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Abstract

In this thesis we focus on the study of determinantal structures arising in semidefi-
nite programming (SDP), the natural extension of linear programming to the cone of
symmetric positive semidefinite matrices. While the approximation of a solution of a
semidefinite program can be computed efficiently by interior-point algorithms, neither
efficient exact algorithms for SDP are available, nor a complete understanding of its the-
oretical complexity has been achieved. In order to contribute to this central question in
convex optimization, we design an exact algorithm for deciding the feasibility of a linear
matrix inequality (LMI) A(x) � 0. When the spectrahedron S = {x ∈ Rn : A(x) � 0}
is not empty, the output of this algorithm is an algebraic representation of a finite set
meeting S in at least one point x∗: in this case, the point x∗ minimizes the rank of the
pencil on the spectrahedron. The complexity is essentially quadratic in the degree of
the output representation, which meets, experimentally, the algebraic degree of semidef-
inite programs associated to A(x). This is a guarantee of optimality of this approach in
the context of exact algorithms for LMI and SDP. Remarkably, the algorithm does not
assume the presence of an interior point in the spectrahedron, and it takes advantage of
the existence of low rank solutions of the LMI.

In order to reach this main goal, we develop a systematic approach to determinantal
varieties associated to linear matrices. Indeed, we prove that deciding the feasibility of
a LMI can be performed by computing a sample set of real solutions of determinantal
polynomial systems. We solve this problem by designing an exact algorithm for com-
puting at least one point in each real connected component of the locus of rank defects
of a pencil A(x). This algorithm admits as input generic linear matrices but takes also
advantage of additional structures, and its complexity improves the state of the art in
computational real algebraic geometry. Finally, the algorithms developed in this the-
sis are implemented in a new Maple library called Spectra, and results of experiments
highlighting the complexity gain are provided.

Keywords

Semidefinite programming, linear matrix inequalities, exact algorithms, complexity, de-
terminantal varieties, polynomial system solving, real root finding, semialgebraic opti-
mization.
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Introduction

Many problems in the applications boil down to computing a sample set of real
solutions of a system of polynomial equations, or to deciding if a system of
polynomial inequalities has a solution or not. Moreover, the input polynomials
are typically characterized by a particular structure.

Numerical algorithms can often provide the floating point approximation of a
solution, but they cannot in general certify that such a solution is unique, if this
is the case, or provide guarantees of convergence. In particular, for some decision
problems (such as deciding the emptiness of feasible sets in optimization) it is not
always possible to obtain a decision criterion, that is an algorithm taking as input
the polynomials defining a real algebraic or semi-algebraic set S, and returning
in output the empty list if and only if S is empty, and otherwise one point in
S. Moreover, frequently the set S is not finite and one has to extract a finite
sample subset. Especially when dealing with algebraic structures, ubiquitous in
many research areas, this is a hard computational challenge.

This has motivated, in the last decades, the growth of reciprocal exchanges
between different disciplines and aspects of mathematics and computer science,
such as real algebraic geometry, symbolic computation, convex and polynomial
optimization. More specifically, in the context of optimization or systems control
theory, many problems boil down to deciding whether the feasible set defined by
a linear matrix inequality, called a spectrahedron, is empty or not. This set is
convex and basic semi-algebraic, and the defining matrix is typically character-
ized by an additional structure.

Symbolic computation techniques have been developed in last decades to
solve systems of polynomial equations via exact algorithms. The common feature
of these algorithms is that the quantities appearing during the computation are
not represented by floating point numbers but by polynomial equations with
integer or rational coefficients. Typically, the goal is to reduce the hardness of
the input problem by substituting it with a simpler low-dimensional one. Finally,
it is extremely important to deeply exploit structures when designing dedicated
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techniques and algorithms for special subclasses of the general problem.
This thesis follows this path by addressing various problems in computational

real algebraic geometry involving linear matrices and determinantal varieties,
that are extremely interesting objects in many contexts, such as control theory,
statistics, polynomial optimization or algebraic geometry. The global objective
is to propose an approach via effective techniques to deal with real algebraic or
semi-algebraic sets characterized by determinantal structure and arising espe-
cially in semidefinite optimization.

Goal of the thesis

The goal of this thesis, whose main results are summarized in the next section, is
to develop different techniques for designing exact algorithms for solving systems
of polynomial equations with determinantal structure over the reals. In partic-
ular, these algorithms will be used for solving exactly linear matrix inequalities.

Problem statements

We address two distinct problems. Given square matrices A0, A1, . . . , An of size
m, with entries in Q, the associated linear matrix or pencil is the matrix

A(x) = A0 + x1A1 + · · ·+ xnAn.

We define as follows the collection of low rank loci associated to the pencil. For
r ≤ m− 1, let

Dr = {x ∈ Cn : rankA(x) ≤ r} .

The set Dr encodes any linear map from Cm to itself, whose associated matrix is
described by the pencilA(x) and has at leastm−r rank defects. It is the algebraic
set defined by the minors of order r + 1 of A(x). It is called a determinantal
variety.

Problem (A): Given A0, A1, . . . , An with rational coefficients, compute at least
one point in each connected component of the real algebraic set Dr ∩ Rn, or
establish that this set is empty.

We will contextualize Problem (A) in the historical approaches based on sym-
bolic computation for solving polynomial equations, in Section 1.2.2 of Chapter
1. Suppose, now, that matrices Ai are all symmetric, and let

S = {x ∈ Rn : A(x) � 0} .

The set S is convex basic semi-algebraic, since it is defined by sign conditions
on the coefficients of the characteristic polynomial of A(x). Indeed, if

det(A(x) + t Im) = fm(x) + fm−1(x)t+ · · ·+ f1(x)tm−1 + tm,
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is the characteristic polynomial of A(x), then S = {x ∈ Rn : fi(x) ≥ 0, i =
1, . . . ,m}. Remark that, with the previous definition, fm = detA and, in general,
fj(x) is the j−th elementary symmetric polynomial on the eigenvalues of A
at x. Finally, S consists of real points x such that all eigenvalues of A(x)
are nonnegative, it is called a spectrahedron, and the optimization of a linear
function on S is called a semidefinite program.

Problem (B): Given A0, A1, . . . , An symmetric, with rational coefficients, com-
pute at least one point in the spectrahedron S , or establish that this set is empty.

Similarly, Problem (B) is a particular instance of the emptiness problem for
semi-algebraic sets (cf. Section 1.2.2). These two problems are intimately related
since both the algebraic sets Dr and the semi-algebraic set S have a special
hidden determinantal structure. Indeed, the closure of the Euclidean boundary
of S in the Zariski topology is the hypersurface defined by the vanishing of the
determinant of the generating linear pencil A(x). Hence, a first step towards
solving Problem (B) is to design a dedicated variant of Problem (A) when the
matrix is symmetric. In this thesis, we prove that the geometry of spectrahedra
implies that this step is also sufficient to compute one point in S , and to solve
the associated emptiness decision problem.

Motivations

Both Problem (A) and (B) are motivated by the necessity of obtaining certified
results for linear matrix inequalities (LMI) and semidefinite programming (SDP).
Indeed, the feasibility problem for SDP, that is deciding whether a spectrahedron
is empty or not (Problem (B)), can be considered as a semidefinite program with
constant objective function, and where the goal is to exhibit, if it exists, at least
one minimizer. Semidefinite programming, as the natural extension of linear
programming to the cone of symmetric positive semidefinite matrices

Further, deciding the feasibility of a LMI is a basic subroutine of numerical
algorithms used in optimization or control theory. For example, computing the
analytic center of an LMI A(x) � 0, that is the point x∗ in the interior of S ,
that maximizes the multivariate polynomial function x 7→ detA(x), requests in
input a feasible point x ∈ S . Such a point could be computed with LMI solvers
by solving random generated semidefinite programs. Moreover, the general poly-
nomial optimization problem admits a hierarchy of semidefinite relaxations that
provide an approximation of the solution. Finally, deciding whether, for a given
even-degree polynomial f , there exists a positive semidefinite Gram matrix, is
related to the sum-of-squares decomposability of f , and hence to the problem
of giving a certificate of nonnegativity. Hence, a purely symbolic approach able
to certify the correctness of the feasible point x∗ ∈ S , or to establish that S
is empty, or more deeply to solve a semidefinite program, would lead to obtain
efficient hybrid approaches to a larger class of interesting problems.

Let us clarify that the intent of this thesis is not to prove that exact and

5



numerical algorithms can be competitive in terms of admissible size of input
problems; indeed, LMI solvers can nowadays treat inputs with a high number
of variables that are out of reach for our algorithms. The expected contribution
is to provide an exact proof for the feasibility of semidefinite programs, and to
show that also exact algorithms can handle extremely degenerate examples that
typically cause errors in numerical contexts. Here the word certificate means
that the output of the algorithm solves a decision problem involving the for-
mula A(x) � 0: the algorithm is expected to return in output either the empty
list, if and only if there are no solutions to this formula; otherwise, a rational
parametrization of a finite set whose solutions meet the feasible set where A(x)
is positive semidefinite.

Similarly to the case of symmetric pencils, generic linear matrices and the
related determinantal varieties model a large class of structures appearing in
contexts such as statistics, combinatorics, polynomial optimization, or such as
multilinear algebra and classical algebraic geometry. For example, the joint
probability matrices for couples of discrete random variables have linear entries
and the loci of rank defects correspond to mixtures of independence models; the
Sylvester matrix of two univariate polynomials f, g is linear in the coefficients of
f and g and its rank defect is the degree of the g.c.d. of f and g; in systems
control theory, the Hurwitz stability locus for univariate complex polynomials is
the determinantal semi-algebraic set defined by the leading principal minors of
a given linear matrix. Solving Problem (A) efficiently and in exact arithmetic,
exploiting further relations among the entries of the input linear matrix, is a first
step for tackling associated questions arising in these contexts.

From a theoretical viewpoint, a motivation inspiring Problem (A) is, finally,
also to compute complexity estimates for exact algorithms dealing with deter-
minantal real algebraic sets. As detailed in the next section, for general inputs
there exist different algorithms for solving this task, with a worst-case complexity
which is singly exponential in the number of variables n.

Geometrical and algebraic properties of determinantal varieties actually mo-
tivate the development of a dedicated approach that can strongly exploit the hid-
den structure. Moreover, recent results [149, 44, 45, 120] show that structures in
polynomial systems can be exploited for efficient Gröbner bases computations in
the zero-dimensional case. Our goal in this context is to investigate complexity
estimates in the real and positive-dimensional situations, designing algorithms
taking into account and preserving the determinantal structure step-by-step.

State of the art

Problem (A) is a particular and structured instance of the question of how to
compute a sample set of real solutions of a system of polynomial equations.
In particular, if the set of complex solutions is non-empty and finite, solving
Problem (A) means enumerating all real solutions.

The first algorithm addressing this question is due to Tarski [156], in the
more general setting of quantifier elimination as decision problem of the first-
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order theory of the reals. The complexity of Tarski’s algorithm is not elementary
recursive, hence no finite towers of exponentials can express its value, as a func-
tion of input data parameters. The first finite bound for the complexity, at least
doubly exponential in the number of variables, is due to Collins and to its Cylin-
drical Algebraic Decomposition algorithm [33]. Since the number of connected
components of a real algebraic set defined by polynomials of degree at most d
in n variables, is upper-bounded by the Thom-Milnor bound (cf. [20, Th. 7.23])
which is in O(d)n, further efforts had the main goal to fill this exponential gap
between the output magnitude and the effective number of operations.

The first singly exponential algorithm (that is with complexity in dO(n)) is
due to Grigoriev and Vorobjov [55] and is based on the critical points method.
The idea is to compute algebraic subsets of the input set containing the local
extrema of the restrictions of algebraic functions. For example, if the input
set is non-empty and compact, computing the local minima of the Euclidean
distance to a fixed point x ∈ Rn, yields, generically, a finite set meeting each
connected component. Moreover, when the input system is quadratic, it can
be solved in polynomial time with respect to n, and exponentially with respect
to the codimension of the associated complex algebraic set [56]. Further works
of Renegar [133], Heintz, Roy and Solernó [65, 67], Basu, Pollack and Roy [20]
have improved these algorithms for general real algebraic sets using the critical
points method. The main idea mainly developed in the book [20] and in the
aforementioned papers, is that computing critical points yields better complexity
bounds that those obtained by Collins’ algorithm (and by its improvements) for
different classical questions in real algebraic geometry (quantifier elimination,
sampling algebraic sets, deciding connectivity queries . . . ).

To control the degree of the intermediate sets produced in the course of such
algorithms, one can prefer to use linear projections over generic subspaces, and
hence to encode the critical points in the so-called polar varieties [11]. This idea
has been developed in last years, mainly in the work of Bank, Giusti, Heintz,
Mbakop, Pardo, Safey El Din and Schost. In [13, 12, 15, 14] the theory of
polar varieties is developed and applied to the specific case of solving polynomial
equations over the reals.

Since the constant hidden in dO(n) is not fixed a priori by these algorithms,
further results have tried to obtain uniform bounds on such exponents. In
[137, 138] the authors showed how a dedicated variant of the critical point method
allows to solve Problem (A) for smooth and equidimensional algebraic sets, un-
der the assumption that the input polynomials generate a radical ideal: the
complexity is essentially cubic in dn. Further, specific techniques to deal with
singular situations have also been developed [140], leading to complexities essen-
tially quartic in dn. Recent works have also reached better complexity results
for the polynomial optimization problem over real algebraic sets, via the theory
of polar varieties [58, 57].

Problem (B) is also a particular case of a more general question in semi-algebraic
geometry, that of deciding the emptiness of semi-algebraic sets. Recall, indeed,
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that S is the semi-algebraic set defined by sign conditions on the m coeffi-
cients of the characteristic polynomial of the pencil. The algorithms in [66] or
in [20, Ch. 13] compute a description of the connected components of the input
semi-algebraic set, and run within mO(n) arithmetic operations. Clearly, such
algorithms do not exploit the particular structure of spectrahedra. In [91], the
authors showed that deciding emptiness of S can be done in time O(mmin (n,m2)),
that is in polynomial time if either n or m is fixed. The main drawback of this
algorithm is that it is based on Renegar’s quantifier elimination [133], and hence
it does not lead to efficient practical implementations.

To get a purely algebraic certificate of emptiness for S , one could use the
classical approach by Positivstellensatz ([102], cf. Section 1.3.2). This leads to
a hierarchy of semidefinite programs. Indeed, by fixing an upper bound for the
degrees of the sum-of-squares multipliers, the resulting problem is semidefinite
in their unknown coefficients. Bounds for the degree of Positivstellensatz repre-
sentations are exponential in the number of variables and have been computed
in [147, 119]. In the recent remarkable result of Lombardi, Perrucci and Roy
described in [106], a uniform 5−fold exponential bound for the degree of the
Hilbert 17th problem, which asks for similar certificates for nonnegative polyno-
mials as sums of squares of rational functions. Klep and Schweighofer recently
obtained an emptiness certificate dedicated to the spectrahedral case, by means
of special quadratic modules associated to these sets [96]. It is shown there that
deciding emptiness of S amounts to solving a sufficiently large SDP problem
(whose size is exponential in either n or m), but for this latter task one has to
use floating point implementations of interior-point algorithms.

Main results and organization

The main drawback of the general algorithms described in the previous section
for computing sample subsets of the real solutions of polynomial equations or
inequalities, is that their complexity and also their practical efficiency do not take
advantage of possible structures of the input. Conversely, they typically break
these structures. This thesis presents dedicated algorithms for determinantal
real algebraic and semi-algebraic sets, deeply exploiting such a special structure
and additional relations among the entries of the defining linear matrix.

Let us first present the data structures used as input and output of our algo-
rithms. The input is given by vectors of rational numbers encoding the entries
of a linear matrix A(x) = A0 +x1A1 + · · ·+xnAn, and possibly integer numbers
encoding the expected rank. The output will encode a finite set, represented as
follows. Given a finite algebraic set Z ⊂ Cn, a rational parametrization repre-
senting Z is a vector (q0, q1, . . . , qn, qn+1) ⊂ Q[t] such that:

• q0 and qn+1 are coprime (i.e., they do not share complex roots);

• Z =
{(

q1(t)
q0(t) , . . . ,

qn(t)
q0(t)

)
∈ Cn : qn+1(t) = 0

}
;

• the degree of qn+1 equals the cardinality of Z;
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• Z is in one-to-one correspondence with the roots of qn+1.

This representation is particularly useful since one can use it to compute a ra-
tional approximation of the coordinates of the solution by solving the univariate
equation qn+1(t) = 0. A given point in Z is represented by an isolating interval of
rational numbers. The expected output for the exact algorithm solving Problem
(A) will be a rational parametrization whose set of solutions meet each connected
component of Dr; similarly, for Problem (B) we will return a parametrization
meeting the set S .

In the next two sections we present the strategy for addressing Problems (A)
and (B) and the main results of this thesis.

Strategy

Problem (A) asks to compute a sample set of real solutions of the polynomial
system generated by the (r + 1) × (r + 1) minors of the linear matrix A(x),
hence a system of

( m
r+1
)2 polynomials of degree at most r+ 1 in n variables. The

associated algebraic set is typically singular, and for generic parameters these
singularities are given by matrices with m − r + 1 or more rank defects. Hence
one could use the algorithm in [140], whose complexity is essentially quartic in
(r + 1)n.

The first step of our strategy is to avoid the minor formulation model-
ing the determinantal algebraic set. Indeed, we introduce slack variables y =
(yi,j)1≤i≤m,1≤j≤m−r stored in a m × (m − r) matrix Y (y), and we define the
incidence variety

Vr = {(x, y) ∈ Cn × Cm(m−r) : A(x)Y (y) = 0, UY (y) = S},

for some full rank matrices U ∈Mm−r,m(Q) and S ∈ GLm−r(Q). This technique
is classically known as Room-Kempf desingularization for determinantal varieties
(cf. for example [11]). The projection of Vr onto the x−space is included in Dr
directly by definition.

Following this new model, the determinantal structure which appears directly
in the minor formulation is now hidden into the equations A(x)Y (y) = 0, but
the new algebraic set Vr gains two decisive properties:

• it is defined by bilinear equations;

• up to genericity assumptions on the input A, it is smooth and equidimen-
sional.

The new regularity properties allow to design a dedicated critical point method
to extract a finite set of sample points on the set Vr. This is done by building
algebraic sets encoding the critical points of the restriction to Vr of projections π
on generic lines lying in the n−dimensional space containing the determinantal
variety Dr.
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To ensure that this method is successful for computing sample points in each
connected component C ⊂ Dr ∩ Rn, we prove that when the linear projection
π : Rn → R is generic enough, the image of each component C by π is closed. This
fact enables to conclude the following dichotomy: given a connected component
C ⊂ Dr ∩ Rn, either one of the critical points of π is contained in C, or π is
surjective when restricted to C and π(C) is the whole line. Remark that the
genericity of the projection is equivalent to the composition of a generic change
of variables x 7→M x with the projection over the first variable x1.

The previous reasoning allows to conclude that in order to compute at least
one point per connected component of Dr it is sufficient to iterate this vari-
ant of the critical point method by progressively eliminating one variable x (for
example instantiating x1 to 0). Geometrically, this corresponds to the intersec-
tion of the determinantal variety Dr with the fiber π−1(0). Once that the first
variable is eliminated, the critical points computation is applied on the fiber
Dr ∩ Rn ∩ π−1(0). Remark, finally, that at each step both the determinantal
structure of Dr and the bilinear structure and regularity of Vr are preserved,
since the change of variables does not involve the slack variables y.

To design an exact algorithm dealing with Problem (B), we also take ad-
vantage of the determinantal structure of the input spectrahedron S = {x ∈
Rn : A(x) � 0}. Indeed, every point x∗ on the boundary of S generates a sin-
gular matrix A(x∗) in the pencil A(x). In this thesis we prove that, if S is not
empty, and denoted by r the minimum rank attained by A(x) on S , then at
least one of the connected components of Dr ∩ Rn is entirely contained in the
boundary of S , hence in S .

The strategy for Problem (B) essentially relies on the previous geometrical
result. Indeed, this implies that in order to decide the emptiness of S , one
has just to decide the emptiness of the associated low rank loci of the symmetric
pencil A(x). This can be done by performing a dedicated variant of the algorithm
for Problem (A), when the linear matrix is symmetric. Moreover, a stronger
result is provided in this thesis: when S is not empty, a smallest-rank point x∗
is provided, that is with this procedure we are able to compute a solution x∗ of
a linear matrix inequality A(x) � 0 where A(x∗) has the smallest possible rank.

The previous fact is particularly remarkable since, for example, interior-point
algorithms for semidefinite programming typically compute solutions with max-
imal possible rank (that is, points x∗ lying in the relative interior of the optimal
face) while computing low-rank solutions is considered a hard challenge.

Our method also takes into account possible additional structures arising in
the linear pencil. As an example, we design a dedicated algorithm for solving the
emptiness problem for Hankel spectrahedra, that is convex sets defined by a LMI
A(x) � 0 where A is generated by Hankel matrices. The interesting fact involving
Hankel matrices is that their structure is inherited by their kernel, which can be
defined by the column of matrices with a particular sparsity structure (cf. [64,
Th. 5.1]). We recall here that the Hankel structure in linear matrices arises in
different contexts, for example the catalecticant (or moment) matrix associated
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to a binary form is a Hankel matrix which is linear in the coefficients of the
binary form.

Main theorems

We present here a concise summary of the main results. As announced in the
previous section, to establish correctness of the algorithms for solving Problems
(A) and (B), we need to prove that the images of all connected components of
the real determinantal variety Dr ∩ Rn by a generic linear projection are closed
sets.

To do that, given any algebraic set Z ⊂ Cn, of dimension d, we propose
in Chapter 2, Section 2.1.2, a decomposition of Z of recursive type. We define
a collection {Oi(Z)}1≤i≤d of algebraic subsets of Z by recursively considering
union of equidimensional components of low dimension, singular loci and critical
loci of linear projections. In particular, no regularity assumptions are requested
for the input set Z to get this decomposition.

Denote byM−1Z = {x ∈ Cn : M x ∈ Z} the image of Z via the linear action
of a given M ∈ GLn(Q). We prove in our first main result that the algebraic
set Oi(Z) has dimension bounded by i. We finally prove closure properties of
projection maps πi(x) = (x1, . . . , xi) restricted to Z∩Rn. We use the definition of
Noether position, which will be recalled in Section 1.1.3. This theorem appeared
in the paper [68], accepted for publication in Journal of Symbolic Computation.

Main Theorem 1. Let Z ⊂ Cn be an algebraic set of dimension d. There exists
a non-empty Zariski open set M ⊂ GLn(C) such that, if M ∈ M ∩Mn,n(Q),
the following holds:

1. for 0 ≤ i ≤ d, the set Oi(M−1Z) has dimension ≤ i and is in Noether
position

2. for any connected component C ⊂ Z ∩Rn, for 0 ≤ i ≤ d and for w ∈ Ri on
the boundary of πi(M−1C), π−1

i (w)∩M−1C is non-empty and contained in
Oi−1(M−1Z) ∩M−1C.

Main Theorem 1 allows to deduce that via generic changes of variables one
can retrieve expected behaviors, such as closure of projection maps.

We use this result to design, in Chapter 3, a probabilistic exact algorithm
solving Problem (A). We prove that building the incidence variety Vr (as intro-
duced in the previous section) and computing critical points of the restriction
of generic projections to Vr allows to extract the requested sample subset of Dr.
The probabilistic feature of the algorithm is due to the random choice of linear
changes of variables. These changes are sufficient to ensure that the genericity
hypotheses of Main Theorem 1 above are satisfied, for Z = Dr, and hence to
conclude closure properties of the projection maps.

The main result of Chapter 3 is the following one. This theorem appeared
in the work [70], under review in Journal of Complexity. The case r = m− 1 is
accepted for publication in Journal of Symbolic Computation [68].
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Main Theorem 2. Suppose that for 0 ≤ p ≤ r, the incidence variety Vp is
smooth and equidimensional and that its defining polynomial system generates a
radical ideal. Suppose also that, for 0 ≤ p ≤ r, Dp is empty or has the expected
codimension (m− p)2.

There exists a probabilistic algorithm such that, with input (A, r), returns in
output a rational parametrization q = (q0, q1, . . . , qn, qn+1) ⊂ Q[t] of degree in

O

(n− (m− r)2)
(
n+m(m− r)

n

)3


within

O

(n+m2 − r2)7
(
n+m(m− r)

n

)6


arithmetic operations over Q. The set defined by q contains at least one point
in each connected component of the real algebraic set Dr ∩ Rn. The set of input
data for which the genericity assumptions are not satisfied is included in a proper
algebraic subset of its parameter space; similarly, the set of parameters for which
the algorithm is not correct lies in a proper algebraic subset of its parameter
space.

We finally address Problem (B) in Chapter 4. The goal is to obtain an
algorithm detecting the emptiness of spectrahedra. The key idea originates from
the following geometric fact that relates the loci of rank defects of symmetric
pencils to the geometry of spectrahedra. When S is not empty, we denote by
r(A) the minimum rank attained by A(x) on S . The next two theorems are
part of the paper [71], under review in SIAM Journal on Optimization.
Main Theorem 3. Suppose that S 6= ∅. Let C be a connected component of
Dr(A)∩Rn such that C∩S 6= ∅. Then C ⊂ S , and hence C ⊂ (Dr(A) \Dr(A)−1)∩
Rn.

As already detailed in the previous section, by Main Theorem 3 one can
reduce the emptiness problem for spectrahedra to the problem of sampling real
determinantal algebraic sets defined by symmetric pencils. The main results for
Problem (B) follows. Remarkably, the complexity of the algorithm presented in
Chapter 4 is strictly related to r(A).
Main Theorem 4. Suppose that for 0 ≤ r ≤ m− 1, the incidence variety Vr is
smooth and equidimensional and that its defining polynomial system generates a
radical ideal. There is a probabilistic algorithm that takes A as input and returns:

1. either the empty list, if and only if S = ∅, or

2. the coordinates of a vector x∗ such that A(x∗) = 0, if and only if the linear
system A(x) = 0 has a solution, or

3. a rational parametrization q = (q0, q1, . . . , qn, qn+1) ∈ Q[t]n+2 such that
there exists t∗ ∈ R with qn+1(t∗) = 0 and:
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• A(q1(t∗)/q0(t∗), . . . , qn(t∗)/q0(t∗)) � 0 and
• rankA(q1(t∗)/q0(t∗), . . . , qn(t∗)/q0(t∗)) = r(A).

The number of arithmetic operations performed are in

O˜

n ∑
r≤m−1

(
m

r

)
(n+ pr + r(m− r))7

(
pr + n

n

)6
 if S is empty

O˜

n ∑
r≤r(A)

(
m

r

)
(n+ pr + r(m− r))7

(
pr + n

n

)6
 if S is not empty,

with pr = (m− r)(m+ r + 1)/2. If S is not empty, the degree of q is in

O

( m

r(A)

)(
pr(A) + n

n

)3
 .

We finally present at the end of Chapter 4 a dedicated variant for the al-
gorithm solving Problem (A) when the input linear matrix is Hankel, that is
generated by Hankel matrices A0, A1, . . . , An. This variant can be used for solv-
ing the emptiness problem for Hankel spectrahedra. The idea is to exploit the
additional structure of Hankel matrices which induces relations among the slack
variables that are added to define the incidence varieties. We present next the
dedicated complexity result for Hankel linear matrices, which appeared in the
Proceedings of ISSAC 2015 [69], Bath (UK).
Main Theorem 5. Let A be a n−variate linear Hankel matrix of size m, and
let r ≤ m − 1. Suppose that for 0 ≤ p ≤ r, the incidence variety Vp is smooth
and equidimensional and that its defining polynomial system generates a radical
ideal. Suppose that, for 0 ≤ p ≤ r, Dp is empty or has the expected dimension
n− 2m+ 2p+ 1.

There exists a probabilistic algorithm such that, with input (A, r), returns in
output a rational parametrization q = (q0, q1, . . . , qn, qn+1) ⊂ Q[t] of degree at
most (

2m− r − 1
r

)
+

n∑
k=2m−2r

r∑
p=0

d(m, k, p)

with d(m, k, p) ∈ O(
(k+2m−p−1

k

)3), within

O

 r∑
p=0

pn(2m− p)(pn(2m− p)(n+ 2m)2 + (n+ 2m)4)d(m,n, p)2


arithmetic operations over Q. The set defined by q contains at least one point in
each connected component of the real algebraic set Dr ∩ Rn.

The gain in terms of complexity of these algorithms with respect to the state
of the art in real algebraic geometry is explicit, for example, when the size of the
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matrix is fixed. In this case, the number of arithmetic operations is polynomial in
the number of variables. This polynomial dependency does not appear in general
algorithms and is special for the determinantal algebraic sets. We conclude that
determinantal systems generated by rank defects in linear matrices are a new
class of polynomial systems that can be solved in polynomial time when the size
of the defining matrix is fixed.

The degree estimates are computed via multilinear Bézout bounds, since the
polynomial systems encoding the critical points have a bilinear structure. We
are not able to give an exact formula for the output degree, but we conjecture
(cf. Conjecture 5.1 page 154) that they are given, for symmetric linear matrices,
as the sum of algebraic degrees of intermediate semidefinite programs.

The complexity estimates are finally put into practice via several experi-
ments. Chapter 5 contains results and discussions about the results. To test the
performance on average data, we present timings for generic input linear matri-
ces (the rationals are chosen randomly according to a given distribution). Also,
different interesting examples of the literature on linear matrices are analyzed.

The tests are performed in maple, via an new original library called spec-
tra. This library will be freely released in September 2015, and depends on the
software FGb developed by J.-C. Faugère, for computations with Gröbner bases.
We show with computer experiments two important features of our algorithms.

The first aspect is that it is able to run over a large set of input instances with
remarkable size with respect to the typical admissible range of exact algorithms.
Indeed, for dense linear matrices, it can handle matrices of size 4 × 4 with 11
variables, returning its output in less than 7 minutes, or matrices of size 5 × 5
with 9 variables and expected rank 2 in 15 minutes. The same examples cannot
be handled by standard exact algorithms.

The second aspect is that we can give a practical solution to Problem (B) for
extremely degenerate spectrahedra. We report on results of tests on a spectrahe-
dron S = {x = (x1, . . . , x6) ∈ R6 : A(x) � 0} defined by the Gram matrix A(x)
of a nonnegative ternary quartic f ∈ Q[u1, u2, u3] (a homogeneous polynomial
of degree 4 in 3 variables) with rational coefficients. In other words, f is equal
to v′A(x)v for all x ∈ R6, where v is the vector of the monomials of degree 2 in
u1, u2, u3. The set S parametrizes the decompositions of f as a sum of squares.
It turns out by a result of Scheiderer [142] that f is a sum of squares of poly-
nomial with real coefficients but does not admit a similar decomposition with
polynomials with rational coefficients. Applying our algorithm, we succeeded in
finding a rational parametrization of two rank 2 points lying in the boundary of
S . These two points correspond to the unique 2 sums of squares decompositions
of f as a sum of 2 squares.

Outline of the manuscript

The manuscript is organized as follows.

Chapter 1: It contains basic prerequisites of algebraic geometry, commutative
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algebra and polynomial systems solving. Moreover, we give an overview of the
possible applications of semidefinite optimization. We also report on results in
algebraic transversality theory (Sard’s Lemma and Thom’s Weak Transversality
Theorem) that are deeply exploited for proving the aforementioned results.
Chapter 2: The goal of this chapter is to prove Main Theorem 1, which is done
on page 64. To do that we propose a recursive decomposition of any algebraic
set Z ⊂ Cn of dimension d into a collection of subsets {Oi(Z)}1≤i≤d. This allows
to deduce closure properties of the restriction of the map πi(x) = (x1, . . . , xi) to
the real algebraic set Z ∩ Rn, for i = 1, . . . , d.
Chapter 3: We describe an algorithm for solving Problem (A) in exact arithmetic,
that is we prove Main Theorem 2, (cf. page 73). In particular, we develop a local
analysis of determinantal varieties and of the algebraic sets of critical points that
are built during the procedure.
Chapter 4: We prove Main Theorem 4 (cf. page 112), yielding an algorithm
for solving the emptiness problem for spectrahedra, that is for Problem (B). As
already explained, the first step is addressing Main Theorem 3, whose proof is
given on page 114.
Chapter 5: At the end of the manuscript we present numerical experiments of
an implementation of the algorithm. We report on results of tests on randomly
generated linear matrices (generic, symmetric or with Hankel or other additional
structures). We also discuss some simple illustrative example and finally the
interesting case of Scheiderer’s spectrahedron.

Chapter 1 Chapter 2

Chapter 4 Chapter 3

Chapter 5

The previous diagram pictures the dependencies of the different chapters of
the manuscript. Indeed, Chapter 1 contains standard definitions to be under-
stood as a background of the whole thesis. The results of Chapters 3 and 4
depend on those on Chapter 2, as already explained. A subroutine of the algo-
rithm in Chapter 4 depends on a variant of that of Chapter 3, and we use the
local description of determinantal varieties contained in this chapter. Finally,
Chapter 5 reports on experiments for the algorithms in Chapters 3 and 4.
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Perspectives

The techniques developed in this thesis give rise to a series of potential per-
spectives in convex algebraic geometry and optimization. We give below a brief
description of some problems that can be addressed via exact approaches and
for which the techniques developed in this thesis could be adapted.

What is the affine dimension of the input spectrahedron?

Given a spectrahedron S = {x ∈ Rn : A(x) � 0}, the algorithm in [60] can
decide whether S ∩Qn is empty or not, but a priori it cannot decide the empti-
ness of S : actually, for degenerate but extremely interesting examples, it may
happen that S is included in some hyperplane of Rn and it does not contain
rational points.

The algorithm described in Chapter 4 of this manuscript can decide the
emptiness of S and exhibit a sample point if one exists (cf. also [71]). Unfor-
tunately, it cannot detect the full-dimensionality of S , that is it is not able to
decide whether its interior is empty or not. Hence, two questions arise:

• compute the affine dimension of S ;

• compute one sample point in its relative interior.

Algorithms for computing the affine dimension of semi-algebraic sets typi-
cally do not exploit the particular structure of these special semi-algebraic sets.
The strong structure of spectrahedra understood as convex sets determined by
determinantal inequalities plays a significant role for answering such questions.

How to decide the emptiness of spectrahedral shadows?

One of the results of this thesis implies that one can design efficient algorithms for
deciding whether a spectrahedron is empty or not. It turns out that the class of
spectrahedra is strictly included in the class of convex closed basic semi-algebraic
sets, and that the former is not closed under linear projections.

Semidefinite representable sets (also called spectrahedral shadows or simply
projections of spectrahedra) have consequently attracted a lot of attention during
the last years. For example, it is currently conjectured (by Helton and Nie [72])
that every convex semi-algebraic set is semidefinite representable. Scheiderer has
proved that the convex hull of any one-dimensional semi-algebraic subset of Rn is
semidefinite representable [143], proving the Helton-Nie conjecture in dimension
2, however without an estimate of the number of lifting variables.

As an example, the (basic) closed convex planar semi-algebraic set

{(x1, x2) ∈ R2 : 1− x4
1 − x4

2 ≥ 0},

the TV-screen set, is not a spectrahedron but it is semidefinite representable (it
has a representation as a projection of a 4−dimensional spectrahedron). Spec-
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trahedral shadows are described by positivity conditions on symmetric linear
matrices subject to existential quantifiers, that is:

S =
{
x ∈ Rn : ∃ y ∈ Rd, A(x, y) � 0

}
,

where A(x, y) = A0 +
∑
xiBi +

∑
yjCj is a symmetric linear matrix defined on

variables (x, y) = (x1, . . . , xn, y1, . . . , yd). The set S is the projection of the lifted
spectrahedron

S = {(x, y) ∈ Rn+d : A(x, y) � 0}

on the space of x variables. We can deduce that an algorithm that solves the
emptiness decision problem for S also solves the same problem for S. In par-
ticular, one can compute sample points on S by computing sample points on S
and by eliminating the slack variables.

Nevertheless, complexity obstacles arise by the following fact: the number d
of slack variables y ∈ Rd and hence the size of the semidefinite representation
can be superpolynomial in the dimension of S. Consequently, one deduces that
the aforementioned algorithms can be inefficient when applied to the lifted sets
S . Since spectrahedral shadows have a nice determinantal description, one can
hope to adapt the techniques described in this thesis, to more general situations.
This research direction is also motivated by recent results about spectrahedral
shadows, that link the boundary structure of S to the rank stratification of the
defining matrix of S , see e.g. [148].

How much does it cost to solve exactly a semidefinite program?

Exact algorithms for spectrahedral sets constitute the first step towards a more
general symbolic approach to optimization on semi-algebraic sets, and in par-
ticular to semidefinite programming. Actually, the previous results, described
above, strongly rely on optimization techniques adapted to real algebraic geome-
try such as the construction of polar varieties (varieties defining critical points).
Hence one can strongly hope that similar techniques can be exploited to solve
semidefinite programs in exact arithmetic. Let

inf
x∈Rn

n∑
i=1

cixi

s.t. A(x) � 0,

be a given semidefinite program, with exact data c ∈ Qn and Ai = A′i ∈ Qm×m,
and with A(x) = A0 +x1A1 + · · ·+xnAn. Numerically, this semidefinite program
can be solved in polynomial time, when the desired accuracy is fixed. This means
that one can produce a numerical proof of feasibility and compute approxima-
tions of a solution of this program (cf. [9, Ch. 1, Sec. 4.1]). Indeed, there are
numerical algorithms (implemented in various solvers) for computing efficiently
approximations of a solution in floating-point arithmetic.

So far, exact algorithms for computing solutions to semidefinite programs,
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and a precise complexity analysis of semidefinite programming in the exact
model, are missing. In the context of a possible symbolic approach that ex-
ploits the determinantal structure of spectrahedra, one could provide answers to
the following questions:

• design an exact algorithm whose input is (c, A) and, if the infimum of∑n
i=1 cixi on the feasible set is attained at x∗, whose output is a rational

parametrization q whose solutions contain x∗;

• given such an algorithm, give an estimate of the degree of the rational
parametrization q;

• how to compare such degrees with the algebraic degree [117] of the associ-
ated semidefinite program?

• what is the complexity of solving a semidefinite program in exact arith-
metic?

In this thesis we design an efficient algorithm for the computation of minimal
rank solutions of linear matrix inequalities. Indeed, if the spectrahedron S is not
empty, the output is a rational parametrization whose solutions contain one point
x∗ ∈ S which minimizes the function x 7→ rankA(x) over S . Consequently,
one could adapt the described techniques to compute minimal rank solutions to
any semidefinite program. This is, in general, a hard problem, since typically
interior-point algorithms returns in output points lying in the relative interior of
the optimal face, where the rank is maximized (cf. [102, Lem. 1.4]).

A symbolic approach to nonnegative polynomials

The techniques described in this thesis can be useful also for related problems
involving nonnegative polynomials and sums-of-squares representations. The
importance of developing such theory is that approaches via sums of squares re-
laxations have been developed in the last decade to address general optimization
problems over semi-algebraic sets (cf. [99, 102, 144, 94]).

Suppose, first, that f ∈ Q[y] is a polynomial of degree 2d which is a sum of
squares of polynomials of degree d. One can write such a SOS decomposition via
Gram matrices, that is if v is the vector of monomials in y of degree at most d, one
writes f = v′Gv for some positive semidefinite G � 0. Factorizing, e.g., G = V ′V
where V is a r×mmatrix (G is square of sizem and of rank r) gives the requested
SOS decomposition f = (V v)′(V v). When G depends linearly on parameters
x = (x1, . . . , xp), the minimum rank r attained on the spectrahedron {x ∈ Rp :
G(x) � 0} corresponds to minimal SOS decompositions. This spectrahedron
parametrizes the SOS-decompositions of the given polynomial f , and is called
the Gram spectrahedron of f (cf., e.g., [126, Sec. 6]).

So one can use such techniques to compute minimal SOS-decompositions of
nonnegative polynomials in exact arithmetic. On the dual side, the same method
can analogously be adapted to compute minimal sum of powers decompositions
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of nonnegative polynomials (cf. [134]), minimal sums of squares of matrix poly-
nomials (cf. [95]) or extremal SOS-decompositions in the sense of Carathéodory
(cf., e.g., [114]).
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Résumé en français

De nombreux problèmes dans les applications se réduisent à calculer l’ensemble
des solutions réelles d’un système d’équations algébriques, ou à décider si un
système d’inégalités polynomiales a une solution ou non. En outre, les polynômes
en entrée sont fréquemment caractérisés par une structure particulière.

Des algorithmes de nature numérique peuvent souvent fournir l’approxima-
tion en virgule flottante d’une solution, mais ils ne peuvent pas en général certi-
fier qu’une telle solution est unique, si tel est le cas, ou donner une garantie de
convergence ou d’exhaustivité (par exemple, l’obtention d’un point échantillon
dans chaque composante connexe de l’ensemble des solutions). En particulier,
pour certains problèmes de décision (par exemple, établir si l’ensemble des con-
traintes d’un problème d’optimisation est vide), il n’est pas toujours possible
d’obtenir un critère de décision en s’appuyant sur du calcul numérique. En outre,
fréquemment l’ensemble des solutions a dimension positive ce qui rend souvent
le problème encore plus difficile.

Ceci a motivé, dans les dernières années, la croissance des échanges entre
différents disciplines et aspects des mathématiques et de l’informatique théorique,
comme la géométrie algébrique réelle, le calcul formel, l’optimisation convexe
et polynomiale. Plus précisément, dans le cadre de l’optimisation ou la théorie
du contrôle, de nombreux problèmes se résument à décider si l’ensemble défini
par une inégalité matricielle linéaire, appelé spectraèdre, est vide. Cet ensemble
est convexe et basique semi-algébrique, et la matrice linéaire est typiquement
caractérisée par une structure supplémentaire.

Des techniques de calcul formel ont été développées dans les dernières décen-
nies pour résoudre des systèmes d’équations polynomiales avec des algorithmes
exacts. La caractéristique commune à ces algorithmes est que les données ap-
paraissant pendant le calcul ne sont pas représentées par des nombres à virgule
flottante, mais plutôt par des équations polynomiales à coefficients entiers ou
rationnels. L’objectif est de réduire le problème de départ à un problème plus
simple et en dimension petite. Par exemple, si l’ensemble des solutions réelles
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du système polynomial donné est de cardinalité infinie, on pourrait demander
de calculer un ensemble fini de points intersectant chaque composante connexe
sur l’ensemble algébrique réel associé. Enfin, il est extrêmement important d’ex-
ploiter les structures des objets en entrée, pour concevoir des techniques et des
algorithmes dédiés.

Cette thèse suit cette voie, en abordant des problèmes en géométrie algébrique
réelle concernant les variétés déterminantielles, qui sont des objets apparaissant
dans de nombreux contextes, tels que la théorie du contrôle, les statistiques,
l’optimisation polynomiale ou la géométrie algébrique. Le but principal est de
proposer une approche par des techniques exactes pour résoudre ces types de
problèmes apparaissant en particulier en optimisation semi-définie, c’est-à-dire la
programmation linéaire sur le cône convexe des matrices semi-définies positives.

But de la thèse

L’objectif de cette thèse, dont les résultats principaux sont résumés dans la sec-
tion suivante, est de développer différentes techniques et algorithmes exacts pour
la résolution réelle des systèmes d’équations algébriques avec structure détermi-
nantielle. En particulier, ces algorithmes sont utilisés pour résoudre les inégalités
matricielles linéaires en arithmétique exacte.

Énoncé du problème

Nous nous intéressons à la résolution de deux problèmes. Étant données n ma-
trices carrées A0, A1, . . . , An de taille m×m, à coefficients dans Q, on considère
la matrice linéaire (ou faisceau) associée

A(x) = A0 + x1A1 + · · ·+ xnAn.

Nous allons définir la famille des ensembles algébriques des matrices du faisceau
A(x) de rang borné. Soit r ≤ m− 1, et soit

Dr = {x ∈ Cn : rankA(x) ≤ r} .

L’ensemble Dr contient les applications linéaires de Cm dans lui-même, dont la
matrice associée appartient au faisceau A(x) et a au moins m−r chutes de rang.
Il s’agit de l’ensemble algébrique défini par les mineurs de taille r + 1 de A(x).
Cet ensemble est appelé varieté déterminantielle.

Problème (A) : Étant données A0, A1, . . . , An et r ≤ m, calculer au moins un
point par composante connexe de l’ensemble algébrique réel Dr ∩ Rn, ou établir
qu’il est vide.

On précisera le contexte dans le cadre des approches historiques en calcul
formel pour la résolution des systèmes polynomiaux en Section 1.2.2 du Chapitre
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1. Supposons, maintenant, que les matrices Ai soient symétriques, et soit

S = {x ∈ Rn : A(x) � 0} .

L’ensemble S est convexe et basique semi-algébrique, puisqu’il est défini par des
conditions de signe sur les coefficients du polynôme caractéristique de A(x). En
effet, soit

det(A(x) + t Im) = fm(x) + fm−1(x)t+ · · ·+ f1(x)tm−1 + tm

le polynôme caractéristique de A(x). On en déduit que S = {x ∈ Rn : fi(x) ≥
0, i = 1, . . . ,m}. Remarquons ici qu’avec les notations introduites fm = detA
et, en général, fj(x) est le j−ème polynôme symétrique élémentaire evalué en les
valeurs propres de A en x. Finalement, S contient tous les points réels x ∈ Rn
tels que les valeurs propres de A(x) soient positives ou nulles. L’ensemble S
est un spectraèdre, et optimiser une fonction linéaire sur S est un problème
d’optimisation semi-définie.

Problème (B) : Étant donnée A0, A1, . . . , An symétriques, calculer au moins un
point dans S , ou établir que cet ensemble est vide.

De la même manière, le Problème (B) est un cas particulier du problème
de décider le vide d’un ensemble semi-algébrique (cf. Section 1.2.2). Ces deux
problèmes sont intimement liés puisque les ensembles Dr et S ont une structure
déterminantielle. De plus, la clôture (pour la topologie de Zariski) de la frontière
Euclidienne de S est l’hypersurface définie par l’annulation du determinant de
A(x). Ainsi, une première étape nécessaire vers la résolution du Problème (B)
est de résoudre une variante du Problème (A) lorsque la matrice est symétrique.
Dans cette thèse, nous montrons que la géométrie des spectraèdres implique que
cette étape est aussi suffisante pour calculer un point dans S , et donc pour
résoudre le problème de décision.

