
HAL Id: tel-01213197
https://theses.hal.science/tel-01213197

Submitted on 7 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamical aspects of a moving front model of mean-field
type

Aser Cortines

To cite this version:
Aser Cortines. Dynamical aspects of a moving front model of mean-field type. Mathematics [math].
Paris 7, 2015. English. �NNT : �. �tel-01213197�

https://theses.hal.science/tel-01213197
https://hal.archives-ouvertes.fr
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Résumé

On étudie un modèle stochastique en temps discret introduit par E. Brunet et B.
Derrida en 2004 : un nombre fixe N de particules évolue sur la droite réelle selon un
mécanisme de mutation, branchement et sélection. Les particules restent groupées
et se déplacent comme un front soumis à un bruit aléatoire. Au-delà de leur intérêt
mathématique, ces types de front décrivent, par exemple, l’évolution d’un système
ayant deux différents types de particules X et Y , réagissant selon une règle d’auto
catalyse irréversible X + Y → 2X. Le modèle étudié est du type champ moyen et
les particules peuvent être interprétées comme la percolation de dernier passage sur
le graphe {1, . . . , N}. Il a été prouvé par F. Comets, J. Quastel et A. Ramirez en
2013 que le front évolue globalement à une vitesse determinée et que les perturbations
apparaissent dans une échelle de temps

√
t. Dans cette thèse, on calcule la vitesse

asymptotique quand N → ∞ pour une large classe de bruits aléatoires. On prouve
ainsi que le premier terme dans le développement limité de la vitesse satisfait des
propriétés universelles ne dependant que de la queue droite de la probabilité de ξ.

On peut également interpréter le modèle comme étant la dynamique d’une popula-
tion de taille constante, les positions représentant alors les caractéristiques génétiques
de chaque individu. Dans ce cas, on s’intéresse à la manière dont les individus sont
reliés entre eux et combien de générations doit-on remonter dans le temps afin de leur
trouver un ancêtre commun. Pour une loi particulière du bruit, on montre que l’échelle
de temps de coalescence moyenne est donnée par lnN et que l’arbre généalogique du
modèle converge en loi vers le processus de coalescence de Bolthausen-Sznitman, ce
qui confirme les prédictions physiques pour cette classe de modèles.

Mots clés : Processus branchants; séléction; vélocité de propagation d’un front; coa-
lescent; percolation de premier passage; théorie des valeurs extrêmes.

Abstract

We focus on the discrete-time stochastic model studied by E. Brunet and B. Derrida
in 2004: a fixed number N of particles evolve on the real line according to a branch-
ing/selection mechanism. The particles remain grouped and move like a travelling-
front driven by a random noise. Besides its the mathematical interest, moving fronts
describe, for example, the evolution of systems having two different species X and Y
of particles, reacting according to the irreversible auto-catalytic rule X + Y → 2X.
The model here is of mean-field type and the particles can also be interpreted as the
last passage time in directed percolation on {1, . . . , N}. It has been proved by F.
Comets, J. Quastel and A. Ramı́rez in 2013 that the front moves globally at a deter-
ministic speed and that fluctuation occur in the diffusive scale

√
t. In this thesis, we

compute the asymptotic speed as N → ∞ for a large class of random disorders. We
prove that the finite-size correction to the speed satisfies universal features depending
on the upper-tail probabilities. For a certain class of noise, the techniques we have
developed also allow to compute the asymptotic diffusion constant.

From a different perspective, one can also interpret the model as the dynamics of
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a constant size population, the positions being the fitnesses of the individuals. In this
case, we focus on how individuals are related and how many generation one has to go
back in time in order to find a common ancestor. For a specific choice of disorder, we
show that the average coalescence times scale like lnN and that the limit genealogical
trees are governed by the Bolthausen-Sznitman coalescent, which validates the physics
predictions for this class of models.

Keywords: Branching processes; selection; front propagation speed; coalescent; first-
passage percolation; extreme value theory.
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Chapter 1

Introduction

1.1 Stochastic models of front propagation

Front propagation phenomena can be observed in various non-equilibrium system
in physics, chemistry and biology. Roughly speaking, it describes the evolution of
systems having two homogeneous steady states: a stable one and an unstable one.
Initially, both states coexist, then as time passes the stable phase “invades” the unsta-
ble one and this dynamics is described by a moving boundary separating both phases.
The boundary conditions at the interface are determined by the microscopic proper-
ties of the model and how the stable and unstable phases interact. It is impossible to
provide an exhaustive list of references about the subject, but, for a general overview
and different models, we recommend [bAH00, Pan04] and the references therein.

In this thesis, we focus on reaction-diffusion processes of the form

X + Y → 2X. (1.1)

Here, X and Y represent the stable and unstable phases, respectively, that one may
interpret as different molecules or reactants. In chemistry, the dynamics has the
following description: in a certain medium, such as a sealed reaction tank, one places
a certain amount of the two substances. Initially, the two substances are segregated
and as time passes the molecules perform some motion determined by the internal
properties of the medium. When a X-molecule encounters a Y -molecule a reaction
takes place and we end up with two X-molecules. Since the tank is sealed, the total
number of molecules remains constant and as time passes one observes the X-phase
invading the Y -phase.

Various non-equilibrium systems can be described by (1.1), and the example of
molecules reacting is far from being exhaustive. Reaction-diffusion processes of the
form (1.1) can explain how an advantageous gene propagates in a population of in-
dividuals, as first demonstrated in [Fis37, KPP37]. It can also describe ordinary
phenomena such as the propagation of an infection into a population or the combus-
tion of a material, see Figure 1.2. In the latter example, X stands for the burning
(or burned) surface and Y the non-burning part. If the material is not burning,
it will stay in this state, the Y -phase, until an external agent starts a combustion.
As soon as combustion starts, one observes the propagation of the flames towards
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1.1. Stochastic models of front propagation

Figure 1.1: The molecules perform a random motion, determined by the medium (for example,
independent Brownian motions). When a Y -molecule (•) hits a X-molecule (◦) the reaction occurs
immediately.

the non-burning area. When the material is completely burned, the systems reaches
equilibrium once again (the X-phase) and it can not return to the previous state
(irreversibility). Other motivations and models can be found in [bAH00, Pan04].

1.1.1 The F-KPP equation and continuous-time models

Although we will only focus on discrete-time models, the continuous-time analogues
have been widely studied in the mathematical-physics [BCDM+86, BD97, BD99,
BD01] and mathematical [Bra83, DR11, McK75, MMQ11, MS95] literatures. In the
continuum, effective equations are available to describe front dynamics, and some
of these results have been used as basis for predictions and conjectures concerning
discrete-time models [BD97, BD99]. Here, we make a brief overview of the continuous
theory, which will contribute to the general understanding of the theory.

We return to the preceding example of particles reacting in a sealed tank to provide
a phenomenological picture, see Figure 1.1. Assume that the two species of particles
(X and Y ) are within an inert, undisturbed fluid medium, and hence that their motion
is Brownian. Let hε(t, x) be the local concentration in x of X-molecules at time t,
so that the proportion of Y -molecules is given by 1−hε(t, x). Here ε represents the
ratio between the macroscopic and microscopic scales, hence, in this case, ε−1 can be
seen as the average number of particles per unit of length. We will focus on the limit
function

lim
ε→0

hε(t, x) = h(t, x),

which describes the macroscopic behaviour of the system. If the two species of particles
do not react, then h will merely be solution to the heat-equation

∂th = ∂xxh, (1.2)

satisfying the initial data h(0, x) = h0(x) given by the initial concentration in x of
X-molecules. Such solutions have the well-known probabilistic representation

h(t, x) = E
[
h0

(
x+Bt

)]
,

where
{
Bt, t ∈ R

}
is the standard Brownian motion. The heat equation (1.2) neglects

the effects due to reaction, and one must add an extra term to it in order to capture
this phenomenon.

12



1.1. Stochastic models of front propagation

(a) (b)

(c) (d)

Figure 1.2: Flame propagation: the microscopic configuration of the medium can be represented by
a lattice such as a rectangular box K ⊂ εZ2, where ε represents the ratio between the macroscopic
and microscopic scales. Each site may be burning or non-burning and the dynamics obeys a nearest
neighbour constrain, that is, a non-burning site may change its state only if one of its neighbours
is already burning. For a x ∈ εZ, let hε(t, x) be the proportion of burning sites in K along the
vertical line passing through x (dashed line on the graphic). When the material is completely
burned hε(t, x) ≡ 1, reversely hε(t, x) ≡ 0 when it is not burning.
Often as ε→ 0, hε(t, x) can be approximated by a deterministic smooth front h(t, x) (in red).

The rate at which two different particles collide is proportional to

h(t, x)
(
1− h(t, x)

)
,

for simplicity we will assume that the proportionality constant is 1. By assumption,
as soon as two different particles collide, the auto-catalytic reaction (1.1) takes place
instantaneously, which yields a reaction term of the form h(1−h). Adding it to (1.2),
one gets the well-known Fisher Kolmogorov-Petrovskii-Piscounov (F-KPP) equation

∂th = ∂xxh + h− h2. (1.3)

This example indicates that in the continuum those reaction-diffusion processes are
often described in the macroscopic level by partial-differential equations of the F-
KPP type, see [GK04] for other examples and generalizations. For (1.3), the space
homogeneous solutions h ≡ 1 and h ≡ 0 are respectively stable and unstable, and it
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1.1. Stochastic models of front propagation

is known [Bra83, GK04] that for an initial data joining the two phases

lim
x→−∞

h(0, x) = 1, lim
x→+∞

h(0, x) = 0, with 0 ≤ h(0, x) ≤ 1 ∀x ∈ R,

there exists a one-parameter family (Fv, v ≥ 2) of travelling-wave solutions indexed
by v ∈ [0,+∞[, the velocity of the wave, such that

h(t, x) = Fv(x− tv), t > 0.

Plugging Fv into (1.3), one sees that it solves the differential equation in z = x− tv

F′′v(z) + vF′v(z) + Fv(z)
(
1− Fv(z)

)
= 0, (1.4)

with boundary conditions Fv(+∞) = 1 and Fv(−∞) = 0. The solution Fv of the
above differential equation does not have an explicit analytic expression, but one
can determine the possible velocities v for the system [BD97, BD99]. The idea is
the following: since Fv(z) → 0 as z → +∞, for z sufficiently large, the differential
equation (1.4) behaves like the linear differential equation

F′′ + vF′ + F = 0,

which solutions are spanned by Ae−γz. It is well-known that this linear equation
admits positive solutions if and only if v ≥ 2, in this case v = v(γ) = γ + 1/γ. The
precise statement and a rigorous proof were given by Bramson [Bra83]. He also proves
that if the initial data decays faster than e−x at +∞ (for example, step functions),
then the front moves asymptotically with the minimal speed vmin, which is equal to 2
in this case.

The F-KPP equation has been introduced independently by Fisher [Fis37] and
Kolmogorov et al. [KPP37] in the study of biological models and propagation of
advantageous genes. Since then, the F-KPP equation has been extensively studied
and it has connections with different themes in probabilities such as spin glasses theory
[Bov06, Der85, DG86] and the branching Brownian motion [Bra78, Bra83, McK75,
DS88].

Equations of the type (1.3) are often obtained either as the large-scale limit
[BCDM+86, BD97, BD01, PL99] or the mean-field limit [DS88] of physical situa-
tions that are described in the microscopic level by random interactions between a
finite number of particles. The deterministic equation (1.3) does not capture the fluc-
tuation effects observed in the above examples. However, the microscopic picture is
often represented as a noisy version of it:

∂thε = ∂xxhε + hε − h2
ε +

√
ε
(
hε − h2

ε

)
Ẇ (t, x), (1.5)

where Ẇ (t, x) is the space time white-noise and ε represents the ratio between the
microscopic and macroscopic scales (the stochastic F-KPP).

For ε > 0 sufficiently small, it has been proved [MS95] that for a continuous initial
data h0(x) := hε(0, x) ∈ [0, 1] such that h0(1−h0) has compact support, there exists
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1.1. Stochastic models of front propagation

a continuous (random) solutions hε(t, x, ω) ∈ [0, 1] of (1.5), with a finite upper bound
on the support

rε(t, ω) := sup{x; hε(t, x, ω) > 0} <∞; for almost every ω ∈ Ω,

where (Ω,H,P) is the probability space in which hε is defined. Moreover, the process
seen from the leading edge

h0
ε(t, x, ω) := hε

(
t, x− rε(t, ω), ω

)
(1.6)

converges to a stationary limit as t→∞. In contrast to the stochastic equations of the
F-KPP type, which admits a continuous family of solutions indexed by the velocity,
in the stochastic models a single velocity vε is selected by the system, regardless of
the initial conditions [Bra78, BD97, BD01]

lim
t→∞

rε(t)

t
= vε a.s.

It has been foreseen by Brunet and Derrida [BD97, BD01] and proved by Mueller et
al. in the celebrated paper [MMQ11], that vε converges to the minimal velocity vmin,
which is 2 in (1.3),

vε = 2− π2

|2 ln ε|2 +O
(

ln | ln ε|
| ln ε|3

)
as ε→ 0. (1.7)

Notably, the corrections to the limit are extremely large in comparison to ε, which is
a prominent feature of a whole class of models.

1.1.2 Brunet Derrida N-particle system

In this thesis, we consider a discrete-time stochastic model in which a fixed number
N of particles evolve on the real line. The state of the system at any time is described
by its empirical distribution function, which is a non-increasing, random step function
with jumps of size 1/N . As the system evolves, we observe the stable phase (usually
the “one” phase) invading the unstable one. We are interested in understanding what
determines the motion and derive the universality properties of such models.

The process we focus on has been introduced by E. Brunet and B. Derrida [BD04].
Let X1(0), . . . , XN(0) be the initial positions of the particles. With

{ξij(s); 1 ≤ i, j ≤ N, s ≥ 1}

an i.i.d. family of real random variables (r.r.v.’s), the positions evolve as

Xi(t+ 1) := max
1≤j≤N

{
Xj(t) + ξji(t+ 1)

}
. (1.8)

A directed polymer formulation of (1.8) is given by Cook and Derrida in the earlier
paper [CD90]. With some abuse of notation, we will often use ξ to denote the common
law of the r.v.’s and also a generic r.v. having this distribution.
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1.1. Stochastic models of front propagation

One can interpret the N -particle system (1.8) in many different ways. In Sec-
tion 1.2, we will associate to it a first-passage percolation problem, which is simply
the zero-temperature version of the polymer model studied in [CD90]. It can also be
seen as a population dynamics under the effects of selection, see Section 1.3 below.
In each context, the universal properties of the model have their respective meaning,
and it may serve as a basis for predictions and conjectures to more general models.

The velocity of the N-particle system. As in the continuous case, the cloud
of particles travels at a deterministic velocity. For ξij ∈ L1, it is proved in [CQR13]
that the limits

lim
t→∞

1

t
max

1≤i≤N
Xi(t) = lim

t→∞

1

t
min

1≤i≤N
Xi(t) = vN(ξ) (1.9)

exist a.s. with vN(ξ) a real constant depending on the law of ξ. The limit vN(ξ) is
called the speed of the N-particle system. We will summarize the general results in
the field and give a brief proof of this result in Section 2.4.

An important part of this thesis is dedicated to the study of the velocity and its
asymptotic behaviour for large N . We prove that for a large class of distributions the
finite-size corrections to the speed satisfy universal properties depending only on the
upper tail probabilities of ξ.

A related question concerns how the front deviates from this velocity. In this case,
the authors in [CQR13] also prove that for ξij ∈ L2,

max {Xi(t)} − tvN(ξ)√
t

converges in distribution to a Gaussian r.v. with variance DN(ξ). Unfortunately, the
technique we have developed in order to compute the finite-size corrections to the
speed does not apply in this case, and apart from a few examples the exact diffusion
constant DN(ξ) is known.

Front shape and discrete noisy reaction-diffusion equations. We associate
to the positions of the particles the empirical distribution function

UN(t, x) :=
1

N

N∑

i=1

1{Xi(t)≥x}, (1.10)

that is a front-like random step function satisfying

lim
x→−∞

UN(t, x) = 1, lim
x→∞

UN(t, x) = 0 a.s.

Here the ratio between the macroscopic and microscopic scales is given by 1/N , the
inverse of the number of particles. The front equation UN(t, x) shares several com-
mon properties with the stochastic solution of the noisy F-KPP (1.5): independently
from the initial data, the front moves globally at the deterministic velocity vN(ξ),
and the whole motion is determined by what happens near the leading edge (pulled
front). Thus, as time passes, one also observes the stable phase invading the unstable
one, which occurs at the speed vN(ξ), and the front properties (such as its shape
and the velocity) are essentially determined by the upper tails probabilities. Despite
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1.2. First-passage percolation

the similarities, (1.10) has mean-field structure and it is intrinsically random and
discrete. These peculiarities make the problem considered here rather different from
the usual F-KPP problem, hence the techniques we have developed may be helpful to
understand different front equations.

Only a few mathematical results concerning the front shape are available. In
Theorem 1.2 of [CQR13], Comets et al. prove that, when ξ has exponential upper
tail, the front seen from the leading edge converges to a stationary limit

lim
N→∞

UN
(
t+ 1,Φ

(
X(t)

)
+ x
) law

= 1− exp
(
−e−x

)
, ∀t ∈ N (1.11)

where Φ
(
X(t)

)
is a random space-shift, which compensates the front position at

time t, we refer to Section 2.5 for a detailed account. An analogy can be drawn
between the N -particle system seen from the leading edge and (1.6), and the limit in
(1.11) corresponds to the travelling wave Fv(x) from (1.4) with the minimum speed
v = 2, thus (1.11) is a rigorous formulation for the particle system as a travelling
front. However, this limit behaviour should not be expected for different ξ, that is,
having an upper tail different from exponential. Consider, for example, negative ξ
with polynomial density close to 0. In this case, a simple calculation shows that as
N →∞ the trivial convergence holds

UN
(
t, x
) law→ 1{x≤0}, ∀t ∈ N.

Instead, one should focus on the rescaled front equation UN(t, x/aN), with aN a
real sequence converging to zero. The results obtained in Chapter 4 suggest that
aN is asymptotically equivalent to N−1/1+α, where α is density exponent, but the
asymptotic properties of the front for this kind of disorder remain unknown. It seems
clear from simulations (see Section 2.6) that a limit shape exists, and that it is different
from (1.11).

1.2 First passage percolation and the maxima of

correlated random variables

From a different perspective, the model (1.8) can be interpreted as a first-passage
percolation model on the oriented graph with vertex and edge sets given by

V := N× {1, . . . , N} and E :=
{
〈(i, t), (j, t+1)〉; 1 ≤ i, j ≤ N, t ≥ 0

}
.

Here, the graph is oriented on the second coordinate (t-coordinate increases by one
unit at each step of the path), though on the transverse direction jumps are allowed
between all pairs of sites i, j (1 ≤ i, j ≤ N), so the model is of mean-field type.

Assuming that ξ is negative, −ξij(t+1) can be seen as the passage time on the
oriented edge from (j, t) to (i, t + 1). By a simple induction argument, one obtains
from (1.8) the formula

Xi(t) = max
{
Xj0(0) +

t∑

s=1

ξjs−1js(s); 1≤js≤N, ∀s = 0, . . . , t−1 and jt= i
}
, (1.12)
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1.2. First-passage percolation

which yields a path representation of the interacting particle system (1.8). As (1.12)
shows, −Xi(t) is the first-passage time from the line t = 0 to the point (i, t), in a
model of first-passage percolation on the vertex set {1, . . . , N} × N. Similar random
structures [FMS14, GNPT86, HM07] have been used in computer sciences and queue-
ing theory to study task graphs for parallel processing. In this case, −ξij(t+1) stands
for the time required to complete a certain task. The direction constrain simply means
that the task at step t−1→ t must be completed before the task at step t→ t+1 can
start.

A natural question coming from this kind of problem is about the minimum time
one should wait before all tasks are completed. In the case of (1.12), the limit

lim
n→∞

1

n
max

1≤i≤N
Xi(n) = vN(ξ)

exists a.s. and −vN(ξ) is the so-called time-constant of the model. Hence, the first-
passage time grows, up to fluctuations, linearly with the number n of tasks, and it is
important to precise the limit vN(ξ).

For general percolation models, the value of the time-constant is not available,
but in the present case the mean-field feature allows us to compute the asymptotic in
the limit of large graphs. The following theorem is a weaker version of Theorem 4.1
formulated in the framework of first passage percolation (with positive passage times).

Theorem 1.1. Let
{
ζij(t); 1 ≤ i, j ≤ N ; t ∈ N

}
be a family of i.i.d. positive

random variables with a polynomial density close to zero. Consider the first-passage
percolation problem on the oriented graph N× {1, . . . , N}

mn := min
{ n∑

t=1

ζjt−1jt(t); 1≤jt≤N, ∀t = 0, . . . , n
}
.

Let also α > 0 and C > 0 such that

P(ζij ≤ x) ∼ Cxα, for x↘ 0,

where “∼” means that the ratio of the sides approaches to 1 as x↘ 0. Then, the limit

lim
n→∞

mn

n
= mN

exists a.s. Moreover,

mN =
α

eN1/α

(
αΓ(α)C

)− 1
α

+ o
(
N−1/α

)
as N →∞,

where Γ(·) is Euler’s gamma function and e = 2.718 . . . is the Napier’s constant.

In the particular case of exponential passage times, Theorem 1.1 is in force and

mN ∼
1

eN
as N →∞.
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1.2. First-passage percolation

We can relax the notion of “time” and allow it to be negative. Under this circum-
stances, the Gumbel distribution plays an important role. The Gumbel distribution
is one of the three max-stable laws and it has remarkable properties, see Section 2.1.
It was first noted by Brunet and Derrida [BD04] that for this choice of disorder the
model is completely solvable and that the front position evolves like a random walk.
For Gumbel passage times, the time-constant has the following asymptotic for large
N

vN(ξ) = lnN + ln lnN +
ln lnN

lnN
+

1− γE
lnN

+ o

(
1

lnN

)
, (1.13)

the diffusion constant for the model is also explicit as we show in Theorem 2.13. It
turns out that the technique used by Brunet and Derrida is also effective for other
first-passage percolation models, as we show in Section 2.5.2.

1.2.1 A directed polymer model.

First-passage percolation models can be often seen as the zero-temperature version
of a polymer problem. For (1.8), the lattice consists of planes in the transversal
direction. In every plane there are N points that are connected to all points of the
previous plane and the next one, see Figure 1.3. For each edge (i, j), connecting the
tth plane to the (t+1)th plane, a random energy ξij(t+ 1) is sampled from a common
probability distribution ξ. We associate to each directed path ω = [ω0, . . . , ωL] of
length L the energy

Eω :=
L∑

s=1

ξωs−1ωs(s).

We then define the probability measure µL on the space of all directed paths of length
L by

µL(ω) := ZL(T )−1 exp (−Eω/T ) ,

where T is the temperature, which describes how strongly the polymer path ω in-
teracts with the medium, and ZL(T ) is the partition function that is, a normalizing
constant making µL a probability measure. In zero temperature, we are faced with
an optimization problem: computing the ground state energy of the model that is,
the lowest energy of all possible walks (first-passage percolation).

Figure 1.3: Mean-field polymer model
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1.2. First-passage percolation

In [CD90], Cook and Derrida considered, among other things, a particular case of
disorder, that they named the “percolation distribution”. It consists in the inverse
of a Bernoulli law with parameter ρ/N1+r. In its zero temperature version, one can
interpret that the edges for which ξij(t) = −1 are closed, whereas if ξij(t) = 0 the
edge is open. For this kind of problem, one would like to know the average length of
the largest path passing uniquely through open edges.

(a) (b)

(c) (d)

Figure 1.4: Renewal structure in the Cook and Derrida’s dynamics.

They used heuristic arguments to study the asymptotic behaviour of vN(ξ). They
first observe that each particle Xi(t) stays still or moves downward. Now, at each
step t→ t+1, typically N−r fraction of the leading particles remains to be the leader.
Therefore, after [1/r] + 1 steps, all N particles drop out and lie at a unit distance
behind the leaders. Using a simple renewal theorem, one obtains the following formula

lim
N→∞

vN(ξ) =
1

1 +
[
1/r
] .

However, if 1/r ∈ N, then the number of particles after 1/r steps is of order of unity
and the argument does not work. The above formula can not hold true in this case,
and some rounding effect happens causing the limit speed to take values different from
1/N∗. To obtain such result, a further analysis is necessary and one must know how
many particles remain to be leaders at 1/r ∈ N.

In Chapter 3, we study among other things the front properties for this kind of
disorder and prove that, as N → ∞, the number of leaders at t = 1/r is distributed
according to a Poisson r.v. with parameter one, obtaining a correction to the above

20



1.2. First-passage percolation

formula. The complete statement, the proof and a generalization for the next two
theorems are in Chapter 3.

Theorem 1.2. For the percolation distribution,

lim
N→∞

vN(ξ) =

{(
1 + [1/r]

)−1
, if 1/r 6∈ N(

1 + [1/r]− e−ρ
1/r)−1

, if 1/r ∈ N.

The formula in Theorem 1.2 bridges the gap between the values of the speed in
1/N∗ (case 1/r 6∈ N as described in [CD90]), as ρ ranges from 0 to +∞ and r ∈ 1/N∗.
The same techniques we have developed allow one to compute the asymptotic for
the diffusion constant DN(ξ). For large N and 1/r 6∈ N, the system almost does not
diffuse, hence the approximation by vN(ξ) is sharp. On the other hand, when 1/r ∈ N
the diffusion constant DN(ξ) is positive, and the front position diffuses around tvN(ξ)
at the diffusive scale

√
t.

Theorem 1.3. For the percolation distribution,

lim
N→∞

D2
N(ξ) =

{
0 if 1/r 6∈ N
e−ρ

1/r − e−2ρ1/r
, if 1/r ∈ N.

1.2.2 The correlation structure and the overlap function

When studying the extremal properties of random structures of the form (1.12), one
must take into account the correlation between variables. It is well-known that for a
sequence of identically distributed r.v.’s Z1, . . . , Zn, the asymptotic behaviour of their
extremum

Mn = max
1≤i≤N

{Zi}

depends strongly on the correlations between the variables. This dependence can be
easily seen on the two opposite examples. If the Zi are all equal (“maximal correla-
tion”)

P(Mn ≤ x) = P(Z1 ≤ x), ∀n ∈ N,
and no scaling is necessary. On the other hand, when the variables are independent
(no correlation)

P(Mn ≤ x) = P(Z1 ≤ x)n, ∀n ∈ N,
and one must rescale in order to observe a non-trivial behaviour (see Section 2.1).
Assuming that all particles start at zero, the path representation (1.12) yields to

max{Xi(n)} = max
{ t∑

s=1

ξjs−1js(s); 1≤js≤N, ∀s = 0, . . . , n
}
.

Let ω := [j0, j1, . . . , jn] and ω′ := [j′0, j
′
1, . . . , j

′
n] be two directed paths of length n. A

natural way to quantify the correlation between the r.v.’s

t∑

s=1

ξjs−1js(s) and
t∑

s=1

ξj′s−1j
′
s
(s)
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1.2. First-passage percolation

is to count the overlap between the paths ω and ω′

R(ω, ω′) := ]
{
s; (js, js+1) = (j′s, j

′
s+1)

}
. (1.14)

If the overlap is zero, the r.v.’s are independent, while, if the overlap is n the r.v.’s
are actually the same, see Figure 1.5.

ω

ω′

Figure 1.5: The vertical lines (in dashed grey) represent the vertical plans with N lattices. We
represent two directed-paths ω and ω′ in black and blue respectvely. The overlap between the
paths is represented in red. In contrast with classical branching models, the ovelap segment in not
connected.

Other classical models, such as branching random walks, have similar correlation
structures. For branching random walks the detailed description of its extremal pro-
cess is known [Aı̈d13, Zei], we will recall the most relevant results and give a general
overview of the theory in Section 2.2. The methods developed for studying branching
random walks have become recently relevant in seemingly unrelated problems, such as
the study of the maximum of certain Gaussian fields [BDZ13, BDZ14, BL13, BDZ11].
In the continuum, one can mention the recent studies of the point process generated by
branching Brownian motion [ABK13, ABBS13, BH14b, BH14a]. In Gaussian models
(i.e. when ξ is Gaussian distributed), the correlation structure determines completely
the joint law (assuming that ξ has mean zero), so the overlap function characterizes
completely the model.

As we will show in Section 2.4.2, the correlation structure in (1.8) is more involved
when compared to the correlations in a branching random walk. Nevertheless, the
techniques developed in the framework of branching random walk are also relevant to
the study of (1.8), see Chapter 4.
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1.3. Population models

1.3 Population Models and propagation of fronts

One can also see (1.8) in the context of population genetics, and interpret the positions
of the particles as the individual fitnesses, which is transmitted to the offspring, up to
variations due to mutations. An important question in the domain is to understand
the effect of selection and mutation on the genealogy. For a given population, we
would like to know how individuals are related and how many generations do we have
to go back in time in order to find a common ancestor.

Kingman [Kin75, Kin82] was one of the first to give a mathematical formulation
for this problem and study the ancestral history of a population. The genealogical
relation between a group of n individuals can be described by a Markov process Πn

t

taking values on the set of partitions of {1, . . . , n}, the so-called ancestral partition
process :

i ∼ j on Πn
t ⇔ i and j share the same ancestor t generations ago,

see Section 2.3 for the rigorous definition and a general overview of the theory.
Kingman showed that in the absence of selection (neutral models) the genealogi-
cal trees converge to those of a Kingman’s coalescent and that the average coales-
cence times scales like N , the size of the population. Two well-known examples lying
in this universality class are the Wright-Fisher and Moran model [Mor58], see also
[Möh99, Möh00, MS01] for other examples and generalizations.

It is well-known that some mathematical models do not lie in this universality
class: Schweinsberg [Sch03] considers a Galton-Watson processes with selection of N
offspring (they are chosen at random for survival). He proves that depending on the
tail probabilities of the reproductive law, the limit may be Kingman’s coalescent, a
coalescent with multiple collisions (Λ-coalescent), or a coalescent with simultaneous
multiple collisions (Ξ-coalescent). Discrete population models with unequal (skewed)
fertilities, such as the skewed Wright-Fisher model and the Kimura model, are not
necessarily in the domain of attraction of the Kingman’s coalescent [HM11].

For several biological models selection plays an important role and there is an
ongoing competition between the mutations, which makes individuals explore larger
and larger regions of genome space, and selection, which tends to concentrate them
at the optimal fitness genomes. Individuals with large fitness spawn a considerable
fraction of the population, whereas the children of low fitness individuals tend to be
eliminated. Therefore, these population models are sometimes referred to as “rapidly
adapting”. If we consider the evolution of the fitnesses along the real axis, it is
simply a stochastic model of front propagation. The selection mechanism constrains
the particles to stay together. Since individuals with large fitness quickly overrun the
whole population, the front is essentially pulled by the leading edge. In the continuum
these models are then related to noisy travelling wave equations of the F-KPP type
[BD13, BDMM06, BDMM07], whereas for discrete-time models, equations of the form
(1.8) are in force.

Recent results suggest that in rapidly adapting population models the genealogical
correlations between individuals have universal features. It is conjectured [BD13,
BDMM06, BDMM07] that the genealogical trees of these populations converge to the
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Bolthausen-Sznitman coalescent and that the average coalescence times scales like the
logarithmic of the populations size. The conjectures contrast with classical results in
neutral population models, such as Wright-Fisher and Moran models. An example of
rapidly adapting population model for which these conjectures have been proved is
the “exponential model” [BD13, BDMM06, BDMM07]. It consists in a constant size
population model, for which a complete mathematical treatment is possible. Each
individual i in generation t carries a value xi(t), which represents its fitness. The
offspring of the individuals are generated by independent Poisson point process with
intensity measure

χ(dy) = e−y+xi(t)dy.

One then selects the N rightmost individuals to form the next generation t+ 1. The
authors show that, after rescaling time by a factor lnN , one obtains the convergence
to the Bolthausen-Sznitman coalescent.

A dual problem is the genealogy of a branching population killed by a moving ob-
stacle, e.g. a line. Berestycki et al. [BBS13] consider a system of particles, performing
branching Brownian motion with negative drift and killed upon reaching zero. The
authors choose the appropriate drift such that the model is in the near-critical regime
and the initial population size N is roughly preserved. They show that the expected
time to observe a merge is of order (lnN)3 and that the genealogy of the particles is
also governed by the Bolthausen-Sznitman coalescent.

In Section 2.3, we show that the N -particle system (1.8) leads naturally to a
population dynamics, and in Chapter 5, we prove that when ξij is Gumbel G(ρ, β)-
distributed, the generations are independent and the model is mathematically solv-
able. In this case, the population dynamics has several similarities with the expo-
nential model described above, notably, the only information one needs from the
generation t to draw the next generation is the “front position” Φ

(
X(t)

)
, see Chap-

ter 5 for a detailed account. Yet, the models differ in fundamental aspects, such as
the selection and reproductive mechanisms. We obtain the following result concerning
the limit in law of the ancestral partition process.

