pixel, and
the elevation was the absolute elevation above sea level. In order to work with simulation
grids larger than the TI, and to give as much importance to the change of elevation in both
transversal and longitudinal directions, the main trend of the DEMs, i.e., their main slope,
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was removed. In other words, the average elevation computed over the longitudinal (x )
axis is removed from the DEM. It means that for each x-coordinate (one column here), the
average elevation is computed and subtracted to the measured elevation for all points of
this x -coordinate. To speed up the MPS simulations, the resolution is coarsened by a factor
of 20 (∆X = 20 × dxinitial, ∆Y = 20 × dyinitial). The upscaling is done by averaging the
local altitudes. It induces a smoothing of the data, but still respects the main topography
structures from the original data (Lane et al., 2003).
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Figure 3.2: 2900 m × 1200 m (145 pixels × 60 pixels - x axis × y axis) DEMs of the
Waimakariri River, New Zealand at four time steps. Red: highest elevations; blue: lowest
elevations.

Some simulations of DEMs with the DS algorithm, using directly the Waimakariri River
DEMs (Fig. 3.2) as TI, are presented in Fig. 3.3. We can observe that many structures of
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Figure 3.3: 11600m× 1200m (580pixels× 60pixels) simulations of DEMs with DS, using
a monovariate TI. Red: highest elevations; blue: lowest elevations.

the topography present in the TI can be reproduced in the simulations. But an important
drawback shows up: higher elevation parts in yellow or red and deeper channels in dark blue
seem to be randomly located in the simulation grid. However, the higher parts are expected
to be located on the sides of the domain. It is an observation that the human brain can
deduce from the TI, but that the algorithm can not infer automatically. This is a well known
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problem — the MPS algorithm assumes that the TI is stationary, meaning that any pattern
present in the TI has the same probability to occur at any location. If this is not the case,
special techniques must be applied. Nonstationarity in the TI can be overcome by using
probability maps or auxiliary variables (Chugunova and Hu, 2008; Boucher, 2009; de Vries
et al., 2009) in classical MPS algorithms such as SNESIM (Strebelle, 2002) or IMPALA
(Straubhaar et al., 2011). With the DS algorithm, auxiliary variables can be used as well to
guide the spatial positioning of the topography structures (Mariethoz et al., 2010).

3.3.2 Defining auxiliary variables

Looking at the DEM variable in Fig. 3.2, two main features can be distinguished: the less
active part of the river is characterized by larger and higher elevation zones on the sides of
the river, and the most active part of the river called the main channel, is characterized by
deeper channels and small to medium elevation zones.

The main channel can be represented by its centerline. This allows us to compute a
distance between each location in the river and this centerline. This first auxiliary variable
— distance to the centerline — shall prevent to generate large and high elevation zones
within the main channel. In addition, a distance can be computed between each location
in the river and the river edges. This second auxiliary variable — distance to the edges —
shall ensure the absence of channels or pools cutting one of the large and high elevation
zones present on the edges. As illustrated in section 3.4.2, these two distances will prove to
be sufficient to help the algorithm localize the topography structures. Figure 3.4 gives an
overview of the process to compute the centerline and the auxiliary variables. More details
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Figure 3.4: Auxiliary variables workflow. (A) initial DEM; (B) main channel; (C) velocity
field; (D) main channel and its centerline; (E) normalized distance to the centerline; (F)
normalized distance to the edges.

are available in the following paragraphs. The process is repeated for all available DEMs
(Fig. 3.2).

Delineating a centerline in the main channel

The (x, y) coordinates system, used in what follows, refers to the x (longitudinal) and y
(transversal) axes introduced in section 3.3.1.

First of all, the main channel is delineated by thresholding the elevation in the DEMs. In
our example, a threshold of 0.3m is used. Zones above the threshold are post-processed to
remove isolated groups or zones that are not adjacent to the edges. The result is an indicator
function Ic(x, y) locating the main channel when Ic(x, y) = 1, as shown in blue in Fig. 3.4B.

Then the centerline is obtained, by using a Matlab implementation of the fast-marching
algorithm (Cao and Greenhalgh, 1994; Sethian, 1996; Peyré and Cohen, 2006). It consists
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in finding a least effort path — i.e. shortest distance path — in a velocity field between
two points. The velocity field V (x, y) (Fig. 3.4C) is obtained by averaging the main channel
indicator function Ic(x, y) with a 20pixels radius moving window, V (x, y) = 1

S×
∫
S Ic(x, y)dS.

The starting point or inlet is defined on the left edge as the point of coordinate Inletx = 0
and Inlety as the average of y for which max{V (x, y), x = 0} is reached. The ending point
or outlet is chosen on the right edge as the point of coordinate Outletx = 145 and Outlety
as the average of y for which max{V (x, y), x = 145} is reached. The resulting centerline is
displayed in Fig. 3.4D.

Now that both the centerline and the edges of the river are known, the auxiliary variables
can be computed.

Distance to the centerline

The distance to the centerline is defined for each point of the TI as the minimum euclidean
distance between the considered point and all the points describing the centerline. It is then
normalized by the maximum distance over the domain. The variable is displayed in Fig.
3.4E.

Distance to the edges

The distance to the edges is defined for each point of the TI as the minimum euclidean
distance between the considered point and all the points describing the edges. It is then
normalized by the maximum distance over the domain. The variable is displayed in Fig.
3.4F.

3.4 Simulation of successive topographies

We proceed in three main steps to simulate successive DEMs.
The first step (section 3.4.1) consists in defining the initial setup. It consists of :

• creating an initial centerline,

• simulating the river edges — these are then fixed across time and valid for the whole
time-series and they determine the lateral size of the simulation domain for the to-
pographies —

• generating a successive centerline time-series,

• computing the associated auxiliary variables.

The second step (section 3.4.2) is to simulate an initial topography. The third step (section
3.4.3) is a Markov chain transition kernel that consists of simulating the topography at
time step n + 1, with respect to the previously simulated topography at time step n. All
simulations are obtained with the DS algorithm.

3.4.1 Test case setup

For this example, 100 time steps are considered for a two-dimensional topography simulation
grid of 580 pixels× 84 pixels that corresponds to 11, 600m× 1680m.

Edges and centerlines are two-dimensional features that can be described as one-dimensional
variables as shown by Mariethoz et al. (2014). In our case, the centerline or the edges are
described not as a succession of angles but as a succession of derivatives dy/dx for simplicity.
This allows us to work on a fixed length of 580 pixels along the x -axis (longitudinal). The
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edge and centerline derivatives TI used for the following simulations are extracted from the
four successive DEMs of the Waimakariri River (Fig. 3.2).

Creating an initial centerline and river edges

The first centerline is obtained by MPS simulation of its lateral derivative along the longitu-
dinal axis. The cumulative sum of the derivatives gives the lateral coordinate for each point
on the longitudinal axis of the grid.

The edges are similarly simulated with MPS but constrained loosely to some conditioning
points. For the upper or the lower edges, we compute a straight line parallel to the linear
approximation of the centerline but ensuring a minimum distance of 10 pixels with the
centerline. Then for each edge, the conditioning points are the starting point, ending point,
and 15 points uniformly drawn from the corresponding straight line. Once the edges are
simulated, we consider them fixed and valid for all time steps. The width (y-axis) of the
simulation domain is then fixed to 84 pixels in our example.

The conditioning of edge simulations to sampled points is obtained by using an iterative
accept–reject algorithm. The sampled points are ordered as (Pi). Let us denote Si the ith

segment (i.e., part of a river edge) between Pi and Pi+1. The segments are successively
simulated. To generate a segment Si, successive derivatives are simulated and cumulatively
added to obtain a line starting from Pi; then if the distance di+1 between its ending point is
too far from Pi+1, for instance di+1 ≥ 2pixels, the simulation of Si derivatives is rejected, and
another one is launched, until it is accepted. When a segment Si is accepted, the simulation
continues with the simulation of the next segment, Si+1, starting from the ending point of
Si. A resampling (of points Pi) is done if too many simulation attempts are rejected.

Generating a time-serie of successive centerlines

Knowing the nth centerline, the lateral coordinates of both starting point and ending point are
locally perturbed. Additional points are retained between the starting point and the ending
point with a longitudinal interdistance uniformly drawn between 40 pixels and 100 pixels.
Both lateral and longitudinal coordinates of these points are locally perturbed. The lateral
perturbations are uniformly drawn in [−3 pixels, 3 pixels]. The longitudinal perturbations
are uniformly drawn in [−5pixels, 5pixels]. All the perturbed points are used as conditioning
data. Only centerlines that exist between the edges and with a minimum distance of 10pixels
to the edges are kept. If the simulation of the n+1th centerline is rejected, the nth centerline
is sampled again and the n+1th centerline is resimulated. Figure 3.5 illustrates the first four
centerlines.

 

 
t1
t2
t3
t4

Figure 3.5: Simulated edges and centerlines at four successive time steps for 580 pixels ×
84 pixels simulations.

Computing auxiliary variables

Once edges and centerlines are defined, the fully informed auxiliary variables may be com-
puted, as explained in section 3.3.2.
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3.4.2 Initial topography

To generate an initial DEM, a slope-free topography is simulated with the DS algorithm.
The distance to the centerline and the distance to the edges variables are used as auxiliary
variables. They are always exhaustively informed and guide the DS algorithm to localize the
different kind of structures of the variable of interest — the topography — in the realizations.
The TI contains all DEMs for the available time steps (Fig. 3.2). As for each state, the
topography is a two-dimensional data set; it results in a three-dimensional TI, the third
dimension representing the time steps. Figure 3.6 illustrates a 2D slice of the TI and its
auxiliary variables at time step ’March 1999’.
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Figure 3.6: Auxiliary variables (A,B) and variable of interest (C) for the TI; (A) distance
to centerline, (B) distance to edges, (C) topography.

The auxiliary variables — distances to the centerline and to the edges — are exhaustive
for the simulations as shown in Fig. 3.7A and 3.7B. Four possible realizations of DEMs with
the same values for the exhaustive auxiliary variables (Fig. 3.7A and 3.7B) are displayed in
Fig. 3.7C, 3.7D, 3.7E, and 3.7F. The parameters employed for the simulations with the DS
algorithm are listed in Table 3.1.

Table 3.1: DS algorithm parameters for initial topography simulation

Parameters Value
Homothety None
Rotation None
Search neighbourhood 30 pixels× 15 pixels
Maximum number of neighbouring nodes 20 for auxiliary variables

30 for the simulated variable
Maximum density of neighbouring nodes 0.1 for auxiliary variables

1.0 for the simulated variable
Type of acceptance distance L1

Distance acceptance threshold 0.2 for the distance to centerline variable
0.15 for the distance to edge variable
0.05 for the simulated variable

Maximum scanning fraction for each TI 0.7
Post-processing None

As one can see, the different topography structures are well reproduced and well placed
according to the edges and to the main active channel. Moreover, the exhaustive auxiliary
variables do not constraint too much the simulation: with the same auxiliary variables,
every realization is unique. So, the main active channel centerline and edges appear to be
sufficient to simulate realistic DEMs. A quantitative criteria to test the quality of the DEM
simulations is proposed in section 3.5.

3.4.3 Simulation of a topography conditional to a previous topography

The DS algorithm enables realistic simulations of DEMs using exhaustive auxiliary variables
based on given centerline and edges. As a consequence, the same auxiliary variables —
distance to the centerline and distance to the edges — shall be kept to simulate successive
DEMs. In order to simulate a DEM at time step n+1 with respect to the previous DEM at
time step n, the auxiliary variables are informed at two different time steps, n and n+1; and
an additional auxiliary variable providing the elevation in meters at time step n is considered.
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Figure 3.7: Conditioning data: (A) distance to the centerline, (B) distance to the edges,
and four DEMs’ simulations (C), (D), (E), and (F) with a three variables TI.

This results in the use of five exhaustive auxiliary variables along the variable of interest for
the simulations, taking into account the evolution of the centerline and the evolution of the
edges in addition to the evolution of the elevation. As illustrated in Fig. 3.8, the simulated
variable (elevation at time step n + 1) in the training data set (Fig. 3.8) is the February
2000 DEM (C2). The five exhaustive auxiliary variables are the February 1999 DEM (C1)
and the distance to the edges (B1 and B2) and the distance to the centerline (A1 and A2)
both at time steps February 1999 and February 2000.

The parameters employed for the simulations with DeeSse are listed in table 3.2.

Some examples of successive topography simulations are presented in Fig. 3.9(B,C,D,E).
The first DEM (Fig. 3.9A) is obtained with the simulation method described in section
3.4.2. The following simulations allow us to model the evolution of the channels and of the
side bars, grouping, diverging, or moving through time. Compared to the TI, the results
are visually satisfactory. A statistical test of the successive DEMs simulations is proposed
in section 3.5.



42 Simulation of braided river elevation model time series with Multiple-Point Statistics

�

�

�

�

����

����

���	
��
�
�
��
��
�
��

��
�
�
��
��
�
�	


��
��


��
��


��

��
	

���	

��
	

���	

��
	



��
�


��
�
�
��
�
��
�
��
��

Figure 3.8: TI and its five auxiliary variables to simulate successive topographies: distance
to centerline A1 at time step 1 and A2 at time step 2 ; distance to edges B1 at time step 1
and B2 at time step 2; elevation in meters C1 at time step 1 and C2 at time step 2.

Table 3.2: DS algorithm parameters for successive topography simulations

Parameters Value
Homothety None
Rotation None
Search neighbourhood 30 pixels× 15 pixels
Maximum number of neighbouring nodes 20 for distance variables

30 for elevation variables
Maximum density of neighbouring nodes 0.1 for auxiliary variables

1.0 for the simulated variable
Type of acceptance distance L1

Distance acceptance threshold 0.2 for distance auxiliary variables
0.15 for the elevation auxiliary variable
0.05 for the simulated variable

Maximum scanning fraction for each TI 0.7
Post-processing None

3.5 Statistical validation of topography simulations

This section is focused on the variable of interest: the elevation in meters, as the auxiliary
variables are only used for guiding the simulation of successive DEMs. To test the quality of
the simulated DEMs, they are compared to the TIs (Fig. 3.2) through (i) the empirical cu-
mulative distribution functions (ECDF) regardless of the location (one-point statistics), and
(ii) the gamma connectivity function (Renard et al., 2013) for testing the spatial organization
of the structures.

Two-point statistics like variograms or multiple-moint statistics such as spatial cumu-
lants (Dimitrakopoulos et al., 2010) or statistics on patterns could also be used. However
two-point statistics are not sufficient to characterize complex structures (Guardiano and Sri-
vastava, 1993; Gómez-Hernández and Wen, 1998). Multiple-point statistics are limited by
the dimensions and the geometries of the retained neighbourhood as well as by the necessity
of discretizing continuous variables into categorical variables if the assessment is based on
MPS histograms (Boisvert et al., 2010). The main reason why we use the gamma connec-
tivity function is that the DEM simulations are intended to be used for solute transport and
groundwater flow simulations. In this case, the reproduction of the connectivity patterns is
crucial (Renard, 2007). Moreover, the connectivity function provides a global measure for
the entire domain, and it can be computed over a continuous field such as the elevation in
meters for instance.

The validation is performed for the two following cases. The initial topography simula-
tions presented in section 3.4.2 will be referred to as case (A). In this case, 100 realizations
obtained with the same fully informed auxiliary variables are considered; the centerline and
the edges are fixed for all the realizations. The successive topography simulations presented
in section 3.4.3 will be referred to as case (B). In that case, 100 realizations represent 100
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Figure 3.9: Realization of five successive topographies: (A) initial DEM at time step 1;
(B), (C), (D), and (E) successive DEMs at time steps 2, 3, 4, and 5, respectively.

successive time steps, and therefore have different fully informed auxiliary variables as the
centerline evolves at each time step.

3.5.1 Empirical cumulative distribution function (ECDF)

To assess the quality of simulations from a one-point statistics point of view, we compare
the elevation variable ECDF of the TIs in black with those of the realizations in grey in Fig.
3.10.
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Figure 3.10: ECDF of the elevation variable; comparison between the TIs (black) and the
simulations (grey), for cases (A)and (B).
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The first thing to notice is that in the TIs, the ECDFs are close but not identical for
the four available time steps. This differences can be explained because the centerlines are
slightly different, which induces different distributions of the nonstationarities. Another
reason is that these time steps are part of some cycles in the evolution of the braided river:
the topography is sligthly but constantly eroded between two floods, but each flood event is
a way of resetting the topography distribution (Lane et al., 2003).

Seemingly the ECDFs are better reproduced in case (B) than in case (A). The main
reason for it, again, is a difference in the localization of the nonstationarities. As in case
(A), the centerline is the same for the 100 realizations, it does not offer as much exploration
possibilities in the TIs as in case (B) where the centerlines are different.

3.5.2 Gamma connectivity indicators

As previously discussed, the gamma connectivity function defined by Renard et al. (2013)
is used to check the quality of the pattern reproduction. Given an indicator variable I, its
gamma-connectivity measure, ΓI , is defined as the probability that two points belonging to
the medium I = 1 are connected. In our situation, this connectivity measure is computed
on indicator variables obtained by thresholding the simulated altitude field at several levels.
Each threshold τ defines two complementary zones: a lower level (zone 1) below the threshold
and an upper level (zone 2) above the threshold. The gamma connectivity, Γτ,z, is then
defined for each threshold level τ and zone z ∈ {1, 2} as the proportion of connected pairs
of points belonging to z regarding the number of pairs of points in z. Results are displayed
in Fig. 3.11.

For both cases (A) and (B) as well as for both zones, the simulations have a gamma
connectivity function quite close to the reference gamma connectivity functions of the TIs:
the jumps in the connection proportions take place at the same range of thresholded values
and have the same amplitude. The quality of the realizations in terms of connectivity may
then be considered as fulfilled.

3.6 Discussion and conclusion

The models presented above reproduce the spatial statistics of braided river elevation at
successive time steps. The proposed method allows to generate models showing a realistic
evolution of the bars and channels, while it is not based on direct physical processes. We have
shown that with a relatively small training data set, the DS algorithm successfully simulates
the successive time-related DEMs, using exhaustive auxiliary variables that help localize
structural nonstationarities. Variable transformation allows reducing the complexity of the
problem and gives satisfactory results within really short computing times, especially when
transforming a two-dimensional variable such as a centerline or edges into a one-dimensional
variable.

The statistical validation of the models is based on the comparison of connectivity func-
tions as it is of main concern for flow and transport modeling. A comparison of computing
requirements and similar or other statistics with cellular automata and event-based models
could also be performed for further performance testing and validation.

The successive DEMs are simulated under the assumption that the simulated edges and
the simulated centerlines are valid themselves. The initial centerline simulation can be con-
sidered valid as it is simulated with a TI derived from braided river centerline interpretation.
The way of constructing the edges might seem artificial, but in real case studies, edges can
be easily delimited through aerial photography. Furthermore, their evolution is usually much
slower than the topography or the centerlines. Similarly, the way centerline perturbations
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Figure 3.11: Comparison of the gamma connectivities, function of the inundation threshold,
betweens the TIs (black) and the simulations (grey) for cases (A) and (B), lower (1) and
upper (2) levels.

are created seems artificial too. Here, as no additional information was available from the
field, random perturbations were used to simulate their evolution. Acquiring more field data
about centerline evolution over decades would be possible through low resolution aerial pho-
tography time series, which are not as expensive as high resolution LIDAR data acquisition.
Having these data, it would be straightforward to model their evolution using the same
statistical principle used here for the topography.

Finally, the simulation of DEM time series opens a wide range of perspectives in the
fields of water-related risk management and braided river aquifer modeling. Indeed such
aquifers are built by successive erosion and deposition processes affecting geological records
and surface morphology. Stacking up successive topographies could enable us to mimic the
erosion and deposition steps and allow simulating the main internal structures of a braided
river aquifer. Of course it would require some scale adjustment as the scale characteristics
of the site to model might differ from the scale characteristics of the successive DEMs used
as TIs for the simulations. This work is going to be pursued in that direction.
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Abstract

A new method is proposed to produce facies models of braided river aquifers, from analog
data. It is based on stacking Multiple-Point Statistics simulations of successive topographies
to reproduce the main inner structures of the aquifer. The smaller scale structures are
generated by mimicking the trough filling process occurring in braided rivers. It produces
realistic cross-stratified sediments. The three main input parameters of the algorithm offer
a control over the proportions, the continuity and the dimensions of the deposits.

4.1 Introduction

In alpine regions such as Switzerland, water for drinking, irrigation or industrial purposes is
frequently tapped from gravel braided river aquifers (FOEN, 2009). To understand, manage
and protect the groundwater resource in this type of systems, or to better model aquifer-river
interaction at multiple scales, models of their internal geological heterogeneity are required.
These models allow for example to assess the uncertainty of a pollution plume trajectory
towards a pumping well. In a previous paper (Pirot et al., 2014), we proposed to model the
evolution of braided river topographies using LIDAR data from analog sites and multiple-
point statistics. In this paper, we pursue this research and consider the internal geological
architecture of the braided system.

To constrain our model, we rely on a vast literature that describes the geology of braided
systems. It includes numerous sedimentological descriptions (Williams and Rust, 1969; Miall,
1977; Huggenberger and Regli, 2006), geometrical or topological characterizations (Leopold
et al., 1957; Howard et al., 1970; Sapozhnikov and Foufoula-Georgiou, 1996; Lane, 2009)
conducted on specific sites. These observations as well as the classification of braided river
components (Allen, 1983; Miall, 1985; Labourdette and Jones, 2007) provided an essential
nomenclature for the description and analysis of such systems. Length scale characterization
studies (Foufoula-Georgiou and Sapozhnikov, 2001; Hundey and Ashmore, 2009), detailed
outcrop analysis (Klingbeil et al., 1999; Labourdette and Jones, 2007; Bayer et al., 2011)
and ground penetrating radar measurements and interpretations (Bridge et al., 1995; Lunt
and Bridge, 2004; Huber and Huggenberger, 2015) reinforced the knowledge of sedimentary
structure and heterogeneity in braided river aquifers.

The understanding of the dynamic processes occurring in braided rivers was enforced by
on site process description (Rust, 1972; Ashworth et al., 1992; Jones and Schumm, 2009),
planform and morphological evolution analyses (Ashworth, 1996; Lane et al., 2003; Bras-
ington et al., 2012), granulometry and bed-load transport studies (Ashmore, 1988; Dawson,
1988; Surian, 2002) and completed by many flume experiments (Ashmore, 1982; Kleinhans
and Brinke, 2001; Van De Lageweg et al., 2013). Derived from physical laws, flow and sedi-
ment transport models have been developed (Fredsøe, 1978; Ashworth et al., 1994; De Serres
et al., 1999; Dargahi, 2004; Millar, 2005; Davy and Lague, 2009). These physically based
models, as well as cellular automata models (Murray and Paola, 1994; Coulthard et al.,
2002; Thomas and Nicholas, 2002), take first into account the transport of sediments on the
surface topography and eventually some other processes such as avulsion (Jerolmack and
Paola, 2007) or the interaction with the vegetation (Edwards et al., 1999; Murray and Paola,
2003; Thomas et al., 2007). They allow analyzing the evolution of the surface morphology
of braided rivers but they do not provide the resulting internal structure and heterogeneity
of the underground.

All this conceptual and process-based knowledge allowed researchers to build various
kinds of structure imitating models of the internal heterogeneity of braided river aquifers,
with the aim to better understand the control of heterogeneity on solute or contaminant
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transport in such aquifers (Boggs et al., 1993; Rodgers et al., 2004). The simplest models are
based on traditional multi-gaussian geostatistics (Felletti et al., 2006; Salamon et al., 2007;
Glenz, 2013) or indicator simulations (Klise et al., 2009). More realistic three dimensional
models of geological heterogeneity can be generated by pseudo-genetic, object-based and
some recent geostatistical methods. Webb (1994) was one of the first to propose a process
imitating method to produce models of geological heterogeneity for braided river aquifers.
His approach is based on the vertical stacking of successive topographies of the braided river
simulated by random walk (Webb, 1995). One limitation of this method is that aside from
channel width and depth, all surfaces between channels are considered as flat. The method
has been used by Anderson et al. (1999) to model hydrogeological properties of a braided
stream deposit and has been tested through a groundwater flow and transport problem. Teles
et al. (2001) proposed an agent based model allowing to describe a fluvial system at a rather
large scale. The processes of erosion and deposition are simulated using a set of simple
rules and a multi-agent system. Using this framework, and providing paleo information
about the flow and sediment load in the fluvial plain, over time scales of some thousands
of years, the model allows reconstructing possible heterogeneity structures in 3D. Recently,
stochastic object based models have been developed for braided rivers (Ramanathan et al.,
2010; Huber and Huggenberger, 2015). These algorithms are computationally efficient when
no conditioning to field data is required. Comunian et al. (2011) proposed an innovative way
– based on multiple point statistics (Straubhaar et al., 2011) – to model a three dimensional
braided river deposit from sedimentological observations on a series of seven cross-sections
collected at the Herten site, Germany, by Bayer et al. (2011). This method proved the ability
of MPS to reproduce complex fine scale geological structures, but the available data in this
case allowed only to model a rather small area (16m× 10m× 7m).