Motivation

Les Problèmes (A) et (B) sont motivés par la nécessité d’obtenir des résultats
certifiés pour les inégalités matricielles linéaires (LMI) et la programmation semi-
définie (SDP). En effet, le Problème (B) coïncide avec le problème de faisabilité
pour la SDP, et peut être considéré lui-même comme un programme semi-défini,
avec fonction objectif constante, et où le but est de retourner, s’il existe, au moins
un minimiseur.

En outre, décider de la faisabilité d’une LMI est une sous-routine de base pour
des algorithmes numériques utilisés en optimisation ou en théorie du contrôle.
Par exemple, le calcul du centre analytique d’une LMI A(x) � 0, c’est-à-dire le
point x∗ ∈ S qui maximise le polynôme multivarié x 7→ detA(x), demande en
entrée un point x ∈ S . Un tel point pourrait être calculé avec des solvers LMI
en résolvant des problèmes SDP avec fonctions objectifs générées aléatoirement.
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De plus, le problème général de l’optimisation polynomiale

inf
x∈Rn

f(x)

s.t. fi(x) ≥ 0, i = 1, . . . , s

(où f, fi sont des polynômes en plusieurs variables) admet une hiérarchie de re-
laxations semi-définies qui peuvent fournir une approximation de la solution en
virgule flottante. Enfin, décider si, pour un certain polynôme f , il existe une
matrice de Gram semi-définie positive, est équivalent à construire des décompo-
sitions en sommes de carrées pour f , c’est-à-dire un certificat de positivité. Par
conséquent, un algorithme exact pouvant certifier l’exactitude du point x∗ ∈ S ,
ou pouvant établir que S est vide, ou encore résoudre un programme semi-défini,
pourrait conduire à des approches hybrides efficaces pour une grande classe de
problèmes intéressants.

Nous précisons que l’objectif de cette thèse n’est pas de prouver que les
algorithmes exacts sont compétitifs avec les algorithmes numériques ou peuvent
traiter le même type de problèmes ; en effet, les solveurs LMI peuvent aujourd’hui
traiter des entrées avec un nombre très élevé de variables, et les mêmes problèmes
sont hors de portée des algorithmes exacts. La contribution principale de cette
thèse est un algorithme en arithmétique exacte pour décider la faisabilité d’un
programme semi-défini ; nous montrons que les algorithmes exacts peuvent gérer
des exemples extrêmement dégénérés qui peuvent provoquer des erreurs dans des
contextes numériques.

Comme dans le cas symétrique, les matrices linéaires génériques (sans struc-
ture particulière) et leurs variétés déterminantielles modélisent une grande classe
d’exemples dans des contextes tels que les statistiques, la combinatoire, l’optimi-
sation polynomiale, ou tels que l’algèbre multilinéaire et la géométrie algébrique
classique. Par exemple, les matrices de probabilité conjointe pour un couple de
variables aléatoires discrètes ont des entrées linéaires et les lieux de chute de rang
correspondent à des mélanges de modèles de probabilité ; la matrice de Sylvester
de deux polynômes univariés f, g est linéaire en les coefficients de f et g et sa
chute de rang correspond au degré du p.g.c.d. de f et g ; en théorie du con-
trôle, le lieu de stabilité pour les polynômes complexes univariés est l’ensemble
semi-algébrique défini par les mineurs principaux d’une matrice linéaire donnée.
Résoudre le Problème (A) efficacement et en précision infinie (c’est-à-dire, en
arithmétique exacte), en exploitant la structure des données en entrée, est une
première étape pour aborder ces questions plus profondes.

D’un point de vue purement calculatoire, une question importante pour le
Problème (A) est également d’établir des bornes de complexité théorique is-
sues de l’exploitation des structures déterminantielles. Comme détaillé dans la
section suivante, il existe plusieurs algorithmes pour résoudre cette tâche, avec
une complexité, dans le cas pire, qui est simplement exponentielle en le nombre
de variables n. Les propriétés géométriques et algébriques des variétés déter-
minantielles motivent le développement d’une approche dédiée. En outre, des
résultats récents [149, 44, 45, 120] montrent que ces structures peuvent être ex-
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ploitées pour le calcul rapide d’une base de Gröbner dans le cas de la dimension
zéro. Notre objectif dans ce contexte est d’obtenir des bornes de complexité dans
le cas réel et de dimension positive.

État de l’art

Le Problème (A) est un cas particulier et structuré du problème consistant à
trouver des points témoins dans chaque composante connexe d’un ensemble réel
défini par des equations algébriques. En particulier, si l’ensemble des solutions
complexes est non vide et fini, résoudre le Problème (A) signifie énumérer toutes
les solutions réelles.

Le premier algorithme répondant à cette question est dû à Tarski [156], dans
le cadre plus général de l’élimination des quantificateurs sur les réels comme
un problème de décision de la théorie du premier ordre des nombres réels. La
complexité de l’algorithme de Tarski n’est pas élémentairement récursive, donc
aucune tour finie d’exponentielles (en fonction de la taille des données en entrée)
ne peut la borner. La première complexité finie est celle de l’algorithme de la
Décomposition Cylindrique Algébrique (CAD) de Collins, de type récursif sur
les variables. Sa complexité est doublement exponentielle en le nombre de vari-
ables [33]. Étant donné que le nombre de composantes connexes d’un ensemble
algébrique réel défini par des polynômes de degré au plus d en n variables est
borné par la borne de Thom-Milnor (cf. [20, Th. 7,23]) qui est en O(d)n, des
efforts supplémentaires ont amené à eliminer cette différence exponentielle entre
la taille attendue de la sortie et le nombre effectif d’opérations.

Le premier algorithme simplement exponentiel (c’est-à-dire de complexité
en dO(n)) est dû à Grigoriev et Vorobjov [55], basé sur la méthode des points
critiques. L’idée de base est de calculer des sous-ensembles algébriques du lieu-
solution défini par l’entrée, contenant les minima/maxima locaux des restrictions
de certaines fonctions algébriques. Par exemple, si l’ensemble d’entrée est non
vide et compact, le calcul des minima locaux de la distance Euclidienne d’un
point donné x ∈ Rn engendre un ensemble fini qui intersecte chaque composante
connexe. En outre, lorsque le système en entrée est quadratique, la complexité de
la méthode est polynomiale en n, et exponentielle par rapport à la co-dimension
de l’ensemble algébrique complexe associé [56]. D’autres travaux successifs de
Renegar [133], Heintz, Roy et Solernó [65, 67], Basu, Pollack et Roy [20] ont
amélioré ces algorithmes pour des ensembles algébriques réels généraux, en util-
isant la méthode des points critiques. L’idée principale (développée dans le livre
[20] et dans les papiers mentionnés ci-dessus) est que le calcul des points critiques
donne une meilleure complexité que celle obtenue par l’algorithme de Collins
(et par ses améliorations) pour différentes questions classiques de la géométrie
algébrique réelle (élimination des quantificateurs, échantillonnage d’ensembles
algébriques, problèmes de connectivité . . . ). En effet, il permet de se ramener à
l’étude d’un ensemble algébrique complexe fini sans traitement récursif sur les
variables.

Pour mieux contrôler le degré des ensembles apparaissant au cours de ces

25



algorithmes, et donc leurs complexités, on peut préférer utiliser des projections
linéaires sur des sous-espaces génériques, et donc représenter les points critiques
dans des ensembles algébriques appelés variétés polaires [11]. Cette idée a été
développée ces dernières années, principalement dans les travaux de Bank, Giusti,
Heintz, Mbakop, Pardo, Safey El Din et Schost. Dans [13, 12, 15, 14], la théorie
des variétés polaires est développée et appliquée au cas spécifique de la résolution
d’équations polynomiales sur les réels.

Puisque la constante cachée dans l’exposant de dO(n) n’est pas explicitée par
les algorithmes précurseurs de la méthode des points critiques, d’autres travaux
ont essayé d’obtenir des bornes uniformes sur ces exposants. Dans [137] les au-
teurs ont montré comment une variante dédiée de la méthode des points cri-
tiques permet de résoudre le Problème (A) pour des ensembles algébriques lisses
et équidimensionnels, sous l’hypothèse que les polynômes d’entrée engendrent
un idéal radical : la complexité est essentiellement cubique en dn. En outre, des
techniques spécifiques pour le cas singulier ont également été développées [140],
conduisant à une complexité essentiellement en O(d4n). Des travaux récents ont
également obtenu des résultats similaires de complexité pour le problème d’op-
timisation polynomiale sur des ensembles algébriques réels, en s’appuyant sur la
théorie des variétés polaires [58, 57].

Le Problème (B) est également un cas particulier d’une question plus générale
en géométrie semi-algébrique, celle de décider la vacuité d’un ensemble semi-
algébrique. Nous rappelons à ce propos que S est l’ensemble semi-algébrique
défini par des conditions de signe sur les m coefficients du polynôme caractéris-
tique de A. Les algorithmes dans [66] ou [20, Ch. 13] calculent une description
des composantes connexes de l’ensemble semi-algébrique en entrée, avec mO(n)

opérations arithmétiques élémentaires. Évidemment, ces algorithmes n’exploitent
pas la structure particulière des spectraèdres. Dans [91], les auteurs ont montré
que le Problème (B) peut être résolu en temps O(mmin(n,m2)), c’est-à-dire en
temps polynomial si n ou m est fixé. L’inconvénient principal de cet algorithme
est qu’il est basé sur l’élimination des quantificateurs de Renegar, et donc il ne
conduit pas à des implantations efficaces en pratique, la constante de complexité
située en exposant étant élevée.

Pour obtenir un certificat purement algébrique du vide pour S , on pourrait
utiliser l’approche classique par Positivstellensatz ([102], cf. Section 1.3.2). Cela
conduit à une hiérarchie de programmes semi-définis. En effet, en fixant les degrés
de multiplicateurs de sommes de carrés dans ces certificats, le problème associé
devient un problème de programmation semi-définie. les bornes pour le degré de
représentations Positivstellensatz sont, en géneral, exponentielles en le nombre
de variables et ont été calculées dans [147, 119]. Le résultat récent de Lombardi,
Perrucci et Roy décrit dans [106] montre une borne uniforme quintuplement
exponentielle pour le degré du 17-ème problème de Hilbert, qui demande des
certificats similaires pour les polynômes non négatifs comme sommes de carrés de
fonctions rationnelles. Klep et Schweighofer ont récemment obtenu un certificat
de vide dédié au cas spectraèdral, au moyen de certains modules quadratiques
spéciaux associés à S [96]. Ils montrent que décider le vide de S est equivalent à
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résoudre un problème SDP d’une certaine taille (exponentielle en n ou m), mais
pour cette dernière tâche, on doit utiliser des implantations en virgule flottante
des algorithmes de points intérieurs.

Stratégie

Le principal inconvénient des algorithmes généraux décrits dans la section précé-
dente, pour calculer des points témoins dans les composantes connexes d’un
ensemble algébrique ou semi-algébrique, est que leur complexité et aussi leur ef-
ficacité en pratique n’exploitent pas les possibles structures qui caractérisent les
données en entrée. Au contraire, ils cassent généralement ces structures.

Nous présentons d’abord les structures des données utilisées en entrée de
nos algorithmes. L’entrée est représentée par un vecteur de nombres rationnels
contenant les coefficients d’une matrice linéaire A(x) = A0 + x1A1 + · · ·+ xnAn,
et éventuellement un entier r. La sortie est un ensemble fini, représentée de la
façon suivante. Étant donné un ensemble algébrique fini Z ⊂ Cn, un paramétrage
rationnel représentant Z est un vecteur (q0, q1, . . . , qn, qn+1) ⊂ Q[t] tel que :

• q0 et qn+1 sont premiers entre eux (i.e., ils n’ont pas de racines en commun) ;

• Z =
{(

q1(t)
q0(t) , . . . ,

qn(t)
q0(t)

)
∈ Cn : qn+1(t) = 0

}
;

• le degré de qn+1 est égal à la cardinalité de Z ;

• Z est en bijection avec l’ensemble des racines de qn+1.

Cette représentation est particulièrement utile puisqu’on peut l’utiliser pour cal-
culer une approximation rationnelle des coordonnées de la solution en résolvant
l’équation univariée qn+1(t) = 0. Chaque point x ∈ Z est représenté par qn+1 et
par un intervalle de nombres rationnels.

Le Problème (A) revient à calculer un ensemble fini de solutions réelles du
système polynomiale constitué par les mineurs de taille r + 1 de la matrice
linéaire A(x), donc un système de

( m
r+1
)2 polynômes de degré au plus r + 1

en n variables. L’ensemble algébrique associé est génériquement singulier, et ces
singularités sont (génériquement) définies par des chutes de rang plus élevées. Par
conséquent, on pourrait utiliser l’algorithme décrit dans [140], dont la complexité
est essentiellement quartique en (r + 1)n.

La première étape de notre stratégie est d’éviter la formulation par mineurs
pour modéliser la varieté déterminantielle. Nous introduisons de nouvelles vari-
ables

y = (yi,j)1≤i≤m,1≤j≤m−r

stockées dans une matrice Y (y) de taille m × (m − r), et nous définissons la
variété d’incidence

Vr = {(x, y) ∈ Cn × Cm(m−r) : A(x)Y (y) = 0, UY (y) = S},
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pour certains matrices de rang plein U ∈ Mm−r,m(Q) et S ∈ GLm−r(Q). Cette
technique est classiquement connue comme désingularisation à la Room-Kempf
pour les variétés déterminantielles (cf. par exemple [11]). La projection de Vr sur
l’espace des x est contenue dans Dr, par définition.

Suite à cette réécriture, la structure déterminantielle qui apparaît directe-
ment dans la formulation par mineurs est maintenant cachée dans les équations
A(x)Y (y) = 0. Le nouvel ensemble algébrique Vr gagne deux propriétés déci-
sives :

• il est défini par des équations bilinéaires ;

• avec des hypothèses de généricité sur la matrice A, il est lisse et équidi-
mensionnel.

Les nouvelles propriétés de régularité permettent de concevoir une méthode de
points critiques dédiée. Le but est d’extraire un ensemble fini de points sur
l’ensemble Vr. Cela se fait par la construction d’ensembles algébriques con-
tenant les points critiques de la restriction à Vr de projections π sur des droites
génériques de l’espace n−dimensionel contenant l’ensemble Dr.

Pour que cette réduction permette de calculer un point dans chacque com-
posante connexe C ⊂ Dr ∩ Rn, nous prouvons que lorsque la projection linéaire
π : Rn → R est générique, l’image de chaque composante C par π est un fermé
Euclidien. Cela permet de conclure le fait suivant : étant donnée une composante
connexe C ⊂ Dr ∩Rn, soit l’un des points critiques de π est contenu dans C, soit
π est surjective si restreinte à C et π(C) = R. Remarquons que la généricité
de la projection est équivalente à la composition d’un changement générique de
variables x 7→M x avec la projection sur la première variable x1.

Le raisonnement précédent permet de conclure que, pour calculer au moins
un point par composante connexe de Dr, il suffit d’appliquer cette variante de
la méthode des points critiques en éliminant, récursivement, une variable par
étape (par exemple, en instanciant x1 à 0). Géométriquement, cela correspond
à l’intersection de la variété déterminantale Dr avec la fibre π−1(0) de π en 0.
Une fois que la première variable est éliminée, le calcul des points critiques est
appliqué sur la fibre Dr ∩ Rn ∩ π−1(0). Nous remarquons enfin, que, à chaque
étape, soit la structure déterminantale de Dr, soit la structure bilinéaire et la
régularité de Vr, sont conservées.

Pour concevoir un algorithme exact pour le Problème (B), nous profitons
également de la structure déterminantielle du spectraèdre S = {x ∈ Rn : A(x) �
0}. En effet, chaque point x∗ sur la frontière de S correspond à une matrice
singulière A(x∗) dans A(x). Dans cette thèse, nous montrons que, si S n’est pas
vide, et en notant r le rang minimum atteint par A(x) sur S , alors au moins une
des composants connexes de Dr ∩ Rn est entièrement contenue dans la frontière
de S , donc dans S .

La stratégie du problème (B) repose essentiellement sur ce résultat géomé-
trique, dont on donnera une preuve explicite dans le Chapitre 4. En effet, cela
implique que, pour décider de la vacuité de S , il suffit de décider de la vacuité
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des variétés déterminantielles associées à A(x). Cela peut être effectué avec une
variante de l’algorithme dédié au Problème (A), lorsque la matrice linéaire est
symétrique. En outre, un résultat plus fort est contenu dans cette thèse : si S
n’est pas vide, nous sommes en mesure de calculer une solution x∗ de l’inegalité
matricielle linéaire A(x) � 0 où A(x∗) minimise le rang parmi les points dans
S . Le fait précédent est particulièrement remarquable puisque, par exemple, les
algorithmes de points intérieurs pour la programmation semi-définie calculent
généralement des solutions avec rang maximal (ce qui correspond à des points
dans l’intérieur relatif de la face optimale), alors que le calcul des solutions de
rang faible est considéré comme un problème difficile et important.

La méthode développée prend également en compte de possibles structures
additionnelles de la matrice linéaire A(x). A titre d’exemple, nous considérons
le cas des matrices linéaires Hankel, et les spectraèdres associés. Le fait intéres-
sant est que la structure Hankel de A(x) induit une structure sur leur noyau (cf.
[64, Th. 5.1]), du coup sur les polynômes qui définissent la variété d’incidence.
Les matrices linéaires avec structure Hankel apparaissent dans des contextes dif-
férents : par exemple, la matrice catalectique (ou matrice des moments) associée
à une forme binaire est une matrice Hankel qui est linéaire en les coefficients de
la forme binaire.

Perspectives

Les techniques développées dans cette thèse donnent lieu à une série de per-
spectives potentielles en géométrie algébrique convexe et en optimisation. Nous
donnons ci-dessous une brève description de certaines de ces perspectives.

Calcul de la dimension d’un spectraèdre

Étant donné un spectraèdre S = {x ∈ Rn : A(x) � 0}, l’algorithme dans [60]
peut décider si S ∩ Qn est vide ou pas, mais a priori il n’est pas capable de
décider si S est vide : en effet, dans des exemples particulièrement dégénérés
mais très intéressants dans la littérature, il peut arriver que S soit inclus dans
un certain hyperplan de Rn et qu’il ne contienne pas de points à coordonnées
rationnelles.

L’algorithme décrit dans le chapitre 4 de ce manuscrit peut décider la vacuité
de S et calculer un point témoin dans S s’il existe (cf. également [71]). Mal-
heureusement, il ne peut pas détecter si l’interieur de S est vide ou non. Par
conséquent, deux questions se posent :

• calculer la dimension affine de S (c’est-à-dire, la dimension du plus petit
espace affine contenant S ) ;

• calculer un point dans son intérieur relatif.

Des algorithmes pour le calcul de la dimension affine d’ensembles semi-
algébriques génériques existent mais ils ont une complexité exponentielle en le
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nombre des variables. La forte structure des spectraèdres comme ensembles con-
vexes définis par des inégalités déterminantielles joue un rôle important pour
répondre à ces questions.

Comment décider la vacuité des projections des spectraèdres ?

La classe des spectraèdres est strictement contenue dans la classe des ensem-
bles basiques semi-algébriques convexes fermés, mais l’image par une projection
linéaire d’un spectraèdre n’est pas nécessairement un spectraèdre. Les ensembles
représentables comme des projections de spectraèdres (ou SDP-représentables)
ont par conséquent attiré beaucoup d’attention pendant les dernières années. Par
exemple, il est actuellement conjecturé (par Helton et Nie [72]) que tout ensem-
ble semi-algébrique convexe est SDP-représentable. Scheiderer a prouvé que si
C ⊂ Rn est un ensemble semi-algébrique de dimension 1, l’enveloppe convexe de
C est SDP-représentable [143], en deduisant la conjecture de Helton et Nie en di-
mension 2 (cependant sans estimation du nombre de variables d’écart nécessaire
pour la représentation).

A titre d’exemple, l’ensemble semi-algébrique fermé et convexe du plan

{(x1, x2) ∈ R2 : 1− x4
1 − x4

2 ≥ 0},

n’est pas un spectraèdre mais il est SDP-représentable (il a une représenta-
tion comme projection d’un spectraèdre de dimension 4). Les ensembles SDP-
représentables sont décrits par une condition de positivité sur une matrice linéaire
symétrique soumise à des quantificateurs existentiels, c’est-à-dire :

S =
{
x ∈ Rn : ∃ y ∈ Rd, A(x, y) � 0

}
,

où A(x, y) = A0 +
∑
xiBi +

∑
yjCj est une matrice symétrique linéaire en les

deux groupes de variables (x, y) = (x1, . . . , xn, y1, . . . , yd). L’ensemble S est la
projection du spectraèdre

S = {(x, y) ∈ Rn+d : A(x, y) � 0}

sur l’espace des variables x. Nous pouvons en déduire qu’un algorithme qui résout
le problème du vide pour S résout également le même problème pour S. En
particulier, on peut calculer des points témoins dans S en calculant des points
témoins dans S et en éliminant les variables d’écart.

Néanmoins, des obstacles de complexité surviennent car le nombre d de vari-
ables y ∈ Rd et donc la taille de la représentation peut être a priori superpoly-
nomiale en la dimension de S. Par conséquent, les algorithmes ci-dessus peuvent
être inefficaces lorsqu’ils sont appliqués à S (le nombre de variables étant très
élevé). Puisque les ensembles SDP-représentables ont une description de nature
déterminantielle, on peut espérer adapter les techniques décrites dans cette thèse
à des situations plus générales. Cette perspective est aussi motivée par des ré-
sultats récents (voir e.g. [148]) qui s’intéressent à la structure de la frontière
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algébrique de S et son lien avec la stratification du rang de la matrice définissant
S .

Quelle est la complexité de la programmation semi-définie ?

Les algorithmes exacts pour les spectraèdres constituent la première étape vers
une approche symbolique plus générale à l’optimisation semi-algébrique, et en
particulier à la programmation semi-définie. En fait, les résultats précédemment
décrits s’appuient fortement sur des techniques classiques en optimisation, adap-
tées à la géométrie algébrique réelle, tels que la construction des variétés polaires
(variétés définissant des points critiques de projections linéaires). Ainsi, on peut
fortement espérer que des techniques similaires peuvent être exploitées pour ré-
soudre des programmes semi-définis en arithmétique exacte. Soit

inf
x∈Rn

n∑
i=1

cixi

s.t. A(x) � 0,

un programme semi-défini donné, où c ∈ Qn et Ai = A′i ∈ Qm×m, et A(x) =
A0 + x1A1 + · · ·+ xnAn. En arithmétique approchée, ce programme semi-défini
peut être résolu en temps polynomial, lorsque la précision des calculs effectués
est fixée, avec l’algorithme de l’ellipsoïde (cf. [59] ou [9, Ch. 1, Sec. 4.1]). En effet,
il existe des algorithmes de type point interieur, implanté dans divers solveurs,
pour calculer efficacement des approximations d’une solution en virgule flottante.

Jusqu’à ce moment, il n’existe pas d’algorithme exact efficacement implanté
pour la résolution d’un programme semi-défini. Dans le contexte d’une possible
approche symbolique qui exploite la structure déterminantielle des spectraèdres,
on pourrait donner des réponses aux questions suivantes :

• comment obtenir un algorithme exact dont l’entrée est (c, A) et, si l’infi-
mum de

∑n
i=1 cixi sur S = {x ∈ Rn : A(x) � 0} est atteint en x∗, dont la

sortie est un paramétrage rationnel q dont les solutions contiennent x∗ ?

• étant donné un tel algorithme, quel est le degré du paramétrage rationnel
q dans le cas pire ?

• comment comparer ces degrés avec le degré algébrique [117] de ce pro-
gramme semi-défini ?

• quelle est la complexité de la résolution d’un programme semi-défini en
arithmétique exacte ?

Dans cette thèse, nous concevons un algorithme efficace pour le calcul de solu-
tions de rang minimal d’inégalités matricielles linéaires. En effet, si le spectraèdre
S n’est pas vide, la sortie est un paramétrage rationnel dont les solutions con-
tiennent un point x∗ ∈ S qui minimise la fonction x 7→ rangA(x) sur S . Par
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conséquent, on pourrait adapter ces techniques pour calculer des solutions de
rang minimal au problème précédent. Ceci est, en général, un problème difficile,
puisque les algorithmes de point intérieur calculent des solutions dans l’intérieur
relatif de la face optimale, où le rang est maximisé (cf. [102, Lem. 1.4]).

Une approche exact aux polynômes non négatifs

L’importance du développement de la théorie des polynomes positifs et leurs
decompositions en somme de carrées (SOS), est que les approches par les sommes
des carrés ont été utilisées dans la dernière décennie pour résoudre le problème
général de l’optimisation polynomiale (cf. [99, 102, 144, 94]).

Supposons qu’un polynôme f ∈ Q[y1, . . . , yn] de degré 2d puisse s’exprimer
comme somme de carrés de polynômes de degré d. On peut écrire une telle
décomposition SOS via la matrice de Gram de f : si v est le vecteur des monômes
en y = (y1, . . . , yn) de degré au plus d, on écrit f = v′Gv pour une certaine
matrice G � 0. En factorisant, e.g., G = V ′V où V est une matrice r ×m (G
est carrée de taille m et de rang r) on produit la décomposition SOS recherchée
f = (V v)′(V v). Lorsque G dépend linéairement de paramètres x = (x1, . . . , xp),
le rang minimum r atteint sur le spectraèdre {x ∈ Rp : G(x) � 0} correspond
à la longueur minimale d’une décomposition SOS de f . Aussi, ce spectraèdre
paramétrise toutes les décompositions de f , et est appelé le spectraèdre de Gram
de f (cf., g.e., [126, Sec. 6]).

Donc, on peut utiliser de telles techniques pour calculer des décompositions
SOS minimales de polynômes non négatifs en arithmétique exacte. Par dualité, le
même algorithme peut être adapté pour calculer des décompositions en sommes
de puissances de formes linéaires (cf. [134]), ou des sommes de carrés de matrices
polynomiales (cf. [95]).
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Chapter 1

Prerequisites

This is a bibliographical chapter and does not contain original contributions. We
first provide in Section 1.1 basic definitions of commutative algebra and algebraic
geometry. Then we report on classical results in algebraic transversality theory
and on the relation between Noether position and properness properties of linear
projections, discussing how these results can be used in effective real algebraic ge-
ometry. Section 1.2 contains a description of exact algorithms for solving systems
of polynomial equations. We also report on results in real algebraic geometry
and symbolic computation for the sampling and emptiness problems for algebraic
and semi-algebraic sets. The main subjects of Section 1.3 are spectrahedra and
their projections, semidefinite programming, the polynomial optimization and
related problems.

1.1 Algebra and geometry

1.1.1 Basics

We denote by N = {0, 1, 2 . . .} the set of natural numbers, and by Z,Q,R and
C respectively the ring of integer numbers and the fields of rational, real and
complex numbers. We also introduce the notation N∗ = N \ {0}, and similarly
the notations Z∗,Q∗,R∗ and C∗.

If F is a symbol in {Q,R,C}, we denote the F−vector space of p× q matrices
with entries in F by Mp,q(F), or by Fp×q when a choice of a basis is explicited.
For M ∈Mp,q(F) and r ≤ min{p, q}, we denote by minors (r,M) the list of r× r
subminors of M . The general linear group of non-singular p × p matrices with
entries in F is denoted by GLp(F), and its unit element by Ip. The determinant
of M ∈ Mp,p(F) is denoted by detM . The rank of M ∈ Mp,q(F) is denoted by
rankM . The vector space of symmetric p× p matrices is denoted by Sp(F).

For sets S and T , the expression S ⊂ T means that S is included in T , while
S ( T means that S ⊂ T and S 6= T (in this case we say that S is a proper subset
of T ). If S is not included in T we write S 6⊂ T . The number of elements of a
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finite set S, i.e. its cardinality, is denoted by #S. Finally, we make frequently
use of first order logical symbols such as ∧,∨,=⇒,¬ and of quantifiers such as
∀ ,∃.

Throughout the chapter, unless otherwise stated, x refers to the vector (x1, . . . , xn)
of unknowns.

Basic commutative algebra

For this section, we refer for completeness to [39, 35]. Let A be a commutative
ring. An ideal I of A is a subset {0} ⊂ I ⊂ A, such that, for all f1, f2 ∈ I and
g ∈ A, f1 − f2 ∈ I and gf1 ∈ I. If all elements of I can be written as a finite
linear combination of elements of a set S ⊂ A, with coefficients in A, we say that
S is a set of generators for I, and we write I = 〈S〉.

The ideal I ⊂ A is called

• prime, if I ( A and for all a, b ∈ A, ab ∈ I implies a ∈ I or b ∈ I;

• primary, if for all a, b ∈ A, ab ∈ I implies a ∈ I or bk ∈ I for some k ∈ N;

• radical, if for all a ∈ A and k ∈ N, ak ∈ I implies a ∈ I.

The ideal of elements a ∈ A satisfying ak ∈ I for some k ∈ N, k ≥ 1, is called
the radical of I, and denoted by

√
I (I is radical if and only if I =

√
I). In

particular, any prime ideal is radical and the radical ideal of a primary ideal is
prime.

Suppose that A is a Noetherian ring, i.e. any ideal I ⊂ A is finitely generated.
Then any ideal I can be decomposed as the finite intersection of primary ideals,
i.e. I = P1∩· · ·∩Ps, with Pi ⊂ A primary. This is called a primary decomposition
of the ideal I, and is, in general, not unique. A minimal primary decomposition
is obtained by asking Pj 6⊃ ∩i 6=jPi for all i [35]. Given a minimal primary
decomposition, one deduces the related decomposition of the radical of I into
prime ideals, i.e.

√
I =

√
P1 ∩ · · · ∩

√
Ps. The prime ideals

√
Pi are uniquely

determined (cf. [35, Th. 9, Ch. 4, § 7]). Given two ideals I, J ⊂ A, the saturation
I : J∞ is defined as the ideal

I : J∞ = {f ∈ A : ∃ k ∈ N, Jkf ⊂ I}.

Polynomial ideals and algebraic sets

Let C[x] be the ring of polynomials on x with complex coefficients. By Hilbert’s
Basissatz any ideal I ⊂ C[x] is generated by a finite set of elements of C[x], i.e.
C[x] is a Noetherian ring.

Theorem 1.1 (Basissatz, Hilbert, 1890, [81]). Let I ⊂ C[x]. There exist
f1, . . . , fs ∈ C[x] such that, for all g ∈ I, there are g1, . . . , gs ∈ C[x] with
g = g1f1 + . . .+ gsfs.
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With the previous notation, we write I = 〈f1, . . . , fs〉 and we say that
f1, . . . , fs generate the ideal I. We also refer to the vector f = (f1, . . . , fs)
with the following two denominations:

• as a polynomial system, with implicit reference to the associated compu-
tational problem: Compute x such that f1(x) = 0, . . . , fs(x) = 0;

• as an algebraic map, with explicit reference to the function: f : Cn → Cs.

Definition 1.2 (Algebraic Set). Let F and K be subfields of C. Let I =
〈f1, . . . , fs〉 ⊂ K[x] be any ideal, with x = (x1, . . . , xn). The associated locus
of zeroes in Fn

ZF(I) = {x ∈ Fn : ∀ f ∈ I f(x) = 0}
= {x ∈ Fn : fi(x) = 0, i = 1, . . . , s}

is called a K−definable F−algebraic set.

We will be mostly concerned with Q−definable R−algebraic sets or C−al-
gebraic sets. In the whole text, whenever the ideal I is explicit, we denote
the associated complex algebraic set using the calligraphic style Z = ZC(I).
By definition, the algebraic subsets of Cn define the family of closed sets of a
topology, called the Zariski topology. Indeed, the class of algebraic subsets of Cn
is closed under finite union and arbitrary intersection. We denote the closure of a
set S ⊂ Cn with respect to the Zariski topology by S. If polynomials f1, . . . , fs ∈
C[x] are homogeneous, we say that the algebraic set Z = ZC(〈f1, . . . , fs〉) is an
affine cone (indeed, for x ∈ Z and c ∈ C then cx ∈ Z).

Remark that, by definition, any non-empty Zariski open subset of Cn is dense
in Cn with respect to the euclidean topology. For example, ifMp,q(C) is equipped
with the Zariski topology, the subset of full-rank matrices (e.g. GLn(C) ⊂
Mn,n(C)) is open and dense, since it is the union of the complements of the
algebraic sets defined by the vanishing of maximal minors.

We call the R−algebraic set ZR(I) a real algebraic set. Suppose that ZR(I) is
Q−definable. Observe that up to doubling the maximum degree of polynomials
defining ZR(I), one can describe it by a single equation:

∀x ∈ Rn
(
∀ i fi(x) = 0 ⇐⇒ f2

1 (x) + . . .+ f2
s (x) = 0

)
.

Definition 1.3 (Vanishing Ideal). Let S ⊂ Cn be any set. The set of polynomials
vanishing on S

I(S) = {f ∈ C[x] : ∀x ∈ S, f(x) = 0},

is an ideal of C[x] and is called the vanishing ideal of S.

For M ∈ GLn(C), and f ∈ C[x], we denote by f ◦M the polynomial such
that (f ◦ M)(x) = f(M x) for all x ∈ Cn. If f = (f1, . . . , fs) ⊂ C[x], and
Z = ZC(f), we denote by M−1Z the set defined by 〈f1 ◦M, . . . , fs ◦M〉, that is
M−1Z = {x ∈ Cn : M x ∈ Z}.
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It is easy to check that vanishing ideals are radical ideals. Hilbert’s Nullstel-
lensatz asserts that all radical ideals can be described as the vanishing ideal of
an algebraic set.

Theorem 1.4 (Nullstellensatz, Hilbert, 1893, [82]). Let I = 〈f1, . . . , fs〉 ⊂ C[x].
Then f vanishes over ZC(I) if and only if there exist g1, . . . , gs and k ≥ 1 such
that fk = g1f1 + · · ·+ gsfs. In symbols: I(ZC(I)) =

√
I.

Hence, by Hilbert’s Nullstellensatz, operators ZC(·) and I(·) define a bijective
correspondence between radical ideals and algebraic sets:

radical ideals
I =

√
I

algebraic sets
Z = Z

The quotient C[x]
/
I(Z) is called the coordinate ring of the algebraic set Z:

it is the ring of polynomial functions defined over Z. Also, for any set S ⊂ Cn,
the set ZC(I(S)) ⊂ Cn is an algebraic set and it is the smallest one containing
S, hence it equals S.

There exists an equivalent form of Hilbert’s Nullstellensatz: let I ⊂ C[x],
then 1 ∈ I if and only if ZC(I) = ∅. Remark that the weak Nullstellensatz
states that one can a priori produce a certificate of emptiness of the algebraic
set ZC(〈f1, . . . , fs〉) (in other words, an exact proof that the polynomial system
f1(x) = 0, . . . , fs(x) = 0 has no complex solutions) of type 1 = g1f1 + . . .+ gsfs
for some polynomials gi (cf. Section 1.2.2 for computational aspects).

Observe that this statement is false for polynomial rings over non alge-
braically closed fields:

〈
x2 + 1

〉
( R[x] but ZR(

〈
x2 + 1

〉
) = ∅. Always following

the meaning in terms of algebraic certificates of Hilbert’s Nullstellensatz, we give
below the real version of this result.

Theorem 1.5 (Real Nullstellensatz, Th. 4.1.4 in [24]). Let I = 〈f1, . . . , fs〉 ⊂
R[x]. Then ZR(I) = ∅ if and only if there exists g1, . . . , gs, h ∈ C[x] such that h
is a sum of squares and −1 = h+ g1f1 + . . .+ gsfs.

Concerning the previous example, a Real Nullstellensatz certificate for the
emptiness of ZR(

〈
x2 + 1

〉
) is given by the equality −1 = x2 + (−1)(x2 + 1).

Definitions for algebraic sets

We set some standard definition on the geometry of algebraic sets. For further
details we refer to classical textbooks [145, 62, 63].

Definition 1.6 (Irreducibility). An F−algebraic set Z ⊂ Fn is called irreducible
if any decomposition Z = Z1 ∪ Z2 where Zi are F−algebraic sets, implies either
Z = Z1 or Z = Z2.
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The algebraic set Z ⊂ Cn is irreducible if and only if its vanishing ideal I(Z)
is prime (cf. [35, Prop. 3, Ch. 4, § 5]), otherwise it can be decomposed as the finite
union of irreducible algebraic sets, i.e.

Z = Z1 ∪ · · · ∪ Zs,

with Zi irreducible, and such a decomposition is unique up to supposing Zi 6⊂ Zj
for i 6= j. If this is the case, the sets Zi are called the irreducible components of
Z and I(Z) = I(Z1) ∩ · · · ∩ I(Zs).

Let Z ⊂ Cn be an algebraic set and let I(Z) = 〈f1, . . . , fs〉. The s×n matrix

Df =


∂f1
∂x1

· · · ∂f1
∂xn...
...

∂fs

∂x1
· · · ∂fs

∂xn


is the Jacobian matrix associated to the polynomial system f = (f1, . . . , fs).

Definition 1.7 (Dimension and codimension). Let Z ⊂ Cn be irreducible. The
codimension of Z is the maximum rank c attained by Df on Z, and its dimension
is d = n− c. The dimension of an algebraic set is the maximum dimension d of
its irreducible components, and its codimension is c = n− d.

Remark that here we have defined the dimension of complex algebraic sets
Z, which typically does not correspond to the dimension of the real trace Z∩Rn.

For 0 ≤ i ≤ d, we denote by Ωi(Z) the union of the irreducible components
of Z of dimension i, and we call it its equidimensional component of dimension
i. A set Z of dimension d is equidimensional if Z = Ωd(Z). Finally, algebraic
sets of dimension one are typically called curves. Algebraic sets of codimension
one are called hypersurfaces and their vanishing ideals are defined by a single
polynomial.

A linear space L ⊂ Cn is an algebraic set defined by polynomials of degree
one. A linear space which is a hypersurface is called a hyperplane.

Definition 1.8 (Degree). The degree of an equidimensional algebraic set Z ⊂ Cn
of codimension c is the maximum cardinality of finite intersections Z ∩L where
L ⊂ Cn runs over the collection of linear subspaces of Cn of dimension c. The
degree of an algebraic set Z is the sum of the degrees of its equidimensional
components.

Let Z ⊂ Cn be equidimensional of codimension c, and let I(Z) = 〈f1, . . . , fs〉.
The singular locus of Z, denoted by sing (Z), is the algebraic set defined by
f = (f1, . . . , fs) and by all c× c minors of Df (cf. [62, Lect. 14]). If sing (Z) = ∅
we say that Z is smooth, otherwise singular. The points in sing (Z) are called
singular, while points in reg (Z) = Z \ sing (Z) are called regular. We use
frequently the following theorem to prove regularity properties of algebraic sets.

Theorem 1.9 (Jacobian criterion, Th. 16.19 in [39]). Let Z ⊂ Cn and I(Z) =
〈f〉.
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1. If Z is equidimensional of dimension d, then the rank of Df at reg (Z) is
c = n− d, and sing (Z) is defined by f and by the c× c minors of Df .

2. If the rank of Df is constant over Z and equal to c, then Z is smooth and
equidimensional of dimension d = n− c.

Definition 1.10 (Critical points, critical and regular values). Let Z ⊂ Cn be
smooth and equidimensional of codimension c, and let I(Z) = 〈f1, . . . , fs〉. Let
g : Cn → Cm be an algebraic map. The critical points of the restriction of g to
Z is the algebraic set denoted by crit (g,Z) and defined by f = (f1, . . . , fs) and
by all c+m minors of the Jacobian matrix

D(f, g) =
(
Df
Dg

)
.

Let Im(g) denote the image of g. The points in g(crit (g,Z)) are called critical
values of the restriction of g to Z, while points in Im(g)\g(crit (g,Z)) are called
the regular values.

For 0 ≤ i ≤ n, we denote by πi : Cn → Ci the projection πi(x1, . . . , xn) =
(x1, . . . , xi). Let Z ⊂ Cn be an algebraic set. The polar varieties associated to
Z are defined as the sets of critical points of maps πi restricted to Z.

Definition 1.11 (Polar varieties). Let f = (f1, . . . , fs) ⊂ Q[x], with x =
(x1, . . . , xn), and Z = ZC(f) ⊂ Cn be of dimension d. For 0 ≤ i ≤ d, let
D(f, i) be the matrix obtained by eliminating the first i columns of Df . Let Ii
be the ideal generated by f and by the n − d minors of D(f, i). For 0 ≤ i ≤ d,
the algebraic set Wi = ZC(Ii) is called the i−th polar variety of Z.

We remark that, in the previous definition, under the assumption that f
generates a radical ideal and that Z is smooth and equidimensional, the polar
variety Wi encodes the critical points of the restriction of the map πi to Z (cf.
[137]).

Semi-algebraic sets

Let f ∈ Q[x], with x = (x1, . . . , xn). A sign condition on f is one of the three
possible formulas f(x) > 0, f(x) < 0 or f(x) = 0. Then, a semi-algebraic set is
defined by a finite logical combination (using ∧, ∨, or ¬) of sign conditions on a
given finite set of polynomials. Equivalently:

Definition 1.12. Let f1, . . . , fs ∈ Q[x]. The associated basic closed semi-
algebraic set is the set

S = {x ∈ Rn : fi(x) ≥ 0, i = 1, . . . , s}.

A set S ⊂ Rn is called semi-algebraic if it can be generated by a finite sequence
of unions, intersections and complements from a collection of basic closed semi-
algebraic sets.
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The number s of polynomial inequalities that are needed to describe a basic
semi-algebraic set S can be bounded by the inequality s ≤ n(n+1)

2 , and this result
is due to Bröcker and Scheiderer (cf. [24, Th. 10.4.8]). Remark here that also
the set {x ∈ Rn : fi(x) > 0, i = 1, . . . , s} is semi-algebraic, and in this case s
can be bounded linearly with respect to n, indeed s ≤ n for some polynomials
f1, . . . , fs ∈ Q[x] (cf. [24]). Finally, the interior of a semi-algebraic set is semi-
algebraic.

As for real algebraic sets, a basic semi-algebraic set does not preserve this
property under linear projections. Moreover, the whole class of semi-algebraic
sets is closed under this operation, as stated by Tarski-Seidenberg Principle.

Theorem 1.13 (Tarski-Seidenberg Principle, Th. 1.4.2 in [24]). Let S ⊂ Rn+d

be a semi-algebraic set, and let π : Rn+d → Rn be the projection on the first n
variables. Then π(S) ⊂ Rn is a semi-algebraic set.

Semi-algebraic sets are an important class of topological spaces, with spe-
cial properties and arising in many contexts in mathematics. For this reason, a
dedicated homological theory has been developed to measure their topological
complexity (see [20, Ch. 7, §4] and references therein). So far, bounds on the
number of connected components (and, more generally, on sums of Betti num-
bers) of algebraic or semi-algebraic sets are available in the literature. Results
similar to the following theorem were established previously by J. Milnor and R.
Thom.

Theorem 1.14 (Th. 1 in [18], Th. 1.1 in [19]). Let g = (g1, . . . , gs) ⊂ Q[x], with
x = (x1, . . . , xn), such that ZC(〈g〉) has dimension k, and let f = (f1, . . . , fs) ⊂
Q[x] be polynomials of degree at most d. Then the number of connected com-
ponents of the semi-algebraic set {x ∈ Rn : g = 0, fi ≥ 0, i = 1, . . . , s}, is in(s
k

)
(O(d))n.

The previous theorem implies that the number of connected components of
any semi-algebraic set is singly exponential in the number of variables.

1.1.2 Algebraic transversality

The concept of transversality has its origins in differential geometry, to describe
properties of intersections of manifolds. Intuitively, a family of vector subspaces
V1, . . . ,Vt (or, more generally, of submanifolds) of a given vector space E (resp.
a manifold) are transverse if and only if codim (V1 ∩ . . .∩Vt) = codimV1 + · · ·+
codimVt. If this is the case, the intersection of Vi has the expected dimension.

The transfer of transversality results in algebraic geometry started with the
seminal paper of Mather [110] (cf. also [36, Ch. 3] and [6, 5]). A modern approach
discussing the use of transversality in effective algebraic geometry is in [139,
Ch. 4].
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Algebraic properties

For the next definition, Z ⊂ Cn is an algebraic set and O ⊂ Z is a Zariski open
subset of Z.

Definition 1.15. An algebraic property P (or, simply, a property) defined over
the set O is a function

P : O → {true, false} .

We say that x ∈ Z satisfies P if P(x) = true. We say that P holds generically
in O (or that it is an open condition on O) if there exists a non-empty Zariski
open set P ⊂ O such that, for all x ∈P, x satisfies P.

Examples of properties are listed here:

• Let P : Mn,n(C) → {true, false} assign true if M has full rank, false
otherwise. The preimage of true is GLn(C), hence P holds generically in
Mn,n(C).

• Let P : R → {true, false} be the property satisfied by nonnegative real
numbers. Then P does not hold generically since Zariski open subsets of
R are complements of finite sets.

• Let f =
∑d1
i=0 fix

i, g =
∑d2
i=0 gix

i ∈ Q[x] be univariate polynomials. Iden-
tify f, g with their vectors of coefficients, and let Q[f, g] be the space of
polynomials on f = (f0, . . . , fd1), g = (g0, . . . , gd2). The resultant R(f, g)
of the couple (f, g) is an element of Q[f, g], of degree d1 + d2 (cf. ex-
ample of Section 5.2.2, on page 150). The map P : Q[x] × Q[x] returning
P(f, g) = true when (f, g) share no common factors is algebraic, and holds
if and only if R(f, g) 6= 0, hence generically.

Transversality theory allows, via the two results discussed in the next sec-
tions, to produce sufficient conditions to establish that algebraic properties hold
generically over their domains.

Sard’s lemma

Let Z ⊂ Cn be an equidimensional algebraic set of dimension d, and let g : Cn →
Cs be an algebraic map. Remark that we do not assume that Z is smooth.
By abuse of notation we denote by crit (g,Z) the set of critical points of the
restriction of g to the regular points reg (Z) of the set Z. Precisely, a point
x ∈ reg (Z) belongs to crit (g,Z) if and only if the rank of D(f, g) at x is less
than c+ s where c = n− d is the codimension of Z, and g : Cn → Cs.

The following lemma is the algebraic version of [36, Th. 3.5.1].

Lemma 1.16 (Sard’s Lemma, Sec. 4.2 in [139], or Ch. 2, Sec. 6.2, Th .2 in [145]).
The set g(crit (g,Z)) ⊂ Cs is contained in a proper hypersurface of Cs.
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For a modern proof of Sard’s Lemma we refer to [139, Prop. 4.2]. Sard’s
Lemma implies that the fiber over a generic point of the target space does not
contain any critical points of the restriction of the map to the algebraic set, and
hence is smooth. In the following example we explore a direct application.

