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High-Tc Josephson Mixers For Terahertz Detection

Abstract

In this thesis, we used a high-Tc superconducting material, YBa2Cu3O7, to make a heterodyne
mixer. We aimed at evaluating its ability for terahertz detection. We also worked towards the
fabrication of an on-chip local oscillator, designed with an array of Josephson junctions. The
originality of this study stems from a unique way of engineering Josephson junctions, based on
ion irradiation.

We described the complex physics of ion irradiated Josephson junctions through a modi-
fied version of quasi-classical Usadel equations, which have originally been derived for non-
homogenous low-Tc superconductivity.

The d-c electronic transport measurements showed that our irradiated Josephson junctions are
well described by the resistively shunted junction model. Furthermore, we explained the high-
frequency mixing operations with the three-port model, and proved the heterodyne detection of
signals up to 400 GHz. We identified the heterodyne conversion efficiency as a product of three
terms: two depending on impedance mismatches and the third one characterizing the intrinsic
down-conversion ability of the Josephson junction. The dynamic range of the mixer, its conver-
sion efficiency and its dependence on local oscillator power were measured and found to be in
agreement with simulations.

An array of synchronized junctions is necessary to create a powerful and spectrally pure lo-
cal oscillator from Josephson oscillations. We identified the external locking as the only efficient
mechanism to synchronize YBa2Cu3O7 irradiated junctions, showing its effect in simulated sys-
tems. We also reported a first evidence of synchronization in a two dimensional array of irradiated
Josephson junctions.

Keywords

Terahertz; superconductivity; detectors; heterodyne mixing; Josephson effect; YBa2Cu3O7.

Mélangeurs Josephson à Haute Température Critique Pour la
Détection Térahertz

Résumé

Cette thèse porte sur la fabrication et caractérisation d’un mélangeur hétérodyne, fabriqué à partir
d’YBa2Cu3O7, un matériau supraconducteur à haute température critique. Nous avons évalué son
potentiel pour la détection d’ondes térahertz.

La physique complexe des jonctions irradiées a été correctement décrite en modifiant légère-
ment les équations quasi-classiques d’Usadel, originellement développées pour les supraconduc-
teurs inhomogènes à basse température critique.

Les mesures de transport électronique ont montré que nos dispositifs respectent le modèle de
la jonction résistivement shuntée. Nous avons expliqué leur fonctionnement à haute fréquence
au moyen du modèle à trois ports, et démontré la détection d’ondes jusqu’à 400 GHz. Nous
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avons identifié l’efficacité de conversion du mélange hétérodyne comme le produit de trois termes:
deux rendent compte des adaptations d’impédances en entrée et sortie du mélangeur, le troisième
caractérise la conversion à basse fréquence des signaux térahertz. La puissance de l’oscillateur
local nécessaire, l’étendue dynamique du mélangeur ainsi que son efficacité de conversion ont été
mesurées, s’accordant bien avec les simulations numériques.

Le recours à un réseau de jonctions Josephson synchronisées est incontournable pour parvenir
à créer un oscillateur local puissant et spectralement fin à partir de l’oscillation propre des jonc-
tions. Nous avons identifié le verrouillage par une boucle externe comme l’unique mécanisme
efficace de synchronisation et simulé son effet. Enfin nous avons mesuré la première signature
d’une synchronisation dans un réseau à deux dimensions de jonctions irradiées.

Mots-clefs

Térahertz ; supraconductivité ; détecteurs ; mélange hétérodyne ; effet Josephson ; YBa2Cu3O7.
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Introduction

Lying between classical electronics and optics, research in the terahertz range has been driven over
the past fifty years by its huge importance in astronomy and astrophysics. Since the early 2000s,
many of its key aspects appeared also beneficial for many other fields, such as communications,
medical sciences or security controls.

The ultimate sensitivity and spectral resolution that requires space observations leads in-
evitably to use superconducting heterodyne detectors. In this frame, sensors fabricated from
low-Tc superconductors, typically Aluminum and Niobium, were improved over the years up to
the quantum limit. Nowadays, superconducting-insulating-superconducting (SIS) junctions or su-
perconducting hot electron bolometers (HEB) reach breathtaking performances, and work up to
several terahertz. However, they lack autonomy, limited by the requirement of very low bath
temperatures, and they still need fairly high local oscillator powers.

In this thesis, we took an alternative route. We used YBa2Cu3O7, a high-Tc superconducting
material, to fabricate a heterodyne mixer. Up to date, no clean tunnel barrier exists in high-Tc

materials, therefore one cannot fabricate high-Tc SIS junctions. Thus, the nonlinearity inherent to
mixers either pertains to the hot electron bolometer mechanism, or to the Josephson effect. The
latter is particularly interesting, because not only a Josephson junction can be used as a mixer, but
it also oscillates naturally in the terahertz range. Therefore we endeavored to create, with the same
technology, a detector and a local oscillator source. Our hope to make this possible stems from a
unique way of fabricating Josephson junctions, based on ion irradiation. It allows a competitive
advantage in design flexibility, where we can position as many junctions as we want anywhere in
the YBa2Cu3O7 superconducting film.

The high-Tc based technology offers obvious advantages compared to its low-Tc alter ego:
one can work at much higher temperatures, and possibly also at higher frequencies. Indeed
YBa2Cu3O7 has a superconducting gap at about 30 meV, corresponding to a cut-off frequency
of 7.3 THz, much higher than with conventional low-Tc materials. Along the way, we will also
show that the local oscillator power that needs the Josephson mixer is much lower than the one
required in SIS or HEB mixers. However, much work remains to be done, so as to compete with
these existing technologies, in terms of sensitivity and spectral resolution. Our work in this thesis
has been to evaluate the potential of high-Tc Josephson junctions as THz mixers and sources.

We review in the first chapter of this manuscript the existing terahertz technologies, the main
fields of applications, and we define the figures of merit that are used to characterize any hetero-
dyne detector. Then chapter two focuses on the fabrication process. It details in particular the
ion implantation technique, supported by numerical simulations. Chapter three is a general dis-
cussion on the electronic transport in YBa2Cu3O7 irradiated Josephson junctions and introduces
the resistively shunted junction (RSJ) model, an equivalent circuit for weak-link Josephson junc-
tions. Chapter four explains the origin of the Josephson coupling, arising from proximity effects.
Numerical simulations lead to experimental sets of parameters that explain how to choose the
implantation dose.

The second part of this thesis focuses on the experiments that we performed. Chapter five
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shows the characterization of our irradiated Josephson junctions through electronic transport mea-
surements. Chapter six introduces the three-port model, a prerequisite knowledge to understand
high-frequency mixing experiments. Allied with the RSJ model, we explain the behavior of the
Josephson mixer and fit the experimental data at various operating frequencies in chapter seven.
Next, in chapter eight we propose several roads to improve the efficiency of the Josephson mixer.
They should be investigated in further studies. Finally, chapter nine deals with the synchroniza-
tion of Josephson junctions, mandatory for the fabrication of a strong local oscillator source. We
present the methods to achieve phase-locking, argued by promising numerical simulations, and we
show the first results of synchronization in a two-dimensional Josephson junction array.
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Over the past decade, there has been a tremendous effort of the scientific community towards
the emergence of terahertz (THz) technologies. Around 15000 scientific articles with the word
"terahertz" in their title were published since 2010, and more than 23000 since 2005. The main
reasons for such a success are the very wide range of applications and potential improvements that
THz technologies can and will bring.

However, manipulating THz waves still remains a challenge due to the lack of performant,
affordable, and integrable sources and detectors [156], and scientific breakthroughs are yet to
be made in order to master and use daily the whole THz range. There is no doubt that many
technologies will be involved and along with them, the next decade will see the emergence of
standards in this frontier science between optics and electronics. Many applications have already
emerged today, others are within reach.
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1.1 Range and specifics

1.1.1 Range

The THz region has been qualified as a "technological gap" due to the lack of suitable sources and
detectors (not to be confused with the energy gap between the valence and the conduction band
of semi-conductors). There is no standard definition, but it is commonly referred as the region
spanning from 0.1 to 10 THz [185, 76, 124, 173, 146]. It merges with other existing spectral
bands such as the millimeter-wave band, the submillimeter-wave band and the far infrared (FIR)
band. Thus, on the lower part of the electromagnetic spectrum lies the microwave frequencies
(300 MHz - 300 GHz) and on the upper part the FIR radiations (1 to 12 THz). Depending on the
community, electronics or optics, different units are used to refer at the same photons. Usually, the
microwave community speaks in terms of frequency or energy, whereas opticians speak in terms
of wavelength or wave number. Figure 1.1 makes the correspondence between these different units
and in this thesis we will mostly use the frequency scale.

Terahertz range
1 THz
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Figure 1.1: Terahertz band in the electromagnetic spectrum. Adapted from [124].

1.1.2 Benefits

There are four main reasons that explain the numerous fields of applications for THz radiations.

Resolution. First, the photons wavelength λ is short enough to obtain a good resolution in
imaging. In most cases their propagation is quasioptic, i.e. the beam radiation diameter collected
by a detecting system with a typical size L is only moderately large when measured in wavelength
[83]. For shorter wavelengths (when λ → 0), ray optics describes the propagation very well and
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when λ ' L, diffraction prevails. In quasioptics the propagation is well described by Gaussian
beams: the lateral distribution of the field has a Gaussian shape. It includes the effect of diffraction
within reasonable limits. Hence the resolution Res of an object observed at a wavelength λ , at a
distance R, with a system of typical size L is given by [86]:

Res = λ
R
L
=

c
ν

R
L

(1.1)

where ν is the frequency and c the speed of light. Thus, for L = 1 m (a maximum practical limit),
at 100 GHz we have a resolution of 3 mm at a distance R = 1 m, 6 cm at R = 20 m and 15 cm at
R = 50 m. At 1 THz, resolutions are ten times smaller. Thus, for a practical imaging applications,
a compromise between distance and resolution has to be found.

Penetration power. At the same time THz radiations have wavelengths long enough to pen-
etrate many materials. As an example, table 1.1 gathers some measured attenuation values for
clothing, fabric, and building materials [81]. Attenuation in AdB upon incident signal excitation is
defined as AdB = 10log10(I0/I) where I is the collected signal with the sample in the measuring
setup and I0 when it is removed. As we can see, the AdB is quite small in the terahertz range
especially below 200 GHz. Similarly, longer wavelength than IR light make THz frequencies
more immune against scattering and attenuation under certain atmospheric conditions like fog or
dust [76, 137]. This ability to see-through makes THz radiations of particular interest for security
applications.

Attenuation AdB in dB
AdB = 10log10(I0/I)

94 GHz 326 GHz 584 GHz 1042 GHz
material thickness (mm) parallel perp. parallel perp. parallel perp. parallel perp.
cotton shirt 0.30 0.2 0.1 0.3 0.5 1.0 1.1 3.1 3.2
denim 0.635 0.7 0.7 1.3 1.4 3.4 2.9 10.0 7.9
leather 1.29 0.7 0.6 2.3 2.1 6.0 5.2 17.9 15.3
sweater 2.13 0.4 0.4 3.8 4.0 14.5 13.7 19.1 21.4
cardboard 3.9 1.2 1.3 2.8 3.2 4.4 5.0 9.0 9.4
plywood 6.35 5.3 4.5 18.2 16.7 31.3 30.2 n/t 61.9
concrete 11.12 9.8 10.5 47.7 49.2 n/t n/t n/t n/t
glass 2.21 4.5 4.3 10.8 11 25.3 25.4 n/t n/t
n/t - no transmission

Table 1.1: Attenuation values for clothing, fabric, and building materials. The attenuation in dB is defined
as AdB = 10log10(I0/I) where I is the intensity of the signal with the sample in the measuring setup and I0
when it is removed. The measurements were made with a normal incident beam, and the samples were mea-
sured with two lateral orientations, parallel and perpendicular, at 90◦with respect to each other. Adapted
from [81].

Spectroscopy. Thirdly, many molecules have their rotational transitions or their vibrational
modes in the THz region, which are tabulated (see for example the Hitran database [7]). Some
intermolecular vibrations also lie in the THz [145]. Thus many spectroscopic applications are
possible.

Non ionizing. Finally let us mention that THz radiations are non ionizing, therefore they are
not thought to be hazardous, contrary to microwaves, and their coherent emission is safe for the
eye, contrary to infrared (IR) lasers.
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1.1.3 Limitations

Three principal difficulties make THz frequencies delicate to use. The first one comes from the
intrinsic nature of the wave and the two others occur in many targeted applications.

Short propagation. The propagation of THz waves is difficult to address over long distances:
metal or dielectric waveguides are too lossy, due to a finite conductivity and a the high absorption
coefficient respectively [193]. Furthermore one needs a non dispersive media in many broadband
applications. From a free space propagation point of view, a THz signal transmitted between an
emitting and a receiving antenna can be evaluated using the Friis formula, whose a simplified
version is [137]:

Pr = Pt
AetAer

r2λ 2 (1.2)

where Aet and Aer are respectively the effective aperture of the transmitting and the receiving
antenna, Pr and Pt are respectively the power received and transmitted, r is the distance between
the antennae, and λ the wavelength. Mann [137] then evaluates the maximum distance for data
transmission at 400 GHz to 2 km (at which the received power is 1 pW). Thus, only short range
distances are accessible.
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Figure 1.2: Atmospheric transmission in the THz region at various locations and altitudes, for given pre-
cipitable water vapor pressure (in millimeter). Taken from [169].

Water vapor absorption. Second, THz atmospheric transmissions face a main challenge:
water vapor absorption. In fact, being a polar molecule, water has a strong absorption over all
the THz band, even at low frequencies due to the O-H group. Vibrational and rotating modes
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of H2O are tabulated in the Hitran database, from which one can compute atmospheric transmis-
sion/absorption with radiative transport codes like "Fascode". Figure 1.2 represents calculated
transmissions for various atmospheric conditions, up to 2 THz.

Thus, only some windows are available for THz atmospheric transmission, as we will see in
section 1.2.3.

Weak thermal background. Thirdly, many passive detectors will face the fact that the con-
trast between a target and its background is tenuous. In fact the thermal radiations of the back-
ground are given by:

L =
2hν3

c2
1

e
hν

kBT −1
(1.3)

where L (in W/m−2/sr/Hz) is the spectral radiance, i.e. the spectral density of radiated flux per
unit solid angle and projected area, and ν the frequency. L is represented for a few blackbodies in
figure 1.3. In particular we see that the 2.7 K source has a maximum at 159 GHz. It corresponds
to the cosmic background temperature, and explains why the THz region has been driven by
astronomy applications over the past 30 years [46]. When applying formula 1.3 on a 1x1 mm
detector, working at 100 GHz, with an integration bandwidth of 100 GHz, we can compute that
it receives about 600 pW from a background at 290 K. The image contrast will typically be 200
pW for outdoor situations, and 10 pW for indoor situations [86], thus one will have to use very
sensitive detectors, and in this context, cryogenic heterodyne systems are required.
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Figure 1.3: Simulated blackbody radiations at different temperatures.
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1.2 Applications

We will review here the principal application fields along with their technologies [185] that benefit
from one or several of the above key aspects. It concerns applications in imaging, spectroscopy or
communications. In terms of technology readiness assessment (TRL) [4], some are still at a very
early developing stage (low TRL) whereas others are already commercialized (high TRL). We will
refer to this criterion to emphasize their maturity [156]. Several companies already provide THz
systems for spectroscopy or imaging: Teraview (U.K.), Picometrix (U.S.), Toptica (Germany),
Menlo Systems (Germany), Advantest (Japan), and Zomega (U.S.).

1.2.1 Pharmaceutical and medical sciences

Terahertz time domain spectroscopy (THz-TDS, see 1.3.2) and terahertz pulse imaging (TPI) has
proven useful in detection and diagnosis of various early stages cancers [22, 200, 47, 176]. In
fact many diagnosis are done by visual assessments first, and when there is a doubt, a biopsy
is performed. Existing technologies in the field are still limited: high frequency ultrasound can
image tumors, but is unable to differentiate benign and malignant lesions. Visible and near IR
light microscopy are limited by penetration depth to a few micrometers. High resolution imaging
such as optical coherence tomography or confocal microscopy have a small field of view, typically
250x250 µm and a small penetration depth. Thus, THz technologies are very interesting: they can
achieve a good lateral and depth resolution, typically 500 µm and 50 µm respectively [176, 200],
a good penetration depth (1 mm), with a large field of view (typically 25x25 mm). The discrim-
ination between sane and cancerous tissues stems from the fact that the latter tend to accumulate
more water. Furthermore, it is possible to determine different refraction indexes encountered by
the beam, thus providing valuable informations on different types of sane or tumorous tissues
[47, 22].

THz-TDS and TPI has also proven very promising in pharmacology with non destructive eval-
uation (NDE) of pharmaceutical tablets [167], for which the measurement of coating thickness
of pills is an important parameter in the drug delivery process. Compared to Fourier transform
infrared spectroscopy (FTIR) or Raman spectroscopy, THz spectroscopy is able to penetrate much
deeper in structures [156], has the unique ability to identify chemicals inside pills, and can even
discriminate different polymorph structures. Thus a 3D chemical mapping is possible. Finally,
many intermolecular vibrations lie in the THz range, which makes it suitable for research in molec-
ular interactions [145].

In terms of maturity, THz technologies applied to pharmaceutical and medical sciences are
particularly advanced: for instance, the TeraView Terapulse 4000 spectrometer and imaging sys-
tem is a commercial instrument that can image and make spectral analysis from 60 GHz to 4 THz
[12]. Hence they rank high on the TRL scale, at 8-9, with "actual system completed and qualified
through test and demonstration in an operational environment" [4], and it is possible for non THz
specialists to operate the systems.

1.2.2 Security

Many explosives and related compounds (ERC) have spectral fingerprints in the THz region, due
to intramolecular and intermolecular vibrational modes or phonon modes [52, 115]. Similarly,
illicit drugs have a THz signature [106]. Besides, the unique property to see through soft materi-
als (see table 1.1) such as clothing or paper makes THz spectroscopy of prime interest in security
applications like mail scanning [96] or airport body scanners. However, due to atmosphere absorp-
tion and possible complex covering layers, long range (> 1 m) analysis still present fundamental
challenges.
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Nevertheless continuous wave (CW) sources below 200 GHz are far less affected by water
vapor absorption. Furthermore at those frequencies many clothings are transparent, and the reso-
lution has still a centimeter accuracy within a few meters distance (equation 1.1). Besides, THz
radiations have a lower attenuation than IR under certain atmospheric conditions such as smoke or
fog [76]. Therefore, if only a binary information skin/no skin is required so as to detect concealed
weapons in a close distance situation, THz radiations can be used [156].

Such active remote scanners, in which a source is required to shine THz radiations on a target,
rank high in TRL, about 7 to 8: mail scanning prototypes are being proposed [96] and body
scanners are being already deployed in U.S. airports [156]. However passive detection, which
only operates with the blackbody radiation of the target is far less advanced [85], because as
already mentioned the sensitivity to obtain a good contrast requires a cryogenic detector, and a
coherent detection (see section 1.4.3).

1.2.3 Communications

Perhaps the most unavoidable innovations in a very near future will concern the use of terahertz
frequencies in communication systems. The spectrum has already been allocated for specific ap-
plications up to 300 GHz in the USA by the National Telecommunication and Information Admin-
istration [14] and up to 275 GHz in Europe by the Electronic Communications Committee within
the European Conference of Postal and Telecommunications Administrations [5]. Furthermore
the World Radiocommunication Conference (WRC) held in 2012 investigated possible allocations
beyond 275, up to 1 THz, and the next WRC due in November 2015 will undoubtedly discuss
further regulations for this range.

Indeed there is a crucial need to develop technological solutions for wireless communication
up to 1 THz: for example, the mobile traffic rate at the end of 2014 was reaching 2.5 exabytes
(1018 bytes) per months, i.e. more than 40 times the rate of 2010 [110]. Over 2014, the mobile data
traffic was nearly 30 times the size of the entire global Internet in 2000 [3]. In order to keep up with
fiber-optic networks, wireless data rates beyond 10 Git/s are mandatory and will only be possible
with new frequency bands [110]. However due to atmospheric absorption (see figure 1.2) and
to free space loss proportional to (c/4π f d)2 (Friis formula), THz transmissions are conceivable
only inside certain trasmission windows (75-100 GHz, 110-150 GHz, 220-270 GHz and near 300,
350, 410 and 670 GHz) and over short distances, typically less than 2 km [76]. Thus they are
well adapted for the "first" and "last mile" problem [137]. Indoor applications might be better
adapted than outdoor scenarios [76, 175], however one still needs to address inherent issues such
as multiple reflections, people moving in the beam’s path, diffraction and wall absorption. To that
end, ray-tracing algorithms are being used [110]. Furthermore, THz waves are more directional
than microwaves, therefore some progress remains to be done in the design of high gain and
integrable antennas. Some solution already exist: for reading out a hard drive on a desk, horn
antennas are adapted, and for cellular communications, phased array antennas or planar antennas
on dielectric lenses are being explored [76, 110].

THz free space communication experiments were performed. Depending on the carrier fre-
quency, the maximum distance spans between 800 m (at 120 GHz) and less than 1 m at 300 GHz.
[76]. A variety of systems were used, either optoelectronic-based or photonic-based. One of the
most striking trial is a successfully live broadcast of the 2008 Olympic games in Beijing by Nipon
Telegraph and Telephone (NTT) [110]. Using a photonic-based 120 GHz system similar to the one
shown on figure 1.4, they transmitted uncompressed (compression causes delay) high-definition
TV signals over 800 m [93, 94, 110]. A laser generates an optical subcarrier whose intensity is
modulated at 125 GHz ("photonic THz-wave generator") and fed to an array waveguide grating
(AWG) that acts as an optical filter, outputting two modes separated by 125 GHz. Then an ampli-
tude shift-keying (ASK) scheme modulates the optical signal with data ("data modulator") using
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a Mach-Zehnder modulator (MZM). The output is amplified with an erbium-doped fiber amplifier
(EDFA) and fed into an uni-travelling carrier photodiode (UTC-PD) which converts the modulated
optical signal into a THz signal, finally amplified with a high electron mobility transistor (HEMT)
and fed to a horn antenna. Received signals are amplified and demodulated with a monolothic mi-
crowave integrated circuit (MMIC). Demodulated signals then amplified by a low-noise amplifier
(LNA) and enter the clock and data recovery (CDR), finally converted to an optical signal (E/O
converter). Table 1.2 gathers the main specifications of the system.
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Figure 1.4: Block diagram of the 120-GHz-band wireless link system. Adapted from [93, 146].

Center Frequency 125 GHz
Modulation ASK
Occupied Bandwidth 116.5-133.5 GHz
Transmission rate 10 GBits/s
Antenna diameter 450 mm (Cassegrain)
Antenna Horn Antenna
Antenna Gain 23.3 dBi
Power consumption 600 W
Output power 10 mW

Table 1.2: Main specifications of the 120-GHz-Band wireless link system. Adapted from [93, 110].

The maturity of THz communications depends on the carrier frequency. At 120 GHz and
below, we estimate it to be at level 6 in terms of TRL, whereas at higher frequencies, long distance
data transmission have yet to be demonstrated, hence it is only at TRL 4-5 [76, 93, 94, 110,
156]. Besides, according to the International Technology Roadmap for Semiconductors (ITRS),
the cut-off frequency of Si-CMOS will exceed 500 GHz within a few years [110], along with
promising new devices like ballistic transistors and lithographic resolutions of a few nanometers
[8, 9]. That is why, even if some electrical engineering work remains to be done, we believe that
in a foreseeable future THz communications will integrate many communication systems.

1.2.4 Astronomy and Astrophysics

As already mentioned above, development of THz technologies has been driven by its use for
Astronomy and Astrophysics observations over the last 30 years, because millimeter and submil-
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limeter waves play a key role: the cosmic microwave background (CMB) radiates at 2.7 K, hence
has its maximum emission power at 159 GHz (see figure 1.3), and the total amount of energy in
the submillimeter light in the universe equals the sum of energies in the UV, visible and near-IR
band [205].

Three important telescopes have used THz detectors: the Herschel space observatory, the
Planck spacecraft and the Atacama large millimeter/submillimeter array (ALMA) telescope. Her-
schel contains a heterodyne instrument for the far-infrared (HIFI), which makes very precise spec-
trometry of two bands, at 480-1250 GHz, and 1410-1910 GHz [6]. The ultimate spectral reso-
lution required (λ/∆λ ∼ 107) imposes the use of cryogenic heterodyne detectors. The 480-1250
GHz observations employs superconducting-insulating-superconducting (SIS) mixers (see 1.4.3)
whereas the 1410-1910 GHz band uses hot electron bolometers (HEB). HIFI enables to quantita-
tively observe the abundance of molecules in interstellar clouds, such as OH+ (972 GHz), H2O+

(1115 GHz) or H3O+ (984 GHz), so as to understand the early chemistry of water [82, 148].
Similarly, Planck has 52 polarization-sensitive bolometers operated at 100 mK to map the sky in
six frequency bands from 100 to 857 GHz [95]. Until the 3He depletion in early 2012, it gave
very precise pictures of the CMB which, for example, enabled to test inflation theory. Finally
the ALMA telescope has (or will have, some detectors are still in the qualification process) SIS
cryogenic detectors that covers the 84-950 GHz range [1].

Once again, the maturity of THz technologies for astronomy and astrophysics applications
is not uniform, because such huge scientific projects always demand new devices for specific
applications. Thus, even if the (low-Tc) SIS and HEB spectrometer technology is at the highest
TRL level (9), with actual succeeded missions, many aspects on the detectors could (and will)
be improved. In particular, people are eager to find lower power consuming local oscillators
and higher temperature operating devices, so as to increase their lifetime. For example, the next
generation THz space observatory, called Millimetron, will be placed at the L2 Lagrange point.
Its launch date is planed for 2019/2020, and it will be able operate its cryogenic detectors for 3
years. The THz observation range will be from 275 GHz up to 5.36 THz (all SIS or HEB). The
bath temperature will be 10 K, but the cooling power at 4.5 K will be less than 100 mW, and less
than 15 mW at the 1.7 K stage.

1.3 Sources

Historically the THz range has been difficult to address because of the lack of sources. On one
hand, the semiconductor technology has been intrinsically limited in speed by the traveling time
of the charge carriers or by the intrinsic RC constants in circuits. It leads to a power decreasing
typically with frequency as 1/ω4. On the other hand, the optics techniques are limited by the lack
of appropriate materials with sufficiently small bandgaps. For example, salt lasers do not extend
below 15 THz [197].

However solutions exist, and there are three general ways to generate THz radiations: fre-
quency up/down conversion, radiation from accelerated charges, and laser emission, which can
all produce narrow-band (continuous wave) or broadband (impulsions) radiations. We will briefly
review these methods.

1.3.1 Frequency up/down conversion

A convenient way to create THz radiations is to start from electrical or optical frequencies and
use nonlinear effects in diodes or crystals to respectively up and down convert them into the THz
range.
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Electronics. Three types of electronic devices can up-convert microwaves at room tempera-
ture [74]:

• frequency multipliers based on planar GaAs Schottky diodes. Record: 100 µW @ 1.2 THz,
15-20 µW @ 1.5-1.6 THz and 3 µW @ 1.9 THz;

• oscillators with transistors like InP Gunn devices, heterojunction bipolar transistor oscilla-
tors (HBT) or impact ionization avalanche transit-time (IMPATT) diodes. Record: 50 mW
@ 220 GHz, 10 mW @ 338 GHz (IMPATT);

• active two-terminal devices like resonant tunneling diodes (RTD) or tunnel-injection transit-
time (TUNNETT) devices. Predicted: 160 mW @ 200 GHz and 20 mW @ 300 GHz.

In addition, performances increase at cryogenic temperatures. However, as for every semiconduc-
tor devices operated at these extremely high frequencies, many thermal issues remain and they
often burnout during operation.

We used a commercially available Gunn oscillator as one of our sources during our experi-
ments.

Optics. Down-conversion of optical frequencies can be achieved by optical rectification in
electro-optical crystals (EOC), a second order non linear effect. Commonly used materials can
be traditional semiconductors crystals (GaAs, ZnTe) or organic crystals such as the ionic salt 4-
dimethylamino-N-methylstilbazolium tosylate (DAST) [77].

1.3.2 Radiation from accelerated charges

Accelerated electrons, either in free space propagation or in a solid state system can create THz
radiations.

synchrotron radiations. A beam of electrons periodically modulated or simply deviated by
a magnetic field creates THz synchrotron radiations. Free electron lasers use bunches of electrons
propagating in vacuum trough a strong, spatially varying field [77]. Mirrors confine photons to the
beam line, which forms the gain medium for the laser. Such THz sources are the most powerful and
bright known to date (the p-germanium laser can emit peak power of 10 W in the frequency range
from 1 to 4 THz [185]), but require devoted facilities and prohibitive costs. Similarly, smaller
systems exist like backward-wave oscillators (BWO): an electron beam is modulated periodically
in a vacuum tube, thus creating THz waves. We used a (BWO) during our experiments. One
of the advantages is that such sources are easily tunable, they can create continuous wave (CW)
radiations over a wide bandwidth.

THz impulsions from PCA - THz-TDS. Most broadband solid state sources are based on
the excitation of a semiconductor with a femtosecond (fs) laser pulse (usually generated by a
Ti:sapphire laser), as is the case of the photoconductive antennae (PCA). A PCA is a planar metal-
lic antenna patterned onto a semiconductor substrate, and biased at a constant voltage of several
kV/cm (see figure 1.5 (a)) [173]. One sends a pump laser pulse onto the center of the antenna,
chosen in order to have photons energy greater than the bandgap of the material. It generates
electron-hole pairs which are accelerated by the static bias field, thus creating a fast time-varying
photocurrent. The latter radiates a short pulse whose spectrum is a broadband THz signal. It is
coupled to free space by the antenna and collimated through an hemispherical lens. For an ef-
ficient THz radiation it is desirable to have a rapid photocurrent rise and decay time hence use
semiconductors with small effective electron mass, like III-V materials (low-temperature-grown
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(LTG) GaAs, InGaAs) or InP, InAs [77]. Let us also mention that even though PCA are mostly
used for pulsed THz generation, it can also generate continuous waves, by photomixing of two
optical frequencies, whose beating is in the THz range.

The same PCA structure can act as a (coherent) detector of THz pulses (see figure 1.5 (b)).
The probe laser beam creates free carriers, and the THz electric field modulates their acceleration,
then a measurable current arise. A delay stage between the pump line and the probe line enables
to reconstruct coherently the THz spectrum.

PC current JTHZ(t) PC current JTHZ(t)
ETHZ(t)~dJ/dt

THZ pulse
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Figure 1.5: THz pulse emission (a) and detection (b) with a photoconductive antenna. Adapted from [173].
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Figure 1.6: Illustration of a THz-TDS system. Adapted from [77].

Such a generation and detection technique of THz broadband radiations has been extensively
used in THz time-domain spectroscopy (TDS), in which one analyzes the THz transmission spec-
trum of a sample placed in the path of the THz pulse. Figure 1.6 illustrates the principle of
THz-TDS. Instead of a PCA, an EOC can also be used for generation and detection of THz pulses:
second order non linear effect creates a THz radiation from optical rectification of the laser pump,
and on the detecting side the THz electric field modulates the birefringence of the crystal, hence
the polarization of the optical probe, which can be measured.
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UTC-PD. The recent advances in semiconductor technologies allowed fabrication of new
photodiodes whose response is extremely fast, in the THz range. They are called uni-traveling
carrier photodiodes (UTC-PD) [146] and their underlying principle stems on a selective movement
of the carriers. Then UTC-PD can act as a photomixer and produces powerful THz radiations from
the mixing of two laser diodes.

In conventional PIN-PD (see figure 1.7 (b)), both electrons and holes movements ensure the
response of the PD. They are created when a photon hits the intrinsic (depleted) region (typically
InGaAs), and separated by the permanent electric field. The speed at which they reach respectively
the N and P-contacts limits the speed of response. One can increase it by reducing the thickness of
the depletion layer but it is inevitably accompanied with an increase of capacitance, hence a lower
cut-off frequency [149]. However, the drift velocity of electrons ve is usually much higher than the
one of the holes vh (ve ∼ 107 cm/s and vh ∼ 106 cm/s), therefore the latter limit the speed of the
device. In UTC-PD, a careful engineering increases the speed at which electrons and holes reach
the N and P-contacts without shrinking the depletion zone. In fact it consists of two layers: a light
absorption layer (p-InGaAs, typically 200 nm), next to an undoped collection layer (InP, typically
300 nm) in which electrons exhibit a velocity overshoot. Thus, the holes reach very quickly the
P-contact because the absorption layer is close and thin, and the electrons reach quickly the N-
contact because of velocity overshoot in the collection layer (see figure 1.7 (a)). The overall zone
remains thick enough to avoid capacitive effects. The photomixing of UTC-PD output power is
higher than conventional LTG-GaAs diodes, with about 100 µW at 500 GHz [146]. However
UTC-PD often overheat and burnout during operations [110].
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Figure 1.7: Band diagram of a UTC-PD (a) and a PIN PD (b). Adapted from [146].

Bi2Sr2CaCu2O8 mesa devices. In 2007 a new THz radiation phenomenon was found in
Bi2Sr2CaCu2O8 (Bi2212) high-Tc superconductor [151], which originates from coherent oscilla-
tion of intrinsic Josephson junctions (IJJs). In fact the Bi2212 structure consists in alternating
two layers of superconducting CuO2 and one insulating Bi2O2 within a unit cell. A Josephson
coupling exists between the CuO2 planes, hence a 1 µm thick Bi2212 stacks 652 identical layers
of IJJs [103]. When d-c biased, a Josephson junction (JJ) emits a THz radiation: due to the a-c
Josephson effect (see section 3.1.2) quasiparticles (QP) oscillate at THz frequencies. Under cer-
tain conditions, an array of JJs can synchronize (phase-lock) and then emit a stronger and narrower
THz oscillation than a single JJ. In fact, if N is the number of synchronized junctions, the emitted
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power scales with N2 and the linewidth scales with 1/N [100]. This is what happen in IJJs of
Bi2212, where atomic closeness of favors synchronization.

Figure 1.8 (a) shows a typical IV curve of a Bi2212 rectangular mesa (64x400x1.35 µm3). It
is strongly hysteretic and shows small jumps, due to the variation on the number of junctions that
switched into the resistive state. The negative resistance observed (negative slope) is due to Joule
heating [103]. In fact, in the voltage state the system faces an enormous heat, around 106 W/cm3.
To date, heat evacuation is still a problem in these systems. Nevertheless they can create a strong
and narrowband THz emission, as shown by the spectra in the inset of figure 1.8 (a) obtained by
Fourier transform infrared (FTIR) spectroscopy. The center frequency is 18.079 cm−1 i.e. 542
GHz. Further work showed that the emission frequency can be tuned up to 12% [31], that a single
rectangular mesa emits up to 30 µW at 0.44 THz (the system being cooled at 55 K) [165], and that
the coupling of several mesas with each other provides up to 610 µW at 0.51 THz (with a bath
temperature of 40-55 K)[30]. Finally, depending on the mesa geometry, different cavity modes
can be excited, leading to different radiation patterns[103].
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Figure 1.8: IV curve (a) and detected emission with a Si-composite bolometer (b),(c). The inset of figure
(a) is the spectrum obtained by Fourier-transform infrared spectroscopy, at the bias point indicated by a red
square. θ is the angle between the c-axis of the Bi2212 crystal and the Si bolometer. Adapted from [103].

The physics of coherent THz emission from Bi2212 IJJs is extremely rich and inspiring for our
work on YBa2Cu3O7: in fact, as we shall see in chapter 9, we attempted to engineer an extrinsic
array of JJs, in order to obtain the same synchronization effects that lead to a strong an narrowband
THz emission. It is of utmost interest in the design of a heterodyne detector, with an on-chip local
oscillator.

1.3.3 THz lasers

Gas lasers and more recently solid state lasers can provide THz continuous wave radiations.

Gas lasers. Gas laser are another common THz source. They use intermolecular transitions
between molecules, such as carbon dioxide. These sources are monochromatic and not continu-
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ously tunable. Furthermore they usually require large facilities. However they can provide high
output powers, up to 30 mW [77].

QCL. Quantum cascade lasers (QCL) are semiconductor lasers that have raised a great deal
of interest in the scientific community over the last 15 years, because of their ability to generate
a strong pulsed or continous wave (CW) THz emission. The first QCL was fabricated in 1992 by
Capasso, Sirtori, Faist et al. [51], and shortly after they demonstrated a first THz emission at Bell
Labs in 1994 [75]. It had a lasing frequency at 75 THz. In 2002 a QCL was demonstrated to lase
at 4.4 THz [114]. Nowadays QCL can cover the range 0.84-5 THz, with powers of 250 mW for
pulsed lasers (operated at 169 K) and 130 mW for CW lasers (operated at 117 K) [197]. However
below 2 THz their performance degrade and they need a fairly strong magnetic field to operate
(see 1.9).
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structures are compared: chirped supperlattices (CSL), bound to continuum (BTC), and resonant phonon
(RP). Adapted from [197].

2

InjectorActive region

1

Injection barrier

En
er

gy

Distance

104.9 mm

Figure 1.10: Simplified conduction band of a QCL. Electrons ar injected through the AlGaAs injection
barrier into the upper lasing level of the active region (GaAs). Transition to the lower lasing level results
in the emission of a THz photon. Due to the applied electric field, the band diagram is tilted and electrons
the escape to the subsequent injector band. Adapted from [75, 77].

QCL are based on quantum wells (QW) put in series. Each one is typically made with a GaAs
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layer (10-20 nm) sandwiched between potential barriers in AlGaAs (0.5-4.3 nm). The quantum
confinement of each well creates sub-bands whose spacing is in the THz range. Now, a series of
QW defines a supperlattice structure in which there is a injector from which electrons arrive, a
collector from which they tunnel into the next identical structure, and a gain medium. By putting
an external electric field, the injector is connected to the upper lasing level, the collector to the
lower one, and also connected to the injector of the next superlattice. After population inversion
is reached, electrons transit from the upper lasing level into the lower lasing level an tunnel into
the next structure in which they undergo the same lasing mechanism. Figure 1.10 represents the
simplified conduction band structure of a QCL.

1.4 Detectors

There are two kinds of receiver architecture: incoherent (sometimes refered as direct), and coher-
ent. Within the incoherent architecture there are two subcategories: power and photon detection.
There are also two subcategories for coherent detection: homodyne and heterodyne. Indepen-
dently, a detector is said to be active if it shines the target with a signal and detects back a fraction
of it (like radars). Conversely a passive detector only uses the (generally incoherent) radiation of
the target surroundings as the illumination source.

An incoherent detector rectifies a radiation from r-f (or THz) frequency to a baseband signal.
Almost always, it is a power-to-voltage or a power-to-current conversion. A coherent detector
combines the incoming radiation with another one from a local oscillator (LO) in a non linear
element called mixer. In heterodyne conversion, signal and LO frequency are different and the
mixer generates a beat-note at an intermediate frequency (IF). In homodyne conversion, signal and
LO frequency are equal and the beat-tone degenerates into d-c. The down-conversion from the
signal into IF or d-c can greatly enhance the sensitivity of detection compared to an incoherent
system, because the mixer uses power from the LO to generate a strong beat-note, even with a
small signal. In addition, high-quality low-cost passband filters at the IF enable to have a high
spectral resolution for the signal, and the amplitude generated at the IF is generally proportional
to the one at signal frequency. Therefore coherent detection is particularly suited for spectroscopy.
However spectral bandiwdth is more limited than in incoherent detection, that is why the latter is
preferred for imaging applications.

1.4.1 Figures of merit for a detector

In this section we define and discuss important parameters used to characterize any detector in
terms of noise and sensitivity. In the zoology of sensors, there are many scenarios from which
derive different expressions for the minimum noise added by a detecting system. We summarize
here the main results, taken from the monograph of Brown [46], with an emphasis on heterodyne
detectors.

1.4.1.1 SNR, NEP, TN

When characterizing the sensitivity of a detector, the first figure of merit that one can think of
is the ratio between the average absorbed signal power and the rms noise power. It is called the
power signal to noise ratio (SNR):

SNR =
S
N

=
< P >√
< (∆P)2 >

=
< P >

SP(ν)BEN
(1.4)

were BEN is the equivalent noise bandwidth. A drawback is that the SNR depends on the signal
received, hence one cannot use it to compare different sensors. A more useful way to define a
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metric is to fix the SNR to some arbitrary value and then give the corresponding signal power. In
statistics one can show that only post-detection SNR values greater than unity are useful. Hence
one defines the noise equivalent power (NEP) as the input signal power to the sensor required to
achieve a SNR of unity:

SNR = 1⇐⇒ S = NEP (1.5)

For square-law detectors (like heterodyne or homodyne detectors) one has to distinguish NEPBD

before detection and NEPAD after detection, since we translate information from a bandwidth ∆ν

to a (lower) bandwidth ∆ f . They are related by:

NEPAD = NEPBD

√
2∆ f
∆ν

(1.6)

Strictly speaking the NEP is in W, but it is conventional to divide it by the square root of the
post-detection bandwidth, so as to compare different technologies. It yields to the normalized - or
specific - NEP’:

NEP′ =
NEP√

2∆ f
(1.7)

in W/
√

Hz. Thus with equation 1.6:

NEP′AD =
NEPBD√

∆ν
(1.8)

For passive detection of thermal targets, the noise equivalent temperature difference, NE∆T (in K)
is more useful:

NE∆T =
NEPAD

dPinc/dT
(1.9)

It is the smallest temperature difference that the detector can measure. NEP’ and NE∆T are usually
employed for incoherent detectors. For coherent heterodyne sensors the noise-equivalent temper-
ature TN is typically used:

TN =
NEPAD

kB2∆ f
(1.10)

It represents the temperature of a load which produces a SNR of unity after detection. These
figures of merit are detailed in appendix A for a direct detector, in the case of a coherent and
thermal radiation.

