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Résumé

Il est prévu que la génération distribuée par l'entremise d'énergie de sources renouvelables (DG) continuera à jouer un rôle clé dans le développement et l'exploitation des systèmes de puissance électrique durables, efficaces et fiables, en vertu de cette fournit une alternative pratique de décentralisation et diversification de la demande globale d'énergie, bénéficiant de sources d'énergie plus propres et plus sûrs. L'intégration de DG renouvelable dans les réseaux électriques existants pose des défis socio-technico-économiques, qu'ont attirés de la recherche et de progrès substantiels.

Dans ce contexte, la présente thèse a pour objet la conception et le développement d'un cadre de modélisation, simulation et optimisation pour l'intégration de DG renouvelable dans des réseaux de puissance électrique existants. Le problème spécifique à considérer est celui de la sélection de la technologie, la taille et l'emplacement de des unités de génération renouvelable d'énergie, sous des contraintes techniques, opérationnelles et économiques. Dans ce problème, les questions de recherche clés à aborder sont: (i) la représentation et le traitement des variables physiques incertains (comme la disponibilité de les diverses sources primaires d'énergie renouvelables, l'approvisionnements d'électricité en vrac, la demande de puissance et l'apparition de défaillances de composants) qui déterminent dynamiquement l'exploitation du réseau DG-intégré, (ii) la propagation de ces incertitudes sur la réponse opérationnelle du système et le suivi du risque associé et (iii) les efforts de calcul intensif résultant du problème complexe d'optimisation combinatoire associé à l'intégration de DG renouvelable.

Pour l'évaluation du système avec un plan d'intégration de DG renouvelable donné, un modèle de calcul de simulation Monte Carlo non-séquentielle et des flux de puissance optimale (MCS-OPF) a été conçu et mis en oeuvre, et qui émule l'exploitation du réseau DG-intégré. Réalisations aléatoires de scénarios opérationnels sont générés par échantillonnage à partir des différentes distributions des variables incertaines, et pour chaque scénario, la performance du système est évaluée en termes économiques et de la fiabilité de l'approvisionnement en électricité, représenté par le coût global 

Introduction

The present thesis describes the works done in the design and development of a modeling, simulation and optimization framework for the integration of renewable distributed generation (DG) into electric power networks. Specifically, the problem considered is that of technology selection, sizing and allocation of renewable DG units, taking into account uncertainty and risk.

This introductory chapter is organized as follows. Section 1.1 acquaints the reader with the research context, presenting the motivations for advancements in sustainable electric power systems and the role that renewable DG plays in the diversification and decentralization of power generation.

Section 1.2 discusses the potential benefits of DG and the major challenges involved in its integration into existing power networks. In Section 1.3, key research questions and ensuing objectives are formulated in the effort of contributing to shape frameworks for well-supported decision-making in optimal DG integration. Finally, a schematic representation of the overall structure of the thesis and general descriptions of the developed frameworks are provided in Section 1.4.

Electric power systems

The adverse environmental effects accompanying the intensive and prolonged use of fossil fuels are not anymore a midterm conjecture but an ongoing reality. Even though initiatives with considerable participation, like the Kyoto Protocol and the Copenhagen Accord, have set targets to limit carbon dioxide (CO 2 ) emissions in order to constrain the global temperature rise to less than 2 • C relative to the pre-industrial level between 2008-12, no overall mitigation has been achieved [1]. Indeed, greenhouse gas emissions from fuel combustion have been steadily increasing during the last decade, mainly by cause of the accelerated economic and population growths of industrialized countries, that do not face emission targets and, consequently, demand progressively larger amounts of energy from fossil fuels.

Given the above, the development of environmental sustainability has become a worldwide imperative for all sectors of highly compromised human activities such as industry, transport, residential and electricity and heat generation. In particular, the electric power generation sector is 1 Introduction considered an important point of concern, since it subscribes 42% of the global CO 2 emissions, by far being the largest contribution, as shown in Figure 1.1 [1].

Electricity & heat 42%
Industry 20%

Residential 6%

Transport 23%

Other 9% In the pursuit of sustainable energy systems, the heightening of regulatory targets and the engagement of leading-role countries to participate in international agreements certainly set a challenging framework for advancement, but these measures do not constitute solutions by themselves. Nevertheless, the awareness on the global environmental problem has triggered a revolution towards cleaner, safer and more reliable systems along all the energy value chain [10,[15][16][17].

Electric power systems are the 'spinal cord' of the energy value chain and they are facing a stimulating transition across all their three main components, generation, transmission and distribution, led by both technological development of new equipment and devices and enhanced actions in planning, operation and management strategies and driven by the opportunity of generating electrical power by making use of low-carbon and, in preference, renewable energy sources. This offers a great opportunity to overcome the growing energy demand, mitigating greenhouse emissions and alleviating the energy market instability associated to the depletion of fossil fuels [18].

The integration of renewable generation into power systems is implemented mainly in two ways, depending on the scale of the available primary energy sources: large-scale renewable generation is predominantly connected upstream sub-transmission and distribution networks, acting as a conventional bulk-power plant, while small-scale renewable generation units are allocated close or directly on the 'customers site of the meter', which is known as distributed generation (DG) [19][20][21].

Both plan of actions offer the advantage of generating clean electric power, but it is particularly DG that is playing a crucial role because it provides the possibility of concurrently diversifying and decentralizing the overall power generation.

The connection of diverse renewable DG units onto sub-transmission and distribution networks implies conceptual and operational transformations which are explained in the next section.
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Transmission & distribution of electric power

Transmission and distribution (T&D) of electric power has been traditionally a passive 'fit-andforget' strategy, characterized by unidirectional power flows supplied by centralized generation systems [16,19,22,23]. Moreover, the restrictive structure of conventional T&D settings makes it difficult to supply power to remote areas, due to the extra T&D expenses associated and the risk of compromising a large portion of power supply due to the occurrence of outages upstream sub-transmission and distribution networks [24,25]. be noticed that any contingency upstream point A may produce a large loss of power supply, in this example, affecting mainly the industrial customers given the radial topology of that portion of the network. For residential customers, the impact of an outage level at points A or B can be deaden by closing the switch at point C, which provides a meshed character to that portion of the network and, therefore, some level of redundancy. Notwithstanding mesh-structured T&D networks are more flexible in terms of reliability of power supply, their operation is more expensive and complicated since infrastructure and operation and maintenance costs (O&M) of T&D lines increase, more control and protection devices are needed with the respective synchronization in their operation [9,26,27].

Diversification and decentralization of electrical power generation

On a large scale, hydro-power technology is the major contributor to carbon-free generation, representing the 2.4% of the global total primary energy supply (TPES) in 2012 [28]. Over decades, it has played an important environmental role but current expansions of hydro-power capacity are negligible with respect to other pollutant technologies like oil, coal, gas, bio-fuels and waste, which state the 31.4, 29.0, 21.3, 10.0% of the TPES in 2012 [28], respectively, and account for the 99% of the global CO 2 emissions [1]. Indeed, global hydro-power additions decreased in 2013 [29], indicating a loss of priority in mitigating CO 2 emissions by use of this technology. Moreover, large scale hydro-power plants operate under the conventional passive logic, then, no further decentralization can be achieved from them. It is the rapid expansion of non-hydro renewable capacity, that in 2014 rose globally by approx. 7% (350 (TW h)) [29], that is making a difference. With the integration of renewable DG technologies, such as small-scale hydro, solar photovoltaic, on and off-shore wind and storage devices, electric power systems are evolving towards an active operational strategy, with possibly bidirectional power flows and, thus, more reliable, decentralized and diversified sources [16,19], B is smoothed by the deployment of different renewable DG units throughout the T&D network.

Finally, renewable DG technologies make use of local/regional renewable energy sources, which boosts them in view of the requested environmental sustainability, while engaging the participation of households, small businesses and specialized power companies and offering interesting technoeconomical benefits.

Renewable distributed generation

In the literature, DG is commonly defined as modular (independent) generation units located at or in the neighborhood of power demand spots, connected to sub-transmission and/or distribution networks rather than high voltage transmission [19-21, 27, 30]. The modular characteristic refers to their smaller scale power capacity, generally in the range of generation 1 (kW)-5 (MW) [25]. It is important to mention that some DG applications can reach a considerable power capacity, between 50 and 300 (MW); however, there is disagreement among authors about at what extent these can be considered as DG.

The technological spectrum of DG is formed by two main groups: carbon-free and low-carbon 'efficient' generation devices. The first group includes small hydro and tidal turbines, solar photovoltaic panels, wind turbines, geothermal steam-turbines, etc., whereas the second one adds biomass, waste and combined heat and power (CHP) devices and installations, based on reciprocating engines and combustion gas turbines [19]. Moreover, storage devices and electric vehicles are also feasible technologies accompanying DG integration, to increase the overall efficiency of activated electric power networks [6,19,31,32].

Without loss of generality, in the present thesis work the focus of attention is oriented to carbonfree DG given their superior contribution to environmental sustainability. Below, the potential technical and economical benefits on one side and the possible operational complications on the other are discussed.

Potential benefits and challenges

Under the assumption that DG power is 'dispatchable', i.e., DG units are able to provide and sell energy in parallel to or as competitors of the centralized bulk-power supply to satisfy the system demand, and given the fact that by integrating DG into an existing network the power flows through shorter and possibly bidirectional paths, the main technical benefits that can be achieved are [3,4,9,10,16,17,19,22,[33][34][35][36][37][38][39][40][41][42][43][44]:

• Improvement of reliability of power supply.
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• Reduction of power losses.

• Voltage stability.

• Enhancement of power quality.

• Alleviation of T&D lines congestion.

• Power supply autonomy of rural/isolated areas.

The most representative economical benefits expected from the integration of renewable DG are the following [4, 10, 16, 17, 19, 23, 34, 35, 38-41, 43, 45, 46]:

• Deferral of investments for conventional power plants and T&D upgrades.

• Reduction of T&D O&M costs.

• Decrement of generation costs and energy price.

• Reduction of fossil fuel costs.

• Diminution of price volatility associated to fossil fuels.

• Reduction of investment risks.

However, planners and operators have to face complex economic, regulatory, technical and operational constraints, within which the dynamics introduced by renewable DG may generate complications that can counteract the potential benefits [25,26,35]. Indeed, the traditional passive power systems structures are designed to operate with unidirectional power flows, and in order to incorporate renewable DG, the need for more protection and control devices may be significant.

Reactive power may also result compromised since many renewable DG technologies supply only active power, affecting also the voltage stability and the introduction of harmonics [19].

The above-mentioned challenges have prompted substantial research and development. In particular, DG planning has been a fundamental baseline of advancement to properly seize its potential advantages. The specific problem associated to DG planning consists in selecting the technology, size and location of renewable generation units while respecting the techno-economical, regional and regulatory constraints imposed by the existing system.

One of the main difficulties associated to DG planning is the proper modeling of the intrinsic uncertain behavior of primary renewable energy sources (e.g. solar irradiance, wind speed and water inflow, in the case of solar photovoltaic, wind turbines and hydro-power technologies, respectively) and of the stochastic occurrence of unexpected events on the DG units, such as failures and stoppages, that may interrupt or curtail the power generation capacity. Indeed, these sources of uncertainty come on top of those already present in the operating power systems, outage events due to failures (or stoppages) of T&D lines and/or conventional power generators, variability and growth of power demand, volatility in the energy price and fluctuations in the bulk-power supply, among others. As 1 Introduction
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a consequence, for any proposed DG-integrated network plan, the uncertain operational conditions need to be considered in the system response as calculated by solving power flow equations under a number of representative scenarios [19,42,43,47].

The decision making for DG-integrated network planning is usually framed as an optimization problem, which can be especially complex depending on the size and topology of the network, the number of load nodes, number of available DG technologies and the aforementioned uncertainty and the non-linear conditions arising from technical constraints [16,20,42]. Optimality of the renewable DG plan is customarily sought with regards to cost-based, operational or technical targets. Among cost-based objectives are the costs of energy and fuel for generation, investments, O&M, energy purchased from conventional power plants, energy losses, CO 2 emissions, taxes, incentives, incomes, etc. [3,4,7,9,10,15,16,19,22,38,[48][49][50][51][52][53][54][55][56][57]. Operational objective functions consider the performance and reliability of power supply in terms of indicators like the expected energy not supplied (EENS) [37,58], contingency load loss index (CLLI) [9], expected value of non-distributed energy cost (ECOST) , system average interruption frequency index (SAIFI), system average interruption duration index (SAIDI) [16,22,50], among others. Concerning technical targets, the most commonly used indexes are the total voltage deviation (TVD) [51] and energy losses [10,44]. Obviously, the optimal solutions must also comply with the system technical constraints like generation capacities, T&D lines rating and voltage drops [19,25].

In the search for optimal DG-integrated network configurations under uncertainty, the use of only expected or cumulative indicators as objective function(s) hinders the possibility of controlling the risk associated to the optimal solution(s): the expected performance of an optimal DG-integrated network may be satisfactory but be exposed to high variability or to risky scenarios with nonnegligible probabilities.

One way to account for uncertainty and risk is to frame DG planning as a portfolio optimization problem, in which the different types of DG technologies are treated analogously to financial assets [42,46,[59][60][61][62][63][64][65].

In portfolio optimization theory, the mean-variance approach is the most common [66] and has been applied to DG planning also [42,46,59,62,65,[START_REF] Nazir | Risk-sensitive investment in renewable distributed generation under uncertainty due to post-feed-in tariff policy[END_REF]. However, from a risk-perspective it entails a drawback that cannot be ignored: the variance measure includes the values of performance that symmetrically fall short of or exceed the expected or mean value; in the search for optimal DG technologies portfolios, lower levels of uncertainty (variance) in the performance function can be obtained with portfolios that lead to rarer occurrences of both beneficial and/or non-desired (risky) scenarios. Then, for controlling the risk side, it is necessary to introduce additional indicators that provide information on the extent of asymmetry of the performance function, weighting accordingly the risky part of it, e.g., by skewness and kurtosis indicators that estimate the asymmetry and peakedness of a probabilistic performance function, respectively [START_REF] Francis | Modern Portfolio Theory: Foundations, Analysis, and New Developments[END_REF].
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Likewise derived from portfolio optimization theory, direct risk-based frameworks have been formulated and applied to address DG planning problems under uncertain conditions. The most widely used risk measures are the value-at-risk (VaR) and conditional value-at-risk (CVaR) [61,63,64,[START_REF] Zhang | Robust optimal power flow with wind integration using conditional value-at-risk[END_REF][START_REF] Martin | A stochastic two settlement equilibrium model for electricity markets with wind generation[END_REF][START_REF] Ghosh | Integration of demand response and renewable resources for power generation management[END_REF][START_REF] Moghaddam | Risk-averse profit-based optimal operation strategy of a combined wind farm-cascade hydro system in an electricity market[END_REF][START_REF] Tajeddini | Risk averse optimal operation of a virtual power plant using two stage stochastic programming[END_REF], which focus on non-desirable performance outcomes given by a portfolio relative to a specific confidence level or percentile.

Even though integrated portfolio optimization approaches, for instance mean-variance-skewness or mean-variance-CVaR, present robustness advantages by conjointly controlling the level of uncertainty and risk associated to the expected value of performance of different portfolios, they can considerably increase the complexity of the concurrent optimization problem. Considering the expected or mean value and the necessary deviation and risk measures as representative objectives of a portfolio increases significantly the number of objective functions to be simultaneously optimized, further constraining the feasible space and, eventually, hindering the understanding of the information delivered to the decision-makers.

Moreover, optimization problems associated to DG planning are, in general, non-linear, nonconvex and combinatorial in nature. Non-linearity can be given by the power flow equality constraints and/or objectives functions involving power losses. The non-convex and combinatorial characteristics are mainly due to the decision variables representing discrete (integer) locations, number of units and type of technology of DG. Non-convex mixed-integer non-linear problems (MINLP) are difficult to solve by conventional mathematical models, with multiple local optima and at least non-deterministic polynomial-time hard (NP-hard) computational complexity [7,20]. This calls for alternative methods of solutions, like heuristic optimization techniques (HO) belonging to the class of evolutionary algorithms (EAs), which have been proposed as a most effective way of solution. These methods are suited to cope straightforwardly with non-convex combinatorial problems, discontinuous feasible spaces, non-linear and non-differentiable objective functions [20,42].

Research objectives and original contributions

The objectives of the present thesis focus on the design and development of a modeling, simulation and optimization framework for the integration of renewable DG into electric power networks.

Specifically, the problem considered is the selection of the technology, size and location of multiple DG units, under technical, operational and economic constraints. The following key research questions are addressed:

(i) Representation and treatment of the uncertain operational inputs, like the availability of diverse primary renewable energy sources, bulk-power supply, power demands and occurrence of components failures.

1 Introduction
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(ii) Propagation of uncertainties onto the model of system operational response and control of the associated risk.

(iii) Computational efforts resulting from the combinatorial optimization problem associated to renewable DG integration.

In answer to the key research questions formulated, the main original contributions of this thesis work are: 

System representation

Components classification

The starting point for modeling a DG-integrated network is the definition of the type of components involved. For example in Figure 2.1 which illustrates the IEEE 30 bus sub-transmission and distribution test system, three main classes of components can be identified: power generators, T&D lines and loads.

The power generator class G considers the subclasses containing all the different types of conventional bulk power suppliers and renewable technologies to be integrated, denoted by M G and RG, respectively. In this study, four different types of DG technologies are considered: solar photovoltaics, wind turbines, electric vehicles and storage devices. The nomenclature denoting the classes, subclasses and types of components is summarized as follows:

• G: Class of power generation components, G = M G ∪ RG.
◃ M G: Subclass of bulk-power generation components.

◃ RG: Subclass of renewable DG components, RG = P V ∪ W ∪ EV ∪ S T . P V : Solar photovoltaics.

W : Wind turbines.

EV : Electrical vehicles.

2 Renewable DG-integrated electric power network modeling S T : Storage devices.

• T D: Transmission and distribution lines components.

• L: Power demand components. 

Network topology

The network topology is described as a graph, i.e., a set of nodes and the various connections that link them. The nodes represent spatial points at which generation components (M G and RG) and loads are located or can be allocated, whereas the connections between nodes are the transmission and distribution lines. A single node and the set of all nodes are indicated by the index i and N = {i : i ∈ {1, 2, . . . , n}}, respectively, where n -total number of nodes in the network.

Consequently, the links connecting nodes define the set of transmission and distribution lines as follows:

Y = {(i, i') : nodes i and i' are connected, ∀i, i' ∈ N } (2.1)
Assuming stationary operational conditions, the network performance is considered to be dictated by the locations and magnitudes of the power available in each generation unit, the loads and the technical limits of the T&D lines. To indicate the location and capacity size of the different types of generation units present in the network, the matrix Q, ∀i ∈ N is defined by the following expression: 

            q 1,1 • • • q 1, j • • • q 1,m q 1,1+m • • • q 1, j+m • • • q 1,
Q = q i,1 • • • q i, j • • • q i,m q i,1+m • • • q i, j+m
q n,1 • • • q n, j • • • q n,m q n,1+m • • • q n, j+m • • • q n,r+m (2.2) Q M Q R G 1 • • • G j • • • G m G 1+m • • • G j+m • • • G r+m m types of bulk-power suppliers M G r types of renewable technologies RG (m + r) types of power generators G
where, Q M , Q R -matrices of location and capacity size of bulk-power suppliers (M G) and renewable power generators (RG), respectively, j -power generator type index, m -total number of types of bulk-power suppliers, r -total number of types of renewable technologies and [Q] i, j = q i, jnon-negative integer that specifies the number of units of the power generator type j allocated at node i:

q i, j =    q' ∈ * if q' units of G j are allocated at node i, ∀G j ∈ {G 1 , . . . , G m+r } 0 otherwise (2.3)
Then, a proposed plan of DG integration is represented by the matrix Q R and its concatenation to the fixed locations and sizes of the bulk-power generators, already present in the existing network,

Q M results in the complete static deployment of all power generator components Q = [Q M |Q R ].
Therefore, the complete representation of a DG integrated is given by the pair ([Q], {Y }). Any physical component, G or T D, is assumed to be affected by the stochastic occurrence of failures, conditioning dynamically the functionality of power generators and the lines through which the power flows. Furthermore, the magnitude of power available in each generation unit is subject to the intrinsic uncertain behavior of the corresponding primary energy source and, under the assumption that generators act as price-takers, the economic conditions depend on the variability of the power demands [4,52].

The aforementioned uncertain conditions significantly affect the operation of a given DGintegrated network, therefore, modeling the diverse sources of variability becomes essential to 2 Renewable DG-integrated electric power network modeling emulate the operational response of the system for a large representative combination of possible scenarios and, ultimately, be able to assess its probabilistic performance relative to preset target functions.

Uncertain operational inputs

In principle, analytical methods are preferable to Monte Carlo simulation (MCS) because of the possibility of achieving accurate solutions; however, their application usually requires simplifications in the modeling which may lead to unrealistic results. An example of this are analytical solutions for optimal DG planning that do not take into account uncertainty or intermittency in power generation and/or load profiles, and networks of low dimensionality [START_REF] Tan | Optimal distributed renewable generation planning: A review of different approaches[END_REF]. On the other hand, MCS allows a more realistic modeling, because the operation of the network is not analytically solved but simulated, and the overall performance indicators are statistically estimated from virtual operational scenarios realizations [START_REF] Zio | The Monte Carlo Simulation Method for System Reliability and Risk Analysis[END_REF]. MCS has been found quite suitable for the analysis of electric power networks with multiple sources of uncertainty, e.g., power generation, loads, component failures or degradation processes, etc. [37,42,43,62,63,[START_REF] Zhao | Flexible transmission network planning considering distributed generation impacts[END_REF], but at the expense of requiring more computational resources.

In the present thesis work, we adopt a non-sequential MCS, based on latin hypercube sampling (LHS) [START_REF] Kroese | Handbook of Monte Carlo Methods[END_REF], to emulate the operation of the DG-integrated network, considering the realizations of uncertain operational variables as independent on previous realizations, so as to seize the advantages of MCS without overly increasing the computational efforts.

Power demands and energy price

Overall power demand profile in an electric power network, as well as single nodal load profiles, can be inferred from historical data as daily load curves, in which to each hour of the day corresponds one specific level of load [10,52]. In addition, power demands can be considered uncertain following normal distributions [42,[START_REF] Zhao | Flexible transmission network planning considering distributed generation impacts[END_REF]. Here, both models are integrated, adopting normally distributed nodal load profiles for which their respective mean and standard deviation parameters vary depending on the hour of the day t ∈ D = {1, . . . , 24}, as shown in Figure 2.2. Then, the power demand at node i is modeled as:

f i,t (L i,t |µ i,t , σ i,t ) =    φ(ξ(L i,t , µ i,t , σ i,t )) σ i,t Z(µ i,t , σ i,t ) ∀L i,t , µ i,t , σ i,t ≥ 0 0 otherwise (2.4) ξ(L i,t , µ i,t , σ i,t ) = L i,t -µ i,t σ i,t ; Z(µ i,t , σ i,t ) = 1 -Φ µ i,t σ i,t
(2.4a) 

E P t (L i,t |E P ma x , L ma x i ) = E P max i∈N L i,t L max i -0.38 i∈N L i,t L max i + 1.38 (2.5)
where, E P t ($/MWh)-energy price at hour of the day t, E P max ($/MWh)-maximum value of energy price and L ma x i MW-maximum value of power load at node i.

Bulk-power supply

Bulk-power stands for the power supply coming from conventional power plants (M G) already existing in the network. These are rather stable and are connected to the network at sub-transmission or distribution transformers to provide the voltage level of the customers. The stochastic behavior of the available power in these sources is represented following normal distributions [20,[START_REF] Thornton | Distributed power generation in the United States[END_REF], with small standard deviation and truncated by the maximum capacity of generation.

f j (P j |µ j , σ j , P ma x j ) =    φ(ξ(P j , µ j , σ j )) σ j Z(µ j , σ j ) ∀P j ∈ [0, P max j ], µ j , σ j ≥ 0 0 otherwise (2.6) ξ(P j , µ j , σ j ) = P j -µ j σ j ; Z(µ j , σ j ) = Φ( P max j -µ j σ j ) -Φ( µ j σ j ) (2.6a)
where ∀ j ∈ { j : G j ∈ M G}, f j (P j |µ j , σ j , P max j )-truncated Normal pdf, P j , P max j (MW) -available bulk power and maximum capacity of the M G generator type j, respectively, µ j , σ j (MW) -Normal distribution mean and standard deviation.

Solar photovoltaic generation

PV technologies (PV) converts solar irradiance into electric power through a set of solar cells configured. Commonly, solar irradiance uncertain behavior has been modeled using probabilistic distributions, obtained from long term weather historical data of a particular geographical area.

The Beta distribution function has been found particularly suitable to model hourly solar irradiance [10,[START_REF] Li | Uncertainty analysis of the adequacy assessment model of a distributed generation system[END_REF]. The intermittency in the solar irradiation is taken into account defining a daylight interval between 07.00 and 21.00 hours, setting a positive value of solar irradiation H if the value t of the hour of the day is in the subset of D L = {7, . . . , 21} of D, otherwise, the value of solar irradiance is assumed equal to 0 given that t is in the night interval. Thus, the Beta distribution function is adjusted considering the probability p L = P(t|t ∈ D L ) that t falls in the daylight interval:

f i (H i |α i , β i , p L , H * i ) =    H (α i -1) i (1 -H i ) (β i -1) (1 -p L )B(α i , β i ) ∀H i ∈ [H * i , 1], α i , β i > 0 0 otherwise (2.7) B(α i , β i ) = Γ (α i )Γ (β i ) Γ (α i + β i ) (2.7a) where f i (H i |α i , β i , p L , H * i )
-adjusted Beta probability density function, H i -solar irradiance at node i, α i , β i -shape parameters of the corresponding Beta distribution at node i, H * i -p L percentile of the non-adjusted Beta pdf f i (H i |α i , β i ) and Γ -Gamma function.
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Besides the dependence on solar irradiance, the available power output is determined by the technical characteristics of the PV cells and the ambient temperature on site. Then, the available power output provided by n c solar cells can be obtained from the following equations:

P i, j (H i ) =    P' i, j (H i ) if 0 ≤ P' i, j (H i ) ≤ P max j P max j if P max j < P' i, j (H i ) (2.8) P' i, j (H i ) = n c F F j V (H i )I(H i ) × 10 -6 (2.8a) T C (H i ) = T A i + H i (T N o j + 20)/0.8 (2.8b) I(T C ) = H i (I SC j + k I j (T C -25)) (2.8c) V (T C ) = V OC j + k V j T C (2.8d) F F j = V M P P j I M P P j V OC j I SC j (2.8e)
where ∀ j ∈ { j : G j ∈ P V }, P i, j (MW) -power output at node i, P max j (MW) -maximum power generation capacity, F F j -fill factor,

T A i ( • C) -ambient temperature at node i, T N o j ( • C) -nominal cell operation temperature, I SC j (A) -short circuit current, k I j (mA/ • C) -current temperature coefficient, V OC j (V) -open circuit voltage, k V j (mV/ • C) -voltage temperature coefficient, and
V M P P j (V), I M P P j (A) -voltage and current at maximum power, respectively.

Wind turbines generation

Wind power generation (W) is obtained from turbine-alternator devices that transform the kinetic energy of the wind into electric power. The stochastic behavior of the wind speed is commonly represented through probability distribution functions. The Weibull distribution has been widely used to model the randomness of the wind speed in various conditions [10,20,34,[START_REF] Tajeddini | Risk averse optimal operation of a virtual power plant using two stage stochastic programming[END_REF][START_REF] Li | Uncertainty analysis of the adequacy assessment model of a distributed generation system[END_REF][START_REF] Chang | Optimal power flow of a wind-thermal generation system[END_REF]:

f i (U i |α * i , β * i ) =      β * i α * i U i α * i (β * i -1)
exp -

U i α * i β * i ∀U i ≥ 0, α * i , β * i > 0 0 otherwise (2.9)
where, f i (U i |α * i , β * i ) -Weibull probability density funtion, U i (m/s) -wind speed at node i and α * i , β * i -scale and shape parameters of the Weibull distribution function at node i, respectively.
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2 Renewable DG-integrated electric power network modeling Similarly to PV type of technologies, the uncertainty associated to the wind speed and the technical features of a specific type of wind turbine characterize its power output function:

P i, j (U i ) =          U i -U C I j U A j -U C I j P R j if U C I j ≤ U i < U A j P R j if U A j ≤ U i ≤ U CO j 0 otherwise (2.10)
where ∀ j ∈ { j : G j ∈ W }, P R j (MW) -rated power and U C I j , U A j , U CO j (m/s) -cut-in, average and cut-out wind speeds, respectively.

Electrical vehicles

In this study, electric vehicles (EVs) are considered as battery electric vehicles with three possible operating states ρ: (-1) charging, (0) disconnected and (1) discharging [32]. When in charging state, an EV act as a power demand, whereas in discharging it injects power into the network.

EVs operation is modeled considering them as 'block groups', i.e., EVs sharing similar operational patterns are aggregated into a single block. In fact, it has been observed that EVs present nearly stable daily usage schedules, in addition, modeling them as 'block groups' contributes to the need of avoiding the combinatorial explosion of the model [5].

The power output of one block of EVs is formulated by assigning residence time intervals t ρ to each possible operating state and associating them with the percentage of trips that the vehicles perform by hour of a day [32]. This allows approximating the hourly probability distribution of the operating states per day, as shown Figure 2.4. Then, the random determination of the operating state ρ j,t of a block of EVs of type j, given a specific hour of the day t, is sampled from the corresponding probability f j,t (ρ j,t ) associated to the occurrence of each state. 

f j,t (ρ j,t |p - j,t , p 0 j,t , p + j,t ) =        p - j,t if ρ j,t = -1 p 0 j,t if ρ j,t = 0 p + j,t if ρ j,t = 1 (2.11)
where ∀ j ∈ { j : G j ∈ EV }, p - j,t , p 0 j,t , p + j,t -hourly per day probability distribution of a block of EVs type j for the respective operating states, ρ j,t = -1 (charging), ρ j,t = 0 (disconnected), ρ j,t = 1 (discharging).

Accordingly, the power output for a single EV is calculated using the expression (2.12) below:

P j,t (ρ j,t ) = ρ j,t P R j ∀∆t ∈ [0, t ρ ]
(2.12)

where ∀ j ∈ { j : G j ∈ EV }, t ρ -residence time interval for operating state ρ (h), P R j (MW) -rated power (MW).

Storage devices

Analogously to the EV case, storage devices (ST) are treated as batteries. In reality, these present two main operating states, charging and discharging [START_REF] Díaz-González | A review of energy storage technologies for wind power applications[END_REF]. However, in accordance to the non-sequential characteristic assumed for the MCS model, for this study the level of charge in the batteries is randomized and the state of discharging is the only one that takes place, making them independent on previous states of charge. The discharging time interval t J j is assigned according to the relation between the batteries rated power of type j, their energy density J S j and the random level of charge J they present. For this, the discharging action is carried out at a rate equal to the rated power. Then, the power output per unit of mass of active chemical in the battery M T j is estimated as follows:

f j (J|, J S j , M T j ) =    1 J S j M T j ∀J ∈ 0, J S j M T j 0 otherwise (2.13) P j (J) = P R j ∀∆t ∈ [0, t J j ]
(2.14)

t J = J P R j (2.14a)
where ∀ j ∈ { j : G j ∈ S T }, f j (J|, J S j , M T j ) -Uniform probability density function, J (MJ) -level of charge in the storage device, J S j (MJ/kg) -specific energy of the active chemical, M T j (kg) -mass of active chemical, P R j (MW) -rated power, t J j (h) -upper bound of discharging time interval.

Components availability state

Consistently with the non-sequential nature of the proposed MCS simulation, the availability states of the physical components in the network, generators (G) and T&D lines (T D), are direclty modeled by two-state stationary Markov chains [5,37], defining two possible operating states: η = 0 if the corresponding component is non functional (failure) and η = 1 if the component is available to operate, i.e., be able to generate, transmit or distribute power accordingly to the class of component.

Then, the discrete stationary distribution of operating states can be expressed as follows:

f k (η k |λ F k , λ R k ) =    λ F k /(λ F k + λ R k ) η k = 0 λ R k /(λ F k + λ R k ) η k = 1 (2.15)
where ∀k ∈ {{k :

G k ∈ G} ∪ {k/k = (i, i') ∈ Y }}, η k -operating state of component k and λ F k (n/h)
and λ R k (n/h) -failure and repair rates, respectively.

Stochastic operation modeling 2.3.1 Non-sequential Monte Carlo simulation

For a given DG-integrated network plan, denoted by the pair

([Q], {Y }), recalling that Q = [Q M |Q R ],
and that represents the locations and number of units of the different power generators and the T&D lines, each uncertain variable is randomly sampled several times by LHS [START_REF] Kroese | Handbook of Monte Carlo Methods[END_REF] and the inverse transform method [START_REF] Zio | The Monte Carlo Simulation Method for System Reliability and Risk Analysis[END_REF], for the realization of N S operational scenarios of duration t ∆ . For practicality, we define N S as multiple of 24, so each hour of the day t has the same number of realizations N S/24. The set ω contains all the sampled variables which constitute an operational scenario which, conjointly to the pair ([Q], {Y }), set the stage for evaluating the response of the network in terms of available power usage, power demand satisfaction and the involved economics. Ω is defined as the set of all the N S realizations of ω, the respective notation is given by Equations (2.16) and (2.16).

