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Abstract

Renewable distributed generation (DG) is expected to continue playing a fundamental role in the

development and operation of sustainable, efficient and reliable electric power systems, by virtue of

offering a practical alternative to diversify and decentralize the overall power generation, benefiting

from cleaner and safer energy sources. The integration of renewable DG in the existing electric power

networks poses socio–techno–economical challenges, which have attracted substantial research and

advancement.

In this context, the focus of the present thesis is the design and development of a modeling,

simulation and optimization framework for the integration of renewable DG into electric power

networks. The specific problem considered is that of selecting the technology, size and location of

renewable generation units, under technical, operational and economic constraints. Within this

problem, key research questions to be addressed are: (i) the representation and treatment of the

uncertain physical variables (like the availability of diverse primary renewable energy sources, bulk–

power supply, power demands and occurrence of components failures) that dynamically determine

the DG–integrated network operation, (ii) the propagation of these uncertainties onto the system

operational response and the control of the associated risk and (iii) the intensive computational

efforts resulting from the complex combinatorial optimization problem of renewable DG integration.

For the evaluation of the system with a given plan of renewable DG, a non–sequential Monte

Carlo simulation and optimal power flow (MCS–OPF) computational model has been designed

and implemented, that emulates the DG–integrated network operation. Random realizations of

operational scenarios are generated by sampling from the different uncertain variables distributions,

and for each scenario the system performance is evaluated in terms of economics and reliability of

power supply, represented by the global cost (CG) and the energy not supplied (ENS), respectively.

To measure and control the risk relative to system performance, two indicators are introduced, the

conditional value–at–risk (CVaR) and the CVaR deviation (DCVaR).

For the optimal technology selection, size and location of the renewable DG units, two distinct

multi–objective optimization (MOO) approaches have been implemented by heuristic optimization

(HO) search engines. The first approach is based on the fast non–dominated sorting genetic algorithm

(NSGA–II) and aims at the concurrent minimization of the expected values of CG and ENS, then

ECG and EENS, respectively, combined with their corresponding CVaR(CG) and CVaR(ENS)
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values; the second approach carries out a MOO differential evolution (DE) search to minimize

simultaneously ECG and its associated deviation DCVaR(CG). Both optimization approaches embed

the MCS–OPF computational model to evaluate the performance of each DG–integrated network

proposed by the HO search engine.

The challenge coming from the large computational efforts required by the proposed simulation

and optimization frameworks has been addressed introducing an original technique, which nests

hierarchical clustering analysis (HCA) within a DE search engine.

Examples of application of the proposed frameworks have been worked out, regarding an

adaptation of the IEEE 13 bus distribution test feeder and a realistic setting of the IEEE 30 bus

sub–transmission and distribution test system. The results show that these frameworks are effective

in finding optimal DG–integrated networks solutions, while controlling risk from two distinct

perspectives: directly through the use of CVaR and indirectly by targeting uncertainty in the form of

DCVaR. Moreover, CVaR acts as an enabler of trade–offs between optimal expected performance

and risk, and DCVaR integrates also uncertainty into the analysis, providing a wider spectrum of

information for well–supported and confident decision making.

The main original contributions of the thesis work here presented reside in: framing the problem

of optimal technology selection, size and location of renewable generation units, within an integrated

simulation and optimization approach that takes into consideration multiple uncertain operational

inputs through the developed MCS–OPF, allows assessing and controlling risk by introducing CVaR

and DCVaR measures, and copes with computational complexity by embedding HCA into the HO

search engine.

Keywords: renewable distributed generation, uncertainty, risk, simulation, optimization, condi-

tional value–at–risk, conditional value–at–risk deviation, genetic algorithm, differential evolution,

hierarchical clustering analysis



Résumé

Il est prévu que la génération distribuée par l’entremise d’énergie de sources renouvelables (DG)

continuera à jouer un rôle clé dans le développement et l’exploitation des systèmes de puissance

électrique durables, efficaces et fiables, en vertu de cette fournit une alternative pratique de décen-

tralisation et diversification de la demande globale d’énergie, bénéficiant de sources d’énergie plus

propres et plus sûrs. L’intégration de DG renouvelable dans les réseaux électriques existants pose

des défis socio–technico–économiques, qu’ont attirés de la recherche et de progrès substantiels.

Dans ce contexte, la présente thèse a pour objet la conception et le développement d’un cadre de

modélisation, simulation et optimisation pour l’intégration de DG renouvelable dans des réseaux de

puissance électrique existants. Le problème spécifique à considérer est celui de la sélection de la tech-

nologie, la taille et l’emplacement de des unités de génération renouvelable d’énergie, sous des con-

traintes techniques, opérationnelles et économiques. Dans ce problème, les questions de recherche

clés à aborder sont: (i) la représentation et le traitement des variables physiques incertains (comme

la disponibilité de les diverses sources primaires d’énergie renouvelables, l’approvisionnements

d’électricité en vrac, la demande de puissance et l’apparition de défaillances de composants) qui

déterminent dynamiquement l’exploitation du réseau DG–intégré, (ii) la propagation de ces incerti-

tudes sur la réponse opérationnelle du système et le suivi du risque associé et (iii) les efforts de

calcul intensif résultant du problème complexe d’optimisation combinatoire associé à l’intégration

de DG renouvelable.

Pour l’évaluation du système avec un plan d’intégration de DG renouvelable donné, un modèle de

calcul de simulation Monte Carlo non–séquentielle et des flux de puissance optimale (MCS–OPF) a

été conçu et mis en œuvre, et qui émule l’exploitation du réseau DG–intégré. Réalisations aléatoires

de scénarios opérationnels sont générés par échantillonnage à partir des différentes distributions

des variables incertaines, et pour chaque scénario, la performance du système est évaluée en termes

économiques et de la fiabilité de l’approvisionnement en électricité, représenté par le coût global

(CG) et l’énergie non fournie (ENS), respectivement. Pour mesurer et contrôler le risque par rapport

à la performance du système, deux indicateurs sont introduits, la valeur–à–risque conditionnelle

(CVaR) et l’écart du CVaR (DCVaR).

Pour la sélection optimale de la technologie, la taille et l’emplacement des unités DG renou-

velables, deux approches distinctes d’optimisation multi–objectif (MOO) ont été mis en œuvre
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par moteurs de recherche d’heuristique d’optimisation (HO). La première approche est basée sur

l’algorithme génétique élitiste de tri non-dominé (NSGA–II) et vise à la réduction concomitante

de l’espérance mathématique de CG et de ENS, dénotés ECG et EENS, respectivement, combiné

avec leur valeurs correspondent de CVaR(CG) et CVaR(ENS); la seconde approche effectue un

recherche à évolution différentielle MOO (DE) pour minimiser simultanément ECG et s’écart associé

DCVaR(CG). Les deux approches d’optimisation intègrent la modèle de calcul MCS–OPF pour

évaluer la performance de chaque réseau DG–intégré proposé par le moteur de recherche HO.

Le défi provenant de les grands efforts de calcul requises par les cadres de simulation et

d’optimisation proposée a été abordée par l’introduction d’une technique originale, qui niche

l’analyse de classification hiérarchique (HCA) dans un moteur de recherche de DE.

Exemples d’application des cadres proposés ont été élaborés, concernant une adaptation du

réseau test de distribution électrique IEEE 13–nœuds et un cadre réaliste du système test de sous–

transmission et de distribution IEEE 30–nœuds. Les résultats montrent que les cadres proposés sont

efficaces dans la recherche des solutions de réseaux DG–intégrés optimales, tout en contrôlant les

risques à partir de deux perspectives distinctes: directement par l’utilisation du CVaR et indirectement

par en ciblant l’incertitude sous la forme du DCVaR.

Les principales contributions originales de la thèse présentée ici résident dans: encadrer le

problème de la sélection optimale de la technologie, la taille et l’emplacement des unités de

génération renouvelable d’énergie, dans une approche intégrée de simulation et d’optimisation qui

tient compte des multiples variables opérationnelles incertains à travers du MCS–OPF développé,

permet d’évaluer et contrôler le risque en introduisant les mesures CVaR et DCVaR, et fait face à la

complexité de calcul en intégrant HCA dans le moteur de recherche HO.

Mots clés: génération distribuée, énergie renouvelable, incertitude, risque, simulation, optimisation,

valeur–à–risque conditionnelle, écart du valeur–à–risque conditionnelle, algorithme génétique,

évolution différentielle, analyse de classification hiérarchique
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I Thesis





1 Introduction

The present thesis describes the works done in the design and development of a modeling, simulation

and optimization framework for the integration of renewable distributed generation (DG) into

electric power networks. Specifically, the problem considered is that of technology selection, sizing

and allocation of renewable DG units, taking into account uncertainty and risk.

This introductory chapter is organized as follows. Section 1.1 acquaints the reader with the

research context, presenting the motivations for advancements in sustainable electric power systems

and the role that renewable DG plays in the diversification and decentralization of power generation.

Section 1.2 discusses the potential benefits of DG and the major challenges involved in its integration

into existing power networks. In Section 1.3, key research questions and ensuing objectives are

formulated in the effort of contributing to shape frameworks for well–supported decision–making

in optimal DG integration. Finally, a schematic representation of the overall structure of the thesis

and general descriptions of the developed frameworks are provided in Section 1.4.

1.1 Electric power systems

The adverse environmental effects accompanying the intensive and prolonged use of fossil fuels are

not anymore a midterm conjecture but an ongoing reality. Even though initiatives with considerable

participation, like the Kyoto Protocol and the Copenhagen Accord, have set targets to limit carbon

dioxide (CO2) emissions in order to constrain the global temperature rise to less than 2◦C relative

to the pre–industrial level between 2008–12, no overall mitigation has been achieved [1]. Indeed,

greenhouse gas emissions from fuel combustion have been steadily increasing during the last decade,

mainly by cause of the accelerated economic and population growths of industrialized countries,

that do not face emission targets and, consequently, demand progressively larger amounts of energy

from fossil fuels.

Given the above, the development of environmental sustainability has become a worldwide

imperative for all sectors of highly compromised human activities such as industry, transport,

residential and electricity and heat generation. In particular, the electric power generation sector is
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considered an important point of concern, since it subscribes 42% of the global CO2 emissions, by

far being the largest contribution, as shown in Figure 1.1 [1].

Electricity 

&

heat

42%

Industry

20%

Residential

6%

Transport

23%

Other

9%

Figure 1.1 World CO2 emissions by sector [1]

In the pursuit of sustainable energy systems, the heightening of regulatory targets and the

engagement of leading–role countries to participate in international agreements certainly set a

challenging framework for advancement, but these measures do not constitute solutions by them-

selves. Nevertheless, the awareness on the global environmental problem has triggered a revolution

towards cleaner, safer and more reliable systems along all the energy value chain [10, 15–17].

Electric power systems are the ‘spinal cord’ of the energy value chain and they are facing a

stimulating transition across all their three main components, generation, transmission and distribu-

tion, led by both technological development of new equipment and devices and enhanced actions

in planning, operation and management strategies and driven by the opportunity of generating

electrical power by making use of low–carbon and, in preference, renewable energy sources. This

offers a great opportunity to overcome the growing energy demand, mitigating greenhouse emissions

and alleviating the energy market instability associated to the depletion of fossil fuels [18].

The integration of renewable generation into power systems is implemented mainly in two ways,

depending on the scale of the available primary energy sources: large–scale renewable generation

is predominantly connected upstream sub–transmission and distribution networks, acting as a

conventional bulk–power plant, while small–scale renewable generation units are allocated close or

directly on the ‘customers site of the meter’, which is known as distributed generation (DG) [19–21].
Both plan of actions offer the advantage of generating clean electric power, but it is particularly

DG that is playing a crucial role because it provides the possibility of concurrently diversifying and

decentralizing the overall power generation.

The connection of diverse renewable DG units onto sub–transmission and distribution networks

implies conceptual and operational transformations which are explained in the next section.
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1.1.1 Transmission & distribution of electric power

Transmission and distribution (T&D) of electric power has been traditionally a passive ‘fit–and–

forget’ strategy, characterized by unidirectional power flows supplied by centralized generation

systems [16, 19, 22, 23]. Moreover, the restrictive structure of conventional T&D settings makes

it difficult to supply power to remote areas, due to the extra T&D expenses associated and the

risk of compromising a large portion of power supply due to the occurrence of outages upstream

sub–transmission and distribution networks [24, 25].

Generation

conventional power plant

Transmission

Distribution

C

A

B

Residential customers

Industrial customers

C

power supplied by conventional generators

switch

Figure 1.2 Example of a passive T&D network

Figure 1.2 illustrates the constricted configuration of a typical passive T&D network. It can

be noticed that any contingency upstream point A may produce a large loss of power supply, in

this example, affecting mainly the industrial customers given the radial topology of that portion

of the network. For residential customers, the impact of an outage level at points A or B can be

deaden by closing the switch at point C, which provides a meshed character to that portion of

the network and, therefore, some level of redundancy. Notwithstanding mesh–structured T&D

networks are more flexible in terms of reliability of power supply, their operation is more expensive

and complicated since infrastructure and operation and maintenance costs (O&M) of T&D lines

increase, more control and protection devices are needed with the respective synchronization in

their operation [9, 26, 27].
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1.1.2 Diversification and decentralization of electrical power generation

On a large scale, hydro–power technology is the major contributor to carbon–free generation,

representing the 2.4% of the global total primary energy supply (TPES) in 2012 [28]. Over decades,

it has played an important environmental role but current expansions of hydro–power capacity

are negligible with respect to other pollutant technologies like oil, coal, gas, bio–fuels and waste,

which state the 31.4, 29.0, 21.3, 10.0% of the TPES in 2012 [28], respectively, and account for the

99% of the global CO2 emissions [1]. Indeed, global hydro–power additions decreased in 2013

[29], indicating a loss of priority in mitigating CO2 emissions by use of this technology. Moreover,

large scale hydro–power plants operate under the conventional passive logic, then, no further

decentralization can be achieved from them.

Generation

conventional power plant

Transmission

Distribution

C

A

B

Residential customers

Industrial customers

C

power supplied by conventional generators

power supplied by renewable DG

switch

solar photovoltaic generation

wind turbines

electric vehicle

storage device

Figure 1.3 Example of an active T&D network

It is the rapid expansion of non–hydro renewable capacity, that in 2014 rose globally by ap-

prox. 7% (350 (TW h))[29], that is making a difference. With the integration of renewable DG

technologies, such as small–scale hydro, solar photovoltaic, on and off–shore wind and storage

devices, electric power systems are evolving towards an active operational strategy, with possibly

bidirectional power flows and, thus, more reliable, decentralized and diversified sources [16, 19],
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as shown in Figure 1.3. In the Figure, the impact on the power supply of outages at points A and/or

B is smoothed by the deployment of different renewable DG units throughout the T&D network.

Finally, renewable DG technologies make use of local/regional renewable energy sources, which

boosts them in view of the requested environmental sustainability, while engaging the participation

of households, small businesses and specialized power companies and offering interesting techno–

economical benefits.

1.2 Renewable distributed generation

In the literature, DG is commonly defined as modular (independent) generation units located at or

in the neighborhood of power demand spots, connected to sub–transmission and/or distribution

networks rather than high voltage transmission [19–21, 27, 30]. The modular characteristic refers

to their smaller scale power capacity, generally in the range of generation 1 (kW)–5 (MW) [25]. It is

important to mention that some DG applications can reach a considerable power capacity, between

50 and 300 (MW); however, there is disagreement among authors about at what extent these can

be considered as DG.

The technological spectrum of DG is formed by two main groups: carbon–free and low–carbon

‘efficient’ generation devices. The first group includes small hydro and tidal turbines, solar pho-

tovoltaic panels, wind turbines, geothermal steam–turbines, etc., whereas the second one adds

biomass, waste and combined heat and power (CHP) devices and installations, based on recipro-

cating engines and combustion gas turbines [19]. Moreover, storage devices and electric vehicles

are also feasible technologies accompanying DG integration, to increase the overall efficiency of

activated electric power networks [6, 19, 31, 32].

Without loss of generality, in the present thesis work the focus of attention is oriented to carbon–

free DG given their superior contribution to environmental sustainability. Below, the potential

technical and economical benefits on one side and the possible operational complications on the

other are discussed.

1.2.1 Potential benefits and challenges

Under the assumption that DG power is ‘dispatchable’, i.e., DG units are able to provide and sell

energy in parallel to or as competitors of the centralized bulk–power supply to satisfy the system

demand, and given the fact that by integrating DG into an existing network the power flows through

shorter and possibly bidirectional paths, the main technical benefits that can be achieved are

[3, 4, 9, 10, 16, 17, 19, 22, 33–44]:

◦ Improvement of reliability of power supply.
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◦ Reduction of power losses.

◦ Voltage stability.

◦ Enhancement of power quality.

◦ Alleviation of T&D lines congestion.

◦ Power supply autonomy of rural/isolated areas.

The most representative economical benefits expected from the integration of renewable DG are

the following [4, 10, 16, 17, 19, 23, 34, 35, 38–41, 43, 45, 46]:

◦ Deferral of investments for conventional power plants and T&D upgrades.

◦ Reduction of T&D O&M costs.

◦ Decrement of generation costs and energy price.

◦ Reduction of fossil fuel costs.

◦ Diminution of price volatility associated to fossil fuels.

◦ Reduction of investment risks.

However, planners and operators have to face complex economic, regulatory, technical and

operational constraints, within which the dynamics introduced by renewable DG may generate

complications that can counteract the potential benefits [25, 26, 35]. Indeed, the traditional passive

power systems structures are designed to operate with unidirectional power flows, and in order to

incorporate renewable DG, the need for more protection and control devices may be significant.

Reactive power may also result compromised since many renewable DG technologies supply only

active power, affecting also the voltage stability and the introduction of harmonics [19].

The above–mentioned challenges have prompted substantial research and development. In

particular, DG planning has been a fundamental baseline of advancement to properly seize its

potential advantages. The specific problem associated to DG planning consists in selecting the

technology, size and location of renewable generation units while respecting the techno–economical,

regional and regulatory constraints imposed by the existing system.

One of the main difficulties associated to DG planning is the proper modeling of the intrinsic

uncertain behavior of primary renewable energy sources (e.g. solar irradiance, wind speed and water

inflow, in the case of solar photovoltaic, wind turbines and hydro–power technologies, respectively)

and of the stochastic occurrence of unexpected events on the DG units, such as failures and stoppages,

that may interrupt or curtail the power generation capacity. Indeed, these sources of uncertainty

come on top of those already present in the operating power systems, outage events due to failures

(or stoppages) of T&D lines and/or conventional power generators, variability and growth of power

demand, volatility in the energy price and fluctuations in the bulk–power supply, among others. As
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a consequence, for any proposed DG–integrated network plan, the uncertain operational conditions

need to be considered in the system response as calculated by solving power flow equations under a

number of representative scenarios [19, 42, 43, 47].

The decision making for DG–integrated network planning is usually framed as an optimization

problem, which can be especially complex depending on the size and topology of the network, the

number of load nodes, number of available DG technologies and the aforementioned uncertainty

and the non–linear conditions arising from technical constraints [16, 20, 42]. Optimality of the

renewable DG plan is customarily sought with regards to cost–based, operational or technical

targets. Among cost–based objectives are the costs of energy and fuel for generation, investments,

O&M, energy purchased from conventional power plants, energy losses, CO2 emissions, taxes,

incentives, incomes, etc. [3, 4, 7, 9, 10, 15, 16, 19, 22, 38, 48–57]. Operational objective functions

consider the performance and reliability of power supply in terms of indicators like the expected

energy not supplied (EENS) [37, 58], contingency load loss index (CLLI) [9], expected value of

non–distributed energy cost (ECOST) , system average interruption frequency index (SAIFI), system

average interruption duration index (SAIDI) [16, 22, 50], among others. Concerning technical

targets, the most commonly used indexes are the total voltage deviation (TVD) [51] and energy

losses [10, 44]. Obviously, the optimal solutions must also comply with the system technical

constraints like generation capacities, T&D lines rating and voltage drops [19, 25].

In the search for optimal DG–integrated network configurations under uncertainty, the use of only

expected or cumulative indicators as objective function(s) hinders the possibility of controlling the

risk associated to the optimal solution(s): the expected performance of an optimal DG–integrated

network may be satisfactory but be exposed to high variability or to risky scenarios with non–

negligible probabilities.

One way to account for uncertainty and risk is to frame DG planning as a portfolio optimization

problem, in which the different types of DG technologies are treated analogously to financial assets

[42, 46, 59–65].

In portfolio optimization theory, the mean–variance approach is the most common [66] and

has been applied to DG planning also [42, 46, 59, 62, 65, 67]. However, from a risk–perspective it

entails a drawback that cannot be ignored: the variance measure includes the values of performance

that symmetrically fall short of or exceed the expected or mean value; in the search for optimal DG

technologies portfolios, lower levels of uncertainty (variance) in the performance function can be

obtained with portfolios that lead to rarer occurrences of both beneficial and/or non–desired (risky)

scenarios. Then, for controlling the risk side, it is necessary to introduce additional indicators that

provide information on the extent of asymmetry of the performance function, weighting accordingly

the risky part of it, e.g., by skewness and kurtosis indicators that estimate the asymmetry and

peakedness of a probabilistic performance function, respectively [68].
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Likewise derived from portfolio optimization theory, direct risk–based frameworks have been

formulated and applied to address DG planning problems under uncertain conditions. The most

widely used risk measures are the value–at–risk (VaR) and conditional value–at–risk (CVaR) [61,

63, 64, 69–73], which focus on non–desirable performance outcomes given by a portfolio relative

to a specific confidence level or percentile.

Even though integrated portfolio optimization approaches, for instance mean–variance–skewness

or mean–variance–CVaR, present robustness advantages by conjointly controlling the level of

uncertainty and risk associated to the expected value of performance of different portfolios, they

can considerably increase the complexity of the concurrent optimization problem. Considering

the expected or mean value and the necessary deviation and risk measures as representative

objectives of a portfolio increases significantly the number of objective functions to be simultaneously

optimized, further constraining the feasible space and, eventually, hindering the understanding of

the information delivered to the decision–makers.

Moreover, optimization problems associated to DG planning are, in general, non–linear, non–

convex and combinatorial in nature. Non–linearity can be given by the power flow equality con-

straints and/or objectives functions involving power losses. The non–convex and combinatorial

characteristics are mainly due to the decision variables representing discrete (integer) locations,

number of units and type of technology of DG. Non–convex mixed–integer non–linear problems

(MINLP) are difficult to solve by conventional mathematical models, with multiple local optima and

at least non–deterministic polynomial–time hard (NP–hard) computational complexity [7, 20]. This

calls for alternative methods of solutions, like heuristic optimization techniques (HO) belonging

to the class of evolutionary algorithms (EAs), which have been proposed as a most effective way

of solution. These methods are suited to cope straightforwardly with non–convex combinatorial

problems, discontinuous feasible spaces, non–linear and non–differentiable objective functions

[20, 42].

1.3 Research objectives and original contributions

The objectives of the present thesis focus on the design and development of a modeling, simulation

and optimization framework for the integration of renewable DG into electric power networks.

Specifically, the problem considered is the selection of the technology, size and location of multiple

DG units, under technical, operational and economic constraints. The following key research

questions are addressed:

(i) Representation and treatment of the uncertain operational inputs, like the availability of diverse

primary renewable energy sources, bulk–power supply, power demands and occurrence of

components failures.
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(ii) Propagation of uncertainties onto the model of system operational response and control of

the associated risk.

(iii) Computational efforts resulting from the combinatorial optimization problem associated to

renewable DG integration.

In answer to the key research questions formulated, the main original contributions of this thesis

work are:

(a) Design and implementation of a non–sequential Monte Carlo simulation (MCS) and optimal

power flow (OPF) computational model, denoted MCS–OPF, that emulates the T&D network

operation integrating a given renewable DG plan. Random realizations of operational scenarios

are generated by sampling from the different uncertain variables models, evaluating for each

scenario the performance of the DG–integrated network in terms of economics and reliability

of power supply, represented by the global cost (CG) and the energy not supplied (ENS),

respectively.

(b) Integration of two indicators to measure and control uncertainty and risk, namely conditional

value–at–risk (CVaR) and conditional value–at–risk deviation (DCVaR), respectively.

(c) With respect to the optimal technology selection, size and location of the renewable DG

units, two distinct multi–objective optimization (MOO) strategies have been implemented by

heuristic optimization (HO) search engines, in which the MCS–OPF model is nested to assess

the performance of each DG–integrated network proposed along the evolutionary searching

process:

◦ In the first approach, the fast non–dominated sorting genetic algorithm (NSGA–II) is

used for simultaneous minimization of the expected values of CG and ENS (ECG and

EENS, respectively) combined with their respective CVaR(CG) and CVaR(ENS) values.

◦ The second approach performs a MOO differential evolution (DE) search to minimize

concurrently ECG and its associated deviation DCVaR(CG).

(d) To cope with the large computational efforts required by the developed MOO frameworks with

nested MCS–OPF, an original technique is introduced which embeds hierarchical clustering

analysis (HCA) within a DE search engine. The technique identifies, in a controlled manner,

groups of similar individuals (DG plans) in the DE population and, then, evaluates ECG

performing MCS–OPF on selected representative individuals of the groups only, thus reducing

the number of objective function evaluations in each iteration of the DE evolution loop.
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1.4 Thesis structure

This thesis manuscript is divided into two parts. The first part is composed by six Chapters which

introduce the readers to the research context, the motivations and objectives, and present in detail

the methodological developments performed to address the specific problem of optimal DG planning

under uncertainty. In particular, Chapter 2 provides the basics of the modeling of a DG–integrated

electric power network, focusing on the system representation, the different models use to treat the

uncertain operational inputs considered, the construction of the MCS–OPF computational model

and the respective evaluation of the system performance based on economic, and uncertainty

and risk measures. In Chapter 3, the formulation of diverse optimization strategies to address

the optimal DG planning problem and the HO with nested MCS–OPF frameworks developed are

presented. Chapter 4 briefly summarizes the use of clustering techniques in HO to increase the

computational performance and, then, gives a complete description of the development of the

DE search engine with embedded HCA. In Chapter 5, examples of applications of the proposed

frameworks are illustrated, with reference to an adaptation of the IEEE 13 bus distribution test

feeder [2] and a realistic setting of the IEEE 30 bus sub–transmission and distribution test system of

literature [11]. Finally, Chapter 6 draws the conclusions of the thesis work carried out and proposes

some opportunities for future research advancements. Figure 1.4 shows a diagram with the overall

vision of the thesis structure.

The second part, includes the collection of papers published or under revision, which are the

result of the research work here performed, and that the reader can refer to for further details. Paper

(i) presents a direct risk–based simulation and MOO framework for the integration of renewable DG

and storage based on NSGA–II, introducing the CVaR to find optimal DG plans, trading–off expected

performance and risk. Paper (ii) addresses the challenge of reducing the computational efforts

required to implement HO search engines with nested MCS–OPF: the technique developed integrates

HCA and DE for optimal integration of renewable DG and, by defining control parameters, adapts

itself along the evolutionary search determining whether it is convenient to perform clustering of

the decision variables or not and at what scale to, then, reduce the number of objective function

evaluations. Paper (iii) introduces a MOO framework for risk–controlled integration of renewable DG

into electric power systems, which is based on DE search and MCS–OPF. This framework measures

uncertainty in the system performance by the use of DCVaR that, due to its axiomatic relation to the

CVaR, allows the conjoint control of risk.
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2 Renewable DG–integrated electric power

network modeling

In this Chapter, the MCS–OPF is presented, including representation of the DG–integrated network,

the modeling of the different uncertain operational inputs considered, the process of generating

the random operational scenarios and the OPF problem formulation. The definition of the perfor-

mance evaluation function, based on economics, reliability of power supply and uncertainty–risk

measurement, is introduced as well.

2.1 System representation

2.1.1 Components classification

The starting point for modeling a DG–integrated network is the definition of the type of components

involved. For example in Figure 2.1 which illustrates the IEEE 30 bus sub–transmission and

distribution test system, three main classes of components can be identified: power generators, T&D

lines and loads.

The power generator class G considers the subclasses containing all the different types of

conventional bulk power suppliers and renewable technologies to be integrated, denoted by MG

and RG, respectively. In this study, four different types of DG technologies are considered: solar

photovoltaics, wind turbines, electric vehicles and storage devices. The nomenclature denoting the

classes, subclasses and types of components is summarized as follows:

◦ G: Class of power generation components, G = MG ∪ RG.

◃ MG: Subclass of bulk–power generation components.

◃ RG: Subclass of renewable DG components, RG = PV ∪W ∪ EV ∪ ST .

� PV : Solar photovoltaics.

� W : Wind turbines.

� EV : Electrical vehicles.
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� ST : Storage devices.

◦ T D: Transmission and distribution lines components.

◦ L: Power demand components.
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Figure 2.1 IEEE 30 bus sub–transmission and distribution test system diagram

2.1.2 Network topology

The network topology is described as a graph, i.e., a set of nodes and the various connections that

link them. The nodes represent spatial points at which generation components (MG and RG) and

loads are located or can be allocated, whereas the connections between nodes are the transmission

and distribution lines. A single node and the set of all nodes are indicated by the index i and

N = {i : i ∈ {1, 2, . . . , n}}, respectively, where n – total number of nodes in the network.

Consequently, the links connecting nodes define the set of transmission and distribution lines as

follows:

Y = {(i, i') : nodes i and i' are connected,∀i, i' ∈ N} (2.1)
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Assuming stationary operational conditions, the network performance is considered to be

dictated by the locations and magnitudes of the power available in each generation unit, the loads

and the technical limits of the T&D lines. To indicate the location and capacity size of the different

types of generation units present in the network, the matrix Q, ∀i ∈ N is defined by the following

expression:







q1,1 · · · q1, j · · · q1,m q1,1+m · · · q1, j+m · · · q1,r+m
...

. . .
...

. . .
...

...
. . .

...
. . .

...
Q = qi,1 · · · qi, j · · · qi,m qi,1+m · · · qi, j+m · · · qi,r+m

...
. . .

...
. . .

...
...

. . .
...

. . .
...

qn,1 · · · qn, j · · · qn,m qn,1+m · · · qn, j+m · · · qn,r+m

(2.2)

QM QR

G1 · · · G j · · · Gm G1+m · · · G j+m · · · Gr+m

m types of bulk–power suppliers MG r types of renewable technologies RG

(m+ r) types of power generators G

where, QM , QR – matrices of location and capacity size of bulk–power suppliers (MG) and renewable

power generators (RG), respectively, j – power generator type index, m – total number of types

of bulk–power suppliers, r – total number of types of renewable technologies and [Q]i, j = qi, j –

non–negative integer that specifies the number of units of the power generator type j allocated at

node i:

qi, j =





q' ∈ Z∗ if q' units of G j are allocated at node i, ∀G j ∈ {G1, . . . , Gm+r}
0 otherwise

(2.3)

Then, a proposed plan of DG integration is represented by the matrix QR and its concatenation to

the fixed locations and sizes of the bulk–power generators, already present in the existing network,

QM results in the complete static deployment of all power generator components Q = [QM |QR].
Therefore, the complete representation of a DG integrated is given by the pair ([Q], {Y }). Any

physical component, G or T D, is assumed to be affected by the stochastic occurrence of failures,

conditioning dynamically the functionality of power generators and the lines through which the

power flows. Furthermore, the magnitude of power available in each generation unit is subject

to the intrinsic uncertain behavior of the corresponding primary energy source and, under the

assumption that generators act as price–takers, the economic conditions depend on the variability

of the power demands [4, 52].

The aforementioned uncertain conditions significantly affect the operation of a given DG–

integrated network, therefore, modeling the diverse sources of variability becomes essential to
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emulate the operational response of the system for a large representative combination of possible

scenarios and, ultimately, be able to assess its probabilistic performance relative to preset target

functions.

2.2 Uncertain operational inputs

In principle, analytical methods are preferable to Monte Carlo simulation (MCS) because of the

possibility of achieving accurate solutions; however, their application usually requires simplifications

in the modeling which may lead to unrealistic results. An example of this are analytical solutions for

optimal DG planning that do not take into account uncertainty or intermittency in power generation

and/or load profiles, and networks of low dimensionality [74]. On the other hand, MCS allows

a more realistic modeling, because the operation of the network is not analytically solved but

simulated, and the overall performance indicators are statistically estimated from virtual operational

scenarios realizations [75]. MCS has been found quite suitable for the analysis of electric power

networks with multiple sources of uncertainty, e.g., power generation, loads, component failures

or degradation processes, etc. [37, 42, 43, 62, 63, 76], but at the expense of requiring more

computational resources.

In the present thesis work, we adopt a non–sequential MCS, based on latin hypercube sampling

(LHS) [77], to emulate the operation of the DG–integrated network, considering the realizations of

uncertain operational variables as independent on previous realizations, so as to seize the advantages

of MCS without overly increasing the computational efforts.

2.2.1 Power demands and energy price

Overall power demand profile in an electric power network, as well as single nodal load profiles, can

be inferred from historical data as daily load curves, in which to each hour of the day corresponds

one specific level of load [10, 52]. In addition, power demands can be considered uncertain

following normal distributions [42, 76]. Here, both models are integrated, adopting normally

distributed nodal load profiles for which their respective mean and standard deviation parameters

vary depending on the hour of the day t ∈ D = {1, . . . , 24}, as shown in Figure 2.2. Then, the power

demand at node i is modeled as:

fi,t(Li,t |µi,t ,σi,t) =





φ(ξ(Li,t ,µi,t ,σi,t))

σi,t Z(µi,t ,σi,t)
∀Li,t ,µi,t ,σi,t ≥ 0

0 otherwise
(2.4)

ξ(Li,t ,µi,t ,σi,t) =
Li,t −µi,t

σi,t
; Z(µi,t ,σi,t) = 1−Φ

�
µi,t

σi,t

�
(2.4a)
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Figure 2.2 Example of a nodal daily load profile, hourly normally distributed

where, fi,t(Li,t |µi,t ,σi,t) – truncated Normal probability density function, Li,t (MW) – power demand

at node i at hour of the day t, µi,t , σi,t (MW) – Normal distribution mean and standard deviation,

respectively, φ, Φ – standard Normal (pdf) and its cumulative distribution function (cdf), respectively.

The power generators in the network are assumed to be price–takers, for which the value of the

energy price is correlated with the aggregated power demand. As an intermediate approximation of

existing studies in [4, 52, 53] (Figure 2.3), the proportional correlation used in this study can be

expressed as:
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1
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i ,t

i N max

L
L

Figure 2.3 Proportional correlation energy price vs aggregated load

EPt(Li,t |EPmax , Lmax i
) = EPmax

∑
i∈N

Li,t

Lmax i

�
−0.38

�∑
i∈N

Li,t

Lmax i

�
+ 1.38

�
(2.5)

where, EPt ($/MWh)– energy price at hour of the day t, EPmax ($/MWh)– maximum value of

energy price and Lmax i
MW– maximum value of power load at node i.
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2.2.2 Bulk–power supply

Bulk–power stands for the power supply coming from conventional power plants (MG) already

existing in the network. These are rather stable and are connected to the network at sub–transmission

or distribution transformers to provide the voltage level of the customers. The stochastic behavior

of the available power in these sources is represented following normal distributions [20, 78], with

small standard deviation and truncated by the maximum capacity of generation.

f j(Pj|µ j ,σ j , Pmax j
) =





φ(ξ(Pj ,µ j ,σ j))

σ j Z(µ j ,σ j)
∀Pj ∈ [0, Pmax j

],µ j ,σ j ≥ 0

0 otherwise
(2.6)

ξ(Pj ,µ j ,σ j) =
Pj −µ j

σ j
; Z(µ j ,σ j) = Φ(

Pmax j
−µ j

σ j
)−Φ(µ j

σ j
) (2.6a)

where ∀ j ∈ { j : G j ∈ MG}, f j(Pj|µ j ,σ j , Pmax j
)– truncated Normal pdf, Pj, Pmax j

(MW) – available

bulk power and maximum capacity of the MG generator type j, respectively, µ j , σ j (MW) – Normal

distribution mean and standard deviation.

2.2.3 Solar photovoltaic generation

PV technologies (PV) converts solar irradiance into electric power through a set of solar cells

configured. Commonly, solar irradiance uncertain behavior has been modeled using probabilistic

distributions, obtained from long term weather historical data of a particular geographical area.

The Beta distribution function has been found particularly suitable to model hourly solar irradiance

[10, 79]. The intermittency in the solar irradiation is taken into account defining a daylight interval

between 07.00 and 21.00 hours, setting a positive value of solar irradiation H if the value t of the

hour of the day is in the subset of DL = {7, . . . , 21} of D, otherwise, the value of solar irradiance

is assumed equal to 0 given that t is in the night interval. Thus, the Beta distribution function is

adjusted considering the probability pL = P(t|t ∈ DL) that t falls in the daylight interval:

fi(Hi|αi ,βi , pL , H∗i ) =





H(αi−1)
i (1−Hi)(βi−1)

(1− pL)B(αi ,βi)
∀Hi ∈ [H∗i , 1],αi ,βi > 0

0 otherwise
(2.7)

B(αi ,βi) =
Γ (αi)Γ (βi)
Γ (αi + βi)

(2.7a)

where fi(Hi|αi ,βi , pL , H∗i ) – adjusted Beta probability density function, Hi – solar irradiance at node

i, αi , βi – shape parameters of the corresponding Beta distribution at node i, H∗i – pL percentile of

the non–adjusted Beta pdf fi(Hi|αi ,βi) and Γ – Gamma function.
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Besides the dependence on solar irradiance, the available power output is determined by the

technical characteristics of the PV cells and the ambient temperature on site. Then, the available

power output provided by nc solar cells can be obtained from the following equations:

Pi, j(Hi) =





P 'i, j(Hi) if 0≤ P 'i, j(Hi)≤ Pmax j

Pmax j
if Pmax j

< P 'i, j(Hi)
(2.8)

P 'i, j(Hi) = nc F F jV (Hi)I(Hi)× 10−6 (2.8a)

TC(Hi) = TAi
+Hi(TNo j

+ 20)/0.8 (2.8b)

I(TC) = Hi(ISC j
+ kI j

(TC − 25)) (2.8c)

V (TC) = VOC j
+ kVj

TC (2.8d)

F F j =
VM PPj

IM PPj

VOC j
ISC j

(2.8e)

where ∀ j ∈ { j : G j ∈ PV}, Pi, j (MW) – power output at node i, Pmax j
(MW) – maximum power

generation capacity, F F j – fill factor, TAi
(◦C) – ambient temperature at node i, TNo j

(◦C) – nominal

cell operation temperature, ISC j
(A) – short circuit current, kI j

(mA/◦C) – current temperature

coefficient, VOC j
(V) – open circuit voltage, kVj

(mV/◦C) – voltage temperature coefficient, and

VM PPj
(V), IM PPj

(A) – voltage and current at maximum power, respectively.