1.4.1.2 Square-law detection

A square-law detector is a device for which the output signal is proportional to the square of the
input signal: Xout =GX2

in. Any mixer used in a coherent detector has, at least at first order, a square-
law behavior. In the case of a heterodyne mixer Xin = XLO +Xsig where XLO = ALOcos(ωLOt) and
Xsig = Asigcos(ωsigt) and we get:

Xout =G
(
A2

LO
1+ cos(2ωLOt)

2
+A2

sig
1+ cos(2ωsigt)

2
+AsigALO

[
cos(ωsig+ωLO)t+cos(ωsig−ωLO)t

])
(1.11)

Hence we see that an IF at ωIF = ωsig−ωLO is created by the mixer, which can be at much lower
frequency than LO and signal frequencies. In general the sensor has a limited bandwidth BIF

around the IF so that only the low frequency terms are detected:

Xout =G
(A2

LO
2

+
A2

sig

2
+AsigALOcos(ωsig−ωLO)t

)
=ηR

(
PLO+Psig+2

√
PLOPsigcos(ωsig−ωLO)t

)
(1.12)
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where η is the fraction of absorbed LO and signal power, R is the responsivity of the detector, in
A/W or V/W, and Psig (PLO) the signal (LO) power. ALO can greatly amplify Xout : once again the
LO acts as a pump from which we take energy. The output power at the IF is given by:

PIF = DX2
out = D(ηR)22PLOPsig (1.13)

where D accounts for any impedance mismatch between the mixer and IF reading line. Usually
one puts all the parameters other than Psig and η into Gmix, the gain of the mixer:

PIF = η
2GmixPsig (1.14)

Here we see the linear relation between the signal power and the IF power. In the case of a
homodyne detection, PIF = 2η2GmixPsig.

The signal to noise ratio of a coherent detector is subtle to compute since both fluctuations of
signal and LO must be taken into account. However, when PLO� Psig one can show that:

(∆Xout)
2 = 2R2(∆Psig)

2 BIF

∆ν
(1.15)

for a unimodal LO, from equations A.8, A.10 and A.20 of appendix A one has:

(∆Psig)
2 = ηhνLO∆νPLO (1.16)

Thus, with equation 1.13:√
< (∆PIF)2 >= D < (∆Xout)

2 >= 2DR2
ηhνLOPLOBIF = GmixηhνLOBIF (1.17)

Hence, heterodyne radiation-noise-limited SNR is given by the ratio between 1.14 and 1.17:

SNRIF =
η < Psig >

hνLOBIF
(1.18)

and for the homodyne case, SNRIF = 2 η<Psig>
hνLOBIF

. Taking the SNR at unity one finds the radiation-
noise-limited NEP (before detection), where the LO power does not appear:

NEPHET =
hνLOBIF

η
(1.19)

and for the homodyne case:

NEPHOM = 2
hνLOBIF

η
(1.20)

One defines the specific NEP (before detection) for heterodyne detectors as:

NEP′HET ≡
NEPHET

BIF
(1.21)

which is in W/Hz and not in W/
√

Hz as for direct detectors. It is because the output of the mixer
PIF is linear with the input Psig. An equivalent way of seeing it is to say that two powers arrive on
the mixer, LO and signal, each one accounting for one square root of Hz in the NEP.

The two famous expressions 1.19 and 1.20 are important because they show the fundamental
limit of a coherent detector, which stems directly from a quantum mechanics postulate: any detec-
tor measure a radiating field by extracting photons from it, which has a built-in granularity. It leads
to a minimum precision for the measure of hν/η , where the coupling constant η accounts for the
strength of interaction between the field and the detector. The occurrence at which we make the
measurement is given by the bandwidth BIF , equivalent to a sampling rate. Hence the NEP results
from a probabilistic measurement: it is equal to the sampling rate BIF times the expectation value
hν/η .
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1.4.1.3 Electrical noise, total NEP of a heterodyne detector

The process of measuring a radiating field induces noise, but up to know we considered that the
electronic circuit was noise free. However it is never the case. We will deal with two categories of
noise: first thermal noise, caused by voltage or current fluctuations at the terminals of a dissipating
device. It is given by the Nyquist theorem:

∆Vrms =
√

4kBTDℜ(ZD)∆ f (1.22)

where TD, ZD and ∆ f are the temperature, differential impedance and bandwidth of the device.
Second, shot noise originating from the granular nature of electric charges, transported between
an emitter and a collector. With a similar reasoning than the one employed in appendix A to derive
photon shot noise, one can show that the mean square current fluctuations of this electron shot
noise are given by the Schottky expression:

< (∆I)2 >= 2eIdc∆ f (1.23)

To effectively include them in figures of merit characterizing the whole detecting line, we
assume that it is AWGN (additive white gaussian noise), so that we can add the variances of each
source of noise, and we include all the electric noises into a specific NEP′elec (in W/Hz, and not as
conventional specific NEP’ in W/

√
Hz). Then the total noise and specific noise equivalent power

after detection, NEPAD and NEP′AD, for a heterodyne (double side band) detector are given by:

NEPAD =
[hνLO

ηR
+NEP′elec

]
2BIF (1.24)

NEP′AD =
[hνLO

ηR
+NEP′elec

]√
2BIF (1.25)

where ηR accounts for the photon absorption efficiency of the antenna and for any mismatch
between antenna and mixer. If we define the total conversion efficiency ηHET such as:

1
ηHET

=
1

ηR
+

NEP′elec
hνLO

(1.26)

we can right NEPAD and NEP′AD with a form simillar to equation 1.19:

NEPAD =
hνLO

ηHET
2BIF (1.27)

NEP′AD =
hνLO

ηHET

√
2BIF (1.28)

When the incident signal is a thermal noise contained in the same monomode as LO, we get
(equation A.5 of appendix A) < Psig >= kBT BIF . Hence, in the Rayleigh-Jeans limit (kBT � hν0),
the efficiency of a passive detection of a heterodyne sensor is characterized by:

NE∆T ′AD =
NEP′AD

dPinc/dT
=

NEP′AD
kBBIF

=
hνLO

kBηHET

√
2

BIF
(1.29)

Finally, the receiver noise temperature TNrec is found by replacing the NEPAD by its value
(equation 1.27) in equation 1.10:

TNrec =
1
kB

[hνLO

ηR
+NEP′elec

]
=

hνLO

kBηHET
(1.30)
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which is related to NEP′AD by:

NEP′AD = kBTNrec
√

2BIF (1.31)

Figure 1.11 represents the calculated noise temperature TNrec and specific noise equivalent power
after detection NEP′AD as a function of LO frequency, for a double side band (DSB) heterodyne
mixer, having an IF bandwidth of 4 GHz. The two metrics are computed for different values of
the conversion efficiency ηHET . As we will see in chapter 7, we have a conversion efficiency of
a few percent for our unmatched Josephson mixer, hence we expect a noise temperature of a few
thousands of Kelvins and a NEP′AD of about 10−15 at 100 GHz. By improving ηHET with matching
microwave designs, one expect to greatly improve those figures.
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Figure 1.11: Noise temperature TNrec (a) and noise equivalent power temperature difference NE∆T of a
DSB mixer, having BIF = 4 GHz. Calculations from equations 1.29 and 1.30.

1.4.2 Direct detectors

Direct detectors are particularly suited for imaging applications, given their moderate sensitivity
and their ability to be implemented into arrays (multiplexing is straightforward, unlike in hetero-
dyne detectors). Some operate at room temperature, but of course, cooled sensors achieve better
sensitivities (less thermal noise). Most of them rely on a thermal effect, with an absorbing element
coupled to a heat sink, and speed of use limited by heat evacuation time. Hence they typically
operate at a slower pace than heterodyne detectors but reach nowadays a few hundreds of MHz
[157]. They are sensitive to a very broad radiation band, usually from a few tens of GHz to IR,
hence not adapted to spectroscopic applications and they require filters. Let us briefly review the
main direct detectors; typical figures of merit are summarized in table 1.3.
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Detector type
Operating

temperature (K)
NEP’

(W/
√

Hz)
Speed
(Hz)

spectral
width (THz)

pyroelectric
sensor
[13]

ambient 10−9 103 to 106 0.02 - 3

Golay cell
[13]

ambient 10−8 to 10−10 ∼ 100 0.01 - 20

Si
Bolometer
[2]

1.6 - 4.2 K 10−13 to 10−15 200 to 400 0.15 - 20

InSb
Bolometer
[2]

4.2 K ≤ 8.10−13 6.103 0.06 - 1.5

VOx
Bolometer
[173, 122]

ambient
≥ 3.10−10

(increases with ν)
≤ 106 ≤ 30

Superconducting
HEB
[157, 173]

300 mK - 4.2 K
2.10−14 @ 4.2 K
10−19 @ 300 mK

105 to 1010 ≥ 10

TES
[205, 173]

300 mK 10−19 - 10−20 40.103 ≥ 10

STJ
[173, 20, 21, 140]

300 mK 10−16 to 10−18 ≥ 106 ≤ 1

MKID
[202, 28]

100 mK 10−18 to 10−19 ∼ 100 ≤ 1

Table 1.3: Comparison of different direct detectors.

1.4.2.1 Thermal sensors

Pyroelectric sensor. The incoming radiation produces a current variation on a pyroelectric
material, like a LiTaO3 crystal.

Golay cell. An incoming radiation on a polyethylene or diamond input window induces a
gaz dilatation in a sealed chamber, hence a pressure variation.

Bolometer. A schematic diagram of a bolometer is shown on figure 1.12. A radiation of
power P is converted into heat by an absorber whose heat capacity is Cth, at a rate dTB/dt = P/Cth,
and measured by a thermometer. Absorber and thermometer are in general the same material,
that exhibits a strong temperature-resistance (dR/dT ) dependence. Then heat is evacuated via a
thermal conductance Gth to a heat sink, generally the supporting substrate. When the radiation
is turned off, the absorber goes back to TS with a time constant τth. There is a trade-off to be
found between sensitivity and response time: in fact in these devices NE∆T is proportional to√

Gth whereas τth is inversely proportional to Gth. For typical uncooled bolometers, Cth ∼ 2.10−9

J/K, Gth ∼ 10−7 W/K and τth ∼ 20 ms [173]. Classical bolometers are made with heavily doped
semiconductors in Ge, hence called "semiconductor bolometer", or with vanadium oxide, "VOx
bolometers".

The term hot electron bolometer (HEB) usually refers to cryogenic bolometers. Historically
"hot electrons" refers to nonequilibrium electrons in semicondutors, and is commonly used to qual-
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Figure 1.12: Schematic diagram of a thermal detector. Adapted from [173].

ify thermal effects in cryogenic bolometers, hence called hot electron bolometers (HEB). Typical
HEB are made with InSb, operated at 4K and below.

TES and superconducting HEB. A transition edge sensor (TES) is a superconducting film
of critical temperature Tc, held within its transition region, and weakly coupled to a heat sink at T ∼
Tc/2. Due to the abrupt change of resistance close to Tc, TES is very sensitive to any heat brought
by an incoming radiation. Many materials and designs can be used for TES fabrication, typically
the absorber is a low-stress silicon nitride membrane, and the superconductor is aluminum based.
TES are usually voltage biased [98] to give a negative electrothermal feedback: a low impedance
resistance of a few mΩ (Rsh in figure 1.13) is placed in parallel to the TES whose impedance is
much higher, about 1 Ω. Thus, a constant power PB = RI2 flows in the TES, ensuring a linear
response, a large bandwidth and an immunity against temperature variations of the heat sink. The
reading of resistance variation is done through a superconducting quantum interference device
(SQUID) coupled to a coil.

A superconducting HEB (or just "HEB") is very similar to a TES: a superconducting film is
biased in its transition, hence a small change of temperature caused by absorption of an incident
radiation creates a huge change in its resistance. The main difference is that in HEB, the radia-
tion absorber is the superconductor [173], and good electron-phonon coupling ensures a fast heat
evacuation. Thus, HEB can operate at higher frequencies than TES.

1.4.2.2 Pair breaking photon detectors

Quantum limited sensors can be fabricated with superconductors because at temperatures T � Tc

most of the electrons are paired: random generation and recombination of quasiparticles decreases
as e−∆/(kBT ), an hence thermal noise [205]. Subsequently, if an incoming photon has an energy
greater than twice the superconducting gap, it will break a Cooper pair and produce quasiparticles,
that one can detect through different schemes.

STJ detector. A superconducting tunnel junction (STJ) - or SIS junction - is a sandwich of
an insulating layer between two superconducting bulks (see section 3.1.1 for an explanation of



36 Chapter 1. Terahertz technologies

2 kΩ

x x

+V

SQUID
Rsh

TES

Figure 1.13: TES voltage bias circuit. The shunt impedance Rsh ∼ 10 mΩ is much smaller than the TES
impedance of about 1 Ω. Adapted from [205].

its physics), through which we can have only quasiparticles (QP) crossing. Typically the barrier
is ∼ 20 Å thick and the junction is about 1 µm2. When biased at Vb < 2∆, incoming photons of
energy hν may assist the tunneling of QP, which occurs if hν > 2∆− qVb. However SIS tunnel
junctions are mostly used for coherent detection.

MKID. The surface impedance of a superconducting line is highly inductive due to the ki-
netic energy of moving Cooper pairs, thus called kinetic inductance. The latter is very sensitive to
the amount of QP. Therefore, a high-Q microwave resonator (for example a superconducting CPW
line) will see its resonant frequency shifted as a photon hits it, which can be monitored through
a microwave readout system. It is the functioning principle of microwave kinetic inductance de-
tectors (MKIDs). MKIDs have shown to be very sensitive [28, 202], are fairly easy to multiplex,
hence are very promising for imaging applications.

1.4.3 Coherent detectors

As already mentioned, coherent detectors are particularly suited for spectroscopic applications,
owing to the high spectral resolution λ/∆λ = 105−106 that they can provide [205].

Fundamentally, any electronic device with a non linear current-voltage relation can be used
as a mixer, because then the Taylor expansion has a quadratic term, and thus it is at first order a
square law component. In the devices described above some have a non linear IV characteristics
and that is why they are also (and in fact mostly) used for coherent detection. Those are: SBDs,
HEB and SIS junctions. We will very briefly review here their main properties and give in table 1.4
their typical figures of merit. Figure 1.15 compares the noise temperature of different technologies
as a function of the operating frequency. We deliberately put aside the photoconductive antenna,
because even if it is also a THz mixer, we believe that it is mostly inherent to the THz-TDS
technique, rather than a detector in itself.

There are two distinct modes of operation for a mixer: double-side band (DSB) and single-
side band operation. In DSB operation the upper-side band, where ωsig > ωLO and the lower-side
band, where ωsig < ωLO are both converted into the IF band. In SSB operation, only the upper-side
band or the lower-side band is converted into the IF band. For sensitivity, it is important to notice
that DSB operation down-converts two times more noise than SSB operation.
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Let us also point out that compared to direct detectors, an additional and extrinsic problematic
comes into play: the generation of a strong enough LO, which limits sometimes the implementa-
tion of the technology.

Detector
type

Operating
temperature (K)

DSB Noise
temperature (K)

Maximum
operating
frequency

LO power

SBD
[173, 138]

4.2 - 300 K

55 K @ 100 GHz, 20 K
200 K @ 100 GHz, 300 K
1000 K @ 600 GHz, 300 K
70000 K @ 5 THz, 300 K

≤ 25 THz 1 - 10 mW

SIS
[173, 205]

≤ 300 mK 530 K @ 1.2 THz
1.4 THz (Nb)

1.6 THz
(NbN - NbTiN)

40 - 100 µW

HEB
(Nb, NbN)
[173, 205]

∼ 4 K 1500 K @ 1.5 THz (NbN) ∼ 5 THz 100 - 500 nW

HEB
(YBCO)

[168, 173]
≥ 50 K ∼ 3000 K @ 600 GHz - -

Table 1.4: Comparison of different heterodyne detectors. The maximum operating frequency and the mini-
mum LO power required for high-Tc HEB are not reported in the literature and still need to be investigated.

SBD mixer. A Schottky barrier diode is an electronic element made by a point contact be-
tween a metal and a semiconductor (GaAs). An incoming radiation on a SBD can produce four
transport mechanism: thermionic emission, photon assisted tunneling and generation-recombination
inside or outside the depletion region, hence a detectable current.

SBDs are historically the first devices that have been used for THz heterodyne detection, with
a gas laser as LO. The IV characteristics of a SBD is exponential, and given by [56]:

I = Isate
(

V
V 0

)
(1.32)

where V0 =η kBT/q, with q the electronic charge, and η the efficiency of the thermoionic emission.
The first whisker contacts in GaAs based diodes in the 1960s were replaced by planar technology in
the 1980s, which enabled to work at higher frequencies. But beyond 1 THz the shunt capacitance
degrades mixing performances. One can reduce it by reducing the size of the contact, but at the
same time it increases the series resistance. Also, SBDs require a powerful LO, from 1 to 10 mW.
Cooling SBDs improve their performances but not as much as competing with SIS or HEB mixers.
Overall they are of interest for room temperature mixing operations.

SIS mixer. The superconducting-insulating-superconducting (SIS) mixer exploits the non
linearity of the quasiparticle tunneling process: at a voltage bias Vb ' 2∆ (where ∆ is the su-
perconducting gap), the IV characteristic is strongly non linear (see section 3.1.1). As for di-
rect STJ detectors, the photon assisted tunneling (PAT) occurs when hν > 2∆− qVb, where ν is
the photon frequency. However when hν > 2∆+Vb ' 4∆, the same PAT process allows a re-
verse tunneling, hence degrades the non linearity. Therefore all-Nb SIS mixers are limited to
ν < 4 ∗ 1.76kBTc/h = 1.4 THz, and 1.6 THz for NbN or NbTiN junctions. Nevertheless, below
these cut-off frequencies, SIS junctions are among the most sensitive detectors, and can operate
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close to the quantum limit given by equation 1.30: kBTN ≥ hνLO/η (SSB). They have to be oper-
ated well below Tc, in order to have most of electrons into Cooper pairs. However up to now they
remain difficult to implement into large arrays. They require much less LO power than SBDs,
typically 40-100 µW. Figure 1.14 represents simulated IV curves of a niobium SIS mixer, with
and without LO illumination, as well as the IF frequency response as a function of bias voltage.
PIF is optimum close to 2∆.
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P IF
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 I dc
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290 K
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Figure 1.14: Simulations of IV curves and IF response of a niobium SIS mixer. Adapted from [205].

HEB mixer. Unlike SIS mixers, the physics of HEB mixers stems on a thermal effect: close
to Tc, the resistance is very sensitive to the electron temperature: it is non linear, hence the non-
linear IV characteristic. In addition, the electron-phonon relaxation time τeph can be made short
by having a superconducting film of a few nm, which effectively couples it to the substrate and
thus achieve GHz output bandwidth at the IF. Furthermore, the electron specific heat Ce should
be smaller than the phonon specific heat Cph so that energy flows from the former to the latter.
A 3 nm NbN films has typically τeph ∼ 10 ps and Ce/Cph = 6.5 [173]. There is no fundamental
restriction to operate HEB mixers at high frequencies (no noticeable capacities), and that is why
they are used above 1 THz, up to several THz (see section 1.2.4). Also, the required LO power
is about one order of magnitude lower than for SIS mixer, between 100 and 500 nW, which is of
prime interest for space applications.

Finally, let us underline that YBa2Cu3O7 superconducting HEB mixers are of great interest,
because not only they operate at higher temperature, but also τeph ∼ 1 ps, i.e. about one order of
magnitude less than for NbN, and Ce/Cph = 38. Thus one could have a broader bandwidth.

1.5 Conclusion - terahertz technologies and high-Tc superconductors

As we have seen all along this chapter, little work has been done to address THz frequencies with
high-Tc superconductors (HTS), and this for two main reasons: First, their fragile crystalline struc-
ture make them delicate to process, as we shall see in chapter 2. With the current technologies, the
device fabrication remains challenging and for instance, to date there is no high-Tc equivalent of
the low-Tc SIS junctions. Second, their physics is still hardly understood, and theories describing
most of the low-Tc cannot be immediately transposed to HTS. We modified some of the theoretical
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Figure 1.15: Comparison of DSB noise temperatures of the different mixer techology. Adapted from [173].

low-Tc models to explain the physics of the electronic transport in our high-Tc Josephon junctions
in chapter 3.

Nevertheless, they operate at much higher temperatures than many recent technologies, where
cryogenic cooling as low as 300 mK is commonly required. In a context where helium scarcity on
earth could be a forthcoming issue, nitrogen cooled high-Tc technologies would prove valuable.
Even working between 30 and 80 K is interesting, because it is much easier to implement in
operating systems than colder temperatures.

High-Tc Josephson mixers (HTS-JM) could have an interest in long term space missions, be-
cause the exhaustion of helium reserves limits the current lifetime of low-Tc detectors. Further-
more, as we shall see in chapter 7, the local oscillator power required in our system is extremely
low, in fact lower than for the low-Tc. HTS-JM could also be useful to implement affordable and
reliable short range communication systems, where the semiconductor technology seems limited
by output powers and heating related issues.

High-Tc THz sources in Bi2Sr2CaCu2O8 are very promising, and pave the way to available on-
chip local oscillators. High-Tc YBa2Cu3O7 superconducting hot electron bolometers are promis-
ing due to intrinsic properties of the material that could give detectors with broader IF bandwidth
than their low-Tc equivalent.

In this thesis we aimed at evaluate the performances of a high-Tc Josephson mixer for THz
detection. We also worked towards the fabrication of an on-chip extrinsic local oscillator, designed
with an array of Josephson junctions.
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The fabrication of high-Tc Josephson junctions (JJs) has drawn tremendous interest and work
since the early nineties, yet it remains a technological challenge. Even if some very recent work on
YBa2Cu3O7 junctions fabricated with an helium focused ion beam (FIB) is very promising [62],
to that day there is still no clean high-Tc tunnel junctions. Conversely, the fabrication of low-Tc

junctions has been mastered for decades [89], and it generally consists in a trilayer technology
Al−Al2O3−Al or Nb−Al−Al2O3−Nb. The oxide growth being a self-terminating process, it
provides an easy way to make reproducible thin barriers of a few tens of Å.

With high-Tc superconducting (HTS) materials, it is much more challenging. It is in fact ex-
tremely delicate to epitaxially grow an insulating layer between two superconducting layers, since
the crystalline fit imposes lots of constraints [113]. Furthermore, the superconducting coherence
length is extremely short: typically 2 nm in the ab plane and 0.2 nm in the c-axis direction (to be
compared with micrometer coherence length in aluminum). Therefore, the barrier must reach a
perfection at the monolayer level, in order to have a tunneling effect.
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There has been some attempts to obtain tunnel junctions with HTS, using trilayers YBa2Cu3O7
/ PrBa2Cu3O7 / YBa2Cu3O7, but the unclean barrier contained localized states, inducing a com-
plicated transport. Nonetheless, Josephson effect was observed [34, 36]. Others used trilayers
YBa2Cu3O7 / PrBa2Cu3O7 / HoBa2Cu3O7 [57], and demonstrated a clean tunnel conductance-
voltage curve, but the results were never reproduced afterwards.

However non-tunnel JJs can be obtained by various methods, which we will describe in section
2.1. Then we will present in section 2.2 and 2.4 the alternative technique that we used, which
consists in using ion implantation.

2.1 Fabrication of high-Tc Josephson junctions

For any Josephson junction, two parameters are of prime importance: the critical current Ic and
the normal resistance Rn. As we shall see in the next chapters, the higher the IcRn product, the
better heterodyne terahertz detection is.

Depending on the fabrication, two classical categories of high-Tc junctions stand out: those
with intrinsic and those with extrinsic interfaces. Our junctions belong to another category, those
with no interfaces.

(a) bicrystal GBJ (b) step-edgeGBJ

(c) step-edgeSNS (d) ramp-edge

Figure 2.1: Categories of high-Tc Josephson junctions, taken from [113].

2.1.1 Josephson junctions with intrinsic interfaces

The first class gathers the so-called grain boundary junctions (GBJs), in which there is a weak
coupling between two crystallographic orientations of the superconducting film.

In bicrystal GBJs, the YBa2Cu3O7 layer is epitaxially grown on a bicrystal substrate (LaAlO3,
SrTiO3, MgO, sapphire, ...) with two crystalline orientations (figure 2.1 (a)). The high-Tc film
is oriented in-plane according to the substrate, and a Josephson junction is created at the joining
frontier between the grains [92, 113]. Transport properties depend strongly on the misorientation
angle θ which typically spans between 20◦ and 30◦ but overall, they have a reasonably high critical
current density (depending on θ ) and a fairly high IcRn product. The table 2.1 gathers typical
values found in the literature. However it is not possible to arbitrary place many junctions in the
superconducting film with this technique, and it is difficult to control the junction’s parameters
(critical current Ic and normal resistance Rn). This type of high-Tc junctions is widely used for
detectors.

In step-edge GBJs, a 200-300 nm step is created in the substrate through standard lithography
and Ar-milling (figure 2.1 (b)), then the YBa2Cu3O7 layer is grown and the c-axis orientation of
the film changes at the step, creating two GBJs. The position of the step on the substrate can
be freely chosen and its angle α typically spans between 50◦ and 60◦. Once again, transport
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properties strongly depend on this angle [123] and the spread in parameters is greater than for
bicrystals GBJs (more than 20%).

2.1.2 Josephson junctions with extrinsic interfaces

The second class gathers the junctions whose interlayer, a normal metal or an oxide, is placed
between two superconducting electrodes. Overall, the fabrication process are much more compli-
cated than for intrinsic interfaces.

In step-edge SNS junctions (figure 2.1 (c)), a 50-60 nm step is cut in the substrate and then a
high-Tc film is directionally grown, so that it does not grow on the step. One fills the gap in situ
afterwards, by off-axis sputter deposition of Au or Ag. High normal resistances and very high IcRN

product have been observed [40] (see 2.1). As controlling the interfaces during fabrication remains
very tricky, the reproducibility is poor and the transport properties are difficult to understand. They
involve complicated models such as SINIS sandwiches [158].

Ramp-edge junctions’ fabrication (figure 2.1 (d)) is the closest to the low-Tc spirit: a YBa2Cu3O7
film covered by an insulating layer is deposited, then a ramp is patterned with ion milling. An ox-
ide barrier (PrBa2Cu3O7 or ruthenates) covered by the YBa2Cu3O7 top electrode is epitaxially
grown in situ afterwards. One advantage is that the superconducting/normal interfaces are buried
under the top electrode, thus protecting the junction from thermal cycling or aging. Furthermore,
the top electrode shields the junction against the normal magnetic filed component [113]. How-
ever, once again transport properties are difficult to understand, involving localized states in the
barrier or in the interface. The normal resistance and the IcRn product are moderately high.

Typical characteristics remarks [113]

JJs with
extrinsic
interfaces

bicrystals GBJs
[154, 92]

RN = 1-2 Ω

IcRN = 6-8 mV @ 4.2 K
IcRN = 1.2 mV @ 77 K
K

RSJ like
Large spread of parameters
Geometrical constraints

step-edge GBJs
[79, 142, 144, 143, 23]

RN = 3-10 Ω

IcRN = 3-5 mV @ 4.2 K
IcRN = 2 mV @ 40 K
IcRN = 150-200 µV @ 77 K K

RSJ like
Excess supercurrent
Large spread of parameters

JJs with
intrinsic

interfaces

step-edge SNS
[158, 40, 113]

RN = 2-10 Ω

IcRN = 1 mV @ 77 K
IcRN = 8.8 mV @ 4.2 K

Poor reproducibility
Not RSJ like
Large excess supercurrent

rampe-edge
[108, 113]

RN = 0.2 Ω

IcRN = 0.7-1.2 mV @ 30 K
IcRN = 0.3-0.7 mV @ 50 K
IcRN = 0.1 mV @ 77 K

Not RSJ like
Large spread of parameters

Table 2.1: Typical data of high-Tc Josephson junctions taken from the literature, depending on the fabri-
cation technology. RSJ refers to the resistively shunted junction model, that will be developed in the next
chapter. The large excess supercurrent means that the Josephson effect is not the only transport mechanism
for the supercurrent (see chapter 5).

2.1.3 An alternative: irradiated Josephson junctions

Our fabrication technique of Josephson junctions is different from what we have seen above. It
consists in using ion implantation - also called ion irradiation - to create a barrier in a YBa2Cu3O7
thin film. It relies on the extreme sensitivity of HTS to defects, owing to the d-wave symmetry
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of their order parameter. As we are going to explain, disorder induced in the material by irradi-
ation reduces the superconducting transition temperature and increases the resistivity because of
enhanced scattering.

When covered by a mask (a patterned protecting resist), only selective regions in the film
undergo irradiation. That way, one can design a slit in which superconductivity is reduced, thus
creating a weak-link Josephson junction.

Few groups performed terahertz mixing measurements with high-Tc junctions, and in this con-
text, we will show that the irradiated technology has many advantages regarding others: good
reproducibility, and planar junctions; hence easy integration for complicated designs, mandatory
for Josephson junction arrays. It has been developed and improved over the past ten years, starting
with the phD work of Xavier Grison and Nicolas Bergeal [33, 35, 36, 170].

2.2 Ion Implantation

The ion implantation - or irradiation - technique consists in modifying the properties of a given
material by exposing it to a directed high energy ion beam. The latter usually spans between a few
tens of keV to a few MeV, and the number of implanted ions, called dose, varies typically between
1012 to 1017 ions.cm−2. Below it, hardly anything is implanted and above it, sputtering effects
become predominant so that the sample surface is etched during the process.

Ion implantation has been used for material science and in the semi-conductor industry since
the 1980s, to dope silicon and make p-n junctions [49, 48]. At the same time, powerful enough
computers emerged and enabled to perform numerical simulations [159, 198], which played a
major role in its success. Indeed they are essential to understand and optimize the process because
analytical approaches [41, 133] based on a statistical behavior are not accurate enough.

Let us also mention here that YBa2Cu3O7 SQUIDs fabricated with ion irradiation were the first
high-Tc superconducting (HTS) devices tested in space on board on the space shuttle Discovery in
1993 [182].

In the frame of irradiated Josephson junctions, one sends oxygen ions (O+) on YBa2Cu3O7.
It is used twice in the fabrication process: first with a high dose, that completely amorphizes the
superconducting film on selective areas; second with a low dose, to locally reduce the critical
temperature of the film, and make the junction’s barrier. Here, we are going to quantify and
simulate the amount of disorder induced by irradiation. To that end we introduce a parameter
called the displacement per atom (dpa). It is the percentage of displaced atoms in the crystalline
structure.

2.2.1 Transport of ions into matter

We used a Monte Carlo simulation program called TRIM (transport of ions into matter), developed
by J. F. Ziegler and J. P. Biersack at IBM. It is based on the stopping and range of ions into
matter (SRIM) theories [204]. TRIM calculates the interaction of energetic ions onto a target.
From the density of a material, its chemical composition and the displacement energies of each
element, it calculates trajectories of implanted ions and the position of the created defects. It uses
an analytical formula to determine the atom-atom collision, derived from the screened Coulomb
scattering (Rutherford scattering corrected with fitting parameters) and a quantum approach for
the interatomic potentials. The collisions of a given ion are spatially separated by an energy
dependent free flight path. Thus, a particle’s free flight path is longer at high energies and is
steadily reduced in the course of slowing down. It considerably improves the calculation time
by omitting negligible interactions (where the amount of energy transfered causes a negligible
deflection angle). It operates with the following model approximations:
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• target is considered amorphous, with atoms at random locations, and thus the directional
properties of the crystal lattice are ignored. This approximation remains valid from a few
tenth of keV/u (energy/mass) to a few MeV/u, where the binary collisions (lower limit) and
the relativistic effect (higher limit) are negligible;

• every ion is calculated with the assumption of zero dose, i.e the target is perfect and previous
ions have no effect on subsequent ions;

• target’s temperature is 0 K, so that there are no thermal effects changing the distribution of
ions (thermal diffusion) or affecting the target damage (thermal annealing).

The TRIM program can record the effects of incoming ions in the target material [204]. Each
can generate:

• a vacancy i.e. a hole left behind when a recoil atom moves from its original site;

• a replacement collision i.e. an element replacing the same element that has been displaced;

• an interstitial atom;

• an atoms leaving the target.

Furthermore, TRIM also records all the events of collision cascades. It stops when the transfered
energy is lower than the lowest displacement energy. Figure 2.2 represents simulated trajectories
and cascades of 100 O+ ions sent from a point source onto a 70 nm YBa2Cu3O7 film. The trajec-
tories of implanted ions are white, the recoil oxygen atoms are blue and the recoil copper atoms
are violet.
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Figure 2.2: Simulation of 100 O+ ions implanted at 110 keV in a 70 nm YBa2Cu3O7 film, projected in the
(x,z) plane. The trajectories of implanted ions are white, the recoil oxygen atoms are blue and the recoil
copper atoms are violet. In Al2O3 the recoil oxygen atoms and aluminum are respectively violet and orange.

Since we send O+ ions and since oxygen already exists in the structure, they either finish in a
replacement collision, interstitial site or leave the target. Thus, the implantation process disturbs
as little as possible the fragile structure of YBa2Cu3O7. In particular, it does not modify oxygen
doping, since the amount of ions is negligible compared to the amount of ions already present in
the structure.
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2.2.2 Plain sheet dpa

From TRIM simulations, homemade C programs compute the dpa for a given dose and energy.
An important parameter is the collision events C (that can be obtained directly in TRIM software).
For a plain sheet implantation, C=Cps(z) is the number of defects (vacancies or interstitial atoms)
per ions implanted per unit of depth z, hence in defects/ions/Å. To correctly calculate the dpa into
YBa2Cu3O7 layer (thickness z0), one has to extract Cps(z < z0) from the TRIM output file. It is
the total number of defects per ion implanted inferior to a depth z0 (thickness of the film). Then
the plain sheet dpaps(z < z0) is given by:

dpaps(z < z0) =
Cps(z < z0)φ

d
(2.1)

where φ (in ions/Å
2
) is the dose and d (in at/Å

3
) is the material’s density. For YBa2Cu3O7

d = 7.53.10−2 at/Å
3
. The dpaps(z < z0) is in defects/atoms, that is to say a percentage of defects.

It is worth noticing that it varies linearly with the dose, but its evolution with the ions’ energy is less
intuitive. In fact the inset in figure 2.3 represents the total plain sheet dpa for a 70 nm YBa2Cu3O7
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Figure 2.3: Simulations of the plain sheet dpaps as a function of the depth z. Inset: simulation of the total
plain sheet dpaps for z < 70. The dose is 5.1013 ions.cm−2. The simulated sample is a YBa2Cu3O7 layer on
top of the Al2O3 substrate, as in figure 2.2.

layer with the Al2O3 substrate at a dose of 5.1013 ions.cm−2, as a function of the implanted ions
energy. It increases from low energies, reaches a maximum at 40 keV and then decreases. As the
energy increases, damages are buried deeper in the target (due to the energy dependence of the
free flight path), so that for a given thickness of a layer the maximum dpaps is a trade off between
the ions’ energy and the localization of defects. Figure 2.3 underlines this by showing dpaps as
a function of depth z for various implantation energies. Consequently, if one wants to achieve a
high dpa (as in the amorphization step, see 2.4), one should better work with low energies (40
to 70 keV) so that, all things being equal, one uses lower doses, henceforth avoiding to burn any
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protecting resist. Conversely for a given thickness, the lateral straggling diminishes as energies
increases. Thus a geometry designed in the (x,y) plane by ion implantation is better defined at
high energies. That is why we used 110 keV during the second step of implantation. It is the
highest energy that can be stopped by 500 nm of PMMA resist (see section 2.4).

2.2.3 Implantation through a mask

We performed simulations of two particular shapes of masks: slits and holes. The former ad-
dressed the junction’s fabrication, while the latter were used in a partner’s project on vortex pin-
ning in YBa2Cu3O7 [187].

0 15050 100-50-150 -100

0

0.005

0.01

0.015

dpa

Lateral distance (nm)

x

y

(a)

Lateral distance (nm)

x

y

(b)

Lateral distance (nm)

x

z

(c) (d)

Lateral distance (nm)

300

200

100

0
YBa2Cu3O7

Al2O3

70

D
e

p
th

(n
m

)

x

z

0 15050 100-50-150 -100

0 15050 100-50-150 -1000 15050 100-50-150 -100

300

200

100

0
YBa2Cu3O7

Al2O3

70

D
e

p
th

(n
m

)

Figure 2.4: Simulated dpa for implanted ions at 110 keV and 5.1013 ions.cm−2. (a) dpa(x,y,z < 70 nm) in
the (x,y) plane for a 40 nm slit and (b) for a 40 nm hole in diameter. (c) simulated dpa(x, |y|< 2 nm,z) in
the (x,z) plane of the slit, and (d) for the hole.

When ions are implanted through mask defined in a resist by electron beam lithography, see
section 2.4, the collision events C and the dpa must be calculated locally in the material. Thus,
one has to extract C(x,y,z < z0), which is in defects/ions/Å

3
. Then the local dpa(x,y,z < z0) at the

position (x,y) on the film is given by:

dpa(x,y,z < z0) = δxδy
C(x,y,z < z0)φ

d
(2.2)

where δx = δy = 2 nm are the discretization lengths of the film, respectively in x and y direction,
used in simulations.

Figures 2.4 (a) and (b) represent the simulated dpa(x,y,z < z0) for z0 = 70 nm in the (x,y)
plane, respectively for a 40 nm wide slit and hole. Figures 2.4 (c) and (d) show the same slit and
hole when the dpa is computed in the (x,z) plane, for |y| < 2 nm. In other words they are a slice
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of the dpa in the (x,z) plane. The ions’ energy is 110 keV and the dose 5.1013 ions.cm−2. Due to
the constriction in the x and y directions for the hole, the dpa at its center is smaller than the dpa
at the center of the slit, where the constriction is only along the x direction.

This effect comes from the tails in the dpa distribution, which appears clearly on simulations
of figures 2.5 (a) and (b). They represent a slice of dpa around y = 0, that is to say dpa(x, |y| <
2 nm,z < 70 nm), when the size of the slit (a) and hole (c) vary. For a slit the dpa distribution
extends on more than 100 nm whereas for a hole the distribution is sharper. Consequently, the
precision at which one can draw a structure by the implantation technique is limited by this effect.
Overall, the minimum closeness at which one can place two holes or slits is about 50 nm.
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Figure 2.5: Simulated dpa(x, |y|< 2 nm,z < 70 nm) for different sizes of slit (a) and holes (c). (b) and (d):
their respective critical temperature. The ions are implanted at 110 keV and at 5.1013 ions.cm−2. dpac
= 0.042 and Tc = 87K.

2.3 Ion irradiation on YBa2Cu3O7

As opposed to low-Tc superconductors, (Nb, Al, Pb,...) which are only weakly sensitive to the
presence of non-magnetic impurities (Anderson’s theorem), HTS are strongly affected by disor-
der. Ion irradiation has therefore been extensively used to study the puzzling superconducting
mechanisms.

2.3.1 Reduction of Tc

The driving mechanism for the reduction of Tc has been disputed. Legris et al. [125] and after them
Tolpygo et al. [184] evaluated the displacement energies of the oxygen and copper atoms. They
found 10 eV for the oxygen (8.4 eV for the oxygen in the CuO2 planes) and 15 eV for the copper.
In TRIM, default displacement energies for YBa2Cu3O7 are 28 eV and 25 eV respectively, and we
kept those energies. In any case, due to such low values it was first argued that the decrease of Tc
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with ion irradiation comes from induced disorder in the CuO chains. Gupta et al. [88] calculated
that completely disordered CuO chains block the charge transfer between CuO2 planes, therefore
inducing the insulating state.

However, Hall coefficient measurements on irradiated YBa2Cu3O7 are still an open debate to
know whether changes in RH account for a change in the carrier density or result from scattering
processes. Overall it seems that the later would be the best explanation, with defects localized
on CuO2 planes [189, 183, 184]. Direct observations of damage-induced ion irradiation were
done with transmission electron microscopy [160, 109, 53] and x-ray diffraction [71, 201] but
they do not give a precise description of the damaged structure, since even a small dpa drastically
changes the transport properties of YBa2Cu3O7. Indeed, Lesueur et al. [127] showed that the
critical displacement per atom (dpac) needed to completely suppress superconductivity is about
0.04, which cannot account for the fully disordered CuO chains.

Consequently a second mechanism was proposed [127, 126] based on an Abrikosov-Gorkov
depairing like mechanism [16]. In the same way as magnetic impurities break Cooper pairs in
s-wave superconductors, the d-wave symmetry of the superconducting parameter in YBa2Cu3O7
(represented in figure 2.6) makes them very sensitive to any scattering center, i.e. crystalline
impurities.
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Figure 2.6: The d-wave symmetry of the superconducting wave function in YBa2Cu3O7. A scattering event
can induce a phase jump from kkk to kkk′′′, which breaks the Cooper pair.

In the Abrikosov-Gorkov depairing mechanism the reduction of Tc is given by [15, 16]:

ln
( Tc

Tcb

)
= Ψ

(1
2
)
−Ψ

(1
2
+

h̄
4πkBTcτS

)
(2.3)

where Ψ is the digamma function, Tcb is the initial critical temperature and τS is the pair-breaking
scattering time. In the case of a critical temperature reduction induced by defects in HTS, one can
infer the pair-breaking rate:

Γ =
1
τS

=
dpa
dpac

Γc (2.4)

where Γc is the critical pair-breaking rate i.e. the one for which Tc = 0, and is taken equal to:

Γc =
∆(0)

h̄
= 1.76

kBTcb

h̄
(2.5)

The reduction of the critical temperature is then given by [15, 16, 126]:
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2.3.2 Transport measurements

In order to validate the depairing model, we performed ion irradiation on YBa2Cu3O7 thin films
(70 nm). The resistivity of the films as a function of temperature, for different doses, are shown in
figure 2.7 (a). The change in resistivity is in agreement with what has been reported in the literature
[195]. For each dose, we calculated the corresponding dpa with Monte Carlo simulations (equation
2.1). We then extracted the critical temperatures, and plotted (dots) Tc/Tcb as a function of the dpa
in figure 2.7 (b). On the same figure, we plotted (blue curve) the Abrikosov-Gorkov depairing law
2.6, when taking a critical dpac = 0.042. The law describes well the experimental reduction of
Tc, and our dpac is close to the one that Lesueur et al. [127] found in the nineties (they had dpac
= 0.037).
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Figure 2.7: (a) Resistivity as a function of temperature of 70 nm thick YBa2Cu3O7 films. The samples
underwent an irradiation of O+ ions at 110 keV and doses of (0,2,4,5,6,8 and 10)x1013 ions.cm−2. (b)
Evolution of Tc (normalized with Tcb) as a function of the dpa The plain line represents the fit with the
Abrikosov-Gorkov depairing like law with dpac = 0.042.