Theorem 1.4. For ξ Gumbel distributed, the average coalescence times scale like
lnN . Moreover, re-scaling time by lnN , the ancestral partition process converges in
distribution to the Bolthausen-Sznitman coalescent.

The above theorem validates the predictions by Brunet, Derrida, Mueller and
Munier for this class of models. Although it has been predicted that the Bolthausen-
Sznitman should appear as the limit genealogy of a whole class of system of particles
which can be loosely described as branching random walks with selection, very few
results in this direction have so far been proved.

Polymer models and genealogies. Polymers models in zero-temperature and
population dynamics are close related. In its zero-temperature version, the polymer
problem is reduced to find the path minimizing the energy in a random energy land-
scape. The optimal paths starting at the same point but arriving at different points
give rise to a tree structure. Hence, an analogy can be drawn between the minimal
energy of a directed polymer arriving on a site, and minus the fitness of an individual
living on a site. Because of these similarities, it is expected that these models belong
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to the same universality class [BDS08]. In strong disorder regime, extreme statistics
are expected to play a crucial role [AL11, BK08] . The notion of ancestral lineages is
replaced there by the optimal paths and genealogy by geodesics, but the correlation
structures are more involved than in population dynamics.

1.4 Main contribution of the thesis

In this thesis, we have mainly studied the N -particles system (1.8) introduced by
Brunet and Derrida [BD04] and we have obtained results concerning the universal
properties of the model when the number of particles N diverges. These results
can be equally found in the following articles [CC15, Cor14a, Cor14b]. In the next
chapter (Chapter 2), we recall all background literature and necessary results used in
the present thesis. Apart from Proposition 2.15 in Section 2.5.2, the results presented
there are not original. In Section 2.5.2, we consider a specific last-passage percolation
model studied by Foss et al. [FMS14]. We adapt the technique developed by Brunet
and Derrida [BD04] and show that, when the passage times are Gumbel distributed,
the explicit time-constant of the model can be computed.

A considerable part of this thesis focus on to the asymptotic velocity vN(ξ) as N →
∞. In Chapter 3, we study the case of percolation distribution, proving Theorems 1.2
and 1.3. We also consider a generalization of it obtaining results of the type of
Theorem 1.2. In Chapter 4, we carry on with the study of the asymptotic velocity
and consider the case of non-lattice and bounded from above distributions. We prove
a generalized version of Theorem 1.1 showing that the finite-size correction to the
speed have universal features depending only on the upper tails probabilities of ξ.
The tools and techniques used in this chapter are rather different from the ones used
in Chapter 3, a considerable part of it has been borrowed from the branching random
walks literature, that we recall in Section 2.2.

The results of Chapters 3 and 4 are within the scope of the extreme value theory,
since they concern the maximum of a family of r.v.’s. We give in Section 2.1 a general
overview of the classical extreme value theory, in which one considers the maximum
of i.i.d. r.v.’s. We also recall in this section the important theorems and the classical
distributions that will often appear in the thesis.

Finally, in Chapter 5 we consider the genealogical aspects of the model, proving
Theorem 1.4. All necessary results and a general overview of the related literature
can be found in Section 2.3.
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Chapter 2

Preliminary Results

In this chapter we give the background results entering this thesis and a general
overview of the related topics. Several results we present are not original, so we will
skip their proofs and indicate the references.

2.1 Extremes of independent random variables

In the probabilistic literature, the study of the maximum of a collection of random
variables is often called extreme value theory. It is a remarkably rich and interesting
subject with applications in several areas such as: statistical physics, applied statistics,
earth sciences, mathematical finance and meteorology. Its roots can be traced back to
the works of Tippett and Fisher [Tip25, FT28] and Fréchet [Fré27], where the idea of
“max-stability” has been roughed out. In this introductory section, we give a general
overview of the classical extreme value theory, a detailed account of the general theory
and the proofs of the main results can be found in the books of Leadbetter, Lindgren
and Rootzén [LLR83] and Resnick [Res87], from which we borrow the approach.

Let
(
Zi
)
i∈N be a family of i.i.d. real random variables with common probability

distribution function F (·). Given n ∈ N, define the maximum up to time n,

Mn = max
1≤i≤n

{Zi}.

We want to understand the asymptotic behaviour of Mn as n diverges. The indepen-
dence between the r.v.’s yields

P(Mn ≤ x) = F n(x),

hence if we want to find a non-trivial distribution function Ψ(x) for which

lim
n→∞

P(Mn ≤ x) = Ψ(x),

we need to rescale the process. Otherwise, the following trivial limit always hold

lim
n→∞

P(Mn ≤ x) =

{
0 if P(Z1 ≤ x) < 1;
1 if P(Z1 ≤ x) = 1.
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Our goal is to find two sequences of real numbers
(
xn
)
n∈N, with xn > 0 for each

n ∈ N, and
(
yn
)
n∈N, for which the asymptotic behaviour of (Mn − yn)xn is non-

trivial. Under mild assumptions, the limit of the rescaled maximum exists and it is
stable under independent maxima. Precisely, the limit distribution Ψ(x) satisfies the
so-called “max-stability” property

Ψ(ỹn + x/x̃n)n = Ψ(x); for some sequences x̃n and ỹn.

Theorem 2.1 (Fisher and Tippet[FT28], Gnedenko [Gne43]). Suppose that there
exist two sequence yn ∈ R and xn > 0 such that

lim
n→∞

P
(
(Mn − yn)xn ≤ x

)
= Ψα(x), (2.1)

a non-degenerated probability distribution. Then, Ψα(·) is of the one of the three
following types:

Type I : Ψα(x) = exp
(
− e−x

)
.

If α = 0
(Gumbel distribution)

Type II : Ψα(x) =

{
0, if x ≤ 0;
exp

(
− xα

)
, if x > 0.

For some α < 0
(Fréchet distribution)

Type III : Ψα(x)=

{
exp

(
− |x|α

)
, if x ≤ 0;

1, if x > 0.
For some α > 0

(Reverse-Weibull distribution)

We say that F (·) belongs to the domain of attraction of Ψα if the sequences xn,
yn, for which (2.1) holds, exist. The existence of such sequences is directly related to
the behaviour of F (·) in a neighbourhood of its right-endpoint

xF := sup{x;F (x) < 1} ∈ R ∪ {+∞}.

Theorem 2.2 (Gnedenko [Gne43], de Haan [dH70]). F (·) belongs to the domain of
attraction of Ψα if and only if

Type I: There exists some strictly positive function g(t) such that ∀x ∈ R

lim
t→x−F

1− F
(
t+ xg(t)

)

1− F (t)
= e−x.

Type II: xF =∞ and ∀x ∈ R+

lim
t→∞

1− F (tx)

1− F (t)
= xα, where α < 0.

Type III: xF <∞ and ∀x ∈ R+

lim
t→0+

1− F (xF − tx)

1− F (xF − t)
= xα, where α > 0.
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For these cases, let %n := inf{x;F (x) ≥ 1 − 1/n}, then the sequences xn and yn in
Theorem 2.1 are of the form

Type I: xn = g(%n)−1 and yn = %n.

Type II: xn = %−1
n and yn = 0.

Type III: xn = (xF − %n)−1 and yn = xF .

To fix the ideas, it is useful to recall some particular cases.

Example 2.3. Assume that Z1 has a density p(x) such that:

Type I: xF =∞ and
p(x) ∼ e−x as x→∞,

then xn → 1 and yn ∼ lnn as n→∞.

Type II: xF =∞ and there exists a < −1 for which

p(x) ∼ |a+ 1|xa as x→∞,

then xn ∼ n1/(a+1) as n→∞ and yn = 0.

Type III: xF = 0 and there exists a > −1 for which

p(x) ∼ (a+ 1)xa as x↗ 0,

then xn ∼ n1/(a+1) as n→∞ and yn = 0.

In the i.i.d. case the complete description of the order statistics is known. Denote
by

Z(1;n) ≥ Z(2;n) ≥ . . . ≥ Z(n;n) (2.2)

the order statistics of
(
Zi; i = 1, . . . , n

)
. Then, the asymptotic relation between the(

Z(i;n); i ≤ n
)

is characterized by the point process

n∑

i=1

δ(Z(i;n)−yn)xn .

When F (·) belongs to the domain of attraction of Ψα, this point process converges in
distribution to a Poisson point process with intensity measure µα:

Type I: α = 0 and µ0(dx) = e−xdx.

Type II: α < 0 and µα(dx) = xα−1|α|1{x≥0}dx, here one must only consider the
points Zi > 0 in order to avoid a infinite mass at 0.

Type III: α > 0 and µα(dx) = |x|α−1α1{x≤0}dx.

We bring to the reader’s attention that the assumptions in Theorem 2.2 concern only
the upper tails probabilities of F (·), hence one has no control on the behaviour of
points that are “far away” from xF .
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2.1. Extremes of independent random variables

2.1.1 Regularly varying functions and Karamata’s represen-
tation

The characterization of the max-domain of attraction and the proof of Theorem 2.2 is
based on the theory of regularly varying functions. In this subsection, we recall some
basic notions, used in this thesis. Further information can be found in the following
references: [BGT87, Fel71, dH70, Sen76].

A measurable function U : R+ → R+ is said to be α-regularly varying at infinity
(respectively at zero) if

lim
t→∞

U(tx)

U(t)
= xα, for every x > 0;

in the case of regularly variation at zero we simply take the limit as t→ 0+. When
α = 0 we say that the function is slowly varying. Both theories (t→+∞ or t→0+) are
equivalents and U(x) is α-regularly varying at infinite if and only if U(x−1) is (−α)-
regularly varying at zero. Henceforth, we focus on the theory of regularly variation
at infinity.

From Theorem 2.2, F (·) belongs to the max-domain of attraction of the Type II
(respectively Type III) extreme value distributions if and only if

U(x) = 1− F (x)
(
respectively U(x) = 1− F

(
xF − x

))

is α-regularly varying at infinity (respectively zero), for some α < 0 (respectively
α > 0). The Type I max-domain of attraction is characterized by the so-called
de Haan’s classes, see [dH74, dH76, Res87] for more details.

Karamata’s representation : A function U : R+ → R+ is α-regularly varying
at infinity if and only if there exist two measurable functions c : R+ → R+ and
ε : R+ → R+ with

lim
x→∞

c(x) = c > 0 and lim
x→∞

ε(x) = 0,

such that

U(x) = xαc(x) exp

(∫ x

1

ε(y)

y
dy

)
. (2.3)

Although the representation (2.3) is not unique, we call it Karamata’s representation
of U .

2.1.2 Convergence of moments

It is well-known that weak convergence does not imply the convergence of moments.
The latter convergence requires some control on the tail probabilities (the left tails
also), which prevents improbable large values from disturbing the convergence of
moments. Up to now, we have only imposed conditions on the upper tails of F (·), so
one should not expect that the convergence of moments holds. Yet, in extreme value
theory, one can obtain the convergence of moments under weak assumptions.
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2.1. Extremes of independent random variables

Denote by Pk the kth largest point of a Poisson point process with intensity
measure µα(dx). We have seen that, if Zi lies in the max-domain of attraction of Ψα,
then, the weak convergence

(Z(k;n) − yn)xn →Pk

holds. For l > 0, a simple calculation shows that the lth moment of Pk is finite if
α ≥ 0, in the case α < 0 (Type II case) the lth moment exists for l < |α|.

In extreme value theory, the only necessary condition to obtain the convergence
of the lth moment is that Zi itself has also finite lth moment. In the literature
[LLR83, Res87], one can easily find proofs for the moment convergence of the maxima.
Yet, we could not find any reference concerning the moment convergence of the kth
order statistics. In fact, a rigorous proof can be obtained by a line-by-line adaptation
of Proposition 2.1 in [Res87].

In Chapter 4, we use this convergence of moment in the case where Zi lies in the
max-domain of attraction of the Type III distribution. For the sake of completeness,
we include here a demonstration of this result.

Lemma 2.4. Assume that {Zi; i ∈ N} is a sequence of i.i.d. real r.v.’s, lying on the
max domain of attraction of Ψα for some α > 0 (Type III extreme value distribution).
Assume further that Zi has finite lth moment. Then

lim
n→∞

E
[∣∣(Z(k;n) − yn)xn

∣∣l
]

= E[P l
k].

Proof. Let L < 0, then

E
[∣∣(Z(k;n) − yn)xn

∣∣l
]

=

∫ 0

L

|x|kZ(k;n)(dx) +

∫ L

−∞
|x|kZ(k;n)(dx), (2.4)

where Z(k;n)(dx) is the distribution of (Z(k;n)− yn)xn (note that in this case yn ≡ xF ,
which is finite). Since it converges in distribution to Pk, the first integral in the
right-hand side also converges as n→∞, moreover, by monotone convergence

lim
L→∞

lim
n→∞

∫ 0

L

|x|kZ(k;n)(dx) =

∫ 0

−∞
|x|kP k(dx),

with P k(dx) the distribution of Pk. Thus, it suffices to prove that if L is sufficiently
large the second integral in the right-hand side of (2.4) is small.

∫ L

−∞
|x|lZ(k;n)(dx) =

∫ L

−∞

(∫ 0

x

l|y|l−1dy

)
Z(k;n)(dx)

=

∫ L

−∞

(∫ 0

L

l|y|l−1dy

)
Z(k;n)(dx) +

∫ L

−∞

(∫ L

x

l|y|l−1dy

)
Z(k;n)(dx)

≤ |L|lP
(
(Z(k;n) − yn)xn ≤ L

)
+

∫ L

−∞

(∫ L

x

l|y|l−1dy

)
Z(k;n)(dx).

31



2.1. Extremes of independent random variables

Again, (Z(k;n) − yn)xn converges in distribution to Pk, that has finite lth moment,
then

lim
L→−∞

lim sup
n→∞

|L|lP
(
(Z(k;n) − yn)xn ≤ L

)
= 0.

Finally, we focus on the integral

∫ L

−∞

(∫ L

x

l|y|l−1dy

)
Z(k;n)(dx) =

∫ L

−∞
l|y|l−1P

(
(Z(k;n) − yn)xn ≤ y

)
dy.

For every y ∈ R, a simple calculation yields to

P
(
(Z(k;n) − yn)xn ≤ y

)
=

k−1∑

i=0

(
n

i

)(
1− F (yx−1

n + yn)
)i
F (yx−1

n + yn)n−i, (2.5)

where F (·) is the common probability distribution function of Zi. Now fix L̃ < xF and
assume that n is sufficiently large so that (L̃− yn)xn < L (note that in the Type III
convergence the sequence xn diverges and yn = xF ), then

∫ L

−∞
l|y|l−1P

(
(Z(k;n) − yn)xn ≤ y

)
dy

=

∫ (L̃−yn)xn

−∞
l|y|l−1P

(
(Z(k;n) − yn)xn ≤ y

)
dy

+

∫ L

(L̃−yn)xn

l|y|l−1P
(
(Z(k;n) − yn)xn ≤ y

)
dy

= (i) + (ii).

We estimate each integral separately. For (i) we do a change of variables to obtain

(i) = xln

k−1∑

i=0

(
n

i

)∫ L̃

−∞
l|y|l−1

(
1− F (y)

)i
F (y)n−idy

≤ xln

k−1∑

i=0

(
n

i

)
F (L̃)n−i−1

∫ L̃

−∞
l|y|l−1F (y)dy

≤ E
[
Z l
i

]
F (L̃)n−kxln

k−1∑

i=0

ni.

By Karamata’s representation, xn has a polynomial growth as n → ∞. Moreover,
E
[
Z l
i

]
<∞ and F (L̃)n−k has an exponential decay as n→∞, then

lim sup
n→∞

∫ (L̃−yn)xn

−∞
l|y|l−1P

(
(Z(k;n) − yn)xn ≤ y

)
dy = 0.

Finally, we estimate (ii). Let 0 < ε < l/(k− 1), since L̃ is fixed, one can find positive
constants A < B, such that for every L̃ ≤ z ≤ 0

A|z|−α ≤ 1− F (xF + z) ≤ B|z|−α−ε,
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2.2. Branching random walks

note that α > 0. Then,

(ii) =

∫ L

(L̃−yn)xn

l|y|l−1P
(
(Z(k;n) − yn)xn ≤ y

)
dy

≤
k−1∑

i=0

(
n

i

)∫ L

(L̃−yn)xn

l|y|l−1B
i|y|−(α+ε)i

N i

(
1− A|y|−α

n

)n−i
dy

≤
k−1∑

i=0

Bi

∫ L

(L̃−yn)xn

l|y|l−1−(α+ε)i exp

(
−A|y|−αn− i

n

)
dy.

Since l − iε > 0 for all i = 0, . . . , k − 1, the integral
∫ 0

−∞
l|y|l−1−i(α+ε)e−A|y|

−α
dy

converges. Hence,

lim sup
L→∞

lim
n→∞

∫ L

(L̃−yn)xn

l|y|l−1P
(
(Z(k;n) − yn)xn ≤ y

)
dy = 0,

which proves the statement.

2.2 Branching random walks and extreme of cor-

related random variables

When investigating the extremal process obtained from random structures of the form
(1.12), one must take into account the correlation between variables. In Section 1.2.2,
we have defined the overlap function R(·, ·), which is a natural way to measure the
correlation in (1.12). A classical probabilistic model, having similar features is the
branching random walks (BRW for short) [AN04]: at the beginning (generation 0),
there is a single particle located at zero. This particle gives birth to new particles
that are positioned according to a point process L, and dies immediately afterwards.
Its children, who form the first generation, give birth to new particles, that are posi-
tioned (with respect to their birth places) according to independent copies of L, and
die immediately afterwards; they form the second generation. The system goes on
according to the same mechanism. Let BRW(L) denote any BRW defined by i.i.d.
copies of L.

Let T be the Galton-Watson tree associated to the genealogical tree of the BRW
defined as above. To each point (or individual) of the BRW one can associate a unique
vertex w ∈ T. Let e ∈ T be the root of the Galton-Watson tree, then for a vertex
w ∈ T, let [[e, w]] denote the shortest path connecting e with w, and |w| the length of
this path. We will sometimes write its points [[e, w]] = (e, w1, . . . , wk) with i = |wi| and
wk = w. We denote by η(w), the position of the individual w ∈ T, which is obtained
by summing the weights on the edges of [[e, w]], hence, the rightmost position is given
by

Mn = max
|w|=n
{η(w)}.
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2.2. Branching random walks

...... ...

ω ω′

e

Figure 2.1: Binary tree and the overlap (in red) between two paths ω and ω′.

The random variables η(w) are not independent and the correlation between η(w)
and η(w′) can also be measured by the overlap between the paths [[e, w]] and [[e, w′]],
see Figure 2.1. BRWs have the additional property that when the two paths [[e, w]]
and [[e, w′]] split, they can never merge again, which is clearly not the case in (1.8).
Remarkably, this tree structure provides sufficient independence to the model and a
complete description of its order statistics is known. The lecture notes [Zei] explain
elegantly how one can use the independence inherited from this tree structure to study
the extremal process of a BRW.

The first results concerning the extremal process of BRWs appeared in the 1970’s
in the works of Kingman [Kin75], Hammersley [Ham74] and Biggins [Big76, Big77],
when the first-order correction to the maximum was computed. Assume that for some
a > 0,

E
[
|L|1+a

]
<∞, (2.6)

where |L| denotes the number of points of L (i.e. the number of offspring). Condition
(2.6) simply says that the reproductive law of the Galton-Watson tree T associated
to the BRW has finite moment of order 1 + a.

Assume also that the logarithmic generating function for the branching random
walk

ψ
(
u | L

)
:= lnE

[∫
euyL

(
dy
)]

(2.7)

is finite in a neighbourhood of u = 0 and that there exists a u∗ = u(L) > 0 for which

ψ
(
u∗ | L

)
= u∗ψ′

(
u∗ | L

)
. (2.8)

If (2.6 – 2.8) hold, denote by γ(L) = ψ′ (u∗ | L), then, conditionally to the event
that the BRW does not extinguish, the following limit exists

lim
n→∞

1

n
Mn = γ(L) a.s. (2.9)
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2.2. Branching random walks

u∗

ψ(· | L)

Figure 2.2: BRW’s logarithmic generating function.

see [AN04] for a rigorous proof. Almost thirty years later, results concerning the
second order expansion to the maximum have appeared [ABR09, Bac00]. The final
picture and results about the convergence in law of the maximum have been obtained
by Aı̈dékon [Aı̈d13]. With γ(L) as above and γ1(L) = 1/u∗, he proves that

Mn − γ(L)n− 3

2
γ1(L) lnn

converges weakly to Gumbel distribution shifted by a random variable, see also
[BDZ14] for the proof of the same result using basically the second moment method.

2.2.1 Surviving a ballistic absorbing barrier

In contrast with (1.8), in a BRW no constrain concerning the number of particles in
the generations is imposed. Yet, one can easily come up with different ways to select
individuals in a generation and control the population size of the BRW. Selection
creates correlation between individuals of same generation and additional dependence
in the whole process. In Section 2.2.2, we focus on the so-called M -branching random
walk, where only the M -rightmost individuals are chosen to survive.

An other classical way to control the population size of a BRW is to add a ballistic
absorbing barrier that is, we consider a line moving at a deterministic speed and
when a particle lies bellow this moving line it is immediately absorbed (or killed) by
it. This model is simply a discrete-time version of the “branching Brownian motion
with a barrier” [BBS13, Mai13], for which sharp results have been obtained.

A natural question concerning this class of models is whether the system survives
or not. Results in this direction were obtained by Gantert, Hu and Shi [GHS11].
They calculate the asymptotic decay for the probability that there exists an infinite
ray in the BRW that always stays close to γ(L). We recall that an infinite ray
[[e, w∞]] := {e, w1, w2, . . .} ⊂ T is an infinite collection of vertices (or infinite path),
such that wi is the parent of wi+1. It represents a family branch in the BRW that
has not extinguished, and is parametrized by an element w∞ ∈ ∂T of the topological
boundary ∂T of the tree.
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2.2. Branching random walks

(
γ(L)− δ

)
t

Figure 2.3: BRW killed by the line of slope γ(L)− δ.

Theorem 2.5 ([GHS11]). Let L be a point process satisfying (2.6 – 2.8) and

(
η(w);w ∈ T

)

be the particles positions in a BRW defined by L. Given δ > 0, denote by ρ(∞, δ) the
probability that there exists an infinite ray in the branching random walk that always
lies above the line of slope γ(L)− δ.

ρ(∞, δ) := P
(
∃w∞ ∈ ∂T : η(wt) ≥ (γ(L)− δ)t, ∀wt ∈ [[e, w∞]]

)
,

where wt ∈ [[e, w∞]] is the vertex in generation t. Then, as δ ↘ 0

ρ(∞, δ) ∼ exp

(
−
[
χ(L) + o(1)

δ

]1/2
)
,

where χ(L) = π2

2
u∗ψ′′

(
u∗ | L

)
for u∗ given by (2.8).

In Chapter 4, we obtain the finite-size corrections to the speed vN(ξ) of the N -
particle system (1.8). Our result relies strongly on Theorem 2.5 above.

2.2.2 The M-branching random walk

Recently, some attention has been paid to models of evolving particle systems under
the effect of selection. In this subsection, we will focus on the branching random
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2.2. Branching random walks

walks with selection of the M rightmost individuals (the M -BRW) [BG10, BD97,
BD99, Mal15]. A continuum version of it (the M branching Brownian motion) has
been extensively studied by Maillard [Mai11].

The M -BRW is defined as follows: let L be a point process that has more than
one point a.s. (this condition is necessary, since it assures that the process will not
extinguish). At generation 0, there are M particles located at zero. The generations
are obtained by the following branching/selection step:

• Branching: Each particle gives birth to new particles, that are positioned ac-
cording to independent copies of L.

• Selection: One selects the M -rightmost individuals among all children to form
the next generation (in average there are M |L| individuals after the branching
step).

Hence, the population size is kept constant and equal to M .

We denote by M -BRW(L) any M -BRW defined as above. Bérard and Gouéré
[BG10] focused on the binary M -BRW defined by the point process

L = δp1 + δp2 ,

where pi are i.i.d. and study its extremal process for large M . With y1(t), . . . , yM(t)
the particles positions in generation t ∈ N, it is not very difficult to prove that the
cloud of particles travels up to fluctuations at a deterministic speed γM(L) and that
its diameter

max
1≤i≤M

yi(t)− min
1≤i≤M

yi(t)

is of order lnM . The existence of the asymptotic speed γM(L) is obtained by King-
man’s sub-additive ergodic theorem, and by a coupling argument one can prove that
γM(L) is increasing on M . The selection mechanism can only slow down the system,
hence

γM(L) ≤ γ(L),

which yields the convergence of γM(L) as M → ∞, moreover, it is not difficult to
see that the limit is precisely γ(L). The striking result in [BG10] is that the authors
prove the physics conjectures [BD97, BD99] for this model. Namely, the asymptotic
velocity of the system γM(L) converges to γ(L) at the unexpectedly slow rate

γM(L) = γ(L) + χ(L)(lnM)−2 + o
(
(lnM)−2

)
as M →∞,

with χ(L) from Theorem 2.5. This result is of the same nature as (1.7) and (1.13), in-
dicating that all three models belong to the same universality class. Their proof makes
use of ideas and results by Pemantle [Pem09], and by Gantert, Hu and Shi [GHS11],
and relies on a comparison of the particle system with a family of M independent
branching random walks killed below a linear space-time barrier.

Although their result is stated in the framework of binary branching with indepen-
dent displacement, it can be generalized for more general reproductive point processes.
We state here a weaker version of Theorem 1.1 in [Mal15], that holds for general point
processes satisfying (2.6 – 2.8).
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Theorem 2.6. Let L be a point process satisfying (2.6 – 2.8), then

γM(L)− γ(L) ∼ χ(L)

(lnM)2
as M →∞.

where χ(L) = u∗ψ′′
(
u∗ | L

)
for u∗ given by (2.8).

In Chapter 4, we show that the N -particle system (1.8) can be bounded from
below by a family of M -BRW indexed by N . We will then adapt the arguments in
[BG10] to obtain a uniform lower bound for the speeds of the BRWs.

2.3 Ancestral Partition Process and the Coales-

cent

As we have pointed out in Chapter 1, the N -particle system may be seen as a constant
size population model evolving on discrete time. In this context, we are interested in
knowing the genealogical relations between individuals. We analyse the genealogical
tree of the population by observing the ancestral partition process, that is defined as
follows: sample without replacement n � N individuals from a given generation T ,
say e1, . . . , en and for 0 ≤ t ≤ T we consider ΠN,n

t the random partition of [n] :=
{1, . . . , n} such that i and j belong to the same equivalent class if and only if ei and
ej share the same ancestor at time T −t, see Figure 2.4. It is very important to realize
that the direction of time for the ancestral process is the opposite of the direction of
time for the “natural” evolution of the population.

e1 e2 e3e4 e5
{(1)(2)(3)(4)(5)}

{(1)(2)(3 5)(4)}

{(1)(2 3 4 5)}

{(1)(2 3 4 5)}

{(1)(2 3 4 5)}

∪
∪
∪
∪

Figure 2.4: Ancestral partition process with N = 11 and n = 5 (its time parameter runs upwards).

Denote by Pn the finite set of all partitions of [n] and by P∞ the set of partitions
of N∗. For π, π′ ∈ Pn we say that π′ is a refinement of π if every equivalent class of π
is either a union of several equivalence classes of π′ or coincides with an equivalence
class of π′, we denote it by π′ ⊂ π.
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2.3. Ancestral Partition Process and the Coalescent

Definition 2.7 (Coalescent). We call a Pn-valued Markov process
(
Πn
t ; t ≥ 0

)
a n-

coalescent if it has right-continuous step function paths and if Πn
s is a refinement of

Πn
t , whenever s ≤ t. We call a P∞-valued process (Πt; t ≥ 0) a coalescent if it has

càdlàg paths and if Πs is a refinement of Πt for all s < t.
The time variable t is not necessary in the continuum, and the coalescent can be

equally defined for t ∈ N.

The ancestral partition process is a n-coalescent defined up to time T . We use the
notation ΠN,· to denote the ancestral partition of a constant size population with N
individuals, while the notation Π∞,·, or simply Π, stands for a coalescent process.

Λ-coalescent and Ξ-coalescent processes. Pitman [Pit99] introduced the so-
called Λ-coalescent: it consists in a continuous time P∞-coalescent characterized by
the rates λb,k at which k blocks merge into a single one when there are b blocks in
total. The Λ-coalescent is obtained by Kolmogorov’s extension theorem: for n ∈ N,
one can use the arrays

(
λb,k
)

2≤k≤b to generate a n-coalescent (the projection of Π over

Pn). Then, if λb,k satisfies the consistency condition

λb,k = λb+1,k + λb+1,k+1,

Kolmogorov’s extension theorem guaranties the existence of a probability space where
the coalescent process Π is defined, see [Pit99]. Pitman also proves that the consis-
tency condition holds if and only if there exists a non-negative and finite measure on
the Borel subsets of [0, 1] such that

λb,k =

∫

[0,1]

uk−2(1− u)b−kΛ(du).

These coalescents are then characterized by and named after the measure Λ. When
Λ is a unit mass at zero, we get the well-known Kingman’s coalescent [Kin82], a
coalescent process in which each pair of blocks merges at rate 1. Another notorious
case is when Λ is the uniform distribution on [0, 1], this process was first studied by
Bolthausen and Sznitman [BS98] in the context of Ruelle’s probability cascades, and
it is named after the authors.

One can further generalize the Λ-coalescent and focus on coalescent processes
that may undergo “simultaneous multiple collisions”, the Ξ-coalescent, see Möhle and
Sagitov [MS01] and Schweinsberg [Sch00]. Let b, b1, . . . , ba, s be non-negative integers
such that b1 ≥ . . . ≥ ba ≥ 2 and b = s +

∑
bi. Then, Ξ-coalescent are P∞-valued

Markov processes characterized by the rates λb;b1,...,ba;s at which b blocks merge into
a + s blocks, with s blocks that remain unchanged and a blocks that are obtained
by the union of b1, . . . , ba blocks before the merging. In this case, the consistency
condition that the rate λb;b1,...,ba;s have to satisfy is of the form

λb;b1,...,ba;s+1 = λb;b1,...,ba;s −
a∑

j=1

λb+1;b1,...,bj+1,...,ba;s − sλb+1;b1,...,ba,2;s−1, (2.10)

see, for example, Lemma 3.3 in [MS01] and [Sch00]. In particular, it implies that the
distribution of the Ξ-coalescent is completely determined by the rates λb;b1,...,ba .
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2.3.1 Weak convergence of ancestral processes

It is well-known that continuous-time coalescent processes may be obtained as the
weak limit of ancestral processes, as the population size N → ∞. Let D

(
[0,∞); Pn

)

be the space of càdlàg functions on [0,∞) taking values in Pn. Since Pn endowed
with the discrete metric is a separable complete metric space, the space D

(
[0,∞); Pn

)

is also separable and complete in the Skorokhod distance. We say that a process
converges in the Skorokhod sense if the distribution of the process converges weakly
in D

(
[0,∞); Pn

)
equipped with this metric.

Mölhe and Sagitov [Möh99, Möh00, MS01] obtain general conditions under which
the ancestral processes ΠN,·

t converge in the Skorokhod sense as N → ∞. Consider
the discrete-time population model defined by the family sizes

ν(t) :=
(
ν1(t), · · · , νN(t)

)
with ν1(t) + ν2(t) + · · ·+ νN(t) = N, t ∈ Z,

where νi(t) denotes the number of children of the ith individual in generation t.
Assume that

(i) The offspring vectors ν(t), t ∈ Z are i.i.d. copies of ν.

(ii) The offspring vector
(
ν1, . . . , νN

)
is N -exchangeable.

Although (ii) may be weakened, the first assumption can not be avoided, since it
ensures the Markov property of the ancestral partition process.

Under (i) and (ii), it is easy to compute the transition probability of ΠN,n. Let
π′ ⊂ π be two partitions of Pn and denote by a and b the number of equivalent classes
of π and π′ respectively. Then b = b1+· · ·+ba, where bi’s are positive integers denoting
the number of equivalent classes of π′ that one has to merge in order to obtain one
equivalent class of π. By a combinatorial “putting balls into boxes” argument we
obtain that the transition probability from π′ to π is

pN(π′, π) = P
(
ΠN,n
t+1 = π | ΠN,n

t = π′
)

=
1

(N)b

N∑

i1,...,ia=1
all distinct

E
[
(νi1)b1 . . . (νia)ba

]
, (2.11)

where (N)b := N(N − 1) . . . (N − b + 1). Using (ii), one can further simplify (2.11)
obtaining

pN(π′, π) =
(N)a
(N)b

E
[
(ν1)b1 . . . (νa)ba

]
.