2.2.4 Wind turbines generation

Wind power generation (W) is obtained from turbine–alternator devices that transform the kinetic

energy of the wind into electric power. The stochastic behavior of the wind speed is commonly

represented through probability distribution functions. The Weibull distribution has been widely

used to model the randomness of the wind speed in various conditions [10, 20, 34, 73, 79, 80]:

fi(Ui|α∗i ,β∗i ) =





β∗i
α∗i

�
Ui

α∗i

�(β∗i−1)

exp

�
−
�

Ui

α∗i

�β∗i �
∀Ui ≥ 0,α∗i ,β∗i > 0

0 otherwise

(2.9)

where, fi(Ui|α∗i ,β∗i ) – Weibull probability density funtion, Ui (m/s) – wind speed at node i and α∗i ,

β∗i – scale and shape parameters of the Weibull distribution function at node i, respectively.
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Similarly to PV type of technologies, the uncertainty associated to the wind speed and the

technical features of a specific type of wind turbine characterize its power output function:

Pi, j(Ui) =





Ui − UC I j

UA j
− UC I j

PR j
if UC I j

≤ Ui < UA j

PR j
if UA j

≤ Ui ≤ UCOj

0 otherwise

(2.10)

where ∀ j ∈ { j : G j ∈W}, PR j
(MW) – rated power and UC I j

, UA j
, UCOj

(m/s) – cut–in, average and

cut–out wind speeds, respectively.

2.2.5 Electrical vehicles

In this study, electric vehicles (EVs) are considered as battery electric vehicles with three possible

operating states ρ: (−1) charging, (0) disconnected and (1) discharging [32]. When in charging

state, an EV act as a power demand, whereas in discharging it injects power into the network.

EVs operation is modeled considering them as ‘block groups’, i.e., EVs sharing similar operational

patterns are aggregated into a single block. In fact, it has been observed that EVs present nearly

stable daily usage schedules, in addition, modeling them as ‘block groups’ contributes to the need of

avoiding the combinatorial explosion of the model [5].

The power output of one block of EVs is formulated by assigning residence time intervals tρ to

each possible operating state and associating them with the percentage of trips that the vehicles

perform by hour of a day [32]. This allows approximating the hourly probability distribution of the

operating states per day, as shown Figure 2.4. Then, the random determination of the operating state

ρ j,t of a block of EVs of type j, given a specific hour of the day t, is sampled from the corresponding

probability f j,t(ρ j,t) associated to the occurrence of each state.
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Figure 2.4 Example of hourly probability distribution of EV operating states per day
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f j,t(ρ j,t |p−j,t , p0
j,t , p+j,t) =





p−j,t if ρ j,t = −1

p0
j,t if ρ j,t = 0

p+j,t if ρ j,t = 1

(2.11)

where ∀ j ∈ { j : G j ∈ EV}, p−j,t , p0
j,t , p+j,t – hourly per day probability distribution of a block of EVs

type j for the respective operating states, ρ j,t = −1 (charging), ρ j,t = 0 (disconnected), ρ j,t = 1

(discharging).

Accordingly, the power output for a single EV is calculated using the expression (2.12) below:

Pj,t(ρ j,t) = ρ j,t PR j
∀∆t ∈ [0, tρ] (2.12)

where ∀ j ∈ { j : G j ∈ EV}, tρ – residence time interval for operating state ρ (h), PR j
(MW) – rated

power (MW).

2.2.6 Storage devices

Analogously to the EV case, storage devices (ST) are treated as batteries. In reality, these present two

main operating states, charging and discharging [81]. However, in accordance to the non–sequential

characteristic assumed for the MCS model, for this study the level of charge in the batteries is

randomized and the state of discharging is the only one that takes place, making them independent

on previous states of charge. The discharging time interval tJ
j is assigned according to the relation

between the batteries rated power of type j, their energy density JS j
and the random level of charge

J they present. For this, the discharging action is carried out at a rate equal to the rated power. Then,

the power output per unit of mass of active chemical in the battery MT j
is estimated as follows:

f j(J |, JS j
, MT j

) =





1
JS j

MT j

∀J ∈
�
0, JS j

MT j

�

0 otherwise
(2.13)

Pj(J) = PR j
∀∆t ∈ [0, tJ

j ] (2.14)

tJ =
J

PR j

(2.14a)

where ∀ j ∈ { j : G j ∈ ST}, f j(J |, JS j
, MT j

) – Uniform probability density function, J (MJ) – level of

charge in the storage device, JS j
(MJ/kg) – specific energy of the active chemical, MT j

(kg) – mass

of active chemical, PR j
(MW) – rated power, tJ

j (h) – upper bound of discharging time interval.
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2.2.7 Components availability state

Consistently with the non–sequential nature of the proposed MCS simulation, the availability states

of the physical components in the network, generators (G) and T&D lines (T D), are direclty modeled

by two–state stationary Markov chains [5, 37], defining two possible operating states: η= 0 if the

corresponding component is non functional (failure) and η = 1 if the component is available to

operate, i.e., be able to generate, transmit or distribute power accordingly to the class of component.

Then, the discrete stationary distribution of operating states can be expressed as follows:

fk(ηk|λFk
,λRk

) =




λFk
/(λFk

+λRk
) ηk = 0

λRk
/(λFk

+λRk
) ηk = 1

(2.15)

where ∀k ∈ {{k : Gk ∈ G} ∪ {k/k = (i, i') ∈ Y }}, ηk – operating state of component k and λFk
(n/h)

and λRk
(n/h) – failure and repair rates, respectively.

2.3 Stochastic operation modeling

2.3.1 Non–sequential Monte Carlo simulation

For a given DG–integrated network plan, denoted by the pair ([Q], {Y }), recalling that Q = [QM |QR],
and that represents the locations and number of units of the different power generators and

the T&D lines, each uncertain variable is randomly sampled several times by LHS [77] and the

inverse transform method [75], for the realization of NS operational scenarios of duration t∆. For

practicality, we define NS as multiple of 24, so each hour of the day t has the same number of

realizations NS/24. The set ω contains all the sampled variables which constitute an operational

scenario which, conjointly to the pair ([Q], {Y }), set the stage for evaluating the response of

the network in terms of available power usage, power demand satisfaction and the involved

economics. Ω is defined as the set of all the NS realizations of ω, the respective notation is given by

Equations (2.16) and (2.16).

Figure 2.5 shows schematically the sampling process of the uncertain variables from the models

presented in the preeciding section.

ωs =
�

ts, Li,ts
, EPts

,
�

Pi, j,s,∀G j ∈ MG
	

,η(i,i'),s,ηi, j,s, Hi,s, Ui,s,ρ j,t,s, Js

	
(2.16)

Ω= {ωs : s ∈ {1,2, . . . , NS}} (2.17)
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(2.4)

(2.15)

(2.15)

(2.6)

(2.7)

(2.9)

(2.11)

(2.13)

{Li,ts
= F−1

i,ts
(u(0, 1)i |µi,ts

,σi,ts
)}∀i∈N

{η(i,i'),s = F−1
(i,i')(u(0, 1)(i,i')|λF(i,i') ,λR(i,i')}∀(i,i')∈Y

{ηi, j,s = F−1
j (u(0, 1)i, j |λF j

,λR j
}∀[Q]i, j ̸=0

{Pi, j,s = F−1
j (u(0, 1)i, j |µ j ,σ j , Pmax j

)}∀[Q]i, j ,ηi, j,s ̸=0,G j∈MG

{Hi,s = F−1
i (u(0, 1)i |αi ,βi , pL , H∗i )}∀[Q]i, j ,ηi, j,s ̸=0,G j∈PV

{Ui,s = F−1
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= F−1
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{Pi, j,s}∀[Q]i, j ̸=0,G j∈G

Figure 2.5 Sampling process

2.3.2 Optimal power flow

Power flow analysis is performed by the DC approximation [82] which takes into account only the

active power, neglecting power losses, and assumes a flat voltage profile throughout the network.

This allows transforming to linear the classic non–linear power flow equality constraints, gaining

simplicity and computational tractability. DC power flow is often used in techno–economic analysis

of electric power systems, more frequently in transmission [82, 83] but also in distribution networks

[83].

The generic DC power flow equations are:

Pi = Sre f

∑
i'∈N

B(i,i')(δi − δi') ∀i ∈ N , (i, i') ∈ Y (2.18)

∑
i∈N

�
PGi
− Li − Pi

�
= 0 ∀i ∈ N (2.19)

where, Sre f (MV A) – reference apparent power in the network, Pi (MW) – active power leaving or

entering node i, B(i,i') (p.u.) – susceptance of the T&D line (i, i'), δi – voltage angle at node i, PGi

(MW) – active power injected or generated at node i and Li (MW) – load at node i.

The assumptions are:

• the difference between voltage angles is small, i.e., sin(∆δ)≈∆δ, cos(∆δ)≈ 1.

• the resistance of the T&D lines are neglected, i.e., R≪ X , thus, that power losses are neglected

as well.

• the voltage profile is flat, constant V , set to 1 (p.u.)
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DC–OPF formulation

DC optimal power flow analysis (OPF) is run, taking in input the configuration ([Q], {Y }) and each

operating scenario ωs ∈ Ω and aiming at the minimization of the aggregated operating cost CO.

The quantity CO has been defined in two different manners: (i) GCO considers solely the operating

costs concerning generation of power, (ii) GT DCO accounts for the aggregation of the operating

costs of generation, transmission and distribution and load shedding, including revenues per MW h

sold. The present formulation of the power flow problem is:

MCS–OPF([Q], {Y} ,ωs):
min

PUs ,∆δs ,LSs

COωs (2.20)

(i)
GCOωs = t∆
∑
i∈N

∑
G j∈G

COv j PUi, j,s
(2.20i)

(ii)

GTDCOωs =
∑
i∈N

∑
G j∈G

(COv j − EPts
)PUi, j,s

+ (CLS + EPts
)
∑
i∈N

LSi,s+

Sre f

∑
(i,i')∈Y

COv(i,i')|B(i,i')(δi,s − δi',s)|
(2.20ii)

s. t.

Li,ts
−
∑
G j∈G

PUi, j,s
− Sre f

∑
i'∈N

η(i,i'),sB(i,i')(δi,s − δi',s)− LSi,s = 0 (2.21)

0≤ PUi, j,s
≤ ηi, j,s[Q]i, j Pi, j,s (2.22)

Sre f |B(i,i')(δi,s − δi',s)| ≤ Pmax(i,i') (2.23)

where ∀t ∈ D, s ∈ {1, 2, . . . , NS}, GCOωs ($) – aggregated operating cost of generation, GTDCOωs ($)

– aggregated operating cost of generation, transmission and distribution, and load shedding, COv j

($/MWh) – variable operating cost of the power generator j, EPts
($/MWh) – energy price at hour t,

PUi, j,s
(MW) – used power from the generator type j located at node i, COv(i,i') ($/MWh) – variable

operating cost of the T&D line (i, i'), CLS ($/MWh) – load shedding cost and Pmax(i,i') (MW) – power

rating of the T&D line (i, i'). The load shedding LSi,s (MW) at node i is defined as the amount of

load disconnected to alleviate congestion in the T&D lines and/ or balance the demand of power

with the available power supply.

The meaning of each constraint is:

◦ (2.21): power balance at node i.
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◦ (2.22): bounds of the power generation units.

◦ (2.23): technical limits of the T&D lines (power rating).

The OPF problem is solved for each operational scenario ωs, giving in output the corresponding

values of minimum COωs . The set COΩ = {COω1 , COω2 , . . . , COωNS} is, then, considered as a sample

of realizations of the probability density function of CO.

2.4 Performance evaluation

The proposed renewable DG–integrated network solutions Q = [QM |QR] are evaluated with respect

to performance indicators regarding economics and reliability of power supply. Specifically, the

expected values of performance and the associated uncertainty–risk measures are considered as

targets.

2.4.1 Global cost

The economic performance of the network, given a DG integration plan, is evaluated with respect to

a global cost function (CG). The quantity CG is composed by two terms: the outcome operating cost

of the MCS–OPF described in the previous section, COΩ, and the fixed investment and operating cost,

C I j + CO f j , associated to the renewable part of the proposed DG plan QR, i.e., ∀ j ∈ { j : G j ∈ RG}.
The fixed investment and operating cost C I j + CO f j ($) is prorated hourly over the lifetime of the

project tH . Thus, the global cost function for the set of operational scenarios Ω is given by the

following equations differentiated according the two distinct definitions of COΩ (Equations (2.20i)

and (2.20ii)):

(i)

GCGΩ =GCOΩ +
t∆

tH

∑
i∈N

∑
G j∈RG

��
C I j + CO f j

�
[QR]i, j − t∆(inc + EPΩ)PΩUi, j

�
(2.24i)

(ii)
GTDCGΩ =GTDCOΩ +

1
tH

∑
i∈N

∑
G j∈RG

�
C I j + CO f j

�
[QR]i, j (2.24ii)

where, EPΩ – sample of NS realizations of EPts
, inc ($/MWh) – incentive for power generation

from DG sources and PΩUi, j
– sample of NS realizations of PUi, j,s

.

Analogously to COΩ definition, CGΩ represents a sample of realizations of the probability

density function of CG and performance indicators of interest can be obtained, relative to expected

performance, uncertainty and risk.
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2.4.2 Energy not supplied

The energy not supplied (ENS) is a common index for reliability of power supply evaluation

[3, 10, 20, 34, 45, 84–87]. In the present work, its value is obtained directly from the OPF outputs

in the form of the aggregation of all nodal load sheddings per scenario ωs ∈ Ω:

ENSΩ = t∆
∑
i∈N

LSΩi (2.25)

where, ENSΩ – sample of NS realizations of ENSωs (MW h) and LSΩi – sample of NS realizations of

LSi,s (MW h).

2.4.3 Uncertainty and risk measurement

The proposed framework introduces the CVaR and CVaR deviation (DCVaR) [66] to measure,

respectively, the risk and uncertainty in the performance functions of interest: CG and ENS. The

quantity DCVaR is a functional of the CVaR [88], which is a coherent risk measure broadly used

in financial portfolio optimization and has been extended to engineering applications, including

electric power systems analysis and, in particular, DG planning [61, 63, 64, 69–72].

The definitions and properties of CVaR and DCVaR for continuous and discrete general return

(loss) functions are given in detail in [66, 88]. Here, only a graphical, but comprehensive view to

understand the CVaR and DCVaR definitions is presented in Figure 2.6.

fr
eq

ue
nc

y

loss x%ile

E(x)

VaR(x)

CVaR(x)

DCVaR(x) = CVaR(x -  E(x))

Figure 2.6 Graphic representation of VaRα(x), CVaRα(x) and DCVaRα(x); x = loss

For a discrete approximation of the probability function of the loss x , given a confidence level

or α-percentile, the value–at–risk VaRα(x) represents the smallest value of loss for which the

probability that the loss does not exceed that threshold value is greater than or equal to α, whereas
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CVaRα(x) is the expected value of loss given that the loss is greater than or equal to the VaRα(x).
Thus, CVaRα(x) provides a quantitative indication of the extent of the probability of occurrence of

extreme non–desirable or risky scenarios of loss. The quantities VaRα(x) and CVaRα(x) can be

expressed by the following equations:

VaRα(x) = inf{z : Fx(z)> α} (2.26)

CVaRα(x) = E(x/x ≥ VaRα(x)) (2.27)

where, Fx – cumulative distribution function of the loss x .

With regards to DCVaRα(x), this is a non symmetric deviation measure, as it accounts for the

uncertainty associated to the loss exceeding its expected value. It is defined taking into account

some important properties of the standard deviation [66], and is formulated as:

DCVaRα(x) = CVaRα(x − E(x)) (2.28)

Furthermore, being a coherent risk measure, CVaR is a strictly expectation–bounded risk measure

and it can be proved that a one–to–one relation exists with its corresponding deviation measure

DCVaR [66]:
CVaRα(x) = E(x) + DCVaRα(x) (2.29)

In the present framework, a specific configuration of the DG–integrated network ([Q], {Y }) can

be considered as a generation portfolio, in which the renewable part [QR] of [Q] is the decision matrix.

The corresponding assessed CGΩ and ENSΩ, obtained from the output MCS–OPF([Q],{Y},Ω), can be

translated into the probability functions of loss; then, the quantities CVaRα(CGΩ), DCVaRα(CGΩ)
and CVaRα(ENSΩ), DCVaRα(ENSΩ) represent the level of risk and uncertainty associated to the

solution [QR] with an expected global cost ECG = E(CGΩ) and expected energy not supplied

EENS = E(ENSΩ), respectively.
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network planning

This Chapter presents the distinct optimization frameworks considered to address the optimal

integration of DG in terms of selection of technology, sizing and allocation of renewable DG units.

The corresponding decision matrix [QR] is contained in the matrix Q = [QM |QR] that stores the

number and location of each type of power generator in the network.

Three distinct optimization strategies are formulated, defining correspondingly three different

frameworks (FWs). Framework number 1 (FW1) focuses on controlling the risk associated to the

expected performance of the DG plans, ECG and EENS, by measuring their respective CVaR values,

CVaRα(CG) and CVaRα(ENS). FW2, aims at the control of uncertainty with respect to the ECG

performance by targeting in conjunction the associated DCVaRα(CG). Whereas FW3, presents a

single objective strategy, aiming solely ECG to address the challenge of reducing the computational

efforts required to implement heuristic optimization (HO) search engines with nested MCS–OPF

and it is treated in details in the next Chapter 4.

3.1 Optimal DG technologies selection, sizing and allocation

3.1.1 Optimization strategies formulation

FW1: Multi–objective weighted ECG, CVaR(CG) & EENS, CVaR(ENS) minimization

The MOO problem consists in the concurrent minimization of the two objective functions measuring

the CG and ENS. Specifically, their expected values and their CVaR values are combined, weighted

by a factor β ∈ [0,1], which allows modulating the expected performance of the DG–integrated

network and its associated risk.
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Considering a set of randomly generated scenarios Ω, the MOO problem is formulated as follows:

min
[QR]i, j

βE(CGΩ) + (1− β)CVaRα(CGΩ)† (3.1)
†CGΩ =GCGΩ by (2.24i)

min
[QR]i, j

βE(ENSΩ) + (1− β)CVaRα(ENSΩ) (3.2)

s.t.

[Q]i, j ∈ Z∗ (2.3)
∑
i∈N

∑
G j∈RG

�
C I j + CO f j

�
[QR]i, j ≤ BGT (3.3)

∑
i∈N

[QR]i, j ≤ τ j ∀G j ∈ RG (3.4)

MCS–OPF([Q], {Y },Ω) (2.20)−(2.23)

The meaning of each constraint is:

◦ (2.3): the decision variable [QR]i, j is a non–negative integer number.

◦ (3.3): the total fixed investment and operating cost of the DG units must be less than or equal

to the available budget BGT ($).

◦ (3.4): the total number of DG units to allocate of each technology j must be less than or equal

to the maximum number of units available τ j to be integrated.

◦ (2.20)−(2.23): the OPF equations of must be satisfied for all scenario ωs ∈ Ω.

Constraint (3.4) can be translated into maximum allowed penetration factor PF DG
max j

of each

DG technology j. Defining PF as ‘the output active power of total capacity of DG divided by the

aggregated maximum nodal loads’ [23], constraint (3.4) can be rewritten as follows:

∑
i∈N
[QR]i, j E(PDG

j )
∑
i∈N

Lmax i

= PF DG
j ≤ PF DG

max j
=
τ j E(PDG

j )∑
i∈N

Lmax i

∀G j ∈ RG (3.5)

where,
∑
[QR]i, j – total number of units of DG technology j integrated in the network; E(PDG

j ) –

expected power output of one unit of DG technology type j (MW);
∑

Lmax i
– aggregated maximum

nodal loads (MW).
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FW2: Multi–objective ECG & DCVaR(CG) minimization

The practical aim of the MOO is the simultaneous minimization of representative indicators of the

objective function CG, given by the expected value ECG and the associated uncertainty measure

DCVaRα(CG).

The general MOO problem for all set of randomly generated operational scenariosΩ is formulated

as follows:

min
[QR]i, j

E(CGΩ) (3.6)

min
[QR]i, j

DCVaRα(CGΩ)‡ (3.7)
‡CGΩ =GTDCGΩ by (2.24ii)

(3.8)

s.t.

[Q]i, j ∈ Z∗ (2.3)

∑
i∈N

∑
G j∈RG

[Q]i, j PAVj

Lmax i

≤ PF DG (3.9)

MCS–OPF([Q], {Y },Ω) (2.20)−(2.23)

The meaning of each constraint is the following:

◦ (2.3): the decision variables [Q]i, j are non–negative integer numbers.

◦ (3.9): the ratio of total amount of average renewable power integrated in the network must

be less than or equal to the penetration factor PF DG .

◦ (2.20)−(2.23): the OPF equations of must be satisfied for all scenario ωs ∈ Ω.

FW3: Single–objective ECG minimization

This single objective optimization strategy ought to find the optimal plan of integration of renewable

DG [QR] by minimizing the expected value of global cost ECG. Considering a set of randomly

generated scenarios Ω, the optimization problem is formulated as follows:

min
[QR]i, j

E(CGΩ)‡ (3.10)
‡CGΩ =GTDCGΩ by (2.24ii)
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s.t.

[Q]i, j ∈ Z∗ (2.3)
∑
i∈N

∑
G j∈RG

�
C I j + CO f j

�
[QR]i, j ≤ BGT (3.11)

∑
i∈N

[QR]i, j ≤ τ j ∀G j ∈ RG (3.12)

MCS–OPF([Q], {Y },Ω) (2.20)−(2.23)

The meaning of each constraint is:

◦ (2.3): the decision variable [QR]i, j is a non–negative integer number.

◦ (3.11): the total investment and fixed operation and maintenance costs must be less than or

equal to the available budget BGT .

◦ (3.12): the total number of renewable DG units of each technology j to be allocated must be

less than or equal to the maximum number of units available for integration τ j .

◦ (2.20)−(2.23): the OPF equations of must be satisfied for all scenario ωs ∈ Ω.

3.2 Heuristic optimization & MCS–OPF simulation frameworks

The MOO optimization problems are non–linear and non–convex, i.e., a non–convex mixed–integer

non–linear problem or non–convex MINLP. Non–linearity is due to the fact that all the objective

functions involved cannot be written in the canonical form of a linear program, i.e., C T X , where C

is a vector of known coefficients and X the decision vector. In the present case, the decision matrix

[QR] enters the MCS–OPF flow simulation to obtain the probability density functions of ENS and/or

CG, then, the objective functions are formed by performance indicators of interests: expected values,

CVaR and DCVaR, in correspondence to the framework applied. Thus, the operations carried out

on [QR] through MCS–OPF, expected, CVaR and DCVaR values cannot not be represented as the

product C T [QR]. The problem is non–convex because the decision matrices [QR] are integer–valued

and, as it is known, the set of non–negative integers is non–convex.

Given the class of optimization problem in the proposed framework (non–convex MINLP), it is

most likely to have multiple local minima. Moreover, the dimension of the distribution network can

lead to a combinatorial explosion of the feasible space of the decision matrices [QR] [16, 20].

Heuristic optimization algorithms (HO) have emerged as the most effective search engines for

combinatorial optimization problems and they can deal with non–differentiable objective func-

tions, discontinuous feasible spaces and non–convex conditions [20, 42]. Some of the best known

techniques are: particle swarm optimization (PSO) [9, 42, 56, 76, 89], differential evolution (DE)
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[51, 90, 91] and genetic algorithms (GA) [3, 16, 34, 37, 69]. In this view, the three non–convex

MINLPs under uncertainties here proposed are solved by implementing HO search engines.

The MOO problem under uncertainties of FW1 is solved by the NSGA–II algorithm [92], in

which the evaluation of the objective functions is performed by the developed MCS–OPF. In FW2, the

MOO differential evolution (MOO–DE) algorithm is implemented, integrating a fast non–dominated

sorting procedure and crowded–comparison operator [92] into the original single objective DE

[93], and also evaluating the objective functions by MCS–OPF. FW3 performs the search for optimal

solution by an original technique developed in this work, which integrates hierarchical clustering

analysis (HCA) into the basic single objective differential evolution (DE) search, and is presented in

Chapter 4.

For MOO frameworks, FW1 and FW2, the extension to MOO entails the integration of Pareto

optimality concepts. In general terms, solving a MOO problem of the form:

min
X
{ f1(X ), f2(X ), . . . , fm(X )}

s.t. X ∈ Λ

with at least two conflicting objectives functions ( fi : ℜn → ℜ) implies to find, within a set of

acceptable solutions that belong to the non–empty feasible region Λ ⊆ ℜn, the decision vectors

X ∈ Λ that satisfy the following [94]:

¬X ∈ Λ/ fi(X )≤ fi(X
′),∀i ∈ {1,2, . . . , m} and fi(X )< fi(X

′) for at least one i

⇓
fi(X )≺ fi(X

′) i.e. X dominates X ′

The vector X is called a Pareto optimal solution and the Pareto front is defined as the set { f (X ) ∈
ℜn} such that X is Pareto optimal solution. The general NSGA–II and MOO–DE algorithms are

described next.

3.2.1 Non–dominated sorting genetic algorithm II–based approach

NSGA–II is one of the most efficient MOO evolutionary algorithms in HO [95]. It uses an elitist

approach by applying a fast non–dominated sorting and crowding–distance comparison operator,

while the search for non–dominated solutions is performed based on two main genetic operators,

namely mutation and crossover [92]. The general NSGA–II algorithm is summarized as follows:

Initialization

◦ Set the values of parameters:
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◃ N P: population size.

◃ NGmax : maximum number of generations.

◃ pC : crossover probability ∈ [0,1].

◃ pM : mutation probability ∈ [0,1].

◦ Form the initial population POP0, randomly generating N P decision matrices (individu-

als) X within the feasible space, POP0 = {X 0
1 , . . . , X 0

k , . . . , X 0
N P}

◦ Evaluate the objective functions
�

f1(X 0
k ), . . . , fN F (X 0

k )
	

for each individual X 0
k , where

N F – number of objective functions.

◦ Rank the individuals in POP0, applying a fast non–dominated sorting procedure [92]
with respect to the values of the objective functions and identify the non–dominated

fronts {F 0
1 , . . . ,F 0

N D}, where F 0
1 is the best front and F 0

N D the less good front.

◦ Compute and assign the crowding–distance value (dC) to each X 0
k individual in POP0

and sort, in ascending order with respect to dC , the individuals belonging to the same

non–domination–ranked group {F 0
ℓ
}ℓ∈{1,...,N D}.

◦ Apply binary tournament selection [92] to POP0 based on the crowding distance to

generate an intermediate population POP0' of size N P.

Reproduction

◃ Apply mutation and crossover operators to POP0', to create an offspring population

OPOP0 of size N P.

◃ Evaluate the objective functions for each individual X 0
k in OPOP0.

Evolution loop

◦ Set generations count index g = 1.

◦ Set POP g = POP0 and OPOP g = OPOP0.

◦ While g ≤ NGmax (stopping criterion):

◦ Combine POP g and OPOP g to obtain a population equals to their union U POP g =
POP g ∪OPOP g .

◦ Apply a fast non–dominated sorting procedure on U POP g and identify the new non–

dominated fronts {F g
1 , . . . ,F g

N D}.
◦ Compute and assign the crowding–distance value to each individual X g

k in U POP g and

sort each non–domination–ranked group {F g
ℓ
}ℓ∈{1,...,N D}.

◦ Select the best N P individuals X g
k to create the next population of parents POP g+1.

◦ Apply binary tournament selection to POP g+1 to generate an intermediate population

POP g+1' of size N P.

Reproduction
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◃ Apply mutation and crossover operators to POP g+1', to create an offspring popula-

tion OPOP g+1 of size N P.

◃ Evaluate the objective functions for each individual X g+1
k in OPOP g+1.

◦ Set g = g+1 and verify the stopping criterion, if g > NGmax then return POP g , selecting

the best front F g
1 as the optimal set of non–dominated solutions, otherwise continue

the evolution loop.

In correspondence to the nomenclature used in this thesis, the process of searching the set

of non–dominated solutions carried out by the NSGA–II MCS–OPF is presented schematically in

Figure 3.1.
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Set the values of N P, NGmax , pC , pM

Generate randomly N P individuals [QR], according to constraints (2.3), (3.3)
and (3.4), to form the initial population POP0 = {[QR]01, . . . , [QR]0k, . . . , [QR]0N P}

Evaluate the objective functions βE(CGΩ) + (1− β)CVaRα(CGΩ) (3.1) and βE(ENSΩ) + (1− β)CVaRα(ENSΩ) (3.2)
for each individual [QR]0k through MCS–OPF([Q]0k, [Y ],Ω) with [Q]0k = [Q

M |[QR]0k]

Rank the individuals [QR]0k in POP0, applying a fast non–dominated
sorting procedure and identify the non–dominated fronts {F 0

1 , . . . ,F 0
N D}

Compute and assign the crowding–distance value (dC ) to each individual [QR]0k in POP0 and sort, in ascending order
with respect to dC , the individuals belonging to the same non–domination–ranked group {F 0

ℓ
}ℓ∈{1,...,N D}

Apply binary tournament selection to POP0 based on dC to generate an intermediate population POP0 ' of size N P

Apply mutation and crossover operators to POP0 ', to create an offspring population OPOP0 of size N P

Evaluate the objective functions (3.1) and (3.2) for each individual [QR]0k in OPOP0

Set generations count index g = 1, POP g = POP0 and OPOP g = OPOP0

Define a union population as U POP g = POP g ∪OPOP g

Rank the individuals [QR]gk in U POP g , applying a fast non–dominated sorting
procedure and identify the non–dominated fronts {F g

ℓ
}ℓ∈{1,...,N D}

Compute and assign dC to each individual [QR]gk in U POP g and sort each {F g
ℓ
}ℓ∈{1,...,N D}

Select the best N P individuals [QR]gk to create the next population of parents POP g+1

Apply binary tournament selection to POP g+1 to generate an intermediate population POP g+1 ' of size N P

Apply mutation and crossover operators to POP g+1 ', to create an offspring population OPOP g+1 of size N P

Evaluate the objective functions (3.1) and (3.2) for each individual [QR]g+1
k in OPOP g+1

Set g = g + 1

Is g > NGmax ?

Return POP g and the optimal set of non–dominated solutions F g
1

yes

no

Figure 3.1 Flow chart of the proposed NSGA–II MCS–OPF framework
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3.2.2 MOO differential evolution–based approach

DE is a population–based and parallel, direct search method, shown to be one of the most efficient

evolutionary algorithms to solve complex optimization problems [93, 96, 97]. The implementation

of the original version of DE involves two main phases: initialization and evolution. The extended

MOO–DE, with fast non–dominated sorting and crowding–distance comparison operator [92] is

summarized below [93].

Initialization

◦ Set the values of parameters:

◃ N P: population size.

◃ NGmax : maximum number of generations.

◃ pC : crossover coefficient ∈ [0, 1].

◃ F : differential variation amplification factor ∈ [0,2].

◦ Form the initial population POP0, randomly generating N P decision matrices (individu-

als) X within the feasible space, POP0 = {X 0
1 , . . . , X 0

k , . . . , X 0
N P}

◦ Evaluate the objective functions { f1(X 0
k ), . . . , fN F (X 0

k )} for each individual X 0
k , where N F

– number of objective functions

◦ Rank the individuals in POP0, applying a fast non–dominated sorting [92] procedure

with respect to the values of the objective functions and identify the non–dominated

fronts {F 0
1 , . . . ,F 0

N D}, where F 0
1 is the best front and F 0

N D the less good front.

◦ Compute and assign the crowding–distance value (dC) [92] to each individual X 0
k in

POP0 and sort, in ascending order with respect to dC , the individuals belonging to the

same non–domination–ranked group {F 0
ℓ
}ℓ∈{1,...,N D}.

Evolution loop

◦ Set generations count index g = 1.

◦ Set POP g = POP0.

◦ While g ≤ NGmax (stopping criterion):

◦ Set a repository population RPOP as empty.

Trial loop

For each individual X g
k in POP g , ∀k ∈ {1, . . . , N P}:

◃ Sample from the uniform distribution three integer indexes in {1, . . . , N P} such that

k1 ̸= k2 ̸= k3 ̸= k and choose the corresponding three individuals X g
k1

, X g
k2

, X g
k3

◃ Generate a mutant individual X M g
k according to the following mutation operator:

X M g
k = X g

k1
+ F(X g

k2
− X g

k3
) (3.13)



40 3 Renewable DG–integrated electric power network planning

◃ Apply crossover operator, initializing a randomly generated vector X C g
k , whose

dimensionality n is the same as that of X g
k and each coordinate xcg

k,i follows a

uniform distribution with outcome in [0,1]∀i ∈ {1, . . . , n}. In addition, generate

randomly an integer index i∗ in {1, . . . , n} from a uniform distribution to ensure

that at least one coordinate from X M g
k is exchanged to form trial individual X T g

k ,

whose coordinates x t g
k,i are defined as follows:

x t g
k,i =





xmg
k,i if xcg

k,i ≤ pC or i = i∗

x g
k,i if xcg

k,i > pC and i ̸= i∗
(3.14)

◃ Evaluate the objective functions for the trial individual { f1(X T g
k ), . . . , fN F (X T g

k )}; if

X T g
k dominates X g

k , i.e., { f (X T g
k )≺ f (X g

k )}, X T g
k replaces X g

k in POP g , otherwise

retain X g
k in POP g and save X T g

k in the repository population RPOP.

◦ Set a combined population U POP as POP g ∪ RPOP and rank the individuals in U POP,

applying a fast non–dominated sorting procedure and identify the new non–dominated

fronts {F g
1 , . . . ,F g

N D}.
◦ Compute and assign the crowding–distance value dC to each individual in U POP and

sort each non–domination–ranked group {F g
ℓ
}ℓ∈{1,...,N D}.

◦ Set POP g as the first N P (best) individuals of the ranked and sorted population U POP,

POP g = {Xk : Xk ∈ U POP, k ∈ {1, . . . , N P}}
◦ If the stopping criterion is reached return POP g , otherwise set g = g + 1.

Analogously to the NSGA–II based FW1 and, in correspondence to the nomenclature used in this

thesis, search for the set of non–dominated solutions performed by MOO–DE MCS–OPF is presented

schematically in Figure 3.2.
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Set the values of N P, NGmax , pC , F

Generate randomly N P individuals [QR], according to constraints (2.3) and
(3.9), to form the initial population POP0 = {[QR]01, . . . , [QR]0k, . . . , [QR]0N P}

Evaluate the objective functions E(CGΩ) (3.6) and DCVaRα(CGΩ) (3.7) for each
individual [QR]0k through MCS–OPF([Q]0k, [Y ],Ω) with [Q]0k = [Q

M |[QR]0k]

Set generations count index g = 1 and POP g = POP0

Set k = 1 and repository population RPOP as empty

From the individual [QR]gk in POP g , ∀k ∈ {1, . . . , N P}, generate a trial
individual [QT R]gk by applying mutation (3.13) and crossover (3.14)

operators and evaluate the objective functions E(CGΩ) and DCVaRα(CGΩ)
through MCS–OPF([QT]gk , [Y ],Ω) with [QT]gk = [Q

M |[QT R]gk]

[QT R]gk dominates [QR]gk ?

Set k = k+ 1

Is k > N P?

The trial individual [QT R]gk
replaces [QR]gk in POP g

The original individual [QR]gk is
retained in POP g and the trial
individual [QT R]gk is saved in

the repository population RPOP

Set the combined population U POP as POP g ∪ RPOP, apply fast non–dominated sorting
procedure on U POP, within each non–domination–ranked group {F g

ℓ
}ℓ∈{1,...,N D}, compute

and assign the crowding–distance values dC and sort the individuals in descending order

Set POP g = {[QR]k : [QR]k ∈ U POP, k ∈ {1, . . . , N P}}

Set g = g + 1

Is g > NGmax ?

Return POP g and select the best front F g
1 as the optimal set of non–dominated solutions

yes no

yes

no

yes

no

Figure 3.2 Flow chart of the proposed MOO–DE MCS–OPF framework





4 Computational Challenge

The computational challenge here presented consists in improving the performance of HO techniques

used to solve the complex optimization problem of DG planning, when the objective function(s)

is(are) evaluated by time consuming computational models, such as the developed MCS–OPF. For

this, the integration of clustering into the HO search engine is considered.

4.1 Clustering in heuristic optimization

Clustering techniques like, k–means, fuzzy c–means and hierarchical clustering, among others, can

be directed to the enhancement of the global and/or local searching ability of HO algorithms, and

amounts to identifying groups of similar individuals and applying different evolution operators to

those of a same cluster (group), e.g. for random generation of new individuals in the neighborhood

of cluster centroids, or multi-parents crossover over new randomly generated individuals spread

in the global feasible space [96–101]. In the literature, these approaches have been proved to

be effective in improving convergence, but for ‘light-weight’ benchmark or not simulation–based

objective function(s). When the computational time complexity associated to the evaluation of

the objective function(s) is significant, even if convergence is improved by applying some of these

methodologies, which imply a temporarily increment of the overall size of the population, the

computational effort benefits may result counteracted. In addition, the accuracy of the clusters

structures in representing the distribution of individuals must be controlled for performing clustering

conveniently.

