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Résumé

Cette thése traite plusieurs problémes posés par le caractére multi-échelle des données fi-
nanciéres. Elle est composée de quatre parties interconnectées pouvant néanmoins étre lues
indépendamment.

On introduit dans la premiére partie le modéle RFSV a volatilité rugueuse. Dans ce modéle, le
logarithme de la volatilité est modélisé par un processus d’Ornstein-Uhlenbeck fractionnaire a
temps de retour a la moyenne long et exposant de Hurst petit. Nous montrons que ce modéle
permet de reproduire le comportement de la surface de volatilité ainsi que de nombreux faits
stylisés statistiques tels que la structure d’autocorrélation et la régularité de la volatilité. En
particulier, nous semblons montrer que, contrairement a I'idée communément admise, celle-ci
ne présente pas de longue mémoire en loi de puissance.

La deuxiéme partie porte sur le comportement en temps long des processus de Hawkes et
des processus autorégressifs quasi instables, c’est-a-dire dont le noyau a une norme proche
de un. Nous montrons que dans le cas ou le noyau est a queue fine, les processus de Hawkes
quasi instables se comportent asymptotiquement comme des processus de Cox-Ingersoll-Ross
intégrés. Dans le cas ou le noyau est en loi de puissance, en fonction de son exposant, la
distribution limite est un processus a longue mémoire ou un processus C 14 derivée rugueuse.
En modélisant le flux d’ordres par un processus de Hawkes, ce résultat nous permet d’établir
des fondements microstructurels a l'irrégularité de la volatilité évoquée dans la premiére partie.
Nous obtenons des résultats similaires pour les processus autorégressifs.

Dans la troisiéme partie de cette thése, nous proposons deux procédures statistiques permettant
d’estimer les noyaux de processus de Hawkes. Nous adaptons ces algorithmes au cas ou les
noyaux sont a décroissance lente, situation observée sur les données. La premiére procédure
se fonde sur l'inversion de 'équation de Wiener-Hopf tandis que la deuxiéme consiste en une
maximisation de la vraisemblance par descente de gradient stochastique.

Enfin, dans la derniére partie de cette thése, nous nous intéressons, sous des hypothéses les
plus générales possible, aux conséquences de I'efficience du prix sur la structure de I'impact
de marché. Nous obtenons P'existence d’un prix efficient par rapport auquel le gain ex post
des ordres limites doit étre nul. Finalement, nous montrons que si I'impact permanent des
métaordres est linéaire en leur volume, les fluctuations de prix doivent étre proportionnelles
aux variations de 'anticipation par le marché du déséquilibre de volume.



Abstract

This thesis tackles several issues raised by the multi-scale properties of financial data. It
consists of four connected parts which can however be read independently.

In the first part, we introduce the Rough Fractional Stochastic Volatility (RFSV) model. In this
framework, the logarithm of the volatility is a fractional Ornstein-Uhlenbeck process with long
mean reversion time scale and small Hurst index. We show that this model reproduces numer-
ous stylized facts of financial data such as implied volatility properties, the autocorrelation
structure and the regularity of the volatility. In particular, the RFSV sheds some new light on
the supposed long memory property of volatility.

The second part deals with the long-time behavior of Hawkes and autoregressive processes
which are nearly unstable, that is whose kernels have a norm close to one. We show that in
the case where the kernel has a light tail, nearly unstable Hawkes processes asymptotically
behaves as integrated Cox-Ingersoll-Ross (CIR) processes. In the case where it has a power
law shape, depending on the power law exponent, the limiting process asymptotically exhibits
either long memory or a rough behavior. This enables us to use the modeling of the order flow
as a Hawkes process to obtain a microstructural foundation of the rough nature of volatility.
Similar results are obtained for autoregressive processes.

In the third part of this thesis, we propose two estimation procedures for the kernels of Hawkes
processes. These algorithms are in particular relevant to the case of slowly decreasing Hawkes
kernels which corresponds to what is observed on financial data. The first method relies on the
inversion of the Wiener-Hopf equation while the second is based on a likelihood maximization
via a stochastic gradient ascent.

Finally, we are interested in deriving, under very general assumptions, consequences of market
efficiency on the structure of price impact. We prove the existence of a model independent fair
price with respect to which the average ex post gain of limit orders must be equal to zero. We
finally show that, under a few additional assumptions, price impact must be proportional to
the market anticipation of the order flow imbalance.

Keywords: Multiscale properties, Hawkes processes, autoregressive processes, nearly unstable
processes, CIR, long memory, persistence, regularity, rough volatility, order flow, RFSV,
estimation of Hawkes kernels, slowly decreasing kernels, Wiener-Hopf, likelihood maximization,
stochastic gradient descent, market efficiency, price impact, fair markets, fair price, order flow
imbalance, metaorders, anticipation of the volume, square root law, impact function.
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Introduction

The guiding principle of this thesis is to study how various financial processes such as prices,
volatility or the different order flows behave and are related at different time scales (from
seconds to years). We aim at defining useful models which simultaneously reproduce most of
the relevant features and at building estimation procedures in these models. Let us begin by
presenting and motivating the different questions on which we want to shed some light in this
thesis.

Motivations

In the world of derivatives, the most important ingredient of any model is the volatility of
prices. To fit the properties of implied volatility surfaces, the most popular frameworks are
the local and stochastic volatility models. However, from an econometric point of view, these
models are unsatisfactory because, as opposed to what is observed on data, the volatility
processes in these models are typically unable to reproduce the volatility correlation structure.
To solve this issue, based on the idea that volatility presents a power law long memory, models
were introduced where the volatility process is driven by a fractional Brownian motion with
Hurst index larger than 1/2. However, we will see that none of these models are “rough”
enough to reproduce the empirically observed regularity of the volatility. We might thus ask
ourselves the following question:

Question 1. How does the local regularity of volatility relates to its global correlation structure?

Another important financial stylised fact is that the flow of market orders is persistent. This
means that if there has been a lot of trades in the near past there will, on average, be a lot
of trades in the near future. Thus, Poisson processes are not adapted to modeling the order
flow. One way to reproduce this positive autocorrelation in the flow of market orders is to use
Hawkes processes defined as point processes whose intensity writes as a linear regression on
the past points of the process, see their definition below. However, on the one hand, we will
see that the flow of market orders presents a multiscaling behavior in the sense that, whatever
the time scale at which one is “looking” at this process, there are periods of high market
activity (with a lot of trades) and periods of low market activity (with few trades). On the
other hand, it has been shown that classical Hawkes processes cannot reproduce this feature.
Indeed, they are short memory in the sense that when one considers a Hawkes process at long
time scales, the periods of low and high market activity average out. Moreover, in practice,
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empirical estimations of the parameters of Hawkes processes lead to processes whose stability
condition is almost saturated, meaning that the L' norm of the regression kernel is very close
to one. This leads to the following question:

Question 2. Can nearly unstable Hawkes processes reproduce the multiscaling behavior of the order

Sflow?

In addition to being autocorrelated, the flow of market orders is cross-correlated with cancel
and limit orders and with price changes. For example, trades tend to be followed by limit
orders. One way to model this cross-correlation is to use multidimensional Hawkes processes
which are self and mutually exciting point processes. However, the Hawkes influence kernels
which appear in the definition of these processes and encode the causality between the different
kinds of events are not directly observable on the data. We only have access to cross-correlation
functions. This makes the following question important to fit Hawkes processes to the data in
an appropriate way:

Question 3. How to disentangle Hawkes influence kernels from emprirical cross-correlations?

An important example of such cross-influence is that of trades on price moves. Indeed, market
orders on average trigger price moves in the same direction. This feature called price or
market impact is important for many agents such as brokers and market makers who need to
take into account the effect of their or someone else’s trades on the price. However, while the
price is more or less a martingale because of no arbitrage arguments, the imbalance between
the flow of market orders at the bid and at the ask is persistent. That is, if there has been
more orders at the ask than at the bid in the past there will, on average, be more orders at the
ask than at the bid in the future. This implies that the trivial impact model where the price
move on any given time window is on average proportional to the imbalance between ask and
bid market orders on the same period cannot be realistic. Consequently, the persistence of the
order flows must be strongly linked to the structure of the influence of trades on price moves
to yield a martingale price. This leads to the following question about this connection:

Question 4. What model independent conditions on the price impact of order flows can be deduced
Jfrom general no arbitrage assumptions?

Outline

Each question presented above corresponds to a part of the thesis.

In Part I, we answer Question 1 by exhibiting a remarkable universal scaling law for the
moments of the log-volatility increments. We show that modeling the log-volatility as some
sort of rough fractional Brownian motion as suggested by this scaling enables us to reproduce
both historical and risk neutral properties of the volatility. For example, we retrieve the
smoothness and the empirical autocorrelation structure of the volatility together with the shape
of the implied volatility surface. Furthermore, this model, called Rough Fractional Stochastic
Volatility (RFSV for short) sheds new light on the discussion about the supposed long memory

2



Outline

of volatility.

Answers to Question 2 lie in Part II where we study the long time behavior of Hawkes and
autoregressive processes whose stability conditions are almost saturated. For Hawkes pro-
cesses, we show in Chapter II that if the kernel has a light tail, there exists a “natural” time
renormalization at which the Hawkes intensity behaves as a CIR process and the Hawkes
process as an integrated CIR. In Chapter III, we focus on the case where the kernel asymp-
totically behaves as an heavy tail power law. We show that depending on the power law
exponent, the Hawkes process either asymptotically exhibits a power law long memory, or
behaves as an integrated rough fractional diffusion. We also show that similar asymptotic
results hold for nearly unstable autoregressive processes in Chapter IV. Therefore, modeling
the order flow as a power law nearly unstable Hawkes process and taking the cumulated
variance proportional to the cumulated order flow (as stated by financial economics litera-
ture) provides a microstructural foundation for the roughness of the volatility exhibited in Part I.

In Part III, we tackle Question 3 from two different perspectives. In Chapter V, we adapt the
numerical procedure classically used to derive the Hawkes kernels from the empirical second
order properties of the process to the case of slowly decreasing Hawkes kernels. To do this, we
disentangle the cross-causality of the point process from its cross-correlation by solving nu-
merically the Wiener-Hopf equation. We apply this procedure to fit an 8-dimensional Hawkes
order book model and estimate the influence of the different events on each other. In Chapter
VI, we consider the estimation of Hawkes kernels using a likelihood maximization procedure.
We use the structure of the log-likelihood to propose a new parallelizable stochastic gradient
ascent algorithm which outperforms usual methods such as the Majoration-Minimization (MM)
algorithm. We also provide a non parametric representation of the kernels to account for
slowly decreasing Hawkes kernels.

Finally, in Part IV, we present two works related to Question 4 which aim at studying the impact
of market orders and metaorders under market efficiency assumptions. In Chapter VII, we
revisit the notion of fair markets generalizing the approach of Madhavan-Richardson-Roomans
(MRR for short). We show that, in such markets, there exists a fair price that should be
considered as a reference price to compute the ex post gains of transactions. In Chapter VIII,
we add the assumption that the permanent market impact of metaorders is linear in their
size. We obtain a model independent relationship between the order flow and the price which
generalizes the propagator model of Bouchaud et al. We apply this relationship to power law
nearly unstable Hawkes processes and retrieve a power law impact function as it is observed
in practice.

Let us now rapidly review the main results of this thesis.
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1 Part I: How regular and persistent is really volatility?

A paramount feature of financial data is that the volatility (corresponding to the amplitude of
price fluctuations) is positively autocorrelated (if prices have moved a lot yesterday, they are
likely to move a lot today). Understanding this stylised fact is of course of great importance
in both asset management where one needs to anticipate the amplitude of price moves and
derivative pricing where the volatility process is the most important ingredient of every model.

In Chapter I, we study the regularity of the volatility and we show that, at any time scale
of interest, the log-volatility essentially behaves as a fractional Brownian motion with Hurst
index around 0.1. We introduce a rough version of the fractional stochastic volatility model
of Comte and Renault, see [CR98], which reproduces this feature. We show that in addition
to volatility surface properties, this model fits the volatility structure better than usual long
memory or multifractal models and we apply it to variance prediction and derivative pricing.

1.1 Regularity of the volatility

In order to build our model from data, we look at the scaling of the increments of the
(estimated) log-volatility
m(A, q) = E[|log(o+a) —log(a )17].

Plotting log(m(A, q)) as a function of log(A), we notice the following result which is valid for a
very wide range of A, say from hours to months.

Result 1. On a very wide range of time scales (at least from hours to months), the increments of the
log-volatility behave as that of a fractional Brownian motion with small Hurst H index (H ~0.1):

m(A, q) = K,AH9.
This leads us to model the volatility as a geometric fractional Brownian motion
nw!

oy=0gpe

However, the lack of stationarity of this model may seem unsatisfactory. In particular, the
autocorrelation function of the volatility that we wish to study is not very well defined.

In order to solve this technical issue, we make our model stationary by introducing a slow
mean reversion term. More precisely, we consider a rough version of the FSV model of Comte

and Renault, see [CRI8]|
dlog(o,) =ndWH + a(m-log(o))dt

where the mean reversion time scale 1/« is very large compared to the time scales of interest.

It is important to stress that in spite of the apparent similarities between the RFSV model and
the classical FSV model, they are in fact very different. Indeed, on the one hand, in [CR98],

4



1. Part I How regular and persistent is really volatility?

H is taken larger than 1/2 to reproduce the supposed long memory of the volatility (periods
of high volatility tend to be followed by periods of high volatility) while « is taken large to
reproduce the mean reversion of the volatility (upward movements of the volatility tend to be
followed by downward movements of the volatility). On the other hand, in the RFSV model, H
is taken smaller than 1/2 to reproduce the roughness of the volatility (which corresponds to
some sort of mean reversion) while « is taken small to reproduce the persistence (or positive
autocorrelation) of the volatility.

1.2 Volatility properties

In Chapter I, we apply the RFSV model to the description of the volatility process.

1.2.1 Persistence

A supposed stylised fact about the autocorrelation of the volatility
c(A) =Covlot,0 4l
is that it presents a power law long memory in the sense that ¢ asymptotically behaves as

cd) ~ A7
A—+o0
where y <1, see [ABDLO3] or [DGE93]. This led some authors to use fractional Brownian
motions with Hurst index H >1/2 in order to reproduce this property, see [CR98] and [MOO06].

In Chapter I, we will see that in our model, the autocorrelation of the volatility asymptotically
satisfies the following property when the mean reverting term @ becomes small.

Result 2.
c(A) = Ae B2 _E[o,12 + o(1).

Furthermore, we show that this relation is consistent with empirical measures of the autocorre-
lation of the volatility.

1.2.2 Multiscaling

Another interesting property of the RFSV model is that as H tends to zero, its correlation
structure tends towards that of the multifractal random measure of Bacry, Delour and Muzy
(BDM), see [BKMO8] and [BM03]. Moreover, recall that the BDM model is built to satisfy a
scale invariance property in the sense that whatever the time scale at which one observes the
“volatility” in this model, one “sees” the same process. We will show that although the RFSV is
not strictly speaking scale invariant it apparently reproduces the empirically observed wide
range scale invariance when H is small.
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1.2.3 Volatility forecasting

Modeling the log-volatility as a fractional Brownian motion as suggested by the scaling laws
mentioned above enables us to use properties of the conditional laws of fractional Brownian
motions given in [NPOO]. We obtain the following result about the prediction of the volatility.

Result 3. The expected log-volatility and volatility conditionally on the past satisfies

H t 1
E[logo il %] = MAH+1/2‘/‘ 080

—oo (E— s+ A)(t—s)H*1/2

and

Ire/2-H
[E[O_%-f-Algt] :eXp{Z[E [10g0t+A|gt]+2 ( ) VZAZH}_

I'H+1/2)T(2-2H)

We test discrete time versions of these predictors on real data and show that they always outper-
form usual variance predictors such as the Autoregressive and Heterogeneous Autoregressive
predictors, see [Cor09].

1.3 Option pricing

Beyond reproducing the statistical properties of the volatility process, the RFSV model can
also be applied to fit volatility surfaces as it is done in [BFG15]. To achieve this, one needs to
introduce some (negative) correlation between the movements of volatility and prices. One
(quite ad hoc) natural way to do that is to consider the Mandelbroot-Van-Ness representation
of the fractional Brownian motion

t
wi= [ te- i g aw, ®

and to correlate the Brownian motion driving the price with the one driving the fractional
Brownian motion. It is shown in [Fukl5] that, when doing so and taking H small, one retrieves
a short-time at-the-money skew behaving as a power law function of the maturity, as it is
observed in practice
F(So+VTx,T)—5(So, T) c
VTx 70 T12-H

where & is the implied volatility surface.

2 Part II: Nearly unstable linear processes

In Chapters II, IIT and IV, we study the long time behavior of linear processes (Hawkes and
autoregressive processes) when their stability condition is almost saturated, that is when the L!
norm of their kernel is close to one.



2. Part II: Nearly unstable linear processes

2.1 Hawkes processes

Hawkes processes were introduced in 1971 in [Haw71a] and [Haw71b] to reproduce the clustering
of earthquakes. A Hawkes process N is defined as a point process whose intensity A writes as
the sum of an exogenous term y and a linear regression on the past of the process

t
Ar= ,u+f ¢(t—s)dNs.

Over the last decade, these processes have been applied to several fields where it is necessary
to have models which reproduce the clustering of some phenomena and thus where Poisson
processes are inadapted. For example, Hawkes processes have been successfully used to re-
produce the correlation of earthquakes, see [Ada76], genomic sequences, see [RBS*10], neural
spikes, see [RBRGTMI14], terrorist attacks, see [LMBBI12], crime, see [MSB*11], price moves,
see [BDHMI3] or financial defaults, see [ASCDL10]. In Part II, we motivate and illustrate our
results by using Hawkes processes to model the arrival of market orders.

There are many reasons for this recent popularity of Hawkes processes. First of all, Hawkes
processes are tractable and very easy to simulate by thinning, see [Oga81]. Moreover, we will
see that Hawkes processes can be efficiently fitted to reproduce the cross-correlations between
events, see [BM14b]. Finally, let us mention the nice population dynamics interpretation of
Hawkes processes that we will explicit later. This representation enables us to measure the
endogeneity and causality between events in the Hawkes model, see [HO74|. In particular, we
will see that the L! norm of the kernel corresponds to the proportion of endogenous points of
the process.

2.2 Light tailed nearly unstable Hawkes processes

An important property of Hawkes processes is that under the following stability condition

+00
16l =f0 P()ds <1

the process admits a version with a stationary intensity. Moreover, it is shown in [BDHMI2]
that under this condition, Hawkes processes present weak dependence in the sense that they
asymptotically behave as their expectation at long time scales:

N7y . H ¢
T T—+oo1—|¢| )

However, in practice, for financial order flows that we want to model as Hawkes processes,
the asymptotic behavior above is not satisfied. Indeed, the cumulated order flow does not
behave as a linear function of time. In fact, it presents a multiscaling behavior in the sense
that whatever the time scale at which one is looking at the order flow, one observes periods
of high market activity (with a lot of trades) and periods of low market activity (with few trades).
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Moreover, statistical estimation results seem to show that very often, only nearly unstable
Hawkes processes are able to fit the data properly, see [FS12] and [HBBI13]. By nearly unstable,
we mean that the L' norm of their kernel is close to unity. In Chapter II we formally study
such processes for which the stability condition is almost violated and the kernel has a light
tail.

2.21 Asymptotic framework

In order to have a mathematical framework in which we can study the long time behavior
of Hawkes processes whose kernel’s norm is close to one, we consider a sequence of Hawkes
processes (N} ), indexed by T which corresponds to the observation scale. For a given T,
(NtT) satisfies NOT =0 and its intensity process ()Lf) is defined for £ =0 by

t
AT = “+f oI (t-s)dN],
0
where i is a positive real number and ¢ a non negative measurable function on R*.

Let us now give more specific assumptions on the asymptotic behavior of the function ¢p*. For
teRY,

¢ (1) = ard(1),
where (ar)T=0 is a sequence of positive numbers smaller than one and converging to one and

¢ is a non negative measurable function which we call the shape of the kernel and does not
depend on T such that

+00
f ¢(s)ds=1.
0

Thus, the form of the function ¢! depends on T so that its shape is fixed but its L' norm
varies with T. For a given T, this L! norm is equal to ar and so is smaller than one, implying
that the stability condition is in force. Since ar tends to one, we call our sequence nearly
unstable Hawkes processes.

In Chapter II, we also require the following light tail condition:

Assumption 1.

+00
f sop(s)ds =m < oo.
0

2.2.2 Observation scales

In our framework, two parameters degenerate at infinity: T and (1 - ar)~!. The relationship
between these two sequences will determine the scaling behavior of the sequence of Hawkes
processes. Recall that it is shown in [BDHMIZ2] that when ||(/)T||1 is fixed and smaller than one,
the limit of the sequence of Hawkes processes is deterministic. In our setting, if 1 — ar tends
“slowly” to zero, we get the same kind of result.
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On the contrary, if 1 — ar tends too rapidly to zero, the situation is likely to be quite intricate.
Indeed, for given T, the Hawkes process may already be very close to instability whereas T is
not large enough to reach the asymptotic regime. The last case, which is probably the most
interesting one, is the intermediate case, where 1 —ar tends to zero in such a manner that
a non deterministic scaling limit is obtained, while not being in the preceding degenerate
settings. More precisely, in Chapter II, we make the following assumption:

Assumption 2. There exists A >0 such that

Td-ar) — A
T

—+00

2.2.3 Non degenerate scaling limit for nearly unstable Hawkes processes

We show in Chapter II the following result about the renormalized Hawkes intensity observed
at a time scale T:
Cl =0-apAl,.

Result 4. Under Assumptions 1 and 2, the sequence of renormalized Hawkes intensities (CI)
converges in law, for the Skorohod topology, towards the law of the unique strong solution of the
Jollowing Cox Ingersoll Ross stochastic differential equation on [0,1]:

t /'1 /1 t
X,:f (- Xs) = ds+ £f VX, dBs.
0 m m Jo

Furthermore, the sequence of renormalized Hawkes process V' = (1—ar)N.IT converges in law,
for the Skorohod topology, towards the integrated CIR process

t
f Xds, tel0,1].
0

This result implies that when the kernel’s norm of a Hawkes process ||¢]l; is close to 1, if
one observes the process at the right time scale T (that is T of order 1/(1 - ll¢l1)), a non
degenerate behavior (neither explosive, nor deterministic) can be obtained for a rescaled
Hawkes process. More precisely, it shows that at this time scale, a nearly unstable Hawkes
process asymptotically behaves as an integrated CIR process.

2.3 Heavy tailed Hawkes processes

The problem with the above result is that, in practice, the intensity of the flow of market orders
does not really behave as a CIR process. In particular the auto-covariance function of the
intensity is not exponentially decaying in time. Furthermore, the light tail assumption of the
previous paragraph does not correspond to the data. Indeed, we observe some nearly unstable
heavy Hawkes processes whose kernel’s shape behaves when x tends to infinity as 1/x'™% with
@ €]0, 1], see [BMl4a] or [HBBI13]. In Chapter III, we study the behavior of such heavy tailed
Hawkes processes.
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2.3.1 Asymptotic framework

We proceed in a framework close to that of Chapter II except that, instead of the light tail

assumption, we now assume that the kernel’s shape behaves as 1/x!*¢.

Assumption 3. There exists 6 >0 such that

ad

+00

lim ax® [ Ndt=——
x—lvr-*l:loo x ¢( ) I'l-a)
where T is the Gamma function.

The link between the observation scale and the kernel’s norm also needs to be modified if we
want to obtain suitable limit laws as before. We thus make the following assumption:

Assumption 4. There exists A >0 such that

lim T%(1-ar) = A6.

T—+o0

2.3.2 The theorem

In Chapter III, we show the following result about the behavior of the renormalized heavy
tailed nearly unstable Hawkes process

Result 5. Under Assumptions 3 and 4, X1 is tight and if X is a limiting law of XT, there exists
a Brownian motion B such that

1
VA

where f%" is the function whose Laplace transform satisfies

t t
thf sfOM(t—s)ds+ ff“'A(t—s)BXSds @)
0 0

X A
a,A —
e A+2z%

We will see in Part II that f** can be expressed with Mittag-Leffler functions and that it
asymptotically behaves as

CI

a,A . a, A ~
o o and f @

xl-a —to0 xlta’

The integral equation above is quite hard to interpret. When a > 1/2, we can give a more
natural formulation of the limiting behavior of nearly unstable Hawkes processes as integrated

Un fact we also need the following technical assumption about the sequence of exogenous intensities:
There exists y* >0 such that T1-%uT — y*5-1,

10
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fractional diffusions. Let (X;) be a process satisfying (2) for ¢ € [0,1] and assume a > 1/2.
Then X is differentiable on [0,1] and the law of its derivative Y is a weak solution of the
stochastic integral equation

Y, = FM ) + @At —5)\/YsdBL,

1 t
—['r
VA Jo
with B! a Brownian motion. Recall that the kernel f®*(¢ - s) appearing in the equation for Y;
behaves in zero as that enabling to define a fractional Brownian motion with Hurst parameter
a—1/2 from a Brownian motion as in the Mandelbroot-Van-Ness representation, see (1). This

implies that Y locally behaves as such a fractional Brownian motion. In particular, for any
€>0, Y has Holder regularity @ —1/2—¢.

This result implies that modeling the order flow as a heavy tailed nearly unstable Hawkes
process and assuming that the cumulated order flow is proportional to the cumulated variance

leads to a microstructural foundation of the regularity of rough volatility models such as the
RFSV model of Part L.

2.4 Nearly unstable autoregressive processes

Because of the linearity in the definition of Hawkes processes, they have very similar properties
as autoregressive processes. In Chapter IV, we use the ideas of the proofs for nearly unstable
Hawkes processes to extend classical results about nearly unstable autoregressive processes to
the infinite order case.

Somehow as in the Hawkes case, we consider a sequence of autoregressive processes

k
V= iy ter
o1

where the sequence of kernels has a fixed positive shape and a norm which tends to one as the
observation scale 7 tends to infinity

(PZ = anPy.

We obtain that, in the light tail case where the shape of the kernel has an average Y y»1 k¢pr =
m < +oo, nearly unstable autoregressive processes asymptotically behave as an Ornstein-
Uhlenbeck process, as it is the case for finite order autoregressive processes, see [CS82] or

[vdMPvZ99).

We now consider the heavy tail case where we make the following assumptions:

Assumption 5.
ab

koo T(1 — @) k1+e”

bk

11
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Assumption 6.
lim n*(1-a,) =A6.
n—+oo
We obtain the following result about the behavior of the renormalized cumulated autoregressive

process
1-a,

n "4 (nt—|nt)y" )
n (jg;‘)y] +(nt—=1nt)y; 1)

Result 6. Under Assumptions 5 and 6, Z" converges in law for the Skorohod topology towards the
process

7y =

t
Zt:f FO (¢ — $)dW,
0

where FOM (1) = [{ fMs)ds.

As for Hawkes processes, for @ > 1/2, this result can be written in terms of the derivative of Z
which locally behaves as a fractional Brownian motion with Hurst index H = a —1/2. Indeed,
if @ >1/2, Z is differentiable and its derivative Y satisfies

t
Y, :f FOME—5)dws.
0

2.5 Beyond long memory

There are three distinct regimes for this limiting law Z depending on a:

o If @ <1/2, then the process presents a power law long memory.
o If a > 1/2, then the process behaves as an integrated rough diffusion.

o If a =1/2, then the process enjoys the same correlation structure as the log-volatility of
the BDM model.

Therefore, modeling the log-volatility as a nearly unstable autoregressive process with a power
law kernel allows us to retrieve the long memory of [CR98], the multifractal behavior of
[BKMO8] and the rough volatility of Chapter I, depending on the value of a.

3 Part III: Multiscale Hawkes estimation

Chapters V and VI focus on the estimation of multidimensional Hawkes processes whose
kernels decrease slowly as it is observed on financial data. In Chapter V, we introduce a
similar estimation method as in [BMI4b] which consists in estimating the conditional laws of
the point processes and then numerically inverting the Wiener-Hopf system. In Chapter VI, we
review convex optimization techniques that are used to parametrically maximize the Hawkes
likelihood and we adapt these techniques to slowly decreasing Hawkes kernels.

12



3. Part III: Multiscale Hawkes estimation

3.1 Hawkes processes and causality

In order to model the joint dynamics of several point processes (for example ask and bid
market orders, price moves, limit and cancel orders), we will consider the multidimensional
Hawkes model where there are cross influences between the different processes. By definition a
family of D point processes is a multidimensional Hawkes process if the intensities of all of its
components write as linear regressions over the past of the D processes:

A@:uwzf ¢ (t—s)dN].
k=170

Another way to construct Hawkes processes is to consider the following population representa-
tion, see [HO74]: There are individuals 1, ..., D. Individuals of type i arrive as a Poisson process
of intensity u’. Every individual can have children of all types and the law of the children of
type i of an individual of type j who was born or migrated in f is an inhomogeneous Poisson
process of intensity ¢/ (- — 1).

This construction is nice because it yields a natural way to define and measure the causality
between events in the Hawkes model. For example, ||</>if ll1 corresponds to the number of events
of type i directly implied by an event of type j, II(,bij 1A /A corresponds to the proportion of
events of type i directly implied by events of type j and u'/A’ corresponds to the proportion
of events of type i which are exogenous. However in practice, the Hawkes kernels are not
directly measurable from the data and these measures of causality between the different kinds
of events are thus inaccessible.

In the literature, the most popular method to estimate Hawkes processes from a realization is
to consider a parametrization of Hawkes kernels (often exponential, see [BGM15], or power
law, see [HBB13]) and to maximise the associated Hawkes log-likelihood, see [HDBI13], [LV14] or
[ZZS13]. Another approach to the estimation of Hawkes processes consists in implying in a non
parametric manner the Hawkes kernels from the correlation structure of the Hawkes process
by numerically resolving the Wiener-Hopf system, see [BDM12] or [BMl4b]. In Chapters V
and VI, we will revisit these two approaches and adapt the estimation procedures to slowly
decreasing Hawkes kernels.

3.2 The Wiener-Hopf equation

An easy way to empirically quantify the cross-clustering of a multidimensional point process is
to consider its conditional laws which are defined as

g (dt =E[dN!|dN] =11-1,-;6(1) - Aldt.

A remarkable property of Hawkes processes established in [BDMI2] and [BMI4b] is that their
kernels and conditional laws are related by the following Wiener-Hopf equation

. . D +oo | i
Vi>0, g’](t):<p”(t)+2f0 g k- sk (s)ds.
k=1

13
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Solving this equation in ¢ amounts to disentangling the underlying causality structure (kernels)
from the cross-correlation structure (conditional laws) of the processes.

It is important to notice that the following result gives a model independent value to the
solution of the Wiener-Hopf equation as the best linear prediction kernel. Therefore, resolving
this equation makes sense even if the underlying process is not a Hawkes process.

Result 7. Given the conditional laws and average intensity of any stationary multidimensional
point process, there exists one and only one kernel ¢ which satisfies the Wiener-Hopf Equation.
Moreover, this kernel minimises the mean square error of the estimation error of the intensity over the
estimators which are linear on the past:

¢ = argminE[(A, - A(f)z]
Ppel?

where A = u+ [ p(t—)dN; and pp= (- |$NA.

3.3 Application to slowly decreasing kernels

In [BM14b], an Hawkes estimation procedure based on the Wiener-Hopf equation is presented.
It consists in two steps: First estimate piecewise constant conditional laws using a uniform
time grid. Second use a Gaussian quadrature scheme to obtain a linear system in the values of
the kernels at the quadrature points.

However, when the kernels and conditional laws present some slowly decreasing behavior as it
is observed on financial data (we observe significant kernels from 107 to 103 seconds), this
scheme cannot simultaneously capture the properties of the Hawkes kernels at every time scale.
In order to remedy to this issue, in Chapter V we propose a modified estimation procedure of
Hawkes kernels based on log-uniform time grids.

The first modification that we make to the procedure of [BMl4b] is in the estimation of the
conditional laws. We propose an estimation grid which takes smaller step around zero where
the conditional law is high and varies rapidly. Once we have estimated the conditional laws,
we need a numerical scheme to invert the Wiener-Hopf system. Again there are technical
difficulties which make inapplicable many usual schemes such as renormalized Gaussian
schemes. In order to overcome these difficulties, we propose the following numerical scheme.

Consider the following time grid which is uniform on [0, T;;,] and log-uniform on [T}, Tnaxl:
{tith<k<x = (0,6 Tinin, 26 Timins -o» Tmin, Tmin36; Tminewy s Trnaxl.

Then assume that the kernel is piecewise linear on all the intervals [fg, tx+1]:

t—t
B(1) = P(1g) + ———(P(trs1) — P(12))
liv1 — Ik

14
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Then (for the sake of simplicity, we consider the dimension 1 case), the Wiener-Hopf system at
the points of the grid writes as

N-1 Tie+1

glty) = P+ Y, o1 gty —s)ds
k=0

Iy
N-1 Tk+1 S — tk
+ ) ((P(fk+1)—¢(l‘k))f ——g(ty,—9)ds
k=0 173 Te+1 — Ik
Result 8. As a result, we get the following linear system in (P(ty))x that we can easily solve by
inverting the corresponding matrix.

N-1 ty— Ik

gty) = dUn)+ Y, (1) gwdu
k=0

In—=1lk+1

Nil G(tres1) —pty) [l

(th—txr—wgwdu.
k=0  fk+1— Ik =g

We test this procedure on numerical simulations of slowly decreasing Hawkes kernels and we
show that it always (with “reasonable” realization sizes) allows us to retrieve the real kernels.

3.4 The Hawkes order book model
As a first application of this procedure, we consider the following 8-dimensional point process
N, = (P@ pO) T@ 7O 1@ 1B cl@ cb)
where:
o P (resp. PP)) counts the number of upward (resp. downward) mid-price moves.

o T (resp. T'?)) counts the number of market orders at the ask (resp. bid) that do not
move the price.

o L@ (resp. L) counts the number of limit orders at the ask (resp. bid) that do not move
the price.

« C (resp. C'?)) counts the number of cancel orders at the ask (resp. bid) that do not
move the price.

We then use the causal interpretation of Hawkes processes to interpret our solution as a
measure of the causality between events. The main empirical result of this study is the
following.

Result 9. Both for a large tick asset (the Bund) and a small tick asset (the Dax), the largest kernels
are on the diagonal for the orders (ask or bid market, limit and cancel orders mostly imply orders of
the same kind) and anti diagonal for the price moves (upward price moves mostly imply downward
price moves and vice versa).

This implies that although the order flows are persistent and impact the price, the “anti
excitation” of price moves implies that the price is somehow diffusive.

15
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3.5 The likelihood of Hawkes processes

In Chapter VI, we approach Hawkes estimation via likelihood maximization.

Given the jump times ((tli)lsksNi)lsl‘SD of the D processes, the log-likelihood of a Hawkes
process of can we written as:

D N . D oped . D pT . D pt . .
L= Ylogw'+Y | ¢YdNH-> | w+> | ¢"(s)dN)adzr.
i=1k=1 j=1J0 i=1J0 j=170
To solve the likelihood maximization, one then needs to chose a parametrization of the kernels.
In the literature, the most popular parametrization is the fixed-scale exponential one where
the kernels write as
o (1) = allpe Pt
The numerical maximization of this likelihood can be done using a Newton method, see [LV14].
However, when the Hawkes dimension becomes large, the Hessian cannot be inverted and one
thus needs to use other methods. A recent class of methods which has become very popular
over the last few years is the Majoration Minimization method, see [LMI1] and [ZZS13], which
can be applied to a very wide range of optimization frameworks including non parametric and
marked ones.