Figure 2.5 shows schematically the sampling process of the uncertain variables from the models presented in the preeciding section. 

ω s = t s , L i,
{L i,t s = F -1 i,t s (u(0, 1) i |µ i,t s , σ i,t s )} ∀i∈N {η (i,i'),s = F -1 (i,i') (u(0, 1) (i,i') |λ F (i,i') , λ R (i,i') } ∀(i,i')∈Y {η i, j,s = F -1 j (u(0, 1) i, j |λ F j , λ R j } ∀[Q] i, j ̸ =0 {P i, j,s = F -1 j (u(0, 1) i, j |µ j , σ j , P ma x j )} ∀[Q] i, j ,η i, j,s ̸ =0,G j ∈M G {H i,s = F -1 i (u(0, 1) i |α i , β i , p L , H * i )} ∀[Q] i, j ,η i, j,s ̸ =0,G j ∈P V {U i,s = F -1 i (u(0, 1) i |α * i , β * i )} ∀[Q] i, j ,η i, j,s ̸ =0,G j ∈W {ρ j,t s = F -1 j,t s (u(0, 1) i, j |p - j,t s , p 0 j,t s , p + j,t s )} ∀[Q] i, j ,η i, j,s ̸ =0, j∈EV {J i, j,s = F -1 j (u(0, 1) i, j |, J S j , M T j )} ∀[Q] i, j ,η i, j,s ̸ =0,G j ∈ST (2.
{P i, j,s } ∀[Q] i, j ̸ =0,G j ∈G

Optimal power flow

Power flow analysis is performed by the DC approximation [START_REF] Purchala | Usefulness of DC power flow for active power flow analysis[END_REF] which takes into account only the active power, neglecting power losses, and assumes a flat voltage profile throughout the network.

This allows transforming to linear the classic non-linear power flow equality constraints, gaining simplicity and computational tractability. DC power flow is often used in techno-economic analysis of electric power systems, more frequently in transmission [START_REF] Purchala | Usefulness of DC power flow for active power flow analysis[END_REF][START_REF] Van Hertem | Usefulness of DC power flow for active power flow analysis with flow controlling devices[END_REF] but also in distribution networks [START_REF] Van Hertem | Usefulness of DC power flow for active power flow analysis with flow controlling devices[END_REF].

The generic DC power flow equations are:

P i = S r e f i'∈N B (i,i') (δ i -δ i' ) ∀i ∈ N , (i, i') ∈ Y (2.18) i∈N P G i -L i -P i = 0 ∀i ∈ N (2.19)
where, S r e f (MV A) -reference apparent power in the network, P i (MW) -active power leaving or entering node i, B (i,i') (p.u.) -susceptance of the T&D line (i, i'), δ i -voltage angle at node i, P G i (MW) -active power injected or generated at node i and L i (MW) -load at node i.

The assumptions are:

• the difference between voltage angles is small, i.e., sin(∆δ) ≈ ∆δ, cos(∆δ) ≈ 1.

• the resistance of the T&D lines are neglected, i.e., R ≪ X , thus, that power losses are neglected as well.

• the voltage profile is flat, constant V , set to 1 (p.u.)

DC-OPF formulation

DC optimal power flow analysis (OPF) is run, taking in input the configuration ([Q], {Y }) and each operating scenario ω s ∈ Ω and aiming at the minimization of the aggregated operating cost CO.

The quantity CO has been defined in two different manners: (i) G CO considers solely the operating costs concerning generation of power, (ii) GT D CO accounts for the aggregation of the operating costs of generation, transmission and distribution and load shedding, including revenues per MW h sold. The present formulation of the power flow problem is:

MCS-OPF([Q], {Y } , ω s ): min P U s ,∆δ s ,LS s CO ω s (2.20) (i) G CO ω s = t ∆ i∈N G j ∈G COv j P U i, j,s (2.20i) (ii) GTD CO ω s = i∈N G j ∈G (COv j -E P t s )P U i, j,s + (C LS + E P t s ) i∈N LS i,s + S r e f (i,i')∈Y COv (i,i') |B (i,i') (δ i,s -δ i',s )| (2.20ii) s. t. L i,t s - G j ∈G P U i, j,s -S r e f i'∈N η (i,i'),s B (i,i') (δ i,s -δ i',s ) -LS i,s = 0 (2.21) 0 ≤ P U i, j,s ≤ η i, j,s [Q] i, j P i, j,s (2.22) S r e f |B (i,i') (δ i,s -δ i',s )| ≤ P max (i,i') (2.23) 
where ∀t ∈ D, s ∈ {1, 2, . . . , N S}, G CO ω s ($) -aggregated operating cost of generation, GTD CO ω s ($) -aggregated operating cost of generation, transmission and distribution, and load shedding, COv j ($/MWh) -variable operating cost of the power generator j, E P t s ($/MWh) -energy price at hour t, P U i, j,s (MW) -used power from the generator type j located at node i, COv (i,i') ($/MWh) -variable operating cost of the T&D line (i, i'), C LS ($/MWh) -load shedding cost and P max (i,i') (MW) -power rating of the T&D line (i, i'). The load shedding LS i,s (MW) at node i is defined as the amount of load disconnected to alleviate congestion in the T&D lines and/ or balance the demand of power with the available power supply.

The meaning of each constraint is:

• (2.21): power balance at node i.

• (2.22): bounds of the power generation units.

• (2.23): technical limits of the T&D lines (power rating).

The OPF problem is solved for each operational scenario ω s , giving in output the corresponding values of minimum CO ω s . The set CO Ω = {CO ω 1 , CO ω 2 , . . . , CO ω N S } is, then, considered as a sample of realizations of the probability density function of CO.

Performance evaluation

The proposed renewable DG-integrated network solutions Q = [Q M |Q R ] are evaluated with respect to performance indicators regarding economics and reliability of power supply. Specifically, the expected values of performance and the associated uncertainty-risk measures are considered as targets.

Global cost

The economic performance of the network, given a DG integration plan, is evaluated with respect to a global cost function (C G). The quantity C G is composed by two terms: the outcome operating cost of the MCS-OPF described in the previous section, CO Ω , and the fixed investment and operating cost, C I j + CO f j , associated to the renewable part of the proposed DG plan Q R , i.e., ∀ j ∈ { j : G j ∈ RG}.

The fixed investment and operating cost C I j + CO f j ($) is prorated hourly over the lifetime of the project t H . Thus, the global cost function for the set of operational scenarios Ω is given by the following equations differentiated according the two distinct definitions of CO Ω (Equations (2.20i) and (2.20ii)):

(i) G C G Ω = G CO Ω + t ∆ t H i∈N G j ∈RG C I j + CO f j [Q R ] i, j -t ∆ (inc + E P Ω )P Ω U i, j (2.24i) (ii) GTD C G Ω = GTD CO Ω + 1 t H i∈N G j ∈RG C I j + CO f j [Q R ] i, j (2.24ii)
where, E P Ω -sample of N S realizations of E P t s , inc ($/MWh) -incentive for power generation from DG sources and P Ω U i, j

-sample of N S realizations of P U i, j,s .

Analogously to CO Ω definition, C G Ω represents a sample of realizations of the probability density function of C G and performance indicators of interest can be obtained, relative to expected performance, uncertainty and risk.

Energy not supplied

The energy not supplied (ENS) is a common index for reliability of power supply evaluation [3,10,20,34,45,[START_REF] Billinton | Reliability evaluation of power systems[END_REF][START_REF] Haffner | Multistage model for distribution expansion planning with distributed generation Part I: Problem formulation[END_REF][START_REF] Haffner | Multistage model for distribution expansion planning with distributed generation Part II: Numerical results[END_REF][START_REF] Wang | Multicriteria design of hybrid power generation systems based on a modified particle swarm optimization algorithm[END_REF]. In the present work, its value is obtained directly from the OPF outputs in the form of the aggregation of all nodal load sheddings per scenario ω s ∈ Ω:

EN S Ω = t ∆ i∈N LS Ω i (2.25)
where, EN S Ω -sample of N S realizations of EN S ω s (MW h) and LS Ω i -sample of N S realizations of LS i,s (MW h).

Uncertainty and risk measurement

The proposed framework introduces the CVaR and CVaR deviation (DCVaR) [66] to measure, respectively, the risk and uncertainty in the performance functions of interest: C G and EN S. The quantity DCVaR is a functional of the CVaR [START_REF] Rockafellar | Conditional value-at-risk for general loss distributions[END_REF], which is a coherent risk measure broadly used in financial portfolio optimization and has been extended to engineering applications, including electric power systems analysis and, in particular, DG planning [61,63,64,[START_REF] Zhang | Robust optimal power flow with wind integration using conditional value-at-risk[END_REF][START_REF] Martin | A stochastic two settlement equilibrium model for electricity markets with wind generation[END_REF][START_REF] Ghosh | Integration of demand response and renewable resources for power generation management[END_REF][START_REF] Moghaddam | Risk-averse profit-based optimal operation strategy of a combined wind farm-cascade hydro system in an electricity market[END_REF].

The definitions and properties of CVaR and DCVaR for continuous and discrete general return (loss) functions are given in detail in [66,[START_REF] Rockafellar | Conditional value-at-risk for general loss distributions[END_REF]. Here, only a graphical, but comprehensive view to understand the CVaR and DCVaR definitions is presented in Figure 2.6. For a discrete approximation of the probability function of the loss x, given a confidence level or α-percentile, the value-at-risk VaR α (x) represents the smallest value of loss for which the probability that the loss does not exceed that threshold value is greater than or equal to α, whereas 2 Renewable DG-integrated electric power network modeling 29 C VaR α (x) is the expected value of loss given that the loss is greater than or equal to the VaR α (x).

frequency loss x  %ile E(x) VaR  (x) CVaR  (x) DCVaR  (x) = CVaR  (x -E(x))
Thus, C VaR α (x) provides a quantitative indication of the extent of the probability of occurrence of extreme non-desirable or risky scenarios of loss. The quantities VaR α (x) and C VaR α (x) can be expressed by the following equations:

VaR α (x) = inf{z : F x (z) > α} (2.26) C VaR α (x) = E(x/x ≥ VaR α (x)) (2.27)
where, F x -cumulative distribution function of the loss x.

With regards to DC VaR α (x), this is a non symmetric deviation measure, as it accounts for the uncertainty associated to the loss exceeding its expected value. It is defined taking into account some important properties of the standard deviation [66], and is formulated as:

DC VaR α (x) = C VaR α (x -E(x)) (2.28)
Furthermore, being a coherent risk measure, CVaR is a strictly expectation-bounded risk measure and it can be proved that a one-to-one relation exists with its corresponding deviation measure DCVaR [66]:

C VaR α (x) = E(x) + DC VaR α (x) (2.29) 
In the present framework, a specific configuration of the DG-integrated network ([Q], {Y }) can be considered as a generation portfolio, in which the renewable part 

[Q R ] of [Q] is

Renewable DG-integrated electric power network planning

This Chapter presents the distinct optimization frameworks considered to address the optimal integration of DG in terms of selection of technology, sizing and allocation of renewable DG units.

The corresponding decision matrix 

[Q R ] is contained in the matrix Q = [Q M |Q R ] that

Optimal DG technologies selection, sizing and allocation

Optimization strategies formulation FW1: Multi-objective weighted ECG, CVaR(CG) & EENS, CVaR(ENS) minimization

The MOO problem consists in the concurrent minimization of the two objective functions measuring the C G and EN S. Specifically, their expected values and their CVaR values are combined, weighted by a factor β ∈ [0, 1], which allows modulating the expected performance of the DG-integrated network and its associated risk.

3 Renewable DG-integrated electric power network planning Considering a set of randomly generated scenarios Ω, the MOO problem is formulated as follows: min

[Q R ] i, j βE(C G Ω ) + (1 -β)C VaR α (C G Ω ) † (3.1) † C G Ω = G C G Ω by (2.24i) min [Q R ] i, j βE(EN S Ω ) + (1 -β)C VaR α (EN S Ω ) (3.2) s.t. [Q] i, j ∈ * (2.3) i∈N G j ∈RG C I j + CO f j [Q R ] i, j ≤ BGT (3.3) i∈N [Q R ] i, j ≤ τ j ∀G j ∈ RG (3.4) MCS-OPF([Q], {Y }, Ω) (2.20)-(2.23)
The meaning of each constraint is:

• (2.
3): the decision variable [Q R ] i, j is a non-negative integer number.

• (3.3): the total fixed investment and operating cost of the DG units must be less than or equal to the available budget BGT ($).

• (3.4): the total number of DG units to allocate of each technology j must be less than or equal to the maximum number of units available τ j to be integrated.

• (2.20)-(2.23): the OPF equations of must be satisfied for all scenario ω s ∈ Ω.

Constraint (3.4) can be translated into maximum allowed penetration factor P F DG max j of each DG technology j. Defining P F as 'the output active power of total capacity of DG divided by the aggregated maximum nodal loads' [23], constraint (3.4) can be rewritten as follows:

i∈N [Q R ] i, j E(P DG j ) i∈N L max i = P F DG j ≤ P F DG max j = τ j E(P DG j ) i∈N L max i ∀G j ∈ RG (3.5)
where, [Q R ] i, j -total number of units of DG technology j integrated in the network; E(P DG j )expected power output of one unit of DG technology type j (MW); L max i -aggregated maximum nodal loads (MW).

3 Renewable DG-integrated electric power network planning

FW2: Multi-objective ECG & DCVaR(CG) minimization

The practical aim of the MOO is the simultaneous minimization of representative indicators of the objective function C G, given by the expected value EC G and the associated uncertainty measure

DC VaR α (C G).
The general MOO problem for all set of randomly generated operational scenarios Ω is formulated as follows: min

[Q R ] i, j E(C G Ω ) (3.6) min [Q R ] i, j DC VaR α (C G Ω ) ‡ (3.7) ‡ C G Ω = GTD C G Ω by (2.24ii) (3.8) s.t. [Q] i, j ∈ * (2.3) i∈N G j ∈RG [Q] i, j P AV j L max i ≤ P F DG (3.9) MCS-OPF([Q], {Y }, Ω) (2.20)-(2.23)
The meaning of each constraint is the following:

• (2.
3): the decision variables [Q] i, j are non-negative integer numbers.

• (3.9): the ratio of total amount of average renewable power integrated in the network must be less than or equal to the penetration factor P F DG .

• (2.20)-(2.23): the OPF equations of must be satisfied for all scenario ω s ∈ Ω.

FW3: Single-objective ECG minimization

This single objective optimization strategy ought to find the optimal plan of integration of renewable DG [Q R ] by minimizing the expected value of global cost EC G. Considering a set of randomly generated scenarios Ω, the optimization problem is formulated as follows:

min

[Q R ] i, j E(C G Ω ) ‡ (3.10) ‡ C G Ω = GTD C G Ω by (2.24ii) 34 
3 Renewable DG-integrated electric power network planning s.t.

[Q] i, j ∈ * (2.3) i∈N G j ∈RG C I j + CO f j [Q R ] i, j ≤ BGT (3.11) i∈N [Q R ] i, j ≤ τ j ∀G j ∈ RG (3.12) MCS-OPF([Q], {Y }, Ω) (2.20)-(2.23)
The meaning of each constraint is:

• (2.
3): the decision variable [Q R ] i, j is a non-negative integer number.

• (3.11): the total investment and fixed operation and maintenance costs must be less than or equal to the available budget BGT .

• (3.12): the total number of renewable DG units of each technology j to be allocated must be less than or equal to the maximum number of units available for integration τ j .

• (2.20)-(2.23): the OPF equations of must be satisfied for all scenario ω s ∈ Ω.

Heuristic optimization & MCS-OPF simulation frameworks

The MOO optimization problems are non-linear and non-convex, i.e., a non-convex mixed-integer non-linear problem or non-convex MINLP. Non-linearity is due to the fact that all the objective functions involved cannot be written in the canonical form of a linear program, i.e., C T X , where C is a vector of known coefficients and X the decision vector. In the present case, the decision matrix [20,42]. Some of the best known techniques are: particle swarm optimization (PSO) [9,42,56,[START_REF] Zhao | Flexible transmission network planning considering distributed generation impacts[END_REF][START_REF] Aghaei | Distribution expansion planning considering reliability and security of energy using modified PSO algorithm[END_REF], differential evolution (DE)

[Q R ]
3 Renewable DG-integrated electric power network planning 35 [51,[START_REF] Hejazi | Independent distributed generation planning to profit both utility and DG investors[END_REF][START_REF] Arya | Distributed generation planning using differential evolution accounting voltage stability consideration[END_REF] and genetic algorithms (GA) [3,16,34,37,[START_REF] Zhang | Robust optimal power flow with wind integration using conditional value-at-risk[END_REF]. In this view, the three non-convex MINLPs under uncertainties here proposed are solved by implementing HO search engines.

The MOO problem under uncertainties of FW1 is solved by the NSGA-II algorithm [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF], in which the evaluation of the objective functions is performed by the developed MCS-OPF. In FW2, the MOO differential evolution (MOO-DE) algorithm is implemented, integrating a fast non-dominated sorting procedure and crowded-comparison operator [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF] into the original single objective DE [START_REF] Storn | Differential evolution -A simple and efficient heuristic for global optimization over continuous spaces[END_REF], and also evaluating the objective functions by MCS-OPF. FW3 performs the search for optimal solution by an original technique developed in this work, which integrates hierarchical clustering analysis (HCA) into the basic single objective differential evolution (DE) search, and is presented in Chapter 4.

For MOO frameworks, FW1 and FW2, the extension to MOO entails the integration of Pareto optimality concepts. In general terms, solving a MOO problem of the form:

min X { f 1 (X ), f 2 (X ), . . . , f m (X )} s.t. X ∈ Λ
with at least two conflicting objectives functions ( f i : ℜ n → ℜ) implies to find, within a set of acceptable solutions that belong to the non-empty feasible region Λ ⊆ ℜ n , the decision vectors X ∈ Λ that satisfy the following [START_REF] Branke | Multiobjective Optimization: Interactive and Evolutionary Approaches[END_REF]:

¬X ∈ Λ/ f i (X ) ≤ f i (X ′ ), ∀i ∈ {1, 2, . . . , m} and f i (X ) < f i (X ′ ) for at least one i ⇓ f i (X ) ≺ f i (X ′ ) i.e. X dominates X ′
The vector X is called a Pareto optimal solution and the Pareto front is defined as the set { f (X ) ∈

ℜ n } such that X is Pareto optimal solution. The general NSGA-II and MOO-DE algorithms are described next.

Non-dominated sorting genetic algorithm II-based approach

NSGA-II is one of the most efficient MOO evolutionary algorithms in HO [START_REF] Ak | NSGA-II-trained neural network approach to the estimation of prediction intervals of scale deposition rate in oil & gas equipment[END_REF]. It uses an elitist approach by applying a fast non-dominated sorting and crowding-distance comparison operator, while the search for non-dominated solutions is performed based on two main genetic operators, namely mutation and crossover [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF]. The general NSGA-II algorithm is summarized as follows:

Initialization

• Set the values of parameters:

3 Renewable DG-integrated electric power network planning ◃ N P: population size.

◃ N G ma x : maximum number of generations.

◃ p C : crossover probability ∈ [0, 1].

◃ p M : mutation probability ∈ [0, 1].

• Form the initial population POP 0 , randomly generating N P decision matrices (individuals) X within the feasible space, POP 0 = {X 0 1 , . . . , X 0 k , . . . , X 0 N P } • Evaluate the objective functions f 1 (X 0 k ), . . . , f N F (X 0 k ) for each individual X 0 k , where N F -number of objective functions.

• Rank the individuals in POP 0 , applying a fast non-dominated sorting procedure [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF] with respect to the values of the objective functions and identify the non-dominated fronts { 0 1 , . . . , 0 N D }, where 0 1 is the best front and 0 N D the less good front. • Compute and assign the crowding-distance value (d C ) to each X 0 k individual in POP 0 and sort, in ascending order with respect to d C , the individuals belonging to the same non-domination-ranked group { 0 ℓ } ℓ∈{1,...,N D} . • Apply binary tournament selection [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF] to POP 0 based on the crowding distance to generate an intermediate population POP 0 ' of size N P.

Reproduction

◃ Apply mutation and crossover operators to POP 0 ', to create an offspring population OPOP 0 of size N P.

◃ Evaluate the objective functions for each individual X 0 k in OPOP 0 .

Evolution loop

• Set generations count index g = 1.

• Set POP g = POP 0 and OPOP g = OPOP 0 .

• While g ≤ N G ma x (stopping criterion):

• Combine POP g and OPOP g to obtain a population equals to their union U POP g = POP g ∪ OPOP g .

• Apply a fast non-dominated sorting procedure on U POP g and identify the new non- in OPOP g+1 .

dominated
• Set g = g +1 and verify the stopping criterion, if g > N G max then return POP g , selecting the best front g 1 as the optimal set of non-dominated solutions, otherwise continue the evolution loop.

In correspondence to the nomenclature used in this thesis, the process of searching the set of non-dominated solutions carried out by the NSGA-II MCS-OPF is presented schematically in 

= {[Q R ] 0 1 , . . . , [Q R ] 0 k , . . . , [Q R ] 0 N P } Evaluate the objective functions βE(C G Ω ) + (1 -β)C VaR α (C G Ω ) (3.1) and βE(EN S Ω ) + (1 -β)C VaR α (EN S Ω ) (3.2) for each individual [Q R ] 0 k through MCS-OPF([Q] 0 k , [Y ], Ω) with [Q] 0 k = [Q M |[Q R ] 0 k ] Rank the individuals [Q R ] 0 k in POP 0 ,
[Q R ] g+1 k in OPOP g+1 Set g = g + 1 Is g > N G max ?
Return POP g and the optimal set of non-dominated solutions 

MOO differential evolution-based approach

DE is a population-based and parallel, direct search method, shown to be one of the most efficient evolutionary algorithms to solve complex optimization problems [START_REF] Storn | Differential evolution -A simple and efficient heuristic for global optimization over continuous spaces[END_REF][START_REF] Cheng | Using a fuzzy clustering chaotic-based differential evolution with serial method to solve resource-constrained project scheduling problems[END_REF][START_REF] Mukherjee | Cluster-based differential evolution with crowding archive for niching in dynamic environments[END_REF]. The implementation of the original version of DE involves two main phases: initialization and evolution. The extended MOO-DE, with fast non-dominated sorting and crowding-distance comparison operator [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF] is summarized below [START_REF] Storn | Differential evolution -A simple and efficient heuristic for global optimization over continuous spaces[END_REF].

Initialization

• Set the values of parameters:

◃ N P: population size.
◃ N G ma x : maximum number of generations.

◃ p C : crossover coefficient ∈ [0, 1]. ◃ F : differential variation amplification factor ∈ [0, 2].
• Form the initial population POP 0 , randomly generating N P decision matrices (individuals) X within the feasible space,

POP 0 = {X 0 1 , . . . , X 0 k , . . . , X 0 N P } • Evaluate the objective functions { f 1 (X 0 k ), . . . , f N F (X 0 k )} for each individual X 0 k , where N F -number of objective functions
• Rank the individuals in POP 0 , applying a fast non-dominated sorting [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF] procedure with respect to the values of the objective functions and identify the non-dominated fronts { 0 1 , . . . , 0 N D }, where 0 1 is the best front and 0 N D the less good front. • Compute and assign the crowding-distance value (d C ) [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF] to each individual X 0 k in POP 0 and sort, in ascending order with respect to d C , the individuals belonging to the same non-domination-ranked group { 0 ℓ } ℓ∈{1,...,N D} .

Evolution loop

• Set generations count index g = 1.

• Set POP g = POP 0 .

• While g ≤ N G ma x (stopping criterion):

• Set a repository population RPOP as empty.

Trial loop

For each individual X g k in POP g , ∀k ∈ {1, . . . , N P}: ◃ Sample from the uniform distribution three integer indexes in {1, . . . , N P} such that

k 1 ̸ = k 2 ̸ = k 3 ̸ = k and choose the corresponding three individuals X g k 1 , X g k 2 , X g k 3
◃ Generate a mutant individual X M g k according to the following mutation operator:

X M g k = X g k 1 + F (X g k 2 -X g k 3 ) (3.13) 40 
3 Renewable DG-integrated electric power network planning ◃ Apply crossover operator, initializing a randomly generated vector X C g k , whose dimensionality n is the same as that of X g k and each coordinate x c g k,i follows a uniform distribution with outcome in [0, 1]∀i ∈ {1, . . . , n}. In addition, generate randomly an integer index i * in {1, . . . , n} from a uniform distribution to ensure that at least one coordinate from X M g k is exchanged to form trial individual X T g k , whose coordinates x t g k,i are defined as follows: 

x t g k,i =    x m g k,i if x c g k,i ≤ p C or i = i * x g k,i if x c g k,i > p C and i ̸ = i * (3.14) ◃ Evaluate the objective functions for the trial individual { f 1 (X T g k ), . . . , f N F (X T g k )}; if X T g k dominates X g k , i.e., { f (X T g k ) ≺ f (X g k )}, X T g k replaces X g k in POP g , otherwise retain X g k in POP g and save X T
= {[Q R ] 0 1 , . . . , [Q R ] 0 k , . . . , [Q R ] 0 N P } Evaluate the objective functions E(C G Ω ) (3.6) and DC VaR α (C G Ω ) (3.7) for each individual [Q R ] 0 k through MCS-OPF([Q] 0 k , [Y ], Ω) with [Q] 0 k = [Q M |[Q R ] 0 k ]
Set generations count index g = 1 and POP g = POP 0

Set k = 1 and repository population RPOP as empty 

From the individual [Q R ] g k in POP g , ∀k ∈ {1, . . . , N P}, generate a trial individual [QT R ]
(C G Ω ) and DC VaR α (C G Ω ) through MCS-OPF([QT ] g k , [Y ], Ω) with [QT ] g k = [Q M |[QT R ] g k ] [QT R ] g k dominates [Q R ] g k ? Set k = k + 1 Is k > N P? The trial individual [QT R ] g k replaces [Q R ] g k in POP g The original individual [Q R ] g k is retained in POP g and the trial individual [QT R ] g k is saved in the repository population RPOP
Set the combined population U POP as POP g ∪ RPOP, apply fast non-dominated sorting procedure on U POP, within each non-domination-ranked group { g ℓ } ℓ∈{1,...,N D} , compute and assign the crowding-distance values d C and sort the individuals in descending order

Set POP g = {[Q R ] k : [Q R ] k ∈ U POP, k ∈ {1, . . . , N P}} Set g = g + 1 Is g > N G max ?
Return POP g and select the best front The computational challenge here presented consists in improving the performance of HO techniques used to solve the complex optimization problem of DG planning, when the objective function(s) is(are) evaluated by time consuming computational models, such as the developed MCS-OPF. For this, the integration of clustering into the HO search engine is considered.

Clustering in heuristic optimization

Clustering techniques like, k-means, fuzzy c-means and hierarchical clustering, among others, can be directed to the enhancement of the global and/or local searching ability of HO algorithms, and amounts to identifying groups of similar individuals and applying different evolution operators to those of a same cluster (group), e.g. for random generation of new individuals in the neighborhood of cluster centroids, or multi-parents crossover over new randomly generated individuals spread in the global feasible space [START_REF] Cheng | Using a fuzzy clustering chaotic-based differential evolution with serial method to solve resource-constrained project scheduling problems[END_REF][START_REF] Mukherjee | Cluster-based differential evolution with crowding archive for niching in dynamic environments[END_REF][START_REF] Cai | A clustering-based differential evolution for global optimization[END_REF][START_REF] Liu | A novel clustering-based differential evolution with 2 multi-parent crossovers for global optimization[END_REF][START_REF] Song | Multi-peak function optimization using a hierarchical clustering based genetic algorithm[END_REF][START_REF] Wang | A dynamic clustering based differential evolution algorithm for global optimization[END_REF]. In the literature, these approaches have been proved to be effective in improving convergence, but for 'light-weight' benchmark or not simulation-based objective function(s). When the computational time complexity associated to the evaluation of the objective function(s) is significant, even if convergence is improved by applying some of these methodologies, which imply a temporarily increment of the overall size of the population, the computational effort benefits may result counteracted. In addition, the accuracy of the clusters structures in representing the distribution of individuals must be controlled for performing clustering conveniently.

The main original contribution of the work here presented, lies in the development of the clustering strategy in a controlled manner. The implementation of such clustering strategy is done within a differential evolution (DE) optimization framework MCS-OPF model for the integration of renewable DG into an electric power system. The introduction of the clustering is hierarchically (i.e., hierarchical clustering analysis, HCA, [START_REF] Everitt | Cluster Analysis[END_REF]) by a controlled way of reducing the number of individuals to be evaluated during the DE search, therefore, improving the computational efficiency.

Henceforth, the method is called hierarchical clustering differential evolution (HCDE).

HCA is introduced to build a hierarchical structure of grouping individuals (DG-integrated network plans) of the population that present closeness under the control of a specific linkage criterion based on defined distance metrics [START_REF] Everitt | Cluster Analysis[END_REF]. The HCA outcomes are the linkage distances at which the grouping actions take place, defining the different levels in the hierarchical structure. Two control parameters are introduced in the HCA, the cophenetic correlation coefficient (C C C) and a cutoff level coefficient of the linkage distances in the hierarchical structure of the groups (p co ). The C C C is a similarity coefficient that measures how representative is the proposed grouping structure by comparing their linkage distances with the original distances between all the individuals in the population. In the hierarchical structure, the linkage distance given by p co sets the level at which the groups formed below it are considered to be 'close enough' to constitute independent clusters.

The two parameters allow HCDE to adapt itself in each generation of the search, 'deciding' whether to perform clustering if the C C C is greater than or equal to a preset threshold (C C C T ) and cutting the hierarchical structure in independent clusters according to the linkage distance given by p co .

Then, the individual closest to the centroid of each cluster is taken as the feasible representative solution in the population that enters the evolution phase of the HCDE algorithm.

Hierarchical clustering & differential evolution

The original version of DE keeps the population size N P constant, making the computational performance dependent mainly on the number of objective function evaluations (N F E) carried out during the evolution phase of the algorithm. Then, the integration of HCA into DE is aimed at the reduction of the number of individuals that enter the evolution loop in each generation so as to decrease the number of objective function evaluations.

HCA links individuals or groups of individuals which are similar with respect to a specific property, translated into a metric of distance, obtaining a hierarchical structure. In practice, an agglomerative procedure is used, which in N Z = N P -1 steps z fuses the closest pair or individuals or groups of individuals through a linkage function, e.g. single linkage (nearest neighbor distance), complete linkage (furthest neighbor), average linkage, among others, until the complete hierarchical structure is built. The base hierarchical clustering algorithm used in this study can be expressed as follows [START_REF] Everitt | Cluster Analysis[END_REF]:

Step 1: Given a population POP POP = {X 1 , . . . , X k , . . . , X N P }, form the set of singleton groups

= { ı = {X k }}, ∀ı = k ∈ {1, .
. . , N P} and calculate the linkage distances between all the N P groups using the average as linkage function and the Euclidean distance as metric: where, d z ı,  -average of the Euclidean distances between all the individuals X k and X k' belonging to the groups ı and  , respectively, N z -number of groups at step z and | ı |, |  |cardinalities of the groups ı and  , respectively.
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D z =           0 d z 1,2 • • • d z 1,  • • • d z 1,N z . . . . . . . . . . . . . . . 0 d z ı,  • • • d z ı,N z 0 . . . . . . . . . d z N z -1,N z 0           d z ı,  = 1 | ı ||  | X k ∈ ı X k' ∈  (X k -X k' ) 2 (4.1) N z = N P -z + 1 (4.1a) ∀X k , X k' ∈ POP, z ∈ {1, . . . , N P -1}, ı,  ∈ {1, . . . , N z }
Step 2: Fuse the first pair of groups ı' and ' , for which d 1 ı', ' is the minimum distance min(D 1 ) and form a new group N P+1 = { ı' ∪ ' }. Update the set of groups replacing ı' and ' by N P+1 , and calculate the linkage distances D 2 between all the N P -1 groups in using (4.1).

Step 3: Fuse the second pair of groups ı' and ' for which d 2 ı', ' is the minimum distance min(D 2 ), and form a new group N P+2 = { ı' ∪ ' }. As in the preceding step, update the set of groups and calculate the linkage distances D 3 between all the N P -2 groups in using (4.1). . . .

Step N P -1: Fuse the last pair of groups with linkage distance

d N P-1 ı', '
, forming the last group

2N P-1 = { ı' ∪ ' } that contains all the individuals X .
The outcoming hierarchical (or tree) structure can be reported as a sorted table containing the N P -1 linkage distances relative to each pairing action of individuals/groups and be graphically illustrated as a dendrogram. Table 4.1 and Figure 4.1 present, respectively, the resultant linkage distances and dendrogram obtained from an example set of N P = 8 two-dimensional individuals X using the above introduced HCA algorithm. 