The main original contribution of the work here presented, lies in the development of the

clustering strategy in a controlled manner. The implementation of such clustering strategy is done

within a differential evolution (DE) optimization framework MCS–OPF model for the integration of

renewable DG into an electric power system. The introduction of the clustering is hierarchically

(i.e., hierarchical clustering analysis, HCA, [102]) by a controlled way of reducing the number of

individuals to be evaluated during the DE search, therefore, improving the computational efficiency.

Henceforth, the method is called hierarchical clustering differential evolution (HCDE).
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HCA is introduced to build a hierarchical structure of grouping individuals (DG–integrated

network plans) of the population that present closeness under the control of a specific linkage

criterion based on defined distance metrics [102]. The HCA outcomes are the linkage distances at

which the grouping actions take place, defining the different levels in the hierarchical structure. Two

control parameters are introduced in the HCA, the cophenetic correlation coefficient (CCC) and a

cutoff level coefficient of the linkage distances in the hierarchical structure of the groups (pco). The

CCC is a similarity coefficient that measures how representative is the proposed grouping structure

by comparing their linkage distances with the original distances between all the individuals in the

population. In the hierarchical structure, the linkage distance given by pco sets the level at which

the groups formed below it are considered to be ‘close enough’ to constitute independent clusters.

The two parameters allow HCDE to adapt itself in each generation of the search, ‘deciding’ whether

to perform clustering if the CCC is greater than or equal to a preset threshold (CCCT ) and cutting

the hierarchical structure in independent clusters according to the linkage distance given by pco.

Then, the individual closest to the centroid of each cluster is taken as the feasible representative

solution in the population that enters the evolution phase of the HCDE algorithm.

4.2 Hierarchical clustering & differential evolution

The original version of DE keeps the population size N P constant, making the computational

performance dependent mainly on the number of objective function evaluations (N F E) carried out

during the evolution phase of the algorithm. Then, the integration of HCA into DE is aimed at the

reduction of the number of individuals that enter the evolution loop in each generation so as to

decrease the number of objective function evaluations.

HCA links individuals or groups of individuals which are similar with respect to a specific

property, translated into a metric of distance, obtaining a hierarchical structure. In practice, an

agglomerative procedure is used, which in N Z = N P − 1 steps z fuses the closest pair or individuals

or groups of individuals through a linkage function, e.g. single linkage (nearest neighbor distance),

complete linkage (furthest neighbor), average linkage, among others, until the complete hierarchical

structure is built. The base hierarchical clustering algorithm used in this study can be expressed as

follows [102]:

Step 1: Given a population POP POP = {X1, . . . , Xk, . . . , XN P}, form the set of singleton groups

C = {Cı = {Xk}}, ∀ı = k ∈ {1, . . . , N P} and calculate the linkage distances between all the

N P groups using the average as linkage function and the Euclidean distance as metric: where,

dz
ı,  – average of the Euclidean distances between all the individuals Xk and Xk' belonging

to the groups Cı and C , respectively, NCz – number of groups at step z and |Cı|, |C | –
cardinalities of the groups Cı and C , respectively.
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Dz =




0 dz
1,2 · · · dz

1,  · · · dz
1,NCz

. . . . . .
...

. . .
...

0 dz
ı,  · · · dz

ı,NCz

0
...

...
. . . dz

NCz−1,NCz
0




dz
ı,  =

1
|Cı||C |
∑

Xk∈Cı

∑
Xk'∈C 

Æ
(Xk − Xk')2 (4.1)

NCz = N P − z + 1 (4.1a)

∀Xk, Xk' ∈ POP, z ∈ {1, . . . , N P − 1},
ı,  ∈ {1, . . . , NCz}

Step 2: Fuse the first pair of groups Cı' and C ', for which d1
ı', ' is the minimum distance

min(D1) and form a new group CN P+1 = {Cı' ∪C '}. Update the set of groups C replacing

Cı' and C ' by CN P+1, and calculate the linkage distances D2 between all the N P − 1 groups

in C using (4.1).

Step 3: Fuse the second pair of groups Cı' and C ' for which d2
ı', ' is the minimum distance

min(D2), and form a new group CN P+2 = {Cı' ∪C '}. As in the preceding step, update the set

of groups C and calculate the linkage distances D3 between all the N P −2 groups in C using

(4.1).
...

Step NP −1: Fuse the last pair of groups with linkage distance dN P−1
ı', ' , forming the last group

C2N P−1 = {Cı' ∪C '} that contains all the individuals X .

The outcoming hierarchical (or tree) structure can be reported as a sorted table containing the

N P − 1 linkage distances relative to each pairing action of individuals/groups and be graphically

illustrated as a dendrogram. Table 4.1 and Figure 4.1 present, respectively, the resultant linkage

distances and dendrogram obtained from an example set of N P = 8 two-dimensional individuals X

using the above introduced HCA algorithm.

Table 4.1 Example hierarchical structure outcome

Step z Group Groups linked Linkage distance

1 C9 {C2 ∪C6}= {{X2} ∪ {X6}} d1
2,6

2 C10 {C3 ∪C4}= {{X3} ∪ {X4}} d2
3,4

3 C11 {C1 ∪C7}= {{X1} ∪ {X7}} d3
1,7

4 C12 {C5 ∪C8}= {{X5} ∪ {X8}} d4
5,8

5 C13 {C9 ∪C11}= {{X2, X6} ∪ {X1, X7}} d5
9,11

6 C14 {C10 ∪C12}= {{X3, X4} ∪ {X5, X8}} d6
10,12

7 C15 {C13 ∪C14}= {{X1, X2, X6, X7} ∪ {X3, X4, X5, X8}} d7
13,14
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Figure 4.1 Example dendrogram for average linkage HCA

HCA builds the hierarchical structure through a linkage function introducing in each group-

ing action a larger or smaller degree of distortion with respect to the original distances between

(ungrouped) individuals. The measurement of this distortion is important and the cophenetic corre-

lation coefficient (CCC)is introduced to evaluate how representative is the hierarchical structure

proposed by the HCA. The CCC can be obtained from Equations (4.2) and (4.3) below [102].

CCC =

∑
k<k'
(d1

k,k' − D̄1)(lk,k' − L̄ )
s∑

k<k'
(d1

k,k' − D̄1)2
∑

k<k'
(lk,k' − L̄ )2

∀k, k' ∈ {1, . . . , N P}

(4.2)

L =




0 l1,2 · · · l1,k' · · · l1,N P
. . . . . .

...
. . .

...
0 lk,k' · · · lk,N P

0
...

...
. . . lN P−1,N P

0




lk,k' = dz∗
ı,  (4.3)

z∗ = {min z : Xk, Xk' ∈ CN P+z} (4.3a)

∀k, k' ∈ {1, . . . , N P}, ı,  ∈ 1, . . . , 2N P − 1

where D̄1 – average of the original Euclidean distances d1
ı,  between all the individuals, lk,k' – linkage

distance dz∗
ı,  where the pair of individuals Xk and Xk' become members of the same group and L̄ –

average of the resultant linkage distances lı,  between all the individuals.

Recalling that the aim of nesting HCA into DE is to increase the computational performance

by decreasing the N F E (times that the MCS–OPF is run) in each generation g, the presetting of a

threshold CCCT for the CCC value allows defining the level of representativeness required to the
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hierarchical structure proposed. If by applying HCA over the population POP g the corresponding

CCC g is such that CCC g ≥ CCCT , the built hierarchical structure is considered an acceptable repre-

sentation of the original distances amongst the individuals and the selection of a particular partition

of the sets of groups can be performed, i.e., the determination of a specific number of clusters. On

the contrary, if CCC g ≤ CCCT , the hierarchical structure is considered not representative enough

since it introduces unacceptable distortion that may affect the global searching process in the HCDE.

Whether the hierarchical structure is accepted, the clustering process itself takes place. As before

stated, the HCA outcome linkage distances dz
ı,  define each level (height) at which a pairing action

is carried out. If the hierarchical structure is ‘cut off’ at a specific linkage distance dco, all the groups

that are formed below that level become independent clusters. In each generation g of HCDE, a dco

relative to the HCA outcome linkage distances for the corresponding POP g , is determined from a

preset cut–off level coefficient pco of the linkage distances between the minimum dz
ı,  that correspond

to the first pairing action and the distance to form at least four clusters needed to perform the

mutation process in the HCDE. Thus, dco can be obtained from Equation (4.4). Figure 4.2 shows

the cut–off distance representation for the example aforementioned, for which the formed clusters

are {C2,C6}, {C1}, {C7}, {C3,C4}, {C5} and {C8}.

dco = dmin + pco(dNC=4 − dmin) (4.4)

dmin =min
z

dz
ı,  (4.4a)

dNC=4 = d�
1− 4

N P

�
%ile

(4.4b)

where, dmin – minimum linkage distance dz
ı,  that correspond to the first pairing action and dNC=4 –

distance to form at least four clusters.

C8C5C6C2 C4C3C7C1
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0.5
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d

=4NCd

mind    co d

Figure 4.2 Example of cutoff distance calculation

The integration of HCA into DE and the definition of the parameters CCCT and pco allow HCDE

adaptation at each generation, i.e., deciding whether to perform HCA and determining the clusters
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to be taken. Then, the individuals closest to the centroids of the formed clusters are considered as

the representatives of the group which they belong to and are taken in a reduced population that

enters the evolution phase of the HCDE. The proposed HCDE algorithm is summarized schematically

in the flowchart of Figure 4.3.
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Set the values of N P, NGmax , pC , F, CCCT , pco

Generate randomly N P individuals [QR], according to constraints (2.3), (3.11)
and (3.12), to form the initial population POP0 = {[QR]01, . . . , [QR]0k, . . . , [QR]0N P}

Evaluate the objective function ECGΩ (3.10) for each individual [QR]0k
through MCS–OPF([Q]0k, [Y ],Ω) with [Q]0k = [Q

M |[QR]0k]

Set generations count index g = 1 and POP g = POP0

Perform HCA using the average distance linkage function obtaining dz
ı', ' by (4.1)

for the N P − 1 pairing actions z and calculate the cophenetic correlation index CCC g

Is CCCT ≤ CCC g?

Cut off the hierarchical structure according to pco by (4.4) forming N P g groups {C }.
Obtain the individual [QR]gc closest–to–the–centroid for each {Cı},

ı ∈ {2N P − 1, . . . , 2N P − N P g} and set POP g∗ = {[QR]gc1
, . . . , [QR]gcN P g

}

Set N P g = N P and POP g∗ = POP g{[QR]g1 , . . . , [QR]gk , . . . , [QR]gN P}

Set k'= 1

Perform the trial, for [QR]gk' ∈ POP g∗, generate a trial individual [QT R]gk' by applying
mutation (3.13) and crossover (3.14) operators and evaluate the objective function ECGΩ

Is ECGΩ([QT R]gk')< ECGΩ([QR]gk')?

Set k'= k'+ 1

Is k'> N P g?

The trial individual [QT R]gk'
replaces [QR]gk = [Q

R]gk' in POP g
The original individual

[QR]gk=k' is retained in POP g

Set g = g + 1

Is g > NGmax ?

Sort the individuals in POP g in descending order according to their values of ECGΩ and return [QR]g1

yes

no

yes no

yes

no

yes

no

Figure 4.3 Flow chart of the proposed HCDE framework
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In this Chapter, examples of application of the proposed frameworks are given. The main results

obtained and the derived insights are presented, while encouraging the interested reader to consult

the corresponding Papers (i)–(iii) reported in Part II for further details.

For practical ease of the presentation of the examples, tables and figures reporting the data

associated to each application are provided in the corresponding Appendices A, B and C.

5.1 A risk–based MOO and MCS–OPF simulation framework for the

integration of renewable DG and storage devices

This section introduces an example of application of the simulation and MOO framework for

the integration of renewable DG and storage devices into an electric distribution network. The

framework searches for the optimal size and location of the DG units, taking into account different

sources of uncertainty: renewable resources availability, components failure and repair events,

loads and grid power supply. The evaluation of the network performance is run by the developed

MCS–OPF computational model and, as a response to the need of monitoring and controlling the risk

associated to the performance of the optimal DG–integrated networks, the CVaR is integrated into

the MOO optimization strategy which aims at the concurrent minimization of the expected values of

CG and ENS, namely ECG and EENS, combined with their respective CVaR values, CVaR(CG) and

CVaR(ENS), and weighed by a factor beta which allows modulating expected performance and risk.

The MOO is performed by the NSGA–II presented in Chapter 3, Section 3.2 and considering all the

formulation relative to framework FW1 that can be found in the same Chapter 3, Subsection 3.1.1.

5.1.1 IEEE 13–bus test feeder case

The framework FW1 is applied to a distribution network derived from the IEEE 13 nodes [2, 103].
The spatial structure of the network has not been altered but the the regulator, capacitor, switch

feeders of zero length are neglected. The network is chosen purposely small, but with all relevant

characteristics for the analysis, e.g. comparatively low and high spot and distributed load values
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and the presence of a power supply spot [103]. The original IEEE 13–bus test feeder is dimensioned

such that the total power demand is satisfied without lines overloading. This is modified so that it

becomes of interest to consider the integration of renewable DG units. Specifically, the location and

values of some of the load spots and the power ratings values of some feeders have been modified in

order to generate conditions of power congestion of the lines, leading to shortages of power supply

to specific portions of the network.

The distribution network presents a radial structure of n = 11 nodes and, therefore, (n−1) = 10

feeders, as shown in Figure 5.1. The nominal voltage is V = 4.16 (kV), constant for the resolution

of the DC–OPF problem. Four types of renewable DG technologies are considered to be integrated:

solar photovoltaic (PV), wind turbines (W), electric vehicles (EV) and storage devices (ST).

i: node index
MG: Main Supply spot

spot load (kW)

MG
i = 1

2

3

4
5

6

7

8
9

10
11

Figure 5.1 Radial 11–nodes distribution network

Five optimizations runs of the NSGA–II with the nested MCS–OPF algorithm are performed,

each one with a different value of the weight parameter β ∈ {1, 0.75, 0.5, 0.25, 0}, to analyze

different tradeoffs between optimal average performance and risk. From the equations that define

the objective functions, (3.1) and (3.2), note that the value β= 1 corresponds to optimizing only

the expected values ECG and EENS, whereas β= 0 corresponds to the opposite extreme case of

optimizing only the CVaR values. Each NSGA–II run is set to perform NGmax = 300 generations

over a population of N P = 100 chromosomes and, for the reproduction, the single–point crossover

and mutation genetic operators are used. The crossover probability is pC = 1, whereas the mutation

probability is pM = 0.1; the mutation can occur simultaneously in any bit of the chromosome.

Finally, NS = 250 random scenarios are simulated by the developed MCS–OPF with time step

∆t = 1 (h), over an horizon of analysis of 10 years (tH = 87600 (h)), in which the investment and

fixed costs are prorated hourly.

5.1.2 Conditional value–at–risk: expected performance and risk trade–off

The Pareto fronts resulting from the NSGA–II MCS–OPF are presented in Figure 5.2 for the different

values of β. The ‘last generation’ population is shown and the non–dominated solutions are marked

in bold. Each non–dominated solution in the different Pareto fronts corresponds to an optimal
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decision matrix [QR] for the sizing and allocation of DG, i.e., an optimal DG–integrated network

configuration ([Q], {Y }) where Q = [QM |QR].

145.0

152.5

160.0

167.5

650 725 800 875

E
C

G
($

)

EENS (kWh)

β = 1

160.0

165.0

170.0

175.0

800 950 1100 1250

0
.5

 E
C

G
+

0
.5

 C
V
a
R
α
(C

G
) 

($
)

0.5 EENS+0.5 CVaRα(ENS) (kWh)

β = 0.5

152.5

157.5

162.5

167.5

750 850 950 1050

0
.7

5
 E

C
G

+
0
.2

5
 C

V
a
R
α
(C

G
) 

($
)

0.75 EENS+0.25 CVaRα(ENS) (kWh)

β = 0.75

165.0

170.0

175.0

180.0

1000 1100 1200 1300

0
.2

5
 E

C
G

+
0
.7

5
 C

V
a
R
α
(C

G
) 

($
)

0.25 EENS+0.75 CVaRα(ENS) (kWh)

β = 0.25

170.0

175.0

180.0

185.0

1000 1200 1400 1600

C
V
a
R
α
(C

G
) 

($
)

CVaRα(ENS) (kWh)

β = 0

Figure 5.2 Pareto fronts for different values of β
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Figure 5.3 Bubble plots EENS v/s ECG. Diameter of bubbles proportional to CVaR(ENS) (A) and CVaR(CG) (B)
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In the Pareto fronts obtained, three representative non–dominated solutions are looked for the

analysis: those with minimum values of the objective functions independently, denoted [QR]min f (CG)
†

and [QR]min f (ENS)
‡ , respectively, and an intermediate compromised solution at the ‘elbow’ of the

Pareto front, [QR] f (CG)| f (ENS). Table 5.1 presents the values of the objective functions, ECG, ENS

and their respective CVaR values for the selected solutions. The ECG, EENS and CVaR values of

the case in which no DG is integrated in the network (MG case) is also reported.

Figure 5.3 shows a bubble plot representation of the selected optimal solutions. The axes report

the EENS and ECG values while the diameters of the bubbles are proportional to their respective

CVaR values. The MG case is also plotted.

Table 5.1 Objective functions: expected and CVaR values of selected Pareto front solutions

β f (CG) ($) f (ENS) (kW h) ECG ($) CVaR(CG) ($) EENS (kW h) CVaR(ENS) (kW h)

MG – – – 170.27 179.24 1109.21 1656.53

[QR]min
f (CG)

1

160.91 666.95 160.91 185.11 666.95 1093.12

[QR] f (CG)
f (ENS) 150.83 671.05 150.83 179.47 671.05 1185.53

[QR]min
f (ENS) 148.68 726.57 148.68 178.23 726.57 1279.37

[QR]min
f (CG)

0.75

166.41 797.07 160.68 183.62 677.74 1155.11

[QR] f (CG)
f (ENS) 159.35 805.27 153.09 178.15 697.17 1129.62

[QR]min
f (ENS) 155.61 867.08 147.66 179.45 729.81 1278.94

[QR]min
f (CG)

0.5

171.54 868.61 159.43 183.64 641.68 1095.52

[QR] f (CG)
f (ENS) 166.67 936.58 154.67 178.53 701.72 1171.47

[QR]min
f (ENS) 162.99 1131.64 150.45 175.58 843.53 1419.79

[QR]min
f (CG)

0.25

172.95 1033.65 156.55 178.42 723.19 1137.18

[QR] f (CG)
f (ENS) 171.25 1076.53 156.32 176.24 743.61 1187.43

[QR]min
f (ENS) 169.07 1207.33 158.64 173.47 835.23 1331.34

[QR]min
f (CG)

0

179.03 1144.36 163.82 179.03 744.71 1144.31

[QR] f (CG)
f (ENS) 176.62 1197.79 160.93 176.62 749.21 1197.74

[QR]min
f (ENS) 172.87 1307.33 159.78 172.87 828.55 1307.35

From Table 5.1 and Figure 5.3 it can be seen that, the MG case has an expected performance

(EENS = 1109.21 (kW h) and ECG = 170.27 ($)) inferior (high EENS and ECG) to any case for

which DG is optimally integrated. Furthermore, the CVaR(ENS) = 1656.53 (kW h) for the MG case

is the highest, indicating the high risk of actually achieving the expected performance of ENS. This

confirms that DG is capable of providing a gain of reliability of power supply and economic benefits,

the risk of falling in scenarios of large amounts of ENS being reduced.

Comparing among the selected optimal DG–integrated networks, in general the expected perfor-

mances of EENS and ECG are progressively lower for increasing β. This to be expected: lowering

the values of β, the MOO tends to search for optimal allocations and sizing [QR] that sacrifice

expected performance at the benefit of decreasing the level of risk (CVaR). These insights can serve
† f (CG) = βECG + (1− β)CVaR(CG) by (3.1)
‡ f (ENS) = βEENS + (1− β)CVaR(ENS) by (3.2)
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the decision making process on the integration of renewable DG into the network, looking not only

at the give–and–take between the values of EENS and, but also at the level of risk of not achieving

such expected performances due to the high variability.

5.1.3 Optimal DG–integrated network plans

Figure 5.4 shows the average total DG power allocated in the distribution network and its breakdown

by type of DG technology for the optimal [QR] as a function of β. It can be pointed out that the

contribution of EV is practically negligible if compared with the other technologies. This is due to

the fact that the probability that the EV is in a discharging state is much lower than that of being in

the other two possible operating states, charging and disconnected (see Figure A.2 in Appendix A),

combined with the fact that when EV is charging the effects are opposite to those desired.
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Figure 5.4 Average total DG power allocated (A) and its breakdown by type of DG: PV (B), W (C), EV (D) and ST (E)

The analysis of the results for different β values also allows highlighting the impact that each type

of renewable DG technology has on the network performance. As can be noticed in Figure 5.4(A), the

average total renewable DG power optimally allocated, increases progressively for increasing values
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of β: this could mean that to obtain less ‘risky’ expected performances less renewable DG power

needs to be installed. However, focusing on the individual fractions of average power allocated by

PV, W and ST (Figure 5.4(B), (C) and (E), respectively), show that a reduction of the risk in the

EENS and ECG is achieved specifically diminishing the proportion of PV power (from 0.29β=1 to

0.11β=0) while increasing the W and ST (from 0.38β=1 to 0.48β=0 and from 0.31β=1 to 0.39β=0,

respectively), but this increment of W and ST power is not enough to balance the loss of PV power

due to the limits imposed by the constraints in the number of each DG technology to be installed

given by τ j. Thus, PV power supply is shown to most contribute to the achievement of optimal

expected performances, but with higher levels of risk. On the other hand, privileging the integration

of W and ST power supply provides more balanced optimal solutions in terms of expectations and

of achieving these expectations.

Table 5.2 summarizes the minimum, average and maximum total renewable DG power allocated

per node. The tendency is to install more localized sources (mainly nodes 4 and 8) of renewable

DG power when the MOO searches only for the optimal expected performances (β = 1) and to have

a more uniformly allocation of the power when searches for minimizing merely the CVaR (β = 0).

Table 5.2 Average, minimum and maximum total DG power allocated per node

P̄T (kW)
β

1 0.75 0.5 0.25 0

node min mean max min mean max min mean max min mean max min mean max

1 12.08 34.44 54.77 1.15 22.40 38.56 0.00 19.23 40.98 0.00 39.03 121.00 3.00 17.33 34.71

2 2.30 40.72 69.73 0.00 49.95 77.70 36.50 58.40 123.36 3.00 63.61 132.93 0.00 42.54 84.09

3 0.00 24.83 46.45 14.80 41.79 85.03 0.00 37.94 105.11 4.00 36.87 98.53 1.00 32.84 77.78

4 76.00 110.00 133.41 1.15 67.40 133.63 0.58 38.04 80.13 6.15 20.73 61.85 0.00 39.85 85.86

5 22.60 52.39 77.08 28.90 60.66 98.59 12.63 89.39 143.50 3.30 23.49 54.25 1.00 24.97 79.64

6 12.33 55.56 85.46 10.45 21.22 38.95 2.00 27.68 106.26 12.15 53.78 84.43 0.00 50.64 116.85

7 8.00 16.52 35.38 39.38 64.07 104.05 0.00 52.03 159.73 0.00 34.09 92.81 5.00 18.51 39.23

8 79.03 111.20 146.63 30.00 74.57 114.41 0.00 40.60 146.06 4.00 37.94 102.60 1.00 39.49 119.38

9 0.00 20.03 68.73 4.00 74.07 107.88 0.00 46.72 85.61 0.00 44.06 94.08 0.00 32.86 74.53

10 0.00 9.07 25.35 0.00 1.58 7.88 0.00 11.88 58.69 0.00 8.58 43.40 0.00 30.12 83.45

11 0.00 9.98 17.68 0.00 3.04 13.20 0.00 4.74 23.45 0.00 8.99 45.95 0.00 7.31 51.17

5.1.4 Brief summary

The results obtained show the capability of the framework FW1 to identify Pareto optimal sets of

renewable DG units allocations. The integration of the conditional value–at–risk into the framework

and the performing of optimizations for different values of the weight parameter β has shown the

possibility of optimizing expected economic and reliability of power supply performances while

controlling the risk in its achievement. The contribution of each type of renewable DG technology
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can also be analyzed, in terms of size and location, indicating which is more suitable for specific

preferences of the decision makers.

5.2 Hierarchical clustering analysis and differential evolution

(HCDE) for optimal integration of renewable DG

The current Section presents an example of application relative to the HCDE framework developed

to address the computational challenge given by the expenses of large computational times required

to solve DG planning optimization problems under uncertainty. Coherently to the presentation

of HCDE framework in Chapter 4 and the single optimization strategy formulated in Chapter 3,

Subsection 3.1.1 (FW3), the designed search engine embeds HCA within a DE search scheme to

identify groups of similar individuals in the DE population to, then, calculate the objective function to

be minimized, ECG, only for selected representative individuals of the groups. The HCDE evaluates

the objective function by MCS–OPF and performs HCA in a controlled manner, by presetting two

parameters: a threshold to the cophenetic correlation coefficient CCCT and cutoff level coefficient

pco; which allows to decide whether or not is convenient to perform clustering and at what scale,

respectively.

5.2.1 IEEE 13–bus test feeder case

This example regards a modification of the IEEE 13–bus test feeder distribution network [2] with

the original spatial structure but neglecting the feeders of length zero, the regulator, capacitor and

switch. The resulting network has n = 11 nodes and presents the relevant characteristics of interest

for the analysis, e.g. the presence of a bulk–power supply spot and comparatively low and high

spot, and distributed load values [103]. The nominal voltage V N ET is 4.16 (kV), kept constant

for the resolution of the DC optimal power flow problem. An schematic view of the network is

show in Figure 5.5. Four types of renewable DG technologies are considered to be integrated: solar

photovoltaic (PV), wind turbines (W), electric vehicles (EV) and storage devices (ST).

A total of NS = 500 random scenarios are simulated by the MCS–OPF with time step ∆t = 1

(h), over a horizon of analysis of 10 years (tH = 87600 (h)), in which the investment and fixed

costs are pro–rated hourly.

The DE iterations are set to perform NGmax = 500 generations over five different cases of

population N P ∈ {10,20,30,40,50}. The differential variation amplification factor F is 1 to

maintain the integer–valued definition of the individuals [QR] after the mutation, whereas the

crossover coefficient pC is 0.1.
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Figure 5.5 Radial 11-nodes distribution network

HCDE runs are performed under the same conditions set for DE (NGmax , F and pC), but for

the population size N P of 50 individuals. A sensitivity analysis is performed over the HCA control

parameters, CCCT and linkage distances cutoff level coefficient pco, for all the nine possible pairs

(CCCT , pco) with CCCT∈ {0.6, 0.7, 0.8} and pco∈ {0.25, 0.50, 0.75}. Finally, for each of the five DE

and nine HCDE settings, 20 realizations are carried out.

5.2.2 Quantification of the benefits of HCDE

The results of the DE MCS–OPF for the different population sizes N P ∈ {10,20,30,40,50} are

shown in Figure 5.6. The 50th percentile (%ile) or median values of the minimum global costs

ECGmin, obtained from each experiment with fixed values of N P, are presented as functions of the

respective numbers of objective function evaluations N F E; the error bars represent the 15th and

85th %iles.

50th %ile

15-85th %iles

m
in

Figure 5.6 ECGmin vs N F E for N P ∈ {10,20, 30,40, 50} set in DE
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As expected, for the same number of generations set in the DE MCS–OPF, the larger the popu-

lation size considered the lower the values of ECGmin obtained (better ‘quality’ of the minimum).

Additionally, It can be observed marked tendencies in the reduction of both median and 15–85th

%iles values of ECGmin for increasing N F E. Performing a curve fitting over these values, the

following curves are gotten: ECGmin;50th%ile = 49.07N F E−0.13, ECGmin;15th%ile = 49.07N F E−0.115

and ECGmin;85th%ile = 49.07N F E−0.118, with the respective coefficients of determination R2
50th%ile =

0.994, R2
15th%ile = 0.998 and R2

85th%ile = 0.998. The fact that the difference between the values of

the 15–85th %iles is constant indicates that the dispersion in the ECGmin(N F E) does not depend on

N P and can suggest that the global searching carried out by the DE is performed homogeneously in

the feasible space that contains multiple local minima.

(NP, CCCth, pco) 50th %ile

m
in

T

Figure 5.7 ECGmin vs N F E for each (N P, CCCT , pco) set in HCDE

Figure 5.7 reports the median ECGmin values corresponding to the HCDE MCS–OPF realizations

superposed to the distribution of the median ECGmin and 15–85th %iles values of the base DE

experiments represented by the square markers and shaded area, respectively. The vertical and

horizontal error bars account for the 15–85th %iles of the outcome ECGmin and N F E values.

Focusing on CCCT , it can be noticed that for the two extreme cases, CCCT = 0.6 and 0.8, the

dispersion of the number of objective function evaluations is relatively small. On the contrary, the

cases with a CCCT = 0.7 present high variability. This can be explained by the behavior of the CCC

along each generation g in the evolution loop. Figure 5.8 shows the median, 15th and 85th %iles

CCC values as a function of generation g derived from all HCDE MCS–OPF realizations. On the

one hand, recalling that CCCT is used to control whether it is convenient to perform HCA, the small

N F E dispersion in the case with CCCT = 0.6 is because clustering is practically been applied in all

generations (CCCT ≤ CCC g), thus disabling any effect generated by passing from populations with

original size N P to reduced populations with N P g ≤ N P and vice versa. On the other hand, the

effect is also being avoided in the case CCCT = 0.8 by not applying clustering. Indeed, in Figure 5.8
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it can be observed that after the generation number 50 it is unlikely that by performing HCA the

proposed hierarchical grouping structures represent well enough the population.

50th %ile

15-85th %iles

g

g

Figure 5.8 CCC behavior per generation g

Differently, the cases for which CCCT = 0.7 present high dispersion in the N F E since the

median values of CCC g move in the neighborhood of the threshold throughout the major part of

the evolution loop in the HCDE. Moreover, in general terms, the values of CCC g 15–85th %iles

maintain certain symmetry with respect to the median, i.e., performing or not HCA are equally

likely events, producing high fluctuations in the number of individuals considered as population

and, therefore, affecting in the same way the N F E.

(50, 0.6, 0.75)

(50, 0.6, 0.25)

(50, 0.6, 0.50)

(50, 0.7, 0.75)

(50, 0.7, 0.50)

(50, 0.7, 0.25)

(50, 0.8, 0.75)

(50, 0.8, 0.25)

(50, 0.8, 0.50)

g

Figure 5.9 Empirical N P g pdf for each (N P, CCCT , pco) set in HCDE

The above mentioned insights are noticeable also in Figure 5.9, which shows the empirical

probability density functions (pdfs) of the population size N P g per generation for each (N P, CCCT ,

pco) set in HCDE. Indeed, the average probabilities of performing HCA throughout the evolution

cycle for the different values of CCCT = 0.6, 0.7 and 0.8 are 0.980, 0.540 and 0.078, respectively.
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Regarding the cutoff level coefficient of the linkage distances pco, in Figure 5.9 it is possible

to identify the three peaks of reduction in the population size, confirming the role of this control

parameter in defining the level at which the hierarchical structures proposed are ‘cut off’ when the

HCA takes place. In fact, lower values of pco imply smaller reduction in the population size because

of the higher demand of proximity between individuals or groups of individuals. In the opposite

side, higher values of pco allow forming clusters from individuals or groups which are relatively less

similar.

From the results obtained for all the different DE and HCDE settings, six representative cases

are the focus of the analysis (Figure 5.7). From the DE runs, the settings with extreme and middle

population size N P ∈ {10,30,50} are selected, whereas from HCDE, the cases (N P, CCCT , pco)

set as (50, 0.6, 0.25), (50, 0.6, 0.50), (50, 0.7, 0.50) and (50, 0.7, 0.75) are chosen. The former

(50, 0.6, 0.25) and (50, 0.6, 0.50) cases present significant reductions in the number of N F E, with

small dispersion and loss of quality of the ECGmin obtained, compared to the results regarded by

diminishing directly the fixed N P in DE from 50 to 10. Similarly, the cases (50, 0.7, 0.50) and

(50, 0.7, 0.75) may lead to considerable reductions in N F E, with acceptable losses of ECGmin, but

subject to a high degree of variability that compromises the performance.

As for computational times, running on an Intel® Core™i7-3740QM (PC) 2.70 GHz without

performing parallel computing, the average time to evaluate the objective function is 4.592 (s) for

the NS = 500 scenarios in the MCS–OPF; for a fixed population of N P = 50 and its corresponding

N F E = 20050, the total time for a single run is on average 25.574 (h). Taking into account this,

under commonly used hardware configurations, the reductions in computational time that can be

achieved by using HCDE with (50, 0.6, 0.25) and (50, 0.6, 0.50) settings are 19% and 49% for the

median, 23% and 51% for the 15th %ile, and 16% and 43% for the 85th %ile, respectively.

5.2.3 Identification of time complexity conditions and limits

The integration of HCA into the DE algorithm introduces a significant time complexity, conditioning

the reductions of computational efforts that can be obtained by applying the proposed HCDE MCS–

OPF framework. Indeed, if performing HCA along all generations of DE and running the MCS–OPF

on an eventually reduced population (depending on CCCT and pco) is computationally heavier than

running the MCS–OPF over the complete population, the effects of the framework can be negligible

or even negative. It is possible to formulate the condition to obtain reductions in the computational

efforts by the proposed HCDE MCS–OPF framework, from the asymptotic time complexities of the

main algorithms that compose it. Table 5.3 reports the independent asymptotic time complexities

as functions of the generic size m of the input to each algorithm and of the parameters that define

the dimensionality of the HCDE MCS–OPF framework [102, 104].
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Table 5.3 Asymptotic time complexity of the algorithms

Algorithm

PDIST HC MCS OPF

Time complexity T

O(dm2)a O(m2 log(m)) O(m) O(size(A))b

O(n(m+ r)× N P2) O(N P2 log(N P)) O(NS × n(m+ r)) O(NS × (n(m+ r))2)

where n(m+ r) represents the size of the DG-integrated network, i.e., the number of nodes n times

the number of all the types or technologies of power generation available, m types bulk–power

suppliers and r DG types, N P is the size of the complete population and NS is the number of

scenarios in the MCS–OPF.
a Pairwise distance PDIST between all m vectors of size d.
b The matrix A comes from the canonical form Ax ≤ b of the linear programming of the DC–OPF

problem approximation.

Comparing the asymptotic time complexities of the algorithms involved in the realization of the

proposed framework with and without integrating HCA, the following inequalities must be fulfilled

in order to obtain a reduction in the computational time by HCDE:

PDIST︷ ︸︸ ︷
T (n(m+ r), N P)+

HC︷ ︸︸ ︷
T (N P)+E(N P g)×

MCS–OPF︷ ︸︸ ︷
T (NS, n(m+ r))< N P ×

MCS–OPF︷ ︸︸ ︷
T (NS, n(m+ r))

⇓
n(m+ r)× N P2 + N P2 log(N P) + E(N P g)× NS × (n(m+ r))2 < N P × NS × (n(m+ r))2

⇓
κ=

N P
N P × n(m+ r)

+
N P log(N P)

N P × (n(m+ r))2
+ ε< 1 (5.1)

∀n, (m+ r), N P, NS ∈ Z∗,ε= E(N P g)
N P

∈ (0, 1]

where ε is the expected ratio of the population N P g evaluated along all generations g of DE to the

total population N P and κ is the ratio of the asymptotic time complexities of HCDE to DE.

By Equation (5.1), the contribution of the terms related with the complexity of MCS–OPF,

dependent on NS and n(m+ r), is considerably large for the fulfillment of the inequality conditions.

In fact, when using DE, it is commonly accepted to set a size of the population N P not greater than

ten times the size of the decision variables, in this case, 10n(m+ r) [93], making the first two terms

of κ strongly dependent on the number of scenarios NS. Moreover, given the complexity of the

general problem, higher values of NS lead to a better approximation of the objective function via

MCS–OPF, i.e., the more likely is to fulfill the condition and the greater can be the reduction of

computation time. However, the value of ε depends on the probability of performing clustering in

each generation and at what level, controlled by CCCT and pco respectively. In some cases, ε can

be close to 1 (as it is inferred from Figure 5.9) implying negligible benefits. Table 5.4 shows the
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values of the ratio κ for each (N P, CCCT , pco) set in HCDE considering the dimensionality of the

present case study defined by the values of the parameters n(m+ r) = 55, NS = 500, N P = 50. The

value of 1− κ can be interpreted as the expected asymptotic relative time reduction achieved by

performing HCDE.

Table 5.4 Ratio κ for each (N P, CCCT , pco)

(N P, CCCT , pco)
N P

N P × n(m+ r)
N P log(N P)

N P × (n(m+ r))2
ε=

E(N P g)
N P

κ 1− κ

(50, 0.6, 0.25)

1.818e−03 3.418e−05

0.817 0.819 0.181
(50, 0.7, 0.25) 0.921 0.923 0.077
(50, 0.8, 0.25) 0.987 0.989 0.011
(50, 0.6, 0.50) 0.510 0.512 0.488
(50, 0.7, 0.50) 0.738 0.740 0.260
(50, 0.8, 0.50) 0.978 0.979 0.021
(50, 0.6, 0.75) 0.259 0.261 0.739
(50, 0.7, 0.75) 0.487 0.488 0.512
(50, 0.8, 0.75) 0.909 0.911 0.089

5.2.4 Optimal DG–integrated network plans

Figure 5.10 shows the average total DG power allocated in the distribution network and the corre-

sponding investment costs of the DE and HCDE MCS–OPF cases selected, choosing the corresponding

optimal DG–integrated plans as the decision matrices [QR] for which their ECGmin values are the

closest to the median ECGmin value obtained for the twenty runs of each (N P, CCCT , pco) setting.