3.5.1 A stochastic gradient ascent

In Chapter VI, we notice that, for the exponential parametrization, after having precomputed
some weights, we can apply a stochastic gradient ascent to the likelihood maximization. Indeed
the log-likelihood writes as a sum of almost independent and identically distributed, terms:

D N . D S D
Law=Y Y [log(u'+ Y allg" ) -p'f— it -3 al(GY b -G rf )]
i=1k=1 j=1 j=1

where

gin=1Y ’Be—ﬁ(t—t,ﬁ',)

t<t
and ,
Gl (1) =f g (s)ds
0
can be pre-computed efficiently at the appropriate points.

Result 10. As a result, we can apply the following stochastic gradient ascent to likelihood maxi-
mization.
n—0
while Converged = False do
n—n+l
Choose at random (i,k) in 1,...D and 1,... N'
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4. Part IV: Market impact throughout time scales

Cf)mput.e s=pl +Z?:1 qijgij(t,i)
p— ey - -1 )
for j—1toD do

all — gii —Yn(w - (G () -Gl
end for
end while

We will see that if this algorithm does not necessarily give better results than other methods, it
allows us to use the literature on stochastic gradient like methods. In particular, we will see
that an SVRG like method, see [JZ13], gives estimations that are consistently faster than the
usual MM method.

3.5.2 Non parametric likelihood maximization

The reason why exponential kernels are so popular in the literature is that they make many
computations very easy. In particular, the functions g and G can be computed in O(N) while in
the general case, these computations take O(N?). However, they also have drawbacks. Indeed,
to use the exponential parametrization one needs to know and fix the scale of the kernel 1/8.
Moreover, there is no reason why the kernel should be exponential in practice. In particular,
we have seen that this was not the case in finance. In order to cover more general kernel
shapes as for example slowly decreasing kernels, we consider the following representation.

Result 11. We will write the kernels as sums exponentials of different time scales
. A/ b
)= ab]lbﬁe_l px.
b=0

Notice that this maximization problem remains convex in (a;g] ), see [LV14], and we can thus

apply a similar stochastic gradient ascent algorithm as above to find the optimal (a;}j ).

4 Part IV: Market impact throughout time scales

The two final chapters of the thesis focus on the impact of market orders and metaorders on
the price at different time scales. We will see that general model independent assumptions
enable us to get strong relationships between the structure of the order flow and the price
dynamics.

4.1 The impact of trades and metaorders

We begin by reviewing some features of the impact of two kinds of orders: market orders and
metaorders.

17



Introduction

411 The impact of market orders

In order to exchange stocks, participants can use two types of orders on modern financial
markets. Limit orders, which allow to buy or sell a quantity of assets at a fixed price, but
with no guarantee of execution, or market orders, which immediately consume the available
liquidity, irrespectively of the price level.

Understanding the dynamics of the order book which arises from these two types of orders is
necessary for both practitioners, who wish to use their orders as effectively as possible, and
regulators who aim at making markets as “efficient” as possible. The effects of the different
order book events have thus been the subject of many empirical studies such as [EBK12] and
[CKS14] which consider the impact on the price of market, limit and cancel orders.

An important property of market data is that while trades are persistent, that is, “if there has
been a lot of buy trades in the past there will be a lot of buy trades in the future”, prices are
martingale. The impact of the order flow on the price thus cannot be “trivial”. To solve this
paradox, Lillo et al. [LF04] and Bouchaud et al. [BGPW04] proposed two formulations of the
same model, called the propagator model, which solves this puzzle in discrete time and that
we will explicit later.

Another important model, that we explain in detail in Chapter VII, for the impact of market
orders is the MRR model [MRR97]. In the MRR model, the autocorrelation of trade signs is
reproduced by modeling the sign dynamics as an AR(1)-type process and the impact of trades
on a fundamental fair price is defined so that “the impact of trades is proportional to their
surprise in the order flow”. Moreover, somehow as in [GM85], the bid and ask prices are then
set so that the average ex post gains of limit orders are equal to zero. As we will see, it is quite
the case in practice.

The MRR model is thus remarkable in two ways: First, as in the propagator model, the order
flow is persistent and yet the price is a martingale. Second, market makers do not make any
profit on average. Our motivation in Chapters VII and VIII will be to build more realistic
models which satisfy the same kind of properties as the MRR and the propagator models.

4.1.2 The impact of metaorders

Let us now introduce the concept of metaorders. In practice, when large investors want to
buy or sell stocks, the volume that they wish to execute is typically much larger than the
liquidity that is available in the order book. They thus need to split their orders into small
transactions (market or limit orders) that they execute over a given period of time. The
set of all these transactions is called a metaorder. Note that if metaorders are not directly
observable, they can be loosely inferred from the flow of market orders, see [LMF05] or [TLF10].

Throughout the execution of a metaorder, prices move on average in the same direction as
the order (buy metaorders imply that the price will go up on average). The importance of
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describing the properties of this impact of metaorders on the price has led to many empirical
studies, see for example [MVM™*09] or [WG13]. These works consistently obtain a concave
impact function, often described as a power law or square root function of the volume. This is
sometimes referred to as the square root law.

From the theoretical point of view, let us mention two deeply different frameworks which have
been developed over the last few years to explain the shape of the impact function.

e In [FGLW13], a martingale hypothesis and a fair pricing condition are introduced
and explained using arguments about the perfect competition between market makers
and investors. These two assumptions are used to derive relationships between the
distribution of the size of metaorders and the shape of the market impact. In particular,
it is shown that if the metaorder’s sizes have a power law distribution of exponent 2+7 as
it is observed in practice, the impact function behaves as V' with respect to the volume
V of the metaorder. This corresponds to the empirical square root law for y =1/2.

e In [TLD"1l], an alternative approach is taken where the square root law is reproduced
by considering a “V-shaped” latent liquidity. More recently, see [DBMBI14], it has been
shown that such a latent liquidity could be implied by reaction-diffusion type models
and that these models reproduced many stylized facts about the impact of metaorders.

4.2 Fair markets and the fair price

In Chapter VII, we define fair markets as market dynamics where the average profit of
infinitesimal market making strategies is equal to zero. In such markets, we will see that if we
define na; (resp. nby) as the price of the next ask (resp. bid) market order after ¢, we have the
following result.

Result 12. The conditional expectations at time t of na; and nb; are equal and it is thus natural
to define the fair price P of the market as this expectation:

Py =E[na;|F;] =E[nb:|F;].

We argue that this fair price is the natural model independent generalization of the fair price
in the MRR model. Indeed, the average ex post gain of limit orders with respect to this fair
price must be equal to zero in fair markets.

Result 13. In particular, the bid and ask prices are
— ask _ bid
at—Pt+AMI[ andbt—Pt+AMIt

where AMI®* and AMIY'? are the average market impacts of ask and bid market orders (v} and
vB respectively correspond to the volume of ask and bid market orders in t) on the fair price:

AMI®K =E[Py [v2 > 0,F -1 - Py and AMIP' =[P+ |vB >0,%,-1-P,.
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This enables us to link the spread with the average market impact of orders without model
specifications, somehow as in [WBK*08].

We show that even though we cannot really measure the fair price on data without a model, it
is possible to verify that our relations about the average ex post gain of limit orders hold. We
check that for all stocks, the results are within the theoretical error margin.

These results about the apparent validity of the fair market hypothesis seem to show that, as
it is argued in [WBK™08], one does not need to introduce trade costs or the risk aversion of
market makers to explain the size of the spread as it is sometimes done. Indeed the impact of
market orders and the tick size are coherent with the bid and ask prices. This work also gives
conditions on how the market impact should be related to the bid-ask dynamics in reasonable
models.

4.3 A model independent impact equation

In Chapter VIII, we tackle the question of the impact of a persistent flow of market orders on
a martingale price.

4.3.1 Market impact and volume anticipation

We consider the issue of what can be said about the impact of the order flow on the price by
only making two general assumptions on the market dynamics, both being derived from no
arbitrage arguments:

 The price is a martingale.

e The permanent impact of metaorders is a linear function of their volume.
We will see that from these two assumptions, we can deduce a strong model independent
relationship between the structure of the order flow and its impact on the price. More precisely,

we show the following result.

Result 14. Price moves are proportional to the variations in the anticipation by the market of the
cumulated order flow imbalance:

P;=Py+«x lim E[V&-VP|Z,
§—+o00
where VE (resp. VP) is the cumulated volume of ask (resp. bid) market orders from 0 to s.
This equation, which can be seen as a model independent generalization of the propagator
model, allows one to closely relate the order flow and the price in a way such that the order

flow can be persistent and yet the price remains a martingale.
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4.3.2 Application to Hawkes processes

We then apply this equation to the case where the order flows at the ask and at the bid follow
two independent Hawkes models. We use this example because the Hawkes model is a nice
tractable way to fit the persistence in the order flow. In that case, we have the following result.

Result 15. If the bid and ask order flows are two independent Hawkes processes N” and N®, then
the price process follows some kind of continuous time propagator model where the impact of trades
does not depend on the past of the market but decreases in time:

t
P,=Py +[ {(t—$)(dN%—dN?)
0
where the kernel { is related to the Hawkes kernel ¢ by

+00
() =xv ((1—II¢II1)+f Pp(s)ds).

1
1-lolh
Moreover, when the Hawkes processes are heavy tailed and nearly unstable, we have the
following power law result.

Result 16. If the kernel’s shape behaves as 1/x'*% as x tends to infinity, the impact function
(defined as the average price move during the execution of a metaorder as a function of the time t)
asymptotically behaves as =% throughout the execution.

From this property, we can (in an admittedly caricatural way) link most of the main results of
this thesis going backward. Indeed, under the assumptions of linear permanent impact and
concave impact function close to square root, this result from Part IV tells us that the right
way to use Hawkes processes for order flow modelling is to take them nearly unstable with
power law kernel with tail index @ around 1/2 (which somehow corresponds to the multifractal
regime). From Part II, this implies a rough fractional behavior of the volatility with a Hurst
exponent equal to a —1/2. As shown in Part I, this is precisely what is observed on the data.
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Part I

How regular and persistent is really
volatility?
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CHAPTER I

Volatility is rough

Abstract

Estimating volatility from recent high frequency data, we revisit the question of the
smoothness of the volatility process. Our main result is that log-volatility behaves
essentially as a fractional Brownian motion with Hurst exponent H of order 0.1, at any
reasonable time scale. This leads us to adopt the fractional stochastic volatility (FSV)
model of Comte and Renault [CR98]. We call our model Rough FSV (RFSV) to underline
that, in contrast to FSV, H < 1/2. We demonstrate that our RFSV model is remarkably
consistent with financial time series data; one application is that it enables us to obtain
improved forecasts of realized volatility. Furthermore, we find that although volatility is
not long memory in the RFSV model, classical statistical procedures aiming at detecting
volatility persistence tend to conclude the presence of long memory in data generated
from it. This sheds light on why long memory of volatility has been widely accepted as a
stylized fact. Finally, we provide a quantitative market microstructure-based foundation
for our findings, relating the roughness of volatility to high frequency trading and order
splitting.

Keywords: High frequency data, volatility smoothness, fractional Brownian motion, fractional
Ornstein-Uhlenbeck, long memory, volatility persistence, volatility forecasting, option pricing,

volatility surface, Hawkes processes, high frequency trading, order splitting.

1 Introduction

1.1 Volatility modeling

In the derivatives world, log-prices are often modeled as continuous semi-martingales. For a

given asset with log-price Y7, such a process takes the form

dYt:ﬂ[dt+0tth,

where y; is a drift term and W; is a one-dimensional Brownian motion. The term o; denotes
the volatility process and is the most important ingredient of the model. In the Black-Scholes
framework, the volatility function is either constant or a deterministic function of time. In
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I. Volatility is rough

Dupire’s local volatility model, see [Dup94], the local volatility o(Y;, ) is a deterministic
function of the underlying price and time, chosen to match observed European option prices
exactly. Such a model is by definition time-inhomogeneous; its dynamics are highly unrealistic,
typically generating future volatility surfaces (see Section 1.3 below) completely unlike those
we observe. A corollary of this is that prices of exotic options under local volatility can be
substantially off-market. On the other hand, in so-called stochastic volatility models, the
volatility o, is modeled as a continuous Brownian semi-martingale. Notable amongst such
stochastic volatility models are the Hull and White model [HW93], the Heston model [Hes93],
and the SABR model [HKILWO02]. Whilst stochastic volatility dynamics are more realistic
than local volatility dynamics, generated option prices are not consistent with observed
European option prices. We refer to [Gat06] and [MRO6] for more detailed reviews of the
different approaches to volatility modeling. More recent market practice is to use local-
stochastic-volatility (LSV) models which both fit the market exactly and generate reasonable
dynamics.

1.2 Fractional volatility

In terms of the smoothness of the volatility process, the preceding models offer two possibilities:
very regular sample paths in the case of Black-Scholes, and volatility trajectories with regularity
close to that of Brownian motion for the local and stochastic volatility models. Starting from
the stylized fact that volatility is a long memory process, various authors have proposed
models that allow for a wider range of regularity for the volatility. In a pioneering paper,
Comte and Renault [CR98] proposed to model log-volatility using fractional Brownian motion
(fBM for short), ensuring long memory by choosing the Hurst parameter H > 1/2. A large
literature has subsequently developed around such fractional volatility models, for example
[CKMO03, CCR12, Ros08].

The {BM (WtH) rep with Hurst parameter H € (0,1), introduced in [MVNG68], is a centered
self-similar Gaussian process with stationary increments satisfying for any teR, A=0, g > 0:

EIW/Ep = W1 = KgaT™, 0
with K; the moment of order g of the absolute value of a standard Gaussian variable. For
H = 1/2, we retrieve the classical Brownian motion. The sample paths of W# are Holder-
continuous with exponent r, for any r < H. Finally, when H >1/2, the increments of the {BM
are positively correlated and exhibit long memory in the sense that

+00
Y Coviw", W - Wl ] =+oc0.
k=0

Indeed, Cov(WH, W]fl - thil] is of order k*/'=2 as k — co. Note that in the case of the fBM,
there is a one to one correspondence between regularity and long memory through the Hurst

1Actually H corresponds to the regularity of the process in a more accurate way: in terms of Besov smoothness
spaces, see Section 2.1.
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parameter H.

As mentioned earlier, the long memory property of the volatility process has been widely
accepted as a stylized fact since the seminal analyses of Ding, Granger and Engle [DGE93],
Andersen and Bollerslev [AB97] and Andersen et al. [ABDLO]]. Initially, it appears that the
term Jong memory referred to the slow decay of the autocorrelation function (of absolute returns
for example), anything slower than exponential. Over time however, it seems that this term
has acquired the more precise meaning that the autocorrelation function is not integrable,
see [Ber94], and even more precisely that it decays as a power-law with exponent less than 1.
Much of the more recent literature, for example [BC11, CDP06, Chrll], assumes long memory
in volatility in this more technical sense. Indeed, meaningful results can probably only be
obtained under such a specification, since it is not possible to estimate the asymptotic behavior
of the covariance function without assuming a specific form. Nevertheless, analyses such as
that of Andersen et al. [ABDLO0]] use data that predate the advent of high-frequency electronic
trading, and the evidence for long memory has never been sufficient to satisfy remaining
doubters such as Mikosch and Stérica in [MSO00b]. To quote Rama Cont in [Con07]:

... the econometric debate on the short range or long range nature of dependence
in volatility still goes on (and may probably never be resolved)...

One of our contributions in this paper is (we believe) to finally resolve this question, showing
that the autocorrelation function of volatility does not behave as a power law, at least at usual
time scales of observation. This implies that when stated in term of the asymptotic behavior
of the autocorrelation function, the long memory question can simply not be answered.
Nevertheless, we are able to provide explicit expressions enabling us to analyze thoroughly the
dependence structure of the volatility process.

1.3 The shape of the implied volatility surface

As is well-known, the implied volatility ops(k,7) of an option (with log-moneyness k and time
to expiration 7) is the value of the volatility parameter in the Black-Scholes formula required to
match the market price of that option. Plotting implied volatility as a function of strike price
and time to expiry generates the volatility surface, explored in detail in, for example, [Gat06].
A typical such volatility surface generated from a “stochastic volatility inspired” (SVI) [G]14] fit
to closing SPX option prices as of June 20, 20132 is shown in Figure L1 It is a stylized fact that,
at least in equity markets, although the level and orientation of the volatility surface do change
over time, the general overall shape of the volatility surface does not change, at least to a first
approximation. This suggests that it is desirable to model volatility as a time-homogenous
process, i.e. a process whose parameters are independent of price and time.

2Closing prices of SPX options for all available strikes and expirations as of June 20, 2013 were sourced from
OptionMetrics (www.optionmetrics.com) via Wharton Research Data Services (WRDS).
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Figure 1.1 - The S&P volatility surface as of June 20, 2013.

However, conventional time-homogenous models of volatility such as the Hull and White,
Heston, and SABR models do not fit the volatility surface. In particular, as shown in Figure
1.2, the observed term structure of at-the-money (k = 0) volatility skew

(1) := 9 (k,7)
WT - akUBS T

k=0

is well-approximated by a power-law function of time to expiry 7. In contrast, conventional
stochastic volatility models generate a term structure of at-the-money (ATM) skew that is
constant for small T and behaves as a sum of decaying exponentials for larger 7.

1.0 15

i)

0.5

0.0 0.5 1.0 1.5 2.0 2.5

Time to expiry ©

Figure 1.2 - The black dots are non-parametric estimates of the S&P ATM volatility skews as
of June 20, 2013; the red curve is the power-law fit (1) = A77%4.
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In Section 3.3 of [Fukll], as an example of the application of his martingale expansion, Fukasawa
shows that a stochastic volatility model where the volatility is driven by fractional Brownian
motion with Hurst exponent H generates an ATM volatility skew of the form y (t) ~ r171/2,
at least for small 7. This is interesting in and of itself in that it provides a counterexample
to the widespread belief that the explosion of the volatility smile as 7 — 0 (as clearly seen in
Figures 1.1 and 1.2) implies the presence of jumps [CW03]. The main point here is that for
a model of the sort analyzed by Fukasawa to generate a volatility surface with a reasonable
shape, we would need to have a value of H close to zero. As we will see in Section 2, our

empirical estimates of H from time series data are in fact very small.

The volatility model that we will specify in Section 3.1, driven by fBM with H < 1/2, therefore
has the potential to be not only consistent with the empirically observed properties of the
volatility time series but also consistent with the shape of the volatility surface. In this paper, we
focus on the modeling of the volatility time series. A more detailed analysis of the consistency
of our model with option prices is left for a future article.

1.4 Main results and organization of the paper

In Section 2, we report our estimates of the smoothness of the log-volatility for selected
assets. This smoothness parameter lies systematically between 0.08 and 0.2 (in the sense of
Hoélder regularity for example). Furthermore, we find that increments of the log-volatility are
approximately normally distributed and that their moments enjoy a remarkable monofractal
scaling property. This leads us to model the log of volatility using a fBM with Hurst parameter
H < 1/2 in Section 3. Specifically we adopt the fractional stochastic volatility (FSV) model
of Comte and Renault [CR98]. We call our model Rough FSV (RSFV) to underline that, in
contrast to FSV, we take H < 1/2. We also show in the same section that the RFSV model is
remarkably consistent with volatility time series data. The issue of volatility persistence is
considered through the lens of the RFSV model in Section 4. Our main finding is that although
the RFSV model does not have any long memory property, classical statistical procedures
aiming at detecting volatility persistence tend to conclude the presence of long memory in
data generated from it. This sheds new light on the supposed long memory in the volatility
of financial data. In Section 5, we apply our model to forecasting volatility. In particular, we
show that RFSV volatility forecasts outperform conventional AR and HAR volatility forecasts.
Finally, in Section 6, we present a market microstructure explanation for the regularities we
observe in the volatility process at the macroscopic scale. We show that the empirical behavior
of volatility may be explained in terms of order splitting and the high degree of endogeneity of
the market ascribed to algorithmic trading. Some new results related to the RFSV model are
relegated to the appendix.

2 Smoothness of the volatility: empirical results

In this section we report estimates of the smoothness of the volatility process for four assets:
The DAX and Bund futures contracts, for which we estimate integrated variance directly
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from high frequency data using an estimator based on the model with uncertainty zones,
[RR11, RR12], and the S&P and NASDAQ indices, for which we use precomputed realized
variance estimates from the Oxford-Man Institute of Quantitative Finance Realized Library®.

2.1 Estimating the smoothness of the volatility process

Let us first pretend that we have access to discrete observations of the volatility process, on a
time grid with mesh A on [0, T]: g, Oa,...,0ka,..., K€{0,[T/A]}. Set N=[T/A], then for
g =0, we define

1 N
m(q,0) = = ) [log(oka) —log(o -1a)l”.
=
In the spirit of [Rosll], our main assumption is that for some s; >0 and by >0, as A tends to
zero,
N%1m(q,A) — by. )
Under additional technical conditions, Equation (2) essentially says that the volatility process
belongs to the Besov smoothness space %;qoo and does not belong to ,%;'foo, for s;, > sq, see

[Ros09a]. Hence s; can really be viewed as the regularity of the volatility when measured
in l; norm. In particular, functions in %; , for every g > 0 enjoy the Holder property with
parameter h for any h <s. For example, if log(o;) is a fBM with Hurst parameter H, then for
any q =0, Equation (2) holds in probability with s; = H and it can be shown that the sample
paths of the process indeed belong to @g{oo almost surely. Assuming the increments of the
log-volatility process are stationary and that a law of large number can be applied, m(qg,A)
can also be seen as the empirical counterpart of

Elllog(oa) —log(ao)|].

Of course, the volatility process is not directly observable, and an exact computation of m(q,A)
is not possible in practice. We must therefore proxy spot volatility values by appropriate
estimated values. Since the minimal A will be equal to one day in the sequel, we proxy the
(true) spot volatility daily at a fixed given time of the day (11 am for example). Two daily spot
volatility proxies will be considered:

e For our ultra high frequency intraday data (DAX future contracts and Bund future
contracts?, 1248 days from 13/05/2010 to 01/08/2014°), we use the estimator of the
integrated variance from 10 am to 11 am London time obtained from the model with
uncertainty zones, see [RR1l, RR12]. After renormalization, the resulting estimates of
integrated variance over very short time intervals can be considered as good proxies for
the unobservable spot variance. In particular, the one hour long window on which they
are computed is small compared to the extra day time scales that will be of interest here.

3httpy/realized.oxford-man.ox.ac.uk/data/download. The Oxford-Man Institute’s Realized Library contains a
selection of daily non-parametric estimates of volatility of financial assets, including realized variance (rv) and
realized kernel (rk) estimates. A selection of such estimators is described and their performances compared in, for
example, [GO10] .

+For every day, we only consider the future contract corresponding to the most liquid maturity.

SData kindly provided by QuantHouse EUROPE/ASIA, http://www.quanthouse.com.
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s For the S&P and NASDAQ indices®, we proxy daily spot variances by daily 5 minutes’
realized variance estimates from the Oxford-Man Institute of Quantitative Finance
Realized Library (3,540 trading days from January 3, 2000 to March 31, 2014). Since
these estimates of integrated variance are for the whole trading day, we expect estimates
of the smoothness of the volatility process to be biased upwards, integration being a
regularizing operation. We compute the extent of this bias by simulation in Section 3.4.

In the following, we retain the notation m(g,A) with the understanding that we are only
proxying the (true) spot volatility as explained above. We now proceed to estimate the
smoothness parameter s, for each g by computing the m(q,A) for different values of A and
regressing logm(q,A) against logA. Note that for a given A, several m(q,A) can be computed
depending on the starting point. Our final measure of m(q,A) is the average of these values.

2.2 DAX and Bund futures contracts

DAX and Bund futures are amongst the most liquid assets in the world and moreover, the
model with uncertainty zones used to estimate volatility is known to apply well to them, see
[DRI2]. So we can be confident in the reliability of our volatility proxy. Nevertheless, as an

extra check, we will confirm the quality of our volatility proxy by Monte Carlo simulation in
Section 3.4.

Plots of logm(q,A) vs logA for different values of g, are displayed for the DAX in Figure 1.3,
and for the Bund in Figure 1.4.
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Figure 1.3 - logm(q,A) as a function of logA, DAX.

6 And also the CAC40, Nikkei and FTSE indices in some specific parts of the paper.

7Taking 5 minutes time intervals to compute the realized variance because it is a good trade off to have lots of
intervals every day and a small microstructure noise, see [ASMZ05].
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Figure 1.4 - logm(q,A) as a function of logA, Bund.

For both DAX and Bund, for a given g, the points essentially lie on a straight line. Under
stationarity assumptions, this implies that the log-volatility increments enjoy the following
scaling property in expectation:

Elllog(aa) —log(a0)|7] = K4A's,

where (; > 0 is the slope of the line associated to g. Moreover, the smoothness parameter s,
does not seem to depend on g. Indeed, plotting {; against g, we obtain that {4 ~ Hq with H
equal to 0.125 for the DAX and to 0.082 for the Bund, see Figure L.5.
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Figure 1.5 - {; (blue) and 0.125 x g (green), DAX (left); {; (blue) and 0.082 x g (green), Bund
(right).
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We remark that the graphs for {; are actually very slightly concave. However, we observe the
same small concavity effect when we replace the log-volatility by simulations of a fBM with the
same number of points. We conclude that this effect relates to finite sample size and is thus
not significant.

2.3 S&P and NASDAQ indices
We report in Figure 1.6 and Figure 1.7 similar results for the S&P and NASDAQ indices. The

variance proxies used here are the precomputed 5-minute realized variance estimates for
the whole trading day made publicly available by the Oxford-Man Institute of Quantitative
Finance.
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Figure 1.6 - logm(q,A) as a function of logA, S&P.
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Figure 1.7 - logm(q, A) as a function of log(A), NASDAQ,
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We observe the same scaling property for the S&P and NASDAQ indices as we observed
for DAX and Bund futures and again, the s; do not depend on g. However, the estimated
smoothnesses are slightly higher here: H =0.142 for the S&P and H = 0.139 for the NASDAQ,
see Figure 1.8.
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Figure 1.8 - {4 (blue) and 0.142 x g (green), S&P (left); {4 (blue) and 0.139 x g (green), NASDAQ
(right).

Once again, we do expect these smoothness estimates to be biased high because we are using
whole-day realized variance estimates, as explained earlier in Section 2. Finally, we remark
that as for DAX and Bund futures, the graphs for {, are slightly concave.

2.4 Other indices

Repeating the analysis of Section 2.3 for each index in the Oxford-Man dataset, we find the
m(q,A) present a universal scaling behavior. For each index and for g =0.5, 1, 1.5, 2, 3, by
doing a linear regression of log(m(q,A)) on log(A) for A =1,...,30, we obtain estimates of {4
that we summarize in Table 1.3 in the appendix.

2.5 Distribution of the increments of the log-volatility

8

b

Having established that all our underlying assets exhibit essentially the same scaling behavior
we focus in the rest of the paper only on the S&P index, unless specified otherwise. That the
distribution of increments of log-volatility is close to Gaussian is a well-established stylized
fact reported for example in the papers [ABDEO]] and [ABDLO]] of Andersen et al. Looking
now at the histograms of the increments of the log-volatility in Figure 1.9 with the fitted normal
density superimposed in red, we see that, for any A, the empirical distributions of log-volatility

8We have also verified that this scaling relationship holds for Crude Oil and Gold futures with similar
smoothness estimates (.
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3. A simple model compatible with the empirical smoothness of the volatility

increments are verified as being close to Gaussian. More impressive still is that rescaling the
1-day fit of the normal density by A¥ generates (blue dashed) curves that are very close to the
red fits of the normal density, consistent with the observed scaling.

\ . /

2 El

/ \ A

Figure 1.9 - Histograms for various lags A (1, 5, 25 and 125 days) of the (overlapping) incre-
ments logo,a —logo; of the S&P log-volatility; normal fits in red; normal fit for A =1 day
rescaled by A in blue.

dl

The slight deviations from the Normal distribution observed in Figure 1.9 are again consistent
with the computation of the empirical distribution of the increments of a fractional Brownian
motion on a similar number of points.

2.6 Does H vary over time?

In order to check whether our estimations of H depends on the time interval, we split the
Oxford-Man realized variance dataset into two halves and reestimate H for each half separately.
The results are presented in Table 1.4 in the appendix. We note that although the estimated H
all lie between 0.06 and 0.20, they seem to be higher in the second period which includes the
financial crisis.

3 A simple model compatible with the empirical smoothness of
the volatility

In this section, we specify the Rough FSV model and demonstrate that it reproduces the
empirical facts presented in Section 2.
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I. Volatility is rough

3.1 Specification of the RFSV model

In the previous section, we showed that, empirically, the increments of the log-volatility of
various assets enjoy a scaling property with constant smoothness parameter and that their
distribution is close to Gaussian. This naturally suggests the simple model:

logo+a —logo,=v (WtI:rIA - WtH)’ (3)

where WH is a fractional Brownian motion with Hurst parameter equal to the measured
smoothness of the volatility and v is a positive constant. We may of course write (3) under the
form

or=oexp{vw/}, (4)

where o is another positive constant.

However this model is not stationary, stationarity being desirable both for mathematical
tractability and also to ensure reasonableness of the model at very large times. This leads
us to impose stationarity by modeling the log-volatility as a fractional Ornstein-Uhlenbeck
process (fOU process for short) with a very long reversion time scale.

A stationary fOU process (X;) is defined as the stationary solution of the stochastic differential
equation
dX,=vdWH —a(X; - m)dt,

where m € R and v and a are positive parameters, see [CKMO03]. As for usual Ornstein-
Uhlenbeck processes, there is an explicit form for the solution which is given by

t

X = vf e awl 4 m. (5)
—00

Here the stochastic integral with respect to fBM is simply a pathwise Riemann-Stieltjes integral,

see again [CKMO03].

We thus arrive at the final specification of our Rough Fractional Stochastic Volatility (RFSV)
model for the volatility on the time interval of interest [0, T1:

O = eXp{Xt}y e [0) T]’ (6)

where (X;) satisfies Equation (5) for some v >0, a >0, m € R and H < 1/2 the measured
smoothness of the volatility. Such a model is indeed stationary. However, if @ < 1/T, the
log-volatility behaves locally (at time scales smaller than T) as a fBM. This observation is
formalized in Proposition 1 below.

Proposition 1. Let W be a fBM and X* defined by (5) for a given a > 0. As a tends to zero,

E| sup 1X¢ - X§ —vwf|| —o.
te(0,T]
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3. A simple model compatible with the empirical smoothness of the volatility

The proof is given in Appendix L.A.1.

Proposition 1 implies that in the RFSV model, if & < 1/T, and we confine ourselves to the
interval [0, T] of interest, we can proceed as if the the log-volatility process were a fBM. Indeed,
simply setting @ = 0 in (5) gives (at least formally) X, — X; = v(W ! - WT) and we immediately
recover our simple non-stationary fBM model (3).

The following corollary implies that the (exact) scaling property of the fBM is approximately
reproduced by the fOU process when «a is small.

Corollary 1. Let g>0, t>0, A>0. As a tends to zero, we have

E[1X% \ — X219 — v Ky AT,

The proof is given in Appendix 1.A.2.

RFSV versus FSV

We recognize our RFSV model (6) as a particular case of the classical FSV model of Comte
and Renault [CRI8]. The key difference is that here we take H <1/2 and a <« 1/T, whereas to
accommodate the assumption of long memory, Comte and Renault have to choose H > 1/2.
The analysis of Fukasawa referred to earlier in Section 1.3 implies in particular that if H >1/2,
the volatility skew function (1) is increasing in time to expiration 7 (at least for small 7),
which is obviously completely inconsistent with the approximately 1/1/7 skew term structure
that is observed. To generate a decreasing term structure of volatility skew for longer expira-
tions, Comte and Renault are then forced to choose a > 1/T. Consequently, for very short
expirations (7 < 1/a), models of the Comte and Renault type with H > 1/2 still generate a
term structure of volatility skew that is inconsistent with the observed one, as explained for
example in Section 4 of [CCR12].

In contrast, the choice H < 1/2 enables us to reproduce both the observed smoothness of
the volatility process and generate a term structure of volatility skew in agreement with the
observed one. The choice H <1/2 is also consistent with what is improperly called mean
reversion by practitioners, which is the fact that if volatility is unusually high, it tends to
decline and if it is unusually low, it tends to increase. Finally, taking a very small implies that
the dynamics of our process is close to that of a fBM, see Proposition 1. This last point is
particularly important. Indeed, recall that at the time scales we are interested in, the important
feature we have in mind is really this fBM like-behavior of the log-volatility.

We could no doubt have considered other stationary models satisfying Proposition 1 and
Corollary 1, where log-volatility behaves as a fBM at reasonable time scales; the choice of the
fOU process is probably the simplest way to accommodate this local behavior together with
the stationarity property.

37



I. Volatility is rough

3.2 RFSV model autocovariance functions

From Proposition 1 and Corollary 1, we easily deduce the following corollary, where o(1) tends
to zero as a tends to zero.

Corollary 2. Let g >0, t>0, A>0. As a tends to zero,

1
Cov[ X7, X7\ o] = Var[X[] - v2A%H 1 o(1).
Consequently, in the RFSV model, for fixed ¢, the covariance between X; and X;,4 is linear
with respect to A%, This result is very well satisfied empirically. For example, in Figure 110,
we see that for the S&P, the empirical autocovariance function of the log-volatility is indeed

linear with respect to A", Note in passing that at the time scales we consider, the term

Var[X?] is higher than %Vz A%H in the expression for Cov[X;x,XfﬂrA].

0.24

0.22F Y

0.20

Cov™) (A)
*,

018} .
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0.14

1.0 15 2.0 25 3.0
A

Figure 110 - Autocovariance of the log-volatility as a function of A*H for H =0.14, S&P.

Thanks to [CKMO3], we even have an exact formula for the autocovariance function of the
log-volatility in the RFSV model:

HQH-1)v?
Cov[logo;,logoia]l = #{6_“AF(2H—1)
2a2H
_aA al el aA oo o=l
+ e j(; Wdu+e LAﬁdu}, (7)
and ,
H2H-1
Var[logat] = %F(ZH— 1),
a
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3. A simple model compatible with the empirical smoothness of the volatility

where I' denotes the Gamma function.

Having computed the autocovariance function of the log-volatility, we now turn our attention
to the volatility itself. We have

Elo;4n0] = E[eXT TXia],

with X% defined by Equation (5). Since X is a Gaussian process, we deduce that

E[0;, 00 ] = eEXFIHEIXE |14 VarXF1/ 2+ Var X, 172+ CovIXF X o]

Applying Corollary 2, we obtain that when «a is small, E[0;.70/] is approximately equal to

2 A2H

T (8)

GPEIX[1+2Var( X[ ,—v

It follows that in the RFSV model, log(E[o;+a0]) is also linear in A%H  This property is
again very well satisfied on data, as shown by Figure 111, where we plot the logarithm of the
empirical counterpart of E[0;120] against A>H| for the S&P with H =0.14.