{ 2 ∪ 6 } = {{X 2 } ∪ {X 6 }} d 1 2,6 2 10 { 3 ∪ 4 } = {{X 3 } ∪ {X 4 }} d 2 3,4 3 11 { 1 ∪ 7 } = {{X 1 } ∪ {X 7 }} d 3 1,7 4 12 { 5 ∪ 8 } = {{X 5 } ∪ {X 8 }} d 4 5,8 5 13 { 9 ∪ 11 } = {{X 2 , X 6 } ∪ {X 1 , X 7 }} d 5 9,11 6 14 { 10 ∪ 12 } = {{X 3 , X 4 } ∪ {X 5 , X 8 }} d 6 10,12 7 
15

{ 13 ∪ 14 } = {{X 1 , X 2 , X 6 , X 7 } ∪ {X 3 , X 4 , X 5 , X 8 }} d 7
13,14 3) below [START_REF] Everitt | Cluster Analysis[END_REF].

0 1 2 3 4 5 0 1 2 3 4 5 X 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 C 15 C 14 C 12 C 9 C 8 C 5 C 6 C 2 C 4 C 3 C 7 C 1 x i x j C 10
C C C = k<k' (d 1 k,k' -D1 )(l k,k' -¯ ) k<k' (d 1 k,k' -D1 ) 2 k<k' (l k,k' -¯ ) 2 ∀k, k' ∈ {1, . . . , N P} (4.2) =          0 l 1,2 • • • l 1,k' • • • l 1,N P . . . . . . . . . . . . . . . 0 l k,k' • • • l k,N P 0 . . . . . . . . . l N P-1,N P 0          l k,k' = d z * ı,  (4.3) z * = {min z : X k , X k' ∈ N P+z } (4.3a) ∀k, k' ∈ {1, . . . , N P}, ı,  ∈ 1, . . . , 2N P -1
where D1 -average of the original Euclidean distances d 1 ı,  between all the individuals, l k,k' -linkage distance d z * ı,  where the pair of individuals X k and X k' become members of the same group and ¯average of the resultant linkage distances l ı,  between all the individuals.

Recalling that the aim of nesting HCA into DE is to increase the computational performance by decreasing the N F E (times that the MCS-OPF is run) in each generation g, the presetting of a threshold C C C T for the C C C value allows defining the level of representativeness required to the 47 hierarchical structure proposed. If by applying HCA over the population POP g the corresponding

C C C g is such that C C C g ≥ C C C T ,
the built hierarchical structure is considered an acceptable representation of the original distances amongst the individuals and the selection of a particular partition of the sets of groups can be performed, i.e., the determination of a specific number of clusters. On the contrary, if C C C g ≤ C C C T , the hierarchical structure is considered not representative enough since it introduces unacceptable distortion that may affect the global searching process in the HCDE.

Whether the hierarchical structure is accepted, the clustering process itself takes place. As before stated, the HCA outcome linkage distances d z ı,  define each level (height) at which a pairing action is carried out. If the hierarchical structure is 'cut off' at a specific linkage distance d co , all the groups that are formed below that level become independent clusters. In each generation g of HCDE, a d co relative to the HCA outcome linkage distances for the corresponding POP g , is determined from a preset cut-off level coefficient p co of the linkage distances between the minimum d z ı,  that correspond to the first pairing action and the distance to form at least four clusters needed to perform the mutation process in the HCDE. Thus, d co can be obtained from Equation (4.4). Figure 4.2 shows the cut-off distance representation for the example aforementioned, for which the formed clusters 

are { 2 , 6 }, { 1 }, { 7 }, { 3 , 4 }, { 5 } and { 8 }. d co = d min + p co (d N C=4 -d min ) (4.
= {[Q R ] 0 1 , . . . , [Q R ] 0 k , . . . , [Q R ] 0 N P } Evaluate the objective function EC G Ω (3.10) for each individual [Q R ] 0 k through MCS-OPF([Q] 0 k , [Y ], Ω) with [Q] 0 k = [Q M |[Q R ] 0 k ]
Set generations count index g = 1 and POP g = POP 0

Perform HCA using the average distance linkage function obtaining d z ı', ' by (4.1) for the N P -1 pairing actions z and calculate the cophenetic correlation index

C C C g Is C C C T ≤ C C C g ?
Cut off the hierarchical structure according to p co by (4.4) forming N P g groups { }.

Obtain the individual 

[Q R ] g c closest-to-the-centroid for each { ı }, ı ∈ {2N P -1, . . . , 2N P -N P g } and set POP g * = {[Q R ] g c 1 , . . . , [Q R ] g c N P g } Set N P g = N P and POP g * = POP g {[Q R ] g 1 , . . . , [Q R ] g k , . . . , [Q R ] g N P } Set k' = 1 Perform the trial, for [Q R ] g k' ∈ POP g * , generate a trial individual [QT R ]
Is EC G Ω ([QT R ] g k' ) < EC G Ω ([Q R ] g k' )? Set k' = k' + 1 Is k' > N P g ? The trial individual [QT R ] g k' replaces [Q R ] g k = [Q R ] g k' in POP g The original individual [Q R ] g k=k' is retained in POP g Set g = g + 1 Is g > N G max ?
Sort the individuals in POP g in descending order according to their values of EC G Ω and return For practical ease of the presentation of the examples, tables and figures reporting the data associated to each application are provided in the corresponding Appendices A, B and C. The MOO is performed by the NSGA-II presented in Chapter 3, Section 3.2 and considering all the formulation relative to framework FW1 that can be found in the same Chapter 3, Subsection 3.1.1.

[Q R ]

A risk-based MOO and MCS-OPF simulation framework for the integration of renewable DG and storage devices

IEEE 13-bus test feeder case

The framework FW1 is applied to a distribution network derived from the IEEE 13 nodes [2,[START_REF] Kersting | Radial distribution test feeders[END_REF].

The spatial structure of the network has not been altered but the the regulator, capacitor, switch feeders of zero length are neglected. The network is chosen purposely small, but with all relevant characteristics for the analysis, e.g. comparatively low and high spot and distributed load values and the presence of a power supply spot [START_REF] Kersting | Radial distribution test feeders[END_REF]. The original IEEE 13-bus test feeder is dimensioned such that the total power demand is satisfied without lines overloading. This is modified so that it becomes of interest to consider the integration of renewable DG units. Specifically, the location and values of some of the load spots and the power ratings values of some feeders have been modified in order to generate conditions of power congestion of the lines, leading to shortages of power supply to specific portions of the network.

The distribution network presents a radial structure of n = 11 nodes and, therefore, Finally, N S = 250 random scenarios are simulated by the developed MCS-OPF with time step ∆t = 1 (h), over an horizon of analysis of 10 years (t H = 87600 (h)), in which the investment and fixed costs are prorated hourly.

Conditional value-at-risk: expected performance and risk trade-off

The Pareto fronts resulting from the NSGA-II MCS-OPF are presented in Comparing among the selected optimal DG-integrated networks, in general the expected performances of E EN S and EC G are progressively lower for increasing β. This to be expected: lowering the values of β, the MOO tends to search for optimal allocations and sizing [Q R ] that sacrifice expected performance at the benefit of decreasing the level of risk (CVaR). These insights can serve 55 the decision making process on the integration of renewable DG into the network, looking not only at the give-and-take between the values of E EN S and, but also at the level of risk of not achieving such expected performances due to the high variability. The analysis of the results for different β values also allows highlighting the impact that each type of renewable DG technology has on the network performance. As can be noticed in Figure 5.4(A), the average total renewable DG power optimally allocated, increases progressively for increasing values 56 5 Applications of β: this could mean that to obtain less 'risky' expected performances less renewable DG power needs to be installed. However, focusing on the individual fractions of average power allocated by PV, W and ST (Figure 5.4(B), (C) and (E), respectively), show that a reduction of the risk in the E EN S and EC G is achieved specifically diminishing the proportion of PV power (from 0.29 β=1 to 0.11 β=0 ) while increasing the W and ST (from 0.38 β=1 to 0.48 β=0 and from 0.31 β=1 to 0.39 β=0 , respectively), but this increment of W and ST power is not enough to balance the loss of PV power due to the limits imposed by the constraints in the number of each DG technology to be installed given by τ j . Thus, PV power supply is shown to most contribute to the achievement of optimal expected performances, but with higher levels of risk. On the other hand, privileging the integration of W and ST power supply provides more balanced optimal solutions in terms of expectations and of achieving these expectations.

β f (C G) ($) f (EN S) (kW h) EC G ($) C VaR(C G) ($) E EN S (kW h) C VaR(EN S) (kW h) M G - - -
[Q R ] f (C G) f (EN S)
[Q R ] f (C G) f (EN S)
[Q R ] f (C G) f (EN S)
[Q R ] f (C G) f (EN S)

Optimal DG-integrated network plans

Table 5.2 summarizes the minimum, average and maximum total renewable DG power allocated per node. The tendency is to install more localized sources (mainly nodes 4 and 8) of renewable DG power when the MOO searches only for the optimal expected performances (β = 1) and to have a more uniformly allocation of the power when searches for minimizing merely the CVaR (β = 0). 

Brief summary

The results obtained show the capability of the framework FW1 to identify Pareto optimal sets of renewable DG units allocations. The integration of the conditional value-at-risk into the framework and the performing of optimizations for different values of the weight parameter β has shown the possibility of optimizing expected economic and reliability of power supply performances while controlling the risk in its achievement. The contribution of each type of renewable DG technology 57 can also be analyzed, in terms of size and location, indicating which is more suitable for specific preferences of the decision makers.

Hierarchical clustering analysis and differential evolution (HCDE) for optimal integration of renewable DG

The current Section presents an example of application relative to the HCDE framework developed to address the computational challenge given by the expenses of large computational times required 

IEEE 13-bus test feeder case

This example regards a modification of the IEEE 13-bus test feeder distribution network [2] with the original spatial structure but neglecting the feeders of length zero, the regulator, capacitor and 

Quantification of the benefits of HCDE

The 
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Regarding the cutoff level coefficient of the linkage distances p co , in Figure 5.9 it is possible to identify the three peaks of reduction in the population size, confirming the role of this control parameter in defining the level at which the hierarchical structures proposed are 'cut off' when the HCA takes place. In fact, lower values of p co imply smaller reduction in the population size because of the higher demand of proximity between individuals or groups of individuals. In the opposite side, higher values of p co allow forming clusters from individuals or groups which are relatively less similar.

From the results obtained for all the different DE and HCDE settings, six representative cases are the focus of the analysis (Figure 5.7). From the DE runs, the settings with extreme and middle population size N P ∈ {10, 30, 50} are selected, whereas from HCDE, the cases (N P, C C C T , p co ) set as (50, 0.6, 0.25), (50, 0.6, 0.50), (50, 0.7, 0.50) and (50, 0.7, 0.75) are chosen. The former (50, 0.6, 0.25) and (50, 0.6, 0.50) cases present significant reductions in the number of N F E, with small dispersion and loss of quality of the EC G min obtained, compared to the results regarded by diminishing directly the fixed N P in DE from 50 to 10. Similarly, the cases (50, 0.7, 0.50) and (50, 0.7, 0.75) may lead to considerable reductions in N F E, with acceptable losses of EC G min , but subject to a high degree of variability that compromises the performance.

As for computational times, running on an Intel ® Core™i7-3740QM (PC) 2.70 GHz without performing parallel computing, the average time to evaluate the objective function is 4.592 (s) for the N S = 500 scenarios in the MCS-OPF; for a fixed population of N P = 50 and its corresponding N F E = 20050, the total time for a single run is on average 25.574 (h). Taking into account this, under commonly used hardware configurations, the reductions in computational time that can be achieved by using HCDE with (50, 0.6, 0.25) and (50, 0.6, 0.50) settings are 19% and 49% for the median, 23% and 51% for the 15th %ile, and 16% and 43% for the 85th %ile, respectively.

Identification of time complexity conditions and limits

The integration of HCA into the DE algorithm introduces a significant time complexity, conditioning the reductions of computational efforts that can be obtained by applying the proposed HCDE MCS-OPF framework. Indeed, if performing HCA along all generations of DE and running the MCS-OPF on an eventually reduced population (depending on C C C T and p co ) is computationally heavier than running the MCS-OPF over the complete population, the effects of the framework can be negligible or even negative. It is possible to formulate the condition to obtain reductions in the computational efforts by the proposed HCDE MCS-OPF framework, from the asymptotic time complexities of the main algorithms that compose it. Table 5.3 reports the independent asymptotic time complexities as functions of the generic size m of the input to each algorithm and of the parameters that define the dimensionality of the HCDE MCS-OPF framework [START_REF] Everitt | Cluster Analysis[END_REF][START_REF] Korte | Combinatorial Optimization: Theory and Algorithms[END_REF]. 

O(d m 2 ) a O(m 2 log(m)) O(m) O(size(A)) b O(n(m + r) × N P 2 ) O(N P 2 log(N P)) O(N S × n(m + r)) O(N S × (n(m + r)) 2 )
where n(m + r) represents the size of the DG-integrated network, i.e., the number of nodes n times the number of all the types or technologies of power generation available, m types bulk-power Comparing the asymptotic time complexities of the algorithms involved in the realization of the proposed framework with and without integrating HCA, the following inequalities must be fulfilled in order to obtain a reduction in the computational time by HCDE:

PDIST

T (n(m + r), N P) + HC T (N P) +E(N P g ) × MCS-OPF T (N S, n(m + r)) < N P × MCS-OPF T (N S, n(m + r)) ⇓ n(m + r) × N P 2 + N P 2 log(N P) + E(N P g ) × N S × (n(m + r)) 2 < N P × N S × (n(m + r)) 2 ⇓ κ = N P N P × n(m + r) + N P log(N P) N P × (n(m + r)) 2 + ε < 1 (5.1) ∀n, (m + r), N P, N S ∈ * , ε = E(N P g ) N P ∈ (0, 1]
where ε is the expected ratio of the population N P g evaluated along all generations g of DE to the total population N P and κ is the ratio of the asymptotic time complexities of HCDE to DE.

By Equation (5.1), the contribution of the terms related with the complexity of MCS-OPF, dependent on N S and n(m + r), is considerably large for the fulfillment of the inequality conditions.

In fact, when using DE, it is commonly accepted to set a size of the population N P not greater than ten times the size of the decision variables, in this case, 10n(m + r) [START_REF] Storn | Differential evolution -A simple and efficient heuristic for global optimization over continuous spaces[END_REF], making the first two terms of κ strongly dependent on the number of scenarios N S. Moreover, given the complexity of the general problem, higher values of N S lead to a better approximation of the objective function via MCS-OPF, i.e., the more likely is to fulfill the condition and the greater can be the reduction of computation time. However, the value of ε depends on the probability of performing clustering in each generation and at what level, controlled by C C C T and p co respectively. In some cases, ε can be close to 1 (as it is inferred from Figure 5.9) implying negligible benefits. Table 5. The average total renewable DG power allocated per node is summarized in Figure 5.11. Even though all the EC G optimal decision matrices [Q R ] show differences, the tendency is to install localized sources of renewable DG power between two identifiable portions of the distribution network, up and downstream the feeder (2,6) (Figure 5.5), giving preference to the second portion which presents higher and non-stream homogeneous nodal load profiles.

Optimal DG-integrated network plans

Brief summary

The results show that the the framework is effective in finding optimal DG-integrated network plans, with acceptable reductions of the computational efforts required while maintaining small dispersion and loss of quality in the minimum EC G obtained. The sensitivity analysis over the control parameters of the HCA suggest that the efficiency is improved with C C C T that allows the clustering in almost all generations along the DE search, setting the level of clustering to no more than the 50% (p co = 0.5) of the feasible linkage distances range in the hierarchical structure proposed.

5.3 A MOO and MCS-OPF simulation framework for risk-controlled integration of DG

In this Section, an example of application of the MOO framework for the integration of renewable DG into electric power networks is reported. The framework searches for the optimal size and location of different DG technologies, taking into account uncertain ties related to primary renewable resources availability, components failures, power demands and bulk-power supply. The network operation is emulated by the developed MCS-OPF computational model, assessing the system performance in terms of C G. To measure uncertainty, the DCVaR is introduced enabling the conjoint control of risk due to its axiomatic relation to the CVaR. A MOO strategy is adopted for the simultaneous minimization of the EC G and the associated deviation DC VaR(C G). This is operatively implemented by the MOO-DE described in Chapter 3, Section 3.2 and respecting the formulation relative to framework FW2, to be found in the same cited Chapter.

IEEE 30 bus sub-transmission and distribution test system

The IEEE 30 bus sub-transmission and distribution test system is regarded for the analysis [11].

This constitutes a portion of the Midwestern U.S. electric power system which presents relevant characteristics of interest for the analysis, e.g., the presence of bulk-power supply spots different in type and with comparatively low and high nodal load profiles. An important consideration is that the synchronous condensers are neglected, given the DC assumptions made in the current thesis work for the resolution of the OPF problem.

The network consists of n = 30 nodes, a mesh deployment of 41 T&D lines and 2 transformers or bulk-power suppliers, as shown in Figure 5.12. The reference apparent power is S r e f = 100 (MV A). In this case, two renewable DG technologies are considered: solar photovoltaic (PV) and wind turbines (W).

Table 5.5 summarizes the main parameters set for the general MOO-DE and MCS-OPF framework. 

(C G), denoted [Q R ] min EC G and [Q R ] min DC VaR(C G) respectively, and [Q R ] min C VaR(C G)
which, as mentioned earlier, minimizes risk. In Figure 5.14, it can be observed that the three solutions of interest,
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[Q R ] min EC G , [Q R ] min C VaR and [Q R ] min
DC VaR , lead to considerable improvements in expected performance and risk with respect to the base case MG, in which no renewable generation is integrated into the network. However, the level of uncertainty in the EC G estimation is increased, in all DG-integrated solutions, because of their stochasticity. Even so, in comparison to the MG case, the increase in the level of uncertainty for all DG-integrated cases (on average 1.067 (k$/h)) is much less than the gain in both expected and 6 hours and two high ranges of load taking place in the intervals 10 to 13 and 18 to 21 hours, respectively. Thus, the left peak of the distributions corresponds to the highest range of loads (18 to 21 hours), because higher levels of power demands imply more energy sold and, therefore, more profits or negative values of C G. Following the same logic, the central peak is due to the second highest range of loads (10 to 13 hours) and the right peak to the low range of power demand. As mentioned before, the three DG-integrated network cases improve the cost profiles because the usage of power is transferred from the bulk-power suppliers (MG) to the renewable generators (RG) as summarized in Table 5.6, presenting the ratio of power usage defined as the proportion of power used to satisfy the loads, determined by the MCS-OPF, over the power available. According to the IEEE 30 bus test systems information, the bulk-power supply arriving at node 1, G 1 , comes from a conventional coal-fired power plant whereas G 2 is supplied by a hydro-power plant. The nature of the source of power supply conditions the operating costs, in particular, G 1 that presents the higher variable operating costs (Table C.3 in Appendix C). Nevertheless, the ratio of power usage associated to G 2 is in all cases 100%, even though its operating cost is higher than the renewable. This is because no investment is being paid for G 2 , contrary to the DG technologies (PV and W). In this view, considering investment, PV and W are more convenient than the coal-fired power supply G 1 but not more than the hydro-power supply G 2 . The extreme C G scenarios encountered in the tail of the distributions are mainly produced by the occurrence of failures in the components of the system, power generators and T&D lines. In Figure 5.15, the stability of the C G to these non-desirable events can be pointed out. Since the cost objective function to be minimized in the OPF considers a load shedding cost, the occurrence of failures in the components, interrupting the power supply and/or the ability of distribute it, will impact the C G function depending on how much centralized is the power supply. Focusing on the MG base case, the power supply and its distribution depend on two generators and the T&D lines connected to them: the reliability of power supply is determined by few components and so, the eventual losses of functionality of these components can lead to high amounts of non-satisfied demands. This is precisely the effect observed in the tails of the C G distributions and, in particular, it is seen that distributing and diversifying generation helps to improve the risk impacts from multiple 71 failures in the network, even if the number of generation units in the system is increased and with it, the overall absolute likelihood of occurrence of failures. power integrated in the network decreases progressively, being replaced by W power. Then, it can be inferred that the more PV power generators are integrated, the better EC G performance is achieved.

Optimal DG-integrated network plans

This seems physically coherent, taking into account that the average power outputs delivered by one generation unit of PV and W technologies are 1.07 and 0.93 (MW), respectively, and the cost performance benefits comparatively more from the PV MW h sold during the daylight interval within the two peaks ranges of power demand. Nevertheless, the amount of average integrated PV power is invariably smaller than W power, this is because PV generation units do not supply during the night interval, making convenient to integrate always a certain amount of W power and, thus, to avoid resorting to the more expensive coal-fired power supplier G 1 . Moreover, it is precisely this lack of PV generation during the night interval that strongly conditions the trade-off between expected performance and uncertainty, EC G vs DC VaR α (C G), i.e., the more PV power is integrated, the better EC G performance is achieved but the more uncertain is its estimation. Concerning the compromising solution [Q R ] min C VaR(C G) that minimizes risk, as it was derived from the empirical C G distributions, the risk associated to a solution depends mainly to the occurrence of extreme non-desired events. Improvements in risk performance can, then, be achieved by solutions for which the allocation of DG power generation units decentralizes and diversifies to a large extent the supply. This insight is noticeable in Figure 5.17 that reports the nodal average power by type of generation for the three solutions of interest. For both extreme solutions,

[Q R ] min EC G and [Q R ] min DC VaR
, the tendency is to integrate localized sources of renewable DG at two identifiable portions of the network, in the region close to nodes 2, 5, 7 and 8 of the sub-transmission portion of the network, and nodes 17, 19 and 21 in the distribution part, favoring the sub-transmission portion which presents higher and non homogeneous nodal load profiles. In a different manner, the solution

[Q R ] min C VaR(C G)
presents a more homogeneous deployment of DG power, allocating comparable generation capacities in both sub-transmission and distribution parts of the network. 

Brief summary

We have presented a MOO framework for the integration of renewable distributed generation into an electric power network. Multiple uncertain operational inputs are taken into consideration: the inherent uncertain behavior of renewable energy sources and power demands, as well as the occurrence of failures of components. For managing the uncertainty and risk associated to the achievement of a certain level of expected global cost performance, we have introduced the conditional-value-at-risk deviation measure, which allows trading off the level of uncertainty and, given the axiomatic relation to the conditional-value-at-risk, enables conjointly the trade-off of risk by constructing an iso-risk map in the non-dominated set of solutions. The proposed framework integrates the multi-objective differential evolution as a search engine, Monte Carlo simulation to randomly generate realizations of the uncertain operational scenarios and optimal power flow to evaluate the network response. The optimization is done to simultaneously minimize the expected value of the global costs and the respective conditional-value-at-risk deviation.

A case study has been analyzed, based on the IEEE 30 bus sub-transmission and distribution test system. The results obtained show the capability of the framework to identify Pareto optimal solutions of renewable DG units allocations. Integrating the conditional value-at-risk deviation into the framework has shown effectively the possibility of optimizing expected performances while controlling the uncertainty and risk, analyzing, in addition, the contribution of each type of renewable DG technology on the level of uncertainty associated to the outcome performance of the optimal solutions and the importance of the deployment of the renewable generation capacity to lower the risk of incurring in non-desirable extreme scenarios. In this view, a complete and comprehensible spectrum of information can be supplied in support of specific preferences of the decision makers for their decision tasks.

Conclusions

In the present thesis, a modeling, simulation and optimization framework has been designed and developed, for the integration of renewable DG into electric power networks. The DG planning problem considered has been that of optimal selection of the technology, size and location of multiple DG units, subject to technical, operational and economic constraints. Key research questions addressed have been:

(i) Representation and treatment of the multiple uncertain operational inputs such as: the inherent variability in the availability of diverse primary renewable energy sources, bulkpower supply, power demands and components operating states.

(ii) Propagation of the uncertainties onto the system operational response, and control of the associated risk of incurring in extreme non-satisfactory performances.

(iii) Computational efforts resulting from the complex combinatorial optimization problem under uncertainty associated to renewable DG integration.

Original contributions

The original contributions of the work reside in: and a cutoff level coefficient of the linkage distances p co , allow the controlled adaptation during the search process and decision on whether or not to perform clustering and at which level of the hierarchical structure. The HCDE framework is capable of identifying optimal plans of renewable DG integration, leading to acceptable reductions in the number of objective function evaluations with small dispersion and loss of quality in the minimum EC G obtained.

Future work

Further developments can be thought of in all three main areas of focus of this thesis: modeling, simulation and optimization for the DG planning problem. Regarding the modeling of the distribution network and, in particular, the technical constraints imposed by power flow equations, more realistic assumptions can be considered, including the impact of DG in the reactive power balance of the network and, therefore, the voltage and power losses profiles, that are regulated and ought to be strictly controlled in electric power systems. Even if, at small scales no reactive power requirements are set to renewable power generators [25], high penetration levels of DG integration leads to the need of evaluating the potential contribution of renewable generation to power system voltage and reactive power regulation [START_REF] Ellis | Reactive power performance requirements for wind and solar plants[END_REF]. This eventually implies to use the AC power flow equations.

Another improvement in the modeling of a DG-integrated network is the representation of the evolution of the uncertain operational conditions, such as solar irradiation, wind speed, memory effect of batteries, load profiles, energy prices, etc. The forecast of these variables implies the prediction of future conditions given specific previous scenarios. Then, a sequential MCS model should be developed, in which the sampling is performed for each time step dependent on previous states conditions. As an example, load forecast uncertainty can be integrated properly building consecutive load scenarios and assigning corresponding probabilities of occurrence as presented by [16,34]. Another interesting approach for load forecast uncertainty modeling is the geometric Brownian motion (GBM) stochastic process [42,[START_REF] Zhao | Flexible transmission network planning considering distributed generation impacts[END_REF].

The above-mentioned developments entail an increase in the computational efforts involved in the resolution of the DG planning. Hence, the motivation to explore and develop new methodologies to improve the computational performance still remain. In particular, a direct next step would be the extension of the HCDE search engine into MOO strategies by new controllable clustering techniques, measuring the variation in the quality of non-dominated solutions sets, e.g. by a hypervolume indicator [START_REF] Ak | NSGA-II-trained neural network approach to the estimation of prediction intervals of scale deposition rate in oil & gas equipment[END_REF].

A IEEE 13-bus test feeder data: Application 5.1

Table A.1 contains the technical characteristics of the different types of feeders considered: specifically, the indexes of the pairs of nodes that are connected by each feeder of the network, their length l, reactance X and their ampacity A. The nodal power demands are reported as daily profiles, normally distributed on each hour.

The mean µ and variance σ values of the nodal daily profiles of the power demands are shown in The maximum active power capacity of the transformer (MG) and the parameters of the normal distribution that describe its variability are given in Table A.2. The total investment associated to DG-integrated network plan must be less than or equal to the limit budget; which is set to BGT = 4500000 ($), and the total number of units of each type of DG (following the order [PV, W, EV, ST]) must be less than or equal to τ j = [15000, 5, 200, 8000]. The value of the incentive for renewable kW h supplied is taken as 0.024 ($/kWh) [8]. The maximum value of the energy price E P ma x is 0.11 ($/kWh) [52,53].

Type λ F (n/h) λ R (n/h) M G ∪ DG F D M G ∪ DG T D M G ∪ DG F D M G T1 3.
Concerning the calculation of the CVaR, the α-percentile is taken as α = 0.80.

B IEEE 13-bus test feeder data: Application 5.2 The budget is set to BGT = 4500000 ($) and the limit of units of the different DG technologies available to be purchased is τ = [20000, 8, 250, 10000]. The maximum value of the energy price is E P ma x = 0.12 ($/kWh) [53] and the highest value of total demand ΣL max i is set to 4800 (kW).

COv = 0.145 ($/kWh) σ = 125 (kW) λ F = 4.00e-04 (1/h) λ R = 1.30e-02 (1/h) PV T A = 30.00 ( • C) T N o = 43.00 ( • C) I SC = 1.80 (A) α = 0.26 V OC = 55.50 (V) β = 0.73 C I + CO f = 48 ($) k I = 1.40 (mA/ • C) λ F = 5.00e-04 (1/h) COv = 3.76e-05 ($/kWh) k V = 194.00 (mV/ • C) λ R = 1.30e-02 (1/h) V M P P = 38.00 (V) I M P P = 1.32 (A) W U C I+CO f = 3.
The opportunity cost for kW h not supplied C LS is considered as twice of the maximum energy price.

C IEEE 30-bus sub-transmission & distribution

system data: Application 5.3 
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Introduction

Over the last decade, the global energetic situation has been receiving a progressively greater attention. The adverse environmental effects of fossil fuels, the volatility of the energy market, the growing energy demand and the intensive reliance on centralized bulk-power generation have triggered a re/evolution towards cleaner, safer, diversified energy sources for reliable and sustainable electric power systems [1][2][3][4][5][6]. The challenges involved have stimulated both technological development of new equipment and devices, and efficiency improvements in design, planning, operation strategies and management across generation, transmission and distribution.

In this paper, we focus on distribution networks and the conceptual and operational transition they are facing. Indeed, the traditional passive operation with unidirectional flow supplied by a centralized generation/transmission system, is evolving towards an active operational setting with integration of distributed generation (DG) and possibly bidirectional power flows [7,8].

DG is defined as 'an electric power source connected directly to the distribution network or on the customer site of the meter' [8][9][10] and in principle offers important technical and economical benefits. Under the assumption that the distribution network operators have control over the dispatching of the DG power, improvement of the reliability of power supply and reduction of the power losses and voltages drops can be achieved. Indeed, DG allocation on areas close to the customers allows the power flowing through shorter paths, and therefore, decreasing the amount of unsatisfied power demand and enhancing the power and voltage profiles. Thus, the eventual intermittence of the centralized power supply can be smoothed [11]. In addition, the modular structure of the DG technologies implies lower financial risks [12,13] and thus the investments on the power system can be deferred [1,3].

Most of the actual DG technologies make use of local renewable energy resources, such as wind power, solar irradiation, hydro-power, etc., which makes them even more attractive in view of the requested environmental sustainability (e.g. the Kyoto Protocol [7,14,15]). Given the intermittent character of these energy sources, their implementation needs to be accompanied by efficient energy storage technologies. Attentive DG planning is needed to seize the potential advantages associated to DG integration, taking into account specific technical, operational and economic constraints, sources and loads forecasts and regulations. If the practice of selection, sizing and allocation of the different available technologies is not performed attentively, the installation of multiple renewable DG units could produce serious operational complications, in fact, counteracting the potential benefits. Degradation of control and protection devices, reduction of power quality and reliability on the supply, increment in the voltage instability and all related negative impacts on the costs, could become impediments for integration of DG [1-3, 8, 10, 14, 16-20].

Viewing DG planning as a fundamental baseline of advancement, many efforts have been made

to solve the associated problem of DG allocation and sizing. Objective functions considered for 2 the optimization are of economic, operational and technical type. Among the first type, costbased objective functions have been used considering the costs of energy and fuel for generation, investments, operation and maintenance, energy purchase from the transmission system, energy losses, emissions, taxes, incentives, incomes, etc. [1-3, 7, 8, 11, 13, 14, 16-27]. The second type of operational objective functions mainly revolves around indexes such as the contingency load loss index (CLLI) [23], expected value of non-distributed energy cost (ECOST), system average interruption duration index (SAIDI), system average interruption frequency index (SAIFI) [7,16,28],

expected energy not supplied (EENS) [28,29], among others. Regarding the third type of objective functions, technical performance indicators include energy losses [1,30] and total voltage deviation (TVD) [18].

Power Flow (PF) equations are typically solved within the optimization problem to evaluate the objective functions, while respecting constraints and incorporating non-convex and non-linear conditions. Given the complexity of the optimization problem, heuristic optimization techniques belonging to the class of Evolutionary Algorithms (EAs) have been proposed as a most effective way of solution [10], including particle swarm optimization (PSO) [23,24,27,31,32], differential evolution (DEA) [18] and genetic algorithms (GA) [3,7,11,13,14,16,26,33,34].

An additional difficulty associated to the problem is the proper modeling of the uncertainties inherent to the behavior of primary renewable energy sources and the unexpected operating events (failures or stoppages) that can affect the generation units. These uncertainties come on top of those already present in the network, such as intermittence and fluctuation in the main power supply due to unavailability of the transmission system, overloads and interruptions of the power flow in the feeders, failures in the control and protection devices, variability in the power loads and energy prices, etc. These uncertainties are incorporated into the modeling by generating a random set of scenarios by Monte Carlo simulation (MCS); the optimization is, then, executed to obtain the optimal expected or cumulative value(s) of the objective function(s) under the set of scenarios considered [2,3,7,16,28,32,34,35].

In the search for the optimal DG-integrated network, the use of only mean or cumulative values as objective function(s) of the optimization hinders the possibility of controlling the risk of the optimal solution(s): the optimal DG-integrated network may on average satisfy the performance objectives but be exposed to high-risk scenarios with non-negligible probabilities [1,7,16,24,28,36].

The original contributions of this work reside in: addressing the optimal renewable DG technology selection, sizing and allocation problem within a simulation and multi-objective optimization (MOO) framework that allows for assessing and controlling risk; introducing the conditional value-atrisk (CVaR) as a measure of the risk associated to each objective function of the optimization [37,38].