At low doses (< 8x1013 ions.cm−2), the dependence of the resistivity ρ with the dpa is weak.
In this regime we experimentally find:

ρ(dpa)@250K = ρ0(1+40dpa+1260dpa2)

ρ0 = 226 µΩ.cm
(2.7)

where ρ0 is the resistivity of the undamaged film at 250 K. Also, the resistivity decreases linearly
with temperature [37]. We experimentally find:

dρ

dT
= α0(1+9.7dpa)

α0 = 0.8 µΩ.cm/K
(2.8)

At high doses there is a transition to an insulating state and some studies [189, 183, 184] suggest
that electrons follow a Mott variable-range hoping mechanism, with a resistivity given by:

ρ ∼ ρ0exp
(

EA
kBT

) 1
d+1

(2.9)

with d the dimension of the material, and EA an activation energy. This regime is slightly visible
on the ρ(T ) curve corresponding to the highest dose.

Taking the dpac at 0.042 and the Tcb at 87 K, figures 2.5 (c) and (d) represent the local critical
temperatures corresponding to a slit and a hole, respectively. Along the x axis, there is a continuous
transition between Tcb and Tc in the central irradiated part. Therefore the operating temperature
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sets the length of the normal part. In the range of temperatures where the slope of the local Tc

is high, we can expect at first order a linear variation of the normal part’s length as a function of
temperature.

Let us finally indicate that the absolute values for the dpa and the local Tc are to be taken
with some precaution: the displacements per atom calculated here neither take into account any
channeling effect in epitaxial heterostructures, nor any particular imperfection in the design of the
slit or hole.

2.4 Fabrication steps

The junction’s fabrication consists in several steps of clean room processes and two steps of ion
implantation. The following method is reproducible and allows design flexibility. To that end,
we chose to use only electron beam lithography, a major asset in the quest of the best detector’s
architecture and local oscillator source. Furthermore, the spread of modified scanning electron mi-
croscopes for e-beam in local clean rooms granted a fast execution. Finally, it enabled to fabricate
structures down to a few tenth of nm.

The fabrication process is summarized in figure 2.8. It can be divided into three parts: struc-
turing the gold layer, patterning the YBa2Cu3O7 layer and creating the weak-link. Appendix B
regroups all the fabrication parameters and the detailed recipe.

2.4.1 Structuring the gold layer

We start from commercial samples of 70 nm YBa2Cu3O7 films, that we buy from the Ceraco firm.
On YBa2Cu3O7, is grown in situ 250 nm of a gold layer. The substrate is Al2O3. Figure 2.8 (a)
represents the virgin sample.

The first step consists in structuring the gold layer with e-beam: the aim is to pattern d-c
connecting pads, microwave circuitry and antennas for the detectors. To that end we first deposit
an electro-sensitive resist, namely the MAN-2405. Then one makes the first lithography. Figure
2.8 (b) represents the sample after this procedure.

The next step, figure 2.8 (c), is a dry etching (ion beam etching - IBE): the gold uncovered by
the resist is to be removed. It is done with Ar ions, sent onto the sample at 500 eV. After cleaning,
the sample is a YBa2Cu3O7 layer on top of which the gold layer has been patterned. Figure 2.8 (d)
represents a spiral antenna embedded in a microwave transmission line at the end of such a step

Figure 2.9 (a) is a SEM picture (taken with a tilted angle of 30◦) of the MAN-2405 resist on
the gold layer after the chemical development. The line is 200 nm wide and 500 nm thick. The
developing time as well as the e-beam dose are correctly adjusted because the edges of the line
are sharp. Figure 2.9 (b) is an optical photography of the center of a spiral antenna (dark yellow
areas) drawn with the MAN-2405 on the gold layer, and a photograph after dry etching is at figure
2.9 (c).

2.4.2 Patterning the YBa2Cu3O7 layer

We now need to form insulating parts in the sample. The YBa2Cu3O7 under the gold will al-
ways remain superconducting, however one needs to process the uncovered parts. For detectors,
a superconducting micro-bridge ought to be placed at the center of the antennas, and for arrays
of Josephson junction a superconducting geometry has to be designed between d-c lines. Conse-
quently we perform a second e-beam lithography to pattern another deposition of the MAN-2405
resist.

After development, a micron size structure is rightfully placed between Au lines. Figure 2.10
represents a 750 nm wide bridge that links the two parts of a spiral antenna.
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Figure 2.8: Illustration of the fabrication process steps: (a) 70 nm thick YBa2Cu3O7 film grown on sapphire
covered by an in situ 250 nm gold layer; (b) spiral antenna in the CPW transmission line defined in a 500
nm thick MAN-2405 negative e-beam resist; (c) 500 eV Ar ion-beam-etching of the gold layer; (d) gold
antenna in the CPW transmission line on YBa2Cu3O7; (e) high-dose 70 keV oxygen ion irradiation to create
insulating regions in exposed YBa2Cu3O7. A 2 µm wide channel in the center of the antenna is protected by
a 500 nm thick MAN-2405 resist mask; (f) patterned superconducting and insulating YBa2Cu3O7 regions;
(g) low-dose 110 keV oxygen ion irradiation of the Josephson junction patterned as a 20 nm-wide slit in a
500 nm thick PMMA resist; and (h) device after resist cleaning. From [135].
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500 nm 50 µm 1000 µm

(a) (b) (c)

Figure 2.9: (a) SEM picture (taken with a tilted angle of 30◦) of a MAN-2505 resist line patterned with
e-beam lithography, on a gold layer. (b) Optical photo of a MAN-2405 spiral design (dark yellow areas)
on a gold layer. (c) Optical photo of such a spiral embedded in a microwave transmission line after the ion
beam etching.

Then we do the first implantation to amorphize all the YBa2Cu3O7, everywhere but underneath
the gold and the resist, see figure 2.8 (e). It is done at INESS Laboratory in Strasbourg. We have
seen that the depth at which one finds the highest dpa increases with ion’s energy (inset of figure
2.3). That is why we use low energies (70 keV) for this amorphization step, in order to place as
much defects as possible for a minimum irradiation dose (2.1015 ions.cm−2).

50 µm

Figure 2.10: Optical photo of a MAN-2405 micro bridge (750 nm wide, 15 µm long) at the center of a
spiral antenna.

2.4.3 Creating the weak-link.

In the last part, we open a 20-40 nm slit (or several slits for Josephson junction arrays) in a 500-
550 nm thick layer of poly-methyl methacrylate (PMMA) resist (see photo figure 2.11), and make
a second ion irradiation. One needs such thickness to protect the parts that shouldn’t see the
irradiation.

During the second ion irradiation, once again we send O+ ions, at 110 keV and 3 to 5.1013

ions.cm−2. Compared to the first one, this higher energy diminishes the straggling, and the dose
is chosen so that the device operates at temperatures between 40 and 60 K (see chapter 5).

The temporal stability and the normal resistance can be improved by thermal annealing [170,
182].

Figure 2.12 (a) is a SEM picture of two 30 nm slits taken in the (x,z) plane (same axes as in
2.4). The slits were fabricated on a silicon wafer, easier to cleave. We can see that they are well
defined in the 500 nm thick PMMA. The figure 2.12 (b) is a histogram of the gray shades in the
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50 µm

Figure 2.11: Optical photo of a 40 nm slit patterned in the PMMA, prior to the second ion implantation.

square rectangle around the right slit of (a). It gives a quantitative measurement for the size of the
slit, approximately 30 nm.
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Figure 2.12: (a) SEM picture of two 30 nm slits taken in the (x,z) plane (same axes as in 2.4. The slit
were e-beam lithographed and the sample was cleaved afterwards. (b) Histogram of the gray shades in the
square rectangle around the right slit of (a). Courtesy of C. Ulysse and Thales Research and Technology.
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2.5 Other groups fabricating ion irradiated junctions

Since the pioneering work of White et al. on irradiated YBa2Cu3O7 [195], many groups have
developed fabrication processes of ion irradiated Josephson junctions. Let us mention here the
most relevant studies: the Tinchev’s group, first to observe a Josephson behavior in weak-links
irradiated junctions, at the Institute of Electronics in the Bulgarian Academy of Sciences [181,
182, 26]. The Dynes’ group at the University of California, who has been working over the past
30 years on the matter [195, 104, 105, 63, 59]. The Blamire’s group at the University of Cambridge
[44, 152, 153] and a team at Jüglich in Germany [102, 178].

Table 2.2 gathers typical characteristics of Josephson junctions fabricated by these groups.
Our junctions have fairly higher normal resistances than what is reported, about 2-5 Ω. However,
our IcRn products are about the same than the ones of the Jüglich group, about 200 µV, as we shall
see in chapter 5.

Different types of ions have been used: some used light particles such as helium, protons or
electrons, others used heavier ions such as Neon or oxygen. Overall it seems that O+ irradiation is
advantageous since created defects are stable: oxygens atoms do not diffuse too much in the film,
and unlike light ions they don’t anneal too fast.

Group ions & energy JJ characteristics Rn IcRn

Dynes
[104, 105]

Ne+ 200 keV
w = 2 - 4 µm
l = 20 - 100 nm
t = 100 nm

0.2 - 0.3 Ω 50 - 200 µV @ 45 - 65 K

Tinchev
[182]

O+ 100 keV
w = 5 µm
l = 300 nm
t = 200 nm

1 Ω 10 µV @ 77 K

Blamire
[44, 152]

e− 350 keV
w = 2 - 3 µm
l = 15 nm
t = 200 nm

0.5 Ω
300 µV @ 77 K
650 µV @ 40 K

Jüglich
[102, 178]

O+ 200 keV
w∼ µm
l = 50 nm
t = 80 nm

0.5 - 1 Ω 100 - 300 µV @ 40 K

Table 2.2: Characteristics of irradiated Josephson junctions, fabricated by other groups. w is the bridge’s
width, l the weak-link’s length and t the YBa2Cu3O7 thickness.
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Josephson effect is the occurrence of a superconducting current through a non-superconducting
barrier. This current is controlled by the phase difference between the two reservoirs on both side
of the Josephson junction.

We will present more precisely this effect in section 3.1 and will converge towards its mani-
festation in weak-link junctions, such as our irradiated Josephson junctions. Then in section 3.2
we will show its signature in experimental measurements, and finally we will expose in section
3.3 the equivalent circuit model classically used to account for its physics. We will extensively use
this model in chapters 5 and 7 to fit out experimental data.

The next chapter will describe more fundamentally the mechanisms behind the existence of
the Josephson effect in weak-links junctions.

3.1 Theory of the Josephson effect

Two kinds of electronic transport can take place in superconducting devices. One is related to un-
paired electrons (quasiparticles) and one concerns Cooper pairs. The Josephson effect [101] is the
dissipationless transport mechanism of Cooper pairs, which takes place between two supercon-
ductors separated by a barrier. Thus, the current-voltage (IV ) characteristic of such "Josephson"
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junctions involves always two branches: the Josephson branch at V = 0 for the superfluid, and the
quasiparticle branch at V 6= 0 for the metallic fluid.

In this section, we will first present the transport mechanism in superconductor-insulating-
superconductor (SIS) tunnel junctions. Indeed, a semi-conductor approach that takes into account
the tunneling effect and the superconducting density of states qualitatively explains the quasiparti-
cle transport. Then we will derive the Josephson equations from the model proposed by Feynman,
Leighton and Sands [78], of which we will give some physical interpretations. Lastly we will
qualitatively discuss the transport mechanism and the shape of the IV curves in weak-link junc-
tions.

3.1.1 Quasiparticle tunneling in SIS junctions

In a 3D normal metal the electronic density of states (DOS) is given by:

ν(E) =
V

2π3

(2m
h̄2

)3/2√E (3.1)

where E is the energy (referenced to the Fermi energy EF ), V is the total volume of the bulk and
m is the effective electron mass. The square root dependence gives a nearly flat DOS at the Fermi
level since in usual materials TF ∼ 1000 K and we deal with temperatures of a few Kelvins around
the Fermi temperature. In a conventional superconductor the BCS theory [25] gives the following
expression for the DOS: {

ν(E) = ν(0) E√
E2−∆2 |E| ≥ ∆

ν(E) = 0 |E|< ∆
(3.2)

where ν(0) is the DOS at the Fermi level. Thus it diverges at ∆ (superconducting gap), and there
is no any accessible energy in the gap between EF −∆ and EF +∆.

When one forms a normal-insulating-normal (NIN) or an SIS junction, classical mechanics
forbids any transport for any particle with energy lower than the barrier height. However in quan-
tum mechanics, electrons are represented by a wave-function whose square modulus represents
their probability density of presence. This wave function decays exponentially in the barrier,
hence if the latter is thin enough, there is a non negligible probability for electrons to "tunnel"
across the insulator.
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ν1 ν2
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(Δ1+Δ2)/e
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V
(a)

(b)

(c)

T → 0 K, V > (Δ1+Δ 2)/e T → 0 K, V >> (Δ1+Δ2)/e T → 0 K

S I S

Figure 3.1: (a) and (b): semi-conductor model of the quasiparticle tunneling effect in a SIS junction.
The DOS ν1 and ν2 of each superconducting reservoir is given by the BCS theory (equations 3.2). (c):
corresponding quasiparticle branch in the IV characteristics. The vertical part of the branch corresponds
to situation (a), and the linear part corresponds to situation (b).

Now, following a semi-conductor approach (as for pn junctions), if one applies a voltage dif-
ference at the SIS or NIN terminals one can align the filled electronic bands of one side with the
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empty bands of the other (see figure 3.1 (a), (b)). Then, electrons can tunnel through the insulator
and a current appears.

Let us find the expression of this tunneling current It . Since electrons can go from side 1 (left)
to side 2 (right) and vice versa, It is given by:

It = (J1→2− J1←2)A (3.3)

where J1→2 (J1←2) is the current density flowing from side 1 to side 2 (2 to 1), and A is the
section of the barrier. If we consider the tunneling coupling as a perturbation represented by the
Hamiltonian HT , then the probability W1→2 for one electron with an energy between E and E+dE
to transit from |1〉 to |2〉 is given by Fermi’s golden rule:

W1→2 =
2π

h̄
|〈2|HT |1〉|2ν2(E)(1− f (E)) (3.4)

where ν2(E) is the DOS in side 2 and f is the Fermi-Dirac distribution f (E) = 1

e
E−EF

kBT +1
. The

density of available states of energy E in side 2 is given by ν2(E)(1− f (E)). To obtain the
tunneling current density J1→2 one has to sum W1→2 over the occupied states ν1(E) f (E) in side 1.
Hence, when a voltage difference V is applied at the junction terminals:

J1→2 = e
∫

W1→2ν1(E− eV ) f (E− eV )dE (3.5)

J1→2 = e
2π

h̄
|T |2

∫
ν2(E)(1− f (E))ν1(E− eV ) f (E− eV )dE (3.6)

where the amplitude of transition probability through the barrier T = H12 = H∗21 = 〈2|HT |1〉 is
taken independent of E. Similarly the current density flowing from side 2 to 1 is given by:

J1←2 = e
2π

h̄
|T |2

∫
ν1(E− eV )(1− f (E− eV ))ν2(E) f (E)dE (3.7)

Thus, the total current is:

It = Ae
2π

h̄
|T |2

∫ +∞

−∞

ν1(E− eV )ν2(E)[ f (E− eV )− f (E)]dE (3.8)

We can see that it strongly depends on the DOS of both sides. In addition, the difference [ f (E−
eV )− f (E)] only depends on V . Its value is close to 1 for energies below eV and it decreases
strongly beyond. The tunneling spectroscopy is a way to measure the DOS of materials and it
stems from such a dependence for the current.

In the case of an SIS junction, ν1 and ν2 are given by 3.2. Thus at T → 0 K there is no
quasiparticle tunneling until eV = ∆1 + ∆2, situation at which there is a brutal increase of the
current because the highest density of occupied states on side 1 (left side in figure 3.1 (a)) is at the
same energy level than the highest density of empty states on side 2 (right side). It corresponds to
the vertical part in the IV curve of tunnel junctions, on the quasiparticles branch (figure 3.1 (c)).
For eV � ∆1 +∆2 the density of occupied (empty) states on side 1 (respectively 2) is practically
constant (equation 3.2) and the tunneling current is linear with V : the junction has an ohmic
behavior (figure 3.1 (b)).

When T 6= 0 K (strictly speaking when kBT > min(2∆1,2∆2)), there is in addition a subtle
effect below ∆1 +∆2. In fact when eV = |∆1−∆2| the two highest occupied bands are aligned.
They are not completely filled because thermal agitation depletes them, and then electrons can go
through the barrier. Thus, a tunnel current exists and a bump appears in the IV curve at |∆1−∆2|/e.
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3.1.2 Josephson equations

We now deal with the superfluid. As we shall see here, even at V = 0 a tunnel current exists, called
the Josephson current [101]. It cannot be explained within the frame of the semi-conductor ap-
proach (figure 3.1), since we deal with Cooper pairs. We derive here the Josephson equations from
the Feynman model [78, 27], which is simpler than the microscopic models based on the tunneling
Hamiltonian. Let us call ψ1 (ψ2) the pair wave function for the left (right) superconductor. We
indicate by |1〉 (|2〉) the base state for the left (right) superconductor. Then:

〈1|ψ∗1 ψ1 |1〉= |ψ1|2 = n1 〈2|ψ∗2 ψ2 |2〉= |ψ2|2 = n2 (3.9)

where n1 (n2) is the superfluid density in the left (right) reservoir. If we take into account the weak
coupling existing between the two superconductors, transitions between the two states |1〉 and |2〉
can occur. This coupling is due to the overlap between the two pair wave functions ψ1 and ψ2.
Then the system is described by the state vector:

|ψ〉= ψ1 |1〉+ψ2 |2〉 (3.10)

that is to say it is in the superposition of |1〉 and |2〉 with probability amplitudes ψ1 and ψ2 re-
spectively. Now the temporal evolution |ψ〉 is deterministically determined by the Schrödinger
equation:

ih̄
∂ |ψ〉

∂ t
= H |ψ〉 (3.11)

where H is the total Hamiltonian of the system:

H = H1 +H2 +Ht (3.12)

where H1 = E1 |1〉〈1| and H2 = E2 |2〉〈2| are the Hamiltonian of the unperturbed states |1〉 and
|2〉, with E1 and E2 the ground states energies of the two superconductors.

Ht = K[|1〉〈2|+ |2〉〈1|] (3.13)

is the tunneling Hamiltonian between the two states. K is the coupling amplitude between the two
states of the system and it depends on the characteristics of the barrier. For a typical tunnel junction
and in the absence of a vector potential AAA, K can be assumed to be real. Then the Schrödinger
equation 3.11 can be written in base {|1〉 , |2〉}:{

ih̄ ∂ψ1
∂ t = E1ψ1 +Kψ2

ih̄ ∂ψ2
∂ t = E2ψ2 +Kψ1

(3.14)

In the two isolated superconductors, the ground state energies of the condensates are given by
E1 = 2EF1 and E2 = 2EF2. Then if one applies a voltage across the junction, the Fermi energies
are shifted by eV , and consequently E1− E2 = 2eV . We choose the origin of the energies at
(EF1 +EF2)/2, hence: {

ih̄ ∂ψ1
∂ t = eV ψ1 +Kψ2

ih̄ ∂ψ2
∂ t =−eV ψ2 +Kψ1

(3.15)

we can substitute ψ1 and ψ2 with their expressions:

ψ1 =
√

n1eiφ1 ψ2 =
√

n2eiφ2 (3.16)

And separating real and imaginary parts in the system 3.15:{
∂n1
∂ t = 2

h̄ K
√

n1n2sinφ
∂n2
∂ t =−2

h̄ K
√

n1n2sinφ
(3.17)
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
∂φ1
∂ t = K

h̄

√
n1
n2

cosφ + eV
h̄

∂φ2
∂ t = K

h̄

√
n1
n2

cosφ − eV
h̄

(3.18)

where φ = φ1−φ2. Since the pair current density is given by:

J =
∂n1

∂ t
=−∂n2

∂ t
(3.19)

Equations 3.17 give the d.c. Josephson equation:

J = Jcsinφ (3.20)

where Jc =
2
h̄ K
√

n1n2. Even though n1 and n2 are considered constant, their time derivative J
is not. There is no contradiction if we take into account the presence of a current source at the
junction’s terminals, that constantly replaces the pair tunneling across the junction. This current
source is however absent in this model.

The current-phase relation could be more complicated than a pure sinus, and we could account
for it by taking a complex constant K (in equation 3.15). In a first order approximation, the simple
relation 3.21 is sufficient.

The equations 3.18 give the a.c. Josephson equation:

∂φ

∂ t
=

2e
h̄

V (3.21)

3.1.3 Interpretation of the Josephson equations

The constitutive equations 3.20 and 3.21 of the Josephson effect gave rise to a very rich Physics,
and it is the foundation of all superconducting electronics.

First, equation 3.20 is the expression of a current flowing through the junction without dissi-
pation, the "Josephson supercurrent" IJ = Icsinφ , up to a maximal value called the critical current
Ic equal to JcA where A is the section of the junction. The particles transporting this supercurrent
are the Cooper pairs (or, as we shall see in section 4.2, Andreev pairs in our case). Its signature on
the IV curves is a vertical line at Vdc = 0 up to Ic, what we call the Josephson branch.

The phase φ is a degree of freedom, that we constraint externally with the d-c bias current Ib
or the bias voltage Vb. For Ib < Ic and at T = 0, the transport is only supported by a supercurrent
and <V >=Vdc = 0. Hence < dφ/dt >= 0 (equation 3.21), which implies that < φ >= cte (but
not necessarily φ(t) = cte).

In the frame of the BCS theory, Ambegaokar and Baratoff [18] calculated the maximal critical
current for a SIS tunnel junction as being:

Ic(T ) =
π h̄kBT ∆1(T )∆2(T )

rRN

+∞

∑
−∞

1√
(ω2

n +∆2
1(T ))(ω2

n +∆2
2(T ))

(3.22)

where ωn = (2n+ 1)πkBT are the Matsubara frequencies and ∆1(T ) (∆2(T )) is the left (right)
superconducting gap. For a symmetrical SIS junction ∆1 = ∆2 = ∆ and the expression becomes:

Ic(T ) =
π

2
∆(T )
eRN

tanh
(∆(T )

2kBT

)
(3.23)

When Ib > Ic, the flux of the superfluid is such that all the Cooper pairs cannot cross the barrier.
Some are broken at the superconducting-insulating frontier and electrons cross as quasiparticles:
the electronic transport involves two fluids. Consequently, a d-c voltage rises at the junction
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terminals: Vdc 6= 0 and the superconducting phase difference φ between the two reservoirs evolves
according to 3.21. Then, the superconducting current oscillates in time such as:

J(t) = Jcsin
(
φini +

2e
h̄

Vdct
)

(3.24)

Thus, the junction behaves as a voltage-controlled oscillator (VCO): its oscillation frequency is
controlled by the d-c voltage bias. It can easily be at very high electronic frequencies, since the
ratio 2e

h equals to 483.6 GHz/mV. This oscillation is at the core of this thesis. As pointed out by
Jain and Likharev [100], a fixed current bias (at V 6= 0) implies also that the quasiparticle current
counter-oscillates in the junction with the same frequency. Figure 3.2 (a) depicts the typical IV
curve of a Josephson tunnel junction. When the current increases, from 0 to Ic we are on the
Josephson branch. Then the system brutally shifts to the corresponding voltage on the quasiparticle
branch as the right empty band immediately fills (figure 3.1 (a)). When lowering the current from
I > Ic, the system follows the quasiparticle branch down to I = 0, as the filled valence band on the
right unloads on the left conduction band. Thus, the IV curve of a SIS tunnel junction is hysteretic.

(Δ1+Δ2)/e

I

V

(a)

T → 0 K

I

V

(b)

Ic Ic

Figure 3.2: Schematic current-voltage curves of a tunnel (a) and a weak-link (b) Josephson junction. The
quasiparticle branch is in red and the Josephson branch is in blue, signature of a supercurrent that flows
at V = 0 up to the critical current Ic. In a tunnel junction there is no quasiparticle tunneling below the gap
while in a weak-link junction a current exists even at low voltages.

In weak-link junctions, the Josephson effect is also present, i.e. a coupling interaction exists
between the two superconductors. However the quasiparticle transport mechanism differs and the
semi-conductor approach is not enough anymore. First because often, there are accessible elec-
tronic states in the barrier, and second because in our case we deal with a material with a d-wave
superconducting gap, hence with nodes (∆ = 0 in certain crystallographic directions, see 2.3.1).
Thus, there is always a quasiparticle current, even at low voltages. Consequently, the typical IV
curve of a weak-link Josephson junction resembles figure 3.2 (b). A complete description will be
presented in chapter 4.

In the next section we will present the typical behavior of irradiated Josephson junctions ob-
served in transport measurements, after what we will present the equivalent circuit model that
explains it. In particular it allows to understand the shape of IV curves such as the one in figure
3.2 (b).

3.2 Transport measurements in ion irradiated junctions

The first people who fabricated irradiated YBa2Cu3O7 Josephson junctions were Katz et al., in
1998 [104]. Since then, several groups successfully fabricated and characterized these devices, and
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we present here typical results of transport measurements. Focusing on what should be observed
experimentally, we do not intend to explain in details all the underlying physics, which shall be
done in the next chapters.

3.2.1 RT curves

Figure 3.3 (a) shows typical RT curves of irradiated YBa2Cu3O7 junctions, for different lengths
weak-links. The transition at Tc = 90 K corresponds to the critical temperature of the electrodes,
after what follows a plateau, which is the RT curve of the weak-link.

A second transition occurs when the resistance drops to zero, depending on the length of
the weak-link. We call it Tj. At first, it may seem surprising, because in this experiment, all
weak-links underwent the same irradiation dose and therefore the same damage. Thus, Tj should
be independent of the weak-link’s length, whereas it is not experimentally the case. Katz et al.
attributes the observed discrepancy to proximity effects, which will be indeed explained in chapter
4. This dependence shows that Tj is not the critical temperature of the weak-link. As we will see,
the latter transits in fact at a lower temperature, called T ′c , which we do not see here on the figures.

The irradiation dose also influences the position of Tj, as shown by Bergeal et al., figure 3.3
(b): RT curves of 5 µm wide channels and length 20 nm, irradiated from right to left with oxygen
doses spanning from 1.5x1013 to 6x1013 ions.cm−2. Thus, the higher the dose, the lower the Tj.
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Figure 3.3: RT curves of ion irradiated YBa2Cu3O7 Josephson junctions. (a) Junctions with various
lengths, irradiated at the same dose (and with Ne+ at 200 keV) [105]. (b) Junctions of the same length
(20 nm), irradiated from right to left at doses 1.5x1013, 3x1013, 4.5x1013, and 6x1013 ions.cm−2 (oxygen
ions, at 100 keV) [36].

3.2.2 IV curves

When below Tj, typical IV curves of the junction are represented in figure 3.4, at different temper-
atures. They clearly exhibit the characteristic shape of a weak-link IV , figure 3.2 (b). In figure 3.4
(b), notice the downward curvature close to Ic, typical of weak-links, and well explained by the
circuit model (see section 3.3).

As the temperature decreases, one gets closer to T ′c (at which the weak-link itself becomes
superconducting), and therefore the system progressively behaves like a homogeneous supercon-
ductor. In chapter 5, we will call it the flux-flow regime. It is evidenced by an upward curvature at
Ic [33], visible in figure 3.2 (a), along with a large excess supercurrent as we shall see in the next
chapters.
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Figure 3.4: Typical IV curves of YBa2Cu3O7 irradiated Josephson junctions, for various temperatures. (a)
From top to bottom: T = 75.6, 76.9, 77.8, and 79.5 K [61]. (b) From top to bottom T = 40, 43.9, 46.3, and
48.5 K [36]. The IV curves in (b) correspond to the same junction whose RT curve is in figure 3.3 (b), with
the 6x1013 ions.cm−2 dose.

3.2.3 Critical current

Figure 3.5 (a) shows the dependence of the critical current Ic with temperature. It is consistent
with Ic ∼ (1−T/Tc)

2 [105], and can be explained with a proximity effects model, in the diffusive
regime, developed by De Gennes and Werthamer [66, 65, 194] and detailed in section 4.1.1.
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Figure 3.5: (a) Variation of the critical current with temperature, following a quadratic law, and (b) Modu-
lation of the critical current with an external magnetic field, following a sinc function. Adapted from [36].
(c) Modulation of the critical current with an external r-f field, following a Bessel function. Adapted from
[136].

Figure 3.5 (b) shows the critical current modulation with a magnetic field, following a sinc
function, and with an r-f field, figure 3.5 (c), following a Bessel function. These modulations are
the true evidence of Josephson effect in a weak-link, because both Josephson equations must be
valid, in order to explain them. We will focus on the modulation with an r-f field in section 5.2.3.

3.3 RCSJ - RSJ model

In 1968 McCumber [141] and Stewart [177] independently proposed an equivalent circuit model
to explain the shape of the weak-link IV curves, like the ones that we have. It is called the RCSJ
model and fundamentally, it stems from the fact that we can separately account for the supercurrent
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and the QP current. The circuit model is a powerful tool since it provides analytical solutions for
simplified situations, and for general situations numerical simulations can be performed and give
quantitative results.

3.3.1 Ideal weak-link Josephson junction

Given a driving current source with a high impedance (which is the case in many practical situ-
ations and particularly in ours) the circuit modeling an ideal junction contains a non dissipative
element that accounts for the Josephson effect, resistively and capacitively shunted, as shown on
figure 3.6. Hence it is called the resistively and capacitively shunted junction (RCSJ) model. The
parallel resistive branch represents the conductance of the QP. The capacitive branch models the
charge imbalance between the two superconducting bulks, originating either from QP or Cooper
pairs. In our ion irradiated junctions we will see that we can neglect the capacitance, and then the
model reduces to a resistively shunted junction (RSJ). A rigorous approach of the RSJ model is
given in the seminal work by Vystavkin, Likharev and Semenov [191].

ib

Rn Icsin(φ) V(t)C

Figure 3.6: Equivalent circuit of an ideal weak-link Josephson junction: resistively and capacitively shunted
junction (RCSJ) model.

The current circuit equation is then given by:

I = Icsinφ +
V
Rn

+C
dV
dt

(3.25)

where V is the voltage developed across the junction, related to the phase difference φ by the a-c
Josephson equation 3.21. Thus it rewrites as:

I = Icsinφ +
h̄
2e

1
Rn

dφ

dt
+C

h̄
2e

d2φ

dt2 (3.26)

In order to write it with a general form, it is common to introduce dimensionless variables for
the current, voltage and time. Here, two normalizations for the time exist in the literature: the
"Johnson" normalization, usually used in the RCSJ model and the "McCumber" normalization,
commonly used in the RSJ model. For clarity and generality, we explicit in table 3.1 the corre-
spondence between the normalized and the unnormalized variables for the two methods. Besides,
both introduce useful parameters when discussing the limit cases of equation 3.26. We gathered
them in table table 3.2.

Let us also introduce three other parameters frequently seen when talking about Josephson
junctions.

• EJ = Icφ0 =
Ich̄
2e the Josephson energy, which is the maximum energy stored by the Josephson

supercurrent: E =
∫

V (t)IJ(t)dt =−EJcosφ

• EC = e2

2C the charging energy, which is the stored energy in the capacitance: EC =
∫

UICdt =
C
∫

U dU
dt dt = C

2 U2 = e2

2C
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• LJ =
h̄

2eIccosφ
the Josephson inductance, is such that V (t) = LJ(t)

dIJ(t)
dt

Physics quantity variable normalization constant normalized variable

Current I Ic i = I
Ic

Voltage V IcRn v = V
IcRn

Time t
ωp =

√
2eIc
h̄C (Johnson)

ωc =
2eIcRn

h̄ (McCumber)

τ = ωpt (Johnson)

τ = ωct (McCumber)

Table 3.1: Normalization constants in the RCSJ - RSJ model.

Johnson normalization McCumber normalization

plasma frequency fp =
√

2eIc
hC characteristic frequency fc =

2eIcRn
h

Quality factor Q = RnCωp =
1
βJ

McCumber parameter βc =
2eIcRn2C

h̄

Table 3.2: Parameters of the Johnson and McCumber normalization.

Note that βc =
1

β 2
J
= Q2. Starting at the characteristic frequency fc, the current flows more in

the resistive branch, at the expense of the non linear mixing branch.
Time normalization gives, dτ = ωp/cdt and dτ2 = ω2

p/cdt2. Therefore equations 3.26 and 3.21
rewrite in the forms presented in table 3.3.

Johnson normalization McCumber normalization

{
φ̈ +βJ φ̇ + sinφ = i

φ̇ = Qv
(3.27)

{
βcφ̈ + φ̇ + sinφ = i

φ̇ = v
(3.28)

Table 3.3: RCSJ equations in the Johnson and McCumber normalization. Here the point symbol denotes
normalized derivatives.

System 3.27 has a different time normalization than 3.28, hence one cannot change from one
system to the other only by using βc = 1/β 2

J . In this thesis we will use system 3.28. It cannot be
solved in closed form for the general case where C 6= 0. Furthermore, an external periodic drive
can lead to very complex behaviors, such as bifurcation or deterministic chaos. However in the
heavily-damped regime where βc� 1 there exists analytical solutions.
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3.3.2 Dynamics of the junction

An analog system driven by 3.28, is the one a particle moving on a washboard potential U(φ). In
fact, considering a particle with a mass βc, a velocity v and a position φ , 3.28 can be interpreted
as a Newton’s second law of motion. The potential U(φ) is found by integration as1:

U(φ) = EJ(1−φ i− cosφ) (3.29)

Thus, the overall slope of the washboard increases with bias current. Figure 3.7 shows the shape of
the potential U(φ) for different values of bias current i. A mechanical analog is a rigid pendulum
of mass βc, whose position is determined by the angle φ with the vertical. The capacitance C is
then analog to its moment of inertia, the conductance 1/R to a viscous damping coefficient, I to
an externally applied torque and Ic to the maximum torque due to gravity.

−π 0 π 2π 3π 4π

0

 i = 0
 i = 0 . 5
 i = 1
 i = 1 . 5

Po
ten

tia
l U

(φ)

P h a s e  φ

2 E J

Figure 3.7: Analog system to the RCSJ model: a particle of mass βc moves along a washboard potential.
The current i tilts the overall slope, and motions the particle at a velocity φ̇ = v, where v is the voltage
across the junction. When i > 1, the particle moves freely on the washboard and < v >≡ vdc 6= 0. Adapted
from [163].

3.3.2.1 Under-damped regime

When |i|< 1, U(φ) has local minimums at φm = 0[2π], hence a particle initially at rest and close
to one of these positions does not have enough energy to cross the barrier and move along the
washboard. It oscillates (at the plasma frequency ωp in the Johnson normalization) around φm,
and its mean position is constant < φ >= cte. In the mechanical analogy, the pendulum oscillates
around the stable position φ = 0.

1The integration is actually not trivial, because one needs to extract the Gibbs energy of the system, to be distin-
guished from its free energy. A rigorous calculation is found in [129]
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When βc > 1, or similarly in the Johnson normalization when Q > 1, the junction is under-
damped. If the particle’s initial kinetic energy is high enough, it will roll along the washboard
potential, hence < v >≡ vdc 6= 0. If not, as when initially at rest, it will stay trapped in a potential
well, hence vdc = 0. Thus, the IV characteristics of under-damped JJ depend on the particle’s
initial energy: they are hysteretic. Figure 3.8 shows simulations of IV curves, for different values
of βc. It increases with capacitance, and the hysteresis is more pronounced. This situation where
i < 1 and βc > 1 contains a very rich physics, in particular the particle can hop from one local
minimum to another by thermal activation or macroscopic quantum tunneling [97].
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Figure 3.8: Simulations of IV curves in the RCSJ model, for various values of the McCumber parameter.
For βc = 0 the curve is not hysteretic: the path is the same when i increases or decreases. For βc > 1,
the curves are hysteretic and when i increases, a switching occurs from i = 1 (at the critical current) to
a position indicated by dashed arrows. When i decreases the path is indicated by arrows on the curves.
Adapted from [163].

3.3.2.2 Over-damped regime

When βc < 1 (Q<1) the junction is over-damped. Our junctions are heavily damped βc � 1.
It is expected from irradiated high-Tc Josephson junctions, as the capacitance C is low due to
the presence of delocalized (metallic) states in th barrier. It will be observed experimentally by
having non hysteretic IV curves. Neglecting the capacitive branch, the JJ is described by the RSJ
model. In the mechanical analogy, the pendulum undergoes such important viscous friction, that
its oscillation tends to a mean position given by the solution of the system:{

φ̇ + sinφ = i
v = φ̇

(3.30)
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Figure 3.9: Simulation of a IV curve with no capacitance (pure RSJ model), and corresponding voltage
temporal oscillations in normalized units, at different values of d-c voltage < v >= vdc. The oscillation
period is given by 3.35. As the current bias increases, the oscillations have a sinus shape, and the average
of the a-c Josephson effect is null, only leaving the d-c component: vdc = i.

When |i|< 1, the solution is:

φ(τ)→ arcsin(i) = cte, as v→ 0 (3.31)

and when the current bias exceeds the supercurrent (i > 1) the phase evolves as [191]:

φ(τ) = 2arctan
( vdc

i+1
tan(

vdcτ

2
)
)+

π

2
(3.32)

and the voltage v(τ) is given by its derivative:

v(τ) =
vdc

i+1
vdc

cos2
( vdcτ

2

)
+
( vdc

i+1

)2sin2
( vdcτ

2

) (3.33)

The d-c voltage derives by taking the (normalized) time average of φ̇ = v, thus given by [177]:

vdc =
√

i2−1 (3.34)

Hence at large current biases, i� 1 and the IV curve joins the ohmic branch vdc = i (Vdc = RnIb
in dimensioned units). Now, at a fixed current bias, the voltage v oscillates in time and according
to 3.32 its period is:

T =
2π

vdc
=

2π√
i2−1

(3.35)

Thus the voltage oscillates only at i > 1. Figure 3.9 shows the simulation of an IV curve, along
with voltage oscillations. We can see that the mean value vdc of v(τ) increases with bias current.
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For i� 1, the period diminishes and the oscillations get closer to a sinusoidal shape, added to a
d-c background that tends to IcRn, and thus vdc→ i. In the mechanical analogy, it corresponds to
a situation where the driving torque is so high that the pendulum turns entirely over 2π , with a
negligible influence of the gravity torque. For i & 1, v(τ) has many harmonics, that create a set
of periodic pulses. The latter are being exploited in the rapid single flux quantum logic (RSFQ)
[132]. In this situation, the pendulum is given just enough energy to make an entire revolution.

3.3.3 Model of a real Josephson junction

So far, the model describes an ideal Josephson junction. But due to the fluctuation-dissipation
theorem [50], the resistance inevitably generates voltage and current fluctuations that must be
taken into account when describing any real Josephson junction.

3.3.3.1 Fluctuations

In the Rayleigh-Jeans limit (hν� kBT ) the spectral density of the voltage fluctuations is given by
the Johnson-Nyquist theorem [150]:

SV (ν) = 4kBT R (3.36)

Equivalently, the current fluctuations are given by:

SI(ν) =
4kBT

R
(3.37)

When hν ∼ kBT , i.e. at low temperature or similarly at high frequencies, the energy per mode is
no longer proportional to kBT , and one needs a general expression for fluctuations, given by [50]:

SV (ν) = 2hνRcoth
( hν

2kBT

)
(3.38)

Note that in the Rayleigh-Jeans limit, equation 3.38 reduces to 3.36. In the quantum regime
(hν � kBT ), 3.38 gives SV (ν) = 2hνR.

In our range of operating temperatures, we will always be in the Rayleigh-Jeans limit: as
shown on table 3.4, at 50 K the cross-over from Johnson limited to quantum limited noise occurs
at 1 THz, well above the maximum operating frequency of our mixer so far (of about 400 GHz).

T (K) kBT ν = kBT/h

1 86 µeV 20 GHz
4.2 0.36 meV 87 GHz
50 4.3 meV 1 THz

Table 3.4: Correspondance between temperature, energy and frequency.

The common way to account for fluctuations is to add a stochastic current source δ in(τ) (δ In(t)
in dimensioned units), thus forming a Langevin equation such that the system writes as:{

φ̇ + sinφ = i+δ in(τ)
v = φ̇

(3.39)

It is possible to solve it analytically, but only for the unpumped regime. Instead, numerical reso-
lution allows to find the IV curves in all the situations that are of interest for us, i.e. with any LO
and any signal. Averaging gives the d-c voltage vdc, Fourier transforming gives the oscillation or
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noise spectra and furthermore, this method will be proven of crucial advantage when computing
the conversion efficiency of the mixer (see chapter 7).

We introduce fluctuations as an additive white and gaussian noise (AWGN). The current source
is a random variable δ In(t), characterized by its power spectral density (PSD) given by 3.37 (a
constant, i.e. a white noise). According to the Wiener-Khinchin theorem, the PSD is equal to
the Fourier transform of its autocorrelation function. Hence, in the temporal domain, the latter
is a Dirac function: < I(t0)I(t0− t) >= 2kBT

Rn
δ (t). In addition, δ In(t) is chosen to have a tempo-

ral Gaussian probability density, and thus the autocorrelation function gives the variance of the
Gaussian as:

σ
2
I =

2kBT
Rn∆t

(3.40)

where ∆t is the solving pace time (dimensioned). Once again one usually prefers to use normalized
quantities, hence we introduce the normalized temperature Γ:

Γ =
2e
h̄

kBT
Ic

(3.41)

which is actually the ratio between thermal and Josephson energy. Since σ2
i = σ2

I /I2
c , the normal-

ized variance writes itself as:
σ

2
i = 2

Γ

δτ
(3.42)

where δτ is the normalized pace time.

3.3.3.2 Numerical resolution
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Figure 3.10: IV curves in the RSJ model (zero capacitance), in the presence of noise, for several values of
normalized temperature.



72 Chapter 3. Electronic transport in YBa2Cu3O7 irradiated Josephson junctions

In practice, the simulation of an IV curve consists in solving the system equations 3.39 by
numerical integration, and we simply used Euler’s method. Appendix C details the numerical
computation. Figure 3.10 shows simulations of the IV curve in the presence of noise. The transi-
tion at i = 1 is rounded as the noise increases.

3.4 Conclusion on the electronic transport

In this chapter we have seen the nature of the Josephson effect, and we presented the two different
systems in which it appears: tunnel and weak-link junctions. Our irradiated Josephson junctions
belong to the second category. From the coupling between two superconducting condensates, we
derived the d-c and a-c Josephson equations 3.20 and 3.21, that govern the flow of Josephson
current through the junction.