0.35

log(E[o, , 10, ])

1.0 15 2.0 25 3.0 35 4.0 4.5
A

Figure L1l - Empirical counterpart of log(E[o+70]) as a function of A*H S&P.

We note that putting A% on the x-axis of Figure L1l is really crucial in order to retrieve
linearity. In particular, a corollary of (8) is that the autocovariance function of the volatility
does not decay as a power law as widely believed; see Figure 1.12 where we show that a log-log
plot of the autocovariance function does not yield a straight line.
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Figure 1.12 - Empirical counterpart of log(Cov[o;+a,0]) as a function of log(A), S&P.

3.3 RFSV versus FSV again

To further demonstrate the incompatibility of the classical long memory FSV model with
volatility data, consider the quantity m(2,A). Recall that in the data (see Section 2) we observe
the linear relationship logm(2,A) = {2 logA + k for some constant k. Also, in both FSV and
RFSV, we can consider

m(2,A)

E[(ogosa —logo)?]
2 (Var[logo ;] — Covl[logo,1ogo1al).

Therefore, using Equation (7), we have a closed form formula for m(2, A).

In Figure 113, we plot m(2,A) with the parameters H = 0.53, corresponding to the FSV model
parameter estimate of Chronopoulou and Viens in [CV12], and @ = 0.5 to ensure some visible
decay of the volatility skew. The slope of m(2,A) in the FSV model for small lags is driven by
the value of H; the lag at which m(2,A) begins to flatten and stationarity kicks in corresponds
to a time scale of order 1/a. It is clear from the picture that to fit the data, we must have
@ < 1/T and the value of H must be set by the initial slope of the regression line, which as
reported earlier in Section 2 is {» =2 x 0.14.
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Figure 113 - Long memory models such as the FSV model of Comte and Renault are not
compatible with S&P volatility data. Black points are empirical estimates of m(2,A); the blue
line is the FSV model with a = 0.5 and H = 0.53; the orange line is the RFSV model with
a=0and H=0.14.

3.4 Simulation-based analysis of the RFSV model

Our goal in this section is to show that in terms of smoothness measures, one obtains on
simulated data from the RFSV model the same behaviors as those observed on empirical
data. In particular, we would like to be able to quantify the positive bias associated with
estimating H from whole-day realized variance data as in Section 2.3 relative to using data
from a one-hour window as in Section 2.2.

We simulate the RFSV model for 2,000 days (chosen to be between the lengths of our two
datasets). In order to account for the overnight effect, we simulate the volatility o, and
efficient price P9 over the whole day. The parameters: H=0.14, v=0.3, m= Xy = -5 and
a=5x10"% are chosen to be consistent with our empirical estimates from Section 2. To
model microstructure effects such as the discreteness of the price grid, we consider that the
observed price process is generated from P; using the uncertainty zones model of [RR11] with
tick value 5 x 10~ and parameter 1 = 0.25.

9To simulate the fBM, we use a spectral method with 40,000,000 points (20,000 points per day). We then

simulate X taking X(n+ 15— Xns = VW[ |\ 5 = W) +ad(m—Xps) (with & = 1/20000).

IOP(n+1)5 —Pus = ngamg\/gUn where the Uy, are iid standard Gaussian variables.
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I. Volatility is rough

Exactly as in Section 2, for each of the 2,000 days, we consider two volatility proxies obtained
from the observed price and based on:

 The integrated variance estimator using the model with uncertainty zones over one hour
windows, from 10 am to 11 am.

e The 5 minutes realized variance estimator, over eight hours windows (the trading day).

We now repeat our analysis of Section 2, generating graphs analogous to Figures 1.3, 1.4, 1.6
and 1.7 obtained on empirical data. Figure 1.14 compares smoothness measures obtained using
the uncertainty zones estimator on one-hour windows with those obtained using the realized
variance estimator on 8-hour windows.
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Figure 114 - log(m(qg,A)) as a function of log(A), simulated data, with realized variance and
uncertainty zones estimators.

When the uncertainty zones estimator is applied on a one-hour window (1/24 of a simulated
day) as in Section 2.2, we estimate H = 0.16, which is close to the true value H =0.14 used in
the simulation. The results obtained with the realized variance estimator over daily eight-hour
windows (1/3 of a simulated day) do exhibit the same scaling properties that we see in the
empirical data with a smoothness parameter that does not depend on g. However, the
estimated H is biased slightly higher at around 0.18. As discussed in Section 2.1, this extra
positive bias is no surprise and is due to the regularizing effect of the integral operator over
the longer window. We note also that the estimated values of v (“volatility of volatility” in
some sense) obtained from the intercepts of the regressions, are lower with the longer time
windows, again as expected. A detailed computation of the bias in the estimated H associated
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3. A simple model compatible with the empirical smoothness of the volatility

with the choice of window length in an analogous but more tractable model is presented in
Appendix L.C.

We end this section by presenting in Figure 1.15 a sample path of the model-generated volatility
(spot volatility direct from the simulation rather than estimated from the simulated price series)
together with a graph of S&P volatility over 3,500 days.
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Figure I.15 - Volatility of the S&P (above) and of the model (below).

A first reaction to Figure I.15 is that the simulated and actual graphs look very alike. In
particular, in both of them, persistent periods of high volatility alternate with low volatility
periods. On closer inspection of the empirical volatility series, we observe that the sample
path of the volatility on a restricted time window seems to exhibit the same kind of qualitative
properties as those of the global sample path (for example periods of high and low activity).
This fractal-type behavior of the volatility has been investigated both empirically and theoreti-
cally in, for example, [BM03, BP03, MS00a].

At the visual level, we observe that this fractal-type behavior is also reproduced in our model,

as we now explain. Denote by L*! the law of the geometric fractional Brownian motion with

43
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Hurst exponent H and volatility x on [0, 1], that is (W )ref0,1- Then, when a is very small,
the rescaled volatility process on [0,A]: (0:a/00)se[0,1], has approximately the law LVATH,
Now remark that for H small, the function u* increases very slowly. Thus, over a large range
of observation scales A, the rescaled volatility processes on [0,A] have approximately the
same law. For example, between an observation scale of one day and five years (1250 open
days), the coefficient x characterizing the law of the volatility process is “only” multiplied by
1250%14 = 2.7. Tt follows that in the RFSV model, the volatility process over one day resembles
the volatility process over a decade.

In order to study this multi scaling more quantitatively, let us consider as in [BM03] the
quantities

A
M(q,0) =E[(Y a9)1].
i=1
If we plot log(M(g,A)) as a function of log(A) for different values of g, we get that both on
real data and on simulations of the RFSV model, M(A, q) behaves as a power law function of

A, see Figure 1.16:
M(A, q) = KyA.

Simulated data

Real data
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Figure .16 - Empirical counterpart of log(M(4, q)) as a function of log(A) on the S&P (left)
and simulation (right).

Moreover, the exponent {,; is a concave function of g, see Figure L17. It is explained in
[BKMO08] and [BMO3] that this scaling and this concavity are related to the stochastic scale
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4. Spurious long memory of volatility?

invariance of the cumulated realized variance. As explained above, in the RFSV model, we
retrieve this apparent stochastic scale invariance.

Real data Simulated data
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Figure 117 - Estimates of {4 as a function of g on the S&P (left) and simulation (right).

4 Spurious long memory of volatility?

We revisit in this section the issue of long memory of volatility through the lens of our model.
As mentioned earlier in the introduction, the long memory of volatility is widely accepted as a
stylized fact. Specifically, this means that the autocovariance function Cov(log(o;),log(o+a)]
(or sometimes Cov[o,04al) goes slowly to zero as A — oo and often even more precisely, that
it behaves as A7, with y <1 as A — oo.

In previous sections, we showed that both in the data and in our model,

Covllog(o,),log(o4a)] = A— BA*H

and
AZH

Covios,0al = Ce BY7 - D,

for some constants A, B, C and D. Thus, neither in the model nor in the data does the
autocovariance function decay as a power law. And neither the data nor the model exhibits
long memoryu, see again Figure 1.12.

Uy fact the notion of empirical long memory does not make much sense outside the power law case. Indeed
the empirical values of covariances at very large time scales are never measurable and thus one cannot conclude if
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We now revisit some standard statistical procedures aimed at identifying long memory that
have been used in the financial econometrics literature. In the sequel, we apply these both to
the data and to sample paths of the RFSV model. Such procedures are of course designed to
identify long memory under rather strict modeling assumptions; spurious results may obviously
then be obtained if the model underlying the estimation procedure is misspecified .

With the same model parameters as in Section 3.4, we simulate our model over 3,500 days,
which corresponds to the size of our dataset. Consider first the procedure in [ABDLOI1], where
the authors test for long memory in the volatility by studying the scaling behavior of the

quantity
t
f od s]
0

with respect to ¢. In the model they consider, if V(f) behaves asymptotically as t>~7 with
¥ < 1, then the autocorrelation function of the log-volatility should behave as ¢~7. Figure 1.18
presents the graph of the logarithm of the empirical counterpart of V() against the logarithm
of t, on the S&P data and within our simulation framework.

V(t) = Var
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Figure 1.18 - Empirical counterpart of log(V(¢#)) as a function of log(#) on S&P (above) and
simulation (below).

We note from Figure 118 that both our simulated model and market data lead to very similar
graphs, close to straight lines with slope 1.86. Accordingly, in the setting of [ABDLO1], we

the series of covariances converges in general. All that we say here is that the autocovariance of the (log-)volatility
does not behave as a power law.
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would deduce power law behavior of the autocorrelation function with exponent 0.14 and
therefore long memory. Thus, if the data are generated by a model like the RFSV model, one
can easily be wrongly convinced that the volatility time series exhibits long memory.

In [ABDLO03], the authors deduce long memory in the volatility by showing that the process
€; obtained by fractional differentiation of the log-volatility £; = (1 - L)dlog(a +), with d =0.4
(which is considered as a reasonable value) and L the lag operator, behaves as a white noise.
To check for this, they simply compute the autocorrelation function of £;. We give in Figure
I.19 the autocorrelation functions of the logarithm of o; and &;, again both on the data and
on the simulated path.
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Figure 1.19 - Autocorrelation functions of log(o;) (in blue) and €; (in green) and the Bartlett
standard error bands (in red), for S&P data (above) and for simulated data (below).

Once again, the data and the simulation generate very similar plots. We conclude that this
procedure for estimating long memory is just as fragile as the first, and it is easy to wrongly
deduce volatility long memory when applying it.

In conclusion, it seems that classical estimation procedures identify spurious long memory
of volatility in the RFSV model. Moreover, these procedures estimate the same long memory
parameter from data generated from a suitably calibrated RFSV model as they estimate from
empirical data. Once again, our conclusion is that although the (log-)volatility may exhibit
some form of persistence, it does not present any long memory in the classical power law
sense.
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5 TForecasting using the RFSV model

In this section, we present an application of our model: forecasting the log-volatility and the
variance.

5.1 Forecasting log-volatility

The key formula on which our prediction method is based is the following one:

cos(Hrm)  y t wH
[E WH g — —A +1/2f N dS,
(WeealZ1] /1 —oo (t=S+A)(t—s)H*1/2

where W is a fBM with H < 1/2 and %, the filtration it generates, see Theorem 4.2 of [NP0O].
By construction, over any reasonable time scale of interest, as formalized in Corollary 1, we
may approximate the fOU volatility process in the RFSV model as logo? ~ 2v W/ + C for

some constants v and C. Our prediction formula for log-variance then follows:'?

9 cos(HM) . yi1/2 ! loga2
Ellogo?, 7] = U e :

ds.
o =5+ D) (1— 512"

©)

This formula, or rather its approximation through a Riemann sum (we assume in this section
that the volatilities are perfectly observed, although they are in fact estimated), is used to
forecast the log-volatility 1, 5 and 20 days ahead (A =1, 5, 20).

We now compare the predictive power of formula (9) with that of AR and HAR forecasts, in
the spirit of [Cor09]'®. Recall that for a given integer p >0, the AR(p) and HAR predictors
take the following form (where the index i runs over the series of daily volatility estimates):

» AR(p):

. p
log(o2, \) =Kg' + Y Cilog(a?_,).
i=0

« HAR:

— 12 1 20
log(a2, \) = K + Cy'log(o5) + CSAg Y loglo?_ )+ CZA(% Y log(o?_)).
i=0 i=0

We estimate AR coefficients using the R stats library"* on a rolling time window of 500 days.
In the HAR case, we use standard linear regression to estimate the coefficients as explained
in [Cor09]. In the sequel, we consider p =5 and p = 10 in the AR formula. Indeed, these
parameters essentially give the best results for the horizons at which we wish to forecast the

2The constants 2v and C cancel when deriving the expression.

13 Note that we do not consider GARCH models here since we have access to high frequency volatility estimates
and not only to daily returns. Indeed, it is shown in [ABDLO3] that forecasts based on the time series of realized
variance outperform GARCH forecasts based on daily returns.

“More precisely, we use the default Yule-Walker method.
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volatility (I, 5 and 20 days). For each day, we forecast volatility for five different indices'.

We then assess the quality of the various forecasts by computing the ratio P between the mean
squared error of our predictor and the (approximate) variance of the log-variance:

— \2
53 ogie, - 108007,

- EN-A (log(02, ) ~Ellog(o2, 1)

where [E[log(o% +)] denotes the empirical mean of the log-variance over the whole time period.

AR(5) | AR(10) | HAR(3) | RFSV
SPX2rvA=1 | 0317 | 0318 | 0314 | 0313
SPX2rvA=5 | 0459 | 0449 | 0437 | 0.426

SPX2rvA=20 | 0.764 | 0.694 | 0.656 | 0.606
FTSE2rvA=1 | 0230 | 0.229 | 0225 | 0223
FISE2rvA=5 | 0.357 | 0.344 | 0.337 | 0.320
FTSE2rv A= 20 | 0.651 | 0571 | 0541 | 0.472
N2252rvA=1 | 0.357 | 0.358 | 0351 | 0.345
N2252rvA=5 | 0553 | 0.533 | 0.513 | 0.504
N2252rv A= 20 | 0.875 | 0795 | 0746 | 0.714
GDAXI2xv A=1 | 0.237 | 0.238 | 0.234 | 0.231
GDAXI2rvA=5 | 0372 | 0.362 | 0.350 | 0.339

GDAXI2.xrv A= 20 | 0.661 | 0.590 | 0.550 | 0.498

FCHI2rv A=1 | 0244 | 0244 | 0241 | 0.238
FCHI2rvA=5 | 0.378 | 0.373 | 0.366 | 0.350
FCHI2.rv A=20 | 0.669 | 0.613 | 0598 | 0.522

Table L1 - Ratio P for the AR, HAR and RFSV predictors.

We note from Table L1 that the RFSV forecast consistently outperforms the AR and HAR fore-
casts, especially at longer horizons. Moreover, our forecasting method is more parsimonious
since it only requires the parameter H to forecast the log-variance. Compare this with the AR
and HAR methods, for which coefficients depend on the forecast time horizon and must be
recomputed if this horizon changes.

Remark that our predictor can be linked to that of [DRV12], where the issue of the prediction
of the log-volatility in the multifractal random walk model of [BMO03] is tackled. In this model,

log(o?) s
(t-s+AVi-s

T addition to S&P and NASDAQ, we also investigate CAC40, FTSE and Nikkei, over the same time period as
S&P and NASDAQ). For simplicity, the parameter H used in our predictor is computed only once for each asset,
using the whole time period. This yields similar results to using a moving time window adapted in time.

1 t
Eflog(o7, )] = ;\/Z f
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which is the limit of our predictor when H tends to zero.

Note also that our prediction formula may be rewritten as

cos(Hn) f+°° log(o2_,,)
T 0

(u+1) uH+1/2

Ellog(o?, )%/ =

For a given small € >0, let r be the smallest real number such that

+00 1
———du<e.
j; (u+ 1) uH+1/2

Then we have, with an error of order ¢,

cos(Hm) [T log(ai_m)

u.
o (u+1) uH+l/2

Ellog(o?, \)|F ] =

Consequently, the volatility process needs to be considered (roughly) down to time ¢ —Ar if
one wants to forecast up to time A in the future. The relevant regression window is thus linear
in the forecasting horizon. For example, for r = 1, € = 0.35 which is not so unreasonable. In
this case, as is well-known to practitioners, to predict volatility one week ahead, one should
essentially look at the volatility over the last week. If trying to predict the volatility one month
ahead, one should look at the volatility over the last month.

5.2 Variance prediction

Recall that logo? ~ 2v W/ + C for some constant C. In [NP0O], it is shown that WzI;IA is
conditionally Gaussian with conditional variance

Var[W/|F] = cA*!
with

_ reRr-m
T H+12TC-20)

Thus, we obtain the following natural form for the RFSV predictor of the variance:

U%+A = exp {loga%+A +20v2A2H}

where I(M) is the estimator from Section 5.1 and V2 is estimated as the exponential of the
intercept in the linear regression of log(m(2,A)) on log(A).

As in the previous paragraph, we compare in Table 1.2 the performance of the RFSV forecast
with those of AR and HAR forecasts (constructed on variance rather than log-variance this

time).

50



6. The microstructural foundations of the irregularity of the volatility

AR(5) | AR(10) | HAR(3) | RFSV
SPX2rvA=1 | 0520 | 0.566 | 0489 | 0.475
SPX2rvA=5 | 0750 | 0745 | 0723 | 0.672

SPX2rvA=20 | 1070 | 1010 | 1036 | 0.903
FTSE2rvA=1 | 0.612 | 0.621 | 0582 | 0.567
FTSE2rvA=5 | 0797 | 0770 | 0756 | 0.707
FTSE2rv A=20 | 1046 | 0.984 | 0.935 | 0.874
N2252rvA=1 | 0.554 | 0579 | 0504 | 0.505
N2252rvA=5 | 0.857 | 0.807 | 0761 | 0.729
N2252rv A= 20 | 1.097 | 1.046 | 1011 | 0.964
GDAXI2rv A=1 | 0439 | 0448 | 0399 | 0.386
GDAXI2rvA=5 | 0.675 | 0.650 | 0.616 | 0.566

GDAXI2.xrv A= 20 | 0.931 | 0.850 | 0.816 | 0.746

FCHI2rv A=1 | 0533 | 0542 | 0470 | 0.465
FCHI2rvA=5 | 0705 | 0707 | 0.691 | 0.631
FCHI2rv A=20 | 0.982 | 0.952 | 0912 | 0.828

Table 1.2 - Ratio P for the AR, HAR and RFSV predictors.

We find again that the RFSV forecast typically outperforms HAR and AR, although it is worth
noting that the HAR forecast is already visibly superior to the AR forecast.

6 The microstructural foundations of the irregularity of the
volatility

We gather in this section some ideas which may help to understand why the observed volatility
appears so irregular. The starting point is the analysis of the order flow through Hawkes
processes. These processes are extensions of Poisson processes where the intensity at a given
time depends on the location of the past jumps. More precisely, let us consider a time period
starting at 0 and denote by N; the number of transactions between 0 and ¢. Assuming the
point process N; follows a Hawkes process means its intensity at time ¢, A;, takes the form:

Ar=p+ Z ot—J1),

0<J;<t

where the J; are the past jump times, p is a positive constant and ¢ is a non negative deter-
ministic function called kernel.

When trying to calibrate such models on high frequency data, two main phenomena almost
systematically occur:

e The L! norm of ¢ is close to one, see [FS12, FS13, HBB13, LC14].
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 The function ¢ has a power law tail, see [BMl4a, HBBI3].

The first of these two facts means the degree of endogeneity of the market is very high, that
is one given order endogenously generates many other orders, see [FS12, FS13, HBB13]. This
recent feature of financial markets is obviously related to electronic high frequency trading,
where market participants automatically react to other participants orders through their algo-
rithms. The second observation tells us that generally, a given order influences other orders
over a long time period. This is likely due to the splitting of large orders. Indeed, many orders
are actually part of a metaorder whose full execution can take a large amount of time.

We believe these two phenomena together lead to a superposition effect inducing this irregular
volatility. Indeed, it is explained in Chapters II and III that the macroscopic scaling limit of
Hawkes processes with power law tail and kernel with L! norm close to one can be seen as an
integrated fractional process, with Hurst parameter H smaller than 1/2. This signifies that
at large sampling scales, the dynamics of the cumulated order flow is well approximated by
an integrated fractional process, with H < 1/2. Then, it is clearly established that there is a
linear relation between cumulated order flow and integrated variance. Thus we retrieve here
that because of this superposition effect, the volatility should behave as a fractional process
with H <1/2. The same kind of results is obtained by modeling the log-volatility as a nearly
unstable heavy tail autoregressive process, see Chapter IV.

7 RFSV and pricing

In [BFGI15] the authors explore the implications of the RFSV model (written under the physical
measure P), for option pricing (under the pricing measure Q). In particular, following
Mandelbrot and Van Ness, the fBM that appears in the definition (6) of the RFSV model may
be represented as a fractional integral of a standard Brownian motion as follows [MVN68]:

taw,
wl = f > f [ aw;, (10)
o (t=9) =97 (=)
with y = 5 — H. The observed anti correlation between price moves and volatility moves may

then be modeled naturally by anti correlating the Brownian motion W that drives the volatility
process with the Brownian motion driving the price process. As already shown by Fukasawa
[Fukll, Fukl5], such a model with a small H reproduces the observed decay of at-the-money
volatility skew with respect to time to expiry, asymptotically for short times. It is also that an
appropriate extension of Fukasawa’s model, consistent with the RFSV model, fits the entire
implied volatility surface remarkably well, not just for short expirations. Moreover, despite that
it would seem from (10) that knowledge of the entire path {Ws: s <t} of the Brownian motion
would be required, it turns out that the statistics of this path necessary for option pricing are
traded and thus easily observed.
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8 Conclusion

Using daily realized variance estimates as proxies for daily spot (squared) volatilities, we
uncovered two startlingly simple regularities in the resulting time series. First we found that
the distributions of increments of log-volatility are approximately Gaussian, consistent with
many prior studies. Secondly, we established the monofractal scaling relationship

E[llog(oa) —log(oo)|?] = Ky v ATH, (11)

where H can be seen as a measure of smoothness characteristic of the underlying volatility
process; typically, 0.06 < H < 0.2. The simple scaling relationship (11) naturally suggests that
log-volatility may be modeled using fractional Brownian motion.

The resulting Rough Fractional Stochastic Volatility (RFSV) model turns out to be formally
almost identical to the FSV model of Comte and Renault [CR98], with one major difference:
In the FSV model, H > 1/2 to ensure long memory whereas in the RFSV model H < 1/2,
typically, H = 0.1. Moreover, in the FSV model, the mean reversion coefficient a has to be
large compared to 1/T to ensure a decaying volatility skew; in the RFSV model, the volatility
skew decays naturally just like the observed volatility skew, @ << 1/T and indeed for time scales
of practical interest, we may proceed as if a were exactly zero.

We further showed that applying standard statistical estimators to volatility time series simu-
lated with the RFSV model would lead us to erroneously deduce the presence of long memory,
with parameters similar to those found in prior studies. Despite that volatility in the RFSV
model (or in the data) is not long memory, we can therefore explain why long memory of
volatility is widely accepted as a stylized fact.

As an application of the RFSV model, we showed how to forecast volatility at various times
cales, at least as well as Fulvio Corsi’s impressive HAR estimator, but with only one parameter
- H!

Finally, we explained how the RFSV model could emerge as the scaling limit of a Hawkes
process description of order flow.

ILA Technical results

ILA1 Proof of Proposition 1

Starting from Equation (5) and applying integration by parts, we get

t
X = vW[H—f vae *"IWHds+m.

—00
Therefore,

t 0
vae‘“(t_s)Wsts—f va(e_“(t_s)—e“s)WSHds.

—00

(X?—Xé’)—vWﬁ:—f
0
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Consequently,

0
sup (X7 —X) - thHI < vaTWf +f va(e®* — e_“(T_S))Wsts,
te[0,T] —00
where W/ = SUPe(0,1] |IWH|. Using the maximum inequality of [NV99], we get
0
E[ sup [(X{-X§) —thHl] < c(vaTTH+f va(Tae“s)IslHds),
te[0,T] —00

with ¢ some constant. The term on the right hand side is easily seen to go to zero as a tends
to zero.

ILA.2 Proof of Corollary 1
We first recall Equation (2.2) in [CKMO3] which writes:

|1—2H

, |x
Cov[X% ,, X :Kf etAx dx,
OV[ t+A t] R (12 +x2

with K =v2T'(2H + Dsin(wH)/(27)*%. Now remark that

E[(XE, , — XD)?] = 2Var[X2] - 2Cov[ XY, ,, X7

Therefore,
| x| 1-2H

dx.

E[(X% - X% = 2KfR(1 — et e

This implies that for fixed A, [E[IX;"Jr AT Xf‘lz] is uniformly bounded by

iAx |x|1—2H
2Kf 1-e )—de.
R X
Moreover, X[,
is uniformly bounded (in @) so that the family | X
since by Proposition 1,

— X7 is a Gaussian random variable and thus for every g, its (q+ 1) moment

¢4

& A= X714 is uniformly integrable. Therefore,

H H :
I X7 A - X9 — Vq|Wt+A_ W4, in law,

we get the convergence of the sequence of expectations.

16T his covariance is real because it is the Fourier transform of an even function.
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I.LB Estimations of H

I.B.1 On different indices

Index C0,5/0.5 Cl 51,5/1.5 Cg/z Cg/?)

SPX2.rv 0.128 | 0.126 0.125 0.124 | 0.124
FTSE2.rv 0.132 0.132 0.132 0.131 | 0.127
N2252.rv 0.131 0.131 0.132 0.132 | 0.133
GDAXI2.rv 0.141 0.139 | 0.138 0.136 | 0.132
RUT2.rv 0.117 0.115 0.113 0.1 | 0.108
AORD2.rv 0.072 | 0.073 | 0.074 | 0.075 | 0.077
DJI2.xrv 0.117 0.116 0.115 0.114 | 0113

IXIC2.rv 0.131 0.133 0.134 0.135 | 0.137
FCHI2.rv 0.143 0.143 0.142 0.141 | 0.138
HSI2.rv 0.079 | 0.079 | 0.079 | 0.080 | 0.082
KSIL.rv 0.133 0.133 0.134 0.134 | 0.132
AEX.rv 0.145 0.147 0.149 0.149 | 0.149
SSMILrv 0.149 0.153 0.156 0.158 | 0.158
IBEX2.rv 0.138 | 0.138 0.137 0.136 | 0.133
NSELrv 0.119 0.117 0.114 0.111 | 0.102
MXX.rv 0.077 | 0.077 | 0.076 | 0.075 | 0.071
BVSP.rv 0.118 0.118 0.119 0.120 | 0.120
GSPTSE.rv 0.106 | 0.104 | 0.103 0.102 | 0.101
STOXX50E.rv | 0.139 0.135 0.130 0.123 | 0.101
FISTLrv 0.111 0.112 0.113 0113 | 0112

FTSEMIB.rv 0.130 0.132 0.133 0.134 | 0.134

Table 1.3 - Estimates of { for all indices in the Oxford-Man dataset.
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I.B.2 On different time intervals

Index H (first half) | H (second half)
SPX2.rk 0.115 0.158
FTSE2.rk 0.140 0.156
N2252.rk 0.083 0.134
GDAXI2.rk 0.154 0.168
RUT2.rk 0.098 0.149
AORD2.rk 0.059 0.114
DJI2.rk 0.123 0.151
IXIC2.rk 0.094 0.156
FCHI2.rk 0.140 0.146
HSI2.rk 0.072 0.129
KSIlL.rk 0.109 0.147
AEX.rk 0.168 0.151
SSMI.rk 0.206 0.183
IBEX2.rk 0.122 0.149
NSELrk 0.112 0.124
MXX.rk 0.068 0.118
BVSP.rk 0.074 0.134
GSPTSE.rk 0.075 0.147
STOXX50E.rk 0.138 0.132
FTSTLrk 0.080 0.171
FTSEMIB.rk 0.133 0.140

Table 1.4 - Estimates of H over two different time intervals for all indices in the Oxford-Man
dataset

I.C The effect of smoothing
Although we are really interested in the model
logoea —logo, =v (Wi, - W),
consider the more tractable (fractional Stein and Stein or fSS) model:
veen = ve=a (Wi, - W),

where v; = 0. We cannot observe v; but suppose we can proxy it by the average

s_1[°
VY =— v, du.
t 6[0 u
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We would, for example, like to estimate m(2,A) =E [(UHA - vt)z]. However, we need to proxy
spot variance with integrated variance so instead we have the estimate

m®(2,A)

e[,y

5
U (Vura — Vy) du)
0

a’ 9 ro " . . "
- ?/(; fO [E[(Wu+A_Wu )(W5+A_Ws )] duds

_E[E

)

[ f {Iu—s+A|2H—|u—s|2H} duds, (12)
o Jo

where the last step uses that:

E(WIwWH] = - {2+ 5 —ju—s?H},

DN | =

and the symmetry of the integral.

We assume that the length 6 of the smoothing window is less than one day so A > 6. Then
easy computations give

6 o
f f |u—s+A|2Hduds
o Jo

1 1
and
f5f6|u—s|2Hduds = 2 ;52H+2.
o Jo 2H+12H+2

Substituting back into (12) gives

1 1 1

) 2 A2H 2H+2 2H+2 2H+2

2,A) = A — — {(1+6 -2-20 +(1-6

m(2,A) ¢ SH+l2H+2 2 (4+0 A-6)"7%
= a?A*f0).

where 0 = §/A.

Figure 1.20 shows the effect of smoothing on the estimated variance in the fSS model. Keeping
0 fixed, as A increases, f(0) = f(6/A) increases towards one. Thus, in a linear regression
of log mé(2,A) against logA, we will obtain a higher effective H (from the higher slope) and
a lower effective (“volatility of volatility”) @, exactly as we observed in the RSFV model
simulations in Section 3.4.
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Figure 1.20 - f(0) vs 0 =6/A with H=0.14.

Numerical example

In the simulation of the RSFV model in Section 3.4, we have H =0.14, 61 = 1/24 for the UZ
estimate and 6, = 1/3 for the RV estimate. We now reproduce a fSS analogue of the RFSV
simulation plots of m(2,A) in Figure I.14. Specifically, for each A€ {1,2,...,,100}, with a =0.3
and 6 =0; or 6 = 6,, we compute the m®2,A) and regress logm5(2, A) against logA. The
regressions are shown in Figure .21 and results tabulated in Table 1.5.

In Figure 1.21 and Table 1.5, we observe similar qualitative and quantitative biases from our
fSS model simulation as we observe in our simulation of the RSFV model with equivalent
parameters in Section 3.4.

Estimate Est. «a Est. H
Exact (0=0) 0300 0.140
UZ (6=1/24) 0.263 0.61
RV (6 =1/3) 0.230 0.184

Table 1.5 - Estimated model parameters from the regressions shown in Figure 1.21.
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-3.0

log A

Figure 1.21 - Analogue of Figure 1.14 in the fSS model: The blue solid line is the true m(2,A);
the red long-dashed line is the UZ estimate mo1(2, A); the orange short-dashed line is the RV
estimate m®: 2,A).

I.LD Further results

In this paragraph, we present some additional results related to the RFSV model.

ID.1 RFSV model at intra day time scales

Until now, we have seen that the log-volatility process from one day to the other behaves as
some sort of geometric fractional Brownian motion. In this paragraph, we wish to study what
happens at intra day time scales. To do that, we will split every day in our high frequency
database (for the DAX) into windows of one hour and estimate the realized variance on each
window using the uncertainty zone estimator.

Before studying the smoothness of the obtained volatility process, one needs to deal with the
intra day seasonality. Indeed, this effect is very important at intra day time scales, for example,
the average variance from 4 to 5 pm is more than twice the average variance from 12 to 1 pm.
To do this, we divide every hourly realized variance by the average realized variance on the
corresponding time window. We then study the scaling of the increments of the log-volatility
as before.
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log(m(2,4))

0.0 0.5 1.0 1.5 2.0 2.5
log(A)

Figure 1.22 - log(m(2,A)) as a function of log(A) for the DAX on intra day time scales.

We observe the kind of scaling behavior observed at extra day time scales with H =0.19. This
seems to show that our model extends at intra day time scales.

ID.2 From metaorders distribution to persistence in the order flow

In this paragraph, we consider a continuous time version of the metaorder model of [LMFO05].
Representing this model as a cone of a two dimensional noise somehow as in [BM03], we
obtain a simple relationship between the autocovariance function of the order flow and the
metaorder size distribution. Considering the power law case, we obtain two interesting regimes:
If the size distribution of metaorders has a finite expectation then the flow presents long
memory. If not, the flow behaves somehow as a fractional Brownian motion of exponent
smaller than one half as in the RFSV model.

I.D.2.1 The metaorder model

Let us consider a clustered order flow model where metaorders (clusters) arrive as a Poisson
process and where their lengths are iid random variables (to simplify, we assume that the
“intensity” of metaorders is fixed so that their volume is proportional to their length). In
such a model, the (continuous time) order flow intensity V; defined as the number of “active”
metaorders at time ¢ is thus given by:

+00o

Vi=) 1qeit-L,12,t+L:/2)
i=1

where T is a Poisson process of intensity p representing the times of the middle of metaorders
and (L;) are iid random variables of density f7(x)/u representing the size of metaorders.

The aim of this paragraph is, somehow as in [LMF05], to derive the correlation structure of
the order flow from the distribution of L. As a tool for computations, we consider, somehow

as in [BMO03], the following “cone representation” of V;:
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Proposition 2. In law, we have:
Vi=N(Ay)

where N is a Poisson point process on R x R, of intensity fr(x)dtdx, fr(x) corresponds to the
intensity of the arrival of metaorders of size x, A; is the cone

Ar={(t,x);1t' =t < x/2}

see Figure 1.23 and N(A;) is the number of points of N in A;.

A

2

612 4 t,
Figure 1.23 - Illustration of the cones A; and A,.

Proof. To show this result, instead of modeling (7;) and (L;) “separately”, we model (T}, L;)
jointly as the Poisson point process N defined above. To end the proof, we only need to notice
that V; = Z:’:‘f L7et-1,/2,t+1,;/2] is exactly equal to the number of points of (T3, L;) in A;, that
is A;(N). O

This representation is convenient because, the autocovariance of the order flow writes as
+00
Cov[Vy, Vianl = VarlN(A; 0 Apap)] = fh (t— ) fu(ndt. (13)

In particular, the autocovariance function of the order flow is defined if and only if the size
distribution of metaorders has a finite expectation.

ID.2.2 Power law asymptotics

In this section, we use Equation (13) to study two interesting asymptotics where the size
distribution of metaorders behaves as a power law.
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The long memory case

In many works, it is mentioned that

fL(x) = m

with Y €(0,1), § a cut-off scale and A a normalization constant, see for example [LMF05]. In
that case, using Equation (13) we easily find as in [LMF05], that the autocorrelation of the
order flow behaves as

+00
CoviVi, Vil = fh (t- ) fi(Ddt
c
h—+oo hY
using the dominated convergence theorem. This is consistent with the well established long
memory of the order flow.

The fractional diffusion case

Let us now assume that the metaorder size distribution behaves as

fix) =

@+ xz2i 5T

with H € (0,1/2), 6 a cut-off scale, T a very long stationarity time scale!” and A a normalization
constant.