We now state Mölhe and Sagitov result, we keep their notation and let cN be the
probability that two individuals, chosen randomly without replacement from some
generation, have a common ancestor one generation backward in time

cN :=
1

N(N − 1)

N∑

i

E
[
νi(t)(νi(t)− 1)

]
=

1

(N − 1)
E
[
ν1(t)(ν1(t)− 1)

]
. (2.12)
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Theorem 2.8 ([MS01]). Suppose that for all a ≥ 1 and b1 ≥ . . . ≥ ba ≥ 2, the limit

lim
N→∞

E
[
(ν1)b1 · · · (νa)ba

]

N b1+···+ba−acN
(2.13)

exists, and let b := b1 + · · ·+ ba. If

lim
N→∞

cN = 0,

then the time-rescaled ancestral processes
(

ΠN,n
bt/cN c, t ≥ 0

)
converge weakly as N →∞

to a process
(

Π∞,nt , t ≥ 0
)

that has the same law as the restriction to [n] of a Ξ-

coalescent. Furthermore, the transition rates λb;b1,...,ba, that characterize the distribu-
tion of Π∞,nt , are equal to the limits in (2.13). On the other hand, if

lim
N→∞

cN = c > 0,

then the processes
(

ΠN,n
t , t ∈ N

)
converge weakly as N →∞ to a process

(
Π∞,nt , t ∈

N
)

, which has the same law as the restriction to [n] of a discrete-time Ξ-coalescent.

The transition probabilities pb;b1,...,ba satisfy

pb;b1,...,ba = lim
N→∞

E
[
(ν1)b1 . . . (νa)ba

]

N b1+···+ba−a
. (2.14)

The existence of the limits in (2.13) implies that the finite-dimensional distribu-
tions of ΠN,n

bt/cN c converge to those of the coalescent Πn
t , as proved in [MS01]. The

authors in [Möh99, MS01] prove that when cN → 0 the sequence of processes ΠN,n
bt/cN c

is tight, which implies the weak convergence in the Skorokhod sense.

2.3.2 The genealogy of the N-particle system

One can easily define a population model from (1.8) when the disorder ξ has no atoms,
that is, for every x ∈ R the probability

P(ξij(t+ 1) = x) = 0.

In this case, for all j the equation

Xj(t+ 1) = Xi(t) + ξij(t+ 1). (2.15)

has a.s. a unique solution i, and one can say that Xj(t + 1) is an offspring or a
descendant of Xi(t). In the case where ξ has atoms, the equation (2.15) may have
more than one solution i, and one must come up with a criteria to choose among the
possible parents. We will only focus on the non-atomic case, though.

Denote by νi(t) the number of descendants ofXi(t) in generation t+1. The fitnesses
of the individuals are given by their positions X1(t), . . . , XN(t) and conditionally on

Ft := σ{ξij(s) and Xi(0); 0 ≤ s ≤ t, 1 ≤ i, j ≤ N},
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2.4. Properties of Brunet-Derrida N -particle system

the probability that Xj(t+ 1) descends from Xi(t) is given by

ηi(t) := P
(
ξij(t+ 1) +Xi(t) ≥ ξkj(t+ 1) +Xk(t) ; for every 1 ≤ k ≤ N

∣∣Ft
)
. (2.16)

Since
{
ξij(t + 1); 1 ≤ i, j ≤ N

}
are independent, it is easy to see that, for j1, . . . , jm

distinct and i1, . . . , im (not necessarily distinct),

P
(
Xjk(t+ 1) descends from Xik(t), for 1 ≤ k ≤ m

∣∣Ft
)

= ηi1(t)ηi2(t) . . . ηim(t).

If ik = il, the individuals jk and jl have a common ancestor in generation t. Hence,
given Ft the offspring vector ν(t) :=

(
ν1(t), . . . , νN(t)

)
is distributed according to a N -

class multinomial with N trials and probabilities outcomes η(t) :=
(
η1(t), . . . , ηN(t)

)
.

In Chapter 5, we focus on this population model and show that under certain assump-
tions it converges to a continuous-time coalescent.

2.4 Properties of Brunet-Derrida N-particle sys-

tem

Finally, in this section, we state the basic properties of the N -particle system (1.8).
Most of the results presented here have already been proved in [CQR13], but for the
sake of completeness we propose a detailed overview of them.

It will be convenient to consider the process X∗(t) obtained by ordering the com-
ponents of X(t) at each time t. Denote by

X(1)(t) ≥ X(2)(t) ≥ . . . ≥ X(N)(t)

the components of X∗(t). Let, also σ = σ(t) be the random permutation of {1, . . . , N}
such that

X(i)(t) = Xσi(t)(t).

Such a ranking permutation is unique up to ties, which we break by choosing (without
replacement) uniformly at random among the possibilities.

For t ≥ 1 and a given realization of the ordered process X∗(t), the vector X(t)
can be generated by a simple random permutation (chosen uniformly among the N !
possibilities) of the vector X∗(t).

The process X∗(t) is a discrete-time Markov chain on the state space

∆N :=
{

(x1, x2, . . . , xN) ∈ RN ; x1 ≥ x2 ≥ . . . ≥ xN
}
,

which we endow with the natural partial order x ≤ y if and only if xi ≤ yi for each
1 ≤ i ≤ N . The process X∗ preserves this partial order that is, for x ≤ y, one can
find a coupling

(
Y1(t), Y2(t)

)
such that the marginal distribution has the law of the

process X∗(t) starting from x and y respectively and

Y1(t) ≤ Y2(t) ∀t ∈ N.
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2.4. Properties of Brunet-Derrida N -particle system

2.4.1 The process seen from the leading edge

It is trivial from its definition (1.8) that X(t) and X∗(t) are shift covariant, that is, for
Y1(t) and Y2(t) as above starting respectively from 0 ∈ RN and r := (r, . . . , r) ∈ RN

Y1(t) + r = Y2(t) a.s.

Hence, the location of the front at any time t can be described by a numerical
function Φ

(
X∗(t)

)
, which commutes to space translations by constant vectors

Φ
(
x+ r

)
= r + Φ(x), ∀x ∈ ∆N and r = (r, . . . , r), (2.17)

and which is increasing for the partial order on ∆N . Among such, we mention the
maximum or the minimum value and the arithmetic mean, but one can come up with
different functions, which put forth the position of the bulk of the system rather than
the leading edge. In Section 2.5, the function

Φ(x) = ln
(∑

exi
)

will play an important role. For simplicity, in this section we will locate the front
position by its rightmost particle and we focus on the process seen from the leading
edge

X0(t) := X(t)−Xσ1(t), (2.18)

and on its ordered X0∗(t) version, which takes values in ∆0
N :=

{
x ∈ ∆N ; x1 = 0

}
.

Proposition 2.9. There exists a unique invariant measure ν for the process seen
from the leading edge X0∗. Furthermore, for any starting point X0∗(0) = x ∈ ∆0

N ,
let νt be the law of X0∗(t), then νt converges in total variation distance to ν,

distT.V.

(
L (X0∗(t) | X(0) = x), π

)
→ 0, as t→∞.

Proof. We denote by Ft the filtration

Ft := σ
{
Xi(0), ξij(s); 1 ≤ i, j ≤ N and s ≤ t

}
. (2.19)

Then, one can easily check that the Ft-stopping time

τ := inf
{
t ≥ 1; ξσ1(t−1),i(t) = max

1≤j≤N
{ξji(t)}; ∀i = 1 . . . N

}

is also a renewal times for the process seen from the leading edge, which implies that
X0∗ is an irreducible, aperiodic and Harris recurrent Markov chain. Thus, there exists
a unique stationary measure ν for it, and for every starting point X(0) = x the law
of X(t) converges in total variation distance, see Proposition 2.1 in [CQR13] for more
details.

A consequence of the proof of Proposition 2.9 is that there exists a family of
renewal times for X0∗

0 = τ0 < τ1 < τ2 < . . .
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2.4. Properties of Brunet-Derrida N -particle system

such that τi+1− τi is distributed according to τ . By the law of large numbers and the
renewal theorem, for any measurable function G : ∆0

N → R the limit holds

lim
t→∞

1

t

∑
G
(
X0∗(t)

)
=

1

E[τ1 − τ2]
E

[
τ2−1∑

t=τ1

G
(
X0∗(t)

)
]

a.s.

=

∫
G(y)ν(dy).

We use this simple observation to prove the existence of the front speed.

Corollary 2.10 (Front Speed). If ξ ∈ L1 the following limits

lim
t→∞

1

t
max

1≤i≤N
Xi(t) = lim

t→∞

1

t
min

1≤i≤N
Xi(t) = vN(ξ)

exist a.s. with vN(ξ) the speed of the N-particle system given by

vN(ξ) =

∫

∆0
N

ν(dy)E
[

max
1≤i,j≤N

{yi + ξij(1)}
]
.

Moreover, if ξij ∈ L2,
max {Xi(t)} − tvN(ξ)√

t

converges in distribution to a Gaussian r.v. with variance DN(ξ) ∈ (0,∞).

Proof. The existence of the speed vN(ξ) is a consequence of renewal theorem and the
above remark. The equality of the two limits is due to the tightness and the fact that
the front does not spread. Hence,

maxXi(t)−minXi(t)

t

t→∞−→ 0 a.s.

Finally, the Gaussian limit is simply the central limit theorem for renewal processes.
For more details see Corollary 2.1 in [CQR13].

An immediate consequence of Corollary 2.10 is that for any Φ satisfying (2.17)

1

t
Φ
(
X(t)

) t→∞−→ vN(ξ) a.s.

Hence, the front speed does not depend on the way one measures the front position.

2.4.2 The correlation structure

The correlation structure between paths in (1.8) is quite involved and different from
the BRW case. Paths that start together may merge and split several times, making
the problem here rather difficult. To realize this complexity, one should distinguish a
particular path (denoted by 1) of length t and count the number rk(t) = rk

rk := ]
{
ω; |ω| = t and R

(
ω,1

)
= k
}

(2.20)
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2.4. Properties of Brunet-Derrida N -particle system

of paths ω having overlap k with 1, for R(·, ·) given by (1.14). Note that rk does not
depend on the path 1 one chooses. In the BRW case, this calculation is straightfor-
ward, for example, for the binary branching rk = 2t−k.

Fixing 1 = (1, . . . , 1) in the following two lemmas, we obtain a combinatorial
expression for rk, which highlights its complexity when compared to the BRW case.
Such combinatorics are often useful when using moment methods.

Lemma 2.11. Let r0(t) be given by (2.20), then

r0(t) =

[(t+2)/2]∑

j=0

(N − 1)t+1−j
(
t+ 2− j

j

)
.

Proof. We can write

r0(t) =
t∑

j=0

r
(j)
0 (t),

where r
(j)
0 (t) is the number of paths ω such that R

(
ω,1

)
= 0 and there exist i1 < i2 <

. . . < ij, for which ωis = 1 (and ωi 6= 1 otherwise). Since R
(
ω,1

)
= 0, the integers is

can not be consecutive.

︸ ︷︷ ︸
c1

︸ ︷︷ ︸
c0

︸︷︷︸
c2 c3

t+ 2

c4

1

2

N

...

Figure 2.5: ω such that R(ω,1) = 0 and j = 4

Given the integers i1 < i2 < . . . < ij there are (N − 1)t+1−j distinct paths such
that ωis = 1. Hence, it suffices to count the possible configurations of integers i1 <
i2 < . . . < ij. Let c0 be the distance from 0 to i1 and for s ≥ 1 define cs to be the
distance from is + 2 to is+1 (we set ij+1 = t + 2). Note that the distances cs may be
zero, see Figure 2.5.
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2.4. Properties of Brunet-Derrida N -particle system

So the number of configurations i1 < i2 < . . . < ij satisfying the desired constrain
is equal to the number of integers c0, . . . , cj such that

j∑

s=0

cs = t+ 2− 2j,

which is equal to
(
t+2−j
j

)
, finishing the proof.

We now obtain the exact expression for rk(t) for 1 ≤ k ≤ t.

Lemma 2.12. Let rk(t) be given by (2.20). Then,

rk(t) =

[(t−k+2)/2]∑

j=1

(N − 1)t−k+1−j
(
t− k + 2− j

j

)(
k + j − 1

j − 1

)
.

Proof. The strategy is to construct a bijection

Π←→
{
ω, R(ω,1) = k

}
,

where Π is a set, whose cardinality is known. Define

Π(j) :=
{
ω̃; |ω̃|= t−k; R(ω̃,1) = 0; ∃i1<. . .<ij s.t. ω̃il = 1 and ω̃s 6=1 otherwise

}
.

From the proof of Lemma 2.11

]Π(j) = (N − 1)t−k+1−j
(
t− k + 2− j

j

)
.

Now, let

Π :=

[(t−k+2)/2]⋃

j=1

Π(j) ×
{

(x1, . . . , xj) ∈ Nj; x1 + . . .+ xj = k
}

Note that for each ω̃ ∈ Π(j) there exists
(
k + j − 1

j − 1

)

non negative integers x1, . . . , xj such that x1 + . . .+ xj = k. Hence

]Π =

[(t−k+2)/2]∑

j=1

(N − 1)t−k+1−j
(
t− k + 2− j

j

)(
k + j − 1

j − 1

)
.

We now prove that there exists a one-to-one correspondence

Π←→
{
ω, R(ω,1) = k

}
,

which proves the statement.
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(2) (1) (0)
1

...
1

...

Figure 2.6: ω such that R(ω,1) = 3.

Given a path ω (such that |ω| = t and R(ω,1) = k), we can associate a path ω̃ of
length t− k as follows. Let i1, . . . , ik be such that

ωil = ωil+1 = 1.

Then we construct ω̃ as in Figure 2.6 by “removing” the components of ω that have
overlap with 1. In other words, one merges each connected components of

{i;ωi = 1}

into single vertices. By construction, the new path ω̃ has length t−k, it has no overlap
with 1 and ω̃s = 1 for at least one s ≤ t − k. Let j be the number of times ω̃s = 1,
then ω̃ ∈ Π(j).

The correspondence ω → ω̃ is onto but not into. To make it into, one must assign
labels 0 ≤ xi ≤ k to the vertices of ω̃, for which ω̃si = 1 (1 ≤ i ≤ j). It suffices to
take 0 ≤ xi ≤ k equal to the length of the connect component that has been merged
in the construction of ω̃ (if there is no “merging” we set xi = 0). It is now simple to
verify that the correspondence is one-to-one, which finishes the proof.

2.5 The Gumbel distribution, a solvable case

Brunet and Derrida [BDMM06] discovered that the case of Gumbel disorder is re-
markable. For this choice of disorder the model is completely solvable and precise
calculations are possible. For simplicity, we will consider here G(0, 1)-Gumbel, but
one can easily generalize for Gumbel laws with scaling parameter λ > 0 and location
parameter a ∈ R, see for example Theorem 3.1 [CQR13].

As we have already mentioned, for Gumbel distribution the good way to describe
the front position is

Φ(x) = ln
∑

exi . (2.21)

In this case, the Markov process X(t) ∈ RN is lumpable with respect to the mapping
Φ : RN → R, and the new Markov process Φ

(
X(t)

)
is simply a random walk with
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i.i.d. increments. One can write

Xi(t+ 1) = − ln min
1≤j≤N

{
exp

(
−Xj(t)− ξji(t+ 1)

)}

= Φ
(
X(t)

)
− ln min

1≤j≤N

{
e−Xj(t)+Φ(X(t))e−ξji(t+1)

}
. (2.22)

With Ft from (2.19), one can easily show using the stability property of the expo-
nential law under independent minimum (we point out that e−G(0,1) is exponentially
distributed with parameter one) that

Ei := min
1≤j≤N

{
e−Xj(t)+Φ(X(t))e−ξji(t+1)

}

is independent from Ft and that it has an exponential distribution with parameter
one. It implies that E := (E1, . . . , EN) is distributed according to a N -sample of the
exponential law with parameter one. Denote by

ln E−1 :=
(

ln E−1
1 , . . . , ln E−1

N

)
,

which is distributed as a N -sample of the G(0, 1)-Gumbel law. The translation prop-
erty (2.17) yields

Φ
(
X(t+ 1)

)
= Φ

(
X(t)

)
+ Φ

(
ln E−1

)
.

Hence, as we have claimed, Φ
(
X(t+ 1)

)
is a random walk with increments Φ

(
ln E−1

)

and the following result holds.

Theorem 2.13 ([BD04]). Assume that ξij’s in (1.8) are Gumbel G(0, 1)-distributed.
Then, Φ

(
X(t)

)
is a random walk, with increments Φ

(
ln E−1

)
, with ln E−1 a N-sample

of the Gumbel G(0, 1)-distribution. Then, vN and DN are given by

vN(ξ) = E
[
Φ
(

ln E−1
)]

and D2
N(ξ) = V ar

[
Φ
(

ln E−1
)]

respectively, vN(ξ) and DN(ξ) have the following asymptotic for large N

vN = lnN + ln lnN +
ln lnN

lnN
+

1− γE
lnN

+ o

(
1

lnN

)

DN =
π2

3 lnN
+ o

(
1

lnN

)
,

where γE is the Euler-gamma constant.
Moreover, the law of ν the invariant measure from Proposition 2.9 is the law of

the shift vector by Φ of the ordered vector obtained from a N-sample from a Gumbel
G(0, 1)-distribution.

Proof. We have already proved that Φ
(
X(t)

)
is a random walk, which yields im-

mediately the claims concerning the speed and diffusion constant. The asymptotic
development can be found in [BD04]. Finally, the invariant measure ν can be easily
calculated from (2.22), see Theorem 3.1 in [CQR13] for more details.
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2.5. The Gumbel distribution, a solvable case

(a) Empirical distribution function for G(0, 1)-Gumbel disorder with 2000 particles. Plot of the function at t = 10.

(b) Empirical distribution function for exponential disorder with 2000 particles. Plot of the function at t = 10.

Figure 2.7: In both cases the N particles start on zero. Despite the initial condition, when the
disorder has exponential upper tail, the system mix in a few steps as N →∞ as proved in [CQR13].

In the Gumbel case, regardless the positions of the particles at time t, the process
X(t + 1) − Φ

(
X(t + 1)

)
mixes in one step. We can use this property to study the

front equation (1.10). Shifting space by Φ
(
X(t− 1)

)
, one gets from (2.22) that

UN

(
t, x+ Φ

(
X(t− 1)

))
t ≥ 1

is simply the empirical distribution function of a N -sample of the G(0, 1)-Gumbel law.
Hence, as N →∞, the law of large numbers yields

UN

(
t, x+ Φ

(
X(t− 1)

))
→ u(x) := 1− exp

(
−e−x

)
,
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which proves (1.11) for the Gumbel disorder. Figure 2.7a shows a simulation of the
empirical distribution function with 2000 particles, where one can already see this
asymptotic front shape.

2.5.1 Exponential upper tail

Comets et al. [CQR13] prove that for perturbations of the Gumbel distribution the
convergence

UN

(
t, x+ Φ

(
X(t− 1)

))
→ u(x) := 1− exp

(
−e−x

)
, as N →∞,

still holds. It shows that u(x) is a universal scaling limit for the front shape and
that all distribution with exponential upper tails lie in this universality class. As
one can check from the simulation of the N -particle system with exponential disorder
(Figure 2.7b), this universal limit shape already appears with 2000 particles.

Theorem 2.14 (Theorem 1.2 in [CQR13]). Assume that

P(ξ > x) ∼ x x→∞.

Then, with Φ from (2.21), for all initial configurations X(0) ∈ RN , all k ∈ N, KN ⊂
{1, . . . , N} with cardinality k and all t ≥ 2, we have

(
Xj(t)− Φ

(
X(t− 1)

)
; j ∈ KN

) law−→ G(0, 1)⊗k,

where G(0, 1)⊗k is a k sample of Gumbel G(0, 1)-distribution. Moreover,

UN

(
t, x+ Φ

(
X(t− 1)

))
→ u(x) = 1− exp

(
−e−x

)
, as N →∞,

uniformly in probability.

2.5.2 Gumbel distribution and last-passage percolation

In this chapter, we focus on a different model of passage percolation, with Gumbel
passage times. Our goal is to show that the techniques developed in Section 2.5
are also effective in this case and that the exact time-constant can be computed.

We focus here on the directed last-passage percolation (one can pass from last-
to first-passage percolation by a simple change of signal) on Z studied by Foss et al.
[FMS14]. Consider the directed graph G =

(
Z, E

)
, where every directed edge (i, j)

from the vertex i to the vertex j > i is present. For each edge (i, j) the passage time
vij is sampled from a given distribution v.

The authors in [FMS14] were interested in the last-passage percolation problem

w0,n := max
π∈Π0,n

∑

e∈π

ve,
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0 i1 i2 i3 i4 i5 i6 ni7

Figure 2.8: Last-passage percolation with arbitrary jumps.

where Π0,n is the set of all increasing paths π = {(i0, i1) . . . (il−1, il)} from 0 to n.
They show that there are two different regimes depending on whether the passage
times have finite second moment or not. If the passage times have finite second
moment, the process has a certain regenerative structure, and a strong law of large
numbers holds

lim
n→∞

w0,n

n
= v ,

but the exact expression for the time-constant is not available. In this section, we
assume that the passages times vij are i.i.d. copies of a G(0, 1)-Gumbel distribution
and obtain the exact expression of v . We decompose w0,n as follows

w0,n = max
1≤i≤n−1

{w0,i + vi,n},

and we consider the filtration

Gn := σ{vi,j; 0 ≤ i < j ≤ n}.
Hence, for each i ≤ n− 1 the last-passage time w0,i is Gn−1-measurable. By a simple
computation, we rewrite w0,n as

w0,n = ln

(
n−1∑

i=1

ew0,i

)
− ln

(
min

1≤i≤n−1
{e−w0,ie−vi,n} ×

∑
ew0,i

)
. (2.23)

The stability property of the exponential law under independent minima implies that
conditionally on Gn−1

min
1≤i≤n−1

{e−w0,ie−vi,n}

has an exponential distribution with parameter
∑

ew0,i . Hence,

En := min{e−w0,ie−vi,n} ×
∑

ew0,i

is exponentially distributed with parameter 1 and Gn−1-independent. Now we focus
on the sum on the right-hand side of (2.23). The same argument applied to w0,n−1

yields
n−1∑

i=1

ew0,i =
n−2∑

i=1

ew0,i + E−1
n−1

n−2∑

i=1

ew0,i ,

with En−1 exponentially distributed with parameter 1 and Gn−2-independent. By a
conditioning argument, one can prove that En and En−1 are also independent. Iterating
the argument, we obtain the formula

w0,n = ln E−1
n +

n−1∑

i=2

ln
(
1 + E−1

i

)
+ w0,1, (2.24)
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with Ei an i.i.d. sequence. Summing up, for Gumbel passage times, one can write
w0,n as a sum of i.i.d. random variables, which yields the following result.

Proposition 2.15. Assume that the passages times
(
ve; e ∈ Π0,n

)
are Gumbel G(0, 1)-

distributed. Then, by the law of large numbers

lim
n→∞

w0,n

n
= v = E ln

(
1 + E−1

)
a.s.

where E is exponentially distributed with parameter 1. Moreover, by the central limit
theorem

w0,n − nv√
n

converges in distribution to a Gaussian random variable with variance

σ2 = Var ln
(
1 + E−1

)
.

In contrast with (1.8), the model here is not of the mean-field type. Hence, the
techniques and results obtained in [CQR13] for perturbations of the Gumbel law do
not apply. Nevertheless, the method developed by Brunet and Derrida is general
enough and may be effective for different passage percolation model for which the
time-constant is unknown. Being able to solve the microscopic dynamics for a specific
disorder allows one to have an idea of the expected behaviour of the system, which is
in itself a good reason to present the technique in this generality.

2.6 Simulations

The definition of the N -particle system (1.8) already yields an algorithm to generate
it. Nevertheless, the computational cost of such algorithm grows with the square of
the number N of particles. Due to this constrain, we have only simulated systems
with no more than 2× 103 particles.

Front profile. As stated in Theorem 2.14, when the disorder has an exponen-
tial upper tail the empirical distribution function converges uniformly in probability
to a deterministic function u(x). Such behaviour can already be observed in the
Figures 2.7a and 2.7b.

No mathematical result for the front with other distributions is available. In
Figure 2.9 we present simulations of the front profiles when the disorder is distributed
respectively as the minus of the uniform law and exponential law. We rescale the
distance between particles by N and in order to compare the curves with u(x) we
centred them at the points where they are 1/2. The simulations indicate that u(x) is
not the scaling limit for the front shape in those cases. Nevertheless, if we compare
both curves it seems clear that a limit shape exists, see Figure 2.9c.

We have also simulated the N -particle system for other types of disorders, such
as the Gaussian distribution. Nevertheless, due to the high computational cost, the
simulations are not conclusive and hence we were not able to draw any interesting
conclusion from it.
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Front velocity. Theorem 1.1 states that when the disorder lies in the max domain
of attraction of the Weibull law, then the finite size correction to the speed are of
order N1/α. We also performed simulations in order to guess the second term in the
expansion. We considered ξij distributed according to the minus of an exponential
law with parameter one and the minus of the uniform distribution. For both cases,
the following limit holds

NvN(ξ) + 1/e→ 0 as N →∞.

We simulate the N -particle system with N = 125, 250, 500, 103 (Figure 2.10). For
each N and 200 ≤ t ≤ 250, we plot

(
maxXi(t)

t
+

1

Ne

)
N.

It seems clear from the simulation that the second order correction to the speed
is much larger than N−2.

For N = 103, we see from both cases that

(
maxXi(t)

t
+

1

103e

)
103.

oscillates about −2 × 10−2 which is approximatively −1/(ln 103)2. For N = 5 × 102,
the points oscillate between −3, 5 × 102 and −2, 5 × 102. Once again, the points are
not far from −1/(ln 5 × 102)2 ∼= −0, 0258. Finally, for the smaller values of N the
simulations are not conclusive.

Summarizing the discussion, it seems clear from Figure 2.10 that the second order
expansion to the velocity does not have the order of N−2, but it scales like N−1 times
some logarithm correction.
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2.6. Simulations

(a) The N particles have started on zero. The disorder is distributed according to the minus of the
uniform distribution. The curves have been centered at the values where they are 1/2

(b) The N particles have started on zero. The disorder is distributed according to the minus of the
exponential distribution with parameter 1. The curves have been centered at the values where they
are 1/2

(c) Comparison of −U and −Exp: the curves are so close to one another that we had to rarefy the
ploted points, otherwise it would be impossible to distinguish betweem them.

Figure 2.9: Front profile, density case.
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Figure 2.10: Since the particles start in zero, we consider only t ≥ 200, so the system has the time
to mix.
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Chapter 3

Front speed on a discrete case, the
percolation distribution

Apart from the introductory section that has been modified for a better readabil-
ity and Section 3.5 that has been added later, this chapter is an article published
in Stochastic Processes and their Applications, 2014, vol. 124, issue 11, pages
3698-3723.

3.1 Introduction

In this chapter, we focus on the case where the disorder ξ depends on N the number
of particles. With r > 0, ρ > 0, let

P
(
ξ(N) = 0

)
= p0(N) ∼ ρ/N1+r (3.1)

P
(
ξ(N) = −1

)
= 1− P

(
ξ(N) = 0

)
,

we will often omit N in the notation. As in [CD90], we will sometimes use the
term “percolation distribution” to denote (3.1). Here, we will only consider the ξij
distributed according to the percolation distribution or variations of it, hence it will
be convenient to denote respectively by vN and DN the speed and diffusion constant
of the N -particle system (instead of using vN(ξ) and DN(ξ) as in Chapter 1).

For this choice of disorder, the front moves backwards, making the solution UN ≡ 1
unstable. If all particles start on zero, the lattice features of ξ constrains them to stay
at a distance of at most one from the leaders, and when the front moves that is,

maxX(t) = maxX(t− 1)− 1,

all particles jump to a same position. This particular behaviour hides a renewal
structure that will be used when computing the front speed. Throughout this chapter,
we denote by

φ
(
X(t)

)
:= max

1≤i≤N

{
Xi(t)

}
(3.2)

the front’s position at time t. In [CD90], the authors study, among other things, the
polymer model associated to (1.8) when the disorder ξij is given by (3.1) with ρ = 1.
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They focus on the so-called ground state energy per unity of length, which is simply
the speed of the N -particle system and obtain the following asymptotic for large N

vN →
(

1 + b1/rc
)−1

, as N →∞. (3.3)

Their statement is based on the observation that the typical number of sites on the
t-th plane connected to the first plane by a path of zero energy is N1−tr. Hence, if N
is large enough and 1− tr positive there is a path of zero energy (which is necessarily
a ground state) from 0 to t, whereas when 1 − tr is negative there is no such path.
Their argument, although informal, is correct, but the case where 1/r is an integer
(the critical case) requires a more careful analysis. In this chapter we formalize their
argument and show that there is an additional term in (3.3) when 1/r is an integer.

The case 1/r ∈ N is critical in the sense that the system displays a different
behaviour when compared to 1/r 6∈ N. For 1/r ∈ N and N large enough, we show
that at t = 1/r there is a Poissonian number of particles Xi that remain in position
zero, while, when 1/r 6∈ N the typical number of such particles is N1−b1/rcr. The
following theorem is the rigorous version of Theorem 1.2 stated in the Introduction,
that we will prove in this chapter.

Theorem 3.1. Let ξ be distributed according to (3.1). Then the front speed vN
satisfies

lim
N→∞

vN =

{
−
(

1 + b1/rc
)−1

, if 1/r 6∈ N
−
(

1 + b1/rc − e−ρ
1/r )−1

, if 1/r ∈ N ,
(3.4)

In the case where r = 0

lim
N→∞

vN = 0. (3.5)

In Section 3.5 we focus on the diffusive properties of the model and obtain the
following result concerning the diffusion constant DN .

Theorem 3.2. Let ξ be distributed according to (3.1), and vN be the velocity of the
front. Then, there exists a constant D2

N such that

Φ
(
X(bnsc)

)
− nsvN

DNv
3/2
N

√
n

converges weakly to the standard Brownian motion
(
Bs; s ∈ R

)
as n→∞. Moreover,

DN satisfies the following limit

lim
N→∞

D2
N =

{
0, if 1/r 6∈ N
exp(−ρ1/r)− exp(−2ρ1/r), if 1/r ∈ N.

In the case 1/r 6∈ N, let d1/re := b1/rc+ 1, then the following limit also holds

lim
N→∞

D2
NN

rd1/re−1 = ρd1/re.
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3.1. Introduction

We also consider a natural generalization of (3.1), and we calculate the speed of the
N -particle system. First, we consider ξ taking values in the lattice Z0 = {l ∈ Z; l ≤ 0}.
We set for i ∈ N

pi(N) = P(ξ(N) = −i), (3.6)

and assume that p0 ∼ ρ/N1+r where r and ρ are non-negative. Let

q2(N) := P
(
ξ(N) ≤ −2

)
= 1− p0 − p1. (3.7)

We also assume that for i ≥ 2

P (ξ = −i | ξ ≤ −2) =
pi(N)

q2(N)
= P(ϑ = −i), (3.8)

where ϑ is an integrable distribution on the lattice Z−2 that does not depend on N .
We then compute the asymptotic of vN as N → ∞, that resembles to (3.4), but a
different correction appears in the critical case, see Theorem 3.3 below.

The lattice constrain can be easily wakened (see Section 3.4), and one can further
generalize the model considering ξ of the form

ξ = p0(N)δλ0 + p1(N)δλ1 + q2(N)ϑ(dx), (3.9)

where λ1 < λ0, ϑ(dx) is an integrable probability distribution over
(
−∞, λ1−(λ0−λ1)

]

and δλi is the mass distribution. Then, if we assume that p0(N) ∼ ρ/N1+r, the velocity
vN obeys the following asymptotic.

Theorem 3.3. Let ξ be distributed according to (3.9). Assume that

p0(N) ∼ ρ

N1+r
, and lim

N→∞
q2(N) = θ,

where r > 0 and 0 < θ < 1. Then the front speed vN satisfies

lim
N→∞

vN =

{
λ0 − (λ0 − λ1)

(
1 + b1/rc

)−1
, if 1/r 6∈ N

λ0 − (λ0 − λ1)
(
b1/rc+ 1− 1/g(θ)

)−1
, if 1/r ∈ N ,

(3.10)

where g(θ) ≥ 1 is a non-increasing function. The conclusion in the case 1/r 6∈ N still
holds if ξ satisfies the weaker assumption q2/(1− p0) ≤ θ′ for some 0 < θ′ < 1 .