We showed the experimental characterization of the Josephson effect in our junctions. In the
RT curves, a plateau below the transition of the two condensates appears. It follows the RT curve
of the weak-link down to Tj, at which the resistance drops to zero. Tj lowers as the irradiation
dose increases. In addition, it depends on the length of the weak-link. Consequently, it does not
correspond to the critical temperature of the weak-link. These dependences may be elucidated in
the next chapter, when taking into account proximity effects.

The IV curves of irradiated junctions are typical of weak-links when close to Tj, with a down-
ward curvature. As the temperature decreases, the weak-link eventually becomes superconducting
and the curves take an upward curvature.

When decreasing the temperature, the critical current grows quadratically. Once again, this
behavior is explained in the next chapter, when taking into account proximity effects. Also, the
critical current can be modulated when an external magnetic or r-f field is applied. They are the
real proof of a Josephson effect, because both d-c and a-c Josephson equations need to be valid to
explain these effects. We will detail in chapter 3 the modulation of the r-f field.

Finally, we presented the RCSJ and RSJ models, equivalent circuits for weak-link Josephson
junctions. They originate from the fact that one can separate the contributions of the Josephson
supercurrent and the quasiparticle current, and thus express them as separate circuit branches. In
our junctions, we can neglect the capacitance because we don’t have a clear interface between
normal and superconducting parts. In fact, we will see in chapter 3 that the RSJ model is able to
fit the experimental IV curves. The noise in a real junction is accounted by an additive white an
Gaussian current noise source, inevitable in a circuit containing a dissipative element. It rounds
up the transition at the critical current.
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In the precedent chapter, we put aside the origin of experimental behaviors observed in irradi-
ated Josephson junctions. The present chapter will address it, explaining of the coupling mecha-
nism between the two superconducting sides.

We have seen that the defect distribution in our irradiated YBa2Cu3O7 junctions is about tens
of nm long. Thus it rules out any Cooper pair tunneling, whose probability decreases exponentially
as the barrier extends. However a Josephson effect still exists, evidenced experimentally, and
therefore the coupling between the two reservoirs comes from something else.

In fact it stems from proximity effect, i.e the extension of the superconducting properties into
the barrier, when it is a metal or in our case, a superconductor in its normal phase. Thus, it allows
coherent states to go from one side to the other and along with it, the appearance of a Josephson
oscillation.

Since the notion of proximity effect requires a fairly heavy theoretical development, we frac-
tion the chapter as follows: we give a short answer to the coupling mechanism in section 4.1.
Then in section 4.2 we give the long answer, which we adapt to our specific system in section
4.3. It allows to perform numerical simulations, and recover the experimental shape of the RT
and IcT curves. In addition, simulations are helpful to adjust fabrication parameters - length of the
weak-link and irradiation dose.
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4.1 Proximity effects in metals and damaged superconductors

When the barrier is a metal, the junction is called SNS. When it is a damaged superconductor
whose critical temperature is lowered, it is called SS’S. At a temperature where S’ is normal, they
behave closely.

In both cases, there exists accessible electronic states inside the barrier which enable proximity
effect. More precisely, at the S-N or S-S’ interface, a Cooper pair | k ↑,−k ↓> can transform into
an electron | −k ↓> and a hole | k ↑>, thus forming an Andreev pair. In the N or S’ part, the
latter progressively dephase within a characteristic length ξN called the normal coherence length.
In other words, ξN is the characteristic length of the exponentially decreasing pair condensation
amplitude FN(x). The latter represents the number of Andreev pairs at the position x (referenced
to the interface).

4.1.1 SNS and SS’S

When electrons undergo many scattering events inside the barrier, their mean free path ltr can get
smaller than ξN . In other words, diffusion effects arise before dephasing to break the coherence of
the Andreev pair. It is called the dirty limit (as opposed to the clean limit, with ballistic electron
trajectories). In a metal at a temperature T , electron and hole have an energy kBT around the Fermi
energy, and thus we can express the normal coherence length with a diffusion coefficient D such
as:

ξN =

√
h̄D

2πkBT
(4.1)

The pair condensation amplitude FN(x) then writes as:

FN(x) = FN(0−)e
−|x|
ξN (4.2)

where FN(0−) is taken at the S-N interface.
The ion damaged YBa2Cu3O7 is a disordered system, and therefore the dirty limit is valid for

this S’ region. De Gennes, Guyon and Werthamer [66, 65, 194] studied the case of SNS junctions,
and extended the results to SS’S junctions. In this frame they found that, when T > T ′c , far from
the interface, ξN is given by:

ξN(T ) =

√
h̄D

2πkBT

√
1+

2
ln(T/T ′c )

(4.3)

The difference between SNS and SS’S is clear: with the latter, when we are at T = 2T ′c we
approximately double the normal coherence length that we have in the corresponding SNS system,
and it grows exponentially as we get closer to T ′c . Another difference, which does not appear in
these equations, is that in our SS’S system, there is no discontinuity in the pair condensation
amplitude at the S-S’ interfaces.

Thus, FN1(x) and FN2(x) from both sides extend into the barrier, and strongly overlap, allowing
Andreev pairs to go across the barrier without being destroyed. Figure 4.1 presents schematically
the situation of the pair condensation amplitude, for SNS and SS’S junctions.

This explains why we still have a Josephson coupling, even with long S’ barriers. In this frame
also, we can explain the origin of T ′c and Tj: T ′c is simply the critical temperature of the S’ part,
whereas Tj is the temperature below which thermal energy kBT is weaker than the overlap of the
pair condensation amplitudes, so that thermal agitation does not destroy Andreev pairs as they go
across the S’ region.
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Figure 4.1: Schematic of a the pair condensation amplitude in a SNS (a) and in a SS’S (b) junction. The
different materials in contact at the interfaces of the SNS junction induces a discontinuity, and the amplitude
decreases exponentially over a shorter length ξN than in the SS’S case, where there is no discontinuity.

A remark concerning the S-S’ interface: as shown on the figure 2.5 of chapter 2, the T ′c of the
S’ region varies with position x, i.e. the S-S’ interfaces of our junctions move with temperature,
as mentioned in a few articles [54, 105]. Thus, the schematic vision of figure 4.1 (b) is naive,
in the sense that there is no sharp transition between S and S’. Our model described below (see
4.3.1) takes this moving interface into account through a diffusion coefficient D that depends on
temperature (and x). As the temperature increases, the diffusion decreases and the S’ part extends.

4.1.2 Critical current

The De Gennes Werthamer theory also gives the expression of the critical current. Close to Tc, in
SNS systems it is given by:

Ic(T )∼ e−L/ξN
(
1− T

Tc

)2 (4.4)

where L is the length of the normal metal part. This quadratic dependence differs from the linear
one, found in SIS junctions.

With a SS’S system, the above expression is modified as [19, 105, 36]:

Ic(T ) = I0
(
1− T

Tj

)2 L/ξN

sinh(L/ξN)
(4.5)

I0 =
π∆2

0
4eRnkBTc

(4.6)

where ∆0 is the BCS gap. In YBa2Cu3O7 it is anisotropic, with a maximum at about 30 meV, but
one can take an average value: ∆0 ∼ 20 meV, which leads to I0 = 18.5 mV/Rn for Tc = 89 K [19].
ξN is given by equation 4.3.

In any case, we see that at a fixed temperature, Ic(T ) ∼ (1−T/Tj)
2, i.e. the critical current

grows quadratically as the temperature decreases. This behavior is only valid near Tj.

4.2 Theory of proximity effects

We summarize here the theory that describes the non homogeneous superconductivity. Some
vocabulary first: coherent extension of the phase into the normal part is the direct proximity effect.
Conversely, diminution of the Cooper pair density in the superconductor near the interface is the
inverse proximity effect.
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In order to study the physics of superconductivity at S-N or S-S’ interfaces, one cannot use
the BCS theory alone: indeed it assumes spatial invariance of the order parameter ∆. Thus, a more
general theory for inhomogeneous superconductors developed by Gorkov [84, 17], and formalized
by Nambu [147] is necessary.

The Gorkov equations give a general frame for inhomogeneous superconductors, but it is not
possible to solve them exactly. However, the energy scale in superconducting systems is given by
∆, and for conventional superconductors ∆/EF ∼ 10−3. The idea of Eilenberger quasi-classical
approach [72, 73] is to simplify the Gorkov equations by making a perturbative expantion with
respect to ∆/EF . For high-Tc superconductors, ∆/EF ∼ 10−2 to 10−1 and the Eilenberger equations
remains valid, at least close to Tc. But then, any variation of physical quantities smaller than the
superconducting coherence length ξ0 is integrated. Therefore this approximation forbids to see
any single electron interference effects such as weak localization.

In the dirty limit where ltr � ξ0, one can simplify the Eilenberger equations by averaging
over all the momentum direction ppp, so that the electronic Green functions only depend on the
position rrr. It gives the Usadel equations [188]. Strictly speaking, this approach is only valid
for s-wave superconductors, where ∆ is independent of the momentum direction. However we
still apply this model in the case of YBa2Cu3O7, a d-wave superconductor. Indeed, we can treat in
equivalent terms an s-wave superconductor with magnetic impurities (a dirty s-wave) and a d-wave
superconductor with crystalline defects [127]. The disorder in YBa2Cu3O7 is entered ad hoc as
a new term Γ(x) in the Usadel equations. They can be solved numerically and enable to address
fundamental and experimental quantities such as pair potential, critical current, and normal state
resistance.

4.2.1 Gorkov - Nambu theory1

The BCS theory describes the formation of pairs through the exchange of phonons [25]. It can
also be expressed as an interaction between time-reversed conjugates, without specifying the na-
ture of the coupling. This canonical transformation reveals a pairing Hamiltonian that couples
quasiparticles of the normal metal. Then, the eigenstates u(rrr) and v(rrr) of the system are no longer
the ones of the electron or the hole, but correspond to a superposition of them. They obey the
Bogolubov-de Gennes equations [67]:[

H0 ∆

∆∗ −H0

][
u(rrr)
v(rrr)

]
= ε

[
u(rrr)
v(rrr)

]
(4.7)

where H0 is the electronic Hamiltonian and ∆ is the superconducting order parameter.
The Gorkov approach reformulates this matrix equation in terms of two Green functions. They

allow to calculate the evolution of the electronic wave function in the normal and superconducting
part, treating normal-like and superconducting-like interactions with the same formalism. More
precisely it introduces the normal Green function G(rrr,rrr′′′, t) which is a propagating field such that
the electronic wave function in the normal part at rrr′′′ and t can be calculated from the wave function
at rrr and t = 0. Similarly the abnormal Green function F(rrr,rrr′′′, t) enables to calculate the electronic
wave function in the superconductor, and evidences the presence of Cooper pairs. G(rrr,rrr′′′, t) and
F(rrr,rrr′′′, t) can be expressed as:

G(rrr,rrr′′′, t) =< {Ψ↑(rrr, t),Ψ†
↑(rrr
′′′,0)}> (4.8)

F(rrr,rrr′′′, t) =< {Ψ†
↑(rrr, t),Ψ

†
↓(rrr
′′′,0)}> (4.9)

1in this section and up to the Usadel equations we consider kB = h̄ = 1.
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where < ... > is the statistical Gibbs averaging, {O,O′} = OO′+O′O is the anti-commutator
operation, and Ψ↑ and Ψ

†
↑ the annihilation and creation operator of an electron in rrr at t (and ↑ or ↓

with a spin up or down) in the Heisenberg representation. In particular:

F(rrr,rrr,0) =< {Ψ†
↑(rrr,0),Ψ

†
↓(rrr,0)}> (4.10)

is the pair condensation amplitude, i.e. F2(rrr,rrr,0) is the Cooper pair density in rrr. Thus, if one
considers an attractive potential V (rrr):

∆(rrr) =V (rrr)F(rrr,rrr,0) (4.11)

which is a generalized BCS order parameter in the case of a non homogeneous system.
Now, the Green functions and the Hamiltonian can be expressed in a convenient space called

the Nambu space. It is a 4D space (rrr, t,↑,†) in which one can use 2x2 matrices to group under the
same formalism normal-like and superconducting-like correlations. Those matrix have the form
[87, 121]:

M̌(rrr,rrr′′′, t, t ′) =

[
< {Ψ↑(rrr, t),Ψ†

↑(rrr
′′′, t ′)}> < {Ψ↑(rrr, t),Ψ†

↓(rrr
′′′, t ′)}>

−< {Ψ†
↓(rrr, t),Ψ

†
↑(rrr
′′′, t ′)}> −< {Ψ†

↓(rrr, t),Ψ
†
↓(rrr
′′′, t ′)}>

]
(4.12)

The "ˇ" denotes that we are in the Nambu space. The diagonal elements represent the amplitude
of "normal" correlations between electrons and the off-diagonal elements represent "abnormal"
correlations, which describe paired electrons. With such a formalism, the Green functions are
gathered into a matrix:

Ǧ(rrr,rrr′′′, t) =
[

G(rrr,rrr′′′, t) F(rrr,rrr′′′, t)
F†(rrr,rrr′′′, t) −G(rrr,rrr′′′, t)

]
The Gorkov equations on the Green functions are more conveniently expressed in the frequency
representation. One defines the Fourier transform as:

Ǧωn(rrr,rrr
′′′) =

∫ 1/T

0
eiωnτǦ(rrr,rrr′′′,τ)dτ (4.13)

Ǧ(rrr,rrr′′′, t) = T ∑
n

e−iωnτǦωn(rrr,rrr
′′′) (4.14)

where ωn = (2n+ 1)πT are the Matsubara frequencies and T is the temperature. They have the
unit of an energy2 and can be interpreted as a base for energies at which the correlated electronic
system excites. Hence one has:

Ǧωn(rrr,rrr
′′′) =

[
Gωn(rrr,rrr

′′′) Fωn(rrr,rrr
′′′)

F†
ωn(rrr,rrr

′′′) −Gωn(rrr,rrr
′′′)

]
(4.15)

Now, the general Hamiltonian can be written as:

Ȟ =

[
H0 i∆(rrr)

i∆∗(rrr) −H0

]
(4.16)

H0 =
1

2m

( h̄
i
∇− e

c
A(rrr)

)2−µ +U(rrr)

where U(rrr) accounts for a scattering potential centered in rrr, A(rrr) the vector potential of the mag-
netic field and µ the chemical potential (Fermi energy). Then, the Gorkov equation on the Green
functions is:

(iωnτ̌3 +Ȟ )Ǧωn(rrr,rrr
′′′) = 1̌δ (rrr− rrr′′′) (4.17)

2The dimensional definition of the Matsubara frequencies is ωn = (2n+1)πkBT
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with

τ̌3 =

[
1 0
0 −1

]
the third Pauli matrix. In other words, for any ωn, the Green functions satisfy coupled equations:[

iωn +H0 i∆(rrr)
i∆∗(rrr) −iωn−H0

][
Gωn(rrr,rrr

′′′) Fωn(rrr,rrr
′′′)

F†
ωn(rrr,rrr

′′′) −Gωn(rrr,rrr
′′′)

]
=

[
δ (rrr− rrr′′′) 0

0 δ (rrr− rrr′′′)

]
(4.18)

and we see here the reformulation of equation 4.7. In other words:{
(iωn +H0)Gωn(rrr,rrr

′′′)+ i∆(rrr)F†
ωn(rrr,rrr

′′′) = δ (rrr− rrr′′′)
i∆∗(rrr)Gωn(rrr,rrr

′′′)+(−iωn−H0)F
†

ωn(rrr,rrr
′′′) = 0

(4.19)

4.2.2 Perturbative expansion: Eilenberger equation

The integration of the Green functions Gωn(rrr,rrr
′′′) and Fωn(rrr,rrr

′′′) over the energy in the vicinity of
the Fermi energy gives respectively gωn and fωn . They are called quasi classic Green functions.
The integration is not trivial, in particular one needs to write them as a function of ppp and kkk instead
of rrr and rrr′′′. One can find in [117] a detailed calculation. Hence the matrix of the quasi classic
Green functions in the Nambu formalism is:

ǧωn(p̂pp,kkk) =
[

gωn fωn

f †
ωn −gωn

]
where p̂pp is the unit vector in the direction of ppp. ǧωn satisfies the normalization condition ǧ2

ωn
= 1̌,

i.e. g2
ωn

+ fωn f †
ωn = 1. The Eilenberger equations are then given in a compact matrix form as:

ivvvF ∇̂ǧωn + ǧωnȞ0− Ȟ0ǧωn = 1̌ (4.20)

where ǧωnȞ0 is just the usual product of two matrices and where we defined:

∇̂ǧωn =

[
∇gωn (∇− 2ie

c AAA) fωn

(∇+ 2ie
c AAA) f †

ωn −∇gωn

]
, Ȟ0 =

[
iωn i∆(rrr)

i∆∗(rrr) −iωn

]
In other words: 

vvvF∇gωn− f †
ωn∆+ fωn∆∗ = 1

−vvvF∇gωn− fωn∆∗+ f †
ωn∆ = 1

vvvF(∇− 2ie
c AAA) fωn−2ωn fωn +2gωn∆ = 0

vvvF(∇+ 2ie
c AAA) f †

ωn +2ωn f †
ωn−2gωn∆∗ = 0

4.2.3 Usadel equations

We can write the momentum dependence as a first order correction term in the Green functions3:

ǧωn(p̂pp,rrr) = ǧn(rrr)+ v̂vvF ǧggωn
(p̂pp,rrr) (4.21)

where " ˆ " denotes the unit vectors and |ǧggωn
| � ǧn. Hence ǧn does not depend on p̂pp. Since

< ǧωn >= ǧn, the normalization condition on Nambu matrices writes itself ǧn = 1. Then the
Eilenberger equation 4.20 can be written as the Usadel equation:

D∇̂(ǧn∇̂ǧn)+ ǧnȞ0− Ȟ0ǧn = 0 (4.22)

3We write ǧn instead of ǧωn0 to have lighter notations.
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where D = 1
3 vF ltr is the diffusion constant. In particular [117]:

D(∇− 2ie
c

AAA)[gn(∇−
2ie
c

AAA) fn− fn∇gn]−2ωn fn +2gn∆ = 0 (4.23)

In this representation, the supercurrent is given by:

jjjs =
σN

e
πiT ∑

n≥0

[
f †
n (∇−

2ie
c

AAA) fn− fn(∇+
2ie
c

AAA) f †
n
]

(4.24)

where σN = 2ν(0)De2 is the normal state conductivity (ν(0) is the quasi-particle density at the
Fermi level, in

[
J−1
][

m−3
]
). The order parameter is given by the self-consistent equation [29]:

∆(rrr) = λ2πiT ∑
n≥0

fn(rrr) (4.25)

where λ = ν(0)|g0| is the coupling constant.

4.2.4 θ and χ parametrization4.

We now restrict ourselves in the case of a 1D system, i.e. we consider Cooper pair and Andreev
pair densities to vary only along the length x of the Josephson junction. In this case and without
magnetic field, equations 4.23, 4.24 and 4.25 become:

h̄D[gn
∂ 2 fn

∂x2 − fn
∂ 2gn

∂x2 ]−2ωn fn +2gn∆(x) = 0 (4.26)

ωn = (2n+1)πkBT (4.27)

js = iπeν(0)DkBT ∑
n≥0

[
f †
n

∂ fn

∂x
− fn

∂ f †
n

∂x

]
(4.28)

∆(x) = λ2πkBT ∑
n≥0

fn(x) (4.29)

with λ the coupling constant. The current continuity equation ∇. jjjs = 0 writes itself as (considering
that we can exchange sum and derivative):

f †
n

∂ 2 fn

∂x2 − fn
∂ 2 f †

n

∂x2 = 0 (4.30)

We can see that js, ∆(x) and the continuity equation 4.30 only depend on fn and its complex
conjugate. It is expected since fn is the Green function for the superconducting electrons. Recall
that gn and fn are dimensionless quantities. Then the Usadel equation 4.26 shows two energy
source terms (−2ωn fn and 2gn∆(x)) which drive the coupling between fn and gn that is to say
between Cooper pairs electrons and the ones of the Andreev pairs. The coupling term gn

∂ 2 fn
∂x2 −

fn
∂ 2gn
∂x2 is controlled by the diffusion constant D.
In order to handle the quasiclassical equations both analytically and numerically, two parametriza-

tion have proven very useful: the Riccati- and the θ -φ -parametrization [29]. In the frame of the
Matsubara Green functions formalism [139] the later is frequently used, and it is the one we choose
here.

fn and gn respect the normalization condition:

g2
n + fn f †

n = 1 (4.31)

4From now on we use the real dimensions for h̄ and kB
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which means that the total number of electrons in the system is fixed. Thus one can parametrize
Usadel equations with two real functions [29], θn(x) and χ(x) such that, for all ωn:{

gn(x) = cos(θn(x))
fn(x) = sin(θn(x))eiχ(x) (4.32)

If θn = 0, then fn = 0 (and gn = 1) and all the electrons behave like in a normal metal. If θn = π/2,
then fn = 1 (and gn = 0) and all the electrons are paired. Thus the "pairing angle" θn represents
the proportion between normal and superconducting electrons. χ is the superconducting phase.
With those parameters, the Green functions matrix is given by:

ǧn =

[
cosθn sinθneiχ

sinθne−iχ −cosθn

]
(4.33)

The continuity equation writes itself as:

∂

∂x

[∂ χ

∂x
sin2

θn(x)
]
= 0 (4.34)

The superconducting gap |∆(x)| is:

|∆(x)|= λ2πkBT ∑
n≥0

sin(θn(x)) (4.35)

The supercurrent density is:

js =−2πeν(0)DkBT
∂ χ

∂x ∑
n≥0

sin2(θn(x)) (4.36)

and the Usadel equation can be separated into its real part and its imaginary part. The real part
gives:

h̄D
2

∂ 2θn

∂x2 −
h̄D
2
(∂ χ

∂x

)2sinθncosθn−ωnsinθn + |∆(x)|cosθn = 0 (4.37)

and the imaginary part gives:
∂ 2χ

∂x2 +2
∂ χ

∂x
∂θn

∂x
= 0 (4.38)

Equation 4.37 expresses conservation of energy. The first term is the energy associated with the
diffusion of the pairing angle, controlling the proportion between normal and superconducting
electrons. The second is related to the pair breaking process (sinθncosθn). It tells how much the
local variation of the phase influences the pair breaking. The third is the energy of normal electrons
and the fourth the energy of paired electrons.

4.3 Adaptation for irradiated Josephson junctions

4.3.1 Usadel equations in irradiated YBa2Cu3O7

Although the Usadel equations assume a spatial invariance of the momentum direction, we can
still use them once adapted to the specificity of our high-Tc irradiated Josephson junctions. It
all boils down to the analogy between a s-wave superconductor with magnetic impurities and a
d-wave superconductor with crystalline defects. In the former, spin-dependent impurities destroy
spin coherence. In the latter, the sign of the wave vector depends upon its orientation (see figure
2.6). Consequently, a scattering center can easily induce a phase jump of one paired electron from
+k to −k which therefore breaks the Cooper pair.
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To address this analogy we place ad hoc an extra pair breaking term in the Usadel equations,
proportional to the pair breaking rate Γ(x). As shown in chapter 2, (equation 2.4) it is defined as:

Γ(x) =
dpa(x)
dpac

Γc (4.39)

where dpa(x) is the local displacement per atom, dpac = 0.042 is the critical dpa for which Tc

drops to zero, and Γc the associated pair breaking rate (at which Tc = 0). We define Γc in [s−1]
such that:

Γc =
∆(0)

h̄
(4.40)

where ∆(0) is the superconducting gap at T = 0. In our case we take the mean value over the
Fermi surface: ∆(0) = 12 meV. The Usadel equations are then modified such as:

h̄D
2

∂ 2θn

∂x2 −
[ h̄D

2
(∂ χ

∂x

)2
+ h̄Γ(x)

]
sinθncosθn−ωnsinθn + |∆(x)|cosθn = 0 (4.41)

and we keep equations 4.34, 4.35 and 4.36.
Let us finally underline that those equations are only valid for I ≤ Ic. In particular, above the

critical current the phase χ depends on the time, according to the a-c Josephson equation, which
is not represented in the Usadel equations.

4.3.2 Simulations results

The numerical resolution of the Usadel equations is delicate and the algorithm that we used is
detailed in appendix D. Figure 4.2 represents the simulated profile of the pair potential ∆(x)/∆(0)
along the Josephson junction, at different temperatures. It is simulated at zero current bias, and
with the dpa profile shown on the blue curve. Plain lines represent the pair potential in the presence
of diffusion, i.e. with proximity effects while dashed lines are the same simulations without it.
Thus, we clearly see the direct and the inverse proximity effect: it respectively increases the pair
potential in the normal part and diminishes it in the superconducting part.

When ∆ ≤ kBT , thermal excitations kill the pair potential and the junction is resistive [54].
According to equations 2.7 and 2.8 of chapter 2, we compute this resistance by integrating the
local resistivity over the zone in which ∆(x)≤ kBT . Thus we simulate the shape of the R = f (T )
curve of a YBa2Cu3O7 Josephson junction, and extract the temperature Tj at which R = 0 Ω.
This happens when the overlap between the two superconducting wave functions of the reservoirs
counters the effect of thermal excitations. Figure 4.3 represents in plain lines RT curves for a 40
nm long junction, at different irradiation doses. For example, at dose 4.1013 ions.cm−2, we have
Tj = 51K, as indicated by the arrow. When we compute the same curves but without proximity
effect, i.e. by taking D = 0, we can extract T ′c , at R = 0 Ω. Below T ′c , the central part itself
becomes superconducting and we enter the flux-flow regime. On figure 4.3, the T ′c at the different
doses are represented by triangles at R = 0 Ω. For example, at dose 4.1013 ions.cm−2, we find
T ′c = 43 K, as indicated by the arrow. The dashed lines are guides for the eye, and show that T ′c
can also be obtained by prolonging to zero the slope of the RT curves with diffusion. The regime
between T ′c and Tj is governed by the diffusion of the pair potential over a weak link. We call it the
Josephson regime in which, as we shall see in 5, the transport measurements show the presence of
a Josephson current.

The critical current Ic can also be computed: it is calculated at x = 0 with equation 4.36, when
we impose a phase difference χ(+∞)−χ(−∞) = π

2 across the junction. In fact, the a.c. Josephson
equation 3.21 gives: I = Icsin[χ(+∞)− χ(−∞)]. Circles in figure 4.3 represent the Ic(T ) for at
different doses and plain black lines fit Ic as a function of T according to equation 4.5.
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Figure 4.2: Normalized pair potential along the Josephson junction, every Kelvins from 10 to 88 K. The
plain lines represent ∆/∆0 in the presence of proximity effects, and the dashed lines in their absence. The
blue curve represents the dpa from which the pair breaking rate Γ(x) is calculated. It is a dpa obtained for
an irradiation at 110 keV, a dose of 3.1013 ions.cm−2, for a 40 nm long and 70 nm thick junction.

As the length of the junction increases, the coupling between the two superconducting bulks
is more difficult. Figure 4.4 represents the Josephson regime (colored areas), delimited by T ′c and
Tj, as a function of the length of the slit Ls and for different doses. As the length increases, Tj−T ′c
diminishes, thus one should keep Ls < 60 nm in order to ensure Tj − T ′c > 10 K. Furthermore,
the irradiation dose should remain between 3 and 5.1013 ions.cm−2 in order to keep the operating
range between 30 and 65 K.
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Figure 4.3: Color lines: Simulated normal resistance as a function of the temperature, for various irradia-
tion doses. We take ∆ < 0.1kbT as the criterion for a resistive region inside the junction. Then we calculate
the resistance with equations 2.7 and 2.8 of chapter 2. Circles points: critical current Ic as a function of
temperature. Black lines: square fits of Ic(T ).
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Figure 4.4: Josephson regime (colored areas) as a function of the length of the slit and for various irradia-
tion doses. Each region spans between T ′c and Tj. The irradiation energy is 110 keV.
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4.4 Conclusion on the quasi-classical approach of proximity effects

In this chapter we have seen the underlying physics of the electronic transport in irradiated Joseph-
son junctions. Our system is well described by the SS’S model, which differs from SNS: there is
a non zero attractive pair potential in the barrier, and the pair condensation amplitude is continue
at the interface. In addition, the S’ part extends as the temperature decreases.

The existence of coherent electronic states (Andreev pairs) in the normal part provide a very
efficient coupling mechanism between the two superconducting reservoirs. It is highlighted by the
expression of the normal coherence length (4.3) obtained in the dirty limit. Theoretical calcula-
tions [66, 65, 194] adapted to our junctions [105, 36] predict a quadratic dependence of the critical
current as a function of the temperature (equation 4.5).

In the dirty limit and for an s-wave superconductor, theory of non equilibrium superconduc-
tivity [84, 72, 73] can be rewritten in the form of the Usadel equations (4.26). It describes the
evolution of the normal and abnormal Green functions in an inhomogeneous superconductor. We
modified those equations to use them in a d-wave superconductor by taking advantage of the anal-
ogy between a dirty s-wave with magnetic impurities and a d-wave with scattering centers. Thus,
we added a pair-breaking term in the Usadel equation 4.41 written in the formalism of the θ -χ
parametrization. This extra term is calculated from implantation simulations (see chapter 2). Then,
the self-consistent equations 4.41, 4.34, 4.35 and 4.36 were solved numerically to obtain the pair
potential ∆(x) along the junction (figure 4.2), the critical current (figure 4.3) and the Josephson
regime (figure 4.4). The latter is the range of operating temperatures for our Josephson mixer. It
spans between T ′c , below which S’ becomes entirely superconducting (flux flow regime), and Tj

above which thermal fluctuations kill the coupling between the superconducting wave functions
of the reservoirs. Overall it seems that a comfortable Josephson regime is obtained for a slit length
between 20 and 60 nm, at an irradiation dose between 3 and 5.1013 ions.cm−2.

There exists other techniques to write and solve the equations of inhomogeneous superconduc-
tivity. We used the decomposition over the Matsubara frequencies, but the Green functions in the
Gorkov equations can also be written with the Keldysh technique [107, 29]. Also, we used the θ

and χ parametrization but the Usadel equations can be expressed with the Ricatti parametrization
[29, 58, 121, 87], which is known to be numerically very efficient. A further step in the study
would be to compare the results obtained with the other technique.

There is a subtle effect present experimentally but absent of the above theoretical analysis.
Due to the spatial distribution of defects, the critical current Ic also varies along the junction.
So far we only took its value at the center, were the density of defects is the highest. However
experimental data, presented in the next chapter, suggest that the normal resistance Rn depends
also on the current bias. In fact, as suggested in [105], the increase of current moves the S-S’
interfaces, since Ic is exceeded for more of the material. More fundamentally, the place at which
the Andreev reflection occurs varies, because it depends on the energy of the charge carriers. We
might account for this behavior by implementing in the model a local critical current (hence a
local phase difference), above which the material is resistive.
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Several Josephson mixers were fabricated during this thesis. In this chapter, we present typical
results obtained from d-c and low frequency a-c measurements. As we shall see, a lot of informa-
tion can be extracted, which enables to foresee how the junction will respond to high frequency
excitations. These results are also interesting because they validate the proximity model developed
in chapter 3, as well as suggesting new ideas to understand more deeply the transport phenomenon
in weak-link Josephson junctions.

After a presentation of the experimental setup in section 5.1, we expose in section 5.2 mea-
surements performed on a device whose dimensions are routinely achieved with the fabrication
process. Then we compare the RSJ model to our experimental data in section 5.3. Finally, we
briefly present d-c and a-c characteristics from other devices that we fabricated, with different
geometrical parameters in section 5.4.
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5.1 Experimental setups

5.1.1 RT curves: low frequency a-c setup

Figure 5.1 is a sketch of the electronic setup used to measure the resistance as a function of tem-
perature (RT curves). Inset shows a photo of a fabricated electronic chip, with six JJs embedded in
their r-f structure, spiral antenna and CPW line. Their design will be explained in the next chapter,
section 7.1.2. The chip is then mounted and connected through wire-bonding (four point contacts)
to a sample holder as shown on the sketch. A Cernox thermometer and a heating resistance of 25
Ω, also mounted on the sample holder, allow temperature regulation through a PID temperature
controller (Lakeshore 340).

This setup is an a-c measurement method of RT curves, which exploits the sensitivity of lock-
in amplifiers to measure voltages. Besides, such a measurement scheme is immune against any
offset that a d-c voltmeter always has. It consists in biasing the JJ with a small a-c voltage (source
agilent 33220A), at low frequency, typically around a few tens of Hertz. A polarization resistance
Rp = 100 kΩ, whose impedance is much higher than any other in the line, ensures constant current
bias. The latter is determined by the voltage VI across a RI = 1 kΩ resistor, read with a lock-in
amplifier (SR 7265) synchronized on the frequency excitation. An other lock-in reads the voltage
VV across the JJ and thus its resistance is simply given by R = RIVV/VI . The current bias has to
remain small compared to the critical current that we aim at measuring, about ∼ 100 µA at the
temperatures of interest.

As a safety measure against any voltage overshoot (and breakdown of JJ) when plugging and
unplugging electric wires, there is always 500 Ω resistances in series on each wire connected to
the junction. They are not an issue in this four points measurement because there is no potential
drop in the wires where the current doesn’t flow.

In addition, one can illuminate the junction with microwaves, sent from a horn antenna outside
the cryostat, through a window. Section 5.3.1.1 describes how the junction’s normal resistance in
the superconducting state can be recovered using a strong microwave signal.

5.1.2 IV curves: d-c setup

Figure 5.2 presents the setup used to measure IV curves, and also to observe Shapiro steps. A d-c
source (Yokogawa 7651) sends a constant bias, and the d-c voltage across the JJ is read using a
four points measurement method by a multimeter (Keithley 2700) placed after a low noise room
temperature amplifier (AD624) whose gain is set to 100.

From outside the cryostat, one can excite the JJ at high frequencies, up to 420 GHz and thus
measure the d-c response under high frequency excitations. We used three different sources: a
microwave signal generator (up to 30 GHz, Anritsu MG3692C), a Gunn oscillator (MMWS) for
frequencies between 69 and 75 GHz, and a backward wave oscillator (BWO, brand Elmika ΓS-
02) tunable between 109 and 188 GHz. A set of frequency doublers, triplers and quandruplers
(GaAs Schottky diodes [74]) can be placed at the output of the Gunn oscillator and BWO to attain
frequencies around 280 GHz and 420 GHz on each device.

For weak signals, especially at frequencies above 140 GHz were the available power is very
low (tabulated less than 2 mW) it is sometimes necessary to use an optical chopper in front of
the window, to modulate the amplitude of the high frequency excitation. It is synchronized to the
lock-in amplifier, which measures a response that exhibits a singularity at the Shapiro step (see
5.2.2).
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Figure 5.1: Schematic of the a-c measurement setup of the RT curves. Inset: photograph of a fabricated
electronic chip, on which there are six mixers.
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Figure 5.2: Schematic of the d-c measurement setup of the IV curves.

5.2 D-c and a-c measurements

5.2.1 Josephson regime

We measured a Josephson junction (JJ) whose geometrical characteristics are the following (see
also 2.8): nominal length 20 nm, width 2 µm and thickness 70 nm. It has been irradiated at 3.1013

ions.cm−2 (second irradiation) with 110 keV oxygen ions.
The resistance of the JJ as a function of temperature (black curve on figure 5.3) is measured

at very low current bias (0.3 nA) with the setup of figure 5.1. It reveals the existence of two char-
acteristic temperatures in our device, namely Tc and Tj [135]. The highest transition at Tc = 84 K
refers to the superconducting transition of the non-irradiated regions of sample, which corresponds
to the transition temperature of the unprocessed YBa2Cu3O7 film [33]. The second transition at
the lower temperature Tj = 66 K corresponds to the occurrence of a clear Josephson coupling
between the two electrodes, strong enough for the critical current to resist thermal fluctuations.
A third characteristic temperature T ′c is also observed when the barrier itself becomes supercon-
ducting. Its existence is inherent to the irradiation fabrication technique, which lowers the Tc of
the material in the region below the slit, as seen in chapter 3. To retrieve this temperature, we
measured the RT curve while illuminating the junction with a sufficiently high-power r-f signal
at 5 GHz (blue curve on figure 5.3 (a)) to suppress the Josephson supercurrent (see 5.3.1.1). This
way, we measure the normal resistance Rn as a function of temperature (see also section 5.3.1).
This curve extrapolates the linear variation of the one measured above Tj without r-f signal, and
the temperature at which it reaches zero defines T ′c . The Josephson regime therefore lies between
T ′c = 45 K and Tj = 66 K (figure 5.3 (b)).

Below Tj, the critical current Ic is extracted from the IV curves (figure 5.3 (b)), measured
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with the setup of figure 5.2. It grows quadratically when lowering temperature (figure 5.3 (a)), as
expected from Josephson coupling by proximity effect (equation 4.5). From the determination of
Ic and Rn, we extract the characteristic frequency fc = 2eIcRn/h of the mixer. As seen in figure 5.3
(c), fc displays a dome as a function of temperature with a maximum value fopt of 85 GHz at 55 K.
We will see in chapter 7 that fc is not a cut-off frequency and Josephson mixing can be performed
up to several times fc, at the cost of a reduced conversion efficiency [136]. fc can be seen as the
frequency above which the impedance associated to the Josephson inductance |ZJ|= LJω becomes
larger than the intrinsic shunting resistance Rn. For optimal operation, it is desirable to have fc

larger than the frequencies of the incoming local oscillator (LO) fLO and signal fs as the resulting
ac current would then interact mainly with the Josephson non-linear inductive element.
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Figure 5.3: d-c and a-c characterization of the junction. (a) Resistance R and critical current Ic, as a
function of temperature. The normal resistance Rn, blue curve, is obtained from the RT curve recorded
when the junction is saturated with microwaves. Three temperatures Tc, Tj, and T ′c are indicated on the
graph. Inset: RT curve at larger scale. (b) IV curves at each K, between 40 and 65 K. (c) IcRn product in
frequency unit superimposed to the previous curves. (d) IV curve at T = 55 K, i.e. in the Josephson regime.

5.2.2 Flux-flow regime

In the Josephson regime, the junction has a non-hysteretic current-voltage characteristics with
an upward curvature in the dissipation branch at low voltage and no sharp feature at the gap
voltage as seen on figure 5.3 (d) [33]. In the flux-flow regime, below T ′c , the barrier itself becomes
superconducting, i.e. we are in the presence of a SS’S junction with S’ also superconducting.
The crossover between Josephson and flux-flow is not obvious on the IV curves of figure 5.3
(b). Below T ′c the pair condensation amplitude, even though not dropping to zero, diminishes in
the S’ ion damaged region (see figure 4.2, temperatures close to 10 K). This situation doesn’t
forbid a priori the supercurrent to oscillate (and the quasiparticles to counter oscillate) because
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of the weaken interface, but the system deviates continuously from a pure Josephson oscillation,
to a hybrid situation between a homogeneous superconductor and a weak-link, and a large excess
current rises. A model would require to study deviations from the pure sinus in the d-c Josephson
equation.

5.2.3 Shapiro steps

The discrimination between Josephson and flux flow regime is better identified on IV curves when
the junction undergoes a moderately high power r-f illumination (no saturation). In a nutshell, the
self-oscillation of the junction can resonate and lock to the oscillation of the external driving r-f
field. It creates steps in the IV curves, first observed by Shapiro [166] and thus called Shapiro
steps. In the Josephson regime, the r-f power modulates entirely the supercurrent.

More fundamentally, the presence of Shapiro steps is a clear evidence of the Josephson effect,
since both Josephson equations are required to describe them.

5.2.3.1 Voltage source model

Let us describe it more formally, and to that end we need to express the r-f field as a source term,
either voltage or current source. The voltage source model has the advantage of inducing equations
with analytical solutions, therefore it is the one we use here to discuss Shapiro steps. The current
source model has been used extensively in the RSJ model (see section 3.3.3.2 and appendix C)
because it led to numerically stable equations, good for fitting simulations.

Here we consider the coherent r-f field of frequency fr f as a voltage source term with the form
Vr f cos(ωr f t) where ωr f = 2π f . The voltage developed across the junction is then given by:

V =Vb +Vr f cos(ωr f t) (5.1)

where the voltage bias Vb is given by the a-c Josephson equation 3.21 when there is no r-f field
applied. In other words:

ωJ =
2e
h̄

Vb =
2π

φ0
Vb (5.2)

where ωJ is the Josephson frequency, i.e. the self-oscillation (SO) frequency. Integrating the a-c
Josephson equation with the total voltage V leads to:

φ(t) = ωJt +
2πVr f

φ0ωr f
sin(ωr f t)+φc = ωJt +

ω0

ωr f
sin(ωr f t)+φc (5.3)

where ω0 =
2πVr f

φ0
and φc is an integrating constant. Putting back φ(t) in the d-c Josephson equation

3.20:
IJ = Ic[sin(ωJt +φc)cos(

ω0

ωr f
sin(ωr f t))+ sin(

ω0

ωr f
sin(ωr f t))cos(ωJt +φc)] (5.4)

The anharmonic terms can be expanded into Fourier series:

cos(
ω0

ωr f
sin(ωr f t)) = J0

( ω0

ωr f

)
+2

∞

∑
n=1

J2n
( ω0

ωr f

)
cos(2nωr f t) (5.5)

sin(
ω0

ωr f
sin(ωr f t)) = 2

∞

∑
n=1

J2n−1
( ω0

ωr f

)
sin((2n−1)ωr f t) (5.6)

where J2n and J2n−1 are the nth order Bessel functions of the first kind. Then equation 5.4 gives
the expression of the Josephson supercurrent as:

IJ = Ic

(
J0sin(ωJt+φc)+

∞

∑
n=1

Jn
( ω0

ωr f

)
sin[(ωJ+nωr f )t+φc]+

∞

∑
n=1

(−1)nJn
( ω0

ωr f

)
sin[(ωJ−nωr f )t+φc]

)
(5.7)
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This expression is very interesting because it underlines a subtle physics point of the Josephson
mixer. When biased, a JJ oscillates by itself at ωJ and due to the non linearity of the Josephson
equations, this oscillation mixes with the one of the r-f field. It creates harmonics at ωJ±nωr f , in
particular at ωJ−ωr f , as expected from a square-law component (see 1.4.1.2). But in the case of
heterodyne detection we intend to design, we don’t use the self-oscillation (SO) as LO. In fact we
just use the non linear property of the device to mix two external r-f fields so as to create harmonics
in the same manner as shown here. For a LO at pulsation ωLO and a signal at pulsation ωsig we
will have harmonics at ωLO±nωsig, in particular at the IF. The main reason to use an external LO
and not the SO is that the latter is per nature very broadband, due to voltage fluctuations across the
junction, hence intrinsically not a good LO. However a clever engineering of the environment of
the JJ might reduce its spectrum as we will see in chapter 7.