Then, we easily get
Cov(Vy, Visl o A-Br*H

<h<T

which is similar to the correlation structure of the log-volatility in RFSVI8,

I.D.2.3 Financial application

As for nearly unstable Hawkes and autoregressive processes, see Chapters Il and IV, depending
on the properties of size distribution of the metaorders, we can either get a long memory
order flow or a fractionally diffusive order flow. Note also that at the interface between these
two regimes, the Multifractal Random Measure model appears, see [BKMO8].

17Somehow as for RFSV; it is necessary to introduce this time scale for the distribution to have an expectation
and for V to have a correlation structure.

BOf course this model is not Gaussian but it is possible to obtain a Gaussian model with the same correlation
structure by replacing the Poisson noise N by a Gaussian noise of same intensity.
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I.D.3 RFSV and the distribution of returns

It is often argued, see [FLO4] or [GGPSO03] that the density of absolute price returns |AP;|/P;
behaves as a power law of exponent between 3 and 4. In the RFSV model, the returns are
in law equal to N;o;, where N; ~ N(0,1) and are therefore light tail. However, since the
observation time scale of the volatility process is not much larger than its ergodicity time
scale, the empirical distribution of the volatility and thus of the returns are different from
their theoretical distribution. In particular, we retrieve on simulations of the RFSV model the
empirical power law behavior of the distribution of returns, see Figure 1.24.

Simulated Data: Trend=-2.41

| |
=
w o
T

log(P(|dP/P|>x))

| | | | | |
R W w NN
n o uwo uno

-3.4 -3.2 -3.0 -2.8 -2.6 2.4 -2.2
log(x)
Real Data: Trend=-2.50
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o
o
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| | | | | | |
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Figure 1.24 - Logarithm of the probability that |AP;|/P; be higher than x as a function of
log(x) on simulated data (above) and on real data (below).

ID.4 An empirical time irreversibility

In this paragraph, we provide a simple example of the time irreversibility of the volatility
process. Loosely speaking, it states that the (log-)volatility increases less often than it decreases
but when it increases, it increases a lot. This property corresponds to the (inverse) skewness of

the VIX, see for example [BFGI15].

The first way to see this is to directly look at the log-volatility and to notice that indeed the
positive increments of the log-volatility seem to be more important and less frequent than its
negative increments (see the vertical black lines).
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1000
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Figure 1.25 - Log of the realized volatility on 3500 days.

A more formal way to study this phenomenon is to consider the empirical estimation of the

quantities

and

m3(A) = E[(log(0 r+4) —log(a))*]

M3(A) =E[llog(os+a) —log(o )]

that we plot as a function of A, see Figure 1.26.
We observe that although m? is smaller than M3, it is significantly higher than zero especially
after 6 =8 days. We obtain the same kind of results for all assets.

m(3,4) and M(3,A)
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Figure 1.26 - m? and M? as a function of log(A) for the S&P.
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Remark that this stylized fact is inconsistent with a time reversible volatility. Indeed, if the
volatility were stationary!” and time reversible??, we would have:

El(log(0+a) —log(a))*]

= El(log(o—;-a) —log(o—1)’]
= El(log(o,) —log(o+a))°]
= —-mi)=o.

m3(A)

This property correspond to the smile of the VIX. The RFSV model does not reproduce
this feature since it is time reversible. This is thus an “historical” and not a “risk neutral”
property and does not corresponds to a “stochastic risk premium in the volatility” as it is said
in [BFG15]. In order to solve this issue, one might wish to positively correlate the volatility of
the log-volatility 7 with the past increments of the volatility.

ID.5 Test of multifractality

In this paragraph, we test on our data the result of the MRM model which states that m(2,A)
behaves as A+ Blog(A). To do that, we plot m(2,A) as a function of log(A), see Figure 1.27.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
log(A)

Figure 1.27 - m(2,A) as a function of log(A) for the DAX.

We get that this plot is slightly but significantly convex?! in accordance with the RFSV model
and a small Hurst index. Indeed recall that as H tends to zero, our model somehow tends
towards the MRM model.

19A process X is stationary if the law of (X, ) is equal to the law of (X;).
207 process X is time reversible if the law of (X;) is equal to the law of (X_;).
2IThis result is consistent across different kinds of data.
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I.D.6 Historical skew measurement

In this paragraph, we empirically study the “skew” in the RFSV model and on historical data.
To do this, we (anti-)correlate the Brownian motion driving price moves B with the fractional
Brownian motion driving volatility W using the Mandelbrot-Van-Ness representation of the
fractional Brownian motion as in Section 7:

m_ ([t aw 0 1 1
log(ot)—log(oo)—th =v ‘/(; m+‘/;oo (I—S)I/Z_H_ (_S)I/Z—H dWs ’

dpt:PtO'tdBt

and
d< Wy, By >= —pdt

In this model, the correlation of the increments of W and B writes as:

1/2+H
EL(Wy' = Wo ) (Ba—Bo)l = —pro—0
which implies that
A dPs A1/2+H
El(log(oa) —log(oo)) fo Psas] SV YT

In order to check that this power law relation holds on data, we compute the empirical average
S(A) corresponding to this expectation as a function of A and we plot log(s(A)) as a function
of log(A), see Figure 1.28.
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Figure 1.28 - log(s(A)) as a function of log(A) for the DAX.

We get that the power law relation holds rather well. However, we also get that the implied
Hurst exponent is significantly higher?? than the one predicted by looking at the scaling of
the increments of the log-volatility. For example, for the DAX, we get a trend of 0.80 which
corresponds to H =0.30 instead of 0.13 in Section 2.2.

22This result is very preliminary and requires confirmation.
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ID.7 Rough market activity

In this chapter, we have applied our regularity measure to realized variance measurement. An
alternative measure of market activity is to count the number of arriving market orders. In this
paragraph, we measure the regularity of the arrival intensity of market orders. As before, we
approximate the “punctual” arrival intensity of market orders as the number of market orders
on a given time widow during the day: from 10 am to 11 am. We thus get a measure of this
intensity A; for every day i. We then study of the moments of the increments of log(A):

1 N
mt(q,8) = — Y [log(Ar+a) —log(Ax)17.
Nk:l

For both the DAX and the Bund futures, we get that the obtained Hurst index is much smaller
(0.05 instead of 0.13 for the DAX and 0.03 instead of 0.08 for the Bund), see Figure 1.29.

(] 1 2 3 4 5
log(A)

Figure 1.29 - log(m’l(Z,A)) as a function of log(A) for the DAX.

This small numerical estimation of H is coherent with simulations of a multifractal intensity
model, which somehow corresponds to H =0, and where mr2,A) = A+ Blog(A), see Figure
1.30.

1 2 3 4 5
log(A)

Figure 1.30 - m(2,A) as a function of log(A) for the DAX.
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CHAPTER II

Limit theorems for nearly unstable Hawkes
processes

Abstract

Because of their tractability and their natural interpretations in term of market quantities,
Hawkes processes are nowadays widely used in high frequency finance. However, in
practice, the statistical estimation results seem to show that very often, only nearly unstable
Hawkes processes are able to fit the data properly. By nearly unstable, we mean that the L
norm of their kernel is close to unity. We study in this work such processes for which the
stability condition is almost violated. Our main result states that after suitable rescaling,
they asymptotically behave like integrated Cox Ingersoll Ross models. Thus, modeling
financial order flows as nearly unstable Hawkes processes may be a good way to reproduce
both their high and low frequency stylized facts. We then extend this result to the Hawkes
based price model introduced by Bacry et al. in [BDHMI13]. We show that under a similar
criticality condition, this process converges to a Heston model. Again, we recover well
known stylized facts of prices, both at the microstructure level and at the macroscopic
scale.

Keywords: Point processes, Hawkes processes, limit theorems, microstructure modeling, high
frequency data, order flows, Cox Ingersoll Ross model, Heston model.

1 Introduction

A Hawkes process (V) s> is a self exciting point process, whose intensity at time #, denoted
by A;, is of the form

Ae=p+ Y "’”‘“:“*f(o 9e-san,
N3

0<J;<t

where p is a positive real number, ¢ a regression kernel and the J; are the points of the
process before time ¢ (see Section 2 for more accurate definitions). These processes have
been introduced in 1971 by Hawkes, see [Haw71a, Haw71b, HO74], in the purpose of modeling
earthquakes and their aftershocks, see [Ada76]. However, they are also used in various other
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II. Nearly unstable light-tailed Hawkes processes

disciplines. In particular, in recent years, with the availability of (ultra) high frequency data,
finance has become one of the main domains of application of Hawkes processes.

The introduction of Hawkes processes in finance is probably due to Bowsher, see [Bow(7], who
jointly studied transaction times and midquote changes, using the Hawkes framework. Then,
in [BHO4], Bauwens and Hautsch built so-called latent factor intensity Hawkes models and
applied them to transaction data. Another pioneer in this type of approach is Hewlett. He
considered in [Hew06] the particular case of the foreign exchange rates market for which he
fitted a bivariate Hawkes process on buy and sell transaction data. More recently, Bacry et al.
have developed a microstructure model for midquote prices based on the difference of two
Hawkes processes, see [BDHMI13]. Moreover, Bacry and Muzy have extended this approach in
[BM14a] where they design a framework enabling to study market impact. Beyond midquotes
and transaction prices, full limit order book data (not only market orders but also limit orders
and cancellations) have also been investigated through the lenses of Hawkes processes. In
particular, Large uses in [Lar(7] a ten-variate multidimensional Hawkes process to this purpose.
Note that besides microstruture problems, Hawkes processes have also been introduced in the
study of other financial issues such as daily data analysis, see [ELLI1]], financial contagion, see
[ASCDLIO], or Credit Risk, see [EGGIO].

The popularity of Hawkes processes in financial modeling is probably due to two main reasons.
First, these processes represent a very natural and tractable extension of Poisson processes.
In fact, comparing point processes and conventional time series, Poisson processes are often
viewed as the counterpart of iid random variables whereas Hawkes processes play the role of
autoregressive processes, see [DV]J02] for more details about this analogy. Another explanation
for the appeal of Hawkes processes is that it is often easy to give a convincing interpretation
to such modeling. To do so, the branching structure of Hawkes processes is quite helpful.
Recall that under the assumption [|¢|l; < 1, where [¢ll; denotes the L' norm of ¢, Hawkes
processes can be represented as a population process where migrants arrive according to
a Poisson process with parameter y. Then each migrant gives birth to children according
to a non homogeneous Poisson process with intensity function ¢, these children also giving
birth to children according to the same non homogeneous Poisson process, see [HO74]|. Now
consider for example the classical case of buy (or sell) market orders, as studied in several
of the papers mentioned above. Then migrants can be seen as exogenous orders whereas
children are viewed as orders triggered by other orders.

Beyond enabling to build this population dynamics interpretation, the assumption [|¢ll; <1 is
crucial in the study of Hawkes processes. To fix ideas, let us place ourselves in the classical
framework where the Hawkes process (V) starts at —oo. In that case, if one wants to get a sta-
tionary intensity with finite first moment, then the condition [¢ll; <1 is required. Furthermore,
even in the non stationary setting, this condition seems to be necessary in order to obtain
classical ergodic properties for the process, see  BDHMI2]. For these reasons, this condition is
often called stability condition in the Hawkes literature.
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1. Introduction

From a practical point of view, a lot of interest has been recently devoted to the parameter
ll¢pll1. For example, Hardiman, Bercot and Bouchaud, see [HBB13], and Filimonov and Sornette,
see [FS12, FS13], use the branching interpretation of Hawkes processes on midquote data in
order to measure the so-called degree of endogeneity of the market. This degree is simply
defined by ||¢ll1, which is also called branching ratio. The intuition behind this interpretation
of lpll; goes as follows: The parameter ||¢|l; corresponds to the average number of children
of an individual, ||gb||§ to the average number of grandchildren of an individual,. .. Therefore,
if we call cluster the descendants of a migrant, then the average size of a cluster is given by
Yk=1 ||¢>||]1C =|l¢ll1/A—=Ill¢l1). Thus, in the financial interpretation, the average proportion of
endogenously triggered events is ||¢[l1/(1—|l¢ll1) divided by 1+[I¢pll1 /(1 —[I¢pll1), which is equal
to [¢ll1.

This branching ratio can be measured using parametric and non parametric estimation
methods for Hawkes processes, see [Oga78, Oga83] for likelihood based methods and
[BDM12, RBS*10] for functional estimators of the function ¢. In [HBBI3], very stable es-
timations of |||} are reported for the E mini S&P futures between 1998 and 2012, the results
being systematically close to one. In [FS12], values of order 0.7-0.8 are obtained on several
assets. A debate on the validity of these results is currently ongoing between the two groups.
In particular, it is argued in [HBB13] that the choice of exponential kernels in [FS12] may lead
to spurious results, whereas various bias that could affect the study in [HBBI3] are underlined
in [FS13]. In any case, we can remark that both groups find values close to one for ||, which
is consistent with the results of [BDM12], where estimations are performed on Bund and Dax
futures.

This seemingly persistent statistical result should definitely worry users of Hawkes processes.
Indeed, it is rarely suitable to apply a statistical model where the parameters are pushed
to their limits. In fact, these obtained values for [|¢|l; on empirical data are not really sur-
prising. Indeed, one of the most well documented stylized fact in high frequency finance
is the persistence (or long memory) in flows and market activity measures, see for example
[BGPWO04, LF04]. Usual Hawkes processes, in the same way as autoregressive processes, can
only exhibit short range dependence, failing to reproduce this classical empirical feature, see
Chapter VIII for details.

In spite of their relative inadequacy with market data, Hawkes processes possess so many
appealing properties that one could still try to apply them in some specific situations. In
[HBB13], it is suggested to use the without ancestors version of Hawkes processes introduced
by Brémaud and Massoulié in [BMO01]. For such processes, ||¢ll; =1 but, in order to preserve
stationarity and a finite expectation for the intensity, one needs to have = 0. This is probably
a relevant approach. However setting the parameter y to 0 is not completely satisfying since
this parameter has a nice interpretation (exogenous orders). Moreover it is not found to be
equal to zero in practice, see [HBBI3]. Finally, a time-varying p is an easy way to reproduce
seasonalities observed on the market, see [BMl4a] (however, for simplicity, we work in this
paper with a constant p > 0).
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II. Nearly unstable light-tailed Hawkes processes

These empirical measures of [¢ll;, close to one, are the starting point of this work. Indeed,
our aim is to study the behavior at large time scales of nearly unstable Hawkes processes,
which correspond to these estimations. More precisely, we consider a sequence of Hawkes
processes observed on [0, T], where T goes to infinity. In the case of a fixed kernel (not
depending on T) with norm strictly smaller than one, scaling limits of Hawkes processes
have been investigated in [BDHMI2]. In this framework, Bacry et al. obtain a deterministic
limit for the properly normalized sequence of Hawkes processes, as it is the case for suitably
rescaled Poisson processes. In their price model consisting in the difference of two Hawkes
processes, a Brownian motion (with some volatility) is found at the limit. These two results
are in fact quite intuitive. Indeed, in the same way as Poisson processes and autoregressive
models, Hawkes processes enjoy short memory properties. In this work, we show that when
the Hawkes processes are nearly unstable, these weakly dependent-like behaviors are no longer
observed at intermediate time scales. To do so, we consider that the kernels of the Hawkes
processes depend on T. More precisely, we translate the near instability condition into the
assumption that the norm of the kernels tends to one as the observation scale T goes to infinity.

Our main theorem states that when the norm of the kernel tends to one at the right speed
(meaning that the observation scale and kernel’s norm balance in a suitable way), the limit
of our sequence of Hawkes processes is no longer a deterministic process, but an integrated
Cox Ingersoll Ross process (CIR for short), as introduced in [CIR85]. In practice, it means that
when observing a Hawkes process with kernel’s norm close to one at appropriate time scale, it
looks like an integrated CIR. Furthermore, for the price model defined in [BDHM13], in the
limit, the Brownian motion obtained in [BDHMI12] is replaced by a Heston model, see [Hes93]
for definition. This is probably more in agreement with empirical data.

The paper is organized as follows. The assumptions and main results, notably the convergence
towards an integrated CIR are given in Section 2. The case of the difference of two Hawkes
processes is studied in Section 3. The proofs are relegated to Section 4 except some auxiliary
results which can be found in the appendix of [JR13].

2 Scaling limits of nearly unstable Hawkes processes

We give in this section our main results about the limiting behavior of a sequence of nearly un-
stable Hawkes processes. We start by presenting our assumptions and defining our asymptotic
setting.

2.1 Assumptions and asymptotic framework

We consider a sequence of point processes (N]) = indexed by T. For a given T, (N[) satisfies
NOT =0 and the process is observed on the time interval [0, T]. Furthermore, our asymptotic

1Of course by T we implicitly means Ty with n € N tending to infinity.
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setting is that the observation scale T goes to infinity. The intensity process (17) is defined for
t=0 by

t
AT = u+f0 oI (t-s)dN!,

where y is a positive real number and ¢! a non negative measurable function on R* which
satisfies [l¢ll; < +oo. For a given T, the process (N/) is defined on a probability space
@7, 7T, PT) equipped with the filtration () (0, 1], where &/ is the g-algebra generated by
(NI)s<t. Moreover we assume that for any 0<a<b<T and Ae &}

b
E[(N, — N )11 = [E[f AL14ds),

which sets AT as the intensity of NT. In particular, if we denote by (],{)nzl the jump times of

(NtT), the process
IS
NT f Alds
0

7y

is a martingale and the law of N T'is characterized by AT, From Jacod [Jac75], such construction
can be done. The process N7 is called a Hawkes process.

Let us now give more specific assumptions on the function (,bT. We denote by |||l the L™
norm on R*.

Assumption 1. For reR",
¢ (1) = arp(o),

where (ar) =0 is a sequence of positive numbers converging to one such that for all T, ar <1 and ¢
is a non negative measurable function such that

+00 +00
f ¢(s)ds=1 and f s¢p(s)ds=m < co.
0 0

Moreover, ¢ is differentiable with derivative ¢' such that || < +o00 and ||¢'||; < +oo.
Remark 1. Note that under Assumption 1, |plloo is finite.

Thus, the form of the function ¢! depends on T so that its shape is fixed but its L' norm
varies with T. For a given T, this L! norm is equal to ar and so is smaller than one, implying
that the stability condition is in force. Note that in this framework, we have almost surely no
explosion?:

lim ],Z = +00.
n—+oo

However, remark that we do not work in the stationary setting since our process starts at time
t =0 and not at t = —oo.

%In fact, for a Hawkes process, the no explosion property can be obtained under weaker conditions, for

example [ ¢(s)ds < oo for any ¢ >0, see [BDHMIZ].
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The case where ||ng||1 is larger than one corresponds to the situation where the stability
condition is violated. Since a7 = ||(/)T||1 <1 tends to one, our framework is a way to get close
to instability. Therefore we call our processes nearly unstable Hawkes processes. There are of
course many other ways to make the L' norm of ¢! converge to one than the multiplicative
manner used here. However, this parametrization is sufficient for applications and very
convenient to illustrate the different regimes that can be obtained.

2.2 Observation scales

In our framework, two parameters degenerate at infinity: 7 and (1 - ar)~!. The relationship
between these two sequences will determine the scaling behavior of the sequence of Hawkes
processes. Recall that it is shown in [BDHMIZ2] that when [} is fixed and smaller than one,
after appropriate scaling, the limit of the sequence of Hawkes processes is deterministic, as it
is for example the case for Poisson processes. In our setting, if 1 —ar tends “slowly” to zero,
we can expect the same result. Indeed, we may have T large enough so that we reach the
asymptotic regime and for such T, ar is still sufficiently far from unity. This is precisely what
happens, as stated in the next theorem.

Theorem 1. Assume T(1—ar) — +oo. Then, under Assumption 1, the sequence of Hawkes processes
is asymptotically deterministic, in the sense that the following convergence in L holds:

l—ar
INL, —E[N} 1| — 0.

seion T
On the contrary, if 1 — ar tends too rapidly to zero, the situation is likely to be quite intricate.
Indeed, for given T, the Hawkes process may already be very close to instability whereas T is
not large enough to reach the asymptotic regime. The last case, which is probably the most
interesting one, is the intermediate case, where 1 — ar tends to zero in such a manner that a
non deterministic scaling limit is obtained, while not being in the preceding degenerate setting.
We largely detail this situation in the next subsection.

2.3 Non degenerate scaling limit for nearly unstable Hawkes processes

We give in this section our main result, that is a non degenerate scaling limit for a sequence of
properly renormalized nearly unstable Hawkes processes. Before giving this theorem, we wish
to provide intuitions on how it is derived. Let M” be the martingale process associated to N7,
that is, for t =0,

t
M =N - f ATds.
0
We also set ! the function defined on R* by
T S (T +k
yi(=) @)W,
k=1

where ((/)T)*1 = (pT and for k=2, ((PT)*k denotes the convolution product of ((pT)*(k‘“ with
the function (/)T. Note that wT(t) is well defined since II(/)T||1 < 1. In the sequel, it will be
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convenient to work with another form for the intensity. We have the following result, whose
proof is given in Section 4.

Proposition 1. For all =0, we have

t t
/lthp+f wT(t—s)uds+/ wT(t—s)dMsT.
0 0

Now recall that we observe the process (NtT) on [0, T]. In order to be able to give a proper
limit theorem, where the processes live on the same time interval, we rescale our processes so
that they are defined on [0,1]. To do that, we consider for ¢ € [0, 1]

tT tT
MTT=u+f WT(Tt—S)udHf v (Tt-s)dm!.
0 0

For the scaling in space, a natural multiplicative factor is (1 — ar). Indeed, in the stationary
case, the expectation of /ltT is p/(1- ||(,bT||1). Thus, the order of magnitude of the intensity is
(1—ar)~'. This is why we define

Cl =Ap0-ap). 1)

Understanding the asymptotic behavior of C! will be the key to the derivation of a suitable
scaling limit for our sequence of renormalized processes. We will see that this behavior is
closely connected to that of the function w”. About w”, one can first remark that the function
defined for x =0 by

T
T
x)=T (Tx) 2
P TAE )
is the density of the random variable
1 L
xT==-Y x,
T;,l

where the (X;) are iid random variables with density ¢ and I Tisa geometric random variable
with parameter 1 —ar (Vk > oPIT=kl=0- aT)(aT)k_l). Now let z € R. The characteristic
function of the random variable X', denoted by pT, satisfies

p7(2) =E[e*X] = Y a- ar)(ar)*Ee’T Tia Xi)

k=1
e L d(%)
=Y (- ap)aptGEnk = T ,
R L Ty

where ¢ denotes the characteristic function of X;. Since
+00
f s¢p(s)ds=m < oo,
0
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the function ¢ is continuously differentiable with first derivative at point zero equal to im.
Therefore, using that ar and (/A)(%) both tend to one as T goes to infinity, p7 (z) is equivalent

to
1
izm
1- T-ar)

Thus, we precisely see here that the suitable regime so that we get a non trivial limiting law
for XT is that there exists A > 0 such that

TA-ar) — A 3)

T—+o0
When (3) holds, we write dy = m/A. In fact we have just proved the following result.

Proposition 2. Assume that (3) holds. Under Assumption 1, the sequence of random variable X
converges in law towards an exponential random variable with parameter 1/dy.

This simple result is of course not new. For example this type of geometric sums of random
variable is studied in detail in [Kal97]. Note also that when X; is exponentially distributed,
X7 is also exponentially distributed, even for a fixed T.

Assume from now on that (3) holds and set ur = T(1 —ar)/A (so that ur goes to one).
Proposition 2 is particularly important since it gives us the asymptotic behavior of @' in this
setting. Indeed, it tells us that

T T ar a1 1 A
T = _— m— = — m,
v Ix=p (x)/luT me A me
Let us now come back to the process C!, which can be written
t t
Cf:(l—aT)pwf uT/h//T(Ts)ds+f VayT(rt-s)\/cldB!, (4)
0 0

with
T gm!

o

By studying its quadratic variation, we will show that BT represents a sequence of martingales

= | o)

which converges to a Brownian motion. So, heuristically replacing B? by a Brownian motion

B and w1 (Tx) by %e_x% in (4), we get

/’l t
C®=p(1l-e i)+ %f e (=95 /CPd By,
0

Applying Itd’s formula, this gives

t
cgozfo (p-cg°)—ds+—f J/CRdB,,
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which precisely corresponds to the stochastic differential equation (SDE) satisfied by a CIR
process.

Before stating the theorem which makes the preceding heuristic derivation rigorous, we
consider an additional assumption.

Assumption 2. There exists K, >0 such that for all x=0 and T >0,
lp" (0] = K,.

Note that Assumption 2 is in fact not really restrictive. Indeed, from [Pet75] (Page 214, point 5),
we get that if [[¢]loo <00 and f0+°° |s|3¢(s)ds < 400, then Assumption 2 holds. From [Kal97]
(Chapter 5, Lemma 4.1), it also holds if the random variable X; with density ¢ can be written
(in law) under the form X; = E+ Y, where E follows an exponential law with parameter y >0
and Y is independent of E. We now give our main theorem.

Theorem 2. Assume that (3) holds. Under Assumptions 1 and 2, the sequence of renormalized
Hawkes intensities (CL) defined in (1) converges in law, for the Skorohod topology, towards the law
of the unique strong solution of the following Cox Ingersoll Ross stochastic differential equation on
[0,1]:

t 1 1t
X :f (u—X5)—ds+ £[ v/ XsdBs.
0 m m Jo
Furthermore, the sequence of renormalized Hawkes process

_ l—ar
T

T
Nir
converges in law, for the Skorohod topology, towards the process

t
f Xds, t€[0,1].
0

2.4 Discussion

e Theorem 2 implies that when ||¢|; is close to 1, if the observation time T is suitably
chosen (that is of order 1/(1—l¢ll1)), a non degenerate behavior (neither explosive, nor
deterministic) can be obtained for a rescaled Hawkes process.

o This can for example be useful for the statistical estimation of the parameters of a Hawkes
process. Indeed, designing an estimating procedure based on the fine scale properties
of a Hawkes process is a very hard task: Non parametric methods are difficult to use
and present various instabilities, see [BDM12, FS13], whereas parametric approaches
are of course very sensitive to model specifications, see [FS13, HBB13]. Considering an
intermediate scale, where the process behaves like a CIR model, one can use statistical
methods specifically developed in order to estimate CIR parameters, see [AK12] for a
survey. Of course, only the parameters A, m and p can be recovered this way. Therefore,
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80

there is clearly an information loss in this approach. However, it still enables to get
access to quantities which are important in practice, see Section 1. In some sense, it can
be compared to the extreme value theory based method for extreme quantile estimation,
where one assumes that the random variables of an iid sample belong to some max
stable attraction domain. Indeed, these two methods lie between a fully parametric one,
where a parametric form is assumed (for the law of the random variables or the function
¢), and a fully non parametric one, where a functional estimator (of the repartition
function or of ¢) is used in order to reach the quantity of interest (the quantile or the L!
norm of ¢).

CIR processes are a very classical way to model stochastic (squared) volatilities in finance,
see the celebrated Heston model [Hes93]. Also, it is widely acknowledged that there
exists a linear relationship between the cumulated order flow and the integrated squared
volatility, see for example [WBK*08]. Therefore, our setting where [¢|; is close to one
and the limiting behavior obtained in Theorem 2 seem in good agreement with market
data.

For the stationary version of a Hawkes process, one can show that the variance of NTT is
of order T(1 - ||¢T||1)_3, see for example [BMO1]. Therefore, if T(1 — ar) tends to zero,
that is [|¢p7|; goes rapidly to one, then the variance of %N% blows up as T goes to
infinity. This situation is therefore very different from the one studied here and out of
the scope of this paper.

The assumption [; ™ s¢(s)ds < +oo is crucial in order to approximate ! by an expo-
nential function using Proposition 2. Let us now consider the fat tail case where the
preceding integral is infinite. More precisely, let us take a function ¢ which is of order
xl%, 0<a <1, as x goes to infinity. In that case, following the proof of Proposition 2,
we can show the following result, where we borrow the notations of Proposition 2.

Proposition 3. Let B be a random variable whose characteristic function satisfies

1

IE[elZEg] = —
1-C(iz)*

Assume (f)(z) —1~p0(iz)* for someo >0,0<a<]1, and 1—ar)T* —A>0. Then xT
converges in law towards the random variable ES .

A
Thus, when the shape of the kernel is of order x~1*® the “right" observation scale is
no longer T ~1/(1—|¢ll;) but T ~1/(1— ||([)||1)$. Remark also that if we denote by Eqp
the (a, B) Mittag-Leffler function, that is

[e o) Zn
Eap@ = L Sans py

see for example [SJ13], then the density ¢¢. of E{. is linked to this function since

of (x) = xa_lEa,a(—x“).



3. Extension of Theorem 2 to a price model

. . : T_ ,7e-1 4T — ; - A
Now let us consider the asymptotic setting where u* = uT% ',¢p* = ar¢ with ar =1-+;
and ¢ as in Proposition 3. If we apply the same heuristic arguments as those used in
Section 2 to the renormalized intensity

Alr(—ar)

T _
¢ = Ta-1

’

we get the following type of limiting law for our sequence of Hawkes intensities:
t r 1
X, = ,uf P%(t— s)ds+f ¢% (t — s)—/ X;dB;.
0 A 0o 7 VA

These heuristic arguments are however far from a proof. Indeed, in this case, we probably
have to deal with a non semi-martingale limit. Furthermore, tightness properties which
are important in the proofs of this paper are much harder to show (in particular the
function ¢¢. is not bounded). We leave this case for further research.

¢ In the classical time series setting let us mention the paper [BIP11] where the authors
study the asymptotic behavior of unstable integer-valued autoregressive model (INAR
processes). In this case, CIR processes also appear in the limit. This is in fact not
so surprising since INAR processes share some similarities with Hawkes processes. In
particular, they can somehow be viewed as Hawkes processes for which the kernel would
be a sum of Dirac functions.

3 Extension of Theorem 2 to a price model

In the previous section, we have studied one-dimensional nearly unstable Hawkes processes.
For financial applications, they can for example be used to model the arrival of orders when
the number of endogenous orders is much larger than the number of exogenous orders, which
seems to be the case in practice, see [FSI12, HBBI3|. In this section, we consider the high
frequency price model introduced in [BDHMI3], which is essentially defined as a difference of
two Hawkes processes. Using the same approach as for Theorem 2, we investigate the limiting
behavior of this model when the stability condition is close to saturation.

3.1 A Hawkes based price model

In [BDHM13], tick by tick moves of the midprice (P;)s>9 are modeled thanks to a two
dimensional Hawkes process in the following way: For ¢ =0,

Pt = N;— - N[_,
where (N*,N7) is a two dimensional Hawkes process with intensity
(ﬁi) _ (u)+f’f(¢1(t—s) ¢2(t—s))(dN;)
A7) ) Jo \@et=9) ¢i(t-9))\dN; )’
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II. Nearly unstable light-tailed Hawkes processes

with ¢; and ¢, two non negative measurable functions such that the stability condition

+00 +00
f <p1(s)ds+f ¢a(s)ds< 1
0 0

is satisfied.

This model takes into account the discreteness and the negative autocorrelation of prices at
the microstructure level. Moreover, it is shown in [BDHMI2| that when one considers this
price at large time scales, the stability condition implies that after suitable renormalization, it
converges towards a Brownian motion (with a given volatility).

3.2 Scaling limit

In the same spirit as in Section 2, we consider the scaling limit of the Hawkes based price
process when the stability condition becomes almost violated. More precisely, following the
construction of multivariate Hawkes processes of [BDHMI12], for every observation interval
[0, T'], we define the Hawkes process (NT+ NT-) with intensity

T-|= + Tie Tis T—|»
A 7 0o \P;(t=5) ¢, (t—95))\dN;
with (/)lT and (/)g two non negative measurable functions. Note that in this construction, N7+

and N7~ do not have common jumps, see [BDHM12] for details. We consider the following
assumption.

Assumption 3. Fori=1,2 and t € R,
of (D) = ari(0),

where (ar) =0 is a sequence of positive numbers converging to one such that for all T, ar <1 and
¢1 and ¢ are two non negative measurable functions such that

+oo +o00
f G1(8) +Pa(s)ds=1 and[ $(p1(8) + p2(s))ds = m < co.
0 0

Moreover, for i = 1,2, ¢; is differentiable with derivative ¢'; such that ||} lloo < +o00 and ||p}]l1 <
+00.

We will also make the following technical assumption.

Assumption 4. Let

T
yl= Y (@r@y+ @)™ and p" (0 = TV (7).
& Rzl

There exists K, >0 such that for all x =0 and T >0,

o ()] = K.
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We work with the renormalized price process
r_ L e T
Py :?(NTt —Nr). (6)

The following theorem states that if we consider the rescaled price process over the right time
interval, that is if we take T of order 1/(1—|[l¢p1ll1 — llp1ll2), it asymptotically behaves like a
Heston model, see [Hes93].

Theorem 3. Let ¢ = ¢y — Ppo. Assume that (3) holds. Under Assumptions 3 and 4, the sequence of
Hawkes based price models (PT) converges in law, for the Skorohod topology, towards a Heston type
process P on [0,1] defined by:

dcC; =3 -cpldr+L/TidB! Cy=0
dp, = m\/ctdBf Py=0,

with (BY, B%) a bidimensional Brownian motion.

4 Proofs

We gather in this section the proofs of Theorem 1, Proposition 1, Theorem 2 and Theorem 3.
In the following, ¢ denotes a constant that may vary from line to line.

4.1 Proof of Theorem 1
Let v €10,1]. From Lemma 4 in [BDHMI12], we get

Tv
EINT ) =pTv+u| wi(Tv-s)sds
0

and

Tv
NI —E[N],] :M%U+f0 v (Tv-s)M/! ds.

Thus, using that

lpT
Iyl = ———,
Vs T e
we deduce
1- Tl 1- T 1
%(N%U—[E[Ni,,ns%(Hnwﬁm sup IMI|<— sup IM/]I.

te[0,T] te[0,T]

Now recall that M7 is a square integrable martingale with quadratic variation process N,
Thus we can apply Doob’s inequality which gives

E[( sup M/)*] <4 sup E[(M/)?] <4E[N]] <4pu——c—.
t€[0,T) t€[0,T] I-1l"
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Therefore, we finally obtain

1_||(,bT||1 T T 2 4u
E = N —EINE D) | —E—,
[vi‘[?,’u( T T )] T - 147 1)

which gives the result since T'(1 - ||(PT||1) tends to infinity.

4.2 Proof of Proposition 1

From the definition of A7, using the fact that ¢ is bounded on [0, t], we can write

t t
A{:wf (/)T(t—s)dMsT+f ol (t-s)Alds.
0 0

We now recall the following classical lemma, see for example [BDHMI12] for a proof.