Organization of the chapter: in Subsection 3.2.1 we compute the typical num-
ber of leading particles, which corresponds to the number of paths of zero energy and
in Subsection 3.2.2, we calculate the limit of vN as N → ∞, exhibiting in particular
the additional term appearing in (3.3) in the critical case. In Subsection 3.3.1 we
compute the typical number of leading particles, when ξ is distributed according to
(3.9). Subsections 3.3.2 and 3.3.3 present some technical results and calculations.
In Subsection 3.3.4 we compute the front velocity and prove the discrete version of
Theorem 3.3. A sketch of the proof of Theorem 3.3 is given in Section 3.4. Finally,
in the end of the chapter we include a section proving Theorem 3.3.
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3.2. The two-state percolation distribution

3.2 Front speed for the two-state percolation dis-

tribution

In this Section, we consider the case of ξij’s distributed according to (3.1). For this
choice of distribution, all N particles meet at a same location at a geometric time T
regardless the initial configuration, see [CQR13] Section 5 for a rigorous proof. Due to
the choice of ξij’s and (1.8), at all later times t ≥ T every Xi(t) is either at a leading
position or it lies at a unit distance behind the leaders.

Since φ
(
X(T )

)
/t converges to 0 a.s. as t→∞, the front speed vN is not affected

by the particles’ positions at time T . So henceforth, we will assume that at t = 0

Xi(0) ∈ {−1, 0}, ∀i ∈ {1, . . . , N}.

Under this hypothesis, we consider the following process.

Definition 3.4. Let φ
(
X(t− 1)

)
be the front’s position as in (3.2). Then, for t ∈ N

we define the stochastic process Z(t) :=
(
Z0(t), Z1(t)

)
as follows. For t = 0 let Z0(0)

be the number of leading particles and Z1(0) the number of particles that are at a unit
distance behind the leaders. For t ≥ 1 define

Z0(t) := ]
{

1 ≤ i ≤ N ;Xi(t) = φ
(
X(t− 1)

)}
;

Z1(t) := ]
{

1 ≤ i ≤ N ;Xi(t) = φ
(
X(t− 1)

)
− 1
}
,

(3.11)

where ] denotes the number of elements in a set.

Note that for t ≥ 1 Z0(t) is equal to the number of leaders if the front has not
moved backwards between times t − 1 and t, and to 0 if the front moved. Z is a
homogeneous Markov chain on the set

Ω(N) =
{
x ∈ {0, 1, . . . , N}2 ;x0 + x1 = N

}
,

where x0 and x1 are the coordinates of x. The transition rates of the Markov chain
Z0(t) is given by the Binomial distributions

P
(
Z0(t+ 1) = · | Z(t) = x

)

= P
(
Z0(t+ 1) = · | Z0(t) = x0

)
=

{
B (N, 1− (1− p0)x0) (·), x0 ≥ 1
B
(
N, 1− (1− p0)N

)
(·), x0 = 0.

(3.12)

We will often consider Markov chains with different starting distributions. For
this purpose we introduce the notation Pµ and Eµ for probabilities and expectations
given that the Markov chain initial position has distribution given by µ. Often, the
initial distribution will be concentrated at a single state x. We will then simply write
Px and Ex for Pδx and Eδx .

In this Section, ⊕ denotes the configuration (N, 0) ∈ Ω(N) . Furthermore, we
introduce the notation

1/r = m+ η , (3.13)

where m stands for the integer part of 1/r and η its fractional part.
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3.2. The two-state percolation distribution

3.2.1 Number of Leading Particles

In this Subsection, we show that under a suitable normalization and initial conditions
the process Z0 converges as N goes to infinity.

We consider the random variable

τ := inf
{
t ≥ 1;φ

(
X(t)

)
< φ

(
X(t− 1)

)}
, (3.14)

that is a stopping time for the filtration Ft = {ξij(s); s ≤ t and 1 ≤ i, j ≤ N}. It is
not difficult to see that τ is also the first time when Z0 visits zero

τ = inf
{
t ≥ 1;Z0(t) = 0

}
,

as a consequence Z(τ) =
(
0, N

)
. From (3.12), it is easy to conclude that the distri-

bution of
{
Z(τ + t), t ≥ 1

}
is equal to the distribution of

{
Z(t), t ≥ 1

}
under P⊕. It

yields the renewal structure that will be used when computing the front speed.

Definition 3.5. Let Y (t) be the number of leading particles at time t if the front has
not moved

Y (t) := Z0(t)1{t≤τ} . (3.15)

Then, Y is a homogeneous Markov chain with absorption state at zero and tran-
sition rates given by the Binomial distributions

P
(
Y (t+ 1) = · | Y (t) = k

)
= B

(
N, 1− (1− p0)k

)
(·).

The advantage of working with Y rather than Z0 is that the above formula holds even
if Y (t) = 0.

Proposition 3.6. Let ξ be distributed according to (3.1). For k ∈ {1, 2, . . . N} denote
by Gk(s, t) the Laplace transform of Y (t) under Pk at s ∈ R. Then,

Gk(s, t) := Ek
[
es Y (t)

]
= exp

{
(es − 1)k

(
Np0

)t(
1 + o(1)

)}
(3.16)

as N →∞.

Proof. Conditioning on Ft−1 := {ξij(s); s ≤ t− 1}

Ek
[
es Y (t)

]
= Ek

[
E
[
es Y (t) | Y (t− 1)

] ]

= Ek
[(

1 + (es − 1)
(
1− (1− p0)Y (t−1)

) )N]
.

Since p0 ∼ ρ/N1+r with r > 0 and Y (t− 1) ≤ N , we obtain by first order expansion
that (

1 + (es − 1)
(
1− (1− p0)Y (t−1)

) )N
= s(1)(N)Y (t−1),

where s(1)(N) = exp
{

(es − 1)
(
Np0 + o(Np0)

)}
and o(Np0)/Np0 → 0 as N → ∞

independently from Y (t− 1). Repeating the argument

Ek
[
es Y (t)

]
= Ek

[
s(1)(N)Y (t−1)

]
= Ek

[
s(2)(N)Y (t−2)

]
,
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with s(2)(N) = exp
{

(s(1)(N)− 1)
(
Np0 + o(Np0)

)}
. Expanding s1(N)− 1

s(1)(N)− 1 = exp
{

(es − 1)
(
N p0 + o(Np0)

)}
− 1

= (es − 1)
(
N p0 + o(Np0)

)
.

Hence, s(2)(N) = exp
{

(es − 1)
(
N p0

)2
+ o
(
(Np0)2

)}
. We proceed recursively and

obtain the expression

Ek
[
es Y (t)

]
= exp

{
k (es − 1)

(
N p0

)t(
1 + o(1)

)}
, as N →∞,

which proves the statement.

We point out that the case k = N corresponds to Z(0) = ⊕. We now state two
corollaries of Equation (3.16).

Corollary 3.7. Let ξ be distributed according to (3.1) and k ∈ {1, . . . , N}. Then, for
t ≥ m+ 1

Pk
(
Y (t) = 0

)
≥ 1− ρtN1−t r + o

(
N1−t r) (3.17)

as N →∞.

Proof. Since Pk
(
Y (t) = 0

)
= lims→−∞ Ek

[
esY (t)

]
, Proposition 3.6 implies that

Pk
(
Y (t) = 0

)
= exp

{
− k
(
Np0

)t(
1 + o(1)

)}
≥ exp

{
−N

(
Np0

)t(
1 + o(1)

)}
.

Then, we obtain (3.17) by first order expansion.

Corollary 3.8. Let ξ be distributed according to (3.1) with η = 0 (i.e. r = 1/m) and
κ(N) be a sequence of random variables in {1, . . . , N} with some distribution µ(N).
Suppose that κ(N)/N converges in distribution to U a positive random variable.

Then, under Pµ(N), Y (m) converges in distribution to Y∞ a doubly stochastic Pois-
son random variable characterized by its Laplace transform

E
[
es Y∞

]
= E

[
exp

{
U (es − 1)ρm

}]
. (3.18)

Proof. We may assume that all {ξij(t); t, i, j ∈ N} and {κ(N), N ∈ N} are constructed
on the same probability space in such a way that κ(N)/N converges a.s. to U . Then
we use (3.16) to get

Eκ(N)

[
esY (m)

]
= exp

{
(es − 1)κ(N)ρmN−1

(
1 + o(1)

)}
, as N →∞.

The term o(1) converges to zero independently from κ(N) the initial position. Then,
by dominated convergence, we obtain that

lim
N→∞

E
[
esY (m)

]
= E

[
exp

{
U (es − 1)ρm

}]
,

which concludes the proof.
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3.2. The two-state percolation distribution

We now prove a large deviation principle for Y . As in [DZ10, DH00], we denote
by

Λk, t(s) := lim
N→∞

1

kN−rt
lnEk

[
es Y (t)

]
, (3.19)

the cumulant generating function of Y under Pk. From (3.16) we see that Λk, t(s) =
(es − 1)ρt . Denoting by

Λ∗k,t(x) := sup
s∈R
{xs− Λk,t(s)} , (3.20)

the Legendre transform of Y (t) under Pk, we have that

Λ∗k, t(x) =

{
x(lnx− ln ρt) + ρt − x , if x ≥ 0;

∞ , if x < 0.
(3.21)

Proposition 3.9. (Large Deviation Principle for Y ) Let ξ be distributed according to
(3.1). For t ≤ m, let k(N) ≤ N be a sequence of positive integers such that

lim
N→∞

k(N)N−r t =∞.

Then, under Pk(N), Y (t)/
(
k(N)N−r t

)
satisfies a large deviation principle with rate

function given by Λ∗k,t as in (3.21) and speed k(N)N−r t.

Proof. In fact, it is a direct application of Gärtner-Ellis Theorem (see e.g. Theorem
V.6 in [DH00]). Since Λ is smooth, it is a lower semi-continuous function, therefore
the lower bound in the infimum can be taken over all points.

The next Corollary formalizes the statement of Cook and Derrida in [CD90].

Corollary 3.10. Let ξ be distributed according to (3.1) and κ(N) be a sequence of
random variables in {1, 2, . . . , N}. Assume that

{κ(N);N ∈ N} and {ξij(t); t, i, j ∈ N}

are constructed in the same probability space in such a way that they are independent
and denote by P(1) and P(2) their distributions.

Suppose also that in this probability space κ(N)/N converges a.s. to U a positive
random variable. Then, for t < 1/r

lim
N→∞

P(1) ⊗ P(2)
κ(N)

(∣∣∣ Y (t)

ρt U N1−tr − 1
∣∣∣ ≥ ε

)
= 0, (3.22)

where P(1) ⊗ P(2)
κ(N) is the distribution of {Y (t); t ∈ N} started from κ(N).

Proof. We first consider the case where κ(N) is a deterministic sequence such that

lim
N→∞

κ(N)

N
= u, for some 0 < u ≤ 1
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Then the conditions of Proposition 3.9 are satisfied and Y (t)/
(
κ(N)N−t r

)
satisfies a

large deviation principle with rate function given by (3.21), which only zero is at ρt.
This implies the desired convergence.

The random case is solved by conditioning on κ(N) = Y (0).

P(1) ⊗ P(2)
κ(N)

(∣∣∣ Y (t)

ρtUN1−tr − 1
∣∣∣ ≥ ε

)
=

∫
P(2)
κ(N)(ω1)

(∣∣∣ Y (t)

ρtU(ω1)N1−tr − 1
∣∣∣ ≥ ε

)
P(1)(dω1).

Since κ(N)(ω1)/N converges to U(ω1) P(1)-a.s.

lim
N→∞

P(2)
κ(N)(ω1)

(∣∣∣ Y (t)

ρtU(ω1)N1−tr − 1
∣∣∣ ≥ ε

)
= 0,

and we conclude by dominated convergence.

Cook and Derrida [CD90] consider the particular case where ρ = 1 in (3.1). From
Corollary 3.10, we see that Y (t)/N1−rt converges in probability to one. Since under
PN , Y (t) is equal to the number of paths with zero energy at time t, the typical
number of such paths is N1−rt.

3.2.2 Front Speed

In this Subsection, we give the exact asymptotic for the front speed, proving Theorem
3.1. The front’s position can be computed by counting the number of times Z visits
(0, N). Indeed, at a given time t either the front moves backwards and φ

(
X(t)

)
=

φ
(
X(t− 1)

)
− 1 or it stays still and φ

(
X(t)

)
= φ

(
X(t− 1)

)
. Then,

φ
(
X(t)

)

t
=
−Nt

t
,

where Nt is the stochastic process that counts the number of times that Z visited
(0, N) until time t. A classic result in renewal theory (see e.g. [Dur10]) states that

lim
t→∞

Nt

t
=

1

E⊕[τ ]
. (3.23)

Hence, to determine the front velocity, it suffices to determine E⊕[τ ] .

E⊕[τ ] =
∞∑

t=0

P⊕(τ ≥ t+ 1) =
∞∑

t=0

P⊕(Y (t) ≥ 1) . (3.24)

A consequence of Corollaries 3.7, 3.8 and 3.10 is that if ξ is distributed according to
(3.1) with η > 0, then

lim
N→∞

P⊕
(
Y (t) ≥ 1

)
=

{
1 , if t ≤ m ;
0 , if t ≥ m+ 1 .
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3.2. The two-state percolation distribution

Whereas we have the following limits when η = 0

lim
N→∞

P⊕
(
Y (t) ≥ 1

)
=





1 , if t ≤ m− 1 ;
1− e−ρ

m
, if t = m ;

0 , if t ≥ m+ 1 .

Then, to finish the proof of Theorem 3.1, it suffices to show that

lim
N→∞

∑

t≥m+1

P⊕(Y (t) ≥ 1) = 0 . (3.25)

Since Y is a homogeneous Markov chain we use the Markov property at time m + 1
to obtain

∑

t≥m+1

P⊕
(
Y (t) ≥ 1

)
=
∞∑

t=0

N∑

k=1

Pk
(
Y (t) ≥ 1

)
P⊕
(
Y (m+ 1) = k

)
.

It is not difficult to see that under Pk, Y is stochastically dominated by Y under PN ,
which implies that Pk

(
Y (t) ≥ 1

)
≤ PN

(
Y (t) ≥ 1

)
. Then, applying this inequality in

the above expression, we get
∑

t≥m+1

P⊕
(
Y (t) ≥ 1

)
≤ P⊕

(
Y (m+ 1) ≥ 1

)
E⊕[τ ] . (3.26)

Proposition 3.11. Let ξ be distributed according to (3.1). Then, Ex[τ ] is bounded in
N

sup
N∈N

sup
x∈Ω(N)

{Ex[τ ]} <∞. (3.27)

Proof. By Corollary 3.10, limN→∞ P⊕
(
τ ≥ m + 2

)
= 0 . Therefore, there exists a

constant c1 < 1 such that for N sufficiently large

P⊕( τ ≥ m+ 2 ) ≤ c1.

Coupling the chains started from δx and δ⊕ we obtain that Px(τ ≥ m+ 2) ≤ P⊕(τ ≥
m+ 2) for every x ∈ Ω(N) and therefore

Px(τ ≥ m+ 2) ≤ c1. (3.28)

Then, Proposition 3.11 follows as a consequence of the Markov property and (3.28).
In Subsection 3.3.2 we present an equivalent argument in all details.

Applying Proposition 3.11 and Corollary 3.7 in (3.26), we conclude that

∑

t≥m+1

P⊕(Y (t) ≥ 1) = O
(
N1−(m+1)r

)
.

Hence, from (3.24) we obtain the limits

lim
N→∞

E⊕[τ ] =

{
1 +m, if r 6= 1/m;
1 +m− e−ρ

m
, if r = 1/m,

(3.29)
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3.3. Infinitly many states distribution

proving Theorem 3.1 in the case r > 0.
To finish the proof of Theorem 3.1 it remains to study the case r = 0. For that

we use a coupling argument. Up to the end of this Subsection we denote by ξ(r)

P(ξ(r) = 0) = 1− P(ξ(r) = −1) ∼ ρ/N1+r .

For r > 0, the random variables ξ(0) are stochastically larger than ξ(r) for N large
enough. Denoting by Xr

i (t) the stochastic process defined by ξ(r) we construct the
process in such a way that the following relation holds

0 ≥ φ
(
X0(t)

)

t
≥ φ

(
Xr(t)

)

t
.

From (3.29), if we choose r such that 1/r is not an integer, we have the lower bound

0 ≥ vN(0) ≥ vN(r)→ − (1 + b1/rc)−1 ,

whence taking r to 0, we obtain limN→∞ vN(0) = 0, which concludes the proof of
Theorem 3.1.

3.3 Front speed for the infinitely many states per-

colation distribution

In this Section, we prove a discrete version of Theorem 3.3. We consider the case of
ξij distributed according to (3.6).

Assumption (A). The random variable ξ distributed according to (3.6) satisfies
Assumption (A) if there exists a constant 0 < θ < 1 such that

lim
N→∞

q2 = θ,

and ϑ defined in (3.8) is integrable.

In the non-critical case we do not need to assume the convergence of q2. We prove
Theorem 3.13 under the weaker condition.

Assumption (A’). The random variable ξ distributed according (3.6) satisfies
Assumption (A’) if there exists a constant 0 < θ′ < 1 such that for N large enough

q2

(1− p0)
≤ θ′,

and ϑ defined in (3.8) is integrable.

As in the “two-state percolation model”, the N particles meet at a same position at
a geometric time despite the starting configuration. Since ξij(s) ∈ Z0 (for all s ∈ N),
for all later times t every Xi(t) is at a distance di ∈ {0, 1, 2, . . .} behind the leaders.
For this reason, we may assume that at t = 0 the particles’ relative positions to the
leader already satisfy this property and we consider the process Z(t) :=

(
Zl(t); l ∈ N

)
,

where
Zl(t) := ]

{
j; 1 ≤ j ≤ N,Xj(t) = φ

(
X(t− 1)

)
− l
}
.
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3.3. Infinitly many states distribution

Then, Z is a homogeneous Markov chain on the set

Ω(N) :=
{
x ∈ {0, 1, . . . , N}N ;

∞∑

i=0

xi = N
}
,

where xi are the coordinates of x. If at time t we have that Z(t) = x ∈ Ω(N), for
each k ∈ N there are xk particles in position −k with respect to the leader at time
t− 1. In this situation, suppose that x0 ≥ 1, then for every 1 ≤ i ≤ N the probability
that Xi(t+ 1) is in position −k with respect to the leader at time t is equal to

sk(x) :=

( ∞∑

i=1

pi

)xk−1

. . .

( ∞∑

i=k

pi

)x0

−
( ∞∑

i=1

pi

)xk
. . .

( ∞∑

i=k+1

pi

)x0

, (3.30)

where we define x−1 = 0. So the probability that Xi(t+ 1) = Φ (X(t)) is given by

s0(x) := 1−
(
1− p0

)x0 .

If x0 = 0, we shift (x0, x1, . . .) to get a nonzero first coordinate obtaining a vector
x̃ ∈ Ω(N) such that x̃0 ≥ 1. Then, one can check that

sk(x) = sk(x̃).

The transition probability of the Markov chain Z is given by

P
(
Z(t+ 1) = y | Z(t) = x

)
=M

(
N ; s(x)

)
(y) , (3.31)

where s(x) =
(
s0(x), s1(x) . . .

)
and M

(
N ; s(x)

)
denotes a Multinomial distribution

with infinitely many classes, we refer to [CQR13] Section 6 for more details on the
computations. It is clear that Z0(t) has the same transition probability as the process
studied in the two states model. In particular, the results proved in Subsection 3.2.1
hold with the obvious changes.

Definition 3.12. Let A ⊂ Ω(N) we denote by TA the first time that Z(t) visits A

TA := inf{t ≥ 1;Z(t) ∈ A}, (3.32)

that is a stopping time for the filtration Ft = σ{ξij(s); s ≤ t, 1 ≤ i, j ≤ N}. Often
A = {x}, in this case we will simply write Tx for T{x}.

For a stopping time T , we define recursively T (0) = 0 and for i ≥ 1

T (i)(ω) := inf{t > T (i−1)(ω); t = T ◦ΘT (i−1)(ω)(ω)}, (3.33)

where Θt is the time-shift operator. We adopt the convention that inf{∅} =∞. Once
more we denote by τ the stopping time defined as

τ := inf
{
t ≥ 1; φ

(
X(t)

)
< φ

(
X(t− 1)

)}
. (3.34)

In contrast with the previous Section, τ is not a renewal time for Z. We adapt the
notation of Section 3.2 and define ⊕ :=

(
N, 0, . . .

)
∈ Ω(N) and 4 := (0, N, 0, . . .) ∈

Ω(N). Finally, we keep notation (3.13) and let m be the integer part of 1/r and η its
fractional part. We now state the main result of the Section.
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3.3. Infinitly many states distribution

Theorem 3.13. Assume that ξ satisfies Assumption (A). Then

lim
N→∞

vN =

{
−
(

1 + b1/rc
)−1

, if 1/r 6∈ N
−
(
b1/rc+ 1− 1/g(θ)

)−1
, if 1/r = m ∈ N,

(3.35)

where g(θ) ≥ 1 is a non-increasing function. The conclusion in the case r 6= 1/m still
holds if ξ satisfies the weaker Assumption (A’).

3.3.1 The Distribution of Z(τ)

In this Subsection we study the limit distribution of Z(τ) as N → ∞. When η > 0
the limit is similar to the one obtained in the previous results.

Proposition 3.14. Assume that ξ satisfies Assumption (A’) and that η > 0. Then,

lim
N→∞

P⊕
(
Z(τ) = 4

)
= 1. (3.36)

The case η = 0 is critical. We show that Z1(τ)/N converges in distribution and
that the limit distribution is a functional of a Poisson random variable.

Proposition 3.15. Assume that ξ satisfies Assumption (A) with η = 0 . Then
under P⊕, Z0(m) converges in distribution to Π(ρm) a Poisson random variable with
parameter ρm.

Moreover, there exists a function G : N→ [0, 1] (see Definition 3.45) such that

(
Z1(τ)

N
,
∞∑

i=2

Zi(τ)

N

)
d→
(
G
(
Π(ρm)

)
, 1−G

(
Π(ρm)

))
. (3.37)

Before analyzing the cases η = 0 and η > 0 separately, we prove a technical
Lemma that holds in both cases. It can be interpreted as follows: if at time t there
are sufficiently many leading particles, then at time t+ 1, with high probability, there
is no particle at distance two or more to the leaders at time t.

Lemma 3.16. Assume that ξ satisfies Assumption (A’). For x = x(N) ∈ Ω(N) such
that

lnN = o(x0)

as N → ∞, define si(x) as in (3.30) and let M
(
N ; s(x)

)
be a Multinomial random

variable with infinitely many classes as in (3.31). Then,

lim
N→∞

P
(
M
(
N ; s(x)

)
∈
{
y ∈ Ω(N) ;

∞∑

i=2

yi = 0
})

= 1. (3.38)
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Proof. We can write

P
(
M
(
N ; s(x)

)
∈
{
y ∈ Ω(N) ;

∞∑

i=2

yi = 0
})

=
N∑

n=0

P
(
M
(
N ; s(x)

)
∈
{
y ∈ Ω(N) ; y0 = n , y1 = N − n

})

=
N∑

n=0

N !

n!(N − n)!
s0(x)n s1(x)N−n

≥
(
1− θ′x0

)N
,

where the last inequality holds for N large enough as a consequence of Assumption

(A’). Since o(x0) = lnN we obtain that
(
1− θ′x0

)N → 1, proving the result.

Case η > 0

Proof of Proposition 3.14 . From Corollaries 3.7 and 3.10 we see that P⊕
(
τ 6= m+1

)
→

0. Then, it suffices to prove that P⊕
(
Z(m+ 1) = 4; τ = m+ 1

)
→ 1 .

P⊕
(
Z(τ) = 4 ; τ = m+ 1

)
=

∑

x∈Ω(N)

P⊕
(
Z(m+ 1) = 4;Z(m) = x; τ = m+ 1

)
.

Since τ = m + 1 it suffices to consider x such that x0 ≥ 1. Fix 0 < ε < ρm and take
x ∈ Ω(N) such that |x0/N

r η − ρm| < ε. From (3.31),

P⊕
(
Z(m+ 1) = 4|Z(m) = x

)

=M
(
N ; s(x)

)
(4) = s1(x)N

=
((

1− p0

)x0 −
(
1− p0

)x1
(
1− p0 − p1

)x0
)N

≥
(
1− p0

)x0N(1− θ′x0
)N
, (3.39)

where the last inequality is a consequence of Assumption (A’). Due to the choice of
x0, (3.39) is bounded from below by

(
1− p0

)(ρm+ε)N1+rη(
1− θ′(ρm−ε)Nrη)N

,

which converges to one as N → ∞. Then, by Proposition 3.9 and Equation (3.39),
we see that

P⊕
(
Z(τ) = 4

)
≥

∑

|x0/Nrη−ρm|<ε

P⊕
(
Z(τ) = 4;Z(m) = x; τ = m+ 1

)

converges to one, proving the result. 2
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Case η = 0

In this paragraph, we prove Proposition 3.15 and also a generalization that allows us
to compute the distribution of Z1(τ (i)).

Lemma 3.17. Assume that ξ satisfies Assumption (A’) with η = 0. Fix 0 < a < b
and denote by Ωb

a(N) the subset of Ω(N) defined as

Ωb
a(N) :=

{
x ∈ Ω(N); aN1/m ≤ x0 ≤ bN1/m

}
.

Then the following limit holds

lim
N→∞

sup
x∈Ωba(N)

Px
(
Z(1) 6= 4 | Z0(1) = 0

)
= 0. (3.40)

Proof. It is not difficult to obtain the following inequality

Px
(
Z(1) 6= 4 | Z0(1) = 0

)
≤

Px
(
Z(1) ∈

{
y ∈ Ω(N) ;

∑∞
i=2 yi 6= 0

})

Px
(
Z0(1) = 0

) .

Under Px, Z(1) is distributed according toM
(
N, s(x)

)
, then from the proof of Lemma

3.16

lim
N→∞

sup
x∈Ωba(N)

Px
(
Z(1) ∈

{
y ∈ Ω(N) ;

∞∑

i=2

yi 6= 0
})

= 0.

To finish the proof it suffices to show that Px
(
Z0(1) = 0

)
is bounded away from zero.

Indeed, Z0(1) is distributed according to a Binomial random variable of parameter N
and s0(x). Using the hypotheses of the Lemma we obtain the lower bound

s0(x) ≥ 1− (1− p0)bN
1/m

.

Coupling Z(1) with B a Binomial of parameter N and 1− (1− p0)bN
1/m

Px
(
Z0(1) = 0

)
≥ B

(
N, 1− (1− p0)bN

1/m
)

(0)→ e−ρb,

for every x ∈ Ωb
a(N), which finishes the proof.

From Corollary 3.10, we see that under P⊕, Z0(m− 1)/N1/m converges in proba-
bility to ρm−1, as N →∞. Hence, from Lemma 3.17, we conclude that

lim
N→∞

P⊕
(
Z(τ) = 4|Z0(m ) = 0

)
= 1 . (3.41)

This is the first step to prove Proposition 3.15. The second step is to study the
conditional distribution of Z(τ) under Z0(m) = x0 for a positive integer x0.

Proposition 3.18. Assume that ξ satisfies Assumption (A) with η = 0. Let k be a
nonzero integer and denote by Ωk(N) the subset of Ω(N) defined as

Ωk(N) :=
{
x ∈ Ω(N);x0 = k

}
.

Then, for ε > 0 the following limit holds

lim
N→∞

sup
x∈Ωk(N)

Px
( ∣∣∣∣
(
Z1(1)

N
,

∑
i≥2 Zi(1)

N

)
−
(
1− θk, θk

) ∣∣∣∣ > ε

)
= 0. (3.42)
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Proof. From (3.31), we see that under Px, Z(1) is distributed according to an infinite
class Multinomial of parameters N and s(x). In particular, the triplet

(
Z0(1) , Z1(1) ,

∑
i≥2 Zi(1)

)

is distributed according to a three classes Multinomial of parameters

N and
(
s0(x), s1(x),

∑
si(x)

)
.

If ξ satisfies Assumption (A) and x ∈ Ωk(N), we have that

lim
N→∞

s0(x) = 0 ; lim
N→∞

s1(x) = 1− θk ; lim
N→∞

∑
si(x) = θk, (3.43)

and the rate of convergence is uniform on x ∈ Ωk(N). A three classes Multinomial
random variable as above satisfies a large deviation principle (see e.g. [DZ10, DH00])
and the rate function is given by

Λ∗(y) =

{
y1 ln

(
(θk)y1

(1−y1)(1−θk)

)
− ln

(
θk

1−y1

)
, if y1 + y2 = 1;

∞, otherwise.
(3.44)

The only zero of Λ∗ is at y = (0, 1− θk, θk). Implying the convergence in probability

1

N

(
Z0(1), Z1(1),

∑

i≥2

Zi(1)

)
→
(
0, 1− θk, θk

)
,

as N →∞, which proves the statement.

We now give the definition of the function G(·) appearing in Proposition 3.15.

Definition 3.19. Let G : N −→ [0, 1] be defined as

G(k) =

{
1− θk, if k ≥ 1;

1, if k = 0,
(3.45)

where θ is given by Assumption (A).

Proof of Proposition 3.15. From Corollary 3.8, we have that under P⊕, Z0(m)
converges in distribution to a Poisson random variable of parameter ρm. Hence, to
prove Proposition 3.15 it suffices to show that

P⊕
( ∣∣∣∣
(
Z1(τ)

N
,

∑
i≥2 Zi(τ)

N

)
−
(
G
(
Z0(m)

)
, 1−G

(
Z0(m)

))∣∣∣∣ > ε

)

=
N∑

k=0

P⊕
( ∣∣∣∣
(
Z1(τ)

N
,

∑
i≥2 Zi(τ)

N

)
−
(
G(k), 1−G(k)

)∣∣∣∣ > ε ;Z0(m) = k

)

converges to zero. From (3.41) and Proposition 3.18, we know that for each k ∈ N
the terms in the above sum converge to zero. Then, from the tightness of Z0(m) we
obtain that the sum itself converges to zero, proving the result. 2

We finish the present Subsection by computing the limit distribution of Z
(
τ (i)
)

for i ∈ N. We also prove the convergence of some related processes that will appear
when calculating the front velocity in Subsection 3.3.4.
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Proposition 3.20. Assume that ξ satisfies Assumption (A) and that η = 0. Let
κ(N) be a sequence of random variables in Ω(N) with some distribution µ(N) and
denote by κ0(N) the first coordinate of κ(N). Assume also that κ0(N)/N converges
in distribution to U a positive random variable. Then, under Pµ(N), we have that

1. Z0(m) converges weakly to V a doubly stochastic Poisson random variable, which
distribution is determined by the Laplace transform

E
[
esV
]

= E [exp(es − 1) ρm U ] . (3.46)

2. Furthermore, the joint convergence also holds
(
Z0(m),

Z1(τ)

N
, τ

)
d→
(
V,G(V ),m+ 1{V 6=0}

)
. (3.47)

Proof. We may assume that all ξij(t)’s and κ(N)’s are constructed on the same prob-
ability space in such a way that κ0(N)/N → U a.s. The hypotheses of Corollary 3.8
are satisfied, implying the first statement of the Proposition. From Corollaries 3.7
and 3.10, we see that P(m ≤ τ ≤ m+ 1) converges to one. Since τ = m if and only if
Z0(m) = 0 and τ /∈ {1, . . . ,m− 1} we obtain that

lim
N→∞

P
(
|τ −m− 1{Z0(m)6=0}| > ε

)
= 0,

which implies the convergence in distribution τ
d→ m + 1{V 6=0}. Finally, to prove

that Z1(τ)/N converges to G(V ), we proceed as in Proposition 3.15 and show by
dominated convergence that

lim
N→∞

E

[
Pκ(N)

( ∣∣∣∣
(
Z1(τ)

N
,

∑
i≥2 Zi(τ)

N

)
−
(
G
(
Z0(m)

)
, 1−G

(
Z0(m)

))∣∣∣∣ > ε

)]
= 0,

we leave the details to the reader.

As an application of Proposition 3.20 we can calculate the distribution of Z
(
τ (2)
)
.

Indeed we can consider the convergence in Proposition 3.15 as the stronger a.s. con-
vergence. We do not lose any generality since we can construct a sequence of random

variables (possibly in an enlarged probability space) κ(N)
d
= Z(τ) that converges a.s.