Example 1.17. Let f ∈ Q[x] be any non-constant polynomial. Its associated al-
gebraic set ZC(f) ⊂ Cn is a hypersurface, hence equidimensional of codimension
1. Suppose that Df 6= 0 for all x ∈ ZC(f), so that ZC(f) is smooth.

Let g : Cn → C be an algebraic map (represented by one polynomial g ∈ Q[x]),
and consider the restriction of g to ZC(f). By Sard’s Lemma (Lemma 1.16)
the set of critical values of g on ZC(f) is finite, denoted by {y1, . . . , yt}. We
deduce that, if y ∈ C \ {y1, . . . , yt}, then either g−1(y) = {x ∈ Cn : g(x) = y}
does not intersect ZC(f), or the intersection is smooth and equidimensional of
codimension 2 (by the Jacobian criterion, cf. Theorem 1.9).

We conclude by remarking that Example 1.17 shows how Sard’s Lemma can
be used to check transversality properties of generic intersections of algebraic
varieties.

Thom’s weak transversality

We move to a second result in algebraic transversality theory, dealing with the
particular case of transversality to a point. We consider an algebraic map

f : Cn × Ck −→ Cs
(x, y) 7−→ f(x, y).

For y ∈ Ck, we denote by fy the section map

fy : Cn −→ Cs
x 7−→ f(x, y).

Theorem 1.18 (Thom’s Weak Transversality, Th 3.7.4 in [36]). Let U ⊂ Cn be
a non-empty Zariski open set such that 0 is a regular value for the restriction of
f to U ×Ck. Then there exists a non-empty Zariski open set V ⊂ Ck such that,
for y ∈ V , 0 is a regular value of the map fy : Cn → Cs.

We show via a simple example how this result can be used to establish alge-
braic properties.

Example 1.19. Let g = (g1, . . . , gs) ∈ Q[x]s be any polynomial system. Consider
the following map:

f : Cn × Cs −→ Cs
(x, y) 7−→ (g1 − y1, . . . , gs − ys).

The s × (s + n) Jacobian matrix Df contains the submatrix −Is of derivatives
of polynomials gi − yi with respect to variables in y. By the Jacobian criterion
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(Theorem 1.9) we conclude that the algebraic set ZC(f) ⊂ Cn × Cs is empty or
smooth, hence that 0 is a regular value for f .

By Thom’s Weak Transversality Theorem (Theorem 1.18) we deduce that
there exists a non-empty Zariski open set V ⊂ Cs such that, if y ∈ V , the
zero set of fy is empty or smooth. We deduce that for y ∈ V , the fiber set
g−1(y) = {x ∈ Cn : g(x) = y} is either smooth or empty.

The previous example shows the intuitive fact that up to perturbing the level
set of a polynomial function or map, then either the obtained set is empty, or
one necessarily deduces expected dimension or regularity properties.

1.1.3 Noether position and properness

The notion of Noether position of an ideal I (or of the zero set Z = ZC(I)) is
related to the definition of dimension and on that of algebraic dependence in the
associated quotient ring C[x]

/
I(Z) .

Normalization of algebraic sets

Let A ⊂ B be a ring extension. We recall that an element b ∈ B is integral over
A if there exists a monic polynomial f ∈ A[t] such that f(b) = 0. If all elements
of B are integral over A, the extension A ⊂ B is called integral. Moreover,
elements b1, . . . , bs ∈ B are said to be algebraically independent over A if there
are no s−variate polynomials with coefficients in A vanishing over (b1, . . . , bs).
Definition 1.20 (Noether Position, cf. [98, 39]). Let Z ⊂ Cn be an algebraic
set of dimension d. We say that Z (or I(Z)) is in Noether position with respect
to x1, . . . , xd, if the extension

C[x1, . . . , xd] ⊂ C[x1, . . . , xn]
/
I(Z)

is integral.

For example, finite sets are all in Noether position (with d = 0).
Example 1.21. An example of ideal which is not in Noether position is I =
〈x1x2〉 ⊂ C[x1, x2]. Indeed, the algebraic set ZC(x1x2) ⊂ C2 has dimension 1,
hence one is asking whether the inclusion of C[x1] in the coordinate ring of I is
integral. This is not the case since, e.g., the class of x2 modulo I has as minimum
polynomial over C[x1] the polynomial f(t) = x2t. Remark that the fiber over 0
of the projection of ZC(x1x2) over the line x2 = 0 consists of an entire line.

Remark here that substituting e.g. x1 +x2 into x1 yields the following action
on the ideal I: I 7→ 〈x1x2 + x2

2〉 and puts the ideal I in Noether position with
respect to x1, since now x2 is integral over C[x1]. Remark here that any fiber of
the projection of ZC(x1x2 + x2

2) over the line x2 = 0 is finite of cardinality 2.

The behavior described in Example 1.21 is proved in a historical result in
algebraic geometry, due to Hilbert.
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Theorem 1.22 (Noether Normalization, [82], Th. 2.1 in [98], Th. 13.3 in [39]).
Let Z ⊂ Cn be an algebraic set of dimension d. Then there exists y1, . . . , yd ∈
C[x] such that the extension

C[y1, . . . , yd] ⊂ C[x1, . . . , xn]
/
I(Z)

is integral.

Geometrically, Noether’s Theorem implies that for any algebraic set of di-
mension d there exists a finite-to-one map from the set to the affine space of
dimension d (this is what is called a Noether normalization, cf. [145, Th. 10,
Sec. 5.4]).

This theoretical result led to effective counterparts lying at the foundation of
algorithms in computational algebraic geometry. Indeed, the Noether position
can be recovered by applying generic linear changes of variables occurring in the
ideal I [38, Cor. 2.4.4], hence by means of a probabilistic algorithm. Complexity
bounds for this procedure have been computed (cf. [52, Th. 2.3]).

Proper maps

A classical notion in topology is that of proper maps.

Definition 1.23 (Proper Map). Let X ,Y be topological spaces, and let f : X →
Y be a continuous function. The function f is called proper at a point y ∈ Y
if there exists an open neighborhood O ⊂ Y of y such that f−1(O) is compact,
where O is the closure of O in the topology of Y.

We will mainly use Euclidean topological spaces, and frequently Rn or Cn.
The Noether position of an algebraic set Z is related to properness properties of
the restriction of linear projections to Z, as stated in the following proposition.

Proposition 1.24. Let Z ⊂ Cn be an algebraic set of dimension d. Then Z
is in Noether position with respect to x1, . . . , xd if and only if the restriction to
Z of the map πd : Cn → Cd sending x to (x1, . . . , xd), is proper. If one of the
previous conditions holds, the restriction of the map πd to the real trace Z ∩ Rn
is also proper.

Proof. By [87, Prop. 3.2], the restriction of πd to Z is proper if and only if the
map πd,∗ : C[x1, . . . , xd]→ C[x]

/
I(Z) is finite. This, by [87, Prop. 3.2], holds if

and only if the extension C[x1, . . . , xd] ⊂ C[x]
/
I(Z) is integral, that is if and

only if Z is in Noether position with respect to x1, . . . , xd.
Suppose that the restriction of the map πd to Z is proper, and let y ∈

πd(Z ∩ Rn) ⊂ Rd. In particular y ∈ πd(Z), hence by the properness property
there exists an open neighborhood O ⊂ πd(Z) containing y such that π−1

d (O) is
compact. Then also O ∩ Rd is open in Rd, it contains y, and π−1

d (O ∩ Rd) ∩ Rn
is compact. q.e.d.
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Coming back to Example 1.21, one can notice that the projection over the
first variable of the algebraic set associated to I = 〈x1x2〉 is not a proper map,
since it is not proper at the point 0. Indeed, we proved in the example that I is
not in Noether position. Conversely, the set defined by I = 〈x1x2 + x2

2〉 projects
properly onto x1, indeed the ideal I is in Noether position with respect to x1.

In the last years, a lot of efforts have been made to develop the relations
between Noether position and properties of algebraic maps. In particular, in
[137] the authors exploit properness of linear projections to design algorithms for
solving positive dimensional polynomial systems whose zero set is non-compact,
and under regularity hypotheses.

Given f ⊂ Q[x] a polynomial system, let V = ZC(f) ⊂ Cn, d = dimV and
let Wi be the i−th polar variety associated to V, defined on page 38. If V is
smooth and equidimensional, and if its defining polynomial system generates a
radical ideal, recall that Wi (defined by suitable minors of suitable truncations
of the Jacobian matrix of V) encodes the critical points of the restriction of the
projection πi(x) = (x1, . . . , xi) to V. We also recall that for Z ⊂ Cn, M−1Z
denotes the set {x ∈ Cn : M x ∈ Z}.

Theorem 1.25 (Th.1 in [137]). Suppose that V is smooth and equidimensional,
and if its defining polynomial system generates a radical ideal. There exists a
Zariski open set O ⊂ GLn(C) such that, ifM ∈ O∩Mn,n(Q), and i = 1, . . . , d+1,
the restriction of the projection πi−1 to M−1Wi is proper.

In practice, Theorem 1.25 is proved by showing that a generic change of vari-
ables put the algebraic set Wi in Noether position with respect to x1, . . . , xi−1.
This result holds under regularity hypotheses for the input system, and one
contribution of this thesis, contained in Chapter 2, is to generalize this fact by
eliminating such regularity assumptions by defining a suitable decomposition of
the algebraic set Z.

1.2 Exact algorithms for polynomial system solving

In this section we discuss basic details in complexity theory, symbolic computa-
tion and effective real algebraic geometry. We do not claim to be comprehensive,
and we refer to [30, 26] and to [20, 35] for completeness.

The problem of computing the set of complex solutions of a polynomial sys-
tem f = (f1, . . . , fs), when this set is finite, lies at the basis of modern mathe-
matics and finds numerous applications. Both numerical and exact algorithms
have been developed in the last decades with the goal, especially for practical
contexts, to isolate all real solutions. Since, typically, one deals with positive di-
mensional systems, a first step is to design algorithms to reduce the dimension,
possibly exploiting the structure of the input polynomials.

In this thesis we are interested in solving determinantal polynomial systems in
exact arithmetic. In particular, the output will be a finite set Z ⊂ Cn encoded
by a system of equations involving univariate rational functions. Every x =
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(x1, . . . , xn) ∈ Z verifies the following polynomial system:

x1 = q1(t)
q0(t)

...
xn = qn(t)

q0(t)
qn+1(t) = 0,

for some univariate polynomials q0, q1, . . . , qn, qn+1 ∈ Q[t], such that q0 and qn+1
are coprime, and for some root t of qn+1. Moreover, the degree of qn+1 equals the
cardinality of Z and there is a bijection between the roots of qn+1 and the points
in Z. The elements of Z can be represented by qn+1 and intervals isolating the
corresponding root.

This univariate representation [136], dating back to Kronecker’s work, can be
computed in practice (using Gröbner bases, see Section 1.2.1) and reduces the
input problem to the isolation of the roots of the univariate equation qn+1(t) = 0.
This reduced task can be performed via different algorithms (cf., e.g., [123]).

The algorithms described in this thesis are exact and manipulate polynomial
systems representing algebraic sets. This means that the input and the output
are vectors of polynomials and that the intermediate operations are performed
using admissible ring or field operations such as sums, subtractions, multipli-
cations or divisions. We measure the complexity of our algorithms taking into
account the following two quantities:

1. the total number of arithmetic operations {+,−,×,÷} performed over the
ground field Q;

2. the degree of the polynomial qn+1 in the output representation.

Obviously, one goal is to obtain algorithms for which the growth in terms of
output size (represented by the degree of qn+1, Point 2 above) does not imply
exponential growth in terms of needed operations (Point 1 above).

To give asymptotic bounds on the previous two quantities, we use the classical
notations O and O˜ that we recall next. Let f, g : Nk → N be k−variate functions
of integer variables with values in N. We say that g ∈ O(f) if there exists a
constant c ∈ N such that g(n1, . . . , nk) ≤ cf(n1, . . . , nk) for all n1, . . . , nk ∈ N.
We say that g ∈ O (̃f) if there exists a ∈ N such that g ∈ O(f loga f).

1.2.1 Gröbner bases

The theory of Gröbner bases has been developed since Buchberger’s PhD thesis
in 1965. Its goal is to solve polynomial equations. Since his work, further im-
provements of Buchberger’s algorithm have been achieved [35, Ch. 2, § 9], mainly
in the last two decades [41, 42], and nowadays we have efficient tools and im-
plementations for solving algebraic systems of equations using Gröbner bases
[43].
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Let x = (x1, . . . , xn). We associate to a vector with n nonnegative integer
entries i = (i1, . . . , in) ∈ Nn, a monomial xi = xi11 · · ·xinn ∈ Q[x] of degree
i1 + · · ·+ in. A monomial ordering > on Q[x] is a total ordering on Nn satisfying
the following two properties: (1) if i > j then i+ ` > j + ` for any ` ∈ Nn, and
(2) every decreasing chain i > j > ` > · · · stops. With respect to this ordering
we say that xi > xj if i > j (cf. [35, Ch. 2, § 2]).

Given a polynomial f ∈ Q[x], with x = (x1, . . . , xn), we denote by LT>(f)
the leading term of f , i.e. the greatest term of f with respect to the order >.
We denote by LT>(I) the set of leading terms of elements of an ideal I ⊂ Q[x].
A Gröbner basis of I with respect to > is a set G = {g1, . . . , gk} ⊂ Q[x] such
that 〈LT>(g1), . . . ,LT>(gk)〉 = 〈LT>(I)〉. One can suppose by definition that
the elements of G are monic with respect to the ordering >, that is the coefficient
of the leading term is 1. Moreover, if g ∈ G is such that one of its terms can be
generated by the leading terms of G \ g, then G \ g is also a Gröbner basis of I
[35, Ch. 2]. Any basis obtained by successively eliminating such elements from
G, is called a reduced Gröbner basis.

Theorem 1.26 (Prop. 6, Ch 2, § 7 in [35]). Every ideal I ⊂ Q[x], I 6= 〈0〉, admits
a unique reduced Gröbner basis.

Reduced Gröbner bases can be computed via Buchberger’s algorithm [29],
which represents a generalization to polynomial systems of the Gaussian elimi-
nation algorithm for linear equations [153]. Implementations of this algorithm are
available in many computer algebra systems, such as maple [109] or macaulay2
[107]. Moreover, more efficient versions and speed-ups have been designed at the
end of last century, in particular the algorithms F4 [41] and F5 [42], and those
for the fast computation of change of monomial orderings [48] and [47]. These
are implemented in the software FGb developed by J.-C. Faugère [43].

Gröbner bases can be used to solve in practice, among others, the following
problems involving complex algebraic sets.

• Deciding the emptiness of an algebraic set. Indeed, it is sufficient to com-
pute a reduced Gröbner basis of the polynomial ideal, remarking that the
unique reduced Gröbner basis of 〈1〉 is {1}.

• Computing the dimension of an algebraic set (cf. [35, Ch. 9,§. 3]).

• Verifying whether two polynomial systems define the same ideal. This is
true if and only if they share the same reduced Gröbner basis.

We make frequently use of Gröbner bases computation in practice. Indeed,
using Gröbner bases allows to meet the best practical performances for solving
the aforementioned problems, mostly when dealing with structured polynomial
systems (determinantal varieties, critical points varieties, boolean) as proved in
recent results [45, 149, 120]. In particular, we use the new implementation of
[50] for computing rational parametrizations.
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1.2.2 Algorithms for computing rational parametrizations

In this section we report on exact algorithms for computing rational parametri-
zations of zero-dimensional algebraic sets.

The first one [53] computes a geometric resolution of the input, which can
be used to obtain a rational parametrization. Let f1, . . . , fn, g ∈ Q[x], with
x = (x1, . . . , xn), be such that the zero set Z = ZC(〈f1, . . . , fn〉) defines a reduced
regular sequence in the Zariski open set g 6= 0. In other words, for all i = 1, . . . , n,
for Zi = ZC(〈f1, . . . , fi〉), the algebraic set Zi \ ZC(g) has dimension n − i and
the Jacobian matrix D(f1, . . . , fi) has full rank in Zi \ ZC(g).

Denoting by δi the degree of Zi, and by δ = maxi{δi}, the probabilistic algo-
rithm in [53] computes a geometric resolution within O (̃n(nL+ nΩ)d2δ2), with
Ω ≤ 4, L the size of the straight-line program representing the input polynomi-
als, and d a bound on their degree. Remark here that better bounds than the
classical Bézout bound δ ≤ dn can be obtained in presence of structured input
polynomials.

A second algorithm [88] also computes a geometric resolution, but uses sub-
routines based on symbolic homotopy techniques as in [74]. The complexity of
this algorithm depends also on the combinatorial structure of input polynomials.
Indeed, let f ⊂ Q[x] the input system with a finite number of solutions. Denote
by N the sum of the cardinalities and by Q the maximum diameter of the sup-
ports of polynomials in f . Let e be the cardinality of ZC(f). Let f̃ be a second
system with the same support structure of f , and denote by e′ the degree of the
homotopy curve

ZC(tf + (1− t)f̃) ⊂ Q[x, t],

The complexity of the algorithm in [88] is in O((n2N logQ + nω+1)ee′), where
ω ≤ log 7 is the exponent of matrix multiplication, cf. [151]. Also this second
algorithm takes advantage of situations where the degrees e and e′ are much
lower that the singly exponential Bézout bound.

1.2.3 Solving over the reals

The theory of Gröbner bases is not sufficient to deal with decision problems over
the real numbers. Indeed, the polynomial x2+1 is a reduced Gröbner basis of the
ideal it generates, while the real trace ZR(〈x2 + 1〉) is empty. Hence one cannot
just rely on the computation of a Gröbner basis to establish the emptiness of
real algebraic sets.

If the input algebraic set is zero-dimensional, i.e. finite, an intuitive definition
of “solving the system over the reals” would be that of enumerating all the real
solutions, obtaining a suitable description of the real set possibly via univariate
representations (cf. Section 1.2.2). The following definition represents a natural
generalization for positive-dimensional real algebraic sets.
Problem 1 (Real Root Finding Problem). Let f ⊂ Q[x] be a polynomial system
encoding the algebraic set Z = ZC(f). The real root finding for Z is the problem
of computing a finite set meeting each connected component of Z ∩ Rn.
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An overview of the state of the art for exact algorithms solving Problem 1
has been given in the Introduction. Other possible exact approaches to real alge-
braic sets involve, e.g., the construction of roadmaps, i.e. semi-algebraic subsets
of dimension at most 1 (union of points and portions of curves) meeting each
connected component of the input [139]. Among the main goals of this modern
approach is indeed solving connectivity queries (namely, deciding whether two
solution points lie on the same real component).

In [137] the authors designed an exact algorithm for solving the real root
finding problem for algebraic sets satisfying genericity assumptions.

Theorem 1.27 (Th. 3 in [137]). Let f1, . . . , fs ∈ Q[x] of degree bounded by d,
defining a smooth and equidimensional algebraic set Z of dimension e, and gen-
erating a radical ideal. Let L be the length of their straight-line program. There is
a probabilistic algorithm computing a family of rational parametrizations, whose
solutions meet every connected component of Z ∩ Rn. The complexity is within
O (̃Ln10p(s + p)M(d(n − e)δ)3), where p =

( s
n−e
)(n−1
n−e

)
, δ is an intrinsic degree

quantity and M(t) is the number of operations needed to multiply two univariate
polynomials of degree t.

One gets from Theorem 1.27 that the real root finding problem can be solved
within essentially O(d3n) arithmetic operations when the input algebraic set
satisfies some regularity assumptions. Also, algorithms dealing with singular
situations have been developed (see, e.g., [140]).

It is finally worth to underline that solving Problem 1 would also solve, for
the real set Z ∩ Rn, the following second question, that we prefer to define over
the more complete class of basic semi-algebraic sets.

Problem 2 (Emptiness Problem). Let f1, . . . , fs ∈ Q[x], and let S = {x ∈
Rn : fi(x) ≥ 0, i = 1, . . . , s} be the associated basic closed semi-algebraic set (cf.
page 38). The emptiness problem for S is that of deciding whether S is empty
or not, and in the negative case of computing a finite set meeting S.

To solve Problem 2, one could think of choosing a dedicated polynomial
criterion f ∈ Q[x], and to solve the associated optimization problem

inf
x∈Rn

f

s.t. x ∈ S.

For example, when f is the null polynomial (the zero element in Q[x]), any
element of S is a solution of the previous optimization program, provided that
S is not empty. Exact algorithms for the polynomial optimization problem over
real algebraic sets are available. We refer e.g. to Greuet’s PhD thesis [57, 58]
for the latest developments.
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1.3 Optimization and convex algebraic geometry

1.3.1 Semidefinite programming

A symmetric matrix M ∈ Sm(R) defines a quadratic form over Rm. The matrix
M is called positive semidefinite (resp. definite) if the associated form is positive
semidefinite (resp. definite), i.e. if y′My ≥ 0 (resp. > 0) for all y 6= 0, where y′
denotes the transpose of y.

A m × m symmetric matrix is positive semidefinite if and only if all its
2m−1 principal minors are nonnegative, while a criterion for positive definiteness
states that just all leading principal minors needs to be strictly positive (cf. [23,
Sec. A.1.1]).

Spectrahedra

The set S+
m(R) of positive semidefinite matrices is a convex cone in Sm(R), whose

interior consists of positive definite matrices. An affine section of S+
m(R), i.e. the

intersection S = H ∩ S+
m(R) where H is an affine set, is also convex and it is

called a spectrahedron. For every H there are A0, A1, . . . , An ∈ Sm(R) such that

S = {x ∈ Rn : A(x) = A0 + x1A1 + · · ·+ xnAn � 0}.

The formula A(x) � 0 is called a linear matrix inequality (LMI). Spectrahedra
generalize polyhedra and share them many properties, among which:

• they are convex basic semi-algebraic

• all their faces are exposed, that is they are defined as the intersection of a
hyperplane with the spectrahedron itself

A substantial difference with polyhedra is that the number of linear inequal-
ities defining a spectrahedron is infinite: indeed, one can write S = {x ∈
Rn : y′A(x)y ≥ 0,∀ y ∈ Rm}. Moreover, deciding whether a spectrahedron is
in fact a polyhedron is NP-hard (cf. [17] and references therein). It is easy to
check that a sufficient condition for representing S as a polyhedron is when
matrices Ai commute, since in this case they are simultaneously diagonalizable.

Let A(x) = A0 +x1A1 + · · ·+xnAn be a symmetric pencil, and let S be the
associated spectrahedron. The boundary B of S with respect to the Euclidean
topology is a subset of the real determinantal hypersurface

D = {x ∈ Rn : detA(x) = 0},

and in particular D is the closure of B in the Zariski topology (the smallest
algebraic set containing B).

49



Optimizing over spectrahedra

While linear programming deals with linear optimization over polyhedra, its
generalization to spectrahedra is called semidefinite programming. A typical
semidefinite program is expressed in its primal and dual formulation, as:

p∗ = inf
X∈Sm

(C,X)

s.t. X � 0
(Aj , X) = bj , j = 1, . . . , n

d∗ = sup
y∈Rn

b′y

s.t. C − y1A1 − · · · − ynAn � 0

where C,Aj ∈ Sm and b ∈ Rn are given matrices and vectors, and (C,X) denotes
the standard scalar product, i.e. the trace of the matrix C ′X = CX. While weak
duality always holds (p∗ ≥ d∗) strong duality is related to the geometry of the
primal and dual feasible sets. We say that a program is strictly feasible if the
feasible set contains a positive definite matrix.

Theorem 1.28 (Lemma 1.3 in [102]). If the primal program is strictly feasible,
and the dual is feasible, then p∗ = d∗ and the infimum is attained. If the pri-
mal program is feasible and the dual is strictly feasible, then p∗ = d∗ and the
supremum is attained.

For an example with p∗ < d∗ we refer, e.g., to [23, Ex. 2.14]. From a com-
putational viewpoint, semidefinite programming can be solved efficiently via nu-
merical algorithms (cf. [22, Ch. 4]). Indeed one could use, e.g., the ellipsoid
algorithm to compute an approximate solution, and this procedure, when the
accuracy ε > 0 is fixed, can be performed in polynomial-time [59]. A numerical
certificate is then produced with a complexity which depends polynomially on
m,n and log(1/ε).

As for linear programs, primal-dual interior-point algorithms have also been
developed since the end of the 1980’s for semidefinite programming. Their com-
plexity is polynomial in the size of parameters of the input problem at any fixed
desired accuracy, and it relies on the hypothesis that the feasible set S is not
empty and that a feasible point x∗ ∈ S is given. Hence, it is quite important to
combine such methods with algorithms able to efficiently compute sample points
on S . Typically, interior-point methods produce maximal rank solution points,
while finding low rank solutions is, conversely, a hard task. The reader can refer
to [1] for an interesting discussion about unpredictability of the rank at optimal
solutions, and next paragraph for further results. Numerical solvers dedicated
to semidefinite programming, implementing primal-dual interior-point methods,
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have been developed, for example: sedumi [152] or mosek [113] or based on dif-
ferent approaches, such as lmilab [105] or pensdp [125]. The reader can refer to
[159] for combinatorial conditions ensuring the existence of low rank solutions.
Moreover, techniques based on projection methods for general conic optimization
problems have been developed [79].

In [91], Khachiyan and Porkolab showed that the feasibility of a semidef-
inite program, that is, deciding the emptiness of a spectrahedron S = {x ∈
Rn : A(x) � 0}, can be tested in O(nm4) + mO(min{n,m2}) operations over in-
teger numbers of bit-size in `mO(min{n,m2}), where ` bounds the bit-size of the
input integer entries of A(x). Remark that when the size of the matrixm is fixed,
the result of Khachiyan and Porkolab gives a complexity which is linear in the
number of variables. Moreover, when S is not empty, bounds on the bit-size of
the feasible solutions are given (precisely in lnO(min{n,m2})). On the other hand,
this algorithm strongly relies on Renegar’s quantifier elimination [133], and no
explicit estimates on the exponents are given; hence it does not lead to efficient
implementations in practice.

The rank at an optimal solution

Since spectrahedra are convex sets and their faces are exposed, the solution of
a semidefinite program coincides with an entire face of S , and any solution is
encoded by a singular matrix.

Under genericity assumptions on the input parameters C,Aj ∈ Sm and b ∈ Rn
of the aforementioned primal-dual semidefinite programs, the optimal matrices
X and A(y) = C − y1A1 − · · · − ynAn are positive semidefinite and satisfy the
complementary condition A(y)X = 0 (cf. [117, Th. 3]).

Proposition 1.29 (Prop. 5 in [117]). Suppose that input data C,Aj ∈ Sm and
b ∈ Rn are generic. Let r and m − r be the ranks of the optimal matrices A(y)
and X. Then these values range over the Pataki’s inequality(

m− r + 1
2

)
≤ n

(
r + 1

2

)
≤
(
m+ 1

2

)
− n.

Hence, the geometry of spectrahedra and that of the loci of rank defects
associated to the linear pencil are strictly related. Indeed, the optimization over
S can be also performed by minimizing the same linear function over the set
of matrices of rank at most r in the pencil, where r is the expected rank. In
this thesis, we follow this idea by reducing the LMI constraint A(x) � 0 to a
sequence of optimization problems over the loci of rank defects of A(x).

If S = {x ∈ Rn : A0 + x1A1 + · · · + xnAn � 0} is the spectrahedron, with
rational input data matrices A0, A1, . . . , An, the solution A(x∗) is a symmetric
matrix whose entries are algebraic numbers, but typically not rational. Upper
bounds for their algebraic degree, giving an estimate of the complexity of solving
exactly the program itself, have been established in [117].
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Concerning the rank at a given solution of a semidefinite program, the next
result implies that the minimizers with maximal rank correspond to points in
the relative interior of the optimal face.
Theorem 1.30 (Lemma 1.4 in [102]). Let A(x) be a symmetric pencil, and let
S = {x ∈ Rn : A(x) � 0} be the associated spectrahedron. Then:

• If x∗ is such that rankA(x∗) = max
x∈S

rankA(x), then kerA(x∗) ⊂ kerA(x)
for all x ∈ S .

• Let c′x be a linear function, let F ⊂ S be the face of minimizers to the
associated semidefinite program, and let x∗ ∈ F be such that rankA(x∗) =
max
x∈F

rankA(x). Then kerA(x∗) ⊂ kerA(x) for all x ∈ F .

Example 1.31. Consider the symmetric pencil

A(x) =

 1− x1 x2 0
x2 1 + x1 0
0 0 −x2

 .
Its associated spectrahedron S = {x ∈ R2 : A(x) � 0} = {x ∈ R2 : x2

1 + x2
2 −

1 ≤ 0, x2 ≤ 0} is a half-disk. Its algebraic boundary is shaped by the cubic
hypersurface

detA(x) = −x2(1− x2
1 − x2

2).

We remark here that the boundary of S contains the two real singular points of
the determinantal variety, i.e. (−1, 0)′ and (1, 0)′.

Let e1, e2, e3 be the standard Euclidean basis of R3. The matrix A has rank
1 at these two points and kerA(−1, 0) contains the vector space 〈e2, e3〉, while
kerA(1, 0) contains 〈e1, e3〉. Consider the closed line segment F = [−1, 1]×{0} ⊂
S , which is the optimal face when maximizing the linear function f(x1, x2) = x2.
One can easily check that, consistently with Theorem 1.30, the kernel of A(t, 0)
for t ∈ (−1, 1) is constant and equal to 〈e3〉 = kerA(−1, 0) ∩ kerA(1, 0). Any
point in the relative interior of F generate rank 2 semidefinite matrices.

Following the central path generated in interior-point methods for maximizing
x2 on S gives as output an approximation of an element of the interior of F .
Point (−1, 0) (and symmetrically (1, 0)) is special since it maximizes an infinite
family of semidefinite programs, parametrized by a convex cone.

Spectrahedral shadows

Another difference between spectrahedra and polyhedra is that spectrahedra are
not closed under projection. Also, the dual body of a spectrahedron is not,
in general, a spectrahedron, but it can be represented as the projection of a
spectrahedron, namely a spectrahedral shadow (cf. [131] or [23, Ch. 5]).

A spectrahedral shadow is represented as follows:

S =
{
x ∈ Rn : ∃ y ∈ Rd, A(x, y) � 0

}
,

52



for some linear pencil A in two groups of variables x, y. The variables y ∈ Rd are
called lifting or slack variables. By Tarski-Seidenberg theorem, S is also semi-
algebraic, but in general not basic. Recent results characterize the boundary
structure of spectrahedral shadows [148]. A central conjecture in convex alge-
braic geometry asks whether every convex semi-algebraic set is the projection
of a spectrahedron. Scheiderer proved that this conjecture holds for planar con-
vex semi-algebraic sets [143], i.e. for n = 2, even though there are no explicit
constructions of the pencil A and no bound on the number d of lifting variables.

Solving this conjecture constructively or, in general, being able to express a
set S as a projection of a spectrahedron S reduces, in particular, the problem of
optimizing linear functions over S to a semidefinite program. The main drawback
of this reduction is that one does not have, in general, reasonable bounds on the
number of lifting variables y to be added (or on the size of the matrix A) to get
the semidefinite representation.

1.3.2 Applications

Semidefinite programming models a large class of optimization or decision queries.
We give in this section a gallery of examples and motivation to develop an ef-
fective theory for semidefinite optimization. In general, we deal with compu-
tationally hard instances (NP-hard, NP-complete . . . ) and the goal is to build
relaxations that can be solved efficiently.

Nonnegative polynomials and sums of squares

Deciding nonnegativity of a multivariate polynomial f ∈ R[x] of degree greater
than 4, i.e. proving that f ≥ 0 everywhere in Rn, is NP-hard. Consequently, it is
of tremendous importance to write down a proof or, more precisely, a certificate
establishing nonnegativity. Artin’s positive answer to Hilbert’s 17th problem
implies that one can write a certificate for f as a sum of squares of rational
functions.

Theorem 1.32 (Artin, 1927). A polynomial f ∈ R[x] is nonnegative in Rn if
and only if there exist g, hi ∈ R[x] such that fg2 =

∑
h2
i .

Since the polynomial g in the previous theorem is the g.c.d. of the denom-
inators of the rational functions, its degree in this representation can be high
and hence one would ask to obtain a certificate with g = 1. Recently, Lombardi,
Perrucci and Roy announced a uniform bound for the degree of polynomials
involved in Hilbert’s representation, namely a tower of five exponentials in the
degree and number of variables of input polynomials [106].

Hilbert proved in 1888 (cf. [83]) that every nonnegative polynomial f ∈ R[x],
of degree 2d, admits a decomposition as a sum of squares of polynomials, if and
only if either n = 1, or d = 1, or (n, 2d) = (2, 4). The effective counterpart of this
result tells that such a decomposition can be computed solving a semidefinite
program. Indeed, suppose that f has degree 2d and let v be the vector of length
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(n+d
d

)
containing all monomials of degree at most d. Then a sum-of-squares

decomposition for f can be computed by finding a matrix X ∈ S(n+d
d ) such that

X � 0
f = v′Xv

cf. for example [134, 121, 128, 100, 99, 116].
This boils down to deciding the emptiness of a spectrahedron, and the algo-

rithm developed in Chapter 4 of this manuscript gives an answer by means of
an exact approach. The main goal of designing exact algorithms for linear ma-
trix inequalities and more general semidefinite programs, is to obtain, at least
for inputs of modest size, exact multi-precision algebraic representations of the
solutions, and a certificate for the emptiness of the associated feasible sets that
cannot be provided by numerical algorithms.

Polynomial optimization

The general polynomial optimization problem asks to minimize a polynomial
function f ∈ Q[x] over a basic semi-algebraic set:

f∗ = inf
x∈Rn

f

s.t. fi(x) ≥ 0, i = 1, . . . , s.

The set S = {x ∈ Rn : fi(x) ≥ 0, i = 1, . . . , s} is, in general, non-convex and
unbounded. In any case, one can rewrite it as a positivity query for multivariate
polynomials:

f∗ = sup
λ∈R

λ

s.t. f − λ ≥ 0 on S.

Results as Schmüdgen’s or Putinar’s Positivstellensatz allow to obtain cer-
tificates for polynomials that are nonnegative over semi-algebraic sets. Indeed,
given f1, . . . , fs ∈ R[x], the set

M(f1, . . . , fs) =

g0 +
s∑
j=1

gjfj : gi is a sum of squares , i = 1, . . . , s


is called the quadratic module of f1, . . . , fs, while the set

P (f1, . . . , fs) =

 ∑
δ∈{0,1}s

gδ
∏
i

f δi
i : gδ is a sum of squares , δ ∈ {0, 1}s


is called the preordering of f1, . . . , fs.
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Theorem 1.33 (Schmüdgen Positivstellensatz, [146]). If the semi-algebraic set
S = {x ∈ Rn : f1(x) ≥ 0, . . . , fs(x) ≥ 0} is compact, then for f ∈ R[x], f > 0 on
S if and only if f ∈ P (f1, . . . , fs).

Under compactness assumptions, Schmüdgen’s Positivstellensatz builds a cer-
tificate of positivity for f on S. Putinar’s version also assume a generic condition
(which is, in general, slightly stronger than the compactness of S) on the poly-
nomials fi.

Theorem 1.34 (Putinar Positivstellensatz, [129]). Suppose that the quadratic
module M(f1, . . . , fs) is archimedean, that is there exists N ∈ N such that N −∑
i x

2
i ∈ M(f1, . . . , fs). Then for f ∈ R[x], f > 0 on S if and only if f ∈

M(f1, . . . , fs).

Both Schmüdgen and Putinar’s theorem can be used effectively by fixing an
upper bound on the degree of the sum-of-squares multipliers, and solving the
associated semidefinite program. While Putinar’s Positivstellensatz admits at
most s+ 1 sum-of-squares multipliers in the representation of f , in Schmüdgen’s
version one could have a singly exponential number of multipliers with respect
to the number s of polynomials defining the semi-algebraic set. Recently, Nie
and Schweighofer computed upper bounds on the degree of sum-of-squares mul-
tipliers for Putinar Positivstellensatz [119], and Schweighofer for Schmüdgen
Positivstellensatz [147].

When S is a real algebraic set, dedicated methods have been developed. The
algorithms in [57], based on dimensional reduction and on the construction of
polar varieties, allow to solve this optimization problem in exact arithmetic with
a complexity in O (̃D6( 3√2(s + 1)(D − 1))3n), where D bounds the degrees of
all polynomials. For general semi-algebraic sets, one can use the approach via
border bases in [4]. Other methods use resultants, homotopy continuation or
linear algebra over the gradient ideal 〈 ∂f∂x1

, . . . , ∂f∂xn
〉 of f (cf. [122] for a general

overview).
Lasserre established in [100] that such general optimization problems can be

reduced, when S is compact, to a hierarchy of convex optimization problems
modeled by linear matrix inequalities, that is to semidefinite programs. Under
mild genericity assumptions on input data, the sequence of minimizers converges
to the optimal solution after a finite number of iterations [118]. We refer to [99]
for an exhaustive description of the duality theory of nonnegative polynomials
and moments, on which Lasserre’s method strongly relies. Based on this and
further developments, the software gloptipoly [73] implements the method of
moments and is able to tackle problems of remarkably high size.

We conclude by remarking that, since with semidefinite programming one can
compute positivity certificates for multivariate polynomials over semi-algebraic
sets, an exact algorithm solving SDP would lead to exact certificates and solu-
tions to the polynomial optimization problem.

55



Control theory

For the use of linear matrix inequalities in control theory we refer, in general, to
the historical survey [25], and to [78] for a modern viewpoint.

We recall, as example, that among the first LMI appearing in mathematics
is the Lyapunov condition for the convergence of the solutions of the ordinary
differential equation ẋ = M x, which reads

P � 0
M ′P + PM ≺ 0,

with P a matrix of variables. If such a P exists, a Lyapunov quadratic function
certifying the asymptotic stability of the origin can be built directly, by Lyapunov
theorem.

Other problems of interest in systems control can be modeled as LMI, such as
the generalized eigenvalue problem. Finally, LMI and semidefinite programming
arise naturally when modeling the analysis or synthesis of nonlinear dynamical
systems (see e.g. [155]), or in nonlinear optimal control with polynomial data
[75, 32].

Feasibility certificates for semi-algebraic sets

In this thesis we are interested in obtaining proofs in exact arithmetic that some
real algebraic or semi-algebraic sets is empty or not.

Results such as Real or Complex Nullstellensatz for algebraic sets (cf. Theo-
rem 1.4 and 1.5), or Farkas Lemma for linear programming, or the Positivstelle-
satz for semi-algebraic sets (cf. Theorem 1.33 and 1.34), represent dedicated
algebraic certificates for the feasibility of semi-algebraic sets (cf. [3, 121]). We
finally give below a general equivalent form of the Positivstellensatz underlining
this aspect.

Theorem 1.35 (Positivstellensatz certificate, Th. 3.15 in [102]). Let {fi}1,...,r,
{gj}1,...,s and {h`}1,...,t ⊂ R[x], and let S = {x ∈ Rn : fi(x) 6= 0, gj(x) ≥
0, h`(x) = 0, i = 1, . . . , r, j = 1, . . . , s, ` = 1, . . . , t}. Then S = ∅ if and only if

r∏
i=1

f2di
i +

∑
δ∈{0,1}s

σδ

s∏
j=1

gδJ
j +

t∑
`=1

τ`h` = 0

for some di ∈ N, σδ sum of squares of polynomials in R[x], and τ` ∈ R[x].

Recently, Klep and Schweighofer have proved the following certificate for the
emptiness of spectrahedra. For a symmetric pencil A(x) and its spectrahedron
S , we define the associated quadratic module

MA =
{
σ +

∑
j

v′jAvj : σ is a sum of squares and vj ∈ Rm
}
.
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Theorem 1.36 (Th. 2.2.5 in [96]). The spectrahedron S = {x ∈ Rn : A(x) � 0}
is empty if and only if −1 ∈MA.
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Part II

Contributions





Chapter 2

Projections

The correspondence between algebraic and geometric properties of real or com-
plex sets lies at the foundation of algebraic geometry. Moreover, such properties
are often exploited to prove the correctness of exact algorithms. Especially for
probabilistic algorithms, whose correctness typically depends on the choice of
some parameters (such as linear changes of variables), the goal is to prove that
algebraic properties (such as smoothness of algebraic sets or closure of polynomial
maps) hold generically with respect to this choice. Within this framework, we
consider the relation between Noether position and properness of the restriction
of linear projections to algebraic sets.

This chapter contains a generalization to the non-smooth and non-equidi-
mensional case of the algebraic properties proved in [137]. The results that we
present appeared in the work [68], accepted for publication in Journal of Symbolic
Computation, 2015.

2.1 Introduction

The results of this chapter follow and build on more than a decade of efforts in
establishing connections between Noether position of complex algebraic sets and
properness properties of linear projections restricted to their real traces. Indeed,
this has already been subject of investigation in several works [137, 138, 53],
since proving that an algebraic set is in Noether position represents a useful tool
for real solving in computational algebraic geometry.

We establish in our main result, Theorem 2.1, that any algebraic set Z can
be decomposed as a suitable union of algebraic subsets Oi(Z) such that a generic
change of variables allows to simultaneously put in Noether position the set itself,
together with any element Oi(Z). Moreover, since the image of any set Oi(Z)
via the canonical projection (x1, . . . , xn) 7→ (x1, . . . , xi+1) contains the critical
values of the restriction of the map itself to Z, this implies that the image of any
connected component C ⊂ Z ∩ Rn by this map is closed.
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Throughout the chapter, we denote by Z ⊂ Cn an algebraic set, and we let
d be its dimension. If A ⊂ B is a ring extension, we recall that b ∈ B is integral
over A if it is the root of a monic polynomial yk+ak−1y

k−1 + · · ·+a1y+a0 where
ai ∈ A, for i = 0, . . . , k− 1. The extension A ⊂ B is integral if all elements of B
are integral over A.

We recall that Z, or equivalently its defining ideal I(Z) ⊂ C[x], with x =
(x1, . . . , xn), is in Noether position with respect to x1, . . . , xd, if the ring extension

C[x1, . . . , xd] ⊂ C[x1, . . . , xn]
/
I(Z)

is integral, that is if every element of C[x1, . . . , xn]
/
I(Z) is integral over C[x1, . . . , xd].

We also recall (cf. Definition 1.23, page 43) that a continuous map f : X → Y
between topological spaces X ,Y, is proper at y ∈ Y if there is an open neigh-
borhood O ⊂ Y of y such that f−1(O) is compact in X , where O is the closure
of O in the topology of Y. A proper map f : X → Y is also a closed map [36].

2.1.1 Prior work

The relation between Noether position of algebraic sets and properness and clo-
sure properties of algebraic maps, and, in particular, the idea of exploiting such
a relation for algorithms in real algebraic geometry, has been first introduced
and discussed by Safey El Din and Schost in [137] and further in [138].

The algorithm in [137] deals with polynomial systems solving over the real
numbers. Under the following hypotheses:

• f1, . . . , fs ∈ Q[x] generate a radical ideal I = 〈f1, . . . , fs〉, and

• V = ZC(I) is smooth and equidimensional,

the authors prove that computing sections of polar varieties of generic projections
of V is sufficient to compute at least one point per connected component of V∩Rn.
Remarkably, this algorithm does not need compactness assumptions.

To prove correctness of the algorithm in [137], a properness property for all
polar varieties of V up to a generic linear change of variable is proved. Denoting
by Wi the i−th polar variety of V (cf. Section 1.1.3) we recall the statement of
Theorem 1.25 on page 44:

Suppose that V is smooth and equidimensional, and if its defining polynomial
system generates a radical ideal. There exists a Zariski open set O ⊂ GLn(C)
such that, if M ∈ O ∩ Mn,n(Q), and i = 1, . . . , d + 1, the restriction of the
projection πi−1 to M−1Wi is proper.

The key idea to prove the previous Theorem relies on the notion of Noether
position, and essentially on [137, Prop. 1]. In this chapter we give a strict gener-
alization of this result for algebraic sets without any regularity assumption.
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2.1.2 Notation

Singular-critical decomposition of algebraic sets

In this section we define a decomposition of recursive type of general algebraic
sets with respect to their equidimensional components, singular locus and critical
loci of linear projections. Such a decomposition is admissible without any special
assumption and it has to be understood as a variant of the classical flag of polar
varieties that can be defined over the input algebraic set.

Let Z be an algebraic set of dimension d. For i ∈ {0, . . . , d}, in Section 1.1.1
we have denoted by Ωi(Z) the equidimensional component of Z of dimension i,
that is the union of its irreducible components of dimension i. We now define
two operators acting on algebraic sets.

Singular Decomposition Operator. Let

S : Z → S (Z),

be the operator sending a given algebraic set Z ⊂ Cn to S (Z), defined as the
union of the algebraic sets:

• Ω0(Z) ∪ · · · ∪ Ωd−1(Z)

• sing (Ωd(Z)).

Critical Decomposition Operator. Furthermore, for 1 ≤ i ≤ n, let πi be the
canonical projection (x1, . . . , xn) 7→ (x1, . . . , xi) (and for i = 0 let π0 be the
constant map π0 whose codomain is the singleton {•}). We denote by

C : (πi,Z)→ C (πi,Z),

the map sending (πi,Z) to the Zariski closure of the union of the algebraic sets:

• Ω0(Z) ∪ · · · ∪ Ωi−1(Z)

• the union, for j ≥ i, of crit (πi, reg (Ωj(Z))).

Recursive Singular-Critical Decomposition. We define now a recursive collec-
tion of algebraic subsets of a fixed Z ⊂ Cn, of dimension d. For anyM ∈ GLn(C),
the collection {Oi(M−1Z) : i ∈ {0, . . . , d}} of algebraic sets is defined as follows:

• Od(M−1Z) = M−1Z

• Oi(M−1Z) = S (Oi+1(M−1Z))∪C (πi+1,Oi+1(M−1Z))∪C (πi+1,M
−1Z),

for i ∈ {0, . . . , d− 1}.

For M = In we denote Oi(Z) by Oi. For i ∈ {0, . . . , d}, we denote I(Oi) by
Ii and I(Oi(M−1Z)) by Ii ◦M when the choice of Z is clear.
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Symbolic change of variables

Let B be a n×nmatrix of unknowns. We denote by Q(B) ⊃ Q the field extension
of Q generated by the entries of B. For f ∈ Q[x], x = (x1, . . . , xn), we denote by
f ◦B ∈ Q(B)[x] the polynomial such that (f ◦B)(x) = f(B x) for all x ∈ Cn.