Lemma L. If f(£) = h(t)+ [ ¢T (£~ 5) f(s)ds with h a measurable locally bounded function, then

t
f(t):h(t)+f y! (1= s)h(s)ds.
0
We apply this lemma to the function / defined by
t
h(t) = ’”f o (t—s)dm!.
0
Thus, we obtain
t t s
AT :;Hf ¢T(t—s)dMsT+f wT(t—S)(,u+f o (s—-rdml)ds. (7)
0 0 0
Now remark that using Fubini theorem and the fact that
wl sl =yl — o7,
we get
t s t pt
f wT(r—s)f (,bT(s—r)dM,Tds:f f Ly (t=9)¢pT (s—r)dsdMT
0 0 0 Jo
t pt-r
:f ylt—r-9¢’(s)dsdM!
0 Jo
t
:f yl s (t—rydm!
0
t t
:f wT(t—r)erT—f oI (t—rdM!.
0 0
We conclude the proof rewriting (7) using this last equality.
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4.3 Proof of Theorem 2

Before starting the proof of Theorem 2, we give some preliminary lemmas.

4.3.1 Preliminary lemmas

We start with some lemmas on ¢ and its Fourier transform ¢ (the associated characteristic
function).

Lemma 2. Let § > 0. There exists € >0 such that for any real number z with |z| = 6,
11-d(2)| = €.

Proof. Since ¢ is bounded, ¢(z) tends to zero as z tends to infinity. Consequently, there exists
b > 0 such that for all z such that |z| = b,

R 1
lp(2)| = >

Now, let M denote the supremum of the real part of (/3 on [—b,—d6]U[d, b], since (/3 is continuous
this supremum is attained at some point zop. We have M = Re((,Z)(Zo)) = [E[cos(zpX)], with X
a random variable with density ¢. Since ¢ is continuous, almost surely, X does not belong
to 2m/z9Z. Thus M = E[cos(z9X)] < 1. Therefore, taking € = min(%,l — M) we have the
lemma. ]

Using that [[¢'|l; < +oo, integrating by parts, we immediately get the following lemma.
Lemma 3. Let ze R. We have I<ﬁ(z)| <cl|z|.
We now turn to the function p! defined in (2). We have the following result.

Lemma 4. There exist ¢ >0 such that for all real z and T = 1,

— 1
lpT(2)] <cAl-D.

Proof- First note that as the Fourier transform of a random variable, |p”| < 1. Furthermore,
using Lemma 2 together with the fact that

+00
f xp(x)dx =m < +oo,
0
we get that there exist § >0 and € > 0 such that if [x| < 6,
N m
[Im(¢p) (x)| = ?le

and if |x| =0,
|1 —(/A)(x)l >e.
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Therefore, we deduce that if |z/T| <6,

U-and@ _ (-ar) _20-apT

07 (@) =] —L|< <
1—ard(3)  arllm@) () armlzl

=c/lz|

and, thanks to Lemma 3, if |z/T| =6

1-an)lp(%)| _cl-anT
1-¢E)1 ~ lzle

107 (2)] < <cllzl.

The next lemma gives us the L? convergence of p”.

Lemma 5. Let p(x) = %e*% be the density of the exponential random variable with parameter

Alm. We have the following convergence, where |.|, denotes the L*> norm on R™:
lp" = pla — 0.

Proof Using the Fourier isometry, we get
1 —
T _ =—10T = 5l-.
lo" —pl2 anp pl2

From Proposition 2, for given z, we have (;ﬁ(z) —p(2)) — 0. Thanks to Lemma 4, we can
apply the dominated convergence theorem which gives that this convergence also takes place
in L2. t

We now give a Lipschitz type property for p’.
Lemma 6. There exists ¢ >0 such that for all x=0, y=0 and T =1,
") -p" W= cTlx-yl.

Proof. We simply compute the derivative of p” on R, which is given by

(D)) =T(¢'(Tx) +¢ % o7 (Tx).

lw Tl
Using that ||1//T||1 =ar/(1 - ar) together with the fact that T(1 - ar) — A, we get

1T ()1 < Tl oo+ 10 11107 loo0).

We now consider the function f7 defined for x =0 by
= %Z—;pT(x) —e .
We have the following obvious corollaries.
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Corollary 1. We have
flfT(x)Izdx —0.

Corollary 2. There exists ¢ >0 such that for any z= 0,
IfT@lsc.
Corollary 3. There exists ¢ >0 such that for any z=0,
@< cizinn.
Corollary 4. There exists ¢ >0 such that for all x=0, y=0 and T =1,

1FT 0 - Ffpl<eTlx-yl.

We finally give a lemma on the integrated difference associated to the function f7.

Lemma 7. For any 0 <& <1, there exists c; so that for all t,s =0,
f(fT(t— u) —fT(s— w)?du < cq|t—s|'¢.
R
Proof. Defining ng(u) = fT(t— u) — fT(s— u), we easily get

gL (W)l = e — & 108 FT (w).

Thus, from Corollary 3 together with the fact that
e—iwt _ e—iws

| —————I<1,
w(t—25)

we get

f(fT(t—u)—fT(s—u))zduscf g7 (w)Pdw
R R

. . 1
< c[ Ie_l"”—e_’wslz(l—zl Adw
R w

e—iwt_e—iws 1
so[ 2| ————— " A Dw fdw] - s
R w

w(t—2)
<c|t—s|'7¢.

4.3.2 Proof of the first part of Theorem 2

We now begin with the proof of the first assertion in Theorem 2. We split this proof into

several steps.
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II. Nearly unstable light-tailed Hawkes processes

Step 1: Convenient rewriting of C”

In this step, our goal is to obtain a suitable expression for C!. Let dy = m/A. Inspired by the
limiting behavior of @' given in Proposition 2, we write Equation (4) under the form

VRS N
Cl=RT + y(1-e +—f e %+\/CldBl,
t t /J( 0) m Jo N s

where R! is obviously defined. Using integration by parts (for finite variation processes), we
get

T_or, M [T x VA [t [ ~T 3T /C
Ct_Rt +d—0f0 e dOdU'FWj(; CvdB _m_do e dU dB

Then remarking that

T _ T T -
mdof Py \/CldB; C -R, —u(l—e %)),

we finally derive
cl= UT+—f (u-Chds+—= f\/ claB!l, (8)

1 t
Uf:Rf+d—f RIds.
0 JO

with

The form (8) will be quite convenient in order to study the asymptotic behavior of C!'. Indeed,
we will show that UtT vanishes so that (8) almost represents a stochastic differential equation.

Step 2: Preliminaries for the convergence of U’

We now want to prove that the sequence of processes (UtT )tejo,1] converges to zero in law, for
the Skorohod topology, and therefore uniformly on compact sets on [0, 1] (ucp). We show here
that to do so, it is enough to study a (slightly) simpler process than U”. First, it is clear that
showing the convergence of (R!)e(o,1] to zero gives also the convergence of U”. Now recall
that

R[T_u(l ar)—u((l—e do) faTT 1//” (Ts)ds)+\/—f wI(T(t- s))——e do )\/C dBT

Since ar tends to one, the first term tends to zero. For ¢ € [0,1], Proposition 2 gives us the
convergence of

t T

v

T Ts)d
fo‘” Ty, 19ds
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_t
towards 1 —e 4. Using Dini’s theorem, we get that this convergence is in fact uniform over
[0,1]. Thus, using Equation (5), we see that it remains to show that (Y,)e(o,1) goes to zero,
with

t t-u J—
Ythf (my"(T(t-w)-e )dM,,
0
where M, = M, /T.

Step 3: Finite dimensional convergence of Y’

We now show the finite dimensional convergence of (Y,1) (.1
Lemma 8. For any (t1,..., t,) € [0,11", we have the following convergence in law:

Y,,.. v —o.
—T
Proof. First note that the quadratic variation of M at time ¢ is given by NrTT/ T2, whose
predicable compensator process at time  is simply equal to

1 tT
— | Alas.
T2 Jo

Using this together with the fact that

ar

<cT,

t
[E[AtT] =,u+uf0 u/T(t—s)dsSu+ul_aT <

we get
t t—s
El(Y,[)* < c[ (my T (T(t-s)—e %)2ds.
0

Now remark that
my T (T(t-s)—e & = fT(t-s),

where fT is defined by fT(x) =0 for x<0 and

= %Z—ipT(x) —e
for x>0, with p” the function introduced in Equation (2). From Corollary 1,

El(Y,")?] -0,
which gives the result. O

89



II. Nearly unstable light-tailed Hawkes processes

Step 4: A Kolmogorov type inequality for YT

To prove the convergence of Y7 towards 0, it remains to show its tightness. We have the
following Kolmogorov type inequality on the moments of the increments of Y7, which is a
first step in order to get the tightness.

Lemma 9. For any € >0, there exists c; >0 such that forall T=1,0<t,s<1,
_ 1 _
El(Y,] - Y)Y < c.(1t— 532 £+ﬁ|t—sll ). 9)

Proof. Let (EMI1 denote the fourth moment measure of M7, see the appendix of [JRI3] for
definition and properties. We have

1
(Y, - v ]‘F (H[f (t—=)—fT(s— ]) FMI (dny, dty, dis, dty).

Therefore, using Lemma A.17 of [JR13], we obtain
T u T U
El(Y," - v T3./ IfT - T -f (S—?)| du

+—f IfT(t—E)—fT(s—ﬁ)lgdulefT(t——)
T3 0 T T 0 T

—fT(s—%)ldu
T T

+if IfT(t—%)—fT(s—E)lzduf IfT(t—%)—fT(s—E)lzdu
f|f =2y fTs— )|du f -2y -2 )|2du.

Then, using Cauchy Schwarz inequality together with Corollary 2 and Lemma 7, we get

f 1ffe-—)-f7 (S——)Idu<ch\/|t s|i-¢e

and for p=2,3,4,
Tor, _u T u 1
[ 1T - g7 v dus ecrie- s,
0 T T
which enables to conclude the proof. O
Step 5: Tightness
Let us define Y7 the linear interpolation of Y7 with mesh 1/T%:
oT _ T T
Y; LZT4J T = [T D g = Y )
T4 T4
We use this interpolation since for £ —s=1/T*, both terms on the right hand side of (9) have

the same order of magnitude and for £—s>1/T* the second term becomes negligible. We
have the following lemma.
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Lemma 10. The sequence (YT is tight.

Proof. We want to apply the classical Kolmogorov tightness criterion, see [Bil09], that states
that if there exist ¥ > 1 and ¢ >0 such that forany 0ss<t<1,

BV -yt <clt—sl?,

then Y7 is tight. Remark that such inequality can of course not hold for Y7 since it is not
continuous. Let n? = [tT4J and nsT = LST4J. Let 0<¢,6/ <1/4 and T = 1. There are three
cases:

T

o If nI' = n!, using Lemma 9, we obtain that

is smaller than

|
4716 4 16 4 16 1+e
[t = s TEI(Y, 0 = Yar) T = ce ) Tlt—-sI"<ce T4 0 T°t—s| TG
T2 T4
Since 0 < €,&’ <1/4, this leads to
El(Y,] - VY < celt—s)'*E
eIf nl' =nl+1,
EI(F,] — ¥,)* < cEI(V,] - YT + cEI(P T, - 7)Y < clt— 511
I 7
o If nl = n! +2, using again Lemma 9, we get
E[(Y, - YD = B, - V) + cEUT Y, - VDY + BV, -7 )Y
Ta = o
1 1e ng ni+la., min(3 —¢,1+€")
scg(ﬁ) +CE|F— T [27° < celt—s|72 .
Hence the Kolmogorov criterion holds, which implies the tightness of v, ]

We now show that the difference between Y7 and Y7 tends uniformly to zero.

Lemma 11. We have the following convergence in probability:

sup IYtT - YSTI — 0.

1
It—slsT—4

Proof. Recall that for 0<s<t<1,
s —7 ! —T
vl -yl = |f fT(t—u)—fT(s—u)dMu+f fre-wdM,|.
0 s
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II. Nearly unstable light-tailed Hawkes processes

Thus, we have that IYtT - YSTI is smaller than
sT 1 tT
f Tt —ulT) - fT(s- u/T)I(dNuT+/1udu)? +f T (t—u/T(AN] + 7, du)—
0 sT
Using Corollaries 2 and 4, we obtain
T tT 1
v, - Y] <cle—sI(N} +f Aldu) +c(N}. - NL +f Agdu)?.
0 sT

Consider now

sup IYtT—YsTI.
|t—s|<1/T*
This is smaller than
1 T ror 1 7 T o T
Cﬁ(NT"‘ | Audw+26i:()r??i(T4J?(N%T_N#T+ Lt Ay du). (10)

From Lemma A.5 of [JR13], we have
T
[E[N%+f Aldu] < cT?
0

Thus, the first term on the right hand side of ( 0) tends to zero. For the second term, we use
Lemma A.15 of [JR13] (with ¢ = ’+1 T and s = 57 T) which gives that

“r

T ™EaT 3 < €
. < —
g N#T+ LT A, du) ]_T5.

[( (N,

So, for any € > 0, using Markov inequality, we get

Ll

T4 T
-NT _+ ALdu)=e] < :
T 7T ip U )z ¢l T5¢3

[(N

From this inequality, since the maximum is taken over a number of terms of order T4, we easily
deduce that the second term on the right hand side of (10) tends to zero in probability. [

We end this step by the proposition stating the convergence of vT,
Proposition 4. The process YT converges ucp to 0 on [0,1].

Proof. We have

sup IY | < sup IY |+ sup |Y —Y |
t€(0,1] t€[0,1] t€[0,1]

From Lemma 8 and Lemma 10 we get that Y7 tends to zero, in law for the Skorohod topology.

This implies the ucp convergence. Applying Lemma 11 we get the result.
O
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Step 6: Limit of a sequence of SDEs

In this last step, we show the convergence of the process (C!)e[,1) towards a CIR process. To
do so, we use the fact that CT can almost be written under the form of a stochastic differential
equation. Indeed, recall that

1 [ VA [t
CT:UT+—f -cha +—f v/ CclaB!,
t ¢ o O(F‘ s)ds m Jo s s

with
tT dMT

T

Then we aim at applying Theorem 5.4 in [KP91] to CT. This result essentially says that for
a sequence of SDEs where the functions and processes defining the equations satisfy some
convergence properties, the laws of the solutions of the SDEs converge to the law of the
solution of the limiting SDE. We now check these convergence properties.

:_\/—f

The sequence of processes (BT) is a sequence of martingales with jumps uniformly bounded
by c//fi. Furthermore, for 7 € [0,1], the quadratic variation of (B Ty at point ¢ is equal to

T Jo Al

ur (T dNT T gmMm!
TN [
0

TAI

Now, remark that

o Tl

Therefore, we get that for any t € [0, 1], the quadratic variation of (B Ty at point ¢ converges
in probability to #. Thus, we can apply Theorem VIIL3.11 in [JS87] to deduce that (B]) (0,1
converges in law for the Skorohod topology towards a Brownian motion.

ds _c/(Tu)

Since UT converges to a deterministic limit, we get the convergence in law, for the product
topology, of the couple (UtT,BtT)E[O'l] to (0, By)ejo,1), with B a Brownian motion. The com-
ponents of (0, B;) being continuous, the last convergence also takes place for the Skorohod
topology on the product space.

Finally, recall that the (CIR) stochastic differential equation

t
Xt:f (,u—Xs)—ds+—[ v/ X,dBs
0

admits a unique strong solution on [0, 1]. This, together with the preceding elements enables
us to readily apply Theorem 5.4 in [KP9]] to the sequence CT, which gives the result.
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4.3.3 Proof of the second part of Theorem 2

We now give the proof of the second part of Theorem 2 which deals with the sequence of
Hawkes processes N7. Let
(I1-ar)

T _ T
Ve = T N;r.
We write
t
vl = f CTds+ 7,
0
where
« l1—-a
wir = T)(NfT f ALds)

is a martingale. Using Doob’s inequality, we obtain

A N 1 —_
[E[(Supte[o,thT)Z] <4E[(MD)*) < 4(%

20T - AR —ar)
PEINT] = ——

— 0.

Moreover, (CT, 1) converges in law over [0,1] to (C, t) for the Skorokod topology. This last
remark and Theorem 2.6 in [JMP89] on the limit of sequences of stochastic integrals give the
result.

4.4 Proof of Theorem 3

We first introduce some notations. In this proof, we write
T _ 4T _ T T _ N> Tyek
*
¢ =1 ~¢p andy’ =3 @)
k=1

Moreover, we set

T+ T-
Mr i

T =
t T
and define
T gMI*+dmI~ ) T dM{t —dM]~
(B)t_f ’(B)t_f
\/TAIT + A1) \/TAI*t + AT~ )
with

S S
MT* = NT* — fo AT*ds, MI~= NI~ - fo AT ds.

Finally, we set

_ﬂ_Mg T _ Ml
t - T 4 t T

We split the proof of Theorem 3 into several steps.
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Step 1: Convenient rewriting

In this first step, we rewrite the price, intensity and martingale processes under more convenient
forms. We have

t t
AT* AT = f ol t—s)(AIt - AST_)ds+f ol (t—s)dMIt —dmI™).
0 0
Therefore, in the same way as for the proof of Proposition 1, we get
t
AT+ AT = f vl (t—s)dM!It —dMm!I).
0

From this last expression, we easily obtain
t
N,’”—Nf‘:f 1+t - w)@dml* -dmi, (11)

0

with
X
w7 (x) :f v (s)ds.
0

Finally, note that
—T+ —T7- 1 1 T— ! / N
M, -M, =?(MT;—_MTI)=fO C{d(BY);. (12)

Step 2: Preliminary result

For s€[0,1], we define

We have the following important result.
Lemma 12. The process X converges ucp to 0 on [0,1].

Proof. We write

t — — p—
XtT:fO Fr-s9dd M),

with f; 1T(x) =y T(Tx). Remark that Corollaries 1, 2, 3 and 4 are valid if in their statement, f T
is replaced by f’. In the proof of Theorem 2, we have shown the convergence to zero of the
process

T —r
y[ =f frt-s)dM;.
0

Therefore, applying the same strategy but replacing f7 by f; and M by Mt —]\_/IT_, it is
clear that we get the result. O
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Step 3: Convergence of (B, B?)

In this step, we prove the convergence of (B!, B?) towards a two-dimensional Brownian motion.
To do so, we study the quadratic (co-)variations of the processes. Let i € {1,2}, j€{1,2}. We
denote by [(BY)T,(B/)T], the quadratic co-variation of B’ and B/ at time ¢.

Lemma 13. We have the following convergence in probability:
(BH", BN — 1.
Proof. There are three cases:

o If i = j =1, using that N7* and N7~ have no common jumps, we get,

(BYHYT,(BHY), = fﬂ AN " +dNy +f[T AM; " +dM,
0 0

TAI*+AI7) - TAI*+AT)

Furthermore,

T agMI*t +am!-
([o O FO%s 1<y,

TAIY+A1)

Therefore we have the result for i = j =1.
o If i = j =2, the proof goes similarly.

elfi=1and j=2,

(8H7 (BZ)T]t=ftT dANI*t —dNI- _ffT dMST+—dMST‘+)LST+ds—)LST‘ds‘
0 0

TAT* +AT7) T+ A1)
As for the case i = j =1, we easily get

—_—

ffT aMrt—dm!-
o TWAI*+AI)

It remains to show the convergence to zero of Z! defined by

th
ZT:f S ds.
Lo T

N

For any £ >0, we have
t XT t
|Z[T|Sf (1/\I—S|)ds+f lore ds.
0 € o ¢

From Lemma 12, we have the convergence of the process X' to zero. Furthermore, in Lemma
15 we will show that CT converge in law over [0,1] towards a CIR process denoted by C.
Therefore, since the limiting processes are continuous, we have the joint convergence of
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(X7,CT) to (0,C). We now use Skorohod representation theorem (without changing notations).
Almost surely, for T large enough, we have

sup |XI|<e?, sup |CI-Cyl <e.
s€[0,1] s€[0,1]

This implies
t xT t 1
f(lAI—SI)ds+f ICT<£dSS£‘+f le,<2ds.
0 € o 0

Recall that the set of zeros of a CIR process on a finite time interval has zero Lebesgue
measure. Thus, using the dominated convergence theorem, we easily see that choosing €
conveniently, the second term in the preceding inequality can be made arbitrarily small,
which ends the proof. 0

Thus for any T, (B HT and (B®)T are two martingales with uniformly bounded jumps and their
quadratic (co-)variations satisfy Lemma 13. Consequently, Theorem VIII.3.11 of [JS87] gives us
the following lemma.

Lemma 14. We have
BhHT, BT = (B, BY,

in law, for the Skorohod topology, where (BY, B?) is a two-dimensional Brownian motion.

Step 4: Convergence of T, (BH T

The aim of this step is to prove that the couple (CT,(B?)T) converges in law towards (C, (B?)),
with C a CIR process and B? a Brownian motion, independent of C. More precisely, we have
the following lemma.

Lemma 15. The couple of process (CT,(B?)T) converges in law, for the Skorohod topology, over
[0,1], towards (C, B%), where B® is a Brownian motion independent of C and C is a CIR process

satisfying - N -
Ct:f (—'u—Cs)—ds+—f VCedW,,
o A m m Jo

with W another Brownian motion, independent of B>

Proof. Let us consider the process N* = N7* + N7~ It is a point process with intensity
t
AT =AT AT =2u+ an (1 + ) (t—)dN,.
0

Therefore, we are in the framework of Theorem 2: N7 is a Hawkes process whose kernel has
a norm that tends to 1 at the right speed and its renormalized intensity C r converges towards
a CIR. Remark that the renormalizing factor here is 1/T and not (1 — ar), which is not an
issue since (3) holds. Thus we get the convergence of C T towards a CIR. To obtain the joint
convergence, we just need to write the same proof as for Theorem 2 (up to obvious changes),
but using this time Theorem 5.4 in [KP9]] together with Lemma 14. O
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II. Nearly unstable light-tailed Hawkes processes

Step 5: Technical results

This fifth step consists in proving two technical results. The first one is the following.
Lemma 16. The process

I3 +00 _ T
RrT=f [ W ()dsdM.T ~ M)
0 JT(t—uw)

converges ucp to 0 on [0,1].
Proof. We write
T t T —T+ —T-
RY = | £-wd(1,” -M,),
with
T e r
5 x) =f v’ (s)ds.
Tx
The result follows in the same way as in the proof of Lemma 12. O

We now give the last lemma of this step.

f f ¢i(s)dsdx < oo.
0 X

Proof. Using integration by parts together with Assumption 4, we get

Lemma 17. We have

ff(pi(s)dsdx:f x<p,~(x)dx+limx[ ¢i(s)ds<2m.
0 Jx 0 X—=00  Jx

Step 6: End of the proof

We finally show Theorem 3 in this step. Using (11) we write

oy . —1+ —T-
M, - M
1—||¢||1)( ! r )

t p+oo
—f f wT()dsdM. M. )~ (
0 JT(t—u)

Pr=qa+

Il arllplly, . —1+ —71-
— M, - M .
1-llpl 1—aT||<p||1)( ! t)

Using Theorem 2.6 in [JMP89] together with Lemma 15 and Equation (12), we get the conver-

gence of the process Mt —]\_/IT_, over [0,1], for the Skorohod topology, towards

t
f V/CedB?.
0

Moreover, in Lemma 16, we have shown that the second term in the decomposition of PtT
tends to zero. Finally, the third term also vanishes since [[¢ll; < 1. This concludes the proof.
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CHAPTER III

Rough fractional diffusions as scaling
limits of heavy-tailed nearly unstable
Hawkes processes

Abstract

We consider a sequence of Hawkes processes whose regression kernels have L' norms
asymptotically close to one and power law decay at infinity of the form x~ 1+ with
a € (0,1). Such processes are in particular used for order flow modeling in finance. We
prove that after suitable rescaling, the long term limiting behavior of the sequence is
that of a kind of integrated fractional Cox-Ingersoll-Ross process, with associated Hurst
parameter H = a —1/2. This results is in contrast with the case of thin tailed regression
kernels, where a classical Brownian CIR process is obtained at the limit. In particular, it
shows that persistence properties in the point process can lead to an irregular behavior of
the limiting process. This theoretical result enables us to give an agent-based foundation
to some recent findings about the rough nature of the volatility in financial markets.

Keywords: Hawkes processes, limit theorems, stability condition, heavy tail, fractional
stochastic equation, fractional Cox-Ingersoll-Ross process, volatility, long memory.

1 Introduction

A Hawkes process (IN;) ;0 is a self exciting point process, whose intensity at time ¢, denoted
by A;, is of the form

Ae=p+ ) ¢(t—fi)=u+f(o )d)(t—S)st,
, L

0<Ji<t

where 1 is a positive real number, ¢ a non negative measurable function and the J; are
the points of the process before time ¢ (see Section 2 for a more formal definition). These
processes have been introduced in the early seventies by Hawkes, see [Haw71a, Haw71b, HO74],
in the purpose of modeling earthquakes and their aftershocks, see [Ada76] for such ap-
plication. In the last years, the probabilistic and statistical analysis of Hawkes processes
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III. Nearly unstable heavy-tail Hawkes processes

has known several interesting developments, driven by the recent use of Hawkes pro-
cesses in various applied fields such as neuroscience [CSK88, PSCRI1, PSCR12], sociology
[BBH12, LZ13, RBRTMI13, ZZS13], criminology [M*13, MSB*11], genome analysis [RBS*10] and
mostly finance [ASCDLI0, BH04, Bow07, CDDMO05, ELLI11, EGG10].

Among the probabilistic questions raised by Hawkes processes, particular attention has been
devoted to the study of their long term scaling limits. More precisely, one wishes to understand
the behavior as T tends to infinity of the process

aT(NtT)» re [Or 1])

where a7 is a suitable normalizing factor. In [BDHMIZ2], it is shown that under the condition

+00
1611 =f0 S)ds<1,

the asymptotic behavior of a Hawkes process is quite similar to that of a Poisson process.
Indeed, as T tends to infinity,

N¢r

N
sup | == ~E[ =

te[0,1]

JI—o0,

in probability and

N, T N T
VTG =BT D),y = e WDrenn

in law for the Skorohod topolgy, with o an explicit constant and (W;) a Brownian motion.
This result has been extended in [Zhul3] to the case of non linear Hawkes processes.

The condition [[¢p]l; <1 is essential in order to obtain the preceding result. It is actually very
similar to the assumption |p| <1 one makes on the autoregressive coefficient p when working
with a discrete time stationary AR(1) process. In particular, when starting the Hawkes process
at £ = —oo, the assumption [|¢[; <1 is required in order to get a stationary intensity with
finite first moment. Also, as for AR(l) processes, under this condition, Hawkes processes only
exhibit weak dependence properties. Consequently, their asymptotic behavior is in that case
no surprise, close to that of a Poisson process. Hence this condition is called stability condition.

In Chapter II, the authors investigate the scaling limit of Hawkes processes when the stability
condition is almost violated. This means they consider a sequence of Hawkes processes satisfy-
ing the stability condition, but for which the kernel ¢ = ¢ also depends on the observation
scale T, such that [|¢p7||; tends to 1 as T goes to infinity. Such sequence is called sequence of
nearly unstable Hawkes processes.

Beyond its obvious mathematical interest, considering the framework of nearly unstable Hawkes

processes is motivated by empirical studies on financial data. Indeed, it has become quite
standard to model the clustered nature of order flows on financial markets by means of Hawkes
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processes. However, one systematically estimates L' norms for the regression kernels which are
smaller but very close to 1, see [FS12, FS13, HBB13, LC14]. Interestingly, this empirical stylized
fact has a very natural financial interpretation, namely the high degree of endogeneity of
modern markets due to high frequency trading. This signifies that a large proportion of orders
are just triggered by other orders, see [FS13, HBB13, JR13] for more details. Such situation is
naturally modeled by nearly unstable Hawkes processes and it is proved in Chapter II that
in this framework, the limiting law is that of an integrated Cox-Ingersoll-Ross process (CIR
process for short). Hence, compared to the case where the stability condition is in force, the
limiting behavior at first order is no longer deterministic, see also [Zhul3] for the case where
¢l is exactly equal to one and other interesting developments. Note that this CIR scaling
limit seems very consistent with financial practice. Indeed, it is widely acknowledged that
there exists a linear relationship between the cumulated order flow and the integrated squared
volatility, see for example [WBK*08], and CIR processes are a very classical model for the
squared volatility.

Nevertheless, the CIR limit in law of nearly unstable Hawkes processes discussed above is
obtained under the crucial assumption

+00
f sp(s)ds < +oo.
0

It is therefore quite natural to try to extend the results of Chapter II to the case of nearly
unstable heavy tailed Hawkes processes, for which this condition is no longer satisfied. Hence we
consider in this paper the situation where

¢(x) oo It

where a € (0,1) and K is a positive constant. This setting is actually much more in agreement
with financial data, where one not only finds that the function ¢ has a L! norm close to one,
but also that it has a power law tail, see [HBB13] and Chapter V. This heavy tail is also quite
easy to interpret in practice: it is related to the persistence of the signed order flow (the
series of +1, —1 where +1 represents a buy order and —1 a sell order). Indeed, the empirical
persistent property of this process is well established and is due to the so-called order splitting
phenomenon: most orders are actually parts of large orders (called metaorders), which are
split in smaller orders so that prohibitive execution costs can be avoided.

Our main result is that after proper scaling, the limit laws of nearly unstable heavy tailed
Hawkes processes are that of processes which can be interpreted as integrated fractional
diffusions. Very loosely speaking, these processes can be viewed as the integral of fractional
versions of the CIR process, where fractional Brownian motions would replace the ordinary
Brownian motion. This result is quite remarkable from a probabilistic point of view. Indeed,
assuming fat tail leads to a limit which is not an integrated semi-martingale. This is in
strong contrast to all other scaling limits obtained for Hawkes processes. From a technical
point of view, this case is of course more subtle than that investigated in Chapter II where
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III. Nearly unstable heavy-tail Hawkes processes

semi-martingale theorems are used in a quite direct manner. Moreover, Gaussian techniques
are not easy to apply in our context since the limit is not a simple Gaussian functional,
although it somehow involves a fractional Brownian motion.

The perhaps most surprising phenomenon obtained in our result is the value of the Hurst
parameter H of the (sort of) fractional Brownian motion appearing in the limit. Indeed, fat tail
meaning persistence, one would expect getting persistence in the limit and so H > 1/2. This is
actually the contrary: an aggregation phenomenon occurs in the heavy tail case, leading to
a very irregular process in the limit, its derivative behaving as a fractional Brownian motion
with Hurst parameter H < 1/2. Coming back to financial applications, this means that in
practice, the volatility process should be very irregular, which is perfectly in line with the
recent empirical measures of the volatility smoothness obtained in Chapter I. Therefore, our
theoretical result shows quite clearly that the rough nature of the volatility can be explained
by the high degree of endogeneity of financial markets together with the order splitting
phenomenon. This is to our knowledge the first agent-based explanation for the very rough
behavior of the volatility.

The paper is organized as follows. We first give our assumptions together with some intuitions
on the limiting behavior of our processes in Section 2. Section 3 contains our main theorems
whose proofs can be found in Section 4. Finally, some technical results are relegated to an
appendix.

2 Assumptions and intuitions for the results

We describe in this section our asymptotic framework together with intuitions about our main
results which are given in Section 3.

We consider a sequence of point processes (N]) = indexed by T. For a given T, (N[) satisfies
N{ =0 and the process is observed on the time interval [0, T]. Our asymptotic setting is that
the observation scale T goes to infinity. The intensity process (17) is defined for 7> 0 by

t
AT = uT+f0 ¢ (t-s)dN],

where u” is a sequence of positive real numbers and ¢! a non negative measurable function
on Rt which satisfies II(/)T||1 < 4o0. For a given T, the process (NIT) is defined on a probability
space QT ZT pT equipped with the filtration (?]'"tT)[E[O,T], where gtT is the o-algebra
generated by (N])<;. Moreover we assume that for any 0<a<b<T and Ae &}

b
EI(N, —N;)14l = [E[f A{1ads),
a

1Of course by T we implicitly means T, with n € N tending to infinity.
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which sets AT as the intensity of N7. In particular, if we denote by (J1),>; the jump times of

(NT), the process
At
NT f Alds
0

tA T

is a martingale and the law of N7 is characterized by A. From [Jac75], such a construction
can be done and the process N7 is called a Hawkes process.

Let us now give more specific assumptions on the function ¢’ .

Assumption 1. For te R,
¢ (1) = are(v),

where (ar) =0 is a sequence of positive numbers converging to 1 such that for all T, ar <1 and ¢
is a non negative measurable function such that Pl = 1. Furthermore,

lim ax®(1-Fx) =K,

X—+00

for some a € (0,1) and some positive constant K, with

X
F(x)=f d(s)ds.
0

Recall that in Chapter II, it is assumed that

+o00o
f tp(Ddr < +oo (1)
0

and this condition leads to a CIR-type limit. Considering Assumption 1 instead of (1) will
induce a completely different scaling behavior for the sequence of nearly unstable Hawkes
processes. Nevertheless, in this framework, we still have almost surely no explosion?:

lim ],Z = +00.
n—+oo

Remark that we do not work in the stationary setting since our process starts at time £ =0
and not at ¢ = —oo.

Let MT denote the martingale process associated to N T that is, for £t =0,
t
M7 =N - f ATds.
0
We also set ! as the function defined on R* by

vi=Y @hH*w, (2)
k=1

%In fact, for a Hawkes process, the no explosion property can be obtained under weaker conditions, for

example [ ¢(s)ds < oo for any ¢ >0, see [BDHMIZ].
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where (ng)"‘1 = (/)T and for k=2, ((/)T)*k denotes the convolution product of (ng)*(k_l) with
the function (/)T. Note that 1//T(t) is well defined since ||</)T||1 < 1. This function plays an
important role in the study of Hawkes processes, see [BDM12]. In particular, it is proved in
Chapter II that the intensity process, rescaled on [0,1], can be rewritten

tT tT
AtTT::uT"'/(; wT(Tt—s)qus+f0 w!(Tt-s)am!.

In term of scaling in space, a natural multiplicative factor is (1—ar)/ ,uT. Indeed, in the

stationary case, the expectation of /1; is ,uT/(l - II(/)T||1). Thus, the order of magnitude of the

intensity is /JT(I —ar)”L. This is why we define

Then we easily get

t _ t
Cth(l—aT)+f0 T(l—aT)wT(Ts)ds+‘/%fo yI(re-syy/clrasl,  (3)

with
adM

1 tT T
BtT:—f S,
\/TO /1T
Vs

From (3), we see that the asymptotic behavior of the intensity is closely related to that of
X — wT(Tx). To analyze the limiting behavior of this function, let us remark that for x =0,

LT ‘
is the density of the random variable
oLy,
- T i=1 v

where the (X;) are iid random variables with density ¢ and I Tisa geometric random variable
with parameter 1 - ar®. The Laplace transform of the random variable J T denoted by pl,
satisfies for z=0

ﬁT(Z) = [E[e_Z]T] = Z a- aT)(aT)k_l[E[e_%Z;c:lXi]
k=1

P(%)
(G5 -1

=Y A-ap(apF ' @E)k =
k=1 T 1-

3vk>0, PUT =kl = (1 - ap)(ap)F L.
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where ¢ denotes the Laplace of ¢. We now need to compute an expansion for ¢(z). Using
integration by part, we get

+00

+00
@(z):zf e‘”F(t)dt:l—zf e *(1-F(p)dt.
0 0

Then using Assumption 1 together with Karamata Tauberian theorem (see for example Theorem
17.6 in [BGT89]), we get

A(Z)—l_KM
$z) = a

z% + 0(z%),

with T' the gamma function. Set § = K@ and vr =6"1T%(1 - ar). As T goes to infinity,
0 T(2) is thus equivalent to
vr
vr+2z%

(®)
The function whose Laplace transform is equal to this last quantity is given by
VTxa_lEa,oc (- UTxa),

with E, g the (a, §) Mittag-Leffler function, that is

(o) Zn
Eqp(2) = ’;Omy

see [HMSII]. Putting this together with (3) and (4), we can expect (for a > 1/2):

t t
ctT~va s“‘lEa,a(—st“)dszva (t= 9% Eg a(—vr(t— 9%/ CldB!,
0 0

with
1

\/IJTT(l_aT).