It can be pointed out that in all the cases, the contribution of EV is practically negligible if compared

with the other technologies. This is due to a combination of two facts: the probability that the EV is

in a discharging state is much lower than that of being in the other two possible operating states,

charging and disconnected (see Figure B.2 in Appendix B) and when EV is charging, the effects are

opposite to those desired, i.e., it is acting as loads.

C
I 

($
)

Figure 5.10 Average total DG power allocated and investment cost for representative (N P, CCCT , pco) settings
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In all generality, both the investment cost C I and the average power installed by DG is comparable

in all the cases, except for the setting (50, 0.7, 0.75) for which the level of clustering determined by

pco = 0.75, that translates into higher reductions of the population size, may lead to less similar

local minima than the other settings.
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11
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Figure 5.11 Nodal average total DG power for representative (N P, CCCT , pco) settings

The average total renewable DG power allocated per node is summarized in Figure 5.11. Even

though all the ECG optimal decision matrices [QR] show differences, the tendency is to install

localized sources of renewable DG power between two identifiable portions of the distribution

network, up and downstream the feeder (2,6) (Figure 5.5), giving preference to the second portion

which presents higher and non-stream homogeneous nodal load profiles.

5.2.5 Brief summary

The results show that the the framework is effective in finding optimal DG–integrated network

plans, with acceptable reductions of the computational efforts required while maintaining small

dispersion and loss of quality in the minimum ECG obtained. The sensitivity analysis over the

control parameters of the HCA suggest that the efficiency is improved with CCCT that allows

the clustering in almost all generations along the DE search, setting the level of clustering to no

more than the 50% (pco = 0.5) of the feasible linkage distances range in the hierarchical structure

proposed.
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5.3 A MOO and MCS–OPF simulation framework for risk–controlled

integration of DG

In this Section, an example of application of the MOO framework for the integration of renewable DG

into electric power networks is reported. The framework searches for the optimal size and location of

different DG technologies, taking into account uncertain ties related to primary renewable resources

availability, components failures, power demands and bulk-power supply. The network operation

is emulated by the developed MCS–OPF computational model, assessing the system performance

in terms of CG. To measure uncertainty, the DCVaR is introduced enabling the conjoint control

of risk due to its axiomatic relation to the CVaR. A MOO strategy is adopted for the simultaneous

minimization of the ECG and the associated deviation DCVaR(CG). This is operatively implemented

by the MOO–DE described in Chapter 3, Section 3.2 and respecting the formulation relative to

framework FW2, to be found in the same cited Chapter.

5.3.1 IEEE 30 bus sub-transmission and distribution test system

The IEEE 30 bus sub-transmission and distribution test system is regarded for the analysis [11].
This constitutes a portion of the Midwestern U.S. electric power system which presents relevant

characteristics of interest for the analysis, e.g., the presence of bulk-power supply spots different in

type and with comparatively low and high nodal load profiles. An important consideration is that

the synchronous condensers are neglected, given the DC assumptions made in the current thesis

work for the resolution of the OPF problem.

The network consists of n= 30 nodes, a mesh deployment of 41 T&D lines and 2 transformers

or bulk-power suppliers, as shown in Figure 5.12. The reference apparent power is Sre f = 100

(MV A). In this case, two renewable DG technologies are considered: solar photovoltaic (PV) and

wind turbines (W).

Table 5.5 summarizes the main parameters set for the general MOO–DE and MCS–OPF frame-

work.

Table 5.5 MOO-DE and MCS–OPF parameters

Parameter Nomenclature Value

Population size N P 100

Maximum n◦ of generations NGmax 600

Crossover coefficient pC 0.1

Differential variation amplification factor F 1

N◦ of MCS-OPF scenarios NS 24000

Scenario duration (h) ∆t 1
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Figure 5.12 IEEE 30 bus sub-transmission and distribution test system diagram
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5.3.2 Conditional value–at–risk deviation: expected performance, uncertainty and
risk trade–off

The Pareto front resulting from the MOO-DE MCS–OPF is presented in Figure 5.13. The entire last

generation population at convergence is shown by gray squares and the non–dominated solutions

are the blue bullets. The base case (MG) in which no DG is integrated in the network is also shown

as dark gray triangle. Each solution in the Pareto Front corresponds to a decision matrix [QR] that

indicates the number of units and locations of the different types of DG technologies integrated in

the network.

Recalling the relation given by equation (2.29), DCVaRα(x) = CVaRα(x−E(x)), it is possible to

draw a map of iso–CVaR curves in the plot of non–dominated solutions and so, to include risk into the

trade–off between expected performance and uncertainty, represented by ECG and DCVaRα(CG),
respectively. Then, the compromised solution, namely [QR]min

CVaR(CG) can be found, that minimizes

risk as reported in Figure 5.14(A). The reciprocal case, i.e., a map of iso–DCVaR curves is drawn in

the distribution of non–dominated solutions plotted as ECG vs DCVaRα(CG), and it is shown in

Figure 5.14(B). Three representative non–dominated solutions are considered for the analysis: those

with minimum values of ECG and DCVaRα(CG), denoted [QR]min
ECG and [QR]min

DCVaR(CG) respectively,

and [QR]min
CVaR(CG) which, as mentioned earlier, minimizes risk.
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Figure 5.14 Set of non–dominated solutions with iso–CVaR (A) and iso–DCVaR (B) curves

In Figure 5.14, it can be observed that the three solutions of interest, [QR]min
ECG, [QR]min

CVaR and

[QR]min
DCVaR, lead to considerable improvements in expected performance and risk with respect to

the base case MG, in which no renewable generation is integrated into the network. However, the

level of uncertainty in the ECG estimation is increased, in all DG–integrated solutions, because of

their stochasticity. Even so, in comparison to the MG case, the increase in the level of uncertainty

for all DG–integrated cases (on average 1.067 (k$/h)) is much less than the gain in both expected
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performance and risk (on average −6.035 and −4.967 (k$/h)), respectively). This fact can be seen

also in the empirical CG probability density functions (pdf) shown in Figure 5.15.
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Furthermore, it can be inferred from Figure 5.15 that, in general, all CG empirical pdfs show three

main peaks. This is due to the characteristics of the daily load profiles (Figure C.1 in Appendix C)

which present three important ranges: a low power demand range during the night, between 23

and 6 hours and two high ranges of load taking place in the intervals 10 to 13 and 18 to 21 hours,

respectively. Thus, the left peak of the distributions corresponds to the highest range of loads (18 to

21 hours), because higher levels of power demands imply more energy sold and, therefore, more

profits or negative values of CG. Following the same logic, the central peak is due to the second

highest range of loads (10 to 13 hours) and the right peak to the low range of power demand. As

mentioned before, the three DG–integrated network cases improve the cost profiles because the

usage of power is transferred from the bulk–power suppliers (MG) to the renewable generators (RG)

as summarized in Table 5.6, presenting the ratio of power usage defined as the proportion of power

used to satisfy the loads, determined by the MCS–OPF, over the power available. According to the

IEEE 30 bus test systems information, the bulk–power supply arriving at node 1, G1, comes from a

conventional coal–fired power plant whereas G2 is supplied by a hydro–power plant. The nature

of the source of power supply conditions the operating costs, in particular, G1 that presents the

higher variable operating costs (Table C.3 in Appendix C). Nevertheless, the ratio of power usage

associated to G2 is in all cases 100%, even though its operating cost is higher than the renewable.

This is because no investment is being paid for G2, contrary to the DG technologies (PV and W). In

this view, considering investment, PV and W are more convenient than the coal–fired power supply

G1 but not more than the hydro–power supply G2.

Table 5.6 Ratio of power usage by type of generator

Case G1 G2 PV W

MG 77.93% 100.00% − −
ECGmin 41.88% 100.00% 99.96% 99.94%

CVaRCGmin 40.38% 100.00% 99.95% 99.42%

DCVaRCGmin 40.71% 100.00% 100.00% 98.73%

The extreme CG scenarios encountered in the tail of the distributions are mainly produced by

the occurrence of failures in the components of the system, power generators and T&D lines. In

Figure 5.15, the stability of the CG to these non-desirable events can be pointed out. Since the cost

objective function to be minimized in the OPF considers a load shedding cost, the occurrence of

failures in the components, interrupting the power supply and/or the ability of distribute it, will

impact the CG function depending on how much centralized is the power supply. Focusing on the

MG base case, the power supply and its distribution depend on two generators and the T&D lines

connected to them: the reliability of power supply is determined by few components and so, the

eventual losses of functionality of these components can lead to high amounts of non–satisfied

demands. This is precisely the effect observed in the tails of the CG distributions and, in particular, it

is seen that distributing and diversifying generation helps to improve the risk impacts from multiple
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failures in the network, even if the number of generation units in the system is increased and with

it, the overall absolute likelihood of occurrence of failures.

5.3.3 Optimal DG–integrated network plans

Figure 5.16 shows the total average DG power integrated in the network for the three solutions

under analysis and the corresponding obtained values of ECG and CVaRα. It can be pointed out

that in all cases the DG power installed is almost equal to the limit value set by the penetration

factor PF DG = 0.3, approximately 135.5 (MW).
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Furthermore, in general terms moving along the non–dominated solutions, starting from the one

that minimizes ECG ([QR]min
ECG), passing to the compromising one that minimizes CVaRα(CG)

([QR]min
CVaR(CG)) and ending with ([QR]min

DCVaR(CG)) that minimizes DCVaRα(CG), the amount of PV
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power integrated in the network decreases progressively, being replaced by W power. Then, it can be

inferred that the more PV power generators are integrated, the better ECG performance is achieved.

This seems physically coherent, taking into account that the average power outputs delivered by

one generation unit of PV and W technologies are 1.07 and 0.93 (MW), respectively, and the cost

performance benefits comparatively more from the PV MW h sold during the daylight interval within

the two peaks ranges of power demand. Nevertheless, the amount of average integrated PV power is

invariably smaller than W power, this is because PV generation units do not supply during the night

interval, making convenient to integrate always a certain amount of W power and, thus, to avoid

resorting to the more expensive coal–fired power supplier G1. Moreover, it is precisely this lack of

PV generation during the night interval that strongly conditions the trade–off between expected

performance and uncertainty, ECG vs DCVaRα(CG), i.e., the more PV power is integrated, the

better ECG performance is achieved but the more uncertain is its estimation.
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Figure 5.17 Nodal average power by type of generator

Concerning the compromising solution [QR]min
CVaR(CG) that minimizes risk, as it was derived from

the empirical CG distributions, the risk associated to a solution depends mainly to the occurrence of

extreme non-desired events. Improvements in risk performance can, then, be achieved by solutions

for which the allocation of DG power generation units decentralizes and diversifies to a large extent

the supply. This insight is noticeable in Figure 5.17 that reports the nodal average power by type of

generation for the three solutions of interest. For both extreme solutions, [QR]min
ECG and [QR]min

DCVaR,

the tendency is to integrate localized sources of renewable DG at two identifiable portions of the

network, in the region close to nodes 2, 5, 7 and 8 of the sub–transmission portion of the network, and

nodes 17, 19 and 21 in the distribution part, favoring the sub–transmission portion which presents

higher and non homogeneous nodal load profiles. In a different manner, the solution [QR]min
CVaR(CG)

presents a more homogeneous deployment of DG power, allocating comparable generation capacities

in both sub–transmission and distribution parts of the network.
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5.3.4 Brief summary

We have presented a MOO framework for the integration of renewable distributed generation into

an electric power network. Multiple uncertain operational inputs are taken into consideration:

the inherent uncertain behavior of renewable energy sources and power demands, as well as

the occurrence of failures of components. For managing the uncertainty and risk associated to

the achievement of a certain level of expected global cost performance, we have introduced the

conditional-value-at-risk deviation measure, which allows trading off the level of uncertainty and,

given the axiomatic relation to the conditional-value-at-risk, enables conjointly the trade-off of risk

by constructing an iso–risk map in the non–dominated set of solutions. The proposed framework

integrates the multi-objective differential evolution as a search engine, Monte Carlo simulation to

randomly generate realizations of the uncertain operational scenarios and optimal power flow to

evaluate the network response. The optimization is done to simultaneously minimize the expected

value of the global costs and the respective conditional–value–at–risk deviation.

A case study has been analyzed, based on the IEEE 30 bus sub–transmission and distribution

test system. The results obtained show the capability of the framework to identify Pareto optimal

solutions of renewable DG units allocations. Integrating the conditional value–at–risk deviation

into the framework has shown effectively the possibility of optimizing expected performances

while controlling the uncertainty and risk, analyzing, in addition, the contribution of each type of

renewable DG technology on the level of uncertainty associated to the outcome performance of

the optimal solutions and the importance of the deployment of the renewable generation capacity

to lower the risk of incurring in non-desirable extreme scenarios. In this view, a complete and

comprehensible spectrum of information can be supplied in support of specific preferences of the

decision makers for their decision tasks.





6 Conclusions

In the present thesis, a modeling, simulation and optimization framework has been designed and

developed, for the integration of renewable DG into electric power networks. The DG planning

problem considered has been that of optimal selection of the technology, size and location of

multiple DG units, subject to technical, operational and economic constraints. Key research questions

addressed have been:

(i) Representation and treatment of the multiple uncertain operational inputs such as: the

inherent variability in the availability of diverse primary renewable energy sources, bulk–

power supply, power demands and components operating states.

(ii) Propagation of the uncertainties onto the system operational response, and control of the

associated risk of incurring in extreme non–satisfactory performances.

(iii) Computational efforts resulting from the complex combinatorial optimization problem under

uncertainty associated to renewable DG integration.

6.1 Original contributions

The original contributions of the work reside in:

(a) Design and implementation of a non–sequential Monte Carlo simulation (MCS) and optimal

power flow (OPF) computational model, denoted MCS–OPF, that emulates the T&D network

operation integrating a given renewable DG plan. Random realizations of operational scenarios

are generated by latin hypercube (LHC) sampling from the different uncertain variables

models, solving for each scenario a cost–based DC–OPF problem to assess the response of

the DG–integrated network in terms of, available power usage, power demand satisfaction

and operating cost (generation and T&D) to , then, evaluate the performance of the system

with regards to the global economics, including DG investments and operation, and reliability

of power supply, represented by the global cost (CG) and the energy not supplied (ENS),

respectively. The simplifications involving the non–sequential character of the MCS and the

use of DC–OPF approximation are done to not overly increasing the computational efforts and
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gaining tractability, necessary to cope with the already complex DG planning optimization

problem.

(b) With respect to the optimal technology selection, size and location of the renewable DG

units, two distinct multi–objective optimization (MOO) strategies have been implemented by

heuristic optimization (HO) search engines, in which the MCS–OPF model is nested to assess

the performance of each DG–integrated network proposed along the evolutionary searching

process and the values of the respective objective functions. Two HO search engines have

been considered, the fast non–dominated sorting genetic algorithm II (NSGA–II) and a MOO

differential evolution (MOO–DE), both capable of dealing with non-convex combinatorial

problems, discontinuous search spaces and non-differentiable objective functions.

(c) Introduction of two indicators to measure and control the uncertainty and risk associated to

the DG–integrated network solutions, namely conditional value–at–risk (CVaR) and condi-

tional value–at–risk deviation (DCVaR), respectively. This is done, framing the DG planning

problem as a portfolio optimization in which the different types of DG technologies are treated

analogously to financial assets.

◦ By introducing CVaR, a direct risk-based MOO strategy is formulated and approached

by the NSGA–II, allowing the possibility of concurrently minimizing expected perfor-

mances, ECG and EENS, while controlling the risk in its achievement, CVaR(CG)
and CVaR(ENS). The contribution of each type of renewable DG technology, on the

expectation–risk trade–off, can also be analyzed, indicating which is more suitable for

specific preferences of the decision makers.

◦ Alternatively, DCVaR allows the development of a distinct MOO optimization strategy,

aiming at the simultaneous minimization of the considered objective functions: ECG and

its corresponding DCVaR(CG) value and implemented by the MOO–DE search. DCVaR

acts as an enabler of trade-off between optimal expected performance and the associated

uncertainty to achieve it and, given the axiomatic relation to the conditional–value–at–

risk, allows the conjoint trade–off of risk by constructing an iso-risk map in the obtained

non-dominated set of solutions. In addition, the contribution of each type of renewable

DG technology on the level of uncertainty associated to the outcome performance of

the optimal solutions can be analyzed, as well as the importance of the deployment of

the DG capacity to lower the risk of incurring in non-desirable extreme scenarios. In

this view, a complete and comprehensible spectrum of information can be supplied in

support of the decision making tasks.

(d) To cope with the large computational efforts required by the developed MOO frameworks with

nested MCS–OPF, an original technique is introduced which embeds hierarchical clustering

analysis (HCA) within a DE search engine. The technique identifies, in a controlled manner,

groups of similar individuals (DG plans) in the DE population and, then, evaluates ECG
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performing MCS–OPF on selected representative individuals of the groups only, thus reducing

the number of objective function evaluations in each iteration of the DE evolution loop. The

introduction of two control parameters, namely the cophenetic correlation coefficient CCC

and a cutoff level coefficient of the linkage distances pco, allow the controlled adaptation

during the search process and decision on whether or not to perform clustering and at which

level of the hierarchical structure. The HCDE framework is capable of identifying optimal

plans of renewable DG integration, leading to acceptable reductions in the number of objective

function evaluations with small dispersion and loss of quality in the minimum ECG obtained.

6.2 Future work

Further developments can be thought of in all three main areas of focus of this thesis: modeling,

simulation and optimization for the DG planning problem. Regarding the modeling of the distribution

network and, in particular, the technical constraints imposed by power flow equations, more realistic

assumptions can be considered, including the impact of DG in the reactive power balance of the

network and, therefore, the voltage and power losses profiles, that are regulated and ought to be

strictly controlled in electric power systems. Even if, at small scales no reactive power requirements

are set to renewable power generators [25], high penetration levels of DG integration leads to the

need of evaluating the potential contribution of renewable generation to power system voltage and

reactive power regulation [105]. This eventually implies to use the AC power flow equations.

Another improvement in the modeling of a DG–integrated network is the representation of the

evolution of the uncertain operational conditions, such as solar irradiation, wind speed, memory

effect of batteries, load profiles, energy prices, etc. The forecast of these variables implies the

prediction of future conditions given specific previous scenarios. Then, a sequential MCS model

should be developed, in which the sampling is performed for each time step dependent on previous

states conditions. As an example, load forecast uncertainty can be integrated properly building

consecutive load scenarios and assigning corresponding probabilities of occurrence as presented

by [16, 34]. Another interesting approach for load forecast uncertainty modeling is the geometric

Brownian motion (GBM) stochastic process [42, 76].

The above–mentioned developments entail an increase in the computational efforts involved in

the resolution of the DG planning. Hence, the motivation to explore and develop new methodologies

to improve the computational performance still remain. In particular, a direct next step would be the

extension of the HCDE search engine into MOO strategies by new controllable clustering techniques,

measuring the variation in the quality of non–dominated solutions sets, e.g. by a hypervolume

indicator [95].





A IEEE 13–bus test feeder data: Application 5.1

Table A.1 contains the technical characteristics of the different types of feeders considered: specif-

ically, the indexes of the pairs of nodes that are connected by each feeder of the network, their

length l, reactance X and their ampacity A.

Table A.1 Feeders characteristic and technical data [2]

Type Node i Node i' l (km) X (Ω/km) A (A)

T1 1 2 0.61 0.37 365

T2 2 3 0.15 0.47 170

T3 2 4 0.15 0.56 115

T1 2 6 0.61 0.37 365

T3 4 5 0.09 0.56 115

T6 6 7 0.15 0.25 165

T4 6 8 0.09 0.56 115

T1 6 11 0.31 0.37 365

T5 8 9 0.09 0.56 115

T7 8 10 0.24 0.32 115

The nodal power demands are reported as daily profiles, normally distributed on each hour.

The mean µ and variance σ values of the nodal daily profiles of the power demands are shown in

Figure A.1(A) and (B), respectively.
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Figure A.1 Mean (A) and variance (B) values of nodal power demand daily profiles
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The maximum active power capacity of the transformer (MG) and the parameters of the normal

distribution that describe its variability are given in Table A.2.

Table A.2 Bulk–power supply parameters

Node i Pmax (kW)
Normal distribution parameters

µ (kW) σ (kW)

1 1600 1200 27.5

The technical parameters of the four different types of DG technologies considered to be

integrated into the distribution network (PV, W, EV and ST) are given in Table A.3. The values of the

parameters of the Beta and Weibull distributions describing the variability of the solar irradiation

and wind speed, are assumed constant in the whole network, i.e., the region of distribution is such

that the weather conditions are the same for all nodes.

Table A.3 Parameters of PV, W, EV and ST technologies [3–5]

PV W

Beta distribution α 0.26 Weibull distribution α 11.25

Beta distribution β 0.73 Weibull distribution β 2

Pmax (W) 50 PR (kW) 50

TA (◦C) 30 UC I (m/s) 3.8

TNo (◦C) 43 UA (m/s) 9.5

ISC (A) 1.8 UCO (m/s) 23.8

kI (mA/◦C) 1.4 EV

VOC (V) 55.5 PR (kW) 6.3

kV (mV/◦C) 194 ST

VM PP (V) 38 PR (kW) 0.275

IM PP (A) 1.32 JS (kJ/kg) 0.042

Failures and repair rates of the components of the distribution network are provided in Table A.4.

Table A.4 Failure rates of feeders, MG and DG units [3–6]

Type λF (n/h) λR (n/h)

MG ∪ DG F D MG ∪ DG T D MG ∪ DG F D

MG T1 3.33e−04 3.33e−04 0.021 0.198

PV T2 4.05e−04 4.05e−04 0.013 0.162

W T3 3.55e−04 3.55e−04 0.015 0.185

EV T4 3.55e−04 3.55e−04 0.105 0.185

ST T5 3.55e−04 3.55e−04 0.073 0.185

- T6 - 4.00e−04 - 0.164

- T7 - 3.55e−04 - 0.185
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The hourly per day operating states probability profile of the EV is presented in Figure A.2.
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Figure A.2 Hourly per day probability data of EV operating states. ρ = −1: charging, ρ = 0: disconnected, ρ = 1:
discharging

The values of the investment (C I) and fixed and variable Operational and Maintenance (CO f

and COv) costs of the MG and DG units are reported in Table A.5.

Table A.5 Investment, fixed O&M and variable O&M costs of MG and DG [6–8]

Type C I + CO f ($) COv ($/kWh)

MG - 1.45e−01

PV 48 3.76e−05

W 113750 3.90e−02

EV 17000 2.20e−02

ST 135.15 4.62e−05

The total investment associated to DG-integrated network plan must be less than or equal to the

limit budget; which is set to BGT = 4500000 ($), and the total number of units of each type of DG

(following the order [PV, W, EV, ST]) must be less than or equal to τ j = [15000, 5, 200, 8000]. The

value of the incentive for renewable kW h supplied is taken as 0.024 ($/kWh) [8]. The maximum

value of the energy price EPmax is 0.11 ($/kWh) [52, 53].

Concerning the calculation of the CVaR, the α–percentile is taken as α= 0.80.
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Table B.1 contains the technical characteristics of the different types of feeders considered: specifi-

cally, the indexes of the pairs of nodes (i, i') that they connect, their length l, reactance X , ampacity

A and failure and repair rates.

Table B.1 Feeders characteristic and technical data [2, 4, 9]

Type Node i Node i' l (km) X (Ω/km) A (A) λF (n/h) λR (n/h) COv ($/kWh)

T1 1 2 0.610 0.371 730 3.333e−04 0.198 1.970e−02

T2 2 3 0.152 0.472 340 4.050e−04 0.162 9.173e−03

T3 2 4 0.152 0.555 230 3.552e−04 0.185 6.205e−03

T1 2 6 0.610 0.371 730 3.333e−04 0.198 6.205e−03

T3 4 5 0.091 0.555 230 3.552e−04 0.185 6.205e−03

T6 6 7 0.152 0.252 329 4.048e−04 0.164 8.904e−03

T4 6 8 0.091 0.555 230 3.552e−04 0.185 1.970e−02

T1 6 11 0.305 0.371 730 3.333e−04 0.198 1.970e−02

T5 8 9 0.091 0.555 230 3.552e−04 0.185 9.173e−03

T7 8 10 0.244 0.318 175 3.552e−04 0.185 6.205e−03

The nodal power demands are built from the load data given in [2] and reported in Figure B.1 as

daily profiles, normally distributed on each hour t with mean µ and standard deviation σ [10, 58].
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Figure B.1 Mean and standard deviation values of normally distributed nodal power demand daily profile
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The technical parameters, failure and repair rates and costs of the MG and the four different

types of DG technologies (PV, W, EV and ST) available to be integrated into the distribution network

are given in Table B.2. For the corresponding application example, the distribution region is such

that the solar irradiation and wind speed conditions are assumed uniform in the whole network,

i.e., the values of the parameters of the corresponding Beta and Weibull distributions are assumed

constant in the whole network.

Table B.2 Power sources parameters and technical data [3–8, 10]

Type j Technical parameters
Distributions parameters,
failure and repair rates Costs

MG Pmax = 4250 (kW)

µ= 4000 (kW)

COv = 0.145 ($/kWh)
σ = 125 (kW)
λF = 4.00e−04 (1/h)
λR = 1.30e−02 (1/h)

PV

TA = 30.00 (◦C)
TNo = 43.00 (◦C)
ISC = 1.80 (A) α= 0.26
VOC = 55.50 (V) β= 0.73 C I + CO f = 48 ($)
kI = 1.40 (mA/◦C) λF = 5.00e−04 (1/h) COv = 3.76e−05 ($/kWh)
kV = 194.00 (mV/◦C) λR = 1.30e−02 (1/h)
VM PP = 38.00 (V)
IM PP = 1.32 (A)

W

UC I+CO f = 3.80 (m/s) α= 11.25
UA = 9.50 (m/s) β= 2 C I + CO f = 113,750 ($)
UCO = 23.80 (m/s) λF = 6.00e−04 (1/h) COv = 3.90e−02 ($/kWh)
PR = 50.00 (kW) λR = 1.30e−02 (1/h)

EV PR = 6.30 (kW)
λF = 2.00e−04 (1/h) C I + CO f = 17000 ($)
λR = 9.70e−02 (1/h) COv = 2.20e−02 ($/kWh)

ST
PR = 0.28 (kW/kg) λF = 3.00e−04 (1/h) C I + CO f = 135.15 ($)
JS = 0.04 (kJ/kg) λR = 7.30e−02 (1/h) COv = 4.62e−05 ($/kWh)

The hourly per day operating state probability profiles of the EV are presented in Figure B.2: p0,

p− and p+ correspond to the profiles of disconnected, charging and discharging states, respectively.

p0

p−

p+

t (h)

Figure B.2 Hourly per day probability data of EV operating states
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The budget is set to BGT = 4500000 ($) and the limit of units of the different DG technologies

available to be purchased is τ= [20000,8,250,10000]. The maximum value of the energy price

is EPmax = 0.12 ($/kWh) [53] and the highest value of total demand ΣLmax i
is set to 4800 (kW).

The opportunity cost for kW h not supplied CLS is considered as twice of the maximum energy price.





C IEEE 30–bus sub–transmission & distribution

system data: Application 5.3

Table C.1 summarizes the characteristics and technical data of the T&D lines, specifically: the

indexes of the pair of nodes that they connect (i, i′), the susceptance values B(i,i′), power rating

Pmax(i,i′) , failure λF(i,i′) and repair λR(i,i′) rates and operating cost COv(i,i′).

The nodal power demands are built from the load data given in [11] and reported in Figure C.1

as daily profiles (accumulated according to the node indexes i), normally distributed on each hour

t with mean µi,t and standard deviation σi,t .
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Table C.1 T&D lines characteristics and technical data [11–13]

i i′ B(i,i′) (p.u.) Pmax(i,i′) (p.u.) λF(i,i′) (n/h) λR(i,i′) (n/h) COv(i,i′) ($/MWh)

1 2 17.24 1.30 2.85e−04 6.67e−02 4.95

1 3 5.41 1.30 2.85e−04 6.67e−02 1.61

2 4 5.75 0.65 4.28e−04 1.00e−01 2.61

3 4 26.32 1.30 2.85e−04 6.67e−02 5.97

2 5 5.05 1.30 2.85e−04 6.67e−02 2.53

2 6 5.68 0.65 4.28e−04 1.00e−01 3.68

4 6 24.39 0.90 3.73e−04 8.72e−02 6.06

5 7 8.62 0.70 4.17e−04 9.74e−02 0.70

6 7 12.20 1.30 2.85e−04 6.67e−02 0.93

6 8 23.81 0.32 5.01e−04 1.17e−01 0.19

6 9 4.81 0.65 4.28e−04 1.00e−01 5.21

6 10 1.80 0.32 5.01e−04 1.17e−01 4.14

9 10 9.09 0.65 4.28e−04 1.00e−01 8.78

9 11 4.81 0.65 4.28e−04 1.00e−01 4.81

4 12 3.91 0.65 4.28e−04 1.00e−01 2.93

12 13 7.14 0.65 4.28e−04 1.00e−01 1.41

12 14 3.91 0.32 5.01e−04 1.17e−01 11.10

12 15 7.69 0.32 5.01e−04 1.17e−01 6.66

14 15 5.00 0.16 5.36e−04 1.25e−01 13.70

12 16 5.03 0.32 5.01e−04 1.17e−01 13.70

10 17 11.76 0.32 5.01e−04 1.17e−01 13.20

16 17 5.18 0.16 5.36e−04 1.25e−01 8.71

15 18 4.57 0.16 5.36e−04 1.25e−01 3.46

18 19 7.75 0.16 5.36e−04 1.25e−01 12.20

10 20 4.78 0.32 5.01e−04 1.17e−01 5.40

19 20 14.71 0.32 5.01e−04 1.17e−01 3.52

10 21 13.33 0.32 5.01e−04 1.17e−01 11.50

10 22 6.67 0.32 5.01e−04 1.17e−01 9.76

21 22 41.67 0.32 5.01e−04 1.17e−01 8.08

15 23 4.95 0.16 5.36e−04 1.25e−01 1.68

22 24 5.59 0.16 5.36e−04 1.25e−01 7.82

23 24 3.70 0.16 5.36e−04 1.25e−01 16.40

24 25 3.04 0.16 5.36e−04 1.25e−01 7.98

25 26 2.63 0.16 5.36e−04 1.25e−01 9.13

25 27 4.78 0.16 5.36e−04 1.25e−01 5.56

6 28 16.67 0.32 5.01e−04 1.17e−01 1.15

8 28 5.00 0.32 5.01e−04 1.17e−01 0.36

27 28 2.53 0.65 4.28e−04 1.00e−01 6.17

27 29 2.41 0.16 5.36e−04 1.25e−01 14.40

27 30 1.66 0.16 5.36e−04 1.25e−01 14.00

29 30 2.21 0.16 5.36e−04 1.25e−01 11.40
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The technical data and uncertain model parameters of the different types of bulk-power suppliers

and DG technologies, available to be integrated into the network, are given in Table C.2. The number

of photovoltaic cells per PV generation unit is nc = 20000 and that the region covered by the system

is such that the solar irradiation and wind speed conditions are uniform in the whole region, i.e.,

the values of the parameters of the corresponding Beta and Weibull distributions are taken equal

for all nodes. The renewable power penetration factor is set to PF DG = 0.3.

Table C.2 Power generators technical data and uncertain model parameters [3–5, 7, 10, 14]

Type Technical parameters Distribution parameters

MG

G1
Pmax1

(MW) Normal µ1 Normal σ1

340 300 18.25

G2
Pmax2

(MW) Normal µ2 Normal σ2

50 42.5 5

RG

PV

PAV (MW) Pmax (W) VOC (V) ISC (A) VM PP (V) Beta α Beta β

1.07 75 21.98 5.32 17.32

IM PP (A) kV (mV/◦C) kI (mA/◦C) TNo (◦C) TA (◦C) 0.50 0.33

4.76 14.4 1.22 43 30

W
PAV (MW) PR (MW) UC I (m/s) UA (m/s) UCO (m/s) Weibull α Weibull β

0.93 1.5 5 15 25 15 2.2

Table C.3 reports the failure and repair rates, λF and λR, respectively, the investment and

operating costs C I + CO f and the variable operating cost of the different types of power generators.

Table C.3 Power generators failure and repair rates and costs [3, 4, 7, 10, 14, 15]

Type λF (n/h) λR (n/h) C I + CO f (M$/u) COv ($/MWh)

MG
G1 5.13e−04 2.77e−02 − 29.32

G2 6.84e−04 4.16e−02 − 8.92

RG
PV 6.27e−04 1.30e−02 2.20 9.69

W 3.42e−04 9.00e−03 1.85 11.05

The maximum value of the energy price is EPmax = 100 ($/MWh) [4, 52, 53] and the corre-

sponding highest value of total demand ΣLmax i (MW) is set to 445 (MW). The load shedding

cost CLS ($/MWh) is considered as the maximum energy price. The horizon of analysis or lifetime

of the project is 30 years, in which the investment and operating costs are hourly prorated. The

confidence level or α-percentile considered to estimate the values CVaRα and DCVaRα is 75%,

arbitrarily chosen.
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Abstract

We present a simulation and multi–objective optimization framework for the integration of renewable

generators and storage devices into an electrical distribution network. The framework searches for

the optimal size and location of the distributed renewable generation units (DG). Uncertainties in

renewable resources availability, components failure and repair events, loads and grid power supply are

incorporated. A Monte Carlo simulation and optimal power flow (MCS–OPF) computational model is

used to generate scenarios of the uncertain variables and evaluate the network electric performance. As a

response to the need of monitoring and controlling the risk associated to the performance of the optimal

DG–integrated network, we introduce the conditional value–at–risk (CVaR) measure into the framework.

Multi–objective optimization (MOO) is done with respect to the minimization of the expectations of

the global cost (Cg) and energy not supplied (ENS) combined with their respective CVaR values. The

multi–objective optimization is performed by the fast non–dominated sorting genetic algorithm NSGA–II.

For exemplification, the framework is applied to a distribution network derived from the IEEE 13 nodes

test feeder. The results show that the MOO MCS–OPF framework is effective in finding an optimal

DG–integrated network considering multiple sources of uncertainties. In addition, from the perspective

of decision making, introducing the CVaR as a measure of risk enables the evaluation of trade–offs

between optimal expected performances and risks.

Keywords: Distribution network, renewable distributed generation, renewable energy, uncertainty,

conditional value–at–risk, simulation, multi–objective optimization, genetic algorithm
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1 Introduction

Over the last decade, the global energetic situation has been receiving a progressively greater

attention. The adverse environmental effects of fossil fuels, the volatility of the energy market,

the growing energy demand and the intensive reliance on centralized bulk–power generation

have triggered a re/evolution towards cleaner, safer, diversified energy sources for reliable and

sustainable electric power systems [1–6]. The challenges involved have stimulated both technological

development of new equipment and devices, and efficiency improvements in design, planning,

operation strategies and management across generation, transmission and distribution.

In this paper, we focus on distribution networks and the conceptual and operational transition

they are facing. Indeed, the traditional passive operation with unidirectional flow supplied by a

centralized generation/transmission system, is evolving towards an active operational setting with

integration of distributed generation (DG) and possibly bidirectional power flows [7,8].

DG is defined as ‘an electric power source connected directly to the distribution network or on

the customer site of the meter’ [8–10] and in principle offers important technical and economical

benefits. Under the assumption that the distribution network operators have control over the

dispatching of the DG power, improvement of the reliability of power supply and reduction of the

power losses and voltages drops can be achieved. Indeed, DG allocation on areas close to the

customers allows the power flowing through shorter paths, and therefore, decreasing the amount

of unsatisfied power demand and enhancing the power and voltage profiles. Thus, the eventual

intermittence of the centralized power supply can be smoothed [11]. In addition, the modular

structure of the DG technologies implies lower financial risks [12,13] and thus the investments on

the power system can be deferred [1,3].

Most of the actual DG technologies make use of local renewable energy resources, such as wind

power, solar irradiation, hydro–power, etc., which makes them even more attractive in view of the

requested environmental sustainability (e.g. the Kyoto Protocol [7,14,15]). Given the intermittent

character of these energy sources, their implementation needs to be accompanied by efficient energy

storage technologies. Attentive DG planning is needed to seize the potential advantages associated

to DG integration, taking into account specific technical, operational and economic constraints,

sources and loads forecasts and regulations. If the practice of selection, sizing and allocation of the

different available technologies is not performed attentively, the installation of multiple renewable

DG units could produce serious operational complications, in fact, counteracting the potential

benefits. Degradation of control and protection devices, reduction of power quality and reliability

on the supply, increment in the voltage instability and all related negative impacts on the costs,

could become impediments for integration of DG [1–3,8,10,14,16–20].

Viewing DG planning as a fundamental baseline of advancement, many efforts have been made

to solve the associated problem of DG allocation and sizing. Objective functions considered for
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the optimization are of economic, operational and technical type. Among the first type, cost–

based objective functions have been used considering the costs of energy and fuel for generation,

investments, operation and maintenance, energy purchase from the transmission system, energy

losses, emissions, taxes, incentives, incomes, etc. [1–3, 7, 8, 11, 13, 14, 16–27]. The second type

of operational objective functions mainly revolves around indexes such as the contingency load

loss index (CLLI) [23], expected value of non–distributed energy cost (ECOST), system average

interruption duration index (SAIDI), system average interruption frequency index (SAIFI) [7,16,28],
expected energy not supplied (EENS) [28,29], among others. Regarding the third type of objective

functions, technical performance indicators include energy losses [1,30] and total voltage deviation

(TVD) [18].