Details about this construction can be found in [Bil99]. Passing to the appropriate
product space we also consider that the κ’s and ξij’s are independent, which implies
that

Pκ(N)

(
Z ◦Θτ (t) ∈ ·

) d
= PZ(τ)

(
Z ◦Θτ (t) ∈ ·

)
, (3.48)

for t ≥ 0. We apply the strong Markov property and Proposition 3.20 to obtain the
weak convergence

(
Z0(τ +m),

Z1

(
τ (2)
)

N
, τ (2) − τ (1)

)
d→
(
V (2), G

(
V (2)

)
,m+ 1{V (2) 6=0}

)
,

where V (2) is a doubly stochastic Poisson variable governed by V (1) the limit distri-
bution of Z0(m). This method can be iterated to obtain the following result.
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Lemma 3.21. Assume that ξ satisfies Assumption (A) with η = 0. Denote by

∆τ
(i)
N := τ (i) − τ (i−1) and let l ∈ N. Then, under P⊕

{(
Z0

(
τ (i−1) +m

)
, Z1

(
τ (i)
)
/N,∆τ

(i)
N

)
; 1 ≤ i ≤ l

}
(3.49)

converges weakly to

{(
V (i), G

(
V (i)

)
,m+ 1{V (i) 6=0}

)
; 1 ≤ i ≤ l

}
. (3.50)

The distribution of V (i) is determined by

P
(
V (i+1) = ti+1 | V (j) = tj, j ≤ i

)

= P
(
V (i+1) = ti+1 | V (i) = ti

)
= e−G(ti)ρ

m (G(ti)ρ
m)ti+1

ti+1!
, (3.51)

where t1, . . . , ti+1 ∈ N and V (1) is distributed according to a Poisson variable with
parameter ρm.

Proof. It is a direct consequence of Proposition 3.20 and an induction argument.

With a very small effort we can state Lemma 3.21 in a more general framework.
We consider the space of real valued sequences RN where we define the metric

d(a, b) =
∞∑

n=0

|an − bn|
2n

.

A complete description of this topological space can be found in [Bil99]. Since time
is discrete, the following Proposition holds as a corollary of Lemma 3.21.

Proposition 3.22. Assume that ξ satisfies Assumption (A) with η = 0 . Then, under
P⊕ the process { (

Z0

(
τ (i−1) +m

)
, Z1

(
τ (i)
)
/N,∆τ (i)

)
; i ∈ N

}
(3.52)

converges weakly in
(
(RN )3, d

)
. The limit distribution Wθ is given by

{(
V (i), G

(
V (i)

)
,m+ 1{V (i) 6=0}

)
; i ∈ N

}
, (3.53)

where V (i) is a Markov chain with initial position at 0 and transition matrix given by

P
(
V (i+1) = l | V (i) = k

)
= e−G(k)ρm (G(k)ρm)l

l!
, (3.54)

that is a Poisson distribution with parameter ρmG(k).
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Process convergence in the case η > 0

For the sake of completeness, we state the result in the case η > 0. We omit the proof
of the Proposition and leave the details to the reader .

Proposition 3.23. Assume that ξ satisfies Assumption (A’) and that η > 0 . Then
under P⊕ the process {(

Z1(τ (i))/N,∆τ (i)
)
; i ∈ N

}
(3.55)

converges weakly in
(
(RN)2, d

)
. The limit distribution is non-random, and concen-

trated on the sequence
{ (
ai, bi

)
; ai = 1 and bi = m+ 1 ∀i ∈ N

}
. (3.56)

3.3.2 Uniform integrability and bounds for T4

In this Subsection, we show that if ξ satisfies Assumption (A’), then Ex[T4] is bounded
independently from the initial configuration x

sup
N∈N

sup
x∈Ω(N)

Ex [T4] <∞. (3.57)

We prove (3.57) through the following steps.

1. There exists a set Ξ ⊂ Ω(N) such that for N large enough and every starting
point x ∈ Ξ there is a positive probability to visit 4 before m+ 1

Px
(
T4 ≤ m+ 1

)
> c2, (3.58)

where c2 > 0 does not depend on x ∈ Ξ.

2. For N sufficiently large and every starting point x ∈ Ω(N) there is a positive
probability to visit Ξ before m+ 1

Px
(
TΞ ≤ m+ 1

)
> c3, (3.59)

where c3 does not depend on x ∈ Ω(N).

Before proving this two statements, we show that they indeed imply (3.57).

Proposition 3.24. Assume that ξ satisfies Assumption (A’). Then, there exists K ∈
R such that

sup
N∈N

sup
x∈Ω(N)

Ex [T4] < K. (3.60)

Proof. If (3.58) and (3.59) hold, then for N large enough and any starting point
x ∈ Ω(N)

Px
(
T4 ≤ 2m+ 2

)

≥ Px
(
T4 ≤ 2m+ 2;TΞ ≤ m+ 1

)

≥ Px
(
T4 − TΞ ≤ m+ 1;TΞ ≤ m+ 1

)

= Ex
[
PZ(TΞ)[T4 ≤ m+ 1]1TΞ≤m+1

]
(strong Markov property)

≥ c2 c3 > 0.
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3.3. Infinitly many states distribution

Hence, supy∈Ω(N) Py(T4 ≥ 2m + 3) ≤ 1 − c2 c3. For i ∈ N, let j be such that
(2m + 3)j ≤ i < (2m + 3)(j + 1). Using the Markov property j times we obtain the
geometric upper bound for the tail probability

Px(T4 ≥ i) ≤
(

sup
y∈Ω(N)

{
Py
(
T4 ≥ (2m+ 3)

)})j
,

that is uniform in x ∈ Ω(N). As a consequence, (3.60) holds with K = (2m +
3)/(c2 c3).

We now present the formal definition of Ξ.

Definition 3.25. For x ∈ Ω(N) define I(x) = inf{i ∈ N;xi ≥ 1}. Then, Ξ is the
subset of Ω(N) defined as follows

Ξ :=
{
x ∈ Ω(N) ;xI(x) ≥ αN

}
,

where 0 < α < 1 − θ′ and θ′ is given by Assumption (A’). Hence, if Z(t) ∈ Ξ there
are at least αN leaders at time t .

We prove (3.58) and (3.59) in the next two Lemmas.

Lemma 3.26. Assume that ξ satisfies Assumption (A’). Then, for Ξ given by Defi-
nition 3.25 there exists a positive constant c2 such that for N sufficiently large

inf
x∈Ξ

Px
(
T4 ≤ m+ 1

)
> c2.

Proof. Note that

Px
(
T4 ≤ m+ 1

)
≥ Px

(
Z(τ) = 4; τ ≤ m+ 1

)

= Px(Z(τ) = 4)− Px
(
Z(τ) = 4; τ ≥ m+ 2

)
,

From Corollary 3.7, the second term in the lower bound converges to zero as N →∞
and the rate of decay is uniform on x ∈ Ω(N). Hence it suffices to show that there
exists a positive constant c4 such that uniformly on x ∈ Ξ

lim inf
N→∞

Px(Z(τ) = 4) ≥ c4, (3.61)

To prove (3.61) we distinguish between the cases η = 0 and η > 0. We start with the
latter case η > 0. Let Y (t) = Z0(t)1{t≤τ} and denote by Yk the process started from
δk. Then, for x ∈ Ξ we can couple the processes in such a way that

YbαNc(t) ≤ YxI(x)
(t) ≤ YN(t), (3.62)

where xI(x) is the number of leaders when Z(0) = x. From the proof of Corollary 3.10
and (3.62) we obtain

lim
N→∞

Px ((ρm − ε)αNηr ≤ Z0(m) ≤ (ρm + ε)Nηr) = 1. (3.63)
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3.3. Infinitly many states distribution

Finally, applying the arguments of Lemma 3.16,

lim
N→∞

Px(Z(τ) = 4) = 1.

In particular, any 0 < c4 < 1 satisfies (3.61). The case where η = 0 is similar but it
requires an additional step. (3.62) still holds, hence by the same arguments we obtain

lim
N→∞

Px
(

(ρm−1 − ε)αN1/m ≤ Z0(m− 1) ≤ (ρm−1 + ε)N1/m
)

= 1.

From Lemma 3.17, we see that Px
(
Z(τ) = 4 | Z0(m) = 0

)
→ 1 and from the coupling

argument (3.62) and Corollary 3.8 we obtain the following limit

Px
(
Y (m) = 0

)
≥ P⊕

(
Y (m) = 0

)
→ 1− e−ρ

m

.

It implies that lim infN→∞ Px
(
Z0(m) = 0

)
≥ 1 − e−ρ

m
, hence every c4 < 1 − e−ρ

m

satisfies (3.61), proving the statement.

Lemma 3.27. Assume that ξ satisfies Assumption (A’). Then, for Ξ given by Defi-
nition 3.25 there exists a positive constant c3 such that for N large enough

inf
x∈Ω(N)

Px
(
TΞ ≤ m+ 1

)
> c3.

Proof. Since Px(τ ≥ m+ 2) converges to zero uniformly on x ∈ Ω(N), it sufficient to
show that for N sufficiently large

Px
(
Z(τ) ∈ Ξ

)
≥ c5,

and c5 > 0 does not depend on x ∈ Ω(N).

Px(Z(τ) ∈ Ξ) =
∞∑

k=1

Px
(
Z(k) ∈ Ξ; τ = k

)

=
∞∑

k=1

∑

y∈Ω(N)

Ex
[
Py(Z(1) ∈ Ξ; τ = 1)1{Z(k−1)=y; τ≥k}

]
(Markov property)

≥ inf
y∈Ω(N)

{
Py(Z(1) ∈ Ξ | τ = 1)

} ∞∑

k=1

∑

y∈Ω(N)

Ex
[
Py(τ = 1)1{Z(k−1)=y; τ≥k}

]

= inf
y∈Ω(N)

{
Py(Z(1) ∈ Ξ | τ = 1)

}
. (3.64)

Then, it suffices to show that the infimum in (3.64) is larger than a c5 > 0. We have
that

Py
(
Xi(1) = Φ

(
X(0)

)
− 1 | τ = 1

)
= s1(y)/

(
1− s0(y)

)
,

76



3.3. Infinitly many states distribution

hence Py
(
Z1(1) = · | τ = 1

)
is binomially distributed with parameters N and

s1(y)/ (1− s0(y)). Assuming that y0 ≥ 1 (otherwise we must consider ỹ the shifted
vector)

s1(y)

1− s0(y)
≥

(
1− p0

)y0

−qy0

2(
1− p0

)y0

≥ 1− (θ′ )y0 > α,

where the lower bound holds for N large enough as a consequence of Assumption (A’)
and the definition of α. A large deviation argument allows us to conclude that

Py
(
Z(1) ∈ Ξ | Z0(1) = 0

)
≥ Py

(
Z1(1) ≥ αN | Z0(1) = 0

)
→ 1.

Then, the infimum in (3.64) is larger than any c5 < 1 for N sufficiently large, finishing
the proof.

The next Corollary generalizes (3.57) to the later visiting times of 4.

Corollary 3.28. Assume that ξ satisfies Assumption (A’). Then, for every i ∈ N,

supx∈Ω Ex
[
T

(i)
4

]
and supx∈Ω Ex

[
τ (i)
]

are bounded uniformly on N . In particular, un-

der Px the families of random variables T
(i)
4 and τ (i) are uniformly integrable.

Proof. Since τ (i) ≤ T
(i)
4 , it suffices to prove the statements for T

(i)
4 . To prove that the

expectation is bounded we proceed inductively and apply the strong Markov property
at time T

(i−1)
4 . It is clear that

sup
x∈Ω(N)

Ex
[
T

(i)
4

]
≤ Ki,

where K is given by (3.60). We now prove the uniform integrability. Applying the
Markov property we obtain the upper bound

Ex
[
T

(i)
4 ;T

(i)
4 ≥ l

]
≤
(

sup
y∈Ω(N)

Ey
[
T

(i)
4

]
+ l

)
Px
(
T

(i)
4 ≥ l

)
. (3.65)

It is not difficult to see that the right-hand side of (3.65) converges to zero, finishing
the proof.

3.3.3 Convergence of E⊕ [T4] and E
[
φ
(
X(T4)

)]

To compute the front velocity in Subsection 3.3.4, we have to calculate two integrals

E⊕ [T4] and E
[
φ
(
X(T4)

)]
.

As usual, we assume that all particles start from zero, then

φ
(
X(T4)

)
= −

∞∑

i=1

min{l ∈ N;Zl(τ
(i)) 6= 0}1{τ (i)≤T4}.

In the next Lemma, we use for the first time the condition E [|ϑ|] <∞, which appears
in Assumption (A) and Assumption (A’).
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3.3. Infinitly many states distribution

Lemma 3.29. Assume that ξ satisfies Assumption (A’). Then

sup
x∈Ω(N)

Ex [min{l ∈ N;Zl(τ) 6= 0}] = 1 + o(1) (3.66)

as N →∞.

Proof. By an argument similar to the one used in Lemma 3.27 we obtain that

Ex
[

min{l ∈ N;Zl(τ) 6= 0}
]

≤ sup
y∈Ω(N)

Ey
[

min{l ∈ N;Zl(1) 6= 0} | τ = 1
]

≤ 1 + sup
y∈Ω(N)

Ey
[

min{l ∈ N;Zl(1) 6= 0}1{min{l∈N;Zl(1)6=0}≥2} | τ = 1
]
. (3.67)

Under the conditional probability Z is distributed according to a Multinomial with
infinitely many classes and parameters si(y)/

(
1−s0(y)

)
, i ≥ 1. Applying Assumption

(A’) we obtain that for N sufficiently large

inf
y∈Ω(N)

{
s1(y)/

(
1− s0(y)

)}
≥ 1− θ′.

Moreover, the minimum in (3.67) is bounded from above by some |ξij|. Indeed, it
suffices to choose i such that Xi(0) is a leader, then

−min{l ∈ N;Zl(1) 6= 0} = φ
(
X(1)

)
−Xi(0) ≥ ξij.

Hence, we can give an upper bound for the right-hand side in (3.67)

Ey
[

min{l ∈ N;Zl(1) 6= 0}1{min{l∈N;Zl(1)6=0}≥2} | τ = 1
]

≤ Ey
[
|ξij|1{min{l∈N;Zl(1)6=0}≥2} | τ = 1

]

≤ E
[
|ϑij|

]
Py
(

min{l ∈ N;Zl(1) 6= 0} ≥ 2 | τ = 1
)

≤ E
[
|ϑij|

]
(θ′)N ,

which converges to zero independently from the initial position y ∈ Ω(N).

With Lemma 3.29 at hand we prove the following result in the noncritical case.

Proposition 3.30. Assume that ξ satisfies Assumption (A’) with η > 0 . Then

lim
N→∞

E⊕[T4] = (m+ 1) and lim
N→∞

E
[
φ
(
X(T4)

)]
= −1 . (3.68)
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3.3. Infinitly many states distribution

Proof. The first limit is a direct consequence of the uniform integrability of T4 and
P⊕(T4 = m+ 1)→ 1, as N →∞. We now prove the second statement.

E
[
φ
(
X(T4)

)]

= −
∞∑

i=1

E⊕
[

min{l ∈ N;Zl(τ
(i)) 6= 0}1{T4≥τ (i)}

]

= −
∞∑

i=1

∑

y∈Ω(N)

E⊕
[
Ey
[

min{l ∈ N;Zl(τ) 6= 0}
]
1{Z(τ (i−1))=y;T4≥τ (i)}

]

=
(
− 1 + o(1)

) ∞∑

i=1

P⊕
(
T4 ≥ τ (i)

)
, as N →∞, (3.69)

the last equality in (3.69) is a consequence of Lemma 3.29. The sum in the right-hand
side of (3.69) converges to one as N →∞. Indeed, P⊕(T4 ≥ τ) = 1 and

∑

i≥2

P⊕
(
T4 ≥ τ (i)

)
=
∑

i≥2

(i− 1)P⊕
(
T4 = τ (i)

)

≤ E⊕
[
T41{T4>τ}

]
. (3.70)

Since T4 is uniform integrable, it follows from Proposition 3.14 that the upper bound
in (3.70) converges to zero, which proves the result.

The critical case is more delicate and we prove the following result.

Proposition 3.31. Assume that ξ satisfies Assumption (A) and that η = 0. Then

lim
N→∞

E⊕ [T4] = (m+ 1)E0 [T0]− 1 and lim
N→∞

E
[
φ
(
X(T4)

)]
= −E0 [T0] , (3.71)

where T0 is the stopping time given by T0 := min
{
i ≥ 1;V (i) = 0

}
, for V (i) a Markov

chain defined as in Proposition 3.22.

We split the proof of Proposition 3.31 in two parts. We first show that

min
{
i ≥ 1;Z1

(
τ (i)
)
/N = 1

}

converges weakly and we characterize the limit distribution. Let

i∗ = min
{
i ≥ 1;Z1

(
τ (i)
)
/N = 1

}
,

then T4 = τ (i∗). So in the second part, we show that E
[
τ (i∗)

]
and E

[
φ
(
X
(
τ (i∗)

) )]

converge to the desired limits.

Lemma 3.32. Assume that ξ satisfies Assumption (A) with η = 0. Then, under P⊕,
the following convergence in distribution

min
{
i ≥ 1;Z1(τ (i))/N = 1

} d→ min
{
i ≥ 1;G

(
V (i)

)
= 1
}

takes place. The process V (i) is the Markov chain defined in Proposition 3.22 and

T0 := min
{
i ≥ 1;V (i) = 0

}
= min

{
i ≥ 1;G

(
V (i)

)
= 1
}
.
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3.3. Infinitly many states distribution

Proof. Since x → min{i ≥ 1;xi = 1} is not continuous in RN Lemma 3.32 is not
a direct corollary of Proposition 3.22. On the other hand,

{
Z0

(
τ (i−1) +m

)
; i ∈ N

}

converges in distribution to
{
V (i); i ∈ N

}
∈ NN and the minimum becomes continuous

when restricted to NN, so

min
{
i ≥ 1;Z0

(
τ (i−1) +m

)
= 0
} d→ T0 = min

{
i ≥ 1;V (i) = 0

}
,

we refer to [Bil99] for more details on convergence in distribution. We use Lemmas
3.17 and 3.21 to obtain that

lim
N→∞

P⊕
(
Z0

(
τ (j−1) +m

)
= 0;Z

(
τ (j)
)
6= 4

)
= 0,

for every j ≥ 1. Then, we deduce from Lemma 3.21 that

min
{
i ≥ 1;Z0

(
τ (i−1) +m

)
= 0
}
−min

{
i ≥ 1;Z1

(
τ (i)
)
/N = 1

}

converges in probability to zero. It implies the convergence in distribution of min{i ≥
1;Z1(τ (i))/N = 1} to T0, finishing the proof of the Lemma.

Proof of Proposition 3.31. We may write

E⊕[T4] =
∞∑

k=1

E⊕
[
τ (k) 1{T4=τ (k)}

]

=
∞∑

k=1

E⊕

[
k∑

j=1

(
τ (j) − τ (j−1)

)
1{mini≥1{Z1(τ (i))/N=1}=k}

]
.

For a fixed k ∈ N the random variable
∑k

j=1

(
τ (j) − τ (j−1)

)
1{mini≥1{Z1(τ (i))/N=1}=k}

converges in law to

k∑

j=1

(m+ 1{V (j) 6=0} )1{min{i∈N;G(V (i))=1}=k} =
(
(m+ 1) k − 1

)
1{T0=k}.

Since τ (k) is uniformly integrable the convergence also holds in L1. From the uniform
integrability of T4 we obtain the convergence in L1 of the sum and the following limit
holds.

lim
N→∞

E⊕[T4] =
∞∑

k=1

(
(m+ 1)k − 1

)
P0

(
T0 = k

)

= (m+ 1)E0

[
T0

]
− 1 .

This proves the first statement of Proposition 3.31. We now prove the second limit
in (3.71). From the proof of Proposition 3.30 we obtain that

E⊕
[
φ
(
X(T4)

)]
= −

(
1 + o(1)

) ∞∑

i=1

P⊕
(
τ (i) ≤ T4

)
.
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3.3. Infinitly many states distribution

From the uniform integrability of T4 we obtain that
∑∞

i=1 P⊕
(
τ (i) ≤ T4

)
→ E0

[
T0

]
,

which finishes the proof. 2

The transition matrix of V (i) depends on G and a fortiori on θ. A coupling argu-
ment shows that E0[T0] is non-increasing in θ. Nevertheless, we do not know how to
calculate explicitly the integral. However the asymptotic behaviors as θ → 0 and 1
are easy to compute.

Proposition 3.33. Let V (i) be the Markov chain whose transition matrix is given in
Proposition 3.22, then

lim
θ→0

E0 [T0] = exp (ρm) .

Proof. We write E0[T0] =
∑∞

k=0 P0(T0 ≥ k + 1). For l ≥ 1, then 1 ≥ G(l) ≥ G(1) =
1− θ, and

P0(T0 ≥ k + 1)

=
∞∑

l1=1

e−ρ
m (ρm)l1

l1!
. . .

∞∑

lk−1=1

e−ρ
mG(lk−2) (ρmG(lk−2) )lk−1

lk−1!

(
1− e−ρ

mG(lk−1)
)
.

The last expression is bounded from above by (1− e−ρ
m

)k. Since G(l)→ 1 as θ → 0
we can conclude by dominated convergence.

We point out here that the case θ → 0 corresponds to the “two-state percolation
distribution” model studied in Section 3.2. Informally, when θ is very small there is a
high probability that Z(τ) starts afresh from 4. A similar computation can be done
in the case where θ converges to one.

Proposition 3.34. Let V (i) be the Markov chain whose transition matrix is given in
Proposition 3.22. Then

lim
θ→1

E0[T0] = 2− exp (−ρm) .

Proof. The proof follows the same lines as that of Proposition 3.33 and we leave the
details to the reader.

3.3.4 Speed of the N-particle system

As in Subsection 3.2.2, we explore the renewal structure of Z that starts afresh from
4. Let N(t) = max{i ; T

(i)
4 ≤ t}. Then

φ
(
X(t)

)
= −

N(t)∑

i=1

[
φ
(
X
(
T

(i+1)
4

))
− φ

(
X
(
T

(i)
4

))]
+ o(t)

as t→∞ almost surely. Taking the limit, as t→∞, we have that

lim
t→∞

φ
(
X(t)

)

t
= lim

t→∞
−1

t

N(t)∑

i=1

φ
(
X
(
T

(i+1)
4

))
− φ

(
X
(
T

(i)
4

))

=
E
[
φ
(
X(T4)

)]

E⊕[T4]
a.s. (3.72)
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The limit is a consequence of the ergodic Theorem and the renewal structure. In
Subsection 3.3.3, we calculated the limits of the above expected values. We obtain
that

lim
N→∞

vN =

{
−
(
1 + b1/rc

)−1
, if 1/r 6∈ N

−
(
b1/rc+ 1− 1/E0[T0]

)−1
, if 1/r = m ∈ N,

which proves Theorem 3.13 with g(θ) = E0[T0].

3.4 Conclusion and sketch of the proof of Theo-

rem 3.3

Theorem 3.3 follows as a corollary of Theorem 3.13 proved in Section 3.3. We will
not prove it in detail but we give a sketch of the proof. The constants λ0 and λ1− λ0

appearing in Theorem 3.3 are justified by an affine transformation. Then, it remains
to explain how we pass from the distribution over the lattice to the more general one.
In the proof of Theorem 3.13 we see that in the discrete case ϑ contributes to the
position of the leaders only in rare events. Indeed, if there are k leaders at time t the
position of the front is determined by ϑ at t+ 1 only in the case where ξij(t+ 1) ≤ −2

for at least Nk random variables. The probability of this event is of order θN
k
, as a

consequence of Assumption (A). This behaviour still holds in the general case. For a
complete proof we refer to [CQR13] Theorem 1.3, which applies also to our case with
the obvious changes.

The position of the front depends basically on the tail distribution of ξ, that is
determined by the point masses λ0 and λ1. The only case where ϑ could contribute
to the position of the front in long time scales is in the non-integrable case. Then the
mechanism responsible for propagation is of a very different nature and the front is no
longer pulled by the leading edge. In the rare events, when the front moves backwards
more than λ0−λ1 the contribution of ϑ would be non-negligible depending on its tail
and the global front profile. This problem is still open and much harder to solve.

3.5 Exact diffusion constant, percolation distribu-

tion

This section was written after discussion with Prof. Bernard Derrida. It does not
appear in the paper “Front Velocity and Directed Polymers in Random Medium”
published in Stochastic Processes and their Applications [Cor14a]. Here, we will only
consider ξ distributed according to (3.1):

P
(
ξ(N) = 0

)
= p0(N) ∼ ρ/N1+r

P
(
ξ(N) = −1

)
= 1− P

(
ξ(N) = 0

)
,

and we prove Theorem 3.2 for this kind of distribution. One can also generalize
Theorem 3.2 for distributions of the form (3.9), however as in Theorem 3.3 the exact
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3.5. Exact diffusion constant, percolation distribution

limits are not explicit and the calculation are troublesome, for this reason, we decide
not to develop it here.

Let 0 = τ (0) < τ (1) < τ (2) < . . . be the sequence of Ft-stopping times

τ (i) := inf{t ≥ τ (i−1) + 1;Z(t) = 0}. (3.73)

As we have already seen, τ (i)− τ (i−1) are i.i.d. and we will denote by τ := τ (1), which
is simply the first time that Z(t) is zero. We will assume without loss of generality
that

Xi(0) = 0, ∀i ∈ {1, . . . N},
so that, at τ (i) every particle is located at −i. For t ∈ R+ define

N(t) := max

{
k;

k∑

i=0

τ (i) < t

}
,

then we have that φ
(
X(btc)

)
= −N(t). We obtain Theorem 3.2 as an application of

the following theorem, whose proof can be found in [Bil99] Theorem 17.3 p. 148.

Theorem 3.35. Let η1, η2, . . . be a sequence of positive independent and identically
distributed random variables with mean µ and variance σ2 and

N (t) := max

{
k;

k∑

i=1

ηi < t

}
; t > 0,

with N (t) = 0 if η1 > t. Define Zn by

Zn(s, ω) :=
N (ns)− ns/µ
σµ−

3
2
√
n

.

Then Zn(s, ω) converges in distribution to a standard Brownian motion as n→∞.

We will take
ηi = τ (i) − τ (i−1) for i ≥ 1,

that are positive i.i.d. random variables, whose mean is E[τ ] = v−1
N . Hence to prove

Theorem 3.2 it suffices to show that τ has finite second moment and compute its
variance.

Lemma 3.36. Let ξ be distributed according to (3.1) and assume that Xi(0) = 0 for
every 1 ≤ i ≤ N . Then, as N →∞

P
(
τ ≥ t+ 1

)
= 1− exp

{
−N t+1pt0 + o

(
N t+1pt0

)}
; t ∈ N. (3.74)

Proof. Let Y (t) = Z(t)1{t≤τ} be the number of particles that remain at zero if the
front has not moved, then Y is a Markov chain in {1, . . . N} with absorption state at
zero and transition probabilities given by the Binomial distributions

P
(
Y (s+ 1) = · | Y (s) = k

)
= B

(
N, 1− (1− p0)k

)
(·), 1 ≤ k ≤ N.
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3.5. Exact diffusion constant, percolation distribution

It is trivial that P
(
τ ≥ t+ 1

)
= P

(
Y (t) ≥ 1

)
and that

P
(
Y (t) = 0

)
= lim

s→0+
E
[
sY (t)

]
.

Let s ∈ (0, 1), then using the Markov property we obtain

E
[
sY (t)

]
= E

[(
1 + (s− 1)

(
1− (1− p0)Y (t−1)

) )N]
.

Since p0 ∼ ρ/N1+r as N →∞ and Y (t− 1) ≤ N , we obtain by Taylor expansion that

(
1 + (s− 1)

(
1− (1− p0)Y (t−1)

) )N
= s(1)(N)Y (t−1),

where s(1)(N) = exp
{

(s− 1)Np0 + ε(1)(s)
}

and ε(1)(s) is the error term, which de-

pends on s, N and Y (t−1). Moreover, there exists a constant c(1) such that for every
0 ≤ Y (t− 1) ≤ N

sup
s∈(0,1)

|ε(1)(s)|
(Np0)2

≤ c(1), (3.75)

that is negligible with respect to Np0 as N → ∞. We use a similar argument to
obtain

E
[
s(1)(N)Y (t−1)

]
= E

[
s(2)(N)Y (t−2)

]
,

with s(2)(N) = exp
{

(s(1)(N)− 1)
(
Np0 + o(Np0)

)}
as N →∞. Expanding s1(N)− 1

s(1)(N)− 1 = (s− 1)Np0 + ε(1)(s) +O
(
(Np0)2

)
as N →∞.

Hence, s(2)(N) = exp
{

(s− 1)
(
N p0

)2
+ ε(2)(s)

}
and, similarly to (3.75) there exists a

constant c(2) such that

sup
s∈(0,1)

|ε(2)(s)|
(Np0)3

≤ c(2),

independently from 0 ≤ Y (t − 2) ≤ N . We proceed recursively and obtain the
expression

E
[
sY (t)

]
= exp

{
(s− 1)N t+1pt0 +Nε(t)(s)

}
as N →∞,

then taking the limit as s→ 0 we obtain

P
(
Y (t) = 0

)
= exp

{
−N t+1pt0 +Nε(t)(0)

}
,

that finishes the proof.

A corollary of Lemma 3.36 is that τ has finite mth moment for every m ∈ N.

Corollary 3.37. Let ξ be distributed according to (3.1) and assume that Xi(0) = 0
for every 1 ≤ i ≤ N . Then, there exists N0 ∈ N such that for N ≥ N0

E[τm] <∞, (3.76)

for every m ∈ N.
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3.5. Exact diffusion constant, percolation distribution

Proof. We introduce the notation Pk and Ek for probabilities and expectations given
that the Markov chain Z has initial distribution Z(0) = k. Then, using a simple
coupling argument it is easy to obtain the inequality

Pk
(
τ ≥ t

)
≤ PN

(
τ ≥ t

)
, ∀ 0 ≤ k ≤ N. (3.77)

Let 0 < c < 1, then from (3.74) there exists N0 ∈ N such that for N ≥ N0

PN
(
τ ≥ b1/rc+ 1

)
≤ 1− c. (3.78)

Let also s ∈ N, then we have that

PN
(
τ ≥ sb1/rc+ 1

)

= EN

[
N∑

n=1

Pk
(
τ≥b1/rc+1

)
1{Z((s−1)b1/rc)=n; τ≥(s−1)b1/rc}

]
(Markov Property)

≤ PN
(
τ ≥ b1/rc+ 1

)
PN
(
τ ≥ (s− 1)b1/rc+ 1

)
,

in the last inequality we used (3.77) with t = b1/rc + 1. From a simple induction
argument and (3.78), we obtain the geometric upper bound for the tail distribution
of τ

PN
(
τ ≥ sb1/rc+ 1

)
≤ (1− c)s, for every N ≥ N0,

which implies that τ has finite mth moment if N ≥ N0.

Proof of Theorem 3.2. Since τ (i) are i.i.d. copies of τ , that has finite second moment
(if N ≥ N0) we may apply Theorem 3.35 to conclude that

Φ
(
X(bnsc)

)
− ns/vN

DNv
3/2
N

√
n

converges in distribution to a Brownian motion as n→∞. It suffices now to compute
D2
N the variance of τ . We distinguish between the two cases 1/r 6∈ N and 1/r ∈ N.

Assume that 1/r 6∈ N then

E
[
τ 2
]

=
∑

i≥1

(2i− 1)P
(
τ ≥ i

)

=

b1/rc+1∑

i=1

(2i− 1)P
(
τ ≥ i

)
+

∞∑

i=b1/rc+2

(2i− 1)P
(
τ ≥ i

)
(3.79)

We use (3.74) to obtain

b1/rc+1∑

i=1

(2i− 1)P
(
τ ≥ i

)
= (b1/rc+ 1)2 + εN , (3.80)

and the error εN decays to zero like exp
(
−ρb1/rcN1−rb1/rc). Using a coupling argument

and (3.74) we estimate the second sum in (3.79) as N →∞
∞∑

i=b1/rc+2

(2i− 1)P
(
τ ≥ i

)
=

(2b1/rc+ 3)

N r(b1/rc+1)−1
ρb1/rc+1 + o

(
N1−r(b1/rc+1)

)
.

85



3.5. Exact diffusion constant, percolation distribution

Note that εN in (3.80) is o
(
N1−r(b1/rc+1)

)
as N → ∞. To compute E[τ ]2 we use the

formula
E[τ ] =

∑
P
(
τ ≥ i

)
.

So, as N →∞ we have that

E[τ ] = (b1/rc+ 1) + ρb1/rc+1N1−r(b1/rc+1) + o
(
N1−r(b1/rc+1)

)
.

Hence we obtain the exact asymptotic for D2
N

D2
N = ρb1/rc+1N1−r(b1/rc+1) + o

(
N1−r(b1/rc+1)

)
as N →∞.

The case 1/r ∈ N is similar, but one must pay attention when computing P
(
τ ≥

1/r + 1
)
. In this case we have that

P
(
τ ≥ 1/r + 1

)
= 1− exp

(
−N1/r+1p0 + o(1)

)

= 1− exp
(
−ρ1/r

)
+ o(1), as N →∞.