The process B T can be shown to converge to a Brownian motion B. Thus, denoting by v
and Y the limits of v7 and yr, passing (non rigorously) to the limit, we obtain (for a >1/2)

Yr=

t t
C ~ voof s“‘lEa,a(—voos“)dswoouoof (t—8)* " Eg o (~Voo(t— $)*)\/CPdB;.  (6)
0 0

From (6), we see that in order to get a non-deterministic asymptotic behavior for C!, we need
that both vy, and Y. are positive constants or vy, is equal to zero and YV is positive.
However, in the last situation, the expectation of (C;’O)2 would be of order 27!, Such cases
where the variance is increasing with power law rate are incompatible with the approximate
stationarity property we want to keep for our model and its limit. Therefore, only one regime
seems natural and this leads us to the following assumption.
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Assumption 2. There are two positive constants A and u* such that

lim T*(1-ar) =A6.
T—+o00
and
lim TV %up=p*s L.
T—+o00
In particular, Assumption 2 implies that v converges to A and therefore the sequence of
random variables (J7) converges in law towards the random variable whose density on R* is
given by
Axa_lana(_Axa).

Beyond giving us the suitable asymptotic regimes for ar and pr, the heuristic derivation
leading to (6) provides an expression for the limiting law of the rescaled intensities of our
sequence of nearly unstable heavy tailed Hawkes processes. In (6), this law appears under
the form of a non-classical stochastic integral equation. Indeed, it is of Volterra-type and is
therefore (a priori) neither a diffusion nor a semi-martingale. Furthermore, the main term
of the Volterra kernel x*~! exhibits a singularity at point 0, of the same kind as that of the
fractional Brownian motion (Bf{ ) when expressed under the form:

H—;f[ _ oH-1/2 fo _aH-1/2 _ . §H-1/2
Bi _F(H+1/2)[ 0 (t=9) aWs+ _oo(t s) (—9) AVAR (7)

with (W;) a Brownian motion, see [MVNG68].

The preceding computations suggest a possible approach to derive the limiting behavior of our
sequence of Hawkes processes: studying the intensity of the processes. Indeed the intensities
can be rewritten under the form of stochastic integral equations as (3). Consequently one can
try to pass to the limit in the coefficients of the equation to obtain the limiting law, as we (non
rigorously) did to get (6). This is exactly the approach used in Chapter II. However, in this
more intricate case, it seems very hard to use. In particular the sequence (C!) is typically not
tight. Thus, instead of considering the intensities, we directly work on the Hawkes processes
themselves, more in the spirit of [Zhul3|.

3 Main results

We rigorously state in this section our results on the limiting behavior of nearly unstable heavy
tailed Hawkes processes. We start with some technical results about the function appearing as
the inverse Laplace transform of (5) in Section 2.

3.1 The function f%*

As shown by the derivations in the previous section, the function
FOMR) = Ax ¥ By (- Ax%)
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plays a crucial role in our analysis. We give here elements about the regularity of this function
which will be useful in the sequel. We denote by I* f and D f the fractional integration and
derivation operators, which are defined for a suitable measurable function f by

er L [T W)
FIO=t@ by G=pre
and 4 0
w1 _fx t
b f(x)_F(l—a) dxJo (x—1n«

The following lemma is a direct consequence of the definition of f** and of Section 11 of
[MHO08].

Proposition 1. The function f** is C* on (0,1] and

A
ad - a-1
Tc) o T(@”

AMa-1) ,_
(f"" ' (x) o @ x0e.

Furthermore, f @A (x)x1=% has Holder regularity a on (0,1].

Forv<a, f% isv fractionally differentiable and
DY f%(x) = Ax* 1V Eq oy (Ax%).

Therefore,

A 1
DV a ~ -
S x—0t (@ —v) xl-atv

and

Ma—-1-v) 1
VvV ray/ ~
(DTS Fla-v) x?-atv’

Forv' >0, f* isv' fractionally integrable and

/ 1
rr fa(x) = Ax—Ea,a+V’(_/1xa)-

1-a—Vv'

Therefore,

/ A 1
IV a x _
F )x—>0+ I'(a+v') x1-a-v

and fora +v' #1,

, AMa-1+v) 1
VvV ayN/ ~
@) x—0+ T(a+v) x2-a-v'"

Proposition 1 will be a key tool in the proofs of the main results.

107



III. Nearly unstable heavy-tail Hawkes processes

3.2 The limiting behavior of nearly unstable heavy tailed Hawkes processes

Let us first give some notations. We consider for ¢ € [0,1] the renormalized Hawkes process

l1-a
T _ T T
X = Tau*é‘—l Tt
and its associated integrated intensity
r_ l—-ar 1T

T
t—WO Asd&

As explained in Section 2, the space renormalization is chosen so that the processes have an
expectation of order one. We also introduce the martingale defined on [0, 1] by

To *6_1
z = | =2 (xT - AD).
l—ar

We are now ready to give our results about the limit laws of (Z7,X7T) for the Skorohod
topology.

Proposition 2. Under Assumptions 1and 2, the sequence (Z*,X7T) is tight. Furthermore, if (Z,X)
is a limit point of(ZT,XT), then Z is a continuous martingale and [Z,7] = X.

Now let (Z, X) be a couple of processes defined on some space (Q,«/,[P) with law being one of
the possible limit point of the sequence of distributions associated to the sequence (Z7, X7).
From Proposition 2, we are able to obtain the following theorem which is one of our main
results.

Theorem 1. There exists a Brownian motion B on (Q,<f,P) (up to extension of the space) such
that for t € 10,11, Z; = Bx, and X is continuous and satisfies

1
VH*A

Hence the limiting processes in Theorem 1 have a quite original form, which can actually be

t t
Xt:f sfOME—-s)ds+ ff“’/l(t—s)BXSds. (8)
0 0

interpreted more easily by looking at their derivatives (when they exist).

3.3 The limiting volatility process

As explained in the Introduction, when it exists, the derivative of the limiting process X in
Theorem 1 can be interpreted as the volatility. Actually, if the tail of the function ¢ is not too
heavy, X is indeed differentiable. Let us write

t
F*Mp) = f Fer(s)ds.
0
The following result holds.
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Theorem 2. Let (X;) be a process satisfying (8) for t €[0,1] and assume & > 1/2. Then X is
differentiable on [0,1] and the law of its derivative Y is a weak solution of the stochastic integral
equation

1 t
Yt=F“'A(t)+mf0 oMt -9\ YsdBl,
u

with B' a Brownian motion. Furthermore, for any € >0, Y has Holder regularity a —1/2—¢.

3.4 Discussion

We now comment the results given in Theorem 1 and Theorem 2.

o The singularity at zero of the function f®* appearing in our two theorems is of order x*1,
Making an analogy with the Volterra representation of the fractional Brownian motion (7), this
corresponds to a Hurst parameter H equal to @ —1/2. Thus, in the case @ > 1/2 where our
volatility process is well defined, because of the square root term in front of the Brownian
motion, we can somehow interpret it as a fractional CIR process with Hurst parameter equal
to @—1/2. This corresponds to a very rough process, with Holder regularity close to zero when
a is close to 1/2. As mentioned in the introduction, this is perfectly consistent with recent
empirical measures of the volatility smoothness on financial data, see Chapter I. Note how-
ever that this model does not reproduce the geometric nature of volatility observed in Chapter I

o A practical consequence of the preceding point is the following: When observing on a time

interval of order )

A-lglnte

a Hawkes process with kernel ¢ with L! norm close to one and power law tail with index 1+ a,
then after scaling in space, a fractional-like behavior is obtained.

o Theorem 2 relates the smoothness of the volatility process to the tail parameter a. This is
particularly interesting for financial applications. Indeed, the parameter « is usually considered
very hard to measure. Our theorem provides an approach where it can be obtained relying on
the smoothness of the volatility, which is much easier to estimate, see Chapter L.

o The irregular volatility process appearing at the limit arises because our processes are
nearly unstable with heavy tailed kernels. As explained in the introduction, in financial terms,
it means that the rough behavior of the volatility can be explained by the high degree of
endogeneity of modern markets combined with the persistent nature of the order flows.

o Note that Hawkes processes with L! norm exactly equal to one have been introduced in
[BMOI1]. In this work, they show that in order to get a stationary intensity, the parameter
must be equal to zero and the regression kernel has to be heavy tailed. Several additional
results for the non stationary heavy tailed case (||¢|; =1 and p > 0) can be found in [Zhul3].
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o Compared to the approach in Chapter II, it is important to remark that our volatility process
is simply the derivative of the limit of the sequence of nearly unstable heavy tailed Hawkes
processes. However, contrary to what is done in Chapter II, we do not provide any result
about the convergence of the sequence of intensities of the Hawkes processes. In particular,
the sequence of intensities is not shown to converge towards the volatility*. Remark also that
our assumptions are slightly weaker than those in Chapter II. In particular, we do not need
the function ¢ to be bounded. Again, this is relevant for financial applications where ¢(#)
becomes typically very large as ¢ tends to zero, see Chapter V.

4 Proofs

We give in this section the proofs of Proposition 2, Theorem 1 and Theorem 2. In the sequel, ¢
denotes a positive constant which may vary from line to line (and even within the same line if
no ambiguity).

4.1 Proof of Proposition 2

We show here the tightness of (Z T xT). We start with the following lemma.

Lemma 1. The sequences X' and AT are C-tight.

Proof. From [BDHMI12], we get that the expectation of the Hawkes process N/ satisfies

t
EIN]] :th+pT/0 wl(t-s)sds<tpr@+wTh).

Therefore, since

T
Iyl =

)

l1-a
we get
ElX{1=E[A{]<c.

The tightness of X and AT then follows, using the fact that both processes are increasing.

Moreover, since (1 —ar)/pr tends to zero, the maximum jump size of X T and AT (which
is continuous) goes to zero as T tends to infinity. From Proposition VI-3.26 in [JS87], this
implies the C-tightness of X7 and A”. O

We now give the proof of Proposition 2. It is easy to get that the angle bracket of Z7 is AT.
From Lemma 1, it is C-tight. Thus, from Theorem VI-4.13 in [JS87], the sequence (Z7) is tight.
Finally, marginal tightness implies the joint tightness of (Z T xT,

Let us now consider a subsequence (Z7, XTn) converging towards a process that we denote
by (Z, X). Using Proposition VI-6.26 in [JS87] together with the fact that the bracket of (Z)

4Actually it can be shown that for some reasonable functions ¢, the sequence of intensities does not converge,
at least in the Skorohod topology.
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is (XTn), we get that X = [Z, Z].

Since 4/ l}fT goes to 0, the maximum jump size of Z7 tends to zero. Therefore, ZT is C-tight
and so the limit Z is continuous. It remains to show that Z is a martingale. Using Corollary
IX.119 of [JS87], Z is a local martingale. Moreover, the expectation of its bracket being finite,
it is a martingale.

4.2 Proof of Theorem 1

We start with the following lemma which shows that we can work with AT rather than with
xT.

Lemma 2. The sequence of martingales XT — AT tends to zero in probability, uniformly on [0,1].
Proof. We have

T T _
XA = eyt

Applying Doob’s inequality to the martingale M7, we get

El sup {(X; —AD™ <C( ) [E[(MT) l.
te(0,1]

Then, the bracket of M7 being N T we deduce

pur(l—ar) l-ar
El sup {(X/ - A} < ( 2EINT) < ¢ sc )
tE[Opl] r T2a r*
which ends the proof. 0

We state here a lemma which will be useful in the proof of Equation (8).

Lemma 3. The sequence of measures with density p* (x) defined by Equation (4) converges weakly
towards the measure with density Ax* 'Ey o(—Ax%). In particular,

t
FL =f pl(x)dx
0

converges uniformly towards

t
Fo' ) = fo FerMx)dx.

Proof. The proof of this result is obtained showing that the Laplace transform of the measure
with density pT(x) converges towards the Laplace transform of the measure with density
Ax“_lEa,a(—/lx“). This has already been done in Section 2. O
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III. Nearly unstable heavy-tail Hawkes processes

We now give the proof of Equation (8). Let us consider a converging subsequence (Z ", XTn)
and write (Z, X) its limit. Abusing notation slightly, we write (ZzT, X1y instead of (ZTn, xTn),
Using Skorokhod’s representation theorem, there exists a probability space on which one can
define copies in law of the (Z T xTy converging almost surely for the Skorohod topology to a
random variable with the same law as (Z, X). We now work with these variables converging
almost surely and their limits. The processes Z and X being continuous, we have

sup | X! — X,/ —0, sup |Z] -7, —o0. (9)
te[0,1] tel0,1]

Let us now rewrite the cumulated intensity. For all £ =0, we have

t t N t
[AsTds=tpT+/ (,bT(t—s)(f Af,du)dwf oT(t-syMds.
0 0 0 0
Now remark that
t N t t
fwT(t—s)f (pT(s—r)M,Tdrds:f f Lyl (t—9)¢pT (s—r)dsMldr
0 0 0 JO
t t—r
:f vIit-r—s)¢pT(s)dsM!dr
0 JO
t
:f ylxplt-ryMlar
0
t t
=f wT(t—r)M,Tdr—f oI (t-r)M!dr,
0 0

where ¢ is defined in Equation (2). Using this together with Lemma 3 in [BDHM12], we easily
get

t t t
f Alds= t,uT+[ u/T(t—s)spTds+f vT(t-s)M!ds.
0 0 0
Therefore, replacing ¢ by T't, multiplying by (1—ar)/(T*u*6~1), and writing

_ HT
ur= H*a—lTa—l’
we get AT () = Ty + T + T3, with

Ty=0-ar)tur,

t
T,=T1- aT)qu wT(T(t—s))sds,

Ty=T'"%"? *;f)f vy (T(t-9)Z] ds.

Since ur converges to 1, we get that T7 goes to zero. For T», note that integrating by parts, we
have

t t
Tzzﬂf pT(t—s)sds:ﬂf FT(t-s)ds.
ar Jo ar Jo
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Using Lemma 3 and integrating by parts again, we obtain that T tends uniformly to

t t
f F“”l(t—s)ds:f FOr - s)sds.
0 0

We now turn to T3. Remark that

VT -ar)p*s!

To *5—1
Zg:\/u—(XtT—AIT).
l-ar

Thus, using that X T s piecewise constant, applying integration by parts, we get (pathwise)

13

t
f pT(t— s)ZSTds
0

and recall that

t t
f pT(t—s)ZsTds=f Fl(t-sdz!
0 0
and in the same way
t t
f f“"(t—s)ZsTdszf FMt—s)ydz!.
0 0

Then,
t t
[E[(f (F* (=)= FT (- 9)dZ] )| < cf (F*A(t—5)— FT(t-9)*ds,
0 0

which tends to zero thanks to Lemma 3. Furthermore, using (9), we get that
t
f At =) Egq (=Mt -9 Zs— 21 1ds
0

also tends to zero. Consequently, we finally obtain that for any ¢, T3 converges to
1
VA

Since Z is a continuous martingale, the fact that Z; = By, is a consequence of Dambis-Dubin-

t
f (t—8)* 1 Ey o (At 5)%) Zyds.
0

Schwarz Theorem, see for example Theorem V-1.6 in [RY99].

4.3 Regularity of the solutions of Equation (8)

We start with the following lemma.

Lemma 4. Let B be a Brownian motion and X a solution of (8) associated to B. Let H in
0,1). If X has Holder regularity H on (0,11, then for any € >0, X has also Hilder regularity
((a+HI2)A1)—€ on [0,1].
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Proof. Let € >0 and Z; = Bx,. The function

t
t—»f sf“”l(t—s)ds
0

being €, it is enough to show that

t
t—»[ fOME-5)Zds
0

has Holder regularity ((@+H/2)A1)—¢. Since for any €' > 0, Z has Holder regularity (H/2—-¢’),
by Lemma 6, it is (H/2 — ¢) fractionally differentiable and D¥/27¢ Z is continuous. Using the
fact that f®* is fractionally integrable, from Corollary 1, we get that

t t
ff‘“(t—s)zsdszf [A2=¢ pad(p_ o pHI2=¢ 7 45,
0 0

Finally, the results about I7/27¢ f® stated in Proposition 1 together with Lemma 8 give the

result. O

Lemma 4 enables us to obtain the following result about the regularity of X and Z.

Lemma 5. Let B be a Brownian motion, X a solution of (8) associated to B and Z; = By,. Then,
Sfor any € >0, almost surely,

o The process X has Hilder regularity (1 A2a)—¢ on [0,1].
o The process Z has Holder regularity (1/2 A a) — € on [0,1].

Proof Let M be the supremum of the Holder exponents of X. From Proposition 1 together
with Lemma 8, we get that M = a.

Let us now assume that M < (1 A2a). Then we can find some H < M and some € > 0 such
that

M<((a+HI2) A1) -e.

Thus, since X has Holder regularity H, Lemma 4 implies that X has also Holder regularity
((@+ HI2)A1) —¢,
which is a contradiction. Therefore M = (1 A 2a), which ends the proof.

Since Z; = By,, the second part of the lemma is a direct consequence of the first part.
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4.4 Proof of Theorem 2

Using Lemma 1, Lemma 5 and Corollary 2, for any v € (0, @), we can rewrite Equation (8) as

t 1 t
X :f sFPMe—s)ds+ f DY ¥ M-I Zods.
t 0 f \/_A 0 f S

Moreover, taking v >1/2, since Z is 1 —v fractionally differentiable, we get
N
I"Z :f D' Z,du.
0

Thus, using Fubini’s theorem, we obtain

t t S
f DVf”‘"‘(t—s)IVsts=f f DY f*Mt—s)D'"V Z,duds
0 0 JO
t t
2[ [ DVf“’A(t—s)Dl_"Zudsdu
0 Ju
t t
=f f D' f*Ms—uw)D'V Z,dsdu
0
t us
=f f vaa'/l(s—u)Dl_VZududs.
0 JO

Hence, we get

t
Xt :f sts,
0

with
Yy = F*}(s) +

N
D" f¥Ms—u)D'V Z,du.

1
VA Jo
From Lemma 1 together with Lemma 8, we get that Y has Holder regularity (@ —v). Thus,

taking v close enough to 1/2, we get that for any € >0, Y has Holder regularity (o —1/2—¢).
This implies that X is differentiable with derivative Y.

Now, since Z is a continuous martingale with bracket X and because v > 1/2, we can use the
stochastic Fubini theorem, see for example [Verl2], to obtain

1 4z
DI—VZ — _f v d
s r(v) dsJo G- )I—V v

“Tw defo (5— )1 Gy AZudv

=maf |, soorvaz

f (s—w'dZz,.

F(V+ 1) ds
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III. Nearly unstable heavy-tail Hawkes processes

Therefore,
Y, = F* () + \/_ F(v1+ 5 jsf (s—w'dZ,ds.
Using Fubini’s theorem twice and the fact that f * (g') = (f * g)’, we derive
Y, = F% (1) + \/IT%ftﬁftva“(t—s)(s— w'dsdZ,
=F' () + \/_ :tf I"'IDY ¥t —wdz,
=F* (1) + mafo fOUIVDVf“(v—u)dZudv
=F% o) + \/%fotf“(t— wdz,.

Moreover, using Theorem V-3.8 of [RY99], there exists a Brownian motion B' such that

t
7 =[ V' YsdB..
0

So, consider now the process (Y;) defined by
- 1 t
Y, = F*' 1) + —f fe(t—u)+/Y,dB!.
VA Jo
Going backward in the previous computations for Y; and D17 Z;, we remark that

3 1 t 1 d (¢
Y:F“”lt+—f DY (- —f - w"\/Y,dB-d
t (1) N, [ S)F(v+1)ds ; (s—uw) wdB,ds

and
-w)"\/Y,dB,, = f f V' Y,dB,,
F(v+1) dsf (s=u)"vYudBy = o5 (s—u)1 vV YudBydv
1 d
= VY, dB
r'v) dsf (s—v)1 v f "
_ 1 ifs Z dv
T Iwdsty (s—uv)v
=Dz,
Therefore,
. 1 t
Y, :F“"l(t)+—f DY f¥(t—-s)D'"VZds =Y.
t \/m o f N t
Consequently,

Yy = FY 1) +

1 t
%(t—u)\/YsdB..
\/_A/(‘) f ( u) S S
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III.A Technical results

In this section, we begin by gathering some useful results from [SKM93]. We denote H* the
set of functions on [0, 1] with Holder regularity A.

Theorem 3.1 in [SKM93] gives a link between the Holder exponent of a function and the
Holder exponent of its fractional integrals.

Proposition 3. Let a >0, A >0 such that a +A<1. If p € H*, then ¢ has a fractional integral
of order « and

$(0)
ri+a

I%¢p(x) = x*+y(x)
with y € HY,

Lemma 13.1 of [SKM93| relates the Holder exponent of a function and the Hélder exponent of
its fractional derivatives.

Lemma 6. If f € H* and f(0) =0, then for any a < A, f admits a fractional derivative of order
a and D* f € H¢,

Theorem 13.6 of [SKM93| gives another criterion for a function to have a fractional derivative.

Proposition 4. If f(x) = x *g(x) with g € H* where A > a, ~a <pu <1 and p such that
p+a<1/p, then f is fractionally differentiable of order a and D f € LP.

Equation 2.20 of [SKM93] is a fractional integration by parts which can be written as follows.

Proposition 5. If¢p € LP and w e LY with1/p+1/q<1+a, then ¢ and ¢ have an integral of
order @ and

t t
f G(t—s)[%y(s)ds = [ I9p(t— s)w(s)ds.
0 0
In this work, we mainly use the two following corollaries of Proposition 5.

Corollary 1. Let p€ L”, with r > 1 and v € HP. Then, for any a < B, D®y exists, belongs to
HP~% and

t t
f (/)(t—s)w(s)ds:f I%p(t — s) D%y (s)ds.
0 0

Corollary 2. Let ¢ be continuous and y such that xHy(x) € H*. Then, for any a <min(1-p, A),
D%y exists, belongs to L for some r > 1 and

t t
f G(t—s)w(s)ds = f I%¢p(t— s) D%y (s)ds.
0 0
The following result is immediate from the definition of fractional differentiation.
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III. Nearly unstable heavy-tail Hawkes processes

Lemma 7. If f and g are continuous fractionally differentiable of order v < 1, then for any
t€[0,1],
IDYf(t) - D"g(0)| <K sup |f(s) - g(s)l.
s€[0,1]
Finally, the next result is about the smoothness of the convolution of a power law function
with a continuous function.

Lemma 8. Let f be a differentiable function on (0,1] such that for some K >0 and 0< <1

K
vxe 011 If(0l= —5 and If'(x0)] < sy

and g a continuous function on [0,1]. Then the convolution

t
f*g(t)Zfo ft—s)g(s)ds

has Holder regularity (1 - p).
Proof. We set x = f/(B+1), G =1gloo and we split f* g(¢+h)— f* g(¢) into the three following
terms:

t+h

f+h-s)g(s)ds

fxglt+h) —f+g()

t

t
f h(f(t+h—s)—f(t—s))g(s)ds

+

+

t-h
fo (f(t+h—-s)—f(t—ys))g(s)ds.

The first term is bounded by KGTT_E, the second by KG(1 + ﬁ)hl—ﬁ and the third by

t-h pt+h-s —h 1 9
Gf f f'wduds < GKf h————ds<=GKh'"F.
0 t—s 0 (t_s)1+ﬁ ﬁ
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CHAPTER IV

The different asymptotic regimes of nearly
unstable autoregressive processes

Abstract

We extend the results of [CS82, Phi87, vdMPvZ99] about the convergence of nearly
unstable AR(p) processes to the infinite order case. To do so, we proceed as in Chapters
IT and III by using limit theorems for some well chosen geometric sums. We prove that
when the coefficients sequence has a light tail, nearly unstable AR(oo) processes behave
as Ornstein-Uhlenbeck models. However, in the heavy tail case, we show that fractional
diffusions arise as limiting laws for such processes.

Keywords: Autoregressive processes, AR(co), nearly unstable processes, limit theorems,
Ornstein-Uhlenbeck processes, fractional diffusions, volatility modeling.

1 Introduction

In the field of time series analysis, autoregressive processes (AR processes for short) probably
represent the most classical class of models. In this work, a discrete time process y is said to
be autoregressive if it satisfies yp = €9 and for k=1,

k
Yi=€k+ ) PiVi-i,

i=1
where ¢ is a sequence of non-negative coefficients and the & are iid centered random vari-
ables with finite second order moment. The process is called AR(oc0) if an infinite number of
coefficients are non-zero and AR(p) if they are all equal to zero after rank p. A first reason
for the popularity of AR processes is the fact that they are quite tractable. Furthermore, it
is usually easy to give an interpretation for such dynamics in practice. That is why they are
used in various fields such as population dynamics, see [CS82, Roy92], finance, see [Has91], or
telecommunications, see [Ada97]".

10f course the references given here are just some examples among many others.
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IV. Nearly unstable autoregressive processes

For classical AR processes starting at —oo and with non-negative coefficients, it is well known
that a necessary condition for the existence of a stationary solution is

;¢,~ <1. (1)

Thus, (1) is called stability condition. However, in many applications, notably finance, the case
where this stability condition is almost saturated:

+00
0s1-) ¢pix1
i=1

seems to be relevant, see [CS82, Marl3].

To address this near instability situation, several authors have considered the framework of
sequences of AR(1) processes of the form

n _ n
Y =PnYp_1 t €k

with the autoregression parameter p, tending to one as n goes to infinity, see for exam-
ple [CS82, MSR12, Phi87]. In these works, it is shown that after suitable renormalization,
such processes asymptotically behave as Ornstein-Uhlenbeck models. The estimation of the
AR coefficient has also been extensively studied in such an asymptotic, see [Cha88, CW87]
and [BC*07, Cha09, CZ09] for more recent related developments. The situation where
the number of coefficients in the autoregressive process is larger than one is treated in
[BC13, Jeg91, vdMPvZ99]. However, to our knowledge, no result is available in the case of
nearly unstable AR(oco) processes. The aim of this work is to fill this gap, using a methodology
originally developed for Hawkes processes in Chapters II and IIIL

A Hawkes process (IVy) is a point process whose intensity at time ¢, denoted by A, is of the
form

t
A,=u+f (¢ - AN,

with p a constant and ¢ a non-negative measurable function, see [Haw?71a]. The linearity in the
previous equation implies that Hawkes processes have a common structure with autoregressive
processes. In particular, under the stability condition that the L! norm of ¢, denoted by
|l 11, is strictly smaller than one, Hawkes processes admit a stationary intensity. Let us also
mention that the counterpart of the Yule-Walker equations linking the autocorrelations of an
AR process to its coefficients is the Wiener-Hopf equation, see [BM14b, Haw71a.

In Chapters II and III, nearly unstable Hawkes processes are introduced and their asymptotic
behavior is investigated. Such processes are defined as Hawkes processes for which the stability
condition is almost saturated: 1—|¢|;1 < 1. The key idea to understand the limiting laws
of nearly unstable Hawkes processes is to relate their dynamics with some geometric sums
whose parameter tends to zero. In this work, we follow the same strategy in order to derive
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asymptotic results for nearly unstable AR(co) processes.

We show that the limiting behavior of nearly unstable AR(co) processes strongly depends on
the properties of the sequence ¢ = (1, ¢2,...). Two main situations have to be considered: the
light tail case, where ¢; goes rapidly to zero (or is even equal to zero for i large enough) and the
heavy tail case, where the decay of the sequence ¢ is slow. We prove that in the first situation,
the cumulated process asymptotically behaves as an integrated Ornstein-Uhlenbeck model, in
agreement with the results obtained in the literature for AR(p) processes. However, in the heavy
tail case, a fractional limit is obtained. More precisely, the renormalized cumulated AR(co)
process behaves as a kind of integrated fractional Brownian motion with Hurst parameter
smaller than 1/2, or as a process close to a fractional Brownian motion with Hurst parameter
larger than 1/2, depending on the decay rate of the sequence ¢.

The paper is organized as follows. In Section 2, we introduce the geometric sums and derive
their limiting behavior as their parameter tends to zero. We describe our asymptotic framework
in Section 3. Section 4 contains our main results about the limiting laws of nearly unstable
AR(c0) processes and their proofs. We also interpret these results in terms of volatility modeling
in Section 5. Finally, some technical lemmas are relegated to an appendix.

2 Geometric sums

In this section, we consider the asymptotic behavior of some geometric sums. Understanding
these sums is actually the key point in order to be able to derive limiting laws for nearly
unstable AR(oco) processes.

2.1 Geometric sums and convolution

Let (an)n>1 and (¢;)i>0 be two sequences of non-negative numbers such that a;, <1, ¢ =0
and

+o0
Y i=1
i-1

In the next sections, a, will correspond to the sum of the autoregression coefficients and the
¢; to the (fixed) shape of these coefficients, see Section 3.

In this work, geometric sums, see [Kal97], are random variables of the form
no
Yn — Z Xl,
i=1

where I" is a geometric random variable with parameter 1 — an? (with the convention Z(l) =0)
and (X') is a sequence of strictly positive integer-valued iid random variables such that for
any i =1,

PIX! =i =¢;.

2viz0, PI" = i] = a},(1 - ap).
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Now we define the sequence " by
+00
v =Y (anp)*,
=0

with ¢* the sequence indexed by N such that ¢;° =1 and for i >0, (,b;f‘o =0 and for n =0,
¢* ") = p* " x b, where * denotes the convolution operator for sequences. Note that

+00 1
an: .
i=0 ' 1-

an
Actually, the random variable Y and the sequence " are closely related since for any i = 0,

n

PIY" = i] = — 1
LjzoY]
We will use the limiting behavior of Y" to obtain asymptotic properties for the sequence
w", see Corollaries 1 and 2. This will provide us key results for our study of nearly unstable
AR(o0) processes at large time scales. Indeed, in the next sections, for n tending to infinity,
we consider on time intervals of the form [0, n¢] autoregressive processes whose coefficients
sequence can be written a,¢:

k
Vi =€+ Z anpiyy_;»
i=1
with a, tending to one (nearly unstable case). Then, it is easy to obtain the following moving
average representation of the process:

k
n __ n
V=D Vi
i=0

and in particular

Lt

n — n
Vi) = 2 Vine)—i€i-

i=0
Thanks to the previous representation, we see that the long term behavior of y” is linked
with the asymptotic properties of the w{’n”_ ; and therefore with those of Y"/n. Indeed, for
example, for nt an integer,

Vi

PY"/n=1t]= .
Y=oV

We now recall some results from Chapters II and III which explain the two possible types of
asymptotic behaviors for our geometric sums. Exhibiting one behavior or the other depends
on the decay rate of the coefficients of ¢, that is on the tail of the distribution of X!.
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2.2 Light tail case

The first asymptotic regime of interest is the one which occurs when the expectation of X" is
finite. Thus we consider the following assumption.

Assumption 1. We have

+00
Z i(Pi =m < +oo.

i=1

In that situation, the “appropriate” speed of convergence of a, towards one for the nearly
unstable case is given in the next assumption.

Assumption 2. We have a, <1 and there exists A >0 such that
n(l-ay) e A.
Indeed, recall Proposition 2.2 of Chapter IL

Proposition 1. Under Assumptions 1 and 2, the random variable Y" | n converges in law towards
an exponential random variable with parameter A/ m.

Using Dini’s theorem, this implies the next corollary.

Corollary 1. Under Assumptions 1and 2,

ij i AL
sup | ‘1-ay)—-Q—-e m")| — 0.
xel0,1] 120 Vi " n—+00

2.3 Heavy tail case

The second asymptotic regime of interest is the one which occurs when the tail of the
distribution of X! is heavy. This can be formalized as follows.

Assumption 3. There exists K >0 and a € (0,1) such that
@ K
L iy T N
Let us now write
6=KT(1-a)la,

with I' the Gamma function. In that heavy tail case, the “appropriate” convergence speed of
ay, towards one is given in the next assumption.

Assumption 4. We have a, <1 and there exists A >0 such that
n*1-a, — 6.
n—+oo
Indeed, recall Proposition 2.3 of Chapter II.
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Proposition 2. Under Assumptions 3 and 4, the random variable Y" I n converges in law towards
the random variable whose Laplace transform is

A
A+z%
It is explained in Chapter II that this random variable has the density
FEM ) = A% Eaa (- Ax%),
where Eg , is the Mittag-Leffler function, see [MHO8] for definition.

Writing
X
F%(x) = f FeMs)ds
0
and using Dini’s theorem, we have the following result.

Corollary 2. Under Assumptions 3 and 4,

nx]
A
sup | Y v'Q-ap)-F*"(x)| — O.
x€[0,1] ;) l " e

3 The asymptotic setting

As previously explained, we consider a sequence of autoregressive processes of infinite order
indexed by n. More precisely, y; = €9 and for any k=1,

k
Vi=ert 2 Olvip
i=1

where the ¢! are non-negative coefficients. We assume that the £, do not depend on n, are
iid centered, and satisfy (for simplicity)

El(er)?] = 1.

We are interested in the long term behavior of the cumulative sums of such autoregressive
processes when the stability condition (1) is almost saturated. To study this, somehow as in
Chapters II and III, we consider that the “shape” of the coefficients sequence is fixed and that
their L! norm aj, tends to one from below. More precisely, we take

¢7 = arl()bi)
where
+00
Y pi=1
i=1

and a, — 1 as n tends to infinity, with a, < 1.
Since we want to investigate the asymptotic properties of cumulated sums of such processes,
we introduce the suitably renormalized Donsker line for ¢ € [0, 1]:

Z'= 7 ( =oyj +(nt =ty 1)

J
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4 Main results

4.1 The light tail case

We give here the behavior of the Donsker line when the autoregression coefficients converge
rapidly to zero. Note that the next theorem covers in particular the case of AR(p) processes
already studied in the literature.

Theorem 1. Under Assumptions 1and 2, (Z") converges in law towards the process Z defined by

t N LS A
Zt:f (1—e‘m”‘3))dWS:f f e mWaw,ds,
0 oJo m

where W is a Brownian motion.

This theorem means that when observed on a time scale of order 1/(1 — a;), a cumulated
nearly unstable AR(co) process whose coefficients sequence has a light tail behaves as an
integrated Ornstein-Uhlenbeck process.

To show this result, the first step is to get the following proposition whose proof can be found
in appendix.

Proposition 3. Under Assumptions 1 and 2, the sequence (Z™) is tight.