The main sources of uncertainty are taken into account through the implementation of a MCS and OPF (MCS-OPF) resolution engine nested in a MOO based on NSGA-II [39]. The aim of the MOO is, specifically, the simultaneous minimization of the expected global cost (EC g ) and expected

energy not supplied (E EN S), and corresponding C VaR values. A weighting factor β is introduced to leverage the impact of the CVaR in the search of the final Pareto optimal renewable DG integration solutions. The proposed framework provides a new spectrum of information for well-supported decision making enabling the trade-off between optimal expected performance and the associated risk to achieve it. 

Distributed generation network simulation model

Distributed generation network structure and configuration

Four main classes of components are considered in the distribution network: nodes, feeders, renewable DG units and main power supply spots (MS). The nodes can be understood as fixed spatial locations at which generation units and loads can be allocated. Feeders connect different nodes and through them the power is distributed. Renewable DG units and main power supply spots are power sources; in the case of electric vehicles and storage devices they can also act as loads when they are in charging state. The locations of the main supply spots are fixed. The MOO aims at optimally allocating renewable DG units at the different nodes. nodes test feeder [40], for which the regulator, capacitor, switch and the feeders with length equals to zero are neglected.

Each component in the distribution network has its own features and operating states that determine its performance. Assuming stationary conditions of the operating variables, the network operation is characterized by the location and magnitude of power available, the loads and the mechanical states of the components, because degradation or failures can have a direct impact on the power availability (in the DG units, feeders and/or main supply).

The renewable DG technologies considered in this work include solar photovoltaic (PV), wind turbines (W), electric vehicles (EV) and storage devices (batteries) (ST). The power output of each of these technologies is inherently uncertain. PV and W generation are subject to variability through their dependence on environmental conditions, i.e., solar irradiance and wind speed. Dis/connection and dis/charging patterns in EV and ST, respectively, further influence the uncertainty in the power outputs from the DG units. Also generation and distribution interruptions caused by failures are regarded as significant.

The following notation is used for sets and subsets of components in the distribution network: N -set of all nodes; M S -set of all types of main supply power sources; DG -set of all DG technologies; P V -set of all photovoltaic technologies; W -set of all wind technologies; EV -set of all electric vehicle technologies; S T -set of all storage technologies; F D -set of all feeders.

The configurations of power sources allocated in the network, indicating the size of power capacity and the location, is given in matrix form: 
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Feeders deployment is described by the set of pairs of nodes connected:

F D = {(1, 2), . . . , (i, i')} ∀(i, i') ∈ N × N , (i, i') is a feeder (3) 
Any configuration {Ξ, F D} of power sources Ξ = [Ξ M S |Ξ DG ] and feeders F D of the distribution network are affected by uncertainty, so that the operation and performance of the distribution network is strongly dependent on the network configuration and scenarios. Furthermore, if the distribution network acts as a 'price taker', the variability of the economic conditions, particularly the price of the energy, is also an influencing factor [13,19,20]. For these reasons, it is imperative to represent and account for the uncertainties in the optimal allocation results for informed and conscious decision-making.

Uncertainty Modeling

Photovoltaic generation

PV technology converts the solar irradiance into electrical power through a set of solar cells configured as panels. Commonly, solar irradiance has been modeled using probabilistic distributions, derived from the weather historical data of a particular geographical area. The Beta distribution function [41,42] is used in this paper:

f pv (s) =    Γ (α + β) Γ (α)Γ (β) s (α-1) (1 -s) (β-1) ∀s ∈ [0, 1], α i , β i > 0 0 otherwise (4) 
where s -solar irradiance; f pv -beta probability density function; α, β -parameters of the beta probability density function. The parameters of the Beta probability density function can be inferred from the estimated mean µ and standard deviation σ of the random variable s as follows [1]:

β = (1 -µ) µ(1 + µ) σ 2 -1 (5) α = µβ 1 -µ (6)
Besides dependence on solar irradiation, PV depends also on the features of the solar cells that 6 107 constitute the panels and on ambient temperature on site. The power outputs from a single solar cell is obtained from the following equations [41,42]:

T c = T a + s N oT -20 0.8 (7) 
I = s(I sc + k i (T c -25)) (8) 
V = V oc + k v T c ( 9 
)
F F = V M P P I M P P V oc I sc (10)

P pv (s) = n cel ls F F V I ( 11 
)
where T a -ambient temperature ( • C); N oT -nominal cell operating temperature (

• C); T c -cell temperature ( • C); I sc -short circuit current (A); k i -current temperature coefficient (mA/ • C); V oc -
open circuit voltage (V); k v -voltage temperature coefficient (mV/ • C); V M P P -voltage at maximum power (V); I M P P -current at maximum power (A); F F -fill factor; n cel ls -number of photovoltaic cells; P pv (s) -PV power output (W).

Wind generation

Wind generation is obtained from turbine-alternator devices that transform the kinetic energy of the wind into electrical power. The stochastic behavior of the wind speed is commonly represented through probability distribution functions. In particular, the Rayleigh distribution has been found suitable to model the randomness of the wind speed in various conditions [1,42]:

f w (ws) = 2ws σ exp - ws σ 2 ( 12 
)
where ws -wind speed (m/s); f w -Rayleigh probability density function; σ -scale parameter of the Rayleigh distribution function.

Then, for a given wind speed value, the power output of one wind turbine can be determined as [1,41,42]: if ws a ≤ ws ≤ ws co 0 otherwise (13) where ws ci -cut-in wind speed (m/s); ws a -rated wind speed (m/s); ws co -cut-out wind speed (m/s); P w RT D -rated power (kW); P w (ws) -wind power output (kW).

P w (ws) =        P w

Electric vehicles

In this work, EV are considered as battery electric vehicles with three possible operating states: charging, discharging (i.e., injecting power into the distribution network) and disconnected [43].

To model their pattern of operation, they are considered as a 'block group', aggregating their single operating states into an overall performance. The main reasons for this aggregation are the observed nearly stable daily usage schedule of EV and the need of avoiding the combinatorial explosion of the model [42]. The power output of one block of EV is formulated by assigning residence time intervals to each possible operating state and associating them with the percentage of trips that the vehicles perform by hour of a day [43]. This allows approximating the hourly probability distribution of the operating states per day, as shown Figure 2. In a given (random) scenario of operational conditions, the determination of the operating state of a block of EV, of a specific hour of the day, is sampled randomly from the corresponding probability distribution. Accordingly, the power output for a unit or block group of EV is calculated using the expressions ( 14) and ( 15) below:

f ev (t d , op) =        p dch (t d ) if op = discharging p ch (t d ) if op = charging p d t d (t d ) if op = disconnected ( 14 
)
∀op ∈ OPs = {charging, discharging, disconnected}

P ev (op) =        P ev RT D if op = discharging -P ev RT D if op = charging 0 if op = disconnected (15) 
∀t ∈ [0, t Rop ], op ∈ OPs = {charging, discharging, disconnected} where t d -hour of the day (h); t Rop -residence time interval for operating state op (h); f evoperating state probability density function; P ev RT D -rated power (kW).

Storage devices

Analogously to the EV case, storage devices are treated as batteries. In reality, these present two main operating states, charging and discharging [44]. However, for this study the level of charge in the batteries is randomized and the state of discharging is the only one that is allowed. This is done to simplify the behavior of the batteries, making it independent on the previous state of charge. The discharging time interval is assigned according to the relation between the batteries rated power, their energy density and the random level of charge they present. For this, the discharging action is carried out at a rate equal to the rated power. Then, the power output per unit of mass of active chemical in the battery M T is estimated as follows:

f st (Q st ) =    1 SE × M T ∀Q st ∈ [0, SE × M T ] 0 otherwise (16) t' R (Q st ) = Q st P s t RT D (17) P st (t R ) = P st RT D ∀t R ∈ [0, t' R ] (18) 
where Q st -level of charge in the battery (kJ); SE -specific energy of the active chemical (J/kg);

M T -total mass of the active chemical in the battery (kg); f st -uniform probability density function;

P st RT D -rated power (kW); t' R -discharging time interval (h).

Main power supply

The MS spots in the distribution network are the power stations connected to the transmission system. The distribution transformers are located on these spots and provide the voltage level of the customers. The stochasticity of the available main supplies of power is represented following normal distributions [10,45], truncated by the maximum capacity of the transformers.

f ms (P ms ) =            1 σ ms φ P ms -µ ms σ ms Φ P ms cap -µ ms σ ms -Φ - µ ms σ ms ∀P ms ∈ [0, P ms cap ]
0 otherwise (19) where P ms -available main power supply (kW); µ ms -Normal distribution mean; σ ms -Normal distribution standard deviation; f ms -Normal probability density function; P ms cap -maximum capacity of the transformer (kW); φ -standard Normal probability density function; Φ -cumulative distribution function of φ.

Mechanical states of the components

Renewable DG units, MS spots and feeders are subject to wearing and degradation processes. These processes can trigger unexpected events, even failures, interrupting or reducing the specific functionality of each component. Frequently, the stochastic behavior of failures, repairs and maintenance actions is modeled using Markov models [28,42]. In this work, a two-state model is implemented in which the components can be in the mutually exclusive states: available to operate and under repair (failure state). Assuming the duration of each state as exponentially distributed, the mechanical state of a component can be randomly generated as follows:

mc =    1 if the component is available to operate 0 otherwise (20) 
∀ component ∈ {Ξ, F D} f mc (mc) = (1 -mc)λ F + mcλ R λ F + λ R ∀mc ∈ {0, 1} (21) 
where mc -binary mechanical state variable, λ F -failure rate (failures/h), λ R -repair rate (repairs/h), f mc -mechanical state probability mass function.

Demand of power

Overall demands of power, as well as single load profiles in the nodes of the distribution network, can be obtained as daily load curves in which to each hour corresponds one specific level of load, inferred from historical data [1,14,19]. In addition, power demands profiles can be considered uncertain following normal distributions [34].

Within the proposed modeling framework, the nodal demands of power are defined by integrating the two models mentioned above, i.e. adopting the general daily load profile and considering the hourly levels of load as normally distributed. Figure 3 schematizes the previous assumption for a generic node i. In this manner, the nodal demand of power is deducted from the overall demand in the network, and modeled as:

23 0 t d (h) L i (t d ) (kW) d t ( ) i d f t ( ) i d L t
f L i (L i , t d ) =            1 σ i (t d ) φ L i -µ i (t d ) σ i (t d ) 1 -Φ - µ i (t d ) σ i (t d ) ∀i ∈ N , L i ∈ [0, ∞] 0 otherwise ( 22 
)
where t d -hour of the day (h), L i -power demand in node i (kW), µ i -normal distribution mean of power demand in node i, σ i -normal distribution standard deviation of power demand in node i, f L i -normal probability density function of power demand in node i.

Monte Carlo simulation

Most of the techniques used for evaluating the performance of renewable DG-integrated distribution networks are of two classes: analytical methods and MCS [28]. The implementation of analytical methods is always preferable, in theory, because of the possibility of achieving closed exact solutions, but in practice; it often requires strongly simplifying assumptions that may lead to unrealistic results: power network applications exist but for non-fluctuating or non-intermittent generation and/or load profiles, and low dimensionality of the network, gaining traceability with reduced computational efforts [32]. Different, MCS techniques allow considering more realistic models that analytical methods do, because simplifying assumptions are not necessary to solve the model, since de facto the model is not solved but simulated and the quantities of interest are estimated from the statistics of the virtual simulation runs [46]. For this reason MCS is quite adequate for application on the analysis of distribution networks with significant randomness or variability in the sources of power supply and loads, failure occurrence and strong dependence on the power flows as a consequence of congestion conditions in the feeders, etc. [3,31,33,41,42,47]; the price to pay for this is the possibly considerable increment in the use of computational resources, and various methods exist to tackle this problem [46].

Given the multiple sources of uncertainties considered in the proposed framework and the proven advantages of MCS for adequacy assessment of power distribution networks with uncertainties [3,31,33,41,42,47], we adopt a non-sequential MCS to emulate the operation of a distribution network, sampling the uncertain variables without considering their time dependence, so as to reduce the computational problem.

For a given structure and configuration of the distribution network {Ξ, F D}, i.e., for the fixed Ξ M S and F D deployments and the proposed renewable DG integration plan denoted by Ξ DG , each uncertain variable is randomly sampled. The set ϑ of sampled variables constitutes an operational scenario, in correspondence of which the distribution network operation is modeled by OPF and its performance evaluated. The two inputs to the OPF model are the network configuration {Ξ, F D} and the operational conditions scenario ϑ.

ϑ = [t d , P ms i, j , L i , s i , ws i , op ev i, j , Q st i, j , mc i, j , mc (i,i') ] ∀i, i' ∈ N , j ∈ M S ∪ DG, (i, i') ∈ F D ( 23 
)
where t d -hour of the day (h), randomly sampled from a discrete uniform distribution U (1,24). Figure 4 shows an example of the matrix form construction of the DG-integrated distribution network, considering a simple case of n = 3 nodes. The network contains one MS spot at node i = 1, defining the fixed part Ξ M S of the configuration matrix, whereas, the decision variable Ξ DG proposes a renewable DG integration plan Ξ DG that built from the number of units ξ of each DG technology allocated. In this way, the network configuration {Ξ, F D} is composed by the matrix Ξ = [Ξ M S |Ξ DG ] and the deployment of feeders. Then, given the spatial representation {Ξ, F D}, the sampling of the scenario ϑ determines the operational conditions to perform power flow analysis, i.e., distribute the power available P ϑ Ga to supply appropriately the demands L i . The available power in the power source type j at node i, P ϑ Ga i, j

, is function of the number of units allocated ξ i, j , the mechanical state mc i, j and the specific unitary power output function associated to the generation unit j, formulated in equations ( 24) and (25). 

L 2 (t d ) L 3 (t d )
L 2 L 3 ■■ ■ ■■■ ■■ ■ ■ ■■ ■■■ ξ i,j units allocated MS ■ FD = {(1, 2),(2, 3)} 1 2 0 1 0 Ξ 0 0 3 2 1 0 1 2 0 3          1 MS 2 PV j 3 W 4 EV 5 ST Ξ MS Ξ DG
A Construction of the model 

P ϑ Ga i, j = ξ i, j mc ϑ i, j G j (ϑ) (24) 
G j (ϑ) =                  P ms;ϑ j if j ∈ M S P pv j (s ϑ i ) if j ∈ P V P w j (ws ϑ i ) if j ∈ W ∀i ∈ N P ev j (op ϑ i, j ) if j ∈ EV P st j (Q st;ϑ i, j ) if j ∈ ST ( 25 
)
In the proposed non-sequential MCS procedure, the intermittency in the solar irradiation is taken into account defining a night interval between 22.00 and 06.00 hours, i.e., if the value of the hour of the day t d (h), sampled from a discrete uniform distribution U (1,24), falls in the night interval, there is no solar irradiation. Regarding the wind speed, its variability is considered by sampling positive values from a Rayleigh probability density function fitted on historical data and whose parameters as such that the probability of absence of wind is zero. Since it is not reasonable to force the historical profile of the wind speed to follow a distribution that admits intermittency, a common alternative technique is to model the wind by a Markov Chain. Indeed, it is possible to accurately represent the wind speed by a stationary Markov process if the historical profile of wind speed data is sufficiently large e.g. years [28]. The intermittency is, then, represented by the first state of the chain with wind speed equals to zero, and the sampling of the wind speed states in the non-sequential MCS of the proposed framework, can be performed using the steady-state probabilities of the Markov Chain.

An important issue in modeling the operation of power systems is how to represent the evolution of uncertain operating conditions, such as solar irradiation, wind speed, load profiles, energy prices, among others. As an example, the load forecast implies the prediction of future power demands given specific previous conditions. Therefore, to consider load forecast uncertainty within the proposed MCS framework, it would be necessary to change to a sequential simulation model, in which the uncertain renewable energy resources, main power supply and loads must be sampled at each time step. In particular, load forecast uncertainty can be integrated properly building consecutive load scenarios and assigning corresponding probabilities of occurrence as presented by [7] and [48].

Another interesting approach for load forecast uncertainty modelling is the geometric Brownian motion (GBM) stochastic process [31,49].

Optimal power flow

Power flow analysis is performed by DC OPF [50] which takes into account the active power flows, neglecting power losses, and assumes a constant value of the voltage throughout the network. This allows transforming to linear the classic non-linear power flow formulation, gaining simplicity and computational tractability. For this reason, DC power flow is often used in techno-economic analysis of power systems, more frequently in transmission [50,51] but also in distribution networks [51].

The DC power flow generic formulation is:

P i = i'∈N B (i,i') (δ i -δ i' ) ∀i ∈ N , (i, i') ∈ F D ( 26 
) i∈N P G i -L i -P i = 0 ∀i ∈ N (27)
where, P i -active power leaving node i (kW); B (i,i') -susceptance of the feeder (i, i') (Ω -1 ); δ ivoltage angle at node i; P G i -active power injected or generated at node i (kW); L i -load at node i (kW).

The assumptions are:

• the difference between voltage angles is small, i.e., sin(∆δ) ≈ ∆δ, cos(∆δ) ≈ 1

• the feeders resistance are neglected, i.e., R << X , which implies that power losses in the feeder are also neglected

• the voltage profile is flat (constant V , set to 1 p.u.)

Then, for a given configuration {Ξ, F D} and operational scenario ϑ the formulation of the OPF problem is:

min C net;ϑ O&M (P ϑ Gu ) = i∈N j∈M S∪DG C O&M v j P ϑ Gu i, j t S (28) s.t. L ϑ i - j∈M S∪DG P ϑ Gu i, j - i'∈N mc ϑ (i,i') B (i,i') (δ ϑ i -δ ϑ i' ) -LS ϑ i = 0 ∀i, i' ∈ N , (i, i') ∈ F D ( 29 
)
P ϑ Gu i, j ≤ P ϑ Ga i, j ∀i ∈ N , j ∈ M S ∪ DG (30) 0 ≤ P ϑ Gu i, j ∀i ∈ N , j ∈ M S ∪ DG ( 31 
)
mc ϑ (i,i') B (i,i') (δ ϑ i -δ ϑ i' ) ≤ V × Amp (i,i') ∀i, i' ∈ N , (i, i') ∈ F D ( 32 
)
-mc ϑ (i,i') B (i,i') (δ ϑ i -δ ϑ i' ) ≤ V × Amp (i,i') ∀i, i' ∈ N , (i, i') ∈ F D ( 33 
)
where, t S -duration of the scenario (h); C net;ϑ O&M -operating and maintenance costs of the total power supply and generation ($); C O&M v j -operating and maintenance variable costs of the power source j ($/kWh); mc ϑ (i,i') -mechanical state of the feeder (i, i'); B (i,i') -susceptance of the feeder (i, i') (Ω -1 ); mc ϑ i, j -mechanical state of the power source j at node i; P ϑ Ga i, j

-available power in the source j at node i (kW); P ϑ Gu i, j power produced by source j at node i (kW); LS ϑ i -load shedding at node i (kW); V -nominal voltage of the network (kV); Amp (i,i') -ampacity of the feeder (i, i') (A).

The load shedding in the node i, LS i , is defined as the amount of load(s) disconnected in node i to alleviate overloaded feeders and/or balance the demand of power with the available power supply [52]. The OPF objective is the minimization of the operating and maintenance costs associated to the generation of power for a given scenario ϑ of duration t S . Equation (29) corresponds to the power balance equation at node i, while equations (30) and (31) are the bounds of the power generation and equations ( 32) and ( 33) account for the technical limits of the feeders.

Performance indicators

Given a set Υ of ns sampled operational scenarios ϑ , ∈ {1, . . . , ns}, the OPF is solved for each scenario ϑ ∈ Υ , giving in output the values of ENS and global cost.

Energy not supplied

ENS is a common index for reliability evaluation in power systems [1,10,11,48,49,[52][53][54][55]. In the present work, its value is obtained directly from the OPF output in the form of the aggregation of all nodal load sheddings per scenario ϑ :

EN S ϑ = i∈N LS ϑ i × t S ∀ϑ ∈ Υ ( 34 
)
EN S Υ = {EN S ϑ 1 , . . . , EN S ϑ , . . . , EN S ϑ ns } (35)

Global cost

The C g of the distribution network is formed by two terms, fixed and variable costs. The former term includes those costs paid at the beginning of the operation after the installation of the DG (conception of Ξ DG ). They are the investment-installation cost and the operation-maintenance fixed cost. The variable term refers to the operating and maintenance costs. Note that these costs are dependent on the power generation and supply, which are a direct output of the OPF (eq. ( 28)). In addition, this term considers revenues associated to the renewable sources incentives. Considering the distribution network as a 'price taker' entity, the profits depend on the value of the energy price that is correlated with the total load in the network. Three different ranges of load are considered for the daily profile. For each range, a correlation value of energy price is considered as shown in In Figure5(B) the correlation between energy price and total load is presented as the proportion of their maximum values. As an intermediate approximation of existing studies (e.g. [13,19,20]), the line with square-markers represents the proportional correlation used in this study, which can be expressed as:

ep = ep h -0.38 L T (t d ) L T h 2 + 1.38 L T (t d ) L T h (36) 16 117 
Thereby, the global cost function for a scenario ϑ is given by:

C ϑ g = i∈N j∈DG (C inv j + C O&M f j ) t S t h + C net;ϑ O&M -(inc + ep(L ϑ )) i∈N j∈DG P ϑ Gu i, j
t S (37)

C Υ g = {C ϑ 1 g , . . . , C ϑ g , . . . , C ϑ ns g } (38) 
where C inv j -investment cost of the DG technology j ($); C O&M f j -operating and maintenance fixed costs of the DG technology j ($); t h -horizon of analysis (h); inc -incentive for generation from renewable sources ($/kWh); ep -energy price ($/kWh); C ϑ g -global cost ($).

Risk

In [38], the importance of measuring risk when optimizing under uncertainty and including it as part of the objective function(s) or constraints is emphasized. The proposed MOO framework introduces the CVaR as a coherent measure of the risk associated to the objective functions of interest. The CVaR has been broadly used in financial portfolio optimization either to reduce or minimize the probability of incurring in large losses [37,38]. This risk measurement allows evaluating how 'risky'

is the selection of a solution leading to a determined value of expected losses.

We can consider a fixed configuration of the distribution network {Ξ, F D} including the integration of DG units as a portfolio. The assessed expectations of EN S Υ and C Υ g , found from the MCS-OPF applied to the set of scenarios Υ , are estimations of the losses; then, C VaR(EN S Υ ) and C VaR(C Υ g ) represent the risk associated to the solutions with these expectations.

The definition of CVaR for continuous and discrete general loss functions is given in detail in [38]. Here a simplified and intuitive manner to understand the CVaR definition and its derivation according to [56] is presented. As shown in Figure 6(A), for a discrete approximation of the probability of the losses, given a confidence level or α-percentile, the value-at-risk VaR α represents the smallest value of losses for which the probability that the losses do not exceed the value of VaR α is greater than or equal to α. Thus, from the cumulative distribution function F(losses) is possible to construct the α-tail cumulative distribution function F α (losses) for the losses, such that (Figure 6(B)):

F α (losses) =    F (losses) -α 1 -α if VaR α ≤ losses 0 otherwise ( 39 
)
The α-tail cumulative distribution function represents the risk 'beyond the VaR' and its mean value corresponds to the C VaR α .

Among other risk measures, the CVaR has been commonly used to assess the financial impact associated to different sources of uncertainty on electricity markets behavior. Some interesting approaches in the use of diverse risk measures for electricity markets modelling can be found in [49,57,58].

DG units selection, sizing and allocation

This section presents the general formulation of the MOO problem considered previously. As introduced, the practical aim of the MOO is to find the optimal integration of DG in terms of selection, sizing and allocation of the different renewable generation units (including EV and ST).

The corresponding decision variables are contained in Ξ DG of the configuration matrix Ξ.

The MOO problem consists in the concurrent minimization of the two objective functions measuring the C g and EN S, and their associated risk. Specifically, their expected values and their CVaR values are combined, weighted by a factor β ∈ [0, 1], which allows modulating the expected performance of the distribution network and its associated risk.

MOO problem formulation

Considering a set of randomly generated scenarios Υ , the optimization problem is formulated as follows:

min

f 1 = βE EN S Υ + (1 -β)C VaR α (EN S Υ ) (40) min f 2 = βEC Υ g + (1 -β)C VaR α (C Υ g ) (41) 
s.t.

ξ i, j =   
ζ number of units of MS type or DG technology j are allocated at node i

0 otherwise (2) ∀i ∈ N , j ∈ M S ∪ DG, ζ ∈ * i∈N j∈DG ξ i, j (C inv j + C O&M f j ) ≤ BGT ( 42 
) i∈N ξ i, j ≤ τ j ∀ j ∈ DG (43) OPF({Ξ, F D}, Υ ) (28 -33)
where EC g and E EN S denote the expected values of C g and EN S, respectively.

The meaning of each constraint is, (2) -the decision variable ξ i, j is a non-negative integer number; (42) -the total costs of investment and fixed operation and maintenance of the DG units must be less or equal to the available budget BGT ; (43) -the total number of DG units to allocate of each technology j must be less or equal to the maximum number of units available τ j to be integrated; ( 28)-( 33) -all the equations of OPF must be satisfied for all scenarios in Υ .

Constraint (43) can be translated into maximum allowed penetration factor P F DG max j of each DG technology j. Defining P F as 'the output active power of total capacity of DG divided by the total network load' [59], constraint (43) can be rewritten as follows:

i∈N ξ i, j E P DG j E L T P F DG j ≤ τ j E P DG j E L T P F DG max j ∀ j ∈ DG ( 44 
)
where i∈N ξ i, j -total number of units of DG technology j integrated in the network; E P DG j expected power output of one unit of DG technology j (kW); E L T -expected total load (kW).

The MOO optimization problem is non-linear and non-convex, i.e., a non-convex mixed-integer non-linear problem or non-convex MINLP. It is non-linear because the objective functions given by equations ( 40) and ( 41) cannot be written in the canonical form of a linear program, i.e., C T X , where C is a vector of known coefficients and X the decision vector. In the present case, the decision matrix Ξ DG enters the MCS-OPF flow simulation to obtain the probability mass functions of C g and EN S and, then, the objective functions are formed from the corresponding expected and CVaR values. Thus, the operations applied on Ξ DG through MCS-OPF, expectation and CVaR cannot not be represented as the product C T Ξ DG . The problem is non-convex because the decision matrices Ξ DG are integer-valued (constraint (2)) and, as it is known, the set of non-negative integers is non-convex.

Given the class of optimization problem in the proposed framework (non-convex MINLP), it is most likely to have multiple local minima. Moreover, the dimension of the distribution network can lead to a combinatorial explosion of the feasible space of the decision matrices Ξ DG [7,10],

incrementing the number of possible local minima and hindering the possibility of benchmarking the optimal solutions obtained. However, an approximated but straightforward alternative is to perform several realizations of the framework obtaining different optimal solutions under the same optimization and simulation conditions (parameters) and, thus, compare them regarding the optimal decision matrices and their associated value of the objective functions.

This process was performed for the proposed case study. Indeed, the optimal decision matrices Ξ DG are different in all the cases, when the optimization and simulation framework is performed under the same conditions but, nonetheless, practically the same Pareto optimal values of EC g and E EN S are eventually obtained. This reflects that equally expected performances (EC g , E EN S) can be obtained for different Ξ DG considering the large amount of feasible combinations, which is what is of interest for practical applications.

NSGA-II with nested MCS-OPF

The combinatorial MOO problem under uncertainties is solved by the NSGA-II algorithm [39],

in which the evaluation of the objective functions is performed by the developed MCS-OPF. The NSGA-II is one of the most efficient evolutionary algorithms to solve MOO problems [60]. The extension to MOO entails the integration of Pareto optimality concepts. In general terms, solving a MOO problem of the form: min

X { f 1 (X ), f 2 (X ), . . . , f k (X )} s.t. X ∈ Λ ( 45 
)
with at least two conflicting objectives functions ( f i : ℜ n → ℜ) implies to find, within a set of acceptable solutions that belong to the non-empty feasible region Λ ⊆ ℜ n , the decision vectors X ∈ Λ that satisfy the following [61]:

¬X ∈ Λ : f i (X ) ≤ f i (X '), ∀i ∈ {1, . . . , k} and f i (X ) < f i (X ') for at least one i ⇓ f i (X ) ≺ f i (X ') i.e. X dominates X ' (46)
The vector X is called a Pareto optimal solution and the Pareto front is defined as the set

{ f (X ) ∈ ℜ n : X is Pareto optimal solution}.
The process of searching the non-dominated solutions set, carried out by the NSGA-II MCS-OPF, can be summarized as shown in Figure 7.

The interested reader can consult [62][63][64] to compare the proposed framework to alternative MOO analytical approaches in energy applications. chromosome encoding
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Perform the MCS-OPF on p 0 Random generation of the initial population p 0 of size sz 2D and integer-valued chromosomes (constraint ( 2)) subject to budget and DG units number constraints, ( 42) and ( 43) respectively. From equations ( 4) -( 22) sample the scenario ENS 

Compute the global costC g ϑℓ from equations ( 36) -( 37)

g C 
Evaluate the objective functions ( 40) and ( 41) from the sets of values of Cg and ENS obtained from all the simulated scenarios in the set ϒ={ϑ 1 ,…, ϑ ℓ ,…, ϑ ns }
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return the values of f 1 and f 2 for each chromosome in the population We consider a distribution network adapted from the IEEE 13 nodes test feeder [40,65]. The spatial structure of the network has not been altered but we neglect the regulator, capacitor and switch, and remove the feeders of zero length. The network is chosen purposely small, but with all relevant characteristics for the analysis, e.g. comparatively low and high spot and distributed load values and the presence of a power supply spot [65]. The original IEEE 13 nodes test feeder is dimensioned such that the total power demand is satisfied without lines overloading. We modify it so that it becomes of interest to consider the integration of renewable DG units. Specifically, the location and values of some of the load spots and the ampacity values of some feeders have been modified in order to generate conditions of power congestion of the lines, leading to shortages of power supply to specific portions of the network.

Distribution network description

The distribution network presents a radial structure of n = 11 nodes and f d = (n -1) = 10 feeders, as shown in Figure 8. The nominal voltage is V = 4.16 (kV), constant for the resolution of the DC optimal power flow problem. ically, the indexes of the pairs of nodes that are connected by each feeder of the network, their length, reactance X and their ampacity Amp.

Concerning the main power supply spot, the maximum active power capacity of the transformer and the parameters of the normal distribution that describe its variability are given in Table 2. The nodal power demands are reported as daily profiles, normally distributed on each hour.

The mean µ and variance σ values of the nodal daily profiles of the power demands are shown in The technical parameters of the four different types of DG technologies available to be integrated into the distribution network (PV, W, EV and ST) are given in Table 3. The values of the parameters of the Beta and Rayleigh distributions describing the variability of the solar irradiation and wind speed, are assumed constant in the whole network, i.e., the region of distribution is such that the weather conditions are the same for all nodes.

The hourly per day operating states probability profile of the EV is presented in Figure 10 and failures and repair rates of the components of the distribution network are provided in Table 4. The values of the investment (C inv ) and fixed and variable Operational and Maintenance (C O&M f and C O&M v ) costs of the MS and DG units are reported in Table 5. Consistently with the constraints ( 42) and ( 43) of the MOO problem, the total investment associated to a decision variable Ξ DG (proposed by the NSGA-II) must be less than or equal to the limit budget; which is set to BGT = 4500000 ($), and the total number of units of each type of DG (following the order [PV, W, 24
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EV, ST]) must be less than or equal to τ j = [15000, 5,200,8000]. The value of the incentive for renewable kWh supplied is taken as 0.024 ($/kWh) [34]. The maximum value of the energy price ep h is 0.11 ($/kWh) [19,20]. Concerning the calculation of the CVaR, the α-percentile is taken as α = 0.80. Five optimizations runs of the NSGA-II with the nested MCS-OPF algorithm have been performed, each one with a different value of the weight parameter β ∈ {1, 0.75, 0.5, 0.25, 0}, to analyze different tradeoffs between optimal average performance and risk. From equations ( 40) and ( 41 Finally, sn = 250 random scenarios are simulated by the MCS-OPF with time step t S = 1 (h).

Over an horizon of analysis of 10 years (t h = 87600 (h)), in which the investment and fixed costs are prorated hourly.

Results and discussion

The Pareto fronts resulting from the NSGA-II MCS-OPF are presented in Figure 11 6 presents the values of the objective functions, E EN S, EC g and their respective CVaR values for the selected solutions. The E EN S, EC g and CVaR values of the case in which no DG is integrated in the network (MS case) is also reported. Figure 12 shows a bubble plot representation of the selected optimal solutions. The axes report the E EN S and EC g values while the diameters of the bubbles are proportional to their respective CVaR values. The MS case is also plotted.

From Table 6 and Figure 12 it can be seen that, the MS case has an expected performance (E EN S = 1109.21 (kW h) and EC g = 170.27 ($)) inferior (high E EN S and EC g ) to any case for which DG is optimally integrated. Furthermore, the C VaR(EN S) = 1656.53 (kW h) for the MS case is the highest, indicating the high risk of actually achieving the expected performance of energy not supplied. This confirms that DG is capable of providing a gain of reliability of power supply and economic benefits, the risk of falling in scenarios of large amounts of energy not supplied being reduced. Comparing among the selected optimal DG-integrated networks, in general the expected performances of E EN S and EC g are progressively lower for increasing β. This to be expected: lowering the values of β, the MOO tends to search for optimal allocations and sizing Ξ DG that sacrifice expected performance at the benefit of decreasing the level of risk (CVaR). These insights can serve the decision making process on the integration of renewable DG into the network, looking not only at the give-and-take between the values of E EN S and, but also at the level of risk of not achieving such expected performances due to the high variability.