From the proof of Lemma 3.36 we may only say that the error is O
(
N−r

)
as N →∞,

which converges to zero at the same rate of P
(
τ ≥ 1/r + 2

)
. Using the similar

arguments we obtain

E[τ 2] = (1 + 1/r)2 − (2/r + 1) e−ρ
1/r

+ o(1) as N →∞
E[τ ] = 1 + 1/r − e−ρ

1/r

+ o(1) as N →∞.

Hence,

lim
N→∞

D2
N =

(
1− exp(−ρ1/r)

)
−
(
1− exp(−ρ1/r)

)2

= exp(−ρ1/r)− exp(−2ρ1/r),

which proves the result.

It is easy to deduce from the proof of Theorem 3.2 the rate at which D2
N decays

to zero in the case 1/r 6∈ N.

Corollary 3.38. Assume that the hypothesis of Theorem 3.2 hold and that 1/r 6∈ N.
Then

lim
N→∞

D2
N

N1−r(b1/rc+1)
= ρb1/rc+1.
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Chapter 4

Bounded jumps with polynomial
density and more

This chapter is an article in collaboration with Francis Comets that we have
submitted. The introduction has been modified for a better readability of the
thesis.

4.1 Introduction

This chapter gives a partial answer to the problem raised by E. Brunet and B. Derrida
[BD04], and we obtain the finite-size corrections to the speed for a large class of
distributions that are bounded from above. To describe our framework, denote by
Λ(u) the logarithmic generating function of ξij,

Λ(u) := lnE
[

exp(uξij)
]
,

and let DΛ := {u ∈ R; Λ(u) <∞} be its domain. In this chapter, we will assume that
the following hypothesis hold:

(H1) 0 ∈ D0
Λ (the interior of DΛ). In particular, ξij has finite moments of all orders.

(H2) For every N ∈ N, there exists uN ∈ D0
Λ ∩ [0,∞) such that

uNΛ′(uN)− Λ(uN) = lnN. (4.1)

The function uΛ′(u)−Λ(u) is increasing on D0
Λ ∩ [0,∞), so that uN is unique. Under

these hypothesis the number
vN := Λ′(uN) (4.2)

is well defined (we bring to the reader’s attention that the definition of vN here differs
from the vN in Chapter 3). If Iξ(v) is the Cramer transform of ξij

Iξ(v) := sup
x∈R

{
vx− Λ(x)

}
,

then vN is determined by Iξ(vN) = lnN, vN > E[ξ], see Figure 4.1, and it holds
I ′ξ(vN) = uN .
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4.1. Introduction

xξE[ξ]

lnN

vN

Figure 4.1: Cramer transform Iξ and vN .

In Section 4.3, we show that vN is an upper bound for the velocity vN(ξ) of the N -
particle system. To obtain a lower bound to vN(ξ), we assume that ξ lies in the domain
of attraction of the Type III extreme value distribution see Section 2.1. Denoting by
F (·) the common probability distribution function

F (x) := P
(
ξij ≤ x

)
.

From Theorem 2.2, F (·) belongs to the domain of attraction of Ψα(·); α > 0 if and
only F (·) has a finite right-end

xξ := sup{x ∈ R;F (x) < 1} <∞,

and for each x > 0

lim
h→0+

1− F
(
xξ − hx

)

1− F
(
xξ − h

) = xα,

In this case, let
aN := xξ − inf{x;F (x) ≥ 1− 1/N}, (4.3)

then FN
(
xξ + xaN

)
→ Ψα(x) as N →∞ and

lim
N→∞

N
(
1− F (xξ − aN)

)
= 1.

The main result of this chapter is the following theorem concerning the speed of the
N -particle system.

Theorem 4.1. Assume that (H1), (H2) hold, and that ξij belongs to the domain of
attraction of the extreme value distribution Ψα, for some α > 0. Let

cα :=
α

e

(
Γ(α)α

)− 1
α
, (4.4)
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4.2. Point processes and branching random walks

where Γ(·) is Euler’s gamma function and e = 2.718 . . . is the Napier’s constant.
Then, the speed vN(ξ) of the N-particle system satisfies

vN(ξ) = xξ − cαaN + o (aN) as N →∞,

where aN is given by (4.3).

Warm-up calculations: Let us explain how to determine the order of magnitude
of the correction from elementary considerations. Assume in this paragraph that
xξ = 0. On the one hand, we can bound from below our N -particle system with a
single particle following the leader, i.e., the random walk with jumps law given by
maxi≤N ξ1i, resulting with a lower bound for vN(ξ) of order aN . On the other hand, a
naive upper bound is given by the random walk with jumps maxi,j≤N ξji, which leads
to a different order O(aN2) of the correction for the maximum is over N2 variables
this time. One can improve the upper bound by using the first moment method
of Section 4.3, leading to the same order O(aN) as the lower bound. However, the
multiplicative factors do not match, and some deeper understanding and improvement
of the lower bound is needed. This is what we implement in Section 4.4, using a
comparison with a branching random walk with selection.

Organization of the chapter: in Section 4.2, we present some point processes
and branching random walks related to our model and we sumarize the necessary
results for our purpose. We prove the upper bound for the speed in Section 4.3 by
a first moment estimate, and the lower bound in Section 4.4 by coupling, the two
bounds resulting in Theorem 4.1.

4.2 Point processes and branching random walks

Sections 4.2.3 and 4.2.4 differ from the corresponding sections in the original paper
and have been included here only to fix the notation used in this chapter. A more
detailed version of the original section can be found in Chapter 2, Sections 2.2
and 2.4 respectively.

4.2.1 Point measures on R
It is convenient to represent populations of particles by point measures on R. Given
a vector x ∈ Rn with coordinates x1, . . . , xn, one can associate the point measure

x :=
n∑

i=1

δ{xi}.

We use the notationMb to represent the set of all simple point measures on R, which
are locally finite and have a maximum.Throughout this chapter, a point process is
any random variable L taking values on Mb.

Conversely, an element ν ∈ Mb can be described as a sequence ν = (νi)i=1,2,...

(possibly finite) such that
ν1 ≥ ν2 ≥ . . .
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4.2. Point processes and branching random walks

We denote by max(ν) = ν1 the maximum of the support of ν, and by |ν| = ν(R) ≤ ∞
the number of points in ν. If two point measures ν and µ have the same number of
points |ν| = |µ| = K, we can define the distance

‖ν − µ‖ = sup
1≤i≤K

{|νi − µi|}. (4.5)

We use the notation “≺” to denote the usual stochastic ordering

ν ≺ µ if and only if ν[x,+∞) ≤ µ[x,+∞); ∀x ∈ R,

and we will say that “ν bounds µ from below”, in this case |ν| ≤ |µ|. If we represent
ν and µ as an ordered sequence of points, then ν ≺ µ implies that

νi ≤ µi for every i ≤ |ν|.

With a slight abuse of notation we will say that the vector x ∈ Rn bounds y ∈ Rm

from below and denote “x ≺ y” if the point measures x , y associated to x and y
respectively satisfy x ≺ y .

4.2.2 Poisson point processes on ]−∞, 0]

In this section, we present some elementary facts concerning Poisson Point Process

P =
{
P1 > P2 > . . .

}
⊂ R− ,

with intensity measure |z|βCdz on R−; we use the abbreviation PPP and assume that
C > 0, β > −1. For K ≥ 1, the point process

P(K) :=
(
Pi

)
i≤K (4.6)

consisting in the K largest points of P will play an important role in the next sections.
For L a random point measure on R−, we denote by ψ

(
u | L

)
its logarithmic

moments generating function

ψ
(
u | L

)
:= lnE

[∫
euyL

(
dy
)]
,

We can easily compute the logarithmic generating function of the PPP and of its
K-truncation.

Lemma 4.2. For β > −1, C > 0, let P be the Poisson point process on (−∞, 0] with
intensity measure µ(dz) = |z|βCdz, and P(K) its largest K points. For u > 0 we
have

E
[∫ 0

−∞
euzP(dz)

]
=

Γ(1 + β)C

u1+β
, E

[∫ 0

−∞
zeuzP(dz)

]
=
−Γ(2 + β)C

u2+β
,

and

lim
K→∞

E

[
K∑

i=1

euPi

]
=

Γ(1 + β)C

u1+β
, lim

K→∞
E

[
K∑

i=1

Pie
uPi

]
=
−Γ(2 + β)C

u2+β
.
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4.2. Point processes and branching random walks

Proof. The first claim is obtained by the Campbell formula (see Chapter 9 in [DVJ03])
and the second claim is obtained by monotone convergence.

Corollary 4.3. Under the assumptions of Lemma 4.2, the sequence ψ
(
u | P(K)

)

converges uniformly on the compacts of R+ to ψ
(
u |P

)
as K →∞. In particular, if

uK > 0 is such that
ψ
(
uK |P(K)

)
= ψ′

(
uK |P(K)

)
uK

then

lim
K→∞

ψ′
(
uK |P(K)

)
= −1 + β

e

(
1

CΓ(1 + β)

)1/1+β

. (4.7)

Proof. The compact convergence is a direct consequence of the pointwise convergence
together with the monotonicity of ψ

(
u | P(K)

)
and the continuity of ψ

(
u | P

)
in u

(Dini’s theorem). Let

u∞ = e (Γ(1 + β)C)1/1+β

then from the first part of Lemma 4.2 we have that

ψ
(
u∞ |P

)
= ψ′

(
u∞ |P

)
u∞ and ψ′

(
u∞ |P

)
= −1 + β

e

(
CΓ(1 + β)

)−1/1+β

.

By point 2 of Lemma 4.2, uK → u∞ and the second claim follows from the uniform
convergence.

4.2.3 Branching random walks

For a given point process L, let BRW(L) be the branching random walk obtained by
independent copies of L as described in Section 2.2. Denote by T the Galton-Watson
tree obtained by the genealogical tree of the BRW(L), thus, its offspring distribution
is |L|. To each point (or individual) of the BRW(L) one can associate a unique vertex
w ∈ T. Let e ∈ T be the root of the Galton-Watson tree, then for a vertex w ∈ T, let
[[e, w]] denote the shortest path connecting e with w, and |w| the length of this path.
We will sometimes write its points [[e, w]] = (e, w1, . . . , wk) with i = |wi| and wk = w.
For two vertices w and w′ in T we denote by ww′ the vertex in T in generation |w|+|w′|
obtained by concatenation.

We also denote by η(w) the positions of the individual w ∈ T, and by y(t) the
point measure associated to the BRW(L)

y(t) :=
∑

w∈T;|w|=t

δ{η(w)}.

Finally, an infinite ray [[e, w∞]] := {e, w1, w2, . . .} ⊂ T is an infinite collection of
vertices (or infinite path), such that wi is the parent of wi+1. It represents a family
branch in the BRW that has not extinguished, and is parametrized by an element
w∞ ∈ ∂T of the topological boundary ∂T of the tree.

We recall that, when L satisfies (2.6–2.8), the limit

lim
t→∞

max
(

y(t)
)

t
= γ(L)
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4.2. Point processes and branching random walks

exists a.s. with γ(L) a non-random constant. Hypothesis (2.6) says that there exists
a > 0, for which

E
[
|L|1+a

]
<∞, (4.8)

a condition which can be weakened [Aı̈d13], but in this chapter we will always have
|L| = K a constant, which trivially implies it. Hypothesis (2.7) concerns the logarith-
mic generating function for the branching random walk

ψ
(
u | L

)
:= lnE

[∫
euyL

(
dy
)]
. (4.9)

It states that ψ
(
u | L

)
is finite in a neighbourhood of u = 0. Finally, (2.8) says that

there exists a u∗ = u(L) > 0 for which

ψ
(
u∗ | L

)
= u∗ψ′

(
u∗ | L

)
. (4.10)

We also recall that under (2.6 – 2.8), Theorem 2.5 in Section 2.2 holds and the
precise decay for the probability

ρ(∞, δ) := P
(
∃w∞ ∈ ∂T : η(wt) ≥ (γ(L)− δ)t, ∀wt ∈ [[e, w∞]]

)
as δ → 0

is known.
Models with selection and the M-BRW: In Section 4.4, we show that under

the hypothesis of the Theorem 4.1, the N -particle system (1.8) can be bounded from
below by a family of M -BRW indexed by N . We will then adapt the arguments in
[BG10] to obtain a uniform lower bound for the speeds of the BRWs.

We will denote by yM(t) the point process generated by a M -BRW. We recall
Theorem 2.6 in Section 2.2.2 that states that under (2.6 – 2.8) there exists a constant
γM(L) such that

lim
t→∞

t−1 min
(

yM(t)
)

= lim
t→∞

t−1 max
(

yM(t)
)

= γM(L) a.s.

4.2.4 Elementary properties of Brunet-Derrida’s N-particle
system

Finally we recall the notations and results of Section 2.4. Let X∗(t) be the process
obtained by ordering the components of X(t) at each time t. Denote by

X(1)(t) ≥ X(2)(t) ≥ . . . ≥ X(N)(t)

the components of X∗(t). Let, also σ = σ(t) be the random permutation of {1, . . . , N}
such that

X(i)(t) = Xσi(t)(t).

Such a ranking permutation is unique up to ties, which we break in the order of the
original labels. We define the process seen from the leading edge

X0
i (t) := Xi(t)−Xσ1(t)(t).

It is Markov process on RN , which is irreducible, aperiodic and Harris recurrent (see
Section 2.4).

92



4.3. Upper bound for the velocity

4.3 Upper bound for the velocity

In this section, we show that if ξij satisfies the hypothesis (H1), (H2), then

vN(ξ) ≤ vN = Λ′(uN),

where uN > 0 is the unique positive solution of uΛ′(u)− Λ(u) = lnN . The idea is to
use the so-called first moment method to bound the probability

P
(

max
1≤i≤N

{
Xi(t)

}
> tΛ′(uN)

)
.

A first and simple observation is that the initial position of the particles does not
change the speed of the N -particle system. Hence, we may assume without loss of
generality that all N -particle start at zero. Using the representation (1.12) one gets

max
1≤i≤N

{
Xi(t)

}
= max

{
t∑

s=1

ξjs−1js(s); 1≤js≤N, ∀s = 0, . . . , t

}
.

By the union bound and Chernoff bound we obtain, for v > vN = Λ′(uN) (which is
larger than E[ξ] for N sufficiently large),

P
(

max
1≤i≤N

{
Xi(t)

}
≥ tv

)
= P

(
∃j0, j1, . . . , jt :

t∑

s=1

ξjs−1js(s) ≥ tv

)

≤ N t+1P

(
t∑

s=1

ξjs−1js(s) ≥ tv

)

≤ N t+1 exp
(
− tIξ(v)

)
, (4.11)

for all N ∈ N. Since (H1) and (H2) hold, Iξ(v) exists and Iξ(v) > lnN . As a
consequence, (4.11) has a geometrical decay as t → ∞, which implies, by Borel-
Cantelli lemma,

P
(

max
1≤i≤N

Xi(t) ≥ tv for infinitely many t ∈ N
)

= 0,

hence, lim supt→∞ t
−1 max{Xi(t)} ≤ v a.s. for every v > vN , finally yielding

lim sup
t→∞

1

t
max

1≤i≤N
Xi(t) ≤ vN a.s. (4.12)

We formalize this result in a proposition.

Proposition 4.4. Assume that (H1), (H2) hold. Let uN > 0 such that uNΛ′(uN) −
Λ(uN) = lnN and vN = Λ′(uN). Then, for every N ∈ N,

vN(ξ) ≤ vN .
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4.3. Upper bound for the velocity

Hence the next step is to study the asymptotic of vN , that we start with the case
xξ = 0.

Proposition 4.5. Assume that the hypothesis of Theorem 4.1 hold with xξ = 0. Let
uN > 0 be the unique solution of uNΛ′(uN)− Λ(uN) = lnN , cα be given by (4.4) and
aN by (4.3). Then, as N →∞

Λ′(uN) = −cαaN + o (aN) ,

which implies that lim supN→∞ a
−1
N vN(ξ) ≤ −cα.

Proof. By definition of Λ(·), we have that

E
[
uNξije

uN ξij
]

E
[
euN ξij

] − ln
(
E
[
euN ξij

])
= lnN.

Note that uN →∞ as N →∞, indeed it is a direct consequence of the monotonicity
and continuity of uΛ′(u) − Λ(u). Hence, the asymptotic behaviour of the Laplace
transform of ξij in uN is determined by its behaviour in a neighbourhood of zero.
Since ξij is in the domain of attraction of Ψα, the function 1− F (−x) : R+ → R+ is
α-regularly varying at zero. By Karamata’s representation (see Chapter 0 in [Res87])

1− F (−x) = P(ξij > −x) = xαc(x−1) exp

(∫ x−1

1

ε(t)

t
dt

)
, x > 0,

where c(·) and ε(·) are positive functions such that c(t) → c > 0 and ε(t) → 0 as
t→∞. As a consequence, given ε > 0, one can find a uε > 0 such that for 0 < u ≤ uε

1− F (−u) ≥ (c− ε)uα.

Now, we compute the Laplace transform of ξij in uN

E
[
euN ξij

]
= P

(
ξijuN ≥ −1

) ∫ ∞

0

e−z
P
(
ξijuN ≥ −z

)

P
(
ξijuN ≥ −1

)dz

=
(
1− F

(
−u−1

N

) )
(∫ √uN

0

· · · dz +

∫ ∞
√
uN

· · · dz

)
.

We analyse each integral separately. For N sufficiently large u−1
N ≤ uε, hence

∫ ∞
√
uN

e−z
P
(
ξijuN ≥ −z

)

P
(
ξijuN ≥ −1

)dz ≤ uαN
(c− ε)

∫ ∞
√
uN

e−zdz,

which converges to zero as N →∞. Take L > 0, and assume that
√
uN > L, then

∫ √uN
0

e−z
P
(
ξijuN ≥ −z

)

P
(
ξijuN ≥ −1

)dz =

∫ L

0

· · · dz +

∫ √uN
L

· · · dz.
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Using dominated and monotone convergence we obtain that

lim
L→∞

lim
N→∞

(∫ L

0

e−z
P
(
ξijuN ≥ −z

)

P
(
ξijuN ≥ −1

)dz

)
= Γ(α + 1).

Finally, we prove that the integral from L to
√
uN vanishes as N → ∞ and L → ∞

(in this order). For L > 1 and L ≤ z ≤ √uN , Karamata’s representation yields

P
(
ξijuN ≥ −z

)

P
(
ξijuN ≥ −1

) = zα
c(z−1uN)

c(uN)
exp

(∫ uN

uN/z

ε(t)

t
dt

)
.

Taking N sufficiently large so ε(t) < ε and |c− c(t)| ≤ ε for every t ≥ √uN
P
(
ξijuN ≥ −z

)

P
(
ξijuN ≥ −1

) ≤ zα
(c+ ε)

(c− ε)z
ε,

which yields the upper bound
∫ √uN
L

e−z
P
(
ξijuN ≥ −z

)

P
(
ξijuN ≥ −1

)dz ≤ (c+ ε)

(c− ε)

∫ ∞

L

e−zzα+εdz.

The right-hand side of this inequality decays to zero as L→∞, and hence

E
[
euN ξij

]
∼
(
1− F

(
−u−1

N

) )
Γ(1 + α) as N →∞.

By a similar argument one obtains that

E
[
uNξije

uN ξij
]
∼
(
1− F

(
−u−1

N

) )(
Γ(1 + α)− Γ(α + 2)

)
as N →∞.

The formula uNΛ′(uN)− Λ(uN) = lnN yields

(
1− F

(
−u−1

N

))
N ∼ 1

eααΓ(α)
as N →∞.

We now use (4.4) and Karamata’s representation to conclude that

lim
N→∞

u−1
N

aN
=

1

e

(
1

αΓ(α)

)1/α

,

and hence as N →∞

Λ′(uN) ∼ − α

uN
∼ −α

e

(
1

αΓ(α)

)1/α

aN ,

which proves the statement. The second claim is a direct consequence of (4.12).

If xξ 6= 0, we can simply translate the ξij by xξ, so the hypothesis of Proposition 4.5
hold. In the next corollary, we prove the upper bound in Theorem 4.1.

Corollary 4.6. Assume that the hypothesis of Theorem 4.1 hold. Then, as N →∞
lim sup
N→∞

(vN(ξ)− xξ)a−1
N ≤ −cα.

Proof. In the case xξ = 0, it is a straightforward consequence of Proposition 4.5 and
(4.12). If xξ 6= 0, it suffices to translate the variables ξij by xξ.
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4.4. Lower bound

4.4 Lower bound

In this Section, we show that for every ε > 0 there exists a N0 such that ∀N ≥ N0

(vN(ξ)− xξ)
aN

≥ −cα − ε, (4.13)

which proves the lower bound in Theorem 4.1. Throughout this section, we fix an
arbitrary ε > 0, and we assume that xξ = 0 without loss of generality. To prove
(4.13), we construct a process x(t) ∈ RM that bounds X(t) from below, hence

max
(
x(t)

)
≤ max

(
X(t)

)
.

Then, in Subsection 4.4.1, we check that the process x(t) is a M-BRW, and we show
that for M large enough and the appropriate offspring distribution (see Subsection
4.4.2),

lim inf
t→∞

1

t
max

(
x(t)

)
≥ −(cα + ε)aN a.s.

which implies (4.13) for xξ = 0. The general case is obtained by a simple affine
transformation.

4.4.1 Coupling with a branching random walk

We construct x(t) inductively as follows: let M,K ∈ N, the appropriate values for K
and M will be chosen later on, and assume that N ≥ KM (in fact, we will take KM
negligible compared to N). For t = 0, we define

xi(0) = Xσi(0),

with σi = σi(0). Assuming that the process x(·) has been constructed up to time
t ∈ N, the vector x(t+ 1) ∈ RM is obtained according to the inductive rule below.

1. Branching step: Every particle xi(t) is replaced byK new particles (reproductive
law), whose positions are defined by a point process L(K)

(
xi(t)

)
translated by

xi(t).

The point processes
(
L(K)

(
xi(t)

)
; 1≤ i≤M

)
are also constructed according to

an inductive rule, that we describe:

• For i = 1, let T1 := {1, . . . , N −KM} and denote by

ξ
(1:T1)
σ1(t) (t+ 1) ≥ ξ

(2:T1)
σ1(t) (t+ 1) ≥ . . . ≥ ξ

(K:T1)
σ1(t) (t+ 1),

the K largest values among
{
ξσ1(t),j(t+ 1); j ∈ T1

}
. Let, also,

J1 = J1(t+ 1) := {j(1)
1 , . . . , j

(1)
K }

be the set of their indices, that is,

ξ
(l:T1)
σ1(t) (t+ 1) = ξ

σ1(t),j
(1)
l

(t+ 1),
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4.4. Lower bound

we will keep track of these labels. Note that the indices j
(1)
l = j

(1)
l (t+1); 1 ≤

l≤ K are random. Then, L(K)
(
x1(t)

)
is the point process

L(K)
(
x1(t)

)
:=

∑

j∈J1(t+1)

δ{ξσ1j
(t+1)},

obtained by the K largest values in T1 and the descendants of x1(t) are at
the positions:

x1(t) + ξ
(l:T1)
σ1(t) (t+ 1) for 1 ≤ l ≤ K.

• Assume that we have constructed
(
L(K)

(
xj(t)

)
; 1≤j≤ i− 1

)
and that we

have kept track of the sets J1, . . . ,Ji−1, appearing in the respective con-
structions. The sets Jj = Jj(t+ 1) ⊂ {1, . . . , N} are random and disjoint.
Then, given J1 ∪ . . . ∪ Ji−1, we choose

Ti = Ti(t+ 1) ⊂ {1, . . . , N} \
(
J1 ∪ . . . ∪ Ji−1

)

according to a deterministic rule. For example, one can choose the N−MK
first elements (in the usual order of N) in {1, . . . , N} \

(
J1 ∪ . . . ∪ Ji−1

)
.

By construction, Ti is a random set of {1, . . . , N} satisfying the property

Ti ∩ J1 = ∅ = Ti ∩ J2 = . . . = Ti ∩ Ji−1.

Let
ξ

(1:Ti)
σi(t)

(t+ 1) ≥ ξ
(2:Ti)
σi(t)

(t+ 1) ≥ . . . ≥ ξ
(K:Ti)
σi(t)

(t+ 1)

be the K largest values among
{
ξσi(t),j(t + 1); j ∈ Ti

}
, and Ji(t + 1) =

{j(i)
1 , . . . , j

(i)
K } be the set of their indices, that is,

ξ
(l:Ti)
σi(t)

(t+ 1) = ξ
σi(t)j

(i)
l

(t+ 1).

Then, L(K)
(
xi(t)

)
is the point process formed by the these K points.

We end up the branching step with KM new particles.

2. Selection: We select the M rightmost particles among the KM obtained in the
branching step.

3. Ordering: We reorder the M selected particles to obtain the vector x(t+ 1).

In the next two lemmas, we show that x(t) ≺ X(t) and that L(K)(·) are i.i.d.
which implies that the point process

x (t) :=
M∑

i=1

δ{xi(t)}

has the distribution of the point process obtained from a M-BRW
(
L(K)

)
.

First, we prove that x(t) bounds X(t) from below. We bring to the reader’s
attention that the next lemma is a direct corollary of the construction of x(t) and it
holds without any assumption on the family {ξij(s); 1 ≤ i, j ≤ N, s ≥ 1}.
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4.4. Lower bound

Lemma 4.7. For N ≥ MK, let x(t) be the branching/selection process constructed
as above. Then, x(t) bounds X(t) from below.

Proof. It is immediate that x(0) ≺ X(0), hence assume that x(t) ≺ X(t). Before the
selection step, there are MK points at the positions

xi(t) + ξ
σi(t),j

(i)
l

(t+ 1) 1 ≤ l ≤ K and 1 ≤ i ≤M.

By the construction of x(·) the j
(i)
l are all distinct. Since xi(t) ≤ Xσi(t)(t), we have

that

xi(t) + ξ
σi(t),j

(i)
l

(t+ 1) ≤ Xσi(t)(t) + ξ
σi(t),j

(i)
l

(t+ 1) ≤ X
j
(i)
l

(t+ 1).

Hence, the point process obtained from the branching step bounds X(t + 1) from
below, as a consequence, after the selection step x(t + 1) ≺ X(t + 1), proving the
statement.

Now, we prove that the point processes L(K)(·) are i.i.d. Lemma 4.8 holds under
the unique assumption that the family {ξij(s); 1 ≤ i, j ≤ N, s ≥ 1} is i.i.d.

Lemma 4.8. Assume that N ≥ KM , and let
{
Ti(t); t ∈ N; i = 1, . . . ,M

}
be the set

of indices obtained in the above construction. For t ≥ 0 denote by Ξ
(
xi(t)

)
the point

process

Ξ
(
xi(t)

)
:=

∑

j∈Ti(t+1)

δ{
ξσi(t),j(t+1)

},

then,
{

Ξ
(
xi(t)

)
; 1 ≤ i≤M ; t∈N

}
are i.i.d. In particular, the family of point processes

{
L(K)

(
xi(t)

)
; t ∈ N and i = 1, . . . ,M

}

is also i.i.d.

Proof. Note that the families of random variables

{σ(s); 0 ≤ s ≤ t},
{
Ti(s); 0 ≤ s ≤ t; 1 ≤ i ≤M

}

and
{

Ξ
(
xi(s)

)
; 1 ≤ s ≤ t− 1; 1 ≤ i ≤M

}
are Ft-measurable with Ft from (2.19). By

assumption, σ
{
ξij(t + 1); 1 ≤ i, j ≤ N

}
is independent from Ft, then, by successive

conditioning, one easily checks that conditionally on Ft the vector

(
ξσi(t),j(t+ 1); i = 1, . . . ,M and j ∈ Ti

)

is distributed according to a M × (N −KM) vector, whose entries are i.i.d. copies of
ξij, which implies the independence from Ft. Moreover, the conditional independence
of the ξσi,j(t + 1) yields that

(
Ξ
(
xi(t)

)
; i = 1, . . . ,M

)
are also independent, which

proves the first claim.

The second claim is an immediate consequence of the first part of the lemma.
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4.4. Lower bound

Finally, we focus on the asymptotic distribution of L(K)(·) after suitable rescaling,

P(N,K)
(
xi(t)

)
:=

∑

z∈L(K)(xi(t))

δ{za−1
N }, (4.14)

for aN given by (4.3). With some abuse of notation, we denote by P(N,K) the common
distribution of these point processes.

Proposition 4.9. Assume that the hypothesis of Theorem 4.1 hold with xξ = 0 and
that M and K are fixed. Then, as N →∞,

P(N,K) −→P(K) in law,

with P(K) defined in Corollary (4.3) with β = α− 1 and C = α. Moreover, for every
` > 0 the moment convergence

lim
N→∞

E
[∣∣min P(N,K)

∣∣`
]

= E
[∣∣min P(K)

∣∣`
]
<∞

also holds.

Proof. It suffices to prove the convergence for P(N,K)
(
x1(t)

)
. Since ξij is in the

domain of attraction of Ψα and xξ = 0, for every z > 0,

P
(
ξσ1(t)j(t) > −zaN

)
∼ zαP

(
ξσ1(t)j(t) > −aN

)
∼ zα

N
as N →∞. (4.15)

It is a classical result of extreme value theory [Res87] that, as N → ∞, the point
process

P(N,K) law
=

N−KM∑

j=1

δ{a−1
N ξ1,j(t)}.

converges in distribution to a PPP with intensity measure |z|α−1α1{z<0}dz, as we
have claimed. A necessary and sufficient condition for the convergence of the `th
moment is that the r.v. ξij has itself finite `th moment, which is a consequence of
(H1). Proposition 2.1 in [Res87] proves this statement for the maxima of i.i.d. random
variables in the domain of attraction of Ψα.

Now, a line-by-line adaptation of Proposition 2.1 in [Res87] yields the last claim.

A straightforward consequence of Proposition 4.9 and the two previous lemmas is
that

x (N)(t) :=
M∑

i=1

δ{a−1
N xi(t)}

converges in distribution to the point process obtained from a M -BRW
(
P(K)

)
at

time t, moreover,
aN
t

max
(

x (N)(t)
)
≤ 1

t
max

1≤j≤N

(
Xj(t)

)
.
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4.4. Lower bound

We will prove in Subsection 4.4.2 that if one choosesK andM large enough (depending
only on ε and the distribution ξij), then for N larger than some N0 > 0,

lim inf
t→∞

1

t
max

(
x (N)(t)

)
≥ −cα − ε a.s. (4.16)

which proves the lower bound (4.13).

4.4.2 Uniform lower bound for the velocities

In this subsection, we prove the lower bound (4.16), which concludes the proof of
Theorem 4.1. The proof is divided in two main steps.

In the first one, we focus on the BRWs defined by P(N,K). We prove that if N
is sufficiently large, with positive probability there exists more than M vertices w in
generation n (see Subsection 4.4.2 for its definition), such that

position(wt) ≥ −(cα + ε/2)t ∀wt ∈ [[e, w]].

In the second step, we use this result to obtain the uniform lower bound (4.16) for
the M -BRWs.

Most of the arguments presented here have already been used by Bérard and
Gouéré [BG10]. In our case, though, we deal with a family of BRWs indexed by N ,
whereas in [BG10] they compute the velocity for a unique M -BRW.

First step

Let P(N,K) be the distribution defined by (4.14) and P(K) denote the distribution of
a point process obtained from the K largest points of a PPP with intensity measure
|z|α−1α1{z≤0}dz. Then, BRW

(
P(N,K)

)
and BRW

(
P(K)

)
generate the same Galton-

Watson tree, in which every individual has a constant number K of offspring, denote
by TK this tree. We will construct these BRWs on a same probability space.

Let {P(N,K)(w);w ∈ TK} be i.i.d. copies of P(N,K), {P(K)(w);w ∈ TK} be i.i.d.
copies of P(K), and

(
Ω,F ,P

)
be a probability space where those families of r.v. are

defined. Since P(N,K) converges to P(K) in distribution (see Proposition 4.9), we can
and we will assume that the stronger a.s. convergences

lim
N→∞

P(N,K)(w) = P(K)(w) a.s. (4.17)

hold for all w ∈ TK , which implies the point-to-point convergence

lim
N→∞

∥∥P(N,K)
(
w
)
−P(K)

(
w
)∥∥ = 0 a.s.

where ‖·‖ is the distance defined in (4.5). Note that we have not lost in generality, since
we can always construct a probability space

(
Ω,F ,P

)
, for which the a.s. convergence

holds.
Under these hypothesis, the construction goes as follows. Each individual w ∈ TK

has K offspring, that we label according to some deterministic order. Let w(i) be its
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4.4. Lower bound

ith children, then, its position η(N)(ww(i)) and η(∞)(ww(i)) in the BRW
(
P(N,K)

)
and

BRW
(
P(K)

)
are given by

η(N)
(
ww(i)

)
= η(N)(w) + P(N,K)

i (w) and η(∞)
(
ww(i)

)
= η(∞)(w) + P(K)

i (w),

where P(N,K)
i (w) and P(K)

i (w) denote respectively the ith largest point in the point
processes P(N,K)(w) and P(K)(w). This construction couples the BRWs and for
w ∈ TK fixed

lim
N→∞

η(N)(w) = η(∞)(w) a.s.