In this paper, a new pseudo genetic algorithm is proposed. The method revisits the
principles established by Webb (1994). It is based on the stacking of successive topography
simulations to create geological units, within which geological facies or geophysical proper-
ties can be assigned. The novelties rely on the way to produce the successive topography
simulations and on the way to assign the geological facies. Realistic successive topographies
are simulated with the method developed by Pirot et al. (2014), which is based on the Direct
Sampling multiple-point statistics (MPS) algorithm (Mariethoz et al., 2010). It provides not
only a realistic topography of the channels, but also of bars and islands. Furthermore, the
temporal evolution of the topography is modeled as well, using multivariate MPS. Then the
assignment of the geological facies is not based on an estimation of the Froude number as
done by Webb (1994), but on a deformation process that mimic the deposit of a repeated
facies sequence, producing cross-bedded deposits. The approach is illustrated with a training
data-set composed of successive DEMs of the Waimakariri River, New Zealand (Lane et al.,
2003) acquired with LIDAR at four time steps.

The paper is organized in four parts. An overview of the pseudo genetic algorithm
and its global parameters is given in section 4.2. The method to produce successive MPS
simulations of topographies conditionally to the previous one and the way of stacking the
successive topographies to build a geological layer are detailed in section 4.3. Then, the
generation of facies heterogeneity within the geological layers is presented in section 4.4.
Finally, the resulting models are presented as well as a sensitivity analysis of the algorithm
to its main input parameters in section 4.5.

4.2 Algorithm and main parameters

The general algorithm proposed in this paper is outlined in Alg. 1 and its general principles
are described thereafter. The initialization consists in producing an initial topography that
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will constitute the bottom of the aquifer, using the Direct Sampling MPS algorithm of
Mariethoz et al. (2010). Then successive iterations follow until the aquifer model reaches
the desired thickness. Knowing a given topography, the next one is simulated by MPS
conditionally to the previous one, as proposed by Pirot et al. (2014). The next topography
is then stacked over the previous one with an aggradation rate fixed for all iterations (see
Table. 4.1). The new topography erodes partly the underlying geological layers and deposits
sediments that constitute a new geological layer. Facies heterogeneity can then be generated
within the new geological layer. If the resulting aquifer model does not reach the desired
thickness, the algorithm’s loop continues, else it stops.

Algorithm 1 pseudo genetic algorithm for three-dimensional facies heterogeneity models of
braided river aquifers

1: procedure brahms(parameter file)
2: simulate initial (bottom) topography
3: initialize current model thickness← 0
4: while current model thickness < desired thickness do

5: simulate next topography conditionally to the previous topography
6: stack the next topography over the previous topography to build a geological layer

7: subtract the induced erosion to the underlying layers
8: generate geological heterogeneity within the new geological layer

9: compute the current model thickness

10: set the previous topography← next topography

11: end while

12: return 3D heterogeneous facies model

13: end procedure

This approach assumes that aggradation takes place during large flood events that re-
model the topography of the river. On a field site, it is not possible to assess what part of
the aquifer deposit has been mobilized and transported or remodeled during a flood. So, at
a specific location, an observed aggradation does not mean that there is no erosion below
the previous topography. However, in order to produce the main geological structures as
objects and not large continuous layers, the method assumes that successive deposits have
structures largely influenced by the observed evolution of the surface topography of braided
rivers. In other words, the erosion surfaces defining facies interfaces in the recorded geology
are supposed to be at least similar to the surface topography evolution.

Field observations on actual active braided river systems often do not show significant
aggradations. Some detailed studies (Lane et al., 2003) show only some cyclic evolution of
braided rivers geomorphology. Though gauging stations provide informations about flood
frequency and magnitude, they do not allow to link these clearly with the aggradation
rate (Sambrook Smith et al., 2010). In addition, braided river system outcrops do not
show significant changes or trends in the dimensional characteristics of the deposits at one
location, as if there were some kind of medium to large scale stationarity of the deposit
dimensions. Therefore in absence of more specific information, it has been decided to keep
the aggradation rate fixed in the algorithm for the moment. Note however, that a more
sophisticated distribution of the aggradation quantities over time can easily be handled by
the proposed modeling framework.

More generally, the algorithm uses two types of parameters. The first type, described
in Table 4.1, are the parameters defining the dimensions of the model and are required to
build the main structures – the geological layers – of the model. The second type, listed in
Table 4.2, are used to generate heterogeneity within the geological layers. The parameters
have to be adjusted and inferred from field observations. Outcrop analysis, GPR section
interpretations, borehole data or analog sites shall provide information about the thickness
of the main geological layers and therefore about the aggradation rate, as well as about
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encountered structures of the deposits and facies proportions and properties.

4.3 Building the main depositional structures

The main depositional structures or geological layers are obtained sequentially by stacking
together successive simulations of digital elevation models (DEMs). In order to produce
coherent successive topographies, it is recommended to generate DEMs at the river scale,
which might be really larger than the aquifer model scale depending on the case study. The
aquifer dimensions and location are referred to as zone of interest. Interpolation parameters
(see Table 4.1) allow to re-scale the extracted zone of the simulated topographies to the zone
of interest, especially if an analog with other length scale characteristics is used to produce
the topographies.

4.3.1 Simulation of successive topographies

The first step consists in producing sequentially successive topographies of a braided river
according to the method described in details by Pirot et al. (2014). Here it is applied on
a grid of size 11, 600 m × 1, 200 m, as indicated in the braided river topography dimension
parameters of Table 4.1. To illustrate the method, successive DEMs of the Waimakariri river

Table 4.1: Main structural parameters

Parameter Value

zone of interest aquifer
model parameters

length (flow direction) 200 m
width (orthogonal to the flow direction) 100 m
minimum thickness - depth 12m
cell length 2m
cell width 2m
cell height 0.1m

braided river topography
dimensions

length 11, 600 m
width 1, 200 m
cell length 20m
cell width 20m

interpolation parameters

margin length 5m
margin width 5m
margin depth 0m
scaling factor along length axis 1
scaling factor along width axis 1
scaling factor along depth axis 1

facies parameters
coarse grain size sediment facies value 1
medium grain size sediment facies value 2
fine grain size sediment facies value 3

aggradation rate α default value 0.3m/geological layer

at four different time steps (Lane, 2000) are chosen as training data-set, though other analogs
of braided river might have been used. At each time step t, the topography is simulated
conditionally to the previous topography at time step t − 1. The other parameters to run
the MPS algorithm and produce the topography time series are identical to the ones used
by Pirot et al. (2014). The result of four successive topography simulations are displayed in
Fig. 4.1.

Then the zone of interest is randomly retrieved so that all pixels within it are in the
domain of the large scale topography simulation grid. This extraction steps takes into account
the different scaling factors (see Table 4.1) that allow to stretch or shrink the topographies
along the model axis. Due to the possible different grid resolutions of the braided river
topography simulations (coarser scale) and the aquifer geological model (finer scale), margin
parameters are used to extend the zone of interest, which allow for a better interpolation
of the topography at the aquifer model scale. The extracted topography is interpolated
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Figure 4.1: Simulations of four successive topographies, followed by extraction and inter-
polation

linearly on the aquifer model grid. Though smoother interpolations technique like splines
could have been used, the resulting models do not suffer from this rough linear interpolation
(see figs. 4.5 to 4.7).

4.3.2 Stacking topographies to create erosion and deposit volumes

Now that a series of successive topographies is available, it is possible to stack them with a
vertical increment, i.e. the aggradation rate α. As illustrated on a two-dimensional fictive
section in Fig. 4.2, this process produces some erosion volumes and some deposition volumes.
A positive aggradation rate allows then to build a succession of main geological layers and
to reach a minimum thickness or depth for the aquifer.
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Figure 4.2: Pseudo processes of erosion and deposit
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More precisely, let us denote (Ei)i∈N the ensemble of simulated elevations. The ensemble
of centered elevations (Ci)i∈N are then defined as Ci = Ei − µ(Ei),∀i ∈ N, where µ(Ei) is
the mean of Ei. Let us denote (Zi)i∈N the elevation of the layers. The bottom of the aquifer
model Z0 is initialized with C0. Then, sequentially, for each iteration i, the elevation of the
next main layer is computed as a function of the previous elevation and the aggradation
rate: Zi = Zi−1 + α + Ci. Additionally, the resulting erosions may impact all the previous
elevations that need to be updated: Zj = min(Zj , Zi), 0 ≤ j ≤ i−1. The resulting elevations
(Zi)i∈N are stored as a pillar grid. Once the main geological layers are defined, it is possible
to define heterogeneous physical properties or facies within each layer.

4.4 Generate geological heterogeneity within the deposit lay-
ers

The method presented hereafter to generate heterogeneous facies within the main geological
layers is inspired by field observations of outcrops, processes, and studies linking surface
topography with ground penetrating radar (GPR) measurements (Huber and Huggenberger,
2015). During a flood event and looking at the intra-layer scale, sandy gravel sheets are
moving forward, filling progressively the scours formed by erosion at channel confluences.
When a gravel sheet collapses while moving forward over a scour, a granulometric sorting
occurs. By gravity, coarse grain size materials are deposited first, followed by finer grain
size sediments. With the combined action of the flow, this process produces cross-stratified
deposits that can be observed in gravel-pits (Heinz et al., 2003).

To mimic this process and obtain stratified deposits, the bottom topography of a given
layer is iteratively shifted and deformed locally, in accordance with local flow and topography
constraints. Each iteration defines a deposition volume for a distinct facies. The sequence of
the facies are defined in the parameter Table 4.2. Within the framework of sand and gravel

Table 4.2: Parameters for the flow and gradient deformation scheme to generate fine scale
heterogeneity

Parameter Value
Number of iterations n – default value 6
Facies sequence – default sequence [3 ; 1 ; 3 ; 1 ; 3 ; 1 ; 2]
flow power fp – default value 5
smoothing radius r 3

braided river, it is assumed that three main facies types can be retained. The three facies
are differentiated according to their granulometry and sorting: facies 1 represents fine grain
size and well sorted sediments, facies 2 represents unsorted mixed size sediments, and facies
3 represents coarse grain size and well sorted sediments. Facies 2 can be interpreted as a low
permeable medium, representing gravel sheets heterogeneity. Facies 1 and 3 represent the
sorted sediments whose iterative successions form cross-stratifications.

To shift and deform the topography, we first evaluate the direction in which the sediments
should move. This is given by a rough estimation of the possible river flow direction that will
be described in section 4.4.1. Then we also consider the orientation of the local slope since
scour filling occurs at the edges of gravel sheets where they can collapse, and are oriented
along the local flow direction. The same local flow conditions are used for all iterations
within a geological layer. However the downward slope is updated at each iteration. The
deformation process is detailed in section 4.4.2.

Furthermore, note that due to the nature of the algorithm, mimicking successive physical
erosion and deposit, each geological layer filled with heterogeneous facies can be affected by
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the following erosions. This is why the heterogeneity of the previous layers are updated at
each time step as mentioned in Alg. 1.

4.4.1 Surface flow approximation

The flow approximation is computed on a larger scale than the zone of interest to avoid
boundary effects and to take into account the global flow scale which provide continuity at the
local scale. So the flow is approximated on a grid of the same dimensions (11, 600m×1, 200m)
as the one used to generate the successive topographies.

First, an against current fast-marching (Cao and Greenhalgh, 1994; Sethian, 1996) is
performed on the topography, to compute a travel time Tt minimizing the effort from the
downstream outlet of the river topography (right edge on Fig. 4.3) to its upstream inlet (left
edge on Fig. 4.3), using a Matlab implementation developed by Peyré and Cohen (2006).
The input data is a grid of local front propagation velocity which is set proportional to the
opposite of the topography, raised by a constant so that the velocity field contains strictly
positive values.

Then the approximated flow field ~̂F is computed as the opposite of the gradient of the
travel time Tt divided by its squared norm (see Eq. 4.1).

~̂F = −
~grad(Tt)

‖ ~grad(Tt)‖2
(4.1)

This method produces a flow map following the channel orientations and whose norm is
slightly bigger in the channels, as displayed in Fig. 4.3. It is important to note that this flow

+1.5m

-1.5m

elevation in meters

and flow approximation

Figure 4.3: Approximation of the global flow over the topography at the river scale

map does not pretend to be accurate. It is used only to get a rough approximation of the
flow directions that can be computed very rapidly. More sophisticated calculations could be
used as well but this was not deemed necessary at this point of the research.

4.4.2 Iterative deformation scheme

The number of iterations n as well as the facies sequence are defined in the parameter Table

4.2. Within one geological layer, all iterations use the same flow map ~̂F = (vx, vy)
t. It

is assumed constant within each layer as the deformations are progressive and smooth to
produce cross-stratifications. The intensity of the flow might be adjusted with the flow
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parameter fp. At each iteration i, the gradient ~grad(Ti) = (−ux,−uy)
t of the current

topography Ti is computed. T0 denotes the bottom of the geological layer. The deformation
and shifting ~di is computed as a vector of scalar products (see Eq. 4.2) constrained by co-
directionality: opposite flow and downward slope direction cannot generate a sorted deposit
and therefore cannot shift the topography.

~di = fp ·
(

−min(ux,0) ·min(vx,0) +max(ux,0) ·max(vx,0)
−min(uy ,0) ·min(vy ,0) +max(uy ,0) ·max(vy ,0)

)
(4.2)

The deformation ~di is applied to the coordinates (Xi, Yi)
t of the current topography Ti.

The new coordinates (Xi+1, Yi+1)
t = (Xi, Yi)

t + ~di are used to compute the next smoothed
and shifted topography TSi (within the current layer) through a nearest neighbor inter-
polation followed by a moving average whose parameters are defined in Table 4.2: TSi =
smooothInterpolation(Xi+1, Yi+1, Ti). The topography Ti+1 is constrained to be below the
top topography Tn+1 of the current layer, and as no erosion is desired, it is also limited by the
value of the previous topography Ti: Ti+1 = min(Tn+1,max(Ti, TSi)). Fig. 4.4 provides an
illustration of successive deformations over three iterations from an initial topography and
flow map. The facies assigned to the volume comprised between Ti−1 and Ti is the ith facies
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Figure 4.4: Iterative topography deformations at the aquifer scale

of the sequence (see Tab. 4.2). The resting volume in the geological layer after n iterations,
located between Tn and Tn+1 – denoting the roof of the geological layer, is assigned the
(n + 1)th facies of the sequence.

4.4.3 Resulting heterogeneity

As all topographies within each geological layer are generated over a regular grid, the re-
sulting 3D model can be stored as a regular pillar grid. Each layer of the model provides
thickness and facies information at all locations of the regular horizontal grid.

Three examples of the resulting models using different aggradation rate α, flow power
fp and number of iterations n are presented in figs. 4.5 to 4.7. As one can see, cross-
stratifications are present in the 3D model. The facies 2, which fills the resting volume in the
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Figure 4.5: 3D heterogenous facies model – example 1 using reference parameters defined
in tables 4.1 and 4.2 – obtained with n = 6 inner-layer iterative deformations, a flow power
fp = 5 and an aggradation α = 0.3m
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Figure 4.6: 3D heterogenous facies model – example 2 – obtained with n = 6 inner-layer
iterative deformations, a flow power fp = 5 and an aggradation α = 0.9m

geological layers after the iterations composing facies 1 and 2 stratified deposits, represents a
kind of geological matrix. By modifying the input parameters one can update the geometry
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Figure 4.7: 3D heterogenous facies model – example 3 – obtained with n = 10 inner-layer
iterative deformations, a flow power fp = 5 and an aggradation α = 0.3m

of the sedimentary structures (dimensions, degree of continuity, etc.) as well as some global
properties such as the proportions of the different facies or their connectivity. In the next
section, a sensitivity analysis shows how the three main parameters of the algorithm control
the properties of the resulting heterogeneity models.

4.5 Parameters and sensitivity analysis

The aim of this section is to give some recommendations on how to calibrate the three main
parameters of the algorithm – the aggradation rate α, the flow power fp and the number of
iterations n – regarding the constraints of the user. To achieve this, a sensitivity analysis
of these parameters on the resulting facies proportions and facies geobody connectivities
is conducted hereafter. Proportions and connectivity are retained as they are important
properties for underground flow and transport modeling.

As connectivity indicator we propose to use the gamma connectivity measure (Renard
et al., 2013). Given an indicator variable I, its gamma-connectivity measure, ΓI , is defined as
the probability that two points belonging to the medium (I = 1) are connected. Each facies
allows to compute an indicator variable. It is also possible to consider specific directions as
in directional variogram computing. In what follows, we are interested in the connectivity
measure along the vertical direction and in the horizontal plane.

4.5.1 Influence of the aggradation rate parameter

The sensitivity analysis is performed in five different configurations. The range of values
used for the aggradation parameter α as well as the values of the flow power fp and the
number of iterations n for each scenario are detailed in Table 4.3. The results for the
aggradation parameter are illustrated in Fig. 4.8. The black curve shows the evolution of
the indicators for the flow power fp and the number of iterations n of reference as a function
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of the aggradation parameter. The dark gray curves show the joint effect of the flow power
parameter. The light gray curve illustrates the joint effect of the number of iterations.

Table 4.3: Parameters used to study the influence of the aggradation rate

Parameters Range of values
aggradation in meters [0.05; 0.9]
Curve name fp value n value
reference 5 6
low flow power 0.2 6
high flow power 9 6
few iterations 5 3
many iterations 5 11
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Figure 4.8: Influence of the aggradation on facies proportions and connectivity

The proportions of facies 1 and 3 decrease to the benefit of facies 2 proportion when
the aggradation rate increases. It makes sense as an increase of aggradation creates thicker
geological layers and thererfore more volume for the matrix facies after the iterative de-
formations of the bottom layer. Low values for the flow power and number of iterations
reinforce this phenomena. The increasing proportion of facies 2 implies an increase of the
connectivity indicator (Fig. 4.8e and 4.8h), which reaches a value almost equal to 1 (all
pixels are connected) when the aggradation parameter is greater than 0.2. The decrease
of connectivity and therefore of the corresponding geobodies length scale characteristics is
however progressive for facies 1 and 3 while α increases. Again, low values for the flow power
and the number of iterations parameters reinforce this behavior.
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4.5.2 Influence of the flow power parameter

In this section, the influence of the flow parameter is analyzed. The range of parameter
values are given in Table 4.4. The results are illustrated in Fig. 4.9. Again, the black curve
shows the variations of the indicators for the reference values of the aggradation parameter
α and the number of iterations n. The dark gray curves show the effect of the aggradation
parameter. The light gray curves illustrate the effect of the number of iterations.

Table 4.4: Parameters used to study the influence of flow power parameter

Parameters Range of values
flow power [0.2; 9]
Curve name α value n value
reference 0.3 6
low aggradation rate 0.05 6
high aggradation rate 0.9 6
few iterations 0.3 3
many iterations 0.3 11
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Figure 4.9: Influence of flow power parameter on facies proportions and connectivity

The proportions of facies 1 and 3 increase quite rapidly at the expense of facies 2 when
the flow power parameter fp increases. This is logical since the amplitude of the iterative
deformations is proportional to fp. More deformation implies more cross-beds and more
facies 1 and 3. Furthermore, we observe that the proportions reach a sill. It makes sense as
once scours or pools are filled in the layer, the resting volume is controlled by the aggradation
rate. For facies 1 and 3, the sill of the proportion curves is lower and reached for higher



Parameters and sensitivity analysis 61

fp values with high aggradation rate value or few iterations. It is the opposite for facies 2.
The connectivity of facies 1 and 3 increases with fp. Full connectivity for facies 2 is almost
constant ; it decreases slightly with increasing fp only for a low aggradation rate. The sill and
range of the connectivity curves follow the same pattern as the proportion curves regarding
high or low values of the aggradation or number of iterations parameters.

4.5.3 Influence of the number of iterations parameter

Here, the impact of the number of iterations parameter is assessed. The range of values used
are specified in Table 4.5. The results are illustrated in Fig. 4.10. Once more, the black

Table 4.5: Parameters used to study the influence of the number of shifting iterations

Parameters Range of values
number of iterations [3; 11]
Curve name fp value α value
reference 5 0.3
low flow power 0.2 0.3
high flow power 9 0.3
low aggradation rate 5 0.05
high aggradation rate 5 0.9
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Figure 4.10: Influence of the number of shifting iterations on facies proportions and con-
nectivity

curve shows the evolution of the indicators for reference values of the flow power fp and the
aggradation rate α as a function of the number of iterations n. The dark gray curves shows
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the combined effect of the flow power parameter. The Light gray curve illustrates the joint
effect of the aggradation parameter.

The proportions of facies 1 and 3 increase slowly to the detriment of facies 2 when
the number of shifting iterations n increases. It is not surprising as by construction, the
proportions of alternative facies 1 and 3 shall increase as a function of their occurrence in
the facies sequence. For facies 1 and 3, the proportion curves are lower with high aggradation
rates α or with low flow power fp values. It is the opposite for facies 2. One could expect
similar sills as observed in the indicator plotted as a function of the flow power fp. However,
these sill are not reached with the range of values, because at each iteration the shifting
and the deformation of the topography gets smaller and smaller. Indeed, even though the
local flow is the same, the topography gradient absolute value decreases at each iteration.
The connectivity of facies 1 and 3 increases slowly with n. Full connectivity for facies 2 is
almost constant; it decreases slightly with increasing n only for low aggradation rates. The
connectivity curves follow the same pattern as the proportion curves regarding high or low
values of the aggradation rate α or flow power fp parameters.

4.5.4 Recommendations

In the proposed algorithm, parameters are required at two levels. In order to facilitate an
intuitive understanding of the impact of the parameters on the structures, it is highly rec-
ommended to adjust them in two steps. The first parameters to be considered shall be the
so called ”main structural parameters” (Table 4.1), as they will influence the structural mor-
phology of the deposit. Only after this step should the ”geological heterogeneity parameters”
(Table 4.2) be adjusted.

Among the limited number of parameters used to build the main geological layers, a few
of them require some calibration to either fix them or define their range. Indeed, given a
specific morphological context defined by the topography training images, the scaling factors
as well as the aggradation rate parameters will strongly influence the size of the resulting
elements such as scour width and length for instance. A simple way to help calibrating these
parameters is to use interpretations of ground penetrating radar (GPR) data to provide a
length scale for these dimensional characteristics. If no GPR data is available, a possibility
is to rely on analog data, and define scaling factor to link observable length characteristics
of the site to model with length characteristics of the analog.

The geological heterogeneity parameters such as the flow power fp or the number of
shifting iterations n might unfortunately be difficult to calibrate. A suggestion is to use
facies proportions, that could be inferred from borehole sample, outcrop analysis, gravel pit
analogues or sediment grain size distribution along the river, or a combination of these field
observations and analysis. Another possibility is to measure facies thickness from boreholes
or outcrop – possibly from analog sites – and compare them with boreholes or section in the
simulated depositional model to adjust the parameters.

4.6 Discussion and conclusion

The pseudo genetic algorithm presented here allows to simulate braided river heterogeneous
deposits. Three-dimensional representations (see figs. 4.5 to 4.7) of some stochastic re-
alizations obtained with this model reveal realistic sedimentary structures such as cross-
stratifications as one can observe on gravel outcrops. The main advantages of the method
are the small number (three) of influential parameters (α, fp, n), and the possibility to use
analog data, in particular if no DEM is available for the modeling site. Another advantage
is that the approach does not require extensive field investigations as only length scale char-
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acteristics are necessary to calibrate the model, and these can be obtained by non-invasive
methods such as GPR measurements or accessible outcrops. At last, it is clearly possible to
control the connectivity of the different facies by adjusting the input parameters.