Power Flow (PF) equations are typically solved within the optimization problem to evaluate

the objective functions, while respecting constraints and incorporating non–convex and non–linear

conditions. Given the complexity of the optimization problem, heuristic optimization techniques

belonging to the class of Evolutionary Algorithms (EAs) have been proposed as a most effective

way of solution [10], including particle swarm optimization (PSO) [23,24,27,31,32], differential

evolution (DEA) [18] and genetic algorithms (GA) [3,7,11,13,14,16,26,33,34].

An additional difficulty associated to the problem is the proper modeling of the uncertainties

inherent to the behavior of primary renewable energy sources and the unexpected operating events

(failures or stoppages) that can affect the generation units. These uncertainties come on top of those

already present in the network, such as intermittence and fluctuation in the main power supply

due to unavailability of the transmission system, overloads and interruptions of the power flow

in the feeders, failures in the control and protection devices, variability in the power loads and

energy prices, etc. These uncertainties are incorporated into the modeling by generating a random

set of scenarios by Monte Carlo simulation (MCS); the optimization is, then, executed to obtain

the optimal expected or cumulative value(s) of the objective function(s) under the set of scenarios

considered [2,3,7,16,28,32,34,35].

In the search for the optimal DG–integrated network, the use of only mean or cumulative values

as objective function(s) of the optimization hinders the possibility of controlling the risk of the

optimal solution(s): the optimal DG–integrated network may on average satisfy the performance

objectives but be exposed to high–risk scenarios with non–negligible probabilities [1,7,16,24,28,36].

The original contributions of this work reside in: addressing the optimal renewable DG technol-

ogy selection, sizing and allocation problem within a simulation and multi–objective optimization

(MOO) framework that allows for assessing and controlling risk; introducing the conditional value–at–

risk (CVaR) as a measure of the risk associated to each objective function of the optimization [37,38].
The main sources of uncertainty are taken into account through the implementation of a MCS

and OPF (MCS–OPF) resolution engine nested in a MOO based on NSGA–II [39]. The aim of the

MOO is, specifically, the simultaneous minimization of the expected global cost (ECg) and expected

3

104



energy not supplied (EENS), and corresponding CVaR values. A weighting factor β is introduced to

leverage the impact of the CVaR in the search of the final Pareto optimal renewable DG integration

solutions. The proposed framework provides a new spectrum of information for well–supported

decision making enabling the trade–off between optimal expected performance and the associated

risk to achieve it.

2 Distributed generation network simulation model

This section introduces the MCS–OPF model, including the definition of the DG structure and

configuration, the presentation of the uncertainty sources and their treatment, the MCS for scenarios

generation and the OPF formulation for evaluating the performance of the distribution network,

in terms of the objective functions of the MOO problem. The outputs of the MCS–OPF model are

the probability density functions of the energy not supplied (ENS) and the global cost (Cg) of the

network, and their respective CVaR values.

2.1 Distributed generation network structure and configuration

Four main classes of components are considered in the distribution network: nodes, feeders,

renewable DG units and main power supply spots (MS). The nodes can be understood as fixed

spatial locations at which generation units and loads can be allocated. Feeders connect different

nodes and through them the power is distributed. Renewable DG units and main power supply

spots are power sources; in the case of electric vehicles and storage devices they can also act as

loads when they are in charging state. The locations of the main supply spots are fixed. The MOO

aims at optimally allocating renewable DG units at the different nodes.

MS
1

5 4 2 3

9 8 6 7

10 11

renewable 
DG unit

~

load

~

power flow

~
power

generation

Figure 1: Example of distribution network configuration
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Figure 1 shows an example of configuration of a distribution network adapted from the IEEE 13

nodes test feeder [40], for which the regulator, capacitor, switch and the feeders with length equals

to zero are neglected.

Each component in the distribution network has its own features and operating states that

determine its performance. Assuming stationary conditions of the operating variables, the network

operation is characterized by the location and magnitude of power available, the loads and the

mechanical states of the components, because degradation or failures can have a direct impact on

the power availability (in the DG units, feeders and/or main supply).

The renewable DG technologies considered in this work include solar photovoltaic (PV), wind

turbines (W), electric vehicles (EV) and storage devices (batteries) (ST). The power output of each

of these technologies is inherently uncertain. PV and W generation are subject to variability through

their dependence on environmental conditions, i.e., solar irradiance and wind speed. Dis/connection

and dis/charging patterns in EV and ST, respectively, further influence the uncertainty in the power

outputs from the DG units. Also generation and distribution interruptions caused by failures are

regarded as significant.

The following notation is used for sets and subsets of components in the distribution network: N

– set of all nodes; MS – set of all types of main supply power sources; DG – set of all DG technologies;

PV – set of all photovoltaic technologies; W – set of all wind technologies; EV – set of all electric

vehicle technologies; ST – set of all storage technologies; F D – set of all feeders.

The configurations of power sources allocated in the network, indicating the size of power

capacity and the location, is given in matrix form:

1 1 1 1 1 1 1 1

1 1

1 1

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξΞ

ξ ξ ξ ξ ξ ξ

, , j ,m ,m ,m j ,m d

i , i, j i,m i,m i ,m j i ,m d

n, n, j n ,m n,m n,m j n,m d

  

  

  

 
 
 

  
 
 
 

   
         
   

         
   

no
de

 i

MS1 MSj MSm DGdDG1 DGj   

ΞMS ΞDG

fixed size and 
location of MS

decision matrix of type, size 
and location of DG units 

(1)

where Ξ – configuration matrix of type, size and location of the power sources allocated in the

distribution network; ΞMS – size and location of main supply, fixed part of the configuration matrix;

ΞDG – type size and location of DG units, decision variable part of the configuration matrix; n –

number of nodes in the network, |N |; m – number of main supply type (transformers), |MS|; d –
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number of DG technologies, |DG|.

ξi, j =




ζ number of units of MS type or DG technology j are allocated at node i

0 otherwise

∀i ∈ N , j ∈ MS ∪ DG,ζ ∈ Z∗
(2)

Feeders deployment is described by the set of pairs of nodes connected:

F D = {(1, 2), . . . , (i, i')} ∀(i, i') ∈ N × N , (i, i') is a feeder (3)

Any configuration {Ξ, F D} of power sources Ξ= [ΞMS|ΞDG] and feeders F D of the distribution

network are affected by uncertainty, so that the operation and performance of the distribution

network is strongly dependent on the network configuration and scenarios. Furthermore, if the

distribution network acts as a ‘price taker’, the variability of the economic conditions, particularly

the price of the energy, is also an influencing factor [13,19,20]. For these reasons, it is imperative

to represent and account for the uncertainties in the optimal allocation results for informed and

conscious decision–making.

2.2 Uncertainty Modeling

2.2.1 Photovoltaic generation

PV technology converts the solar irradiance into electrical power through a set of solar cells con-

figured as panels. Commonly, solar irradiance has been modeled using probabilistic distributions,

derived from the weather historical data of a particular geographical area. The Beta distribution

function [41,42] is used in this paper:

fpv(s) =





Γ (α+ β)
Γ (α)Γ (β)

s(α−1)(1− s)(β−1) ∀s ∈ [0,1],αi ,βi > 0

0 otherwise
(4)

where s – solar irradiance; fpv – beta probability density function; α, β – parameters of the beta

probability density function. The parameters of the Beta probability density function can be inferred

from the estimated mean µ and standard deviation σ of the random variable s as follows [1]:

β= (1−µ)
�
µ(1+µ)
σ2

− 1
�

(5)

α=
µβ

1−µ (6)

Besides dependence on solar irradiation, PV depends also on the features of the solar cells that
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constitute the panels and on ambient temperature on site. The power outputs from a single solar

cell is obtained from the following equations [41,42]:

Tc = Ta + s
�NoT − 20

0.8

�
(7)

I = s(Isc + ki(Tc − 25)) (8)

V = Voc + kv Tc (9)

F F =
VM PP IM PP

Voc Isc
(10)

Ppv(s) = ncel lsF FV I (11)

where Ta – ambient temperature (◦C); NoT – nominal cell operating temperature (◦C); Tc – cell

temperature (◦C); Isc – short circuit current (A); ki – current temperature coefficient (mA/◦C); Voc –

open circuit voltage (V); kv – voltage temperature coefficient (mV/◦C); VM PP – voltage at maximum

power (V); IM PP – current at maximum power (A); F F – fill factor; ncel ls – number of photovoltaic

cells; Ppv(s) – PV power output (W).

2.2.2 Wind generation

Wind generation is obtained from turbine–alternator devices that transform the kinetic energy of

the wind into electrical power. The stochastic behavior of the wind speed is commonly represented

through probability distribution functions. In particular, the Rayleigh distribution has been found

suitable to model the randomness of the wind speed in various conditions [1,42]:

fw(ws) =
2ws
σ

exp
�
−
�

ws
σ

�2�
(12)

where ws – wind speed (m/s); fw – Rayleigh probability density function; σ – scale parameter of

the Rayleigh distribution function.

Then, for a given wind speed value, the power output of one wind turbine can be determined

as [1,41,42]:

Pw(ws) =





Pw
RT D

ws−wsci

wsa −wsci
if wsci ≤ ws < wsa

Pw
RT D if wsa ≤ ws ≤ wsco

0 otherwise

(13)

where wsci – cut–in wind speed (m/s); wsa – rated wind speed (m/s); wsco – cut–out wind speed

(m/s); Pw
RT D – rated power (kW); Pw(ws) – wind power output (kW).
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2.2.3 Electric vehicles

In this work, EV are considered as battery electric vehicles with three possible operating states:

charging, discharging (i.e., injecting power into the distribution network) and disconnected [43].
To model their pattern of operation, they are considered as a ‘block group’, aggregating their single

operating states into an overall performance. The main reasons for this aggregation are the observed

nearly stable daily usage schedule of EV and the need of avoiding the combinatorial explosion of

the model [42].

0.00
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0 2 4 6 8 10 12 14 16 18 20 22

disconnected
charging
discharging

td (h)

pr
ob
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Figure 2: Hourly probability distribution of EV operating states per day

The power output of one block of EV is formulated by assigning residence time intervals to

each possible operating state and associating them with the percentage of trips that the vehicles

perform by hour of a day [43]. This allows approximating the hourly probability distribution of the

operating states per day, as shown Figure 2. In a given (random) scenario of operational conditions,

the determination of the operating state of a block of EV, of a specific hour of the day, is sampled

randomly from the corresponding probability distribution. Accordingly, the power output for a unit

or block group of EV is calculated using the expressions (14) and (15) below:

fev(td , op) =





pdch(td) if op = discharging

pch(td) if op = charging

pd td(td) if op = disconnected

(14)

∀op ∈ OPs = {charging, discharging, disconnected}
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P ev(op) =





P ev
RT D if op = discharging

−P ev
RT D if op = charging

0 if op = disconnected

(15)

∀t ∈ [0, tRop], op ∈ OPs = {charging, discharging, disconnected}

where td – hour of the day (h); tRop – residence time interval for operating state op (h); fev –

operating state probability density function; P ev
RT D – rated power (kW).

2.2.4 Storage devices

Analogously to the EV case, storage devices are treated as batteries. In reality, these present two

main operating states, charging and discharging [44]. However, for this study the level of charge in

the batteries is randomized and the state of discharging is the only one that is allowed. This is done

to simplify the behavior of the batteries, making it independent on the previous state of charge. The

discharging time interval is assigned according to the relation between the batteries rated power,

their energy density and the random level of charge they present. For this, the discharging action is

carried out at a rate equal to the rated power. Then, the power output per unit of mass of active

chemical in the battery MT is estimated as follows:

fst(Q
st) =





1
SE ×MT

∀Qst ∈ [0, SE ×MT ]

0 otherwise
(16)

t 'R(Q
st) =

Qst

Ps tRT D
(17)

Pst(tR) = Pst
RT D ∀tR ∈ [0, t 'R] (18)

where Qst – level of charge in the battery (kJ); SE – specific energy of the active chemical (J/kg);

MT – total mass of the active chemical in the battery (kg); fst – uniform probability density function;

Pst
RT D – rated power (kW); t 'R – discharging time interval (h).

2.2.5 Main power supply

The MS spots in the distribution network are the power stations connected to the transmission

system. The distribution transformers are located on these spots and provide the voltage level of

the customers. The stochasticity of the available main supplies of power is represented following
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normal distributions [10,45], truncated by the maximum capacity of the transformers.

fms(P
ms) =





1
σms

φ

�
Pms −µms

σms

�

Φ

� Pms
cap −µms

σms

�
−Φ

�
−µ

ms

σms

� ∀Pms ∈ [0, Pms
cap]

0 otherwise

(19)

where Pms – available main power supply (kW); µms – Normal distribution mean; σms – Normal

distribution standard deviation; fms – Normal probability density function; Pms
cap – maximum ca-

pacity of the transformer (kW); φ – standard Normal probability density function; Φ – cumulative

distribution function of φ.

2.2.6 Mechanical states of the components

Renewable DG units, MS spots and feeders are subject to wearing and degradation processes. These

processes can trigger unexpected events, even failures, interrupting or reducing the specific function-

ality of each component. Frequently, the stochastic behavior of failures, repairs and maintenance

actions is modeled using Markov models [28,42]. In this work, a two–state model is implemented in

which the components can be in the mutually exclusive states: available to operate and under repair

(failure state). Assuming the duration of each state as exponentially distributed, the mechanical

state of a component can be randomly generated as follows:

mc =





1 if the component is available to operate

0 otherwise
(20)

∀ component ∈ {Ξ, F D}

fmc(mc) =
(1−mc)λF +mcλR

λF +λR
∀mc ∈ {0, 1} (21)

where mc – binary mechanical state variable, λF – failure rate (failures/h), λR – repair rate

(repairs/h), fmc – mechanical state probability mass function.

2.2.7 Demand of power

Overall demands of power, as well as single load profiles in the nodes of the distribution network,

can be obtained as daily load curves in which to each hour corresponds one specific level of load,

inferred from historical data [1, 14,19]. In addition, power demands profiles can be considered

uncertain following normal distributions [34].

Within the proposed modeling framework, the nodal demands of power are defined by integrating
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the two models mentioned above, i.e. adopting the general daily load profile and considering the

hourly levels of load as normally distributed. Figure 3 schematizes the previous assumption for a

generic node i.

230 td (h)

L i
(t d

) (
kW

)

dt

( )i df t

( )i dL t

Figure 3: Daily load profile. Hourly normally distributed load

In this manner, the nodal demand of power is deducted from the overall demand in the network,

and modeled as:

fLi
(Li , td) =





1
σi(td)

φ

�
Li −µi(td)
σi(td)

�

1−Φ
�
−µi(td)
σi(td)

� ∀i ∈ N , Li ∈ [0,∞]

0 otherwise

(22)

where td – hour of the day (h), Li – power demand in node i (kW), µi – normal distribution mean

of power demand in node i, σi – normal distribution standard deviation of power demand in node

i, fLi
– normal probability density function of power demand in node i.

2.3 Monte Carlo simulation

Most of the techniques used for evaluating the performance of renewable DG–integrated distribution

networks are of two classes: analytical methods and MCS [28]. The implementation of analytical

methods is always preferable, in theory, because of the possibility of achieving closed exact solutions,

but in practice; it often requires strongly simplifying assumptions that may lead to unrealistic

results: power network applications exist but for non–fluctuating or non–intermittent generation

and/or load profiles, and low dimensionality of the network, gaining traceability with reduced

computational efforts [32]. Different, MCS techniques allow considering more realistic models

that analytical methods do, because simplifying assumptions are not necessary to solve the model,

since de facto the model is not solved but simulated and the quantities of interest are estimated
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from the statistics of the virtual simulation runs [46]. For this reason MCS is quite adequate for

application on the analysis of distribution networks with significant randomness or variability in the

sources of power supply and loads, failure occurrence and strong dependence on the power flows

as a consequence of congestion conditions in the feeders, etc. [3,31,33,41,42,47]; the price to pay

for this is the possibly considerable increment in the use of computational resources, and various

methods exist to tackle this problem [46].

Given the multiple sources of uncertainties considered in the proposed framework and the proven

advantages of MCS for adequacy assessment of power distribution networks with uncertainties

[3,31,33,41,42,47], we adopt a non–sequential MCS to emulate the operation of a distribution

network, sampling the uncertain variables without considering their time dependence, so as to

reduce the computational problem.

For a given structure and configuration of the distribution network {Ξ, F D}, i.e., for the fixed

ΞMS and F D deployments and the proposed renewable DG integration plan denoted by ΞDG , each

uncertain variable is randomly sampled. The set ϑ of sampled variables constitutes an operational

scenario, in correspondence of which the distribution network operation is modeled by OPF and its

performance evaluated. The two inputs to the OPF model are the network configuration {Ξ, F D}
and the operational conditions scenario ϑ.

ϑ= [td , Pms
i, j , Li , si , wsi , opev

i, j ,Q
st
i, j , mci, j , mc(i,i')] ∀i, i' ∈ N , j ∈ MS ∪ DG, (i, i') ∈ F D (23)

where td – hour of the day (h), randomly sampled from a discrete uniform distribution U(1, 24).

Figure 4 shows an example of the matrix form construction of the DG–integrated distribution

network, considering a simple case of n = 3 nodes. The network contains one MS spot at node

i = 1, defining the fixed part ΞMS of the configuration matrix, whereas, the decision variable ΞDG

proposes a renewable DG integration plan ΞDG that built from the number of units ξ of each DG

technology allocated. In this way, the network configuration {Ξ, F D} is composed by the matrix

Ξ = [ΞMS|ΞDG] and the deployment of feeders. Then, given the spatial representation {Ξ, F D}, the

sampling of the scenario ϑ determines the operational conditions to perform power flow analysis,

i.e., distribute the power available PϑGa to supply appropriately the demands Li . The available power

in the power source type j at node i, PϑGai, j
, is function of the number of units allocated ξi, j, the

mechanical state mci, j and the specific unitary power output function associated to the generation

unit j, formulated in equations (24) and (25).
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21 2 12 ( )pv
,m Pc s 
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2 4 42 42 ( )ev
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2 3,GaP
2 5,GaP

3 3,GaP
3 2,GaP
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B Sampling of scenarios ϑ

PV 
W
EV
ST

i = 1 2 3
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■■

■
■■■
■■
■

■
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ξi,j
units
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MS ■

FD = {(1, 2),(2, 3)}

1  2  0  1  0  
Ξ 0  0  3  2  1  
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 
 
 
 
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MS

2
PV

j
3
W

4
EV

5
ST

ΞMS ΞDG

A Construction of the model

Figure 4: Example of the matrix form construction of a DG–integrated network (A) and schema of the operating state
definition from the sampled variables (B)

PϑGai, j
= ξi, jmcϑi, jG j(ϑ) (24)

G j(ϑ) =





Pms;ϑ
j if j ∈ MS

Ppv
j (s

ϑ
i ) if j ∈ PV

Pw
j (wsϑi ) if j ∈W ∀i ∈ N

P ev
j (opϑi, j) if j ∈ EV

Pst
j (Q

st;ϑ
i, j ) if j ∈ ST

(25)

In the proposed non–sequential MCS procedure, the intermittency in the solar irradiation is

taken into account defining a night interval between 22.00 and 06.00 hours, i.e., if the value of

the hour of the day td (h), sampled from a discrete uniform distribution U(1, 24), falls in the night

interval, there is no solar irradiation. Regarding the wind speed, its variability is considered by

sampling positive values from a Rayleigh probability density function fitted on historical data and

whose parameters as such that the probability of absence of wind is zero. Since it is not reasonable

to force the historical profile of the wind speed to follow a distribution that admits intermittency,

a common alternative technique is to model the wind by a Markov Chain. Indeed, it is possible

to accurately represent the wind speed by a stationary Markov process if the historical profile of

wind speed data is sufficiently large e.g. years [28]. The intermittency is, then, represented by the

first state of the chain with wind speed equals to zero, and the sampling of the wind speed states

in the non–sequential MCS of the proposed framework, can be performed using the steady–state
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probabilities of the Markov Chain.

An important issue in modeling the operation of power systems is how to represent the evolution

of uncertain operating conditions, such as solar irradiation, wind speed, load profiles, energy prices,

among others. As an example, the load forecast implies the prediction of future power demands given

specific previous conditions. Therefore, to consider load forecast uncertainty within the proposed

MCS framework, it would be necessary to change to a sequential simulation model, in which the

uncertain renewable energy resources, main power supply and loads must be sampled at each time

step. In particular, load forecast uncertainty can be integrated properly building consecutive load

scenarios and assigning corresponding probabilities of occurrence as presented by [7] and [48].
Another interesting approach for load forecast uncertainty modelling is the geometric Brownian

motion (GBM) stochastic process [31,49].

2.4 Optimal power flow

Power flow analysis is performed by DC OPF [50] which takes into account the active power flows,

neglecting power losses, and assumes a constant value of the voltage throughout the network. This

allows transforming to linear the classic non–linear power flow formulation, gaining simplicity and

computational tractability. For this reason, DC power flow is often used in techno–economic analysis

of power systems, more frequently in transmission [50,51] but also in distribution networks [51].

The DC power flow generic formulation is:

Pi =
∑
i'∈N

B(i,i')(δi − δi') ∀i ∈ N , (i, i') ∈ F D (26)

∑
i∈N

�
PGi
− Li − Pi

�
= 0 ∀i ∈ N (27)

where, Pi – active power leaving node i (kW); B(i,i') – susceptance of the feeder (i, i') (Ω−1); δi –

voltage angle at node i; PGi
– active power injected or generated at node i (kW); Li – load at node i

(kW).

The assumptions are:

• the difference between voltage angles is small, i.e., sin(∆δ)≈∆δ, cos(∆δ)≈ 1

• the feeders resistance are neglected, i.e., R << X , which implies that power losses in the

feeder are also neglected

• the voltage profile is flat (constant V , set to 1 p.u.)

Then, for a given configuration {Ξ, F D} and operational scenario ϑ the formulation of the OPF
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problem is:

min Cnet;ϑ
O&M (P

ϑ
Gu) =

∑
i∈N

∑
j∈MS∪DG

CO&M v
j
PϑGui, j

tS (28)

s.t.

Lϑi −
∑

j∈MS∪DG

PϑGui, j
−
∑
i'∈N

mcϑ(i,i')B(i,i')(δ
ϑ
i − δϑi' )− LSϑi = 0 ∀i, i' ∈ N , (i, i') ∈ F D (29)

PϑGui, j
≤ PϑGai, j

∀i ∈ N , j ∈ MS ∪ DG (30)

0≤ PϑGui, j
∀i ∈ N , j ∈ MS ∪ DG (31)

mcϑ(i,i')B(i,i')(δ
ϑ
i − δϑi' )≤ V × Amp(i,i') ∀i, i' ∈ N , (i, i') ∈ F D (32)

−mcϑ(i,i')B(i,i')(δ
ϑ
i − δϑi' )≤ V × Amp(i,i') ∀i, i' ∈ N , (i, i') ∈ F D (33)

where, tS – duration of the scenario (h); Cnet;ϑ
O&M – operating and maintenance costs of the total

power supply and generation ($); CO&M v
j

– operating and maintenance variable costs of the power

source j ($/kWh); mcϑ(i,i') – mechanical state of the feeder (i, i'); B(i,i') – susceptance of the feeder

(i, i') (Ω−1); mcϑi, j – mechanical state of the power source j at node i; PϑGai, j
– available power in the

source j at node i (kW); PϑGui, j
power produced by source j at node i (kW); LSϑi – load shedding at

node i (kW); V – nominal voltage of the network (kV); Amp(i,i') – ampacity of the feeder (i, i') (A).

The load shedding in the node i, LSi, is defined as the amount of load(s) disconnected in

node i to alleviate overloaded feeders and/or balance the demand of power with the available

power supply [52]. The OPF objective is the minimization of the operating and maintenance

costs associated to the generation of power for a given scenario ϑ of duration tS. Equation (29)

corresponds to the power balance equation at node i, while equations (30) and (31) are the bounds

of the power generation and equations (32) and (33) account for the technical limits of the feeders.

2.5 Performance indicators

Given a set Υ of ns sampled operational scenarios ϑ`, ` ∈ {1, . . . , ns}, the OPF is solved for each

scenario ϑ` ∈ Υ , giving in output the values of ENS and global cost.

2.5.1 Energy not supplied

ENS is a common index for reliability evaluation in power systems [1,10,11,48,49,52–55]. In the

present work, its value is obtained directly from the OPF output in the form of the aggregation of
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all nodal load sheddings per scenario ϑ`:

ENSϑ` =
∑
i∈N

LSϑ`i × tS ∀ϑ` ∈ Υ (34)

ENSΥ = {ENSϑ1 , . . . , ENSϑ` , . . . , ENSϑns} (35)

2.5.2 Global cost

The Cg of the distribution network is formed by two terms, fixed and variable costs. The former

term includes those costs paid at the beginning of the operation after the installation of the DG

(conception of ΞDG). They are the investment–installation cost and the operation–maintenance fixed

cost. The variable term refers to the operating and maintenance costs. Note that these costs are

dependent on the power generation and supply, which are a direct output of the OPF (eq. (28)). In

addition, this term considers revenues associated to the renewable sources incentives. Considering

the distribution network as a ‘price taker’ entity, the profits depend on the value of the energy price

that is correlated with the total load in the network. Three different ranges of load are considered

for the daily profile. For each range, a correlation value of energy price is considered as shown in

Figure 5(A).
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Figure 5: Example of load ranges definition for a generic daily load profile (A) and correlation energy price–total load
(B) [13,19,20]

In Figure5(B) the correlation between energy price and total load is presented as the proportion

of their maximum values. As an intermediate approximation of existing studies (e.g. [13,19,20]),

the line with square–markers represents the proportional correlation used in this study, which can

be expressed as:

ep = eph

�
−0.38

�
LT (td)

LTh

�2

+ 1.38
LT (td)

LTh

�
(36)
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Thereby, the global cost function for a scenario ϑ` is given by:

Cϑ`g =
∑
i∈N

∑
j∈DG

(Cinv j
+ CO&M f

j
)
�

tS

th

�
+ Cnet;ϑ`

O&M − (inc + ep(Lϑ`))
∑
i∈N

∑
j∈DG

Pϑ`Gui, j
tS (37)

CΥg = {Cϑ1
g , . . . , Cϑ`g , . . . , Cϑns

g } (38)

where Cinv j
– investment cost of the DG technology j ($); CO&M f

j
– operating and maintenance fixed

costs of the DG technology j ($); th – horizon of analysis (h); inc – incentive for generation from

renewable sources ($/kWh); ep – energy price ($/kWh); Cϑ`g – global cost ($).

2.5.3 Risk

In [38], the importance of measuring risk when optimizing under uncertainty and including it as part

of the objective function(s) or constraints is emphasized. The proposed MOO framework introduces

the CVaR as a coherent measure of the risk associated to the objective functions of interest. The

CVaR has been broadly used in financial portfolio optimization either to reduce or minimize the

probability of incurring in large losses [37,38]. This risk measurement allows evaluating how ‘risky’

is the selection of a solution leading to a determined value of expected losses.

We can consider a fixed configuration of the distribution network {Ξ, F D} including the inte-

gration of DG units as a portfolio. The assessed expectations of ENSΥ and CΥg , found from the

MCS–OPF applied to the set of scenarios Υ , are estimations of the losses; then, CVaR(ENSΥ ) and

CVaR(CΥg ) represent the risk associated to the solutions with these expectations.

The definition of CVaR for continuous and discrete general loss functions is given in detail

in [38]. Here a simplified and intuitive manner to understand the CVaR definition and its derivation

according to [56] is presented.
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Figure 6: Graphic representation of the CVaR

As shown in Figure 6(A), for a discrete approximation of the probability of the losses, given
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a confidence level or α-percentile, the value–at–risk VaRα represents the smallest value of losses

for which the probability that the losses do not exceed the value of VaRα is greater than or equal

to α. Thus, from the cumulative distribution function F(losses) is possible to construct the α-tail

cumulative distribution function Fα(losses) for the losses, such that (Figure 6(B)):

Fα(losses) =





F(losses)−α
1−α if VaRα ≤ losses

0 otherwise
(39)

The α-tail cumulative distribution function represents the risk ‘beyond the VaR’ and its mean

value corresponds to the CVaRα.

Among other risk measures, the CVaR has been commonly used to assess the financial impact

associated to different sources of uncertainty on electricity markets behavior. Some interesting

approaches in the use of diverse risk measures for electricity markets modelling can be found

in [49,57,58].

3 DG units selection, sizing and allocation

This section presents the general formulation of the MOO problem considered previously. As

introduced, the practical aim of the MOO is to find the optimal integration of DG in terms of

selection, sizing and allocation of the different renewable generation units (including EV and ST).

The corresponding decision variables are contained in ΞDG of the configuration matrix Ξ.

The MOO problem consists in the concurrent minimization of the two objective functions

measuring the Cg and ENS, and their associated risk. Specifically, their expected values and their

CVaR values are combined, weighted by a factor β ∈ [0, 1], which allows modulating the expected

performance of the distribution network and its associated risk.

3.1 MOO problem formulation

Considering a set of randomly generated scenarios Υ , the optimization problem is formulated as

follows:

min f1 = βEENSΥ + (1− β)CVaRα(ENSΥ ) (40)

min f2 = βECΥg + (1− β)CVaRα(C
Υ
g ) (41)
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s.t.

ξi, j =




ζ number of units of MS type or DG technology j are allocated at node i

0 otherwise
(2)

∀i ∈ N , j ∈ MS ∪ DG,ζ ∈ Z∗
∑
i∈N

∑
j∈DG

ξi, j(Cinv j
+ CO&M f

j
)≤ BGT (42)

∑
i∈N

ξi, j ≤ τ j ∀ j ∈ DG (43)

OPF({Ξ, F D},Υ ) (28 -33)

where ECg and EENS denote the expected values of Cg and ENS, respectively.

The meaning of each constraint is, (2) – the decision variable ξi, j is a non–negative integer

number; (42) – the total costs of investment and fixed operation and maintenance of the DG units

must be less or equal to the available budget BGT ; (43) – the total number of DG units to allocate

of each technology j must be less or equal to the maximum number of units available τ j to be

integrated; (28)-(33) – all the equations of OPF must be satisfied for all scenarios in Υ .

Constraint (43) can be translated into maximum allowed penetration factor PF DG
max j

of each DG

technology j. Defining PF as ‘the output active power of total capacity of DG divided by the total

network load’ [59], constraint (43) can be rewritten as follows:

∑
i∈N
ξi, j EPDG

j

ELT︸ ︷︷ ︸
PF DG

j

≤ τ j EPDG
j

ELT︸ ︷︷ ︸
PF DG

max j

∀ j ∈ DG (44)

where
∑

i∈N ξi, j – total number of units of DG technology j integrated in the network; EPDG
j –

expected power output of one unit of DG technology j (kW); ELT – expected total load (kW).

The MOO optimization problem is non–linear and non–convex, i.e., a non–convex mixed–integer

non–linear problem or non–convex MINLP. It is non–linear because the objective functions given

by equations (40) and (41) cannot be written in the canonical form of a linear program, i.e., C T X ,

where C is a vector of known coefficients and X the decision vector. In the present case, the decision

matrix ΞDG enters the MCS–OPF flow simulation to obtain the probability mass functions of Cg

and ENS and, then, the objective functions are formed from the corresponding expected and CVaR

values. Thus, the operations applied on ΞDG through MCS–OPF, expectation and CVaR cannot not

be represented as the product C TΞDG. The problem is non–convex because the decision matrices

ΞDG are integer–valued (constraint (2)) and, as it is known, the set of non–negative integers is

non–convex.
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Given the class of optimization problem in the proposed framework (non–convex MINLP), it is

most likely to have multiple local minima. Moreover, the dimension of the distribution network

can lead to a combinatorial explosion of the feasible space of the decision matrices ΞDG [7, 10],
incrementing the number of possible local minima and hindering the possibility of benchmarking

the optimal solutions obtained. However, an approximated but straightforward alternative is to

perform several realizations of the framework obtaining different optimal solutions under the same

optimization and simulation conditions (parameters) and, thus, compare them regarding the optimal

decision matrices and their associated value of the objective functions.

This process was performed for the proposed case study. Indeed, the optimal decision matrices

ΞDG are different in all the cases, when the optimization and simulation framework is performed

under the same conditions but, nonetheless, practically the same Pareto optimal values of ECg and

EENS are eventually obtained. This reflects that equally expected performances (ECg , EENS) can

be obtained for different ΞDG considering the large amount of feasible combinations, which is what

is of interest for practical applications.

3.1.1 NSGA–II with nested MCS–OPF

The combinatorial MOO problem under uncertainties is solved by the NSGA–II algorithm [39],
in which the evaluation of the objective functions is performed by the developed MCS–OPF. The

NSGA–II is one of the most efficient evolutionary algorithms to solve MOO problems [60]. The

extension to MOO entails the integration of Pareto optimality concepts. In general terms, solving a

MOO problem of the form:
min

X
{ f1(X ), f2(X ), . . . , fk(X )}

s.t. X ∈ Λ (45)

with at least two conflicting objectives functions ( fi : ℜn → ℜ) implies to find, within a set of

acceptable solutions that belong to the non–empty feasible region Λ ⊆ ℜn, the decision vectors

X ∈ Λ that satisfy the following [61]:

¬X ∈ Λ : fi(X )≤ fi(X '), ∀i ∈ {1, . . . , k} and fi(X )< fi(X ') for at least one i
⇓

fi(X )≺ fi(X ') i.e. X dominates X '
(46)

The vector X is called a Pareto optimal solution and the Pareto front is defined as the set

{ f (X ) ∈ ℜn : X is Pareto optimal solution}.
The process of searching the non–dominated solutions set, carried out by the NSGA–II MCS–OPF,

can be summarized as shown in Figure 7.

The interested reader can consult [62–64] to compare the proposed framework to alternative

MOO analytical approaches in energy applications.
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Figure 7: Flow chart of NSGA–II MCS–OPF MOO framework
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4 Case study

We consider a distribution network adapted from the IEEE 13 nodes test feeder [40,65]. The spatial

structure of the network has not been altered but we neglect the regulator, capacitor and switch,

and remove the feeders of zero length. The network is chosen purposely small, but with all relevant

characteristics for the analysis, e.g. comparatively low and high spot and distributed load values

and the presence of a power supply spot [65]. The original IEEE 13 nodes test feeder is dimensioned

such that the total power demand is satisfied without lines overloading. We modify it so that it

becomes of interest to consider the integration of renewable DG units. Specifically, the location and

values of some of the load spots and the ampacity values of some feeders have been modified in

order to generate conditions of power congestion of the lines, leading to shortages of power supply

to specific portions of the network.

4.1 Distribution network description

The distribution network presents a radial structure of n = 11 nodes and f d = (n− 1) = 10 feeders,

as shown in Figure 8. The nominal voltage is V = 4.16 (kV), constant for the resolution of the DC

optimal power flow problem.

i: node index
MS: Main Supply spot

spot load (kW)

MS
i = 1

2

3

4
5

6

7

8
9

10
11

Figure 8: Radial 11–nodes distribution network

Table 1: Feeders characteristic and technical data [40]

type node i node i' length (km) X (Ω/km) Amp (A)

T1 1 2 0.61 0.37 365
T2 2 3 0.15 0.47 170
T3 2 4 0.15 0.56 115
T1 2 6 0.61 0.37 365
T3 4 5 0.09 0.56 115
T6 6 7 0.15 0.25 165
T4 6 8 0.09 0.56 115
T1 6 11 0.31 0.37 365
T5 8 9 0.09 0.56 115
T7 8 10 0.24 0.32 115
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Table 1 contains the technical characteristics of the different types of feeders considered: specif-

ically, the indexes of the pairs of nodes that are connected by each feeder of the network, their

length, reactance X and their ampacity Amp.

Concerning the main power supply spot, the maximum active power capacity of the transformer

and the parameters of the normal distribution that describe its variability are given in Table 2.

Table 2: Main power supply parameters

node i Pms
cap (kW)

Normal distribution parameters
µms (kW) σms (kW)

1 1600 1200 27.5

The nodal power demands are reported as daily profiles, normally distributed on each hour.

The mean µ and variance σ values of the nodal daily profiles of the power demands are shown in

Figure 9(A) and (B), respectively.
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Figure 9: Mean (A) and variance (B) values of nodal power demand daily profiles

Table 3: Parameters of PV, W, EV and ST technologies [11,13,42]

PV W

Beta distribution α 0.26 Rayleigh distribution σ 7.96

Beta distribution β 0.73 Pw
RT D (kW) 50

Ta (◦C) 30 wsci (m/s) 3.8

NoT (◦C) 43 wsa (m/s) 9.5

Isc (A) 1.8 wsco (m/s) 23.8

ki (mA/◦C) 1.4 EV

Voc (V) 55.5 P ev
RT D (kW) 6.3

kv (mV/◦C) 194 ST

VM PP (V) 38 P st
RT D (kW) 0.275

IM PP (A) 1.32 SE (kJ/kg) 0.042

The technical parameters of the four different types of DG technologies available to be integrated

into the distribution network (PV, W, EV and ST) are given in Table 3. The values of the parameters
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of the Beta and Rayleigh distributions describing the variability of the solar irradiation and wind

speed, are assumed constant in the whole network, i.e., the region of distribution is such that the

weather conditions are the same for all nodes.