A direct calculation shows that P(K) satisfies (2.6–2.8), which implies the exis-
tence of the asymptotic velocity γ

(
P(K)

)
, with γ given by (2.9). Lemma 4.2 with

C = α and β = α− 1 > −1 yields

lim
K→∞

γ
(
P(K)

)
= −α

e

(
1

Γ(α)α

) 1
α

= −cα.

Let δ = ε/12, then there exists K0 such that ∀K ≥ K0

γ
(
P(K)

)
≥ −cα − δ. (4.18)

Fix K for which (4.18) holds; we bring to the reader’s attention that, as (H1), (H2)
hold, P(N,K) also satisfies (2.6), (2.7). Moreover, a simple calculation shows that
γ
(
P(N,K)

)
converges to γ

(
P(K)

)
as N →∞.

We now prove that with positive probability there exists more than M individuals
w̃ ∈ T in generation n such that

η(N)
(
w̃t
)
≥ −cαt− 6δ, for every w̃t ∈ [[e, w̃]].

As it will become clearer in the sequel, we take n of the form n = sM +m, with

sM :=

⌈
lnM

lnϕ

⌉
+ 1 and m =

⌈(
|R| − cα − 6δ

)
sM

3δ

⌉
. (4.19)

The constants ϕ > 1 and R < −cα − 6δ < 0 are given by Lemma 4.10 and formula
(4.20) below and depend only on the distribution P(K). Although M may be very
large, it will be kept constant throughout this section (while N →∞), hence sM and
m are also constants.

First, we obtain a lower bound for the probability of the set

{
∃w ∈ TK in generation m such that η(N)

(
wt
)
≥ (−cα − 3δ)t; ∀wt ∈ [[e, w]]

}
.

Denote by Am,δ the set

Am,δ :=
{∥∥P(N,K)

(
w′
)
−P(K)

(
w′
)∥∥ ≤ δ; ∀w′ ∈ TK such that |w′| ≤ m

}
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4.4. Lower bound

then, for m ∈ N and δ fixed, one obtains from (4.17) that P(Am,δ) → 1 as N → ∞.
Since γ

(
P(K)

)
≥ cα − δ we have the following set inclusions

{
∃w ∈ TK ; |w| = m and η(N)

(
wt
)
≥ (−cα − 3δ)t; ∀wt ∈ [[e, w]]

}

⊃
{
∃w ∈ TK ; |w| = m and η(N)

(
wt
)
≥ (−cα − 3δ)t; ∀wt ∈ [[e, w]]

}
∩ Am,δ

⊃
{
∃w ∈ TK ; |w| = m and η(∞)

(
wt
)
≥ (−cα − 2δ)t; ∀wt ∈ [[e, w]]

}
∩ Am,δ

⊃
{
∃w ∈ TK ; |w| = m and η(∞)

(
wt
)
≥ (−γ

(
P(K)

)
− δ)t; ∀wt ∈ [[e, w]]

}
∩ Am,δ

⊃
{
∃w∞ ∈ ∂TK ; η(∞)(wt) ≥ (γ(L)− δ)t, ∀wt ∈ [[e, w∞]]

}
∩ Am,δ,

which yields the lower bound

lim inf
N→∞

P
(
∃w ∈ TK ; |w| = m and η(N)

(
wt
)
≥ (−cα − 3δ)t; ∀wt ∈ [[e, w]]

)
≥ ρ(∞, δ).

From Theorem 2.5, ρ(∞, δ) > 0 is a constant depending only on P(K). Then, there
exists NM ∈ N depending only on m (and hence, on M) such that ∀N ≥ NM

P
(
∃w ∈ TK : |w| = m, η(N)

(
wt
)
≥ (−cα − 3δ)t, ∀wt ∈ [[e, w]]

)
≥ ρ(∞, δ)

2
.

Now, we choose R and ϕ in (4.19). Since P(K)
(
] − ∞, 0[

)
= K, one can take

R < −cα − 6δ < 0 such that

P
(
P(K)[R, 0) ≥ 2

)
>

2

3
. (4.20)

Using the convergence in distribution, there exists a N ′ > 0 such that for N ≥ N ′

P
(
P(N,K)[R, 0) ≥ 2

)
≥ 2

3
.

Without loss of generality, we can and we will assume that NM ≥ N ′. The Galton-
Watson tree whose offspring distribution is

p
(N)
i = P

(
P(N,K)[R, 0) = i

)
, i = 0, 1, . . . , (4.21)

has mean offspring larger than 4/3. It is supercritical, and the following well-known
result holds.

Lemma 4.10 ([AN04] Theorem 2 Section 6 Chapter 1). Let Mt denote the population
size of a supercritical Galton-Watson process with square integrable offspring distri-
bution (started with one individual). Then, there exists r > 0 and ϕ > 1 such that for
all t ≥ 0

P(Mt ≥ ϕt) ≥ r.

Let M
(N)
t denote the population size of the Galton-Watson processes defined by

(p
(N)
i )i=0,1,.... Using a simple coupling argument and Lemma 4.10, we can find a ϕ > 1

and r > 0 not depending on N ≥ NM such that for all t ≥ 1

P(M
(N)
t ≥ ϕt) > r.
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4.4. Lower bound

With m and sM from (4.19), we have that

M (N)
sM
≥M ; with probability at least r > 0,

and that

(−cα − 3δ)m+R(t−m) ≥ (−cα − 6δ)t; for every m ≤ t ≤ m+ sM .

Let ww′ ∈ TK be a vertex in generation n, with the following properties: |w| = m,

η(N)
(
wt
)
> (−cα − 3δ)t, ∀wt ∈ [[e, w]],

w′ is in generation sM in the TK sub-tree descending from w and

η(N)
(
w′s+1

)
− η(N)

(
w′s
)
≥ R, ∀w′s ∈ [[w,w′]].

Then, by a simple calculation one can conclude that the path [[e, ww′]] ⊂ TK has
always lain above the line of slope −cα − 6δ. For N ≥ NM , a conditioning argument
yields the lower bound for the probabilities

P
(
]
{
w̃ ∈ TK ; |w̃| = n and η(N)(w̃t) ≥ −

(
cα +

ε

2

)
t ∀w̃t ∈ [[e, w̃]]

}
≥M

)

≥ P
(
∃w ∈ TK such that η(N)(wt) ≥ (−cα − 3δ)t; ∀wt ∈ [[e, w]] and M (N)

sM
≥M

)

≥ r
ρ(∞, δ)

2
,

in the second equation, w is a vertex in generation m and M
(N)
t is the population size

of the Galton-Watson process generated by the descendants of w for which

η(N)
(
w′s+1

)
− η(N)

(
w′s
)
≥ R ∀w′s ∈ [[w,w′]].

In particular, we have just proved the following proposition.

Proposition 4.11. Let
(
η(N)(w); w ∈ TK

)
the BRW defined by the point processes

P(N,K). Given ε > 0 let R be given by (4.20), r and ϕ as in Lemma 4.10. Then, take
sM and m as in (4.19). Then, with n = m + sM , we can find some NM (depending
only on M) such that if N ≥ NM

P
(
]
{
w ∈ TK ; |w| = n and η(N)(wt) ≥ −

(
cα +

ε

2

)
t; ∀wt ∈ [[e, w]]

}
≥M

)

≥ ρ(∞, ε/12)

2
r

Second step: uniform lower bound for the speed

In this step, we obtain a uniform lower bound for the speed of a−1
N x(t), which is simply

a M-BRW
(
P(N,K)

)
. Let x (N)(t) be the point process associated to a−1

N x(t)

x (N)(t) :=
M∑

i=1

δ{a−1
N xi(t)},
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4.4. Lower bound

and γM
(
P(N,K)

)
be the asymptotic velocity of the M -BRW

(
P(N,K)

)
,

lim
t→∞

t−1 min
(

x (N)(t)
)

= lim
t→∞

t−1 max
(

x (N)(t)
)

= γM(P(N,K)) a.s.

Then, we will prove that for ε > 0 and K given by (4.18) the inequality

lim inf
M→∞

(
lim inf
N→∞

γM(P(N,K))
)
≥ −(cα + ε)

holds, which finishes the proof of Theorem 4.1. Following the strategy of [BG10], we
construct a third point process W (t) = W (N)(t) that bound x (N)(t) from below. This
new point process evolves like x (N)(t) up to a certain random time τi, i ∈ N, from
which we shift the position of all particles to the minimal position, and start W (t)
afresh.

Let n = m + sM , where sM and m are given by (4.19). We will construct the
process W (t) and the stopping times 0 = τ0 < τ1 < . . . together

τ1 := inf
{

1 ≤ s ≤ n; min
(

x (N)(s)
)
≥ (−cα − ε/2)s

}
,

where inf{∅} = n. Then, τ1 ≤ n is a stopping time with respect to the filtration Ft.
For 0 ≤ t ≤ τ1 let

W (t) = x (N)(t).

and m1 := min
(
W (τ1)

)
, then at the time step τ1 → τ1 + 1 we shift all particles Wi to

m1 and continue the construction up to τ2 according to the induction step.
Inductive step: assume that τ1 < . . . < τl and W (t) for t≤ τl are defined. Then,

for τl+1 ≤ t ≤ τl+1 (we will define τl+1 below), W (t) is the point process of a M -
BRW

(
P(N,K)

)
starting from

ml := min
(
W (τl)

)
.

At each time step t → t + 1 the individuals
(
Wi(t)

)
i=1,...,M

give birth to K new

individuals, whose positions are determined by independent point process

(
P(N,K)(xi(t)); i = 1, . . . ,M

)
,

and die immediately afterwards. We assume that the point process defining x (N) and
W (·) are the same. Moreover, we will also assume that the indices are organized in
order to couple x (N) by W (·). We then select the M rightmost particles to form the
next generation.

The process evolves as above up to

τl+1 := inf
{
τl + 1 ≤ s ≤ τl + n; min (W (s))−ml ≥ (−cα − ε/2)s

}
,

where we shift the positions of the M particles to ml+1, the minimum of the positions.
It is immediate from the construction of W (·) that

W (t) ≺ x (N)(t) ∀t ∈ N.
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4.4. Lower bound

For l ≥ 1, the processes
(
W (t) − ml; t ∈ [τl + 1, τl+1]

)
and the random variables

τl+1 − τl are i.i.d. In the sequel, we use the notation τ := τ1, then by the law of large
numbers

lim
l→∞

1

l
min

(
x (N)(τl)

)
= γM

(
P(N,K)

)
E[τ ] a.s.

From the construction of W (·) and the renewal theorem we also obtain that

lim inf
l→∞

1

l
min

(
x (N)(τl)

)
≥ lim inf

l→∞

1

l
min

(
W (τl)

)
= E [min (W (τ))] a.s.

which implies that

γM
(
P(N,K)

)
≥ E

[
min

(
W (τ)

)]

E[τ ]
. (4.22)

With B =
{

min
(
W (τ)

)
< (−cα − ε/2)τ

}
, we write

min
(
W (τ)

)
≥ (−cα − ε/2)τ1B{ + min

(
W (n)

)
1B

= (−cα − ε/2)τ + (cα + ε/2)τ1B + min
(
W (n)

)
1B.

Taking expected value we get

E
[

min
(
W (τ)

)]
≥ (−cα − ε/2)E[τ ] + E

[
min

(
W (n)

)
1B
]
. (4.23)

Let min
(
P(N,K)

(
Wi(t)

))
be the smallest point of the point process generated by

Wi(t) before the selection step, it has the law of the Kth maxima of a N − KM
sample of ξij. Since ξij ≤ 0, one gets the lower bound

min
(
W (n)

)
≥

n∑

t=0

M∑

i=1

min
(
P(N,K)

(
Wi(t)

))
,

which implies that

E
[

min
(
W (n)

)
1B
]
≥ −(n+ 1)ME

[∣∣min
(
P(N,K)

)
1B
∣∣] .

The Cauchy-Schwarz inequality yields

E[minW (n)1B] ≥ −(n+ 1)ME
[∣∣min

(
P(N,K)

)∣∣2
]1/2

P(B)1/2.

By Proposition 4.9, the second moment of min
(
P(N,K)

)
converges as N → ∞ to a

finite constant. Hence, there exists a constant c̃, depending only on ξij, such that

E
[

minW (n)1B
]
≥ −c̃(n+ 1)MP(B)1/2.

Finally, the probability of B can be estimated using Proposition 4.11. The evolution
of different individuals in the M -BRW is not independent. Yet, a M -BRW can be
coupled with M independent BRWs, see Section 3.3 in [BG10], so that the event “the
minimum of the M -BRW always lies below the line of slope −cα − ε/2” implies that
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4.4. Lower bound

none of the M independent BRWs has more than M vertices in generation n that
have always stayed above this line, hence

P(B) ≤
(

1− ρ(∞, ε/12)

2
r

)M
.

From the definition of n, if M is large enough c̃(n+ 1)M < M2 and

lim sup
M→∞

M2

(
1− ρ(∞, ε/12)

2
r

)M/2

= 0.

Then, choosing M properly (note that it depends only on ε and ξij but not on N),
one gets

E[minW (n)1B] ≥ −ε
2
.

Combined with (4.22, 4.23), this ends the proof.
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Chapter 5

The genealogical aspects of the
model

This chapter is an article to appear in the Bernoulli journal. Only the introduction
has been modified for a better readability.

5.1 Introduction

In this chapter we analyse the genealogical properties of (1.8) we focus on the case
where ξ is Gumbel G(ρ, β)-distributed. Before stating the main result of the chapter,
we recall the definitions and results of Section 2.3. We denote by Pn and P∞ the set
of partitions of [n] and N∗, respectively.

A coalescent process is any right-continuous Pn-valued (or P∞-valued) Markov
process

(
Πn
t ; t ≥ 0

)
for which Πn

s is a refinement of Πn
t , whenever s ≤ t. It is also

important to recall the definition of the ancestral partition process of a population (see
Section 2.3). We use the notation ΠN,· to denote the ancestral partition of a constant
size population with N individuals, while the notation Π∞,·, or simply Π, stands for
a coalescent process. We will focus on discrete-time population model defined by the
family sizes

ν(t) :=
(
ν1(t), · · · , νN(t)

)
with ν1(t) + ν2(t) + · · ·+ νN(t) = N, t ∈ Z,

where νi(t) denotes the number of children of the ith individual in generation t. We
will often assume that

(i) The offspring vectors ν(t), t ∈ Z are i.i.d. copies of ν.

(ii) The offspring vector
(
ν1, . . . , νN

)
is N -exchangeable.

We recall that if (i) and (ii) hold, one can easily compute the probability transitions
pN(π′, π), with π′ ⊂ π, of the ancestral partition process ΠN,n, see equation (2.11).
Moreover, the probability that two individuals, chosen randomly without replacement
from some generation, have a common ancestor one generation backward in time is
given by (equation (2.12) in Section 2.3)

cN :=
1

N(N − 1)

N∑

i

E
[
νi(t)(νi(t)− 1)

]
=

1

(N − 1)
E
[
ν1(t)(ν1(t)− 1)

]
. (5.1)
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5.1. Introduction

It is also important to keep in mind Theorem 2.8, that will be used to prove some of
the results in this chapter.

Finally we recall from Section 2.3.2 that when

P(ξij(t+ 1) = x) = 0; ∀x ∈ R,

the equation
Xj(t+ 1) = Xi(t) + ξij(t+ 1). (5.2)

has a.s. a unique solution i, and one can say that Xj(t + 1) is an offspring or a
descendant of Xi(t). So that, we also denote by νi(t) the number of descendants of
Xi(t) in generation t+ 1. With

Ft := σ{ξij(s) and Xi(0); 0 ≤ s ≤ t, 1 ≤ i, j ≤ N},
let

ηi(t) := P
(
ξij(t+ 1) +Xi(t) ≥ ξkj(t+ 1) +Xk(t) ; for every 1 ≤ k ≤ N

∣∣Ft
)
.

be the conditional probability that Xj(t+ 1) descends from Xi(t). Since
{
ξij(t+ 1); 1 ≤ i, j ≤ N

}

are independent, it is easy to see that, for j1, . . . , jm distinct and i1, . . . , im (not
necessarily distinct),

P
(
Xjk(t+ 1) descends from Xik(t), for 1 ≤ k ≤ m

∣∣Ft
)

= ηi1(t)ηi2(t) . . . ηim(t).

Hence, given Ft the offspring vector ν(t) :=
(
ν1(t), . . . , νN(t)

)
is distributed according

to a N -class multinomial with N trials and probabilities outcomes

η(t) :=
(
η1(t), . . . , ηN(t)

)
.

If we assume that the offspring vectors
(
ν(t)

)
t∈N are identically distributed and in-

dependent from generation to generation, then we obtain a “toy model”, in which
generations are not correlated. In this chapter, we study the ancestral history of this
population. We make two additional assumptions on the fitness η(t). First, we assume
that each ηi(t) is of the form

ηi(t) = Yi(t)

/ N∑

j=1

Yj(t), (5.3)

where Yj(t) are i.i.d. positive random variables. Secondly, for some of our results, we
assume that the tail distribution of Yi(t) satisfies

lim
y→∞

P (Yi(t) ≥ y)
/
y−α = C, (5.4)

where α and C are positive constants. To simplify the notation, the time parameter
t is often omitted. Moreover, ηi(t) in (5.3) does not change if we replace Yj(t) by
Yj(t)C

−1/α, for this reason we may always assume that C = 1. Then, we show
that the ancestral partition processes converge weakly and that the limit distribution
depends on α.
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5.1. Introduction

Theorem 5.1. Consider the dynamics of a constant size N population with infinitely
many generations backwards in time defined by the vectors

ν(t) =
(
ν1(t), . . . , νN(t)

)
, t ∈ Z

of family sizes and denote by ΠN,n
t the ancestral partition process. Suppose that the

family sizes ν(t) are i.i.d. copies of ν a doubly stochastic multinomial random variable
with N trials and probability outcomes η =

(
η1, . . . , ηN

)
:

P
(
ν =

(
i1, . . . , iN

) ∣∣∣ η
)

=
N !

i1! . . . iN !
ηi11 . . . η

iN
N ,

where i1 . . . , iN ∈ N and i1 + · · · + iN = N . Suppose also that ηi is of the form (5.3)
with i.i.d. Yi’s. Then, the following holds.

a. If E[Y 2
1 ] < ∞ (in particular, if (5.4) holds and α > 2), then the processes(

ΠN,n
bt/cN c; t ≥ 0

)
converge weakly as N → ∞ to the Kingman’s n-coalescent. The

scaling factor cN is asymptotically equivalent to N , precisely

lim
N→∞

NcN =
E[Y 2

i ]

E[Yi]2
.

b. If the Yi’s satisfy (5.4) with α = 2, then the processes
(

ΠN,n
bt/cN c; t ≥ 0

)
converge in

the Skorokhod sense as N →∞ to the Kingman’s n-coalescent. The scaling factor
cN is asymptotically equivalent to N/ lnN

lim
N→∞

NcN
lnN

=
2

E[Yi]2
.

c. When (5.4) holds with 1 ≤ α < 2, then the processes
(

ΠN,n
bt/cN c; t ≥ 0

)
converge

in the Skorokhod sense as N → ∞ to a continuous-time process (Π∞,nt ; t ≥ 0)
that has the same law as the restriction to [n] of the Λ-coalescent, where Λ is the
probability measure associated with the beta(2− α;α) distribution. The transition
rates are given by

λb;k =
B(k − α; b− k + α)

B(2− α;α)
, (5.5)

where B(c, d) = Γ(c)Γ(d)/Γ(c + d) is the beta function. The scaling factor cN
satisfies

lim
N→∞

Nα−1cN =
αΓ(α)Γ(2− α)

E[Yi]α
, if 1 < α < 2,

lim
N→∞

cN lnN = 1, if α = 1.
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5.2. Relation with Brunet and Derrida’s model.

d. When (5.4) holds with 0 < α < 1, then the processes
(

ΠN,n
t ; t ∈ N

)
converge as

N → ∞ to a discrete-time Markov chain (Π∞,nt ; t ∈ N) that has the same law as
the restriction to [n] of a discrete-time Ξα-coalescent. The transition probabilities
are given by

pb;b1;...;ba;s =
αa+s−1(a+ s− 1)!

(b− 1)!
·

a∏

i=1

Γ(bi − α)

Γ(1− α)
. (5.6)

If ξij in (1.8) is Gumbel G(ρ, β)-distributed, the microscopic dynamics can be
solved allowing precise calculations. In this case, see Proposition 5.3 in Section 5.2,
the positions of the particles in generation t+ 1 can be obtained by a Ft-measurable
function Φ

(
X(t)

)
(that may be interpreted as the front position at time t) and a

Ft-independent family of i.i.d random variables
(
Ei(t+ 1)

)
1≤i≤N

Xi(t+ 1) = ρ+ Φ
(
X(t)

)
− β−1 ln Ei(t+ 1). (5.7)

Hence, one only needs the information Φ
(
X(t)

)
from Ft to generate the particle

position Xi(t+ 1). Then, the following weak limit for the ancestral partition process
holds (Theorem 1.4 in the Introduction).

Theorem 5.2. Assume that ξij in (1.8) are Gumbel G(ρ, β)-distributed and that the
initial position of particles

(
X1(0), . . . , XN(0)

)
are distributed according to a proba-

bility distribution µ on RN . Choose n particles e1, . . . , en uniformly at random from

the N particles in generation
⌊
T (lnN)

⌋
. Let

(
ΠN,n
bt(lnN)c; t ∈

[
0, T

[)
be the random

partition of [n] such that i and j are in the same block if and only if ei and ej have
the same ancestor in generation

⌊
(T − t)(lnN)

⌋
.

Then, the processes
(

ΠN,n
bt(lnN)c; t ∈

[
0, T

[)
converge weakly as N → ∞ to a con-

tinuous time process
(
Π∞,nt ; t ∈

[
0, T

[)
that has the same law as the restriction to [n]

of the Bolthausen-Sznitman coalescent (up to time T−).

Organization of the chapter: in Section 5.2 we study the case where the disor-
der ξij is Gumbel distributed and we obtain Theorem 5.2 as an application of Theorem
5.1, that will be proved later in Section 5.3. In the end of the chapter we include two
Appendix, in which we prove some technical results.

5.2 Relation with Brunet and Derrida’s model.

In this section, we will assume that Theorem 5.1 holds and we show that when the
ξij’s are Gumbel distributed, then the family sizes ν(t) of the model (1.8) are i.i.d.
and the distribution satisfies the hypotheses of Theorem 5.1 with α = 1, which implies
Theorem 5.2. We bring to the reader’s attention two important details.

The first one is that the time restriction in the statement of Theorem 5.2 is a
necessary condition. One immediate reason is that the ancestral process is not even
defined for t > T . A more subtle reason is that the partition ΠN,n

bT (lnN)c depends on the
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5.2. Relation with Brunet and Derrida’s model.

initial distribution X1(0), . . . , XN(0). This dependence can be easily illustrated by
the following example. One chooses an initial position of points: X1(0), . . . , XN(0),
for which X1(0) � Xi(0). Then, with an overwhelming probability, every individual
in generation one descends from X1(0) and

ΠN,n
bT (lnN)c = {(1, . . . , n)},

in particular, as N →∞ the partition ΠN,n
bT (lnN)c does not converge in distribution to

the n-Bolthausen-Sznitman coalescent at time T .
Secondly, we emphasize that, in the general case, the offspring vectors ν(t) ob-

tained from (1.8) may not be independent from generation to generation. We refer to
[Cor14a] to provide a picture of a situation, in which the positions of the particles are
highly related to the positions of their ancestors. It is considered the case, in which
the distribution of ξij depends on N

P
(
ξij = 0

)
= 1− P

(
ξij = −1

)
= 1/N1+r.

In this model, the number of leaders ]
{
i;Xi(t) = max{Xj(t)}

}
in generation t has

a strong correlation with the number of leaders in generation t − 1. Therefore, the
fitness vectors

(
η(t)

)
t∈N between successive generations are correlated, and hence the

offspring vectors ν(t) are not independent (in particular (i) in page 107 does not hold).

Before proving Theorem 5.2, let us present some preliminary results and explain
why the Gumbel case is particular. In [CQR13], it is shown that the particles remain
grouped as t increases and that the position of the front at time t may be described
by any numerical function Φ : RN → R that is increasing for the partial order on RN

and that commutes to space translations by constant vectors

Φ(x+ r1) = r + Φ(x), (5.8)

where 1 is the vector (1, 1, . . . , 1) ∈ RN . For a given function Φ, we denote by x0 the
vector x ∈ RN shifted by Φ(x).

x0 = x− Φ(x).

The authors also prove that there exists a non-random constant vN (not depending
on Φ(·)) called speed of the front such that

lim
t→∞

Φ
(
X(t)

)

t
= vN a.s.

It is then clear that there is no invariant measure for X(t). On the other hand, if
we consider the shifted process X0(t) := X(t)− Φ

(
X(t)

)
, then there exists a unique

invariant measure (depending on Φ(·)) for it. In the Gumbel case an appropriate
measure of the front location is

Φ(x) = β−1 ln
N∑

i=1

exp(βxi). (5.9)
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5.2. Relation with Brunet and Derrida’s model.

In the proof of Proposition 5.3, we show that if the ξ are Gumbel G(ρ, β)-distributed,
then Φ

(
X(t)

)
has all information needed to construct the next generation. The tech-

nique that we will present has been used in [BD04] to calculate the velocity and
diffusion constant of the N -particle system. In [CQR13], the authors use the same
argument to calculate explicitly the invariant measure for the process X0(t). It has
the law of a shifted vector V 0 := V − Φ(V ) of a vector V obtained from a N -sample
from a Gumbel G(0, β). Summing up, when the disorder is Gumbel distributed the
model is completely soluble, allowing exact computations.

Proposition 5.3. Assume that ξij in (1.8) are Gumbel G(ρ, β)-distributed and denote
by νi(t) the number of descendants of Xi(t) in generation t+ 1.

Then, for every starting configuration µ the family sizes

ν(t) =
(
ν1(t), . . . , νN(t)

)
, t ≥ 1

are i.i.d. copies of ν a doubly stochastic multinomial random variable with N trials
and probability outcomes ηi given by

ηi = E−1
i

/(
N∑

k=1

E−1
k

)
, (5.10)

where
{
Ei; 1 ≤ i ≤ N

}
are independent and exponentially distributed with parameter

1. If µ has the law of a shifted vector V 0 := V −Φ(V ) of a vector V obtained from a
N-sample from a Gumbel G(0, β), then we may take t ≥ 0.

Proof. Let Φ(x) be given by (5.9), then Φ(x) has all information one needs to construct
the next generation and the process shifted by Φ: X0

j (t) = Xj(t) − Φ
(
X(t)

)
, are

independent from generation to generation. Indeed, for t ≥ 1 we may write Xj(t) as
follows, see [CQR13] (Theorem 3.1) and [BD04]

Xj(t) = ρ+ Φ
(
X(t− 1)

)
− β−1 ln Ej(t), (5.11)

where Ej(t) := min1≤i≤N
{

exp
(
−β(ξij(t)−ρ)−βX0

i (t−1)
)}

. Since ξij(t) are Gumbel
G(ρ, β)-distributed, exp

(
−β(ξij(t)−ρ)

)
are exponentially distributed with parameter

one. Hence, conditionally on Ft−1,

exp
(
− β(ξij(t)− ρ)− βX0

i (t− 1)
)
; 1 ≤ i ≤ N

are independent and exp
(
− β(ξij(t) − ρ) − βX0

i (t − 1)
)

is distributed according
to an exponential random variable with parameter exp

(
βX0

i (t − 1)
)
. Applying the

stability property of the exponential law under independent minimum, we obtain that
conditionally on Ft−1 each variable Ei(t) is exponentially distributed with parameter
one and, moreover, that the whole vector E(t) :=

(
Ei(t), i ≤ N

)
is conditionally

independent. Therefore, the vector E(t) is independent from Ft−1 and its coordinates
Ei(t), 1 ≤ i ≤ N are i.i.d. having an exponential law with parameter one. Using once
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5.2. Relation with Brunet and Derrida’s model.

again the stability property of the exponential law under independent minimum,

ηi(t) := P
(
ξij(t+ 1) +Xi(t) > ξkj +Xk(t), for every k 6= i

∣∣Ft
)

= P
(

e−β(ξij(t+1)−ρ)e−βXi(t) < min
k 6=i

e−β(ξkj(t+1)−ρ)e−βXk(t)
∣∣∣Ft
)

= exp
(
βXi(t)

)
/(

N∑

k=1

exp
(
βXk(t)

)
)
. (5.12)

Then, from (5.11) we obtain that

ηi(t) = E−1
i (t)

/(
N∑

k=1

E−1
k (t)

)
, (5.13)

which proves (5.10). In particular, the family sizes ν(1), ν(2), . . . have the same dis-
tribution. If at t = 0 the particles are distributed according to the invariant measure
the same argument holds and ν(t), t ≥ 0 have the same distribution.

We now prove that the ν(t)’s are independent. It suffices to show that

E
[
f1

(
ν(1)

)
. . . ft+1

(
ν(t+ 1)

)]
= E

[
f1

(
ν(1)

)
. . . ft

(
ν(t)

)]
E
[
ft+1

(
ν(t+ 1)

)]
, (5.14)

for all continuous bounded functions f1(·), . . . , ft(·), ft+1(·). Let Ai,j;t be the event

Ai,j;t =

{
ξji(t+ 1) +Xj(t) > max

k 6=i

{
ξki(t+ 1) +Xk(t)

}}

that Xi(t+ 1) descends from Xj(t). Denote by Gt the σ-algebra generated by Ft and
Ai,j;t for every 1 ≤ i, j ≤ N , then ν(1), . . . , ν(t) are Gt-measurable. We claim that
ν(t + 1) is independent from Gt, which proves (5.14). Since ν(t + 1) is completely
determined by

{
Ek(t+ 1), 1 ≤ k ≤ N

}
and

{
ξkl(t+ 2), 1 ≤ k, l ≤ N

}
, it is immediate

that it is independent from Ft. Hence, we prove the claim once we show that ν(t+ 1)
and Ai,j;t are independent for every 1 ≤ i, j ≤ N . Since

Ai,j;t ∈ σ
{
Ft; {ξki(t+ 1); 1 ≤ k ≤ N}

}
⊂ Ft+1,

it suffices to show that Ai,j;t is independent from σ
{
Ek(t + 1), 1 ≤ k ≤ N

}
. It is not

hard to show that Ek(t+1) and Ai,j;t are independent, whenever k 6= i and we leave the
details to the reader. Let g(·) be a bounded continuous function. Conditionally on Ft,
Ei(t+1) is the minimum of N independent random variables exponentially distributed
with parameters exp

(
βX0

k(t − 1)
)

and the set Ai,j;t is the event that the minimum
is attained by exp

(
− β(ξji(t) − ρ) − βX0

j (t)
)
. Then, using standard properties of

exponential distributions, we obtain

E
[
g
(
Ei(t+ 1)

)
1Ai,j;t |Ft

]
= P

(
Ai,j;t|Ft

) ∫

R+

g(y) ·
exp

(
−y∑ eβX

0
k(t−1)

)

∑
eβX

0
k(t−1)

· dy

= P
(
Ai,j;t|Ft

) ∫

R+

dy g(y) exp(−y).
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5.3. A toy model

We used that X0 is the process shifted by Φ, which satisfies
∑

eβX
0
k(t−1) = 1. Then,

Ei(t+ 1) and Ai,j;t are independent, which proves the claim and therefore the propo-
sition.

Proof of Theorem 5.2. By Proposition 5.3, the family sizes ν(t) are independent
and identically distributed for t ≥ 1 (and t ≥ 0 if the initial position of particles is
distributed according to the invariant measure). Furthermore, it is easy to compute
the tail distribution of E−1

i (t)

P(E−1
i (t) ≥ x) = 1− e−x

−1 ∼ 1/x, x→∞,

where “∼” means that the ratio of the sides approaches to one as x → ∞, so (5.4)
holds with α = 1.

If T0 < T and N is sufficient large such that (T − T0)(lnN) ≥ 1, then the family
sizes ν(t), t ∈ {b(T − T0)(lnN)c, . . . , bT (lnN)c} are i.i.d. It is then possible to apply
Theorem 5.1 with α = 1, which concludes the proof.

5.3 Proof of Theorem 5.1.

The proof of Theorem 5.1 will be divided in two main parts. In the first one, we
focus on the case where Y1 has finite second moment, which generalize α > 2 in (5.4).
The proof of the first part of Theorem 5.1 is an adaptation of the proof of part (a) of
Theorem 4 in [Sch03]. In the second part, we prove Theorem 5.1 for α ≤ 2. We do so
by studying the Laplace transform of Yi and its derivatives.