One limitation of this approach is however that it might not be straightforward to cali-
brate the three main parameters to fit characteristic length scales of the modeling site. And
though the resulting models seem satisfactory compared to outcrop or field observations,
it does not guarantee that compared with other modeling approaches, the resulting depo-
sitional models will be a better support for solute and contaminant migration prediction.
Therefore, further work shall be conducted to investigate this issue.

Another limitation of the method is that it presently does not allow for data conditioning.
Two conditioning aspects shall be considered in the future. The first aspect is to account for
large geological structures inferred from GPR section interpretation for instance. It means
simultaneously constraining the MPS topography simulations with the aggradation rate and
there might be a high degree of uncertainty related to the interpretations. The second
aspect is to deal with borehole data. Such conditioning could be achieved by identifying
the successive interfaces between the main geological layers and then using these altitudes
to constrain simultaneously the MPS topography simulations with the aggradation rate, as
while dealing with GPR section interpretations. Another alternative could be to compute
a distance function between the properties observed and the properties generated by the
model, and then add a post-processing step which would consist in deforming the simulated
model to fit the field data while minimizing a deformation cost function.

An even simpler way to use the model described in this paper would be to use it for
constructing 3D training images. Then these images can be used in a standard multiple-point
statistics (MPS) framework to model the 3D distribution of the facies. This is straightforward
and would ensure the conditioning to borehole data directly. The GPR conditioning could
then be envisioned in an inversion framework based on summary statistics (Lochbühler et al.,
2015).
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and Nicolas Flipo for their constructive and motivating discussions.





Chapter 5

Influence of conceptual model
choice on contaminant transport
uncertainty forecasting in braided
river aquifers





Introduction 67

5.1 Introduction

In their review article, Sanchez-Vila et al. (2006) state that ”Heterogeneity is the single
most salient feature of hydrogeology”. Not surprisingly, how to deal with heterogeneity has
therefore been the subject of intense research (e.g. De Marsily et al., 2005) and a broad range
of models and techniques have been developed to represent heterogeneity in groundwater
models. Most of these approaches allow not only building models of the spatial variability
but also to quantify the corresponding uncertainty and its influence on flow and transport
processes. All those models have different characteristics and can be classified in process-
imitating, structure-imitating, or descriptive methods (Koltermann and Gorelick, 1996).

Among them some have been compared through numerical experiments. For example,
in the case of braided systems, Teles et al. (2004) compare the flow and transport prop-
erties for genesis facies models, indicator simulations and an equivalent uniform medium.
dell’Arciprete et al. (2012) show through a comparison between sequential indicator, tran-
sition probability and Multiple-Point Statistics (MPS) simulations, that the most realistic
geological realizations are obtained when facies details are simulated within previously es-
tablished structural elements. Zinn and Harvey (2003), using different two dimensional
Gaussian based simulations, underline how the mass transfer behavior might be influenced
by the conductivity of the most connected components and by the global conductivity vari-
ance. Siirila-Woodburn and Maxwell (2015) compare Gaussian, Truncated Gaussian and
Facies models through mean arrival time and plume spreading indicators. Lee et al. (2007)
compare sequential Gaussian and transition probability based geostatistical simulations and
found that pumping test behaviors are strongly influenced by the spatial pattern and connec-
tivity of the facies or hydraulic properties. Zhang et al. (2013) perform a sensitivity analysis
of input parameters for a sedimentary depositional facies model, showing that the layer
thicknesses distribution controls the non-Fickian tailing of tracer transport at late times.
Falivene et al. (2006) compares the resulting connectivity and saturation indicators of two
dimensional truncated Gaussian, sequential indicator, MPS and object based simulations. In
general, the main objective of all these studies was to compare the flow and transport prop-
erties (equivalent conductivity, macrodispersivity, etc.) resulting from various heterogeneity
models. An important conclusion is that the choice of a given conceptual heterogeneity or
conceptual geological model has in general a larger impact on the transport properties than
the variability resulting only from the random variability within a given conceptual model.

In the present paper, we carry out a different type of comparison. We assume that
little data is available about a given site (as it is most often the case) and we use prior
information from analog sites elsewhere in the world to constrain the heterogeneity models.
We then perform a set of predictions and compare the results with a highly detailed data
set. The general idea is to test if it is possible to use analog data to make truly relevant
uncertainty analysis. In this framework, one important issue is if one conceptual model is
more robust and more likely to provide reliable uncertainty estimates than others. Therefore,
the 3 main types of models, existing for braided river aquifers, are tested in this situation (a
multi-gaussian model, an object based model, and a process-imitating model).

As we assume that limited data is available from the site itself, we do not consider the
issue of model conditioning or even inverse conditioning. The comparison is rather difficult
since the three types of models have different requirements in terms of input. Nevertheless,
this type of exercise is crucial to provide a better understanding of the consequences of the
choice of a given modeling approach to quantify uncertainty in cases of data sparsity.

The reference data set comes from the MAcro Dispersion Experiment (MADE) site which
is an extremely well studied example of complex geological heterogeneity resulting from
braided river deposit. Over the years, a large number of experiments have been carried
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out on the site (Zheng et al., 2011), resulting in an impressive and high quality data set. In
particular, several experiments resulted in very dense tracer data sets. This data is used here
to test the quality of the predictions uncertainty in a context of low level of information.

The paper is structured as follows. First, section 5.2 presents what are the few informa-
tion used from the MADE site data-set to setup the problem and how analog sites described
in the literature may complete these information. Then, the different geological conceptual
models are described in section 5.3. The transport model and its specific parameters and
boundary conditions are presented in section 5.4. Finally, the results of the plume simulations
are presented and analyzed in section 5.5.

5.2 Data and setup

Though the MADE experiments provide a lot of information from conductivity measure-
ments, piezometer levels and concentrations at different locations and time-steps, hydrogeol-
ogists in general do not have access to so much data because of budget and time constraints.
Therefore, we assume that field data information is limited to the sandy gravel nature of the
braided river aquifer and to a few measurements allowing to set the boundary conditions
for the transport simulations: piezometric level upstream and downstream of the domain,
as well as concentrations of the contaminant at day 27. Here, the injection at day 0 is not
simulated to avoid numerical issues due to a strong gradient of the concentrations. This is
what we define as our low level of information.

Additionally, to study the impact of the model structures on the uncertainty of contam-
inant transport prediction, all conductivity fields are normalized to ensure that they have
the same mean and the same variance. In order to compare concentration predictions with a
reference, petrophysical properties shall be calibrated somehow. This is why the conductiv-
ity mean and variance as well as data like characteristic length scales, required to generate
realizations of hydraulic property fields with the different geological conceptual models, shall
be retrieved from analog data.

5.2.1 The MADE site

The MADE site is located on the Air Force Base of Colombus, Mississippi (see Fig. 5.1),
about 2 km South of the Buttahatchee River and about 6 km East of the Tombigbee River.
Its surface of about 0.25 km2 is quite flat. It comprises elevations between 64.6 MSL and
66.5MSL. The topography presents a slope of 4 to 5‰. The alluvial aquifer is shallow and its
mean thickness is about 11m. The aquifer is constituted of a sandy gravel Pleistocene alluvial
terrace associated to the Buttahatchee River over an aquitard composed of Cretaceous marine
sediments.

Due to its highly heterogeneous hydraulic properties, it has been actively studied (Zheng
et al., 2011) from the mid nineteen eighties, to investigate transport problems in complex
porous medium. From 1986 to 2007, three main tracer experiments under natural hydraulic
gradient have been conducted at the whole site scale (MADE I to III). It has been followed
by two tracer experiments under forced hydraulic gradient at smaller scales (MADE IV
and V). More recently, geophysical campaigns including Ground Penetrating Radar (GPR),
Direct Push (DP) and Direct Current (DC) resistivity measurements have been conducted
to complete the characterization of the site (Bowling et al., 2005; Dogan et al., 2011; Bohling
et al., 2012).

In this paper, we choose to focus on the MADE II Tritium contaminant experiment be-
cause it offers a high quality data set with a perfect conservative tracer allowing to investigate
the effect of heterogeneity on uncertainty without having to consider additional process such
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Figure 5.1: The MADE site: location (a) and piezometer network (b) – injection location
corresponds to coordinates (0,0)

as density contrasts, retardation or chemical reactions. Furthermore, this experiment has
been modeled by numerous teams (Feehley et al., 2000; Barlebo et al., 2004; Salamon et al.,
2007; Guan et al., 2008; Llopis-Albert and Capilla, 2009), which will facilitate the comparison
and the interpretation of the resulting plumes.

The MADE II experiment (Boggs et al., 1993) lasted 15 months. Five snapshots of the
concentrations and the hydraulic heads were taken at time steps 27, 132, 224, 328 and 440
days after injection (see Fig. 5.1 for an illustration of the piezometers and Fig. 5.2 for an
illustration of the measured concentrations at day 328). The data were measured thanks to
328 multilevel samplers, each of them being equipped with 20 to 30 sampling points space
0.38m apart vertically. To avoid high numerical gradient due to the injection in this exercise,
day 27 will be considered as the starting date for initial conditions. As the Tritium plume
was not completely sampled during the fifth snapshot, the ending date of the exercise is fixed
to day 328, corresponding to the fourth snapshot and providing thus the reference points
set.
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Figure 5.2: Reference concentrations measured 328 days after injection

5.2.2 Analog site data

Facies conductivity mean and variance and porosity values as well as characteristic length
scales can be retrieved or computed from analog site studies (Brierley, 1989; Anderson et al.,
1999; Bayer et al., 2011) or from shared database like wwhypda (Comunian and Renard,
2009). In this paper, all the necessary analog site data comes from the work of Jussel
et al. (1994) where the main structural elements of a braided river aquifer are described
precisely in terms of dimensions, hydraulic conductivity distribution and porosity. The
essential information is resumed in Tab. 5.1.

Table 5.1: Geometrical and Hydraulic Parameters from Jussel et al. (1994) – GG: gray
gravel, BG: brown gravel, OW: open framework, BM: bi-modal gravel

Structural Element Type

Parameters
GG/BG GG/BG

Horizontal GG BG inclined
Volumetric fraction pi, % 57.8 9.4 15.8 4.4
Real lens length Li ± σLi

, m ... 27± 16 50± 29 10± 6
Length/Width L/Bi ± σL/B

i
... 2.0± 0.5 2.0± 0.5 2.0± 0.5

Max. lens height Hi ... 0.06Li 0.04Li
0.15+
0.03Li

Porosity, % 17.0 20.1 14.1 17.0
Conductivity Ki, mm/s 0.08 0.15 0.02 0.1
σlnKi

0.8 0.5 0.6 0.8
OW

OW/BM Sand Silt Single
Volumetric fraction pi, % 5.3 5.0 0.4 1.9
Real lens length Li ± σLi

, m 22± 14 9.8± 5.7 8.6± 5.8 2.6± 1.5
Length/Width L/Bi ± σL/B

i
2.1± 0.6 2.4± 1.1 2.0± 0.5 2.0± 0.5

Max. lens height Hi
0.45+ 0.25+ 0.14+ 0.072+
0.033Li 0.021Li 0.027Li 0.008Li

Porosity, % 30.0 42.6 40.0 34.9
Conductivity Ki, mm/s 10 0.26 0.005 100
σlnKi

0 0.4 0 0

In order to compute, from the analog data, a common mean and variance of the log
conductivity and porosity for the different geological conceptual models, we proceed as follow.
Let us denote X a discrete variable representing the facies X = i, i = 1, . . . , n, characterized
by a known distribution pi = P (X = i) and Y = ln(K) a continuous variable representing
the log conductivities, noting Yi = (Y |X = i). Knowing pi, µi = E(Y |X = i), σ2

i =
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V AR(Y |X = i) we can compute the mean µlnK and variance σ2
lnK of Y as:

µlnK =
∑

i

piµi , (5.1)

σ2
lnK =

∑

i

piµ
2
i − µ2 +

∑

i

piσ
2
i . (5.2)

Using the values of Jussel et al. (1994) summarized in Tab. 5.1 leads to a mean of the log
conductivity and a standard deviation of:

µlnK ≃ −9.14

σ2
lnK ≃ 3.05

(5.3)

or in base 10 µlog10K ≃ −3.97 and σ2
log10K

≃ 0.58, K being expressed in m/s. The mean is
porosity µn = 0.20.

Jussel et al. (1994) also provide characteristic length scales per facies, as presented in
Tab. 5.1. There are no dimension characteristics defined for the predominant facies GG/BG,
as it is considered as the matrix. We assume that the connectivity through the aquifer will be
mainly influenced by the dimensions of the largest and most represented structural element
BG. As one can see, its dimensions might vary over a large range. To take into account this
uncertainty on the prior, we define 5 scenarios of characteristic dimensions (see Tab 5.2).

Table 5.2: Dimension characteristics per scenario

Parameters Scen. 1 Scen. 2 Scen. 3 Scen. 4 Scen. 5
Length 21.0m 35.5m 50.0m 64.5m 79.0m
Width 8.4m 14.2m 20.0m 25.8m 31.6m
Depth 0.84m 1.42m 2.00m 2.58m 3.16m

5.2.3 Experimental setup

The domain dimensions retained here are the same than the one used by Salamon et al. (2007)
and Llopis-Albert and Capilla (2009): 110 m × 280 m × 10.5 m with a 1 m × 1 m × 0.1 m
resolution (3.2 millions cells). The coordinate system is designed so that the injection zone is
centered on (0, 0) in the horizontal plane (see Fig. 5.1). Each conceptual geological model is
decomposed in 5 scenarios to cover the uncertainty on characteristic dimensions (Tab. 5.2).
For each scenario, 40 geological realizations are generated, which builds an ensemble of 200
geological realizations per conceptual model.

To test the quality of the predictions obtained using different conceptual models, we
define downstream of the injection site three target zones (zone 1: 100m < Y ≤ 120m, zone
2: 170m < Y ≤ 190m, zone 3: 240m < Y ≤ 260m) where simulated iso-concentrations or
cumulative mass can be compared with the MADE II reference.

5.3 Geological Conceptual Models

Three different models are described hereafter to represent the geological heterogeneity of a
braided river aquifer. The first one is the multi-gaussian model. Multi-Gaussian Simulations
(MGS) have been generated using the turning bands technique (Matheron, 1973; Journel,
1974; Emery and Lantuéjoul, 2006). This type of model has been frequently used to represent
the heterogeneity of the MADE site (Barlebo et al., 2004; Salamon et al., 2007; Llopis-Albert
and Capilla, 2009), and is repeated here to facilitate interpretation and comparison with
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previous work. The second method is an object based model (OBJ) developped by Huber
et al. (2015). The third model uses a pseudo genetic algorithm developed by Pirot et al.
(2015) for two different parameter sets (PG1 & PG2). Conductivity field realizations for the
different conceptual models are illustrated in figs. 5.3 and 5.4.
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Figure 5.3: Two dimensional longitudinal (a,b,c,d) and lateral (e,f,g,h) sections of conduc-
tivity fields for the different conceptual geological models (a) & e): MGS, b) & f): OBJ, c)
& g): PG1, d) & h): PG2)
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Figure 5.4: Three dimensional representations of scenario 3 conductivity fields for the
different conceptual geological models (a): MGS, b): OBJ, c): PG1, d): PG2)

5.3.1 Multi Gaussian Simulations

In a data sparse context, the theoretical variogram models cannot be inferred from a geo-
statistical analysis of ’non-existing’ conductivity samples. However log conductivity mean
and variance as well as structural element characteristic dimensions for the same kind of
geological environment are available in the literature (e.g. Jussel et al., 1994), as explained
in sec. 5.2.2. Here we make the assumption that one can use the characteristic dimensions
provided by Jussel et al. (1994) to estimate the variogram ranges. Without specific infor-
mation, no nugget effect is considered. Here we propose to use a spherical variogram model.
The ensemble of parameters to define the variogram models for each scenario are summed
up in Tab. 5.3. To allow a systematic model comparison later on, the mean and variance of

Table 5.3: Variogram models per scenario

Parameters Scen. 1 Scen. 2 Scen. 3 Scen. 4 Scen. 5
Type of variogram spherical
Sill σ2

lnK = 3.05
Longitudinal range 21.0m 35.5m 50.0m 64.5m 79.0m
Lateral range 8.4m 14.2m 20.0m 25.8m 31.6m
Vertical range 0.84m 1.42m 2.00m 2.58m 3.16m
Kriging mean µlnK = −9.14
Kriging variance σ2

lnK = 3.05

the log conductivity fields are normalized (Eq. 5.4) so that the resulting mean and variance
are those given by Eq. 5.3:

lnKnormalized = (lnKsim − µlnKsim
)× σlnK

σlnKsim

+ µlnK , (5.4)

with µlnKsim
and σlnKsim

the log conductivity mean and standard deviation of the simulated
field. Illustrations of MGS simulations are given in Fig. 5.3a), 5.3e) and 5.4a).

5.3.2 Object and Process based models

From field observations and GPR profiles gathered at the Tagliamento River site (NE Italy),
Huber and Huggenberger (2015) suggest that braided river aquifers heterogeneity is dom-
inated by two main depositional elements: gravel sheets and scours. Gravel sheets are
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Figure 5.5: Three dimensional representations of conductivity fields for the five scenarios
(1 to 5) and the different conceptual geological models (a): MGS, b): OBJ, c): PG1, d):
PG2)

widespread structures composed of unsorted gravel and sand and therefore have a com-
paratively low conductivity while scours formed at channel confluences are filled by sorted
sediment and consequently have a greater conductivity. Those observations lead the authors
to develop an object based model for braided river aquifers. A brief description of the al-
gorithm is proposed in the next paragraph. All the details are available in Huber et al.
(2015).

The algorithm mimics the successive occurrence of large flood events. It produces a
sequence of horizontal layers, one per large event, and each layer is composed of a gravel sheet
and vertically truncated semi-ellipsoids for filled scours. The number of layers is modeled
from a Poisson distribution whose parameter λ (expectation) is defined here as the ratio of
the mean net sediment deposition, also called the mean aggradation ag (m), divided by the
aquifer thickness. The position of each layer is taken randomly in a uniform distribution over
the aquifer thickness. Then within each layer, the number of objects and their position are
retrieved from a Strauss process using parameters β, γ and r. Finally, width, length, depth,
orientation α and truncation parameters of the semi-ellipsoids are uniformly retrieved from
bounded intervals. The resulting 2 facies models are then meshed to form a regular grid and
the cells are assigned conductivities retrieved by assuming log normal distributions (Jussel
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et al., 1994) without accounting for spatial correlation. The parameters and their bounding
intervals used for the different scenarios are detailed in Tab. 5.4.

Table 5.4: Object model parameters per scenario

Parameters Scen. 1 Scen. 2 Scen. 3 Scen. 4 Scen. 5
Ellipsoid semi-length a, m [8.0, 10.5] [10.0, 17.75] [15.0, 25.0] [15.0, 32.25] [20.0, 39.0]
Ellipsoid semi-width b, m [2.0, 4.2] [4.0, 7.1] [8.0, 10.0] [8.0, 12.9] [10.0, 15.8]
Ellipsoid semi-depth c, m [ 0.2

0.3
, 0.84

0.8
] [ 0.4

0.3
, 1.42

0.8
] [ 0.4

0.3
, 2

0.8
] [ 0.55

0.3
, 2.58

0.8
] [ 1

0.3
, 3.16

0.8
]

Ellipsoid orientation α [−40π
180

, 40π
180

] [−40π
180

, 40π
180

] [−40π
180

, 40π
180

] [−40π
180

, 40π
180

] [−40π
180

, 40π
180

]
Ellipsoid truncation rH, m [0.3, 0.8] [0.3, 0.8] [0.3, 0.8] [0.3, 0.8] [0.3, 0.8]
Aggradation ag, m 0.05 0.1 0.16 0.2 0.25
Strauss Beta β 0.00015 0.00006 0.00004 0.000025 0.000013
Strauss Gamma γ 1 1 1 1 1
Strauss r r 20 45 60 75 90

The semi-length a, semi-width b, semi-depth c and Ellipsoid truncation rH upper bound-
aries are defined for each scenario such that 2×a, 2×b and c×rH do not exceed the charac-
teristic dimensions defined in Tab. 5.2. The lower range, as well as the orientation α are set
accordingly to field observations by Huber and Huggenberger (2015). According to Heinz
et al. (2003), the aggradation rate and the spatial density of the scours are approximately
inversely proportional to the dimensions of the scours. For each scenario, the aggradation
rate ag and the Strauss point process parameters β, γ and r where adjusted by trial and
error to follow this relationship.

To ensure the same log conductivity mean and variance for all realizations, the log
conductivity fields simulated are normalized according to Eq. 5.4. Note that because of this
normalization, the mean conductivity values defined for the distribution laws do not matter
and it only influences the variances to a low extent. Illustrations of OBJ simulations are
given in Fig. 5.3b), 5.3f) and 5.4b).

5.3.3 Pseudo Genetic Aglorithm

This method (Pirot et al., 2015) assumes first that the main structures of a braided river
aquifer, obtained after many erosion and deposit events present some internal interfaces that
are similar to some extent to the observable surface topography. It supposes secondly, that
the sediments are deposited in erosion scours under local flow and topography constraints
which produce cross-stratifications. Inspired by principles first established by Webb (1994),
the proposed method is based on stacking successive topography simulations which creates
erosion surfaces and deposit volumes called geological units. These geological units are then
decomposed in different geological facies according to local geomorphological conditions.
Here we provide a brief overview of the method and the parameter values used for this test
case. Full details are available in Pirot et al. (2015).

The successive topographies are simulated conditionally to the previous state with the
Direct Sampling (DS) Multiple-Point Statistics (MPS) algorithm (Mariethoz et al., 2010)
following the method developed by Pirot et al. (2014). The same DS parameters are given
in Pirot et al. (2014). The training data set is composed of successive Digital Elevation
Models of an analog braided river, the Waimakariri River, New Zealand, acquired by LIDAR
at different time steps (Lane et al., 2003). Note that data from another analog braided river
could be used. Stacking the topographies successively over the previous ones with a fixed
aggradation rate erodes partly the underlying geological layers and deposits sediments that
form a new geological layer. A progressive deformation scheme of the geological layers base,
taking into account approximate local flow and local topography, allows for generating the
cross stratified deposits.

Scaling parameters allow producing the different characteristic length scales desired for
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each scenario. The algorithm is here executed with two different parameter sets PG1 and
PG2 to illustrate the potential of various aggradation rates and local flow conditions. The
parameters used to produce the geological units and to generate intra-unit heterogeneity are
described in tables 5.5 to 5.7. For each version, the aggradation and deformation scheme
parameters have been set so that the resulting sediment deposited in scours formed object
with identifiable dimensions when setting the scaling factors to 1 ; PG1 version produced
objects of dimensions 37m×22m×1.5m and of lower density than PG2 version that produced
objects of dimensions 66m× 25m× 1.