Figure 13 shows the average total DG power allocated in the distribution network and its breakdown by type of DG technology for the optimal Ξ DG as a function of β. It can be pointed out that the contribution of EV is practically negligible if compared with the other technologies. This is due to the fact that the probability that the EV is in a discharging state is much lower than that of being in the other two possible operating states, charging and disconnected (see Figure 10), combined with the fact that when EV is charging the effects are opposite to those desired.

The analysis of the results for different β values also allows highlighting the impact that each type of renewable DG technology has on the network performance. As can be noticed in Figure 13(A), the average total renewable DG power optimally allocated, increases progressively for increasing values of β: this could mean that to obtain less 'risky' expected performances less renewable DG power needs to be installed. However, focusing on the individual fractions of average power allocated by PV, W and ST (Figure 13(B), (C) and (E), respectively), show that a reduction of the risk in the E EN S and EC g is achieved specifically diminishing the proportion of PV power (from 0.29 β=1 to 0.11 β=0 ) while increasing the W and ST (from 0.38 β=1 to 0.48 β=0 and from 0.31 β=1 to 0.39 β=0 , respectively), but this increment of W and ST power is not enough to balance the loss of PV power due to the limits imposed by the constraints in the number of each DG technology to be installed given by τ j . Thus, PV power supply is shown to most contribute to the achievement of optimal expected performances, but with higher levels of risk. On the other hand, privileging the integration of W and ST power supply provides more balanced optimal solutions in terms of expectations and of achieving these expectations. Table 7 summarizes the minimum, average and maximum total renewable DG power allocated per node. The tendency is to install more localized sources (mainly nodes 4 and 8) of renewable DG power when the MOO searches only for the optimal expected performances (β = 1) and to have a more uniformly allocation of the power when searches for minimizing merely the CVaR (β = 0). 
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Renewable distributed generation (DG) requires the selection of the different available technologies, and their sizing and allocation onto the power distribution network, considering the specific economic, operational and technical constraints [1][2][3][4][5]. This can become a complex optimization problem, depending on the size of the distribution network and the number of renewable DG technologies available, that can lead to combinatorial explosion [1,3,[6][7][8][9]. Furthermore, for each renewable DG plan considered, the power flow problem needs to be solved to assess the response of the distribution network in terms of power and voltage profiles, available power usage, power demand satisfaction, economic performances, etc., with possibly significant computation times.

Heuristic optimization techniques belonging to the class of Evolutionary Algorithms (EAs), like honey bee mating [10], particle swarm optimization (PSO) [9,[11][12][13], differential evolution (DE) [14,15] and genetic algorithms (GA) [2,3,16,17], have been considered for the solution to this problem, since they can deal straightforwardly with non-convex combinatorial problems, discontinuous search spaces and non-differentiable objective functions [1,9].

To improve the performance of EAs for the complex optimization problem of DG planning, we consider the integration of clustering [18][19][20][21][22][23]. This can be directed to the enhancement of the global and/or local searching ability of the algorithm, and amounts to identifying groups of similar individuals and applying different evolution operators to those of a same cluster (group) [18,[20][21][22],

e.g. for random generation of new individuals in the neighborhood of cluster centroids [23], or multi-parents crossover over new randomly generated individuals spread in the global feasible space [19]. Even if convergence is improved, some of these methodologies increase temporarily the overall size of the population and, thus, the computational effort. In addition, the accuracy of the clusters structures in representing the distribution of individuals must be controlled for performing clustering conveniently.

The main original contribution of the work here presented, lies in the development of the clustering strategy in a controlled manner. The implementation of such clustering strategy is done within a Monte Carlo simulation and optimal power flow (MCS-OPF) model and differential evolution (DE) optimization framework [24] previously developed by the authors for the integration of renewable generators into an electrical distribution network: the framework searches for the optimal size and location of the distributed renewable generation units (DG) [25]. Optimality of the DG plan is sought with respect to the expected global cost (EC G). The introduction of the clustering is hierarchically (i.e., hierarchical clustering analysis, HCA, [26]) by a controlled way of reducing the number of individuals to be evaluated during the DE search, therefore, improving the computational efficiency. Henceforth, we call our method hierarchical clustering differential evolution (HCDE).

HCA is introduced to build a hierarchical structure of grouping individuals of the population 2

We test the approach on a case study based on the IEEE 13 nodes test feeder distribution network [27], completing the study with a sensitivity analysis to investigate the effects of the parameters controlling the clustering, namely C C C and p co .

For practical ease of the presentation of the approach, in the next section we provide the basic elements of the model of the distribution network considered as case study and we briefly summarize the MCS-OPF model taken from [25]. In Section 3, we embed this in the HCDE for renewable DG selection, sizing and allocation. Finally, in Section 4 we present the numerical results of the case study and in Section 5 we draw some conclusions on the work performed.

Renewable DG-integrated network model

The operation of the renewable DG-integrated network is considered to be dictated by the location and magnitude of the power available in the different sources, the loads and the operating states of the components. Uncertainty is present in the states of operation of the components, due to stochasticity of degradation and failures, and in the behavior of the renewable energy sources.

These uncertainties have a direct impact on the power available (from the DG units, main supply spots and/or feeders) to satisfy power demands, which are, in turn, also subject to fluctuations.

Furthermore, if the distribution network is considered as a 'price taker' entity, the uncertain behavior of the power demand impacts directly over the energy price [4,5,28]. Consequently, an attentive modeling of the uncertainties in renewable DG planning is imperative for well-supported decisionmaking.

Monte Carlo simulation (MCS) has already been used to emulate the stochastic operating conditions and evaluate the performance of power distribution networks [19,[28][29][30]. In the present paper, non-sequential MCS is used to randomly sample the modeled uncertain variables for a specific renewable DG plan, without dependence on previous operating conditions, characterizing the network operation in terms of location and magnitudes of power available and loads. Then, the performance of the DG-integrated network is evaluated through the optimal power flow model.

Monte Carlo and optimal power flow simulation

In the proposed framework, the renewable DG technologies considered are of four types: solar photovoltaic (PV), wind turbines (W), electric vehicles (EV) and storage devices (ST); these are represented by the set DG that contains all the d g types of technologies. As for main power supply spots or transformers (MS), the set M S indicates the ms different types of MS considered in the network.

The DG-integrated network deployment is represented by the location and capacity size of the power sources, as indicated in matrix form in Equation (1) below, where ξ i, j indicates the number 141 of units of main supply spots or DG technology j that are allocated at a node i: 

Ξ =        ξ 1,1 • • • ξ 1, j • • • ξ 1,ms ξ 1,1+ms • • • ξ 1, j+ms • • • ξ 1,
ξ i,1 • • • ξ i, j • • • ξ i,ms ξ i,1+ms • • • ξ i, j+ms • • • ξ i,
ξ n,1 • • • ξ n, j • • • ξ n,ms ξ n,1+ms • • • ξ n, j+ms • • • ξ n,d g+ms        = [Ξ M S |Ξ DG ] ∀ξi, j ∈ * , i ∈ N , j ∈ PS (1)
where N and PS = M S ∪ DG are the set of nodes in the network and the set of all power sources, whose cardinalities are n and ps = ms + d g, respectively.

The set of feeders F D is defined by all the pairs of nodes (i, i') connected by a distribution line

∀(i, i') ∈ N × N .
The considered uncertain conditions that determine the operation of the DG-integrated network are accounted for using different stochastic models, as summarized in Table 1. The interested reader can consult [25] for further details. 

p -(charging) p 0 (disconnected) p + (discharging) t d ST level of charge Q ST i, j (kJ) Uniform distribution [SE ST j M ST T i, j ] Nodal power demand L i (kW)
Daily nodal load profiles, hourly normally distributed load.

Truncated normal distribution 0 ≤ L i ≤ ∞ µ L i (t d ), σ L i (t d )
where ∀i, i' ∈ N , j ∈ PS, (i, i') ∈ F D, λ F j and λ R j (1/h) are the failure and repair rates of the power source j, respectively, λ F i,i' and λ R i,i' (1/h) are the failure and repair rates of the feeder (i, i'), respectively, µ M S j and σ M S j (kW) are the normal distribution mean and standard deviation associated to the main supply j, P M S cap j (kW) is the maximum capacity of the transformer j, α P V i and β P V i are the parameters of the Beta probability density function of the solar irradiance at node i, σ W i is the scale parameter of the Rayleigh distribution function of the wind speed at node i, SE ST j (kJ/kg) is the specific energy of the active chemical in the battery type j, M ST T i, j (kg) is the mass of active chemical in the battery type j at node i, µ L i (t d ) and σ L i (t d ) (kW) are the hourly mean and standard deviation of the normal distribution of the power load at node i.

Concerning the hour of the day t d (h), sampled from a discrete uniform distribution U (1,24), the night interval is defined between 22.00 and 06.00 h. If the value of t d falls in the night interval, there is no solar irradiation.

The resulting realization of one operational scenario of duration ts (h), for the given DG plan denoted by {F D, Ξ}, consists in the random sampling of each uncertain variable (Table 1), here indicated by the vector ϑ below:

ϑ = [t d , mc i, j , mc i,i' , L i , P M S i, j , s i , ws i , op EV i, j , Q ST i, j ] (2) 
To evaluate the performance of the distribution network the OPF model receives as input the location and magnitude of the available power in the power sources and demanded at the loads, which are set by the operating conditions defined by {F D, Ξ} and ϑ. The nodal power loads L i are directly sampled, whereas the available power in the power sources (MS and DG) depends on the uncertain variables that represent the behavior of the energy sources, the specific technical characteristics of each type of technology and the mechanical states. The available power in each type of power source considered is modeled by the functions summarized in Table 2, for a given configuration {F D, Ξ}, operating scenario ϑ and a generic node i. 

PV

T a i N oT j I sc j V oc j k I j , k V j V M P P j , I M P P j Pa P V ;ϑ i, j (s ϑ i ) = ξ i, j mc ϑ i, j F F j V ϑ i, j I ϑ i, j × 10 -3 (4) 
T ϑ c i, j = Ta i + s ϑ i (N oT j -20)/0.8 I ϑ i, j = s ϑ i (I sc j + k I j (T ϑ c i, j -25)) V ϑ i, j = V oc j + k V j T ϑ c i, j F F j = (V M P P j I M P P j )/(V oc j I sc j ) W ws ci j ws a j ws co j P W R j Pa W ;ϑ i, j (ws ϑ i ) = ξ i, j mc ϑ i, j ×        P W R j ws ϑ i -ws ci j ws a j -ws ci j if ws ci j ≤ ws ϑ i < ws a j P W R j if ws a j ≤ ws ϑ i ≤ ws co j 0 otherwise (5) EV t op EV ;ϑ i, j , P EV R j Pa EV ;ϑ i, j (op EV ;ϑ i, j , t) = ξ i, j mc ϑ i, j op EV ;ϑ i, j P EV R j ∀t ∈ [0, t op EV ;ϑ i, j ] (6) 
ST

P ST R j Pa ST ;ϑ i, j (t) = ξ i, j mc ϑ i, j P ST R j ∀t ∈ [0, t ST ;ϑ R i, j ] (7) 
t ST ;ϑ R i, j (Q ST ;ϑ i, j ) = Q ST ;ϑ i, j /P ST R j
In Table 2, Pa M S;ϑ i, j (kW), ξ i, j and mc ϑ i, j denote the available power, the units and the mechanical 143 state of the power source of type j allocated at node i. For solar photovoltaic technologies j ∈ P V , the parameter T a i ( • C) is the ambient temperature at node i, N oT j ( • C) is the nominal cell operation temperature,

I sc j (A) is the short circuit current, V oc j (V) is the open circuit voltage, k V j (mV/ • C) is the voltage temperature coefficient, k I j (mA/ • C)
is the current temperature coefficients and V M P P j (V) and I M P P j (A) are the voltage and current at maximum power point, respectively. For wind turbines of types j ∈ W , ws ci j , ws a j and ws co j (m/s) are the cut-in, rated and cut-out wind speeds, respectively, and P W R j (kW) is the rated power of the turbine. For electric vehicles j ∈ EV , t op EV ;ϑ

i, j (h) 
is the time of residence in the operating state op EV ;ϑ i, j

and P EV R j (kW) is the rated power. For storage

devices j ∈ ST , t S T ;ϑ R i, j
(h) is the upper bound of the discharging time interval and P ST R j (kW) is the rated power.

Under the operating conditions set forth, the given configuration of the renewable DG-integrated network {F D, Ξ} and the scenario ϑ, the OPF objective is the minimization of the operating cost associated to the generation and distribution of power, considering the revenues per kW h sold.

Power flow analysis is performed by DC modeling, neglecting power losses and assuming the voltage throughout the network as constant, linearizing the classic non-linear power flow formulation by accounting solely for active power flows [31,32]. The present formulation of the DC optimal power flow problem is:

min C o ϑ (Pu, ∆δ) = i∈N j∈PS (C ov PS j -ep ϑ )Pu i, j + (i,i')∈F D C ov F D i,i' |B i,i' (δ i -δ i' )| + (C op + ep ϑ ) i∈N LS i (8) s.t. L ϑ i -LS i - j∈PS Pu i, j - i∈N mc ϑ i,i' B i,i' (δ i -δ i' ) = 0 (9) 0 ≤ Pu i, j ≤ Pa PS;ϑ i, j (10) 
|B i,i' (δ i -δ i' )| ≤ V N E T A F D i,i' (11) 
where ∀i, i' ∈ N , j ∈ PS, (i, i') ∈ F D and the operating scenario ϑ, C o ϑ ($/h) is the operating cost of the total power supply and distribution, C ov PS j ($/kWh) is the variable operating cost of the power source j, ep ϑ ($/kWh) is the energy price, Pu i, j (kW) is the used power from the source of type j at node i, C ov F D i,i' ($/kWh) and B i,i' (Ω -1 ) are the variable operating cost and the susceptance of the feeder (i, i'), respectively, δ i is the voltage angle at node i, C op ($/kWh) is the opportunity cost for kW h not supplied, V N E T (kV) is the nominal voltage of the network and A i,i' (A) is the ampacity of the feeder (i, i'). The load shedding LS i (kW) is defined as the amount of load disconnected at node i to alleviate congestions in the feeders and/or balance the demand of power with the available power supply.

The distribution network is considered as a 'price taker' entity, assuming a correlation between the total demand of power and the energy price ep ($/kWh). Then, the energy price is calculated from an intermediate correlation proposed by [4,5,28]:

ep(T L) = ep h -0.38 T L(t d ) T L h 2 + 1.38 T L(t d ) T L h ( 12 
)
where ep h is the energy price corresponding to the highest value of total demand considered T L h .

The total demand of power T L(t d ) at the hour of the day t d is the summation of all the nodal loads 1).

L i (t d ) (Table
The constraint given by Equation ( 9) corresponds to the power balance equation at node i, whereas Equations ( 10) and ( 11) represent the bounds of the power generation and technical limits of the feeders, respectively.

One realization of the MCS-OPF consists of the sampling of N S operating scenarios ϑ regarded as the set Υ = {ϑ 1 , . . . , ϑ h , . . . , ϑ N S } for each of which the optimal power flow problem is solved, giving in output the values of the minimum operating cost of the total power supply and distribution

C o Υ = {C o ϑ 1 , . . . , C o ϑ h , . . . , C o ϑ N S }.

Expected global cost EC G

The proposed renewable DG-integrated network solutions are evaluated with respect to the expected global cost EC G. The global cost C G is composed by two terms: the fixed investment and operation (maintenance) costs C i ($), which are prorated hourly over the life of the project th (h), and the operating costs C o Υ ($/h) that is the outcome of the MCS-OPF (Equation ( 8)) described in the precedent Section 2.1. Thus, the global cost function for a scenario ϑ is given by:

C G ϑ = C i + C o ϑ ∀ϑ ∈ Υ ( 13 
) C i = 1 th i∈N j∈DG ξ i, j ci j ( 14 
)
where ci j ($) is the investment cost of the DG technology type j.

Then, the global cost 

C G Υ = {C G ϑ 1 , . . . , C G ϑ h , . . . , C G ϑ N S }

Renewable DG selection, sizing and allocation

The aim of the proposed simulation and optimization framework is to find the optimal plan of integration of renewable DG in terms of selection, sizing and allocation of generation units from different technologies available (PV, W, EV and ST). The corresponding decision variables are contained in Ξ DG of the configuration matrix Ξ defined in Equation (1).

Optimization problem formulation

Considering a network configuration (F D, Ξ) and a set of randomly generated scenarios Υ , the optimization problem is formulated as follows:

min EC G Υ (15) s.t. ξ i, j ∈ * (1) 
i∈N j∈DG

ξ i, j ci j ≤ BGT ( 16 
) i∈N ξ i, j ≤ τ j (17) MCS -OPF((F D, Ξ), Υ ) (18) 
The meaning of each constraint ∀i, i' ∈ N , j ∈ PS, (i, i') ∈ F D, τ j ∈ * is:

• (1): the decision variable ξ i, j is a non-negative integer number.

• (16): the total investment and fixed operation and maintenance costs must be less than or equal to the available budget BGT .

• (17): the total number of renewable DG units of each technology j to be allocated must be less than or equal to the maximum number of units available for integration τ j .

• ( 18): all Equations ( 8)-( 11) of MCS-OPF must be satisfied.

Hierarchical clustering differential evolution (HCDE)

The complex combinatorial optimization problem of DG planning under uncertainties described above is solved by integrating DE with HCA to reduce computational efforts, whereby the evaluation of the objective function is performed by the MCS-OPF presented in Section 2.1.

DE is a population-based and parallel, direct search method, shown to be one of the most efficient evolutionary algorithms to solve complex optimization problems [19,21,24]. The implementation of the original version of DE involves two main phases: initialization and evolution, summarized below for completeness of the paper [24]:

Initialization

• Set the values of parameters:

• N P: population size

• G ma x : maximum number of generations

• C oc: crossover coefficient ∈ [0, 1]
• F : differential variation amplification factor ∈ [0, 2]

• Generate randomly N P individuals X (decision vectors) within the feasible space, to form the initial population POP 0 = {X 0 1 , . . . , X 0 k , . . . , X 0 N P } • Evaluate the objective function f (X ) = y for each individual Evolution loop • Mutation: Generate a mutant individual V G k according to:

• Set generations count index G = 1 • Set POP G = POP 0 • While G ≤ G max
V G k = X G r 1 + F (X G r 2 -X G r 3 ) (19) 
• Crossover: initialize a randomly generated vector U G k , whose dimensionality dim is the same as that of X G k and each coordinate u G k,i follows a uniform distribution with outcome in [0, 1] ∀i ∈ {1, . . . , dim}. In addition, generate randomly an integer index r i ∈ {1, . . . , d im} from a uniform distribution to ensure that at least one coordinate from V G k is exchanged to form a trial individual X T G k , whose coordinates are defined as follows:

x t G k,i =    v G k,i if u G k,i ≤ C co or i = r i x G k,i if u G k,i > C co and i = r i (20) 
• Selection: evaluate the objective function for the trial individual f (X

T G k ); if f (X T G k ) < f (X G k ) (minimization), then X T G k replaces X G k in the population POP G , otherwise X G k is retained 10 • Set G = G + 1
• Once the stopping criterion is reached, sort the individuals in POP G max in descending order according to their values of the objective function and return X G max

The original version of DE keeps the population size N P constant, making the computational performance dependent mainly on the number of objective function evaluations carried out during the evolution phase of the algorithm. Then, the integration of HCA into DE is aimed at the reduction of the number of individuals that enter the evolution loop in each generation so as to decrease the number of objective function evaluations.

HCA links individuals or groups of individuals which are similar with respect to a specific property, translated into a metric of distance, obtaining a hierarchical structure. In practice, we use an agglomerative procedure which in sp = N P -1 steps fuses the closest pair or individuals or groups of individuals through a linkage function, e.g. single linkage (nearest neighbor distance), complete linkage (furthest neighbor), average linkage, among others, until the complete hierarchical structure is built. The base hierarchical clustering algorithm used in this study can be expressed as follows [26]:

Step 0: Given a population POP POP = {X 1 , . . . , X k , . . . , X N P }, form the set of singleton groups

O = {O p = {X k }}, ∀p = k ∈ {1, .
. . , N P} and calculate the linkage distances between all the N P groups using the average as linkage function and the Euclidean distance as metric: 

D 1 =           0 d 1 1,2 • • • d 1 1,q • • • d 1
0           d 1 p,q = X kp ∈O p X kq ∈O q (X kp -X kq ) 2 |O p ||O q |
∀p, q ∈ {1, . . . , N P}, kp, kq ∈ {1, . . . , N P} (21) where d 1 p,q is the average of the Euclidean distances between all the individuals X k belonging to the groups O p and O q , respectively.

Step 1: Fuse the first pair of groups O p' and O 1' , for which d 1 p',q' is the minimum distance min(D 1 ) and form a new group O N P+1 = {O p' ∪ O q' }. Update the set of groups O replacing O p' and O q' by O N P+1 , and calculate the linkage distances D 2 between all the N P -1 groups in O using (21).

Step 2: Fuse the second pair of groups O p' and O q' for which d 2 p',q' is the minimum distance min(D 2 ), and form a new group O N P+2 = {O p' ∪ O q' }. As in the preceding step, update the set of groups O and calculate the linkage distances D 3 between all the N P -2 groups in O using (21). . . .

Step N P -1: Fuse the last pair of groups with linkage distance d N P-1 p',q' , forming the last group O 2N P-1 = {O p' ∪ O q' } that contains all the individuals X .

The outcoming hierarchical (or tree) structure can be reported as a sorted table containing the N P -1 linkage distances relative to each pairing action of individuals/groups and be graphically illustrated as a dendrogram. Table 3 and Figure 2 present, respectively, the resultant linkage distances and dendrogram obtained from an example set of N P = 8 two-dimensional individuals X using the above introduced HCA algorithm. 

} = {{X 1 , X 2 , X 6 , X 7 } ∪ {X 3 , X 4 , X 5 , X 8 }} d 7
13,14 22) and ( 23) below [26].

0 1 2 3 4 5 0 1 2 3 4 5 X 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 O 8 O 15 O 14 O 12 O 9 O 5 O 6 O 2 O 4 O 3 O 7 O 1 x i x j O 10 O 13
C C C = p<q (d 1 p,q -D1 )(h p,q -H) p<q (d 1 p,q -D1 ) 2 p<q (h p,q -H) 2
∀p, q ∈ {1, . . . , N P} (22)

H =           0 h 1,2 • • • h 1,q • • • h 1,N P . . . . . . . . . . . . . . . 0 h p,q • • • h p,N P 0 . . . . . . . . . h N P-1,N P 0           h p,q = d sp * p',q' sp * = {min(sp) : X p ∧ X q ∈ O N P+sp },
∀p, q ∈ {1, . . . , N P}, p', q' ∈ {1, . . . , 2N P -1}, sp ∈ {1, . . . , N P -1}

where D1 is the average of the original Euclidean distances d 1 p,q between all the individuals, h p,q is the linkage distance d sp * p',q' where the pair of individuals X p and X q become members of the same group and H is the average of the resultant linkage distances h p,q between all the individuals.

Recalling that the aim of nesting HCA into DE is to increase the computational performance by decreasing the number of individuals to be evaluated in each generation G, the presetting of a threshold C C C th for the C C C value allows defining the level of representativeness required to the hierarchical structure proposed. If the C C C G obtained from applying HCA over the corresponding population POP G is higher than or equal to the threshold C C C th , the built hierarchical structure is considered an acceptable representation of the original distances amongst the individuals and the selection of a particular partition of the sets of groups can be performed, i.e., the determination of a specific number of clusters. Conversely, if C C C G is less than C C C th , the hierarchical structure is considered not representative enough since it introduces unacceptable distortion that may affect the global searching process in the HCDE.

Whether the hierarchical structure is accepted, the clustering process itself takes place. As before stated, the HCA outcome linkage distances d sp p',q' define each level (height) at which a pairing action takes place. If the hierarchical structure is 'cut off' at a specific linkage distance d CO , all the groups that are formed below the level d CO become independent clusters. In each generation G of HCDE, a d CO relative to the HCA outcome linkage distances for the corresponding POP G , is determined from a preset cutoff level coefficient p co of the linkage distances between the minimum d sp p',q' that correspond to the first pairing action and the distance to form at least four clusters needed to perform the mutation process in the HCDE. Thus, d CO can be obtained from Equations (24) and (25). Figure 3 shows the cutoff distance representation for the example aforementioned, for which Set the values of NP, G max , Coc, F, CCC th and p co Generate randomly NP individuals Ξ DG , according to constraints (1), ( 16) and (17), to form the initial population Is G ≤ G max ? Cut off the hierarchical structure according to p co (( 24) and ( 25)) forming NP G clusters. Obtain the individual closest-to-the-centroid for each group ck and set

1 ={Ξ Ξ Ξ } G G D G ; G D G ; G D G ; G ck NP POP' , , , ,   Set NP G = NP and 1 {Ξ Ξ Ξ } G G DG ;G DG ;G DG ;G k N P POP' POP , , , ,     Is ? (ΞΤ ) ( Ξ ) G G k' k' ECG ECG    Set G = G+1
Perform the trial loop, from each generate a trial individual applying mutation and cross over operators ((19) and (20), respectively) and evaluate the objective function

Ξ {1 } DG;G G G k' POP' , k' ,...,NP    ( ) G k' ECG ΞΤ  ΞΤ G k' Replace by in
where k is such that 

Ξ G k ΞΤ G k' G POP Ξ Ξ G G k k '  is retained in G POP Ξ Ξ G G k k '  Sort the

Case study

We consider a modification of the IEEE 13 nodes test feeder distribution network [27] with the original spatial structure but neglecting the feeders of length zero, the regulator, capacitor and switch. The resulting network has 11 nodes and presents the relevant characteristics of interest for the analysis, e.g. the presence of a main power supply spot and comparatively low and high spot, and distributed load values [33].

Distribution network description

The distribution network presents a radial structure of n = 11 nodes as shown in Figure 5. The nominal voltage V N E T is 4.16 (kV), kept constant for the resolution of the DC optimal power flow problem. The nodal power demands are built from the load data given in [27] and reported in Figure 6 as daily profiles, normally distributed on each hour t d with mean µ L and standard deviation σ L [29,34].

The technical parameters, failure and repair rates and costs of the MS and the four different types of DG technologies (PV, W, EV and ST) available to be integrated into the distribution network are given in Table 5. For the present case study, the distribution region is such that the solar irradiation and wind speed conditions are assumed uniform in the whole network, i.e., the values of the parameters of the corresponding Beta and Rayleigh distributions are assumed constant in the whole network. The hourly per day operating state probability profiles of the EV are presented in Figure 7: p 0 , p -and p + correspond to the profiles of disconnected, charging and discharging states, respectively. Coherently with constraints ( 16) and ( 17), the budget is set to BGT = 4, 500, 000 ($) and the limit of units of the different DG technologies available to be purchased is τ = [20000, 8, 250, 10000].

p 0 p - p +
The maximum value of the energy price is ep h = 0.12 ($/kWh) [5][5] and the highest value of total demand T L h is set to 4800 (kW). The opportunity cost for kW h not supplied C op is considered as twice of the maximum energy price.

A total of N S = 500 random scenarios are simulated by the MCS-OPF with time step ts = 1 (h), over a horizon of analysis of 10 years (th = 87, 600 (h)), in which the investment and fixed costs are pro-rated hourly. 

Results and discussion

The N F E = 20, 050, the total time for a single run is on average 25.574 (h). Taking into account this, under commonly used hardware configurations, the reductions in computational time that can be achieved by using HCDE with (50, 0.6, 0.25) and (50, 0.6, 0.50) settings are 19% and 49% for the median, 23% and 51% for the 15th %ile, and 16% and 43% for the 85th %ile, respectively.

The integration of HCA into the DE algorithm introduces a significant time complexity, conditioning the reductions of computational efforts that can be obtained by applying the proposed HCDE MCS-OPF framework. Indeed, if performing HCA along all generations of DE and running the MCS-OPF on an eventually reduced population (depending on C C C th and p co ) is computationally heavier than running the MCS-OPF over the complete population, the effects of the framework can be negligible or even negative. It is possible to formulate the condition to obtain reductions in the computational efforts by the proposed HCDE MCS-OPF framework, from the asymptotic time complexities of the main algorithms that compose it. Table 6 reports the independent asymptotic time complexities as functions of the generic size m of the input to each algorithm and of the parameters that define the dimensionality of the HCDE MCS-OPF framework [26,38]. where nps represents the size of the DG-integrated network, i.e., the number of nodes n times the number of all the technologies of power generation available ps, N P is the size of the complete population and N S is the number of scenarios in the MCS-OPF.

Comparing the asymptotic time complexities of the algorithms involved in the realization of the proposed framework with and without integrating HCA, the following inequalities must be fulfilled in order to obtain a reduction in the computational time by HCDE:

T PDIST (nps, N P) + T HC (N P) + E[N P G ] × T MCS-OPF (N S, nps) < N P × T MCS-OPF (N S, nps) ⇓ nps × N P 2 + N P 2 log(N P) + E[N P G ] × N S × nps 2 < N P × N S × nps 2 ⇓ κ = N P N P × nps + N P log(N P) N P × nps 2 + ε < 1 ∀n, ps, N P, N S ∈ * , ε = E[N P G ] N P ∈ (0, 1] (26) 
Ci ($) 

Conclusions

In a previous paper, we have presented a simulation and optimization framework for the planning of integration of renewable generation into a distribution network. The optimization is considered with respect the objective of minimizing the expected global cost of the system. The inherent uncertain behavior of renewable energy sources, variability in the main power supply and loads, as well as the possibility of failures of network components are included in a Monte Carlo simulation, which samples realizations of the uncertain operational scenarios for the optimal power flow.

The framework is quite general and complete in the characteristics of the realistic system scenarios considered. However, this is at the expenses of the computational time required for the overall optimization.

In this respect, in the present paper we have addressed the problem of computational efficiency in the resolution of the renewable DG planning optimization problem. We have done so by an original introduction of a controlled clustering strategy, with, the main original contributions being:

• The integration of differential evolution and hierarchical clustering analysis for grouping similar individuals from a given population and selecting representatives to be evaluated for each group, thus reducing the number of objective function evaluations during the optimization.

• The introduction of two control parameters, namely the cophenetic correlation coefficient and a cutoff level coefficient of the linkage distances, for allowing controlled adaptation during the search process and decision on whether or not to perform clustering and at which level of the hierarchical structure built.

A case study has been analyzed derived from the IEEE 13 nodes test feeder. The results obtained show the capability of the framework to identify optimal plans of renewable DG integration. The The integration of renewable distributed generation (DG) into electric power systems is playing a relevant role in the strategies to decentralize and diversify the overall power generation and, in the efforts to contribute to the pursuit of environmental sustainability. In principle, the allocation of renewable DG units directly on 'the customer site of the meter' and/or on strategically-defined points of the sub-transmission grids can improve reliability of power supply, alleviating the restrictive dependence on the bulk power generated by large-scale conventional power plants [1,2].

Furthermore, improvements of power losses and voltage stability profiles can be achieved, as well as reductions of investment risks and transmission costs [2][3][4].

DG planning is subject to complex economic, regulatory, technical and operational constraints, which must be attentively considered in order not to generate complications in the operative power system that may end up counteracting DG's potential benefits [5][6][7]. One of the main difficulties associated to the selection of technologies, dimensioning of power capacities and definition of the location of the different renewable generation units, is the modeling of the intrinsic uncertain behavior of the primary renewable energy sources (e.g. solar irradiance, wind speed and water inflow, in the case of solar photovoltaic, wind turbines and hydro-power technologies, respectively) and of the stochastic occurrence of unexpected events on the power generation units, such as failures and stoppages. Indeed, these sources of uncertainty are adjoined to those already present in the operative power system: failures and stoppages of transmission and distribution (T&D) lines and conventional generators, variability in the power demands and energy prices, fluctuations in the bulk power supply, etc. Consequently, for any proposed plan of DG-integrated network, the stochastic operational conditions need to be emulated coherently to the various sources of uncertainty to assess its expected performance by solving power flow equations [1,[8][9][10].

The selection of DG-integrated network plans can be framed as an optimization problem, whose complexity is driven by the size of the network and number of available DG technologies, that can lead to combinatorial explosion [9,11,12] and, by the aforementioned stochasticity and uncertainty. Optimality of the plan is customarily sought with regards to economic targets, such as minimization of costs of carbon dioxide emissions, fuel and transportation, energy losses, operation and maintenance, investment, etc.. The solutions identified must, of course, comply with technical constraints like generation capacities, T&D lines rating and voltage drops [1,5].

Evolutionary algorithms (EAs) have emerged as the most effective search engines for combinatorial optimization problems and they can deal with non-differential objective functions, discontinuous feasible spaces and non-convex conditions [9,11]. Some of the best known techniques are: particle swarm optimization (PSO) [9,[13][14][15][16], differential evolution (DE) [17][18][19] and genetic algorithms (GA) [2,12,[20][21][22].