Then we need to prove the finite dimensional convergence. Using the moving average
representation of the process, we derive

lnt] \nt]—i €

- - + - ] E|nt]+1
n 1 n n t t n ) " (1 — i
Z ;:O( a )( kE:O Y+ (nt—|n J)wLntHl—z)\/ﬁ"—(n lnt) (- ay,) NG

This can be rewritten under the following integral form:

lntl/n nt]—|ns] Elnt]+1
Zt"=f (l—an)( Y u/2+(nt—LntJ)wfn”+1_Ln5J)dWs"+(nt—Lm‘J)(l—an)—,
0 k=0 \/ﬁ

where

From Donsker theorem in Skorohod space, we have that W' converges in law towards a
Brownian motion for the Skorohod topology. Furthermore, note that

nt]—|ns]

A-an( Y Wi+ =yl )

k=0
belongs to
Lnt|—=|ns] lnt]+1-|ns]
(A-an Y wpa-an Y i
k=0 k=0
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IV. Nearly unstable autoregressive processes

Thus, from Corollary 1, as a function of s,
[nt]—|ns]

(1- an)( kzo yi+(nt— lmJanml—LnsJ)

tends uniformly to 1 — 67%”7‘?) on [0, t]. Also, we obviously get that

E\nt]+1

Vvn

(nt—|nt])(1—ay)
tends to zero.

Then, using Theorem 2.2 of [KP91] together with the fact that Skorohod convergence im-
plies pointwise convergence at continuity points of the limit, for given ¢ € [0,1], we get the
convergence in law of Z;' towards

‘ A
f A-e w"")aws.
0

With the help of Cramer-Wold device, it is easy to extend this result and to show that for any
(t1,..., 1) €10, l]k, we have the convergence in law of (Zt’l’,...,Zt’]lc) towards

1 127
( (1—e‘%“1‘5))dws,...,f (1—e‘%“’<‘”)dws).
0 0

Together with the tightness of (Z"), this enables us to obtain the weak converges of (Z")
towards Z.
4.2 The heavy tail case

Let us now place ourselves under Assumption 3 which states that the coefficients sequence
has a power law type behavior. Then, using the geometric sums interpretation, we see that
the natural “observation scale” of the process is of order (1 - an)~ V. This corresponds to
Assumption 4. We have the following result.

Theorem 2. Under Assumptions 3 and 4, (Z") converges in law towards the process Z defined by
t
Z :f F® (¢ - 5)dw;,
0

where W is a Brownian motion.

In Section 5, we will see that for @ > 1/2, the limiting process can be viewed as an integrated
rough fractional process, whereas for @ <1/2, it is close to a fractional Brownian motion with
Hurst parameter larger than 1/2.

To obtain Theorem 2, the same strategy as for the proof of Theorem 1 is used. In particular,
the following proposition is proved in appendix.
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5. Application to volatility modeling

Proposition 4. Under Assumptions 3 and 4, the sequence (Z") is tight.

The end the proof of Theorem 2 follows as previously, using the decomposition

Ent]+1

7

\nt]/n |nt]—|ns]
Z[’:[) (l—ﬂn)( > wZ+(nt—LntJ)l//mel_LmJ)dWS”+(nt—LntJ)(l—an)
k=0

the uniform convergence of
Lnt]

(I-an) ) v}
k=0

towards F¥(f) (see Corollary 2), and the convergence of W/ towards a Brownian motion.

5 Application to volatility modeling

Let us now interpret Theorem 2 in terms of volatility modeling on financial markets. Consider
that the log-volatility process is driven at discrete times by a nearly unstable autoregressive
process with heavy tailed coefficients sequence. We choose to model the log-volatility rather
than the volatility itself because it is well established that it is better approximated by a linear
autoregressive process than the volatility, see [ABDL03, BKM08, CR98| and Chapter I. Such
model can reproduce the clustering property of the volatility at multiple time scales.

51 The case a>1/2

When a > 1/2, applying the stochastic Fubini’s theorem, see [Verl2], we get that the limiting
process for the cumulated sums, Z, can be rewritten

t ps
Z =f f FOMs—wydW,ds.
0 Jo
Therefore, in that case, it is differentiable and its derivative
t
Y; :f FErME—wdw,
0
locally behaves as a fractional diffusion with Hurst parameter H = @ —1/2. Indeed,
fa,/l(x) ~ C/xl—a

when x is close to zero and recall that a fractional Brownian motion W can be written as

W, —[_ [(t_s)I/Z—H T ColzH Aaws.

o0

In particular, proceeding as in Chapter III, we get that for any € >0, Y has Holder regularity
a-1/2-¢.

Thus, in this regime, the log-volatility asymptotically behaves as a fractional Brownian motion
with Hurst parameter & —1/2. According to Chapter I, this is consistent with empirical
measures of the smoothness of the volatility process provided that a = 0.6.

127



IV. Nearly unstable autoregressive processes

5.2 The case a<1/2

When a < 1/2, the behavior of Z is quite different. Proceeding as in Chapter III, we get
that for any € >0, Z has Holder regularity 1/2+ a — €. This is not very surprising since the
situation @ < 1/2 is close to that of ARFIMA processes®, which are known to behave as a
fractional Brownian motion with Hurst parameter 1/2+ a at large time scales, see [DOT03].

In this regime, the log-volatility exhibits apparent long memory, as observed for example in
[ABDLO3].

5.3 Thecasea=1/2

In the critical regime a = 1/2, we somehow asymptotically retrieve some features of the
multifractal model of [BKMO08]. Indeed, in [BKMO08], the “log-volatility” w; r(f) is written
under the form

t
wl,T(t)Zf ki r(t—8)dWs,

where W is a Brownian motion and kj 7 is function behaving in the range | <« t < T as

ko
k (t) ~ T
1T \/?

for some model parameters [ and T. Therefore, the integrated log-volatility defined as

t
Q7 (1) =[0 w;r(s)ds

satisfies

t
Qp (1) =f (Ki,7(t—$) — K(—5))d W,

with
t
Kir(0) =0 fo ko r(9)ds.

This behaves as Kov/7 in the range | < t < T.

Thus, this “multifractal” regime (@ = 1/2) appears as the interface between the classical long
memory (log-)volatility models (@ < 1/2) and the more recent rough volatility models (@ > 1/2).

IV.A Technical results

In the sequel, ¢ denotes a positive constant which may vary from line to line.

3 An ARFIMA process, see [Ber94|, can be written as an infinite order autoregressive process whose sum of
the coefficients is equal to one and whose coefficients sequence ¢ asymptotically behaves as ¢; ~ ¢/i'*® with
O<a<l/2.
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IV.A. Technical results

IV.A1 Proof of Proposition 3

In this paragraph, we place ourselves under Assumptions 1 and 2. Before proving Proposition
3, we need a technical lemma.

Lemma 1. There exisis ¢ >0 such that for any n, k, k',

Proof. For any k, using the moving average representation of the process, since € is a white
noise, we get

k +00
Elyp®1 =) i )?< Y w2
j=0 j=0

Moreover, using Parseval’s Theorem?,

1/2 -
2 f 7 (2)2dz
0

1/2 1
Y
0 |1—ay,l

+00
> W’
Jj=0

where we have used that

Y@l =1 L (@ @) | = = WO =

Let us now prove Proposition 3.

The result follows from an application of Kolmogorov’s criterion, see [Bil09]. We show here
that there exists ¢ >0 such that for any n, s and ¢,

E[Z - Z!'*] < clt - s|°.
We begin with the case where |nf| = |ns|. Using Lemma 1,

1-a,)?
(A 4= an)"

n?[t = SPEIY ] 41)7)

A

< cn(l—-ay)lt- s|?.

Using Assumption 2, this ends the proof for |nt| = |ns].

41n this work, the Fourier transform of a sequence (f) is defined for z€ [-1/2,1/2] as j?(z) =3 k>0 fke_znikz.
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IV. Nearly unstable autoregressive processes

In the case |nt] = |ns] +1,

[E[|Z;1—Z;1|2] = C([E”Ztn_zgztjlnlz]+[E[|Z(rfnsj+l)/n_an|2])
(1-ay)?
< CU—5F+——7fL%1—ns+LnﬂfEHy&ﬂ+ﬂﬁ
l-a
< CH—3F+£—ZJQQnH—n92

< clt—slz.

We now treat the case where ¢ = k'/n and s = k*/n, where k' and k° are integers so that
k' > k°. Using again Lemma 1 together with Assumption 2, we have

1=— 2 k' k'
Godr ELyE, Vi,

ki=kS+1ky=ks+1

EllZ] - 28" =

2
< ﬂ(kf_ks)ZL

n 1-a,
I _ J-S\2
) SCIt—SIZ.

<c(l- an)n(
Finally, for any ¢ > s so that |nt] = [ns] + 2, we use the decomposition
ENZ) = Z0) < e(BUZ] = Z]0 N+ EUZ 0= Zi sy oyl T+ EUZ gy 1y = Z00PD)

The tightness follows.

IV. A2 Proof of Proposition 4

In this paragraph, we place ourselves under Assumptions 3 and 4. Before proving Proposition
4, we need some technical results.

Lemma 2. There exists ¢ >0 such that for any |z| <1/2,
I1-¢(2) = clzl®.

Proof. Since Assumption 3 is satisfied, there exists ¢/ # 0 and § > 0 such that
1-¢(2) o c'z%

and
Viz| <8, 11-¢(2)] = |cl|z|%/2.

On [6,1/2], z— |1 — (,/b\(z)l/lzl"‘ is continuous and therefore has a minimum attained in some
zo: |1 =¢p(z0)1/1201% = M.

M is strictly positive since Re((ﬁ(zo)) = E[cos(2mzo X ")], which is strictly smaller than one be-
cause, using Assumption 3, zoX' does not almost surely belong to N.

Taking ¢ =min(|¢'|/2, M) ends the proof. ]
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IV.A. Technical results

Lemma 3. For a > 1/2, there exists ¢ > 0 such that for any n, k, k/,

Elylyp] <c—apn'* 2
Proof. As before, we have

1

1/2
E[(y™)? _2[ ———dz.
W= ) g

Therefore, for n large enough, a, >1/2 and

I1-¢p(2)]?

11— and(2)> =11—an+an(1-¢)I* =11 -a,*+ "

Using Lemma 2, this implies that

1/2
El(y)?] < fo o

[1—ap|?+|z/2@

, (1-ay)Ve c 1/2 c
El(y™ ]sf —dz+f —dz,
Vel i= T—anl? " Ja-apue 12722

which ends the proof. 0

Therefore,

Lemma 4. For a <1/2, there exists ¢ > 0 such that for any n, k, &/,
cl—ap)?* ' ifk=k
Elygyel = { clk — K201 i}pk £ K.
Proof. The fact that
El(y)*] < c(1— an)**”!

is a direct consequence of the proof of Lemma 3 together with the inequality 1-2a=2-1/a
for a<1/2.

To prove the other inequality, remark that using the moving average representation of the
process, for k= k', we get

K +00
Elygypl = ZowZ_ij,_j < _Z()w;?w;l+k_k,.
i= i=

Therefore, using Parseval’s theorem together with Lemma 2 and the fact that the v; are
non-negative, we obtain

non 1/2 eZﬂilk—k/lz 1/2 eZﬂilk—k/lz
E[kakr]SCRe(fO de)_ (/0 Wdz).

Thus, using Abel’s theorem, we finally obtain

Cc
[E[ylrclylrcl’] = |k— k/|1—20c‘
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IV. Nearly unstable autoregressive processes

Lemma 5. For a =1/2, for any € € (0,1), there exists ¢ >0 such that for any n, k, k,

n.n cl-ap)~*¢ lfk:k,
[E[ykyk’]s{ cte(A-an?lk—K1)"" ifk#kK.

Proof. Using the same proof as for Lemma 3, we get
El(y})] = cllog(1 - ay)l.
The first inequality follows. We obtain the second inequality using that for k > k/,

1/2 2rilk—k'|z

e
E[y"y"] < cR f ——d
Wiyl =c e( o (A-ap?+lzl Z)

(1-an)? 1 12 p2milk-K'|z
o[ g [ £y
0 (1 - an) (1-ay)? |Z|

< c+cllog((1 - ay)? k- k')l

Let us now prove Proposition 4.

In the case where @ >1/2, the proof that
E(Z! - Z'* < clt-s|?
is almost the same as in the light tail case replacing the use of Lemma 1 by that of Lemma 3.
The case a <1/2 is slightly more complicated. We now show that
EllZ]' - Z} P < clt— ',

for some 17> 0. As before, we begin with the case where |nt] = [ns]. Using Lemma 4 together
with Assumption 4 and the fact that 1 - a(2a +1) = 0, we get

n_ oz A=an)? , 2 n 2
EllZ; - Z| ]:Tn [t—sl [E[(yWJH) ]
(1- dn)z 2 l1+aa+1) 1 2e-1
<cC——n |t—S| W(l—dn)
< Clt_s|1+a(2a+1)‘

Using the same arguments as for the light tail case, we get a similar bound for |nt] = [ns] + 1.

We now treat the case where ¢ = k'/n and s = k*/n, where k' and k° are integers so that
k' > k°. Using again Lemma 4, we have

(1_an)2 kt k!
=——— ) ) Egygl

ki=ks+1ko=ks+1

ENZ - Z!' ]
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This is smaller than (with obvious notation)

(1 _ an)z( C(kl‘_ kS) k'—kS-1

(1- aﬂ)l—Za +c Z (Ak)1—2a

#H(k1, k) € [K° + 1, k' [ky — ko = Ak}).
Ak=1

n

Therefore, using Assumption 4, we get

A—ap?( cki—k5  *FE-1
ElZ" - Z"?] < n ———— (k' -k’
[l t s | ] = n ((1_an)1—2a +te Akz‘;l (Ak)l—za (k k ))
(1—61n)2 C(kt_ks) t sy14+2a
- ((l—an)1‘2“+c(k — k) )
< C((t_s)1+a+2a2 +(t—s)1+2“).

The result for any s and ¢ in [0,1] is obtained as in the light tail case.

Finally, the proof for @ = 1/2 is obtained the same way, using Lemma 5 instead of Lemma 4.
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Part III

Multiscale Hawkes estimation
and application to finance
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CHAPTER V

Estimation of slowly decreasing Hawkes
kernels: Application to high frequency
order book dynamics

Abstract

We present a modified version of the non parametric Hawkes kernel estimation procedure
studied in [BM14b] that is adapted to slowly decreasing kernels. We show on numerical
simulations involving a reasonable number of events that this method allows us to estimate
faithfully a power-law decreasing kernel over at least 6 decades. We then propose a
8-dimensional Hawkes model for all events associated with the first level of some asset
order book. Applying our estimation procedure to this model, allows us to uncover the
main properties of the coupled dynamics of trade, limit and cancel orders in relationship
with the mid-price variations.

Keywords: Hawkes processes, kernel estimations, power law kernels, high frequency, order
book dynamics, trades, limit orders, cancel orders, market impact.

1 Introduction

The understanding of the price formation mechanism remains one of the most challenging
problem in quantitative finance. In most modern financial exchanges, assets are traded via a
continuous double auction: agents can choose to buy or sell a stock at certain prices posting
limit orders in the order book or to execute the available limit orders using market orders. As
long as their their limit orders are not executed, agents can also use cancel orders to take
them off!. The intrinsic complexity of the formation of order book (it is the result of market,
limit and cancel orders of a large number of anonymous traders) implies that in spite of its
great practical and theoretical importance, there are relatively few full order book models (see
[Ros09b, SFGKO03] for “zero-intelligence”, i.e. purely random model of book dynamics and

ISee e.g., [CDLI13, SFGKO03| for more details on the functioning of continuous double auctions.
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V. Estimation of slowly decreasing Hawkes kernels

[CDL13, GDKB13, HLR13] for Markovian models of the order book).

A class of simpler models does not take into account the amount of liquidity and focuses exclu-
sively on asset prices which are described as the result of the impact of various type of orders:
Former models considered exclusively the impact of market orders [BFL09, BGPW04] while
some recent models account for the influence of all types of order book events [CDL13, EBK12].
In a recent work, some of us [BMI4a] introduced a price impact model using the framework
of Hawkes processes. This model shares features with former impact models but allows one
to describe the joint dynamics of both trades and price moves. In particular, unlike previous
impact models, this Hawkes model takes into account the influence of price changes on
themselves and on trades.

Hawkes processes were defined in [Haw71a] as point processes whose intensity function is a
linear regression on the past of the process

wzwf( )(p(t—s)st.
—00, [

The self and mutually exciting nature of Hawkes processes makes them naturally adapted
to the modeling of multivariate counting processes. They have for example been success-
fully applied in many domains such as the study of earthquakes [Oga99], neurobiology
[RBRGTM14] or sociology [MSB*1]]. In Finance, they have been recently used to model the
arrival of trades or limit orders [Hew(06, Bow07, Lar(7], price variations at microstructure
level [BDHMI3, BMl14a, HBBI3|, financial contagion [ASCDLI10] or credit risk [EGGI10].

In this work, we will propose a generalization of the impact model of [BMl4a], in order to
account for the interaction between price variations and any event (market, limit or cancel
order) at the level I of the order-book. This model turns out to be an 8-dimensional Hawkes
process that will allow us to have a direct measure of the endogeneity and the causality between
these events, see [FS12] or [HBBI13] for related discussions about the use of Hawkes processes
to measure the market endogeneity.

As far as estimation problems are concerned, the few former non parametric estimates of
Hawkes kernels in the context of high frequency finance lead to power law decreasing kernels
whose exponent is slightly higher than one [BDMI12, BMl4a, HBBI3]. As we will see, this
implies that one needs to estimate the kernels on a wide range of time scales (typically from 10
microseconds to 100 seconds) to capture the dynamics of the order book. For that purpose we
propose an improvement of the numerical scheme introduced in [BMl4a, BM14b] in order to
handle slowly decreasing kernels. It will be illustrated on some numerical examples, that this
method allows us to estimate the kernel on a large range of time scales which cannot be done
within the Gaussian scheme of [BM14b].

The paper is organized as follows. After recalling the main definitions and properties of
multidimensional Hawkes processes, we present the main non-parametric estimation principles
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2. Multidimensional Hawkes processes and estimation principles

in Section 2. Section 3 explains how these principles can be adapted to the non-parametric
estimation of slowly decaying kernels. The so-obtained algorithm is presented and tested on
numerical simulations at the end of this Section. The level I book model is then introduced
in Section 4. It is calibrated on high frequency data corresponding to DAX and BUND front
future contracts during one year (from June 2013 to June 2014). We then comment our results
as far as endogeneity and mutual influence of all types of events are concerned. Discussion in
relationship with former works and prospects for future research are provided in the concluding
Section 5.

2 Multidimensional Hawkes processes and estimation
principles

In this section we recall the definition of a D-dimensional Hawkes processes and briefly review

its main properties. For more details we refer the reader to [BM14b].

2.1 Basic definitions

Definition 1. A D-dimensional point process Ny = (N;)]Sjs p is a Hawkes process if for every i,

the i'" component of its intensity function A, is a linear regression of the past jumps of Ny, i.e.,

D g :
M=p'+Y ( t)gbl](t—s)dNS], Viel[l,D], ()
j=1(oo,

where 1L = {,Lli}lsisp is the so-called exogenous intensity (with yi =0), and p = {(/)ij}lsi,jsD the
so-called Hawkes kernel matrix, where each ¢ (t) is a real positive and causal function®. Using
matrix convolution notation, the system of Equation (1) simply rewrites

Ay =+ dNj. (2)

Let us recall the following well known stability condition of the Hawkes processes, see for
example [Haw71b].

Proposition 1. If the matrix of the norms L' of the kernels defined as

llpll=(1p* l1)1<4,j<D
has a spectral radius strictly smaller than one then N admits a version with stationary increments.

Let us remark that Brémaud and Massoulié [BM96] have shown that this stability criterion
remains valid when, in Equation (1), A; is a nonlinear positive Lipschitz function of {d Ny} s,
and where the elements of the kernel ¢ are not restricted to be positive. A particularly
interesting generalization of Hawkes processes considered in [HRBR12] is

Ar=(u+¢p*dNg)" (3)

2By definition, a function is causal if its support is included in R™.
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V. Estimation of slowly decreasing Hawkes kernels

where (x)* = x if x >0 and (x), = 0 otherwise. This extension allows one to account for
inhibitory effects when ¢%/(¢) < 0.

We will now assume that the condition of Proposition 1 is satisfied and consider a stationary
Hawkes process. The next simple result describes the behavior of the first order statistics of N,
see for example [BM14b].

Proposition 2. The average of the intensity vector of N:
A= EM], . EAPDT
satisfies
A=0-11¢lh~" p. (4)
2.2 Second-order properties and Wiener-Hopf system

The second order statistics of Hawkes processes are naturally characterized by their infinitesi-
mal covariance functions.

Definition 2. The infinitesimal covariance v of N is the D x D matrix whose elements are
vil(t—t)drdt' =E[dN!dAN)) - N A drdt,
where T is the D x D matrix whose diagonal is the average intensities \'.
The following result is shown in [BDM12].
Proposition 3. v can be expressed as a functional of ¢:
v=(6l+y) 261+ yT) (5)

where 5(t) stands for the Dirac distribution, X is the D x D matrix whose diagonal is the average
intensities \', and where the matrix w(t) is is defined as:

w( =Y ¢"P ), (6)

k=1
in which we used the notation ¢™*F (£) =+ P * ... ¢ (where ¢ is repeated k times).

Let us mention that there is an alternative “population representation” of Hawkes processes
(see e.g., [HO74]) according to which they are built as the times of arrival and birth of the
following population process:

 There are individuals of type 1, ..., D.
« Migrants of type i arrive at a Poisson rate of y'.

* Every individual can have children of (a priori) all types and the children of type i of an
individual of type j who was born or migrated in ¢ are distributed as an inhomogeneous
Poisson process of intensity (/)ij(- -1).
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2. Multidimensional Hawkes processes and estimation principles

In this model, ||¢p"/|| appears as the average number of children of type i of an individual of
type j. We thus use ||(/>ij|| as a measure of “causality” between j and i. Similarly, Aj/AiII(/)ijII
appears as the proportion of individuals of type i whose parent is an individual of type j.

In this construction, the elements "/ of the matrix 1 also have a natural interpretation. The
descendants of type i of each exogenous event of type j occurring at time ¢ are a point process
of average intensity '/ (- — £). Therefore, ||¢p'/|| appears as the average number of individuals
of type i which descend from an individual of type j. Similarly, A//A?[|y'/|| appears as the
proportion of individuals of type i whose “ancestor” is an individual of type j.

As explained in [BM14b], since the jumps are always of size one, the second order statistics of
the Hawkes process can also be summed up by its conditional laws.

Definition 3. Wz define the conditional laws denoted (8'/)1<;,j<p as the non singular part of the
measure [E[dN;IdNé =1]:

g (dr =E[dN!|dN] =11-1,_;6(1) - Aldt.
They are linked with the infinitesimal covariance by the equation
g =v(HZ™ -5l (7)

The following proposition, see [BM14b], links the conditional laws and the kernels of Hawkes
processes through a Wiener-Hopf system of equations.

Proposition 4. Given the conditional laws of a Hawkes process g, its kernel ¢ is the only® solution
of the Wiener-Hopf system:

g =¢)+g*d(1), Vi>0. (8)

Remark 1. The linear structure of Hawkes processes implies that they have properties similar to
that of autoregressive processes. In particular, the previous proposition can be seen as the counter part
of the Yule-Walker Equation.

2.3 Existence and uniqueness of solutions of the Wiener-Hopf system

The Wiener-Hopf system (8) is at the core of our estimation procedure. In [BM14b], it is shown
that if g is the conditional law of a Hawkes process as defined in Definition 3 then the system
(8) admits the unique causal solution which is the Hawkes kernel ¢.

Let us now leave the Hawkes model and assume that ¥, v € L! and g are respectively the
diagonal average matrix, the infinitesimal covariance function and the conditional law of any
stationary D-dimensional point process. Using the Wiener-Khintchine Theorem, we get that

3The uniqueness of the solution of Equation (8), considered as an equation in ¢, is shown in [BMI4b].
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the matrix V(z) is positive definite for any z € R. We can thus apply Theorem 8.2 of [GK58] to
decompose Vv as
Vi)=Y YT (1)

w=(Y-6)Vz1

where Y is causal. We then set

and ¢ such that

$=pa+i!
to get that ¢ satisfies Equation (5) and thus Equation (8) (these two equations are equivalent
for g(t) =v(HZ™1 - 5(0)D).

We have thus shown the following result.

Theorem 1. If ge L' is the conditional law of a point process then Equation (8) has one and only
one solution (in L').

The previous theorem shows that it makes sense to try to find the solution of the Wiener-Hopf
system for empirical data. Of course, the so-obtained solution is no longer necessarily positive.
We will comment on the interpretation of a negative ¢ later.

2.4 Model independent origin of the Wiener-Hopf equation

We now show that, from a model independent point of view, solving the Wiener-Hopf system
amounts to finding the kernel matrix ¢ (and the intensity vector u) that provide the best
linear predictor (in the sense of mean-square error) of the intensity. This remark leads the
authors of [HRBRI12, RBRGTM14] to consider an alternative estimation algorithm relying on
the minimization of a contrast function, a proxy for the mean square error.

Let us consider a 1-dimensional (for the sake of simplicity) stationary point process (not
necessarily a Hawkes process) which admits a mean intensity A and a conditional law
continuous and in L?

glt—t)dtdt =g(f' —dtdt’ = FE[dN;>0|dNy >0]dt' — A5, (dt)dt— Adtdr
= E[dN;dNy1/IN=AS;(dt)dt—Adtdt.

We are looking for the optimal kernel ¢ in L? and intensity fi such that the linearly estimated
intensity defined as

t
A? = p+[ ot - )dN
—0o0
minimises the mean square error
(@) =E[(A, - 1D,
The first thing to notice is that

[E[/lt—/l(tp]zA—p—fcf)A
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so that the optimal p is related to the optimal ¢ by
ﬂ:A—f@A
Let us now denote A =A—A and N; = N; — At. £(¢p) can be rewritten:

e@) = Eld-1D7

_ t o t ¢ o
[E[(At)z]—Zf gb(t—s)[E[/lths]+f (,b(t—s)f ¢t — s"E[d Ny dNg]

t
E[(L)Z]—zzxf ot - gt —s)ds

+

t t
A]ﬁ ¢mt—s{[ Gt —s)(g(t—95)—p(t—s")ds +65(ds"))ds

i} +00 +00
El(A10)?] —2Aj(; (,b(x)g(x)dx+AfO P(x) (g * d(x) +p(x))dx.
Finding this ¢ is thus equivalent to minimizing

+00
F($) = fo P(xX)[g * p(x) + p(x) —2g(x)]dx

If ¢ € L? is the optimal kernel then for every test function 77 in L? and ¢, let us differentiate F
in the direction 7:

+00
F(p+en) =F(p)+ sfo [N(x)(g * P(x) + P(x) — 28 (x)) + P(x) (g * N(x) +N(x)]dx + o(e).
Therefore, since for all %(6 =0) =0 and using the symmetry of g

+0o0 +o0o
fo P(x)(g *n(x)dx = fo n(x)(g * p(x))dx

and thus

_OF(@")

0
oe

+00

(e=0) =f0 N(x)(2g * d(x) +2d(x) —2g(x))d x.

Since the above equation is true for any test function, ¢ must satisfy the Wiener-Hopf equation:
g =P +g*P(y).

Adding the fact that ¢p— &(¢h) is convex, continuous and coercive in L? (which is reflexive), we
have shown the following result.

Theorem 2. If g is continuous and in L?, ¢ — e(¢p) has a unique minimum in L and this
minimum satisfies the Wiener-Hopf equation.
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V. Estimation of slowly decreasing Hawkes kernels

2.5 Estimation principles

As explained in [BM14b], the procedure for solving numerically the Wiener-Hopf system (8)
follows Nystrom method [Nys30]. More precisely, given a realization if the process N on an
interval [0, T], the procedure for non parametric estimation is the following

1. Compute an estimation g of the matrix function g using a “fine enough” time grid
(values of g outside of this time grid will be computed using an interpolation scheme).

2. Use a quadrature method to discretize the Wiener-Hopf system (8) on an interval
[Timin> Tmax]. If we use the quadrature points {f;};<x<x along with the quadrature
weights {wy}1<k<k, one gets, the system

.. ~a D K . ~7
gt ="t + Y Y wrg' (tn— )Y (1), VYnelo,K], 9)
1=1k=1

for all 7, j € [1,D].

3. Inverse this so-obtained KD? linear system. This leads to the estimation of the matrix
kernel at the quadrature points {¢'/ (£,)}; kef1,D1,ne1,x] s well as an estimation of [|¢|];
(using quadrature).

4. Estimate empirically the average intensity A (just counting the number of points on each
component of the process) and estimate p using (4).

A thorough study of this algorithm has been done in [BMI14b] (in the framework on a Gaussian
quadrature) and showed that it performs a fast and efficient non parametric estimation of a
Hawkes process. It proved particularly competitive in the case the realization process has a
large number of jumps and the matrix kernel is not well localized in time. Let us point out
that [BM14b] showed that this algorithm leads to precise result even if some elements of the
kernel matrix have moderate negative values.

However, as we will show in the next section, when some elements of the kernel matrix are
power-law, the quality of the estimation can be improved significantly. In this case, the use of
Gaussian quadrature is not adapted and leads to inaccurate estimations because the “mass” of
the power-law kernel exponents are spread over a large range of scales. We shall study this
phenomenon in the framework of high frequency financial data.

3 Non parametric estimation of slowly decaying kernels

One of the main issue when dealing with high frequency financial data is that the range of
scales involved in the dynamics is rather large. This translates into kernels with large support,
typically from Ty;,;, = 100 microseconds to T4y = 100 seconds, slowly decaying (power-law
like), varying very quickly at small lags (around T}y;,) and much slower at larger lags (around
Tmax)- Let us follow step by step the algorithm of Section 2.5 and explain how to adapt it to
this framework.
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3. Non parametric estimation of slowly decaying kernels

3.1 Using an adapted sample-grid for g

Step 1. of the algorithm (estimation of g) is clearly the first sensitive step. Since the kernels
are varying very quickly at small lags, more care should be taken for estimating the behavior
of g in the neighbourhood of 0 than anywhere else. In Appendix V.A, we describe precisely
the algorithm we shall use in this paper for the estimation of g. It basically consists in two
step procedure: (i) empirical computation of g on a time-grid which is more dense around 0
than anywhere else, (ii) linear interpolation for computing the values of g at any time (in all
our numerical experiments, we have checked than higher-order approximation does not bring
relevant precision to the overall algorithm).

3.2 Towards an adapted quadrature scheme

The choice of the quadrature (step 2. in the algorithm) is the next (and last) sensitive step.
The Gaussian quadrature used in [BM14b] for solving the Wiener-Hopf system is clearly not
adapted to this situation. Indeed, the Gaussian quadrature points are roughly uniform over
[0, T whereas the kernels are varying very quickly around 0 and slowly anywhere else. In order
to get precise estimation of kernels on the whole range [T}, Trnaxl, the Gaussian quadrature
is constrained by their behavior at small lags (¢ = T},;,) and would imply using an number of
quadrature points of the order of K = Ty4x/ Tinin = 108 which, even for D =1, is far to many
to be able to solve numerically the system (9).

One way to circumvent this difficulty could consist in adding points close to zero by using
the change of variable proposed in [Slo81]. Let {ft, wi}1<k<x correspond to the Gaussian
quadrature scheme on [10g(T7;;5),108(Timax)], we then set

(13, wy) = (e, e wy). (10)

We then replace the system (9) by the new system:
.. _s D K . 7
gl =g () + 3 Y wi g (1, — 1) 1), 1)
I=1k=1

In order to test this new estimation scheme, we simulate a one-dimensional Hawkes process

with parameters
0.06

(0.005+ )13

The simulation is performed on a time-period long enough (107 seconds) so that the Monte

o(t) = and p=0.05. (12)

Carlo error is small enough compared to the “quadrature error”.

Remark 2. This kernel checks the same kind of “multiscale behavior” as kernels involved in high
frequency financial dynamics. Indeed, 90% of its L' norm is spread over 5 decades: from 1073 to

102 seconds, in the sense that [;° p(t)dt=0.98, [ p(t)dt=0.05 and [;-°p(1)dt = 0.05.

We applied the algorithm described in Section 2.5, in which we use the procedure described
in Appendix V.A to estimate g using F,;;, = 1msS, Ryax = 1000s and hs = 0.05, and in which
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V. Estimation of slowly decreasing Hawkes kernels

we replaced (9) by (11). We chose K =200, Ty,i, = 1ms and T4y = 2000s. Figure V.1, displays
the so-obtained results. On the left, the log-log plot of both the estimated kernel and the
theoretical kernel (as well as the conditional law g) are displayed. On the right, the integral on
[0, ] of both theoretical and estimated kernels are displayed.

0.8 /

0.6 |-
o.4f

0.2

Figure V.1 - Left: Estimation of the conditional law g and kernel ¢ in the case of a 1-
dimensional Hawkes of size T = 10 seconds, with parameters (12). The estimation of g is
performed using the procedure described in Appendix V.A using hy,in = 1ms, Rpgx = 1000s
and hs = 0.05, and kernel estimation is performed using algorithm of Section 9 with Gaussian
quadrature followed by the change of variable (10) (K =200, Ty,i5 = 1ms, Tpax = 2000s and
thus = 0.077). The three curves correspond to log,,—log;, empirical conditional law (blue),
theoretical kernel (red) and estimated kernel (green) for 200 quadrature points.

Right: Cumulated theoretical kernel fot(/)(s)ds (green dots) and cumulated estimated kernel
Js d(s)ds (blue) as a function of log,o(2).

We observe that, for large times (¢ = 1s), the estimated kernel does not approximate well the
theoretical kernel. Moreover, this procedure significantly underestimates the cumulated kernel.
Indeed, we get ||p||; = 0.85 instead of [|¢p||; = 0.98. This error on the estimation of the norms
will be very important in our study of the causality between market events. Indeed the norms
of the kernels ||(/)ij [l1 will have a direct interpretation as the average number of events of type
i caused by an event of type j.

Let us try to give an intuitive explanation of the bad performance of this method: Recall that
the quadrature approximates

+00 K
fo gty —)p()ds= )Y wig(t,—t)¢(t), VYnel[l,K]
k=1

Thanks to the change of variable (10) there are more quadrature points around 0 than around
any other time. That ensures that the quadrature approximation captures the fast variation of
¢(s) around s = 0. However, g is also varying quickly around 0, the estimation error illustrated
in Figure V.1 comes from the bad approximation of g(¢), — s) around s = ¢, (i.e., k = n in the
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3. Non parametric estimation of slowly decaying kernels

previous quadrature formula).

In the next section, we propose a new quadrature scheme that will capture all behavior of the
conditional law g next to ¢, for any n.

3.3 The adapted quadrature scheme for slow-decaying kernels

Let us consider the time grid which is uniform from 0 to T},;, and log-uniform between T}y
and Ty4x using the same grid-size 0 <1

{tich1<k<k = (0,6 Timin, 26 Tminy -or Trnin, Tmine5; Tmineza,-w Tmax]. (13)

The adapted quadrature scheme consists in considering that the kernels are piecewise affine
on [, lk+1l:

r—1
(D) = P(tr) + ———— (P(tr1) — (1))
T+l — Ik

Under this linear hypothesis, Equation (8), in the D =1 dimensional case, becomes (the
generalization to dimension D > 1 is straightforward):

N-1 T+l

glty) = ¢+ Y 1) gty —s)ds
k=0

173

N-1 tk+1 S — tk
+ ) (@(tre1) — P(10)) ——g((ty,—9)ds
k=0 I k+1— Tk
N-1 tn =1
= o)+ Y Ptp) gwdu
k=0 In—1lk+1
N-1 _ t—t,
+ Z M k(tn_tk_u)g(u)du

k=0 Te+1— Ik th— ksl
Thus, using the adapted quadrature, the system (9) becomes (in the D =1 case)
tn—1tk

N-1
Ptn)+ Y, dl1) gwdu
k=0

In—Tk+1

8(tn)

. Nz_l (P(ts1) — Pty — 1) [k

gwdu
k=0 le+1— Ik tn—trs1

N-1 j t _ R t t—tx
-y P(t+1) — p() ug(wdu. 1)
k=0 k1~ Ik tn—trs

The empirical values of the integrals f; §(u)du and [; ug(u)du can easily be computed be-
forehand at all abscissa of the form x = #;, — f; using the linear interpolation of the conditional
laws described in Section 3.1 (see also Appendix V.A).