Table 5.5: Dimension, resolution and general parameters

Parameter Value

zone of interest aquifer
model parameters

length (flow direction) 280 m
width (orthogonal to the flow direction) 110 m
minimum thickness - depth 10.5m
cell length 1m
cell width 1m
cell height 0.1m

braided river topography
dimensions

length 11, 600 m
width 1, 200 m
cell length 20m
cell width 20m

interpolation parameters
margin length 5m
margin width 5m
margin depth 0m

facies parameters
coarse grain size sediment facies value 1
unsorted mixed grain size sediment facies value 2
fine grain size sediment facies value 3

Table 5.6: Scenario dependent structural parameters & iterative deformation scheme pa-
rameters for the PG1 variant

Parameter
PG1 Value

Scen. 1 Scen. 2 Scen. 3 Scen. 4 Scen. 5

structural
parameters

scaling factor along length axis 0.57 0.96 1.35 1.74 2.14
scaling factor along width axis 0.38 0.65 0.91 1.17 1.44
scaling factor along depth axis 0.56 0.95 1.33 1.72 2.11
aggradation rate α 0.4m/geological layer

deformation
scheme
parameters

number of iterations n 6
facies sequence [1 ; 3 ; 1 ; 3 ; 1 ; 3 ; 2]
flow power fp 2
smoothing radius r 3 cells

Table 5.7: Scenario dependent structural parameters & iterative deformation scheme pa-
rameters for the PG2 variant

Parameter
PG2 Value

Scen. 1 Scen. 2 Scen. 3 Scen. 4 Scen. 5

structural
parameters

scaling factor along length axis 0.32 0.55 0.77 0.99 1.22
scaling factor along width axis 0.34 0.57 0.80 1.03 1.26
scaling factor along depth axis 0.84 1.42 2.00 2.58 3.16
aggradation rate α 0.3m/geological layer

deformation
scheme
parameters

number of iterations n 6
facies sequence [1 ; 3 ; 1 ; 3 ; 1 ; 3 ; 2]
flow power fp 5
smoothing radius r 3 cells

The facies numbering is illustrated in fig. 5.6. In the facies sequence (tables 5.6 and 5.7),
the matrix is defined as facies 2. It corresponds to the GG/BG horizontal structural element
defined by Jussel et al. (1994). Facies 1 represents sorted coarse grain sediments as in the
natural sorting occurring during the scour filling process, coarse sediments will deposit first,
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Figure 5.6: Facies illustration for the pseudo genetic models

followed by finer sediments. This is also why facies 3 represents fine grain sorted sediments.
The log conductivity mean is known and given by Eq. 5.5,

µlnK = p1 × ln(K1) + p2 × ln(K2) + p3 × ln(K3) (5.5)

where {p1, p2, p3} and {K1,K2,K3} are respectively the proportions and conductivity values
of facies {1, 2, 3}. The variance is known and given by Eq. 5.6,

σ2
lnK = E(ln(Ksim)2)− E(ln(Ksim))2 (5.6)

where Ksim is the conductivity field for the simulation. Developing it with facies proportions
and conductivities, it becomes Eq. 5.7:

σ2
lnK = p1 × ln(K1)

2 + p2 × ln(K2)
2 + p3 × ln(K3)

2

− (p1 × ln(K1) + p2 × ln(K2) + p3 × ln(K3))
2 .

(5.7)

The values of µlnK and σ2
lnK are set to −9.14 and 3.05 according to Eq. 5.3 and the matrix

(facies 2) conductivity value is fixed to 8 × 10−5m/s, the value estimated by Jussel et al.
(1994) for the GG/BG Horizontal structural element. It allows to provide then a unique
solution for K1 and K3, respecting the constraints edicted by the description of the facies:
K1 > K2 > K3.

As the resulting model is defined on a pillar grid (Pirot et al., 2015) – the layers of the
geological model have different thickness defined on a regular grid (X,Y ) – the conductivity
values have to be transferred on a vertical regular grid (see Fig. 5.7). To limit the loss

�

�

�

Figure 5.7: Vertical grid regularization

of information in this process, we derive vertical and horizontal equivalent conductivities
(Renard and De Marsily, 1997). The horizontal component of the conductivity is computed
by taking the arithmetic mean Kxx = Kyy =

∑
i piKi where i denotes the facies index, pi

the proportion of facies i with conductivity Ki in the concerned regular grid cell on which
we want to compute de equivalent conductivity. Similarly, the vertical component of the
conductivity tensor is computed as the harmonic mean of the local values Kzz =

1∑
i

pi
Ki

.
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5.4 Transport model

All the heterogeneity models described in the previous section have been used as input to
simulate groundwater flow and transport using the finite element code Groundwater (Cor-
naton, 2007). Piezometric head measurements show that the hydraulic gradient across the
area has not changed significantly during the experiment. In addition the injection phase
is not modeled here and the flow state is assumed to be stabilized 27 days after the injec-
tion. Therefore the flow is modeled in steady state. Solute transport is modeled by solving
the advection dispersion equations in transient regime. For all the models, the mesh reso-
lution has been kept identical to the geological models and includes about 3.2 million cells
(110×280×105 cells of dimension 1m×1m×0.1m). Iso-surfaces of the transport simulations
are illustrated for the different conceptual models and their variant at various concentrations
threshold in Fig. 5.9.

5.4.1 GW parameters

Following Salamon et al. (2007) and to avoid numerical instabilities due to the initial injection
conditions, the tritium plume at day 27 is considered as the initial concentrations state (see
Fig. 5.8). Prescribed heads of 63.1m and 62.0m are set respectively on the inlet and outlet
faces of the model as well as a fixed concentration of 0.0 pCi/mL on the inlet face of the
model; all these conditions are kept constant for the whole duration of the transient transport
simulation. Inflow and outflow are limited to the inlet and outlet faces (Fig. 5.8).

Figure 5.8: Initial and boundary conditions

The transient transport simulations are performed over 301 days, until day 328, using an
automatic time-stepping strategy. The main transport parameters are kept identical for all
the different subsurface models. The porosity fields are assumed equal to the mean porosity
µn = 0.20 computed in sec. 5.2.2. The longitudinal dispersivity αL is set to 1.0 m, the
transverse horizontal dispersivity αTh to 0.1m the molecular diffusion Dm to 10−9m2/s and
the storage coefficient SS to 10−5 m−1.

5.4.2 Interpolations of the concentration data

The field measurements of concentration are interpolated on the whole domain of the model
at day 27 to obtain the initial state for the transport simulations. The same procedure is
applied on the data corresponding to day 328 to estimate the cumulative mass along the lon-
gitudinal axis, the main flow direction. The raw data are transformed using a Normal Scored
Transformation (NST) before being interpolated by Simple Kriging. The kriging results are



Results 79

back-transformed into interpolated concentrations. As the natural Tritium concentration at
the MADE site is around 2 pCi/mL (Boggs et al., 1993), interpolated concentration values
below or equal to this threshold are set to 0.

The interpolations are performed using Isatis, and the kriging parameters are described
in Tab. 5.8. Note that the kriging means are set to the low boundary values of the NST

Table 5.8: Normal Scored Transformed concentrations simple kriging parameters

Parameter
Value for concentrations

at day 27 at day 328
kriging model exponential + linear exponential
Nugget 0 0.32
Sill 0.32 + 0.45 0.74
Range 2.0m+ 7.2m 16m
Simple Kriging mean −3.2 −3.4
Moving Neighborhood ellipsoid 21m× 21m× 3m 21m× 21m× 3m

concentration values, to ensure that the interpolated values located far away from the plume
are equal to the background natural concentration after back transformation. Based on the
field observations and on previous interpolations of the Tritium plume at day 328 (Feehley
et al., 2000), it can be asserted that the entirety of the plume stays within the model
boundaries. Then to keep the mass consistency between the simulations and the reference
at day 328, the back-transformed interpolated concentration field is normalized so that the
observed mass at day 328 is the same as at day 27.

5.5 Results

In this section, the simulated plumes (Fig. 5.9) are analyzed for each conceptual model using
both quantitative and qualitative criteria. On the displayed examples, one can observe that
the plume has moved close to the exit for MGS and OBJ simulations while the plume has
spread with low concentrations toward the exit of the model for the PG1 simulation, high
concentrations staying close to the injection zone. For the PG2 simulation, the plume stays
stuck in the first half of the domain.

As the method used to interpolate the reference Tritium plume provides a smooth plume,
it is reasonable to use it for computing the cumulative mass along the longitudinal axis (main
flow direction), which as a sum is a smoothed representation of the plume, but it could induce
some interpretation errors to rely on the result of the interpolation at day 328 as a reference
over the whole domain without considering the uncertainty on the interpolated concentration,
after a non linear NST. This is why quantitative indicators shall rather be computed from
the sample locations.

Fig. 5.10 presents the boxplots of quantitative indicators grouped by type of conceptual
model. The first boxplot represents the error on the total contaminant mass conservation εT
(Eq. 5.8) in the model throughout the transient transport simulation duration. As explained
in 5.4.2, the contaminant total mass should be preserved between day 27 and day 328.

εT = 1−
∫
V Csim(x, y, z, t = 328) µn dv∫
V Cref(x, y, z, t = 27) µn dv

(5.8)

Fig. 5.10a) shows that for MGS and OBJ realizations, most of the realizations let the
contaminant leave the model, while for PG1 and PG2 realizations, more than 50% of all the
realizations maintain the plume within the model boundaries.

The other quantitative indicators are based on the existing sample locations. Let us
denote NS the number of samples, s the sample cell index, ~xs their coordinates and Cs the
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Figure 5.9: Plume examples at day 328 for different conceptual models and for scenario 3
at different concentration thresholds – vertical scale exaggerated by 5

concentrations at these locations. A simple way to define an error between a simulated plume
and the reference plume might be to compute the L1 norm error εC between the simulated
concentrations and the reference concentrations at the sample locations (Eq 5.9).

εC =

NS∑

s=1

|Csim
s − Cref

s |
Cref
s

(5.9)

Fig. 5.10b) shows that globally, the simulated concentrations are closest to the reference for
OBJ realizations than for MGS realizations and even furthest for PG1 and PG2 realizations.

Another way to look at the plume characteristics is to analyze the position of the plume
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Figure 5.10: Error boxplots; a) error on the total mass; b) L1 error on concentrations at
sample location; c) error on the center of mass longitudinal position; d) error on the center
of mass dispersion; e),f),g) & h) errors on iso-concentration classification by zone

center of mass and the plume dispersion around it. An error εG on the center of mass location
is defined as the euclidean distance between the center of mass of the simulated plume ~gsim

and of the reference plume ~gref (Eq 5.10).

εG =
∥∥~gsim − ~gref

∥∥ where ~g... =

NS∑
s=1

C ...
s ~xs

NS∑
s=1

C ...
s

(5.10)

Fig. 5.10c) shows that the center of mass distance is small for PG1 and PG2 realizations
while it is far greater for MGS and OBJ realizations. It is not surprising that these results
are close to those shown by the error on the total contaminant mass conservation εT because
a plume moving faster out of the model boundaries implies that its center of mass will also
move faster towards the outlet. The plume dispersion around the plume center of mass
is computed as the average distance between the center of mass and the sample location
weighted by the concentration. It allows defining an error on the plume dispersion εD as the
difference between the simulated plume dispersion and the reference plume dispersion (Eq.
5.11).

εD =

∣∣∣∣∣∣∣

NS∑

s=1

Csim
s ‖ ~xs−~gsim‖

NS∑

s=1

Csim
s

−
NS∑

s=1

Cref
s ‖ ~xs−~gref‖

NS∑

s=1

Cref
s

∣∣∣∣∣∣∣
(5.11)

Fig. 5.10d) shows that the plume dispersion is better reproduced for PG1 and PG2 models
than for MGS or OBJ models.

Often, in practical applications, the key prediction is to estimate if the concentration
downstream of a contaminant plume may get higher than a regulatory level. To quantify
a contamination risk above determined thresholds Cth

k for k ∈ {1, 2, 3}, one might use iso-
concentration classes on the simulated plumes, and to build an error εI based on the miss-
classification at the sample locations in the simulations versus the reference classes (Eq.
5.12).

εI =
1

NS ×NK

NS∑

s=1

NK∑

k=1

1Csim
s ≥Cth

k
× 1

Cref
s ≥Cth

k
(5.12)
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This error is computed for the whole domain (εI), and for three delimited zones: ε1I for zone
1, ε2I for zone 2 and ε3I for zone 3. Indeed, it is interesting to know how the errors may
vary depending on the position of the zone of interest. Zones 1, 2 and 3 are restrained on
the longitudinal axis respectively between Y coordinates ]100, 120], ]170, 190] and ]240, 260]
as illustrated in Fig.5.1. Fig. 5.10e), f), g) & h) shows that MGS simulations give better
iso-concentration predictions in zones 1, 2 and 3 corresponding to the downstream part of
the model while PG1 and PG2 simulations offer a better prediction on the whole model
domain and by deduction in the upstream part of the model.

One might compute three-dimensional exceeding concentration probability maps of the
simulated plumes PCth

(xi, yi, zi), where i denotes the grid cell index in the model and Cth rep-

resents the concentration threshold have been computed as PCth
(xi, yi, zi) =

1
NR

NR∑
j=1

1
Cj

i ≥Cth
,

Cj
i being the simulated concentration for realization j in cell i. These probabilities are com-

puted here for two concentration thresholds Cth ∈ {4, 16}, and are illustrated as probability
density maps through vertical and lateral integration (Eq. 5.13 & 5.14) in Fig. 5.11 and
5.12.

PZ
Cth

(x, y) ∝

∑
k

PCth
(x, y, zk)

∑
i
PCth

(xi, yi, zi)
, k layer index on the vertical z axis (5.13)

PX
Cth

(y, z) ∝

∑
l

PCth
(xl, y, z)

∑
i
PCth

(xi, yi, zi)
, l layer index on the transverse x axis (5.14)

Vertical projections offer a top view of the iso-concentration probability densities, while the
lateral projections give a representation of the plume iso-concentration densities along the
vertical and longitudinal axes. One might expect to observe smaller probabilities for higher
concentration thresholds, but as PZ

Cth
(x, y) and PX

Cth
(y, z) are re-normalized, some density

maps present higher values for the highest concentration threshold in Fig. 5.12. Globally,
Fig. 5.11 and 5.12 confirm the trends observed with other indicators. MGS and OBJ plumes
go faster through the model. OBJ plumes seems globally a little bit faster for concentrations
< 16 pCi/mL while for MGS plumes, the highest concentrations goes faster through. For
MGS and OBJ plumes, the plumes seems equally dispatched on the vertical dimension, while
it stays more concentrated along the longitudinal axis in the lateral–longitudinal plane. PG1
and PG2 plumes are much slower. PG2 plumes stay really close to the injection location.

One could wonder if the plume speed differences are related to the global equivalent
permeability. However, a plot of the plume center of mass longitudinal coordinates as a
function of the equivalent permeability (Fig. 5.13) shows that even though the greatest
equivalent permeabilities are obtained for the PG1 models, the longitudinal position of the
center of mass for these models are not the farthest from the injection location. Therefore
the equivalent conductivity does not explain all the effects on the plume speed differences
between the various conceptual models in this example. Several reasons might be considered.
One of them could be the sensitivity of the initial conditions such as the injection location on
the plume dispersion. Another one is probably the way to set the conductivity property for
the matrix or to fix the minimum and maximum conductivity values for the facies models.

The previous errors or probability density maps are rather global and aggregated indi-
cators. One might want less aggregated indicators to assess the individual quality of the
predictions. A more qualitative way to assess the quality of the simulated plumes is to
compare the mass distribution along the longitudinal axis as performed in previous studies
of the MADE-II experiment (Salamon et al., 2007; Llopis-Albert and Capilla, 2009). The
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Figure 5.11: Renormalized probability densities per model for C ≥ 4 pCi/mL

ensemble of mass distribution curves and some typical profiles are illustrated separately for
each conceptual model in Fig. 5.14. The mass distribution curves present different profiles
from gaussian bell to multimodal distributions, depending on the length scale characteristics
scenario and on the type of conceptual model. Multimodal profiles are produced by all types
of conceptual models, but profiles showing a high peak close to the coordinate 10 and an ac-
cumulation zone around coordinate 170 are sparse (Fig. 5.14a realization 106 and Fig. 5.14c
realization 182 with a strong attenuation due to mass loss). The 10, 50 and 90 percentile of
the mass ditribution curves are shown in Fig. 5.15. They confirm the global trends observed
with the quantitative indicators (Fig. 5.10), that MGS and OBJ simulations (Fig. 5.15a &
5.15b) produce faster plumes, do not include the first peak in the mass distribution curve,
but are better at predicting the ’accumulation’ zone, in opposition to PG1 and PG2 simu-
lations (Fig. 5.15c & 5.15d). However, the global shape of the cumulative mass distribution
along the flow direction looks better and is more promising for PG1 and PG2 simulations:
the peak around Y = 0m and the accumulation around Y = 170m for the reference show a
bi-modal behavior that seems more often obtained by the PG1 and PG2 simulations.

To assess the quality and the uncertainty of the simulated plume, one can look at the
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Figure 5.12: Probability densities per model for C ≥ 16 pCi/mL

histograms of the cumulative mass in the volumes delimited by the three target zones (Fig.
5.16) for the simulations versus the cumulative mass for the reference. For each zone, the
different distributions around the reference value show that the uncertainty completely de-
pends on the observation zone. Of course it also depends a lot on the kind of model. The
best predictions for zone 1 are produced by OBJ simulations. The best predictions for zone 2
are given by MGS simulations. The best predictions for zone 3 come from PG1 simulations.
PG2 simulations are outperformed in the target zones. However, would have a zone been
further downstream, it would have outperformed the other simulations. The asymmetric un-
certainty distribution around the reference values confirm the previous observations about
the global plume speed and spreading.

A global statement is that the variability of these indicators is not uniform and strongly
depends on the type of indicator, on the observation zone, and on the type of conceptual
model.
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Figure 5.13: Plume center of mass longitudinal position as a function of the equivalent
permeability

5.6 Discussion and conclusion

It has been shown that with limited site-specific information, it is possible to propose geolog-
ical realizations based on different types of conceptual models and analog data, and then to
run transient transport simulations afterwards. Globally, the predicted plumes are quite ac-
ceptable with respect to the assumption of field information scarcity. It is probably due to the
closeness of the conductivity mean µlog10K ≃ −3.97 and variance σ2

log10K
≃ 0.58 values com-

puted from analogue data (Jussel et al., 1994) with the conductivity mean µlog10K ≃ −4.32
and variance σ2

log10K
≃ 0.80 measured on the MADE site, as reported by Salamon et al.

(2007). None of the conceptual models was able to predict the plume behavior and uncer-
tainty in a completely satisfying manner. However, considering multiple conceptual models
together might help to compensate the conceptual model imperfections. In the demonstra-
tion example, MGS or OBJ plume realizations can help localize the accumulation zone while
PG1 or PG2 models would help considering the slow release of the contaminant. In a sense,
all conceptual models can be useful.

An important aspect of this case study is that the variability of the OBJ and PG geological
models was not fully explored, inducing then an underestimation of the simulated plume
uncertainty. Indeed the two parameterizations proposed for the PG algorithm show that a
wide variety of structures, densities and connectivities might be generated, by playing with
different input parameters. Also, our strategy to reduce the degree of freedom to compute
the conductivity values so that the mean and variance of the log conductivity field is the same
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Figure 5.14: Cumulative mass along main flow direction: typical breakthrough curves

for all realizations is also a limiting factor. Fixing the minimum or maximum value instead
of the matrix conductivity value would have changed the simulated plumes. Regarding the
OBJ model, varying the density of objects per layer or the aggradation rate would also have
changed the structures and connectivities of the geological models.

Further parameter space exploration should be performed, and as it would increase the
contaminant plume uncertainty, the question of adding information during the modeling
process to reduce the prediction uncertainty should be raised. As it would be unrealistic in
many cases to add as much conductivity measurements as available for the MADE site, a
suggestion is to refine length scale characteristics by measuring Ground Penetrating Radar
profiles on the site to model. These profiles could be transformed into summary statistics,
offering a global selection criteria, or also used locally as conditioning data for geological
layer interfaces. This is work the authors intend to perform soon. More generally, the
expected impact of data conditioning is a reduction of the variability within and between
the conceptual models. This could also be verified.

Some limitations of this study offer further perspectives. Indeed, the study has been
conducted on a single reference site and it is not possible to draw a general conclusion.
A similar modeling effort shall be conducted on other braided river aquifer study sites, to
check if the resulting prediction uncertainty confirms the results described here. At last,
as the plume behavior might not be explained by the equivalent conductivity, the other
factors controlling the plume transport shall be analyzed in more details. In particular, the
initial location of the plume might have a considerable impact on the contaminant transport,
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Figure 5.15: Cumulative mass along main flow direction: quantiles on breakthrough curves

especially when the high concentrations are very localized.
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6.1 Summary of the results

The sensitivity analysis of the DS algorithm (chapter 2) provides recommendations on the
three main input parameters, and shows examples of MPS simulations for a wide range of
new training sets. An acceptance threshold t smaller than 0.2 and a maximum number of
neighbors n larger than 30 provide rather good simulations for almost any training set, even
if the quality of the realizations also relies on the quality of the training sets. Reducing t
and increasing n improves the quality of the simulations at the expense of the computational
time and decreases the variability between realizations. The quality of the realizations seems
to converge to an asymptote as soon as the computational time increases faster. A possible
way to decrease the computational time is to reduce f , the proportion of the training set
used, as long as the training set contains enough similar patterns. Another possibility is to
work on an upscaled grid.

The simulation of topographies at successive time steps with MPS (chapter 3) is another
demonstration of the possibilities offered by the DS algorithm. It shows that combining the
variable of interest with auxiliary data that help describing the non-stationarity of the vari-
able to simulate is a very efficient way to generate complex structures with MPS techniques,
confirming the results of Chugunova and Hu (2008) and Mariethoz and Kelly (2011). It
also underlines the potential of variable transformation to reduce complexity and to gain
computational time, as also performed by Mariethoz et al. (2012). A noticeable result is the
possibility to use time series of maps for training sets. It complements the ability of MPS to
model local time series (Oriani et al., 2014).

These results allowed us to propose a new process imitating method to model braided
river aquifers (chapter 4) using analogue data. Successive topographies, obtained by MPS
simulations using a training set coming from an analogue site, are stacked iteratively to
produce geological layers whose mean thickness is a function of the aggradation parameter.
The inner layer heterogeneity produced by successive deformation leads to realistic cross
stratified sedimentary structures. Though limited to the aggradation rate, the number of
iterative deformation and the power of the deformations, the main parameters might not be
easy to calibrate but they offer a control on the facies proportion and connectivity.

The test of the proposed process imitating method on a real contaminant transport
data set and the comparison with a multi-gaussian technique and an object based algorithm
(chapter 5) was not a success nor a failure for any model. It demonstrates the potential
of building geological heterogeneity models using analogue data when few field data are
available, as it is often the case in practice for hydrogeologists. An important result is that
the uncertainty of the plume predictions depends on both the kind of geological model and the
position of the target zone for the prediction. It also points out that when little information
is available, even if none of the models is right, each of them should be considered in order
to not underestimate the uncertainty of the predictions. A drawback of the conducted test
is the restriction applied to the model parameters. A wider exploration of the parameter
space should be performed for both object based and pseudo genetic models.

6.2 Directions for further research

The limitations encountered and the questions raised throughout this thesis open further
perspectives. MPS topography simulations are potentially useful to study river aquifer in-
teractions (Käser et al., 2014) and potentially constitute a new tool for flood risk manage-
ment. Indeed, this new way of modeling topographies is rather computationally efficient in
a probabilistic framework, and probably faster than process or physics based models that
require a minimum number of time steps before stabilizing to the desired state.
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The sensitivity analysis performed on the DS algorithm allows to consider an auto-
calibrated method to optimize the DS algorithm parameters. As a sudden increase of the
computation time is always observed when quality indicators converge to their optimum, one
might consider performing a parameter space exploration on a small size grid to determine
the best parameter set. The best parameters could be determined around an elbow of the
multi-dimensional surface representing the computational time as a function of the parame-
ters. Of course, the grid size used for testing should be large enough to account for the inner
ergodicity of the training set.

This study also points out the need for new tools to assess quantitatively the quality of
MPS simulations and of training sets, in addition to already existing indicators (Boisvert
et al., 2010; Dimitrakopoulos et al., 2010; Emery and Ortiz, 2011). Meanwhile, Rongier
et al. (2013) developed some control indicators to check properties of connected geobodies,
based on the facies proportions and connectivities and on the shape, geometrical properties
and skeleton of the geobodies. Tan et al. (2014) proposed a distance based on multiple-
point histogram comparison between two data-sets (training-set or realization). Pérez et al.
(2014) suggested a multiple and high order consistency check, based on the retrieving in
the training set of randomly sampled pattern in realizations. Another aspect in the quality
of MPS realizations is the tendency to patch (copy paste) from the training set. This is
observed when too much constraints are applied on the number of neighbors and on the
acceptance threshold parameters. Under such constraints, the algorithm chooses the best
pattern and performs an optimization instead of sampling among acceptable patterns. This
could be avoided by adopting some accept-reject step as in classical Markov Chain Monte
Carlo algorithms.

Further developments of the pseudo-genetic model could be proposed to allow field data
to be honored. One aspect relates to the conditioning to erosion surfaces corresponding for
instance to major reflectors in Ground Penetrating Radar profiles. It involves simultaneous
constraints on both the topography simulations and the aggradation rate. Another aspect
is to take borehole data into account. An identification of the successive interfaces between
the main geological layers as well as a correlation between borehole stratification (Olea,
2004) would serve for conditioning both the topography simulations and the aggregation
rate. Another possibility would be to deal with conditioning as a minimizing cost function,
balancing a deformation cost versus a non conditioning cost.