The uncertainty in the physical parameters and variables of a DG-integrated network propagates 2 169 onto the uncertainty in its operational response and the risk of incurring in non-desirable outcomes or non-satisfactory performance. This demands a framework of evaluation and control, for allowing properly informed and confident decision making. For evaluation purposes, various deviation and risk measures have been introduced into the DG planning optimization frameworks, framing the problem as a portfolio optimization in which the different types of DG technologies are treated analogously to financial assets [9,[23][24][25][26][27][28][29][30].

In portfolio optimization theory, variance is the most commonly used deviation measure for estimating uncertainty, although other indicators, like the mean absolute deviation (MAD), have also been employed [31]. Considering a probabilistic performance function associated to a certain portfolio, which usually is defined as a return (or loss) function, its variance is considered as an indicator of the likelihood of achieving the mean value of performance of the portfolio. This mean-variance approach can be applied to various portfolio optimization strategies, like the (singleobjective) minimization of mean loss (maximization of mean return) with constrained variance, the (single-objective) minimization of variance with constrained mean loss or the simultaneous (multi-objective) minimization of mean loss and variance which enables the investors to select (an) optimal portfolio(s) by trading-off or conditioning mean loss and uncertainty (variance) on the Pareto front of dominant solutions. Mean-variance approaches have been applied to DG planning [9,23,24,27,30,32] even though, one important warning must be considered from a risk perspective: the variance measure includes symmetrically the values of performance that fall short of or exceed the mean value; in the search for optimal DG technologies portfolios, lower levels of uncertainty (variance) in the performance function can be obtained with portfolios that lead to rarer occurrences of both beneficial and/or non-desired (risky) scenarios. Then, for controlling the risk side, it is necessary to introduce additional indicators that provide information on the extent of asymmetry of the performance function, weighting accordingly the risky part of it. For instance, skewness and kurtosis indicators [33] have been traditionally integrated into meanvariance approaches, for both financial and engineering applications, to estimate the asymmetry and peakedness of a probabilistic performance function, respectively, and allow controlling conjointly mean performance, uncertainty of it and risk.

Similarly to mean-variance approaches, and likewise derived from portfolio optimization theory, direct risk-based frameworks have been formulated and applied to tackle DG planning problems under uncertain conditions. As for mean-variance approaches, similar optimization strategies can be implemented to target expected performance and risk separately, as objectives or constraints, or to search for an efficient Pareto front of them. For this, the most widely used risk measures are the value-at-risk (VaR) and conditional value-at-risk (CVaR) [22,26,28,29,[34][35][36][37], both with focus on the non-desirable performance outcomes given by a portfolio relative to a specific confidence level or percentile: VaR is defined as the threshold value of performance at the confidence level, whereas CVaR is the expected value of the performances that fall beyond the VaR [38]. For optimization under uncertainty, CVaR has gained more interest than VaR because of its preferable properties: among

DG-Integrated power network simulation model

In this section, we present the Monte Carlo and optimal power flow (MCS-OPF) simulation model.

We introduce the representation of the DG-integrated network, the modeling of the different uncertainty sources considered, the process of generating the random operational scenarios and the formulation of the OPF problem. 

Network configuration

• • • G j • • • G m G 1+m • • • G j+m • • • G r+m           q 1,1 • • • q 1, j • • • q 1,m q 1,1+m • • • q 1, j+m • • • q 1,r+m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q = [Q M |Q R ] = q i,1 • • • q i, j • • • q i,m q i,1+m • • • q i, j+m • • • q i,r+m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . q n,1 • • • q n, j • • • q n,m q n,1+m • • • q n, j+m • • • q n,r+m (1) 
where [Q] i, j = q i, j is a non-negative integer that specifies the number of units of the power generator type j allocated at node i:

q i, j =    q' ∈ * if q' units of G j are allocated at node i,∀G j ∈ G = {G 1 , . . . , G m+r } 0 otherwise (2) 
Then, the static configuration of the physical components G and T D of a DG-integrated network is represented by the pair ([Q], {Y }). Any physical component is assumed to be affected by the stochastic occurrence of failures, conditioning dynamically the functionality of power generators and the paths through which the power flows. Moreover, the magnitude of power available in each generator is subject to the inherent uncertain behavior of the corresponding primary energy source and, considering the DG-integrated network as a 'price taker' entity, the economic conditions depend on the variability of the power demands [41,42]. Hence, to evaluate the operating performance of a given DG-integrated network, affected by significant uncertain conditions, it is essential to model the different sources of variability and emulate the response of the network for a large representative combination of possible scenarios.

Uncertainty modeling

Analytical methods and Monte Carlo simulation (MCS) are among the most common techniques for evaluating the performance of DG-integrated networks [2]. In theory, analytical methods are preferable because of the possibility of achieving closed form solutions; however, their application often requires simplifications in the modeling which may lead to unrealistic results. For instance, analytical solutions for optimal DG planning consider non-uncertain or non-intermittent power generation and/or load profiles, and networks of low dimensionality [43]. On the contrary, MCS allows a more realistic modeling, because the performance of the network is not analytically solved but simulated, and the overall performance indicators are statistically estimated from virtual operational scenarios realizations [44]. MCS has been found quite adequate for the analysis of distribution networks with a significant number of sources of randomness or variability, e.g., power generation, loads, component failures or degradation processes, etc. [2, 8, 9, 16, 27, 28], but at the expense of incrementing the use of computational resources.

In the present framework, we adopt a non-sequential MCS, based on latin hypercube sampling (LHS) [45], to emulate the operation of the DG-integrated network, considering the operation variables as independent on previous uncertain conditions, so as to seize the advantages of MCS without overly increasing the computational efforts.

The considered uncertain conditions that determine the operation of the DG-integrated network are accounted for using different stochastic models, as presented below.

Power demands

The aggregated profile of power demand in an electric power network, as well as the single nodal profiles, can be represented as daily load curves inferred from historical data [42,46], and can be considered uncertain following normal distributions [9,16]. We model the nodal power demand profiles by integrating both ideas, i.e., for a specific hour of the day t ∈ D = {1, . . . , 24} the 173 corresponding power demand at node i, denoted L i,t (MW), is normally distributed with mean µ i,t

(MW), standard deviation σ i,t (MW) and truncated at 0:

f i,t (L i,t |µ i,t , σ i,t ) =    φ(ξ(L i,t , µ i,t , σ i,t )) σ i,t Z(µ i,t , σ i,t ) ∀L i,t , µ i,t , σ i,t ≥ 0 0 otherwise (3) ξ(L i,t , µ i,t , σ i,t ) = L i,t -µ i,t σ i,t ; Z(µ i,t , σ i,t ) = 1 -Φ µ i,t σ i,t
where, φ and Φ are the standard Normal probability density function and its cumulative distribution function, respectively.

As aforementioned, the network is assumed as a 'price taker' entity, for which the value of the energy price is correlated with the aggregated power demand in the network. As an intermediate approximation of existing studies (e.g. [41,42,47]), the proportional correlation used in this study can be expressed as:

E P t (L i,t |E P ma x , L ma x i ) = E P max i∈N L i,t L ma x i -0.38 i∈N L i,t L max i + 1.38 (4) 
where, E P t ($/MWh) is the energy price at the hour of the day t and E P max ($/MWh) is the maximum value of energy price correspondent to the aggregated value of maximum nodal power loads L ma x i (MW).

Bulk power generation

Bulk power generation stands for the power supply coming from conventional power plants (M G) already existing in the network. These sources of power supply are rather stable and are connected to the network at sub-transmission or distribution transformers. Their stochastic behavior is represented following normal distributions [11,48], with small standard deviation and truncated by the maximum capacity of generation.

f j (P j |µ j , σ j , P max j ) =    φ(ξ(P j , µ j , σ j )) σ j Z(µ j , σ j ) ∀P j ∈ [0, P ma x j ], µ j , σ j ≥ 0 0 otherwise (5) ξ(P j , µ j , σ j ) = P j -µ j σ j ; Z(µ j , σ j ) = Φ( P ma x j -µ j σ j ) -Φ( µ j σ j )
where ∀ j ∈ { j : G j ∈ M G}, P j (MW) and P ma x j (MW) are the available bulk power and maximum capacity of the M G generator type j, respectively, and µ j (MW) and σ j (MW) the corresponding Normal distribution mean and standard deviation.

Solar photovoltaic generation

Solar photovoltaic technologies (PV) transforms solar irradiance into electric power through panels of solar cells. Commonly for long term periods of analysis, solar irradiance uncertain behavior has been modeled using probabilistic distributions, obtained from weather historical data of a particular geographical area. In particular, the Beta distribution function has been found suitable to model hourly solar irradiance [46,49] and, therefore, is adopted in this paper. Moreover, the intermittency in the solar irradiation is taken into account defining a daylight interval between 07.00 and 21.00 hours, i.e., if the value t of the hour of the day is in the subset of D L = {7, . . . , 21} of D, the solar irradiation H is a positive value, otherwise t is in the night interval D N = {22, . . . , 24, 1, . . . , 6} and the value of solar irradiation is assumed equal to 0. Then, we adjust the Beta distribution function considering the probability that t is in the daylight interval p L = P(t|t ∈ D L ), as follows:

f i (H i |α i , β i , p L , H * i ) =    Γ (α i + β i ) Γ (α i )Γ (β i ) H (α i -1) i (1 -H i ) (β i -1) (1 -p L )B(α i , β i ) ∀H i ∈ [H * i , 1], α i , β i > 0 0 otherwise (6) 
where ∀ j ∈ { j : G j ∈ P V }, H i is the solar irradiance at node i, α i and β i are the shape parameters of the corresponding Beta probability density function at node i and H * i is the p L percentile of the non-adjusted Beta distribution f i, j (H i |α i , β i ).

Given the technical characteristics of PV cells and the model of solar irradiance, the probabilistic power output of a single cell is obtained from the following equation:

P i, j (H i ) =    P' i, j (H i ) if 0 ≤ P' i, j (H i ) ≤ P max j P max j if P max j < P' i, j (H i ) (7) 
P' i, j (H i ) = n c F F j V (H i )I(H i ) × 10 -6 T C (H i ) = T A i + H i (T N o j + 20)/0.8 I(T C ) = H i (I SC j + k I j (T C -25)) V (T C ) = V OC j + k V j T C F F j = (V M P P j I M P P j )/(V OC j I SC j )
where referring to PV type j, P i, j (MW) is the power output at node i, P max j (MW) is the maximum power generation capacity, n c is the number of photovoltaic cells, F F j is the fill factor,

T A i ( • C) is the ambient temperature at node i, T N o j ( • C) is the nominal cell operation temperature, I SC j (A) is the short circuit current, k I j (mA/ • C) is the current temperature coefficient, V OC j (V) is the open circuit voltage, k V j (mV/ • C
) is the voltage temperature coefficient, and V M P P j (V) and I M P P j (A) are the voltage and current at maximum power, respectively.

Wind turbines generation

Wind power generation (W) is obtained from turbine-alternator devices that transform the kinetic energy of the wind into electric power. The stochastic behavior of the wind speed is commonly represented through probability distribution functions. The Weibull distribution has been widely used to model the randomness of the wind speed in various conditions [3,11,21,37,46,49]:

f i (U i |α i , β i ) =      β i α i U i α i (β i -1) exp - U i α i β i ∀U i ≥ 0, α i , β i > 0 0 otherwise (8) 
where ∀ j ∈ { j : G j ∈ W }, U i (m/s) is the wind speed at node i and α i and β i are the scale and shape parameters of the Weibull distribution function at node i, respectively.

Similarly to PV type of technologies, the uncertainty associated to the wind speed and the technical features of a specific type of wind turbine characterize its power output function that can be determined as follows:

P i, j (U i ) =          U i -U C I j U A j -U C I j P R j if U C I j ≤ U i < U A j P R j if U A j ≤ U i ≤ U CO j 0 otherwise (9) 
where referring to W type j, P R j (MW) is the rated power and U C I j , U A j and U CO j (m/s) are the cut-in, average and cut-out wind speeds, respectively.

Components availability state

Consistently with the non-sequential nature of the MCS simulation proposed in the present frame- 

f k (η k |λ F k , λ R k ) =    λ F k /(λ F k + λ R k ) η k = 0 λ R k /(λ F k + λ R k ) η k = 1 (10) 
where ∀k ∈ {{k :

G k ∈ G} ∪ {k/k = (i, i') ∈ Y }}, η k is the operating state of component k and λ F k
and λ R k are the corresponding failure and repair rates, respectively.

Monte Carlo and optimal power flow simulation

For a given DG-integrated network, represented by the pair ([Q], {Y }) that contains the locations and number of units of the different power generators and the T&D lines, each uncertain variable is randomly sampled several times by LHS [45] and the inverse transform method [44], for the realization of N S operational scenarios of duration t ∆ . For practicality, we define N S as multiple of 24, so each hour of the day has the same number of realizations N S/24. We denote by ω the set of sampled variables, which constitutes an operational scenario and by Ω the sets of all the N S realizations of ω.

ω s = {t s , L i,t s , E P t s , {P i, j,s /G j ∈ M G}, H i,s , U i,s , η i, j,s , η (i,i'),s } (11 
)

Ω = {w s : s ∈ {1, 2, . . . , N S}} (12) 
For each scenario ω s , the configuration ([Q], {Y }) and the sampled variables set the stage for evaluating the response of the network in terms of available power usage, power demand satisfaction and the involved economics. For this, DC optimal power flow analysis (OPF) is run, neglecting power losses, assuming constant the voltage throughout the network and accounting solely for active power flows [51,52] 

COv (i,i') |B (i,i') (δ i,s -δ i',s )| (13) s.t. L i,t s - G j ∈G P U i, j,s -S r e f i'∈N η (i,i'),s B (i,i') (δ i,s -δ i',s ) -LS i,s = 0 (14) 0 ≤ P U i, j,s ≤ η i, j,s [Q] i, j P i, j,s (15) 
S r e f |B (i,i'

) (δ i,s -δ i',s )| ≤ P ma x (i,i') (16) 
where ∀t ∈ D, s ∈ {1, 2, . . . , N S}, CO ω s ($/h) is the aggregated operating cost of generation, transmission and distribution, and load shedding, COv j ($/MWh) is the variable operating cost of the power generator j, E P t s ($/MWh) is the energy price at hour t, P U i, j,s (MW) is the used power from the generator type j located at node i, S r e f (MV A) is the reference apparent power in the network, COv (i,i') ($/MWh) and B (i,i') (p.u.) are the variable operating cost and susceptance of the T&D line (i, i'), respectively, δ i,s is the voltage angle at node i, C LS ($/MWh) is the load shedding cost and P ma x (i,i') (MW) is the power rating of the T&D line (i, i'). The load shedding LS i,s (MW) at node i is defined as the amount of load disconnected to alleviate congestion in the feeders and/ or balance the demand of power with the available power supply. Equation ( 14) corresponds to the power balance at node i, whereas equation ( 15) represents the bounds of the power generation units and equation ( 16) considers the technical limits of the feeders.

As above-mentioned, OPF is solved for each operational scenario ω s , giving in output the respective values of minimum CO ω s . The set CO Ω = {CO ω 1 , CO ω 2 , . . . , CO ω N S } is, then, considered as a sample of realizations of the probability function of CO.

DG-integrated network performance evaluation

The proposed renewable DG-integrated network solutions Q = [Q M |Q R ] are evaluated with respect to performance indicators of the global cost C G function. The quantity C G is composed of two terms: the outcome operating cost of the MCS-OPF described in the previous section, CO Ω , and the fixed investment and operating cost, C I j + CO f j , associated to the renewable part of the proposed DG plan Q R , i.e., ∀ j ∈ { j : G j ∈ RG}. The quantity C I j + CO f j ($) is prorated hourly over the lifetime of the project t h . Thus, the global cost function for the set of operational scenarios Ω is given by:

C G Ω = CO Ω + 1 t H i∈N G j ∈RG (C I j + CO f j )[Q R ] i, j (17) 
Analogously to CO Ω definition, C G Ω represents a sample of realizations of the probability function of C G and performance indicators of interest can be obtained, relative to expected performance, uncertainty and risk.

Uncertainty and Risk Assessment

The proposed MOO framework introduces the CVaR deviation (DCVaR) [31] to measure the uncertainty in the performance function (C G) of interest. The quantity DCVaR is a functional of the CVaR [38], which is a coherent risk measure broadly used in financial portfolio optimization and has been extended to engineering applications, including electric power systems analysis and, in particular, DG planning [22,26,28,29,[34][35][36]. The axiomatic relation between DCVaR and CVaR allows optimizing simultaneously uncertainty and risk, by targeting just one of these two indicators.

The definitions and properties of CVaR and DCVaR for continuous and discrete general return (loss) functions are given in detail in [31,38]. Here, we limit ourselves to presenting only a graphical, but comprehensive view to understand the CVaR and DCVaR definitions, as shown in Figure 1. For a discrete approximation of the probability function of the loss x, given a confidence level or α-percentile, the value-at-risk VaR α (x) represents the smallest value of loss for which the probability that the loss does not exceed that threshold value is greater than or equal to α, whereas C VaR α (x) is the expected value of loss given that the loss is greater than or equal to the VaR α (x). 

With regards to DC VaR α (x), this is a non symmetric deviation measure, as it accounts for the uncertainty associated to the loss exceeding its expected value. It is defined taking into account some important properties of the standard deviation [31], and is formulated as:

DC VaR α (x) = C VaR α (x -E(x)) (20) 
Furthermore, being a coherent risk measure, CVaR is a strictly expectation-bounded risk measure and it can be proved that a one-to-one relation exists with its corresponding deviation measure DCVaR [31]:

C VaR α (x) = E(x) + DC VaR α (x) (21) 
In the present framework, we can consider a specific configuration of the DG-integrated network with at least two conflicting objectives functions ( f i : ℜ n → ℜ) implies to find, within a set of acceptable solutions that belong to the non-empty feasible region Λ ⊆ ℜ n , the decision vectors X ∈ Λ that satisfy the following [54]:

([Q], {Y 
¬X ∈ Λ/ f i (X ) ≤ f i (X )
, ∀i ∈ {1, 2, . . . , m} and f i (X ) < f i (X ) for at least one i ⇓ f i (X ) ≺ f i (X ) i.e. X dominates X

The vector X is called a Pareto optimal solution and the Pareto front is defined as the set { f (X ) ∈

ℜ n } such that X is Pareto optimal solution. The general MOO-DE algorithm is summarized as follows:

Initialization

• Set the values of parameters:

• N P: population size

• Gen ma x : maximum number of generations

• COc: crossover coefficient ∈ [0, 1]

• F : differential variation amplification factor ∈ [0, 2]

• Form the initial population POP 0 , randomly generating N P decision matrices (individuals) X within the feasible space, POP 0 = {X 0 1 , . . . , X 0 k , . . . , X 0 N P } • Evaluate the objective functions { f 1 (X 0 k ), . . . , f N F (X 0 k )} for each individual X 0 k , where N F is the number of objective functions 

X M g k = X g k 1 + F (X g k 2 -X g k 3 ) (25) 
• Apply a crossover operator, initializing a randomly generated vector X C g k , whose dimensionality n is the same as that of X In correspondence to the nomenclature used in the proposed framework, the process of searching the set of non-dominated solutions carried out by the MOO-DE MCS-OPF is presented schematically in Figure 2. We consider the IEEE 30 bus sub-transmission and distribution test system, a portion of the Midwestern U.S. electric power system which presents relevant characteristics of interest for the analysis, e.g., the presence of bulk-power supply spots different in type and with comparatively low and high nodal load profiles. An important consideration is that we neglect the synchronous condensers, given the DC assumptions made in the proposed framework for the resolution of the OPF problem.

g k = [Q M |[QT R ] g k ] [QT R ] g k dominates [Q R ]

Network description

The network consists of n = 30 nodes, a mesh deployment of 41 T&D lines and 2 transformers or bulk-power supply spots, as shown in Figure 3. The reference apparent power is S r e f = 100 (MV A). Table 1 summarizes the characteristics and technical data of the T&D lines, specifically: the indexes of the pair of nodes that they connect (i, i ), the susceptance values B (i,i ) , power rating P ma x (i,i ) , failure λ F (i,i ) and repair λ R (i,i ) rates and operating cost COv (i,i ) . The nodal power demands are built from the load data given in [40] and reported in Figure 4 as daily profiles (accumulated according to the node indexes i), normally distributed on each hour t with mean µ i,t and standard deviation σ i,t . The technical data and uncertain model parameters of the different types of bulk-power suppliers and DG technologies, available to be integrated into the network, are given in Table 2. For the present case study, we consider that the number of photovoltaic cells per PV generation unit is n c = 20000 and that the region covered by the system is such that the solar irradiation and wind speed conditions are uniform in the whole region, i.e., the values of the parameters of the corresponding Beta and Weibull distributions are taken equal for all nodes. The renewable power penetration factor is set to P F = 30% (constraint (24) in the MOO problem). Table 3 reports the failure and repair rates, λ F and λ R , respectively, the investment and operating costs C I j + CO f j and the variable operating cost of the different types of power generators.

Concerning the network economics, the maximum value of the energy price is E P max = 100 ($/MWh) [41,42,47] and the corresponding highest value of total demand ΣLmax i (MW) is set to 445 (MW). The load shedding cost C LS ($/MWh) is considered as the maximum energy price.

The horizon of analysis or lifetime of the project is 30 years, in which the investment and operating costs are hourly prorated. The confidence level or α-percentile considered to estimate the values C VaR α is 75%, arbitrarily chosen. 

Results and discussion

The Pareto front resulting from the MOO-DE MCS-OPF is presented in In Figure 6, we can observe that the three solutions of interest,

[Q R ] min EC G , [Q R ] min C VaR and [Q R ]
min DC VaR , lead to considerable improvements in expected performance and risk with respect to the base case MG, in which no renewable generation is integrated into the network. However, the level of uncertainty in the EC G estimation is increased, in all DG-integrated solutions, because of their stochasticity. Even so, in comparison to the MG case, the increase in the level of uncertainty for all DG-integrated cases (on average 1.067 (k$/h)) is much less than the gain in both expected performance and risk (on average -6.035 and -4.967 (k$/h)), respectively). This fact can be seen also in the empirical C G probability density functions (pdf ) shown in Figure 7. Furthermore, it can be inferred from Figure 7 that, in general, all C G empirical pdf s show three main peaks. This is due to the characteristics of the daily load profiles (Figure 4) which present three important ranges: a low power demand range during the night, between 23 and 6 hours and two high ranges of load taking place in the intervals 10 to 13 and 18 to 21 hours, respectively. Thus, the left peak of the distributions corresponds to the highest range of loads (18 to 21 hours), because higher levels of power demands imply more energy sold and, therefore, more profits or negative values of C G. Following the same logic, the central peak is due to the second highest range of loads (10 to 13 hours) and the right peak to the low range of power demand. As mentioned before, the three DG-integrated network cases improve the cost profiles because the usage of power is transferred from the bulk-power suppliers (MG) to the renewable generators (RG) as summarized in Table 5, presenting the ratio of power usage defined as the proportion of power used to satisfy the loads, determined by the MCS-OPF, over the power available. According to the IEEE 30 bus test systems information, the bulk-power supply arriving at node 1, G 1 , comes from a conventional coal-fired power plant whereas G 2 is supplied by a hydro-power plant. The nature of the source of power supply conditions the operating costs, in particular, G 1 that presents the higher variable operating costs (Table 3). Nevertheless, the ratio of power usage associated to G 2 is in all cases 100%, even though its operating cost is higher than the renewable. This is because no investment is being paid for G 2 , contrary to the DG technologies (PV and W). In this view, considering investment, PV and W are more convenient than the coal-fired power supply G 1 but not more than the hydro-power supply G 2 . The extreme C G scenarios encountered in the tail of the distributions are mainly produced by the occurrence of failures in the components of the system, power generators and T&D lines. In Figure 7, we notice the stability of the C G to these non-desirable events. Since the cost objective function to be minimized in the OPF considers a load shedding cost, the occurrence of failures in the components, interrupting the power supply and/or the ability of distribute it, will impact the C G function depending on how much centralized is the power supply. Focusing on the MG base case, the power supply and its distribution depend on two generators and the T&D lines connected to them: the reliability of power supply is determined by few components and so, the eventual losses of functionality of these components can lead to high amounts of non-satisfied demands. This is precisely the effect observed in the tails of the C G distributions and, in particular, we see that distributing and diversifying generation helps to improve the risk impacts from multiple failures in the network, even if the number of generation units in the system is increased and with it, the overall absolute likelihood of occurrence of failures. that in all cases the DG power installed is almost equal to the limit value set by the penetration factor P F . In the present case, a maximum of 30% is accepted, of average DG power installed over the maximum aggregated load in the system. This leads to an approximated limit of 135.5 ) that minimizes DC VaR α (C G), the amount of PV power integrated in the network decreases progressively, being replaced by W power. Then, we infer that the more PV power generators are integrated, the better expected global cost performance is achieved. This seems physically coherent, taking into account that the average power outputs delivered by one generation unit of PV and W technologies are 1.07 and 0.93 (MW), respectively, and the cost performance benefits comparatively more from the PV MW h sold during the daylight interval within the two peaks ranges of power demand. Nevertheless, the amount of average integrated PV power is invariably smaller than W power, this is because PV generation units do not supply during the night interval, making convenient to integrate always a certain amount of W power and, thus, to avoid resorting to the more expensive coal-fired power supplier G 1 . Moreover, it is precisely this lack of PV generation during the night interval that strongly conditions the trade-off between expected performance and uncertainty, EC G vs DC VaR α (C G), i.e., the more PV power is integrated, the better expected global cost performance is achieved but the more uncertain is its estimation. Concerning the compromising solution [Q R ] min C VaR(C G) that minimizes risk, as it was derived from the empirical C G distributions, the risk associated to a solution depends mainly to the occurrence of extreme non-desired events. Improvements in risk performance can, then, be achieved by solutions for which the allocation of DG power generation units decentralizes and diversifies to a large extent the supply. This insight is noticeable in Figure 9 that reports the nodal average power by type of generation for the three solutions of interest. For both extreme solutions, [Q R ] min EC G and [Q R ] min DC VaR , the tendency is to integrate localized sources of renewable DG at two identifiable portions of the network, in the region close to nodes 2, 5, 7 and 8 of the sub-transmission portion of the network, and nodes 17, 19 and 21 in the distribution part, favoring the sub-transmission portion which presents higher and non homogeneous nodal load profiles. In a different manner, the solution

[Q R ] min C VaR(C G)
presents a more homogeneous deployment of DG power, allocating comparable generation capacities in both sub-transmission and distribution parts of the network.
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  C G) et l'énergie non fournie (EN S), respectivement. Pour mesurer et contrôler le risque par rapport à la performance du système, deux indicateurs sont introduits, la valeur-à-risque conditionnelle (CVaR) et l'écart du CVaR (DCVaR). Pour la sélection optimale de la technologie, la taille et l'emplacement des unités DG renouvelables, deux approches distinctes d'optimisation multi-objectif (MOO) ont été mis en oeuvre x par moteurs de recherche d'heuristique d'optimisation (HO). La première approche est basée sur l'algorithme génétique élitiste de tri non-dominé (NSGA-II) et vise à la réduction concomitante de l'espérance mathématique de C G et de EN S, dénotés EC G et E EN S, respectivement, combiné avec leur valeurs correspondent de C VaR(C G) et C VaR(EN S); la seconde approche effectue un recherche à évolution différentielle MOO (DE) pour minimiser simultanément EC G et s'écart associé DC VaR(C G). Les deux approches d'optimisation intègrent la modèle de calcul MCS-OPF pour évaluer la performance de chaque réseau DG-intégré proposé par le moteur de recherche HO. Le défi provenant de les grands efforts de calcul requises par les cadres de simulation et d'optimisation proposée a été abordée par l'introduction d'une technique originale, qui niche l'analyse de classification hiérarchique (HCA) dans un moteur de recherche de DE. Exemples d'application des cadres proposés ont été élaborés, concernant une adaptation du réseau test de distribution électrique IEEE 13-noeuds et un cadre réaliste du système test de soustransmission et de distribution IEEE 30-noeuds. Les résultats montrent que les cadres proposés sont efficaces dans la recherche des solutions de réseaux DG-intégrés optimales, tout en contrôlant les risques à partir de deux perspectives distinctes: directement par l'utilisation du CVaR et indirectement par en ciblant l'incertitude sous la forme du DCVaR. Les principales contributions originales de la thèse présentée ici résident dans: encadrer le problème de la sélection optimale de la technologie, la taille et l'emplacement des unités de génération renouvelable d'énergie, dans une approche intégrée de simulation et d'optimisation qui tient compte des multiples variables opérationnelles incertains à travers du MCS-OPF développé, permet d'évaluer et contrôler le risque en introduisant les mesures CVaR et DCVaR, et fait face à la complexité de calcul en intégrant HCA dans le moteur de recherche HO. Mots clés: génération distribuée, énergie renouvelable, incertitude, risque, simulation, optimisation, valeur-à-risque conditionnelle, écart du valeur-à-risque conditionnelle, algorithme génétique, évolution différentielle, analyse de classification hiérarchique
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 a114 Design and implementation of a non-sequential Monte Carlo simulation (MCS) and optimal power flow (OPF) computational model, denoted MCS-OPF, that emulates the T&D network operation integrating a given renewable DG plan. Random realizations of operational scenarios are generated by sampling from the different uncertain variables models, evaluating for each scenario the performance of the DG-integrated network in terms of economics and reliability of power supply, represented by the global cost (C G) and the energy not supplied (EN S), respectively. (b) Integration of two indicators to measure and control uncertainty and risk, namely conditional value-at-risk (CVaR) and conditional value-at-risk deviation (DCVaR), respectively. (c) With respect to the optimal technology selection, size and location of the renewable DG units, two distinct multi-objective optimization (MOO) strategies have been implemented by heuristic optimization (HO) search engines, in which the MCS-OPF model is nested to assess the performance of each DG-integrated network proposed along the evolutionary searching process: In the first approach, the fast non-dominated sorting genetic algorithm (NSGA-II) is used for simultaneous minimization of the expected values of C G and EN S (EC G and E EN S, respectively) combined with their respective C VaR(C G) and C VaR(EN S) values. • The second approach performs a MOO differential evolution (DE) search to minimize concurrently EC G and its associated deviation DC VaR(C G). (d) To cope with the large computational efforts required by the developed MOO frameworks with nested MCS-OPF, an original technique is introduced which embeds hierarchical clustering analysis (HCA) within a DE search engine. The technique identifies, in a controlled manner, groups of similar individuals (DG plans) in the DE population and, then, evaluates EC G performing MCS-OPF on selected representative individuals of the groups only, thus reducing the number of objective function evaluations in each iteration of the DE evolution loop. Thesis structure This thesis manuscript is divided into two parts. The first part is composed by six Chapters which introduce the readers to the research context, the motivations and objectives, and present in detail the methodological developments performed to address the specific problem of optimal DG planning under uncertainty. In particular, Chapter 2 provides the basics of the modeling of a DG-integrated electric power network, focusing on the system representation, the different models use to treat the uncertain operational inputs considered, the construction of the MCS-OPF computational model and the respective evaluation of the system performance based on economic, and uncertainty and risk measures. In Chapter 3, the formulation of diverse optimization strategies to address the optimal DG planning problem and the HO with nested MCS-OPF frameworks developed are presented. Chapter 4 briefly summarizes the use of clustering techniques in HO to increase the computational performance and, then, gives a complete description of the development of the DE search engine with embedded HCA. In Chapter 5, examples of applications of the proposed frameworks are illustrated, with reference to an adaptation of the IEEE 13 bus distribution test feeder [2] and a realistic setting of the IEEE 30 bus sub-transmission and distribution test system of literature [11]. Finally, Chapter 6 draws the conclusions of the thesis work carried out and proposes some opportunities for future research advancements. Figure 1.4 shows a diagram with the overall vision of the thesis structure. The second part, includes the collection of papers published or under revision, which are the result of the research work here performed, and that the reader can refer to for further details. Paper (i) presents a direct risk-based simulation and MOO framework for the integration of renewable DG and storage based on NSGA-II, introducing the CVaR to find optimal DG plans, trading-off expected performance and risk. Paper (ii) addresses the challenge of reducing the computational efforts required to implement HO search engines with nested MCS-OPF: the technique developed integrates HCA and DE for optimal integration of renewable DG and, by defining control parameters, adapts itself along the evolutionary search determining whether it is convenient to perform clustering of the decision variables or not and at what scale to, then, reduce the number of objective function evaluations. Paper (iii) introduces a MOO framework for risk-controlled integration of renewable DG into electric power systems, which is based on DE search and MCS-OPF. This framework measures uncertainty in the system performance by the use of DCVaR that, due to its axiomatic relation to the CVaR, allows the conjoint control of risk.
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 21 Figure 2.1 IEEE 30 bus sub-transmission and distribution test system diagram
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 26 Figure 2.6 Graphic representation of VaR α (x), C VaR α (x) and DC VaR α (x); x = loss

  the decision matrix. The corresponding assessed C G Ω and EN S Ω , obtained from the output MCS-OPF([Q],{Y},Ω), can be translated into the probability functions of loss; then, the quantities C VaR α (C G Ω ), DC VaR α (C G Ω ) and C VaR α (EN S Ω ), DC VaR α (EN S Ω ) represent the level of risk and uncertainty associated to the solution [Q R ] with an expected global cost EC G = E(C G Ω ) and expected energy not supplied E EN S = E(EN S Ω ), respectively.

  stores the number and location of each type of power generator in the network. Three distinct optimization strategies are formulated, defining correspondingly three different frameworks (FWs). Framework number 1 (FW1) focuses on controlling the risk associated to the expected performance of the DG plans, EC G and E EN S, by measuring their respective CVaR values, C VaR α (C G) and C VaR α (EN S). FW2, aims at the control of uncertainty with respect to the EC G performance by targeting in conjunction the associated DC VaR α (C G). Whereas FW3, presents a single objective strategy, aiming solely EC G to address the challenge of reducing the computational efforts required to implement heuristic optimization (HO) search engines with nested MCS-OPF and it is treated in details in the next Chapter 4.
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 31 Figure 3.1 Flow chart of the proposed NSGA-II MCS-OPF framework
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  in the repository population RPOP. • Set a combined population U POP as POP g ∪ RPOP and rank the individuals in U POP, applying a fast non-dominated sorting procedure and identify the new non-dominated fronts { g 1 , . . . , g N D }. • Compute and assign the crowding-distance value d C to each individual in U POP and sort each non-domination-ranked group { g ℓ } ℓ∈{1,...,N D} . • Set POP g as the first N P (best) individuals of the ranked and sorted population U POP, POP g = {X k : X k ∈ U POP, k ∈ {1, . . . , N P}} • If the stopping criterion is reached return POP g , otherwise set g = g + 1. Analogously to the NSGA-II based FW1 and, in correspondence to the nomenclature used in this thesis, search for the set of non-dominated solutions performed by MOO-DE MCS-OPF is presented schematically in Figure 3.2. Set the values of N P, N G max , p C , F Generate randomly N P individuals [Q R ], according to constraints (2.3) and (3.9), to form the initial population POP 0
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  by applying mutation (3.13) and crossover (3.14) operators and evaluate the objective functions E
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 32 Figure 3.2 Flow chart of the proposed MOO-DE MCS-OPF framework
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 41 Figure 4.1 Example dendrogram for average linkage HCA

  min -minimum linkage distance d z ı,  that correspond to the first pairing action and d N C=4distance to form at least four clusters.
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 42 Figure 4.2 Example of cutoff distance calculation

  by applying mutation (3.13) and crossover (3.14) operators and evaluate the objective function EC G Ω

Figure 4 . 3 5 Applications

 435 Figure 4.3 Flow chart of the proposed HCDE framework

  This section introduces an example of application of the simulation and MOO framework for the integration of renewable DG and storage devices into an electric distribution network. The framework searches for the optimal size and location of the DG units, taking into account different sources of uncertainty: renewable resources availability, components failure and repair events, loads and grid power supply. The evaluation of the network performance is run by the developed MCS-OPF computational model and, as a response to the need of monitoring and controlling the risk associated to the performance of the optimal DG-integrated networks, the CVaR is integrated into the MOO optimization strategy which aims at the concurrent minimization of the expected values of C G and EN S, namely EC G and E EN S, combined with their respective CVaR values, C VaR(C G) and C VaR(EN S), and weighed by a factor bet a which allows modulating expected performance and risk.
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 51 Figure 5.1 Radial 11-nodes distribution network
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 552535 Figure 5.2 Pareto fronts for different values of β
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 5 Figure 5.3 shows a bubble plot representation of the selected optimal solutions. The axes report the E EN S and EC G values while the diameters of the bubbles are proportional to their respective CVaR values. The MG case is also plotted.
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 554 Figure 5.4 shows the average total DG power allocated in the distribution network and its breakdown by type of DG technology for the optimal [Q R ] as a function of β. It can be pointed out that the contribution of EV is practically negligible if compared with the other technologies. This is due to the fact that the probability that the EV is in a discharging state is much lower than that of being in the other two possible operating states, charging and disconnected (see Figure A.2 in Appendix A), combined with the fact that when EV is charging the effects are opposite to those desired.

  to solve DG planning optimization problems under uncertainty. Coherently to the presentation of HCDE framework in Chapter 4 and the single optimization strategy formulated in Chapter 3, Subsection 3.1.1 (FW3), the designed search engine embeds HCA within a DE search scheme to identify groups of similar individuals in the DE population to, then, calculate the objective function to be minimized, EC G, only for selected representative individuals of the groups. The HCDE evaluates the objective function by MCS-OPF and performs HCA in a controlled manner, by presetting two parameters: a threshold to the cophenetic correlation coefficient C C C T and cutoff level coefficient p co ; which allows to decide whether or not is convenient to perform clustering and at what scale, respectively.