The hourly per day operating states probability profile of the EV is presented in Figure 10 and

failures and repair rates of the components of the distribution network are provided in Table 4.
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Figure 10: Hourly per day probability data of EV operating states

Table 4: Failure rates of feeders, MS and DG units [11,13,42,66]

type λF (failures/h) λR (repairs/h)

MS ∪ DG F D MS ∪ DG F D MS ∪ DG F D

MS T1 3.33e−04 3.33e−04 0.021 0.198
PV T2 4.05e−04 4.05e−04 0.013 0.162
W T3 3.55e−04 3.55e−04 0.015 0.185
EV T4 3.55e−04 3.55e−04 0.105 0.185
ST T5 3.55e−04 3.55e−04 0.073 0.185
- T6 - 4.00e−04 - 0.164
- T7 - 3.55e−04 - 0.185

The values of the investment (Cinv) and fixed and variable Operational and Maintenance

(CO&M f and CO&M v ) costs of the MS and DG units are reported in Table 5. Consistently with the

constraints (42) and (43) of the MOO problem, the total investment associated to a decision variable

ΞDG (proposed by the NSGA–II) must be less than or equal to the limit budget; which is set to

BGT = 4500000 ($), and the total number of units of each type of DG (following the order [PV, W,
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EV, ST]) must be less than or equal to τ j = [15000,5,200,8000]. The value of the incentive for

renewable kWh supplied is taken as 0.024 ($/kWh) [34]. The maximum value of the energy price

eph is 0.11 ($/kWh) [19,20]. Concerning the calculation of the CVaR, the α-percentile is taken as

α= 0.80.

Table 5: Investment, fixed O&M and variable O&M costs of MS and DG [27,34,66]

type Cinv + CO&M f ($) CO&M v ($/kWh)

MS - 1.45e−01
PV 48 3.76e−05
W 113750 3.90e−02
EV 17000 2.20e−02
ST 135.15 4.62e−05

Five optimizations runs of the NSGA–II with the nested MCS–OPF algorithm have been performed,

each one with a different value of the weight parameter β ∈ {1, 0.75, 0.5, 0.25, 0}, to analyze

different tradeoffs between optimal average performance and risk. From equations (40) and (41),

note that the value β = 1 corresponds to optimizing only the expected values of ENS and Cg ,

whereas β= 0 corresponds to the opposite extreme case of optimizing only the CVaR values. Each

NSGA–II run is set to perform g = 300 generations over a population of sz = 100 chromosomes

and, for the reproduction, the single–point crossover and mutation genetic operators are used. The

crossover probability is pco = 1, whereas the mutation probability is pmu= 0.1; the mutation can

occur simultaneously in any bit of the chromosome.

Finally, sn= 250 random scenarios are simulated by the MCS–OPF with time step tS = 1 (h).

Over an horizon of analysis of 10 years (th = 87600 (h)), in which the investment and fixed costs

are prorated hourly.

4.2 Results and discussion

The Pareto fronts resulting from the NSGA–II MCS–OPF are presented in Figure 11 for the different

values of β. The ‘last generation’ population is shown and the non–dominated solutions are marked

in bold. Each non–dominated solution in the different Pareto fronts corresponds to an optimal

decision matrix ΞDG for the sizing and allocation of DG, i.e., an optimal DG–integrated network

configuration {Ξ, F D} where Ξ= [ΞMS|ΞDG].

In the Pareto fronts obtained, we look of three representative non–dominated solutions for the

analysis: those with minimum values of the objective functions f1 and f2 independently (ΞDG
min f1

and ΞDG
min f2

, respectively) and an intermediate solution at the ‘elbow’ of the Pareto front. Table 6

presents the values of the objective functions, EENS, ECg and their respective CVaR values for the

selected solutions. The EENS, ECg and CVaR values of the case in which no DG is integrated in the

network (MS case) is also reported.
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Figure 11: Pareto fronts for different values of β

Table 6: Objective functions: expected and CVaR values of selected Pareto front solutions

β f1 (kW h) f2 ($) EENS (kW h) CVaR(ENS) (kW h) ECg ($) CVaR(Cg) ($)

MS - - - 1109.21 1656.53 170.27 179.24

ΞDG
min f1

1
666.95 160.91 666.95 1093.12 160.91 185.11

ΞDG
el bow 671.05 150.83 671.05 1185.53 150.83 179.47

ΞDG
min f2

726.57 148.68 726.57 1279.37 148.68 178.23

ΞDG
min f1

0.75
797.07 166.41 677.74 1155.11 160.68 183.62

ΞDG
el bow 805.27 159.35 697.17 1129.62 153.09 178.15

ΞDG
min f2

867.08 155.61 729.81 1278.94 147.66 179.45

ΞDG
min f1

0.5
868.61 171.54 641.68 1095.52 159.43 183.64

ΞDG
el bow 936.58 166.67 701.72 1171.47 154.67 178.53

ΞDG
min f2

1131.64 162.99 843.53 1419.79 150.45 175.58

ΞDG
min f1

0.25
1033.65 172.95 723.19 1137.18 156.55 178.42

ΞDG
el bow 1076.53 171.25 743.61 1187.43 156.32 176.24

ΞDG
min f2

1207.33 169.07 835.23 1331.34 158.64 173.47

ΞDG
min f1

0
1144.36 179.03 744.71 1144.31 163.82 179.03

ΞDG
el bow 1197.79 176.62 749.21 1197.74 160.93 176.62

ΞDG
min f2

1307.33 172.87 828.55 1307.35 159.78 172.87

Figure 12 shows a bubble plot representation of the selected optimal solutions. The axes report

the EENS and ECg values while the diameters of the bubbles are proportional to their respective

CVaR values. The MS case is also plotted.

26

127



From Table 6 and Figure 12 it can be seen that, the MS case has an expected performance

(EENS = 1109.21 (kW h) and ECg = 170.27 ($)) inferior (high EENS and ECg) to any case for

which DG is optimally integrated. Furthermore, the CVaR(ENS) = 1656.53 (kW h) for the MS case

is the highest, indicating the high risk of actually achieving the expected performance of energy not

supplied. This confirms that DG is capable of providing a gain of reliability of power supply and

economic benefits, the risk of falling in scenarios of large amounts of energy not supplied being

reduced.
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Figure 12: Bubble plots EENS v/s ECg . Diameter of bubbles proportional to CVaR(ENS) (A) and CVaR(C g) (B)

Comparing among the selected optimal DG–integrated networks, in general the expected perfor-

mances of EENS and ECg are progressively lower for increasing β. This to be expected: lowering

the values of β, the MOO tends to search for optimal allocations and sizing ΞDG that sacrifice

expected performance at the benefit of decreasing the level of risk (CVaR). These insights can serve

the decision making process on the integration of renewable DG into the network, looking not only

at the give–and–take between the values of EENS and, but also at the level of risk of not achieving

such expected performances due to the high variability.

Figure 13 shows the average total DG power allocated in the distribution network and its

breakdown by type of DG technology for the optimal ΞDG as a function of β. It can be pointed

out that the contribution of EV is practically negligible if compared with the other technologies.

This is due to the fact that the probability that the EV is in a discharging state is much lower than

that of being in the other two possible operating states, charging and disconnected (see Figure 10),

combined with the fact that when EV is charging the effects are opposite to those desired.

The analysis of the results for different β values also allows highlighting the impact that each type

of renewable DG technology has on the network performance. As can be noticed in Figure 13(A), the

average total renewable DG power optimally allocated, increases progressively for increasing values

of β: this could mean that to obtain less ‘risky’ expected performances less renewable DG power
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needs to be installed. However, focusing on the individual fractions of average power allocated by

PV, W and ST (Figure 13(B), (C) and (E), respectively), show that a reduction of the risk in the

EENS and ECg is achieved specifically diminishing the proportion of PV power (from 0.29β=1 to

0.11β=0) while increasing the W and ST (from 0.38β=1 to 0.48β=0 and from 0.31β=1 to 0.39β=0,

respectively), but this increment of W and ST power is not enough to balance the loss of PV power

due to the limits imposed by the constraints in the number of each DG technology to be installed

given by τ j. Thus, PV power supply is shown to most contribute to the achievement of optimal

expected performances, but with higher levels of risk. On the other hand, privileging the integration

of W and ST power supply provides more balanced optimal solutions in terms of expectations and

of achieving these expectations.
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Figure 13: Average total DG power allocated (A) and its breakdown by type of DG: PV (B), W (C), EV (D) and ST (E)

Table 7 summarizes the minimum, average and maximum total renewable DG power allocated

per node. The tendency is to install more localized sources (mainly nodes 4 and 8) of renewable

DG power when the MOO searches only for the optimal expected performances (β = 1) and to have

a more uniformly allocation of the power when searches for minimizing merely the CVaR (β = 0).
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Table 7: Average, minimum and maximum total DG power allocated per node

PT (kW)
β

1 0.75 0.5 0.25 0

node min mean max min mean max min mean max min mean max min mean max

1 12.08 34.44 54.77 1.15 22.40 38.56 0.00 19.23 40.98 0.00 39.03 121.00 3.00 17.33 34.71

2 2.30 40.72 69.73 0.00 49.95 77.70 36.50 58.40 123.36 3.00 63.61 132.93 0.00 42.54 84.09

3 0.00 24.83 46.45 14.80 41.79 85.03 0.00 37.94 105.11 4.00 36.87 98.53 1.00 32.84 77.78

4 76.00 110.00 133.41 1.15 67.40 133.63 0.58 38.04 80.13 6.15 20.73 61.85 0.00 39.85 85.86

5 22.60 52.39 77.08 28.90 60.66 98.59 12.63 89.39 143.50 3.30 23.49 54.25 1.00 24.97 79.64

6 12.33 55.56 85.46 10.45 21.22 38.95 2.00 27.68 106.26 12.15 53.78 84.43 0.00 50.64 116.85

7 8.00 16.52 35.38 39.38 64.07 104.05 0.00 52.03 159.73 0.00 34.09 92.81 5.00 18.51 39.23

8 79.03 111.20 146.63 30.00 74.57 114.41 0.00 40.60 146.06 4.00 37.94 102.60 1.00 39.49 119.38

9 0.00 20.03 68.73 4.00 74.07 107.88 0.00 46.72 85.61 0.00 44.06 94.08 0.00 32.86 74.53

10 0.00 9.07 25.35 0.00 1.58 7.88 0.00 11.88 58.69 0.00 8.58 43.40 0.00 30.12 83.45

11 0.00 9.98 17.68 0.00 3.04 13.20 0.00 4.74 23.45 0.00 8.99 45.95 0.00 7.31 51.17

5 Conclusions

We have presented a risk-based simulation and multi-objective optimization framework for the

integration of renewable generation into a distribution network. The inherent uncertain behavior

of renewable energy sources and variability in the loads are taken into account, as well as the

possibility of failures of network components. For managing the risk of not achieving expected

performances due to the multiple sources of uncertainty, the conditional value-at-risk is introduced

in the objective functions, weighed by a β parameter which allows trading off the level of risk. The

proposed framework integrates the Non-dominated Sorting Genetic Algorithm II as a search engine,

Monte Carlo simulation to randomly generate realizations of the uncertain operational scenarios

and Optimal Power Flow to model the electrical distribution network flows. The optimization is

done to simultaneously minimize the energy not supplied and global cost, combined with their

respective conditional value-at-risk values in an amount controlled by β.

To exemplify the proposed framework, a case study has been analyzed derived from the IEEE

13 nodes test feeder. The results obtained show the capability of the framework to identify Pareto

optimal sets of renewable DG units allocations. Integrating the conditional value-at-risk into

the framework and performing optimizations for different values of β has shown the possibility

of optimizing expected performances while controlling the uncertainty in its achievement. The

contribution of each type of renewable DG technology can also be analyzed, indicating which is

more suitable for specific preferences of the decision makers.
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Abstract

In a previous paper, we have introduced a simulation and optimization framework for the integration

of renewable generators into an electrical distribution network. The framework searches for the optimal

size and location of the distributed renewable generation units (DG). Uncertainties in renewable resources

availability, components failure and repair events, loads and grid power supply are incorporated. A

Monte Carlo simulation and optimal power flow (MCS–OPF) computational model is used to generate

scenarios of the uncertain variables and evaluate the network electric performance with respect to the

expected value of the global cost (ECG). The framework is quite general and complete, but at the

expenses of large computational times for the analysis of real systems. In this respect, the work of the

present paper addresses the issue and introduces a purposely tailored, original technique for reducing the

computational efforts of the analysis. The originality of the proposed approach lies in the development of

a new search engine for performing the minimization of the ECG, which embeds hierarchical clustering

analysis (HCA) within a differential evolution (DE) search scheme to identify groups of similar individuals

in the DE population and, then, ECG is calculated for selected representative individuals of the groups

only, thus reducing the number of objective function evaluations. For exemplification, the framework is

applied to a distribution network derived from the IEEE 13 nodes test feeder. The results show that the

newly proposed hierarchical clustering differential evolution (HCDE) MCS–OPF framework is effective

in finding optimal DG–integrated network configurations with reduced computational efforts.

Keywords: Renewable distributed generation, uncertainty, simulation, optimization, differential

evolution, hierarchical clustering analysis
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1 Introduction

Renewable distributed generation (DG) requires the selection of the different available technolo-

gies, and their sizing and allocation onto the power distribution network, considering the specific

economic, operational and technical constraints [1–5]. This can become a complex optimization

problem, depending on the size of the distribution network and the number of renewable DG

technologies available, that can lead to combinatorial explosion [1,3,6–9]. Furthermore, for each

renewable DG plan considered, the power flow problem needs to be solved to assess the response

of the distribution network in terms of power and voltage profiles, available power usage, power

demand satisfaction, economic performances, etc., with possibly significant computation times.

Heuristic optimization techniques belonging to the class of Evolutionary Algorithms (EAs),

like honey bee mating [10], particle swarm optimization (PSO) [9,11–13], differential evolution

(DE) [14, 15] and genetic algorithms (GA) [2, 3, 16, 17], have been considered for the solution

to this problem, since they can deal straightforwardly with non–convex combinatorial problems,

discontinuous search spaces and non–differentiable objective functions [1,9].

To improve the performance of EAs for the complex optimization problem of DG planning, we

consider the integration of clustering [18–23]. This can be directed to the enhancement of the

global and/or local searching ability of the algorithm, and amounts to identifying groups of similar

individuals and applying different evolution operators to those of a same cluster (group) [18,20–22],
e.g. for random generation of new individuals in the neighborhood of cluster centroids [23], or

multi–parents crossover over new randomly generated individuals spread in the global feasible

space [19]. Even if convergence is improved, some of these methodologies increase temporarily the

overall size of the population and, thus, the computational effort. In addition, the accuracy of the

clusters structures in representing the distribution of individuals must be controlled for performing

clustering conveniently.

The main original contribution of the work here presented, lies in the development of the

clustering strategy in a controlled manner. The implementation of such clustering strategy is

done within a Monte Carlo simulation and optimal power flow (MCS–OPF) model and differential

evolution (DE) optimization framework [24] previously developed by the authors for the integration

of renewable generators into an electrical distribution network: the framework searches for the

optimal size and location of the distributed renewable generation units (DG) [25]. Optimality of

the DG plan is sought with respect to the expected global cost (ECG). The introduction of the

clustering is hierarchically (i.e., hierarchical clustering analysis, HCA, [26]) by a controlled way

of reducing the number of individuals to be evaluated during the DE search, therefore, improving

the computational efficiency. Henceforth, we call our method hierarchical clustering differential

evolution (HCDE).

HCA is introduced to build a hierarchical structure of grouping individuals of the population
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that present closeness under the control of a specific linkage criterion based on defined distance

metrics [26]. The HCA outcomes are the linkage distances at which the grouping actions take place,

defining the different levels in the hierarchical structure. Two control parameters are introduced in

the HCA, the cophenetic correlation coefficient (CCC) and a cutoff level coefficient of the linkage

distances in the hierarchical structure of the groups (pco). The CCC is a similarity coefficient

that measures how representative is the proposed grouping structure by comparing their linkage

distances with the original distances between all the individuals in the population. In the hierarchical

structure, the linkage distance given by pco sets the level at which the groups formed below it are

considered to be ‘close enough’ to constitute independent clusters. The two parameters allow HCDE

to adapt itself in each generation of the search, ‘deciding’ whether to perform clustering if the CCC

is greater than or equal to a preset threshold (CCCth) and cutting the hierarchical structure in

independent clusters according to the linkage distance given by pco. Then, the individual closest to

the centroid of each cluster is taken as the feasible representative solution in the population that

enters the evolution phase of the HCDE algorithm. Figure 1 summarizes schematically the structure

of the proposed framework.

Random generation of DE initial population

Objective function ECG evaluation for each 
individual in the population through MCS−OPF

Generation of an evolved population producing trial individuals through DE 
mutation and cross over operators, evaluating the objective function by 

performing MCS−OPF and retaining the or replacing for the best individuals

Construction of a hierarchical structure of groups of individuals in the 
population by performing HCA and calculation of the corresponding CCC

Is CCCth ≤ CCC?

Cutting off the hierarchical structure according to pco forming clusters of 
individuals, identifying the individual closest-to-the-centroid for each 
cluster to form a reduced population to enter the DE evolution phase

Retention of the complete population

yes

no

Is the DE stopping 
criteria fulfilled?

yes

The best individual in the population is returned

no

Figure 1: HCDE framework schema
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We test the approach on a case study based on the IEEE 13 nodes test feeder distribution

network [27], completing the study with a sensitivity analysis to investigate the effects of the

parameters controlling the clustering, namely CCC and pco.

For practical ease of the presentation of the approach, in the next section we provide the basic

elements of the model of the distribution network considered as case study and we briefly summarize

the MCS–OPF model taken from [25]. In Section 3, we embed this in the HCDE for renewable DG

selection, sizing and allocation. Finally, in Section 4 we present the numerical results of the case

study and in Section 5 we draw some conclusions on the work performed.

2 Renewable DG–integrated network model

The operation of the renewable DG–integrated network is considered to be dictated by the location

and magnitude of the power available in the different sources, the loads and the operating states

of the components. Uncertainty is present in the states of operation of the components, due to

stochasticity of degradation and failures, and in the behavior of the renewable energy sources.

These uncertainties have a direct impact on the power available (from the DG units, main supply

spots and/or feeders) to satisfy power demands, which are, in turn, also subject to fluctuations.

Furthermore, if the distribution network is considered as a ‘price taker’ entity, the uncertain behavior

of the power demand impacts directly over the energy price [4,5,28]. Consequently, an attentive

modeling of the uncertainties in renewable DG planning is imperative for well–supported decision–

making.

Monte Carlo simulation (MCS) has already been used to emulate the stochastic operating

conditions and evaluate the performance of power distribution networks [19,28–30]. In the present

paper, non–sequential MCS is used to randomly sample the modeled uncertain variables for a

specific renewable DG plan, without dependence on previous operating conditions, characterizing

the network operation in terms of location and magnitudes of power available and loads. Then, the

performance of the DG–integrated network is evaluated through the optimal power flow model.

2.1 Monte Carlo and optimal power flow simulation

In the proposed framework, the renewable DG technologies considered are of four types: solar

photovoltaic (PV), wind turbines (W), electric vehicles (EV) and storage devices (ST); these are

represented by the set DG that contains all the d g types of technologies. As for main power supply

spots or transformers (MS), the set MS indicates the ms different types of MS considered in the

network.

The DG–integrated network deployment is represented by the location and capacity size of the

power sources, as indicated in matrix form in Equation (1) below, where ξi, j indicates the number
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of units of main supply spots or DG technology j that are allocated at a node i:

Ξ=




ξ1,1 · · · ξ1, j · · · ξ1,ms ξ1,1+ms · · · ξ1, j+ms · · · ξ1,d g+ms
...

. . .
...

. . .
...

...
. . .

...
. . .

...
ξi,1 · · · ξi, j · · · ξi,ms ξi,1+ms · · · ξi, j+ms · · · ξi,d g+ms

...
. . .

...
. . .

...
...

. . .
...

. . .
...

ξn,1 · · · ξn, j · · · ξn,ms ξn,1+ms · · · ξn, j+ms · · · ξn,d g+ms



= [ΞMS|ΞDG]

∀ξi, j ∈ Z∗, i ∈ N , j ∈ PS

(1)

where N and PS = MS ∪ DG are the set of nodes in the network and the set of all power sources,

whose cardinalities are n and ps = ms+ d g, respectively.

The set of feeders F D is defined by all the pairs of nodes (i, i') connected by a distribution line

∀(i, i') ∈ N × N .

The considered uncertain conditions that determine the operation of the DG–integrated network

are accounted for using different stochastic models, as summarized in Table 1. The interested reader

can consult [25] for further details.

Table 1: Uncertain conditions models in the DG–integrated network operation

Variable Nomenclature States and units Model Parameters

Hour of the day td (h) Discrete uniform distribution [1, 24]

Mechanical state mci, j
(0): under repair

(1): operating
Two–state Markov

λF
j ,λR

j

λF
i,i',λ

R
i,i'

Main power supply PMS
i, j (kW)

Truncated normal distribution

0≤ PMS
i, j ≤ PMS

cap j

µMS
j ,σMS

j

PMS
cap j

Solar irradiance si [0,1] Beta distribution αPV
i ,βPV

i

Wind speed wsi (m/s) Rayleigh distribution σW
i

EV operating state opEV
i, j

(-1) : charging

(0): disconnected

(1): discharging

‘Block groups’

Hourly probability distribution

of EV operating states per day:

p− (charging)

p0 (disconnected)

p+ (discharging)

td

ST level of charge QST
i, j (kJ) Uniform distribution [SEST

j MST
Ti, j
]

Nodal power demand Li (kW)

Daily nodal load profiles,

hourly normally distributed load.

Truncated normal distribution

0≤ Li ≤∞

µL
i (td),σL

i (td)

where ∀i, i' ∈ N , j ∈ PS, (i, i') ∈ F D, λF
j and λR

j (1/h) are the failure and repair rates of the power source j, respectively,

λF
i,i' and λR

i,i' (1/h) are the failure and repair rates of the feeder (i, i'), respectively, µMS
j and σMS

j (kW) are the normal

distribution mean and standard deviation associated to the main supply j, PMS
cap j

(kW) is the maximum capacity of the

transformer j, αPV
i and βPV

i are the parameters of the Beta probability density function of the solar irradiance at node i,

σW
i is the scale parameter of the Rayleigh distribution function of the wind speed at node i, SEST

j (kJ/kg) is the specific
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energy of the active chemical in the battery type j, MST
Ti, j

(kg) is the mass of active chemical in the battery type j at node i,

µL
i (td) and σL

i (td) (kW) are the hourly mean and standard deviation of the normal distribution of the power load at

node i.

Concerning the hour of the day td (h), sampled from a discrete uniform distribution U(1,24),
the night interval is defined between 22.00 and 06.00 h. If the value of td falls in the night interval,

there is no solar irradiation.

The resulting realization of one operational scenario of duration ts (h), for the given DG plan

denoted by {F D,Ξ}, consists in the random sampling of each uncertain variable (Table 1), here

indicated by the vector ϑ below:

ϑ= [td , mci, j , mci,i', Li , PMS
i, j , si , wsi , opEV

i, j ,QST
i, j ] (2)

To evaluate the performance of the distribution network the OPF model receives as input the

location and magnitude of the available power in the power sources and demanded at the loads,

which are set by the operating conditions defined by {F D,Ξ} and ϑ. The nodal power loads Li

are directly sampled, whereas the available power in the power sources (MS and DG) depends on

the uncertain variables that represent the behavior of the energy sources, the specific technical

characteristics of each type of technology and the mechanical states. The available power in each

type of power source considered is modeled by the functions summarized in Table 2, for a given

configuration {F D,Ξ}, operating scenario ϑ and a generic node i.

Table 2: Available power functions of the power sources (PS) [25,29,30]

PS type j Parameters Available power function (kW)

MS - PaMS;ϑ
i, j = ξi, j mcϑi, j P

MS;ϑ
i, j (3)

PV

Tai

NoT j

Isc j

Voc j

kI j
, kVj

VM PPj
, IM PPj

PaPV ;ϑ
i, j (s

ϑ
i ) = ξi, j mcϑi, j F F j V

ϑ
i, j I

ϑ
i, j × 10−3 (4)

Tϑci, j
= Tai + sϑi (NoT j

− 20)/0.8

Iϑi, j = sϑi (Isc j
+ kI j

(Tϑci, j
− 25))

V ϑi, j = Voc j
+ kVj

Tϑci, j

F F j = (VM PPj
IM PPj

)/(Voc j
Isc j
)

W

wsci j

wsa j

wsco j

PW
R j

PaW ;ϑ
i, j (wsϑi ) = ξi, j mcϑi, j ×





PW
R j

wsϑi −wsci j
wsa j−wsci j

if wsci j
≤ wsϑi < wsa j

PW
R j

if wsa j
≤ wsϑi ≤ wsco j

0 otherwise

(5)

EV topEV ;ϑ
i, j

, P EV
R j

PaEV ;ϑ
i, j (opEV ;ϑ

i, j , t) = ξi, j mcϑi, j opEV ;ϑ
i, j P EV

R j
∀t ∈ [0, topEV ;ϑ

i, j
] (6)

ST PST
R j

PaST ;ϑ
i, j (t) = ξi, j mcϑi, j P

ST
R j

∀t ∈ [0, tST ;ϑ
Ri, j
] (7)

tST ;ϑ
Ri, j
(QST ;ϑ

i, j ) =QST ;ϑ
i, j /P

ST
R j

In Table 2, PaMS;ϑ
i, j (kW), ξi, j and mcϑi, j denote the available power, the units and the mechanical
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state of the power source of type j allocated at node i. For solar photovoltaic technologies j ∈ PV ,

the parameter Tai
(◦C) is the ambient temperature at node i, NoT j

(◦C) is the nominal cell operation

temperature, Isc j
(A) is the short circuit current, Voc j

(V) is the open circuit voltage, kVj
(mV/◦C) is

the voltage temperature coefficient, kI j
(mA/◦C) is the current temperature coefficients and VM PPj

(V) and IM PPj
(A) are the voltage and current at maximum power point, respectively. For wind

turbines of types j ∈W , wsci j
, wsa j

and wsco j
(m/s) are the cut–in, rated and cut–out wind speeds,

respectively, and PW
R j

(kW) is the rated power of the turbine. For electric vehicles j ∈ EV , topEV ;ϑ
i, j

(h)

is the time of residence in the operating state opEV ;ϑ
i, j and PEV

R j
(kW) is the rated power. For storage

devices j ∈ ST , tST ;ϑ
Ri, j

(h) is the upper bound of the discharging time interval and PST
R j

(kW) is the

rated power.

Under the operating conditions set forth, the given configuration of the renewable DG–integrated

network {F D,Ξ} and the scenario ϑ, the OPF objective is the minimization of the operating cost

associated to the generation and distribution of power, considering the revenues per kW h sold.

Power flow analysis is performed by DC modeling, neglecting power losses and assuming the voltage

throughout the network as constant, linearizing the classic non–linear power flow formulation by

accounting solely for active power flows [31,32]. The present formulation of the DC optimal power

flow problem is:

min Coϑ(Pu,∆δ) =
∑
i∈N

∑
j∈PS

(CovPS
j − epϑ)Pui, j

+
∑

(i,i')∈F D

CovF D
i,i' |Bi,i'(δi − δi')|+ (Cop+ epϑ)

∑
i∈N

LSi

(8)

s.t.

Lϑi − LSi −
∑
j∈PS

Pui, j −
∑
i∈N

mcϑi,i'Bi,i'(δi − δi') = 0 (9)

0≤ Pui, j ≤ PaPS;ϑ
i, j (10)

|Bi,i'(δi − δi')| ≤ V N ET AF D
i,i' (11)

where ∀i, i' ∈ N , j ∈ PS, (i, i') ∈ F D and the operating scenario ϑ, Coϑ ($/h) is the operating cost of

the total power supply and distribution, CovPS
j ($/kWh) is the variable operating cost of the power

source j, epϑ ($/kWh) is the energy price, Pui, j (kW) is the used power from the source of type j at

node i, CovF D
i,i' ($/kWh) and Bi,i' (Ω−1) are the variable operating cost and the susceptance of the

feeder (i, i'), respectively, δi is the voltage angle at node i, Cop ($/kWh) is the opportunity cost for

kW h not supplied, V N ET (kV) is the nominal voltage of the network and Ai,i' (A) is the ampacity of

the feeder (i, i'). The load shedding LSi (kW) is defined as the amount of load disconnected at node

i to alleviate congestions in the feeders and/or balance the demand of power with the available

power supply.
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The distribution network is considered as a ‘price taker’ entity, assuming a correlation between

the total demand of power and the energy price ep ($/kWh). Then, the energy price is calculated

from an intermediate correlation proposed by [4,5,28]:

ep(T L) = eph

�
−0.38

�
T L(td)

T Lh

�2

+ 1.38
T L(td)

T Lh

�
(12)

where eph is the energy price corresponding to the highest value of total demand considered T Lh.

The total demand of power T L(td) at the hour of the day td is the summation of all the nodal loads

Li(td) (Table 1).

The constraint given by Equation (9) corresponds to the power balance equation at node i,

whereas Equations (10) and (11) represent the bounds of the power generation and technical limits

of the feeders, respectively.

One realization of the MCS–OPF consists of the sampling of NS operating scenarios ϑ regarded

as the set Υ = {ϑ1, . . . ,ϑh, . . . ,ϑNS} for each of which the optimal power flow problem is solved,

giving in output the values of the minimum operating cost of the total power supply and distribution

CoΥ = {Coϑ1 , . . . , Coϑh , . . . , CoϑNS}.

2.2 Expected global cost ECG

The proposed renewable DG–integrated network solutions are evaluated with respect to the expected

global cost ECG. The global cost CG is composed by two terms: the fixed investment and operation

(maintenance) costs Ci ($), which are prorated hourly over the life of the project th (h), and the

operating costs CoΥ ($/h) that is the outcome of the MCS–OPF (Equation (8)) described in the

precedent Section 2.1. Thus, the global cost function for a scenario ϑ is given by:

CGϑ = Ci + Coϑ ∀ϑ ∈ Υ (13)

Ci =
1
th

∑
i∈N

∑
j∈DG

ξi, jci j (14)

where ci j ($) is the investment cost of the DG technology type j.

Then, the global cost CGΥ = {CGϑ1 , . . . , CGϑh , . . . , CGϑNS} is considered as realizations of the

probability mass function of CG, and from multiple realizations the expected value ECGΥ can be

obtained.
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3 Renewable DG selection, sizing and allocation

The aim of the proposed simulation and optimization framework is to find the optimal plan of

integration of renewable DG in terms of selection, sizing and allocation of generation units from

different technologies available (PV, W, EV and ST). The corresponding decision variables are

contained in ΞDG of the configuration matrix Ξ defined in Equation (1).

3.1 Optimization problem formulation

Considering a network configuration (F D,Ξ) and a set of randomly generated scenarios Υ , the

optimization problem is formulated as follows:

min ECGΥ (15)

s.t.

ξi, j ∈ Z∗ (1)
∑
i∈N

∑
j∈DG

ξi, jci j ≤ BGT (16)

∑
i∈N

ξi, j ≤ τ j (17)

MCS−OPF((F D,Ξ),Υ ) (18)

The meaning of each constraint ∀i, i' ∈ N , j ∈ PS, (i, i') ∈ F D, τ j ∈ Z∗ is:

• (1): the decision variable ξi, j is a non–negative integer number.

• (16): the total investment and fixed operation and maintenance costs must be less than or

equal to the available budget BGT .

• (17): the total number of renewable DG units of each technology j to be allocated must be

less than or equal to the maximum number of units available for integration τ j .

• (18): all Equations (8)–(11) of MCS–OPF must be satisfied.

3.2 Hierarchical clustering differential evolution (HCDE)

The complex combinatorial optimization problem of DG planning under uncertainties described

above is solved by integrating DE with HCA to reduce computational efforts, whereby the evaluation

of the objective function is performed by the MCS–OPF presented in Section 2.1.

DE is a population–based and parallel, direct search method, shown to be one of the most efficient
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evolutionary algorithms to solve complex optimization problems [19,21,24]. The implementation

of the original version of DE involves two main phases: initialization and evolution, summarized

below for completeness of the paper [24]:

Initialization

◦ Set the values of parameters:

• N P: population size

• Gmax : maximum number of generations

• Coc: crossover coefficient ∈ [0, 1]

• F : differential variation amplification factor ∈ [0,2]

◦ Generate randomly N P individuals X (decision vectors) within the feasible space, to

form the initial population POP0 = {X 0
1 , . . . , X 0

k , . . . , X 0
N P}

◦ Evaluate the objective function f (X ) = y for each individual

Evolution loop

◦ Set generations count index G = 1

◦ Set POPG = POP0

◦ While G ≤ Gmax (stopping criterion)

Trial loop

For each individual X G
k in POPG , ∀k ∈ {1, . . . , N P}:

• Sample from the uniform distribution three integer indexes r1, r2, r3, with k 6= r1 6=
r2 6= r3 and choose the corresponding three individuals X G

r1
, X G

r2
, X G

r3

• Mutation: Generate a mutant individual V G
k according to:

V G
k = X G

r1
+ F(X G

r2
− X G

r3
) (19)

• Crossover: initialize a randomly generated vector UG
k , whose dimensionality dim

is the same as that of X G
k and each coordinate uG

k,i follows a uniform distribution

with outcome in [0, 1] ∀i ∈ {1, . . . , dim}. In addition, generate randomly an integer

index ri ∈ {1, . . . , dim} from a uniform distribution to ensure that at least one

coordinate from V G
k is exchanged to form a trial individual X T G

k , whose coordinates

are defined as follows:

x tG
k,i =





vG
k,i if uG

k,i ≤ Cco or i = ri

xG
k,i if uG

k,i > Cco and i 6= ri
(20)

• Selection: evaluate the objective function for the trial individual f (X T G
k ); if f (X T G

k )
< f (X G

k ) (minimization), then X T G
k replaces X G

k in the population POPG , otherwise

X G
k is retained
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◦ Set G = G + 1

◦ Once the stopping criterion is reached, sort the individuals in POPGmax in descending

order according to their values of the objective function and return X Gmax

The original version of DE keeps the population size N P constant, making the computational

performance dependent mainly on the number of objective function evaluations carried out during

the evolution phase of the algorithm. Then, the integration of HCA into DE is aimed at the reduction

of the number of individuals that enter the evolution loop in each generation so as to decrease the

number of objective function evaluations.

HCA links individuals or groups of individuals which are similar with respect to a specific

property, translated into a metric of distance, obtaining a hierarchical structure. In practice, we

use an agglomerative procedure which in sp = N P − 1 steps fuses the closest pair or individuals or

groups of individuals through a linkage function, e.g. single linkage (nearest neighbor distance),

complete linkage (furthest neighbor), average linkage, among others, until the complete hierarchical

structure is built. The base hierarchical clustering algorithm used in this study can be expressed as

follows [26]:

Step 0: Given a population POP POP = {X1, . . . , Xk, . . . , XN P}, form the set of singleton groups

O = {Op = {Xk}}, ∀p = k ∈ {1, . . . , N P} and calculate the linkage distances between all the

N P groups using the average as linkage function and the Euclidean distance as metric:

D1 =




0 d1
1,2 · · · d1

1,q · · · d1
1,N P

. . . . . .
...

. . .
...

0 d1
p,q · · · d1

p,N P

0
...

...
. . . d1

N P−1,N P
0




d1
p,q =

∑
Xkp∈Op

∑
Xkq∈Oq

Æ
(Xkp − Xkq)2

|Op||Oq|

∀p, q ∈ {1, . . . , N P}, kp, kq ∈ {1, . . . , N P}

(21)

where d1
p,q is the average of the Euclidean distances between all the individuals Xk belonging

to the groups Op and Oq, respectively.

Step 1: Fuse the first pair of groups Op' and O1', for which d1
p',q' is the minimum distance

min(D1) and form a new group ON P+1 = {Op' ∪Oq'}. Update the set of groups O replacing Op'

and Oq' by ON P+1, and calculate the linkage distances D2 between all the N P − 1 groups in O

using (21).

Step 2: Fuse the second pair of groups Op' and Oq' for which d2
p',q' is the minimum distance

min(D2), and form a new group ON P+2 = {Op' ∪Oq'}. As in the preceding step, update the set

of groups O and calculate the linkage distances D3 between all the N P − 2 groups in O using

(21).
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...

Step NP −1: Fuse the last pair of groups with linkage distance dN P−1
p',q' , forming the last group

O2N P−1 = {Op' ∪Oq'} that contains all the individuals X .

The outcoming hierarchical (or tree) structure can be reported as a sorted table containing the

N P − 1 linkage distances relative to each pairing action of individuals/groups and be graphically

illustrated as a dendrogram. Table 3 and Figure 2 present, respectively, the resultant linkage

distances and dendrogram obtained from an example set of N P = 8 two–dimensional individuals X

using the above introduced HCA algorithm.

Table 3: Example hierarchical structure outcome

Step sp Group Groups linked Linkage distance

1 O9 {O2 ∪O6}= {{X2} ∪ {X6}} d1
2,6

2 O10 {O3 ∪O4}= {{X3} ∪ {X4}} d2
3,4

3 O11 {O1 ∪O7}= {{X1} ∪ {X7}} d3
1,7

4 O12 {O5 ∪O8}= {{X5} ∪ {X8}} d4
5,8

5 O13 {O9 ∪O11}= {{X2, X6} ∪ {X1, X7}} d5
9,11

6 O14 {O10 ∪O12}= {{X3, X4} ∪ {X5, X8}} d6
10,12

7 O15 {O13 ∪O14}= {{X1, X2, X6, X7} ∪ {X3, X4, X5, X8}} d7
13,14

0
1 2 3 4 50
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X6X7
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O5O6O2 O4O3O7O1
xi

xj
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O111.0
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1

2,6d

3

1,7d

4

5,8d
2

3,4d

5

9,11d

6

10,12d

7

13,14d

Figure 2: Example dendrogram for average linkage HCA

As stated above, HCA builds the hierarchical structure through a linkage function introducing

in each grouping action a larger or smaller degree of distortion with respect to the original dis-

tances between (ungrouped) individuals. The measurement of this distortion is important and

the cophenetic correlation coefficient (CCC)is introduced to evaluate how representative is the
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hierarchical structure proposed by the HCA. The CCC can be obtained from Equations (22) and

(23) below [26].