We also see that for ωJ =±nωr f with n and integer, there is one term in the expression which
doesn’t depend on the time. Its amplitude is given by:

In = IcJn
( ω0

ωr f

)
sinφc = IcJn

(2πVr f

φ0ωr f

)
sinφc (5.8)

This current is added or subtracted from the quasiparticle current, hence creates Shapiro steps at
the corresponding voltage positions i.e. at Vb = nφ0 fr f = nh/(2e) fr f [27]. It depends on Vr f i.e.
on the applied r-f power.

5.2.3.2 Shapiros steps on IV curves

Figure 5.4 (a) shows IV curves of the same JJ than previously, obtained at T = 53 K under high
frequency illumination. At 20, 70 and 140 GHz, the r-f power was chosen to reduce by about a half
the initial critical current (100 µA). For 280 and 420 GHz the lack of available power prevented
us from achieving such a reduction, and the steps at those frequencies are much more tenuous to
observe directly on the IV curves, as seen on the details, figures 5.4 (b) and (c) respectively.

However their presence is confirmed on the measurements (dotted lines of figure 5.4 (a)) per-
formed with the optical chopper (spinning at a few hundred Hz) and the lock-in amplifier. The
chopper enables to have the JJ illuminated periodically with r-f. Thus the d-c current across the
junction varies between I(V ) (with r-f) and I0(V ) (without), at the chopper frequency. The lock-in
records a signal proportional to this variation ∆I = I(V )− I0(V ), which is similar as computing
the difference between two IV curves (with and without r-f), except that it averages ∆I over many
periods, hence giving much less noise. When arriving at a step, ∆I → 0 and the lock-in signal
drops abruptly. We used this measurement method to ensure that the JJ was effectively seeing
high-frequency illuminations, since it is far from obvious on the bare IV curves. Also, it proved
to be crucial to experimentally align, and tune the signal and the LO for high frequency mixing
experiments (see chapter 7).

Similar technique for low-intensity radiation has been used in Hilbert-transform spectroscopy
with RSJ-like JJs [69, 118, 134]. In this frame, ∆I is the junction’s response, difference between
the I(V ) curve modified by a radiation, and the unmodified I0(V ) curve. Then, one can compute a
response function H(V ) such that:

H(V ) =
( 8

π

)( h
2e

)[∆I(V )I(V )V
I2
c R2

n

]
(5.9)

whose inverse Hilbert transformation allows to retrieve the spectrum S( f ) of the incident radiation:

S( f )∼
( 1

π

)
P
∫ +∞

−∞

H( f j)

f j− f
d f j (5.10)

where P is the Cauchy principal value of the integral and f j = 2eV0/h is the frequency of Josephson
oscillations.
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Figure 5.4: Evidence of Shapiro steps on the IV curves of the Josephson junction, at T = 53 K. (a), plain
lines: IV curves of the Josephson junction under high frequency illumination. Shapiro steps appear at
harmonics of the r-f frequency excitation. Doted lines: lock-in response when the incoming r-f field at 280
and 420 GHz is chopped, showing important variations at the steps positions. (b) and (c), zoom on the IV
curves around 280 and 420 GHz respectively.
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5.2.3.3 Differential resistance

As mentioned at the beginning of section 5.2.3, r-f power modulates the height of the Shapiro
steps. More specifically, in the Josephson regime, the amplitude current modulation of the nth
Shapiro step as a function of the induced r-f voltage is given by expression 5.8 [136]. Figure 5.5
shows the differential resistance of the junction dV/dI as a function of bias current and power
radiation (of 20 GHz) at T = 56, 53, 42 and 35 K (a,b,c and d) [135]. At T = 53 K (figure (b))
and for a power of 1 mW, we find the derivative of the IV curve presented in figure 5.4 for the
Shapiro steps at 20 GHz. Also, we can follow the modulation of the 0th step on the black lines.
For strong r-f power, several steps can be seen as well as their modulation with r-f power. In
particular, the critical current (step at n = 0 in 5.2.3) can be fully suppressed by the application
of the correct amount of LO power. However, below T ′c , the modulation of the critical current is
no longer complete (panel (d)), indicating that the dynamics of the junction deviates from a pure
Josephson one. A crossover towards a flux flow regime in which there is an excess current is then
observed although the oscillations from the Josephson effect remain observable.
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Figure 5.5: Differential resistance of junction (color scale) under a 20 GHz illumination, as a function
of current bias and r-f power for different temperatures: (a) T = 56 K; (b) T = 53 K; (c) T = 42 K; (d)
T = 35 K. The critical current (n = 0 step) as a function of r-f power is shown in full back line. Complete
oscillations of the current height of the Shapiro steps can be seen only in the Josephson regime T ′c < T < Tj
(panels (a)–(c)). In the flux flow regime, the critical current is never reduced to zero (panel (d)).
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5.3 Comparison of the RSJ model with experimental data

From the RSJ model with fluctuations, we should be able to fit experimental IV curves in the
Josephson regime. To that end, one first needs to retrieve the normal state resistance Rn. However,
as already introduced at the end of chapter 3, in irradiated JJs it is expected that Rn not only
depends on temperature but also on current bias I. In fact a probable distribution of the critical
current along the junction causes the normal part to extend as I increases: it moves the S-S’
interfaces and Ic is exceeded for more of the material. More fundamentally the increase of the
current bias moves the position of the Andreev reflection because it depends on the energy of the
charge carriers. Ideally, this effect should be explored in a tunneling spectroscopy experiment,
where QP at known energy would probe the interface. It has been mentioned a few times in the
literature, notably by Katz et al. [105] and in the PhD thesis of W. Booij [45].

Therefore, when talking about Rn in the discussion above and especially in the experimental
curves of figure 5.3, we more precisely refereed to the normal resistance at low current bias. It is
actually the most pessimistic way to determine an IcRn product since the resistance will increase
with I, and perhaps explains also why, even at much higher frequencies than the characteristic
frequency fc, the mixer still operates (see chapter 7).

5.3.1 Normal resistance at low current bias

Let us here explain how we retrieve the normal resistance below Tj at low current bias. We have
investigated different experimental ways, all giving consistent results.

5.3.1.1 Saturated r-f

The first one already mentioned consists in applying a strong r-f external field that saturates the
Josephson oscillations. In fact, as can be seen in equation 5.7, an r-f excitation redistributes the
Josephson supercurrent at frequencies ωJ ± nωr f , with an amplitude proportional to the Bessel
function Jn. Then, saturating the oscillation means that the r-f field is so strong, that IJ is being
dispatched over all the frequencies, thus killing the Josephson branch.

In this context it is easier to use a fairly low frequency r-f field, since for the same power, the
redistribution over a great deal of harmonics is easier, and we typically took fr f = 5 GHz. Also,
we have much more powerful sources at low frequencies. The RT curve under saturation of figure
5.3 (a) was obtained in this way.

For long-range proximity effect coupling junctions, we do not expect to have a significant
excess current above T ′c . This has been confirmed experimentally close to TJ and for low current
bias in [36], where Bergeal et al. showed that it is possible obtain full modulation of the critical
current under a perpendicular magnetic field. In the absence of excess current above T ′c , the r-f
saturation method is very efficient and robust to obtain Rn below Tj.

5.3.1.2 Linear extrapolation of the normal state resistance

The RT curve obtained under r-f saturation is the linear extrapolation of the one measured at
very low bias without r-f [105], see figure 5.3 (a). This is not surprising since we retrieve the
temperature dependence of the resistance of the barrier. For a low irradiation dose (as the one used
here), the latter is expected to be linear since we use an optimally doped YBa2Cu3O7 sample.

5.3.1.3 Derivative of IV curves

One can also retrieve Rn from the IV curves. In fact the linear extrapolation of the derivative
dVdc/dI = f (I) to I = 0 gives a resistance that matches the one of the RT curve under r-f saturation.
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Figure 5.6 shows numerical derivation of IV curves presented in figure 5.3 (b). Below 46 K the
extrapolation gives a negative resistance, which we interpret as the beginning of the flux flow
regime, in agreement with the T ′c inferred from the saturated r-f RT curve.
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Figure 5.6: Numerical derivation of IV curves presented in 5.3 (b), dVdc/dI as a function of current bias.
The linear extrapolation to I = 0 gives the normal resistance Rn. Below 46 K it gives a negative resistance
and we enter the flux flow regime.

Figure 5.7 shows the normal resistance extracted from the three different methods. As they
give the same results, we are rather confident that we are able to extract correctly the normal
resistance at low current bias.

5.3.2 Higher current biases

In our irradiated junctions, the normal resistance Rn of the RSJ model varies when increasing
the current bias, and we can measure this dependence also with r-f saturation: instead of doing
RT curves (and use the experimental setup 5.1) we simply make IV curves under saturated r-f
(and use the experimental setup 5.2). One carefully needs to adjust the power so that no Shapiro
step remains, indicating that the supercurrent has been redistributed homogeneously over all the
frequencies. Then Rn(I) is given by:

Rn(I) =
Vsat

I
(5.11)

where Vsat is the d-c voltage under saturation. Figures 5.8 (a), (b) an (c) show in dashed lines the
experimental IV curves thus obtained, at 53, 58, and 62 K respectively. One can see that at low
current bias the curves are linear, indicating a constant Rn, but as I increases, a deviation from
the linear behavior is observed, which happens at about 200 µV. At very high biases, the curves
rejoin the unsaturated IV characteristics, represented in open circles. Once again, as I increases
the relative influence of Josephson branch diminishes.



5.3. Comparison of the RSJ model with experimental data 97

4 0 5 0 6 0 7 0 8 0 9 00

5

1 0

1 5

2 0
 R
 R  @  R F  s a t .
 R n

         l i n e a r  e x t r a p o l a t i o n  o f  R
R (

Ω
)

T  ( K )

Figure 5.7: Three different methods to extract the normal state resistance Rn. Resistance measured when
the junction is saturated with r-f (blue curve), linear extrapolation of the normal state resistance (dashed
green line), and obtained from the derivative of IV curves (red squares).

5.3.3 Fit of IV curves and Shapiro steps

One can enter Rn(I) into the RSJ model to fit the experimental datas. The LO entering as additional
current source, purely coherent, the RSJ equations then write:{

V (t) = Rn(I)[I− Icsinφ +δ In + ILOcos(ωLOt)]
dφ

dt = 2e
h̄ V

(5.12)

The plain lines in figures 5.8 (a), (b) an (c) show simulated IV curves at 53, 58, and 62 K respec-
tively when the r-f (LO) is absent. Furthermore, with the same parameters, one can also fit the IV
curves with Shapiro steps. Figures 5.8 (d), (e) an (f) show in plain lines simulated IV curves under
(unsaturated) r-f illumination at 58 K and for 20, 70 and 140 GHz respectively. The experimental
data are represented in open circles. In every situation, a good agreement is found, suggesting that
we accurately describe the junction with this modified RSJ model [135].
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Figure 5.8: (a), (b), and (c) Current-voltage characteristics of the junction (open circles) measured at
different temperatures 53 K, 58 K, and 62 K, respectively. Dashed lines correspond to the curve under
strong microwave radiation and orange solid lines correspond to a fit using the RSJ model in which the
non-linear resistance (i.e., dashed line) is introduced. The value of the fitting parameter Ic and the value of
Γ = 2ekbT/h̄Ic used in the RSJ model are indicated on the graph. (d)–(f) Current voltage characteristics
of the junction (open circles) measured at T = 58 K under LO radiation at 20 GHz, 70 GHz, and 140 GHz.
Curves are fitted using the RSJ model (equation 5.12) including the non-linear resistance. The value of the
fitting parameters Ic and ILO and the value of Γ = 2ekbT/h̄Ic used in the RSJ model are indicated on the
graph.
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5.4 Characteristics of other fabricated junctions

5.4.1 RT curves, critical currents, normal resistances

We fabricated several junctions, with various widths and lengths. Similarly, we varied the dose
of the second irradiation to test the reproducibility of the fabrication process. Figure 5.9 shows
the RT curves, critical current and normal resistance of three junctions, taken from three different
batches. The data in yellow correspond to the junction that we have studied in all the above
analysis.
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Figure 5.9: RT curves (plain lines), Ic(T ) (circles), Rn(T ) (squares) and fc(T ) (triangles) for three different
junctions. The normal resistance has been calculated by derivation of the IV curves.

The width of the junctions increases from left to right (750 nm - 2 µm - 3 µm), while the
length decreases (40 nm - 20 nm - 20 nm). The normal resistance diminishes accordingly: the
plateau of the RT curves lowers, along with Rn(T ), represented with square points. The latter has
been calculated with derivatives of the IV curves.

The 750 nm long junction underwent a higher irradiation dose than the other two, which is
in agreement with its lower Tj. However both junctions of 2 and 3 µm wide underwent the same
dose (3x1013 ions.cm−2), whereas their Tj varies of about 5 K. This underlines the limits of the
fabrication process: to date the dose is not perfectly similar from one irradiation to the other,
especially when it is not done on the same batches.

The IcRn products are remarkably similar for all three junctions. Thus, the geometrical param-
eters do not significantly improve the characteristic frequency, which remains between 80 and 90
GHz.

The model that we described in this chapter seems to also explain the behavior of the 3 µm
wide junction: the critical current varies quadratically with temperature, and Rn(T ) is the pro-
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longation of the RT curve’s plateau. However, the situation in the 750 nm wide and 40 nm long
junction does not appear so clearly: even if close to Tj, Ic(T ) is still quadratic, it seems that it gets
linear very quickly. This could account for an excess of supercurrent closer to Tj than for wider
junctions, and therefore the pure Josephson regime would be narrower. In addition, the normal
resistance taken as derivative of the IV curves does not prolong the plateau of the RT curve. Once
again this could be explained by a mixed regime between flux-flow and Josephson.

5.4.2 500 nm wide junctions and annealing

We pushed the limits of the fabrication process down to 500 nm wide junctions. Figure 5.10
(a) shows the RT curve (green line) of such a device. The second irradiation dose was 4.5x1013

ions.cm−2. The Tj is surprisingly low, about 30 K, and the transition is less sharp and clean than
for wider junctions: there is a first change of slope at about 50 K, and a second one at 40 K.
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Figure 5.10: (a) RT curves before (green line) and after (red line) annealing of a 500 nm wide junctions.
(b) IV curves of the junction at 20 K, 22 K and 25 K.

Nonetheless the junction’s characteristics improve with oxygen annealing [171, 172], as shown
by the RT curve in figure 5.10 (a), red line. The junction was placed 90 mn in an O2 atmosphere,
at 80 ◦C. The transition at Tj is sharper and the plateau is at higher resistance, and flatter.

Figure 5.10 (b) shows IV curves of such a junction. The transition at Ic is surprisingly round,
especially for these low temperatures. Therefore it is not clear whether there is a pure Josephson
effect or if there is an excess current. It should be verified with Shapiro steps, for example.
Unfortunately the junctions broke after these first characterizations, and we were unable to pursue
the investigation.

In any case, we expect that this 500 nm wide junction would have drifted from the behavior
that we described in this chapter, as for the 750 nm wide junctions of figure 5.9. Excess current, if
present, may be due to the growing importance of edge effects in the junction’s transport proper-
ties: as the bridge narrows, tails in defects distributions (see figure 2.5) take more importance.

5.5 Conclusion on the d-c characterization

Let us briefly review what we have seen from the d-c and low frequency a-c measurements, and
what we can infer for the high frequency mixing properties.

First, as seen in figure 5.3, the irradiated Josephson junction operates in a range of tempera-
tures T such that T ′c < T < Tj. Above Tj, thermal fluctuations destroy the coupling between the
two condensates, hence no supercurrent can flow across the device. Below T ′c , the S’ material
constituting the barrier becomes superconducting, hence the transport physics is a hybrid situation
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between Josephson and flux flow. A large excess current then disables to completely modulate the
Shapiro steps as a function of a r-f power drive, as shown on figure 5.5.

A corrected RSJ model, in which the normal resistance Rn varies with the current bias I ac-
counts for the particular physics of our device. It comes from the fact that the Andreev reflection
is energy dependent, hence it occurs at different positions along the junction as the bias changes.
One can experimentally measure Rn(I) by means of IV curves acquired under a saturating r-f exci-
tation. The latter redistributes the supercurrent over all the frequencies, hence kills the Josephson
branch. The normal resistance is then simply given by the ratio between d-c voltage and current
bias. The RSJ model being modified in such manner, numerically simulated IV curves at several
temperatures and r-f unsaturated excitations are in good agreement with experimental data (figure
5.8).

Above the characteristic frequency fc, the Josephson impedance is bigger than the normal
resistance Rn, hence more current flows in the latter: the non linear behavior diminishes. We
therefore expect mixing performances to degrade above fc. From the normal resistance measured
at low current bias, fc exhibits the shape of a dome as a function of temperature, figure 5.3 (c). It
has an optimum of 85 GHz at 55 K. However it is a pessimistic prevision, as the normal resistance
increases with the current bias. As we shall see in the following chapter, we actually managed to
perform mixing operations up to several times fc.

We improved the normal resistance Rn by diminishing the width of the junction. It is beneficial
for the matching impedance issues, proper to microwave circuitry, as we are going to see in the
next chapter. From 2 µm, the latest e-beam developments allow to comfortably go down to 750
nm. Hence, from a Rn of about 3 Ω at the optimum mixing points, we now can routinely obtain
about 5 Ω. However the critical current diminishes accordingly, and thus it does not improve
significantly the IcRn product. Also, with narrower junctions, it is not clear whether we remain in
a pure Josephson regime or not. It may be due to the effects of the irradiation, which damages the
edges of the bridge. The latter being thinner, they may become important for the transport physics.
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Heterodyne detection consists in combining an incoming (THz) signal radiation with a more
powerful one from a (THz) local oscillator (LO) in the mixer. The later generates a beat-note at
an intermediate frequency (IF), for us in the 4-8 GHz band. The LO being known, all informations
on the signal (frequency and amplitude) are down-converted to the IF. This process is evaluated
through the conversion efficiency η , which characterizes the performances of a detector.

In this chapter, we explain the mixing operation through a circuit model, called three-port
model, which we will use in the next chapter to fit the mixing measurements.

The conversion efficiency directly depends on the impedance matching between the mixer and
its environment. We will highlight the impedance matching terms that need to be optimized, so as
to improve the detection efficiency.

After introducing the impedance matrix, we will derive the approach developed by the seminal
work of Torrey and Whitmer [186] to write the coefficients of the impedance matrix in terms
of currents and voltages. Then, following the pioneering work of Taur [179] we will express
the conversion efficiency of a heterodyne mixer with the matrix impedance terms. This general
approach will be related to the mixing with the Josephson effect by a physical explanation adapted
from the work of Van Duzer [190].

6.1 Impedance matrix

We are going tu use the formalism of impedance matrix of circuit theory, for which an excellent
general description is given in the book of David Pozar [155]. It enables to address electronic
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systems with any number of terminals, or ports, and hence develop equivalent circuits for any
network. Electrically, the inputs and outputs of all the ports are related through the impedance and
admittance matrices.

Fundamentally, one needs such an approach because the current-voltage relations at the mixer’s
terminals depend on the frequency, or in other words because there are several electromagnetic
propagating modes, each seeing a different impedance. So far we only dealt with the normal
resistance Rn, true in d-c, but we must introduce dynamic impedances to explain the frequency
conversion.

6.1.1 Frequencies of interest in heterodyne detection

ωs and ωLO are respectively the signal and LO frequency, and ωs > ωLO. We define the IF as
ωIF = ωs−ωLO. We also define the image frequency as ωi = ωLO−ωIF . It is the symmetric of
the signal with respect to the LO frequency. The spectral band above ωLO down-converted to the
IF band is usually referred as the upper-side band (USB), and the one below as the lower-side band
(LSB).

As we are going to show in this chapter, the Josephson mixer needs to be d-c biased to effi-
ciently create the IF. Similarly, one can consider the LO as an r-f bias. In this frame, there are
three frequencies of interest in the system driven by a LO, represented schematically in figure 6.1:
signal, IF and image.

IFB LSB USB

bias r-f: LO

ωLO

bias d-c

ωs

=ωLO +ωIF

ωIF ωi

=ωLO - ωIF

signalimageIF

Figure 6.1: Spectral representation of the mixer operation. When biased in d-c and in r-f with a LO, it down-
converts a signal at frequency ωs to an IF at ωIF . Upper-side band (USB) and lower-side band (LSB) are
respectively the frequency bands above and below the LO frequency down-converted to the IF band (IFB).
Their bandwidth is the same as the IFB. Then, the conversion phenomenon involves three frequencies:
signal, IF, and image which is the symmetric of the signal with respect to ωLO. Here we arbitrarily chose to
represent the signal at the USB.

6.1.2 Definition of the mixer’s impedance matrix

In the frame of the RSJ model (no capacitance), the normalized equations modeling the behavior
of the Josephson junction are given by 3.30, for which there is no analytical solution. However,
linearizing these equations with respect to small fluctuations and Fourier transforming them into
the frequency domain, Likharev and Semenov [131] relate the Fourier transform of the voltage ṽ
to the one of the current ĩ by:

ṽ(ω) =

+∞

∑
n=−∞

zn(ω−nωJ)ĩ(ω−nωJ) (6.1)

where, in the Johnson normalization ωJ = vdc is the junction self-oscillation (SO), equal to the
d-c voltage, and zn(ω−nωJ) its normalized impedance at the frequency ω−nωJ . When we drive
the junction with a local oscillator, considered as a current source, the voltage response consists
in the sum of terms zn,k(ω−nωJ− kωLO)ĩ(ω−nωJ− kωLO). Considering that the LO oscillation
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is much stronger than the SO’s one, we neglect all the terms for n 6= 0, and hence with a LO drive
the response of the junction is given by:

ṽ(ω) =

+∞

∑
k=−∞

zk(ω− kωLO)ĩ(ω− kωLO) (6.2)

We now illuminate the junction with a signal at frequency ωs, such as ωs > ωLO. The mixer
thus creates the IF at ωIF =ωs−ωLO and the image at ωi =ωLO−ωIF . At those three frequencies,
the voltage expressions are:

ṽ(ωLO +ωIF) =
+∞

∑
k=−∞

zk(ωIF − (k−1)ωLO)ĩ(ωIF − (k−1)ωLO)

ṽ(ωIF) =
+∞

∑
k=−∞

zk(ωIF − kωLO)ĩ(ωIF − kωLO)

ṽ(ωIF −ωLO) = ṽ∗(ωLO−ωIF) =
+∞

∑
k=−∞

zk(ωIF − (k+1)ωLO)ĩ(ωIF − (k+1)ωLO)

(6.3)

where we used the fact that v∈ℜ and a Fourier transform property to identify the image frequency.
Rearranging the infinite sums we get:

ṽ(ωLO +ωIF) =

+∞

∑
k=−∞

zu
k(ωIF − kωLO)ĩ(ωIF − kωLO)

ṽ(ωIF) =

+∞

∑
k=−∞

z0
k(ωIF − kωLO)ĩ(ωIF − kωLO)

ṽ∗(ωLO−ωIF) =

+∞

∑
k=−∞

zl
k(ωIF − kωLO)ĩ(ωIF − kωLO)

(6.4)

where zu
k , z0

k and zl
k are the impedances, respectively at the upper-side, IF and lower-side band. At

first order, that is to say for k =−1,0,1 we have the matrix relation: ṽ(ωLO +ωIF)
ṽ(ωIF)

ṽ∗(ωLO−ωIF)

=

 zu
−1 zu

0 zu
1

z0
−1 z0

0 z0
1

zl
−1 zl

0 zl
1

 ĩ(ωIF +ωLO)
ĩ(ωIF)

ĩ(ωIF −ωLO)

 (6.5)

or with more classical notations: ṽusb
ṽ0

ṽ∗lsb

=

 zuu zu0 zul
z0u z00 z0l
zlu zl0 zll

 ĩusb
ĩ0

ĩlsb

 (6.6)

Notice that this relation does not depend on whether the signal is at the USB and image at the LSB,
or vice versa. Signal and image playing a similar role, the mixer is said to be a double side-band
(DSB) receiver. In other words, both USB and LSB are down-converted to the IFB. In particular,
there is twice the conversion noise than in a single-side band (SSB) receiver, where only USB or
LSB is down-converted. The latter requires special schemes and filters to get rid of one of the two
bands.

In a compact form, 6.6 writes as:
ṽ = ˜̃z.ĩ (6.7)
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˜̃z is the impedance matrix of the mixer, and it has the same form in dimensioned units. As in any
impedance matrix, zab can be found as:

zab =
ṽa

ĩb

∣∣∣∣
ik=0 for k 6=b

(6.8)

which in words means that zab can be found by driving port b with the current ib, while opening
all other ports, and measuring the voltage at port a. In particular, if the off-diagonal term z0u is not
null, a driving current at the USB (signal in our case) generates a voltage at the IF. This is the core
of the mixer principle.

The nine independent parameters of the matrix impedance fully characterize the first order
mixing operations. They can be reduced to only five independent parameters when assuming that
the mixer does not display any sharp resonance neither at the USB nor at the LSB, so that it does
not discriminate the two bands, which are close together [186]. This assumption is valid in most
practical cases, as in ours, and the symmetry between signal and image allows to write:

zll = z∗uu , z0l = z0u , zul = z∗lu , zl0 = z∗u0 (6.9)

6.1.3 Terms of the impedance matrix as a function of currents and voltages

In the following discussion, when we speak of currents and voltages at a given frequency, strictly
speaking it refers to the Fourier transform of the current and voltage at this frequency. But for
better clarity in the notations, from now on we omit the " ˜ " when the reference to a Fourier
transform is obvious.

We derive expressions of the impedance matrix coefficients as a function of the d-c and LO,
current and voltage. In a dual manner, Torrey [186] analyzes the mixer from the point of view
of the admittance matrix. We detail in appendix F the calculations leading to the analytical ex-
pressions 6.13. The latter are almost similar to what Taur finds [179] (there is a small difference
in the image conversion term and in constant coefficients, which make our analytical expressions
consistent with the Van Duzer approach, see section 6.3).

Black-box

d-c

terminals

r-f

terminals

id-c ir-f

vd-c vr-f

LO

signal

image

d-c

IF

Figure 6.2: The mixer considered in circuit theory as a black-box with four ports: two for the d-c current
and voltage, and two for the r-f current and voltage. As the LO is much stronger than any other power at
r-f frequencies, one can consider that ir f = iLO, and vr f = vLO.

A mixer such as the one described above can be considered as a black-box with two kinds
of terminals, as represented in figure 6.2: (i) d-c terminals, from which one sends or measures a
current idc or a voltage vdc, and (ii) r-f terminals from which one sends or measures a current ir f or
a voltage vr f . Considering that the IF is much lower than the characteristic frequency, it is put at
the d-c terminals. The LO is much stronger than any other r-f frequency, a good approximation is
to say that vr f = vLO and ir f = iLO. In the current source model, we shall describe the d-c voltage
as depending on the d-c and LO current:

vdc = vdc(idc, iLO) (6.10)
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and since we do not choose a particular time origin, iLO ∈ C a priori, whereas we always have
vdc , idc ∈ℜ since in d-c. Similarly one describes the LO voltage as:

vLO = zLO(idc, iLO)iLO (6.11)

where zLO is the mixer impedance at ωLO.
Now, the essential idea of this black-box theory is the following: small variations of signal

and image currents and voltages only affect the r-f terminals; while similarly, small variations of
IF current and voltage only affect the d-c terminals. It writes as:

didc = ℜ(i0e jωIF t)

dvdc = ℜ(v0e jωIF t)

diLO = iusbe jωIF t + ilsbe− jωIF t

dvLO = vusbe jωIF t + vlsbe− jωIF t

(6.12)

It may be interpreted as boundary conditions for the system: as ωs→ωLO, LO variations equal the
signal and image amplitudes, and similarly d-c variations equal the IF amplitude. Differentiating
the complex-valued equations 6.10 and 6.11, and replacing the differentials by relations 6.12 leads
to the following expressions for the voltage at the frequencies of interest (see appendix F):

vusb =
1
2

∂vlo

∂ idc
i0 +

(vlo

ilo
+

∂vlo

∂ ilo

)
iu +

∂vlo

∂ ilo
i∗u

v0 =
∂vdc

∂ idc
i0 +2

∂vdc

∂ iLO
iu +2

∂vdc

∂ iLO
i∗l

v∗lsb =
1
2
(∂vlo

∂ idc

)∗i0 + (vlo

ilo
+

∂vlo

∂ ilo

)∗i∗l + (∂vlo

∂ ilo

)∗iu
(6.13)

so that the matrix impedance writes as:

˜̃z≡

 zuu zu0 zul
z0u z00 z0l
zlu zl0 zll

=


vlo
ilo

+ ∂vlo
∂ ilo

1
2

∂vlo
∂ idc

∂vlo
∂ ilo

2 ∂vdc
∂ ilo

∂vdc
∂ idc

2 ∂vdc
∂ ilo(

∂vlo
∂ ilo

)∗ 1
2

(
∂vlo
∂ idc

)∗ ( vlo
ilo

+ ∂vlo
∂ ilo

)∗
 (6.14)

6.1.4 Discussion on the impedance matrix terms

In the impedances present in the matrix, note first that all of them imply either a variation of d-c
or LO voltages with d-c or LO currents. The latter are triggered by the signal. In other words, the
signal perturbs the LO and d-c current, which creates harmonics at the USB, LSB and IF.

• z0u = 2 ∂vdc
∂ ilo

. As already mentioned, it is the down-conversion impedance, from which a
signal current at the USB induces a voltage at the IF. It directly depends on the variation
of the d-c voltage as a function of LO current. Hence we understand why the conversion
efficiency is null at the Shapiro steps: the SO being fixed by the synchronization with the
LO frequency, the d-c voltage does not vary with the LO current variation. We will see in
section 7.2.4 that it actually drives the whole shape of the conversion efficiency, observed
experimentally on the curves 7.3. Besides, the expression does not forbid to have z0u > 1
and hence obtain intrinsic conversion gain. Note finally that z0u ∈ℜ (which comes from the
time origin taken such as ilo ∈ℜ, see appendix F).
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• z00 =
∂vdc
∂ idc

. It is the d-c dynamic impedance, or in other words the local derivative of the IV
curve. It is junction’s impedance at the IF frequency. For an optimization perspective it is
the impedance at which the IF reading line should be matched, and it depends on the d-c
polarization point. Note that z00 ∈ℜ.

• zuu =
vlo
ilo

+ ∂vlo
∂ ilo

is the r-f dynamic impedance. It is the impedance of the mixer at the signal
frequency, at which the antenna should be matched. But the situation can be delicate to
address since zuu ∈ C.

• zu0 =
1
2

∂vlo
∂ idc

is the up-conversion impedance, through which the IFB is up-converted to the
USB. Not very relevant for the mixer.

• zul =
∂vlo
∂ ilo

is the image conversion impedance, through which the image (at the LSB) is
converted into the signal (at the USB). Not very relevant for the mixer.

6.2 Conversion efficiency

6.2.1 Definition

In the frame of heterodyne detection, the conversion efficiency is the ratio of the output power to
the available input power of the sensor:

η =
Pout

Pmax
in

(6.15)

The higher it is, the better is the detector. In most cases the conversion is lossy and η ≤ 1, but
in heterodyne mixing, it is in principle possible to exploit the pump power such that η > 1, i.e.
obtain conversion gain.

6.2.2 Mixer connected to a circuit

So far we modeled the Josephson junction as an isolated mixer, but in order to compute the con-
version efficiency η , we now need to connect it with the antenna and the r-f line, as described in
section 7.1.3. We then define the external impedances matrix ˜̃zext , such that:

˜̃zext =

 zu 0 0
0 z0 0
0 0 zl

 (6.16)

Here, zu and zl represent the impedance of the spiral antenna (' 80 Ω) at the USB and LSB,
respectively, and taken to be identical. z0 is the 50 Ω impedance of the IF microwave readout line.
Assuming that the signal Vs incoming on the antenna is from the USB, figure 6.3 represents the
mixer connected to the external circuitry. Note that all internal connections are not represented:
the off-diagonal terms of ˜̃z, which enable the energy transfer between the different frequencies do
not explicitly appear as impedances. But it shows that one can express the available signal power
at the USB port as:

Pin =
1
2

ℜ(zu)i2usb =
1
2

ℜ(zu)

|zu + zuu|2
v2

s (6.17)

which is maximal when zu = z∗uu. Then Pmax
in is given by:

Pmax
in =

1
8

v2
s

ℜ(zu)
(6.18)
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At the IF port, the output available power is given by:

Pout =
1
2

ℜ(z0)i20 (6.19)
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z0u

Figure 6.3: Schematic vision of the mixer (blue triangle) connected to the external circuitry, once d-c and
LO biased. The signal is taken at the USB. Depending on the frequency, different load impedances are
presented at the mixer terminals: zu, z0 and zl respectively at the USB, IFB and LSB. The diagonal terms of
the impedance matrix 6.14 can be viewed as impedances directly connected to the external ones, whereas
the off-diagonal ones enable energy transfers between the three frequency bands.

Now, one needs to relate vs and i0. To that end, we write the equation for the whole circuit
shown in figure 6.3 as:  ṽusb

ṽ0
ṽ∗lsb

+

 zu 0 0
0 z0 0
0 0 zl

 ĩusb
ĩ0

ĩlsb

=

 ṽs

0
0

 (6.20)

We therefore obtain a relation between the currents at different frequencies and the input signal: ĩusb
ĩ0

ĩlsb

= ˜̃y

 ṽs

0
0

 (6.21)

where ˜̃y = ( ˜̃z+ ˜̃zext)
−1 is the total admittance matrix. With coefficient notations similar to ˜̃z we

therefore get:
ĩ0 = y0uṽs (6.22)

Thus, the conversion efficiency η , defined by the ratio of the output power at the IF to the maxi-
mum input power at the signal frequency is given by [179]:

η =
Pout

Pmax
in

= 4ℜ(z0)ℜ(zu)|y0u|2 (6.23)

6.2.3 Conversion efficiency in terms of impedances

In equation 6.23, η writes itself with a term of the total admittance matrix. But we can also express
it with impedance matrix terms, by analytically inverting ˜̃y (detailed in appendix G). In fact, in the
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limit — well satisfied experimentally — where |zul| , |zu0| � |zu + zuu| , and |z0u| � |z0 + z00|, the
conversion efficiency takes the simple form:

η = 4
ℜ(z0)

|z0 + z00|2
ℜ(zu)

|zu + zuu|2
z2

0u (6.24)

The first two factors correspond to the matching impedance conditions at the USB and IF frequen-
cies. The conversion is optimal when the antenna impedance zu matches the r-f impedance of the
junction zuu and when the readout line impedance z0 matches the d-c dynamic impedance of the
junction z00. The last factor z0u represents the ability of the junction to down convert the signal at
the USB to the intermediate frequency.

We can finally express ηm, the conversion efficiency when input and output impedances are
matched. We will see in section 6.3 that we can find the exact same expression from a physical
analysis of the Josephson mixer. When impedances are matched we have:{

z0 = z∗00
zu = z∗uu

(6.25)

equation 6.24 writes as:

ηm =
1
4

z2
0u

ℜ(z0)ℜ(zu)
(6.26)

Now, using the expression of z0u in terms of partial derivatives, found in section 6.1.3 (equation
6.14), and the fact that ℜ(z0) =

∂vdc
∂ idc

(for matched impedances) we can write:

ηm =
Rd

Rs

(∂ idc

∂ ilo

)2 (6.27)

where ℜ(z0) = Rd is the d-c dynamic impedance and ℜ(zu) = Rs the signal impedance. Rd vanish-
ing at each Shapiro step, expression 6.27 explains why the conversion efficiency drops accordingly
[163].

6.2.4 Numerical simulations, principle

For a given current bias, we first need to compute the impedance matrix ˜̃z. It is done by solving
the RSJ equations in the time domain, and then by taking the Fourier transform of the total current
and voltage at the frequencies of interest. Note that we take into account the non linearity of the
normal resistance with current bias Rn(Idc) along with the noise, introduced as a current source
δ In in the RSJ equations, so that the system being solved resembles equations 5.12.

More precisely, there are two ways to find ˜̃z. Either we form the voltage to current ratios
according to equation 6.8, as done by Schoelkopf [163]. Recalling the symmetric relations (equa-
tions 6.9), it is sufficient to compute the first two columns of ˜̃z. Then one solves the system 5.12
twice (where the LO is already present), one with an extra signal at the USB (and no IF signal nor
image) to compute the first column and one with an extra IF signal (and no USB signal nor image)
to compute the second column. Even though this approach may be justified by the small signal
hypothesis, it seems that it nonetheless infers an IF signal amplitude prior to the calculation of the
conversion efficiency. Therefore, the qualitative form of η as a function of d-c current bias may be
correctly found but it is not possible to compare the values of η from different signal frequencies.

The other option is to solve the RSJ equations 5.12 for the all couple of parameters (idc±
didc, ilo± dilo), to take the resulting Fourier transform of voltages and currents at d-c and LO
frequency, and finally to compute the impedance matrix terms according to equation 6.14. Note
that no value of IF comes into play when solving the system, nor any signal amplitude. Thus
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it is also numerically more stable than the first method. It requires more computation power,
but nowadays computers are powerful enough, and it seems more appropriate to compare the
calculated η with experimental data. Consequently we adopted this strategy.

Once ˜̃z has been computed for any current bias, varying so as to describe an entire IV curve,
one can compute the conversion efficiency η either by brute-force inversion of ˜̃z+ ˜̃zext , or directly
from equation 6.24. One then accesses to y0u and compute η according to equation 6.23. We
verified that both ways give the same results, therefore validating the simpler relation 6.24.

We employed such a method to simulate the mixer’s response, and will show in the next
chapter, section 7.2.4, that it fits experimental data at various operating frequencies.

6.3 Physical approach of the Josephson mixer

The description that we gave is applicable to any mixer d-c and LO biased. In the particular case
of a Josephson junction, one can derive the expression of the matched conversion efficiency ηm by
considering the effect of a LO and a signal on the IV curve, as treated by Van Duzer [190].

Figure 6.4 summarizes the situation. The role of the LO is double: (i) it modulates the d-c
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Figure 6.4: Effect of the LO on the IV curve of a Josephson junction, and equivalent circuit at the IFB.

current bias ib at frequency ωLO. Thus, at a given time t, the IV curve is actually above or below
its mean d-c value, which we could see if we had a fast enough electronics. (ii) it beats with
the signal, so that the r-f current sent onto the junction has a slow varying envelope, at the IF
frequency, transfered to the resulting voltage.

Consequently, the equivalent IF generator is an ideal current source, whose value is the product
of the signal amplitude with the d-c current variation, and it has an internal impedance Rd . The IF
voltage is then given by:

V0 =
1
2

Rd is
∂ idc

∂ ilo
(6.28)

When connected to a matched load Rload at the IFB, the transmitted power writes as:

P0 =
V 2

0
2Rd

=
1
8

Rd i2s
(∂ idc

∂ ilo

)2 (6.29)

Thus, recalling that the input power is given by equation 6.18, the maximum conversion efficiency
ηm = P0

Pmax
in

writes with exactly the same form than equation 6.27.
In the simplified vision where the mixer’s impedance at LO frequency equals the static impedance

Rn, we can give a useful order of magnitude for ηm. In fact, according to equation 5.8, the LO
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modulates the critical current following a Bessel function. Then, Ic = 0 the first time when

2eVLO

h̄ωLO
' 1

i.e. ∆Ic = Ic for ∆VLO = h̄ωLO
2e . It corresponds to

∆ILO '
∆VLO

Rn
=

h̄ωLO

2eRn
= Ic

fLO

fc

where fc = 2eIcRn/h is the characteristic frequency. Taking the ratio of ∆ILO to ∆Ic, ηm therefore
writes as:

ηm =
Rd

Rs

( fc

fLO

)2 (6.30)

From this expression, we see that it is desirable to fabricate junctions with high fc values, i.e., high
IcRn products.

6.4 Conclusion on the three-port model

When the mixer is connected to the antenna on one side and to the r-f reading line on the other
side, the conversion efficiency η is given in its most general form by equation 6.23. It involves
a term of the total admittance matrix ˜̃y, sum inverted of the internal and external matrices of the
system, ˜̃z and ˜̃zext respectively. Relation 6.14 gives the coefficients in ˜̃z, found from a black-box
approach. ˜̃zext writes itself according to equation 6.16.

Now, the analytical inversion of ˜̃z+ ˜̃zext allows to write equation 6.24, at the expense of hy-
pothesis well verified in practice. It is a simple expression for η , function of impedances only.

When the mixer is matched at the input and output, η in turn simplifies into ηm, expression
6.27. We can find the exact same form with an other approach, based on a circuit analysis.

Finally, we can give an order of magnitude for ηm if we assume that the impedance of the mixer
at the LO frequency equals the static impedance Rn, equation 6.30. Then it is directly proportional
to the squared ratio of the LO frequency to the characteristic frequency. We consequently under-
stand how the performances of the Josephson mixer degrade as the excitation frequency increases.

We used a general model for the mixer, the three-port model, to explicit the conversion effi-
ciency η as a product of three terms (equation 6.24): two of them underline the importance of
impedance matching at the input (signal) and output (IF) frequencies, and the third one character-
izes the junction’s intrinsic sensitivity to a signal perturbation. In addition, the three-port model
is consistent with a more phenomenological approach from which derives ηm, the conversion effi-
ciency when the external circuitry is matched (equation 6.27). It depends directly on the dynamic
resistance Rd , i.e. the one of the junction at the IF, which therefore should be maximized. A rough
estimation of ηm leads to equation 6.30, where the optimum conversion efficiency is expressed as
the ratio of the characteristic frequency fc to the LO frequency fLO. We therefore understand why
we should have fc as high as possible.
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Arriving at the core of this thesis, we present in this chapter the results of the high frequency
mixing experiments that we performed on a high-Tc superconducting Josephson mixer. As a first
attempt to prove the possibility to detect a broad range of frequencies, we first tested a broadband
system, and we managed to detect signals from 20 to 400 GHz with the same device. The results
are presented in section 7.2.1. We investigated the range over which the detector’s response is
linear in section 7.2.2, and the influence of LO power on the conversion efficiency in section 7.2.3.
Then in section 7.2.4, we used the three-port model, exposed in the previous chapter, to simulate
and fit the conversion efficiency of the detector, up to 140 GHz. It is qualitatively in agreement
with what was found for low-Tc Josephson mixers by Schoelkopf and collaborators[163]. Beyond
140 GHz, the mixing operation deviates from a pure Josephson effect.