Figure 5 . 5

 55 photovoltaic (PV), wind turbines (W), electric vehicles (EV) and storage devices (ST).A total of N S = 500 random scenarios are simulated by the MCS-OPF with time step ∆t = 1 (h), over a horizon of analysis of 10 years (t H = 87600 (h)), in which the investment and fixed costs are pro-rated hourly. The DE iterations are set to perform N G max = 500 generations over five different cases of population N P ∈ {10, 20, 30, 40, 50}. The differential variation amplification factor F is 1 to maintain the integer-valued definition of the individuals [Q R ] after the mutation, whereas the crossover coefficient p C is 0.1.

  results of the DE MCS-OPF for the different population sizes N P ∈ {10, 20, 30, 40, 50} are shown in Figure 5.6. The 50th percentile (%ile) or median values of the minimum global costs EC G min , obtained from each experiment with fixed values of N P, are presented as functions of the respective numbers of objective function evaluations N F E; the error bars represent the 15th and 85th %iles.
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 56575 Figure 5.6 EC G min vs N F E for N P ∈ {10, 20, 30, 40, 50} set in DE
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 59 Figure 5.9 Empirical N P g pdf for each (N P, C C C T , p co ) set in HCDE

  suppliers and r DG types, N P is the size of the complete population and N S is the number of scenarios in the MCS-OPF. a Pairwise distance PDIST between all m vectors of size d. b The matrix A comes from the canonical form Ax ≤ b of the linear programming of the DC-OPF problem approximation.

4 shows the 63 values

 63 of the ratio κ for each (N P, C C C T , p co ) set in HCDE considering the dimensionality of the present case study defined by the values of the parameters n(m + r) = 55, N S = 500, N P = 50. The value of 1κ can be interpreted as the expected asymptotic relative time reduction achieved by performing HCDE.
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 5510 Figure 5.10 shows the average total DG power allocated in the distribution network and the corresponding investment costs of the DE and HCDE MCS-OPF cases selected, choosing the corresponding optimal DG-integrated plans as the decision matrices [Q R ] for which their EC G min values are the closest to the median EC G min value obtained for the twenty runs of each (N P, C C C T , p co ) setting.It can be pointed out that in all the cases, the contribution of EV is practically negligible if compared with the other technologies. This is due to a combination of two facts: the probability that the EV is in a discharging state is much lower than that of being in the other two possible operating states, charging and disconnected (see FigureB.2 in Appendix B) and when EV is charging, the effects are opposite to those desired, i.e., it is acting as loads.
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 511 Figure 5.11 Nodal average total DG power for representative (N P, C C C T , p co ) settings
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 56732 Figure 5.12 IEEE 30 bus sub-transmission and distribution test system diagram

Figure 5 . 14

 514 Figure 5.14 Set of non-dominated solutions with iso-CVaR (A) and iso-DCVaR (B) curves
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 5211516 Figure 5.16 shows the total average DG power integrated in the network for the three solutions under analysis and the corresponding obtained values of EC G and C VaR α . It can be pointed out that in all cases the DG power installed is almost equal to the limit value set by the penetration factor P F DG = 0.3, approximately 135.5 (MW).
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 517 Figure 5.17 Nodal average power by type of generator

6

 6 (a) Design and implementation of a non-sequential Monte Carlo simulation (MCS) and optimal power flow (OPF) computational model, denoted MCS-OPF, that emulates the T&D network operation integrating a given renewable DG plan. Random realizations of operational scenarios are generated by latin hypercube (LHC) sampling from the different uncertain variables models, solving for each scenario a cost-based DC-OPF problem to assess the response of the DG-integrated network in terms of, available power usage, power demand satisfaction and operating cost (generation and T&D) to , then, evaluate the performance of the system with regards to the global economics, including DG investments and operation, and reliability of power supply, represented by the global cost (C G) and the energy not supplied (EN S), respectively. The simplifications involving the non-sequential character of the MCS and the use of DC-OPF approximation are done to not overly increasing the computational efforts and 76 Conclusions gaining tractability, necessary to cope with the already complex DG planning optimization problem. (b) With respect to the optimal technology selection, size and location of the renewable DG units, two distinct multi-objective optimization (MOO) strategies have been implemented by heuristic optimization (HO) search engines, in which the MCS-OPF model is nested to assess the performance of each DG-integrated network proposed along the evolutionary searching process and the values of the respective objective functions. Two HO search engines have been considered, the fast non-dominated sorting genetic algorithm II (NSGA-II) and a MOO differential evolution (MOO-DE), both capable of dealing with non-convex combinatorial problems, discontinuous search spaces and non-differentiable objective functions. (c) Introduction of two indicators to measure and control the uncertainty and risk associated to the DG-integrated network solutions, namely conditional value-at-risk (CVaR) and conditional value-at-risk deviation (DCVaR), respectively. This is done, framing the DG planning problem as a portfolio optimization in which the different types of DG technologies are treated analogously to financial assets. • By introducing CVaR, a direct risk-based MOO strategy is formulated and approached by the NSGA-II, allowing the possibility of concurrently minimizing expected performances, EC G and E EN S, while controlling the risk in its achievement, C VaR(C G) and C VaR(EN S). The contribution of each type of renewable DG technology, on the expectation-risk trade-off, can also be analyzed, indicating which is more suitable for specific preferences of the decision makers. • Alternatively, DCVaR allows the development of a distinct MOO optimization strategy, aiming at the simultaneous minimization of the considered objective functions: EC G and its corresponding DC VaR(C G) value and implemented by the MOO-DE search. DCVaRacts as an enabler of trade-off between optimal expected performance and the associated uncertainty to achieve it and, given the axiomatic relation to the conditional-value-atrisk, allows the conjoint trade-off of risk by constructing an iso-risk map in the obtained non-dominated set of solutions. In addition, the contribution of each type of renewable DG technology on the level of uncertainty associated to the outcome performance of the optimal solutions can be analyzed, as well as the importance of the deployment of the DG capacity to lower the risk of incurring in non-desirable extreme scenarios. In this view, a complete and comprehensible spectrum of information can be supplied in support of the decision making tasks. (d) To cope with the large computational efforts required by the developed MOO frameworks with nested MCS-OPF, an original technique is introduced which embeds hierarchical clustering analysis (HCA) within a DE search engine. The technique identifies, in a controlled manner, groups of similar individuals (DG plans) in the DE population and, then, evaluates EC G 77 performing MCS-OPF on selected representative individuals of the groups only, thus reducing the number of objective function evaluations in each iteration of the DE evolution loop. The introduction of two control parameters, namely the cophenetic correlation coefficient C C C
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 11 Figure A.1(A) and (B), respectively.
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 2 Figure A.2 Hourly per day probability data of EV operating states. ρ = -1: charging, ρ = 0: disconnected, ρ = 1: discharging
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 2 Figure B.2 Hourly per day probability data of EV operating states
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 1 Figure C.1 Accumulated mean (A) and standard deviation (B) values of nodal load daily profiles

  This section introduces the MCS-OPF model, including the definition of the DG structure and configuration, the presentation of the uncertainty sources and their treatment, the MCS for scenarios generation and the OPF formulation for evaluating the performance of the distribution network, in terms of the objective functions of the MOO problem. The outputs of the MCS-OPF model are the probability density functions of the energy not supplied (EN S) and the global cost (C g ) of the network, and their respective C VaR values.
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 1 Figure 1: Example of distribution network configuration

  configuration matrix of type, size and location of the power sources allocated in the distribution network; Ξ M S -size and location of main supply, fixed part of the configuration matrix; Ξ DG -type size and location of DG units, decision variable part of the configuration matrix; nnumber of nodes in the network, |N |; m -number of main supply type (transformers), |M S|; dnumber of DG technologies, |DG|. ξ i, j =    ζ number of units of MS type or DG technology j are allocated at node i 0 otherwise ∀i ∈ N , j ∈ M S ∪ DG, ζ ∈ *
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 2 Figure 2: Hourly probability distribution of EV operating states per day
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 3 Figure 3: Daily load profile. Hourly normally distributed load
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 4 Figure 4: Example of the matrix form construction of a DG-integrated network (A) and schema of the operating state definition from the sampled variables (B)
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 5 Figure 5: Example of load ranges definition for a generic daily load profile (A) and correlation energy price-total load (B) [13, 19, 20]

Figure 6 :

 6 Figure 6: Graphic representation of the CVaR
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  Concatenate each chromosome k of p 0 to the fixed configuration matrix of the main supply forming the matrix of power sources and integrate the feeders set FD to define the network configuration {Ξ 0,k , FD} Rank the chromosomes in p 0 by running the fast non-dominated sorting algorithm with respect to the values objectives functions and identify the ranked non-dominated fronts {F 1 ,…,F nd } where F 1 is the best front and F nd the less good front[39] Apply the binary tournament selection to p 0 based on the crowding distance to generate an intermediate population of size sz[39] 0 Reproduce the population applying the mutation and crossover operators to to create and offspring population o 0 of size sz 0 Perform the MCS-OPF on o 0 Set g = 0 and execute the evolution loop Combine p g and o g to obtain a population equals to their union Rank the chromosomes in u g by running the fast non-dominated sorting algorithm with respect to the values objectives functions Select the best sz chromosomes to create the next population of parents p g+1 Apply the binary tournament selection to p g+1 based on the crowding distance to generate an intermediate population p' g+1 of size sz 1 g p   Reproduce p' g+1 applying the mutation and crossover operators to create and offspring population o g+1 of size sz

Figure 7 :

 7 Figure 7: Flow chart of NSGA-II MCS-OPF MOO framework
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 8 Figure 8: Radial 11-nodes distribution network
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 99 Figure 9(A) and (B), respectively.
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 10 Figure 10: Hourly per day probability data of EV operating states

  ), note that the value β = 1 corresponds to optimizing only the expected values of EN S and C g , whereas β = 0 corresponds to the opposite extreme case of optimizing only the CVaR values. Each NSGA-II run is set to perform g = 300 generations over a population of sz = 100 chromosomes and, for the reproduction, the single-point crossover and mutation genetic operators are used. The crossover probability is pco = 1, whereas the mutation probability is pmu = 0.1; the mutation can occur simultaneously in any bit of the chromosome.

1 and Ξ DG min f 2 ,

 12 for the different values of β. The 'last generation' population is shown and the non-dominated solutions are marked in bold. Each non-dominated solution in the different Pareto fronts corresponds to an optimal decision matrix Ξ DG for the sizing and allocation of DG, i.e., an optimal DG-integrated network configuration {Ξ, F D} where Ξ = [Ξ M S |Ξ DG ]. In the Pareto fronts obtained, we look of three representative non-dominated solutions for the analysis: those with minimum values of the objective functions f 1 and f 2 independently (Ξ DG min f respectively) and an intermediate solution at the 'elbow' of the Pareto front. Table
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 11 Figure 11: Pareto fronts for different values of β

Figure 12 :

 12 Figure 12: Bubble plots E EN S v/s EC g . Diameter of bubbles proportional to C VaR(EN S) (A) and C VaR(C g) (B)

Figure 13 :

 13 Figure 13: Average total DG power allocated (A) and its breakdown by type of DG: PV (B), W (C), EV (D) and ST (E)

5 Conclusions

 5 We have presented a risk-based simulation and multi-objective optimization framework for the integration of renewable generation into a distribution network. The inherent uncertain behavior of renewable energy sources and variability in the loads are taken into account, as well as the possibility of failures of network components. For managing the risk of not achieving expected performances due to the multiple sources of uncertainty, the conditional value-at-risk is introduced in the objective functions, weighed by a β parameter which allows trading off the level of risk. The proposed framework integrates the Non-dominated Sorting Genetic Algorithm II as a search engine, Monte Carlo simulation to randomly generate realizations of the uncertain operational scenarios and Optimal Power Flow to model the electrical distribution network flows. The optimization is done to simultaneously minimize the energy not supplied and global cost, combined with their respective conditional value-at-risk values in an amount controlled by β. To exemplify the proposed framework, a case study has been analyzed derived from the IEEE 13 nodes test feeder. The results obtained show the capability of the framework to identify Pareto optimal sets of renewable DG units allocations. Integrating the conditional value-at-risk into the framework and performing optimizations for different values of β has shown the possibility of optimizing expected performances while controlling the uncertainty in its achievement. The contribution of each type of renewable DG technology can also be analyzed, indicating which is more suitable for specific preferences of the decision makers. Paper (ii) R. Mena, M. Hennebel, Y.-F. Li and E. Zio, "Self-adaptable hierarchical clustering analysis and differential evolution for optimal integration of renewable distributed generation," Applied Energy, vol. 133, pp.

  is considered as realizations of the probability mass function of C G, and from multiple realizations the expected value EC G Υ can be obtained.

1 ,

 1 (stopping criterion) Trial loop For each individual X G k in POP G , ∀k ∈ {1, . . . , N P}: • Sample from the uniform distribution three integer indexes r 1 , r 2 , r 3 , with k = r 1 = r 2 = r 3 and choose the corresponding three individuals X G r
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 2 Figure 2: Example dendrogram for average linkage HCA
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 133 Figure 3: Example of cutoff distance calculation



  Evaluate the objective function ECGϒ for each individual through MCS-OPF((FD,Ξ), ϒ) with Ξ [Ξ Ξ ] Set generations count index G = 1Perform HCA using the average distance linkage function obtaining for the NP-1 pairing actions sp and calculate the cophenetic correlation index CCC G sp p',q' d Is CCC th ≤ CCC G ?
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 4 Figure 4: Flowchart of the framework
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 5 Figure 5: Radial 11-nodes distribution network

Figure 6 :

 6 Figure 6: Mean and standard deviation values of normally distributed nodal power demand daily profile

Figure 7 :

 7 Figure 7: Hourly per day probability data of EV operating states

µ

  M S = 4000 (kW) C ov = 0.145 ($/kWh) σ M S = 125 (kW)λ F = 4.00e-04 (1/h) λ R = 1.30e-02 (1/h) PV T a = 30.00 ( • C) N oT = 43.00 ( • C) I sc = 1.80 (A) α P V = 0.26 V oc = 55.50 (V) β P V = 0.73 C i = 48 ($) k I = 1.40 (mA/ • C) λ F = 5.00e-04 (1/h) C ov = 3.76e-05 ($/kWh) k V = 194.00 (mV/ • C) λ R = 1.30e-02 (1/h) V M P P = 38.00 (V) I M P P j = 1.32 (A) W ws ci = 3.80 (m/s) σ W = 7.96 ws a = 9.50 (m/s) λ F = 6.00e-04 (1/h) C i = 113, 750 ($) ws co = 23.80 (m/s) λ R = 1.30e-02 (1/h) C ov = 3.90e-02 ($/kWh) P W R = 50.00 (kW) EV P EV R = 6.30 (kW) λ F = 2.00e-04 (1/h) C i = 17, 000 ($) λ R = 9.70e-02 (1/h) C ov = 2.20e-02 ($/kWh) ST P ST R = 0.28 (kW/kg) λ F = 3.00e-04 (1/h) C i = 135.15 ($) S E ST = 0.04 (kJ/kg) λ R = 7.30e-02 (1/h) C ov = 4.62e-05 ($/kWh)

The

  DE iterations are set to perform G max = 500 generations over five different cases of population N P∈ {10, 20, 30, 40, 50}. The differential variation amplification factor F is 1 to maintain the integer-valued definition of the individuals after the mutation, whereas the crossover coefficient C oc is 0.1. HCDE runs are performed under the same conditions set for DE (G max , F and C oc), but for the population size N P of 50 individuals. A sensitivity analysis is performed over the HCA control parameters, namely the cophenetic correlation coefficient C C C th and linkage distances cutoff level coefficient p co , for all the nine possible pairs (C C C th , p co ) with C C C th ∈ {0.6, 0.7, 0.8} and p co ∈ {0.25, 0.50, 0.75}. Finally, for each of the five DE and nine HCDE settings, twenty realizations are carried out.

  results of the DE MCS-OPF for the different population sizes N P∈ {10, 20, 30, 40, 50} are shown in Figure 8. The 50th percentile (%ile) or median values of the minimum global costs EC G min , obtained from each experiment with fixed values of N P, are presented as functions of the respective numbers of objective function evaluations N F E; the error bars represent the 15th and 85th %iles.

Figure 8 :

 8 Figure 8: EC G min vs N F E for N P ∈ {10, 20, 30, 40, 50} set in DE (NP, CCC th , p co ) 50th %ile

Figure 9 :

 9 Figure 9: EC G min vs N F E for each (N P, C C C th , p co ) set in HCDE

Figure 9

 9 Figure 9 reports the median EC G min values corresponding to the HCDE MCS-OPF realizations superposed to the distribution of the median EC G min and 15-85th %iles values of the base DE experiments represented by the square markers and shaded area, respectively. The vertical and horizontal error bars account for the 15-85th %iles of the outcome EC G min and N F E values. Focusing on C C C th , it can be noticed that for the two extreme cases, C C C th = 0.6 and 0.8, the dispersion of the number of objective function evaluations is relatively small. On the contrary, the cases with a C C C th = 0.7 present high variability. This can be explained by the behavior of the C C C along each generation G in the evolution loop. Figure 10 shows the median, 15th and 85th %iles C C C values as a function of generation G derived from all HCDE MCS-OPF realizations. On the one hand, recalling that C C C th is used to control whether it is convenient to perform HCA, the small N F E dispersion in the case with C C C th = 0.6 is because clustering is practically been applied in all generations (C C C th ≤ C C C G ), thus disabling any effect generated by passing from populations with original size N P to reduced populations with N P G ≤ N P and vice versa. On the other hand, the effect is also being avoided in the case C C C th = 0.8 by not applying clustering. Indeed, in Figure 10 it can be observed that after the generation 50 it is unlikely that by performing HCA the proposed hierarchical grouping structures represent well enough the population.
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 10 Figure 10: C C C behavior per generation G

Figure 13 :Figure 14 :

 1314 Figure 13: Average total DG power allocated and investment cost for representative (N P, C C C th , p co ) settings

  sensitivity analysis over the control parameters of the hierarchical clustering shows that the efficiency is improved with cophenetic correlation thresholds that allow the clustering in almost all generations along the differential evolution, setting the level of clustering to no more than the fifty percent of the feasible linkage distances range in the hierarchical structure proposed. Indeed, this is shown to lead to acceptable reductions in the number of objective function evaluations, with small dispersion and loss of quality in the minimum global cost obtained. Paper (iii) R. Mena, M. Hennebel, Y.-F. Li and E. Zio, "A multi-objective optimization framework for risk-controlled integration of renewable generation into electric power systems," Energy, (under review) 1 Introduction

Figure 1 :

 1 Figure 1: Graphic representation of VaR α (x), C VaR α (x) and DC VaR α (x); x = loss

Thus, C

 C VaR α (x) provides a quantitative indication of the extent of the probability of occurrence of extreme non-desirable or risky scenarios of loss. The quantities VaR α (x) and C VaR α (x) can be expressed by the following equations: VaR α (x) = inf{z : F x (z) > α} (18) C VaR α (x) = E(x/x ≥ VaR α (x))

  }) as a generation portfolio, in which the renewable part [Q R ] of [Q] is the decision matrix. The corresponding assessed C G Ω , obtained from the output MCS-OPF([Q],{Y},Ω), can be translated evaluating the objective functions by the developed MCS-OPF. The extension to MOO entails the integration of Pareto optimality concepts. In general terms, solving a MOO problem of the form: min X { f 1 (X ), f 2 (X ), . . . , f m (X )} s.t. X ∈ Λ

• 1 •• 3 •

 13 Rank the individuals in POP 0 , applying a fast non-dominated sorting procedure with respect to the values of the objective functions • Compute and assign the crowding-distance value (d C ) to each individual in POP 0 and sort, in ascending order, with respect to d C , the individuals belonging to the same nondomination-ranked group Evolution loop • Set generations count index g = Set POP g = POP 0 While g ≤ Gen ma x (stopping criterion) • Set a repository population RPOP as empty Trial loop For each individual X g k in POP g , ∀k ∈ {1, . . . , N P} • Sample from the uniform distribution three integer indexes in {1, . . . , N P} such that k 1 = k 2 = k 3 = k and choose the corresponding three individuals X Generate a mutant individual X M g k according to the following mutation operator:

gk

  and each coordinate x c g k,i follows a uniform distribution with outcome in [0, 1] ∀i ∈ {1, . . . , n}. In addition, generate randomly an integer index i * in {1, . . . , n} from a uniform distribution to ensure that at least onecoordinate from X M g k is exchanged to form trial individual X ≤ C co or i = i * x g k,i if x c g k,i > C co and i = i *(26)• Evaluate the objective functions for the trial individual { f 1 (X T g k ), . . . , f N F (POP g , otherwise retain X g k in POP g and save X T g k in the repository population RPOP • Set a combined population U POP as POP g ∪ RPOP and rank the individuals in U POP, applying a fast non-dominated sorting procedure • Compute and assign the crowding-distance value d C to each individual in U POP and sort, in descending order with respect to d C , the individuals belonging to the same nondomination-ranked group • Set POP g as the first N P individuals of the ranked and sorted population U POP, POP g = {X k : X k ∈ U POP, k ∈ {1, . . . , N P}} • If the stopping criterion is reached return POP g , otherwise set g = g + 1.

  Set the values of N P, Gen max , CO c , F Generate randomly N P individuals [Q R ], according to constraints (2) and(24), to form the initial populationPOP 0 = {[Q R ] 0 1 , . . . , [Q R ] 0 k , . . . , [Q R ] 0 N P } Evaluate the objective functions E(C G Ω ) (22) and DC VaR α (C G Ω ) (23) for each individual [Q R ] 0 k through M C S-OP F ([Q] 0 k , [Y ], Ω) with [Q] 0 k = [Q M |[Q R ] 0 k ]Set generations count index g = 1 and POP g = POP 0Set k = 1 and repository population RPOP as emptyFrom the individual [Q R ] g k in POP g , ∀k ∈ {1, . . . , N P}, generate a trial individual [QT R ]g k by applying mutation (25) and crossover (26) operators and evaluate the objective functions E(C G Ω ) and DC VaR α (C G Ω ) through M C S-OP F ([QT ] g k , [Y ], Ω) with [QT ]
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 2164 Figure 2: Flow chart of the proposed MOO-DE framework

Figure 3 :

 3 Figure 3: IEEE 30 bus sub-transmission and distribution test system diagram

Figure 4 :

 4 Figure 4: Accumulated mean (A) and standard deviation (B) values of nodal load daily profiles

Figure 5 .

 5 The entire last generation population at convergence is shown by gray squares and the non-dominated solutions are the blue bullets. The base case (MG) in which no DG is integrated in the network is also shown as dark gray triangle. Each solution in the Pareto Front corresponds to a decision matrix [Q R ] that indicates the number of units and locations of the different types of DG technologies integrated in the network.
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 5 Figure 5: Set of non-dominated solutions: Pareto front
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 6 Figure 6: Set of non-dominated solutions with iso-CVaR (A) and iso-DCVaR (B) curves
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 7 Figure 7: Empirical C G probability density functions
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 21188 Figure 8: Total average renewable power installed. Cases EC G min (A), C VaRC G min (B) and DC VaRC G min (C)

(

  MW). Furthermore, in general terms moving along the non-dominated solutions, starting from theone that minimizes EC G ([Q R ] min EC G ), passing to the compromising one that minimizes C VaR α (C G) ([Q R ] min C VaR(C G) ) and ending with ([Q R ] min DC VaR(C G)

Figure 9 :

 9 Figure 9: Nodal average power by type of generator
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2 Renewable DG-integrated electric power network modeling

  

In this Chapter, the MCS-OPF is presented, including representation of the DG-integrated network, the modeling of the different uncertain operational inputs considered, the process of generating the random operational scenarios and the OPF problem formulation. The definition of the performance evaluation function, based on economics, reliability of power supply and uncertainty-risk measurement, is introduced as well.

Select the best N P individuals [Q R ] g k to create the next population of parents POP g+1 Apply binary tournament selection to POP g+1 to generate an intermediate population POP g+1 ' of size N P

  Apply mutation and crossover operators to POP g+1 ', to create an offspring population OPOP g+1 of size N P

	applying a fast non-dominated sorting procedure and identify the non-dominated fronts { 0 1 , . . . , 0 N D }
	Compute and assign the crowding-distance value (d C ) to each individual [Q R ] 0 k in POP 0 and sort, in ascending order with respect to d C , the individuals belonging to the same non-domination-ranked group { 0 ℓ } ℓ∈{1,...,N D}
	Apply binary tournament selection to POP 0 based on d C to generate an intermediate population POP 0 ' of size N P
	Apply mutation and crossover operators to POP 0 ', to create an offspring population OPOP 0 of size N P
	Evaluate the objective functions (3.1) and (3.2) for each individual [Q R ] 0 k in OPOP 0
	Set generations count index g = 1, POP g = POP 0 and OPOP g = OPOP 0
	Define a union population as U POP g = POP g ∪ OPOP g	
	Rank the individuals [Q R ] procedure and identify the non-dominated fronts { g k in U POP g , applying a fast non-dominated sorting g ℓ } ℓ∈{1,...,N D}
	Compute and assign d C to each individual [Q R ]	g k in U POP g and sort each {	g ℓ } ℓ∈{1,...,N D}
	Evaluate the objective functions (3.1) and (3.2) for each individual	

Table 4 .1 Example hierarchical structure outcome
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	Step z	Group	Groups linked	Linkage distance
	1	9		

Table 5 . 1

 51 Objective functions: expected and CVaR values of selected Pareto front solutions

Table 5 . 2

 52 Average, minimum and maximum total DG power allocated per node

	PT (kW)

Table 5 . 3

 53 Asymptotic time complexity of the algorithms

		Algorithm		
	PDIST	HC	MCS	OPF
	Time complexity T			

Table 5 . 4

 54 Ratio κ for each (N P, C C C T , p co )

	(N P, C C C T , p co ) (50, 0.6, 0.25)	N P N P × n(m + r)	N P log(N P) N P × (n(m + r)) 2	ε =	E(N P g ) N P 0.817	κ 0.819	1 -κ 0.181
	(50, 0.7, 0.25)				0.921	0.923	0.077
	(50, 0.8, 0.25)				0.987	0.989	0.011
	(50, 0.6, 0.50)				0.510	0.512	0.488
	(50, 0.7, 0.50)	1.818e-03	3.418e-05		0.738	0.740	0.260
	(50, 0.8, 0.50)				0.978	0.979	0.021
	(50, 0.6, 0.75)				0.259	0.261	0.739
	(50, 0.7, 0.75)				0.487	0.488	0.512
	(50, 0.8, 0.75)				0.909	0.911	0.089

Table 5 .
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	5 MOO-DE and MCS-OPF parameters	
	Parameter	Nomenclature	Value
	Population size	N P	100
	Maximum n • of generations	N G max	600
	Crossover coefficient	p C	0.1
	Differential variation amplification factor	F	1
	N • of MCS-OPF scenarios	N S	24000
	Scenario duration (h)	∆t	1

Table 5 . 6

 56 Ratio of power usage by type of generator

	Case	G 1	G 2	P V	W
	M G EC G min	77.93% 100.00% 41.88% 100.00%	-99.96%	-99.94%
	C VaRC G min	40.38% 100.00%	99.95%	99.42%
	DC VaRC G min 40.71% 100.00% 100.00% 98.73%

Table A . 1

 A1 Feeders characteristic and technical data[2] 

	Type Node i Node i' l (km) X (Ω/km) A (A)
	T1	1	2	0.61	0.37	365
	T2	2	3	0.15	0.47	170
	T3	2	4	0.15	0.56	115
	T1	2	6	0.61	0.37	365
	T3	4	5	0.09	0.56	115
	T6	6	7	0.15	0.25	165
	T4	6	8	0.09	0.56	115
	T1	6	11	0.31	0.37	365
	T5	8	9	0.09	0.56	115
	T7	8	10	0.24	0.32	115

  The technical parameters of the four different types of DG technologies considered to be integrated into the distribution network (PV, W, EV and ST) are given in TableA.3. The values of the parameters of the Beta and Weibull distributions describing the variability of the solar irradiation and wind speed, are assumed constant in the whole network, i.e., the region of distribution is such that the weather conditions are the same for all nodes.

		Table A.2 Bulk-power supply parameters
	Node i P max (kW)	Normal distribution parameters µ (kW) σ (kW)
	1	1600	1200	27.5

Table A . 3

 A3 Parameters of PV, W, EV and ST technologies[3][4][5] Failures and repair rates of the components of the distribution network are provided in TableA.4. 