CCC =

∑
p<q
(d1

p,q − D̄1)(hp,q − H̄)

s∑
p<q
(d1

p,q − D̄1)2
∑
p<q
(hp,q − H̄)2

∀p, q ∈ {1, . . . , N P} (22)

H =




0 h1,2 · · · h1,q · · · h1,N P
. . . . . .

...
. . .

...
0 hp,q · · · hp,N P

0
...

...
. . . hN P−1,N P

0




hp,q = dsp∗
p',q'

sp∗ = {min(sp) : Xp ∧ Xq ∈ ON P+sp},
∀p, q ∈ {1, . . . , N P}, p', q' ∈ {1, . . . , 2N P − 1}, sp ∈ {1, . . . , N P − 1}

(23)

where D̄1 is the average of the original Euclidean distances d1
p,q between all the individuals, hp,q is

the linkage distance dsp∗
p',q' where the pair of individuals Xp and Xq become members of the same

group and H̄ is the average of the resultant linkage distances hp,q between all the individuals.

Recalling that the aim of nesting HCA into DE is to increase the computational performance

by decreasing the number of individuals to be evaluated in each generation G, the presetting of a

threshold CCCth for the CCC value allows defining the level of representativeness required to the

hierarchical structure proposed. If the CCCG obtained from applying HCA over the corresponding

population POPG is higher than or equal to the threshold CCCth, the built hierarchical structure is

considered an acceptable representation of the original distances amongst the individuals and the

selection of a particular partition of the sets of groups can be performed, i.e., the determination of a

specific number of clusters. Conversely, if CCCG is less than CCCth, the hierarchical structure is

considered not representative enough since it introduces unacceptable distortion that may affect

the global searching process in the HCDE.

Whether the hierarchical structure is accepted, the clustering process itself takes place. As

before stated, the HCA outcome linkage distances dsp
p',q' define each level (height) at which a pairing

action takes place. If the hierarchical structure is ‘cut off’ at a specific linkage distance dCO, all

the groups that are formed below the level dCO become independent clusters. In each generation

G of HCDE, a dCO relative to the HCA outcome linkage distances for the corresponding POPG, is

determined from a preset cutoff level coefficient pco of the linkage distances between the minimum

dsp
p',q' that correspond to the first pairing action and the distance to form at least four clusters needed

to perform the mutation process in the HCDE. Thus, dCO can be obtained from Equations (24) and

(25). Figure 3 shows the cutoff distance representation for the example aforementioned, for which
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the formed clusters are {O2, O6}, {O1}, {O7}, {O3, O4}, {O5} and {O8}.

dCO = dmin + pco(dNC=4 − dmin) (24)

dNC=4 = d(1− 4
N P )%ile (25)

O8O5O6O2 O4O3O7O1

1.0

0.5

2.0

1.5

3.0

2.5

d

=4NCd

mind COd

Figure 3: Example of cutoff distance calculation

The integration of HCA into DE and the definition of the parameters CCCth and pco allow HCDE

adaptation at each generation, i.e., deciding whether to perform HCA and determining the clusters

to be taken. Then, the individuals closest to the centroids of the formed clusters are considered as

the representatives of the group which they belong to and are taken in a reduced population that

enters the evolution phase of the HCDE. The proposed HCDE algorithm is summarized schematically

in the flowchart of Figure 4.
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Set the values of NP, Gmax, Coc, F, CCCth and pco

Generate randomly NP individuals ΞDG, according to constraints (1), (16) 
and (17), to form the initial population 0 0 0 0

1{Ξ Ξ Ξ }DG; DG; DG;
k NPPOP , , , ,  

Evaluate the objective function ECGϒ for each individual through 
MCS-OPF((FD,Ξ), ϒ) with               Ξ [Ξ Ξ ]MS DG

Set generations count index G = 1

Perform HCA using the average distance linkage function obtaining for the 
NP-1 pairing actions sp and calculate the cophenetic correlation index CCCG

sp
p',q'd

Is CCCth ≤ CCCG?

Is G ≤ Gmax?

Cut off the hierarchical structure according to pco ((24) and (25)) 
forming NPG clusters. Obtain the individual closest-to-the-centroid for 

each group ck and set 1={Ξ Ξ Ξ }G

G DG;G DG;G DG;G
ck NP

POP' , , , , 

Set NPG = NP and         1{Ξ Ξ Ξ }G G DG;G DG;G DG;G
k NPPOP' POP , , , ,   

Is ?(ΞΤ ) (Ξ )G G
k' k 'ECG ECG 

Set G = G+1

Perform the trial loop, from each generate a 
trial individual applying mutation and cross over operators ((19) and (20), 

respectively) and evaluate the objective function

Ξ {1 }DG;G G G
k' POP' , k' ,...,NP  

( )G
k'ECG ΞΤ

ΞΤG
k'

Replace       by          in            where k is such thatΞG
k ΞΤG

k'
GPOP Ξ ΞG G

k k'

is retained in GPOPΞ ΞG G
k k'

Sort the individuals in            in descending order according to their 
values of objective function and return

GPOP

1Ξ
maxG

yes

no

yes

yes

no

no

Figure 4: Flowchart of the framework
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4 Case study

We consider a modification of the IEEE 13 nodes test feeder distribution network [27] with the

original spatial structure but neglecting the feeders of length zero, the regulator, capacitor and

switch. The resulting network has 11 nodes and presents the relevant characteristics of interest for

the analysis, e.g. the presence of a main power supply spot and comparatively low and high spot,

and distributed load values [33].

4.1 Distribution network description

The distribution network presents a radial structure of n = 11 nodes as shown in Figure 5. The

nominal voltage V N ET is 4.16 (kV), kept constant for the resolution of the DC optimal power flow

problem.

633-634 

671-692 

MS

5 4 2 3

9 8 6 7

10 11

i = 1

Figure 5: Radial 11–nodes distribution network

Table 4 contains the technical characteristics of the different types of feeders considered: specif-

ically, the indexes of the pairs of nodes (i, i') that they connect, their length l, reactance X F D,

ampacity AF D and failure and repair rates.

The nodal power demands are built from the load data given in [27] and reported in Figure 6 as

daily profiles, normally distributed on each hour td with mean µL and standard deviation σL [29,34].

The technical parameters, failure and repair rates and costs of the MS and the four different

types of DG technologies (PV, W, EV and ST) available to be integrated into the distribution network

are given in Table 5. For the present case study, the distribution region is such that the solar

irradiation and wind speed conditions are assumed uniform in the whole network, i.e., the values

of the parameters of the corresponding Beta and Rayleigh distributions are assumed constant in the

whole network.

16

153



Table 4: Feeders characteristic and technical data [11,27,28]

Type Node i Node i' l (km) X F D (Ω/km) AF D (A) λF (1/h) λR (1/h) CovF D ($/kWh)

T1 1 2 0.610 0.371 730 3.333e−04 0.198 1.970e−02

T2 2 3 0.152 0.472 340 4.050e−04 0.162 9.173e−03

T3 2 4 0.152 0.555 230 3.552e−04 0.185 6.205e−03

T1 2 6 0.610 0.371 730 3.333e−04 0.198 6.205e−03

T3 4 5 0.091 0.555 230 3.552e−04 0.185 6.205e−03

T6 6 7 0.152 0.252 329 4.048e−04 0.164 8.904e−03

T4 6 8 0.091 0.555 230 3.552e−04 0.185 1.970e−02

T1 6 11 0.305 0.371 730 3.333e−04 0.198 1.970e−02

T5 8 9 0.091 0.555 230 3.552e−04 0.185 9.173e−03

T7 8 10 0.244 0.318 175 3.552e−04 0.185 6.205e−03
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Figure 6: Mean and standard deviation values of normally distributed nodal power demand daily profile

The hourly per day operating state probability profiles of the EV are presented in Figure 7: p0,

p− and p+ correspond to the profiles of disconnected, charging and discharging states, respectively.

p0

p−
p+

Figure 7: Hourly per day probability data of EV operating states

17

154



Table 5: Power sources parameters and technical data [13,17,28,29,35–37]

Type j Technical parameters
Distributions parameters,
failure and repair rates Costs

MS PMS
cap = 4250 (kW)

µMS = 4000 (kW)

Cov = 0.145 ($/kWh)
σMS = 125 (kW)
λF = 4.00e−04 (1/h)
λR = 1.30e−02 (1/h)

PV

Ta = 30.00 (◦C)
NoT = 43.00 (◦C)
Isc = 1.80 (A) αPV = 0.26
Voc = 55.50 (V) βPV = 0.73 Ci = 48 ($)
kI = 1.40 (mA/◦C) λF = 5.00e−04 (1/h) Cov = 3.76e−05 ($/kWh)
kV = 194.00 (mV/◦C) λR = 1.30e−02 (1/h)
VM PP = 38.00 (V)
IM PPj

= 1.32 (A)

W

wsci = 3.80 (m/s) σW = 7.96
wsa = 9.50 (m/s) λF = 6.00e−04 (1/h) Ci = 113,750 ($)
wsco = 23.80 (m/s) λR = 1.30e−02 (1/h) Cov = 3.90e−02 ($/kWh)
PW

R = 50.00 (kW)

EV P EV
R = 6.30 (kW)

λF = 2.00e−04 (1/h) Ci = 17,000 ($)
λR = 9.70e−02 (1/h) Cov = 2.20e−02 ($/kWh)

ST
PST

R = 0.28 (kW/kg) λF = 3.00e−04 (1/h) Ci = 135.15 ($)
SEST = 0.04 (kJ/kg) λR = 7.30e−02 (1/h) Cov = 4.62e−05 ($/kWh)

Coherently with constraints (16) and (17), the budget is set to BGT = 4, 500, 000 ($) and the

limit of units of the different DG technologies available to be purchased is τ = [20000, 8, 250, 10000].
The maximum value of the energy price is eph = 0.12 ($/kWh) [5][5] and the highest value of total

demand T Lh is set to 4800 (kW). The opportunity cost for kW h not supplied Cop is considered as

twice of the maximum energy price.

A total of NS = 500 random scenarios are simulated by the MCS–OPF with time step ts = 1 (h),

over a horizon of analysis of 10 years (th= 87,600 (h)), in which the investment and fixed costs

are pro–rated hourly.

The DE iterations are set to perform Gmax = 500 generations over five different cases of

population N P∈ {10, 20, 30, 40, 50}. The differential variation amplification factor F is 1 to maintain

the integer–valued definition of the individuals after the mutation, whereas the crossover coefficient

Coc is 0.1.

HCDE runs are performed under the same conditions set for DE (Gmax , F and Coc), but for

the population size N P of 50 individuals. A sensitivity analysis is performed over the HCA control

parameters, namely the cophenetic correlation coefficient CCCth and linkage distances cutoff

level coefficient pco, for all the nine possible pairs (CCCth, pco) with CCCth∈ {0.6,0.7,0.8} and

pco∈ {0.25, 0.50, 0.75}. Finally, for each of the five DE and nine HCDE settings, twenty realizations

are carried out.
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4.2 Results and discussion

The results of the DE MCS–OPF for the different population sizes N P∈ {10, 20, 30, 40, 50} are shown

in Figure 8. The 50th percentile (%ile) or median values of the minimum global costs ECGmin,

obtained from each experiment with fixed values of N P, are presented as functions of the respective

numbers of objective function evaluations N F E; the error bars represent the 15th and 85th %iles.

50th %ile
15-85th %iles

Figure 8: ECGmin vs N F E for N P ∈ {10,20, 30,40, 50} set in DE

(NP, CCCth, pco) 50th %ile

Figure 9: ECGmin vs N F E for each (N P, CCCth, pco) set in HCDE

As expected, for the same number of generations set in the DE MCS–OPF, the larger the population

size considered the lower the values of ECGmin obtained (better ‘quality’ of the minimum). Addition-

ally, we can observe marked tendencies in the reduction of both median and 15–85th %iles values of

ECGmin for increasing N F E. Performing a curve fitting over these values, we get: ECGmin;50th%ile =
49.07N F E−0.13, ECGmin;15th%ile = 49.07N F E−0.115 and ECGmin;85th%ile = 49.07N F E−0.118, with the

respective coefficients of determination R2
50th%ile = 0.994, R2

15th%ile = 0.998 and R2
85th%ile = 0.998.
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The fact that the difference between the values of the 15–85th %iles is constant indicates that the

dispersion in the ECGmin(N F E) does not depend on N P and can suggest that the global searching

performed by the DE is performed homogeneously in the feasible space that contains multiple local

minima.

Figure 9 reports the median ECGmin values corresponding to the HCDE MCS–OPF realizations

superposed to the distribution of the median ECGmin and 15–85th %iles values of the base DE

experiments represented by the square markers and shaded area, respectively. The vertical and

horizontal error bars account for the 15–85th %iles of the outcome ECGmin and N F E values.

Focusing on CCCth, it can be noticed that for the two extreme cases, CCCth = 0.6 and 0.8, the

dispersion of the number of objective function evaluations is relatively small. On the contrary, the

cases with a CCCth = 0.7 present high variability. This can be explained by the behavior of the

CCC along each generation G in the evolution loop. Figure 10 shows the median, 15th and 85th

%iles CCC values as a function of generation G derived from all HCDE MCS–OPF realizations. On

the one hand, recalling that CCCth is used to control whether it is convenient to perform HCA,

the small N F E dispersion in the case with CCCth = 0.6 is because clustering is practically been

applied in all generations (CCCth ≤ CCCG), thus disabling any effect generated by passing from

populations with original size N P to reduced populations with N PG ≤ N P and vice versa. On the

other hand, the effect is also being avoided in the case CCCth = 0.8 by not applying clustering.

Indeed, in Figure 10 it can be observed that after the generation 50 it is unlikely that by performing

HCA the proposed hierarchical grouping structures represent well enough the population.

50th %ile
15-85th %iles

Figure 10: CCC behavior per generation G

Differently, the cases for which CCCth = 0.7 present high dispersion in the N F E since the

median values of CCCG move in the neighborhood of the threshold throughout the major part of

the evolution loop in the HCDE. Moreover, in general terms, the values of CCCG 15–85th %iles
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maintain certain symmetry with respect to the median, i.e., performing or not HCA are equally

likely events, producing high fluctuations in the number of individuals considered as population

and, therefore, affecting in the same way the N F E.

The above mentioned insights are noticeable also in Figure 11, which shows the empirical

probability density functions (pd f s) of the population size N PG per generation for each (N P,

CCCth, pco) set in HCDE. Indeed, the average probabilities of performing HCA throughout the

evolution cycle for the different values of CCCth = 0.6, 0.7 and 0.8 are 0.980, 0.540 and 0.078,

respectively.

(50, 0.6, 0.75)

(50, 0.6, 0.25)

(50, 0.6, 0.50)

(50, 0.7, 0.75)

(50, 0.7, 0.50)

(50, 0.7, 0.25)

(50, 0.8, 0.75)

(50, 0.8, 0.25)

(50, 0.8, 0.50)

Figure 11: Empirical N PG pd f for each (N P, CCCth, pco) set in HCDE

Regarding the cutoff level coefficient of the linkage distances pco, in Figure 11 it is possible

to identify the three peaks of reduction in the population size, confirming the role of this control

parameter in defining the level at which the hierarchical structures proposed are ‘cut off’ when the

HCA takes place. In fact, lower values of pco imply smaller reduction in the population size because

of the higher demand of proximity between individuals or groups of individuals. In the opposite

side, higher values of pco allow forming clusters from individuals or groups which are relatively less

similar.

From the results obtained for all the different DE and HCDE settings, we look for six representative

cases for the analysis (Figure 9). From the DE runs, we select the settings with extreme and middle

population size N P∈ {10, 30, 50}, whereas from HCDE we choose the cases (N P, CCCth, pco) set as

(50, 0.6, 0.25), (50, 0.6, 0.50), (50, 0.7, 0.50) and (50, 0.7, 0.75). The former (50, 0.6, 0.25) and

(50, 0.6, 0.50) cases present significant reductions in the number of N F E, with small dispersion

and loss of quality of the minimum ECG obtained, compared to the results obtained by diminishing

directly the fixed N P in DE from 50 to 10. Similarly, the cases (50, 0.7, 0.50) and (50, 0.7, 0.75)

may lead to considerable reductions in N F E, with acceptable losses of ECGmin, but subject to a

high degree of variability that compromises the performance.

21

158



As for computational times, running on an Intel® Core™i7–3740QM (PC) 2.70 GHz without

performing parallel computing, the average time to evaluate the objective function is 4.592 (s) for

the NS = 500 scenarios in the MCS–OPF; for a fixed population of N P = 50 and its corresponding

N F E = 20,050, the total time for a single run is on average 25.574 (h). Taking into account this,

under commonly used hardware configurations, the reductions in computational time that can be

achieved by using HCDE with (50, 0.6, 0.25) and (50, 0.6, 0.50) settings are 19% and 49% for the

median, 23% and 51% for the 15th %ile, and 16% and 43% for the 85th %ile, respectively.

The integration of HCA into the DE algorithm introduces a significant time complexity, condi-

tioning the reductions of computational efforts that can be obtained by applying the proposed HCDE

MCS–OPF framework. Indeed, if performing HCA along all generations of DE and running the

MCS–OPF on an eventually reduced population (depending on CCCth and pco) is computationally

heavier than running the MCS–OPF over the complete population, the effects of the framework

can be negligible or even negative. It is possible to formulate the condition to obtain reductions in

the computational efforts by the proposed HCDE MCS–OPF framework, from the asymptotic time

complexities of the main algorithms that compose it. Table 6 reports the independent asymptotic

time complexities as functions of the generic size m of the input to each algorithm and of the

parameters that define the dimensionality of the HCDE MCS–OPF framework [26,38].

Table 6: Asymptotic time complexity of the algorithms

Algorithm

PDIST HC MCS OPF

Time complexity T

O(dm2)a O(m2 log(m)) O(m) O(size(A))b

O(nps× N P2) O(N P2 log(N P)) O(NS × nps) O(NS × nps2)
a Pairwise distance PDIST between all m vectors of size d.
b The matrix A comes from the canonical form Ax ≤ b of the linear programming of
the DC OPF problem approximation.

where nps represents the size of the DG–integrated network, i.e., the number of nodes n times the

number of all the technologies of power generation available ps, N P is the size of the complete

population and NS is the number of scenarios in the MCS–OPF.

Comparing the asymptotic time complexities of the algorithms involved in the realization of the

proposed framework with and without integrating HCA, the following inequalities must be fulfilled

in order to obtain a reduction in the computational time by HCDE:

TPDIST(nps, N P) + THC(N P) + E[N PG]× TMCS−OPF(NS, nps)< N P × TMCS−OPF(NS, nps)
⇓

nps× N P2 + N P2 log(N P) + E[N PG]× NS × nps2 < N P × NS × nps2

⇓
κ=

N P
N P × nps

+
N P log(N P)
N P × nps2

+ ε< 1 ∀n, ps, N P, NS ∈ Z∗,ε= E[N PG]
N P

∈ (0,1]

(26)
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where ε is the expected ratio of the population N PG evaluated along all generations G of DE to the

total population N P and κ is the ratio of the asymptotic time complexities of HCDE to DE.

From Equation (26), we can observe that the contribution of the terms related with the complexity

of MCS–OPF, dependent on NS and nps, is considerably large for the fulfillment of the inequality

conditions. In fact, when using DE, it is commonly accepted to set a size of the population N P not

greater than ten times the size of the decision variables, in this case, 10nps [24], making the first

two terms of κ strongly dependent on the number of scenarios NS. Moreover, given the complexity

of the general problem, higher values of NS lead to a better approximation of the objective function

via MCS–OPF, i.e., the more likely is to fulfill the condition and the greater can be the reduction of

computation time. However, the value of ε depends on the probability of performing clustering in

each generation and at what level, controlled by CCCth and pco respectively. In some cases, ε can

be close to 1 (as we inferred from Figure 11) implying negligible benefits. Table 7 shows the values

of the ratio κ for each (N P, CCCth, pco) set in HCDE considering the dimensionality of the present

case study defined by the values of the parameters nps = 55, NS = 500, N P = 50. The value of

1− κ can be interpreted as the expected asymptotic relative time reduction achieved by performing

HCDE.

Table 7: Ratio κ for each (N P, CCCth, pco)

(N P, CCCth, pco)
N P

N P × nps
N P log(N P)
N P × nps2

ε=
E[N PG]

N P
κ 1− κ

(50, 0.6, 0.25)

1.818e−03 3.418e−05

0.817 0.819 0.181
(50, 0.7, 0.25) 0.921 0.923 0.077
(50, 0.8, 0.25) 0.987 0.989 0.011
(50, 0.6, 0.50) 0.510 0.512 0.488
(50, 0.7, 0.50) 0.738 0.740 0.260
(50, 0.8, 0.50) 0.978 0.979 0.021
(50, 0.6, 0.75) 0.259 0.261 0.739
(50, 0.7, 0.75) 0.487 0.488 0.512
(50, 0.8, 0.75) 0.909 0.911 0.089

Figure 12 shows the convergence curves for the DE and HCDE cases selected, for the twenty

runs performed for each (N P, CCCth, pco) setting: no significant differences can be found among

the convergence curves except for the expected behavior of converging to lower values of ECGmin

for settings which imply a larger population size.

Figure 13 shows the average total DG power allocated in the distribution network and the

corresponding investment costs of the DE and HCDE MCS–OPF cases selected, choosing the corre-

sponding optimal DG–integrated plans as the decision matrices ΞDG for which their ECGmin values

are the closest to the median ECGmin value obtained for the twenty runs of each (N P, CCCth, pco)

setting. It can be pointed out that in all the cases, the contribution of EV is practically negligible if

compared with the other technologies. This is due to a combination of two facts: the probability
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that the EV is in a discharging state is much lower than that of being in the other two possible

operating states, charging and disconnected (see Figure 7) and when EV is charging, the effects are

opposite to those desired, i.e., it is acting as loads.

(50, 0.6, 0.50) 15-85th %iles

(50, 0.6, 0.25) 50th %ile

(50, 0.6, 0.25) 15-85th %iles
(50, 0.6, 0.50) 50th %ile

(10, ˗, ˗) 15-85th %iles

(50, ˗, ˗) 50th %ile

(30, ˗, ˗) 15-85th %iles

(30, ˗, ˗) 50th %ile
(10, ˗, ˗) 50th %ile
(50, ˗, ˗) 15-85th %iles

(50, 0.7, 0.50) 15-85th %iles

(50, 0.7, 0.75) 50th %ile

(50, 0.7, 0.75) 15-85th %iles
(50, 0.7, 0.50) 50th %ile

Figure 12: Convergence curves for representative (N P, CCCth, pco) settings

In all generality, both the investment cost Ci and the average power installed by DG is comparable

in all the cases, except for the setting (50, 0.7, 0.75) for which the level of clustering determined by

pco = 0.75, that translates into higher reductions of the population size, may lead to less similar

local minima than the other settings.

The average total renewable DG power allocated per node is summarized in Figure 14. Even

though all the ECG optimal decision matrices ΞDG show differences, the tendency is to install

localized sources of renewable DG power between two identifiable portions of the distribution

network, up and downstream the feeder (2, 6) (Figure 5), giving preference to the second portion

which presents higher and non–stream homogeneous nodal load profiles.
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Figure 13: Average total DG power allocated and investment cost for representative (N P, CCCth, pco) settings

1
2

3

5
6

4

7
8

9
10

11

node i

Figure 14: Nodal average total DG power for representative (N P, CCCth, pco) settings

5 Conclusions

In a previous paper, we have presented a simulation and optimization framework for the planning of

integration of renewable generation into a distribution network. The optimization is considered with

respect the objective of minimizing the expected global cost of the system. The inherent uncertain

behavior of renewable energy sources, variability in the main power supply and loads, as well as

the possibility of failures of network components are included in a Monte Carlo simulation, which

samples realizations of the uncertain operational scenarios for the optimal power flow.
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The framework is quite general and complete in the characteristics of the realistic system

scenarios considered. However, this is at the expenses of the computational time required for the

overall optimization.

In this respect, in the present paper we have addressed the problem of computational efficiency

in the resolution of the renewable DG planning optimization problem. We have done so by an

original introduction of a controlled clustering strategy, with, the main original contributions being:

• The integration of differential evolution and hierarchical clustering analysis for grouping simi-

lar individuals from a given population and selecting representatives to be evaluated for each

group, thus reducing the number of objective function evaluations during the optimization.

• The introduction of two control parameters, namely the cophenetic correlation coefficient and

a cutoff level coefficient of the linkage distances, for allowing controlled adaptation during

the search process and decision on whether or not to perform clustering and at which level of

the hierarchical structure built.

A case study has been analyzed derived from the IEEE 13 nodes test feeder. The results obtained

show the capability of the framework to identify optimal plans of renewable DG integration. The

sensitivity analysis over the control parameters of the hierarchical clustering shows that the efficiency

is improved with cophenetic correlation thresholds that allow the clustering in almost all generations

along the differential evolution, setting the level of clustering to no more than the fifty percent of

the feasible linkage distances range in the hierarchical structure proposed. Indeed, this is shown to

lead to acceptable reductions in the number of objective function evaluations, with small dispersion

and loss of quality in the minimum global cost obtained.
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Abstract

We introduce a multi–objective optimization (MOO) framework for the integration of renewable

distributed generation (DG) into electric power networks. The framework searches for the optimal size

and location of different DG technologies, taking into account uncertain ties related to primary renewable

resources availability, components failures, power demands and bulk–power supply. A non–sequential

Monte Carlo simulation and optimal power flow (MCS–OPF) computational model is developed to

emulate the network operation by generating random scenarios from the diverse sources of uncertainty,

and assess the system performance in terms of global cost (CG). To measure uncertainty in the system

performance, we introduce the conditional value–at–risk deviation (DCVaR) which, due to its axiomatic

relation to the CVaR, allows the conjoint control of risk. A MOO strategy can, then, be adopted for the

concurrent minimization of the expected global cost (ECG) and the associated deviation DCVaR(CG).
In our work this is operatively implemented by a heuristic search engine based on differential evolution

(MOO–DE). An example of application of the proposed framework is given with regards to the IEEE

30 bus test system, where in DCVaR is shown capable of enabling and controlling tradeoffs between

optimal expected economic performance, uncertainty and risk.

Keywords: Renewable distributed generation, uncertainty, risk, optimization, differential evolution,

conditional value–at–risk, conditional value–at–risk deviation.
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1 Introduction

The integration of renewable distributed generation (DG) into electric power systems is playing a

relevant role in the strategies to decentralize and diversify the overall power generation and, in

the efforts to contribute to the pursuit of environmental sustainability. In principle, the allocation

of renewable DG units directly on ‘the customer site of the meter’ and/or on strategically–defined

points of the sub–transmission grids can improve reliability of power supply, alleviating the re-

strictive dependence on the bulk power generated by large–scale conventional power plants [1,2].
Furthermore, improvements of power losses and voltage stability profiles can be achieved, as well

as reductions of investment risks and transmission costs [2–4].

DG planning is subject to complex economic, regulatory, technical and operational constraints,

which must be attentively considered in order not to generate complications in the operative power

system that may end up counteracting DG’s potential benefits [5–7]. One of the main difficulties

associated to the selection of technologies, dimensioning of power capacities and definition of

the location of the different renewable generation units, is the modeling of the intrinsic uncertain

behavior of the primary renewable energy sources (e.g. solar irradiance, wind speed and water

inflow, in the case of solar photovoltaic, wind turbines and hydro–power technologies, respectively)

and of the stochastic occurrence of unexpected events on the power generation units, such as failures

and stoppages. Indeed, these sources of uncertainty are adjoined to those already present in the

operative power system: failures and stoppages of transmission and distribution (T&D) lines and

conventional generators, variability in the power demands and energy prices, fluctuations in the bulk

power supply, etc. Consequently, for any proposed plan of DG–integrated network, the stochastic

operational conditions need to be emulated coherently to the various sources of uncertainty to

assess its expected performance by solving power flow equations [1,8–10].

The selection of DG–integrated network plans can be framed as an optimization problem,

whose complexity is driven by the size of the network and number of available DG technologies,

that can lead to combinatorial explosion [9,11,12] and, by the aforementioned stochasticity and

uncertainty. Optimality of the plan is customarily sought with regards to economic targets, such as

minimization of costs of carbon dioxide emissions, fuel and transportation, energy losses, operation

and maintenance, investment, etc.. The solutions identified must, of course, comply with technical

constraints like generation capacities, T&D lines rating and voltage drops [1,5].

Evolutionary algorithms (EAs) have emerged as the most effective search engines for combinato-

rial optimization problems and they can deal with non–differential objective functions, discontinuous

feasible spaces and non–convex conditions [9,11]. Some of the best known techniques are: particle

swarm optimization (PSO) [9,13–16], differential evolution (DE) [17–19] and genetic algorithms

(GA) [2,12,20–22].

The uncertainty in the physical parameters and variables of a DG–integrated network propagates
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onto the uncertainty in its operational response and the risk of incurring in non–desirable outcomes

or non–satisfactory performance. This demands a framework of evaluation and control, for allowing

properly informed and confident decision making. For evaluation purposes, various deviation and

risk measures have been introduced into the DG planning optimization frameworks, framing the

problem as a portfolio optimization in which the different types of DG technologies are treated

analogously to financial assets [9,23–30].

In portfolio optimization theory, variance is the most commonly used deviation measure for

estimating uncertainty, although other indicators, like the mean absolute deviation (MAD), have

also been employed [31]. Considering a probabilistic performance function associated to a certain

portfolio, which usually is defined as a return (or loss) function, its variance is considered as

an indicator of the likelihood of achieving the mean value of performance of the portfolio. This

mean–variance approach can be applied to various portfolio optimization strategies, like the (single–

objective) minimization of mean loss (maximization of mean return) with constrained variance,

the (single–objective) minimization of variance with constrained mean loss or the simultaneous

(multi–objective) minimization of mean loss and variance which enables the investors to select

(an) optimal portfolio(s) by trading–off or conditioning mean loss and uncertainty (variance)

on the Pareto front of dominant solutions. Mean–variance approaches have been applied to DG

planning [9,23,24,27,30,32] even though, one important warning must be considered from a risk

perspective: the variance measure includes symmetrically the values of performance that fall short

of or exceed the mean value; in the search for optimal DG technologies portfolios, lower levels of

uncertainty (variance) in the performance function can be obtained with portfolios that lead to

rarer occurrences of both beneficial and/or non–desired (risky) scenarios. Then, for controlling

the risk side, it is necessary to introduce additional indicators that provide information on the

extent of asymmetry of the performance function, weighting accordingly the risky part of it. For

instance, skewness and kurtosis indicators [33] have been traditionally integrated into mean–

variance approaches, for both financial and engineering applications, to estimate the asymmetry and

peakedness of a probabilistic performance function, respectively, and allow controlling conjointly

mean performance, uncertainty of it and risk.

Similarly to mean–variance approaches, and likewise derived from portfolio optimization theory,

direct risk–based frameworks have been formulated and applied to tackle DG planning problems

under uncertain conditions. As for mean–variance approaches, similar optimization strategies can

be implemented to target expected performance and risk separately, as objectives or constraints, or

to search for an efficient Pareto front of them. For this, the most widely used risk measures are the

value–at–risk (VaR) and conditional value–at–risk (CVaR) [22,26,28,29,34–37], both with focus on

the non–desirable performance outcomes given by a portfolio relative to a specific confidence level

or percentile: VaR is defined as the threshold value of performance at the confidence level, whereas

CVaR is the expected value of the performances that fall beyond the VaR [38]. For optimization under

uncertainty, CVaR has gained more interest than VaR because of its preferable properties: among
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others, CVaR maintains consistency with VaR and is a coherent risk measure; it can be expressed by

a minimization formula and aims towards conservatism, which prevails in risk management [38].

Even though integrated portfolio optimization approaches present robustness advantages by

conjointly controlling the level of uncertainty and risk associated to the mean value of performance

of different portfolios, they can considerably increase the complexity of the concurrent optimization

problem that, in our case of interest, is already complicated given its combinatorial nature due to

the size of a DG–integrated network, and the presence of uncertainty in the operational conditions.

Considering the mean value and the necessary deviation and risk measures as representative

objectives of a portfolio increases significantly the number of objective functions to be simultaneously

optimized, further constraining the feasible space and, eventually, hindering in understanding the

information delivered to the decision–makers.

In this work, we take the challenge of developing an optimization framework for the integration

of DG into a electric power network accounting for uncertain operational inputs, and assessing

and controlling uncertainty and risk. For this, we exploit some relevant concepts and tools from

portfolio optimization, but avoiding increasing the complexity of the problem by adopting suitable

performance indicators and, eventually, providing a spectrum of comprehensible information for

well–supported decision making. The main original contribution of this work lies in the introduction

of the CVaR deviation (DCVaR) [31] as a measure of uncertainty, used along with the expected

value as performance indicators of the global cost function (CG) associated to each portfolio of

DG technologies. A multi–objective optimization (MOO) strategy is, then, developed, aiming at

the simultaneous minimization of both objective functions: the expected global cost (ECG) and

its corresponding DCVaR. The numerical implementation of the approach is based on a Monte

Carlo–optimal power flow (MCS–OPF) simulation model nested in a MOO search engine based on

differential evolution (DE) [39]. The MCS–OPF model emulates the operation of each DG–integrated

network proposed by MOO–DE, generating random scenarios from the diverse uncertain operational

inputs and assessing the global cost performance CG of each, and, then, evaluating the two objective

functions. The proposed framework searches for optimal technologies, size and location of DG

units, and enables the direct trade–off between optimal expected performance and the associated

uncertainty to achieve it. Furthermore, thanks to the axiomatic relation between CVaR and DCVaR,

it integrates in the optimal Pareto front the level of risk, given by the values of CVaR.

We apply the framework on a case study based on the IEEE 30 nodes test feeder sub–transmission

and distribution network [40], considering solar photovoltaic and wind turbines DG technologies,

discussing the effectiveness and implications of of its practical application.
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2 DG–Integrated power network simulation model

In this section, we present the Monte Carlo and optimal power flow (MCS–OPF) simulation model.

We introduce the representation of the DG–integrated network, the modeling of the different

uncertainty sources considered, the process of generating the random operational scenarios and the

formulation of the OPF problem.

2.1 Network configuration

For modeling a DG–integrated network, one needs the definition of the type (or classes) of com-

ponents involved and their topological location. In this work, we consider three main classes of

components: power generators G, transmission and distribution lines T D and power demands

(loads). The class of power generators considers all the different types of conventional bulk power

suppliers MG and renewable technologies RG. The topology of the network is described as a graph,

i.e., a set of nodes and the various connections that link them. The nodes represent spatial points at

which generation components (MG and RG) and loads are located or can be allocated, whereas

the connections between nodes are the transmission and distribution lines. We indicate a node

by the index i and the set of all nodes by N = {i : i ∈ {1,2, . . . , n}}, where n is the total number

of nodes in the network. Consequently, we define the set of transmission and distribution lines as

Y = {(i, i') : nodes i and i' are connected,∀i, i' ∈ N}.
Assuming stationary operational conditions, the network performance is considered dependent

on the fixed location and magnitude of the power available in each generation unit and loads and,

the technical limits of the T&D lines. To indicate the location and capacity size of the different types

of generation units present in the network, we define the following matrix Q, ∀i ∈ N as follows:

m+ r types of power generators G

m types of bulk power suppliers MG r types of renewable technologies RG

G1 · · · G j · · · Gm G1+m · · · G j+m · · · Gr+m





q1,1 · · · q1, j · · · q1,m q1,1+m · · · q1, j+m · · · q1,r+m
...

. . .
...

. . .
...

...
. . .

...
. . .

...
Q = [QM |QR] = qi,1 · · · qi, j · · · qi,m qi,1+m · · · qi, j+m · · · qi,r+m

...
. . .

...
. . .

...
...

. . .
...

. . .
...

qn,1 · · · qn, j · · · qn,m qn,1+m · · · qn, j+m · · · qn,r+m

(1)

where [Q]i, j = qi, j is a non–negative integer that specifies the number of units of the power generator

type j allocated at node i:

qi, j =





q' ∈ Z∗ if q' units of G j are allocated at node i,∀G j ∈ G = {G1, . . . , Gm+r}
0 otherwise

(2)
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Then, the static configuration of the physical components G and T D of a DG–integrated network

is represented by the pair ([Q], {Y }). Any physical component is assumed to be affected by the

stochastic occurrence of failures, conditioning dynamically the functionality of power generators

and the paths through which the power flows. Moreover, the magnitude of power available in each

generator is subject to the inherent uncertain behavior of the corresponding primary energy source

and, considering the DG–integrated network as a ’price taker’ entity, the economic conditions depend

on the variability of the power demands [41,42]. Hence, to evaluate the operating performance of

a given DG–integrated network, affected by significant uncertain conditions, it is essential to model

the different sources of variability and emulate the response of the network for a large representative

combination of possible scenarios.

2.2 Uncertainty modeling

Analytical methods and Monte Carlo simulation (MCS) are among the most common techniques

for evaluating the performance of DG–integrated networks [2]. In theory, analytical methods are

preferable because of the possibility of achieving closed form solutions; however, their application

often requires simplifications in the modeling which may lead to unrealistic results. For instance,

analytical solutions for optimal DG planning consider non–uncertain or non–intermittent power

generation and/or load profiles, and networks of low dimensionality [43]. On the contrary, MCS

allows a more realistic modeling, because the performance of the network is not analytically

solved but simulated, and the overall performance indicators are statistically estimated from virtual

operational scenarios realizations [44]. MCS has been found quite adequate for the analysis of

distribution networks with a significant number of sources of randomness or variability, e.g., power

generation, loads, component failures or degradation processes, etc. [2,8,9,16,27,28], but at the

expense of incrementing the use of computational resources.

In the present framework, we adopt a non–sequential MCS, based on latin hypercube sampling

(LHS) [45], to emulate the operation of the DG–integrated network, considering the operation

variables as independent on previous uncertain conditions, so as to seize the advantages of MCS

without overly increasing the computational efforts.