Let I = 〈f1, . . . , fs〉 ⊂ Q[x] be any ideal, and let Z = ZC(I). We denote the
ideal 〈f1 ◦B, . . . , fs ◦B〉 ⊂ Q(B)[x] by I ◦ B and ZC(I ◦B) by B−1Z, which is
a subset of Cn+n2 . Finally, for i ∈ {0, . . . , d = dimZ}, we denote by Ii ◦ B =
I(Oi(B−1Z)), when there is no ambiguity on Z.

2.1.3 Main result and chapter outline

Main result

The main result of this chapter establishes properness properties of the restric-
tions of linear projections to the algebraic sets Oi introduced in the previous
section. It is encoded by the following main theorem. Its proof can be obtained
by merging the proof of Propositions 2.2, 2.4 and 2.5. It states that, up to
generic changes of variables, the dimension of sets Oi is at most i, that they are
in Noether position with respect to x1, . . . , xi, and to conclude that the images
of any connected component of Z ∩ Rn via the maps πi are closed sets.

Theorem 2.1 (Main Theorem 1). Let Z ⊂ Cn be an algebraic set of dimension
d. There exists a non-empty Zariski open set M ⊂ GLn(C) such that, if M ∈
M ∩Mn,n(Q), the following holds:

1. for i = 0, . . . , d, the set Oi(M−1Z) has dimension ≤ i and is in Noether
position

2. for any connected component C ⊂ Z ∩ Rn, for i = 0, . . . , d and for w ∈ Ri
in the boundary of πi(M−1C), the set π−1

i (w) ∩M−1C is non-empty and
contained in Oi−1(M−1Z) ∩M−1C.

Outline

Chapter 2 is organized as follows. In Section 2.2 we define, first, two algebraic
properties. The first involves the set Oi introduced above, and states that it is
in Noether position with respect to x1, . . . , xi. The second is defined for a given
algebraic set Z ⊂ Cn, and states that the critical values (cf. Definition 1.10,
page 38) of the restriction of the projection πi to any connected component of
Z ∩ Rn is contained on the image of the algebraic set Oi−1 by the map itself.

We prove the logical dependency of these properties and that both hold
generically. This represents the first result towards Theorem 2.1, and its proof is
in Section 2.2.1. The second result concerns Assumption 2 in Theorem 2.1 and
is proved in Section 2.2.2. The proof of an intermediate result is finally given in
Section 2.3.
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2.2 Projections and Noether position

2.2.1 Properties

We define two algebraic properties and prove that both hold generically. These
involve the Singular-Critical Decomposition of the algebraic set Z introduced
previously in Section 2.1.2. A rigorous definition of algebraic property can be
found in Definition 1.15, on page 40.

The first property depends on a fixed algebraic set, and its domain is the
locally closed set GLn(C) of non-singular n×n matrices. Let Z be any algebraic
set of dimension d:

Property P(Z)

Let M ∈ GLn(C). We say that M satisfies P(Z) when, for
all i = 0, . . . , d,

1. Oi(M−1Z) has dimension ≤ i, and

2. Oi(M−1Z) is in Noether position with respect to
x1, . . . , xi.

The second property is defined over the Cartesian product of GLn(C) with
the collection of algebraic subsets of Cn of dimension d. It is defined as the
logical conjunction of d properties Q = Q1 ∧ · · · ∧ Qd:

Property Q

Let M ∈ GLn(C). Let Z ⊂ Cn be an algebraic set of dimen-
sion d, and let i = 1, . . . , d. We say that M−1Z satisfies Qi

when for any connected component C ⊂ Z∩Rn the boundary
of πi(M−1C) is contained in πi(Oi−1(M−1Z) ∩M−1C).
We say that M−1Z satisfies Q if M−1Z satisfies Qi for all
i = 1, . . . , d.

We prove a first result which relates properties P(Z) and Q. Formally, it
states that the following logical implication is true:

∀Z ⊂ Cn algebraic set, ∀M ∈ GLn(C) (P(Z) =⇒ Q) .

Proposition 2.2. Let Z ⊂ Cn be an algebraic set of dimension d, and let
M ∈ GLn(C). If M satisfies P(Z) then M−1Z satisfies Q.

Proof. To keep notations simple, suppose without loss of generality that M is
the identity matrix In. We also define the following integer-valued function over
Z: for y ∈ Z, let

J(y) = min{j : y ∈ Oj}.
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We proceed by decreasing induction on the index i. First, we claim that Z
satisfies Qd. Indeed, let C ⊂ Z ∩ Rn be a connected component, and let x ∈ Rd
belong to the boundary of πd(C). By [87, Lem. 3.10], P(Z) implies that the
restriction of πd to Od is proper, hence closed. We deduce that the restriction
of πd to Od ∩ C is closed, and that x ∈ πd(Od ∩ C). Let y ∈ Od ∩ C such that
πd(y) = x. If J(y) ≤ d − 1, the claim follows straightforwardly. Otherwise,
suppose J(y) = d. We deduce that y ∈ reg Ωd(Z) (the set of regular points
of Ωd(Z), introduced on page 37). By the Implicit Function Theorem [150,
Th. 2.12] we conclude that y ∈ crit (πd, reg Ωd(Z)) ⊂ C (πd,Z) ⊂ Od−1, which is
a contradiction.

Suppose now that Z satisfies Qi+1. We proceed in two steps.
First step. We claim that the boundary of πi(C) is included in πi(Oi ∩ C).

Indeed, let x ∈ Ri belong to the boundary of πi(C). Let p : Ri+1 → Ri be the
map sending (x1, . . . xi+1) to (x1, . . . xi). For δ > 0, let Bδ ⊂ Ri be the ball of
center x and radius δ, and let B′δ = p−1(Bδ) ⊂ Ri+1. We claim that B′δ meets
both πi+1(C) and its complementary in Ri+1. Indeed this is a consequence of the
following immediate equalities

π−1
i (Bδ) ∩ C = π−1

i+1 ◦ p
−1(Bδ) ∩ C = π−1

i+1(B′δ) ∩ C

and π−1
i (Bδ)∩C 6= ∅ and Bδ ∩ (Ri \ πi(C)) 6= ∅. Since B′δ is connected, B′δ meets

also the boundary of πi+1(C). Since Z satisfies Qi+1, for every δ > 0 there exists
yδ ∈ Oi ∩ C such that πi+1(yδ) ∈ B′δ, and so πi(yδ) ∈ Bδ. Thus, x lies in the
closure of πi(Oi ∩ C). This image is closed and our claim follows.

Second step. We prove that Z satisfies Qi. Let x ∈ Ri belong to the boundary
of πi(C). From the previous point, we deduce that there exists y ∈ Oi ∩ C such
that πi(y) = x. Suppose that for all such y, J(y) = i. Fix y ∈ Oi \ Oi−1
such that πi(y) = x. In particular, y ∈ Oi \S (Oi), and thus, we deduce that
y ∈ reg Ωi(Oi). Next, since x ∈ πi(Ωi(Oi)∩C) and lies on the boundary of πi(C),
we deduce that x lies on the boundary of πi(Ωi(Oi)∩C). By the Implicit Function
Theorem [150, Th. 2.12], we deduce that y ∈ crit (πi, regOi) ⊂ C (πi,Oi) ⊂ Oi−1,
which is a contradiction since we assumed that J(y) = i.

We conclude that Z satisfies Qi. By induction, Z satisfies Q1, . . . ,Qd, whence
Q1 ∧ · · · ∧ Qd = Q. q.e.d.

We prove next that, for any d and any algebraic set Z of dimension d, P(Z)
holds generically in GLn(C). We assume for the moment the following interme-
diate result, whose proof is given in Section 2.3.

Given Z ⊂ Cn, we recall that in Section 2.1.2 we let Ii = I(Oi(Z)) and
Ii ◦M = I(Oi(M−1Z)).

Lemma 2.3. Let Z ⊂ Cn be an algebraic set of dimension d. There exists a
non-empty Zariski open set M ⊂ GLn(C) such that, if M ∈ M ∩ Mn,n(Q),
the following holds. Let i ∈ {0, . . . , d}, and let P be one of the prime compo-
nents of Ii ◦M , and let r = dimZC(P). Then r ≤ i and the ring extension
C[x1, . . . , xr] −→ C[x1, . . . , xn] /P is integral.
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We prove in Proposition 2.4 that for any algebraic set Z of dimension d, the
set of matrices M such that P(Z) holds, is Zariski dense in GLn(C), hence in
Mn,n(C). This implies that, for any algebraic set Z, P(Z) is generic in Mn,n(C),
and allows to conclude, applying Proposition 2.2, that Q holds generically.

Proposition 2.4. Let Z ⊂ Cn be an algebraic set of dimension d. There exists
a non-empty Zariski open set M ⊂ GLn(C) such that, if M ∈M ∩Mn,n(Q), M
satisfies P(Z).

Proof. First, we remark that Point 2 of property P(Z) implies Point 1 of P(Z)
(cf. [145, Ch. 1.5.4]). Hence it is sufficient to prove Point 2.

Let M ⊂ GLn(C) be the set defined in Lemma 2.3. It is non-empty and
Zariski open, and for M ∈ M ∩ Mn,n(Q) and i ∈ {0, . . . , d}, we deduce by
Lemma 2.3 that any irreducible component of Oi(M−1Z) is in Noether position,
and has dimension at most i. Hence Oi(M−1Z) is in Noether position and has
dimension at most i. We deduce that Point 2 of P(Z) holds and hence that M
satisfies P(Z). q.e.d.

2.2.2 Fibers over critical values

This section contains a generalization of [68, Lem. 19]. Indeed, we give in Propo-
sition 2.5 a dimension result about fibers over critical values of linear projections
restricted to the set Z.

The main idea is to relate the geometry of intersections of fibers of πi and
the connected components of Z ∩ Rn, with the decomposition of the algebraic
set Z, given in Section 2.1.2.

Proposition 2.5. Let Z ⊂ Cn be an algebraic set of dimension d, and let M ∈
GLn(C) satisfy P(Z). Let C ⊂ Z ∩ Rn be a connected component, i ∈ {0, . . . , d}
and let w ∈ Ri belong to the boundary of πi(M−1C). Then π−1

i (w) ∩M−1C is
non-empty and contained in Oi−1(M−1Z) ∩M−1C.

Proof. We suppose without loss of generality that M = In. Proposition 2.2
implies that if w ∈ Ri belongs to the boundary of πi(C), there exists x ∈ Oi−1∩C
such that πi(x) = w. Hence (Oi−1 ∩ C) ∩ (π−1

i (w) ∩ C) 6= ∅.
Let J : Z → {0, 1, . . . , d} be the function defined in the proof of Proposition

2.2. Suppose by contradiction that there exists x ∈ π−1
i (w)∩C such that J(x) =

j > i − 1, that is x ∈ Oj \ Oj−1. We deduce that x ∈ reg Ωj(Oj) ∩ C. Since
w = πi(x) lies on the boundary of πi(C), we deduce that πj(x) lies on the
boundary of πj(Ωj(Oj)∩C). Moreover, since x ∈ reg Ωj(Oj)∩C, by the Implicit
Function Theorem [150, Th. 2.12] x is a critical point of the restriction of πj to
Oj . Hence, x ∈ crit (πj ,Oj) ⊂ C (πj ,Oj) ⊂ Oj−1. We conclude that J(x) ≤ j−1,
which contradicts the hypothesis. q.e.d.
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2.3 Proofs of intermediate results

We refer to the notation introduced in Section 2.1.2, and we prove a result which
implies Lemma 2.3. It consists of the generalization of [137, Prop. 1] to the
non-equidimensional case. The proof of Lemma 2.3 can be deduced by applying
mutatis mutandis the proof of [137, Prop. 2, Sec .2.4].

The prime components of an ideal I are the radical ideals of the primary ideals
of a minimal primary decomposition of I (cf. Section 1.1.1 or [35, Th. 9, Ch. 4, § 7]).

Lemma 2.6. Let Z ⊂ Cn be an algebraic set of dimension d, and let i ∈
{0, . . . , d}. Let P ⊂ Q(B)[x] be one of the prime components of Ii ◦ B, and
let r = dimZC(P). Then r ≤ i and the ring extension Q(B)[x1, . . . , xr] −→
Q(B)[x1, . . . , xn] /P is integral.

Proof. Our reasoning is by decreasing induction on i, the index i of the projection
maps πi. Let i = d, hence Id ◦ B = I(B−1Z). Let P be a prime component
of Id ◦ B, and write r = dimZC(P). The algebraic set ZC(P) is irreducible
of dimension r ≤ d and then ZC(P) ⊂ Ωr(B−1Z). We conclude by applying
Noether Normalization Lemma (cf. [98, Th. 2.1] or [104]).

Suppose that the statement is true for i+1. We writeOi instead ofOi(B−1Z).
One gets

Ii ◦B = I(S (Oi+1)) ∩ I(C (πi+1,Oi+1)) ∩ I(C (πi+1, B
−1Z)).

Let P be a prime component of Ii ◦ B, and let r = dimZC(P). Then it is a
prime component of one of the three ideals in the previous decomposition. We
investigate below all possible cases:

First case. I(S (Oi+1)) ⊂ P. Hence

I(Ω0(Oi+1)) ∩ · · · ∩ I(Ωi(Oi+1)) ∩ I(sing (Ωi+1(Oi+1))) ⊂ P.

Combined with the fact that P is prime, this implies that

• either I(Ωj(Oi+1)) ⊂ P, for some j ∈ {0, . . . , i}; then one gets r ≤ i and
by the induction assumption that

Q(B)[x1 . . . xr] −→ Q(B)[x1 . . . xn] /P

is integral;

• or I(sing (Ωi+1(Oi+1))) ⊂ P.

Assume that I(sing (Ωi+1(Oi+1))) ⊂ P. Since dim(Ωi+1(Oi+1)) = i + 1 by
definition, we deduce that

r = dimZC(P) ≤ dim sing (Ωi+1(Oi+1))) ≤ i.
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Let f ◦B = {f1 ◦B, . . . , fs ◦B} be a set of generators of the ideal I(Ωi+1(Oi+1)).
Then, since f ◦B define a radical ideal and Ωi+1(Oi+1) is equidimensional,

I(sing (Ωi+1(Oi+1))) =
√
〈f ◦B, g1, . . . , gN 〉,

where g1, . . . , gN are the minors of order (n− i− 1)× (n− i− 1) of the Jacobian
matrix D(f ◦ B). We prove below by induction on t that for any prime Q
associated to 〈f ◦B, g1, . . . , gt〉,

Q(B)[x1 . . . xr] −→ Q(B)[x1 . . . xn] /Q

is integral. Taking t = N concludes the proof.
The induction assumption implies the claimed property for t = 0. Assume

that for any primeQ′ associated to 〈f◦B, g1, . . . , gt〉, the extensionQ(B)[x1 . . . xr] −→
Q(B)[x1 . . . xn] /Q′ is integral. We prove below that for any prime Q associated
to 〈f ◦B, g1, . . . , gt+1〉, the extension

Q(B)[x1 . . . xr] −→ Q(B)[x1 . . . xn] /Q

is integral.
Indeed, any prime Q associated to 〈f ◦ B, g1, . . . , gt+1〉 is a prime associ-

ated to Q′ + 〈gt+1〉. Suppose that gt+1 /∈ Q′ (otherwise, the conclusion follows
immediately) and let r′ = dimZC(Q′).

By Krull’s Principal Ideal Theorem [39, Sec. 8.2.2], Q′+ 〈gt+1〉 is equidimen-
sional of dimension r′ − 1. Following the same argumentation of the proof of
[137, Prop. 1], the ideal Q′ + 〈gt+1〉 contains a monic polynomial in xr′ , so that
the extension

Q(B)[x1 . . . xr′−1] −→ Q(B)[x1 . . . xn]
/
Q′ + 〈gt+1〉

is integral, and we conclude.
Second case. I(C (πi+1,Oi+1)) ⊂ P. Recall that C (πi+1,Oi+1) is the union of

the algebraic sets crit (πi+1, reg (Ωi+1(Oi+1))) and Ωj(B−1Z) for j ∈ {0, . . . , i}.
When I(Ωj(B−1Z)) ⊂ P, the induction assumptions allow to conclude. Thus

we focus on the case when P ⊃ I(crit (πi+1, reg (Ωi+1(Oi+1)))). The latter ideal
is built as follows. Let 〈f ◦ B〉 = I(Ωi+1(Oi+1)), and let g1, . . . , gN be the
(n − i − 1) × (n − i − 1) minors of the matrix obtained by deleting the first i
columns of D(f ◦ B). Let J = I(sing (Ωi+1(Oi+1))). The following equality is
immediate:

I(crit (πi+1, reg (Ωi+1(Oi+1)))) =
√
〈f ◦B, g1, . . . , gN 〉 : J∞.

We deduce that P is a prime component of
√
〈f ◦B, g1, . . . , gN 〉 such that ZC(P)

is not contained in sing (Ωi+1(Oi+1)). The integral ring extension property is
already proved (by induction) for every component of 〈f ◦ B〉, and hence we
proceed as in the first point.
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Third case. I(C (πi+1, B
−1Z)) ⊂ P. Again, recall that C (πi+1, B

−1Z) is
the union of Ωj(B−1Z) for j ∈ {0, . . . , i} and the union for r′ ≥ i of the sets
crit (πi, reg (Ωr′(B−1Z))) of critical points of the restriction of πi to the regular
locus of Ωr′(B−1Z).

For r′ ≥ i+ 1, we can assume I(crit (πi+1, reg (Ωr′))) ⊂ P. The proof follows
exactly the same argumentation as the one in the second point. q.e.d.
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Chapter 3

Real root finding for low rank
linear matrices

Linear matrices and their loci of rank defects arise as natural algebraic structures
both in theoretical and in applicative contexts, of particular interest in real
algebraic geometry, polynomial optimization, control theory. A common feature
of problems involving these objects is that low rank is synonymous of structure
and sparsity. The algorithm described in this chapter gives a solution to the
so-called real root finding problem for algebraic sets, in the context of structured
polynomial systems generated by rank deficiencies in linear matrices.

The results that are presented are part, or generalizations, of the previous
works [68], accepted for publication in Journal of Symbolic Computation, and
[70], submitted to Journal of Complexity.

3.1 Introduction

Let m,n ∈ N∗. Consider n + 1 square rational matrices of size m, stored in a
vector

A = (A0, A1, . . . , An) ∈Mn+1
m,m(Q),

where Mn+1
m,m(Q) is the (n+1)−fold Cartesian product Mm,m(Q)×· · ·×Mm,m(Q).

We associate to the vector A (and we use the same symbol, with abuse of nota-
tion) the affine map

A : Cn → Mm,m(C)
x 7→ A0 + x1A1 + · · ·+ xnAn,

where x is the complex vector (x1, . . . , xn) ∈ Cn. We also refer to the matrix
A(x) as a linear matrix or linear pencil.

Hence, we identify elements of Mn+1
m,m(Q) with affine maps as above. More-

over, for a fixed x ∈ Cn, it is straightforward to remark that the instantiated
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matrix A(x) defines a linear map A(x) : Cm → Cm. Hence, the map A associates
vectors in Cn to linear endomorphisms of Cm.

3.1.1 Problem statement

Let m,n ∈ N∗, and 0 ≤ r ≤ m− 1. Given matrices A0, A1, . . . , An ∈ Mm,m(Q),
we define the algebraic set

Dr = {x ∈ Cn : rankA(x) ≤ r} = ZC(minors (r + 1, A)),

and the corresponding real algebraic set

Dr ∩ Rn = {x ∈ Rn : rankA(x) ≤ r} = ZR(minors (r + 1, A)).

The main goal of this chapter is to solve the following problem.

Problem 3 (Real root finding for determinantal varieties). Design an efficient
exact algorithm whose input is the vector A = (A0, A1, . . . , An) ∈ Mm,m(Q) and
the integer r, and whose output is either

(A) the empty list, if and only if Dr ∩ Rn = ∅, or

(B) a rational parametrization encoding a finite subset of Rn meeting each con-
nected component of Dr ∩ Rn.

More explicitly, solving Problem 3 would provide answers to the following
questions involving a given pencil A and the corresponding real determinantal
varieties Dr ∩ Rn:

• Is Dr ∩ Rn empty?

• If it is not empty, how to estimate the number of its connected components?

• If it is not empty, how to compute sample points x∗ ∈ Dr ∩ Rn?

3.1.2 Main result and chapter outline

Strategy and main result

The method we propose to solve Problem 3 is threefold. We first give a brief
synopsis of our strategy. We recall that the definition of Dr is in Section 3.1.1.

Step 1: Regularization. For m ≥ 2, Dr is, typically, a singular algebraic set. Its
singularities arise generically from degenerate subsets where the rank defect is
greater than one. We remark that this is not always the case (cf. the example of
Kummer spectrahedra in [130]). Consequently, we first substitute Dr with the
lifted set:

Vr(A,U, S) =
{
(x, y) ∈ Cn × Cm(m−r) : A(x)Y (y) = 0, UY (y)− S = 0

}
.
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for some full matrices U ∈ Mm−r,r(Q), S ∈ GLm−r(Q). The lifted set Vr is
smooth and equidimensional under genericity assumptions on the defining linear
matrix A. Furthermore, the semi-algebraic set obtained by projecting the lifted
set over Cn is dense in Dr. The lifted set has no more determinantal structure,
but it is defined by bilinear equations, and hence its degree is well controlled. One
obtains finally a representation of Dr as the projection of a set having regularity
properties.

Step 2: Reduction. The dimension of the lifted set equals the dimension of Dr.
Hence, one deals with positive dimensional complex sets (and a priori also with
positive dimensional real sets). To obtain subsets with controlled dimension (ac-
tually ≤ 0) we apply a dedicated critical point method based on Lagrangian
systems. Namely, we compute critical points of the restriction of linear projec-
tions to the lifted set, and to keep its bilinear structure, we choose these linear
projections appropriately. The image of any connected component of Dr ∩ Rn
via these maps turns out to be (Euclidean) closed sets.

Step 3: Recursion. Finally, Step 2 is iterated over a generic fiber of the projection
maps. If the regularity assumptions needed to perform the second step always
hold, one can also extract a finite sample subset of the pre-image of the previous
maps.

The main result of this chapter is the following theorem. Its proof can be
obtained by merging the proof of Theorem 3.9, page 86, yielding the correctness
of our algorithm, with that of Theorem 3.17, page 97, which computes a bound
for its complexity.

The algorithm presented in the following theorem is probabilistic, and relies
on regularity assumptions on the incidence variety (i.e. smoothness and equidi-
mensionality) and on its defining polynomial system (that must define a radical
ideal). Also, we assume as hypothesis that the low rank loci associated to the
input pencil A have the expected dimension.

We prove that the set of input data for which the genericity assumptions
are not satisfied is included in a proper algebraic subset of its parameter space;
similarly, the set of parameters chosen during the procedure, for which the output
is not correct, lies in a proper algebraic subset of its parameter space.

Theorem 3.1 (Main Theorem 2). Let A be a n−variate linear matrix of size m,
and let r ≤ m− 1. Let f be the polynomial system defining the incidence variety
Vr. Suppose that the ideal 〈f〉 is radical, that Vr is smooth and equidimensional
and that, for 0 ≤ p ≤ r, Dp is empty or has the expected codimension (m− p)2.

There exists a probabilistic algorithm such that, with input (A, r), returns in
output a rational parametrization q = (q0, q1, . . . , qn, qn+1) ⊂ Q[t] of degree in

O

(n− (m− r)2)
(
n+m(m− r)

n

)3

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within

O

(n+m2 − r2)7
(
n+m(m− r)

n

)6


arithmetic operations over Q. The set defined by q contains at least one point in
each connected component of the real algebraic set Dr ∩ Rn.

Outline

Chapter 3 is organized as follows. In Section 3.3 we describe the algorithm,
starting from the definition of the algebraic sets that are built during its execu-
tion. We also write down its formal description and a proof of its correctness.
The main results towards the correctness theorem are then proved in Section
3.5. Section 3.4 shows how one can compute explicit bounds for the degree of
the output representation of the solution and we also report on a formula for the
complexity. Results of numerical experiments showing the practical performance
of our algorithm are provided in Chapter 5, Section 5.2.

3.2 Some examples

Linear matrices are interesting structures in different contexts, as shown in the
following three examples. We will come back to these examples in Section 5.2.2.

Example 3.2 (Joint probability matrices). The first example comes from statis-
tics. Consider two given discrete random variables, with possible states in the
set {1, . . . ,m}. Hence, these random variables can take integer values between 1
and m with the joint probability distribution represented by the square matrix

A(x) =

 x1,1 · · · x1,m
...

...
xm,1 · · · xm,m

 ,
where for 1 ≤ i, j ≤ m, xi,j is the probability that the first variable is equal to
i and the second is equal to j, that is the joint probability. We deduce that the
entries of the matrix A(x) are nonnegative and that they sum up to one, hence
that any possible configuration of joint probabilities lies in the simplexA(x) ∈Mm,m(R) : xi,j ≥ 1,

∑
i,j

xi,j = 1

 .
After discarding the nonnegativity condition on the entries of A, the associated
low rank locus with expected rank r is the algebraic set

Dr ∩ Rm
2 =

x ∈ Rm
2 : rankA(x) ≤ r,

∑
i,j

xi,j = 1

 .
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Low rank of such probability matrices represents statistical independence. More
precisely, the set D1 ∩ Qm2 contains all possible joint probability matrices cor-
responding to independent distributions, while for r > 1 the set Dr corresponds
to mixtures of r independent probability distributions, cf. [86, Sec. 2]. In our
context, the matrix X is linear of size m in n = m2 − 1 variables, since one can
perform the substitution

x1,1 ← 1−
∑

(i,j) 6=(1,1)
xi,j .

Example 3.3 (Sylvester matrices). Suppose that

f(y) = f0 + f1y + · · ·+ fd1y
d1

g(y) = g0 + g1y + · · ·+ gd2y
d2

are two univariate polynomials of degree d1 and d2. It is classically known (cf.
[51, Ch. 12]) that these two polynomials share a common root if and only if the
determinant of the associated (d1 + d2)× (d1 + d2) Sylvester matrix

A =



f0 f1 f2 . . . fd1 0 . . . 0
0 f0 f1 f2 . . . fd1 . . . 0
... 0 . . . . . . . . . . . . . . . 0
0 0 . . . f0 f1 f2 . . . fd1
g0 g1 . . . gd2 0 . . . . . . 0
0 g0 g1 . . . gd2 0 . . . 0
... 0 . . . . . . . . . . . . . . . 0
0 0 . . . g0 g1 . . . . . . gd2


vanishes. The polynomial R(f, g) = detA ∈ Q[fi, gj ], of degree d1 + d2, is called
the resultant of the couple (f, g). The resultant Rd1,d2(f, g) vanishes if and only
if the greatest common divisor of f and g is not a constant. The matrix A is
linear in the coefficients of polynomials f, g and in Section 5.2.2 we will provide
numerical experiments when such coefficients are expressed as affine polynomials
on a given set of unknowns.

Example 3.4 (Hurwitz stability). Let f(z) = f0z
m+f1z

m−1 + . . .+fm−1z+fm
be a real univariate polynomial of complex variable z, of degree at most m. We
consider the associated m×m Hurwitz matrix

A =



f1 f3 f5 · · · 0

f0 f2 f4
...

0 f1 f3
...

... 0
... . . . 0

0
... fm


.
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This matrix is obtained as follows. For i = 1, . . . ,m, the diagonal element
at row i and column i is the coefficient fi. Then, for i = 1, . . . ,m, the i−th
column contains the coefficients {f0, f1, . . . , fm} in decreasing order (with respect
to the index j of fj) until there is enough room, otherwise it contains zeros. For
example, the Hurwitz matrix of the cubic polynomial 3 + 5z − 2z2 + 4z3 is −2 3 0

4 5 0
0 −2 3

 .
Suppose that the polynomial f is monic, that is f0 = 1. In this case f is said to
be stable if all its complex zeroes have strictly negative real part. This definition
applies in particular when f is the characteristic polynomial of the matrix M of
the linear ordinary differential equation

dx

dt
(t) = M x(t),

and in this case the stability of f implies asymptotic convergence to the origin,
of the solutions, for any initial condition.

Denote by A[i] the leading principal submatrix, of size i, of A, that is the
square matrix obtained by selecting the first i rows and i columns of A. By the
Hurwitz Criterion [92, Sec. 4.3], stability holds whenever the determinants of all
leading principal submatrices of A are strictly positive. While checking whether
f is stable or not amounts to computing the sign of polynomial expressions of
the vector (f1, . . . , fm), the topology of the stability locus

Sm =
{

(f1, . . . , fm) ∈ Rm : detA[i] > 0, i = 1, . . . ,m
}

is not totally understood, apart from limited low-dimensional cases. This is a
basic open semi-algebraic set, non-convex for m ≥ 3. An interesting problem in
control theory consists of finding the point in the closure of Sm which is nearest to
a given unstable polynomial, that is to minimize the Euclidean distance function
to the set Sm. Degree bounds for this optimization problem are known, cf. [37].

3.3 The algorithm

3.3.1 A geometrical viewpoint

Algebraic sets defined by rank defects in linear pencils can be represented as
affine sections of the locus of rank defects in the whole space of m×m matrices
(cf. [40] for a historical survey via commutative algebra). Let

X =

 x1,1 · · · x1,m
...

...
xm,1 · · · xm,m


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be am×mmatrix whose entries are variables xi,j . Let x̃ be the vector of variables
xi,j . Then, for 0 ≤ r ≤ m−1, the ideal I = 〈minors (r+1, X)〉 ⊂ Q[x̃] is generated
by homogeneous polynomials and its associated zero set is the affine cone ofm×m
matrices of rank at most r. We denote it by σr = ZC(I) ⊂ Mm,m(C) (we recall
that Mm,m(C) is the set of m×m matrices with complex entries).

Moreover, if A(x) = A0 + x1A1 + · · ·+ xnAn, and a`,i,j is the entry of A` at
i−th row and j−th column, then the algebraic set Dr is actually obtained by
instantiating xi,j in I to a0,i,j + a1,i,jx1 + . . . + an,i,jxn for i, j = 1, . . . ,m, by
eliminating variables xi,j , and by taking the zero locus.

Proposition 3.5. There exists a non-empty Zariski open set A ⊂ Mn+1
m,m(C)

such that, if A ∈ A ∩Mn+1
m,m(Q), for all 0 ≤ r ≤ m− 1, the following holds:

• the algebraic set Dr is either empty or it has dimension n− (m− r)2;

• for n ≥ (m−r)2, the degree of Dr is given by the Giambelli-Porteous-Thom
formula:

m−r−1∏
i=0

i!(m+ i)!
(m− 1− i)!(m− r + i)! .

Proof. Let 0 ≤ r ≤ m−1. By [28, Prop. 1.1], the set σr ⊂Mm,m(C) is irreducible
of codimension (m− r)2 and dimension r(2m− r). Let x = (x1, . . . , xn) and let

I = 〈minors (r + 1, X)〉+ 〈xi,j − a0,i,j − a1,i,jx1 − · · · − an,i,jxn〉1≤i,j≤m

as an ideal of Q[x̃, x]. The set ZC(minors (r + 1, X)) ⊂ Cm2+n is irreducible
of codimension (m − r)2 and dimension m2 + n − (m − r)2 (in fact, variables
x1, . . . , xn are free, and this set is the cylinder over σr in Cm2+n). If linear forms
xi,j − a0,i,j − a1,i,jx1 − · · · − an,i,jxn are generic, then ZC(I) ⊂ Cm2+n is empty
or equidimensional of dimension n− (m− r)2 (Bertini’s theorem, see [145]).

Let π : Cm2+n → Cn be the projection π(x̃, x) = x. Let V be an irreducible
component of ZC(I). Then V has dimension n−(m−r)2. For x ∈ π(V ), the fiber
π−1(x) is finite of degree 1. By the Theorem on the Dimension of Fibers [145,
Sec. 6.3, Th. 7], dim π(V ) = dim V = n − (m − r)2. Moreover, deg π(ZC(I)) =
degZC(I). The latter degree equals the degree of ZC(〈minors (r + 1, X)〉) ⊂ Cm2 ,
which is actually given by Giambelli-Porteous-Thom formula, see for example
[10, Ch. II,§ 4].

We conclude that for all 0 ≤ r ≤ m−1 there exists a non-empty Zariski open
set A (r) ⊂Mn+1

m,m(C) such that if A ∈ A (r) ∩Mn+1
m,m(Q), then either Dr is empty

or it has the expected dimension n− (m− r)2 and the expected degree given by
the above formula. We conclude by defining A =

⋂
r A (r) which is non-empty

and Zariski open. q.e.d.
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3.3.2 Notation

We recall first the notation for linear changes of variables, given on page 35. For
M ∈ GLn(C), and a polynomial f ∈ C[x], with x = (x1, . . . , xn), we denote
by f ◦ M the polynomial such that (f ◦ M)(x) = f(M x) for all x ∈ Cn. If
f = (f1, . . . , fs) ⊂ C[x], and Z = ZC(f), we denote by M−1Z the set defined by
〈f1 ◦M, . . . , fs ◦M〉, that is M−1Z = {x ∈ Cn : M x ∈ Z}.

Let A = (A0, A1, . . . , An) ∈Mn+1
m,m(Q) be the given vector of square matrices

with rational coefficients. For any M ∈ GLn(Q), with the same spirit as above
we use the notation A ◦M to denote the linear matrix A(M x).

Incidence varieties

As introduced in Section 3.1.2, the algorithm first builds an algebraic set over the
determinantal variety Dr. Indeed, the first motivation is to remove singularities.
To do this, we introduce m(m− r) variables y = (y1,1, . . . , ym,m−r), stored in an
m× (m− r) matrix

Y (y) =


y1,1 · · · y1,m−r
...

...
...

...
ym,1 · · · ym,m−r

 ,
and for any full rank matrix U ∈Mm−r,m(Q) and S ∈ GLm−r(Q), we define the
algebraic set

Vr(A,U, S) =
{
(x, y) ∈ Cn × Cm(m−r) : A(x)Y (y) = 0, UY (y)− S = 0

}
.

By basic linear algebra arguments, Y (y) has full rank if and only if there exist
U and S as above such that UY (y) = S. Hence the linear entries of UY (y)− S
encode the information that the columns of Y (y) are linearly independent, and
Vr(A,U, S) is an algebraic subset of the locally closed set Z ∩ O, where Z =
ZC(A(x)Y (y)) and O = {(x, y) ∈ Cn × Cm(m−r) : rank Y (y) = m− r}.

We refer to Vr(A,U, S) as the incidence variety over Dr (with parameters
U, S), and we use the short-hand notation Vr when parameters A,U and S are
clear. Remark that the projection of Vr on the space of x variables is contained
in Dr. We also define the polynomial system

f(A,U, S) : Cn+m(m−r) → C(2m−r)(m−r)

(x, y) 7→ (A(x)Y (y), UY (y)− S)

whose zero locus is exactly Vr.
Finally, given t ∈ C, consider the map

ft : Cn+m(m−r) → C(2m−r)(m−r)+1

(x, y) 7→ (f(A,U, S), x1 − t).
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Its zero locus Vr,t = ZC(ft) is the intersection of Vr with the hyperplane x1−t = 0.
We remark that ft = f(Ã, U, S) with Ã = (A0 + tA1) + x2A2 + · · ·+ xnAn.

Lagrange system

Let A,U, S as in the previous section, and let f = f(A,U, S). We denote by D1f
the matrix obtained from Df by removing the first column (that is, the partial
derivatives with respect to x1). Let z ∈ C(2m−r)(m−r) be a vector of variables.

Let v ∈ C(2m−r)(m−r). We define the map

`(A ◦M,U, S, v) : Cn+(3m−r)(m−r) → Cn+(3m−r)(m−r)

(x, y, z) 7→ (f(A ◦M,U, S), z′D1f, v
′z − 1)

We call `(A◦M,U, S, v) the Lagrange system associated to parameters A,M,U, S
and v. The algebraic set ZC(`(A ◦M,U, S, v)) is denoted by Z(A ◦M,U, S, v).

3.3.3 Description

Input-output data representation

The input of the algorithm described in this chapter is a linear matrix A(x) =
A0 + x1A1 + · · · + xnAn encoded by the vector of its defining m ×m matrices
A = (A0, A1, . . . , An) with coefficients in Q, and an integer r ∈ {0, . . . ,m− 1}.

During the execution of the algorithm, one has to represent polynomials
with rational coefficients: we use in this case the standard dense representation
of polynomials, that is we represent f ∈ Q[x], of degree ≤ d, with the vector of
its
(n+d
n

)
coefficients.

The initial problem is reduced to isolating the real solutions of an algebraic
set Z ⊂ Cn of dimension at most 0. We encode the output Z by means of a ratio-
nal parametrization, that is by a polynomial system q = (q0, q1, . . . , qn, qn+1) ∈
Q[t]n+2 such that:

• q0 and qn+1 are coprime (that is, they do not share complex roots);

• Z =
{(

q1(t)
q0(t) , . . . ,

qn(t)
q0(t)

)
∈ Cn : qn+1(t) = 0

}
;

• Z is in one-to-one correspondence with the roots of qn+1.

A discussion about rational parametrization and their use for representing zero-
dimensional ideals has been given in Section 1.2.2.

Genericity properties

The algorithm works under some regularity assumptions on the input data (A, r).
We describe next these assumptions and how they are checked in practice.

Property G1. A linear matrix A ∈Mn+1
m,m(Q) satisfies G1 if singDr = Dr−1.
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A proof of the fact that G1 is generic in Mn+1
m,m(Q) is given further, in Propo-

sition 3.6.

Property G2. A polynomial system f = (f1, . . . , fs) ∈ Q[x]s satisfies G2 if:

• 〈f〉 is radical, and

• ZC(〈f〉) is either empty or smooth and equidimensional.

We provide below a sufficient condition for a polynomial system f = (f1, . . . , fs) ∈
Q[x]s to satisfy G2. Indeed, suppose that the rank of the Jacobian matrix Df is
constant and equal to c on the algebraic set ZC(〈f〉). We deduce by applying the
Jacobian Criterion (cf. [39, Th. 16.19] or Theorem 1.9) that the ideal generated
by f is radical and that ZC(〈f〉) is either empty or smooth and equidimensional
of codimension c.

Property G3. (A, r) ∈ Mn+1
m,m(Q) × Z satisfies G3 if for all 0 ≤ p ≤ r, Dp is

either empty or has codimension (m− p)2.

We finally define property G as follows.

Property G
Let A ∈Mn+1

m,m(Q). Then A satisfies G if

• A satisfies G1, and

• f(A,U, S) satisfies G2, for any U, S full rank, and

• (A,m− 1) satisfies G3.

Property G can be checked in practice using Gröbner bases, as follows:

1. Let f be the polynomial system defined by the minors of size r + 1 of A,
and let c be the codimension of Dr (this can be computed using Gröbner
bases, cf. [35, Ch. 9,§. 3]). The singular locus singDr is the set of points
where f and the c × c minors of Df vanish. Then we use Gröbner bases
computations to check that singDr and Dr−1 define the same set.

2. To check G2, we use the Jacobian criterion as described above. We compute
the codimension c of ZC(f) using Gröbner bases (cf. [35, Ch. 9,§. 3]). Then
we check whether the set defined by f and by the c × c minors of Df is
empty or not, by computing a reduced Gröbner basis of 〈f,minors (c,Df)〉.
If this is {1}, then f satisfies G2.

3. The dimension of a complex algebraic set, hence property G3, can be com-
puted using Gröbner bases, as above.

We prove in Proposition 3.6 that G holds generically and that it is generically
inherited in the next recursive calls of LowRankRec.
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Main subroutines

The algorithm uses different subroutines. The first group of these routines ma-
nipulates vectors of polynomials:

• IsReg

Input: Parameters A,U, S;

Output: true if A satisfies G, false otherwise.

• RatPar

Input: f ⊂ Q[x];

Output: an error message if dimZC(〈f〉) > 0, otherwise a rational
parametrization q ⊂ Q[t] of its solutions.

The second group of subroutines manipulates rational parametrizations of finite
sets:

• Project

Input: a rational parametrization of a set Z ⊂ Q[x1, . . . , xN ] and a
subset {x1, . . . , xi} ⊂ {x1, . . . , xN};

Output: a rational parametrization of the projection of Z on the space
generated by {x1, . . . , xi}.

• Lift

Input: a rational parametrization of a set Z ⊂ Q[x1, . . . , xN ] and
t ∈ C;

Output: a rational parametrization of {(t, x) : x ∈ Z}.

• Image

Input: a rational parametrization of a set Z ⊂ Q[x1, . . . , xN ] and a
matrix M ∈ GLN (Q);

Output: a rational parametrization of M−1Z.

• Union

Input: two rational parametrizations of Z1,Z2 ⊂ Q[x1, . . . , xN ]

Output: a rational parametrization of Z1 ∪ Z2.
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Formal description

With input (A, r), the algorithm, which is called LowRank, draws randomly
matrices U and S and checks whether A satisfies G by applying the subroutine
IsReg. If this is the case, it calls a recursive subroutine called LowRankRec with
the same input (A, r). Otherwise it returns an error message.

LowRank(A, r)
Input: A n−variate linear matrix A(x) of size m, encoded by
the m2(n + 1) rational entries of A0, A1, . . . , An, and an integer
0 ≤ r ≤ m− 1;
Output: Either an error message stating that genericity assump-
tions are not satisfied, or the output of LowRankRec (cf. below).

Procedure:
1. Choose randomly U ∈ Q(m−r)×m, S ∈ Q(m−r)×(m−r);

2. If IsReg(A,U, S) = false then return(“error: data are not
generic”);

3. else return LowRankRec(A, r).

The subroutine LowRankRec that is called after the control on regularity
assumptions, is recursive.
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LowRankRec(A, r)
Input: A n−variate linear matrix A(x) of size m, encoded by
the m2(n + 1) rational entries of A0, A1, . . . , An, and an integer
0 ≤ r ≤ m− 1;
Output: Either an error message stating that genericity as-
sumptions are not satisfied, or a rational parametrization q =
(q0, q1, . . . , qn, qn+1) ∈ Q[t]n+2 such that for every connected
component C ⊂ Dr ∩ Rn, there exists t0 ∈ ZR(qn+1) with
(q1(t0)/q0(t0), . . . , qn(t0)/q0(t0)) ∈ C.

Procedure:
1. If n < (m− r)2 then return an empty list;

2. If n = (m− r)2 then return Project(RatPar(f(A,U, S)), x);

3. Choose randomly M ∈ GL(n,Q), v ∈ Q(2m−r)(m−r);

4. P← Image(Project(RatPar(l(A ◦M,U, S, v)), x),M−1);

5. Choose randomly t ∈ Q; A← (A0 + tA1, A2, . . . , An);

6. Q← Lift(LowRankRec(A, r), t);

7. return Union(Q,P).

It takes as input the couple (A, r). Then:

• if n < (m− r)2 it returns an empty list: recall that Proposition 3.5 implies
that, for generic input data, Dr = ∅;

• if n = (m − r)2, it directly computes a rational parametrization of the
projection of the finite set Vr on (x1, . . . , xn), which coincides with Dr;

• if n > (m−r)2, it computes a rational parametrization q of the polynomial
ideal 〈`(A ◦M,U, S, v)〉, whereM,v are chosen randomly, by applying Rat-
Par to the generators of the Lagrange ideal and then Project to eliminate
Lagrange multipliers z and kernel variables y. Then it chooses a random
value t ∈ Q and recalls recursively LowRankRec with input (Ã, r) where Ã
is obtained by setting x1 to t in A ◦M .

Before intersecting the incidence variety with the hyperplane defined by x1−
t = 0, eliminating one variable and calling the recursive subroutine (cf. Step
5 and 6 of LowRankRec), the algorithm recovers the solutions in the previous
coordinate system by applying Image with input q and M−1 (cf. Step 4).

After the recursive call, the subroutines Lift and Union recover a rational
parametrization of a finite subset of Rn containing one point per connected
component of Dr ∩ Rn (cf. Step 6 and 7).
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3.3.4 Correctness

To prove that LowRank is correct, we have to show that with input (A, r) such
that the genericity hypotheses are satisfied, it returns a correct output (after a
finite number of arithmetic operations), and that, otherwise, it returns an error
message stating that the necessary assumptions are not satisfied.

Intermediate results

The correctness theorem is proved in Theorem 3.9 and follows from intermediate
results that are described next. The first result is a regularity theorem for the
incidence varieties Vr, and its proof is in Section 3.5.1, page 97.
Proposition 3.6. Let m,n, r ∈ N, with 0 ≤ r ≤ m− 1.

1. There exists a non-empty Zariski-open set A ⊂ Mn+1
m,m(C) such that if

A ∈ A ∩Mn+1
m,m(Q), A satisfies G;

2. If A satisfies G, there exists a non-empty Zariski open set T ⊂ C such that
if t ∈ T ∩Q, and Ã = (A0 + tA1) +x2A2 + · · ·+xnAn, then Ã satisfies G.

The second result deals with Lagrange systems `(A ◦M,U, S, v). We prove
that its set of solutions is finite and that ` satisfies G2. The proof of this result
is contained in Section 3.5.3, page 103.
Proposition 3.7. Let A ∈ Mn+1

m,m(C) be such that A satisfies G. Let c = (2m−
r)(m − r). Then there exist non-empty Zariski open sets V ⊂ Cc and M1 ⊂
GLn(C) such that, if v ∈ V ∩ Qc and M ∈ M1 ∩Mn,n(Q), for S ∈ GLm−r(Q)
and U ∈Mm−r,m(Q) full rank, the following holds

1. Z(A ◦M,U, S, v) is finite and `(A ◦M,U, S, v) satisfies G2;

2. the projection of Z(A ◦M,U, S, v) on the space of variables (x, y) contains
the set of critical points of the restriction of π1 to Vr.

The last proposition states that in generic coordinates the image of each
connected component C of Dr ∩ Rn by each map πi(x) = (x1, . . . , xi) is a closed
subset of the real line R (for the Euclidean topology). In addition it states that
the pre-images of values t ∈ R lying on the boundary of π1(C) can be computed
as projections of critical points of π1 restricted to Vr. Its proof is in Section
3.5.4, page 107.
Proposition 3.8. There exist non-empty Zariski open sets U ⊂Mm−r,m(C) and
M2 ⊂ GLn(C) such that if U ∈ U ∩Mm−r,m(Q) and M ∈M2 ∩Mn,n(Q), and if
A satisfies G, and d = dimDr, then for any connected component C ⊂ Dr ∩ Rn,
the following holds:

1. for i = 1, . . . , d, the image πi(M−1C) is closed;

2. if t ∈ R lies on the boundary of π1(M−1C) then π−1
1 (t) ∩M−1C is finite

and there exists (x, y) ∈ Vr(A ◦M,U, S) such that π1(x, y) = t.
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Logical dependencies of Zariski open sets

Propositions 3.6, 3.7 and 3.8 suggest that in order to prove that LowRank is
correct, both input data and parameters chosen internally must belong to pre-
determined dense open subsets of their parameter spaces. We formalize next this
fact, also explicitating the hidden dependencies between the choice of different
parameters.