7.1 Experimental setup

7.1.1 Test bench

The experimental setup is depicted in figure 7.1. The fabricated chip usually contains six Joseph-
son junctions (JJ), each at the center of a spiral antenna, embedded in a coplanar waveguide (CPW)
transmission line. Each one is independently d-c biased with a current source (Yokogawa 7651)
and a voltmeter (Keithley 2700) reads the d-c voltage through a four-point measurement method.
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Figure 7.1: (a) Schematic of the experimental setup to test heterodyne detection the Josephson mixer. Junc-
tion is embedded in a spiral antenna at the center of a CPW transmission line. It is d-c biased and the
microwave line reads the intermediate frequency between 4 and 8 GHz. LO and the signal are sent from
outside the cryostat through a window (mylar 50 µm), guided trough a quasi-optical setup onto the antenna.
(b) Picture of the electronic chip, wire-bonded in d-c and in r-f onto the PCB. Many wires are required to
connect the r-f line, in order to minimize their inductive effect. (c) Photograph of the homemade PCB.
(d) Photograph of the whole cryogenic quasi-optic system: PCB and chip are glued to a copper plate and
placed in front of the Winston cone. The whole mount is then placed on the 4 K stage of the cryostat, the
copper plate being thermally decoupled. (e) Picture of the local oscillator and signal sources, placed in
front of the cryostat window and coupled with a beam splitter.
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The CPW lines and d-c polarization pads are wire-bonded (Al wires, 25 µm, photo 7.1 (b)) to a
homemade printed circuit board (PCB, photo 7.1 (c)), fabricated from a high frequency laminate,
designed for cryogenic use (double-sided dielectric, bought from the Rogers Corporation, type
RO3010-1ED/1ED-0500, total thickness 1.20 mm, Cu thickness 35 µm, εr = 11.20 [11]). The
latter is then glued with a general electric varnish to a copper plate, on which the temperature
regulation (heating resistance and cernox thermometer) is also fixed. Then, the mixer under study
is placed at the focal point of a Winston cone (photo 7.1 (d)), facing the cryostat window (behind an
infrared filter). Alternatively, one can also collimate the incoming radiations with a silicon hyper-
hemispheric lens, glued on the sapphire substrate and located at the focal point of a parabolic
mirror (not shown in the present sketch).

In any case (Winston cone or lens), the quasi-optical setup collects local oscillator and signal
powers, combined in front of the window through a beam splitter. Mixing experiments were
performed in five different frequency ranges centered on 20, 70, 140, 280, and 420 GHz. At
20 GHz, signals are provided by microwave generators (Anritsu MG3692C); whereas for higher
frequencies, signals are provided either by a Gunn diodes (MMWS Jüglicher SQUID) or by a
backward wave oscillator (BWO, Elmika ΓS-02). All can independently be coupled to a set of
frequency doublers and triplers, guided through the multiplication chain by metallic waveguides
and coupled to free space by horn antennae (photo 7.1 (d)).

7.1.2 Microwave design and r-f reading line

The LO and signal traveling in free space are coupled to the Josephson mixer (JM) through a spiral
antenna. At the output, IF travels from the JM to the electrical spectrum analyzer (EXA, Agilent
N9010A) through CPW lines first, and then dielectric waveguides, as represented in figure 7.1 (a).
Here, we briefly detail each stage of this path.

7.1.2.1 Antenna

In order to have the same device working over a large range of frequencies, we used a planar spiral
antenna. In fact it belongs to the so-called frequency independent antennas, first introduced in
the 1950s by Rumsey [161], according to which when the shape of an antenna is only specified
by angles, (and when the antenna itself is infinite), its performances (input impedance, radiation
pattern, gain, polarization) are independent of frequency. In practice of course we don’t have an
infinite structure; it limits the range of frequencies in which the characteristics are flat.

More precisely, a spiral antenna is defined by three parameters [70]: an angle δ , an expansion
rate a, and an initial radius k, such that one arm extends between two curves:{

ρ1(θ) = keaθ

ρ2(θ) = kea(θ−δ ) (7.1)

Thus, the edges of the conductor are formed by the same curve, rotated by an angle δ . The second
arm is obtained with ρ1 and ρ2, rotated by an angle of π . We took a = 0.2 rad−1, k = 8 µm,
and δ = π/2 therefore the antenna is said to be self-complementary i.e. conductor and insulator
have the same geometry. Some studies [128, 180] suggest that with a = 0.5 rad−1 and δ = 4/3
the performances are the most frequency independent, but overall, they remain flat when varying
those parameters [70], and furthermore it is not of crucial importance in our study.

The impedance of an planar antenna is calculated by considering a generalized version of
Babinet’s principle, introduced by Booker, that takes into account polarization and conducting
screens [24], from which one can show that:

ZaZc =
η2

4
(7.2)
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where Za is the antenna’s impedance, Zc the impedance of the complementary structure, and
η =

√
µ0/ε is the (non magnetic) medium intrinsic impedance. In our case the antenna can

be considered of being at the interface between the vacuum and sapphire substrate, with a relative
dielectric constant εr = 10, therefore:

ε = ε0εre f f = ε0
εr +1

2
(7.3)

is a good approximation. For a self-complementary antenna, Zc = Za, and we get:

Za =
η0

2

√
2

εr +1
' 80 Ω (7.4)

where η0 =
√

µ0
ε0
' 377 Ω is the vacuum impedance. Za will play a major role when studying the

conversion efficiency of the whole detector (see 6.2).
The inner ρmin and outer radius ρmax of the spiral define the upper and lower frequency respec-

tively, between which performances are constant. A good rule of thumb for spirals with a small
expansion rate a is to say that λ = 2πρ [199]. In our case we then chose:{

ρmin = 8 µm ⇔ fmax = 6 THz
ρmax = 550 µm ⇔ fmin = 87 GHz

(7.5)

Even though it is not perfectly designed for frequencies lower than 87 GHz, electromagnetic sim-
ulations show that its input impedance remains approximately constant at lower frequencies [199].
Nevertheless, when we will optimize the detector (see section 8.2), a detailed study of the antenna
response will be carried out.

Finally let us mention that the radiated field of a spiral antenna is in principle circularly polar-
ized between fmin and fmax, and that the radiation pattern in vacuum is a single lobe [70].

7.1.2.2 CPW lines

The antenna is embedded in a CPW transmission line, whose geometry designed in order to have
a characteristic impedance of 50 Ω at 6 GHz, about the value of the IF.

Quasi-static approximation. The CPW design stems from formulas, that are true within the
frame of quasi-static (QS) approximation. The latter is the limit where circuit dimensions are small
compared to the relative wavelength, so that the phase delay of the propagating electromagnetic
field from one point of the circuit to another is negligible. In addition, the fields in the dielectrics
can be considered as transverse electromagnetic (TEM), i.e. longitudinal components are negligi-
ble. As a consequence, it is possible to define a unique potential and current at any point of the
circuit, with interconnections treated as passive or active lumped elements [155].

The QS approximation is valid because the wavelength λ of the propagating field in our de-
vices is given at first order by:

λ =
c

f
√

εre f f
=

c
f

√
2

εr +1
' 21 mm @ 6 GHz ≡ IF (7.6)

which is much larger than the total dimension of the detector, of about 2x2.5 mm. At f = 50
GHz, equation 7.6 shows that λ ' 2.5 mm, therefore it is a frequency starting from which one
should perform a full-wave analysis for design considerations, i.e. solve completely Maxwell’s
equations. It is numerically more heavy, but dedicated softwares such as HFSS or Comsol have
been developed over the past twenty years, giving trustworthy results.
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CPW design. Design formulas can be found in the book of Garg, Gupta et al. [80]. When
using the setup where the lens is glued to the back of the sapphire substrate, we are in a situation
of a CPW on top of a dielectric with a finite thickness. With PCB and Winston cone, the electronic
chip is glued to a grounded copper plate and we are in the situation of a conductor-backed CPW.
The QS formulas used to compute the impedance of these two different situations are reported in
appendix E. For the same geometry, the backed ground plane lowers the impedance.

Having a substrate thickness t = 500 µm (Al2O3, εr = 10), and an antenna whose diameter is
about 1 mm, we need sufficiently large CPW transmission lines, with a characteristic impedance
Zc = 50 Ω. We therefore chose to have lines with width LCPW = 500 µm, separated by SCPW =
350 µm (hence 2a = 500 µm and 2b = 1200 µm, in figure E.1 of appendix E). With the same
parameters, in the backed ground plane situations Zc lowers to about 33 Ω, which is actually an
advantage when dealing with Josephson junctions of a few Ω (see 8.2.2).

On the PCB, the conductor-backed CPW lines need to be narrow enough in order to connect
each of the 6 detectors on the chip. However, the fabrication process of PCB limits the resolution
down to about 150 µm. Taking a dielectric constant of 10.5 [11], we chose LCPW = 800 µm and
SCPW = 480 µm. We verified the good transmission of the line between 4 and 8 GHz with a vector
network analyzer.

Then, we wire-bond the CPW lines of the chip to those on the PCB, as shown on picture 7.1
(b). It has to be done with several wires in parallel on each line (typically 10) in order to reduce
their inductive effect (about 1 nH/mm), and ensure that the majority of the r-f signal goes to the
CPW line and not to d-c wires.

7.1.2.3 Dielectric microwave line

SMA connectors (Southwest microwave) placed on the PCB link the CPW to the dielectric trans-
mission line. A cryogenic HEMT amplifier (Low Noise Factory) operating in the 4-8 GHz band
amplifies the output signal at the intermediate frequency before further amplification at room tem-
perature. An isolator and a band-bass are placed in the chain to minimize the back-action of the
amplifier on the Josephson mixer. Finally, IF is read on an electrical spectrum analyzer (Agilent
N9010A).

7.1.3 Conversion efficiency in the experimental setup

As defined in the previous chapter, the conversion efficiency of a sensor η is the ratio of the output
power to the available input power. In the frame of heterodyne detection, its definition is then
given by:

η =
PIF

Ps
(7.7)

where PIF and Ps are the intermediate frequency and signal power, respectively. But it can refer to
the system in full or in part. In fact Ps can be the available signal power radiated by the source, i.e.
at the entrance of the quasi-optical setup, the power effectively arriving onto the antenna, or even
the available power at the input of the Josephson mixer. Similarly, PIF can be interpreted as the
generated IF power by the junction, as the power at the entrance of the r-f reading line, or even as
the power arriving at the electrical spectrum analyzer.

As a definition, we chose η as the ratio of the signal power arriving onto the antenna to
the IF power coming out of the PCB. Thus, it comprises the quality of the impedance matching
between the antenna and the junction, as well as between the junction and the CPW lines. It
doesn’t incorporate the quality of the quasi-optical setup, because we did not possess a reliable
THz power-meter.
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More precisely, the available power at the different stages of the system is summarized in
figure 7.2. Γ are power losses, and Gr f is the power amplification of the r-f line. At the entrance,
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the available LO and signal power are PLO and Ps, respectively. They undergo power losses ΓLO
QO

and Γs
QO in the quasi-optic system. Then the impedance mismatch between the antenna and the

junction induces power losses Γa. Following, the mixer down-converts the signal with an intrinsic
efficiency ηJJ and the IF is transmitted to the r-f reading line with losses ΓCPW . Finally the r-f line,
with intrinsic losses Γr f and amplification Gr f delivers the IF power to the electrical spectrum
analyzer. The power relations are summarized in table 7.1.

Quasi-optic system Antenna Josephson junction r-f line Spectrum analyzer

{
Pa

LO = PLOΓLO
QO

Pa
s = PsΓ

s
QO

{
PJJ

LO = Pa
LOΓa

PJJ
s = Pa

s Γa
PJJ

IF = ηJJPJJ
s PIF = ΓCPW PJJ

IF PEXA
IF = Gr f Γr f PIF

Table 7.1: Losses and gain in the heterodyne mixing process.

We define the conversion efficiency of the device as:

η =
PIF

Pa
s

(7.8)

Then from table 7.1:
η = ΓaΓCPW ηJJ (7.9)

This result shows the conversion efficiency as the product of three terms, as presented in the three-
port model: one coming from impedance mismatch between the junction and the antenna at the
signal frequency, another coming from impedance mismatch between the junction and the CPW
line at the IF frequency, and the last one is the intrinsic conversion efficiency of the junction.
The three-port model gives an analytical expression for each of these terms as a function of the
system’s impedances, see equation 6.24.

7.2 Heterodyne detection of high frequencies

The following measurements were performed with the junction whose d-c characteristics were
presented in chapter 5. In particular, figure 5.3 showed that its characteristic frequency fc =
2eIcRn/h is maximal at 53 K, with f max

c = 85 GHz.
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Figure 7.3: (a)–(e) Output power at the IF (left scale) and d-c current (right scale) as a function of voltage
measured at T = 53 K for five different LO frequencies, fLO = 20 GHz (a), fLO = 70 GHz (b), fLO = 140
GHz (c), fLO = 280 GHz (d), fLO = 410 GHz (e). The IF frequency is about 6 GHz. For the three lowest
frequencies (panels (a)–(c)), the power of the signal has been set to approximatively one thousandth of the
LO power. For the two highest frequencies (d) and (e), the signal power is of the same order as that for
the LO. (f) Recorded spectrum showing the IF peak, whose power varies with d-c voltage Vdc. The LO
and signal excitations are set around 140 GHz, producing an IF beating at fIF = 5.13 GHz. The power
decreases at Vdc

2e
h = 140 GHz, corresponding to the first Shapiro step on the IV curve of (c).

7.2.1 Modulation of the intermediate frequency power

The junction is illuminated via a strong LO signal at frequency fLO and a much weaker test signal
at frequency fs. These conditions guarantee that the IF signal is produced by a first order mixing
mechanism between signal and LO. Figure 7.3 (f) shows an example of the IF (uncalibrated)
power, recorded on the electrical spectrum analyzer, as a function of d-c voltage Vdc. Both fLO and
fs are around 140 GHz and produce an IF beating at fIF = | fLO− fs|= 5.13 GHz. When varying
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the d-c polarization, the IF power changes, and a minimum is observed at Vdc
2e
h = 140 GHz, i.e.

at the position of the first Shapiro step.
It is clearly seen on figures 7.3 (a)-(e), where the intermediate frequency power PIF is repre-

sented as a function of d-c voltage Vdc across the junction, for different ranges of frequency. At
20, 70, and 140 GHz, the LO power has been set to approximately halve the critical current, as
it corresponds to an optimal operation point for mixer’s performances (see 7.2.3). PIF displays
strong modulations between each Shapiro step, whose period is given by the quantized voltage
∆V = h̄

2e fLO. Two mixing regimes can be identified. For fLO = 20 GHz (figure 7.3 (a)), PIF is
maximum at voltages corresponding to the exact center between two Shapiro steps (see arrows).
We will show in section 7.2.4 that such a behavior is obtained when fLO < f max

c . For fLO = 140
GHz figure 7.3 (c)), PIF has two maxima close to the Shapiro steps (see arrows), separated by a
dip. It is also seen in figure 7.3 (d). This corresponds to the condition fLO > f max

c . In the in-
termediate situation where fLO ' f max

c , PIF is approximately flat at the center of the steps (figure
7.3 (b)). Measurements performed at higher frequencies, fLO ' 280 and 410 GHz (figure 7.3 (d)
and (e)) show that the junction still works in the lower part of the THz range. However, in these
cases, the power of the LO source was not sufficient to reach optimal bias conditions. Mixing at
frequencies higher than 410 GHz was not investigated in this study.

7.2.2 Dynamic range

7.2.2.1 Evaluation of losses and gain in the setup

It has been very delicate to precisely evaluate all the power losses and gain of a test bench: first
because measurements usually require to change the configuration of the setup, therefore the situ-
ation with and without detector is not strictly the same. Second because power-meters in the THz
range are not easy to implement (and expensive).

Nonetheless, losses and gain in the r-f output line, respectively Gr f and Γr f can be measured
with a vector network analyzer. At 6 GHz and room temperature we estimate:{

Γr f =−9.87 dB
Gr f = 41+45 = 86 dB

(7.10)

and we consider that the values are the same at cryogenic temperatures. Gr f is the sum (in dB) of
the cryogenic amplifier (41 dB) and the room temperature amplifier (45 dB). Thus, we have access
to PIF (see table 7.1).

We deduce PJJ
LO and PJJ

s from the critical current diminution that they (separately) generate.
Indeed, the critical current diminution from an r-f power Pr f has the following expression:

PJJ
r f =

1
2

∆IcIc
(φ0 fr f

IcRn

)2Rn (7.11)

where ∆Ic = Imax
c − Ir f

c . We infer the signal power PJJ
s from this equation: doing a first calibration

with a strong signal that reduces Ic (without LO), we then place a known attenuator on the signal
path, in the quasi-optic setup.

Also, at 53 K, we have Ic = 90 µA and Rn ' 2 Ω (see figure 5.3 (a)). Then, we can estimate
the LO power PJJopt

LO that diminishes the critical current by half as:
0.21 nW =−67 dBm @ 20 GHz
2.6 nW =−56 dBm @ 70 GHz
10 nW =−50 dBm @ 140 GHz
42 nW =−44 dBm @ 280 GHz
94 nW =−40 dBm @ 420 GHz

(7.12)
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We see here that the LO power required to halve the critical current, optimal operating point for the
mixer (see 7.2.3), is strikingly low compared to the standard heterodyne technologies (see table
1.4). They need at least LO powers of two orders of magnitude higher.

Furthermore, it explains why at high frequencies (starting at 280 GHz) we don’t manage to
reach the optimal operating point: not only the sources deliver lower power as the frequency
increases, but also the required power to have ∆Ic/Imax

c = 1/2 increases with frequency.
Γa and ΓCPW come from impedances mismatch. As a first estimation, with a junction of about

Rn = 2 Ω, an antenna at 80 Ω (equation 7.4) and a CPW line of 50 Ω we get:{
Γa = 10log

[
1−
(2−80

2+80

)2]
=−10.2 dB

ΓCPW = 10log
[
1−
(2−50

2+50

)2]
=−8.3 dB

(7.13)

Therefore we can estimate Pa
s (see table 7.1).

7.2.2.2 Dynamic range measurements

0 1 0 2 0 3 0 4 0- 1 6 0

- 1 4 0

- 1 2 0

- 1 0 0

- 8 0

P a
s  =  - 1 2 0  d B m

P a
s  =  - 5 9  d B m ( b )

( c )

P IF
 (d

Bm
)

d - c  V o l t a g e  ( µ V )

( a )
0 5 1 0 1 5 2 0

V * 2 e / h  ( G H z )

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0- 1 1 0

- 1 0 0

- 9 0

- 8 0

- 7 0

P a
s  =  - 7 3  d B m

P a
s  =  - 3 9  d B m

P IF
 (d

Bm
)

d - c  V o l t a g e  ( µ V )

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0- 1 2 0
- 1 1 0
- 1 0 0

- 9 0
- 8 0
- 7 0
- 6 0

P a
s  =  - 2 7  d B m

P a
s  =  - 6 8  d B m

P IF
 (d

Bm
)

d - c  V o l t a g e  ( µ V )
- 1 2 0 - 1 0 0 - 8 0 - 6 0 - 4 0 - 2 01 0 - 5

1 0 - 4

1 0 - 3

1 0 - 2
( d )

 2 0  G H z
 7 0  G H z
 1 4 0  G H z

η

P a
s  ( d B m )

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0
V * 2 e / h  ( G H z )

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0
V * 2 e / h  ( G H z )

Figure 7.4: (a)-(c) Intermediate frequency power measured at T = 53 K for three different LO frequencies,
fLO = 20 GHz (a), fLO = 70 GHz (b) and fLO = 140 GHz (c). The signal power sent onto the antenna has
been varied over several decades. (d) Conversion efficiency η = PIF

Pa
s

measured at Vdc ∗2e/h = fLO/2, as a
function of signal power. The horizontal black lines correspond to the ideal linear response of the mixer).

The output power PIF at the intermediate frequency was measured as a function of the signal
power for three main ranges of frequency 20, 70 and 140 GHz, as shown in figures 7.4 (a), (b) and
(c) respectively. The LO power was adjusted to diminish the critical current to about a half of its
nominal value. For each case, the conversion efficiency η was calculated at Vdc ∗ 2e/h = fLO/2,
i.e. at the center of the first Shapiro step. η is plotted as a function of the signal power sent onto
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the antenna in figure 7.4 (d). The mixer displays a linear dynamical range of constant conversion
efficiency of more than 55 dB at 20 GHz and 30 dB at 140 GHz.

For strong signal power, the modulation’s amplitude of the IF signal decreases and the mixer
saturates. In this situation, the signal power can no longer be considered to be small compared
to the LO power and second-order mixing processes take place. At 20 GHz it happens at about
Pa

sat =−70 dBm, which corresponds to a signal effectively seen by the junction of about−80 dBm
(equation 7.13), to be compared to the LO power, of about −67 dBm (see 7.12). At 70 GHz the
saturation occurs at about Pa

sat =−55 dBm, i.e. PJJ
sat =−65 dBm, and at 140 GHz Pa

sat =−35 dBm,
i.e. PJJ

sat = −45 dBm. Thus, as the LO frequency increases the signal power can get closer to the
LO power in the linear range, probably because second-order mixing processes are more difficult
to trigger as the frequency increases.

For 70 and 140 GHz the signal power does not go below −70 dBm, because the dynamics of
our attenuators was at best 30 dB, hence it is in practice quite difficult to cover a dynamic range
of many decades at these frequencies. In addition, at low signal powers we were limited by the
noise generated by the junction and the test bench. A further study would be to harness such a
problematic.

7.2.3 Influence of the LO power
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Figure 7.5: (a) and (b) Power in dBm at IF measured at T = 53 K for different values of the LO power
received by the junction. The LO frequency is 20 GHz on panel (a) and 140 GHz on panel (b). (c) Con-
version efficiency taken at Vdc ∗ 2e/h = fLO/2 as a function of LO power coupled to the junction. (d)
Conversion efficiency taken at Vdc ∗ 2e/h = fLO/2 as a function of critical current reduction for the three
LO frequencies.

In a practical heterodyne receiver application, the LO power necessary to optimally bias the
mixer is a critical parameter and must satisfy two important requirements: (i) it has to be as low
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as possible to minimize the power consumption and to be easily driven by available sources in the
frequency range of interest and (ii) its variations and fluctuations must not modify significantly
the performance of the mixer. For a Josephson mixer, the dependence of the conversion efficiency
with the LO power is mainly determined by the characteristic frequency fc = 2eIcRn/h. Recall
that fc ' 85 GHz at 53 K (figure 5.3). Additionally, it is generally expected that the conversion
should be greatest for a LO power corresponding to a suppression by approximately 50% of the
critical current [164]. However, a careful analysis of this point has never been done [135].

Figures 7.5 (a) and (b) show the behavior of the output power PIF as a function of d-c voltage
across the junction for different values of LO power received by the junction, for fLO = 20 GHz
and 140 GHz. The signal power is kept constant, in the linear range of response of the mixer. The
conversion efficiency taken at Vdc ∗ 2e/h = fLO/2 is plotted as a function of PLO (figure 7.5 (c)).
For fLO < fc, η is constant on more than one decade and decreases at strong LO power. PLO as
low as 20 pW at fLO = 20 GHz and 100 pW at fLO = 70 are sufficient to drive optimally the mixer
whereas at 140 GHz, 10 nW of power are required. It is clear that the conversion efficiency does
not depend critically on the LO power as long as fLO < fc. Otherwise, as can been seen at 140
GHz, η is optimal for a given LO power, which corresponds approximately to a suppression by
50% of the critical current (figure 7.5 (d)).

7.2.4 Conversion efficiency simulations
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Figure 7.6: Main elements of the impedance matrix as a function of normalized voltage calculated at
T = 58 K for fLO = 20 GHz (panel a), fLO = 70 GHz (panel b) and fLO = 140 GHz (panel c). For all
the curves, Ic = 45 µA and Γ = 0.057. The value of ILO is indicated on each panel. (d) Comparison
between experimental (circles) and theoretical (full lines) conversion efficiency η calculated for the three
LO frequencies.

We performed numerical simulations in order to confront the three-port model, with the con-
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version efficiencies that we experimentally measured. We managed to fit the experimental data
up to 140 GHz, beyond what the Josephson mixing diminishes drastically, in favor of the normal
resistance mixing.

The conversion efficiency is calculated from the impedance matrix ˜̃Z, with equation 6.23. Fig-
ures 7.6 (a)-(c) represent the important matrix elements Zab of ˜̃Z, calculated for a LO at 20, 70 and
140 GHz respectively [135]. The d-c dynamic impedance Z00 and down-conversion impedance Z0u

reproduce the shape of the output power PIF of figure 7.4. For fLO = 20 GHz, the mixer should
be d-c biased halfway between the Shapiro steps whereas for fLO = 140 GHz, it should be biased
close to the steps. The impedance Z0u and therefore the ability of the junction to down-convert
decreases significantly when the LO frequency is increased. Note however that it is greater than
1 at 20 GHz for an optimal bias, hence conversion gain is possible. Figure 7.6 (d) shows that
the theoretical calculations of the conversion efficiency obtained from 6.24 are in good agreement
with experimental data. A crossover from the first regime of mixing fLO < fc to the second regime
fLO > fc is observed. In the latter, Z00 decreases in the middle of the riser and hence the best
mixing moves towards its edges [163]. At T = 58 K, the noise parameter Γ = 0.057 is much lower
than 1, which guarantees that the Josephson non-linearity is not smeared out by the noise.

The conversion efficiency takes a maximum value of 0.1% at 20 GHz and decreases to 0.01%
at 140 GHz. An improvement of the mixer performances requires optimizing the three factors of
expression 6.24. In particular, impedance mismatch resulting from the low values of the r-f and
d-c dynamic impedances Zuu and Z00, compared with the impedances of the antenna and r-f line,
Zu and Z0 respectively, leads to a significant deterioration of η . Impedance matching elements
both between the antenna and junction and between the readout line and junction could be added
at a cost of reduced bandwidth. It is what we intended to design in section 8.2 of the next chapter.

7.2.5 Mixing beyond 140 GHz

For fLO� fc, the signal and LO a-c current interact weakly with the inductive Josephson element.
As a result, a large part of IF power is generated by mixing on the non-linear resistance. As can be
seen in figures 7.3 (d) and (e), this produces a continuous background on top of which, Josephson
mixing can still be distinguished.

At these high frequencies, the three-port model fails to correctly reproduce the shape of PIF ,
even when we implement the non-linear resistance Rn(Ib), determined by saturated r-f, as seen
in section 5.3.2. To date, it remains unclear whether it is because of fundamental restrictions
(presence of other non-linear effects) or because of numerical instability, such high frequencies
being extremely heavy to compute.

7.3 Conclusion on the high-frequency mixing measurements

When d-c and r-f biased, a Josephson junction down-converts a THz signal to an intermediate
frequency (IF) signal, whose power varies with bias (figures 7.3). When the local oscillator (LO)
frequency fLO is lower than the junction’s characteristic frequency fc = 85 GHz, the optimum
mixing point is in the middle of the riser, at 2eVdc/h = fLO/2 (figure 7.3 (a)). As fLO increases, the
optimum shifts towards the edges of the riser (figure 7.3 (c)). We demonstrated mixing operations
up to 400 GHz.

The conversion efficiency η quantifies the sensitivity of detection. We define it as the ratio
between the maximum available power arriving onto the mixer’s antenna to the IF power sent into
the r-f reading line. Due to impedance mismatches in our unoptimized system, we measured low
values of η , about 2% at 20 GHz, and down to 0.01% at 140 GHz (figure 7.4). Nonetheless, when
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the signal power is varied, we measured a linear response of the mixer over more than 55 dB at 20
GHz and 30 dB at 140 GHz.

We investigated the influence of the local oscillator power. The required LO power to op-
erate the system is extremely low, about two order of magnitudes lower than any other existing
technology. Besides, as predicted in theory, optimum mixing happens for a LO power that approx-
imately halves the critical current. The dependence on the efficiency is not severe, especially when
fLO < fc, and a comfortable range of LO powers can operate the mixer at optimum performances
(figure 7.5).

Two important remarks are to be kept in mind: (i) as previously mentioned in this manuscript,
fc is not a cut-off frequency, i.e. the Josephson mixing still exists at higher frequencies, as proven
by figures 7.3 (d) and (e), where η still drops at the Shapiro steps. (ii) When fLO � fc, high
current biases necessary to drive the junction enhance the non linearity of the normal resistance
Rn, which also starts to mix. It explains qualitatively the complicated η of figures 7.3 (d) and (e),
where both non linearities (Josephson and Rn) seem to be at work.

We used the three-port model to simulate the conversion efficiency η . The simulations are in
good agreement with experiments up to 140 GHz (figure 7.6) and it should be noted that without
impedance mismatch, we expect to see conversion gain at 20 GHz.
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At this point of our discussion, we would like to propose several roads that we believe are
worth investigating, in order to further assess the use of irradiated high-Tc Josephson junctions as
terahertz heterodyne detectors.

Three main studies should be conducted. First, impedance matching between the detector and
external impedances should be improved. To that end we propose (i) to use arrays of Josephson
junctions as detectors, and (ii) from electromagnetic simulations a new design for the detector, that
should boost its sensitivity in a 10 GHz window around a central frequency of 70 GHz. Second,
a thorough study of the mixer’s noise should be carried out, and third, the possibility of using the
self-oscillation as an internal local oscillator should be explored.

8.1 An Array of Josephson junctions as a detector

In the irradiated junction technology, it is possible to place several junctions in series and/or in
parallel, so as to increase the overall impedance of the detector thus fabricated. As long as it
can be considered as a lumped element, i.e. as long as its typical dimensions are much lower
than the exciting wavelength, it should be able to mix and down-convert high frequencies. The
higher impedances at the USB, LSB and IFB should increase greatly the conversion efficiency.
Heterodyne detecting experiments with YBa2Cu3O7 arrays of step-edge junctions exist in the
literature, that encourage to follow such a path [116].
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However, synchronization is required, and the mixing mechanism will not be as simple as the
one that we described all along the previous chapter, based on the two Josephson equations. We
will study synchronization effects in the next chapter. Therefore, the choice of the best array (the
one that will give the best conversion efficiency) will require a thorough study.

8.2 Optimization of the design - electromagnetic simulations

The junction’s weak impedance at any frequency degrades the mixer’s performances, because of
impedance mismatch with the antenna at the signal frequency and with the r-f reading line at the
intermediate frequency (equation 6.24). We can overcome this issue at the expense of a reduced
bandwidth. Therefore, focusing on a high frequency band between 65 and 75 GHz and an IFB
between 4 and 8 GHz, we propose a design that would match a 10 Ω oscillating lumped element
to the antenna and to the r-f line. It exploits Chebyshev impedance transformers, and we tested the
response of the whole design with Comsol, an electromagnetic simulation program.

8.2.1 Antenna

The Chebyshev CPW filters would be connected to the junction on one side and to the antenna or
transmission line on the other side. Therefore a simpler structure than the spiral seem profitable
for easier implementation. However the requirement of a 10 GHz bandwidth around 70 GHz still
requires the use of a broadband antenna. Thus we focused on a bow-tie - or butterfly - antenna,
represented on figure 8.1 (a). It is defined by one angle only and the one can show that its quasi-
static (QS) impedance is given by [55]:

Za
QS = η0

√
2

εr +1
K(tan2(π−φ0

4 ))

K′(tan2(π−φ0
4 ))

(8.1)

where η0 is the vacuum impedance, K() and K′() are the complete elliptic integral of first kind
and its complement, respectively, and φ0 is the bow-tie angle. Figure 8.1 (b) represents Za

QS as
a function of φ0. We choose a self-complementary antenna, i.e. φ0 = π/2, therefore we have
Za

QS = 76 Ω. Each arm is 1.25 mm, so as to ensure a minimum frequency detection of 65 GHz.
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Figure 8.1: (a) Sketch of a bow-tie antenna, a detector being placed at its center. The minimum and
maximum length of the arms determine the operating frequency band. (b) QS impedance of the bow-tie as
a function of its angle φ0.

However at 70 GHz, QS approximation may not be completely valid (see 7.1.2.2), henceforth
we simulated the antenna’s response to a high-frequency excitation with Comsol, a full-wave
simulation software. Figure 8.2 (a) represents the reflection coefficient s11 of a lumped oscillating
element when varying its impedance, placed at the center of the antenna, at 70 GHz. We thus find
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the bow-tie impedance at the minimum value: 68 Ω at 70 GHz. It is consistent with the fact that
at higher frequencies we expect lower impedances than the QS values, due to capacitive effects.
Then, figure 8.1 (b) validates the broadband nature of the antenna, showing very low s11 when its
impedance is fixed at 68 Ω, in turn varying the frequency between 65 and 75 GHz.
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Figure 8.2: (a) reflection coefficient s11 of the antenna, at 70 GHz, as a function of the lumped element
impedance, reaching a minimum at 68 Ω. (b) s11 as a function of frequency when the lumped element
impedance is fixed at 68 Ω.

8.2.2 Chebyshev impedance transformers

A Chebyshev filter is a series of quarter wave lines, that minimize electromagnetic reflections
between two unmatched impedances, in a given spectral window. In short, one can express the
reflection coefficient Γ(θ) of a multi-section line whose sections have the length θ , as a sum
of dephased terms, the latter depending on the section’s impedances. In any case, Γ(λ/4) = 0
at the wavelength λ . Then the idea is to map Γ(θ) to a flat polynomial function f (θ), so that
the reflection shall be small for wavelengths close to λ . Depending on f , one can favor the value
(Chebyshev polynomials) or the flatness (binomial coefficients) of the reflection inside the spectral
window. A detailed study can be found in David Pozar’s book [155].

Choosing to have two sections in our transformers, we need to adapt 10 Ω to 68 Ω at the signal
frequency, 70 GHz, and 10 Ω to 50 Ω at the IF, 6 GHz. A Chebyshev impedance transformer
calculation gives the polynomial coefficients:

10−16.2−42−68 Ω @ 70 GHz

10−15.8−31.6−50 Ω @ 6 GHz
(8.2)

If we fix the total CPW line width to wCPW = 200 µm (2b = 200 µm in figures E.1 of appendix
E), QS calculations adapted from Gupta [88] give the corresponding central line widths w of a
conductor-backed coplanar waveguide:

JJ−w70
1 : 199 µm −w70

2 : 135 µm−Antenna

JJ−w6
1 : 199 µm −w6

2 : 170.2 µm− r-f line
(8.3)

We compared and corrected these QS values to what we find in Comsol, with a 2D model of the
CPW lines. The simulations give the following results:

JJ−w70
1 : 194 µm (22Ω)−w70

2 : 128 µm (42Ω)−Antenna

JJ−w6
1 : 194 µm (21.6Ω)−w6

2 : 171 µm (31.6Ω)− r-f line
(8.4)
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where we limited the maximum central line width to 194 µm to avoid any fabrication issue (the
total width of the CPW line being 200 µm). It nonetheless is sufficient to obtain a good impedance
matching.

Then we optimized the length of these sections. The QS approximation gives:

λ

4
=

c
4 f

√
2

εr +1
= 457 µm @70 GHz

= 5330 µm @6 GHz
(8.5)

For both frequencies, the Comsol optimization of the section’s lengths gives:

θ
70 = 270 µm @ 70 GHz

θ
6 = 3100 µm @ 6 GHz

(8.6)

The discrepancy between QS and full-wave values is surprising, especially at 6 GHz. We chose to
use the simulated values. Figures 8.3 (a) and (b) represent the s11 coefficients of a 10 Ω oscillating
lumped element, when connected to the 3D simulated Chebyshev filters. At 70 GHz (a) the end
of the line is connected to a 68 Ω load, and at 6 GHz (b) it is connected to a 50 Ω load. The weak
reflection and the bandwidth in both cases suggest a good optimization.
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Figure 8.3: Reflection coefficients s11 of the 10 Ω lumped element, as a function of frequency when con-
nected to the Chebyshev filters whose characteristics are summarized on the sketches. The dimensions are
in µm.

8.2.3 Chebyshev filters integrated to the antenna

Finally, we integrated the above filters to the antenna, as shown on the final design, figure 8.4 (a).
The sections length of the Chebyshev impedance transformer at 70 GHz have been re-optimized
with the whole structure. Besides, we only kept the first section of the Chebyshev filter at 6
GHz to avoid a too long detector (our chips are only 10 mm long) and we re-optimized its length
consequently. The final parameters are:

JJ −θ
70
1 : 268 µm −θ

70
2 : 131 µm − Antenna

JJ−w70
1 : 194 µm −w70

2 : 128 µm −Antenna

JJ −θ
6
1 : 2400 µm − r-f line

JJ −w6
1 : 194 µm − r-f line

(8.7)
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Figures 8.4 (b) and (c) represent the electric field amplitude when the structure undergoes an
excitation at 70 GHz (b) and 6 GHz (c), from a 10 Ω lumped element placed at the junction’s
position, a 50 Ω load being put at the end of the transmission line. The electric field is well
localized onto the antenna at 70 GHz and onto the CPW transmission line at 6 GHz. Owing to
Fermat’s principle, the antenna therefore couples efficiently the received radiation to the junction,
and similarly the IF power efficiently couples the r-f line.

Figures 8.5 (a) and (b) represent the s11 reflection coefficient of the lumped element at the
junction’s position, as a function of its oscillating frequency. A 50 Ω load is placed at the end of the
6 GHz Chebyshev filter. The low values around 70 GHz and 6 GHz suggest a good optimization.
The design has been be fabricated (see figure 8.6 and soon to be tested.

The above optimization has been done for a 10 Ω Josephson junction (at any frequency) be-
cause it is in practice very difficult to adapt lower frequencies to a 50 Ω line, and even less to a
68 Ω antenna. But the use of Josephson junction arrays could circumvent the problem. Putting
an array in the optimized antenna/r-f line that we presented could lead to much higher conversion
efficiencies.
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Figure 8.4: (a) Characteristic dimensions in µm of the optimized design (not to scale). (b) and (c) Elec-
tric field amplitude when the structure is excited at 1 V/m by the 10 Ω lumped element at the Josephson
junction’s place (indicated by a cross in (a)) at 70 GHz (b) and 6 GHz (c).
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Figure 8.6: (a) Photo of the optimized design. (b), Photo, showing the detail of the Chebysev adaptation.

8.3 Noise measurements

Unavoidable will be a study of the noise in high-Tc Josephson mixers (HTS-JM), in order to
evaluate their true performances. Historically, low-Tc JM are known to be noisy [164], but in
our irradiated HTS-JM, possible conversion gain and fabrication of Josephson junction arrays as
detectors could lead to high IcRn products and therefore a sensitivity that could compete with
other existing technologies. The mixers that we fabricated so far did not allow us to perform
noise measurements under heterodyne operation, because we were penalized by severe impedance
mismatch. But the two solutions that we have just seen overcome this issue. Furthermore, as we
are going to explain here, the irradiated technology could lead to competitive low-noise mixers.

Recall that noise in a heterodyne detector is characterized by the noise temperature TN . It
represents the temperature of a load which placed at the input port, produces a SNR of unity at the
output port (see 1.4.1.1), or equivalently exactly doubles the output noise of the device. We briefly
review here what we should expect and how we could measure TN .

8.3.1 Origin of noise

So far we took into account the noise in the RSJ and three-port model as an additive and white
Gaussian noise (AWGN), introduced as a current source. But its broadening effect in the frequency
domain requires a more detailed approach. Its understanding is very subtle, let us present here the
ideas.

Intrinsic noise in self pumped Josephson junctions. In our range of frequency and tem-
perature, we will always be in the Rayleigh-Jeans limit hν � kBT (see table 3.4). In addition,
the 1/f noise contribution is negligible above ∼ 10 Hz. Therefore, as already stated, the Johnson
noise dominates over the shot noise. At thermodynamic equilibrium, the latter is given by the
Callen-Welton fluctuation dissipation theorem, conducting to the frequency independent voltage
and current spectral densities, given by equations 3.36 and 3.37 respectively.

However a d-c biased Josephson junction is not an equilibrium system, and the mixing of
Johnson noise with the junction’s self-oscillation (SO) does not produce a white noise. In this
frame, Likharev and Semenov [131] found that the voltage fluctuations spectral density is given
by:

Sv(ω) =
+∞

∑
n=−∞

|zn(ω−nωJ)|2Si(ω−nωJ) (8.8)

in the unpumped regime (no LO). It derives directly from equation 6.1. In the limit where ω�ωJ ,
one can show that:

Sv(ω) = r2
d
[
Si(0)+

1
2i

Si(ωJ)
]

(8.9)
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And with Johnson noise only:

Sv(ω) = 4Γr2
d
[
1+

1
2i2
]

(8.10)

or in dimensioned units:

SV (ν) = R2
d
[
1+

I2
c

2I2 ]
4kBT

Rn
(8.11)

The intrinsic noise temperature then writes as:

TN =
SV (0)
4kBRd

=
Rd

Rn

[
1+

I2
c

2I2

]
T (8.12)

Equation 8.8 means that the noise at ω results from the down-conversion of Johnson noise
coming from all the harmonics of the Josephson frequency ωJ . But numerical simulations (Taur
[179], Zavaleev [203], Schoelkopf [163]) showed that the intrinsic noise was more than expected
here, 10 to 20 times the physical temperature.

The true nature of this excess of noise was explained by Schoelkopf [163]: the Johnson noise
broadens each spectral component of the Josephson oscillation, whose shape as a function of d-c
bias is given in figure 3.9. Its spectrum is richer at low bias, where the oscillation has a Lorentzian
shape, than at high d-c bias, where it is sinusoidal. Therefore the excess of noise is particularly
important at low bias, and it degrades the performances of the Josephson mixer, when there is a
local oscillator.

In this frame, Schoelkopf points out that at a fixed temperature, the mixer’s performances
would increase with a decreasing critical current, while holding the IcRn product constant. But
as the critical current decreases, the conversion efficiency eventually diminishes, thus an trade-off
between TN and η can be found.

In this context, our technology could provide a serious advantage, because the reduction of
geometrical parameters - film’s thickness, junction’s width - contributes to decrease Ic while in-
creasing Rn. Furthermore, a series array of Josephson junctions could tenfold Rn while keeping Ic

low.