As before, this is a linear equation in the values of ¢ at the quadrature points. Solving it, one
gets an estimation of ¢ at these points. A simple linear interpolation can be performed to get
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V. Estimation of slowly decreasing Hawkes kernels

estimation at other points.

Applying the same testing procedure as before, we get, see Figure V.2 that this scheme works
perfectly with a reasonable number of quadrature points.

2
/

1t 0.8 -~
(o]8
1l 0.6
—2!

0.4
—3|
-4l 0.2
—5|

0.0
-5 -4 -3 -2 -1 0 1 2 3 -5 -4 -3 -2 -1 0 1 2 3

Figure V.2 - Left: Estimation of the conditional law g and kernel ¢ for the same Hawkes
process realization as in Figure V.1. The kernel estimation is performed using the algorithm of
Section 9 where the quadrature of step 3. has been replaced by the adapted quadrature given
by (14) (K =200, T)in = 1ms, Tax =2000s and thus 6 = 0.077). The three curves correspond
to log,, —log,, empirical conditional law (blue), theoretical kernel (red) and estimated kernel
(green) for 200 quadrature points. The estimation and the theoretical kernels perfectly match.
Right: Cumulated theoretical kernel fj ¢(s)ds (green dots) and cumulated estimated kernel
fOt([)(s)ds (blue) as a function of log;(1).

3.4 The adapted estimation procedure

Here is the step by step estimation procedure that will be used all along this paper:

1. Compute an estimation g of the matrix function g using the procedure described in
Section 3.1

2. Use the adapted quadrature method to discretize the Wiener-Hopf system (8) on an
interval [Tyin, Timax]. The quadrature points are given by (13) and the scheme by (14)
(this last equation corresponds to the one dimensional scheme, but generalization to any
dimension is obvious).

3. Inverse this so-obtained KD? linear system. This leads to the estimation of the matrix
kernel at the quadrature points {}"/ (£,)}; ke[1,D,ne(1,k] as well as an estimation of ||¢||;
(using quadrature).

4. Estimate empirically the average intensity A and estimate p using (4).
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4. Hawkes model for Level I Order book events

4 Hawkes model for Level I Order book events

41 Definition of the model

Multivariate Hawkes models provide a natural framework to account for the impact of past
events of various type on the rate of arrival of future events. In [BM14a], this framework has
been considered to extent classical impact price models (as in e.g. [BGPWO04]) by accounting
in real time for the “impact” of market orders on price changes but also for the auto-regressive
dynamics of price changes and their retro-action on the rate of market order arrivals. Along
the same line, one can extend the model of [BMl4a] by accounting, within a multidimensional
Hawkes model, for the cross and self influencing dynamics of all event types in the order book.
For the sake of parsimony and simplicity, we consider only events occurring at the Level I of
the order book, i.e., events that change the state of the order book at the best bid or best ask
levels. More precisely we consider the following 8 dimensional counting process:

N =@, PP, T TP, 10, 1P, ¢, P
where:
« P@ (resp. P)) counts the number of upward (resp. downward) mid-price moves.

o T (resp. T'?)) counts the number of market orders at the ask (resp. bid) that do not
move the price.

o L9 (resp. L) counts the number of limit orders at the ask (resp. bid) that do not move
the price.

« C9 (resp. C'?)) counts the number of cancel orders at the ask (resp. bid) that do not
move the price.

Remark 3. Let us stress that mid-price moves can correspond to the occurrence of a market order or
a cancel order that eats all the available liguidity at best bid or best ask or to a limit order placed in
the spread between best bid and best ask. We choose to not distinguish these events in order to handle
a process with relatively low dimension.

The previous counting process can be considered as an 8-dimensional Hawkes process charac-
terized by 8 exogenous intensities and 64 kernels. We denote by ¢™' =N the kernel ¢*/ coding

. . . . b)_, pla
the influence of the j*" process on the ith intensity. For example (pT( )= P

corresponds to
the influence of the trades at the bid that left the mid-price unchanged on the upward price
moves. These intensities and kernels can be estimated from empirical book data using the

procedure described in Section 3.4.

Notice that, in the following, we never impose “by hand” any (bid,downward)-(ask,upward)
symmetry. However, it can be seen in Appendix V.B that, as expected, this symmetry is rather

W_p@ " p@_,pb
=¢ )

well satisfied (for example, ¢p7 in our estimations. This indicates that, as

suggested on simulations, while we perform our kernel estimations on processes with many
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V. Estimation of slowly decreasing Hawkes kernels

dimensions and on many time scales, our method and the amount of data that we use, allows
us to retrieve significant results about the kernels. Indeed, an unstable method would hardly
allows one to retrieve this symmetry.

4.2 Description of the database

The financial data used in this paper have been provided by the company QuantHouse
EUROPE/ASIA (http://www.quanthouse.com). It consists in all level- order book data* of
BUND and DAX future contracts. For every day, we only keep the most liquid maturity and
we use data over one year from June 2013 to June 2014. Each file lists all the changes in the
first limit (best ask or best bid) of the order book at a micro second precision. We can thus
easily precisely compute from this data the times of the different market events that will be
of interest here (ask or bid market, limit or cancel orders at the first limit and upward and
downward mid price moves).

At the time scales that we shall study (from 107> to 10? seconds), the order book dynamics
strongly depend on the tick size of the asset (or more precisely by the quotient between the
average spread and the tick size, see [BFL09Y] or [DRI2] for characterization and differences
between small and large tick assets). In that respect, the DAX corresponds to a “small-tick”
asset while the Bund is a “large tick” asset.

The number of events in our sample is summarized in Table V.1.

P@ [ p® [ 1@ [ 7B [ @ [ [® [ @ | c®
xFDAX | 9.36 | 9.35 | 2.66 | 2.67 | 19.7 | 19.6 | 23.3 | 23.1
xFGBL | 172 | 1.72 | 340 | 3.48 | 29.8 | 29.8 | 26.6 | 26.5

Table V.1 - Total number of events (in millions).

We have checked using numerical simulations of multidimensional Hawkes processes with
power-law kernels, that the size of the sample is sufficient to provide reliable estimations of the
shapes of the kernels. We have also checked that our main results do not depend on intraday
seasonal effects: if one selects a 1 hour intraday time slice, we obtain the same results (up to
some statistical noise).

4.3 Conditional law estimations

To estimate the 64 conditional laws we proceed as explained in Section 3.1 (see also Appendix
V.A) taking the parameters hs = 0.05, h;i, = 0.1 milliseconds and ;45 = 1059 seconds (see
(17)) on the period from 1 June 2013 to 1 June 2014 (252 open days).

4That is the times of market orders and limit and cancel orders at the first limit and the state of the first
bid-ask queues at these times.
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4. Hawkes model for Level I Order book events

Surprisingly most of the conditional laws between financial events have very similar properties.

(a) _,p(h) T@_ 1@ L@@ ca_c@a
> g > g b g b

As an illustration, Figure V.3 displays, for the Bund, g”
gL(a)_,L(Io) and gL(a)_,Cm) in lOglO —lOglO.
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Figure V.3 - log;,—log;, empirical conditional laws g@“—~F" gl"=T" " gL“=L" 354

gC(a)*CM) for the Bund.

The first thing that we notice is that above a time scale 7; ~ 0.1 seconds, these conditional
laws behave as 77 with y < 1. For gT(“)_’T(m, this is the well known long-range memory of the
order flows. Between 7 and 72 ~ 0.3ms, the conditional laws roughly behaves as a power law

of exponent of order 1. Below, 72, the conditional laws “saturate”.

We also observe a few “bumps” on the conditional law which do not correspond to noise
in the estimation. We believe that there are two kinds of bumps. The first kind of bumps
appear at “round” times (0.01, 0.1, 0.5, 1 and 2 seconds), we believe that they are due to the
automatization of trading. For example, if an algorithm posts a limit order every second, this
implies a bump in the conditional law at 1 second. The second kind of bumps appears around
73 ~ 0.3 milliseconds. We believe that it corresponds to the average reaction time (i.e., the
average “latency”) of the agents to an event. The decreasing of the conditional law below 0.03
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V. Estimation of slowly decreasing Hawkes kernels

milliseconds is an artefact of our data.

Once the conditional laws have been estimated, we solve the Wiener-Hopf system, following
steps 2. and 3. in Section 3.4 with the parameters K =100 (so that = 0.15), T;;, = 0.1
milliseconds and T}, = 140 seconds and compute the exogenous intensity estimates following
step 4. We shall first comment on the values of the exogenous intensities.

4.4 Exogenous intensities

Let us recall that, within the Hawkes model, the exogenous intensity g’ can be interpreted
as the rate of (Poisson) events of type i that are “coming” from an exogenous source of
information, i.e., that are not “caused” by any other past event in the model. In that respect,
the ratio: .
Ri=
Al
represents an exogeneity ratio, namely the ratio between the number of exogenous events and
the total number of events of type i. Notice that, in the one dimensional case, according to
Proposition 2, one has simply: R=1-|¢|l;.

(15)

p@ P(b) T(@ T(b) L@ L(b) c@ C(b)
u | 2.37e-2 | 2.39e-2 | 1.06e-2 | L14e-2 | 2.07e-2 | 2.27e-2 | 1.53e-2 | 7.51e-3
R 2.7% 2.7% 4.3% 4.5% 1.1% 1.2% 0.7% 0.4%

Table V.2 - Estimated exogenous intensities (in s™1) and the corresponding exogenous ratio
(15) of the DAX futures.

p@ pD 7@ 7®) L@ LD c@ c®
i 713e-3 | 7.10e-3 | 14le-2 | 1.45e-2 | 3.83e-2 | 3.83e-2 | 4.00e-2 | 4.39¢e-2
R 4.4% 4.4% 4.5% 4.5% 1.4% 1.4% 1.6% 1.8%

Table V.3 - Estimated exogenous intensities (in s_l) and the corresponding exogenous ratio
(15) of the BUND futures.

The estimated intensities and the corresponding exogenous ratio for the DAX and the BUND
futures are reported respectively in Tables V.2 and V.3. These tables reveal that, for both
assets, the level of exogeneity is very low: R is only a few percent, meaning that most of
the events can be considered to be directly triggered by past events within this model. See
Chapters II and III for theoretical studies of the diffusive long term behavior of such almost
purely endogenous Hawkes processes. For comparison, a simple one dimensional Hawkes
model accounting for mid-price jump events as in refs [FS12] provides an exogenous ratio of
respectively R =0.059 for the DAX and R =0.10 for the BUND future. This means that the
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4. Hawkes model for Level I Order book events

8-dimensional Hawkes model provides a better description of mid-price changes than a simple
one dimensional model that has to involve a larger amount of “external” sources of information.

Let us also remark that, for both assets, market orders are more exogenous than limit and
cancel orders. This is not surprising since several studies tend to show that market orders are
“leading” limit and cancel. Thus, degree of endogeneity of the limit and cancel orders should
be greater than the one of the market orders.

Finally, one can see that though limit and market orders have strikingly similar exogenous
ratio for small and large tick assets, the mid-price changes and cancel occurrences are more
endogenous in the case of small tick asset (DAX).

4.5 Matrix of kernel norms ||¢||;

Before discussing the precise shape of the estimated kernels, we use the values of the norms of
the kernels ¢'/ to comment the main mutual and self excitations that occur in the order book®.
The matrices of the kernel norms ||¢p||; we obtained for the DAX and the BUND are reported
in Figure V.4. For the sake of simplicity, we have represented the norm values using a colormap
from blue to red. Notice that blue values correspond to negative kernel norms®. This feature
has a natural interpretation as an inhibitory effect within the non-linear version of the Hawkes
model described by Equation (3). We have checked, on numerical simulations, that as long
as the realized quantity (2) remains most of the time positive, the non parametric estimation
procedure introduced in Section 3.4, when applied to the non linear Hawkes process (3), leads
to reliable estimations even for negative kernels.

As expected, the overall symmetry (ask/bid) is fairly well recovered empirically on the matrix
shape. Any 2 x 2 sub-matrix with homogeneous inputs (i.e., same type of inputs to be chosen
among Price changes, Trades, Cancels or Limits) and homogeneous outputs is symmetric.
Thus for instance the kernel ng(a)_’C(bJ seems to have the same norm as the kernel (/)T(b)_’c(a).
Let us point out that, since the Dax is a stock index we could have expected some discrepancy
between the ask side and the bid side (statistics of downward jumps are slightly different
than statistics of upward jumps on equity markets) however, this discrepancy is negligible on
intraday data.

One striking feature that clearly appears on both matrices is the anti-diagonal shape of
the (P9, p()) sub-matrix and the diagonal shape of the (1@, 70y (L@ ) (c@ cb)
sub-matrices, see also Paragraphs V.B.1, VB.2, V.B.3 and V.B.4 in appendix where the cor-
responding normalized cumulated kernels are plotted. This means that, on the one hand,
market, limit and cancel orders mainly cause events of the same type and sign. This property

%Let us recall that the norm 1y represents the mean number of events of type i triggered by an event of
type j.

61et us remark that we allow an abuse of language in the sense that [|¢]|; stands for fé’o ¢(s)ds which is not
really a norm unless ¢(#) > 0.
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V. Estimation of slowly decreasing Hawkes kernels

can be mainly attributed to the splitting of metaorders, see [LMFO05], and to a less extent
to some herding behavior of agents. We will see in the next section that these diagonal
kernels are well described by roughly power-law decreasing functions. As far as mid-price
jumps are concerned, the cross-exciting structure between P@ and P® implies a strongly
mean-reverting behavior, which is of the main characteristic of the price microstructure and
which somehow guarantees the absence of long range correlation in prices, see [BM14a], in
agreement with market efficiency. Note that this cross price kernel can be linked to the kernel
of the propagator model, see [BGPW04] or Chapter L.

Finally, let us point out that that price changes appear to be the components that influences
the most the other components, i.e., a price change “drives” the dynamics more than anything
else. We will come back on this feature and on other features of this matrix (impact of orders
on the price, impact of the price on events, impact of trades on the liquidity,...) in the following
sections.

1
pa) ] pa 0.75
P pPo 0.5
7' T 0.25
7i8) 7t
L@ 7@ 0
7o o 0.25
@) e 0.5
ct? . M. c? N B -0.75
POPOHITO L@ Ofajod)  plo) (@b (@) B (al(b) )

DAX

BUND

Figure V.4 - The matrix of estimated II(/)ij [l

4.6 Matrix of norms ||y]|;

Let us recall that the kernel ¢/ can be considered as the “bare” impact of an event of type
j on an event of type i. If one wants to account for the “dressed” impact, i.e. the impact
associated with all the cascade triggered by some event, one has to estimate the function '/
as defined by (6) whose matrix of norms can be computed as:

s =l =1l "

More precisely, if one introduces:
J
gy, = Pyt
1l = A Iy 1
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4. Hawkes model for Level I Order book events

then, according to the population interpretation mentionned in section 2.2 and Proposition 2,
|7 || corresponds to the fraction of events of type i triggered by exogenous events of type j
(while ||w]]; corresponds to the average number of events of type i indirectly generated by an
event of type j). The matrix norm ||| is displayed in Figure V.5.

0.3

)

POpOTOrOL @ Oad) o phiap L @ Odab)
DAX BUND

Figure V.5 - The matrix of estimated ||1/_/ij [].

One can see that exogenous limit and cancel orders have a poor influence on mid-price
variations that are mainly caused by exogenous trades and price jumps. This indicates that
exogenous information is mainly incorporated into prices through trades or orders that directly
shift the mid-price. One can also remark that in the case of large tick asset (BUND), an
exogenous price move mainly impacts the price itself but not the order flow that does not
move the price while for the small tick asset (DAX), an exogenous price variation impacts all
type of events.

4.7 Shape of the kernels

In all former studies where non parametric estimations of Hawkes kernels involved in the
dynamics of order flows were performed [BDMI12, BMl4a, HBBI3], power-law kernels with
exponents close to 1 have been observed. This property can be directly linked to the strong
persistence of the order flow dynamics, see Chapter VIII, mainly caused by the splitting of
large orders and, to a lesser extent, to the herding behavior of agents. This feature remains
true in the 8-dimensional description adopted in this paper when one focuses on the kernels
involved in the self-excitation of market, limit and cancel orders and in the cross excitation of
mid-price moves (the kernels with highest norms, see Figure V.4).
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V. Estimation of slowly decreasing Hawkes kernels

Figure V.6 displays logig—logio plots of the kernels (/)T(m_’T(m, (/)L(a)_’L(a], gbc(m_’c(m and

¢F W=PP 1 clearly appears that these kernels loosely behave as a power law of exponent

slightly higher than one.

Pﬁ] ':".P(b] Tﬂ] _}Tﬁ]

(/)p(a)_,P(b) (/)T(a)_,T(a) (pL(u)_,L(a) and (pc(a)_,c(a) (
b b

Figure V.6 - log,,—log;, plots of
a straight line of trend -1 in green. These kernels display loose power-law behaviors with an

in blue) and

exponent close to 1. More precisely, the exponent seems to be higher than 1 below 0.1 second
and lower than one above 0.1 second.

Let us stress that this “roughly power law behavior” is not true for all kernels. For example,
the kernels (/)T(m_’P “ and ¢P “=L are “localised” below the millisecond, see Figure V.7 and
the cumulated kernels in Appendix V.B. Empirical kernels have a much “richer” behavior than
conditional laws which as stated earlier all have the same stylized facts.
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4. Hawkes model for Level I Order book events
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Figure V.7 - (pT(aJ_’P “ and ¢P “=L'” a5 a function of time below the millisecond.

4.8 The impact of the order flows on the price

For the sake of clarity, we split the two 8 x 8 matrices of kernels into 2 x 2 sub-matrices. This
representation of the kernels is provided in Appendix V.B for both DAX and BUND. Each

sub-plot represents the normalized cumulated kernels j\\—f fot(,bij (w)du as a function of log; (1)

(so there are 2 x 64 of them). This normalization for the kernel is natural in the population

A
R -y
the proportion of i whose parent is a j (while ||¢p"/|| corresponds to the average number of
children of type i for an individual of type j).

dynamics interpretation of Hawkes processes, see [HO74]. Indeed, &7|/¢p"/|| corresponds to

In this section, we focus on the impact of the flow of orders on the price, i.e., on the events
which do not instantaneously move the price and that have an impact on mid-price variations.
It corresponds to Paragraphs V.B.5, V.B.6 and V.B.7 in appendix.

One can see that the trades have a very localized delayed self impact on price variations
(by self we mean in the same direction, e.g., an ask market order implies an eventual upward
price move). Indeed, it seems that it takes 0.3 milliseconds for the market to incorporate the
information of the trade. This is the averaged time for other agents to react to this order
(this corresponds to the “latency” delay we have observed on the conditional laws in Section
4.3 and the kernels in Section 4.7). After this short time scale, the kernel is negligible, that
is the cumulated kernel remains constant, and the trade does not imply any more price changes.

As far as limit and cancel orders are concerned, their impacts appear to be less localized and
to be different when one compares the DAX (small tick) and the BUND (large tick). For the
DAX, limit orders impact the price by exiting the price moves in the opposite direction (limit
orders at the bid trigger upward price moves and conversely) and by slightly inhibiting the
price moves in the same direction. For the BUND, limit orders mainly have an inhibitory effect
one price changes (limit orders at the bid inhibit downward price moves). As opposed to the
impact of market orders, the impact of limit orders is not very fast. While the information of
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V. Estimation of slowly decreasing Hawkes kernels

market orders is almost immediate (0.3 milliseconds), a limit order needs time to be significant.

Cancel orders impact the price in a very similar way as limit orders but in the opposite
direction.

4.9 The impact of price jumps on the order flows

The kernels that correspond to the impact of price jumps on the order flows correspond to
Paragraphs V.B.8, V.B.9 and V.B.10 where the normalized cumulated kernels’ are plotted.

The most striking feature is that the effect of a mid-price change on market orders strongly
depends on the tick size (as it is also observed on Figure V.4). For the DAX (small tick), this
effect is rather small and self-exciting (upward price moves imply ask trades). On the contrary,
for the BUND (large tick), this effect is far more important and is cross-exciting (upward price
moves trigger bid trades and inhibit ask trades). This can be interpreted in terms of adverse
selection: On the one hand, for large tick assets, after an upward price move, agents will not
want to execute market orders at the new ask price because this price will be too high. On the
other hand , the new bid price will be more interesting and agent will thus execute bid market
orders.

On both assets, the influence of price moves on the liquidity is mostly se/fin the sense that
upward price moves excite bid limit orders and ask cancel orders (and inhibit ask limit orders
and bid cancel orders). The excitations are mostly localized (around 0.3 milliseconds) and
correspond to the averaged time reactions of market makers to the new information while the
inhibition kernels are long term. One can also notice that for the DAX, the short term exciting
effect of say ¢” “=C is balanced by a longer term inhibitory effect (around 10 seconds). We
believe that this effect is linked to the reversion of the liquidity to its stationary state a “long”
time after the price change has occurred.

410 The impact of market orders on liquidity and vice-versa

The kernels that correspond to the impact of the market order flow on limit and cancel order
flows are in Paragraphs V.B.1l and V.B.12 where the normalized cumulated kernels are plotted.

For both assets, trades have very fast positive influence on the opposite limit orders. This is
due to the fact that the underlying “efficient” price has moved and the liquidity must adapt
itself. At longer time scales, the effect is reversed (the cross kernels become negative, i.e.,
trades inhibit cross limit orders). This is due to the reversion of the liquidity towards its
stationary state. As far as the influence of market orders on the rate of cancel orders is
concerned, for the BUND, trades imply cancel orders in the same direction at very short time
scale and then, at longer time scales, this influence becomes negative. This effect is very
small which means that the proportion of limit and cancel orders directly implied by a trade

7See beginning of the previous section or of Appendix V.B
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5. Discussion and concluding remarks

is small. However, we see on Figure V.5 that when we “dress” this impact with intermedi-
ate events, exogenous trades indirectly imply a significant proportion of limit and cancel orders.

Concerning the reverse impact of limit and cancel order flows on market order flow, the
corresponding kernels are displayed in Paragraphs V.B.13 and V.B.14. One can see that ask
(resp. bid) cancel and bid (resp. ask) limit orders excite the trading rate at the ask (resp. the
bid).

411 The impact of the limit order flow on the cancel order flow and
vice-versa

The kernels that correspond to the dynamics between limit and cancel order flows correspond
to Paragraphs V.B.3, V.B.4, V.B.15 and V.B.16 which display the corresponding normalized
cumulated kernels.

As for market orders, the limit/limit kernels and the cancel/cancel kernels are mostly self-

a a a b
exciting (e.g., (/)L( '=L' is dominant and gbL( =LY s negligible). Remark also that cancel

C(a) _,L(h)
¢

orders have a short term influence on cross limit orders ( is localized around 0.3

milliseconds) which corresponds to the information of the cancel order and a longer term
impact on self limit orders ((PC(“’_. L@

liquidity.

is a power law) which corresponds to the return of the

In a similar way, limit orders have a short term influence on cross cancel orders and a longer
term impact on self cancel orders.

5 Discussion and concluding remarks

We have presented a numerical solution of the Wiener-Hopf Equation (8) when some kernels
behave as power laws of exponents slightly higher than one and are thus significant over a
very wide range of time scales (from 100 microseconds to 100 seconds!) and in a rather large
number of dimensions. This lead us to an efficient algorithm for non-parametric estimation of
these kernels.

Using the natural causal interpretation of Hawkes processes, we applied this algorithm to the
study of high frequency financial data (timestamped with a precision of a micro-second). It
allowed us to disentangle the cross-influences between eight types of first limit events occurring
in order books.

Our approach allowed us to retrieve some well known stylized facts about market dynamics:

» The order flows are strongly self excited: The main influence of market, limit and cancel
orders is on themselves. This is linked to the well known persistence of order flows and
to the splitting of meta-orders into sequences of orders. Moreover, orders also have an
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V. Estimation of slowly decreasing Hawkes kernels

influence of orders of the same “direction”. For example, ask trades excite bid limit
orders and ask cancel orders. The same kind of behavior had already been observed in
[EBKI12] by directly looking at the correlation functions between these events.

 The prices are efficient: To balance the strong persistence of the order flow imbalance,
the influence of price changes on themselves is mostly cross. That is upward price moves
cause downward price moves. This is consistent the measure of the “bare propagators”
of [EBKI2]. Indeed, in [EBKI2], the bare impact of events on the price is shown to
decrease in time. Not however that this bare impact is not exactly equivalent to our
kernels since it does not fully “disentangle” the influences of all the events on all the
events but only the influence of orders on price changes.

* The orders impact the price even if they do not move it mechanically. Again, this is
consistent with the measures of the propagators, of [EBK12], of the events that do not
move the price.

The generality of our Hawkes model allowed us to account for much richer dynamics than
previous works and to describe and quantify the influences between all types of events. We
have thus found some new and more subtle results that to our knowledge had never been
observed.

* Price moves have a retro influence on orders flows: These are the kernels that the tick
size influences the most. For large tick assets, adverse selection prevails and this effect is
cross: upward price moves excite bid trades and vice versa. For small tick assets, this
effect is self because of the persistence of order flows.

o The Hawkes framework and our estimation of the kernels allows us not only to have a
measure of “causality” between the different events but also of the time scales at which
this causality appears. We have found that there are loosely two kinds of influences:
Fast and localized influences, for which the volume of the kernel is localized around
the reaction time of the market (on our data 0.3 milliseconds) and influences which are
spread over a wide range of time scales and whose corresponding kernels thus behave
somehow as power law functions of exponents slightly higher than one.

 Note also that as opposed to [EBK12], our model is a real time model and not a discrete
time model where each period corresponds to an event. This allows us for example, to
see that market and limit orders have different impacts. Market orders have localized
impacts while limit orders take time to have an impact.

* Finally, we can measure the endogeneity of all market events. We find in particular
that market orders are more exogenous than limit and cancel orders. Therefore, when
looking at the “dressed kernels” v, we find that the trades are leading in the sense that,
exogenous trades have more influence than exogenous limit and cancel orders.

One thing that probably lacks in our purely Hawkes order book model is that the arrival of
events does not directly depend on the state of the order book but only on the past events. For
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6. An alternative approach: Dirac Hawkes processes

example, it is not clear that in our model, when the spread is important, liquidity will arrive.
On the other side of the spectrum of order book models, we can mention [GDKB13, HLRI3]
where the order book dynamics are purely Markovian and thus do not depend on the history
of the order flow. We believe that “reality” is between these two approaches: the intensity of
market events depends both on their history and on the state of the order book.

The stability and tractability of our numerical estimation method over extremely wide ranges
of time scales and as the dimension of the model increases imply that we have many leads to
improve our order book model. For example, we can add marks to account for the size of the
different events, see [BMI4b] or exogenous terms to account for external news, see [RPL14].

We conclude by underlying that of course, the relevance of Hawkes models is not restricted to
finance. Therefore, our procedure can be applied to the study of any field where the measure
of complex relations between point processes is necessary.

6 An alternative approach: Dirac Hawkes processes

In this section, we want to apply this estimation procedure to model the joint dynamics of
trades and price changes. A problem that appears when doing so is that some trades imply
price changes instantaneously while “classical” Hawkes processes almost surely do not present
simultaneous jumps.

6.1 Dealing with Kernels involving Diracs
To account for this fact, we introduce “Dirac” Hawkes processes and we present our new

associated kernel estimation procedure.

6.11 Construction of Dirac Hawkes process

An alternative way to build Hawkes processes proposed in [HO74] is to consider the following
population dynamics model:

 There are individuals of type 1, ..., D.
« Tor every type i, individuals of type i migrate as a Poisson process of intensity u'.
e Individuals of type j can have children of all types.

 The children of type i of an individual of type j who was born or migrated in ¢ are
born according to a inhomogeneous Poisson process of intensity ¢'/ (- — ).

Considering this population representation of Hawkes processes, it is possible (by considering
that individuals have a non null probability of having children at age 0) to define Hawkes
processes of kernel

(,b = d¢50 +(;bc
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V. Estimation of slowly decreasing Hawkes kernels

where ¢ is continuous and dy is a matrix. The stability condition thus becomes p(dyp +[¢pc|) <
1.

6.1.2 Infinitesimal correlation

Let us begin by recalling the definition of the infinitesimal covariance, v:

Vil (t-1Ydtdt =E[dN!dN]) - 22T dedr

where X/ is the average intensity of the i’" process (E[dN!1/dt). We show in Appendix V.C
that the following formula, proven in [BDMI12] remains valid for Dirac Hawkes processes

v=0©61+y) « 261+ 97
where 1 = Y 1o ¢*F.

Therefore, if we define the conditional laws as

EldN!dN]|dN] > 0]
E[dN]|dN] > 0]

gi(ndr = sidr

which when the Dirac part of the kernel is null is the usual conditional law of the process’. We
have the following relation between g and p.

Proposition 5.
g=vIzl=@l-yp) «2@1-¢7)z L (16)

Proof-

Vi - ndedr

EldN!dN])1-5'Sidtd?

EldN)_,dNj|dNi>o0] . . o

= — E[dN{IANG > 01P(dN} > 0) - 'S/ drdt
E[dN{|dN; > 0]

igh(d —ndrdr.

Let us now decompose g between its Dirac part and a its regular part:
g= dg60 + 8¢

where dg is a matrix and g is a function.

8Note that in this paragraph, we define the infinitesimal covariance and the conditional laws in a slightly
different manner than in the rest of the thesis because we do not take off their Dirac part.
9Except that we do not take off the Dirac part.
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6. An alternative approach: Dirac Hawkes processes

Remark 4. The Dirac part of the conditional law can be estimated using the following empirical
average

J
J
Ty

A

noo
Eily AN dN

dg..=
8ij nj j
LNy,

X
where the (Tlg) are the jump times of j.
The estimation of the continuous part of the conditional law is the same as in the non Dirac case.

6.1.3 Dirac estimation
The Dirac part of ¢, dy can be estimated by keeping the Dirac parts in (5):
dg2=(1-dy) ' Z(0-dp) HT =xxT
which writes
y=xx"
with Y = dgX and X = (1—-dg) V2.

For a given symmetric Y, there is a priori an infinite number of X which satisfy this equation.
However, if we make the additional assumption that we have ordered the indexes so that d is
lower triangular then X must also be lower triangular (because (I—dg) ™' =Y d, ’(;) and Y = XXT
has a unique solution which can be solved using the Cholesky algorithm. This lower triangular
assumption can be understood as an assumption about the causality between simultaneous
events. For example, when there is a trade and a price move at the same time, we (might)
want to say that it is the trade which “caused” the price move and not the price move which
“caused” the trade. We therefore want to set to zero the corresponding element of dy.

Once we have X, we easily get

dp=1-VIX~'.

6.1.4 Regular part estimation

Covoluting Equation (5) by (I6 —¢) on the left as in [BM14b], we get that for > 0:

I6-p)xgt) = Z(W-dp) )7 'Z7'6
dgd + e~ dypdgd —dyge—pedg —perge = Z(U-dy)")'2710
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V. Estimation of slowly decreasing Hawkes kernels

We remark that dy has been set so that the terms in § disappear and there remains to solve:

8c=dp8c+dcdg+de* gc

which is not far from a Wiener-Hopf system. We can apply a slightly modified version of the
scheme presented in the previous paragraph to solve it.

N-1 ty— 1k

dg8c(tn) + P(tn)dg+ Y P(1x) gc(wdu
k=0

In=lk+1

g:(ty)

N=L (b (tre) —p(t) (t — 1) [In~

+ Z g.(wdu
k=0 ler1— Ik = Ttea1
N-1 (P(t )—(,b(t ) b=tk
c
=0 Tl — Ik P

6.2 A Hawkes impact model

We begin our empirical study by applying our estimation procedure to the model presented in
[BMl4a]: The 4-dimensional counting process

(PA,PB,TA,TB)
where
o PA (resp. PB) counts the number of upward (resp. downward) mid-price moves
o TA (resp. TB) counts the number of trades at the ask (resp. bid)

is modeled as a 4-dimensional Hawkes process.

In the next paragraph we present our estimation results. To take into account the Dirac
part of the kernel in our representation of the results, instead of plotting fotq.’)” (s)ds, we plot

d(;] + Jy o (9)ds
We get similar results as in the 8-dimensional model above. The main difference is that since

we include the trades which move the price in the processes TA and T B, we observe a “Dirac
impact” in zero in the kernels ¢p74>~P4 and ¢TB—>—PB,
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6.3 Estimation results
6.3.1 DAX

Let us begin by presenting the average intensities A and the exogenous intensities p:

PA PB TA TB
© | 1.04e-2 | 1.02e-2 | 1.85e-2 | 1.85e-2
A | 7.80e-1 | 7.80e-1 | 4.44e-1 | 4.45e-1

Table V.4 - p and A for the DAX.

1'0 T T 1 1 T T 1 1 T T 1 1 1 1 T T T T T T
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Figure V.8 - d +f0[(,bc(s)ds as a function of log(#) for the DAX.
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6.3.2 Bund

We do the same for the Bund.

PA PB TA TB
i | 1L99e-4 | 3.47e-4 | 1.69e-2 | 1.67e-2
A | 148e-1 | 1.48e-1 | 3.62e-1 | 3.69e-1
Table V.5 - p and A for the Bund.
10 PA PB TA B
05f 1k L 1L
_,__-___—_-—-—_-—-
< 00 ,—/-.'—_-,___: / - -
-0.5} 1 .| s
L0 —————— —_——— —_— —_—
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_/__-___—-_-_-‘_---
-0.5} 11 JL 1L
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4-3-2-1012 4321012 43-2-1012 4321012

Figure V.9 - dy + fot(pc(s)ds as a function of log(#) for the Bund.

V.A Multiscale estimation of the conditional laws

The aim of this appendix is to present our multi scale estimation procedure of the conditional

law g defined by (3).
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V.B. Estimation results for the full order book model: the cumulated kernel matrix

V.A.1 Estimation procedure of g

Let us assume that, for all (7, j), we have the times of the events i (T]i)ksn[ and j (Tli)ksnj and
we want an empirical estimation of the conditional laws g/.

To do that, we will choose a time grid (f;);<, small enough so that we can approximate

gij(%) by tml—tl ;’“ gij(s)ds but large enough so that there is enough points (k, k) such

that T,i—T,i, € (17, t741] to have a good approximation of ft?“ g/ (s)ds by ni] Yo ZZ{ZI 1

T]é_T,{re[tlrtlﬂ]'
We thus approximate g'/ ([l+2[l+1) by
I+ 141 1 1 &

gl )= — 1
2 li+1 = 1j kgl kgl