We recall that A ⊂Mn+1
m,m(C) denotes the non-empty Zariski open set defined

in Proposition 3.6. Remark that, since the set A is obtained by the regularity
result of Proposition 3.6 via a non-constructive proof, we cannot explicitly give
the equations defining the complement of this Zariski open set. Hence, we cannot
a priori verify whether A belongs to A or not. Conversely, whether or not A
verifies G can be easily checked by testing the emptiness of complex algebraic
sets, for example via Gröbner bases, using the Jacobian criterion (cf. Theorem
1.9 on page 37).

Furthermore, remark that the number of recursive calls of LowRankRec is
n − (m − r)2 (0 if n < (m − r)2). At the first call of LowRankRec, the input
matrix is linear in n variables, at the first recursive call it is linear in n − 1
variables, at the last call it is linear in (m− r)2 variables. We denote by:

• T (j),U (j),M
(j)
1 ,M

(j)
2 and V (j) the non-empty Zariski open sets defined

by Propositions 3.6, 3.7 and 3.8, associated to the (n− j+ 1)−th recursion
call of LowRankRec;

• M (j), v(j) and t(j) the parameters chosen respectively at Step 3 and 5 of
the (n− j + 1)−th recursion call of LowRankRec;

• (A(j), r), the input of the (n− j + 1)−th recursion call of LowRankRec.

The existence of T (j) at each call is guaranteed in Proposition 3.6, as follows:

A(j) satisfying G =⇒ ∃T (j) ⊂ C,

while that of U (j),M
(j)
1 ,M

(j)
2 and V (j) follow similarly from Propositions 3.7:

A(j) satisfying G =⇒ ∃V (j) ⊂ Cc, and

A(j) satisfying G =⇒ ∃M
(j)
1 ⊂ GLj(C),

and Proposition 3.8:

A(j) satisfying G =⇒ ∃U (j) ⊂Mm−r,r(C), and

A(j) satisfying G =⇒ ∃M
(j)
2 ⊂ GLj(C).

Hypotheses on input data and parameters

We refer to notation introduced in the previous section about Zariski open sets
A , T (j), U (j), M

(j)
1 , M

(j)
2 and V (j). Let (A, r) ∈ Mn+1

m,m(Q) × Z be the input
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of LowRank, and U, S be parameters chosen at Step 1. The first hypothesis is
about input data A and parameters U, S.

Hypothesis H1

H1 holds if

• U is full-rank and S ∈ GLm−r(Q);

• A ∈ A ∩Mn+1
m,m(Q).

Now, parameter U is chosen once (at Step 1 of LowRank) but one has to ensure
that it belongs to sets U (j) for all j; conversely, parameters M (j), v(j) and t(j)
are chosen differently at each call. Finally, the choices of random parameters
performed during the whole algorithm should satisfy the following hypothesis.

Hypothesis H2

H2 holds if, for all j = (m− r)2, . . . , n

• U ∈ U (j) ∩Mm−r,m(Q);

• S ∈ GLm−r(Q);

• M (j) ∈M
(j)
1 ∩M

(j)
2 ∩Mj,j(Q);

• v(j) ∈ V (j) ∩Q(2m−r)(m−r);

• t(j) ∈ T (j) ∩Q.

Correctness theorem

We can prove the correctness theorem, which assumes Hypothesis H1 and H2.
Let A ∈ Mn+1

m,m(Q) be a n−variate linear matrix with rational coefficients, and
let 0 ≤ r ≤ m− 1. Let U, S, t(j),M (j) and v(j) be the parameters chosen during
LowRank.

Theorem 3.9. Let (A, r) be the input of LowRank. If H1 and H2 hold, then the
output of LowRank is a rational parametrization whose associated set of solutions
intersects each connected component of Dr ∩ Rn.

Proof. The proof is by induction on n, the number of variables appearing in A.
We first eliminate some basic case. If n < (m− r)2, since H1 holds, then the set
Dr is empty. Hence Dr∩Rn is empty and the algorithm returns a correct output
(the empty list). Thereafter, we proceed by induction on n ≥ (m− r)2.

For n = (m− r)2, since H1 holds, Proposition 3.6 implies that Dr and Vr are
finite. We deduce that RatPar returns a rational parametrization of Vr and the
routine Project returns a parametrization of Dr.
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Let n > (m − r)2. Let U, S be the random matrices chosen at Step 1 of
LowRank. The induction hypothesis implies that for any (n − 1)−variate linear
matrix Ã such that (Ã, U, S) satisfies G, LowRank returns the expected output
when H1 and H2 hold. Let A be the input matrix of size m, n variables, and let
0 ≤ r ≤ m−1. Let C ⊂ Dr∩Rn be a connected component. LetM ∈ GLn(C) be
the matrix chosen at Step 3 of LowRankRec with input (A, r), and consider the
projection map π1 : (x1, . . . , xn)→ x1 restricted to Vr. Since H1 and H2 hold, by
Proposition 3.8, π1(M−1C) is closed, hence either π1(M−1C) = R or π1(M−1C)
is a closed set with non-empty boundary. We claim that, in both cases, LowRank
with input (A, r) returns a point which lies in the connected component M−1C.
This is proved next.

First case. Suppose π1(M−1C) = R. We deduce that for all t ∈ Q, the set
π−1

1 (t) intersects M−1C, so π−1
1 (t)∩M−1C 6= ∅. In particular this is true when t

is the parameter chosen at Step 5 of LowRankRec with input (A, r). Let A(n−1)

be the (n−1)−variate linear matrix obtained from A◦M by substituting x1 = t.
Observe that π−1

1 (t)∩M−1C is the union of some connected components of the de-
terminantal variety D(n−1)

r ∩ Rn−1 = {x ∈ Rn−1 : rank A(n−1) ≤ r} (understood
as a subset of the real hyperplane π−1

1 (t) ∩ Rn). Since H1 holds, (A(n−1), U, S)
satisfies G; we deduce by the induction hypothesis that the LowRankRec returns
a rational parametrizations whose solutions contain one point in each connected
component of D(n−1)

r ∩Rn−1, and so at least one point inM−1C. The subroutines
Lift and Union at Step 6 and 7 conclude the proof.

Second case. Suppose π1(M−1C) 6= R. By Proposition 3.8, π1(M−1C) is
closed. Since M−1C is connected, π1(M−1C) is a closed interval, and since
π1(M−1C) 6= R there exists t in the boundary of π1(M−1C) such that π1(M−1C) ⊂
[t,+∞) or π1(M−1C) ⊂ (−∞, t]. Suppose without loss of generality that π1(M−1C)
is contained in [t,+∞), so that t is a local minimum of π1, attained on M−1C.

Let x = (t, x2, . . . , xn) ∈M−1C. By Proposition 3.8, there exists y ∈ Cm(m−r)

such that (x, y) ∈ Vr. We claim that there exists z ∈ C(2m−r)(m−r) such that
(x, y, z) lies in Z(A ◦M,U, S, v). Then, we conclude that the point x ∈ M−1C
appears among the solutions of the rational parametrization P obtained at Step
4 of LowRankRec: correction of the algorithm follows. The claim is proved next.

Let C′ ⊂ Vr ∩ Rn+m(m−r) be the connected component such that M−1C′ ⊂
M−1Vr ∩ Rn+m(m−r) contains (x, y). First, we prove that t = π1(x, y) lies on
the boundary of π1(M−1C′). Indeed, suppose that there exists (x̃, ỹ) ∈ M−1C′
such that π1(x̃, ỹ) < t. Since M−1C is connected, and since it is a connected
component of a real algebraic set, there exists a continuous semi-algebraic map
τ : [0, 1] → M−1C′ with τ(0) = (x, y) and τ(1) = (x̃, ỹ). Let πx : Rn+m(m−r) →
Rn be the map πx(x, y) = x. Then πx ◦ τ is the composition of continuous semi-
algebraic maps, and hence is continuous and semi-algebraic. Moreover (πx ◦
τ)(0) = x and (πx ◦ τ)(1) = x̃. Since (πx ◦ τ)(θ) ∈ Dr for all θ ∈ [0, 1], then
x̃ ∈ M−1C. Since π1(x̃) < t we obtain a contradiction. So π1(x, y) lies on the
boundary of π1(M−1C′).

Since (A,U, S) satisfies G, hence (A ◦M,U, S) satisfies G and by the Implicit
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Function Theorem [150, Th. 2.12] one deduces that (x, y) is a critical point of π1
restricted to Vr and that, by Proposition 3.7, there exists z ∈ C(2m−r)(m−r) such
that (x, y, z) ∈ Z(A ◦M,U, S, v), as claimed. q.e.d.

3.4 Degree bounds and complexity

We give arithmetic complexity bounds on the number of operations in Q needed
to perform the algorithm LowRank, and degree bounds for the rational parametriza-
tion given in terms of the output (Section 3.4.1). These essentially derive from
the multilinear structure of systems encoding the critical points (Lagrange sys-
tems) and rely on the computation of a multilinear Bézout bound.

The complexity of LowRank is expressed as a function involving the size of
parameters (number of variables, size of matrices and the expected rank: m,n, r)
and the bounds on the degree of rational parametrizations. It is computed in
Section 3.4.2.

3.4.1 The degree of the output

Multilinear bounds

To perform this analysis we suppose that A satisfies G. Let us consider the
subroutine RatPar at the first recursion step of LowRank. Hence its input consists
of either the generators of the ideal of the incidence variety f(A ◦M,U, S), if
n = (m − r)2, or of the Lagrange systems `(A ◦M,U, S, v), if n > (m − r)2. In
both cases, the input system is bilinear in two or three groups of variables.

If x(1), . . . , x(p) are groups of variables, and f ∈ Q[x(1), . . . , x(p)], we say that
the multidegree of f is (d1, . . . , dp) if its degree with respect to the group x(j)

is dj for j = 1, . . . , p. For example, the multidegree of x2
1y2x2 + y5

1 with groups
x = (x1, x2) and y = (y1, y2), is (3, 5).

Proposition 3.10. Let A ∈ Mn+1
m,m(Q), 0 ≤ r ≤ m − 1 and let U, S and M,v

be respectively the parameters chosen at step 1 of LowRank and at step 3 of
LowRankRec, with input (A, r). Suppose that H1 and H2 hold. Let q be the
rational parametrization returned by RatPar. Then:

1. if n = (m− r)2, the degree of q is bounded from above by

δ(m,n, r) =
(
m(m− r)
(m− r)2

)
;

2. if n > (m− r)2, the degree of q is bounded from above by

δ(m,n, r) =
∑

k∈Fm,n,r

(
m(m− r)
n− k

)(
n− 1

k + (m− r)2 − 1

)(
r(m− r)

k

)
,
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with Fm,n,r = {k : max{0, n−m(m− r)} ≤ k ≤ min{n− (m− r)2, r(m−
r)}}.

Proof of Assertion 1. Since H1 holds, the dimension of Vr is zero. Consequently,
the degree of q is the degree of Vr. Since the entries of f(A◦M,U, S) are bilinear
in x, y, one can compute the associated Multilinear Bézout bound, see e.g. [139,
Ch. 11].

One can reduce the polynomial system f to an equivalent form as follows.
From equations UY (y) − S = 0 one can eliminate (m − r)2 variables yi,j , for
example those corresponding to the last m − r rows of Y (y). With abuse of
notation, we denote by f ⊂ Q[x, y1,1, . . . , yr,m−r] the polynomial system obtained
after this reduction. It is constituted by m(m − r) polynomials of multidegree
bounded by (1, 1) with respect to x = (x1, . . . , xn) and y = (y1,1, . . . , yr,m−r).

By [139, Prop. 11.1.1], degZC(f) is bounded by the sum of the coefficients of

(sx + sy)m(m−r) mod
〈
sn+1
x , sr(m−r)+1

y

〉
⊂ Z[sx, sy].

Since n + r(m − r) = m(m − r), and since (sx + sy)m(m−r) is homogeneous of
degree m(m − r), the aforementioned bound equals the coefficient of snxs

r(m−r)
y

in the expansion of (sx + sy)m(m−r), that is exactly
(m(m−r)

(m−r)2
)
. q.e.d.

Proof of Assertion 2. The proof is similar to that of Assertion 1. Let f be the
simplified system defined above. We consider variables z = (1, z2, . . . , zm(m−r))
(we can put z1 = 1 since the Lagrange system is defined over the Zariski open set
z 6= 0). The simplified Lagrange system is constituted by polynomials (f, g, h)
where (g, h) = z′D1f , that is by:

• m(m− r) polynomials of multidegree bounded by (1, 1, 0);

• n− 1 polynomials of multidegree bounded by (0, 1, 1);

• r(m− r) polynomials of multidegree bounded by (1, 0, 1).

Since H1 and H2 hold, the zero set ZC(f, g, h) is finite or empty, and its degree
equals that of q. By [139, Prop. 11.1.1] this value is bounded from above by the
sum of the coefficients of any representative of the class of

(sx + sy)m(m−r)(sy + sz)n−1(sx + sz)r(m−r)

modulo 〈sn+1
x , s

r(m−r)+1
y , s

m(m−r)
z 〉 ⊂ Z[sx, sy, sz]. As above, by homogeneity of

the previous polynomial and by counting the degrees, this sum is given by the
coefficient of the monomial snxs

r(m−r)
y s

m(m−r)−1
z in the expansion

∑
i,j,k

(
m(m− r)

i

)(
n− 1
j

)(
r(m− r)

k

)
si+kx sm(m−r)−i+j

y sn−1−j+r(m−r)−k
z .
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The coefficient is obtained by setting the equalities i+k = n, m(m−r)− i+ j =
r(m− r) and n− 1− j + r(m− r)− k = m(m− r)− 1. These equalities imply
i+k = n = j+k+(m− r)2 = j+k+ i− j = i+k and consequently one deduces
the claimed expression. q.e.d.

The previous proposition states that the number of complex solutions com-
puted at step 2 of LowRankRec, is at most δ(m,n, r). We deduce the following
estimate on the total number of complex solutions.

Corollary 3.11. Suppose that the hypothesis of Proposition 3.10 are satisfied.
Then LowRank returns a rational parametrization whose degree is less than or
equal to

∆(m,n, r) =
(
m(m− r)
(m− r)2

)
+

min{n,m2−r2}∑
j=(m−r)2+1

δ(m, j, r).

Proof. Since H1 holds, for n < (m− r)2, Dr is empty and the algorithm returns
the empty list. For m, j, r let Fm,j,r be the set of indices defined in Proposition
3.10. Observe that, since j > max{0, j−m(m−r)} always holds, then δ(m, j, r) =
0 if and only if Fm,j,r = ∅, if and only if j −m(m− r) > r(m− r), that is when
j > m2 − r2. Hence, the upper bound ∆(m,n, r) is deduced straightforwardly
from bounds given in Proposition 3.10. q.e.d.

By the previous proof, we also deduce that to evaluate the arithmetic com-
plexity of RatPar we can restrict the analysis to recursive calls of LowRankRec
with input linear matrices A(j) with (m − r)2 ≤ j ≤ m2 − r2 (for the notation
A(j) cf. page 86).

We finally remark that, as shown in Table 3.1, page 108, the bounds given
by Proposition 3.10 and Corollary 3.11 are typically not optimal. Indeed, we
give in Table 3.1, page 108, some numerical values of these bounds, comparing
with the effective degrees. We remark that these bounds equal 0 (and hence are
optimal) when the algorithm does not compute any solution.

Further estimates

We conclude the analysis on the degree-size of the output representation by
giving a final estimate of the bound provided in Corollary 3.11. The following
Proposition states that the output degree is essentially bounded by the product
of the dimension of Dr and of a natural combinatorial bound.

Proposition 3.12. For all m,n, r, with r ≤ m − 1, δ(m,n, r) ≤
(n+m(m−r)

n

)3
.

Moreover, if we let d be the dimension of Dr, δmax = δmax(m, r) be the maximum
of δ(m, j, r) when j runs between (m − r)2 and m2 − r2, and ∆(m,n, r) be the
bound computed in Corollary 3.11, if H1 and H2 hold, one has

∆(m,n, r) ∈ O (d δmax) ⊂ O

d(n+m(m− r)
n

)3
 .
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Proof. The estimate for δ(m,n, r) comes straightforwardly from the formula(
a+ b

a

)3

=
min(a,b)∑
i1,i2,i3=0

(
a

i1

)(
b

i1

)(
a

i2

)(
b

i2

)(
a

i3

)(
b

i3

)

applied to a = n and b = m(m − r), and from the expression of δ(m,n, r)
computed in Proposition 3.10. Moreover, by Corollary 3.11, one deduces

∆(m,n, r) =
(
m(m− r)
(m− r)2

)
+

min{n,m2−r2}∑
j=(m−r)2+1

δ(m, j, r) ≤

≤
(
m(m− r)
(m− r)2

)
+ (n− (m− r)2)δmax.

Since H1 and H2 hold, the expected dimension of Dr is d = n− (m− r)2, while
the term

(m(m−r)
(m−r)2

)
is negligible in the previous sum. q.e.d.

On the number of connected components

We finally give an upper bound on the number of connected components of
the set Dr ∩ Rn, for average input data. Indeed, the degree of the rational
parametrization returned by LowRank implies such an upper bound, and has to
be compared with classical bounds. Remark that for any 0 ≤ r ≤ m− 1, the set
Dr is defined by at most

( m
r+1
)2 polynomials of degree at most r + 1: we deduce

that the number of connected components of Dr ∩Rn is in O(r)n (cf. the bound
given on page 39).

Proposition 3.13. Suppose that H1 and H2 hold and that the dimension d of Dr
is strictly positive. The maximum number of connected components of the alge-
braic set Dr∩Rn is bounded from above by ∆(m,n, r) and hence is in O (d δmax).
Moreover, for subfamilies of sets Dr where the size m is fixed, the number of con-
nected components of Dr ∩ Rn is in O(n1+3m(m−r)).

Proof. If Hypothesis H1 and H2 hold, by Corollary 3.11, ∆(m,n, r) is a bound
on the degree (and hence on the cardinality of the solution set) of the output
parametrization q; since q parametrizes a finite set meeting each connected com-
ponent of Dr ∩ Rn, we conclude. The asymptotic when m is fixed derives from
Proposition 3.12 and from the following trivial facts:

• d ≤ n;

• if m is fixed, then
(n+m(m−r)

n

)
∈ O(nm(m−r)).

q.e.d.

We recall that Hypotheses H1 and H2 are open conditions on the input data
A, r and on the recursive choices of parameters performed by LowRank. We
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deduce hence by Proposition 3.13 that for average data matrices A ∈Mn+1
m,m(Q),

the number of connected components of the associated real low rank locusDr∩Rn
is essentially the product of the dimension of Dr with a combinatorial bound.

We finally stress the fact that this result is part of a historical approach due
first to Thom and Milnor, using the critical points method to obtain bounds for
the expected number of components of real algebraic sets. Indeed, this is strictly
linked to the problem of finding sample sets of real solutions of a polynomial
system.

3.4.2 Complexity analysis

We recall that our complexity model takes into account the number of arithmetic
operations over the ground fieldQ that are performed during LowRank. It is given
by the sum of the contributions of all subroutines, that is by:

• the contribution of IsReg at step 2 of the preamble: we suppose that regu-
larity assumptions are satisfied, so that one does not have to estimate this
complexity;

• the contribution of the composition of Project and RatPar with input f(A(m−r)2
, U, S)

at step 2 of the first call of LowRankRec;

• for j from min{n,m2−r2} downto (m−r)2 +1, the contribution of RatPar,
Project, Image, Lift and Union inside the (n − j + 1)−th recursive call of
LowRankRec.

Complexity of RatPar

We start by estimating the complexity of the computation of the rational parametriza-
tion. This complexity depends on the choice of the algorithm performing RatPar.

As established in Section 1.2.2, there exist different algorithms for solving
this task. We prefer to refer to the homotopy algorithm in [88], because it
allows to deduce complexity estimates as a direct function of the number of
complex solutions that are computed. It uses symbolic homotopy techniques
as in [74]. We remark that both algorithms in [88] and [53] allow to build a
geometric resolution of the Lagrange system and hence to compute a rational
parametrization of its solutions. Both complexities rely on geometric invariants
of algebraic sets built during the procedure. We base our complexity analysis on
the symbolic homotopy algorithm of [88] since it allows to directly exploit the
degree bounds computed in Section 3.4.1.

In the paper [68] we used the algorithm in [53], which relies on the com-
putation of the maximum degree of intermediate varieties of Lagrange systems:
we finally observe that such degrees can be also bounded by multilinear Bézout
bounds, and that their asymptotic behavior is similar to that of δ(m,n, r) (cf.
Section 3.4.1).
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We suppose that (m − r)2 < n ≤ m2 − r2, since the complexity of RatPar
with input f(A ◦M,U, S) is controlled by that with input `(A ◦M,U, S, v). We
bound below the complexity of the computation of the rational parametrization
performed by RatPar where the input linear matrix of LowRankRec is n−variate.

We suppose that the input of RatPar is the simplified system ` defined in the
proof of Assertion 2 of Proposition 3.10, page 89, consisting in

• m(m− r) polynomials of multidegree bounded by (1, 1, 0);

• n− 1 polynomials of multidegree bounded by (0, 1, 1);

• r(m− r) polynomials of multidegree bounded by (1, 0, 1).

We denote by

∆xy = {1, xi, yj , xiyj : i = 1, . . . , n, j = 1, . . . , r(m− r)}
∆yz = {1, yj , zk, yjzk : j = 1, . . . , r(m− r), k = 2 . . . ,m(m− r)}
∆xz = {1, xi, zk, xizk : i = 1, . . . , n, k = 2, . . . ,m(m− r)}

the supports of the aforementioned three groups of polynomials. Suppose, fur-
ther, that ˜̀⊂ Q[x, y, z] is a polynomial system such that:

• the length of ˜̀ equals that of `;

• for i = 1, . . . , n− 1 +m2 − r2, the support of ˜̀
i equals that of `i;

• the solutions of ˜̀ are known.

Since ` consists of bilinear polynomials in three groups of variables, ˜̀ can be
easily built by considering products of linear forms. Indeed, from a polynomial
`i, with support in ∆a, one can build a polynomial ˜̀i as follows:
• if a = xy, generate linear forms gi,x ∈ Q[x], gi,y ∈ Q[y], and let ˜̀i = gi,xgi,y;

• if a = yz, generate linear forms gi,y ∈ Q[y], gi,z ∈ Q[z], and let ˜̀i = gi,ygi,z;

• if a = xz, generate linear forms gi,x ∈ Q[x], gi,z ∈ Q[z], and let ˜̀i = gi,xgi,z.

Hence, we suppose that the solutions of ˜̀are known since they can be computed
by solving systems of linear equations. Subsequently, we build the homotopy

t`+ (1− t)˜̀⊂ Q[x, y, z, t]. (3.1)

where t is a new variable. The zero set of (3.1) is a 1−dimensional algebraic set,
that is a curve. From [88, Prop. 6.1], if the solutions of ˜̀ are known, one can
compute a rational parametrization of the solution set of system (3.1) within
O((ñ2N logQ+ ñω+1)ee′) arithmetic operations over Q, where:

• ñ is the number of variables in `;
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• N = m(m− r)#∆xy + (n− 1)#∆yz + r(m− r)#∆xz;

• Q = max{‖q‖ : q ∈ ∆xy ∪∆yz ∪∆xz};

• e is the number of isolated solutions of `;

• e′ is the degree of the curve ZC(t`+ (1− t)˜̀);

• ω is the exponent of matrix multiplication.

The theoretical definition of ω is pretty technical and can be sketched as follows.
The exponent of matrix multiplication is the infimum of the set of real numbers
ω sharing the following property: two n × n matrices can be computed within
O(nω+ε) many multiplications, for any ε > 0. We briefly recall that ω ≤ log2 7 ≈
2.807 by Strassen’s algorithm (cf. [151]) and that the best upper bound is now
set to 2.3728639, thanks to Le Gall [97].

We first prove the following technical lemma. We refer to notation introduced
in Proposition 3.10, page 88. Further, we use the result of Lemma 3.14 to
compute the complexity of RatPar in Proposition 3.15, page 96.

Lemma 3.14. Let Fm,n,r be the set defined in Proposition 3.10, and suppose
Fm,n,r 6= ∅. Let δ(m,n, r) be the bound defined in Proposition 3.10, and let e′ be
the degree of ZC(t`+ (1− t)˜̀). Hence

e′ ∈ O
(
(n+m2 − r2) min{n,m(m− r)} δ(m,n, r)

)
.

Proof. The system t` + (1 − t)˜̀ is bilinear with respect to groups of variables
x, y, z, t. We exploit this bilinearity by computing Multilinear Bézout bounds,
as in Proposition 3.10, page 88.

By [139, Prop. 11.1.1], e′ is bounded by the sum of the coefficients of

q = (sx + sy + st)m(m−r)(sy + sz + st)n−1(sx + sz + st)r(m−r)

modulo I = 〈sn+1
x , s

r(m−r)+1
y , s

m(m−r)
z , s2

t 〉 ⊂ Z[sx, sy, sz, st]. It is easy to check
that q = q1 + st(q2 + q3 + q4) + g with s2

t that divides g and

q1 = (sx + sy)m(m−r)(sy + sz)n−1(sx + sz)r(m−r)

q2 = m(m− r)st(sx + sy)m(m−r)−1(sy + sz)n−1(sx + sz)r(m−r)

q3 = (n− 1)st(sx + sy)m(m−r)(sy + sz)n−2(sx + sz)r(m−r)

q4 = r(m− r)st(sx + sy)m(m−r)(sy + sz)n−1(sx + sz)r(m−r)−1,

whence q ≡ q1 + q2 + q3 + q4 mod I. The stated bound is given by the sum of
the contributions and follows straightforwardly by the estimates given below.

Contribution of q1. It is the sum of its coefficients modulo the ideal

I ′ = 〈sn+1
x , sr(m−r)+1

y , sm(m−r)
z 〉.
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This has been already computed in Proposition 3.10, and coincides with δ(m,n, r).
Contribution of q2. Write q2 = m(m − r)stq̃2 with q̃2 ∈ Z[sx, sy, sz]. Conse-

quently we need to compute the sum of the coefficients of q̃2, modulo I ′ (defined
above), multiplied by m(m− r). Observe that deg q̃2 = n− 2 +m2− r2 and that
maximal powers admissible modulo I ′ are snx, s

r(m−r)
y , s

m(m−r)−1
z . Hence, three

configurations give a contribution.

(A) The coefficient of the monomial sn−1
x s

r(m−r)
y s

m(m−r)−1
z in q̃2, that is

ΣA =
r(m−r)∑
k=0

(
m(m− r)− 1
n− 1− k

)(
n− 1

k − 1 + (m− r)2

)(
r(m− r)

k

)
.

(B) The coefficient of the monomial snxs
r(m−r)−1
y s

m(m−r)−1
z in q̃2, that is

ΣB =
r(m−r)∑
k=0

(
m(m− r)− 1

n− k

)(
n− 1

k − 1 + (m− r)2

)(
r(m− r)

k

)
.

(C) The coefficient of the monomial snxs
r(m−r)
y s

m(m−r)−2
z in q̃2, that is

ΣC =
r(m−r)∑
k=0

(
m(m− r)− 1

n− k

)(
n− 1

k − 2 + (m− r)2

)(
r(m− r)

k

)
.

The contribution of q2 equals m(m − r)(ΣA + ΣB + ΣC), and one can easily
check that ΣA ≤ δ(m,n, r) and ΣB ≤ δ(m,n, r). Remember that we assume
that δ(m,n, r) > 0, whence Fm,n,r 6= ∅. We claim that ΣC ≤ (1 + min{n,m(m−
r)}) δ(m,n, r). Consequently, we conclude that the contribution of q2 is

m(m− r)(ΣA + ΣB + ΣC) ∈ O (m(m− r) min{n,m(m− r)} δ(m,n, r)) .

Let us prove this claim. First, write

χ1 = max{0, n−m(m− r)} χ2 = min{r(m− r), n− (m− r)2}
α1 = max{0, n+ 1−m(m− r)} α2 = min{r(m− r), n+ 1− (m− r)2}

for the indices such that δ(m,n, r) sums over χ1 ≤ k ≤ χ2 and ΣC over α1 ≤
k ≤ α2. Remark that χ1 ≤ α1 and χ2 ≤ α2. Finally, denote by ϕ(k) the k−th
term in the sum defining ΣC , and by γ(k) the k−th term in the sum defining
δ(m,n, r).

For all indices k admissible for both δ(m,n, r) and ΣA, that is for α1 ≤ k ≤
χ2, one gets, by basic properties of binomial coefficients, that

ϕ(k) ≤ Ψ(k) γ(k) with Ψ(k) = n− k
m(m− r)− n+ 1 + k

.
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When k runs over all admissible indices, the rational function Ψ(k) is non-
decreasing monotone, and its maximum is attained in Ψ(χ2) and is bounded
by min{n,m(m− r)}. Three possible cases can occur:

1. α1 = 0. Hence χ1 = 0, α2 = r(m − r) and χ2 = r(m − r). We deduce
straightforwardly from the above discussion that ΣC ≤ min{n,m(m −
r)}δ(m,n, r);

2. α1 = n −m(m − r) + 1 and χ1 = n −m(m − r). We deduce that χ2 =
α2 = r(m − r) and that ΣC =

∑χ2
k=α1

ϕ(k) ≤ ϕ(α1) + min{n,m(m −
r)} δ(m,n, r) ≤ (1 + min{n,m(m− r)}) δ(m,n, r);

3. χ1 = 0 and α1 = n − m(m − r) + 1. Hence, we deduce the chain of
inequalities 0 ≤ n −m(m − r) + 1 ≤ 1. Hence, either this case coincides
with case 2 (if n = m(m − r)) or we deduce that n = m(m − r) − 1, and
we fall into case 1.

Contributions of q3 and q4. Following exactly the same path as in the case
of q2, one respectively deduces that:

• the contribution of q3 is in O (n min{n,m(m− r)} δ(m,n, r));

• that of q4 is in O (r(m− r) min{n,m(m− r)} δ(m,n, r)).

q.e.d.

Proposition 3.15. Let n > (m − r)2. Let A ∈ Mn+1
m,m(Q), 0 ≤ r ≤ m − 1 and

let M,U, S, v be the parameters chosen before the first recursive step of LowRank.
Let δ(m,n, r) be the bound defined in Proposition 3.10. Then, if H1 and H2 hold,
RatPar returns a rational parametrization within

O˜
(
(n+m2 − r2)7 δ(m,n, r)2

)
arithmetic operations.

Proof. Following the notation introduced on page 93, ñ = n− 1 +m2 − r2, the
bound for e is δ(m,n, r) and is given in Proposition 3.10 and a bound for e′ is
given in Lemma 3.14, and is in O (̃ñ2δ). Moreover, N ∈ O(nmr(m − r)2), and
hence N ∈ O(ñ3). The proof follows from [88, Prop. 6.1], since the maximum
diameter of ∆xy,∆yz,∆xz is bounded above by ñ, that is Q ≤ ñ. q.e.d.

Complexity of subroutines

For these complexity bounds, we refer to those given in [139, Lem. 10.1], [139,
Lem. 10.3], [139, Lem. 10.5] and [139, Lem. 10.6], from which they are obtained
straightforwardly.

Proposition 3.16. Let δ(m,n, r) be the bound defined in Proposition 3.10. At
the first recursion step of LowRankRec, the following holds. The complexity of
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• Project is in O˜
(
(n+m2 − r2)2 δ(m,n, r)2);

• Lift is in O˜
(
(n+m2 − r2) δ(m,n, r)2);

• Image is in O˜
(
(n+m2 − r2)2 δ(m,n, r) + (n+m2 − r2)3);

• Union is in O˜
(
(n+m2 − r2) δ(m,n, r)2).

Complexity theorem

The estimates provided in this section yield the following complexity theorem.

Theorem 3.17. Suppose that H1 and H2 hold. Then LowRank with input (A, r)
returns a rational parametrization of a finite set meeting each connected compo-
nent of Dr ∩ Rn within

O˜

(n+m2 − r2)7
(
n+m(m− r)

n

)6


arithmetic operations over Q.

Proof. This complexity estimate is obtained by applying:

• the complexity bound for RatPar, computed in Proposition 3.15;

• the complexity bounds for the minor subroutines, computed in Proposition
3.16;

• the bound δ(m,n, r) ≤
(n+m(m−r)

n

)3
computed in Proposition 3.12.

q.e.d.

3.5 Proofs of regularity

This section hosts the proof of Proposition 3.6, 3.7 and 3.8 shown, in this order,
in Sections 3.5.1, 3.5.3 and 3.5.4. We provide in Section 3.5.2 a local description
of the main algebraic sets built during the execution of LowRank.

3.5.1 Regularity of incidence varieties

We prove next Proposition 3.6. Both Zariski open sets A and T will be con-
structed by successive intersection of three non-empty Zariski open sets where
respectively G1,G2 and G3 hold.

Proof of G1 in Assertion 1. Let σr ⊂Mm,m(C) denote the set of m×m matrices
of rank ≤ r. By [28, Prop. 1.1] its singular locus is σr−1. For all A ∈ Mn+1

m,m(Q),
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the set Dr is the intersection of σr with the linear space L = A0 + 〈A1, . . . , An〉.
By Bertini’s theorem [62, Th. 17.16], if L is generic, the following holds:

sing Dr = sing (L ∩ σr) = L ∩ sing σr = L ∩ σr−1 = Dr−1.

We conclude that there exists a non-empty Zariski open set A1 ⊂ Cm2(n+1) such
that if A ∈ A1 then A satisfies Property G1. q.e.d.

Proof of G1 in Assertion 2. By hypothesis, that A satisfies G. In particular A
satisfies G1. By Sard’s Lemma [139, Sec. 4.2], there exists a non-empty Zariski
open set T1 ⊂ C such that if t ∈ T1, then a point in Dr ∩ZC(x1 − t) is regular if
and only if it is regular in Dr. Then, for t ∈ T1, the (n−1)−variate liner matrix
Ã obtained by instantiating x1 to t in A satisfies G1. q.e.d.

Proof of G2 in Assertion 1. Let S ∈ GLm−r(Q) and let U ∈Mm−r,m(Q) be full-
rank. We denote by a`,i,j the entry of the matrix A` at row i and column j, for
` = 0, 1, . . . , n, i = 1, . . . ,m and j = 1, . . . ,m. We define the following map:

ϕ : Cn × Cm(m−r) ×Mn+1
m,m(C) −→ Cm(m−r)+(m−r)2

(x, y,A) 7−→ f(A,U, S)

and, for a fixed A ∈Mn+1
m,m(C), its section map

ϕA : Cn × Cm(m−r) −→ Cm(m−r)+(m−r)2

(x, y) 7−→ f(A,U, S).

We divide the proof in two cases.
First case. Suppose that ϕ−1(0) = ∅. This implies that, for any A ∈

Mn+1
m,m(C), Vr(A,U, S) = ∅. By the Nullstellensatz (cf. [35, Ch. 8] or page 36),

this implies that for any A ∈ Mn+1
m,m(C), 〈f(A,U, S)〉 = 〈1〉 which is a radical

ideal. In this case we conclude by defining A2 = Cm2(n+1).
Second case. Suppose that ϕ−1(0) 6= ∅. We prove that there exists a non-

empty Zariski open set A2 ⊂Mn+1
m,m(C) such that if A ∈ A2, the Jacobian matrix

of f(A,U, S) has maximal rank at each point of ϕ−1
A (0). As explained on page

80, this implies G2.
We claim that 0 is a regular value of ϕ, i.e. at any point of the fiber ϕ−1(0) the

Jacobian matrix associated to f(A,U, S) (with respect to a`,i,j , x = (x1, . . . , xn)
and y = (y1,1, . . . , ym,m−r)) has maximal rank. By Thom’s Algebraic Weak
Transversality theorem (cf. [139, Sec. 4.2] or page 41) we conclude that there
exists a non-empty Zariski open set A2 ⊂Mn+1

m,m(C) such that, for every A ∈ A2,
0 is a regular value of the induced map ϕA, which implies the previous claim.
We prove this new claim in the sequel.

Let (x, y,A) ∈ ϕ−1(0). Let us isolate the maximal minor of the Jacobian
matrix Df obtained as follows:

• the m(m− r)×m2 block ∂(A(x)Y (y))i,j/∂a0,k,` of derivatives of entries of
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A(x)Y (y) with respect to {a0,k,` : k, ` = 1, . . . ,m};

• the (m−r)2×m(m−r) block ∂(UY (y)−S)/∂y of derivatives of polynomial
entries of UY (y) − S with respect to variables y; remark also that these
polynomials do not depend on a.

Up to permutations of rows and columns, the first block is a m(m − r) × m2

block-diagonal matrix, with m blocks of size (m − r) × m on the diagonal all
equal to Y (y)′; the second block, up to re-ordering polynomials and variables,
is a (m − r)2 ×m(m − r) matrix with m − r blocks of size (m − r) ×m on the
diagonal all equal to the matrix U .

Since (x, y,A) ∈ ϕ−1(0), U and Y (y) satisfy the matrix relation UY (y) = S
and S is full rank. So U and Y (y) are full rank by the formula rank (UY ) ≤
min(rank U, rank Y ). Moreover, the entries of UY (y) − S do not depend on
parameters a0,i,j . Hence we can extract a square non-singular submatrix of the
Jacobian matrix of order m(m− r) + (m− r)2 = (2m− r)(m− r), proving that
it has row-rank (2m− r)(m− r). q.e.d.

Proof of G2 in Assertion 2. Suppose that A ∈Mn+1
m,m(C) is such that that f sat-

isfies Property G2. Let
π1 : Vr → C

(x, y) 7→ x1.

Since Vr(A, u, s) is smooth and equidimensional of codimension (2m − r)(m −
r), by Sard’s Lemma [139, Sec. 4.2] the critical values of π1 are included in a
hypersurface of C. Let T2 ⊂ C be the complement of this hypersurface. Then,
if t ∈ T2, one of the following facts hold:

• π−1
1 (t) = ∅. Hence ZC(ft) = ∅ and by the Nullstellensatz I(π−1

1 (t)) =
〈ft〉 = 〈1〉, which is radical;

• π−1
1 (t) 6= ∅ and for all (x, y) ∈ π−1

1 (t), (x, y) is not a critical point of the
map π1. So Dft has full rank at each (x, y) ∈ ZC(ft), and by the Jacobian
criterion (cf. [39, Th. 16.19] or Theorem 1.9) ft defines a radical ideal and
ZC(ft) is smooth and equidimensional of codimension (2m− r)(m− r) + 1.

q.e.d.

Proof of G3 in Assertion 1. This has been proved in Proposition 3.5. We denote
by A3 the non-empty Zariski open set defined in Proposition 3.5. q.e.d.

Proof of G3 in Assertion 2. Let A ∈Mn+1
m,m(C) be such that Dp has codimension

(m − p)2 for some 0 ≤ p ≤ r. Hence, by Bertini’s Theorem [62, Th. 17.16]
there exists a non-empty Zariski open set T (p) ⊂ C such that, if t ∈ T ∩Q, and
Ã = (A0 +tA1)+x2A2 + · · ·+xnAn, hence D̃p = {x ∈ Cn−1 : rank Ã(x) ≤ p} has
codimension (m−p)2 or is empty. We conclude by defining T3 =

⋂
p T (p). q.e.d.

Conclusion of the proof. We end the proof by defining A = A1 ∩ A2 ∩ A3 and
T = T1 ∩T2 ∩T3, which are non-empty and Zariski open. q.e.d.
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3.5.2 Local analysis

Local description of the incidence variety

Let A ∈ Mn+1
m,m(Q) be a n−variate m ×m linear matrix with coefficients in Q,

and let r ≤ m− 1. We show in Lemma 3.18 how to derive a local description of
the incidence variety Vr(A,U, S). This actually relies on the strong structure of
Dr.

For f ∈ Q[x], denote by Q[x]f the local ring of Q[x] at f . For p ≤ r, let
N be the upper-left p× p submatrix of A, so that A admits the following block
partition:

A =
(
N Q
P ′ R

)
(3.2)

with P,Q ∈ Mn+1
p,m−p(Q) and R ∈ Mn+1

m−p,m−p(Q). The next Lemma 3.18 com-
putes the equations of Vr in the local ring Q[x, y]detN . We denote the Schur
complement R− P ′N−1Q of N in A by Σ(N).
Lemma 3.18. Let A,N,Q, P,R be as above, S ∈ GLm−r(Q) and U ∈Mm−r,r(Q)
be full-rank. Then there exist {qi,j}1≤i≤p,1≤j≤m−r ⊂ Q[x]detN and {q′i,j}1≤i,j≤m−p ⊂
Q[x]detN such that the locally closed set Vr ∩ {(x, y) : detN(x) 6= 0} is defined
by the equations

yi,j − qi,1yp+1,j − . . .− qi,m−pym,j = 0 i = 1, . . . , p, j = 1, . . . ,m− r
q′i,1yp+1,j + . . .+ q′i,m−pym,j = 0 i = 1, . . . ,m− p, j = 1, . . . ,m− r

UY (y)− S = 0.

Proof. Denote by Y (1) and Y (2) the submatrices of Y (y) containing respectively
its first p rows and its last m − p rows. Consider the block subdivision of A as
in (3.2). We claim that, in Q[x, y]detN , the m(m − r) equations A(x)Y (y) = 0
can be read as the m(m− r) equations:(

IpY (1) +N−1QY (2)

Σ(N)Y (2)

)
= 0

where Σ(N) = R− P ′N−1Q is the Schur complement of N in A. Renaming the
entries of N−1Q and Σ(N) concludes the proof. To prove the claim, remark that
since detN 6= 0, A(x)Y (y) = 0 if and only if(

Ip 0
−P ′ Im−p

)(
N−1 0

0 Im−p

)(
N Q
P ′ R

)
Y (y) = 0.

q.e.d.

We conclude this section by observing that there is no loss of generality
when choosing the block subdivision (3.2) to compute local equations, since this
situation can be retrieved by applying elementary operations on the rows and
columns of A(x);
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The rank at a critical point

In this section we study the expected rank of the linear matrix A(x) when evalu-
ated at a point x ∈ Cn that extends to a solution (x, y, z) of the Lagrange system
`(A ◦M,U, S, v). We conclude in Lemma 3.19 that up to genericity assumptions
our algorithm always computes points of maximal rank r.

Let N,P,Q,R,Σ(N) be as in the block subdivision 3.2. Let

Ã =
(

Ip N−1Q
0 Σ(N)

)
.

Lemma 3.18 implies that the equations of Vr in the open set {(x, y) : detN 6= 0}
read

ÃY (y) = 0,
UY (y)− S = 0.

The entries of the above expressions are elements of the local ring Q[x]det N .
From Lemma 3.18 we deduce that one can eliminate {yi,j}1≤i≤p,1≤j≤m−r from
the first group of equations Ã(x)Y (y) = 0, since they can be expressed as poly-
nomial functions of x and {yi,j}p+1≤i≤m,1≤j≤m−r. That is, using the notations
introduced in Lemma 3.18, we can express the entries of Y (1) as polynomials in x
and in the entries of Y (2). Furthermore, since UY (y)−S = 0 consists in (m−r)2

independent linear relations, one can eliminate (m−r)2 among the (m−p)(m−r)
entries of Y (2). One can finally re-write Σ(N)Y (2) = 0 as (m−p)(m−r) relations
in x and in the last (r − p)(m− r) entries of Y (2).

We denote by F the resulting polynomial system. Let z be the vector
(z1, . . . , z(m−p)(m−r)) of Lagrange multipliers, and let

g = (g1, . . . , gn) = z′DxF − (w1, . . . , wn).

The polynomial system (F, g) defines locally the critical points of the map
πw : x→ w1x1 + . . .+ wnxn restricted to Vr. We deduce in Lemma 3.19 that, if
p ≤ r − 1, and supposing that sets Dp have the expected dimension, the set of
local critical points is generically empty.

Lemma 3.19. Let A ∈Mn+1
m,m(C), 0 ≤ r ≤ m−1 and suppose that (A, r) satisfies

G3. Let p ≤ r−1 and let g = (g1, . . . , gn) be the polynomial system defined above.
Then there exists a non-empty Zariski open set W̃ ⊂ Cn such that if w ∈ W̃ then
g = 0 has no solution.

Proof. Let C ⊂ C2n+(r−p)(m−r)+(m−p)(m−r) be the constructible set defined by
g = 0 and by detN 6= 0 and rank A(x) = p, and let C be its Zariski closure. Let
πx : (x, y, z, w)→ x be the projection on the first n variables. The image πx(C)
is included in Dp ⊂ Dr and hence, since (A, r) satisfies G3, it has dimension at
most n− (m−p)2. The fiber of πx over a generic point x ∈ πx(C) is the graph of
the polynomial function w = z′DxF , and so it has codimension n and dimension
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(r− p)(m− r) + (m− p)(m− r) = (m− r)(m+ r− 2p). By the Theorem of the
Dimension of Fibers [145, Sec. 6.3, Th. 7] one deduces that the dimension of C
(and hence of C) is at most n−(m−p)2+(m−r)(m+r−2p) = n−(r−p)2. Since
p ≤ r − 1 then C has dimension at most n − 1. We deduce that the projection
of C onto the space Cn of w is a constructible set of dimension at most n − 1,
and consequently it is included in a proper hypersurface of Cn. Defining W̃ as
the complement of the hypersurface concludes the proof. q.e.d.

Local Lagrange systems

Let Vr = Vr(A,U, S) be the incidence variety. Consider the restriction of the
projection map πw : x → w1x1 + . . . + wnxn. We write below local equations
for the Lagrange system encoding the critical points crit (πw,Vr) contained in
some prescribed Zariski open subset of Vr. Recall that our algorithm computes
critical points with respect to the map π1 : x→ x1, which, in the aforementioned
notation, equals πe1 with e1 = (1, 0, . . . , 0) ∈ Rn.