	PV		W	
	Beta distribution α 0.26 Weibull distribution α 11.25
	Beta distribution β	0.73 Weibull distribution β	2
	P max (W)	50	P R (kW)	50
	T A ( • C)	30	U C I (m/s)	3.8
	T N o ( • C)	43	U A (m/s)	9.5
	I SC (A)	1.8	U CO (m/s)	23.8
	k I (mA/ • C)	1.4	EV	
	V OC (V)	55.5 P R (kW)	6.3
	k V (mV/ • C)	194	ST	
	V M P P (V)	38	P R (kW)	0.275
	I M P P (A)	1.32 J S (kJ/kg)	0.042

Table A.

4 

Failure rates of feeders, MG and DG units

[3][4][5][6] 

  The hourly per day operating states probability profile of the EV is presented in Figure A.2.

	1.00 charging ρ 1 j ,t j ,t p ,	1.00 charging ρ 1 j ,t j ,t p ,    disconnected	charging ρ 1 j ,t j ,t p ,    0.75 disconnected 0 ρ 0 j ,t j ,t p ,  discharging	0.1 0.4 0.7 1.0 0.0 0.2 0.4 0.6 0.0 0.1 0.2 0.3 0.75 disconnected 0 ρ 0 j ,t j ,t p ,  discharging ρ 1 j ,t j ,t p ,  	0 2 4 6 8 10 12 14 16 18 20 22 t (h) 0.00 0.25 0.50 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 discharging ρ 1 j ,t j ,t p ,   0.00 0.25 0.50 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
	1.00	0.75		0.50		0.25	0.00
							33e-04 3.33e-04	0.021	0.198
				P V	T2	4.05e-04 4.05e-04	0.013	0.162
				W		T3	3.55e-04 3.55e-04	0.015	0.185
				EV	T4	3.55e-04 3.55e-04	0.105	0.185
				S T	T5	3.55e-04 3.55e-04	0.073	0.185
				-		T6	-	4.00e-04	-	0.164
				-		T7	-	3.55e-04	-	0.185

  

Table A .

 A 

	M G	-	1.45e-01
	P V	48	3.76e-05
	W	113750	3.90e-02
	EV	17000	2.20e-02
	S T	135.15	4.62e-05

5 

Investment, fixed O&M and variable O&M costs of MG and DG

[6][7][8] 

Type C I + CO f ($) COv ($/kWh)

Table B .

 B 1 contains the technical characteristics of the different types of feeders considered: specifically, the indexes of the pairs of nodes (i, i') that they connect, their length l, reactance X , ampacity A and failure and repair rates.

Table B .

 B Mean and standard deviation values of normally distributed nodal power demand daily profile B IEEE 13-bus test feeder data: Application 5.2The technical parameters, failure and repair rates and costs of the MG and the four different types of DG technologies (PV, W, EV and ST) available to be integrated into the distribution network are given in TableB.2. For the corresponding application example, the distribution region is such that the solar irradiation and wind speed conditions are assumed uniform in the whole network, i.e., the values of the parameters of the corresponding Beta and Weibull distributions are assumed constant in the whole network.

												kWh)
	T1	1	2	0.610	0.371	730	3.333e-04	0.198		1.970e-02
	T2	2	3	0.152	0.472	340	4.050e-04	0.162		9.173e-03
	T3	2	4	0.152	0.555	230	3.552e-04	0.185		6.205e-03
	T1	2	6	0.610	0.371	730	3.333e-04	0.198		6.205e-03
	T3	4	5	0.091	0.555	230	3.552e-04	0.185		6.205e-03
	T6	6	7	0.152	0.252	329	4.048e-04	0.164		8.904e-03
	T4	6	8	0.091	0.555	230	3.552e-04	0.185		1.970e-02
	T1	6	11	0.305	0.371	730	3.333e-04	0.198		1.970e-02
	T5	8	9	0.091	0.555	230	3.552e-04	0.185		9.173e-03
	T7	8	10	0.244	0.318	175	3.552e-04	0.185		6.205e-03
	1800				180						
	450 900 1350 μ i,t (kW)				node 2 135 node 3 node 4 90 node 5 σ i,t (kW) node 6 node 7 45						node 2 node 3 node 4 node 5 node 6 node 7 node 9
					node 9						node 10
	0				node 10 0					
	0	4	8	12 16 20 24	0	4	8	12	16	20	24
			t (h)					t (h)		
	Figure B.1										

1 Feeders characteristic and technical data [2, 4, 9]

Type Node i Node i' l (km) X (Ω/km) A (A) λ F (n/h) λ R (n/h) COv ($/

The nodal power demands are built from the load data given in

[2] 

and reported in Figure

B

.1 as daily profiles, normally distributed on each hour t with mean µ and standard deviation σ

[10, 58]

.

Table B . 2

 B2 Power sources parameters and technical data[3][4][5][6][7][8] 10] 

	Type j	Technical parameters	Distributions parameters, failure and repair rates	Costs
			µ = 4000 (kW)	
	MG	P max = 4250 (kW)		

Table C

 C 

	350		35	
				node 30
				node 29
	300		30	node 26
				node 24
				node 23
	250		25	node 21
				node 20
				node 19
	200		20	node 18 node 17
				node 16
	150		15	node 15 node 14
				node 12
	100	1	10	node 10 node 8
	,	,	* ,	node 7
		* 1		node 5
	50		5	node 4
				node 3
				node 2
	0		0	
	1 3 5 7 9 11 13 15 17 19 21 23	1 3 5 7 9 11 13 15 17 19 21 23

.1 summarizes the characteristics and technical data of the T&D lines, specifically: the indexes of the pair of nodes that they connect (i, i ′ ), the susceptance values B (i,i ′ ) , power rating P ma x (i,i ′ ) , failure λ F (i,i ′ ) and repair λ R (i,i ′ ) rates and operating cost COv (i,i ′ ) .

The nodal power demands are built from the load data given in

[11] 

and reported in Figure C.1 as daily profiles (accumulated according to the node indexes i), normally distributed on each hour t with mean µ i,t and standard deviation σ i,t .

Table C .

 C 1 T&D lines characteristics and technical data[11][12][13] 

  The technical data and uncertain model parameters of the different types of bulk-power suppliers and DG technologies, available to be integrated into the network, are given in TableC.2. The number of photovoltaic cells per PV generation unit is n c = 20000 and that the region covered by the system is such that the solar irradiation and wind speed conditions are uniform in the whole region, i.e., the values of the parameters of the corresponding Beta and Weibull distributions are taken equal for all nodes. The renewable power penetration factor is set to P F DG = 0.3.

											MWh)
			1	2	17.24	1.30		2.85e-04	6.67e-02	4.95
			1	3	5.41		1.30		2.85e-04	6.67e-02	1.61
			2	4	5.75		0.65		4.28e-04	1.00e-01	2.61
			3 2 Table C.2 Power generators technical data and uncertain model parameters [3-5, 7, 10, 14] 4 26.32 1.30 2.85e-04 6.67e-02 5.97 5 5.05 1.30 2.85e-04 6.67e-02 2.53
	Type	2	6	5.68	0.65 Technical parameters 4.28e-04	1.00e-01	3.68 Distribution parameters
	M G	4 5 6 6 G 1 G 2	6 7 7 8	24.39 8.62 12.20 23.81	0.90 0.70 1.30 0.32 P max 1 (MW) 340 P max 2 (MW) 50	3.73e-04 4.17e-04 2.85e-04 5.01e-04	8.72e-02 9.74e-02 6.67e-02 1.17e-01	6.06 0.70 0.93 0.19 Normal µ 1 Normal σ 1 300 18.25 Normal µ 2 Normal σ 2 42.5 5
	RG	6 6 9 9 P V	9 P AV (MW) 4.81 1.80 9.09 4.81 1.07	P max (W) 75	0.65 0.32 0.65 0.65	V OC (V) 21.98	4.28e-04 5.01e-04 I SC (A) 4.28e-04 4.28e-04 5.32	1.00e-01 1.17e-01 V M P P (V) 1.00e-01 1.00e-01 17.32	5.21 Beta α 4.14 4.81 8.78	Beta β
			4		3.91		0.65		4.28e-04	1.00e-01	2.93
			12		7.14		0.65		4.28e-04	1.00e-01	1.41
			12		3.91		0.32		5.01e-04	1.17e-01	11.10
			12		7.69		0.32		5.01e-04	1.17e-01	6.66
			14		5.00		0.16		5.36e-04	1.25e-01	13.70
			12		5.03		0.32		5.01e-04	1.17e-01	13.70
			10		11.76	0.32		5.01e-04	1.17e-01	13.20
			16		5.18		0.16		5.36e-04	1.25e-01	8.71
			15		4.57		0.16		5.36e-04	1.25e-01	3.46
			18		7.75		0.16		5.36e-04	1.25e-01	12.20
			10		4.78		0.32		5.01e-04	1.17e-01	5.40
			19		14.71	0.32		5.01e-04	1.17e-01	3.52
			10		13.33	0.32		5.01e-04	1.17e-01	11.50
			10		6.67		0.32		5.01e-04	1.17e-01	9.76
			21		41.67	0.32		5.01e-04	1.17e-01	8.08
			15		4.95		0.16		5.36e-04	1.25e-01	1.68
			22		5.59		0.16		5.36e-04	1.25e-01	7.82
			23		3.70		0.16		5.36e-04	1.25e-01	16.40
			24		3.04		0.16		5.36e-04	1.25e-01	7.98
			25		2.63		0.16		5.36e-04	1.25e-01	9.13
			25		4.78		0.16		5.36e-04	1.25e-01	5.56
			6		16.67	0.32		5.01e-04	1.17e-01	1.15
			8		5.00		0.32		5.01e-04	1.17e-01	0.36
			27		2.53		0.65		4.28e-04	1.00e-01	6.17
			27		2.41		0.16		5.36e-04	1.25e-01	14.40
			27		1.66		0.16		5.36e-04	1.25e-01	14.00
			29		2.21		0.16		5.36e-04	1.25e-01	11.40

Table C .

 C 

	M G RG	G 1 G 2 P V W	5.13e-04 2.77e-02 6.84e-04 4.16e-02 6.27e-04 1.30e-02 3.42e-04 9.00e-03	--2.20 1.85	29.32 8.92 9.69 11.05

3 

Power generators failure and repair rates and costs

[3, 4, 7, 10, 14, 15] 

Type

λ F (n/h) λ R (n/h) C I + CO f (M$/u) COv ($/MWh)

The maximum value of the energy price is E P max = 100 ($/MWh)

[4, 52, 53] 

and the corresponding highest value of total demand ΣLma x i (MW) is set to 445 (MW). The load shedding cost C LS ($/MWh) is considered as the maximum energy price. The horizon of analysis or lifetime of the project is 30 years, in which the investment and operating costs are hourly prorated. The confidence level or α-percentile considered to estimate the values C VaR α and DC VaR α is 75%, arbitrarily chosen.

  Compute the energy non supplied ENS ϑℓ from equation(34) 

	 	( ) i,i' t ,P ,L ,s ,ws ,Q ,mc ,mc [ ms st d i , j i i i i , j i, j	]
	Solve the OPF problem, equations (26) -(33)
	OPF({Ξ	g ,k	} ) with Ξ ,FD , 	g ,k		[Ξ Ξ ] MS DG g ,k |

Table 1 :

 1 Feeders characteristic and technical data[40] 

	type node i node i' length (km) X (Ω/km) Amp (A)
	T1	1	2	0.61	0.37	365
	T2	2	3	0.15	0.47	170
	T3	2	4	0.15	0.56	115
	T1	2	6	0.61	0.37	365
	T3	4	5	0.09	0.56	115
	T6	6	7	0.15	0.25	165
	T4	6	8	0.09	0.56	115
	T1	6	11	0.31	0.37	365
	T5	8	9	0.09	0.56	115
	T7	8	10	0.24	0.32	115

Table 1

 1 contains the technical characteristics of the different types of feeders considered: specif-

Table 2 :

 2 Main power supply parameters

	node i P ms cap (kW)	Normal distribution parameters µ ms (kW) σ ms (kW)
	1	1600	1200	27.5

Table 3 :

 3 Parameters

	7.96

of PV, W, EV and ST technologies [11, 13, 42] PV W Beta distribution α 0.26 Rayleigh distribution σ

Table 4 :

 4 Failure rates of feeders, MS and DG units[11, 13, 42, 66] 

	type		λ F (failures/h)	λ R (repairs/h)
	M S ∪ DG F D M S T1	M S ∪ DG 3.33e-04 3.33e-04 F D	M S ∪ DG 0.021	F D 0.198
	P V	T2	4.05e-04 4.05e-04	0.013	0.162
	W	T3	3.55e-04 3.55e-04	0.015	0.185
	EV	T4	3.55e-04 3.55e-04	0.105	0.185
	ST	T5	3.55e-04 3.55e-04	0.073	0.185
	-	T6	-	4.00e-04	-	0.164
	-	T7	-	3.55e-04	-	0.185

Table 5 :

 5 Investment, fixed O&M and variable O&M costs of MS and DG[27, 34, 66] typeC inv + C O&M f ($) C O&M v ($/kWh)

	M S	-	1.45e-01
	P V	48	3.76e-05
	W	113750	3.90e-02
	EV	17000	2.20e-02
	S T	135.15	4.62e-05

Table 6 :

 6 Objective functions: expected and CVaR values of selected Pareto front solutions

		β	f 1 (kW h)	f 2 ($)	E EN S (kW h) C VaR(EN S) (kW h) EC g ($) C VaR(C g ) ($)
	M S	-	-	-	1109.21	1656.53	170.27	179.24
	Ξ DG min f 1 Ξ DG el bow Ξ DG min f 2 Ξ DG min f 1 Ξ DG el bow Ξ DG min f 2 Ξ DG min f 1 Ξ DG el bow Ξ DG min f 2 Ξ DG min f 1 Ξ DG el bow Ξ DG min f 2 Ξ DG min f 1 Ξ DG el bow Ξ DG min f 2	1 0.75 0.5 0.25 0	666.95 671.05 726.57 797.07 805.27 867.08 868.61 936.58 1131.64 1033.65 1076.53 1207.33 1144.36 1197.79 1307.33	160.91 150.83 148.68 166.41 159.35 155.61 171.54 166.67 162.99 172.95 171.25 169.07 179.03 176.62 172.87	666.95 671.05 726.57 677.74 697.17 729.81 641.68 701.72 843.53 723.19 743.61 835.23 744.71 749.21 828.55	1093.12 1185.53 1279.37 1155.11 1129.62 1278.94 1095.52 1171.47 1419.79 1137.18 1187.43 1331.34 1144.31 1197.74 1307.35	160.91 150.83 148.68 160.68 153.09 147.66 159.43 154.67 150.45 156.55 156.32 158.64 163.82 160.93 159.78	185.11 179.47 178.23 183.62 178.15 179.45 183.64 178.53 175.58 178.42 176.24 173.47 179.03 176.62 172.87

Table 7 :

 7 Average, minimum and maximum total DG power allocated per node

	P T (kW)

Table 1 :

 1 Uncertain conditions models in the DG-integrated network operation

	Variable	Nomenclature States and units	Model	Parameters
	Hour of the day Mechanical state Main power supply Solar irradiance Wind speed	t d mc i, j P M S i, j s i ws i	(h) (0): under repair (1): operating (kW) [0, 1] (m/s)	Discrete uniform distribution Two-state Markov Truncated normal distribution 0 ≤ P M S cap j i, j ≤ P M S Beta distribution Rayleigh distribution	[1, 24] λ F j , λ R j λ F i,i' , λ R i,i' µ M S j , σ M S j P M S cap j α P V i , β P V i σ W i
				'Block groups'	
	EV operating state	op EV i, j	(-1) : charging (0): disconnected	Hourly probability distribution of EV operating states per day:	
			(1): discharging		

Table 2 :

 2 Available power functions of the power sources (PS)[25, 29, 30] 

	PS type j Parameters	Available power function (kW)
	MS	-	Pa	M S;ϑ i, j	= ξ i, j mc ϑ i, j P i, j M S;ϑ

Table 3 :

 3 Example hierarchical structure outcome {O 10 ∪ O 12 } = {{X 3 , X 4 } ∪ {X 5 , X 8 }}

	Step sp	Group	Groups linked	Linkage distance
	1 2 3 4 5 6	O 9 O 10 O 11 O 12 O 13 O 14	d 1 2,6 d 2 3,4 d 3 1,7 5,8 {O d 4 {O 2 ∪ O 6 } = {{X 2 } ∪ {X 6 }} {O 3 ∪ O 4 } = {{X 3 } ∪ {X 4 }} {O 1 ∪ O 7 } = {{X 1 } ∪ {X 7 }} 9,11 {O d 5 d 6 10,12
	7	O 15	{O 13 ∪ O 14	

5 ∪ O 8 } = {{X 5 } ∪ {X 8 }} 9 ∪ O 11 } = {{X 2 , X 6 } ∪ {X 1 , X 7 }}

16 153 Table 4 :

 1534 Feeders characteristic and technical data[11, 27, 28] 

	Type Node i Node i' l (km) X F D (Ω/km) A F D (A)		λ F (1/h)	λ R (1/h) C ov F D ($/kWh)
		T1	1	2	0.610	0.371	730	3.333e-04		0.198	1.970e-02
		T2	2	3	0.152	0.472	340	4.050e-04		0.162	9.173e-03
		T3	2	4	0.152	0.555	230	3.552e-04		0.185	6.205e-03
		T1	2	6	0.610	0.371	730	3.333e-04		0.198	6.205e-03
		T3	4	5	0.091	0.555	230	3.552e-04		0.185	6.205e-03
		T6	6	7	0.152	0.252	329	4.048e-04		0.164	8.904e-03
		T4	6	8	0.091	0.555	230	3.552e-04		0.185	1.970e-02
		T1	6	11	0.305	0.371	730	3.333e-04		0.198	1.970e-02
		T5	8	9	0.091	0.555	230	3.552e-04		0.185	9.173e-03
		T7	8	10	0.244	0.318	175	3.552e-04		0.185	6.205e-03
		1800					180				
	μ L (kW)	450 900 1350				(kW) σ L	node 2 135 node 3 node 4 90 node 5 node 6 node 7 45					node node node node node node node
							node 9					node
		0					node 10 0				
		0	4	8	12 16 20 24	0	4	8	12	16	20	24
					t d (h)				t d (h)	

Table 5 :

 5 Power sources parameters and technical data[13, 17, 28, 29,[35][36][37] 

	Type j	Technical parameters	Distributions parameters, failure and repair rates	Costs
	MS	P M S cap = 4250 (kW)		

Table 6 :

 6 Asymptotic time complexity of the algorithms

		Algorithm		
	PDIST	HC	MCS	OPF
	Time complexity T			
	O(d m 2 ) a	O(m 2 log(m))	O(m)	O(size(A)) b
	O(nps × N P 2 )	O(N P 2 log(N P))	O(N S × nps)	O(N S × nps 2 )

a Pairwise distance PDIST between all m vectors of size d.

b 

The matrix A comes from the canonical form Ax ≤ b of the linear programming of the DC OPF problem approximation.

  For modeling a DG-integrated network, one needs the definition of the type (or classes) of components involved and their topological location. In this work, we consider three main classes of components: power generators G, transmission and distribution lines T D and power demands (loads). The class of power generators considers all the different types of conventional bulk power suppliers M G and renewable technologies RG. The topology of the network is described as a graph, i.e., a set of nodes and the various connections that link them. The nodes represent spatial points at

which generation components (M G and RG) and loads are located or can be allocated, whereas the connections between nodes are the transmission and distribution lines. We indicate a node by the index i and the set of all nodes by N = {i : i ∈ {1, 2, . . . , n}}, where n is the total number of nodes in the network. Consequently, we define the set of transmission and distribution lines as Y = {(i, i') : nodes i and i' are connected, ∀i, i' ∈ N }.

Assuming stationary operational conditions, the network performance is considered dependent on the fixed location and magnitude of the power available in each generation unit and loads and, the technical limits of the T&D lines. To indicate the location and capacity size of the different types of generation units present in the network, we define the following matrix Q, ∀i ∈ N as follows: m + r types of power generators G m types of bulk power suppliers M G r types of renewable technologies RG G 1

  work, the availability states of the physical components in the network, generators and T&D lines, are straightforwardly modeled by two-state stationary Markov chains[2, 50], defining two possible operating states: η = 0 if the corresponding component is non functional (failure) and η = 1 if the component is available to operate, i.e., generate, transmit or distribute power accordingly to the class of component. Then, the discrete stationary distribution of operating states can be expressed

	as follows:

Table 1 :

 1 T&D lines characteristics and technical data[40, 55, 56] i i B (i,i ) (p.u.) P max (i,i ) (p.u.) λ F (i,i ) (n/h) λ R (i,i ) (n/h) COv (i,i ) ($/MWh)

	1	2	17.24	1.30	2.85e-04	6.67e-02	4.95
	1	3	5.41	1.30	2.85e-04	6.67e-02	1.61
	2	4	5.75	0.65	4.28e-04	1.00e-01	2.61
	3	4	26.32	1.30	2.85e-04	6.67e-02	5.97
	2	5	5.05	1.30	2.85e-04	6.67e-02	2.53
	2	6	5.68	0.65	4.28e-04	1.00e-01	3.68
	4	6	24.39	0.90	3.73e-04	8.72e-02	6.06
	5	7	8.62	0.70	4.17e-04	9.74e-02	0.70
	6	7	12.20	1.30	2.85e-04	6.67e-02	0.93
	6	8	23.81	0.32	5.01e-04	1.17e-01	0.19
	6	9	4.81	0.65	4.28e-04	1.00e-01	5.21
	6		1.80	0.32	5.01e-04	1.17e-01	4.14
	9		9.09	0.65	4.28e-04	1.00e-01	8.78
	9		4.81	0.65	4.28e-04	1.00e-01	4.81
	4		3.91	0.65	4.28e-04	1.00e-01	2.93
	12		7.14	0.65	4.28e-04	1.00e-01	1.41
	12		3.91	0.32	5.01e-04	1.17e-01	11.10
	12		7.69	0.32	5.01e-04	1.17e-01	6.66
	14		5.00	0.16	5.36e-04	1.25e-01	13.70
	12		5.03	0.32	5.01e-04	1.17e-01	13.70
	10		11.76	0.32	5.01e-04	1.17e-01	13.20
	16		5.18	0.16	5.36e-04	1.25e-01	8.71
	15		4.57	0.16	5.36e-04	1.25e-01	3.46
	18		7.75	0.16	5.36e-04	1.25e-01	12.20
	10		4.78	0.32	5.01e-04	1.17e-01	5.40
	19		14.71	0.32	5.01e-04	1.17e-01	3.52
	10		13.33	0.32	5.01e-04	1.17e-01	11.50
	10		6.67	0.32	5.01e-04	1.17e-01	9.76
	21		41.67	0.32	5.01e-04	1.17e-01	8.08
	15		4.95	0.16	5.36e-04	1.25e-01	1.68
	22		5.59	0.16	5.36e-04	1.25e-01	7.82
	23		3.70	0.16	5.36e-04	1.25e-01	16.40
	24		3.04	0.16	5.36e-04	1.25e-01	7.98
	25		2.63	0.16	5.36e-04	1.25e-01	9.13
	25		4.78	0.16	5.36e-04	1.25e-01	5.56
	6		16.67	0.32	5.01e-04	1.17e-01	1.15
	8		5.00	0.32	5.01e-04	1.17e-01	0.36
	27		2.53	0.65	4.28e-04	1.00e-01	6.17
	27		2.41	0.16	5.36e-04	1.25e-01	14.40
	27		1.66	0.16	5.36e-04	1.25e-01	14.00
	29		2.21	0.16	5.36e-04	1.25e-01	11.40

  13 15 17 19 21 23 

	node 30
	node 29
	node 26
	node 24
	node 23
	node 21
	node 20
	node 19
	node 18
	node 17
	node 16
	node 15
	node 14
	node 12
	node 10
	node 8
	node 7
	node 5
	node 4
	node 3
	node 2
	0

Table 2 :

 2 Power generators technical data and uncertain model parameters[20, 41, 46, 50, 57, 58] 

	Type		Technical parameters		Distribution parameters
	M G	G 1 G 2			P max 1 (MW) 340 P max 2 (MW) 50			Normal µ 1 Normal σ 1 300 18.25 Normal µ 2 Normal σ 2 42.5 5
			P AV (MW)	P max (W)	V OC (V)	I SC (A)	V M P P (V)	Beta α	Beta β
	RG	P V	1.07 I M P P (A) 4.76	75 k V (mV/ • C) k I (mA/ • C) 21.98 14.4 1.22	5.32 T N o ( • C) 43	17.32 T A ( • C) 30	0.50	0.33
		W	P AV (MW) 0.93	P R (MW) 1.5	U C I (m/s) 5	U A (m/s) U CO (m/s) 15 25	Weibull α 15	Weibull β 2.2

Table 3 :

 3 Power generators failure and repair rates and costs[20, 41, 46,[57][58][59] Table 4 summarizes the main parameters set for the general MOO DE and MCS-OPF framework.

	Type	λ F (n/h)	λ R (n/h)	C I + CO f (M$/u) COv ($/MWh)
	M G RG	G 1 G 2 P V W	5.13e-04 2.77e-02 6.84e-04 4.16e-02 6.27e-04 1.30e-02 3.42e-04 9.00e-03	--2.20 1.85	29.32 8.92 9.69 11.05
	Finally,				

Table 4 :

 4 MOO-DE and MCS-OPF parameters

	Parameter	Nomenclature	Value
	Population size	N P	100
	Maximum n • of generations	Gen max	600
	Crossover coefficient	COc	0.1
	Differential variation amplification factor	F	1
	N • of MCS-OPF scenarios	N S	24000
	Scenario duration (h)	t ∆	1

Table 5 :

 5 Ratio of power usage by type of generator

	Case	G 1	G 2	P V	W
	M G EC G min	77.93% 100.00% 41.88% 100.00%	-99.96%	-99.94%
	C VaRC G min	40.38% 100.00%	99.95%	99.42%
	DC VaRC G min 40.71% 100.00% 100.00% 98.73%

Renewable DG-integrated electric power network modeling

Computational Challenge to be taken. Then, the individuals closest to the centroids of the formed clusters are considered as the representatives of the group which they belong to and are taken in a reduced population that enters the evolution phase of the HCDE. The proposed HCDE algorithm is summarized schematically in the flowchart of Figure 4.3.

† f (C G) = βEC G + (1β)C VaR(C G) by (3.1) ‡ f (EN S) = βE EN S + (1β)C VaR(EN S) by (3.2)
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that present closeness under the control of a specific linkage criterion based on defined distance metrics [26]. The HCA outcomes are the linkage distances at which the grouping actions take place, defining the different levels in the hierarchical structure. Two control parameters are introduced in the HCA, the cophenetic correlation coefficient (C C C) and a cutoff level coefficient of the linkage distances in the hierarchical structure of the groups (p co ). The C C C is a similarity coefficient that measures how representative is the proposed grouping structure by comparing their linkage distances with the original distances between all the individuals in the population. In the hierarchical structure, the linkage distance given by p co sets the level at which the groups formed below it are considered to be 'close enough' to constitute independent clusters. The two parameters allow HCDE to adapt itself in each generation of the search, 'deciding' whether to perform clustering if the C C C is greater than or equal to a preset threshold (C C C th ) and cutting the hierarchical structure in independent clusters according to the linkage distance given by p co . Then, the individual closest to the centroid of each cluster is taken as the feasible representative solution in the population that enters the evolution phase of the HCDE algorithm. Figure 1 From the results obtained for all the different DE and HCDE settings, we look for six representative cases for the analysis (Figure 9). From the DE runs, we select the settings with extreme and middle population size N P∈ {10, 30, 50}, whereas from HCDE we choose the cases (N P, C C C th , p co ) set as (50, 0.6, 0.25), (50, 0.6, 0.50), (50, 0.7, 0.50) and (50, 0.7, 0.75). The former (50, 0.6, 0.25) and (50, 0.6, 0.50) cases present significant reductions in the number of N F E, with small dispersion and loss of quality of the minimum EC G obtained, compared to the results obtained by diminishing directly the fixed N P in DE from 50 to 10. Similarly, the cases (50, 0.7, 0.50) and (50, 0.7, 0.75) may lead to considerable reductions in N F E, with acceptable losses of EC G min , but subject to a high degree of variability that compromises the performance.

where ε is the expected ratio of the population N P G evaluated along all generations G of DE to the total population N P and κ is the ratio of the asymptotic time complexities of HCDE to DE.

From Equation ( 26), we can observe that the contribution of the terms related with the complexity of MCS-OPF, dependent on N S and nps, is considerably large for the fulfillment of the inequality conditions. In fact, when using DE, it is commonly accepted to set a size of the population N P not greater than ten times the size of the decision variables, in this case, 10nps [24], making the first two terms of κ strongly dependent on the number of scenarios N S. Moreover, given the complexity of the general problem, higher values of N S lead to a better approximation of the objective function via MCS-OPF, i.e., the more likely is to fulfill the condition and the greater can be the reduction of computation time. However, the value of ε depends on the probability of performing clustering in each generation and at what level, controlled by C C C th and p co respectively. In some cases, ε can be close to 1 (as we inferred from Figure 11) implying negligible benefits. Figure 12 shows the convergence curves for the DE and HCDE cases selected, for the twenty runs performed for each (N P, C C C th , p co ) setting: no significant differences can be found among the convergence curves except for the expected behavior of converging to lower values of EC G min for settings which imply a larger population size. setting. It can be pointed out that in all the cases, the contribution of EV is practically negligible if compared with the other technologies. This is due to a combination of two facts: the probability that the EV is in a discharging state is much lower than that of being in the other two possible operating states, charging and disconnected (see Figure 7) and when EV is charging, the effects are opposite to those desired, i.e., it is acting as loads. The average total renewable DG power allocated per node is summarized in Figure 14. Even though all the EC G optimal decision matrices Ξ DG show differences, the tendency is to install localized sources of renewable DG power between two identifiable portions of the distribution network, up and downstream the feeder (2, 6) (Figure 5), giving preference to the second portion which presents higher and non-stream homogeneous nodal load profiles.

others, CVaR maintains consistency with VaR and is a coherent risk measure; it can be expressed by a minimization formula and aims towards conservatism, which prevails in risk management [38].

Even though integrated portfolio optimization approaches present robustness advantages by conjointly controlling the level of uncertainty and risk associated to the mean value of performance of different portfolios, they can considerably increase the complexity of the concurrent optimization problem that, in our case of interest, is already complicated given its combinatorial nature due to the size of a DG-integrated network, and the presence of uncertainty in the operational conditions.

Considering the mean value and the necessary deviation and risk measures as representative objectives of a portfolio increases significantly the number of objective functions to be simultaneously optimized, further constraining the feasible space and, eventually, hindering in understanding the information delivered to the decision-makers.

In this work, we take the challenge of developing an optimization framework for the integration of DG into a electric power network accounting for uncertain operational inputs, and assessing and controlling uncertainty and risk. For this, we exploit some relevant concepts and tools from 

Renewable generation selection, sizing and allocation

The practical aim of the MOO is to find the optimal integration of DG in terms of selection, sizing and allocation of the different renewable generation units (PV and W). The corresponding decision 

Multi-objective optimization problem formulation

The general multi-objective optimization problem for all set of randomly generated operational scenarios Ω is formulated as follows:

min

min

s.t.

The meaning of each constraint is the following: (2) the decision variables [Q] i, j are nonnegative integer numbers; (15) the ratio of total amount of average renewable power integrated in the network must be less or equal to the penetration factor P F ; ( 13)-( 16) all the power flows equations must be satisfied.

Multi-objective differential evolution

The non-convex mixed-integer non-linear MOO problem under uncertainties is solved by the multiobjective differential evolution (MOO-DE) algorithm, integrating a fast non-dominated sorting procedure and crowded-comparison operator [53] into the original single objective DE [39], and

We have presented a multi-objective optimization framework for the integration of renewable distributed generation into an electric power network. Multiple uncertain operational inputs are taken into consideration: the inherent uncertain behavior of renewable energy sources and power demands, as well as the occurrence of failures of components. For managing the uncertainty and risk associated to the achievement of a certain level of expected global cost performance, we have introduced the conditional-value-at-risk deviation measure, which allows trading off the level of uncertainty and, given the axiomatic relation to the conditional-value-at-risk, enables conjointly the trade-off of risk by constructing an iso-risk map in the non-dominated set of solutions. The proposed framework integrates the multi-objective differential evolution as a search engine, Monte Carlo simulation to randomly generate realizations of the uncertain operational scenarios and optimal power flow to evaluate the network response. The optimization is done to simultaneously minimize the expected value of the global costs and the respective conditional-value-at-risk deviation.

A case study has been analyzed, based on the IEEE 30 bus sub-transmission and distribution test system. The results obtained show the capability of the framework to identify Pareto optimal solutions of renewable DG units allocations. Integrating the conditional value-at-risk deviation into the framework has shown effectively the possibility of optimizing expected performances while controlling the uncertainty and risk, analyzing, in addition, the contribution of each type of renewable DG technology on the level of uncertainty associated to the outcome performance of the optimal solutions and the importance of the deployment of the renewable generation capacity to lower the risk of incurring in non-desirable extreme scenarios. In this view, a complete and comprehensible spectrum of information can be supplied in support of specific preferences of the decision makers for their decision tasks.