Noise in the presence of a local oscillator. When the junction is driven by a LO, the three-
port model enables to estimate the intrinsic noise temperature. In the same way as we introduced
˜̃z, one can define the noise correlation matrix as:

˜̃S =

 Suu Su0 Sul
S0u S00 S0l
Slu Sl0 Sll

=
˜δV ˜δV

∗T

B
(8.13)

where B is the frequency band over which we consider voltage fluctuations, and ˜δV is the fluctua-
tion voltage vector. The diagonal terms are the spectral densities of the noise at the USB, IFB and
LSB, whereas the off-diagonal terms represent the correlation in the noise at the three frequencies
of interest [163]. The current voltage fluctuations are then given by δ̃ I = ˜̃Y ˜δV , and the mean
square amplitude of the noise at the IF port is:

|δ I0|2 = Ỹ0
˜̃S(Ỹ ∗0 )

T (8.14)

where Ỹ0 is the row admittance vector at the IF port, Ỹ0 = [Y0u Y00 Y0l]. The noise temperature
TN is the temperature of a load which, placed at the USB or LSB input port induces the power
P0 =

1
2 ℜ(Z0)|δ I0|2 at the IFB output port. Consequently, one has to divide P0 by the conversion

efficiency η to find TN :

TN =
ℜ(Z0)δ I2

0
kBη

=
Ỹ0

˜̃S(Ỹ ∗0 )
T

4kBℜ(Zu)|Y0u|2
(8.15)
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Notice that it is the total noise temperature of the mixer, i.e. it takes into account the external
impedances. It does not depend on the impedance mismatch at the IF since the latter affects both
signal and noise. Equation 8.15 is consistent with 1.30, found for a perfect mixer (with no internal
noise).

8.3.2 Measurement of noise

With a hot-cold measurement, one can access to TN in the presence of a LO. It consists in mea-
suring the variation of the detector’s response, when the signal comes from a blackbody, whose
temperature is varied. Its emitting power being directly proportional to kBT , it gives an accurate
broadband source of known power. Then, in the affine range, Pout is proportional to Pin. Figure 8.7
(a) represents the situation. Thus, TN is determined by:

TN =
Thot −Y Tcold

Y −1

Y =
Phot

Pcold

(8.16)

Notice that since the source is broadband, the signal comes from both the USB and LSB, thus TN

refers here to the double side band (DSB) noise.
In practice, one uses a thermal load at room temperature (∼ 300 K) and cooled down to 77 K

with liquid nitrogen. It has to be a "good" blackbody in the THz range, therefore the use of THz
absorbers, such as sheets of Eccosorb (AN-72), is better. In addition these sheets can easily be
filled with liquid nitrogen.

Experimentally nonetheless, a hot-cold measurement is delicate: one has to keep the same
setup configuration while only varying the temperature of the load. In addition, one has to mix the
blackbody signal to the local oscillator, in front of the cryostat window, as shown on figure 8.7 (b).
Finally, one has to optimize the setup so that the cold load signal is not too much buried into the
hot thermal environment. A setup such as the one designed in figure 8.7 (c) could be used. The
apparatus consists in two separate chambers, isolated from each other by a mylar window. The
load is placed in the first chamber, which can be filled with liquid nitrogen. The second chamber
is in vacuum, in front of the cryostat window. Inside, a beam splitter combines the thermal signal
to a local oscillator signal and sends them into the cryostat. Both chamber walls are painted with
a THz absorber (Eccosorb CRS-117).

It is difficult to evaluate what noise value we should expect. For bicrystal Josephson junctions
and impedance matching between the mixer and r-f line, Scherbel et al. find η = −1.2 dB (6%)
and TN = 1003 K at a 20 K temperature operation [162]. They had a system quite close to ours:
LO frequency at 345 GHz, IF at 1.4 GHz, Ic = 100-150 µA and Rn = 9-16 Ω. Therefore we could
expect TN to be between 1000 K and 2000 K at 100 GHz, 50 K, with a single junction.

In fact, calculations [203] predict that when f > fc, and for matched impedances, the noise
temperature is given by:

TNmin ' 10.5T
( f

fc

)2 (8.17)

In our case, with fc = 85 GHz, at 140 GHz and 50 K we would get TNmin ' 1400 K. When
f ' 0.3 fc the minimum value of noise would be obtained, with TNmin ' 6T . These performances
should tenfold with an array of synchronized detecting junctions, or with an external shunt circuit,
that we present in the next section.
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enables to calibrate the detector. (c) Design of the experimental setup: two separated chambers allow to
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8.4 Self-pumped Josephson mixer

The idea of the self-pumped Josephson mixer was proposed by Schoelkopf in his phD thesis [163]
but was never investigated in practice. It consists in using the self-oscillation as a local oscillator
instead of an external source. Theoretical calculations [68] and some experiments [112, 111] in
low-Tc materials suggest that quantum noise limited performances are possible.

As seen in section 8.3.1, voltage fluctuations arising from the normal resistance convolute
with all the spectral components of the Josephson oscillation, therefore producing an intrinsic
broad spectrum. However, if we could make it narrower, we would greatly benefit from the use of
the self-oscillation (SO) as local oscillator: we would not need an expensive external source and
we could decrease the excess of noise.

The fluctuations being proportional to the square of the dynamic resistance Rd (equation 8.11)
if we engineer an external circuit to diminish Rd , we lower the fluctuations. One can propose
to externally shunt the junction by a weakly resistive and inductive (LR) loop, as represented in
figure 8.8.
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Figure 8.8: RSJ model of a Josephson junction, externally shunted by an inductive (L) and resistive Rb loop
in parallel.

Fundamentally, the main problem of the Josephson mixer is that for pulsations smaller than
the characteristic pulsation, ω < ωc, the Josephson oscillation is clearly non sinusoidal, as shown
on figure 3.9. There are a lot of spectral components, each adding a noise term, hence the broad
self-oscillation. When ω > ωc the conversion efficiency diminishes, and we cannot use the SO in
this range either. Then the solution consists in filtering the oscillation spectrum when at ω < ωc,
so that ideally, only a sinusoid remains. To that end we need to use a high-pass filter, to keep
the high-frequency oscillations, and get rid of the noisy low frequencies, like d-c. Indeed they
contribute to increase Rd , the mean voltage variation with respect to the current bias. Thus, it
becomes possible to use the SO, a spectrally pure source, as LO.

Ideally we need to place a pure inductance in parallel with the RSJ model. But then it becomes
impossible to d-c current bias the junction. That is why in practice we also have to put a small
resistance. The smaller it is, the higher is the driving current, but the purer is the Josephson
oscillation spectrum.

More precisely, the equivalent impedance Zeq formed by Rn in parallel with L and Rb (figure
8.8) writes as:

Zeq =
Rn(Rb + jLω)

Rn +Rb + jlω
(8.18)

and then:

|Zeq|= Rn

√
R2

b +L2ω2

R2
n +L2ω2 = Rb

√√√√1+
(

ω

ωL

)2

1+
(

ω

ωn

)2 (8.19)

with ωL = Rb/L and ωn = Rn/L. It is always lower than Rn, if Rb < Rn. Zeq replaces Rd , and the
linewidth of the Josephson oscillation, given by:

∆ν1 =
4π

φ 2
0

kBT
R2

d
Rn

(8.20)

thus decreases.
Notice that self-pumped mixer operation becomes less interesting when ω > ωc, because then

the self-oscillation is already sinusoidal, and furthermore the equivalent circuit of branch B is an
open circuit.

We performed numerical simulations that clearly support the self-oscillation mixer idea: fig-
ures 8.9 (a) and (c) represent (at different current scales) the oscillation spectrum in color scale of
a Josephson junction (RSJ model, 50 K), as a function of d-c current and voltage, with the external
LR loop. We chose L = 100 pH and Rb = 0.5 Ω so that it filters frequencies lower than 0.8 GHz.
The SO (brightest diagonal line), as well as its harmonics appears clearly and sharply. It mixes
with the signal at 70 GHz (vertical line) and produces an intermediate frequency (counter-diagonal
lines in panel (c)). This situation is clearly improved compared to the case with no external LR
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Figure 8.9: Simulated spectrum of the Josephson junction oscillation with (a,c) and without (b,d) an ex-
ternal LR shunting loop, as a function of the d-c current and voltage bias. The normal resistance is taken
constant equal to 5 Ω, and the critical current Ic = 50 µA. In the LR loop, L = 100 pH and Rb = 0.5 Ω.

loop, figures 8.9 (b) and (d), where the broad intrinsic SO, diffuse yellow line, does not allow any
efficient mixing with the signal.

This mode of operation of the Josephson mixer is very interesting, but as always, one cannot
cheat nature, and there is a drawback: as we shunt the high-frequency components of the voltage,
we therefore diminish the variation of Vdc with the current bias, i.e. we decrease Rd . Then it
becomes more difficult to match the circuit to the r-f reading line. We might overcome this issue
with, once again, a Josephson junction array.

Our fabrication technology allows to design parallel inductive and resistive loops: a supercon-
ducting line can be drawn to have a specific geometrical and kinetic inductance, while a long and
wide irradiated slit in YBa2Cu3O7 is a resistance. The ongoing work is promising, with this new
design being fabricated and soon to be tested.
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8.5 Conclusion on the improvements and perspectives

We suggested four roads to improve and further characterize the Josephson mixer. First, we
pointed out the fact that an array of Josephson junctions could tenfold the performances of a
JM. Second, we proposed a design that simultaneously matches the input and output impedances
to the junction. It should be sensitive to signals between 65 and 75 GHz, and we adapted the IFB
between 4 and 8 GHz (figures 8.4 and 8.5). Third, we exposed the principles and the experimental
setup to address the noise properties of the mixer. The conversion efficiency η being improved,
the noise temperature TN is the second figure of merit that should be measured. Finally we sug-
gested an operating principle, the self-pumped Josephson mixer, for which simulations reveal a
promising behavior.
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The heterodyne detection setup that we presented in the previous chapter requires an external
source as local oscillator (LO), and it constraints the receiver’s integration. Furthermore in the THz
range, integrated, powerful, frequency tunable and stable LO is not a straightforward technology,
even if, as we have seen in the first chapter, some solutions exist already. However they still
present drawbacks, like power consumption, heating, or inability to reach the lower part of the
THz spectrum (below 1 THz).

It has been long known that a Josephson junction (JJ) naturally oscillates in the THz region: we
see from the Josephson equations 3.20 and 3.21 that a 1 mV d-c bias creates a current oscillation
at about 484 GHz, owing to the value of the ratio 2e/h.

Finally, we saw that the required LO power to drive our Josephson mixer is extremely low, in
fact much lower than any other existing technology. Therefore it is interesting to wonder whether
we could engineer a local oscillator out of irradiated JJs, so as to couple it on the same chip with a
Josephson mixer. In this frame, THz emission from Bi2Sr2CaCu2O8 mesas [151] is very inspiring
for our work. There is intrinsically a vertical Josephson coupling between the CuO2 atomic planes,
and consequently a 1 µm thick Bi2Sr2CaCu2O8 mesa contains 652 identical intrinsic Josephson
junctions [103]. Due to atomic closeness, they synchronize very easily and coherently radiate. In a
sense, our goal here is to fabricate an extrinsic array of JJ in YBa2Cu3O7, following the promising
results of intrinsic arrays in Bi2Sr2CaCu2O8.
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Beyond the practical achievement that is would constitute, it raises the prolific question of
oscillators phase synchronization. We will see in section 9.1 the principles of junctions synchro-
nization. In section 9.2 we will review the possible array designs found in the literature, fabricated
and tested with low or high-Tc materials. Then, we will study and simulate a shunted two-junction
cell, from which we explain synchronization physics. In this frame, we will always consider that
our junctions are heavily damped, i.e. there is no capacitance (pure RSJ). Finally we will present
in section 9.3 encouraging experimental results, performed on a shorted 2D array.

Phase locking between JJs has been long sought in low-Tc and more recently in high-Tc mate-
rials. A vast theoretical literature exist on the subject; among others, let us cite the most influential
reviews: first and foremost the seminal work of Jain and Likharev [100], then the work of Hansen
and Lindelof [91] and the more recent work of Wiesenfeld et al. [196]. Finally let us mention the
work of Darula [64], reporting results with high-Tc materials.

9.1 Effects of junctions synchronization

In this section we explain why we need an array of JJs to design a local oscillator, and then
converge towards the most promising coupling mechanism to synchronize our irradiated JJs.

9.1.1 Need for arrays of Josephson junctions

9.1.1.1 Linewidth of synchronized junction arays

In the frame of the RSJ model, the linewidth of a Josephson radiation is given by [100]:

∆ω1 = 2π∆ν1 = π
(2π

φ0

)2R2
dSI(0) (9.1)

where SI(0) is the current noise spectral density at low frequency. If only fluctuations due to
thermal noise are considered we get SI(0) = 2kBT

πRn
[196, 39] and then:

∆ν1 =
4π

φ 2
0

kBT
R2

d
Rn

(9.2)

With our irradiated junctions, for Rd ' Rn = 2 Ω and T = 50 K we get ∆ν ' 4 GHz. Thus the
self-oscillation of a single junction is too broad to be used as a local oscillator (as already seen in
section 8.4).

However, one can show that a 1 dimensional (1D) array of N phase-locked junctions reduces
the radiation linewidth as 1/N ([100], p 378):

∆ω
1D
N =

∆ω

N
(9.3)

In fact, as pointed out by Likharev, the mutual phase-locking of N series junctions in 1D lowers
the differential resistance Rd by N but at the same time increases the current spectral density SI(0)
by the same factor N, canceling each other in equation 9.2 to leave only the 1/N term.

For 2 dimensional (2D) arrays of NxM synchronized junctions, one simply has [64]:

∆ω
2D
NM =

∆ω

NM
(9.4)

Thus, we expect the radiation linewidth to be greatly reduced: with a 100x10 2D array of syn-
chronized junctions, we could reach ∆ν ' 4 MHz, clearly competing with existing technologies.
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9.1.1.2 Power of synchronized junction arrays

The oscillation power of a Josephson junction depends of course on the load RL of the coupling
circuit (RL can be the vacuum impedance, the power being then radiated in free space). More
precisely when Vdc >Vc = IcRn, the power transmitted to RL writes as:

P1 =
V 2

c RL

2(Rn +RL)2 (9.5)

a situation described in figure 9.1. When the load is matched, Rn = RL and one gets [100]:

ib

RnIcsin(φ) VdcRL

Figure 9.1: A current biased RSJ coupled to a load RL.

Pmax
1 =


RnI2

c

8
for Vdc ≥Vc

2
√

3
9

√(
I
Ic

)2

−1RnI2
c ' 0.4RnI2

c for Vdc <Vc

(9.6)

that is to say, for a junction with Rn = 2 Ω and Ic = 100 µA, we have Pmax
1 = 2.5 nW (Vdc >

Vc). Consequently, a single junction is not powerful enough to operate as a LO. In addition, the
generally low Rn makes impedance matching very difficult, as seen in the previous chapter.

For a 1D array of N synchronized junctions, the transmitted power to the load becomes [64]:

P1D
N =

(NVc)
2RL

2(NR+RL)2 (9.7)

when V > Vc. Consequently, for the unmatched case where NR� RL, it scales with N2. For the
matched case where RL = NRn, the delivered power is P1Dmax

N = NRnI2
c

8 . The 1D array can achieve
impedance matching to typical loads, simply by summing the normal resistances of each junctions.

For a 2D array of NxM (rows per columns) synchronized junctions, the transmitted power
becomes:

P2D
NM =

NV 2
c RL

2(NR/M+RL)2 (9.8)

i.e. the available power P2Dmax
N = NMRnI2

c
8 is proportional to the number of synchronized junctions,

as in 1D, totally transmitted to the load when matching N/M = RL/Rn is achieved. Notice that the
array’s impedance can be tuned with the number of rows and columns.

Roughly, with our junctions we have RL/Rn ' 10 if we want to deliver power to an r-f trans-
mission line. Then a 2D array of 100x10 phase-locked junctions would provide 2.5 µW to the
transmission line, clearly enough to overcome losses and operate the Josephson mixer.
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9.1.2 Rules of thumb to achieve phase-locking

Synchronizing a large number of junctions is the crux of the matter. Before addressing the different
coupling mechanisms, two rules of thumb are to be kept in mind for practical fabrication.

First, the typical size L of the array should be kept smaller than λ/8 [64, 196, 192], so that it
can be considered as a lumped element. λ is the targeted radiation wavelength. When L> λ/8, the
array is said to be distributed. The latter has also been shown to evidence synchronization effects,
but with less agility, because of resonance phenomena. Note that λ is the effective wavelength. In
our chips with sapphire substrate, for a 100 GHz emission we get:

L <
c

8 f

√
2

εr +1
= 160 µm @ 100 GHz (9.9)

With the irradiated technology, it still leaves some degree of freedom in the design.
Second, the spread of the junctions’ characteristics disfavors phase-locking, and the spread in

critical currents is the most important. Of course, depending on the array geometry, more or less
dispersion can be tolerated, which is in fact one of the criteria to consider when choosing a design.
For a 1D series array, the least flexible type in terms of parameters dispersion, one commonly
advices that ∆Imax

c /Imean
c < 7% [64, 196] when it is matched to a resistive load. We are not far to

achieve such requirements inside the same chip, with our fabrication technology.
Overall, it is difficult to evaluate a priori the effect of the spread in characteristics (Ic and Rn).

Nonetheless, we will try to harness this question with simulations in section 9.2.3.2.

9.1.3 Coupling mechanisms

Synchronization between two oscillating systems at frequencies ω1 = φ̇1 and ω2 = φ̇2 does not
only mean frequency-locking ω1 = ω2, but also φ1 = φ2 + ∆ψ where ∆ψ is constant in time.
For instance, parallel junctions are doomed to be frequency-locked since they share the same bias
voltage, however their emission may not be coherent because of the phase difference free evolution
inside the array.

Several coupling mechanisms have been identified in theory, to achieve phase-locking. They
can be divided into three main categories: external locking, short, and long range interactions
[100, 91]. In any case, coupling involves a share of information of one junction’s state to another.
In terms of circuits, it means a feedback loop.

The external locking is simply the one that happens with an external local oscillator (LO), as
seen in the previous chapter. The array being considered as lumped, every junction will synchro-
nize with the LO field. Notice that L < λ/8 is then the criteria to respect, if one wants to design a
detector with several junctions in series.

We will briefly review the basics of short range interactions, after what we will focus on long
range interactions since it is the only relevant ones with irradiated Josephson junctions. In fact,
with the present technology, junctions cannot be placed closer than 500 nm, thus forbidding short-
range coupling mechanisms.

9.1.3.1 Short range interactions

This type of interactions implies to be able to place junctions relatively close to each other, so
that each one feels its closest neighbors. More precisely, they are of three kinds: d-c or a-c order
parameter interaction, and quasiparticle interaction.

d-c and a-c order parameter interaction. In the stationary (zero voltage) state, when the
distance d between the junctions is lower than the superconducting coherence length ξ , the junc-
tions tend to share the same phase. Of course, it is stronger close to Tc where ξ is long [91].
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Similarly, when d < ξ , in the non stationary (Vdc 6= 0) state, the a-c Josephson oscillations
in the two weak links tend to phase-lock, as the order parameter ∆ oscillates on a characteristic
length ξ .

The coherence length ξ in YBa2Cu3O7 is known to be very short, typically 2 nm in the ab
plane [113], the one that we use for fabrication. Therefore we cannot rely on these types of
interactions, unless we could place the junctions closer than 1 nm to each other.

Quasiparticle interaction. It is the case where junctions are placed so close that their non-
equilibrium regions overlap. The shared information is then the quasiparticle (QP) potential and
charge imbalance. It appears when d < ΛQ∗ , where ΛQ∗ is the length of the QP charge imbalance.
To our knowledge, the latter has never been measured in YBa2Cu3O7. In any case, we expect
it to be very short, of a few nm, and once again, the current fabrication process rules out such
synchronization effect.

9.1.3.2 Long range interactions

This type of interactions involves an external circuitry. Then theoretically, junctions can be placed
an arbitrary distance to one another. They are of three kinds: high-frequency coupling, i.e. via
an impedance, low-frequency coupling, also called SQUID coupling, and finally coupling via a
resonator. The high-frequency coupling will be the one that we intend to favor by engineering
an adequate external feedback loop. In this frame, the RSJ model is of great help to analyze and
simulate synchronization effects.

High-frequency coupling. Likharev and Jain [100] analyze the high-frequency coupling
for two junctions and then generalize to a 1D array. Given two nearly identical junctions in-
dependently biased, in series (figure 9.2 (a)) or in parallel (9.2 (b)), they find that the range of
current bias IL over which phase-locking occurs is proportional to the loop complex admittance
Y (ω) = (Ze(ω)+2Zi(ω))−1. More precisely:

IL = 2IcRn

√
1−
( Ic

Ib

)2
ℑ(Y ) (9.10)

where Ic = Ic1 = Ic2 is the critical current in both junctions. Notice that there cannot be any
locking if the loop is purely resistive. The evidence of synchronization is thus found on the IV
characteristics, where as in figure 9.2 (c), they should overlap between ±IL. When coupled by an
LR loop, IL is optimal for ωL = Rn1 +Rn2 +Rs [130, 91], with what we could specify the locking
position.

However, these results are somewhat difficult to use in practice, given the uncertainty on the
parameter spread that they allow. Let us just remember that the feedback loop should have a
complex inductance, and that synchronization should be evidenced by an overlap of the IV curves.

Low-frequency coupling. It consists in synchronizing junctions with a purely inductive
loop, thus forming a d-c SQUID. One can neglect the high frequency currents flowing through
the loop when ω � ωc, or for capacitive junctions, and then phase-locking is achieved by apply-
ing an external magnetic flux φext . More precisely, flux quantization imposes:

2πn = ∆ψ +
2π

φ0
(φext +L

IAB− IBC

2
) (9.11)

where ∆ψ is the phase difference between the junctions, and L the loop inductance. In principle,
there is no definite locking range since any external field achieve ∆ψ = const. However when
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(a) (b) (c)

Figure 9.2: Two-junction cell, biased in series (a), and in parallel (b). (c) Evidence of synchronization on
the IV curves. Adapted from [100].

φext = nφ0 and IAB = IBC, one gets ∆ψ = 0, i.e. the junctions are in phase. Similarly, when
φext = (n+1/2)φ0, the junctions are in anti-phase.

This is an efficient way to couple junctions, nonetheless it requires the application of an exter-
nal magnetic flux.

Coupling via a resonator. Finally, if one places the array inside a resonator, such as a reso-
nant transmission line (figure 9.3), the junctions’ oscillations may undergo a strong coupling and
lock at the resonator’s frequency, at the cost of a narrowed bandwidth, i.e. locking range. Con-
sidering over-damped junctions (low capacitance), the important effects of a resonant loop are: (i)
reduction by Q (quality factor of the feedback) of impedance mismatch between the junctions and
the microwave circuit. (ii) Linewidth reduction of the junctions’ self-oscillation (similar to what
we exposed in section 8.4). (iii) Parametric generation of the so-called non-Josephson oscillations
[91, 174].

Figure 9.3: Two-junction cell coupled to a RLC resonant circuit [91].

Since we wanted to keep a broad locking range, we did not investigate this option, however it
would be a solution worth to explore in the future, for a targeted narrow range of frequencies.

9.2 Designs and circuitry for synchronization

Many arrays exist in 1D and in 2D, that would favor synchronization. In general, connecting junc-
tions in series helps impedance matching to the external load, while parallel schemes circumvent
the problem of voltage (frequency) differences across the nonuniform Josephson junctions.

We will briefly review the main designs, that were proven to work with low or high-Tc materi-
als. Then we will approach the issue of external locking with simulations. The latter are not only
helpful from an experimental perspective, where actual normal resistances and critical currents
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have to be thought through, but they prove also fruitful to grasp the mechanism underneath oscil-
lators coupling. It is of crucial importance with our technology, where we cannot expect junctions
to synchronize by themselves from short-range interactions.

9.2.1 Possible designs for junction arrays

Many designs for Josephson junction arrays have been proposed in the literature. The first at-
tempts in the eighties used 1D arrays of low-Tc JJs [99], but as explained earlier, the search for
high emission power and narrow linewidth, lead people to quickly adopt 2D array designs, if pos-
sible. Nonetheless, the 1D array constitutes an excellent model to understand the synchronization
mechanisms, that also take place in 2D.

We focus on lumped arrays, figure 9.4 (a), and put aside quasilumped (b) or distributed arrays
(c): in fact our technology favors the fabrication of closely placed JJs, and furthermore we aim at
having a broadband local oscillator. Besides, we believe lumped arrays to be the most promising
candidates to observe a first synchronization effect with irradiated Josephson junctions. The inter-
ested reader can refer to the work of Han and Lukens [90] or Booi and Benz [43] for experiments
on distributed arrays.

(a) (b)

(c)

< λ/8
Ib

< λ/2 or λ
Ib

Ib

< λ/2 or λ

Figure 9.4: Different categories of arrays, depending on the space between the junctions. (a) Lumped, (b)
quasilumped and (c) distributed arrays. λ is the radiation’s effective wavelength, see equation 9.9. Adapted
from [90].

9.2.1.1 1D arrays

Three types of 1D arrays have been classically studied, represented on figure 9.5: 1D series (a),
1D parallel (b) and of course d-c-parallel/a-c-series (c)-(d). In (a), one benefits from the increased
impedance from the series junctions, to better match the array to the coupling circuit. In (b), one
benefits from the parallel scheme to have all junctions biased with the same voltage, and hence
have them oscillate with the same frequency (but not necessarily in phase). Notice however, that
if N is the number of junctions put in parallel, the array requires a d-c current bias N times higher
than for the dual 1D series. The current bias of the later is in principle independent on the number
of junctions.

Furthermore, series geometry seems more favorable for junctions’ synchronization, owing to
the fact that short range interactions, like quasiparticle coupling, arise more easily. Thus, the d-c-
parallel/a-c-series, first proposed by Jain et al. [99], figure 9.5 (c), benefits from the perks of the
two first schemes (a) and (b) at the same time. In fact, junctions are d-c biased in parallel, so as to
have the same voltage across any of them; at the same time, they are closely put on the same line,
and the strong inductance of the d-c biasing wires leads to have a series array at high frequencies
(a-c).
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(a) (b)

(c) (d)

Figure 9.5: Different architectures for 1D arrays: (a) 1D series, (b) 1D parallel and (c)-(d) d-c-parallel/a-
c-series array. In (d), junctions are placed in half-wavelength resonators, favoring synchronization [64,
119, 99].
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Figure 9.6: IV curve, and radiation of 1D array (10 junctions), measured with a radiometer. Inset: spec-
trum of the emission peak. The IV curve shows resonant steps at λ/2 and subharmonics, due to the
microstrip resonators structure that helps the array’s synchronization, see figure 9.5 (d). The radiation is
at 110 GHz, with an integrated power of 18 pW. From [120].

Kunkel et al. [119, 120] successfully synchronized a 1D array of 10 high-Tc bicrystal YBa2Cu3O7
JJs through the d-c-parallel/a-c-series scheme. They helped synchronization with half-wavelength
resonator microstrip lines in which pairs of Josephson junctions where placed (figure 9.5 (d)).
They managed to measure a radiation emission up to 110 GHz, of about 18 pW see figure 9.6, and
synchronization effects where observed up to 1 THz at 45 K.

9.2.1.2 2D arrays

As seen in section 9.1.1, 2D Josephson junction arrays have many advantages compared to 1D:
narrower emission linewidth, higher emitted power, and possibility to match them with a load
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(a) (b)

(c) (d)

Figure 9.7: Different architectures for 2D arrays: (a) X-Y, (b) 2D shorted and (c)-(d) parallel biased. In
(d), junctions are placed in resonators, favoring synchronization [64, 38].

impedance, by adjusting the number of rows and columns. Finally, the tolerable parameter spread
is higher, about twice as high as in series arrays: ∆Imax

c /Imean
c ' 0.12-0.13 [64]. However they are

more sensitive to any external magnetic field, because of their intrinsic superconducting loops.
Figure 9.7 presents the three principal designs: (a) X-Y array (b) shorted array and (c) parallel

biased 2D array. The X-Y array has been mostly used in low-Tc, with reported tunable radiation
frequencies between 60 to 210 GHz, with an estimated emitted power of 0.4 µW at 150 GHz for a
10x10 array [32]. When coupled to a resonator, a linewidth of 10 kHz at 100 GHz was measured
[42].

Shorted 2D arrays 9.7 (b) and parallel biased arrays 9.7 (c) demonstrated promising synchro-
nization effects when fabricated with YBa2Cu3O7 step-edge Josephson junctions [38], but the
phase-locking required either an external magnetic field (to enhance low-frequency coupling), or
coplanar resonators, because the step-edge technology suffers from a poor reproducibility in the
junctions characteristics. Nonetheless, Beuven et al. [38] were able to detect array’s oscillation
with a capacitively coupled Josephson detector (figure 9.7 (c)), where Shapiro steps observed up
to 460 GHz.

Our fabrication process hopefully circumvent the parameter spread, and we will show in sec-
tion 9.3 that we observed evidences of synchronization in a 10x10 shorted 2D array, with no
external magnetic field applied.

9.2.2 Effect of an external feedback loop

We identified the high frequency coupling as the main (if not only) mechanism to achieve phase-
locking over a wide range of frequencies with YBa2Cu3O7 Josephson junctions. If we had a pow-
erful emission from many synchronized junctions, as in Bi2Sr2CaCu2O8 mesas, we could quantify
its efficiency through radiation linewidth. However in the absence of any obvious synchronization,
the emitted power is extremely small and the linewidth very large, therefore such technique is not
applicable.

Similarly, no heterodyne detection scheme can work with such low powers (which we actu-
ally tried, with an emitting series array placed in front of a detecting junction, and mixed with
an external LO). Then at first, only traces of overlapping IV curves would be a guide towards
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synchronization.
In order to understand it more precisely, we numerically studied (with Matlab) a simple system

of two junctions, biased in series and shunted by a resistive and inductive (LR) loop, as shown in
figure 9.8.

Ipol

δIn1

δIb

L

Rb

Rn1

Vdc

Ic1

δIn2Rn2Ic2

V1

V2

IA IB

A branch B branch

Josephson
branch 1

Josephson
branch 2

Figure 9.8: Two Josephson junctions in series (branch A), shunted by a LR circuit (branch B) that allows
phase-locking.

9.2.2.1 Open-loop circuit

When there is no external shunt (i.e. when Rb→ ∞) the circuit equations are simply:
Ipol = Ic1sinφ1 +

V1
Rn1
−δ I1

Ipol = Ic2sinφ1 +
V2
Rn2
−δ I2

dφ1
dt = 2e

h̄ V1
dφ2
dt = 2e

h̄ V2

(9.12)

Therefore V1 and V2 are two decoupled variables, and the junction’s oscillations are independent.
More precisely, the normalized system writes as:

dφ1

dτ1
+ sinφ1− (ipol1 +δ i1) = 0

dφ2

dτ2
+ sinφ2− (ipol2 +δ i2) = 0

(9.13)

with normalization constants summarized in table 9.1. The phases φ1 and φ2 evolve independently.
If one considers two different JJ, with characteristics {Ic1,Rn1} and {Ic2,Rn2} there are two

options regarding their IV curves: either {Ic1 < Ic2,Rn1 > Rn2} and the IV curves don’t cross, as
in figure 9.9 (a), or {Ic1 > Ic2,Rn1 > Rn2} and the curves cross once, as in figure 9.9 (b). Thus,
there is at best only one bias point for which Vdc1 = Vdc2 (necessary condition to have V1 = V2),
therefore, in the RSJ model one cannot phase-lock series junctions without a feedback loop.

9.2.2.2 Closed-loop: LR shunt

When adding the LR shunt, the circuit equations are given by:

dV1

dt
+(

Rn1 +RB

L
+ Ic1Rn1

2e
h̄

cosφ1)V1 +
RB

L
Rn1(Ic1sinφ1− Ipol−δ I1−δ Ib) =−

Rn1

L
V2

dV2

dt
+(

Rn2 +RB

L
+ Ic2Rn2

2e
h̄

cosφ2)V2−
RB

L
Rn2(Ic2sinφ2− Ipol−δ I2−δ Ib) =−

Rn2

L
V1

(9.14)
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Figure 9.9: IV characteristics of series junctions without a feedback loop Depending on their Ic and Rn, the
curves never cross (a) or cross only once (b).

Characterisitc pulsations Normalized currents Normalized times

ωck =
2e
h̄

IckRnk =
Rnk

LJk

ωL =
RB

L
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Rnk

L
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Ipol

Ick
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Ik

Ick

δ ik =
δ Ik

Ick

τk =
2e
h̄

IckRnkt

= ωc jt

Table 9.1: Normalization of the Josephson equations, k = 1 or 2. LJk =
h̄

2eIc
is the maximum value of the

Josephson inductance.

One can normalize them separately with the same normalization as previously (see table 9.1):
Then the system writes as:

d2φ1

dτ2
1
+
(ωn1 +ωL

ωc1
+ cosφ1

)dφ1

dτ1
+

ωL

ωc1

(
sinφ1− ipol1−δ i1−δ ib

)
=−ωn1

ωc1

dφ2

dτ1

d2φ2

dτ2
2
+
(ωn2 +ωL

ωc2
+ cosφ2

)dφ2

dτ2
+

ωL

ωc2

(
sinφ2− ipol2−δ i2−δ ib

)
=−ωn2

ωc2

dφ1

dτ2

(9.15)

These are coupled second order differential equations, each describing a damped oscillator, driven
by the right hand side term that indicates the influence of the second junction on the first, and vice
versa. They reveal how the synchronization occurs, and for discussion’s clarity, let us focus on
only one equation, say the first one.

The strength of the driving term depends on the ratio ωn1/ωc1 = LJ1/L. When LJ1 > L, the
driving force is strong because the non linear Josephson inductance is damped by the linear L.
Conversely, when ωn1 < ωc1 the importance of branch B diminishes before the one of the Joseph-
son branch, as the frequency increases, therefore it is more difficult to drive the oscillation of the
junction. Consequently, one favors the influence of one junction on the other when ωn1 > ωc1 and
ωn2 > ωc2, i.e. L < min{LJ1,LJ2}.

But, at the same time, the argument that we gave to explain the mechanism of the self-pumped
Josephson mixer still holds: at low frequencies (ω < ωc), the oscillation spectrum of each junction
contains a lot of harmonics, therefore it is difficult to have the two of them perfectly overlap
(situation of phase-locking). The high-pass filter of the LR branch diminishing the junctions’ SO
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linewidths, it favors their synchronization. Then, its cut-off frequency being ωL, we see that L
should not be too small, so as to ensure a good filtering. Notice that the circuit equation of the
self-pumped Josephson mixer (figure 8.8) is exactly the first (or second) equation of system 9.15,
without the driving term on the right-hand side.

Seeing the right-hand side terms of equations 9.15, one can interpret the overlap in the IV
curves of synchronized junctions as a moving Shapiro step: the frequency of the driving oscillation
on junction 1 changes according to the d-c voltage in junction 2, and vice versa.

At high-frequencies, two phenomena degrade synchronization: first, influence of branch B
diminishes, as it becomes an open circuit. Second, the two Josephson oscillations, although spec-
trally pure, are very far from each other. In fact, the normal resistances being different, the d-c
voltage difference ∆Vdc = ∆RnIb increases with current bias.

Finally, thermal noise also disfavors synchronization, for any bias, because it independently
perturbs the oscillation of each junction.

9.2.3 Simulation results

9.2.3.1 Overlapping IV curves

In practice, with Ic1 ' Ic2 ' 100 µA it leads to LJ = 3.3 pH, and we take L = 20 pH, so as to have it
not too low (and within reasonable fabrication realities). With Rb = 0.5 Ω (not too small either, to
keep a reasonable d-c bias) it gives fL = ωL/2π = 4 GHz, reasonable to synchronize junctions at
frequencies higher than a few GHz. Then the system 9.15 can be solved numerically, with Euler’s
method for example.
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Figure 9.10: (a) Simulated IV curves of two junctions in series, shunted by the LR branch, as in figure
9.8. (b), (c) and (d) voltage as a function of time for both junctions, at 25, 100 and 200 GHz respectively.
Ic1 = 110 µA, Rn1 = 3 Ω, Ic2 = 100 µA and Rn2 = 2 Ω. The simulation temperature is T = 50 K, L = 20
pH and Rb = 0.5 Ω.
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Figure 9.10 (a) shows the IV curves of two JJs in series, at 50 K, simulated with the same
parameters as in figure 9.9 (b), but when the LR shunting branch is added. The situation is clearly
different, with curves overlapping due to synchronization, between Vdc ∗2e/h = 75 and 140 GHz.
To make sure that it means phase-locking, we plotted in figures 9.10 (b), (c) and (d) a part of the
temporal voltage variation at Vdc ∗2e/h = 25, 100 and 200 GHz respectively. The corresponding
positions are indicated by vertical dashed lines in panel (a). From dephased Lorentzian-like oscil-
lations (a), the junctions progressively synchronize, reach phase-locked oscillations (b), and finally
recover their natural behavior Vdc = RnIdc at high biases (d), for which they are not synchronized
(see arrows). Notice that the locking starts approximately at f = (Rn1 +Rn2 +Rb)/(2πL) = 44
GHz, as predicted by the literature [130, 91].

In figure 9.10 (a), the junction 1 seems to transit into the resistive state at a higher value than
Ic1 = 110 µA, what we defined for its critical current. It is due to the fact that when the first
junction transit (JJ 2, in red), the bias current is redistributed between the two branches A and
B, since branch A becomes resistive. Thus, one has to reach a bias current more important than
Ib = Ic1 to have the part that actually goes into branch A exceed Ic1. When the second junction
transits, a change of slope can be observed in the IV curve of the other one, because once again
the current is brutally redistributed between the two branches at this point.

9.2.3.2 Parameter spread

We investigated in simulations the spread in parameters that we can afford, while still have phase-
locking. To that end we fixed the critical current and normal resistance of one junction, at Ic2 = 100
µA and Rn2 = 2 Ω. Then, we varied the parameters of the second junction: Ic1 ∈ {80,120} µA,
and Rn1 ∈ {1,3} Ω. This gave us a set of IV curves such as the one in figure 9.10 (a), from which
we determined the locking range as the situation where the difference between the d-c voltages of
the two JJs is lower than 1 GHz in frequency units. It is four times lower than the oscillation’s
linewidth of a single junction (4 GHz at 50 K, for Rn = 2 Ω, see equation 9.2) so it seems a
sufficient criteria.

Figure 9.11 represents the span over which the two JJs are locked in color scale, when Ic1 and
Rn1 vary, at 100 K. We limited the maximum frequency to Vdc ∗ 2e/h = 400 GHz, i.e. it shows
how well the junctions are synchronized up to this value.

When Ic1 = Ic2 and Rn1 = Rn2 the junctions are perfectly synchronized. When the parameters
are not equal, the span follows the first diagonal, suggesting that the junctions are easier locked
when the inequalities Ic1 < Ic2 and Rn1 < Rn2 are similarly ordered. In other words, as previously
explained, it means that the uncoupled IV curves of the two junctions would cross each other (see
figure 9.9). The locking tendency is therefore understandable, insofar as the natural junctions’
oscillations have to be already close to each other.

When modifying geometrical parameters of our junctions, at first order it does not increase
the IcRn product. In other words, if make a longer barrier and a thinner junction, we increase its
Rn but we decrease its Ic accordingly. Therefore in general, for two junctions, if Ic1 < Ic2, we will
likely have Rn1 > Rn2. On figure 9.11 it corresponds to the other diagonal, on which the parameter
spread is more restrictive.

Nonetheless, with these simulations we find back two commonly stated rules of thumb for
synchronization: (i) the spread in the critical currents is more damaging than the one in the normal
resistances, and (ii) the acceptable difference between critical currents is about ±7%. In fact
the map clearly shows that a difference of more than ±15% is tolerable on Rn, whereas only
∆Imax

c /Imean
c < 7% is acceptable. This gives us the reproducibility performances that we need to

achieve phase-locking.
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Figure 9.11: Locking span at 50 K, in color scale, when Ic1 and Rn1 vary. The parameters of the second
junction are fixed: Ic2 = 100 µA and Rn2 = 2 Ω. The LR shunt branch is the same as in figure 9.10, i.e.
L = 20 pH and Rb = 0.5 Ω.

9.3 Characterization of externally coupled Josephson junctions

We fabricated several devices in order to test the idea of external locking, many of which are
still under study. Even though the junctions could be placed in theory at an arbitrary distance, in
practice one has to ensure that they are close, because any superconducting line of length l, width
w and thickness t has an inductance L, sum of the geometric and kinetic terms, given by:

L = 0.2µ0l
(1

2
+ ln

( 2l
w+ t

))
+µ0λ (0)2 l

(1− (T/Tc)2)wt
(9.16)

where λ (0) is the London penetration depth, that we can take at 135 nm for our YBa2Cu3O7 films
[199]. For example, at 50 K, Tc = 89 K and a film thickness t = 70 nm, a 1x1 µm2 superconducting
line has an inductance L = 0.8 pH. It increases with the length of the line, for a fixed width. Thus,
one has to avoid inductive effects between the junctions by placing them as close as possible.
Nowadays, we can have them separated by 1 µm, but a further optimization of the process (e-
beam dose) could lower down the distance to a few hundreds of nm.

9.3.1 Fabricated 2D array

We end this chapter by presenting the latest measurement results, that were performed on a 10x10
shorted 2D array, in which we believe that we observe evidences of synchronization. Figure 9.12
is a photograph of the fabricated device. It is in fact a grid, that can be biased top to bottom. The
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50 µm

Ib

Figure 9.12: Photograph of the 10x10 2D shorted array.

grid rows and columns are all 1 µm wide superconducting lines. There is an electrode at the end
of each line, so that voltages can be simultaneously measured across all of them. The junctions
are at the intersecting position between the grid (light green) and the slits in the PMMA resist,
horizontal brown lines, slightly visible.

The equivalent circuit is given in figure 9.13. As a first approach, we neglect the line induc-
tances in the array, validated by the above discussion. The 2D array is a good method to overcome
any parameter spread. In fact, each line acts as a single junction whose Ic and Rn depend on the
ones of the junctions it harvests. More precisely the critical current of one line is simply the sum
of the junctions’, and its Rn is the inverse of the inverted normal resistances’ sum. It is another
reason why may be the most efficient way to fabricate a local oscillator.