The pseudo-genetic model developed in this thesis is an opportunity to generate 3D
training sets for MPS simulations. Indeed, though MPS are able to reproduce many complex
patterns, in particular for heterogeneity models of braided river aquifer (Comunian et al.,
2011), there is a lack of available training sets (Comunian et al., 2012). As a matter of
fact, using MPS on a training set generated with the proposed approach would be another
solution to achieve data conditioning, either by re-simulating with around the conditioning
data locations or by simulating the entire simulation grid by MPS.

Other aspects of the pseudo-genetic model such as the parameterization of the number
of facies could be investigated further. In this thesis, three facies are retained to describe a
connected matrix and the sediments deposited in scours. The matrix, that represents gravel
sheets, is composed of unsorted mixed sediments and therefore has a rather low conductivity.
The two facies of the scour sediments correspond to well sorted coarse grain size sediments
and well sorted fine grain size sediments. Their alternation allows to create contrasts in the
sedimentary deposits, which produces cross-stratifications. One could wonder if two facies as
conceived in the object-based model of Huber and Huggenberger (2015) would be enough or
if more facies would offer better results regarding the uncertainty of the plume predictions.

Another possible variant in terms of access to analog data would be to consider topogra-
phies issued from physics based models such as developed by Schuurman et al. (2013). It
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could be used either as training set or to provide the successive topographies with the corre-
sponding aggradation rate. A great advantage to use such a physics model is the possibility
to link the aggradation with the two successive topographies used as training set.

Testing the proposed pseudo genetic algorithm on the MADE site Tritium experiment
indicates that a wider parameter space exploration is required. As it could dramatically
increase the uncertainty of the predictions, it shall be combined with some parameter se-
lection or calibration tools. For instance, it could be combined with summary statistics
comparisons (Lochbühler et al., 2015) between field geophysical measures such as Ground
Penetrating Radar profiles and simulated geophysics. This requires the development of in-
dicators to compare forward geophysical methods with field measurements.

The plume simulation exercise performed on the MADE site with three kinds of con-
ceptual models of geological heterogeneity should be repeated on other investigated sites
in order to draw some general conclusions. One might indeed wonder if the same form of
plume prediction uncertainty would be obtained for various sites. However, such experiments
conducted at a large scale for braided river aquifers are scarce in the literature.

Finally, it would be interesting to account for the different sedimentary environments at
the MADE site in the modeling process and assess their impact on contaminant transport.
The braided river alluvial aquifers stand on an aquitard formed by Cretaceous marine sedi-
ments. The two meter thick surface of the aquifer is composed by a mixture of fine particles,
sand and gravels. Underneath, the main part of the aquifer is essentially constituted of
sand and gravel. It would require an additional modeling effort to characterize each zone in
accordance with its composition and also an additional computational effort as the aquifer
thickness to model would be greater.
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Sedimentäre/hydrogeologische wandkartierung und kalibrierung von georadarmessun-
gendiplomkartierung. Diplomkartierung, Universitäet Tübingen.
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Coléou, T., M. Poupon, and K. Azbel (2003). Unsupervised seismic facies classification: A review
and comparison of techniques and implementation. The Leading Edge 22 (10), 942–953.

Comunian, A. and P. Renard (2009). Introducing wwhypda: a world-wide collaborative hydrogeo-
logical parameters database. Hydrogeology Journal 17 (2), 481–489.

Comunian, A., P. Renard, and J. Straubhaar (2012). 3D multiple-point statistics simulation using
2D training images. Computers & Geosciences 40, 49–65.

Comunian, A., P. Renard, J. Straubhaar, and P. Bayer (2011). Three-dimensional high resolution
fluvio-glacial aquifer analog–Part 2: Geostatistical modeling. Journal of Hydrology 405 (1), 10–23.

Constable, S. C., R. L. Parker, and C. G. Constable (1987). Occam’s inversion: A practical algorithm
for generating smooth models from electromagnetic sounding data. Geophysics 52 (3), 289–300.

Cordua, K. S., T. M. Hansen, and K. Mosegaard (2012). Monte carlo full-waveform inversion of
crosshole gpr data using multiple-point geostatistical a priori information. Geophysics 77 (2), H19–
H31.

Cornaton, F. J. (2007). Ground water: a 3-D ground water and surface water flow, mass transport
and heat transfer finite element simulator, reference manual. University of Neuchâtel, Neuchâtel,
Switzerland .

Coulthard, T. J., M. G. Macklin, and M. J. Kirkby (2002). A cellular model of Holocene upland river
basin and alluvial fan evolution. Earth Surface Processes and Landforms 27 (3), 269–288.

Cui, T., C. Fox, and M. O’Sullivan (2011). Bayesian calibration of a large-scale geothermal reservoir
model by a new adaptive delayed acceptance Metropolis Hastings algorithm. Water Resources
Research 47 (10), W10521.

Dafflon, B. and W. Barrash (2012). Three-dimensional stochastic estimation of porosity distribution:
Benefits of using ground-penetrating radar velocity tomograms in simulated-annealing-based or
Bayesian sequential simulation approaches. Water Resources Research 48 (5), W05553.

Dargahi, B. (2004). Three-dimensional flow modelling and sediment transport in the River Klarälven.
Earth Surface Processes and Landforms 29 (7), 821–852.

Davis, J. and A. Annan (1989). Ground-penetrating radar for high-resolution mapping of soil and
rock stratigraphy. Geophysical Prospecting 37 (5), 531–551.

Davy, P. and D. Lague (2009). Fluvial erosion/transport equation of landscape evolution models
revisited. Journal of Geophysical Research: Earth Surface (2003–2012) 114 (F3).

Dawson, M. (1988). Sediment size variation in a braided reach of the Sunwapta River, Alberta,
Canada. Earth Surface Processes and Landforms 13 (7), 599–618.

Day-Lewis, F. and J. Lane (2004). Assessing the resolution-dependent utility of tomograms for
geostatistics. Geophysical Research Letters 31 (7).

Day-Lewis, F. D., K. Singha, and A. M. Binley (2005). Applying petrophysical models to radar
travel time and electrical resistivity tomograms: Resolution-dependent limitations. Journal of
Geophysical Research: Solid Earth (1978–2012) 110 (B8).

De Marsily, G., A. Buoro, et al. (1999). 40 years of inverse problems in hydrogeology. Comptes
Rendus de l’Academie des Sciences Series IIA Earth and Planetary Science 329 (2), 73–87.
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Zhou, H., J. J. Gómez-Hernández, and L. Li (2012). A pattern-search-based inverse method. Water
Resources Research 48 (3), W03505.

Zinn, B. and C. F. Harvey (2003). When good statistical models of aquifer heterogeneity go bad: A
comparison of flow, dispersion, and mass transfer in connected and multivariate Gaussian hydraulic
conductivity fields. Water Resources Research 39 (3), 1051.



Appendix A

Distance-based kriging relying on
proxy simulations for inverse
conditioning





Introduction 111

Abstract

Let us consider a large set of candidate parameter fields, such as hydraulic conductivity
maps, on which we can run an accurate forward flow and transport simulation. We address
the issue of rapidly identifying a subset of candidates whose response best match a reference
response curve. In order to keep the number of calls to the accurate flow simulator com-
putationally tractable, a recent distance-based approach relying on fast proxy simulations
is revisited, and turned into a non-stationary kriging method where the covariance kernel is
obtained by combining a classical kernel with the proxy. Once the accurate simulator has
been run for an initial subset of parameter fields and a kriging metamodel has been inferred,
the predictive distributions of misfits for the remaining parameter fields can be used as a
guide to select candidate parameter fields in a sequential way. The proposed algorithm,
Proxy-based Kriging for Sequential Inversion (ProKSI), relies on a variant of the Expected
Improvement, a popular criterion for kriging-based global optimization. A statistical bench-
mark of ProKSI’s performances illustrates the efficiency and the robustness of the approach
when using different kinds of proxies.

A.1 Introduction

Inverse techniques are one of the corner stones of groundwater modeling. Their aim is to iden-
tify model structure and model parameter values from observed state variables. In practice, a
wide range of approaches exist and have been compared extensively (De Marsily et al., 1999;
Kaipio and Somersalo, 2005; Carrera et al., 2005; Tarantola, 2005; Hendricks Franssen et al.,
2009; Oliver and Chen, 2011). Often, the inverse problem is formulated in a least-square or
maximum likelihood manner. A data misfit quantifies the difference between measured and
calculated state variables. The aim is then to find a parameter field minimizing the misfit.

Less frequently in practice, the problem is solved in the Bayesian framework with the
aim to recover an ensemble of representative samples (parameter fields) from the posterior
probability distribution. This is particularly important when prior geological knowledge
is available and can be expressed using geological models describing the parameter fields.
Techniques such as multiple point statistics, object- or process-based geological simulations
(De Marsily et al., 2005) are often used to express this prior knowledge, but then solving the
inverse problem becomes very challenging because it is usually not possible to provide an ex-
plicit analytical expression of the posterior distribution. In such situations, one needs to rely
on computational resources and statistical sampling techniques (Mosegaard and Tarantola,
1995; Tarantola, 2005; Caers, 2011; Vrugt and Ter Braak, 2011) such as Markov Chain Monte
Carlo (MCMC) (Oliver et al., 1997; Liu, 2008; Fu and Gómez-Hernández, 2009; Alcolea and
Renard, 2010; Mariethoz, 2010; Mondal et al., 2010; Cui et al., 2011). A practical difficulty
in that approach is that evaluating the likelihood function, involving in itself a calculation of
the misfit, is often computationally very demanding. This inhibits the user to let an MCMC
procedure run for a sufficiently large number of iterations to enable convergence (Keating
et al., 2010; Mariethoz, 2010). Similar computational issues arise in optimization problems
related to groundwater management: if each evaluation of the objective function that has to
be minimized requires a significant amount of computational resources, it becomes infeasible
to reach the optimum in reasonable time.

To reduce the computational demand, one can use the concept of metamodel (or response
surface). The response (e.g. the misfit) of the flow simulator is computed for a small set of
inputs and can then be predicted by the metamodel for any other input. Various interpolation
techniques can be employed such as radial basis functions, splines, or kriging (Bliznyuk et al.,
2008; Mugunthan and Shoemaker, 2006; Sacks et al., 1989; Matheron, 1963; Rasmussen,
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2006; Paciorek, 2003). An advantage of kriging is its ability to provide both a prediction of
the possible response (kriging mean m) and a corresponding prediction uncertainty (kriging
variance s2). The prediction uncertainty drops to zero where the response has actually been
computed with the simulator and increases when moving away from those input points.
In the global optimization problem consisting in finding inputs minimizing the objective
function, one can use m and s2 to express a trade-off between the exploitation of the mean
prediction (finding locations where m is low) and exploration of the design space (finding
locations where the prediction is the most uncertain). This idea gave birth to the Expected
Improvement (EI) criterion (Mockus, 1989): for every location within the input space, the
kriging metamodel is used to derive a predictive distribution for the improvement that might
be obtained by evaluating the objective function at that location. Here the term improvement
refers to the difference between the best (i.e. the lowest) response observed so far and the
response at the new location if this difference is positive, and 0 otherwise.

The input point with the highest EI is then chosen to run the numerical model again
and update the metamodel. Such approaches based on kriging metamodels have been very
successfully used for sequential design of computer experiments since the development of
the Efficient Global Optimization algorithm (Sasena et al., 2002) in the late 1990’s. Several
other criteria were later proposed for neighbouring problems (Bect et al., 2012).

Another approach to reduce the computational demand is to use a concept of distance
between parameter fields (Suzuki and Caers, 2008; Scheidt and Caers, 2009; Caers, 2011).
Several types of distances can be defined, but the important point is that the distance
should be chosen such that it can be computed rapidly and help predicting if two parameter
fields will lead to similar or different responses. For example, Suzuki et al. (2008) used the
Hausdorff distance to quantify the differences in the geometry of complex 3D models (having
different fault systems, horizon geometries, etc.), coupled with the neighborhood algorithm
(Sambridge, 1999) to search efficiently, within the prior ensemble, the models that match
field observations of oil production. Scheidt and Caers (2009) propose a general framework
based on the concept of distance to quantify uncertainty. In their example, the problem
consists in estimating oil recovery in a production well. The models all have the same
geometry, but very different parameter fields (obtained using multiple-point statistics with
different training images). The prior ensemble is large and the aim is to rapidly obtain a good
estimation of the uncertainty on the forecast. For that purpose, Scheidt and Caers (2009)
define the square distance between two parameter fields as the integrated square difference
between the responses computed for the two parameter fields with a fast streamline solver.
The distances between every pair of parameter fields is computed and used as a base for
mapping all the parameter fields in an abstract metric space in which it is possible to select
a small number of them covering comprehensively the variability of the complete ensemble.
Running the forward two-phase flow numerical simulator only on these selected geological
models allows a fast and rather accurate uncertainty assessment. Going a step further, Caers
et al. (2010) use the same framework to formulate the inverse problem.

A promising direction for reducing the computational demand is the joint use of a pair
of complex and simple models (Kaipio and Somersalo, 2007; Kennedy and O’Hagan, 2000;
Lødøen and Tjelmeland, 2010; Doherty and Christensen, 2011; Tossavainen et al., 2011). The
distinction between the complex and simple models is not straightforward, but to remain
general we can state that the complex model tends to account for all important and relevant
physical processes as well as all the necessary geometrical complexity of the reservoir. On the
opposite, the simple model neglects some aspects of this complexity with the aim of being
much more computationally efficient. The simplification may be based on neglecting some
physical processes, on reducing the problem dimension (2D instead of 3D), or on a coarse
spatial or temporal resolution. In the remaining of this paper, we will use the terminology
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accurate model for the complex one, and proxy for the simple one. To use a combination
of accurate and proxy models in practice, one needs to establish a link between the two.
Several approaches can be devised. For example, Doherty and Christensen (2011) identify
some parameters of the proxy model by solving an inverse problem where the results of the
accurate model have to be reproduced.

In this paper, we propose to link an accurate and a proxy model using a distance-based
kriging metamodel. It allows to forecast outputs of the accurate model as it is done with
traditional kriging metamodels. However, those methods are usually limited to parameter
spaces of small dimensions. This makes their application for the identification of complete
parameter fields impossible. The novelty of the proposed approach lies therefore in the way
we define the covariance kernel at the core of the kriging metamodel. The concept is simple,
we assume that the same parameter fields can be used as input data for the proxy and the
accurate model. As suggested by Caers and his collaborators (Suzuki et al., 2008; Scheidt and
Caers, 2009; Caers et al., 2010; Caers, 2011) we use a distance based on proxy responses, but
we include that distance into the covariance kernel of the kriging equations. The consequence
is a drastic reduction of the problem dimension, allowing to infer covariance parameters.
Once the statistical relation between the proxy and the accurate model is established, it can
be used to predict the misfit for any parameter field whose proxy response is known. It can
also be updated when new runs of the accurate model become available. This general idea
can be applied to a very wide range of problems.

One of the main aims of this paper is therefore to describe the concept of the distance-
based kriging technique. We also illustrate how this technique can be used in a sequential
algorithm aiming at quickly identifying a set of parameter fields whose responses computed
with an accurate model match some reference data. In an inverse problem, the purpose is
often not only be to find the global minimizer(s) but more to sample from a posterior distri-
bution, and so we propose a variant of the EI criterion meant to spend more time exploring
the possible various minima of the misfit function than EI. For illustration purpose, we con-
sider a simple flow and solute transport problem. The geological heterogeneity is modeled
using a multiple-point statistics technique (Mariethoz et al., 2010) allowing to account for
prior geological knowledge typical for a fluvio glacial environment. Numerous experiments
with a randomization procedure are conducted to test the robustness of the method.

The paper is organized as follows. In section A.2 we give an overview of the sequential
algorithm used to solve the inverse problem. In section A.3, we describe in detail the proposed
kriging metamodel. The equations of ordinary kriging are recalled, with a focus on the role
of the covariance kernel. The original kernel underlying our work is introduced, followed by a
discussion on its interpretation and mathematical foundations. Some practical details follow
on the estimation of covariance parameters. We end the presentation of the method in section
A.4 by describing how the sequential search is driven. Sections A.5 and A.6 are dedicated to
results and discussion. We first introduce a case study to illustrate the methodology. Then
we present the results of a randomized experiment and statistically assess the method’s
performances based on a benchmark of 100 reference curves. We conclude and propose a few
theoretical and practical perspectives in section A.7.

A.2 Overview of the sequential algorithm

The proposed sequential algorithm is named Proxy-based kriging for Sequential Inversion
(ProKSI). Its aim is to identify rapidly, within a large ensemble of parameter fields, the ones
whose responses computed with the accurate model fit a given reference curve. In practice,
the algorithm consists in sequentially selecting among all the available parameter fields which
one will be used as input for the accurate numerical model at the next iteration (Fig. A.1
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to A.2). Before sketching the key phases of the algorithm, let us set a few notations.
Each candidate parameter field is denoted xi ∈ E (1 ≤ i ≤ N), where E is a vector

space, typically of dimension 104 to 106 when representing a discretization of the subsurface.
In the following examples, xi represents a categorical field obtained from multiple-point
statistics simulation. But the proposed methodology is more general and can be applied
without much modifications to models having various geometries or even based on different
conceptual assumptions. The only requirement is that it is possible to compute the accurate
and proxy responses for any of those input parameter fields.

The accurate numerical simulator is considered as a function f returning a vector of
values. In the example, we assume more specifically that the simulator f returns for any
parameter field x ∈ E a breakthrough curve fx (concentration versus time):

fx : t ∈ [0, T ] → fx(t) ∈ [0,+∞) (A.1)

where t represents the time. The space of such curves is denoted by F .
Now, given a reference curve fref ∈ F , the goal is to recover in a limited time which xi’s

(1 ≤ i ≤ N) minimize the misfit g◦(x) := d(fref, fx), where d is some metric on F . For
example, if we use the L2 norm, the misfit will be expressed as:

g◦(x) =

∫ T

0
(fref(t)− fx(t))

2 dt (A.2)

Ideally, one wishes to describe the subset of input fields leading to a good fit, relying on
a fixed number of evaluations k < N dictated by computation time constraints. In addition
to f , we assume that a ”proxy” p : E → F is available, providing an approximate solution to
the flow and transport equations significantly faster than f . p may stem for instance from
an auxiliary simulator solving similar equations with simplified physics, or from degrading
the accurate simulator f by reducing the time or spatial resolution.

N 

candidate 

models

Distance 

matrix

D

proxy

simulations

clustering

(optionally with MDS)
 initial models 

for ProKSI

Figure A.1: Initialization steps of the ProKSI algorithm.

The ProKSI algorithm starts with a series of initialization steps (Fig. A.1):

1. A sample of parameter fields {x1, . . . ,xN} is drawn from a chosen prior distribution
(e.g., by multiple-points statistics simulation).

2. The proxy responses p(xi, t) are computed for all xi’s (1 ≤ i ≤ N). The distances di,j
between the proxy responses of any pair of parameter fields are then computed:

d2i,j =

∫ T

0
(p(xi, t)− p(xj , t))

2 dt (A.3)

This allows assembling a distance matrix D between all proxy responses.

3. A clustering technique (k-means) is used to group the parameter fields in n0 classes. For
each class, the parameter fields that are the closest to the centröıd are selected to get
a subset Xn0

= {xi1 , . . . ,xin0
} of n0 initial models (See Fig. A.6). Multidimensional

scaling (MDS) is optionally used to map all the input parameter fields in a small-
dimensional Euclidean space (Fig. A.6).
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For each of those n0 selected parameter fields, the accurate response fxij
is computed with

the accurate numerical solver. We obtain a vector g◦ = {g◦i1 , . . . , g◦in0
} (where g◦ij := g◦(xij ),

1 ≤ j ≤ n0) containing the misfits for the n0 parameter fields.

The values of g◦ are transformed to obtain a sample g with a close-to-Gaussian dis-
tribution. Such a Gaussian transformation is important later when the kriging variance is
used to represent the prediction uncertainty for the misfit. Different techniques can be used
for the transformation such as normal score transform, or Gaussian anamorphosis. Here, a

power-law transform gij =
[
g◦ij

]γ
(Box-Cox type) is used as it is simple to implement and

robust even when a small number of samples is available, and the value of γ is obtained by
minimizing the skewness of the sample of transformed values {gij , 1 ≤ j ≤ n0}.

candidate models

f
most promising

Figure A.2: Sequential loop of the ProKSI algorithm.

A sequential loop (Fig. A.2) then allows selecting a new parameter field at each iteration
on which to run the accurate solver. This enables building progressively a set of parameter
fields with low misfit values. The steps in that loop are the following (n is first set to n0):

1. If not already done, apply a normalizing transform to the sample of misfits (See detail
above). Estimate the covariance parameters τ , θ, and σ2 as described in section A.3.
Compute the kriging mean m(xi) and the variance s2(xi) for all inputs xi /∈ Xn.

2. After having computed the value of the modified expected improvement criterion
EIα(xi) (see section A.4 for its definition) for all the remaining candidate models,
Select a model with maximal EIα value as next candidate, called xin+1

.

3. Set Xn+1 = Xn ∪ {xin+1
}. Compute fxin+1

with the accurate numerical solver. Cal-
culate the new corresponding misfit and append it to the vector of misfits: g◦

n+1 =
{g◦

n, g
◦
in+1

}. Go to step 1 and resume the search until a convergence criterion is met.

The algorithm stops when the EIα reaches a prescribed lower threshold, or a desired number
of evaluations has been done, for instance because the allocated search time is elapsed.
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Figure A.3: Overview of the proxy-based kriging prediction workflow (after misfit trans-
formation).

A.3 High-dimensional kriging with a proxy-based kernel

The most important difference between the existing methods and what we propose here is
the distance-based kriging approach. It lies at the heart of sequential algorithm described
earlier in Figure A.2. In this section, we will describe in detail how this step is performed.
The main idea is to integrate the distance between proxy responses within the covariance
kernel of the kriging metamodel (Fig. A.3).

A.3.1 kriging for Computer Experiments

We adopt the framework of Gaussian processes Rasmussen (2006) to model the transformed
misfit between fref and the response of the accurate numerical simulator. The transformed
misfit g is assumed to be one realization of a Gaussian process with high-dimensional index
space (Gx)x∈E , with mean function µ and non-stationary covariance kernel k. We assume
that µ is an unknown constant, as in the case of ordinary kriging. We denote by g the vector
of known misfit values at the current design of experiments Xn := {xi1 , . . . ,xin} (n ≥ n0).

The kriging mean m(x) = E

[
Gx|Gxi1

= g(xi1), . . . , Gxin
= g(xin)

]
and kriging variance s2

at any arbitrary point x ∈ E are written:

m(x) = µ̂+ k(x)TK−1(g − µ̂1) (A.4a)

s2(x) = k(x,x)− k(x)TK−1k(x) +
(1− k(x)TK−11)2

1TK−11
(A.4b)

where K is a n×n matrix with entries Ki,j = k(xi,xj), referred to as the covariance matrix

of observations, k(x) := (k(x,x1), . . . , k(x,xn))
′ is a n×1 covariance vector, and µ̂ = 1TK−1g

1TK−11

is the best linear unbiased estimator of µ.

One of the attracting features of kriging is that m interpolates the observations (i.e. ∀j ∈
{1, . . . , n}, m(xij ) = g(xij )). Furthermore, s2 vanishes at the design points (s2(xij ) = 0), and
gives a quantification of the prediction uncertainty at unobserved points. A very important
feature is that both properties remain valid whatever the chosen covariance kernel k. Hence,
equations (A.4a) and (A.4b) give a potentially infinite set of interpolating metamodels, and
selecting k appropriately for the studied phenomenon appears to be a crucial issue in practice.
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A.3.2 A new kernel for high-dimensional kriging based on fast proxies

Designing a suiTab. covariance kernel over E × E is very challenging because E is a space
of parameter fields of typical dimensions ranging between 104 to 106. Hence, taking kernels
usually employed in d-dimensional (d ≈ 10) cases, e.g., an anisotropic power exponential
kernel, will a priori not make sense in the present framework. Alternatively, uncovering
features of the parameter fields x ∈ E leading to similar response curves would be ideal.

Here, we take advantage of the proxy responses in order to define a relevant measure of
similarity. More precisely, we propose to use a covariance kernel of the following form:

k(x,y) := σ2 exp

(
− 1

θ2

∫ T

0
(p(x, t) − p(y, t))2dt

)
+ τ21x=y (A.5)

In words, the closer two proxy curves associated with two parameter fields x,y are, the
closer the fits to the reference are expected to be when running the accurate simulator with
those inputs. In addition to this transformed Gaussian kernel, the term τ21x=y stands for
the nugget effect, and allows to model a possible dissimilarity between the accurate responses
of the inputs x,y, even if their associated proxy responses are close or even identical.