Suppose that A ∈ A (cf. Proposition 3.6), and let c = (2m − r)(m − r).
Hence Vr is smooth and equidimensional, of codimension c. Moreover, the set of
critical points crit (πw,Vr) is the projection on the (x, y)−space of the solutions
of

f(A,U, S), (g, h) = z′
(
Dxf Dyf
w′ 0

)
,

where z = (z1, . . . , zc, zc+1). Now, since A ∈ A , at any solution (x, y, z) of
this polynomial system, zc+1 6= 0. Moreover, with the hypothesis w 6= 0,
also (z1, . . . , zc) 6= 0. Hence, to exclude possible trivial solutions coming from
the homogeneity with respect to variables z, one introduces a linear relation∑c
i=1 vizi − 1 for some v ∈ Qc. This leads to the following system:

f = 0, g = 0, h = 0,
c∑
i=1

vizi − 1 = 0. (3.3)

Let N,P,Q,R as in the block subdivision of A in (3.2), with p = r. Lemma 3.18
implies that the local equations of Vr ∩ {(x, y) : detN(x) 6= 0} are

Y (1) = −N−1QY (2), Σ(N)Y (2) = 0, U (1)Y (1) + U (2)Y (2) = S,

where Y (1), Y (2) is the row-subdivision of Y (y) as in Lemma 3.18 and U (1), U (2)

is the correspondent column-subdivision of U . We straightforwardly deduce the
relation

S = U (1)(−N−1QY (2)) + U (2)Y (2) = (−U (1)N−1Q+ U (2))Y (2).

Since S is full-rank, then Y (2) and −U (1)N−1Q+U (2) are non-singular, and one
deduces that:

• the second group of equations is Σ(N) = 0;
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• the third group of equations is Y (2) = (−U (1)N−1Q+ U (2))−1S.

The entries of the Schur-complement Σ(N) can be read in the local ring Q[x]detN :
by allowing division by detN , they correspond exactly to the (m − r)2 minors
of A(x) obtained as determinants of the (r + 1) × (r + 1) submatrices of A(x)
containing N (cf. the proof of [139, Prop. 3.2.7]). Since A satisfies G1, the
Jacobian Dx(Σ(N)i,j) of the vector of entries of Σ(N) has full-rank at each
point x such that rank A(x) = r.

We denote by f ′ = (f ′1, . . . , f ′c) the local equations represented by the entries
of Y (1) +N−1QY (2), Σ(N) and Y (2)− (−U (1)N−1Q+U (2))−1S in the local ring
Q[x, y]detN . The Jacobian matrix of f ′ has the following structure:

D(f ′) = [Dx(f ′) Dy(f ′)] =

 Dx[Σ(N)]i,j 0(m−r)2×m(m−r)

?
Ir(m−r) ?

0 I(m−r)2

 .
Further, we consider the polynomials

(g′1, . . . , g′n, h′1, . . . , h′m(m−r)) = (z1, . . . , zc, zc+1)
(

Dxf
′ Dyf

′

w1 . . . wn 0

)
.

Remark that by the particular structure ofD(f ′), polynomials in h′ = (h′1, . . . , h′m(m−r))
equal zi, for i = (m−r)2 +1, . . . , c, and hence variables zi, i = (m−r)2 +1, . . . , c
can be eliminated. So we finally deduce that the local equations of the Lagrange
system (3.3) admit the following local equivalent formulation:

f ′ = 0, g′ = 0,
(m−r)2∑
i=1

vizi − 1 = 0, (3.4)

for a given v ∈ Q(m−r)2 . The projection of the solutions of this square system
(with n+ c+ 1 polynomials and n+ c+ 1 variables) on the (x, y)−space contains
the critical points of the restriction of πw to the set Vr ∩ {(x, y) : detN 6= 0},
where N is the upper-left r × r submatrix of A(x). Analogous square systems
can be obtained by localizing to a different r × r submatrix.

3.5.3 Finiteness of critical points

We first use the local analysis developed in the previous system to prove an
intermediate result towards Proposition 3.7. The proof of Proposition 3.7 is
given further.

An intermediate result

Denote by Ww = Ww(A,U, S, v) the algebraic set defined by the polynomial
system (3.3).
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Lemma 3.20. Let A satisfy G. There exist non-empty Zariski open sets V ⊂ Cc
and W ⊂ Cn such that if v ∈ V and w ∈ W , the following holds:

1. the set Ww(A,U, S, v) is finite and the Jacobian matrix of (3.3) has maxi-
mal rank at each point of Ww(A,U, S, v);

2. the projection of Ww(A,U, S, v) on the (x, y)-space contains the critical
points of πw : (x, y)→ w′x restricted to Vr(A,U, S).

Proof of Assertion 1. We first claim that we can reduce the polynomial equations
defining Ww to the local formulation (3.4). Indeed, we can suppose that w lies
in the non-empty Zariski open set W̃ ⊂ Cn defined in Lemma 3.19. We deduce
that, for such a choice, all solutions (x, y, z) to the system (3.3) are such that
rank A(x) = r. Consequently there exists a r × r submatrix N of A(x) such
that det N 6= 0. We prove below that there exist non-empty Zariski open sets
V ′N ⊂ Cc and WN ⊂ Cn such that for v ∈ V ′N and w ∈ WN , the statement of
Assertion (1) holds locally. Hence, to retrieve the global property, it is sufficient
to define V ′ (resp. W ) as the finite intersection of sets V ′N (resp. WN ∩ W̃ ),
where N varies in the finite collection of r× r submatrices of A. Hence we prove
below that sets V ′N and WN exist.

Without loss of generality we choose N to be the upper-left r× r submatrix
of A(x). We define the map

p : Cn+c+1 × W̃ × C(m−r)2 −→ Cn+c+1

(x, y, z, w, v) 7−→ (f ′, g′,
∑(m−r)2

i=1 vizi − 1)

and its section map

pv,w : Cn+c+1 −→ Cn+c+1

(x, y, z) 7−→ (f ′, g′,
∑(m−r)2

i=1 vizi − 1),

for fixed v ∈ C(m−r)2 and w ∈ W̃ , where f ′ and g′ have been defined in (3.4),
page 103. As in the proof of Proposition 3.6, we consider a first trivial case. If
p−1(0) = ∅, then for all v, w, p−1

v,w(0) = ∅, and the claim is proved by taking
V ′ = V ′N = Cc and W = WN = W̃ (see Lemma 3.19).

As in the proof of Proposition 3.6, for (x, y, z, w, v) ∈ p−1(0), we exhibit
a non-singular maximal minor of Dp at (x, y, z, w, v), which proves that 0 is a
regular value of p and that, by successively applying Thom’s Weak Transversality
Theorem and the Jacobian criterion, there exist V ′′N ⊂ C(m−r)2 and WN ⊂ Cn

such that if v ∈ V ′′N ∩ Q(m−r)2 and w ∈ WN ∩ Qn, the set Ww(A,U, S, v) ∩
{(x, y, z) : detN(x) 6= 0} is empty or zero-dimensional. We deduce that the
claim is true with V ′N = V ′′N × Cc−(m−r)2 , which is also non-empty and Zariski
open. We prove below this claim by exhibiting a non-singular submatrix of Dp.

Let us recall that A satisfies G. Hence the Jacobian matrix Df ′ has maximal
rank at (x, y). Moreover, zc+1 6= 0 and by

∑
vizi − 1 = 0 there exists 1 ≤ ` ≤
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(m − r)2 such that z` 6= 0. Then we consider the submatrix of Dp obtained by
isolating:

• the non-singular submatrix of Df ′;

• the derivatives of g1, . . . , gn with respect to w1, . . . , wn, giving the identity
block In;

• the derivative of
∑
vizi − 1 with respect to v`, which equals z` 6= 0.

The previous blocks generate a submatrix of size (n+ c+ 1)× (n+ c+ 1) whose
determinant does not vanish at (x, y, z, w, v). q.e.d.

Proof of Assertion 2. Suppose first that Ww(A,U, S, v) = ∅ for all w ∈ W̃ and
v ∈ Cc. Let w ∈ W̃ , and (x, y) ∈ crit (πw,Vr). Since Vr is equidimensional
and smooth, there exists z 6= 0 such that (x, y, z) verifies z′Df = (w, 0). Since
z ≤ 0 there exists v ∈ Cc such that v′z = 1. Hence, we conclude (x, y, (z, 1)) ∈
Ww(A,U, S, v) 6= ∅, which is a contradiction. Hence crit (πw,Vr) = ∅.

Let A satisfy G. Suppose that ZC(p) is not empty, and that w ∈ W (defined
in Assertion 1). By [139, Sec. 3.2], crit (πw,Vr) is the image of the projection
πx,y on x, y of the constructible set:

S = {(x, y, z) : f = g = h = 0, z 6= 0}

where f, g, h have been defined in (3.3). As in the proof of Assumption 1, one can
apply Thom’s Weak Transversality Theorem to deduce that S has dimension at
most 1. Moreover, by homogeneity with respect to variables z, for each (x, y) ∈
πx,y(S), the fiber π−1

x,y(x, y) has dimension 1 (indeed, if (x, y, z) ∈ π−1
x,y(x, y),

then (x, y, λz) ∈ π−1
x,y(x, y) for all λ 6= 0). By the Theorem on the Dimension

of Fibers [145, Sec. 6.3, Th. 7], we deduce that πx,y(S) is finite. Moreover, for
(x, y) ∈ πx,y(S), let V(x,y) ⊂ Cc be the non-empty Zariski open set such that if
v ∈ V(x,y), the hyperplane

∑
vizi − 1 = 0 intersects transversely π−1

x,y(x, y). Let
V ′ ⊂ Cc be the set defined in the proof of Assertion 1. By defining

V = V ′
⋂

(x,y)∈πx,y(S)
V(x,y)

one concludes the proof. Indeed, V is a finite intersection of non-empty Zariski
open sets. q.e.d.

Proof of Proposition 3.7

We are finally able to deduce the proof of Proposition 3.7. The strategy is to
translate the choice of a generic parameter w ∈ Cn (and hence, a generic linear
function πw : x→ w′x) to the choice of a change of variables x 7→M x for some
M ∈ GLn(C).
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Proof of Proposition 3.7. Let V ,W be the sets defined in Lemma 3.20. We de-
note by

M1 =
{
M ∈ GL(n,C) : the first row of M−1 lies in W

}
.

M1 is non-empty and Zariski open since the entries ofM−1 are rational functions
of the entries of M . Let v ∈ V . Denoted by e′1 = (1, 0, . . . , 0) ∈ Qn, remark that
for any M ∈M1 the following identity holds:(

Df(A ◦M,U, S)
e′1 0 · · · 0

)
=
(
Df(A,U, S) ◦M
w′ 0 · · · 0

)(
M 0
0 Im(m−r)

)
where Df(A,U, S) ◦M means that in all entries of Df(A,U, S) we substitute
x 7→M x.

We conclude that the set of solutions of the system

f(A,U, S) = 0
(z1, . . . , zc)Df(A,U, S) + zc+1(w′, 0) = 0

v1z1 + · · ·+ vczc − 1 = 0
(3.5)

is the image by the map x
y
z

 7→
 M−1 0 0

0 Im(m−r) 0
0 0 Ic+1

 x
y
z

 .
of the set S of solutions of the system

f(A ◦M,U, S) = 0
(z1, . . . , zc)Df(A ◦M,U, S) + zc+1(e′1, 0) = 0

v1z1 + · · ·+ vczc − 1 = 0.
(3.6)

Let π be the projection that forgets the last coordinate zc+1. We deduce the
equality π(S) = Z(A ◦ M,U, S, v), and that π is a bijection. Moreover, it is
an isomorphism of affine algebraic varieties, since if (x, y, z) ∈ S, then its zc+1-
coordinate is obtained by evaluating a polynomial at (x, y, z1 . . . zc). Thus, we
deduce by Assertion 1 of Lemma 3.20 that:

• S and π(S) = Z(A ◦M,U, S, v) are finite;

• the Jacobian matrix associated to (3.6) has maximal rank at any point of
S.

Since π(S) = Z(A ◦M,U, S, v) and that π is an isomorphism, Assertion 1 of
Proposition 3.7 follows. Assertion (2) is a straightforward consequence of Asser-
tion 2 of Lemma 3.20. q.e.d.
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3.5.4 Closure of projections

The final step is to prove Proposition 3.8 yielding a regularity result about pro-
jections and connected components of real algebraic sets Dr ∩ Rn. The key
strategy is to exploit general results proved in Chapter 2, Section 2.2. Indeed,
for Z = Dr and M ∈ GLn(C), we recall that in Section 2.1.2 we built the
recursive decomposition

{Oi(M−1Dr) : i = 0, . . . , d}

(with d = dimDr) of M−1Dr into algebraic sets.

Proof of Assertion 1 of Proposition 3.8. Let M2 ⊂ GLn(C) be the non-empty
Zariski open set defined in Proposition 2.4, page 67, for Z = Dr. We deduce
that any M ∈M2 verifies P(Dr) (cf. Section 2.2.1 on page 65). Observe that for
M ∈ GLn(C), there is a natural bijective correspondence between the collection
of connected components of Dr ∩Rn and the one of M−1Dr ∩Rn, which is given
by C ↔M−1C.

Let us fix M−1C ⊂ M−1Dr ∩ Rn connected component, with M ∈ M2.
Consider the projection πi restricted to M−1Dr ∩Rn. Since M ∈M2, by Propo-
sition 2.2, the boundary of πi(M−1C) is a subset of πi(Oi−1(M−1Dr) ∩M−1C)
and hence it is contained in πi(M−1C). This implies that πi(M−1C) is closed
and concludes Assertion 1. q.e.d.

Proof of Assertion 2 of Proposition 3.8. Let M ∈ M2 and let t ∈ R be in the
boundary of π1(M−1C). By Lemma 2.5, π−1

1 (t) ∩M−1C is finite. For a fixed
x ∈ π−1

1 (t) ∩ M−1C, let p ≤ r be the rank of A(x). The polynomial system
y 7→ f(A,U, S) parametrized by U, S is hence linear in y and can be rewritten(

A(x)
U

)
Y (y) =

(
0m×(m−r)

S

)
. (3.7)

System (3.7) is equivalent to m− r linear systems of equations, whose unknowns
are the entries of the columns of Y (y) and whose constant terms are the columns
of the right side matrix of (3.7). By linear algebra (apply the Rouché-Capelli
Theorem [98] to each linear system) the equations (3.7) have a solution if and
only if each column of the right side matrix lies in the space spanned by the
columns of A(x). This is possible if and only if

rank
(
A(x)
U

)
= rank

(
A(x)
U

0m×(m−r)
S

)
.

Denote by:

• rx,U , the number of rows of U that do not lie in the space spanned by the
rows of A(x), and by
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• rx,U,S , the number of rows of (U | S) that do not lie in the space spanned
by the rows of (A(x) | 0).

Since S has full rank, we deduce that, for all U , rx,U ≤ rx,U,S = m− r (no line of
S is the zero vector). Moreover, since x is fixed, there exists a non-empty Zariski
open set UC,x such that if U ∈ UC,x then rx,U = m− r and

rank
(
A(x)
U

)
= p+ rx,U = p+m− r

and
rank

(
A(x)
U

0m×(m−r)
S

)
= p+ rx,U,S = p+m− r.

This implies that, for U ∈ UC,x, the system y 7→ f(A,U, S) has at least one
solution. One concludes by defining

U =
⋂

C⊂Dr∩Rn

⋂
x∈π−1

1 (t)∩C

UC,x.

The set U is non-empty and Zariski open by the finiteness of the number of
connected components of Dr ∩ Rn and of the set π−1

1 (t) ∩ C. q.e.d.

3.6 First experiments

We present in this section a first bunch of experimental data for the algorithm
LowRank. We refer to Section 5.2.1 for a more deep discussion on the practical
performances and to Section 5.1 for a description of the implementation.

(m, r, n) PPC LowRank deg MBB on deg maxdeg MBB on maxdeg
(3, 2, 8) 109 18 39 49 12 16
(3, 2, 9) 230 20 39 49 12 16
(4, 2, 5) 12.2 26 100 574 80 504
(4, 2, 6) ∞ 593 276 2394 176 1820
(4, 2, 7) ∞ 6684 532 6530 256 4136
(4, 2, 8) ∞ 42868 818 12851 286 6321
(4, 2, 9) ∞ 120801 1074 19403 286 6552
(4, 3, 10) ∞ 303 284 367 84 108
(4, 3, 11) ∞ 377 284 367 84 108
(5, 2, 7) 4.2 0.7 0 0 0 0
(5, 2, 8) 8 0.7 0 0 0 0
(5, 2, 9) ∞ 903 175 5005 175 5005
(6, 3, 8) ∞ 2 0 0 0 0
(6, 5, 4) ∞ 8643 726 1106 540 825

Table 3.1 – Timings and degrees for dense linear matrices (cf. Table 5.1, page
148)

We have implemented our algorithm under maple and compared it with the
functions of the real algebraic geometry library raglib [135] implemented by
Safey El Din. Table 3.1 contains some data. In column LowRank we report on
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timings (expressed in seconds) of our algorithm with input randomly generated
linear matrices, and allowing the expected rank to vary; in column PPC we give
the timings of the execution of the function PointsPerComponents of raglib: this
function computes at least one point in each connected component of the input
algebraic set, implementing the best known state-of-the-art exact algorithms
[137]. The input of PointsPerComponents is the list of minors of size r + 1 of A.

We recall that LowRank is a recursive algorithm. At the end of each recursive
subroutine LowRankRec, a rational parametrization is computed (cf. step 4 in
the formal description of this subroutine on page 83). After each recursive step
the first variable x1 is eliminated by considering the intersection of Dr ∩Rn with
a generic fiber of the projection π1 : x→ x1.

• The symbol ∞ means that the computation did not end after 48 hours.

• The column deg contains the degree of the output representation para-
metrizing the union of all finite sets computed during the recursive sub-
routines. That is, the output of LowRank is a rational parametrization of
degree deg, whose solutions meet every connected component of Dr ∩ Rn.
We put a 0 in the table when the output of LowRank is the empty list.

• The column maxdeg contains the maximum of the degrees of the parame-
trizations computed in the recursive routines LowRankRec at step 4 (cf.
page 83). As for deg, when the empty list is returned, we put a 0 in the
table.

• The columns “MBB on deg” and “MBB on maxdeg” contain the multilinear
Bézout bounds (on deg and maxdeg, respectively) computed in Corollary
3.11 and Proposition 3.10, respectively.

As clarified by Table 5.1, the values of deg, maxdeg and of their multilinear
bounds, stabilize when m, r are fixed and n grows. Moreover, the bounds are
sharp when no solutions are computed (that is, when the real algebraic setDr∩Rn
is empty).
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Chapter 4

Exact algorithms for linear
matrix inequalities

Linear matrix inequalities (LMI) define an important class of algebraic con-
straints that appear in many contexts, mainly in various formulations of polyno-
mial optimization problems, and in control theory, where such inequalities arise,
e.g., in Lyapunov stability theory for linear systems. The main interest concern-
ing LMI is deciding whether the associated feasible set is empty or not, and, in
the positive case, to compute one of its elements. Moreover, it is of tremendous
importance to design algorithms proving the emptiness when it occurs. In this
chapter we design an exact algorithm solving this decision problem. The key re-
sult is a theorem for spectrahedra, allowing to reduce the emptiness problem to
a suitable version of the real root finding problem for low rank loci of symmetric
linear matrices.

The results of this chapter are part or generalizations of [69, 71].

4.1 Introduction

4.1.1 Problem statement

Let A0, A1, . . . , An ∈ Sm(Q) be symmetric matrices of size m with entries in the
field Q. Consistently with the notation introduced for linear matrices in Chapter
3, we denote by A(x) = A0 +x1A1 + · · ·+xnAn the pencil generated by matrices
Ai. For any x ∈ Rn, the evaluated matrix A(x) is also symmetric.

The central object of this chapter is the semi-algebraic set containing the
points x ∈ Rn where the eigenvalues of the evaluated matrix A(x) are all non-
negative, that is the associated spectrahedron

S = {x ∈ Rn : A(x) � 0}.

This chapter investigates the following problem.
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Problem 4 (Emptiness of spectrahedra). Design an efficient and exact algo-
rithm whose input is A = (A0, A1, . . . , An) ∈ Sn+1

m (Q), and whose output is
either

(A) the empty list, if and only if S = ∅, or

(B) a rational parametrization encoding a finite subset of Rn meeting the set
S in at least one point x∗.

In order to make the goal which is hidden into Problem 4 explicit, we re-
mark that our approach for solving Problem 4 will lead to answer the following
questions, for a given symmetric pencil A:

• Is the associated spectrahedron S empty?

• If S 6= ∅, how can we compute a point x∗ ∈ S ?

• If S 6= ∅, what is the minimum rank attained by A(x) on S ?

4.1.2 Main result and chapter outline

Strategy and main result

The strategy to attack Problem 4 relies on a result (discussed and proved in
Section 4.2) which relates the emptiness problem for spectrahedra and that of
symmetric low rank loci. It can be summarized as follows.

Step 1. Suppose that S is not empty, and that r(A) is the minimum rank
attained by A(x) on S . We prove further in Theorem 4.4 that S contains at
least one of the connected components of Dr ∩ Rn where r = r(A).

Step 2. Hence computing one point on S can be performed by computing one
point per connected component on the set Dr ∩ Rn, where r = r(A). This can
be done by designing a variant of algorithm LowRank described in Chapter 3,
dedicated to symmetric pencils.

The main result of this chapter is stated by the following two theorems. The
proof of the first one is obtained by merging the proof of correctness of the
algorithm given in Theorem 4.14, page 127, and the estimate of its complexity,
which is given by Theorem 4.19, page 137.

Similarly to the algorithm LowRank of Chapter 3, this new algorithm is exact
and probabilistic. Given as input a symmetric pencil A(x), it builds a flag of
incidence varieties Vp, p = 0, . . . , r(A), as in Chapter 3. The algorithm assume as
hypotheses that the incidence varieties are regular (smooth and equidimensional)
and that the defining polynomials generate a radical ideal.

Theorem 4.1 (Main Theorem 4). Suppose that for 0 ≤ r ≤ m−1, the incidence
variety Vr is smooth and equidimensional and that its defining polynomial system
generates a radical ideal. There is a probabilistic algorithm that takes A as input
and returns:
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1. either the empty list, if and only if S = ∅, or

2. the coordinates of a vector x∗ such that A(x∗) = 0, if and only if the linear
system A(x) = 0 has a solution, or

3. a rational parametrization q = (q0, q1, . . . , qn, qn+1) ∈ Q[t]n+2 such that
there exists t∗ ∈ R with qn+1(t∗) = 0 and:

• A(q1(t∗)/q0(t∗), . . . , qn(t∗)/q0(t∗)) � 0 and
• rankA(q1(t∗)/q0(t∗), . . . , qn(t∗)/q0(t∗)) = r(A).

The number of arithmetic operations performed are in

O˜

n ∑
r≤m−1

(
m

r

)
(n+ pr + r(m− r))7

(
pr + n

n

)6
 if S is empty

O˜

n ∑
r≤r(A)

(
m

r

)
(n+ pr + r(m− r))7

(
pr + n

n

)6
 if S is not empty,

with pr = (m− r)(m+ r + 1)/2. If S is not empty, the degree of q is in

O

( m

r(A)

)(
pr(A) + n

n

)3
 .

In Section 4.6 we present a dedicated variant for linear Hankel matrices. This
variant leads to the following special complexity estimates.

Theorem 4.2 (Main Theorem 5). Let A be a n−variate linear Hankel matrix of
size m, and let r ≤ m− 1. Suppose that for 0 ≤ p ≤ r, the incidence variety Vp
is smooth and equidimensional and that its defining polynomial system generates
a radical ideal. Suppose that, for 0 ≤ p ≤ r, Dp is empty or has the expected
dimension n− 2m+ 2p+ 1.

There exists a probabilistic algorithm such that, with input (A, r), returns in
output a rational parametrization q = (q0, q1, . . . , qn, qn+1) ⊂ Q[t] of degree at
most (

2m− r − 1
r

)
+

n∑
k=2m−2r

r∑
p=0

d(m, k, p)

with d(m, k, p) ∈ O(
(k+2m−p−1

k

)3), within

O

 r∑
p=0

pn(2m− p)(pn(2m− p)(n+ 2m)2 + (n+ 2m)4)d(m,n, p)2


arithmetic operations over Q. The set defined by q contains at least one point in
each connected component of the real algebraic set Dr ∩ Rn.
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We remark here that both Theorem 4.1 and 4.2 lead to complexities respec-
tively for the emptiness problem for spectrahedra and for the real root finding
problem for Hankel linear matrices, that are essentially quadratic on the degree
of the output rational parametrization. Moreover, for the special subclasses of
these problems when the size m of the matrix is fixed, the complexity is polyno-
mial in n, the number of variables.

Outline

Section 4.2 contains a geometric fact about spectrahedra on which the whole
procedure strongly relies. The main algorithm together with its subroutines is
described in Section 4.4, while its complexity is estimated in Section 4.5. Finally,
in Section 4.6 we describe a dedicated variant of such an algorithm for Hankel
matrices. Numerical tests and examples of the applications of the algorithms of
Theorems 4.1 and 4.2 are in Chapter 5, Section 5.3.

4.2 The smallest rank on a spectrahedron

We first present a geometric result about spectrahedra: it relates the geometry
of linear matrix inequalities to the rank stratification of the defining symmetric
pencil A(x).

Notation 4.3. If S = {x ∈ Rn : A(x) � 0} is not empty, we denote the
minimum rank attained by A(x) on S by r(A).

We recall that Sm(Q) denotes the vector space of symmetric m×m matrices
with entries in Q, and that a symmetric linear matrix is an element of the
(n+1)−fold Cartesian product Sn+1

m (Q) of Sm(Q). We believe that the following
fact is known to the community of researchers working on real algebraic geometry
and semidefinite optimization; however, we did not find any explicit reference in
the literature, and hence we prefer to give our original contribution.

Theorem 4.4 (Main Theorem 3). Suppose that S 6= ∅, and let r = r(A). Let
C be a connected component of Dr ∩Rn such that C ∩S 6= ∅. Then C ⊂ S (and,
hence, C ⊂ (Dr \ Dr−1) ∩ Rn).

Proof. By assumption, at all points of S , the matrix A has rank at least r = r(A)
and there exists a point in S where the rank of A is exactly r. We consider the
vector function

e = (e1, . . . , em) : Rn −→ Rm

where e1(x) ≤ . . . ≤ em(x) are the ordered eigenvalues of A(x).
Let C ⊂ Dr ∩ Rn be the given connected component such that C ∩S 6= ∅,

and let x ∈ C ∩S . One has rankA(x) = r and

e1(x) = . . . = em−r(x) = 0 < em−r+1(x) ≤ . . . ≤ em(x).
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Suppose that there exists y ∈ C such that y /∈ S ; that is rankA(y) ≤ r but A(y)
is not positive semi-definite. In particular, one eigenvalue of A(y) is strictly
negative.

Let g : [0, 1]→ C be a continuous semi-algebraic map such that g(0) = x and
g(1) = y. This map exists since C is a connected component of an algebraic set.
The image g([0, 1]) is compact and semi-algebraic. Let

T = {t ∈ [0, 1] : g(t) ∈ S } = g−1(g([0, 1]) ∩S ).

Since g is continuous, T ⊂ [0, 1] is closed. So it is a finite union of closed intervals.
Since 0 ∈ T (in fact, g(0) = x ∈ S ) there exists t0 ∈ [0, 1] and N ∈ N such that
[0, t0] ∈ T and for all p ≥ N , t0 + 1

p /∈ T .
One gets that g(t0) = x′ ∈ S and that for all p ≥ N , g(t0 + 1

p) = x′p /∈
S . By definition, x′, x′p ∈ C ⊂ Dr ∩ Rn for all p ≥ N , and since x′ ∈ S ,
we get rankA(x′) = r and rankA(x′p) ≤ r for all p ≥ N . We also get that
rankA(g(t)) = r for all t ∈ [0, t0]. We finally have x′p → x′ when p→ +∞, since
g is continuous. There exists a map

ϕ :
{
p ∈ N : p ≥ N

}
→
{
0, 1, . . . , r

}
which assigns to p the index of eigenvalue-function among e1, . . . , em correspond-
ing to the maximum strictly negative eigenvalue of A(x′p), if it exists; otherwise
it assigns 0. Remark that since rankA(x′p) ≤ r for all p, then 0 ≤ ϕ(p) ≤ r for
all p, and the map is well defined. In other words, the eigenvalues of A(x′p) are

e1(x′p) ≤ . . . ≤ eϕ(p)(x′p) < 0
0 = eϕ(p)+1(x′p) = . . . = λϕ(p)+m−r(x′p)

0 ≤ eϕ(p)+m−r+1(x′p) ≤ . . . ≤ em(x′p),

for p ≥ N . Since the sequence {ϕ(p)}p≥N is bounded, up to taking a sub-
sequence, it admits at least a limit point by Bolzano-Weierstrass Theorem [2,
Th. 3.4.8]. Since it is an integer-value sequence, this limit point is an integer
number. Moreover, if 0 ≤ ` ≤ r is a limit point, and {pj}j∈N a subsequence
such that ϕ(pj) → `, then we claim that there exists an integer N ′ such that
ϕ(pj) = ϕ(pj+1) = ` for all j ≥ N ′ (which means that j 7→ ϕ(pj) is constant for
j ≥ N ′): this holds since the map ϕ takes only integer values.

Suppose that there exists a limit point ` > 0 (strictly positive), and let
{pj}j∈N and N ′ be as above. One obtains that ϕ(pj)→ ` and that this sequence
is constant for j ≥ N ′. Hence, the zero eigenvalues of A(x′pj

) are

0 = λ`+1(x′pj
) = . . . = λ`+m−r(x′pj

),

for all j ≥ N ′. Since x′pj
→ x′ and e1, . . . , em are continuous functions, we obtain
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that

e1(x′) ≤ . . . ≤ e`(x′) ≤ 0,
0 = e`+1(x′) = . . . = e`+m−r(x′),

0 ≤ e`+m−r+1(x′) ≤ . . . ≤ em(x′).

Since A(x′) � 0, one gets 0 = e1(x′) = . . . = e`+m−r(x′), that is A(x′) has at
least `+m− r > m− r zero eigenvalues. This implies that rankA(x′) ≤ r − 1,
which is a contradiction, since we assumed x′ ∈ S and that r is the minimum
rank attained by A on S .

We deduce that 0 is the unique limit point of ϕ, hence ϕ converges to 0. We
already showed that in this case ϕ(p) = 0 for p ≥ N ′′, for some N ′′ ∈ N. This
means in particular that for p ≥ N ′′, the number of strictly negative eigenvalues
of A(x′p) = A(g(t0 + 1

p)) is zero, that is the matrix A is positive semidefinite at
any point in

{x′p : p ≥ N ′′}.

So this set is included in S , which contradicts our assumptions. We conclude
that the set C \S is empty, that is C ⊂ S . By the minimality of the rank r in
{rankA(x) : x ∈ S }, one deduces that C ⊂ (Dr \ Dr−1) ∩ Rn. q.e.d.

The previous theorem allows to deduce the following dichotomy on the input
symmetric linear pencil A(x):

• Either S = ∅, or

• S contains one connected component of Dr(A).

Consequently, the problem of deciding the emptiness and computing sample finite
subsets of spectrahedra is reduced to a dedicated variant of the real root finding
problem (already addressed for generic matrices in Chapter 3) for symmetric
pencils. In particular, by Theorem 4.4, in order to compute one point on S
one only has to solve the following problem: for r = r(A), compute a rational
parametrization whose solution set meets every connected component C ⊂ Dr ∩
Rn such that C ∩ Dr−1 = ∅.

4.3 Examples of spectrahedra

We present some examples of spectrahedra with explicit pictures. In Section 5.3
we will apply the algorithm of this chapter on these examples.

Example 4.5. We consider the 3× 3 linear matrix

A(x) =

 1 x1 x2
x1 1 x3
x2 x3 1

 .
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The convex region {x ∈ R3 : A(x) � 0} is the Cayley spectrahedron, pictured in
Figure 4.1 with its algebraic boundary.

Figure 4.1 – The Cayley spectrahedron

This spectrahedron appears in the semidefinite relaxation of the well-known
MAXCUT problem in graph theory, cf. for example [102]. The four points delim-
itating the convex region are singular points of the hypersurface {x ∈ R3 : detA(x) =
0} and correspond to the unique four rank-1 matrices in the pencil A(x). In this
case, one can verify directly the correctness of Theorem 4.4, since the boundary
of S contains all four connected components of D1 ∩ R3.

Example 4.6. Let

A(x) =


1 x1 0 x1
x1 1 x2 0
0 x2 1 x3
x1 0 x3 1

 .
The spectrahedron S = {x ∈ R3 : A(x) � 0} is known as the pillow, see also
[23, Sec. 5.1.1]. As for Figure 4.1, it is pictured in Figure 4.2 with the help of
the raytracing software povray, freely distributed and donwloadable at http:
// www. povray. org .

Figure 4.2 – The pillow and its algebraic boundary

The Zariski closure of its boundary is the real trace of the complex hypersur-
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face defined by the vanishing of

detA(x) = 1− x2
3 − x2

2 − 2x2
1 + x2

1x
2
3 − 2x2

1x2x3 + x2
1x

2
2.

As is clear from Figure 4.2, the determinantal hypersurface consists of four
branches arising from the convex set S. The boundary of S contains 4 sin-
gular points of the determinantal hypersurface, where A(x) has rank 2. Their
coordinates can be found by computing a Gröbner basis of the ideal generated by
the 3 × 3 minors of A, namely {2x2

1 − 1, 2x2
3 − 1, x2 + x3}. In particular, these

four points are contained in the hyperplane x2 + x3 = 0.

Example 4.7. We consider the following matrix:

A(x) =



1 0 x1 0 −3
2 − x2 x3

0 −2x1
1
2 x2 −2− x4 −x5

x1
1
2 1 x4 0 x6

0 x2 x4 −2x3 + 2 x5
1
2

−3
2 − x2 −2− x4 0 x5 −2x6

1
2

x3 −x5 x6
1
2

1
2 1


.

This is the Gram matrix of the trivariate polynomial

f(u1, u2, u3) = u4
1 + u1u

3
2 + u4

2 − 3u2
1u2u3 − 4u1u

2
2u3 + 2u2

1u
2
3 + u1u

3
3 + u2u

3
3 + u4

3,

that is f = v′A(x)v where x = (x1, x2, x3, x4, x5, x6) is any real vector and

v = (u2
1, u1u2, u

2
2, u1u3, u2u3, u

2
3)

is the monomial basis of the vector space of polynomials of degree 2 in u1, u2, u3.
The polynomial f is nonnegative and hence, since it is homogeneous of de-

gree 4 in 3 variables, by Hilbert’s theorem (cf. [83]) it is a sum of at most three
squares of polynomials in R[u1, u2, u3]. Scheiderer proved in [142] that f does
not admit a sum-of-squares decomposition in Q[u1, u2, u3], that is, the summands
in the sos-decomposition cannot be chosen to have rational coefficients, answer-
ing a question of Sturmfels. We will compute the smallest rank of Scheiderer’s
spectrahedron in Section 5.3.5.

4.4 The algorithm

In this section we describe the algorithm SolveLMI, taking as input a symmetric
linear matrix A(x) and returning as output a point x ∈ Rn such that A(x) is
positive semi-definite, if such a point exists; otherwise it detects the emptiness
of the spectrahedron S = {x ∈ Rn : A(x) � 0}. The coordinates of this feasible
point can be given as the solution of a system of linear equations (in case the
pencil A(x) contains the null matrix) or they are encoded by a rational univariate
parametrization.

The formal description of SolveLMI is shown further in Section 4.4.3 and the
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analysis of its correctness is contained in Section 4.4.4.

4.4.1 Expected dimension of symmetric low rank loci

We first compute the dimension of algebraic sets Dr, for r = 0, . . . ,m − 1 and
when A is a generic symmetric pencil. This can be done according to classical
results about the dimension of the set of singular symmetric matrices and of
their strata depending on the rank. We review in the next lemma this classical
proof.

Lemma 4.8. There exists a non-empty Zariski open subset A ⊂ Sn+1
m (C) such

that, if A ∈ A ∩ Sn+1
m (Q), for all r = 0, . . . ,m− 1, the set Dr is either empty or

it has dimension n−
(m−r+1

2
)
.

Proof. Let x̃ denote the vector of m(m+ 1)/2 variables xi,j , 1 ≤ i ≤ j ≤ m, and
let X ∈ Sm(Q[x̃]) be the symmetric matrix with entries xi,j .

Let Z = ZC(minors (r + 1, X)) ⊂ Cm(m+1)/2. Let G(m− r,m) be the Grass-
mannian of (m− r)−planes in Cm: it is an affine variety of dimension r(m− r)
(cf. [62, Lec. 6]). Let

I = {(X,H) ∈ Cm(m+1)/2−1 ×G(m− r,m) : H ⊂ ker(X)}.

Let π1 and π2 be the projections of I respectively onto the first and the second
factor. Then π2 maps I surjectively onto G(m− r,m), and for H ∈ G(m− r,m),
then dim π−1

2 (H) = r(r + 1)/2. To check this last dimension count, suppose
without loss of generality that H is generated by the first m − r vectors of the
standard basis: then π−1

2 (H) is the set of symmetric matrices such that the first
m− r columns and, hence, the first m− r rows, are zero.

We deduce by the Theorem on the Dimension of Fibers [145, Sec. 6.3, Th. 7]
that I is irreducible of dimension r(m − r) + r(r + 1)/2. Hence Z = π1(I) is
irreducible, of dimension r(m− r) + r(r+ 1)/2 (and codimension

(m−r+1
2

)
) since

any fiber of π1 is finite. We conclude that Dr has the claimed dimension by
applying Bertini’s theorem as in the proof of Proposition 3.5, page 77. q.e.d.

We call the value of the dimension ofDr in Lemma 4.8 the expected dimension
of Dr.

4.4.2 Notation

We start with a description of the algebraic sets built during SolveLMI. These sets
share some features with those presented in Chapter 3 for algorithm LowRank.
We also have to build an incidence variety and to prove that this set is smooth
and equidimensional when the input linear matrix is generic.

We emphasize how the intrinsic structure induced by the symmetry of A(x)
generates explicit relations among the generators of such polynomial systems,
and how some of them can be eliminated.
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Incidence varieties for symmetric pencils

Let A(x) = A0 + x1A1 + · · · + xnAn be an n−variate m ×m symmetric linear
matrix, and let 0 ≤ r ≤ m − 1. As in Chapter 3, Section 3.3.2, we introduce
lifting variables y = (yi,j)1≤i≤m,1≤j≤m−r and we build an algebraic set whose
projection on the x−space is contained in the algebraic set Dr. Let

Y (y) =


y1,1 · · · y1,m−r
...

...
...

...
ym,1 · · · ym,m−r

 .

For ι = {i1, . . . , im−r} ⊂ {1, . . . ,m}, with #ι = m − r, we denote by Yι the
(m− r)× (m− r) sub-matrix of Y (y) obtained by isolating the rows indexed by
ι. There are

(m
r

)
such sub-matrices. For any choice of indices ι = {i1, . . . , im−r}

and for any matrix S ∈ GLm−r(Q), we define the set

Vr(A, ι, S) = {(x, y) ∈ Cn × Cm(m−r) : A(x)Y (y) = 0, Yι − S = 0}.

Since S has full rank, the previous polynomial relations imply that Y has full
rank and that the projection of Vr over the x−space is by definition contained
in the low rank locus Dr. Often, we will have S = Im−r, and, in this case, we
simplify the notation by denoting Vr(A, ι, Im−r) by Vr(A, ι), and f(A, ι, Im−r)
by f(A, ι). We denote by f(A, ι, S), or simply by f , the polynomial system
defining Vr(A, ι, S). For M ∈ GLn(C) we denote by f(A ◦M, ι, S) the entries of
A(M x)Y (y) and Yι − S, and by Vr(A ◦M, ι, S) its zero set. We also denote by
Uι ∈ Mm−r,m(Q) the full rank matrix whose entries are in {0, 1}, and such that
UιY (y) = Yι. By simplicity we call Uι the boolean matrix with index ι.

We finally remark the similarity between the polynomial system

A(x)Y (y) = 0

and the so-called complementarity conditions for the solutions of a couple of
primal-dual semidefinite program, see for example [117, Th. 3]. The difference is
that, in our case, the special size of Y (y) and the affine constraint Yι = S force
a rank condition on Y (y) and hence on A(x).

Eliminating redundancies

The polynomial system defining Vr(A, ι, S) contains redundancies induced by
polynomial relations between its generators. These relations can be eliminated to
obtain a minimal polynomial system defining the incidence variety, and allowing
to compute the codimension of Vr.

Lemma 4.9. Let M ∈ GLn, (C). Let ι ⊂ {1, . . . ,m}, with #ι = m − r, and
S ∈ GLm−r, (Q). Let A ∈ Sn+1

m (Q), and let f ∈ Q[x, y]m(m−r)+(m−r)2 be the
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polynomial system defining Vr. Then we can construct a system fred ⊂ f of
length m(m− r) +

(m−r+1
2

)
such that 〈fred〉 = 〈f〉.

Proof. In order to simplify notations and without loss of generality we suppose
M = In, S = Im−r and ι = {1, . . . ,m−r}. We substitute Yι = Im−r in A(x)Y (y),
and we denote by gi,j the (i, j)−th entry of the resulting matrix. We denote by
fred the following system:

fred = (gi,j for i ≤ j, Yι − Im−r) .

We claim that for 1 ≤ i 6= j ≤ m− r, then

gi,j ≡ gj,i mod 〈gk,`, k > m− r〉 ,

which implies that fred verifies the statement. Let ai,j denote the (i, j)−th entry
of A(x). Let i < j and write

gi,j = ai,j +
m∑

`=m−r+1
ai,`y`,j and gj,i = aj,i +

m∑
`=m−r+1

aj,`y`,i.

We deduce that gi,j − gj,i =
∑m
`=m−r+1 ai,`y`,j − aj,`y`,i since A is symmetric.

Also, modulo the ideal 〈gk,`, k > m− r〉, and for ` ≥ m− r+ 1, one can explicit
ai,` and aj,`, by using polynomial relations g`,i = 0 and g`,j = 0, as follows:

gi,j − gj,i ≡
m∑

`=m−r+1

− m∑
t=m−r+1

a`,tyt,iy`,j +
m∑

t=m−r+1
a`,tyt,jy`,i

 ≡
≡

m∑
`,t=m−r+1

a`,t (−yt,iy`,j + yt,jy`,i) ≡ 0 mod 〈gk,`, k > m− r〉 .

This last congruence concludes the proof. q.e.d.

Example 4.10. We explicitly write down the redundancies shown in Lemma 4.9
for a simple example. We consider a 3× 3 symmetric matrix of unknowns, and
the kernel corresponding to the configuration {1, 2} ⊂ {1, 2, 3}. Hence, let f11 f12

f21 f22
f31 f32

 =

 x11 x12 x13
x12 x22 x23
x13 x23 x33

 1 0
0 1
y31 y32

 .
We consider the classes of f12, f12 in the quotient ring Q[x]

/
〈f31, f32〉 , de-

ducing the following linear relation:

f12 − f21 = y32x13 − y31x23 ≡ −y31x33y32 + y32x33y31 = 0.
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Lagrange systems

Let f(A, ι, S) be the polynomial system defining Vr(A, ι, S). We set

c = m(m− r) +
(
m− r + 1

2

)
and e =

(
m− r

2

)
,

so that Vr ⊂ Cc+e and c = #fred (cf. Lemma 4.9 on page 120). We define, for
a given M ∈ GLn(C), the polynomial system ` = `(A ◦M, ι, S), given by the
coordinates of the map

` : Cn × Cm(m−r) × Cc+e −→ Cn+m(m−r)+c+e

(x, y, z) 7−→ (f, z′Df − (e′1, 0)) ,

where f = f(A ◦M, ι, S) and e1 ∈ Qn is the first element of the standard basis.
We define also Z(A ◦M, ι, S) = ZC(`(A ◦M, ι, S)). When S = Im−r, we omit it
in the previous notations.

4.4.3 Real root finding for symmetric linear matrices

Before giving a detailed formal description of SolveLMI, we describe its main sub-
routine LowRankSym, which is a variant for symmetric pencils of the algorithm
of Chapter 3.

Let A be a symmetric linear pencil, and let S = {x ∈ Rn : A(x) � 0} be the
associated spectrahedron. We recall that by Theorem 4.4, the set S (actually,
its Euclidean boundary) contains at least one connected component of the real
set Dr ∩ Rn, where r minimizes the rank of A over S . Moreover, as remarked
at the end of Section 4.2, Theorem 4.4 implies that it is sufficient to compute a
finite set intersecting each connected component of Dr∩Rn which does not meet
Dr−1 ∩ Rn.

Genericity properties

We define the following properties for a symmetric linear matrix A ∈ Sn+1
m (Q):

• Property P1. We say that A satisfies P1 if, for all ι ⊂ {1, . . . ,m}, with
#ι = m − r, and for all S ∈ GLm−r(Q), the incidence variety Vr(A, ι, S)
is either empty or smooth and equidimensional. We will always suppose
S = Im−r without loss of generality.

• Property P2. We say that A satisfies P2 if, for all r such that n <
(m−r+1

2
)
,

the algebraic set Dr has the expected dimension. By Lemma 4.8, this
means that Dr = ∅. Property P2 holds generically in Sn+1

m (Q), as shown
by Lemma 4.8.

We also define the following properties for a polynomial system f ⊂ Q[x] and
a Zariski open set O ⊂ Cn:
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• Property Q. Suppose that f ⊂ Q[x] generates a radical ideal and that it
defines an algebraic set of codimension c, and let O ⊂ Cn be a Zariski open
set. We say that f satisfies Q in O, if the rank of Df is c in ZC(〈f〉) ∩ O.

Algorithm

We give next the formal description of the main body of algorithm LowRankSym,
taking as input A satisfying Properties P1 and P2, and r ∈ {0, . . . ,m− 1}, and
returning a sample subset of Dr∩Rn. Consistently with the analogous algorithm
for generic linear matrices presented in Chapter 3, we prefer to stress on the
recursive feature by presenting, first, its preamble.

LowRankSym(A, r)
Input: A symmetric n−variate linear matrix A(x) of size m, en-
coded by the m(m+1)(n+1)/2 rational entries of A0, A1, . . . , An,
and an integer 1 ≤ r ≤ m− 1;
Output: Either the empty list [ ], if and only if Dr∩Rn = ∅, or an
error message stating that the genericity assumptions are not sat-
isfied, or a rational parametrization q = (q0, q1, . . . , qn, qn+1) ∈
Q[t]n+2, such that for every connected component C ⊂ Dr ∩
Rn, with C ∩ Dr−1 = ∅, there exists t∗ ∈ ZR(qn+1) with
(q1(t∗)/q0(t∗), . . . , qn(t∗)/q0(t∗)) ∈ C.