Before proving Theorem 5.1, we prove a general statement about multinomial
distributions. In the next lemma, we will denote by ν a N -class multinomial random
variable with N trials and by ηi the probability outcomes, that are not necessarily
N -exchangeable.

Lemma 5.4. Let ν =
(
ν1, . . . , νN

)
be a doubly stochastic multinomial random variable

with probability outcomes η1, . . . , ηN . Let also b1 ≥ · · · ≥ ba ≥ 1 and b = b1 + · · ·+ ba
(we also assume that b ≤ N). Then,

E
[
(ν1)b1 . . . (νa)ba

]
= (N)bE

[
ηb11 . . . ηbaa

]
. (5.15)

Proof. To simplify the notation, we assume that η1 . . . , ηN are non-random. Then, ν
is distributed according to a standard multinomial distribution.

E
[
(ν1)b1 . . . (νa)ba

]

=
∑

ij≥bj
i1+···+ia≤N

N ! ηi11 . . . η
ia
a (1− η1,...,a)

N−i1,...,a

i1! . . . ia!(N − i1,...,a)!
· i1!

(i1 − b1)!
· · · ia!

(ia − ba)!
, (5.16)
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where i1,...,a := i1 + · · · + ia and η1,...,a := η1 + · · · + ηa. By a change of variables
kj = ij − bj we rewrite (5.16)

∑

k1+···+ka≤N−b

N !

k1! . . . ka!(N − b− k1,...,a)!
· ηk1+b1

1 . . . ηka+ba
a (1− η1,...,a)

N−b−k1,...,a

= (N)bη
b1
1 . . . ηbaa

∑ (N − b)!
k1! . . . ka!(N − b− k1,...,a)!

· ηk1
1 . . . ηkaa (1− η1,...,a)

N−b−k1,...,a

= (N)bη
b1
1 . . . ηbaa

(
η1 + · · ·+ ηa + (1− η1,...,a)

)N−b
,

proving the result in the non-random case. The random case is obtained by condi-
tioning on σ{η1, . . . , ηN}.

5.3.1 Convergence to Kingman’s coalescent E[Y 2
1 ] <∞.

In [Möh00], Möhle shows that if the family sizes are not “too large” the processes
ΠN,n
bt/cN c converge to the Kingman’s n-coalescent.

Proposition 5.5 (Möhle [Möh00]). Suppose that

lim
N→∞

E
[
(νi)3

]

N2cN
= 0. (5.17)

Then, as N →∞, the processes ΠN,n
bt/cN c converge to the Kingman’s n-coalescent.

We will use Proposition 5.5 to prove Theorem 5.1 in the case where the Yi’s are
square integrable. We first estimate cN , the probability that two individuals have a
common ancestor one generation backwards in time.

Lemma 5.6. Assume that the hypotheses of Theorem 5.1 hold with E[Y 2
1 ] < ∞ and

let cN be as in (2.12). Then,

lim
N→∞

NcN =
E[Y 2

1 ]

E[Y1]2
. (5.18)

Proof. From Lemma 5.15, we obtain that

NcN = N2E
[
η2

1

]
.

Let δ1 > 0, then by definition of η1

N2E
[
η2

1

]
= E


 Y 2

1(
N−1

∑N
j=1 Yj

)2


 ≥ E


 Y 2

1

δ1 +
(
N−1

∑N
j=1 Yj

)2


 . (5.19)

Since Y1 > 0, we use dominated convergence in (5.19) to obtain that

lim inf
N→∞

N cN ≥
E[Y 2

1 ]

δ1 + (E[Y1])2 .
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The inequality holds for every δ1 positive, which implies that the above lim inf is
larger than E[Y 2

1 ]/E[Y1]2. We now obtain an upper bound for the lim sup. We use the
Markov inequality to obtain that for all c > 0

lim
x→∞

x2P(Y1 ≥ cx) = 0. (5.20)

Let S2,N =
∑N

i=2 Yi and take 0 < δ2 < E[Y1] sufficiently small such that

E[Y 2
1 ]

(E[Y1]− δ2)2 ≤
E[Y 2

1 ]

E[Y1]2
+ ε/3, (5.21)

for a fixed ε > 0. Then, we write

N2E
[
η2

1

]
= E

[
Y 2

1

(N−1Y1 +N−1S2,N)2 ; S2,N ≥ N(E[Y1]− δ2)

]

+ E

[
Y 2

1

(N−1Y1 +N−1S2,N)2 ; S2,N ≤ N(E[Y1]− δ2)

]

= (I) + (II). (5.22)

Since Yi > 0, we may bound (II) in (5.22) as follows

(II) ≤ E
[

Y 2
1

(N−1Y1)2 ; S2,N ≤ N(E[Y1]− δ2)

]

= N2P
(
S2,N ≤ N(E[Y1]− δ2)

)
.

So we apply Chernoff inequality to conclude that if δ2 is fixed and N sufficiently large,
then (II) is smaller than ε/3.

(I) ≤ E
[

Y 2
1

(E[Y1]− δ2)2 ; Y1 ≤ N(E[Y1]− δ2)

]
+N2P

(
Y1 ≥ N(E[Y1]− δ2)

)

≤ E
[

Y 2
1

(E[Y1]− δ2)2

]
+N2P

(
Y1 ≥ N(E[Y1]− δ2)

)
.

From (5.20) with c = E[Y1]− δ2, the second term in the right-hand side converges to
zero as N →∞, and we may choose N conveniently such that it is smaller than ε/3.
It is implied that N is taken such that (II) is also smaller than ε/3. Then, applying
the upper bounds in (5.22) we obtain

N2E
[
η2

1

]
≤ E [Y 2

1 ]

(E[Y1]− δ2)2 +
2

3
· ε < E [Y 2

1 ]

E[Y1]2
+ ε.

Since the inequality holds for every ε > 0 and N large enough, we conclude that
lim supNcN ≤ E[Y 2

1 ]/E[Y1]2 proving the lemma.
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Proof of Theorem 5.1 in the case E[Y 2
1 ] < ∞. In order to prove Theorem 5.1, it

suffices to show that (5.17) holds and apply Proposition 5.5. From Lemma 5.6, there
exists a constant c < 1 such that for N sufficiently large NcN > cE[Y 2

1 ]/E[Y1]2, hence

0 ≤ E
[
(ν1)3

]

N2cN
≤ E

[
(ν1)3

]

N
· E[Y1]2

cE[Y 2
1 ]
.

Then, to prove the convergence in (5.17), it suffices to show that N−1E
[
(ν1)3

]
→ 0.

From (5.15), it is equivalent to N2E
[
η3

1

]
→ 0 as N → ∞. We proceed as in (5.22)

and obtain

N2E
[
η3

1

]
= N2E

[
Y 3

1

(Y1 + S2,N)3 ; S2,N ≥ N(E[Y1]− δ2)

]

+N2E

[
Y 3

1

(Y1 + S2,N)3 ; S2,N ≤ N(E[Y1]− δ2)

]

= (I) + (II). (5.23)

Applying the same argument of Lemma 5.6, we conclude that (II) converges to zero
as N diverges and we also obtain the following upper bound to (I)

(I) ≤ N2E

[
Y 3

1(
N(E[Y1]− δ2)

)3 ;Y1 ≤ N(E[Y1]− δ2)

]
+N2P

(
Y1 ≥ N(E[Y1]− δ2)

)
.

(5.24)
We use the Markov inequality to show that the second term in the right-hand side of
(5.24) converges to zero as N →∞. As a consequence, to finish the proof it suffices to
show that the first term in the right-hand side of (5.24) converges to zero as N →∞.
For ε > 0 let L ∈ R+ be such that

E[Y 2
1 ;Y1 ≥ L]

/(
E[Y1]− δ2

)2
< ε/2.

Since L, δ2 and ε are fixed we may choose N sufficiently large such that

LE[Y 2
1 ]

N
(
E[Y1]− δ2

)3 < ε/2,

and we bound the first term in the right-hand side of (5.24)

N2E

[
Y 3

1(
NE[Y1]− δ2

)3 ; Y1 ≤ N(E[Y1]− δ2)

]

≤ L

N
(
E[Y1]− δ2

)3 · E
[
Y 2

1 ; Y1 ≤ L
]

+
E [Y 2

1 ; L ≤ Y1 ≤ N(E[Y1]− δ2)]
(
E[Y1]− δ2

)2

≤ L

N
(
E[Y1]− δ2

)3 · E
[
Y 2

1

]
+

E
[
Y 2

1 1{Y1≥L}
]

(
E[Y1]− δ2

)2 < ε, (5.25)

that finishes the proof.
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5.3.2 Proof of Theorem 5.1 when α ≤ 2.

The strategy to prove Theorem 5.1 in the case α ≤ 2 is to compute the limits (2.13)
and apply Theorem 2.8. In the next proposition, we show how the moments of ηi’s
are related to the Laplace transform of Yi.

Proposition 5.7. Let b1 ≥ b2 ≥ . . . ≥ ba ≥ 2 be positive integers, b = b1 + · · · + ba
and for 1 ≤ i ≤ N

ηi :=
Yi∑N
i=1 Yj

,

where Y1, . . . , YN are i.i.d. random variables. Then,

E
[
ηb11 . . . ηbaa

]
=

1

Γ(b)

∫ ∞

0

ub−1I0(u)N−aIb1(u) . . . Iba(u)du, (5.26)

where Γ(·) is the gamma function and

Ip(u) = E
[
Y p

1 e−uY1

]
, p ∈ N . (5.27)

Proof. For every z ∈ R∗+ we have the following integral representation

z−b =
1

Γ(b)

∫ ∞

0

ub−1e−uzdu , (5.28)

then applying (5.28) with z =
∑N

i=1 Yi we obtain

E
[
ηb11 . . . ηbaa

]
= E

[
Y b1

1 . . . Y ba
a

1

Γ(b)

∫ ∞

0

ub−1e−u
∑N
i=1 Yidu

]

=

∫ ∞

0

ub−1

Γ(b)
E
[
Y b1

1 . . . Y ba
a e−u

∑N
i=1 Yidu

]
(Fubini)

=

∫ ∞

0

ub−1

Γ(b)
E
[

exp
(
− uY1

)]N−a a∏

i=1

E
[
Y bi

1 exp
(
− uY1

)]
du . (5.29)

In the last equality, we used the fact that Yi are i.i.d. Hence, from the definition of
Ibi we obtain that (5.29) and (5.26) are equal, proving the result.

It is clear that the functions Ip(u) are decreasing and attain their maximum at
zero. Moreover, the following relation can be easily deduced

dp

dup
I0(u) = (−1)pIp(u).

We now outline the strategy to prove Theorem 5.1.

i We first obtain a precise asymptotic of Ip(u) in the neighbourhood of zero, where
Ip(u) attains its maximum. As the reader will see, the behaviour of Ip(u) depends
on α and each case will be studied separately.
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ii We show that the integral in the right-hand side of (5.26) is essentially determined
by the immediate neighbourhood of zero.

iii We estimate E
[
ηb11 . . . ηbaa

]
.

iv We prove Theorem 5.1 using Lemma 5.4 that relates (2.13) with E
[
ηb11 . . . ηbaa

]
.

Lemma 5.8. Let I·(u) be given by (5.27).

a. If Yi satisfies (5.4) with α = 2 and C = 1. Then,

I0(u) = 1− uE [Y1] + o(u), when u→ 0+;

I2(u) = (−2 lnu) + o
(

ln(u−1)
)
, when u→ 0+;

Ip(u) = u2−p(2Γ(p− 2)
)

+ o(u2−p), when p ≥ 3 and u→ 0+.

b. When Yi satisfies (5.4) with 1 < α < 2 and C = 1. Then,

I0(u) = 1− uE [Y1] + o(u), when u→ 0+;

Ip(u) = uα−p
(
αΓ(p− α)

)
+ o(uα−p), when p ≥ 2 and u→ 0+.

c. If (5.4) holds with α = 1 and C = 1. Then,

I0(u) = 1 + (u lnu) + o(u lnu), when u→ 0+;

Ip(u) = u1−pΓ(p− 1) + o(u1−p), when p ≥ 2 and u→ 0+.

d. Assume that Yi satisfies (5.4) with 0 < α < 1 and C = 1. Then,

I0(u) = 1− uαΓ(1− α) + o(uα), when u→ 0+;

Ip(u) = uα−p
(
αΓ(p− α)

)
+ o(uα−p), when p ≥ 2 and u→ 0+.

Proof. See Appendix A.

In the next lemma, we show that only the immediate neighborhood of zero con-
tributes to the integral in (5.26) of Proposition 5.7.

Lemma 5.9. Let I·(u) be given by (5.27) and κN := (lnN)2/N , assume also that Yi
satisfies (5.4) with α ≤ 2 and C = 1. Then, for every K ∈ N

lim
N→∞

NK

∫ ∞

κN

ub−1I0(u)N−aIb1(u) . . . Iba(u)du = 0, (5.30)

where b1 ≥ . . . ≥ ba are fixed integers and b = b1 + . . . + ba. Hence, the integral in
(5.30) decreases faster than any polynomial in N .
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Proof. Since I0 is a decreasing function
∫ ∞

κN

ub−1I0(u)N−aIb1(u) . . . Iba(u)du

≤ I0(κN)N−a
∫ ∞

κN

ub−1Ib1(u) . . . Iba(u)du

≤ I0(κN)N−a
∫ ∞

0

ub−1E
[
Y b1

1 e−uY1

]
. . .E

[
Y ba
a e−uYa

]
du

= I0(κN)N−a Γ(b)E

[
Y b1

1 . . . Y ba
a

(
∑a

i=1 Yi)
b

]
. (5.31)

In the last equality, we proceed as in Proposition 5.7 and use the integral representa-
tion (5.28) with z =

∑a
i=1 Yi. The expected value in the right-hand side of (5.31) is

bounded from above by one. Applying Lemma 5.8 with u = κN → 0+ as N →∞

I0(κN)N−a = exp
{
− E[Yi](lnN)2 + o(ln2N)

}
, if 1 < α ≤ 2;

I0(κN)N−a = exp
{
− (lnN)3 + (lnN)2(ln 2 lnN) + o(ln3N)

}
, if α = 1;

I0(κN)N−a = exp
{
− Γ(1− α)N1−α(lnN)2α + o(N1−α(lnN)2α)

}
, if 0 < α < 1;

that decreases faster than any polynomial in N .

The κN in Lemma 5.9 is not optimal. The reason we have chosen such κN will be
clear in the proof of Proposition 5.10 below, where we estimate E

[
ηb11 . . . ηbaa

]
.

Proposition 5.10. Let b1 ≥ b2 ≥ . . . ≥ ba ≥ 2 be positive integers, b = b1 + · · ·+ ba,
and ηi be as in Proposition 5.7.

a. Suppose Yi satisfies (5.4) with α = 2 and C = 1. Let g := max{i; bi ≥ 3}, we
adopt the convention that max{∅} = 0. Then,

lim
N→∞

E
[
ηb11 . . . ηbaa

]
· N2a

(lnN)a−g
= Γ(2a) · 2a

∏g
i=1 Γ(bi − 2)

Γ(b)E[Y1]2a
. (5.32)

b. If (5.4) holds with 1 < α < 2 and C = 1. Then,

lim
N→∞

E
[
ηb11 . . . ηbaa

]
Naα = Γ(aα) ·

∏a
i=1 αΓ(bi − α)

Γ(b)E[Y1]aα
. (5.33)

c. If we assume that Yi satisfies (5.4) with α = 1 and C = 1. Then,

lim
N→∞

E
[
ηb11 . . . ηbaa

]
(N lnN)a = Γ(a) ·

∏a
i=1 Γ(bi − 1)

Γ(b)
. (5.34)

d. If (5.4) holds with 0 < α < 1 and C = 1. Then,

lim
N→∞

E
[
ηb11 . . . ηbaa

]
Na = Γ(a) · α

a−1
∏a

i=1 Γ(bi − α)

Γ(1− α)aΓ(b)
. (5.35)
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Proof. See Appendix B.

We now compute cN the probability that two individuals randomly chosen have
the same ancestor.

Corollary 5.11. Assume that the hypotheses of Theorem 5.1 hold and let cN be as
in (2.12). Assume also that the Yi’s satisfy (5.4) with α ≤ 2 and C = 1. Then,

lim
N→∞

N cN
lnN

=
2

E[Y1]2
, if α = 2;

lim
N→∞

cN
N1−α =

αΓ(α)Γ(2− α)

E[Y1]α
, if 1 < α < 2;

lim
N→∞

(lnN)cN = 1, if α = 1.

(5.36)

Finally, if Yi satisfies (5.4) with 0 < α < 1 and C = 1, then,

lim
N→∞

cN =
Γ(2− α)

Γ(1− α)
. (5.37)

Proof. It is a direct application of Lemma 5.4 and Proposition 5.10.

Proof of Theorem 5.1 in the cases α ≤ 2. We analyse each case separately and
compute the limits

lim
N→∞

E [(ν1)b1 . . . (νa)ba ]

N b−acN
.

If P(Yi ≥ x) ∼ x−2 as x→∞, denote by g = max{i; bi ≥ 3} (as in Proposition 5.10).
Then, as N →∞

E
[
(ν1)b1 . . . (νa)ba

]

N b−acN

=
(N)b
N b−acN

· E
[
ηb1 . . . ηba

]
(Lemma 5.4)

∼ Na N

lnN
· E[Y1]2

2
· E
[
ηb1 . . . ηba

] (
Corollary 5.11

)

∼ Na+1

lnN
· E[Y1]2

2
· (lnN)a−g

N2a
· Γ(2a) · 2a

∏g
i=1 Γ(bi − 2)

Γ(b)E[Y1]2a
(Proposition 5.10)

=
(lnN)a−g−1

Na−1
· Γ(2a) · 2a−1

∏g
i=1 Γ(bi − 2)

Γ(b)E[Y1]2(a−1)
,

which converges to zero whenever a ≥ 2. If a = 1 = g, which implies ba = b ≥ 3, then

E [(ν1)b1 ]

N b−1cN
∼ 1

lnN
· Γ(b− 2)

Γ(b)E[Y1]
→ 0 as N →∞.

On the other hand, if a = 1 and g = 0, i.e. b = 2, then

lim
N→∞

E [(ν1)2]

N2−1cN
= 1.
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Hence, in the scaling limit we may only observe collisions of two distinct blocks that
do not occur simultaneously, i.e. Kingman’s coalescent.

In the case 1 < α < 2 we proceed as above obtaining

E [(ν1)b1 . . . (νa)ba ]

N b−acN

∼ Γ(αa)

N (a−1)(α−1)
· E[Y1]α

αΓ(α)Γ(2− α)
·
∏a

i=1 αΓ(bi − α)

Γ(b)E[Y1]αa
, as N →∞,

that converges to zero whenever a ≥ 2. If a = 1 and a fortiori ba = b

lim
N→∞

E [(ν1)b]

N b−1cN
=

Γ(b− α)

Γ(b)Γ(2− α)

=
(b− 1− α) . . . (2− α)

(b− 1)!

=
B(b− α, α)

B(2− α, α)
= λb;b ,

where B(c, d) = Γ(c)Γ(d)/Γ(c + d), as defined in Theorem 5.1. Hence, using the
recursive formula (2.10) for λb;k

λb;b−1;1 = λb−1,b−1 − λb,b

=
Γ(b− 1− α)

Γ(b− 1)Γ(2− α)
− Γ(b− α)

Γ(b)Γ(2− α)

=
α

b− 1
· Γ(b− 1− α)

Γ(b− 1)Γ(2− α)

=
B(b− 1− α, 1 + α)

B(2− α, α)
= λb;b−1.

We may proceed by recurrence and conclude the convergence to the Beta-coalescent.
In the case α = 1, we have that

E [(ν1)b1 . . . (νa)ba ]

N b−acN
∼ Γ(a)

(lnN)a−1
·
∏a

i=1 Γ(bi − 1)

Γ(b)
, as N →∞,

that converges to zero whenever a ≥ 2, implying that we do not observe simultaneous
collisions in the time scale. If a = 1 and a fortiori ba = b

lim
N→∞

E [(ν1)b]

N b−1cN
=

Γ(b− 1)

Γ(b)

=
1

b− 1
=

∫

[0,1]

xb−2dx.

Hence, using the recursive formula (2.10) for λb;k, we can conclude the convergence in
distribution to the Bolthausen-Sznitman coalescent.
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When α < 1, by Corollary 5.11 lim cN > 0. Then, as N →∞

E [(ν1)b1 . . . (νa)ba ]

N b−a =
(N)b
N b−a · E

[
ηb1 . . . ηba

]
(Lemma 5.4)

∼ Γ(a) · α
a−1
∏a

i=1 Γ(bi − α)

Γ(1− α)aΓ(b)
(Proposition 5.10)

=
αa−1(a− 1)!

(b− 1)!
·
∏ Γ(bi − α)

Γ(1− α)

=
αa−1(a− 1)!

(b− 1)!
·
∏

[1− α]bi−1;1, (5.38)

where [x]m,y := x(x + y) . . . (x + (m − 1)y). We finish the proof by observing that
the limit in (5.38) is exactly the same limit that Schweinsberg obtains when studying
coalescent processes that govern the genealogical trees of supercritical Galton-Watson
processes with selection, see Section 4 of [Sch03].

A Appendix: proof of Lemma 5.8.

In this appendix, we present the proof of Lemma 5.8. We first prove the expansion of
I0(u) and then of Ip(u) for p ≥ 2. The idea of the proof is more or less the same for
every 0 < α ≤ 2, but some technical adaptations are required in specific cases.

The Laplace transform I0 of Yi is differentiable , when 1 < α ≤ 2 and I ′0(0) = E[Yi],
then in this case, the expansion of I0(u) is obtained by a simple Taylor development
at zero. For α ≤ 1, the Laplace transform of Y1 is no longer differentiable at zero. On
the other hand, we have that

E
[
e−uY1

]
=

∫ ∞

0

e−xP (Y1 ≤ x/u) dx

= 1−
∫ c(u)

0

e−xP (Y1 ≥ x/u) dx−
∫ ∞

c(u)

e−xP (Y1 ≥ x/u) dx, (A.39)

where c(u) is a function depending on u to be chosen. Let c(u) = u ln ln(u−1), then

x

u
≥ ln ln(u−1), if x ≥ c(u);

that diverges if u → 0+. It is also trivial that c(u) = o(uα) (in the case α < 1) and
c(u) = o(u lnu) (in the case α = 1) as u → 0+. Hence, we can easily bound the first
term in (A.39) by ∫ c(u)

0

e−xP (Y1 ≥ x/u) dx ≤ c(u),

that it is negligible as u→ 0+. We study the second term in (A.39), since x/u diverges
if x ≥ c(u), we can replace P(Yi ≥ x/u) by its asymptotic equivalent uα/xα

∫ ∞

c(u)

e−xP (Y1 ≥ x/u) dx ∼ uα
∫ ∞

c(u)

e−x

xα
dx as u→ 0+.
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When α < 1, we have that
∫∞
c(u)

e−x

xα
dx → Γ(1 − α) < ∞, that proves the statement

in this case. For α = 1, we use the following result, that may be found in [BO99]
(Section 6.2 Example 4)

∫ ∞

z

e−x

x
dx = −γ − ln z −

∑

m≥1

(−1)m
zm

m(m!)
, z → 0+, (A.40)

where γ stands for the Euler-Mascheroni constant. Taking z = c(u), we obtain that

∫ ∞

c(u)

e−x

x
dx = −γ − ln

(
u ln ln(u−1)

)
−
∑

m≥1

(−1)m
(
u ln ln(u−1)

)m

m(m!)

= − lnu+ o(lnu), as u→ 0+,

finishing the proof.
We now focus on the case p ≥ 2. We start with the following relation

Ip(u) =

∫ ∞

0

(
pxp−1e−ux − uxpe−ux

)
P(Yi ≥ x)dx

=

∫ c(u)

0

(
pu−pxp−1e−x − u−pxpe−x

)
P(Yi ≥ x/u)dx (A.41)

+

∫ ∞

c(u)

(
pu−pxp−1e−x − u−pxpe−x

)
P(Yi ≥ x/u)dx, (A.42)

where c(u) is a function depending on u to be chosen. As we did above, we will choose
c(u) such that it is negligible in comparison to uα−p, but x/u diverges if x ≥ c(u).

Suppose that α < 2 or α = 2 and p ≥ 3. Let β ∈]0, 1[ such that βp > α and choose
c(u) = uβ (it is trivial that such β does not exist if p = α = 2). We bound (A.41) by

∣∣∣∣
∫ c(u)

0

(
pu−pxp−1e−x − u−pxpe−x

)
P(Yi ≥ x/u)dx

∣∣∣∣

≤ up
∫ c(u)

0

pu−pxp−1 + u−pxpdx

= u(β+1)p +
u(β+1)p+1

p+ 1
,

that is negligible in comparison to uα−p as u → 0+. We now turn our attention to
(A.42), where x/u diverges as u→ 0+. We may replace P(Yi ≥ x/u) by its asymptotic
equivalent uα/xα, then as u→ 0+

∫ ∞

c(u)

(
pu−pxp−1e−x − u−pxpe−x

)
P(Yi ≥ x/u)dx

∼ uα−p
∫ ∞

c(u)

(
pxp−α−1e−x − xp−αe−x

)
dx

= uα−pαΓ(p− α)− uα−p
∫ c(u)

0

(
pxp−α−1e−x − xp−αe−x

)
dx. (A.43)
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Finally, the second term in the right-hand side of (A.43) is o(uα−p) as u → 0+,
concluding the proof in the cases α < 2 and α = 2, with p ≥ 2.

The case p = 2 and α = 2 is obtained as above, choosing c(u) = u ln ln(u−1) and
using the asymptotic development (A.40). We leave the details to the reader.

B Appendix: proof of Proposition 5.10.

In this appendix, we prove Proposition 5.10. Once more, the main idea of the proof
is roughly the same for every 0 < α ≤ 2, but some technical adaptations are required
in specific cases. For this reason we will present a detailed proof of the case α = 2
and only sketch the proofs of the other cases.

Let κN = (lnN)2/N be as in Lemma 5.9. By (5.26) and Lemma 5.9, we have that

E
[
ηb11 . . . ηbaa

]
=

1

Γ(b)

∫ κN

0

ub−1I0(u)N−aIb1(u) . . . Iba(u)du+ εN ,

where εN decreases to zero faster than any polynomial in N . Hence, it suffices to show
that

lim
N→∞

N2a

(lnN)a−g
·
∫ κN

0

ub−1I0(u)N−aIb1(u) . . . Iba(u)du =
2a
∏g

i=1 Γ(bi − 2)

E[Y1]2a
· Γ(2a).

(B.44)
Let ε > 0, since limN→∞ κN = 0 we apply Lemma 5.8 to conclude that there exists

a N0 such that for N larger than N0 and u ≤ κN

(1− ε)
(
2Γ(bi − 2)

)
≤ Ibi(u)

/
u2−bi ≤ (1 + ε)

(
2Γ(bi − 2)

)
, if bi ≥ 3;

2(1− ε) ≤ I2(u)
/

ln(u−1) ≤ 2(1 + ε), if bi = 2.

Since there are finitely many bi’s, we may take N0 such that the inequalities hold for
every i ∈ {1, 2, . . . , a}. As a consequence, for N > N0

∫ κN

0

ub−1I0(u)N−aIb1(u) . . . Iba(u)du

≥ (1− ε)a2a
g∏

i=1

Γ(bi − 2)

∫ κN

0

ub−b1−···−bg−1+2g
(
ln(u−1)

)a−g
I0(u)N−adu

= (1− ε)a2a
g∏

i=1

Γ(bi − 2)

∫ κN

0

u2a−1
(
ln(u−1)

)a−g
I0(u)N−adu, (B.45)

where we used b = b1 + · · ·+ ba = b1 + · · ·+ bg + 2(a− g) (a similar argument may be
used to obtain a similar upper bound). Applying Lemma 5.8 for I0, we get that

lim
u→0+

I0(u)− 1

−uE[Y1]
= 1.

Hence, there exists a N1 such that for N ≥ N1 and u ≤ κN (we assume that N1 ≥ N0)

(1− u(1 + ε)E[Y1])N−a ≤ I0(u)N−a ≤ (1− u(1− ε)E[Y1])N−a.
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Applying the above inequality in (B.45) to obtain a lower bound, and by the change
of variables v = u(1 + ε)E[Y1]N we get

(1−ε)a2a
g∏

i=1

Γ(bi − 2)

∫ κN

0

u2a−1
(
ln(u−1)

)a−g
I0(u)N−adu

≥ (1− ε)a
(1 + ε)2a

· 1

N2a
· 2a ·∏g

i=1 Γ(bi − 2)

E[Y1]2a

×
∫ γN

0

v2a−1

(
− ln

(
v

N(1 + ε)E[Y1]

))a−g (
1− v

N

)N−a
dv,

where γN = N(1 + ε)E[Y1]κN , then,

− ln
(
v/ (N(1 + ε)E[Y1])

)
= lnN

(
1 +

ln
(
(1 + ε)E[Y1]

)
− ln v

lnN

)
,

and for v ≤ (1 + ε)E[Y1](lnN)2 = γN
∣∣ ln ((1 + ε)E[Y1])− ln v

∣∣
lnN

→ 0, as N →∞. (B.46)

Moreover, (B.46) decays uniformly to zero for v ≤ γN . We bring to the reader’s
attention the choice of κN in Lemma 5.9, because it was chosen such that (B.46)
decays to zero uniformly. Then, there exists a N2 such that for N ≥ N2 (we assume
that N2 ≥ N1)

(1− ε) lnN ≤ − ln
(
v/ (N(1 + ε)E[Y1])

)
≤ (1 + ε) lnN, for every v ≤ γN .

Then, for N ≥ N2 we may further bound (B.45) and obtain
∫ κN

0

ub−1I0(u)N−aIb1(u) . . . Iba(u)du

≥ (1− ε)2a−g

(1 + ε)2a
· (lnN)a−g

N2a
· 2a

∏g
i=1 Γ(bi − 2)

E[Y1]2a
·
∫ γN

0

v2a−1
(

1− v

N

)N−a
dv.

(B.47)

Since v ≤ γN , both v/N and v2/N decay to zero as N →∞. We also have that

(
1− v

N

)N−a
= exp

(
−v +O

(
v2/N

))
, as N →∞.

As a consequence, the following limit holds

lim
N→∞

∫ γN

0

v2a−1
(

1− v

N

)N−a
dv = Γ(2a).

Since ε in (B.47) is arbitrary, we have that

lim inf
N→∞

E
[
ηb11 . . . ηbaa

]
· N2a

(lnN)a−g
≥ 2a

∏g
i=1 Γ(bi − 2)

E[Y1]2a
· Γ(2a).
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We obtain an upper bound for the lim sup using a similar argument with the obvious
changes, and we leave the details to the reader. Hence, the limit in (B.44) holds,
which proves the statement.

We now sketch the proof of Proposition 5.10 in the remaining cases (α < 2), and
we explain briefly how to overcome possible difficulties. The case 1 < α < 2 has
no further difficulties and we leave the details of the proof to the reader. In the case
α = 1 the relevant term to estimate is of the form:

Γ(b1 − 1) . . .Γ(ba − 1) ·
∫ κN

0

ub−1I0(u)N−au1−bi . . . u1−badu.

By Lemma 5.8, I0(u)N−a ∼= (1 + u lnu)N−a. Then, by the change of variables v =
uN lnN , we obtain an expression of the form:

∏
Γ(bi − 1)

(N lnN)a
·
∫ κN N lnN

0

va−1
(

1 +
v

N lnN
ln

v

N lnN

)N−a
dv.

Since v ≤ κN N lnN = (lnN)3, the equation inside of the parentheses has the follow-
ing asymptotic behaviour as N →∞

1 +
v

N lnN
ln
( v

N lnN

)
= 1− v

N
·
(

1 +
ln lnN − ln v

lnN

)

∼= 1− v

N
,

then we may proceed as in the case α = 2 to prove the statement. In the case α < 1,
we will arrive to an equation of the form

∏
αΓ(bi − α)

∫ κN

0

uaα−1I0(u)N−adu.

We then use the development of I0(u) in a neighbourhood of zero and the change of
variables v = uαΓ(1− α)N to obtain

∏
αΓ(bi − α)

αΓ(1− α)aNa

∫ καNΓ(1−α)N

0

va−1
(

1− v

N

)N−a
dv,

that finishes the proof.
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Math., 6:93–116, 1927.

[FT28] R. A. Fisher and L. H. C. Tippett. Limiting forms of the frequency
distribution of the largest or smallest member of a sample. Math. Proc.
Cambridge Philos. Soc., 24:180–190, 1928.

[GHS11] N. Gantert, Y. Hu, and Z. Shi. Asymptotics for the survival probability
in a killed branching random walk. Ann. Inst. H. Poincaré Probab.
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