The considered uncertain conditions that determine the operation of the DG–integrated network

are accounted for using different stochastic models, as presented below.

2.2.1 Power demands

The aggregated profile of power demand in an electric power network, as well as the single nodal

profiles, can be represented as daily load curves inferred from historical data [42,46], and can be

considered uncertain following normal distributions [9,16]. We model the nodal power demand

profiles by integrating both ideas, i.e., for a specific hour of the day t ∈ D = {1, . . . , 24} the
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corresponding power demand at node i, denoted Li,t (MW), is normally distributed with mean µi,t

(MW), standard deviation σi,t (MW) and truncated at 0:

fi,t(Li,t |µi,t ,σi,t) =





φ(ξ(Li,t ,µi,t ,σi,t))

σi,t Z(µi,t ,σi,t)
∀Li,t ,µi,t ,σi,t ≥ 0

0 otherwise
(3)

ξ(Li,t ,µi,t ,σi,t) =
Li,t −µi,t

σi,t
; Z(µi,t ,σi,t) = 1−Φ

�
µi,t

σi,t

�

where, φ and Φ are the standard Normal probability density function and its cumulative distribution

function, respectively.

As aforementioned, the network is assumed as a ’price taker’ entity, for which the value of the

energy price is correlated with the aggregated power demand in the network. As an intermediate

approximation of existing studies (e.g. [41,42,47]), the proportional correlation used in this study

can be expressed as:

EPt(Li,t |EPmax , Lmax i
) = EPmax

∑
i∈N

Li,t

Lmax i

�
−0.38

�∑
i∈N

Li,t

Lmax i

�
+ 1.38

�
(4)

where, EPt ($/MWh) is the energy price at the hour of the day t and EPmax ($/MWh) is the

maximum value of energy price correspondent to the aggregated value of maximum nodal power

loads Lmax i
(MW).

2.2.2 Bulk power generation

Bulk power generation stands for the power supply coming from conventional power plants (MG)

already existing in the network. These sources of power supply are rather stable and are connected

to the network at sub–transmission or distribution transformers. Their stochastic behavior is

represented following normal distributions [11,48], with small standard deviation and truncated

by the maximum capacity of generation.

f j(Pj|µ j ,σ j , Pmax j
) =





φ(ξ(Pj ,µ j ,σ j))

σ j Z(µ j ,σ j)
∀Pj ∈ [0, Pmax j

],µ j ,σ j ≥ 0

0 otherwise
(5)

ξ(Pj ,µ j ,σ j) =
Pj −µ j

σ j
; Z(µ j ,σ j) = Φ(

Pmax j
−µ j

σ j
)−Φ(µ j

σ j
)

where ∀ j ∈ { j : G j ∈ MG}, Pj (MW) and Pmax j
(MW) are the available bulk power and maximum

capacity of the MG generator type j, respectively, and µ j (MW) and σ j (MW) the corresponding

Normal distribution mean and standard deviation.
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2.2.3 Solar photovoltaic generation

Solar photovoltaic technologies (PV) transforms solar irradiance into electric power through panels

of solar cells. Commonly for long term periods of analysis, solar irradiance uncertain behavior has

been modeled using probabilistic distributions, obtained from weather historical data of a particular

geographical area. In particular, the Beta distribution function has been found suitable to model

hourly solar irradiance [46,49] and, therefore, is adopted in this paper. Moreover, the intermittency

in the solar irradiation is taken into account defining a daylight interval between 07.00 and 21.00

hours, i.e., if the value t of the hour of the day is in the subset of DL = {7, . . . , 21} of D, the solar

irradiation H is a positive value, otherwise t is in the night interval DN = {22, . . . , 24, 1, . . . , 6} and

the value of solar irradiation is assumed equal to 0. Then, we adjust the Beta distribution function

considering the probability that t is in the daylight interval pL = P(t|t ∈ DL), as follows:

fi(Hi|αi ,βi , pL , H∗i ) =





Γ (αi + βi)
Γ (αi)Γ (βi)

H(αi−1)
i (1−Hi)(βi−1)

(1− pL)B(αi ,βi)
∀Hi ∈ [H∗i , 1],αi ,βi > 0

0 otherwise
(6)

where ∀ j ∈ { j : G j ∈ PV}, Hi is the solar irradiance at node i, αi and βi are the shape parameters

of the corresponding Beta probability density function at node i and H∗i is the pL percentile of the

non–adjusted Beta distribution fi, j(Hi|αi ,βi).

Given the technical characteristics of PV cells and the model of solar irradiance, the probabilistic

power output of a single cell is obtained from the following equation:

Pi, j(Hi) =





P 'i, j(Hi) if 0≤ P 'i, j(Hi)≤ Pmax j

Pmax j
if Pmax j

< P 'i, j(Hi)
(7)

P 'i, j(Hi) = nc F F jV (Hi)I(Hi)× 10−6

TC(Hi) = TAi
+Hi(TNo j

+ 20)/0.8

I(TC) = Hi(ISC j
+ kI j

(TC − 25))

V (TC) = VOC j
+ kVj

TC

F F j = (VM PPj
IM PPj

)/(VOC j
ISC j
)

where referring to PV type j, Pi, j (MW) is the power output at node i, Pmax j
(MW) is the maximum

power generation capacity, nc is the number of photovoltaic cells, F F j is the fill factor, TAi
(◦C) is

the ambient temperature at node i, TNo j
(◦C) is the nominal cell operation temperature, ISC j

(A) is

the short circuit current, kI j
(mA/◦C) is the current temperature coefficient, VOC j

(V) is the open

circuit voltage, kVj
(mV/◦C) is the voltage temperature coefficient, and VM PPj

(V) and IM PPj
(A) are

the voltage and current at maximum power, respectively.
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2.2.4 Wind turbines generation

Wind power generation (W) is obtained from turbine–alternator devices that transform the kinetic

energy of the wind into electric power. The stochastic behavior of the wind speed is commonly

represented through probability distribution functions. The Weibull distribution has been widely

used to model the randomness of the wind speed in various conditions [3,11,21,37,46,49]:

fi(Ui|αi ,βi) =





βi

αi

�
Ui

αi

�(βi−1)
exp

�
−
�

Ui

αi

�βi
�

∀Ui ≥ 0,αi ,βi > 0

0 otherwise
(8)

where ∀ j ∈ { j : G j ∈ W}, Ui (m/s) is the wind speed at node i and αi and βi are the scale and

shape parameters of the Weibull distribution function at node i, respectively.

Similarly to PV type of technologies, the uncertainty associated to the wind speed and the

technical features of a specific type of wind turbine characterize its power output function that can

be determined as follows:

Pi, j(Ui) =





Ui − UC I j

UA j
− UC I j

PR j
if UC I j

≤ Ui < UA j

PR j
if UA j

≤ Ui ≤ UCOj

0 otherwise

(9)

where referring to W type j, PR j
(MW) is the rated power and UC I j

, UA j
and UCOj

(m/s) are the

cut–in, average and cut–out wind speeds, respectively.

2.2.5 Components availability state

Consistently with the non–sequential nature of the MCS simulation proposed in the present frame-

work, the availability states of the physical components in the network, generators and T&D lines,

are straightforwardly modeled by two–state stationary Markov chains [2,50], defining two possible

operating states: η= 0 if the corresponding component is non functional (failure) and η= 1 if the

component is available to operate, i.e., generate, transmit or distribute power accordingly to the

class of component. Then, the discrete stationary distribution of operating states can be expressed

as follows:

fk(ηk|λFk
,λRk

) =




λFk
/(λFk

+λRk
) ηk = 0

λRk
/(λFk

+λRk
) ηk = 1

(10)

where ∀k ∈ {{k : Gk ∈ G} ∪ {k/k = (i, i') ∈ Y }}, ηk is the operating state of component k and λFk

and λRk
are the corresponding failure and repair rates, respectively.
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2.3 Monte Carlo and optimal power flow simulation

For a given DG–integrated network, represented by the pair ([Q], {Y }) that contains the locations

and number of units of the different power generators and the T&D lines, each uncertain variable

is randomly sampled several times by LHS [45] and the inverse transform method [44], for the

realization of NS operational scenarios of duration t∆. For practicality, we define NS as multiple

of 24, so each hour of the day has the same number of realizations NS/24. We denote by ω the

set of sampled variables, which constitutes an operational scenario and by Ω the sets of all the NS

realizations of ω.

ωs = {ts, Li,ts
, EPts

, {Pi, j,s/G j ∈ MG}, Hi,s, Ui,s,ηi, j,s,η(i,i'),s} (11)

Ω= {ws : s ∈ {1,2, . . . , NS}} (12)

For each scenario ωs, the configuration ([Q], {Y }) and the sampled variables set the stage for

evaluating the response of the network in terms of available power usage, power demand satisfaction

and the involved economics. For this, DC optimal power flow analysis (OPF) is run, neglecting

power losses, assuming constant the voltage throughout the network and accounting solely for active

power flows [51, 52]. The OPF receives ([Q], {Y }) and ωs as inputs and aims the minimization

of the aggregated operating cost of generation, transmission and distribution and load shedding,

including revenues per MW h sold. The present formulation of the power flow problem is:

MCS–OPF([Q], {Y },ω):

min
PUs ,∆δs ,LSs

COωs =
∑
i∈N

∑
G j∈G

(COv j − EPts
)PUi, j,s

+

(CLS + EPts
)
∑
i∈N

LSi,s + Sre f

∑
(i,i')∈Y

COv(i,i')|B(i,i')(δi,s − δi',s)|
(13)

s.t.

Li,ts
−
∑
G j∈G

PUi, j,s
− Sre f

∑
i'∈N

η(i,i'),sB(i,i')(δi,s − δi',s)− LSi,s = 0 (14)

0≤ PUi, j,s
≤ ηi, j,s[Q]i, j Pi, j,s (15)

Sre f |B(i,i')(δi,s − δi',s)| ≤ Pmax(i,i') (16)

where ∀t ∈ D, s ∈ {1, 2, . . . , NS}, COωs ($/h) is the aggregated operating cost of generation, trans-

mission and distribution, and load shedding, COv j ($/MWh) is the variable operating cost of the

power generator j, EPts
($/MWh) is the energy price at hour t, PUi, j,s

(MW) is the used power from

the generator type j located at node i, Sre f (MV A) is the reference apparent power in the network,

COv(i,i') ($/MWh) and B(i,i') (p.u.) are the variable operating cost and susceptance of the T&D line

(i, i'), respectively, δi,s is the voltage angle at node i, CLS ($/MWh) is the load shedding cost and
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Pmax(i,i') (MW) is the power rating of the T&D line (i, i'). The load shedding LSi,s (MW) at node i is

defined as the amount of load disconnected to alleviate congestion in the feeders and/ or balance

the demand of power with the available power supply.

Equation (14) corresponds to the power balance at node i, whereas equation (15) represents

the bounds of the power generation units and equation (16) considers the technical limits of the

feeders.

As above–mentioned, OPF is solved for each operational scenario ωs, giving in output the

respective values of minimum COωs . The set COΩ = {COω1 , COω2 , . . . , COωNS} is, then, considered as

a sample of realizations of the probability function of CO.

2.3.1 DG–integrated network performance evaluation

The proposed renewable DG–integrated network solutions Q = [QM |QR] are evaluated with respect

to performance indicators of the global cost CG function. The quantity CG is composed of two

terms: the outcome operating cost of the MCS–OPF described in the previous section, COΩ, and the

fixed investment and operating cost, C I j + CO f j , associated to the renewable part of the proposed

DG plan QR, i.e., ∀ j ∈ { j : G j ∈ RG}. The quantity C I j + CO f j ($) is prorated hourly over the

lifetime of the project th. Thus, the global cost function for the set of operational scenarios Ω is

given by:

CGΩ = COΩ +
1
tH

∑
i∈N

∑
G j∈RG

(C I j + CO f j)[Q
R]i, j (17)

Analogously to COΩ definition, CGΩ represents a sample of realizations of the probability func-

tion of CG and performance indicators of interest can be obtained, relative to expected performance,

uncertainty and risk.

2.4 Uncertainty and Risk Assessment

The proposed MOO framework introduces the CVaR deviation (DCVaR) [31] to measure the un-

certainty in the performance function (CG) of interest. The quantity DCVaR is a functional of the

CVaR [38], which is a coherent risk measure broadly used in financial portfolio optimization and

has been extended to engineering applications, including electric power systems analysis and, in

particular, DG planning [22,26,28,29,34–36]. The axiomatic relation between DCVaR and CVaR

allows optimizing simultaneously uncertainty and risk, by targeting just one of these two indicators.

The definitions and properties of CVaR and DCVaR for continuous and discrete general return

(loss) functions are given in detail in [31,38]. Here, we limit ourselves to presenting only a graphical,

but comprehensive view to understand the CVaR and DCVaR definitions, as shown in Figure 1.
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Figure 1: Graphic representation of VaRα(x), CVaRα(x) and DCVaRα(x); x = loss

For a discrete approximation of the probability function of the loss x , given a confidence level

or α-percentile, the value–at–risk VaRα(x) represents the smallest value of loss for which the

probability that the loss does not exceed that threshold value is greater than or equal to α, whereas

CVaRα(x) is the expected value of loss given that the loss is greater than or equal to the VaRα(x).
Thus, CVaRα(x) provides a quantitative indication of the extent of the probability of occurrence of

extreme non–desirable or risky scenarios of loss. The quantities VaRα(x) and CVaRα(x) can be

expressed by the following equations:

VaRα(x) = inf{z : Fx(z)> α} (18)

CVaRα(x) = E(x/x ≥ VaRα(x)) (19)

With regards to DCVaRα(x), this is a non symmetric deviation measure, as it accounts for the

uncertainty associated to the loss exceeding its expected value. It is defined taking into account

some important properties of the standard deviation [31], and is formulated as:

DCVaRα(x) = CVaRα(x − E(x)) (20)

Furthermore, being a coherent risk measure, CVaR is a strictly expectation–bounded risk measure

and it can be proved that a one–to–one relation exists with its corresponding deviation measure

DCVaR [31]:
CVaRα(x) = E(x) + DCVaRα(x) (21)

In the present framework, we can consider a specific configuration of the DG–integrated network

([Q], {Y }) as a generation portfolio, in which the renewable part [QR] of [Q] is the decision matrix.

The corresponding assessed CGΩ, obtained from the output MCS–OPF([Q],{Y},Ω), can be translated
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into the probability function of loss (CG); then, the quantities CVaRα(CGΩ) and DCVaRα(CGΩ)
represent the level of risk and uncertainty associated to the solution [QR] with an expected global

cost ECG = E(CGΩ), respectively.

3 Renewable generation selection, sizing and allocation

The practical aim of the MOO is to find the optimal integration of DG in terms of selection, sizing

and allocation of the different renewable generation units (PV and W). The corresponding decision

matrix [QR] is contained in the matrix Q = [QM |QR] that stores the number and location of each type

of power generator in the network. The MOO problem consists in the simultaneous minimization of

two objective functions, given by the indicators ECG and DCVaRα(CG).

3.1 Multi–objective optimization problem formulation

The general multi–objective optimization problem for all set of randomly generated operational

scenarios Ω is formulated as follows:

min
[QR]i, j

E(CGΩ) (22)

min
[QR]i, j

DCVaRα(CGΩ) (23)

s.t.

[Q]i, j ∈ Z∗ (2)

∑
i∈N

∑
G j∈RG

[Q]i, j PAVj

Lmax i

≤ PF (24)

MCS−OPF([Q], {Y },Ω) (13 -16)

The meaning of each constraint is the following: (2) the decision variables [Q]i, j are non–

negative integer numbers; (15) the ratio of total amount of average renewable power integrated

in the network must be less or equal to the penetration factor PF ; (13)–(16) all the power flows

equations must be satisfied.

3.1.1 Multi–objective differential evolution

The non–convex mixed–integer non–linear MOO problem under uncertainties is solved by the multi–

objective differential evolution (MOO–DE) algorithm, integrating a fast non–dominated sorting

procedure and crowded–comparison operator [53] into the original single objective DE [39], and
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evaluating the objective functions by the developed MCS–OPF. The extension to MOO entails the

integration of Pareto optimality concepts. In general terms, solving a MOO problem of the form:

min
X

{ f1(X ), f2(X ), . . . , fm(X )}
s.t. X ∈ Λ

with at least two conflicting objectives functions ( fi : ℜn → ℜ) implies to find, within a set of

acceptable solutions that belong to the non–empty feasible region Λ ⊆ ℜn, the decision vectors

X ∈ Λ that satisfy the following [54]:

¬X ∈ Λ/ fi(X )≤ fi(X
′),∀i ∈ {1, 2, . . . , m} and fi(X )< fi(X

′) for at least one i

⇓
fi(X )≺ fi(X

′) i.e. X dominates X ′

The vector X is called a Pareto optimal solution and the Pareto front is defined as the set { f (X ) ∈
ℜn} such that X is Pareto optimal solution. The general MOO–DE algorithm is summarized as

follows:

Initialization

◦ Set the values of parameters:

• N P: population size

• Genmax : maximum number of generations

• COc: crossover coefficient ∈ [0, 1]

• F : differential variation amplification factor ∈ [0,2]

◦ Form the initial population POP0, randomly generating N P decision matrices (individuals)

X within the feasible space, POP0 = {X 0
1 , . . . , X 0

k , . . . , X 0
N P}

◦ Evaluate the objective functions { f1(X 0
k ), . . . , fN F (X 0

k )} for each individual X 0
k , where N F is

the number of objective functions

◦ Rank the individuals in POP0, applying a fast non–dominated sorting procedure with

respect to the values of the objective functions

◦ Compute and assign the crowding–distance value (dC) to each individual in POP0 and

sort, in ascending order, with respect to dC , the individuals belonging to the same non–

domination–ranked group

Evolution loop

◦ Set generations count index g = 1

◦ Set POP g = POP0
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◦ While g ≤ Genmax (stopping criterion)

◦ Set a repository population RPOP as empty

Trial loop

For each individual X g
k in POP g , ∀k ∈ {1, . . . , N P}

• Sample from the uniform distribution three integer indexes in {1, . . . , N P} such that

k1 6= k2 6= k3 6= k and choose the corresponding three individuals X g
k1

, X g
k2

, X g
k3

• Generate a mutant individual X M g
k according to the following mutation operator:

X M g
k = X g

k1
+ F(X g

k2
− X g

k3
) (25)

• Apply a crossover operator, initializing a randomly generated vector X C g
k , whose di-

mensionality n is the same as that of X g
k and each coordinate xcg

k,i follows a uniform

distribution with outcome in [0, 1]∀i ∈ {1, . . . , n}. In addition, generate randomly an

integer index i∗ in {1, . . . , n} from a uniform distribution to ensure that at least one

coordinate from X M g
k is exchanged to form trial individual X T g

k , whose coordinates

x t g
k,i are defined as follows:

x t g
k,i =





xmg
k,i if xcg

k,i ≤ Cco or i = i∗

x g
k,i if xcg

k,i > Cco and i 6= i∗
(26)

• Evaluate the objective functions for the trial individual { f1(X T g
k ), . . . , fN F (X T g

k )}; if X T g
k

dominates X g
k , i.e., { f (X T g

k )≺ f (X g
k )}, X T g

k replaces X g
k in POP g , otherwise retain X g

k

in POP g and save X T g
k in the repository population RPOP

◦ Set a combined population U POP as POP g ∪ RPOP and rank the individuals in U POP,

applying a fast non–dominated sorting procedure

◦ Compute and assign the crowding–distance value dC to each individual in U POP and

sort, in descending order with respect to dC , the individuals belonging to the same non–

domination–ranked group

◦ Set POP g as the first N P individuals of the ranked and sorted population U POP, POP g =
{Xk : Xk ∈ U POP, k ∈ {1, . . . , N P}}

◦ If the stopping criterion is reached return POP g , otherwise set g = g + 1.

In correspondence to the nomenclature used in the proposed framework, the process of searching

the set of non–dominated solutions carried out by the MOO–DE MCS–OPF is presented schematically

in Figure 2.
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Set the values of N P, Genmax , COc , F

Generate randomly N P individuals [QR], according to constraints (2) and (24), to
form the initial population POP0 = {[QR]01, . . . , [QR]0k, . . . , [QR]0N P}

Evaluate the objective functions E(CGΩ) (22) and DCVaRα(CGΩ) (23) for each
individual [QR]0k through MCS-OPF([Q]0k, [Y ],Ω) with [Q]0k = [Q

M |[QR]0k]

Set generations count index g = 1 and POP g = POP0

Set k = 1 and repository population RPOP as empty

From the individual [QR]gk in POP g , ∀k ∈ {1, . . . , N P}, generate a trial individual
[QT R]gk by applying mutation (25) and crossover (26) operators and evaluate the
objective functions E(CGΩ) and DCVaRα(CGΩ) through MCS-OPF([QT]gk , [Y ],Ω)

with [QT]gk = [Q
M |[QT R]gk]

[QT R]gk dominates [QR]gk ?

Set k = k+ 1

Is k > N P?

The trial individual [QT R]gk
replaces [QR]gk in POP g

The original individual [QR]gk is
retained in POP g and the trial

individual [QT R]gk is saved in the
repository population RPOP

Set the combined population U POP as POP g ∪ RPOP, apply fast non–dominated
sorting procedure on U POP, within each non–domination–ranked group, compute and

assign the crowding–distance values dC and sort the individuals in descending order

Set POP g = {[QR]k/[QR]k ∈ U POP, k ∈ {1, . . . , N P}}

Set g = g + 1

Is g > Genmax ?

Return POP g and select the best front as the optimal set of non–dominated solutions

yes no

yes

no

yes

no

Figure 2: Flow chart of the proposed MOO–DE framework
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4 Case study

We consider the IEEE 30 bus sub-transmission and distribution test system, a portion of the Midwest-

ern U.S. electric power system which presents relevant characteristics of interest for the analysis,

e.g., the presence of bulk–power supply spots different in type and with comparatively low and

high nodal load profiles. An important consideration is that we neglect the synchronous condensers,

given the DC assumptions made in the proposed framework for the resolution of the OPF problem.

4.1 Network description

The network consists of n= 30 nodes, a mesh deployment of 41 T&D lines and 2 transformers or

bulk–power supply spots, as shown in Figure 3. The reference apparent power is Sre f = 100 (MV A).
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Figure 3: IEEE 30 bus sub–transmission and distribution test system diagram

Table 1 summarizes the characteristics and technical data of the T&D lines, specifically: the

indexes of the pair of nodes that they connect (i, i′), the susceptance values B(i,i′), power rating

Pmax(i,i′) , failure λF(i,i′) and repair λR(i,i′) rates and operating cost COv(i,i′).
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Table 1: T&D lines characteristics and technical data [40,55,56]

i i′ B(i,i′) (p.u.) Pmax(i,i′) (p.u.) λF(i,i′) (n/h) λR(i,i′) (n/h) COv(i,i′) ($/MWh)

1 2 17.24 1.30 2.85e−04 6.67e−02 4.95

1 3 5.41 1.30 2.85e−04 6.67e−02 1.61

2 4 5.75 0.65 4.28e−04 1.00e−01 2.61

3 4 26.32 1.30 2.85e−04 6.67e−02 5.97

2 5 5.05 1.30 2.85e−04 6.67e−02 2.53

2 6 5.68 0.65 4.28e−04 1.00e−01 3.68

4 6 24.39 0.90 3.73e−04 8.72e−02 6.06

5 7 8.62 0.70 4.17e−04 9.74e−02 0.70

6 7 12.20 1.30 2.85e−04 6.67e−02 0.93

6 8 23.81 0.32 5.01e−04 1.17e−01 0.19

6 9 4.81 0.65 4.28e−04 1.00e−01 5.21

6 10 1.80 0.32 5.01e−04 1.17e−01 4.14

9 10 9.09 0.65 4.28e−04 1.00e−01 8.78

9 11 4.81 0.65 4.28e−04 1.00e−01 4.81

4 12 3.91 0.65 4.28e−04 1.00e−01 2.93

12 13 7.14 0.65 4.28e−04 1.00e−01 1.41

12 14 3.91 0.32 5.01e−04 1.17e−01 11.10

12 15 7.69 0.32 5.01e−04 1.17e−01 6.66

14 15 5.00 0.16 5.36e−04 1.25e−01 13.70

12 16 5.03 0.32 5.01e−04 1.17e−01 13.70

10 17 11.76 0.32 5.01e−04 1.17e−01 13.20

16 17 5.18 0.16 5.36e−04 1.25e−01 8.71

15 18 4.57 0.16 5.36e−04 1.25e−01 3.46

18 19 7.75 0.16 5.36e−04 1.25e−01 12.20

10 20 4.78 0.32 5.01e−04 1.17e−01 5.40

19 20 14.71 0.32 5.01e−04 1.17e−01 3.52

10 21 13.33 0.32 5.01e−04 1.17e−01 11.50

10 22 6.67 0.32 5.01e−04 1.17e−01 9.76

21 22 41.67 0.32 5.01e−04 1.17e−01 8.08

15 23 4.95 0.16 5.36e−04 1.25e−01 1.68

22 24 5.59 0.16 5.36e−04 1.25e−01 7.82

23 24 3.70 0.16 5.36e−04 1.25e−01 16.40

24 25 3.04 0.16 5.36e−04 1.25e−01 7.98

25 26 2.63 0.16 5.36e−04 1.25e−01 9.13

25 27 4.78 0.16 5.36e−04 1.25e−01 5.56

6 28 16.67 0.32 5.01e−04 1.17e−01 1.15

8 28 5.00 0.32 5.01e−04 1.17e−01 0.36

27 28 2.53 0.65 4.28e−04 1.00e−01 6.17

27 29 2.41 0.16 5.36e−04 1.25e−01 14.40

27 30 1.66 0.16 5.36e−04 1.25e−01 14.00

29 30 2.21 0.16 5.36e−04 1.25e−01 11.40
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The nodal power demands are built from the load data given in [40] and reported in Figure 4

as daily profiles (accumulated according to the node indexes i), normally distributed on each hour

t with mean µi,t and standard deviation σi,t . The technical data and uncertain model parameters

of the different types of bulk–power suppliers and DG technologies, available to be integrated into

the network, are given in Table 2. For the present case study, we consider that the number of

photovoltaic cells per PV generation unit is nc = 20000 and that the region covered by the system is

such that the solar irradiation and wind speed conditions are uniform in the whole region, i.e., the

values of the parameters of the corresponding Beta and Weibull distributions are taken equal for all

nodes. The renewable power penetration factor is set to PF = 30% (constraint (24) in the MOO

problem).
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Figure 4: Accumulated mean (A) and standard deviation (B) values of nodal load daily profiles

Table 3 reports the failure and repair rates, λF and λR, respectively, the investment and operating

costs C I j + CO f j and the variable operating cost of the different types of power generators.

Concerning the network economics, the maximum value of the energy price is EPmax = 100

($/MWh) [41,42,47] and the corresponding highest value of total demand ΣLmax i (MW) is set

to 445 (MW). The load shedding cost CLS ($/MWh) is considered as the maximum energy price.

The horizon of analysis or lifetime of the project is 30 years, in which the investment and operating

costs are hourly prorated. The confidence level or α-percentile considered to estimate the values

CVaRα is 75%, arbitrarily chosen.
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Table 2: Power generators technical data and uncertain model parameters [20,41,46,50,57,58]

Type Technical parameters Distribution parameters

MG

G1
Pmax1

(MW) Normal µ1 Normal σ1

340 300 18.25

G2
Pmax2

(MW) Normal µ2 Normal σ2

50 42.5 5

RG

PV

PAV (MW) Pmax (W) VOC (V) ISC (A) VM PP (V) Beta α Beta β

1.07 75 21.98 5.32 17.32

IM PP (A) kV (mV/◦C) kI (mA/◦C) TNo (◦C) TA (◦C) 0.50 0.33

4.76 14.4 1.22 43 30

W
PAV (MW) PR (MW) UC I (m/s) UA (m/s) UCO (m/s) Weibull α Weibull β

0.93 1.5 5 15 25 15 2.2

Table 3: Power generators failure and repair rates and costs [20,41,46,57–59]

Type λF (n/h) λR (n/h) C I + CO f (M$/u) COv ($/MWh)

MG
G1 5.13e−04 2.77e−02 − 29.32

G2 6.84e−04 4.16e−02 − 8.92

RG
PV 6.27e−04 1.30e−02 2.20 9.69

W 3.42e−04 9.00e−03 1.85 11.05

Finally, Table 4 summarizes the main parameters set for the general MOO DE and MCS–OPF

framework.

Table 4: MOO–DE and MCS–OPF parameters

Parameter Nomenclature Value

Population size N P 100

Maximum n◦ of generations Genmax 600

Crossover coefficient COc 0.1

Differential variation amplification factor F 1

N◦ of MCS–OPF scenarios NS 24000

Scenario duration (h) t∆ 1

4.2 Results and discussion

The Pareto front resulting from the MOO–DE MCS–OPF is presented in Figure 5. The entire last

generation population at convergence is shown by gray squares and the non–dominated solutions

are the blue bullets. The base case (MG) in which no DG is integrated in the network is also shown

as dark gray triangle. Each solution in the Pareto Front corresponds to a decision matrix [QR] that

indicates the number of units and locations of the different types of DG technologies integrated in

the network.
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Figure 5: Set of non–dominated solutions: Pareto front

Recalling the relation given by equation (21), DCVaRα(x) = CVaRα(x − E(x)), it is possible to

draw a map of iso–CVaR curves in the plot of non–dominated solutions and so, to include risk into the

trade–off between expected performance and uncertainty, represented by ECG and DCVaRα(CG),
respectively. Then, we can find the compromised solution, namely [QR]min

CVaR(CG), that minimizes

risk as reported in Figure 6(A). The reciprocal case, i.e., a map of iso–DCVaR curves is drawn in

the distribution of non–dominated solutions plotted as ECG vs DCVaRα(CG), and it is shown in

Figure 6(B). We look to three representative non–dominated solutions for the analysis: those with

minimum values of ECG and DCVaRα(CG), denoted [QR]min
ECG and [QR]min

DCVaR(CG) respectively, and

[QR]min
CVaR(CG) which, as mentioned earlier, minimizes risk.

In Figure 6, we can observe that the three solutions of interest, [QR]min
ECG , [QR]min

CVaR and [QR]min
DCVaR,

lead to considerable improvements in expected performance and risk with respect to the base case

MG, in which no renewable generation is integrated into the network. However, the level of

uncertainty in the ECG estimation is increased, in all DG–integrated solutions, because of their

stochasticity. Even so, in comparison to the MG case, the increase in the level of uncertainty for

all DG–integrated cases (on average 1.067 (k$/h)) is much less than the gain in both expected

performance and risk (on average −6.035 and −4.967 (k$/h)), respectively). This fact can be seen

also in the empirical CG probability density functions (pdf) shown in Figure 7.
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Figure 6: Set of non–dominated solutions with iso–CVaR (A) and iso–DCVaR (B) curves

Furthermore, it can be inferred from Figure 7 that, in general, all CG empirical pdfs show

three main peaks. This is due to the characteristics of the daily load profiles (Figure 4) which

present three important ranges: a low power demand range during the night, between 23 and

6 hours and two high ranges of load taking place in the intervals 10 to 13 and 18 to 21 hours,

respectively. Thus, the left peak of the distributions corresponds to the highest range of loads (18 to

21 hours), because higher levels of power demands imply more energy sold and, therefore, more

profits or negative values of CG. Following the same logic, the central peak is due to the second
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highest range of loads (10 to 13 hours) and the right peak to the low range of power demand. As

mentioned before, the three DG–integrated network cases improve the cost profiles because the

usage of power is transferred from the bulk–power suppliers (MG) to the renewable generators

(RG) as summarized in Table 5, presenting the ratio of power usage defined as the proportion of

power used to satisfy the loads, determined by the MCS–OPF, over the power available. According

to the IEEE 30 bus test systems information, the bulk–power supply arriving at node 1, G1, comes

from a conventional coal–fired power plant whereas G2 is supplied by a hydro–power plant. The

nature of the source of power supply conditions the operating costs, in particular, G1 that presents

the higher variable operating costs (Table 3). Nevertheless, the ratio of power usage associated

to G2 is in all cases 100%, even though its operating cost is higher than the renewable. This is

because no investment is being paid for G2, contrary to the DG technologies (PV and W). In this

view, considering investment, PV and W are more convenient than the coal–fired power supply G1

but not more than the hydro–power supply G2.

Table 5: Ratio of power usage by type of generator

Case G1 G2 PV W

MG 77.93% 100.00% − −
ECGmin 41.88% 100.00% 99.96% 99.94%

CVaRCGmin 40.38% 100.00% 99.95% 99.42%

DCVaRCGmin 40.71% 100.00% 100.00% 98.73%

The extreme CG scenarios encountered in the tail of the distributions are mainly produced by

the occurrence of failures in the components of the system, power generators and T&D lines. In

Figure 7, we notice the stability of the CG to these non–desirable events. Since the cost objective

function to be minimized in the OPF considers a load shedding cost, the occurrence of failures in

the components, interrupting the power supply and/or the ability of distribute it, will impact the

CG function depending on how much centralized is the power supply. Focusing on the MG base

case, the power supply and its distribution depend on two generators and the T&D lines connected

to them: the reliability of power supply is determined by few components and so, the eventual

losses of functionality of these components can lead to high amounts of non–satisfied demands.

This is precisely the effect observed in the tails of the CG distributions and, in particular, we see that

distributing and diversifying generation helps to improve the risk impacts from multiple failures

in the network, even if the number of generation units in the system is increased and with it, the

overall absolute likelihood of occurrence of failures.
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Figure 8: Total average renewable power installed. Cases ECGmin (A), CVaRCGmin (B) and DCVaRCGmin (C)

Figure 8 shows the total average DG power integrated in the network for the three solutions

under analysis and the corresponding obtained values of ECG and CVaRα. It can be pointed out

that in all cases the DG power installed is almost equal to the limit value set by the penetration

factor PF . In the present case, a maximum of 30% is accepted, of average DG power installed

over the maximum aggregated load in the system. This leads to an approximated limit of 135.5

(MW). Furthermore, in general terms moving along the non–dominated solutions, starting from the

one that minimizes ECG ([QR]min
ECG), passing to the compromising one that minimizes CVaRα(CG)

([QR]min
CVaR(CG)) and ending with ([QR]min

DCVaR(CG)) that minimizes DCVaRα(CG), the amount of PV

power integrated in the network decreases progressively, being replaced by W power. Then, we

infer that the more PV power generators are integrated, the better expected global cost performance

is achieved. This seems physically coherent, taking into account that the average power outputs

delivered by one generation unit of PV and W technologies are 1.07 and 0.93 (MW), respectively,
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and the cost performance benefits comparatively more from the PV MW h sold during the daylight

interval within the two peaks ranges of power demand. Nevertheless, the amount of average

integrated PV power is invariably smaller than W power, this is because PV generation units do

not supply during the night interval, making convenient to integrate always a certain amount of W

power and, thus, to avoid resorting to the more expensive coal–fired power supplier G1. Moreover, it

is precisely this lack of PV generation during the night interval that strongly conditions the trade–off

between expected performance and uncertainty, ECG vs DCVaRα(CG), i.e., the more PV power is

integrated, the better expected global cost performance is achieved but the more uncertain is its

estimation.
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Figure 9: Nodal average power by type of generator

Concerning the compromising solution [QR]min
CVaR(CG) that minimizes risk, as it was derived from

the empirical CG distributions, the risk associated to a solution depends mainly to the occurrence of

extreme non–desired events. Improvements in risk performance can, then, be achieved by solutions

for which the allocation of DG power generation units decentralizes and diversifies to a large extent

the supply. This insight is noticeable in Figure 9 that reports the nodal average power by type of

generation for the three solutions of interest. For both extreme solutions, [QR]min
ECG and [QR]min

DCVaR,

the tendency is to integrate localized sources of renewable DG at two identifiable portions of the

network, in the region close to nodes 2, 5, 7 and 8 of the sub–transmission portion of the network, and

nodes 17, 19 and 21 in the distribution part, favoring the sub–transmission portion which presents

higher and non homogeneous nodal load profiles. In a different manner, the solution [QR]min
CVaR(CG)

presents a more homogeneous deployment of DG power, allocating comparable generation capacities

in both sub–transmission and distribution parts of the network.
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5 Conclusions

We have presented a multi–objective optimization framework for the integration of renewable

distributed generation into an electric power network. Multiple uncertain operational inputs are

taken into consideration: the inherent uncertain behavior of renewable energy sources and power

demands, as well as the occurrence of failures of components. For managing the uncertainty and

risk associated to the achievement of a certain level of expected global cost performance, we have

introduced the conditional–value–at–risk deviation measure, which allows trading off the level of

uncertainty and, given the axiomatic relation to the conditional–value–at–risk, enables conjointly the

trade–off of risk by constructing an iso–risk map in the non–dominated set of solutions. The proposed

framework integrates the multi–objective differential evolution as a search engine, Monte Carlo

simulation to randomly generate realizations of the uncertain operational scenarios and optimal

power flow to evaluate the network response. The optimization is done to simultaneously minimize

the expected value of the global costs and the respective conditional–value–at–risk deviation.

A case study has been analyzed, based on the IEEE 30 bus sub–transmission and distribution

test system. The results obtained show the capability of the framework to identify Pareto optimal

solutions of renewable DG units allocations. Integrating the conditional value–at–risk deviation

into the framework has shown effectively the possibility of optimizing expected performances

while controlling the uncertainty and risk, analyzing, in addition, the contribution of each type of

renewable DG technology on the level of uncertainty associated to the outcome performance of

the optimal solutions and the importance of the deployment of the renewable generation capacity

to lower the risk of incurring in non–desirable extreme scenarios. In this view, a complete and

comprehensible spectrum of information can be supplied in support of specific preferences of the

decision makers for their decision tasks.
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