Procedure:
1. if n <

(
m−r+1

2
)
then return [ ];

2. for ι ⊂ {1, . . . ,m} with #ι = m− r do

• if IsReg((A, ι)) = false then return(“the input is not
generic”);

3. return(LowRankSymRec(A, r)).

The algorithm first excludes the case when the expected (complex) dimension
of Dr is negative. In this case it returns immediately the empty list. Otherwise,
it checks that the genericity assumptions are satisfied for the variety Vr(A, ι),
where ι runs over the subsets of {1, . . . ,m} of cardinality m − r. This is done
with the subroutine IsReg, cf. its definition on page 81.

If the incidence varieties are all regular, a recursive subroutine LowRankSym-
Rec is called. We use subroutines Image, Union and Lift manipulating rational
parametrizations, already defined in Chapter 3, Section 3.3.3, on page 81.
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LowRankSymRec(A, r)
Procedure:

1. choose M ∈ GLn(Q);

2. q ← [ ]; for ι ∈ {1, . . . ,m} with #ι = m− r do

• qι ← Image(RatParProj(`(A ◦M, ι)),M−1);
• q ← Union(q, qι);

3. choose t ∈ Q; A← (A0 + tA1, A2, . . . , An);

4. q′ ← Lift(LowRankSymRec(A, r), t);

5. return(Union(q, q′)).

The routine RatParProj computes a rational parametrization of the projection
of the Lagrange system `(A◦M, ι) over the x−space. The correctness theorem of
the main algorithm SolveLMI (shown in Theorem 4.14) relies on the correctness
of its main sub-algorithm LowRankSym.

4.4.4 Main algorithm: description

The input is a symmetric n−variate linear matrix A(x) of size m, that is the
m(m+ 1)(n+ 1)/2 entries of A0, A1, . . . , An, and the expected output is one of
the following three alternatives:

• the empty list;

• a vector x∗ = (x∗1, . . . , x∗n) such that A(x∗) = 0;

• a rational parametrization q = (q0, q1, . . . , qn, qn+1) ∈ Q[t]n+2, such that
there exists t∗ ∈ ZR(qn+1) with

A(q1(t∗)/q0(t∗), . . . , qn(t∗)/q0(t∗)) � 0.

The different subroutines of SolveLMI are described next:

• SolveLinear: with input linear equations A(x) = 0, it returns the empty list
iff ZC(A(x)) is empty, otherwise it returns x∗ such that A(x∗) = 0;

• LowRankSym: with input a symmetric linear matrix A and an integer r,
it returns either the empty list (if and only if Dr ∩ Rn = ∅) or a rational
parametrization q whose solutions meet each connected component C ⊂
Dr ∩ Rn such that C ∩ Dr−1 = ∅: its formal description is given in Section
4.4.3;

• CheckLMI: with input a symmetric linear matrixA and a rational parametriza-
tion q = (q0, q1, . . . , qn, qn+1), it returns true if there exists t∗ ∈ ZR(qn+1)
such that A(q1(t∗)/q0(t∗), . . . , qn(t∗)/q0(t∗)) � 0, and false otherwise.
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SolveLMI(A)
Input: A symmetric n−variate linear matrix A(x) of size m, en-
coded by the m(m+1)(n+1)/2 rational entries of A0, A1, . . . , An;

Output: The empty list [ ] if and only if {x ∈ Rn : A(x) �
0} is empty; or an error message stating that genericity as-
sumptions are not satisfied, or, otherwise, either a vector x∗ =
(x∗1, . . . , x∗n) such that A(x∗) = 0, or a rational parametriza-
tion q = (q0, q1, . . . , qn, qn+1) ∈ Q[t]n+2, such that there exists
t∗ ∈ ZR(qn+1) with A(q1(t∗)/q0(t∗), . . . , qn(t∗)/q0(t∗)) � 0.

Procedure:

1. x∗ ← SolveLinear(A = 0); if x∗ 6= [ ] then return(x∗);

2. for r from 1 to m− 1 do:

• q ← LowRankSym(A, r);
• if q = “the input is not generic” then return (q);
• if q 6= [ ] then b← CheckLMI(A, q);
• if b = true then return(q);

3. return([ ], “the spectrahedron is empty”).

The formal description of SolveLMI is given on page 125.

4.4.5 Main algorithm: correctness

We prove that algorithm SolveLMI returns a correct output if genericity prop-
erties on input data and on random parameters chosen during its execution are
satisfied. We write down a correctness proof in Theorem 4.14; it relies on some
preliminary results that are described before. The proofs of these intermediate
results are given in Section 4.4.6.

The genericity of Property P2 has been proved in Lemma 4.8. Remark that,
following the path of the proof of Proposition 3.6, page 84, one can easily check
that, if a linear matrix A(x) = A0 +x1A1 + · · ·+xnAn satisfies P2, and if t ∈ Q is
generic, then the (n−1)−variate linear matrix A0 + tA1 +x2A2 + · · ·+xnAn also
satisfies P2. This property is technical and it is only needed to use induction
in the proof of correctness (Theorem 4.14). In practical but also degenerate
situations where P2 does not hold, the algorithm returns the correct output. We
show one example in Section 5.3.5 where P2 does not hold.

The first result is a regularity theorem for the incidence varieties. We focus
on property P1 for the input matrix A. Its statement and the proof strategy are
similar to Proposition 3.6, page 84 of Chapter 3.
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Proposition 4.11. Let m,n, r ∈ N with 0 ≤ r ≤ m− 1.

1. There exists a non-empty Zariski-open set A ⊂ Sn+1
m (C) such that if A ∈

A ∩ Sn+1
m (Q), then A satisfies P1;

2. if A satisfies P1, there exists a non-empty Zariski open set T ⊂ C such
that if t ∈ T ∩Q, the matrix A0 + tA1 + x2A2 + · · ·+ xnAn satisfies P1.

The second proposition computes the dimension of Lagrange systems defined
in Section 4.4.2. We show that the projection of their solution set over the
x−space is finite and that this set meets the critical points of the restriction of
the map π1 : x→ x1 to the incidence variety, similarly to Proposition 3.7.
Proposition 4.12. Let A ∈ Sn+1

m (Q) satisfy P1 and S ∈ GLm−r(Q). Then
there exists a non-empty Zariski open set M1 ⊂ GLn(C) such that, if M ∈
M1 ∩ Mn,n(Q), for all ι ⊂ {1, . . . ,m − r} of cardinality m − r, the following
holds:

1. The set Z(A ◦M, ι, S) satisfies Q in {(x, y, z) : rankA(M x) = r};

2. the projection of Z(A ◦ M, ι, S) ∩ {(x, y, z) : rankA(M x) = r} on the
x−space is empty or finite;

3. the projection of Z(A ◦M, ι, S) ∩ {(x, y, z) : rankA(M x) = r} on (x, y)
contains the set of critical points of the restriction of π1 to Vr(A◦M, ι, S)∩
{(x, y) : rankA(M x) = r}.

Finally, we show that, after a generic linear change of variables, closure prop-
erties of the projection maps restricted to Dr. Also, when we restrict our original
problem to the connected components of Dr ∩ Rn not meeting Dr−1, the next
proposition shows that it is sufficient to compute critical points on the incidence
variety Vr.
Proposition 4.13. Let A ⊂ Sn+1

m (C) be the set defined in Proposition 4.11
and let A ∈ A . Let d = dimDr. There exists a non-empty Zariski open set
M2 ⊂ GLn(C) such that if M ∈ M2 ∩Mn,n(Q), for any connected component
C ⊂ Dr ∩ Rn, the following holds:

1. for i = 1, . . . , d, πi(M−1C) is closed; further, for t ∈ R lying on the bound-
ary of π1(M−1C), then π−1

1 (t) ∩M−1C is finite;

2. let t lie on the boundary of π1(M−1C): for x ∈ π−1
1 (t) ∩ M−1C, with

rankA(M x) = r, there exists ι ⊂ {1, . . . ,m} and (x, y) ∈ Vr(A ◦M, ι)
such that π1(x, y) = t.

As in Section 3.3.4 for algorithm LowRank, to prove correctness of SolveLMI
we must state some genericity hypothesis. We say that H holds if: input data A
and all parameters generated by SolveLMI belong to the Zariski open sets defined
in Proposition 4.11, 4.12 and 4.13, and A satisfies Property P2.

We recall that Sn+1
m,m(Q) is the set of vectors (A0, A1, . . . , An) such that Ai is

a symmetric matrix with entries in Q, for i = 0, . . . , n.
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Theorem 4.14. Let A ∈ Sn+1
m,m(Q) be the input symmetric linear matrix, and

suppose that hypothesis H is satisfied. Let S = {x ∈ Rn : A(x) � 0} be the
associated spectrahedron. Then two alternatives can hold:

1. S = ∅: hence the output of SolveLMI with input A is the empty list;

2. S 6= ∅: hence the output of SolveLMI with input A is either a vector x∗
such that A(x∗) = 0, if such a point exists; or a rational parametrization
q = (q0, q1, . . . , qn, qn+1) ∈ Q[t]n+2 such that there exists t∗ ∈ ZR(qn+1)
with:

• A(q1(t∗)/q0(t∗), . . . , qn(t∗)/q0(t∗)) � 0 and
• rankA(q1(t∗)/q0(t∗), . . . , qn(t∗)/q0(t∗)) = r(A).

Proof. Suppose that the linear system defined by the entries of A(x) has at least
one solution. Hence, the routine SolveLinear with input A returns a vector x∗
such that A(x∗) = 0. Since the zero matrix is positive semi-definite, we deduce
that x∗ ∈ S 6= ∅ and that the rank of A attains its minimum on S at x∗. We
deduce that, if A(x) = 0 has at least one solution, the algorithm returns a correct
output.

Suppose now that A(x) has rank greater than or equal to one on S . We claim
that the sub-routine LowRankSym is correct, in the following sense: with input
the symmetric linear matrix A(x) of size m and any 1 ≤ r ≤ m − 1, such that
H holds, the output of LowRankSym(A, r) is a rational parametrization whose
solutions meet each connected component C of Dr such that C ∩ Dr−1 = ∅.

We assume for the moment this claim and consider two possible alternatives:

1. S = ∅. Consequently, CheckLMI outputs false at each iteration of Step 2
in SolveLMI. Hence the output of SolveLMI is the empty list, and correctness
follows.

2. S 6= ∅. Let r ≥ 1 be the minimum rank attained by A(x) on S . Denote
by C ⊂ Dr ∩Rn a connected component such that C ∩S 6= ∅. By Theorem
4.4, we deduce that C ⊂ S , and that C ∩ Dr−1 = ∅, by the minimality
of r. Let q be the output of LowRankSym at Step 2 of SolveLMI. The
correctness hypothesis on LowRankSym implies that q defines a finite set
whose solutions meet C, hence S . Consequently, the sub-routine CheckLMI
returns true at Step 2, and hence the algorithm stops returning the correct
output q.

We end the proof by showing that LowRankSym is correct. This is straightfor-
wardly implied by the correctness of the recursive subroutine LowRankSymRec,
which is proved below by using induction on the number of variables n.

For n <
(m−r+1

2
)
, since H holds, the algebraic set Dr is empty, and hence

LowRankSym returns the correct answer: [ ], the empty list.
Let n ≥

(m−r+1
2

)
, and let (A, r) be the input. The induction hypothesis

implies that for any (n − 1)−variate symmetric linear matrix Ã satisfying P1,
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then LowRankSymRec with input (Ã, r) returns a rational parametrization of a
set meeting each connected component C ⊂ D̃r such that C ∩ D̃r−1 = ∅, with
D̃r = {x ∈ Rn−1 : rank Ã(x) ≤ r}.

Let C ⊂ Dr be a connected component with C ∩ Dr−1 = ∅, and let M be
the matrix chosen at Step 1. Hence, since H holds, by Proposition 4.13 the set
π1(M−1C) is closed.

First case. Suppose first that π1(M−1C) = R, let t ∈ Q be the rational
number chosen at Step 3, and let Ã = (A0 + tA1, A2, . . . , An) ∈ Snm(Q). We
deduce that π−1

1 (t) ∩M−1C 6= ∅ is the union of some connected components of
the algebraic set D̃r = {x ∈ Rn−1 : rank Ã(x) ≤ r} not meeting D̃r−1. Also, since
A satisfies G, so does A ◦M ; by Proposition 4.11, for all ι ⊂ {1, . . . ,m}, for f =
f(A◦M, ι), the polynomial system (f, x1−t) generates a smooth equidimensional
algebraic set. By the induction assumption, LowRankSymRec with input (Ã, r)
returns at least one point in each connected component C̃ ⊂ D̃r not meeting
D̃r−1, hence one point in C by applying the subroutine Lift at Step 4. Correctness
follows.

Second case. Otherwise, π1(M−1C) 6= R and, since it is a closed set, its
boundary is non-empty. Let t belong to the boundary of π1(M−1C), and suppose
w.l.o.g. that π1(M−1C) ⊂ [t,+∞). Hence t is the minimum of the restriction of
the map π1 to M−1C. By Proposition 4.13, the set π−1

1 (t) ∩M−1C 6= ∅ is finite,
and for all x in this set, rankA(M x) = r. Fix x ∈ π−1

1 (t)∩M−1C. By Proposition
4.13, there exists ι and y ∈ Cm(m−r) such that (x, y) ∈ Vr(A ◦M, ι). Also, by
Proposition 4.11, the set Vr(A ◦M, ι) is smooth and equidimensional. As in the
proof of Theorem 3.9, one deduces that (x, y) is a critical point of the restriction
of π1 to Vr(A ◦M, ι) and that there exists z such that (x, y, z) ∈ Z(A ◦M, ι).
Hence, at Step 2, the routine LowRankSymRec outputs a rational parametrization
qι, among whose solutions the vector x lies. q.e.d.

4.4.6 Proof of intermediate results

Proof of Proposition 4.11

Proof of Assertion 1. Suppose w.l.o.g. that M = In and S = Im−r. For ι ⊂
{1, . . . ,m} of cardinalitym−r, let fred be the polynomial system given by Lemma
4.9. We prove that there exists a non-empty Zariski open set Aι ⊂ Sn+1

m (C) such
that, if A ∈ Aι∩Sn+1

m (Q), fred generates a radical ideal and ZC(fred) is empty or
equidimensional, of codimension the length of fred, that is m(m− r) +

(m−r+1
2

)
.

We conclude that, for A ∈ Aι, A satisfies P1. Then, we conclude by defining
A = ∩ιAι, non-empty and Zariski open.

Suppose w.l.o.g. that ι = {1, . . . ,m− r}. We consider the map

p : Cn+m(m−r) × Sn+1
m (C) −→ Cm(m−r)+(m−r+1

2 )
(x, y,A) 7−→ fred
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and, for a fixed A ∈ Sn+1
m (C), its section map

pA : Cn+m(m−r) −→ Cm(m−r)+(m−r+1
2 )

(x, y) 7−→ p(x, y,A).

Remark that, for any A, ZC(pA) equals Vr(A, ι).
Suppose p−1(0) = ∅: this implies that, for all A ∈ Sn+1

m (C), ZC(fred) =
Vr(A, ι) = ∅, that is A satisfies P1 for all A in Aι = Sn+1

m (C).
If p−1(0) 6= ∅, we prove below that 0 is a regular value of p, and we conclude on

the existence of the Zariski open set Aι by Thom’s Weak Transversality Theorem
[139, Sec. 4.2] and by the Jacobian criterion (cf. [39, Th. 16.19] or Theorem 1.9),
as in the proof of Proposition 3.6.

LetDp be the Jacobian matrix of p: it contains the derivatives of polynomials
in fred with respect to variables x, y,A. We recall that A is a short-hand notation
for the vector of symmetric matrices (A0, A1, . . . , An) ∈ Sn+1

m (C); we denote by
a`,i,j the variable encoding the (i, j)−th entry of the matrix A`. We isolate the
columns of Dp corresponding to:

• the derivatives with respect to variables {a0,i,j : i ≤ m− r or j ≤ m− r};

• the derivatives with respect to variables yi,j such that i ∈ ι.

Let (x, y,A) ∈ p−1(0), and consider the evaluation of Dp at (x, y,A). The above
columns contain the following non-singular blocks:

• the derivatives w.r.t. {a0,i,j : i ≤ m − r or j ≤ m − r} of the entries of
A(x)Y (y) after reduction, that is I(m−r)(m+r+1)/2;

• the derivatives w.r.t. {yi,j : i ∈ ι} of polynomials in Yι − Im−r, that is
I(m−r)2 .

Hence, the above columns define a maximal non-singular sub-matrix of Dp at
(x, y,A), of size m(m−r)+

(m−r+1
2

)
= #fred = c (cf. Section 4.4.2). Indeed, the

entries of Yι − Im−r do not depend on variables a0,i,j . Since (x, y,A) ∈ p−1(0) is
arbitrary, we deduce that 0 is a regular value of p, and we conclude. q.e.d.

Proof of Assertion 2. Fix ι ⊂ {1, . . . ,m} with #ι = m− r. Since A satisfies P1,
Vr(A, ι) is either empty or smooth and equidimensional of codimension m(m −
r)+

(m−r+1
2

)
. Suppose first that Vr = ∅. Hence for all t ∈ C, Vr∩{x1−t = 0} = ∅,

and we conclude by defining T = C. Otherwise, consider the restriction of the
projection map π1 : (x, y) → x1 to Vr. By Sard’s Lemma [139, Sec. 4.2], the set
of critical values of the restriction of π1 to Vr is included in a finite subset H ⊂ C.
We deduce that, for t ∈ T = C \ H, the matrix A0 + tA1 + x2A2 + · · · + xnAn
satisfies P1. q.e.d.
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Proof of Proposition 4.12

We recall that for a given symmetric pencil A ∈ Sn+1
m (Q), S ∈ GLm−r(C) and

for ι ⊂ {1, . . . ,m} of cardinality m − r, we have denoted by f = f(A, ι, S) the
polynomial system defining Vr(A, ι, S). We set

c = m(m− r) +
(
m− r + 1

2

)
and e =

(
m− r

2

)
.

Then f has length c+e = m(m−r)+(m−r)2, and e is the number of redundancies
that are eliminated by Lemma 4.9. By this lemma and by Proposition 4.11, we
deduce that, for A ∈ A :

• there exists fred ⊂ f of length c, such that ZC(fred) = ZC(f) = Vr;

• Vr is smooth and equidimensional of codimension c.

In particular, the rank of Df is constantly equal to c if evaluated along a point
in Vr.

Let A(x) be a symmetric linear matrix, and consider the locally closed set

D̂r = {x ∈ Cn : rankA(x) = r}.

The set D̂r is given by the union of sets Dr ∩ {x ∈ Cn : detN(x) 6= 0} where N
runs over all r × r sub-matrices of A(x).

Fix S and ι as above. Let N be the upper left sub-matrix r × r sub-matrix
of A(x), and consider the corresponding block division of A as in (3.2), on page
100. We do not take any advantage of the symmetry of N , so that this block-
subdivision is without loss of generality.

Let Q[x, y]detN be the local ring obtained by localizing Q[x, y] at 〈detN〉.
Let Y (1) (resp. Y (2)) be the matrix obtained by isolating the first r (resp. the
last m− r) rows of Y (y). Hence, Lemma 3.18, page 100, gives local equations of
Vr in {(x, y) : detN(x) 6= 0}. These are given by

Y (1) +N−1PY (2) = 0, Σ(N)Y (2) = 0, Yι − S = 0, (4.1)

where Σ(N) = R− P ′N−1P is the Schur complement of N in A.
Let w ∈ Cn be a non-zero vector and consider the projection map induced

by w
πw : (x1, . . . , xn, y) 7→ w1x1 + · · ·+ wnxn.

For A ∈ A (given by Proposition 4.11), for all ι and S as above, the critical points
of the restriction of πw to Vr(A, ι, S) are encoded by the polynomial system

f(A, ι, S), (g, h) = z′
(

Df
Dπw

)
= z′

(
Dxf Dyf
w′ 0

)
, (4.2)
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where z = (z1, . . . , zc+e, 1) is a vector of Lagrange multipliers. Indeed, equations
induced by (g, h) imply that the vector w is normal to the tangent space of Vr
to (x, y).

We compute the dimension and prove regularity properties of the intersection
of ZC(f, g, h) with the Zariski open set {(x, y, z) : rankA(x) = r}.

Lemma 4.15. Let S ∈ GLm−r(Q), and let A ∈ Sn+1
m (Q) satisfy P1. There exists

a non-empty Zariski open set W ⊂ Cn such that, if w ∈ W , and ι is as above,
the following holds:

1. the system (f, g, h) in (4.2) satisfies Q in {(x, y, z) : rankA(x) = r};

2. the projection of ZC(f, g, h) ∩ {(x, y, z) : rankA(x) = r} in the x−space is
empty or finite;

3. the projection of ZC(f, g, h)∩{(x, y, z) : rankA(x) = r} in the space of x, y,
contains the critical points of the restriction of πw to the locally closed set
Vr ∩ {(x, y) : rankA(x) = r}.

Proof of Assertion 1. The strategy relies on applying ThomWeak Transversality
Theorem and Jacobian criterion, as in the proof of Lemma 3.20, page 103.

We prove below the following claim: given a r×r sub-matrix N of A(x), there
exists WN ⊂ Cn such that for w ∈ WN , (f, g, h) satisfies Q in {(x, y, z) : detN 6=
0}. We straightforwardly deduce Assertion 1 by defining W =

⋂
N WN , where N

runs over all r × r sub-matrices of A(x).
Let Uι ∈ C(m−r)×m be the boolean matrix such that UιY (y) = Yι, and

let Uι = (U (1)
ι | U (2)

ι ) be the subdivision with U
(1)
ι ∈ C(m−r)×r and U

(2)
ι ∈

C(m−r)×(m−r). We deduce from Lemma 4.1 the following local equations for Vr:

Y (1) +N−1PY (2) = 0, Σ(N)Y (2) = 0, UιY (y)− S = 0.

Similarly to Lemma 3.20, we deduce that the above equations are equivalent to

Σ(N) = 0, Y (1) +N−1PY (2) = 0, Y (2) − (U (2)
ι − U (1)

ι N−1P )−1S = 0,

in the local ring Q[x, y]detN . We collect the above equations in a system f̃ , of
length c+ e. Hence, the Jacobian matrix of f̃ is

Df̃ =

 Dx[Σ(N)]i,j 0(m−r)2×m(m−r)

?
Ir(m−r) ?

0 I(m−r)2

 .
By hypothesis, the rank of Df̃ is constant and equal to c if evaluated at (x, y) ∈
ZC(f̃) = Vr(A, ι, S) ∩ {(x, y) : detN 6= 0}. We similarly define

(g̃, h̃) = z′
(

Df̃
w′ 0

)
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with z = (z1, . . . , zc+e, 1). The structure of Df̃ implies that polynomial h̃i reads
z(m−r)2+i, for i = 1, . . . ,m(m− r), and hence it can be eliminated, together with
the corresponding variables z(m−r)2+i. Hence, one can consider the equivalent
equations (f̃ , g̃, h̃) where the last m(m− r) variables z do not appear in g̃.

Let us define the map

p : Cn+c+e+m(m−r) × Cn −→ Cn+c+e+m(m−r)

(x, y, z, w) 7−→ (f̃ , g̃, h̃)

and, for w ∈ Cn, its section map pw : (x, y, z) 7→ p(x, y, z, w). In the last part of
this proof, we show that 0 is a regular value of the map p, and we conclude.

We first exclude the trivial situation p−1(0) = ∅, by defining in this case
WN = Cn.

Otherwise, let (x, y, z, w) ∈ p−1(0). We first observe that polynomials in f̃
just depend on variables x and y, hence their contribution in the Jacobian matrix
Dp at (x, y, z, w) is the block Df̃ , whose rank is c, since (x, y) ∈ Vr. Hence, we
deduce that the rank of Dp at (x, y, z, w) is at most n+ c+m(m− r). Further,
by isolating the columns corresponding to

• the derivatives w.r.t. x, y,

• the derivatives w.r.t. w1, . . . , wn, and

• the derivatives w.r.t. z(m−r)2+i, i = 1, . . . ,m(m− r),

one obtains a (n+ c+ e+m(m− r))× (2n+ 2m(m− r)) sub-matrix of Dp with
rank n+ c+m(m− r). q.e.d.

Proof of Assertion 2. From Assertion 1 we deduce that the locally closed set

E = ZC(f, g, h) ∩ {(x, y, z) : rankA(x) = r}

is empty or e−equidimensional. If it is empty, we are done. Suppose that it is
e−equidimensional. Consider the projection map

πx : Cn+m(m−r)+c+e −→ Cn
(x, y, z) 7−→ x

and its restriction to E . Let x∗ ∈ πx(E). Then rankA(x∗) = r and there
exists a unique y ∈ Cm(m−r) such that f(x∗, y) = 0. Hence the fiber π−1

x (x∗) is
isomorphic to the linear space defined by{

(z1, . . . , zc+e) : (z1, . . . , zc+e)Df = (w′, 0)
}
.

Since the rank of Df is c, one deduces that π−1
x (x∗) is a linear space of dimension

e, and by the Theorem on the Dimension of Fibers [145, Sec. 6.3, Theorem 7] we
deduce that πx(E) has dimension 0. q.e.d.
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Proof of Assertion 3. Since the set Vr ∩ {(x, y) : rankA(x) = r} is smooth and
equidimensional, by [139, Lem. 3.2.1], for w 6= 0, the set crit (πw,Vr) is the set of
points (x, y) ∈ Vr such that the matrix

D(f, πw) =
(

Df
Dπw

)
has a rank ≤ c. In particular there exists z = (z1, . . . , zc+e, zc+e+1) 6= 0, such
that z′D(f, πw) = 0. One can exclude that zc+e+1 = 0, since this implies that Df
has a non-zero vector in the left kernel, which contradicts the fact that A ∈ A .
Hence w.l.o.g. we deduce that zc+e+1 = 1 and we conclude. q.e.d.

Proof of Proposition 4.12. Define M1 as the set of matrices M ∈ GLn(C) such
that the first row of M−1 is contained in the set W defined in Lemma 4.15. The
proof of all assertions follows from Lemma 4.15 since, for M ∈M1, one gets(

Df(A ◦M, ι, S)
e′1 0 · · · 0

)
=
(
Df(A,U, S) ◦M
w′ 0 · · · 0

)(
M 0
0 Im(m−r)

)
, (4.3)

where w′ is the first row of M−1. Indeed, for z = (z1, . . . , zc+e), we deduce from
the previous relation that the set of solutions to the equations

f(A, ι, S) = 0, z′Df(A, ι, S) = (w′, 0) (4.4)

is the image of the set of solutions of

f(A ◦M, ι, S) = 0, z′Df(A ◦M, ι, S) = (e′1, 0) (4.5)

by the linear map x
y
z

 7→
 M−1 0 0

0 Im(m−r) 0
0 0 Ic+e

 x
y
z

 .
This last fact is straightforward since from (4.3) we deduce that system (4.5) is
equivalent to

f(A ◦M, ι, S) = 0, z′ (Df(A, ι, S) ◦M) = (w′, 0).

Hence the three assertions of Proposition 4.12 are straightforwardly deduced by
Lemma 4.15. q.e.d.

Proof of Proposition 4.13

Proof of Assertion 1. We denote by M2 ⊂ GLn(C) the non-empty Zariski open
set defined in Proposition 2.4, page 67, for Z = Dr. Hence, for M ∈ M2, we
deduce that M satisfies P(Dr) (cf. page 65), and consequently, by Proposition
2.2, page 65, that Q(M−1Dr) holds. We deduce that for i = 1, . . . , d, and for
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any connected component C ⊂ Dr ∩Rn, the boundary of πi(M−1C) is contained
in πi(Oi−1(M−1Dr) ∩M−1C) ⊂ πi(M−1C), and hence πi(M−1C) is closed.

Moreover, let C ⊂ Dr ∩ Rn be a connected component and let t ∈ R be
in the boundary of π1(M−1C). Hence Proposition 2.5, page 67, implies that
π−1

1 (t) ∩M−1C is finite. q.e.d.

Proof of Assertion 2. Let M ∈M2. Consider the open set

O = {(x, y) ∈ Cn+m(m−r) : rankA(M x) = r, rank Y (y) = m− r}.

Its projection πx(O) on the x−space is the locally closed set

M−1D̂r = {x ∈ Cn : rankA(M x) = r} = M−1(Dr \ Dr−1).

We consider the restriction of polynomial equations in A(M x)Y (y) = 0 to O.
By definition of O, we can split the locally closed set O ∩ZC(A(M x)Y (y)) into
the union

O ∩ ZC(A(M x)Y (y)) =
⋃

ι ⊂ {1, . . . ,m}
#ι = m− r

(
Oι ∩ ZC(A(M x)Y (y))

)
.

with Oι = {(x, y) : detYι 6= 0}.
Let C ⊂ Dr ∩ Rn be a connected component. Let t lie in the frontier of

π1(M−1C), and x ∈ π−1
1 (t) ∩M−1C with rankA(M x) = r. Hence there exists

ι ⊂ {1, . . . ,m} such that x lies in the projection of Vr(A ◦M, ι) on the x−space.
Hence there exists y such that πx(x, y) = x and hence such that π1(x, y) =
t. q.e.d.

4.5 Complexity analysis

In order to estimate the complexity of the whole procedure SolveLMI we suppose,
as in Chapter 3 for LowRank, that all genericity assumptions are satisfied, and
consequently that no subroutine return error messages. We do not estimate the
complexity of IsReg.

4.5.1 Degree bounds

We first provide a bound on the degree of the rational parametrizations. The rea-
soning is similar to that of Section 3.4.1, and it uses Multilinear Bézout bounds.

Proposition 4.16. Let A ∈ Sn+1
m be the input of SolveLMI. Let pr = (m −

r)(m + r + 1)/2. If H holds, for all ι ⊂ {1, . . . ,m}, the degree of the rational
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parametrization q returned by LowRankSymRec at Step 2 is bounded above by

θ(m,n, r) =
∑

k∈Gm,n,r

(
pr

n− k

)(
n− 1

k + pr − 1− r(m− r)

)(
r(m− r)

k

)
,

with Gm,n,r = {k : max{0, n−pr} ≤ k ≤ min{n−
(m−r+1

2
)
, r(m−r)}}. Moreover,

for all m,n, r, θ(m,n, r) is bounded above by
(pr+n

n

)3.
Proof. The proof is similar to that of Proposition 3.10 and Proposition 3.12.
We simplify the polynomial system defining the incidence variety to a system
of pr bilinear equations with respect to variables x = (x1, . . . , xn) and y =
(ym−r+1,1, . . . , ym,m−r). Indeed, by Lemma 4.9, the incidence variety is defined
by Yι−S = 0 and by m(m−r)−e = p entries of A(x)Y (y), where e =

(m−r
2
)
(cf.

Section 4.4.6); hence we just eliminate equations Yι − S = 0 and the variables
corresponding to the entries of Yι. Consequently, the Lagrange system can be
also simplified, similarly to the proof of Proposition 3.10.

The bound θ(m,n, r), by [139, Ch. 11], is the coefficient of the monomial
snxs

r(m−r)
y spr−1

z in the expansion of

(sx + sy)pr (sy + sz)n−1(sx + sz)r(m−r).

The estimate θ(m,n, r) ≤
(pr+n

n

)3 can be obtained by applying the formula given
in the proof of Proposition 3.12. q.e.d.

We straightforwardly deduce the following global estimate.

Corollary 4.17. Let A ∈ Sn+1
m be the input of SolveLMI, and suppose that S is

not empty. Let r(A) be the minimum rank attained by A(x) on S . Let θ(m,n, r)
be the bound computed in Proposition 4.16. If H holds, the sum of the degrees of
the rational parametrizations computed during SolveLMI is bounded above by

∑
r≤r(A)

(
m

r

)
θ(m,n, r) ∈ O

 max
r≤r(A)

(
m

r

) (
m2+m

2 + n

n

)3 .
The degree of the rational parametrization whose solutions intersect S is(

m

r(A)

)
θ(m,n, r(A)) ∈ O

( m

r(A)

)(
pr(A) + n

n

)3
 .

Proof. We recall that, by Proposition 4.16, for any ι ⊂ {1, . . . ,m} of cardinality
m − r, the degree of the rational parametrization returned by LowRankSymRec
at Step 2 is bounded above by θ(m,n, r). The proof follows since:

1. the number of subsets ι ⊂ {1, . . . ,m} of cardinality m− r is
( m
m−r

)
=
(m
r

)
;

2. SolveLMI stops when r reaches r(A).
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q.e.d.

4.5.2 Complexity estimates

We first summarize the the complexity estimates of the main subroutines: Solve-
Linear, CheckLMI,Project, Lift, Image and Union. Further, we analyze the main
subroutine LowRankSym and give a Complexity Theorem for SolveLMI.

Complexity of minor subroutines

We first provide complexity estimates for all minor subroutines:

• The subroutine SolveLinear computes, if it exists, a solution of the linear
system A(x) = 0. It can be essentially performed by Gaussian elimination.
The complexity of solving a linear system of at most n variables is hence
in O(n3) arithmetic operations.

• The subroutine CheckLMI. This subroutine can be represented as follows.
Let q = (q0, q1, . . . , qn, qn+1) ⊂ Q[t] be the rational parametrization in the
input of CheckLMI, and let A(x) be the symmetric pencil. The spectrahe-
dron S = {x ∈ Rn : A(x) � 0} is the semi-algebraic set defined, e.g., by
the list of coefficients of the characteristic polynomial

p(s;x) = det(s Im +A(x)) = sm + p1(x)sm−1 + · · ·+ pm−1(x)s+ pm(x).

That is S = {x ∈ Rn : pi(x) ≥ 0, ∀ i = 1, . . . ,m}. Now, we make the sub-
stitution xi ← qi(t)/q0(t) in A(x) and compute the coefficients of p(s, x(t)),
that are rational functions of the variable t. Hence CheckLMI boil down
to deciding on the sign of m univariate rational functions over the finite
set defined by qn+1(t) = 0. We deduce that the complexity of CheckLMI is
polynomial in m and on the degree of qn+1 (that is, on the degree of q).

• The complexities of Project, Lift, Image and Union have been given in
Proposition 3.16, page 96. One can derive similar bounds by substitut-
ing δ(m,n, r) with the bound θ(m,n, r) computed in Proposition 4.16.

Complexity of the main subroutine and of the whole algorithm

As for algorithm LowRank described in Chapter 3, the complexity of LowRank-
Sym can be retrieved by computing the complexity of the recursive subroutine
LowRankSymRec, which also strictly depends on the computation of the rational
parametrization.

We recall that for symmetric pencils, the simplified Lagrange system (cf. the
proof of Proposition 4.16) contains pr polynomials of multidegree bounded by
(1, 1, 0), n − 1 polynomials of multidegree bounded by (0, 1, 1) and r(m − r)
polynomials of multidegree bounded by (1, 0, 1). Since the reasoning of Section
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3.4.2 on page 93 holds, we can use similarly the algorithm in [88] to build a
geometric resolution of the Lagrange system.

Following mutatis mutandis the proof of Proposition 3.15 and of technical
Lemma 3.14, one can similarly obtain the following complexity estimate for the
subroutine RatParProj.

Proposition 4.18. Let A ∈ Sn+1
m (Q) be the input of SolveLMI and 0 ≤ r ≤ m−1.

Let θ(m,n, r) be the bound defined in Proposition 4.16. Let pr = (m−r)(m+r+
1)/2. Then Step 2 of LowRankSymRec returns a rational parametrization within

O˜
((

m

r

)
(n+ pr + r(m− r))7 θ(m,n, r)2

)

arithmetic operations over Q.

Proof. Let ` be the simplified Lagrange system representing the input of Rat-
ParProj. We follow the same path as for the proof of Lemma 3.14, to compute
a bound for the degree e′ of the homotopy curve 3.1, just substituting pr to
m(m− r). We deduce the following bound:

e′ ∈ O ((n+ pr + r(m− r)) min{n, pr} θ(m,n, r)) .

We deduce the claimed complexity result by applying the estimate in [88, Prop. 6.1]
(cf. page 93), and by recalling that there are

(m
r

)
many subsets of {1, . . . ,m} of

cardinality m− r. q.e.d.

We straightforwardly deduce the following complexity estimate for SolveLMI.

Theorem 4.19. Let A ∈ Sn+1
m (Q) be the input symmetric pencil and suppose

that H holds. Let r(A) be the minimum rank attained by A on S , if S is not
empty, and let r(A) = m− 1 otherwise. Then algorithm SolveLMI runs within

O˜

n ∑
r≤r(A)

(
m

r

)
(n+ pr + r(m− r))7 θ(m,n, r)2


arithmetic operations over Q.

Proof. The proof follows since:

• From Proposition 4.18, we deduce that LowRankSymRec runs essentially
within O (̃

(m
r

)
(n+ pr + r(m− r))7 θ(m,n, r)2) arithmetic operations;

• there are at most n recursive calls of LowRankSymRec in LowRankSym;

• SolveLMI stops when r reaches r(A) if S 6= 0, otherwise it stops when
r = m− 1;

• the cost of subroutines SolveLinear, CheckLMI, Project, Lift, Image and Union
is negligible.
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q.e.d.

The complexity class in Theorem 4.19 is expressed directly as a function of
the bounds θ(m,n, r) computed in Proposition 4.16. Remark, finally, that this
value can be simplified by recalling that θ(m,n, r) ≤

(pr+n
n

)3.
4.6 Exploiting structure: Hankel pencils

The algorithm SolveLMI deals with the problem of deciding the emptiness of
spectrahedra, that is of sets given by positivity conditions on symmetric pencils.
Typically, the interest is to design dedicated algorithms that potentially exploit
relations among the entries of the matrix.

In this section we discuss a dedicated variant of the main subroutine LowRankSym
for Hankel matrices. The main idea is to exploit the relations between the poly-
nomial equations defining the incidence variety, arising from the Hankel structure
of the linear matrix, and is detailed in the next two paragraphs. For more de-
tailed results about the real root finding problem for Hankel matrices with rank
defect we refer to the work [69], which is published in the proceedings of ISSAC
2015, Bath UK.

Hankel linear pencils are interesting in the literature, as shown by the fol-
lowing example extracted from [141].

Example 4.20. Let n ∈ N, and consider the Hankel pencil

A(x) =


x0 x1 x2 · · · xn
x1 x2 x3 · · · xn+1
x2 x3 x4 · · · xn+2
...

...
...

...
xn xn+1 xn+2 · · · x2n

 ,

subject to the affine constraint

1−
n∑
j=0

(
n

j

)
x2j = 0.

The even moment curve (cf. [141, Sec. 5.2]) is the intersection of the real de-
terminantal variety D1 ∩ R2n+1, and of the associated spectrahedron S = {x ∈
R2n+1 : A(x) � 0}. This curve is defined by the 2× 2 minors of the matrix A.

The convex hull of the even moment curve is exactly the spectrahedron S .
The set S is, in particular, an orbitope [141], called the universal Carathéodory
orbitope. We will apply our algorithm with the variant for Hankel matrices, to
this example, in Section 5.3.3.

We remark here that the smallest rank attained by A on S is 1, and hence
that S is the convex hull of its points of minimal rank. This situation is not
typical in the geometry of spectrahedra, and in general to obtain the whole convex
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set it is not sufficient to consider just the minimal rank point. In the work [84],
the spectrahedra generated by rank 1 matrices have been studied.

Kernel of Hankel matrices

For {h1, . . . , h2m−1} ⊂ Q, we recall that the matrix H = (hi+j−1)1≤i,j≤m ∈
Sm(Q) with constant skew-diagonals, is called a Hankel matrix. We denote by
H ⊂ Sm(Q) the (2m− 1)−dimensional linear space of m×m Hankel matrices.

The structure of a Hankel matrix induces a structure on its kernel. By [64,
Th. 5.1], if H is a Hankel matrix of rank at most p, then there exists a non-zero
vector y = (y1, . . . , yp+1) ∈ Qp+1 such that the columns of them×(m−p) matrix

Y (y) =



y1 0 . . . 0

y2 y1
. . . ...

... y2
. . . 0

yp+1
... . . . y1

0 yp+1 y2
...

... . . . ...
0 0 yp+1


∈Mm,m−p(Q[y])

generate a (m − p)−dimensional subspace of the kernel of H. For example, for
m = 5 and p = 2 the matrix reads

Y (y) =


y1 0 0
y2 y1 0
y3 y2 y1
0 y3 y2
0 0 y3

 .

Hence a condition under which the matrix H has rank at most p is that HY (y) =
0 has a solution for some y 6= 0. Remark that also the product HY (y) is Hankel
and that the product HY (y) can be written as a matrix-vector product H̃y, with
H̃ a given rectangular Hankel matrix. Indeed, if H is the Hankel matrix defined
by the vector (h1, . . . , h2m−1) ∈ Q2m−1 as above, H Y (y) is a rectangular Hankel
matrix, of size m × (m − p), the set of whose entries coincide with the set of
entries of the matrix-vector product

H̃y =

 h1 . . . hp+1
...

...
h2m−p−1 . . . h2m−1


 y1

...
yp+1

 .
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Incidence varieties for Hankel linear matrices

Suppose that the generating symmetric matrices A0, A1, . . . , An belong to H.
Hence, the associated symmetric pencil A(x) is also a Hankel matrix for any
x ∈ Rn. Let r ≤ m− 1 be the maximum admissible rank for A(x).

For p ≤ r, let Ã(x) be the associated rectangular matrix defined in the
previous section. From [34, Cor. 2.2] one deduces that, for p′ ≤ p, the ideals
〈minors (p′+1, A(x))〉 and 〈minors (p′+1, Ã(x))〉 coincide. One deduces that x =
(x1, . . . , xn) ∈ Cn satisfies rank A(x) = p′ if and only if it satisfies rank Ã(x) =
p′.

Consider the algebraic set

Dr = {x ∈ Cn : rankA(x) ≤ r}.

We can define a flag of incidence varieties along the set Dr, dedicated to Hankel
pencils, as follows. For p ≤ r, we define

Vp = {(x, y) ∈ Cn × Cp+1 : Ã(x)y = 0, u′y − 1 = 0},

for a given u ∈ Qp+1. The set Vp encodes the fact that the rank of A(x) is at
most p, for some p ≤ r, and hence its projection on the x−space is contained in
Dp ⊂ Dr.

Description of the variant and main theorem

The algorithm dedicated to Hankel pencils then proceeds similarly to LowRank-
Sym, and relies on the following properties (that can be proved with the same
techniques as for Proposition 4.11, 4.12 and 4.13).

1. Up to genericity assumptions on the Hankel matrices A0, A1, . . . , An, all
algebraic sets Vp are smooth and equidimensional, since the polynomial
system f containing u′y − 1 and the set defined by Ã(x)y = 0 is smooth
and equidimensional. Also, the ideal generated by f is generically radical.
Moreover, up to genericity assumptions, the algebraic sets Dp have are
empty or have the expected dimension n− 2m+ 2p+ 1.

2. Up to a generic change of variables x 7→M x, the image of any connected
component C ⊂ Dp ∩ Rn by the projection π1 : x → x1 is closed (this can
be directly deduced by applying Proposition 2.5).

3. The set of critical points of the restriction of π1 to Dp \ Dp−1 ∩ Rn is
finite. Then, since Dr = ∪1≤p≤rDp \ Dp−1, one can compute one point
per connected component of Dr by computing one point in each connected
component C ⊂ Dp ∩ Rn such that C ∩ Dp−1 = ∅ as for LowRankSym, and
iterating on p.

The previous three facts can be proved using Thom’s Weak Transversality
Theorem and Sard’s Lemma as in Chapter 3 and 4. Also, the Lagrange systems
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encoding the critical points of the restriction of linear projections to the incidence
varieties Vp have a bilinear structure, and their degree is bounded by multilinear
Bézout bounds. Using the symbolic homotopy algorithm in [88] we conclude
Main Theorem 5, that is the following complexity estimate for the special case
of linear Hankel matrices. We restate below the main theorem.

Let A be a n−variate linear Hankel matrix of size m, and let r ≤ m−1. Let f be
the polynomial system defining the incidence variety Vr. Suppose that the ideal
〈f〉 is radical, that Vr is smooth and equidimensional and that, for 0 ≤ p ≤ r,
Dp is empty or has the expected dimension n− 2m+ 2p+ 1.

There exists a probabilistic algorithm such that, with input (A, r), returns in
output a rational parametrization q = (q0, q1, . . . , qn, qn+1) ⊂ Q[t] of degree at
most (

2m− r − 1
r

)
+

n∑
k=2m−2r

r∑
p=0

δ(m, k, p)

with δ(m, k, p) ∈ O(
(k+2m−p−1

k

)3), within

O

 r∑
p=0

pn(2m− p)(pn(2m− p)(n+ 2m)2 + (n+ 2m)4)δ(m,n, p)2


arithmetic operations over Q. The set parametrized by q contains at least one
point in each connected component of the real algebraic set Dr ∩ Rn.

We provide next, in Chapter 5, Section 5.3.3, results of numerical experiments
of an implementation of this speed-up for Hankel pencils.

4.7 First experiments

We report on some numerical experiments. A description of the implementation,
which is under maple, is given in the next chapter, in Section 5.1.

(m, r, n) LowRankSym deg maxdeg (m, r, n) LowRankSym deg maxdeg
(3, 2, 7) 16 13 6 (5, 2, 5) 1 0 0
(3, 2, 8) 17 13 6 (5, 2, 6) 5 35 35
(3, 2, 9) 18 13 6 (5, 3, 4) 1592 110 90
(4, 2, 3) 2 10 10 (5, 4, 5) 858 105 40
(4, 2, 4) 9 40 30 (6, 3, 5) 2 0 0
(4, 2, 5) 29 82 42 (6, 3, 6) 704 112 112
(4, 3, 6) 24 40 16 (6, 4, 3) 9 35 35
(4, 3, 7) 26 40 16 (6, 5, 3) 591 116 80

Table 4.1 – Timings and degrees for dense symmetric linear matrices

Table 4.1 contains a first group of tests on randomly generated symmetric
linear matrices. We recall that m is the size of the matrix, r is the expected rank
and n is the number of variables. A complete list of timings and values for the
output degree is given in Table 5.5, Section 5.3.1, page 153.
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In the column LowRankSym we report the timing in seconds; the column
deg contains the sum of the degrees of the rational parametrizations returned in
output, and column maxdeg the maximum of such degrees. With deg = 0 and
maxdeg = 0 we mean that the corresponding real determinantal variety Dr ∩Rn
is empty (hence the algorithm returns the empty list). The values of maxdeg
corresponds to the algebraic degree of certain semidefinite programs, and we
refer to Section 5.3.1 for a more complete discussion.
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Chapter 5

Software description and
numerical experiments

In Chapter 3 and 4 we have presented two exact algorithms. The goal is to solve
emptiness problems for real algebraic or semi-algebraic sets with determinantal
structure. The correctness of these algorithms relies on results of Chapter 2 and
bounds for their complexity have been discussed and provided explicitly. Our
next goal is to report results of experiments to reflect the complexity estimates.