In fact, the proposed covariance kernel k can be seen as a standard stationary Gaussian
kernel over F × F , chained with the ”proxy operator”, that is with the function p:

k(x,y) := σ2 exp

(
− 1

θ2
||p(x) − p(y)||2F

)
+ τ21x=y (A.6)

where ||f ||F :=
√∫ T

0 f(t)2dt (f ∈ F ) stands for the L2 norm over F (the functions of F

being further assumed continuous). This basic fact ensures that the proposed kernel is an
admissible covariance. k is indeed positive definite over E ×E (but not necessarily strictly)
in virtue of the following property, for which a proof is proposed in appendix:

Property Let E and F be two arbitrary spaces. Given a positive definite kernel kF over
F × F , the kernel kE defined by

kE(x,y) := kF (p(x), p(y)) (A.7)

is positive definite over E × E for any function p : E −→ F .

Note that in different contexts, similar methods relying on a change of variables within a
positive definite kernel were already proposed, for example in Sampson and Guttorp (1992)
and subsequent works. Coming back to Eq. (A.5), the basis kernel kF corresponding to
Prop. A.7 is none other than an isotropic Gaussian kernel kF (u,v) = σ2 exp

(
− 1

θ2
||u− v||2F

)
,

parametrized by a sill σ2 and a range parameter θ > 0. Note also that chaining the proxy
operator with other kernels being positive definite in any dimension (e.g. kernels of the
Matérn class) would be admissible too; a Matérn kernel may be preferred to a Gaussian one
depending on the settings.

The next subsection focuses in detail on the chosen methodology for estimating the three
parameters σ2, θ, τ2 from available data.

A.3.3 Parameter fitting for the proposed kriging model

Several methods can be considered for estimating σ2, θ, and τ2 based on available data. In
particular, following the logic of Eq. (A.6), the problem boils down to a low-dimensional
one thanks to the isotropy assumption relatively to the space F , and so usual variographic
tools may well be applied in theory. However, most implemented variographic methods take
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low-dimensional vectors as inputs, while only the norm of the increments is available here.
Alternative automatic estimation methods include cross-validation error minimization, and
Maximum Likelihood Estimation (MLE).

Here we chose to base covariance parameter estimation on MLE, while keeping an eye
on variographic tools for assisting MLE with initial values or bounds for the parameters.
In ordinary kriging settings, MLE consists in maximizing the likelihood of σ2, θ, τ2 given
g under the assumption that GXn

∼ N (µ̂1,K), or equivalently (See, e.g., Santner et al.
(2003)) in minimizing:

l(σ2, θ, τ2;g) := log(det(K)) + (g − µ̂1)TK−1(g − µ̂1), (A.8)

where K and µ̂ are functions of (σ2, θ, τ2). Various global optimization procedures can be
used for solving this non-convex optimization algorithm, ranging from Nelder and Mead’s
simplex to genetic algorithms using derivatives. Here we adopt a pragmatic one-at-a-time
approach involving a concentration step on the variance parameter (described in appendix),
for which convincing experimental results could be obtained as shown in Sections 5 and 6.

A.4 Sequential search driven by proxy-based kriging

For any candidate parameter field xi, the kriging metamodel of the previous section allows
predicting the (transformed) misfit g(xi) by m(xi) with prediction variance s2(xi). Now,
in a sequential procedure aiming at identifying the parameter fields with the lowest misfits
such as considered here, m and s2 can be used at any given iteration for selecting on which
candidate parameter field to run the accurate numerical model next. For that purpose, we
propose to use a variant of the Expected Improvement (EI) criterion, meant to spend more
time exploring the basins of optima than the genuine EI.

By definition, EI is intended to point towards promising points, but also to foster space
exploration. Hence, in EI algorithms like EGO Sasena et al. (2002), a typical behavior
when evaluating the objective function at a good point (i.e. at a point becoming the current
best) is to spend some additional iterations in its neighborhood, and then to get attracted
by unexplored regions with higher kriging variances. This can be explained by coming back
to EI’s formal definition. Let us denote by g(Xn) the vector of misfit values after n accurate
evaluations of f , and by min(g(Xn)) the minimum misfit value found so far. The aim is
now to find a parameter field x such that the magnitude of the improvement of g(x) with
respect to min(g(Xn)) be the highest in expectation. Let us remind the reader that the
(transformed) misfit is modelled here as a Gaussian Process (Gx)x∈E . For any x ∈ E, the
difference between the current minimum and the unknown value of the misfit, min(GXn)−Gx,
is then a random variable. Only positive values are usually taken into account when one
is not interested in regions with worse misfit, and the improvement is therefore defined as
(min(GXn)−Gx)

+ := max(min(GXn)−Gx, 0). The EI criterion for a candidate parameter
field x is then defined as the expectation of this improvement conditional on GXn = g(Xn):

EI(x) : = E
[
(min(GXn)−Gx)

+ |GXn = g(Xn)
]

(A.9)

where conditioning on the event GXn = g(Xn) turns min(GXn) into min(g(Xn)), and leads
to the well-known Gaussian conditional distribution for Gx:

L(Gx|GXn = g(Xn)) = N (m(x), s2(x)) (A.10)

Owing to this convenient property, the EI criterion offers the advantage of being analytically
tracTab. (Sasena et al., 2002). Noting T = min(g(Xn)) and fN (m(x),s2(x))(·) for the density
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of the N (m(x), s2(x)) distribution, we have :

EI(x) =

∫ T

−∞
(T − u)fN (m(x),s2(x))(u)du

= (T −m(x))Φ

(
T −m(x)

s(x)

)
+ s(x)φ

(
T −m(x)

s(x)

)
,

(A.11)

where Φ and φ stand for the cumulative distribution function and the probability distribution
function of the standard Gaussian distribution, respectively. Here we propose a variant of
EI meant to put more emphasis on the exploration of basins of minimum while remaining
tractable. Indeed, the aim in our motivating applications is not only to find the global
minimizer(s) of g as quickly as possible, but also to find a representative subset of inputs
leading to a response curve close to the reference, i.e. to a small misfit. The proposed trick
to lower the repulsion effect of current best points is to replace min(g(Xn)) by a quantile of
g(Xn) in the definition of EI. Calling α the level of this quantile, we define

EIα(x) = (qα −m(x))Φ

(
qα −m(x)

s(x)

)
+ s(x)φ

(
qα −m(x)

s(x)

)
(A.12)

where qα = qα(Xn) is the empirical α%-quantile of the sample of misfits g(Xn). Varying
α allows tuning the criterion from normally explorative to very local. Indeed, when α = 0,
qα,n coincides with the minimum of g(Xn), so that EI0 ≡ EI. However, when tuning α
to a strictly positive value (obviously smaller than 1), the tendency of EI to vanish near
the observation points disappears. To prevent the algorithm from resampling at already
explored points, we exclude them from the search. However, we are interested in points very
close to the already explored points in terms of the proposed kernel, since they have similar
proxy responses but may be very different in terms of inputs. Different values of α will be
investigated in the application section, where the benefit of taking α > 0 will be illustrated.

A.5 Illustration of the method through a case study

To illustrate the proposed approach, we consider a synthetic example. The input parameter
fields xi are categorical and describe a 2D vertical geological section (example Fig. A.4(a)).
The ensemble of fields xi is generated using multiple-point statistics. The forward problem
consists in computing a breakthrough curve fx : t ∈ [0, T ] → fx(t) ∈ R+ using an accurate
numerical solver f . An example of a breakthrough curve is illustrated in Fig. A.4(e).

The general aim, in this example is to test whether the proxy based kriging approach
proposed in the previous section is able to help identifying efficiently a subset of fields xj

with relatively small misfit values g◦(x) := d(fref, fxj ).

To test the reliability of the method, the procedure is repeated using different reference
curves and configurations. The details of the generation of the geological models (i.e. the
parameter fields), the forward numerical solver, and two proxy simulators are described in
the following sections before presenting and discussing the results.

A.5.1 Geological facies simulations

The prior geological model for this case study is based on an aquifer analogue: the Herten site
(Bayer et al., 2011), typical of a glacio-fluvial environment, and on a multiple-point statistics
geological model. Thousand realizations (the xi’s) of the geological medium are generated
using the Direct Sampling (DS) multiple-point statistics method (Mariethoz et al., 2010)
using a geological section mapped from the Herten site as a training image. Fig. A.4(a)
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Figure A.4: Illustration of the main components of the illustrative example: (a) one sim-
ulation of a categorical field representing the geological facies. Each color corresponds to
a type of sediment; (b) hydraulic conductivity field derived from the geological facies; (c,f)
computation of the transient distribution of the concentration fields and breakthrough curve
using an accurate numerical simulator; (d,f) approximation using a proxy simulator.

shows one example. The grid has a size of 320 by 140 pixels covering an area of 16m by
7m. Each color corresponds to a geological facies. The parameters of the DS method are: a
search neighborhood of 20 cells on each axis, a maximal number of neighboring nodes of 15, a
distance threshold of 0.01, and a maximal scan fraction of 0.5. All the stochastic realizations
are constrained by a secondary variable (describing the large scale sedimentary structures)
in the training image and in the simulations, following the approach used by Comunian et al.
(2011). Fig. A.5(a) displays 9 of those realizations. The variability between them is present
only at small scales within the main sedimentary bodies. The large scale structures are
identical in all realizations. The ensemble of those geological models constitutes a sample of
our prior distribution on parameter fields.
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A.5.2 Flow and transport simulations

The breakthrough curves are obtained by solving the classical advection-dispersion equation
in transient state using a finite volume technique (Künze and Lunati, 2011, 2012). The
spatial discretization is kept identical to the one used for the geological simulations. The
boundary conditions and parameters are summarized in Tab. A.1. A constant value of
the hydraulic conductivity is assigned to each facies (Fig. A.4(b)) according to the mean
values obtained from laboratory experiments and described by Bayer et al. (2011). For the
sake of simplicity, the porosity is considered homogeneous over all facies. A constant head
is prescribed on the left (0.1m) and right boundaries (0m) and remain constant while the
upper and lower boundaries are no flow boundaries. Those boundary conditions lead to a
uniform steady-state flow from left to right.

The initial distribution of the solute concentration is set to zero everywhere in the domain.
A fixed concentration of 1 is prescribed on the left boundary. The transport problem is solved
in transient state. Figure A.4(c) shows the map of the solute concentration for the realization
shown in Fig. A.4(a) after 13.3 days of simulations. On the right boundary, the solute fluxes
are integrated to compute the breakthrough curve fx(t) representing the mean concentration
at the outlet versus time (Fig. A.4(e)).

Table A.1: Parameter values for the solute transport model

Parameter Value

Porosity 0.35
Molecular diffusion 4.0× 10−9 m/s
Longitudinal dispersivity (along x axis) 0.1m
Transversely dispersivity (along z axis) 0.01m
Total simulation time 1.44 × 107 s
Time steps length 1.44 × 104 s

Despite the apparent limited variability in the geological structure discribed above, a
rather wide range of tracer breakthrough responses are obtained on the prior ensemble (Fig.
A.5(b)). This illustrates the importance of the internal heterogeneity of the high permeability
features within the main sedimentary layers.

A.5.3 Two different proxies

A good proxy is faster than the accurate numerical model and allows to distinguish parameter
fields that have similar or different responses in terms of tracer breakthrough. Such a proxy
is generally not expected to provide an accurate simulation of the breakthrough or of solute
concentration states. It should simply be a fast approximation allowing to discriminate
parameter fields.

For this case study, we consider two different proxies and check their performances and
reliability. The first one, p1x(t), is based on simplified physics. We use the same solver (Künze
and Lunati, 2011, 2012) and the same spatial and temporal resolution as for the accurate
model based on the full physics, but we disregard diffusion and dispersion effects. The nu-
merical simulation thereby only accounts for advection and numerical dispersion phenomena.
The second proxy, p2x(t), is based on simply coarsening the time discretization of the accurate
model. The number of time steps is reduced; their duration is increased to 2.88× 105 s (i.e.
a division by 20 of the number of time steps).

The breakthrough curves computed with the two proxies are displayed in Figs. A.5(c)
and A.5(d). The first proxy gives breakthrough curves whose general shape resemble more
the accurate model than the second proxy: some of the curves display a sigmoidal shape
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Figure A.5: (a) 9 realizations of the lithofacies. Because all the simulations are constrained
by the large scale structure data, only the internal architecture within the main layers is
displaying some variability between the simulations. (b) Ensemble of the breakthrough
curves obtained with the accurate numerical model and the two proxies (c and d) for the
1000 parameter fields. To make the Fig. more readable, some breakthrough curves are
represented in light gray color.
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like the fine scale solution. The second proxy results in breakthrough curves that are more
regular. For this proxy, the first arrivals of the tracer are almost identical for all geological
models because of the coarse temporal resolution. The responses for p2x(t) present some
variability, but less than fx(t) and the first proxy. For both proxies, the computational time
is reduced by a factor of about 20. The accurate numerical solution takes about 7.5 minutes
on a PC, while the two proxies run in about 20 seconds each.

A.5.4 Results

Let us now apply our kriging model to the problem of predicting the transformed misfit
between the breakthrough curves of a given reference and the responses associated with the
1000 candidate geological media (i.e. parameter fields). The proxy used here is p1x(t), the
one with simplified physics. For now we arbitrarily choose one of the actual response curves
(the realization with index 800) as a reference for illustration purposes. Note that more
general results will be presented in section A.6, where statistics will be derived based on 100
randomly chosen reference curves.
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Figure A.6: Every point in the MDS space represents a parameter field. The triangles
indicate the models that were selected by the K-means algorithm for the initial design of
experiments, and the radius of the circles are proportional to the EIα criterion.

Among the 1000 considered inputs, 50 are chosen based on a clustering technique using
proxy-induced distance (Fig. A.6), in the flavor of Scheidt and Caers (2009)’s approach. The
actual response curves are calculated by using the accurate numerical model with the latter
inputs, and the 50 corresponding values of misfit to the reference curve are calculated and
stored in a vector, denoted by g◦(X50) or g

◦, as in section A.3.

As shown on Fig. A.7, a transformation is used to make the data misfits closer to
Gaussian. For simplicity, we restrict the transformation to be a power transform, g = (g◦)γ .
The ad hoc approach proposed here to determine the coefficient of this transform is to set
the skewness of the transformed sample equal to zero. As will be presented in more detail in
section A.6 (performance assessment), such transform significantly improves the predictivity
of the kriging model, as well as the performances of the inversion algorithm proposed in the
next section.



124 Distance-based kriging relying on proxy simulations for inverse conditioning

(a) Histogram of untransformed fits

go(X50)

D
e

n
s
it
y

0.0 0.1 0.2 0.3 0.4

0
2

4
6

8

Chi−Square density

g(X50)

D
e

n
s
it
y

0.2 0.4 0.6 0.8

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0 Gaussian denstiy

(b) Histogram of transformed fits

Figure A.7: Samples of untransformed (left) and transformed (right) misfit values obtained
at a 50-point initial design of experiments in the case of a proxy with simplified physics. The
histogram of the untransformed sample is closer to a chi-square distribution, whereas the
one obtained by a power transformation, although remaining positive, is much more similar
to the one of a Gaussian sample. The exponent used in the power transformation (γ ≈ 0.24
here) is obtained by setting the skewness of the transformed sample to 0.
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The large curvature at the minimum indicates a well-identified parameter value. The arrows
stand for the gradients of the log-likelihood function, which have been calculated analytically,
and are used within the optimization procedure.
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In a second step, we estimate the kernel parameters by maximum likelihood (MLE) based
on the transformed sample of fits. We can see in Fig. A.8 that the optimal value of θ is very
clearly defined since the log-likelihood curve has a large curvature at its minimum value.
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Figure A.9: (a) Cross validation and (b) External validation

The quality of the resulting kriging predictions is then evaluated: we first use a standard
cross validation technique on the 50 samples used to build the kriging model (Fig. A.9(a))
and then extend the comparison to an external validation on the complete ensemble of 1000
values (Fig. A.9(b)). In both cases, the predicted values obtained by kriging are in good
agreement with the true values; the regression line of predicted versus actual values has in
intercept B0 close to zero and a slope B1 close to 1 (Fig. A.9), indicating that the kriging
predictions are not highly biased. Furthermore, one can see that the leave-on-out errors of
(a) give a reasonable estimate of the prediction errors observed a posteriori on the exhaustive
validation set.

The 50 iterative selections operated by the ProKSI algorithm provide candidate param-
eter fields that are assessed through the accurate numerical flow simulator. The misfit with
the reference is plotted on Fig. A.10.

A.6 Performance assessment

The good results obtained in the leading example (See Figures A.9 and A.10) are of course
conditioned by the chosen reference breakthrough curve fref (arbitrarily chosen as the one
with index 800) and do not constitute a sufficient basis to appraise the ProKSI algorithm.
Furthermore, the method is proxy-dependent, and it would make sense to test the sensitivity
of the performances to both an improvement or a degradation in the proxy. In this section,
we propose a more systematic benchmarking of the algorithm’s performance by analysing
the results obtained with 100 different response curves, and for three different proxies, with
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Figure A.10: Monitoring of the misfit values obtained for the parameter fields sequentially
chosen by the ProKSI algorithm.

a comparison to Monte Carlo random search in the case of the worse proxy. In that last
situation, we will use a completely inadequate proxy model to test the robustness of the
method. Furthermore, the effect of the power transform applied to the misfit function, as
well as the effect of the replacement of the minimum by a quantile in the EI criterion are
investigated. Before giving more details about the benchmark and the obtained results, let
us first present the main performance evaluation metrics.

A.6.1 Performance evaluation metrics

EM1: current best model’s rank. One of the most natural way of evaluating an opti-
mization method consists in monitoring the evolution of the misfit as a function of the
number of iterations (Fig. A.10). One can also plot the smallest misfit value achieved
so far as function of the number of iterations. However, the curve obtained for such
a metric would have a scale (on the y-axis) depending on the considered fref , which
would prevent us from making comparisons between different tests. As a consequence,
we choose to focus on the evolution of the rank of the current best model among the
1000 candidates. This rank would normally be unknown but here we can compute it
because we evaluate the true misfit for all the candidate models (even those which are
not selected by the ProKSI algorithm) in order to be able to test the efficiency of the
method. Repeating the numerical experiment with multiple references, we can then
plot some statistics of the rank as a function of the number of iterations (Fig. A.11(a)).

EM2: number of evaluated models from the top 30. The first metric (EM1) focuses
on the capacity of the method to find at least one parameter field with a low misfit
value, but not on its ability to explore the set of parameter fields with low misfit
values. EM2 is meant to be a complement to EM1, by measuring the number of
models of the top 30 (i.e. the 3% best models in terms of misfit value) evaluated
along the algorithm. Though this proportion might seem rather arbitrary, EM2 gives a
good picture of the algorithm’s tendency to explore the possible multiple peaks of the
posterior distribution of models. Again, the statistics of EM2 are plotted as a function
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of the number of iterations (Fig. A.11(b)). Note that in the best configuration tested
here (proxy 2 with α = 0.6), 26 parameter fields among the top 30 were found in
median after 75 iterations, so exploring all fields of top 30 out of 75 iterations appears
as a kind of reachable best case (contrarily to exploring 75 among 75).

EM3: probability that random search outperforms the proposed algorithm. It is
expected that an elaborated algorithm like ProKSI (relying on a metamodel) performs
better than random search, and at least not much worse in cases where the proxy is
misspecified. The metric EM2 is well-adapted to base a comparison of ProKSI to a
naive Monte Carlo (MC) algorithm, since the probability distribution of the number of
points visited in the top 30 can be analytically derived for the case of a random search
(this number then follows a hyper-geometric distribution). EM3 gives at each iteration
of ProKSI the probability that MC sampling finds more points in the top 30.

A.6.2 Benchmark: design and implementation

Design of the benchmark

The aim of the benchmark was to assess the global performances of the ProKSI algorithm
on the considered case study with the following specific questions in mind. How sensitive
are the performances to: (Q1) the chosen proxy, (Q2) the value of the quantile
α, and (Q3) the normalizing transform of the misfit values?

Consequently, we ran replications of the algorithm (by varying the reference curve) with
different proxies, with or without power transform of the misfit function, and with different
values of α. In order to obtain results based on solid statistical analysis, rather than on
an arbitrary set of examples with a potentially low generalizability, we ran the ProKSI
algorithm 100 times for each configuration (i.e. for each considered (proxy, transform, α)
combination). For each considered proxy (p1, p2, and a third mismatched one described
below), 50 parameter fields were chosen by Scheidt and Caers clustering technique, and
100 fref were randomly chosen among the 950 remaining candidates. Then, for any given
configuration (in terms of transform and/or α value), 75 iterations of the ProKSI algorithm
were run for the 100 chosen fref . The results are visualized in terms of box-plot sequences
representing the statistical distributions of 100 values for the considered evaluation metric,
evolving over the 75 iterations. Finally, for EM3, one sequence of 75 probabilities that a
Monte Carlo algorithm would lead to more points in the top 30 than the proposed approach
(one probability per iteration) can be produced for each replicate. We chose to summarize
these results by representing sequences of box-plots for the selected configurations.

Implementation of the benchmark

All the benchmark algorithm runs and the performance evaluation calculations were done
using the open source statistical software R, based on the numerical simulation results ob-
tained for the 1000 multiple-statistics simulations (see implementation details in section A.5).
The R code, gathered in form of a package (ProKSI, forthcoming on the Comprehensive R
Archive Network), was called for each task of the following loop, forming the basic brick of
the benchmark for any fixed configuration:

A.6.3 Results

The first benchmark results, displayed on Fig. A.11, deal with the performances on the
ProKSI algorithm when applied to our test-case with proxy 1, and default settings con-
cerning the normalizing transform and the EI variant (power transformation done, and
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Algorithm 2 Testing procedure for a proxy with a given algorithm configuration

1: Choose the initial design of experiment (50 points using Scheidt et Caers approach).
2: Choose 100 different simulations among the 950 remaining points.
3: for i = 1 to i = 100 do

4: Run 75 iterations of the algorithm on the ith reference.
5: Evaluate the 3 EM’s for each iteration of the ith run.
6: end for

α = 0.15). Fig. A.11(a) represents the evolution of the statistics (box-plot) of EM1 over
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Figure A.11: Performances of the ProKSI algorithm (based on proxy 1) with a transformed
misfit. (a) box-plot of the EM1 criterion over the 100 numerical experiment replicates. (b)
box-plot of the EM2 criterion.

the 100 replicates, along the 75 iterations of the algorithm. We can see here that in 42
iterations, the actual best parameter field (out of 1000) has been found for more than 50% of
the replications. In Fig. A.11(b), the exploration performances are investigated in terms of
EM2; it is found here that 15 parameter fields among the 30 best ones have been evaluated
in median after 75 iterations of ProKSI. In total, these results show both how the proposed
kriging metamodel helps reaching a fast convergence, and that ProKSI achieves a rather
satisfying exploration of the set of best parameter fields in a limited number of iterations.

Effect of the misfit transformation on the algorithm performances

Fig. A.12 represents the performances (in terms of EM1 and EM2) obtained by applying
the ProKSI algorithm to our case study with default settings concerning the EI criterion
(α = 0.15) but without normalizing power transform for the misfit function.

The results appear to be clearly inferior to the ones obtained with the transformation: even
after the 75 iterations, the median rank of the best evaluated parameter field is strictly above
1, which expresses a significantly slower convergence of ProKSI as with the transformed
misfits. Similarly, the number of models forming the top 30 evaluated along the algorithm
stagnates around 8 in median after the 75 iterations. The normalizing transform has thus
clearly a positive effect on the efficiency of the algorithm, both in terms of fast convergence,
and in terms of global exploration of the nearly optimal parameter fields.

However, as illustrated on Fig. A.13, the results in terms of EM2 are good enough to
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(b) Exploration performances
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Figure A.12: Performances of the ProKSI algorithm (based on proxy 1) without power
transform of the misfit. (a) box-plot of EM1 over the 100 replicates of the numerical exper-
iment. (b) box-plot of EM2.
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Figure A.13: Effect of the misfit transformation on the performances of the ProKSI algo-
rithm in terms of its superiority with respect to a Monte-Carlo search and median rank of
the evaluated models.
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outperform a pure random search (upper right graphic). On the lower graphic, the evolution
of the median rank for the parameter fields evaluated by ProKSI with or without transform
illustrate that the algorithm with transform spends more time in low misfit regions.