Even though we did not explicitly fabricated an external LR shunt (what should be investigated
in any further study), a coupling between the lines hopefully happens thanks to all the SQUID
loops in the grid. In other words, a junction from one line can couple with one from another line
through LR shunting loops, in which L is a Josephson inductance.

9.3.2 Evidences of synchronization in the IV curves

Figures 9.14 (a), (b), (c) and (d) show the IV curves of several lines, taken at 31 K, 33 K, 39 K and
41 K respectively. We emphasized synchronization effects by light blue shades. At 31 K and 33 K,
line 6 (L6) clearly shows a perturbed behavior at low biases (see insets), with an obvious locking
on L1 at 33 K, between 5 and 10 GHz. At these temperatures, notice also that the IV curves of L1
and L2 on one hand, and L9 and L10 on the other hand tend to join but do not overlap.

Then, at 39 K and 41 K, two different groups of IV curves overlap: one formed by L1, L2,
L4 and L5, and another by L9 and L10. From the insets, we see that the IV curve of L1 (in dark
green) clearly joins the ones of L2-5. Thus, the lines tend to lock with their neighbors, but as the
distance increases, unified locking is lost, and they synchronize in different groups. Once again, a
feedback loop between L1 and L10 could overcome this issue.

At high biases, the curves progressively drift from each other, and we lose synchronization
in the same manner as in the simulation of figure 9.10. Thus, we estimate that a synchronization
arise inside these two different groups, between 70 and 170 GHz at 39 K, and 60 and 110 GHz at
41 K. Therefore an optimal temperature may be found.

We did not show the IV curves of the other lines, because no synchronization effect was
obvious. In addition, even if L6 interacts with L1 at 33 K, it did not obviously locked with the first
group (L1-5) at higher temperatures.

In conclusion, we showed that synchronization effects arise in the array, evidenced by over-
lapping IV curves. At 39 K and 41 K, two different groups of lines tend to lock. This phenomenon
could be greatly improved, and a unified phase-locking could be achieved in the whole 2D array
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Figure 9.13: Circuit of the 10x10 2D array. When current biased top to bottom, the voltages across each
line can be read independently.
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Figure 9.14: IV curves of several lines in the 10x10 2D array, at 31 K (a), 33 K (b), 39 K (c) and 41 K (d).
The locking phenomena are emphasized with the light blue shades. At 31 K and 33 K, L6 tends to phase
lock with the previous lines, and at 39 K and 41 K, phase-locking happens in two separate groups of lines.

with external LR shunts between lines. Another option would be to apply an external magnetic
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field, in the perpendicular direction to the array plane [60], and to confront its response to simula-
tions [63].

9.4 Conclusion on the synchronization of Josephson junctions

When synchronized, radiation characteristics of a Josephson junction array are greatly increased
compared to a single junction. It improves both the linewidth, made thinner, and the emitted power,
made higher. In this frame, 2D arrays give the best theoretical performances, at the expense of a
more complicated design than 1D arrays.

We reviewed the different coupling mechanisms existing, and identified the long range inter-
actions as the only efficient way to couple high-Tc Josephson junctions. In the diverse zoology
of possible arrays, we identified the shorted 2D array as a promising scheme to detect a first syn-
chronization effect with YBa2Cu3O7 irradiated Josephson junctions. Furthermore, its rather sim-
ple structure makes it understandable, possible to simulate, and a good candidate for additional
schemes such as external feedback loops.

In order to understand more deeply the physics of the high-frequency coupling, we studied the
effect of an inductive and resistive feedback loop on two junctions placed in series. The parallel
inductance value has to be carefully engineered, so as to enhance the feedback. We thus found
reasonable parameters for our junction’s characteristics, and showed that synchronization is in
principle possible at 50 K. The effect of parameter spread was also investigated in simulations,
comforting ourselves in the possibility to achieve a good synchronization with our technology.

Finally, we presented the first results that we obtained on a 10x10 shorted 2D array, for which
evidences of synchronization are observable. With the agility of our fabrication process, further
improvements will undoubtedly come up, and what we showed here paves the way to an integrated
local oscillator for Josephson mixers.





Conclusion

Driven by a transverse approach, we proposed in this thesis to address terahertz detection with
a high-Tc Josephson mixer, which performances were evaluated. We also harnessed the idea of
creating a local oscillator with high-Tc Josephson junctions. Overall, the originality of this study
stems from the unique process that has been developed to fabricate YBa2Cu3O7 Josephson junc-
tions, and from the multiple physics required to understand such devices. It led to the results
presented in this manuscript.

Having reviewed the existing terahertz detectors and sources, we showed that our technology
could be competitive in the sense that high-Tc Josephson mixers work at fairly high temperatures,
and necessitate extremely low local oscillator powers. Of course, their sensitivity does not com-
pete with low-Tc SIS mixers, but they may find a place in prolonged space observation missions,
or in affordable short range communications systems. In any case, they will require further im-
provements and characterization.

We successfully applied a modified version of the proximity effect theory, originally developed
for low-Tc materials, to describe the complex physics of Josephson junctions, fabricated by ion ir-
radiation. Allied with data obtained from implantation simulations, we were able to quantitatively
explain their behavior with temperature. From an experimental point of view, it set the range of
parameters, energy and dose, that should be used during ion irradiation. The fabrication process
and the implantation simulations also showed the limits of our technology in terms of resolution.
Overall, it seems that working with 750 nm wide and 40 nm long junctions is the limit beyond
which reproducibility is poor. This leads to IcRn products of about 0.2 mV.

The d-c transport measurements showed that the Josephson junction respects the resistively
shunted junction (RSJ) model, in a range of temperature of about 40 K to 60 K, where the transport
is mainly determined by Josephson effect. Inside, the characteristic frequency displays a maximum
of about 85 GHz around 50K. Below, there is a continuous transition to the flux-flow regime and
the Josephson oscillations progressively disappear. Taking into account the peculiar physics of our
junction, in which the normal part extends with the current bias, we successfully fitted current-
voltage characteristics and Shapiro steps with a modified RSJ model.

We explained the mixing operation with the three-port model, from which we identified the
conversion efficiency as the product of three terms: two depending on the impedance mismatches
and the third one characterizing the intrinsic down-conversion ability. With a microwave setup,
we proved the heterodyne detection of signals up to 400 GHz, and performed an extensive study
of the Josephson mixer’s performances. We measured its dynamic range, of more than 55 dB at 20
GHz and 30 dB at 140 GHz. We showed that it needs between 0.1 nW to 10 nW of local oscillator
power, which is two orders of magnitude lower than classical cryogenic heterodyne detectors, SIS
or HEB. The optimum power diminishes by half the critical current, but the mixer’s performances
do not severely depend on it. Finally, we evaluated its conversion efficiency: about 2% at 20 GHz
and down to 0.01% at 140 GHz. These low values sprang from the fact that we were penalized by
poor impedance matching, at the input and output of the mixer. We were able to fit the shape of
the conversion efficiency with the three-port model at different frequencies, from 20 to 140 GHz.
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It displayed a transition at the characteristic frequency, below which the optimum mixing point is
in the middle of the risers, and above which it shifts towards the edges of the Shapiro steps.

Finally, we paved the way towards the use of irradiated Josephson junctions as coherent tera-
hertz emitters. We identified the long range interactions as the only efficient mechanism to trigger
synchronization in high-Tc Josephson junctions. We explained in detail the physics of an exter-
nal feedback loop, and showed its effect in simulated systems. It allowed us to set experimental
parameters for the design of Josephson junction arrays. Finally we saw a first evidence of syn-
chronization in a 10x10 shorted 2D array.

What remains to be done ? We proposed several roads that we believe are worth further in-
vestigation. Many of them were supported by promising simulations, the approach which, all
along the course of this thesis, bolstered our understanding of physical systems, and helped to set
boundaries for experimental parameters. First, the flexibility of our fabrication technology is a
unique tool to achieve coherent emission with synchronized junctions. Then, for an applicative
perspective, one will have to accurately evaluate the noise temperature of the device. Josephson
mixers have been known to be noisy, but Josephson junction arrays as detectors could circumvent
the issue. The low conversion efficiencies thwarted us from correctly performing a noise measure-
ment, but we proposed a design whose impedances are better matched to the junction’s, and hope
that it will be used in a hot/cold measurement scheme. Finally, we proposed the idea according
to which the junction’s self-oscillation would be used as a local oscillator, when filtered by an
external inductive branch.



Appendix A

Fluctuations of a thermal and coherent
radiation on a direct detector

A.1 Absorbed power

Any detector can undergo to two limit cases of radiation: coherent and thermal (completely in-
coherent), on which depend the minimum fluctuations, hence the noise stemming from the mea-
surement process. The situation is particularly complex in a heterodyne detector, because the
fluctuations come from two sources: a (fairly) coherent LO and an incoherent signal.

In any case, one can show that the mean incident power on a receiver can be written as:

< Pinc >=
M

∑
m

∫ ν0+∆ν

ν0

hν < nm(ν)> dν (A.1)

where we assume that it responds only to radiations whose frequencies lie between ν0 and ν0+∆ν

and where < nm(ν) > is the mean number of photons in the spatial mode m. M is the maximum
number of spatial modes that the receiver can accept, which depends on its geometry (see cite).
Often in THz detecting systems, M > 1 but it is not high enough to approximate the sum by an
integral. The discrimination between the two limit cases, thermal or coherent, enters in the shape
of distribution function < nm(ν) >. If ηm(ν) is the absorption efficiency of the receiver for a
photon in the mode m, the mean absorption power is given by:

< Pabs >=
M

∑
m

∫ ν0+∆ν

ν0

ηm(ν)hν < nm(ν)> dν (A.2)

Thermal radiation. For a thermal radiation, < nm(ν) > is given by the Planck function,
which we consider identical for all spatial modes:

< nm(ν)>=
1

e
hν

kBT −1
= fp(ν) (A.3)

In the "band-limited" assumption we consider that the passband is narrow enough so that ν and fp

can be considered constant over the range of integration, and that all the modes are equally well
matched: ηm(ν) = ηm. Then the absorbed power writes itself as:

< Pabs >= hν0 fp∆ν

M

∑
m

ηm (A.4)
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In the Rayleigh-Jeans limit, kBT � hν , therefore e
hν

kBT −1 ' hν

kBT and if we assume that all the M
modes are perfectly matched to the sensor (ηm = 1) we get:

< Pinc >=< Pabs >= kBT ∆νM (A.5)

Note that this expression is also true in the case of an arbitrarily large-band sensor, since we can
make the same simplification under the integral of expression A.2.

Coherent radiation. For a coherent radiation, the probability of measuring n photons in an
arbitrary time interval is given by the Poisson statistics:

p(n) =
[< n > (t)]n

n!
e−<n>(t) (A.6)

where < n > (t)∼ sin2(ω0t). Hence, considering that all the modes are equally well matched:

< Pabs >=< Pinc >
M

∑
m

ηm = hν0∆ν < n >
M

∑
m

ηm (A.7)

which, for a monomode coherent radiation (m = 1) gives:

< Pabs >= η < Pinc >= ηhν0∆ν < n > (A.8)

A.2 Fluctuations

Under the band-limited assumption, one can show that the fluctuations of the absorbed power, for
any radiation can be written as:

< (∆Pabs)
2 >= (hν0∆ν)2 < [∆nm(ν0)]

2 >
M

∑
m

ηm (A.9)

In the special case of only one spatial mode:

< (∆Pabs)
2 >= (hν0∆ν)2 < ∆n(ν0)>

2
η (A.10)

which gives in general the best case prediction experimentally. Let us compute the power spectral
density Sp(ν) defined as:

Sp(ν)≡
√

< (∆Pabs)2 >

∆ν
(A.11)

in the two limit cases, thermal and coherent.

Thermal radiation. In a thermal radiation the fluctuations < ∆n(ν)>2 are given by:

< ∆n(ν)>2= fp( fp +1) (A.12)

Therefore

< (∆Pabs)
2 >= (hν0∆ν)2 fp( fp +1)

M

∑
m

ηm (A.13)

There are two important situations: first the low frequency limit, i.e. the Rayleigh-Jeans limit
kBT � hν . In this situation < ∆n(ν)>2' (kBT/hν)2 and:

< (∆Pabs)
2 >= (kBT ∆ν)2

M

∑
m

ηm (A.14)
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The power spectral density Sp(ν) is then given by the famous Johnson-Nyquist theorem:

Sp(ν) = kBT

√
M

∑
m

ηm (A.15)

Second, in the high frequency limit, i.e. kBT � hν , we have fp� 1 hence fp( fp + 1) ' fp and
considering that (in the band-limited assumption) < Pinc >= hν0 fp∆ν (equation A.1) we get:

Sp(ν) =

√
hν0 < Pinc > ∑

M
m ηm

∆ν
(A.16)

which is the expression of the photon shot noise. In general we are more familiar to its expression
in terms of the current spectral density fluctuations that the radiation measurement induces on
a square-law detector. In these devices, an absorbed photon generates charge carriers, hence a
photocurrent given by:

I =
eg

hν0
Pinc (A.17)

where g is the photoconductive gain. A square-law detector can only measure < I >2:

< I >2= 2
( eg

hν0

)2
< Pinc >

2 (A.18)

Thus the current spectral density fluctuations (for a perfectly matched monomode incoming radi-
ation) are given by:

SI(ν) = 2
( eg

hν0

)2Sp(ν)
2
∆ν = 2egIdc (A.19)

where Idc =< Pinc >=
√
<I>2√

2
is the d-c. current. As we can see, although similar to the current

fluctuations in electronic devices, the photon shot noise is not due to current fluctuations, but arise
from the measurement process of a coherent radiation.

Coherent radiation. Given the Poisson statistics of coherent radiations (equation A.6), the
variance is equal to the mean:

< n >=< (∆n)2 > (A.20)

Therefore, for a monomode coherent radiation we get from equation A.8:

< Pabs >= ηhν0∆ν < (∆n)2 > (A.21)

and replacing in equation A.10:

Sp(ν) =

√
ηhν0 < Pinc >

∆ν
(A.22)

A.3 Number of collected modes

It is in general difficult to calculate and measure the number of modes M collected by a detector.
However a simple estimation can be done, using the Antenna theorem. For a beam with a solid
angle ΩB shined onto a detector having a field of view ΩFOV we estimate:

M =
ΩFOV

ΩB
(A.23)
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Now, the antenna theorem states that:

ΩB ≥
λ 2

A
(A.24)

where A is the area of the collecting antenna. The equality is reached for a diffraction limited
situation. Hence a good estimation is:

M =
ΩFOV

λ 2 A (A.25)

The number of modes traveling into WR-N metallic waveguides can be exactly computed. In
fact in this standard, the ratio between the width and the height of the rectangular waveguide is
W/h = 2, and the N gives the width in 1/100 th of inches. Then, the cut-off low frequency is given
by:

νcLow =
c

2W
(A.26)

so for example, a WR5 has a cut-off low frequency at 118 GHz. More generally, the cut-off
frequency for any TEmn mode is given by:

ν
m,n
c = c

√( m
2W

)2
+
( n

2h

)2 (A.27)

Hence, given a traveling frequency ν0 into the waveguide, one can count the number of different
combinations of m and n such that ν

m,n
c < ν0, which gives the number of modes M.

In both cases (free space or waveguide) a good approximation is given by:

M =

⌊
ν0

νR

⌋2

+1 (A.28)

where ν0 is the traveling frequency, bc is the rounding down integer function, and νR is a fitting
frequency parameter. Usually νR is somewhat greater than νcLow. For example for a WR10 waveg-
uide, νcLow = 59 GHz and νR = 85 GHz. For a golay cell whose area is 6 mm and whose focal
length is 50 mm, the number of modes given by equation A.25 is:

M = 2π[1− cos(
6
50

)]π(6.10−3)2(400.109

3.108

)
' 9 (A.29)

And the formula A.28 gives also M = 9 with νR = 125 GHz.

A.4 NEP in direct detection

Coherent radiation. For a single mode coherent radiation, one can form the SNR before
detection from equations A.8 and A.21:

SNRBD =

√
ηPinc

hν∆ν
(A.30)

Hence the NEPBD is given by:

NEPBD =
hν

η
∆ν (A.31)

which again, states the quantum limit of the measurement. Equations 1.6 and 1.8 give the NEPAD

and NEP′AD:

NEPAD =
hν

η

√
2∆ν∆ f (A.32)

NEP′AD =
hν

η

√
2∆ν (A.33)
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Thermal signal. Equations A.4 and A.13 yield to the SNR before detection:

SNRBD =

√
∑

M
m ηm fp√

fp( fp +1)
= e−

hν0
kBT

√
M

∑
m

ηm (A.34)

the quantum limit of the NEP appears more clearly if we use < Pinc >= Mhν0∆ν fp (from equation
A.4). Then:

SNRBD =

√
∑

M
m ηm < Pinc >

< Pinc >+Mhν∆ν
(A.35)

and therefore we find the NEPBD:

NEPBD =
Mhν0∆ν

∑
M
m ηm−1

(A.36)

Equations 1.6 and 1.8 allow to compute the NEPAD and NEP′AD:

NEPAD =
Mhν0

∑
M
m ηm−1

√
2∆ν∆ f (A.37)

NEP′AD =
Mhν0

∑
M
m ηm−1

√
2∆ν (A.38)

In the Rayleigh-Jeans limit, kBT � hν0 and with equation A.5, < Pinc >= kBT ∆νM therefore:

NE∆T =
NEPAD

kB∆νM
(A.39)





Appendix B

Fabrication details of YBa2Cu3O7
irradiated Josephson junctions

The samples contain a 70 nm YBa2Cu3O7 film (CeO2 buffered), 9x9 mm, single sided, E-Type. On
YBa2Cu3O7 is grown in situ 250 nm of a gold layer. The substrate is Al2O3, on r-cut, 10x10x0.5
mm thick, one side polished. The company gives a typical critical temperature of about 85 K and
a critical current density of about 3 MA.cm−2.

B.1 Step 1: structuring the gold layer

The MAN-2405 deposition is done the following way:

• Clean the sample: 5 min in acetone with ultrasounds, followed by 5 min in isopropanol
(IPA) with ultrasounds.

• Dehydrate the sample: 1 min on a heating plate at 90◦C . All along the process, one should
avoid to heat the sample beyond 100◦C, otherwise one might deplete the oxygens.

• Spin coat an adhesion promoter, the bis(trimethylsilyl)amine (HMDS) at 6000/4000/30,
which means at an acceleration of 600 rpm, a speed of 4000 rpm and for 30 s.

• Wait for a few seconds and spin coat the MAN-2405 at 3000/3000/30. This gives a 500-
550 nm thickness (measured with a profilometer and in agreement with the spin coating
specifications of the resist [10]).

• Bake 3 min at 90◦C.

It is photosensitive, hence one has to manipulate it in a UV free environment until its chemical
development. Depending on the size of the areas to scan, one uses two different sets of parameters
for the first e-beam:

• Layer 0, for big areas (greater than a few tenth of µm2). Dose: 190-200 µC.cm−2, step: 0.1
µm and current: 6.4 nA. The higher the current, the shorter the exposure. The writing field
is 100 µm2 (magnification 600 X).

• Layer 1, for smaller areas (a few µm2). Dose: 170 µC.cm−2, step: 0.02 µm and a current:
0.4 nA. The writing field is 100 µm2 (magnification 600 X).

This parameters were optimized for a SEM FEG-SEM, Magellan FEI. One should better separate
the total exposing field and have one per device, so as to ensure the smallest alignment shift.
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Indeed there is always a global shift between the different writing fields when the beam scans the
whole sample surface. Moreover, the layer 1 harvests the realignment marks for the next e-beam
exposures, so they must be perfectly aligned with respect to each device.

The MAN-2405 is a negative photo and electro resist, hence the zones exposed to the electron
beam remain after the chemical development. The developing procedure removes the unexposed
resist:

• Develop 30 s in a solution of AZ 726 MIF developer. The best way is for the sample to rise
an eight in the solution.

• Wash 20 s in distilled water.

• Repeat three times the first two steps, then change the distilled water.

• Repeat one more time the first two steps.

• Develop 15 s in the AZ 726 MIF developer.

• wash 15 s in distilled water.

• repeat one time the last two steps.

Thus, the total developing time is 150 s, and the switch between water and developer ensures a
smooth process. Also, that way one can optically control the operation during the development.
Figure 2.8 (b) represents the sample at this stage.

The Ar etching is done in a Plassys MEB 550S (at Paris 7 clean room). In order to ensure an
homogeneous etching, one should place the sample at the center of the sample holder, tilt the it by
10◦with respect to the Ar beam, and rotate it at 10◦s−1. The etching time depends on the thickness
of the gold layer: it can be controlled with a secondary ion monitor system (SIMS) but without it,
a good rule of thumb indicates that 20 nm of Au is etched per minute, so for 250 nm the process
lasts 750 s.

After cleaning 15 to 20 min in acetone with ultrasounds, then 10 min in isopropanol with
ultrasounds, the sample is a YBa2Cu3O7 layer on top of which the gold layer is patterned. Figure
2.8 (d) represents a spiral antenna embedded in a microwave transmission line at the end of such
a step, for which a photograph is at figure 2.9 (c).

B.2 Step 2: patterning the YBa2Cu3O7 layer

The second deposition of the resist is similar to the first one. A fine realignment on each design
has to be done. We expose only 100 µm2, hence no write field alignment is needed. The fine
structures of each design are then bound to fit inside 100 µm2 but it always has been large enough.
We also pattern protections between islands of gold for the 4 point measurement of the d-c current
and voltage. The e-beam parameters are the following:

• Layer 2, for the protections. Dose: 190-200 µC.cm−2, step: 0.1 µm and current: 6.4 nA.
The writing field is 100 µm2 (magnification 600 X).

• Layer 3, for the fine realignments. The alignment procedure uses 4 markers for each design,
patterned in the gold layer during the first e-beam. Dose: 160 µC.cm−2, step: 0.02 µm and
current: 13 pA. The writing field is 100 µm2 (magnification 600 X), no write field alignment
is needed since we only expose 100 µm2.
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Then the sample undergoes the first ion implantation. It is done at the INESS Laboratory
in Strasbourg. We prepare them in a clean room environment where they are carbon taped at
the center of a 2 inches silicon wafer or metallic plate. The carbon tape ensures a good charge
evacuation, but one might improve the process by clamping the samples.

The implantation parameters are: O+ ions sent at 70 keV, with a dose of 2.1015 ions.cm−2.
Also one should ensure that the current flowing through a 3 inches wafer does not exceed 20 µA
to avoid any heating effect. Hence the current should not exceed 0.44 µA.cm−2. Given such a
dose and current, the typical ion irradiation time is 10-15 minutes.

B.3 Step 3: creating the weak-link.

After the first implantation one needs to clean the sample prior to the third e-beam lithography.
Very often, the irradiated MAN-2405 is quite difficult to remove. Thus one has to:

• put the sample 30 min in acetone with ultrasounds, followed by 30 min in isopropanol with
ultrasounds.

• Finish with a short reactive ion etching with oxygen ions (50 mTorr, 100 sccm O2, 60 W).
The O2 plasma should not exceed 3 minutes, which is enough to remove the remains of the
resist (optically controlled).

The last e-beam lithography is done at the LPN laboratory (in Marcoussis), with a vistec ebpg
5000+. It generates a 100 keV beam, has a writing speed of 50 MHz and an ultimate resolution
of 10 nm. One needs such high performances to open the 40 nm narrow slits in the 500−550 nm
thick PMMA. The PMMA is a positive electro sensitive resist, hence the exposed part come off
during the chemical development.

Before the e-beam, one has to prepare the sample:

• Spin coat the PMMA (type "A7", 50 g.L−1) at 4000/4000/30.

• Bake 3 minutes at 100◦C.

• Optionally, deposit a thin aluminum layer (20-30 nm) to ensure a good charge evacuation
during the e-beam.

We then expose the PMMA to the electron beam with the following parameters:

• Layer 4 for the thin slits. Dose of 2500 µC.cm−2, step: 2.5 nm and current: 1 nA. The
writing field is 100 µm2.

• Layer 5 to remove the PMMA on the d-c pads. Dose of 1100 µC.cm−2, step: 20 nm and
current: 100 nA. The writing field is 100 µm2.

Then, one removes the aluminum metalization in a NaOH solution (5-10 g.L−1) and develop
the PMMA 45 s in a diluted solution of MIBK/IPA (proportions 1/3). The figures B.1 represent
the different fabrication steps of a 10 ∗ 10 2D array of Josephson junctions. The picture B.1 (a)
is captured after the IBE, the picture B.1 (b) is taken at the end of the second e-beam lithography
and the picture B.1 (c) at the end of the third one. On the later we distinguish the result of the
e-beam in the PMMA: thin horizontal brown lines inside the 10x10 square matrix. The figure 2.10
(b) represents the central part of an antenna, on which we also distinguish a slit in the PMMA.

For the oxygen annealing, one should avoid to heat too much the samples to prevent the oxygen
depletion. Hence we chose the following parameters: annealing for 3 hours at 110◦C in a saturated
oxygen atmosphere. The O2 flow is controlled by a bubbler at the exit of the oven (approximately
one bubble per second).
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100 µm 50 µm 50 µm

(a) (b) (c)

Figure B.1: (a) Optical photo of d-c Au contacts on YBa2Cu3O7, after the IBE. (b) Optical photo of the
same contacts connected to a design of a 10x10 2D array, after the second e-beam lithography. (c) Optical
photo of the same design after the third e-beam lithography. The slits (brown thin lines inside the square
matrix) appear on the PMMA.



Appendix C

Numerical resolution of the RSJ
equations

In practice, the simulation of an IV curve consists in solving the system equations 3.39 by numer-
ical integration, and we simply used the Euler method. A LO enters in the model as additional
current source, purely coherent. Hence the system to be numerically solved (with a homemade C
program running with Matlab) is:{

v[n+1] = Rn(ib)
(
ib− sinφ [n]+δ in + iLOcos(κLOτ[n])

)
φ [n+1] = φ [n]+ v[n+1]δτ

(C.1)

where the bracket notation means discrete time steps, of pace δτ . ib is the (static) current bias
and κLO is the LO normalized frequency. For each current bias, a voltage vector is thus found
iteratively, for each step τ = 0 : dτ : τmax, starting with a random initial phase and v[0] = 0. The
initial conditions in the RCSJ model are more subtle, since one needs to enter the history of the
system. Thus one takes v[0] = v[i−1]

dc , for an increasing current and v[0] = v[i+1]
dc for a decreasing

one. In any case, the noise δ in is a random variable changed at every step, whose variance is given
by 3.42.

The system is numerically heavy to solve: first because one needs a sufficiently small δτ to
account for the rapid variation of the voltage oscillations, especially at low bias where there are
short pulses, and at the same time one needs at sufficiently high τmax in order to have enough
oscillations to average. With the LO, δτ must be much smaller than 1/κLO, and τmax should be
sufficiently high to average enough IF oscillations. We typically have vectors of 200000 points,
and δτ ∼ 0.01. Second because the presence of the (actually pseudo random) noise also requires
to average the calculation of each vdc over several iterations of the same IV curve (especially for
mixing simulations). Typically, 10 averages give smooth enough curves (500 are required for the
mixing simulations).





Appendix D

Numerical resolution of the Usadel
equations

D.1 Equations to solve

In the θ -χ parametrization, the self-consistent Usadel equations to be solved are the three follow-
ing expressions, for any integer n:

h̄D
2

∂ 2θn

∂x2 −
[ h̄D

2
(∂ χ

∂x

)2
+ h̄Γ(x)

]
sinθncosθn−ωnsinθn +2∆(x)cosθn = 0 (D.1)

∂

∂x

[∂ χ

∂x
sin2

θn(x)
]
= 0 (D.2)

|∆(x)|= λ2πkBT ∑
n≥0

sin(θn(x)) (D.3)

ωn = (2n+1)πkBT are the Matsubara frequencies. The second one is the continuity equation and
the third one is the expression of the superconducting gap |∆(x)|. Γ(x) is the displacement per
atom, given by the implantation simulations. It acts as a pair-breaking term.

After resolution, the supercurrent density will be given by:

js =−2πeν(0)DkBT
∂ χ

∂x ∑
n≥0

sin2(θn(x)) (D.4)

D.2 Boundary conditions

The Usadel equations describe the evolution of the Green functions for the normal electrons and
the paired electrons. In order to solve D.1 we need to add boundary conditions, through which we
will specify the nature of the S-N interface (located at x = 0). In the case of a transparent interface,
the boundary conditions are given by:

σS
(∂θn

∂x

)
x=0− = σN

(∂θn

∂x

)
x=0+ (D.5)

sin(θn(x = 0−)) = sin(θn(x = 0+)) (D.6)

where σN and σS are the electrical conductivity in the normal and in the superconducting part
respectively. Equation D.5 represents the momentum conservation during the Andreev reflection
and equation D.6 indicates the continuity of the Green functions amplitudes at the interface (trans-
parency). Far from the interface, for a BCS superconductor, one has:

tanθn =
∆

ωn
(D.7)
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D.3 Algorithm

The numerical resolution of the system consists in finding θn and χ . It is delicate since equation
D.1 is strongly non linear. We intend to solve an equation of the form ∀x, f (θn(x)) = 0 for a given
Matsubara frequency ωn. To do so we use a relaxation method. It consists in starting with a first
estimation of θn(x) and then correct this approximation with a δθn(x) term that is found by saying
that f (θn(x)+δθn(x)) = 0. Then one iterates the process with a new value θn(x)′= θn(x)+δθn(x)
until a stopping condition is reached (such as δθn < ε , where ε is a small numerical constant). We
linearize f (θn(x)+δθn(x)) such that:

f (θn(xi)+δθn(xi)) = fi(θn(xi))+gi(δθn(xi+1),δθn(xi),δθn(xi−1)) = 0 (D.8)

where xi is a discrete position along the x axis, so we can form the matrix relation with all the xi : f1(θn(x1))
...

fM(θn(xM))


(M,1)

+

[
∂gi

∂δθn(xi)

]
(M,M)

 δθn(x1)
...

δθn(xM)


(M,1)

= 0 (D.9)

Notice that
[

∂gi
∂δθn(xi)

]
(M,M)

is trigonal. More precisely, the numerical algorithm is the following:

1. fix a Matsubara frequency n (starts a n = 1).

2. estimate θn([x]1...M), ∆([x]1...M) and dχ

dx ([x]1...M) (initial conditions: a constant, given by the
boundary condition D.7, a constant equal to ∆(0) and a tanh function for χ([x]1...M), such
that χ(xmax)−χ(xmin) has a fixed value).

3. compute the spectral current Qn =
dχ

dx sin2θn.

4. inverse
[

∂gi
∂δθn(xi)

]
(M,M)

(with the LU decomposition algorithm).

5. calculate

[δθn[x]](M,1) =−
[

∂gi

∂δθn[xi]

]−1

(M,M)

[ f (θn[x])](M,1)

6. assign the new value θ ′n = θn +δθn to θn and reiterate steps 2 to 4 until |θ ′n−θn|< ε .

7. proceed steps 2 to 6 for every Matsubara frequencies (up to the one where ωnmax > ωD, the
Debye frequency. We take nmax = 25).

8. compute the new gap ∆(x) with equation D.3.

9. compute the new phase derivative dχ

dx = Qn
sin2θn

.

10. compute the new spectral current.

11. reiterate steps 2 to 10 until the gap value has stabilized.



Appendix E

Quasi-static impedance of a CPW line

Depending on the experimental setup that we used, there are two situations of interest for the
CPW lines represented in figure E.1: a coplanar waveguide (CPW) on top of a dielectric with a
finite thickness h (a), and a conductor-backed CPW (b). In the quasi-static approximation, one can
compute the line characteristic impedance in a close form, for each case. We consider the thickness
of the conductors forming the lines infinitely small (compared to the effective wavelength), which
is valid in our case (tAu = 250 nm). The following formulas are taken from [88].

(a) (b)

2b

2a

2c

hεr

2b

2a

2c

hεr

Figure E.1: (a) coplanar waveguide and (b) conductor-backed coplanar waveguide.

One defines:
k1 =

a
b

(E.1)

k2 =
sinh(πa

2h )

sinh(πb
2h )

(E.2)

k3 =
a
b

√
1−b2/c2

1−a2/c2 (E.3)

k4 =
sinh(πa

2h )

sinh(πb
2h )

√
1− sinh2(πb

2h )/sinh2(πc
2h )

1− sinh2(πa
2h )/sinh2(πc

2h )
(E.4)

In addition one defines K() and K′() as the complete elliptic integral of the first kind and its
complement, respectively. They are related to each other by:

K′(k) = K(
√

1− k2) (E.5)
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Then in situation E.1 (a), the effective relative dielectric constant εa
re f f is given by:

ε
a
re f f = 1+

εr−1
2

K(k4)

K′(k4)

K′(k3)

K(k3)
(E.6)

and the QS impedance Za
QS is given by:

Za
QS =

30π
√

εre f f

K′(k3)

K(k3)
(E.7)

In situation E.1 (b) one needs to define additionally:

k5 =
tanh(πa

2h )

tanh(πb
2h )

(E.8)

then, the effective relative dielectric constant εb
re f f is given by:

ε
b
re f f = 1+(εr−1)

K(k5)/K′(k5)

K(k1)/K′(k1)+K(k5)/K′(k5)
(E.9)

and the characteristic impedance writes as:

Zb
QS =

60π
√

εre f f

1
K(k1)/K′(k1)+K(k5)/K′(k5)

(E.10)



Appendix F

Expression of the matrix impedance
terms

In the frame of the black-box theory, a mixer can be considered as having two sets of ports: two
d-c ports and two r-f ports, see figure 6.2. At the d-c ports, one sends or measure a d-c current idc
and voltage vdc. At the r-f ports, one sends or measure an r-f current ir f and voltage vr f . Since the
local oscillator (LO) is much stronger than any other r-f signals in the circuit, it is fair to assume
that ir f = ilo and vr f = vlo. Now, considering a d-c and r-f current bias, the d-c voltage writes as:

vdc = vdc(idc, ilo) (F.1)

Since we do not (for now) chose any time origin, ilo ∈ C, but we always have vdc , idc ∈ ℜ since
in d-c. Thus, vdc : ℜ×C→ℜ.

Similarly, the LO voltage writes as:

vlo = zlo(idc, ilo)ilo (F.2)

where zlo is the mixer impedance at the LO frequency, and for the same reasons than previously,
vlo : ℜ×C→ C.

The black-box theory (in fact boundary conditions) leads to write the d-c and r-f differentials
as:

didc = ℜ(i0e jωIF t)

dvdc = ℜ(v0e jωIF t)

dilo = iue jωIF t + ile− jωIF t

dvlo = vue jωIF t + vle− jωIF t

(F.3)

where {i0,v0, iu,vu, il,vl} ∈ C a priori.
Now the idea is to differentiate the complex-valued functions F.1 and F.2, and then replace the

differential elements by the ones in F.3.

F.1 Complex differentiation

Let us define f as a complex-valued function:

f : C→ C
z 7→ f (z)
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We define the complex differentials as :{
∂ f
∂ z (z0) =

1
2

(
∂ f
∂x (z0)− j ∂ f

∂y (z0)
)

∂ f
∂ z∗ (z0) =

1
2

(
∂ f
∂x (z0)+ j ∂ f

∂y (z0)
)

Then, one can write (with the correct the continuity and derivability hypothesis):

d f (z0) =
∂ f
∂ z

(z0)dz+
∂ f
∂ z∗

(z0)dz∗

Applied to vdc it gives:

dvdc =
∂vdc

∂ idc
didc +

∂vdc

∂ ilo
dilo +

∂vdc

∂ i∗lo
di∗lo

Now we choose a time origin such that ilo ∈ℜ. Then one gets:

dvdc =
∂vdc

∂ idc
didc +

∂vdc

∂ ilo
(dilo +di∗lo) (F.4)

The differentiation of vlo gives:

dvlo = zlodilo + ilo
(∂ zlo

∂ idc
didc +

∂ zlo

∂ ilo
dilo +

∂ zlo

∂ i∗lo
di∗lo
)

Since zlo(idc, ilo) =
vlo
ilo

and ilo ∈ℜ we get:

dvlo =
vlo

ilo
dilo +

∂vlo

∂ idc
didc +

∂vlo

∂ ilo
(dilo +di∗lo)

dvlo =
∂vlo

∂ idc
didc +

(vlo

ilo
+

∂vlo

∂ ilo

)
dilo +

∂vlo

∂ ilo
di∗lo (F.5)

F.2 Replacement of the differential terms

Let us now replace the differential terms from F.3 in F.4 and F.5. For dvdc it gives in F.4:

ℜ(v0e jω0t) =
∂vdc

∂ idc
ℜ(i0e jω0t)+

∂vdc

∂ ilo
2ℜ(dilo)

ℜ(v0e jω0t) =
∂vdc

∂ idc
ℜ(i0e jω0t)+

∂vdc

∂ ilo
2[ℜ(iue jω0t)+ℜ(ile− jω0t)]

Since ℜ(z1z2) = ℜ(z∗1z∗2) we get:

ℜ(v0e jω0t) =
∂vdc

∂ idc
ℜ(i0e jω0t)+2

∂vdc

∂ ilo
ℜ(iue jω0t)+2

∂vdc

∂ ilo
ℜ(i∗l e jω0t) (F.6)

Since ℜ(z1z2) = ℜ(z1)ℑ(z2)−ℑ(z1)ℑ(z2), on the left-hand side, the expression ℜ(v0e jω0t) writes
as ℜ(v0)cos(w0t)−ℑ(v0)sin(w0t), and similarly for the right-hand side elements. Then, for any
t, the equation has the form:

[
ℜ(v0) ℑ(v0)

][ cos(ω0t)
sin(ω0t)

]
=
[

ℜ(rhs) ℑ(rhs)
][ cos(ω0t)

sin(ω0t)

]
(F.7)



F.2. Replacement of the differential terms 177

where rhs is the right-hand side of equation F.6. We thus conclude that v0 = rhs, that is to say:

v0 =
∂vdc

∂ idc
i0 +2

∂vdc

∂ ilo
iu +2

∂vdc

∂ ilo
i∗l (F.8)

Replacing the differentials F.3 in the expression of dvLO (equation F.5) gives:

vue jω0t + vle− jω0t =
∂vlo

∂ idc
ℜ(i0e jω0t)+

(vlo

ilo
+

∂vlo

∂ ilo

)
(iue jω0t + ile− jω0t)+

∂vlo

∂ ilo
(i∗ue− jω0t + i∗l e jω0t)

For which the equality between the real and the imaginary part of the left and right-hand side (form
as in F.7) gives:

vu + vl =
∂vlo

∂ idc
ℜ(i0)+

(vlo

ilo
+

∂vlo

∂ ilo

)
(iu + il)+

∂vlo

∂ ilo
(i∗u + i∗l )

vu− vl =
∂vlo

∂ idc
ℑ(i0)+

(vlo

ilo
+

∂vlo

∂ ilo

)
(iu− il)+

∂vlo

∂ ilo
(−i∗u + i∗l )

If we now make the assumption that i0 ∈ℜ, by making the sum and the conjugated difference of
the two equation, one gets:

vu =
1
2

∂vlo

∂ idc
i0 +

(vlo

ilo
+

∂vlo

∂ ilo

)
iu +

∂vlo

∂ ilo
i∗u

v∗l =
1
2
(∂vlo

∂ idc

)∗i0 + (vlo

ilo
+

∂vlo

∂ ilo

)∗i∗l + (∂vlo

∂ ilo

)∗iu (F.9)

Thus, we can conclude on the expression of the impedance matrix ˜̃z: zuu zu0 zul
z0u z00 z0l
zlu zl0 zll

=


vlo
ilo

+ ∂vlo
∂ ilo

1
2

∂vlo
∂ idc

∂vlo
∂ ilo

2 ∂vdc
∂ ilo

∂vdc
∂ idc

2 ∂vdc
∂ ilo(

∂vlo
∂ ilo

)∗ 1
2

(
∂vlo
∂ idc

)∗ ( vlo
ilo

+ ∂vlo
∂ ilo

)∗
 (F.10)





Appendix G

Expression of conversion efficiency with
impedances

The impedance matrix is defined by:

˜̃z =

 zuu zu0 zul
z0u z00 z0l
zlu zl0 zll


and the external impedance matrix by:

˜̃zext =

 zu 0 0
0 z0 0
0 0 zl


from which we define the total admittance matrix as:

˜̃y = ( ˜̃z+ ˜̃zext)
−1 =

 yuu yu0 yul
y0u y00 y0l
ylu yl0 yll


with the latter, the conversion efficiency η writes as (see section 6.2):

η = 4ℜ(z0)ℜ(zu)|y0u|2 (G.1)

Let us express it with the impedance matrix terms. The brute-force inversion of ˜̃y yields to:

y0u =
−z0u(zl + zll)+ z0lzlu

(z0 + z00)[(zu + zuu)(zl + zll)− zulzlu]− z0lzl0(zu + zuu)− z0uzu0(zl + zll)+ z0lzluzu0 + z0uzl0zul
(G.2)

The equivalence between signal and image leads to infer:

zll = z∗uu , z0l = z0u , zul = z∗lu , zl0 = z∗u0 (G.3)

In addition, we consider that zu = z∗l , and that we can choose a time origin such that z0u ∈ℜ [179].
Finally, by definition, z00 ∈ℜ. Then equation G.2 simplifies in:

y0u =
−z0u(z∗u + z∗uu)+ z0uz∗ul

(z0 + z00)[|zu + zuu|2−|zul|2]+2z0u
(
ℜ(z∗ulzu0)− iℑ[z∗u0(zu + zuu)]

)
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Let us now compute y0uy∗0u:

youy∗ou =
z2

ou[|zu + zuu|2 + |zul|2−2ℜ(zul(zu + z∗uu))]

(z0 + z00)2[(|zu + zuu|2−|zul|2)+2z0uℜ(z∗ulzu0)
]2
+4 |z0u|2 ℑ(z∗u0(zu + zuu))2

(G.4)

which is difficult to interpret as it is. However, we can add the following hypothesis:

|zul| , |zu0| � |zu + zuu| , and |z0u| � |z0 + z00| (G.5)

It is valid since in general, the external impedances |zu| and |z0| are much higher than any term in
the impedance matrix of the mixer. Thus, the relation G.4 simplifies in:

y0uy∗0u =
z2

0u
|z0 + z00|2|zu + zuu|2

(G.6)

Consequently, the conversion efficiency η writes itself as:

η = 4z2
0u

ℜ(z0)

|z0 + z00|2
ℜ(zu)

|zu + zuu|2
(G.7)
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