This section contains a general documentation of a maple library imple-
mented during this PhD thesis. The name of this library is spectra, and will
be made available in September 2015. It strongly relies on results described in
Chapter 2, 3 and 4, and implements the aforementioned algorithms. We con-
clude our manuscript by discussing numerical results on dense matrices and on
interesting examples of the literature.

5.1 spectra: a library for real algebraic geometry
and semidefinite optimization

The algorithms described in Chapter 3 and 4 can be implemented in any com-
puter algebra system working in exact arithmetic performing computations us-
ing Gröbner bases and, possibly, computing rational parametrizations of zero-
dimensional ideals. Examples of these software systems are maple [109], maca-
ulay2 [107] or magma [108].

We present next our first implementation in the computer algebra system
maple. Its name is spectra and it takes the form of a collection of scripts
containing the functions implementing algorithms LowRank (cf. Chapter 3),
LowRankSym (containing the dedicated variant for Hankel matrices) and SolveLMI
(cf. Chapter 4).

The scripts contained in spectra have to be understood as a first step
towards a more general library containing implementations of algorithms using
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symbolic computation techniques for a large class of problems in real algebraic
geometry and optimization. Indeed, the acronym of spectra reads:

Semidefinite
Programming and
Exact
Computation
Towards
Real
Algebra.

The library spectra can be loaded under maple. It relies on the software
FGb for computing Gröbner bases, developed by J.-C. Faugère [43]. The current
version of FGb is available at: http://www-polsys.lip6.fr/~jcf/Software/
FGb/index.html. The first step for using the scripts contained in spectra is to
load the main file in a maple worksheet as follows:

read “main.mpl”;

This will automatically load the two instrumental scripts:

• proc.mpl: basic procedures for computing with algebraic or semi-algebraic
sets;

• lowrank.mpl: implementations of the algorithms described in Chapter 3
and 4.

Below, we briefly describe the implementations of algorithms LowRankSym and
SolveLMI. Algorithm LowRank is similarly implemented.

Implementation of LowRankSym

The procedure implementing this subroutine is named the same: LowRankSym.
It takes as input a couple (A, r) and returns a collection of rational parametriza-
tions the union of whose solutions meets all connected components of Dr ∩ Rn.

We list below the main aspects of such implementation:

• The computation of Gröbner bases is done using FGb. We use the im-
plementations of the algorithms [41] and [42]. Given a list of polynomials
list on variables vars, with fgb_gbasis(list,0,vars,[]) one computes
a Gröbner bases of the ideal generated by list; similarly fgb_gbasis_elim
provides Gröbner bases of elimination ideals. We use this last command to
eliminate Lagrange multipliers and kernel variables from Lagrange systems,
and to compute a Gröbner basis of the obtained ideal.

• The rational parametrizations are computed by the function fgb_matri-
xn. This implements the new efficient versions of FGLM algorithm [48]
obtained in [49, 47].
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• In order to simplify computations, we do not introduce changes of variables.
According to Lemma 4.15, one can equivalently compute critical points of
projections over generic lines in the space of the set Dr. This is what our
implementation does in practice.

Implementation of SolveLMI

The expected input of the function SolveLMI is a symmetric linear matrix A.
Then:

• It first solves the linear system A(x) = 0. This is done by performing
Gaussian operations on the rows of A.

• Then it iterates the subroutine LowRankSym for ranks r = 1, . . . ,m − 1.
Any rational parametrization computed by subroutines of LowRankSym is
the input of a routine CheckLMI checking whether one of the solutions lies
on the spectrahedron. This is done in practice by:

– applying the substitution xi = qi(t)
q0(t) in the linear matrix;

– isolating all solutions t∗ of the equation qn+1(t) = 0;
– for each solution t∗ of qn+1(t) = 0, computing the coefficients of the

polynomial s 7→ det(A(x(t∗))+sIm) and checking numerically whether
these are all positive.

A first example to run

Let us illustrate how spectra works on a simple example, the spectrahedron S
of Example 1.31, page 52 of Chapter 1. The real trace of its algebraic boundary
is a cubic which factorizes into the product of a conic and a line intersecting
into two points. At these points the defining matrix has rank 1 and is positive
semidefinite.

We call function SolveLMI in our maple worksheet with input the matrix A
of Example 1.31, as follows:

read “main.mpl”;
A := [[1− x1, x2, 0], [x2, 1 + x1, 0], [0, 0,−x2]];
SolveLMI(A);

The algorithm first verifies easily that A(x) = 0 has no solution by solving the
associated linear system. Then it runs LowRankSym with input (A, r) for r = 1, 2.
We analyze below the output messages for r = 1.

For r = 1 there are three possible kernel configurations since
(3
1
)

= 3. We
denote these configurations by [1, 2], [2, 3], [1, 3] where [i, j] means that we are
considering the set {i, j} ⊂ {1, 2, 3}. Hence at Step 2 three rational parametriza-
tions are computed. As remarked in Example 1.31, the two points where A has
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rank 1 are (−1, 0) and (1, 0), and their kernels are the linear spaces 〈e2, e3〉 and
〈e1, e3〉 respectively. Consequently, after the first step, the output is the empty
list:

-----------------------------------------------
Kernel Configuration : [1, 2]
Assumptions : satisfied
-----------------------------------------------
Number of Variables : 2
Degree of the Parametrization : 0
Time for Grobner Bases Computation : 2.50
Time for Rational Parametrization : 0.00
Fiber for Reconstruction Next Step : -9*x-96*y
Real Solutions : 0
Time for Isolation of Real Solutions : 0.00
Output : Empty list []
-----------------------------------------------
Number of Variables : 1
Degree of the Parametrization : 0
Time for Grobner Bases Computation : 4.58
Time for Rational Parametrization : 0.00
Fiber for Reconstruction Next Step : 75*y
Real Solutions : 0
Time for Isolation of Real Solutions : 0.00
Output : Empty list []
-----------------------------------------------

Conversely, the remaining configurations allow to compute and isolate the
coordinates of the two points, according to their kernel structure:

-----------------------------------------------
Kernel Configuration : [1, 3]
Assumptions : satisfied
-----------------------------------------------
Number of Variables : 2
Degree of the Parametrization : 1
Time for Grobner Bases Computation : 2.44
Time for Rational Parametrization : 0.00
Fiber for Reconstruction Next Step : -16*x+39*y
Real Solutions : 1
Time for Isolation of Real Solutions : 0.00
Output : [[x = [1., 1.], y = [0., 0.]]]
-----------------------------------------------
Number of Variables : 1
Degree of the Parametrization : 0
Time for Grobner Bases Computation : 4.54
Time for Rational Parametrization : 0.00
Fiber for Reconstruction Next Step : 93*y
Real Solutions : 0
Time for Isolation of Real Solutions : 0.00
Output : Empty list []
-----------------------------------------------

----------------------------------------------
Kernel Configuration : [2, 3]
Assumptions : satisfied
----------------------------------------------
Number of Variables : 2
Degree of the Parametrization : 1
Time for Grobner Bases Computation : 2.46
Time for Rational Parametrization : 0.00
Fiber for Reconstruction Next Step : 67*x-83*y
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Real Solutions : 1
Time for Isolation of Real Solutions : 0.00
Output : [[x = [-1., -1.], y = [0., 0.]]]
----------------------------------------------
Number of Variables : 1
Degree of the Parametrization : 0
Time for Grobner Bases Computation : 4.64
Time for Rational Parametrization : 0.00
Fiber for Reconstruction Next Step : 93*y
Real Solutions : 0
Time for Isolation of Real Solutions : 0.00
Output : Empty list []
----------------------------------------------

One can also have a report on the computational timings of all steps: compu-
tation of Gröbner bases, computation of parametrizations and isolation of real
solutions. Also, we display after Fiber for Reconstruction Next Step the
random linear function that is used to extract critical points. This expression
can be used to recover the eliminated variables from partial solutions computed
(if any) at the successive steps.

For any configuration, the timing of these computations was around 7 sec-
onds. For this tests and for all the experiments of this chapter, we have used the
same machine, with the following characteristics:

Intel(R) Xeon(R) CPU E7540@2.00GHz 256 Gb of RAM.

5.2 Numerical experiments for Chapter 3

Now, we discuss numerical tests on randomly generated and on practical exam-
ples of linear matrices.

The arithmetic complexity of our algorithms has been computed, for LowRank,
in Sections 3.3.4 and 3.4.2 of Chapter 3. We have also been interested in test-
ing whether this complexity estimate can be made effective by a performing
implementation.

While the complexity of the main routine RatPar is computed in Section 3.4.2
referring to the symbolic homotopy algorithm in [88], the practical computation
of rational parametrizations is done using Gröbner bases. To compute Gröbner
bases we use the engine FGb developed by J.-C. Faugere [43].

The first series of tests to evaluate the performance of LowRank is done with
input random linear matrices. We comment this randomness in the next section,
reporting on the obtained results. Further, in Section 5.2.2 we apply LowRank
to two interesting examples of the literature.

5.2.1 Tests on generic input data

As stated in the Main Theorem of Chapter 3, page 73, our algorithm LowRank is
probabilistic, since its correctness depends on the choice of random linear changes

147



of variables. Theorem 3.9 ensures that when both input data and parameters
are generic, the algorithm returns the correct and expected output.

(m, r, n) RAG spectra deg maxdeg (m, r, n) RAG spectra deg maxdeg
(3, 2, 2) 0.2 6 9 6 (5, 2, 3) 0.9 0.5 0 0
(3, 2, 3) 0.3 7.5 21 12 (5, 2, 4) 1 0.5 0 0
(3, 2, 4) 0.9 9.5 33 12 (5, 2, 5) 1.6 0.5 0 0
(3, 2, 5) 5.1 13.5 39 12 (5, 2, 6) 3 0.6 0 0
(3, 2, 6) 15.5 15 39 12 (5, 2, 7) 4.2 0.7 0 0
(3, 2, 7) 31 16.5 39 12 (5, 2, 8) 8 0.7 0 0
(3, 2, 8) 109 18 39 12 (5, 2, 9) ∞ 903 175 175
(3, 2, 9) 230 20 39 12 (5, 3, 2) 0.4 0.5 0 0
(4, 2, 2) 0.2 0.5 0 0 (5, 3, 3) 0.5 0.5 0 0
(4, 2, 3) 0.3 0.5 0 0 (5, 3, 4) 43 22 50 50
(4, 2, 4) 2.2 2.5 20 20 (5, 3, 5) ∞ 5963 350 300
(4, 2, 5) 12.2 26 100 80 (5, 4, 2) 0.5 125 25 20
(4, 2, 6) ∞ 593 276 176 (5, 4, 3) 10 167 105 80
(4, 2, 7) ∞ 6684 532 256 (5, 4, 4) ∞ 561 325 220
(4, 2, 8) ∞ 42868 818 286 (5, 4, 5) ∞ 5574 755 430
(4, 2, 9) ∞ 120801 1074 286 (6, 3, 3) 4 1 0 0
(4, 3, 3) 1 8 52 36 (6, 3, 4) 140 1 0 0
(4, 3, 4) 590 18 120 68 (6, 3, 5) ∞ 1 0 0
(4, 3, 5) ∞ 56 204 84 (6, 3, 6) ∞ 2 0 0
(4, 3, 6) ∞ 114 264 84 (6, 3, 7) ∞ 2 0 0
(4, 3, 7) ∞ 124 284 84 (6, 3, 8) ∞ 2 0 0
(4, 3, 8) ∞ 124 284 84 (6, 4, 2) 0.6 40 0 0
(4, 3, 9) ∞ 295 284 84 (6, 4, 3) 1 64 0 0
(4, 3, 10) ∞ 303 284 84 (6, 4, 4) 341 300 105 105
(4, 3, 11) ∞ 377 284 84 (6, 5, 3) 95 276 186 150
(5, 2, 2) 0.6 0.5 0 0 (6, 5, 4) ∞ 8643 726 540

Table 5.1 – Timings and degrees for dense linear matrices

Regarding randomness of rational data (input or parameters), it is necessary
here to make a clarification. To obtain a rational number, we generate a couple
of integers with uniform distribution in a fixed interval [−N,N ] where the integer
N is fixed a priori. Consequently, once N is given, the set of our possible inputs
is finite, and one cannot guarantee that the instances lie inside the admissible
Zariski open set defined by Propositions 3.6, 3.7 and 3.8. In any case, we imple-
mented a subroutine to control that the assumptions on the algebraic sets built
during LowRank (regularity of incidence varieties and finiteness of Lagrange sys-
tems) are satisfied. Since performing this control step can be done with Gröbner
bases (cf. Section 1.2.2), this can be done efficiently using FGb.

We compare our timings (reported in column “spectra”) with the function
PointsPerComponents, reported in column RAG, which is implemented in the real
algebraic geometry library RAGlib, cf. [135]. Finally, we give the degree of the
output rational parametrization (column “deg”) and the maximum degree of
partial rational parametrizations (column “maxdeg”). We make the following
remarks about Table 5.1. With deg = 0 and maxdeg = 0 we mean that the
corresponding real determinantal variety Dr ∩Rn is empty (hence the algorithm
returns the empty list). The symbol ∞ means the computation did not stop
after 4 days of computation.

1. We first observe that our algorithm allows to tackle examples that are out
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of reach for RAGlib, and we conclude that our implementation reflects
the complexity gain.

2. The growth in terms of timings with respect to n seems to respect the
correspondent growth in terms of degrees of output parametrizations. Re-
markably, for (m,n, r) = (4, 2, 9) the algorithm runs approximately 34
hours but is able to return a rational parametrization of degree 1074, or
for (m,n, r) = (4, 2, 7), after less than 3 hours, it returns polynomials of
degree 532.

3. Accordingly to the related Multilinear Bézout Bounds computed in Section
3.4.1, the degrees of rational parametrizations stabilize when n grows, since
when n > m2 − r2 and the input is generic, LowRank does not compute
critical points at first calls. This fact is remarkable, since:

• a natural geometric invariant associated to Dr, its degree as a complex
algebraic set, does not depend on the dimension n of the affine section
(as stated by Proposition 3.5, cf. also [10, Ch. II, § 4]);
• an algebraic invariant naturally associated to the output size (the
degree) is constant in n, consistently with the above mentioned geo-
metric invariant.

5.2.2 Examples

This final section reports numerical results of interesting examples and shows
how our algorithm can be used to tackle different problems of the literature
involving linear matrices.

Joint probability matrices

We come back to Example 3.2, page 74, concerning joint probability matrices.
We recall that these are m×m full matrices of variables

A(x) =

 x1,1 · · · x1,m
...

...
xm,1 · · · xm,m

 ,
subject to the linear constraint

x1,1 = 1−
∑

(i,j)6=(1,1)
xi,j .

The entries xi,j = p(S = i, R = j) encode the joint probabilities of two discrete
random variables. Eliminating the positivity constraint and allowing matrix A
to have bounded rank, one considers the algebraic set

Dr ∩ Rm
2 =

{
x ∈ Rm

2 : rankA(x) ≤ r,
∑

xi,j = 1
}
.
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Testing LowRank on such matrices yield the data of Table 5.2.

m r time (s) deg maxdeg
2 1 11.33 5 2
3 2 37 35 12
3 1 35 36 12
4 3 2530 244 78
4 2 12829 1311 283

Table 5.2 – Timings and degrees for joint probability matrices

The table shows the timings (in seconds) of our algorithm with input the
linear matrix A with the above linear constraint on its entries, jointly with the
degrees of output parametrizations. The column deg contains the degree of the
output parametrization, while maxdeg the maximum degree with respect to the
recursive steps.

Remarkably, our algorithm can tackle a 4×4 linear matrix with 15 variables,
and with expected rank 3, and solve it in less than 40 minutes, with an output
representation of degree 244. When two rank defects are considered, the algo-
rithm returns a rational parametrization of degree 1311 after approximately 4
hours of computation.

Sylvester matrices

The second problem deals with Sylvester matrices of Example 3.3 on page 75:

A =



f0 f1 f2 . . . fd1 0 . . . 0
0 f0 f1 f2 . . . fd1 . . . 0
... 0 . . . . . . . . . . . . . . . 0
0 0 . . . f0 f1 f2 . . . fd1
g0 g1 . . . gd2 0 . . . . . . 0
0 g0 g1 . . . gd2 0 . . . 0
... 0 . . . . . . . . . . . . . . . 0
0 0 . . . g0 g1 . . . . . . gd2


Suppose that the coefficients of f and g admit uncertainties represented by
n−variate affine polynomials with coefficients in Q, that is fi, gj ∈ Q[x] with
x = (x1, . . . , xn). This situation is quite common when dealing with data aris-
ing from practical experiments. By substituting each fi and gj in A with the
corresponding affine polynomials, one gets a linear matrix of size d1 + d2 in n
variables, with Sylvester structure for any evaluation of the vector x.

Hence, we tested LowRank with input a Sylvester linear matrix A(x), whose
rational coefficients have been chosen randomly with respect to a predetermined
probability distribution (cf. discussion in Section 5.2.1). Table 5.3 shows the
obtained results in terms of timings and of degrees of output polynomials. The
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title of the columns are the same as for the previous tables.

d1 d2 n r reg time (s) deg maxdeg
2 1 4 1 2.2 16 1 1
2 1 5 1 6 23 2 1
2 1 6 1 12 27 2 1
2 1 7 1 15 35 2 1
2 1 4 2 7 17 11 5
2 1 5 2 7 23 12 5
2 1 6 2 7 30 12 5
2 1 7 2 7 36 12 5
2 2 3 1 0.1 14 0 0
2 2 4 1 0.3 18 0 0
2 2 5 1 0.3 23 0 0
2 2 6 1 ∞ 28 1 1
2 2 3 2 14 12 7 4
2 2 4 2 120 20 10 4
2 2 5 2 619 24 10 4
2 2 3 3 7 15 21 9
2 2 4 3 7 18 24 9
2 2 5 3 7 24 24 9
3 2 2 1 0.8 9 0 0
3 2 3 1 1.44 12 0 0
3 2 4 1 2.82 17 0 0
3 2 3 2 3056 14 1 1
3 2 4 2 ∞ 0 1 1
3 2 5 2 ∞ 0 1 1
3 1 3 3 7 12 15 7
3 1 4 3 7 17 15 7
3 1 4 2 75 17 1 1
3 1 5 2 190 24 1 1

Table 5.3 – Timings and degrees for dense Sylvester linear matrices

In the column reg we write 7 if regularity assumptions are not satisfied,
otherwise the time needed to check these assumptions, or the symbol ∞ if the
computation did not end after 48 hours. We remark here that, in the special
cases r = d1 + d2 − 1, randomness of input rational numbers does not imply the
sufficient conditions for the correctness of the algorithm.

However, this does not represent an obstacle to run the algorithm and to
extract a finite subset of the determinantal variety associated to A(x), that is to
the discriminant variety for couples (f, g) of polynomials of degree bounded by
(d1, d2), when r = d1 +d2−1. A certificate establishing whether the output finite
set meets or not every connected component (when the genericity assumptions
are not satisfied) is hard to imagine, and so far there are no exact algorithm
solving this task. We conjecture that for Sylvester matrices the generic assump-
tions that we have imposed for generic linear matrices (that is smoothness and
equidimensionality of an incidence variety) are actually too restrictive.

We finally remark that, as in the special case of Hankel matrices described in
Chapter 4, Section 4.2, one could design dedicated variants of algorithm LowRank
for structured matrices as those of Sylvester type, exploiting the structure of
input polynomials induced by the special structure of the matrix A.
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Hurwitz matrices and stability of complex polynomials

We recall that in Example 3.4 we have associated to a univariate polynomial
f(z) = f0z

m + f1z
m−1 + . . . + fm−1z + fm of complex variable z, of degree at

most m, its Hurwitz matrix

A =



f1 f3 f5 · · · 0

f0 f2 f4
...

0 f1 f3
...

... 0
... . . . 0

0
... fm


.

We suppose, as in the previous example, that the coefficients of this polyno-
mial are not known but can be expressed as an affine combination with given
rational coefficients, and we are interested in the locus where A has fixed rank
defects.

m n r reg time (s) deg maxdeg
2 2 1 7 7.25 1 1
2 3 1 7 12.4 3 2
2 4 1 7 18.5 3 2
2 5 1 7 22 3 2
2 6 1 7 28 3 2
3 2 2 7 7 6 3
3 3 2 7 12 8 3
3 4 2 7 17.5 9 3
3 5 2 7 23 9 3
3 6 2 7 28 9 3
3 2 1 0.53 7 1 1
3 3 1 1 13 1 1
3 4 1 7 17 2 1
3 5 1 7 24 2 1
3 6 1 7 27 2 1
4 2 3 7 7 11 7
4 3 3 7 12 16 7
4 4 3 7 18 18 7
4 5 3 7 23 19 7
4 6 3 7 28 19 7
4 2 2 2.2 7 3 3
4 3 2 7 12 5 3
4 4 2 7 19 7 3
4 5 2 7 24 8 3
4 6 2 7 30 8 3
4 2 1 0.2 7 0 0
4 3 1 0.2 13 0 0
4 4 1 0.2 17 0 0
4 5 1 1079 19 1 1
4 6 1 4348 29 1 1

Table 5.4 – Timings and degrees for dense Hurwitz linear matrices

Table 5.4 contains data about the output of LowRank with input such generic
affine sections of low rank loci of Hurwitz matrices. We use the same name for
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the columns of Table 5.4 as for the tables of the previous sections.
We recall that when genericity assumptions are not satisfied, we cannot guar-

antee that the set defined by the output rational parametrization meets every
connected component of Dr ∩ Rn. As for Sylvester matrices, a perspective here
is to design a dedicated variant of LowRank for linear matrices with Hurwitz
structure, such that the assumptions on the input matrix A(x) guaranteeing the
correctness of the output results are satisfied in a non-empty Zariski open set of
the set of linear Hurwitz matrices.

5.3 Numerical experiments for Chapter 4

5.3.1 Random spectrahedra

As for algorithm LowRank, we have tested its variant for symmetric matrices on
generic instances.

(m, r, n) spectra deg maxdeg (m, r, n) spectra deg maxdeg
(3, 2, 2) 8 9 6 (5, 2, 3) 0 0 0
(3, 2, 3) 11 13 6 (5, 2, 4) 1 0 0
(3, 2, 4) 13 13 6 (5, 2, 5) 1 0 0
(3, 2, 5) 14 13 6 (5, 2, 6) 5 35 35
(3, 2, 6) 15 13 6 (5, 2, 7) 25856 175 140
(3, 2, 7) 16 13 6 (5, 3, 2) 1 0 0
(3, 2, 8) 17 13 6 (5, 3, 3) 3 20 20
(3, 2, 9) 18 13 6 (5, 3, 4) 1592 110 90
(4, 2, 2) 0 0 0 (5, 3, 5) 16809 317 207
(4, 2, 3) 2 10 10 (5, 4, 2) 7 25 20
(4, 2, 4) 9 40 30 (5, 4, 3) 42 65 40
(4, 2, 5) 29 82 42 (5, 4, 4) 42 65 40
(4, 2, 6) 71 112 42 (5, 4, 5) 858 105 40
(4, 2, 7) 103 122 42 (5, 4, 6) ∞ - -
(4, 2, 8) 106 122 42 (5, 4, 7) ∞ - -
(4, 2, 9) 106 122 42 (6, 3, 3) 0 0 0
(4, 3, 3) 10 32 16 (6, 3, 4) 1 0 0
(4, 3, 4) 21 40 16 (6, 3, 5) 2 0 0
(4, 3, 5) 22 40 16 (6, 3, 6) 704 112 112
(4, 3, 6) 24 40 16 (6, 3, 7) ∞ - -
(4, 3, 7) 26 40 16 (6, 3, 8) ∞ - -
(4, 3, 8) 27 40 16 (6, 4, 2) 1 0 0
(4, 3, 9) 28 40 16 (6, 4, 3) 9 35 35
(4, 3, 10) 29 40 16 (6, 4, 4) ∞ - -
(4, 3, 11) 30 40 16 (6, 5, 3) 591 116 80
(5, 2, 2) 0 0 0 (6, 5, 4) ∞ - -

Table 5.5 – Timings and degrees for dense symmetric linear matrices

This gives an estimate of the time needed to perform the whole procedure
SolveLMI, since LowRankSym is its main procedure. One can compare these
values with the timings of PointsPerComponents in Table 5.1 since this function
does not take reasonable advantage from the symmetry of the input pencil.

As for the previous tables, we report on the degree of the output parame-
trizations in column deg, and we put deg = 0 if the empty list is returned. We
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remark that the values of maximum degrees reported in column maxdeg coincide
with the algebraic degree of the associated semidefinite program [117]. Indeed,
one can compare data of Table 2 in [117] with data of Table 5.5. We recall that
the main subroutine LowRankSym is recursive, and that at each step it eliminates
one of the x−variables.

Let us consider, for example, the case m = 4 and r = 2 (this corresponds
to case n = 4, r = 2 of Table 2 in [117]). Respectively for n = 3, 4 and 5
(m = 3, 4, 5 for Table 2 in [117]) we find the following degrees: 10, 30 and 42,
which correspond to the algebraic degrees of generic semidefinite programs with
the same parameters. In this thesis we did not provide an exact formula for the
total degree of the output parametrization (but we obtained multilinear Bézout
bounds). We conjecture that this degree is given as a weighted sum of algebraic
degrees corresponding to partial generic semidefinite programs. Precisely:

Conjecture 5.1. Let δ(k,m, r) be the algebraic degree of a generic semidefinite
program with parameters k,m, r as computed in [117]. If property H holds (cf.
page 127) then the sum of the degrees of the rational parametrizations computed
during SolveLMI is given by the formula

r(A)∑
r=1

(
m

r

) min(n,pr+r(m−r))∑
k=pr−r(m−r)

δ(k,m, r),

where pr = (m− r)(m+ r + 1)/2.

For completeness, we also report in Table 5.6, for each triple of parameters
m,n, r, the degree of the parametrization containing the critical points of ex-
pected rank exactly r (in column deg) together with the bound θ(m,n, r) as
computed in Proposition 4.16, page 134.

When the algorithm does not compute critical points (that is, when the
Lagrange system generates the empty set) we put deg = 0. We remark here
that both the degree and the bound are constant and equal to 0 if n is large
enough. This explains why in column deg of Table 5.5 the sequence of degrees
stabilizes in n once m, r are fixed. Similar behaviors appear, for example, when
computing the Euclidean Distance degree (EDdegree) of determinantal varieties
[37, 120]. In [120, Table 1], the authors report on the EDdegree of determinantal
hypersurfaces generated by linear matrices A(x) = A0 + x1A1 + · · ·+ xnAn: for
generic weights in the distance function, and when the codimension of the vector
space generated by A1, . . . , An is small (for us, when n is big, since matrices Ai
are randomly generated, hence independent for n ≤

(m+1
2
)

= dim Sm(Q)) the
EDdegree is constant. Analogous comparisons can be done with results in [120,
Example 4] and [120, Corollary 3.5].
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(m, r, n) deg θ(m,n, r) (m, r, n) deg θ(m,n, r)
(3, 2, 2) 6 9 (4, 3, 9) 0 0
(3, 2, 3) 4 16 (5, 2, 5) 0 0
(3, 2, 4) 0 15 (5, 2, 6) 35 924
(3, 2, 5) 0 6 (5, 2, 7) 140 10296
(3, 2, 6) 0 0 (5, 3, 3) 20 84
(4, 2, 3) 10 35 (5, 3, 4) 90 882
(4, 2, 4) 30 245 (5, 4, 2) 20 30
(4, 2, 5) 42 896 (5, 4, 3) 40 120
(4, 2, 6) 30 2100 (5, 4, 4) 40 325
(4, 2, 7) 10 3340 (5, 4, 5) 16 606
(4, 2, 8) 0 3619 (6, 3, 3) 0 0
(4, 2, 9) 0 2576 (6, 3, 4) 0 0
(4, 2, 12) 0 0 (6, 3, 5) 0 0
(4, 3, 3) 16 52 (6, 3, 6) 112 5005
(4, 3, 4) 8 95 (6, 4, 2) 0 0
(4, 3, 7) 0 20 (6, 4, 3) 35 165
(4, 3, 8) 0 0 (6, 5, 3) 80 230

Table 5.6 – Degrees and bounds for rational parametrizations

5.3.2 Toy examples

The pillow

Let

A(x) =


1 x1 0 x1
x1 1 x2 0
0 x2 1 x3
x1 0 x3 1


be the linear matrix of Example 4.6, page 117, and let S = {x ∈ R3 | A(x) � 0}
its associated spectrahedron (the pillow).

We tested LowRank with input (A, 2). We obtain a rational representation
q = (q0, q1, q2, q3, q4) of degree 4 (with only real roots) parametrizing the four
points. By isolating the 4 roots of q4, one gets rational approximations of the
singular points. We give one of these points for illustration:

x1 ∈ [−6521908912666475339
9223372036854775808 ,−

13043817825332644843
18446744073709551616 ] ≈ −

√
2/2

x2 ∈ [26087635650665343561
36893488147419103232 ,

6521908912666428733
9223372036854775808 ] ≈

√
2/2

x3 ∈ [−6521908912666412349
9223372036854775808 ,−

13043817825332731855
18446744073709551616 ] ≈ −

√
2/2.

We observe, finally, a typical output in terms of the degree of the rational
parametrizations and the number of real solutions. Details are given in Table
5.7.
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partial deg deg real A � 0
r = 1 0 0 0 0 0 0
r = 2 4 0 0 4 4 4
r = 3 6 8 4 18 14 6

Table 5.7 – Degrees for the pillow

In column partial deg we report on the degrees of the rational parametriza-
tions at the 3 recursive steps of LowRankSymRec. The sum of this values is
reported in the column deg and it corresponds to the degree of the parametriza-
tion returned by the whole procedure (as before, deg = 0 means that no solutions
are computed). In real we report the number of real solutions, and in A � 0 the
number of these solutions lying in the spectrahedron S .

Remarkably, with r = 3 the algorithm allows to compute smooth points
of the determinantal variety that lie over the spectrahedron: indeed, among
the 6 points computed at first step, 4 are the degenerate points with rank 2
(underlying the special case of symmetric matrices, the same behavior does not
hold for generic matrices) and the other two points are typically symmetric with
respect to the origin, for example: −0.5256010100

0.2250169442
−0.8442037391

 and

 0.5256010100
−0.2250169442
0.8442037391

 .
The Cayley cubic

We consider the 3× 3 linear matrix

A(x) =

 1 x1 x2
x1 1 x3
x2 x3 1

 .
The convex region {x ∈ R3 ∣∣ A(x) � 0} is the Cayley spectrahedron, and is
pictured in Figure 4.1 in Example 4.5

We run LowRankSym with input (A, r) with r = 2 and r = 1 (the case r = 0
is trivial since A(x) is always non-zero and hence D0 is empty). In both cases,
the algorithm first verifies that the genericity assumptions are satisfied.

Let us first analyze the case r = 2. For any kernel configuration, LowRank-
Sym runs 3 recursive steps. Its output is a rational parametrization of degree
14 with 12 real solutions and 2 complex solutions. We give below details of
each recursive call. At the first step, a rational parametrization of degree 5 is
returned, with the following 5 real solutions:

 1
1
1

 ,
 1
−1
−1

 ,
 −1

1
−1

 ,
 −1
−1
1

 ,
 18.285118452

164.322822823
4.552268485

 .
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The coordinates of the fifth point are approximated to 9 certified digits and
such an approximation can be computed by isolating the coordinates in rational
intervals:

x1 ∈ [21081306277346124211
1152921504606846976 ,

21081306277346754459
1152921504606846976 ] ≈ 18.285118452

x2 ∈ [5920353629066611305
36028797018963968 , 23681414516266799197

144115188075855872 ] ≈ 164.322822823
x3 ∈ [10496816461511385723

2305843009213693952 ,
2624204115377866059
576460752303423488 ] ≈ 4.552268485,

Remark that it also computes the 4 singular points of D2, where the rank
of A is 1. At the second (resp. third) recursive call, it returns a rational
parametrization of degree 6 (resp. of degree 3) with 4 (resp. 3) real solu-
tions. Here it is worth to compare the values 4, 6, 3 for the degrees of the output
parametrization, with the Euclidean distance degree of the Cayley determinant,
computed in [37, Ex. 5.7]. Indeed, the euclidean distance degree of the variety
D2 = {x ∈ C3 : detA(x) = 0} is exactly 4 + 6 + 3 = 13. Hence also in special
examples we recover the behavior of Conjecture 5.1.

In the case r = 1, the algorithm returns a rational parametrization of degree
4 which encodes the 4 singular points of D2 ∩ R3, that is D1 ∩ R3.

We finally remark that the above results are typical, in the sense that the 4
singular points contained in D1 ∩ R3 are always computed at the first recursion
step, both in case r = 2 and r = 1. Conversely, the coordinates of the other
real solutions depend on the choice of random parameters (while their number
is constant). Moreover, all computations end after a few seconds.

5.3.3 Hankel spectrahedra

Random tests

We have described in Section 4.6 a variant of the subroutine LowRankSym when
the input is a Hankel matrix. We give the corresponding results in Table 5.8.
The input are randomly generated Hankel linear matrices, and as in the previous
section we compare timings with RAGlib. All genericity assumptions are satis-
fied by the inputs of our tests. The symbol ∞ here means that the computation
did not end after 1 day, while matbig means that the maximum limitation in
terms of size of matrices occurring in the Gröbner bases computation has been
reached.
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(m, r, n) RAG spectra deg maxdeg (m, r, n) RAG spectra deg maxdeg
(3, 2, 3) 0.6 10 21 12 (5, 3, 3) 2 2 20 20
(3, 2, 4) 2 13 33 12 (5, 3, 4) 202 18 110 90
(3, 2, 5) 7 20 39 12 (5, 3, 5) ∞ 583 338 228
(3, 2, 6) 13 21 39 12 (5, 3, 6) ∞ 6544 698 360
(3, 2, 7) 20 21 39 12 (5, 3, 7) ∞ 28081 1058 360
(3, 2, 8) 53 21 39 12 (5, 3, 8) ∞ ∞ - -
(4, 2, 3) 2 2.5 10 10 (5, 4, 2) 1 5 25 20
(4, 2, 4) 43 6.5 40 30 (5, 4, 3) 48 30 105 80
(4, 2, 5) 56575 18 88 48 (5, 4, 4) 8713 885 325 220
(4, 2, 6) ∞ 35 128 48 (5, 4, 5) ∞ 15537 755 430
(4, 2, 7) ∞ 46 143 48 (5, 4, 6) ∞ 77962 1335 580
(4, 2, 8) ∞ 74 143 48 (6, 2, 7) ∞ 6 36 36
(4, 3, 2) 0.3 8 16 12 (6, 2, 8) ∞ matbig - -
(4, 3, 3) 3 11 36 52 (6, 3, 5) ∞ 10 56 56
(4, 3, 4) 54 31 120 68 (6, 3, 6) ∞ 809 336 280
(4, 3, 5) 341 112 204 84 (6, 3, 7) ∞ 49684 1032 696
(4, 3, 6) 480 215 264 84 (6, 3, 8) ∞ matbig - -
(4, 3, 7) 528 324 264 84 (6, 4, 3) 3 5 35 35
(4, 3, 8) 2638 375 264 84 (6, 4, 4) ∞ 269 245 210
(5, 2, 5) 25 4 21 21 (6, 4, 5) ∞ 30660 973 728
(5, 2, 6) 31176 21 91 70 (6, 4, 6) ∞ ∞ - -
(5, 2, 7) ∞ 135 199 108 (6, 5, 2) 1 9 36 30
(5, 2, 8) ∞ 642 283 108 (6, 5, 3) 915 356 186 150
(5, 2, 9) ∞ 950 311 108 (6, 5, 4) ∞ 20310 726 540
(5, 2, 10) ∞ 1106 311 108 (6, 5, 5) ∞ ∞ - -

Table 5.8 – Timings and degrees for dense Hankel linear matrices

The even moment curve

The even moment curve (cf. [141, Sec. 5.2]) is the intersection of the rank one
locus and of the associated spectrahedron of the Hankel pencil

A(x) =


x0 x1 x2 · · · xn
x1 x2 x3 · · · xn+1
x2 x3 x4 · · · xn+2
...

...
...

...
xn xn+1 xn+2 · · · x2n

 ,

subject to the affine constraint

1−
n∑
j=0

(
n

j

)
x2j = 0.

The convex hull of the even moment curve is exactly the spectrahedron S = {x ∈
R2n : A(x) � 0}. The set S is an orbitope, called the universal Carathéodory
orbitope. We relax the rank one constraint, by looking for solutions of A(x) � 0
with different rank deficiencies.

We obtain Table 5.9 applying the variant for Hankel matrices of SolveLMI. In
this table the symbol ∞ means that the computations did not end after 1 day
of computation.
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n r reg time (s) deg maxdeg A � 0
1 1 0.1 7 4 2 ≥ 2
2 2 0.1 17 18 7 ≥ 2
2 1 0.1 17 10 4 ≥ 2
3 3 0.4 63 93 33 ≥ 2
3 2 0.25 32 66 27 ≥ 4
3 1 0.14 29 16 6 ≥ 4
4 2 2 244 146 61 ≥ 4
4 1 0.2 40 32 8 ≥ 2
5 2 9.4 7790 258 113 ≥ 6
5 1 0.3 65 28 10 ≥ 4
6 1 0.7 85 34 12 ≥ 4

Table 5.9 – Timings and degrees for the even moment curve spectrahedron

In the column A � 0 we report on the number of real solutions lying on the
spectrahedron (we observe a typical lower bound). We remark that the algorithm
has a better behavior in terms of timings when the rank defect is high. For
example, for n = 5, it is able to handle a 6 × 6 linear Hankel matrix with 10
variables, and 4 and 5 rank defects, respectively, or for n = 6, a 7 × 7 matrix
with 11 variables and 6 rank defects. The same examples cannot be handled by
general algorithms and also by algorithm LowRankSym. We add that for cases
(n, r) = (4, 4), (4, 3), (5, 5), (5, 4), (5, 3) we succeded in checking the regularity
assumptions but the algorithm did not stop after 24 hours of computations.

5.3.4 A quartic spectrahedron

Consider the 4× 4 symmetric homogeneous pencil

A(x) =


a1,1 a1,2 a1,3 a1,4
a1,2 a2,2 a2,3 a2,4
a1,3 a2,3 a3,3 a3,4
a1,4 a2,4 a3,4 a4,4

 ,
with linear entries

a1,1 = 45x0 + 40x1 + 65x2 + 72x3 a1,2 = 33x0 + 50x1 + 7x2 − 60x3

a1,3 = −84x0 + 12x1 + 3x2 − 54x3 a1,4 = −21x0 + 16x1 + 54x2 − 18x3

a2,2 = 82x0 + 85x1 + 2x2 + 82x3 a2,3 = −99x0 + 12x1 + 6x2 − 25x3

a2,4 = −46x0 + 41x1 + 18x2 + 51x3 a3,3 = 181x0 + 4x1 + 26x2 + 53x3

a3,4 = 59x0 + 2x1 + 58x2 − 9x3 a4,4 = 26x0 + 26x1 + 164x2 + 45x3.

The spectrahedron associated to A(x) (actually, one of its 3−dimensional
affine sections) is pictured on page 4 of [130]. The loci of rank defects of ho-
mogeneous pencils define real algebraic sets that are affine cones containing the
origin, hence connected sets. Consequently the related real root finding problems
or the emptiness problem for the associated spectrahedron are easily solved by
returning the null vector. In order to break the homogeneity of the problem we
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cut the linear pencil A(x) with an affine constraint

a0x0 + a1x1 + a2x2 + a3x3 + b = 0.

When coefficients ai and b are chosen randomly with respect to a predetermined
distribution, this gives rise to a generic affine section of the aforementioned cone.
Suppose from now on that such coefficients are randomly generated.

We tested SolveLMI with input the obtained affine matrix. First, we note
that all regularity assumptions on the incidence varieties of such example are
satisfied. Let us denote with Dr, r = 0, 1, 2, 3, the low rank loci associated to the
affine matrix. These algebraic sets have the expected dimension, that is D0 = D1
are empty and dimD2 = 0 and D3 is the hypersurface defined by detA = 0 and
has dimension 2. Moreover, the set D2 has degree 10, and it corresponds to the
10 real singular points of the determinantal hypersurface. Algorithm SolveLMI
provides the following information:

• SolveLinear with input A = 0 returns the empty list after a few seconds.

• LowRankSym, with input (A, 1), outputs the empty list after a few seconds.

• With input (A, 2), the output of the first recursion is a rational parame-
trization of degree 10, encoding 10 real distinct points. Depending on the
affine section that we apply in order to de-homogenize the pencil A(x), the
hyperplane a0x0 + a1x1 + a2x2 + a3x3 + b = 0 either cuts the locus S =
{(x0, x1, x2, x3) ∈ R4 : A(x) � 0} or its opposite −S = {(x0, x1, x2, x3) ∈
R4 : A(x) � 0}. In any case we verify that at all solutions of the rational
parametrizations, the dehomogenized pencil is semidefinite with constant
sign.

• With input (A, 3), the degree of the output parametrization is 26 at the
first recursion step, 11 at the second and 3 at the third. The number of
real solutions varies in a set of typical values.

5.3.5 Degenerate example: the Scheiderer spectrahedron

We consider the Scheiderer spectrahedron, cf. Example 4.7. As explained, this
is the convex set defined by a 6−variate 6× 6 symmetric pencil representing the
Gram matrix of a homogeneous ternary form f ∈ Q[u1, u2, u3] of degree 4 (this
matrix is displayed on page 118). This polynomial is nonnegative over R3 and it
is, by Hilbert’s theorem, a sum of at most three squares. The spectrahedron S
parametrizes all the possible sum-of-squares decompositions of f . Indeed, if

v = (u2
1, u1u2, u

2
2, u1u3, u2u3, u

2
3)

is the row vector whose entries span the space of homogeneous polynomials of
degree 2 in 3 variables, then f is a sum of squares if and only if there exists x∗
such that f = vA(x∗)v′, with A(x∗) � 0.
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Scheiderer proved that f does not admit a decomposition as a sum of squares
overQ[u1, u2, u3]. This result implies that the spectrahedron S = {x ∈ Rn : A(x) �
0} is not empty but does not contain rational points. Guo et al. designed in [60]
an exact algorithm for deciding the emptiness of S ∩Q6, providing a computer
algebra (probabilistic) verification of Scheiderer’s result: when running the algo-
rithm in [60] with input the Gram matrix of Scheiderer’s spectrahedron S , the
output states that S ∩Q6 is empty.

We have tested SolveLMI on Scheiderer’s spectrahedron. Once checked that
the associated incidence varieties are smooth and equidimensional, the recur-
sive subroutines first easily check that S does not contain any point x with
rankA(x) = 0 and 1 (and precisely, deciding that D0 ∩ R6 = D1 ∩ R6 = ∅).
Further, for r = 2, the algorithm returns the following rational parametrization
of D2 ∩ R6:

x1 = 3+16t
−8+24t2 x2 = 8−24t2

−8+24t2

x3 = 8+6t+8t2
−8+24t2 x4 = 16+6t−16t2

−8+24t2
x5 = −3−16t

−8+24t2 x1 = 3+16t
−8+24t2

where t has to be chosen among the solutions of the univariate equation

8t3 − 8t− 1 = 0.

The set D2 is, indeed, of dimension 0 and degree 3. We also remark that the
rational parametrization makes explicit and certifies the following relations be-
tween the coordinates of the three points of D2:

x1 − x6 = 0
x5 + x6 = 0

x3 − x4 − 1 = 0
x2 + 1 = 0.

The previous equations define the 2-dimensional affine plane spanned by the
three points.

By applying CheckLMI one gets that two of the three points lie on S , that
is those with the following floating point approximation up to 9 certified digits:

−0.930402926
−1.000000000

0.731299211
−0.268700788

0.930402926
−0.930402926


and



−0.127050844
−1.000000000
−0.967716166
−1.967716166

0.127050844
−0.127050844


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and a third point: 

1.057453771
−1.000000000

1.236416954
0.2364169545
−1.057453771

1.057453771


at which the matrix is indefinite, of rank 2.

We conclude this example with the following considerations:

• SolveLMI allows to certify that S is not empty, that the minimal rank
attained by A(x) on S is 2. This rank is attained at the two points whose
coordinates have been given above.

• Since S does not contains rational points, we can easily deduce that the
interior of S is empty and that S is not full-dimensional, that is, its affine
span is contained in a proper hyperplane of R6 (cf. [85, Th. 1.2]). This is
a degenerate behavior since typically (for generic matrices A0, A1, . . . , An)
the spectrahedron S is either empty or full-dimensional.

• One can easily verify that D3∩R6 is also zero-dimensional, of degree 57. It
contains 4 real points, 3 of which are the elements of D2 ∩ R6, and, at the
fourth one, A has rank 3 and is not positive semidefinite. This shows that
this example is particularly degenerate also with respect to the dimension
of the rank stratifications of the matrix A. Indeed, the expected dimension
of D2 is −1, while D3 has the expected dimension, that is 0. The fact that
D3 does not intersect S is consistent with [142, Ex. 2.8].

• As previously observed, S parametrizes the decompositions of the poly-
nomial f as a sum of squares. Further, SolveLMI is able to parametrize all
the connected components of D2 ∩ R6 that intersect (and hence that are
contained in) S . Hence, SolveLMI is able to establish, with a computer
algebra proof:

– that f is not a pure square, since D1 ∩S is empty;
– that f is a sum of 2 squares, and that there are two such decompo-

sitions (already established via real algebra by Scheiderer, cf. [142,
Ex. 2.8]), since D2 ∩S consists of 2 points;

Moreover, one can provide a parametrization of the 2 minimal-rank de-
compositions. Writing down such expressions can be done by factorizing
the matrix A(x(t)) = V V ′, where t is chosen among the two solutions of
8t3 − 8t− 1 = 0 at which A(x(t)) � 0.
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