Effect of an improved proxy on the algorithm performances

Let us now present the results obtained when using the second proxy with default settings.
The most striking result when looking at Fig. A.14 is the impressively fast convergence of the
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(b) Exploration performances
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Figure A.14: Performances of the ProKSI algorithm (based on proxy 2) with default
settings.

algorithm in terms of EM1 criterion. Indeed, in 7 iterations, the minimizer has been found
in all considered cases (100 replicates). ProKSI successfully relies here on the information
given by proxy 2 for uncovering the best point, only based on slightly more than the misfit
values for the set of 50 initial models. What seems really outstanding in that case is that
such a result is uniformly obtained for the 100 reference curves. To milden this success a
bit, let us remark that the performances in terms of exploration are comparable to the first
proxy, that is one half of the top 30 models were evaluated in median after termination.

Effect of the α parameter (from EIα) on the algorithm performances

We investigate here the effect of the parameter α, tuning the quantile level in the proposed
generalization of EI, on the performances of the algorithm. We obtained very different
results for the two proxys. Indeed, the performances of ProKSI were not very sensitive to α
when using the first proxy, so that we do not discuss this case here, and refer the interested
reader to the appendix for more detail. However, α was found to be strongly influencing the
algorithm’s performances when using the second proxy, as illustrated on Fig. A.15.

It is indeed observed on Fig. A.15 (a and b) that using ProKSI with the standard EI
criterion (α = 0) is less efficient compared to the considered default value α = 0.15 (See
Fig. A.14): even though the algorithm convergence to the minimum is always comparably
fast, the exploration performances are strongly affected by this change of criterion (median
number of points in the top 30 after termination decreased from 15 to 10). On the other
hand, increasing alpha to 0.6 was found to greatly improve the results in terms of exploration
(again, without affecting the minimization performances, see Fig. A.15 (c)) since the median
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(a) Minimization performances, α = 0
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(b) Exploration performances, α = 0
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(c) Minimization performances, α = 0.6
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(d) Exploration performances, α = 0.6
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Figure A.15: Effect of the α parameter on the performances when using the second proxy

number of points in the top 30 jumped to 25, as can be seen on Fig. A.15 (d). In summary,
introducing this parameter α was found beneficial for forcing the algorithm to spend more
iterations (out of the 75 allocated ones) exploring the top candidates. Its optimal tuning is
of course problem-dependent. The rather arbitrary default value α = 0.15 chosen here gave
improved results in both considered cases, even though better performances were reached by
using a larger α value in the case of the second proxy.

Effect of a non-informative proxy on the algorithm performances

Finally, we propose to test the performances of ProKSI when using a completely inadequate
proxy model. The idea is to see if the algorithm remains consistently applicable when the
simplified model is poorly (or not at all) informative, and how using ProKSI in such degraded
conditions would perform compared to a naive Monte Carlo search.

In order to emulate a non-informative proxy, we started from proxy 1, and randomly per-
muted the 1000 indices. We then ran the ProKSI algorithm with this ”mismatched” proxy,
and compared them to trajectories obtained by Monte Carlo (the whole replicated for the
100 reference curves).

As illustrated on Fig. A.16, the performances of ProKSI with ”mismatched” proxy are
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(c) Minimization performances, Monte Carlo
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Figure A.16: Effect of a non-informative proxy on the performances.

comparable to those of Monte Carlo. The algorithm hence appears reasonably robust to a
proxy misspecification, while being potentially very efficient for well-chosen proxies.

A.7 Conclusion

Handling high resolution geological models in combination with complex physics solvers
requiring heavy computational load to provide an accurate representation of a system while
representing uncertainty is often mutually exclusive. Accurate complex models are often
too computationally demanding to be used in the general framework of a Monte Carlo
approach and analytical propagation of uncertainty is intractable. Resolving this issue is
an important research topic both from a theoretical perspective and for a wide range of
applications (Christie et al., 2011), including hydrogeology.

In this paper, we propose a contribution which consists in coupling an accurate model,
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a simple model (the proxy), and a statistical metamodel. The statistical metamodel is used
to link the results of the proxy with those of the accurate model. More precisely, this is
achieved by developing a specific covariance kernel accounting for the difference in responses
from the proxy models and allowing to predict by kriging the misfit between a given reference
curve and the response of accurate model. One of the strengths of this idea is that the use
of the distance between proxy responses permits to drastically reduce the dimension of the
kriging problem and allows an efficient inference of the covariance parameters. The quality
of the relation between the accurate and the proxy models is also directly taken into account
via the covariance kernel. In addition, the chosen covariance kernel can be tailored to the
practical problem that has to be solved (through the proxy, the kernel kF , and more), which
makes the approach quite flexible.

In the case study, we showed how such an approach can help in the case of an inverse
conditioning problem where the prediction refers to the misfit between observations and the
accurate model responses. As a first step, we propose here an iterative search algorithm. This
example extends previous work done by Caers and colleagues (Suzuki et al., 2008; Scheidt
and Caers, 2009; Caers, 2011) in which we add a step based on the kriging model described
above to orient the search. We propose to guide the selection of a model during the search
by defining a modified Expected Improvement criterion EIα such that the algorithm will
potentially explore multiple basins of minimum, if they exist.

The systematic analysis of the case study showed the following results.

• When the proxy is informative, the method is extremely efficient in finding the param-
eter fields that minimize the misfit.

• When the proxy is less informative, the method efficiency decreases remains competitive
with respect to a random search.

• The proposed modified expected improvement criteria allows both identifying the
global minimizer and exploring the existing basins of minimum.

• The method is more efficient if the misfit is properly transformed so as to get a close-
to-Gaussian sample.

• The parameter α –defining the quantile of the misfit distribution below which a pa-
rameter field is considered as an interesting candidate– allows to control the degree of
exploration of the method. For low values of α, the algorithm tends to rapidly leave
regions of parameter fields with proxy responses similar to those of already evaluated
fields. For higher values of α, the algorithm spends more iterations in regions of fields
with proxy responses close to the ones of evaluated fields with the lowest misfit values,
hence performing a more extensive exploration of top candidates.

The results obtained so far are very encouraging and show that the use of a kriging tech-
nique to couple a complex and a simple model will open a broad range of new perspectives.
Note that in the presented example, selecting the misfit minimizer among parameter fields
generated by multiple-points simulation provides a useful parameter reconstruction without
any regularization. If one wants to obtain not only the best solution but an ensemble of
models, then the selection criterion and the iterative search procedure will have to be modi-
fied in order to ensure that the final ensemble will be a representative sample of the posterior
distribution. The method can also be extended in a relatively straightforward manner to
allow generating new candidate models by coupling it, for example, with the Iterative Spatial
Resampling method (Mariethoz, 2010). It is also very clear that this type of approach can
be parallelized to improve the numerical performances (Ginsbourger et al., 2010).
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As a final note, the model selection approach illustrated in the case study is applicable
when detailed geological knowledge is available (type of geological environment, sufficient
data to build a good geological model, and known properties for the various facies) and
when this information can be used to generate a prior ensemble of geological models. An
obvious limitation of that approach is that the algorithm is only searching within a predefined
ensemble of parameter fields. If all the proposed candidates are very unrealistic, it may
happen that none of the candidates will lead to a reasonable fit to the observations. However,
the approach is very flexible: users can apply it with many different geological priors, and
explore their relevance in an efficient manner with the proposed method. There is no limit
in the type of prior on the parameter field used to generate the initial ensemble (e.g. boolean
model, truncated plurigaussian, pseudo-genetic model, etc.). Coping with such a variety of
priors is usually not possible with more traditional inversion methods.
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Proof that a p.d. kernel chained with a proxy is p.d.

Property Let E and F be two arbitrary spaces. Given a positive-definite kernel kF over
F × F , the kernel kE defined by

kE(x,y) := kF (p(x), p(y)) (A.13)

is positive-definite over E × E for any function p : E −→ F .

Proof. Let n ∈ N, x1, . . . ,xn ∈ E, and α1, . . . , αn ∈ R. Then

n∑

i=1

n∑

j=1

αiαjkE(xi,xj) =

n∑

i=1

n∑

j=1

αiαjkF (p(xi), p(xj))

=

n∑

i=1

n∑

j=1

αiαjkF (yi,yj) ≥ 0

by using the definition of positive-definiteness applied to kF with the points yi := p(xi) ∈ F
(1 ≤ i ≤ n) and the coefficients α1, . . . , αn as above.

On the approximate MLE used here for the covariance param-
eters

When τ2 = 0, it is known (Santner et al., 2003) that µ̂ = 1TR(θ)−1g

1TR(θ)−11
, and the optimal value

of σ2 can be expressed as a function of θ only:

σ2∗(θ) :=
1

N
(g − µ̂1)TR(θ)−1(g − µ̂1), (A.14)
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where R(θ) is the correlation matrix of GXn . Minimizing l is then equivalent to the one-
dimensional minimization over θ of the so-called concentrated(or profile) log-likelihood:

lc(θ;g) := l(σ2∗(θ), θ, 0;g). (A.15)

When τ2 > 0, it is not possible to concentrate on σ2 as in Eq. (A.14) because the correlation
matrix itself then depends on σ2 too.

Here we approach the problem sequentially, and preserve the concentration step at the
price of a minor approximation. First, an estimate of τ2 is derived based on variographic
considerations (variance of differences corresponding to increments with smaller norm val-
ues). Then, a first guess of σ2, say σ2

0 , is made using a similar approach. This guess may
also stem from a previous iteration in the case of a sequential design of experiments. Based
on τ2 and σ2

0 , an approximate formula –analogue to Eq. (A.14)– is then proposed for the
optimal variance as a function of the range:

σ̃2∗(θ) :=
1

N
(g − µ̂(θ)1)T

(
R(θ) +

τ2

σ2
0

I

)−1

(g − µ̂(θ)1), (A.16)

θ is then tuned by optimizing the following approximate concentrated likelihood:

l̃c(θ;g) := l(σ̃2∗(θ), θ, τ2;g) (A.17)
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Abstract

Geophysical tomography captures the spatial distribution of the underlying geophysical prop-
erty at a relatively high resolution, but the tomographic images tend to be blurred repre-
sentations of reality and generally fail to reproduce sharp interfaces. Such models may
cause significant bias when taken as a basis for predictive flow and transport modeling and
are unsuitable for uncertainty assessment. We present a methodology in which tomograms
are used to condition multiple-point statistics (MPS) simulations. A large set of geologi-
cally reasonable facies realizations and their corresponding synthetically calculated crosshole
radar tomograms are used as a training image. The training image is scanned with a direct
sampling algorithm for patterns in the conditioning tomogram, while accounting for the spa-
tially varying resolution of the tomograms. In a post-processing step, only those conditional
simulations that predicted the radar traveltimes within the expected data error levels are
accepted. The methodology is demonstrated on a two-facies example featuring channels and
an aquifer analog of alluvial sedimentary structures with five facies. For both cases, MPS
simulations exhibit the sharp interfaces and the geological patterns found in the training im-
age. Compared to unconditioned MPS simulations, the uncertainty in transport predictions
is markedly decreased for simulations conditioned to tomograms. As an improvement to
other approaches relying on classical smoothness-constrained geophysical tomography, the
proposed method allows for: (1) reproduction of sharp interfaces, (2) incorporation of realis-
tic geological constraints and (3) generation of multiple realizations that enables uncertainty
assessment.

B.1 Introduction

Predictive modeling of subsurface flow and solute transport requires detailed models of the
spatial distribution of hydraulic properties. A lot of recent research has focused on finding
ways to use geophysical data for hydrological parameter estimation (e.g., Hubbard and
Rubin, 2000; Linde et al., 2006; Eppstein and Dougherty, 1998; Dafflon and Barrash, 2012).
The benefit of geophysical techniques is that a high number of sensors can be used at rather
low costs and with little invasive impact. Data sets of thousands of data points of high
spatial density are easily acquired and when these data are inverted, tomographic images
of high resolution can be obtained. Unfortunately, inference of the geophysical property
distribution from measured data, that is, the process of inversion or tomography, is generally
non-unique due to limited data coverage, noisy data and non-linear physics. To overcome this
non-uniqueness, the inverse problem is regularized where the most common approach is to
explicitly search least-structure models by applying a smoothness constraint. Smoothness-
constrained inversions are optimal in the sense of reducing regularization bias (Ory and
Pratt, 1995) and turned out to be a forceful tool to prevent inversion artifacts. Their main
disadvantage is that they produce tomograms that tend to image the subsurface property
distributions as blurred or patchy structures and usually fail to recover sharp interfaces or
small-scale structures. For accurate flow and transport modeling, we often need models that
capture such features since they may control the subsurface connectivity.

The classical geostatistical approach aims at defining a model such that the two-point
statistical relations observed in the field are matched (Kitanidis, 1997). These methods are
invariant towards connectivity patterns (e.g., Gómez-Hernández and Wen, 1998; Krishnan
and Journel, 2003), which means that parameter fields of very different connectivity charac-
teristics can be identical in terms of their probability density function (pdf) or variogram.
For example, Zinn and Harvey (2003) showed for parameter fields of near-identical lognormal
univariate conductivity distributions, how flow and transport behavior changed dramatically
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for different connectivity patterns. Various methods have been proposed to fully characterize
parameter fields by including the connectivity patterns. Journel and Posa (1990) proposed
to describe connectivity by indicator variograms that provide the probability that two dis-
tant points share the same indicator value. This approach has further been advanced by
modified connectivity functions that account for points within a certain value range that are
connected by an arbitrary continuous path (Western et al., 2001). A recent development are
multiple-point statistics (MPS) algorithms that simulate parameter fields by accounting for
the statistical relations between large sets of points, thereby allowing the reproduction of
complex geological structures and connectivity patterns. The algorithms take the statistics
from training images that feature the representative patterns that are subject to simulation.
MPS approaches make use of the fact that certain geological settings are often built up by
a limited number of repeating structural elements.

At the same time, the need to recover geological patterns and facies structures has been
recognized and caught up by the geophysics community. The application of pattern-based
approaches for the characterization of subsurface structures is a subject of intense research,
mainly led by the petroleum industry (e.g., Coléou et al., 2003; de Matos et al., 2006). Caers
and Ma (2002) extracted probabilistic facies distributions from seismic data using neural
networks on colocated windows of seismic information. Similarly, Moysey et al. (2003) trained
neural networks on geological analogs or well data to retrieve facies information from surface
ground-penetrating radar (GPR) images. Based on this, Moysey et al. (2006) compared
different transform techniques to translate the radargram into a facies classification. They
found that textual measures that preserve the spatial structure of the GPR image often
outperform measures based on univariate statistics (variance). A rather novel approach was
presented by Cardiff and Kitanidis (2009), who developed an inversion scheme in which
facies boundaries as well as parameter values within facies are updated by a Bayesian level
set methodology. An example of how a GPR cross-section is used to establish a facies
model, which in turn is used for flow and transport simulations is given in Rauber et al.
(1998). Dafflon and Barrash (2012) use radar tomograms together with neutron borehole
logs to condition stochastic simulations of the 3D porosity distribution in a well field. They
show that conditioning to tomograms improves both simulated-annealing-based and Bayesian
sequential simulation results.

In this study, we present a novel approach of combining geophysical models and concep-
tual geological knowledge to produce realistic high-definition subsurface facies models. A
categorical training image (TI) containing the geological facies information available about
the site of interest is converted into a tomogram by geophysical forward and inverse model-
ing. The tomogram can be seen as a filtered version of the facies TI that is dependent on the
spatial distribution of the underlying geophysical property. Information about resolution of
the tomographic setup, and about regularization and data error effects are included in the
tomogram since all these factors change the ‘tomographic filter’ and consequently influence
the tomography results. The discrete facies TI and its continuous tomogram are combined
to form a bivariate TI. A conditioning tomogram is obtained by applying the same tomog-
raphy procedure to geophysical data that are measured in the field. We then generate MPS
simulations by scanning the bivariate TI for patterns found in the conditioning tomogram,
in this case, we use tomograms from crosshole GPR experiments. Compared to conditioning
to individual data points placed somewhere in the model domain (e.g., Zhou et al., 2012),
we exploit the spatial information in the tomograms which is distributed over the entire
domain.

The proposed method circumvents a problem generally inherent in the interpretation of
geophysical models: Inferring the true geology from tomographic images requires correcting
the models for all inversion effects, that is, one needs to deconvolve the tomogram and the



Methodology 141

‘tomographic filter’ (Singha et al., 2007). Approaches to tackle this problem are linearized
resolution analysis (Menke, 1989; Day-Lewis et al., 2005) or the use of numerical analogs
to field studies (Moysey et al., 2005; Singha and Moysey, 2006). Since we are mimicking
the geophysical tomography applied to the measured data when creating the bivariate TI,
the ‘tomographic filter’ is implicitly taken into account. This and the fact that conceptual
geological information is incorporated at an early stage of the inverse modeling process
reduces the risk of misinterpretation due to limited knowledge about the ‘tomographic filter’
(e.g., Richardson et al., 1987; Rankey and Mitchell, 2003). Compared to classical inversion
studies, we do not leave the interpreter with a geophysical image on which to base a geological
interpretation, but we present a tool to condition a conceptual geological model to the
distribution of the inferred geophysical parameters.

B.2 Methodology

B.2.1 General workflow

We developed a procedure to condition multiple-point geostatistical simulations to tomo-
graphic images. The method builds on the work of Mariethoz et al. (2010), who present a
direct sampling algorithm for multiple-point geostatistical simulations. This multiple-point
direct sampling (MPDS) algorithm allows to co-sample from a TI that contains both a dis-
tribution of a categorical and a continuous variable. Here, we use a categorical TI featuring
characteristic geological structures and its corresponding geophysical tomogram. We then
use a tomogram obtained at the field site of interest as a known continuous image to con-
dition the simulation. In this way, we produce a categorical simulation, that contains the
structures from the categorical training image and whose tomographic image is in agreement
with the geophysical tomogram given as input variable. The general workflow is (see also
Fig. B.1):

1. Invert the available geophysical field data by smoothness-constrained deterministic
least-squares inversion. The resulting image is referred to as ‘original tomogram’ in
the following.

2. Choose or create a training image that represents conceptually the expected geological
structures/patterns. This is referred to as ‘original TI’. This is a crucial step, a poorly
chosen training image will severely bias the modeling outcome.

3. Create an ensemble of realizations of the chosen original TI. Here, this is done using
MPDS.

4. For each realization of the original TI, generate a synthetic tomogram:

(a) Assign realistic values of the underlying geophysical parameters (e.g., seismic or
radar slowness, electrical resistivity) to the different facies in the realizations. This
step can be based on established petrophysical models, for example the CRIM
model (complex resistive index method, Tinga et al. (1973); Alharthi and Lange
(1987); Roth et al. (1990)) or petrophysical relationships inferred from previous
investigations (e.g., Hubbard et al., 2001).

(b) Calculate synthetic geophysical data by simulating field experiments. Model the
experiments using a setup similar to that used to acquire the actual data (Moysey
et al., 2005). Contaminate the synthetic data with an expected amount of noise.
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(c) Invert the synthetic data. Apply the same modeling parameters (grid discretiza-
tion, initial model, regularization type and weights) as used to produce the original
tomogram (Moysey et al., 2005).

5. Combine the realizations of the categorical original TI and their continuous tomograms
to one bivariate ‘working TI’ that contains the facies and the geophysical parameters
as two separate variables.

6. Simulate facies models based on direct sampling:

(a) Pick a location in the simulation grid whose facies is not yet defined. Retrieve the
data events (i.e., certain patterns formed by a pre-defined number of grid cells)
centered at this location in the original tomogram and for the facies variable.
Then, scan through the ensemble of synthetic tomograms and their corresponding
facies models until similar data events are found. ‘Similar’ here means that the
distances between the actual events and the found ones are below some predefined
threshold. Building the working TI as stacks of two-dimensional models (as will
be described in detail later) allows for choosing a scanning procedure so that the
spatially varying resolution within a tomogram is accounted for.

(b) Paste the facies value (at the central node of the data event) found in the TI to
the selected location in the simulation grid.

(c) Randomly pick a new location in the simulation grid and repeat until it is entirely
filled.

7. For each simulated facies model, calculate geophysical forward data and compare to
the true data. Accept the simulation as a possible model, if the weighted root-mean
square error (WRMSE) of the predicted data is below a threshold WRMSEtarget.

The resulting ensemble of accepted models forms a possible basis for geological interpre-
tation, flow and transport modeling or uncertainty assessment.

B.2.2 Deterministic inversion

Both the original data (i.e., the ‘true data’ measured in the field) and the predicted data for
all facies realizations undergo smoothness-constrained deterministic inversion (steps 1 and
4c in previous section). This inversion type is commonly referred to as Occam’s inversion
(Constable et al., 1987). In the smoothness-constrained inversion scheme, a model m is
sought that features the least structure possible and still predicts the data within the assumed
data error levels. In a general sense, we seek to minimize an objective function φ that contains
both a measure of the data misfit and the model roughness (e.g., Menke, 1989):

φ =
∣∣∣∣C−0.5

d (d−F(m))
∣∣∣∣2
2
+ α

∣∣∣∣C−0.5
m (m−mref )

∣∣∣∣2
2
, (B.1)

where the first term is the error-weighted misfit between original data (d) and data predicted
by the forward model (F(m)) in a least-squares sense. The second term is the model misfit
or regularization. In Eq. B.1,
Cd is the data error covariance matrix;
Cm is the model covariance matrix;
α is a trade-off parameter that weights the model regularization with respect to the data
misfit term;
mref is a (uniform) reference model.
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Figure B.1: Schematic workflow of the proposed conditioning method.

In our smoothness-constrained inversion, Cm is an anisotropic first-order differences oper-
ator, used to penalize abrupt changes between adjacent model parameters. In this study,
horizontal-to-vertical anisotropy ratios of 3:1 and 10:1 were used for the first and the second
application. Since the forward problem is non-linear, it is linearized about a reference model
(for the first iteration) or the model of the previous iteration (for subsequent iterations),
resulting in the following system of equations, that is solved with a conjugate gradient solver
(Paige and Saunders, 1982)

(
C−0.5

d Jk

αC−0.5
m

)(
∆mk+1

)
=

(
C−0.5

d [d− F(mk) + Jk∆mk]
0

)
, (B.2)

where k indicates the iteration index and J is the Jacobian matrix containing the elements
Jij = ∂di/∂mj . The model update we solve for, ∆mk+1, is then used to construct a new
model mk+1 = mref +∆mk+1. During the inversion, we decrease α consecutively from one
iteration to the other in order to start with a smooth model where structure is gradually
added to decrease the data misfit. The inversion is stopped when the weighted root-mean
squared error WRMSEtarget is reached. The weighting by the data errors implies that for
WRMSE = 1, on average all data are fit to their error levels. For a more rigorous description
of the inversion scheme, we refer to Linde et al. (2006).

B.2.3 Multiple-point statistics simulation

Multiple-point statistical simulations describe the procedure to draw fields of facies or geolog-
ical properties based on the spatial dependencies between a set of points larger than 2. Unlike
simulations based on two-point statistics, such as Gaussian sequential simulation, it is insuf-
ficient to know only the pdf. Rather, patterns (so-called data events) of a certain predefined
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size and density are extracted from a training image and the pixel of interest is simulated
according to its statistics with respect to previously assigned pixels in the surrounding. The
main advantage of MPS over two-point statistics is the ability to deal with non-stationarity
and sharp interfaces and consequently allowing simulation of categorical facies models with
curvilinear features, which can be crucial to adequately represent connectivity (e.g., Hu and
Chugunova, 2008).

Classical MPS simulation codes (e.g., Strebelle, 2002) scan the training image for pat-
terns and store the multi-point statistics of these in a structured tree. To overcome the
limitations due to the large storage demand required by the trees, a list approach was de-
veloped by Straubhaar et al. (2011, 2013). In these classical implementations of MPS, the
multiple grid approach is used to capture patterns of different scales within the TI (Tran,
1994). In this work, we use the MPDS algorithm DeeSse, which is an enhanced and com-
mercialized version of the algorithm described by Mariethoz et al. (2010). Note that in
the following, we use ‘MPDS’ to describe the general direct sampling procedure developed
by Mariethoz et al. (2010), and ‘DeeSse’ when we talk about the particular algorithm we
used. In DeeSse (as in all direct sampling algorithms), the training image is scanned for
data events in the simulation grid and directly simulates the pixel of interest, thus avoid-
ing storage limitations, computation of pdf and the use of multiple grids. We give a brief
summary of this sampling procedure here; for a complete description we refer to Mariethoz
et al. (2010). If a simulation grid with nodes x is to be filled using the training image with
nodes denoted y, all locations x are visited successively. At each location x, the n closest
neighboring nodes that already have been assigned a value are found and the pattern of
their locations and values defines one data event. Starting from a random location in the
training image, the training image is systematically scanned for the particular data event.
At every location y, the distance between the data event and the event found in the TI is
calculated. The data event found in the TI is kept and the node x of interest is simulated
by copying the value from y, if the calculated distance is below a threshold t. If a certain
fraction f of the TI has been scanned without success, the event with the smallest distance
is accepted and used for simulation. Choosing an appropriate distance measure is crucial
for the simulation (e.g., Zhou et al., 2012). We applied an ℓ1-norm for continuous variables
and the sum of non-matching nodes for categorical variables. In addition, DeeSse allows to
decrease the node density in the group of neighboring nodes to also consider nodes in the
pattern recognition that are not directly clustered around the node of interest.

The resolution of a geophysical tomogram is not evenly distributed, but often varies
markedly in space. This is due to (1) limitations in signal coverage, and (2) the fact that in
non-linear problems, the resolution depends on the property distribution (e.g., Day-Lewis
et al., 2005; Singha and Moysey, 2006; Singha et al., 2007). Therefore, scanning a training
image horizontally, that is moving through a single 2-D image until a certain data event is
scanned, can produce large bias since it treats the tomograms as if resolution is constant in
space. To overcome this, we stacked a large number of realizations of a training image and
the corresponding tomograms, similar to Zhou et al. (2012).
Technically speaking, a 3-D training image with four variables is set up. In our case, this
constitutes two stacks of the catalogue of the categorical training images and the correspond-
ing tomograms. The other two variables are the x- and y-coordinates of all nodes. By doing
so, we treat the individual layers of the stacks as projections of a single plane and sample for
2-D patterns within these bodies. The x- and y-coordinates are dummy variables needed to
keep the MPDS algorithm from seeking data events in 3-D. The ‘working TI’ is thus scanned
until a data event is found for which

• the distance between the pattern in the facies variable and the pattern formed by the
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already simulated pixels in the simulations grid is below the threshold tfacies,

• the distance between the pattern in the tomogram variable and the pattern in the
conditioning tomogram is below the threshold ttomogram and

• the distances between the x- and y-coordinates of the pixel of interest and the undefined
pixel in the data event are below thresholds tx and ty.

Once this data event is found in the tomogram variable of the ‘working TI’, the value for
the pixel of interest is pasted from the facies variable in the ‘working TI’ and copied to the
simulation grid. Fig. B.2 depicts the general scanning procedure. The possibility to deal
with multiple variables, whether categorical or continuous, is an advantage of MPDS over
conventional MPS algorithms.
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Figure B.2: The sampling principle used to account for the spatially variable resolution
of geophysical tomograms.

B.2.4 Forward modeling

Though the framework of our approach is general in terms of the type of tomograms used,
we will now focus on applications to crosshole GPR tomograms. In crosshole GPR experi-
ments, transmitter and receiver antennas are placed in adjacent boreholes and the subsur-
face electromagnetic properties are sensed by measuring the transmitted signal for different
transmitter-receiver configurations. Here, we focus on the first arrivals of the radar wave,
which bear information about the radar wavespeed in the interwell region. In our first ap-
plication, we assume that the relation between the facies type and the radar wavespeed is
known (in practice, this could be known from laboratory experiments). In our second appli-
cation, detailed information about the porosity and the hydraulic conductivity of each facies



146 Conditioning of Multiple-Point Statistics Facies Simulations to Tomographic Images

type are available. The porosity information for the individual facies was translated into
values of radar wavespeed v using (Sen et al., 1981)

ǫ = ǫwφ
m

(
1− ǫm

ǫw

1− ǫm
ǫ

)m

(B.3)

and (e.g., Davis and Annan, 1989)

v =
c√
ǫ
, (B.4)

where ǫw, ǫm and ǫ [-] are the relative electrical permittivity of water, of the grains and of
the bulk material, respectively. We here used ǫw = 81 and ǫm = 3. The porosity of each
facies is φ, the so-called cementation factor m is typically taken to be 1.5 in unconsolidated
media and the speed of light c = 3× 108 m/s.
Based on the velocity model, we determined radar traveltimes for a crosshole GPR experi-
ment using

tGPR =

∫ x2

x1

u(s)ds, (B.5)

where u(s) [s/m] is the radar slowness (i.e., the reciprocal of the radar wavespeed) along the
trajectory s, starting at point x1 and ending at x2. The trajectories of the radar signals are
dependent on the spatial distribution of the radar wavespeed. We solve the eikonal equation
to get the spatial distribution of first-arrival traveltimes for each source location using the
finite-difference algorithm of Podvin and Lecomte (1991) and perform ray-tracing by back-
propagation for each receiver location (Vidale, 1988).
In the two applications considered below, transmitters and receivers were placed at the left
and right boundary of the model domain at a spacing of 0.25m and experiments were re-
peated for reciprocal transmitter and receiver boreholes so that transmitter positions become
receiver positions and vice versa. As is common practice, only rays for which the transmitter-
receiver path is inclined less than 50 to the horizon are taken into account (e.g., Peterson,
2001). This resulted in data sets of 2430 and 1388 traveltimes for the first and second appli-
cation. All synthetic radar data were contaminated with Gaussian noise corresponding to a
relative error of 1% of the measurement value.

B.3 Application to a channel scenario

We first applied the method to a two-facies case featuring channel-like structures (Strebelle,
2002). Radar wavespeeds of 70 and 80m/µs were assigned to facies 0 and 1, respectively.
A total of 1000 realizations of the original TI (generated with DeeSse, with a resolution
of 0.1×0.1m) and the corresponding tomograms build the bivariate working TI from which
we sample. The number of neighboring nodes n in the simulation defines the order of the
statistics that are honored during the simulation. For the facies variable, the number of
neighboring nodes is set to n = 25 and the distance threshold to tfacies = 0.04. This
means that if no more than one of the 25 nearest cells (25 × 0.04 = 1) around the cell
to be simulated differs from the cell values in the data event, the pattern for this variable
is considered acceptable (Mariethoz et al., 2010). For the tomogram variable, the same
parameters are used (n = 25 and ttomogram = 0.04), whereas for the dummy-variables (i.e.,
the x- and y-coordinates), we chose n = 1 and the distance thresholds tx and ty so that the
data events used for simulation are in an area that differs maximally three grid cells in x-
and y-direction from the simulation cell (Tab. B.1).

Results are shown in Fig. B.3. The tomograms clearly highlight the smearing effect
inherent in smoothness-constrained tomography: Even if the true image is built up only
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Table B.1: Overview of MPDS parameters. The summation signs denote that the simple
sum of non-matching nodes is taken as a distance measure. The scan fraction f is a parameter
for the multivariate TI and is not chosen for each individual variables.

Variable n t f n-density distance type

Case 1: Channels
facies 25 0.04 0.1 1.0

∑

tomogram 25 0.04 0.1 1.0 ℓ1-norm
x-coordinate 1 0.06 0.1 1.0 ℓ1-norm
y-coordinate 1 0.03 0.1 1.0 ℓ1-norm

Case 2: Herten
facies 25 0.04 0.1 0.5

∑

tomogram 25 0.04 0.1 0.5 ℓ1-norm
x-coordinate 1 0.03 0.1 1.0 ℓ1-norm
y-coordinate 1 0.02 0.1 1.0 ℓ1-norm

by two facies (black and white), classical tomography always produces shades of grey. A
total of 100 MPDS simulations, conditioned to the original tomogram, were generated with
DeeSse. For each simulation, we calculated the radar traveltimes and compared them to
the true radar data. Keeping only simulations for which the WRMSE is below 1.0, left us
with 68 simulations (Fig. B.4a). For illustration of the MPDS simulations with different
conditioning (Fig. B.5), we adapted the so-called movie strategy for the visualization of
stochastic inversion results (Tarantola, 2005). As expected, the conditioning to a tomogram
brings the simulations closer to the true facies model. For simulated facies models that fail
to predict the true radar traveltimes, the main structures of the true model are reproduced,
but they often fail to represent the connectivity of the channels. The accepted facies models
are visually very similar to the true facies model and the connectivity of the channels is
recovered.

B.4 Application to a multi-facies aquifer analog

As a more realistic example, we applied our methodology to a facies model based on a
detailed gravel aquifer mapping study (Bayer et al., 2011). The underlying model includes
features that are typical for aquifers built up by alluvial gravel deposits. These types of
aquifer bodies are of high importance in many parts of the world due to their generally high
storage capacity, high permeability and accessibility.

B.4.1 The Herten aquifer analog

The Herten aquifer model is based on detailed mapping of sedimentary deposits in a gravel
pit in southwest Germany. Bayer et al. (2011) set up a geological map of the deposits to
establish a realistic aquifer analog. The analog is a 3-D representation of the gravel body,
which was made possible by mapping during ongoing excavation. The deposits are mainly
formed by unconsolidated fluvio-glacial and fluvial sediments in the Rhine basin (Bayer et al.,
2011). The dominant structural elements, that are, erosional surfaces, scours, gravel sheets,
are typical for sediments deposited in braided river environments. Ten different subunitary
lithofacies are defined to describe the gravel deposits. For every lithofacies, porosity and
hydraulic conductivity values and ranges are provided by experimental studies of Bayer
(2000), Heinz et al. (2003) and Kostic et al. (2005).

The detailed aquifer analog was digitized to use it as a base for geostatistical simulations
(Comunian et al., 2011). We used a 2-D slice of the Herten analog as a conceptual model,
that is, as an original training image. The dimensions of one slice of the analog are 7×16m.
We generated 1000 realizations of the original training image with DeeSse. All realizations
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Figure B.3: (a) and (b): One layer of the bivariate training image; (a) facies and (b)
corresponding tomogram. (c) The true facies we seek to recover and (d) its tomogram,
which is used as conditioning data in the MPDS simulations. D.I. stands for deterministic
inversion. White dots indicate transmitter and receiver positions for the radar traveltime
calculations. (e) One simulated facies model.

show some of the geological patterns and of the lithofacies found in the analog, but the
direction and dimension of these patterns varies between the realizations. The ensemble of
realizations consequently represents a rather wide variety of geological scenarios.

For this study, the available facies realizations were simplified in that (1) only a 7×4m
part of the images were considered for simulation (keeping the original cell size of 0.05×0.05m)
and (2) the number of facies was reduced from 10 to 5 by clustering similar facies together.
The clustering is based on both similarities in geological texture (Bayer et al., 2011), as well
as in hydrogeological properties (Fig. B.6). The modified facies and their properties are
summarized in Tab. B.2.

B.4.2 Results

We chose slightly different parameters in the MPDS algorithm to account for the higher
degree of complexity in this multi-facies case. To define a data event for the facies and radar
wavespeed (‘tomogram’) parameters, the maximum density of neighboring nodes within the
search environment was reduced to 0.5 to capture more complex patterns and to prevent
just reproducing overly fine small-scale variations. This means that we consider n out of
the 2n closest cells for pattern definition. Again, the distance thresholds for the x- and y-
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Figure B.4: (a) Distribution of weighted root-mean squared errors (WRMSE) of radar
traveltimes for 100 unconditioned (red) and conditioned (blue) MPDS simulations for the
channel scenario. The acceptance threshold (dashed vertical line) is the same as for the
deterministic inversion. 68% of the conditioned simulations predict traveltimes with an
WRMSE below the indicated threshold of 1.0 (red line). (b) As for a, but for the Herten
case and for 1000 unconditioned and conditioned simulations. Ten conditioned simulations
predict the traveltimes with an WRMSE below the threshold of 1.05.

coordinates, tx and ty, were chosen such that the node to be simulated is constrained solely
by data events occurring in the same region of the grid (Tab. B.1).

Unlike the tomograms, the simulations feature the desired sharp interfaces between facies
(Fig. B.7). Typical facies-in-facies patterns (e.g., facies 1 and 5 are frequently connected
in tight layering) are reproduced rather well. We simulated 1000 facies models, of which 10
predicted the radar traveltimes within the error bounds (Fig. B.4b). Different simulations
that predict the radar data within the error bounds are displayed in Fig. B.8.

We face two different problems when simulating facies models based on the Herten TI.
(1) The complexity of the realizations leads to higher computational costs since it takes a
longer time until a suitable data event is found in the TI. Also, the choice of the simulation
parameters becomes more crucial than in the simpler channel case. (2) Many conditioned
simulations feature small-scale structures that are not present in the true facies model. To-
gether with the wide range of radar wavespeeds (much larger than for the channel scenario),
this leads to a high number of conditioned simulations that fail to predict the radar data
within the defined error bounds. Thus, more simulations are required to get a decent num-
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to predict the radar data satisfactorily and were rejected. (c) As for (b) but with radar
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Figure B.6: Clustering of the original 10 facies to the reduced facies distribution. Vertical
crosses (denoted facies 1 in Tab. B.2), circles (facies 2), triangles (facies 3), diagonal crosses
(facies 4) and asterisks (facies 5) refer to the simplified facies model. In red the new facies.

ber of conditioned simulations that honor the geophysical data and not only patterns in the
tomograms.
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Table B.2: Description of the different facies types

Facies index Description Hydraulic conductivity K [m/s] Porosity [-]

1 (+) Alternating gravel, bimodal 2.2× 10−5 0.21
basal subunit (sand, silt, clay)

2 (◦) Well-sorted gravel and sand 1.2× 10−3 0.32
3 (▽) Sand-rich, poorly sorted, 6.1× 10−5 0.13

matrix supported gravel
4 (×) Poorly sorted, 2.4× 10−4 0.16

matrix supported gravel
5 (∗) Alternating gravel, 8.4× 10−2 0.25

open framework

Figure B.7: (a) One layer of the facies training image and (b) corresponding radar
wavespeed distribution, obtained by applying a petrophysical relation (P.R.). (c) The cor-
responding tomogram results from deterministic inversion (D.I.) of (b). (d) The true facies
we seek to recover, (e) its wavespeed distribution and (f) its tomogram, which is used as
conditional data in the MPDS simulations. White dots indicate transmitter and receiver
positions for the radar traveltime calculations. (g) One simulated facies model.
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Figure B.8: Different MPDS simulations of the Herten training image in movie illustration.
(a) Unconditioned simulations as they are used as layers of the training image. (b) MPDS
simulations conditioned to a geophysical tomogram. These simulations failed to predict the
radar data satisfactorily and were rejected. (c) As for (b) but with radar traveltimes for
which the WRMSE is below the threshold, these simulation were accepted.

B.5 Impact on flow predictions

The main purpose for determining the spatial distribution of lithofacies and their hydrological
parameters with high resolution is to use these models for prediction of flow or solute trans-
port. To demonstrate the improvement of the models resulting from bivariate simulation,
we conducted synthetic tracer experiments and compared unconditioned (i.e., the layers of
the facies training image) and conditioned MPDS simulations with respect to their transport
predictions. Tracer breakthrough at certain locations on the right boundary is calculated
for an injection of a conservative tracer at the left boundary of the domain that is driven by
a horizontal head gradient. We used the finite difference code MaFloT (Matlab Flow and
Transport (maflot.com), Künze and Lunati, 2012) to solve the advection-dispersion equation
and calculate the tracer concentration evolution during continuous tracer injection. For dis-
persivities in longitudinal and transversal direction, we used αl = 10−2 m and αt = 10−3 m
and for molecular diffusion D = 10−9 m2/s.

For the channel scenario, hydraulic conductivity values of K0 = 10−5 m/s and K1 =
10−2 m/s were assigned to facies 0 and 1, respectively, to model highly conductive channels
in a low-conductivity matrix. The porosity was kept constant at φ = 0.3. For the aquifer
analog (Herten), hydrogeological facies information, that is, the porosity and the hydraulic
conductivity values were directly available from an outcrop data set (Tab. B.2). In both
cases, the uncertainty in the predictions for the tracer breakthrough is clearly reduced for the
simulations that are conditioned to a tomogram (Fig. B.9). For simulations that predict the
radar traveltimes within the error bounds, the uncertainty is further reduced. There is no in-
dication of modeling bias, the predicted breakthroughs are consistent with the breakthrough
curves of the true models.
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Figure B.9: Statistics of calculated breakthrough curves for (a) channel scenario and
(b) Herten scenario. Solid, dashed and dotted lines depict mean, 50% quantiles and 95%
quantiles. Blue line: breakthrough of the true model.

B.6 Discussion

We show that combining MPS simulations and classical geophysical tomography can pro-
duce models that overcome some of the shortcomings of both purely tomogram-based inverse
models and unconditioned MPS simulations. Unlike classical geophysical tomography, the
presented method allows to recover models that feature expected geological patterns and
sharp interfaces between facies elements. At the same time, the inverse models are con-
strained by geophysical data whose information is spread over large parts of the model
domain, which is not the case for unconditioned simulations or simulations conditioned to
point data only. When applied in practice, the following issues must be taken into account:
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• As for all methods that include MPS simulations, the choice of an adequate training
image is of utmost importance. If no auxiliary geological information is available, MPS
simulations carry a substantial risk of creating illusive results. This was observed in
tests performed by applying the method with a poorly chosen TI: We tried to represent
an object-based model featuring lenses with the same channel TI as used in the first
application. The resulting models reproduce the overall distribution of the two facies
but feature channels instead of lenses and fail to predict the data well. Problems
in finding models with satisfactory data fit can thus be taken as an indicator for an
incomplete or biased TI. A detailed assessment about how a poorly chosen TI affects
the quality of MPS simulations is beyond the scope of this study and is left as a
recommendation for further research.

• In the current formulation, the GPR signals are approximated by curved rays rather
than accounting for the full waveform signal. This approximation has been proven
robust in many applications (e.g., Davis and Annan, 1989; Alumbaugh et al., 2002;
Dafflon and Barrash, 2012). New developments in full waveform inversion techniques
(e.g., Meles et al., 2012; Klotzsche et al., 2012) promise improved inversion results
for certain settings if further attributes of the waveform than just the first arrival are
considered.

• In the two scenarios presented, we assumed the petrophysics (i.e., the relationship
between the lithological properties and the geophysical parameters) to be perfectly
known and exact, which is rarely the case in practice. We postulate that the uncertainty
of the petrophysics can be accounted for by using a much larger TI that contains
several tomograms for one facies model, each calculated with different petrophysical
parameters. We leave this for further research.

• We applied the method to crosshole GPR tomograms, but the method is general with
regard to the measured geophysical signal. Applications to other geophysical or hydro-
logical tomographic methods, such as electrical resistivity tomography (ERT), seismic
tomography or hydraulic tomography are straight-forward.

The ‘weight’ of the facies TI versus the conditioning data can be changed by varying the
MPDS parameters. For a smaller distance threshold t, for example, patterns in the TI are
reproduced more accurately. This requires larger parts of the TI to be scanned in order
to find a matching data event. Thus in general, the choice of the sampling parameters is
a compromise between reproduction accuracy and computational effort and to large parts
controls the CPU burden in our workflow (Meerschman et al., 2013). Another computation-
ally expensive step is creating the working TI, since each generation of a MPDS realization
of the original TI is followed by a forward calculation and a geophysical inversion. However,
the inversion parameters are taken as in the inversion of the field data, which implies that
constructing the working TI demands no extensive parameter study and needs to be done
only once.

Like purely stochastic inversions based on Markov chain Monte Carlo, the proposed
method provides the user with an ensemble of possible models (e.g., Cordua et al., 2012).
Since the models are not extracted from a Markov chain and are intrinsically uncorrelated,
our method is significantly faster than stochastic inversions. Applying the method to a 3D
case is straightforward, but CPU restrictions are non-negligible.

The quality of a geophysical inverse model strongly depends on the choice of the inversion
parameters. This problem is largely circumvented by our approach, since we do not use the
tomogram for interpretation but for conditioning of a geological conceptual model. We
implicitly account for the resolution limitations of tomograms, thus there is no need for
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an explicit resolution analysis. Also, we create several possible models, which are used
to assess the uncertainty in the modeling results. This highlights the improvement over
interpretation of individual tomograms, where accurate estimation of both resolution and
uncertainty generally remains difficult (e.g., Williamson, 1991; Day-Lewis and Lane, 2004;
Doser et al., 1998).

The resulting models reproduce the large- and small-scale structures of the true models
rather well. They can be used for geological interpretation or as starting points for further
inversion or conditioning. Additional reduction of the uncertainty in the parameter estima-
tions might be achieved by including other types of geophysical or hydrological data in the
presented workflow.

B.7 Conclusions

A method is presented to condition MPS simulations to geophysical tomograms. We create
facies simulations by scanning a bivariate training image, constructed from geological fa-
cies realizations and their tomograms, for patterns found in a conditioning tomogram. This
allows to exploit the advantages of both tomography and multiple-point geostatistical simu-
lation. MPS simulations produce detailed facies models with sharp interfaces, where realistic
geological constraints are honored by sampling from a TI. Conditioning the simulations to a
tomogram, that resolves large-scale features over large parts of the model domain, allows to
adequately recover realistic facies models. We found running a geophysical forward calcula-
tion on the proposed simulations and comparing the response to the measured data to be a
valid acceptance criterion. Unlike the classical geophysical approach where the interpreter is
left with one tomographic image, the method provides an ensemble of possible facies models
that allows for uncertainty assessment. Testing the conditioned simulations with respect to
their transport predictions reveals that they correctly predict the transport characteristics of
the true model and that the uncertainty is reduced compared to predictions of unconditioned
MPS simulations.
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Figure C.1: (a) First out of 10 unconditional simulations illustrating the effect of param-
eters t and n with f=0.5 and (b) first out of 10 unconditional simulations illustrating the
effect of f for constant t and n based on the continuous ice-wedges TI (Fig. 2.1a)
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Figure C.2: (a) First out of 10 unconditional simulations illustrating the effect of param-
eters t and n with f=0.5 and (b) first out of 10 unconditional simulations illustrating the
effect of f for constant t and n based on the categorical marble TI (Fig. 2.1d)
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Figure C.3: (a) First out of 10 unconditional simulations illustrating the effect of param-
eters t and n with f=0.5 and (b) first out of 10 unconditional simulations illustrating the
effect of f for constant t and n based on the categorical snow crystals TI (Fig. 2.1f)
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Figure C.4: (a) First out of 10 unconditional simulations illustrating the effect of param-
eters t and n with f=0.5 and (b) first out of 10 unconditional simulations illustrating the
effect of f for constant t and n based on the continuous snow crystals TI (Fig. 2.1e)
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Figure C.5: Influence of (a) t and n (for f=0.5) and (b) f on the quality indicators based
on the continuous ice-wedges TI (Fig. 2.1a)
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algorithm

Figure C.6: Influence of (a) t and n (for f=0.5) and (b) f on the quality indicators based
on the categorical marble TI (Fig. 2.1d)
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Figure C.7: Influence of (a) t and n (for f=0.5) and (b) f on the quality indicators based
on the categorical snow crystals TI (Fig. 2.1f)
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algorithm

Figure C.8: Influence of (a) t and n (for f=0.5) and (b) f on the quality indicators based
on the continuous snow crystals TI (Fig. 2.1e)
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Figure D.1: Illustration of cumulative concentrations 328 days after injection and conduc-
tivity sections for a MGS K-field generating a fast plume; the white cross locates the highest
concentration 27 days after injection.
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Figure D.2: Illustration of cumulative concentrations 328 days after injection and conduc-
tivity sections for a MGS K-field generating a slow plume; the white cross locates the highest
concentration 27 days after injection.
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Figure D.3: Illustration of cumulative concentrations 328 days after injection and conduc-
tivity sections for a PG1 K-field – characterized by a low equivalent conductivity – generating
a fast plume ; the white cross locates the highest concentration 27 days after injection.
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Figure D.4: Illustration of cumulative concentrations 328 days after injection and con-
ductivity sections for a PG1 K-field – characterized by a high equivalent conductivity –
generating a slow plume; the white cross locates the highest concentration 27 days after
injection.
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